Linux Audio

Check our new training course

Yocto / OpenEmbedded training

Mar 24-27, 2025, special US time zones
Register
Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * PCI Bus Services, see include/linux/pci.h for further explanation.
   4 *
   5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
   6 * David Mosberger-Tang
   7 *
   8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
   9 */
  10
  11#include <linux/acpi.h>
  12#include <linux/kernel.h>
  13#include <linux/delay.h>
  14#include <linux/dmi.h>
  15#include <linux/init.h>
  16#include <linux/msi.h>
  17#include <linux/of.h>
  18#include <linux/pci.h>
  19#include <linux/pm.h>
  20#include <linux/slab.h>
  21#include <linux/module.h>
  22#include <linux/spinlock.h>
  23#include <linux/string.h>
  24#include <linux/log2.h>
  25#include <linux/logic_pio.h>
  26#include <linux/pm_wakeup.h>
  27#include <linux/interrupt.h>
  28#include <linux/device.h>
  29#include <linux/pm_runtime.h>
  30#include <linux/pci_hotplug.h>
  31#include <linux/vmalloc.h>
  32#include <asm/dma.h>
  33#include <linux/aer.h>
  34#include <linux/bitfield.h>
  35#include "pci.h"
  36
  37DEFINE_MUTEX(pci_slot_mutex);
  38
  39const char *pci_power_names[] = {
  40	"error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
  41};
  42EXPORT_SYMBOL_GPL(pci_power_names);
  43
  44#ifdef CONFIG_X86_32
  45int isa_dma_bridge_buggy;
  46EXPORT_SYMBOL(isa_dma_bridge_buggy);
  47#endif
  48
  49int pci_pci_problems;
  50EXPORT_SYMBOL(pci_pci_problems);
  51
  52unsigned int pci_pm_d3hot_delay;
  53
  54static void pci_pme_list_scan(struct work_struct *work);
  55
  56static LIST_HEAD(pci_pme_list);
  57static DEFINE_MUTEX(pci_pme_list_mutex);
  58static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
  59
  60struct pci_pme_device {
  61	struct list_head list;
  62	struct pci_dev *dev;
  63};
  64
  65#define PME_TIMEOUT 1000 /* How long between PME checks */
  66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  67static void pci_dev_d3_sleep(struct pci_dev *dev)
  68{
  69	unsigned int delay_ms = max(dev->d3hot_delay, pci_pm_d3hot_delay);
  70	unsigned int upper;
  71
  72	if (delay_ms) {
  73		/* Use a 20% upper bound, 1ms minimum */
  74		upper = max(DIV_ROUND_CLOSEST(delay_ms, 5), 1U);
  75		usleep_range(delay_ms * USEC_PER_MSEC,
  76			     (delay_ms + upper) * USEC_PER_MSEC);
  77	}
  78}
  79
  80bool pci_reset_supported(struct pci_dev *dev)
  81{
  82	return dev->reset_methods[0] != 0;
  83}
  84
  85#ifdef CONFIG_PCI_DOMAINS
  86int pci_domains_supported = 1;
  87#endif
  88
  89#define DEFAULT_CARDBUS_IO_SIZE		(256)
  90#define DEFAULT_CARDBUS_MEM_SIZE	(64*1024*1024)
  91/* pci=cbmemsize=nnM,cbiosize=nn can override this */
  92unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
  93unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
  94
  95#define DEFAULT_HOTPLUG_IO_SIZE		(256)
  96#define DEFAULT_HOTPLUG_MMIO_SIZE	(2*1024*1024)
  97#define DEFAULT_HOTPLUG_MMIO_PREF_SIZE	(2*1024*1024)
  98/* hpiosize=nn can override this */
  99unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
 100/*
 101 * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size,
 102 * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size;
 103 * pci=hpmemsize=nnM overrides both
 104 */
 105unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE;
 106unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE;
 107
 108#define DEFAULT_HOTPLUG_BUS_SIZE	1
 109unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
 110
 111
 112/* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */
 113#ifdef CONFIG_PCIE_BUS_TUNE_OFF
 114enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
 115#elif defined CONFIG_PCIE_BUS_SAFE
 116enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE;
 117#elif defined CONFIG_PCIE_BUS_PERFORMANCE
 118enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE;
 119#elif defined CONFIG_PCIE_BUS_PEER2PEER
 120enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER;
 121#else
 122enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
 123#endif
 124
 125/*
 126 * The default CLS is used if arch didn't set CLS explicitly and not
 127 * all pci devices agree on the same value.  Arch can override either
 128 * the dfl or actual value as it sees fit.  Don't forget this is
 129 * measured in 32-bit words, not bytes.
 130 */
 131u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
 132u8 pci_cache_line_size;
 133
 134/*
 135 * If we set up a device for bus mastering, we need to check the latency
 136 * timer as certain BIOSes forget to set it properly.
 137 */
 138unsigned int pcibios_max_latency = 255;
 139
 140/* If set, the PCIe ARI capability will not be used. */
 141static bool pcie_ari_disabled;
 142
 143/* If set, the PCIe ATS capability will not be used. */
 144static bool pcie_ats_disabled;
 145
 146/* If set, the PCI config space of each device is printed during boot. */
 147bool pci_early_dump;
 148
 149bool pci_ats_disabled(void)
 150{
 151	return pcie_ats_disabled;
 152}
 153EXPORT_SYMBOL_GPL(pci_ats_disabled);
 154
 155/* Disable bridge_d3 for all PCIe ports */
 156static bool pci_bridge_d3_disable;
 157/* Force bridge_d3 for all PCIe ports */
 158static bool pci_bridge_d3_force;
 159
 160static int __init pcie_port_pm_setup(char *str)
 161{
 162	if (!strcmp(str, "off"))
 163		pci_bridge_d3_disable = true;
 164	else if (!strcmp(str, "force"))
 165		pci_bridge_d3_force = true;
 166	return 1;
 167}
 168__setup("pcie_port_pm=", pcie_port_pm_setup);
 169
 170/* Time to wait after a reset for device to become responsive */
 171#define PCIE_RESET_READY_POLL_MS 60000
 172
 173/**
 174 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
 175 * @bus: pointer to PCI bus structure to search
 176 *
 177 * Given a PCI bus, returns the highest PCI bus number present in the set
 178 * including the given PCI bus and its list of child PCI buses.
 179 */
 180unsigned char pci_bus_max_busnr(struct pci_bus *bus)
 181{
 182	struct pci_bus *tmp;
 183	unsigned char max, n;
 184
 185	max = bus->busn_res.end;
 186	list_for_each_entry(tmp, &bus->children, node) {
 187		n = pci_bus_max_busnr(tmp);
 188		if (n > max)
 189			max = n;
 190	}
 191	return max;
 192}
 193EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
 194
 195/**
 196 * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS
 197 * @pdev: the PCI device
 198 *
 199 * Returns error bits set in PCI_STATUS and clears them.
 200 */
 201int pci_status_get_and_clear_errors(struct pci_dev *pdev)
 202{
 203	u16 status;
 204	int ret;
 205
 206	ret = pci_read_config_word(pdev, PCI_STATUS, &status);
 207	if (ret != PCIBIOS_SUCCESSFUL)
 208		return -EIO;
 209
 210	status &= PCI_STATUS_ERROR_BITS;
 211	if (status)
 212		pci_write_config_word(pdev, PCI_STATUS, status);
 213
 214	return status;
 215}
 216EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors);
 217
 218#ifdef CONFIG_HAS_IOMEM
 219static void __iomem *__pci_ioremap_resource(struct pci_dev *pdev, int bar,
 220					    bool write_combine)
 221{
 222	struct resource *res = &pdev->resource[bar];
 223	resource_size_t start = res->start;
 224	resource_size_t size = resource_size(res);
 225
 226	/*
 227	 * Make sure the BAR is actually a memory resource, not an IO resource
 228	 */
 229	if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
 230		pci_err(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
 231		return NULL;
 232	}
 233
 234	if (write_combine)
 235		return ioremap_wc(start, size);
 236
 237	return ioremap(start, size);
 238}
 239
 240void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
 241{
 242	return __pci_ioremap_resource(pdev, bar, false);
 243}
 244EXPORT_SYMBOL_GPL(pci_ioremap_bar);
 245
 246void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
 247{
 248	return __pci_ioremap_resource(pdev, bar, true);
 249}
 250EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
 251#endif
 252
 253/**
 254 * pci_dev_str_match_path - test if a path string matches a device
 255 * @dev: the PCI device to test
 256 * @path: string to match the device against
 257 * @endptr: pointer to the string after the match
 258 *
 259 * Test if a string (typically from a kernel parameter) formatted as a
 260 * path of device/function addresses matches a PCI device. The string must
 261 * be of the form:
 262 *
 263 *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
 264 *
 265 * A path for a device can be obtained using 'lspci -t'.  Using a path
 266 * is more robust against bus renumbering than using only a single bus,
 267 * device and function address.
 268 *
 269 * Returns 1 if the string matches the device, 0 if it does not and
 270 * a negative error code if it fails to parse the string.
 271 */
 272static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
 273				  const char **endptr)
 274{
 275	int ret;
 276	unsigned int seg, bus, slot, func;
 277	char *wpath, *p;
 278	char end;
 279
 280	*endptr = strchrnul(path, ';');
 281
 282	wpath = kmemdup_nul(path, *endptr - path, GFP_ATOMIC);
 283	if (!wpath)
 284		return -ENOMEM;
 285
 286	while (1) {
 287		p = strrchr(wpath, '/');
 288		if (!p)
 289			break;
 290		ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
 291		if (ret != 2) {
 292			ret = -EINVAL;
 293			goto free_and_exit;
 294		}
 295
 296		if (dev->devfn != PCI_DEVFN(slot, func)) {
 297			ret = 0;
 298			goto free_and_exit;
 299		}
 300
 301		/*
 302		 * Note: we don't need to get a reference to the upstream
 303		 * bridge because we hold a reference to the top level
 304		 * device which should hold a reference to the bridge,
 305		 * and so on.
 306		 */
 307		dev = pci_upstream_bridge(dev);
 308		if (!dev) {
 309			ret = 0;
 310			goto free_and_exit;
 311		}
 312
 313		*p = 0;
 314	}
 315
 316	ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
 317		     &func, &end);
 318	if (ret != 4) {
 319		seg = 0;
 320		ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
 321		if (ret != 3) {
 322			ret = -EINVAL;
 323			goto free_and_exit;
 324		}
 325	}
 326
 327	ret = (seg == pci_domain_nr(dev->bus) &&
 328	       bus == dev->bus->number &&
 329	       dev->devfn == PCI_DEVFN(slot, func));
 330
 331free_and_exit:
 332	kfree(wpath);
 333	return ret;
 334}
 335
 336/**
 337 * pci_dev_str_match - test if a string matches a device
 338 * @dev: the PCI device to test
 339 * @p: string to match the device against
 340 * @endptr: pointer to the string after the match
 341 *
 342 * Test if a string (typically from a kernel parameter) matches a specified
 343 * PCI device. The string may be of one of the following formats:
 344 *
 345 *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
 346 *   pci:<vendor>:<device>[:<subvendor>:<subdevice>]
 347 *
 348 * The first format specifies a PCI bus/device/function address which
 349 * may change if new hardware is inserted, if motherboard firmware changes,
 350 * or due to changes caused in kernel parameters. If the domain is
 351 * left unspecified, it is taken to be 0.  In order to be robust against
 352 * bus renumbering issues, a path of PCI device/function numbers may be used
 353 * to address the specific device.  The path for a device can be determined
 354 * through the use of 'lspci -t'.
 355 *
 356 * The second format matches devices using IDs in the configuration
 357 * space which may match multiple devices in the system. A value of 0
 358 * for any field will match all devices. (Note: this differs from
 359 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
 360 * legacy reasons and convenience so users don't have to specify
 361 * FFFFFFFFs on the command line.)
 362 *
 363 * Returns 1 if the string matches the device, 0 if it does not and
 364 * a negative error code if the string cannot be parsed.
 365 */
 366static int pci_dev_str_match(struct pci_dev *dev, const char *p,
 367			     const char **endptr)
 368{
 369	int ret;
 370	int count;
 371	unsigned short vendor, device, subsystem_vendor, subsystem_device;
 372
 373	if (strncmp(p, "pci:", 4) == 0) {
 374		/* PCI vendor/device (subvendor/subdevice) IDs are specified */
 375		p += 4;
 376		ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
 377			     &subsystem_vendor, &subsystem_device, &count);
 378		if (ret != 4) {
 379			ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
 380			if (ret != 2)
 381				return -EINVAL;
 382
 383			subsystem_vendor = 0;
 384			subsystem_device = 0;
 385		}
 386
 387		p += count;
 388
 389		if ((!vendor || vendor == dev->vendor) &&
 390		    (!device || device == dev->device) &&
 391		    (!subsystem_vendor ||
 392			    subsystem_vendor == dev->subsystem_vendor) &&
 393		    (!subsystem_device ||
 394			    subsystem_device == dev->subsystem_device))
 395			goto found;
 396	} else {
 397		/*
 398		 * PCI Bus, Device, Function IDs are specified
 399		 * (optionally, may include a path of devfns following it)
 400		 */
 401		ret = pci_dev_str_match_path(dev, p, &p);
 402		if (ret < 0)
 403			return ret;
 404		else if (ret)
 405			goto found;
 406	}
 407
 408	*endptr = p;
 409	return 0;
 410
 411found:
 412	*endptr = p;
 413	return 1;
 414}
 415
 416static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
 417				  u8 pos, int cap, int *ttl)
 418{
 419	u8 id;
 420	u16 ent;
 421
 422	pci_bus_read_config_byte(bus, devfn, pos, &pos);
 423
 424	while ((*ttl)--) {
 425		if (pos < 0x40)
 426			break;
 427		pos &= ~3;
 428		pci_bus_read_config_word(bus, devfn, pos, &ent);
 429
 430		id = ent & 0xff;
 431		if (id == 0xff)
 432			break;
 433		if (id == cap)
 434			return pos;
 435		pos = (ent >> 8);
 436	}
 437	return 0;
 438}
 439
 440static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
 441			      u8 pos, int cap)
 442{
 443	int ttl = PCI_FIND_CAP_TTL;
 444
 445	return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
 446}
 447
 448u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
 449{
 450	return __pci_find_next_cap(dev->bus, dev->devfn,
 451				   pos + PCI_CAP_LIST_NEXT, cap);
 452}
 453EXPORT_SYMBOL_GPL(pci_find_next_capability);
 454
 455static u8 __pci_bus_find_cap_start(struct pci_bus *bus,
 456				    unsigned int devfn, u8 hdr_type)
 457{
 458	u16 status;
 459
 460	pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
 461	if (!(status & PCI_STATUS_CAP_LIST))
 462		return 0;
 463
 464	switch (hdr_type) {
 465	case PCI_HEADER_TYPE_NORMAL:
 466	case PCI_HEADER_TYPE_BRIDGE:
 467		return PCI_CAPABILITY_LIST;
 468	case PCI_HEADER_TYPE_CARDBUS:
 469		return PCI_CB_CAPABILITY_LIST;
 470	}
 471
 472	return 0;
 473}
 474
 475/**
 476 * pci_find_capability - query for devices' capabilities
 477 * @dev: PCI device to query
 478 * @cap: capability code
 479 *
 480 * Tell if a device supports a given PCI capability.
 481 * Returns the address of the requested capability structure within the
 482 * device's PCI configuration space or 0 in case the device does not
 483 * support it.  Possible values for @cap include:
 484 *
 485 *  %PCI_CAP_ID_PM           Power Management
 486 *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
 487 *  %PCI_CAP_ID_VPD          Vital Product Data
 488 *  %PCI_CAP_ID_SLOTID       Slot Identification
 489 *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
 490 *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
 491 *  %PCI_CAP_ID_PCIX         PCI-X
 492 *  %PCI_CAP_ID_EXP          PCI Express
 493 */
 494u8 pci_find_capability(struct pci_dev *dev, int cap)
 495{
 496	u8 pos;
 497
 498	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
 499	if (pos)
 500		pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
 501
 502	return pos;
 503}
 504EXPORT_SYMBOL(pci_find_capability);
 505
 506/**
 507 * pci_bus_find_capability - query for devices' capabilities
 508 * @bus: the PCI bus to query
 509 * @devfn: PCI device to query
 510 * @cap: capability code
 511 *
 512 * Like pci_find_capability() but works for PCI devices that do not have a
 513 * pci_dev structure set up yet.
 514 *
 515 * Returns the address of the requested capability structure within the
 516 * device's PCI configuration space or 0 in case the device does not
 517 * support it.
 518 */
 519u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
 520{
 521	u8 hdr_type, pos;
 522
 523	pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
 524
 525	pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
 526	if (pos)
 527		pos = __pci_find_next_cap(bus, devfn, pos, cap);
 528
 529	return pos;
 530}
 531EXPORT_SYMBOL(pci_bus_find_capability);
 532
 533/**
 534 * pci_find_next_ext_capability - Find an extended capability
 535 * @dev: PCI device to query
 536 * @start: address at which to start looking (0 to start at beginning of list)
 537 * @cap: capability code
 538 *
 539 * Returns the address of the next matching extended capability structure
 540 * within the device's PCI configuration space or 0 if the device does
 541 * not support it.  Some capabilities can occur several times, e.g., the
 542 * vendor-specific capability, and this provides a way to find them all.
 543 */
 544u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap)
 545{
 546	u32 header;
 547	int ttl;
 548	u16 pos = PCI_CFG_SPACE_SIZE;
 549
 550	/* minimum 8 bytes per capability */
 551	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
 552
 553	if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
 554		return 0;
 555
 556	if (start)
 557		pos = start;
 558
 559	if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
 560		return 0;
 561
 562	/*
 563	 * If we have no capabilities, this is indicated by cap ID,
 564	 * cap version and next pointer all being 0.
 565	 */
 566	if (header == 0)
 567		return 0;
 568
 569	while (ttl-- > 0) {
 570		if (PCI_EXT_CAP_ID(header) == cap && pos != start)
 571			return pos;
 572
 573		pos = PCI_EXT_CAP_NEXT(header);
 574		if (pos < PCI_CFG_SPACE_SIZE)
 575			break;
 576
 577		if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
 578			break;
 579	}
 580
 581	return 0;
 582}
 583EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
 584
 585/**
 586 * pci_find_ext_capability - Find an extended capability
 587 * @dev: PCI device to query
 588 * @cap: capability code
 589 *
 590 * Returns the address of the requested extended capability structure
 591 * within the device's PCI configuration space or 0 if the device does
 592 * not support it.  Possible values for @cap include:
 593 *
 594 *  %PCI_EXT_CAP_ID_ERR		Advanced Error Reporting
 595 *  %PCI_EXT_CAP_ID_VC		Virtual Channel
 596 *  %PCI_EXT_CAP_ID_DSN		Device Serial Number
 597 *  %PCI_EXT_CAP_ID_PWR		Power Budgeting
 598 */
 599u16 pci_find_ext_capability(struct pci_dev *dev, int cap)
 600{
 601	return pci_find_next_ext_capability(dev, 0, cap);
 602}
 603EXPORT_SYMBOL_GPL(pci_find_ext_capability);
 604
 605/**
 606 * pci_get_dsn - Read and return the 8-byte Device Serial Number
 607 * @dev: PCI device to query
 608 *
 609 * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial
 610 * Number.
 611 *
 612 * Returns the DSN, or zero if the capability does not exist.
 613 */
 614u64 pci_get_dsn(struct pci_dev *dev)
 615{
 616	u32 dword;
 617	u64 dsn;
 618	int pos;
 619
 620	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN);
 621	if (!pos)
 622		return 0;
 623
 624	/*
 625	 * The Device Serial Number is two dwords offset 4 bytes from the
 626	 * capability position. The specification says that the first dword is
 627	 * the lower half, and the second dword is the upper half.
 628	 */
 629	pos += 4;
 630	pci_read_config_dword(dev, pos, &dword);
 631	dsn = (u64)dword;
 632	pci_read_config_dword(dev, pos + 4, &dword);
 633	dsn |= ((u64)dword) << 32;
 634
 635	return dsn;
 636}
 637EXPORT_SYMBOL_GPL(pci_get_dsn);
 638
 639static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap)
 640{
 641	int rc, ttl = PCI_FIND_CAP_TTL;
 642	u8 cap, mask;
 643
 644	if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
 645		mask = HT_3BIT_CAP_MASK;
 646	else
 647		mask = HT_5BIT_CAP_MASK;
 648
 649	pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
 650				      PCI_CAP_ID_HT, &ttl);
 651	while (pos) {
 652		rc = pci_read_config_byte(dev, pos + 3, &cap);
 653		if (rc != PCIBIOS_SUCCESSFUL)
 654			return 0;
 655
 656		if ((cap & mask) == ht_cap)
 657			return pos;
 658
 659		pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
 660					      pos + PCI_CAP_LIST_NEXT,
 661					      PCI_CAP_ID_HT, &ttl);
 662	}
 663
 664	return 0;
 665}
 666
 667/**
 668 * pci_find_next_ht_capability - query a device's HyperTransport capabilities
 669 * @dev: PCI device to query
 670 * @pos: Position from which to continue searching
 671 * @ht_cap: HyperTransport capability code
 672 *
 673 * To be used in conjunction with pci_find_ht_capability() to search for
 674 * all capabilities matching @ht_cap. @pos should always be a value returned
 675 * from pci_find_ht_capability().
 676 *
 677 * NB. To be 100% safe against broken PCI devices, the caller should take
 678 * steps to avoid an infinite loop.
 679 */
 680u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap)
 681{
 682	return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
 683}
 684EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
 685
 686/**
 687 * pci_find_ht_capability - query a device's HyperTransport capabilities
 688 * @dev: PCI device to query
 689 * @ht_cap: HyperTransport capability code
 690 *
 691 * Tell if a device supports a given HyperTransport capability.
 692 * Returns an address within the device's PCI configuration space
 693 * or 0 in case the device does not support the request capability.
 694 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
 695 * which has a HyperTransport capability matching @ht_cap.
 696 */
 697u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
 698{
 699	u8 pos;
 700
 701	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
 702	if (pos)
 703		pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
 704
 705	return pos;
 706}
 707EXPORT_SYMBOL_GPL(pci_find_ht_capability);
 708
 709/**
 710 * pci_find_vsec_capability - Find a vendor-specific extended capability
 711 * @dev: PCI device to query
 712 * @vendor: Vendor ID for which capability is defined
 713 * @cap: Vendor-specific capability ID
 714 *
 715 * If @dev has Vendor ID @vendor, search for a VSEC capability with
 716 * VSEC ID @cap. If found, return the capability offset in
 717 * config space; otherwise return 0.
 718 */
 719u16 pci_find_vsec_capability(struct pci_dev *dev, u16 vendor, int cap)
 720{
 721	u16 vsec = 0;
 722	u32 header;
 
 723
 724	if (vendor != dev->vendor)
 725		return 0;
 726
 727	while ((vsec = pci_find_next_ext_capability(dev, vsec,
 728						     PCI_EXT_CAP_ID_VNDR))) {
 729		if (pci_read_config_dword(dev, vsec + PCI_VNDR_HEADER,
 730					  &header) == PCIBIOS_SUCCESSFUL &&
 731		    PCI_VNDR_HEADER_ID(header) == cap)
 
 
 732			return vsec;
 733	}
 734
 735	return 0;
 736}
 737EXPORT_SYMBOL_GPL(pci_find_vsec_capability);
 738
 739/**
 740 * pci_find_dvsec_capability - Find DVSEC for vendor
 741 * @dev: PCI device to query
 742 * @vendor: Vendor ID to match for the DVSEC
 743 * @dvsec: Designated Vendor-specific capability ID
 744 *
 745 * If DVSEC has Vendor ID @vendor and DVSEC ID @dvsec return the capability
 746 * offset in config space; otherwise return 0.
 747 */
 748u16 pci_find_dvsec_capability(struct pci_dev *dev, u16 vendor, u16 dvsec)
 749{
 750	int pos;
 751
 752	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DVSEC);
 753	if (!pos)
 754		return 0;
 755
 756	while (pos) {
 757		u16 v, id;
 758
 759		pci_read_config_word(dev, pos + PCI_DVSEC_HEADER1, &v);
 760		pci_read_config_word(dev, pos + PCI_DVSEC_HEADER2, &id);
 761		if (vendor == v && dvsec == id)
 762			return pos;
 763
 764		pos = pci_find_next_ext_capability(dev, pos, PCI_EXT_CAP_ID_DVSEC);
 765	}
 766
 767	return 0;
 768}
 769EXPORT_SYMBOL_GPL(pci_find_dvsec_capability);
 770
 771/**
 772 * pci_find_parent_resource - return resource region of parent bus of given
 773 *			      region
 774 * @dev: PCI device structure contains resources to be searched
 775 * @res: child resource record for which parent is sought
 776 *
 777 * For given resource region of given device, return the resource region of
 778 * parent bus the given region is contained in.
 779 */
 780struct resource *pci_find_parent_resource(const struct pci_dev *dev,
 781					  struct resource *res)
 782{
 783	const struct pci_bus *bus = dev->bus;
 784	struct resource *r;
 785	int i;
 786
 787	pci_bus_for_each_resource(bus, r, i) {
 788		if (!r)
 789			continue;
 790		if (resource_contains(r, res)) {
 791
 792			/*
 793			 * If the window is prefetchable but the BAR is
 794			 * not, the allocator made a mistake.
 795			 */
 796			if (r->flags & IORESOURCE_PREFETCH &&
 797			    !(res->flags & IORESOURCE_PREFETCH))
 798				return NULL;
 799
 800			/*
 801			 * If we're below a transparent bridge, there may
 802			 * be both a positively-decoded aperture and a
 803			 * subtractively-decoded region that contain the BAR.
 804			 * We want the positively-decoded one, so this depends
 805			 * on pci_bus_for_each_resource() giving us those
 806			 * first.
 807			 */
 808			return r;
 809		}
 810	}
 811	return NULL;
 812}
 813EXPORT_SYMBOL(pci_find_parent_resource);
 814
 815/**
 816 * pci_find_resource - Return matching PCI device resource
 817 * @dev: PCI device to query
 818 * @res: Resource to look for
 819 *
 820 * Goes over standard PCI resources (BARs) and checks if the given resource
 821 * is partially or fully contained in any of them. In that case the
 822 * matching resource is returned, %NULL otherwise.
 823 */
 824struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
 825{
 826	int i;
 827
 828	for (i = 0; i < PCI_STD_NUM_BARS; i++) {
 829		struct resource *r = &dev->resource[i];
 830
 831		if (r->start && resource_contains(r, res))
 832			return r;
 833	}
 834
 835	return NULL;
 836}
 837EXPORT_SYMBOL(pci_find_resource);
 838
 839/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 840 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
 841 * @dev: the PCI device to operate on
 842 * @pos: config space offset of status word
 843 * @mask: mask of bit(s) to care about in status word
 844 *
 845 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
 846 */
 847int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
 848{
 849	int i;
 850
 851	/* Wait for Transaction Pending bit clean */
 852	for (i = 0; i < 4; i++) {
 853		u16 status;
 854		if (i)
 855			msleep((1 << (i - 1)) * 100);
 856
 857		pci_read_config_word(dev, pos, &status);
 858		if (!(status & mask))
 859			return 1;
 860	}
 861
 862	return 0;
 863}
 864
 865static int pci_acs_enable;
 866
 867/**
 868 * pci_request_acs - ask for ACS to be enabled if supported
 869 */
 870void pci_request_acs(void)
 871{
 872	pci_acs_enable = 1;
 873}
 874
 875static const char *disable_acs_redir_param;
 876
 877/**
 878 * pci_disable_acs_redir - disable ACS redirect capabilities
 879 * @dev: the PCI device
 880 *
 881 * For only devices specified in the disable_acs_redir parameter.
 882 */
 883static void pci_disable_acs_redir(struct pci_dev *dev)
 884{
 885	int ret = 0;
 886	const char *p;
 887	int pos;
 888	u16 ctrl;
 889
 890	if (!disable_acs_redir_param)
 891		return;
 892
 893	p = disable_acs_redir_param;
 894	while (*p) {
 895		ret = pci_dev_str_match(dev, p, &p);
 896		if (ret < 0) {
 897			pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
 898				     disable_acs_redir_param);
 899
 900			break;
 901		} else if (ret == 1) {
 902			/* Found a match */
 903			break;
 904		}
 905
 906		if (*p != ';' && *p != ',') {
 907			/* End of param or invalid format */
 908			break;
 909		}
 910		p++;
 911	}
 912
 913	if (ret != 1)
 914		return;
 915
 916	if (!pci_dev_specific_disable_acs_redir(dev))
 917		return;
 918
 919	pos = dev->acs_cap;
 920	if (!pos) {
 921		pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
 922		return;
 923	}
 924
 925	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
 926
 927	/* P2P Request & Completion Redirect */
 928	ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC);
 929
 930	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
 931
 932	pci_info(dev, "disabled ACS redirect\n");
 933}
 934
 935/**
 936 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
 937 * @dev: the PCI device
 938 */
 939static void pci_std_enable_acs(struct pci_dev *dev)
 940{
 941	int pos;
 942	u16 cap;
 943	u16 ctrl;
 944
 945	pos = dev->acs_cap;
 946	if (!pos)
 947		return;
 948
 949	pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
 950	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
 951
 952	/* Source Validation */
 953	ctrl |= (cap & PCI_ACS_SV);
 954
 955	/* P2P Request Redirect */
 956	ctrl |= (cap & PCI_ACS_RR);
 957
 958	/* P2P Completion Redirect */
 959	ctrl |= (cap & PCI_ACS_CR);
 960
 961	/* Upstream Forwarding */
 962	ctrl |= (cap & PCI_ACS_UF);
 963
 964	/* Enable Translation Blocking for external devices and noats */
 965	if (pci_ats_disabled() || dev->external_facing || dev->untrusted)
 966		ctrl |= (cap & PCI_ACS_TB);
 967
 968	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
 969}
 970
 971/**
 972 * pci_enable_acs - enable ACS if hardware support it
 973 * @dev: the PCI device
 974 */
 975static void pci_enable_acs(struct pci_dev *dev)
 976{
 977	if (!pci_acs_enable)
 978		goto disable_acs_redir;
 979
 980	if (!pci_dev_specific_enable_acs(dev))
 981		goto disable_acs_redir;
 982
 983	pci_std_enable_acs(dev);
 984
 985disable_acs_redir:
 986	/*
 987	 * Note: pci_disable_acs_redir() must be called even if ACS was not
 988	 * enabled by the kernel because it may have been enabled by
 989	 * platform firmware.  So if we are told to disable it, we should
 990	 * always disable it after setting the kernel's default
 991	 * preferences.
 992	 */
 993	pci_disable_acs_redir(dev);
 994}
 995
 996/**
 997 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
 998 * @dev: PCI device to have its BARs restored
 999 *
1000 * Restore the BAR values for a given device, so as to make it
1001 * accessible by its driver.
1002 */
1003static void pci_restore_bars(struct pci_dev *dev)
1004{
1005	int i;
1006
1007	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
1008		pci_update_resource(dev, i);
1009}
1010
1011static inline bool platform_pci_power_manageable(struct pci_dev *dev)
1012{
1013	if (pci_use_mid_pm())
1014		return true;
1015
1016	return acpi_pci_power_manageable(dev);
1017}
1018
1019static inline int platform_pci_set_power_state(struct pci_dev *dev,
1020					       pci_power_t t)
1021{
1022	if (pci_use_mid_pm())
1023		return mid_pci_set_power_state(dev, t);
1024
1025	return acpi_pci_set_power_state(dev, t);
1026}
1027
1028static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
1029{
1030	if (pci_use_mid_pm())
1031		return mid_pci_get_power_state(dev);
1032
1033	return acpi_pci_get_power_state(dev);
1034}
1035
1036static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
1037{
1038	if (!pci_use_mid_pm())
1039		acpi_pci_refresh_power_state(dev);
1040}
1041
1042static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
1043{
1044	if (pci_use_mid_pm())
1045		return PCI_POWER_ERROR;
1046
1047	return acpi_pci_choose_state(dev);
1048}
1049
1050static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
1051{
1052	if (pci_use_mid_pm())
1053		return PCI_POWER_ERROR;
1054
1055	return acpi_pci_wakeup(dev, enable);
1056}
1057
1058static inline bool platform_pci_need_resume(struct pci_dev *dev)
1059{
1060	if (pci_use_mid_pm())
1061		return false;
1062
1063	return acpi_pci_need_resume(dev);
1064}
1065
1066static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
1067{
1068	if (pci_use_mid_pm())
1069		return false;
1070
1071	return acpi_pci_bridge_d3(dev);
1072}
1073
1074/**
1075 * pci_update_current_state - Read power state of given device and cache it
1076 * @dev: PCI device to handle.
1077 * @state: State to cache in case the device doesn't have the PM capability
1078 *
1079 * The power state is read from the PMCSR register, which however is
1080 * inaccessible in D3cold.  The platform firmware is therefore queried first
1081 * to detect accessibility of the register.  In case the platform firmware
1082 * reports an incorrect state or the device isn't power manageable by the
1083 * platform at all, we try to detect D3cold by testing accessibility of the
1084 * vendor ID in config space.
1085 */
1086void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
1087{
1088	if (platform_pci_get_power_state(dev) == PCI_D3cold) {
1089		dev->current_state = PCI_D3cold;
1090	} else if (dev->pm_cap) {
1091		u16 pmcsr;
1092
1093		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1094		if (PCI_POSSIBLE_ERROR(pmcsr)) {
1095			dev->current_state = PCI_D3cold;
1096			return;
1097		}
1098		dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1099	} else {
1100		dev->current_state = state;
1101	}
1102}
1103
1104/**
1105 * pci_refresh_power_state - Refresh the given device's power state data
1106 * @dev: Target PCI device.
1107 *
1108 * Ask the platform to refresh the devices power state information and invoke
1109 * pci_update_current_state() to update its current PCI power state.
1110 */
1111void pci_refresh_power_state(struct pci_dev *dev)
1112{
1113	platform_pci_refresh_power_state(dev);
1114	pci_update_current_state(dev, dev->current_state);
1115}
1116
1117/**
1118 * pci_platform_power_transition - Use platform to change device power state
1119 * @dev: PCI device to handle.
1120 * @state: State to put the device into.
1121 */
1122int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
1123{
1124	int error;
1125
1126	error = platform_pci_set_power_state(dev, state);
1127	if (!error)
1128		pci_update_current_state(dev, state);
1129	else if (!dev->pm_cap) /* Fall back to PCI_D0 */
1130		dev->current_state = PCI_D0;
1131
1132	return error;
1133}
1134EXPORT_SYMBOL_GPL(pci_platform_power_transition);
1135
1136static int pci_resume_one(struct pci_dev *pci_dev, void *ign)
1137{
1138	pm_request_resume(&pci_dev->dev);
1139	return 0;
1140}
1141
1142/**
1143 * pci_resume_bus - Walk given bus and runtime resume devices on it
1144 * @bus: Top bus of the subtree to walk.
1145 */
1146void pci_resume_bus(struct pci_bus *bus)
1147{
1148	if (bus)
1149		pci_walk_bus(bus, pci_resume_one, NULL);
1150}
1151
1152static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
1153{
1154	int delay = 1;
1155	u32 id;
 
 
 
 
 
 
 
1156
1157	/*
1158	 * After reset, the device should not silently discard config
1159	 * requests, but it may still indicate that it needs more time by
1160	 * responding to them with CRS completions.  The Root Port will
1161	 * generally synthesize ~0 (PCI_ERROR_RESPONSE) data to complete
1162	 * the read (except when CRS SV is enabled and the read was for the
1163	 * Vendor ID; in that case it synthesizes 0x0001 data).
1164	 *
1165	 * Wait for the device to return a non-CRS completion.  Read the
1166	 * Command register instead of Vendor ID so we don't have to
1167	 * contend with the CRS SV value.
1168	 */
1169	pci_read_config_dword(dev, PCI_COMMAND, &id);
1170	while (PCI_POSSIBLE_ERROR(id)) {
 
 
 
 
 
1171		if (delay > timeout) {
1172			pci_warn(dev, "not ready %dms after %s; giving up\n",
1173				 delay - 1, reset_type);
1174			return -ENOTTY;
1175		}
1176
1177		if (delay > 1000)
 
 
 
 
 
 
 
1178			pci_info(dev, "not ready %dms after %s; waiting\n",
1179				 delay - 1, reset_type);
 
1180
1181		msleep(delay);
1182		delay *= 2;
1183		pci_read_config_dword(dev, PCI_COMMAND, &id);
1184	}
1185
1186	if (delay > 1000)
1187		pci_info(dev, "ready %dms after %s\n", delay - 1,
1188			 reset_type);
 
 
 
1189
1190	return 0;
1191}
1192
1193/**
1194 * pci_power_up - Put the given device into D0
1195 * @dev: PCI device to power up
1196 *
1197 * On success, return 0 or 1, depending on whether or not it is necessary to
1198 * restore the device's BARs subsequently (1 is returned in that case).
 
 
 
 
1199 */
1200int pci_power_up(struct pci_dev *dev)
1201{
1202	bool need_restore;
1203	pci_power_t state;
1204	u16 pmcsr;
1205
1206	platform_pci_set_power_state(dev, PCI_D0);
1207
1208	if (!dev->pm_cap) {
1209		state = platform_pci_get_power_state(dev);
1210		if (state == PCI_UNKNOWN)
1211			dev->current_state = PCI_D0;
1212		else
1213			dev->current_state = state;
1214
1215		if (state == PCI_D0)
1216			return 0;
1217
1218		return -EIO;
1219	}
1220
1221	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1222	if (PCI_POSSIBLE_ERROR(pmcsr)) {
1223		pci_err(dev, "Unable to change power state from %s to D0, device inaccessible\n",
1224			pci_power_name(dev->current_state));
1225		dev->current_state = PCI_D3cold;
1226		return -EIO;
1227	}
1228
1229	state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1230
1231	need_restore = (state == PCI_D3hot || dev->current_state >= PCI_D3hot) &&
1232			!(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET);
1233
1234	if (state == PCI_D0)
1235		goto end;
1236
1237	/*
1238	 * Force the entire word to 0. This doesn't affect PME_Status, disables
1239	 * PME_En, and sets PowerState to 0.
1240	 */
1241	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, 0);
1242
1243	/* Mandatory transition delays; see PCI PM 1.2. */
1244	if (state == PCI_D3hot)
1245		pci_dev_d3_sleep(dev);
1246	else if (state == PCI_D2)
1247		udelay(PCI_PM_D2_DELAY);
1248
1249end:
1250	dev->current_state = PCI_D0;
1251	if (need_restore)
1252		return 1;
1253
1254	return 0;
1255}
1256
1257/**
1258 * pci_set_full_power_state - Put a PCI device into D0 and update its state
1259 * @dev: PCI device to power up
 
1260 *
1261 * Call pci_power_up() to put @dev into D0, read from its PCI_PM_CTRL register
1262 * to confirm the state change, restore its BARs if they might be lost and
1263 * reconfigure ASPM in acordance with the new power state.
1264 *
1265 * If pci_restore_state() is going to be called right after a power state change
1266 * to D0, it is more efficient to use pci_power_up() directly instead of this
1267 * function.
1268 */
1269static int pci_set_full_power_state(struct pci_dev *dev)
1270{
1271	u16 pmcsr;
1272	int ret;
1273
1274	ret = pci_power_up(dev);
1275	if (ret < 0)
 
 
 
1276		return ret;
 
1277
1278	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1279	dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1280	if (dev->current_state != PCI_D0) {
1281		pci_info_ratelimited(dev, "Refused to change power state from %s to D0\n",
1282				     pci_power_name(dev->current_state));
1283	} else if (ret > 0) {
1284		/*
1285		 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
1286		 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
1287		 * from D3hot to D0 _may_ perform an internal reset, thereby
1288		 * going to "D0 Uninitialized" rather than "D0 Initialized".
1289		 * For example, at least some versions of the 3c905B and the
1290		 * 3c556B exhibit this behaviour.
1291		 *
1292		 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
1293		 * devices in a D3hot state at boot.  Consequently, we need to
1294		 * restore at least the BARs so that the device will be
1295		 * accessible to its driver.
1296		 */
1297		pci_restore_bars(dev);
1298	}
1299
 
 
 
1300	return 0;
1301}
1302
1303/**
1304 * __pci_dev_set_current_state - Set current state of a PCI device
1305 * @dev: Device to handle
1306 * @data: pointer to state to be set
1307 */
1308static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1309{
1310	pci_power_t state = *(pci_power_t *)data;
1311
1312	dev->current_state = state;
1313	return 0;
1314}
1315
1316/**
1317 * pci_bus_set_current_state - Walk given bus and set current state of devices
1318 * @bus: Top bus of the subtree to walk.
1319 * @state: state to be set
1320 */
1321void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1322{
1323	if (bus)
1324		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1325}
1326
 
 
 
 
 
 
 
 
 
 
 
1327/**
1328 * pci_set_low_power_state - Put a PCI device into a low-power state.
1329 * @dev: PCI device to handle.
1330 * @state: PCI power state (D1, D2, D3hot) to put the device into.
 
1331 *
1332 * Use the device's PCI_PM_CTRL register to put it into a low-power state.
1333 *
1334 * RETURN VALUE:
1335 * -EINVAL if the requested state is invalid.
1336 * -EIO if device does not support PCI PM or its PM capabilities register has a
1337 * wrong version, or device doesn't support the requested state.
1338 * 0 if device already is in the requested state.
1339 * 0 if device's power state has been successfully changed.
1340 */
1341static int pci_set_low_power_state(struct pci_dev *dev, pci_power_t state)
1342{
1343	u16 pmcsr;
1344
1345	if (!dev->pm_cap)
1346		return -EIO;
1347
1348	/*
1349	 * Validate transition: We can enter D0 from any state, but if
1350	 * we're already in a low-power state, we can only go deeper.  E.g.,
1351	 * we can go from D1 to D3, but we can't go directly from D3 to D1;
1352	 * we'd have to go from D3 to D0, then to D1.
1353	 */
1354	if (dev->current_state <= PCI_D3cold && dev->current_state > state) {
1355		pci_dbg(dev, "Invalid power transition (from %s to %s)\n",
1356			pci_power_name(dev->current_state),
1357			pci_power_name(state));
1358		return -EINVAL;
1359	}
1360
1361	/* Check if this device supports the desired state */
1362	if ((state == PCI_D1 && !dev->d1_support)
1363	   || (state == PCI_D2 && !dev->d2_support))
1364		return -EIO;
1365
1366	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1367	if (PCI_POSSIBLE_ERROR(pmcsr)) {
1368		pci_err(dev, "Unable to change power state from %s to %s, device inaccessible\n",
1369			pci_power_name(dev->current_state),
1370			pci_power_name(state));
1371		dev->current_state = PCI_D3cold;
1372		return -EIO;
1373	}
1374
1375	pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
1376	pmcsr |= state;
1377
1378	/* Enter specified state */
1379	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1380
1381	/* Mandatory power management transition delays; see PCI PM 1.2. */
1382	if (state == PCI_D3hot)
1383		pci_dev_d3_sleep(dev);
1384	else if (state == PCI_D2)
1385		udelay(PCI_PM_D2_DELAY);
1386
1387	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1388	dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1389	if (dev->current_state != state)
1390		pci_info_ratelimited(dev, "Refused to change power state from %s to %s\n",
1391				     pci_power_name(dev->current_state),
1392				     pci_power_name(state));
1393
 
 
 
1394	return 0;
1395}
1396
1397/**
1398 * pci_set_power_state - Set the power state of a PCI device
1399 * @dev: PCI device to handle.
1400 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1401 *
1402 * Transition a device to a new power state, using the platform firmware and/or
1403 * the device's PCI PM registers.
1404 *
1405 * RETURN VALUE:
1406 * -EINVAL if the requested state is invalid.
1407 * -EIO if device does not support PCI PM or its PM capabilities register has a
1408 * wrong version, or device doesn't support the requested state.
1409 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1410 * 0 if device already is in the requested state.
1411 * 0 if the transition is to D3 but D3 is not supported.
1412 * 0 if device's power state has been successfully changed.
1413 */
1414int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1415{
1416	int error;
1417
1418	/* Bound the state we're entering */
1419	if (state > PCI_D3cold)
1420		state = PCI_D3cold;
1421	else if (state < PCI_D0)
1422		state = PCI_D0;
1423	else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1424
1425		/*
1426		 * If the device or the parent bridge do not support PCI
1427		 * PM, ignore the request if we're doing anything other
1428		 * than putting it into D0 (which would only happen on
1429		 * boot).
1430		 */
1431		return 0;
1432
1433	/* Check if we're already there */
1434	if (dev->current_state == state)
1435		return 0;
1436
1437	if (state == PCI_D0)
1438		return pci_set_full_power_state(dev);
1439
1440	/*
1441	 * This device is quirked not to be put into D3, so don't put it in
1442	 * D3
1443	 */
1444	if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1445		return 0;
1446
1447	if (state == PCI_D3cold) {
1448		/*
1449		 * To put the device in D3cold, put it into D3hot in the native
1450		 * way, then put it into D3cold using platform ops.
1451		 */
1452		error = pci_set_low_power_state(dev, PCI_D3hot);
1453
1454		if (pci_platform_power_transition(dev, PCI_D3cold))
1455			return error;
1456
1457		/* Powering off a bridge may power off the whole hierarchy */
1458		if (dev->current_state == PCI_D3cold)
1459			pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
1460	} else {
1461		error = pci_set_low_power_state(dev, state);
1462
1463		if (pci_platform_power_transition(dev, state))
1464			return error;
1465	}
1466
1467	return 0;
1468}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1469EXPORT_SYMBOL(pci_set_power_state);
1470
 
 
 
 
 
 
 
