Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2012 Red Hat, Inc.
   4 *
   5 * Author: Mikulas Patocka <mpatocka@redhat.com>
   6 *
   7 * Based on Chromium dm-verity driver (C) 2011 The Chromium OS Authors
   8 *
 
 
   9 * In the file "/sys/module/dm_verity/parameters/prefetch_cluster" you can set
  10 * default prefetch value. Data are read in "prefetch_cluster" chunks from the
  11 * hash device. Setting this greatly improves performance when data and hash
  12 * are on the same disk on different partitions on devices with poor random
  13 * access behavior.
  14 */
  15
  16#include "dm-verity.h"
  17#include "dm-verity-fec.h"
  18#include "dm-verity-verify-sig.h"
  19#include <linux/module.h>
  20#include <linux/reboot.h>
  21#include <linux/scatterlist.h>
  22#include <linux/string.h>
  23#include <linux/jump_label.h>
  24
  25#define DM_MSG_PREFIX			"verity"
  26
  27#define DM_VERITY_ENV_LENGTH		42
  28#define DM_VERITY_ENV_VAR_NAME		"DM_VERITY_ERR_BLOCK_NR"
  29
  30#define DM_VERITY_DEFAULT_PREFETCH_SIZE	262144
  31
  32#define DM_VERITY_MAX_CORRUPTED_ERRS	100
  33
  34#define DM_VERITY_OPT_LOGGING		"ignore_corruption"
  35#define DM_VERITY_OPT_RESTART		"restart_on_corruption"
  36#define DM_VERITY_OPT_PANIC		"panic_on_corruption"
  37#define DM_VERITY_OPT_IGN_ZEROES	"ignore_zero_blocks"
  38#define DM_VERITY_OPT_AT_MOST_ONCE	"check_at_most_once"
  39#define DM_VERITY_OPT_TASKLET_VERIFY	"try_verify_in_tasklet"
  40
  41#define DM_VERITY_OPTS_MAX		(4 + DM_VERITY_OPTS_FEC + \
  42					 DM_VERITY_ROOT_HASH_VERIFICATION_OPTS)
  43
  44static unsigned dm_verity_prefetch_cluster = DM_VERITY_DEFAULT_PREFETCH_SIZE;
  45
  46module_param_named(prefetch_cluster, dm_verity_prefetch_cluster, uint, S_IRUGO | S_IWUSR);
  47
  48static DEFINE_STATIC_KEY_FALSE(use_tasklet_enabled);
  49
  50struct dm_verity_prefetch_work {
  51	struct work_struct work;
  52	struct dm_verity *v;
  53	sector_t block;
  54	unsigned n_blocks;
  55};
  56
  57/*
  58 * Auxiliary structure appended to each dm-bufio buffer. If the value
  59 * hash_verified is nonzero, hash of the block has been verified.
  60 *
  61 * The variable hash_verified is set to 0 when allocating the buffer, then
  62 * it can be changed to 1 and it is never reset to 0 again.
  63 *
  64 * There is no lock around this value, a race condition can at worst cause
  65 * that multiple processes verify the hash of the same buffer simultaneously
  66 * and write 1 to hash_verified simultaneously.
  67 * This condition is harmless, so we don't need locking.
  68 */
  69struct buffer_aux {
  70	int hash_verified;
  71};
  72
  73/*
  74 * Initialize struct buffer_aux for a freshly created buffer.
  75 */
  76static void dm_bufio_alloc_callback(struct dm_buffer *buf)
  77{
  78	struct buffer_aux *aux = dm_bufio_get_aux_data(buf);
  79
  80	aux->hash_verified = 0;
  81}
  82
  83/*
  84 * Translate input sector number to the sector number on the target device.
  85 */
  86static sector_t verity_map_sector(struct dm_verity *v, sector_t bi_sector)
  87{
  88	return v->data_start + dm_target_offset(v->ti, bi_sector);
  89}
  90
  91/*
  92 * Return hash position of a specified block at a specified tree level
  93 * (0 is the lowest level).
  94 * The lowest "hash_per_block_bits"-bits of the result denote hash position
  95 * inside a hash block. The remaining bits denote location of the hash block.
  96 */
  97static sector_t verity_position_at_level(struct dm_verity *v, sector_t block,
  98					 int level)
  99{
 100	return block >> (level * v->hash_per_block_bits);
 101}
 102
 103static int verity_hash_update(struct dm_verity *v, struct ahash_request *req,
 104				const u8 *data, size_t len,
 105				struct crypto_wait *wait)
 106{
 107	struct scatterlist sg;
 108
 109	if (likely(!is_vmalloc_addr(data))) {
 110		sg_init_one(&sg, data, len);
 111		ahash_request_set_crypt(req, &sg, NULL, len);
 112		return crypto_wait_req(crypto_ahash_update(req), wait);
 113	} else {
 114		do {
 115			int r;
 116			size_t this_step = min_t(size_t, len, PAGE_SIZE - offset_in_page(data));
 117			flush_kernel_vmap_range((void *)data, this_step);
 118			sg_init_table(&sg, 1);
 119			sg_set_page(&sg, vmalloc_to_page(data), this_step, offset_in_page(data));
 120			ahash_request_set_crypt(req, &sg, NULL, this_step);
 121			r = crypto_wait_req(crypto_ahash_update(req), wait);
 122			if (unlikely(r))
 123				return r;
 124			data += this_step;
 125			len -= this_step;
 126		} while (len);
 127		return 0;
 128	}
 129}
 130
 131/*
 132 * Wrapper for crypto_ahash_init, which handles verity salting.
 133 */
 134static int verity_hash_init(struct dm_verity *v, struct ahash_request *req,
 135				struct crypto_wait *wait)
 136{
 137	int r;
 138
 139	ahash_request_set_tfm(req, v->tfm);
 140	ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP |
 141					CRYPTO_TFM_REQ_MAY_BACKLOG,
 142					crypto_req_done, (void *)wait);
 143	crypto_init_wait(wait);
 144
 145	r = crypto_wait_req(crypto_ahash_init(req), wait);
 146
 147	if (unlikely(r < 0)) {
 148		DMERR("crypto_ahash_init failed: %d", r);
 149		return r;
 150	}
 151
 152	if (likely(v->salt_size && (v->version >= 1)))
 153		r = verity_hash_update(v, req, v->salt, v->salt_size, wait);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 154
 155	return r;
 156}
 157
 158static int verity_hash_final(struct dm_verity *v, struct ahash_request *req,
 159			     u8 *digest, struct crypto_wait *wait)
 160{
 161	int r;
 162
 163	if (unlikely(v->salt_size && (!v->version))) {
 164		r = verity_hash_update(v, req, v->salt, v->salt_size, wait);
 165
 166		if (r < 0) {
 167			DMERR("verity_hash_final failed updating salt: %d", r);
 168			goto out;
 169		}
 170	}
 171
 172	ahash_request_set_crypt(req, NULL, digest, 0);
 173	r = crypto_wait_req(crypto_ahash_final(req), wait);
 174out:
 
