Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * PCI Bus Services, see include/linux/pci.h for further explanation.
   4 *
   5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
   6 * David Mosberger-Tang
   7 *
   8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
   9 */
  10
  11#include <linux/acpi.h>
  12#include <linux/kernel.h>
  13#include <linux/delay.h>
  14#include <linux/dmi.h>
  15#include <linux/init.h>
  16#include <linux/msi.h>
  17#include <linux/of.h>
 
  18#include <linux/pci.h>
  19#include <linux/pm.h>
  20#include <linux/slab.h>
  21#include <linux/module.h>
  22#include <linux/spinlock.h>
  23#include <linux/string.h>
  24#include <linux/log2.h>
  25#include <linux/logic_pio.h>
 
  26#include <linux/pm_wakeup.h>
  27#include <linux/interrupt.h>
  28#include <linux/device.h>
  29#include <linux/pm_runtime.h>
  30#include <linux/pci_hotplug.h>
  31#include <linux/vmalloc.h>
 
 
  32#include <asm/dma.h>
  33#include <linux/aer.h>
  34#include <linux/bitfield.h>
  35#include "pci.h"
  36
  37DEFINE_MUTEX(pci_slot_mutex);
  38
  39const char *pci_power_names[] = {
  40	"error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
  41};
  42EXPORT_SYMBOL_GPL(pci_power_names);
  43
  44#ifdef CONFIG_X86_32
  45int isa_dma_bridge_buggy;
  46EXPORT_SYMBOL(isa_dma_bridge_buggy);
  47#endif
  48
  49int pci_pci_problems;
  50EXPORT_SYMBOL(pci_pci_problems);
  51
  52unsigned int pci_pm_d3hot_delay;
  53
  54static void pci_pme_list_scan(struct work_struct *work);
  55
  56static LIST_HEAD(pci_pme_list);
  57static DEFINE_MUTEX(pci_pme_list_mutex);
  58static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
  59
  60struct pci_pme_device {
  61	struct list_head list;
  62	struct pci_dev *dev;
  63};
  64
  65#define PME_TIMEOUT 1000 /* How long between PME checks */
  66
  67static void pci_dev_d3_sleep(struct pci_dev *dev)
  68{
  69	unsigned int delay_ms = max(dev->d3hot_delay, pci_pm_d3hot_delay);
  70	unsigned int upper;
  71
  72	if (delay_ms) {
  73		/* Use a 20% upper bound, 1ms minimum */
  74		upper = max(DIV_ROUND_CLOSEST(delay_ms, 5), 1U);
  75		usleep_range(delay_ms * USEC_PER_MSEC,
  76			     (delay_ms + upper) * USEC_PER_MSEC);
  77	}
  78}
  79
  80bool pci_reset_supported(struct pci_dev *dev)
  81{
  82	return dev->reset_methods[0] != 0;
  83}
  84
  85#ifdef CONFIG_PCI_DOMAINS
  86int pci_domains_supported = 1;
  87#endif
  88
  89#define DEFAULT_CARDBUS_IO_SIZE		(256)
  90#define DEFAULT_CARDBUS_MEM_SIZE	(64*1024*1024)
  91/* pci=cbmemsize=nnM,cbiosize=nn can override this */
  92unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
  93unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
  94
  95#define DEFAULT_HOTPLUG_IO_SIZE		(256)
  96#define DEFAULT_HOTPLUG_MMIO_SIZE	(2*1024*1024)
  97#define DEFAULT_HOTPLUG_MMIO_PREF_SIZE	(2*1024*1024)
  98/* hpiosize=nn can override this */
  99unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
 100/*
 101 * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size,
 102 * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size;
 103 * pci=hpmemsize=nnM overrides both
 104 */
 105unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE;
 106unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE;
 107
 108#define DEFAULT_HOTPLUG_BUS_SIZE	1
 109unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
 110
 111
 112/* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */
 113#ifdef CONFIG_PCIE_BUS_TUNE_OFF
 114enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
 115#elif defined CONFIG_PCIE_BUS_SAFE
 116enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE;
 117#elif defined CONFIG_PCIE_BUS_PERFORMANCE
 118enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE;
 119#elif defined CONFIG_PCIE_BUS_PEER2PEER
 120enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER;
 121#else
 122enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
 123#endif
 124
 125/*
 126 * The default CLS is used if arch didn't set CLS explicitly and not
 127 * all pci devices agree on the same value.  Arch can override either
 128 * the dfl or actual value as it sees fit.  Don't forget this is
 129 * measured in 32-bit words, not bytes.
 130 */
 131u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
 132u8 pci_cache_line_size;
 133
 134/*
 135 * If we set up a device for bus mastering, we need to check the latency
 136 * timer as certain BIOSes forget to set it properly.
 137 */
 138unsigned int pcibios_max_latency = 255;
 139
 140/* If set, the PCIe ARI capability will not be used. */
 141static bool pcie_ari_disabled;
 142
 143/* If set, the PCIe ATS capability will not be used. */
 144static bool pcie_ats_disabled;
 145
 146/* If set, the PCI config space of each device is printed during boot. */
 147bool pci_early_dump;
 148
 149bool pci_ats_disabled(void)
 150{
 151	return pcie_ats_disabled;
 152}
 153EXPORT_SYMBOL_GPL(pci_ats_disabled);
 154
 155/* Disable bridge_d3 for all PCIe ports */
 156static bool pci_bridge_d3_disable;
 157/* Force bridge_d3 for all PCIe ports */
 158static bool pci_bridge_d3_force;
 159
 160static int __init pcie_port_pm_setup(char *str)
 161{
 162	if (!strcmp(str, "off"))
 163		pci_bridge_d3_disable = true;
 164	else if (!strcmp(str, "force"))
 165		pci_bridge_d3_force = true;
 166	return 1;
 167}
 168__setup("pcie_port_pm=", pcie_port_pm_setup);
 169
 170/* Time to wait after a reset for device to become responsive */
 171#define PCIE_RESET_READY_POLL_MS 60000
 172
 173/**
 174 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
 175 * @bus: pointer to PCI bus structure to search
 176 *
 177 * Given a PCI bus, returns the highest PCI bus number present in the set
 178 * including the given PCI bus and its list of child PCI buses.
 179 */
 180unsigned char pci_bus_max_busnr(struct pci_bus *bus)
 181{
 182	struct pci_bus *tmp;
 183	unsigned char max, n;
 184
 185	max = bus->busn_res.end;
 186	list_for_each_entry(tmp, &bus->children, node) {
 187		n = pci_bus_max_busnr(tmp);
 188		if (n > max)
 189			max = n;
 190	}
 191	return max;
 192}
 193EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
 194
 195/**
 196 * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS
 197 * @pdev: the PCI device
 198 *
 199 * Returns error bits set in PCI_STATUS and clears them.
 200 */
 201int pci_status_get_and_clear_errors(struct pci_dev *pdev)
 202{
 203	u16 status;
 204	int ret;
 205
 206	ret = pci_read_config_word(pdev, PCI_STATUS, &status);
 207	if (ret != PCIBIOS_SUCCESSFUL)
 208		return -EIO;
 209
 210	status &= PCI_STATUS_ERROR_BITS;
 211	if (status)
 212		pci_write_config_word(pdev, PCI_STATUS, status);
 213
 214	return status;
 215}
 216EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors);
 217
 218#ifdef CONFIG_HAS_IOMEM
 219static void __iomem *__pci_ioremap_resource(struct pci_dev *pdev, int bar,
 220					    bool write_combine)
 221{
 222	struct resource *res = &pdev->resource[bar];
 223	resource_size_t start = res->start;
 224	resource_size_t size = resource_size(res);
 225
 226	/*
 227	 * Make sure the BAR is actually a memory resource, not an IO resource
 228	 */
 229	if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
 230		pci_err(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
 231		return NULL;
 232	}
 233
 234	if (write_combine)
 235		return ioremap_wc(start, size);
 236
 237	return ioremap(start, size);
 238}
 239
 240void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
 241{
 242	return __pci_ioremap_resource(pdev, bar, false);
 243}
 244EXPORT_SYMBOL_GPL(pci_ioremap_bar);
 245
 246void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
 247{
 248	return __pci_ioremap_resource(pdev, bar, true);
 
 
 
 
 
 
 
 
 249}
 250EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
 251#endif
 252
 253/**
 254 * pci_dev_str_match_path - test if a path string matches a device
 255 * @dev: the PCI device to test
 256 * @path: string to match the device against
 257 * @endptr: pointer to the string after the match
 258 *
 259 * Test if a string (typically from a kernel parameter) formatted as a
 260 * path of device/function addresses matches a PCI device. The string must
 261 * be of the form:
 262 *
 263 *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
 264 *
 265 * A path for a device can be obtained using 'lspci -t'.  Using a path
 266 * is more robust against bus renumbering than using only a single bus,
 267 * device and function address.
 268 *
 269 * Returns 1 if the string matches the device, 0 if it does not and
 270 * a negative error code if it fails to parse the string.
 271 */
 272static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
 273				  const char **endptr)
 274{
 275	int ret;
 276	unsigned int seg, bus, slot, func;
 277	char *wpath, *p;
 278	char end;
 279
 280	*endptr = strchrnul(path, ';');
 281
 282	wpath = kmemdup_nul(path, *endptr - path, GFP_ATOMIC);
 283	if (!wpath)
 284		return -ENOMEM;
 285
 286	while (1) {
 287		p = strrchr(wpath, '/');
 288		if (!p)
 289			break;
 290		ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
 291		if (ret != 2) {
 292			ret = -EINVAL;
 293			goto free_and_exit;
 294		}
 295
 296		if (dev->devfn != PCI_DEVFN(slot, func)) {
 297			ret = 0;
 298			goto free_and_exit;
 299		}
 300
 301		/*
 302		 * Note: we don't need to get a reference to the upstream
 303		 * bridge because we hold a reference to the top level
 304		 * device which should hold a reference to the bridge,
 305		 * and so on.
 306		 */
 307		dev = pci_upstream_bridge(dev);
 308		if (!dev) {
 309			ret = 0;
 310			goto free_and_exit;
 311		}
 312
 313		*p = 0;
 314	}
 315
 316	ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
 317		     &func, &end);
 318	if (ret != 4) {
 319		seg = 0;
 320		ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
 321		if (ret != 3) {
 322			ret = -EINVAL;
 323			goto free_and_exit;
 324		}
 325	}
 326
 327	ret = (seg == pci_domain_nr(dev->bus) &&
 328	       bus == dev->bus->number &&
 329	       dev->devfn == PCI_DEVFN(slot, func));
 330
 331free_and_exit:
 332	kfree(wpath);
 333	return ret;
 334}
 335
 336/**
 337 * pci_dev_str_match - test if a string matches a device
 338 * @dev: the PCI device to test
 339 * @p: string to match the device against
 340 * @endptr: pointer to the string after the match
 341 *
 342 * Test if a string (typically from a kernel parameter) matches a specified
 343 * PCI device. The string may be of one of the following formats:
 344 *
 345 *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
 346 *   pci:<vendor>:<device>[:<subvendor>:<subdevice>]
 347 *
 348 * The first format specifies a PCI bus/device/function address which
 349 * may change if new hardware is inserted, if motherboard firmware changes,
 350 * or due to changes caused in kernel parameters. If the domain is
 351 * left unspecified, it is taken to be 0.  In order to be robust against
 352 * bus renumbering issues, a path of PCI device/function numbers may be used
 353 * to address the specific device.  The path for a device can be determined
 354 * through the use of 'lspci -t'.
 355 *
 356 * The second format matches devices using IDs in the configuration
 357 * space which may match multiple devices in the system. A value of 0
 358 * for any field will match all devices. (Note: this differs from
 359 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
 360 * legacy reasons and convenience so users don't have to specify
 361 * FFFFFFFFs on the command line.)
 362 *
 363 * Returns 1 if the string matches the device, 0 if it does not and
 364 * a negative error code if the string cannot be parsed.
 365 */
 366static int pci_dev_str_match(struct pci_dev *dev, const char *p,
 367			     const char **endptr)
 368{
 369	int ret;
 370	int count;
 371	unsigned short vendor, device, subsystem_vendor, subsystem_device;
 372
 373	if (strncmp(p, "pci:", 4) == 0) {
 374		/* PCI vendor/device (subvendor/subdevice) IDs are specified */
 375		p += 4;
 376		ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
 377			     &subsystem_vendor, &subsystem_device, &count);
 378		if (ret != 4) {
 379			ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
 380			if (ret != 2)
 381				return -EINVAL;
 382
 383			subsystem_vendor = 0;
 384			subsystem_device = 0;
 385		}
 386
 387		p += count;
 388
 389		if ((!vendor || vendor == dev->vendor) &&
 390		    (!device || device == dev->device) &&
 391		    (!subsystem_vendor ||
 392			    subsystem_vendor == dev->subsystem_vendor) &&
 393		    (!subsystem_device ||
 394			    subsystem_device == dev->subsystem_device))
 395			goto found;
 396	} else {
 397		/*
 398		 * PCI Bus, Device, Function IDs are specified
 399		 * (optionally, may include a path of devfns following it)
 400		 */
 401		ret = pci_dev_str_match_path(dev, p, &p);
 402		if (ret < 0)
 403			return ret;
 404		else if (ret)
 405			goto found;
 406	}
 407
 408	*endptr = p;
 409	return 0;
 410
 411found:
 412	*endptr = p;
 413	return 1;
 414}
 415
 416static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
 417				  u8 pos, int cap, int *ttl)
 418{
 419	u8 id;
 420	u16 ent;
 421
 422	pci_bus_read_config_byte(bus, devfn, pos, &pos);
 423
 424	while ((*ttl)--) {
 425		if (pos < 0x40)
 426			break;
 427		pos &= ~3;
 428		pci_bus_read_config_word(bus, devfn, pos, &ent);
 429
 430		id = ent & 0xff;
 431		if (id == 0xff)
 432			break;
 433		if (id == cap)
 434			return pos;
 435		pos = (ent >> 8);
 436	}
 437	return 0;
 438}
 439
 440static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
 441			      u8 pos, int cap)
 442{
 443	int ttl = PCI_FIND_CAP_TTL;
 444
 445	return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
 446}
 447
 448u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
 449{
 450	return __pci_find_next_cap(dev->bus, dev->devfn,
 451				   pos + PCI_CAP_LIST_NEXT, cap);
 452}
 453EXPORT_SYMBOL_GPL(pci_find_next_capability);
 454
 455static u8 __pci_bus_find_cap_start(struct pci_bus *bus,
 456				    unsigned int devfn, u8 hdr_type)
 457{
 458	u16 status;
 459
 460	pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
 461	if (!(status & PCI_STATUS_CAP_LIST))
 462		return 0;
 463
 464	switch (hdr_type) {
 465	case PCI_HEADER_TYPE_NORMAL:
 466	case PCI_HEADER_TYPE_BRIDGE:
 467		return PCI_CAPABILITY_LIST;
 468	case PCI_HEADER_TYPE_CARDBUS:
 469		return PCI_CB_CAPABILITY_LIST;
 470	}
 471
 472	return 0;
 473}
 474
 475/**
 476 * pci_find_capability - query for devices' capabilities
 477 * @dev: PCI device to query
 478 * @cap: capability code
 479 *
 480 * Tell if a device supports a given PCI capability.
 481 * Returns the address of the requested capability structure within the
 482 * device's PCI configuration space or 0 in case the device does not
 483 * support it.  Possible values for @cap include:
 484 *
 485 *  %PCI_CAP_ID_PM           Power Management
 486 *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
 487 *  %PCI_CAP_ID_VPD          Vital Product Data
 488 *  %PCI_CAP_ID_SLOTID       Slot Identification
 489 *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
 490 *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
 491 *  %PCI_CAP_ID_PCIX         PCI-X
 492 *  %PCI_CAP_ID_EXP          PCI Express
 493 */
 494u8 pci_find_capability(struct pci_dev *dev, int cap)
 495{
 496	u8 pos;
 497
 498	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
 499	if (pos)
 500		pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
 501
 502	return pos;
 503}
 504EXPORT_SYMBOL(pci_find_capability);
 505
 506/**
 507 * pci_bus_find_capability - query for devices' capabilities
 508 * @bus: the PCI bus to query
 509 * @devfn: PCI device to query
 510 * @cap: capability code
 511 *
 512 * Like pci_find_capability() but works for PCI devices that do not have a
 513 * pci_dev structure set up yet.
 514 *
 515 * Returns the address of the requested capability structure within the
 516 * device's PCI configuration space or 0 in case the device does not
 517 * support it.
 518 */
 519u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
 520{
 521	u8 hdr_type, pos;
 
 522
 523	pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
 524
 525	pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
 526	if (pos)
 527		pos = __pci_find_next_cap(bus, devfn, pos, cap);
 528
 529	return pos;
 530}
 531EXPORT_SYMBOL(pci_bus_find_capability);
 532
 533/**
 534 * pci_find_next_ext_capability - Find an extended capability
 535 * @dev: PCI device to query
 536 * @start: address at which to start looking (0 to start at beginning of list)
 537 * @cap: capability code
 538 *
 539 * Returns the address of the next matching extended capability structure
 540 * within the device's PCI configuration space or 0 if the device does
 541 * not support it.  Some capabilities can occur several times, e.g., the
 542 * vendor-specific capability, and this provides a way to find them all.
 543 */
 544u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap)
 545{
 546	u32 header;
 547	int ttl;
 548	u16 pos = PCI_CFG_SPACE_SIZE;
 549
 550	/* minimum 8 bytes per capability */
 551	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
 552
 553	if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
 554		return 0;
 555
 556	if (start)
 557		pos = start;
 558
 559	if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
 560		return 0;
 561
 562	/*
 563	 * If we have no capabilities, this is indicated by cap ID,
 564	 * cap version and next pointer all being 0.
 565	 */
 566	if (header == 0)
 567		return 0;
 568
 569	while (ttl-- > 0) {
 570		if (PCI_EXT_CAP_ID(header) == cap && pos != start)
 571			return pos;
 572
 573		pos = PCI_EXT_CAP_NEXT(header);
 574		if (pos < PCI_CFG_SPACE_SIZE)
 575			break;
 576
 577		if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
 578			break;
 579	}
 580
 581	return 0;
 582}
 583EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
 584
 585/**
 586 * pci_find_ext_capability - Find an extended capability
 587 * @dev: PCI device to query
 588 * @cap: capability code
 589 *
 590 * Returns the address of the requested extended capability structure
 591 * within the device's PCI configuration space or 0 if the device does
 592 * not support it.  Possible values for @cap include:
 593 *
 594 *  %PCI_EXT_CAP_ID_ERR		Advanced Error Reporting
 595 *  %PCI_EXT_CAP_ID_VC		Virtual Channel
 596 *  %PCI_EXT_CAP_ID_DSN		Device Serial Number
 597 *  %PCI_EXT_CAP_ID_PWR		Power Budgeting
 598 */
 599u16 pci_find_ext_capability(struct pci_dev *dev, int cap)
 600{
 601	return pci_find_next_ext_capability(dev, 0, cap);
 602}
 603EXPORT_SYMBOL_GPL(pci_find_ext_capability);
 604
 605/**
 606 * pci_get_dsn - Read and return the 8-byte Device Serial Number
 607 * @dev: PCI device to query
 608 *
 609 * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial
 610 * Number.
 611 *
 612 * Returns the DSN, or zero if the capability does not exist.
 613 */
 614u64 pci_get_dsn(struct pci_dev *dev)
 615{
 616	u32 dword;
 617	u64 dsn;
 618	int pos;
 619
 620	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN);
 621	if (!pos)
 622		return 0;
 623
 624	/*
 625	 * The Device Serial Number is two dwords offset 4 bytes from the
 626	 * capability position. The specification says that the first dword is
 627	 * the lower half, and the second dword is the upper half.
 628	 */
 629	pos += 4;
 630	pci_read_config_dword(dev, pos, &dword);
 631	dsn = (u64)dword;
 632	pci_read_config_dword(dev, pos + 4, &dword);
 633	dsn |= ((u64)dword) << 32;
 634
 635	return dsn;
 636}
 637EXPORT_SYMBOL_GPL(pci_get_dsn);
 638
 639static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap)
 640{
 641	int rc, ttl = PCI_FIND_CAP_TTL;
 642	u8 cap, mask;
 643
 644	if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
 645		mask = HT_3BIT_CAP_MASK;
 646	else
 647		mask = HT_5BIT_CAP_MASK;
 648
 649	pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
 650				      PCI_CAP_ID_HT, &ttl);
 651	while (pos) {
 652		rc = pci_read_config_byte(dev, pos + 3, &cap);
 653		if (rc != PCIBIOS_SUCCESSFUL)
 654			return 0;
 655
 656		if ((cap & mask) == ht_cap)
 657			return pos;
 658
 659		pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
 660					      pos + PCI_CAP_LIST_NEXT,
 661					      PCI_CAP_ID_HT, &ttl);
 662	}
 663
 664	return 0;
 665}
 666
 667/**
 668 * pci_find_next_ht_capability - query a device's HyperTransport capabilities
 669 * @dev: PCI device to query
 670 * @pos: Position from which to continue searching
 671 * @ht_cap: HyperTransport capability code
 672 *
 673 * To be used in conjunction with pci_find_ht_capability() to search for
 674 * all capabilities matching @ht_cap. @pos should always be a value returned
 675 * from pci_find_ht_capability().
 676 *
 677 * NB. To be 100% safe against broken PCI devices, the caller should take
 678 * steps to avoid an infinite loop.
 679 */
 680u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap)
 681{
 682	return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
 683}
 684EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
 685
 686/**
 687 * pci_find_ht_capability - query a device's HyperTransport capabilities
 688 * @dev: PCI device to query
 689 * @ht_cap: HyperTransport capability code
 690 *
 691 * Tell if a device supports a given HyperTransport capability.
 692 * Returns an address within the device's PCI configuration space
 693 * or 0 in case the device does not support the request capability.
 694 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
 695 * which has a HyperTransport capability matching @ht_cap.
 696 */
 697u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
 698{
 699	u8 pos;
 700
 701	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
 702	if (pos)
 703		pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
 704
 705	return pos;
 706}
 707EXPORT_SYMBOL_GPL(pci_find_ht_capability);
 708
 709/**
 710 * pci_find_vsec_capability - Find a vendor-specific extended capability
 711 * @dev: PCI device to query
 712 * @vendor: Vendor ID for which capability is defined
 713 * @cap: Vendor-specific capability ID
 714 *
 715 * If @dev has Vendor ID @vendor, search for a VSEC capability with
 716 * VSEC ID @cap. If found, return the capability offset in
 717 * config space; otherwise return 0.
 718 */
 719u16 pci_find_vsec_capability(struct pci_dev *dev, u16 vendor, int cap)
 720{
 721	u16 vsec = 0;
 722	u32 header;
 723
 724	if (vendor != dev->vendor)
 725		return 0;
 726
 727	while ((vsec = pci_find_next_ext_capability(dev, vsec,
 728						     PCI_EXT_CAP_ID_VNDR))) {
 729		if (pci_read_config_dword(dev, vsec + PCI_VNDR_HEADER,
 730					  &header) == PCIBIOS_SUCCESSFUL &&
 731		    PCI_VNDR_HEADER_ID(header) == cap)
 732			return vsec;
 733	}
 734
 735	return 0;
 736}
 737EXPORT_SYMBOL_GPL(pci_find_vsec_capability);
 738
 739/**
 740 * pci_find_dvsec_capability - Find DVSEC for vendor
 741 * @dev: PCI device to query
 742 * @vendor: Vendor ID to match for the DVSEC
 743 * @dvsec: Designated Vendor-specific capability ID
 744 *
 745 * If DVSEC has Vendor ID @vendor and DVSEC ID @dvsec return the capability
 746 * offset in config space; otherwise return 0.
 747 */
 748u16 pci_find_dvsec_capability(struct pci_dev *dev, u16 vendor, u16 dvsec)
 749{
 750	int pos;
 751
 752	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DVSEC);
 753	if (!pos)
 754		return 0;
 755
 756	while (pos) {
 757		u16 v, id;
 758
 759		pci_read_config_word(dev, pos + PCI_DVSEC_HEADER1, &v);
 760		pci_read_config_word(dev, pos + PCI_DVSEC_HEADER2, &id);
 761		if (vendor == v && dvsec == id)
 762			return pos;
 763
 764		pos = pci_find_next_ext_capability(dev, pos, PCI_EXT_CAP_ID_DVSEC);
 765	}
 766
 767	return 0;
 768}
 769EXPORT_SYMBOL_GPL(pci_find_dvsec_capability);
 770
 771/**
 772 * pci_find_parent_resource - return resource region of parent bus of given
 773 *			      region
 774 * @dev: PCI device structure contains resources to be searched
 775 * @res: child resource record for which parent is sought
 776 *
 777 * For given resource region of given device, return the resource region of
 778 * parent bus the given region is contained in.
 779 */
 780struct resource *pci_find_parent_resource(const struct pci_dev *dev,
 781					  struct resource *res)
 782{
 783	const struct pci_bus *bus = dev->bus;
 784	struct resource *r;
 785	int i;
 786
 787	pci_bus_for_each_resource(bus, r, i) {
 788		if (!r)
 789			continue;
 790		if (resource_contains(r, res)) {
 791
 792			/*
 793			 * If the window is prefetchable but the BAR is
 794			 * not, the allocator made a mistake.
 795			 */
 796			if (r->flags & IORESOURCE_PREFETCH &&
 797			    !(res->flags & IORESOURCE_PREFETCH))
 798				return NULL;
 799
 800			/*
 801			 * If we're below a transparent bridge, there may
 802			 * be both a positively-decoded aperture and a
 803			 * subtractively-decoded region that contain the BAR.
 804			 * We want the positively-decoded one, so this depends
 805			 * on pci_bus_for_each_resource() giving us those
 806			 * first.
 807			 */
 808			return r;
 809		}
 810	}
 811	return NULL;
 812}
 813EXPORT_SYMBOL(pci_find_parent_resource);
 814
 815/**
 816 * pci_find_resource - Return matching PCI device resource
 817 * @dev: PCI device to query
 818 * @res: Resource to look for
 819 *
 820 * Goes over standard PCI resources (BARs) and checks if the given resource
 821 * is partially or fully contained in any of them. In that case the
 822 * matching resource is returned, %NULL otherwise.
 823 */
 824struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
 825{
 826	int i;
 827
 828	for (i = 0; i < PCI_STD_NUM_BARS; i++) {
 829		struct resource *r = &dev->resource[i];
 830
 831		if (r->start && resource_contains(r, res))
 832			return r;
 833	}
 834
 835	return NULL;
 836}
 837EXPORT_SYMBOL(pci_find_resource);
 838
 839/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 840 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
 841 * @dev: the PCI device to operate on
 842 * @pos: config space offset of status word
 843 * @mask: mask of bit(s) to care about in status word
 844 *
 845 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
 846 */
 847int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
 848{
 849	int i;
 850
 851	/* Wait for Transaction Pending bit clean */
 852	for (i = 0; i < 4; i++) {
 853		u16 status;
 854		if (i)
 855			msleep((1 << (i - 1)) * 100);
 856
 857		pci_read_config_word(dev, pos, &status);
 858		if (!(status & mask))
 859			return 1;
 860	}
 861
 862	return 0;
 863}
 864
 865static int pci_acs_enable;
 866
 867/**
 868 * pci_request_acs - ask for ACS to be enabled if supported
 869 */
 870void pci_request_acs(void)
 871{
 872	pci_acs_enable = 1;
 873}
 874
 875static const char *disable_acs_redir_param;
 876
 877/**
 878 * pci_disable_acs_redir - disable ACS redirect capabilities
 879 * @dev: the PCI device
 880 *
 881 * For only devices specified in the disable_acs_redir parameter.
 882 */
 883static void pci_disable_acs_redir(struct pci_dev *dev)
 884{
 885	int ret = 0;
 886	const char *p;
 887	int pos;
 888	u16 ctrl;
 889
 890	if (!disable_acs_redir_param)
 891		return;
 892
 893	p = disable_acs_redir_param;
 894	while (*p) {
 895		ret = pci_dev_str_match(dev, p, &p);
 896		if (ret < 0) {
 897			pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
 898				     disable_acs_redir_param);
 899
 900			break;
 901		} else if (ret == 1) {
 902			/* Found a match */
 903			break;
 904		}
 905
 906		if (*p != ';' && *p != ',') {
 907			/* End of param or invalid format */
 908			break;
 909		}
 910		p++;
 911	}
 912
 913	if (ret != 1)
 914		return;
 915
 916	if (!pci_dev_specific_disable_acs_redir(dev))
 917		return;
 918
 919	pos = dev->acs_cap;
 920	if (!pos) {
 921		pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
 922		return;
 923	}
 924
 925	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
 926
 927	/* P2P Request & Completion Redirect */
 928	ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC);
 929
 930	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
 931
 932	pci_info(dev, "disabled ACS redirect\n");
 933}
 934
 935/**
 936 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
 937 * @dev: the PCI device
 938 */
 939static void pci_std_enable_acs(struct pci_dev *dev)
 940{
 941	int pos;
 942	u16 cap;
 943	u16 ctrl;
 944
 945	pos = dev->acs_cap;
 946	if (!pos)
 947		return;
 948
 949	pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
 950	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
 951
 952	/* Source Validation */
 953	ctrl |= (cap & PCI_ACS_SV);
 954
 955	/* P2P Request Redirect */
 956	ctrl |= (cap & PCI_ACS_RR);
 957
 958	/* P2P Completion Redirect */
 959	ctrl |= (cap & PCI_ACS_CR);
 960
 961	/* Upstream Forwarding */
 962	ctrl |= (cap & PCI_ACS_UF);
 963
 964	/* Enable Translation Blocking for external devices and noats */
 965	if (pci_ats_disabled() || dev->external_facing || dev->untrusted)
 966		ctrl |= (cap & PCI_ACS_TB);
 967
 968	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
 969}
 970
 971/**
 972 * pci_enable_acs - enable ACS if hardware support it
 973 * @dev: the PCI device
 974 */
 975static void pci_enable_acs(struct pci_dev *dev)
 976{
 977	if (!pci_acs_enable)
 978		goto disable_acs_redir;
 979
 980	if (!pci_dev_specific_enable_acs(dev))
 981		goto disable_acs_redir;
 982
 983	pci_std_enable_acs(dev);
 984
 985disable_acs_redir:
 986	/*
 987	 * Note: pci_disable_acs_redir() must be called even if ACS was not
 988	 * enabled by the kernel because it may have been enabled by
 989	 * platform firmware.  So if we are told to disable it, we should
 990	 * always disable it after setting the kernel's default
 991	 * preferences.
 992	 */
 993	pci_disable_acs_redir(dev);
 994}
 995
 996/**
 997 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
 998 * @dev: PCI device to have its BARs restored
 999 *
1000 * Restore the BAR values for a given device, so as to make it
1001 * accessible by its driver.
1002 */
1003static void pci_restore_bars(struct pci_dev *dev)
1004{
1005	int i;
1006
1007	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
1008		pci_update_resource(dev, i);
1009}
1010
1011static inline bool platform_pci_power_manageable(struct pci_dev *dev)
 
 
1012{
1013	if (pci_use_mid_pm())
1014		return true;
 
 
 
 
1015
1016	return acpi_pci_power_manageable(dev);
 
 
1017}
1018
1019static inline int platform_pci_set_power_state(struct pci_dev *dev,
1020					       pci_power_t t)
1021{
1022	if (pci_use_mid_pm())
1023		return mid_pci_set_power_state(dev, t);
1024
1025	return acpi_pci_set_power_state(dev, t);
1026}
1027
1028static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
1029{
1030	if (pci_use_mid_pm())
1031		return mid_pci_get_power_state(dev);
1032
1033	return acpi_pci_get_power_state(dev);
1034}
1035
1036static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
1037{
1038	if (!pci_use_mid_pm())
1039		acpi_pci_refresh_power_state(dev);
1040}
1041
1042static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
1043{
1044	if (pci_use_mid_pm())
1045		return PCI_POWER_ERROR;
1046
1047	return acpi_pci_choose_state(dev);
1048}
1049
1050static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
1051{
1052	if (pci_use_mid_pm())
1053		return PCI_POWER_ERROR;
1054
1055	return acpi_pci_wakeup(dev, enable);
1056}
1057
1058static inline bool platform_pci_need_resume(struct pci_dev *dev)
1059{
1060	if (pci_use_mid_pm())
1061		return false;
1062
1063	return acpi_pci_need_resume(dev);
1064}
1065
1066static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
 
 
 
 
 
 
 
 
 
 
 
 
 
1067{
1068	if (pci_use_mid_pm())
1069		return false;
1070
1071	return acpi_pci_bridge_d3(dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1072}
1073
1074/**
1075 * pci_update_current_state - Read power state of given device and cache it
1076 * @dev: PCI device to handle.
1077 * @state: State to cache in case the device doesn't have the PM capability
1078 *
1079 * The power state is read from the PMCSR register, which however is
1080 * inaccessible in D3cold.  The platform firmware is therefore queried first
1081 * to detect accessibility of the register.  In case the platform firmware
1082 * reports an incorrect state or the device isn't power manageable by the
1083 * platform at all, we try to detect D3cold by testing accessibility of the
1084 * vendor ID in config space.
1085 */
1086void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
1087{
1088	if (platform_pci_get_power_state(dev) == PCI_D3cold) {
 
1089		dev->current_state = PCI_D3cold;
1090	} else if (dev->pm_cap) {
1091		u16 pmcsr;
1092
1093		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1094		if (PCI_POSSIBLE_ERROR(pmcsr)) {
1095			dev->current_state = PCI_D3cold;
1096			return;
1097		}
1098		dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1099	} else {
1100		dev->current_state = state;
1101	}
1102}
1103
1104/**
1105 * pci_refresh_power_state - Refresh the given device's power state data
1106 * @dev: Target PCI device.
1107 *
1108 * Ask the platform to refresh the devices power state information and invoke
1109 * pci_update_current_state() to update its current PCI power state.
1110 */
1111void pci_refresh_power_state(struct pci_dev *dev)
1112{
1113	platform_pci_refresh_power_state(dev);
1114	pci_update_current_state(dev, dev->current_state);
 
 
 
1115}
1116
1117/**
1118 * pci_platform_power_transition - Use platform to change device power state
1119 * @dev: PCI device to handle.
1120 * @state: State to put the device into.
1121 */
1122int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
1123{
1124	int error;
1125
1126	error = platform_pci_set_power_state(dev, state);
1127	if (!error)
1128		pci_update_current_state(dev, state);
1129	else if (!dev->pm_cap) /* Fall back to PCI_D0 */
 
 
 
 
1130		dev->current_state = PCI_D0;
1131
1132	return error;
1133}
1134EXPORT_SYMBOL_GPL(pci_platform_power_transition);
1135
1136static int pci_resume_one(struct pci_dev *pci_dev, void *ign)
 
 
 
 
 
1137{
 
1138	pm_request_resume(&pci_dev->dev);
1139	return 0;
1140}
1141
1142/**
1143 * pci_resume_bus - Walk given bus and runtime resume devices on it
1144 * @bus: Top bus of the subtree to walk.
1145 */
1146void pci_resume_bus(struct pci_bus *bus)
1147{
1148	if (bus)
1149		pci_walk_bus(bus, pci_resume_one, NULL);
1150}
1151
1152static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
1153{
1154	int delay = 1;
1155	u32 id;
1156
1157	/*
1158	 * After reset, the device should not silently discard config
1159	 * requests, but it may still indicate that it needs more time by
1160	 * responding to them with CRS completions.  The Root Port will
1161	 * generally synthesize ~0 (PCI_ERROR_RESPONSE) data to complete
1162	 * the read (except when CRS SV is enabled and the read was for the
1163	 * Vendor ID; in that case it synthesizes 0x0001 data).
1164	 *
1165	 * Wait for the device to return a non-CRS completion.  Read the
1166	 * Command register instead of Vendor ID so we don't have to
1167	 * contend with the CRS SV value.
1168	 */
1169	pci_read_config_dword(dev, PCI_COMMAND, &id);
1170	while (PCI_POSSIBLE_ERROR(id)) {
1171		if (delay > timeout) {
1172			pci_warn(dev, "not ready %dms after %s; giving up\n",
1173				 delay - 1, reset_type);
1174			return -ENOTTY;
1175		}
1176
1177		if (delay > 1000)
1178			pci_info(dev, "not ready %dms after %s; waiting\n",
1179				 delay - 1, reset_type);
1180
1181		msleep(delay);
1182		delay *= 2;
1183		pci_read_config_dword(dev, PCI_COMMAND, &id);
1184	}
1185
1186	if (delay > 1000)
1187		pci_info(dev, "ready %dms after %s\n", delay - 1,
1188			 reset_type);
1189
1190	return 0;
1191}
1192
1193/**
1194 * pci_power_up - Put the given device into D0
1195 * @dev: PCI device to power up
1196 *
1197 * On success, return 0 or 1, depending on whether or not it is necessary to
1198 * restore the device's BARs subsequently (1 is returned in that case).
1199 */
1200int pci_power_up(struct pci_dev *dev)
1201{
1202	bool need_restore;
1203	pci_power_t state;
1204	u16 pmcsr;
1205
1206	platform_pci_set_power_state(dev, PCI_D0);
1207
1208	if (!dev->pm_cap) {
1209		state = platform_pci_get_power_state(dev);
1210		if (state == PCI_UNKNOWN)
1211			dev->current_state = PCI_D0;
1212		else
1213			dev->current_state = state;
1214
1215		if (state == PCI_D0)
1216			return 0;
1217
1218		return -EIO;
1219	}
1220
1221	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1222	if (PCI_POSSIBLE_ERROR(pmcsr)) {
1223		pci_err(dev, "Unable to change power state from %s to D0, device inaccessible\n",
1224			pci_power_name(dev->current_state));
1225		dev->current_state = PCI_D3cold;
1226		return -EIO;
1227	}
1228
1229	state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1230
1231	need_restore = (state == PCI_D3hot || dev->current_state >= PCI_D3hot) &&
1232			!(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET);
1233
1234	if (state == PCI_D0)
1235		goto end;
1236
1237	/*
1238	 * Force the entire word to 0. This doesn't affect PME_Status, disables
1239	 * PME_En, and sets PowerState to 0.
1240	 */
1241	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, 0);
1242
1243	/* Mandatory transition delays; see PCI PM 1.2. */
1244	if (state == PCI_D3hot)
1245		pci_dev_d3_sleep(dev);
1246	else if (state == PCI_D2)
1247		udelay(PCI_PM_D2_DELAY);
1248
1249end:
1250	dev->current_state = PCI_D0;
1251	if (need_restore)
1252		return 1;
1253
1254	return 0;
1255}
1256
1257/**
1258 * pci_set_full_power_state - Put a PCI device into D0 and update its state
1259 * @dev: PCI device to power up
1260 *
1261 * Call pci_power_up() to put @dev into D0, read from its PCI_PM_CTRL register
1262 * to confirm the state change, restore its BARs if they might be lost and
1263 * reconfigure ASPM in acordance with the new power state.
1264 *
1265 * If pci_restore_state() is going to be called right after a power state change
1266 * to D0, it is more efficient to use pci_power_up() directly instead of this
1267 * function.
1268 */
1269static int pci_set_full_power_state(struct pci_dev *dev)
1270{
1271	u16 pmcsr;
1272	int ret;
1273
1274	ret = pci_power_up(dev);
1275	if (ret < 0)
1276		return ret;
1277
1278	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1279	dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1280	if (dev->current_state != PCI_D0) {
1281		pci_info_ratelimited(dev, "Refused to change power state from %s to D0\n",
1282				     pci_power_name(dev->current_state));
1283	} else if (ret > 0) {
1284		/*
1285		 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
1286		 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
1287		 * from D3hot to D0 _may_ perform an internal reset, thereby
1288		 * going to "D0 Uninitialized" rather than "D0 Initialized".
1289		 * For example, at least some versions of the 3c905B and the
1290		 * 3c556B exhibit this behaviour.
1291		 *
1292		 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
1293		 * devices in a D3hot state at boot.  Consequently, we need to
1294		 * restore at least the BARs so that the device will be
1295		 * accessible to its driver.
1296		 */
1297		pci_restore_bars(dev);
 
 
 
 
 
 
 
 
 
 
1298	}
1299
1300	return 0;
1301}
1302
1303/**
1304 * __pci_dev_set_current_state - Set current state of a PCI device
1305 * @dev: Device to handle
1306 * @data: pointer to state to be set
1307 */
1308static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1309{
1310	pci_power_t state = *(pci_power_t *)data;
1311
1312	dev->current_state = state;
1313	return 0;
1314}
1315
1316/**
1317 * pci_bus_set_current_state - Walk given bus and set current state of devices
1318 * @bus: Top bus of the subtree to walk.
1319 * @state: state to be set
1320 */
1321void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1322{
1323	if (bus)
1324		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1325}
1326
1327/**
1328 * pci_set_low_power_state - Put a PCI device into a low-power state.
1329 * @dev: PCI device to handle.
1330 * @state: PCI power state (D1, D2, D3hot) to put the device into.
1331 *
1332 * Use the device's PCI_PM_CTRL register to put it into a low-power state.
1333 *
1334 * RETURN VALUE:
1335 * -EINVAL if the requested state is invalid.
1336 * -EIO if device does not support PCI PM or its PM capabilities register has a
1337 * wrong version, or device doesn't support the requested state.
1338 * 0 if device already is in the requested state.
1339 * 0 if device's power state has been successfully changed.
1340 */
1341static int pci_set_low_power_state(struct pci_dev *dev, pci_power_t state)
1342{
1343	u16 pmcsr;
1344
1345	if (!dev->pm_cap)
1346		return -EIO;
1347
1348	/*
1349	 * Validate transition: We can enter D0 from any state, but if
1350	 * we're already in a low-power state, we can only go deeper.  E.g.,
1351	 * we can go from D1 to D3, but we can't go directly from D3 to D1;
1352	 * we'd have to go from D3 to D0, then to D1.
1353	 */
1354	if (dev->current_state <= PCI_D3cold && dev->current_state > state) {
1355		pci_dbg(dev, "Invalid power transition (from %s to %s)\n",
1356			pci_power_name(dev->current_state),
1357			pci_power_name(state));
1358		return -EINVAL;
1359	}
1360
1361	/* Check if this device supports the desired state */
1362	if ((state == PCI_D1 && !dev->d1_support)
1363	   || (state == PCI_D2 && !dev->d2_support))
1364		return -EIO;
1365
1366	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1367	if (PCI_POSSIBLE_ERROR(pmcsr)) {
1368		pci_err(dev, "Unable to change power state from %s to %s, device inaccessible\n",
1369			pci_power_name(dev->current_state),
1370			pci_power_name(state));
1371		dev->current_state = PCI_D3cold;
1372		return -EIO;
1373	}
1374
1375	pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
1376	pmcsr |= state;
1377
1378	/* Enter specified state */
1379	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1380
1381	/* Mandatory power management transition delays; see PCI PM 1.2. */
1382	if (state == PCI_D3hot)
1383		pci_dev_d3_sleep(dev);
1384	else if (state == PCI_D2)
1385		udelay(PCI_PM_D2_DELAY);
1386
1387	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1388	dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1389	if (dev->current_state != state)
1390		pci_info_ratelimited(dev, "Refused to change power state from %s to %s\n",
1391				     pci_power_name(dev->current_state),
1392				     pci_power_name(state));
1393
1394	return 0;
1395}
 
1396
1397/**
1398 * pci_set_power_state - Set the power state of a PCI device
1399 * @dev: PCI device to handle.
1400 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1401 *
1402 * Transition a device to a new power state, using the platform firmware and/or
1403 * the device's PCI PM registers.
1404 *
1405 * RETURN VALUE:
1406 * -EINVAL if the requested state is invalid.
1407 * -EIO if device does not support PCI PM or its PM capabilities register has a
1408 * wrong version, or device doesn't support the requested state.
1409 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1410 * 0 if device already is in the requested state.
1411 * 0 if the transition is to D3 but D3 is not supported.
1412 * 0 if device's power state has been successfully changed.
1413 */
1414int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1415{
1416	int error;
1417
1418	/* Bound the state we're entering */
1419	if (state > PCI_D3cold)
1420		state = PCI_D3cold;
1421	else if (state < PCI_D0)
1422		state = PCI_D0;
1423	else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1424
1425		/*
1426		 * If the device or the parent bridge do not support PCI
1427		 * PM, ignore the request if we're doing anything other
1428		 * than putting it into D0 (which would only happen on
1429		 * boot).
1430		 */
1431		return 0;
1432
1433	/* Check if we're already there */
1434	if (dev->current_state == state)
1435		return 0;
1436
1437	if (state == PCI_D0)
1438		return pci_set_full_power_state(dev);
1439
1440	/*
1441	 * This device is quirked not to be put into D3, so don't put it in
1442	 * D3
1443	 */
1444	if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1445		return 0;
1446
1447	if (state == PCI_D3cold) {
1448		/*
1449		 * To put the device in D3cold, put it into D3hot in the native
1450		 * way, then put it into D3cold using platform ops.
1451		 */
1452		error = pci_set_low_power_state(dev, PCI_D3hot);
1453
1454		if (pci_platform_power_transition(dev, PCI_D3cold))
1455			return error;
1456
1457		/* Powering off a bridge may power off the whole hierarchy */
1458		if (dev->current_state == PCI_D3cold)
1459			pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
1460	} else {
1461		error = pci_set_low_power_state(dev, state);
1462
1463		if (pci_platform_power_transition(dev, state))
1464			return error;
1465	}
 
 
 
 
 
 
1466
1467	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1468}
1469EXPORT_SYMBOL(pci_set_power_state);
1470
1471#define PCI_EXP_SAVE_REGS	7
1472
1473static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1474						       u16 cap, bool extended)
1475{
1476	struct pci_cap_saved_state *tmp;
1477
1478	hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1479		if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1480			return tmp;
1481	}
1482	return NULL;
1483}
1484
1485struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1486{
1487	return _pci_find_saved_cap(dev, cap, false);
1488}
1489
1490struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1491{
1492	return _pci_find_saved_cap(dev, cap, true);
1493}
1494
1495static int pci_save_pcie_state(struct pci_dev *dev)
1496{
1497	int i = 0;
1498	struct pci_cap_saved_state *save_state;
1499	u16 *cap;
1500
1501	if (!pci_is_pcie(dev))
1502		return 0;
1503
1504	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1505	if (!save_state) {
1506		pci_err(dev, "buffer not found in %s\n", __func__);
1507		return -ENOMEM;
1508	}
1509
1510	cap = (u16 *)&save_state->cap.data[0];
1511	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1512	pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1513	pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1514	pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
1515	pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1516	pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1517	pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1518
1519	return 0;
1520}
1521
1522void pci_bridge_reconfigure_ltr(struct pci_dev *dev)
1523{
1524#ifdef CONFIG_PCIEASPM
1525	struct pci_dev *bridge;
1526	u32 ctl;
1527
1528	bridge = pci_upstream_bridge(dev);
1529	if (bridge && bridge->ltr_path) {
1530		pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2, &ctl);
1531		if (!(ctl & PCI_EXP_DEVCTL2_LTR_EN)) {
1532			pci_dbg(bridge, "re-enabling LTR\n");
1533			pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
1534						 PCI_EXP_DEVCTL2_LTR_EN);
1535		}
1536	}
1537#endif
1538}
1539
1540static void pci_restore_pcie_state(struct pci_dev *dev)
1541{
1542	int i = 0;
1543	struct pci_cap_saved_state *save_state;
1544	u16 *cap;
1545
1546	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1547	if (!save_state)
1548		return;
1549
1550	/*
1551	 * Downstream ports reset the LTR enable bit when link goes down.
1552	 * Check and re-configure the bit here before restoring device.
1553	 * PCIe r5.0, sec 7.5.3.16.
1554	 */
1555	pci_bridge_reconfigure_ltr(dev);
1556
1557	cap = (u16 *)&save_state->cap.data[0];
1558	pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1559	pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1560	pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1561	pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1562	pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1563	pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1564	pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1565}
1566
 