 
1471#define PCI_EXP_SAVE_REGS	7
1472
1473static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1474						       u16 cap, bool extended)
1475{
1476	struct pci_cap_saved_state *tmp;
1477
1478	hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1479		if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1480			return tmp;
1481	}
1482	return NULL;
1483}
1484
1485struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1486{
1487	return _pci_find_saved_cap(dev, cap, false);
1488}
1489
1490struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1491{
1492	return _pci_find_saved_cap(dev, cap, true);
1493}
1494
1495static int pci_save_pcie_state(struct pci_dev *dev)
1496{
1497	int i = 0;
1498	struct pci_cap_saved_state *save_state;
1499	u16 *cap;
1500
1501	if (!pci_is_pcie(dev))
1502		return 0;
1503
1504	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1505	if (!save_state) {
1506		pci_err(dev, "buffer not found in %s\n", __func__);
1507		return -ENOMEM;
1508	}
1509
1510	cap = (u16 *)&save_state->cap.data[0];
1511	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1512	pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1513	pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1514	pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
1515	pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1516	pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1517	pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1518
1519	return 0;
1520}
1521
1522void pci_bridge_reconfigure_ltr(struct pci_dev *dev)
1523{
1524#ifdef CONFIG_PCIEASPM
1525	struct pci_dev *bridge;
1526	u32 ctl;
1527
1528	bridge = pci_upstream_bridge(dev);
1529	if (bridge && bridge->ltr_path) {
1530		pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2, &ctl);
1531		if (!(ctl & PCI_EXP_DEVCTL2_LTR_EN)) {
1532			pci_dbg(bridge, "re-enabling LTR\n");
1533			pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
1534						 PCI_EXP_DEVCTL2_LTR_EN);
1535		}
1536	}
1537#endif
1538}
1539
1540static void pci_restore_pcie_state(struct pci_dev *dev)
1541{
1542	int i = 0;
1543	struct pci_cap_saved_state *save_state;
1544	u16 *cap;
1545
1546	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1547	if (!save_state)
1548		return;
1549
1550	/*
1551	 * Downstream ports reset the LTR enable bit when link goes down.
1552	 * Check and re-configure the bit here before restoring device.
1553	 * PCIe r5.0, sec 7.5.3.16.
1554	 */
1555	pci_bridge_reconfigure_ltr(dev);
1556
1557	cap = (u16 *)&save_state->cap.data[0];
1558	pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1559	pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1560	pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1561	pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1562	pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1563	pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1564	pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1565}
1566
1567static int pci_save_pcix_state(struct pci_dev *dev)
1568{
1569	int pos;
1570	struct pci_cap_saved_state *save_state;
1571
1572	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1573	if (!pos)
1574		return 0;
1575
1576	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1577	if (!save_state) {
1578		pci_err(dev, "buffer not found in %s\n", __func__);
1579		return -ENOMEM;
1580	}
1581
1582	pci_read_config_word(dev, pos + PCI_X_CMD,
1583			     (u16 *)save_state->cap.data);
1584
1585	return 0;
1586}
1587
1588static void pci_restore_pcix_state(struct pci_dev *dev)
1589{
1590	int i = 0, pos;
1591	struct pci_cap_saved_state *save_state;
1592	u16 *cap;
1593
1594	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1595	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1596	if (!save_state || !pos)
1597		return;
1598	cap = (u16 *)&save_state->cap.data[0];
1599
1600	pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1601}
1602
1603static void pci_save_ltr_state(struct pci_dev *dev)
1604{
1605	int ltr;
1606	struct pci_cap_saved_state *save_state;
1607	u32 *cap;
1608
1609	if (!pci_is_pcie(dev))
1610		return;
1611
1612	ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1613	if (!ltr)
1614		return;
1615
1616	save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1617	if (!save_state) {
1618		pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n");
1619		return;
1620	}
1621
1622	/* Some broken devices only support dword access to LTR */
1623	cap = &save_state->cap.data[0];
1624	pci_read_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap);
1625}
1626
1627static void pci_restore_ltr_state(struct pci_dev *dev)
1628{
1629	struct pci_cap_saved_state *save_state;
1630	int ltr;
1631	u32 *cap;
1632
1633	save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1634	ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1635	if (!save_state || !ltr)
1636		return;
1637
1638	/* Some broken devices only support dword access to LTR */
1639	cap = &save_state->cap.data[0];
1640	pci_write_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap);
1641}
1642
1643/**
1644 * pci_save_state - save the PCI configuration space of a device before
1645 *		    suspending
1646 * @dev: PCI device that we're dealing with
1647 */
1648int pci_save_state(struct pci_dev *dev)
1649{
1650	int i;
1651	/* XXX: 100% dword access ok here? */
1652	for (i = 0; i < 16; i++) {
1653		pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1654		pci_dbg(dev, "saving config space at offset %#x (reading %#x)\n",
1655			i * 4, dev->saved_config_space[i]);
1656	}
1657	dev->state_saved = true;
1658
1659	i = pci_save_pcie_state(dev);
1660	if (i != 0)
1661		return i;
1662
1663	i = pci_save_pcix_state(dev);
1664	if (i != 0)
1665		return i;
1666
1667	pci_save_ltr_state(dev);
1668	pci_save_dpc_state(dev);
1669	pci_save_aer_state(dev);
1670	pci_save_ptm_state(dev);
1671	return pci_save_vc_state(dev);
1672}
1673EXPORT_SYMBOL(pci_save_state);
1674
1675static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1676				     u32 saved_val, int retry, bool force)
1677{
1678	u32 val;
1679
1680	pci_read_config_dword(pdev, offset, &val);
1681	if (!force && val == saved_val)
1682		return;
1683
1684	for (;;) {
1685		pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1686			offset, val, saved_val);
1687		pci_write_config_dword(pdev, offset, saved_val);
1688		if (retry-- <= 0)
1689			return;
1690
1691		pci_read_config_dword(pdev, offset, &val);
1692		if (val == saved_val)
1693			return;
1694
1695		mdelay(1);
1696	}
1697}
1698
1699static void pci_restore_config_space_range(struct pci_dev *pdev,
1700					   int start, int end, int retry,
1701					   bool force)
1702{
1703	int index;
1704
1705	for (index = end; index >= start; index--)
1706		pci_restore_config_dword(pdev, 4 * index,
1707					 pdev->saved_config_space[index],
1708					 retry, force);
1709}
1710
1711static void pci_restore_config_space(struct pci_dev *pdev)
1712{
1713	if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1714		pci_restore_config_space_range(pdev, 10, 15, 0, false);
1715		/* Restore BARs before the command register. */
1716		pci_restore_config_space_range(pdev, 4, 9, 10, false);
1717		pci_restore_config_space_range(pdev, 0, 3, 0, false);
1718	} else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1719		pci_restore_config_space_range(pdev, 12, 15, 0, false);
1720
1721		/*
1722		 * Force rewriting of prefetch registers to avoid S3 resume
1723		 * issues on Intel PCI bridges that occur when these
1724		 * registers are not explicitly written.
1725		 */
1726		pci_restore_config_space_range(pdev, 9, 11, 0, true);
1727		pci_restore_config_space_range(pdev, 0, 8, 0, false);
1728	} else {
1729		pci_restore_config_space_range(pdev, 0, 15, 0, false);
1730	}
1731}
1732
1733static void pci_restore_rebar_state(struct pci_dev *pdev)
1734{
1735	unsigned int pos, nbars, i;
1736	u32 ctrl;
1737
1738	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1739	if (!pos)
1740		return;
1741
1742	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1743	nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
1744		    PCI_REBAR_CTRL_NBAR_SHIFT;
1745
1746	for (i = 0; i < nbars; i++, pos += 8) {
1747		struct resource *res;
1748		int bar_idx, size;
1749
1750		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1751		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1752		res = pdev->resource + bar_idx;
1753		size = pci_rebar_bytes_to_size(resource_size(res));
1754		ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1755		ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
1756		pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1757	}
1758}
1759
1760/**
1761 * pci_restore_state - Restore the saved state of a PCI device
1762 * @dev: PCI device that we're dealing with
1763 */
1764void pci_restore_state(struct pci_dev *dev)
1765{
1766	if (!dev->state_saved)
1767		return;
1768
1769	/*
1770	 * Restore max latencies (in the LTR capability) before enabling
1771	 * LTR itself (in the PCIe capability).
1772	 */
1773	pci_restore_ltr_state(dev);
1774
1775	pci_restore_pcie_state(dev);
1776	pci_restore_pasid_state(dev);
1777	pci_restore_pri_state(dev);
1778	pci_restore_ats_state(dev);
1779	pci_restore_vc_state(dev);
1780	pci_restore_rebar_state(dev);
1781	pci_restore_dpc_state(dev);
1782	pci_restore_ptm_state(dev);
1783
1784	pci_aer_clear_status(dev);
1785	pci_restore_aer_state(dev);
1786
1787	pci_restore_config_space(dev);
1788
1789	pci_restore_pcix_state(dev);
1790	pci_restore_msi_state(dev);
1791
1792	/* Restore ACS and IOV configuration state */
1793	pci_enable_acs(dev);
1794	pci_restore_iov_state(dev);
1795
1796	dev->state_saved = false;
1797}
1798EXPORT_SYMBOL(pci_restore_state);
1799
1800struct pci_saved_state {
1801	u32 config_space[16];
1802	struct pci_cap_saved_data cap[];
1803};
1804
1805/**
1806 * pci_store_saved_state - Allocate and return an opaque struct containing
1807 *			   the device saved state.
1808 * @dev: PCI device that we're dealing with
1809 *
1810 * Return NULL if no state or error.
1811 */
1812struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1813{
1814	struct pci_saved_state *state;
1815	struct pci_cap_saved_state *tmp;
1816	struct pci_cap_saved_data *cap;
1817	size_t size;
1818
1819	if (!dev->state_saved)
1820		return NULL;
1821
1822	size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1823
1824	hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1825		size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1826
1827	state = kzalloc(size, GFP_KERNEL);
1828	if (!state)
1829		return NULL;
1830
1831	memcpy(state->config_space, dev->saved_config_space,
1832	       sizeof(state->config_space));
1833
1834	cap = state->cap;
1835	hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1836		size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1837		memcpy(cap, &tmp->cap, len);
1838		cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1839	}
1840	/* Empty cap_save terminates list */
1841
1842	return state;
1843}
1844EXPORT_SYMBOL_GPL(pci_store_saved_state);
1845
1846/**
1847 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1848 * @dev: PCI device that we're dealing with
1849 * @state: Saved state returned from pci_store_saved_state()
1850 */
1851int pci_load_saved_state(struct pci_dev *dev,
1852			 struct pci_saved_state *state)
1853{
1854	struct pci_cap_saved_data *cap;
1855
1856	dev->state_saved = false;
1857
1858	if (!state)
1859		return 0;
1860
1861	memcpy(dev->saved_config_space, state->config_space,
1862	       sizeof(state->config_space));
1863
1864	cap = state->cap;
1865	while (cap->size) {
1866		struct pci_cap_saved_state *tmp;
1867
1868		tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1869		if (!tmp || tmp->cap.size != cap->size)
1870			return -EINVAL;
1871
1872		memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1873		cap = (struct pci_cap_saved_data *)((u8 *)cap +
1874		       sizeof(struct pci_cap_saved_data) + cap->size);
1875	}
1876
1877	dev->state_saved = true;
1878	return 0;
1879}
1880EXPORT_SYMBOL_GPL(pci_load_saved_state);
1881
1882/**
1883 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1884 *				   and free the memory allocated for it.
1885 * @dev: PCI device that we're dealing with
1886 * @state: Pointer to saved state returned from pci_store_saved_state()
1887 */
1888int pci_load_and_free_saved_state(struct pci_dev *dev,
1889				  struct pci_saved_state **state)
1890{
1891	int ret = pci_load_saved_state(dev, *state);
1892	kfree(*state);
1893	*state = NULL;
1894	return ret;
1895}
1896EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1897
1898int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1899{
1900	return pci_enable_resources(dev, bars);
1901}
1902
1903static int do_pci_enable_device(struct pci_dev *dev, int bars)
1904{
1905	int err;
1906	struct pci_dev *bridge;
1907	u16 cmd;
1908	u8 pin;
1909
1910	err = pci_set_power_state(dev, PCI_D0);
1911	if (err < 0 && err != -EIO)
1912		return err;
1913
1914	bridge = pci_upstream_bridge(dev);
1915	if (bridge)
1916		pcie_aspm_powersave_config_link(bridge);
1917
1918	err = pcibios_enable_device(dev, bars);
1919	if (err < 0)
1920		return err;
1921	pci_fixup_device(pci_fixup_enable, dev);
1922
1923	if (dev->msi_enabled || dev->msix_enabled)
1924		return 0;
1925
1926	pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1927	if (pin) {
1928		pci_read_config_word(dev, PCI_COMMAND, &cmd);
1929		if (cmd & PCI_COMMAND_INTX_DISABLE)
1930			pci_write_config_word(dev, PCI_COMMAND,
1931					      cmd & ~PCI_COMMAND_INTX_DISABLE);
1932	}
1933
1934	return 0;
1935}
1936
1937/**
1938 * pci_reenable_device - Resume abandoned device
1939 * @dev: PCI device to be resumed
1940 *
1941 * NOTE: This function is a backend of pci_default_resume() and is not supposed
1942 * to be called by normal code, write proper resume handler and use it instead.
1943 */
1944int pci_reenable_device(struct pci_dev *dev)
1945{
1946	if (pci_is_enabled(dev))
1947		return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1948	return 0;
1949}
1950EXPORT_SYMBOL(pci_reenable_device);
1951
1952static void pci_enable_bridge(struct pci_dev *dev)
1953{
1954	struct pci_dev *bridge;
1955	int retval;
1956
1957	bridge = pci_upstream_bridge(dev);
1958	if (bridge)
1959		pci_enable_bridge(bridge);
1960
1961	if (pci_is_enabled(dev)) {
1962		if (!dev->is_busmaster)
1963			pci_set_master(dev);
1964		return;
1965	}
1966
1967	retval = pci_enable_device(dev);
1968	if (retval)
1969		pci_err(dev, "Error enabling bridge (%d), continuing\n",
1970			retval);
1971	pci_set_master(dev);
1972}
1973
1974static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1975{
1976	struct pci_dev *bridge;
1977	int err;
1978	int i, bars = 0;
1979
1980	/*
1981	 * Power state could be unknown at this point, either due to a fresh
1982	 * boot or a device removal call.  So get the current power state
1983	 * so that things like MSI message writing will behave as expected
1984	 * (e.g. if the device really is in D0 at enable time).
1985	 */
1986	pci_update_current_state(dev, dev->current_state);
1987
1988	if (atomic_inc_return(&dev->enable_cnt) > 1)
1989		return 0;		/* already enabled */
1990
1991	bridge = pci_upstream_bridge(dev);
1992	if (bridge)
1993		pci_enable_bridge(bridge);
1994
1995	/* only skip sriov related */
1996	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1997		if (dev->resource[i].flags & flags)
1998			bars |= (1 << i);
1999	for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
2000		if (dev->resource[i].flags & flags)
2001			bars |= (1 << i);
2002
2003	err = do_pci_enable_device(dev, bars);
2004	if (err < 0)
2005		atomic_dec(&dev->enable_cnt);
2006	return err;
2007}
2008
2009/**
2010 * pci_enable_device_io - Initialize a device for use with IO space
2011 * @dev: PCI device to be initialized
2012 *
2013 * Initialize device before it's used by a driver. Ask low-level code
2014 * to enable I/O resources. Wake up the device if it was suspended.
2015 * Beware, this function can fail.
2016 */
2017int pci_enable_device_io(struct pci_dev *dev)
2018{
2019	return pci_enable_device_flags(dev, IORESOURCE_IO);
2020}
2021EXPORT_SYMBOL(pci_enable_device_io);
2022
2023/**
2024 * pci_enable_device_mem - Initialize a device for use with Memory space
2025 * @dev: PCI device to be initialized
2026 *
2027 * Initialize device before it's used by a driver. Ask low-level code
2028 * to enable Memory resources. Wake up the device if it was suspended.
2029 * Beware, this function can fail.
2030 */
2031int pci_enable_device_mem(struct pci_dev *dev)
2032{
2033	return pci_enable_device_flags(dev, IORESOURCE_MEM);
2034}
2035EXPORT_SYMBOL(pci_enable_device_mem);
2036
2037/**
2038 * pci_enable_device - Initialize device before it's used by a driver.
2039 * @dev: PCI device to be initialized
2040 *
2041 * Initialize device before it's used by a driver. Ask low-level code
2042 * to enable I/O and memory. Wake up the device if it was suspended.
2043 * Beware, this function can fail.
2044 *
2045 * Note we don't actually enable the device many times if we call
2046 * this function repeatedly (we just increment the count).
2047 */
2048int pci_enable_device(struct pci_dev *dev)
2049{
2050	return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
2051}
2052EXPORT_SYMBOL(pci_enable_device);
2053
2054/*
2055 * Managed PCI resources.  This manages device on/off, INTx/MSI/MSI-X
2056 * on/off and BAR regions.  pci_dev itself records MSI/MSI-X status, so
2057 * there's no need to track it separately.  pci_devres is initialized
2058 * when a device is enabled using managed PCI device enable interface.
2059 */
2060struct pci_devres {
2061	unsigned int enabled:1;
2062	unsigned int pinned:1;
2063	unsigned int orig_intx:1;
2064	unsigned int restore_intx:1;
2065	unsigned int mwi:1;
2066	u32 region_mask;
2067};
2068
2069static void pcim_release(struct device *gendev, void *res)
2070{
2071	struct pci_dev *dev = to_pci_dev(gendev);
2072	struct pci_devres *this = res;
2073	int i;
2074
2075	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
2076		if (this->region_mask & (1 << i))
2077			pci_release_region(dev, i);
2078
2079	if (this->mwi)
2080		pci_clear_mwi(dev);
2081
2082	if (this->restore_intx)
2083		pci_intx(dev, this->orig_intx);
2084
2085	if (this->enabled && !this->pinned)
2086		pci_disable_device(dev);
2087}
2088
2089static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
2090{
2091	struct pci_devres *dr, *new_dr;
2092
2093	dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
2094	if (dr)
2095		return dr;
2096
2097	new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
2098	if (!new_dr)
2099		return NULL;
2100	return devres_get(&pdev->dev, new_dr, NULL, NULL);
2101}
2102
2103static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
2104{
2105	if (pci_is_managed(pdev))
2106		return devres_find(&pdev->dev, pcim_release, NULL, NULL);
2107	return NULL;
2108}
2109
2110/**
2111 * pcim_enable_device - Managed pci_enable_device()
2112 * @pdev: PCI device to be initialized
2113 *
2114 * Managed pci_enable_device().
2115 */
2116int pcim_enable_device(struct pci_dev *pdev)
2117{
2118	struct pci_devres *dr;
2119	int rc;
2120
2121	dr = get_pci_dr(pdev);
2122	if (unlikely(!dr))
2123		return -ENOMEM;
2124	if (dr->enabled)
2125		return 0;
2126
2127	rc = pci_enable_device(pdev);
2128	if (!rc) {
2129		pdev->is_managed = 1;
2130		dr->enabled = 1;
2131	}
2132	return rc;
2133}
2134EXPORT_SYMBOL(pcim_enable_device);
2135
2136/**
2137 * pcim_pin_device - Pin managed PCI device
2138 * @pdev: PCI device to pin
2139 *
2140 * Pin managed PCI device @pdev.  Pinned device won't be disabled on
2141 * driver detach.  @pdev must have been enabled with
2142 * pcim_enable_device().
2143 */
2144void pcim_pin_device(struct pci_dev *pdev)
2145{
2146	struct pci_devres *dr;
2147
2148	dr = find_pci_dr(pdev);
2149	WARN_ON(!dr || !dr->enabled);
2150	if (dr)
2151		dr->pinned = 1;
2152}
2153EXPORT_SYMBOL(pcim_pin_device);
2154
2155/*
2156 * pcibios_device_add - provide arch specific hooks when adding device dev
2157 * @dev: the PCI device being added
2158 *
2159 * Permits the platform to provide architecture specific functionality when
2160 * devices are added. This is the default implementation. Architecture
2161 * implementations can override this.
2162 */
2163int __weak pcibios_device_add(struct pci_dev *dev)
2164{
2165	return 0;
2166}
2167
2168/**
2169 * pcibios_release_device - provide arch specific hooks when releasing
2170 *			    device dev
2171 * @dev: the PCI device being released
2172 *
2173 * Permits the platform to provide architecture specific functionality when
2174 * devices are released. This is the default implementation. Architecture
2175 * implementations can override this.
2176 */
2177void __weak pcibios_release_device(struct pci_dev *dev) {}
2178
2179/**
2180 * pcibios_disable_device - disable arch specific PCI resources for device dev
2181 * @dev: the PCI device to disable
2182 *
2183 * Disables architecture specific PCI resources for the device. This
2184 * is the default implementation. Architecture implementations can
2185 * override this.
2186 */
2187void __weak pcibios_disable_device(struct pci_dev *dev) {}
2188
2189/**
2190 * pcibios_penalize_isa_irq - penalize an ISA IRQ
2191 * @irq: ISA IRQ to penalize
2192 * @active: IRQ active or not
2193 *
2194 * Permits the platform to provide architecture-specific functionality when
2195 * penalizing ISA IRQs. This is the default implementation. Architecture
2196 * implementations can override this.
2197 */
2198void __weak pcibios_penalize_isa_irq(int irq, int active) {}
2199
2200static void do_pci_disable_device(struct pci_dev *dev)
2201{
2202	u16 pci_command;
2203
2204	pci_read_config_word(dev, PCI_COMMAND, &pci_command);
2205	if (pci_command & PCI_COMMAND_MASTER) {
2206		pci_command &= ~PCI_COMMAND_MASTER;
2207		pci_write_config_word(dev, PCI_COMMAND, pci_command);
2208	}
2209
2210	pcibios_disable_device(dev);
2211}
2212
2213/**
2214 * pci_disable_enabled_device - Disable device without updating enable_cnt
2215 * @dev: PCI device to disable
2216 *
2217 * NOTE: This function is a backend of PCI power management routines and is
2218 * not supposed to be called drivers.
2219 */
2220void pci_disable_enabled_device(struct pci_dev *dev)
2221{
2222	if (pci_is_enabled(dev))
2223		do_pci_disable_device(dev);
2224}
2225
2226/**
2227 * pci_disable_device - Disable PCI device after use
2228 * @dev: PCI device to be disabled
2229 *
2230 * Signal to the system that the PCI device is not in use by the system
2231 * anymore.  This only involves disabling PCI bus-mastering, if active.
2232 *
2233 * Note we don't actually disable the device until all callers of
2234 * pci_enable_device() have called pci_disable_device().
2235 */
2236void pci_disable_device(struct pci_dev *dev)
2237{
2238	struct pci_devres *dr;
2239
2240	dr = find_pci_dr(dev);
2241	if (dr)
2242		dr->enabled = 0;
2243
2244	dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
2245		      "disabling already-disabled device");
2246
2247	if (atomic_dec_return(&dev->enable_cnt) != 0)
2248		return;
2249
2250	do_pci_disable_device(dev);
2251
2252	dev->is_busmaster = 0;
2253}
2254EXPORT_SYMBOL(pci_disable_device);
2255
2256/**
2257 * pcibios_set_pcie_reset_state - set reset state for device dev
2258 * @dev: the PCIe device reset
2259 * @state: Reset state to enter into
2260 *
2261 * Set the PCIe reset state for the device. This is the default
2262 * implementation. Architecture implementations can override this.
2263 */
2264int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
2265					enum pcie_reset_state state)
2266{
2267	return -EINVAL;
2268}
2269
2270/**
2271 * pci_set_pcie_reset_state - set reset state for device dev
2272 * @dev: the PCIe device reset
2273 * @state: Reset state to enter into
2274 *
2275 * Sets the PCI reset state for the device.
2276 */
2277int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
2278{
2279	return pcibios_set_pcie_reset_state(dev, state);
2280}
2281EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2282
2283#ifdef CONFIG_PCIEAER
2284void pcie_clear_device_status(struct pci_dev *dev)
2285{
2286	u16 sta;
2287
2288	pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta);
2289	pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta);
2290}
2291#endif
2292
2293/**
2294 * pcie_clear_root_pme_status - Clear root port PME interrupt status.
2295 * @dev: PCIe root port or event collector.
2296 */
2297void pcie_clear_root_pme_status(struct pci_dev *dev)
2298{
2299	pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
2300}
2301
2302/**
2303 * pci_check_pme_status - Check if given device has generated PME.
2304 * @dev: Device to check.
2305 *
2306 * Check the PME status of the device and if set, clear it and clear PME enable
2307 * (if set).  Return 'true' if PME status and PME enable were both set or
2308 * 'false' otherwise.
2309 */
2310bool pci_check_pme_status(struct pci_dev *dev)
2311{
2312	int pmcsr_pos;
2313	u16 pmcsr;
2314	bool ret = false;
2315
2316	if (!dev->pm_cap)
2317		return false;
2318
2319	pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2320	pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2321	if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2322		return false;
2323
2324	/* Clear PME status. */
2325	pmcsr |= PCI_PM_CTRL_PME_STATUS;
2326	if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2327		/* Disable PME to avoid interrupt flood. */
2328		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2329		ret = true;
2330	}
2331
2332	pci_write_config_word(dev, pmcsr_pos, pmcsr);
2333
2334	return ret;
2335}
2336
2337/**
2338 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2339 * @dev: Device to handle.
2340 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2341 *
2342 * Check if @dev has generated PME and queue a resume request for it in that
2343 * case.
2344 */
2345static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2346{
2347	if (pme_poll_reset && dev->pme_poll)
2348		dev->pme_poll = false;
2349
2350	if (pci_check_pme_status(dev)) {
2351		pci_wakeup_event(dev);
2352		pm_request_resume(&dev->dev);
2353	}
2354	return 0;
2355}
2356
2357/**
2358 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2359 * @bus: Top bus of the subtree to walk.
2360 */
2361void pci_pme_wakeup_bus(struct pci_bus *bus)
2362{
2363	if (bus)
2364		pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2365}
2366
2367
2368/**
2369 * pci_pme_capable - check the capability of PCI device to generate PME#
2370 * @dev: PCI device to handle.
2371 * @state: PCI state from which device will issue PME#.
2372 */
2373bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2374{
2375	if (!dev->pm_cap)
2376		return false;
2377
2378	return !!(dev->pme_support & (1 << state));
2379}
2380EXPORT_SYMBOL(pci_pme_capable);
2381
2382static void pci_pme_list_scan(struct work_struct *work)
2383{
2384	struct pci_pme_device *pme_dev, *n;
2385
2386	mutex_lock(&pci_pme_list_mutex);
2387	list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2388		if (pme_dev->dev->pme_poll) {
2389			struct pci_dev *bridge;
 
 
 
 
 
2390
2391			bridge = pme_dev->dev->bus->self;
2392			/*
2393			 * If bridge is in low power state, the
2394			 * configuration space of subordinate devices
2395			 * may be not accessible
 
2396			 */
2397			if (bridge && bridge->current_state != PCI_D0)
2398				continue;
 
 
 
 
 
 
 
2399			/*
2400			 * If the device is in D3cold it should not be
2401			 * polled either.
 
2402			 */
2403			if (pme_dev->dev->current_state == PCI_D3cold)
2404				continue;
2405
2406			pci_pme_wakeup(pme_dev->dev, NULL);
 
 
 
2407		} else {
2408			list_del(&pme_dev->list);
2409			kfree(pme_dev);
2410		}
2411	}
2412	if (!list_empty(&pci_pme_list))
2413		queue_delayed_work(system_freezable_wq, &pci_pme_work,
2414				   msecs_to_jiffies(PME_TIMEOUT));
2415	mutex_unlock(&pci_pme_list_mutex);
2416}
2417
2418static void __pci_pme_active(struct pci_dev *dev, bool enable)
2419{
2420	u16 pmcsr;
2421
2422	if (!dev->pme_support)
2423		return;
2424
2425	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2426	/* Clear PME_Status by writing 1 to it and enable PME# */
2427	pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2428	if (!enable)
2429		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2430
2431	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2432}
2433
2434/**
2435 * pci_pme_restore - Restore PME configuration after config space restore.
2436 * @dev: PCI device to update.
2437 */
2438void pci_pme_restore(struct pci_dev *dev)
2439{
2440	u16 pmcsr;
2441
2442	if (!dev->pme_support)
2443		return;
2444
2445	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2446	if (dev->wakeup_prepared) {
2447		pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2448		pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2449	} else {
2450		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2451		pmcsr |= PCI_PM_CTRL_PME_STATUS;
2452	}
2453	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2454}
2455
2456/**
2457 * pci_pme_active - enable or disable PCI device's PME# function
2458 * @dev: PCI device to handle.
2459 * @enable: 'true' to enable PME# generation; 'false' to disable it.
2460 *
2461 * The caller must verify that the device is capable of generating PME# before
2462 * calling this function with @enable equal to 'true'.
2463 */
2464void pci_pme_active(struct pci_dev *dev, bool enable)
2465{
2466	__pci_pme_active(dev, enable);
2467
2468	/*
2469	 * PCI (as opposed to PCIe) PME requires that the device have
2470	 * its PME# line hooked up correctly. Not all hardware vendors
2471	 * do this, so the PME never gets delivered and the device
2472	 * remains asleep. The easiest way around this is to
2473	 * periodically walk the list of suspended devices and check
2474	 * whether any have their PME flag set. The assumption is that
2475	 * we'll wake up often enough anyway that this won't be a huge
2476	 * hit, and the power savings from the devices will still be a
2477	 * win.
2478	 *
2479	 * Although PCIe uses in-band PME message instead of PME# line
2480	 * to report PME, PME does not work for some PCIe devices in
2481	 * reality.  For example, there are devices that set their PME
2482	 * status bits, but don't really bother to send a PME message;
2483	 * there are PCI Express Root Ports that don't bother to
2484	 * trigger interrupts when they receive PME messages from the
2485	 * devices below.  So PME poll is used for PCIe devices too.
2486	 */
2487
2488	if (dev->pme_poll) {
2489		struct pci_pme_device *pme_dev;
2490		if (enable) {
2491			pme_dev = kmalloc(sizeof(struct pci_pme_device),
2492					  GFP_KERNEL);
2493			if (!pme_dev) {
2494				pci_warn(dev, "can't enable PME#\n");
2495				return;
2496			}
2497			pme_dev->dev = dev;
2498			mutex_lock(&pci_pme_list_mutex);
2499			list_add(&pme_dev->list, &pci_pme_list);
2500			if (list_is_singular(&pci_pme_list))
2501				queue_delayed_work(system_freezable_wq,
2502						   &pci_pme_work,
2503						   msecs_to_jiffies(PME_TIMEOUT));
2504			mutex_unlock(&pci_pme_list_mutex);
2505		} else {
2506			mutex_lock(&pci_pme_list_mutex);
2507			list_for_each_entry(pme_dev, &pci_pme_list, list) {
2508				if (pme_dev->dev == dev) {
2509					list_del(&pme_dev->list);
2510					kfree(pme_dev);
2511					break;
2512				}
2513			}
2514			mutex_unlock(&pci_pme_list_mutex);
2515		}
2516	}
2517
2518	pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2519}
2520EXPORT_SYMBOL(pci_pme_active);
2521
2522/**
2523 * __pci_enable_wake - enable PCI device as wakeup event source
2524 * @dev: PCI device affected
2525 * @state: PCI state from which device will issue wakeup events
2526 * @enable: True to enable event generation; false to disable
2527 *
2528 * This enables the device as a wakeup event source, or disables it.
2529 * When such events involves platform-specific hooks, those hooks are
2530 * called automatically by this routine.
2531 *
2532 * Devices with legacy power management (no standard PCI PM capabilities)
2533 * always require such platform hooks.
2534 *
2535 * RETURN VALUE:
2536 * 0 is returned on success
2537 * -EINVAL is returned if device is not supposed to wake up the system
2538 * Error code depending on the platform is returned if both the platform and
2539 * the native mechanism fail to enable the generation of wake-up events
2540 */
2541static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2542{
2543	int ret = 0;
2544
2545	/*
2546	 * Bridges that are not power-manageable directly only signal
2547	 * wakeup on behalf of subordinate devices which is set up
2548	 * elsewhere, so skip them. However, bridges that are
2549	 * power-manageable may signal wakeup for themselves (for example,
2550	 * on a hotplug event) and they need to be covered here.
2551	 */
2552	if (!pci_power_manageable(dev))
2553		return 0;
2554
2555	/* Don't do the same thing twice in a row for one device. */
2556	if (!!enable == !!dev->wakeup_prepared)
2557		return 0;
2558
2559	/*
2560	 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2561	 * Anderson we should be doing PME# wake enable followed by ACPI wake
2562	 * enable.  To disable wake-up we call the platform first, for symmetry.
2563	 */
2564
2565	if (enable) {
2566		int error;
2567
2568		/*
2569		 * Enable PME signaling if the device can signal PME from
2570		 * D3cold regardless of whether or not it can signal PME from
2571		 * the current target state, because that will allow it to
2572		 * signal PME when the hierarchy above it goes into D3cold and
2573		 * the device itself ends up in D3cold as a result of that.
2574		 */
2575		if (pci_pme_capable(dev, state) || pci_pme_capable(dev, PCI_D3cold))
2576			pci_pme_active(dev, true);
2577		else
2578			ret = 1;
2579		error = platform_pci_set_wakeup(dev, true);
2580		if (ret)
2581			ret = error;
2582		if (!ret)
2583			dev->wakeup_prepared = true;
2584	} else {
2585		platform_pci_set_wakeup(dev, false);
2586		pci_pme_active(dev, false);
2587		dev->wakeup_prepared = false;
2588	}
2589
2590	return ret;
2591}
2592
2593/**
2594 * pci_enable_wake - change wakeup settings for a PCI device
2595 * @pci_dev: Target device
2596 * @state: PCI state from which device will issue wakeup events
2597 * @enable: Whether or not to enable event generation
2598 *
2599 * If @enable is set, check device_may_wakeup() for the device before calling
2600 * __pci_enable_wake() for it.
2601 */
2602int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2603{
2604	if (enable && !device_may_wakeup(&pci_dev->dev))
2605		return -EINVAL;
2606
2607	return __pci_enable_wake(pci_dev, state, enable);
2608}
2609EXPORT_SYMBOL(pci_enable_wake);
2610
2611/**
2612 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2613 * @dev: PCI device to prepare
2614 * @enable: True to enable wake-up event generation; false to disable
2615 *
2616 * Many drivers want the device to wake up the system from D3_hot or D3_cold
2617 * and this function allows them to set that up cleanly - pci_enable_wake()
2618 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2619 * ordering constraints.
2620 *
2621 * This function only returns error code if the device is not allowed to wake
2622 * up the system from sleep or it is not capable of generating PME# from both
2623 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2624 */
2625int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2626{
2627	return pci_pme_capable(dev, PCI_D3cold) ?
2628			pci_enable_wake(dev, PCI_D3cold, enable) :
2629			pci_enable_wake(dev, PCI_D3hot, enable);
2630}
2631EXPORT_SYMBOL(pci_wake_from_d3);
2632
2633/**
2634 * pci_target_state - find an appropriate low power state for a given PCI dev
2635 * @dev: PCI device
2636 * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2637 *
2638 * Use underlying platform code to find a supported low power state for @dev.
2639 * If the platform can't manage @dev, return the deepest state from which it
2640 * can generate wake events, based on any available PME info.
2641 */
2642static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2643{
2644	if (platform_pci_power_manageable(dev)) {
2645		/*
2646		 * Call the platform to find the target state for the device.
2647		 */
2648		pci_power_t state = platform_pci_choose_state(dev);
2649
2650		switch (state) {
2651		case PCI_POWER_ERROR:
2652		case PCI_UNKNOWN:
2653			return PCI_D3hot;
2654
2655		case PCI_D1:
2656		case PCI_D2:
2657			if (pci_no_d1d2(dev))
2658				return PCI_D3hot;
2659		}
2660
2661		return state;
2662	}
2663
2664	/*
2665	 * If the device is in D3cold even though it's not power-manageable by
2666	 * the platform, it may have been powered down by non-standard means.
2667	 * Best to let it slumber.
2668	 */
2669	if (dev->current_state == PCI_D3cold)
2670		return PCI_D3cold;
2671	else if (!dev->pm_cap)
2672		return PCI_D0;
2673
2674	if (wakeup && dev->pme_support) {
2675		pci_power_t state = PCI_D3hot;
2676
2677		/*
2678		 * Find the deepest state from which the device can generate
2679		 * PME#.
2680		 */
2681		while (state && !(dev->pme_support & (1 << state)))
2682			state--;
2683
2684		if (state)
2685			return state;
2686		else if (dev->pme_support & 1)
2687			return PCI_D0;
2688	}
2689
2690	return PCI_D3hot;
2691}
2692
2693/**
2694 * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2695 *			  into a sleep state
2696 * @dev: Device to handle.
2697 *
2698 * Choose the power state appropriate for the device depending on whether
2699 * it can wake up the system and/or is power manageable by the platform
2700 * (PCI_D3hot is the default) and put the device into that state.
2701 */
2702int pci_prepare_to_sleep(struct pci_dev *dev)
2703{
2704	bool wakeup = device_may_wakeup(&dev->dev);
2705	pci_power_t target_state = pci_target_state(dev, wakeup);
2706	int error;
2707
2708	if (target_state == PCI_POWER_ERROR)
2709		return -EIO;
2710
2711	pci_enable_wake(dev, target_state, wakeup);
2712
2713	error = pci_set_power_state(dev, target_state);
2714
2715	if (error)
2716		pci_enable_wake(dev, target_state, false);
2717
2718	return error;
2719}
2720EXPORT_SYMBOL(pci_prepare_to_sleep);
2721
2722/**
2723 * pci_back_from_sleep - turn PCI device on during system-wide transition
2724 *			 into working state
2725 * @dev: Device to handle.
2726 *
2727 * Disable device's system wake-up capability and put it into D0.
2728 */
2729int pci_back_from_sleep(struct pci_dev *dev)
2730{
2731	int ret = pci_set_power_state(dev, PCI_D0);
2732
2733	if (ret)
2734		return ret;
2735
2736	pci_enable_wake(dev, PCI_D0, false);
2737	return 0;
2738}
2739EXPORT_SYMBOL(pci_back_from_sleep);
2740
2741/**
2742 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2743 * @dev: PCI device being suspended.
2744 *
2745 * Prepare @dev to generate wake-up events at run time and put it into a low
2746 * power state.
2747 */
2748int pci_finish_runtime_suspend(struct pci_dev *dev)
2749{
2750	pci_power_t target_state;
2751	int error;
2752
2753	target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2754	if (target_state == PCI_POWER_ERROR)
2755		return -EIO;
2756
2757	__pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2758
2759	error = pci_set_power_state(dev, target_state);
2760
2761	if (error)
2762		pci_enable_wake(dev, target_state, false);
2763
2764	return error;
2765}
2766
2767/**
2768 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2769 * @dev: Device to check.
2770 *
2771 * Return true if the device itself is capable of generating wake-up events
2772 * (through the platform or using the native PCIe PME) or if the device supports
2773 * PME and one of its upstream bridges can generate wake-up events.
2774 */
2775bool pci_dev_run_wake(struct pci_dev *dev)
2776{
2777	struct pci_bus *bus = dev->bus;
2778
2779	if (!dev->pme_support)
2780		return false;
2781
2782	/* PME-capable in principle, but not from the target power state */
2783	if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2784		return false;
2785
2786	if (device_can_wakeup(&dev->dev))
2787		return true;
2788
2789	while (bus->parent) {
2790		struct pci_dev *bridge = bus->self;
2791
2792		if (device_can_wakeup(&bridge->dev))
2793			return true;
2794
2795		bus = bus->parent;
2796	}
2797
2798	/* We have reached the root bus. */
2799	if (bus->bridge)
2800		return device_can_wakeup(bus->bridge);
2801
2802	return false;
2803}
2804EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2805
2806/**
2807 * pci_dev_need_resume - Check if it is necessary to resume the device.
2808 * @pci_dev: Device to check.
2809 *
2810 * Return 'true' if the device is not runtime-suspended or it has to be
2811 * reconfigured due to wakeup settings difference between system and runtime
2812 * suspend, or the current power state of it is not suitable for the upcoming
2813 * (system-wide) transition.
2814 */
2815bool pci_dev_need_resume(struct pci_dev *pci_dev)
2816{
2817	struct device *dev = &pci_dev->dev;
2818	pci_power_t target_state;
2819
2820	if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
2821		return true;
2822
2823	target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
2824
2825	/*
2826	 * If the earlier platform check has not triggered, D3cold is just power
2827	 * removal on top of D3hot, so no need to resume the device in that
2828	 * case.
2829	 */
2830	return target_state != pci_dev->current_state &&
2831		target_state != PCI_D3cold &&
2832		pci_dev->current_state != PCI_D3hot;
2833}
2834
2835/**
2836 * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2837 * @pci_dev: Device to check.
2838 *
2839 * If the device is suspended and it is not configured for system wakeup,
2840 * disable PME for it to prevent it from waking up the system unnecessarily.
2841 *
2842 * Note that if the device's power state is D3cold and the platform check in
2843 * pci_dev_need_resume() has not triggered, the device's configuration need not
2844 * be changed.
2845 */
2846void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2847{
2848	struct device *dev = &pci_dev->dev;
2849
2850	spin_lock_irq(&dev->power.lock);
2851
2852	if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2853	    pci_dev->current_state < PCI_D3cold)
2854		__pci_pme_active(pci_dev, false);
2855
2856	spin_unlock_irq(&dev->power.lock);
2857}
2858
2859/**
2860 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2861 * @pci_dev: Device to handle.
2862 *
2863 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2864 * it might have been disabled during the prepare phase of system suspend if
2865 * the device was not configured for system wakeup.
2866 */
2867void pci_dev_complete_resume(struct pci_dev *pci_dev)
2868{
2869	struct device *dev = &pci_dev->dev;
2870
2871	if (!pci_dev_run_wake(pci_dev))
2872		return;
2873
2874	spin_lock_irq(&dev->power.lock);
2875
2876	if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2877		__pci_pme_active(pci_dev, true);
2878
2879	spin_unlock_irq(&dev->power.lock);
2880}
2881
2882/**
2883 * pci_choose_state - Choose the power state of a PCI device.
2884 * @dev: Target PCI device.
2885 * @state: Target state for the whole system.
2886 *
2887 * Returns PCI power state suitable for @dev and @state.
2888 */
2889pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
2890{
2891	if (state.event == PM_EVENT_ON)
2892		return PCI_D0;
2893
2894	return pci_target_state(dev, false);
2895}
2896EXPORT_SYMBOL(pci_choose_state);
2897
2898void pci_config_pm_runtime_get(struct pci_dev *pdev)
2899{
2900	struct device *dev = &pdev->dev;
2901	struct device *parent = dev->parent;
2902
2903	if (parent)
2904		pm_runtime_get_sync(parent);
2905	pm_runtime_get_noresume(dev);
2906	/*
2907	 * pdev->current_state is set to PCI_D3cold during suspending,
2908	 * so wait until suspending completes
2909	 */
2910	pm_runtime_barrier(dev);
2911	/*
2912	 * Only need to resume devices in D3cold, because config
2913	 * registers are still accessible for devices suspended but
2914	 * not in D3cold.
2915	 */
2916	if (pdev->current_state == PCI_D3cold)
2917		pm_runtime_resume(dev);
2918}
2919
2920void pci_config_pm_runtime_put(struct pci_dev *pdev)
2921{
2922	struct device *dev = &pdev->dev;
2923	struct device *parent = dev->parent;
2924
2925	pm_runtime_put(dev);
2926	if (parent)
2927		pm_runtime_put_sync(parent);
2928}
2929
2930static const struct dmi_system_id bridge_d3_blacklist[] = {
2931#ifdef CONFIG_X86
2932	{
2933		/*
2934		 * Gigabyte X299 root port is not marked as hotplug capable
2935		 * which allows Linux to power manage it.  However, this
2936		 * confuses the BIOS SMI handler so don't power manage root
2937		 * ports on that system.
2938		 */
2939		.ident = "X299 DESIGNARE EX-CF",
2940		.matches = {
2941			DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
2942			DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
2943		},
2944	},
2945	{
2946		/*
2947		 * Downstream device is not accessible after putting a root port
2948		 * into D3cold and back into D0 on Elo i2.
2949		 */
2950		.ident = "Elo i2",
2951		.matches = {
2952			DMI_MATCH(DMI_SYS_VENDOR, "Elo Touch Solutions"),
2953			DMI_MATCH(DMI_PRODUCT_NAME, "Elo i2"),
2954			DMI_MATCH(DMI_PRODUCT_VERSION, "RevB"),
2955		},
2956	},
2957#endif
2958	{ }
2959};
2960
2961/**
2962 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2963 * @bridge: Bridge to check
2964 *
2965 * This function checks if it is possible to move the bridge to D3.
2966 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
2967 */
2968bool pci_bridge_d3_possible(struct pci_dev *bridge)
2969{
2970	if (!pci_is_pcie(bridge))
2971		return false;
2972
2973	switch (pci_pcie_type(bridge)) {
2974	case PCI_EXP_TYPE_ROOT_PORT:
2975	case PCI_EXP_TYPE_UPSTREAM:
2976	case PCI_EXP_TYPE_DOWNSTREAM:
2977		if (pci_bridge_d3_disable)
2978			return false;
2979
2980		/*
2981		 * Hotplug ports handled by firmware in System Management Mode
2982		 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2983		 */
2984		if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
2985			return false;
2986
2987		if (pci_bridge_d3_force)
2988			return true;
2989
2990		/* Even the oldest 2010 Thunderbolt controller supports D3. */
2991		if (bridge->is_thunderbolt)
2992			return true;
2993
2994		/* Platform might know better if the bridge supports D3 */
2995		if (platform_pci_bridge_d3(bridge))
2996			return true;
2997
2998		/*
2999		 * Hotplug ports handled natively by the OS were not validated
3000		 * by vendors for runtime D3 at least until 2018 because there
3001		 * was no OS support.
3002		 */
3003		if (bridge->is_hotplug_bridge)
3004			return false;
3005
3006		if (dmi_check_system(bridge_d3_blacklist))
3007			return false;
3008
3009		/*
3010		 * It should be safe to put PCIe ports from 2015 or newer
3011		 * to D3.
3012		 */
3013		if (dmi_get_bios_year() >= 2015)
3014			return true;
3015		break;
3016	}
3017
3018	return false;
3019}
3020
3021static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
3022{
3023	bool *d3cold_ok = data;
3024
3025	if (/* The device needs to be allowed to go D3cold ... */
3026	    dev->no_d3cold || !dev->d3cold_allowed ||
3027
3028	    /* ... and if it is wakeup capable to do so from D3cold. */
3029	    (device_may_wakeup(&dev->dev) &&
3030	     !pci_pme_capable(dev, PCI_D3cold)) ||
3031
3032	    /* If it is a bridge it must be allowed to go to D3. */
3033	    !pci_power_manageable(dev))
3034
3035		*d3cold_ok = false;
3036
3037	return !*d3cold_ok;
3038}
3039
3040/*
3041 * pci_bridge_d3_update - Update bridge D3 capabilities
3042 * @dev: PCI device which is changed
3043 *
3044 * Update upstream bridge PM capabilities accordingly depending on if the
3045 * device PM configuration was changed or the device is being removed.  The
3046 * change is also propagated upstream.
3047 */
3048void pci_bridge_d3_update(struct pci_dev *dev)
3049{
3050	bool remove = !device_is_registered(&dev->dev);
3051	struct pci_dev *bridge;
3052	bool d3cold_ok = true;
3053
3054	bridge = pci_upstream_bridge(dev);
3055	if (!bridge || !pci_bridge_d3_possible(bridge))
3056		return;
3057
3058	/*
3059	 * If D3 is currently allowed for the bridge, removing one of its
3060	 * children won't change that.
3061	 */
3062	if (remove && bridge->bridge_d3)
3063		return;
3064
3065	/*
3066	 * If D3 is currently allowed for the bridge and a child is added or
3067	 * changed, disallowance of D3 can only be caused by that child, so
3068	 * we only need to check that single device, not any of its siblings.
3069	 *
3070	 * If D3 is currently not allowed for the bridge, checking the device
3071	 * first may allow us to skip checking its siblings.
3072	 */
3073	if (!remove)
3074		pci_dev_check_d3cold(dev, &d3cold_ok);
3075
3076	/*
3077	 * If D3 is currently not allowed for the bridge, this may be caused
3078	 * either by the device being changed/removed or any of its siblings,
3079	 * so we need to go through all children to find out if one of them
3080	 * continues to block D3.
3081	 */
3082	if (d3cold_ok && !bridge->bridge_d3)
3083		pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
3084			     &d3cold_ok);
3085
3086	if (bridge->bridge_d3 != d3cold_ok) {
3087		bridge->bridge_d3 = d3cold_ok;
3088		/* Propagate change to upstream bridges */
3089		pci_bridge_d3_update(bridge);
3090	}
3091}
3092
3093/**
3094 * pci_d3cold_enable - Enable D3cold for device
3095 * @dev: PCI device to handle
3096 *
3097 * This function can be used in drivers to enable D3cold from the device
3098 * they handle.  It also updates upstream PCI bridge PM capabilities
3099 * accordingly.
3100 */
3101void pci_d3cold_enable(struct pci_dev *dev)
3102{
3103	if (dev->no_d3cold) {
3104		dev->no_d3cold = false;
3105		pci_bridge_d3_update(dev);
3106	}
3107}
3108EXPORT_SYMBOL_GPL(pci_d3cold_enable);
3109
3110/**
3111 * pci_d3cold_disable - Disable D3cold for device
3112 * @dev: PCI device to handle
3113 *
3114 * This function can be used in drivers to disable D3cold from the device
3115 * they handle.  It also updates upstream PCI bridge PM capabilities
3116 * accordingly.
3117 */
3118void pci_d3cold_disable(struct pci_dev *dev)
3119{
3120	if (!dev->no_d3cold) {
3121		dev->no_d3cold = true;
3122		pci_bridge_d3_update(dev);
3123	}
3124}
3125EXPORT_SYMBOL_GPL(pci_d3cold_disable);
3126
3127/**
3128 * pci_pm_init - Initialize PM functions of given PCI device
3129 * @dev: PCI device to handle.
3130 */
3131void pci_pm_init(struct pci_dev *dev)
3132{
3133	int pm;
3134	u16 status;
3135	u16 pmc;
3136
3137	pm_runtime_forbid(&dev->dev);
3138	pm_runtime_set_active(&dev->dev);
3139	pm_runtime_enable(&dev->dev);
3140	device_enable_async_suspend(&dev->dev);
3141	dev->wakeup_prepared = false;
3142
3143	dev->pm_cap = 0;
3144	dev->pme_support = 0;
3145
3146	/* find PCI PM capability in list */
3147	pm = pci_find_capability(dev, PCI_CAP_ID_PM);
3148	if (!pm)
3149		return;
3150	/* Check device's ability to generate PME# */
3151	pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
3152
3153	if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
3154		pci_err(dev, "unsupported PM cap regs version (%u)\n",
3155			pmc & PCI_PM_CAP_VER_MASK);
3156		return;
3157	}
3158
3159	dev->pm_cap = pm;
3160	dev->d3hot_delay = PCI_PM_D3HOT_WAIT;
3161	dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
3162	dev->bridge_d3 = pci_bridge_d3_possible(dev);
3163	dev->d3cold_allowed = true;
3164
3165	dev->d1_support = false;
3166	dev->d2_support = false;
3167	if (!pci_no_d1d2(dev)) {
3168		if (pmc & PCI_PM_CAP_D1)
3169			dev->d1_support = true;
3170		if (pmc & PCI_PM_CAP_D2)
3171			dev->d2_support = true;
3172
3173		if (dev->d1_support || dev->d2_support)
3174			pci_info(dev, "supports%s%s\n",
3175				   dev->d1_support ? " D1" : "",
3176				   dev->d2_support ? " D2" : "");
3177	}
3178
3179	pmc &= PCI_PM_CAP_PME_MASK;
3180	if (pmc) {
3181		pci_info(dev, "PME# supported from%s%s%s%s%s\n",
3182			 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
3183			 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
3184			 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
3185			 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "",
3186			 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
3187		dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
3188		dev->pme_poll = true;
3189		/*
3190		 * Make device's PM flags reflect the wake-up capability, but
3191		 * let the user space enable it to wake up the system as needed.
3192		 */
3193		device_set_wakeup_capable(&dev->dev, true);
3194		/* Disable the PME# generation functionality */
3195		pci_pme_active(dev, false);
3196	}
3197
3198	pci_read_config_word(dev, PCI_STATUS, &status);
3199	if (status & PCI_STATUS_IMM_READY)
3200		dev->imm_ready = 1;
3201}
3202
3203static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
3204{
3205	unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
3206
3207	switch (prop) {
3208	case PCI_EA_P_MEM:
3209	case PCI_EA_P_VF_MEM:
3210		flags |= IORESOURCE_MEM;
3211		break;
3212	case PCI_EA_P_MEM_PREFETCH:
3213	case PCI_EA_P_VF_MEM_PREFETCH:
3214		flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
3215		break;
3216	case PCI_EA_P_IO:
3217		flags |= IORESOURCE_IO;
3218		break;
3219	default:
3220		return 0;
3221	}
3222
3223	return flags;
3224}
3225
3226static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
3227					    u8 prop)
3228{
3229	if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
3230		return &dev->resource[bei];
3231#ifdef CONFIG_PCI_IOV
3232	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
3233		 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
3234		return &dev->resource[PCI_IOV_RESOURCES +
3235				      bei - PCI_EA_BEI_VF_BAR0];
3236#endif
3237	else if (bei == PCI_EA_BEI_ROM)
3238		return &dev->resource[PCI_ROM_RESOURCE];
3239	else
3240		return NULL;
3241}
3242
3243/* Read an Enhanced Allocation (EA) entry */
3244static int pci_ea_read(struct pci_dev *dev, int offset)
3245{
3246	struct resource *res;
 
3247	int ent_size, ent_offset = offset;
3248	resource_size_t start, end;
3249	unsigned long flags;
3250	u32 dw0, bei, base, max_offset;
3251	u8 prop;
3252	bool support_64 = (sizeof(resource_size_t) >= 8);
3253
3254	pci_read_config_dword(dev, ent_offset, &dw0);
3255	ent_offset += 4;
3256
3257	/* Entry size field indicates DWORDs after 1st */
3258	ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
3259
3260	if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
3261		goto out;
3262
3263	bei = (dw0 & PCI_EA_BEI) >> 4;
3264	prop = (dw0 & PCI_EA_PP) >> 8;
3265
3266	/*
3267	 * If the Property is in the reserved range, try the Secondary
3268	 * Property instead.
3269	 */
3270	if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
3271		prop = (dw0 & PCI_EA_SP) >> 16;
3272	if (prop > PCI_EA_P_BRIDGE_IO)
3273		goto out;
3274
3275	res = pci_ea_get_resource(dev, bei, prop);
 