 
 175	return r;
 176}
 177
 178int verity_hash(struct dm_verity *v, struct ahash_request *req,
 179		const u8 *data, size_t len, u8 *digest)
 180{
 181	int r;
 182	struct crypto_wait wait;
 183
 184	r = verity_hash_init(v, req, &wait);
 185	if (unlikely(r < 0))
 186		goto out;
 187
 188	r = verity_hash_update(v, req, data, len, &wait);
 189	if (unlikely(r < 0))
 190		goto out;
 191
 192	r = verity_hash_final(v, req, digest, &wait);
 193
 194out:
 195	return r;
 196}
 197
 198static void verity_hash_at_level(struct dm_verity *v, sector_t block, int level,
 199				 sector_t *hash_block, unsigned *offset)
 200{
 201	sector_t position = verity_position_at_level(v, block, level);
 202	unsigned idx;
 203
 204	*hash_block = v->hash_level_block[level] + (position >> v->hash_per_block_bits);
 205
 206	if (!offset)
 207		return;
 208
 209	idx = position & ((1 << v->hash_per_block_bits) - 1);
 210	if (!v->version)
 211		*offset = idx * v->digest_size;
 212	else
 213		*offset = idx << (v->hash_dev_block_bits - v->hash_per_block_bits);
 214}
 215
 216/*
 217 * Handle verification errors.
 218 */
 219static int verity_handle_err(struct dm_verity *v, enum verity_block_type type,
 220			     unsigned long long block)
 221{
 222	char verity_env[DM_VERITY_ENV_LENGTH];
 223	char *envp[] = { verity_env, NULL };
 224	const char *type_str = "";
 225	struct mapped_device *md = dm_table_get_md(v->ti->table);
 226
 227	/* Corruption should be visible in device status in all modes */
 228	v->hash_failed = true;
 229
 230	if (v->corrupted_errs >= DM_VERITY_MAX_CORRUPTED_ERRS)
 231		goto out;
 232
 233	v->corrupted_errs++;
 234
 235	switch (type) {
 236	case DM_VERITY_BLOCK_TYPE_DATA:
 237		type_str = "data";
 238		break;
 239	case DM_VERITY_BLOCK_TYPE_METADATA:
 240		type_str = "metadata";
 241		break;
 242	default:
 243		BUG();
 244	}
 245
 246	DMERR_LIMIT("%s: %s block %llu is corrupted", v->data_dev->name,
 247		    type_str, block);
 248
 249	if (v->corrupted_errs == DM_VERITY_MAX_CORRUPTED_ERRS)
 250		DMERR("%s: reached maximum errors", v->data_dev->name);
 251
 252	snprintf(verity_env, DM_VERITY_ENV_LENGTH, "%s=%d,%llu",
 253		DM_VERITY_ENV_VAR_NAME, type, block);
 254
 255	kobject_uevent_env(&disk_to_dev(dm_disk(md))->kobj, KOBJ_CHANGE, envp);
 256
 257out:
 258	if (v->mode == DM_VERITY_MODE_LOGGING)
 259		return 0;
 260
 261	if (v->mode == DM_VERITY_MODE_RESTART)
 262		kernel_restart("dm-verity device corrupted");
 263
 264	if (v->mode == DM_VERITY_MODE_PANIC)
 265		panic("dm-verity device corrupted");
 266
 267	return 1;
 268}
 269
 270/*
 271 * Verify hash of a metadata block pertaining to the specified data block
 272 * ("block" argument) at a specified level ("level" argument).
 273 *
 274 * On successful return, verity_io_want_digest(v, io) contains the hash value
 275 * for a lower tree level or for the data block (if we're at the lowest level).
 276 *
 277 * If "skip_unverified" is true, unverified buffer is skipped and 1 is returned.
 278 * If "skip_unverified" is false, unverified buffer is hashed and verified
 279 * against current value of verity_io_want_digest(v, io).
 280 */
 281static int verity_verify_level(struct dm_verity *v, struct dm_verity_io *io,
 282			       sector_t block, int level, bool skip_unverified,
 283			       u8 *want_digest)
 284{
 285	struct dm_buffer *buf;
 286	struct buffer_aux *aux;
 287	u8 *data;
 288	int r;
 289	sector_t hash_block;
 290	unsigned offset;
 291
 292	verity_hash_at_level(v, block, level, &hash_block, &offset);
 293
 294	if (static_branch_unlikely(&use_tasklet_enabled) && io->in_tasklet) {
 295		data = dm_bufio_get(v->bufio, hash_block, &buf);
 296		if (data == NULL) {
 297			/*
 298			 * In tasklet and the hash was not in the bufio cache.
 299			 * Return early and resume execution from a work-queue
 300			 * to read the hash from disk.
 301			 */
 302			return -EAGAIN;
 303		}
 304	} else
 305		data = dm_bufio_read(v->bufio, hash_block, &buf);
 306
 307	if (IS_ERR(data))
 308		return PTR_ERR(data);
 309
 310	aux = dm_bufio_get_aux_data(buf);
 311
 312	if (!aux->hash_verified) {
 313		if (skip_unverified) {
 314			r = 1;
 315			goto release_ret_r;
 316		}
 317
 318		r = verity_hash(v, verity_io_hash_req(v, io),
 319				data, 1 << v->hash_dev_block_bits,
 320				verity_io_real_digest(v, io));
 321		if (unlikely(r < 0))
 322			goto release_ret_r;
 323
 324		if (likely(memcmp(verity_io_real_digest(v, io), want_digest,
 325				  v->digest_size) == 0))
 326			aux->hash_verified = 1;
 327		else if (static_branch_unlikely(&use_tasklet_enabled) &&
 328			 io->in_tasklet) {
 329			/*
 330			 * Error handling code (FEC included) cannot be run in a
 331			 * tasklet since it may sleep, so fallback to work-queue.
 332			 */
 333			r = -EAGAIN;
 334			goto release_ret_r;
 335		}
 336		else if (verity_fec_decode(v, io,
 337					   DM_VERITY_BLOCK_TYPE_METADATA,
 338					   hash_block, data, NULL) == 0)
 339			aux->hash_verified = 1;
 340		else if (verity_handle_err(v,
 341					   DM_VERITY_BLOCK_TYPE_METADATA,
 342					   hash_block)) {
 343			r = -EIO;
 344			goto release_ret_r;
 345		}
 346	}
 347
 348	data += offset;
 349	memcpy(want_digest, data, v->digest_size);
 350	r = 0;
 351
 352release_ret_r:
 353	dm_bufio_release(buf);
 354	return r;
 355}
 356
 357/*
 358 * Find a hash for a given block, write it to digest and verify the integrity
 359 * of the hash tree if necessary.
 360 */
 361int verity_hash_for_block(struct dm_verity *v, struct dm_verity_io *io,
 362			  sector_t block, u8 *digest, bool *is_zero)
 363{
 364	int r = 0, i;
 365
 366	if (likely(v->levels)) {
 367		/*
 368		 * First, we try to get the requested hash for
 369		 * the current block. If the hash block itself is
 370		 * verified, zero is returned. If it isn't, this
 371		 * function returns 1 and we fall back to whole
 372		 * chain verification.
 373		 */
 374		r = verity_verify_level(v, io, block, 0, true, digest);
 375		if (likely(r <= 0))
 376			goto out;
 377	}
 378
 379	memcpy(digest, v->root_digest, v->digest_size);
 380
 381	for (i = v->levels - 1; i >= 0; i--) {
 382		r = verity_verify_level(v, io, block, i, false, digest);
 383		if (unlikely(r))
 384			goto out;
 385	}
 386out:
 387	if (!r && v->zero_digest)
 388		*is_zero = !memcmp(v->zero_digest, digest, v->digest_size);
 389	else
 390		*is_zero = false;
 391
 392	return r;
 393}
 394
 395/*
 396 * Calculates the digest for the given bio
 397 */
 398static int verity_for_io_block(struct dm_verity *v, struct dm_verity_io *io,
 399			       struct bvec_iter *iter, struct crypto_wait *wait)
 400{
 401	unsigned int todo = 1 << v->data_dev_block_bits;
 402	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
 403	struct scatterlist sg;
 404	struct ahash_request *req = verity_io_hash_req(v, io);
 405
 406	do {
 407		int r;
 408		unsigned int len;
 409		struct bio_vec bv = bio_iter_iovec(bio, *iter);
 410
 411		sg_init_table(&sg, 1);
 412
 413		len = bv.bv_len;
 414
 415		if (likely(len >= todo))
 416			len = todo;
 417		/*
 418		 * Operating on a single page at a time looks suboptimal
 419		 * until you consider the typical block size is 4,096B.
 420		 * Going through this loops twice should be very rare.
 421		 */
 422		sg_set_page(&sg, bv.bv_page, len, bv.bv_offset);
 423		ahash_request_set_crypt(req, &sg, NULL, len);
 424		r = crypto_wait_req(crypto_ahash_update(req), wait);
 425
 426		if (unlikely(r < 0)) {
 427			DMERR("verity_for_io_block crypto op failed: %d", r);
 428			return r;
 429		}
 430
 431		bio_advance_iter(bio, iter, len);
 432		todo -= len;
 433	} while (todo);
 434
 435	return 0;
 436}
 437
 438/*
 439 * Calls function process for 1 << v->data_dev_block_bits bytes in the bio_vec
 440 * starting from iter.
 441 */
 442int verity_for_bv_block(struct dm_verity *v, struct dm_verity_io *io,
 443			struct bvec_iter *iter,
 444			int (*process)(struct dm_verity *v,
 445				       struct dm_verity_io *io, u8 *data,
 446				       size_t len))
 447{
 448	unsigned todo = 1 << v->data_dev_block_bits;
 449	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
 450
 451	do {
 452		int r;
 453		u8 *page;
 454		unsigned len;
 455		struct bio_vec bv = bio_iter_iovec(bio, *iter);
 456
 457		page = bvec_kmap_local(&bv);
 458		len = bv.bv_len;
 459
 460		if (likely(len >= todo))
 461			len = todo;
 462
 463		r = process(v, io, page, len);
 464		kunmap_local(page);
 465
 466		if (r < 0)
 467			return r;
 468
 469		bio_advance_iter(bio, iter, len);
 470		todo -= len;
 471	} while (todo);
 472
 473	return 0;
 474}
 475
 
 
 
 
 
 
 476static int verity_bv_zero(struct dm_verity *v, struct dm_verity_io *io,
 477			  u8 *data, size_t len)
 478{
 479	memset(data, 0, len);
 480	return 0;
 481}
 482
 483/*
 484 * Moves the bio iter one data block forward.
 485 */
 486static inline void verity_bv_skip_block(struct dm_verity *v,
 487					struct dm_verity_io *io,
 488					struct bvec_iter *iter)
 489{
 490	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
 491
 492	bio_advance_iter(bio, iter, 1 << v->data_dev_block_bits);
 493}
 494
 495/*
 496 * Verify one "dm_verity_io" structure.
 497 */
 498static int verity_verify_io(struct dm_verity_io *io)
 499{
 500	bool is_zero;
 501	struct dm_verity *v = io->v;
 502#if defined(CONFIG_DM_VERITY_FEC)
 503	struct bvec_iter start;
 504#endif
 505	struct bvec_iter iter_copy;
 506	struct bvec_iter *iter;
 507	struct crypto_wait wait;
 508	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
 509	unsigned int b;
 510
 511	if (static_branch_unlikely(&use_tasklet_enabled) && io->in_tasklet) {
 512		/*
 513		 * Copy the iterator in case we need to restart
 514		 * verification in a work-queue.
 515		 */
 516		iter_copy = io->iter;
 517		iter = &iter_copy;
 518	} else
 519		iter = &io->iter;
 520
 521	for (b = 0; b < io->n_blocks; b++) {
 522		int r;
 523		sector_t cur_block = io->block + b;
 524		struct ahash_request *req = verity_io_hash_req(v, io);
 525
 526		if (v->validated_blocks &&
 527		    likely(test_bit(cur_block, v->validated_blocks))) {
 528			verity_bv_skip_block(v, io, iter);
 529			continue;
 530		}
 531
 532		r = verity_hash_for_block(v, io, cur_block,
 533					  verity_io_want_digest(v, io),
 534					  &is_zero);
 535		if (unlikely(r < 0))
 536			return r;
 537
 538		if (is_zero) {
 539			/*
 540			 * If we expect a zero block, don't validate, just
 541			 * return zeros.
 542			 */
 543			r = verity_for_bv_block(v, io, iter,
 544						verity_bv_zero);
 545			if (unlikely(r < 0))
 546				return r;
 547
 548			continue;
 549		}
 550
 551		r = verity_hash_init(v, req, &wait);
 552		if (unlikely(r < 0))
 553			return r;
 554
 555#if defined(CONFIG_DM_VERITY_FEC)
 556		if (verity_fec_is_enabled(v))
 557			start = *iter;
 558#endif
 559		r = verity_for_io_block(v, io, iter, &wait);
 560		if (unlikely(r < 0))
 561			return r;
 562
 563		r = verity_hash_final(v, req, verity_io_real_digest(v, io),
 564					&wait);
 565		if (unlikely(r < 0))
 566			return r;
 567
 568		if (likely(memcmp(verity_io_real_digest(v, io),
 569				  verity_io_want_digest(v, io), v->digest_size) == 0)) {
 570			if (v->validated_blocks)
 571				set_bit(cur_block, v->validated_blocks);
 572			continue;
 573		} else if (static_branch_unlikely(&use_tasklet_enabled) &&
 574			   io->in_tasklet) {
 575			/*
 576			 * Error handling code (FEC included) cannot be run in a
 577			 * tasklet since it may sleep, so fallback to work-queue.
 578			 */
 579			return -EAGAIN;
 580#if defined(CONFIG_DM_VERITY_FEC)
 581		} else if (verity_fec_decode(v, io, DM_VERITY_BLOCK_TYPE_DATA,
 582					     cur_block, NULL, &start) == 0) {
 583			continue;
 584#endif
 585		} else {
 586			if (bio->bi_status) {
 587				/*
 588				 * Error correction failed; Just return error
 589				 */
 590				return -EIO;
 591			}
 592			if (verity_handle_err(v, DM_VERITY_BLOCK_TYPE_DATA,
 593					      cur_block))
 594				return -EIO;
 595		}
 596	}
 597
 598	return 0;
 599}
 600
 601/*
 602 * Skip verity work in response to I/O error when system is shutting down.
 603 */
 604static inline bool verity_is_system_shutting_down(void)
 605{
 606	return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
 607		|| system_state == SYSTEM_RESTART;
 608}
 609
 610/*
 611 * End one "io" structure with a given error.
 612 */
 613static void verity_finish_io(struct dm_verity_io *io, blk_status_t status)
 614{
 615	struct dm_verity *v = io->v;
 616	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
 617
 618	bio->bi_end_io = io->orig_bi_end_io;
 619	bio->bi_status = status;
 620
 621	if (!static_branch_unlikely(&use_tasklet_enabled) || !io->in_tasklet)
 622		verity_fec_finish_io(io);
 623
 624	bio_endio(bio);
 625}
 626
 627static void verity_work(struct work_struct *w)
 628{
 629	struct dm_verity_io *io = container_of(w, struct dm_verity_io, work);
 630
 631	io->in_tasklet = false;
 632
 633	verity_fec_init_io(io);
 634	verity_finish_io(io, errno_to_blk_status(verity_verify_io(io)));
 635}
 636
 637static void verity_tasklet(unsigned long data)
 638{
 639	struct dm_verity_io *io = (struct dm_verity_io *)data;
 640	int err;
 641
 642	io->in_tasklet = true;
 643	err = verity_verify_io(io);
 644	if (err == -EAGAIN) {
 645		/* fallback to retrying with work-queue */
 646		INIT_WORK(&io->work, verity_work);
 647		queue_work(io->v->verify_wq, &io->work);
 648		return;
 649	}
 650
 651	verity_finish_io(io, errno_to_blk_status(err));
 652}
 653
 654static void verity_end_io(struct bio *bio)
 655{
 656	struct dm_verity_io *io = bio->bi_private;
 657
 658	if (bio->bi_status &&
 659	    (!verity_fec_is_enabled(io->v) || verity_is_system_shutting_down())) {
 660		verity_finish_io(io, bio->bi_status);
 661		return;
 662	}
 663
 664	if (static_branch_unlikely(&use_tasklet_enabled) && io->v->use_tasklet) {
 665		tasklet_init(&io->tasklet, verity_tasklet, (unsigned long)io);
 666		tasklet_schedule(&io->tasklet);
 667	} else {
 668		INIT_WORK(&io->work, verity_work);
 669		queue_work(io->v->verify_wq, &io->work);
 670	}
 671}
 672
 673/*
 674 * Prefetch buffers for the specified io.
 675 * The root buffer is not prefetched, it is assumed that it will be cached
 676 * all the time.
 677 */
 678static void verity_prefetch_io(struct work_struct *work)
 679{
 680	struct dm_verity_prefetch_work *pw =
 681		container_of(work, struct dm_verity_prefetch_work, work);
 682	struct dm_verity *v = pw->v;
 683	int i;
 684
 685	for (i = v->levels - 2; i >= 0; i--) {
 686		sector_t hash_block_start;
 687		sector_t hash_block_end;
 688		verity_hash_at_level(v, pw->block, i, &hash_block_start, NULL);
 689		verity_hash_at_level(v, pw->block + pw->n_blocks - 1, i, &hash_block_end, NULL);
 690		if (!i) {
 691			unsigned cluster = READ_ONCE(dm_verity_prefetch_cluster);
 692
 693			cluster >>= v->data_dev_block_bits;
 694			if (unlikely(!cluster))
 695				goto no_prefetch_cluster;
 696
 697			if (unlikely(cluster & (cluster - 1)))
 698				cluster = 1 << __fls(cluster);
 699
 700			hash_block_start &= ~(sector_t)(cluster - 1);
 701			hash_block_end |= cluster - 1;
 702			if (unlikely(hash_block_end >= v->hash_blocks))
 703				hash_block_end = v->hash_blocks - 1;
 704		}
 705no_prefetch_cluster:
 706		dm_bufio_prefetch(v->bufio, hash_block_start,
 707				  hash_block_end - hash_block_start + 1);
 708	}
 709
 710	kfree(pw);
 711}
 712
 713static void verity_submit_prefetch(struct dm_verity *v, struct dm_verity_io *io)
 714{
 715	sector_t block = io->block;
 716	unsigned int n_blocks = io->n_blocks;
 717	struct dm_verity_prefetch_work *pw;
 718
 719	if (v->validated_blocks) {
 720		while (n_blocks && test_bit(block, v->validated_blocks)) {
 721			block++;
 722			n_blocks--;
 723		}
 724		while (n_blocks && test_bit(block + n_blocks - 1,
 725					    v->validated_blocks))
 726			n_blocks--;
 727		if (!n_blocks)
 728			return;
 729	}
 730
 731	pw = kmalloc(sizeof(struct dm_verity_prefetch_work),
 732		GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
 733
 734	if (!pw)
 735		return;
 736
 737	INIT_WORK(&pw->work, verity_prefetch_io);
 738	pw->v = v;
 739	pw->block = block;
 740	pw->n_blocks = n_blocks;
 741	queue_work(v->verify_wq, &pw->work);
 742}
 743
 744/*
 745 * Bio map function. It allocates dm_verity_io structure and bio vector and
 746 * fills them. Then it issues prefetches and the I/O.
 747 */
 748static int verity_map(struct dm_target *ti, struct bio *bio)
 749{
 750	struct dm_verity *v = ti->private;
 751	struct dm_verity_io *io;
 752
 753	bio_set_dev(bio, v->data_dev->bdev);
 754	bio->bi_iter.bi_sector = verity_map_sector(v, bio->bi_iter.bi_sector);
 755
 756	if (((unsigned)bio->bi_iter.bi_sector | bio_sectors(bio)) &
 757	    ((1 << (v->data_dev_block_bits - SECTOR_SHIFT)) - 1)) {
 758		DMERR_LIMIT("unaligned io");
 759		return DM_MAPIO_KILL;
 760	}
 761
 762	if (bio_end_sector(bio) >>
 763	    (v->data_dev_block_bits - SECTOR_SHIFT) > v->data_blocks) {
 764		DMERR_LIMIT("io out of range");
 765		return DM_MAPIO_KILL;
 766	}
 767
 768	if (bio_data_dir(bio) == WRITE)
 769		return DM_MAPIO_KILL;
 770
 771	io = dm_per_bio_data(bio, ti->per_io_data_size);
 772	io->v = v;
 773	io->orig_bi_end_io = bio->bi_end_io;
 774	io->block = bio->bi_iter.bi_sector >> (v->data_dev_block_bits - SECTOR_SHIFT);
 775	io->n_blocks = bio->bi_iter.bi_size >> v->data_dev_block_bits;
 776
 777	bio->bi_end_io = verity_end_io;
 778	bio->bi_private = io;
 779	io->iter = bio->bi_iter;
 780
 