1567static int pci_save_pcix_state(struct pci_dev *dev)
1568{
1569	int pos;
1570	struct pci_cap_saved_state *save_state;
1571
1572	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1573	if (!pos)
1574		return 0;
1575
1576	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1577	if (!save_state) {
1578		pci_err(dev, "buffer not found in %s\n", __func__);
1579		return -ENOMEM;
1580	}
1581
1582	pci_read_config_word(dev, pos + PCI_X_CMD,
1583			     (u16 *)save_state->cap.data);
1584
1585	return 0;
1586}
1587
1588static void pci_restore_pcix_state(struct pci_dev *dev)
1589{
1590	int i = 0, pos;
1591	struct pci_cap_saved_state *save_state;
1592	u16 *cap;
1593
1594	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1595	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1596	if (!save_state || !pos)
1597		return;
1598	cap = (u16 *)&save_state->cap.data[0];
1599
1600	pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1601}
1602
1603static void pci_save_ltr_state(struct pci_dev *dev)
1604{
1605	int ltr;
1606	struct pci_cap_saved_state *save_state;
1607	u32 *cap;
1608
1609	if (!pci_is_pcie(dev))
1610		return;
1611
1612	ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1613	if (!ltr)
1614		return;
1615
1616	save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1617	if (!save_state) {
1618		pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n");
1619		return;
1620	}
1621
1622	/* Some broken devices only support dword access to LTR */
1623	cap = &save_state->cap.data[0];
1624	pci_read_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap);
1625}
1626
1627static void pci_restore_ltr_state(struct pci_dev *dev)
1628{
1629	struct pci_cap_saved_state *save_state;
1630	int ltr;
1631	u32 *cap;
1632
1633	save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1634	ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1635	if (!save_state || !ltr)
1636		return;
1637
1638	/* Some broken devices only support dword access to LTR */
1639	cap = &save_state->cap.data[0];
1640	pci_write_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap);
1641}
1642
1643/**
1644 * pci_save_state - save the PCI configuration space of a device before
1645 *		    suspending
1646 * @dev: PCI device that we're dealing with
1647 */
1648int pci_save_state(struct pci_dev *dev)
1649{
1650	int i;
1651	/* XXX: 100% dword access ok here? */
1652	for (i = 0; i < 16; i++) {
1653		pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1654		pci_dbg(dev, "saving config space at offset %#x (reading %#x)\n",
1655			i * 4, dev->saved_config_space[i]);
1656	}
1657	dev->state_saved = true;
1658
1659	i = pci_save_pcie_state(dev);
1660	if (i != 0)
1661		return i;
1662
1663	i = pci_save_pcix_state(dev);
1664	if (i != 0)
1665		return i;
1666
1667	pci_save_ltr_state(dev);
1668	pci_save_dpc_state(dev);
1669	pci_save_aer_state(dev);
1670	pci_save_ptm_state(dev);
1671	return pci_save_vc_state(dev);
1672}
1673EXPORT_SYMBOL(pci_save_state);
1674
1675static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1676				     u32 saved_val, int retry, bool force)
1677{
1678	u32 val;
1679
1680	pci_read_config_dword(pdev, offset, &val);
1681	if (!force && val == saved_val)
1682		return;
1683
1684	for (;;) {
1685		pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1686			offset, val, saved_val);
1687		pci_write_config_dword(pdev, offset, saved_val);
1688		if (retry-- <= 0)
1689			return;
1690
1691		pci_read_config_dword(pdev, offset, &val);
1692		if (val == saved_val)
1693			return;
1694
1695		mdelay(1);
1696	}
1697}
1698
1699static void pci_restore_config_space_range(struct pci_dev *pdev,
1700					   int start, int end, int retry,
1701					   bool force)
1702{
1703	int index;
1704
1705	for (index = end; index >= start; index--)
1706		pci_restore_config_dword(pdev, 4 * index,
1707					 pdev->saved_config_space[index],
1708					 retry, force);
1709}
1710
1711static void pci_restore_config_space(struct pci_dev *pdev)
1712{
1713	if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1714		pci_restore_config_space_range(pdev, 10, 15, 0, false);
1715		/* Restore BARs before the command register. */
1716		pci_restore_config_space_range(pdev, 4, 9, 10, false);
1717		pci_restore_config_space_range(pdev, 0, 3, 0, false);
1718	} else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1719		pci_restore_config_space_range(pdev, 12, 15, 0, false);
1720
1721		/*
1722		 * Force rewriting of prefetch registers to avoid S3 resume
1723		 * issues on Intel PCI bridges that occur when these
1724		 * registers are not explicitly written.
1725		 */
1726		pci_restore_config_space_range(pdev, 9, 11, 0, true);
1727		pci_restore_config_space_range(pdev, 0, 8, 0, false);
1728	} else {
1729		pci_restore_config_space_range(pdev, 0, 15, 0, false);
1730	}
1731}
1732
1733static void pci_restore_rebar_state(struct pci_dev *pdev)
1734{
1735	unsigned int pos, nbars, i;
1736	u32 ctrl;
1737
1738	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1739	if (!pos)
1740		return;
1741
1742	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1743	nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
1744		    PCI_REBAR_CTRL_NBAR_SHIFT;
1745
1746	for (i = 0; i < nbars; i++, pos += 8) {
1747		struct resource *res;
1748		int bar_idx, size;
1749
1750		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1751		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1752		res = pdev->resource + bar_idx;
1753		size = pci_rebar_bytes_to_size(resource_size(res));
1754		ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1755		ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
1756		pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1757	}
1758}
1759
1760/**
1761 * pci_restore_state - Restore the saved state of a PCI device
1762 * @dev: PCI device that we're dealing with
1763 */
1764void pci_restore_state(struct pci_dev *dev)
1765{
1766	if (!dev->state_saved)
1767		return;
1768
1769	/*
1770	 * Restore max latencies (in the LTR capability) before enabling
1771	 * LTR itself (in the PCIe capability).
1772	 */
1773	pci_restore_ltr_state(dev);
1774
1775	pci_restore_pcie_state(dev);
1776	pci_restore_pasid_state(dev);
1777	pci_restore_pri_state(dev);
1778	pci_restore_ats_state(dev);
1779	pci_restore_vc_state(dev);
1780	pci_restore_rebar_state(dev);
1781	pci_restore_dpc_state(dev);
1782	pci_restore_ptm_state(dev);
1783
1784	pci_aer_clear_status(dev);
1785	pci_restore_aer_state(dev);
1786
1787	pci_restore_config_space(dev);
1788
1789	pci_restore_pcix_state(dev);
1790	pci_restore_msi_state(dev);
1791
1792	/* Restore ACS and IOV configuration state */
1793	pci_enable_acs(dev);
1794	pci_restore_iov_state(dev);
1795
1796	dev->state_saved = false;
1797}
1798EXPORT_SYMBOL(pci_restore_state);
1799
1800struct pci_saved_state {
1801	u32 config_space[16];
1802	struct pci_cap_saved_data cap[];
1803};
1804
1805/**
1806 * pci_store_saved_state - Allocate and return an opaque struct containing
1807 *			   the device saved state.
1808 * @dev: PCI device that we're dealing with
1809 *
1810 * Return NULL if no state or error.
1811 */
1812struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1813{
1814	struct pci_saved_state *state;
1815	struct pci_cap_saved_state *tmp;
1816	struct pci_cap_saved_data *cap;
1817	size_t size;
1818
1819	if (!dev->state_saved)
1820		return NULL;
1821
1822	size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1823
1824	hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1825		size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1826
1827	state = kzalloc(size, GFP_KERNEL);
1828	if (!state)
1829		return NULL;
1830
1831	memcpy(state->config_space, dev->saved_config_space,
1832	       sizeof(state->config_space));
1833
1834	cap = state->cap;
1835	hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1836		size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1837		memcpy(cap, &tmp->cap, len);
1838		cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1839	}
1840	/* Empty cap_save terminates list */
1841
1842	return state;
1843}
1844EXPORT_SYMBOL_GPL(pci_store_saved_state);
1845
1846/**
1847 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1848 * @dev: PCI device that we're dealing with
1849 * @state: Saved state returned from pci_store_saved_state()
1850 */
1851int pci_load_saved_state(struct pci_dev *dev,
1852			 struct pci_saved_state *state)
1853{
1854	struct pci_cap_saved_data *cap;
1855
1856	dev->state_saved = false;
1857
1858	if (!state)
1859		return 0;
1860
1861	memcpy(dev->saved_config_space, state->config_space,
1862	       sizeof(state->config_space));
1863
1864	cap = state->cap;
1865	while (cap->size) {
1866		struct pci_cap_saved_state *tmp;
1867
1868		tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1869		if (!tmp || tmp->cap.size != cap->size)
1870			return -EINVAL;
1871
1872		memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1873		cap = (struct pci_cap_saved_data *)((u8 *)cap +
1874		       sizeof(struct pci_cap_saved_data) + cap->size);
1875	}
1876
1877	dev->state_saved = true;
1878	return 0;
1879}
1880EXPORT_SYMBOL_GPL(pci_load_saved_state);
1881
1882/**
1883 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1884 *				   and free the memory allocated for it.
1885 * @dev: PCI device that we're dealing with
1886 * @state: Pointer to saved state returned from pci_store_saved_state()
1887 */
1888int pci_load_and_free_saved_state(struct pci_dev *dev,
1889				  struct pci_saved_state **state)
1890{
1891	int ret = pci_load_saved_state(dev, *state);
1892	kfree(*state);
1893	*state = NULL;
1894	return ret;
1895}
1896EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1897
1898int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1899{
1900	return pci_enable_resources(dev, bars);
1901}
1902
1903static int do_pci_enable_device(struct pci_dev *dev, int bars)
1904{
1905	int err;
1906	struct pci_dev *bridge;
1907	u16 cmd;
1908	u8 pin;
1909
1910	err = pci_set_power_state(dev, PCI_D0);
1911	if (err < 0 && err != -EIO)
1912		return err;
1913
1914	bridge = pci_upstream_bridge(dev);
1915	if (bridge)
1916		pcie_aspm_powersave_config_link(bridge);
1917
1918	err = pcibios_enable_device(dev, bars);
1919	if (err < 0)
1920		return err;
1921	pci_fixup_device(pci_fixup_enable, dev);
1922
1923	if (dev->msi_enabled || dev->msix_enabled)
1924		return 0;
1925
1926	pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1927	if (pin) {
1928		pci_read_config_word(dev, PCI_COMMAND, &cmd);
1929		if (cmd & PCI_COMMAND_INTX_DISABLE)
1930			pci_write_config_word(dev, PCI_COMMAND,
1931					      cmd & ~PCI_COMMAND_INTX_DISABLE);
1932	}
1933
1934	return 0;
1935}
1936
1937/**
1938 * pci_reenable_device - Resume abandoned device
1939 * @dev: PCI device to be resumed
1940 *
1941 * NOTE: This function is a backend of pci_default_resume() and is not supposed
1942 * to be called by normal code, write proper resume handler and use it instead.
1943 */
1944int pci_reenable_device(struct pci_dev *dev)
1945{
1946	if (pci_is_enabled(dev))
1947		return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1948	return 0;
1949}
1950EXPORT_SYMBOL(pci_reenable_device);
1951
1952static void pci_enable_bridge(struct pci_dev *dev)
1953{
1954	struct pci_dev *bridge;
1955	int retval;
1956
1957	bridge = pci_upstream_bridge(dev);
1958	if (bridge)
1959		pci_enable_bridge(bridge);
1960
1961	if (pci_is_enabled(dev)) {
1962		if (!dev->is_busmaster)
1963			pci_set_master(dev);
1964		return;
1965	}
1966
1967	retval = pci_enable_device(dev);
1968	if (retval)
1969		pci_err(dev, "Error enabling bridge (%d), continuing\n",
1970			retval);
1971	pci_set_master(dev);
1972}
1973
1974static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1975{
1976	struct pci_dev *bridge;
1977	int err;
1978	int i, bars = 0;
1979
1980	/*
1981	 * Power state could be unknown at this point, either due to a fresh
1982	 * boot or a device removal call.  So get the current power state
1983	 * so that things like MSI message writing will behave as expected
1984	 * (e.g. if the device really is in D0 at enable time).
1985	 */
1986	pci_update_current_state(dev, dev->current_state);
 
 
 
 
1987
1988	if (atomic_inc_return(&dev->enable_cnt) > 1)
1989		return 0;		/* already enabled */
1990
1991	bridge = pci_upstream_bridge(dev);
1992	if (bridge)
1993		pci_enable_bridge(bridge);
1994
1995	/* only skip sriov related */
1996	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1997		if (dev->resource[i].flags & flags)
1998			bars |= (1 << i);
1999	for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
2000		if (dev->resource[i].flags & flags)
2001			bars |= (1 << i);
2002
2003	err = do_pci_enable_device(dev, bars);
2004	if (err < 0)
2005		atomic_dec(&dev->enable_cnt);
2006	return err;
2007}
2008
2009/**
2010 * pci_enable_device_io - Initialize a device for use with IO space
2011 * @dev: PCI device to be initialized
2012 *
2013 * Initialize device before it's used by a driver. Ask low-level code
2014 * to enable I/O resources. Wake up the device if it was suspended.
2015 * Beware, this function can fail.
2016 */
2017int pci_enable_device_io(struct pci_dev *dev)
2018{
2019	return pci_enable_device_flags(dev, IORESOURCE_IO);
2020}
2021EXPORT_SYMBOL(pci_enable_device_io);
2022
2023/**
2024 * pci_enable_device_mem - Initialize a device for use with Memory space
2025 * @dev: PCI device to be initialized
2026 *
2027 * Initialize device before it's used by a driver. Ask low-level code
2028 * to enable Memory resources. Wake up the device if it was suspended.
2029 * Beware, this function can fail.
2030 */
2031int pci_enable_device_mem(struct pci_dev *dev)
2032{
2033	return pci_enable_device_flags(dev, IORESOURCE_MEM);
2034}
2035EXPORT_SYMBOL(pci_enable_device_mem);
2036
2037/**
2038 * pci_enable_device - Initialize device before it's used by a driver.
2039 * @dev: PCI device to be initialized
2040 *
2041 * Initialize device before it's used by a driver. Ask low-level code
2042 * to enable I/O and memory. Wake up the device if it was suspended.
2043 * Beware, this function can fail.
2044 *
2045 * Note we don't actually enable the device many times if we call
2046 * this function repeatedly (we just increment the count).
2047 */
2048int pci_enable_device(struct pci_dev *dev)
2049{
2050	return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
2051}
2052EXPORT_SYMBOL(pci_enable_device);
2053
2054/*
2055 * Managed PCI resources.  This manages device on/off, INTx/MSI/MSI-X
2056 * on/off and BAR regions.  pci_dev itself records MSI/MSI-X status, so
2057 * there's no need to track it separately.  pci_devres is initialized
2058 * when a device is enabled using managed PCI device enable interface.
2059 */
2060struct pci_devres {
2061	unsigned int enabled:1;
2062	unsigned int pinned:1;
2063	unsigned int orig_intx:1;
2064	unsigned int restore_intx:1;
2065	unsigned int mwi:1;
2066	u32 region_mask;
2067};
2068
2069static void pcim_release(struct device *gendev, void *res)
2070{
2071	struct pci_dev *dev = to_pci_dev(gendev);
2072	struct pci_devres *this = res;
2073	int i;
2074
 
 
 
 
 
2075	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
2076		if (this->region_mask & (1 << i))
2077			pci_release_region(dev, i);
2078
2079	if (this->mwi)
2080		pci_clear_mwi(dev);
2081
2082	if (this->restore_intx)
2083		pci_intx(dev, this->orig_intx);
2084
2085	if (this->enabled && !this->pinned)
2086		pci_disable_device(dev);
2087}
2088
2089static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
2090{
2091	struct pci_devres *dr, *new_dr;
2092
2093	dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
2094	if (dr)
2095		return dr;
2096
2097	new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
2098	if (!new_dr)
2099		return NULL;
2100	return devres_get(&pdev->dev, new_dr, NULL, NULL);
2101}
2102
2103static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
2104{
2105	if (pci_is_managed(pdev))
2106		return devres_find(&pdev->dev, pcim_release, NULL, NULL);
2107	return NULL;
2108}
2109
2110/**
2111 * pcim_enable_device - Managed pci_enable_device()
2112 * @pdev: PCI device to be initialized
2113 *
2114 * Managed pci_enable_device().
2115 */
2116int pcim_enable_device(struct pci_dev *pdev)
2117{
2118	struct pci_devres *dr;
2119	int rc;
2120
2121	dr = get_pci_dr(pdev);
2122	if (unlikely(!dr))
2123		return -ENOMEM;
2124	if (dr->enabled)
2125		return 0;
2126
2127	rc = pci_enable_device(pdev);
2128	if (!rc) {
2129		pdev->is_managed = 1;
2130		dr->enabled = 1;
2131	}
2132	return rc;
2133}
2134EXPORT_SYMBOL(pcim_enable_device);
2135
2136/**
2137 * pcim_pin_device - Pin managed PCI device
2138 * @pdev: PCI device to pin
2139 *
2140 * Pin managed PCI device @pdev.  Pinned device won't be disabled on
2141 * driver detach.  @pdev must have been enabled with
2142 * pcim_enable_device().
2143 */
2144void pcim_pin_device(struct pci_dev *pdev)
2145{
2146	struct pci_devres *dr;
2147
2148	dr = find_pci_dr(pdev);
2149	WARN_ON(!dr || !dr->enabled);
2150	if (dr)
2151		dr->pinned = 1;
2152}
2153EXPORT_SYMBOL(pcim_pin_device);
2154
2155/*
2156 * pcibios_device_add - provide arch specific hooks when adding device dev
2157 * @dev: the PCI device being added
2158 *
2159 * Permits the platform to provide architecture specific functionality when
2160 * devices are added. This is the default implementation. Architecture
2161 * implementations can override this.
2162 */
2163int __weak pcibios_device_add(struct pci_dev *dev)
2164{
2165	return 0;
2166}
2167
2168/**
2169 * pcibios_release_device - provide arch specific hooks when releasing
2170 *			    device dev
2171 * @dev: the PCI device being released
2172 *
2173 * Permits the platform to provide architecture specific functionality when
2174 * devices are released. This is the default implementation. Architecture
2175 * implementations can override this.
2176 */
2177void __weak pcibios_release_device(struct pci_dev *dev) {}
2178
2179/**
2180 * pcibios_disable_device - disable arch specific PCI resources for device dev
2181 * @dev: the PCI device to disable
2182 *
2183 * Disables architecture specific PCI resources for the device. This
2184 * is the default implementation. Architecture implementations can
2185 * override this.
2186 */
2187void __weak pcibios_disable_device(struct pci_dev *dev) {}
2188
2189/**
2190 * pcibios_penalize_isa_irq - penalize an ISA IRQ
2191 * @irq: ISA IRQ to penalize
2192 * @active: IRQ active or not
2193 *
2194 * Permits the platform to provide architecture-specific functionality when
2195 * penalizing ISA IRQs. This is the default implementation. Architecture
2196 * implementations can override this.
2197 */
2198void __weak pcibios_penalize_isa_irq(int irq, int active) {}
2199
2200static void do_pci_disable_device(struct pci_dev *dev)
2201{
2202	u16 pci_command;
2203
2204	pci_read_config_word(dev, PCI_COMMAND, &pci_command);
2205	if (pci_command & PCI_COMMAND_MASTER) {
2206		pci_command &= ~PCI_COMMAND_MASTER;
2207		pci_write_config_word(dev, PCI_COMMAND, pci_command);
2208	}
2209
2210	pcibios_disable_device(dev);
2211}
2212
2213/**
2214 * pci_disable_enabled_device - Disable device without updating enable_cnt
2215 * @dev: PCI device to disable
2216 *
2217 * NOTE: This function is a backend of PCI power management routines and is
2218 * not supposed to be called drivers.
2219 */
2220void pci_disable_enabled_device(struct pci_dev *dev)
2221{
2222	if (pci_is_enabled(dev))
2223		do_pci_disable_device(dev);
2224}
2225
2226/**
2227 * pci_disable_device - Disable PCI device after use
2228 * @dev: PCI device to be disabled
2229 *
2230 * Signal to the system that the PCI device is not in use by the system
2231 * anymore.  This only involves disabling PCI bus-mastering, if active.
2232 *
2233 * Note we don't actually disable the device until all callers of
2234 * pci_enable_device() have called pci_disable_device().
2235 */
2236void pci_disable_device(struct pci_dev *dev)
2237{
2238	struct pci_devres *dr;
2239
2240	dr = find_pci_dr(dev);
2241	if (dr)
2242		dr->enabled = 0;
2243
2244	dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
2245		      "disabling already-disabled device");
2246
2247	if (atomic_dec_return(&dev->enable_cnt) != 0)
2248		return;
2249
2250	do_pci_disable_device(dev);
2251
2252	dev->is_busmaster = 0;
2253}
2254EXPORT_SYMBOL(pci_disable_device);
2255
2256/**
2257 * pcibios_set_pcie_reset_state - set reset state for device dev
2258 * @dev: the PCIe device reset
2259 * @state: Reset state to enter into
2260 *
2261 * Set the PCIe reset state for the device. This is the default
 
2262 * implementation. Architecture implementations can override this.
2263 */
2264int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
2265					enum pcie_reset_state state)
2266{
2267	return -EINVAL;
2268}
2269
2270/**
2271 * pci_set_pcie_reset_state - set reset state for device dev
2272 * @dev: the PCIe device reset
2273 * @state: Reset state to enter into
2274 *
 
2275 * Sets the PCI reset state for the device.
2276 */
2277int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
2278{
2279	return pcibios_set_pcie_reset_state(dev, state);
2280}
2281EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2282
2283#ifdef CONFIG_PCIEAER
2284void pcie_clear_device_status(struct pci_dev *dev)
2285{
2286	u16 sta;
2287
2288	pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta);
2289	pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta);
2290}
2291#endif
2292
2293/**
2294 * pcie_clear_root_pme_status - Clear root port PME interrupt status.
2295 * @dev: PCIe root port or event collector.
2296 */
2297void pcie_clear_root_pme_status(struct pci_dev *dev)
2298{
2299	pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
2300}
2301
2302/**
2303 * pci_check_pme_status - Check if given device has generated PME.
2304 * @dev: Device to check.
2305 *
2306 * Check the PME status of the device and if set, clear it and clear PME enable
2307 * (if set).  Return 'true' if PME status and PME enable were both set or
2308 * 'false' otherwise.
2309 */
2310bool pci_check_pme_status(struct pci_dev *dev)
2311{
2312	int pmcsr_pos;
2313	u16 pmcsr;
2314	bool ret = false;
2315
2316	if (!dev->pm_cap)
2317		return false;
2318
2319	pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2320	pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2321	if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2322		return false;
2323
2324	/* Clear PME status. */
2325	pmcsr |= PCI_PM_CTRL_PME_STATUS;
2326	if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2327		/* Disable PME to avoid interrupt flood. */
2328		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2329		ret = true;
2330	}
2331
2332	pci_write_config_word(dev, pmcsr_pos, pmcsr);
2333
2334	return ret;
2335}
2336
2337/**
2338 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2339 * @dev: Device to handle.
2340 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2341 *
2342 * Check if @dev has generated PME and queue a resume request for it in that
2343 * case.
2344 */
2345static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2346{
2347	if (pme_poll_reset && dev->pme_poll)
2348		dev->pme_poll = false;
2349
2350	if (pci_check_pme_status(dev)) {
2351		pci_wakeup_event(dev);
2352		pm_request_resume(&dev->dev);
2353	}
2354	return 0;
2355}
2356
2357/**
2358 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2359 * @bus: Top bus of the subtree to walk.
2360 */
2361void pci_pme_wakeup_bus(struct pci_bus *bus)
2362{
2363	if (bus)
2364		pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2365}
2366
2367
2368/**
2369 * pci_pme_capable - check the capability of PCI device to generate PME#
2370 * @dev: PCI device to handle.
2371 * @state: PCI state from which device will issue PME#.
2372 */
2373bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2374{
2375	if (!dev->pm_cap)
2376		return false;
2377
2378	return !!(dev->pme_support & (1 << state));
2379}
2380EXPORT_SYMBOL(pci_pme_capable);
2381
2382static void pci_pme_list_scan(struct work_struct *work)
2383{
2384	struct pci_pme_device *pme_dev, *n;
2385
2386	mutex_lock(&pci_pme_list_mutex);
2387	list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2388		if (pme_dev->dev->pme_poll) {
2389			struct pci_dev *bridge;
2390
2391			bridge = pme_dev->dev->bus->self;
2392			/*
2393			 * If bridge is in low power state, the
2394			 * configuration space of subordinate devices
2395			 * may be not accessible
2396			 */
2397			if (bridge && bridge->current_state != PCI_D0)
2398				continue;
2399			/*
2400			 * If the device is in D3cold it should not be
2401			 * polled either.
2402			 */
2403			if (pme_dev->dev->current_state == PCI_D3cold)
2404				continue;
2405
2406			pci_pme_wakeup(pme_dev->dev, NULL);
2407		} else {
2408			list_del(&pme_dev->list);
2409			kfree(pme_dev);
2410		}
2411	}
2412	if (!list_empty(&pci_pme_list))
2413		queue_delayed_work(system_freezable_wq, &pci_pme_work,
2414				   msecs_to_jiffies(PME_TIMEOUT));
2415	mutex_unlock(&pci_pme_list_mutex);
2416}
2417
2418static void __pci_pme_active(struct pci_dev *dev, bool enable)
2419{
2420	u16 pmcsr;
2421
2422	if (!dev->pme_support)
2423		return;
2424
2425	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2426	/* Clear PME_Status by writing 1 to it and enable PME# */
2427	pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2428	if (!enable)
2429		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2430
2431	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2432}
2433
2434/**
2435 * pci_pme_restore - Restore PME configuration after config space restore.
2436 * @dev: PCI device to update.
2437 */
2438void pci_pme_restore(struct pci_dev *dev)
2439{
2440	u16 pmcsr;
2441
2442	if (!dev->pme_support)
2443		return;
2444
2445	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2446	if (dev->wakeup_prepared) {
2447		pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2448		pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2449	} else {
2450		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2451		pmcsr |= PCI_PM_CTRL_PME_STATUS;
2452	}
2453	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2454}
2455
2456/**
2457 * pci_pme_active - enable or disable PCI device's PME# function
2458 * @dev: PCI device to handle.
2459 * @enable: 'true' to enable PME# generation; 'false' to disable it.
2460 *
2461 * The caller must verify that the device is capable of generating PME# before
2462 * calling this function with @enable equal to 'true'.
2463 */
2464void pci_pme_active(struct pci_dev *dev, bool enable)
2465{
2466	__pci_pme_active(dev, enable);
2467
2468	/*
2469	 * PCI (as opposed to PCIe) PME requires that the device have
2470	 * its PME# line hooked up correctly. Not all hardware vendors
2471	 * do this, so the PME never gets delivered and the device
2472	 * remains asleep. The easiest way around this is to
2473	 * periodically walk the list of suspended devices and check
2474	 * whether any have their PME flag set. The assumption is that
2475	 * we'll wake up often enough anyway that this won't be a huge
2476	 * hit, and the power savings from the devices will still be a
2477	 * win.
2478	 *
2479	 * Although PCIe uses in-band PME message instead of PME# line
2480	 * to report PME, PME does not work for some PCIe devices in
2481	 * reality.  For example, there are devices that set their PME
2482	 * status bits, but don't really bother to send a PME message;
2483	 * there are PCI Express Root Ports that don't bother to
2484	 * trigger interrupts when they receive PME messages from the
2485	 * devices below.  So PME poll is used for PCIe devices too.
2486	 */
2487
2488	if (dev->pme_poll) {
2489		struct pci_pme_device *pme_dev;
2490		if (enable) {
2491			pme_dev = kmalloc(sizeof(struct pci_pme_device),
2492					  GFP_KERNEL);
2493			if (!pme_dev) {
2494				pci_warn(dev, "can't enable PME#\n");
2495				return;
2496			}
2497			pme_dev->dev = dev;
2498			mutex_lock(&pci_pme_list_mutex);
2499			list_add(&pme_dev->list, &pci_pme_list);
2500			if (list_is_singular(&pci_pme_list))
2501				queue_delayed_work(system_freezable_wq,
2502						   &pci_pme_work,
2503						   msecs_to_jiffies(PME_TIMEOUT));
2504			mutex_unlock(&pci_pme_list_mutex);
2505		} else {
2506			mutex_lock(&pci_pme_list_mutex);
2507			list_for_each_entry(pme_dev, &pci_pme_list, list) {
2508				if (pme_dev->dev == dev) {
2509					list_del(&pme_dev->list);
2510					kfree(pme_dev);
2511					break;
2512				}
2513			}
2514			mutex_unlock(&pci_pme_list_mutex);
2515		}
2516	}
2517
2518	pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2519}
2520EXPORT_SYMBOL(pci_pme_active);
2521
2522/**
2523 * __pci_enable_wake - enable PCI device as wakeup event source
2524 * @dev: PCI device affected
2525 * @state: PCI state from which device will issue wakeup events
2526 * @enable: True to enable event generation; false to disable
2527 *
2528 * This enables the device as a wakeup event source, or disables it.
2529 * When such events involves platform-specific hooks, those hooks are
2530 * called automatically by this routine.
2531 *
2532 * Devices with legacy power management (no standard PCI PM capabilities)
2533 * always require such platform hooks.
2534 *
2535 * RETURN VALUE:
2536 * 0 is returned on success
2537 * -EINVAL is returned if device is not supposed to wake up the system
2538 * Error code depending on the platform is returned if both the platform and
2539 * the native mechanism fail to enable the generation of wake-up events
2540 */
2541static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2542{
2543	int ret = 0;
2544
2545	/*
2546	 * Bridges that are not power-manageable directly only signal
2547	 * wakeup on behalf of subordinate devices which is set up
2548	 * elsewhere, so skip them. However, bridges that are
2549	 * power-manageable may signal wakeup for themselves (for example,
2550	 * on a hotplug event) and they need to be covered here.
2551	 */
2552	if (!pci_power_manageable(dev))
2553		return 0;
2554
2555	/* Don't do the same thing twice in a row for one device. */
2556	if (!!enable == !!dev->wakeup_prepared)
2557		return 0;
2558
2559	/*
2560	 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2561	 * Anderson we should be doing PME# wake enable followed by ACPI wake
2562	 * enable.  To disable wake-up we call the platform first, for symmetry.
2563	 */
2564
2565	if (enable) {
2566		int error;
2567
2568		/*
2569		 * Enable PME signaling if the device can signal PME from
2570		 * D3cold regardless of whether or not it can signal PME from
2571		 * the current target state, because that will allow it to
2572		 * signal PME when the hierarchy above it goes into D3cold and
2573		 * the device itself ends up in D3cold as a result of that.
2574		 */
2575		if (pci_pme_capable(dev, state) || pci_pme_capable(dev, PCI_D3cold))
2576			pci_pme_active(dev, true);
2577		else
2578			ret = 1;
2579		error = platform_pci_set_wakeup(dev, true);
2580		if (ret)
2581			ret = error;
2582		if (!ret)
2583			dev->wakeup_prepared = true;
2584	} else {
2585		platform_pci_set_wakeup(dev, false);
2586		pci_pme_active(dev, false);
2587		dev->wakeup_prepared = false;
2588	}
2589
2590	return ret;
2591}
2592
2593/**
2594 * pci_enable_wake - change wakeup settings for a PCI device
2595 * @pci_dev: Target device
2596 * @state: PCI state from which device will issue wakeup events
2597 * @enable: Whether or not to enable event generation
2598 *
2599 * If @enable is set, check device_may_wakeup() for the device before calling
2600 * __pci_enable_wake() for it.
2601 */
2602int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2603{
2604	if (enable && !device_may_wakeup(&pci_dev->dev))
2605		return -EINVAL;
2606
2607	return __pci_enable_wake(pci_dev, state, enable);
2608}
2609EXPORT_SYMBOL(pci_enable_wake);
2610
2611/**
2612 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2613 * @dev: PCI device to prepare
2614 * @enable: True to enable wake-up event generation; false to disable
2615 *
2616 * Many drivers want the device to wake up the system from D3_hot or D3_cold
2617 * and this function allows them to set that up cleanly - pci_enable_wake()
2618 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2619 * ordering constraints.
2620 *
2621 * This function only returns error code if the device is not allowed to wake
2622 * up the system from sleep or it is not capable of generating PME# from both
2623 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2624 */
2625int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2626{
2627	return pci_pme_capable(dev, PCI_D3cold) ?
2628			pci_enable_wake(dev, PCI_D3cold, enable) :
2629			pci_enable_wake(dev, PCI_D3hot, enable);
2630}
2631EXPORT_SYMBOL(pci_wake_from_d3);
2632
2633/**
2634 * pci_target_state - find an appropriate low power state for a given PCI dev
2635 * @dev: PCI device
2636 * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2637 *
2638 * Use underlying platform code to find a supported low power state for @dev.
2639 * If the platform can't manage @dev, return the deepest state from which it
2640 * can generate wake events, based on any available PME info.
2641 */
2642static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2643{
 
 
2644	if (platform_pci_power_manageable(dev)) {
2645		/*
2646		 * Call the platform to find the target state for the device.
 
2647		 */
2648		pci_power_t state = platform_pci_choose_state(dev);
2649
2650		switch (state) {
2651		case PCI_POWER_ERROR:
2652		case PCI_UNKNOWN:
2653			return PCI_D3hot;
2654
2655		case PCI_D1:
2656		case PCI_D2:
2657			if (pci_no_d1d2(dev))
2658				return PCI_D3hot;
 
 
2659		}
2660
2661		return state;
2662	}
2663
 
 
 
2664	/*
2665	 * If the device is in D3cold even though it's not power-manageable by
2666	 * the platform, it may have been powered down by non-standard means.
2667	 * Best to let it slumber.
2668	 */
2669	if (dev->current_state == PCI_D3cold)
2670		return PCI_D3cold;
2671	else if (!dev->pm_cap)
2672		return PCI_D0;
2673
2674	if (wakeup && dev->pme_support) {
2675		pci_power_t state = PCI_D3hot;
2676
 
2677		/*
2678		 * Find the deepest state from which the device can generate
2679		 * PME#.
 
2680		 */
2681		while (state && !(dev->pme_support & (1 << state)))
2682			state--;
2683
2684		if (state)
2685			return state;
2686		else if (dev->pme_support & 1)
2687			return PCI_D0;
2688	}
2689
2690	return PCI_D3hot;
2691}
2692
2693/**
2694 * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2695 *			  into a sleep state
2696 * @dev: Device to handle.
2697 *
2698 * Choose the power state appropriate for the device depending on whether
2699 * it can wake up the system and/or is power manageable by the platform
2700 * (PCI_D3hot is the default) and put the device into that state.
2701 */
2702int pci_prepare_to_sleep(struct pci_dev *dev)
2703{
2704	bool wakeup = device_may_wakeup(&dev->dev);
2705	pci_power_t target_state = pci_target_state(dev, wakeup);
2706	int error;
2707
2708	if (target_state == PCI_POWER_ERROR)
2709		return -EIO;
2710
2711	pci_enable_wake(dev, target_state, wakeup);
2712
2713	error = pci_set_power_state(dev, target_state);
2714
2715	if (error)
2716		pci_enable_wake(dev, target_state, false);
2717
2718	return error;
2719}
2720EXPORT_SYMBOL(pci_prepare_to_sleep);
2721
2722/**
2723 * pci_back_from_sleep - turn PCI device on during system-wide transition
2724 *			 into working state
2725 * @dev: Device to handle.
2726 *
2727 * Disable device's system wake-up capability and put it into D0.
2728 */
2729int pci_back_from_sleep(struct pci_dev *dev)
2730{
2731	int ret = pci_set_power_state(dev, PCI_D0);
2732
2733	if (ret)
2734		return ret;
2735
2736	pci_enable_wake(dev, PCI_D0, false);
2737	return 0;
2738}
2739EXPORT_SYMBOL(pci_back_from_sleep);
2740
2741/**
2742 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2743 * @dev: PCI device being suspended.
2744 *
2745 * Prepare @dev to generate wake-up events at run time and put it into a low
2746 * power state.
2747 */
2748int pci_finish_runtime_suspend(struct pci_dev *dev)
2749{
2750	pci_power_t target_state;
2751	int error;
2752
2753	target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2754	if (target_state == PCI_POWER_ERROR)
2755		return -EIO;
2756
 
 
2757	__pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2758
2759	error = pci_set_power_state(dev, target_state);
2760
2761	if (error)
2762		pci_enable_wake(dev, target_state, false);
 
 
2763
2764	return error;
2765}
2766
2767/**
2768 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2769 * @dev: Device to check.
2770 *
2771 * Return true if the device itself is capable of generating wake-up events
2772 * (through the platform or using the native PCIe PME) or if the device supports
2773 * PME and one of its upstream bridges can generate wake-up events.
2774 */
2775bool pci_dev_run_wake(struct pci_dev *dev)
2776{
2777	struct pci_bus *bus = dev->bus;
2778
2779	if (!dev->pme_support)
2780		return false;
2781
2782	/* PME-capable in principle, but not from the target power state */
2783	if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2784		return false;
2785
2786	if (device_can_wakeup(&dev->dev))
2787		return true;
2788
2789	while (bus->parent) {
2790		struct pci_dev *bridge = bus->self;
2791
2792		if (device_can_wakeup(&bridge->dev))
2793			return true;
2794
2795		bus = bus->parent;
2796	}
2797
2798	/* We have reached the root bus. */
2799	if (bus->bridge)
2800		return device_can_wakeup(bus->bridge);
2801
2802	return false;
2803}
2804EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2805
2806/**
2807 * pci_dev_need_resume - Check if it is necessary to resume the device.
2808 * @pci_dev: Device to check.
2809 *
2810 * Return 'true' if the device is not runtime-suspended or it has to be
2811 * reconfigured due to wakeup settings difference between system and runtime
2812 * suspend, or the current power state of it is not suitable for the upcoming
2813 * (system-wide) transition.
 
 
 
2814 */
2815bool pci_dev_need_resume(struct pci_dev *pci_dev)
2816{
2817	struct device *dev = &pci_dev->dev;
2818	pci_power_t target_state;
2819
2820	if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
2821		return true;
2822
2823	target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
 
 
 
2824
2825	/*
2826	 * If the earlier platform check has not triggered, D3cold is just power
2827	 * removal on top of D3hot, so no need to resume the device in that
2828	 * case.
 
 
 
 
 
2829	 */
2830	return target_state != pci_dev->current_state &&
2831		target_state != PCI_D3cold &&
2832		pci_dev->current_state != PCI_D3hot;
2833}
2834
2835/**
2836 * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2837 * @pci_dev: Device to check.
2838 *
2839 * If the device is suspended and it is not configured for system wakeup,
2840 * disable PME for it to prevent it from waking up the system unnecessarily.
2841 *
2842 * Note that if the device's power state is D3cold and the platform check in
2843 * pci_dev_need_resume() has not triggered, the device's configuration need not
2844 * be changed.
2845 */
2846void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2847{
2848	struct device *dev = &pci_dev->dev;
2849
2850	spin_lock_irq(&dev->power.lock);
2851
2852	if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2853	    pci_dev->current_state < PCI_D3cold)
2854		__pci_pme_active(pci_dev, false);
2855
2856	spin_unlock_irq(&dev->power.lock);
 
2857}
2858
2859/**
2860 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2861 * @pci_dev: Device to handle.
2862 *
2863 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2864 * it might have been disabled during the prepare phase of system suspend if
2865 * the device was not configured for system wakeup.
2866 */
2867void pci_dev_complete_resume(struct pci_dev *pci_dev)
2868{
2869	struct device *dev = &pci_dev->dev;
2870
2871	if (!pci_dev_run_wake(pci_dev))
2872		return;
2873
2874	spin_lock_irq(&dev->power.lock);
2875
2876	if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2877		__pci_pme_active(pci_dev, true);
2878
2879	spin_unlock_irq(&dev->power.lock);
2880}
2881
2882/**
2883 * pci_choose_state - Choose the power state of a PCI device.
2884 * @dev: Target PCI device.
2885 * @state: Target state for the whole system.
2886 *
2887 * Returns PCI power state suitable for @dev and @state.
2888 */
2889pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
2890{
2891	if (state.event == PM_EVENT_ON)
2892		return PCI_D0;
2893
2894	return pci_target_state(dev, false);
2895}
2896EXPORT_SYMBOL(pci_choose_state);
2897
2898void pci_config_pm_runtime_get(struct pci_dev *pdev)
2899{
2900	struct device *dev = &pdev->dev;
2901	struct device *parent = dev->parent;
2902
2903	if (parent)
2904		pm_runtime_get_sync(parent);
2905	pm_runtime_get_noresume(dev);
2906	/*
2907	 * pdev->current_state is set to PCI_D3cold during suspending,
2908	 * so wait until suspending completes
2909	 */
2910	pm_runtime_barrier(dev);
2911	/*
2912	 * Only need to resume devices in D3cold, because config
2913	 * registers are still accessible for devices suspended but
2914	 * not in D3cold.
2915	 */
2916	if (pdev->current_state == PCI_D3cold)
2917		pm_runtime_resume(dev);
2918}
2919
2920void pci_config_pm_runtime_put(struct pci_dev *pdev)
2921{
2922	struct device *dev = &pdev->dev;
2923	struct device *parent = dev->parent;
2924
2925	pm_runtime_put(dev);
2926	if (parent)
2927		pm_runtime_put_sync(parent);
2928}
2929
2930static const struct dmi_system_id bridge_d3_blacklist[] = {
2931#ifdef CONFIG_X86
2932	{
2933		/*
2934		 * Gigabyte X299 root port is not marked as hotplug capable
2935		 * which allows Linux to power manage it.  However, this
2936		 * confuses the BIOS SMI handler so don't power manage root
2937		 * ports on that system.
2938		 */
2939		.ident = "X299 DESIGNARE EX-CF",
2940		.matches = {
2941			DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
2942			DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
2943		},
2944	},
2945	{
2946		/*
2947		 * Downstream device is not accessible after putting a root port
2948		 * into D3cold and back into D0 on Elo i2.
2949		 */
2950		.ident = "Elo i2",
2951		.matches = {
2952			DMI_MATCH(DMI_SYS_VENDOR, "Elo Touch Solutions"),
2953			DMI_MATCH(DMI_PRODUCT_NAME, "Elo i2"),
2954			DMI_MATCH(DMI_PRODUCT_VERSION, "RevB"),
2955		},
2956	},
2957#endif
2958	{ }
2959};
2960
2961/**
2962 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2963 * @bridge: Bridge to check
2964 *
2965 * This function checks if it is possible to move the bridge to D3.
2966 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
2967 */
2968bool pci_bridge_d3_possible(struct pci_dev *bridge)
2969{
2970	if (!pci_is_pcie(bridge))
2971		return false;
2972
2973	switch (pci_pcie_type(bridge)) {
2974	case PCI_EXP_TYPE_ROOT_PORT:
2975	case PCI_EXP_TYPE_UPSTREAM:
2976	case PCI_EXP_TYPE_DOWNSTREAM:
2977		if (pci_bridge_d3_disable)
2978			return false;
2979
2980		/*
2981		 * Hotplug ports handled by firmware in System Management Mode
 
