Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * PCI Bus Services, see include/linux/pci.h for further explanation.
   4 *
   5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
   6 * David Mosberger-Tang
   7 *
   8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
   9 */
  10
  11#include <linux/acpi.h>
  12#include <linux/kernel.h>
  13#include <linux/delay.h>
  14#include <linux/dmi.h>
  15#include <linux/init.h>
  16#include <linux/msi.h>
  17#include <linux/of.h>
  18#include <linux/pci.h>
  19#include <linux/pm.h>
  20#include <linux/slab.h>
  21#include <linux/module.h>
  22#include <linux/spinlock.h>
  23#include <linux/string.h>
  24#include <linux/log2.h>
  25#include <linux/logic_pio.h>
  26#include <linux/pm_wakeup.h>
  27#include <linux/interrupt.h>
  28#include <linux/device.h>
  29#include <linux/pm_runtime.h>
  30#include <linux/pci_hotplug.h>
  31#include <linux/vmalloc.h>
  32#include <asm/dma.h>
  33#include <linux/aer.h>
  34#include <linux/bitfield.h>
  35#include "pci.h"
  36
  37DEFINE_MUTEX(pci_slot_mutex);
  38
  39const char *pci_power_names[] = {
  40	"error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
  41};
  42EXPORT_SYMBOL_GPL(pci_power_names);
  43
  44#ifdef CONFIG_X86_32
  45int isa_dma_bridge_buggy;
  46EXPORT_SYMBOL(isa_dma_bridge_buggy);
  47#endif
  48
  49int pci_pci_problems;
  50EXPORT_SYMBOL(pci_pci_problems);
  51
  52unsigned int pci_pm_d3hot_delay;
  53
  54static void pci_pme_list_scan(struct work_struct *work);
  55
  56static LIST_HEAD(pci_pme_list);
  57static DEFINE_MUTEX(pci_pme_list_mutex);
  58static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
  59
  60struct pci_pme_device {
  61	struct list_head list;
  62	struct pci_dev *dev;
  63};
  64
  65#define PME_TIMEOUT 1000 /* How long between PME checks */
  66
  67static void pci_dev_d3_sleep(struct pci_dev *dev)
  68{
  69	unsigned int delay_ms = max(dev->d3hot_delay, pci_pm_d3hot_delay);
  70	unsigned int upper;
  71
  72	if (delay_ms) {
  73		/* Use a 20% upper bound, 1ms minimum */
  74		upper = max(DIV_ROUND_CLOSEST(delay_ms, 5), 1U);
  75		usleep_range(delay_ms * USEC_PER_MSEC,
  76			     (delay_ms + upper) * USEC_PER_MSEC);
  77	}
  78}
  79
  80bool pci_reset_supported(struct pci_dev *dev)
  81{
  82	return dev->reset_methods[0] != 0;
  83}
  84
  85#ifdef CONFIG_PCI_DOMAINS
  86int pci_domains_supported = 1;
  87#endif
  88
  89#define DEFAULT_CARDBUS_IO_SIZE		(256)
  90#define DEFAULT_CARDBUS_MEM_SIZE	(64*1024*1024)
  91/* pci=cbmemsize=nnM,cbiosize=nn can override this */
  92unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
  93unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
  94
  95#define DEFAULT_HOTPLUG_IO_SIZE		(256)
  96#define DEFAULT_HOTPLUG_MMIO_SIZE	(2*1024*1024)
  97#define DEFAULT_HOTPLUG_MMIO_PREF_SIZE	(2*1024*1024)
  98/* hpiosize=nn can override this */
  99unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
 100/*
 101 * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size,
 102 * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size;
 103 * pci=hpmemsize=nnM overrides both
 104 */
 105unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE;
 106unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE;
 107
 108#define DEFAULT_HOTPLUG_BUS_SIZE	1
 109unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
 110
 111
 112/* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */
 113#ifdef CONFIG_PCIE_BUS_TUNE_OFF
 114enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
 115#elif defined CONFIG_PCIE_BUS_SAFE
 116enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE;
 117#elif defined CONFIG_PCIE_BUS_PERFORMANCE
 118enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE;
 119#elif defined CONFIG_PCIE_BUS_PEER2PEER
 120enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER;
 121#else
 122enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
 123#endif
 124
 125/*
 126 * The default CLS is used if arch didn't set CLS explicitly and not
 127 * all pci devices agree on the same value.  Arch can override either
 128 * the dfl or actual value as it sees fit.  Don't forget this is
 129 * measured in 32-bit words, not bytes.
 130 */
 131u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
 132u8 pci_cache_line_size;
 133
 134/*
 135 * If we set up a device for bus mastering, we need to check the latency
 136 * timer as certain BIOSes forget to set it properly.
 137 */
 138unsigned int pcibios_max_latency = 255;
 139
 140/* If set, the PCIe ARI capability will not be used. */
 141static bool pcie_ari_disabled;
 142
 143/* If set, the PCIe ATS capability will not be used. */
 144static bool pcie_ats_disabled;
 145
 146/* If set, the PCI config space of each device is printed during boot. */
 147bool pci_early_dump;
 148
 149bool pci_ats_disabled(void)
 150{
 151	return pcie_ats_disabled;
 152}
 153EXPORT_SYMBOL_GPL(pci_ats_disabled);
 154
 155/* Disable bridge_d3 for all PCIe ports */
 156static bool pci_bridge_d3_disable;
 157/* Force bridge_d3 for all PCIe ports */
 158static bool pci_bridge_d3_force;
 159
 160static int __init pcie_port_pm_setup(char *str)
 161{
 162	if (!strcmp(str, "off"))
 163		pci_bridge_d3_disable = true;
 164	else if (!strcmp(str, "force"))
 165		pci_bridge_d3_force = true;
 166	return 1;
 167}
 168__setup("pcie_port_pm=", pcie_port_pm_setup);
 169
 170/* Time to wait after a reset for device to become responsive */
 171#define PCIE_RESET_READY_POLL_MS 60000
 172
 173/**
 174 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
 175 * @bus: pointer to PCI bus structure to search
 176 *
 177 * Given a PCI bus, returns the highest PCI bus number present in the set
 178 * including the given PCI bus and its list of child PCI buses.
 179 */
 180unsigned char pci_bus_max_busnr(struct pci_bus *bus)
 181{
 182	struct pci_bus *tmp;
 183	unsigned char max, n;
 184
 185	max = bus->busn_res.end;
 186	list_for_each_entry(tmp, &bus->children, node) {
 187		n = pci_bus_max_busnr(tmp);
 188		if (n > max)
 189			max = n;
 190	}
 191	return max;
 192}
 193EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
 194
 195/**
 196 * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS
 197 * @pdev: the PCI device
 198 *
 199 * Returns error bits set in PCI_STATUS and clears them.
 200 */
 201int pci_status_get_and_clear_errors(struct pci_dev *pdev)
 202{
 203	u16 status;
 204	int ret;
 205
 206	ret = pci_read_config_word(pdev, PCI_STATUS, &status);
 207	if (ret != PCIBIOS_SUCCESSFUL)
 208		return -EIO;
 209
 210	status &= PCI_STATUS_ERROR_BITS;
 211	if (status)
 212		pci_write_config_word(pdev, PCI_STATUS, status);
 213
 214	return status;
 215}
 216EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors);
 217
 218#ifdef CONFIG_HAS_IOMEM
 219static void __iomem *__pci_ioremap_resource(struct pci_dev *pdev, int bar,
 220					    bool write_combine)
 221{
 222	struct resource *res = &pdev->resource[bar];
 223	resource_size_t start = res->start;
 224	resource_size_t size = resource_size(res);
 225
 226	/*
 227	 * Make sure the BAR is actually a memory resource, not an IO resource
 228	 */
 229	if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
 230		pci_err(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
 231		return NULL;
 232	}
 233
 234	if (write_combine)
 235		return ioremap_wc(start, size);
 236
 237	return ioremap(start, size);
 238}
 239
 240void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
 241{
 242	return __pci_ioremap_resource(pdev, bar, false);
 243}
 244EXPORT_SYMBOL_GPL(pci_ioremap_bar);
 245
 246void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
 247{
 248	return __pci_ioremap_resource(pdev, bar, true);
 
 
 
 
 
 
 
 
 249}
 250EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
 251#endif
 252
 253/**
 254 * pci_dev_str_match_path - test if a path string matches a device
 255 * @dev: the PCI device to test
 256 * @path: string to match the device against
 257 * @endptr: pointer to the string after the match
 258 *
 259 * Test if a string (typically from a kernel parameter) formatted as a
 260 * path of device/function addresses matches a PCI device. The string must
 261 * be of the form:
 262 *
 263 *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
 264 *
 265 * A path for a device can be obtained using 'lspci -t'.  Using a path
 266 * is more robust against bus renumbering than using only a single bus,
 267 * device and function address.
 268 *
 269 * Returns 1 if the string matches the device, 0 if it does not and
 270 * a negative error code if it fails to parse the string.
 271 */
 272static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
 273				  const char **endptr)
 274{
 275	int ret;
 276	unsigned int seg, bus, slot, func;
 277	char *wpath, *p;
 278	char end;
 279
 280	*endptr = strchrnul(path, ';');
 281
 282	wpath = kmemdup_nul(path, *endptr - path, GFP_ATOMIC);
 283	if (!wpath)
 284		return -ENOMEM;
 285
 286	while (1) {
 287		p = strrchr(wpath, '/');
 288		if (!p)
 289			break;
 290		ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
 291		if (ret != 2) {
 292			ret = -EINVAL;
 293			goto free_and_exit;
 294		}
 295
 296		if (dev->devfn != PCI_DEVFN(slot, func)) {
 297			ret = 0;
 298			goto free_and_exit;
 299		}
 300
 301		/*
 302		 * Note: we don't need to get a reference to the upstream
 303		 * bridge because we hold a reference to the top level
 304		 * device which should hold a reference to the bridge,
 305		 * and so on.
 306		 */
 307		dev = pci_upstream_bridge(dev);
 308		if (!dev) {
 309			ret = 0;
 310			goto free_and_exit;
 311		}
 312
 313		*p = 0;
 314	}
 315
 316	ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
 317		     &func, &end);
 318	if (ret != 4) {
 319		seg = 0;
 320		ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
 321		if (ret != 3) {
 322			ret = -EINVAL;
 323			goto free_and_exit;
 324		}
 325	}
 326
 327	ret = (seg == pci_domain_nr(dev->bus) &&
 328	       bus == dev->bus->number &&
 329	       dev->devfn == PCI_DEVFN(slot, func));
 330
 331free_and_exit:
 332	kfree(wpath);
 333	return ret;
 334}
 335
 336/**
 337 * pci_dev_str_match - test if a string matches a device
 338 * @dev: the PCI device to test
 339 * @p: string to match the device against
 340 * @endptr: pointer to the string after the match
 341 *
 342 * Test if a string (typically from a kernel parameter) matches a specified
 343 * PCI device. The string may be of one of the following formats:
 344 *
 345 *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
 346 *   pci:<vendor>:<device>[:<subvendor>:<subdevice>]
 347 *
 348 * The first format specifies a PCI bus/device/function address which
 349 * may change if new hardware is inserted, if motherboard firmware changes,
 350 * or due to changes caused in kernel parameters. If the domain is
 351 * left unspecified, it is taken to be 0.  In order to be robust against
 352 * bus renumbering issues, a path of PCI device/function numbers may be used
 353 * to address the specific device.  The path for a device can be determined
 354 * through the use of 'lspci -t'.
 355 *
 356 * The second format matches devices using IDs in the configuration
 357 * space which may match multiple devices in the system. A value of 0
 358 * for any field will match all devices. (Note: this differs from
 359 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
 360 * legacy reasons and convenience so users don't have to specify
 361 * FFFFFFFFs on the command line.)
 362 *
 363 * Returns 1 if the string matches the device, 0 if it does not and
 364 * a negative error code if the string cannot be parsed.
 365 */
 366static int pci_dev_str_match(struct pci_dev *dev, const char *p,
 367			     const char **endptr)
 368{
 369	int ret;
 370	int count;
 371	unsigned short vendor, device, subsystem_vendor, subsystem_device;
 372
 373	if (strncmp(p, "pci:", 4) == 0) {
 374		/* PCI vendor/device (subvendor/subdevice) IDs are specified */
 375		p += 4;
 376		ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
 377			     &subsystem_vendor, &subsystem_device, &count);
 378		if (ret != 4) {
 379			ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
 380			if (ret != 2)
 381				return -EINVAL;
 382
 383			subsystem_vendor = 0;
 384			subsystem_device = 0;
 385		}
 386
 387		p += count;
 388
 389		if ((!vendor || vendor == dev->vendor) &&
 390		    (!device || device == dev->device) &&
 391		    (!subsystem_vendor ||
 392			    subsystem_vendor == dev->subsystem_vendor) &&
 393		    (!subsystem_device ||
 394			    subsystem_device == dev->subsystem_device))
 395			goto found;
 396	} else {
 397		/*
 398		 * PCI Bus, Device, Function IDs are specified
 399		 * (optionally, may include a path of devfns following it)
 400		 */
 401		ret = pci_dev_str_match_path(dev, p, &p);
 402		if (ret < 0)
 403			return ret;
 404		else if (ret)
 405			goto found;
 406	}
 407
 408	*endptr = p;
 409	return 0;
 410
 411found:
 412	*endptr = p;
 413	return 1;
 414}
 415
 416static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
 417				  u8 pos, int cap, int *ttl)
 418{
 419	u8 id;
 420	u16 ent;
 421
 422	pci_bus_read_config_byte(bus, devfn, pos, &pos);
 423
 424	while ((*ttl)--) {
 425		if (pos < 0x40)
 426			break;
 427		pos &= ~3;
 428		pci_bus_read_config_word(bus, devfn, pos, &ent);
 429
 430		id = ent & 0xff;
 431		if (id == 0xff)
 432			break;
 433		if (id == cap)
 434			return pos;
 435		pos = (ent >> 8);
 436	}
 437	return 0;
 438}
 439
 440static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
 441			      u8 pos, int cap)
 442{
 443	int ttl = PCI_FIND_CAP_TTL;
 444
 445	return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
 446}
 447
 448u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
 449{
 450	return __pci_find_next_cap(dev->bus, dev->devfn,
 451				   pos + PCI_CAP_LIST_NEXT, cap);
 452}
 453EXPORT_SYMBOL_GPL(pci_find_next_capability);
 454
 455static u8 __pci_bus_find_cap_start(struct pci_bus *bus,
 456				    unsigned int devfn, u8 hdr_type)
 457{
 458	u16 status;
 459
 460	pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
 461	if (!(status & PCI_STATUS_CAP_LIST))
 462		return 0;
 463
 464	switch (hdr_type) {
 465	case PCI_HEADER_TYPE_NORMAL:
 466	case PCI_HEADER_TYPE_BRIDGE:
 467		return PCI_CAPABILITY_LIST;
 468	case PCI_HEADER_TYPE_CARDBUS:
 469		return PCI_CB_CAPABILITY_LIST;
 470	}
 471
 472	return 0;
 473}
 474
 475/**
 476 * pci_find_capability - query for devices' capabilities
 477 * @dev: PCI device to query
 478 * @cap: capability code
 479 *
 480 * Tell if a device supports a given PCI capability.
 481 * Returns the address of the requested capability structure within the
 482 * device's PCI configuration space or 0 in case the device does not
 483 * support it.  Possible values for @cap include:
 484 *
 485 *  %PCI_CAP_ID_PM           Power Management
 486 *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
 487 *  %PCI_CAP_ID_VPD          Vital Product Data
 488 *  %PCI_CAP_ID_SLOTID       Slot Identification
 489 *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
 490 *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
 491 *  %PCI_CAP_ID_PCIX         PCI-X
 492 *  %PCI_CAP_ID_EXP          PCI Express
 493 */
 494u8 pci_find_capability(struct pci_dev *dev, int cap)
 495{
 496	u8 pos;
 497
 498	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
 499	if (pos)
 500		pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
 501
 502	return pos;
 503}
 504EXPORT_SYMBOL(pci_find_capability);
 505
 506/**
 507 * pci_bus_find_capability - query for devices' capabilities
 508 * @bus: the PCI bus to query
 509 * @devfn: PCI device to query
 510 * @cap: capability code
 511 *
 512 * Like pci_find_capability() but works for PCI devices that do not have a
 513 * pci_dev structure set up yet.
 514 *
 515 * Returns the address of the requested capability structure within the
 516 * device's PCI configuration space or 0 in case the device does not
 517 * support it.
 518 */
 519u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
 520{
 521	u8 hdr_type, pos;
 522
 523	pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
 524
 525	pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
 526	if (pos)
 527		pos = __pci_find_next_cap(bus, devfn, pos, cap);
 528
 529	return pos;
 530}
 531EXPORT_SYMBOL(pci_bus_find_capability);
 532
 533/**
 534 * pci_find_next_ext_capability - Find an extended capability
 535 * @dev: PCI device to query
 536 * @start: address at which to start looking (0 to start at beginning of list)
 537 * @cap: capability code
 538 *
 539 * Returns the address of the next matching extended capability structure
 540 * within the device's PCI configuration space or 0 if the device does
 541 * not support it.  Some capabilities can occur several times, e.g., the
 542 * vendor-specific capability, and this provides a way to find them all.
 543 */
 544u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap)
 545{
 546	u32 header;
 547	int ttl;
 548	u16 pos = PCI_CFG_SPACE_SIZE;
 549
 550	/* minimum 8 bytes per capability */
 551	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
 552
 553	if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
 554		return 0;
 555
 556	if (start)
 557		pos = start;
 558
 559	if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
 560		return 0;
 561
 562	/*
 563	 * If we have no capabilities, this is indicated by cap ID,
 564	 * cap version and next pointer all being 0.
 565	 */
 566	if (header == 0)
 567		return 0;
 568
 569	while (ttl-- > 0) {
 570		if (PCI_EXT_CAP_ID(header) == cap && pos != start)
 571			return pos;
 572
 573		pos = PCI_EXT_CAP_NEXT(header);
 574		if (pos < PCI_CFG_SPACE_SIZE)
 575			break;
 576
 577		if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
 578			break;
 579	}
 580
 581	return 0;
 582}
 583EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
 584
 585/**
 586 * pci_find_ext_capability - Find an extended capability
 587 * @dev: PCI device to query
 588 * @cap: capability code
 589 *
 590 * Returns the address of the requested extended capability structure
 591 * within the device's PCI configuration space or 0 if the device does
 592 * not support it.  Possible values for @cap include:
 593 *
 594 *  %PCI_EXT_CAP_ID_ERR		Advanced Error Reporting
 595 *  %PCI_EXT_CAP_ID_VC		Virtual Channel
 596 *  %PCI_EXT_CAP_ID_DSN		Device Serial Number
 597 *  %PCI_EXT_CAP_ID_PWR		Power Budgeting
 598 */
 599u16 pci_find_ext_capability(struct pci_dev *dev, int cap)
 600{
 601	return pci_find_next_ext_capability(dev, 0, cap);
 602}
 603EXPORT_SYMBOL_GPL(pci_find_ext_capability);
 604
 605/**
 606 * pci_get_dsn - Read and return the 8-byte Device Serial Number
 607 * @dev: PCI device to query
 608 *
 609 * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial
 610 * Number.
 611 *
 612 * Returns the DSN, or zero if the capability does not exist.
 613 */
 614u64 pci_get_dsn(struct pci_dev *dev)
 615{
 616	u32 dword;
 617	u64 dsn;
 618	int pos;
 619
 620	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN);
 621	if (!pos)
 622		return 0;
 623
 624	/*
 625	 * The Device Serial Number is two dwords offset 4 bytes from the
 626	 * capability position. The specification says that the first dword is
 627	 * the lower half, and the second dword is the upper half.
 628	 */
 629	pos += 4;
 630	pci_read_config_dword(dev, pos, &dword);
 631	dsn = (u64)dword;
 632	pci_read_config_dword(dev, pos + 4, &dword);
 633	dsn |= ((u64)dword) << 32;
 634
 635	return dsn;
 636}
 637EXPORT_SYMBOL_GPL(pci_get_dsn);
 638
 639static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap)
 640{
 641	int rc, ttl = PCI_FIND_CAP_TTL;
 642	u8 cap, mask;
 643
 644	if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
 645		mask = HT_3BIT_CAP_MASK;
 646	else
 647		mask = HT_5BIT_CAP_MASK;
 648
 649	pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
 650				      PCI_CAP_ID_HT, &ttl);
 651	while (pos) {
 652		rc = pci_read_config_byte(dev, pos + 3, &cap);
 653		if (rc != PCIBIOS_SUCCESSFUL)
 654			return 0;
 655
 656		if ((cap & mask) == ht_cap)
 657			return pos;
 658
 659		pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
 660					      pos + PCI_CAP_LIST_NEXT,
 661					      PCI_CAP_ID_HT, &ttl);
 662	}
 663
 664	return 0;
 665}
 666
 667/**
 668 * pci_find_next_ht_capability - query a device's HyperTransport capabilities
 669 * @dev: PCI device to query
 670 * @pos: Position from which to continue searching
 671 * @ht_cap: HyperTransport capability code
 672 *
 673 * To be used in conjunction with pci_find_ht_capability() to search for
 674 * all capabilities matching @ht_cap. @pos should always be a value returned
 675 * from pci_find_ht_capability().
 676 *
 677 * NB. To be 100% safe against broken PCI devices, the caller should take
 678 * steps to avoid an infinite loop.
 679 */
 680u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap)
 681{
 682	return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
 683}
 684EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
 685
 686/**
 687 * pci_find_ht_capability - query a device's HyperTransport capabilities
 688 * @dev: PCI device to query
 689 * @ht_cap: HyperTransport capability code
 690 *
 691 * Tell if a device supports a given HyperTransport capability.
 692 * Returns an address within the device's PCI configuration space
 693 * or 0 in case the device does not support the request capability.
 694 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
 695 * which has a HyperTransport capability matching @ht_cap.
 696 */
 697u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
 698{
 699	u8 pos;
 700
 701	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
 702	if (pos)
 703		pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
 704
 705	return pos;
 706}
 707EXPORT_SYMBOL_GPL(pci_find_ht_capability);
 708
 709/**
 710 * pci_find_vsec_capability - Find a vendor-specific extended capability
 711 * @dev: PCI device to query
 712 * @vendor: Vendor ID for which capability is defined
 713 * @cap: Vendor-specific capability ID
 714 *
 715 * If @dev has Vendor ID @vendor, search for a VSEC capability with
 716 * VSEC ID @cap. If found, return the capability offset in
 717 * config space; otherwise return 0.
 718 */
 719u16 pci_find_vsec_capability(struct pci_dev *dev, u16 vendor, int cap)
 720{
 721	u16 vsec = 0;
 722	u32 header;
 723
 724	if (vendor != dev->vendor)
 725		return 0;
 726
 727	while ((vsec = pci_find_next_ext_capability(dev, vsec,
 728						     PCI_EXT_CAP_ID_VNDR))) {
 729		if (pci_read_config_dword(dev, vsec + PCI_VNDR_HEADER,
 730					  &header) == PCIBIOS_SUCCESSFUL &&
 731		    PCI_VNDR_HEADER_ID(header) == cap)
 732			return vsec;
 733	}
 734
 735	return 0;
 736}
 737EXPORT_SYMBOL_GPL(pci_find_vsec_capability);
 738
 739/**
 740 * pci_find_dvsec_capability - Find DVSEC for vendor
 741 * @dev: PCI device to query
 742 * @vendor: Vendor ID to match for the DVSEC
 743 * @dvsec: Designated Vendor-specific capability ID
 744 *
 745 * If DVSEC has Vendor ID @vendor and DVSEC ID @dvsec return the capability
 746 * offset in config space; otherwise return 0.
 747 */
 748u16 pci_find_dvsec_capability(struct pci_dev *dev, u16 vendor, u16 dvsec)
 749{
 750	int pos;
 751
 752	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DVSEC);
 753	if (!pos)
 754		return 0;
 755
 756	while (pos) {
 757		u16 v, id;
 758
 759		pci_read_config_word(dev, pos + PCI_DVSEC_HEADER1, &v);
 760		pci_read_config_word(dev, pos + PCI_DVSEC_HEADER2, &id);
 761		if (vendor == v && dvsec == id)
 762			return pos;
 763
 764		pos = pci_find_next_ext_capability(dev, pos, PCI_EXT_CAP_ID_DVSEC);
 765	}
 766
 767	return 0;
 768}
 769EXPORT_SYMBOL_GPL(pci_find_dvsec_capability);
 770
 771/**
 772 * pci_find_parent_resource - return resource region of parent bus of given
 773 *			      region
 774 * @dev: PCI device structure contains resources to be searched
 775 * @res: child resource record for which parent is sought
 776 *
 777 * For given resource region of given device, return the resource region of
 778 * parent bus the given region is contained in.
 779 */
 780struct resource *pci_find_parent_resource(const struct pci_dev *dev,
 781					  struct resource *res)
 782{
 783	const struct pci_bus *bus = dev->bus;
 784	struct resource *r;
 785	int i;
 786
 787	pci_bus_for_each_resource(bus, r, i) {
 788		if (!r)
 789			continue;
 790		if (resource_contains(r, res)) {
 791
 792			/*
 793			 * If the window is prefetchable but the BAR is
 794			 * not, the allocator made a mistake.
 795			 */
 796			if (r->flags & IORESOURCE_PREFETCH &&
 797			    !(res->flags & IORESOURCE_PREFETCH))
 798				return NULL;
 799
 800			/*
 801			 * If we're below a transparent bridge, there may
 802			 * be both a positively-decoded aperture and a
 803			 * subtractively-decoded region that contain the BAR.
 804			 * We want the positively-decoded one, so this depends
 805			 * on pci_bus_for_each_resource() giving us those
 806			 * first.
 807			 */
 808			return r;
 809		}
 810	}
 811	return NULL;
 812}
 813EXPORT_SYMBOL(pci_find_parent_resource);
 814
 815/**
 816 * pci_find_resource - Return matching PCI device resource
 817 * @dev: PCI device to query
 818 * @res: Resource to look for
 819 *
 820 * Goes over standard PCI resources (BARs) and checks if the given resource
 821 * is partially or fully contained in any of them. In that case the
 822 * matching resource is returned, %NULL otherwise.
 823 */
 824struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
 825{
 826	int i;
 827
 828	for (i = 0; i < PCI_STD_NUM_BARS; i++) {
 829		struct resource *r = &dev->resource[i];
 830
 831		if (r->start && resource_contains(r, res))
 832			return r;
 833	}
 834
 835	return NULL;
 836}
 837EXPORT_SYMBOL(pci_find_resource);
 838
 839/**
 840 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
 841 * @dev: the PCI device to operate on
 842 * @pos: config space offset of status word
 843 * @mask: mask of bit(s) to care about in status word
 844 *
 845 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
 846 */
 847int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
 848{
 849	int i;
 850
 851	/* Wait for Transaction Pending bit clean */
 852	for (i = 0; i < 4; i++) {
 853		u16 status;
 854		if (i)
 855			msleep((1 << (i - 1)) * 100);
 856
 857		pci_read_config_word(dev, pos, &status);
 858		if (!(status & mask))
 859			return 1;
 860	}
 861
 862	return 0;
 863}
 864
 865static int pci_acs_enable;
 866
 867/**
 868 * pci_request_acs - ask for ACS to be enabled if supported
 869 */
 870void pci_request_acs(void)
 871{
 872	pci_acs_enable = 1;
 873}
 874
 875static const char *disable_acs_redir_param;
 876
 877/**
 878 * pci_disable_acs_redir - disable ACS redirect capabilities
 879 * @dev: the PCI device
 880 *
 881 * For only devices specified in the disable_acs_redir parameter.
 882 */
 883static void pci_disable_acs_redir(struct pci_dev *dev)
 884{
 885	int ret = 0;
 886	const char *p;
 887	int pos;
 888	u16 ctrl;
 889
 890	if (!disable_acs_redir_param)
 891		return;
 892
 893	p = disable_acs_redir_param;
 894	while (*p) {
 895		ret = pci_dev_str_match(dev, p, &p);
 896		if (ret < 0) {
 897			pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
 898				     disable_acs_redir_param);
 899
 900			break;
 901		} else if (ret == 1) {
 902			/* Found a match */
 903			break;
 904		}
 905
 906		if (*p != ';' && *p != ',') {
 907			/* End of param or invalid format */
 908			break;
 909		}
 910		p++;
 911	}
 912
 913	if (ret != 1)
 914		return;
 915
 916	if (!pci_dev_specific_disable_acs_redir(dev))
 917		return;
 918
 919	pos = dev->acs_cap;
 920	if (!pos) {
 921		pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
 922		return;
 923	}
 924
 925	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
 926
 927	/* P2P Request & Completion Redirect */
 928	ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC);
 929
 930	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
 931
 932	pci_info(dev, "disabled ACS redirect\n");
 933}
 934
 935/**
 936 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
 937 * @dev: the PCI device
 938 */
 939static void pci_std_enable_acs(struct pci_dev *dev)
 940{
 941	int pos;
 942	u16 cap;
 943	u16 ctrl;
 944
 945	pos = dev->acs_cap;
 946	if (!pos)
 947		return;
 948
 949	pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
 950	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
 951
 952	/* Source Validation */
 953	ctrl |= (cap & PCI_ACS_SV);
 954
 955	/* P2P Request Redirect */
 956	ctrl |= (cap & PCI_ACS_RR);
 957
 958	/* P2P Completion Redirect */
 959	ctrl |= (cap & PCI_ACS_CR);
 960
 961	/* Upstream Forwarding */
 962	ctrl |= (cap & PCI_ACS_UF);
 963
 964	/* Enable Translation Blocking for external devices and noats */
 965	if (pci_ats_disabled() || dev->external_facing || dev->untrusted)
 966		ctrl |= (cap & PCI_ACS_TB);
 967
 968	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
 969}
 970
 971/**
 972 * pci_enable_acs - enable ACS if hardware support it
 973 * @dev: the PCI device
 974 */
 975static void pci_enable_acs(struct pci_dev *dev)
 976{
 977	if (!pci_acs_enable)
 978		goto disable_acs_redir;
 979
 980	if (!pci_dev_specific_enable_acs(dev))
 981		goto disable_acs_redir;
 982
 983	pci_std_enable_acs(dev);
 984
 985disable_acs_redir:
 986	/*
 987	 * Note: pci_disable_acs_redir() must be called even if ACS was not
 988	 * enabled by the kernel because it may have been enabled by
 989	 * platform firmware.  So if we are told to disable it, we should
 990	 * always disable it after setting the kernel's default
 991	 * preferences.
 992	 */
 993	pci_disable_acs_redir(dev);
 994}
 995
 996/**
 997 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
 998 * @dev: PCI device to have its BARs restored
 999 *
1000 * Restore the BAR values for a given device, so as to make it
1001 * accessible by its driver.
1002 */
1003static void pci_restore_bars(struct pci_dev *dev)
1004{
1005	int i;
1006
1007	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
1008		pci_update_resource(dev, i);
1009}
1010
1011static inline bool platform_pci_power_manageable(struct pci_dev *dev)
 
 
1012{
1013	if (pci_use_mid_pm())
1014		return true;
 
 
 
 
1015
1016	return acpi_pci_power_manageable(dev);
 
 
1017}
1018
1019static inline int platform_pci_set_power_state(struct pci_dev *dev,
1020					       pci_power_t t)
1021{
1022	if (pci_use_mid_pm())
1023		return mid_pci_set_power_state(dev, t);
1024
1025	return acpi_pci_set_power_state(dev, t);
1026}
1027
1028static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
1029{
1030	if (pci_use_mid_pm())
1031		return mid_pci_get_power_state(dev);
1032
1033	return acpi_pci_get_power_state(dev);
1034}
1035
1036static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
1037{
1038	if (!pci_use_mid_pm())
1039		acpi_pci_refresh_power_state(dev);
1040}
1041
1042static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
1043{
1044	if (pci_use_mid_pm())
1045		return PCI_POWER_ERROR;
1046
1047	return acpi_pci_choose_state(dev);
1048}
1049
1050static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
1051{
1052	if (pci_use_mid_pm())
1053		return PCI_POWER_ERROR;
1054
1055	return acpi_pci_wakeup(dev, enable);
1056}
1057
1058static inline bool platform_pci_need_resume(struct pci_dev *dev)
1059{
1060	if (pci_use_mid_pm())
1061		return false;
1062
1063	return acpi_pci_need_resume(dev);
1064}
1065
1066static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
1067{
1068	if (pci_use_mid_pm())
1069		return false;
 
 
1070
1071	return acpi_pci_bridge_d3(dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1072}
1073
1074/**
1075 * pci_update_current_state - Read power state of given device and cache it
1076 * @dev: PCI device to handle.
1077 * @state: State to cache in case the device doesn't have the PM capability
1078 *
1079 * The power state is read from the PMCSR register, which however is
1080 * inaccessible in D3cold.  The platform firmware is therefore queried first
1081 * to detect accessibility of the register.  In case the platform firmware
1082 * reports an incorrect state or the device isn't power manageable by the
1083 * platform at all, we try to detect D3cold by testing accessibility of the
1084 * vendor ID in config space.
1085 */
1086void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
1087{
1088	if (platform_pci_get_power_state(dev) == PCI_D3cold) {
 
1089		dev->current_state = PCI_D3cold;
1090	} else if (dev->pm_cap) {
1091		u16 pmcsr;
1092
1093		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1094		if (PCI_POSSIBLE_ERROR(pmcsr)) {
1095			dev->current_state = PCI_D3cold;
1096			return;
1097		}
1098		dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1099	} else {
1100		dev->current_state = state;
1101	}
1102}
1103
1104/**
1105 * pci_refresh_power_state - Refresh the given device's power state data
1106 * @dev: Target PCI device.
1107 *
1108 * Ask the platform to refresh the devices power state information and invoke
1109 * pci_update_current_state() to update its current PCI power state.
1110 */
1111void pci_refresh_power_state(struct pci_dev *dev)
1112{
1113	platform_pci_refresh_power_state(dev);
 
 
1114	pci_update_current_state(dev, dev->current_state);
1115}
1116
1117/**
1118 * pci_platform_power_transition - Use platform to change device power state
1119 * @dev: PCI device to handle.
1120 * @state: State to put the device into.
1121 */
1122int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
1123{
1124	int error;
1125
1126	error = platform_pci_set_power_state(dev, state);
1127	if (!error)
1128		pci_update_current_state(dev, state);
1129	else if (!dev->pm_cap) /* Fall back to PCI_D0 */
 
 
 
 
1130		dev->current_state = PCI_D0;
1131
1132	return error;
1133}
1134EXPORT_SYMBOL_GPL(pci_platform_power_transition);
1135
1136static int pci_resume_one(struct pci_dev *pci_dev, void *ign)
1137{
1138	pm_request_resume(&pci_dev->dev);
1139	return 0;
1140}
1141
1142/**
1143 * pci_resume_bus - Walk given bus and runtime resume devices on it
1144 * @bus: Top bus of the subtree to walk.
1145 */
1146void pci_resume_bus(struct pci_bus *bus)
1147{
1148	if (bus)
1149		pci_walk_bus(bus, pci_resume_one, NULL);
1150}
1151
1152static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
1153{
1154	int delay = 1;
1155	u32 id;
1156
1157	/*
1158	 * After reset, the device should not silently discard config
1159	 * requests, but it may still indicate that it needs more time by
1160	 * responding to them with CRS completions.  The Root Port will
1161	 * generally synthesize ~0 (PCI_ERROR_RESPONSE) data to complete
1162	 * the read (except when CRS SV is enabled and the read was for the
1163	 * Vendor ID; in that case it synthesizes 0x0001 data).
1164	 *
1165	 * Wait for the device to return a non-CRS completion.  Read the
1166	 * Command register instead of Vendor ID so we don't have to
1167	 * contend with the CRS SV value.
1168	 */
1169	pci_read_config_dword(dev, PCI_COMMAND, &id);
1170	while (PCI_POSSIBLE_ERROR(id)) {
1171		if (delay > timeout) {
1172			pci_warn(dev, "not ready %dms after %s; giving up\n",
1173				 delay - 1, reset_type);
1174			return -ENOTTY;
1175		}
1176
1177		if (delay > 1000)
1178			pci_info(dev, "not ready %dms after %s; waiting\n",
1179				 delay - 1, reset_type);
1180
1181		msleep(delay);
1182		delay *= 2;
1183		pci_read_config_dword(dev, PCI_COMMAND, &id);
1184	}
1185
1186	if (delay > 1000)
1187		pci_info(dev, "ready %dms after %s\n", delay - 1,
1188			 reset_type);
1189
1190	return 0;
1191}
1192
1193/**
1194 * pci_power_up - Put the given device into D0
1195 * @dev: PCI device to power up
1196 *
1197 * On success, return 0 or 1, depending on whether or not it is necessary to
1198 * restore the device's BARs subsequently (1 is returned in that case).
1199 */
1200int pci_power_up(struct pci_dev *dev)
1201{
1202	bool need_restore;
1203	pci_power_t state;
1204	u16 pmcsr;
1205
1206	platform_pci_set_power_state(dev, PCI_D0);
1207
1208	if (!dev->pm_cap) {
1209		state = platform_pci_get_power_state(dev);
1210		if (state == PCI_UNKNOWN)
1211			dev->current_state = PCI_D0;
1212		else
1213			dev->current_state = state;
1214
1215		if (state == PCI_D0)
1216			return 0;
1217
1218		return -EIO;
1219	}
1220
1221	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1222	if (PCI_POSSIBLE_ERROR(pmcsr)) {
1223		pci_err(dev, "Unable to change power state from %s to D0, device inaccessible\n",
1224			pci_power_name(dev->current_state));
1225		dev->current_state = PCI_D3cold;
1226		return -EIO;
1227	}
1228
1229	state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1230
1231	need_restore = (state == PCI_D3hot || dev->current_state >= PCI_D3hot) &&
1232			!(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET);
1233
1234	if (state == PCI_D0)
1235		goto end;
1236
1237	/*
1238	 * Force the entire word to 0. This doesn't affect PME_Status, disables
1239	 * PME_En, and sets PowerState to 0.
 