 
 781	verity_submit_prefetch(v, io);
 782
 783	submit_bio_noacct(bio);
 784
 785	return DM_MAPIO_SUBMITTED;
 786}
 787
 788/*
 789 * Status: V (valid) or C (corruption found)
 790 */
 791static void verity_status(struct dm_target *ti, status_type_t type,
 792			  unsigned status_flags, char *result, unsigned maxlen)
 793{
 794	struct dm_verity *v = ti->private;
 795	unsigned args = 0;
 796	unsigned sz = 0;
 797	unsigned x;
 798
 799	switch (type) {
 800	case STATUSTYPE_INFO:
 801		DMEMIT("%c", v->hash_failed ? 'C' : 'V');
 802		break;
 803	case STATUSTYPE_TABLE:
 804		DMEMIT("%u %s %s %u %u %llu %llu %s ",
 805			v->version,
 806			v->data_dev->name,
 807			v->hash_dev->name,
 808			1 << v->data_dev_block_bits,
 809			1 << v->hash_dev_block_bits,
 810			(unsigned long long)v->data_blocks,
 811			(unsigned long long)v->hash_start,
 812			v->alg_name
 813			);
 814		for (x = 0; x < v->digest_size; x++)
 815			DMEMIT("%02x", v->root_digest[x]);
 816		DMEMIT(" ");
 817		if (!v->salt_size)
 818			DMEMIT("-");
 819		else
 820			for (x = 0; x < v->salt_size; x++)
 821				DMEMIT("%02x", v->salt[x]);
 822		if (v->mode != DM_VERITY_MODE_EIO)
 823			args++;
 824		if (verity_fec_is_enabled(v))
 825			args += DM_VERITY_OPTS_FEC;
 826		if (v->zero_digest)
 827			args++;
 828		if (v->validated_blocks)
 829			args++;
 830		if (v->use_tasklet)
 831			args++;
 832		if (v->signature_key_desc)
 833			args += DM_VERITY_ROOT_HASH_VERIFICATION_OPTS;
 834		if (!args)
 835			return;
 836		DMEMIT(" %u", args);
 837		if (v->mode != DM_VERITY_MODE_EIO) {
 838			DMEMIT(" ");
 839			switch (v->mode) {
 840			case DM_VERITY_MODE_LOGGING:
 841				DMEMIT(DM_VERITY_OPT_LOGGING);
 842				break;
 843			case DM_VERITY_MODE_RESTART:
 844				DMEMIT(DM_VERITY_OPT_RESTART);
 845				break;
 846			case DM_VERITY_MODE_PANIC:
 847				DMEMIT(DM_VERITY_OPT_PANIC);
 848				break;
 849			default:
 850				BUG();
 851			}
 852		}
 853		if (v->zero_digest)
 854			DMEMIT(" " DM_VERITY_OPT_IGN_ZEROES);
 855		if (v->validated_blocks)
 856			DMEMIT(" " DM_VERITY_OPT_AT_MOST_ONCE);
 857		if (v->use_tasklet)
 858			DMEMIT(" " DM_VERITY_OPT_TASKLET_VERIFY);
 859		sz = verity_fec_status_table(v, sz, result, maxlen);
 860		if (v->signature_key_desc)
 861			DMEMIT(" " DM_VERITY_ROOT_HASH_VERIFICATION_OPT_SIG_KEY
 862				" %s", v->signature_key_desc);
 863		break;
 864
 865	case STATUSTYPE_IMA:
 866		DMEMIT_TARGET_NAME_VERSION(ti->type);
 867		DMEMIT(",hash_failed=%c", v->hash_failed ? 'C' : 'V');
 868		DMEMIT(",verity_version=%u", v->version);
 869		DMEMIT(",data_device_name=%s", v->data_dev->name);
 870		DMEMIT(",hash_device_name=%s", v->hash_dev->name);
 871		DMEMIT(",verity_algorithm=%s", v->alg_name);
 872
 873		DMEMIT(",root_digest=");
 874		for (x = 0; x < v->digest_size; x++)
 875			DMEMIT("%02x", v->root_digest[x]);
 876
 877		DMEMIT(",salt=");
 878		if (!v->salt_size)
 879			DMEMIT("-");
 880		else
 881			for (x = 0; x < v->salt_size; x++)
 882				DMEMIT("%02x", v->salt[x]);
 883
 884		DMEMIT(",ignore_zero_blocks=%c", v->zero_digest ? 'y' : 'n');
 885		DMEMIT(",check_at_most_once=%c", v->validated_blocks ? 'y' : 'n');
 886		if (v->signature_key_desc)
 887			DMEMIT(",root_hash_sig_key_desc=%s", v->signature_key_desc);
 888
 889		if (v->mode != DM_VERITY_MODE_EIO) {
 890			DMEMIT(",verity_mode=");
 891			switch (v->mode) {
 892			case DM_VERITY_MODE_LOGGING:
 893				DMEMIT(DM_VERITY_OPT_LOGGING);
 894				break;
 895			case DM_VERITY_MODE_RESTART:
 896				DMEMIT(DM_VERITY_OPT_RESTART);
 897				break;
 898			case DM_VERITY_MODE_PANIC:
 899				DMEMIT(DM_VERITY_OPT_PANIC);
 900				break;
 901			default:
 902				DMEMIT("invalid");
 903			}
 904		}
 905		DMEMIT(";");
 906		break;
 907	}
 908}
 909
 910static int verity_prepare_ioctl(struct dm_target *ti, struct block_device **bdev)
 
 911{
 912	struct dm_verity *v = ti->private;
 913
 914	*bdev = v->data_dev->bdev;
 915
 916	if (v->data_start || ti->len != bdev_nr_sectors(v->data_dev->bdev))
 