 
2982		 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
 
2983		 */
2984		if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
2985			return false;
2986
2987		if (pci_bridge_d3_force)
2988			return true;
2989
2990		/* Even the oldest 2010 Thunderbolt controller supports D3. */
2991		if (bridge->is_thunderbolt)
2992			return true;
2993
2994		/* Platform might know better if the bridge supports D3 */
2995		if (platform_pci_bridge_d3(bridge))
2996			return true;
2997
2998		/*
2999		 * Hotplug ports handled natively by the OS were not validated
3000		 * by vendors for runtime D3 at least until 2018 because there
3001		 * was no OS support.
3002		 */
3003		if (bridge->is_hotplug_bridge)
3004			return false;
3005
3006		if (dmi_check_system(bridge_d3_blacklist))
3007			return false;
3008
3009		/*
3010		 * It should be safe to put PCIe ports from 2015 or newer
3011		 * to D3.
3012		 */
3013		if (dmi_get_bios_year() >= 2015)
3014			return true;
3015		break;
3016	}
3017
3018	return false;
3019}
3020
3021static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
3022{
3023	bool *d3cold_ok = data;
3024
3025	if (/* The device needs to be allowed to go D3cold ... */
3026	    dev->no_d3cold || !dev->d3cold_allowed ||
3027
3028	    /* ... and if it is wakeup capable to do so from D3cold. */
3029	    (device_may_wakeup(&dev->dev) &&
3030	     !pci_pme_capable(dev, PCI_D3cold)) ||
3031
3032	    /* If it is a bridge it must be allowed to go to D3. */
3033	    !pci_power_manageable(dev))
3034
3035		*d3cold_ok = false;
3036
3037	return !*d3cold_ok;
3038}
3039
3040/*
3041 * pci_bridge_d3_update - Update bridge D3 capabilities
3042 * @dev: PCI device which is changed
3043 *
3044 * Update upstream bridge PM capabilities accordingly depending on if the
3045 * device PM configuration was changed or the device is being removed.  The
3046 * change is also propagated upstream.
3047 */
3048void pci_bridge_d3_update(struct pci_dev *dev)
3049{
3050	bool remove = !device_is_registered(&dev->dev);
3051	struct pci_dev *bridge;
3052	bool d3cold_ok = true;
3053
3054	bridge = pci_upstream_bridge(dev);
3055	if (!bridge || !pci_bridge_d3_possible(bridge))
3056		return;
3057
3058	/*
3059	 * If D3 is currently allowed for the bridge, removing one of its
3060	 * children won't change that.
3061	 */
3062	if (remove && bridge->bridge_d3)
3063		return;
3064
3065	/*
3066	 * If D3 is currently allowed for the bridge and a child is added or
3067	 * changed, disallowance of D3 can only be caused by that child, so
3068	 * we only need to check that single device, not any of its siblings.
3069	 *
3070	 * If D3 is currently not allowed for the bridge, checking the device
3071	 * first may allow us to skip checking its siblings.
3072	 */
3073	if (!remove)
3074		pci_dev_check_d3cold(dev, &d3cold_ok);
3075
3076	/*
3077	 * If D3 is currently not allowed for the bridge, this may be caused
3078	 * either by the device being changed/removed or any of its siblings,
3079	 * so we need to go through all children to find out if one of them
3080	 * continues to block D3.
3081	 */
3082	if (d3cold_ok && !bridge->bridge_d3)
3083		pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
3084			     &d3cold_ok);
3085
3086	if (bridge->bridge_d3 != d3cold_ok) {
3087		bridge->bridge_d3 = d3cold_ok;
3088		/* Propagate change to upstream bridges */
3089		pci_bridge_d3_update(bridge);
3090	}
3091}
3092
3093/**
3094 * pci_d3cold_enable - Enable D3cold for device
3095 * @dev: PCI device to handle
3096 *
3097 * This function can be used in drivers to enable D3cold from the device
3098 * they handle.  It also updates upstream PCI bridge PM capabilities
3099 * accordingly.
3100 */
3101void pci_d3cold_enable(struct pci_dev *dev)
3102{
3103	if (dev->no_d3cold) {
3104		dev->no_d3cold = false;
3105		pci_bridge_d3_update(dev);
3106	}
3107}
3108EXPORT_SYMBOL_GPL(pci_d3cold_enable);
3109
3110/**
3111 * pci_d3cold_disable - Disable D3cold for device
3112 * @dev: PCI device to handle
3113 *
3114 * This function can be used in drivers to disable D3cold from the device
3115 * they handle.  It also updates upstream PCI bridge PM capabilities
3116 * accordingly.
3117 */
3118void pci_d3cold_disable(struct pci_dev *dev)
3119{
3120	if (!dev->no_d3cold) {
3121		dev->no_d3cold = true;
3122		pci_bridge_d3_update(dev);
3123	}
3124}
3125EXPORT_SYMBOL_GPL(pci_d3cold_disable);
3126
3127/**
3128 * pci_pm_init - Initialize PM functions of given PCI device
3129 * @dev: PCI device to handle.
3130 */
3131void pci_pm_init(struct pci_dev *dev)
3132{
3133	int pm;
3134	u16 status;
3135	u16 pmc;
3136
3137	pm_runtime_forbid(&dev->dev);
3138	pm_runtime_set_active(&dev->dev);
3139	pm_runtime_enable(&dev->dev);
3140	device_enable_async_suspend(&dev->dev);
3141	dev->wakeup_prepared = false;
3142
3143	dev->pm_cap = 0;
3144	dev->pme_support = 0;
3145
3146	/* find PCI PM capability in list */
3147	pm = pci_find_capability(dev, PCI_CAP_ID_PM);
3148	if (!pm)
3149		return;
3150	/* Check device's ability to generate PME# */
3151	pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
3152
3153	if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
3154		pci_err(dev, "unsupported PM cap regs version (%u)\n",
3155			pmc & PCI_PM_CAP_VER_MASK);
3156		return;
3157	}
3158
3159	dev->pm_cap = pm;
3160	dev->d3hot_delay = PCI_PM_D3HOT_WAIT;
3161	dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
3162	dev->bridge_d3 = pci_bridge_d3_possible(dev);
3163	dev->d3cold_allowed = true;
3164
3165	dev->d1_support = false;
3166	dev->d2_support = false;
3167	if (!pci_no_d1d2(dev)) {
3168		if (pmc & PCI_PM_CAP_D1)
3169			dev->d1_support = true;
3170		if (pmc & PCI_PM_CAP_D2)
3171			dev->d2_support = true;
3172
3173		if (dev->d1_support || dev->d2_support)
3174			pci_info(dev, "supports%s%s\n",
3175				   dev->d1_support ? " D1" : "",
3176				   dev->d2_support ? " D2" : "");
3177	}
3178
3179	pmc &= PCI_PM_CAP_PME_MASK;
3180	if (pmc) {
3181		pci_info(dev, "PME# supported from%s%s%s%s%s\n",
3182			 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
3183			 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
3184			 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
3185			 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "",
3186			 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
3187		dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
3188		dev->pme_poll = true;
3189		/*
3190		 * Make device's PM flags reflect the wake-up capability, but
3191		 * let the user space enable it to wake up the system as needed.
3192		 */
3193		device_set_wakeup_capable(&dev->dev, true);
3194		/* Disable the PME# generation functionality */
3195		pci_pme_active(dev, false);
3196	}
3197
3198	pci_read_config_word(dev, PCI_STATUS, &status);
3199	if (status & PCI_STATUS_IMM_READY)
3200		dev->imm_ready = 1;
3201}
3202
3203static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
3204{
3205	unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
3206
3207	switch (prop) {
3208	case PCI_EA_P_MEM:
3209	case PCI_EA_P_VF_MEM:
3210		flags |= IORESOURCE_MEM;
3211		break;
3212	case PCI_EA_P_MEM_PREFETCH:
3213	case PCI_EA_P_VF_MEM_PREFETCH:
3214		flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
3215		break;
3216	case PCI_EA_P_IO:
3217		flags |= IORESOURCE_IO;
3218		break;
3219	default:
3220		return 0;
3221	}
3222
3223	return flags;
3224}
3225
3226static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
3227					    u8 prop)
3228{
3229	if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
3230		return &dev->resource[bei];
3231#ifdef CONFIG_PCI_IOV
3232	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
3233		 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
3234		return &dev->resource[PCI_IOV_RESOURCES +
3235				      bei - PCI_EA_BEI_VF_BAR0];
3236#endif
3237	else if (bei == PCI_EA_BEI_ROM)
3238		return &dev->resource[PCI_ROM_RESOURCE];
3239	else
3240		return NULL;
3241}
3242
3243/* Read an Enhanced Allocation (EA) entry */
3244static int pci_ea_read(struct pci_dev *dev, int offset)
3245{
3246	struct resource *res;
3247	int ent_size, ent_offset = offset;
3248	resource_size_t start, end;
3249	unsigned long flags;
3250	u32 dw0, bei, base, max_offset;
3251	u8 prop;
3252	bool support_64 = (sizeof(resource_size_t) >= 8);
3253
3254	pci_read_config_dword(dev, ent_offset, &dw0);
3255	ent_offset += 4;
3256
3257	/* Entry size field indicates DWORDs after 1st */
3258	ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
3259
3260	if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
3261		goto out;
3262
3263	bei = (dw0 & PCI_EA_BEI) >> 4;
3264	prop = (dw0 & PCI_EA_PP) >> 8;
3265
3266	/*
3267	 * If the Property is in the reserved range, try the Secondary
3268	 * Property instead.
3269	 */
3270	if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
3271		prop = (dw0 & PCI_EA_SP) >> 16;
3272	if (prop > PCI_EA_P_BRIDGE_IO)
3273		goto out;
3274
3275	res = pci_ea_get_resource(dev, bei, prop);
3276	if (!res) {
3277		pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
3278		goto out;
3279	}
3280
3281	flags = pci_ea_flags(dev, prop);
3282	if (!flags) {
3283		pci_err(dev, "Unsupported EA properties: %#x\n", prop);
3284		goto out;
3285	}
3286
3287	/* Read Base */
3288	pci_read_config_dword(dev, ent_offset, &base);
3289	start = (base & PCI_EA_FIELD_MASK);
3290	ent_offset += 4;
3291
3292	/* Read MaxOffset */
3293	pci_read_config_dword(dev, ent_offset, &max_offset);
3294	ent_offset += 4;
3295
3296	/* Read Base MSBs (if 64-bit entry) */
3297	if (base & PCI_EA_IS_64) {
3298		u32 base_upper;
3299
3300		pci_read_config_dword(dev, ent_offset, &base_upper);
3301		ent_offset += 4;
3302
3303		flags |= IORESOURCE_MEM_64;
3304
3305		/* entry starts above 32-bit boundary, can't use */
3306		if (!support_64 && base_upper)
3307			goto out;
3308
3309		if (support_64)
3310			start |= ((u64)base_upper << 32);
3311	}
3312
3313	end = start + (max_offset | 0x03);
3314
3315	/* Read MaxOffset MSBs (if 64-bit entry) */
3316	if (max_offset & PCI_EA_IS_64) {
3317		u32 max_offset_upper;
3318
3319		pci_read_config_dword(dev, ent_offset, &max_offset_upper);
3320		ent_offset += 4;
3321
3322		flags |= IORESOURCE_MEM_64;
3323
3324		/* entry too big, can't use */
3325		if (!support_64 && max_offset_upper)
3326			goto out;
3327
3328		if (support_64)
3329			end += ((u64)max_offset_upper << 32);
3330	}
3331
3332	if (end < start) {
3333		pci_err(dev, "EA Entry crosses address boundary\n");
3334		goto out;
3335	}
3336
3337	if (ent_size != ent_offset - offset) {
3338		pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
3339			ent_size, ent_offset - offset);
3340		goto out;
3341	}
3342
3343	res->name = pci_name(dev);
3344	res->start = start;
3345	res->end = end;
3346	res->flags = flags;
3347
3348	if (bei <= PCI_EA_BEI_BAR5)
3349		pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3350			   bei, res, prop);
3351	else if (bei == PCI_EA_BEI_ROM)
3352		pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
3353			   res, prop);
3354	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3355		pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3356			   bei - PCI_EA_BEI_VF_BAR0, res, prop);
3357	else
3358		pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
3359			   bei, res, prop);
3360
3361out:
3362	return offset + ent_size;
3363}
3364
3365/* Enhanced Allocation Initialization */
3366void pci_ea_init(struct pci_dev *dev)
3367{
3368	int ea;
3369	u8 num_ent;
3370	int offset;
3371	int i;
3372
3373	/* find PCI EA capability in list */
3374	ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3375	if (!ea)
3376		return;
3377
3378	/* determine the number of entries */
3379	pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3380					&num_ent);
3381	num_ent &= PCI_EA_NUM_ENT_MASK;
3382
3383	offset = ea + PCI_EA_FIRST_ENT;
3384
3385	/* Skip DWORD 2 for type 1 functions */
3386	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3387		offset += 4;
3388
3389	/* parse each EA entry */
3390	for (i = 0; i < num_ent; ++i)
3391		offset = pci_ea_read(dev, offset);
3392}
3393
3394static void pci_add_saved_cap(struct pci_dev *pci_dev,
3395	struct pci_cap_saved_state *new_cap)
3396{
3397	hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3398}
3399
3400/**
3401 * _pci_add_cap_save_buffer - allocate buffer for saving given
3402 *			      capability registers
3403 * @dev: the PCI device
3404 * @cap: the capability to allocate the buffer for
3405 * @extended: Standard or Extended capability ID
3406 * @size: requested size of the buffer
3407 */
3408static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3409				    bool extended, unsigned int size)
3410{
3411	int pos;
3412	struct pci_cap_saved_state *save_state;
3413
3414	if (extended)
3415		pos = pci_find_ext_capability(dev, cap);
3416	else
3417		pos = pci_find_capability(dev, cap);
3418
3419	if (!pos)
3420		return 0;
3421
3422	save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3423	if (!save_state)
3424		return -ENOMEM;
3425
3426	save_state->cap.cap_nr = cap;
3427	save_state->cap.cap_extended = extended;
3428	save_state->cap.size = size;
3429	pci_add_saved_cap(dev, save_state);
3430
3431	return 0;
3432}
3433
3434int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3435{
3436	return _pci_add_cap_save_buffer(dev, cap, false, size);
3437}
3438
3439int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3440{
3441	return _pci_add_cap_save_buffer(dev, cap, true, size);
3442}
3443
3444/**
3445 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3446 * @dev: the PCI device
3447 */
3448void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3449{
3450	int error;
3451
3452	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3453					PCI_EXP_SAVE_REGS * sizeof(u16));
3454	if (error)
3455		pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3456
3457	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3458	if (error)
3459		pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3460
3461	error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3462					    2 * sizeof(u16));
3463	if (error)
3464		pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3465
3466	pci_allocate_vc_save_buffers(dev);
3467}
3468
3469void pci_free_cap_save_buffers(struct pci_dev *dev)
3470{
3471	struct pci_cap_saved_state *tmp;
3472	struct hlist_node *n;
3473
3474	hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3475		kfree(tmp);
3476}
3477
3478/**
3479 * pci_configure_ari - enable or disable ARI forwarding
3480 * @dev: the PCI device
3481 *
3482 * If @dev and its upstream bridge both support ARI, enable ARI in the
3483 * bridge.  Otherwise, disable ARI in the bridge.
3484 */
3485void pci_configure_ari(struct pci_dev *dev)
3486{
3487	u32 cap;
3488	struct pci_dev *bridge;
3489
3490	if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3491		return;
3492
3493	bridge = dev->bus->self;
3494	if (!bridge)
3495		return;
3496
3497	pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3498	if (!(cap & PCI_EXP_DEVCAP2_ARI))
3499		return;
3500
3501	if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3502		pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3503					 PCI_EXP_DEVCTL2_ARI);
3504		bridge->ari_enabled = 1;
3505	} else {
3506		pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3507					   PCI_EXP_DEVCTL2_ARI);
3508		bridge->ari_enabled = 0;
3509	}
3510}
3511
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3512static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3513{
3514	int pos;
3515	u16 cap, ctrl;
3516
3517	pos = pdev->acs_cap;
3518	if (!pos)
3519		return false;
3520
3521	/*
3522	 * Except for egress control, capabilities are either required
3523	 * or only required if controllable.  Features missing from the
3524	 * capability field can therefore be assumed as hard-wired enabled.
3525	 */
3526	pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3527	acs_flags &= (cap | PCI_ACS_EC);
3528
3529	pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3530	return (ctrl & acs_flags) == acs_flags;
3531}
3532
3533/**
3534 * pci_acs_enabled - test ACS against required flags for a given device
3535 * @pdev: device to test
3536 * @acs_flags: required PCI ACS flags
3537 *
3538 * Return true if the device supports the provided flags.  Automatically
3539 * filters out flags that are not implemented on multifunction devices.
3540 *
3541 * Note that this interface checks the effective ACS capabilities of the
3542 * device rather than the actual capabilities.  For instance, most single
3543 * function endpoints are not required to support ACS because they have no
3544 * opportunity for peer-to-peer access.  We therefore return 'true'
3545 * regardless of whether the device exposes an ACS capability.  This makes
3546 * it much easier for callers of this function to ignore the actual type
3547 * or topology of the device when testing ACS support.
3548 */
3549bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3550{
3551	int ret;
3552
3553	ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3554	if (ret >= 0)
3555		return ret > 0;
3556
3557	/*
3558	 * Conventional PCI and PCI-X devices never support ACS, either
3559	 * effectively or actually.  The shared bus topology implies that
3560	 * any device on the bus can receive or snoop DMA.
3561	 */
3562	if (!pci_is_pcie(pdev))
3563		return false;
3564
3565	switch (pci_pcie_type(pdev)) {
3566	/*
3567	 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3568	 * but since their primary interface is PCI/X, we conservatively
3569	 * handle them as we would a non-PCIe device.
3570	 */
3571	case PCI_EXP_TYPE_PCIE_BRIDGE:
3572	/*
3573	 * PCIe 3.0, 6.12.1 excludes ACS on these devices.  "ACS is never
3574	 * applicable... must never implement an ACS Extended Capability...".
3575	 * This seems arbitrary, but we take a conservative interpretation
3576	 * of this statement.
3577	 */
3578	case PCI_EXP_TYPE_PCI_BRIDGE:
3579	case PCI_EXP_TYPE_RC_EC:
3580		return false;
3581	/*
3582	 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3583	 * implement ACS in order to indicate their peer-to-peer capabilities,
3584	 * regardless of whether they are single- or multi-function devices.
3585	 */
3586	case PCI_EXP_TYPE_DOWNSTREAM:
3587	case PCI_EXP_TYPE_ROOT_PORT:
3588		return pci_acs_flags_enabled(pdev, acs_flags);
3589	/*
3590	 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3591	 * implemented by the remaining PCIe types to indicate peer-to-peer
3592	 * capabilities, but only when they are part of a multifunction
3593	 * device.  The footnote for section 6.12 indicates the specific
3594	 * PCIe types included here.
3595	 */
3596	case PCI_EXP_TYPE_ENDPOINT:
3597	case PCI_EXP_TYPE_UPSTREAM:
3598	case PCI_EXP_TYPE_LEG_END:
3599	case PCI_EXP_TYPE_RC_END:
3600		if (!pdev->multifunction)
3601			break;
3602
3603		return pci_acs_flags_enabled(pdev, acs_flags);
3604	}
3605
3606	/*
3607	 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3608	 * to single function devices with the exception of downstream ports.
3609	 */
3610	return true;
3611}
3612
3613/**
3614 * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy
3615 * @start: starting downstream device
3616 * @end: ending upstream device or NULL to search to the root bus
3617 * @acs_flags: required flags
3618 *
3619 * Walk up a device tree from start to end testing PCI ACS support.  If
3620 * any step along the way does not support the required flags, return false.
3621 */
3622bool pci_acs_path_enabled(struct pci_dev *start,
3623			  struct pci_dev *end, u16 acs_flags)
3624{
3625	struct pci_dev *pdev, *parent = start;
3626
3627	do {
3628		pdev = parent;
3629
3630		if (!pci_acs_enabled(pdev, acs_flags))
3631			return false;
3632
3633		if (pci_is_root_bus(pdev->bus))
3634			return (end == NULL);
3635
3636		parent = pdev->bus->self;
3637	} while (pdev != end);
3638
3639	return true;
3640}
3641
3642/**
3643 * pci_acs_init - Initialize ACS if hardware supports it
3644 * @dev: the PCI device
3645 */
3646void pci_acs_init(struct pci_dev *dev)
3647{
3648	dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3649
3650	/*
3651	 * Attempt to enable ACS regardless of capability because some Root
3652	 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have
3653	 * the standard ACS capability but still support ACS via those
3654	 * quirks.
3655	 */
3656	pci_enable_acs(dev);
3657}
3658
3659/**
3660 * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3661 * @pdev: PCI device
3662 * @bar: BAR to find
3663 *
3664 * Helper to find the position of the ctrl register for a BAR.
3665 * Returns -ENOTSUPP if resizable BARs are not supported at all.
3666 * Returns -ENOENT if no ctrl register for the BAR could be found.
3667 */
3668static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3669{
3670	unsigned int pos, nbars, i;
3671	u32 ctrl;
3672
3673	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3674	if (!pos)
3675		return -ENOTSUPP;
3676
3677	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3678	nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
3679		    PCI_REBAR_CTRL_NBAR_SHIFT;
3680
3681	for (i = 0; i < nbars; i++, pos += 8) {
3682		int bar_idx;
3683
3684		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3685		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
3686		if (bar_idx == bar)
3687			return pos;
3688	}
3689
3690	return -ENOENT;
3691}
3692
3693/**
3694 * pci_rebar_get_possible_sizes - get possible sizes for BAR
3695 * @pdev: PCI device
3696 * @bar: BAR to query
3697 *
3698 * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3699 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3700 */
3701u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3702{
3703	int pos;
3704	u32 cap;
3705
3706	pos = pci_rebar_find_pos(pdev, bar);
3707	if (pos < 0)
3708		return 0;
3709
3710	pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3711	cap &= PCI_REBAR_CAP_SIZES;
3712
3713	/* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */
3714	if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f &&
3715	    bar == 0 && cap == 0x7000)
3716		cap = 0x3f000;
3717
3718	return cap >> 4;
3719}
3720EXPORT_SYMBOL(pci_rebar_get_possible_sizes);
3721
3722/**
3723 * pci_rebar_get_current_size - get the current size of a BAR
3724 * @pdev: PCI device
3725 * @bar: BAR to set size to
3726 *
3727 * Read the size of a BAR from the resizable BAR config.
3728 * Returns size if found or negative error code.
3729 */
3730int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3731{
3732	int pos;
3733	u32 ctrl;
3734
3735	pos = pci_rebar_find_pos(pdev, bar);
3736	if (pos < 0)
3737		return pos;
3738
3739	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3740	return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT;
3741}
3742
3743/**
3744 * pci_rebar_set_size - set a new size for a BAR
3745 * @pdev: PCI device
3746 * @bar: BAR to set size to
3747 * @size: new size as defined in the spec (0=1MB, 19=512GB)
3748 *
3749 * Set the new size of a BAR as defined in the spec.
3750 * Returns zero if resizing was successful, error code otherwise.
3751 */
3752int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3753{
3754	int pos;
3755	u32 ctrl;
3756
3757	pos = pci_rebar_find_pos(pdev, bar);
3758	if (pos < 0)
3759		return pos;
3760
3761	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3762	ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3763	ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
3764	pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3765	return 0;
3766}
3767
3768/**
3769 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3770 * @dev: the PCI device
3771 * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3772 *	PCI_EXP_DEVCAP2_ATOMIC_COMP32
3773 *	PCI_EXP_DEVCAP2_ATOMIC_COMP64
3774 *	PCI_EXP_DEVCAP2_ATOMIC_COMP128
3775 *
3776 * Return 0 if all upstream bridges support AtomicOp routing, egress
3777 * blocking is disabled on all upstream ports, and the root port supports
3778 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3779 * AtomicOp completion), or negative otherwise.
3780 */
3781int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3782{
3783	struct pci_bus *bus = dev->bus;
3784	struct pci_dev *bridge;
3785	u32 cap, ctl2;
3786
3787	/*
3788	 * Per PCIe r5.0, sec 9.3.5.10, the AtomicOp Requester Enable bit
3789	 * in Device Control 2 is reserved in VFs and the PF value applies
3790	 * to all associated VFs.
3791	 */
3792	if (dev->is_virtfn)
3793		return -EINVAL;
3794
3795	if (!pci_is_pcie(dev))
3796		return -EINVAL;
3797
3798	/*
3799	 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3800	 * AtomicOp requesters.  For now, we only support endpoints as
3801	 * requesters and root ports as completers.  No endpoints as
3802	 * completers, and no peer-to-peer.
3803	 */
3804
3805	switch (pci_pcie_type(dev)) {
3806	case PCI_EXP_TYPE_ENDPOINT:
3807	case PCI_EXP_TYPE_LEG_END:
3808	case PCI_EXP_TYPE_RC_END:
3809		break;
3810	default:
3811		return -EINVAL;
3812	}
3813
3814	while (bus->parent) {
3815		bridge = bus->self;
3816
3817		pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3818
3819		switch (pci_pcie_type(bridge)) {
3820		/* Ensure switch ports support AtomicOp routing */
3821		case PCI_EXP_TYPE_UPSTREAM:
3822		case PCI_EXP_TYPE_DOWNSTREAM:
3823			if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3824				return -EINVAL;
3825			break;
3826
3827		/* Ensure root port supports all the sizes we care about */
3828		case PCI_EXP_TYPE_ROOT_PORT:
3829			if ((cap & cap_mask) != cap_mask)
3830				return -EINVAL;
3831			break;
3832		}
3833
3834		/* Ensure upstream ports don't block AtomicOps on egress */
3835		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
3836			pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3837						   &ctl2);
3838			if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3839				return -EINVAL;
3840		}
3841
3842		bus = bus->parent;
3843	}
3844
3845	pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3846				 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3847	return 0;
3848}
3849EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3850
3851/**
3852 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3853 * @dev: the PCI device
3854 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3855 *
3856 * Perform INTx swizzling for a device behind one level of bridge.  This is
3857 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3858 * behind bridges on add-in cards.  For devices with ARI enabled, the slot
3859 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3860 * the PCI Express Base Specification, Revision 2.1)
3861 */
3862u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3863{
3864	int slot;
3865
3866	if (pci_ari_enabled(dev->bus))
3867		slot = 0;
3868	else
3869		slot = PCI_SLOT(dev->devfn);
3870
3871	return (((pin - 1) + slot) % 4) + 1;
3872}
3873
3874int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3875{
3876	u8 pin;
3877
3878	pin = dev->pin;
3879	if (!pin)
3880		return -1;
3881
3882	while (!pci_is_root_bus(dev->bus)) {
3883		pin = pci_swizzle_interrupt_pin(dev, pin);
3884		dev = dev->bus->self;
3885	}
3886	*bridge = dev;
3887	return pin;
3888}
3889
3890/**
3891 * pci_common_swizzle - swizzle INTx all the way to root bridge
3892 * @dev: the PCI device
3893 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3894 *
3895 * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
3896 * bridges all the way up to a PCI root bus.
3897 */
3898u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3899{
3900	u8 pin = *pinp;
3901
3902	while (!pci_is_root_bus(dev->bus)) {
3903		pin = pci_swizzle_interrupt_pin(dev, pin);
3904		dev = dev->bus->self;
3905	}
3906	*pinp = pin;
3907	return PCI_SLOT(dev->devfn);
3908}
3909EXPORT_SYMBOL_GPL(pci_common_swizzle);
3910
3911/**
3912 * pci_release_region - Release a PCI bar
3913 * @pdev: PCI device whose resources were previously reserved by
3914 *	  pci_request_region()
3915 * @bar: BAR to release
3916 *
3917 * Releases the PCI I/O and memory resources previously reserved by a
3918 * successful call to pci_request_region().  Call this function only
3919 * after all use of the PCI regions has ceased.
3920 */
3921void pci_release_region(struct pci_dev *pdev, int bar)
3922{
3923	struct pci_devres *dr;
3924
3925	if (pci_resource_len(pdev, bar) == 0)
3926		return;
3927	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3928		release_region(pci_resource_start(pdev, bar),
3929				pci_resource_len(pdev, bar));
3930	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3931		release_mem_region(pci_resource_start(pdev, bar),
3932				pci_resource_len(pdev, bar));
3933
3934	dr = find_pci_dr(pdev);
3935	if (dr)
3936		dr->region_mask &= ~(1 << bar);
3937}
3938EXPORT_SYMBOL(pci_release_region);
3939
3940/**
3941 * __pci_request_region - Reserved PCI I/O and memory resource
3942 * @pdev: PCI device whose resources are to be reserved
3943 * @bar: BAR to be reserved
3944 * @res_name: Name to be associated with resource.
3945 * @exclusive: whether the region access is exclusive or not
3946 *
3947 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3948 * being reserved by owner @res_name.  Do not access any
3949 * address inside the PCI regions unless this call returns
3950 * successfully.
3951 *
3952 * If @exclusive is set, then the region is marked so that userspace
3953 * is explicitly not allowed to map the resource via /dev/mem or
3954 * sysfs MMIO access.
3955 *
3956 * Returns 0 on success, or %EBUSY on error.  A warning
3957 * message is also printed on failure.
3958 */
3959static int __pci_request_region(struct pci_dev *pdev, int bar,
3960				const char *res_name, int exclusive)
3961{
3962	struct pci_devres *dr;
3963
3964	if (pci_resource_len(pdev, bar) == 0)
3965		return 0;
3966
3967	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3968		if (!request_region(pci_resource_start(pdev, bar),
3969			    pci_resource_len(pdev, bar), res_name))
3970			goto err_out;
3971	} else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3972		if (!__request_mem_region(pci_resource_start(pdev, bar),
3973					pci_resource_len(pdev, bar), res_name,
3974					exclusive))
3975			goto err_out;
3976	}
3977
3978	dr = find_pci_dr(pdev);
3979	if (dr)
3980		dr->region_mask |= 1 << bar;
3981
3982	return 0;
3983
3984err_out:
3985	pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
3986		 &pdev->resource[bar]);
3987	return -EBUSY;
3988}
3989
3990/**
3991 * pci_request_region - Reserve PCI I/O and memory resource
3992 * @pdev: PCI device whose resources are to be reserved
3993 * @bar: BAR to be reserved
3994 * @res_name: Name to be associated with resource
 
 
 
 
 
3995 *
3996 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3997 * being reserved by owner @res_name.  Do not access any
3998 * address inside the PCI regions unless this call returns
3999 * successfully.
4000 *
4001 * Returns 0 on success, or %EBUSY on error.  A warning
4002 * message is also printed on failure.
4003 */
4004int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
4005{
4006	return __pci_request_region(pdev, bar, res_name, 0);
4007}
4008EXPORT_SYMBOL(pci_request_region);
4009
4010/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4011 * pci_release_selected_regions - Release selected PCI I/O and memory resources
4012 * @pdev: PCI device whose resources were previously reserved
4013 * @bars: Bitmask of BARs to be released
4014 *
4015 * Release selected PCI I/O and memory resources previously reserved.
4016 * Call this function only after all use of the PCI regions has ceased.
4017 */
4018void pci_release_selected_regions(struct pci_dev *pdev, int bars)
4019{
4020	int i;
4021
4022	for (i = 0; i < PCI_STD_NUM_BARS; i++)
4023		if (bars & (1 << i))
4024			pci_release_region(pdev, i);
4025}
4026EXPORT_SYMBOL(pci_release_selected_regions);
4027
4028static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
4029					  const char *res_name, int excl)
4030{
4031	int i;
4032
4033	for (i = 0; i < PCI_STD_NUM_BARS; i++)
4034		if (bars & (1 << i))
4035			if (__pci_request_region(pdev, i, res_name, excl))
4036				goto err_out;
4037	return 0;
4038
4039err_out:
4040	while (--i >= 0)
4041		if (bars & (1 << i))
4042			pci_release_region(pdev, i);
4043
4044	return -EBUSY;
4045}
4046
4047
4048/**
4049 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
4050 * @pdev: PCI device whose resources are to be reserved
4051 * @bars: Bitmask of BARs to be requested
4052 * @res_name: Name to be associated with resource
4053 */
4054int pci_request_selected_regions(struct pci_dev *pdev, int bars,
4055				 const char *res_name)
4056{
4057	return __pci_request_selected_regions(pdev, bars, res_name, 0);
4058}
4059EXPORT_SYMBOL(pci_request_selected_regions);
4060
4061int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
4062					   const char *res_name)
4063{
4064	return __pci_request_selected_regions(pdev, bars, res_name,
4065			IORESOURCE_EXCLUSIVE);
4066}
4067EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
4068
4069/**
4070 * pci_release_regions - Release reserved PCI I/O and memory resources
4071 * @pdev: PCI device whose resources were previously reserved by
4072 *	  pci_request_regions()
4073 *
4074 * Releases all PCI I/O and memory resources previously reserved by a
4075 * successful call to pci_request_regions().  Call this function only
4076 * after all use of the PCI regions has ceased.
4077 */
4078
4079void pci_release_regions(struct pci_dev *pdev)
4080{
4081	pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1);
4082}
4083EXPORT_SYMBOL(pci_release_regions);
4084
4085/**
4086 * pci_request_regions - Reserve PCI I/O and memory resources
4087 * @pdev: PCI device whose resources are to be reserved
4088 * @res_name: Name to be associated with resource.
4089 *
4090 * Mark all PCI regions associated with PCI device @pdev as
4091 * being reserved by owner @res_name.  Do not access any
4092 * address inside the PCI regions unless this call returns
4093 * successfully.
4094 *
4095 * Returns 0 on success, or %EBUSY on error.  A warning
4096 * message is also printed on failure.
4097 */
4098int pci_request_regions(struct pci_dev *pdev, const char *res_name)
4099{
4100	return pci_request_selected_regions(pdev,
4101			((1 << PCI_STD_NUM_BARS) - 1), res_name);
4102}
4103EXPORT_SYMBOL(pci_request_regions);
4104
4105/**
4106 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
4107 * @pdev: PCI device whose resources are to be reserved
4108 * @res_name: Name to be associated with resource.
4109 *
4110 * Mark all PCI regions associated with PCI device @pdev as being reserved
4111 * by owner @res_name.  Do not access any address inside the PCI regions
4112 * unless this call returns successfully.
 
4113 *
4114 * pci_request_regions_exclusive() will mark the region so that /dev/mem
4115 * and the sysfs MMIO access will not be allowed.
4116 *
4117 * Returns 0 on success, or %EBUSY on error.  A warning message is also
4118 * printed on failure.
4119 */
4120int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
4121{
4122	return pci_request_selected_regions_exclusive(pdev,
4123				((1 << PCI_STD_NUM_BARS) - 1), res_name);
4124}
4125EXPORT_SYMBOL(pci_request_regions_exclusive);
4126
4127/*
4128 * Record the PCI IO range (expressed as CPU physical address + size).
4129 * Return a negative value if an error has occurred, zero otherwise
4130 */
4131int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
4132			resource_size_t	size)
4133{
4134	int ret = 0;
4135#ifdef PCI_IOBASE
4136	struct logic_pio_hwaddr *range;
4137
4138	if (!size || addr + size < addr)
4139		return -EINVAL;
4140
4141	range = kzalloc(sizeof(*range), GFP_ATOMIC);
4142	if (!range)
4143		return -ENOMEM;
4144
4145	range->fwnode = fwnode;
4146	range->size = size;
4147	range->hw_start = addr;
4148	range->flags = LOGIC_PIO_CPU_MMIO;
4149
4150	ret = logic_pio_register_range(range);
4151	if (ret)
4152		kfree(range);
4153
4154	/* Ignore duplicates due to deferred probing */
4155	if (ret == -EEXIST)
4156		ret = 0;
4157#endif
4158
4159	return ret;
4160}
4161
4162phys_addr_t pci_pio_to_address(unsigned long pio)
4163{
4164	phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
4165
4166#ifdef PCI_IOBASE
4167	if (pio >= MMIO_UPPER_LIMIT)
4168		return address;
4169
4170	address = logic_pio_to_hwaddr(pio);
4171#endif
4172
4173	return address;
4174}
4175EXPORT_SYMBOL_GPL(pci_pio_to_address);
4176
4177unsigned long __weak pci_address_to_pio(phys_addr_t address)
4178{
4179#ifdef PCI_IOBASE
4180	return logic_pio_trans_cpuaddr(address);
4181#else
4182	if (address > IO_SPACE_LIMIT)
4183		return (unsigned long)-1;
4184
4185	return (unsigned long) address;
4186#endif
4187}
4188
4189/**
4190 * pci_remap_iospace - Remap the memory mapped I/O space
4191 * @res: Resource describing the I/O space
4192 * @phys_addr: physical address of range to be mapped
4193 *
4194 * Remap the memory mapped I/O space described by the @res and the CPU
4195 * physical address @phys_addr into virtual address space.  Only
4196 * architectures that have memory mapped IO functions defined (and the
4197 * PCI_IOBASE value defined) should call this function.
4198 */
4199#ifndef pci_remap_iospace
4200int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
4201{
4202#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4203	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4204
4205	if (!(res->flags & IORESOURCE_IO))
4206		return -EINVAL;
4207
4208	if (res->end > IO_SPACE_LIMIT)
4209		return -EINVAL;
4210
4211	return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
4212				  pgprot_device(PAGE_KERNEL));
4213#else
4214	/*
4215	 * This architecture does not have memory mapped I/O space,
4216	 * so this function should never be called
4217	 */
4218	WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
4219	return -ENODEV;
4220#endif
4221}
4222EXPORT_SYMBOL(pci_remap_iospace);
4223#endif
4224
4225/**
4226 * pci_unmap_iospace - Unmap the memory mapped I/O space
4227 * @res: resource to be unmapped
4228 *
4229 * Unmap the CPU virtual address @res from virtual address space.  Only
4230 * architectures that have memory mapped IO functions defined (and the
4231 * PCI_IOBASE value defined) should call this function.
4232 */
4233void pci_unmap_iospace(struct resource *res)
4234{
4235#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4236	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4237
4238	vunmap_range(vaddr, vaddr + resource_size(res));
4239#endif
4240}
4241EXPORT_SYMBOL(pci_unmap_iospace);
4242
4243static void devm_pci_unmap_iospace(struct device *dev, void *ptr)
4244{
4245	struct resource **res = ptr;
4246
4247	pci_unmap_iospace(*res);
4248}
4249
4250/**
4251 * devm_pci_remap_iospace - Managed pci_remap_iospace()
4252 * @dev: Generic device to remap IO address for
4253 * @res: Resource describing the I/O space
4254 * @phys_addr: physical address of range to be mapped
4255 *
4256 * Managed pci_remap_iospace().  Map is automatically unmapped on driver
4257 * detach.
4258 */
4259int devm_pci_remap_iospace(struct device *dev, const struct resource *res,
4260			   phys_addr_t phys_addr)
4261{
4262	const struct resource **ptr;
4263	int error;
4264
4265	ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL);
4266	if (!ptr)
4267		return -ENOMEM;
4268
4269	error = pci_remap_iospace(res, phys_addr);
4270	if (error) {
4271		devres_free(ptr);
4272	} else	{
4273		*ptr = res;
4274		devres_add(dev, ptr);
4275	}
4276
4277	return error;
4278}
4279EXPORT_SYMBOL(devm_pci_remap_iospace);
4280
4281/**
4282 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
4283 * @dev: Generic device to remap IO address for
4284 * @offset: Resource address to map
4285 * @size: Size of map
4286 *
4287 * Managed pci_remap_cfgspace().  Map is automatically unmapped on driver
4288 * detach.
4289 */
4290void __iomem *devm_pci_remap_cfgspace(struct device *dev,
4291				      resource_size_t offset,
4292				      resource_size_t size)
4293{
4294	void __iomem **ptr, *addr;
4295
4296	ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
4297	if (!ptr)
4298		return NULL;
4299
4300	addr = pci_remap_cfgspace(offset, size);
4301	if (addr) {
4302		*ptr = addr;
4303		devres_add(dev, ptr);
4304	} else
4305		devres_free(ptr);
4306
4307	return addr;
4308}
4309EXPORT_SYMBOL(devm_pci_remap_cfgspace);
4310
4311/**
4312 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
4313 * @dev: generic device to handle the resource for
4314 * @res: configuration space resource to be handled
4315 *
4316 * Checks that a resource is a valid memory region, requests the memory
4317 * region and ioremaps with pci_remap_cfgspace() API that ensures the
4318 * proper PCI configuration space memory attributes are guaranteed.
4319 *
4320 * All operations are managed and will be undone on driver detach.
4321 *
4322 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
4323 * on failure. Usage example::
4324 *
4325 *	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4326 *	base = devm_pci_remap_cfg_resource(&pdev->dev, res);
4327 *	if (IS_ERR(base))
4328 *		return PTR_ERR(base);
4329 */
4330void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
4331					  struct resource *res)
4332{
4333	resource_size_t size;
4334	const char *name;
4335	void __iomem *dest_ptr;
4336
4337	BUG_ON(!dev);
4338
4339	if (!res || resource_type(res) != IORESOURCE_MEM) {
4340		dev_err(dev, "invalid resource\n");
4341		return IOMEM_ERR_PTR(-EINVAL);
4342	}
4343
4344	size = resource_size(res);
4345
4346	if (res->name)
4347		name = devm_kasprintf(dev, GFP_KERNEL, "%s %s", dev_name(dev),
4348				      res->name);
4349	else
4350		name = devm_kstrdup(dev, dev_name(dev), GFP_KERNEL);
4351	if (!name)
4352		return IOMEM_ERR_PTR(-ENOMEM);
4353
4354	if (!devm_request_mem_region(dev, res->start, size, name)) {
4355		dev_err(dev, "can't request region for resource %pR\n", res);
4356		return IOMEM_ERR_PTR(-EBUSY);
4357	}
4358
4359	dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
4360	if (!dest_ptr) {
4361		dev_err(dev, "ioremap failed for resource %pR\n", res);
4362		devm_release_mem_region(dev, res->start, size);
4363		dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
4364	}
4365
4366	return dest_ptr;
4367}
4368EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
4369
4370static void __pci_set_master(struct pci_dev *dev, bool enable)
4371{
4372	u16 old_cmd, cmd;
4373
4374	pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4375	if (enable)
4376		cmd = old_cmd | PCI_COMMAND_MASTER;
4377	else
4378		cmd = old_cmd & ~PCI_COMMAND_MASTER;
4379	if (cmd != old_cmd) {
4380		pci_dbg(dev, "%s bus mastering\n",
4381			enable ? "enabling" : "disabling");
4382		pci_write_config_word(dev, PCI_COMMAND, cmd);
4383	}
4384	dev->is_busmaster = enable;
4385}
4386
4387/**
4388 * pcibios_setup - process "pci=" kernel boot arguments
4389 * @str: string used to pass in "pci=" kernel boot arguments
4390 *
4391 * Process kernel boot arguments.  This is the default implementation.
4392 * Architecture specific implementations can override this as necessary.
4393 */
4394char * __weak __init pcibios_setup(char *str)
4395{
4396	return str;
4397}
4398
4399/**
4400 * pcibios_set_master - enable PCI bus-mastering for device dev
4401 * @dev: the PCI device to enable
4402 *
4403 * Enables PCI bus-mastering for the device.  This is the default
4404 * implementation.  Architecture specific implementations can override
4405 * this if necessary.
4406 */
4407void __weak pcibios_set_master(struct pci_dev *dev)
4408{
4409	u8 lat;
4410
4411	/* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4412	if (pci_is_pcie(dev))
4413		return;
4414
4415	pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4416	if (lat < 16)
4417		lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4418	else if (lat > pcibios_max_latency)
4419		lat = pcibios_max_latency;
4420	else
4421		return;
4422
4423	pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4424}
4425
4426/**
4427 * pci_set_master - enables bus-mastering for device dev
4428 * @dev: the PCI device to enable
4429 *
4430 * Enables bus-mastering on the device and calls pcibios_set_master()
4431 * to do the needed arch specific settings.
4432 */
4433void pci_set_master(struct pci_dev *dev)
4434{
4435	__pci_set_master(dev, true);
4436	pcibios_set_master(dev);
4437}
4438EXPORT_SYMBOL(pci_set_master);
4439
4440/**
4441 * pci_clear_master - disables bus-mastering for device dev
4442 * @dev: the PCI device to disable
4443 */
4444void pci_clear_master(struct pci_dev *dev)
4445{
4446	__pci_set_master(dev, false);
4447}
4448EXPORT_SYMBOL(pci_clear_master);
4449
4450/**
4451 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4452 * @dev: the PCI device for which MWI is to be enabled
4453 *
4454 * Helper function for pci_set_mwi.
4455 * Originally copied from drivers/net/acenic.c.
4456 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4457 *
4458 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4459 */
4460int pci_set_cacheline_size(struct pci_dev *dev)
4461{
4462	u8 cacheline_size;
4463
4464	if (!pci_cache_line_size)
4465		return -EINVAL;
4466
4467	/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4468	   equal to or multiple of the right value. */
4469	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4470	if (cacheline_size >= pci_cache_line_size &&
4471	    (cacheline_size % pci_cache_line_size) == 0)
4472		return 0;
4473
4474	/* Write the correct value. */
4475	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4476	/* Read it back. */
4477	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4478	if (cacheline_size == pci_cache_line_size)
4479		return 0;
4480
4481	pci_dbg(dev, "cache line size of %d is not supported\n",
4482		   pci_cache_line_size << 2);
4483
4484	return -EINVAL;
4485}
4486EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4487
4488/**
4489 * pci_set_mwi - enables memory-write-invalidate PCI transaction
4490 * @dev: the PCI device for which MWI is enabled
4491 *
4492 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4493 *
4494 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4495 */
4496int pci_set_mwi(struct pci_dev *dev)
4497{
4498#ifdef PCI_DISABLE_MWI
4499	return 0;
4500#else
4501	int rc;
4502	u16 cmd;
4503
4504	rc = pci_set_cacheline_size(dev);
4505	if (rc)
4506		return rc;
4507
4508	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4509	if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4510		pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4511		cmd |= PCI_COMMAND_INVALIDATE;
4512		pci_write_config_word(dev, PCI_COMMAND, cmd);
4513	}
4514	return 0;
4515#endif
4516}
4517EXPORT_SYMBOL(pci_set_mwi);
4518
4519/**
4520 * pcim_set_mwi - a device-managed pci_set_mwi()
4521 * @dev: the PCI device for which MWI is enabled
4522 *
4523 * Managed pci_set_mwi().
4524 *
4525 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4526 */
4527int pcim_set_mwi(struct pci_dev *dev)
4528{
4529	struct pci_devres *dr;
4530
4531	dr = find_pci_dr(dev);
4532	if (!dr)
4533		return -ENOMEM;
4534
4535	dr->mwi = 1;
4536	return pci_set_mwi(dev);
4537}
4538EXPORT_SYMBOL(pcim_set_mwi);
4539
4540/**
4541 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4542 * @dev: the PCI device for which MWI is enabled
4543 *
4544 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4545 * Callers are not required to check the return value.
4546 *
4547 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4548 */
4549int pci_try_set_mwi(struct pci_dev *dev)
4550{
4551#ifdef PCI_DISABLE_MWI
4552	return 0;
4553#else
4554	return pci_set_mwi(dev);
4555#endif
4556}
4557EXPORT_SYMBOL(pci_try_set_mwi);
4558
4559/**
4560 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4561 * @dev: the PCI device to disable
4562 *
4563 * Disables PCI Memory-Write-Invalidate transaction on the device
4564 */
4565void pci_clear_mwi(struct pci_dev *dev)
4566{
4567#ifndef PCI_DISABLE_MWI
4568	u16 cmd;
4569
4570	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4571	if (cmd & PCI_COMMAND_INVALIDATE) {
4572		cmd &= ~PCI_COMMAND_INVALIDATE;
4573		pci_write_config_word(dev, PCI_COMMAND, cmd);
4574	}
4575#endif
4576}
4577EXPORT_SYMBOL(pci_clear_mwi);
4578
4579/**
4580 * pci_disable_parity - disable parity checking for device
4581 * @dev: the PCI device to operate on
4582 *
4583 * Disable parity checking for device @dev
4584 */
4585void pci_disable_parity(struct pci_dev *dev)
4586{
4587	u16 cmd;
4588
4589	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4590	if (cmd & PCI_COMMAND_PARITY) {
4591		cmd &= ~PCI_COMMAND_PARITY;
4592		pci_write_config_word(dev, PCI_COMMAND, cmd);
4593	}
4594}
4595
4596/**
4597 * pci_intx - enables/disables PCI INTx for device dev
4598 * @pdev: the PCI device to operate on
4599 * @enable: boolean: whether to enable or disable PCI INTx
4600 *
4601 * Enables/disables PCI INTx for device @pdev
4602 */
4603void pci_intx(struct pci_dev *pdev, int enable)
4604{
4605	u16 pci_command, new;
4606
4607	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4608
4609	if (enable)
4610		new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4611	else
4612		new = pci_command | PCI_COMMAND_INTX_DISABLE;
4613
4614	if (new != pci_command) {
4615		struct pci_devres *dr;
4616
4617		pci_write_config_word(pdev, PCI_COMMAND, new);
4618
4619		dr = find_pci_dr(pdev);
4620		if (dr && !dr->restore_intx) {
4621			dr->restore_intx = 1;
4622			dr->orig_intx = !enable;
4623		}
4624	}
4625}
4626EXPORT_SYMBOL_GPL(pci_intx);
4627
4628static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
4629{
4630	struct pci_bus *bus = dev->bus;
4631	bool mask_updated = true;
4632	u32 cmd_status_dword;
4633	u16 origcmd, newcmd;
4634	unsigned long flags;
4635	bool irq_pending;
4636
4637	/*
4638	 * We do a single dword read to retrieve both command and status.
4639	 * Document assumptions that make this possible.
4640	 */
4641	BUILD_BUG_ON(PCI_COMMAND % 4);
4642	BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
4643
4644	raw_spin_lock_irqsave(&pci_lock, flags);
4645
4646	bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
4647
4648	irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
4649
4650	/*
4651	 * Check interrupt status register to see whether our device
4652	 * triggered the interrupt (when masking) or the next IRQ is
4653	 * already pending (when unmasking).
4654	 */
4655	if (mask != irq_pending) {
4656		mask_updated = false;
4657		goto done;
4658	}
4659
4660	origcmd = cmd_status_dword;
4661	newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
4662	if (mask)
4663		newcmd |= PCI_COMMAND_INTX_DISABLE;
4664	if (newcmd != origcmd)
4665		bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
4666
4667done:
4668	raw_spin_unlock_irqrestore(&pci_lock, flags);
4669
4670	return mask_updated;
4671}
4672
4673/**
4674 * pci_check_and_mask_intx - mask INTx on pending interrupt
4675 * @dev: the PCI device to operate on
4676 *
4677 * Check if the device dev has its INTx line asserted, mask it and return
4678 * true in that case. False is returned if no interrupt was pending.
 