1240	 */
1241	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, 0);
1242
1243	/* Mandatory transition delays; see PCI PM 1.2. */
1244	if (state == PCI_D3hot)
1245		pci_dev_d3_sleep(dev);
1246	else if (state == PCI_D2)
1247		udelay(PCI_PM_D2_DELAY);
1248
1249end:
1250	dev->current_state = PCI_D0;
1251	if (need_restore)
1252		return 1;
1253
1254	return 0;
1255}
1256
1257/**
1258 * pci_set_full_power_state - Put a PCI device into D0 and update its state
1259 * @dev: PCI device to power up
1260 *
1261 * Call pci_power_up() to put @dev into D0, read from its PCI_PM_CTRL register
1262 * to confirm the state change, restore its BARs if they might be lost and
1263 * reconfigure ASPM in acordance with the new power state.
1264 *
1265 * If pci_restore_state() is going to be called right after a power state change
1266 * to D0, it is more efficient to use pci_power_up() directly instead of this
1267 * function.
1268 */
1269static int pci_set_full_power_state(struct pci_dev *dev)
1270{
1271	u16 pmcsr;
1272	int ret;
1273
1274	ret = pci_power_up(dev);
1275	if (ret < 0)
1276		return ret;
1277
1278	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1279	dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1280	if (dev->current_state != PCI_D0) {
1281		pci_info_ratelimited(dev, "Refused to change power state from %s to D0\n",
1282				     pci_power_name(dev->current_state));
1283	} else if (ret > 0) {
1284		/*
1285		 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
1286		 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
1287		 * from D3hot to D0 _may_ perform an internal reset, thereby
1288		 * going to "D0 Uninitialized" rather than "D0 Initialized".
1289		 * For example, at least some versions of the 3c905B and the
1290		 * 3c556B exhibit this behaviour.
1291		 *
1292		 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
1293		 * devices in a D3hot state at boot.  Consequently, we need to
1294		 * restore at least the BARs so that the device will be
1295		 * accessible to its driver.
1296		 */
1297		pci_restore_bars(dev);
1298	}
1299
1300	return 0;
1301}
1302
1303/**
1304 * __pci_dev_set_current_state - Set current state of a PCI device
1305 * @dev: Device to handle
1306 * @data: pointer to state to be set
1307 */
1308static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1309{
1310	pci_power_t state = *(pci_power_t *)data;
1311
1312	dev->current_state = state;
1313	return 0;
1314}
1315
1316/**
1317 * pci_bus_set_current_state - Walk given bus and set current state of devices
1318 * @bus: Top bus of the subtree to walk.
1319 * @state: state to be set
1320 */
1321void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1322{
1323	if (bus)
1324		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1325}
1326
1327/**
1328 * pci_set_low_power_state - Put a PCI device into a low-power state.
1329 * @dev: PCI device to handle.
1330 * @state: PCI power state (D1, D2, D3hot) to put the device into.
1331 *
1332 * Use the device's PCI_PM_CTRL register to put it into a low-power state.
1333 *
1334 * RETURN VALUE:
1335 * -EINVAL if the requested state is invalid.
1336 * -EIO if device does not support PCI PM or its PM capabilities register has a
1337 * wrong version, or device doesn't support the requested state.
1338 * 0 if device already is in the requested state.
1339 * 0 if device's power state has been successfully changed.
1340 */
1341static int pci_set_low_power_state(struct pci_dev *dev, pci_power_t state)
1342{
1343	u16 pmcsr;
1344
1345	if (!dev->pm_cap)
1346		return -EIO;
1347
1348	/*
1349	 * Validate transition: We can enter D0 from any state, but if
1350	 * we're already in a low-power state, we can only go deeper.  E.g.,
1351	 * we can go from D1 to D3, but we can't go directly from D3 to D1;
1352	 * we'd have to go from D3 to D0, then to D1.
1353	 */
1354	if (dev->current_state <= PCI_D3cold && dev->current_state > state) {
1355		pci_dbg(dev, "Invalid power transition (from %s to %s)\n",
1356			pci_power_name(dev->current_state),
1357			pci_power_name(state));
1358		return -EINVAL;
1359	}
1360
1361	/* Check if this device supports the desired state */
1362	if ((state == PCI_D1 && !dev->d1_support)
1363	   || (state == PCI_D2 && !dev->d2_support))
1364		return -EIO;
1365
1366	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1367	if (PCI_POSSIBLE_ERROR(pmcsr)) {
1368		pci_err(dev, "Unable to change power state from %s to %s, device inaccessible\n",
1369			pci_power_name(dev->current_state),
1370			pci_power_name(state));
1371		dev->current_state = PCI_D3cold;
1372		return -EIO;
1373	}
1374
1375	pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
1376	pmcsr |= state;
1377
1378	/* Enter specified state */
1379	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1380
1381	/* Mandatory power management transition delays; see PCI PM 1.2. */
1382	if (state == PCI_D3hot)
1383		pci_dev_d3_sleep(dev);
1384	else if (state == PCI_D2)
1385		udelay(PCI_PM_D2_DELAY);
1386
1387	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1388	dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1389	if (dev->current_state != state)
1390		pci_info_ratelimited(dev, "Refused to change power state from %s to %s\n",
1391				     pci_power_name(dev->current_state),
1392				     pci_power_name(state));
1393
1394	return 0;
1395}
1396
1397/**
1398 * pci_set_power_state - Set the power state of a PCI device
1399 * @dev: PCI device to handle.
1400 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1401 *
1402 * Transition a device to a new power state, using the platform firmware and/or
1403 * the device's PCI PM registers.
1404 *
1405 * RETURN VALUE:
1406 * -EINVAL if the requested state is invalid.
1407 * -EIO if device does not support PCI PM or its PM capabilities register has a
1408 * wrong version, or device doesn't support the requested state.
1409 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1410 * 0 if device already is in the requested state.
1411 * 0 if the transition is to D3 but D3 is not supported.
1412 * 0 if device's power state has been successfully changed.
1413 */
1414int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1415{
1416	int error;
1417
1418	/* Bound the state we're entering */
1419	if (state > PCI_D3cold)
1420		state = PCI_D3cold;
1421	else if (state < PCI_D0)
1422		state = PCI_D0;
1423	else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1424
1425		/*
1426		 * If the device or the parent bridge do not support PCI
1427		 * PM, ignore the request if we're doing anything other
1428		 * than putting it into D0 (which would only happen on
1429		 * boot).
1430		 */
1431		return 0;
1432
1433	/* Check if we're already there */
1434	if (dev->current_state == state)
1435		return 0;
1436
1437	if (state == PCI_D0)
1438		return pci_set_full_power_state(dev);
1439
1440	/*
1441	 * This device is quirked not to be put into D3, so don't put it in
1442	 * D3
1443	 */
1444	if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1445		return 0;
1446
1447	if (state == PCI_D3cold) {
1448		/*
1449		 * To put the device in D3cold, put it into D3hot in the native
1450		 * way, then put it into D3cold using platform ops.
1451		 */
1452		error = pci_set_low_power_state(dev, PCI_D3hot);
1453
1454		if (pci_platform_power_transition(dev, PCI_D3cold))
1455			return error;
1456
1457		/* Powering off a bridge may power off the whole hierarchy */
1458		if (dev->current_state == PCI_D3cold)
1459			pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
1460	} else {
1461		error = pci_set_low_power_state(dev, state);
1462
1463		if (pci_platform_power_transition(dev, state))
1464			return error;
1465	}
1466
1467	return 0;
1468}
1469EXPORT_SYMBOL(pci_set_power_state);
1470
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1471#define PCI_EXP_SAVE_REGS	7
1472
1473static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1474						       u16 cap, bool extended)
1475{
1476	struct pci_cap_saved_state *tmp;
1477
1478	hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1479		if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1480			return tmp;
1481	}
1482	return NULL;
1483}
1484
1485struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1486{
1487	return _pci_find_saved_cap(dev, cap, false);
1488}
1489
1490struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1491{
1492	return _pci_find_saved_cap(dev, cap, true);
1493}
1494
1495static int pci_save_pcie_state(struct pci_dev *dev)
1496{
1497	int i = 0;
1498	struct pci_cap_saved_state *save_state;
1499	u16 *cap;
1500
1501	if (!pci_is_pcie(dev))
1502		return 0;
1503
1504	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1505	if (!save_state) {
1506		pci_err(dev, "buffer not found in %s\n", __func__);
1507		return -ENOMEM;
1508	}
1509
1510	cap = (u16 *)&save_state->cap.data[0];
1511	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1512	pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1513	pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1514	pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
1515	pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1516	pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1517	pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1518
1519	return 0;
1520}
1521
1522void pci_bridge_reconfigure_ltr(struct pci_dev *dev)
1523{
1524#ifdef CONFIG_PCIEASPM
1525	struct pci_dev *bridge;
1526	u32 ctl;
1527
1528	bridge = pci_upstream_bridge(dev);
1529	if (bridge && bridge->ltr_path) {
1530		pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2, &ctl);
1531		if (!(ctl & PCI_EXP_DEVCTL2_LTR_EN)) {
1532			pci_dbg(bridge, "re-enabling LTR\n");
1533			pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
1534						 PCI_EXP_DEVCTL2_LTR_EN);
1535		}
1536	}
1537#endif
1538}
1539
1540static void pci_restore_pcie_state(struct pci_dev *dev)
1541{
1542	int i = 0;
1543	struct pci_cap_saved_state *save_state;
1544	u16 *cap;
1545
1546	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1547	if (!save_state)
1548		return;
1549
1550	/*
1551	 * Downstream ports reset the LTR enable bit when link goes down.
1552	 * Check and re-configure the bit here before restoring device.
1553	 * PCIe r5.0, sec 7.5.3.16.
1554	 */
1555	pci_bridge_reconfigure_ltr(dev);
1556
1557	cap = (u16 *)&save_state->cap.data[0];
1558	pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1559	pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1560	pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1561	pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1562	pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1563	pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1564	pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1565}
1566
1567static int pci_save_pcix_state(struct pci_dev *dev)
1568{
1569	int pos;
1570	struct pci_cap_saved_state *save_state;
1571
1572	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1573	if (!pos)
1574		return 0;
1575
1576	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1577	if (!save_state) {
1578		pci_err(dev, "buffer not found in %s\n", __func__);
1579		return -ENOMEM;
1580	}
1581
1582	pci_read_config_word(dev, pos + PCI_X_CMD,
1583			     (u16 *)save_state->cap.data);
1584
1585	return 0;
1586}
1587
1588static void pci_restore_pcix_state(struct pci_dev *dev)
1589{
1590	int i = 0, pos;
1591	struct pci_cap_saved_state *save_state;
1592	u16 *cap;
1593
1594	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1595	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1596	if (!save_state || !pos)
1597		return;
1598	cap = (u16 *)&save_state->cap.data[0];
1599
1600	pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1601}
1602
1603static void pci_save_ltr_state(struct pci_dev *dev)
1604{
1605	int ltr;
1606	struct pci_cap_saved_state *save_state;
1607	u32 *cap;
1608
1609	if (!pci_is_pcie(dev))
1610		return;
1611
1612	ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1613	if (!ltr)
1614		return;
1615
1616	save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1617	if (!save_state) {
1618		pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n");
1619		return;
1620	}
1621
1622	/* Some broken devices only support dword access to LTR */
1623	cap = &save_state->cap.data[0];
1624	pci_read_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap);
1625}
1626
1627static void pci_restore_ltr_state(struct pci_dev *dev)
1628{
1629	struct pci_cap_saved_state *save_state;
1630	int ltr;
1631	u32 *cap;
1632
1633	save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1634	ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1635	if (!save_state || !ltr)
1636		return;
1637
1638	/* Some broken devices only support dword access to LTR */
1639	cap = &save_state->cap.data[0];
1640	pci_write_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap);
1641}
1642
1643/**
1644 * pci_save_state - save the PCI configuration space of a device before
1645 *		    suspending
1646 * @dev: PCI device that we're dealing with
1647 */
1648int pci_save_state(struct pci_dev *dev)
1649{
1650	int i;
1651	/* XXX: 100% dword access ok here? */
1652	for (i = 0; i < 16; i++) {
1653		pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1654		pci_dbg(dev, "saving config space at offset %#x (reading %#x)\n",
1655			i * 4, dev->saved_config_space[i]);
1656	}
1657	dev->state_saved = true;
1658
1659	i = pci_save_pcie_state(dev);
1660	if (i != 0)
1661		return i;
1662
1663	i = pci_save_pcix_state(dev);
1664	if (i != 0)
1665		return i;
1666
1667	pci_save_ltr_state(dev);
1668	pci_save_dpc_state(dev);
1669	pci_save_aer_state(dev);
1670	pci_save_ptm_state(dev);
1671	return pci_save_vc_state(dev);
1672}
1673EXPORT_SYMBOL(pci_save_state);
1674
1675static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1676				     u32 saved_val, int retry, bool force)
1677{
1678	u32 val;
1679
1680	pci_read_config_dword(pdev, offset, &val);
1681	if (!force && val == saved_val)
1682		return;
1683
1684	for (;;) {
1685		pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1686			offset, val, saved_val);
1687		pci_write_config_dword(pdev, offset, saved_val);
1688		if (retry-- <= 0)
1689			return;
1690
1691		pci_read_config_dword(pdev, offset, &val);
1692		if (val == saved_val)
1693			return;
1694
1695		mdelay(1);
1696	}
1697}
1698
1699static void pci_restore_config_space_range(struct pci_dev *pdev,
1700					   int start, int end, int retry,
1701					   bool force)
1702{
1703	int index;
1704
1705	for (index = end; index >= start; index--)
1706		pci_restore_config_dword(pdev, 4 * index,
1707					 pdev->saved_config_space[index],
1708					 retry, force);
1709}
1710
1711static void pci_restore_config_space(struct pci_dev *pdev)
1712{
1713	if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1714		pci_restore_config_space_range(pdev, 10, 15, 0, false);
1715		/* Restore BARs before the command register. */
1716		pci_restore_config_space_range(pdev, 4, 9, 10, false);
1717		pci_restore_config_space_range(pdev, 0, 3, 0, false);
1718	} else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1719		pci_restore_config_space_range(pdev, 12, 15, 0, false);
1720
1721		/*
1722		 * Force rewriting of prefetch registers to avoid S3 resume
1723		 * issues on Intel PCI bridges that occur when these
1724		 * registers are not explicitly written.
1725		 */
1726		pci_restore_config_space_range(pdev, 9, 11, 0, true);
1727		pci_restore_config_space_range(pdev, 0, 8, 0, false);
1728	} else {
1729		pci_restore_config_space_range(pdev, 0, 15, 0, false);
1730	}
1731}
1732
1733static void pci_restore_rebar_state(struct pci_dev *pdev)
1734{
1735	unsigned int pos, nbars, i;
1736	u32 ctrl;
1737
1738	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1739	if (!pos)
1740		return;
1741
1742	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1743	nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
1744		    PCI_REBAR_CTRL_NBAR_SHIFT;
1745
1746	for (i = 0; i < nbars; i++, pos += 8) {
1747		struct resource *res;
1748		int bar_idx, size;
1749
1750		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1751		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1752		res = pdev->resource + bar_idx;
1753		size = pci_rebar_bytes_to_size(resource_size(res));
1754		ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1755		ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
1756		pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1757	}
1758}
1759
1760/**
1761 * pci_restore_state - Restore the saved state of a PCI device
1762 * @dev: PCI device that we're dealing with
1763 */
1764void pci_restore_state(struct pci_dev *dev)
1765{
1766	if (!dev->state_saved)
1767		return;
1768
1769	/*
1770	 * Restore max latencies (in the LTR capability) before enabling
1771	 * LTR itself (in the PCIe capability).
1772	 */
1773	pci_restore_ltr_state(dev);
1774
1775	pci_restore_pcie_state(dev);
1776	pci_restore_pasid_state(dev);
1777	pci_restore_pri_state(dev);
1778	pci_restore_ats_state(dev);
1779	pci_restore_vc_state(dev);
1780	pci_restore_rebar_state(dev);
1781	pci_restore_dpc_state(dev);
1782	pci_restore_ptm_state(dev);
1783
1784	pci_aer_clear_status(dev);
1785	pci_restore_aer_state(dev);
1786
1787	pci_restore_config_space(dev);
1788
1789	pci_restore_pcix_state(dev);
1790	pci_restore_msi_state(dev);
1791
1792	/* Restore ACS and IOV configuration state */
1793	pci_enable_acs(dev);
1794	pci_restore_iov_state(dev);
1795
1796	dev->state_saved = false;
1797}
1798EXPORT_SYMBOL(pci_restore_state);
1799
1800struct pci_saved_state {
1801	u32 config_space[16];
1802	struct pci_cap_saved_data cap[];
1803};
1804
1805/**
1806 * pci_store_saved_state - Allocate and return an opaque struct containing
1807 *			   the device saved state.
1808 * @dev: PCI device that we're dealing with
1809 *
1810 * Return NULL if no state or error.
1811 */
1812struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1813{
1814	struct pci_saved_state *state;
1815	struct pci_cap_saved_state *tmp;
1816	struct pci_cap_saved_data *cap;
1817	size_t size;
1818
1819	if (!dev->state_saved)
1820		return NULL;
1821
1822	size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1823
1824	hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1825		size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1826
1827	state = kzalloc(size, GFP_KERNEL);
1828	if (!state)
1829		return NULL;
1830
1831	memcpy(state->config_space, dev->saved_config_space,
1832	       sizeof(state->config_space));
1833
1834	cap = state->cap;
1835	hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1836		size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1837		memcpy(cap, &tmp->cap, len);
1838		cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1839	}
1840	/* Empty cap_save terminates list */
1841
1842	return state;
1843}
1844EXPORT_SYMBOL_GPL(pci_store_saved_state);
1845
1846/**
1847 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1848 * @dev: PCI device that we're dealing with
1849 * @state: Saved state returned from pci_store_saved_state()
1850 */
1851int pci_load_saved_state(struct pci_dev *dev,
1852			 struct pci_saved_state *state)
1853{
1854	struct pci_cap_saved_data *cap;
1855
1856	dev->state_saved = false;
1857
1858	if (!state)
1859		return 0;
1860
1861	memcpy(dev->saved_config_space, state->config_space,
1862	       sizeof(state->config_space));
1863
1864	cap = state->cap;
1865	while (cap->size) {
1866		struct pci_cap_saved_state *tmp;
1867
1868		tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1869		if (!tmp || tmp->cap.size != cap->size)
1870			return -EINVAL;
1871
1872		memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1873		cap = (struct pci_cap_saved_data *)((u8 *)cap +
1874		       sizeof(struct pci_cap_saved_data) + cap->size);
1875	}
1876
1877	dev->state_saved = true;
1878	return 0;
1879}
1880EXPORT_SYMBOL_GPL(pci_load_saved_state);
1881
1882/**
1883 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1884 *				   and free the memory allocated for it.
1885 * @dev: PCI device that we're dealing with
1886 * @state: Pointer to saved state returned from pci_store_saved_state()
1887 */
1888int pci_load_and_free_saved_state(struct pci_dev *dev,
1889				  struct pci_saved_state **state)
1890{
1891	int ret = pci_load_saved_state(dev, *state);
1892	kfree(*state);
1893	*state = NULL;
1894	return ret;
1895}
1896EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1897
1898int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1899{
1900	return pci_enable_resources(dev, bars);
1901}
1902
1903static int do_pci_enable_device(struct pci_dev *dev, int bars)
1904{
1905	int err;
1906	struct pci_dev *bridge;
1907	u16 cmd;
1908	u8 pin;
1909
1910	err = pci_set_power_state(dev, PCI_D0);
1911	if (err < 0 && err != -EIO)
1912		return err;
1913
1914	bridge = pci_upstream_bridge(dev);
1915	if (bridge)
1916		pcie_aspm_powersave_config_link(bridge);
1917
1918	err = pcibios_enable_device(dev, bars);
1919	if (err < 0)
1920		return err;
1921	pci_fixup_device(pci_fixup_enable, dev);
1922
1923	if (dev->msi_enabled || dev->msix_enabled)
1924		return 0;
1925
1926	pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1927	if (pin) {
1928		pci_read_config_word(dev, PCI_COMMAND, &cmd);
1929		if (cmd & PCI_COMMAND_INTX_DISABLE)
1930			pci_write_config_word(dev, PCI_COMMAND,
1931					      cmd & ~PCI_COMMAND_INTX_DISABLE);
1932	}
1933
1934	return 0;
1935}
1936
1937/**
1938 * pci_reenable_device - Resume abandoned device
1939 * @dev: PCI device to be resumed
1940 *
1941 * NOTE: This function is a backend of pci_default_resume() and is not supposed
1942 * to be called by normal code, write proper resume handler and use it instead.
1943 */
1944int pci_reenable_device(struct pci_dev *dev)
1945{
1946	if (pci_is_enabled(dev))
1947		return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1948	return 0;
1949}
1950EXPORT_SYMBOL(pci_reenable_device);
1951
1952static void pci_enable_bridge(struct pci_dev *dev)
1953{
1954	struct pci_dev *bridge;
1955	int retval;
1956
1957	bridge = pci_upstream_bridge(dev);
1958	if (bridge)
1959		pci_enable_bridge(bridge);
1960
1961	if (pci_is_enabled(dev)) {
1962		if (!dev->is_busmaster)
1963			pci_set_master(dev);
1964		return;
1965	}
1966
1967	retval = pci_enable_device(dev);
1968	if (retval)
1969		pci_err(dev, "Error enabling bridge (%d), continuing\n",
1970			retval);
1971	pci_set_master(dev);
1972}
1973
1974static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1975{
1976	struct pci_dev *bridge;
1977	int err;
1978	int i, bars = 0;
1979
1980	/*
1981	 * Power state could be unknown at this point, either due to a fresh
1982	 * boot or a device removal call.  So get the current power state
1983	 * so that things like MSI message writing will behave as expected
1984	 * (e.g. if the device really is in D0 at enable time).
1985	 */
1986	pci_update_current_state(dev, dev->current_state);
1987
1988	if (atomic_inc_return(&dev->enable_cnt) > 1)
1989		return 0;		/* already enabled */
1990
1991	bridge = pci_upstream_bridge(dev);
1992	if (bridge)
1993		pci_enable_bridge(bridge);
1994
1995	/* only skip sriov related */
1996	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1997		if (dev->resource[i].flags & flags)
1998			bars |= (1 << i);
1999	for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
2000		if (dev->resource[i].flags & flags)
2001			bars |= (1 << i);
2002
2003	err = do_pci_enable_device(dev, bars);
2004	if (err < 0)
2005		atomic_dec(&dev->enable_cnt);
2006	return err;
2007}
2008
2009/**
2010 * pci_enable_device_io - Initialize a device for use with IO space
2011 * @dev: PCI device to be initialized
2012 *
2013 * Initialize device before it's used by a driver. Ask low-level code
2014 * to enable I/O resources. Wake up the device if it was suspended.
2015 * Beware, this function can fail.
2016 */
2017int pci_enable_device_io(struct pci_dev *dev)
2018{
2019	return pci_enable_device_flags(dev, IORESOURCE_IO);
2020}
2021EXPORT_SYMBOL(pci_enable_device_io);
2022
2023/**
2024 * pci_enable_device_mem - Initialize a device for use with Memory space
2025 * @dev: PCI device to be initialized
2026 *
2027 * Initialize device before it's used by a driver. Ask low-level code
2028 * to enable Memory resources. Wake up the device if it was suspended.
2029 * Beware, this function can fail.
2030 */
2031int pci_enable_device_mem(struct pci_dev *dev)
2032{
2033	return pci_enable_device_flags(dev, IORESOURCE_MEM);
2034}
2035EXPORT_SYMBOL(pci_enable_device_mem);
2036
2037/**
2038 * pci_enable_device - Initialize device before it's used by a driver.
2039 * @dev: PCI device to be initialized
2040 *
2041 * Initialize device before it's used by a driver. Ask low-level code
2042 * to enable I/O and memory. Wake up the device if it was suspended.
2043 * Beware, this function can fail.
2044 *
2045 * Note we don't actually enable the device many times if we call
2046 * this function repeatedly (we just increment the count).
2047 */
2048int pci_enable_device(struct pci_dev *dev)
2049{
2050	return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
2051}
2052EXPORT_SYMBOL(pci_enable_device);
2053
2054/*
2055 * Managed PCI resources.  This manages device on/off, INTx/MSI/MSI-X
2056 * on/off and BAR regions.  pci_dev itself records MSI/MSI-X status, so
2057 * there's no need to track it separately.  pci_devres is initialized
2058 * when a device is enabled using managed PCI device enable interface.
2059 */
2060struct pci_devres {
2061	unsigned int enabled:1;
2062	unsigned int pinned:1;
2063	unsigned int orig_intx:1;
2064	unsigned int restore_intx:1;
2065	unsigned int mwi:1;
2066	u32 region_mask;
2067};
2068
2069static void pcim_release(struct device *gendev, void *res)
2070{
2071	struct pci_dev *dev = to_pci_dev(gendev);
2072	struct pci_devres *this = res;
2073	int i;
2074
 
 
 
 
 
2075	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
2076		if (this->region_mask & (1 << i))
2077			pci_release_region(dev, i);
2078
2079	if (this->mwi)
2080		pci_clear_mwi(dev);
2081
2082	if (this->restore_intx)
2083		pci_intx(dev, this->orig_intx);
2084
2085	if (this->enabled && !this->pinned)
2086		pci_disable_device(dev);
2087}
2088
2089static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
2090{
2091	struct pci_devres *dr, *new_dr;
2092
2093	dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
2094	if (dr)
2095		return dr;
2096
2097	new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
2098	if (!new_dr)
2099		return NULL;
2100	return devres_get(&pdev->dev, new_dr, NULL, NULL);
2101}
2102
2103static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
2104{
2105	if (pci_is_managed(pdev))
2106		return devres_find(&pdev->dev, pcim_release, NULL, NULL);
2107	return NULL;
2108}
2109
2110/**
2111 * pcim_enable_device - Managed pci_enable_device()
2112 * @pdev: PCI device to be initialized
2113 *
2114 * Managed pci_enable_device().
2115 */
2116int pcim_enable_device(struct pci_dev *pdev)
2117{
2118	struct pci_devres *dr;
2119	int rc;
2120
2121	dr = get_pci_dr(pdev);
2122	if (unlikely(!dr))
2123		return -ENOMEM;
2124	if (dr->enabled)
2125		return 0;
2126
2127	rc = pci_enable_device(pdev);
2128	if (!rc) {
2129		pdev->is_managed = 1;
2130		dr->enabled = 1;
2131	}
2132	return rc;
2133}
2134EXPORT_SYMBOL(pcim_enable_device);
2135
2136/**
2137 * pcim_pin_device - Pin managed PCI device
2138 * @pdev: PCI device to pin
2139 *
2140 * Pin managed PCI device @pdev.  Pinned device won't be disabled on
2141 * driver detach.  @pdev must have been enabled with
2142 * pcim_enable_device().
2143 */
2144void pcim_pin_device(struct pci_dev *pdev)
2145{
2146	struct pci_devres *dr;
2147
2148	dr = find_pci_dr(pdev);
2149	WARN_ON(!dr || !dr->enabled);
2150	if (dr)
2151		dr->pinned = 1;
2152}
2153EXPORT_SYMBOL(pcim_pin_device);
2154
2155/*
2156 * pcibios_device_add - provide arch specific hooks when adding device dev
2157 * @dev: the PCI device being added
2158 *
2159 * Permits the platform to provide architecture specific functionality when
2160 * devices are added. This is the default implementation. Architecture
2161 * implementations can override this.
2162 */
2163int __weak pcibios_device_add(struct pci_dev *dev)
2164{
2165	return 0;
2166}
2167
2168/**
2169 * pcibios_release_device - provide arch specific hooks when releasing
2170 *			    device dev
2171 * @dev: the PCI device being released
2172 *
2173 * Permits the platform to provide architecture specific functionality when
2174 * devices are released. This is the default implementation. Architecture
2175 * implementations can override this.
2176 */
2177void __weak pcibios_release_device(struct pci_dev *dev) {}
2178
2179/**
2180 * pcibios_disable_device - disable arch specific PCI resources for device dev
2181 * @dev: the PCI device to disable
2182 *
2183 * Disables architecture specific PCI resources for the device. This
2184 * is the default implementation. Architecture implementations can
2185 * override this.
2186 */
2187void __weak pcibios_disable_device(struct pci_dev *dev) {}
2188
2189/**
2190 * pcibios_penalize_isa_irq - penalize an ISA IRQ
2191 * @irq: ISA IRQ to penalize
2192 * @active: IRQ active or not
2193 *
2194 * Permits the platform to provide architecture-specific functionality when
2195 * penalizing ISA IRQs. This is the default implementation. Architecture
2196 * implementations can override this.
2197 */
2198void __weak pcibios_penalize_isa_irq(int irq, int active) {}
2199
2200static void do_pci_disable_device(struct pci_dev *dev)
2201{
2202	u16 pci_command;
2203
2204	pci_read_config_word(dev, PCI_COMMAND, &pci_command);
2205	if (pci_command & PCI_COMMAND_MASTER) {
2206		pci_command &= ~PCI_COMMAND_MASTER;
2207		pci_write_config_word(dev, PCI_COMMAND, pci_command);
2208	}
2209
2210	pcibios_disable_device(dev);
2211}
2212
2213/**
2214 * pci_disable_enabled_device - Disable device without updating enable_cnt
2215 * @dev: PCI device to disable
2216 *
2217 * NOTE: This function is a backend of PCI power management routines and is
2218 * not supposed to be called drivers.
2219 */
2220void pci_disable_enabled_device(struct pci_dev *dev)
2221{
2222	if (pci_is_enabled(dev))
2223		do_pci_disable_device(dev);
2224}
2225
2226/**
2227 * pci_disable_device - Disable PCI device after use
2228 * @dev: PCI device to be disabled
2229 *
2230 * Signal to the system that the PCI device is not in use by the system
2231 * anymore.  This only involves disabling PCI bus-mastering, if active.
2232 *
2233 * Note we don't actually disable the device until all callers of
2234 * pci_enable_device() have called pci_disable_device().
2235 */
2236void pci_disable_device(struct pci_dev *dev)
2237{
2238	struct pci_devres *dr;
2239
2240	dr = find_pci_dr(dev);
2241	if (dr)
2242		dr->enabled = 0;
2243
2244	dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
2245		      "disabling already-disabled device");
2246
2247	if (atomic_dec_return(&dev->enable_cnt) != 0)
2248		return;
2249
2250	do_pci_disable_device(dev);
2251
2252	dev->is_busmaster = 0;
2253}
2254EXPORT_SYMBOL(pci_disable_device);
2255
2256/**
2257 * pcibios_set_pcie_reset_state - set reset state for device dev
2258 * @dev: the PCIe device reset
2259 * @state: Reset state to enter into
2260 *
2261 * Set the PCIe reset state for the device. This is the default
2262 * implementation. Architecture implementations can override this.
2263 */
2264int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
2265					enum pcie_reset_state state)
2266{
2267	return -EINVAL;
2268}
2269
2270/**
2271 * pci_set_pcie_reset_state - set reset state for device dev
2272 * @dev: the PCIe device reset
2273 * @state: Reset state to enter into
2274 *
2275 * Sets the PCI reset state for the device.
2276 */
2277int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
2278{
2279	return pcibios_set_pcie_reset_state(dev, state);
2280}
2281EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2282
2283#ifdef CONFIG_PCIEAER
2284void pcie_clear_device_status(struct pci_dev *dev)
2285{
2286	u16 sta;
2287
2288	pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta);
2289	pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta);
2290}
2291#endif
2292
2293/**
2294 * pcie_clear_root_pme_status - Clear root port PME interrupt status.
2295 * @dev: PCIe root port or event collector.
2296 */
2297void pcie_clear_root_pme_status(struct pci_dev *dev)
2298{
2299	pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
2300}
2301
2302/**
2303 * pci_check_pme_status - Check if given device has generated PME.
2304 * @dev: Device to check.
2305 *
2306 * Check the PME status of the device and if set, clear it and clear PME enable
2307 * (if set).  Return 'true' if PME status and PME enable were both set or
2308 * 'false' otherwise.
2309 */
2310bool pci_check_pme_status(struct pci_dev *dev)
2311{
2312	int pmcsr_pos;
2313	u16 pmcsr;
2314	bool ret = false;
2315
2316	if (!dev->pm_cap)
2317		return false;
2318
2319	pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2320	pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2321	if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2322		return false;
2323
2324	/* Clear PME status. */
2325	pmcsr |= PCI_PM_CTRL_PME_STATUS;
2326	if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2327		/* Disable PME to avoid interrupt flood. */
2328		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2329		ret = true;
2330	}
2331
2332	pci_write_config_word(dev, pmcsr_pos, pmcsr);
2333
2334	return ret;
2335}
2336
2337/**
2338 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2339 * @dev: Device to handle.
2340 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2341 *
2342 * Check if @dev has generated PME and queue a resume request for it in that
2343 * case.
2344 */
2345static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2346{
2347	if (pme_poll_reset && dev->pme_poll)
2348		dev->pme_poll = false;
2349
2350	if (pci_check_pme_status(dev)) {
2351		pci_wakeup_event(dev);
2352		pm_request_resume(&dev->dev);
2353	}
2354	return 0;
2355}
2356
2357/**
2358 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2359 * @bus: Top bus of the subtree to walk.
2360 */
2361void pci_pme_wakeup_bus(struct pci_bus *bus)
2362{
2363	if (bus)
2364		pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2365}
2366
2367
2368/**
2369 * pci_pme_capable - check the capability of PCI device to generate PME#
2370 * @dev: PCI device to handle.
2371 * @state: PCI state from which device will issue PME#.
2372 */
2373bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2374{
2375	if (!dev->pm_cap)
2376		return false;
2377
2378	return !!(dev->pme_support & (1 << state));
2379}
2380EXPORT_SYMBOL(pci_pme_capable);
2381
2382static void pci_pme_list_scan(struct work_struct *work)
2383{
2384	struct pci_pme_device *pme_dev, *n;
2385
2386	mutex_lock(&pci_pme_list_mutex);
2387	list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2388		if (pme_dev->dev->pme_poll) {
2389			struct pci_dev *bridge;
2390
2391			bridge = pme_dev->dev->bus->self;
2392			/*
2393			 * If bridge is in low power state, the
2394			 * configuration space of subordinate devices
2395			 * may be not accessible
2396			 */
2397			if (bridge && bridge->current_state != PCI_D0)
2398				continue;
2399			/*
2400			 * If the device is in D3cold it should not be
2401			 * polled either.
2402			 */
2403			if (pme_dev->dev->current_state == PCI_D3cold)
2404				continue;
2405
2406			pci_pme_wakeup(pme_dev->dev, NULL);
2407		} else {
2408			list_del(&pme_dev->list);
2409			kfree(pme_dev);
2410		}
2411	}
2412	if (!list_empty(&pci_pme_list))
2413		queue_delayed_work(system_freezable_wq, &pci_pme_work,
2414				   msecs_to_jiffies(PME_TIMEOUT));
2415	mutex_unlock(&pci_pme_list_mutex);
2416}
2417
2418static void __pci_pme_active(struct pci_dev *dev, bool enable)
2419{
2420	u16 pmcsr;
2421
2422	if (!dev->pme_support)
2423		return;
2424
2425	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2426	/* Clear PME_Status by writing 1 to it and enable PME# */
2427	pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2428	if (!enable)
2429		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2430
2431	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2432}
2433
2434/**
2435 * pci_pme_restore - Restore PME configuration after config space restore.
2436 * @dev: PCI device to update.
2437 */
2438void pci_pme_restore(struct pci_dev *dev)
2439{
2440	u16 pmcsr;
2441
2442	if (!dev->pme_support)
2443		return;
2444
2445	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2446	if (dev->wakeup_prepared) {
2447		pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2448		pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2449	} else {
2450		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2451		pmcsr |= PCI_PM_CTRL_PME_STATUS;
2452	}
2453	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2454}
2455
2456/**
2457 * pci_pme_active - enable or disable PCI device's PME# function
2458 * @dev: PCI device to handle.
2459 * @enable: 'true' to enable PME# generation; 'false' to disable it.
2460 *
2461 * The caller must verify that the device is capable of generating PME# before
2462 * calling this function with @enable equal to 'true'.
2463 */
2464void pci_pme_active(struct pci_dev *dev, bool enable)
2465{
2466	__pci_pme_active(dev, enable);
2467
2468	/*
2469	 * PCI (as opposed to PCIe) PME requires that the device have
2470	 * its PME# line hooked up correctly. Not all hardware vendors
2471	 * do this, so the PME never gets delivered and the device
2472	 * remains asleep. The easiest way around this is to
2473	 * periodically walk the list of suspended devices and check
2474	 * whether any have their PME flag set. The assumption is that
2475	 * we'll wake up often enough anyway that this won't be a huge
2476	 * hit, and the power savings from the devices will still be a
2477	 * win.
2478	 *
2479	 * Although PCIe uses in-band PME message instead of PME# line
2480	 * to report PME, PME does not work for some PCIe devices in
2481	 * reality.  For example, there are devices that set their PME
2482	 * status bits, but don't really bother to send a PME message;
2483	 * there are PCI Express Root Ports that don't bother to
2484	 * trigger interrupts when they receive PME messages from the
2485	 * devices below.  So PME poll is used for PCIe devices too.
2486	 */
2487
2488	if (dev->pme_poll) {
2489		struct pci_pme_device *pme_dev;
2490		if (enable) {
2491			pme_dev = kmalloc(sizeof(struct pci_pme_device),
2492					  GFP_KERNEL);
2493			if (!pme_dev) {
2494				pci_warn(dev, "can't enable PME#\n");
2495				return;
2496			}
2497			pme_dev->dev = dev;
2498			mutex_lock(&pci_pme_list_mutex);
2499			list_add(&pme_dev->list, &pci_pme_list);
2500			if (list_is_singular(&pci_pme_list))
2501				queue_delayed_work(system_freezable_wq,
2502						   &pci_pme_work,
2503						   msecs_to_jiffies(PME_TIMEOUT));
2504			mutex_unlock(&pci_pme_list_mutex);
2505		} else {
2506			mutex_lock(&pci_pme_list_mutex);
2507			list_for_each_entry(pme_dev, &pci_pme_list, list) {
2508				if (pme_dev->dev == dev) {
2509					list_del(&pme_dev->list);
2510					kfree(pme_dev);
2511					break;
2512				}
2513			}
2514			mutex_unlock(&pci_pme_list_mutex);
2515		}
2516	}
2517
2518	pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2519}
2520EXPORT_SYMBOL(pci_pme_active);
2521
2522/**
2523 * __pci_enable_wake - enable PCI device as wakeup event source
2524 * @dev: PCI device affected
2525 * @state: PCI state from which device will issue wakeup events
2526 * @enable: True to enable event generation; false to disable
2527 *
2528 * This enables the device as a wakeup event source, or disables it.
2529 * When such events involves platform-specific hooks, those hooks are
2530 * called automatically by this routine.
2531 *
2532 * Devices with legacy power management (no standard PCI PM capabilities)
2533 * always require such platform hooks.
2534 *
2535 * RETURN VALUE:
2536 * 0 is returned on success
2537 * -EINVAL is returned if device is not supposed to wake up the system
2538 * Error code depending on the platform is returned if both the platform and
2539 * the native mechanism fail to enable the generation of wake-up events
2540 */
2541static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2542{
2543	int ret = 0;
2544
2545	/*
2546	 * Bridges that are not power-manageable directly only signal
2547	 * wakeup on behalf of subordinate devices which is set up
2548	 * elsewhere, so skip them. However, bridges that are
2549	 * power-manageable may signal wakeup for themselves (for example,
2550	 * on a hotplug event) and they need to be covered here.
2551	 */
2552	if (!pci_power_manageable(dev))
2553		return 0;
2554
2555	/* Don't do the same thing twice in a row for one device. */
2556	if (!!enable == !!dev->wakeup_prepared)
2557		return 0;
2558
2559	/*
2560	 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2561	 * Anderson we should be doing PME# wake enable followed by ACPI wake
2562	 * enable.  To disable wake-up we call the platform first, for symmetry.
2563	 */
2564
2565	if (enable) {
2566		int error;
2567
2568		/*
2569		 * Enable PME signaling if the device can signal PME from
2570		 * D3cold regardless of whether or not it can signal PME from
2571		 * the current target state, because that will allow it to
2572		 * signal PME when the hierarchy above it goes into D3cold and
2573		 * the device itself ends up in D3cold as a result of that.
2574		 */
2575		if (pci_pme_capable(dev, state) || pci_pme_capable(dev, PCI_D3cold))
2576			pci_pme_active(dev, true);
2577		else
2578			ret = 1;
2579		error = platform_pci_set_wakeup(dev, true);
2580		if (ret)
2581			ret = error;
2582		if (!ret)
2583			dev->wakeup_prepared = true;
2584	} else {
2585		platform_pci_set_wakeup(dev, false);
2586		pci_pme_active(dev, false);
2587		dev->wakeup_prepared = false;
2588	}
2589
2590	return ret;
2591}
2592
2593/**
2594 * pci_enable_wake - change wakeup settings for a PCI device
2595 * @pci_dev: Target device
2596 * @state: PCI state from which device will issue wakeup events
2597 * @enable: Whether or not to enable event generation
2598 *
2599 * If @enable is set, check device_may_wakeup() for the device before calling
2600 * __pci_enable_wake() for it.
2601 */
2602int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2603{
2604	if (enable && !device_may_wakeup(&pci_dev->dev))
2605		return -EINVAL;
2606
2607	return __pci_enable_wake(pci_dev, state, enable);
2608}
2609EXPORT_SYMBOL(pci_enable_wake);
2610
2611/**
2612 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2613 * @dev: PCI device to prepare
2614 * @enable: True to enable wake-up event generation; false to disable
2615 *
2616 * Many drivers want the device to wake up the system from D3_hot or D3_cold
2617 * and this function allows them to set that up cleanly - pci_enable_wake()
2618 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2619 * ordering constraints.
2620 *
2621 * This function only returns error code if the device is not allowed to wake
2622 * up the system from sleep or it is not capable of generating PME# from both
2623 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2624 */
2625int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2626{
2627	return pci_pme_capable(dev, PCI_D3cold) ?
2628			pci_enable_wake(dev, PCI_D3cold, enable) :
2629			pci_enable_wake(dev, PCI_D3hot, enable);
2630}
2631EXPORT_SYMBOL(pci_wake_from_d3);
2632
2633/**
2634 * pci_target_state - find an appropriate low power state for a given PCI dev
2635 * @dev: PCI device
2636 * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2637 *
2638 * Use underlying platform code to find a supported low power state for @dev.
2639 * If the platform can't manage @dev, return the deepest state from which it
2640 * can generate wake events, based on any available PME info.
2641 */
2642static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2643{
 