3276	if (!res) {
3277		pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
3278		goto out;
3279	}
3280
3281	flags = pci_ea_flags(dev, prop);
3282	if (!flags) {
3283		pci_err(dev, "Unsupported EA properties: %#x\n", prop);
3284		goto out;
3285	}
3286
3287	/* Read Base */
3288	pci_read_config_dword(dev, ent_offset, &base);
3289	start = (base & PCI_EA_FIELD_MASK);
3290	ent_offset += 4;
3291
3292	/* Read MaxOffset */
3293	pci_read_config_dword(dev, ent_offset, &max_offset);
3294	ent_offset += 4;
3295
3296	/* Read Base MSBs (if 64-bit entry) */
3297	if (base & PCI_EA_IS_64) {
3298		u32 base_upper;
3299
3300		pci_read_config_dword(dev, ent_offset, &base_upper);
3301		ent_offset += 4;
3302
3303		flags |= IORESOURCE_MEM_64;
3304
3305		/* entry starts above 32-bit boundary, can't use */
3306		if (!support_64 && base_upper)
3307			goto out;
3308
3309		if (support_64)
3310			start |= ((u64)base_upper << 32);
3311	}
3312
3313	end = start + (max_offset | 0x03);
3314
3315	/* Read MaxOffset MSBs (if 64-bit entry) */
3316	if (max_offset & PCI_EA_IS_64) {
3317		u32 max_offset_upper;
3318
3319		pci_read_config_dword(dev, ent_offset, &max_offset_upper);
3320		ent_offset += 4;
3321
3322		flags |= IORESOURCE_MEM_64;
3323
3324		/* entry too big, can't use */
3325		if (!support_64 && max_offset_upper)
3326			goto out;
3327
3328		if (support_64)
3329			end += ((u64)max_offset_upper << 32);
3330	}
3331
3332	if (end < start) {
3333		pci_err(dev, "EA Entry crosses address boundary\n");
3334		goto out;
3335	}
3336
3337	if (ent_size != ent_offset - offset) {
3338		pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
3339			ent_size, ent_offset - offset);
3340		goto out;
3341	}
3342
3343	res->name = pci_name(dev);
3344	res->start = start;
3345	res->end = end;
3346	res->flags = flags;
3347
3348	if (bei <= PCI_EA_BEI_BAR5)
3349		pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3350			   bei, res, prop);
3351	else if (bei == PCI_EA_BEI_ROM)
3352		pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
3353			   res, prop);
3354	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3355		pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3356			   bei - PCI_EA_BEI_VF_BAR0, res, prop);
3357	else
3358		pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
3359			   bei, res, prop);
3360
3361out:
3362	return offset + ent_size;
3363}
3364
3365/* Enhanced Allocation Initialization */
3366void pci_ea_init(struct pci_dev *dev)
3367{
3368	int ea;
3369	u8 num_ent;
3370	int offset;
3371	int i;
3372
3373	/* find PCI EA capability in list */
3374	ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3375	if (!ea)
3376		return;
3377
3378	/* determine the number of entries */
3379	pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3380					&num_ent);
3381	num_ent &= PCI_EA_NUM_ENT_MASK;
3382
3383	offset = ea + PCI_EA_FIRST_ENT;
3384
3385	/* Skip DWORD 2 for type 1 functions */
3386	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3387		offset += 4;
3388
3389	/* parse each EA entry */
3390	for (i = 0; i < num_ent; ++i)
3391		offset = pci_ea_read(dev, offset);
3392}
3393
3394static void pci_add_saved_cap(struct pci_dev *pci_dev,
3395	struct pci_cap_saved_state *new_cap)
3396{
3397	hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3398}
3399
3400/**
3401 * _pci_add_cap_save_buffer - allocate buffer for saving given
3402 *			      capability registers
3403 * @dev: the PCI device
3404 * @cap: the capability to allocate the buffer for
3405 * @extended: Standard or Extended capability ID
3406 * @size: requested size of the buffer
3407 */
3408static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3409				    bool extended, unsigned int size)
3410{
3411	int pos;
3412	struct pci_cap_saved_state *save_state;
3413
3414	if (extended)
3415		pos = pci_find_ext_capability(dev, cap);
3416	else
3417		pos = pci_find_capability(dev, cap);
3418
3419	if (!pos)
3420		return 0;
3421
3422	save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3423	if (!save_state)
3424		return -ENOMEM;
3425
3426	save_state->cap.cap_nr = cap;
3427	save_state->cap.cap_extended = extended;
3428	save_state->cap.size = size;
3429	pci_add_saved_cap(dev, save_state);
3430
3431	return 0;
3432}
3433
3434int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3435{
3436	return _pci_add_cap_save_buffer(dev, cap, false, size);
3437}
3438
3439int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3440{
3441	return _pci_add_cap_save_buffer(dev, cap, true, size);
3442}
3443
3444/**
3445 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3446 * @dev: the PCI device
3447 */
3448void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3449{
3450	int error;
3451
3452	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3453					PCI_EXP_SAVE_REGS * sizeof(u16));
3454	if (error)
3455		pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3456
3457	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3458	if (error)
3459		pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3460
3461	error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3462					    2 * sizeof(u16));
3463	if (error)
3464		pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3465
3466	pci_allocate_vc_save_buffers(dev);
3467}
3468
3469void pci_free_cap_save_buffers(struct pci_dev *dev)
3470{
3471	struct pci_cap_saved_state *tmp;
3472	struct hlist_node *n;
3473
3474	hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3475		kfree(tmp);
3476}
3477
3478/**
3479 * pci_configure_ari - enable or disable ARI forwarding
3480 * @dev: the PCI device
3481 *
3482 * If @dev and its upstream bridge both support ARI, enable ARI in the
3483 * bridge.  Otherwise, disable ARI in the bridge.
3484 */
3485void pci_configure_ari(struct pci_dev *dev)
3486{
3487	u32 cap;
3488	struct pci_dev *bridge;
3489
3490	if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3491		return;
3492
3493	bridge = dev->bus->self;
3494	if (!bridge)
3495		return;
3496
3497	pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3498	if (!(cap & PCI_EXP_DEVCAP2_ARI))
3499		return;
3500
3501	if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3502		pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3503					 PCI_EXP_DEVCTL2_ARI);
3504		bridge->ari_enabled = 1;
3505	} else {
3506		pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3507					   PCI_EXP_DEVCTL2_ARI);
3508		bridge->ari_enabled = 0;
3509	}
3510}
3511
3512static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3513{
3514	int pos;
3515	u16 cap, ctrl;
3516
3517	pos = pdev->acs_cap;
3518	if (!pos)
3519		return false;
3520
3521	/*
3522	 * Except for egress control, capabilities are either required
3523	 * or only required if controllable.  Features missing from the
3524	 * capability field can therefore be assumed as hard-wired enabled.
3525	 */
3526	pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3527	acs_flags &= (cap | PCI_ACS_EC);
3528
3529	pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3530	return (ctrl & acs_flags) == acs_flags;
3531}
3532
3533/**
3534 * pci_acs_enabled - test ACS against required flags for a given device
3535 * @pdev: device to test
3536 * @acs_flags: required PCI ACS flags
3537 *
3538 * Return true if the device supports the provided flags.  Automatically
3539 * filters out flags that are not implemented on multifunction devices.
3540 *
3541 * Note that this interface checks the effective ACS capabilities of the
3542 * device rather than the actual capabilities.  For instance, most single
3543 * function endpoints are not required to support ACS because they have no
3544 * opportunity for peer-to-peer access.  We therefore return 'true'
3545 * regardless of whether the device exposes an ACS capability.  This makes
3546 * it much easier for callers of this function to ignore the actual type
3547 * or topology of the device when testing ACS support.
3548 */
3549bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3550{
3551	int ret;
3552
3553	ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3554	if (ret >= 0)
3555		return ret > 0;
3556
3557	/*
3558	 * Conventional PCI and PCI-X devices never support ACS, either
3559	 * effectively or actually.  The shared bus topology implies that
3560	 * any device on the bus can receive or snoop DMA.
3561	 */
3562	if (!pci_is_pcie(pdev))
3563		return false;
3564
3565	switch (pci_pcie_type(pdev)) {
3566	/*
3567	 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3568	 * but since their primary interface is PCI/X, we conservatively
3569	 * handle them as we would a non-PCIe device.
3570	 */
3571	case PCI_EXP_TYPE_PCIE_BRIDGE:
3572	/*
3573	 * PCIe 3.0, 6.12.1 excludes ACS on these devices.  "ACS is never
3574	 * applicable... must never implement an ACS Extended Capability...".
3575	 * This seems arbitrary, but we take a conservative interpretation
3576	 * of this statement.
3577	 */
3578	case PCI_EXP_TYPE_PCI_BRIDGE:
3579	case PCI_EXP_TYPE_RC_EC:
3580		return false;
3581	/*
3582	 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3583	 * implement ACS in order to indicate their peer-to-peer capabilities,
3584	 * regardless of whether they are single- or multi-function devices.
3585	 */
3586	case PCI_EXP_TYPE_DOWNSTREAM:
3587	case PCI_EXP_TYPE_ROOT_PORT:
3588		return pci_acs_flags_enabled(pdev, acs_flags);
3589	/*
3590	 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3591	 * implemented by the remaining PCIe types to indicate peer-to-peer
3592	 * capabilities, but only when they are part of a multifunction
3593	 * device.  The footnote for section 6.12 indicates the specific
3594	 * PCIe types included here.
3595	 */
3596	case PCI_EXP_TYPE_ENDPOINT:
3597	case PCI_EXP_TYPE_UPSTREAM:
3598	case PCI_EXP_TYPE_LEG_END:
3599	case PCI_EXP_TYPE_RC_END:
3600		if (!pdev->multifunction)
3601			break;
3602
3603		return pci_acs_flags_enabled(pdev, acs_flags);
3604	}
3605
3606	/*
3607	 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3608	 * to single function devices with the exception of downstream ports.
3609	 */
3610	return true;
3611}
3612
3613/**
3614 * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy
3615 * @start: starting downstream device
3616 * @end: ending upstream device or NULL to search to the root bus
3617 * @acs_flags: required flags
3618 *
3619 * Walk up a device tree from start to end testing PCI ACS support.  If
3620 * any step along the way does not support the required flags, return false.
3621 */
3622bool pci_acs_path_enabled(struct pci_dev *start,
3623			  struct pci_dev *end, u16 acs_flags)
3624{
3625	struct pci_dev *pdev, *parent = start;
3626
3627	do {
3628		pdev = parent;
3629
3630		if (!pci_acs_enabled(pdev, acs_flags))
3631			return false;
3632
3633		if (pci_is_root_bus(pdev->bus))
3634			return (end == NULL);
3635
3636		parent = pdev->bus->self;
3637	} while (pdev != end);
3638
3639	return true;
3640}
3641
3642/**
3643 * pci_acs_init - Initialize ACS if hardware supports it
3644 * @dev: the PCI device
3645 */
3646void pci_acs_init(struct pci_dev *dev)
3647{
3648	dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3649
3650	/*
3651	 * Attempt to enable ACS regardless of capability because some Root
3652	 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have
3653	 * the standard ACS capability but still support ACS via those
3654	 * quirks.
3655	 */
3656	pci_enable_acs(dev);
3657}
3658
3659/**
3660 * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3661 * @pdev: PCI device
3662 * @bar: BAR to find
3663 *
3664 * Helper to find the position of the ctrl register for a BAR.
3665 * Returns -ENOTSUPP if resizable BARs are not supported at all.
3666 * Returns -ENOENT if no ctrl register for the BAR could be found.
3667 */
3668static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3669{
3670	unsigned int pos, nbars, i;
3671	u32 ctrl;
3672
3673	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3674	if (!pos)
3675		return -ENOTSUPP;
3676
3677	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3678	nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
3679		    PCI_REBAR_CTRL_NBAR_SHIFT;
3680
3681	for (i = 0; i < nbars; i++, pos += 8) {
3682		int bar_idx;
3683
3684		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3685		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
3686		if (bar_idx == bar)
3687			return pos;
3688	}
3689
3690	return -ENOENT;
3691}
3692
3693/**
3694 * pci_rebar_get_possible_sizes - get possible sizes for BAR
3695 * @pdev: PCI device
3696 * @bar: BAR to query
3697 *
3698 * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3699 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3700 */
3701u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3702{
3703	int pos;
3704	u32 cap;
3705
3706	pos = pci_rebar_find_pos(pdev, bar);
3707	if (pos < 0)
3708		return 0;
3709
3710	pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3711	cap &= PCI_REBAR_CAP_SIZES;
3712
3713	/* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */
3714	if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f &&
3715	    bar == 0 && cap == 0x7000)
3716		cap = 0x3f000;
3717
3718	return cap >> 4;
3719}
3720EXPORT_SYMBOL(pci_rebar_get_possible_sizes);
3721
3722/**
3723 * pci_rebar_get_current_size - get the current size of a BAR
3724 * @pdev: PCI device
3725 * @bar: BAR to set size to
3726 *
3727 * Read the size of a BAR from the resizable BAR config.
3728 * Returns size if found or negative error code.
3729 */
3730int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3731{
3732	int pos;
3733	u32 ctrl;
3734
3735	pos = pci_rebar_find_pos(pdev, bar);
3736	if (pos < 0)
3737		return pos;
3738
3739	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3740	return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT;
3741}
3742
3743/**
3744 * pci_rebar_set_size - set a new size for a BAR
3745 * @pdev: PCI device
3746 * @bar: BAR to set size to
3747 * @size: new size as defined in the spec (0=1MB, 19=512GB)
3748 *
3749 * Set the new size of a BAR as defined in the spec.
3750 * Returns zero if resizing was successful, error code otherwise.
3751 */
3752int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3753{
3754	int pos;
3755	u32 ctrl;
3756
3757	pos = pci_rebar_find_pos(pdev, bar);
3758	if (pos < 0)
3759		return pos;
3760
3761	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3762	ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3763	ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
3764	pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3765	return 0;
3766}
3767
3768/**
3769 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3770 * @dev: the PCI device
3771 * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3772 *	PCI_EXP_DEVCAP2_ATOMIC_COMP32
3773 *	PCI_EXP_DEVCAP2_ATOMIC_COMP64
3774 *	PCI_EXP_DEVCAP2_ATOMIC_COMP128
3775 *
3776 * Return 0 if all upstream bridges support AtomicOp routing, egress
3777 * blocking is disabled on all upstream ports, and the root port supports
3778 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3779 * AtomicOp completion), or negative otherwise.
3780 */
3781int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3782{
3783	struct pci_bus *bus = dev->bus;
3784	struct pci_dev *bridge;
3785	u32 cap, ctl2;
3786
3787	/*
3788	 * Per PCIe r5.0, sec 9.3.5.10, the AtomicOp Requester Enable bit
3789	 * in Device Control 2 is reserved in VFs and the PF value applies
3790	 * to all associated VFs.
3791	 */
3792	if (dev->is_virtfn)
3793		return -EINVAL;
3794
3795	if (!pci_is_pcie(dev))
3796		return -EINVAL;
3797
3798	/*
3799	 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3800	 * AtomicOp requesters.  For now, we only support endpoints as
3801	 * requesters and root ports as completers.  No endpoints as
3802	 * completers, and no peer-to-peer.
3803	 */
3804
3805	switch (pci_pcie_type(dev)) {
3806	case PCI_EXP_TYPE_ENDPOINT:
3807	case PCI_EXP_TYPE_LEG_END:
3808	case PCI_EXP_TYPE_RC_END:
3809		break;
3810	default:
3811		return -EINVAL;
3812	}
3813
3814	while (bus->parent) {
3815		bridge = bus->self;
3816
3817		pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3818
3819		switch (pci_pcie_type(bridge)) {
3820		/* Ensure switch ports support AtomicOp routing */
3821		case PCI_EXP_TYPE_UPSTREAM:
3822		case PCI_EXP_TYPE_DOWNSTREAM:
3823			if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3824				return -EINVAL;
3825			break;
3826
3827		/* Ensure root port supports all the sizes we care about */
3828		case PCI_EXP_TYPE_ROOT_PORT:
3829			if ((cap & cap_mask) != cap_mask)
3830				return -EINVAL;
3831			break;
3832		}
3833
3834		/* Ensure upstream ports don't block AtomicOps on egress */
3835		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
3836			pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3837						   &ctl2);
3838			if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3839				return -EINVAL;
3840		}
3841
3842		bus = bus->parent;
3843	}
3844
3845	pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3846				 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3847	return 0;
3848}
3849EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3850
3851/**
3852 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3853 * @dev: the PCI device
3854 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3855 *
3856 * Perform INTx swizzling for a device behind one level of bridge.  This is
3857 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3858 * behind bridges on add-in cards.  For devices with ARI enabled, the slot
3859 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3860 * the PCI Express Base Specification, Revision 2.1)
3861 */
3862u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3863{
3864	int slot;
3865
3866	if (pci_ari_enabled(dev->bus))
3867		slot = 0;
3868	else
3869		slot = PCI_SLOT(dev->devfn);
3870
3871	return (((pin - 1) + slot) % 4) + 1;
3872}
3873
3874int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3875{
3876	u8 pin;
3877
3878	pin = dev->pin;
3879	if (!pin)
3880		return -1;
3881
3882	while (!pci_is_root_bus(dev->bus)) {
3883		pin = pci_swizzle_interrupt_pin(dev, pin);
3884		dev = dev->bus->self;
3885	}
3886	*bridge = dev;
3887	return pin;
3888}
3889
3890/**
3891 * pci_common_swizzle - swizzle INTx all the way to root bridge
3892 * @dev: the PCI device
3893 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3894 *
3895 * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
3896 * bridges all the way up to a PCI root bus.
3897 */
3898u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3899{
3900	u8 pin = *pinp;
3901
3902	while (!pci_is_root_bus(dev->bus)) {
3903		pin = pci_swizzle_interrupt_pin(dev, pin);
3904		dev = dev->bus->self;
3905	}
3906	*pinp = pin;
3907	return PCI_SLOT(dev->devfn);
3908}
3909EXPORT_SYMBOL_GPL(pci_common_swizzle);
3910
3911/**
3912 * pci_release_region - Release a PCI bar
3913 * @pdev: PCI device whose resources were previously reserved by
3914 *	  pci_request_region()
3915 * @bar: BAR to release
3916 *
3917 * Releases the PCI I/O and memory resources previously reserved by a
3918 * successful call to pci_request_region().  Call this function only
3919 * after all use of the PCI regions has ceased.
3920 */
3921void pci_release_region(struct pci_dev *pdev, int bar)
3922{
3923	struct pci_devres *dr;
3924
3925	if (pci_resource_len(pdev, bar) == 0)
3926		return;
3927	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3928		release_region(pci_resource_start(pdev, bar),
3929				pci_resource_len(pdev, bar));
3930	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3931		release_mem_region(pci_resource_start(pdev, bar),
3932				pci_resource_len(pdev, bar));
3933
3934	dr = find_pci_dr(pdev);
3935	if (dr)
3936		dr->region_mask &= ~(1 << bar);
3937}
3938EXPORT_SYMBOL(pci_release_region);
3939
3940/**
3941 * __pci_request_region - Reserved PCI I/O and memory resource
3942 * @pdev: PCI device whose resources are to be reserved
3943 * @bar: BAR to be reserved
3944 * @res_name: Name to be associated with resource.
3945 * @exclusive: whether the region access is exclusive or not
3946 *
3947 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3948 * being reserved by owner @res_name.  Do not access any
3949 * address inside the PCI regions unless this call returns
3950 * successfully.
3951 *
3952 * If @exclusive is set, then the region is marked so that userspace
3953 * is explicitly not allowed to map the resource via /dev/mem or
3954 * sysfs MMIO access.
3955 *
3956 * Returns 0 on success, or %EBUSY on error.  A warning
3957 * message is also printed on failure.
3958 */
3959static int __pci_request_region(struct pci_dev *pdev, int bar,
3960				const char *res_name, int exclusive)
3961{
3962	struct pci_devres *dr;
3963
3964	if (pci_resource_len(pdev, bar) == 0)
3965		return 0;
3966
3967	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3968		if (!request_region(pci_resource_start(pdev, bar),
3969			    pci_resource_len(pdev, bar), res_name))
3970			goto err_out;
3971	} else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3972		if (!__request_mem_region(pci_resource_start(pdev, bar),
3973					pci_resource_len(pdev, bar), res_name,
3974					exclusive))
3975			goto err_out;
3976	}
3977
3978	dr = find_pci_dr(pdev);
3979	if (dr)
3980		dr->region_mask |= 1 << bar;
3981
3982	return 0;
3983
3984err_out:
3985	pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
3986		 &pdev->resource[bar]);
3987	return -EBUSY;
3988}
3989
3990/**
3991 * pci_request_region - Reserve PCI I/O and memory resource
3992 * @pdev: PCI device whose resources are to be reserved
3993 * @bar: BAR to be reserved
3994 * @res_name: Name to be associated with resource
3995 *
3996 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3997 * being reserved by owner @res_name.  Do not access any
3998 * address inside the PCI regions unless this call returns
3999 * successfully.
4000 *
4001 * Returns 0 on success, or %EBUSY on error.  A warning
4002 * message is also printed on failure.
4003 */
4004int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
4005{
4006	return __pci_request_region(pdev, bar, res_name, 0);
4007}
4008EXPORT_SYMBOL(pci_request_region);
4009
4010/**
4011 * pci_release_selected_regions - Release selected PCI I/O and memory resources
4012 * @pdev: PCI device whose resources were previously reserved
4013 * @bars: Bitmask of BARs to be released
4014 *
4015 * Release selected PCI I/O and memory resources previously reserved.
4016 * Call this function only after all use of the PCI regions has ceased.
4017 */
4018void pci_release_selected_regions(struct pci_dev *pdev, int bars)
4019{
4020	int i;
4021
4022	for (i = 0; i < PCI_STD_NUM_BARS; i++)
4023		if (bars & (1 << i))
4024			pci_release_region(pdev, i);
4025}
4026EXPORT_SYMBOL(pci_release_selected_regions);
4027
4028static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
4029					  const char *res_name, int excl)
4030{
4031	int i;
4032
4033	for (i = 0; i < PCI_STD_NUM_BARS; i++)
4034		if (bars & (1 << i))
4035			if (__pci_request_region(pdev, i, res_name, excl))
4036				goto err_out;
4037	return 0;
4038
4039err_out:
4040	while (--i >= 0)
4041		if (bars & (1 << i))
4042			pci_release_region(pdev, i);
4043
4044	return -EBUSY;
4045}
4046
4047
4048/**
4049 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
4050 * @pdev: PCI device whose resources are to be reserved
4051 * @bars: Bitmask of BARs to be requested
4052 * @res_name: Name to be associated with resource
4053 */
4054int pci_request_selected_regions(struct pci_dev *pdev, int bars,
4055				 const char *res_name)
4056{
4057	return __pci_request_selected_regions(pdev, bars, res_name, 0);
4058}
4059EXPORT_SYMBOL(pci_request_selected_regions);
4060
4061int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
4062					   const char *res_name)
4063{
4064	return __pci_request_selected_regions(pdev, bars, res_name,
4065			IORESOURCE_EXCLUSIVE);
4066}
4067EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
4068
4069/**
4070 * pci_release_regions - Release reserved PCI I/O and memory resources
4071 * @pdev: PCI device whose resources were previously reserved by
4072 *	  pci_request_regions()
4073 *
4074 * Releases all PCI I/O and memory resources previously reserved by a
4075 * successful call to pci_request_regions().  Call this function only
4076 * after all use of the PCI regions has ceased.
4077 */
4078
4079void pci_release_regions(struct pci_dev *pdev)
4080{
4081	pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1);
4082}
4083EXPORT_SYMBOL(pci_release_regions);
4084
4085/**
4086 * pci_request_regions - Reserve PCI I/O and memory resources
4087 * @pdev: PCI device whose resources are to be reserved
4088 * @res_name: Name to be associated with resource.
4089 *
4090 * Mark all PCI regions associated with PCI device @pdev as
4091 * being reserved by owner @res_name.  Do not access any
4092 * address inside the PCI regions unless this call returns
4093 * successfully.
4094 *
4095 * Returns 0 on success, or %EBUSY on error.  A warning
4096 * message is also printed on failure.
4097 */
4098int pci_request_regions(struct pci_dev *pdev, const char *res_name)
4099{
4100	return pci_request_selected_regions(pdev,
4101			((1 << PCI_STD_NUM_BARS) - 1), res_name);
4102}
4103EXPORT_SYMBOL(pci_request_regions);
4104
4105/**
4106 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
4107 * @pdev: PCI device whose resources are to be reserved
4108 * @res_name: Name to be associated with resource.
4109 *
4110 * Mark all PCI regions associated with PCI device @pdev as being reserved
4111 * by owner @res_name.  Do not access any address inside the PCI regions
4112 * unless this call returns successfully.
4113 *
4114 * pci_request_regions_exclusive() will mark the region so that /dev/mem
4115 * and the sysfs MMIO access will not be allowed.
4116 *
4117 * Returns 0 on success, or %EBUSY on error.  A warning message is also
4118 * printed on failure.
4119 */
4120int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
4121{
4122	return pci_request_selected_regions_exclusive(pdev,
4123				((1 << PCI_STD_NUM_BARS) - 1), res_name);
4124}
4125EXPORT_SYMBOL(pci_request_regions_exclusive);
4126
4127/*
4128 * Record the PCI IO range (expressed as CPU physical address + size).
4129 * Return a negative value if an error has occurred, zero otherwise
4130 */
4131int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
4132			resource_size_t	size)
4133{
4134	int ret = 0;
4135#ifdef PCI_IOBASE
4136	struct logic_pio_hwaddr *range;
4137
4138	if (!size || addr + size < addr)
4139		return -EINVAL;
4140
4141	range = kzalloc(sizeof(*range), GFP_ATOMIC);
4142	if (!range)
4143		return -ENOMEM;
4144
4145	range->fwnode = fwnode;
4146	range->size = size;
4147	range->hw_start = addr;
4148	range->flags = LOGIC_PIO_CPU_MMIO;
4149
4150	ret = logic_pio_register_range(range);
4151	if (ret)
4152		kfree(range);
4153
4154	/* Ignore duplicates due to deferred probing */
4155	if (ret == -EEXIST)
4156		ret = 0;
4157#endif
4158
4159	return ret;
4160}
4161
4162phys_addr_t pci_pio_to_address(unsigned long pio)
4163{
4164	phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
4165
4166#ifdef PCI_IOBASE
4167	if (pio >= MMIO_UPPER_LIMIT)
4168		return address;
4169
4170	address = logic_pio_to_hwaddr(pio);
4171#endif
4172
4173	return address;
4174}
4175EXPORT_SYMBOL_GPL(pci_pio_to_address);
4176
4177unsigned long __weak pci_address_to_pio(phys_addr_t address)
4178{
4179#ifdef PCI_IOBASE
4180	return logic_pio_trans_cpuaddr(address);
4181#else
4182	if (address > IO_SPACE_LIMIT)
4183		return (unsigned long)-1;
4184
4185	return (unsigned long) address;
4186#endif
4187}
4188
4189/**
4190 * pci_remap_iospace - Remap the memory mapped I/O space
4191 * @res: Resource describing the I/O space
4192 * @phys_addr: physical address of range to be mapped
4193 *
4194 * Remap the memory mapped I/O space described by the @res and the CPU
4195 * physical address @phys_addr into virtual address space.  Only
4196 * architectures that have memory mapped IO functions defined (and the
4197 * PCI_IOBASE value defined) should call this function.
4198 */
4199#ifndef pci_remap_iospace
4200int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
4201{
4202#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4203	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4204
4205	if (!(res->flags & IORESOURCE_IO))
4206		return -EINVAL;
4207
4208	if (res->end > IO_SPACE_LIMIT)
4209		return -EINVAL;
4210
4211	return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
4212				  pgprot_device(PAGE_KERNEL));
4213#else
4214	/*
4215	 * This architecture does not have memory mapped I/O space,
4216	 * so this function should never be called
4217	 */
4218	WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
4219	return -ENODEV;
4220#endif
4221}
4222EXPORT_SYMBOL(pci_remap_iospace);
4223#endif
4224
4225/**
4226 * pci_unmap_iospace - Unmap the memory mapped I/O space
4227 * @res: resource to be unmapped
4228 *
4229 * Unmap the CPU virtual address @res from virtual address space.  Only
4230 * architectures that have memory mapped IO functions defined (and the
4231 * PCI_IOBASE value defined) should call this function.
4232 */
4233void pci_unmap_iospace(struct resource *res)
4234{
4235#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4236	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4237
4238	vunmap_range(vaddr, vaddr + resource_size(res));
4239#endif
4240}
4241EXPORT_SYMBOL(pci_unmap_iospace);
4242
4243static void devm_pci_unmap_iospace(struct device *dev, void *ptr)
4244{
4245	struct resource **res = ptr;
4246
4247	pci_unmap_iospace(*res);
4248}
4249
4250/**
4251 * devm_pci_remap_iospace - Managed pci_remap_iospace()
4252 * @dev: Generic device to remap IO address for
4253 * @res: Resource describing the I/O space
4254 * @phys_addr: physical address of range to be mapped
4255 *
4256 * Managed pci_remap_iospace().  Map is automatically unmapped on driver
4257 * detach.
4258 */
4259int devm_pci_remap_iospace(struct device *dev, const struct resource *res,
4260			   phys_addr_t phys_addr)
4261{
4262	const struct resource **ptr;
4263	int error;
4264
4265	ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL);
4266	if (!ptr)
4267		return -ENOMEM;
4268
4269	error = pci_remap_iospace(res, phys_addr);
4270	if (error) {
4271		devres_free(ptr);
4272	} else	{
4273		*ptr = res;
4274		devres_add(dev, ptr);
4275	}
4276
4277	return error;
4278}
4279EXPORT_SYMBOL(devm_pci_remap_iospace);
4280
4281/**
4282 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
4283 * @dev: Generic device to remap IO address for
4284 * @offset: Resource address to map
4285 * @size: Size of map
4286 *
4287 * Managed pci_remap_cfgspace().  Map is automatically unmapped on driver
4288 * detach.
4289 */
4290void __iomem *devm_pci_remap_cfgspace(struct device *dev,
4291				      resource_size_t offset,
4292				      resource_size_t size)
4293{
4294	void __iomem **ptr, *addr;
4295
4296	ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
4297	if (!ptr)
4298		return NULL;
4299
4300	addr = pci_remap_cfgspace(offset, size);
4301	if (addr) {
4302		*ptr = addr;
4303		devres_add(dev, ptr);
4304	} else
4305		devres_free(ptr);
4306
4307	return addr;
4308}
4309EXPORT_SYMBOL(devm_pci_remap_cfgspace);
4310
4311/**
4312 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
4313 * @dev: generic device to handle the resource for
4314 * @res: configuration space resource to be handled
4315 *
4316 * Checks that a resource is a valid memory region, requests the memory
4317 * region and ioremaps with pci_remap_cfgspace() API that ensures the
4318 * proper PCI configuration space memory attributes are guaranteed.
4319 *
4320 * All operations are managed and will be undone on driver detach.
4321 *
4322 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
4323 * on failure. Usage example::
4324 *
4325 *	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4326 *	base = devm_pci_remap_cfg_resource(&pdev->dev, res);
4327 *	if (IS_ERR(base))
4328 *		return PTR_ERR(base);
4329 */
4330void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
4331					  struct resource *res)
4332{
4333	resource_size_t size;
4334	const char *name;
4335	void __iomem *dest_ptr;
4336
4337	BUG_ON(!dev);
4338
4339	if (!res || resource_type(res) != IORESOURCE_MEM) {
4340		dev_err(dev, "invalid resource\n");
4341		return IOMEM_ERR_PTR(-EINVAL);
4342	}
4343
4344	size = resource_size(res);
4345
4346	if (res->name)
4347		name = devm_kasprintf(dev, GFP_KERNEL, "%s %s", dev_name(dev),
4348				      res->name);
4349	else
4350		name = devm_kstrdup(dev, dev_name(dev), GFP_KERNEL);
4351	if (!name)
4352		return IOMEM_ERR_PTR(-ENOMEM);
4353
4354	if (!devm_request_mem_region(dev, res->start, size, name)) {
4355		dev_err(dev, "can't request region for resource %pR\n", res);
4356		return IOMEM_ERR_PTR(-EBUSY);
4357	}
4358
4359	dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
4360	if (!dest_ptr) {
4361		dev_err(dev, "ioremap failed for resource %pR\n", res);
4362		devm_release_mem_region(dev, res->start, size);
4363		dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
4364	}
4365
4366	return dest_ptr;
4367}
4368EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
4369
4370static void __pci_set_master(struct pci_dev *dev, bool enable)
4371{
4372	u16 old_cmd, cmd;
4373
4374	pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4375	if (enable)
4376		cmd = old_cmd | PCI_COMMAND_MASTER;
4377	else
4378		cmd = old_cmd & ~PCI_COMMAND_MASTER;
4379	if (cmd != old_cmd) {
4380		pci_dbg(dev, "%s bus mastering\n",
4381			enable ? "enabling" : "disabling");
4382		pci_write_config_word(dev, PCI_COMMAND, cmd);
4383	}
4384	dev->is_busmaster = enable;
4385}
4386
4387/**
4388 * pcibios_setup - process "pci=" kernel boot arguments
4389 * @str: string used to pass in "pci=" kernel boot arguments
4390 *
4391 * Process kernel boot arguments.  This is the default implementation.
4392 * Architecture specific implementations can override this as necessary.
4393 */
4394char * __weak __init pcibios_setup(char *str)
4395{
4396	return str;
4397}
4398
4399/**
4400 * pcibios_set_master - enable PCI bus-mastering for device dev
4401 * @dev: the PCI device to enable
4402 *
4403 * Enables PCI bus-mastering for the device.  This is the default
4404 * implementation.  Architecture specific implementations can override
4405 * this if necessary.
4406 */
4407void __weak pcibios_set_master(struct pci_dev *dev)
4408{
4409	u8 lat;
4410
4411	/* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4412	if (pci_is_pcie(dev))
4413		return;
4414
4415	pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4416	if (lat < 16)
4417		lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4418	else if (lat > pcibios_max_latency)
4419		lat = pcibios_max_latency;
4420	else
4421		return;
4422
4423	pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4424}
4425
4426/**
4427 * pci_set_master - enables bus-mastering for device dev
4428 * @dev: the PCI device to enable
4429 *
4430 * Enables bus-mastering on the device and calls pcibios_set_master()
4431 * to do the needed arch specific settings.
4432 */
4433void pci_set_master(struct pci_dev *dev)
4434{
4435	__pci_set_master(dev, true);
4436	pcibios_set_master(dev);
4437}
4438EXPORT_SYMBOL(pci_set_master);
4439
4440/**
4441 * pci_clear_master - disables bus-mastering for device dev
4442 * @dev: the PCI device to disable
4443 */
4444void pci_clear_master(struct pci_dev *dev)
4445{
4446	__pci_set_master(dev, false);
4447}
4448EXPORT_SYMBOL(pci_clear_master);
4449
4450/**
4451 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4452 * @dev: the PCI device for which MWI is to be enabled
4453 *
4454 * Helper function for pci_set_mwi.
4455 * Originally copied from drivers/net/acenic.c.
4456 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4457 *
4458 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4459 */
4460int pci_set_cacheline_size(struct pci_dev *dev)
4461{
4462	u8 cacheline_size;
4463
4464	if (!pci_cache_line_size)
4465		return -EINVAL;
4466
4467	/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4468	   equal to or multiple of the right value. */
4469	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4470	if (cacheline_size >= pci_cache_line_size &&
4471	    (cacheline_size % pci_cache_line_size) == 0)
4472		return 0;
4473
4474	/* Write the correct value. */
4475	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4476	/* Read it back. */
4477	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4478	if (cacheline_size == pci_cache_line_size)
4479		return 0;
4480
4481	pci_dbg(dev, "cache line size of %d is not supported\n",
4482		   pci_cache_line_size << 2);
4483
4484	return -EINVAL;
4485}
4486EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4487
4488/**
4489 * pci_set_mwi - enables memory-write-invalidate PCI transaction
4490 * @dev: the PCI device for which MWI is enabled
4491 *
4492 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4493 *
4494 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4495 */
4496int pci_set_mwi(struct pci_dev *dev)
4497{
4498#ifdef PCI_DISABLE_MWI
4499	return 0;
4500#else
4501	int rc;
4502	u16 cmd;
4503
4504	rc = pci_set_cacheline_size(dev);
4505	if (rc)
4506		return rc;
4507
4508	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4509	if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4510		pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4511		cmd |= PCI_COMMAND_INVALIDATE;
4512		pci_write_config_word(dev, PCI_COMMAND, cmd);
4513	}
4514	return 0;
4515#endif
4516}
4517EXPORT_SYMBOL(pci_set_mwi);
4518
4519/**
4520 * pcim_set_mwi - a device-managed pci_set_mwi()
4521 * @dev: the PCI device for which MWI is enabled
4522 *
4523 * Managed pci_set_mwi().
4524 *
4525 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4526 */
4527int pcim_set_mwi(struct pci_dev *dev)
4528{
4529	struct pci_devres *dr;
4530
4531	dr = find_pci_dr(dev);
4532	if (!dr)
4533		return -ENOMEM;
4534
4535	dr->mwi = 1;
4536	return pci_set_mwi(dev);
4537}
4538EXPORT_SYMBOL(pcim_set_mwi);
4539
4540/**
4541 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4542 * @dev: the PCI device for which MWI is enabled
4543 *
4544 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4545 * Callers are not required to check the return value.
4546 *
4547 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4548 */
4549int pci_try_set_mwi(struct pci_dev *dev)
4550{
4551#ifdef PCI_DISABLE_MWI
4552	return 0;
4553#else
4554	return pci_set_mwi(dev);
4555#endif
4556}
4557EXPORT_SYMBOL(pci_try_set_mwi);
4558
4559/**
4560 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4561 * @dev: the PCI device to disable
4562 *
4563 * Disables PCI Memory-Write-Invalidate transaction on the device
4564 */
4565void pci_clear_mwi(struct pci_dev *dev)
4566{
4567#ifndef PCI_DISABLE_MWI
4568	u16 cmd;
4569
4570	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4571	if (cmd & PCI_COMMAND_INVALIDATE) {
4572		cmd &= ~PCI_COMMAND_INVALIDATE;
4573		pci_write_config_word(dev, PCI_COMMAND, cmd);
4574	}
4575#endif
4576}
4577EXPORT_SYMBOL(pci_clear_mwi);
4578
4579/**
4580 * pci_disable_parity - disable parity checking for device
4581 * @dev: the PCI device to operate on
4582 *
4583 * Disable parity checking for device @dev
4584 */
4585void pci_disable_parity(struct pci_dev *dev)
4586{
4587	u16 cmd;
4588
4589	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4590	if (cmd & PCI_COMMAND_PARITY) {
4591		cmd &= ~PCI_COMMAND_PARITY;
4592		pci_write_config_word(dev, PCI_COMMAND, cmd);
4593	}
4594}
4595
4596/**
4597 * pci_intx - enables/disables PCI INTx for device dev
4598 * @pdev: the PCI device to operate on
4599 * @enable: boolean: whether to enable or disable PCI INTx
4600 *
4601 * Enables/disables PCI INTx for device @pdev
4602 */
4603void pci_intx(struct pci_dev *pdev, int enable)
4604{
4605	u16 pci_command, new;
4606
4607	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4608
4609	if (enable)
4610		new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4611	else
4612		new = pci_command | PCI_COMMAND_INTX_DISABLE;
4613
4614	if (new != pci_command) {
4615		struct pci_devres *dr;
4616
4617		pci_write_config_word(pdev, PCI_COMMAND, new);
4618
4619		dr = find_pci_dr(pdev);
4620		if (dr && !dr->restore_intx) {
4621			dr->restore_intx = 1;
4622			dr->orig_intx = !enable;
4623		}
4624	}
4625}
4626EXPORT_SYMBOL_GPL(pci_intx);
4627
4628static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
4629{
4630	struct pci_bus *bus = dev->bus;
4631	bool mask_updated = true;
4632	u32 cmd_status_dword;
4633	u16 origcmd, newcmd;
4634	unsigned long flags;
4635	bool irq_pending;
4636
4637	/*
4638	 * We do a single dword read to retrieve both command and status.
4639	 * Document assumptions that make this possible.
4640	 */
4641	BUILD_BUG_ON(PCI_COMMAND % 4);
4642	BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
4643
4644	raw_spin_lock_irqsave(&pci_lock, flags);
4645
4646	bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
4647
4648	irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
4649
4650	/*
4651	 * Check interrupt status register to see whether our device
4652	 * triggered the interrupt (when masking) or the next IRQ is
4653	 * already pending (when unmasking).
4654	 */
4655	if (mask != irq_pending) {
4656		mask_updated = false;
4657		goto done;
4658	}
4659
4660	origcmd = cmd_status_dword;
4661	newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
4662	if (mask)
4663		newcmd |= PCI_COMMAND_INTX_DISABLE;
4664	if (newcmd != origcmd)
4665		bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
4666
4667done:
4668	raw_spin_unlock_irqrestore(&pci_lock, flags);
4669
4670	return mask_updated;
4671}
4672
4673/**
4674 * pci_check_and_mask_intx - mask INTx on pending interrupt
4675 * @dev: the PCI device to operate on
4676 *
4677 * Check if the device dev has its INTx line asserted, mask it and return
4678 * true in that case. False is returned if no interrupt was pending.
4679 */
4680bool pci_check_and_mask_intx(struct pci_dev *dev)
4681{
4682	return pci_check_and_set_intx_mask(dev, true);
4683}
4684EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
4685
4686/**
4687 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
4688 * @dev: the PCI device to operate on
4689 *
4690 * Check if the device dev has its INTx line asserted, unmask it if not and
4691 * return true. False is returned and the mask remains active if there was
4692 * still an interrupt pending.
4693 */
4694bool pci_check_and_unmask_intx(struct pci_dev *dev)
4695{
4696	return pci_check_and_set_intx_mask(dev, false);
4697}
4698EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
4699
4700/**
4701 * pci_wait_for_pending_transaction - wait for pending transaction
4702 * @dev: the PCI device to operate on
4703 *
4704 * Return 0 if transaction is pending 1 otherwise.
4705 */
4706int pci_wait_for_pending_transaction(struct pci_dev *dev)
4707{
4708	if (!pci_is_pcie(dev))
4709		return 1;
4710
4711	return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4712				    PCI_EXP_DEVSTA_TRPND);
4713}
4714EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4715
4716/**
4717 * pcie_flr - initiate a PCIe function level reset
4718 * @dev: device to reset
4719 *
4720 * Initiate a function level reset unconditionally on @dev without
4721 * checking any flags and DEVCAP
4722 */
4723int pcie_flr(struct pci_dev *dev)
4724{
4725	if (!pci_wait_for_pending_transaction(dev))
4726		pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4727
4728	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4729
4730	if (dev->imm_ready)
4731		return 0;
4732
4733	/*
4734	 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4735	 * 100ms, but may silently discard requests while the FLR is in
4736	 * progress.  Wait 100ms before trying to access the device.
4737	 */
4738	msleep(100);
4739
4740	return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4741}
4742EXPORT_SYMBOL_GPL(pcie_flr);
4743
4744/**
4745 * pcie_reset_flr - initiate a PCIe function level reset
4746 * @dev: device to reset
4747 * @probe: if true, return 0 if device can be reset this way
4748 *
4749 * Initiate a function level reset on @dev.
4750 */
4751int pcie_reset_flr(struct pci_dev *dev, bool probe)
4752{
4753	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4754		return -ENOTTY;
4755
4756	if (!(dev->devcap & PCI_EXP_DEVCAP_FLR))
4757		return -ENOTTY;
4758
4759	if (probe)
4760		return 0;
4761
4762	return pcie_flr(dev);
4763}
4764EXPORT_SYMBOL_GPL(pcie_reset_flr);
4765
4766static int pci_af_flr(struct pci_dev *dev, bool probe)
4767{
4768	int pos;
4769	u8 cap;
4770
4771	pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4772	if (!pos)
4773		return -ENOTTY;
4774
4775	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4776		return -ENOTTY;
4777
4778	pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4779	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4780		return -ENOTTY;
4781
4782	if (probe)
4783		return 0;
4784
4785	/*
4786	 * Wait for Transaction Pending bit to clear.  A word-aligned test
4787	 * is used, so we use the control offset rather than status and shift
4788	 * the test bit to match.
4789	 */
4790	if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4791				 PCI_AF_STATUS_TP << 8))
4792		pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4793
4794	pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4795
4796	if (dev->imm_ready)
4797		return 0;
4798
4799	/*
4800	 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4801	 * updated 27 July 2006; a device must complete an FLR within
4802	 * 100ms, but may silently discard requests while the FLR is in
4803	 * progress.  Wait 100ms before trying to access the device.
4804	 */
4805	msleep(100);
4806
4807	return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4808}
4809
4810/**
4811 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4812 * @dev: Device to reset.
4813 * @probe: if true, return 0 if the device can be reset this way.
4814 *
4815 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4816 * unset, it will be reinitialized internally when going from PCI_D3hot to
4817 * PCI_D0.  If that's the case and the device is not in a low-power state
4818 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4819 *
4820 * NOTE: This causes the caller to sleep for twice the device power transition
4821 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4822 * by default (i.e. unless the @dev's d3hot_delay field has a different value).
4823 * Moreover, only devices in D0 can be reset by this function.
4824 */
4825static int pci_pm_reset(struct pci_dev *dev, bool probe)
4826{
4827	u16 csr;
4828
4829	if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4830		return -ENOTTY;
4831
4832	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4833	if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4834		return -ENOTTY;
4835
4836	if (probe)
4837		return 0;
4838
4839	if (dev->current_state != PCI_D0)
4840		return -EINVAL;
4841
4842	csr &= ~PCI_PM_CTRL_STATE_MASK;
4843	csr |= PCI_D3hot;
4844	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4845	pci_dev_d3_sleep(dev);
4846
4847	csr &= ~PCI_PM_CTRL_STATE_MASK;
4848	csr |= PCI_D0;
4849	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4850	pci_dev_d3_sleep(dev);
4851
4852	return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS);
4853}
4854
4855/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4856 * pcie_wait_for_link_delay - Wait until link is active or inactive
4857 * @pdev: Bridge device
4858 * @active: waiting for active or inactive?
4859 * @delay: Delay to wait after link has become active (in ms)
4860 *
4861 * Use this to wait till link becomes active or inactive.
4862 */
4863static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active,
4864				     int delay)
4865{
4866	int timeout = 1000;
4867	bool ret;
4868	u16 lnk_status;
4869
4870	/*
4871	 * Some controllers might not implement link active reporting. In this
4872	 * case, we wait for 1000 ms + any delay requested by the caller.
4873	 */
4874	if (!pdev->link_active_reporting) {
4875		msleep(timeout + delay);
4876		return true;
4877	}
4878
4879	/*
4880	 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4881	 * after which we should expect an link active if the reset was
4882	 * successful. If so, software must wait a minimum 100ms before sending
4883	 * configuration requests to devices downstream this port.
4884	 *
4885	 * If the link fails to activate, either the device was physically
4886	 * removed or the link is permanently failed.
4887	 */
4888	if (active)
4889		msleep(20);
4890	for (;;) {
4891		pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status);
4892		ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA);
4893		if (ret == active)
4894			break;
4895		if (timeout <= 0)
4896			break;
4897		msleep(10);
4898		timeout -= 10;
4899	}
4900	if (active && ret)
4901		msleep(delay);
 
 
 
 
 
4902
4903	return ret == active;
4904}
4905
4906/**
4907 * pcie_wait_for_link - Wait until link is active or inactive
4908 * @pdev: Bridge device
4909 * @active: waiting for active or inactive?
4910 *
4911 * Use this to wait till link becomes active or inactive.
4912 */
4913bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
4914{
4915	return pcie_wait_for_link_delay(pdev, active, 100);
4916}
4917
4918/*
4919 * Find maximum D3cold delay required by all the devices on the bus.  The
4920 * spec says 100 ms, but firmware can lower it and we allow drivers to
4921 * increase it as well.
4922 *
4923 * Called with @pci_bus_sem locked for reading.
4924 */
4925static int pci_bus_max_d3cold_delay(const struct pci_bus *bus)
4926{
4927	const struct pci_dev *pdev;
4928	int min_delay = 100;
4929	int max_delay = 0;
4930
4931	list_for_each_entry(pdev, &bus->devices, bus_list) {
4932		if (pdev->d3cold_delay < min_delay)
4933			min_delay = pdev->d3cold_delay;
4934		if (pdev->d3cold_delay > max_delay)
4935			max_delay = pdev->d3cold_delay;
4936	}
4937
4938	return max(min_delay, max_delay);
4939}
4940
4941/**
4942 * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible
4943 * @dev: PCI bridge
 
4944 *
4945 * Handle necessary delays before access to the devices on the secondary
4946 * side of the bridge are permitted after D3cold to D0 transition.
 
4947 *
4948 * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For
4949 * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section
4950 * 4.3.2.
 
 
 
4951 */
4952void pci_bridge_wait_for_secondary_bus(struct pci_dev *dev)
4953{
4954	struct pci_dev *child;
4955	int delay;
4956
4957	if (pci_dev_is_disconnected(dev))
4958		return;
4959
4960	if (!pci_is_bridge(dev) || !dev->bridge_d3)
4961		return;
4962
4963	down_read(&pci_bus_sem);
4964
4965	/*
4966	 * We only deal with devices that are present currently on the bus.
4967	 * For any hot-added devices the access delay is handled in pciehp
4968	 * board_added(). In case of ACPI hotplug the firmware is expected
4969	 * to configure the devices before OS is notified.
4970	 */
4971	if (!dev->subordinate || list_empty(&dev->subordinate->devices)) {
4972		up_read(&pci_bus_sem);
4973		return;
4974	}
4975
4976	/* Take d3cold_delay requirements into account */
4977	delay = pci_bus_max_d3cold_delay(dev->subordinate);
4978	if (!delay) {
4979		up_read(&pci_bus_sem);
4980		return;
4981	}
4982
4983	child = list_first_entry(&dev->subordinate->devices, struct pci_dev,
4984				 bus_list);
4985	up_read(&pci_bus_sem);
4986
4987	/*
4988	 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before
4989	 * accessing the device after reset (that is 1000 ms + 100 ms). In
4990	 * practice this should not be needed because we don't do power
4991	 * management for them (see pci_bridge_d3_possible()).
4992	 */
4993	if (!pci_is_pcie(dev)) {
4994		pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay);
4995		msleep(1000 + delay);
4996		return;
4997	}
4998
4999	/*
5000	 * For PCIe downstream and root ports that do not support speeds
5001	 * greater than 5 GT/s need to wait minimum 100 ms. For higher
5002	 * speeds (gen3) we need to wait first for the data link layer to
5003	 * become active.
5004	 *
5005	 * However, 100 ms is the minimum and the PCIe spec says the
5006	 * software must allow at least 1s before it can determine that the
5007	 * device that did not respond is a broken device. There is
5008	 * evidence that 100 ms is not always enough, for example certain
5009	 * Titan Ridge xHCI controller does not always respond to
5010	 * configuration requests if we only wait for 100 ms (see
5011	 * https://bugzilla.kernel.org/show_bug.cgi?id=203885).
5012	 *
5013	 * Therefore we wait for 100 ms and check for the device presence.
5014	 * If it is still not present give it an additional 100 ms.
5015	 */
5016	if (!pcie_downstream_port(dev))
5017		return;
5018
5019	if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) {
 
 
5020		pci_dbg(dev, "waiting %d ms for downstream link\n", delay);
5021		msleep(delay);
5022	} else {
5023		pci_dbg(dev, "waiting %d ms for downstream link, after activation\n",
5024			delay);
5025		if (!pcie_wait_for_link_delay(dev, true, delay)) {
5026			/* Did not train, no need to wait any further */
5027			pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n");
5028			return;
5029		}
 
 
 
 
 
 
 
 
 
 
5030	}
5031
5032	if (!pci_device_is_present(child)) {
5033		pci_dbg(child, "waiting additional %d ms to become accessible\n", delay);
5034		msleep(delay);
 
 
 
5035	}
 
 
 