 917		return 1;
 918	return 0;
 919}
 920
 921static int verity_iterate_devices(struct dm_target *ti,
 922				  iterate_devices_callout_fn fn, void *data)
 923{
 924	struct dm_verity *v = ti->private;
 925
 926	return fn(ti, v->data_dev, v->data_start, ti->len, data);
 927}
 928
 929static void verity_io_hints(struct dm_target *ti, struct queue_limits *limits)
 930{
 931	struct dm_verity *v = ti->private;
 932
 933	if (limits->logical_block_size < 1 << v->data_dev_block_bits)
 934		limits->logical_block_size = 1 << v->data_dev_block_bits;
 935
 936	if (limits->physical_block_size < 1 << v->data_dev_block_bits)
 937		limits->physical_block_size = 1 << v->data_dev_block_bits;
 938
 939	blk_limits_io_min(limits, limits->logical_block_size);
 940}
 941
 942static void verity_dtr(struct dm_target *ti)
 943{
 944	struct dm_verity *v = ti->private;
 945
 946	if (v->verify_wq)
 947		destroy_workqueue(v->verify_wq);
 948
 949	if (v->bufio)
 950		dm_bufio_client_destroy(v->bufio);
 951
 952	kvfree(v->validated_blocks);
 953	kfree(v->salt);
 954	kfree(v->root_digest);
 955	kfree(v->zero_digest);
 956
 957	if (v->tfm)
 958		crypto_free_ahash(v->tfm);
 959
 960	kfree(v->alg_name);
 961
 962	if (v->hash_dev)
 963		dm_put_device(ti, v->hash_dev);
 964
 965	if (v->data_dev)
 966		dm_put_device(ti, v->data_dev);
 967
 968	verity_fec_dtr(v);
 969
 970	kfree(v->signature_key_desc);
 971
 972	if (v->use_tasklet)
 973		static_branch_dec(&use_tasklet_enabled);
 974
 975	kfree(v);
 976}
 977
 978static int verity_alloc_most_once(struct dm_verity *v)
 979{
 980	struct dm_target *ti = v->ti;
 981
 982	/* the bitset can only handle INT_MAX blocks */
 983	if (v->data_blocks > INT_MAX) {
 984		ti->error = "device too large to use check_at_most_once";
 985		return -E2BIG;
 986	}
 987
 988	v->validated_blocks = kvcalloc(BITS_TO_LONGS(v->data_blocks),
 989				       sizeof(unsigned long),
 990				       GFP_KERNEL);
 991	if (!v->validated_blocks) {
 992		ti->error = "failed to allocate bitset for check_at_most_once";
 993		return -ENOMEM;
 994	}
 995
 996	return 0;
 997}
 998
 999static int verity_alloc_zero_digest(struct dm_verity *v)
1000{
1001	int r = -ENOMEM;
1002	struct ahash_request *req;
1003	u8 *zero_data;
1004
1005	v->zero_digest = kmalloc(v->digest_size, GFP_KERNEL);
1006
1007	if (!v->zero_digest)
1008		return r;
1009
1010	req = kmalloc(v->ahash_reqsize, GFP_KERNEL);
1011
1012	if (!req)
1013		return r; /* verity_dtr will free zero_digest */
1014
1015	zero_data = kzalloc(1 << v->data_dev_block_bits, GFP_KERNEL);
1016
1017	if (!zero_data)
1018		goto out;
1019
1020	r = verity_hash(v, req, zero_data, 1 << v->data_dev_block_bits,
1021			v->zero_digest);
1022
1023out:
1024	kfree(req);
1025	kfree(zero_data);
1026
1027	return r;
1028}
1029
1030static inline bool verity_is_verity_mode(const char *arg_name)
1031{
1032	return (!strcasecmp(arg_name, DM_VERITY_OPT_LOGGING) ||
1033		!strcasecmp(arg_name, DM_VERITY_OPT_RESTART) ||
1034		!strcasecmp(arg_name, DM_VERITY_OPT_PANIC));
1035}
1036
1037static int verity_parse_verity_mode(struct dm_verity *v, const char *arg_name)
1038{
1039	if (v->mode)
1040		return -EINVAL;
1041
1042	if (!strcasecmp(arg_name, DM_VERITY_OPT_LOGGING))
1043		v->mode = DM_VERITY_MODE_LOGGING;
1044	else if (!strcasecmp(arg_name, DM_VERITY_OPT_RESTART))
1045		v->mode = DM_VERITY_MODE_RESTART;
1046	else if (!strcasecmp(arg_name, DM_VERITY_OPT_PANIC))
1047		v->mode = DM_VERITY_MODE_PANIC;
1048
1049	return 0;
1050}
1051
1052static int verity_parse_opt_args(struct dm_arg_set *as, struct dm_verity *v,
1053				 struct dm_verity_sig_opts *verify_args,
1054				 bool only_modifier_opts)
1055{
1056	int r = 0;
1057	unsigned argc;
1058	struct dm_target *ti = v->ti;
1059	const char *arg_name;
1060
1061	static const struct dm_arg _args[] = {
1062		{0, DM_VERITY_OPTS_MAX, "Invalid number of feature args"},
1063	};
1064
1065	r = dm_read_arg_group(_args, as, &argc, &ti->error);
1066	if (r)
1067		return -EINVAL;
1068
1069	if (!argc)
1070		return 0;
1071
1072	do {
1073		arg_name = dm_shift_arg(as);
1074		argc--;
1075
1076		if (verity_is_verity_mode(arg_name)) {
1077			if (only_modifier_opts)
1078				continue;
1079			r = verity_parse_verity_mode(v, arg_name);
1080			if (r) {
1081				ti->error = "Conflicting error handling parameters";
1082				return r;
1083			}
1084			continue;
1085
1086		} else if (!strcasecmp(arg_name, DM_VERITY_OPT_IGN_ZEROES)) {
1087			if (only_modifier_opts)
1088				continue;
1089			r = verity_alloc_zero_digest(v);
1090			if (r) {
1091				ti->error = "Cannot allocate zero digest";
1092				return r;
1093			}
1094			continue;
1095
1096		} else if (!strcasecmp(arg_name, DM_VERITY_OPT_AT_MOST_ONCE)) {
1097			if (only_modifier_opts)
1098				continue;
1099			r = verity_alloc_most_once(v);
1100			if (r)
1101				return r;
1102			continue;
1103
1104		} else if (!strcasecmp(arg_name, DM_VERITY_OPT_TASKLET_VERIFY)) {
1105			v->use_tasklet = true;
1106			static_branch_inc(&use_tasklet_enabled);
1107			continue;
1108
1109		} else if (verity_is_fec_opt_arg(arg_name)) {
1110			if (only_modifier_opts)
1111				continue;
1112			r = verity_fec_parse_opt_args(as, v, &argc, arg_name);
1113			if (r)
1114				return r;
1115			continue;
1116
1117		} else if (verity_verify_is_sig_opt_arg(arg_name)) {
1118			if (only_modifier_opts)
1119				continue;
1120			r = verity_verify_sig_parse_opt_args(as, v,
1121							     verify_args,
1122							     &argc, arg_name);
1123			if (r)
1124				return r;
1125			continue;
1126
1127		} else if (only_modifier_opts) {
1128			/*
1129			 * Ignore unrecognized opt, could easily be an extra
1130			 * argument to an option whose parsing was skipped.
1131			 * Normal parsing (@only_modifier_opts=false) will
1132			 * properly parse all options (and their extra args).
1133			 */
1134			continue;
1135		}
1136
1137		DMERR("Unrecognized verity feature request: %s", arg_name);
1138		ti->error = "Unrecognized verity feature request";
1139		return -EINVAL;
1140	} while (argc && !r);
1141
1142	return r;
1143}
1144
1145/*
1146 * Target parameters:
1147 *	<version>	The current format is version 1.
1148 *			Vsn 0 is compatible with original Chromium OS releases.
1149 *	<data device>
1150 *	<hash device>
1151 *	<data block size>
1152 *	<hash block size>
1153 *	<the number of data blocks>
1154 *	<hash start block>
1155 *	<algorithm>
1156 *	<digest>
1157 *	<salt>		Hex string or "-" if no salt.
1158 */
1159static int verity_ctr(struct dm_target *ti, unsigned argc, char **argv)
1160{
1161	struct dm_verity *v;
1162	struct dm_verity_sig_opts verify_args = {0};
1163	struct dm_arg_set as;
1164	unsigned int num;
1165	unsigned int wq_flags;
1166	unsigned long long num_ll;
1167	int r;
1168	int i;
1169	sector_t hash_position;
1170	char dummy;
1171	char *root_hash_digest_to_validate;
1172
1173	v = kzalloc(sizeof(struct dm_verity), GFP_KERNEL);
1174	if (!v) {
1175		ti->error = "Cannot allocate verity structure";
1176		return -ENOMEM;
1177	}
1178	ti->private = v;
1179	v->ti = ti;
1180
1181	r = verity_fec_ctr_alloc(v);
1182	if (r)
1183		goto bad;
1184
1185	if ((dm_table_get_mode(ti->table) & ~FMODE_READ)) {
1186		ti->error = "Device must be readonly";
1187		r = -EINVAL;
1188		goto bad;
1189	}
1190
1191	if (argc < 10) {
1192		ti->error = "Not enough arguments";
1193		r = -EINVAL;
1194		goto bad;
1195	}
1196
1197	/* Parse optional parameters that modify primary args */
1198	if (argc > 10) {
1199		as.argc = argc - 10;
1200		as.argv = argv + 10;
1201		r = verity_parse_opt_args(&as, v, &verify_args, true);
1202		if (r < 0)
1203			goto bad;
1204	}
1205
1206	if (sscanf(argv[0], "%u%c", &num, &dummy) != 1 ||
1207	    num > 1) {
1208		ti->error = "Invalid version";
1209		r = -EINVAL;
1210		goto bad;
1211	}
1212	v->version = num;
1213
1214	r = dm_get_device(ti, argv[1], FMODE_READ, &v->data_dev);
1215	if (r) {
1216		ti->error = "Data device lookup failed";
1217		goto bad;
1218	}
1219
1220	r = dm_get_device(ti, argv[2], FMODE_READ, &v->hash_dev);
1221	if (r) {
1222		ti->error = "Hash device lookup failed";
1223		goto bad;
1224	}
1225
1226	if (sscanf(argv[3], "%u%c", &num, &dummy) != 1 ||
1227	    !num || (num & (num - 1)) ||
1228	    num < bdev_logical_block_size(v->data_dev->bdev) ||
1229	    num > PAGE_SIZE) {
1230		ti->error = "Invalid data device block size";
1231		r = -EINVAL;
1232		goto bad;
1233	}
1234	v->data_dev_block_bits = __ffs(num);
1235
1236	if (sscanf(argv[4], "%u%c", &num, &dummy) != 1 ||
1237	    !num || (num & (num - 1)) ||
1238	    num < bdev_logical_block_size(v->hash_dev->bdev) ||
1239	    num > INT_MAX) {
1240		ti->error = "Invalid hash device block size";
1241		r = -EINVAL;
1242		goto bad;
1243	}
1244	v->hash_dev_block_bits = __ffs(num);
1245
1246	if (sscanf(argv[5], "%llu%c", &num_ll, &dummy) != 1 ||
1247	    (sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT))
1248	    >> (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll) {
1249		ti->error = "Invalid data blocks";
1250		r = -EINVAL;
1251		goto bad;
1252	}
1253	v->data_blocks = num_ll;
1254
1255	if (ti->len > (v->data_blocks << (v->data_dev_block_bits - SECTOR_SHIFT))) {
1256		ti->error = "Data device is too small";
1257		r = -EINVAL;
1258		goto bad;
1259	}
1260
1261	if (sscanf(argv[6], "%llu%c", &num_ll, &dummy) != 1 ||
1262	    (sector_t)(num_ll << (v->hash_dev_block_bits - SECTOR_SHIFT))
1263	    >> (v->hash_dev_block_bits - SECTOR_SHIFT) != num_ll) {
1264		ti->error = "Invalid hash start";
1265		r = -EINVAL;
1266		goto bad;
1267	}
1268	v->hash_start = num_ll;
1269
1270	v->alg_name = kstrdup(argv[7], GFP_KERNEL);
1271	if (!v->alg_name) {
1272		ti->error = "Cannot allocate algorithm name";
1273		r = -ENOMEM;
1274		goto bad;
1275	}
1276
1277	v->tfm = crypto_alloc_ahash(v->alg_name, 0,
1278				    v->use_tasklet ? CRYPTO_ALG_ASYNC : 0);
1279	if (IS_ERR(v->tfm)) {
1280		ti->error = "Cannot initialize hash function";
1281		r = PTR_ERR(v->tfm);
1282		v->tfm = NULL;
1283		goto bad;
1284	}
1285
1286	/*
1287	 * dm-verity performance can vary greatly depending on which hash
1288	 * algorithm implementation is used.  Help people debug performance
1289	 * problems by logging the ->cra_driver_name.
1290	 */
1291	DMINFO("%s using implementation \"%s\"", v->alg_name,
1292	       crypto_hash_alg_common(v->tfm)->base.cra_driver_name);
1293
1294	v->digest_size = crypto_ahash_digestsize(v->tfm);
1295	if ((1 << v->hash_dev_block_bits) < v->digest_size * 2) {
1296		ti->error = "Digest size too big";
1297		r = -EINVAL;
1298		goto bad;
1299	}
1300	v->ahash_reqsize = sizeof(struct ahash_request) +
1301		crypto_ahash_reqsize(v->tfm);
1302
1303	v->root_digest = kmalloc(v->digest_size, GFP_KERNEL);
1304	if (!v->root_digest) {
1305		ti->error = "Cannot allocate root digest";
1306		r = -ENOMEM;
1307		goto bad;
1308	}
1309	if (strlen(argv[8]) != v->digest_size * 2 ||
1310	    hex2bin(v->root_digest, argv[8], v->digest_size)) {
1311		ti->error = "Invalid root digest";
1312		r = -EINVAL;
1313		goto bad;
1314	}
1315	root_hash_digest_to_validate = argv[8];
1316
1317	if (strcmp(argv[9], "-")) {
1318		v->salt_size = strlen(argv[9]) / 2;
1319		v->salt = kmalloc(v->salt_size, GFP_KERNEL);
1320		if (!v->salt) {
1321			ti->error = "Cannot allocate salt";
1322			r = -ENOMEM;
1323			goto bad;
1324		}
1325		if (strlen(argv[9]) != v->salt_size * 2 ||
1326		    hex2bin(v->salt, argv[9], v->salt_size)) {
1327			ti->error = "Invalid salt";
1328			r = -EINVAL;
1329			goto bad;
1330		}
1331	}
1332
1333	argv += 10;
1334	argc -= 10;
1335
1336	/* Optional parameters */
1337	if (argc) {
1338		as.argc = argc;
1339		as.argv = argv;
1340		r = verity_parse_opt_args(&as, v, &verify_args, false);
 