 
2644	if (platform_pci_power_manageable(dev)) {
2645		/*
2646		 * Call the platform to find the target state for the device.
2647		 */
2648		pci_power_t state = platform_pci_choose_state(dev);
2649
2650		switch (state) {
2651		case PCI_POWER_ERROR:
2652		case PCI_UNKNOWN:
2653			return PCI_D3hot;
2654
2655		case PCI_D1:
2656		case PCI_D2:
2657			if (pci_no_d1d2(dev))
2658				return PCI_D3hot;
 
 
 
2659		}
2660
2661		return state;
2662	}
2663
 
 
 
2664	/*
2665	 * If the device is in D3cold even though it's not power-manageable by
2666	 * the platform, it may have been powered down by non-standard means.
2667	 * Best to let it slumber.
2668	 */
2669	if (dev->current_state == PCI_D3cold)
2670		return PCI_D3cold;
2671	else if (!dev->pm_cap)
2672		return PCI_D0;
2673
2674	if (wakeup && dev->pme_support) {
2675		pci_power_t state = PCI_D3hot;
2676
2677		/*
2678		 * Find the deepest state from which the device can generate
2679		 * PME#.
2680		 */
2681		while (state && !(dev->pme_support & (1 << state)))
2682			state--;
2683
2684		if (state)
2685			return state;
2686		else if (dev->pme_support & 1)
2687			return PCI_D0;
2688	}
2689
2690	return PCI_D3hot;
2691}
2692
2693/**
2694 * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2695 *			  into a sleep state
2696 * @dev: Device to handle.
2697 *
2698 * Choose the power state appropriate for the device depending on whether
2699 * it can wake up the system and/or is power manageable by the platform
2700 * (PCI_D3hot is the default) and put the device into that state.
2701 */
2702int pci_prepare_to_sleep(struct pci_dev *dev)
2703{
2704	bool wakeup = device_may_wakeup(&dev->dev);
2705	pci_power_t target_state = pci_target_state(dev, wakeup);
2706	int error;
2707
2708	if (target_state == PCI_POWER_ERROR)
2709		return -EIO;
2710
 
 
 
 
 
 
 
 
 
 
2711	pci_enable_wake(dev, target_state, wakeup);
2712
2713	error = pci_set_power_state(dev, target_state);
2714
2715	if (error)
2716		pci_enable_wake(dev, target_state, false);
 
 
2717
2718	return error;
2719}
2720EXPORT_SYMBOL(pci_prepare_to_sleep);
2721
2722/**
2723 * pci_back_from_sleep - turn PCI device on during system-wide transition
2724 *			 into working state
2725 * @dev: Device to handle.
2726 *
2727 * Disable device's system wake-up capability and put it into D0.
2728 */
2729int pci_back_from_sleep(struct pci_dev *dev)
2730{
2731	int ret = pci_set_power_state(dev, PCI_D0);
2732
2733	if (ret)
2734		return ret;
2735
2736	pci_enable_wake(dev, PCI_D0, false);
2737	return 0;
2738}
2739EXPORT_SYMBOL(pci_back_from_sleep);
2740
2741/**
2742 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2743 * @dev: PCI device being suspended.
2744 *
2745 * Prepare @dev to generate wake-up events at run time and put it into a low
2746 * power state.
2747 */
2748int pci_finish_runtime_suspend(struct pci_dev *dev)
2749{
2750	pci_power_t target_state;
2751	int error;
2752
2753	target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2754	if (target_state == PCI_POWER_ERROR)
2755		return -EIO;
2756
 
 
 
 
 
 
 
 
 
 
 
 
2757	__pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2758
2759	error = pci_set_power_state(dev, target_state);
2760
2761	if (error)
2762		pci_enable_wake(dev, target_state, false);
 
 
 