5036}
5037
5038void pci_reset_secondary_bus(struct pci_dev *dev)
5039{
5040	u16 ctrl;
5041
5042	pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
5043	ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
5044	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
5045
5046	/*
5047	 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms.  Double
5048	 * this to 2ms to ensure that we meet the minimum requirement.
5049	 */
5050	msleep(2);
5051
5052	ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
5053	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
5054
5055	/*
5056	 * Trhfa for conventional PCI is 2^25 clock cycles.
5057	 * Assuming a minimum 33MHz clock this results in a 1s
5058	 * delay before we can consider subordinate devices to
5059	 * be re-initialized.  PCIe has some ways to shorten this,
5060	 * but we don't make use of them yet.
5061	 */
5062	ssleep(1);
5063}
5064
5065void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
5066{
5067	pci_reset_secondary_bus(dev);
5068}
5069
5070/**
5071 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
5072 * @dev: Bridge device
5073 *
5074 * Use the bridge control register to assert reset on the secondary bus.
5075 * Devices on the secondary bus are left in power-on state.
5076 */
5077int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
5078{
5079	pcibios_reset_secondary_bus(dev);
5080
5081	return pci_dev_wait(dev, "bus reset", PCIE_RESET_READY_POLL_MS);
5082}
5083EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
5084
5085static int pci_parent_bus_reset(struct pci_dev *dev, bool probe)
5086{
5087	struct pci_dev *pdev;
5088
5089	if (pci_is_root_bus(dev->bus) || dev->subordinate ||
5090	    !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5091		return -ENOTTY;
5092
5093	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
5094		if (pdev != dev)
5095			return -ENOTTY;
5096
5097	if (probe)
5098		return 0;
5099
5100	return pci_bridge_secondary_bus_reset(dev->bus->self);
5101}
5102
5103static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, bool probe)
5104{
5105	int rc = -ENOTTY;
5106
5107	if (!hotplug || !try_module_get(hotplug->owner))
5108		return rc;
5109
5110	if (hotplug->ops->reset_slot)
5111		rc = hotplug->ops->reset_slot(hotplug, probe);
5112
5113	module_put(hotplug->owner);
5114
5115	return rc;
5116}
5117
5118static int pci_dev_reset_slot_function(struct pci_dev *dev, bool probe)
5119{
5120	if (dev->multifunction || dev->subordinate || !dev->slot ||
5121	    dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5122		return -ENOTTY;
5123
5124	return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
5125}
5126
5127static int pci_reset_bus_function(struct pci_dev *dev, bool probe)
5128{
5129	int rc;
5130
5131	rc = pci_dev_reset_slot_function(dev, probe);
5132	if (rc != -ENOTTY)
5133		return rc;
5134	return pci_parent_bus_reset(dev, probe);
5135}
5136
5137void pci_dev_lock(struct pci_dev *dev)
5138{
5139	/* block PM suspend, driver probe, etc. */
5140	device_lock(&dev->dev);
5141	pci_cfg_access_lock(dev);
5142}
5143EXPORT_SYMBOL_GPL(pci_dev_lock);
5144
5145/* Return 1 on successful lock, 0 on contention */
5146int pci_dev_trylock(struct pci_dev *dev)
5147{
5148	if (device_trylock(&dev->dev)) {
5149		if (pci_cfg_access_trylock(dev))
5150			return 1;
5151		device_unlock(&dev->dev);
5152	}
5153
5154	return 0;
5155}
5156EXPORT_SYMBOL_GPL(pci_dev_trylock);
5157
5158void pci_dev_unlock(struct pci_dev *dev)
5159{
5160	pci_cfg_access_unlock(dev);
5161	device_unlock(&dev->dev);
5162}
5163EXPORT_SYMBOL_GPL(pci_dev_unlock);
5164
5165static void pci_dev_save_and_disable(struct pci_dev *dev)
5166{
5167	const struct pci_error_handlers *err_handler =
5168			dev->driver ? dev->driver->err_handler : NULL;
5169
5170	/*
5171	 * dev->driver->err_handler->reset_prepare() is protected against
5172	 * races with ->remove() by the device lock, which must be held by
5173	 * the caller.
5174	 */
5175	if (err_handler && err_handler->reset_prepare)
5176		err_handler->reset_prepare(dev);
5177
5178	/*
5179	 * Wake-up device prior to save.  PM registers default to D0 after
5180	 * reset and a simple register restore doesn't reliably return
5181	 * to a non-D0 state anyway.
5182	 */
5183	pci_set_power_state(dev, PCI_D0);
5184
5185	pci_save_state(dev);
5186	/*
5187	 * Disable the device by clearing the Command register, except for
5188	 * INTx-disable which is set.  This not only disables MMIO and I/O port
5189	 * BARs, but also prevents the device from being Bus Master, preventing
5190	 * DMA from the device including MSI/MSI-X interrupts.  For PCI 2.3
5191	 * compliant devices, INTx-disable prevents legacy interrupts.
5192	 */
5193	pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
5194}
5195
5196static void pci_dev_restore(struct pci_dev *dev)
5197{
5198	const struct pci_error_handlers *err_handler =
5199			dev->driver ? dev->driver->err_handler : NULL;
5200
5201	pci_restore_state(dev);
5202
5203	/*
5204	 * dev->driver->err_handler->reset_done() is protected against
5205	 * races with ->remove() by the device lock, which must be held by
5206	 * the caller.
5207	 */
5208	if (err_handler && err_handler->reset_done)
5209		err_handler->reset_done(dev);
5210}
5211
5212/* dev->reset_methods[] is a 0-terminated list of indices into this array */
5213static const struct pci_reset_fn_method pci_reset_fn_methods[] = {
5214	{ },
5215	{ pci_dev_specific_reset, .name = "device_specific" },
5216	{ pci_dev_acpi_reset, .name = "acpi" },
5217	{ pcie_reset_flr, .name = "flr" },
5218	{ pci_af_flr, .name = "af_flr" },
5219	{ pci_pm_reset, .name = "pm" },
5220	{ pci_reset_bus_function, .name = "bus" },
5221};
5222
5223static ssize_t reset_method_show(struct device *dev,
5224				 struct device_attribute *attr, char *buf)
5225{
5226	struct pci_dev *pdev = to_pci_dev(dev);
5227	ssize_t len = 0;
5228	int i, m;
5229
5230	for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5231		m = pdev->reset_methods[i];
5232		if (!m)
5233			break;
5234
5235		len += sysfs_emit_at(buf, len, "%s%s", len ? " " : "",
5236				     pci_reset_fn_methods[m].name);
5237	}
5238
5239	if (len)
5240		len += sysfs_emit_at(buf, len, "\n");
5241
5242	return len;
5243}
5244
5245static int reset_method_lookup(const char *name)
5246{
5247	int m;
5248
5249	for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5250		if (sysfs_streq(name, pci_reset_fn_methods[m].name))
5251			return m;
5252	}
5253
5254	return 0;	/* not found */
5255}
5256
5257static ssize_t reset_method_store(struct device *dev,
5258				  struct device_attribute *attr,
5259				  const char *buf, size_t count)
5260{
5261	struct pci_dev *pdev = to_pci_dev(dev);
5262	char *options, *name;
5263	int m, n;
5264	u8 reset_methods[PCI_NUM_RESET_METHODS] = { 0 };
5265
5266	if (sysfs_streq(buf, "")) {
5267		pdev->reset_methods[0] = 0;
5268		pci_warn(pdev, "All device reset methods disabled by user");
5269		return count;
5270	}
5271
5272	if (sysfs_streq(buf, "default")) {
5273		pci_init_reset_methods(pdev);
5274		return count;
5275	}
5276
5277	options = kstrndup(buf, count, GFP_KERNEL);
5278	if (!options)
5279		return -ENOMEM;
5280
5281	n = 0;
5282	while ((name = strsep(&options, " ")) != NULL) {
5283		if (sysfs_streq(name, ""))
5284			continue;
5285
5286		name = strim(name);
5287
5288		m = reset_method_lookup(name);
5289		if (!m) {
5290			pci_err(pdev, "Invalid reset method '%s'", name);
5291			goto error;
5292		}
5293
5294		if (pci_reset_fn_methods[m].reset_fn(pdev, PCI_RESET_PROBE)) {
5295			pci_err(pdev, "Unsupported reset method '%s'", name);
5296			goto error;
5297		}
5298
5299		if (n == PCI_NUM_RESET_METHODS - 1) {
5300			pci_err(pdev, "Too many reset methods\n");
5301			goto error;
5302		}
5303
5304		reset_methods[n++] = m;
5305	}
5306
5307	reset_methods[n] = 0;
5308
5309	/* Warn if dev-specific supported but not highest priority */
5310	if (pci_reset_fn_methods[1].reset_fn(pdev, PCI_RESET_PROBE) == 0 &&
5311	    reset_methods[0] != 1)
5312		pci_warn(pdev, "Device-specific reset disabled/de-prioritized by user");
5313	memcpy(pdev->reset_methods, reset_methods, sizeof(pdev->reset_methods));
5314	kfree(options);
5315	return count;
5316
5317error:
5318	/* Leave previous methods unchanged */
5319	kfree(options);
5320	return -EINVAL;
5321}
5322static DEVICE_ATTR_RW(reset_method);
5323
5324static struct attribute *pci_dev_reset_method_attrs[] = {
5325	&dev_attr_reset_method.attr,
5326	NULL,
5327};
5328
5329static umode_t pci_dev_reset_method_attr_is_visible(struct kobject *kobj,
5330						    struct attribute *a, int n)
5331{
5332	struct pci_dev *pdev = to_pci_dev(kobj_to_dev(kobj));
5333
5334	if (!pci_reset_supported(pdev))
5335		return 0;
5336
5337	return a->mode;
5338}
5339
5340const struct attribute_group pci_dev_reset_method_attr_group = {
5341	.attrs = pci_dev_reset_method_attrs,
5342	.is_visible = pci_dev_reset_method_attr_is_visible,
5343};
5344
5345/**
5346 * __pci_reset_function_locked - reset a PCI device function while holding
5347 * the @dev mutex lock.
5348 * @dev: PCI device to reset
5349 *
5350 * Some devices allow an individual function to be reset without affecting
5351 * other functions in the same device.  The PCI device must be responsive
5352 * to PCI config space in order to use this function.
5353 *
5354 * The device function is presumed to be unused and the caller is holding
5355 * the device mutex lock when this function is called.
5356 *
5357 * Resetting the device will make the contents of PCI configuration space
5358 * random, so any caller of this must be prepared to reinitialise the
5359 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
5360 * etc.
5361 *
5362 * Returns 0 if the device function was successfully reset or negative if the
5363 * device doesn't support resetting a single function.
5364 */
5365int __pci_reset_function_locked(struct pci_dev *dev)
5366{
5367	int i, m, rc;
5368
5369	might_sleep();
5370
5371	/*
5372	 * A reset method returns -ENOTTY if it doesn't support this device and
5373	 * we should try the next method.
5374	 *
5375	 * If it returns 0 (success), we're finished.  If it returns any other
5376	 * error, we're also finished: this indicates that further reset
5377	 * mechanisms might be broken on the device.
5378	 */
5379	for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5380		m = dev->reset_methods[i];
5381		if (!m)
5382			return -ENOTTY;
5383
5384		rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_DO_RESET);
5385		if (!rc)
5386			return 0;
5387		if (rc != -ENOTTY)
5388			return rc;
5389	}
5390
5391	return -ENOTTY;
5392}
5393EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
5394
5395/**
5396 * pci_init_reset_methods - check whether device can be safely reset
5397 * and store supported reset mechanisms.
5398 * @dev: PCI device to check for reset mechanisms
5399 *
5400 * Some devices allow an individual function to be reset without affecting
5401 * other functions in the same device.  The PCI device must be in D0-D3hot
5402 * state.
5403 *
5404 * Stores reset mechanisms supported by device in reset_methods byte array
5405 * which is a member of struct pci_dev.
5406 */
5407void pci_init_reset_methods(struct pci_dev *dev)
5408{
5409	int m, i, rc;
5410
5411	BUILD_BUG_ON(ARRAY_SIZE(pci_reset_fn_methods) != PCI_NUM_RESET_METHODS);
5412
5413	might_sleep();
5414
5415	i = 0;
5416	for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5417		rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_PROBE);
5418		if (!rc)
5419			dev->reset_methods[i++] = m;
5420		else if (rc != -ENOTTY)
5421			break;
5422	}
5423
5424	dev->reset_methods[i] = 0;
5425}
5426
5427/**
5428 * pci_reset_function - quiesce and reset a PCI device function
5429 * @dev: PCI device to reset
5430 *
5431 * Some devices allow an individual function to be reset without affecting
5432 * other functions in the same device.  The PCI device must be responsive
5433 * to PCI config space in order to use this function.
5434 *
5435 * This function does not just reset the PCI portion of a device, but
5436 * clears all the state associated with the device.  This function differs
5437 * from __pci_reset_function_locked() in that it saves and restores device state
5438 * over the reset and takes the PCI device lock.
5439 *
5440 * Returns 0 if the device function was successfully reset or negative if the
5441 * device doesn't support resetting a single function.
5442 */
5443int pci_reset_function(struct pci_dev *dev)
5444{
5445	int rc;
5446
5447	if (!pci_reset_supported(dev))
5448		return -ENOTTY;
5449
5450	pci_dev_lock(dev);
5451	pci_dev_save_and_disable(dev);
5452
5453	rc = __pci_reset_function_locked(dev);
5454
5455	pci_dev_restore(dev);
5456	pci_dev_unlock(dev);
5457
5458	return rc;
5459}
5460EXPORT_SYMBOL_GPL(pci_reset_function);
5461
5462/**
5463 * pci_reset_function_locked - quiesce and reset a PCI device function
5464 * @dev: PCI device to reset
5465 *
5466 * Some devices allow an individual function to be reset without affecting
5467 * other functions in the same device.  The PCI device must be responsive
5468 * to PCI config space in order to use this function.
5469 *
5470 * This function does not just reset the PCI portion of a device, but
5471 * clears all the state associated with the device.  This function differs
5472 * from __pci_reset_function_locked() in that it saves and restores device state
5473 * over the reset.  It also differs from pci_reset_function() in that it
5474 * requires the PCI device lock to be held.
5475 *
5476 * Returns 0 if the device function was successfully reset or negative if the
5477 * device doesn't support resetting a single function.
5478 */
5479int pci_reset_function_locked(struct pci_dev *dev)
5480{
5481	int rc;
5482
5483	if (!pci_reset_supported(dev))
5484		return -ENOTTY;
5485
5486	pci_dev_save_and_disable(dev);
5487
5488	rc = __pci_reset_function_locked(dev);
5489
5490	pci_dev_restore(dev);
5491
5492	return rc;
5493}
5494EXPORT_SYMBOL_GPL(pci_reset_function_locked);
5495
5496/**
5497 * pci_try_reset_function - quiesce and reset a PCI device function
5498 * @dev: PCI device to reset
5499 *
5500 * Same as above, except return -EAGAIN if unable to lock device.
5501 */
5502int pci_try_reset_function(struct pci_dev *dev)
5503{
5504	int rc;
5505
5506	if (!pci_reset_supported(dev))
5507		return -ENOTTY;
5508
5509	if (!pci_dev_trylock(dev))
5510		return -EAGAIN;
5511
5512	pci_dev_save_and_disable(dev);
5513	rc = __pci_reset_function_locked(dev);
5514	pci_dev_restore(dev);
5515	pci_dev_unlock(dev);
5516
5517	return rc;
5518}
5519EXPORT_SYMBOL_GPL(pci_try_reset_function);
5520
5521/* Do any devices on or below this bus prevent a bus reset? */
5522static bool pci_bus_resetable(struct pci_bus *bus)
5523{
5524	struct pci_dev *dev;
5525
5526
5527	if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5528		return false;
5529
5530	list_for_each_entry(dev, &bus->devices, bus_list) {
5531		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5532		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5533			return false;
5534	}
5535
5536	return true;
5537}
5538
5539/* Lock devices from the top of the tree down */
5540static void pci_bus_lock(struct pci_bus *bus)
5541{
5542	struct pci_dev *dev;
5543
5544	list_for_each_entry(dev, &bus->devices, bus_list) {
5545		pci_dev_lock(dev);
5546		if (dev->subordinate)
5547			pci_bus_lock(dev->subordinate);
5548	}
5549}
5550
5551/* Unlock devices from the bottom of the tree up */
5552static void pci_bus_unlock(struct pci_bus *bus)
5553{
5554	struct pci_dev *dev;
5555
5556	list_for_each_entry(dev, &bus->devices, bus_list) {
5557		if (dev->subordinate)
5558			pci_bus_unlock(dev->subordinate);
5559		pci_dev_unlock(dev);
5560	}
5561}
5562
5563/* Return 1 on successful lock, 0 on contention */
5564static int pci_bus_trylock(struct pci_bus *bus)
5565{
5566	struct pci_dev *dev;
5567
5568	list_for_each_entry(dev, &bus->devices, bus_list) {
5569		if (!pci_dev_trylock(dev))
5570			goto unlock;
5571		if (dev->subordinate) {
5572			if (!pci_bus_trylock(dev->subordinate)) {
5573				pci_dev_unlock(dev);
5574				goto unlock;
5575			}
5576		}
5577	}
5578	return 1;
5579
5580unlock:
5581	list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5582		if (dev->subordinate)
5583			pci_bus_unlock(dev->subordinate);
5584		pci_dev_unlock(dev);
5585	}
5586	return 0;
5587}
5588
5589/* Do any devices on or below this slot prevent a bus reset? */
5590static bool pci_slot_resetable(struct pci_slot *slot)
5591{
5592	struct pci_dev *dev;
5593
5594	if (slot->bus->self &&
5595	    (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5596		return false;
5597
5598	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5599		if (!dev->slot || dev->slot != slot)
5600			continue;
5601		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5602		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5603			return false;
5604	}
5605
5606	return true;
5607}
5608
5609/* Lock devices from the top of the tree down */
5610static void pci_slot_lock(struct pci_slot *slot)
5611{
5612	struct pci_dev *dev;
5613
5614	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5615		if (!dev->slot || dev->slot != slot)
5616			continue;
5617		pci_dev_lock(dev);
5618		if (dev->subordinate)
5619			pci_bus_lock(dev->subordinate);
5620	}
5621}
5622
5623/* Unlock devices from the bottom of the tree up */
5624static void pci_slot_unlock(struct pci_slot *slot)
5625{
5626	struct pci_dev *dev;
5627
5628	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5629		if (!dev->slot || dev->slot != slot)
5630			continue;
5631		if (dev->subordinate)
5632			pci_bus_unlock(dev->subordinate);
5633		pci_dev_unlock(dev);
5634	}
5635}
5636
5637/* Return 1 on successful lock, 0 on contention */
5638static int pci_slot_trylock(struct pci_slot *slot)
5639{
5640	struct pci_dev *dev;
5641
5642	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5643		if (!dev->slot || dev->slot != slot)
5644			continue;
5645		if (!pci_dev_trylock(dev))
5646			goto unlock;
5647		if (dev->subordinate) {
5648			if (!pci_bus_trylock(dev->subordinate)) {
5649				pci_dev_unlock(dev);
5650				goto unlock;
5651			}
5652		}
5653	}
5654	return 1;
5655
5656unlock:
5657	list_for_each_entry_continue_reverse(dev,
5658					     &slot->bus->devices, bus_list) {
5659		if (!dev->slot || dev->slot != slot)
5660			continue;
5661		if (dev->subordinate)
5662			pci_bus_unlock(dev->subordinate);
5663		pci_dev_unlock(dev);
5664	}
5665	return 0;
5666}
5667
5668/*
5669 * Save and disable devices from the top of the tree down while holding
5670 * the @dev mutex lock for the entire tree.
5671 */
5672static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5673{
5674	struct pci_dev *dev;
5675
5676	list_for_each_entry(dev, &bus->devices, bus_list) {
5677		pci_dev_save_and_disable(dev);
5678		if (dev->subordinate)
5679			pci_bus_save_and_disable_locked(dev->subordinate);
5680	}
5681}
5682
5683/*
5684 * Restore devices from top of the tree down while holding @dev mutex lock
5685 * for the entire tree.  Parent bridges need to be restored before we can
5686 * get to subordinate devices.
5687 */
5688static void pci_bus_restore_locked(struct pci_bus *bus)
5689{
5690	struct pci_dev *dev;
5691
5692	list_for_each_entry(dev, &bus->devices, bus_list) {
5693		pci_dev_restore(dev);
5694		if (dev->subordinate)
5695			pci_bus_restore_locked(dev->subordinate);
5696	}
5697}
5698
5699/*
5700 * Save and disable devices from the top of the tree down while holding
5701 * the @dev mutex lock for the entire tree.
5702 */
5703static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5704{
5705	struct pci_dev *dev;
5706
5707	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5708		if (!dev->slot || dev->slot != slot)
5709			continue;
5710		pci_dev_save_and_disable(dev);
5711		if (dev->subordinate)
5712			pci_bus_save_and_disable_locked(dev->subordinate);
5713	}
5714}
5715
5716/*
5717 * Restore devices from top of the tree down while holding @dev mutex lock
5718 * for the entire tree.  Parent bridges need to be restored before we can
5719 * get to subordinate devices.
5720 */
5721static void pci_slot_restore_locked(struct pci_slot *slot)
5722{
5723	struct pci_dev *dev;
5724
5725	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5726		if (!dev->slot || dev->slot != slot)
5727			continue;
5728		pci_dev_restore(dev);
5729		if (dev->subordinate)
5730			pci_bus_restore_locked(dev->subordinate);
5731	}
5732}
5733
5734static int pci_slot_reset(struct pci_slot *slot, bool probe)
5735{
5736	int rc;
5737
5738	if (!slot || !pci_slot_resetable(slot))
5739		return -ENOTTY;
5740
5741	if (!probe)
5742		pci_slot_lock(slot);
5743
5744	might_sleep();
5745
5746	rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5747
5748	if (!probe)
5749		pci_slot_unlock(slot);
5750
5751	return rc;
5752}
5753
5754/**
5755 * pci_probe_reset_slot - probe whether a PCI slot can be reset
5756 * @slot: PCI slot to probe
5757 *
5758 * Return 0 if slot can be reset, negative if a slot reset is not supported.
5759 */
5760int pci_probe_reset_slot(struct pci_slot *slot)
5761{
5762	return pci_slot_reset(slot, PCI_RESET_PROBE);
5763}
5764EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5765
5766/**
5767 * __pci_reset_slot - Try to reset a PCI slot
5768 * @slot: PCI slot to reset
5769 *
5770 * A PCI bus may host multiple slots, each slot may support a reset mechanism
5771 * independent of other slots.  For instance, some slots may support slot power
5772 * control.  In the case of a 1:1 bus to slot architecture, this function may
5773 * wrap the bus reset to avoid spurious slot related events such as hotplug.
5774 * Generally a slot reset should be attempted before a bus reset.  All of the
5775 * function of the slot and any subordinate buses behind the slot are reset
5776 * through this function.  PCI config space of all devices in the slot and
5777 * behind the slot is saved before and restored after reset.
5778 *
5779 * Same as above except return -EAGAIN if the slot cannot be locked
5780 */
5781static int __pci_reset_slot(struct pci_slot *slot)
5782{
5783	int rc;
5784
5785	rc = pci_slot_reset(slot, PCI_RESET_PROBE);
5786	if (rc)
5787		return rc;
5788
5789	if (pci_slot_trylock(slot)) {
5790		pci_slot_save_and_disable_locked(slot);
5791		might_sleep();
5792		rc = pci_reset_hotplug_slot(slot->hotplug, PCI_RESET_DO_RESET);
5793		pci_slot_restore_locked(slot);
5794		pci_slot_unlock(slot);
5795	} else
5796		rc = -EAGAIN;
5797
5798	return rc;
5799}
5800
5801static int pci_bus_reset(struct pci_bus *bus, bool probe)
5802{
5803	int ret;
5804
5805	if (!bus->self || !pci_bus_resetable(bus))
5806		return -ENOTTY;
5807
5808	if (probe)
5809		return 0;
5810
5811	pci_bus_lock(bus);
5812
5813	might_sleep();
5814
5815	ret = pci_bridge_secondary_bus_reset(bus->self);
5816
5817	pci_bus_unlock(bus);
5818
5819	return ret;
5820}
5821
5822/**
5823 * pci_bus_error_reset - reset the bridge's subordinate bus
5824 * @bridge: The parent device that connects to the bus to reset
5825 *
5826 * This function will first try to reset the slots on this bus if the method is
5827 * available. If slot reset fails or is not available, this will fall back to a
5828 * secondary bus reset.
5829 */
5830int pci_bus_error_reset(struct pci_dev *bridge)
5831{
5832	struct pci_bus *bus = bridge->subordinate;
5833	struct pci_slot *slot;
5834
5835	if (!bus)
5836		return -ENOTTY;
5837
5838	mutex_lock(&pci_slot_mutex);
5839	if (list_empty(&bus->slots))
5840		goto bus_reset;
5841
5842	list_for_each_entry(slot, &bus->slots, list)
5843		if (pci_probe_reset_slot(slot))
5844			goto bus_reset;
5845
5846	list_for_each_entry(slot, &bus->slots, list)
5847		if (pci_slot_reset(slot, PCI_RESET_DO_RESET))
5848			goto bus_reset;
5849
5850	mutex_unlock(&pci_slot_mutex);
5851	return 0;
5852bus_reset:
5853	mutex_unlock(&pci_slot_mutex);
5854	return pci_bus_reset(bridge->subordinate, PCI_RESET_DO_RESET);
5855}
5856
5857/**
5858 * pci_probe_reset_bus - probe whether a PCI bus can be reset
5859 * @bus: PCI bus to probe
5860 *
5861 * Return 0 if bus can be reset, negative if a bus reset is not supported.
5862 */
5863int pci_probe_reset_bus(struct pci_bus *bus)
5864{
5865	return pci_bus_reset(bus, PCI_RESET_PROBE);
5866}
5867EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5868
5869/**
5870 * __pci_reset_bus - Try to reset a PCI bus
5871 * @bus: top level PCI bus to reset
5872 *
5873 * Same as above except return -EAGAIN if the bus cannot be locked
5874 */
5875static int __pci_reset_bus(struct pci_bus *bus)
5876{
5877	int rc;
5878
5879	rc = pci_bus_reset(bus, PCI_RESET_PROBE);
5880	if (rc)
5881		return rc;
5882
5883	if (pci_bus_trylock(bus)) {
5884		pci_bus_save_and_disable_locked(bus);
5885		might_sleep();
5886		rc = pci_bridge_secondary_bus_reset(bus->self);
5887		pci_bus_restore_locked(bus);
5888		pci_bus_unlock(bus);
5889	} else
5890		rc = -EAGAIN;
5891
5892	return rc;
5893}
5894
5895/**
5896 * pci_reset_bus - Try to reset a PCI bus
5897 * @pdev: top level PCI device to reset via slot/bus
5898 *
5899 * Same as above except return -EAGAIN if the bus cannot be locked
5900 */
5901int pci_reset_bus(struct pci_dev *pdev)
5902{
5903	return (!pci_probe_reset_slot(pdev->slot)) ?
5904	    __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
5905}
5906EXPORT_SYMBOL_GPL(pci_reset_bus);
5907
5908/**
5909 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
5910 * @dev: PCI device to query
5911 *
5912 * Returns mmrbc: maximum designed memory read count in bytes or
5913 * appropriate error value.
5914 */
5915int pcix_get_max_mmrbc(struct pci_dev *dev)
5916{
5917	int cap;
5918	u32 stat;
5919
5920	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5921	if (!cap)
5922		return -EINVAL;
5923
5924	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5925		return -EINVAL;
5926
5927	return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
5928}
5929EXPORT_SYMBOL(pcix_get_max_mmrbc);
5930
5931/**
5932 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
5933 * @dev: PCI device to query
5934 *
5935 * Returns mmrbc: maximum memory read count in bytes or appropriate error
5936 * value.
5937 */
5938int pcix_get_mmrbc(struct pci_dev *dev)
5939{
5940	int cap;
5941	u16 cmd;
5942
5943	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5944	if (!cap)
5945		return -EINVAL;
5946
5947	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5948		return -EINVAL;
5949
5950	return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
5951}
5952EXPORT_SYMBOL(pcix_get_mmrbc);
5953
5954/**
5955 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
5956 * @dev: PCI device to query
5957 * @mmrbc: maximum memory read count in bytes
5958 *    valid values are 512, 1024, 2048, 4096
5959 *
5960 * If possible sets maximum memory read byte count, some bridges have errata
5961 * that prevent this.
5962 */
5963int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
5964{
5965	int cap;
5966	u32 stat, v, o;
5967	u16 cmd;
5968
5969	if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
5970		return -EINVAL;
5971
5972	v = ffs(mmrbc) - 10;
5973
5974	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5975	if (!cap)
5976		return -EINVAL;
5977
5978	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5979		return -EINVAL;
5980
5981	if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
5982		return -E2BIG;
5983
5984	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5985		return -EINVAL;
5986
5987	o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
5988	if (o != v) {
5989		if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
5990			return -EIO;
5991
5992		cmd &= ~PCI_X_CMD_MAX_READ;
5993		cmd |= v << 2;
5994		if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
5995			return -EIO;
5996	}
5997	return 0;
5998}
5999EXPORT_SYMBOL(pcix_set_mmrbc);
6000
6001/**
6002 * pcie_get_readrq - get PCI Express read request size
6003 * @dev: PCI device to query
6004 *
6005 * Returns maximum memory read request in bytes or appropriate error value.
6006 */
6007int pcie_get_readrq(struct pci_dev *dev)
6008{
6009	u16 ctl;
6010
6011	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
6012
6013	return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
6014}
6015EXPORT_SYMBOL(pcie_get_readrq);
6016
6017/**
6018 * pcie_set_readrq - set PCI Express maximum memory read request
6019 * @dev: PCI device to query
6020 * @rq: maximum memory read count in bytes
6021 *    valid values are 128, 256, 512, 1024, 2048, 4096
6022 *
6023 * If possible sets maximum memory read request in bytes
6024 */
6025int pcie_set_readrq(struct pci_dev *dev, int rq)
6026{
6027	u16 v;
6028	int ret;
 
6029
6030	if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
6031		return -EINVAL;
6032
6033	/*
6034	 * If using the "performance" PCIe config, we clamp the read rq
6035	 * size to the max packet size to keep the host bridge from
6036	 * generating requests larger than we can cope with.
6037	 */
6038	if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
6039		int mps = pcie_get_mps(dev);
6040
6041		if (mps < rq)
6042			rq = mps;
6043	}
6044
6045	v = (ffs(rq) - 8) << 12;
 
 
 
 
 
 
 
 
 
6046
6047	ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6048						  PCI_EXP_DEVCTL_READRQ, v);
6049
6050	return pcibios_err_to_errno(ret);
6051}
6052EXPORT_SYMBOL(pcie_set_readrq);
6053
6054/**
6055 * pcie_get_mps - get PCI Express maximum payload size
6056 * @dev: PCI device to query
6057 *
6058 * Returns maximum payload size in bytes
6059 */
6060int pcie_get_mps(struct pci_dev *dev)
6061{
6062	u16 ctl;
6063
6064	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
6065
6066	return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6067}
6068EXPORT_SYMBOL(pcie_get_mps);
6069
6070/**
6071 * pcie_set_mps - set PCI Express maximum payload size
6072 * @dev: PCI device to query
6073 * @mps: maximum payload size in bytes
6074 *    valid values are 128, 256, 512, 1024, 2048, 4096
6075 *
6076 * If possible sets maximum payload size
6077 */
6078int pcie_set_mps(struct pci_dev *dev, int mps)
6079{
6080	u16 v;
6081	int ret;
6082
6083	if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
6084		return -EINVAL;
6085
6086	v = ffs(mps) - 8;
6087	if (v > dev->pcie_mpss)
6088		return -EINVAL;
6089	v <<= 5;
6090
6091	ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6092						  PCI_EXP_DEVCTL_PAYLOAD, v);
6093
6094	return pcibios_err_to_errno(ret);
6095}
6096EXPORT_SYMBOL(pcie_set_mps);
6097
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6098/**
6099 * pcie_bandwidth_available - determine minimum link settings of a PCIe
6100 *			      device and its bandwidth limitation
6101 * @dev: PCI device to query
6102 * @limiting_dev: storage for device causing the bandwidth limitation
6103 * @speed: storage for speed of limiting device
6104 * @width: storage for width of limiting device
6105 *
6106 * Walk up the PCI device chain and find the point where the minimum
6107 * bandwidth is available.  Return the bandwidth available there and (if
6108 * limiting_dev, speed, and width pointers are supplied) information about
6109 * that point.  The bandwidth returned is in Mb/s, i.e., megabits/second of
6110 * raw bandwidth.
6111 */
6112u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
6113			     enum pci_bus_speed *speed,
6114			     enum pcie_link_width *width)
6115{
6116	u16 lnksta;
6117	enum pci_bus_speed next_speed;
6118	enum pcie_link_width next_width;
6119	u32 bw, next_bw;
6120
6121	if (speed)
6122		*speed = PCI_SPEED_UNKNOWN;
6123	if (width)
6124		*width = PCIE_LNK_WIDTH_UNKNOWN;
6125
6126	bw = 0;
6127
6128	while (dev) {
6129		pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
6130
6131		next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
6132		next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
6133			PCI_EXP_LNKSTA_NLW_SHIFT;
6134
6135		next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
6136
6137		/* Check if current device limits the total bandwidth */
6138		if (!bw || next_bw <= bw) {
6139			bw = next_bw;
6140
6141			if (limiting_dev)
6142				*limiting_dev = dev;
6143			if (speed)
6144				*speed = next_speed;
6145			if (width)
6146				*width = next_width;
6147		}
6148
6149		dev = pci_upstream_bridge(dev);
6150	}
6151
6152	return bw;
6153}
6154EXPORT_SYMBOL(pcie_bandwidth_available);
6155
6156/**
6157 * pcie_get_speed_cap - query for the PCI device's link speed capability
6158 * @dev: PCI device to query
6159 *
6160 * Query the PCI device speed capability.  Return the maximum link speed
6161 * supported by the device.
6162 */
6163enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
6164{
6165	u32 lnkcap2, lnkcap;
6166
6167	/*
6168	 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18.  The
6169	 * implementation note there recommends using the Supported Link
6170	 * Speeds Vector in Link Capabilities 2 when supported.
6171	 *
6172	 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
6173	 * should use the Supported Link Speeds field in Link Capabilities,
6174	 * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
6175	 */
6176	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
6177
6178	/* PCIe r3.0-compliant */
6179	if (lnkcap2)
6180		return PCIE_LNKCAP2_SLS2SPEED(lnkcap2);
6181
6182	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6183	if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
6184		return PCIE_SPEED_5_0GT;
6185	else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
6186		return PCIE_SPEED_2_5GT;
6187
6188	return PCI_SPEED_UNKNOWN;
6189}
6190EXPORT_SYMBOL(pcie_get_speed_cap);
6191
6192/**
6193 * pcie_get_width_cap - query for the PCI device's link width capability
6194 * @dev: PCI device to query
6195 *
6196 * Query the PCI device width capability.  Return the maximum link width
6197 * supported by the device.
6198 */
6199enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
6200{
6201	u32 lnkcap;
6202
6203	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6204	if (lnkcap)
6205		return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4;
6206
6207	return PCIE_LNK_WIDTH_UNKNOWN;
6208}
6209EXPORT_SYMBOL(pcie_get_width_cap);
6210
6211/**
6212 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
6213 * @dev: PCI device
6214 * @speed: storage for link speed
6215 * @width: storage for link width
6216 *
6217 * Calculate a PCI device's link bandwidth by querying for its link speed
6218 * and width, multiplying them, and applying encoding overhead.  The result
6219 * is in Mb/s, i.e., megabits/second of raw bandwidth.
6220 */
6221u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
6222			   enum pcie_link_width *width)
6223{
6224	*speed = pcie_get_speed_cap(dev);
6225	*width = pcie_get_width_cap(dev);
6226
6227	if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
6228		return 0;
6229
6230	return *width * PCIE_SPEED2MBS_ENC(*speed);
6231}
6232
6233/**
6234 * __pcie_print_link_status - Report the PCI device's link speed and width
6235 * @dev: PCI device to query
6236 * @verbose: Print info even when enough bandwidth is available
6237 *
6238 * If the available bandwidth at the device is less than the device is
6239 * capable of, report the device's maximum possible bandwidth and the
6240 * upstream link that limits its performance.  If @verbose, always print
6241 * the available bandwidth, even if the device isn't constrained.
6242 */
6243void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
6244{
6245	enum pcie_link_width width, width_cap;
6246	enum pci_bus_speed speed, speed_cap;
6247	struct pci_dev *limiting_dev = NULL;
6248	u32 bw_avail, bw_cap;
6249
6250	bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
6251	bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
6252
6253	if (bw_avail >= bw_cap && verbose)
6254		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
6255			 bw_cap / 1000, bw_cap % 1000,
6256			 pci_speed_string(speed_cap), width_cap);
6257	else if (bw_avail < bw_cap)
6258		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
6259			 bw_avail / 1000, bw_avail % 1000,
6260			 pci_speed_string(speed), width,
6261			 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
6262			 bw_cap / 1000, bw_cap % 1000,
6263			 pci_speed_string(speed_cap), width_cap);
6264}
6265
6266/**
6267 * pcie_print_link_status - Report the PCI device's link speed and width
6268 * @dev: PCI device to query
6269 *
6270 * Report the available bandwidth at the device.
6271 */
6272void pcie_print_link_status(struct pci_dev *dev)
6273{
6274	__pcie_print_link_status(dev, true);
6275}
6276EXPORT_SYMBOL(pcie_print_link_status);
6277
6278/**
6279 * pci_select_bars - Make BAR mask from the type of resource
6280 * @dev: the PCI device for which BAR mask is made
6281 * @flags: resource type mask to be selected
6282 *
6283 * This helper routine makes bar mask from the type of resource.
6284 */
6285int pci_select_bars(struct pci_dev *dev, unsigned long flags)
6286{
6287	int i, bars = 0;
6288	for (i = 0; i < PCI_NUM_RESOURCES; i++)
6289		if (pci_resource_flags(dev, i) & flags)
6290			bars |= (1 << i);
6291	return bars;
6292}
6293EXPORT_SYMBOL(pci_select_bars);
6294
6295/* Some architectures require additional programming to enable VGA */
6296static arch_set_vga_state_t arch_set_vga_state;
6297
6298void __init pci_register_set_vga_state(arch_set_vga_state_t func)
6299{
6300	arch_set_vga_state = func;	/* NULL disables */
6301}
6302
6303static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
6304				  unsigned int command_bits, u32 flags)
6305{
6306	if (arch_set_vga_state)
6307		return arch_set_vga_state(dev, decode, command_bits,
6308						flags);
6309	return 0;
6310}
6311
6312/**
6313 * pci_set_vga_state - set VGA decode state on device and parents if requested
6314 * @dev: the PCI device
6315 * @decode: true = enable decoding, false = disable decoding
6316 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
6317 * @flags: traverse ancestors and change bridges
6318 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
6319 */
6320int pci_set_vga_state(struct pci_dev *dev, bool decode,
6321		      unsigned int command_bits, u32 flags)
6322{
6323	struct pci_bus *bus;
6324	struct pci_dev *bridge;
6325	u16 cmd;
6326	int rc;
6327
6328	WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
6329
6330	/* ARCH specific VGA enables */
6331	rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
6332	if (rc)
6333		return rc;
6334
6335	if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
6336		pci_read_config_word(dev, PCI_COMMAND, &cmd);
6337		if (decode)
6338			cmd |= command_bits;
6339		else
6340			cmd &= ~command_bits;
6341		pci_write_config_word(dev, PCI_COMMAND, cmd);
6342	}
6343
6344	if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
6345		return 0;
6346
6347	bus = dev->bus;
6348	while (bus) {
6349		bridge = bus->self;
6350		if (bridge) {
6351			pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
6352					     &cmd);
6353			if (decode)
6354				cmd |= PCI_BRIDGE_CTL_VGA;
6355			else
6356				cmd &= ~PCI_BRIDGE_CTL_VGA;
6357			pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
6358					      cmd);
6359		}
6360		bus = bus->parent;
6361	}
6362	return 0;
6363}
6364
6365#ifdef CONFIG_ACPI
6366bool pci_pr3_present(struct pci_dev *pdev)
6367{
6368	struct acpi_device *adev;
6369
6370	if (acpi_disabled)
6371		return false;
6372
6373	adev = ACPI_COMPANION(&pdev->dev);
6374	if (!adev)
6375		return false;
6376
6377	return adev->power.flags.power_resources &&
6378		acpi_has_method(adev->handle, "_PR3");
6379}
6380EXPORT_SYMBOL_GPL(pci_pr3_present);
6381#endif
6382
6383/**
6384 * pci_add_dma_alias - Add a DMA devfn alias for a device
6385 * @dev: the PCI device for which alias is added
6386 * @devfn_from: alias slot and function
6387 * @nr_devfns: number of subsequent devfns to alias
6388 *
6389 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
6390 * which is used to program permissible bus-devfn source addresses for DMA
6391 * requests in an IOMMU.  These aliases factor into IOMMU group creation
6392 * and are useful for devices generating DMA requests beyond or different
6393 * from their logical bus-devfn.  Examples include device quirks where the
6394 * device simply uses the wrong devfn, as well as non-transparent bridges
6395 * where the alias may be a proxy for devices in another domain.
6396 *
6397 * IOMMU group creation is performed during device discovery or addition,
6398 * prior to any potential DMA mapping and therefore prior to driver probing
6399 * (especially for userspace assigned devices where IOMMU group definition
6400 * cannot be left as a userspace activity).  DMA aliases should therefore
6401 * be configured via quirks, such as the PCI fixup header quirk.
6402 */
6403void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from,
6404		       unsigned int nr_devfns)
6405{
6406	int devfn_to;
6407
6408	nr_devfns = min(nr_devfns, (unsigned int)MAX_NR_DEVFNS - devfn_from);
6409	devfn_to = devfn_from + nr_devfns - 1;
6410
6411	if (!dev->dma_alias_mask)
6412		dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL);
6413	if (!dev->dma_alias_mask) {
6414		pci_warn(dev, "Unable to allocate DMA alias mask\n");
6415		return;
6416	}
6417
6418	bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns);
6419
6420	if (nr_devfns == 1)
6421		pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
6422				PCI_SLOT(devfn_from), PCI_FUNC(devfn_from));
6423	else if (nr_devfns > 1)
6424		pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n",
6425				PCI_SLOT(devfn_from), PCI_FUNC(devfn_from),
6426				PCI_SLOT(devfn_to), PCI_FUNC(devfn_to));
6427}
6428
6429bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
6430{
6431	return (dev1->dma_alias_mask &&
6432		test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
6433	       (dev2->dma_alias_mask &&
6434		test_bit(dev1->devfn, dev2->dma_alias_mask)) ||
6435	       pci_real_dma_dev(dev1) == dev2 ||
6436	       pci_real_dma_dev(dev2) == dev1;
6437}
6438
6439bool pci_device_is_present(struct pci_dev *pdev)
6440{
6441	u32 v;
6442
6443	/* Check PF if pdev is a VF, since VF Vendor/Device IDs are 0xffff */
6444	pdev = pci_physfn(pdev);
6445	if (pci_dev_is_disconnected(pdev))
6446		return false;
6447	return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
6448}
6449EXPORT_SYMBOL_GPL(pci_device_is_present);
6450
6451void pci_ignore_hotplug(struct pci_dev *dev)
6452{
6453	struct pci_dev *bridge = dev->bus->self;
6454
6455	dev->ignore_hotplug = 1;
6456	/* Propagate the "ignore hotplug" setting to the parent bridge. */
6457	if (bridge)
6458		bridge->ignore_hotplug = 1;
6459}
6460EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
6461
6462/**
6463 * pci_real_dma_dev - Get PCI DMA device for PCI device
6464 * @dev: the PCI device that may have a PCI DMA alias
6465 *
6466 * Permits the platform to provide architecture-specific functionality to
6467 * devices needing to alias DMA to another PCI device on another PCI bus. If
6468 * the PCI device is on the same bus, it is recommended to use
6469 * pci_add_dma_alias(). This is the default implementation. Architecture
6470 * implementations can override this.
6471 */
6472struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev)
6473{
6474	return dev;
6475}
6476
6477resource_size_t __weak pcibios_default_alignment(void)
6478{
6479	return 0;
6480}
6481
6482/*
6483 * Arches that don't want to expose struct resource to userland as-is in
6484 * sysfs and /proc can implement their own pci_resource_to_user().
6485 */
6486void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
6487				 const struct resource *rsrc,
6488				 resource_size_t *start, resource_size_t *end)
6489{
6490	*start = rsrc->start;
6491	*end = rsrc->end;
6492}
6493
6494static char *resource_alignment_param;
6495static DEFINE_SPINLOCK(resource_alignment_lock);
6496
6497/**
6498 * pci_specified_resource_alignment - get resource alignment specified by user.
6499 * @dev: the PCI device to get
6500 * @resize: whether or not to change resources' size when reassigning alignment
6501 *
6502 * RETURNS: Resource alignment if it is specified.
6503 *          Zero if it is not specified.
6504 */
6505static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
6506							bool *resize)
6507{
6508	int align_order, count;
6509	resource_size_t align = pcibios_default_alignment();
6510	const char *p;
6511	int ret;
6512
6513	spin_lock(&resource_alignment_lock);
6514	p = resource_alignment_param;
6515	if (!p || !*p)
6516		goto out;
6517	if (pci_has_flag(PCI_PROBE_ONLY)) {
6518		align = 0;
6519		pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
6520		goto out;
6521	}
6522
6523	while (*p) {
6524		count = 0;
6525		if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
6526		    p[count] == '@') {
6527			p += count + 1;
6528			if (align_order > 63) {
6529				pr_err("PCI: Invalid requested alignment (order %d)\n",
6530				       align_order);
6531				align_order = PAGE_SHIFT;
6532			}
6533		} else {
6534			align_order = PAGE_SHIFT;
6535		}
6536
6537		ret = pci_dev_str_match(dev, p, &p);
6538		if (ret == 1) {
6539			*resize = true;
6540			align = 1ULL << align_order;
6541			break;
6542		} else if (ret < 0) {
6543			pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
6544			       p);
6545			break;
6546		}
6547
6548		if (*p != ';' && *p != ',') {
6549			/* End of param or invalid format */
6550			break;
6551		}
6552		p++;
6553	}
6554out:
6555	spin_unlock(&resource_alignment_lock);
6556	return align;
6557}
6558
6559static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
6560					   resource_size_t align, bool resize)
6561{
6562	struct resource *r = &dev->resource[bar];
 
6563	resource_size_t size;
6564
6565	if (!(r->flags & IORESOURCE_MEM))
6566		return;
6567
6568	if (r->flags & IORESOURCE_PCI_FIXED) {
6569		pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
6570			 bar, r, (unsigned long long)align);
6571		return;
6572	}
6573
6574	size = resource_size(r);
6575	if (size >= align)
6576		return;
6577
6578	/*
6579	 * Increase the alignment of the resource.  There are two ways we
6580	 * can do this:
6581	 *
6582	 * 1) Increase the size of the resource.  BARs are aligned on their
6583	 *    size, so when we reallocate space for this resource, we'll
6584	 *    allocate it with the larger alignment.  This also prevents
6585	 *    assignment of any other BARs inside the alignment region, so
6586	 *    if we're requesting page alignment, this means no other BARs
6587	 *    will share the page.
6588	 *
6589	 *    The disadvantage is that this makes the resource larger than
6590	 *    the hardware BAR, which may break drivers that compute things
6591	 *    based on the resource size, e.g., to find registers at a
6592	 *    fixed offset before the end of the BAR.
6593	 *
6594	 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6595	 *    set r->start to the desired alignment.  By itself this
6596	 *    doesn't prevent other BARs being put inside the alignment
6597	 *    region, but if we realign *every* resource of every device in
6598	 *    the system, none of them will share an alignment region.
6599	 *
6600	 * When the user has requested alignment for only some devices via
6601	 * the "pci=resource_alignment" argument, "resize" is true and we
6602	 * use the first method.  Otherwise we assume we're aligning all
6603	 * devices and we use the second.
6604	 */
6605
6606	pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n",
6607		 bar, r, (unsigned long long)align);
6608
6609	if (resize) {
6610		r->start = 0;
6611		r->end = align - 1;
6612	} else {
6613		r->flags &= ~IORESOURCE_SIZEALIGN;
6614		r->flags |= IORESOURCE_STARTALIGN;
6615		r->start = align;
6616		r->end = r->start + size - 1;
6617	}
6618	r->flags |= IORESOURCE_UNSET;
6619}
6620
6621/*
6622 * This function disables memory decoding and releases memory resources
6623 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6624 * It also rounds up size to specified alignment.
6625 * Later on, the kernel will assign page-aligned memory resource back
6626 * to the device.
6627 */
6628void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6629{
6630	int i;
6631	struct resource *r;
6632	resource_size_t align;
6633	u16 command;
6634	bool resize = false;
6635
6636	/*
6637	 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6638	 * 3.4.1.11.  Their resources are allocated from the space
6639	 * described by the VF BARx register in the PF's SR-IOV capability.
6640	 * We can't influence their alignment here.
6641	 */
6642	if (dev->is_virtfn)
6643		return;
6644
6645	/* check if specified PCI is target device to reassign */
6646	align = pci_specified_resource_alignment(dev, &resize);
6647	if (!align)
6648		return;
6649
6650	if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6651	    (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6652		pci_warn(dev, "Can't reassign resources to host bridge\n");
6653		return;
6654	}
6655
6656	pci_read_config_word(dev, PCI_COMMAND, &command);
6657	command &= ~PCI_COMMAND_MEMORY;
6658	pci_write_config_word(dev, PCI_COMMAND, command);
6659
6660	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6661		pci_request_resource_alignment(dev, i, align, resize);
6662
6663	/*
6664	 * Need to disable bridge's resource window,
6665	 * to enable the kernel to reassign new resource
6666	 * window later on.
6667	 */
6668	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6669		for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6670			r = &dev->resource[i];
6671			if (!(r->flags & IORESOURCE_MEM))
6672				continue;
6673			r->flags |= IORESOURCE_UNSET;
6674			r->end = resource_size(r) - 1;
6675			r->start = 0;
6676		}
6677		pci_disable_bridge_window(dev);
6678	}
6679}
6680
6681static ssize_t resource_alignment_show(struct bus_type *bus, char *buf)
6682{
6683	size_t count = 0;
6684
6685	spin_lock(&resource_alignment_lock);
6686	if (resource_alignment_param)
6687		count = sysfs_emit(buf, "%s\n", resource_alignment_param);
6688	spin_unlock(&resource_alignment_lock);
6689
6690	return count;
6691}
6692
6693static ssize_t resource_alignment_store(struct bus_type *bus,
6694					const char *buf, size_t count)
6695{
6696	char *param, *old, *end;
6697
6698	if (count >= (PAGE_SIZE - 1))
6699		return -EINVAL;
6700
6701	param = kstrndup(buf, count, GFP_KERNEL);
6702	if (!param)
6703		return -ENOMEM;
6704
6705	end = strchr(param, '\n');
6706	if (end)
6707		*end = '\0';
6708
6709	spin_lock(&resource_alignment_lock);
6710	old = resource_alignment_param;
6711	if (strlen(param)) {
6712		resource_alignment_param = param;
6713	} else {
6714		kfree(param);
6715		resource_alignment_param = NULL;
6716	}
6717	spin_unlock(&resource_alignment_lock);
6718
6719	kfree(old);
6720
6721	return count;
6722}
6723
6724static BUS_ATTR_RW(resource_alignment);
6725
6726static int __init pci_resource_alignment_sysfs_init(void)
6727{
6728	return bus_create_file(&pci_bus_type,
6729					&bus_attr_resource_alignment);
6730}
6731late_initcall(pci_resource_alignment_sysfs_init);
6732
6733static void pci_no_domains(void)
6734{
6735#ifdef CONFIG_PCI_DOMAINS
6736	pci_domains_supported = 0;
6737#endif
6738}
6739
6740#ifdef CONFIG_PCI_DOMAINS_GENERIC
6741static DEFINE_IDA(pci_domain_nr_static_ida);
6742static DEFINE_IDA(pci_domain_nr_dynamic_ida);
6743
6744static void of_pci_reserve_static_domain_nr(void)
6745{
6746	struct device_node *np;
6747	int domain_nr;
6748
6749	for_each_node_by_type(np, "pci") {
6750		domain_nr = of_get_pci_domain_nr(np);
6751		if (domain_nr < 0)
6752			continue;
6753		/*
6754		 * Permanently allocate domain_nr in dynamic_ida
6755		 * to prevent it from dynamic allocation.
6756		 */
6757		ida_alloc_range(&pci_domain_nr_dynamic_ida,
6758				domain_nr, domain_nr, GFP_KERNEL);
6759	}
6760}
6761
6762static int of_pci_bus_find_domain_nr(struct device *parent)
6763{
6764	static bool static_domains_reserved = false;
6765	int domain_nr;
6766
6767	/* On the first call scan device tree for static allocations. */
6768	if (!static_domains_reserved) {
6769		of_pci_reserve_static_domain_nr();
6770		static_domains_reserved = true;
6771	}
6772
6773	if (parent) {
6774		/*
6775		 * If domain is in DT, allocate it in static IDA.  This
6776		 * prevents duplicate static allocations in case of errors
6777		 * in DT.
6778		 */
6779		domain_nr = of_get_pci_domain_nr(parent->of_node);
6780		if (domain_nr >= 0)
6781			return ida_alloc_range(&pci_domain_nr_static_ida,
6782					       domain_nr, domain_nr,
6783					       GFP_KERNEL);
6784	}
6785
6786	/*
6787	 * If domain was not specified in DT, choose a free ID from dynamic
6788	 * allocations. All domain numbers from DT are permanently in
6789	 * dynamic allocations to prevent assigning them to other DT nodes
6790	 * without static domain.
6791	 */
6792	return ida_alloc(&pci_domain_nr_dynamic_ida, GFP_KERNEL);
6793}
6794
6795static void of_pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent)
6796{
6797	if (bus->domain_nr < 0)
6798		return;
6799
6800	/* Release domain from IDA where it was allocated. */
6801	if (of_get_pci_domain_nr(parent->of_node) == bus->domain_nr)
6802		ida_free(&pci_domain_nr_static_ida, bus->domain_nr);
6803	else
6804		ida_free(&pci_domain_nr_dynamic_ida, bus->domain_nr);
6805}
6806
6807int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6808{
6809	return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6810			       acpi_pci_bus_find_domain_nr(bus);
6811}
6812
6813void pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent)
6814{
6815	if (!acpi_disabled)
6816		return;
6817	of_pci_bus_release_domain_nr(bus, parent);
6818}
6819#endif
6820
6821/**
6822 * pci_ext_cfg_avail - can we access extended PCI config space?
6823 *
6824 * Returns 1 if we can access PCI extended config space (offsets
6825 * greater than 0xff). This is the default implementation. Architecture
6826 * implementations can override this.
6827 */
6828int __weak pci_ext_cfg_avail(void)
6829{
6830	return 1;
6831}
6832
6833void __weak pci_fixup_cardbus(struct pci_bus *bus)
6834{
6835}
6836EXPORT_SYMBOL(pci_fixup_cardbus);
6837
6838static int __init pci_setup(char *str)
6839{
6840	while (str) {
6841		char *k = strchr(str, ',');
6842		if (k)
6843			*k++ = 0;
6844		if (*str && (str = pcibios_setup(str)) && *str) {
6845			if (!strcmp(str, "nomsi")) {
6846				pci_no_msi();
6847			} else if (!strncmp(str, "noats", 5)) {
6848				pr_info("PCIe: ATS is disabled\n");
6849				pcie_ats_disabled = true;
6850			} else if (!strcmp(str, "noaer")) {
6851				pci_no_aer();
6852			} else if (!strcmp(str, "earlydump")) {
6853				pci_early_dump = true;
6854			} else if (!strncmp(str, "realloc=", 8)) {
6855				pci_realloc_get_opt(str + 8);
6856			} else if (!strncmp(str, "realloc", 7)) {
6857				pci_realloc_get_opt("on");
6858			} else if (!strcmp(str, "nodomains")) {
6859				pci_no_domains();
6860			} else if (!strncmp(str, "noari", 5)) {
6861				pcie_ari_disabled = true;
6862			} else if (!strncmp(str, "cbiosize=", 9)) {
6863				pci_cardbus_io_size = memparse(str + 9, &str);
6864			} else if (!strncmp(str, "cbmemsize=", 10)) {
6865				pci_cardbus_mem_size = memparse(str + 10, &str);
6866			} else if (!strncmp(str, "resource_alignment=", 19)) {
6867				resource_alignment_param = str + 19;
6868			} else if (!strncmp(str, "ecrc=", 5)) {
6869				pcie_ecrc_get_policy(str + 5);
6870			} else if (!strncmp(str, "hpiosize=", 9)) {
6871				pci_hotplug_io_size = memparse(str + 9, &str);
6872			} else if (!strncmp(str, "hpmmiosize=", 11)) {
6873				pci_hotplug_mmio_size = memparse(str + 11, &str);
6874			} else if (!strncmp(str, "hpmmioprefsize=", 15)) {
6875				pci_hotplug_mmio_pref_size = memparse(str + 15, &str);
6876			} else if (!strncmp(str, "hpmemsize=", 10)) {
6877				pci_hotplug_mmio_size = memparse(str + 10, &str);
6878				pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size;
6879			} else if (!strncmp(str, "hpbussize=", 10)) {
6880				pci_hotplug_bus_size =
6881					simple_strtoul(str + 10, &str, 0);
6882				if (pci_hotplug_bus_size > 0xff)
6883					pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
6884			} else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
6885				pcie_bus_config = PCIE_BUS_TUNE_OFF;
6886			} else if (!strncmp(str, "pcie_bus_safe", 13)) {
6887				pcie_bus_config = PCIE_BUS_SAFE;
6888			} else if (!strncmp(str, "pcie_bus_perf", 13)) {
6889				pcie_bus_config = PCIE_BUS_PERFORMANCE;
6890			} else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
6891				pcie_bus_config = PCIE_BUS_PEER2PEER;
6892			} else if (!strncmp(str, "pcie_scan_all", 13)) {
6893				pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
6894			} else if (!strncmp(str, "disable_acs_redir=", 18)) {
6895				disable_acs_redir_param = str + 18;
6896			} else {
6897				pr_err("PCI: Unknown option `%s'\n", str);
6898			}
6899		}
6900		str = k;
6901	}
6902	return 0;
6903}
6904early_param("pci", pci_setup);
6905
6906/*
6907 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
6908 * in pci_setup(), above, to point to data in the __initdata section which
6909 * will be freed after the init sequence is complete. We can't allocate memory
6910 * in pci_setup() because some architectures do not have any memory allocation
6911 * service available during an early_param() call. So we allocate memory and
6912 * copy the variable here before the init section is freed.
6913 *
6914 */
6915static int __init pci_realloc_setup_params(void)
6916{
6917	resource_alignment_param = kstrdup(resource_alignment_param,
6918					   GFP_KERNEL);
6919	disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
6920
6921	return 0;
6922}
6923pure_initcall(pci_realloc_setup_params);
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * PCI Bus Services, see include/linux/pci.h for further explanation.
   4 *
   5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
   6 * David Mosberger-Tang
   7 *
   8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
   9 */
  10
  11#include <linux/acpi.h>
  12#include <linux/kernel.h>
  13#include <linux/delay.h>
  14#include <linux/dmi.h>
  15#include <linux/init.h>
  16#include <linux/msi.h>
  17#include <linux/of.h>
  18#include <linux/pci.h>
  19#include <linux/pm.h>
  20#include <linux/slab.h>
  21#include <linux/module.h>
  22#include <linux/spinlock.h>
  23#include <linux/string.h>
  24#include <linux/log2.h>
  25#include <linux/logic_pio.h>
  26#include <linux/pm_wakeup.h>
  27#include <linux/interrupt.h>
  28#include <linux/device.h>
  29#include <linux/pm_runtime.h>
  30#include <linux/pci_hotplug.h>
  31#include <linux/vmalloc.h>
  32#include <asm/dma.h>
  33#include <linux/aer.h>
  34#include <linux/bitfield.h>
  35#include "pci.h"
  36
  37DEFINE_MUTEX(pci_slot_mutex);
  38
  39const char *pci_power_names[] = {
  40	"error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
  41};
  42EXPORT_SYMBOL_GPL(pci_power_names);
  43
  44#ifdef CONFIG_X86_32
  45int isa_dma_bridge_buggy;
  46EXPORT_SYMBOL(isa_dma_bridge_buggy);
  47#endif
  48
  49int pci_pci_problems;
  50EXPORT_SYMBOL(pci_pci_problems);
  51
  52unsigned int pci_pm_d3hot_delay;
  53
  54static void pci_pme_list_scan(struct work_struct *work);
  55
  56static LIST_HEAD(pci_pme_list);
  57static DEFINE_MUTEX(pci_pme_list_mutex);
  58static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
  59
  60struct pci_pme_device {
  61	struct list_head list;
  62	struct pci_dev *dev;
  63};
  64
  65#define PME_TIMEOUT 1000 /* How long between PME checks */
  66
  67/*
  68 * Following exit from Conventional Reset, devices must be ready within 1 sec
  69 * (PCIe r6.0 sec 6.6.1).  A D3cold to D0 transition implies a Conventional
  70 * Reset (PCIe r6.0 sec 5.8).
  71 */
  72#define PCI_RESET_WAIT 1000 /* msec */
  73
  74/*
  75 * Devices may extend the 1 sec period through Request Retry Status
  76 * completions (PCIe r6.0 sec 2.3.1).  The spec does not provide an upper
  77 * limit, but 60 sec ought to be enough for any device to become
  78 * responsive.
  79 */
  80#define PCIE_RESET_READY_POLL_MS 60000 /* msec */
  81
  82static void pci_dev_d3_sleep(struct pci_dev *dev)
  83{
  84	unsigned int delay_ms = max(dev->d3hot_delay, pci_pm_d3hot_delay);
  85	unsigned int upper;
  86
  87	if (delay_ms) {
  88		/* Use a 20% upper bound, 1ms minimum */
  89		upper = max(DIV_ROUND_CLOSEST(delay_ms, 5), 1U);
  90		usleep_range(delay_ms * USEC_PER_MSEC,
  91			     (delay_ms + upper) * USEC_PER_MSEC);
  92	}
  93}
  94
  95bool pci_reset_supported(struct pci_dev *dev)
  96{
  97	return dev->reset_methods[0] != 0;
  98}
  99
 100#ifdef CONFIG_PCI_DOMAINS
 101int pci_domains_supported = 1;
 102#endif
 103
 104#define DEFAULT_CARDBUS_IO_SIZE		(256)
 105#define DEFAULT_CARDBUS_MEM_SIZE	(64*1024*1024)
 106/* pci=cbmemsize=nnM,cbiosize=nn can override this */
 107unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
 108unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
 109
 110#define DEFAULT_HOTPLUG_IO_SIZE		(256)
 111#define DEFAULT_HOTPLUG_MMIO_SIZE	(2*1024*1024)
 112#define DEFAULT_HOTPLUG_MMIO_PREF_SIZE	(2*1024*1024)
 113/* hpiosize=nn can override this */
 114unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
 115/*
 116 * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size,
 117 * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size;
 118 * pci=hpmemsize=nnM overrides both
 119 */
 120unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE;
 121unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE;
 122
 123#define DEFAULT_HOTPLUG_BUS_SIZE	1
 124unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
 125
 126
 127/* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */
 128#ifdef CONFIG_PCIE_BUS_TUNE_OFF
 129enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
 130#elif defined CONFIG_PCIE_BUS_SAFE
 131enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE;
 132#elif defined CONFIG_PCIE_BUS_PERFORMANCE
 133enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE;
 134#elif defined CONFIG_PCIE_BUS_PEER2PEER
 135enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER;
 136#else
 137enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
 138#endif
 139
 140/*
 141 * The default CLS is used if arch didn't set CLS explicitly and not
 142 * all pci devices agree on the same value.  Arch can override either
 143 * the dfl or actual value as it sees fit.  Don't forget this is
 144 * measured in 32-bit words, not bytes.
 145 */
 146u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
 147u8 pci_cache_line_size;
 148
 149/*
 150 * If we set up a device for bus mastering, we need to check the latency
 151 * timer as certain BIOSes forget to set it properly.
 152 */
 153unsigned int pcibios_max_latency = 255;
 154
 155/* If set, the PCIe ARI capability will not be used. */
 156static bool pcie_ari_disabled;
 157
 158/* If set, the PCIe ATS capability will not be used. */
 159static bool pcie_ats_disabled;
 160
 161/* If set, the PCI config space of each device is printed during boot. */
 162bool pci_early_dump;
 163
 164bool pci_ats_disabled(void)
 165{
 166	return pcie_ats_disabled;
 167}
 168EXPORT_SYMBOL_GPL(pci_ats_disabled);
 169
 170/* Disable bridge_d3 for all PCIe ports */
 171static bool pci_bridge_d3_disable;
 172/* Force bridge_d3 for all PCIe ports */
 173static bool pci_bridge_d3_force;
 174
 175static int __init pcie_port_pm_setup(char *str)
 176{
 177	if (!strcmp(str, "off"))
 178		pci_bridge_d3_disable = true;
 179	else if (!strcmp(str, "force"))
 180		pci_bridge_d3_force = true;
 181	return 1;
 182}
 183__setup("pcie_port_pm=", pcie_port_pm_setup);
 184
 