1341		if (r < 0)
1342			goto bad;
1343	}
1344
1345	/* Root hash signature is  a optional parameter*/
1346	r = verity_verify_root_hash(root_hash_digest_to_validate,
1347				    strlen(root_hash_digest_to_validate),
1348				    verify_args.sig,
1349				    verify_args.sig_size);
1350	if (r < 0) {
1351		ti->error = "Root hash verification failed";
1352		goto bad;
1353	}
1354	v->hash_per_block_bits =
1355		__fls((1 << v->hash_dev_block_bits) / v->digest_size);
1356
1357	v->levels = 0;
1358	if (v->data_blocks)
1359		while (v->hash_per_block_bits * v->levels < 64 &&
1360		       (unsigned long long)(v->data_blocks - 1) >>
1361		       (v->hash_per_block_bits * v->levels))
1362			v->levels++;
1363
1364	if (v->levels > DM_VERITY_MAX_LEVELS) {
1365		ti->error = "Too many tree levels";
1366		r = -E2BIG;
1367		goto bad;
1368	}
1369
1370	hash_position = v->hash_start;
1371	for (i = v->levels - 1; i >= 0; i--) {
1372		sector_t s;
1373		v->hash_level_block[i] = hash_position;
1374		s = (v->data_blocks + ((sector_t)1 << ((i + 1) * v->hash_per_block_bits)) - 1)
1375					>> ((i + 1) * v->hash_per_block_bits);
1376		if (hash_position + s < hash_position) {
1377			ti->error = "Hash device offset overflow";
1378			r = -E2BIG;
1379			goto bad;
1380		}
1381		hash_position += s;
1382	}
1383	v->hash_blocks = hash_position;
1384
1385	v->bufio = dm_bufio_client_create(v->hash_dev->bdev,
1386		1 << v->hash_dev_block_bits, 1, sizeof(struct buffer_aux),
1387		dm_bufio_alloc_callback, NULL,
1388		v->use_tasklet ? DM_BUFIO_CLIENT_NO_SLEEP : 0);
1389	if (IS_ERR(v->bufio)) {
1390		ti->error = "Cannot initialize dm-bufio";
1391		r = PTR_ERR(v->bufio);
1392		v->bufio = NULL;
1393		goto bad;
1394	}
1395
1396	if (dm_bufio_get_device_size(v->bufio) < v->hash_blocks) {
1397		ti->error = "Hash device is too small";
1398		r = -E2BIG;
1399		goto bad;
1400	}
1401
1402	/* WQ_UNBOUND greatly improves performance when running on ramdisk */
1403	wq_flags = WQ_MEM_RECLAIM | WQ_UNBOUND;
1404	/*
1405	 * Using WQ_HIGHPRI improves throughput and completion latency by
1406	 * reducing wait times when reading from a dm-verity device.
1407	 *
1408	 * Also as required for the "try_verify_in_tasklet" feature: WQ_HIGHPRI
1409	 * allows verify_wq to preempt softirq since verification in tasklet
1410	 * will fall-back to using it for error handling (or if the bufio cache
1411	 * doesn't have required hashes).
1412	 */
1413	wq_flags |= WQ_HIGHPRI;
1414	v->verify_wq = alloc_workqueue("kverityd", wq_flags, num_online_cpus());
1415	if (!v->verify_wq) {
1416		ti->error = "Cannot allocate workqueue";
1417		r = -ENOMEM;
1418		goto bad;
1419	}
1420
1421	ti->per_io_data_size = sizeof(struct dm_verity_io) +
1422				v->ahash_reqsize + v->digest_size * 2;
1423
1424	r = verity_fec_ctr(v);
1425	if (r)
1426		goto bad;
1427
1428	ti->per_io_data_size = roundup(ti->per_io_data_size,
1429				       __alignof__(struct dm_verity_io));
1430
1431	verity_verify_sig_opts_cleanup(&verify_args);
1432
1433	return 0;
1434
1435bad:
1436
1437	verity_verify_sig_opts_cleanup(&verify_args);
1438	verity_dtr(ti);
1439
1440	return r;
1441}
1442
1443/*
1444 * Check whether a DM target is a verity target.
1445 */
1446bool dm_is_verity_target(struct dm_target *ti)
1447{
1448	return ti->type->module == THIS_MODULE;
1449}
1450
1451/*
1452 * Get the verity mode (error behavior) of a verity target.
1453 *
1454 * Returns the verity mode of the target, or -EINVAL if 'ti' is not a verity
1455 * target.
1456 */
1457int dm_verity_get_mode(struct dm_target *ti)
1458{
1459	struct dm_verity *v = ti->private;
1460
1461	if (!dm_is_verity_target(ti))
1462		return -EINVAL;
1463
1464	return v->mode;
1465}
1466
1467/*
1468 * Get the root digest of a verity target.
1469 *
1470 * Returns a copy of the root digest, the caller is responsible for
1471 * freeing the memory of the digest.
1472 */
1473int dm_verity_get_root_digest(struct dm_target *ti, u8 **root_digest, unsigned int *digest_size)
1474{
1475	struct dm_verity *v = ti->private;
1476
1477	if (!dm_is_verity_target(ti))
1478		return -EINVAL;
1479
1480	*root_digest = kmemdup(v->root_digest, v->digest_size, GFP_KERNEL);
1481	if (*root_digest == NULL)
1482		return -ENOMEM;
1483
1484	*digest_size = v->digest_size;
1485
1486	return 0;
1487}
1488
1489static struct target_type verity_target = {
1490	.name		= "verity",
1491	.features	= DM_TARGET_IMMUTABLE,
1492	.version	= {1, 9, 0},
1493	.module		= THIS_MODULE,
1494	.ctr		= verity_ctr,
1495	.dtr		= verity_dtr,
1496	.map		= verity_map,
1497	.status		= verity_status,
1498	.prepare_ioctl	= verity_prepare_ioctl,
1499	.iterate_devices = verity_iterate_devices,
1500	.io_hints	= verity_io_hints,
1501};
1502
1503static int __init dm_verity_init(void)
1504{
1505	int r;
1506
1507	r = dm_register_target(&verity_target);
1508	if (r < 0)
1509		DMERR("register failed %d", r);
1510
1511	return r;
1512}
1513
1514static void __exit dm_verity_exit(void)
1515{
1516	dm_unregister_target(&verity_target);
1517}
1518
1519module_init(dm_verity_init);
1520module_exit(dm_verity_exit);
1521
1522MODULE_AUTHOR("Mikulas Patocka <mpatocka@redhat.com>");
1523MODULE_AUTHOR("Mandeep Baines <msb@chromium.org>");
1524MODULE_AUTHOR("Will Drewry <wad@chromium.org>");
1525MODULE_DESCRIPTION(DM_NAME " target for transparent disk integrity checking");
1526MODULE_LICENSE("GPL");
v4.10.11
 
   1/*
   2 * Copyright (C) 2012 Red Hat, Inc.
   3 *
   4 * Author: Mikulas Patocka <mpatocka@redhat.com>
   5 *
   6 * Based on Chromium dm-verity driver (C) 2011 The Chromium OS Authors
   7 *
   8 * This file is released under the GPLv2.
   9 *
  10 * In the file "/sys/module/dm_verity/parameters/prefetch_cluster" you can set
  11 * default prefetch value. Data are read in "prefetch_cluster" chunks from the
  12 * hash device. Setting this greatly improves performance when data and hash
  13 * are on the same disk on different partitions on devices with poor random
  14 * access behavior.
  15 */
  16
  17#include "dm-verity.h"
  18#include "dm-verity-fec.h"
  19
  20#include <linux/module.h>
  21#include <linux/reboot.h>
 
 
 
  22
  23#define DM_MSG_PREFIX			"verity"
  24
  25#define DM_VERITY_ENV_LENGTH		42
  26#define DM_VERITY_ENV_VAR_NAME		"DM_VERITY_ERR_BLOCK_NR"
  27
  28#define DM_VERITY_DEFAULT_PREFETCH_SIZE	262144
  29
  30#define DM_VERITY_MAX_CORRUPTED_ERRS	100
  31
  32#define DM_VERITY_OPT_LOGGING		"ignore_corruption"
  33#define DM_VERITY_OPT_RESTART		"restart_on_corruption"
 
  34#define DM_VERITY_OPT_IGN_ZEROES	"ignore_zero_blocks"
 
 
  35
  36#define DM_VERITY_OPTS_MAX		(2 + DM_VERITY_OPTS_FEC)
 
  37
  38static unsigned dm_verity_prefetch_cluster = DM_VERITY_DEFAULT_PREFETCH_SIZE;
  39
  40module_param_named(prefetch_cluster, dm_verity_prefetch_cluster, uint, S_IRUGO | S_IWUSR);
  41
 
 
  42struct dm_verity_prefetch_work {
  43	struct work_struct work;
  44	struct dm_verity *v;
  45	sector_t block;
  46	unsigned n_blocks;
  47};
  48
  49/*
  50 * Auxiliary structure appended to each dm-bufio buffer. If the value
  51 * hash_verified is nonzero, hash of the block has been verified.
  52 *
  53 * The variable hash_verified is set to 0 when allocating the buffer, then
  54 * it can be changed to 1 and it is never reset to 0 again.
  55 *
  56 * There is no lock around this value, a race condition can at worst cause
  57 * that multiple processes verify the hash of the same buffer simultaneously
  58 * and write 1 to hash_verified simultaneously.
  59 * This condition is harmless, so we don't need locking.
  60 */
  61struct buffer_aux {
  62	int hash_verified;
  63};
  64
  65/*
  66 * Initialize struct buffer_aux for a freshly created buffer.
  67 */
  68static void dm_bufio_alloc_callback(struct dm_buffer *buf)
  69{
  70	struct buffer_aux *aux = dm_bufio_get_aux_data(buf);
  71
  72	aux->hash_verified = 0;
  73}
  74
  75/*
  76 * Translate input sector number to the sector number on the target device.
  77 */
  78static sector_t verity_map_sector(struct dm_verity *v, sector_t bi_sector)
  79{
  80	return v->data_start + dm_target_offset(v->ti, bi_sector);
  81}
  82
  83/*
  84 * Return hash position of a specified block at a specified tree level
  85 * (0 is the lowest level).
  86 * The lowest "hash_per_block_bits"-bits of the result denote hash position
  87 * inside a hash block. The remaining bits denote location of the hash block.
  88 */
  89static sector_t verity_position_at_level(struct dm_verity *v, sector_t block,
  90					 int level)
  91{
  92	return block >> (level * v->hash_per_block_bits);
  93}
  94
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  95/*
  96 * Wrapper for crypto_shash_init, which handles verity salting.
  97 */
  98static int verity_hash_init(struct dm_verity *v, struct shash_desc *desc)
 