4679 */
4680bool pci_check_and_mask_intx(struct pci_dev *dev)
4681{
4682	return pci_check_and_set_intx_mask(dev, true);
4683}
4684EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
4685
4686/**
4687 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
4688 * @dev: the PCI device to operate on
4689 *
4690 * Check if the device dev has its INTx line asserted, unmask it if not and
4691 * return true. False is returned and the mask remains active if there was
4692 * still an interrupt pending.
4693 */
4694bool pci_check_and_unmask_intx(struct pci_dev *dev)
4695{
4696	return pci_check_and_set_intx_mask(dev, false);
4697}
4698EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
4699
4700/**
4701 * pci_wait_for_pending_transaction - wait for pending transaction
4702 * @dev: the PCI device to operate on
4703 *
4704 * Return 0 if transaction is pending 1 otherwise.
4705 */
4706int pci_wait_for_pending_transaction(struct pci_dev *dev)
4707{
4708	if (!pci_is_pcie(dev))
4709		return 1;
4710
4711	return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4712				    PCI_EXP_DEVSTA_TRPND);
4713}
4714EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4715
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4716/**
4717 * pcie_flr - initiate a PCIe function level reset
4718 * @dev: device to reset
4719 *
4720 * Initiate a function level reset unconditionally on @dev without
4721 * checking any flags and DEVCAP
 
4722 */
4723int pcie_flr(struct pci_dev *dev)
4724{
4725	if (!pci_wait_for_pending_transaction(dev))
4726		pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4727
4728	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4729
4730	if (dev->imm_ready)
4731		return 0;
4732
4733	/*
4734	 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4735	 * 100ms, but may silently discard requests while the FLR is in
4736	 * progress.  Wait 100ms before trying to access the device.
4737	 */
4738	msleep(100);
4739
4740	return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4741}
4742EXPORT_SYMBOL_GPL(pcie_flr);
4743
4744/**
4745 * pcie_reset_flr - initiate a PCIe function level reset
4746 * @dev: device to reset
4747 * @probe: if true, return 0 if device can be reset this way
4748 *
4749 * Initiate a function level reset on @dev.
4750 */
4751int pcie_reset_flr(struct pci_dev *dev, bool probe)
4752{
4753	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4754		return -ENOTTY;
4755
4756	if (!(dev->devcap & PCI_EXP_DEVCAP_FLR))
4757		return -ENOTTY;
4758
4759	if (probe)
4760		return 0;
4761
4762	return pcie_flr(dev);
4763}
4764EXPORT_SYMBOL_GPL(pcie_reset_flr);
4765
4766static int pci_af_flr(struct pci_dev *dev, bool probe)
4767{
4768	int pos;
4769	u8 cap;
4770
4771	pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4772	if (!pos)
4773		return -ENOTTY;
4774
4775	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4776		return -ENOTTY;
4777
4778	pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4779	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4780		return -ENOTTY;
4781
4782	if (probe)
4783		return 0;
4784
4785	/*
4786	 * Wait for Transaction Pending bit to clear.  A word-aligned test
4787	 * is used, so we use the control offset rather than status and shift
4788	 * the test bit to match.
4789	 */
4790	if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4791				 PCI_AF_STATUS_TP << 8))
4792		pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4793
4794	pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4795
4796	if (dev->imm_ready)
4797		return 0;
4798
4799	/*
4800	 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4801	 * updated 27 July 2006; a device must complete an FLR within
4802	 * 100ms, but may silently discard requests while the FLR is in
4803	 * progress.  Wait 100ms before trying to access the device.
4804	 */
4805	msleep(100);
4806
4807	return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4808}
4809
4810/**
4811 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4812 * @dev: Device to reset.
4813 * @probe: if true, return 0 if the device can be reset this way.
4814 *
4815 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4816 * unset, it will be reinitialized internally when going from PCI_D3hot to
4817 * PCI_D0.  If that's the case and the device is not in a low-power state
4818 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4819 *
4820 * NOTE: This causes the caller to sleep for twice the device power transition
4821 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4822 * by default (i.e. unless the @dev's d3hot_delay field has a different value).
4823 * Moreover, only devices in D0 can be reset by this function.
4824 */
4825static int pci_pm_reset(struct pci_dev *dev, bool probe)
4826{
4827	u16 csr;
4828
4829	if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4830		return -ENOTTY;
4831
4832	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4833	if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4834		return -ENOTTY;
4835
4836	if (probe)
4837		return 0;
4838
4839	if (dev->current_state != PCI_D0)
4840		return -EINVAL;
4841
4842	csr &= ~PCI_PM_CTRL_STATE_MASK;
4843	csr |= PCI_D3hot;
4844	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4845	pci_dev_d3_sleep(dev);
4846
4847	csr &= ~PCI_PM_CTRL_STATE_MASK;
4848	csr |= PCI_D0;
4849	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4850	pci_dev_d3_sleep(dev);
4851
4852	return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS);
4853}
4854
4855/**
4856 * pcie_wait_for_link_delay - Wait until link is active or inactive
4857 * @pdev: Bridge device
4858 * @active: waiting for active or inactive?
4859 * @delay: Delay to wait after link has become active (in ms)
4860 *
4861 * Use this to wait till link becomes active or inactive.
4862 */
4863static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active,
4864				     int delay)
4865{
4866	int timeout = 1000;
4867	bool ret;
4868	u16 lnk_status;
4869
4870	/*
4871	 * Some controllers might not implement link active reporting. In this
4872	 * case, we wait for 1000 ms + any delay requested by the caller.
4873	 */
4874	if (!pdev->link_active_reporting) {
4875		msleep(timeout + delay);
4876		return true;
4877	}
4878
4879	/*
4880	 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4881	 * after which we should expect an link active if the reset was
4882	 * successful. If so, software must wait a minimum 100ms before sending
4883	 * configuration requests to devices downstream this port.
4884	 *
4885	 * If the link fails to activate, either the device was physically
4886	 * removed or the link is permanently failed.
4887	 */
4888	if (active)
4889		msleep(20);
4890	for (;;) {
4891		pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status);
4892		ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA);
4893		if (ret == active)
4894			break;
4895		if (timeout <= 0)
4896			break;
4897		msleep(10);
4898		timeout -= 10;
4899	}
4900	if (active && ret)
4901		msleep(delay);
4902
4903	return ret == active;
4904}
4905
4906/**
4907 * pcie_wait_for_link - Wait until link is active or inactive
4908 * @pdev: Bridge device
4909 * @active: waiting for active or inactive?
4910 *
4911 * Use this to wait till link becomes active or inactive.
4912 */
4913bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
4914{
4915	return pcie_wait_for_link_delay(pdev, active, 100);
4916}
4917
4918/*
4919 * Find maximum D3cold delay required by all the devices on the bus.  The
4920 * spec says 100 ms, but firmware can lower it and we allow drivers to
4921 * increase it as well.
4922 *
4923 * Called with @pci_bus_sem locked for reading.
4924 */
4925static int pci_bus_max_d3cold_delay(const struct pci_bus *bus)
4926{
4927	const struct pci_dev *pdev;
4928	int min_delay = 100;
4929	int max_delay = 0;
4930
4931	list_for_each_entry(pdev, &bus->devices, bus_list) {
4932		if (pdev->d3cold_delay < min_delay)
4933			min_delay = pdev->d3cold_delay;
4934		if (pdev->d3cold_delay > max_delay)
4935			max_delay = pdev->d3cold_delay;
4936	}
4937
4938	return max(min_delay, max_delay);
4939}
4940
4941/**
4942 * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible
4943 * @dev: PCI bridge
4944 *
4945 * Handle necessary delays before access to the devices on the secondary
4946 * side of the bridge are permitted after D3cold to D0 transition.
4947 *
4948 * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For
4949 * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section
4950 * 4.3.2.
4951 */
4952void pci_bridge_wait_for_secondary_bus(struct pci_dev *dev)
4953{
4954	struct pci_dev *child;
4955	int delay;
4956
4957	if (pci_dev_is_disconnected(dev))
4958		return;
4959
4960	if (!pci_is_bridge(dev) || !dev->bridge_d3)
4961		return;
4962
4963	down_read(&pci_bus_sem);
4964
4965	/*
4966	 * We only deal with devices that are present currently on the bus.
4967	 * For any hot-added devices the access delay is handled in pciehp
4968	 * board_added(). In case of ACPI hotplug the firmware is expected
4969	 * to configure the devices before OS is notified.
4970	 */
4971	if (!dev->subordinate || list_empty(&dev->subordinate->devices)) {
4972		up_read(&pci_bus_sem);
4973		return;
4974	}
4975
4976	/* Take d3cold_delay requirements into account */
4977	delay = pci_bus_max_d3cold_delay(dev->subordinate);
4978	if (!delay) {
4979		up_read(&pci_bus_sem);
4980		return;
4981	}
4982
4983	child = list_first_entry(&dev->subordinate->devices, struct pci_dev,
4984				 bus_list);
4985	up_read(&pci_bus_sem);
4986
4987	/*
4988	 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before
4989	 * accessing the device after reset (that is 1000 ms + 100 ms). In
4990	 * practice this should not be needed because we don't do power
4991	 * management for them (see pci_bridge_d3_possible()).
4992	 */
4993	if (!pci_is_pcie(dev)) {
4994		pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay);
4995		msleep(1000 + delay);
4996		return;
4997	}
4998
4999	/*
5000	 * For PCIe downstream and root ports that do not support speeds
5001	 * greater than 5 GT/s need to wait minimum 100 ms. For higher
5002	 * speeds (gen3) we need to wait first for the data link layer to
5003	 * become active.
5004	 *
5005	 * However, 100 ms is the minimum and the PCIe spec says the
5006	 * software must allow at least 1s before it can determine that the
5007	 * device that did not respond is a broken device. There is
5008	 * evidence that 100 ms is not always enough, for example certain
5009	 * Titan Ridge xHCI controller does not always respond to
5010	 * configuration requests if we only wait for 100 ms (see
5011	 * https://bugzilla.kernel.org/show_bug.cgi?id=203885).
5012	 *
5013	 * Therefore we wait for 100 ms and check for the device presence.
5014	 * If it is still not present give it an additional 100 ms.
5015	 */
5016	if (!pcie_downstream_port(dev))
5017		return;
5018
5019	if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) {
5020		pci_dbg(dev, "waiting %d ms for downstream link\n", delay);
5021		msleep(delay);
5022	} else {
5023		pci_dbg(dev, "waiting %d ms for downstream link, after activation\n",
5024			delay);
5025		if (!pcie_wait_for_link_delay(dev, true, delay)) {
5026			/* Did not train, no need to wait any further */
5027			pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n");
5028			return;
5029		}
5030	}
5031
5032	if (!pci_device_is_present(child)) {
5033		pci_dbg(child, "waiting additional %d ms to become accessible\n", delay);
5034		msleep(delay);
5035	}
5036}
5037
5038void pci_reset_secondary_bus(struct pci_dev *dev)
5039{
5040	u16 ctrl;
5041
5042	pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
5043	ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
5044	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
5045
5046	/*
5047	 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms.  Double
5048	 * this to 2ms to ensure that we meet the minimum requirement.
5049	 */
5050	msleep(2);
5051
5052	ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
5053	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
5054
5055	/*
5056	 * Trhfa for conventional PCI is 2^25 clock cycles.
5057	 * Assuming a minimum 33MHz clock this results in a 1s
5058	 * delay before we can consider subordinate devices to
5059	 * be re-initialized.  PCIe has some ways to shorten this,
5060	 * but we don't make use of them yet.
5061	 */
5062	ssleep(1);
5063}
5064
5065void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
5066{
5067	pci_reset_secondary_bus(dev);
5068}
5069
5070/**
5071 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
5072 * @dev: Bridge device
5073 *
5074 * Use the bridge control register to assert reset on the secondary bus.
5075 * Devices on the secondary bus are left in power-on state.
5076 */
5077int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
5078{
5079	pcibios_reset_secondary_bus(dev);
5080
5081	return pci_dev_wait(dev, "bus reset", PCIE_RESET_READY_POLL_MS);
5082}
5083EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
5084
5085static int pci_parent_bus_reset(struct pci_dev *dev, bool probe)
5086{
5087	struct pci_dev *pdev;
5088
5089	if (pci_is_root_bus(dev->bus) || dev->subordinate ||
5090	    !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5091		return -ENOTTY;
5092
5093	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
5094		if (pdev != dev)
5095			return -ENOTTY;
5096
5097	if (probe)
5098		return 0;
5099
5100	return pci_bridge_secondary_bus_reset(dev->bus->self);
 
 
5101}
5102
5103static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, bool probe)
5104{
5105	int rc = -ENOTTY;
5106
5107	if (!hotplug || !try_module_get(hotplug->owner))
5108		return rc;
5109
5110	if (hotplug->ops->reset_slot)
5111		rc = hotplug->ops->reset_slot(hotplug, probe);
5112
5113	module_put(hotplug->owner);
5114
5115	return rc;
5116}
5117
5118static int pci_dev_reset_slot_function(struct pci_dev *dev, bool probe)
5119{
5120	if (dev->multifunction || dev->subordinate || !dev->slot ||
 
 
5121	    dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5122		return -ENOTTY;
5123
5124	return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
5125}
5126
5127static int pci_reset_bus_function(struct pci_dev *dev, bool probe)
5128{
5129	int rc;
5130
5131	rc = pci_dev_reset_slot_function(dev, probe);
5132	if (rc != -ENOTTY)
5133		return rc;
5134	return pci_parent_bus_reset(dev, probe);
5135}
5136
5137void pci_dev_lock(struct pci_dev *dev)
5138{
 
5139	/* block PM suspend, driver probe, etc. */
5140	device_lock(&dev->dev);
5141	pci_cfg_access_lock(dev);
5142}
5143EXPORT_SYMBOL_GPL(pci_dev_lock);
5144
5145/* Return 1 on successful lock, 0 on contention */
5146int pci_dev_trylock(struct pci_dev *dev)
5147{
5148	if (device_trylock(&dev->dev)) {
5149		if (pci_cfg_access_trylock(dev))
5150			return 1;
5151		device_unlock(&dev->dev);
5152	}
5153
5154	return 0;
5155}
5156EXPORT_SYMBOL_GPL(pci_dev_trylock);
5157
5158void pci_dev_unlock(struct pci_dev *dev)
5159{
5160	pci_cfg_access_unlock(dev);
5161	device_unlock(&dev->dev);
 
5162}
5163EXPORT_SYMBOL_GPL(pci_dev_unlock);
5164
5165static void pci_dev_save_and_disable(struct pci_dev *dev)
5166{
5167	const struct pci_error_handlers *err_handler =
5168			dev->driver ? dev->driver->err_handler : NULL;
5169
5170	/*
5171	 * dev->driver->err_handler->reset_prepare() is protected against
5172	 * races with ->remove() by the device lock, which must be held by
5173	 * the caller.
5174	 */
5175	if (err_handler && err_handler->reset_prepare)
5176		err_handler->reset_prepare(dev);
5177
5178	/*
5179	 * Wake-up device prior to save.  PM registers default to D0 after
5180	 * reset and a simple register restore doesn't reliably return
5181	 * to a non-D0 state anyway.
5182	 */
5183	pci_set_power_state(dev, PCI_D0);
5184
5185	pci_save_state(dev);
5186	/*
5187	 * Disable the device by clearing the Command register, except for
5188	 * INTx-disable which is set.  This not only disables MMIO and I/O port
5189	 * BARs, but also prevents the device from being Bus Master, preventing
5190	 * DMA from the device including MSI/MSI-X interrupts.  For PCI 2.3
5191	 * compliant devices, INTx-disable prevents legacy interrupts.
5192	 */
5193	pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
5194}
5195
5196static void pci_dev_restore(struct pci_dev *dev)
5197{
5198	const struct pci_error_handlers *err_handler =
5199			dev->driver ? dev->driver->err_handler : NULL;
5200
5201	pci_restore_state(dev);
5202
5203	/*
5204	 * dev->driver->err_handler->reset_done() is protected against
5205	 * races with ->remove() by the device lock, which must be held by
5206	 * the caller.
5207	 */
5208	if (err_handler && err_handler->reset_done)
5209		err_handler->reset_done(dev);
5210}
5211
5212/* dev->reset_methods[] is a 0-terminated list of indices into this array */
5213static const struct pci_reset_fn_method pci_reset_fn_methods[] = {
5214	{ },
5215	{ pci_dev_specific_reset, .name = "device_specific" },
5216	{ pci_dev_acpi_reset, .name = "acpi" },
5217	{ pcie_reset_flr, .name = "flr" },
5218	{ pci_af_flr, .name = "af_flr" },
5219	{ pci_pm_reset, .name = "pm" },
5220	{ pci_reset_bus_function, .name = "bus" },
5221};
5222
5223static ssize_t reset_method_show(struct device *dev,
5224				 struct device_attribute *attr, char *buf)
5225{
5226	struct pci_dev *pdev = to_pci_dev(dev);
5227	ssize_t len = 0;
5228	int i, m;
5229
5230	for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5231		m = pdev->reset_methods[i];
5232		if (!m)
5233			break;
5234
5235		len += sysfs_emit_at(buf, len, "%s%s", len ? " " : "",
5236				     pci_reset_fn_methods[m].name);
5237	}
5238
5239	if (len)
5240		len += sysfs_emit_at(buf, len, "\n");
5241
5242	return len;
5243}
5244
5245static int reset_method_lookup(const char *name)
5246{
5247	int m;
5248
5249	for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5250		if (sysfs_streq(name, pci_reset_fn_methods[m].name))
5251			return m;
5252	}
5253
5254	return 0;	/* not found */
5255}
5256
5257static ssize_t reset_method_store(struct device *dev,
5258				  struct device_attribute *attr,
5259				  const char *buf, size_t count)
5260{
5261	struct pci_dev *pdev = to_pci_dev(dev);
5262	char *options, *name;
5263	int m, n;
5264	u8 reset_methods[PCI_NUM_RESET_METHODS] = { 0 };
5265
5266	if (sysfs_streq(buf, "")) {
5267		pdev->reset_methods[0] = 0;
5268		pci_warn(pdev, "All device reset methods disabled by user");
5269		return count;
5270	}
5271
5272	if (sysfs_streq(buf, "default")) {
5273		pci_init_reset_methods(pdev);
5274		return count;
5275	}
5276
5277	options = kstrndup(buf, count, GFP_KERNEL);
5278	if (!options)
5279		return -ENOMEM;
5280
5281	n = 0;
5282	while ((name = strsep(&options, " ")) != NULL) {
5283		if (sysfs_streq(name, ""))
5284			continue;
5285
5286		name = strim(name);
5287
5288		m = reset_method_lookup(name);
5289		if (!m) {
5290			pci_err(pdev, "Invalid reset method '%s'", name);
5291			goto error;
5292		}
5293
5294		if (pci_reset_fn_methods[m].reset_fn(pdev, PCI_RESET_PROBE)) {
5295			pci_err(pdev, "Unsupported reset method '%s'", name);
5296			goto error;
5297		}
5298
5299		if (n == PCI_NUM_RESET_METHODS - 1) {
5300			pci_err(pdev, "Too many reset methods\n");
5301			goto error;
5302		}
5303
5304		reset_methods[n++] = m;
5305	}
5306
5307	reset_methods[n] = 0;
5308
5309	/* Warn if dev-specific supported but not highest priority */
5310	if (pci_reset_fn_methods[1].reset_fn(pdev, PCI_RESET_PROBE) == 0 &&
5311	    reset_methods[0] != 1)
5312		pci_warn(pdev, "Device-specific reset disabled/de-prioritized by user");
5313	memcpy(pdev->reset_methods, reset_methods, sizeof(pdev->reset_methods));
5314	kfree(options);
5315	return count;
5316
5317error:
5318	/* Leave previous methods unchanged */
5319	kfree(options);
5320	return -EINVAL;
5321}
5322static DEVICE_ATTR_RW(reset_method);
5323
5324static struct attribute *pci_dev_reset_method_attrs[] = {
5325	&dev_attr_reset_method.attr,
5326	NULL,
5327};
5328
5329static umode_t pci_dev_reset_method_attr_is_visible(struct kobject *kobj,
5330						    struct attribute *a, int n)
5331{
5332	struct pci_dev *pdev = to_pci_dev(kobj_to_dev(kobj));
5333
5334	if (!pci_reset_supported(pdev))
5335		return 0;
5336
5337	return a->mode;
5338}
5339
5340const struct attribute_group pci_dev_reset_method_attr_group = {
5341	.attrs = pci_dev_reset_method_attrs,
5342	.is_visible = pci_dev_reset_method_attr_is_visible,
5343};
5344
5345/**
5346 * __pci_reset_function_locked - reset a PCI device function while holding
5347 * the @dev mutex lock.
5348 * @dev: PCI device to reset
5349 *
5350 * Some devices allow an individual function to be reset without affecting
5351 * other functions in the same device.  The PCI device must be responsive
5352 * to PCI config space in order to use this function.
5353 *
5354 * The device function is presumed to be unused and the caller is holding
5355 * the device mutex lock when this function is called.
5356 *
5357 * Resetting the device will make the contents of PCI configuration space
5358 * random, so any caller of this must be prepared to reinitialise the
5359 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
5360 * etc.
5361 *
5362 * Returns 0 if the device function was successfully reset or negative if the
5363 * device doesn't support resetting a single function.
5364 */
5365int __pci_reset_function_locked(struct pci_dev *dev)
5366{
5367	int i, m, rc;
5368
5369	might_sleep();
5370
5371	/*
5372	 * A reset method returns -ENOTTY if it doesn't support this device and
5373	 * we should try the next method.
5374	 *
5375	 * If it returns 0 (success), we're finished.  If it returns any other
5376	 * error, we're also finished: this indicates that further reset
5377	 * mechanisms might be broken on the device.
5378	 */
5379	for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5380		m = dev->reset_methods[i];
5381		if (!m)
5382			return -ENOTTY;
5383
5384		rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_DO_RESET);
5385		if (!rc)
5386			return 0;
5387		if (rc != -ENOTTY)
5388			return rc;
5389	}
5390
5391	return -ENOTTY;
 
 
 
 
 
 
 
 
5392}
5393EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
5394
5395/**
5396 * pci_init_reset_methods - check whether device can be safely reset
5397 * and store supported reset mechanisms.
5398 * @dev: PCI device to check for reset mechanisms
5399 *
5400 * Some devices allow an individual function to be reset without affecting
5401 * other functions in the same device.  The PCI device must be in D0-D3hot
5402 * state.
5403 *
5404 * Stores reset mechanisms supported by device in reset_methods byte array
5405 * which is a member of struct pci_dev.
5406 */
5407void pci_init_reset_methods(struct pci_dev *dev)
5408{
5409	int m, i, rc;
5410
5411	BUILD_BUG_ON(ARRAY_SIZE(pci_reset_fn_methods) != PCI_NUM_RESET_METHODS);
5412
5413	might_sleep();
5414
5415	i = 0;
5416	for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5417		rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_PROBE);
5418		if (!rc)
5419			dev->reset_methods[i++] = m;
5420		else if (rc != -ENOTTY)
5421			break;
5422	}
 
 
 
 
 
 
5423
5424	dev->reset_methods[i] = 0;
5425}
5426
5427/**
5428 * pci_reset_function - quiesce and reset a PCI device function
5429 * @dev: PCI device to reset
5430 *
5431 * Some devices allow an individual function to be reset without affecting
5432 * other functions in the same device.  The PCI device must be responsive
5433 * to PCI config space in order to use this function.
5434 *
5435 * This function does not just reset the PCI portion of a device, but
5436 * clears all the state associated with the device.  This function differs
5437 * from __pci_reset_function_locked() in that it saves and restores device state
5438 * over the reset and takes the PCI device lock.
5439 *
5440 * Returns 0 if the device function was successfully reset or negative if the
5441 * device doesn't support resetting a single function.
5442 */
5443int pci_reset_function(struct pci_dev *dev)
5444{
5445	int rc;
5446
5447	if (!pci_reset_supported(dev))
5448		return -ENOTTY;
5449
5450	pci_dev_lock(dev);
5451	pci_dev_save_and_disable(dev);
5452
5453	rc = __pci_reset_function_locked(dev);
5454
5455	pci_dev_restore(dev);
5456	pci_dev_unlock(dev);
5457
5458	return rc;
5459}
5460EXPORT_SYMBOL_GPL(pci_reset_function);
5461
5462/**
5463 * pci_reset_function_locked - quiesce and reset a PCI device function
5464 * @dev: PCI device to reset
5465 *
5466 * Some devices allow an individual function to be reset without affecting
5467 * other functions in the same device.  The PCI device must be responsive
5468 * to PCI config space in order to use this function.
5469 *
5470 * This function does not just reset the PCI portion of a device, but
5471 * clears all the state associated with the device.  This function differs
5472 * from __pci_reset_function_locked() in that it saves and restores device state
5473 * over the reset.  It also differs from pci_reset_function() in that it
5474 * requires the PCI device lock to be held.
5475 *
5476 * Returns 0 if the device function was successfully reset or negative if the
5477 * device doesn't support resetting a single function.
5478 */
5479int pci_reset_function_locked(struct pci_dev *dev)
5480{
5481	int rc;
5482
5483	if (!pci_reset_supported(dev))
5484		return -ENOTTY;
5485
5486	pci_dev_save_and_disable(dev);
5487
5488	rc = __pci_reset_function_locked(dev);
5489
5490	pci_dev_restore(dev);
5491
5492	return rc;
5493}
5494EXPORT_SYMBOL_GPL(pci_reset_function_locked);
5495
5496/**
5497 * pci_try_reset_function - quiesce and reset a PCI device function
5498 * @dev: PCI device to reset
5499 *
5500 * Same as above, except return -EAGAIN if unable to lock device.
5501 */
5502int pci_try_reset_function(struct pci_dev *dev)
5503{
5504	int rc;
5505
5506	if (!pci_reset_supported(dev))
5507		return -ENOTTY;
5508
5509	if (!pci_dev_trylock(dev))
5510		return -EAGAIN;
5511
5512	pci_dev_save_and_disable(dev);
5513	rc = __pci_reset_function_locked(dev);
5514	pci_dev_restore(dev);
5515	pci_dev_unlock(dev);
5516
5517	return rc;
5518}
5519EXPORT_SYMBOL_GPL(pci_try_reset_function);
5520
5521/* Do any devices on or below this bus prevent a bus reset? */
5522static bool pci_bus_resetable(struct pci_bus *bus)
5523{
5524	struct pci_dev *dev;
5525
5526
5527	if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5528		return false;
5529
5530	list_for_each_entry(dev, &bus->devices, bus_list) {
5531		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5532		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5533			return false;
5534	}
5535
5536	return true;
5537}
5538
5539/* Lock devices from the top of the tree down */
5540static void pci_bus_lock(struct pci_bus *bus)
5541{
5542	struct pci_dev *dev;
5543
5544	list_for_each_entry(dev, &bus->devices, bus_list) {
5545		pci_dev_lock(dev);
5546		if (dev->subordinate)
5547			pci_bus_lock(dev->subordinate);
5548	}
5549}
5550
5551/* Unlock devices from the bottom of the tree up */
5552static void pci_bus_unlock(struct pci_bus *bus)
5553{
5554	struct pci_dev *dev;
5555
5556	list_for_each_entry(dev, &bus->devices, bus_list) {
5557		if (dev->subordinate)
5558			pci_bus_unlock(dev->subordinate);
5559		pci_dev_unlock(dev);
5560	}
5561}
5562
5563/* Return 1 on successful lock, 0 on contention */
5564static int pci_bus_trylock(struct pci_bus *bus)
5565{
5566	struct pci_dev *dev;
5567
5568	list_for_each_entry(dev, &bus->devices, bus_list) {
5569		if (!pci_dev_trylock(dev))
5570			goto unlock;
5571		if (dev->subordinate) {
5572			if (!pci_bus_trylock(dev->subordinate)) {
5573				pci_dev_unlock(dev);
5574				goto unlock;
5575			}
5576		}
5577	}
5578	return 1;
5579
5580unlock:
5581	list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5582		if (dev->subordinate)
5583			pci_bus_unlock(dev->subordinate);
5584		pci_dev_unlock(dev);
5585	}
5586	return 0;
5587}
5588
5589/* Do any devices on or below this slot prevent a bus reset? */
5590static bool pci_slot_resetable(struct pci_slot *slot)
5591{
5592	struct pci_dev *dev;
5593
5594	if (slot->bus->self &&
5595	    (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5596		return false;
5597
5598	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5599		if (!dev->slot || dev->slot != slot)
5600			continue;
5601		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5602		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5603			return false;
5604	}
5605
5606	return true;
5607}
5608
5609/* Lock devices from the top of the tree down */
5610static void pci_slot_lock(struct pci_slot *slot)
5611{
5612	struct pci_dev *dev;
5613
5614	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5615		if (!dev->slot || dev->slot != slot)
5616			continue;
5617		pci_dev_lock(dev);
5618		if (dev->subordinate)
5619			pci_bus_lock(dev->subordinate);
5620	}
5621}
5622
5623/* Unlock devices from the bottom of the tree up */
5624static void pci_slot_unlock(struct pci_slot *slot)
5625{
5626	struct pci_dev *dev;
5627
5628	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5629		if (!dev->slot || dev->slot != slot)
5630			continue;
5631		if (dev->subordinate)
5632			pci_bus_unlock(dev->subordinate);
5633		pci_dev_unlock(dev);
5634	}
5635}
5636
5637/* Return 1 on successful lock, 0 on contention */
5638static int pci_slot_trylock(struct pci_slot *slot)
5639{
5640	struct pci_dev *dev;
5641
5642	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5643		if (!dev->slot || dev->slot != slot)
5644			continue;
5645		if (!pci_dev_trylock(dev))
5646			goto unlock;
5647		if (dev->subordinate) {
5648			if (!pci_bus_trylock(dev->subordinate)) {
5649				pci_dev_unlock(dev);
5650				goto unlock;
5651			}
5652		}
5653	}
5654	return 1;
5655
5656unlock:
5657	list_for_each_entry_continue_reverse(dev,
5658					     &slot->bus->devices, bus_list) {
5659		if (!dev->slot || dev->slot != slot)
5660			continue;
5661		if (dev->subordinate)
5662			pci_bus_unlock(dev->subordinate);
5663		pci_dev_unlock(dev);
5664	}
5665	return 0;
5666}
5667
5668/*
5669 * Save and disable devices from the top of the tree down while holding
5670 * the @dev mutex lock for the entire tree.
5671 */
5672static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5673{
5674	struct pci_dev *dev;
5675
5676	list_for_each_entry(dev, &bus->devices, bus_list) {
 
5677		pci_dev_save_and_disable(dev);
 
5678		if (dev->subordinate)
5679			pci_bus_save_and_disable_locked(dev->subordinate);
5680	}
5681}
5682
5683/*
5684 * Restore devices from top of the tree down while holding @dev mutex lock
5685 * for the entire tree.  Parent bridges need to be restored before we can
5686 * get to subordinate devices.
5687 */
5688static void pci_bus_restore_locked(struct pci_bus *bus)
5689{
5690	struct pci_dev *dev;
5691
5692	list_for_each_entry(dev, &bus->devices, bus_list) {
 
5693		pci_dev_restore(dev);
 
5694		if (dev->subordinate)
5695			pci_bus_restore_locked(dev->subordinate);
5696	}
5697}
5698
5699/*
5700 * Save and disable devices from the top of the tree down while holding
5701 * the @dev mutex lock for the entire tree.
5702 */
5703static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5704{
5705	struct pci_dev *dev;
5706
5707	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5708		if (!dev->slot || dev->slot != slot)
5709			continue;
5710		pci_dev_save_and_disable(dev);
5711		if (dev->subordinate)
5712			pci_bus_save_and_disable_locked(dev->subordinate);
5713	}
5714}
5715
5716/*
5717 * Restore devices from top of the tree down while holding @dev mutex lock
5718 * for the entire tree.  Parent bridges need to be restored before we can
5719 * get to subordinate devices.
5720 */
5721static void pci_slot_restore_locked(struct pci_slot *slot)
5722{
5723	struct pci_dev *dev;
5724
5725	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5726		if (!dev->slot || dev->slot != slot)
5727			continue;
 
5728		pci_dev_restore(dev);
 
5729		if (dev->subordinate)
5730			pci_bus_restore_locked(dev->subordinate);
5731	}
5732}
5733
5734static int pci_slot_reset(struct pci_slot *slot, bool probe)
5735{
5736	int rc;
5737
5738	if (!slot || !pci_slot_resetable(slot))
5739		return -ENOTTY;
5740
5741	if (!probe)
5742		pci_slot_lock(slot);
5743
5744	might_sleep();
5745
5746	rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5747
5748	if (!probe)
5749		pci_slot_unlock(slot);
5750
5751	return rc;
5752}
5753
5754/**
5755 * pci_probe_reset_slot - probe whether a PCI slot can be reset
5756 * @slot: PCI slot to probe
5757 *
5758 * Return 0 if slot can be reset, negative if a slot reset is not supported.
5759 */
5760int pci_probe_reset_slot(struct pci_slot *slot)
5761{
5762	return pci_slot_reset(slot, PCI_RESET_PROBE);
5763}
5764EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5765
5766/**
5767 * __pci_reset_slot - Try to reset a PCI slot
5768 * @slot: PCI slot to reset
5769 *
5770 * A PCI bus may host multiple slots, each slot may support a reset mechanism
5771 * independent of other slots.  For instance, some slots may support slot power
5772 * control.  In the case of a 1:1 bus to slot architecture, this function may
5773 * wrap the bus reset to avoid spurious slot related events such as hotplug.
5774 * Generally a slot reset should be attempted before a bus reset.  All of the
5775 * function of the slot and any subordinate buses behind the slot are reset
5776 * through this function.  PCI config space of all devices in the slot and
5777 * behind the slot is saved before and restored after reset.
5778 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5779 * Same as above except return -EAGAIN if the slot cannot be locked
5780 */
5781static int __pci_reset_slot(struct pci_slot *slot)
5782{
5783	int rc;
5784
5785	rc = pci_slot_reset(slot, PCI_RESET_PROBE);
5786	if (rc)
5787		return rc;
5788
 
 
5789	if (pci_slot_trylock(slot)) {
5790		pci_slot_save_and_disable_locked(slot);
5791		might_sleep();
5792		rc = pci_reset_hotplug_slot(slot->hotplug, PCI_RESET_DO_RESET);
5793		pci_slot_restore_locked(slot);
5794		pci_slot_unlock(slot);
5795	} else
5796		rc = -EAGAIN;
5797
 
 
5798	return rc;
5799}
 
5800
5801static int pci_bus_reset(struct pci_bus *bus, bool probe)
5802{
5803	int ret;
5804
5805	if (!bus->self || !pci_bus_resetable(bus))
5806		return -ENOTTY;
5807
5808	if (probe)
5809		return 0;
5810
5811	pci_bus_lock(bus);
5812
5813	might_sleep();
5814
5815	ret = pci_bridge_secondary_bus_reset(bus->self);
5816
5817	pci_bus_unlock(bus);
5818
5819	return ret;
5820}
5821
5822/**
5823 * pci_bus_error_reset - reset the bridge's subordinate bus
5824 * @bridge: The parent device that connects to the bus to reset
5825 *
5826 * This function will first try to reset the slots on this bus if the method is
5827 * available. If slot reset fails or is not available, this will fall back to a
5828 * secondary bus reset.
5829 */
5830int pci_bus_error_reset(struct pci_dev *bridge)
5831{
5832	struct pci_bus *bus = bridge->subordinate;
5833	struct pci_slot *slot;
5834
5835	if (!bus)
5836		return -ENOTTY;
5837
5838	mutex_lock(&pci_slot_mutex);
5839	if (list_empty(&bus->slots))
5840		goto bus_reset;
5841
5842	list_for_each_entry(slot, &bus->slots, list)
5843		if (pci_probe_reset_slot(slot))
5844			goto bus_reset;
5845
5846	list_for_each_entry(slot, &bus->slots, list)
5847		if (pci_slot_reset(slot, PCI_RESET_DO_RESET))
5848			goto bus_reset;
5849
5850	mutex_unlock(&pci_slot_mutex);
5851	return 0;
5852bus_reset:
5853	mutex_unlock(&pci_slot_mutex);
5854	return pci_bus_reset(bridge->subordinate, PCI_RESET_DO_RESET);
5855}
5856
5857/**
5858 * pci_probe_reset_bus - probe whether a PCI bus can be reset
5859 * @bus: PCI bus to probe
5860 *
5861 * Return 0 if bus can be reset, negative if a bus reset is not supported.
5862 */
5863int pci_probe_reset_bus(struct pci_bus *bus)
5864{
5865	return pci_bus_reset(bus, PCI_RESET_PROBE);
5866}
5867EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5868
5869/**
5870 * __pci_reset_bus - Try to reset a PCI bus
5871 * @bus: top level PCI bus to reset
5872 *
5873 * Same as above except return -EAGAIN if the bus cannot be locked
 
 
 
5874 */
5875static int __pci_reset_bus(struct pci_bus *bus)
5876{
5877	int rc;
5878
5879	rc = pci_bus_reset(bus, PCI_RESET_PROBE);
5880	if (rc)
5881		return rc;
5882
5883	if (pci_bus_trylock(bus)) {
5884		pci_bus_save_and_disable_locked(bus);
5885		might_sleep();
5886		rc = pci_bridge_secondary_bus_reset(bus->self);
5887		pci_bus_restore_locked(bus);
5888		pci_bus_unlock(bus);
5889	} else
5890		rc = -EAGAIN;
5891
5892	return rc;
5893}
 
5894
5895/**
5896 * pci_reset_bus - Try to reset a PCI bus
5897 * @pdev: top level PCI device to reset via slot/bus
5898 *
5899 * Same as above except return -EAGAIN if the bus cannot be locked
5900 */
5901int pci_reset_bus(struct pci_dev *pdev)
5902{
5903	return (!pci_probe_reset_slot(pdev->slot)) ?
5904	    __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5905}
5906EXPORT_SYMBOL_GPL(pci_reset_bus);
5907
5908/**
5909 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
5910 * @dev: PCI device to query
5911 *
5912 * Returns mmrbc: maximum designed memory read count in bytes or
5913 * appropriate error value.
5914 */
5915int pcix_get_max_mmrbc(struct pci_dev *dev)
5916{
5917	int cap;
5918	u32 stat;
5919
5920	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5921	if (!cap)
5922		return -EINVAL;
5923
5924	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5925		return -EINVAL;
5926
5927	return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
5928}
5929EXPORT_SYMBOL(pcix_get_max_mmrbc);
5930
5931/**
5932 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
5933 * @dev: PCI device to query
5934 *
5935 * Returns mmrbc: maximum memory read count in bytes or appropriate error
5936 * value.
5937 */
5938int pcix_get_mmrbc(struct pci_dev *dev)
5939{
5940	int cap;
5941	u16 cmd;
5942
5943	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5944	if (!cap)
5945		return -EINVAL;
5946
5947	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5948		return -EINVAL;
5949
5950	return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
5951}
5952EXPORT_SYMBOL(pcix_get_mmrbc);
5953
5954/**
5955 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
5956 * @dev: PCI device to query
5957 * @mmrbc: maximum memory read count in bytes
5958 *    valid values are 512, 1024, 2048, 4096
5959 *
5960 * If possible sets maximum memory read byte count, some bridges have errata
5961 * that prevent this.
5962 */
5963int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
5964{
5965	int cap;
5966	u32 stat, v, o;
5967	u16 cmd;
5968
5969	if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
5970		return -EINVAL;
5971
5972	v = ffs(mmrbc) - 10;
5973
5974	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5975	if (!cap)
5976		return -EINVAL;
5977
5978	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5979		return -EINVAL;
5980
5981	if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
5982		return -E2BIG;
5983
5984	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5985		return -EINVAL;
5986
5987	o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
5988	if (o != v) {
5989		if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
5990			return -EIO;
5991
5992		cmd &= ~PCI_X_CMD_MAX_READ;
5993		cmd |= v << 2;
5994		if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
5995			return -EIO;
5996	}
5997	return 0;
5998}
5999EXPORT_SYMBOL(pcix_set_mmrbc);
6000
6001/**
6002 * pcie_get_readrq - get PCI Express read request size
6003 * @dev: PCI device to query
6004 *
6005 * Returns maximum memory read request in bytes or appropriate error value.
 
6006 */
6007int pcie_get_readrq(struct pci_dev *dev)
6008{
6009	u16 ctl;
6010
6011	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
6012
6013	return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
6014}
6015EXPORT_SYMBOL(pcie_get_readrq);
6016
6017/**
6018 * pcie_set_readrq - set PCI Express maximum memory read request
6019 * @dev: PCI device to query
6020 * @rq: maximum memory read count in bytes
6021 *    valid values are 128, 256, 512, 1024, 2048, 4096
6022 *
6023 * If possible sets maximum memory read request in bytes
6024 */
6025int pcie_set_readrq(struct pci_dev *dev, int rq)
6026{
6027	u16 v;
6028	int ret;
6029
6030	if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
6031		return -EINVAL;
6032
6033	/*
6034	 * If using the "performance" PCIe config, we clamp the read rq
6035	 * size to the max packet size to keep the host bridge from
6036	 * generating requests larger than we can cope with.
 
6037	 */
6038	if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
6039		int mps = pcie_get_mps(dev);
6040
6041		if (mps < rq)
6042			rq = mps;
6043	}
6044
6045	v = (ffs(rq) - 8) << 12;
6046
6047	ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6048						  PCI_EXP_DEVCTL_READRQ, v);
6049
6050	return pcibios_err_to_errno(ret);
6051}
6052EXPORT_SYMBOL(pcie_set_readrq);
6053
6054/**
6055 * pcie_get_mps - get PCI Express maximum payload size
6056 * @dev: PCI device to query
6057 *
6058 * Returns maximum payload size in bytes
6059 */
6060int pcie_get_mps(struct pci_dev *dev)
6061{
6062	u16 ctl;
6063
6064	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
6065
6066	return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6067}
6068EXPORT_SYMBOL(pcie_get_mps);
6069
6070/**
6071 * pcie_set_mps - set PCI Express maximum payload size
6072 * @dev: PCI device to query
6073 * @mps: maximum payload size in bytes
6074 *    valid values are 128, 256, 512, 1024, 2048, 4096
6075 *
6076 * If possible sets maximum payload size
6077 */
6078int pcie_set_mps(struct pci_dev *dev, int mps)
6079{
6080	u16 v;
6081	int ret;
6082
6083	if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
6084		return -EINVAL;
6085
6086	v = ffs(mps) - 8;
6087	if (v > dev->pcie_mpss)
6088		return -EINVAL;
6089	v <<= 5;
6090
6091	ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6092						  PCI_EXP_DEVCTL_PAYLOAD, v);
6093
6094	return pcibios_err_to_errno(ret);
6095}
6096EXPORT_SYMBOL(pcie_set_mps);
6097
6098/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6099 * pcie_bandwidth_available - determine minimum link settings of a PCIe
6100 *			      device and its bandwidth limitation
6101 * @dev: PCI device to query
6102 * @limiting_dev: storage for device causing the bandwidth limitation
6103 * @speed: storage for speed of limiting device
6104 * @width: storage for width of limiting device
6105 *
6106 * Walk up the PCI device chain and find the point where the minimum
6107 * bandwidth is available.  Return the bandwidth available there and (if
6108 * limiting_dev, speed, and width pointers are supplied) information about
6109 * that point.  The bandwidth returned is in Mb/s, i.e., megabits/second of
6110 * raw bandwidth.
6111 */
6112u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
6113			     enum pci_bus_speed *speed,
6114			     enum pcie_link_width *width)
6115{
6116	u16 lnksta;
6117	enum pci_bus_speed next_speed;
6118	enum pcie_link_width next_width;
6119	u32 bw, next_bw;
6120
6121	if (speed)
6122		*speed = PCI_SPEED_UNKNOWN;
6123	if (width)
6124		*width = PCIE_LNK_WIDTH_UNKNOWN;
6125
6126	bw = 0;
6127
6128	while (dev) {
6129		pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
6130
6131		next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
6132		next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
6133			PCI_EXP_LNKSTA_NLW_SHIFT;
6134
6135		next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
6136
6137		/* Check if current device limits the total bandwidth */
6138		if (!bw || next_bw <= bw) {
6139			bw = next_bw;
6140
6141			if (limiting_dev)
6142				*limiting_dev = dev;
6143			if (speed)
6144				*speed = next_speed;
6145			if (width)
6146				*width = next_width;
6147		}
6148
6149		dev = pci_upstream_bridge(dev);
6150	}
6151
6152	return bw;
6153}
6154EXPORT_SYMBOL(pcie_bandwidth_available);
6155
6156/**
6157 * pcie_get_speed_cap - query for the PCI device's link speed capability
6158 * @dev: PCI device to query
6159 *
6160 * Query the PCI device speed capability.  Return the maximum link speed
6161 * supported by the device.
6162 */
6163enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
6164{
6165	u32 lnkcap2, lnkcap;
6166
6167	/*
6168	 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18.  The
6169	 * implementation note there recommends using the Supported Link
6170	 * Speeds Vector in Link Capabilities 2 when supported.
6171	 *
6172	 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
6173	 * should use the Supported Link Speeds field in Link Capabilities,
6174	 * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
6175	 */
6176	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
6177
6178	/* PCIe r3.0-compliant */
6179	if (lnkcap2)
6180		return PCIE_LNKCAP2_SLS2SPEED(lnkcap2);
 
 
 
 
 
 
 
6181
6182	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6183	if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
6184		return PCIE_SPEED_5_0GT;
6185	else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
6186		return PCIE_SPEED_2_5GT;
 
 
 
 
 
 
6187
6188	return PCI_SPEED_UNKNOWN;
6189}
6190EXPORT_SYMBOL(pcie_get_speed_cap);
6191
6192/**
6193 * pcie_get_width_cap - query for the PCI device's link width capability
6194 * @dev: PCI device to query
6195 *
6196 * Query the PCI device width capability.  Return the maximum link width
6197 * supported by the device.
6198 */
6199enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
6200{
6201	u32 lnkcap;
6202
6203	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6204	if (lnkcap)
6205		return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4;
6206
6207	return PCIE_LNK_WIDTH_UNKNOWN;
6208}
6209EXPORT_SYMBOL(pcie_get_width_cap);
6210
6211/**
6212 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
6213 * @dev: PCI device
6214 * @speed: storage for link speed
6215 * @width: storage for link width
6216 *
6217 * Calculate a PCI device's link bandwidth by querying for its link speed
6218 * and width, multiplying them, and applying encoding overhead.  The result
6219 * is in Mb/s, i.e., megabits/second of raw bandwidth.
6220 */
6221u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
6222			   enum pcie_link_width *width)
6223{
6224	*speed = pcie_get_speed_cap(dev);
6225	*width = pcie_get_width_cap(dev);
6226
6227	if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
6228		return 0;
6229
6230	return *width * PCIE_SPEED2MBS_ENC(*speed);
6231}
6232
6233/**
6234 * __pcie_print_link_status - Report the PCI device's link speed and width
6235 * @dev: PCI device to query
6236 * @verbose: Print info even when enough bandwidth is available
6237 *
6238 * If the available bandwidth at the device is less than the device is
6239 * capable of, report the device's maximum possible bandwidth and the
6240 * upstream link that limits its performance.  If @verbose, always print
6241 * the available bandwidth, even if the device isn't constrained.
6242 */
6243void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
6244{
6245	enum pcie_link_width width, width_cap;
6246	enum pci_bus_speed speed, speed_cap;
6247	struct pci_dev *limiting_dev = NULL;
6248	u32 bw_avail, bw_cap;
6249
6250	bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
6251	bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
6252
6253	if (bw_avail >= bw_cap && verbose)
6254		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
6255			 bw_cap / 1000, bw_cap % 1000,
6256			 pci_speed_string(speed_cap), width_cap);
6257	else if (bw_avail < bw_cap)
6258		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
6259			 bw_avail / 1000, bw_avail % 1000,
6260			 pci_speed_string(speed), width,
6261			 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
6262			 bw_cap / 1000, bw_cap % 1000,
6263			 pci_speed_string(speed_cap), width_cap);
6264}
6265
6266/**
6267 * pcie_print_link_status - Report the PCI device's link speed and width
6268 * @dev: PCI device to query
6269 *
6270 * Report the available bandwidth at the device.
6271 */
6272void pcie_print_link_status(struct pci_dev *dev)
6273{
6274	__pcie_print_link_status(dev, true);
6275}
6276EXPORT_SYMBOL(pcie_print_link_status);
6277
6278/**
6279 * pci_select_bars - Make BAR mask from the type of resource
6280 * @dev: the PCI device for which BAR mask is made
6281 * @flags: resource type mask to be selected
6282 *
6283 * This helper routine makes bar mask from the type of resource.
6284 */
6285int pci_select_bars(struct pci_dev *dev, unsigned long flags)
6286{
6287	int i, bars = 0;
6288	for (i = 0; i < PCI_NUM_RESOURCES; i++)
6289		if (pci_resource_flags(dev, i) & flags)
6290			bars |= (1 << i);
6291	return bars;
6292}
6293EXPORT_SYMBOL(pci_select_bars);
6294
6295/* Some architectures require additional programming to enable VGA */
6296static arch_set_vga_state_t arch_set_vga_state;
6297
6298void __init pci_register_set_vga_state(arch_set_vga_state_t func)
6299{
6300	arch_set_vga_state = func;	/* NULL disables */
6301}
6302
6303static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
6304				  unsigned int command_bits, u32 flags)
6305{
6306	if (arch_set_vga_state)
6307		return arch_set_vga_state(dev, decode, command_bits,
6308						flags);
6309	return 0;
6310}
6311
6312/**
6313 * pci_set_vga_state - set VGA decode state on device and parents if requested
6314 * @dev: the PCI device
6315 * @decode: true = enable decoding, false = disable decoding
6316 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
6317 * @flags: traverse ancestors and change bridges
6318 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
6319 */
6320int pci_set_vga_state(struct pci_dev *dev, bool decode,
6321		      unsigned int command_bits, u32 flags)
6322{
6323	struct pci_bus *bus;
6324	struct pci_dev *bridge;
6325	u16 cmd;
6326	int rc;
6327
6328	WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
6329
6330	/* ARCH specific VGA enables */
6331	rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
6332	if (rc)
6333		return rc;
6334
6335	if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
6336		pci_read_config_word(dev, PCI_COMMAND, &cmd);
6337		if (decode)
6338			cmd |= command_bits;
6339		else
6340			cmd &= ~command_bits;
6341		pci_write_config_word(dev, PCI_COMMAND, cmd);
6342	}
6343
6344	if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
6345		return 0;
6346
6347	bus = dev->bus;
6348	while (bus) {
6349		bridge = bus->self;
6350		if (bridge) {
6351			pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
6352					     &cmd);
6353			if (decode)
6354				cmd |= PCI_BRIDGE_CTL_VGA;
6355			else
6356				cmd &= ~PCI_BRIDGE_CTL_VGA;
6357			pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
6358					      cmd);
6359		}
6360		bus = bus->parent;
6361	}
6362	return 0;
6363}
6364
6365#ifdef CONFIG_ACPI
6366bool pci_pr3_present(struct pci_dev *pdev)
6367{
6368	struct acpi_device *adev;
6369
6370	if (acpi_disabled)
6371		return false;
6372
6373	adev = ACPI_COMPANION(&pdev->dev);
6374	if (!adev)
6375		return false;
6376
6377	return adev->power.flags.power_resources &&
6378		acpi_has_method(adev->handle, "_PR3");
6379}
6380EXPORT_SYMBOL_GPL(pci_pr3_present);
6381#endif
6382
6383/**
6384 * pci_add_dma_alias - Add a DMA devfn alias for a device
6385 * @dev: the PCI device for which alias is added
6386 * @devfn_from: alias slot and function
6387 * @nr_devfns: number of subsequent devfns to alias
6388 *
6389 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
6390 * which is used to program permissible bus-devfn source addresses for DMA
6391 * requests in an IOMMU.  These aliases factor into IOMMU group creation
6392 * and are useful for devices generating DMA requests beyond or different
6393 * from their logical bus-devfn.  Examples include device quirks where the
6394 * device simply uses the wrong devfn, as well as non-transparent bridges
6395 * where the alias may be a proxy for devices in another domain.
6396 *
6397 * IOMMU group creation is performed during device discovery or addition,
6398 * prior to any potential DMA mapping and therefore prior to driver probing
6399 * (especially for userspace assigned devices where IOMMU group definition
6400 * cannot be left as a userspace activity).  DMA aliases should therefore
6401 * be configured via quirks, such as the PCI fixup header quirk.
6402 */
6403void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from,
6404		       unsigned int nr_devfns)
6405{
6406	int devfn_to;
6407
6408	nr_devfns = min(nr_devfns, (unsigned int)MAX_NR_DEVFNS - devfn_from);
6409	devfn_to = devfn_from + nr_devfns - 1;
6410
6411	if (!dev->dma_alias_mask)
6412		dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL);
 