 
 
 185/**
 186 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
 187 * @bus: pointer to PCI bus structure to search
 188 *
 189 * Given a PCI bus, returns the highest PCI bus number present in the set
 190 * including the given PCI bus and its list of child PCI buses.
 191 */
 192unsigned char pci_bus_max_busnr(struct pci_bus *bus)
 193{
 194	struct pci_bus *tmp;
 195	unsigned char max, n;
 196
 197	max = bus->busn_res.end;
 198	list_for_each_entry(tmp, &bus->children, node) {
 199		n = pci_bus_max_busnr(tmp);
 200		if (n > max)
 201			max = n;
 202	}
 203	return max;
 204}
 205EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
 206
 207/**
 208 * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS
 209 * @pdev: the PCI device
 210 *
 211 * Returns error bits set in PCI_STATUS and clears them.
 212 */
 213int pci_status_get_and_clear_errors(struct pci_dev *pdev)
 214{
 215	u16 status;
 216	int ret;
 217
 218	ret = pci_read_config_word(pdev, PCI_STATUS, &status);
 219	if (ret != PCIBIOS_SUCCESSFUL)
 220		return -EIO;
 221
 222	status &= PCI_STATUS_ERROR_BITS;
 223	if (status)
 224		pci_write_config_word(pdev, PCI_STATUS, status);
 225
 226	return status;
 227}
 228EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors);
 229
 230#ifdef CONFIG_HAS_IOMEM
 231static void __iomem *__pci_ioremap_resource(struct pci_dev *pdev, int bar,
 232					    bool write_combine)
 233{
 234	struct resource *res = &pdev->resource[bar];
 235	resource_size_t start = res->start;
 236	resource_size_t size = resource_size(res);
 237
 238	/*
 239	 * Make sure the BAR is actually a memory resource, not an IO resource
 240	 */
 241	if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
 242		pci_err(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
 243		return NULL;
 244	}
 245
 246	if (write_combine)
 247		return ioremap_wc(start, size);
 248
 249	return ioremap(start, size);
 250}
 251
 252void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
 253{
 254	return __pci_ioremap_resource(pdev, bar, false);
 255}
 256EXPORT_SYMBOL_GPL(pci_ioremap_bar);
 257
 258void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
 259{
 260	return __pci_ioremap_resource(pdev, bar, true);
 261}
 262EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
 263#endif
 264
 265/**
 266 * pci_dev_str_match_path - test if a path string matches a device
 267 * @dev: the PCI device to test
 268 * @path: string to match the device against
 269 * @endptr: pointer to the string after the match
 270 *
 271 * Test if a string (typically from a kernel parameter) formatted as a
 272 * path of device/function addresses matches a PCI device. The string must
 273 * be of the form:
 274 *
 275 *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
 276 *
 277 * A path for a device can be obtained using 'lspci -t'.  Using a path
 278 * is more robust against bus renumbering than using only a single bus,
 279 * device and function address.
 280 *
 281 * Returns 1 if the string matches the device, 0 if it does not and
 282 * a negative error code if it fails to parse the string.
 283 */
 284static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
 285				  const char **endptr)
 286{
 287	int ret;
 288	unsigned int seg, bus, slot, func;
 289	char *wpath, *p;
 290	char end;
 291
 292	*endptr = strchrnul(path, ';');
 293
 294	wpath = kmemdup_nul(path, *endptr - path, GFP_ATOMIC);
 295	if (!wpath)
 296		return -ENOMEM;
 297
 298	while (1) {
 299		p = strrchr(wpath, '/');
 300		if (!p)
 301			break;
 302		ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
 303		if (ret != 2) {
 304			ret = -EINVAL;
 305			goto free_and_exit;
 306		}
 307
 308		if (dev->devfn != PCI_DEVFN(slot, func)) {
 309			ret = 0;
 310			goto free_and_exit;
 311		}
 312
 313		/*
 314		 * Note: we don't need to get a reference to the upstream
 315		 * bridge because we hold a reference to the top level
 316		 * device which should hold a reference to the bridge,
 317		 * and so on.
 318		 */
 319		dev = pci_upstream_bridge(dev);
 320		if (!dev) {
 321			ret = 0;
 322			goto free_and_exit;
 323		}
 324
 325		*p = 0;
 326	}
 327
 328	ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
 329		     &func, &end);
 330	if (ret != 4) {
 331		seg = 0;
 332		ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
 333		if (ret != 3) {
 334			ret = -EINVAL;
 335			goto free_and_exit;
 336		}
 337	}
 338
 339	ret = (seg == pci_domain_nr(dev->bus) &&
 340	       bus == dev->bus->number &&
 341	       dev->devfn == PCI_DEVFN(slot, func));
 342
 343free_and_exit:
 344	kfree(wpath);
 345	return ret;
 346}
 347
 348/**
 349 * pci_dev_str_match - test if a string matches a device
 350 * @dev: the PCI device to test
 351 * @p: string to match the device against
 352 * @endptr: pointer to the string after the match
 353 *
 354 * Test if a string (typically from a kernel parameter) matches a specified
 355 * PCI device. The string may be of one of the following formats:
 356 *
 357 *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
 358 *   pci:<vendor>:<device>[:<subvendor>:<subdevice>]
 359 *
 360 * The first format specifies a PCI bus/device/function address which
 361 * may change if new hardware is inserted, if motherboard firmware changes,
 362 * or due to changes caused in kernel parameters. If the domain is
 363 * left unspecified, it is taken to be 0.  In order to be robust against
 364 * bus renumbering issues, a path of PCI device/function numbers may be used
 365 * to address the specific device.  The path for a device can be determined
 366 * through the use of 'lspci -t'.
 367 *
 368 * The second format matches devices using IDs in the configuration
 369 * space which may match multiple devices in the system. A value of 0
 370 * for any field will match all devices. (Note: this differs from
 371 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
 372 * legacy reasons and convenience so users don't have to specify
 373 * FFFFFFFFs on the command line.)
 374 *
 375 * Returns 1 if the string matches the device, 0 if it does not and
 376 * a negative error code if the string cannot be parsed.
 377 */
 378static int pci_dev_str_match(struct pci_dev *dev, const char *p,
 379			     const char **endptr)
 380{
 381	int ret;
 382	int count;
 383	unsigned short vendor, device, subsystem_vendor, subsystem_device;
 384
 385	if (strncmp(p, "pci:", 4) == 0) {
 386		/* PCI vendor/device (subvendor/subdevice) IDs are specified */
 387		p += 4;
 388		ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
 389			     &subsystem_vendor, &subsystem_device, &count);
 390		if (ret != 4) {
 391			ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
 392			if (ret != 2)
 393				return -EINVAL;
 394
 395			subsystem_vendor = 0;
 396			subsystem_device = 0;
 397		}
 398
 399		p += count;
 400
 401		if ((!vendor || vendor == dev->vendor) &&
 402		    (!device || device == dev->device) &&
 403		    (!subsystem_vendor ||
 404			    subsystem_vendor == dev->subsystem_vendor) &&
 405		    (!subsystem_device ||
 406			    subsystem_device == dev->subsystem_device))
 407			goto found;
 408	} else {
 409		/*
 410		 * PCI Bus, Device, Function IDs are specified
 411		 * (optionally, may include a path of devfns following it)
 412		 */
 413		ret = pci_dev_str_match_path(dev, p, &p);
 414		if (ret < 0)
 415			return ret;
 416		else if (ret)
 417			goto found;
 418	}
 419
 420	*endptr = p;
 421	return 0;
 422
 423found:
 424	*endptr = p;
 425	return 1;
 426}
 427
 428static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
 429				  u8 pos, int cap, int *ttl)
 430{
 431	u8 id;
 432	u16 ent;
 433
 434	pci_bus_read_config_byte(bus, devfn, pos, &pos);
 435
 436	while ((*ttl)--) {
 437		if (pos < 0x40)
 438			break;
 439		pos &= ~3;
 440		pci_bus_read_config_word(bus, devfn, pos, &ent);
 441
 442		id = ent & 0xff;
 443		if (id == 0xff)
 444			break;
 445		if (id == cap)
 446			return pos;
 447		pos = (ent >> 8);
 448	}
 449	return 0;
 450}
 451
 452static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
 453			      u8 pos, int cap)
 454{
 455	int ttl = PCI_FIND_CAP_TTL;
 456
 457	return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
 458}
 459
 460u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
 461{
 462	return __pci_find_next_cap(dev->bus, dev->devfn,
 463				   pos + PCI_CAP_LIST_NEXT, cap);
 464}
 465EXPORT_SYMBOL_GPL(pci_find_next_capability);
 466
 467static u8 __pci_bus_find_cap_start(struct pci_bus *bus,
 468				    unsigned int devfn, u8 hdr_type)
 469{
 470	u16 status;
 471
 472	pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
 473	if (!(status & PCI_STATUS_CAP_LIST))
 474		return 0;
 475
 476	switch (hdr_type) {
 477	case PCI_HEADER_TYPE_NORMAL:
 478	case PCI_HEADER_TYPE_BRIDGE:
 479		return PCI_CAPABILITY_LIST;
 480	case PCI_HEADER_TYPE_CARDBUS:
 481		return PCI_CB_CAPABILITY_LIST;
 482	}
 483
 484	return 0;
 485}
 486
 487/**
 488 * pci_find_capability - query for devices' capabilities
 489 * @dev: PCI device to query
 490 * @cap: capability code
 491 *
 492 * Tell if a device supports a given PCI capability.
 493 * Returns the address of the requested capability structure within the
 494 * device's PCI configuration space or 0 in case the device does not
 495 * support it.  Possible values for @cap include:
 496 *
 497 *  %PCI_CAP_ID_PM           Power Management
 498 *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
 499 *  %PCI_CAP_ID_VPD          Vital Product Data
 500 *  %PCI_CAP_ID_SLOTID       Slot Identification
 501 *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
 502 *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
 503 *  %PCI_CAP_ID_PCIX         PCI-X
 504 *  %PCI_CAP_ID_EXP          PCI Express
 505 */
 506u8 pci_find_capability(struct pci_dev *dev, int cap)
 507{
 508	u8 pos;
 509
 510	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
 511	if (pos)
 512		pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
 513
 514	return pos;
 515}
 516EXPORT_SYMBOL(pci_find_capability);
 517
 518/**
 519 * pci_bus_find_capability - query for devices' capabilities
 520 * @bus: the PCI bus to query
 521 * @devfn: PCI device to query
 522 * @cap: capability code
 523 *
 524 * Like pci_find_capability() but works for PCI devices that do not have a
 525 * pci_dev structure set up yet.
 526 *
 527 * Returns the address of the requested capability structure within the
 528 * device's PCI configuration space or 0 in case the device does not
 529 * support it.
 530 */
 531u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
 532{
 533	u8 hdr_type, pos;
 534
 535	pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
 536
 537	pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & PCI_HEADER_TYPE_MASK);
 538	if (pos)
 539		pos = __pci_find_next_cap(bus, devfn, pos, cap);
 540
 541	return pos;
 542}
 543EXPORT_SYMBOL(pci_bus_find_capability);
 544
 545/**
 546 * pci_find_next_ext_capability - Find an extended capability
 547 * @dev: PCI device to query
 548 * @start: address at which to start looking (0 to start at beginning of list)
 549 * @cap: capability code
 550 *
 551 * Returns the address of the next matching extended capability structure
 552 * within the device's PCI configuration space or 0 if the device does
 553 * not support it.  Some capabilities can occur several times, e.g., the
 554 * vendor-specific capability, and this provides a way to find them all.
 555 */
 556u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap)
 557{
 558	u32 header;
 559	int ttl;
 560	u16 pos = PCI_CFG_SPACE_SIZE;
 561
 562	/* minimum 8 bytes per capability */
 563	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
 564
 565	if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
 566		return 0;
 567
 568	if (start)
 569		pos = start;
 570
 571	if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
 572		return 0;
 573
 574	/*
 575	 * If we have no capabilities, this is indicated by cap ID,
 576	 * cap version and next pointer all being 0.
 577	 */
 578	if (header == 0)
 579		return 0;
 580
 581	while (ttl-- > 0) {
 582		if (PCI_EXT_CAP_ID(header) == cap && pos != start)
 583			return pos;
 584
 585		pos = PCI_EXT_CAP_NEXT(header);
 586		if (pos < PCI_CFG_SPACE_SIZE)
 587			break;
 588
 589		if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
 590			break;
 591	}
 592
 593	return 0;
 594}
 595EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
 596
 597/**
 598 * pci_find_ext_capability - Find an extended capability
 599 * @dev: PCI device to query
 600 * @cap: capability code
 601 *
 602 * Returns the address of the requested extended capability structure
 603 * within the device's PCI configuration space or 0 if the device does
 604 * not support it.  Possible values for @cap include:
 605 *
 606 *  %PCI_EXT_CAP_ID_ERR		Advanced Error Reporting
 607 *  %PCI_EXT_CAP_ID_VC		Virtual Channel
 608 *  %PCI_EXT_CAP_ID_DSN		Device Serial Number
 609 *  %PCI_EXT_CAP_ID_PWR		Power Budgeting
 610 */
 611u16 pci_find_ext_capability(struct pci_dev *dev, int cap)
 612{
 613	return pci_find_next_ext_capability(dev, 0, cap);
 614}
 615EXPORT_SYMBOL_GPL(pci_find_ext_capability);
 616
 617/**
 618 * pci_get_dsn - Read and return the 8-byte Device Serial Number
 619 * @dev: PCI device to query
 620 *
 621 * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial
 622 * Number.
 623 *
 624 * Returns the DSN, or zero if the capability does not exist.
 625 */
 626u64 pci_get_dsn(struct pci_dev *dev)
 627{
 628	u32 dword;
 629	u64 dsn;
 630	int pos;
 631
 632	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN);
 633	if (!pos)
 634		return 0;
 635
 636	/*
 637	 * The Device Serial Number is two dwords offset 4 bytes from the
 638	 * capability position. The specification says that the first dword is
 639	 * the lower half, and the second dword is the upper half.
 640	 */
 641	pos += 4;
 642	pci_read_config_dword(dev, pos, &dword);
 643	dsn = (u64)dword;
 644	pci_read_config_dword(dev, pos + 4, &dword);
 645	dsn |= ((u64)dword) << 32;
 646
 647	return dsn;
 648}
 649EXPORT_SYMBOL_GPL(pci_get_dsn);
 650
 651static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap)
 652{
 653	int rc, ttl = PCI_FIND_CAP_TTL;
 654	u8 cap, mask;
 655
 656	if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
 657		mask = HT_3BIT_CAP_MASK;
 658	else
 659		mask = HT_5BIT_CAP_MASK;
 660
 661	pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
 662				      PCI_CAP_ID_HT, &ttl);
 663	while (pos) {
 664		rc = pci_read_config_byte(dev, pos + 3, &cap);
 665		if (rc != PCIBIOS_SUCCESSFUL)
 666			return 0;
 667
 668		if ((cap & mask) == ht_cap)
 669			return pos;
 670
 671		pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
 672					      pos + PCI_CAP_LIST_NEXT,
 673					      PCI_CAP_ID_HT, &ttl);
 674	}
 675
 676	return 0;
 677}
 678
 679/**
 680 * pci_find_next_ht_capability - query a device's HyperTransport capabilities
 681 * @dev: PCI device to query
 682 * @pos: Position from which to continue searching
 683 * @ht_cap: HyperTransport capability code
 684 *
 685 * To be used in conjunction with pci_find_ht_capability() to search for
 686 * all capabilities matching @ht_cap. @pos should always be a value returned
 687 * from pci_find_ht_capability().
 688 *
 689 * NB. To be 100% safe against broken PCI devices, the caller should take
 690 * steps to avoid an infinite loop.
 691 */
 692u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap)
 693{
 694	return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
 695}
 696EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
 697
 698/**
 699 * pci_find_ht_capability - query a device's HyperTransport capabilities
 700 * @dev: PCI device to query
 701 * @ht_cap: HyperTransport capability code
 702 *
 703 * Tell if a device supports a given HyperTransport capability.
 704 * Returns an address within the device's PCI configuration space
 705 * or 0 in case the device does not support the request capability.
 706 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
 707 * which has a HyperTransport capability matching @ht_cap.
 708 */
 709u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
 710{
 711	u8 pos;
 712
 713	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
 714	if (pos)
 715		pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
 716
 717	return pos;
 718}
 719EXPORT_SYMBOL_GPL(pci_find_ht_capability);
 720
 721/**
 722 * pci_find_vsec_capability - Find a vendor-specific extended capability
 723 * @dev: PCI device to query
 724 * @vendor: Vendor ID for which capability is defined
 725 * @cap: Vendor-specific capability ID
 726 *
 727 * If @dev has Vendor ID @vendor, search for a VSEC capability with
 728 * VSEC ID @cap. If found, return the capability offset in
 729 * config space; otherwise return 0.
 730 */
 731u16 pci_find_vsec_capability(struct pci_dev *dev, u16 vendor, int cap)
 732{
 733	u16 vsec = 0;
 734	u32 header;
 735	int ret;
 736
 737	if (vendor != dev->vendor)
 738		return 0;
 739
 740	while ((vsec = pci_find_next_ext_capability(dev, vsec,
 741						     PCI_EXT_CAP_ID_VNDR))) {
 742		ret = pci_read_config_dword(dev, vsec + PCI_VNDR_HEADER, &header);
 743		if (ret != PCIBIOS_SUCCESSFUL)
 744			continue;
 745
 746		if (PCI_VNDR_HEADER_ID(header) == cap)
 747			return vsec;
 748	}
 749
 750	return 0;
 751}
 752EXPORT_SYMBOL_GPL(pci_find_vsec_capability);
 753
 754/**
 755 * pci_find_dvsec_capability - Find DVSEC for vendor
 756 * @dev: PCI device to query
 757 * @vendor: Vendor ID to match for the DVSEC
 758 * @dvsec: Designated Vendor-specific capability ID
 759 *
 760 * If DVSEC has Vendor ID @vendor and DVSEC ID @dvsec return the capability
 761 * offset in config space; otherwise return 0.
 762 */
 763u16 pci_find_dvsec_capability(struct pci_dev *dev, u16 vendor, u16 dvsec)
 764{
 765	int pos;
 766
 767	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DVSEC);
 768	if (!pos)
 769		return 0;
 770
 771	while (pos) {
 772		u16 v, id;
 773
 774		pci_read_config_word(dev, pos + PCI_DVSEC_HEADER1, &v);
 775		pci_read_config_word(dev, pos + PCI_DVSEC_HEADER2, &id);
 776		if (vendor == v && dvsec == id)
 777			return pos;
 778
 779		pos = pci_find_next_ext_capability(dev, pos, PCI_EXT_CAP_ID_DVSEC);
 780	}
 781
 782	return 0;
 783}
 784EXPORT_SYMBOL_GPL(pci_find_dvsec_capability);
 785
 786/**
 787 * pci_find_parent_resource - return resource region of parent bus of given
 788 *			      region
 789 * @dev: PCI device structure contains resources to be searched
 790 * @res: child resource record for which parent is sought
 791 *
 792 * For given resource region of given device, return the resource region of
 793 * parent bus the given region is contained in.
 794 */
 795struct resource *pci_find_parent_resource(const struct pci_dev *dev,
 796					  struct resource *res)
 797{
 798	const struct pci_bus *bus = dev->bus;
 799	struct resource *r;
 
 800
 801	pci_bus_for_each_resource(bus, r) {
 802		if (!r)
 803			continue;
 804		if (resource_contains(r, res)) {
 805
 806			/*
 807			 * If the window is prefetchable but the BAR is
 808			 * not, the allocator made a mistake.
 809			 */
 810			if (r->flags & IORESOURCE_PREFETCH &&
 811			    !(res->flags & IORESOURCE_PREFETCH))
 812				return NULL;
 813
 814			/*
 815			 * If we're below a transparent bridge, there may
 816			 * be both a positively-decoded aperture and a
 817			 * subtractively-decoded region that contain the BAR.
 818			 * We want the positively-decoded one, so this depends
 819			 * on pci_bus_for_each_resource() giving us those
 820			 * first.
 821			 */
 822			return r;
 823		}
 824	}
 825	return NULL;
 826}
 827EXPORT_SYMBOL(pci_find_parent_resource);
 828
 829/**
 830 * pci_find_resource - Return matching PCI device resource
 831 * @dev: PCI device to query
 832 * @res: Resource to look for
 833 *
 834 * Goes over standard PCI resources (BARs) and checks if the given resource
 835 * is partially or fully contained in any of them. In that case the
 836 * matching resource is returned, %NULL otherwise.
 837 */
 838struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
 839{
 840	int i;
 841
 842	for (i = 0; i < PCI_STD_NUM_BARS; i++) {
 843		struct resource *r = &dev->resource[i];
 844
 845		if (r->start && resource_contains(r, res))
 846			return r;
 847	}
 848
 849	return NULL;
 850}
 851EXPORT_SYMBOL(pci_find_resource);
 852
 853/**
 854 * pci_resource_name - Return the name of the PCI resource
 855 * @dev: PCI device to query
 856 * @i: index of the resource
 857 *
 858 * Return the standard PCI resource (BAR) name according to their index.
 859 */
 860const char *pci_resource_name(struct pci_dev *dev, unsigned int i)
 861{
 862	static const char * const bar_name[] = {
 863		"BAR 0",
 864		"BAR 1",
 865		"BAR 2",
 866		"BAR 3",
 867		"BAR 4",
 868		"BAR 5",
 869		"ROM",
 870#ifdef CONFIG_PCI_IOV
 871		"VF BAR 0",
 872		"VF BAR 1",
 873		"VF BAR 2",
 874		"VF BAR 3",
 875		"VF BAR 4",
 876		"VF BAR 5",
 877#endif
 878		"bridge window",	/* "io" included in %pR */
 879		"bridge window",	/* "mem" included in %pR */
 880		"bridge window",	/* "mem pref" included in %pR */
 881	};
 882	static const char * const cardbus_name[] = {
 883		"BAR 1",
 884		"unknown",
 885		"unknown",
 886		"unknown",
 887		"unknown",
 888		"unknown",
 889#ifdef CONFIG_PCI_IOV
 890		"unknown",
 891		"unknown",
 892		"unknown",
 893		"unknown",
 894		"unknown",
 895		"unknown",
 896#endif
 897		"CardBus bridge window 0",	/* I/O */
 898		"CardBus bridge window 1",	/* I/O */
 899		"CardBus bridge window 0",	/* mem */
 900		"CardBus bridge window 1",	/* mem */
 901	};
 902
 903	if (dev->hdr_type == PCI_HEADER_TYPE_CARDBUS &&
 904	    i < ARRAY_SIZE(cardbus_name))
 905		return cardbus_name[i];
 906
 907	if (i < ARRAY_SIZE(bar_name))
 908		return bar_name[i];
 909
 910	return "unknown";
 911}
 912
 913/**
 914 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
 915 * @dev: the PCI device to operate on
 916 * @pos: config space offset of status word
 917 * @mask: mask of bit(s) to care about in status word
 918 *
 919 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
 920 */
 921int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
 922{
 923	int i;
 924
 925	/* Wait for Transaction Pending bit clean */
 926	for (i = 0; i < 4; i++) {
 927		u16 status;
 928		if (i)
 929			msleep((1 << (i - 1)) * 100);
 930
 931		pci_read_config_word(dev, pos, &status);
 932		if (!(status & mask))
 933			return 1;
 934	}
 935
 936	return 0;
 937}
 938
 939static int pci_acs_enable;
 940
 941/**
 942 * pci_request_acs - ask for ACS to be enabled if supported
 943 */
 944void pci_request_acs(void)
 945{
 946	pci_acs_enable = 1;
 947}
 948
 949static const char *disable_acs_redir_param;
 950
 951/**
 952 * pci_disable_acs_redir - disable ACS redirect capabilities
 953 * @dev: the PCI device
 954 *
 955 * For only devices specified in the disable_acs_redir parameter.
 956 */
 957static void pci_disable_acs_redir(struct pci_dev *dev)
 958{
 959	int ret = 0;
 960	const char *p;
 961	int pos;
 962	u16 ctrl;
 963
 964	if (!disable_acs_redir_param)
 965		return;
 966
 967	p = disable_acs_redir_param;
 968	while (*p) {
 969		ret = pci_dev_str_match(dev, p, &p);
 970		if (ret < 0) {
 971			pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
 972				     disable_acs_redir_param);
 973
 974			break;
 975		} else if (ret == 1) {
 976			/* Found a match */
 977			break;
 978		}
 979
 980		if (*p != ';' && *p != ',') {
 981			/* End of param or invalid format */
 982			break;
 983		}
 984		p++;
 985	}
 986
 987	if (ret != 1)
 988		return;
 989
 990	if (!pci_dev_specific_disable_acs_redir(dev))
 991		return;
 992
 993	pos = dev->acs_cap;
 994	if (!pos) {
 995		pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
 996		return;
 997	}
 998
 999	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
1000
1001	/* P2P Request & Completion Redirect */
1002	ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC);
1003
1004	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
1005
1006	pci_info(dev, "disabled ACS redirect\n");
1007}
1008
1009/**
1010 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
1011 * @dev: the PCI device
1012 */
1013static void pci_std_enable_acs(struct pci_dev *dev)
1014{
1015	int pos;
1016	u16 cap;
1017	u16 ctrl;
1018
1019	pos = dev->acs_cap;
1020	if (!pos)
1021		return;
1022
1023	pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
1024	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
1025
1026	/* Source Validation */
1027	ctrl |= (cap & PCI_ACS_SV);
1028
1029	/* P2P Request Redirect */
1030	ctrl |= (cap & PCI_ACS_RR);
1031
1032	/* P2P Completion Redirect */
1033	ctrl |= (cap & PCI_ACS_CR);
1034
1035	/* Upstream Forwarding */
1036	ctrl |= (cap & PCI_ACS_UF);
1037
1038	/* Enable Translation Blocking for external devices and noats */
1039	if (pci_ats_disabled() || dev->external_facing || dev->untrusted)
1040		ctrl |= (cap & PCI_ACS_TB);
1041
1042	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
1043}
1044
1045/**
1046 * pci_enable_acs - enable ACS if hardware support it
1047 * @dev: the PCI device
1048 */
1049static void pci_enable_acs(struct pci_dev *dev)
1050{
1051	if (!pci_acs_enable)
1052		goto disable_acs_redir;
1053
1054	if (!pci_dev_specific_enable_acs(dev))
1055		goto disable_acs_redir;
1056
1057	pci_std_enable_acs(dev);
1058
1059disable_acs_redir:
1060	/*
1061	 * Note: pci_disable_acs_redir() must be called even if ACS was not
1062	 * enabled by the kernel because it may have been enabled by
1063	 * platform firmware.  So if we are told to disable it, we should
1064	 * always disable it after setting the kernel's default
1065	 * preferences.
1066	 */
1067	pci_disable_acs_redir(dev);
1068}
1069
1070/**
1071 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
1072 * @dev: PCI device to have its BARs restored
1073 *
1074 * Restore the BAR values for a given device, so as to make it
1075 * accessible by its driver.
1076 */
1077static void pci_restore_bars(struct pci_dev *dev)
1078{
1079	int i;
1080
1081	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
1082		pci_update_resource(dev, i);
1083}
1084
1085static inline bool platform_pci_power_manageable(struct pci_dev *dev)
1086{
1087	if (pci_use_mid_pm())
1088		return true;
1089
1090	return acpi_pci_power_manageable(dev);
1091}
1092
1093static inline int platform_pci_set_power_state(struct pci_dev *dev,
1094					       pci_power_t t)
1095{
1096	if (pci_use_mid_pm())
1097		return mid_pci_set_power_state(dev, t);
1098
1099	return acpi_pci_set_power_state(dev, t);
1100}
1101
1102static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
1103{
1104	if (pci_use_mid_pm())
1105		return mid_pci_get_power_state(dev);
1106
1107	return acpi_pci_get_power_state(dev);
1108}
1109
1110static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
1111{
1112	if (!pci_use_mid_pm())
1113		acpi_pci_refresh_power_state(dev);
1114}
1115
1116static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
1117{
1118	if (pci_use_mid_pm())
1119		return PCI_POWER_ERROR;
1120
1121	return acpi_pci_choose_state(dev);
1122}
1123
1124static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
1125{
1126	if (pci_use_mid_pm())
1127		return PCI_POWER_ERROR;
1128
1129	return acpi_pci_wakeup(dev, enable);
1130}
1131
1132static inline bool platform_pci_need_resume(struct pci_dev *dev)
1133{
1134	if (pci_use_mid_pm())
1135		return false;
1136
1137	return acpi_pci_need_resume(dev);
1138}
1139
1140static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
1141{
1142	if (pci_use_mid_pm())
1143		return false;
1144
1145	return acpi_pci_bridge_d3(dev);
1146}
1147
1148/**
1149 * pci_update_current_state - Read power state of given device and cache it
1150 * @dev: PCI device to handle.
1151 * @state: State to cache in case the device doesn't have the PM capability
1152 *
1153 * The power state is read from the PMCSR register, which however is
1154 * inaccessible in D3cold.  The platform firmware is therefore queried first
1155 * to detect accessibility of the register.  In case the platform firmware
1156 * reports an incorrect state or the device isn't power manageable by the
1157 * platform at all, we try to detect D3cold by testing accessibility of the
1158 * vendor ID in config space.
1159 */
1160void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
1161{
1162	if (platform_pci_get_power_state(dev) == PCI_D3cold) {
1163		dev->current_state = PCI_D3cold;
1164	} else if (dev->pm_cap) {
1165		u16 pmcsr;
1166
1167		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1168		if (PCI_POSSIBLE_ERROR(pmcsr)) {
1169			dev->current_state = PCI_D3cold;
1170			return;
1171		}
1172		dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1173	} else {
1174		dev->current_state = state;
1175	}
1176}
1177
1178/**
1179 * pci_refresh_power_state - Refresh the given device's power state data
1180 * @dev: Target PCI device.
1181 *
1182 * Ask the platform to refresh the devices power state information and invoke
1183 * pci_update_current_state() to update its current PCI power state.
1184 */
1185void pci_refresh_power_state(struct pci_dev *dev)
1186{
1187	platform_pci_refresh_power_state(dev);
1188	pci_update_current_state(dev, dev->current_state);
1189}
1190
1191/**
1192 * pci_platform_power_transition - Use platform to change device power state
1193 * @dev: PCI device to handle.
1194 * @state: State to put the device into.
1195 */
1196int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
1197{
1198	int error;
1199
1200	error = platform_pci_set_power_state(dev, state);
1201	if (!error)
1202		pci_update_current_state(dev, state);
1203	else if (!dev->pm_cap) /* Fall back to PCI_D0 */
1204		dev->current_state = PCI_D0;
1205
1206	return error;
1207}
1208EXPORT_SYMBOL_GPL(pci_platform_power_transition);
1209
1210static int pci_resume_one(struct pci_dev *pci_dev, void *ign)
1211{
1212	pm_request_resume(&pci_dev->dev);
1213	return 0;
1214}
1215
1216/**
1217 * pci_resume_bus - Walk given bus and runtime resume devices on it
1218 * @bus: Top bus of the subtree to walk.
1219 */
1220void pci_resume_bus(struct pci_bus *bus)
1221{
1222	if (bus)
1223		pci_walk_bus(bus, pci_resume_one, NULL);
1224}
1225
1226static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
1227{
1228	int delay = 1;
1229	bool retrain = false;
1230	struct pci_dev *bridge;
1231
1232	if (pci_is_pcie(dev)) {
1233		bridge = pci_upstream_bridge(dev);
1234		if (bridge)
1235			retrain = true;
1236	}
1237
1238	/*
1239	 * After reset, the device should not silently discard config
1240	 * requests, but it may still indicate that it needs more time by
1241	 * responding to them with CRS completions.  The Root Port will
1242	 * generally synthesize ~0 (PCI_ERROR_RESPONSE) data to complete
1243	 * the read (except when CRS SV is enabled and the read was for the
1244	 * Vendor ID; in that case it synthesizes 0x0001 data).
1245	 *
1246	 * Wait for the device to return a non-CRS completion.  Read the
1247	 * Command register instead of Vendor ID so we don't have to
1248	 * contend with the CRS SV value.
1249	 */
1250	for (;;) {
1251		u32 id;
1252
1253		pci_read_config_dword(dev, PCI_COMMAND, &id);
1254		if (!PCI_POSSIBLE_ERROR(id))
1255			break;
1256
1257		if (delay > timeout) {
1258			pci_warn(dev, "not ready %dms after %s; giving up\n",
1259				 delay - 1, reset_type);
1260			return -ENOTTY;
1261		}
1262
1263		if (delay > PCI_RESET_WAIT) {
1264			if (retrain) {
1265				retrain = false;
1266				if (pcie_failed_link_retrain(bridge)) {
1267					delay = 1;
1268					continue;
1269				}
1270			}
1271			pci_info(dev, "not ready %dms after %s; waiting\n",
1272				 delay - 1, reset_type);
1273		}
1274
1275		msleep(delay);
1276		delay *= 2;
 
1277	}
1278
1279	if (delay > PCI_RESET_WAIT)
1280		pci_info(dev, "ready %dms after %s\n", delay - 1,
1281			 reset_type);
1282	else
1283		pci_dbg(dev, "ready %dms after %s\n", delay - 1,
1284			reset_type);
1285
1286	return 0;
1287}
1288
1289/**
1290 * pci_power_up - Put the given device into D0
1291 * @dev: PCI device to power up
1292 *
1293 * On success, return 0 or 1, depending on whether or not it is necessary to
1294 * restore the device's BARs subsequently (1 is returned in that case).
1295 *
1296 * On failure, return a negative error code.  Always return failure if @dev
1297 * lacks a Power Management Capability, even if the platform was able to
1298 * put the device in D0 via non-PCI means.
1299 */
1300int pci_power_up(struct pci_dev *dev)
1301{
1302	bool need_restore;
1303	pci_power_t state;
1304	u16 pmcsr;
1305
1306	platform_pci_set_power_state(dev, PCI_D0);
1307
1308	if (!dev->pm_cap) {
1309		state = platform_pci_get_power_state(dev);
1310		if (state == PCI_UNKNOWN)
1311			dev->current_state = PCI_D0;
1312		else
1313			dev->current_state = state;
1314
 
 
 
1315		return -EIO;
1316	}
1317
1318	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1319	if (PCI_POSSIBLE_ERROR(pmcsr)) {
1320		pci_err(dev, "Unable to change power state from %s to D0, device inaccessible\n",
1321			pci_power_name(dev->current_state));
1322		dev->current_state = PCI_D3cold;
1323		return -EIO;
1324	}
1325
1326	state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1327
1328	need_restore = (state == PCI_D3hot || dev->current_state >= PCI_D3hot) &&
1329			!(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET);
1330
1331	if (state == PCI_D0)
1332		goto end;
1333
1334	/*
1335	 * Force the entire word to 0. This doesn't affect PME_Status, disables
1336	 * PME_En, and sets PowerState to 0.
1337	 */
1338	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, 0);
1339
1340	/* Mandatory transition delays; see PCI PM 1.2. */
1341	if (state == PCI_D3hot)
1342		pci_dev_d3_sleep(dev);
1343	else if (state == PCI_D2)
1344		udelay(PCI_PM_D2_DELAY);
1345
1346end:
1347	dev->current_state = PCI_D0;
1348	if (need_restore)
1349		return 1;
1350
1351	return 0;
1352}
1353
1354/**
1355 * pci_set_full_power_state - Put a PCI device into D0 and update its state
1356 * @dev: PCI device to power up
1357 * @locked: whether pci_bus_sem is held
1358 *
1359 * Call pci_power_up() to put @dev into D0, read from its PCI_PM_CTRL register
1360 * to confirm the state change, restore its BARs if they might be lost and
1361 * reconfigure ASPM in accordance with the new power state.
1362 *
1363 * If pci_restore_state() is going to be called right after a power state change
1364 * to D0, it is more efficient to use pci_power_up() directly instead of this
1365 * function.
1366 */
1367static int pci_set_full_power_state(struct pci_dev *dev, bool locked)
1368{
1369	u16 pmcsr;
1370	int ret;
1371
1372	ret = pci_power_up(dev);
1373	if (ret < 0) {
1374		if (dev->current_state == PCI_D0)
1375			return 0;
1376
1377		return ret;
1378	}
1379
1380	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1381	dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1382	if (dev->current_state != PCI_D0) {
1383		pci_info_ratelimited(dev, "Refused to change power state from %s to D0\n",
1384				     pci_power_name(dev->current_state));
1385	} else if (ret > 0) {
1386		/*
1387		 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
1388		 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
1389		 * from D3hot to D0 _may_ perform an internal reset, thereby
1390		 * going to "D0 Uninitialized" rather than "D0 Initialized".
1391		 * For example, at least some versions of the 3c905B and the
1392		 * 3c556B exhibit this behaviour.
1393		 *
1394		 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
1395		 * devices in a D3hot state at boot.  Consequently, we need to
1396		 * restore at least the BARs so that the device will be
1397		 * accessible to its driver.
1398		 */
1399		pci_restore_bars(dev);
1400	}
1401
1402	if (dev->bus->self)
1403		pcie_aspm_pm_state_change(dev->bus->self, locked);
1404
1405	return 0;
1406}
1407
1408/**
1409 * __pci_dev_set_current_state - Set current state of a PCI device
1410 * @dev: Device to handle
1411 * @data: pointer to state to be set
1412 */
1413static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1414{
1415	pci_power_t state = *(pci_power_t *)data;
1416
1417	dev->current_state = state;
1418	return 0;
1419}
1420
1421/**
1422 * pci_bus_set_current_state - Walk given bus and set current state of devices
1423 * @bus: Top bus of the subtree to walk.
1424 * @state: state to be set
1425 */
1426void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1427{
1428	if (bus)
1429		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1430}
1431
1432static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state, bool locked)
1433{
1434	if (!bus)
1435		return;
1436
1437	if (locked)
1438		pci_walk_bus_locked(bus, __pci_dev_set_current_state, &state);
1439	else
1440		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1441}
1442
1443/**
1444 * pci_set_low_power_state - Put a PCI device into a low-power state.
1445 * @dev: PCI device to handle.
1446 * @state: PCI power state (D1, D2, D3hot) to put the device into.
1447 * @locked: whether pci_bus_sem is held
1448 *
1449 * Use the device's PCI_PM_CTRL register to put it into a low-power state.
1450 *
1451 * RETURN VALUE:
1452 * -EINVAL if the requested state is invalid.
1453 * -EIO if device does not support PCI PM or its PM capabilities register has a
1454 * wrong version, or device doesn't support the requested state.
1455 * 0 if device already is in the requested state.
1456 * 0 if device's power state has been successfully changed.
1457 */
1458static int pci_set_low_power_state(struct pci_dev *dev, pci_power_t state, bool locked)
1459{
1460	u16 pmcsr;
1461
1462	if (!dev->pm_cap)
1463		return -EIO;
1464
1465	/*
1466	 * Validate transition: We can enter D0 from any state, but if
1467	 * we're already in a low-power state, we can only go deeper.  E.g.,
1468	 * we can go from D1 to D3, but we can't go directly from D3 to D1;
1469	 * we'd have to go from D3 to D0, then to D1.
1470	 */
1471	if (dev->current_state <= PCI_D3cold && dev->current_state > state) {
1472		pci_dbg(dev, "Invalid power transition (from %s to %s)\n",
1473			pci_power_name(dev->current_state),
1474			pci_power_name(state));
1475		return -EINVAL;
1476	}
1477
1478	/* Check if this device supports the desired state */
1479	if ((state == PCI_D1 && !dev->d1_support)
1480	   || (state == PCI_D2 && !dev->d2_support))
1481		return -EIO;
1482
1483	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1484	if (PCI_POSSIBLE_ERROR(pmcsr)) {
1485		pci_err(dev, "Unable to change power state from %s to %s, device inaccessible\n",
1486			pci_power_name(dev->current_state),
1487			pci_power_name(state));
1488		dev->current_state = PCI_D3cold;
1489		return -EIO;
1490	}
1491
1492	pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
1493	pmcsr |= state;
1494
1495	/* Enter specified state */
1496	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1497
1498	/* Mandatory power management transition delays; see PCI PM 1.2. */
1499	if (state == PCI_D3hot)
1500		pci_dev_d3_sleep(dev);
1501	else if (state == PCI_D2)
1502		udelay(PCI_PM_D2_DELAY);
1503
1504	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1505	dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1506	if (dev->current_state != state)
1507		pci_info_ratelimited(dev, "Refused to change power state from %s to %s\n",
1508				     pci_power_name(dev->current_state),
1509				     pci_power_name(state));
1510
1511	if (dev->bus->self)
1512		pcie_aspm_pm_state_change(dev->bus->self, locked);
1513
1514	return 0;
1515}
1516
1517static int __pci_set_power_state(struct pci_dev *dev, pci_power_t state, bool locked)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1518{
1519	int error;
1520
1521	/* Bound the state we're entering */
1522	if (state > PCI_D3cold)
1523		state = PCI_D3cold;
1524	else if (state < PCI_D0)
1525		state = PCI_D0;
1526	else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1527
1528		/*
1529		 * If the device or the parent bridge do not support PCI
1530		 * PM, ignore the request if we're doing anything other
1531		 * than putting it into D0 (which would only happen on
1532		 * boot).
1533		 */
1534		return 0;
1535
1536	/* Check if we're already there */
1537	if (dev->current_state == state)
1538		return 0;
1539
1540	if (state == PCI_D0)
1541		return pci_set_full_power_state(dev, locked);
1542
1543	/*
1544	 * This device is quirked not to be put into D3, so don't put it in
1545	 * D3
1546	 */
1547	if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1548		return 0;
1549
1550	if (state == PCI_D3cold) {
1551		/*
1552		 * To put the device in D3cold, put it into D3hot in the native
1553		 * way, then put it into D3cold using platform ops.
1554		 */
1555		error = pci_set_low_power_state(dev, PCI_D3hot, locked);
1556
1557		if (pci_platform_power_transition(dev, PCI_D3cold))
1558			return error;
1559
1560		/* Powering off a bridge may power off the whole hierarchy */
1561		if (dev->current_state == PCI_D3cold)
1562			__pci_bus_set_current_state(dev->subordinate, PCI_D3cold, locked);
1563	} else {
1564		error = pci_set_low_power_state(dev, state, locked);
1565
1566		if (pci_platform_power_transition(dev, state))
1567			return error;
1568	}
1569
1570	return 0;
1571}
1572
1573/**
1574 * pci_set_power_state - Set the power state of a PCI device
1575 * @dev: PCI device to handle.
1576 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1577 *
1578 * Transition a device to a new power state, using the platform firmware and/or
1579 * the device's PCI PM registers.
1580 *
1581 * RETURN VALUE:
1582 * -EINVAL if the requested state is invalid.
1583 * -EIO if device does not support PCI PM or its PM capabilities register has a
1584 * wrong version, or device doesn't support the requested state.
1585 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1586 * 0 if device already is in the requested state.
1587 * 0 if the transition is to D3 but D3 is not supported.
1588 * 0 if device's power state has been successfully changed.
1589 */
1590int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1591{
1592	return __pci_set_power_state(dev, state, false);
1593}
1594EXPORT_SYMBOL(pci_set_power_state);
1595
1596int pci_set_power_state_locked(struct pci_dev *dev, pci_power_t state)
1597{
1598	lockdep_assert_held(&pci_bus_sem);
1599
1600	return __pci_set_power_state(dev, state, true);
1601}
1602EXPORT_SYMBOL(pci_set_power_state_locked);
1603
1604#define PCI_EXP_SAVE_REGS	7
1605
1606static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1607						       u16 cap, bool extended)
1608{
1609	struct pci_cap_saved_state *tmp;
1610
1611	hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1612		if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1613			return tmp;
1614	}
1615	return NULL;
1616}
1617
1618struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1619{
1620	return _pci_find_saved_cap(dev, cap, false);
1621}
1622
1623struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1624{
1625	return _pci_find_saved_cap(dev, cap, true);
1626}
1627
1628static int pci_save_pcie_state(struct pci_dev *dev)
1629{
1630	int i = 0;
1631	struct pci_cap_saved_state *save_state;
1632	u16 *cap;
1633
1634	if (!pci_is_pcie(dev))
1635		return 0;
1636
1637	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1638	if (!save_state) {
1639		pci_err(dev, "buffer not found in %s\n", __func__);
1640		return -ENOMEM;
1641	}
1642
1643	cap = (u16 *)&save_state->cap.data[0];
1644	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1645	pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1646	pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1647	pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
1648	pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1649	pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1650	pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1651
1652	return 0;
1653}
1654
1655void pci_bridge_reconfigure_ltr(struct pci_dev *dev)
1656{
1657#ifdef CONFIG_PCIEASPM
1658	struct pci_dev *bridge;
1659	u32 ctl;
1660
1661	bridge = pci_upstream_bridge(dev);
1662	if (bridge && bridge->ltr_path) {
1663		pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2, &ctl);
1664		if (!(ctl & PCI_EXP_DEVCTL2_LTR_EN)) {
1665			pci_dbg(bridge, "re-enabling LTR\n");
1666			pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
1667						 PCI_EXP_DEVCTL2_LTR_EN);
1668		}
1669	}
1670#endif
1671}
1672
1673static void pci_restore_pcie_state(struct pci_dev *dev)
1674{
1675	int i = 0;
1676	struct pci_cap_saved_state *save_state;
1677	u16 *cap;
1678
1679	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1680	if (!save_state)
1681		return;
1682
1683	/*
1684	 * Downstream ports reset the LTR enable bit when link goes down.
1685	 * Check and re-configure the bit here before restoring device.
1686	 * PCIe r5.0, sec 7.5.3.16.
1687	 */
1688	pci_bridge_reconfigure_ltr(dev);
1689
1690	cap = (u16 *)&save_state->cap.data[0];
1691	pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1692	pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1693	pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1694	pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1695	pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1696	pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1697	pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1698}
1699
1700static int pci_save_pcix_state(struct pci_dev *dev)
1701{
1702	int pos;
1703	struct pci_cap_saved_state *save_state;
1704
1705	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1706	if (!pos)
1707		return 0;
1708
1709	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1710	if (!save_state) {
1711		pci_err(dev, "buffer not found in %s\n", __func__);
1712		return -ENOMEM;
1713	}
1714
1715	pci_read_config_word(dev, pos + PCI_X_CMD,
1716			     (u16 *)save_state->cap.data);
1717
1718	return 0;
1719}
1720
1721static void pci_restore_pcix_state(struct pci_dev *dev)
1722{
1723	int i = 0, pos;
1724	struct pci_cap_saved_state *save_state;
1725	u16 *cap;
1726
1727	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1728	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1729	if (!save_state || !pos)
1730		return;
1731	cap = (u16 *)&save_state->cap.data[0];
1732
1733	pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1734}
1735
1736static void pci_save_ltr_state(struct pci_dev *dev)
1737{
1738	int ltr;
1739	struct pci_cap_saved_state *save_state;
1740	u32 *cap;
1741
1742	if (!pci_is_pcie(dev))
1743		return;
1744
1745	ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1746	if (!ltr)
1747		return;
1748
1749	save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1750	if (!save_state) {
1751		pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n");
1752		return;
1753	}
1754
1755	/* Some broken devices only support dword access to LTR */
1756	cap = &save_state->cap.data[0];
1757	pci_read_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap);
1758}
1759
1760static void pci_restore_ltr_state(struct pci_dev *dev)
1761{
1762	struct pci_cap_saved_state *save_state;
1763	int ltr;
1764	u32 *cap;
1765
1766	save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1767	ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1768	if (!save_state || !ltr)
1769		return;
1770
1771	/* Some broken devices only support dword access to LTR */
1772	cap = &save_state->cap.data[0];
1773	pci_write_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap);
1774}
1775
1776/**
1777 * pci_save_state - save the PCI configuration space of a device before
1778 *		    suspending
1779 * @dev: PCI device that we're dealing with
1780 */
1781int pci_save_state(struct pci_dev *dev)
1782{
1783	int i;
1784	/* XXX: 100% dword access ok here? */
1785	for (i = 0; i < 16; i++) {
1786		pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1787		pci_dbg(dev, "save config %#04x: %#010x\n",
1788			i * 4, dev->saved_config_space[i]);
1789	}
1790	dev->state_saved = true;
1791
1792	i = pci_save_pcie_state(dev);
1793	if (i != 0)
1794		return i;
1795
1796	i = pci_save_pcix_state(dev);
1797	if (i != 0)
1798		return i;
1799
1800	pci_save_ltr_state(dev);
1801	pci_save_dpc_state(dev);
1802	pci_save_aer_state(dev);
1803	pci_save_ptm_state(dev);
1804	return pci_save_vc_state(dev);
1805}
1806EXPORT_SYMBOL(pci_save_state);
1807
1808static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1809				     u32 saved_val, int retry, bool force)
1810{
1811	u32 val;
1812
1813	pci_read_config_dword(pdev, offset, &val);
1814	if (!force && val == saved_val)
1815		return;
1816
1817	for (;;) {
1818		pci_dbg(pdev, "restore config %#04x: %#010x -> %#010x\n",
1819			offset, val, saved_val);
1820		pci_write_config_dword(pdev, offset, saved_val);
1821		if (retry-- <= 0)
1822			return;
1823
1824		pci_read_config_dword(pdev, offset, &val);
1825		if (val == saved_val)
1826			return;
1827
1828		mdelay(1);
1829	}
1830}
1831
1832static void pci_restore_config_space_range(struct pci_dev *pdev,
1833					   int start, int end, int retry,
1834					   bool force)
1835{
1836	int index;
1837
1838	for (index = end; index >= start; index--)
1839		pci_restore_config_dword(pdev, 4 * index,
1840					 pdev->saved_config_space[index],
1841					 retry, force);
1842}
1843
1844static void pci_restore_config_space(struct pci_dev *pdev)
1845{
1846	if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1847		pci_restore_config_space_range(pdev, 10, 15, 0, false);
1848		/* Restore BARs before the command register. */
1849		pci_restore_config_space_range(pdev, 4, 9, 10, false);
1850		pci_restore_config_space_range(pdev, 0, 3, 0, false);
1851	} else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1852		pci_restore_config_space_range(pdev, 12, 15, 0, false);
1853
1854		/*
1855		 * Force rewriting of prefetch registers to avoid S3 resume
1856		 * issues on Intel PCI bridges that occur when these
1857		 * registers are not explicitly written.
1858		 */
1859		pci_restore_config_space_range(pdev, 9, 11, 0, true);
1860		pci_restore_config_space_range(pdev, 0, 8, 0, false);
1861	} else {
1862		pci_restore_config_space_range(pdev, 0, 15, 0, false);
1863	}
1864}
1865
1866static void pci_restore_rebar_state(struct pci_dev *pdev)
1867{
1868	unsigned int pos, nbars, i;
1869	u32 ctrl;
1870
1871	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1872	if (!pos)
1873		return;
1874
1875	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1876	nbars = FIELD_GET(PCI_REBAR_CTRL_NBAR_MASK, ctrl);
 