  99{
 100	int r;
 101
 102	desc->tfm = v->tfm;
 103	desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
 
 
 
 104
 105	r = crypto_shash_init(desc);
 106
 107	if (unlikely(r < 0)) {
 108		DMERR("crypto_shash_init failed: %d", r);
 109		return r;
 110	}
 111
 112	if (likely(v->version >= 1)) {
 113		r = crypto_shash_update(desc, v->salt, v->salt_size);
 114
 115		if (unlikely(r < 0)) {
 116			DMERR("crypto_shash_update failed: %d", r);
 117			return r;
 118		}
 119	}
 120
 121	return 0;
 122}
 123
 124static int verity_hash_update(struct dm_verity *v, struct shash_desc *desc,
 125			      const u8 *data, size_t len)
 126{
 127	int r = crypto_shash_update(desc, data, len);
 128
 129	if (unlikely(r < 0))
 130		DMERR("crypto_shash_update failed: %d", r);
 131
 132	return r;
 133}
 134
 135static int verity_hash_final(struct dm_verity *v, struct shash_desc *desc,
 136			     u8 *digest)
 137{
 138	int r;
 139
 140	if (unlikely(!v->version)) {
 141		r = crypto_shash_update(desc, v->salt, v->salt_size);
 142
 143		if (r < 0) {
 144			DMERR("crypto_shash_update failed: %d", r);
 145			return r;
 146		}
 147	}
 148
 149	r = crypto_shash_final(desc, digest);
 150
 151	if (unlikely(r < 0))
 152		DMERR("crypto_shash_final failed: %d", r);
 153
 154	return r;
 155}
 156
 157int verity_hash(struct dm_verity *v, struct shash_desc *desc,
 158		const u8 *data, size_t len, u8 *digest)
 159{
 160	int r;
 
 161
 162	r = verity_hash_init(v, desc);
 163	if (unlikely(r < 0))
 164		return r;
 165
 166	r = verity_hash_update(v, desc, data, len);
 167	if (unlikely(r < 0))
 168		return r;
 
 
 169
 170	return verity_hash_final(v, desc, digest);
 
 171}
 172
 173static void verity_hash_at_level(struct dm_verity *v, sector_t block, int level,
 174				 sector_t *hash_block, unsigned *offset)
 175{
 176	sector_t position = verity_position_at_level(v, block, level);
 177	unsigned idx;
 178
 179	*hash_block = v->hash_level_block[level] + (position >> v->hash_per_block_bits);
 180
 181	if (!offset)
 182		return;
 183
 184	idx = position & ((1 << v->hash_per_block_bits) - 1);
 185	if (!v->version)
 186		*offset = idx * v->digest_size;
 187	else
 188		*offset = idx << (v->hash_dev_block_bits - v->hash_per_block_bits);
 189}
 190
 191/*
 192 * Handle verification errors.
 193 */
 194static int verity_handle_err(struct dm_verity *v, enum verity_block_type type,
 195			     unsigned long long block)
 196{
 197	char verity_env[DM_VERITY_ENV_LENGTH];
 198	char *envp[] = { verity_env, NULL };
 199	const char *type_str = "";
 200	struct mapped_device *md = dm_table_get_md(v->ti->table);
 201
 202	/* Corruption should be visible in device status in all modes */
 203	v->hash_failed = 1;
 204
 205	if (v->corrupted_errs >= DM_VERITY_MAX_CORRUPTED_ERRS)
 206		goto out;
 207
 208	v->corrupted_errs++;
 209
 210	switch (type) {
 211	case DM_VERITY_BLOCK_TYPE_DATA:
 212		type_str = "data";
 213		break;
 214	case DM_VERITY_BLOCK_TYPE_METADATA:
 215		type_str = "metadata";
 216		break;
 217	default:
 218		BUG();
 219	}
 220
 221	DMERR("%s: %s block %llu is corrupted", v->data_dev->name, type_str,
 222		block);
 223
 224	if (v->corrupted_errs == DM_VERITY_MAX_CORRUPTED_ERRS)
 225		DMERR("%s: reached maximum errors", v->data_dev->name);
 226
 227	snprintf(verity_env, DM_VERITY_ENV_LENGTH, "%s=%d,%llu",
 228		DM_VERITY_ENV_VAR_NAME, type, block);
 229
 230	kobject_uevent_env(&disk_to_dev(dm_disk(md))->kobj, KOBJ_CHANGE, envp);
 231
 232out:
 233	if (v->mode == DM_VERITY_MODE_LOGGING)
 234		return 0;
 235
 236	if (v->mode == DM_VERITY_MODE_RESTART)
 237		kernel_restart("dm-verity device corrupted");
 238
 
 
 
 239	return 1;
 240}
 241
 242/*
 243 * Verify hash of a metadata block pertaining to the specified data block
 244 * ("block" argument) at a specified level ("level" argument).
 245 *
 246 * On successful return, verity_io_want_digest(v, io) contains the hash value
 247 * for a lower tree level or for the data block (if we're at the lowest level).
 248 *
 249 * If "skip_unverified" is true, unverified buffer is skipped and 1 is returned.
 250 * If "skip_unverified" is false, unverified buffer is hashed and verified
 251 * against current value of verity_io_want_digest(v, io).
 252 */
 253static int verity_verify_level(struct dm_verity *v, struct dm_verity_io *io,
 254			       sector_t block, int level, bool skip_unverified,
 255			       u8 *want_digest)
 256{
 257	struct dm_buffer *buf;
 258	struct buffer_aux *aux;
 259	u8 *data;
 260	int r;
 261	sector_t hash_block;
 262	unsigned offset;
 263
 264	verity_hash_at_level(v, block, level, &hash_block, &offset);
 265
 266	data = dm_bufio_read(v->bufio, hash_block, &buf);
 
 
 
 
 
 
 
 
 
 
 
 
 267	if (IS_ERR(data))
 268		return PTR_ERR(data);
 269
 270	aux = dm_bufio_get_aux_data(buf);
 271
 272	if (!aux->hash_verified) {
 273		if (skip_unverified) {
 274			r = 1;
 275			goto release_ret_r;
 276		}
 277
 278		r = verity_hash(v, verity_io_hash_desc(v, io),
 279				data, 1 << v->hash_dev_block_bits,
 280				verity_io_real_digest(v, io));
 281		if (unlikely(r < 0))
 282			goto release_ret_r;
 283
 284		if (likely(memcmp(verity_io_real_digest(v, io), want_digest,
 285				  v->digest_size) == 0))
 286			aux->hash_verified = 1;
 
 
 
 
 
 
 
 
 
 287		else if (verity_fec_decode(v, io,
 288					   DM_VERITY_BLOCK_TYPE_METADATA,
 289					   hash_block, data, NULL) == 0)
 290			aux->hash_verified = 1;
 291		else if (verity_handle_err(v,
 292					   DM_VERITY_BLOCK_TYPE_METADATA,
 293					   hash_block)) {
 294			r = -EIO;
 295			goto release_ret_r;
 296		}
 297	}
 298
 299	data += offset;
 300	memcpy(want_digest, data, v->digest_size);
 301	r = 0;
 302
 303release_ret_r:
 304	dm_bufio_release(buf);
 305	return r;
 306}
 307
 308/*
 309 * Find a hash for a given block, write it to digest and verify the integrity
 310 * of the hash tree if necessary.
 311 */
 312int verity_hash_for_block(struct dm_verity *v, struct dm_verity_io *io,
 313			  sector_t block, u8 *digest, bool *is_zero)
 314{
 315	int r = 0, i;
 316
 317	if (likely(v->levels)) {
 318		/*
 319		 * First, we try to get the requested hash for
 320		 * the current block. If the hash block itself is
 321		 * verified, zero is returned. If it isn't, this
 322		 * function returns 1 and we fall back to whole
 323		 * chain verification.
 324		 */
 325		r = verity_verify_level(v, io, block, 0, true, digest);
 326		if (likely(r <= 0))
 327			goto out;
 328	}
 329
 330	memcpy(digest, v->root_digest, v->digest_size);
 331
 332	for (i = v->levels - 1; i >= 0; i--) {
 333		r = verity_verify_level(v, io, block, i, false, digest);
 334		if (unlikely(r))
 335			goto out;
 336	}
 337out:
 338	if (!r && v->zero_digest)
 339		*is_zero = !memcmp(v->zero_digest, digest, v->digest_size);
 340	else
 341		*is_zero = false;
 342
 343	return r;
 344}
 345
 346/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 347 * Calls function process for 1 << v->data_dev_block_bits bytes in the bio_vec
 348 * starting from iter.
 349 */
 350int verity_for_bv_block(struct dm_verity *v, struct dm_verity_io *io,
 351			struct bvec_iter *iter,
 352			int (*process)(struct dm_verity *v,
 353				       struct dm_verity_io *io, u8 *data,
 354				       size_t len))
 355{
 356	unsigned todo = 1 << v->data_dev_block_bits;
 357	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
 358
 359	do {
 360		int r;
 361		u8 *page;
 362		unsigned len;
 363		struct bio_vec bv = bio_iter_iovec(bio, *iter);
 364
 365		page = kmap_atomic(bv.bv_page);
 366		len = bv.bv_len;
 367
 368		if (likely(len >= todo))
 369			len = todo;
 370
 371		r = process(v, io, page + bv.bv_offset, len);
 372		kunmap_atomic(page);
 373
 374		if (r < 0)
 375			return r;
 376
 377		bio_advance_iter(bio, iter, len);
 378		todo -= len;
 379	} while (todo);
 380
 381	return 0;
 382}
 383
 384static int verity_bv_hash_update(struct dm_verity *v, struct dm_verity_io *io,
 385				 u8 *data, size_t len)
 386{
 387	return verity_hash_update(v, verity_io_hash_desc(v, io), data, len);
 388}
 389
 390static int verity_bv_zero(struct dm_verity *v, struct dm_verity_io *io,
 391			  u8 *data, size_t len)
 392{
 393	memset(data, 0, len);
 394	return 0;
 395}
 396
 397/*
 
 
 
 
 
 
 
 
 
 
 
 
 398 * Verify one "dm_verity_io" structure.
 399 */
 400static int verity_verify_io(struct dm_verity_io *io)
 401{
 402	bool is_zero;
 403	struct dm_verity *v = io->v;
 
 404	struct bvec_iter start;
 405	unsigned b;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 406
 407	for (b = 0; b < io->n_blocks; b++) {
 408		int r;
 409		struct shash_desc *desc = verity_io_hash_desc(v, io);
 
 410
 411		r = verity_hash_for_block(v, io, io->block + b,
 
 
 
 
 
 
 412					  verity_io_want_digest(v, io),
 413					  &is_zero);
 414		if (unlikely(r < 0))
 415			return r;
 416
 417		if (is_zero) {
 418			/*
 419			 * If we expect a zero block, don't validate, just
 420			 * return zeros.
 421			 */
 422			r = verity_for_bv_block(v, io, &io->iter,
 423						verity_bv_zero);
 424			if (unlikely(r < 0))
 425				return r;
 426
 427			continue;
 428		}
 429
 430		r = verity_hash_init(v, desc);
 431		if (unlikely(r < 0))
 432			return r;
 433
 434		start = io->iter;
 435		r = verity_for_bv_block(v, io, &io->iter, verity_bv_hash_update);
 
 
 
 436		if (unlikely(r < 0))
 437			return r;
 438
 439		r = verity_hash_final(v, desc, verity_io_real_digest(v, io));
 
 440		if (unlikely(r < 0))
 441			return r;
 442
 443		if (likely(memcmp(verity_io_real_digest(v, io),
 444				  verity_io_want_digest(v, io), v->digest_size) == 0))
 