6413	if (!dev->dma_alias_mask) {
6414		pci_warn(dev, "Unable to allocate DMA alias mask\n");
6415		return;
6416	}
6417
6418	bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns);
6419
6420	if (nr_devfns == 1)
6421		pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
6422				PCI_SLOT(devfn_from), PCI_FUNC(devfn_from));
6423	else if (nr_devfns > 1)
6424		pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n",
6425				PCI_SLOT(devfn_from), PCI_FUNC(devfn_from),
6426				PCI_SLOT(devfn_to), PCI_FUNC(devfn_to));
6427}
6428
6429bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
6430{
6431	return (dev1->dma_alias_mask &&
6432		test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
6433	       (dev2->dma_alias_mask &&
6434		test_bit(dev1->devfn, dev2->dma_alias_mask)) ||
6435	       pci_real_dma_dev(dev1) == dev2 ||
6436	       pci_real_dma_dev(dev2) == dev1;
6437}
6438
6439bool pci_device_is_present(struct pci_dev *pdev)
6440{
6441	u32 v;
6442
6443	/* Check PF if pdev is a VF, since VF Vendor/Device IDs are 0xffff */
6444	pdev = pci_physfn(pdev);
6445	if (pci_dev_is_disconnected(pdev))
6446		return false;
6447	return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
6448}
6449EXPORT_SYMBOL_GPL(pci_device_is_present);
6450
6451void pci_ignore_hotplug(struct pci_dev *dev)
6452{
6453	struct pci_dev *bridge = dev->bus->self;
6454
6455	dev->ignore_hotplug = 1;
6456	/* Propagate the "ignore hotplug" setting to the parent bridge. */
6457	if (bridge)
6458		bridge->ignore_hotplug = 1;
6459}
6460EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
6461
6462/**
6463 * pci_real_dma_dev - Get PCI DMA device for PCI device
6464 * @dev: the PCI device that may have a PCI DMA alias
6465 *
6466 * Permits the platform to provide architecture-specific functionality to
6467 * devices needing to alias DMA to another PCI device on another PCI bus. If
6468 * the PCI device is on the same bus, it is recommended to use
6469 * pci_add_dma_alias(). This is the default implementation. Architecture
6470 * implementations can override this.
6471 */
6472struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev)
6473{
6474	return dev;
6475}
6476
6477resource_size_t __weak pcibios_default_alignment(void)
6478{
6479	return 0;
6480}
6481
6482/*
6483 * Arches that don't want to expose struct resource to userland as-is in
6484 * sysfs and /proc can implement their own pci_resource_to_user().
6485 */
6486void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
6487				 const struct resource *rsrc,
6488				 resource_size_t *start, resource_size_t *end)
6489{
6490	*start = rsrc->start;
6491	*end = rsrc->end;
6492}
6493
6494static char *resource_alignment_param;
6495static DEFINE_SPINLOCK(resource_alignment_lock);
6496
6497/**
6498 * pci_specified_resource_alignment - get resource alignment specified by user.
6499 * @dev: the PCI device to get
6500 * @resize: whether or not to change resources' size when reassigning alignment
6501 *
6502 * RETURNS: Resource alignment if it is specified.
6503 *          Zero if it is not specified.
6504 */
6505static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
6506							bool *resize)
6507{
6508	int align_order, count;
 
6509	resource_size_t align = pcibios_default_alignment();
6510	const char *p;
6511	int ret;
6512
6513	spin_lock(&resource_alignment_lock);
6514	p = resource_alignment_param;
6515	if (!p || !*p)
6516		goto out;
6517	if (pci_has_flag(PCI_PROBE_ONLY)) {
6518		align = 0;
6519		pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
6520		goto out;
6521	}
6522
6523	while (*p) {
6524		count = 0;
6525		if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
6526		    p[count] == '@') {
6527			p += count + 1;
6528			if (align_order > 63) {
6529				pr_err("PCI: Invalid requested alignment (order %d)\n",
6530				       align_order);
6531				align_order = PAGE_SHIFT;
6532			}
6533		} else {
6534			align_order = PAGE_SHIFT;
6535		}
6536
6537		ret = pci_dev_str_match(dev, p, &p);
6538		if (ret == 1) {
6539			*resize = true;
6540			align = 1ULL << align_order;
6541			break;
6542		} else if (ret < 0) {
6543			pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
6544			       p);
6545			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6546		}
6547
6548		if (*p != ';' && *p != ',') {
6549			/* End of param or invalid format */
6550			break;
6551		}
6552		p++;
6553	}
6554out:
6555	spin_unlock(&resource_alignment_lock);
6556	return align;
6557}
6558
6559static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
6560					   resource_size_t align, bool resize)
6561{
6562	struct resource *r = &dev->resource[bar];
6563	resource_size_t size;
6564
6565	if (!(r->flags & IORESOURCE_MEM))
6566		return;
6567
6568	if (r->flags & IORESOURCE_PCI_FIXED) {
6569		pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
6570			 bar, r, (unsigned long long)align);
6571		return;
6572	}
6573
6574	size = resource_size(r);
6575	if (size >= align)
6576		return;
6577
6578	/*
6579	 * Increase the alignment of the resource.  There are two ways we
6580	 * can do this:
6581	 *
6582	 * 1) Increase the size of the resource.  BARs are aligned on their
6583	 *    size, so when we reallocate space for this resource, we'll
6584	 *    allocate it with the larger alignment.  This also prevents
6585	 *    assignment of any other BARs inside the alignment region, so
6586	 *    if we're requesting page alignment, this means no other BARs
6587	 *    will share the page.
6588	 *
6589	 *    The disadvantage is that this makes the resource larger than
6590	 *    the hardware BAR, which may break drivers that compute things
6591	 *    based on the resource size, e.g., to find registers at a
6592	 *    fixed offset before the end of the BAR.
6593	 *
6594	 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6595	 *    set r->start to the desired alignment.  By itself this
6596	 *    doesn't prevent other BARs being put inside the alignment
6597	 *    region, but if we realign *every* resource of every device in
6598	 *    the system, none of them will share an alignment region.
6599	 *
6600	 * When the user has requested alignment for only some devices via
6601	 * the "pci=resource_alignment" argument, "resize" is true and we
6602	 * use the first method.  Otherwise we assume we're aligning all
6603	 * devices and we use the second.
6604	 */
6605
6606	pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n",
6607		 bar, r, (unsigned long long)align);
6608
6609	if (resize) {
6610		r->start = 0;
6611		r->end = align - 1;
6612	} else {
6613		r->flags &= ~IORESOURCE_SIZEALIGN;
6614		r->flags |= IORESOURCE_STARTALIGN;
6615		r->start = align;
6616		r->end = r->start + size - 1;
6617	}
6618	r->flags |= IORESOURCE_UNSET;
6619}
6620
6621/*
6622 * This function disables memory decoding and releases memory resources
6623 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6624 * It also rounds up size to specified alignment.
6625 * Later on, the kernel will assign page-aligned memory resource back
6626 * to the device.
6627 */
6628void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6629{
6630	int i;
6631	struct resource *r;
6632	resource_size_t align;
6633	u16 command;
6634	bool resize = false;
6635
6636	/*
6637	 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6638	 * 3.4.1.11.  Their resources are allocated from the space
6639	 * described by the VF BARx register in the PF's SR-IOV capability.
6640	 * We can't influence their alignment here.
6641	 */
6642	if (dev->is_virtfn)
6643		return;
6644
6645	/* check if specified PCI is target device to reassign */
6646	align = pci_specified_resource_alignment(dev, &resize);
6647	if (!align)
6648		return;
6649
6650	if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6651	    (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6652		pci_warn(dev, "Can't reassign resources to host bridge\n");
6653		return;
6654	}
6655
6656	pci_read_config_word(dev, PCI_COMMAND, &command);
6657	command &= ~PCI_COMMAND_MEMORY;
6658	pci_write_config_word(dev, PCI_COMMAND, command);
6659
6660	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6661		pci_request_resource_alignment(dev, i, align, resize);
6662
6663	/*
6664	 * Need to disable bridge's resource window,
6665	 * to enable the kernel to reassign new resource
6666	 * window later on.
6667	 */
6668	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
 
6669		for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6670			r = &dev->resource[i];
6671			if (!(r->flags & IORESOURCE_MEM))
6672				continue;
6673			r->flags |= IORESOURCE_UNSET;
6674			r->end = resource_size(r) - 1;
6675			r->start = 0;
6676		}
6677		pci_disable_bridge_window(dev);
6678	}
6679}
6680
6681static ssize_t resource_alignment_show(struct bus_type *bus, char *buf)
6682{
6683	size_t count = 0;
6684
6685	spin_lock(&resource_alignment_lock);
6686	if (resource_alignment_param)
6687		count = sysfs_emit(buf, "%s\n", resource_alignment_param);
6688	spin_unlock(&resource_alignment_lock);
6689
6690	return count;
6691}
6692
6693static ssize_t resource_alignment_store(struct bus_type *bus,
6694					const char *buf, size_t count)
6695{
6696	char *param, *old, *end;
6697
6698	if (count >= (PAGE_SIZE - 1))
6699		return -EINVAL;
6700
6701	param = kstrndup(buf, count, GFP_KERNEL);
6702	if (!param)
6703		return -ENOMEM;
6704
6705	end = strchr(param, '\n');
6706	if (end)
6707		*end = '\0';
6708
6709	spin_lock(&resource_alignment_lock);
6710	old = resource_alignment_param;
6711	if (strlen(param)) {
6712		resource_alignment_param = param;
6713	} else {
6714		kfree(param);
6715		resource_alignment_param = NULL;
6716	}
6717	spin_unlock(&resource_alignment_lock);
 
 
6718
6719	kfree(old);
 
 
 
6720
6721	return count;
 
 
 
6722}
6723
6724static BUS_ATTR_RW(resource_alignment);
 
6725
6726static int __init pci_resource_alignment_sysfs_init(void)
6727{
6728	return bus_create_file(&pci_bus_type,
6729					&bus_attr_resource_alignment);
6730}
6731late_initcall(pci_resource_alignment_sysfs_init);
6732
6733static void pci_no_domains(void)
6734{
6735#ifdef CONFIG_PCI_DOMAINS
6736	pci_domains_supported = 0;
6737#endif
6738}
6739
6740#ifdef CONFIG_PCI_DOMAINS_GENERIC
6741static DEFINE_IDA(pci_domain_nr_static_ida);
6742static DEFINE_IDA(pci_domain_nr_dynamic_ida);
6743
6744static void of_pci_reserve_static_domain_nr(void)
6745{
6746	struct device_node *np;
6747	int domain_nr;
6748
6749	for_each_node_by_type(np, "pci") {
6750		domain_nr = of_get_pci_domain_nr(np);
6751		if (domain_nr < 0)
6752			continue;
6753		/*
6754		 * Permanently allocate domain_nr in dynamic_ida
6755		 * to prevent it from dynamic allocation.
6756		 */
6757		ida_alloc_range(&pci_domain_nr_dynamic_ida,
6758				domain_nr, domain_nr, GFP_KERNEL);
6759	}
6760}
6761
 
6762static int of_pci_bus_find_domain_nr(struct device *parent)
6763{
6764	static bool static_domains_reserved = false;
6765	int domain_nr;
6766
6767	/* On the first call scan device tree for static allocations. */
6768	if (!static_domains_reserved) {
6769		of_pci_reserve_static_domain_nr();
6770		static_domains_reserved = true;
6771	}
6772
6773	if (parent) {
6774		/*
6775		 * If domain is in DT, allocate it in static IDA.  This
6776		 * prevents duplicate static allocations in case of errors
6777		 * in DT.
6778		 */
6779		domain_nr = of_get_pci_domain_nr(parent->of_node);
6780		if (domain_nr >= 0)
6781			return ida_alloc_range(&pci_domain_nr_static_ida,
6782					       domain_nr, domain_nr,
6783					       GFP_KERNEL);
6784	}
6785
 
 
6786	/*
6787	 * If domain was not specified in DT, choose a free ID from dynamic
6788	 * allocations. All domain numbers from DT are permanently in
6789	 * dynamic allocations to prevent assigning them to other DT nodes
6790	 * without static domain.
6791	 */
6792	return ida_alloc(&pci_domain_nr_dynamic_ida, GFP_KERNEL);
6793}
6794
6795static void of_pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent)
6796{
6797	if (bus->domain_nr < 0)
6798		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6799
6800	/* Release domain from IDA where it was allocated. */
6801	if (of_get_pci_domain_nr(parent->of_node) == bus->domain_nr)
6802		ida_free(&pci_domain_nr_static_ida, bus->domain_nr);
6803	else
6804		ida_free(&pci_domain_nr_dynamic_ida, bus->domain_nr);
6805}
6806
6807int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6808{
6809	return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6810			       acpi_pci_bus_find_domain_nr(bus);
6811}
6812
6813void pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent)
6814{
6815	if (!acpi_disabled)
6816		return;
6817	of_pci_bus_release_domain_nr(bus, parent);
6818}
6819#endif
6820
6821/**
6822 * pci_ext_cfg_avail - can we access extended PCI config space?
6823 *
6824 * Returns 1 if we can access PCI extended config space (offsets
6825 * greater than 0xff). This is the default implementation. Architecture
6826 * implementations can override this.
6827 */
6828int __weak pci_ext_cfg_avail(void)
6829{
6830	return 1;
6831}
6832
6833void __weak pci_fixup_cardbus(struct pci_bus *bus)
6834{
6835}
6836EXPORT_SYMBOL(pci_fixup_cardbus);
6837
6838static int __init pci_setup(char *str)
6839{
6840	while (str) {
6841		char *k = strchr(str, ',');
6842		if (k)
6843			*k++ = 0;
6844		if (*str && (str = pcibios_setup(str)) && *str) {
6845			if (!strcmp(str, "nomsi")) {
6846				pci_no_msi();
6847			} else if (!strncmp(str, "noats", 5)) {
6848				pr_info("PCIe: ATS is disabled\n");
6849				pcie_ats_disabled = true;
6850			} else if (!strcmp(str, "noaer")) {
6851				pci_no_aer();
6852			} else if (!strcmp(str, "earlydump")) {
6853				pci_early_dump = true;
6854			} else if (!strncmp(str, "realloc=", 8)) {
6855				pci_realloc_get_opt(str + 8);
6856			} else if (!strncmp(str, "realloc", 7)) {
6857				pci_realloc_get_opt("on");
6858			} else if (!strcmp(str, "nodomains")) {
6859				pci_no_domains();
6860			} else if (!strncmp(str, "noari", 5)) {
6861				pcie_ari_disabled = true;
6862			} else if (!strncmp(str, "cbiosize=", 9)) {
6863				pci_cardbus_io_size = memparse(str + 9, &str);
6864			} else if (!strncmp(str, "cbmemsize=", 10)) {
6865				pci_cardbus_mem_size = memparse(str + 10, &str);
6866			} else if (!strncmp(str, "resource_alignment=", 19)) {
6867				resource_alignment_param = str + 19;
 
6868			} else if (!strncmp(str, "ecrc=", 5)) {
6869				pcie_ecrc_get_policy(str + 5);
6870			} else if (!strncmp(str, "hpiosize=", 9)) {
6871				pci_hotplug_io_size = memparse(str + 9, &str);
6872			} else if (!strncmp(str, "hpmmiosize=", 11)) {
6873				pci_hotplug_mmio_size = memparse(str + 11, &str);
6874			} else if (!strncmp(str, "hpmmioprefsize=", 15)) {
6875				pci_hotplug_mmio_pref_size = memparse(str + 15, &str);
6876			} else if (!strncmp(str, "hpmemsize=", 10)) {
6877				pci_hotplug_mmio_size = memparse(str + 10, &str);
6878				pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size;
6879			} else if (!strncmp(str, "hpbussize=", 10)) {
6880				pci_hotplug_bus_size =
6881					simple_strtoul(str + 10, &str, 0);
6882				if (pci_hotplug_bus_size > 0xff)
6883					pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
6884			} else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
6885				pcie_bus_config = PCIE_BUS_TUNE_OFF;
6886			} else if (!strncmp(str, "pcie_bus_safe", 13)) {
6887				pcie_bus_config = PCIE_BUS_SAFE;
6888			} else if (!strncmp(str, "pcie_bus_perf", 13)) {
6889				pcie_bus_config = PCIE_BUS_PERFORMANCE;
6890			} else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
6891				pcie_bus_config = PCIE_BUS_PEER2PEER;
6892			} else if (!strncmp(str, "pcie_scan_all", 13)) {
6893				pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
6894			} else if (!strncmp(str, "disable_acs_redir=", 18)) {
6895				disable_acs_redir_param = str + 18;
6896			} else {
6897				pr_err("PCI: Unknown option `%s'\n", str);
 
6898			}
6899		}
6900		str = k;
6901	}
6902	return 0;
6903}
6904early_param("pci", pci_setup);
6905
6906/*
6907 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
6908 * in pci_setup(), above, to point to data in the __initdata section which
6909 * will be freed after the init sequence is complete. We can't allocate memory
6910 * in pci_setup() because some architectures do not have any memory allocation
6911 * service available during an early_param() call. So we allocate memory and
6912 * copy the variable here before the init section is freed.
6913 *
6914 */
6915static int __init pci_realloc_setup_params(void)
6916{
6917	resource_alignment_param = kstrdup(resource_alignment_param,
6918					   GFP_KERNEL);
6919	disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
6920
6921	return 0;
6922}
6923pure_initcall(pci_realloc_setup_params);
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * PCI Bus Services, see include/linux/pci.h for further explanation.
   4 *
   5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
   6 * David Mosberger-Tang
   7 *
   8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
   9 */
  10
  11#include <linux/acpi.h>
  12#include <linux/kernel.h>
  13#include <linux/delay.h>
  14#include <linux/dmi.h>
  15#include <linux/init.h>
 
  16#include <linux/of.h>
  17#include <linux/of_pci.h>
  18#include <linux/pci.h>
  19#include <linux/pm.h>
  20#include <linux/slab.h>
  21#include <linux/module.h>
  22#include <linux/spinlock.h>
  23#include <linux/string.h>
  24#include <linux/log2.h>
  25#include <linux/logic_pio.h>
  26#include <linux/pci-aspm.h>
  27#include <linux/pm_wakeup.h>
  28#include <linux/interrupt.h>
  29#include <linux/device.h>
  30#include <linux/pm_runtime.h>
  31#include <linux/pci_hotplug.h>
  32#include <linux/vmalloc.h>
  33#include <linux/pci-ats.h>
  34#include <asm/setup.h>
  35#include <asm/dma.h>
  36#include <linux/aer.h>
 
  37#include "pci.h"
  38
 
 
  39const char *pci_power_names[] = {
  40	"error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
  41};
  42EXPORT_SYMBOL_GPL(pci_power_names);
  43
 
  44int isa_dma_bridge_buggy;
  45EXPORT_SYMBOL(isa_dma_bridge_buggy);
 
  46
  47int pci_pci_problems;
  48EXPORT_SYMBOL(pci_pci_problems);
  49
  50unsigned int pci_pm_d3_delay;
  51
  52static void pci_pme_list_scan(struct work_struct *work);
  53
  54static LIST_HEAD(pci_pme_list);
  55static DEFINE_MUTEX(pci_pme_list_mutex);
  56static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
  57
  58struct pci_pme_device {
  59	struct list_head list;
  60	struct pci_dev *dev;
  61};
  62
  63#define PME_TIMEOUT 1000 /* How long between PME checks */
  64
  65static void pci_dev_d3_sleep(struct pci_dev *dev)
  66{
  67	unsigned int delay = dev->d3_delay;
 
  68
  69	if (delay < pci_pm_d3_delay)
  70		delay = pci_pm_d3_delay;
 
 
 
 
 
  71
  72	if (delay)
  73		msleep(delay);
 
  74}
  75
  76#ifdef CONFIG_PCI_DOMAINS
  77int pci_domains_supported = 1;
  78#endif
  79
  80#define DEFAULT_CARDBUS_IO_SIZE		(256)
  81#define DEFAULT_CARDBUS_MEM_SIZE	(64*1024*1024)
  82/* pci=cbmemsize=nnM,cbiosize=nn can override this */
  83unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
  84unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
  85
  86#define DEFAULT_HOTPLUG_IO_SIZE		(256)
  87#define DEFAULT_HOTPLUG_MEM_SIZE	(2*1024*1024)
  88/* pci=hpmemsize=nnM,hpiosize=nn can override this */
 
  89unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
  90unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
 
 
 
 
 
 
  91
  92#define DEFAULT_HOTPLUG_BUS_SIZE	1
  93unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
  94
 
 
 
 
 
 
 
 
 
 
 
  95enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
 
  96
  97/*
  98 * The default CLS is used if arch didn't set CLS explicitly and not
  99 * all pci devices agree on the same value.  Arch can override either
 100 * the dfl or actual value as it sees fit.  Don't forget this is
 101 * measured in 32-bit words, not bytes.
 102 */
 103u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
 104u8 pci_cache_line_size;
 105
 106/*
 107 * If we set up a device for bus mastering, we need to check the latency
 108 * timer as certain BIOSes forget to set it properly.
 109 */
 110unsigned int pcibios_max_latency = 255;
 111
 112/* If set, the PCIe ARI capability will not be used. */
 113static bool pcie_ari_disabled;
 114
 
 
 
 
 
 
 
 
 
 
 
 
 115/* Disable bridge_d3 for all PCIe ports */
 116static bool pci_bridge_d3_disable;
 117/* Force bridge_d3 for all PCIe ports */
 118static bool pci_bridge_d3_force;
 119
 120static int __init pcie_port_pm_setup(char *str)
 121{
 122	if (!strcmp(str, "off"))
 123		pci_bridge_d3_disable = true;
 124	else if (!strcmp(str, "force"))
 125		pci_bridge_d3_force = true;
 126	return 1;
 127}
 128__setup("pcie_port_pm=", pcie_port_pm_setup);
 129
 130/* Time to wait after a reset for device to become responsive */
 131#define PCIE_RESET_READY_POLL_MS 60000
 132
 133/**
 134 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
 135 * @bus: pointer to PCI bus structure to search
 136 *
 137 * Given a PCI bus, returns the highest PCI bus number present in the set
 138 * including the given PCI bus and its list of child PCI buses.
 139 */
 140unsigned char pci_bus_max_busnr(struct pci_bus *bus)
 141{
 142	struct pci_bus *tmp;
 143	unsigned char max, n;
 144
 145	max = bus->busn_res.end;
 146	list_for_each_entry(tmp, &bus->children, node) {
 147		n = pci_bus_max_busnr(tmp);
 148		if (n > max)
 149			max = n;
 150	}
 151	return max;
 152}
 153EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
 154
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 155#ifdef CONFIG_HAS_IOMEM
 156void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
 
 157{
 158	struct resource *res = &pdev->resource[bar];
 
 
 159
 160	/*
 161	 * Make sure the BAR is actually a memory resource, not an IO resource
 162	 */
 163	if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
 164		pci_warn(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
 165		return NULL;
 166	}
 167	return ioremap_nocache(res->start, resource_size(res));
 
 
 
 
 
 
 
 
 
 168}
 169EXPORT_SYMBOL_GPL(pci_ioremap_bar);
 170
 171void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
 172{
 173	/*
 174	 * Make sure the BAR is actually a memory resource, not an IO resource
 175	 */
 176	if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
 177		WARN_ON(1);
 178		return NULL;
 179	}
 180	return ioremap_wc(pci_resource_start(pdev, bar),
 181			  pci_resource_len(pdev, bar));
 182}
 183EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
 184#endif
 185
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 186
 187static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
 188				   u8 pos, int cap, int *ttl)
 
 
 
 
 
 
 
 
 189{
 190	u8 id;
 191	u16 ent;
 192
 193	pci_bus_read_config_byte(bus, devfn, pos, &pos);
 194
 195	while ((*ttl)--) {
 196		if (pos < 0x40)
 197			break;
 198		pos &= ~3;
 199		pci_bus_read_config_word(bus, devfn, pos, &ent);
 200
 201		id = ent & 0xff;
 202		if (id == 0xff)
 203			break;
 204		if (id == cap)
 205			return pos;
 206		pos = (ent >> 8);
 207	}
 208	return 0;
 209}
 210
 211static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
 212			       u8 pos, int cap)
 213{
 214	int ttl = PCI_FIND_CAP_TTL;
 215
 216	return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
 217}
 218
 219int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
 220{
 221	return __pci_find_next_cap(dev->bus, dev->devfn,
 222				   pos + PCI_CAP_LIST_NEXT, cap);
 223}
 224EXPORT_SYMBOL_GPL(pci_find_next_capability);
 225
 226static int __pci_bus_find_cap_start(struct pci_bus *bus,
 227				    unsigned int devfn, u8 hdr_type)
 228{
 229	u16 status;
 230
 231	pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
 232	if (!(status & PCI_STATUS_CAP_LIST))
 233		return 0;
 234
 235	switch (hdr_type) {
 236	case PCI_HEADER_TYPE_NORMAL:
 237	case PCI_HEADER_TYPE_BRIDGE:
 238		return PCI_CAPABILITY_LIST;
 239	case PCI_HEADER_TYPE_CARDBUS:
 240		return PCI_CB_CAPABILITY_LIST;
 241	}
 242
 243	return 0;
 244}
 245
 246/**
 247 * pci_find_capability - query for devices' capabilities
 248 * @dev: PCI device to query
 249 * @cap: capability code
 250 *
 251 * Tell if a device supports a given PCI capability.
 252 * Returns the address of the requested capability structure within the
 253 * device's PCI configuration space or 0 in case the device does not
 254 * support it.  Possible values for @cap:
 255 *
 256 *  %PCI_CAP_ID_PM           Power Management
 257 *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
 258 *  %PCI_CAP_ID_VPD          Vital Product Data
 259 *  %PCI_CAP_ID_SLOTID       Slot Identification
 260 *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
 261 *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
 262 *  %PCI_CAP_ID_PCIX         PCI-X
 263 *  %PCI_CAP_ID_EXP          PCI Express
 264 */
 265int pci_find_capability(struct pci_dev *dev, int cap)
 266{
 267	int pos;
 268
 269	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
 270	if (pos)
 271		pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
 272
 273	return pos;
 274}
 275EXPORT_SYMBOL(pci_find_capability);
 276
 277/**
 278 * pci_bus_find_capability - query for devices' capabilities
 279 * @bus:   the PCI bus to query
 280 * @devfn: PCI device to query
 281 * @cap:   capability code
 282 *
 283 * Like pci_find_capability() but works for pci devices that do not have a
 284 * pci_dev structure set up yet.
 285 *
 286 * Returns the address of the requested capability structure within the
 287 * device's PCI configuration space or 0 in case the device does not
 288 * support it.
 289 */
 290int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
 291{
 292	int pos;
 293	u8 hdr_type;
 294
 295	pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
 296
 297	pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
 298	if (pos)
 299		pos = __pci_find_next_cap(bus, devfn, pos, cap);
 300
 301	return pos;
 302}
 303EXPORT_SYMBOL(pci_bus_find_capability);
 304
 305/**
 306 * pci_find_next_ext_capability - Find an extended capability
 307 * @dev: PCI device to query
 308 * @start: address at which to start looking (0 to start at beginning of list)
 309 * @cap: capability code
 310 *
 311 * Returns the address of the next matching extended capability structure
 312 * within the device's PCI configuration space or 0 if the device does
 313 * not support it.  Some capabilities can occur several times, e.g., the
 314 * vendor-specific capability, and this provides a way to find them all.
 315 */
 316int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
 317{
 318	u32 header;
 319	int ttl;
 320	int pos = PCI_CFG_SPACE_SIZE;
 321
 322	/* minimum 8 bytes per capability */
 323	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
 324
 325	if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
 326		return 0;
 327
 328	if (start)
 329		pos = start;
 330
 331	if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
 332		return 0;
 333
 334	/*
 335	 * If we have no capabilities, this is indicated by cap ID,
 336	 * cap version and next pointer all being 0.
 337	 */
 338	if (header == 0)
 339		return 0;
 340
 341	while (ttl-- > 0) {
 342		if (PCI_EXT_CAP_ID(header) == cap && pos != start)
 343			return pos;
 344
 345		pos = PCI_EXT_CAP_NEXT(header);
 346		if (pos < PCI_CFG_SPACE_SIZE)
 347			break;
 348
 349		if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
 350			break;
 351	}
 352
 353	return 0;
 354}
 355EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
 356
 357/**
 358 * pci_find_ext_capability - Find an extended capability
 359 * @dev: PCI device to query
 360 * @cap: capability code
 361 *
 362 * Returns the address of the requested extended capability structure
 363 * within the device's PCI configuration space or 0 if the device does
 364 * not support it.  Possible values for @cap:
 365 *
 366 *  %PCI_EXT_CAP_ID_ERR		Advanced Error Reporting
 367 *  %PCI_EXT_CAP_ID_VC		Virtual Channel
 368 *  %PCI_EXT_CAP_ID_DSN		Device Serial Number
 369 *  %PCI_EXT_CAP_ID_PWR		Power Budgeting
 370 */
 371int pci_find_ext_capability(struct pci_dev *dev, int cap)
 372{
 373	return pci_find_next_ext_capability(dev, 0, cap);
 374}
 375EXPORT_SYMBOL_GPL(pci_find_ext_capability);
 376
 377static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 378{
 379	int rc, ttl = PCI_FIND_CAP_TTL;
 380	u8 cap, mask;
 381
 382	if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
 383		mask = HT_3BIT_CAP_MASK;
 384	else
 385		mask = HT_5BIT_CAP_MASK;
 386
 387	pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
 388				      PCI_CAP_ID_HT, &ttl);
 389	while (pos) {
 390		rc = pci_read_config_byte(dev, pos + 3, &cap);
 391		if (rc != PCIBIOS_SUCCESSFUL)
 392			return 0;
 393
 394		if ((cap & mask) == ht_cap)
 395			return pos;
 396
 397		pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
 398					      pos + PCI_CAP_LIST_NEXT,
 399					      PCI_CAP_ID_HT, &ttl);
 400	}
 401
 402	return 0;
 403}
 
 404/**
 405 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
 406 * @dev: PCI device to query
 407 * @pos: Position from which to continue searching
 408 * @ht_cap: Hypertransport capability code
 409 *
 410 * To be used in conjunction with pci_find_ht_capability() to search for
 411 * all capabilities matching @ht_cap. @pos should always be a value returned
 412 * from pci_find_ht_capability().
 413 *
 414 * NB. To be 100% safe against broken PCI devices, the caller should take
 415 * steps to avoid an infinite loop.
 416 */
 417int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
 418{
 419	return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
 420}
 421EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
 422
 423/**
 424 * pci_find_ht_capability - query a device's Hypertransport capabilities
 425 * @dev: PCI device to query
 426 * @ht_cap: Hypertransport capability code
 427 *
 428 * Tell if a device supports a given Hypertransport capability.
 429 * Returns an address within the device's PCI configuration space
 430 * or 0 in case the device does not support the request capability.
 431 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
 432 * which has a Hypertransport capability matching @ht_cap.
 433 */
 434int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
 435{
 436	int pos;
 437
 438	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
 439	if (pos)
 440		pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
 441
 442	return pos;
 443}
 444EXPORT_SYMBOL_GPL(pci_find_ht_capability);
 445
 446/**
 447 * pci_find_parent_resource - return resource region of parent bus of given region
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 448 * @dev: PCI device structure contains resources to be searched
 449 * @res: child resource record for which parent is sought
 450 *
 451 *  For given resource region of given device, return the resource
 452 *  region of parent bus the given region is contained in.
 453 */
 454struct resource *pci_find_parent_resource(const struct pci_dev *dev,
 455					  struct resource *res)
 456{
 457	const struct pci_bus *bus = dev->bus;
 458	struct resource *r;
 459	int i;
 460
 461	pci_bus_for_each_resource(bus, r, i) {
 462		if (!r)
 463			continue;
 464		if (resource_contains(r, res)) {
 465
 466			/*
 467			 * If the window is prefetchable but the BAR is
 468			 * not, the allocator made a mistake.
 469			 */
 470			if (r->flags & IORESOURCE_PREFETCH &&
 471			    !(res->flags & IORESOURCE_PREFETCH))
 472				return NULL;
 473
 474			/*
 475			 * If we're below a transparent bridge, there may
 476			 * be both a positively-decoded aperture and a
 477			 * subtractively-decoded region that contain the BAR.
 478			 * We want the positively-decoded one, so this depends
 479			 * on pci_bus_for_each_resource() giving us those
 480			 * first.
 481			 */
 482			return r;
 483		}
 484	}
 485	return NULL;
 486}
 487EXPORT_SYMBOL(pci_find_parent_resource);
 488
 489/**
 490 * pci_find_resource - Return matching PCI device resource
 491 * @dev: PCI device to query
 492 * @res: Resource to look for
 493 *
 494 * Goes over standard PCI resources (BARs) and checks if the given resource
 495 * is partially or fully contained in any of them. In that case the
 496 * matching resource is returned, %NULL otherwise.
 497 */
 498struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
 499{
 500	int i;
 501
 502	for (i = 0; i < PCI_ROM_RESOURCE; i++) {
 503		struct resource *r = &dev->resource[i];
 504
 505		if (r->start && resource_contains(r, res))
 506			return r;
 507	}
 508
 509	return NULL;
 510}
 511EXPORT_SYMBOL(pci_find_resource);
 512
 513/**
 514 * pci_find_pcie_root_port - return PCIe Root Port
 515 * @dev: PCI device to query
 516 *
 517 * Traverse up the parent chain and return the PCIe Root Port PCI Device
 518 * for a given PCI Device.
 519 */
 520struct pci_dev *pci_find_pcie_root_port(struct pci_dev *dev)
 521{
 522	struct pci_dev *bridge, *highest_pcie_bridge = dev;
 523
 524	bridge = pci_upstream_bridge(dev);
 525	while (bridge && pci_is_pcie(bridge)) {
 526		highest_pcie_bridge = bridge;
 527		bridge = pci_upstream_bridge(bridge);
 528	}
 529
 530	if (pci_pcie_type(highest_pcie_bridge) != PCI_EXP_TYPE_ROOT_PORT)
 531		return NULL;
 532
 533	return highest_pcie_bridge;
 534}
 535EXPORT_SYMBOL(pci_find_pcie_root_port);
 536
 537/**
 538 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
 539 * @dev: the PCI device to operate on
 540 * @pos: config space offset of status word
 541 * @mask: mask of bit(s) to care about in status word
 542 *
 543 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
 544 */
 545int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
 546{
 547	int i;
 548
 549	/* Wait for Transaction Pending bit clean */
 550	for (i = 0; i < 4; i++) {
 551		u16 status;
 552		if (i)
 553			msleep((1 << (i - 1)) * 100);
 554
 555		pci_read_config_word(dev, pos, &status);
 556		if (!(status & mask))
 557			return 1;
 558	}
 559
 560	return 0;
 561}
 562
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 563/**
 564 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
 565 * @dev: PCI device to have its BARs restored
 566 *
 567 * Restore the BAR values for a given device, so as to make it
 568 * accessible by its driver.
 569 */
 570static void pci_restore_bars(struct pci_dev *dev)
 571{
 572	int i;
 573
 574	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
 575		pci_update_resource(dev, i);
 576}
 577
 578static const struct pci_platform_pm_ops *pci_platform_pm;
 579
 580int pci_set_platform_pm(const struct pci_platform_pm_ops *ops)
 581{
 582	if (!ops->is_manageable || !ops->set_state  || !ops->get_state ||
 583	    !ops->choose_state  || !ops->set_wakeup || !ops->need_resume)
 584		return -EINVAL;
 585	pci_platform_pm = ops;
 586	return 0;
 587}
 588
 589static inline bool platform_pci_power_manageable(struct pci_dev *dev)
 590{
 591	return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
 592}
 593
 594static inline int platform_pci_set_power_state(struct pci_dev *dev,
 595					       pci_power_t t)
 596{
 597	return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
 
 
 
 598}
 599
 600static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
 601{
 602	return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN;
 
 
 
 
 
 
 
 
 
 603}
 604
 605static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
 606{
 607	return pci_platform_pm ?
 608			pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
 
 
 609}
 610
 611static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
 612{
 613	return pci_platform_pm ?
 614			pci_platform_pm->set_wakeup(dev, enable) : -ENODEV;
 
 
 615}
 616
 617static inline bool platform_pci_need_resume(struct pci_dev *dev)
 618{
 619	return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
 
 
 
 620}
 621
 622/**
 623 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
 624 *                           given PCI device
 625 * @dev: PCI device to handle.
 626 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
 627 *
 628 * RETURN VALUE:
 629 * -EINVAL if the requested state is invalid.
 630 * -EIO if device does not support PCI PM or its PM capabilities register has a
 631 * wrong version, or device doesn't support the requested state.
 632 * 0 if device already is in the requested state.
 633 * 0 if device's power state has been successfully changed.
 634 */
 635static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
 636{
 637	u16 pmcsr;
 638	bool need_restore = false;
 639
 640	/* Check if we're already there */
 641	if (dev->current_state == state)
 642		return 0;
 643
 644	if (!dev->pm_cap)
 645		return -EIO;
 646
 647	if (state < PCI_D0 || state > PCI_D3hot)
 648		return -EINVAL;
 649
 650	/* Validate current state:
 651	 * Can enter D0 from any state, but if we can only go deeper
 652	 * to sleep if we're already in a low power state
 653	 */
 654	if (state != PCI_D0 && dev->current_state <= PCI_D3cold
 655	    && dev->current_state > state) {
 656		pci_err(dev, "invalid power transition (from state %d to %d)\n",
 657			dev->current_state, state);
 658		return -EINVAL;
 659	}
 660
 661	/* check if this device supports the desired state */
 662	if ((state == PCI_D1 && !dev->d1_support)
 663	   || (state == PCI_D2 && !dev->d2_support))
 664		return -EIO;
 665
 666	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
 667
 668	/* If we're (effectively) in D3, force entire word to 0.
 669	 * This doesn't affect PME_Status, disables PME_En, and
 670	 * sets PowerState to 0.
 671	 */
 672	switch (dev->current_state) {
 673	case PCI_D0:
 674	case PCI_D1:
 675	case PCI_D2:
 676		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
 677		pmcsr |= state;
 678		break;
 679	case PCI_D3hot:
 680	case PCI_D3cold:
 681	case PCI_UNKNOWN: /* Boot-up */
 682		if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
 683		 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
 684			need_restore = true;
 685		/* Fall-through: force to D0 */
 686	default:
 687		pmcsr = 0;
 688		break;
 689	}
 690
 691	/* enter specified state */
 692	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
 693
 694	/* Mandatory power management transition delays */
 695	/* see PCI PM 1.1 5.6.1 table 18 */
 696	if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
 697		pci_dev_d3_sleep(dev);
 698	else if (state == PCI_D2 || dev->current_state == PCI_D2)
 699		udelay(PCI_PM_D2_DELAY);
 700
 701	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
 702	dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
 703	if (dev->current_state != state && printk_ratelimit())
 704		pci_info(dev, "Refused to change power state, currently in D%d\n",
 705			 dev->current_state);
 706
 707	/*
 708	 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
 709	 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
 710	 * from D3hot to D0 _may_ perform an internal reset, thereby
 711	 * going to "D0 Uninitialized" rather than "D0 Initialized".
 712	 * For example, at least some versions of the 3c905B and the
 713	 * 3c556B exhibit this behaviour.
 714	 *
 715	 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
 716	 * devices in a D3hot state at boot.  Consequently, we need to
 717	 * restore at least the BARs so that the device will be
 718	 * accessible to its driver.
 719	 */
 720	if (need_restore)
 721		pci_restore_bars(dev);
 722
 723	if (dev->bus->self)
 724		pcie_aspm_pm_state_change(dev->bus->self);
 725
 726	return 0;
 727}
 728
 729/**
 730 * pci_update_current_state - Read power state of given device and cache it
 731 * @dev: PCI device to handle.
 732 * @state: State to cache in case the device doesn't have the PM capability
 733 *
 734 * The power state is read from the PMCSR register, which however is
 735 * inaccessible in D3cold.  The platform firmware is therefore queried first
 736 * to detect accessibility of the register.  In case the platform firmware
 737 * reports an incorrect state or the device isn't power manageable by the
 738 * platform at all, we try to detect D3cold by testing accessibility of the
 739 * vendor ID in config space.
 740 */
 741void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
 742{
 743	if (platform_pci_get_power_state(dev) == PCI_D3cold ||
 744	    !pci_device_is_present(dev)) {
 745		dev->current_state = PCI_D3cold;
 746	} else if (dev->pm_cap) {
 747		u16 pmcsr;
 748
 749		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
 750		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
 
 
 
 
 751	} else {
 752		dev->current_state = state;
 753	}
 754}
 755
 756/**
 757 * pci_power_up - Put the given device into D0 forcibly
 758 * @dev: PCI device to power up
 
 
 
 759 */
 760void pci_power_up(struct pci_dev *dev)
 761{
 762	if (platform_pci_power_manageable(dev))
 763		platform_pci_set_power_state(dev, PCI_D0);
 764
 765	pci_raw_set_power_state(dev, PCI_D0);
 766	pci_update_current_state(dev, PCI_D0);
 767}
 768
 769/**
 770 * pci_platform_power_transition - Use platform to change device power state
 771 * @dev: PCI device to handle.
 772 * @state: State to put the device into.
 773 */
 774static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
 775{
 776	int error;
 777
 778	if (platform_pci_power_manageable(dev)) {
 779		error = platform_pci_set_power_state(dev, state);
 780		if (!error)
 781			pci_update_current_state(dev, state);
 782	} else
 783		error = -ENODEV;
 784
 785	if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
 786		dev->current_state = PCI_D0;
 787
 788	return error;
 789}
 
 790
 791/**
 792 * pci_wakeup - Wake up a PCI device
 793 * @pci_dev: Device to handle.
 794 * @ign: ignored parameter
 795 */
 796static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
 797{
 798	pci_wakeup_event(pci_dev);
 799	pm_request_resume(&pci_dev->dev);
 800	return 0;
 801}
 802
 803/**
 804 * pci_wakeup_bus - Walk given bus and wake up devices on it
 805 * @bus: Top bus of the subtree to walk.
 806 */
 807void pci_wakeup_bus(struct pci_bus *bus)
 808{
 809	if (bus)
 810		pci_walk_bus(bus, pci_wakeup, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 811}
 812
 813/**
 814 * __pci_start_power_transition - Start power transition of a PCI device
 815 * @dev: PCI device to handle.
 816 * @state: State to put the device into.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 817 */
 818static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
 819{
 820	if (state == PCI_D0) {
 821		pci_platform_power_transition(dev, PCI_D0);
 
 
 
 
 
 
 
 
 
 
 
 822		/*
 823		 * Mandatory power management transition delays, see
 824		 * PCI Express Base Specification Revision 2.0 Section
 825		 * 6.6.1: Conventional Reset.  Do not delay for
 826		 * devices powered on/off by corresponding bridge,
 827		 * because have already delayed for the bridge.
 
 
 
 
 
 
 828		 */
 829		if (dev->runtime_d3cold) {
 830			if (dev->d3cold_delay)
 831				msleep(dev->d3cold_delay);
 832			/*
 833			 * When powering on a bridge from D3cold, the
 834			 * whole hierarchy may be powered on into
 835			 * D0uninitialized state, resume them to give
 836			 * them a chance to suspend again
 837			 */
 838			pci_wakeup_bus(dev->subordinate);
 839		}
 840	}
 
 
 841}
 842
 843/**
 844 * __pci_dev_set_current_state - Set current state of a PCI device
 845 * @dev: Device to handle
 846 * @data: pointer to state to be set
 847 */
 848static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
 849{
 850	pci_power_t state = *(pci_power_t *)data;
 851
 852	dev->current_state = state;
 853	return 0;
 854}
 855
 856/**
 857 * pci_bus_set_current_state - Walk given bus and set current state of devices
 858 * @bus: Top bus of the subtree to walk.
 859 * @state: state to be set
 860 */
 861void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
 862{
 863	if (bus)
 864		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
 865}
 866
 867/**
 868 * __pci_complete_power_transition - Complete power transition of a PCI device
 869 * @dev: PCI device to handle.
 870 * @state: State to put the device into.
 
 
 871 *
 872 * This function should not be called directly by device drivers.
 
 
 
 
 
 873 */
 874int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
 875{
 876	int ret;
 
 
 
 877
 878	if (state <= PCI_D0)
 
 
 
 
 
 
 
 
 
 879		return -EINVAL;
 880	ret = pci_platform_power_transition(dev, state);
 881	/* Power off the bridge may power off the whole hierarchy */
 882	if (!ret && state == PCI_D3cold)
 883		pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
 884	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 885}
 886EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
 887
 888/**
 889 * pci_set_power_state - Set the power state of a PCI device
 890 * @dev: PCI device to handle.
 891 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
 892 *
 893 * Transition a device to a new power state, using the platform firmware and/or
 894 * the device's PCI PM registers.
 895 *
 896 * RETURN VALUE:
 897 * -EINVAL if the requested state is invalid.
 898 * -EIO if device does not support PCI PM or its PM capabilities register has a
 899 * wrong version, or device doesn't support the requested state.
 900 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
 901 * 0 if device already is in the requested state.
 902 * 0 if the transition is to D3 but D3 is not supported.
 903 * 0 if device's power state has been successfully changed.
 904 */
 905int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
 906{
 907	int error;
 908
 909	/* bound the state we're entering */
 910	if (state > PCI_D3cold)
 911		state = PCI_D3cold;
 912	else if (state < PCI_D0)
 913		state = PCI_D0;
 914	else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
 
 915		/*
 916		 * If the device or the parent bridge do not support PCI PM,
 917		 * ignore the request if we're doing anything other than putting
 918		 * it into D0 (which would only happen on boot).
 