1877
1878	for (i = 0; i < nbars; i++, pos += 8) {
1879		struct resource *res;
1880		int bar_idx, size;
1881
1882		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1883		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1884		res = pdev->resource + bar_idx;
1885		size = pci_rebar_bytes_to_size(resource_size(res));
1886		ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1887		ctrl |= FIELD_PREP(PCI_REBAR_CTRL_BAR_SIZE, size);
1888		pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1889	}
1890}
1891
1892/**
1893 * pci_restore_state - Restore the saved state of a PCI device
1894 * @dev: PCI device that we're dealing with
1895 */
1896void pci_restore_state(struct pci_dev *dev)
1897{
1898	if (!dev->state_saved)
1899		return;
1900
1901	/*
1902	 * Restore max latencies (in the LTR capability) before enabling
1903	 * LTR itself (in the PCIe capability).
1904	 */
1905	pci_restore_ltr_state(dev);
1906
1907	pci_restore_pcie_state(dev);
1908	pci_restore_pasid_state(dev);
1909	pci_restore_pri_state(dev);
1910	pci_restore_ats_state(dev);
1911	pci_restore_vc_state(dev);
1912	pci_restore_rebar_state(dev);
1913	pci_restore_dpc_state(dev);
1914	pci_restore_ptm_state(dev);
1915
1916	pci_aer_clear_status(dev);
1917	pci_restore_aer_state(dev);
1918
1919	pci_restore_config_space(dev);
1920
1921	pci_restore_pcix_state(dev);
1922	pci_restore_msi_state(dev);
1923
1924	/* Restore ACS and IOV configuration state */
1925	pci_enable_acs(dev);
1926	pci_restore_iov_state(dev);
1927
1928	dev->state_saved = false;
1929}
1930EXPORT_SYMBOL(pci_restore_state);
1931
1932struct pci_saved_state {
1933	u32 config_space[16];
1934	struct pci_cap_saved_data cap[];
1935};
1936
1937/**
1938 * pci_store_saved_state - Allocate and return an opaque struct containing
1939 *			   the device saved state.
1940 * @dev: PCI device that we're dealing with
1941 *
1942 * Return NULL if no state or error.
1943 */
1944struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1945{
1946	struct pci_saved_state *state;
1947	struct pci_cap_saved_state *tmp;
1948	struct pci_cap_saved_data *cap;
1949	size_t size;
1950
1951	if (!dev->state_saved)
1952		return NULL;
1953
1954	size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1955
1956	hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1957		size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1958
1959	state = kzalloc(size, GFP_KERNEL);
1960	if (!state)
1961		return NULL;
1962
1963	memcpy(state->config_space, dev->saved_config_space,
1964	       sizeof(state->config_space));
1965
1966	cap = state->cap;
1967	hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1968		size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1969		memcpy(cap, &tmp->cap, len);
1970		cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1971	}
1972	/* Empty cap_save terminates list */
1973
1974	return state;
1975}
1976EXPORT_SYMBOL_GPL(pci_store_saved_state);
1977
1978/**
1979 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1980 * @dev: PCI device that we're dealing with
1981 * @state: Saved state returned from pci_store_saved_state()
1982 */
1983int pci_load_saved_state(struct pci_dev *dev,
1984			 struct pci_saved_state *state)
1985{
1986	struct pci_cap_saved_data *cap;
1987
1988	dev->state_saved = false;
1989
1990	if (!state)
1991		return 0;
1992
1993	memcpy(dev->saved_config_space, state->config_space,
1994	       sizeof(state->config_space));
1995
1996	cap = state->cap;
1997	while (cap->size) {
1998		struct pci_cap_saved_state *tmp;
1999
2000		tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
2001		if (!tmp || tmp->cap.size != cap->size)
2002			return -EINVAL;
2003
2004		memcpy(tmp->cap.data, cap->data, tmp->cap.size);
2005		cap = (struct pci_cap_saved_data *)((u8 *)cap +
2006		       sizeof(struct pci_cap_saved_data) + cap->size);
2007	}
2008
2009	dev->state_saved = true;
2010	return 0;
2011}
2012EXPORT_SYMBOL_GPL(pci_load_saved_state);
2013
2014/**
2015 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
2016 *				   and free the memory allocated for it.
2017 * @dev: PCI device that we're dealing with
2018 * @state: Pointer to saved state returned from pci_store_saved_state()
2019 */
2020int pci_load_and_free_saved_state(struct pci_dev *dev,
2021				  struct pci_saved_state **state)
2022{
2023	int ret = pci_load_saved_state(dev, *state);
2024	kfree(*state);
2025	*state = NULL;
2026	return ret;
2027}
2028EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
2029
2030int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
2031{
2032	return pci_enable_resources(dev, bars);
2033}
2034
2035static int do_pci_enable_device(struct pci_dev *dev, int bars)
2036{
2037	int err;
2038	struct pci_dev *bridge;
2039	u16 cmd;
2040	u8 pin;
2041
2042	err = pci_set_power_state(dev, PCI_D0);
2043	if (err < 0 && err != -EIO)
2044		return err;
2045
2046	bridge = pci_upstream_bridge(dev);
2047	if (bridge)
2048		pcie_aspm_powersave_config_link(bridge);
2049
2050	err = pcibios_enable_device(dev, bars);
2051	if (err < 0)
2052		return err;
2053	pci_fixup_device(pci_fixup_enable, dev);
2054
2055	if (dev->msi_enabled || dev->msix_enabled)
2056		return 0;
2057
2058	pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
2059	if (pin) {
2060		pci_read_config_word(dev, PCI_COMMAND, &cmd);
2061		if (cmd & PCI_COMMAND_INTX_DISABLE)
2062			pci_write_config_word(dev, PCI_COMMAND,
2063					      cmd & ~PCI_COMMAND_INTX_DISABLE);
2064	}
2065
2066	return 0;
2067}
2068
2069/**
2070 * pci_reenable_device - Resume abandoned device
2071 * @dev: PCI device to be resumed
2072 *
2073 * NOTE: This function is a backend of pci_default_resume() and is not supposed
2074 * to be called by normal code, write proper resume handler and use it instead.
2075 */
2076int pci_reenable_device(struct pci_dev *dev)
2077{
2078	if (pci_is_enabled(dev))
2079		return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
2080	return 0;
2081}
2082EXPORT_SYMBOL(pci_reenable_device);
2083
2084static void pci_enable_bridge(struct pci_dev *dev)
2085{
2086	struct pci_dev *bridge;
2087	int retval;
2088
2089	bridge = pci_upstream_bridge(dev);
2090	if (bridge)
2091		pci_enable_bridge(bridge);
2092
2093	if (pci_is_enabled(dev)) {
2094		if (!dev->is_busmaster)
2095			pci_set_master(dev);
2096		return;
2097	}
2098
2099	retval = pci_enable_device(dev);
2100	if (retval)
2101		pci_err(dev, "Error enabling bridge (%d), continuing\n",
2102			retval);
2103	pci_set_master(dev);
2104}
2105
2106static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
2107{
2108	struct pci_dev *bridge;
2109	int err;
2110	int i, bars = 0;
2111
2112	/*
2113	 * Power state could be unknown at this point, either due to a fresh
2114	 * boot or a device removal call.  So get the current power state
2115	 * so that things like MSI message writing will behave as expected
2116	 * (e.g. if the device really is in D0 at enable time).
2117	 */
2118	pci_update_current_state(dev, dev->current_state);
2119
2120	if (atomic_inc_return(&dev->enable_cnt) > 1)
2121		return 0;		/* already enabled */
2122
2123	bridge = pci_upstream_bridge(dev);
2124	if (bridge)
2125		pci_enable_bridge(bridge);
2126
2127	/* only skip sriov related */
2128	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
2129		if (dev->resource[i].flags & flags)
2130			bars |= (1 << i);
2131	for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
2132		if (dev->resource[i].flags & flags)
2133			bars |= (1 << i);
2134
2135	err = do_pci_enable_device(dev, bars);
2136	if (err < 0)
2137		atomic_dec(&dev->enable_cnt);
2138	return err;
2139}
2140
2141/**
2142 * pci_enable_device_io - Initialize a device for use with IO space
2143 * @dev: PCI device to be initialized
2144 *
2145 * Initialize device before it's used by a driver. Ask low-level code
2146 * to enable I/O resources. Wake up the device if it was suspended.
2147 * Beware, this function can fail.
2148 */
2149int pci_enable_device_io(struct pci_dev *dev)
2150{
2151	return pci_enable_device_flags(dev, IORESOURCE_IO);
2152}
2153EXPORT_SYMBOL(pci_enable_device_io);
2154
2155/**
2156 * pci_enable_device_mem - Initialize a device for use with Memory space
2157 * @dev: PCI device to be initialized
2158 *
2159 * Initialize device before it's used by a driver. Ask low-level code
2160 * to enable Memory resources. Wake up the device if it was suspended.
2161 * Beware, this function can fail.
2162 */
2163int pci_enable_device_mem(struct pci_dev *dev)
2164{
2165	return pci_enable_device_flags(dev, IORESOURCE_MEM);
2166}
2167EXPORT_SYMBOL(pci_enable_device_mem);
2168
2169/**
2170 * pci_enable_device - Initialize device before it's used by a driver.
2171 * @dev: PCI device to be initialized
2172 *
2173 * Initialize device before it's used by a driver. Ask low-level code
2174 * to enable I/O and memory. Wake up the device if it was suspended.
2175 * Beware, this function can fail.
2176 *
2177 * Note we don't actually enable the device many times if we call
2178 * this function repeatedly (we just increment the count).
2179 */
2180int pci_enable_device(struct pci_dev *dev)
2181{
2182	return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
2183}
2184EXPORT_SYMBOL(pci_enable_device);
2185
2186/*
2187 * Managed PCI resources.  This manages device on/off, INTx/MSI/MSI-X
2188 * on/off and BAR regions.  pci_dev itself records MSI/MSI-X status, so
2189 * there's no need to track it separately.  pci_devres is initialized
2190 * when a device is enabled using managed PCI device enable interface.
2191 */
2192struct pci_devres {
2193	unsigned int enabled:1;
2194	unsigned int pinned:1;
2195	unsigned int orig_intx:1;
2196	unsigned int restore_intx:1;
2197	unsigned int mwi:1;
2198	u32 region_mask;
2199};
2200
2201static void pcim_release(struct device *gendev, void *res)
2202{
2203	struct pci_dev *dev = to_pci_dev(gendev);
2204	struct pci_devres *this = res;
2205	int i;
2206
2207	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
2208		if (this->region_mask & (1 << i))
2209			pci_release_region(dev, i);
2210
2211	if (this->mwi)
2212		pci_clear_mwi(dev);
2213
2214	if (this->restore_intx)
2215		pci_intx(dev, this->orig_intx);
2216
2217	if (this->enabled && !this->pinned)
2218		pci_disable_device(dev);
2219}
2220
2221static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
2222{
2223	struct pci_devres *dr, *new_dr;
2224
2225	dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
2226	if (dr)
2227		return dr;
2228
2229	new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
2230	if (!new_dr)
2231		return NULL;
2232	return devres_get(&pdev->dev, new_dr, NULL, NULL);
2233}
2234
2235static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
2236{
2237	if (pci_is_managed(pdev))
2238		return devres_find(&pdev->dev, pcim_release, NULL, NULL);
2239	return NULL;
2240}
2241
2242/**
2243 * pcim_enable_device - Managed pci_enable_device()
2244 * @pdev: PCI device to be initialized
2245 *
2246 * Managed pci_enable_device().
2247 */
2248int pcim_enable_device(struct pci_dev *pdev)
2249{
2250	struct pci_devres *dr;
2251	int rc;
2252
2253	dr = get_pci_dr(pdev);
2254	if (unlikely(!dr))
2255		return -ENOMEM;
2256	if (dr->enabled)
2257		return 0;
2258
2259	rc = pci_enable_device(pdev);
2260	if (!rc) {
2261		pdev->is_managed = 1;
2262		dr->enabled = 1;
2263	}
2264	return rc;
2265}
2266EXPORT_SYMBOL(pcim_enable_device);
2267
2268/**
2269 * pcim_pin_device - Pin managed PCI device
2270 * @pdev: PCI device to pin
2271 *
2272 * Pin managed PCI device @pdev.  Pinned device won't be disabled on
2273 * driver detach.  @pdev must have been enabled with
2274 * pcim_enable_device().
2275 */
2276void pcim_pin_device(struct pci_dev *pdev)
2277{
2278	struct pci_devres *dr;
2279
2280	dr = find_pci_dr(pdev);
2281	WARN_ON(!dr || !dr->enabled);
2282	if (dr)
2283		dr->pinned = 1;
2284}
2285EXPORT_SYMBOL(pcim_pin_device);
2286
2287/*
2288 * pcibios_device_add - provide arch specific hooks when adding device dev
2289 * @dev: the PCI device being added
2290 *
2291 * Permits the platform to provide architecture specific functionality when
2292 * devices are added. This is the default implementation. Architecture
2293 * implementations can override this.
2294 */
2295int __weak pcibios_device_add(struct pci_dev *dev)
2296{
2297	return 0;
2298}
2299
2300/**
2301 * pcibios_release_device - provide arch specific hooks when releasing
2302 *			    device dev
2303 * @dev: the PCI device being released
2304 *
2305 * Permits the platform to provide architecture specific functionality when
2306 * devices are released. This is the default implementation. Architecture
2307 * implementations can override this.
2308 */
2309void __weak pcibios_release_device(struct pci_dev *dev) {}
2310
2311/**
2312 * pcibios_disable_device - disable arch specific PCI resources for device dev
2313 * @dev: the PCI device to disable
2314 *
2315 * Disables architecture specific PCI resources for the device. This
2316 * is the default implementation. Architecture implementations can
2317 * override this.
2318 */
2319void __weak pcibios_disable_device(struct pci_dev *dev) {}
2320
2321/**
2322 * pcibios_penalize_isa_irq - penalize an ISA IRQ
2323 * @irq: ISA IRQ to penalize
2324 * @active: IRQ active or not
2325 *
2326 * Permits the platform to provide architecture-specific functionality when
2327 * penalizing ISA IRQs. This is the default implementation. Architecture
2328 * implementations can override this.
2329 */
2330void __weak pcibios_penalize_isa_irq(int irq, int active) {}
2331
2332static void do_pci_disable_device(struct pci_dev *dev)
2333{
2334	u16 pci_command;
2335
2336	pci_read_config_word(dev, PCI_COMMAND, &pci_command);
2337	if (pci_command & PCI_COMMAND_MASTER) {
2338		pci_command &= ~PCI_COMMAND_MASTER;
2339		pci_write_config_word(dev, PCI_COMMAND, pci_command);
2340	}
2341
2342	pcibios_disable_device(dev);
2343}
2344
2345/**
2346 * pci_disable_enabled_device - Disable device without updating enable_cnt
2347 * @dev: PCI device to disable
2348 *
2349 * NOTE: This function is a backend of PCI power management routines and is
2350 * not supposed to be called drivers.
2351 */
2352void pci_disable_enabled_device(struct pci_dev *dev)
2353{
2354	if (pci_is_enabled(dev))
2355		do_pci_disable_device(dev);
2356}
2357
2358/**
2359 * pci_disable_device - Disable PCI device after use
2360 * @dev: PCI device to be disabled
2361 *
2362 * Signal to the system that the PCI device is not in use by the system
2363 * anymore.  This only involves disabling PCI bus-mastering, if active.
2364 *
2365 * Note we don't actually disable the device until all callers of
2366 * pci_enable_device() have called pci_disable_device().
2367 */
2368void pci_disable_device(struct pci_dev *dev)
2369{
2370	struct pci_devres *dr;
2371
2372	dr = find_pci_dr(dev);
2373	if (dr)
2374		dr->enabled = 0;
2375
2376	dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
2377		      "disabling already-disabled device");
2378
2379	if (atomic_dec_return(&dev->enable_cnt) != 0)
2380		return;
2381
2382	do_pci_disable_device(dev);
2383
2384	dev->is_busmaster = 0;
2385}
2386EXPORT_SYMBOL(pci_disable_device);
2387
2388/**
2389 * pcibios_set_pcie_reset_state - set reset state for device dev
2390 * @dev: the PCIe device reset
2391 * @state: Reset state to enter into
2392 *
2393 * Set the PCIe reset state for the device. This is the default
2394 * implementation. Architecture implementations can override this.
2395 */
2396int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
2397					enum pcie_reset_state state)
2398{
2399	return -EINVAL;
2400}
2401
2402/**
2403 * pci_set_pcie_reset_state - set reset state for device dev
2404 * @dev: the PCIe device reset
2405 * @state: Reset state to enter into
2406 *
2407 * Sets the PCI reset state for the device.
2408 */
2409int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
2410{
2411	return pcibios_set_pcie_reset_state(dev, state);
2412}
2413EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2414
2415#ifdef CONFIG_PCIEAER
2416void pcie_clear_device_status(struct pci_dev *dev)
2417{
2418	u16 sta;
2419
2420	pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta);
2421	pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta);
2422}
2423#endif
2424
2425/**
2426 * pcie_clear_root_pme_status - Clear root port PME interrupt status.
2427 * @dev: PCIe root port or event collector.
2428 */
2429void pcie_clear_root_pme_status(struct pci_dev *dev)
2430{
2431	pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
2432}
2433
2434/**
2435 * pci_check_pme_status - Check if given device has generated PME.
2436 * @dev: Device to check.
2437 *
2438 * Check the PME status of the device and if set, clear it and clear PME enable
2439 * (if set).  Return 'true' if PME status and PME enable were both set or
2440 * 'false' otherwise.
2441 */
2442bool pci_check_pme_status(struct pci_dev *dev)
2443{
2444	int pmcsr_pos;
2445	u16 pmcsr;
2446	bool ret = false;
2447
2448	if (!dev->pm_cap)
2449		return false;
2450
2451	pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2452	pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2453	if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2454		return false;
2455
2456	/* Clear PME status. */
2457	pmcsr |= PCI_PM_CTRL_PME_STATUS;
2458	if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2459		/* Disable PME to avoid interrupt flood. */
2460		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2461		ret = true;
2462	}
2463
2464	pci_write_config_word(dev, pmcsr_pos, pmcsr);
2465
2466	return ret;
2467}
2468
2469/**
2470 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2471 * @dev: Device to handle.
2472 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2473 *
2474 * Check if @dev has generated PME and queue a resume request for it in that
2475 * case.
2476 */
2477static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2478{
2479	if (pme_poll_reset && dev->pme_poll)
2480		dev->pme_poll = false;
2481
2482	if (pci_check_pme_status(dev)) {
2483		pci_wakeup_event(dev);
2484		pm_request_resume(&dev->dev);
2485	}
2486	return 0;
2487}
2488
2489/**
2490 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2491 * @bus: Top bus of the subtree to walk.
2492 */
2493void pci_pme_wakeup_bus(struct pci_bus *bus)
2494{
2495	if (bus)
2496		pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2497}
2498
2499
2500/**
2501 * pci_pme_capable - check the capability of PCI device to generate PME#
2502 * @dev: PCI device to handle.
2503 * @state: PCI state from which device will issue PME#.
2504 */
2505bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2506{
2507	if (!dev->pm_cap)
2508		return false;
2509
2510	return !!(dev->pme_support & (1 << state));
2511}
2512EXPORT_SYMBOL(pci_pme_capable);
2513
2514static void pci_pme_list_scan(struct work_struct *work)
2515{
2516	struct pci_pme_device *pme_dev, *n;
2517
2518	mutex_lock(&pci_pme_list_mutex);
2519	list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2520		struct pci_dev *pdev = pme_dev->dev;
2521
2522		if (pdev->pme_poll) {
2523			struct pci_dev *bridge = pdev->bus->self;
2524			struct device *dev = &pdev->dev;
2525			struct device *bdev = bridge ? &bridge->dev : NULL;
2526			int bref = 0;
2527
 
2528			/*
2529			 * If we have a bridge, it should be in an active/D0
2530			 * state or the configuration space of subordinate
2531			 * devices may not be accessible or stable over the
2532			 * course of the call.
2533			 */
2534			if (bdev) {
2535				bref = pm_runtime_get_if_active(bdev, true);
2536				if (!bref)
2537					continue;
2538
2539				if (bridge->current_state != PCI_D0)
2540					goto put_bridge;
2541			}
2542
2543			/*
2544			 * The device itself should be suspended but config
2545			 * space must be accessible, therefore it cannot be in
2546			 * D3cold.
2547			 */
2548			if (pm_runtime_suspended(dev) &&
2549			    pdev->current_state != PCI_D3cold)
2550				pci_pme_wakeup(pdev, NULL);
2551
2552put_bridge:
2553			if (bref > 0)
2554				pm_runtime_put(bdev);
2555		} else {
2556			list_del(&pme_dev->list);
2557			kfree(pme_dev);
2558		}
2559	}
2560	if (!list_empty(&pci_pme_list))
2561		queue_delayed_work(system_freezable_wq, &pci_pme_work,
2562				   msecs_to_jiffies(PME_TIMEOUT));
2563	mutex_unlock(&pci_pme_list_mutex);
2564}
2565
2566static void __pci_pme_active(struct pci_dev *dev, bool enable)
2567{
2568	u16 pmcsr;
2569
2570	if (!dev->pme_support)
2571		return;
2572
2573	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2574	/* Clear PME_Status by writing 1 to it and enable PME# */
2575	pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2576	if (!enable)
2577		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2578
2579	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2580}
2581
2582/**
2583 * pci_pme_restore - Restore PME configuration after config space restore.
2584 * @dev: PCI device to update.
2585 */
2586void pci_pme_restore(struct pci_dev *dev)
2587{
2588	u16 pmcsr;
2589
2590	if (!dev->pme_support)
2591		return;
2592
2593	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2594	if (dev->wakeup_prepared) {
2595		pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2596		pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2597	} else {
2598		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2599		pmcsr |= PCI_PM_CTRL_PME_STATUS;
2600	}
2601	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2602}
2603
2604/**
2605 * pci_pme_active - enable or disable PCI device's PME# function
2606 * @dev: PCI device to handle.
2607 * @enable: 'true' to enable PME# generation; 'false' to disable it.
2608 *
2609 * The caller must verify that the device is capable of generating PME# before
2610 * calling this function with @enable equal to 'true'.
2611 */
2612void pci_pme_active(struct pci_dev *dev, bool enable)
2613{
2614	__pci_pme_active(dev, enable);
2615
2616	/*
2617	 * PCI (as opposed to PCIe) PME requires that the device have
2618	 * its PME# line hooked up correctly. Not all hardware vendors
2619	 * do this, so the PME never gets delivered and the device
2620	 * remains asleep. The easiest way around this is to
2621	 * periodically walk the list of suspended devices and check
2622	 * whether any have their PME flag set. The assumption is that
2623	 * we'll wake up often enough anyway that this won't be a huge
2624	 * hit, and the power savings from the devices will still be a
2625	 * win.
2626	 *
2627	 * Although PCIe uses in-band PME message instead of PME# line
2628	 * to report PME, PME does not work for some PCIe devices in
2629	 * reality.  For example, there are devices that set their PME
2630	 * status bits, but don't really bother to send a PME message;
2631	 * there are PCI Express Root Ports that don't bother to
2632	 * trigger interrupts when they receive PME messages from the
2633	 * devices below.  So PME poll is used for PCIe devices too.
2634	 */
2635
2636	if (dev->pme_poll) {
2637		struct pci_pme_device *pme_dev;
2638		if (enable) {
2639			pme_dev = kmalloc(sizeof(struct pci_pme_device),
2640					  GFP_KERNEL);
2641			if (!pme_dev) {
2642				pci_warn(dev, "can't enable PME#\n");
2643				return;
2644			}
2645			pme_dev->dev = dev;
2646			mutex_lock(&pci_pme_list_mutex);
2647			list_add(&pme_dev->list, &pci_pme_list);
2648			if (list_is_singular(&pci_pme_list))
2649				queue_delayed_work(system_freezable_wq,
2650						   &pci_pme_work,
2651						   msecs_to_jiffies(PME_TIMEOUT));
2652			mutex_unlock(&pci_pme_list_mutex);
2653		} else {
2654			mutex_lock(&pci_pme_list_mutex);
2655			list_for_each_entry(pme_dev, &pci_pme_list, list) {
2656				if (pme_dev->dev == dev) {
2657					list_del(&pme_dev->list);
2658					kfree(pme_dev);
2659					break;
2660				}
2661			}
2662			mutex_unlock(&pci_pme_list_mutex);
2663		}
2664	}
2665
2666	pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2667}
2668EXPORT_SYMBOL(pci_pme_active);
2669
2670/**
2671 * __pci_enable_wake - enable PCI device as wakeup event source
2672 * @dev: PCI device affected
2673 * @state: PCI state from which device will issue wakeup events
2674 * @enable: True to enable event generation; false to disable
2675 *
2676 * This enables the device as a wakeup event source, or disables it.
2677 * When such events involves platform-specific hooks, those hooks are
2678 * called automatically by this routine.
2679 *
2680 * Devices with legacy power management (no standard PCI PM capabilities)
2681 * always require such platform hooks.
2682 *
2683 * RETURN VALUE:
2684 * 0 is returned on success
2685 * -EINVAL is returned if device is not supposed to wake up the system
2686 * Error code depending on the platform is returned if both the platform and
2687 * the native mechanism fail to enable the generation of wake-up events
2688 */
2689static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2690{
2691	int ret = 0;
2692
2693	/*
2694	 * Bridges that are not power-manageable directly only signal
2695	 * wakeup on behalf of subordinate devices which is set up
2696	 * elsewhere, so skip them. However, bridges that are
2697	 * power-manageable may signal wakeup for themselves (for example,
2698	 * on a hotplug event) and they need to be covered here.
2699	 */
2700	if (!pci_power_manageable(dev))
2701		return 0;
2702
2703	/* Don't do the same thing twice in a row for one device. */
2704	if (!!enable == !!dev->wakeup_prepared)
2705		return 0;
2706
2707	/*
2708	 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2709	 * Anderson we should be doing PME# wake enable followed by ACPI wake
2710	 * enable.  To disable wake-up we call the platform first, for symmetry.
2711	 */
2712
2713	if (enable) {
2714		int error;
2715
2716		/*
2717		 * Enable PME signaling if the device can signal PME from
2718		 * D3cold regardless of whether or not it can signal PME from
2719		 * the current target state, because that will allow it to
2720		 * signal PME when the hierarchy above it goes into D3cold and
2721		 * the device itself ends up in D3cold as a result of that.
2722		 */
2723		if (pci_pme_capable(dev, state) || pci_pme_capable(dev, PCI_D3cold))
2724			pci_pme_active(dev, true);
2725		else
2726			ret = 1;
2727		error = platform_pci_set_wakeup(dev, true);
2728		if (ret)
2729			ret = error;
2730		if (!ret)
2731			dev->wakeup_prepared = true;
2732	} else {
2733		platform_pci_set_wakeup(dev, false);
2734		pci_pme_active(dev, false);
2735		dev->wakeup_prepared = false;
2736	}
2737
2738	return ret;
2739}
2740
2741/**
2742 * pci_enable_wake - change wakeup settings for a PCI device
2743 * @pci_dev: Target device
2744 * @state: PCI state from which device will issue wakeup events
2745 * @enable: Whether or not to enable event generation
2746 *
2747 * If @enable is set, check device_may_wakeup() for the device before calling
2748 * __pci_enable_wake() for it.
2749 */
2750int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2751{
2752	if (enable && !device_may_wakeup(&pci_dev->dev))
2753		return -EINVAL;
2754
2755	return __pci_enable_wake(pci_dev, state, enable);
2756}
2757EXPORT_SYMBOL(pci_enable_wake);
2758
2759/**
2760 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2761 * @dev: PCI device to prepare
2762 * @enable: True to enable wake-up event generation; false to disable
2763 *
2764 * Many drivers want the device to wake up the system from D3_hot or D3_cold
2765 * and this function allows them to set that up cleanly - pci_enable_wake()
2766 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2767 * ordering constraints.
2768 *
2769 * This function only returns error code if the device is not allowed to wake
2770 * up the system from sleep or it is not capable of generating PME# from both
2771 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2772 */
2773int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2774{
2775	return pci_pme_capable(dev, PCI_D3cold) ?
2776			pci_enable_wake(dev, PCI_D3cold, enable) :
2777			pci_enable_wake(dev, PCI_D3hot, enable);
2778}
2779EXPORT_SYMBOL(pci_wake_from_d3);
2780
2781/**
2782 * pci_target_state - find an appropriate low power state for a given PCI dev
2783 * @dev: PCI device
2784 * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2785 *
2786 * Use underlying platform code to find a supported low power state for @dev.
2787 * If the platform can't manage @dev, return the deepest state from which it
2788 * can generate wake events, based on any available PME info.
2789 */
2790static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2791{
2792	if (platform_pci_power_manageable(dev)) {
2793		/*
2794		 * Call the platform to find the target state for the device.
2795		 */
2796		pci_power_t state = platform_pci_choose_state(dev);
2797
2798		switch (state) {
2799		case PCI_POWER_ERROR:
2800		case PCI_UNKNOWN:
2801			return PCI_D3hot;
2802
2803		case PCI_D1:
2804		case PCI_D2:
2805			if (pci_no_d1d2(dev))
2806				return PCI_D3hot;
2807		}
2808
2809		return state;
2810	}
2811
2812	/*
2813	 * If the device is in D3cold even though it's not power-manageable by
2814	 * the platform, it may have been powered down by non-standard means.
2815	 * Best to let it slumber.
2816	 */
2817	if (dev->current_state == PCI_D3cold)
2818		return PCI_D3cold;
2819	else if (!dev->pm_cap)
2820		return PCI_D0;
2821
2822	if (wakeup && dev->pme_support) {
2823		pci_power_t state = PCI_D3hot;
2824
2825		/*
2826		 * Find the deepest state from which the device can generate
2827		 * PME#.
2828		 */
2829		while (state && !(dev->pme_support & (1 << state)))
2830			state--;
2831
2832		if (state)
2833			return state;
2834		else if (dev->pme_support & 1)
2835			return PCI_D0;
2836	}
2837
2838	return PCI_D3hot;
2839}
2840
2841/**
2842 * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2843 *			  into a sleep state
2844 * @dev: Device to handle.
2845 *
2846 * Choose the power state appropriate for the device depending on whether
2847 * it can wake up the system and/or is power manageable by the platform
2848 * (PCI_D3hot is the default) and put the device into that state.
2849 */
2850int pci_prepare_to_sleep(struct pci_dev *dev)
2851{
2852	bool wakeup = device_may_wakeup(&dev->dev);
2853	pci_power_t target_state = pci_target_state(dev, wakeup);
2854	int error;
2855
2856	if (target_state == PCI_POWER_ERROR)
2857		return -EIO;
2858
2859	pci_enable_wake(dev, target_state, wakeup);
2860
2861	error = pci_set_power_state(dev, target_state);
2862
2863	if (error)
2864		pci_enable_wake(dev, target_state, false);
2865
2866	return error;
2867}
2868EXPORT_SYMBOL(pci_prepare_to_sleep);
2869
2870/**
2871 * pci_back_from_sleep - turn PCI device on during system-wide transition
2872 *			 into working state
2873 * @dev: Device to handle.
2874 *
2875 * Disable device's system wake-up capability and put it into D0.
2876 */
2877int pci_back_from_sleep(struct pci_dev *dev)
2878{
2879	int ret = pci_set_power_state(dev, PCI_D0);
2880
2881	if (ret)
2882		return ret;
2883
2884	pci_enable_wake(dev, PCI_D0, false);
2885	return 0;
2886}
2887EXPORT_SYMBOL(pci_back_from_sleep);
2888
2889/**
2890 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2891 * @dev: PCI device being suspended.
2892 *
2893 * Prepare @dev to generate wake-up events at run time and put it into a low
2894 * power state.
2895 */
2896int pci_finish_runtime_suspend(struct pci_dev *dev)
2897{
2898	pci_power_t target_state;
2899	int error;
2900
2901	target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2902	if (target_state == PCI_POWER_ERROR)
2903		return -EIO;
2904
2905	__pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2906
2907	error = pci_set_power_state(dev, target_state);
2908
2909	if (error)
2910		pci_enable_wake(dev, target_state, false);
2911
2912	return error;
2913}
2914
2915/**
2916 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2917 * @dev: Device to check.
2918 *
2919 * Return true if the device itself is capable of generating wake-up events
2920 * (through the platform or using the native PCIe PME) or if the device supports
2921 * PME and one of its upstream bridges can generate wake-up events.
2922 */
2923bool pci_dev_run_wake(struct pci_dev *dev)
2924{
2925	struct pci_bus *bus = dev->bus;
2926
2927	if (!dev->pme_support)
2928		return false;
2929
2930	/* PME-capable in principle, but not from the target power state */
2931	if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2932		return false;
2933
2934	if (device_can_wakeup(&dev->dev))
2935		return true;
2936
2937	while (bus->parent) {
2938		struct pci_dev *bridge = bus->self;
2939
2940		if (device_can_wakeup(&bridge->dev))
2941			return true;
2942
2943		bus = bus->parent;
2944	}
2945
2946	/* We have reached the root bus. */
2947	if (bus->bridge)
2948		return device_can_wakeup(bus->bridge);
2949
2950	return false;
2951}
2952EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2953
2954/**
2955 * pci_dev_need_resume - Check if it is necessary to resume the device.
2956 * @pci_dev: Device to check.
2957 *
2958 * Return 'true' if the device is not runtime-suspended or it has to be
2959 * reconfigured due to wakeup settings difference between system and runtime
2960 * suspend, or the current power state of it is not suitable for the upcoming
2961 * (system-wide) transition.
2962 */
2963bool pci_dev_need_resume(struct pci_dev *pci_dev)
2964{
2965	struct device *dev = &pci_dev->dev;
2966	pci_power_t target_state;
2967
2968	if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
2969		return true;
2970
2971	target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
2972
2973	/*
2974	 * If the earlier platform check has not triggered, D3cold is just power
2975	 * removal on top of D3hot, so no need to resume the device in that
2976	 * case.
2977	 */
2978	return target_state != pci_dev->current_state &&
2979		target_state != PCI_D3cold &&
2980		pci_dev->current_state != PCI_D3hot;
2981}
2982
2983/**
2984 * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2985 * @pci_dev: Device to check.
2986 *
2987 * If the device is suspended and it is not configured for system wakeup,
2988 * disable PME for it to prevent it from waking up the system unnecessarily.
2989 *
2990 * Note that if the device's power state is D3cold and the platform check in
2991 * pci_dev_need_resume() has not triggered, the device's configuration need not
2992 * be changed.
2993 */
2994void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2995{
2996	struct device *dev = &pci_dev->dev;
2997
2998	spin_lock_irq(&dev->power.lock);
2999
3000	if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
3001	    pci_dev->current_state < PCI_D3cold)
3002		__pci_pme_active(pci_dev, false);
3003
3004	spin_unlock_irq(&dev->power.lock);
3005}
3006
3007/**
3008 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
3009 * @pci_dev: Device to handle.
3010 *
3011 * If the device is runtime suspended and wakeup-capable, enable PME for it as
3012 * it might have been disabled during the prepare phase of system suspend if
3013 * the device was not configured for system wakeup.
3014 */
3015void pci_dev_complete_resume(struct pci_dev *pci_dev)
3016{
3017	struct device *dev = &pci_dev->dev;
3018
3019	if (!pci_dev_run_wake(pci_dev))
3020		return;
3021
3022	spin_lock_irq(&dev->power.lock);
3023
3024	if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
3025		__pci_pme_active(pci_dev, true);
3026
3027	spin_unlock_irq(&dev->power.lock);
3028}
3029
3030/**
3031 * pci_choose_state - Choose the power state of a PCI device.
3032 * @dev: Target PCI device.
3033 * @state: Target state for the whole system.
3034 *
3035 * Returns PCI power state suitable for @dev and @state.
3036 */
3037pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
3038{
3039	if (state.event == PM_EVENT_ON)
3040		return PCI_D0;
3041
3042	return pci_target_state(dev, false);
3043}
3044EXPORT_SYMBOL(pci_choose_state);
3045
3046void pci_config_pm_runtime_get(struct pci_dev *pdev)
3047{
3048	struct device *dev = &pdev->dev;
3049	struct device *parent = dev->parent;
3050
3051	if (parent)
3052		pm_runtime_get_sync(parent);
3053	pm_runtime_get_noresume(dev);
3054	/*
3055	 * pdev->current_state is set to PCI_D3cold during suspending,
3056	 * so wait until suspending completes
3057	 */
3058	pm_runtime_barrier(dev);
3059	/*
3060	 * Only need to resume devices in D3cold, because config
3061	 * registers are still accessible for devices suspended but
3062	 * not in D3cold.
3063	 */
3064	if (pdev->current_state == PCI_D3cold)
3065		pm_runtime_resume(dev);
3066}
3067
3068void pci_config_pm_runtime_put(struct pci_dev *pdev)
3069{
3070	struct device *dev = &pdev->dev;
3071	struct device *parent = dev->parent;
3072
3073	pm_runtime_put(dev);
3074	if (parent)
3075		pm_runtime_put_sync(parent);
3076}
3077
3078static const struct dmi_system_id bridge_d3_blacklist[] = {
3079#ifdef CONFIG_X86
3080	{
3081		/*
3082		 * Gigabyte X299 root port is not marked as hotplug capable
3083		 * which allows Linux to power manage it.  However, this
3084		 * confuses the BIOS SMI handler so don't power manage root
3085		 * ports on that system.
3086		 */
3087		.ident = "X299 DESIGNARE EX-CF",
3088		.matches = {
3089			DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
3090			DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
3091		},
3092	},
3093	{
3094		/*
3095		 * Downstream device is not accessible after putting a root port
3096		 * into D3cold and back into D0 on Elo Continental Z2 board
3097		 */
3098		.ident = "Elo Continental Z2",
3099		.matches = {
3100			DMI_MATCH(DMI_BOARD_VENDOR, "Elo Touch Solutions"),
3101			DMI_MATCH(DMI_BOARD_NAME, "Geminilake"),
3102			DMI_MATCH(DMI_BOARD_VERSION, "Continental Z2"),
3103		},
3104	},
3105#endif
3106	{ }
3107};
3108
3109/**
3110 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
3111 * @bridge: Bridge to check
3112 *
3113 * This function checks if it is possible to move the bridge to D3.
3114 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
3115 */
3116bool pci_bridge_d3_possible(struct pci_dev *bridge)
3117{
3118	if (!pci_is_pcie(bridge))
3119		return false;
3120
3121	switch (pci_pcie_type(bridge)) {
3122	case PCI_EXP_TYPE_ROOT_PORT:
3123	case PCI_EXP_TYPE_UPSTREAM:
3124	case PCI_EXP_TYPE_DOWNSTREAM:
3125		if (pci_bridge_d3_disable)
3126			return false;
3127
3128		/*
3129		 * Hotplug ports handled by firmware in System Management Mode
3130		 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
3131		 */
3132		if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
3133			return false;
3134
3135		if (pci_bridge_d3_force)
3136			return true;
3137
3138		/* Even the oldest 2010 Thunderbolt controller supports D3. */
3139		if (bridge->is_thunderbolt)
3140			return true;
3141
3142		/* Platform might know better if the bridge supports D3 */
3143		if (platform_pci_bridge_d3(bridge))
3144			return true;
3145
3146		/*
3147		 * Hotplug ports handled natively by the OS were not validated
3148		 * by vendors for runtime D3 at least until 2018 because there
3149		 * was no OS support.
3150		 */
3151		if (bridge->is_hotplug_bridge)
3152			return false;
3153
3154		if (dmi_check_system(bridge_d3_blacklist))
3155			return false;
3156
3157		/*
3158		 * It should be safe to put PCIe ports from 2015 or newer
3159		 * to D3.
3160		 */
3161		if (dmi_get_bios_year() >= 2015)
3162			return true;
3163		break;
3164	}
3165
3166	return false;
3167}
3168
3169static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
3170{
3171	bool *d3cold_ok = data;
3172
3173	if (/* The device needs to be allowed to go D3cold ... */
3174	    dev->no_d3cold || !dev->d3cold_allowed ||
3175
3176	    /* ... and if it is wakeup capable to do so from D3cold. */
3177	    (device_may_wakeup(&dev->dev) &&
3178	     !pci_pme_capable(dev, PCI_D3cold)) ||
3179
3180	    /* If it is a bridge it must be allowed to go to D3. */
3181	    !pci_power_manageable(dev))
3182
3183		*d3cold_ok = false;
3184
3185	return !*d3cold_ok;
3186}
3187
3188/*
3189 * pci_bridge_d3_update - Update bridge D3 capabilities
3190 * @dev: PCI device which is changed
3191 *
3192 * Update upstream bridge PM capabilities accordingly depending on if the
3193 * device PM configuration was changed or the device is being removed.  The
3194 * change is also propagated upstream.
3195 */
3196void pci_bridge_d3_update(struct pci_dev *dev)
3197{
3198	bool remove = !device_is_registered(&dev->dev);
3199	struct pci_dev *bridge;
3200	bool d3cold_ok = true;
3201
3202	bridge = pci_upstream_bridge(dev);
3203	if (!bridge || !pci_bridge_d3_possible(bridge))
3204		return;
3205
3206	/*
3207	 * If D3 is currently allowed for the bridge, removing one of its
3208	 * children won't change that.
3209	 */
3210	if (remove && bridge->bridge_d3)
3211		return;
3212
3213	/*
3214	 * If D3 is currently allowed for the bridge and a child is added or
3215	 * changed, disallowance of D3 can only be caused by that child, so
3216	 * we only need to check that single device, not any of its siblings.
3217	 *
3218	 * If D3 is currently not allowed for the bridge, checking the device
3219	 * first may allow us to skip checking its siblings.
3220	 */
3221	if (!remove)
3222		pci_dev_check_d3cold(dev, &d3cold_ok);
3223
3224	/*
3225	 * If D3 is currently not allowed for the bridge, this may be caused
3226	 * either by the device being changed/removed or any of its siblings,
3227	 * so we need to go through all children to find out if one of them
3228	 * continues to block D3.
3229	 */
3230	if (d3cold_ok && !bridge->bridge_d3)
3231		pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
3232			     &d3cold_ok);
3233
3234	if (bridge->bridge_d3 != d3cold_ok) {
3235		bridge->bridge_d3 = d3cold_ok;
3236		/* Propagate change to upstream bridges */
3237		pci_bridge_d3_update(bridge);
3238	}
3239}
3240
3241/**
3242 * pci_d3cold_enable - Enable D3cold for device
3243 * @dev: PCI device to handle
3244 *
3245 * This function can be used in drivers to enable D3cold from the device
3246 * they handle.  It also updates upstream PCI bridge PM capabilities
3247 * accordingly.
3248 */
3249void pci_d3cold_enable(struct pci_dev *dev)
3250{
3251	if (dev->no_d3cold) {
3252		dev->no_d3cold = false;
3253		pci_bridge_d3_update(dev);
3254	}
3255}
3256EXPORT_SYMBOL_GPL(pci_d3cold_enable);
3257
3258/**
3259 * pci_d3cold_disable - Disable D3cold for device
3260 * @dev: PCI device to handle
3261 *
3262 * This function can be used in drivers to disable D3cold from the device
3263 * they handle.  It also updates upstream PCI bridge PM capabilities
3264 * accordingly.
3265 */
3266void pci_d3cold_disable(struct pci_dev *dev)
3267{
3268	if (!dev->no_d3cold) {
3269		dev->no_d3cold = true;
3270		pci_bridge_d3_update(dev);
3271	}
3272}
3273EXPORT_SYMBOL_GPL(pci_d3cold_disable);
3274
3275/**
3276 * pci_pm_init - Initialize PM functions of given PCI device
3277 * @dev: PCI device to handle.
3278 */
3279void pci_pm_init(struct pci_dev *dev)
3280{
3281	int pm;
3282	u16 status;
3283	u16 pmc;
3284
3285	pm_runtime_forbid(&dev->dev);
3286	pm_runtime_set_active(&dev->dev);
3287	pm_runtime_enable(&dev->dev);
3288	device_enable_async_suspend(&dev->dev);
3289	dev->wakeup_prepared = false;
3290
3291	dev->pm_cap = 0;
3292	dev->pme_support = 0;
3293
3294	/* find PCI PM capability in list */
3295	pm = pci_find_capability(dev, PCI_CAP_ID_PM);
3296	if (!pm)
3297		return;
3298	/* Check device's ability to generate PME# */
3299	pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
3300
3301	if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
3302		pci_err(dev, "unsupported PM cap regs version (%u)\n",
3303			pmc & PCI_PM_CAP_VER_MASK);
3304		return;
3305	}
3306
3307	dev->pm_cap = pm;
3308	dev->d3hot_delay = PCI_PM_D3HOT_WAIT;
3309	dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
3310	dev->bridge_d3 = pci_bridge_d3_possible(dev);
3311	dev->d3cold_allowed = true;
3312
3313	dev->d1_support = false;
3314	dev->d2_support = false;
3315	if (!pci_no_d1d2(dev)) {
3316		if (pmc & PCI_PM_CAP_D1)
3317			dev->d1_support = true;
3318		if (pmc & PCI_PM_CAP_D2)
3319			dev->d2_support = true;
3320
3321		if (dev->d1_support || dev->d2_support)
3322			pci_info(dev, "supports%s%s\n",
3323				   dev->d1_support ? " D1" : "",
3324				   dev->d2_support ? " D2" : "");
3325	}
3326
3327	pmc &= PCI_PM_CAP_PME_MASK;
3328	if (pmc) {
3329		pci_info(dev, "PME# supported from%s%s%s%s%s\n",
3330			 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
3331			 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
3332			 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
3333			 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "",
3334			 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
3335		dev->pme_support = FIELD_GET(PCI_PM_CAP_PME_MASK, pmc);
3336		dev->pme_poll = true;
3337		/*
3338		 * Make device's PM flags reflect the wake-up capability, but
3339		 * let the user space enable it to wake up the system as needed.
3340		 */
3341		device_set_wakeup_capable(&dev->dev, true);
3342		/* Disable the PME# generation functionality */
3343		pci_pme_active(dev, false);
3344	}
3345
3346	pci_read_config_word(dev, PCI_STATUS, &status);
3347	if (status & PCI_STATUS_IMM_READY)
3348		dev->imm_ready = 1;
3349}
3350
3351static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
3352{
3353	unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
3354
3355	switch (prop) {
3356	case PCI_EA_P_MEM:
3357	case PCI_EA_P_VF_MEM:
3358		flags |= IORESOURCE_MEM;
3359		break;
3360	case PCI_EA_P_MEM_PREFETCH:
3361	case PCI_EA_P_VF_MEM_PREFETCH:
3362		flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
3363		break;
3364	case PCI_EA_P_IO:
3365		flags |= IORESOURCE_IO;
3366		break;
3367	default:
3368		return 0;
3369	}
3370
3371	return flags;
3372}
3373
3374static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
3375					    u8 prop)
3376{
3377	if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
3378		return &dev->resource[bei];
3379#ifdef CONFIG_PCI_IOV
3380	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
3381		 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
3382		return &dev->resource[PCI_IOV_RESOURCES +
3383				      bei - PCI_EA_BEI_VF_BAR0];
3384#endif
3385	else if (bei == PCI_EA_BEI_ROM)
3386		return &dev->resource[PCI_ROM_RESOURCE];
3387	else
3388		return NULL;
3389}
3390
3391/* Read an Enhanced Allocation (EA) entry */
3392static int pci_ea_read(struct pci_dev *dev, int offset)
3393{
3394	struct resource *res;
3395	const char *res_name;
3396	int ent_size, ent_offset = offset;
3397	resource_size_t start, end;
3398	unsigned long flags;
3399	u32 dw0, bei, base, max_offset;
3400	u8 prop;
3401	bool support_64 = (sizeof(resource_size_t) >= 8);
3402
3403	pci_read_config_dword(dev, ent_offset, &dw0);
3404	ent_offset += 4;
3405
3406	/* Entry size field indicates DWORDs after 1st */
3407	ent_size = (FIELD_GET(PCI_EA_ES, dw0) + 1) << 2;
3408
3409	if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
3410		goto out;
3411
3412	bei = FIELD_GET(PCI_EA_BEI, dw0);
3413	prop = FIELD_GET(PCI_EA_PP, dw0);
3414
3415	/*
3416	 * If the Property is in the reserved range, try the Secondary
3417	 * Property instead.
3418	 */
3419	if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
3420		prop = FIELD_GET(PCI_EA_SP, dw0);
3421	if (prop > PCI_EA_P_BRIDGE_IO)
3422		goto out;
3423
3424	res = pci_ea_get_resource(dev, bei, prop);
3425	res_name = pci_resource_name(dev, bei);
3426	if (!res) {
3427		pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
3428		goto out;
3429	}
3430
3431	flags = pci_ea_flags(dev, prop);
3432	if (!flags) {
3433		pci_err(dev, "Unsupported EA properties: %#x\n", prop);
3434		goto out;
3435	}
3436
3437	/* Read Base */
3438	pci_read_config_dword(dev, ent_offset, &base);
3439	start = (base & PCI_EA_FIELD_MASK);
3440	ent_offset += 4;
3441
3442	/* Read MaxOffset */
3443	pci_read_config_dword(dev, ent_offset, &max_offset);
3444	ent_offset += 4;
3445
3446	/* Read Base MSBs (if 64-bit entry) */
3447	if (base & PCI_EA_IS_64) {
3448		u32 base_upper;
3449
3450		pci_read_config_dword(dev, ent_offset, &base_upper);
3451		ent_offset += 4;
3452
3453		flags |= IORESOURCE_MEM_64;
3454
3455		/* entry starts above 32-bit boundary, can't use */
3456		if (!support_64 && base_upper)
3457			goto out;
3458
3459		if (support_64)
3460			start |= ((u64)base_upper << 32);
3461	}
3462
3463	end = start + (max_offset | 0x03);
3464
3465	/* Read MaxOffset MSBs (if 64-bit entry) */
3466	if (max_offset & PCI_EA_IS_64) {
3467		u32 max_offset_upper;
3468
3469		pci_read_config_dword(dev, ent_offset, &max_offset_upper);
3470		ent_offset += 4;
3471
3472		flags |= IORESOURCE_MEM_64;
3473
3474		/* entry too big, can't use */
3475		if (!support_64 && max_offset_upper)
3476			goto out;
3477
3478		if (support_64)
3479			end += ((u64)max_offset_upper << 32);
3480	}
3481
3482	if (end < start) {
3483		pci_err(dev, "EA Entry crosses address boundary\n");
3484		goto out;
3485	}
3486
3487	if (ent_size != ent_offset - offset) {
3488		pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
3489			ent_size, ent_offset - offset);
3490		goto out;
3491	}
3492
3493	res->name = pci_name(dev);
3494	res->start = start;
3495	res->end = end;
3496	res->flags = flags;
3497
3498	if (bei <= PCI_EA_BEI_BAR5)
3499		pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n",
3500			 res_name, res, prop);
3501	else if (bei == PCI_EA_BEI_ROM)
3502		pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n",
3503			 res_name, res, prop);
3504	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3505		pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n",
3506			 res_name, res, prop);
3507	else
3508		pci_info(dev, "BEI %d %pR: from Enhanced Allocation, properties %#02x\n",
3509			   bei, res, prop);
3510
3511out:
3512	return offset + ent_size;
3513}
3514
3515/* Enhanced Allocation Initialization */
3516void pci_ea_init(struct pci_dev *dev)
3517{
3518	int ea;
3519	u8 num_ent;
3520	int offset;
3521	int i;
3522
3523	/* find PCI EA capability in list */
3524	ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3525	if (!ea)
3526		return;
3527
3528	/* determine the number of entries */
3529	pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3530					&num_ent);
3531	num_ent &= PCI_EA_NUM_ENT_MASK;
3532
3533	offset = ea + PCI_EA_FIRST_ENT;
3534
3535	/* Skip DWORD 2 for type 1 functions */
3536	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3537		offset += 4;
3538
3539	/* parse each EA entry */
3540	for (i = 0; i < num_ent; ++i)
3541		offset = pci_ea_read(dev, offset);
3542}
3543
3544static void pci_add_saved_cap(struct pci_dev *pci_dev,
3545	struct pci_cap_saved_state *new_cap)
3546{
3547	hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3548}
3549
3550/**
3551 * _pci_add_cap_save_buffer - allocate buffer for saving given
3552 *			      capability registers
3553 * @dev: the PCI device
3554 * @cap: the capability to allocate the buffer for
3555 * @extended: Standard or Extended capability ID
3556 * @size: requested size of the buffer
3557 */
3558static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3559				    bool extended, unsigned int size)
3560{
3561	int pos;
3562	struct pci_cap_saved_state *save_state;
3563
3564	if (extended)
3565		pos = pci_find_ext_capability(dev, cap);
3566	else
3567		pos = pci_find_capability(dev, cap);
3568
3569	if (!pos)
3570		return 0;
3571
3572	save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3573	if (!save_state)
3574		return -ENOMEM;
3575
3576	save_state->cap.cap_nr = cap;
3577	save_state->cap.cap_extended = extended;
3578	save_state->cap.size = size;
3579	pci_add_saved_cap(dev, save_state);
3580
3581	return 0;
3582}
3583
3584int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3585{
3586	return _pci_add_cap_save_buffer(dev, cap, false, size);
3587}
3588
3589int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3590{
3591	return _pci_add_cap_save_buffer(dev, cap, true, size);
3592}
3593
3594/**
3595 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3596 * @dev: the PCI device
3597 */
3598void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3599{
3600	int error;
3601
3602	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3603					PCI_EXP_SAVE_REGS * sizeof(u16));
3604	if (error)
3605		pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3606
3607	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3608	if (error)
3609		pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3610
3611	error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3612					    2 * sizeof(u16));
3613	if (error)
3614		pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3615
3616	pci_allocate_vc_save_buffers(dev);
3617}
3618
3619void pci_free_cap_save_buffers(struct pci_dev *dev)
3620{
3621	struct pci_cap_saved_state *tmp;
3622	struct hlist_node *n;
3623
3624	hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3625		kfree(tmp);
3626}
3627
3628/**
3629 * pci_configure_ari - enable or disable ARI forwarding
3630 * @dev: the PCI device
3631 *
3632 * If @dev and its upstream bridge both support ARI, enable ARI in the
3633 * bridge.  Otherwise, disable ARI in the bridge.
3634 */
3635void pci_configure_ari(struct pci_dev *dev)
3636{
3637	u32 cap;
3638	struct pci_dev *bridge;
3639
3640	if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3641		return;
3642
3643	bridge = dev->bus->self;
3644	if (!bridge)
3645		return;
3646
3647	pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3648	if (!(cap & PCI_EXP_DEVCAP2_ARI))
3649		return;
3650
3651	if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3652		pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3653					 PCI_EXP_DEVCTL2_ARI);
3654		bridge->ari_enabled = 1;
3655	} else {
3656		pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3657					   PCI_EXP_DEVCTL2_ARI);
3658		bridge->ari_enabled = 0;
3659	}
3660}
3661
3662static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3663{
3664	int pos;
3665	u16 cap, ctrl;
3666
3667	pos = pdev->acs_cap;
3668	if (!pos)
3669		return false;
3670
3671	/*
3672	 * Except for egress control, capabilities are either required
3673	 * or only required if controllable.  Features missing from the
3674	 * capability field can therefore be assumed as hard-wired enabled.
3675	 */
3676	pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3677	acs_flags &= (cap | PCI_ACS_EC);
3678
3679	pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3680	return (ctrl & acs_flags) == acs_flags;
3681}
3682
3683/**
3684 * pci_acs_enabled - test ACS against required flags for a given device
3685 * @pdev: device to test
3686 * @acs_flags: required PCI ACS flags
3687 *
3688 * Return true if the device supports the provided flags.  Automatically
3689 * filters out flags that are not implemented on multifunction devices.
3690 *
3691 * Note that this interface checks the effective ACS capabilities of the
3692 * device rather than the actual capabilities.  For instance, most single
3693 * function endpoints are not required to support ACS because they have no
3694 * opportunity for peer-to-peer access.  We therefore return 'true'
3695 * regardless of whether the device exposes an ACS capability.  This makes
3696 * it much easier for callers of this function to ignore the actual type
3697 * or topology of the device when testing ACS support.
3698 */
3699bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3700{
3701	int ret;
3702
3703	ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3704	if (ret >= 0)
3705		return ret > 0;
3706
3707	/*
3708	 * Conventional PCI and PCI-X devices never support ACS, either
3709	 * effectively or actually.  The shared bus topology implies that
3710	 * any device on the bus can receive or snoop DMA.
3711	 */
3712	if (!pci_is_pcie(pdev))
3713		return false;
3714
3715	switch (pci_pcie_type(pdev)) {
3716	/*
3717	 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3718	 * but since their primary interface is PCI/X, we conservatively
3719	 * handle them as we would a non-PCIe device.
3720	 */
3721	case PCI_EXP_TYPE_PCIE_BRIDGE:
3722	/*
3723	 * PCIe 3.0, 6.12.1 excludes ACS on these devices.  "ACS is never
3724	 * applicable... must never implement an ACS Extended Capability...".
3725	 * This seems arbitrary, but we take a conservative interpretation
3726	 * of this statement.
3727	 */
3728	case PCI_EXP_TYPE_PCI_BRIDGE:
3729	case PCI_EXP_TYPE_RC_EC:
3730		return false;
3731	/*
3732	 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3733	 * implement ACS in order to indicate their peer-to-peer capabilities,
3734	 * regardless of whether they are single- or multi-function devices.
3735	 */
3736	case PCI_EXP_TYPE_DOWNSTREAM:
3737	case PCI_EXP_TYPE_ROOT_PORT:
3738		return pci_acs_flags_enabled(pdev, acs_flags);
3739	/*
3740	 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3741	 * implemented by the remaining PCIe types to indicate peer-to-peer
3742	 * capabilities, but only when they are part of a multifunction
3743	 * device.  The footnote for section 6.12 indicates the specific
3744	 * PCIe types included here.
3745	 */
3746	case PCI_EXP_TYPE_ENDPOINT:
3747	case PCI_EXP_TYPE_UPSTREAM:
3748	case PCI_EXP_TYPE_LEG_END:
3749	case PCI_EXP_TYPE_RC_END:
3750		if (!pdev->multifunction)
3751			break;
3752
3753		return pci_acs_flags_enabled(pdev, acs_flags);
3754	}
3755
3756	/*
3757	 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3758	 * to single function devices with the exception of downstream ports.
3759	 */
3760	return true;
3761}
3762
3763/**
3764 * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy
3765 * @start: starting downstream device
3766 * @end: ending upstream device or NULL to search to the root bus
3767 * @acs_flags: required flags
3768 *
3769 * Walk up a device tree from start to end testing PCI ACS support.  If
3770 * any step along the way does not support the required flags, return false.
3771 */
3772bool pci_acs_path_enabled(struct pci_dev *start,
3773			  struct pci_dev *end, u16 acs_flags)
3774{
3775	struct pci_dev *pdev, *parent = start;
3776
3777	do {
3778		pdev = parent;
3779
3780		if (!pci_acs_enabled(pdev, acs_flags))
3781			return false;
3782
3783		if (pci_is_root_bus(pdev->bus))
3784			return (end == NULL);
3785
3786		parent = pdev->bus->self;
3787	} while (pdev != end);
3788
3789	return true;
3790}
3791
3792/**
3793 * pci_acs_init - Initialize ACS if hardware supports it
3794 * @dev: the PCI device
3795 */
3796void pci_acs_init(struct pci_dev *dev)
3797{
3798	dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3799
3800	/*
3801	 * Attempt to enable ACS regardless of capability because some Root
3802	 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have
3803	 * the standard ACS capability but still support ACS via those
3804	 * quirks.
3805	 */
3806	pci_enable_acs(dev);
3807}
3808
3809/**
3810 * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3811 * @pdev: PCI device
3812 * @bar: BAR to find
3813 *
3814 * Helper to find the position of the ctrl register for a BAR.
3815 * Returns -ENOTSUPP if resizable BARs are not supported at all.
3816 * Returns -ENOENT if no ctrl register for the BAR could be found.
3817 */
3818static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3819{
3820	unsigned int pos, nbars, i;
3821	u32 ctrl;
3822
3823	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3824	if (!pos)
3825		return -ENOTSUPP;
3826
3827	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3828	nbars = FIELD_GET(PCI_REBAR_CTRL_NBAR_MASK, ctrl);
 