 
 445			continue;
 446		else if (verity_fec_decode(v, io, DM_VERITY_BLOCK_TYPE_DATA,
 447					   io->block + b, NULL, &start) == 0)
 
 
 
 
 
 
 
 
 448			continue;
 449		else if (verity_handle_err(v, DM_VERITY_BLOCK_TYPE_DATA,
 450					   io->block + b))
 451			return -EIO;
 
 
 
 
 
 
 
 
 
 452	}
 453
 454	return 0;
 455}
 456
 457/*
 
 
 
 
 
 
 
 
 
 458 * End one "io" structure with a given error.
 459 */
 460static void verity_finish_io(struct dm_verity_io *io, int error)
 461{
 462	struct dm_verity *v = io->v;
 463	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
 464
 465	bio->bi_end_io = io->orig_bi_end_io;
 466	bio->bi_error = error;
 467
 468	verity_fec_finish_io(io);
 
 469
 470	bio_endio(bio);
 471}
 472
 473static void verity_work(struct work_struct *w)
 474{
 475	struct dm_verity_io *io = container_of(w, struct dm_verity_io, work);
 476
 477	verity_finish_io(io, verity_verify_io(io));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 478}
 479
 480static void verity_end_io(struct bio *bio)
 481{
 482	struct dm_verity_io *io = bio->bi_private;
 483
 484	if (bio->bi_error && !verity_fec_is_enabled(io->v)) {
 485		verity_finish_io(io, bio->bi_error);
 
 486		return;
 487	}
 488
 489	INIT_WORK(&io->work, verity_work);
 490	queue_work(io->v->verify_wq, &io->work);
 
 
 
 
 
 491}
 492
 493/*
 494 * Prefetch buffers for the specified io.
 495 * The root buffer is not prefetched, it is assumed that it will be cached
 496 * all the time.
 497 */
 498static void verity_prefetch_io(struct work_struct *work)
 499{
 500	struct dm_verity_prefetch_work *pw =
 501		container_of(work, struct dm_verity_prefetch_work, work);
 502	struct dm_verity *v = pw->v;
 503	int i;
 504
 505	for (i = v->levels - 2; i >= 0; i--) {
 506		sector_t hash_block_start;
 507		sector_t hash_block_end;
 508		verity_hash_at_level(v, pw->block, i, &hash_block_start, NULL);
 509		verity_hash_at_level(v, pw->block + pw->n_blocks - 1, i, &hash_block_end, NULL);
 510		if (!i) {
 511			unsigned cluster = ACCESS_ONCE(dm_verity_prefetch_cluster);
 512
 513			cluster >>= v->data_dev_block_bits;
 514			if (unlikely(!cluster))
 515				goto no_prefetch_cluster;
 516
 517			if (unlikely(cluster & (cluster - 1)))
 518				cluster = 1 << __fls(cluster);
 519
 520			hash_block_start &= ~(sector_t)(cluster - 1);
 521			hash_block_end |= cluster - 1;
 522			if (unlikely(hash_block_end >= v->hash_blocks))
 523				hash_block_end = v->hash_blocks - 1;
 524		}
 525no_prefetch_cluster:
 526		dm_bufio_prefetch(v->bufio, hash_block_start,
 527				  hash_block_end - hash_block_start + 1);
 528	}
 529
 530	kfree(pw);
 531}
 532
 533static void verity_submit_prefetch(struct dm_verity *v, struct dm_verity_io *io)
 534{
 
 
 535	struct dm_verity_prefetch_work *pw;
 536
 
 
 
 
 
 
 
 
 
 
 
 
 537	pw = kmalloc(sizeof(struct dm_verity_prefetch_work),
 538		GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
 539
 540	if (!pw)
 541		return;
 542
 543	INIT_WORK(&pw->work, verity_prefetch_io);
 544	pw->v = v;
 545	pw->block = io->block;
 546	pw->n_blocks = io->n_blocks;
 547	queue_work(v->verify_wq, &pw->work);
 548}
 549
 550/*
 551 * Bio map function. It allocates dm_verity_io structure and bio vector and
 552 * fills them. Then it issues prefetches and the I/O.
 553 */
 554static int verity_map(struct dm_target *ti, struct bio *bio)
 555{
 556	struct dm_verity *v = ti->private;
 557	struct dm_verity_io *io;
 558
 559	bio->bi_bdev = v->data_dev->bdev;
 560	bio->bi_iter.bi_sector = verity_map_sector(v, bio->bi_iter.bi_sector);
 561
 562	if (((unsigned)bio->bi_iter.bi_sector | bio_sectors(bio)) &
 563	    ((1 << (v->data_dev_block_bits - SECTOR_SHIFT)) - 1)) {
 564		DMERR_LIMIT("unaligned io");
 565		return -EIO;
 566	}
 567
 568	if (bio_end_sector(bio) >>
 569	    (v->data_dev_block_bits - SECTOR_SHIFT) > v->data_blocks) {
 570		DMERR_LIMIT("io out of range");
 571		return -EIO;
 572	}
 573
 574	if (bio_data_dir(bio) == WRITE)
 575		return -EIO;
 576
 577	io = dm_per_bio_data(bio, ti->per_io_data_size);
 578	io->v = v;
 579	io->orig_bi_end_io = bio->bi_end_io;
 580	io->block = bio->bi_iter.bi_sector >> (v->data_dev_block_bits - SECTOR_SHIFT);
 581	io->n_blocks = bio->bi_iter.bi_size >> v->data_dev_block_bits;
 582
 583	bio->bi_end_io = verity_end_io;
 584	bio->bi_private = io;
 585	io->iter = bio->bi_iter;
 586
 587	verity_fec_init_io(io);
 588
 589	verity_submit_prefetch(v, io);
 590
 591	generic_make_request(bio);
 592
 593	return DM_MAPIO_SUBMITTED;
 594}
 595
 596/*
 597 * Status: V (valid) or C (corruption found)
 598 */
 599static void verity_status(struct dm_target *ti, status_type_t type,
 600			  unsigned status_flags, char *result, unsigned maxlen)
 601{
 602	struct dm_verity *v = ti->private;
 603	unsigned args = 0;
 604	unsigned sz = 0;
 605	unsigned x;
 606
 607	switch (type) {
 608	case STATUSTYPE_INFO:
 609		DMEMIT("%c", v->hash_failed ? 'C' : 'V');
 610		break;
 611	case STATUSTYPE_TABLE:
 612		DMEMIT("%u %s %s %u %u %llu %llu %s ",
 613			v->version,
 614			v->data_dev->name,
 615			v->hash_dev->name,
 616			1 << v->data_dev_block_bits,
 617			1 << v->hash_dev_block_bits,
 618			(unsigned long long)v->data_blocks,
 619			(unsigned long long)v->hash_start,
 620			v->alg_name
 621			);
 622		for (x = 0; x < v->digest_size; x++)
 623			DMEMIT("%02x", v->root_digest[x]);
 624		DMEMIT(" ");
 625		if (!v->salt_size)
 626			DMEMIT("-");
 627		else
 628			for (x = 0; x < v->salt_size; x++)
 629				DMEMIT("%02x", v->salt[x]);
 630		if (v->mode != DM_VERITY_MODE_EIO)
 631			args++;
 632		if (verity_fec_is_enabled(v))
 633			args += DM_VERITY_OPTS_FEC;
 634		if (v->zero_digest)
 635			args++;
 
 
 
 
 
 
 636		if (!args)
 637			return;
 638		DMEMIT(" %u", args);
 639		if (v->mode != DM_VERITY_MODE_EIO) {
 640			DMEMIT(" ");
 641			switch (v->mode) {
 642			case DM_VERITY_MODE_LOGGING:
 643				DMEMIT(DM_VERITY_OPT_LOGGING);
 644				break;
 645			case DM_VERITY_MODE_RESTART:
 646				DMEMIT(DM_VERITY_OPT_RESTART);
 647				break;
 
 
 
 648			default:
 649				BUG();
 650			}
 651		}
 652		if (v->zero_digest)
 653			DMEMIT(" " DM_VERITY_OPT_IGN_ZEROES);
 
 
 
 
 654		sz = verity_fec_status_table(v, sz, result, maxlen);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 655		break;
 656	}
 657}
 658
 659static int verity_prepare_ioctl(struct dm_target *ti,
 660		struct block_device **bdev, fmode_t *mode)
 661{
 662	struct dm_verity *v = ti->private;
 663
 664	*bdev = v->data_dev->bdev;
 665
 666	if (v->data_start ||
 667	    ti->len != i_size_read(v->data_dev->bdev->bd_inode) >> SECTOR_SHIFT)
 668		return 1;
 669	return 0;
 670}
 671
 672static int verity_iterate_devices(struct dm_target *ti,
 673				  iterate_devices_callout_fn fn, void *data)
 674{
 675	struct dm_verity *v = ti->private;
 676
 677	return fn(ti, v->data_dev, v->data_start, ti->len, data);
 678}
 679
 680static void verity_io_hints(struct dm_target *ti, struct queue_limits *limits)
 681{
 682	struct dm_verity *v = ti->private;
 683
 684	if (limits->logical_block_size < 1 << v->data_dev_block_bits)
 685		limits->logical_block_size = 1 << v->data_dev_block_bits;
 686
 687	if (limits->physical_block_size < 1 << v->data_dev_block_bits)
 688		limits->physical_block_size = 1 << v->data_dev_block_bits;
 689
 690	blk_limits_io_min(limits, limits->logical_block_size);
 691}
 692
 693static void verity_dtr(struct dm_target *ti)
 694{
 695	struct dm_verity *v = ti->private;
 696
 697	if (v->verify_wq)
 698		destroy_workqueue(v->verify_wq);
 699
 700	if (v->bufio)
 701		dm_bufio_client_destroy(v->bufio);
 702
 
 703	kfree(v->salt);
 704	kfree(v->root_digest);
 705	kfree(v->zero_digest);
 706
 707	if (v->tfm)
 708		crypto_free_shash(v->tfm);
 709
 710	kfree(v->alg_name);
 711
 712	if (v->hash_dev)
 713		dm_put_device(ti, v->hash_dev);
 714
 715	if (v->data_dev)
 716		dm_put_device(ti, v->data_dev);
 717
 718	verity_fec_dtr(v);
 719
 
 
 
 
 
 720	kfree(v);
 721}
 722
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 723static int verity_alloc_zero_digest(struct dm_verity *v)
 724{
 725	int r = -ENOMEM;
 726	struct shash_desc *desc;
 727	u8 *zero_data;
 728
 729	v->zero_digest = kmalloc(v->digest_size, GFP_KERNEL);
 730
 731	if (!v->zero_digest)
 732		return r;
 733
 734	desc = kmalloc(v->shash_descsize, GFP_KERNEL);
 735
 736	if (!desc)
 737		return r; /* verity_dtr will free zero_digest */
 738
 739	zero_data = kzalloc(1 << v->data_dev_block_bits, GFP_KERNEL);
 740
 741	if (!zero_data)
 742		goto out;
 743
 744	r = verity_hash(v, desc, zero_data, 1 << v->data_dev_block_bits,
 745			v->zero_digest);
 746
 747out:
 748	kfree(desc);
 749	kfree(zero_data);
 750
 751	return r;
 752}
 753
 754static int verity_parse_opt_args(struct dm_arg_set *as, struct dm_verity *v)
 755{
 756	int r;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 757	unsigned argc;
 758	struct dm_target *ti = v->ti;
 759	const char *arg_name;
 760
 761	static struct dm_arg _args[] = {
 762		{0, DM_VERITY_OPTS_MAX, "Invalid number of feature args"},
 763	};
 764
 765	r = dm_read_arg_group(_args, as, &argc, &ti->error);
 766	if (r)
 767		return -EINVAL;
 768
 769	if (!argc)
 770		return 0;
 771
 772	do {
 773		arg_name = dm_shift_arg(as);
 774		argc--;
 775
 776		if (!strcasecmp(arg_name, DM_VERITY_OPT_LOGGING)) {
 777			v->mode = DM_VERITY_MODE_LOGGING;
 778			continue;
 779
 780		} else if (!strcasecmp(arg_name, DM_VERITY_OPT_RESTART)) {
 781			v->mode = DM_VERITY_MODE_RESTART;
 