2763
2764	return error;
2765}
2766
2767/**
2768 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2769 * @dev: Device to check.
2770 *
2771 * Return true if the device itself is capable of generating wake-up events
2772 * (through the platform or using the native PCIe PME) or if the device supports
2773 * PME and one of its upstream bridges can generate wake-up events.
2774 */
2775bool pci_dev_run_wake(struct pci_dev *dev)
2776{
2777	struct pci_bus *bus = dev->bus;
2778
2779	if (!dev->pme_support)
2780		return false;
2781
2782	/* PME-capable in principle, but not from the target power state */
2783	if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2784		return false;
2785
2786	if (device_can_wakeup(&dev->dev))
2787		return true;
2788
2789	while (bus->parent) {
2790		struct pci_dev *bridge = bus->self;
2791
2792		if (device_can_wakeup(&bridge->dev))
2793			return true;
2794
2795		bus = bus->parent;
2796	}
2797
2798	/* We have reached the root bus. */
2799	if (bus->bridge)
2800		return device_can_wakeup(bus->bridge);
2801
2802	return false;
2803}
2804EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2805
2806/**
2807 * pci_dev_need_resume - Check if it is necessary to resume the device.
2808 * @pci_dev: Device to check.
2809 *
2810 * Return 'true' if the device is not runtime-suspended or it has to be
2811 * reconfigured due to wakeup settings difference between system and runtime
2812 * suspend, or the current power state of it is not suitable for the upcoming
2813 * (system-wide) transition.
2814 */
2815bool pci_dev_need_resume(struct pci_dev *pci_dev)
2816{
2817	struct device *dev = &pci_dev->dev;
2818	pci_power_t target_state;
2819
2820	if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
2821		return true;
2822
2823	target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
2824
2825	/*
2826	 * If the earlier platform check has not triggered, D3cold is just power
2827	 * removal on top of D3hot, so no need to resume the device in that
2828	 * case.
2829	 */
2830	return target_state != pci_dev->current_state &&
2831		target_state != PCI_D3cold &&
2832		pci_dev->current_state != PCI_D3hot;
2833}
2834
2835/**
2836 * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2837 * @pci_dev: Device to check.
2838 *
2839 * If the device is suspended and it is not configured for system wakeup,
2840 * disable PME for it to prevent it from waking up the system unnecessarily.
2841 *
2842 * Note that if the device's power state is D3cold and the platform check in
2843 * pci_dev_need_resume() has not triggered, the device's configuration need not
2844 * be changed.
2845 */
2846void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2847{
2848	struct device *dev = &pci_dev->dev;
2849
2850	spin_lock_irq(&dev->power.lock);
2851
2852	if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2853	    pci_dev->current_state < PCI_D3cold)
2854		__pci_pme_active(pci_dev, false);
2855
2856	spin_unlock_irq(&dev->power.lock);
2857}
2858
2859/**
2860 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2861 * @pci_dev: Device to handle.
2862 *
2863 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2864 * it might have been disabled during the prepare phase of system suspend if
2865 * the device was not configured for system wakeup.
2866 */
2867void pci_dev_complete_resume(struct pci_dev *pci_dev)
2868{
2869	struct device *dev = &pci_dev->dev;
2870
2871	if (!pci_dev_run_wake(pci_dev))
2872		return;
2873
2874	spin_lock_irq(&dev->power.lock);
2875
2876	if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2877		__pci_pme_active(pci_dev, true);
2878
2879	spin_unlock_irq(&dev->power.lock);
2880}
2881
2882/**
2883 * pci_choose_state - Choose the power state of a PCI device.
2884 * @dev: Target PCI device.
2885 * @state: Target state for the whole system.
2886 *
2887 * Returns PCI power state suitable for @dev and @state.
2888 */
2889pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
2890{
2891	if (state.event == PM_EVENT_ON)
2892		return PCI_D0;
2893
2894	return pci_target_state(dev, false);
2895}
2896EXPORT_SYMBOL(pci_choose_state);
2897
2898void pci_config_pm_runtime_get(struct pci_dev *pdev)
2899{
2900	struct device *dev = &pdev->dev;
2901	struct device *parent = dev->parent;
2902
2903	if (parent)
2904		pm_runtime_get_sync(parent);
2905	pm_runtime_get_noresume(dev);
2906	/*
2907	 * pdev->current_state is set to PCI_D3cold during suspending,
2908	 * so wait until suspending completes
2909	 */
2910	pm_runtime_barrier(dev);
2911	/*
2912	 * Only need to resume devices in D3cold, because config
2913	 * registers are still accessible for devices suspended but
2914	 * not in D3cold.
2915	 */
2916	if (pdev->current_state == PCI_D3cold)
2917		pm_runtime_resume(dev);
2918}
2919
2920void pci_config_pm_runtime_put(struct pci_dev *pdev)
2921{
2922	struct device *dev = &pdev->dev;
2923	struct device *parent = dev->parent;
2924
2925	pm_runtime_put(dev);
2926	if (parent)
2927		pm_runtime_put_sync(parent);
2928}
2929
2930static const struct dmi_system_id bridge_d3_blacklist[] = {
2931#ifdef CONFIG_X86
2932	{
2933		/*
2934		 * Gigabyte X299 root port is not marked as hotplug capable
2935		 * which allows Linux to power manage it.  However, this
2936		 * confuses the BIOS SMI handler so don't power manage root
2937		 * ports on that system.
2938		 */
2939		.ident = "X299 DESIGNARE EX-CF",
2940		.matches = {
2941			DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
2942			DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
2943		},
2944	},
2945	{
2946		/*
2947		 * Downstream device is not accessible after putting a root port
2948		 * into D3cold and back into D0 on Elo i2.
2949		 */
2950		.ident = "Elo i2",
2951		.matches = {
2952			DMI_MATCH(DMI_SYS_VENDOR, "Elo Touch Solutions"),
2953			DMI_MATCH(DMI_PRODUCT_NAME, "Elo i2"),
2954			DMI_MATCH(DMI_PRODUCT_VERSION, "RevB"),
2955		},
2956	},
2957#endif
2958	{ }
2959};
2960
2961/**
2962 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2963 * @bridge: Bridge to check
2964 *
2965 * This function checks if it is possible to move the bridge to D3.
2966 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
2967 */
2968bool pci_bridge_d3_possible(struct pci_dev *bridge)
2969{
2970	if (!pci_is_pcie(bridge))
2971		return false;
2972
2973	switch (pci_pcie_type(bridge)) {
2974	case PCI_EXP_TYPE_ROOT_PORT:
2975	case PCI_EXP_TYPE_UPSTREAM:
2976	case PCI_EXP_TYPE_DOWNSTREAM:
2977		if (pci_bridge_d3_disable)
2978			return false;
2979
2980		/*
2981		 * Hotplug ports handled by firmware in System Management Mode
2982		 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2983		 */
2984		if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
2985			return false;
2986
2987		if (pci_bridge_d3_force)
2988			return true;
2989
2990		/* Even the oldest 2010 Thunderbolt controller supports D3. */
2991		if (bridge->is_thunderbolt)
2992			return true;
2993
2994		/* Platform might know better if the bridge supports D3 */
2995		if (platform_pci_bridge_d3(bridge))
2996			return true;
2997
2998		/*
2999		 * Hotplug ports handled natively by the OS were not validated
3000		 * by vendors for runtime D3 at least until 2018 because there
3001		 * was no OS support.
3002		 */
3003		if (bridge->is_hotplug_bridge)
3004			return false;
3005
3006		if (dmi_check_system(bridge_d3_blacklist))
3007			return false;
3008
3009		/*
3010		 * It should be safe to put PCIe ports from 2015 or newer
3011		 * to D3.
3012		 */
3013		if (dmi_get_bios_year() >= 2015)
3014			return true;
3015		break;
3016	}
3017
3018	return false;
3019}
3020
3021static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
3022{
3023	bool *d3cold_ok = data;
3024
3025	if (/* The device needs to be allowed to go D3cold ... */
3026	    dev->no_d3cold || !dev->d3cold_allowed ||
3027
3028	    /* ... and if it is wakeup capable to do so from D3cold. */
3029	    (device_may_wakeup(&dev->dev) &&
3030	     !pci_pme_capable(dev, PCI_D3cold)) ||
3031
3032	    /* If it is a bridge it must be allowed to go to D3. */
3033	    !pci_power_manageable(dev))
3034
3035		*d3cold_ok = false;
3036
3037	return !*d3cold_ok;
3038}
3039
3040/*
3041 * pci_bridge_d3_update - Update bridge D3 capabilities
3042 * @dev: PCI device which is changed
3043 *
3044 * Update upstream bridge PM capabilities accordingly depending on if the
3045 * device PM configuration was changed or the device is being removed.  The
3046 * change is also propagated upstream.
3047 */
3048void pci_bridge_d3_update(struct pci_dev *dev)
3049{
3050	bool remove = !device_is_registered(&dev->dev);
3051	struct pci_dev *bridge;
3052	bool d3cold_ok = true;
3053
3054	bridge = pci_upstream_bridge(dev);
3055	if (!bridge || !pci_bridge_d3_possible(bridge))
3056		return;
3057
3058	/*
3059	 * If D3 is currently allowed for the bridge, removing one of its
3060	 * children won't change that.
3061	 */
3062	if (remove && bridge->bridge_d3)
3063		return;
3064
3065	/*
3066	 * If D3 is currently allowed for the bridge and a child is added or
3067	 * changed, disallowance of D3 can only be caused by that child, so
3068	 * we only need to check that single device, not any of its siblings.
3069	 *
3070	 * If D3 is currently not allowed for the bridge, checking the device
3071	 * first may allow us to skip checking its siblings.
3072	 */
3073	if (!remove)
3074		pci_dev_check_d3cold(dev, &d3cold_ok);
3075
3076	/*
3077	 * If D3 is currently not allowed for the bridge, this may be caused
3078	 * either by the device being changed/removed or any of its siblings,
3079	 * so we need to go through all children to find out if one of them
3080	 * continues to block D3.
3081	 */
3082	if (d3cold_ok && !bridge->bridge_d3)
3083		pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
3084			     &d3cold_ok);
3085
3086	if (bridge->bridge_d3 != d3cold_ok) {
3087		bridge->bridge_d3 = d3cold_ok;
3088		/* Propagate change to upstream bridges */
3089		pci_bridge_d3_update(bridge);
3090	}
3091}
3092
3093/**
3094 * pci_d3cold_enable - Enable D3cold for device
3095 * @dev: PCI device to handle
3096 *
3097 * This function can be used in drivers to enable D3cold from the device
3098 * they handle.  It also updates upstream PCI bridge PM capabilities
3099 * accordingly.
3100 */
3101void pci_d3cold_enable(struct pci_dev *dev)
3102{
3103	if (dev->no_d3cold) {
3104		dev->no_d3cold = false;
3105		pci_bridge_d3_update(dev);
3106	}
3107}
3108EXPORT_SYMBOL_GPL(pci_d3cold_enable);
3109
3110/**
3111 * pci_d3cold_disable - Disable D3cold for device
3112 * @dev: PCI device to handle
3113 *
3114 * This function can be used in drivers to disable D3cold from the device
3115 * they handle.  It also updates upstream PCI bridge PM capabilities
3116 * accordingly.
3117 */
3118void pci_d3cold_disable(struct pci_dev *dev)
3119{
3120	if (!dev->no_d3cold) {
3121		dev->no_d3cold = true;
3122		pci_bridge_d3_update(dev);
3123	}
3124}
3125EXPORT_SYMBOL_GPL(pci_d3cold_disable);
3126
3127/**
3128 * pci_pm_init - Initialize PM functions of given PCI device
3129 * @dev: PCI device to handle.
3130 */
3131void pci_pm_init(struct pci_dev *dev)
3132{
3133	int pm;
3134	u16 status;
3135	u16 pmc;
3136
3137	pm_runtime_forbid(&dev->dev);
3138	pm_runtime_set_active(&dev->dev);
3139	pm_runtime_enable(&dev->dev);
3140	device_enable_async_suspend(&dev->dev);
3141	dev->wakeup_prepared = false;
3142
3143	dev->pm_cap = 0;
3144	dev->pme_support = 0;
3145
3146	/* find PCI PM capability in list */
3147	pm = pci_find_capability(dev, PCI_CAP_ID_PM);
3148	if (!pm)
3149		return;
3150	/* Check device's ability to generate PME# */
3151	pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
3152
3153	if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
3154		pci_err(dev, "unsupported PM cap regs version (%u)\n",
3155			pmc & PCI_PM_CAP_VER_MASK);
3156		return;
3157	}
3158
3159	dev->pm_cap = pm;
3160	dev->d3hot_delay = PCI_PM_D3HOT_WAIT;
3161	dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
3162	dev->bridge_d3 = pci_bridge_d3_possible(dev);
3163	dev->d3cold_allowed = true;
3164
3165	dev->d1_support = false;
3166	dev->d2_support = false;
3167	if (!pci_no_d1d2(dev)) {
3168		if (pmc & PCI_PM_CAP_D1)
3169			dev->d1_support = true;
3170		if (pmc & PCI_PM_CAP_D2)
3171			dev->d2_support = true;
3172
3173		if (dev->d1_support || dev->d2_support)
3174			pci_info(dev, "supports%s%s\n",
3175				   dev->d1_support ? " D1" : "",
3176				   dev->d2_support ? " D2" : "");
3177	}
3178
3179	pmc &= PCI_PM_CAP_PME_MASK;
3180	if (pmc) {
3181		pci_info(dev, "PME# supported from%s%s%s%s%s\n",
3182			 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
3183			 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
3184			 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
3185			 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "",
3186			 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
3187		dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
3188		dev->pme_poll = true;
3189		/*
3190		 * Make device's PM flags reflect the wake-up capability, but
3191		 * let the user space enable it to wake up the system as needed.
3192		 */
3193		device_set_wakeup_capable(&dev->dev, true);
3194		/* Disable the PME# generation functionality */
3195		pci_pme_active(dev, false);
3196	}
3197
3198	pci_read_config_word(dev, PCI_STATUS, &status);
3199	if (status & PCI_STATUS_IMM_READY)
3200		dev->imm_ready = 1;
3201}
3202
3203static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
3204{
3205	unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
3206
3207	switch (prop) {
3208	case PCI_EA_P_MEM:
3209	case PCI_EA_P_VF_MEM:
3210		flags |= IORESOURCE_MEM;
3211		break;
3212	case PCI_EA_P_MEM_PREFETCH:
3213	case PCI_EA_P_VF_MEM_PREFETCH:
3214		flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
3215		break;
3216	case PCI_EA_P_IO:
3217		flags |= IORESOURCE_IO;
3218		break;
3219	default:
3220		return 0;
3221	}
3222
3223	return flags;
3224}
3225
3226static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
3227					    u8 prop)
3228{
3229	if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
3230		return &dev->resource[bei];
3231#ifdef CONFIG_PCI_IOV
3232	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
3233		 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
3234		return &dev->resource[PCI_IOV_RESOURCES +
3235				      bei - PCI_EA_BEI_VF_BAR0];
3236#endif
3237	else if (bei == PCI_EA_BEI_ROM)
3238		return &dev->resource[PCI_ROM_RESOURCE];
3239	else
3240		return NULL;
3241}
3242
3243/* Read an Enhanced Allocation (EA) entry */
3244static int pci_ea_read(struct pci_dev *dev, int offset)
3245{
3246	struct resource *res;
3247	int ent_size, ent_offset = offset;
3248	resource_size_t start, end;
3249	unsigned long flags;
3250	u32 dw0, bei, base, max_offset;
3251	u8 prop;
3252	bool support_64 = (sizeof(resource_size_t) >= 8);
3253
3254	pci_read_config_dword(dev, ent_offset, &dw0);
3255	ent_offset += 4;
3256
3257	/* Entry size field indicates DWORDs after 1st */
3258	ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
3259
3260	if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
3261		goto out;
3262
3263	bei = (dw0 & PCI_EA_BEI) >> 4;
3264	prop = (dw0 & PCI_EA_PP) >> 8;
3265
3266	/*
3267	 * If the Property is in the reserved range, try the Secondary
3268	 * Property instead.
3269	 */
3270	if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
3271		prop = (dw0 & PCI_EA_SP) >> 16;
3272	if (prop > PCI_EA_P_BRIDGE_IO)
3273		goto out;
3274
3275	res = pci_ea_get_resource(dev, bei, prop);
3276	if (!res) {
3277		pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
3278		goto out;
3279	}
3280
3281	flags = pci_ea_flags(dev, prop);
3282	if (!flags) {
3283		pci_err(dev, "Unsupported EA properties: %#x\n", prop);
3284		goto out;
3285	}
3286
3287	/* Read Base */
3288	pci_read_config_dword(dev, ent_offset, &base);
3289	start = (base & PCI_EA_FIELD_MASK);
3290	ent_offset += 4;
3291
3292	/* Read MaxOffset */
3293	pci_read_config_dword(dev, ent_offset, &max_offset);
3294	ent_offset += 4;
3295
3296	/* Read Base MSBs (if 64-bit entry) */
3297	if (base & PCI_EA_IS_64) {
3298		u32 base_upper;
3299
3300		pci_read_config_dword(dev, ent_offset, &base_upper);
3301		ent_offset += 4;
3302
3303		flags |= IORESOURCE_MEM_64;
3304
3305		/* entry starts above 32-bit boundary, can't use */
3306		if (!support_64 && base_upper)
3307			goto out;
3308
3309		if (support_64)
3310			start |= ((u64)base_upper << 32);
3311	}
3312
3313	end = start + (max_offset | 0x03);
3314
3315	/* Read MaxOffset MSBs (if 64-bit entry) */
3316	if (max_offset & PCI_EA_IS_64) {
3317		u32 max_offset_upper;
3318
3319		pci_read_config_dword(dev, ent_offset, &max_offset_upper);
3320		ent_offset += 4;
3321
3322		flags |= IORESOURCE_MEM_64;
3323
3324		/* entry too big, can't use */
3325		if (!support_64 && max_offset_upper)
3326			goto out;
3327
3328		if (support_64)
3329			end += ((u64)max_offset_upper << 32);
3330	}
3331
3332	if (end < start) {
3333		pci_err(dev, "EA Entry crosses address boundary\n");
3334		goto out;
3335	}
3336
3337	if (ent_size != ent_offset - offset) {
3338		pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
3339			ent_size, ent_offset - offset);
3340		goto out;
3341	}
3342
3343	res->name = pci_name(dev);
3344	res->start = start;
3345	res->end = end;
3346	res->flags = flags;
3347
3348	if (bei <= PCI_EA_BEI_BAR5)
3349		pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3350			   bei, res, prop);
3351	else if (bei == PCI_EA_BEI_ROM)
3352		pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
3353			   res, prop);
3354	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3355		pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3356			   bei - PCI_EA_BEI_VF_BAR0, res, prop);
3357	else
3358		pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
3359			   bei, res, prop);
3360
3361out:
3362	return offset + ent_size;
3363}
3364
3365/* Enhanced Allocation Initialization */
3366void pci_ea_init(struct pci_dev *dev)
3367{
3368	int ea;
3369	u8 num_ent;
3370	int offset;
3371	int i;
3372
3373	/* find PCI EA capability in list */
3374	ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3375	if (!ea)
3376		return;
3377
3378	/* determine the number of entries */
3379	pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3380					&num_ent);
3381	num_ent &= PCI_EA_NUM_ENT_MASK;
3382
3383	offset = ea + PCI_EA_FIRST_ENT;
3384
3385	/* Skip DWORD 2 for type 1 functions */
3386	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3387		offset += 4;
3388
3389	/* parse each EA entry */
3390	for (i = 0; i < num_ent; ++i)
3391		offset = pci_ea_read(dev, offset);
3392}
3393
3394static void pci_add_saved_cap(struct pci_dev *pci_dev,
3395	struct pci_cap_saved_state *new_cap)
3396{
3397	hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3398}
3399
3400/**
3401 * _pci_add_cap_save_buffer - allocate buffer for saving given
3402 *			      capability registers
3403 * @dev: the PCI device
3404 * @cap: the capability to allocate the buffer for
3405 * @extended: Standard or Extended capability ID
3406 * @size: requested size of the buffer
3407 */
3408static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3409				    bool extended, unsigned int size)
3410{
3411	int pos;
3412	struct pci_cap_saved_state *save_state;
3413
3414	if (extended)
3415		pos = pci_find_ext_capability(dev, cap);
3416	else
3417		pos = pci_find_capability(dev, cap);
3418
3419	if (!pos)
3420		return 0;
3421
3422	save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3423	if (!save_state)
3424		return -ENOMEM;
3425
3426	save_state->cap.cap_nr = cap;
3427	save_state->cap.cap_extended = extended;
3428	save_state->cap.size = size;
3429	pci_add_saved_cap(dev, save_state);
3430
3431	return 0;
3432}
3433
3434int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3435{
3436	return _pci_add_cap_save_buffer(dev, cap, false, size);
3437}
3438
3439int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3440{
3441	return _pci_add_cap_save_buffer(dev, cap, true, size);
3442}
3443
3444/**
3445 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3446 * @dev: the PCI device
3447 */
3448void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3449{
3450	int error;
3451
3452	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3453					PCI_EXP_SAVE_REGS * sizeof(u16));
3454	if (error)
3455		pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3456
3457	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3458	if (error)
3459		pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3460
3461	error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3462					    2 * sizeof(u16));
3463	if (error)
3464		pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3465
3466	pci_allocate_vc_save_buffers(dev);
3467}
3468
3469void pci_free_cap_save_buffers(struct pci_dev *dev)
3470{
3471	struct pci_cap_saved_state *tmp;
3472	struct hlist_node *n;
3473
3474	hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3475		kfree(tmp);
3476}
3477
3478/**
3479 * pci_configure_ari - enable or disable ARI forwarding
3480 * @dev: the PCI device
3481 *
3482 * If @dev and its upstream bridge both support ARI, enable ARI in the
3483 * bridge.  Otherwise, disable ARI in the bridge.
3484 */
3485void pci_configure_ari(struct pci_dev *dev)
3486{
3487	u32 cap;
3488	struct pci_dev *bridge;
3489
3490	if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3491		return;
3492
3493	bridge = dev->bus->self;
3494	if (!bridge)
3495		return;
3496
3497	pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3498	if (!(cap & PCI_EXP_DEVCAP2_ARI))
3499		return;
3500
3501	if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3502		pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3503					 PCI_EXP_DEVCTL2_ARI);
3504		bridge->ari_enabled = 1;
3505	} else {
3506		pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3507					   PCI_EXP_DEVCTL2_ARI);
3508		bridge->ari_enabled = 0;
3509	}
3510}
3511
3512static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3513{
3514	int pos;
3515	u16 cap, ctrl;
3516
3517	pos = pdev->acs_cap;
3518	if (!pos)
3519		return false;
3520
3521	/*
3522	 * Except for egress control, capabilities are either required
3523	 * or only required if controllable.  Features missing from the
3524	 * capability field can therefore be assumed as hard-wired enabled.
3525	 */
3526	pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3527	acs_flags &= (cap | PCI_ACS_EC);
3528
3529	pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3530	return (ctrl & acs_flags) == acs_flags;
3531}
3532
3533/**
3534 * pci_acs_enabled - test ACS against required flags for a given device
3535 * @pdev: device to test
3536 * @acs_flags: required PCI ACS flags
3537 *
3538 * Return true if the device supports the provided flags.  Automatically
3539 * filters out flags that are not implemented on multifunction devices.
3540 *
3541 * Note that this interface checks the effective ACS capabilities of the
3542 * device rather than the actual capabilities.  For instance, most single
3543 * function endpoints are not required to support ACS because they have no
3544 * opportunity for peer-to-peer access.  We therefore return 'true'
3545 * regardless of whether the device exposes an ACS capability.  This makes
3546 * it much easier for callers of this function to ignore the actual type
3547 * or topology of the device when testing ACS support.
3548 */
3549bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3550{
3551	int ret;
3552
3553	ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3554	if (ret >= 0)
3555		return ret > 0;
3556
3557	/*
3558	 * Conventional PCI and PCI-X devices never support ACS, either
3559	 * effectively or actually.  The shared bus topology implies that
3560	 * any device on the bus can receive or snoop DMA.
3561	 */
3562	if (!pci_is_pcie(pdev))
3563		return false;
3564
3565	switch (pci_pcie_type(pdev)) {
3566	/*
3567	 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3568	 * but since their primary interface is PCI/X, we conservatively
3569	 * handle them as we would a non-PCIe device.
3570	 */
3571	case PCI_EXP_TYPE_PCIE_BRIDGE:
3572	/*
3573	 * PCIe 3.0, 6.12.1 excludes ACS on these devices.  "ACS is never
3574	 * applicable... must never implement an ACS Extended Capability...".
3575	 * This seems arbitrary, but we take a conservative interpretation
3576	 * of this statement.
3577	 */
3578	case PCI_EXP_TYPE_PCI_BRIDGE:
3579	case PCI_EXP_TYPE_RC_EC:
3580		return false;
3581	/*
3582	 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3583	 * implement ACS in order to indicate their peer-to-peer capabilities,
3584	 * regardless of whether they are single- or multi-function devices.
3585	 */
3586	case PCI_EXP_TYPE_DOWNSTREAM:
3587	case PCI_EXP_TYPE_ROOT_PORT:
3588		return pci_acs_flags_enabled(pdev, acs_flags);
3589	/*
3590	 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3591	 * implemented by the remaining PCIe types to indicate peer-to-peer
3592	 * capabilities, but only when they are part of a multifunction
3593	 * device.  The footnote for section 6.12 indicates the specific
3594	 * PCIe types included here.
3595	 */
3596	case PCI_EXP_TYPE_ENDPOINT:
3597	case PCI_EXP_TYPE_UPSTREAM:
3598	case PCI_EXP_TYPE_LEG_END:
3599	case PCI_EXP_TYPE_RC_END:
3600		if (!pdev->multifunction)
3601			break;
3602
3603		return pci_acs_flags_enabled(pdev, acs_flags);
3604	}
3605
3606	/*
3607	 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3608	 * to single function devices with the exception of downstream ports.
3609	 */
3610	return true;
3611}
3612
3613/**
3614 * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy
3615 * @start: starting downstream device
3616 * @end: ending upstream device or NULL to search to the root bus
3617 * @acs_flags: required flags
3618 *
3619 * Walk up a device tree from start to end testing PCI ACS support.  If
3620 * any step along the way does not support the required flags, return false.
3621 */
3622bool pci_acs_path_enabled(struct pci_dev *start,
3623			  struct pci_dev *end, u16 acs_flags)
3624{
3625	struct pci_dev *pdev, *parent = start;
3626
3627	do {
3628		pdev = parent;
3629
3630		if (!pci_acs_enabled(pdev, acs_flags))
3631			return false;
3632
3633		if (pci_is_root_bus(pdev->bus))
3634			return (end == NULL);
3635
3636		parent = pdev->bus->self;
3637	} while (pdev != end);
3638
3639	return true;
3640}
3641
3642/**
3643 * pci_acs_init - Initialize ACS if hardware supports it
3644 * @dev: the PCI device
3645 */
3646void pci_acs_init(struct pci_dev *dev)
3647{
3648	dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3649
3650	/*
3651	 * Attempt to enable ACS regardless of capability because some Root
3652	 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have
3653	 * the standard ACS capability but still support ACS via those
3654	 * quirks.
3655	 */
3656	pci_enable_acs(dev);
3657}
3658
3659/**
3660 * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3661 * @pdev: PCI device
3662 * @bar: BAR to find
3663 *
3664 * Helper to find the position of the ctrl register for a BAR.
3665 * Returns -ENOTSUPP if resizable BARs are not supported at all.
3666 * Returns -ENOENT if no ctrl register for the BAR could be found.
3667 */
3668static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3669{
3670	unsigned int pos, nbars, i;
3671	u32 ctrl;
3672
3673	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3674	if (!pos)
3675		return -ENOTSUPP;
3676
3677	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3678	nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
3679		    PCI_REBAR_CTRL_NBAR_SHIFT;
3680
3681	for (i = 0; i < nbars; i++, pos += 8) {
3682		int bar_idx;
3683
3684		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3685		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
3686		if (bar_idx == bar)
3687			return pos;
3688	}
3689
3690	return -ENOENT;
3691}
3692
3693/**
3694 * pci_rebar_get_possible_sizes - get possible sizes for BAR
3695 * @pdev: PCI device
3696 * @bar: BAR to query
3697 *
3698 * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3699 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3700 */
3701u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3702{
3703	int pos;
3704	u32 cap;
3705
3706	pos = pci_rebar_find_pos(pdev, bar);
3707	if (pos < 0)
3708		return 0;
3709
3710	pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3711	cap &= PCI_REBAR_CAP_SIZES;
3712
3713	/* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */
3714	if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f &&
3715	    bar == 0 && cap == 0x7000)
3716		cap = 0x3f000;
3717
3718	return cap >> 4;
3719}
3720EXPORT_SYMBOL(pci_rebar_get_possible_sizes);
3721
3722/**
3723 * pci_rebar_get_current_size - get the current size of a BAR
3724 * @pdev: PCI device
3725 * @bar: BAR to set size to
3726 *
3727 * Read the size of a BAR from the resizable BAR config.
3728 * Returns size if found or negative error code.
3729 */
3730int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3731{
3732	int pos;
3733	u32 ctrl;
3734
3735	pos = pci_rebar_find_pos(pdev, bar);
3736	if (pos < 0)
3737		return pos;
3738
3739	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3740	return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT;
3741}
3742
3743/**
3744 * pci_rebar_set_size - set a new size for a BAR
3745 * @pdev: PCI device
3746 * @bar: BAR to set size to
3747 * @size: new size as defined in the spec (0=1MB, 19=512GB)
3748 *
3749 * Set the new size of a BAR as defined in the spec.
3750 * Returns zero if resizing was successful, error code otherwise.
3751 */
3752int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3753{
3754	int pos;
3755	u32 ctrl;
3756
3757	pos = pci_rebar_find_pos(pdev, bar);
3758	if (pos < 0)
3759		return pos;
3760
3761	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3762	ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3763	ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
3764	pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3765	return 0;
3766}
3767
3768/**
3769 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3770 * @dev: the PCI device
3771 * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3772 *	PCI_EXP_DEVCAP2_ATOMIC_COMP32
3773 *	PCI_EXP_DEVCAP2_ATOMIC_COMP64
3774 *	PCI_EXP_DEVCAP2_ATOMIC_COMP128
3775 *
3776 * Return 0 if all upstream bridges support AtomicOp routing, egress
3777 * blocking is disabled on all upstream ports, and the root port supports
3778 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3779 * AtomicOp completion), or negative otherwise.
3780 */
3781int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3782{
3783	struct pci_bus *bus = dev->bus;
3784	struct pci_dev *bridge;
3785	u32 cap, ctl2;
3786
3787	/*
3788	 * Per PCIe r5.0, sec 9.3.5.10, the AtomicOp Requester Enable bit
3789	 * in Device Control 2 is reserved in VFs and the PF value applies
3790	 * to all associated VFs.
3791	 */
3792	if (dev->is_virtfn)
3793		return -EINVAL;
3794
3795	if (!pci_is_pcie(dev))
3796		return -EINVAL;
3797
3798	/*
3799	 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3800	 * AtomicOp requesters.  For now, we only support endpoints as
3801	 * requesters and root ports as completers.  No endpoints as
3802	 * completers, and no peer-to-peer.
3803	 */
3804
3805	switch (pci_pcie_type(dev)) {
3806	case PCI_EXP_TYPE_ENDPOINT:
3807	case PCI_EXP_TYPE_LEG_END:
3808	case PCI_EXP_TYPE_RC_END:
3809		break;
3810	default:
3811		return -EINVAL;
3812	}
3813
3814	while (bus->parent) {
3815		bridge = bus->self;
3816
3817		pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3818
3819		switch (pci_pcie_type(bridge)) {
3820		/* Ensure switch ports support AtomicOp routing */
3821		case PCI_EXP_TYPE_UPSTREAM:
3822		case PCI_EXP_TYPE_DOWNSTREAM:
3823			if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3824				return -EINVAL;
3825			break;
3826
3827		/* Ensure root port supports all the sizes we care about */
3828		case PCI_EXP_TYPE_ROOT_PORT:
3829			if ((cap & cap_mask) != cap_mask)
3830				return -EINVAL;
3831			break;
3832		}
3833
3834		/* Ensure upstream ports don't block AtomicOps on egress */
3835		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
3836			pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3837						   &ctl2);
3838			if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3839				return -EINVAL;
3840		}
3841
3842		bus = bus->parent;
3843	}
3844
3845	pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3846				 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3847	return 0;
3848}
3849EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3850
3851/**
3852 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3853 * @dev: the PCI device
3854 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3855 *
3856 * Perform INTx swizzling for a device behind one level of bridge.  This is
3857 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3858 * behind bridges on add-in cards.  For devices with ARI enabled, the slot
3859 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3860 * the PCI Express Base Specification, Revision 2.1)
3861 */
3862u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3863{
3864	int slot;
3865
3866	if (pci_ari_enabled(dev->bus))
3867		slot = 0;
3868	else
3869		slot = PCI_SLOT(dev->devfn);
3870
3871	return (((pin - 1) + slot) % 4) + 1;
3872}
3873
3874int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3875{
3876	u8 pin;
3877
3878	pin = dev->pin;
3879	if (!pin)
3880		return -1;
3881
3882	while (!pci_is_root_bus(dev->bus)) {
3883		pin = pci_swizzle_interrupt_pin(dev, pin);
3884		dev = dev->bus->self;
3885	}
3886	*bridge = dev;
3887	return pin;
3888}
3889
3890/**
3891 * pci_common_swizzle - swizzle INTx all the way to root bridge
3892 * @dev: the PCI device
3893 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3894 *
3895 * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
3896 * bridges all the way up to a PCI root bus.
3897 */
3898u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3899{
3900	u8 pin = *pinp;
3901
3902	while (!pci_is_root_bus(dev->bus)) {
3903		pin = pci_swizzle_interrupt_pin(dev, pin);
3904		dev = dev->bus->self;
3905	}
3906	*pinp = pin;
3907	return PCI_SLOT(dev->devfn);
3908}
3909EXPORT_SYMBOL_GPL(pci_common_swizzle);
3910
3911/**
3912 * pci_release_region - Release a PCI bar
3913 * @pdev: PCI device whose resources were previously reserved by
3914 *	  pci_request_region()
3915 * @bar: BAR to release
3916 *
3917 * Releases the PCI I/O and memory resources previously reserved by a
3918 * successful call to pci_request_region().  Call this function only
3919 * after all use of the PCI regions has ceased.
3920 */
3921void pci_release_region(struct pci_dev *pdev, int bar)
3922{
3923	struct pci_devres *dr;
3924
3925	if (pci_resource_len(pdev, bar) == 0)
3926		return;
3927	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3928		release_region(pci_resource_start(pdev, bar),
3929				pci_resource_len(pdev, bar));
3930	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3931		release_mem_region(pci_resource_start(pdev, bar),
3932				pci_resource_len(pdev, bar));
3933
3934	dr = find_pci_dr(pdev);
3935	if (dr)
3936		dr->region_mask &= ~(1 << bar);
3937}
3938EXPORT_SYMBOL(pci_release_region);
3939
3940/**
3941 * __pci_request_region - Reserved PCI I/O and memory resource
3942 * @pdev: PCI device whose resources are to be reserved
3943 * @bar: BAR to be reserved
3944 * @res_name: Name to be associated with resource.
3945 * @exclusive: whether the region access is exclusive or not
3946 *
3947 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3948 * being reserved by owner @res_name.  Do not access any
3949 * address inside the PCI regions unless this call returns
3950 * successfully.
3951 *
3952 * If @exclusive is set, then the region is marked so that userspace
3953 * is explicitly not allowed to map the resource via /dev/mem or
3954 * sysfs MMIO access.
3955 *
3956 * Returns 0 on success, or %EBUSY on error.  A warning
3957 * message is also printed on failure.
3958 */
3959static int __pci_request_region(struct pci_dev *pdev, int bar,
3960				const char *res_name, int exclusive)
3961{
3962	struct pci_devres *dr;
3963
3964	if (pci_resource_len(pdev, bar) == 0)
3965		return 0;
3966
3967	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3968		if (!request_region(pci_resource_start(pdev, bar),
3969			    pci_resource_len(pdev, bar), res_name))
3970			goto err_out;
3971	} else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3972		if (!__request_mem_region(pci_resource_start(pdev, bar),
3973					pci_resource_len(pdev, bar), res_name,
3974					exclusive))
3975			goto err_out;
3976	}
3977
3978	dr = find_pci_dr(pdev);
3979	if (dr)
3980		dr->region_mask |= 1 << bar;
3981
3982	return 0;
3983
3984err_out:
3985	pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
3986		 &pdev->resource[bar]);
3987	return -EBUSY;
3988}
3989
3990/**
3991 * pci_request_region - Reserve PCI I/O and memory resource
3992 * @pdev: PCI device whose resources are to be reserved
3993 * @bar: BAR to be reserved
3994 * @res_name: Name to be associated with resource
3995 *
3996 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3997 * being reserved by owner @res_name.  Do not access any
3998 * address inside the PCI regions unless this call returns
3999 * successfully.
4000 *
4001 * Returns 0 on success, or %EBUSY on error.  A warning
4002 * message is also printed on failure.
4003 */
4004int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
4005{
4006	return __pci_request_region(pdev, bar, res_name, 0);
4007}
4008EXPORT_SYMBOL(pci_request_region);
4009
4010/**
4011 * pci_release_selected_regions - Release selected PCI I/O and memory resources
4012 * @pdev: PCI device whose resources were previously reserved
4013 * @bars: Bitmask of BARs to be released
4014 *
4015 * Release selected PCI I/O and memory resources previously reserved.
4016 * Call this function only after all use of the PCI regions has ceased.
4017 */
4018void pci_release_selected_regions(struct pci_dev *pdev, int bars)
4019{
4020	int i;
4021
4022	for (i = 0; i < PCI_STD_NUM_BARS; i++)
4023		if (bars & (1 << i))
4024			pci_release_region(pdev, i);
4025}
4026EXPORT_SYMBOL(pci_release_selected_regions);
4027
4028static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
4029					  const char *res_name, int excl)
4030{
4031	int i;
4032
4033	for (i = 0; i < PCI_STD_NUM_BARS; i++)
4034		if (bars & (1 << i))
4035			if (__pci_request_region(pdev, i, res_name, excl))
4036				goto err_out;
4037	return 0;
4038
4039err_out:
4040	while (--i >= 0)
4041		if (bars & (1 << i))
4042			pci_release_region(pdev, i);
4043
4044	return -EBUSY;
4045}
4046
4047
4048/**
4049 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
4050 * @pdev: PCI device whose resources are to be reserved
4051 * @bars: Bitmask of BARs to be requested
4052 * @res_name: Name to be associated with resource
4053 */
4054int pci_request_selected_regions(struct pci_dev *pdev, int bars,
4055				 const char *res_name)
4056{
4057	return __pci_request_selected_regions(pdev, bars, res_name, 0);
4058}
4059EXPORT_SYMBOL(pci_request_selected_regions);
4060
4061int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
4062					   const char *res_name)
4063{
4064	return __pci_request_selected_regions(pdev, bars, res_name,
4065			IORESOURCE_EXCLUSIVE);
4066}
4067EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
4068
4069/**
4070 * pci_release_regions - Release reserved PCI I/O and memory resources
4071 * @pdev: PCI device whose resources were previously reserved by
4072 *	  pci_request_regions()
4073 *
4074 * Releases all PCI I/O and memory resources previously reserved by a
4075 * successful call to pci_request_regions().  Call this function only
4076 * after all use of the PCI regions has ceased.
4077 */
4078
4079void pci_release_regions(struct pci_dev *pdev)
4080{
4081	pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1);
4082}
4083EXPORT_SYMBOL(pci_release_regions);
4084
4085/**
4086 * pci_request_regions - Reserve PCI I/O and memory resources
4087 * @pdev: PCI device whose resources are to be reserved
4088 * @res_name: Name to be associated with resource.
4089 *
4090 * Mark all PCI regions associated with PCI device @pdev as
4091 * being reserved by owner @res_name.  Do not access any
4092 * address inside the PCI regions unless this call returns
4093 * successfully.
4094 *
4095 * Returns 0 on success, or %EBUSY on error.  A warning
4096 * message is also printed on failure.
4097 */
4098int pci_request_regions(struct pci_dev *pdev, const char *res_name)
4099{
4100	return pci_request_selected_regions(pdev,
4101			((1 << PCI_STD_NUM_BARS) - 1), res_name);
4102}
4103EXPORT_SYMBOL(pci_request_regions);
4104
4105/**
4106 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
4107 * @pdev: PCI device whose resources are to be reserved
4108 * @res_name: Name to be associated with resource.
4109 *
4110 * Mark all PCI regions associated with PCI device @pdev as being reserved
4111 * by owner @res_name.  Do not access any address inside the PCI regions
4112 * unless this call returns successfully.
4113 *
4114 * pci_request_regions_exclusive() will mark the region so that /dev/mem
4115 * and the sysfs MMIO access will not be allowed.
4116 *
4117 * Returns 0 on success, or %EBUSY on error.  A warning message is also
4118 * printed on failure.
4119 */
4120int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
4121{
4122	return pci_request_selected_regions_exclusive(pdev,
4123				((1 << PCI_STD_NUM_BARS) - 1), res_name);
4124}
4125EXPORT_SYMBOL(pci_request_regions_exclusive);
4126
4127/*
4128 * Record the PCI IO range (expressed as CPU physical address + size).
4129 * Return a negative value if an error has occurred, zero otherwise
4130 */
4131int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
4132			resource_size_t	size)
4133{
4134	int ret = 0;
4135#ifdef PCI_IOBASE
4136	struct logic_pio_hwaddr *range;
4137
4138	if (!size || addr + size < addr)
4139		return -EINVAL;
4140
4141	range = kzalloc(sizeof(*range), GFP_ATOMIC);
4142	if (!range)
4143		return -ENOMEM;
4144
4145	range->fwnode = fwnode;
4146	range->size = size;
4147	range->hw_start = addr;
4148	range->flags = LOGIC_PIO_CPU_MMIO;
4149
4150	ret = logic_pio_register_range(range);
4151	if (ret)
4152		kfree(range);
4153
4154	/* Ignore duplicates due to deferred probing */
4155	if (ret == -EEXIST)
4156		ret = 0;
4157#endif
4158
4159	return ret;
4160}
4161
4162phys_addr_t pci_pio_to_address(unsigned long pio)
4163{
4164	phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
4165
4166#ifdef PCI_IOBASE
4167	if (pio >= MMIO_UPPER_LIMIT)
4168		return address;
4169
4170	address = logic_pio_to_hwaddr(pio);
4171#endif
4172
4173	return address;
4174}
4175EXPORT_SYMBOL_GPL(pci_pio_to_address);
4176
4177unsigned long __weak pci_address_to_pio(phys_addr_t address)
4178{
4179#ifdef PCI_IOBASE
4180	return logic_pio_trans_cpuaddr(address);
4181#else
4182	if (address > IO_SPACE_LIMIT)
4183		return (unsigned long)-1;
4184
4185	return (unsigned long) address;
4186#endif
4187}
4188
4189/**
4190 * pci_remap_iospace - Remap the memory mapped I/O space
4191 * @res: Resource describing the I/O space
4192 * @phys_addr: physical address of range to be mapped
4193 *
4194 * Remap the memory mapped I/O space described by the @res and the CPU
4195 * physical address @phys_addr into virtual address space.  Only
4196 * architectures that have memory mapped IO functions defined (and the
4197 * PCI_IOBASE value defined) should call this function.
4198 */
4199#ifndef pci_remap_iospace
4200int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
4201{
4202#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4203	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4204
4205	if (!(res->flags & IORESOURCE_IO))
4206		return -EINVAL;
4207
4208	if (res->end > IO_SPACE_LIMIT)
4209		return -EINVAL;
4210
4211	return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
4212				  pgprot_device(PAGE_KERNEL));
4213#else
4214	/*
4215	 * This architecture does not have memory mapped I/O space,
4216	 * so this function should never be called
4217	 */
4218	WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
4219	return -ENODEV;
4220#endif
4221}
4222EXPORT_SYMBOL(pci_remap_iospace);
4223#endif
4224
4225/**
4226 * pci_unmap_iospace - Unmap the memory mapped I/O space
4227 * @res: resource to be unmapped
4228 *
4229 * Unmap the CPU virtual address @res from virtual address space.  Only
4230 * architectures that have memory mapped IO functions defined (and the
4231 * PCI_IOBASE value defined) should call this function.
4232 */
4233void pci_unmap_iospace(struct resource *res)
4234{
4235#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4236	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4237
4238	vunmap_range(vaddr, vaddr + resource_size(res));
4239#endif
4240}
4241EXPORT_SYMBOL(pci_unmap_iospace);
4242
4243static void devm_pci_unmap_iospace(struct device *dev, void *ptr)
4244{
4245	struct resource **res = ptr;
4246
4247	pci_unmap_iospace(*res);
4248}
4249
4250/**
4251 * devm_pci_remap_iospace - Managed pci_remap_iospace()
4252 * @dev: Generic device to remap IO address for
4253 * @res: Resource describing the I/O space
4254 * @phys_addr: physical address of range to be mapped
4255 *
4256 * Managed pci_remap_iospace().  Map is automatically unmapped on driver
4257 * detach.
4258 */
4259int devm_pci_remap_iospace(struct device *dev, const struct resource *res,
4260			   phys_addr_t phys_addr)
4261{
4262	const struct resource **ptr;
4263	int error;
4264
4265	ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL);
4266	if (!ptr)
4267		return -ENOMEM;
4268
4269	error = pci_remap_iospace(res, phys_addr);
4270	if (error) {
4271		devres_free(ptr);
4272	} else	{
4273		*ptr = res;
4274		devres_add(dev, ptr);
4275	}
4276
4277	return error;
4278}
4279EXPORT_SYMBOL(devm_pci_remap_iospace);
4280
4281/**
4282 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
4283 * @dev: Generic device to remap IO address for
4284 * @offset: Resource address to map
4285 * @size: Size of map
4286 *
4287 * Managed pci_remap_cfgspace().  Map is automatically unmapped on driver
4288 * detach.
4289 */
4290void __iomem *devm_pci_remap_cfgspace(struct device *dev,
4291				      resource_size_t offset,
4292				      resource_size_t size)
4293{
4294	void __iomem **ptr, *addr;
4295
4296	ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
4297	if (!ptr)
4298		return NULL;
4299
4300	addr = pci_remap_cfgspace(offset, size);
4301	if (addr) {
4302		*ptr = addr;
4303		devres_add(dev, ptr);
4304	} else
4305		devres_free(ptr);
4306
4307	return addr;
4308}
4309EXPORT_SYMBOL(devm_pci_remap_cfgspace);
4310
4311/**
4312 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
4313 * @dev: generic device to handle the resource for
4314 * @res: configuration space resource to be handled
4315 *
4316 * Checks that a resource is a valid memory region, requests the memory
4317 * region and ioremaps with pci_remap_cfgspace() API that ensures the
4318 * proper PCI configuration space memory attributes are guaranteed.
4319 *
4320 * All operations are managed and will be undone on driver detach.
4321 *
4322 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
4323 * on failure. Usage example::
4324 *
4325 *	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4326 *	base = devm_pci_remap_cfg_resource(&pdev->dev, res);
4327 *	if (IS_ERR(base))
4328 *		return PTR_ERR(base);
4329 */
4330void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
4331					  struct resource *res)
4332{
4333	resource_size_t size;
4334	const char *name;
4335	void __iomem *dest_ptr;
4336
4337	BUG_ON(!dev);
4338
4339	if (!res || resource_type(res) != IORESOURCE_MEM) {
4340		dev_err(dev, "invalid resource\n");
4341		return IOMEM_ERR_PTR(-EINVAL);
4342	}
4343
4344	size = resource_size(res);
4345
4346	if (res->name)
4347		name = devm_kasprintf(dev, GFP_KERNEL, "%s %s", dev_name(dev),
4348				      res->name);
4349	else
4350		name = devm_kstrdup(dev, dev_name(dev), GFP_KERNEL);
4351	if (!name)
4352		return IOMEM_ERR_PTR(-ENOMEM);
4353
4354	if (!devm_request_mem_region(dev, res->start, size, name)) {
4355		dev_err(dev, "can't request region for resource %pR\n", res);
4356		return IOMEM_ERR_PTR(-EBUSY);
4357	}
4358
4359	dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
4360	if (!dest_ptr) {
4361		dev_err(dev, "ioremap failed for resource %pR\n", res);
4362		devm_release_mem_region(dev, res->start, size);
4363		dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
4364	}
4365
4366	return dest_ptr;
4367}
4368EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
4369
4370static void __pci_set_master(struct pci_dev *dev, bool enable)
4371{
4372	u16 old_cmd, cmd;
4373
4374	pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4375	if (enable)
4376		cmd = old_cmd | PCI_COMMAND_MASTER;
4377	else
4378		cmd = old_cmd & ~PCI_COMMAND_MASTER;
4379	if (cmd != old_cmd) {
4380		pci_dbg(dev, "%s bus mastering\n",
4381			enable ? "enabling" : "disabling");
4382		pci_write_config_word(dev, PCI_COMMAND, cmd);
4383	}
4384	dev->is_busmaster = enable;
4385}
4386
4387/**
4388 * pcibios_setup - process "pci=" kernel boot arguments
4389 * @str: string used to pass in "pci=" kernel boot arguments
4390 *
4391 * Process kernel boot arguments.  This is the default implementation.
4392 * Architecture specific implementations can override this as necessary.
4393 */
4394char * __weak __init pcibios_setup(char *str)
4395{
4396	return str;
4397}
4398
4399/**
4400 * pcibios_set_master - enable PCI bus-mastering for device dev
4401 * @dev: the PCI device to enable
4402 *
4403 * Enables PCI bus-mastering for the device.  This is the default
4404 * implementation.  Architecture specific implementations can override
4405 * this if necessary.
4406 */
4407void __weak pcibios_set_master(struct pci_dev *dev)
4408{
4409	u8 lat;
4410
4411	/* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4412	if (pci_is_pcie(dev))
4413		return;
4414
4415	pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4416	if (lat < 16)
4417		lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4418	else if (lat > pcibios_max_latency)
4419		lat = pcibios_max_latency;
4420	else
4421		return;
4422
4423	pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4424}
4425
4426/**
4427 * pci_set_master - enables bus-mastering for device dev
4428 * @dev: the PCI device to enable
4429 *
4430 * Enables bus-mastering on the device and calls pcibios_set_master()
4431 * to do the needed arch specific settings.
4432 */
4433void pci_set_master(struct pci_dev *dev)
4434{
4435	__pci_set_master(dev, true);
4436	pcibios_set_master(dev);
4437}
4438EXPORT_SYMBOL(pci_set_master);
4439
4440/**
4441 * pci_clear_master - disables bus-mastering for device dev
4442 * @dev: the PCI device to disable
4443 */
4444void pci_clear_master(struct pci_dev *dev)
4445{
4446	__pci_set_master(dev, false);
4447}
4448EXPORT_SYMBOL(pci_clear_master);
4449
4450/**
4451 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4452 * @dev: the PCI device for which MWI is to be enabled
4453 *
4454 * Helper function for pci_set_mwi.
4455 * Originally copied from drivers/net/acenic.c.
4456 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4457 *
4458 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4459 */
4460int pci_set_cacheline_size(struct pci_dev *dev)
4461{
4462	u8 cacheline_size;
4463
4464	if (!pci_cache_line_size)
4465		return -EINVAL;
4466
4467	/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4468	   equal to or multiple of the right value. */
4469	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4470	if (cacheline_size >= pci_cache_line_size &&
4471	    (cacheline_size % pci_cache_line_size) == 0)
4472		return 0;
4473
4474	/* Write the correct value. */
4475	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4476	/* Read it back. */
4477	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4478	if (cacheline_size == pci_cache_line_size)
4479		return 0;
4480
4481	pci_dbg(dev, "cache line size of %d is not supported\n",
4482		   pci_cache_line_size << 2);
4483
4484	return -EINVAL;
4485}
4486EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4487
4488/**
4489 * pci_set_mwi - enables memory-write-invalidate PCI transaction
4490 * @dev: the PCI device for which MWI is enabled
4491 *
4492 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4493 *
4494 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4495 */
4496int pci_set_mwi(struct pci_dev *dev)
4497{
4498#ifdef PCI_DISABLE_MWI
4499	return 0;
4500#else
4501	int rc;
4502	u16 cmd;
4503
4504	rc = pci_set_cacheline_size(dev);
4505	if (rc)
4506		return rc;
4507
4508	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4509	if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4510		pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4511		cmd |= PCI_COMMAND_INVALIDATE;
4512		pci_write_config_word(dev, PCI_COMMAND, cmd);
4513	}
4514	return 0;
4515#endif
4516}
4517EXPORT_SYMBOL(pci_set_mwi);
4518
4519/**
4520 * pcim_set_mwi - a device-managed pci_set_mwi()
4521 * @dev: the PCI device for which MWI is enabled
4522 *
4523 * Managed pci_set_mwi().
4524 *
4525 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4526 */
4527int pcim_set_mwi(struct pci_dev *dev)
4528{
4529	struct pci_devres *dr;
4530
4531	dr = find_pci_dr(dev);
4532	if (!dr)
4533		return -ENOMEM;
4534
4535	dr->mwi = 1;
4536	return pci_set_mwi(dev);
4537}
4538EXPORT_SYMBOL(pcim_set_mwi);
4539
4540/**
4541 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4542 * @dev: the PCI device for which MWI is enabled
4543 *
4544 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4545 * Callers are not required to check the return value.
4546 *
4547 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4548 */
4549int pci_try_set_mwi(struct pci_dev *dev)
4550{
4551#ifdef PCI_DISABLE_MWI
4552	return 0;
4553#else
4554	return pci_set_mwi(dev);
4555#endif
4556}
4557EXPORT_SYMBOL(pci_try_set_mwi);
4558
4559/**
4560 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4561 * @dev: the PCI device to disable
4562 *
4563 * Disables PCI Memory-Write-Invalidate transaction on the device
4564 */
4565void pci_clear_mwi(struct pci_dev *dev)
4566{
4567#ifndef PCI_DISABLE_MWI
4568	u16 cmd;
4569
4570	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4571	if (cmd & PCI_COMMAND_INVALIDATE) {
4572		cmd &= ~PCI_COMMAND_INVALIDATE;
4573		pci_write_config_word(dev, PCI_COMMAND, cmd);
4574	}
4575#endif
4576}
4577EXPORT_SYMBOL(pci_clear_mwi);
4578
4579/**
4580 * pci_disable_parity - disable parity checking for device
4581 * @dev: the PCI device to operate on
4582 *
4583 * Disable parity checking for device @dev
4584 */
4585void pci_disable_parity(struct pci_dev *dev)
4586{
4587	u16 cmd;
4588
4589	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4590	if (cmd & PCI_COMMAND_PARITY) {
4591		cmd &= ~PCI_COMMAND_PARITY;
4592		pci_write_config_word(dev, PCI_COMMAND, cmd);
4593	}
4594}
4595
4596/**
4597 * pci_intx - enables/disables PCI INTx for device dev
4598 * @pdev: the PCI device to operate on
4599 * @enable: boolean: whether to enable or disable PCI INTx
4600 *
4601 * Enables/disables PCI INTx for device @pdev
4602 */
4603void pci_intx(struct pci_dev *pdev, int enable)
4604{
4605	u16 pci_command, new;
4606
4607	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4608
4609	if (enable)
4610		new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4611	else
4612		new = pci_command | PCI_COMMAND_INTX_DISABLE;
4613
4614	if (new != pci_command) {
4615		struct pci_devres *dr;
4616
4617		pci_write_config_word(pdev, PCI_COMMAND, new);
4618
4619		dr = find_pci_dr(pdev);
4620		if (dr && !dr->restore_intx) {
4621			dr->restore_intx = 1;
4622			dr->orig_intx = !enable;
4623		}
4624	}
4625}
4626EXPORT_SYMBOL_GPL(pci_intx);
4627
4628static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
4629{
4630	struct pci_bus *bus = dev->bus;
4631	bool mask_updated = true;
4632	u32 cmd_status_dword;
4633	u16 origcmd, newcmd;
4634	unsigned long flags;
4635	bool irq_pending;
4636
4637	/*
4638	 * We do a single dword read to retrieve both command and status.
4639	 * Document assumptions that make this possible.
4640	 */
4641	BUILD_BUG_ON(PCI_COMMAND % 4);
4642	BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
4643
4644	raw_spin_lock_irqsave(&pci_lock, flags);
4645
4646	bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
4647
4648	irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
4649
4650	/*
4651	 * Check interrupt status register to see whether our device
4652	 * triggered the interrupt (when masking) or the next IRQ is
4653	 * already pending (when unmasking).
4654	 */
4655	if (mask != irq_pending) {
4656		mask_updated = false;
4657		goto done;
4658	}
4659
4660	origcmd = cmd_status_dword;
4661	newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
4662	if (mask)
4663		newcmd |= PCI_COMMAND_INTX_DISABLE;
4664	if (newcmd != origcmd)
4665		bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
4666
4667done:
4668	raw_spin_unlock_irqrestore(&pci_lock, flags);
4669
4670	return mask_updated;
4671}
4672
4673/**
4674 * pci_check_and_mask_intx - mask INTx on pending interrupt
4675 * @dev: the PCI device to operate on
4676 *
4677 * Check if the device dev has its INTx line asserted, mask it and return
4678 * true in that case. False is returned if no interrupt was pending.
4679 */
4680bool pci_check_and_mask_intx(struct pci_dev *dev)
4681{
4682	return pci_check_and_set_intx_mask(dev, true);
4683}
4684EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
4685
4686/**
4687 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
4688 * @dev: the PCI device to operate on
4689 *
4690 * Check if the device dev has its INTx line asserted, unmask it if not and
4691 * return true. False is returned and the mask remains active if there was
4692 * still an interrupt pending.
4693 */
4694bool pci_check_and_unmask_intx(struct pci_dev *dev)
4695{
4696	return pci_check_and_set_intx_mask(dev, false);
4697}
4698EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
4699
4700/**
4701 * pci_wait_for_pending_transaction - wait for pending transaction
4702 * @dev: the PCI device to operate on
4703 *
4704 * Return 0 if transaction is pending 1 otherwise.
4705 */
4706int pci_wait_for_pending_transaction(struct pci_dev *dev)
4707{
4708	if (!pci_is_pcie(dev))
4709		return 1;
4710
4711	return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4712				    PCI_EXP_DEVSTA_TRPND);
4713}
4714EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4715
4716/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4717 * pcie_flr - initiate a PCIe function level reset
4718 * @dev: device to reset
4719 *
4720 * Initiate a function level reset unconditionally on @dev without
4721 * checking any flags and DEVCAP
 