3829
3830	for (i = 0; i < nbars; i++, pos += 8) {
3831		int bar_idx;
3832
3833		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3834		bar_idx = FIELD_GET(PCI_REBAR_CTRL_BAR_IDX, ctrl);
3835		if (bar_idx == bar)
3836			return pos;
3837	}
3838
3839	return -ENOENT;
3840}
3841
3842/**
3843 * pci_rebar_get_possible_sizes - get possible sizes for BAR
3844 * @pdev: PCI device
3845 * @bar: BAR to query
3846 *
3847 * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3848 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3849 */
3850u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3851{
3852	int pos;
3853	u32 cap;
3854
3855	pos = pci_rebar_find_pos(pdev, bar);
3856	if (pos < 0)
3857		return 0;
3858
3859	pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3860	cap = FIELD_GET(PCI_REBAR_CAP_SIZES, cap);
3861
3862	/* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */
3863	if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f &&
3864	    bar == 0 && cap == 0x700)
3865		return 0x3f00;
3866
3867	return cap;
3868}
3869EXPORT_SYMBOL(pci_rebar_get_possible_sizes);
3870
3871/**
3872 * pci_rebar_get_current_size - get the current size of a BAR
3873 * @pdev: PCI device
3874 * @bar: BAR to set size to
3875 *
3876 * Read the size of a BAR from the resizable BAR config.
3877 * Returns size if found or negative error code.
3878 */
3879int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3880{
3881	int pos;
3882	u32 ctrl;
3883
3884	pos = pci_rebar_find_pos(pdev, bar);
3885	if (pos < 0)
3886		return pos;
3887
3888	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3889	return FIELD_GET(PCI_REBAR_CTRL_BAR_SIZE, ctrl);
3890}
3891
3892/**
3893 * pci_rebar_set_size - set a new size for a BAR
3894 * @pdev: PCI device
3895 * @bar: BAR to set size to
3896 * @size: new size as defined in the spec (0=1MB, 19=512GB)
3897 *
3898 * Set the new size of a BAR as defined in the spec.
3899 * Returns zero if resizing was successful, error code otherwise.
3900 */
3901int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3902{
3903	int pos;
3904	u32 ctrl;
3905
3906	pos = pci_rebar_find_pos(pdev, bar);
3907	if (pos < 0)
3908		return pos;
3909
3910	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3911	ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3912	ctrl |= FIELD_PREP(PCI_REBAR_CTRL_BAR_SIZE, size);
3913	pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3914	return 0;
3915}
3916
3917/**
3918 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3919 * @dev: the PCI device
3920 * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3921 *	PCI_EXP_DEVCAP2_ATOMIC_COMP32
3922 *	PCI_EXP_DEVCAP2_ATOMIC_COMP64
3923 *	PCI_EXP_DEVCAP2_ATOMIC_COMP128
3924 *
3925 * Return 0 if all upstream bridges support AtomicOp routing, egress
3926 * blocking is disabled on all upstream ports, and the root port supports
3927 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3928 * AtomicOp completion), or negative otherwise.
3929 */
3930int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3931{
3932	struct pci_bus *bus = dev->bus;
3933	struct pci_dev *bridge;
3934	u32 cap, ctl2;
3935
3936	/*
3937	 * Per PCIe r5.0, sec 9.3.5.10, the AtomicOp Requester Enable bit
3938	 * in Device Control 2 is reserved in VFs and the PF value applies
3939	 * to all associated VFs.
3940	 */
3941	if (dev->is_virtfn)
3942		return -EINVAL;
3943
3944	if (!pci_is_pcie(dev))
3945		return -EINVAL;
3946
3947	/*
3948	 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3949	 * AtomicOp requesters.  For now, we only support endpoints as
3950	 * requesters and root ports as completers.  No endpoints as
3951	 * completers, and no peer-to-peer.
3952	 */
3953
3954	switch (pci_pcie_type(dev)) {
3955	case PCI_EXP_TYPE_ENDPOINT:
3956	case PCI_EXP_TYPE_LEG_END:
3957	case PCI_EXP_TYPE_RC_END:
3958		break;
3959	default:
3960		return -EINVAL;
3961	}
3962
3963	while (bus->parent) {
3964		bridge = bus->self;
3965
3966		pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3967
3968		switch (pci_pcie_type(bridge)) {
3969		/* Ensure switch ports support AtomicOp routing */
3970		case PCI_EXP_TYPE_UPSTREAM:
3971		case PCI_EXP_TYPE_DOWNSTREAM:
3972			if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3973				return -EINVAL;
3974			break;
3975
3976		/* Ensure root port supports all the sizes we care about */
3977		case PCI_EXP_TYPE_ROOT_PORT:
3978			if ((cap & cap_mask) != cap_mask)
3979				return -EINVAL;
3980			break;
3981		}
3982
3983		/* Ensure upstream ports don't block AtomicOps on egress */
3984		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
3985			pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3986						   &ctl2);
3987			if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3988				return -EINVAL;
3989		}
3990
3991		bus = bus->parent;
3992	}
3993
3994	pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3995				 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3996	return 0;
3997}
3998EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3999
4000/**
4001 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
4002 * @dev: the PCI device
4003 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
4004 *
4005 * Perform INTx swizzling for a device behind one level of bridge.  This is
4006 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
4007 * behind bridges on add-in cards.  For devices with ARI enabled, the slot
4008 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
4009 * the PCI Express Base Specification, Revision 2.1)
4010 */
4011u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
4012{
4013	int slot;
4014
4015	if (pci_ari_enabled(dev->bus))
4016		slot = 0;
4017	else
4018		slot = PCI_SLOT(dev->devfn);
4019
4020	return (((pin - 1) + slot) % 4) + 1;
4021}
4022
4023int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
4024{
4025	u8 pin;
4026
4027	pin = dev->pin;
4028	if (!pin)
4029		return -1;
4030
4031	while (!pci_is_root_bus(dev->bus)) {
4032		pin = pci_swizzle_interrupt_pin(dev, pin);
4033		dev = dev->bus->self;
4034	}
4035	*bridge = dev;
4036	return pin;
4037}
4038
4039/**
4040 * pci_common_swizzle - swizzle INTx all the way to root bridge
4041 * @dev: the PCI device
4042 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
4043 *
4044 * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
4045 * bridges all the way up to a PCI root bus.
4046 */
4047u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
4048{
4049	u8 pin = *pinp;
4050
4051	while (!pci_is_root_bus(dev->bus)) {
4052		pin = pci_swizzle_interrupt_pin(dev, pin);
4053		dev = dev->bus->self;
4054	}
4055	*pinp = pin;
4056	return PCI_SLOT(dev->devfn);
4057}
4058EXPORT_SYMBOL_GPL(pci_common_swizzle);
4059
4060/**
4061 * pci_release_region - Release a PCI bar
4062 * @pdev: PCI device whose resources were previously reserved by
4063 *	  pci_request_region()
4064 * @bar: BAR to release
4065 *
4066 * Releases the PCI I/O and memory resources previously reserved by a
4067 * successful call to pci_request_region().  Call this function only
4068 * after all use of the PCI regions has ceased.
4069 */
4070void pci_release_region(struct pci_dev *pdev, int bar)
4071{
4072	struct pci_devres *dr;
4073
4074	if (pci_resource_len(pdev, bar) == 0)
4075		return;
4076	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
4077		release_region(pci_resource_start(pdev, bar),
4078				pci_resource_len(pdev, bar));
4079	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
4080		release_mem_region(pci_resource_start(pdev, bar),
4081				pci_resource_len(pdev, bar));
4082
4083	dr = find_pci_dr(pdev);
4084	if (dr)
4085		dr->region_mask &= ~(1 << bar);
4086}
4087EXPORT_SYMBOL(pci_release_region);
4088
4089/**
4090 * __pci_request_region - Reserved PCI I/O and memory resource
4091 * @pdev: PCI device whose resources are to be reserved
4092 * @bar: BAR to be reserved
4093 * @res_name: Name to be associated with resource.
4094 * @exclusive: whether the region access is exclusive or not
4095 *
4096 * Mark the PCI region associated with PCI device @pdev BAR @bar as
4097 * being reserved by owner @res_name.  Do not access any
4098 * address inside the PCI regions unless this call returns
4099 * successfully.
4100 *
4101 * If @exclusive is set, then the region is marked so that userspace
4102 * is explicitly not allowed to map the resource via /dev/mem or
4103 * sysfs MMIO access.
4104 *
4105 * Returns 0 on success, or %EBUSY on error.  A warning
4106 * message is also printed on failure.
4107 */
4108static int __pci_request_region(struct pci_dev *pdev, int bar,
4109				const char *res_name, int exclusive)
4110{
4111	struct pci_devres *dr;
4112
4113	if (pci_resource_len(pdev, bar) == 0)
4114		return 0;
4115
4116	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
4117		if (!request_region(pci_resource_start(pdev, bar),
4118			    pci_resource_len(pdev, bar), res_name))
4119			goto err_out;
4120	} else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
4121		if (!__request_mem_region(pci_resource_start(pdev, bar),
4122					pci_resource_len(pdev, bar), res_name,
4123					exclusive))
4124			goto err_out;
4125	}
4126
4127	dr = find_pci_dr(pdev);
4128	if (dr)
4129		dr->region_mask |= 1 << bar;
4130
4131	return 0;
4132
4133err_out:
4134	pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
4135		 &pdev->resource[bar]);
4136	return -EBUSY;
4137}
4138
4139/**
4140 * pci_request_region - Reserve PCI I/O and memory resource
4141 * @pdev: PCI device whose resources are to be reserved
4142 * @bar: BAR to be reserved
4143 * @res_name: Name to be associated with resource
4144 *
4145 * Mark the PCI region associated with PCI device @pdev BAR @bar as
4146 * being reserved by owner @res_name.  Do not access any
4147 * address inside the PCI regions unless this call returns
4148 * successfully.
4149 *
4150 * Returns 0 on success, or %EBUSY on error.  A warning
4151 * message is also printed on failure.
4152 */
4153int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
4154{
4155	return __pci_request_region(pdev, bar, res_name, 0);
4156}
4157EXPORT_SYMBOL(pci_request_region);
4158
4159/**
4160 * pci_release_selected_regions - Release selected PCI I/O and memory resources
4161 * @pdev: PCI device whose resources were previously reserved
4162 * @bars: Bitmask of BARs to be released
4163 *
4164 * Release selected PCI I/O and memory resources previously reserved.
4165 * Call this function only after all use of the PCI regions has ceased.
4166 */
4167void pci_release_selected_regions(struct pci_dev *pdev, int bars)
4168{
4169	int i;
4170
4171	for (i = 0; i < PCI_STD_NUM_BARS; i++)
4172		if (bars & (1 << i))
4173			pci_release_region(pdev, i);
4174}
4175EXPORT_SYMBOL(pci_release_selected_regions);
4176
4177static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
4178					  const char *res_name, int excl)
4179{
4180	int i;
4181
4182	for (i = 0; i < PCI_STD_NUM_BARS; i++)
4183		if (bars & (1 << i))
4184			if (__pci_request_region(pdev, i, res_name, excl))
4185				goto err_out;
4186	return 0;
4187
4188err_out:
4189	while (--i >= 0)
4190		if (bars & (1 << i))
4191			pci_release_region(pdev, i);
4192
4193	return -EBUSY;
4194}
4195
4196
4197/**
4198 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
4199 * @pdev: PCI device whose resources are to be reserved
4200 * @bars: Bitmask of BARs to be requested
4201 * @res_name: Name to be associated with resource
4202 */
4203int pci_request_selected_regions(struct pci_dev *pdev, int bars,
4204				 const char *res_name)
4205{
4206	return __pci_request_selected_regions(pdev, bars, res_name, 0);
4207}
4208EXPORT_SYMBOL(pci_request_selected_regions);
4209
4210int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
4211					   const char *res_name)
4212{
4213	return __pci_request_selected_regions(pdev, bars, res_name,
4214			IORESOURCE_EXCLUSIVE);
4215}
4216EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
4217
4218/**
4219 * pci_release_regions - Release reserved PCI I/O and memory resources
4220 * @pdev: PCI device whose resources were previously reserved by
4221 *	  pci_request_regions()
4222 *
4223 * Releases all PCI I/O and memory resources previously reserved by a
4224 * successful call to pci_request_regions().  Call this function only
4225 * after all use of the PCI regions has ceased.
4226 */
4227
4228void pci_release_regions(struct pci_dev *pdev)
4229{
4230	pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1);
4231}
4232EXPORT_SYMBOL(pci_release_regions);
4233
4234/**
4235 * pci_request_regions - Reserve PCI I/O and memory resources
4236 * @pdev: PCI device whose resources are to be reserved
4237 * @res_name: Name to be associated with resource.
4238 *
4239 * Mark all PCI regions associated with PCI device @pdev as
4240 * being reserved by owner @res_name.  Do not access any
4241 * address inside the PCI regions unless this call returns
4242 * successfully.
4243 *
4244 * Returns 0 on success, or %EBUSY on error.  A warning
4245 * message is also printed on failure.
4246 */
4247int pci_request_regions(struct pci_dev *pdev, const char *res_name)
4248{
4249	return pci_request_selected_regions(pdev,
4250			((1 << PCI_STD_NUM_BARS) - 1), res_name);
4251}
4252EXPORT_SYMBOL(pci_request_regions);
4253
4254/**
4255 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
4256 * @pdev: PCI device whose resources are to be reserved
4257 * @res_name: Name to be associated with resource.
4258 *
4259 * Mark all PCI regions associated with PCI device @pdev as being reserved
4260 * by owner @res_name.  Do not access any address inside the PCI regions
4261 * unless this call returns successfully.
4262 *
4263 * pci_request_regions_exclusive() will mark the region so that /dev/mem
4264 * and the sysfs MMIO access will not be allowed.
4265 *
4266 * Returns 0 on success, or %EBUSY on error.  A warning message is also
4267 * printed on failure.
4268 */
4269int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
4270{
4271	return pci_request_selected_regions_exclusive(pdev,
4272				((1 << PCI_STD_NUM_BARS) - 1), res_name);
4273}
4274EXPORT_SYMBOL(pci_request_regions_exclusive);
4275
4276/*
4277 * Record the PCI IO range (expressed as CPU physical address + size).
4278 * Return a negative value if an error has occurred, zero otherwise
4279 */
4280int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
4281			resource_size_t	size)
4282{
4283	int ret = 0;
4284#ifdef PCI_IOBASE
4285	struct logic_pio_hwaddr *range;
4286
4287	if (!size || addr + size < addr)
4288		return -EINVAL;
4289
4290	range = kzalloc(sizeof(*range), GFP_ATOMIC);
4291	if (!range)
4292		return -ENOMEM;
4293
4294	range->fwnode = fwnode;
4295	range->size = size;
4296	range->hw_start = addr;
4297	range->flags = LOGIC_PIO_CPU_MMIO;
4298
4299	ret = logic_pio_register_range(range);
4300	if (ret)
4301		kfree(range);
4302
4303	/* Ignore duplicates due to deferred probing */
4304	if (ret == -EEXIST)
4305		ret = 0;
4306#endif
4307
4308	return ret;
4309}
4310
4311phys_addr_t pci_pio_to_address(unsigned long pio)
4312{
 
 
4313#ifdef PCI_IOBASE
4314	if (pio < MMIO_UPPER_LIMIT)
4315		return logic_pio_to_hwaddr(pio);
 
 
4316#endif
4317
4318	return (phys_addr_t) OF_BAD_ADDR;
4319}
4320EXPORT_SYMBOL_GPL(pci_pio_to_address);
4321
4322unsigned long __weak pci_address_to_pio(phys_addr_t address)
4323{
4324#ifdef PCI_IOBASE
4325	return logic_pio_trans_cpuaddr(address);
4326#else
4327	if (address > IO_SPACE_LIMIT)
4328		return (unsigned long)-1;
4329
4330	return (unsigned long) address;
4331#endif
4332}
4333
4334/**
4335 * pci_remap_iospace - Remap the memory mapped I/O space
4336 * @res: Resource describing the I/O space
4337 * @phys_addr: physical address of range to be mapped
4338 *
4339 * Remap the memory mapped I/O space described by the @res and the CPU
4340 * physical address @phys_addr into virtual address space.  Only
4341 * architectures that have memory mapped IO functions defined (and the
4342 * PCI_IOBASE value defined) should call this function.
4343 */
4344#ifndef pci_remap_iospace
4345int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
4346{
4347#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4348	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4349
4350	if (!(res->flags & IORESOURCE_IO))
4351		return -EINVAL;
4352
4353	if (res->end > IO_SPACE_LIMIT)
4354		return -EINVAL;
4355
4356	return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
4357				  pgprot_device(PAGE_KERNEL));
4358#else
4359	/*
4360	 * This architecture does not have memory mapped I/O space,
4361	 * so this function should never be called
4362	 */
4363	WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
4364	return -ENODEV;
4365#endif
4366}
4367EXPORT_SYMBOL(pci_remap_iospace);
4368#endif
4369
4370/**
4371 * pci_unmap_iospace - Unmap the memory mapped I/O space
4372 * @res: resource to be unmapped
4373 *
4374 * Unmap the CPU virtual address @res from virtual address space.  Only
4375 * architectures that have memory mapped IO functions defined (and the
4376 * PCI_IOBASE value defined) should call this function.
4377 */
4378void pci_unmap_iospace(struct resource *res)
4379{
4380#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4381	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4382
4383	vunmap_range(vaddr, vaddr + resource_size(res));
4384#endif
4385}
4386EXPORT_SYMBOL(pci_unmap_iospace);
4387
4388static void devm_pci_unmap_iospace(struct device *dev, void *ptr)
4389{
4390	struct resource **res = ptr;
4391
4392	pci_unmap_iospace(*res);
4393}
4394
4395/**
4396 * devm_pci_remap_iospace - Managed pci_remap_iospace()
4397 * @dev: Generic device to remap IO address for
4398 * @res: Resource describing the I/O space
4399 * @phys_addr: physical address of range to be mapped
4400 *
4401 * Managed pci_remap_iospace().  Map is automatically unmapped on driver
4402 * detach.
4403 */
4404int devm_pci_remap_iospace(struct device *dev, const struct resource *res,
4405			   phys_addr_t phys_addr)
4406{
4407	const struct resource **ptr;
4408	int error;
4409
4410	ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL);
4411	if (!ptr)
4412		return -ENOMEM;
4413
4414	error = pci_remap_iospace(res, phys_addr);
4415	if (error) {
4416		devres_free(ptr);
4417	} else	{
4418		*ptr = res;
4419		devres_add(dev, ptr);
4420	}
4421
4422	return error;
4423}
4424EXPORT_SYMBOL(devm_pci_remap_iospace);
4425
4426/**
4427 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
4428 * @dev: Generic device to remap IO address for
4429 * @offset: Resource address to map
4430 * @size: Size of map
4431 *
4432 * Managed pci_remap_cfgspace().  Map is automatically unmapped on driver
4433 * detach.
4434 */
4435void __iomem *devm_pci_remap_cfgspace(struct device *dev,
4436				      resource_size_t offset,
4437				      resource_size_t size)
4438{
4439	void __iomem **ptr, *addr;
4440
4441	ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
4442	if (!ptr)
4443		return NULL;
4444
4445	addr = pci_remap_cfgspace(offset, size);
4446	if (addr) {
4447		*ptr = addr;
4448		devres_add(dev, ptr);
4449	} else
4450		devres_free(ptr);
4451
4452	return addr;
4453}
4454EXPORT_SYMBOL(devm_pci_remap_cfgspace);
4455
4456/**
4457 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
4458 * @dev: generic device to handle the resource for
4459 * @res: configuration space resource to be handled
4460 *
4461 * Checks that a resource is a valid memory region, requests the memory
4462 * region and ioremaps with pci_remap_cfgspace() API that ensures the
4463 * proper PCI configuration space memory attributes are guaranteed.
4464 *
4465 * All operations are managed and will be undone on driver detach.
4466 *
4467 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
4468 * on failure. Usage example::
4469 *
4470 *	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4471 *	base = devm_pci_remap_cfg_resource(&pdev->dev, res);
4472 *	if (IS_ERR(base))
4473 *		return PTR_ERR(base);
4474 */
4475void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
4476					  struct resource *res)
4477{
4478	resource_size_t size;
4479	const char *name;
4480	void __iomem *dest_ptr;
4481
4482	BUG_ON(!dev);
4483
4484	if (!res || resource_type(res) != IORESOURCE_MEM) {
4485		dev_err(dev, "invalid resource\n");
4486		return IOMEM_ERR_PTR(-EINVAL);
4487	}
4488
4489	size = resource_size(res);
4490
4491	if (res->name)
4492		name = devm_kasprintf(dev, GFP_KERNEL, "%s %s", dev_name(dev),
4493				      res->name);
4494	else
4495		name = devm_kstrdup(dev, dev_name(dev), GFP_KERNEL);
4496	if (!name)
4497		return IOMEM_ERR_PTR(-ENOMEM);
4498
4499	if (!devm_request_mem_region(dev, res->start, size, name)) {
4500		dev_err(dev, "can't request region for resource %pR\n", res);
4501		return IOMEM_ERR_PTR(-EBUSY);
4502	}
4503
4504	dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
4505	if (!dest_ptr) {
4506		dev_err(dev, "ioremap failed for resource %pR\n", res);
4507		devm_release_mem_region(dev, res->start, size);
4508		dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
4509	}
4510
4511	return dest_ptr;
4512}
4513EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
4514
4515static void __pci_set_master(struct pci_dev *dev, bool enable)
4516{
4517	u16 old_cmd, cmd;
4518
4519	pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4520	if (enable)
4521		cmd = old_cmd | PCI_COMMAND_MASTER;
4522	else
4523		cmd = old_cmd & ~PCI_COMMAND_MASTER;
4524	if (cmd != old_cmd) {
4525		pci_dbg(dev, "%s bus mastering\n",
4526			enable ? "enabling" : "disabling");
4527		pci_write_config_word(dev, PCI_COMMAND, cmd);
4528	}
4529	dev->is_busmaster = enable;
4530}
4531
4532/**
4533 * pcibios_setup - process "pci=" kernel boot arguments
4534 * @str: string used to pass in "pci=" kernel boot arguments
4535 *
4536 * Process kernel boot arguments.  This is the default implementation.
4537 * Architecture specific implementations can override this as necessary.
4538 */
4539char * __weak __init pcibios_setup(char *str)
4540{
4541	return str;
4542}
4543
4544/**
4545 * pcibios_set_master - enable PCI bus-mastering for device dev
4546 * @dev: the PCI device to enable
4547 *
4548 * Enables PCI bus-mastering for the device.  This is the default
4549 * implementation.  Architecture specific implementations can override
4550 * this if necessary.
4551 */
4552void __weak pcibios_set_master(struct pci_dev *dev)
4553{
4554	u8 lat;
4555
4556	/* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4557	if (pci_is_pcie(dev))
4558		return;
4559
4560	pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4561	if (lat < 16)
4562		lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4563	else if (lat > pcibios_max_latency)
4564		lat = pcibios_max_latency;
4565	else
4566		return;
4567
4568	pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4569}
4570
4571/**
4572 * pci_set_master - enables bus-mastering for device dev
4573 * @dev: the PCI device to enable
4574 *
4575 * Enables bus-mastering on the device and calls pcibios_set_master()
4576 * to do the needed arch specific settings.
4577 */
4578void pci_set_master(struct pci_dev *dev)
4579{
4580	__pci_set_master(dev, true);
4581	pcibios_set_master(dev);
4582}
4583EXPORT_SYMBOL(pci_set_master);
4584
4585/**
4586 * pci_clear_master - disables bus-mastering for device dev
4587 * @dev: the PCI device to disable
4588 */
4589void pci_clear_master(struct pci_dev *dev)
4590{
4591	__pci_set_master(dev, false);
4592}
4593EXPORT_SYMBOL(pci_clear_master);
4594
4595/**
4596 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4597 * @dev: the PCI device for which MWI is to be enabled
4598 *
4599 * Helper function for pci_set_mwi.
4600 * Originally copied from drivers/net/acenic.c.
4601 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4602 *
4603 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4604 */
4605int pci_set_cacheline_size(struct pci_dev *dev)
4606{
4607	u8 cacheline_size;
4608
4609	if (!pci_cache_line_size)
4610		return -EINVAL;
4611
4612	/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4613	   equal to or multiple of the right value. */
4614	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4615	if (cacheline_size >= pci_cache_line_size &&
4616	    (cacheline_size % pci_cache_line_size) == 0)
4617		return 0;
4618
4619	/* Write the correct value. */
4620	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4621	/* Read it back. */
4622	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4623	if (cacheline_size == pci_cache_line_size)
4624		return 0;
4625
4626	pci_dbg(dev, "cache line size of %d is not supported\n",
4627		   pci_cache_line_size << 2);
4628
4629	return -EINVAL;
4630}
4631EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4632
4633/**
4634 * pci_set_mwi - enables memory-write-invalidate PCI transaction
4635 * @dev: the PCI device for which MWI is enabled
4636 *
4637 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4638 *
4639 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4640 */
4641int pci_set_mwi(struct pci_dev *dev)
4642{
4643#ifdef PCI_DISABLE_MWI
4644	return 0;
4645#else
4646	int rc;
4647	u16 cmd;
4648
4649	rc = pci_set_cacheline_size(dev);
4650	if (rc)
4651		return rc;
4652
4653	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4654	if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4655		pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4656		cmd |= PCI_COMMAND_INVALIDATE;
4657		pci_write_config_word(dev, PCI_COMMAND, cmd);
4658	}
4659	return 0;
4660#endif
4661}
4662EXPORT_SYMBOL(pci_set_mwi);
4663
4664/**
4665 * pcim_set_mwi - a device-managed pci_set_mwi()
4666 * @dev: the PCI device for which MWI is enabled
4667 *
4668 * Managed pci_set_mwi().
4669 *
4670 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4671 */
4672int pcim_set_mwi(struct pci_dev *dev)
4673{
4674	struct pci_devres *dr;
4675
4676	dr = find_pci_dr(dev);
4677	if (!dr)
4678		return -ENOMEM;
4679
4680	dr->mwi = 1;
4681	return pci_set_mwi(dev);
4682}
4683EXPORT_SYMBOL(pcim_set_mwi);
4684
4685/**
4686 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4687 * @dev: the PCI device for which MWI is enabled
4688 *
4689 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4690 * Callers are not required to check the return value.
4691 *
4692 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4693 */
4694int pci_try_set_mwi(struct pci_dev *dev)
4695{
4696#ifdef PCI_DISABLE_MWI
4697	return 0;
4698#else
4699	return pci_set_mwi(dev);
4700#endif
4701}
4702EXPORT_SYMBOL(pci_try_set_mwi);
4703
4704/**
4705 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4706 * @dev: the PCI device to disable
4707 *
4708 * Disables PCI Memory-Write-Invalidate transaction on the device
4709 */
4710void pci_clear_mwi(struct pci_dev *dev)
4711{
4712#ifndef PCI_DISABLE_MWI
4713	u16 cmd;
4714
4715	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4716	if (cmd & PCI_COMMAND_INVALIDATE) {
4717		cmd &= ~PCI_COMMAND_INVALIDATE;
4718		pci_write_config_word(dev, PCI_COMMAND, cmd);
4719	}
4720#endif
4721}
4722EXPORT_SYMBOL(pci_clear_mwi);
4723
4724/**
4725 * pci_disable_parity - disable parity checking for device
4726 * @dev: the PCI device to operate on
4727 *
4728 * Disable parity checking for device @dev
4729 */
4730void pci_disable_parity(struct pci_dev *dev)
4731{
4732	u16 cmd;
4733
4734	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4735	if (cmd & PCI_COMMAND_PARITY) {
4736		cmd &= ~PCI_COMMAND_PARITY;
4737		pci_write_config_word(dev, PCI_COMMAND, cmd);
4738	}
4739}
4740
4741/**
4742 * pci_intx - enables/disables PCI INTx for device dev
4743 * @pdev: the PCI device to operate on
4744 * @enable: boolean: whether to enable or disable PCI INTx
4745 *
4746 * Enables/disables PCI INTx for device @pdev
4747 */
4748void pci_intx(struct pci_dev *pdev, int enable)
4749{
4750	u16 pci_command, new;
4751
4752	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4753
4754	if (enable)
4755		new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4756	else
4757		new = pci_command | PCI_COMMAND_INTX_DISABLE;
4758
4759	if (new != pci_command) {
4760		struct pci_devres *dr;
4761
4762		pci_write_config_word(pdev, PCI_COMMAND, new);
4763
4764		dr = find_pci_dr(pdev);
4765		if (dr && !dr->restore_intx) {
4766			dr->restore_intx = 1;
4767			dr->orig_intx = !enable;
4768		}
4769	}
4770}
4771EXPORT_SYMBOL_GPL(pci_intx);
4772
4773static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
4774{
4775	struct pci_bus *bus = dev->bus;
4776	bool mask_updated = true;
4777	u32 cmd_status_dword;
4778	u16 origcmd, newcmd;
4779	unsigned long flags;
4780	bool irq_pending;
4781
4782	/*
4783	 * We do a single dword read to retrieve both command and status.
4784	 * Document assumptions that make this possible.
4785	 */
4786	BUILD_BUG_ON(PCI_COMMAND % 4);
4787	BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
4788
4789	raw_spin_lock_irqsave(&pci_lock, flags);
4790
4791	bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
4792
4793	irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
4794
4795	/*
4796	 * Check interrupt status register to see whether our device
4797	 * triggered the interrupt (when masking) or the next IRQ is
4798	 * already pending (when unmasking).
4799	 */
4800	if (mask != irq_pending) {
4801		mask_updated = false;
4802		goto done;
4803	}
4804
4805	origcmd = cmd_status_dword;
4806	newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
4807	if (mask)
4808		newcmd |= PCI_COMMAND_INTX_DISABLE;
4809	if (newcmd != origcmd)
4810		bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
4811
4812done:
4813	raw_spin_unlock_irqrestore(&pci_lock, flags);
4814
4815	return mask_updated;
4816}
4817
4818/**
4819 * pci_check_and_mask_intx - mask INTx on pending interrupt
4820 * @dev: the PCI device to operate on
4821 *
4822 * Check if the device dev has its INTx line asserted, mask it and return
4823 * true in that case. False is returned if no interrupt was pending.
4824 */
4825bool pci_check_and_mask_intx(struct pci_dev *dev)
4826{
4827	return pci_check_and_set_intx_mask(dev, true);
4828}
4829EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
4830
4831/**
4832 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
4833 * @dev: the PCI device to operate on
4834 *
4835 * Check if the device dev has its INTx line asserted, unmask it if not and
4836 * return true. False is returned and the mask remains active if there was
4837 * still an interrupt pending.
4838 */
4839bool pci_check_and_unmask_intx(struct pci_dev *dev)
4840{
4841	return pci_check_and_set_intx_mask(dev, false);
4842}
4843EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
4844
4845/**
4846 * pci_wait_for_pending_transaction - wait for pending transaction
4847 * @dev: the PCI device to operate on
4848 *
4849 * Return 0 if transaction is pending 1 otherwise.
4850 */
4851int pci_wait_for_pending_transaction(struct pci_dev *dev)
4852{
4853	if (!pci_is_pcie(dev))
4854		return 1;
4855
4856	return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4857				    PCI_EXP_DEVSTA_TRPND);
4858}
4859EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4860
4861/**
4862 * pcie_flr - initiate a PCIe function level reset
4863 * @dev: device to reset
4864 *
4865 * Initiate a function level reset unconditionally on @dev without
4866 * checking any flags and DEVCAP
4867 */
4868int pcie_flr(struct pci_dev *dev)
4869{
4870	if (!pci_wait_for_pending_transaction(dev))
4871		pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4872
4873	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4874
4875	if (dev->imm_ready)
4876		return 0;
4877
4878	/*
4879	 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4880	 * 100ms, but may silently discard requests while the FLR is in
4881	 * progress.  Wait 100ms before trying to access the device.
4882	 */
4883	msleep(100);
4884
4885	return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4886}
4887EXPORT_SYMBOL_GPL(pcie_flr);
4888
4889/**
4890 * pcie_reset_flr - initiate a PCIe function level reset
4891 * @dev: device to reset
4892 * @probe: if true, return 0 if device can be reset this way
4893 *
4894 * Initiate a function level reset on @dev.
4895 */
4896int pcie_reset_flr(struct pci_dev *dev, bool probe)
4897{
4898	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4899		return -ENOTTY;
4900
4901	if (!(dev->devcap & PCI_EXP_DEVCAP_FLR))
4902		return -ENOTTY;
4903
4904	if (probe)
4905		return 0;
4906
4907	return pcie_flr(dev);
4908}
4909EXPORT_SYMBOL_GPL(pcie_reset_flr);
4910
4911static int pci_af_flr(struct pci_dev *dev, bool probe)
4912{
4913	int pos;
4914	u8 cap;
4915
4916	pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4917	if (!pos)
4918		return -ENOTTY;
4919
4920	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4921		return -ENOTTY;
4922
4923	pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4924	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4925		return -ENOTTY;
4926
4927	if (probe)
4928		return 0;
4929
4930	/*
4931	 * Wait for Transaction Pending bit to clear.  A word-aligned test
4932	 * is used, so we use the control offset rather than status and shift
4933	 * the test bit to match.
4934	 */
4935	if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4936				 PCI_AF_STATUS_TP << 8))
4937		pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4938
4939	pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4940
4941	if (dev->imm_ready)
4942		return 0;
4943
4944	/*
4945	 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4946	 * updated 27 July 2006; a device must complete an FLR within
4947	 * 100ms, but may silently discard requests while the FLR is in
4948	 * progress.  Wait 100ms before trying to access the device.
4949	 */
4950	msleep(100);
4951
4952	return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4953}
4954
4955/**
4956 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4957 * @dev: Device to reset.
4958 * @probe: if true, return 0 if the device can be reset this way.
4959 *
4960 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4961 * unset, it will be reinitialized internally when going from PCI_D3hot to
4962 * PCI_D0.  If that's the case and the device is not in a low-power state
4963 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4964 *
4965 * NOTE: This causes the caller to sleep for twice the device power transition
4966 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4967 * by default (i.e. unless the @dev's d3hot_delay field has a different value).
4968 * Moreover, only devices in D0 can be reset by this function.
4969 */
4970static int pci_pm_reset(struct pci_dev *dev, bool probe)
4971{
4972	u16 csr;
4973
4974	if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4975		return -ENOTTY;
4976
4977	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4978	if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4979		return -ENOTTY;
4980
4981	if (probe)
4982		return 0;
4983
4984	if (dev->current_state != PCI_D0)
4985		return -EINVAL;
4986
4987	csr &= ~PCI_PM_CTRL_STATE_MASK;
4988	csr |= PCI_D3hot;
4989	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4990	pci_dev_d3_sleep(dev);
4991
4992	csr &= ~PCI_PM_CTRL_STATE_MASK;
4993	csr |= PCI_D0;
4994	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4995	pci_dev_d3_sleep(dev);
4996
4997	return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS);
4998}
4999
5000/**
5001 * pcie_wait_for_link_status - Wait for link status change
5002 * @pdev: Device whose link to wait for.
5003 * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE.
5004 * @active: Waiting for active or inactive?
5005 *
5006 * Return 0 if successful, or -ETIMEDOUT if status has not changed within
5007 * PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds.
5008 */
5009static int pcie_wait_for_link_status(struct pci_dev *pdev,
5010				     bool use_lt, bool active)
5011{
5012	u16 lnksta_mask, lnksta_match;
5013	unsigned long end_jiffies;
5014	u16 lnksta;
5015
5016	lnksta_mask = use_lt ? PCI_EXP_LNKSTA_LT : PCI_EXP_LNKSTA_DLLLA;
5017	lnksta_match = active ? lnksta_mask : 0;
5018
5019	end_jiffies = jiffies + msecs_to_jiffies(PCIE_LINK_RETRAIN_TIMEOUT_MS);
5020	do {
5021		pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnksta);
5022		if ((lnksta & lnksta_mask) == lnksta_match)
5023			return 0;
5024		msleep(1);
5025	} while (time_before(jiffies, end_jiffies));
5026
5027	return -ETIMEDOUT;
5028}
5029
5030/**
5031 * pcie_retrain_link - Request a link retrain and wait for it to complete
5032 * @pdev: Device whose link to retrain.
5033 * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE, for status.
5034 *
5035 * Retrain completion status is retrieved from the Link Status Register
5036 * according to @use_lt.  It is not verified whether the use of the DLLLA
5037 * bit is valid.
5038 *
5039 * Return 0 if successful, or -ETIMEDOUT if training has not completed
5040 * within PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds.
5041 */
5042int pcie_retrain_link(struct pci_dev *pdev, bool use_lt)
5043{
5044	int rc;
5045
5046	/*
5047	 * Ensure the updated LNKCTL parameters are used during link
5048	 * training by checking that there is no ongoing link training to
5049	 * avoid LTSSM race as recommended in Implementation Note at the
5050	 * end of PCIe r6.0.1 sec 7.5.3.7.
5051	 */
5052	rc = pcie_wait_for_link_status(pdev, use_lt, !use_lt);
5053	if (rc)
5054		return rc;
5055
5056	pcie_capability_set_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL);
5057	if (pdev->clear_retrain_link) {
5058		/*
5059		 * Due to an erratum in some devices the Retrain Link bit
5060		 * needs to be cleared again manually to allow the link
5061		 * training to succeed.
5062		 */
5063		pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL);
5064	}
5065
5066	return pcie_wait_for_link_status(pdev, use_lt, !use_lt);
5067}
5068
5069/**
5070 * pcie_wait_for_link_delay - Wait until link is active or inactive
5071 * @pdev: Bridge device
5072 * @active: waiting for active or inactive?
5073 * @delay: Delay to wait after link has become active (in ms)
5074 *
5075 * Use this to wait till link becomes active or inactive.
5076 */
5077static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active,
5078				     int delay)
5079{
5080	int rc;
 
 
5081
5082	/*
5083	 * Some controllers might not implement link active reporting. In this
5084	 * case, we wait for 1000 ms + any delay requested by the caller.
5085	 */
5086	if (!pdev->link_active_reporting) {
5087		msleep(PCIE_LINK_RETRAIN_TIMEOUT_MS + delay);
5088		return true;
5089	}
5090
5091	/*
5092	 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
5093	 * after which we should expect an link active if the reset was
5094	 * successful. If so, software must wait a minimum 100ms before sending
5095	 * configuration requests to devices downstream this port.
5096	 *
5097	 * If the link fails to activate, either the device was physically
5098	 * removed or the link is permanently failed.
5099	 */
5100	if (active)
5101		msleep(20);
5102	rc = pcie_wait_for_link_status(pdev, false, active);
5103	if (active) {
5104		if (rc)
5105			rc = pcie_failed_link_retrain(pdev);
5106		if (rc)
5107			return false;
5108
 
 
 
 
5109		msleep(delay);
5110		return true;
5111	}
5112
5113	if (rc)
5114		return false;
5115
5116	return true;
5117}
5118
5119/**
5120 * pcie_wait_for_link - Wait until link is active or inactive
5121 * @pdev: Bridge device
5122 * @active: waiting for active or inactive?
5123 *
5124 * Use this to wait till link becomes active or inactive.
5125 */
5126bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
5127{
5128	return pcie_wait_for_link_delay(pdev, active, 100);
5129}
5130
5131/*
5132 * Find maximum D3cold delay required by all the devices on the bus.  The
5133 * spec says 100 ms, but firmware can lower it and we allow drivers to
5134 * increase it as well.
5135 *
5136 * Called with @pci_bus_sem locked for reading.
5137 */
5138static int pci_bus_max_d3cold_delay(const struct pci_bus *bus)
5139{
5140	const struct pci_dev *pdev;
5141	int min_delay = 100;
5142	int max_delay = 0;
5143
5144	list_for_each_entry(pdev, &bus->devices, bus_list) {
5145		if (pdev->d3cold_delay < min_delay)
5146			min_delay = pdev->d3cold_delay;
5147		if (pdev->d3cold_delay > max_delay)
5148			max_delay = pdev->d3cold_delay;
5149	}
5150
5151	return max(min_delay, max_delay);
5152}
5153
5154/**
5155 * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible
5156 * @dev: PCI bridge
5157 * @reset_type: reset type in human-readable form
5158 *
5159 * Handle necessary delays before access to the devices on the secondary
5160 * side of the bridge are permitted after D3cold to D0 transition
5161 * or Conventional Reset.
5162 *
5163 * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For
5164 * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section
5165 * 4.3.2.
5166 *
5167 * Return 0 on success or -ENOTTY if the first device on the secondary bus
5168 * failed to become accessible.
5169 */
5170int pci_bridge_wait_for_secondary_bus(struct pci_dev *dev, char *reset_type)
5171{
5172	struct pci_dev *child;
5173	int delay;
5174
5175	if (pci_dev_is_disconnected(dev))
5176		return 0;
5177
5178	if (!pci_is_bridge(dev))
5179		return 0;
5180
5181	down_read(&pci_bus_sem);
5182
5183	/*
5184	 * We only deal with devices that are present currently on the bus.
5185	 * For any hot-added devices the access delay is handled in pciehp
5186	 * board_added(). In case of ACPI hotplug the firmware is expected
5187	 * to configure the devices before OS is notified.
5188	 */
5189	if (!dev->subordinate || list_empty(&dev->subordinate->devices)) {
5190		up_read(&pci_bus_sem);
5191		return 0;
5192	}
5193
5194	/* Take d3cold_delay requirements into account */
5195	delay = pci_bus_max_d3cold_delay(dev->subordinate);
5196	if (!delay) {
5197		up_read(&pci_bus_sem);
5198		return 0;
5199	}
5200
5201	child = list_first_entry(&dev->subordinate->devices, struct pci_dev,
5202				 bus_list);
5203	up_read(&pci_bus_sem);
5204
5205	/*
5206	 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before
5207	 * accessing the device after reset (that is 1000 ms + 100 ms).
 
 
5208	 */
5209	if (!pci_is_pcie(dev)) {
5210		pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay);
5211		msleep(1000 + delay);
5212		return 0;
5213	}
5214
5215	/*
5216	 * For PCIe downstream and root ports that do not support speeds
5217	 * greater than 5 GT/s need to wait minimum 100 ms. For higher
5218	 * speeds (gen3) we need to wait first for the data link layer to
5219	 * become active.
5220	 *
5221	 * However, 100 ms is the minimum and the PCIe spec says the
5222	 * software must allow at least 1s before it can determine that the
5223	 * device that did not respond is a broken device. Also device can
5224	 * take longer than that to respond if it indicates so through Request
5225	 * Retry Status completions.
 
 
5226	 *
5227	 * Therefore we wait for 100 ms and check for the device presence
5228	 * until the timeout expires.
5229	 */
5230	if (!pcie_downstream_port(dev))
5231		return 0;
5232
5233	if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) {
5234		u16 status;
5235
5236		pci_dbg(dev, "waiting %d ms for downstream link\n", delay);
5237		msleep(delay);
5238
5239		if (!pci_dev_wait(child, reset_type, PCI_RESET_WAIT - delay))
5240			return 0;
5241
5242		/*
5243		 * If the port supports active link reporting we now check
5244		 * whether the link is active and if not bail out early with
5245		 * the assumption that the device is not present anymore.
5246		 */
5247		if (!dev->link_active_reporting)
5248			return -ENOTTY;
5249
5250		pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &status);
5251		if (!(status & PCI_EXP_LNKSTA_DLLLA))
5252			return -ENOTTY;
5253
5254		return pci_dev_wait(child, reset_type,
5255				    PCIE_RESET_READY_POLL_MS - PCI_RESET_WAIT);
5256	}
5257
5258	pci_dbg(dev, "waiting %d ms for downstream link, after activation\n",
5259		delay);
5260	if (!pcie_wait_for_link_delay(dev, true, delay)) {
5261		/* Did not train, no need to wait any further */
5262		pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n");
5263		return -ENOTTY;
5264	}
5265
5266	return pci_dev_wait(child, reset_type,
5267			    PCIE_RESET_READY_POLL_MS - delay);
5268}
5269
5270void pci_reset_secondary_bus(struct pci_dev *dev)
5271{
5272	u16 ctrl;
5273
5274	pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
5275	ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
5276	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
5277
5278	/*
5279	 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms.  Double
5280	 * this to 2ms to ensure that we meet the minimum requirement.
5281	 */
5282	msleep(2);
5283
5284	ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
5285	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
 
 
 
 
 
 
 
 
 