 
 782			continue;
 783
 784		} else if (!strcasecmp(arg_name, DM_VERITY_OPT_IGN_ZEROES)) {
 
 
 785			r = verity_alloc_zero_digest(v);
 786			if (r) {
 787				ti->error = "Cannot allocate zero digest";
 788				return r;
 789			}
 790			continue;
 791
 
 
 
 
 
 
 
 
 
 
 
 
 
 792		} else if (verity_is_fec_opt_arg(arg_name)) {
 
 
 793			r = verity_fec_parse_opt_args(as, v, &argc, arg_name);
 794			if (r)
 795				return r;
 796			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 797		}
 798
 
 799		ti->error = "Unrecognized verity feature request";
 800		return -EINVAL;
 801	} while (argc && !r);
 802
 803	return r;
 804}
 805
 806/*
 807 * Target parameters:
 808 *	<version>	The current format is version 1.
 809 *			Vsn 0 is compatible with original Chromium OS releases.
 810 *	<data device>
 811 *	<hash device>
 812 *	<data block size>
 813 *	<hash block size>
 814 *	<the number of data blocks>
 815 *	<hash start block>
 816 *	<algorithm>
 817 *	<digest>
 818 *	<salt>		Hex string or "-" if no salt.
 819 */
 820static int verity_ctr(struct dm_target *ti, unsigned argc, char **argv)
 821{
 822	struct dm_verity *v;
 
 823	struct dm_arg_set as;
 824	unsigned int num;
 
 825	unsigned long long num_ll;
 826	int r;
 827	int i;
 828	sector_t hash_position;
 829	char dummy;
 
 830
 831	v = kzalloc(sizeof(struct dm_verity), GFP_KERNEL);
 832	if (!v) {
 833		ti->error = "Cannot allocate verity structure";
 834		return -ENOMEM;
 835	}
 836	ti->private = v;
 837	v->ti = ti;
 838
 839	r = verity_fec_ctr_alloc(v);
 840	if (r)
 841		goto bad;
 842
 843	if ((dm_table_get_mode(ti->table) & ~FMODE_READ)) {
 844		ti->error = "Device must be readonly";
 845		r = -EINVAL;
 846		goto bad;
 847	}
 848
 849	if (argc < 10) {
 850		ti->error = "Not enough arguments";
 851		r = -EINVAL;
 852		goto bad;
 853	}
 854
 
 
 
 
 
 
 
 
 
 855	if (sscanf(argv[0], "%u%c", &num, &dummy) != 1 ||
 856	    num > 1) {
 857		ti->error = "Invalid version";
 858		r = -EINVAL;
 859		goto bad;
 860	}
 861	v->version = num;
 862
 863	r = dm_get_device(ti, argv[1], FMODE_READ, &v->data_dev);
 864	if (r) {
 865		ti->error = "Data device lookup failed";
 866		goto bad;
 867	}
 868
 869	r = dm_get_device(ti, argv[2], FMODE_READ, &v->hash_dev);
 870	if (r) {
 871		ti->error = "Hash device lookup failed";
 872		goto bad;
 873	}
 874
 875	if (sscanf(argv[3], "%u%c", &num, &dummy) != 1 ||
 876	    !num || (num & (num - 1)) ||
 877	    num < bdev_logical_block_size(v->data_dev->bdev) ||
 878	    num > PAGE_SIZE) {
 879		ti->error = "Invalid data device block size";
 880		r = -EINVAL;
 881		goto bad;
 882	}
 883	v->data_dev_block_bits = __ffs(num);
 884
 885	if (sscanf(argv[4], "%u%c", &num, &dummy) != 1 ||
 886	    !num || (num & (num - 1)) ||
 887	    num < bdev_logical_block_size(v->hash_dev->bdev) ||
 888	    num > INT_MAX) {
 889		ti->error = "Invalid hash device block size";
 890		r = -EINVAL;
 891		goto bad;
 892	}
 893	v->hash_dev_block_bits = __ffs(num);
 894
 895	if (sscanf(argv[5], "%llu%c", &num_ll, &dummy) != 1 ||
 896	    (sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT))
 897	    >> (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll) {
 898		ti->error = "Invalid data blocks";
 899		r = -EINVAL;
 900		goto bad;
 901	}
 902	v->data_blocks = num_ll;
 903
 904	if (ti->len > (v->data_blocks << (v->data_dev_block_bits - SECTOR_SHIFT))) {
 905		ti->error = "Data device is too small";
 906		r = -EINVAL;
 907		goto bad;
 908	}
 909
 910	if (sscanf(argv[6], "%llu%c", &num_ll, &dummy) != 1 ||
 911	    (sector_t)(num_ll << (v->hash_dev_block_bits - SECTOR_SHIFT))
 912	    >> (v->hash_dev_block_bits - SECTOR_SHIFT) != num_ll) {
 913		ti->error = "Invalid hash start";
 914		r = -EINVAL;
 915		goto bad;
 916	}
 917	v->hash_start = num_ll;
 918
 919	v->alg_name = kstrdup(argv[7], GFP_KERNEL);
 920	if (!v->alg_name) {
 921		ti->error = "Cannot allocate algorithm name";
 922		r = -ENOMEM;
 923		goto bad;
 924	}
 925
 926	v->tfm = crypto_alloc_shash(v->alg_name, 0, 0);
 
 927	if (IS_ERR(v->tfm)) {
 928		ti->error = "Cannot initialize hash function";
 929		r = PTR_ERR(v->tfm);
 930		v->tfm = NULL;
 931		goto bad;
 932	}
 933	v->digest_size = crypto_shash_digestsize(v->tfm);
 
 
 
 
 
 
 
 
 
 934	if ((1 << v->hash_dev_block_bits) < v->digest_size * 2) {
 935		ti->error = "Digest size too big";
 936		r = -EINVAL;
 937		goto bad;
 938	}
 939	v->shash_descsize =
 940		sizeof(struct shash_desc) + crypto_shash_descsize(v->tfm);
 941
 942	v->root_digest = kmalloc(v->digest_size, GFP_KERNEL);
 943	if (!v->root_digest) {
 944		ti->error = "Cannot allocate root digest";
 945		r = -ENOMEM;
 946		goto bad;
 947	}
 948	if (strlen(argv[8]) != v->digest_size * 2 ||
 949	    hex2bin(v->root_digest, argv[8], v->digest_size)) {
 950		ti->error = "Invalid root digest";
 951		r = -EINVAL;
 952		goto bad;
 953	}
 
 954
 955	if (strcmp(argv[9], "-")) {
 956		v->salt_size = strlen(argv[9]) / 2;
 957		v->salt = kmalloc(v->salt_size, GFP_KERNEL);
 958		if (!v->salt) {
 959			ti->error = "Cannot allocate salt";
 960			r = -ENOMEM;
 961			goto bad;
 962		}
 963		if (strlen(argv[9]) != v->salt_size * 2 ||
 964		    hex2bin(v->salt, argv[9], v->salt_size)) {
 965			ti->error = "Invalid salt";
 966			r = -EINVAL;
 967			goto bad;
 968		}
 969	}
 970
 971	argv += 10;
 972	argc -= 10;
 973
 974	/* Optional parameters */
 975	if (argc) {
 976		as.argc = argc;
 977		as.argv = argv;
 978
 979		r = verity_parse_opt_args(&as, v);
 980		if (r < 0)
 981			goto bad;
 982	}
 983
 
 
 
 
 
 
 
 
 
 984	v->hash_per_block_bits =
 985		__fls((1 << v->hash_dev_block_bits) / v->digest_size);
 986
 987	v->levels = 0;
 988	if (v->data_blocks)
 989		while (v->hash_per_block_bits * v->levels < 64 &&
 990		       (unsigned long long)(v->data_blocks - 1) >>
 991		       (v->hash_per_block_bits * v->levels))
 992			v->levels++;
 993
 994	if (v->levels > DM_VERITY_MAX_LEVELS) {
 995		ti->error = "Too many tree levels";
 996		r = -E2BIG;
 997		goto bad;
 998	}
 999
1000	hash_position = v->hash_start;
1001	for (i = v->levels - 1; i >= 0; i--) {
1002		sector_t s;
1003		v->hash_level_block[i] = hash_position;
1004		s = (v->data_blocks + ((sector_t)1 << ((i + 1) * v->hash_per_block_bits)) - 1)
1005					>> ((i + 1) * v->hash_per_block_bits);
1006		if (hash_position + s < hash_position) {
1007			ti->error = "Hash device offset overflow";
1008			r = -E2BIG;
1009			goto bad;
1010		}
1011		hash_position += s;
1012	}
1013	v->hash_blocks = hash_position;
1014
1015	v->bufio = dm_bufio_client_create(v->hash_dev->bdev,
1016		1 << v->hash_dev_block_bits, 1, sizeof(struct buffer_aux),
1017		dm_bufio_alloc_callback, NULL);
 
1018	if (IS_ERR(v->bufio)) {
1019		ti->error = "Cannot initialize dm-bufio";
1020		r = PTR_ERR(v->bufio);
1021		v->bufio = NULL;
1022		goto bad;
1023	}
1024
1025	if (dm_bufio_get_device_size(v->bufio) < v->hash_blocks) {
1026		ti->error = "Hash device is too small";
1027		r = -E2BIG;
1028		goto bad;
1029	}
1030
1031	/* WQ_UNBOUND greatly improves performance when running on ramdisk */
1032	v->verify_wq = alloc_workqueue("kverityd", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_UNBOUND, num_online_cpus());
 
 
 
 
 
 
 
 
 
 
 
1033	if (!v->verify_wq) {
1034		ti->error = "Cannot allocate workqueue";
1035		r = -ENOMEM;
1036		goto bad;
1037	}
1038
1039	ti->per_io_data_size = sizeof(struct dm_verity_io) +
1040				v->shash_descsize + v->digest_size * 2;
1041
1042	r = verity_fec_ctr(v);
1043	if (r)
1044		goto bad;
1045
1046	ti->per_io_data_size = roundup(ti->per_io_data_size,
1047				       __alignof__(struct dm_verity_io));
1048
 
 
1049	return 0;
1050
1051bad:
 
 
1052	verity_dtr(ti);
1053
1054	return r;
1055}
1056
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1057static struct target_type verity_target = {
1058	.name		= "verity",
1059	.version	= {1, 3, 0},
 
1060	.module		= THIS_MODULE,
1061	.ctr		= verity_ctr,
1062	.dtr		= verity_dtr,
1063	.map		= verity_map,
1064	.status		= verity_status,
1065	.prepare_ioctl	= verity_prepare_ioctl,
1066	.iterate_devices = verity_iterate_devices,
1067	.io_hints	= verity_io_hints,
1068};
1069
1070static int __init dm_verity_init(void)
1071{
1072	int r;
1073
1074	r = dm_register_target(&verity_target);
1075	if (r < 0)
1076		DMERR("register failed %d", r);
1077
1078	return r;
1079}
1080
1081static void __exit dm_verity_exit(void)
1082{
1083	dm_unregister_target(&verity_target);
1084}
1085
1086module_init(dm_verity_init);
1087module_exit(dm_verity_exit);
1088
1089MODULE_AUTHOR("Mikulas Patocka <mpatocka@redhat.com>");
1090MODULE_AUTHOR("Mandeep Baines <msb@chromium.org>");
1091MODULE_AUTHOR("Will Drewry <wad@chromium.org>");
1092MODULE_DESCRIPTION(DM_NAME " target for transparent disk integrity checking");
1093MODULE_LICENSE("GPL");