4722 */
4723int pcie_flr(struct pci_dev *dev)
4724{
4725	if (!pci_wait_for_pending_transaction(dev))
4726		pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4727
4728	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4729
4730	if (dev->imm_ready)
4731		return 0;
4732
4733	/*
4734	 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4735	 * 100ms, but may silently discard requests while the FLR is in
4736	 * progress.  Wait 100ms before trying to access the device.
4737	 */
4738	msleep(100);
4739
4740	return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4741}
4742EXPORT_SYMBOL_GPL(pcie_flr);
4743
4744/**
4745 * pcie_reset_flr - initiate a PCIe function level reset
4746 * @dev: device to reset
4747 * @probe: if true, return 0 if device can be reset this way
4748 *
4749 * Initiate a function level reset on @dev.
4750 */
4751int pcie_reset_flr(struct pci_dev *dev, bool probe)
4752{
4753	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4754		return -ENOTTY;
4755
4756	if (!(dev->devcap & PCI_EXP_DEVCAP_FLR))
4757		return -ENOTTY;
4758
4759	if (probe)
4760		return 0;
4761
4762	return pcie_flr(dev);
4763}
4764EXPORT_SYMBOL_GPL(pcie_reset_flr);
4765
4766static int pci_af_flr(struct pci_dev *dev, bool probe)
4767{
4768	int pos;
4769	u8 cap;
4770
4771	pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4772	if (!pos)
4773		return -ENOTTY;
4774
4775	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4776		return -ENOTTY;
4777
4778	pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4779	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4780		return -ENOTTY;
4781
4782	if (probe)
4783		return 0;
4784
4785	/*
4786	 * Wait for Transaction Pending bit to clear.  A word-aligned test
4787	 * is used, so we use the control offset rather than status and shift
4788	 * the test bit to match.
4789	 */
4790	if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4791				 PCI_AF_STATUS_TP << 8))
4792		pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4793
4794	pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4795
4796	if (dev->imm_ready)
4797		return 0;
4798
4799	/*
4800	 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4801	 * updated 27 July 2006; a device must complete an FLR within
4802	 * 100ms, but may silently discard requests while the FLR is in
4803	 * progress.  Wait 100ms before trying to access the device.
4804	 */
4805	msleep(100);
4806
4807	return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4808}
4809
4810/**
4811 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4812 * @dev: Device to reset.
4813 * @probe: if true, return 0 if the device can be reset this way.
4814 *
4815 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4816 * unset, it will be reinitialized internally when going from PCI_D3hot to
4817 * PCI_D0.  If that's the case and the device is not in a low-power state
4818 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4819 *
4820 * NOTE: This causes the caller to sleep for twice the device power transition
4821 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4822 * by default (i.e. unless the @dev's d3hot_delay field has a different value).
4823 * Moreover, only devices in D0 can be reset by this function.
4824 */
4825static int pci_pm_reset(struct pci_dev *dev, bool probe)
4826{
4827	u16 csr;
4828
4829	if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4830		return -ENOTTY;
4831
4832	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4833	if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4834		return -ENOTTY;
4835
4836	if (probe)
4837		return 0;
4838
4839	if (dev->current_state != PCI_D0)
4840		return -EINVAL;
4841
4842	csr &= ~PCI_PM_CTRL_STATE_MASK;
4843	csr |= PCI_D3hot;
4844	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4845	pci_dev_d3_sleep(dev);
4846
4847	csr &= ~PCI_PM_CTRL_STATE_MASK;
4848	csr |= PCI_D0;
4849	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4850	pci_dev_d3_sleep(dev);
4851
4852	return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS);
4853}
4854
4855/**
4856 * pcie_wait_for_link_delay - Wait until link is active or inactive
4857 * @pdev: Bridge device
4858 * @active: waiting for active or inactive?
4859 * @delay: Delay to wait after link has become active (in ms)
4860 *
4861 * Use this to wait till link becomes active or inactive.
4862 */
4863static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active,
4864				     int delay)
4865{
4866	int timeout = 1000;
4867	bool ret;
4868	u16 lnk_status;
4869
4870	/*
4871	 * Some controllers might not implement link active reporting. In this
4872	 * case, we wait for 1000 ms + any delay requested by the caller.
4873	 */
4874	if (!pdev->link_active_reporting) {
4875		msleep(timeout + delay);
4876		return true;
4877	}
4878
4879	/*
4880	 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4881	 * after which we should expect an link active if the reset was
4882	 * successful. If so, software must wait a minimum 100ms before sending
4883	 * configuration requests to devices downstream this port.
4884	 *
4885	 * If the link fails to activate, either the device was physically
4886	 * removed or the link is permanently failed.
4887	 */
4888	if (active)
4889		msleep(20);
4890	for (;;) {
4891		pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status);
4892		ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA);
4893		if (ret == active)
4894			break;
4895		if (timeout <= 0)
4896			break;
4897		msleep(10);
4898		timeout -= 10;
4899	}
4900	if (active && ret)
4901		msleep(delay);
4902
4903	return ret == active;
4904}
4905
4906/**
4907 * pcie_wait_for_link - Wait until link is active or inactive
4908 * @pdev: Bridge device
4909 * @active: waiting for active or inactive?
4910 *
4911 * Use this to wait till link becomes active or inactive.
4912 */
4913bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
4914{
4915	return pcie_wait_for_link_delay(pdev, active, 100);
4916}
4917
4918/*
4919 * Find maximum D3cold delay required by all the devices on the bus.  The
4920 * spec says 100 ms, but firmware can lower it and we allow drivers to
4921 * increase it as well.
4922 *
4923 * Called with @pci_bus_sem locked for reading.
4924 */
4925static int pci_bus_max_d3cold_delay(const struct pci_bus *bus)
4926{
4927	const struct pci_dev *pdev;
4928	int min_delay = 100;
4929	int max_delay = 0;
4930
4931	list_for_each_entry(pdev, &bus->devices, bus_list) {
4932		if (pdev->d3cold_delay < min_delay)
4933			min_delay = pdev->d3cold_delay;
4934		if (pdev->d3cold_delay > max_delay)
4935			max_delay = pdev->d3cold_delay;
4936	}
4937
4938	return max(min_delay, max_delay);
4939}
4940
4941/**
4942 * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible
4943 * @dev: PCI bridge
4944 *
4945 * Handle necessary delays before access to the devices on the secondary
4946 * side of the bridge are permitted after D3cold to D0 transition.
4947 *
4948 * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For
4949 * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section
4950 * 4.3.2.
4951 */
4952void pci_bridge_wait_for_secondary_bus(struct pci_dev *dev)
4953{
4954	struct pci_dev *child;
4955	int delay;
4956
4957	if (pci_dev_is_disconnected(dev))
4958		return;
4959
4960	if (!pci_is_bridge(dev) || !dev->bridge_d3)
4961		return;
4962
4963	down_read(&pci_bus_sem);
4964
4965	/*
4966	 * We only deal with devices that are present currently on the bus.
4967	 * For any hot-added devices the access delay is handled in pciehp
4968	 * board_added(). In case of ACPI hotplug the firmware is expected
4969	 * to configure the devices before OS is notified.
4970	 */
4971	if (!dev->subordinate || list_empty(&dev->subordinate->devices)) {
4972		up_read(&pci_bus_sem);
4973		return;
4974	}
4975
4976	/* Take d3cold_delay requirements into account */
4977	delay = pci_bus_max_d3cold_delay(dev->subordinate);
4978	if (!delay) {
4979		up_read(&pci_bus_sem);
4980		return;
4981	}
4982
4983	child = list_first_entry(&dev->subordinate->devices, struct pci_dev,
4984				 bus_list);
4985	up_read(&pci_bus_sem);
4986
4987	/*
4988	 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before
4989	 * accessing the device after reset (that is 1000 ms + 100 ms). In
4990	 * practice this should not be needed because we don't do power
4991	 * management for them (see pci_bridge_d3_possible()).
4992	 */
4993	if (!pci_is_pcie(dev)) {
4994		pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay);
4995		msleep(1000 + delay);
4996		return;
4997	}
4998
4999	/*
5000	 * For PCIe downstream and root ports that do not support speeds
5001	 * greater than 5 GT/s need to wait minimum 100 ms. For higher
5002	 * speeds (gen3) we need to wait first for the data link layer to
5003	 * become active.
5004	 *
5005	 * However, 100 ms is the minimum and the PCIe spec says the
5006	 * software must allow at least 1s before it can determine that the
5007	 * device that did not respond is a broken device. There is
5008	 * evidence that 100 ms is not always enough, for example certain
5009	 * Titan Ridge xHCI controller does not always respond to
5010	 * configuration requests if we only wait for 100 ms (see
5011	 * https://bugzilla.kernel.org/show_bug.cgi?id=203885).
5012	 *
5013	 * Therefore we wait for 100 ms and check for the device presence.
5014	 * If it is still not present give it an additional 100 ms.
5015	 */
5016	if (!pcie_downstream_port(dev))
5017		return;
5018
5019	if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) {
5020		pci_dbg(dev, "waiting %d ms for downstream link\n", delay);
5021		msleep(delay);
5022	} else {
5023		pci_dbg(dev, "waiting %d ms for downstream link, after activation\n",
5024			delay);
5025		if (!pcie_wait_for_link_delay(dev, true, delay)) {
5026			/* Did not train, no need to wait any further */
5027			pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n");
5028			return;
5029		}
5030	}
5031
5032	if (!pci_device_is_present(child)) {
5033		pci_dbg(child, "waiting additional %d ms to become accessible\n", delay);
5034		msleep(delay);
5035	}
5036}
5037
5038void pci_reset_secondary_bus(struct pci_dev *dev)
5039{
5040	u16 ctrl;
5041
5042	pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
5043	ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
5044	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
5045
5046	/*
5047	 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms.  Double
5048	 * this to 2ms to ensure that we meet the minimum requirement.
5049	 */
5050	msleep(2);
5051
5052	ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
5053	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
5054
5055	/*
5056	 * Trhfa for conventional PCI is 2^25 clock cycles.
5057	 * Assuming a minimum 33MHz clock this results in a 1s
5058	 * delay before we can consider subordinate devices to
5059	 * be re-initialized.  PCIe has some ways to shorten this,
5060	 * but we don't make use of them yet.
5061	 */
5062	ssleep(1);
5063}
5064
5065void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
5066{
5067	pci_reset_secondary_bus(dev);
5068}
5069
5070/**
5071 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
5072 * @dev: Bridge device
5073 *
5074 * Use the bridge control register to assert reset on the secondary bus.
5075 * Devices on the secondary bus are left in power-on state.
5076 */
5077int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
5078{
5079	pcibios_reset_secondary_bus(dev);
5080
5081	return pci_dev_wait(dev, "bus reset", PCIE_RESET_READY_POLL_MS);
5082}
5083EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
5084
5085static int pci_parent_bus_reset(struct pci_dev *dev, bool probe)
5086{
5087	struct pci_dev *pdev;
5088
5089	if (pci_is_root_bus(dev->bus) || dev->subordinate ||
5090	    !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5091		return -ENOTTY;
5092
5093	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
5094		if (pdev != dev)
5095			return -ENOTTY;
5096
5097	if (probe)
5098		return 0;
5099
5100	return pci_bridge_secondary_bus_reset(dev->bus->self);
5101}
5102
5103static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, bool probe)
5104{
5105	int rc = -ENOTTY;
5106
5107	if (!hotplug || !try_module_get(hotplug->owner))
5108		return rc;
5109
5110	if (hotplug->ops->reset_slot)
5111		rc = hotplug->ops->reset_slot(hotplug, probe);
5112
5113	module_put(hotplug->owner);
5114
5115	return rc;
5116}
5117
5118static int pci_dev_reset_slot_function(struct pci_dev *dev, bool probe)
5119{
5120	if (dev->multifunction || dev->subordinate || !dev->slot ||
5121	    dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5122		return -ENOTTY;
5123
5124	return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
5125}
5126
5127static int pci_reset_bus_function(struct pci_dev *dev, bool probe)
5128{
5129	int rc;
5130
5131	rc = pci_dev_reset_slot_function(dev, probe);
5132	if (rc != -ENOTTY)
5133		return rc;
5134	return pci_parent_bus_reset(dev, probe);
5135}
5136
5137void pci_dev_lock(struct pci_dev *dev)
5138{
 
5139	/* block PM suspend, driver probe, etc. */
5140	device_lock(&dev->dev);
5141	pci_cfg_access_lock(dev);
5142}
5143EXPORT_SYMBOL_GPL(pci_dev_lock);
5144
5145/* Return 1 on successful lock, 0 on contention */
5146int pci_dev_trylock(struct pci_dev *dev)
5147{
5148	if (device_trylock(&dev->dev)) {
5149		if (pci_cfg_access_trylock(dev))
5150			return 1;
5151		device_unlock(&dev->dev);
5152	}
5153
5154	return 0;
5155}
5156EXPORT_SYMBOL_GPL(pci_dev_trylock);
5157
5158void pci_dev_unlock(struct pci_dev *dev)
5159{
5160	pci_cfg_access_unlock(dev);
5161	device_unlock(&dev->dev);
 
5162}
5163EXPORT_SYMBOL_GPL(pci_dev_unlock);
5164
5165static void pci_dev_save_and_disable(struct pci_dev *dev)
5166{
5167	const struct pci_error_handlers *err_handler =
5168			dev->driver ? dev->driver->err_handler : NULL;
5169
5170	/*
5171	 * dev->driver->err_handler->reset_prepare() is protected against
5172	 * races with ->remove() by the device lock, which must be held by
5173	 * the caller.
5174	 */
5175	if (err_handler && err_handler->reset_prepare)
5176		err_handler->reset_prepare(dev);
5177
5178	/*
5179	 * Wake-up device prior to save.  PM registers default to D0 after
5180	 * reset and a simple register restore doesn't reliably return
5181	 * to a non-D0 state anyway.
5182	 */
5183	pci_set_power_state(dev, PCI_D0);
5184
5185	pci_save_state(dev);
5186	/*
5187	 * Disable the device by clearing the Command register, except for
5188	 * INTx-disable which is set.  This not only disables MMIO and I/O port
5189	 * BARs, but also prevents the device from being Bus Master, preventing
5190	 * DMA from the device including MSI/MSI-X interrupts.  For PCI 2.3
5191	 * compliant devices, INTx-disable prevents legacy interrupts.
5192	 */
5193	pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
5194}
5195
5196static void pci_dev_restore(struct pci_dev *dev)
5197{
5198	const struct pci_error_handlers *err_handler =
5199			dev->driver ? dev->driver->err_handler : NULL;
5200
5201	pci_restore_state(dev);
5202
5203	/*
5204	 * dev->driver->err_handler->reset_done() is protected against
5205	 * races with ->remove() by the device lock, which must be held by
5206	 * the caller.
5207	 */
5208	if (err_handler && err_handler->reset_done)
5209		err_handler->reset_done(dev);
5210}
5211
5212/* dev->reset_methods[] is a 0-terminated list of indices into this array */
5213static const struct pci_reset_fn_method pci_reset_fn_methods[] = {
5214	{ },
5215	{ pci_dev_specific_reset, .name = "device_specific" },
5216	{ pci_dev_acpi_reset, .name = "acpi" },
5217	{ pcie_reset_flr, .name = "flr" },
5218	{ pci_af_flr, .name = "af_flr" },
5219	{ pci_pm_reset, .name = "pm" },
5220	{ pci_reset_bus_function, .name = "bus" },
5221};
5222
5223static ssize_t reset_method_show(struct device *dev,
5224				 struct device_attribute *attr, char *buf)
5225{
5226	struct pci_dev *pdev = to_pci_dev(dev);
5227	ssize_t len = 0;
5228	int i, m;
5229
5230	for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5231		m = pdev->reset_methods[i];
5232		if (!m)
5233			break;
5234
5235		len += sysfs_emit_at(buf, len, "%s%s", len ? " " : "",
5236				     pci_reset_fn_methods[m].name);
5237	}
5238
5239	if (len)
5240		len += sysfs_emit_at(buf, len, "\n");
5241
5242	return len;
5243}
5244
5245static int reset_method_lookup(const char *name)
5246{
5247	int m;
5248
5249	for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5250		if (sysfs_streq(name, pci_reset_fn_methods[m].name))
5251			return m;
5252	}
5253
5254	return 0;	/* not found */
5255}
5256
5257static ssize_t reset_method_store(struct device *dev,
5258				  struct device_attribute *attr,
5259				  const char *buf, size_t count)
5260{
5261	struct pci_dev *pdev = to_pci_dev(dev);
5262	char *options, *name;
5263	int m, n;
5264	u8 reset_methods[PCI_NUM_RESET_METHODS] = { 0 };
5265
5266	if (sysfs_streq(buf, "")) {
5267		pdev->reset_methods[0] = 0;
5268		pci_warn(pdev, "All device reset methods disabled by user");
5269		return count;
5270	}
5271
5272	if (sysfs_streq(buf, "default")) {
5273		pci_init_reset_methods(pdev);
5274		return count;
5275	}
5276
5277	options = kstrndup(buf, count, GFP_KERNEL);
5278	if (!options)
5279		return -ENOMEM;
5280
5281	n = 0;
5282	while ((name = strsep(&options, " ")) != NULL) {
5283		if (sysfs_streq(name, ""))
5284			continue;
5285
5286		name = strim(name);
5287
5288		m = reset_method_lookup(name);
5289		if (!m) {
5290			pci_err(pdev, "Invalid reset method '%s'", name);
5291			goto error;
5292		}
5293
5294		if (pci_reset_fn_methods[m].reset_fn(pdev, PCI_RESET_PROBE)) {
5295			pci_err(pdev, "Unsupported reset method '%s'", name);
5296			goto error;
5297		}
5298
5299		if (n == PCI_NUM_RESET_METHODS - 1) {
5300			pci_err(pdev, "Too many reset methods\n");
5301			goto error;
5302		}
5303
5304		reset_methods[n++] = m;
5305	}
5306
5307	reset_methods[n] = 0;
5308
5309	/* Warn if dev-specific supported but not highest priority */
5310	if (pci_reset_fn_methods[1].reset_fn(pdev, PCI_RESET_PROBE) == 0 &&
5311	    reset_methods[0] != 1)
5312		pci_warn(pdev, "Device-specific reset disabled/de-prioritized by user");
5313	memcpy(pdev->reset_methods, reset_methods, sizeof(pdev->reset_methods));
5314	kfree(options);
5315	return count;
5316
5317error:
5318	/* Leave previous methods unchanged */
5319	kfree(options);
5320	return -EINVAL;
5321}
5322static DEVICE_ATTR_RW(reset_method);
5323
5324static struct attribute *pci_dev_reset_method_attrs[] = {
5325	&dev_attr_reset_method.attr,
5326	NULL,
5327};
5328
5329static umode_t pci_dev_reset_method_attr_is_visible(struct kobject *kobj,
5330						    struct attribute *a, int n)
5331{
5332	struct pci_dev *pdev = to_pci_dev(kobj_to_dev(kobj));
5333
5334	if (!pci_reset_supported(pdev))
5335		return 0;
5336
5337	return a->mode;
5338}
5339
5340const struct attribute_group pci_dev_reset_method_attr_group = {
5341	.attrs = pci_dev_reset_method_attrs,
5342	.is_visible = pci_dev_reset_method_attr_is_visible,
5343};
5344
5345/**
5346 * __pci_reset_function_locked - reset a PCI device function while holding
5347 * the @dev mutex lock.
5348 * @dev: PCI device to reset
5349 *
5350 * Some devices allow an individual function to be reset without affecting
5351 * other functions in the same device.  The PCI device must be responsive
5352 * to PCI config space in order to use this function.
5353 *
5354 * The device function is presumed to be unused and the caller is holding
5355 * the device mutex lock when this function is called.
5356 *
5357 * Resetting the device will make the contents of PCI configuration space
5358 * random, so any caller of this must be prepared to reinitialise the
5359 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
5360 * etc.
5361 *
5362 * Returns 0 if the device function was successfully reset or negative if the
5363 * device doesn't support resetting a single function.
5364 */
5365int __pci_reset_function_locked(struct pci_dev *dev)
5366{
5367	int i, m, rc;
5368
5369	might_sleep();
5370
5371	/*
5372	 * A reset method returns -ENOTTY if it doesn't support this device and
5373	 * we should try the next method.
5374	 *
5375	 * If it returns 0 (success), we're finished.  If it returns any other
5376	 * error, we're also finished: this indicates that further reset
5377	 * mechanisms might be broken on the device.
5378	 */
5379	for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5380		m = dev->reset_methods[i];
5381		if (!m)
5382			return -ENOTTY;
5383
5384		rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_DO_RESET);
5385		if (!rc)
5386			return 0;
5387		if (rc != -ENOTTY)
5388			return rc;
5389	}
5390
5391	return -ENOTTY;
 
 
 
 
 
5392}
5393EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
5394
5395/**
5396 * pci_init_reset_methods - check whether device can be safely reset
5397 * and store supported reset mechanisms.
5398 * @dev: PCI device to check for reset mechanisms
5399 *
5400 * Some devices allow an individual function to be reset without affecting
5401 * other functions in the same device.  The PCI device must be in D0-D3hot
5402 * state.
5403 *
5404 * Stores reset mechanisms supported by device in reset_methods byte array
5405 * which is a member of struct pci_dev.
5406 */
5407void pci_init_reset_methods(struct pci_dev *dev)
5408{
5409	int m, i, rc;
5410
5411	BUILD_BUG_ON(ARRAY_SIZE(pci_reset_fn_methods) != PCI_NUM_RESET_METHODS);
5412
5413	might_sleep();
5414
5415	i = 0;
5416	for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5417		rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_PROBE);
5418		if (!rc)
5419			dev->reset_methods[i++] = m;
5420		else if (rc != -ENOTTY)
5421			break;
5422	}
 
 
 