5286}
5287
5288void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
5289{
5290	pci_reset_secondary_bus(dev);
5291}
5292
5293/**
5294 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
5295 * @dev: Bridge device
5296 *
5297 * Use the bridge control register to assert reset on the secondary bus.
5298 * Devices on the secondary bus are left in power-on state.
5299 */
5300int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
5301{
5302	pcibios_reset_secondary_bus(dev);
5303
5304	return pci_bridge_wait_for_secondary_bus(dev, "bus reset");
5305}
5306EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
5307
5308static int pci_parent_bus_reset(struct pci_dev *dev, bool probe)
5309{
5310	struct pci_dev *pdev;
5311
5312	if (pci_is_root_bus(dev->bus) || dev->subordinate ||
5313	    !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5314		return -ENOTTY;
5315
5316	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
5317		if (pdev != dev)
5318			return -ENOTTY;
5319
5320	if (probe)
5321		return 0;
5322
5323	return pci_bridge_secondary_bus_reset(dev->bus->self);
5324}
5325
5326static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, bool probe)
5327{
5328	int rc = -ENOTTY;
5329
5330	if (!hotplug || !try_module_get(hotplug->owner))
5331		return rc;
5332
5333	if (hotplug->ops->reset_slot)
5334		rc = hotplug->ops->reset_slot(hotplug, probe);
5335
5336	module_put(hotplug->owner);
5337
5338	return rc;
5339}
5340
5341static int pci_dev_reset_slot_function(struct pci_dev *dev, bool probe)
5342{
5343	if (dev->multifunction || dev->subordinate || !dev->slot ||
5344	    dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5345		return -ENOTTY;
5346
5347	return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
5348}
5349
5350static int pci_reset_bus_function(struct pci_dev *dev, bool probe)
5351{
5352	int rc;
5353
5354	rc = pci_dev_reset_slot_function(dev, probe);
5355	if (rc != -ENOTTY)
5356		return rc;
5357	return pci_parent_bus_reset(dev, probe);
5358}
5359
5360void pci_dev_lock(struct pci_dev *dev)
5361{
5362	/* block PM suspend, driver probe, etc. */
5363	device_lock(&dev->dev);
5364	pci_cfg_access_lock(dev);
5365}
5366EXPORT_SYMBOL_GPL(pci_dev_lock);
5367
5368/* Return 1 on successful lock, 0 on contention */
5369int pci_dev_trylock(struct pci_dev *dev)
5370{
5371	if (device_trylock(&dev->dev)) {
5372		if (pci_cfg_access_trylock(dev))
5373			return 1;
5374		device_unlock(&dev->dev);
5375	}
5376
5377	return 0;
5378}
5379EXPORT_SYMBOL_GPL(pci_dev_trylock);
5380
5381void pci_dev_unlock(struct pci_dev *dev)
5382{
5383	pci_cfg_access_unlock(dev);
5384	device_unlock(&dev->dev);
5385}
5386EXPORT_SYMBOL_GPL(pci_dev_unlock);
5387
5388static void pci_dev_save_and_disable(struct pci_dev *dev)
5389{
5390	const struct pci_error_handlers *err_handler =
5391			dev->driver ? dev->driver->err_handler : NULL;
5392
5393	/*
5394	 * dev->driver->err_handler->reset_prepare() is protected against
5395	 * races with ->remove() by the device lock, which must be held by
5396	 * the caller.
5397	 */
5398	if (err_handler && err_handler->reset_prepare)
5399		err_handler->reset_prepare(dev);
5400
5401	/*
5402	 * Wake-up device prior to save.  PM registers default to D0 after
5403	 * reset and a simple register restore doesn't reliably return
5404	 * to a non-D0 state anyway.
5405	 */
5406	pci_set_power_state(dev, PCI_D0);
5407
5408	pci_save_state(dev);
5409	/*
5410	 * Disable the device by clearing the Command register, except for
5411	 * INTx-disable which is set.  This not only disables MMIO and I/O port
5412	 * BARs, but also prevents the device from being Bus Master, preventing
5413	 * DMA from the device including MSI/MSI-X interrupts.  For PCI 2.3
5414	 * compliant devices, INTx-disable prevents legacy interrupts.
5415	 */
5416	pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
5417}
5418
5419static void pci_dev_restore(struct pci_dev *dev)
5420{
5421	const struct pci_error_handlers *err_handler =
5422			dev->driver ? dev->driver->err_handler : NULL;
5423
5424	pci_restore_state(dev);
5425
5426	/*
5427	 * dev->driver->err_handler->reset_done() is protected against
5428	 * races with ->remove() by the device lock, which must be held by
5429	 * the caller.
5430	 */
5431	if (err_handler && err_handler->reset_done)
5432		err_handler->reset_done(dev);
5433}
5434
5435/* dev->reset_methods[] is a 0-terminated list of indices into this array */
5436static const struct pci_reset_fn_method pci_reset_fn_methods[] = {
5437	{ },
5438	{ pci_dev_specific_reset, .name = "device_specific" },
5439	{ pci_dev_acpi_reset, .name = "acpi" },
5440	{ pcie_reset_flr, .name = "flr" },
5441	{ pci_af_flr, .name = "af_flr" },
5442	{ pci_pm_reset, .name = "pm" },
5443	{ pci_reset_bus_function, .name = "bus" },
5444};
5445
5446static ssize_t reset_method_show(struct device *dev,
5447				 struct device_attribute *attr, char *buf)
5448{
5449	struct pci_dev *pdev = to_pci_dev(dev);
5450	ssize_t len = 0;
5451	int i, m;
5452
5453	for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5454		m = pdev->reset_methods[i];
5455		if (!m)
5456			break;
5457
5458		len += sysfs_emit_at(buf, len, "%s%s", len ? " " : "",
5459				     pci_reset_fn_methods[m].name);
5460	}
5461
5462	if (len)
5463		len += sysfs_emit_at(buf, len, "\n");
5464
5465	return len;
5466}
5467
5468static int reset_method_lookup(const char *name)
5469{
5470	int m;
5471
5472	for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5473		if (sysfs_streq(name, pci_reset_fn_methods[m].name))
5474			return m;
5475	}
5476
5477	return 0;	/* not found */
5478}
5479
5480static ssize_t reset_method_store(struct device *dev,
5481				  struct device_attribute *attr,
5482				  const char *buf, size_t count)
5483{
5484	struct pci_dev *pdev = to_pci_dev(dev);
5485	char *options, *name;
5486	int m, n;
5487	u8 reset_methods[PCI_NUM_RESET_METHODS] = { 0 };
5488
5489	if (sysfs_streq(buf, "")) {
5490		pdev->reset_methods[0] = 0;
5491		pci_warn(pdev, "All device reset methods disabled by user");
5492		return count;
5493	}
5494
5495	if (sysfs_streq(buf, "default")) {
5496		pci_init_reset_methods(pdev);
5497		return count;
5498	}
5499
5500	options = kstrndup(buf, count, GFP_KERNEL);
5501	if (!options)
5502		return -ENOMEM;
5503
5504	n = 0;
5505	while ((name = strsep(&options, " ")) != NULL) {
5506		if (sysfs_streq(name, ""))
5507			continue;
5508
5509		name = strim(name);
5510
5511		m = reset_method_lookup(name);
5512		if (!m) {
5513			pci_err(pdev, "Invalid reset method '%s'", name);
5514			goto error;
5515		}
5516
5517		if (pci_reset_fn_methods[m].reset_fn(pdev, PCI_RESET_PROBE)) {
5518			pci_err(pdev, "Unsupported reset method '%s'", name);
5519			goto error;
5520		}
5521
5522		if (n == PCI_NUM_RESET_METHODS - 1) {
5523			pci_err(pdev, "Too many reset methods\n");
5524			goto error;
5525		}
5526
5527		reset_methods[n++] = m;
5528	}
5529
5530	reset_methods[n] = 0;
5531
5532	/* Warn if dev-specific supported but not highest priority */
5533	if (pci_reset_fn_methods[1].reset_fn(pdev, PCI_RESET_PROBE) == 0 &&
5534	    reset_methods[0] != 1)
5535		pci_warn(pdev, "Device-specific reset disabled/de-prioritized by user");
5536	memcpy(pdev->reset_methods, reset_methods, sizeof(pdev->reset_methods));
5537	kfree(options);
5538	return count;
5539
5540error:
5541	/* Leave previous methods unchanged */
5542	kfree(options);
5543	return -EINVAL;
5544}
5545static DEVICE_ATTR_RW(reset_method);
5546
5547static struct attribute *pci_dev_reset_method_attrs[] = {
5548	&dev_attr_reset_method.attr,
5549	NULL,
5550};
5551
5552static umode_t pci_dev_reset_method_attr_is_visible(struct kobject *kobj,
5553						    struct attribute *a, int n)
5554{
5555	struct pci_dev *pdev = to_pci_dev(kobj_to_dev(kobj));
5556
5557	if (!pci_reset_supported(pdev))
5558		return 0;
5559
5560	return a->mode;
5561}
5562
5563const struct attribute_group pci_dev_reset_method_attr_group = {
5564	.attrs = pci_dev_reset_method_attrs,
5565	.is_visible = pci_dev_reset_method_attr_is_visible,
5566};
5567
5568/**
5569 * __pci_reset_function_locked - reset a PCI device function while holding
5570 * the @dev mutex lock.
5571 * @dev: PCI device to reset
5572 *
5573 * Some devices allow an individual function to be reset without affecting
5574 * other functions in the same device.  The PCI device must be responsive
5575 * to PCI config space in order to use this function.
5576 *
5577 * The device function is presumed to be unused and the caller is holding
5578 * the device mutex lock when this function is called.
5579 *
5580 * Resetting the device will make the contents of PCI configuration space
5581 * random, so any caller of this must be prepared to reinitialise the
5582 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
5583 * etc.
5584 *
5585 * Returns 0 if the device function was successfully reset or negative if the
5586 * device doesn't support resetting a single function.
5587 */
5588int __pci_reset_function_locked(struct pci_dev *dev)
5589{
5590	int i, m, rc;
5591
5592	might_sleep();
5593
5594	/*
5595	 * A reset method returns -ENOTTY if it doesn't support this device and
5596	 * we should try the next method.
5597	 *
5598	 * If it returns 0 (success), we're finished.  If it returns any other
5599	 * error, we're also finished: this indicates that further reset
5600	 * mechanisms might be broken on the device.
5601	 */
5602	for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5603		m = dev->reset_methods[i];
5604		if (!m)
5605			return -ENOTTY;
5606
5607		rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_DO_RESET);
5608		if (!rc)
5609			return 0;
5610		if (rc != -ENOTTY)
5611			return rc;
5612	}
5613
5614	return -ENOTTY;
5615}
5616EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
5617
5618/**
5619 * pci_init_reset_methods - check whether device can be safely reset
5620 * and store supported reset mechanisms.
5621 * @dev: PCI device to check for reset mechanisms
5622 *
5623 * Some devices allow an individual function to be reset without affecting
5624 * other functions in the same device.  The PCI device must be in D0-D3hot
5625 * state.
5626 *
5627 * Stores reset mechanisms supported by device in reset_methods byte array
5628 * which is a member of struct pci_dev.
5629 */
5630void pci_init_reset_methods(struct pci_dev *dev)
5631{
5632	int m, i, rc;
5633
5634	BUILD_BUG_ON(ARRAY_SIZE(pci_reset_fn_methods) != PCI_NUM_RESET_METHODS);
5635
5636	might_sleep();
5637
5638	i = 0;
5639	for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5640		rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_PROBE);
5641		if (!rc)
5642			dev->reset_methods[i++] = m;
5643		else if (rc != -ENOTTY)
5644			break;
5645	}
5646
5647	dev->reset_methods[i] = 0;
5648}
5649
5650/**
5651 * pci_reset_function - quiesce and reset a PCI device function
5652 * @dev: PCI device to reset
5653 *
5654 * Some devices allow an individual function to be reset without affecting
5655 * other functions in the same device.  The PCI device must be responsive
5656 * to PCI config space in order to use this function.
5657 *
5658 * This function does not just reset the PCI portion of a device, but
5659 * clears all the state associated with the device.  This function differs
5660 * from __pci_reset_function_locked() in that it saves and restores device state
5661 * over the reset and takes the PCI device lock.
5662 *
5663 * Returns 0 if the device function was successfully reset or negative if the
5664 * device doesn't support resetting a single function.
5665 */
5666int pci_reset_function(struct pci_dev *dev)
5667{
5668	int rc;
5669
5670	if (!pci_reset_supported(dev))
5671		return -ENOTTY;
5672
5673	pci_dev_lock(dev);
5674	pci_dev_save_and_disable(dev);
5675
5676	rc = __pci_reset_function_locked(dev);
5677
5678	pci_dev_restore(dev);
5679	pci_dev_unlock(dev);
5680
5681	return rc;
5682}
5683EXPORT_SYMBOL_GPL(pci_reset_function);
5684
5685/**
5686 * pci_reset_function_locked - quiesce and reset a PCI device function
5687 * @dev: PCI device to reset
5688 *
5689 * Some devices allow an individual function to be reset without affecting
5690 * other functions in the same device.  The PCI device must be responsive
5691 * to PCI config space in order to use this function.
5692 *
5693 * This function does not just reset the PCI portion of a device, but
5694 * clears all the state associated with the device.  This function differs
5695 * from __pci_reset_function_locked() in that it saves and restores device state
5696 * over the reset.  It also differs from pci_reset_function() in that it
5697 * requires the PCI device lock to be held.
5698 *
5699 * Returns 0 if the device function was successfully reset or negative if the
5700 * device doesn't support resetting a single function.
5701 */
5702int pci_reset_function_locked(struct pci_dev *dev)
5703{
5704	int rc;
5705
5706	if (!pci_reset_supported(dev))
5707		return -ENOTTY;
5708
5709	pci_dev_save_and_disable(dev);
5710
5711	rc = __pci_reset_function_locked(dev);
5712
5713	pci_dev_restore(dev);
5714
5715	return rc;
5716}
5717EXPORT_SYMBOL_GPL(pci_reset_function_locked);
5718
5719/**
5720 * pci_try_reset_function - quiesce and reset a PCI device function
5721 * @dev: PCI device to reset
5722 *
5723 * Same as above, except return -EAGAIN if unable to lock device.
5724 */
5725int pci_try_reset_function(struct pci_dev *dev)
5726{
5727	int rc;
5728
5729	if (!pci_reset_supported(dev))
5730		return -ENOTTY;
5731
5732	if (!pci_dev_trylock(dev))
5733		return -EAGAIN;
5734
5735	pci_dev_save_and_disable(dev);
5736	rc = __pci_reset_function_locked(dev);
5737	pci_dev_restore(dev);
5738	pci_dev_unlock(dev);
5739
5740	return rc;
5741}
5742EXPORT_SYMBOL_GPL(pci_try_reset_function);
5743
5744/* Do any devices on or below this bus prevent a bus reset? */
5745static bool pci_bus_resettable(struct pci_bus *bus)
5746{
5747	struct pci_dev *dev;
5748
5749
5750	if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5751		return false;
5752
5753	list_for_each_entry(dev, &bus->devices, bus_list) {
5754		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5755		    (dev->subordinate && !pci_bus_resettable(dev->subordinate)))
5756			return false;
5757	}
5758
5759	return true;
5760}
5761
5762/* Lock devices from the top of the tree down */
5763static void pci_bus_lock(struct pci_bus *bus)
5764{
5765	struct pci_dev *dev;
5766
5767	list_for_each_entry(dev, &bus->devices, bus_list) {
5768		pci_dev_lock(dev);
5769		if (dev->subordinate)
5770			pci_bus_lock(dev->subordinate);
5771	}
5772}
5773
5774/* Unlock devices from the bottom of the tree up */
5775static void pci_bus_unlock(struct pci_bus *bus)
5776{
5777	struct pci_dev *dev;
5778
5779	list_for_each_entry(dev, &bus->devices, bus_list) {
5780		if (dev->subordinate)
5781			pci_bus_unlock(dev->subordinate);
5782		pci_dev_unlock(dev);
5783	}
5784}
5785
5786/* Return 1 on successful lock, 0 on contention */
5787static int pci_bus_trylock(struct pci_bus *bus)
5788{
5789	struct pci_dev *dev;
5790
5791	list_for_each_entry(dev, &bus->devices, bus_list) {
5792		if (!pci_dev_trylock(dev))
5793			goto unlock;
5794		if (dev->subordinate) {
5795			if (!pci_bus_trylock(dev->subordinate)) {
5796				pci_dev_unlock(dev);
5797				goto unlock;
5798			}
5799		}
5800	}
5801	return 1;
5802
5803unlock:
5804	list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5805		if (dev->subordinate)
5806			pci_bus_unlock(dev->subordinate);
5807		pci_dev_unlock(dev);
5808	}
5809	return 0;
5810}
5811
5812/* Do any devices on or below this slot prevent a bus reset? */
5813static bool pci_slot_resettable(struct pci_slot *slot)
5814{
5815	struct pci_dev *dev;
5816
5817	if (slot->bus->self &&
5818	    (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5819		return false;
5820
5821	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5822		if (!dev->slot || dev->slot != slot)
5823			continue;
5824		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5825		    (dev->subordinate && !pci_bus_resettable(dev->subordinate)))
5826			return false;
5827	}
5828
5829	return true;
5830}
5831
5832/* Lock devices from the top of the tree down */
5833static void pci_slot_lock(struct pci_slot *slot)
5834{
5835	struct pci_dev *dev;
5836
5837	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5838		if (!dev->slot || dev->slot != slot)
5839			continue;
5840		pci_dev_lock(dev);
5841		if (dev->subordinate)
5842			pci_bus_lock(dev->subordinate);
5843	}
5844}
5845
5846/* Unlock devices from the bottom of the tree up */
5847static void pci_slot_unlock(struct pci_slot *slot)
5848{
5849	struct pci_dev *dev;
5850
5851	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5852		if (!dev->slot || dev->slot != slot)
5853			continue;
5854		if (dev->subordinate)
5855			pci_bus_unlock(dev->subordinate);
5856		pci_dev_unlock(dev);
5857	}
5858}
5859
5860/* Return 1 on successful lock, 0 on contention */
5861static int pci_slot_trylock(struct pci_slot *slot)
5862{
5863	struct pci_dev *dev;
5864
5865	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5866		if (!dev->slot || dev->slot != slot)
5867			continue;
5868		if (!pci_dev_trylock(dev))
5869			goto unlock;
5870		if (dev->subordinate) {
5871			if (!pci_bus_trylock(dev->subordinate)) {
5872				pci_dev_unlock(dev);
5873				goto unlock;
5874			}
5875		}
5876	}
5877	return 1;
5878
5879unlock:
5880	list_for_each_entry_continue_reverse(dev,
5881					     &slot->bus->devices, bus_list) {
5882		if (!dev->slot || dev->slot != slot)
5883			continue;
5884		if (dev->subordinate)
5885			pci_bus_unlock(dev->subordinate);
5886		pci_dev_unlock(dev);
5887	}
5888	return 0;
5889}
5890
5891/*
5892 * Save and disable devices from the top of the tree down while holding
5893 * the @dev mutex lock for the entire tree.
5894 */
5895static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5896{
5897	struct pci_dev *dev;
5898
5899	list_for_each_entry(dev, &bus->devices, bus_list) {
5900		pci_dev_save_and_disable(dev);
5901		if (dev->subordinate)
5902			pci_bus_save_and_disable_locked(dev->subordinate);
5903	}
5904}
5905
5906/*
5907 * Restore devices from top of the tree down while holding @dev mutex lock
5908 * for the entire tree.  Parent bridges need to be restored before we can
5909 * get to subordinate devices.
5910 */
5911static void pci_bus_restore_locked(struct pci_bus *bus)
5912{
5913	struct pci_dev *dev;
5914
5915	list_for_each_entry(dev, &bus->devices, bus_list) {
5916		pci_dev_restore(dev);
5917		if (dev->subordinate)
5918			pci_bus_restore_locked(dev->subordinate);
5919	}
5920}
5921
5922/*
5923 * Save and disable devices from the top of the tree down while holding
5924 * the @dev mutex lock for the entire tree.
5925 */
5926static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5927{
5928	struct pci_dev *dev;
5929
5930	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5931		if (!dev->slot || dev->slot != slot)
5932			continue;
5933		pci_dev_save_and_disable(dev);
5934		if (dev->subordinate)
5935			pci_bus_save_and_disable_locked(dev->subordinate);
5936	}
5937}
5938
5939/*
5940 * Restore devices from top of the tree down while holding @dev mutex lock
5941 * for the entire tree.  Parent bridges need to be restored before we can
5942 * get to subordinate devices.
5943 */
5944static void pci_slot_restore_locked(struct pci_slot *slot)
5945{
5946	struct pci_dev *dev;
5947
5948	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5949		if (!dev->slot || dev->slot != slot)
5950			continue;
5951		pci_dev_restore(dev);
5952		if (dev->subordinate)
5953			pci_bus_restore_locked(dev->subordinate);
5954	}
5955}
5956
5957static int pci_slot_reset(struct pci_slot *slot, bool probe)
5958{
5959	int rc;
5960
5961	if (!slot || !pci_slot_resettable(slot))
5962		return -ENOTTY;
5963
5964	if (!probe)
5965		pci_slot_lock(slot);
5966
5967	might_sleep();
5968
5969	rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5970
5971	if (!probe)
5972		pci_slot_unlock(slot);
5973
5974	return rc;
5975}
5976
5977/**
5978 * pci_probe_reset_slot - probe whether a PCI slot can be reset
5979 * @slot: PCI slot to probe
5980 *
5981 * Return 0 if slot can be reset, negative if a slot reset is not supported.
5982 */
5983int pci_probe_reset_slot(struct pci_slot *slot)
5984{
5985	return pci_slot_reset(slot, PCI_RESET_PROBE);
5986}
5987EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5988
5989/**
5990 * __pci_reset_slot - Try to reset a PCI slot
5991 * @slot: PCI slot to reset
5992 *
5993 * A PCI bus may host multiple slots, each slot may support a reset mechanism
5994 * independent of other slots.  For instance, some slots may support slot power
5995 * control.  In the case of a 1:1 bus to slot architecture, this function may
5996 * wrap the bus reset to avoid spurious slot related events such as hotplug.
5997 * Generally a slot reset should be attempted before a bus reset.  All of the
5998 * function of the slot and any subordinate buses behind the slot are reset
5999 * through this function.  PCI config space of all devices in the slot and
6000 * behind the slot is saved before and restored after reset.
6001 *
6002 * Same as above except return -EAGAIN if the slot cannot be locked
6003 */
6004static int __pci_reset_slot(struct pci_slot *slot)
6005{
6006	int rc;
6007
6008	rc = pci_slot_reset(slot, PCI_RESET_PROBE);
6009	if (rc)
6010		return rc;
6011
6012	if (pci_slot_trylock(slot)) {
6013		pci_slot_save_and_disable_locked(slot);
6014		might_sleep();
6015		rc = pci_reset_hotplug_slot(slot->hotplug, PCI_RESET_DO_RESET);
6016		pci_slot_restore_locked(slot);
6017		pci_slot_unlock(slot);
6018	} else
6019		rc = -EAGAIN;
6020
6021	return rc;
6022}
6023
6024static int pci_bus_reset(struct pci_bus *bus, bool probe)
6025{
6026	int ret;
6027
6028	if (!bus->self || !pci_bus_resettable(bus))
6029		return -ENOTTY;
6030
6031	if (probe)
6032		return 0;
6033
6034	pci_bus_lock(bus);
6035
6036	might_sleep();
6037
6038	ret = pci_bridge_secondary_bus_reset(bus->self);
6039
6040	pci_bus_unlock(bus);
6041
6042	return ret;
6043}
6044
6045/**
6046 * pci_bus_error_reset - reset the bridge's subordinate bus
6047 * @bridge: The parent device that connects to the bus to reset
6048 *
6049 * This function will first try to reset the slots on this bus if the method is
6050 * available. If slot reset fails or is not available, this will fall back to a
6051 * secondary bus reset.
6052 */
6053int pci_bus_error_reset(struct pci_dev *bridge)
6054{
6055	struct pci_bus *bus = bridge->subordinate;
6056	struct pci_slot *slot;
6057
6058	if (!bus)
6059		return -ENOTTY;
6060
6061	mutex_lock(&pci_slot_mutex);
6062	if (list_empty(&bus->slots))
6063		goto bus_reset;
6064
6065	list_for_each_entry(slot, &bus->slots, list)
6066		if (pci_probe_reset_slot(slot))
6067			goto bus_reset;
6068
6069	list_for_each_entry(slot, &bus->slots, list)
6070		if (pci_slot_reset(slot, PCI_RESET_DO_RESET))
6071			goto bus_reset;
6072
6073	mutex_unlock(&pci_slot_mutex);
6074	return 0;
6075bus_reset:
6076	mutex_unlock(&pci_slot_mutex);
6077	return pci_bus_reset(bridge->subordinate, PCI_RESET_DO_RESET);
6078}
6079
6080/**
6081 * pci_probe_reset_bus - probe whether a PCI bus can be reset
6082 * @bus: PCI bus to probe
6083 *
6084 * Return 0 if bus can be reset, negative if a bus reset is not supported.
6085 */
6086int pci_probe_reset_bus(struct pci_bus *bus)
6087{
6088	return pci_bus_reset(bus, PCI_RESET_PROBE);
6089}
6090EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
6091
6092/**
6093 * __pci_reset_bus - Try to reset a PCI bus
6094 * @bus: top level PCI bus to reset
6095 *
6096 * Same as above except return -EAGAIN if the bus cannot be locked
6097 */
6098static int __pci_reset_bus(struct pci_bus *bus)
6099{
6100	int rc;
6101
6102	rc = pci_bus_reset(bus, PCI_RESET_PROBE);
6103	if (rc)
6104		return rc;
6105
6106	if (pci_bus_trylock(bus)) {
6107		pci_bus_save_and_disable_locked(bus);
6108		might_sleep();
6109		rc = pci_bridge_secondary_bus_reset(bus->self);
6110		pci_bus_restore_locked(bus);
6111		pci_bus_unlock(bus);
6112	} else
6113		rc = -EAGAIN;
6114
6115	return rc;
6116}
6117
6118/**
6119 * pci_reset_bus - Try to reset a PCI bus
6120 * @pdev: top level PCI device to reset via slot/bus
6121 *
6122 * Same as above except return -EAGAIN if the bus cannot be locked
6123 */
6124int pci_reset_bus(struct pci_dev *pdev)
6125{
6126	return (!pci_probe_reset_slot(pdev->slot)) ?
6127	    __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
6128}
6129EXPORT_SYMBOL_GPL(pci_reset_bus);
6130
6131/**
6132 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
6133 * @dev: PCI device to query
6134 *
6135 * Returns mmrbc: maximum designed memory read count in bytes or
6136 * appropriate error value.
6137 */
6138int pcix_get_max_mmrbc(struct pci_dev *dev)
6139{
6140	int cap;
6141	u32 stat;
6142
6143	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
6144	if (!cap)
6145		return -EINVAL;
6146
6147	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
6148		return -EINVAL;
6149
6150	return 512 << FIELD_GET(PCI_X_STATUS_MAX_READ, stat);
6151}
6152EXPORT_SYMBOL(pcix_get_max_mmrbc);
6153
6154/**
6155 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
6156 * @dev: PCI device to query
6157 *
6158 * Returns mmrbc: maximum memory read count in bytes or appropriate error
6159 * value.
6160 */
6161int pcix_get_mmrbc(struct pci_dev *dev)
6162{
6163	int cap;
6164	u16 cmd;
6165
6166	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
6167	if (!cap)
6168		return -EINVAL;
6169
6170	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
6171		return -EINVAL;
6172
6173	return 512 << FIELD_GET(PCI_X_CMD_MAX_READ, cmd);
6174}
6175EXPORT_SYMBOL(pcix_get_mmrbc);
6176
6177/**
6178 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
6179 * @dev: PCI device to query
6180 * @mmrbc: maximum memory read count in bytes
6181 *    valid values are 512, 1024, 2048, 4096
6182 *
6183 * If possible sets maximum memory read byte count, some bridges have errata
6184 * that prevent this.
6185 */
6186int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
6187{
6188	int cap;
6189	u32 stat, v, o;
6190	u16 cmd;
6191
6192	if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
6193		return -EINVAL;
6194
6195	v = ffs(mmrbc) - 10;
6196
6197	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
6198	if (!cap)
6199		return -EINVAL;
6200
6201	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
6202		return -EINVAL;
6203
6204	if (v > FIELD_GET(PCI_X_STATUS_MAX_READ, stat))
6205		return -E2BIG;
6206
6207	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
6208		return -EINVAL;
6209
6210	o = FIELD_GET(PCI_X_CMD_MAX_READ, cmd);
6211	if (o != v) {
6212		if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
6213			return -EIO;
6214
6215		cmd &= ~PCI_X_CMD_MAX_READ;
6216		cmd |= FIELD_PREP(PCI_X_CMD_MAX_READ, v);
6217		if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
6218			return -EIO;
6219	}
6220	return 0;
6221}
6222EXPORT_SYMBOL(pcix_set_mmrbc);
6223
6224/**
6225 * pcie_get_readrq - get PCI Express read request size
6226 * @dev: PCI device to query
6227 *
6228 * Returns maximum memory read request in bytes or appropriate error value.
6229 */
6230int pcie_get_readrq(struct pci_dev *dev)
6231{
6232	u16 ctl;
6233
6234	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
6235
6236	return 128 << FIELD_GET(PCI_EXP_DEVCTL_READRQ, ctl);
6237}
6238EXPORT_SYMBOL(pcie_get_readrq);
6239
6240/**
6241 * pcie_set_readrq - set PCI Express maximum memory read request
6242 * @dev: PCI device to query
6243 * @rq: maximum memory read count in bytes
6244 *    valid values are 128, 256, 512, 1024, 2048, 4096
6245 *
6246 * If possible sets maximum memory read request in bytes
6247 */
6248int pcie_set_readrq(struct pci_dev *dev, int rq)
6249{
6250	u16 v;
6251	int ret;
6252	struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
6253
6254	if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
6255		return -EINVAL;
6256
6257	/*
6258	 * If using the "performance" PCIe config, we clamp the read rq
6259	 * size to the max packet size to keep the host bridge from
6260	 * generating requests larger than we can cope with.
6261	 */
6262	if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
6263		int mps = pcie_get_mps(dev);
6264
6265		if (mps < rq)
6266			rq = mps;
6267	}
6268
6269	v = FIELD_PREP(PCI_EXP_DEVCTL_READRQ, ffs(rq) - 8);
6270
6271	if (bridge->no_inc_mrrs) {
6272		int max_mrrs = pcie_get_readrq(dev);
6273
6274		if (rq > max_mrrs) {
6275			pci_info(dev, "can't set Max_Read_Request_Size to %d; max is %d\n", rq, max_mrrs);
6276			return -EINVAL;
6277		}
6278	}
6279
6280	ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6281						  PCI_EXP_DEVCTL_READRQ, v);
6282
6283	return pcibios_err_to_errno(ret);
6284}
6285EXPORT_SYMBOL(pcie_set_readrq);
6286
6287/**
6288 * pcie_get_mps - get PCI Express maximum payload size
6289 * @dev: PCI device to query
6290 *
6291 * Returns maximum payload size in bytes
6292 */
6293int pcie_get_mps(struct pci_dev *dev)
6294{
6295	u16 ctl;
6296
6297	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
6298
6299	return 128 << FIELD_GET(PCI_EXP_DEVCTL_PAYLOAD, ctl);
6300}
6301EXPORT_SYMBOL(pcie_get_mps);
6302
6303/**
6304 * pcie_set_mps - set PCI Express maximum payload size
6305 * @dev: PCI device to query
6306 * @mps: maximum payload size in bytes
6307 *    valid values are 128, 256, 512, 1024, 2048, 4096
6308 *
6309 * If possible sets maximum payload size
6310 */
6311int pcie_set_mps(struct pci_dev *dev, int mps)
6312{
6313	u16 v;
6314	int ret;
6315
6316	if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
6317		return -EINVAL;
6318
6319	v = ffs(mps) - 8;
6320	if (v > dev->pcie_mpss)
6321		return -EINVAL;
6322	v = FIELD_PREP(PCI_EXP_DEVCTL_PAYLOAD, v);
6323
6324	ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6325						  PCI_EXP_DEVCTL_PAYLOAD, v);
6326
6327	return pcibios_err_to_errno(ret);
6328}
6329EXPORT_SYMBOL(pcie_set_mps);
6330
6331static enum pci_bus_speed to_pcie_link_speed(u16 lnksta)
6332{
6333	return pcie_link_speed[FIELD_GET(PCI_EXP_LNKSTA_CLS, lnksta)];
6334}
6335
6336int pcie_link_speed_mbps(struct pci_dev *pdev)
6337{
6338	u16 lnksta;
6339	int err;
6340
6341	err = pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnksta);
6342	if (err)
6343		return err;
6344
6345	switch (to_pcie_link_speed(lnksta)) {
6346	case PCIE_SPEED_2_5GT:
6347		return 2500;
6348	case PCIE_SPEED_5_0GT:
6349		return 5000;
6350	case PCIE_SPEED_8_0GT:
6351		return 8000;
6352	case PCIE_SPEED_16_0GT:
6353		return 16000;
6354	case PCIE_SPEED_32_0GT:
6355		return 32000;
6356	case PCIE_SPEED_64_0GT:
6357		return 64000;
6358	default:
6359		break;
6360	}
6361
6362	return -EINVAL;
6363}
6364EXPORT_SYMBOL(pcie_link_speed_mbps);
6365
6366/**
6367 * pcie_bandwidth_available - determine minimum link settings of a PCIe
6368 *			      device and its bandwidth limitation
6369 * @dev: PCI device to query
6370 * @limiting_dev: storage for device causing the bandwidth limitation
6371 * @speed: storage for speed of limiting device
6372 * @width: storage for width of limiting device
6373 *
6374 * Walk up the PCI device chain and find the point where the minimum
6375 * bandwidth is available.  Return the bandwidth available there and (if
6376 * limiting_dev, speed, and width pointers are supplied) information about
6377 * that point.  The bandwidth returned is in Mb/s, i.e., megabits/second of
6378 * raw bandwidth.
6379 */
6380u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
6381			     enum pci_bus_speed *speed,
6382			     enum pcie_link_width *width)
6383{
6384	u16 lnksta;
6385	enum pci_bus_speed next_speed;
6386	enum pcie_link_width next_width;
6387	u32 bw, next_bw;
6388
6389	if (speed)
6390		*speed = PCI_SPEED_UNKNOWN;
6391	if (width)
6392		*width = PCIE_LNK_WIDTH_UNKNOWN;
6393
6394	bw = 0;
6395
6396	while (dev) {
6397		pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
6398
6399		next_speed = to_pcie_link_speed(lnksta);
6400		next_width = FIELD_GET(PCI_EXP_LNKSTA_NLW, lnksta);
 
6401
6402		next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
6403
6404		/* Check if current device limits the total bandwidth */
6405		if (!bw || next_bw <= bw) {
6406			bw = next_bw;
6407
6408			if (limiting_dev)
6409				*limiting_dev = dev;
6410			if (speed)
6411				*speed = next_speed;
6412			if (width)
6413				*width = next_width;
6414		}
6415
6416		dev = pci_upstream_bridge(dev);
6417	}
6418
6419	return bw;
6420}
6421EXPORT_SYMBOL(pcie_bandwidth_available);
6422
6423/**
6424 * pcie_get_speed_cap - query for the PCI device's link speed capability
6425 * @dev: PCI device to query
6426 *
6427 * Query the PCI device speed capability.  Return the maximum link speed
6428 * supported by the device.
6429 */
6430enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
6431{
6432	u32 lnkcap2, lnkcap;
6433
6434	/*
6435	 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18.  The
6436	 * implementation note there recommends using the Supported Link
6437	 * Speeds Vector in Link Capabilities 2 when supported.
6438	 *
6439	 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
6440	 * should use the Supported Link Speeds field in Link Capabilities,
6441	 * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
6442	 */
6443	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
6444
6445	/* PCIe r3.0-compliant */
6446	if (lnkcap2)
6447		return PCIE_LNKCAP2_SLS2SPEED(lnkcap2);
6448
6449	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6450	if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
6451		return PCIE_SPEED_5_0GT;
6452	else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
6453		return PCIE_SPEED_2_5GT;
6454
6455	return PCI_SPEED_UNKNOWN;
6456}
6457EXPORT_SYMBOL(pcie_get_speed_cap);
6458
6459/**
6460 * pcie_get_width_cap - query for the PCI device's link width capability
6461 * @dev: PCI device to query
6462 *
6463 * Query the PCI device width capability.  Return the maximum link width
6464 * supported by the device.
6465 */
6466enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
6467{
6468	u32 lnkcap;
6469
6470	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6471	if (lnkcap)
6472		return FIELD_GET(PCI_EXP_LNKCAP_MLW, lnkcap);
6473
6474	return PCIE_LNK_WIDTH_UNKNOWN;
6475}
6476EXPORT_SYMBOL(pcie_get_width_cap);
6477
6478/**
6479 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
6480 * @dev: PCI device
6481 * @speed: storage for link speed
6482 * @width: storage for link width
6483 *
6484 * Calculate a PCI device's link bandwidth by querying for its link speed
6485 * and width, multiplying them, and applying encoding overhead.  The result
6486 * is in Mb/s, i.e., megabits/second of raw bandwidth.
6487 */
6488u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
6489			   enum pcie_link_width *width)
6490{
6491	*speed = pcie_get_speed_cap(dev);
6492	*width = pcie_get_width_cap(dev);
6493
6494	if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
6495		return 0;
6496
6497	return *width * PCIE_SPEED2MBS_ENC(*speed);
6498}
6499
6500/**
6501 * __pcie_print_link_status - Report the PCI device's link speed and width
6502 * @dev: PCI device to query
6503 * @verbose: Print info even when enough bandwidth is available
6504 *
6505 * If the available bandwidth at the device is less than the device is
6506 * capable of, report the device's maximum possible bandwidth and the
6507 * upstream link that limits its performance.  If @verbose, always print
6508 * the available bandwidth, even if the device isn't constrained.
6509 */
6510void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
6511{
6512	enum pcie_link_width width, width_cap;
6513	enum pci_bus_speed speed, speed_cap;
6514	struct pci_dev *limiting_dev = NULL;
6515	u32 bw_avail, bw_cap;
6516
6517	bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
6518	bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
6519
6520	if (bw_avail >= bw_cap && verbose)
6521		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
6522			 bw_cap / 1000, bw_cap % 1000,
6523			 pci_speed_string(speed_cap), width_cap);
6524	else if (bw_avail < bw_cap)
6525		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
6526			 bw_avail / 1000, bw_avail % 1000,
6527			 pci_speed_string(speed), width,
6528			 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
6529			 bw_cap / 1000, bw_cap % 1000,
6530			 pci_speed_string(speed_cap), width_cap);
6531}
6532
6533/**
6534 * pcie_print_link_status - Report the PCI device's link speed and width
6535 * @dev: PCI device to query
6536 *
6537 * Report the available bandwidth at the device.
6538 */
6539void pcie_print_link_status(struct pci_dev *dev)
6540{
6541	__pcie_print_link_status(dev, true);
6542}
6543EXPORT_SYMBOL(pcie_print_link_status);
6544
6545/**
6546 * pci_select_bars - Make BAR mask from the type of resource
6547 * @dev: the PCI device for which BAR mask is made
6548 * @flags: resource type mask to be selected
6549 *
6550 * This helper routine makes bar mask from the type of resource.
6551 */
6552int pci_select_bars(struct pci_dev *dev, unsigned long flags)
6553{
6554	int i, bars = 0;
6555	for (i = 0; i < PCI_NUM_RESOURCES; i++)
6556		if (pci_resource_flags(dev, i) & flags)
6557			bars |= (1 << i);
6558	return bars;
6559}
6560EXPORT_SYMBOL(pci_select_bars);
6561
6562/* Some architectures require additional programming to enable VGA */
6563static arch_set_vga_state_t arch_set_vga_state;
6564
6565void __init pci_register_set_vga_state(arch_set_vga_state_t func)
6566{
6567	arch_set_vga_state = func;	/* NULL disables */
6568}
6569
6570static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
6571				  unsigned int command_bits, u32 flags)
6572{
6573	if (arch_set_vga_state)
6574		return arch_set_vga_state(dev, decode, command_bits,
6575						flags);
6576	return 0;
6577}
6578
6579/**
6580 * pci_set_vga_state - set VGA decode state on device and parents if requested
6581 * @dev: the PCI device
6582 * @decode: true = enable decoding, false = disable decoding
6583 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
6584 * @flags: traverse ancestors and change bridges
6585 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
6586 */
6587int pci_set_vga_state(struct pci_dev *dev, bool decode,
6588		      unsigned int command_bits, u32 flags)
6589{
6590	struct pci_bus *bus;
6591	struct pci_dev *bridge;
6592	u16 cmd;
6593	int rc;
6594
6595	WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
6596
6597	/* ARCH specific VGA enables */
6598	rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
6599	if (rc)
6600		return rc;
6601
6602	if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
6603		pci_read_config_word(dev, PCI_COMMAND, &cmd);
6604		if (decode)
6605			cmd |= command_bits;
6606		else
6607			cmd &= ~command_bits;
6608		pci_write_config_word(dev, PCI_COMMAND, cmd);
6609	}
6610
6611	if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
6612		return 0;
6613
6614	bus = dev->bus;
6615	while (bus) {
6616		bridge = bus->self;
6617		if (bridge) {
6618			pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
6619					     &cmd);
6620			if (decode)
6621				cmd |= PCI_BRIDGE_CTL_VGA;
6622			else
6623				cmd &= ~PCI_BRIDGE_CTL_VGA;
6624			pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
6625					      cmd);
6626		}
6627		bus = bus->parent;
6628	}
6629	return 0;
6630}
6631
6632#ifdef CONFIG_ACPI
6633bool pci_pr3_present(struct pci_dev *pdev)
6634{
6635	struct acpi_device *adev;
6636
6637	if (acpi_disabled)
6638		return false;
6639
6640	adev = ACPI_COMPANION(&pdev->dev);
6641	if (!adev)
6642		return false;
6643
6644	return adev->power.flags.power_resources &&
6645		acpi_has_method(adev->handle, "_PR3");
6646}
6647EXPORT_SYMBOL_GPL(pci_pr3_present);
6648#endif
6649
6650/**
6651 * pci_add_dma_alias - Add a DMA devfn alias for a device
6652 * @dev: the PCI device for which alias is added
6653 * @devfn_from: alias slot and function
6654 * @nr_devfns: number of subsequent devfns to alias
6655 *
6656 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
6657 * which is used to program permissible bus-devfn source addresses for DMA
6658 * requests in an IOMMU.  These aliases factor into IOMMU group creation
6659 * and are useful for devices generating DMA requests beyond or different
6660 * from their logical bus-devfn.  Examples include device quirks where the
6661 * device simply uses the wrong devfn, as well as non-transparent bridges
6662 * where the alias may be a proxy for devices in another domain.
6663 *
6664 * IOMMU group creation is performed during device discovery or addition,
6665 * prior to any potential DMA mapping and therefore prior to driver probing
6666 * (especially for userspace assigned devices where IOMMU group definition
6667 * cannot be left as a userspace activity).  DMA aliases should therefore
6668 * be configured via quirks, such as the PCI fixup header quirk.
6669 */
6670void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from,
6671		       unsigned int nr_devfns)
6672{
6673	int devfn_to;
6674
6675	nr_devfns = min(nr_devfns, (unsigned int)MAX_NR_DEVFNS - devfn_from);
6676	devfn_to = devfn_from + nr_devfns - 1;
6677
6678	if (!dev->dma_alias_mask)
6679		dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL);
6680	if (!dev->dma_alias_mask) {
6681		pci_warn(dev, "Unable to allocate DMA alias mask\n");
6682		return;
6683	}
6684
6685	bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns);
6686
6687	if (nr_devfns == 1)
6688		pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
6689				PCI_SLOT(devfn_from), PCI_FUNC(devfn_from));
6690	else if (nr_devfns > 1)
6691		pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n",
6692				PCI_SLOT(devfn_from), PCI_FUNC(devfn_from),
6693				PCI_SLOT(devfn_to), PCI_FUNC(devfn_to));
6694}
6695
6696bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
6697{
6698	return (dev1->dma_alias_mask &&
6699		test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
6700	       (dev2->dma_alias_mask &&
6701		test_bit(dev1->devfn, dev2->dma_alias_mask)) ||
6702	       pci_real_dma_dev(dev1) == dev2 ||
6703	       pci_real_dma_dev(dev2) == dev1;
6704}
6705
6706bool pci_device_is_present(struct pci_dev *pdev)
6707{
6708	u32 v;
6709
6710	/* Check PF if pdev is a VF, since VF Vendor/Device IDs are 0xffff */
6711	pdev = pci_physfn(pdev);
6712	if (pci_dev_is_disconnected(pdev))
6713		return false;
6714	return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
6715}
6716EXPORT_SYMBOL_GPL(pci_device_is_present);
6717
6718void pci_ignore_hotplug(struct pci_dev *dev)
6719{
6720	struct pci_dev *bridge = dev->bus->self;
6721
6722	dev->ignore_hotplug = 1;
6723	/* Propagate the "ignore hotplug" setting to the parent bridge. */
6724	if (bridge)
6725		bridge->ignore_hotplug = 1;
6726}
6727EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
6728
6729/**
6730 * pci_real_dma_dev - Get PCI DMA device for PCI device
6731 * @dev: the PCI device that may have a PCI DMA alias
6732 *
6733 * Permits the platform to provide architecture-specific functionality to
6734 * devices needing to alias DMA to another PCI device on another PCI bus. If
6735 * the PCI device is on the same bus, it is recommended to use
6736 * pci_add_dma_alias(). This is the default implementation. Architecture
6737 * implementations can override this.
6738 */
6739struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev)
6740{
6741	return dev;
6742}
6743
6744resource_size_t __weak pcibios_default_alignment(void)
6745{
6746	return 0;
6747}
6748
6749/*
6750 * Arches that don't want to expose struct resource to userland as-is in
6751 * sysfs and /proc can implement their own pci_resource_to_user().
6752 */
6753void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
6754				 const struct resource *rsrc,
6755				 resource_size_t *start, resource_size_t *end)
6756{
6757	*start = rsrc->start;
6758	*end = rsrc->end;
6759}
6760
6761static char *resource_alignment_param;
6762static DEFINE_SPINLOCK(resource_alignment_lock);
6763
6764/**
6765 * pci_specified_resource_alignment - get resource alignment specified by user.
6766 * @dev: the PCI device to get
6767 * @resize: whether or not to change resources' size when reassigning alignment
6768 *
6769 * RETURNS: Resource alignment if it is specified.
6770 *          Zero if it is not specified.
6771 */
6772static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
6773							bool *resize)
6774{
6775	int align_order, count;
6776	resource_size_t align = pcibios_default_alignment();
6777	const char *p;
6778	int ret;
6779
6780	spin_lock(&resource_alignment_lock);
6781	p = resource_alignment_param;
6782	if (!p || !*p)
6783		goto out;
6784	if (pci_has_flag(PCI_PROBE_ONLY)) {
6785		align = 0;
6786		pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
6787		goto out;
6788	}
6789
6790	while (*p) {
6791		count = 0;
6792		if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
6793		    p[count] == '@') {
6794			p += count + 1;
6795			if (align_order > 63) {
6796				pr_err("PCI: Invalid requested alignment (order %d)\n",
6797				       align_order);
6798				align_order = PAGE_SHIFT;
6799			}
6800		} else {
6801			align_order = PAGE_SHIFT;
6802		}
6803
6804		ret = pci_dev_str_match(dev, p, &p);
6805		if (ret == 1) {
6806			*resize = true;
6807			align = 1ULL << align_order;
6808			break;
6809		} else if (ret < 0) {
6810			pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
6811			       p);
6812			break;
6813		}
6814
6815		if (*p != ';' && *p != ',') {
6816			/* End of param or invalid format */
6817			break;
6818		}
6819		p++;
6820	}
6821out:
6822	spin_unlock(&resource_alignment_lock);
6823	return align;
6824}
6825
6826static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
6827					   resource_size_t align, bool resize)
6828{
6829	struct resource *r = &dev->resource[bar];
6830	const char *r_name = pci_resource_name(dev, bar);
6831	resource_size_t size;
6832
6833	if (!(r->flags & IORESOURCE_MEM))
6834		return;
6835
6836	if (r->flags & IORESOURCE_PCI_FIXED) {
6837		pci_info(dev, "%s %pR: ignoring requested alignment %#llx\n",
6838			 r_name, r, (unsigned long long)align);
6839		return;
6840	}
6841
6842	size = resource_size(r);
6843	if (size >= align)
6844		return;
6845
6846	/*
6847	 * Increase the alignment of the resource.  There are two ways we
6848	 * can do this:
6849	 *
6850	 * 1) Increase the size of the resource.  BARs are aligned on their
6851	 *    size, so when we reallocate space for this resource, we'll
6852	 *    allocate it with the larger alignment.  This also prevents
6853	 *    assignment of any other BARs inside the alignment region, so
6854	 *    if we're requesting page alignment, this means no other BARs
6855	 *    will share the page.
6856	 *
6857	 *    The disadvantage is that this makes the resource larger than
6858	 *    the hardware BAR, which may break drivers that compute things
6859	 *    based on the resource size, e.g., to find registers at a
6860	 *    fixed offset before the end of the BAR.
6861	 *
6862	 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6863	 *    set r->start to the desired alignment.  By itself this
6864	 *    doesn't prevent other BARs being put inside the alignment
6865	 *    region, but if we realign *every* resource of every device in
6866	 *    the system, none of them will share an alignment region.
6867	 *
6868	 * When the user has requested alignment for only some devices via
6869	 * the "pci=resource_alignment" argument, "resize" is true and we
6870	 * use the first method.  Otherwise we assume we're aligning all
6871	 * devices and we use the second.
6872	 */
6873
6874	pci_info(dev, "%s %pR: requesting alignment to %#llx\n",
6875		 r_name, r, (unsigned long long)align);
6876
6877	if (resize) {
6878		r->start = 0;
6879		r->end = align - 1;
6880	} else {
6881		r->flags &= ~IORESOURCE_SIZEALIGN;
6882		r->flags |= IORESOURCE_STARTALIGN;
6883		r->start = align;
6884		r->end = r->start + size - 1;
6885	}
6886	r->flags |= IORESOURCE_UNSET;
6887}
6888
6889/*
6890 * This function disables memory decoding and releases memory resources
6891 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6892 * It also rounds up size to specified alignment.
6893 * Later on, the kernel will assign page-aligned memory resource back
6894 * to the device.
6895 */
6896void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6897{
6898	int i;
6899	struct resource *r;
6900	resource_size_t align;
6901	u16 command;
6902	bool resize = false;
6903
6904	/*
6905	 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6906	 * 3.4.1.11.  Their resources are allocated from the space
6907	 * described by the VF BARx register in the PF's SR-IOV capability.
6908	 * We can't influence their alignment here.
6909	 */
6910	if (dev->is_virtfn)
6911		return;
6912
6913	/* check if specified PCI is target device to reassign */
6914	align = pci_specified_resource_alignment(dev, &resize);
6915	if (!align)
6916		return;
6917
6918	if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6919	    (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6920		pci_warn(dev, "Can't reassign resources to host bridge\n");
6921		return;
6922	}
6923
6924	pci_read_config_word(dev, PCI_COMMAND, &command);
6925	command &= ~PCI_COMMAND_MEMORY;
6926	pci_write_config_word(dev, PCI_COMMAND, command);
6927
6928	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6929		pci_request_resource_alignment(dev, i, align, resize);
6930
6931	/*
6932	 * Need to disable bridge's resource window,
6933	 * to enable the kernel to reassign new resource
6934	 * window later on.
6935	 */
6936	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6937		for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6938			r = &dev->resource[i];
6939			if (!(r->flags & IORESOURCE_MEM))
6940				continue;
6941			r->flags |= IORESOURCE_UNSET;
6942			r->end = resource_size(r) - 1;
6943			r->start = 0;
6944		}
6945		pci_disable_bridge_window(dev);
6946	}
6947}
6948
6949static ssize_t resource_alignment_show(const struct bus_type *bus, char *buf)
6950{
6951	size_t count = 0;
6952
6953	spin_lock(&resource_alignment_lock);
6954	if (resource_alignment_param)
6955		count = sysfs_emit(buf, "%s\n", resource_alignment_param);
6956	spin_unlock(&resource_alignment_lock);
6957
6958	return count;
6959}
6960
6961static ssize_t resource_alignment_store(const struct bus_type *bus,
6962					const char *buf, size_t count)
6963{
6964	char *param, *old, *end;
6965
6966	if (count >= (PAGE_SIZE - 1))
6967		return -EINVAL;
6968
6969	param = kstrndup(buf, count, GFP_KERNEL);
6970	if (!param)
6971		return -ENOMEM;
6972
6973	end = strchr(param, '\n');
6974	if (end)
6975		*end = '\0';
6976
6977	spin_lock(&resource_alignment_lock);
6978	old = resource_alignment_param;
6979	if (strlen(param)) {
6980		resource_alignment_param = param;
6981	} else {
6982		kfree(param);
6983		resource_alignment_param = NULL;
6984	}
6985	spin_unlock(&resource_alignment_lock);
6986
6987	kfree(old);
6988
6989	return count;
6990}
6991
6992static BUS_ATTR_RW(resource_alignment);
6993
6994static int __init pci_resource_alignment_sysfs_init(void)
6995{
6996	return bus_create_file(&pci_bus_type,
6997					&bus_attr_resource_alignment);
6998}
6999late_initcall(pci_resource_alignment_sysfs_init);
7000
7001static void pci_no_domains(void)
7002{
7003#ifdef CONFIG_PCI_DOMAINS
7004	pci_domains_supported = 0;
7005#endif
7006}
7007
7008#ifdef CONFIG_PCI_DOMAINS_GENERIC
7009static DEFINE_IDA(pci_domain_nr_static_ida);
7010static DEFINE_IDA(pci_domain_nr_dynamic_ida);
7011
7012static void of_pci_reserve_static_domain_nr(void)
7013{
7014	struct device_node *np;
7015	int domain_nr;
7016
7017	for_each_node_by_type(np, "pci") {
7018		domain_nr = of_get_pci_domain_nr(np);
7019		if (domain_nr < 0)
7020			continue;
7021		/*
7022		 * Permanently allocate domain_nr in dynamic_ida
7023		 * to prevent it from dynamic allocation.
7024		 */
7025		ida_alloc_range(&pci_domain_nr_dynamic_ida,
7026				domain_nr, domain_nr, GFP_KERNEL);
7027	}
7028}
7029
7030static int of_pci_bus_find_domain_nr(struct device *parent)
7031{
7032	static bool static_domains_reserved = false;
7033	int domain_nr;
7034
7035	/* On the first call scan device tree for static allocations. */
7036	if (!static_domains_reserved) {
7037		of_pci_reserve_static_domain_nr();
7038		static_domains_reserved = true;
7039	}
7040
7041	if (parent) {
7042		/*
7043		 * If domain is in DT, allocate it in static IDA.  This
7044		 * prevents duplicate static allocations in case of errors
7045		 * in DT.
7046		 */
7047		domain_nr = of_get_pci_domain_nr(parent->of_node);
7048		if (domain_nr >= 0)
7049			return ida_alloc_range(&pci_domain_nr_static_ida,
7050					       domain_nr, domain_nr,
7051					       GFP_KERNEL);
7052	}
7053
7054	/*
7055	 * If domain was not specified in DT, choose a free ID from dynamic
7056	 * allocations. All domain numbers from DT are permanently in
7057	 * dynamic allocations to prevent assigning them to other DT nodes
7058	 * without static domain.
7059	 */
7060	return ida_alloc(&pci_domain_nr_dynamic_ida, GFP_KERNEL);
7061}
7062
7063static void of_pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent)
7064{
7065	if (bus->domain_nr < 0)
7066		return;
7067
7068	/* Release domain from IDA where it was allocated. */
7069	if (of_get_pci_domain_nr(parent->of_node) == bus->domain_nr)
7070		ida_free(&pci_domain_nr_static_ida, bus->domain_nr);
7071	else
7072		ida_free(&pci_domain_nr_dynamic_ida, bus->domain_nr);
7073}
7074
7075int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
7076{
7077	return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
7078			       acpi_pci_bus_find_domain_nr(bus);
7079}
7080
7081void pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent)
7082{
7083	if (!acpi_disabled)
7084		return;
7085	of_pci_bus_release_domain_nr(bus, parent);
7086}
7087#endif
7088
7089/**
7090 * pci_ext_cfg_avail - can we access extended PCI config space?
7091 *
7092 * Returns 1 if we can access PCI extended config space (offsets
7093 * greater than 0xff). This is the default implementation. Architecture
7094 * implementations can override this.
7095 */
7096int __weak pci_ext_cfg_avail(void)
7097{
7098	return 1;
7099}
7100
7101void __weak pci_fixup_cardbus(struct pci_bus *bus)
7102{
7103}
7104EXPORT_SYMBOL(pci_fixup_cardbus);
7105
7106static int __init pci_setup(char *str)
7107{
7108	while (str) {
7109		char *k = strchr(str, ',');
7110		if (k)
7111			*k++ = 0;
7112		if (*str && (str = pcibios_setup(str)) && *str) {
7113			if (!strcmp(str, "nomsi")) {
7114				pci_no_msi();
7115			} else if (!strncmp(str, "noats", 5)) {
7116				pr_info("PCIe: ATS is disabled\n");
7117				pcie_ats_disabled = true;
7118			} else if (!strcmp(str, "noaer")) {
7119				pci_no_aer();
7120			} else if (!strcmp(str, "earlydump")) {
7121				pci_early_dump = true;
7122			} else if (!strncmp(str, "realloc=", 8)) {
7123				pci_realloc_get_opt(str + 8);
7124			} else if (!strncmp(str, "realloc", 7)) {
7125				pci_realloc_get_opt("on");
7126			} else if (!strcmp(str, "nodomains")) {
7127				pci_no_domains();
7128			} else if (!strncmp(str, "noari", 5)) {
7129				pcie_ari_disabled = true;
7130			} else if (!strncmp(str, "cbiosize=", 9)) {
7131				pci_cardbus_io_size = memparse(str + 9, &str);
7132			} else if (!strncmp(str, "cbmemsize=", 10)) {
7133				pci_cardbus_mem_size = memparse(str + 10, &str);
7134			} else if (!strncmp(str, "resource_alignment=", 19)) {
7135				resource_alignment_param = str + 19;
7136			} else if (!strncmp(str, "ecrc=", 5)) {
7137				pcie_ecrc_get_policy(str + 5);
7138			} else if (!strncmp(str, "hpiosize=", 9)) {
7139				pci_hotplug_io_size = memparse(str + 9, &str);
7140			} else if (!strncmp(str, "hpmmiosize=", 11)) {
7141				pci_hotplug_mmio_size = memparse(str + 11, &str);
7142			} else if (!strncmp(str, "hpmmioprefsize=", 15)) {
7143				pci_hotplug_mmio_pref_size = memparse(str + 15, &str);
7144			} else if (!strncmp(str, "hpmemsize=", 10)) {
7145				pci_hotplug_mmio_size = memparse(str + 10, &str);
7146				pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size;
7147			} else if (!strncmp(str, "hpbussize=", 10)) {
7148				pci_hotplug_bus_size =
7149					simple_strtoul(str + 10, &str, 0);
7150				if (pci_hotplug_bus_size > 0xff)
7151					pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
7152			} else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
7153				pcie_bus_config = PCIE_BUS_TUNE_OFF;
7154			} else if (!strncmp(str, "pcie_bus_safe", 13)) {
7155				pcie_bus_config = PCIE_BUS_SAFE;
7156			} else if (!strncmp(str, "pcie_bus_perf", 13)) {
7157				pcie_bus_config = PCIE_BUS_PERFORMANCE;
7158			} else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
7159				pcie_bus_config = PCIE_BUS_PEER2PEER;
7160			} else if (!strncmp(str, "pcie_scan_all", 13)) {
7161				pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
7162			} else if (!strncmp(str, "disable_acs_redir=", 18)) {
7163				disable_acs_redir_param = str + 18;
7164			} else {
7165				pr_err("PCI: Unknown option `%s'\n", str);
7166			}
7167		}
7168		str = k;
7169	}
7170	return 0;
7171}
7172early_param("pci", pci_setup);
7173
7174/*
7175 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
7176 * in pci_setup(), above, to point to data in the __initdata section which
7177 * will be freed after the init sequence is complete. We can't allocate memory
7178 * in pci_setup() because some architectures do not have any memory allocation
7179 * service available during an early_param() call. So we allocate memory and
7180 * copy the variable here before the init section is freed.
7181 *
7182 */
7183static int __init pci_realloc_setup_params(void)
7184{
7185	resource_alignment_param = kstrdup(resource_alignment_param,
7186					   GFP_KERNEL);
7187	disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
7188
7189	return 0;
7190}
7191pure_initcall(pci_realloc_setup_params);