 919		 */
 920		return 0;
 921
 922	/* Check if we're already there */
 923	if (dev->current_state == state)
 924		return 0;
 925
 926	__pci_start_power_transition(dev, state);
 
 927
 928	/* This device is quirked not to be put into D3, so
 929	   don't put it in D3 */
 
 
 930	if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
 931		return 0;
 932
 933	/*
 934	 * To put device in D3cold, we put device into D3hot in native
 935	 * way, then put device into D3cold with platform ops
 936	 */
 937	error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
 938					PCI_D3hot : state);
 939
 940	if (!__pci_complete_power_transition(dev, state))
 941		error = 0;
 942
 943	return error;
 944}
 945EXPORT_SYMBOL(pci_set_power_state);
 
 
 946
 947/**
 948 * pci_choose_state - Choose the power state of a PCI device
 949 * @dev: PCI device to be suspended
 950 * @state: target sleep state for the whole system. This is the value
 951 *	that is passed to suspend() function.
 952 *
 953 * Returns PCI power state suitable for given device and given system
 954 * message.
 955 */
 956
 957pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
 958{
 959	pci_power_t ret;
 960
 961	if (!dev->pm_cap)
 962		return PCI_D0;
 963
 964	ret = platform_pci_choose_state(dev);
 965	if (ret != PCI_POWER_ERROR)
 966		return ret;
 967
 968	switch (state.event) {
 969	case PM_EVENT_ON:
 970		return PCI_D0;
 971	case PM_EVENT_FREEZE:
 972	case PM_EVENT_PRETHAW:
 973		/* REVISIT both freeze and pre-thaw "should" use D0 */
 974	case PM_EVENT_SUSPEND:
 975	case PM_EVENT_HIBERNATE:
 976		return PCI_D3hot;
 977	default:
 978		pci_info(dev, "unrecognized suspend event %d\n",
 979			 state.event);
 980		BUG();
 981	}
 982	return PCI_D0;
 983}
 984EXPORT_SYMBOL(pci_choose_state);
 985
 986#define PCI_EXP_SAVE_REGS	7
 987
 988static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
 989						       u16 cap, bool extended)
 990{
 991	struct pci_cap_saved_state *tmp;
 992
 993	hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
 994		if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
 995			return tmp;
 996	}
 997	return NULL;
 998}
 999
1000struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1001{
1002	return _pci_find_saved_cap(dev, cap, false);
1003}
1004
1005struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1006{
1007	return _pci_find_saved_cap(dev, cap, true);
1008}
1009
1010static int pci_save_pcie_state(struct pci_dev *dev)
1011{
1012	int i = 0;
1013	struct pci_cap_saved_state *save_state;
1014	u16 *cap;
1015
1016	if (!pci_is_pcie(dev))
1017		return 0;
1018
1019	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1020	if (!save_state) {
1021		pci_err(dev, "buffer not found in %s\n", __func__);
1022		return -ENOMEM;
1023	}
1024
1025	cap = (u16 *)&save_state->cap.data[0];
1026	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1027	pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1028	pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1029	pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
1030	pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1031	pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1032	pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1033
1034	return 0;
1035}
1036
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1037static void pci_restore_pcie_state(struct pci_dev *dev)
1038{
1039	int i = 0;
1040	struct pci_cap_saved_state *save_state;
1041	u16 *cap;
1042
1043	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1044	if (!save_state)
1045		return;
1046
 
 
 
 
 
 
 
1047	cap = (u16 *)&save_state->cap.data[0];
1048	pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1049	pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1050	pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1051	pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1052	pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1053	pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1054	pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1055}
1056
1057
1058static int pci_save_pcix_state(struct pci_dev *dev)
1059{
1060	int pos;
1061	struct pci_cap_saved_state *save_state;
1062
1063	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1064	if (!pos)
1065		return 0;
1066
1067	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1068	if (!save_state) {
1069		pci_err(dev, "buffer not found in %s\n", __func__);
1070		return -ENOMEM;
1071	}
1072
1073	pci_read_config_word(dev, pos + PCI_X_CMD,
1074			     (u16 *)save_state->cap.data);
1075
1076	return 0;
1077}
1078
1079static void pci_restore_pcix_state(struct pci_dev *dev)
1080{
1081	int i = 0, pos;
1082	struct pci_cap_saved_state *save_state;
1083	u16 *cap;
1084
1085	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1086	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1087	if (!save_state || !pos)
1088		return;
1089	cap = (u16 *)&save_state->cap.data[0];
1090
1091	pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1092}
1093
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1094
1095/**
1096 * pci_save_state - save the PCI configuration space of a device before suspending
1097 * @dev: - PCI device that we're dealing with
 
1098 */
1099int pci_save_state(struct pci_dev *dev)
1100{
1101	int i;
1102	/* XXX: 100% dword access ok here? */
1103	for (i = 0; i < 16; i++)
1104		pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
 
 
 
1105	dev->state_saved = true;
1106
1107	i = pci_save_pcie_state(dev);
1108	if (i != 0)
1109		return i;
1110
1111	i = pci_save_pcix_state(dev);
1112	if (i != 0)
1113		return i;
1114
 
 
 
 
1115	return pci_save_vc_state(dev);
1116}
1117EXPORT_SYMBOL(pci_save_state);
1118
1119static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1120				     u32 saved_val, int retry)
1121{
1122	u32 val;
1123
1124	pci_read_config_dword(pdev, offset, &val);
1125	if (val == saved_val)
1126		return;
1127
1128	for (;;) {
1129		pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1130			offset, val, saved_val);
1131		pci_write_config_dword(pdev, offset, saved_val);
1132		if (retry-- <= 0)
1133			return;
1134
1135		pci_read_config_dword(pdev, offset, &val);
1136		if (val == saved_val)
1137			return;
1138
1139		mdelay(1);
1140	}
1141}
1142
1143static void pci_restore_config_space_range(struct pci_dev *pdev,
1144					   int start, int end, int retry)
 
1145{
1146	int index;
1147
1148	for (index = end; index >= start; index--)
1149		pci_restore_config_dword(pdev, 4 * index,
1150					 pdev->saved_config_space[index],
1151					 retry);
1152}
1153
1154static void pci_restore_config_space(struct pci_dev *pdev)
1155{
1156	if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1157		pci_restore_config_space_range(pdev, 10, 15, 0);
1158		/* Restore BARs before the command register. */
1159		pci_restore_config_space_range(pdev, 4, 9, 10);
1160		pci_restore_config_space_range(pdev, 0, 3, 0);
 
 
 
 
 
 
 
 
 
 
1161	} else {
1162		pci_restore_config_space_range(pdev, 0, 15, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1163	}
1164}
1165
1166/**
1167 * pci_restore_state - Restore the saved state of a PCI device
1168 * @dev: - PCI device that we're dealing with
1169 */
1170void pci_restore_state(struct pci_dev *dev)
1171{
1172	if (!dev->state_saved)
1173		return;
1174
1175	/* PCI Express register must be restored first */
 
 
 
 
 
1176	pci_restore_pcie_state(dev);
1177	pci_restore_pasid_state(dev);
1178	pci_restore_pri_state(dev);
1179	pci_restore_ats_state(dev);
1180	pci_restore_vc_state(dev);
 
 
 
1181
1182	pci_cleanup_aer_error_status_regs(dev);
 
1183
1184	pci_restore_config_space(dev);
1185
1186	pci_restore_pcix_state(dev);
1187	pci_restore_msi_state(dev);
1188
1189	/* Restore ACS and IOV configuration state */
1190	pci_enable_acs(dev);
1191	pci_restore_iov_state(dev);
1192
1193	dev->state_saved = false;
1194}
1195EXPORT_SYMBOL(pci_restore_state);
1196
1197struct pci_saved_state {
1198	u32 config_space[16];
1199	struct pci_cap_saved_data cap[0];
1200};
1201
1202/**
1203 * pci_store_saved_state - Allocate and return an opaque struct containing
1204 *			   the device saved state.
1205 * @dev: PCI device that we're dealing with
1206 *
1207 * Return NULL if no state or error.
1208 */
1209struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1210{
1211	struct pci_saved_state *state;
1212	struct pci_cap_saved_state *tmp;
1213	struct pci_cap_saved_data *cap;
1214	size_t size;
1215
1216	if (!dev->state_saved)
1217		return NULL;
1218
1219	size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1220
1221	hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1222		size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1223
1224	state = kzalloc(size, GFP_KERNEL);
1225	if (!state)
1226		return NULL;
1227
1228	memcpy(state->config_space, dev->saved_config_space,
1229	       sizeof(state->config_space));
1230
1231	cap = state->cap;
1232	hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1233		size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1234		memcpy(cap, &tmp->cap, len);
1235		cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1236	}
1237	/* Empty cap_save terminates list */
1238
1239	return state;
1240}
1241EXPORT_SYMBOL_GPL(pci_store_saved_state);
1242
1243/**
1244 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1245 * @dev: PCI device that we're dealing with
1246 * @state: Saved state returned from pci_store_saved_state()
1247 */
1248int pci_load_saved_state(struct pci_dev *dev,
1249			 struct pci_saved_state *state)
1250{
1251	struct pci_cap_saved_data *cap;
1252
1253	dev->state_saved = false;
1254
1255	if (!state)
1256		return 0;
1257
1258	memcpy(dev->saved_config_space, state->config_space,
1259	       sizeof(state->config_space));
1260
1261	cap = state->cap;
1262	while (cap->size) {
1263		struct pci_cap_saved_state *tmp;
1264
1265		tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1266		if (!tmp || tmp->cap.size != cap->size)
1267			return -EINVAL;
1268
1269		memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1270		cap = (struct pci_cap_saved_data *)((u8 *)cap +
1271		       sizeof(struct pci_cap_saved_data) + cap->size);
1272	}
1273
1274	dev->state_saved = true;
1275	return 0;
1276}
1277EXPORT_SYMBOL_GPL(pci_load_saved_state);
1278
1279/**
1280 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1281 *				   and free the memory allocated for it.
1282 * @dev: PCI device that we're dealing with
1283 * @state: Pointer to saved state returned from pci_store_saved_state()
1284 */
1285int pci_load_and_free_saved_state(struct pci_dev *dev,
1286				  struct pci_saved_state **state)
1287{
1288	int ret = pci_load_saved_state(dev, *state);
1289	kfree(*state);
1290	*state = NULL;
1291	return ret;
1292}
1293EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1294
1295int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1296{
1297	return pci_enable_resources(dev, bars);
1298}
1299
1300static int do_pci_enable_device(struct pci_dev *dev, int bars)
1301{
1302	int err;
1303	struct pci_dev *bridge;
1304	u16 cmd;
1305	u8 pin;
1306
1307	err = pci_set_power_state(dev, PCI_D0);
1308	if (err < 0 && err != -EIO)
1309		return err;
1310
1311	bridge = pci_upstream_bridge(dev);
1312	if (bridge)
1313		pcie_aspm_powersave_config_link(bridge);
1314
1315	err = pcibios_enable_device(dev, bars);
1316	if (err < 0)
1317		return err;
1318	pci_fixup_device(pci_fixup_enable, dev);
1319
1320	if (dev->msi_enabled || dev->msix_enabled)
1321		return 0;
1322
1323	pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1324	if (pin) {
1325		pci_read_config_word(dev, PCI_COMMAND, &cmd);
1326		if (cmd & PCI_COMMAND_INTX_DISABLE)
1327			pci_write_config_word(dev, PCI_COMMAND,
1328					      cmd & ~PCI_COMMAND_INTX_DISABLE);
1329	}
1330
1331	return 0;
1332}
1333
1334/**
1335 * pci_reenable_device - Resume abandoned device
1336 * @dev: PCI device to be resumed
1337 *
1338 *  Note this function is a backend of pci_default_resume and is not supposed
1339 *  to be called by normal code, write proper resume handler and use it instead.
1340 */
1341int pci_reenable_device(struct pci_dev *dev)
1342{
1343	if (pci_is_enabled(dev))
1344		return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1345	return 0;
1346}
1347EXPORT_SYMBOL(pci_reenable_device);
1348
1349static void pci_enable_bridge(struct pci_dev *dev)
1350{
1351	struct pci_dev *bridge;
1352	int retval;
1353
1354	bridge = pci_upstream_bridge(dev);
1355	if (bridge)
1356		pci_enable_bridge(bridge);
1357
1358	if (pci_is_enabled(dev)) {
1359		if (!dev->is_busmaster)
1360			pci_set_master(dev);
1361		return;
1362	}
1363
1364	retval = pci_enable_device(dev);
1365	if (retval)
1366		pci_err(dev, "Error enabling bridge (%d), continuing\n",
1367			retval);
1368	pci_set_master(dev);
1369}
1370
1371static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1372{
1373	struct pci_dev *bridge;
1374	int err;
1375	int i, bars = 0;
1376
1377	/*
1378	 * Power state could be unknown at this point, either due to a fresh
1379	 * boot or a device removal call.  So get the current power state
1380	 * so that things like MSI message writing will behave as expected
1381	 * (e.g. if the device really is in D0 at enable time).
1382	 */
1383	if (dev->pm_cap) {
1384		u16 pmcsr;
1385		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1386		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1387	}
1388
1389	if (atomic_inc_return(&dev->enable_cnt) > 1)
1390		return 0;		/* already enabled */
1391
1392	bridge = pci_upstream_bridge(dev);
1393	if (bridge)
1394		pci_enable_bridge(bridge);
1395
1396	/* only skip sriov related */
1397	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1398		if (dev->resource[i].flags & flags)
1399			bars |= (1 << i);
1400	for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1401		if (dev->resource[i].flags & flags)
1402			bars |= (1 << i);
1403
1404	err = do_pci_enable_device(dev, bars);
1405	if (err < 0)
1406		atomic_dec(&dev->enable_cnt);
1407	return err;
1408}
1409
1410/**
1411 * pci_enable_device_io - Initialize a device for use with IO space
1412 * @dev: PCI device to be initialized
1413 *
1414 *  Initialize device before it's used by a driver. Ask low-level code
1415 *  to enable I/O resources. Wake up the device if it was suspended.
1416 *  Beware, this function can fail.
1417 */
1418int pci_enable_device_io(struct pci_dev *dev)
1419{
1420	return pci_enable_device_flags(dev, IORESOURCE_IO);
1421}
1422EXPORT_SYMBOL(pci_enable_device_io);
1423
1424/**
1425 * pci_enable_device_mem - Initialize a device for use with Memory space
1426 * @dev: PCI device to be initialized
1427 *
1428 *  Initialize device before it's used by a driver. Ask low-level code
1429 *  to enable Memory resources. Wake up the device if it was suspended.
1430 *  Beware, this function can fail.
1431 */
1432int pci_enable_device_mem(struct pci_dev *dev)
1433{
1434	return pci_enable_device_flags(dev, IORESOURCE_MEM);
1435}
1436EXPORT_SYMBOL(pci_enable_device_mem);
1437
1438/**
1439 * pci_enable_device - Initialize device before it's used by a driver.
1440 * @dev: PCI device to be initialized
1441 *
1442 *  Initialize device before it's used by a driver. Ask low-level code
1443 *  to enable I/O and memory. Wake up the device if it was suspended.
1444 *  Beware, this function can fail.
1445 *
1446 *  Note we don't actually enable the device many times if we call
1447 *  this function repeatedly (we just increment the count).
1448 */
1449int pci_enable_device(struct pci_dev *dev)
1450{
1451	return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1452}
1453EXPORT_SYMBOL(pci_enable_device);
1454
1455/*
1456 * Managed PCI resources.  This manages device on/off, intx/msi/msix
1457 * on/off and BAR regions.  pci_dev itself records msi/msix status, so
1458 * there's no need to track it separately.  pci_devres is initialized
1459 * when a device is enabled using managed PCI device enable interface.
1460 */
1461struct pci_devres {
1462	unsigned int enabled:1;
1463	unsigned int pinned:1;
1464	unsigned int orig_intx:1;
1465	unsigned int restore_intx:1;
1466	unsigned int mwi:1;
1467	u32 region_mask;
1468};
1469
1470static void pcim_release(struct device *gendev, void *res)
1471{
1472	struct pci_dev *dev = to_pci_dev(gendev);
1473	struct pci_devres *this = res;
1474	int i;
1475
1476	if (dev->msi_enabled)
1477		pci_disable_msi(dev);
1478	if (dev->msix_enabled)
1479		pci_disable_msix(dev);
1480
1481	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1482		if (this->region_mask & (1 << i))
1483			pci_release_region(dev, i);
1484
1485	if (this->mwi)
1486		pci_clear_mwi(dev);
1487
1488	if (this->restore_intx)
1489		pci_intx(dev, this->orig_intx);
1490
1491	if (this->enabled && !this->pinned)
1492		pci_disable_device(dev);
1493}
1494
1495static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
1496{
1497	struct pci_devres *dr, *new_dr;
1498
1499	dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1500	if (dr)
1501		return dr;
1502
1503	new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1504	if (!new_dr)
1505		return NULL;
1506	return devres_get(&pdev->dev, new_dr, NULL, NULL);
1507}
1508
1509static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
1510{
1511	if (pci_is_managed(pdev))
1512		return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1513	return NULL;
1514}
1515
1516/**
1517 * pcim_enable_device - Managed pci_enable_device()
1518 * @pdev: PCI device to be initialized
1519 *
1520 * Managed pci_enable_device().
1521 */
1522int pcim_enable_device(struct pci_dev *pdev)
1523{
1524	struct pci_devres *dr;
1525	int rc;
1526
1527	dr = get_pci_dr(pdev);
1528	if (unlikely(!dr))
1529		return -ENOMEM;
1530	if (dr->enabled)
1531		return 0;
1532
1533	rc = pci_enable_device(pdev);
1534	if (!rc) {
1535		pdev->is_managed = 1;
1536		dr->enabled = 1;
1537	}
1538	return rc;
1539}
1540EXPORT_SYMBOL(pcim_enable_device);
1541
1542/**
1543 * pcim_pin_device - Pin managed PCI device
1544 * @pdev: PCI device to pin
1545 *
1546 * Pin managed PCI device @pdev.  Pinned device won't be disabled on
1547 * driver detach.  @pdev must have been enabled with
1548 * pcim_enable_device().
1549 */
1550void pcim_pin_device(struct pci_dev *pdev)
1551{
1552	struct pci_devres *dr;
1553
1554	dr = find_pci_dr(pdev);
1555	WARN_ON(!dr || !dr->enabled);
1556	if (dr)
1557		dr->pinned = 1;
1558}
1559EXPORT_SYMBOL(pcim_pin_device);
1560
1561/*
1562 * pcibios_add_device - provide arch specific hooks when adding device dev
1563 * @dev: the PCI device being added
1564 *
1565 * Permits the platform to provide architecture specific functionality when
1566 * devices are added. This is the default implementation. Architecture
1567 * implementations can override this.
1568 */
1569int __weak pcibios_add_device(struct pci_dev *dev)
1570{
1571	return 0;
1572}
1573
1574/**
1575 * pcibios_release_device - provide arch specific hooks when releasing device dev
 
1576 * @dev: the PCI device being released
1577 *
1578 * Permits the platform to provide architecture specific functionality when
1579 * devices are released. This is the default implementation. Architecture
1580 * implementations can override this.
1581 */
1582void __weak pcibios_release_device(struct pci_dev *dev) {}
1583
1584/**
1585 * pcibios_disable_device - disable arch specific PCI resources for device dev
1586 * @dev: the PCI device to disable
1587 *
1588 * Disables architecture specific PCI resources for the device. This
1589 * is the default implementation. Architecture implementations can
1590 * override this.
1591 */
1592void __weak pcibios_disable_device(struct pci_dev *dev) {}
1593
1594/**
1595 * pcibios_penalize_isa_irq - penalize an ISA IRQ
1596 * @irq: ISA IRQ to penalize
1597 * @active: IRQ active or not
1598 *
1599 * Permits the platform to provide architecture-specific functionality when
1600 * penalizing ISA IRQs. This is the default implementation. Architecture
1601 * implementations can override this.
1602 */
1603void __weak pcibios_penalize_isa_irq(int irq, int active) {}
1604
1605static void do_pci_disable_device(struct pci_dev *dev)
1606{
1607	u16 pci_command;
1608
1609	pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1610	if (pci_command & PCI_COMMAND_MASTER) {
1611		pci_command &= ~PCI_COMMAND_MASTER;
1612		pci_write_config_word(dev, PCI_COMMAND, pci_command);
1613	}
1614
1615	pcibios_disable_device(dev);
1616}
1617
1618/**
1619 * pci_disable_enabled_device - Disable device without updating enable_cnt
1620 * @dev: PCI device to disable
1621 *
1622 * NOTE: This function is a backend of PCI power management routines and is
1623 * not supposed to be called drivers.
1624 */
1625void pci_disable_enabled_device(struct pci_dev *dev)
1626{
1627	if (pci_is_enabled(dev))
1628		do_pci_disable_device(dev);
1629}
1630
1631/**
1632 * pci_disable_device - Disable PCI device after use
1633 * @dev: PCI device to be disabled
1634 *
1635 * Signal to the system that the PCI device is not in use by the system
1636 * anymore.  This only involves disabling PCI bus-mastering, if active.
1637 *
1638 * Note we don't actually disable the device until all callers of
1639 * pci_enable_device() have called pci_disable_device().
1640 */
1641void pci_disable_device(struct pci_dev *dev)
1642{
1643	struct pci_devres *dr;
1644
1645	dr = find_pci_dr(dev);
1646	if (dr)
1647		dr->enabled = 0;
1648
1649	dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
1650		      "disabling already-disabled device");
1651
1652	if (atomic_dec_return(&dev->enable_cnt) != 0)
1653		return;
1654
1655	do_pci_disable_device(dev);
1656
1657	dev->is_busmaster = 0;
1658}
1659EXPORT_SYMBOL(pci_disable_device);
1660
1661/**
1662 * pcibios_set_pcie_reset_state - set reset state for device dev
1663 * @dev: the PCIe device reset
1664 * @state: Reset state to enter into
1665 *
1666 *
1667 * Sets the PCIe reset state for the device. This is the default
1668 * implementation. Architecture implementations can override this.
1669 */
1670int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1671					enum pcie_reset_state state)
1672{
1673	return -EINVAL;
1674}
1675
1676/**
1677 * pci_set_pcie_reset_state - set reset state for device dev
1678 * @dev: the PCIe device reset
1679 * @state: Reset state to enter into
1680 *
1681 *
1682 * Sets the PCI reset state for the device.
1683 */
1684int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1685{
1686	return pcibios_set_pcie_reset_state(dev, state);
1687}
1688EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
1689
 
 
 
 
 
 
 
 
 
 
1690/**
1691 * pcie_clear_root_pme_status - Clear root port PME interrupt status.
1692 * @dev: PCIe root port or event collector.
1693 */
1694void pcie_clear_root_pme_status(struct pci_dev *dev)
1695{
1696	pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
1697}
1698
1699/**
1700 * pci_check_pme_status - Check if given device has generated PME.
1701 * @dev: Device to check.
1702 *
1703 * Check the PME status of the device and if set, clear it and clear PME enable
1704 * (if set).  Return 'true' if PME status and PME enable were both set or
1705 * 'false' otherwise.
1706 */
1707bool pci_check_pme_status(struct pci_dev *dev)
1708{
1709	int pmcsr_pos;
1710	u16 pmcsr;
1711	bool ret = false;
1712
1713	if (!dev->pm_cap)
1714		return false;
1715
1716	pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1717	pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1718	if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1719		return false;
1720
1721	/* Clear PME status. */
1722	pmcsr |= PCI_PM_CTRL_PME_STATUS;
1723	if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1724		/* Disable PME to avoid interrupt flood. */
1725		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1726		ret = true;
1727	}
1728
1729	pci_write_config_word(dev, pmcsr_pos, pmcsr);
1730
1731	return ret;
1732}
1733
1734/**
1735 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1736 * @dev: Device to handle.
1737 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
1738 *
1739 * Check if @dev has generated PME and queue a resume request for it in that
1740 * case.
1741 */
1742static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
1743{
1744	if (pme_poll_reset && dev->pme_poll)
1745		dev->pme_poll = false;
1746
1747	if (pci_check_pme_status(dev)) {
1748		pci_wakeup_event(dev);
1749		pm_request_resume(&dev->dev);
1750	}
1751	return 0;
1752}
1753
1754/**
1755 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1756 * @bus: Top bus of the subtree to walk.
1757 */
1758void pci_pme_wakeup_bus(struct pci_bus *bus)
1759{
1760	if (bus)
1761		pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
1762}
1763
1764
1765/**
1766 * pci_pme_capable - check the capability of PCI device to generate PME#
1767 * @dev: PCI device to handle.
1768 * @state: PCI state from which device will issue PME#.
1769 */
1770bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1771{
1772	if (!dev->pm_cap)
1773		return false;
1774
1775	return !!(dev->pme_support & (1 << state));
1776}
1777EXPORT_SYMBOL(pci_pme_capable);
1778
1779static void pci_pme_list_scan(struct work_struct *work)
1780{
1781	struct pci_pme_device *pme_dev, *n;
1782
1783	mutex_lock(&pci_pme_list_mutex);
1784	list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
1785		if (pme_dev->dev->pme_poll) {
1786			struct pci_dev *bridge;
1787
1788			bridge = pme_dev->dev->bus->self;
1789			/*
1790			 * If bridge is in low power state, the
1791			 * configuration space of subordinate devices
1792			 * may be not accessible
1793			 */
1794			if (bridge && bridge->current_state != PCI_D0)
1795				continue;
 
 
 
 
 
 
 
1796			pci_pme_wakeup(pme_dev->dev, NULL);
1797		} else {
1798			list_del(&pme_dev->list);
1799			kfree(pme_dev);
1800		}
1801	}
1802	if (!list_empty(&pci_pme_list))
1803		queue_delayed_work(system_freezable_wq, &pci_pme_work,
1804				   msecs_to_jiffies(PME_TIMEOUT));
1805	mutex_unlock(&pci_pme_list_mutex);
1806}
1807
1808static void __pci_pme_active(struct pci_dev *dev, bool enable)
1809{
1810	u16 pmcsr;
1811
1812	if (!dev->pme_support)
1813		return;
1814
1815	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1816	/* Clear PME_Status by writing 1 to it and enable PME# */
1817	pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1818	if (!enable)
1819		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1820
1821	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1822}
1823
1824/**
1825 * pci_pme_restore - Restore PME configuration after config space restore.
1826 * @dev: PCI device to update.
1827 */
1828void pci_pme_restore(struct pci_dev *dev)
1829{
1830	u16 pmcsr;
1831
1832	if (!dev->pme_support)
1833		return;
1834
1835	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1836	if (dev->wakeup_prepared) {
1837		pmcsr |= PCI_PM_CTRL_PME_ENABLE;
1838		pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
1839	} else {
1840		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1841		pmcsr |= PCI_PM_CTRL_PME_STATUS;
1842	}
1843	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1844}
1845
1846/**
1847 * pci_pme_active - enable or disable PCI device's PME# function
1848 * @dev: PCI device to handle.
1849 * @enable: 'true' to enable PME# generation; 'false' to disable it.
1850 *
1851 * The caller must verify that the device is capable of generating PME# before
1852 * calling this function with @enable equal to 'true'.
1853 */
1854void pci_pme_active(struct pci_dev *dev, bool enable)
1855{
1856	__pci_pme_active(dev, enable);
1857
1858	/*
1859	 * PCI (as opposed to PCIe) PME requires that the device have
1860	 * its PME# line hooked up correctly. Not all hardware vendors
1861	 * do this, so the PME never gets delivered and the device
1862	 * remains asleep. The easiest way around this is to
1863	 * periodically walk the list of suspended devices and check
1864	 * whether any have their PME flag set. The assumption is that
1865	 * we'll wake up often enough anyway that this won't be a huge
1866	 * hit, and the power savings from the devices will still be a
1867	 * win.
1868	 *
1869	 * Although PCIe uses in-band PME message instead of PME# line
1870	 * to report PME, PME does not work for some PCIe devices in
1871	 * reality.  For example, there are devices that set their PME
1872	 * status bits, but don't really bother to send a PME message;
1873	 * there are PCI Express Root Ports that don't bother to
1874	 * trigger interrupts when they receive PME messages from the
1875	 * devices below.  So PME poll is used for PCIe devices too.
1876	 */
1877
1878	if (dev->pme_poll) {
1879		struct pci_pme_device *pme_dev;
1880		if (enable) {
1881			pme_dev = kmalloc(sizeof(struct pci_pme_device),
1882					  GFP_KERNEL);
1883			if (!pme_dev) {
1884				pci_warn(dev, "can't enable PME#\n");
1885				return;
1886			}
1887			pme_dev->dev = dev;
1888			mutex_lock(&pci_pme_list_mutex);
1889			list_add(&pme_dev->list, &pci_pme_list);
1890			if (list_is_singular(&pci_pme_list))
1891				queue_delayed_work(system_freezable_wq,
1892						   &pci_pme_work,
1893						   msecs_to_jiffies(PME_TIMEOUT));
1894			mutex_unlock(&pci_pme_list_mutex);
1895		} else {
1896			mutex_lock(&pci_pme_list_mutex);
1897			list_for_each_entry(pme_dev, &pci_pme_list, list) {
1898				if (pme_dev->dev == dev) {
1899					list_del(&pme_dev->list);
1900					kfree(pme_dev);
1901					break;
1902				}
1903			}
1904			mutex_unlock(&pci_pme_list_mutex);
1905		}
1906	}
1907
1908	pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
1909}
1910EXPORT_SYMBOL(pci_pme_active);
1911
1912/**
1913 * __pci_enable_wake - enable PCI device as wakeup event source
1914 * @dev: PCI device affected
1915 * @state: PCI state from which device will issue wakeup events
1916 * @enable: True to enable event generation; false to disable
1917 *
1918 * This enables the device as a wakeup event source, or disables it.
1919 * When such events involves platform-specific hooks, those hooks are
1920 * called automatically by this routine.
1921 *
1922 * Devices with legacy power management (no standard PCI PM capabilities)
1923 * always require such platform hooks.
1924 *
1925 * RETURN VALUE:
1926 * 0 is returned on success
1927 * -EINVAL is returned if device is not supposed to wake up the system
1928 * Error code depending on the platform is returned if both the platform and
1929 * the native mechanism fail to enable the generation of wake-up events
1930 */
1931static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
1932{
1933	int ret = 0;
1934
1935	/*
1936	 * Bridges can only signal wakeup on behalf of subordinate devices,
1937	 * but that is set up elsewhere, so skip them.
 
 
 
1938	 */
1939	if (pci_has_subordinate(dev))
1940		return 0;
1941
1942	/* Don't do the same thing twice in a row for one device. */
1943	if (!!enable == !!dev->wakeup_prepared)
1944		return 0;
1945
1946	/*
1947	 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1948	 * Anderson we should be doing PME# wake enable followed by ACPI wake
1949	 * enable.  To disable wake-up we call the platform first, for symmetry.
1950	 */
1951
1952	if (enable) {
1953		int error;
1954
1955		if (pci_pme_capable(dev, state))
 
 
 
 
 
 
 
1956			pci_pme_active(dev, true);
1957		else
1958			ret = 1;
1959		error = platform_pci_set_wakeup(dev, true);
1960		if (ret)
1961			ret = error;
1962		if (!ret)
1963			dev->wakeup_prepared = true;
1964	} else {
1965		platform_pci_set_wakeup(dev, false);
1966		pci_pme_active(dev, false);
1967		dev->wakeup_prepared = false;
1968	}
1969
1970	return ret;
1971}
1972
1973/**
1974 * pci_enable_wake - change wakeup settings for a PCI device
1975 * @pci_dev: Target device
1976 * @state: PCI state from which device will issue wakeup events
1977 * @enable: Whether or not to enable event generation
1978 *
1979 * If @enable is set, check device_may_wakeup() for the device before calling
1980 * __pci_enable_wake() for it.
1981 */
1982int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
1983{
1984	if (enable && !device_may_wakeup(&pci_dev->dev))
1985		return -EINVAL;
1986
1987	return __pci_enable_wake(pci_dev, state, enable);
1988}
1989EXPORT_SYMBOL(pci_enable_wake);
1990
1991/**
1992 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1993 * @dev: PCI device to prepare
1994 * @enable: True to enable wake-up event generation; false to disable
1995 *
1996 * Many drivers want the device to wake up the system from D3_hot or D3_cold
1997 * and this function allows them to set that up cleanly - pci_enable_wake()
1998 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1999 * ordering constraints.
2000 *
2001 * This function only returns error code if the device is not allowed to wake
2002 * up the system from sleep or it is not capable of generating PME# from both
2003 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2004 */
2005int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2006{
2007	return pci_pme_capable(dev, PCI_D3cold) ?
2008			pci_enable_wake(dev, PCI_D3cold, enable) :
2009			pci_enable_wake(dev, PCI_D3hot, enable);
2010}
2011EXPORT_SYMBOL(pci_wake_from_d3);
2012
2013/**
2014 * pci_target_state - find an appropriate low power state for a given PCI dev
2015 * @dev: PCI device
2016 * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2017 *
2018 * Use underlying platform code to find a supported low power state for @dev.
2019 * If the platform can't manage @dev, return the deepest state from which it
2020 * can generate wake events, based on any available PME info.
2021 */
2022static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2023{
2024	pci_power_t target_state = PCI_D3hot;
2025
2026	if (platform_pci_power_manageable(dev)) {
2027		/*
2028		 * Call the platform to choose the target state of the device
2029		 * and enable wake-up from this state if supported.
2030		 */
2031		pci_power_t state = platform_pci_choose_state(dev);
2032
2033		switch (state) {
2034		case PCI_POWER_ERROR:
2035		case PCI_UNKNOWN:
2036			break;
 
2037		case PCI_D1:
2038		case PCI_D2:
2039			if (pci_no_d1d2(dev))
2040				break;
2041		default:
2042			target_state = state;
2043		}
2044
2045		return target_state;
2046	}
2047
2048	if (!dev->pm_cap)
2049		target_state = PCI_D0;
2050
2051	/*
2052	 * If the device is in D3cold even though it's not power-manageable by
2053	 * the platform, it may have been powered down by non-standard means.
2054	 * Best to let it slumber.
2055	 */
2056	if (dev->current_state == PCI_D3cold)
2057		target_state = PCI_D3cold;
 
 
 
 
 
2058
2059	if (wakeup) {
2060		/*
2061		 * Find the deepest state from which the device can generate
2062		 * wake-up events, make it the target state and enable device
2063		 * to generate PME#.
2064		 */
2065		if (dev->pme_support) {
2066			while (target_state
2067			      && !(dev->pme_support & (1 << target_state)))
2068				target_state--;
2069		}
 
 
2070	}
2071
2072	return target_state;
2073}
2074
2075/**
2076 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
 
2077 * @dev: Device to handle.
2078 *
2079 * Choose the power state appropriate for the device depending on whether
2080 * it can wake up the system and/or is power manageable by the platform
2081 * (PCI_D3hot is the default) and put the device into that state.
2082 */
2083int pci_prepare_to_sleep(struct pci_dev *dev)
2084{
2085	bool wakeup = device_may_wakeup(&dev->dev);
2086	pci_power_t target_state = pci_target_state(dev, wakeup);
2087	int error;
2088
2089	if (target_state == PCI_POWER_ERROR)
2090		return -EIO;
2091
2092	pci_enable_wake(dev, target_state, wakeup);
2093
2094	error = pci_set_power_state(dev, target_state);
2095
2096	if (error)
2097		pci_enable_wake(dev, target_state, false);
2098
2099	return error;
2100}
2101EXPORT_SYMBOL(pci_prepare_to_sleep);
2102
2103/**
2104 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
 
2105 * @dev: Device to handle.
2106 *
2107 * Disable device's system wake-up capability and put it into D0.
2108 */
2109int pci_back_from_sleep(struct pci_dev *dev)
2110{
 
 
 
 
 
2111	pci_enable_wake(dev, PCI_D0, false);
2112	return pci_set_power_state(dev, PCI_D0);
2113}
2114EXPORT_SYMBOL(pci_back_from_sleep);
2115
2116/**
2117 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2118 * @dev: PCI device being suspended.
2119 *
2120 * Prepare @dev to generate wake-up events at run time and put it into a low
2121 * power state.
2122 */
2123int pci_finish_runtime_suspend(struct pci_dev *dev)
2124{
2125	pci_power_t target_state;
2126	int error;
2127
2128	target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2129	if (target_state == PCI_POWER_ERROR)
2130		return -EIO;
2131
2132	dev->runtime_d3cold = target_state == PCI_D3cold;
2133
2134	__pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2135
2136	error = pci_set_power_state(dev, target_state);
2137
2138	if (error) {
2139		pci_enable_wake(dev, target_state, false);
2140		dev->runtime_d3cold = false;
2141	}
2142
2143	return error;
2144}
2145
2146/**
2147 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2148 * @dev: Device to check.
2149 *
2150 * Return true if the device itself is capable of generating wake-up events
2151 * (through the platform or using the native PCIe PME) or if the device supports
2152 * PME and one of its upstream bridges can generate wake-up events.
2153 */
2154bool pci_dev_run_wake(struct pci_dev *dev)
2155{
2156	struct pci_bus *bus = dev->bus;
2157
2158	if (!dev->pme_support)
2159		return false;
2160
2161	/* PME-capable in principle, but not from the target power state */
2162	if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2163		return false;
2164
2165	if (device_can_wakeup(&dev->dev))
2166		return true;
2167
2168	while (bus->parent) {
2169		struct pci_dev *bridge = bus->self;
2170
2171		if (device_can_wakeup(&bridge->dev))
2172			return true;
2173
2174		bus = bus->parent;
2175	}
2176
2177	/* We have reached the root bus. */
2178	if (bus->bridge)
2179		return device_can_wakeup(bus->bridge);
2180
2181	return false;
2182}
2183EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2184
2185/**
2186 * pci_dev_keep_suspended - Check if the device can stay in the suspended state.
2187 * @pci_dev: Device to check.
2188 *
2189 * Return 'true' if the device is runtime-suspended, it doesn't have to be
2190 * reconfigured due to wakeup settings difference between system and runtime
2191 * suspend and the current power state of it is suitable for the upcoming
2192 * (system) transition.
2193 *
2194 * If the device is not configured for system wakeup, disable PME for it before
2195 * returning 'true' to prevent it from waking up the system unnecessarily.
2196 */
2197bool pci_dev_keep_suspended(struct pci_dev *pci_dev)
2198{
2199	struct device *dev = &pci_dev->dev;
2200	bool wakeup = device_may_wakeup(dev);
 
 
 
2201
2202	if (!pm_runtime_suspended(dev)
2203	    || pci_target_state(pci_dev, wakeup) != pci_dev->current_state
2204	    || platform_pci_need_resume(pci_dev))
2205		return false;
2206
2207	/*
2208	 * At this point the device is good to go unless it's been configured
2209	 * to generate PME at the runtime suspend time, but it is not supposed
2210	 * to wake up the system.  In that case, simply disable PME for it
2211	 * (it will have to be re-enabled on exit from system resume).
2212	 *
2213	 * If the device's power state is D3cold and the platform check above
2214	 * hasn't triggered, the device's configuration is suitable and we don't
2215	 * need to manipulate it at all.
2216	 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2217	spin_lock_irq(&dev->power.lock);
2218
2219	if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold &&
2220	    !wakeup)
2221		__pci_pme_active(pci_dev, false);
2222
2223	spin_unlock_irq(&dev->power.lock);
2224	return true;
2225}
2226
2227/**
2228 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2229 * @pci_dev: Device to handle.
2230 *
2231 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2232 * it might have been disabled during the prepare phase of system suspend if
2233 * the device was not configured for system wakeup.
2234 */
2235void pci_dev_complete_resume(struct pci_dev *pci_dev)
2236{
2237	struct device *dev = &pci_dev->dev;
2238
2239	if (!pci_dev_run_wake(pci_dev))
2240		return;
2241
2242	spin_lock_irq(&dev->power.lock);
2243
2244	if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2245		__pci_pme_active(pci_dev, true);
2246
2247	spin_unlock_irq(&dev->power.lock);
2248}
2249
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2250void pci_config_pm_runtime_get(struct pci_dev *pdev)
2251{
2252	struct device *dev = &pdev->dev;
2253	struct device *parent = dev->parent;
2254
2255	if (parent)
2256		pm_runtime_get_sync(parent);
2257	pm_runtime_get_noresume(dev);
2258	/*
2259	 * pdev->current_state is set to PCI_D3cold during suspending,
2260	 * so wait until suspending completes
2261	 */
2262	pm_runtime_barrier(dev);
2263	/*
2264	 * Only need to resume devices in D3cold, because config
2265	 * registers are still accessible for devices suspended but
2266	 * not in D3cold.
2267	 */
2268	if (pdev->current_state == PCI_D3cold)
2269		pm_runtime_resume(dev);
2270}
2271
2272void pci_config_pm_runtime_put(struct pci_dev *pdev)
2273{
2274	struct device *dev = &pdev->dev;
2275	struct device *parent = dev->parent;
2276
2277	pm_runtime_put(dev);
2278	if (parent)
2279		pm_runtime_put_sync(parent);
2280}
2281
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2282/**
2283 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2284 * @bridge: Bridge to check
2285 *
2286 * This function checks if it is possible to move the bridge to D3.
2287 * Currently we only allow D3 for recent enough PCIe ports.
2288 */
2289bool pci_bridge_d3_possible(struct pci_dev *bridge)
2290{
2291	if (!pci_is_pcie(bridge))
2292		return false;
2293
2294	switch (pci_pcie_type(bridge)) {
2295	case PCI_EXP_TYPE_ROOT_PORT:
2296	case PCI_EXP_TYPE_UPSTREAM:
2297	case PCI_EXP_TYPE_DOWNSTREAM:
2298		if (pci_bridge_d3_disable)
2299			return false;
2300
2301		/*
2302		 * Hotplug interrupts cannot be delivered if the link is down,
2303		 * so parents of a hotplug port must stay awake. In addition,
2304		 * hotplug ports handled by firmware in System Management Mode
2305		 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2306		 * For simplicity, disallow in general for now.
2307		 */
2308		if (bridge->is_hotplug_bridge)
2309			return false;
2310
2311		if (pci_bridge_d3_force)
2312			return true;
2313
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2314		/*
2315		 * It should be safe to put PCIe ports from 2015 or newer
2316		 * to D3.
2317		 */
2318		if (dmi_get_bios_year() >= 2015)
2319			return true;
2320		break;
2321	}
2322
2323	return false;
2324}
2325
2326static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
2327{
2328	bool *d3cold_ok = data;
2329
2330	if (/* The device needs to be allowed to go D3cold ... */
2331	    dev->no_d3cold || !dev->d3cold_allowed ||
2332
2333	    /* ... and if it is wakeup capable to do so from D3cold. */
2334	    (device_may_wakeup(&dev->dev) &&
2335	     !pci_pme_capable(dev, PCI_D3cold)) ||
2336
2337	    /* If it is a bridge it must be allowed to go to D3. */
2338	    !pci_power_manageable(dev))
2339
2340		*d3cold_ok = false;
2341
2342	return !*d3cold_ok;
2343}
2344
2345/*
2346 * pci_bridge_d3_update - Update bridge D3 capabilities
2347 * @dev: PCI device which is changed
2348 *
2349 * Update upstream bridge PM capabilities accordingly depending on if the
2350 * device PM configuration was changed or the device is being removed.  The
2351 * change is also propagated upstream.
2352 */
2353void pci_bridge_d3_update(struct pci_dev *dev)
2354{
2355	bool remove = !device_is_registered(&dev->dev);
2356	struct pci_dev *bridge;
2357	bool d3cold_ok = true;
2358
2359	bridge = pci_upstream_bridge(dev);
2360	if (!bridge || !pci_bridge_d3_possible(bridge))
2361		return;
2362
2363	/*
2364	 * If D3 is currently allowed for the bridge, removing one of its
2365	 * children won't change that.
2366	 */
2367	if (remove && bridge->bridge_d3)
2368		return;
2369
2370	/*
2371	 * If D3 is currently allowed for the bridge and a child is added or
2372	 * changed, disallowance of D3 can only be caused by that child, so
2373	 * we only need to check that single device, not any of its siblings.
2374	 *
2375	 * If D3 is currently not allowed for the bridge, checking the device
2376	 * first may allow us to skip checking its siblings.
2377	 */
2378	if (!remove)
2379		pci_dev_check_d3cold(dev, &d3cold_ok);
2380
2381	/*
2382	 * If D3 is currently not allowed for the bridge, this may be caused
2383	 * either by the device being changed/removed or any of its siblings,
2384	 * so we need to go through all children to find out if one of them
2385	 * continues to block D3.
2386	 */
2387	if (d3cold_ok && !bridge->bridge_d3)
2388		pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
2389			     &d3cold_ok);
2390
2391	if (bridge->bridge_d3 != d3cold_ok) {
2392		bridge->bridge_d3 = d3cold_ok;
2393		/* Propagate change to upstream bridges */
2394		pci_bridge_d3_update(bridge);
2395	}
2396}
2397
2398/**
2399 * pci_d3cold_enable - Enable D3cold for device
2400 * @dev: PCI device to handle
2401 *
2402 * This function can be used in drivers to enable D3cold from the device
2403 * they handle.  It also updates upstream PCI bridge PM capabilities
2404 * accordingly.
2405 */
2406void pci_d3cold_enable(struct pci_dev *dev)
2407{
2408	if (dev->no_d3cold) {
2409		dev->no_d3cold = false;
2410		pci_bridge_d3_update(dev);
2411	}
2412}
2413EXPORT_SYMBOL_GPL(pci_d3cold_enable);
2414
2415/**
2416 * pci_d3cold_disable - Disable D3cold for device
2417 * @dev: PCI device to handle
2418 *
2419 * This function can be used in drivers to disable D3cold from the device
2420 * they handle.  It also updates upstream PCI bridge PM capabilities
2421 * accordingly.
2422 */
2423void pci_d3cold_disable(struct pci_dev *dev)
2424{
2425	if (!dev->no_d3cold) {
2426		dev->no_d3cold = true;
2427		pci_bridge_d3_update(dev);
2428	}
2429}
2430EXPORT_SYMBOL_GPL(pci_d3cold_disable);
2431
2432/**
2433 * pci_pm_init - Initialize PM functions of given PCI device
2434 * @dev: PCI device to handle.
2435 */
2436void pci_pm_init(struct pci_dev *dev)
2437{
2438	int pm;
 
2439	u16 pmc;
2440
2441	pm_runtime_forbid(&dev->dev);
2442	pm_runtime_set_active(&dev->dev);
2443	pm_runtime_enable(&dev->dev);
2444	device_enable_async_suspend(&dev->dev);
2445	dev->wakeup_prepared = false;
2446
2447	dev->pm_cap = 0;
2448	dev->pme_support = 0;
2449
2450	/* find PCI PM capability in list */
2451	pm = pci_find_capability(dev, PCI_CAP_ID_PM);
2452	if (!pm)
2453		return;
2454	/* Check device's ability to generate PME# */
2455	pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
2456
2457	if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
2458		pci_err(dev, "unsupported PM cap regs version (%u)\n",
2459			pmc & PCI_PM_CAP_VER_MASK);
2460		return;
2461	}
2462
2463	dev->pm_cap = pm;
2464	dev->d3_delay = PCI_PM_D3_WAIT;
2465	dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
2466	dev->bridge_d3 = pci_bridge_d3_possible(dev);
2467	dev->d3cold_allowed = true;
2468
2469	dev->d1_support = false;
2470	dev->d2_support = false;
2471	if (!pci_no_d1d2(dev)) {
2472		if (pmc & PCI_PM_CAP_D1)
2473			dev->d1_support = true;
2474		if (pmc & PCI_PM_CAP_D2)
2475			dev->d2_support = true;
2476
2477		if (dev->d1_support || dev->d2_support)
2478			pci_printk(KERN_DEBUG, dev, "supports%s%s\n",
2479				   dev->d1_support ? " D1" : "",
2480				   dev->d2_support ? " D2" : "");
2481	}
2482
2483	pmc &= PCI_PM_CAP_PME_MASK;
2484	if (pmc) {
2485		pci_printk(KERN_DEBUG, dev, "PME# supported from%s%s%s%s%s\n",
2486			 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
2487			 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
2488			 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
2489			 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
2490			 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
2491		dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
2492		dev->pme_poll = true;
2493		/*
2494		 * Make device's PM flags reflect the wake-up capability, but
2495		 * let the user space enable it to wake up the system as needed.
2496		 */
2497		device_set_wakeup_capable(&dev->dev, true);
2498		/* Disable the PME# generation functionality */
2499		pci_pme_active(dev, false);
2500	}
 
 
 
 
2501}
2502
2503static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
2504{
2505	unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
2506
2507	switch (prop) {
2508	case PCI_EA_P_MEM:
2509	case PCI_EA_P_VF_MEM:
2510		flags |= IORESOURCE_MEM;
2511		break;
2512	case PCI_EA_P_MEM_PREFETCH:
2513	case PCI_EA_P_VF_MEM_PREFETCH:
2514		flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
2515		break;
2516	case PCI_EA_P_IO:
2517		flags |= IORESOURCE_IO;
2518		break;
2519	default:
2520		return 0;
2521	}
2522
2523	return flags;
2524}
2525
2526static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
2527					    u8 prop)
2528{
2529	if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
2530		return &dev->resource[bei];
2531#ifdef CONFIG_PCI_IOV
2532	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
2533		 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
2534		return &dev->resource[PCI_IOV_RESOURCES +
2535				      bei - PCI_EA_BEI_VF_BAR0];
2536#endif
2537	else if (bei == PCI_EA_BEI_ROM)
2538		return &dev->resource[PCI_ROM_RESOURCE];
2539	else
2540		return NULL;
2541}
2542
2543/* Read an Enhanced Allocation (EA) entry */
2544static int pci_ea_read(struct pci_dev *dev, int offset)
2545{
2546	struct resource *res;
2547	int ent_size, ent_offset = offset;
2548	resource_size_t start, end;
2549	unsigned long flags;
2550	u32 dw0, bei, base, max_offset;
2551	u8 prop;
2552	bool support_64 = (sizeof(resource_size_t) >= 8);
2553
2554	pci_read_config_dword(dev, ent_offset, &dw0);
2555	ent_offset += 4;
2556
2557	/* Entry size field indicates DWORDs after 1st */
2558	ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
2559
2560	if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
2561		goto out;
2562
2563	bei = (dw0 & PCI_EA_BEI) >> 4;
2564	prop = (dw0 & PCI_EA_PP) >> 8;
2565
2566	/*
2567	 * If the Property is in the reserved range, try the Secondary
2568	 * Property instead.
2569	 */
2570	if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
2571		prop = (dw0 & PCI_EA_SP) >> 16;
2572	if (prop > PCI_EA_P_BRIDGE_IO)
2573		goto out;
2574
2575	res = pci_ea_get_resource(dev, bei, prop);
2576	if (!res) {
2577		pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
2578		goto out;
2579	}
2580
2581	flags = pci_ea_flags(dev, prop);
2582	if (!flags) {
2583		pci_err(dev, "Unsupported EA properties: %#x\n", prop);
2584		goto out;
2585	}
2586
2587	/* Read Base */
2588	pci_read_config_dword(dev, ent_offset, &base);
2589	start = (base & PCI_EA_FIELD_MASK);
2590	ent_offset += 4;
2591
2592	/* Read MaxOffset */
2593	pci_read_config_dword(dev, ent_offset, &max_offset);
2594	ent_offset += 4;
2595
2596	/* Read Base MSBs (if 64-bit entry) */
2597	if (base & PCI_EA_IS_64) {
2598		u32 base_upper;
2599
2600		pci_read_config_dword(dev, ent_offset, &base_upper);
2601		ent_offset += 4;
2602
2603		flags |= IORESOURCE_MEM_64;
2604
2605		/* entry starts above 32-bit boundary, can't use */
2606		if (!support_64 && base_upper)
2607			goto out;
2608
2609		if (support_64)
2610			start |= ((u64)base_upper << 32);
2611	}
2612
2613	end = start + (max_offset | 0x03);
2614
2615	/* Read MaxOffset MSBs (if 64-bit entry) */
2616	if (max_offset & PCI_EA_IS_64) {
2617		u32 max_offset_upper;
2618
2619		pci_read_config_dword(dev, ent_offset, &max_offset_upper);
2620		ent_offset += 4;
2621
2622		flags |= IORESOURCE_MEM_64;
2623
2624		/* entry too big, can't use */
2625		if (!support_64 && max_offset_upper)
2626			goto out;
2627
2628		if (support_64)
2629			end += ((u64)max_offset_upper << 32);
2630	}
2631
2632	if (end < start) {
2633		pci_err(dev, "EA Entry crosses address boundary\n");
2634		goto out;
2635	}
2636
2637	if (ent_size != ent_offset - offset) {
2638		pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
2639			ent_size, ent_offset - offset);
2640		goto out;
2641	}
2642
2643	res->name = pci_name(dev);
2644	res->start = start;
2645	res->end = end;
2646	res->flags = flags;
2647
2648	if (bei <= PCI_EA_BEI_BAR5)
2649		pci_printk(KERN_DEBUG, dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2650			   bei, res, prop);
2651	else if (bei == PCI_EA_BEI_ROM)
2652		pci_printk(KERN_DEBUG, dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
2653			   res, prop);
2654	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
2655		pci_printk(KERN_DEBUG, dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2656			   bei - PCI_EA_BEI_VF_BAR0, res, prop);
2657	else
2658		pci_printk(KERN_DEBUG, dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
2659			   bei, res, prop);
2660
2661out:
2662	return offset + ent_size;
2663}
2664
2665/* Enhanced Allocation Initialization */
2666void pci_ea_init(struct pci_dev *dev)
2667{
2668	int ea;
2669	u8 num_ent;
2670	int offset;
2671	int i;
2672
2673	/* find PCI EA capability in list */
2674	ea = pci_find_capability(dev, PCI_CAP_ID_EA);
2675	if (!ea)
2676		return;
2677
2678	/* determine the number of entries */
2679	pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
2680					&num_ent);
2681	num_ent &= PCI_EA_NUM_ENT_MASK;
2682
2683	offset = ea + PCI_EA_FIRST_ENT;
2684
2685	/* Skip DWORD 2 for type 1 functions */
2686	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
2687		offset += 4;
2688
2689	/* parse each EA entry */
2690	for (i = 0; i < num_ent; ++i)
2691		offset = pci_ea_read(dev, offset);
2692}
2693
2694static void pci_add_saved_cap(struct pci_dev *pci_dev,
2695	struct pci_cap_saved_state *new_cap)
2696{
2697	hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
2698}
2699
2700/**
2701 * _pci_add_cap_save_buffer - allocate buffer for saving given
2702 *                            capability registers
2703 * @dev: the PCI device
2704 * @cap: the capability to allocate the buffer for
2705 * @extended: Standard or Extended capability ID
2706 * @size: requested size of the buffer
2707 */
2708static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
2709				    bool extended, unsigned int size)
2710{
2711	int pos;
2712	struct pci_cap_saved_state *save_state;
2713
2714	if (extended)
2715		pos = pci_find_ext_capability(dev, cap);
2716	else
2717		pos = pci_find_capability(dev, cap);
2718
2719	if (!pos)
2720		return 0;
2721
2722	save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
2723	if (!save_state)
2724		return -ENOMEM;
2725
2726	save_state->cap.cap_nr = cap;
2727	save_state->cap.cap_extended = extended;
2728	save_state->cap.size = size;
2729	pci_add_saved_cap(dev, save_state);
2730
2731	return 0;
2732}
2733
2734int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
2735{
2736	return _pci_add_cap_save_buffer(dev, cap, false, size);
2737}
2738
2739int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
2740{
2741	return _pci_add_cap_save_buffer(dev, cap, true, size);
2742}
2743
2744/**
2745 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
2746 * @dev: the PCI device
2747 */
2748void pci_allocate_cap_save_buffers(struct pci_dev *dev)
2749{
2750	int error;
2751
2752	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
2753					PCI_EXP_SAVE_REGS * sizeof(u16));
2754	if (error)
2755		pci_err(dev, "unable to preallocate PCI Express save buffer\n");
2756
2757	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
2758	if (error)
2759		pci_err(dev, "unable to preallocate PCI-X save buffer\n");
2760
 