5423
5424	dev->reset_methods[i] = 0;
5425}
5426
5427/**
5428 * pci_reset_function - quiesce and reset a PCI device function
5429 * @dev: PCI device to reset
5430 *
5431 * Some devices allow an individual function to be reset without affecting
5432 * other functions in the same device.  The PCI device must be responsive
5433 * to PCI config space in order to use this function.
5434 *
5435 * This function does not just reset the PCI portion of a device, but
5436 * clears all the state associated with the device.  This function differs
5437 * from __pci_reset_function_locked() in that it saves and restores device state
5438 * over the reset and takes the PCI device lock.
5439 *
5440 * Returns 0 if the device function was successfully reset or negative if the
5441 * device doesn't support resetting a single function.
5442 */
5443int pci_reset_function(struct pci_dev *dev)
5444{
5445	int rc;
5446
5447	if (!pci_reset_supported(dev))
5448		return -ENOTTY;
5449
5450	pci_dev_lock(dev);
5451	pci_dev_save_and_disable(dev);
5452
5453	rc = __pci_reset_function_locked(dev);
5454
5455	pci_dev_restore(dev);
5456	pci_dev_unlock(dev);
5457
5458	return rc;
5459}
5460EXPORT_SYMBOL_GPL(pci_reset_function);
5461
5462/**
5463 * pci_reset_function_locked - quiesce and reset a PCI device function
5464 * @dev: PCI device to reset
5465 *
5466 * Some devices allow an individual function to be reset without affecting
5467 * other functions in the same device.  The PCI device must be responsive
5468 * to PCI config space in order to use this function.
5469 *
5470 * This function does not just reset the PCI portion of a device, but
5471 * clears all the state associated with the device.  This function differs
5472 * from __pci_reset_function_locked() in that it saves and restores device state
5473 * over the reset.  It also differs from pci_reset_function() in that it
5474 * requires the PCI device lock to be held.
5475 *
5476 * Returns 0 if the device function was successfully reset or negative if the
5477 * device doesn't support resetting a single function.
5478 */
5479int pci_reset_function_locked(struct pci_dev *dev)
5480{
5481	int rc;
5482
5483	if (!pci_reset_supported(dev))
5484		return -ENOTTY;
5485
5486	pci_dev_save_and_disable(dev);
5487
5488	rc = __pci_reset_function_locked(dev);
5489
5490	pci_dev_restore(dev);
5491
5492	return rc;
5493}
5494EXPORT_SYMBOL_GPL(pci_reset_function_locked);
5495
5496/**
5497 * pci_try_reset_function - quiesce and reset a PCI device function
5498 * @dev: PCI device to reset
5499 *
5500 * Same as above, except return -EAGAIN if unable to lock device.
5501 */
5502int pci_try_reset_function(struct pci_dev *dev)
5503{
5504	int rc;
5505
5506	if (!pci_reset_supported(dev))
5507		return -ENOTTY;
5508
5509	if (!pci_dev_trylock(dev))
5510		return -EAGAIN;
5511
5512	pci_dev_save_and_disable(dev);
5513	rc = __pci_reset_function_locked(dev);
5514	pci_dev_restore(dev);
5515	pci_dev_unlock(dev);
5516
5517	return rc;
5518}
5519EXPORT_SYMBOL_GPL(pci_try_reset_function);
5520
5521/* Do any devices on or below this bus prevent a bus reset? */
5522static bool pci_bus_resetable(struct pci_bus *bus)
5523{
5524	struct pci_dev *dev;
5525
5526
5527	if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5528		return false;
5529
5530	list_for_each_entry(dev, &bus->devices, bus_list) {
5531		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5532		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5533			return false;
5534	}
5535
5536	return true;
5537}
5538
5539/* Lock devices from the top of the tree down */
5540static void pci_bus_lock(struct pci_bus *bus)
5541{
5542	struct pci_dev *dev;
5543
5544	list_for_each_entry(dev, &bus->devices, bus_list) {
5545		pci_dev_lock(dev);
5546		if (dev->subordinate)
5547			pci_bus_lock(dev->subordinate);
5548	}
5549}
5550
5551/* Unlock devices from the bottom of the tree up */
5552static void pci_bus_unlock(struct pci_bus *bus)
5553{
5554	struct pci_dev *dev;
5555
5556	list_for_each_entry(dev, &bus->devices, bus_list) {
5557		if (dev->subordinate)
5558			pci_bus_unlock(dev->subordinate);
5559		pci_dev_unlock(dev);
5560	}
5561}
5562
5563/* Return 1 on successful lock, 0 on contention */
5564static int pci_bus_trylock(struct pci_bus *bus)
5565{
5566	struct pci_dev *dev;
5567
5568	list_for_each_entry(dev, &bus->devices, bus_list) {
5569		if (!pci_dev_trylock(dev))
5570			goto unlock;
5571		if (dev->subordinate) {
5572			if (!pci_bus_trylock(dev->subordinate)) {
5573				pci_dev_unlock(dev);
5574				goto unlock;
5575			}
5576		}
5577	}
5578	return 1;
5579
5580unlock:
5581	list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5582		if (dev->subordinate)
5583			pci_bus_unlock(dev->subordinate);
5584		pci_dev_unlock(dev);
5585	}
5586	return 0;
5587}
5588
5589/* Do any devices on or below this slot prevent a bus reset? */
5590static bool pci_slot_resetable(struct pci_slot *slot)
5591{
5592	struct pci_dev *dev;
5593
5594	if (slot->bus->self &&
5595	    (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5596		return false;
5597
5598	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5599		if (!dev->slot || dev->slot != slot)
5600			continue;
5601		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5602		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5603			return false;
5604	}
5605
5606	return true;
5607}
5608
5609/* Lock devices from the top of the tree down */
5610static void pci_slot_lock(struct pci_slot *slot)
5611{
5612	struct pci_dev *dev;
5613
5614	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5615		if (!dev->slot || dev->slot != slot)
5616			continue;
5617		pci_dev_lock(dev);
5618		if (dev->subordinate)
5619			pci_bus_lock(dev->subordinate);
5620	}
5621}
5622
5623/* Unlock devices from the bottom of the tree up */
5624static void pci_slot_unlock(struct pci_slot *slot)
5625{
5626	struct pci_dev *dev;
5627
5628	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5629		if (!dev->slot || dev->slot != slot)
5630			continue;
5631		if (dev->subordinate)
5632			pci_bus_unlock(dev->subordinate);
5633		pci_dev_unlock(dev);
5634	}
5635}
5636
5637/* Return 1 on successful lock, 0 on contention */
5638static int pci_slot_trylock(struct pci_slot *slot)
5639{
5640	struct pci_dev *dev;
5641
5642	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5643		if (!dev->slot || dev->slot != slot)
5644			continue;
5645		if (!pci_dev_trylock(dev))
5646			goto unlock;
5647		if (dev->subordinate) {
5648			if (!pci_bus_trylock(dev->subordinate)) {
5649				pci_dev_unlock(dev);
5650				goto unlock;
5651			}
5652		}
5653	}
5654	return 1;
5655
5656unlock:
5657	list_for_each_entry_continue_reverse(dev,
5658					     &slot->bus->devices, bus_list) {
5659		if (!dev->slot || dev->slot != slot)
5660			continue;
5661		if (dev->subordinate)
5662			pci_bus_unlock(dev->subordinate);
5663		pci_dev_unlock(dev);
5664	}
5665	return 0;
5666}
5667
5668/*
5669 * Save and disable devices from the top of the tree down while holding
5670 * the @dev mutex lock for the entire tree.
5671 */
5672static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5673{
5674	struct pci_dev *dev;
5675
5676	list_for_each_entry(dev, &bus->devices, bus_list) {
5677		pci_dev_save_and_disable(dev);
5678		if (dev->subordinate)
5679			pci_bus_save_and_disable_locked(dev->subordinate);
5680	}
5681}
5682
5683/*
5684 * Restore devices from top of the tree down while holding @dev mutex lock
5685 * for the entire tree.  Parent bridges need to be restored before we can
5686 * get to subordinate devices.
5687 */
5688static void pci_bus_restore_locked(struct pci_bus *bus)
5689{
5690	struct pci_dev *dev;
5691
5692	list_for_each_entry(dev, &bus->devices, bus_list) {
5693		pci_dev_restore(dev);
5694		if (dev->subordinate)
5695			pci_bus_restore_locked(dev->subordinate);
5696	}
5697}
5698
5699/*
5700 * Save and disable devices from the top of the tree down while holding
5701 * the @dev mutex lock for the entire tree.
5702 */
5703static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5704{
5705	struct pci_dev *dev;
5706
5707	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5708		if (!dev->slot || dev->slot != slot)
5709			continue;
5710		pci_dev_save_and_disable(dev);
5711		if (dev->subordinate)
5712			pci_bus_save_and_disable_locked(dev->subordinate);
5713	}
5714}
5715
5716/*
5717 * Restore devices from top of the tree down while holding @dev mutex lock
5718 * for the entire tree.  Parent bridges need to be restored before we can
5719 * get to subordinate devices.
5720 */
5721static void pci_slot_restore_locked(struct pci_slot *slot)
5722{
5723	struct pci_dev *dev;
5724
5725	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5726		if (!dev->slot || dev->slot != slot)
5727			continue;
5728		pci_dev_restore(dev);
5729		if (dev->subordinate)
5730			pci_bus_restore_locked(dev->subordinate);
5731	}
5732}
5733
5734static int pci_slot_reset(struct pci_slot *slot, bool probe)
5735{
5736	int rc;
5737
5738	if (!slot || !pci_slot_resetable(slot))
5739		return -ENOTTY;
5740
5741	if (!probe)
5742		pci_slot_lock(slot);
5743
5744	might_sleep();
5745
5746	rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5747
5748	if (!probe)
5749		pci_slot_unlock(slot);
5750
5751	return rc;
5752}
5753
5754/**
5755 * pci_probe_reset_slot - probe whether a PCI slot can be reset
5756 * @slot: PCI slot to probe
5757 *
5758 * Return 0 if slot can be reset, negative if a slot reset is not supported.
5759 */
5760int pci_probe_reset_slot(struct pci_slot *slot)
5761{
5762	return pci_slot_reset(slot, PCI_RESET_PROBE);
5763}
5764EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5765
5766/**
5767 * __pci_reset_slot - Try to reset a PCI slot
5768 * @slot: PCI slot to reset
5769 *
5770 * A PCI bus may host multiple slots, each slot may support a reset mechanism
5771 * independent of other slots.  For instance, some slots may support slot power
5772 * control.  In the case of a 1:1 bus to slot architecture, this function may
5773 * wrap the bus reset to avoid spurious slot related events such as hotplug.
5774 * Generally a slot reset should be attempted before a bus reset.  All of the
5775 * function of the slot and any subordinate buses behind the slot are reset
5776 * through this function.  PCI config space of all devices in the slot and
5777 * behind the slot is saved before and restored after reset.
5778 *
5779 * Same as above except return -EAGAIN if the slot cannot be locked
5780 */
5781static int __pci_reset_slot(struct pci_slot *slot)
5782{
5783	int rc;
5784
5785	rc = pci_slot_reset(slot, PCI_RESET_PROBE);
5786	if (rc)
5787		return rc;
5788
5789	if (pci_slot_trylock(slot)) {
5790		pci_slot_save_and_disable_locked(slot);
5791		might_sleep();
5792		rc = pci_reset_hotplug_slot(slot->hotplug, PCI_RESET_DO_RESET);
5793		pci_slot_restore_locked(slot);
5794		pci_slot_unlock(slot);
5795	} else
5796		rc = -EAGAIN;
5797
5798	return rc;
5799}
5800
5801static int pci_bus_reset(struct pci_bus *bus, bool probe)
5802{
5803	int ret;
5804
5805	if (!bus->self || !pci_bus_resetable(bus))
5806		return -ENOTTY;
5807
5808	if (probe)
5809		return 0;
5810
5811	pci_bus_lock(bus);
5812
5813	might_sleep();
5814
5815	ret = pci_bridge_secondary_bus_reset(bus->self);
5816
5817	pci_bus_unlock(bus);
5818
5819	return ret;
5820}
5821
5822/**
5823 * pci_bus_error_reset - reset the bridge's subordinate bus
5824 * @bridge: The parent device that connects to the bus to reset
5825 *
5826 * This function will first try to reset the slots on this bus if the method is
5827 * available. If slot reset fails or is not available, this will fall back to a
5828 * secondary bus reset.
5829 */
5830int pci_bus_error_reset(struct pci_dev *bridge)
5831{
5832	struct pci_bus *bus = bridge->subordinate;
5833	struct pci_slot *slot;
5834
5835	if (!bus)
5836		return -ENOTTY;
5837
5838	mutex_lock(&pci_slot_mutex);
5839	if (list_empty(&bus->slots))
5840		goto bus_reset;
5841
5842	list_for_each_entry(slot, &bus->slots, list)
5843		if (pci_probe_reset_slot(slot))
5844			goto bus_reset;
5845
5846	list_for_each_entry(slot, &bus->slots, list)
5847		if (pci_slot_reset(slot, PCI_RESET_DO_RESET))
5848			goto bus_reset;
5849
5850	mutex_unlock(&pci_slot_mutex);
5851	return 0;
5852bus_reset:
5853	mutex_unlock(&pci_slot_mutex);
5854	return pci_bus_reset(bridge->subordinate, PCI_RESET_DO_RESET);
5855}
5856
5857/**
5858 * pci_probe_reset_bus - probe whether a PCI bus can be reset
5859 * @bus: PCI bus to probe
5860 *
5861 * Return 0 if bus can be reset, negative if a bus reset is not supported.
5862 */
5863int pci_probe_reset_bus(struct pci_bus *bus)
5864{
5865	return pci_bus_reset(bus, PCI_RESET_PROBE);
5866}
5867EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5868
5869/**
5870 * __pci_reset_bus - Try to reset a PCI bus
5871 * @bus: top level PCI bus to reset
5872 *
5873 * Same as above except return -EAGAIN if the bus cannot be locked
5874 */
5875static int __pci_reset_bus(struct pci_bus *bus)
5876{
5877	int rc;
5878
5879	rc = pci_bus_reset(bus, PCI_RESET_PROBE);
5880	if (rc)
5881		return rc;
5882
5883	if (pci_bus_trylock(bus)) {
5884		pci_bus_save_and_disable_locked(bus);
5885		might_sleep();
5886		rc = pci_bridge_secondary_bus_reset(bus->self);
5887		pci_bus_restore_locked(bus);
5888		pci_bus_unlock(bus);
5889	} else
5890		rc = -EAGAIN;
5891
5892	return rc;
5893}
5894
5895/**
5896 * pci_reset_bus - Try to reset a PCI bus
5897 * @pdev: top level PCI device to reset via slot/bus
5898 *
5899 * Same as above except return -EAGAIN if the bus cannot be locked
5900 */
5901int pci_reset_bus(struct pci_dev *pdev)
5902{
5903	return (!pci_probe_reset_slot(pdev->slot)) ?
5904	    __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
5905}
5906EXPORT_SYMBOL_GPL(pci_reset_bus);
5907
5908/**
5909 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
5910 * @dev: PCI device to query
5911 *
5912 * Returns mmrbc: maximum designed memory read count in bytes or
5913 * appropriate error value.
5914 */
5915int pcix_get_max_mmrbc(struct pci_dev *dev)
5916{
5917	int cap;
5918	u32 stat;
5919
5920	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5921	if (!cap)
5922		return -EINVAL;
5923
5924	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5925		return -EINVAL;
5926
5927	return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
5928}
5929EXPORT_SYMBOL(pcix_get_max_mmrbc);
5930
5931/**
5932 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
5933 * @dev: PCI device to query
5934 *
5935 * Returns mmrbc: maximum memory read count in bytes or appropriate error
5936 * value.
5937 */
5938int pcix_get_mmrbc(struct pci_dev *dev)
5939{
5940	int cap;
5941	u16 cmd;
5942
5943	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5944	if (!cap)
5945		return -EINVAL;
5946
5947	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5948		return -EINVAL;
5949
5950	return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
5951}
5952EXPORT_SYMBOL(pcix_get_mmrbc);
5953
5954/**
5955 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
5956 * @dev: PCI device to query
5957 * @mmrbc: maximum memory read count in bytes
5958 *    valid values are 512, 1024, 2048, 4096
5959 *
5960 * If possible sets maximum memory read byte count, some bridges have errata
5961 * that prevent this.
5962 */
5963int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
5964{
5965	int cap;
5966	u32 stat, v, o;
5967	u16 cmd;
5968
5969	if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
5970		return -EINVAL;
5971
5972	v = ffs(mmrbc) - 10;
5973
5974	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5975	if (!cap)
5976		return -EINVAL;
5977
5978	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5979		return -EINVAL;
5980
5981	if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
5982		return -E2BIG;
5983
5984	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5985		return -EINVAL;
5986
5987	o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
5988	if (o != v) {
5989		if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
5990			return -EIO;
5991
5992		cmd &= ~PCI_X_CMD_MAX_READ;
5993		cmd |= v << 2;
5994		if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
5995			return -EIO;
5996	}
5997	return 0;
5998}
5999EXPORT_SYMBOL(pcix_set_mmrbc);
6000
6001/**
6002 * pcie_get_readrq - get PCI Express read request size
6003 * @dev: PCI device to query
6004 *
6005 * Returns maximum memory read request in bytes or appropriate error value.
6006 */
6007int pcie_get_readrq(struct pci_dev *dev)
6008{
6009	u16 ctl;
6010
6011	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
6012
6013	return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
6014}
6015EXPORT_SYMBOL(pcie_get_readrq);
6016
6017/**
6018 * pcie_set_readrq - set PCI Express maximum memory read request
6019 * @dev: PCI device to query
6020 * @rq: maximum memory read count in bytes
6021 *    valid values are 128, 256, 512, 1024, 2048, 4096
6022 *
6023 * If possible sets maximum memory read request in bytes
6024 */
6025int pcie_set_readrq(struct pci_dev *dev, int rq)
6026{
6027	u16 v;
6028	int ret;
6029
6030	if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
6031		return -EINVAL;
6032
6033	/*
6034	 * If using the "performance" PCIe config, we clamp the read rq
6035	 * size to the max packet size to keep the host bridge from
6036	 * generating requests larger than we can cope with.
6037	 */
6038	if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
6039		int mps = pcie_get_mps(dev);
6040
6041		if (mps < rq)
6042			rq = mps;
6043	}
6044
6045	v = (ffs(rq) - 8) << 12;
6046
6047	ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6048						  PCI_EXP_DEVCTL_READRQ, v);
6049
6050	return pcibios_err_to_errno(ret);
6051}
6052EXPORT_SYMBOL(pcie_set_readrq);
6053
6054/**
6055 * pcie_get_mps - get PCI Express maximum payload size
6056 * @dev: PCI device to query
6057 *
6058 * Returns maximum payload size in bytes
6059 */
6060int pcie_get_mps(struct pci_dev *dev)
6061{
6062	u16 ctl;
6063
6064	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
6065
6066	return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6067}
6068EXPORT_SYMBOL(pcie_get_mps);
6069
6070/**
6071 * pcie_set_mps - set PCI Express maximum payload size
6072 * @dev: PCI device to query
6073 * @mps: maximum payload size in bytes
6074 *    valid values are 128, 256, 512, 1024, 2048, 4096
6075 *
6076 * If possible sets maximum payload size
6077 */
6078int pcie_set_mps(struct pci_dev *dev, int mps)
6079{
6080	u16 v;
6081	int ret;
6082
6083	if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
6084		return -EINVAL;
6085
6086	v = ffs(mps) - 8;
6087	if (v > dev->pcie_mpss)
6088		return -EINVAL;
6089	v <<= 5;
6090
6091	ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6092						  PCI_EXP_DEVCTL_PAYLOAD, v);
6093
6094	return pcibios_err_to_errno(ret);
6095}
6096EXPORT_SYMBOL(pcie_set_mps);
6097
6098/**
6099 * pcie_bandwidth_available - determine minimum link settings of a PCIe
6100 *			      device and its bandwidth limitation
6101 * @dev: PCI device to query
6102 * @limiting_dev: storage for device causing the bandwidth limitation
6103 * @speed: storage for speed of limiting device
6104 * @width: storage for width of limiting device
6105 *
6106 * Walk up the PCI device chain and find the point where the minimum
6107 * bandwidth is available.  Return the bandwidth available there and (if
6108 * limiting_dev, speed, and width pointers are supplied) information about
6109 * that point.  The bandwidth returned is in Mb/s, i.e., megabits/second of
6110 * raw bandwidth.
6111 */
6112u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
6113			     enum pci_bus_speed *speed,
6114			     enum pcie_link_width *width)
6115{
6116	u16 lnksta;
6117	enum pci_bus_speed next_speed;
6118	enum pcie_link_width next_width;
6119	u32 bw, next_bw;
6120
6121	if (speed)
6122		*speed = PCI_SPEED_UNKNOWN;
6123	if (width)
6124		*width = PCIE_LNK_WIDTH_UNKNOWN;
6125
6126	bw = 0;
6127
6128	while (dev) {
6129		pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
6130
6131		next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
6132		next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
6133			PCI_EXP_LNKSTA_NLW_SHIFT;
6134
6135		next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
6136
6137		/* Check if current device limits the total bandwidth */
6138		if (!bw || next_bw <= bw) {
6139			bw = next_bw;
6140
6141			if (limiting_dev)
6142				*limiting_dev = dev;
6143			if (speed)
6144				*speed = next_speed;
6145			if (width)
6146				*width = next_width;
6147		}
6148
6149		dev = pci_upstream_bridge(dev);
6150	}
6151
6152	return bw;
6153}
6154EXPORT_SYMBOL(pcie_bandwidth_available);
6155
6156/**
6157 * pcie_get_speed_cap - query for the PCI device's link speed capability
6158 * @dev: PCI device to query
6159 *
6160 * Query the PCI device speed capability.  Return the maximum link speed
6161 * supported by the device.
6162 */
6163enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
6164{
6165	u32 lnkcap2, lnkcap;
6166
6167	/*
6168	 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18.  The
6169	 * implementation note there recommends using the Supported Link
6170	 * Speeds Vector in Link Capabilities 2 when supported.
6171	 *
6172	 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
6173	 * should use the Supported Link Speeds field in Link Capabilities,
6174	 * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
6175	 */
6176	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
6177
6178	/* PCIe r3.0-compliant */
6179	if (lnkcap2)
6180		return PCIE_LNKCAP2_SLS2SPEED(lnkcap2);
6181
6182	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6183	if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
6184		return PCIE_SPEED_5_0GT;
6185	else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
6186		return PCIE_SPEED_2_5GT;
6187
6188	return PCI_SPEED_UNKNOWN;
6189}
6190EXPORT_SYMBOL(pcie_get_speed_cap);
6191
6192/**
6193 * pcie_get_width_cap - query for the PCI device's link width capability
6194 * @dev: PCI device to query
6195 *
6196 * Query the PCI device width capability.  Return the maximum link width
6197 * supported by the device.
6198 */
6199enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
6200{
6201	u32 lnkcap;
6202
6203	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6204	if (lnkcap)
6205		return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4;
6206
6207	return PCIE_LNK_WIDTH_UNKNOWN;
6208}
6209EXPORT_SYMBOL(pcie_get_width_cap);
6210
6211/**
6212 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
6213 * @dev: PCI device
6214 * @speed: storage for link speed
6215 * @width: storage for link width
6216 *
6217 * Calculate a PCI device's link bandwidth by querying for its link speed
6218 * and width, multiplying them, and applying encoding overhead.  The result
6219 * is in Mb/s, i.e., megabits/second of raw bandwidth.
6220 */
6221u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
6222			   enum pcie_link_width *width)
6223{
6224	*speed = pcie_get_speed_cap(dev);
6225	*width = pcie_get_width_cap(dev);
6226
6227	if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
6228		return 0;
6229
6230	return *width * PCIE_SPEED2MBS_ENC(*speed);
6231}
6232
6233/**
6234 * __pcie_print_link_status - Report the PCI device's link speed and width
6235 * @dev: PCI device to query
6236 * @verbose: Print info even when enough bandwidth is available
6237 *
6238 * If the available bandwidth at the device is less than the device is
6239 * capable of, report the device's maximum possible bandwidth and the
6240 * upstream link that limits its performance.  If @verbose, always print
6241 * the available bandwidth, even if the device isn't constrained.
6242 */
6243void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
6244{
6245	enum pcie_link_width width, width_cap;
6246	enum pci_bus_speed speed, speed_cap;
6247	struct pci_dev *limiting_dev = NULL;
6248	u32 bw_avail, bw_cap;
6249
6250	bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
6251	bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
6252
6253	if (bw_avail >= bw_cap && verbose)
6254		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
6255			 bw_cap / 1000, bw_cap % 1000,
6256			 pci_speed_string(speed_cap), width_cap);
6257	else if (bw_avail < bw_cap)
6258		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
6259			 bw_avail / 1000, bw_avail % 1000,
6260			 pci_speed_string(speed), width,
6261			 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
6262			 bw_cap / 1000, bw_cap % 1000,
6263			 pci_speed_string(speed_cap), width_cap);
6264}
6265
6266/**
6267 * pcie_print_link_status - Report the PCI device's link speed and width
6268 * @dev: PCI device to query
6269 *
6270 * Report the available bandwidth at the device.
6271 */
6272void pcie_print_link_status(struct pci_dev *dev)
6273{
6274	__pcie_print_link_status(dev, true);
6275}
6276EXPORT_SYMBOL(pcie_print_link_status);
6277
6278/**
6279 * pci_select_bars - Make BAR mask from the type of resource
6280 * @dev: the PCI device for which BAR mask is made
6281 * @flags: resource type mask to be selected
6282 *
6283 * This helper routine makes bar mask from the type of resource.
6284 */
6285int pci_select_bars(struct pci_dev *dev, unsigned long flags)
6286{
6287	int i, bars = 0;
6288	for (i = 0; i < PCI_NUM_RESOURCES; i++)
6289		if (pci_resource_flags(dev, i) & flags)
6290			bars |= (1 << i);
6291	return bars;
6292}
6293EXPORT_SYMBOL(pci_select_bars);
6294
6295/* Some architectures require additional programming to enable VGA */
6296static arch_set_vga_state_t arch_set_vga_state;
6297
6298void __init pci_register_set_vga_state(arch_set_vga_state_t func)
6299{
6300	arch_set_vga_state = func;	/* NULL disables */
6301}
6302
6303static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
6304				  unsigned int command_bits, u32 flags)
6305{
6306	if (arch_set_vga_state)
6307		return arch_set_vga_state(dev, decode, command_bits,
6308						flags);
6309	return 0;
6310}
6311
6312/**
6313 * pci_set_vga_state - set VGA decode state on device and parents if requested
6314 * @dev: the PCI device
6315 * @decode: true = enable decoding, false = disable decoding
6316 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
6317 * @flags: traverse ancestors and change bridges
6318 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
6319 */
6320int pci_set_vga_state(struct pci_dev *dev, bool decode,
6321		      unsigned int command_bits, u32 flags)
6322{
6323	struct pci_bus *bus;
6324	struct pci_dev *bridge;
6325	u16 cmd;
6326	int rc;
6327
6328	WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
6329
6330	/* ARCH specific VGA enables */
6331	rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
6332	if (rc)
6333		return rc;
6334
6335	if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
6336		pci_read_config_word(dev, PCI_COMMAND, &cmd);
6337		if (decode)
6338			cmd |= command_bits;
6339		else
6340			cmd &= ~command_bits;
6341		pci_write_config_word(dev, PCI_COMMAND, cmd);
6342	}
6343
6344	if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
6345		return 0;
6346
6347	bus = dev->bus;
6348	while (bus) {
6349		bridge = bus->self;
6350		if (bridge) {
6351			pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
6352					     &cmd);
6353			if (decode)
6354				cmd |= PCI_BRIDGE_CTL_VGA;
6355			else
6356				cmd &= ~PCI_BRIDGE_CTL_VGA;
6357			pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
6358					      cmd);
6359		}
6360		bus = bus->parent;
6361	}
6362	return 0;
6363}
6364
6365#ifdef CONFIG_ACPI
6366bool pci_pr3_present(struct pci_dev *pdev)
6367{
6368	struct acpi_device *adev;
6369
6370	if (acpi_disabled)
6371		return false;
6372
6373	adev = ACPI_COMPANION(&pdev->dev);
6374	if (!adev)
6375		return false;
6376
6377	return adev->power.flags.power_resources &&
6378		acpi_has_method(adev->handle, "_PR3");
6379}
6380EXPORT_SYMBOL_GPL(pci_pr3_present);
6381#endif
6382
6383/**
6384 * pci_add_dma_alias - Add a DMA devfn alias for a device
6385 * @dev: the PCI device for which alias is added
6386 * @devfn_from: alias slot and function
6387 * @nr_devfns: number of subsequent devfns to alias
6388 *
6389 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
6390 * which is used to program permissible bus-devfn source addresses for DMA
6391 * requests in an IOMMU.  These aliases factor into IOMMU group creation
6392 * and are useful for devices generating DMA requests beyond or different
6393 * from their logical bus-devfn.  Examples include device quirks where the
6394 * device simply uses the wrong devfn, as well as non-transparent bridges
6395 * where the alias may be a proxy for devices in another domain.
6396 *
6397 * IOMMU group creation is performed during device discovery or addition,
6398 * prior to any potential DMA mapping and therefore prior to driver probing
6399 * (especially for userspace assigned devices where IOMMU group definition
6400 * cannot be left as a userspace activity).  DMA aliases should therefore
6401 * be configured via quirks, such as the PCI fixup header quirk.
6402 */
6403void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from,
6404		       unsigned int nr_devfns)
6405{
6406	int devfn_to;
6407
6408	nr_devfns = min(nr_devfns, (unsigned int)MAX_NR_DEVFNS - devfn_from);
6409	devfn_to = devfn_from + nr_devfns - 1;
6410
6411	if (!dev->dma_alias_mask)
6412		dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL);
6413	if (!dev->dma_alias_mask) {
6414		pci_warn(dev, "Unable to allocate DMA alias mask\n");
6415		return;
6416	}
6417
6418	bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns);
6419
6420	if (nr_devfns == 1)
6421		pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
6422				PCI_SLOT(devfn_from), PCI_FUNC(devfn_from));
6423	else if (nr_devfns > 1)
6424		pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n",
6425				PCI_SLOT(devfn_from), PCI_FUNC(devfn_from),
6426				PCI_SLOT(devfn_to), PCI_FUNC(devfn_to));
6427}
6428
6429bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
6430{
6431	return (dev1->dma_alias_mask &&
6432		test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
6433	       (dev2->dma_alias_mask &&
6434		test_bit(dev1->devfn, dev2->dma_alias_mask)) ||
6435	       pci_real_dma_dev(dev1) == dev2 ||
6436	       pci_real_dma_dev(dev2) == dev1;
6437}
6438
6439bool pci_device_is_present(struct pci_dev *pdev)
6440{
6441	u32 v;
6442
6443	/* Check PF if pdev is a VF, since VF Vendor/Device IDs are 0xffff */
6444	pdev = pci_physfn(pdev);
6445	if (pci_dev_is_disconnected(pdev))
6446		return false;
6447	return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
6448}
6449EXPORT_SYMBOL_GPL(pci_device_is_present);
6450
6451void pci_ignore_hotplug(struct pci_dev *dev)
6452{
6453	struct pci_dev *bridge = dev->bus->self;
6454
6455	dev->ignore_hotplug = 1;
6456	/* Propagate the "ignore hotplug" setting to the parent bridge. */
6457	if (bridge)
6458		bridge->ignore_hotplug = 1;
6459}
6460EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
6461
6462/**
6463 * pci_real_dma_dev - Get PCI DMA device for PCI device
6464 * @dev: the PCI device that may have a PCI DMA alias
6465 *
6466 * Permits the platform to provide architecture-specific functionality to
6467 * devices needing to alias DMA to another PCI device on another PCI bus. If
6468 * the PCI device is on the same bus, it is recommended to use
6469 * pci_add_dma_alias(). This is the default implementation. Architecture
6470 * implementations can override this.
6471 */
6472struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev)
6473{
6474	return dev;
6475}
6476
6477resource_size_t __weak pcibios_default_alignment(void)
6478{
6479	return 0;
6480}
6481
6482/*
6483 * Arches that don't want to expose struct resource to userland as-is in
6484 * sysfs and /proc can implement their own pci_resource_to_user().
6485 */
6486void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
6487				 const struct resource *rsrc,
6488				 resource_size_t *start, resource_size_t *end)
6489{
6490	*start = rsrc->start;
6491	*end = rsrc->end;
6492}
6493
6494static char *resource_alignment_param;
6495static DEFINE_SPINLOCK(resource_alignment_lock);
6496
6497/**
6498 * pci_specified_resource_alignment - get resource alignment specified by user.
6499 * @dev: the PCI device to get
6500 * @resize: whether or not to change resources' size when reassigning alignment
6501 *
6502 * RETURNS: Resource alignment if it is specified.
6503 *          Zero if it is not specified.
6504 */
6505static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
6506							bool *resize)
6507{
6508	int align_order, count;
6509	resource_size_t align = pcibios_default_alignment();
6510	const char *p;
6511	int ret;
6512
6513	spin_lock(&resource_alignment_lock);
6514	p = resource_alignment_param;
6515	if (!p || !*p)
6516		goto out;
6517	if (pci_has_flag(PCI_PROBE_ONLY)) {
6518		align = 0;
6519		pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
6520		goto out;
6521	}
6522
6523	while (*p) {
6524		count = 0;
6525		if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
6526		    p[count] == '@') {
6527			p += count + 1;
6528			if (align_order > 63) {
6529				pr_err("PCI: Invalid requested alignment (order %d)\n",
6530				       align_order);
6531				align_order = PAGE_SHIFT;
6532			}
6533		} else {
6534			align_order = PAGE_SHIFT;
6535		}
6536
6537		ret = pci_dev_str_match(dev, p, &p);
6538		if (ret == 1) {
6539			*resize = true;
6540			align = 1ULL << align_order;
6541			break;
6542		} else if (ret < 0) {
6543			pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
6544			       p);
6545			break;
6546		}
6547
6548		if (*p != ';' && *p != ',') {
6549			/* End of param or invalid format */
6550			break;
6551		}
6552		p++;
6553	}
6554out:
6555	spin_unlock(&resource_alignment_lock);
6556	return align;
6557}
6558
6559static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
6560					   resource_size_t align, bool resize)
6561{
6562	struct resource *r = &dev->resource[bar];
6563	resource_size_t size;
6564
6565	if (!(r->flags & IORESOURCE_MEM))
6566		return;
6567
6568	if (r->flags & IORESOURCE_PCI_FIXED) {
6569		pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
6570			 bar, r, (unsigned long long)align);
6571		return;
6572	}
6573
6574	size = resource_size(r);
6575	if (size >= align)
6576		return;
6577
6578	/*
6579	 * Increase the alignment of the resource.  There are two ways we
6580	 * can do this:
6581	 *
6582	 * 1) Increase the size of the resource.  BARs are aligned on their
6583	 *    size, so when we reallocate space for this resource, we'll
6584	 *    allocate it with the larger alignment.  This also prevents
6585	 *    assignment of any other BARs inside the alignment region, so
6586	 *    if we're requesting page alignment, this means no other BARs
6587	 *    will share the page.
6588	 *
6589	 *    The disadvantage is that this makes the resource larger than
6590	 *    the hardware BAR, which may break drivers that compute things
6591	 *    based on the resource size, e.g., to find registers at a
6592	 *    fixed offset before the end of the BAR.
6593	 *
6594	 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6595	 *    set r->start to the desired alignment.  By itself this
6596	 *    doesn't prevent other BARs being put inside the alignment
6597	 *    region, but if we realign *every* resource of every device in
6598	 *    the system, none of them will share an alignment region.
6599	 *
6600	 * When the user has requested alignment for only some devices via
6601	 * the "pci=resource_alignment" argument, "resize" is true and we
6602	 * use the first method.  Otherwise we assume we're aligning all
6603	 * devices and we use the second.
6604	 */
6605
6606	pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n",
6607		 bar, r, (unsigned long long)align);
6608
6609	if (resize) {
6610		r->start = 0;
6611		r->end = align - 1;
6612	} else {
6613		r->flags &= ~IORESOURCE_SIZEALIGN;
6614		r->flags |= IORESOURCE_STARTALIGN;
6615		r->start = align;
6616		r->end = r->start + size - 1;
6617	}
6618	r->flags |= IORESOURCE_UNSET;
6619}
6620
6621/*
6622 * This function disables memory decoding and releases memory resources
6623 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6624 * It also rounds up size to specified alignment.
6625 * Later on, the kernel will assign page-aligned memory resource back
6626 * to the device.
6627 */
6628void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6629{
6630	int i;
6631	struct resource *r;
6632	resource_size_t align;
6633	u16 command;
6634	bool resize = false;
6635
6636	/*
6637	 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6638	 * 3.4.1.11.  Their resources are allocated from the space
6639	 * described by the VF BARx register in the PF's SR-IOV capability.
6640	 * We can't influence their alignment here.
6641	 */
6642	if (dev->is_virtfn)
6643		return;
6644
6645	/* check if specified PCI is target device to reassign */
6646	align = pci_specified_resource_alignment(dev, &resize);
6647	if (!align)
6648		return;
6649
6650	if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6651	    (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6652		pci_warn(dev, "Can't reassign resources to host bridge\n");
6653		return;
6654	}
6655
6656	pci_read_config_word(dev, PCI_COMMAND, &command);
6657	command &= ~PCI_COMMAND_MEMORY;
6658	pci_write_config_word(dev, PCI_COMMAND, command);
6659
6660	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6661		pci_request_resource_alignment(dev, i, align, resize);
6662
6663	/*
6664	 * Need to disable bridge's resource window,
6665	 * to enable the kernel to reassign new resource
6666	 * window later on.
6667	 */
6668	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6669		for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6670			r = &dev->resource[i];
6671			if (!(r->flags & IORESOURCE_MEM))
6672				continue;
6673			r->flags |= IORESOURCE_UNSET;
6674			r->end = resource_size(r) - 1;
6675			r->start = 0;
6676		}
6677		pci_disable_bridge_window(dev);
6678	}
6679}
6680
6681static ssize_t resource_alignment_show(struct bus_type *bus, char *buf)
6682{
6683	size_t count = 0;
6684
6685	spin_lock(&resource_alignment_lock);
6686	if (resource_alignment_param)
6687		count = sysfs_emit(buf, "%s\n", resource_alignment_param);
6688	spin_unlock(&resource_alignment_lock);
6689
6690	return count;
6691}
6692
6693static ssize_t resource_alignment_store(struct bus_type *bus,
6694					const char *buf, size_t count)
6695{
6696	char *param, *old, *end;
6697
6698	if (count >= (PAGE_SIZE - 1))
6699		return -EINVAL;
6700
6701	param = kstrndup(buf, count, GFP_KERNEL);
6702	if (!param)
6703		return -ENOMEM;
6704
6705	end = strchr(param, '\n');
6706	if (end)
6707		*end = '\0';
6708
6709	spin_lock(&resource_alignment_lock);
6710	old = resource_alignment_param;
6711	if (strlen(param)) {
6712		resource_alignment_param = param;
6713	} else {
6714		kfree(param);
6715		resource_alignment_param = NULL;
6716	}
6717	spin_unlock(&resource_alignment_lock);
6718
6719	kfree(old);
6720
6721	return count;
6722}
6723
6724static BUS_ATTR_RW(resource_alignment);
6725
6726static int __init pci_resource_alignment_sysfs_init(void)
6727{
6728	return bus_create_file(&pci_bus_type,
6729					&bus_attr_resource_alignment);
6730}
6731late_initcall(pci_resource_alignment_sysfs_init);
6732
6733static void pci_no_domains(void)
6734{
6735#ifdef CONFIG_PCI_DOMAINS
6736	pci_domains_supported = 0;
6737#endif
6738}
6739
6740#ifdef CONFIG_PCI_DOMAINS_GENERIC
6741static DEFINE_IDA(pci_domain_nr_static_ida);
6742static DEFINE_IDA(pci_domain_nr_dynamic_ida);
6743
6744static void of_pci_reserve_static_domain_nr(void)
6745{
6746	struct device_node *np;
6747	int domain_nr;
6748
6749	for_each_node_by_type(np, "pci") {
6750		domain_nr = of_get_pci_domain_nr(np);
6751		if (domain_nr < 0)
6752			continue;
6753		/*
6754		 * Permanently allocate domain_nr in dynamic_ida
6755		 * to prevent it from dynamic allocation.
6756		 */
6757		ida_alloc_range(&pci_domain_nr_dynamic_ida,
6758				domain_nr, domain_nr, GFP_KERNEL);
6759	}
6760}
6761
6762static int of_pci_bus_find_domain_nr(struct device *parent)
6763{
6764	static bool static_domains_reserved = false;
6765	int domain_nr;
6766
6767	/* On the first call scan device tree for static allocations. */
6768	if (!static_domains_reserved) {
6769		of_pci_reserve_static_domain_nr();
6770		static_domains_reserved = true;
6771	}
6772
6773	if (parent) {
6774		/*
6775		 * If domain is in DT, allocate it in static IDA.  This
6776		 * prevents duplicate static allocations in case of errors
6777		 * in DT.
6778		 */
6779		domain_nr = of_get_pci_domain_nr(parent->of_node);
6780		if (domain_nr >= 0)
6781			return ida_alloc_range(&pci_domain_nr_static_ida,
6782					       domain_nr, domain_nr,
6783					       GFP_KERNEL);
6784	}
6785
6786	/*
6787	 * If domain was not specified in DT, choose a free ID from dynamic
6788	 * allocations. All domain numbers from DT are permanently in
6789	 * dynamic allocations to prevent assigning them to other DT nodes
6790	 * without static domain.
6791	 */
6792	return ida_alloc(&pci_domain_nr_dynamic_ida, GFP_KERNEL);
6793}
6794
6795static void of_pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent)
6796{
6797	if (bus->domain_nr < 0)
6798		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6799
6800	/* Release domain from IDA where it was allocated. */
6801	if (of_get_pci_domain_nr(parent->of_node) == bus->domain_nr)
6802		ida_free(&pci_domain_nr_static_ida, bus->domain_nr);
6803	else
6804		ida_free(&pci_domain_nr_dynamic_ida, bus->domain_nr);
6805}
6806
6807int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6808{
6809	return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6810			       acpi_pci_bus_find_domain_nr(bus);
6811}
6812
6813void pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent)
6814{
6815	if (!acpi_disabled)
6816		return;
6817	of_pci_bus_release_domain_nr(bus, parent);
6818}
6819#endif
6820
6821/**
6822 * pci_ext_cfg_avail - can we access extended PCI config space?
6823 *
6824 * Returns 1 if we can access PCI extended config space (offsets
6825 * greater than 0xff). This is the default implementation. Architecture
6826 * implementations can override this.
6827 */
6828int __weak pci_ext_cfg_avail(void)
6829{
6830	return 1;
6831}
6832
6833void __weak pci_fixup_cardbus(struct pci_bus *bus)
6834{
6835}
6836EXPORT_SYMBOL(pci_fixup_cardbus);
6837
6838static int __init pci_setup(char *str)
6839{
6840	while (str) {
6841		char *k = strchr(str, ',');
6842		if (k)
6843			*k++ = 0;
6844		if (*str && (str = pcibios_setup(str)) && *str) {
6845			if (!strcmp(str, "nomsi")) {
6846				pci_no_msi();
6847			} else if (!strncmp(str, "noats", 5)) {
6848				pr_info("PCIe: ATS is disabled\n");
6849				pcie_ats_disabled = true;
6850			} else if (!strcmp(str, "noaer")) {
6851				pci_no_aer();
6852			} else if (!strcmp(str, "earlydump")) {
6853				pci_early_dump = true;
6854			} else if (!strncmp(str, "realloc=", 8)) {
6855				pci_realloc_get_opt(str + 8);
6856			} else if (!strncmp(str, "realloc", 7)) {
6857				pci_realloc_get_opt("on");
6858			} else if (!strcmp(str, "nodomains")) {
6859				pci_no_domains();
6860			} else if (!strncmp(str, "noari", 5)) {
6861				pcie_ari_disabled = true;
6862			} else if (!strncmp(str, "cbiosize=", 9)) {
6863				pci_cardbus_io_size = memparse(str + 9, &str);
6864			} else if (!strncmp(str, "cbmemsize=", 10)) {
6865				pci_cardbus_mem_size = memparse(str + 10, &str);
6866			} else if (!strncmp(str, "resource_alignment=", 19)) {
6867				resource_alignment_param = str + 19;
6868			} else if (!strncmp(str, "ecrc=", 5)) {
6869				pcie_ecrc_get_policy(str + 5);
6870			} else if (!strncmp(str, "hpiosize=", 9)) {
6871				pci_hotplug_io_size = memparse(str + 9, &str);
6872			} else if (!strncmp(str, "hpmmiosize=", 11)) {
6873				pci_hotplug_mmio_size = memparse(str + 11, &str);
6874			} else if (!strncmp(str, "hpmmioprefsize=", 15)) {
6875				pci_hotplug_mmio_pref_size = memparse(str + 15, &str);
6876			} else if (!strncmp(str, "hpmemsize=", 10)) {
6877				pci_hotplug_mmio_size = memparse(str + 10, &str);
6878				pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size;
6879			} else if (!strncmp(str, "hpbussize=", 10)) {
6880				pci_hotplug_bus_size =
6881					simple_strtoul(str + 10, &str, 0);
6882				if (pci_hotplug_bus_size > 0xff)
6883					pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
6884			} else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
6885				pcie_bus_config = PCIE_BUS_TUNE_OFF;
6886			} else if (!strncmp(str, "pcie_bus_safe", 13)) {
6887				pcie_bus_config = PCIE_BUS_SAFE;
6888			} else if (!strncmp(str, "pcie_bus_perf", 13)) {
6889				pcie_bus_config = PCIE_BUS_PERFORMANCE;
6890			} else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
6891				pcie_bus_config = PCIE_BUS_PEER2PEER;
6892			} else if (!strncmp(str, "pcie_scan_all", 13)) {
6893				pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
6894			} else if (!strncmp(str, "disable_acs_redir=", 18)) {
6895				disable_acs_redir_param = str + 18;
6896			} else {
6897				pr_err("PCI: Unknown option `%s'\n", str);
6898			}
6899		}
6900		str = k;
6901	}
6902	return 0;
6903}
6904early_param("pci", pci_setup);
6905
6906/*
6907 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
6908 * in pci_setup(), above, to point to data in the __initdata section which
6909 * will be freed after the init sequence is complete. We can't allocate memory
6910 * in pci_setup() because some architectures do not have any memory allocation
6911 * service available during an early_param() call. So we allocate memory and
6912 * copy the variable here before the init section is freed.
6913 *
6914 */
6915static int __init pci_realloc_setup_params(void)
6916{
6917	resource_alignment_param = kstrdup(resource_alignment_param,
6918					   GFP_KERNEL);
6919	disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
6920
6921	return 0;
6922}
6923pure_initcall(pci_realloc_setup_params);
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * PCI Bus Services, see include/linux/pci.h for further explanation.
   4 *
   5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
   6 * David Mosberger-Tang
   7 *
   8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
   9 */
  10
  11#include <linux/acpi.h>
  12#include <linux/kernel.h>
  13#include <linux/delay.h>
  14#include <linux/dmi.h>
  15#include <linux/init.h>
  16#include <linux/msi.h>
  17#include <linux/of.h>
  18#include <linux/pci.h>
  19#include <linux/pm.h>
  20#include <linux/slab.h>
  21#include <linux/module.h>
  22#include <linux/spinlock.h>
  23#include <linux/string.h>
  24#include <linux/log2.h>
  25#include <linux/logic_pio.h>
  26#include <linux/pm_wakeup.h>
  27#include <linux/interrupt.h>
  28#include <linux/device.h>
  29#include <linux/pm_runtime.h>
  30#include <linux/pci_hotplug.h>
  31#include <linux/vmalloc.h>
  32#include <asm/dma.h>
  33#include <linux/aer.h>
 
  34#include "pci.h"
  35
  36DEFINE_MUTEX(pci_slot_mutex);
  37
  38const char *pci_power_names[] = {
  39	"error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
  40};
  41EXPORT_SYMBOL_GPL(pci_power_names);
  42
 
  43int isa_dma_bridge_buggy;
  44EXPORT_SYMBOL(isa_dma_bridge_buggy);
 
  45
  46int pci_pci_problems;
  47EXPORT_SYMBOL(pci_pci_problems);
  48
  49unsigned int pci_pm_d3hot_delay;
  50
  51static void pci_pme_list_scan(struct work_struct *work);
  52
  53static LIST_HEAD(pci_pme_list);
  54static DEFINE_MUTEX(pci_pme_list_mutex);
  55static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
  56
  57struct pci_pme_device {
  58	struct list_head list;
  59	struct pci_dev *dev;
  60};
  61
  62#define PME_TIMEOUT 1000 /* How long between PME checks */
  63
  64static void pci_dev_d3_sleep(struct pci_dev *dev)
  65{
  66	unsigned int delay = dev->d3hot_delay;
 
  67
  68	if (delay < pci_pm_d3hot_delay)
  69		delay = pci_pm_d3hot_delay;
 
 
 
 
 
  70
  71	if (delay)
  72		msleep(delay);
 
  73}
  74
  75#ifdef CONFIG_PCI_DOMAINS
  76int pci_domains_supported = 1;
  77#endif
  78
  79#define DEFAULT_CARDBUS_IO_SIZE		(256)
  80#define DEFAULT_CARDBUS_MEM_SIZE	(64*1024*1024)
  81/* pci=cbmemsize=nnM,cbiosize=nn can override this */
  82unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
  83unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
  84
  85#define DEFAULT_HOTPLUG_IO_SIZE		(256)
  86#define DEFAULT_HOTPLUG_MMIO_SIZE	(2*1024*1024)
  87#define DEFAULT_HOTPLUG_MMIO_PREF_SIZE	(2*1024*1024)
  88/* hpiosize=nn can override this */
  89unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
  90/*
  91 * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size,
  92 * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size;
  93 * pci=hpmemsize=nnM overrides both
  94 */
  95unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE;
  96unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE;
  97
  98#define DEFAULT_HOTPLUG_BUS_SIZE	1
  99unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
 100
 101
 102/* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */
 103#ifdef CONFIG_PCIE_BUS_TUNE_OFF
 104enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
 105#elif defined CONFIG_PCIE_BUS_SAFE
 106enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE;
 107#elif defined CONFIG_PCIE_BUS_PERFORMANCE
 108enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE;
 109#elif defined CONFIG_PCIE_BUS_PEER2PEER
 110enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER;
 111#else
 112enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
 113#endif
 114
 115/*
 116 * The default CLS is used if arch didn't set CLS explicitly and not
 117 * all pci devices agree on the same value.  Arch can override either
 118 * the dfl or actual value as it sees fit.  Don't forget this is
 119 * measured in 32-bit words, not bytes.
 120 */
 121u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
 122u8 pci_cache_line_size;
 123
 124/*
 125 * If we set up a device for bus mastering, we need to check the latency
 126 * timer as certain BIOSes forget to set it properly.
 127 */
 128unsigned int pcibios_max_latency = 255;
 129
 130/* If set, the PCIe ARI capability will not be used. */
 131static bool pcie_ari_disabled;
 132
 133/* If set, the PCIe ATS capability will not be used. */
 134static bool pcie_ats_disabled;
 135
 136/* If set, the PCI config space of each device is printed during boot. */
 137bool pci_early_dump;
 138
 139bool pci_ats_disabled(void)
 140{
 141	return pcie_ats_disabled;
 142}
 143EXPORT_SYMBOL_GPL(pci_ats_disabled);
 144
 145/* Disable bridge_d3 for all PCIe ports */
 146static bool pci_bridge_d3_disable;
 147/* Force bridge_d3 for all PCIe ports */
 148static bool pci_bridge_d3_force;
 149
 150static int __init pcie_port_pm_setup(char *str)
 151{
 152	if (!strcmp(str, "off"))
 153		pci_bridge_d3_disable = true;
 154	else if (!strcmp(str, "force"))
 155		pci_bridge_d3_force = true;
 156	return 1;
 157}
 158__setup("pcie_port_pm=", pcie_port_pm_setup);
 159
 160/* Time to wait after a reset for device to become responsive */
 161#define PCIE_RESET_READY_POLL_MS 60000
 162
 163/**
 164 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
 165 * @bus: pointer to PCI bus structure to search
 166 *
 167 * Given a PCI bus, returns the highest PCI bus number present in the set
 168 * including the given PCI bus and its list of child PCI buses.
 169 */
 170unsigned char pci_bus_max_busnr(struct pci_bus *bus)
 171{
 172	struct pci_bus *tmp;
 173	unsigned char max, n;
 174
 175	max = bus->busn_res.end;
 176	list_for_each_entry(tmp, &bus->children, node) {
 177		n = pci_bus_max_busnr(tmp);
 178		if (n > max)
 179			max = n;
 180	}
 181	return max;
 182}
 183EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
 184
 185/**
 186 * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS
 187 * @pdev: the PCI device
 188 *
 189 * Returns error bits set in PCI_STATUS and clears them.
 190 */
 191int pci_status_get_and_clear_errors(struct pci_dev *pdev)
 192{
 193	u16 status;
 194	int ret;
 195
 196	ret = pci_read_config_word(pdev, PCI_STATUS, &status);
 197	if (ret != PCIBIOS_SUCCESSFUL)
 198		return -EIO;
 199
 200	status &= PCI_STATUS_ERROR_BITS;
 201	if (status)
 202		pci_write_config_word(pdev, PCI_STATUS, status);
 203
 204	return status;
 205}
 206EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors);
 207
 208#ifdef CONFIG_HAS_IOMEM
 209void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
 
 210{
 211	struct resource *res = &pdev->resource[bar];
 
 
 212
 213	/*
 214	 * Make sure the BAR is actually a memory resource, not an IO resource
 215	 */
 216	if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
 217		pci_warn(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
 218		return NULL;
 219	}
 220	return ioremap(res->start, resource_size(res));
 
 
 
 
 
 
 
 
 
 221}
 222EXPORT_SYMBOL_GPL(pci_ioremap_bar);
 223
 224void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
 225{
 226	/*
 227	 * Make sure the BAR is actually a memory resource, not an IO resource
 228	 */
 229	if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
 230		WARN_ON(1);
 231		return NULL;
 232	}
 233	return ioremap_wc(pci_resource_start(pdev, bar),
 234			  pci_resource_len(pdev, bar));
 235}
 236EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
 237#endif
 238
 239/**
 240 * pci_dev_str_match_path - test if a path string matches a device
 241 * @dev: the PCI device to test
 242 * @path: string to match the device against
 243 * @endptr: pointer to the string after the match
 244 *
 245 * Test if a string (typically from a kernel parameter) formatted as a
 246 * path of device/function addresses matches a PCI device. The string must
 247 * be of the form:
 248 *
 249 *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
 250 *
 251 * A path for a device can be obtained using 'lspci -t'.  Using a path
 252 * is more robust against bus renumbering than using only a single bus,
 253 * device and function address.
 254 *
 255 * Returns 1 if the string matches the device, 0 if it does not and
 256 * a negative error code if it fails to parse the string.
 257 */
 258static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
 259				  const char **endptr)
 260{
 261	int ret;
 262	int seg, bus, slot, func;
 263	char *wpath, *p;
 264	char end;
 265
 266	*endptr = strchrnul(path, ';');
 267
 268	wpath = kmemdup_nul(path, *endptr - path, GFP_ATOMIC);
 269	if (!wpath)
 270		return -ENOMEM;
 271
 272	while (1) {
 273		p = strrchr(wpath, '/');
 274		if (!p)
 275			break;
 276		ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
 277		if (ret != 2) {
 278			ret = -EINVAL;
 279			goto free_and_exit;
 280		}
 281
 282		if (dev->devfn != PCI_DEVFN(slot, func)) {
 283			ret = 0;
 284			goto free_and_exit;
 285		}
 286
 287		/*
 288		 * Note: we don't need to get a reference to the upstream
 289		 * bridge because we hold a reference to the top level
 290		 * device which should hold a reference to the bridge,
 291		 * and so on.
 292		 */
 293		dev = pci_upstream_bridge(dev);
 294		if (!dev) {
 295			ret = 0;
 296			goto free_and_exit;
 297		}
 298
 299		*p = 0;
 300	}
 301
 302	ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
 303		     &func, &end);
 304	if (ret != 4) {
 305		seg = 0;
 306		ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
 307		if (ret != 3) {
 308			ret = -EINVAL;
 309			goto free_and_exit;
 310		}
 311	}
 312
 313	ret = (seg == pci_domain_nr(dev->bus) &&
 314	       bus == dev->bus->number &&
 315	       dev->devfn == PCI_DEVFN(slot, func));
 316
 317free_and_exit:
 318	kfree(wpath);
 319	return ret;
 320}
 321
 322/**
 323 * pci_dev_str_match - test if a string matches a device
 324 * @dev: the PCI device to test
 325 * @p: string to match the device against
 326 * @endptr: pointer to the string after the match
 327 *
 328 * Test if a string (typically from a kernel parameter) matches a specified
 329 * PCI device. The string may be of one of the following formats:
 330 *
 331 *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
 332 *   pci:<vendor>:<device>[:<subvendor>:<subdevice>]
 333 *
 334 * The first format specifies a PCI bus/device/function address which
 335 * may change if new hardware is inserted, if motherboard firmware changes,
 336 * or due to changes caused in kernel parameters. If the domain is
 337 * left unspecified, it is taken to be 0.  In order to be robust against
 338 * bus renumbering issues, a path of PCI device/function numbers may be used
 339 * to address the specific device.  The path for a device can be determined
 340 * through the use of 'lspci -t'.
 341 *
 342 * The second format matches devices using IDs in the configuration
 343 * space which may match multiple devices in the system. A value of 0
 344 * for any field will match all devices. (Note: this differs from
 345 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
 346 * legacy reasons and convenience so users don't have to specify
 347 * FFFFFFFFs on the command line.)
 348 *
 349 * Returns 1 if the string matches the device, 0 if it does not and
 350 * a negative error code if the string cannot be parsed.
 351 */
 352static int pci_dev_str_match(struct pci_dev *dev, const char *p,
 353			     const char **endptr)
 354{
 355	int ret;
 356	int count;
 357	unsigned short vendor, device, subsystem_vendor, subsystem_device;
 358
 359	if (strncmp(p, "pci:", 4) == 0) {
 360		/* PCI vendor/device (subvendor/subdevice) IDs are specified */
 361		p += 4;
 362		ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
 363			     &subsystem_vendor, &subsystem_device, &count);
 364		if (ret != 4) {
 365			ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
 366			if (ret != 2)
 367				return -EINVAL;
 368
 369			subsystem_vendor = 0;
 370			subsystem_device = 0;
 371		}
 372
 373		p += count;
 374
 375		if ((!vendor || vendor == dev->vendor) &&
 376		    (!device || device == dev->device) &&
 377		    (!subsystem_vendor ||
 378			    subsystem_vendor == dev->subsystem_vendor) &&
 379		    (!subsystem_device ||
 380			    subsystem_device == dev->subsystem_device))
 381			goto found;
 382	} else {
 383		/*
 384		 * PCI Bus, Device, Function IDs are specified
 385		 * (optionally, may include a path of devfns following it)
 386		 */
 387		ret = pci_dev_str_match_path(dev, p, &p);
 388		if (ret < 0)
 389			return ret;
 390		else if (ret)
 391			goto found;
 392	}
 393
 394	*endptr = p;
 395	return 0;
 396
 397found:
 398	*endptr = p;
 399	return 1;
 400}
 401
 402static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
 403				  u8 pos, int cap, int *ttl)
 404{
 405	u8 id;
 406	u16 ent;
 407
 408	pci_bus_read_config_byte(bus, devfn, pos, &pos);
 409
 410	while ((*ttl)--) {
 411		if (pos < 0x40)
 412			break;
 413		pos &= ~3;
 414		pci_bus_read_config_word(bus, devfn, pos, &ent);
 415
 416		id = ent & 0xff;
 417		if (id == 0xff)
 418			break;
 419		if (id == cap)
 420			return pos;
 421		pos = (ent >> 8);
 422	}
 423	return 0;
 424}
 425
 426static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
 427			      u8 pos, int cap)
 428{
 429	int ttl = PCI_FIND_CAP_TTL;
 430
 431	return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
 432}
 433
 434u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
 435{
 436	return __pci_find_next_cap(dev->bus, dev->devfn,
 437				   pos + PCI_CAP_LIST_NEXT, cap);
 438}
 439EXPORT_SYMBOL_GPL(pci_find_next_capability);
 440
 441static u8 __pci_bus_find_cap_start(struct pci_bus *bus,
 442				    unsigned int devfn, u8 hdr_type)
 443{
 444	u16 status;
 445
 446	pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
 447	if (!(status & PCI_STATUS_CAP_LIST))
 448		return 0;
 449
 450	switch (hdr_type) {
 451	case PCI_HEADER_TYPE_NORMAL:
 452	case PCI_HEADER_TYPE_BRIDGE:
 453		return PCI_CAPABILITY_LIST;
 454	case PCI_HEADER_TYPE_CARDBUS:
 455		return PCI_CB_CAPABILITY_LIST;
 456	}
 457
 458	return 0;
 459}
 460
 461/**
 462 * pci_find_capability - query for devices' capabilities
 463 * @dev: PCI device to query
 464 * @cap: capability code
 465 *
 466 * Tell if a device supports a given PCI capability.
 467 * Returns the address of the requested capability structure within the
 468 * device's PCI configuration space or 0 in case the device does not
 469 * support it.  Possible values for @cap include:
 470 *
 471 *  %PCI_CAP_ID_PM           Power Management
 472 *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
 473 *  %PCI_CAP_ID_VPD          Vital Product Data
 474 *  %PCI_CAP_ID_SLOTID       Slot Identification
 475 *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
 476 *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
 477 *  %PCI_CAP_ID_PCIX         PCI-X
 478 *  %PCI_CAP_ID_EXP          PCI Express
 479 */
 480u8 pci_find_capability(struct pci_dev *dev, int cap)
 481{
 482	u8 pos;
 483
 484	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
 485	if (pos)
 486		pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
 487
 488	return pos;
 489}
 490EXPORT_SYMBOL(pci_find_capability);
 491
 492/**
 493 * pci_bus_find_capability - query for devices' capabilities
 494 * @bus: the PCI bus to query
 495 * @devfn: PCI device to query
 496 * @cap: capability code
 497 *
 498 * Like pci_find_capability() but works for PCI devices that do not have a
 499 * pci_dev structure set up yet.
 500 *
 501 * Returns the address of the requested capability structure within the
 502 * device's PCI configuration space or 0 in case the device does not
 503 * support it.
 504 */
 505u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
 506{
 507	u8 hdr_type, pos;
 508
 509	pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
 510
 511	pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
 512	if (pos)
 513		pos = __pci_find_next_cap(bus, devfn, pos, cap);
 514
 515	return pos;
 516}
 517EXPORT_SYMBOL(pci_bus_find_capability);
 518
 519/**
 520 * pci_find_next_ext_capability - Find an extended capability
 521 * @dev: PCI device to query
 522 * @start: address at which to start looking (0 to start at beginning of list)
 523 * @cap: capability code
 524 *
 525 * Returns the address of the next matching extended capability structure
 526 * within the device's PCI configuration space or 0 if the device does
 527 * not support it.  Some capabilities can occur several times, e.g., the
 528 * vendor-specific capability, and this provides a way to find them all.
 529 */
 530u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap)
 531{
 532	u32 header;
 533	int ttl;
 534	u16 pos = PCI_CFG_SPACE_SIZE;
 535
 536	/* minimum 8 bytes per capability */
 537	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
 538
 539	if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
 540		return 0;
 541
 542	if (start)
 543		pos = start;
 544
 545	if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
 546		return 0;
 547
 548	/*
 549	 * If we have no capabilities, this is indicated by cap ID,
 550	 * cap version and next pointer all being 0.
 551	 */
 552	if (header == 0)
 553		return 0;
 554
 555	while (ttl-- > 0) {
 556		if (PCI_EXT_CAP_ID(header) == cap && pos != start)
 557			return pos;
 558
 559		pos = PCI_EXT_CAP_NEXT(header);
 560		if (pos < PCI_CFG_SPACE_SIZE)
 561			break;
 562
 563		if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
 564			break;
 565	}
 566
 567	return 0;
 568}
 569EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
 570
 571/**
 572 * pci_find_ext_capability - Find an extended capability
 573 * @dev: PCI device to query
 574 * @cap: capability code
 575 *
 576 * Returns the address of the requested extended capability structure
 577 * within the device's PCI configuration space or 0 if the device does
 578 * not support it.  Possible values for @cap include:
 579 *
 580 *  %PCI_EXT_CAP_ID_ERR		Advanced Error Reporting
 581 *  %PCI_EXT_CAP_ID_VC		Virtual Channel
 582 *  %PCI_EXT_CAP_ID_DSN		Device Serial Number
 583 *  %PCI_EXT_CAP_ID_PWR		Power Budgeting
 584 */
 585u16 pci_find_ext_capability(struct pci_dev *dev, int cap)
 586{
 587	return pci_find_next_ext_capability(dev, 0, cap);
 588}
 589EXPORT_SYMBOL_GPL(pci_find_ext_capability);
 590
 591/**
 592 * pci_get_dsn - Read and return the 8-byte Device Serial Number
 593 * @dev: PCI device to query
 594 *
 595 * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial
 596 * Number.
 597 *
 598 * Returns the DSN, or zero if the capability does not exist.
 599 */
 600u64 pci_get_dsn(struct pci_dev *dev)
 601{
 602	u32 dword;
 603	u64 dsn;
 604	int pos;
 605
 606	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN);
 607	if (!pos)
 608		return 0;
 609
 610	/*
 611	 * The Device Serial Number is two dwords offset 4 bytes from the
 612	 * capability position. The specification says that the first dword is
 613	 * the lower half, and the second dword is the upper half.
 614	 */
 615	pos += 4;
 616	pci_read_config_dword(dev, pos, &dword);
 617	dsn = (u64)dword;
 618	pci_read_config_dword(dev, pos + 4, &dword);
 619	dsn |= ((u64)dword) << 32;
 620
 621	return dsn;
 622}
 623EXPORT_SYMBOL_GPL(pci_get_dsn);
 624
 625static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap)
 626{
 627	int rc, ttl = PCI_FIND_CAP_TTL;
 628	u8 cap, mask;
 629
 630	if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
 631		mask = HT_3BIT_CAP_MASK;
 632	else
 633		mask = HT_5BIT_CAP_MASK;
 634
 635	pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
 636				      PCI_CAP_ID_HT, &ttl);
 637	while (pos) {
 638		rc = pci_read_config_byte(dev, pos + 3, &cap);
 639		if (rc != PCIBIOS_SUCCESSFUL)
 640			return 0;
 641
 642		if ((cap & mask) == ht_cap)
 643			return pos;
 644
 645		pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
 646					      pos + PCI_CAP_LIST_NEXT,
 647					      PCI_CAP_ID_HT, &ttl);
 648	}
 649
 650	return 0;
 651}
 652
 653/**
 654 * pci_find_next_ht_capability - query a device's HyperTransport capabilities
 655 * @dev: PCI device to query
 656 * @pos: Position from which to continue searching
 657 * @ht_cap: HyperTransport capability code
 658 *
 659 * To be used in conjunction with pci_find_ht_capability() to search for
 660 * all capabilities matching @ht_cap. @pos should always be a value returned
 661 * from pci_find_ht_capability().
 662 *
 663 * NB. To be 100% safe against broken PCI devices, the caller should take
 664 * steps to avoid an infinite loop.
 665 */
 666u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap)
 667{
 668	return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
 669}
 670EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
 671
 672/**
 673 * pci_find_ht_capability - query a device's HyperTransport capabilities
 674 * @dev: PCI device to query
 675 * @ht_cap: HyperTransport capability code
 676 *
 677 * Tell if a device supports a given HyperTransport capability.
 678 * Returns an address within the device's PCI configuration space
 679 * or 0 in case the device does not support the request capability.
 680 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
 681 * which has a HyperTransport capability matching @ht_cap.
 682 */
 683u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
 684{
 685	u8 pos;
 686
 687	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
 688	if (pos)
 689		pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
 690
 691	return pos;
 692}
 693EXPORT_SYMBOL_GPL(pci_find_ht_capability);
 694
 695/**
 696 * pci_find_vsec_capability - Find a vendor-specific extended capability
 697 * @dev: PCI device to query
 698 * @vendor: Vendor ID for which capability is defined
 699 * @cap: Vendor-specific capability ID
 700 *
 701 * If @dev has Vendor ID @vendor, search for a VSEC capability with
 702 * VSEC ID @cap. If found, return the capability offset in
 703 * config space; otherwise return 0.
 704 */
 705u16 pci_find_vsec_capability(struct pci_dev *dev, u16 vendor, int cap)
 706{
 707	u16 vsec = 0;
 708	u32 header;
 709
 710	if (vendor != dev->vendor)
 711		return 0;
 712
 713	while ((vsec = pci_find_next_ext_capability(dev, vsec,
 714						     PCI_EXT_CAP_ID_VNDR))) {
 715		if (pci_read_config_dword(dev, vsec + PCI_VNDR_HEADER,
 716					  &header) == PCIBIOS_SUCCESSFUL &&
 717		    PCI_VNDR_HEADER_ID(header) == cap)
 718			return vsec;
 719	}
 720
 721	return 0;
 722}
 723EXPORT_SYMBOL_GPL(pci_find_vsec_capability);
 724
 725/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 726 * pci_find_parent_resource - return resource region of parent bus of given
 727 *			      region
 728 * @dev: PCI device structure contains resources to be searched
 729 * @res: child resource record for which parent is sought
 730 *
 731 * For given resource region of given device, return the resource region of
 732 * parent bus the given region is contained in.
 733 */
 734struct resource *pci_find_parent_resource(const struct pci_dev *dev,
 735					  struct resource *res)
 736{
 737	const struct pci_bus *bus = dev->bus;
 738	struct resource *r;
 739	int i;
 740
 741	pci_bus_for_each_resource(bus, r, i) {
 742		if (!r)
 743			continue;
 744		if (resource_contains(r, res)) {
 745
 746			/*
 747			 * If the window is prefetchable but the BAR is
 748			 * not, the allocator made a mistake.
 749			 */
 750			if (r->flags & IORESOURCE_PREFETCH &&
 751			    !(res->flags & IORESOURCE_PREFETCH))
 752				return NULL;
 753
 754			/*
 755			 * If we're below a transparent bridge, there may
 756			 * be both a positively-decoded aperture and a
 757			 * subtractively-decoded region that contain the BAR.
 758			 * We want the positively-decoded one, so this depends
 759			 * on pci_bus_for_each_resource() giving us those
 760			 * first.
 761			 */
 762			return r;
 763		}
 764	}
 765	return NULL;
 766}
 767EXPORT_SYMBOL(pci_find_parent_resource);
 768
 769/**
 770 * pci_find_resource - Return matching PCI device resource
 771 * @dev: PCI device to query
 772 * @res: Resource to look for
 773 *
 774 * Goes over standard PCI resources (BARs) and checks if the given resource
 775 * is partially or fully contained in any of them. In that case the
 776 * matching resource is returned, %NULL otherwise.
 777 */
 778struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
 779{
 780	int i;
 781
 782	for (i = 0; i < PCI_STD_NUM_BARS; i++) {
 783		struct resource *r = &dev->resource[i];
 784
 785		if (r->start && resource_contains(r, res))
 786			return r;
 787	}
 788
 789	return NULL;
 790}
 791EXPORT_SYMBOL(pci_find_resource);
 792
 793/**
 794 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
 795 * @dev: the PCI device to operate on
 796 * @pos: config space offset of status word
 797 * @mask: mask of bit(s) to care about in status word
 798 *
 799 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
 800 */
 801int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
 802{
 803	int i;
 804
 805	/* Wait for Transaction Pending bit clean */
 806	for (i = 0; i < 4; i++) {
 807		u16 status;
 808		if (i)
 809			msleep((1 << (i - 1)) * 100);
 810
 811		pci_read_config_word(dev, pos, &status);
 812		if (!(status & mask))
 813			return 1;
 814	}
 815
 816	return 0;
 817}
 818
 819static int pci_acs_enable;
 820
 821/**
 822 * pci_request_acs - ask for ACS to be enabled if supported
 823 */
 824void pci_request_acs(void)
 825{
 826	pci_acs_enable = 1;
 827}
 828
 829static const char *disable_acs_redir_param;
 830
 831/**
 832 * pci_disable_acs_redir - disable ACS redirect capabilities
 833 * @dev: the PCI device
 834 *
 835 * For only devices specified in the disable_acs_redir parameter.
 836 */
 837static void pci_disable_acs_redir(struct pci_dev *dev)
 838{
 839	int ret = 0;
 840	const char *p;
 841	int pos;
 842	u16 ctrl;
 843
 844	if (!disable_acs_redir_param)
 845		return;
 846
 847	p = disable_acs_redir_param;
 848	while (*p) {
 849		ret = pci_dev_str_match(dev, p, &p);
 850		if (ret < 0) {
 851			pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
 852				     disable_acs_redir_param);
 853
 854			break;
 855		} else if (ret == 1) {
 856			/* Found a match */
 857			break;
 858		}
 859
 860		if (*p != ';' && *p != ',') {
 861			/* End of param or invalid format */
 862			break;
 863		}
 864		p++;
 865	}
 866
 867	if (ret != 1)
 868		return;
 869
 870	if (!pci_dev_specific_disable_acs_redir(dev))
 871		return;
 872
 873	pos = dev->acs_cap;
 874	if (!pos) {
 875		pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
 876		return;
 877	}
 878
 879	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
 880
 881	/* P2P Request & Completion Redirect */
 882	ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC);
 883
 884	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
 885
 886	pci_info(dev, "disabled ACS redirect\n");
 887}
 888
 889/**
 890 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
 891 * @dev: the PCI device
 892 */
 893static void pci_std_enable_acs(struct pci_dev *dev)
 894{
 895	int pos;
 896	u16 cap;
 897	u16 ctrl;
 898
 899	pos = dev->acs_cap;
 900	if (!pos)
 901		return;
 902
 903	pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
 904	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
 905
 906	/* Source Validation */
 907	ctrl |= (cap & PCI_ACS_SV);
 908
 909	/* P2P Request Redirect */
 910	ctrl |= (cap & PCI_ACS_RR);
 911
 912	/* P2P Completion Redirect */
 913	ctrl |= (cap & PCI_ACS_CR);
 914
 915	/* Upstream Forwarding */
 916	ctrl |= (cap & PCI_ACS_UF);
 917
 918	/* Enable Translation Blocking for external devices */
 919	if (dev->external_facing || dev->untrusted)
 920		ctrl |= (cap & PCI_ACS_TB);
 921
 922	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
 923}
 924
 925/**
 926 * pci_enable_acs - enable ACS if hardware support it
 927 * @dev: the PCI device
 928 */
 929static void pci_enable_acs(struct pci_dev *dev)
 930{
 931	if (!pci_acs_enable)
 932		goto disable_acs_redir;
 933
 934	if (!pci_dev_specific_enable_acs(dev))
 935		goto disable_acs_redir;
 936
 937	pci_std_enable_acs(dev);
 938
 939disable_acs_redir:
 940	/*
 941	 * Note: pci_disable_acs_redir() must be called even if ACS was not
 942	 * enabled by the kernel because it may have been enabled by
 943	 * platform firmware.  So if we are told to disable it, we should
 944	 * always disable it after setting the kernel's default
 945	 * preferences.
 946	 */
 947	pci_disable_acs_redir(dev);
 948}
 949
 950/**
 951 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
 952 * @dev: PCI device to have its BARs restored
 953 *
 954 * Restore the BAR values for a given device, so as to make it
 955 * accessible by its driver.
 956 */
 957static void pci_restore_bars(struct pci_dev *dev)
 958{
 959	int i;
 960
 961	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
 962		pci_update_resource(dev, i);
 963}
 964
 965static const struct pci_platform_pm_ops *pci_platform_pm;
 966
 967int pci_set_platform_pm(const struct pci_platform_pm_ops *ops)
 968{
 969	if (!ops->is_manageable || !ops->set_state  || !ops->get_state ||
 970	    !ops->choose_state  || !ops->set_wakeup || !ops->need_resume)
 971		return -EINVAL;
 972	pci_platform_pm = ops;
 973	return 0;
 974}
 975
 976static inline bool platform_pci_power_manageable(struct pci_dev *dev)
 977{
 978	return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
 979}
 980
 981static inline int platform_pci_set_power_state(struct pci_dev *dev,
 982					       pci_power_t t)
 983{
 984	return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
 
 
 
 985}
 986
 987static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
 988{
 989	return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN;
 
 
 
 990}
 991
 992static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
 993{
 994	if (pci_platform_pm && pci_platform_pm->refresh_state)
 995		pci_platform_pm->refresh_state(dev);
 996}
 997
 998static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
 999{
1000	return pci_platform_pm ?
1001			pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
 
 
1002}
1003
1004static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
1005{
1006	return pci_platform_pm ?
1007			pci_platform_pm->set_wakeup(dev, enable) : -ENODEV;
 
 
1008}
1009
1010static inline bool platform_pci_need_resume(struct pci_dev *dev)
1011{
1012	return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
 
 
 
1013}
1014
1015static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
1016{
1017	if (pci_platform_pm && pci_platform_pm->bridge_d3)
1018		return pci_platform_pm->bridge_d3(dev);
1019	return false;
1020}
1021
1022/**
1023 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
1024 *			     given PCI device
1025 * @dev: PCI device to handle.
1026 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1027 *
1028 * RETURN VALUE:
1029 * -EINVAL if the requested state is invalid.
1030 * -EIO if device does not support PCI PM or its PM capabilities register has a
1031 * wrong version, or device doesn't support the requested state.
1032 * 0 if device already is in the requested state.
1033 * 0 if device's power state has been successfully changed.
1034 */
1035static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
1036{
1037	u16 pmcsr;
1038	bool need_restore = false;
1039
1040	/* Check if we're already there */
1041	if (dev->current_state == state)
1042		return 0;
1043
1044	if (!dev->pm_cap)
1045		return -EIO;
1046
1047	if (state < PCI_D0 || state > PCI_D3hot)
1048		return -EINVAL;
1049
1050	/*
1051	 * Validate transition: We can enter D0 from any state, but if
1052	 * we're already in a low-power state, we can only go deeper.  E.g.,
1053	 * we can go from D1 to D3, but we can't go directly from D3 to D1;
1054	 * we'd have to go from D3 to D0, then to D1.
1055	 */
1056	if (state != PCI_D0 && dev->current_state <= PCI_D3cold
1057	    && dev->current_state > state) {
1058		pci_err(dev, "invalid power transition (from %s to %s)\n",
1059			pci_power_name(dev->current_state),
1060			pci_power_name(state));
1061		return -EINVAL;
1062	}
1063
1064	/* Check if this device supports the desired state */
1065	if ((state == PCI_D1 && !dev->d1_support)
1066	   || (state == PCI_D2 && !dev->d2_support))
1067		return -EIO;
1068
1069	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1070	if (pmcsr == (u16) ~0) {
1071		pci_err(dev, "can't change power state from %s to %s (config space inaccessible)\n",
1072			pci_power_name(dev->current_state),
1073			pci_power_name(state));
1074		return -EIO;
1075	}
1076
1077	/*
1078	 * If we're (effectively) in D3, force entire word to 0.
1079	 * This doesn't affect PME_Status, disables PME_En, and
1080	 * sets PowerState to 0.
1081	 */
1082	switch (dev->current_state) {
1083	case PCI_D0:
1084	case PCI_D1:
1085	case PCI_D2:
1086		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
1087		pmcsr |= state;
1088		break;
1089	case PCI_D3hot:
1090	case PCI_D3cold:
1091	case PCI_UNKNOWN: /* Boot-up */
1092		if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
1093		 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
1094			need_restore = true;
1095		fallthrough;	/* force to D0 */
1096	default:
1097		pmcsr = 0;
1098		break;
1099	}
1100
1101	/* Enter specified state */
1102	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1103
1104	/*
1105	 * Mandatory power management transition delays; see PCI PM 1.1
1106	 * 5.6.1 table 18
1107	 */
1108	if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
1109		pci_dev_d3_sleep(dev);
1110	else if (state == PCI_D2 || dev->current_state == PCI_D2)
1111		udelay(PCI_PM_D2_DELAY);
1112
1113	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1114	dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1115	if (dev->current_state != state)
1116		pci_info_ratelimited(dev, "refused to change power state from %s to %s\n",
1117			 pci_power_name(dev->current_state),
1118			 pci_power_name(state));
1119
1120	/*
1121	 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
1122	 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
1123	 * from D3hot to D0 _may_ perform an internal reset, thereby
1124	 * going to "D0 Uninitialized" rather than "D0 Initialized".
1125	 * For example, at least some versions of the 3c905B and the
1126	 * 3c556B exhibit this behaviour.
1127	 *
1128	 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
1129	 * devices in a D3hot state at boot.  Consequently, we need to
1130	 * restore at least the BARs so that the device will be
1131	 * accessible to its driver.
1132	 */
1133	if (need_restore)
1134		pci_restore_bars(dev);
1135
1136	if (dev->bus->self)
1137		pcie_aspm_pm_state_change(dev->bus->self);
1138
1139	return 0;
1140}
1141
1142/**
1143 * pci_update_current_state - Read power state of given device and cache it
1144 * @dev: PCI device to handle.
1145 * @state: State to cache in case the device doesn't have the PM capability
1146 *
1147 * The power state is read from the PMCSR register, which however is
1148 * inaccessible in D3cold.  The platform firmware is therefore queried first
1149 * to detect accessibility of the register.  In case the platform firmware
1150 * reports an incorrect state or the device isn't power manageable by the
1151 * platform at all, we try to detect D3cold by testing accessibility of the
1152 * vendor ID in config space.
1153 */
1154void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
1155{
1156	if (platform_pci_get_power_state(dev) == PCI_D3cold ||
1157	    !pci_device_is_present(dev)) {
1158		dev->current_state = PCI_D3cold;
1159	} else if (dev->pm_cap) {
1160		u16 pmcsr;
1161
1162		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1163		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
 
 
 
 
1164	} else {
1165		dev->current_state = state;
1166	}
1167}
1168
1169/**
1170 * pci_refresh_power_state - Refresh the given device's power state data
1171 * @dev: Target PCI device.
1172 *
1173 * Ask the platform to refresh the devices power state information and invoke
1174 * pci_update_current_state() to update its current PCI power state.
1175 */
1176void pci_refresh_power_state(struct pci_dev *dev)
1177{
1178	if (platform_pci_power_manageable(dev))
1179		platform_pci_refresh_power_state(dev);
1180
1181	pci_update_current_state(dev, dev->current_state);
1182}
1183
1184/**
1185 * pci_platform_power_transition - Use platform to change device power state
1186 * @dev: PCI device to handle.
1187 * @state: State to put the device into.
1188 */
1189int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
1190{
1191	int error;
1192
1193	if (platform_pci_power_manageable(dev)) {
1194		error = platform_pci_set_power_state(dev, state);
1195		if (!error)
1196			pci_update_current_state(dev, state);
1197	} else
1198		error = -ENODEV;
1199
1200	if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
1201		dev->current_state = PCI_D0;
1202
1203	return error;
1204}
1205EXPORT_SYMBOL_GPL(pci_platform_power_transition);
1206
1207static int pci_resume_one(struct pci_dev *pci_dev, void *ign)
1208{
1209	pm_request_resume(&pci_dev->dev);
1210	return 0;
1211}
1212
1213/**
1214 * pci_resume_bus - Walk given bus and runtime resume devices on it
1215 * @bus: Top bus of the subtree to walk.
1216 */
1217void pci_resume_bus(struct pci_bus *bus)
1218{
1219	if (bus)
1220		pci_walk_bus(bus, pci_resume_one, NULL);
1221}
1222
1223static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
1224{
1225	int delay = 1;
1226	u32 id;
1227
1228	/*
1229	 * After reset, the device should not silently discard config
1230	 * requests, but it may still indicate that it needs more time by
1231	 * responding to them with CRS completions.  The Root Port will
1232	 * generally synthesize ~0 data to complete the read (except when
1233	 * CRS SV is enabled and the read was for the Vendor ID; in that
1234	 * case it synthesizes 0x0001 data).
1235	 *
1236	 * Wait for the device to return a non-CRS completion.  Read the
1237	 * Command register instead of Vendor ID so we don't have to
1238	 * contend with the CRS SV value.
1239	 */
1240	pci_read_config_dword(dev, PCI_COMMAND, &id);
1241	while (id == ~0) {
1242		if (delay > timeout) {
1243			pci_warn(dev, "not ready %dms after %s; giving up\n",
1244				 delay - 1, reset_type);
1245			return -ENOTTY;
1246		}
1247
1248		if (delay > 1000)
1249			pci_info(dev, "not ready %dms after %s; waiting\n",
1250				 delay - 1, reset_type);
1251
1252		msleep(delay);
1253		delay *= 2;
1254		pci_read_config_dword(dev, PCI_COMMAND, &id);
1255	}
1256
1257	if (delay > 1000)
1258		pci_info(dev, "ready %dms after %s\n", delay - 1,
1259			 reset_type);
1260
1261	return 0;
1262}
1263
1264/**
1265 * pci_power_up - Put the given device into D0
1266 * @dev: PCI device to power up
 
 
 
1267 */
1268int pci_power_up(struct pci_dev *dev)
1269{
1270	pci_platform_power_transition(dev, PCI_D0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1271
1272	/*
1273	 * Mandatory power management transition delays are handled in
1274	 * pci_pm_resume_noirq() and pci_pm_runtime_resume() of the
1275	 * corresponding bridge.
1276	 */
1277	if (dev->runtime_d3cold) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1278		/*
1279		 * When powering on a bridge from D3cold, the whole hierarchy
1280		 * may be powered on into D0uninitialized state, resume them to
1281		 * give them a chance to suspend again
 
 
 
 
 
 
 
 
1282		 */
1283		pci_resume_bus(dev->subordinate);
1284	}
1285
1286	return pci_raw_set_power_state(dev, PCI_D0);
1287}
1288
1289/**
1290 * __pci_dev_set_current_state - Set current state of a PCI device
1291 * @dev: Device to handle
1292 * @data: pointer to state to be set
1293 */
1294static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1295{
1296	pci_power_t state = *(pci_power_t *)data;
1297
1298	dev->current_state = state;
1299	return 0;
1300}
1301
1302/**
1303 * pci_bus_set_current_state - Walk given bus and set current state of devices
1304 * @bus: Top bus of the subtree to walk.
1305 * @state: state to be set
1306 */
1307void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1308{
1309	if (bus)
1310		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1311}
1312
1313/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1314 * pci_set_power_state - Set the power state of a PCI device
1315 * @dev: PCI device to handle.
1316 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1317 *
1318 * Transition a device to a new power state, using the platform firmware and/or
1319 * the device's PCI PM registers.
1320 *
1321 * RETURN VALUE:
1322 * -EINVAL if the requested state is invalid.
1323 * -EIO if device does not support PCI PM or its PM capabilities register has a
1324 * wrong version, or device doesn't support the requested state.
1325 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1326 * 0 if device already is in the requested state.
1327 * 0 if the transition is to D3 but D3 is not supported.
1328 * 0 if device's power state has been successfully changed.
1329 */
1330int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1331{
1332	int error;
1333
1334	/* Bound the state we're entering */
1335	if (state > PCI_D3cold)
1336		state = PCI_D3cold;
1337	else if (state < PCI_D0)
1338		state = PCI_D0;
1339	else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1340
1341		/*
1342		 * If the device or the parent bridge do not support PCI
1343		 * PM, ignore the request if we're doing anything other
1344		 * than putting it into D0 (which would only happen on
1345		 * boot).
1346		 */
1347		return 0;
1348
1349	/* Check if we're already there */
1350	if (dev->current_state == state)
1351		return 0;
1352
1353	if (state == PCI_D0)
1354		return pci_power_up(dev);
1355
1356	/*
1357	 * This device is quirked not to be put into D3, so don't put it in
1358	 * D3
1359	 */
1360	if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1361		return 0;
1362
1363	/*
1364	 * To put device in D3cold, we put device into D3hot in native
1365	 * way, then put device into D3cold with platform ops
1366	 */
1367	error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
1368					PCI_D3hot : state);
1369
1370	if (pci_platform_power_transition(dev, state))
1371		return error;
1372
1373	/* Powering off a bridge may power off the whole hierarchy */
1374	if (state == PCI_D3cold)
1375		pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
 
 
 
 
 
 
1376
1377	return 0;
1378}
1379EXPORT_SYMBOL(pci_set_power_state);
1380
1381/**
1382 * pci_choose_state - Choose the power state of a PCI device
1383 * @dev: PCI device to be suspended
1384 * @state: target sleep state for the whole system. This is the value
1385 *	   that is passed to suspend() function.
1386 *
1387 * Returns PCI power state suitable for given device and given system
1388 * message.
1389 */
1390pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
1391{
1392	pci_power_t ret;
1393
1394	if (!dev->pm_cap)
1395		return PCI_D0;
1396
1397	ret = platform_pci_choose_state(dev);
1398	if (ret != PCI_POWER_ERROR)
1399		return ret;
1400
1401	switch (state.event) {
1402	case PM_EVENT_ON:
1403		return PCI_D0;
1404	case PM_EVENT_FREEZE:
1405	case PM_EVENT_PRETHAW:
1406		/* REVISIT both freeze and pre-thaw "should" use D0 */
1407	case PM_EVENT_SUSPEND:
1408	case PM_EVENT_HIBERNATE:
1409		return PCI_D3hot;
1410	default:
1411		pci_info(dev, "unrecognized suspend event %d\n",
1412			 state.event);
1413		BUG();
1414	}
1415	return PCI_D0;
1416}
1417EXPORT_SYMBOL(pci_choose_state);
1418
1419#define PCI_EXP_SAVE_REGS	7
1420
1421static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1422						       u16 cap, bool extended)
1423{
1424	struct pci_cap_saved_state *tmp;
1425
1426	hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1427		if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1428			return tmp;
1429	}
1430	return NULL;
1431}
1432
1433struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1434{
1435	return _pci_find_saved_cap(dev, cap, false);
1436}
1437
1438struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1439{
1440	return _pci_find_saved_cap(dev, cap, true);
1441}
1442
1443static int pci_save_pcie_state(struct pci_dev *dev)
1444{
1445	int i = 0;
1446	struct pci_cap_saved_state *save_state;
1447	u16 *cap;
1448
1449	if (!pci_is_pcie(dev))
1450		return 0;
1451
1452	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1453	if (!save_state) {
1454		pci_err(dev, "buffer not found in %s\n", __func__);
1455		return -ENOMEM;
1456	}
1457
1458	cap = (u16 *)&save_state->cap.data[0];
1459	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1460	pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1461	pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1462	pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
1463	pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1464	pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1465	pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1466
1467	return 0;
1468}
1469
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1470static void pci_restore_pcie_state(struct pci_dev *dev)
1471{
1472	int i = 0;
1473	struct pci_cap_saved_state *save_state;
1474	u16 *cap;
1475
1476	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1477	if (!save_state)
1478		return;
1479
 
 
 
 
 
 
 