 
 
 
 
2761	pci_allocate_vc_save_buffers(dev);
2762}
2763
2764void pci_free_cap_save_buffers(struct pci_dev *dev)
2765{
2766	struct pci_cap_saved_state *tmp;
2767	struct hlist_node *n;
2768
2769	hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
2770		kfree(tmp);
2771}
2772
2773/**
2774 * pci_configure_ari - enable or disable ARI forwarding
2775 * @dev: the PCI device
2776 *
2777 * If @dev and its upstream bridge both support ARI, enable ARI in the
2778 * bridge.  Otherwise, disable ARI in the bridge.
2779 */
2780void pci_configure_ari(struct pci_dev *dev)
2781{
2782	u32 cap;
2783	struct pci_dev *bridge;
2784
2785	if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
2786		return;
2787
2788	bridge = dev->bus->self;
2789	if (!bridge)
2790		return;
2791
2792	pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
2793	if (!(cap & PCI_EXP_DEVCAP2_ARI))
2794		return;
2795
2796	if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
2797		pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
2798					 PCI_EXP_DEVCTL2_ARI);
2799		bridge->ari_enabled = 1;
2800	} else {
2801		pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
2802					   PCI_EXP_DEVCTL2_ARI);
2803		bridge->ari_enabled = 0;
2804	}
2805}
2806
2807static int pci_acs_enable;
2808
2809/**
2810 * pci_request_acs - ask for ACS to be enabled if supported
2811 */
2812void pci_request_acs(void)
2813{
2814	pci_acs_enable = 1;
2815}
2816
2817/**
2818 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilites
2819 * @dev: the PCI device
2820 */
2821static void pci_std_enable_acs(struct pci_dev *dev)
2822{
2823	int pos;
2824	u16 cap;
2825	u16 ctrl;
2826
2827	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
2828	if (!pos)
2829		return;
2830
2831	pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
2832	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
2833
2834	/* Source Validation */
2835	ctrl |= (cap & PCI_ACS_SV);
2836
2837	/* P2P Request Redirect */
2838	ctrl |= (cap & PCI_ACS_RR);
2839
2840	/* P2P Completion Redirect */
2841	ctrl |= (cap & PCI_ACS_CR);
2842
2843	/* Upstream Forwarding */
2844	ctrl |= (cap & PCI_ACS_UF);
2845
2846	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
2847}
2848
2849/**
2850 * pci_enable_acs - enable ACS if hardware support it
2851 * @dev: the PCI device
2852 */
2853void pci_enable_acs(struct pci_dev *dev)
2854{
2855	if (!pci_acs_enable)
2856		return;
2857
2858	if (!pci_dev_specific_enable_acs(dev))
2859		return;
2860
2861	pci_std_enable_acs(dev);
2862}
2863
2864static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
2865{
2866	int pos;
2867	u16 cap, ctrl;
2868
2869	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
2870	if (!pos)
2871		return false;
2872
2873	/*
2874	 * Except for egress control, capabilities are either required
2875	 * or only required if controllable.  Features missing from the
2876	 * capability field can therefore be assumed as hard-wired enabled.
2877	 */
2878	pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
2879	acs_flags &= (cap | PCI_ACS_EC);
2880
2881	pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
2882	return (ctrl & acs_flags) == acs_flags;
2883}
2884
2885/**
2886 * pci_acs_enabled - test ACS against required flags for a given device
2887 * @pdev: device to test
2888 * @acs_flags: required PCI ACS flags
2889 *
2890 * Return true if the device supports the provided flags.  Automatically
2891 * filters out flags that are not implemented on multifunction devices.
2892 *
2893 * Note that this interface checks the effective ACS capabilities of the
2894 * device rather than the actual capabilities.  For instance, most single
2895 * function endpoints are not required to support ACS because they have no
2896 * opportunity for peer-to-peer access.  We therefore return 'true'
2897 * regardless of whether the device exposes an ACS capability.  This makes
2898 * it much easier for callers of this function to ignore the actual type
2899 * or topology of the device when testing ACS support.
2900 */
2901bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
2902{
2903	int ret;
2904
2905	ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
2906	if (ret >= 0)
2907		return ret > 0;
2908
2909	/*
2910	 * Conventional PCI and PCI-X devices never support ACS, either
2911	 * effectively or actually.  The shared bus topology implies that
2912	 * any device on the bus can receive or snoop DMA.
2913	 */
2914	if (!pci_is_pcie(pdev))
2915		return false;
2916
2917	switch (pci_pcie_type(pdev)) {
2918	/*
2919	 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
2920	 * but since their primary interface is PCI/X, we conservatively
2921	 * handle them as we would a non-PCIe device.
2922	 */
2923	case PCI_EXP_TYPE_PCIE_BRIDGE:
2924	/*
2925	 * PCIe 3.0, 6.12.1 excludes ACS on these devices.  "ACS is never
2926	 * applicable... must never implement an ACS Extended Capability...".
2927	 * This seems arbitrary, but we take a conservative interpretation
2928	 * of this statement.
2929	 */
2930	case PCI_EXP_TYPE_PCI_BRIDGE:
2931	case PCI_EXP_TYPE_RC_EC:
2932		return false;
2933	/*
2934	 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
2935	 * implement ACS in order to indicate their peer-to-peer capabilities,
2936	 * regardless of whether they are single- or multi-function devices.
2937	 */
2938	case PCI_EXP_TYPE_DOWNSTREAM:
2939	case PCI_EXP_TYPE_ROOT_PORT:
2940		return pci_acs_flags_enabled(pdev, acs_flags);
2941	/*
2942	 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
2943	 * implemented by the remaining PCIe types to indicate peer-to-peer
2944	 * capabilities, but only when they are part of a multifunction
2945	 * device.  The footnote for section 6.12 indicates the specific
2946	 * PCIe types included here.
2947	 */
2948	case PCI_EXP_TYPE_ENDPOINT:
2949	case PCI_EXP_TYPE_UPSTREAM:
2950	case PCI_EXP_TYPE_LEG_END:
2951	case PCI_EXP_TYPE_RC_END:
2952		if (!pdev->multifunction)
2953			break;
2954
2955		return pci_acs_flags_enabled(pdev, acs_flags);
2956	}
2957
2958	/*
2959	 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
2960	 * to single function devices with the exception of downstream ports.
2961	 */
2962	return true;
2963}
2964
2965/**
2966 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
2967 * @start: starting downstream device
2968 * @end: ending upstream device or NULL to search to the root bus
2969 * @acs_flags: required flags
2970 *
2971 * Walk up a device tree from start to end testing PCI ACS support.  If
2972 * any step along the way does not support the required flags, return false.
2973 */
2974bool pci_acs_path_enabled(struct pci_dev *start,
2975			  struct pci_dev *end, u16 acs_flags)
2976{
2977	struct pci_dev *pdev, *parent = start;
2978
2979	do {
2980		pdev = parent;
2981
2982		if (!pci_acs_enabled(pdev, acs_flags))
2983			return false;
2984
2985		if (pci_is_root_bus(pdev->bus))
2986			return (end == NULL);
2987
2988		parent = pdev->bus->self;
2989	} while (pdev != end);
2990
2991	return true;
2992}
2993
2994/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2995 * pci_rebar_find_pos - find position of resize ctrl reg for BAR
2996 * @pdev: PCI device
2997 * @bar: BAR to find
2998 *
2999 * Helper to find the position of the ctrl register for a BAR.
3000 * Returns -ENOTSUPP if resizable BARs are not supported at all.
3001 * Returns -ENOENT if no ctrl register for the BAR could be found.
3002 */
3003static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3004{
3005	unsigned int pos, nbars, i;
3006	u32 ctrl;
3007
3008	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3009	if (!pos)
3010		return -ENOTSUPP;
3011
3012	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3013	nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
3014		    PCI_REBAR_CTRL_NBAR_SHIFT;
3015
3016	for (i = 0; i < nbars; i++, pos += 8) {
3017		int bar_idx;
3018
3019		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3020		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
3021		if (bar_idx == bar)
3022			return pos;
3023	}
3024
3025	return -ENOENT;
3026}
3027
3028/**
3029 * pci_rebar_get_possible_sizes - get possible sizes for BAR
3030 * @pdev: PCI device
3031 * @bar: BAR to query
3032 *
3033 * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3034 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3035 */
3036u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3037{
3038	int pos;
3039	u32 cap;
3040
3041	pos = pci_rebar_find_pos(pdev, bar);
3042	if (pos < 0)
3043		return 0;
3044
3045	pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3046	return (cap & PCI_REBAR_CAP_SIZES) >> 4;
 
 
 
 
 
 
 
3047}
 
3048
3049/**
3050 * pci_rebar_get_current_size - get the current size of a BAR
3051 * @pdev: PCI device
3052 * @bar: BAR to set size to
3053 *
3054 * Read the size of a BAR from the resizable BAR config.
3055 * Returns size if found or negative error code.
3056 */
3057int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3058{
3059	int pos;
3060	u32 ctrl;
3061
3062	pos = pci_rebar_find_pos(pdev, bar);
3063	if (pos < 0)
3064		return pos;
3065
3066	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3067	return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> 8;
3068}
3069
3070/**
3071 * pci_rebar_set_size - set a new size for a BAR
3072 * @pdev: PCI device
3073 * @bar: BAR to set size to
3074 * @size: new size as defined in the spec (0=1MB, 19=512GB)
3075 *
3076 * Set the new size of a BAR as defined in the spec.
3077 * Returns zero if resizing was successful, error code otherwise.
3078 */
3079int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3080{
3081	int pos;
3082	u32 ctrl;
3083
3084	pos = pci_rebar_find_pos(pdev, bar);
3085	if (pos < 0)
3086		return pos;
3087
3088	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3089	ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3090	ctrl |= size << 8;
3091	pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3092	return 0;
3093}
3094
3095/**
3096 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3097 * @dev: the PCI device
3098 * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3099 *	PCI_EXP_DEVCAP2_ATOMIC_COMP32
3100 *	PCI_EXP_DEVCAP2_ATOMIC_COMP64
3101 *	PCI_EXP_DEVCAP2_ATOMIC_COMP128
3102 *
3103 * Return 0 if all upstream bridges support AtomicOp routing, egress
3104 * blocking is disabled on all upstream ports, and the root port supports
3105 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3106 * AtomicOp completion), or negative otherwise.
3107 */
3108int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3109{
3110	struct pci_bus *bus = dev->bus;
3111	struct pci_dev *bridge;
3112	u32 cap, ctl2;
3113
 
 
 
 
 
 
 
 
3114	if (!pci_is_pcie(dev))
3115		return -EINVAL;
3116
3117	/*
3118	 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3119	 * AtomicOp requesters.  For now, we only support endpoints as
3120	 * requesters and root ports as completers.  No endpoints as
3121	 * completers, and no peer-to-peer.
3122	 */
3123
3124	switch (pci_pcie_type(dev)) {
3125	case PCI_EXP_TYPE_ENDPOINT:
3126	case PCI_EXP_TYPE_LEG_END:
3127	case PCI_EXP_TYPE_RC_END:
3128		break;
3129	default:
3130		return -EINVAL;
3131	}
3132
3133	while (bus->parent) {
3134		bridge = bus->self;
3135
3136		pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3137
3138		switch (pci_pcie_type(bridge)) {
3139		/* Ensure switch ports support AtomicOp routing */
3140		case PCI_EXP_TYPE_UPSTREAM:
3141		case PCI_EXP_TYPE_DOWNSTREAM:
3142			if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3143				return -EINVAL;
3144			break;
3145
3146		/* Ensure root port supports all the sizes we care about */
3147		case PCI_EXP_TYPE_ROOT_PORT:
3148			if ((cap & cap_mask) != cap_mask)
3149				return -EINVAL;
3150			break;
3151		}
3152
3153		/* Ensure upstream ports don't block AtomicOps on egress */
3154		if (!bridge->has_secondary_link) {
3155			pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3156						   &ctl2);
3157			if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3158				return -EINVAL;
3159		}
3160
3161		bus = bus->parent;
3162	}
3163
3164	pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3165				 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3166	return 0;
3167}
3168EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3169
3170/**
3171 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3172 * @dev: the PCI device
3173 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3174 *
3175 * Perform INTx swizzling for a device behind one level of bridge.  This is
3176 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3177 * behind bridges on add-in cards.  For devices with ARI enabled, the slot
3178 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3179 * the PCI Express Base Specification, Revision 2.1)
3180 */
3181u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3182{
3183	int slot;
3184
3185	if (pci_ari_enabled(dev->bus))
3186		slot = 0;
3187	else
3188		slot = PCI_SLOT(dev->devfn);
3189
3190	return (((pin - 1) + slot) % 4) + 1;
3191}
3192
3193int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3194{
3195	u8 pin;
3196
3197	pin = dev->pin;
3198	if (!pin)
3199		return -1;
3200
3201	while (!pci_is_root_bus(dev->bus)) {
3202		pin = pci_swizzle_interrupt_pin(dev, pin);
3203		dev = dev->bus->self;
3204	}
3205	*bridge = dev;
3206	return pin;
3207}
3208
3209/**
3210 * pci_common_swizzle - swizzle INTx all the way to root bridge
3211 * @dev: the PCI device
3212 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3213 *
3214 * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
3215 * bridges all the way up to a PCI root bus.
3216 */
3217u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3218{
3219	u8 pin = *pinp;
3220
3221	while (!pci_is_root_bus(dev->bus)) {
3222		pin = pci_swizzle_interrupt_pin(dev, pin);
3223		dev = dev->bus->self;
3224	}
3225	*pinp = pin;
3226	return PCI_SLOT(dev->devfn);
3227}
3228EXPORT_SYMBOL_GPL(pci_common_swizzle);
3229
3230/**
3231 *	pci_release_region - Release a PCI bar
3232 *	@pdev: PCI device whose resources were previously reserved by pci_request_region
3233 *	@bar: BAR to release
3234 *
3235 *	Releases the PCI I/O and memory resources previously reserved by a
3236 *	successful call to pci_request_region.  Call this function only
3237 *	after all use of the PCI regions has ceased.
 
3238 */
3239void pci_release_region(struct pci_dev *pdev, int bar)
3240{
3241	struct pci_devres *dr;
3242
3243	if (pci_resource_len(pdev, bar) == 0)
3244		return;
3245	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3246		release_region(pci_resource_start(pdev, bar),
3247				pci_resource_len(pdev, bar));
3248	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3249		release_mem_region(pci_resource_start(pdev, bar),
3250				pci_resource_len(pdev, bar));
3251
3252	dr = find_pci_dr(pdev);
3253	if (dr)
3254		dr->region_mask &= ~(1 << bar);
3255}
3256EXPORT_SYMBOL(pci_release_region);
3257
3258/**
3259 *	__pci_request_region - Reserved PCI I/O and memory resource
3260 *	@pdev: PCI device whose resources are to be reserved
3261 *	@bar: BAR to be reserved
3262 *	@res_name: Name to be associated with resource.
3263 *	@exclusive: whether the region access is exclusive or not
3264 *
3265 *	Mark the PCI region associated with PCI device @pdev BR @bar as
3266 *	being reserved by owner @res_name.  Do not access any
3267 *	address inside the PCI regions unless this call returns
3268 *	successfully.
3269 *
3270 *	If @exclusive is set, then the region is marked so that userspace
3271 *	is explicitly not allowed to map the resource via /dev/mem or
3272 *	sysfs MMIO access.
3273 *
3274 *	Returns 0 on success, or %EBUSY on error.  A warning
3275 *	message is also printed on failure.
3276 */
3277static int __pci_request_region(struct pci_dev *pdev, int bar,
3278				const char *res_name, int exclusive)
3279{
3280	struct pci_devres *dr;
3281
3282	if (pci_resource_len(pdev, bar) == 0)
3283		return 0;
3284
3285	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3286		if (!request_region(pci_resource_start(pdev, bar),
3287			    pci_resource_len(pdev, bar), res_name))
3288			goto err_out;
3289	} else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3290		if (!__request_mem_region(pci_resource_start(pdev, bar),
3291					pci_resource_len(pdev, bar), res_name,
3292					exclusive))
3293			goto err_out;
3294	}
3295
3296	dr = find_pci_dr(pdev);
3297	if (dr)
3298		dr->region_mask |= 1 << bar;
3299
3300	return 0;
3301
3302err_out:
3303	pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
3304		 &pdev->resource[bar]);
3305	return -EBUSY;
3306}
3307
3308/**
3309 *	pci_request_region - Reserve PCI I/O and memory resource
3310 *	@pdev: PCI device whose resources are to be reserved
3311 *	@bar: BAR to be reserved
3312 *	@res_name: Name to be associated with resource
3313 *
3314 *	Mark the PCI region associated with PCI device @pdev BAR @bar as
3315 *	being reserved by owner @res_name.  Do not access any
3316 *	address inside the PCI regions unless this call returns
3317 *	successfully.
3318 *
3319 *	Returns 0 on success, or %EBUSY on error.  A warning
3320 *	message is also printed on failure.
 
 
 
 
 
3321 */
3322int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
3323{
3324	return __pci_request_region(pdev, bar, res_name, 0);
3325}
3326EXPORT_SYMBOL(pci_request_region);
3327
3328/**
3329 *	pci_request_region_exclusive - Reserved PCI I/O and memory resource
3330 *	@pdev: PCI device whose resources are to be reserved
3331 *	@bar: BAR to be reserved
3332 *	@res_name: Name to be associated with resource.
3333 *
3334 *	Mark the PCI region associated with PCI device @pdev BR @bar as
3335 *	being reserved by owner @res_name.  Do not access any
3336 *	address inside the PCI regions unless this call returns
3337 *	successfully.
3338 *
3339 *	Returns 0 on success, or %EBUSY on error.  A warning
3340 *	message is also printed on failure.
3341 *
3342 *	The key difference that _exclusive makes it that userspace is
3343 *	explicitly not allowed to map the resource via /dev/mem or
3344 *	sysfs.
3345 */
3346int pci_request_region_exclusive(struct pci_dev *pdev, int bar,
3347				 const char *res_name)
3348{
3349	return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
3350}
3351EXPORT_SYMBOL(pci_request_region_exclusive);
3352
3353/**
3354 * pci_release_selected_regions - Release selected PCI I/O and memory resources
3355 * @pdev: PCI device whose resources were previously reserved
3356 * @bars: Bitmask of BARs to be released
3357 *
3358 * Release selected PCI I/O and memory resources previously reserved.
3359 * Call this function only after all use of the PCI regions has ceased.
3360 */
3361void pci_release_selected_regions(struct pci_dev *pdev, int bars)
3362{
3363	int i;
3364
3365	for (i = 0; i < 6; i++)
3366		if (bars & (1 << i))
3367			pci_release_region(pdev, i);
3368}
3369EXPORT_SYMBOL(pci_release_selected_regions);
3370
3371static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
3372					  const char *res_name, int excl)
3373{
3374	int i;
3375
3376	for (i = 0; i < 6; i++)
3377		if (bars & (1 << i))
3378			if (__pci_request_region(pdev, i, res_name, excl))
3379				goto err_out;
3380	return 0;
3381
3382err_out:
3383	while (--i >= 0)
3384		if (bars & (1 << i))
3385			pci_release_region(pdev, i);
3386
3387	return -EBUSY;
3388}
3389
3390
3391/**
3392 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3393 * @pdev: PCI device whose resources are to be reserved
3394 * @bars: Bitmask of BARs to be requested
3395 * @res_name: Name to be associated with resource
3396 */
3397int pci_request_selected_regions(struct pci_dev *pdev, int bars,
3398				 const char *res_name)
3399{
3400	return __pci_request_selected_regions(pdev, bars, res_name, 0);
3401}
3402EXPORT_SYMBOL(pci_request_selected_regions);
3403
3404int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
3405					   const char *res_name)
3406{
3407	return __pci_request_selected_regions(pdev, bars, res_name,
3408			IORESOURCE_EXCLUSIVE);
3409}
3410EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3411
3412/**
3413 *	pci_release_regions - Release reserved PCI I/O and memory resources
3414 *	@pdev: PCI device whose resources were previously reserved by pci_request_regions
3415 *
3416 *	Releases all PCI I/O and memory resources previously reserved by a
3417 *	successful call to pci_request_regions.  Call this function only
3418 *	after all use of the PCI regions has ceased.
 
3419 */
3420
3421void pci_release_regions(struct pci_dev *pdev)
3422{
3423	pci_release_selected_regions(pdev, (1 << 6) - 1);
3424}
3425EXPORT_SYMBOL(pci_release_regions);
3426
3427/**
3428 *	pci_request_regions - Reserved PCI I/O and memory resources
3429 *	@pdev: PCI device whose resources are to be reserved
3430 *	@res_name: Name to be associated with resource.
3431 *
3432 *	Mark all PCI regions associated with PCI device @pdev as
3433 *	being reserved by owner @res_name.  Do not access any
3434 *	address inside the PCI regions unless this call returns
3435 *	successfully.
3436 *
3437 *	Returns 0 on success, or %EBUSY on error.  A warning
3438 *	message is also printed on failure.
3439 */
3440int pci_request_regions(struct pci_dev *pdev, const char *res_name)
3441{
3442	return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
 
3443}
3444EXPORT_SYMBOL(pci_request_regions);
3445
3446/**
3447 *	pci_request_regions_exclusive - Reserved PCI I/O and memory resources
3448 *	@pdev: PCI device whose resources are to be reserved
3449 *	@res_name: Name to be associated with resource.
3450 *
3451 *	Mark all PCI regions associated with PCI device @pdev as
3452 *	being reserved by owner @res_name.  Do not access any
3453 *	address inside the PCI regions unless this call returns
3454 *	successfully.
3455 *
3456 *	pci_request_regions_exclusive() will mark the region so that
3457 *	/dev/mem and the sysfs MMIO access will not be allowed.
3458 *
3459 *	Returns 0 on success, or %EBUSY on error.  A warning
3460 *	message is also printed on failure.
3461 */
3462int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
3463{
3464	return pci_request_selected_regions_exclusive(pdev,
3465					((1 << 6) - 1), res_name);
3466}
3467EXPORT_SYMBOL(pci_request_regions_exclusive);
3468
3469/*
3470 * Record the PCI IO range (expressed as CPU physical address + size).
3471 * Return a negative value if an error has occured, zero otherwise
3472 */
3473int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
3474			resource_size_t	size)
3475{
3476	int ret = 0;
3477#ifdef PCI_IOBASE
3478	struct logic_pio_hwaddr *range;
3479
3480	if (!size || addr + size < addr)
3481		return -EINVAL;
3482
3483	range = kzalloc(sizeof(*range), GFP_ATOMIC);
3484	if (!range)
3485		return -ENOMEM;
3486
3487	range->fwnode = fwnode;
3488	range->size = size;
3489	range->hw_start = addr;
3490	range->flags = LOGIC_PIO_CPU_MMIO;
3491
3492	ret = logic_pio_register_range(range);
3493	if (ret)
3494		kfree(range);
 
 
 
 
3495#endif
3496
3497	return ret;
3498}
3499
3500phys_addr_t pci_pio_to_address(unsigned long pio)
3501{
3502	phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
3503
3504#ifdef PCI_IOBASE
3505	if (pio >= MMIO_UPPER_LIMIT)
3506		return address;
3507
3508	address = logic_pio_to_hwaddr(pio);
3509#endif
3510
3511	return address;
3512}
 
3513
3514unsigned long __weak pci_address_to_pio(phys_addr_t address)
3515{
3516#ifdef PCI_IOBASE
3517	return logic_pio_trans_cpuaddr(address);
3518#else
3519	if (address > IO_SPACE_LIMIT)
3520		return (unsigned long)-1;
3521
3522	return (unsigned long) address;
3523#endif
3524}
3525
3526/**
3527 *	pci_remap_iospace - Remap the memory mapped I/O space
3528 *	@res: Resource describing the I/O space
3529 *	@phys_addr: physical address of range to be mapped
3530 *
3531 *	Remap the memory mapped I/O space described by the @res
3532 *	and the CPU physical address @phys_addr into virtual address space.
3533 *	Only architectures that have memory mapped IO functions defined
3534 *	(and the PCI_IOBASE value defined) should call this function.
3535 */
 
3536int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
3537{
3538#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3539	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3540
3541	if (!(res->flags & IORESOURCE_IO))
3542		return -EINVAL;
3543
3544	if (res->end > IO_SPACE_LIMIT)
3545		return -EINVAL;
3546
3547	return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
3548				  pgprot_device(PAGE_KERNEL));
3549#else
3550	/* this architecture does not have memory mapped I/O space,
3551	   so this function should never be called */
 
 
3552	WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
3553	return -ENODEV;
3554#endif
3555}
3556EXPORT_SYMBOL(pci_remap_iospace);
 
3557
3558/**
3559 *	pci_unmap_iospace - Unmap the memory mapped I/O space
3560 *	@res: resource to be unmapped
3561 *
3562 *	Unmap the CPU virtual address @res from virtual address space.
3563 *	Only architectures that have memory mapped IO functions defined
3564 *	(and the PCI_IOBASE value defined) should call this function.
3565 */
3566void pci_unmap_iospace(struct resource *res)
3567{
3568#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3569	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3570
3571	unmap_kernel_range(vaddr, resource_size(res));
3572#endif
3573}
3574EXPORT_SYMBOL(pci_unmap_iospace);
3575
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3576/**
3577 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
3578 * @dev: Generic device to remap IO address for
3579 * @offset: Resource address to map
3580 * @size: Size of map
3581 *
3582 * Managed pci_remap_cfgspace().  Map is automatically unmapped on driver
3583 * detach.
3584 */
3585void __iomem *devm_pci_remap_cfgspace(struct device *dev,
3586				      resource_size_t offset,
3587				      resource_size_t size)
3588{
3589	void __iomem **ptr, *addr;
3590
3591	ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
3592	if (!ptr)
3593		return NULL;
3594
3595	addr = pci_remap_cfgspace(offset, size);
3596	if (addr) {
3597		*ptr = addr;
3598		devres_add(dev, ptr);
3599	} else
3600		devres_free(ptr);
3601
3602	return addr;
3603}
3604EXPORT_SYMBOL(devm_pci_remap_cfgspace);
3605
3606/**
3607 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
3608 * @dev: generic device to handle the resource for
3609 * @res: configuration space resource to be handled
3610 *
3611 * Checks that a resource is a valid memory region, requests the memory
3612 * region and ioremaps with pci_remap_cfgspace() API that ensures the
3613 * proper PCI configuration space memory attributes are guaranteed.
3614 *
3615 * All operations are managed and will be undone on driver detach.
3616 *
3617 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
3618 * on failure. Usage example::
3619 *
3620 *	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3621 *	base = devm_pci_remap_cfg_resource(&pdev->dev, res);
3622 *	if (IS_ERR(base))
3623 *		return PTR_ERR(base);
3624 */
3625void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
3626					  struct resource *res)
3627{
3628	resource_size_t size;
3629	const char *name;
3630	void __iomem *dest_ptr;
3631
3632	BUG_ON(!dev);
3633
3634	if (!res || resource_type(res) != IORESOURCE_MEM) {
3635		dev_err(dev, "invalid resource\n");
3636		return IOMEM_ERR_PTR(-EINVAL);
3637	}
3638
3639	size = resource_size(res);
3640	name = res->name ?: dev_name(dev);
 
 
 
 
 
 
 
3641
3642	if (!devm_request_mem_region(dev, res->start, size, name)) {
3643		dev_err(dev, "can't request region for resource %pR\n", res);
3644		return IOMEM_ERR_PTR(-EBUSY);
3645	}
3646
3647	dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
3648	if (!dest_ptr) {
3649		dev_err(dev, "ioremap failed for resource %pR\n", res);
3650		devm_release_mem_region(dev, res->start, size);
3651		dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
3652	}
3653
3654	return dest_ptr;
3655}
3656EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
3657
3658static void __pci_set_master(struct pci_dev *dev, bool enable)
3659{
3660	u16 old_cmd, cmd;
3661
3662	pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
3663	if (enable)
3664		cmd = old_cmd | PCI_COMMAND_MASTER;
3665	else
3666		cmd = old_cmd & ~PCI_COMMAND_MASTER;
3667	if (cmd != old_cmd) {
3668		pci_dbg(dev, "%s bus mastering\n",
3669			enable ? "enabling" : "disabling");
3670		pci_write_config_word(dev, PCI_COMMAND, cmd);
3671	}
3672	dev->is_busmaster = enable;
3673}
3674
3675/**
3676 * pcibios_setup - process "pci=" kernel boot arguments
3677 * @str: string used to pass in "pci=" kernel boot arguments
3678 *
3679 * Process kernel boot arguments.  This is the default implementation.
3680 * Architecture specific implementations can override this as necessary.
3681 */
3682char * __weak __init pcibios_setup(char *str)
3683{
3684	return str;
3685}
3686
3687/**
3688 * pcibios_set_master - enable PCI bus-mastering for device dev
3689 * @dev: the PCI device to enable
3690 *
3691 * Enables PCI bus-mastering for the device.  This is the default
3692 * implementation.  Architecture specific implementations can override
3693 * this if necessary.
3694 */
3695void __weak pcibios_set_master(struct pci_dev *dev)
3696{
3697	u8 lat;
3698
3699	/* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
3700	if (pci_is_pcie(dev))
3701		return;
3702
3703	pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
3704	if (lat < 16)
3705		lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
3706	else if (lat > pcibios_max_latency)
3707		lat = pcibios_max_latency;
3708	else
3709		return;
3710
3711	pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
3712}
3713
3714/**
3715 * pci_set_master - enables bus-mastering for device dev
3716 * @dev: the PCI device to enable
3717 *
3718 * Enables bus-mastering on the device and calls pcibios_set_master()
3719 * to do the needed arch specific settings.
3720 */
3721void pci_set_master(struct pci_dev *dev)
3722{
3723	__pci_set_master(dev, true);
3724	pcibios_set_master(dev);
3725}
3726EXPORT_SYMBOL(pci_set_master);
3727
3728/**
3729 * pci_clear_master - disables bus-mastering for device dev
3730 * @dev: the PCI device to disable
3731 */
3732void pci_clear_master(struct pci_dev *dev)
3733{
3734	__pci_set_master(dev, false);
3735}
3736EXPORT_SYMBOL(pci_clear_master);
3737
3738/**
3739 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
3740 * @dev: the PCI device for which MWI is to be enabled
3741 *
3742 * Helper function for pci_set_mwi.
3743 * Originally copied from drivers/net/acenic.c.
3744 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
3745 *
3746 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3747 */
3748int pci_set_cacheline_size(struct pci_dev *dev)
3749{
3750	u8 cacheline_size;
3751
3752	if (!pci_cache_line_size)
3753		return -EINVAL;
3754
3755	/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
3756	   equal to or multiple of the right value. */
3757	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
3758	if (cacheline_size >= pci_cache_line_size &&
3759	    (cacheline_size % pci_cache_line_size) == 0)
3760		return 0;
3761
3762	/* Write the correct value. */
3763	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
3764	/* Read it back. */
3765	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
3766	if (cacheline_size == pci_cache_line_size)
3767		return 0;
3768
3769	pci_printk(KERN_DEBUG, dev, "cache line size of %d is not supported\n",
3770		   pci_cache_line_size << 2);
3771
3772	return -EINVAL;
3773}
3774EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
3775
3776/**
3777 * pci_set_mwi - enables memory-write-invalidate PCI transaction
3778 * @dev: the PCI device for which MWI is enabled
3779 *
3780 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
3781 *
3782 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3783 */
3784int pci_set_mwi(struct pci_dev *dev)
3785{
3786#ifdef PCI_DISABLE_MWI
3787	return 0;
3788#else
3789	int rc;
3790	u16 cmd;
3791
3792	rc = pci_set_cacheline_size(dev);
3793	if (rc)
3794		return rc;
3795
3796	pci_read_config_word(dev, PCI_COMMAND, &cmd);
3797	if (!(cmd & PCI_COMMAND_INVALIDATE)) {
3798		pci_dbg(dev, "enabling Mem-Wr-Inval\n");
3799		cmd |= PCI_COMMAND_INVALIDATE;
3800		pci_write_config_word(dev, PCI_COMMAND, cmd);
3801	}
3802	return 0;
3803#endif
3804}
3805EXPORT_SYMBOL(pci_set_mwi);
3806
3807/**
3808 * pcim_set_mwi - a device-managed pci_set_mwi()
3809 * @dev: the PCI device for which MWI is enabled
3810 *
3811 * Managed pci_set_mwi().
3812 *
3813 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3814 */
3815int pcim_set_mwi(struct pci_dev *dev)
3816{
3817	struct pci_devres *dr;
3818
3819	dr = find_pci_dr(dev);
3820	if (!dr)
3821		return -ENOMEM;
3822
3823	dr->mwi = 1;
3824	return pci_set_mwi(dev);
3825}
3826EXPORT_SYMBOL(pcim_set_mwi);
3827
3828/**
3829 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
3830 * @dev: the PCI device for which MWI is enabled
3831 *
3832 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
3833 * Callers are not required to check the return value.
3834 *
3835 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3836 */
3837int pci_try_set_mwi(struct pci_dev *dev)
3838{
3839#ifdef PCI_DISABLE_MWI
3840	return 0;
3841#else
3842	return pci_set_mwi(dev);
3843#endif
3844}
3845EXPORT_SYMBOL(pci_try_set_mwi);
3846
3847/**
3848 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
3849 * @dev: the PCI device to disable
3850 *
3851 * Disables PCI Memory-Write-Invalidate transaction on the device
3852 */
3853void pci_clear_mwi(struct pci_dev *dev)
3854{
3855#ifndef PCI_DISABLE_MWI
3856	u16 cmd;
3857
3858	pci_read_config_word(dev, PCI_COMMAND, &cmd);
3859	if (cmd & PCI_COMMAND_INVALIDATE) {
3860		cmd &= ~PCI_COMMAND_INVALIDATE;
3861		pci_write_config_word(dev, PCI_COMMAND, cmd);
3862	}
3863#endif
3864}
3865EXPORT_SYMBOL(pci_clear_mwi);
3866
3867/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3868 * pci_intx - enables/disables PCI INTx for device dev
3869 * @pdev: the PCI device to operate on
3870 * @enable: boolean: whether to enable or disable PCI INTx
3871 *
3872 * Enables/disables PCI INTx for device dev
3873 */
3874void pci_intx(struct pci_dev *pdev, int enable)
3875{
3876	u16 pci_command, new;
3877
3878	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
3879
3880	if (enable)
3881		new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
3882	else
3883		new = pci_command | PCI_COMMAND_INTX_DISABLE;
3884
3885	if (new != pci_command) {
3886		struct pci_devres *dr;
3887
3888		pci_write_config_word(pdev, PCI_COMMAND, new);
3889
3890		dr = find_pci_dr(pdev);
3891		if (dr && !dr->restore_intx) {
3892			dr->restore_intx = 1;
3893			dr->orig_intx = !enable;
3894		}
3895	}
3896}
3897EXPORT_SYMBOL_GPL(pci_intx);
3898
3899static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
3900{
3901	struct pci_bus *bus = dev->bus;
3902	bool mask_updated = true;
3903	u32 cmd_status_dword;
3904	u16 origcmd, newcmd;
3905	unsigned long flags;
3906	bool irq_pending;
3907
3908	/*
3909	 * We do a single dword read to retrieve both command and status.
3910	 * Document assumptions that make this possible.
3911	 */
3912	BUILD_BUG_ON(PCI_COMMAND % 4);
3913	BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
3914
3915	raw_spin_lock_irqsave(&pci_lock, flags);
3916
3917	bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
3918
3919	irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
3920
3921	/*
3922	 * Check interrupt status register to see whether our device
3923	 * triggered the interrupt (when masking) or the next IRQ is
3924	 * already pending (when unmasking).
3925	 */
3926	if (mask != irq_pending) {
3927		mask_updated = false;
3928		goto done;
3929	}
3930
3931	origcmd = cmd_status_dword;
3932	newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
3933	if (mask)
3934		newcmd |= PCI_COMMAND_INTX_DISABLE;
3935	if (newcmd != origcmd)
3936		bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
3937
3938done:
3939	raw_spin_unlock_irqrestore(&pci_lock, flags);
3940
3941	return mask_updated;
3942}
3943
3944/**
3945 * pci_check_and_mask_intx - mask INTx on pending interrupt
3946 * @dev: the PCI device to operate on
3947 *
3948 * Check if the device dev has its INTx line asserted, mask it and
3949 * return true in that case. False is returned if no interrupt was
3950 * pending.
3951 */
3952bool pci_check_and_mask_intx(struct pci_dev *dev)
3953{
3954	return pci_check_and_set_intx_mask(dev, true);
3955}
3956EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
3957
3958/**
3959 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
3960 * @dev: the PCI device to operate on
3961 *
3962 * Check if the device dev has its INTx line asserted, unmask it if not
3963 * and return true. False is returned and the mask remains active if
3964 * there was still an interrupt pending.
3965 */
3966bool pci_check_and_unmask_intx(struct pci_dev *dev)
3967{
3968	return pci_check_and_set_intx_mask(dev, false);
3969}
3970EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
3971
3972/**
3973 * pci_wait_for_pending_transaction - waits for pending transaction
3974 * @dev: the PCI device to operate on
3975 *
3976 * Return 0 if transaction is pending 1 otherwise.
3977 */
3978int pci_wait_for_pending_transaction(struct pci_dev *dev)
3979{
3980	if (!pci_is_pcie(dev))
3981		return 1;
3982
3983	return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
3984				    PCI_EXP_DEVSTA_TRPND);
3985}
3986EXPORT_SYMBOL(pci_wait_for_pending_transaction);
3987
3988static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
3989{
3990	int delay = 1;
3991	u32 id;
3992
3993	/*
3994	 * After reset, the device should not silently discard config
3995	 * requests, but it may still indicate that it needs more time by
3996	 * responding to them with CRS completions.  The Root Port will
3997	 * generally synthesize ~0 data to complete the read (except when
3998	 * CRS SV is enabled and the read was for the Vendor ID; in that
3999	 * case it synthesizes 0x0001 data).
4000	 *
4001	 * Wait for the device to return a non-CRS completion.  Read the
4002	 * Command register instead of Vendor ID so we don't have to
4003	 * contend with the CRS SV value.
4004	 */
4005	pci_read_config_dword(dev, PCI_COMMAND, &id);
4006	while (id == ~0) {
4007		if (delay > timeout) {
4008			pci_warn(dev, "not ready %dms after %s; giving up\n",
4009				 delay - 1, reset_type);
4010			return -ENOTTY;
4011		}
4012
4013		if (delay > 1000)
4014			pci_info(dev, "not ready %dms after %s; waiting\n",
4015				 delay - 1, reset_type);
4016
4017		msleep(delay);
4018		delay *= 2;
4019		pci_read_config_dword(dev, PCI_COMMAND, &id);
4020	}
4021
4022	if (delay > 1000)
4023		pci_info(dev, "ready %dms after %s\n", delay - 1,
4024			 reset_type);
4025
4026	return 0;
4027}
4028
4029/**
4030 * pcie_has_flr - check if a device supports function level resets
4031 * @dev:	device to check
4032 *
4033 * Returns true if the device advertises support for PCIe function level
4034 * resets.
4035 */
4036static bool pcie_has_flr(struct pci_dev *dev)
4037{
4038	u32 cap;
4039
4040	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4041		return false;
4042
4043	pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
4044	return cap & PCI_EXP_DEVCAP_FLR;
4045}
4046
4047/**
4048 * pcie_flr - initiate a PCIe function level reset
4049 * @dev:	device to reset
4050 *
4051 * Initiate a function level reset on @dev.  The caller should ensure the
4052 * device supports FLR before calling this function, e.g. by using the
4053 * pcie_has_flr() helper.
4054 */
4055int pcie_flr(struct pci_dev *dev)
4056{
4057	if (!pci_wait_for_pending_transaction(dev))
4058		pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4059
4060	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4061
 
 
 
4062	/*
4063	 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4064	 * 100ms, but may silently discard requests while the FLR is in
4065	 * progress.  Wait 100ms before trying to access the device.
4066	 */
4067	msleep(100);
4068
4069	return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4070}
4071EXPORT_SYMBOL_GPL(pcie_flr);
4072
4073static int pci_af_flr(struct pci_dev *dev, int probe)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4074{
4075	int pos;
4076	u8 cap;
4077
4078	pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4079	if (!pos)
4080		return -ENOTTY;
4081
4082	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4083		return -ENOTTY;
4084
4085	pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4086	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4087		return -ENOTTY;
4088
4089	if (probe)
4090		return 0;
4091
4092	/*
4093	 * Wait for Transaction Pending bit to clear.  A word-aligned test
4094	 * is used, so we use the conrol offset rather than status and shift
4095	 * the test bit to match.
4096	 */
4097	if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4098				 PCI_AF_STATUS_TP << 8))
4099		pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4100
4101	pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4102
 
 
 
4103	/*
4104	 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4105	 * updated 27 July 2006; a device must complete an FLR within
4106	 * 100ms, but may silently discard requests while the FLR is in
4107	 * progress.  Wait 100ms before trying to access the device.
4108	 */
4109	msleep(100);
4110
4111	return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4112}
4113
4114/**
4115 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4116 * @dev: Device to reset.
4117 * @probe: If set, only check if the device can be reset this way.
4118 *
4119 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4120 * unset, it will be reinitialized internally when going from PCI_D3hot to
4121 * PCI_D0.  If that's the case and the device is not in a low-power state
4122 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4123 *
4124 * NOTE: This causes the caller to sleep for twice the device power transition
4125 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4126 * by default (i.e. unless the @dev's d3_delay field has a different value).
4127 * Moreover, only devices in D0 can be reset by this function.
4128 */
4129static int pci_pm_reset(struct pci_dev *dev, int probe)
4130{
4131	u16 csr;
4132
4133	if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4134		return -ENOTTY;
4135
4136	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4137	if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4138		return -ENOTTY;
4139
4140	if (probe)
4141		return 0;
4142
4143	if (dev->current_state != PCI_D0)
4144		return -EINVAL;
4145
4146	csr &= ~PCI_PM_CTRL_STATE_MASK;
4147	csr |= PCI_D3hot;
4148	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4149	pci_dev_d3_sleep(dev);
4150
4151	csr &= ~PCI_PM_CTRL_STATE_MASK;
4152	csr |= PCI_D0;
4153	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4154	pci_dev_d3_sleep(dev);
4155
4156	return pci_dev_wait(dev, "PM D3->D0", PCIE_RESET_READY_POLL_MS);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4157}
4158
4159void pci_reset_secondary_bus(struct pci_dev *dev)
4160{
4161	u16 ctrl;
4162
4163	pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
4164	ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
4165	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4166
4167	/*
4168	 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms.  Double
4169	 * this to 2ms to ensure that we meet the minimum requirement.
4170	 */
4171	msleep(2);
4172
4173	ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
4174	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4175
4176	/*
4177	 * Trhfa for conventional PCI is 2^25 clock cycles.
4178	 * Assuming a minimum 33MHz clock this results in a 1s
4179	 * delay before we can consider subordinate devices to
4180	 * be re-initialized.  PCIe has some ways to shorten this,
4181	 * but we don't make use of them yet.
4182	 */
4183	ssleep(1);
4184}
4185
4186void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
4187{
4188	pci_reset_secondary_bus(dev);
4189}
4190
4191/**
4192 * pci_reset_bridge_secondary_bus - Reset the secondary bus on a PCI bridge.
4193 * @dev: Bridge device
4194 *
4195 * Use the bridge control register to assert reset on the secondary bus.
4196 * Devices on the secondary bus are left in power-on state.
4197 */
4198int pci_reset_bridge_secondary_bus(struct pci_dev *dev)
4199{
4200	pcibios_reset_secondary_bus(dev);
4201
4202	return pci_dev_wait(dev, "bus reset", PCIE_RESET_READY_POLL_MS);
4203}
4204EXPORT_SYMBOL_GPL(pci_reset_bridge_secondary_bus);
4205
4206static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
4207{
4208	struct pci_dev *pdev;
4209
4210	if (pci_is_root_bus(dev->bus) || dev->subordinate ||
4211	    !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4212		return -ENOTTY;
4213
4214	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4215		if (pdev != dev)
4216			return -ENOTTY;
4217
4218	if (probe)
4219		return 0;
4220
4221	pci_reset_bridge_secondary_bus(dev->bus->self);
4222
4223	return 0;
4224}
4225
4226static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
4227{
4228	int rc = -ENOTTY;
4229
4230	if (!hotplug || !try_module_get(hotplug->ops->owner))
4231		return rc;
4232
4233	if (hotplug->ops->reset_slot)
4234		rc = hotplug->ops->reset_slot(hotplug, probe);
4235
4236	module_put(hotplug->ops->owner);
4237
4238	return rc;
4239}
4240
4241static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
4242{
4243	struct pci_dev *pdev;
4244
4245	if (dev->subordinate || !dev->slot ||
4246	    dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4247		return -ENOTTY;
4248
4249	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4250		if (pdev != dev && pdev->slot == dev->slot)
4251			return -ENOTTY;
 
 
 
4252
4253	return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
 
 
 
4254}
4255
4256static void pci_dev_lock(struct pci_dev *dev)
4257{
4258	pci_cfg_access_lock(dev);
4259	/* block PM suspend, driver probe, etc. */
4260	device_lock(&dev->dev);
 
4261}
 
4262
4263/* Return 1 on successful lock, 0 on contention */
4264static int pci_dev_trylock(struct pci_dev *dev)
4265{
4266	if (pci_cfg_access_trylock(dev)) {
4267		if (device_trylock(&dev->dev))
4268			return 1;
4269		pci_cfg_access_unlock(dev);
4270	}
4271
4272	return 0;
4273}
 
4274
4275static void pci_dev_unlock(struct pci_dev *dev)
4276{
 
4277	device_unlock(&dev->dev);
4278	pci_cfg_access_unlock(dev);
4279}
 
4280
4281static void pci_dev_save_and_disable(struct pci_dev *dev)
4282{
4283	const struct pci_error_handlers *err_handler =
4284			dev->driver ? dev->driver->err_handler : NULL;
4285
4286	/*
4287	 * dev->driver->err_handler->reset_prepare() is protected against
4288	 * races with ->remove() by the device lock, which must be held by
4289	 * the caller.
4290	 */
4291	if (err_handler && err_handler->reset_prepare)
4292		err_handler->reset_prepare(dev);
4293
4294	/*
4295	 * Wake-up device prior to save.  PM registers default to D0 after
4296	 * reset and a simple register restore doesn't reliably return
4297	 * to a non-D0 state anyway.
4298	 */
4299	pci_set_power_state(dev, PCI_D0);
4300
4301	pci_save_state(dev);
4302	/*
4303	 * Disable the device by clearing the Command register, except for
4304	 * INTx-disable which is set.  This not only disables MMIO and I/O port
4305	 * BARs, but also prevents the device from being Bus Master, preventing
4306	 * DMA from the device including MSI/MSI-X interrupts.  For PCI 2.3
4307	 * compliant devices, INTx-disable prevents legacy interrupts.
4308	 */
4309	pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
4310}
4311
4312static void pci_dev_restore(struct pci_dev *dev)
4313{
4314	const struct pci_error_handlers *err_handler =
4315			dev->driver ? dev->driver->err_handler : NULL;
4316
4317	pci_restore_state(dev);
4318
4319	/*
4320	 * dev->driver->err_handler->reset_done() is protected against
4321	 * races with ->remove() by the device lock, which must be held by
4322	 * the caller.
4323	 */
4324	if (err_handler && err_handler->reset_done)
4325		err_handler->reset_done(dev);
4326}
4327
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4328/**
4329 * __pci_reset_function_locked - reset a PCI device function while holding
4330 * the @dev mutex lock.
4331 * @dev: PCI device to reset
4332 *
4333 * Some devices allow an individual function to be reset without affecting
4334 * other functions in the same device.  The PCI device must be responsive
4335 * to PCI config space in order to use this function.
4336 *
4337 * The device function is presumed to be unused and the caller is holding
4338 * the device mutex lock when this function is called.
 
4339 * Resetting the device will make the contents of PCI configuration space
4340 * random, so any caller of this must be prepared to reinitialise the
4341 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
4342 * etc.
4343 *
4344 * Returns 0 if the device function was successfully reset or negative if the
4345 * device doesn't support resetting a single function.
4346 */
4347int __pci_reset_function_locked(struct pci_dev *dev)
4348{
4349	int rc;
4350
4351	might_sleep();
4352
4353	/*
4354	 * A reset method returns -ENOTTY if it doesn't support this device
4355	 * and we should try the next method.
4356	 *
4357	 * If it returns 0 (success), we're finished.  If it returns any
4358	 * other error, we're also finished: this indicates that further
4359	 * reset mechanisms might be broken on the device.
4360	 */
4361	rc = pci_dev_specific_reset(dev, 0);
4362	if (rc != -ENOTTY)
4363		return rc;
4364	if (pcie_has_flr(dev)) {
4365		rc = pcie_flr(dev);
 
 
 
4366		if (rc != -ENOTTY)
4367			return rc;
4368	}
4369	rc = pci_af_flr(dev, 0);
4370	if (rc != -ENOTTY)
4371		return rc;
4372	rc = pci_pm_reset(dev, 0);
4373	if (rc != -ENOTTY)
4374		return rc;
4375	rc = pci_dev_reset_slot_function(dev, 0);
4376	if (rc != -ENOTTY)
4377		return rc;
4378	return pci_parent_bus_reset(dev, 0);
4379}
4380EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
4381
4382/**
4383 * pci_probe_reset_function - check whether the device can be safely reset
4384 * @dev: PCI device to reset
 
4385 *
4386 * Some devices allow an individual function to be reset without affecting
4387 * other functions in the same device.  The PCI device must be responsive
4388 * to PCI config space in order to use this function.
4389 *
4390 * Returns 0 if the device function can be reset or negative if the
4391 * device doesn't support resetting a single function.
4392 */
4393int pci_probe_reset_function(struct pci_dev *dev)
4394{
4395	int rc;
 
 
4396
4397	might_sleep();
4398
4399	rc = pci_dev_specific_reset(dev, 1);
4400	if (rc != -ENOTTY)
4401		return rc;
4402	if (pcie_has_flr(dev))
4403		return 0;
4404	rc = pci_af_flr(dev, 1);
4405	if (rc != -ENOTTY)
4406		return rc;
4407	rc = pci_pm_reset(dev, 1);
4408	if (rc != -ENOTTY)
4409		return rc;
4410	rc = pci_dev_reset_slot_function(dev, 1);
4411	if (rc != -ENOTTY)
4412		return rc;
4413
4414	return pci_parent_bus_reset(dev, 1);
4415}
4416
4417/**
4418 * pci_reset_function - quiesce and reset a PCI device function
4419 * @dev: PCI device to reset
4420 *
4421 * Some devices allow an individual function to be reset without affecting
4422 * other functions in the same device.  The PCI device must be responsive
4423 * to PCI config space in order to use this function.
4424 *
4425 * This function does not just reset the PCI portion of a device, but
4426 * clears all the state associated with the device.  This function differs
4427 * from __pci_reset_function_locked() in that it saves and restores device state
4428 * over the reset and takes the PCI device lock.
4429 *
4430 * Returns 0 if the device function was successfully reset or negative if the
4431 * device doesn't support resetting a single function.
4432 */
4433int pci_reset_function(struct pci_dev *dev)
4434{
4435	int rc;
4436
4437	if (!dev->reset_fn)
4438		return -ENOTTY;
4439
4440	pci_dev_lock(dev);
4441	pci_dev_save_and_disable(dev);
4442
4443	rc = __pci_reset_function_locked(dev);
4444
4445	pci_dev_restore(dev);
4446	pci_dev_unlock(dev);
4447
4448	return rc;
4449}
4450EXPORT_SYMBOL_GPL(pci_reset_function);
4451
4452/**
4453 * pci_reset_function_locked - quiesce and reset a PCI device function
4454 * @dev: PCI device to reset
4455 *
4456 * Some devices allow an individual function to be reset without affecting
4457 * other functions in the same device.  The PCI device must be responsive
4458 * to PCI config space in order to use this function.
4459 *
4460 * This function does not just reset the PCI portion of a device, but
4461 * clears all the state associated with the device.  This function differs
4462 * from __pci_reset_function_locked() in that it saves and restores device state
4463 * over the reset.  It also differs from pci_reset_function() in that it
4464 * requires the PCI device lock to be held.
4465 *
4466 * Returns 0 if the device function was successfully reset or negative if the
4467 * device doesn't support resetting a single function.
4468 */
4469int pci_reset_function_locked(struct pci_dev *dev)
4470{
4471	int rc;
4472
4473	if (!dev->reset_fn)
4474		return -ENOTTY;
4475
4476	pci_dev_save_and_disable(dev);
4477
4478	rc = __pci_reset_function_locked(dev);
4479
4480	pci_dev_restore(dev);
4481
4482	return rc;
4483}
4484EXPORT_SYMBOL_GPL(pci_reset_function_locked);
4485
4486/**
4487 * pci_try_reset_function - quiesce and reset a PCI device function
4488 * @dev: PCI device to reset
4489 *
4490 * Same as above, except return -EAGAIN if unable to lock device.
4491 */
4492int pci_try_reset_function(struct pci_dev *dev)
4493{
4494	int rc;
4495
4496	if (!dev->reset_fn)
4497		return -ENOTTY;
4498
4499	if (!pci_dev_trylock(dev))
4500		return -EAGAIN;
4501
4502	pci_dev_save_and_disable(dev);
4503	rc = __pci_reset_function_locked(dev);
4504	pci_dev_restore(dev);
4505	pci_dev_unlock(dev);
4506
4507	return rc;
4508}
4509EXPORT_SYMBOL_GPL(pci_try_reset_function);
4510
4511/* Do any devices on or below this bus prevent a bus reset? */
4512static bool pci_bus_resetable(struct pci_bus *bus)
4513{
4514	struct pci_dev *dev;
4515
4516
4517	if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
4518		return false;
4519
4520	list_for_each_entry(dev, &bus->devices, bus_list) {
4521		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
4522		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
4523			return false;
4524	}
4525
4526	return true;
4527}
4528
4529/* Lock devices from the top of the tree down */
4530static void pci_bus_lock(struct pci_bus *bus)
4531{
4532	struct pci_dev *dev;
4533
4534	list_for_each_entry(dev, &bus->devices, bus_list) {
4535		pci_dev_lock(dev);
4536		if (dev->subordinate)
4537			pci_bus_lock(dev->subordinate);
4538	}
4539}
4540
4541/* Unlock devices from the bottom of the tree up */
4542static void pci_bus_unlock(struct pci_bus *bus)
4543{
4544	struct pci_dev *dev;
4545
4546	list_for_each_entry(dev, &bus->devices, bus_list) {
4547		if (dev->subordinate)
4548			pci_bus_unlock(dev->subordinate);
4549		pci_dev_unlock(dev);
4550	}
4551}
4552
4553/* Return 1 on successful lock, 0 on contention */
4554static int pci_bus_trylock(struct pci_bus *bus)
4555{
4556	struct pci_dev *dev;
4557
4558	list_for_each_entry(dev, &bus->devices, bus_list) {
4559		if (!pci_dev_trylock(dev))
4560			goto unlock;
4561		if (dev->subordinate) {
4562			if (!pci_bus_trylock(dev->subordinate)) {
4563				pci_dev_unlock(dev);
4564				goto unlock;
4565			}
4566		}
4567	}
4568	return 1;
4569
4570unlock:
4571	list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
4572		if (dev->subordinate)
4573			pci_bus_unlock(dev->subordinate);
4574		pci_dev_unlock(dev);
4575	}
4576	return 0;
4577}
4578
4579/* Do any devices on or below this slot prevent a bus reset? */
4580static bool pci_slot_resetable(struct pci_slot *slot)
4581{
4582	struct pci_dev *dev;
4583
4584	if (slot->bus->self &&
4585	    (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
4586		return false;
4587
4588	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4589		if (!dev->slot || dev->slot != slot)
4590			continue;
4591		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
4592		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
4593			return false;
4594	}
4595
4596	return true;
4597}
4598
4599/* Lock devices from the top of the tree down */
4600static void pci_slot_lock(struct pci_slot *slot)
4601{
4602	struct pci_dev *dev;
4603
4604	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4605		if (!dev->slot || dev->slot != slot)
4606			continue;
4607		pci_dev_lock(dev);
4608		if (dev->subordinate)
4609			pci_bus_lock(dev->subordinate);
4610	}
4611}
4612
4613/* Unlock devices from the bottom of the tree up */
4614static void pci_slot_unlock(struct pci_slot *slot)
4615{
4616	struct pci_dev *dev;
4617
4618	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4619		if (!dev->slot || dev->slot != slot)
4620			continue;
4621		if (dev->subordinate)
4622			pci_bus_unlock(dev->subordinate);
4623		pci_dev_unlock(dev);
4624	}
4625}
4626
4627/* Return 1 on successful lock, 0 on contention */
4628static int pci_slot_trylock(struct pci_slot *slot)
4629{
4630	struct pci_dev *dev;
4631
4632	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4633		if (!dev->slot || dev->slot != slot)
4634			continue;
4635		if (!pci_dev_trylock(dev))
4636			goto unlock;
4637		if (dev->subordinate) {
4638			if (!pci_bus_trylock(dev->subordinate)) {
4639				pci_dev_unlock(dev);
4640				goto unlock;
4641			}
4642		}
4643	}
4644	return 1;
4645
4646unlock:
4647	list_for_each_entry_continue_reverse(dev,
4648					     &slot->bus->devices, bus_list) {
4649		if (!dev->slot || dev->slot != slot)
4650			continue;
4651		if (dev->subordinate)
4652			pci_bus_unlock(dev->subordinate);
4653		pci_dev_unlock(dev);
4654	}
4655	return 0;
4656}
4657
4658/* Save and disable devices from the top of the tree down */
4659static void pci_bus_save_and_disable(struct pci_bus *bus)
 
 
 
4660{
4661	struct pci_dev *dev;
4662
4663	list_for_each_entry(dev, &bus->devices, bus_list) {
4664		pci_dev_lock(dev);
4665		pci_dev_save_and_disable(dev);
4666		pci_dev_unlock(dev);
4667		if (dev->subordinate)
4668			pci_bus_save_and_disable(dev->subordinate);
4669	}
4670}
4671
4672/*
4673 * Restore devices from top of the tree down - parent bridges need to be
4674 * restored before we can get to subordinate devices.
 
4675 */
4676static void pci_bus_restore(struct pci_bus *bus)
4677{
4678	struct pci_dev *dev;
4679
4680	list_for_each_entry(dev, &bus->devices, bus_list) {
4681		pci_dev_lock(dev);
4682		pci_dev_restore(dev);
4683		pci_dev_unlock(dev);
4684		if (dev->subordinate)
4685			pci_bus_restore(dev->subordinate);
4686	}
4687}
4688
4689/* Save and disable devices from the top of the tree down */
4690static void pci_slot_save_and_disable(struct pci_slot *slot)
 
 
 
4691{
4692	struct pci_dev *dev;
4693
4694	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4695		if (!dev->slot || dev->slot != slot)
4696			continue;
4697		pci_dev_save_and_disable(dev);
4698		if (dev->subordinate)
4699			pci_bus_save_and_disable(dev->subordinate);
4700	}
4701}
4702
4703/*
4704 * Restore devices from top of the tree down - parent bridges need to be
4705 * restored before we can get to subordinate devices.
 
4706 */
4707static void pci_slot_restore(struct pci_slot *slot)
4708{
4709	struct pci_dev *dev;
4710
4711	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4712		if (!dev->slot || dev->slot != slot)
4713			continue;
4714		pci_dev_lock(dev);
4715		pci_dev_restore(dev);
4716		pci_dev_unlock(dev);
4717		if (dev->subordinate)
4718			pci_bus_restore(dev->subordinate);
4719	}
4720}
4721
4722static int pci_slot_reset(struct pci_slot *slot, int probe)
4723{
4724	int rc;
4725
4726	if (!slot || !pci_slot_resetable(slot))
4727		return -ENOTTY;
4728
4729	if (!probe)
4730		pci_slot_lock(slot);
4731
4732	might_sleep();
4733
4734	rc = pci_reset_hotplug_slot(slot->hotplug, probe);
4735
4736	if (!probe)
4737		pci_slot_unlock(slot);
4738
4739	return rc;
4740}
4741
4742/**
4743 * pci_probe_reset_slot - probe whether a PCI slot can be reset
4744 * @slot: PCI slot to probe
4745 *
4746 * Return 0 if slot can be reset, negative if a slot reset is not supported.
4747 */
4748int pci_probe_reset_slot(struct pci_slot *slot)
4749{
4750	return pci_slot_reset(slot, 1);
4751}
4752EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
4753
4754/**
4755 * pci_reset_slot - reset a PCI slot
4756 * @slot: PCI slot to reset
4757 *
4758 * A PCI bus may host multiple slots, each slot may support a reset mechanism
4759 * independent of other slots.  For instance, some slots may support slot power
4760 * control.  In the case of a 1:1 bus to slot architecture, this function may
4761 * wrap the bus reset to avoid spurious slot related events such as hotplug.
4762 * Generally a slot reset should be attempted before a bus reset.  All of the
4763 * function of the slot and any subordinate buses behind the slot are reset
4764 * through this function.  PCI config space of all devices in the slot and
4765 * behind the slot is saved before and restored after reset.
4766 *
4767 * Return 0 on success, non-zero on error.
4768 */
4769int pci_reset_slot(struct pci_slot *slot)
4770{
4771	int rc;
4772
4773	rc = pci_slot_reset(slot, 1);
4774	if (rc)
4775		return rc;
4776
4777	pci_slot_save_and_disable(slot);
4778
4779	rc = pci_slot_reset(slot, 0);
4780
4781	pci_slot_restore(slot);
4782
4783	return rc;
4784}
4785EXPORT_SYMBOL_GPL(pci_reset_slot);
4786
4787/**
4788 * pci_try_reset_slot - Try to reset a PCI slot
4789 * @slot: PCI slot to reset
4790 *
4791 * Same as above except return -EAGAIN if the slot cannot be locked
4792 */
4793int pci_try_reset_slot(struct pci_slot *slot)
4794{
4795	int rc;
4796
4797	rc = pci_slot_reset(slot, 1);
4798	if (rc)
4799		return rc;
4800
4801	pci_slot_save_and_disable(slot);
4802
4803	if (pci_slot_trylock(slot)) {
 
4804		might_sleep();
4805		rc = pci_reset_hotplug_slot(slot->hotplug, 0);
 
4806		pci_slot_unlock(slot);
4807	} else
4808		rc = -EAGAIN;
4809
4810	pci_slot_restore(slot);
4811
4812	return rc;
4813}
4814EXPORT_SYMBOL_GPL(pci_try_reset_slot);
4815
4816static int pci_bus_reset(struct pci_bus *bus, int probe)
4817{
 
 
4818	if (!bus->self || !pci_bus_resetable(bus))
4819		return -ENOTTY;
4820
4821	if (probe)
4822		return 0;
4823
4824	pci_bus_lock(bus);
4825
4826	might_sleep();
4827
4828	pci_reset_bridge_secondary_bus(bus->self);
4829
4830	pci_bus_unlock(bus);
4831
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4832	return 0;
 
 
 
4833}
4834
4835/**
4836 * pci_probe_reset_bus - probe whether a PCI bus can be reset
4837 * @bus: PCI bus to probe
4838 *
4839 * Return 0 if bus can be reset, negative if a bus reset is not supported.
4840 */
4841int pci_probe_reset_bus(struct pci_bus *bus)
4842{
4843	return pci_bus_reset(bus, 1);
4844}
4845EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
4846
4847/**
4848 * pci_reset_bus - reset a PCI bus
4849 * @bus: top level PCI bus to reset
4850 *
4851 * Do a bus reset on the given bus and any subordinate buses, saving
4852 * and restoring state of all devices.
4853 *
4854 * Return 0 on success, non-zero on error.
4855 */
4856int pci_reset_bus(struct pci_bus *bus)
4857{
4858	int rc;
4859
4860	rc = pci_bus_reset(bus, 1);
4861	if (rc)
4862		return rc;
4863
4864	pci_bus_save_and_disable(bus);
4865
4866	rc = pci_bus_reset(bus, 0);
4867
4868	pci_bus_restore(bus);
 
 
 
4869
4870	return rc;
4871}
4872EXPORT_SYMBOL_GPL(pci_reset_bus);
4873
4874/**
4875 * pci_try_reset_bus - Try to reset a PCI bus
4876 * @bus: top level PCI bus to reset
4877 *
4878 * Same as above except return -EAGAIN if the bus cannot be locked
4879 */
4880int pci_try_reset_bus(struct pci_bus *bus)
4881{
4882	int rc;
4883
4884	rc = pci_bus_reset(bus, 1);
4885	if (rc)
4886		return rc;
4887
4888	pci_bus_save_and_disable(bus);
4889
4890	if (pci_bus_trylock(bus)) {
4891		might_sleep();
4892		pci_reset_bridge_secondary_bus(bus->self);
4893		pci_bus_unlock(bus);
4894	} else
4895		rc = -EAGAIN;
4896
4897	pci_bus_restore(bus);
4898
4899	return rc;
4900}
4901EXPORT_SYMBOL_GPL(pci_try_reset_bus);
4902
4903/**
4904 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
4905 * @dev: PCI device to query
4906 *
4907 * Returns mmrbc: maximum designed memory read count in bytes
4908 *    or appropriate error value.
4909 */
4910int pcix_get_max_mmrbc(struct pci_dev *dev)
4911{
4912	int cap;
4913	u32 stat;
4914
4915	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4916	if (!cap)
4917		return -EINVAL;
4918
4919	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
4920		return -EINVAL;
4921
4922	return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
4923}
4924EXPORT_SYMBOL(pcix_get_max_mmrbc);
4925
4926/**
4927 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
4928 * @dev: PCI device to query
4929 *
4930 * Returns mmrbc: maximum memory read count in bytes
4931 *    or appropriate error value.
4932 */
4933int pcix_get_mmrbc(struct pci_dev *dev)
4934{
4935	int cap;
4936	u16 cmd;
4937
4938	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4939	if (!cap)
4940		return -EINVAL;
4941
4942	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
4943		return -EINVAL;
4944
4945	return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
4946}
4947EXPORT_SYMBOL(pcix_get_mmrbc);
4948
4949/**
4950 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
4951 * @dev: PCI device to query
4952 * @mmrbc: maximum memory read count in bytes
4953 *    valid values are 512, 1024, 2048, 4096
4954 *
4955 * If possible sets maximum memory read byte count, some bridges have erratas
4956 * that prevent this.
4957 */
4958int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
4959{
4960	int cap;
4961	u32 stat, v, o;
4962	u16 cmd;
4963
4964	if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
4965		return -EINVAL;
4966
4967	v = ffs(mmrbc) - 10;
4968
4969	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4970	if (!cap)
4971		return -EINVAL;
4972
4973	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
4974		return -EINVAL;
4975
4976	if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
4977		return -E2BIG;
4978
4979	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
4980		return -EINVAL;
4981
4982	o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
4983	if (o != v) {
4984		if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
4985			return -EIO;
4986
4987		cmd &= ~PCI_X_CMD_MAX_READ;
4988		cmd |= v << 2;
4989		if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
4990			return -EIO;
4991	}
4992	return 0;
4993}
4994EXPORT_SYMBOL(pcix_set_mmrbc);
4995
4996/**
4997 * pcie_get_readrq - get PCI Express read request size
4998 * @dev: PCI device to query
4999 *
5000 * Returns maximum memory read request in bytes
5001 *    or appropriate error value.
5002 */
5003int pcie_get_readrq(struct pci_dev *dev)
5004{
5005	u16 ctl;
5006
5007	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5008
5009	return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
5010}
5011EXPORT_SYMBOL(pcie_get_readrq);
5012
5013/**
5014 * pcie_set_readrq - set PCI Express maximum memory read request
5015 * @dev: PCI device to query
5016 * @rq: maximum memory read count in bytes
5017 *    valid values are 128, 256, 512, 1024, 2048, 4096
5018 *
5019 * If possible sets maximum memory read request in bytes
5020 */
5021int pcie_set_readrq(struct pci_dev *dev, int rq)
5022{
5023	u16 v;
 
5024
5025	if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
5026		return -EINVAL;
5027
5028	/*
5029	 * If using the "performance" PCIe config, we clamp the
5030	 * read rq size to the max packet size to prevent the
5031	 * host bridge generating requests larger than we can
5032	 * cope with
5033	 */
5034	if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
5035		int mps = pcie_get_mps(dev);
5036
5037		if (mps < rq)
5038			rq = mps;
5039	}
5040
5041	v = (ffs(rq) - 8) << 12;
5042
5043	return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5044						  PCI_EXP_DEVCTL_READRQ, v);
 
 
5045}
5046EXPORT_SYMBOL(pcie_set_readrq);
5047
5048/**
5049 * pcie_get_mps - get PCI Express maximum payload size
5050 * @dev: PCI device to query
5051 *
5052 * Returns maximum payload size in bytes
5053 */
5054int pcie_get_mps(struct pci_dev *dev)
5055{
5056	u16 ctl;
5057
5058	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5059
5060	return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
5061}
5062EXPORT_SYMBOL(pcie_get_mps);
5063
5064/**
5065 * pcie_set_mps - set PCI Express maximum payload size
5066 * @dev: PCI device to query
5067 * @mps: maximum payload size in bytes
5068 *    valid values are 128, 256, 512, 1024, 2048, 4096
5069 *
5070 * If possible sets maximum payload size
5071 */
5072int pcie_set_mps(struct pci_dev *dev, int mps)
5073{
5074	u16 v;
 
5075
5076	if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
5077		return -EINVAL;
5078
5079	v = ffs(mps) - 8;
5080	if (v > dev->pcie_mpss)
5081		return -EINVAL;
5082	v <<= 5;
5083
5084	return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5085						  PCI_EXP_DEVCTL_PAYLOAD, v);
 
 
5086}
5087EXPORT_SYMBOL(pcie_set_mps);
5088
5089/**
5090 * pcie_get_minimum_link - determine minimum link settings of a PCI device
5091 * @dev: PCI device to query
5092 * @speed: storage for minimum speed
5093 * @width: storage for minimum width
5094 *
5095 * This function will walk up the PCI device chain and determine the minimum
5096 * link width and speed of the device.
5097 */
5098int pcie_get_minimum_link(struct pci_dev *dev, enum pci_bus_speed *speed,
5099			  enum pcie_link_width *width)
5100{
5101	int ret;
5102
5103	*speed = PCI_SPEED_UNKNOWN;
5104	*width = PCIE_LNK_WIDTH_UNKNOWN;
5105
5106	while (dev) {
5107		u16 lnksta;
5108		enum pci_bus_speed next_speed;
5109		enum pcie_link_width next_width;
5110
5111		ret = pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
5112		if (ret)
5113			return ret;
5114
5115		next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
5116		next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
5117			PCI_EXP_LNKSTA_NLW_SHIFT;
5118
5119		if (next_speed < *speed)
5120			*speed = next_speed;
5121
5122		if (next_width < *width)
5123			*width = next_width;
5124
5125		dev = dev->bus->self;
5126	}
5127
5128	return 0;
5129}
5130EXPORT_SYMBOL(pcie_get_minimum_link);
5131
5132/**
5133 * pcie_bandwidth_available - determine minimum link settings of a PCIe
5134 *			      device and its bandwidth limitation
5135 * @dev: PCI device to query
5136 * @limiting_dev: storage for device causing the bandwidth limitation
5137 * @speed: storage for speed of limiting device
5138 * @width: storage for width of limiting device
5139 *
5140 * Walk up the PCI device chain and find the point where the minimum
5141 * bandwidth is available.  Return the bandwidth available there and (if
5142 * limiting_dev, speed, and width pointers are supplied) information about
5143 * that point.  The bandwidth returned is in Mb/s, i.e., megabits/second of
5144 * raw bandwidth.
5145 */
5146u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
5147			     enum pci_bus_speed *speed,
5148			     enum pcie_link_width *width)
5149{
5150	u16 lnksta;
5151	enum pci_bus_speed next_speed;
5152	enum pcie_link_width next_width;
5153	u32 bw, next_bw;
5154
5155	if (speed)
5156		*speed = PCI_SPEED_UNKNOWN;
5157	if (width)
5158		*width = PCIE_LNK_WIDTH_UNKNOWN;
5159
5160	bw = 0;
5161
5162	while (dev) {
5163		pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
5164
5165		next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
5166		next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
5167			PCI_EXP_LNKSTA_NLW_SHIFT;
5168
5169		next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
5170
5171		/* Check if current device limits the total bandwidth */
5172		if (!bw || next_bw <= bw) {
5173			bw = next_bw;
5174
5175			if (limiting_dev)
5176				*limiting_dev = dev;
5177			if (speed)
5178				*speed = next_speed;
5179			if (width)
5180				*width = next_width;
5181		}
5182
5183		dev = pci_upstream_bridge(dev);
5184	}
5185
5186	return bw;
5187}
5188EXPORT_SYMBOL(pcie_bandwidth_available);
5189
5190/**
5191 * pcie_get_speed_cap - query for the PCI device's link speed capability
5192 * @dev: PCI device to query
5193 *
5194 * Query the PCI device speed capability.  Return the maximum link speed
5195 * supported by the device.
5196 */
5197enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
5198{
5199	u32 lnkcap2, lnkcap;
5200
5201	/*
5202	 * PCIe r4.0 sec 7.5.3.18 recommends using the Supported Link
5203	 * Speeds Vector in Link Capabilities 2 when supported, falling
5204	 * back to Max Link Speed in Link Capabilities otherwise.
 
 
 
 
5205	 */
5206	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
5207	if (lnkcap2) { /* PCIe r3.0-compliant */
5208		if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_16_0GB)
5209			return PCIE_SPEED_16_0GT;
5210		else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_8_0GB)
5211			return PCIE_SPEED_8_0GT;
5212		else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_5_0GB)
5213			return PCIE_SPEED_5_0GT;
5214		else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_2_5GB)
5215			return PCIE_SPEED_2_5GT;
5216		return PCI_SPEED_UNKNOWN;
5217	}
5218
5219	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5220	if (lnkcap) {
5221		if (lnkcap & PCI_EXP_LNKCAP_SLS_16_0GB)
5222			return PCIE_SPEED_16_0GT;
5223		else if (lnkcap & PCI_EXP_LNKCAP_SLS_8_0GB)
5224			return PCIE_SPEED_8_0GT;
5225		else if (lnkcap & PCI_EXP_LNKCAP_SLS_5_0GB)
5226			return PCIE_SPEED_5_0GT;
5227		else if (lnkcap & PCI_EXP_LNKCAP_SLS_2_5GB)
5228			return PCIE_SPEED_2_5GT;
5229	}
5230
5231	return PCI_SPEED_UNKNOWN;
5232}
 
5233
5234/**
5235 * pcie_get_width_cap - query for the PCI device's link width capability
5236 * @dev: PCI device to query
5237 *
5238 * Query the PCI device width capability.  Return the maximum link width
5239 * supported by the device.
5240 */
5241enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
5242{
5243	u32 lnkcap;
5244
5245	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5246	if (lnkcap)
5247		return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4;
5248
5249	return PCIE_LNK_WIDTH_UNKNOWN;
5250}
 
5251
5252/**
5253 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
5254 * @dev: PCI device
5255 * @speed: storage for link speed
5256 * @width: storage for link width
5257 *
5258 * Calculate a PCI device's link bandwidth by querying for its link speed
5259 * and width, multiplying them, and applying encoding overhead.  The result
5260 * is in Mb/s, i.e., megabits/second of raw bandwidth.
5261 */
5262u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
5263			   enum pcie_link_width *width)
5264{
5265	*speed = pcie_get_speed_cap(dev);
5266	*width = pcie_get_width_cap(dev);
5267
5268	if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
5269		return 0;
5270
5271	return *width * PCIE_SPEED2MBS_ENC(*speed);
5272}
5273
5274/**
5275 * pcie_print_link_status - Report the PCI device's link speed and width
5276 * @dev: PCI device to query
 
5277 *
5278 * Report the available bandwidth at the device.  If this is less than the
5279 * device is capable of, report the device's maximum possible bandwidth and
5280 * the upstream link that limits its performance to less than that.
 
5281 */
5282void pcie_print_link_status(struct pci_dev *dev)
5283{
5284	enum pcie_link_width width, width_cap;
5285	enum pci_bus_speed speed, speed_cap;
5286	struct pci_dev *limiting_dev = NULL;
5287	u32 bw_avail, bw_cap;
5288
5289	bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
5290	bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
5291
5292	if (bw_avail >= bw_cap)
5293		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
5294			 bw_cap / 1000, bw_cap % 1000,
5295			 PCIE_SPEED2STR(speed_cap), width_cap);
5296	else
5297		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
5298			 bw_avail / 1000, bw_avail % 1000,
5299			 PCIE_SPEED2STR(speed), width,
5300			 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
5301			 bw_cap / 1000, bw_cap % 1000,
5302			 PCIE_SPEED2STR(speed_cap), width_cap);
 
 
 
 
 
 
 
 
 
 
 
5303}
5304EXPORT_SYMBOL(pcie_print_link_status);
5305
5306/**
5307 * pci_select_bars - Make BAR mask from the type of resource
5308 * @dev: the PCI device for which BAR mask is made
5309 * @flags: resource type mask to be selected
5310 *
5311 * This helper routine makes bar mask from the type of resource.
5312 */
5313int pci_select_bars(struct pci_dev *dev, unsigned long flags)
5314{
5315	int i, bars = 0;
5316	for (i = 0; i < PCI_NUM_RESOURCES; i++)
5317		if (pci_resource_flags(dev, i) & flags)
5318			bars |= (1 << i);
5319	return bars;
5320}
5321EXPORT_SYMBOL(pci_select_bars);
5322
5323/* Some architectures require additional programming to enable VGA */
5324static arch_set_vga_state_t arch_set_vga_state;
5325
5326void __init pci_register_set_vga_state(arch_set_vga_state_t func)
5327{
5328	arch_set_vga_state = func;	/* NULL disables */
5329}
5330
5331static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
5332				  unsigned int command_bits, u32 flags)
5333{
5334	if (arch_set_vga_state)
5335		return arch_set_vga_state(dev, decode, command_bits,
5336						flags);
5337	return 0;
5338}
5339
5340/**
5341 * pci_set_vga_state - set VGA decode state on device and parents if requested
5342 * @dev: the PCI device
5343 * @decode: true = enable decoding, false = disable decoding
5344 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
5345 * @flags: traverse ancestors and change bridges
5346 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
5347 */
5348int pci_set_vga_state(struct pci_dev *dev, bool decode,
5349		      unsigned int command_bits, u32 flags)
5350{
5351	struct pci_bus *bus;
5352	struct pci_dev *bridge;
5353	u16 cmd;
5354	int rc;
5355
5356	WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
5357
5358	/* ARCH specific VGA enables */
5359	rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
5360	if (rc)
5361		return rc;
5362
5363	if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
5364		pci_read_config_word(dev, PCI_COMMAND, &cmd);
5365		if (decode == true)
5366			cmd |= command_bits;
5367		else
5368			cmd &= ~command_bits;
5369		pci_write_config_word(dev, PCI_COMMAND, cmd);
5370	}
5371
5372	if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
5373		return 0;
5374
5375	bus = dev->bus;
5376	while (bus) {
5377		bridge = bus->self;
5378		if (bridge) {
5379			pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
5380					     &cmd);
5381			if (decode == true)
5382				cmd |= PCI_BRIDGE_CTL_VGA;
5383			else
5384				cmd &= ~PCI_BRIDGE_CTL_VGA;
5385			pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
5386					      cmd);
5387		}
5388		bus = bus->parent;
5389	}
5390	return 0;
5391}
5392
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5393/**
5394 * pci_add_dma_alias - Add a DMA devfn alias for a device
5395 * @dev: the PCI device for which alias is added
5396 * @devfn: alias slot and function
 
5397 *
5398 * This helper encodes 8-bit devfn as bit number in dma_alias_mask.
5399 * It should be called early, preferably as PCI fixup header quirk.
 
 
 
 
 
 
 
 
 
 
 
5400 */
5401void pci_add_dma_alias(struct pci_dev *dev, u8 devfn)
 
5402{
 
 
 
 
 
5403	if (!dev->dma_alias_mask)
5404		dev->dma_alias_mask = kcalloc(BITS_TO_LONGS(U8_MAX),
5405					      sizeof(long), GFP_KERNEL);
5406	if (!dev->dma_alias_mask) {
5407		pci_warn(dev, "Unable to allocate DMA alias mask\n");
5408		return;
5409	}
5410
5411	set_bit(devfn, dev->dma_alias_mask);
5412	pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
5413		 PCI_SLOT(devfn), PCI_FUNC(devfn));
 
 
 
 
 
 
5414}
5415
5416bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
5417{
5418	return (dev1->dma_alias_mask &&
5419		test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
5420	       (dev2->dma_alias_mask &&
5421		test_bit(dev1->devfn, dev2->dma_alias_mask));
 
 
5422}
5423
5424bool pci_device_is_present(struct pci_dev *pdev)
5425{
5426	u32 v;
5427
 
 
5428	if (pci_dev_is_disconnected(pdev))
5429		return false;
5430	return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
5431}
5432EXPORT_SYMBOL_GPL(pci_device_is_present);
5433
5434void pci_ignore_hotplug(struct pci_dev *dev)
5435{
5436	struct pci_dev *bridge = dev->bus->self;
5437
5438	dev->ignore_hotplug = 1;
5439	/* Propagate the "ignore hotplug" setting to the parent bridge. */
5440	if (bridge)
5441		bridge->ignore_hotplug = 1;
5442}
5443EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
5444
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5445resource_size_t __weak pcibios_default_alignment(void)
5446{
5447	return 0;
5448}
5449
5450#define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
5451static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
 
 
 
 
 
 
 
 
 
 
 
5452static DEFINE_SPINLOCK(resource_alignment_lock);
5453
5454/**
5455 * pci_specified_resource_alignment - get resource alignment specified by user.
5456 * @dev: the PCI device to get
5457 * @resize: whether or not to change resources' size when reassigning alignment
5458 *
5459 * RETURNS: Resource alignment if it is specified.
5460 *          Zero if it is not specified.
5461 */
5462static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
5463							bool *resize)
5464{
5465	int seg, bus, slot, func, align_order, count;
5466	unsigned short vendor, device, subsystem_vendor, subsystem_device;
5467	resource_size_t align = pcibios_default_alignment();
5468	char *p;
 
5469
5470	spin_lock(&resource_alignment_lock);
5471	p = resource_alignment_param;
5472	if (!*p && !align)
5473		goto out;
5474	if (pci_has_flag(PCI_PROBE_ONLY)) {
5475		align = 0;
5476		pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
5477		goto out;
5478	}
5479
5480	while (*p) {
5481		count = 0;
5482		if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
5483							p[count] == '@') {
5484			p += count + 1;
 
 
 
 
 
5485		} else {
5486			align_order = -1;
5487		}
5488		if (strncmp(p, "pci:", 4) == 0) {
5489			/* PCI vendor/device (subvendor/subdevice) ids are specified */
5490			p += 4;
5491			if (sscanf(p, "%hx:%hx:%hx:%hx%n",
5492				&vendor, &device, &subsystem_vendor, &subsystem_device, &count) != 4) {
5493				if (sscanf(p, "%hx:%hx%n", &vendor, &device, &count) != 2) {
5494					printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: pci:%s\n",
5495						p);
5496					break;
5497				}
5498				subsystem_vendor = subsystem_device = 0;
5499			}
5500			p += count;
5501			if ((!vendor || (vendor == dev->vendor)) &&
5502				(!device || (device == dev->device)) &&
5503				(!subsystem_vendor || (subsystem_vendor == dev->subsystem_vendor)) &&
5504				(!subsystem_device || (subsystem_device == dev->subsystem_device))) {
5505				*resize = true;
5506				if (align_order == -1)
5507					align = PAGE_SIZE;
5508				else
5509					align = 1 << align_order;
5510				/* Found */
5511				break;
5512			}
5513		}
5514		else {
5515			if (sscanf(p, "%x:%x:%x.%x%n",
5516				&seg, &bus, &slot, &func, &count) != 4) {
5517				seg = 0;
5518				if (sscanf(p, "%x:%x.%x%n",
5519						&bus, &slot, &func, &count) != 3) {
5520					/* Invalid format */
5521					printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
5522						p);
5523					break;
5524				}
5525			}
5526			p += count;
5527			if (seg == pci_domain_nr(dev->bus) &&
5528				bus == dev->bus->number &&
5529				slot == PCI_SLOT(dev->devfn) &&
5530				func == PCI_FUNC(dev->devfn)) {
5531				*resize = true;
5532				if (align_order == -1)
5533					align = PAGE_SIZE;
5534				else
5535					align = 1 << align_order;
5536				/* Found */
5537				break;
5538			}
5539		}
 
5540		if (*p != ';' && *p != ',') {
5541			/* End of param or invalid format */
5542			break;
5543		}
5544		p++;
5545	}
5546out:
5547	spin_unlock(&resource_alignment_lock);
5548	return align;
5549}
5550
5551static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
5552					   resource_size_t align, bool resize)
5553{
5554	struct resource *r = &dev->resource[bar];
5555	resource_size_t size;
5556
5557	if (!(r->flags & IORESOURCE_MEM))
5558		return;
5559
5560	if (r->flags & IORESOURCE_PCI_FIXED) {
5561		pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
5562			 bar, r, (unsigned long long)align);
5563		return;
5564	}
5565
5566	size = resource_size(r);
5567	if (size >= align)
5568		return;
5569
5570	/*
5571	 * Increase the alignment of the resource.  There are two ways we
5572	 * can do this:
5573	 *
5574	 * 1) Increase the size of the resource.  BARs are aligned on their
5575	 *    size, so when we reallocate space for this resource, we'll
5576	 *    allocate it with the larger alignment.  This also prevents
5577	 *    assignment of any other BARs inside the alignment region, so
5578	 *    if we're requesting page alignment, this means no other BARs
5579	 *    will share the page.
5580	 *
5581	 *    The disadvantage is that this makes the resource larger than
5582	 *    the hardware BAR, which may break drivers that compute things
5583	 *    based on the resource size, e.g., to find registers at a
5584	 *    fixed offset before the end of the BAR.
5585	 *
5586	 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
5587	 *    set r->start to the desired alignment.  By itself this
5588	 *    doesn't prevent other BARs being put inside the alignment
5589	 *    region, but if we realign *every* resource of every device in
5590	 *    the system, none of them will share an alignment region.
5591	 *
5592	 * When the user has requested alignment for only some devices via
5593	 * the "pci=resource_alignment" argument, "resize" is true and we
5594	 * use the first method.  Otherwise we assume we're aligning all
5595	 * devices and we use the second.
5596	 */
5597
5598	pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n",
5599		 bar, r, (unsigned long long)align);
5600
5601	if (resize) {
5602		r->start = 0;
5603		r->end = align - 1;
5604	} else {
5605		r->flags &= ~IORESOURCE_SIZEALIGN;
5606		r->flags |= IORESOURCE_STARTALIGN;
5607		r->start = align;
5608		r->end = r->start + size - 1;
5609	}
5610	r->flags |= IORESOURCE_UNSET;
5611}
5612
5613/*
5614 * This function disables memory decoding and releases memory resources
5615 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
5616 * It also rounds up size to specified alignment.
5617 * Later on, the kernel will assign page-aligned memory resource back
5618 * to the device.
5619 */
5620void pci_reassigndev_resource_alignment(struct pci_dev *dev)
5621{
5622	int i;
5623	struct resource *r;
5624	resource_size_t align;
5625	u16 command;
5626	bool resize = false;
5627
5628	/*
5629	 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
5630	 * 3.4.1.11.  Their resources are allocated from the space
5631	 * described by the VF BARx register in the PF's SR-IOV capability.
5632	 * We can't influence their alignment here.
5633	 */
5634	if (dev->is_virtfn)
5635		return;
5636
5637	/* check if specified PCI is target device to reassign */
5638	align = pci_specified_resource_alignment(dev, &resize);
5639	if (!align)
5640		return;
5641
5642	if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
5643	    (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
5644		pci_warn(dev, "Can't reassign resources to host bridge\n");
5645		return;
5646	}
5647
5648	pci_read_config_word(dev, PCI_COMMAND, &command);
5649	command &= ~PCI_COMMAND_MEMORY;
5650	pci_write_config_word(dev, PCI_COMMAND, command);
5651
5652	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
5653		pci_request_resource_alignment(dev, i, align, resize);
5654
5655	/*
5656	 * Need to disable bridge's resource window,
5657	 * to enable the kernel to reassign new resource
5658	 * window later on.
5659	 */
5660	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE &&
5661	    (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) {
5662		for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
5663			r = &dev->resource[i];
5664			if (!(r->flags & IORESOURCE_MEM))
5665				continue;
5666			r->flags |= IORESOURCE_UNSET;
5667			r->end = resource_size(r) - 1;
5668			r->start = 0;
5669		}
5670		pci_disable_bridge_window(dev);
5671	}
5672}
5673
5674static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
5675{
5676	if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
5677		count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
5678	spin_lock(&resource_alignment_lock);
5679	strncpy(resource_alignment_param, buf, count);
5680	resource_alignment_param[count] = '\0';
5681	spin_unlock(&resource_alignment_lock);
 
5682	return count;
5683}
5684
5685static ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
 
5686{
5687	size_t count;
 
 
 
 
 
 
 
 
 
 
 
 
5688	spin_lock(&resource_alignment_lock);
5689	count = snprintf(buf, size, "%s", resource_alignment_param);
 
 
 
 
 
 
5690	spin_unlock(&resource_alignment_lock);
5691	return count;
5692}
5693
5694static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
5695{
5696	return pci_get_resource_alignment_param(buf, PAGE_SIZE);
5697}
5698
5699static ssize_t pci_resource_alignment_store(struct bus_type *bus,
5700					const char *buf, size_t count)
5701{
5702	return pci_set_resource_alignment_param(buf, count);
5703}
5704
5705static BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
5706					pci_resource_alignment_store);
5707
5708static int __init pci_resource_alignment_sysfs_init(void)
5709{
5710	return bus_create_file(&pci_bus_type,
5711					&bus_attr_resource_alignment);
5712}
5713late_initcall(pci_resource_alignment_sysfs_init);
5714
5715static void pci_no_domains(void)
5716{
5717#ifdef CONFIG_PCI_DOMAINS
5718	pci_domains_supported = 0;
5719#endif
5720}
5721
5722#ifdef CONFIG_PCI_DOMAINS
5723static atomic_t __domain_nr = ATOMIC_INIT(-1);
 
5724
5725int pci_get_new_domain_nr(void)
5726{
5727	return atomic_inc_return(&__domain_nr);
 
 
 
 
 
 
 
 
 
 
 
 
 
5728}
5729
5730#ifdef CONFIG_PCI_DOMAINS_GENERIC
5731static int of_pci_bus_find_domain_nr(struct device *parent)
5732{
5733	static int use_dt_domains = -1;
5734	int domain = -1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5735
5736	if (parent)
5737		domain = of_get_pci_domain_nr(parent->of_node);
5738	/*
5739	 * Check DT domain and use_dt_domains values.
5740	 *
5741	 * If DT domain property is valid (domain >= 0) and
5742	 * use_dt_domains != 0, the DT assignment is valid since this means
5743	 * we have not previously allocated a domain number by using
5744	 * pci_get_new_domain_nr(); we should also update use_dt_domains to
5745	 * 1, to indicate that we have just assigned a domain number from
5746	 * DT.
5747	 *
5748	 * If DT domain property value is not valid (ie domain < 0), and we
5749	 * have not previously assigned a domain number from DT
5750	 * (use_dt_domains != 1) we should assign a domain number by
5751	 * using the:
5752	 *
5753	 * pci_get_new_domain_nr()
5754	 *
5755	 * API and update the use_dt_domains value to keep track of method we
5756	 * are using to assign domain numbers (use_dt_domains = 0).
5757	 *
5758	 * All other combinations imply we have a platform that is trying
5759	 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
5760	 * which is a recipe for domain mishandling and it is prevented by
5761	 * invalidating the domain value (domain = -1) and printing a
5762	 * corresponding error.
5763	 */
5764	if (domain >= 0 && use_dt_domains) {
5765		use_dt_domains = 1;
5766	} else if (domain < 0 && use_dt_domains != 1) {
5767		use_dt_domains = 0;
5768		domain = pci_get_new_domain_nr();
5769	} else {
5770		if (parent)
5771			pr_err("Node %pOF has ", parent->of_node);
5772		pr_err("Inconsistent \"linux,pci-domain\" property in DT\n");
5773		domain = -1;
5774	}
5775
5776	return domain;
 
 
 
 
5777}
5778
5779int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
5780{
5781	return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
5782			       acpi_pci_bus_find_domain_nr(bus);
5783}
5784#endif
 
 
 
 
 
 
5785#endif
5786
5787/**
5788 * pci_ext_cfg_avail - can we access extended PCI config space?
5789 *
5790 * Returns 1 if we can access PCI extended config space (offsets
5791 * greater than 0xff). This is the default implementation. Architecture
5792 * implementations can override this.
5793 */
5794int __weak pci_ext_cfg_avail(void)
5795{
5796	return 1;
5797}
5798
5799void __weak pci_fixup_cardbus(struct pci_bus *bus)
5800{
5801}
5802EXPORT_SYMBOL(pci_fixup_cardbus);
5803
5804static int __init pci_setup(char *str)
5805{
5806	while (str) {
5807		char *k = strchr(str, ',');
5808		if (k)
5809			*k++ = 0;
5810		if (*str && (str = pcibios_setup(str)) && *str) {
5811			if (!strcmp(str, "nomsi")) {
5812				pci_no_msi();
 
 
 
5813			} else if (!strcmp(str, "noaer")) {
5814				pci_no_aer();
 
 
5815			} else if (!strncmp(str, "realloc=", 8)) {
5816				pci_realloc_get_opt(str + 8);
5817			} else if (!strncmp(str, "realloc", 7)) {
5818				pci_realloc_get_opt("on");
5819			} else if (!strcmp(str, "nodomains")) {
5820				pci_no_domains();
5821			} else if (!strncmp(str, "noari", 5)) {
5822				pcie_ari_disabled = true;
5823			} else if (!strncmp(str, "cbiosize=", 9)) {
5824				pci_cardbus_io_size = memparse(str + 9, &str);
5825			} else if (!strncmp(str, "cbmemsize=", 10)) {
5826				pci_cardbus_mem_size = memparse(str + 10, &str);
5827			} else if (!strncmp(str, "resource_alignment=", 19)) {
5828				pci_set_resource_alignment_param(str + 19,
5829							strlen(str + 19));
5830			} else if (!strncmp(str, "ecrc=", 5)) {
5831				pcie_ecrc_get_policy(str + 5);
5832			} else if (!strncmp(str, "hpiosize=", 9)) {
5833				pci_hotplug_io_size = memparse(str + 9, &str);
 
 
 
 
5834			} else if (!strncmp(str, "hpmemsize=", 10)) {
5835				pci_hotplug_mem_size = memparse(str + 10, &str);
 
5836			} else if (!strncmp(str, "hpbussize=", 10)) {
5837				pci_hotplug_bus_size =
5838					simple_strtoul(str + 10, &str, 0);
5839				if (pci_hotplug_bus_size > 0xff)
5840					pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
5841			} else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
5842				pcie_bus_config = PCIE_BUS_TUNE_OFF;
5843			} else if (!strncmp(str, "pcie_bus_safe", 13)) {
5844				pcie_bus_config = PCIE_BUS_SAFE;
5845			} else if (!strncmp(str, "pcie_bus_perf", 13)) {
5846				pcie_bus_config = PCIE_BUS_PERFORMANCE;
5847			} else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
5848				pcie_bus_config = PCIE_BUS_PEER2PEER;
5849			} else if (!strncmp(str, "pcie_scan_all", 13)) {
5850				pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
 
 
5851			} else {
5852				printk(KERN_ERR "PCI: Unknown option `%s'\n",
5853						str);
5854			}
5855		}
5856		str = k;
5857	}
5858	return 0;
5859}
5860early_param("pci", pci_setup);