1480	cap = (u16 *)&save_state->cap.data[0];
1481	pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1482	pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1483	pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1484	pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1485	pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1486	pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1487	pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1488}
1489
1490static int pci_save_pcix_state(struct pci_dev *dev)
1491{
1492	int pos;
1493	struct pci_cap_saved_state *save_state;
1494
1495	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1496	if (!pos)
1497		return 0;
1498
1499	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1500	if (!save_state) {
1501		pci_err(dev, "buffer not found in %s\n", __func__);
1502		return -ENOMEM;
1503	}
1504
1505	pci_read_config_word(dev, pos + PCI_X_CMD,
1506			     (u16 *)save_state->cap.data);
1507
1508	return 0;
1509}
1510
1511static void pci_restore_pcix_state(struct pci_dev *dev)
1512{
1513	int i = 0, pos;
1514	struct pci_cap_saved_state *save_state;
1515	u16 *cap;
1516
1517	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1518	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1519	if (!save_state || !pos)
1520		return;
1521	cap = (u16 *)&save_state->cap.data[0];
1522
1523	pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1524}
1525
1526static void pci_save_ltr_state(struct pci_dev *dev)
1527{
1528	int ltr;
1529	struct pci_cap_saved_state *save_state;
1530	u16 *cap;
1531
1532	if (!pci_is_pcie(dev))
1533		return;
1534
1535	ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1536	if (!ltr)
1537		return;
1538
1539	save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1540	if (!save_state) {
1541		pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n");
1542		return;
1543	}
1544
1545	cap = (u16 *)&save_state->cap.data[0];
1546	pci_read_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap++);
1547	pci_read_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, cap++);
1548}
1549
1550static void pci_restore_ltr_state(struct pci_dev *dev)
1551{
1552	struct pci_cap_saved_state *save_state;
1553	int ltr;
1554	u16 *cap;
1555
1556	save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1557	ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1558	if (!save_state || !ltr)
1559		return;
1560
1561	cap = (u16 *)&save_state->cap.data[0];
1562	pci_write_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap++);
1563	pci_write_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, *cap++);
1564}
1565
1566/**
1567 * pci_save_state - save the PCI configuration space of a device before
1568 *		    suspending
1569 * @dev: PCI device that we're dealing with
1570 */
1571int pci_save_state(struct pci_dev *dev)
1572{
1573	int i;
1574	/* XXX: 100% dword access ok here? */
1575	for (i = 0; i < 16; i++) {
1576		pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1577		pci_dbg(dev, "saving config space at offset %#x (reading %#x)\n",
1578			i * 4, dev->saved_config_space[i]);
1579	}
1580	dev->state_saved = true;
1581
1582	i = pci_save_pcie_state(dev);
1583	if (i != 0)
1584		return i;
1585
1586	i = pci_save_pcix_state(dev);
1587	if (i != 0)
1588		return i;
1589
1590	pci_save_ltr_state(dev);
1591	pci_save_dpc_state(dev);
1592	pci_save_aer_state(dev);
1593	pci_save_ptm_state(dev);
1594	return pci_save_vc_state(dev);
1595}
1596EXPORT_SYMBOL(pci_save_state);
1597
1598static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1599				     u32 saved_val, int retry, bool force)
1600{
1601	u32 val;
1602
1603	pci_read_config_dword(pdev, offset, &val);
1604	if (!force && val == saved_val)
1605		return;
1606
1607	for (;;) {
1608		pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1609			offset, val, saved_val);
1610		pci_write_config_dword(pdev, offset, saved_val);
1611		if (retry-- <= 0)
1612			return;
1613
1614		pci_read_config_dword(pdev, offset, &val);
1615		if (val == saved_val)
1616			return;
1617
1618		mdelay(1);
1619	}
1620}
1621
1622static void pci_restore_config_space_range(struct pci_dev *pdev,
1623					   int start, int end, int retry,
1624					   bool force)
1625{
1626	int index;
1627
1628	for (index = end; index >= start; index--)
1629		pci_restore_config_dword(pdev, 4 * index,
1630					 pdev->saved_config_space[index],
1631					 retry, force);
1632}
1633
1634static void pci_restore_config_space(struct pci_dev *pdev)
1635{
1636	if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1637		pci_restore_config_space_range(pdev, 10, 15, 0, false);
1638		/* Restore BARs before the command register. */
1639		pci_restore_config_space_range(pdev, 4, 9, 10, false);
1640		pci_restore_config_space_range(pdev, 0, 3, 0, false);
1641	} else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1642		pci_restore_config_space_range(pdev, 12, 15, 0, false);
1643
1644		/*
1645		 * Force rewriting of prefetch registers to avoid S3 resume
1646		 * issues on Intel PCI bridges that occur when these
1647		 * registers are not explicitly written.
1648		 */
1649		pci_restore_config_space_range(pdev, 9, 11, 0, true);
1650		pci_restore_config_space_range(pdev, 0, 8, 0, false);
1651	} else {
1652		pci_restore_config_space_range(pdev, 0, 15, 0, false);
1653	}
1654}
1655
1656static void pci_restore_rebar_state(struct pci_dev *pdev)
1657{
1658	unsigned int pos, nbars, i;
1659	u32 ctrl;
1660
1661	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1662	if (!pos)
1663		return;
1664
1665	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1666	nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
1667		    PCI_REBAR_CTRL_NBAR_SHIFT;
1668
1669	for (i = 0; i < nbars; i++, pos += 8) {
1670		struct resource *res;
1671		int bar_idx, size;
1672
1673		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1674		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1675		res = pdev->resource + bar_idx;
1676		size = pci_rebar_bytes_to_size(resource_size(res));
1677		ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1678		ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
1679		pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1680	}
1681}
1682
1683/**
1684 * pci_restore_state - Restore the saved state of a PCI device
1685 * @dev: PCI device that we're dealing with
1686 */
1687void pci_restore_state(struct pci_dev *dev)
1688{
1689	if (!dev->state_saved)
1690		return;
1691
1692	/*
1693	 * Restore max latencies (in the LTR capability) before enabling
1694	 * LTR itself (in the PCIe capability).
1695	 */
1696	pci_restore_ltr_state(dev);
1697
1698	pci_restore_pcie_state(dev);
1699	pci_restore_pasid_state(dev);
1700	pci_restore_pri_state(dev);
1701	pci_restore_ats_state(dev);
1702	pci_restore_vc_state(dev);
1703	pci_restore_rebar_state(dev);
1704	pci_restore_dpc_state(dev);
1705	pci_restore_ptm_state(dev);
1706
1707	pci_aer_clear_status(dev);
1708	pci_restore_aer_state(dev);
1709
1710	pci_restore_config_space(dev);
1711
1712	pci_restore_pcix_state(dev);
1713	pci_restore_msi_state(dev);
1714
1715	/* Restore ACS and IOV configuration state */
1716	pci_enable_acs(dev);
1717	pci_restore_iov_state(dev);
1718
1719	dev->state_saved = false;
1720}
1721EXPORT_SYMBOL(pci_restore_state);
1722
1723struct pci_saved_state {
1724	u32 config_space[16];
1725	struct pci_cap_saved_data cap[];
1726};
1727
1728/**
1729 * pci_store_saved_state - Allocate and return an opaque struct containing
1730 *			   the device saved state.
1731 * @dev: PCI device that we're dealing with
1732 *
1733 * Return NULL if no state or error.
1734 */
1735struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1736{
1737	struct pci_saved_state *state;
1738	struct pci_cap_saved_state *tmp;
1739	struct pci_cap_saved_data *cap;
1740	size_t size;
1741
1742	if (!dev->state_saved)
1743		return NULL;
1744
1745	size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1746
1747	hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1748		size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1749
1750	state = kzalloc(size, GFP_KERNEL);
1751	if (!state)
1752		return NULL;
1753
1754	memcpy(state->config_space, dev->saved_config_space,
1755	       sizeof(state->config_space));
1756
1757	cap = state->cap;
1758	hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1759		size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1760		memcpy(cap, &tmp->cap, len);
1761		cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1762	}
1763	/* Empty cap_save terminates list */
1764
1765	return state;
1766}
1767EXPORT_SYMBOL_GPL(pci_store_saved_state);
1768
1769/**
1770 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1771 * @dev: PCI device that we're dealing with
1772 * @state: Saved state returned from pci_store_saved_state()
1773 */
1774int pci_load_saved_state(struct pci_dev *dev,
1775			 struct pci_saved_state *state)
1776{
1777	struct pci_cap_saved_data *cap;
1778
1779	dev->state_saved = false;
1780
1781	if (!state)
1782		return 0;
1783
1784	memcpy(dev->saved_config_space, state->config_space,
1785	       sizeof(state->config_space));
1786
1787	cap = state->cap;
1788	while (cap->size) {
1789		struct pci_cap_saved_state *tmp;
1790
1791		tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1792		if (!tmp || tmp->cap.size != cap->size)
1793			return -EINVAL;
1794
1795		memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1796		cap = (struct pci_cap_saved_data *)((u8 *)cap +
1797		       sizeof(struct pci_cap_saved_data) + cap->size);
1798	}
1799
1800	dev->state_saved = true;
1801	return 0;
1802}
1803EXPORT_SYMBOL_GPL(pci_load_saved_state);
1804
1805/**
1806 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1807 *				   and free the memory allocated for it.
1808 * @dev: PCI device that we're dealing with
1809 * @state: Pointer to saved state returned from pci_store_saved_state()
1810 */
1811int pci_load_and_free_saved_state(struct pci_dev *dev,
1812				  struct pci_saved_state **state)
1813{
1814	int ret = pci_load_saved_state(dev, *state);
1815	kfree(*state);
1816	*state = NULL;
1817	return ret;
1818}
1819EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1820
1821int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1822{
1823	return pci_enable_resources(dev, bars);
1824}
1825
1826static int do_pci_enable_device(struct pci_dev *dev, int bars)
1827{
1828	int err;
1829	struct pci_dev *bridge;
1830	u16 cmd;
1831	u8 pin;
1832
1833	err = pci_set_power_state(dev, PCI_D0);
1834	if (err < 0 && err != -EIO)
1835		return err;
1836
1837	bridge = pci_upstream_bridge(dev);
1838	if (bridge)
1839		pcie_aspm_powersave_config_link(bridge);
1840
1841	err = pcibios_enable_device(dev, bars);
1842	if (err < 0)
1843		return err;
1844	pci_fixup_device(pci_fixup_enable, dev);
1845
1846	if (dev->msi_enabled || dev->msix_enabled)
1847		return 0;
1848
1849	pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1850	if (pin) {
1851		pci_read_config_word(dev, PCI_COMMAND, &cmd);
1852		if (cmd & PCI_COMMAND_INTX_DISABLE)
1853			pci_write_config_word(dev, PCI_COMMAND,
1854					      cmd & ~PCI_COMMAND_INTX_DISABLE);
1855	}
1856
1857	return 0;
1858}
1859
1860/**
1861 * pci_reenable_device - Resume abandoned device
1862 * @dev: PCI device to be resumed
1863 *
1864 * NOTE: This function is a backend of pci_default_resume() and is not supposed
1865 * to be called by normal code, write proper resume handler and use it instead.
1866 */
1867int pci_reenable_device(struct pci_dev *dev)
1868{
1869	if (pci_is_enabled(dev))
1870		return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1871	return 0;
1872}
1873EXPORT_SYMBOL(pci_reenable_device);
1874
1875static void pci_enable_bridge(struct pci_dev *dev)
1876{
1877	struct pci_dev *bridge;
1878	int retval;
1879
1880	bridge = pci_upstream_bridge(dev);
1881	if (bridge)
1882		pci_enable_bridge(bridge);
1883
1884	if (pci_is_enabled(dev)) {
1885		if (!dev->is_busmaster)
1886			pci_set_master(dev);
1887		return;
1888	}
1889
1890	retval = pci_enable_device(dev);
1891	if (retval)
1892		pci_err(dev, "Error enabling bridge (%d), continuing\n",
1893			retval);
1894	pci_set_master(dev);
1895}
1896
1897static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1898{
1899	struct pci_dev *bridge;
1900	int err;
1901	int i, bars = 0;
1902
1903	/*
1904	 * Power state could be unknown at this point, either due to a fresh
1905	 * boot or a device removal call.  So get the current power state
1906	 * so that things like MSI message writing will behave as expected
1907	 * (e.g. if the device really is in D0 at enable time).
1908	 */
1909	pci_update_current_state(dev, dev->current_state);
1910
1911	if (atomic_inc_return(&dev->enable_cnt) > 1)
1912		return 0;		/* already enabled */
1913
1914	bridge = pci_upstream_bridge(dev);
1915	if (bridge)
1916		pci_enable_bridge(bridge);
1917
1918	/* only skip sriov related */
1919	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1920		if (dev->resource[i].flags & flags)
1921			bars |= (1 << i);
1922	for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1923		if (dev->resource[i].flags & flags)
1924			bars |= (1 << i);
1925
1926	err = do_pci_enable_device(dev, bars);
1927	if (err < 0)
1928		atomic_dec(&dev->enable_cnt);
1929	return err;
1930}
1931
1932/**
1933 * pci_enable_device_io - Initialize a device for use with IO space
1934 * @dev: PCI device to be initialized
1935 *
1936 * Initialize device before it's used by a driver. Ask low-level code
1937 * to enable I/O resources. Wake up the device if it was suspended.
1938 * Beware, this function can fail.
1939 */
1940int pci_enable_device_io(struct pci_dev *dev)
1941{
1942	return pci_enable_device_flags(dev, IORESOURCE_IO);
1943}
1944EXPORT_SYMBOL(pci_enable_device_io);
1945
1946/**
1947 * pci_enable_device_mem - Initialize a device for use with Memory space
1948 * @dev: PCI device to be initialized
1949 *
1950 * Initialize device before it's used by a driver. Ask low-level code
1951 * to enable Memory resources. Wake up the device if it was suspended.
1952 * Beware, this function can fail.
1953 */
1954int pci_enable_device_mem(struct pci_dev *dev)
1955{
1956	return pci_enable_device_flags(dev, IORESOURCE_MEM);
1957}
1958EXPORT_SYMBOL(pci_enable_device_mem);
1959
1960/**
1961 * pci_enable_device - Initialize device before it's used by a driver.
1962 * @dev: PCI device to be initialized
1963 *
1964 * Initialize device before it's used by a driver. Ask low-level code
1965 * to enable I/O and memory. Wake up the device if it was suspended.
1966 * Beware, this function can fail.
1967 *
1968 * Note we don't actually enable the device many times if we call
1969 * this function repeatedly (we just increment the count).
1970 */
1971int pci_enable_device(struct pci_dev *dev)
1972{
1973	return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1974}
1975EXPORT_SYMBOL(pci_enable_device);
1976
1977/*
1978 * Managed PCI resources.  This manages device on/off, INTx/MSI/MSI-X
1979 * on/off and BAR regions.  pci_dev itself records MSI/MSI-X status, so
1980 * there's no need to track it separately.  pci_devres is initialized
1981 * when a device is enabled using managed PCI device enable interface.
1982 */
1983struct pci_devres {
1984	unsigned int enabled:1;
1985	unsigned int pinned:1;
1986	unsigned int orig_intx:1;
1987	unsigned int restore_intx:1;
1988	unsigned int mwi:1;
1989	u32 region_mask;
1990};
1991
1992static void pcim_release(struct device *gendev, void *res)
1993{
1994	struct pci_dev *dev = to_pci_dev(gendev);
1995	struct pci_devres *this = res;
1996	int i;
1997
1998	if (dev->msi_enabled)
1999		pci_disable_msi(dev);
2000	if (dev->msix_enabled)
2001		pci_disable_msix(dev);
2002
2003	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
2004		if (this->region_mask & (1 << i))
2005			pci_release_region(dev, i);
2006
2007	if (this->mwi)
2008		pci_clear_mwi(dev);
2009
2010	if (this->restore_intx)
2011		pci_intx(dev, this->orig_intx);
2012
2013	if (this->enabled && !this->pinned)
2014		pci_disable_device(dev);
2015}
2016
2017static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
2018{
2019	struct pci_devres *dr, *new_dr;
2020
2021	dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
2022	if (dr)
2023		return dr;
2024
2025	new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
2026	if (!new_dr)
2027		return NULL;
2028	return devres_get(&pdev->dev, new_dr, NULL, NULL);
2029}
2030
2031static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
2032{
2033	if (pci_is_managed(pdev))
2034		return devres_find(&pdev->dev, pcim_release, NULL, NULL);
2035	return NULL;
2036}
2037
2038/**
2039 * pcim_enable_device - Managed pci_enable_device()
2040 * @pdev: PCI device to be initialized
2041 *
2042 * Managed pci_enable_device().
2043 */
2044int pcim_enable_device(struct pci_dev *pdev)
2045{
2046	struct pci_devres *dr;
2047	int rc;
2048
2049	dr = get_pci_dr(pdev);
2050	if (unlikely(!dr))
2051		return -ENOMEM;
2052	if (dr->enabled)
2053		return 0;
2054
2055	rc = pci_enable_device(pdev);
2056	if (!rc) {
2057		pdev->is_managed = 1;
2058		dr->enabled = 1;
2059	}
2060	return rc;
2061}
2062EXPORT_SYMBOL(pcim_enable_device);
2063
2064/**
2065 * pcim_pin_device - Pin managed PCI device
2066 * @pdev: PCI device to pin
2067 *
2068 * Pin managed PCI device @pdev.  Pinned device won't be disabled on
2069 * driver detach.  @pdev must have been enabled with
2070 * pcim_enable_device().
2071 */
2072void pcim_pin_device(struct pci_dev *pdev)
2073{
2074	struct pci_devres *dr;
2075
2076	dr = find_pci_dr(pdev);
2077	WARN_ON(!dr || !dr->enabled);
2078	if (dr)
2079		dr->pinned = 1;
2080}
2081EXPORT_SYMBOL(pcim_pin_device);
2082
2083/*
2084 * pcibios_add_device - provide arch specific hooks when adding device dev
2085 * @dev: the PCI device being added
2086 *
2087 * Permits the platform to provide architecture specific functionality when
2088 * devices are added. This is the default implementation. Architecture
2089 * implementations can override this.
2090 */
2091int __weak pcibios_add_device(struct pci_dev *dev)
2092{
2093	return 0;
2094}
2095
2096/**
2097 * pcibios_release_device - provide arch specific hooks when releasing
2098 *			    device dev
2099 * @dev: the PCI device being released
2100 *
2101 * Permits the platform to provide architecture specific functionality when
2102 * devices are released. This is the default implementation. Architecture
2103 * implementations can override this.
2104 */
2105void __weak pcibios_release_device(struct pci_dev *dev) {}
2106
2107/**
2108 * pcibios_disable_device - disable arch specific PCI resources for device dev
2109 * @dev: the PCI device to disable
2110 *
2111 * Disables architecture specific PCI resources for the device. This
2112 * is the default implementation. Architecture implementations can
2113 * override this.
2114 */
2115void __weak pcibios_disable_device(struct pci_dev *dev) {}
2116
2117/**
2118 * pcibios_penalize_isa_irq - penalize an ISA IRQ
2119 * @irq: ISA IRQ to penalize
2120 * @active: IRQ active or not
2121 *
2122 * Permits the platform to provide architecture-specific functionality when
2123 * penalizing ISA IRQs. This is the default implementation. Architecture
2124 * implementations can override this.
2125 */
2126void __weak pcibios_penalize_isa_irq(int irq, int active) {}
2127
2128static void do_pci_disable_device(struct pci_dev *dev)
2129{
2130	u16 pci_command;
2131
2132	pci_read_config_word(dev, PCI_COMMAND, &pci_command);
2133	if (pci_command & PCI_COMMAND_MASTER) {
2134		pci_command &= ~PCI_COMMAND_MASTER;
2135		pci_write_config_word(dev, PCI_COMMAND, pci_command);
2136	}
2137
2138	pcibios_disable_device(dev);
2139}
2140
2141/**
2142 * pci_disable_enabled_device - Disable device without updating enable_cnt
2143 * @dev: PCI device to disable
2144 *
2145 * NOTE: This function is a backend of PCI power management routines and is
2146 * not supposed to be called drivers.
2147 */
2148void pci_disable_enabled_device(struct pci_dev *dev)
2149{
2150	if (pci_is_enabled(dev))
2151		do_pci_disable_device(dev);
2152}
2153
2154/**
2155 * pci_disable_device - Disable PCI device after use
2156 * @dev: PCI device to be disabled
2157 *
2158 * Signal to the system that the PCI device is not in use by the system
2159 * anymore.  This only involves disabling PCI bus-mastering, if active.
2160 *
2161 * Note we don't actually disable the device until all callers of
2162 * pci_enable_device() have called pci_disable_device().
2163 */
2164void pci_disable_device(struct pci_dev *dev)
2165{
2166	struct pci_devres *dr;
2167
2168	dr = find_pci_dr(dev);
2169	if (dr)
2170		dr->enabled = 0;
2171
2172	dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
2173		      "disabling already-disabled device");
2174
2175	if (atomic_dec_return(&dev->enable_cnt) != 0)
2176		return;
2177
2178	do_pci_disable_device(dev);
2179
2180	dev->is_busmaster = 0;
2181}
2182EXPORT_SYMBOL(pci_disable_device);
2183
2184/**
2185 * pcibios_set_pcie_reset_state - set reset state for device dev
2186 * @dev: the PCIe device reset
2187 * @state: Reset state to enter into
2188 *
2189 * Set the PCIe reset state for the device. This is the default
2190 * implementation. Architecture implementations can override this.
2191 */
2192int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
2193					enum pcie_reset_state state)
2194{
2195	return -EINVAL;
2196}
2197
2198/**
2199 * pci_set_pcie_reset_state - set reset state for device dev
2200 * @dev: the PCIe device reset
2201 * @state: Reset state to enter into
2202 *
2203 * Sets the PCI reset state for the device.
2204 */
2205int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
2206{
2207	return pcibios_set_pcie_reset_state(dev, state);
2208}
2209EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2210
 
2211void pcie_clear_device_status(struct pci_dev *dev)
2212{
2213	u16 sta;
2214
2215	pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta);
2216	pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta);
2217}
 
2218
2219/**
2220 * pcie_clear_root_pme_status - Clear root port PME interrupt status.
2221 * @dev: PCIe root port or event collector.
2222 */
2223void pcie_clear_root_pme_status(struct pci_dev *dev)
2224{
2225	pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
2226}
2227
2228/**
2229 * pci_check_pme_status - Check if given device has generated PME.
2230 * @dev: Device to check.
2231 *
2232 * Check the PME status of the device and if set, clear it and clear PME enable
2233 * (if set).  Return 'true' if PME status and PME enable were both set or
2234 * 'false' otherwise.
2235 */
2236bool pci_check_pme_status(struct pci_dev *dev)
2237{
2238	int pmcsr_pos;
2239	u16 pmcsr;
2240	bool ret = false;
2241
2242	if (!dev->pm_cap)
2243		return false;
2244
2245	pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2246	pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2247	if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2248		return false;
2249
2250	/* Clear PME status. */
2251	pmcsr |= PCI_PM_CTRL_PME_STATUS;
2252	if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2253		/* Disable PME to avoid interrupt flood. */
2254		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2255		ret = true;
2256	}
2257
2258	pci_write_config_word(dev, pmcsr_pos, pmcsr);
2259
2260	return ret;
2261}
2262
2263/**
2264 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2265 * @dev: Device to handle.
2266 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2267 *
2268 * Check if @dev has generated PME and queue a resume request for it in that
2269 * case.
2270 */
2271static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2272{
2273	if (pme_poll_reset && dev->pme_poll)
2274		dev->pme_poll = false;
2275
2276	if (pci_check_pme_status(dev)) {
2277		pci_wakeup_event(dev);
2278		pm_request_resume(&dev->dev);
2279	}
2280	return 0;
2281}
2282
2283/**
2284 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2285 * @bus: Top bus of the subtree to walk.
2286 */
2287void pci_pme_wakeup_bus(struct pci_bus *bus)
2288{
2289	if (bus)
2290		pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2291}
2292
2293
2294/**
2295 * pci_pme_capable - check the capability of PCI device to generate PME#
2296 * @dev: PCI device to handle.
2297 * @state: PCI state from which device will issue PME#.
2298 */
2299bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2300{
2301	if (!dev->pm_cap)
2302		return false;
2303
2304	return !!(dev->pme_support & (1 << state));
2305}
2306EXPORT_SYMBOL(pci_pme_capable);
2307
2308static void pci_pme_list_scan(struct work_struct *work)
2309{
2310	struct pci_pme_device *pme_dev, *n;
2311
2312	mutex_lock(&pci_pme_list_mutex);
2313	list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2314		if (pme_dev->dev->pme_poll) {
2315			struct pci_dev *bridge;
2316
2317			bridge = pme_dev->dev->bus->self;
2318			/*
2319			 * If bridge is in low power state, the
2320			 * configuration space of subordinate devices
2321			 * may be not accessible
2322			 */
2323			if (bridge && bridge->current_state != PCI_D0)
2324				continue;
2325			/*
2326			 * If the device is in D3cold it should not be
2327			 * polled either.
2328			 */
2329			if (pme_dev->dev->current_state == PCI_D3cold)
2330				continue;
2331
2332			pci_pme_wakeup(pme_dev->dev, NULL);
2333		} else {
2334			list_del(&pme_dev->list);
2335			kfree(pme_dev);
2336		}
2337	}
2338	if (!list_empty(&pci_pme_list))
2339		queue_delayed_work(system_freezable_wq, &pci_pme_work,
2340				   msecs_to_jiffies(PME_TIMEOUT));
2341	mutex_unlock(&pci_pme_list_mutex);
2342}
2343
2344static void __pci_pme_active(struct pci_dev *dev, bool enable)
2345{
2346	u16 pmcsr;
2347
2348	if (!dev->pme_support)
2349		return;
2350
2351	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2352	/* Clear PME_Status by writing 1 to it and enable PME# */
2353	pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2354	if (!enable)
2355		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2356
2357	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2358}
2359
2360/**
2361 * pci_pme_restore - Restore PME configuration after config space restore.
2362 * @dev: PCI device to update.
2363 */
2364void pci_pme_restore(struct pci_dev *dev)
2365{
2366	u16 pmcsr;
2367
2368	if (!dev->pme_support)
2369		return;
2370
2371	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2372	if (dev->wakeup_prepared) {
2373		pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2374		pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2375	} else {
2376		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2377		pmcsr |= PCI_PM_CTRL_PME_STATUS;
2378	}
2379	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2380}
2381
2382/**
2383 * pci_pme_active - enable or disable PCI device's PME# function
2384 * @dev: PCI device to handle.
2385 * @enable: 'true' to enable PME# generation; 'false' to disable it.
2386 *
2387 * The caller must verify that the device is capable of generating PME# before
2388 * calling this function with @enable equal to 'true'.
2389 */
2390void pci_pme_active(struct pci_dev *dev, bool enable)
2391{
2392	__pci_pme_active(dev, enable);
2393
2394	/*
2395	 * PCI (as opposed to PCIe) PME requires that the device have
2396	 * its PME# line hooked up correctly. Not all hardware vendors
2397	 * do this, so the PME never gets delivered and the device
2398	 * remains asleep. The easiest way around this is to
2399	 * periodically walk the list of suspended devices and check
2400	 * whether any have their PME flag set. The assumption is that
2401	 * we'll wake up often enough anyway that this won't be a huge
2402	 * hit, and the power savings from the devices will still be a
2403	 * win.
2404	 *
2405	 * Although PCIe uses in-band PME message instead of PME# line
2406	 * to report PME, PME does not work for some PCIe devices in
2407	 * reality.  For example, there are devices that set their PME
2408	 * status bits, but don't really bother to send a PME message;
2409	 * there are PCI Express Root Ports that don't bother to
2410	 * trigger interrupts when they receive PME messages from the
2411	 * devices below.  So PME poll is used for PCIe devices too.
2412	 */
2413
2414	if (dev->pme_poll) {
2415		struct pci_pme_device *pme_dev;
2416		if (enable) {
2417			pme_dev = kmalloc(sizeof(struct pci_pme_device),
2418					  GFP_KERNEL);
2419			if (!pme_dev) {
2420				pci_warn(dev, "can't enable PME#\n");
2421				return;
2422			}
2423			pme_dev->dev = dev;
2424			mutex_lock(&pci_pme_list_mutex);
2425			list_add(&pme_dev->list, &pci_pme_list);
2426			if (list_is_singular(&pci_pme_list))
2427				queue_delayed_work(system_freezable_wq,
2428						   &pci_pme_work,
2429						   msecs_to_jiffies(PME_TIMEOUT));
2430			mutex_unlock(&pci_pme_list_mutex);
2431		} else {
2432			mutex_lock(&pci_pme_list_mutex);
2433			list_for_each_entry(pme_dev, &pci_pme_list, list) {
2434				if (pme_dev->dev == dev) {
2435					list_del(&pme_dev->list);
2436					kfree(pme_dev);
2437					break;
2438				}
2439			}
2440			mutex_unlock(&pci_pme_list_mutex);
2441		}
2442	}
2443
2444	pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2445}
2446EXPORT_SYMBOL(pci_pme_active);
2447
2448/**
2449 * __pci_enable_wake - enable PCI device as wakeup event source
2450 * @dev: PCI device affected
2451 * @state: PCI state from which device will issue wakeup events
2452 * @enable: True to enable event generation; false to disable
2453 *
2454 * This enables the device as a wakeup event source, or disables it.
2455 * When such events involves platform-specific hooks, those hooks are
2456 * called automatically by this routine.
2457 *
2458 * Devices with legacy power management (no standard PCI PM capabilities)
2459 * always require such platform hooks.
2460 *
2461 * RETURN VALUE:
2462 * 0 is returned on success
2463 * -EINVAL is returned if device is not supposed to wake up the system
2464 * Error code depending on the platform is returned if both the platform and
2465 * the native mechanism fail to enable the generation of wake-up events
2466 */
2467static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2468{
2469	int ret = 0;
2470
2471	/*
2472	 * Bridges that are not power-manageable directly only signal
2473	 * wakeup on behalf of subordinate devices which is set up
2474	 * elsewhere, so skip them. However, bridges that are
2475	 * power-manageable may signal wakeup for themselves (for example,
2476	 * on a hotplug event) and they need to be covered here.
2477	 */
2478	if (!pci_power_manageable(dev))
2479		return 0;
2480
2481	/* Don't do the same thing twice in a row for one device. */
2482	if (!!enable == !!dev->wakeup_prepared)
2483		return 0;
2484
2485	/*
2486	 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2487	 * Anderson we should be doing PME# wake enable followed by ACPI wake
2488	 * enable.  To disable wake-up we call the platform first, for symmetry.
2489	 */
2490
2491	if (enable) {
2492		int error;
2493
2494		/*
2495		 * Enable PME signaling if the device can signal PME from
2496		 * D3cold regardless of whether or not it can signal PME from
2497		 * the current target state, because that will allow it to
2498		 * signal PME when the hierarchy above it goes into D3cold and
2499		 * the device itself ends up in D3cold as a result of that.
2500		 */
2501		if (pci_pme_capable(dev, state) || pci_pme_capable(dev, PCI_D3cold))
2502			pci_pme_active(dev, true);
2503		else
2504			ret = 1;
2505		error = platform_pci_set_wakeup(dev, true);
2506		if (ret)
2507			ret = error;
2508		if (!ret)
2509			dev->wakeup_prepared = true;
2510	} else {
2511		platform_pci_set_wakeup(dev, false);
2512		pci_pme_active(dev, false);
2513		dev->wakeup_prepared = false;
2514	}
2515
2516	return ret;
2517}
2518
2519/**
2520 * pci_enable_wake - change wakeup settings for a PCI device
2521 * @pci_dev: Target device
2522 * @state: PCI state from which device will issue wakeup events
2523 * @enable: Whether or not to enable event generation
2524 *
2525 * If @enable is set, check device_may_wakeup() for the device before calling
2526 * __pci_enable_wake() for it.
2527 */
2528int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2529{
2530	if (enable && !device_may_wakeup(&pci_dev->dev))
2531		return -EINVAL;
2532
2533	return __pci_enable_wake(pci_dev, state, enable);
2534}
2535EXPORT_SYMBOL(pci_enable_wake);
2536
2537/**
2538 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2539 * @dev: PCI device to prepare
2540 * @enable: True to enable wake-up event generation; false to disable
2541 *
2542 * Many drivers want the device to wake up the system from D3_hot or D3_cold
2543 * and this function allows them to set that up cleanly - pci_enable_wake()
2544 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2545 * ordering constraints.
2546 *
2547 * This function only returns error code if the device is not allowed to wake
2548 * up the system from sleep or it is not capable of generating PME# from both
2549 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2550 */
2551int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2552{
2553	return pci_pme_capable(dev, PCI_D3cold) ?
2554			pci_enable_wake(dev, PCI_D3cold, enable) :
2555			pci_enable_wake(dev, PCI_D3hot, enable);
2556}
2557EXPORT_SYMBOL(pci_wake_from_d3);
2558
2559/**
2560 * pci_target_state - find an appropriate low power state for a given PCI dev
2561 * @dev: PCI device
2562 * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2563 *
2564 * Use underlying platform code to find a supported low power state for @dev.
2565 * If the platform can't manage @dev, return the deepest state from which it
2566 * can generate wake events, based on any available PME info.
2567 */
2568static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2569{
2570	pci_power_t target_state = PCI_D3hot;
2571
2572	if (platform_pci_power_manageable(dev)) {
2573		/*
2574		 * Call the platform to find the target state for the device.
2575		 */
2576		pci_power_t state = platform_pci_choose_state(dev);
2577
2578		switch (state) {
2579		case PCI_POWER_ERROR:
2580		case PCI_UNKNOWN:
2581			break;
 
2582		case PCI_D1:
2583		case PCI_D2:
2584			if (pci_no_d1d2(dev))
2585				break;
2586			fallthrough;
2587		default:
2588			target_state = state;
2589		}
2590
2591		return target_state;
2592	}
2593
2594	if (!dev->pm_cap)
2595		target_state = PCI_D0;
2596
2597	/*
2598	 * If the device is in D3cold even though it's not power-manageable by
2599	 * the platform, it may have been powered down by non-standard means.
2600	 * Best to let it slumber.
2601	 */
2602	if (dev->current_state == PCI_D3cold)
2603		target_state = PCI_D3cold;
 
 
2604
2605	if (wakeup && dev->pme_support) {
2606		pci_power_t state = target_state;
2607
2608		/*
2609		 * Find the deepest state from which the device can generate
2610		 * PME#.
2611		 */
2612		while (state && !(dev->pme_support & (1 << state)))
2613			state--;
2614
2615		if (state)
2616			return state;
2617		else if (dev->pme_support & 1)
2618			return PCI_D0;
2619	}
2620
2621	return target_state;
2622}
2623
2624/**
2625 * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2626 *			  into a sleep state
2627 * @dev: Device to handle.
2628 *
2629 * Choose the power state appropriate for the device depending on whether
2630 * it can wake up the system and/or is power manageable by the platform
2631 * (PCI_D3hot is the default) and put the device into that state.
2632 */
2633int pci_prepare_to_sleep(struct pci_dev *dev)
2634{
2635	bool wakeup = device_may_wakeup(&dev->dev);
2636	pci_power_t target_state = pci_target_state(dev, wakeup);
2637	int error;
2638
2639	if (target_state == PCI_POWER_ERROR)
2640		return -EIO;
2641
2642	/*
2643	 * There are systems (for example, Intel mobile chips since Coffee
2644	 * Lake) where the power drawn while suspended can be significantly
2645	 * reduced by disabling PTM on PCIe root ports as this allows the
2646	 * port to enter a lower-power PM state and the SoC to reach a
2647	 * lower-power idle state as a whole.
2648	 */
2649	if (pci_pcie_type(dev) == PCI_EXP_TYPE_ROOT_PORT)
2650		pci_disable_ptm(dev);
2651
2652	pci_enable_wake(dev, target_state, wakeup);
2653
2654	error = pci_set_power_state(dev, target_state);
2655
2656	if (error) {
2657		pci_enable_wake(dev, target_state, false);
2658		pci_restore_ptm_state(dev);
2659	}
2660
2661	return error;
2662}
2663EXPORT_SYMBOL(pci_prepare_to_sleep);
2664
2665/**
2666 * pci_back_from_sleep - turn PCI device on during system-wide transition
2667 *			 into working state
2668 * @dev: Device to handle.
2669 *
2670 * Disable device's system wake-up capability and put it into D0.
2671 */
2672int pci_back_from_sleep(struct pci_dev *dev)
2673{
 
 
 
 
 
2674	pci_enable_wake(dev, PCI_D0, false);
2675	return pci_set_power_state(dev, PCI_D0);
2676}
2677EXPORT_SYMBOL(pci_back_from_sleep);
2678
2679/**
2680 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2681 * @dev: PCI device being suspended.
2682 *
2683 * Prepare @dev to generate wake-up events at run time and put it into a low
2684 * power state.
2685 */
2686int pci_finish_runtime_suspend(struct pci_dev *dev)
2687{
2688	pci_power_t target_state;
2689	int error;
2690
2691	target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2692	if (target_state == PCI_POWER_ERROR)
2693		return -EIO;
2694
2695	dev->runtime_d3cold = target_state == PCI_D3cold;
2696
2697	/*
2698	 * There are systems (for example, Intel mobile chips since Coffee
2699	 * Lake) where the power drawn while suspended can be significantly
2700	 * reduced by disabling PTM on PCIe root ports as this allows the
2701	 * port to enter a lower-power PM state and the SoC to reach a
2702	 * lower-power idle state as a whole.
2703	 */
2704	if (pci_pcie_type(dev) == PCI_EXP_TYPE_ROOT_PORT)
2705		pci_disable_ptm(dev);
2706
2707	__pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2708
2709	error = pci_set_power_state(dev, target_state);
2710
2711	if (error) {
2712		pci_enable_wake(dev, target_state, false);
2713		pci_restore_ptm_state(dev);
2714		dev->runtime_d3cold = false;
2715	}
2716
2717	return error;
2718}
2719
2720/**
2721 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2722 * @dev: Device to check.
2723 *
2724 * Return true if the device itself is capable of generating wake-up events
2725 * (through the platform or using the native PCIe PME) or if the device supports
2726 * PME and one of its upstream bridges can generate wake-up events.
2727 */
2728bool pci_dev_run_wake(struct pci_dev *dev)
2729{
2730	struct pci_bus *bus = dev->bus;
2731
2732	if (!dev->pme_support)
2733		return false;
2734
2735	/* PME-capable in principle, but not from the target power state */
2736	if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2737		return false;
2738
2739	if (device_can_wakeup(&dev->dev))
2740		return true;
2741
2742	while (bus->parent) {
2743		struct pci_dev *bridge = bus->self;
2744
2745		if (device_can_wakeup(&bridge->dev))
2746			return true;
2747
2748		bus = bus->parent;
2749	}
2750
2751	/* We have reached the root bus. */
2752	if (bus->bridge)
2753		return device_can_wakeup(bus->bridge);
2754
2755	return false;
2756}
2757EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2758
2759/**
2760 * pci_dev_need_resume - Check if it is necessary to resume the device.
2761 * @pci_dev: Device to check.
2762 *
2763 * Return 'true' if the device is not runtime-suspended or it has to be
2764 * reconfigured due to wakeup settings difference between system and runtime
2765 * suspend, or the current power state of it is not suitable for the upcoming
2766 * (system-wide) transition.
2767 */
2768bool pci_dev_need_resume(struct pci_dev *pci_dev)
2769{
2770	struct device *dev = &pci_dev->dev;
2771	pci_power_t target_state;
2772
2773	if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
2774		return true;
2775
2776	target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
2777
2778	/*
2779	 * If the earlier platform check has not triggered, D3cold is just power
2780	 * removal on top of D3hot, so no need to resume the device in that
2781	 * case.
2782	 */
2783	return target_state != pci_dev->current_state &&
2784		target_state != PCI_D3cold &&
2785		pci_dev->current_state != PCI_D3hot;
2786}
2787
2788/**
2789 * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2790 * @pci_dev: Device to check.
2791 *
2792 * If the device is suspended and it is not configured for system wakeup,
2793 * disable PME for it to prevent it from waking up the system unnecessarily.
2794 *
2795 * Note that if the device's power state is D3cold and the platform check in
2796 * pci_dev_need_resume() has not triggered, the device's configuration need not
2797 * be changed.
2798 */
2799void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2800{
2801	struct device *dev = &pci_dev->dev;
2802
2803	spin_lock_irq(&dev->power.lock);
2804
2805	if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2806	    pci_dev->current_state < PCI_D3cold)
2807		__pci_pme_active(pci_dev, false);
2808
2809	spin_unlock_irq(&dev->power.lock);
2810}
2811
2812/**
2813 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2814 * @pci_dev: Device to handle.
2815 *
2816 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2817 * it might have been disabled during the prepare phase of system suspend if
2818 * the device was not configured for system wakeup.
2819 */
2820void pci_dev_complete_resume(struct pci_dev *pci_dev)
2821{
2822	struct device *dev = &pci_dev->dev;
2823
2824	if (!pci_dev_run_wake(pci_dev))
2825		return;
2826
2827	spin_lock_irq(&dev->power.lock);
2828
2829	if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2830		__pci_pme_active(pci_dev, true);
2831
2832	spin_unlock_irq(&dev->power.lock);
2833}
2834
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2835void pci_config_pm_runtime_get(struct pci_dev *pdev)
2836{
2837	struct device *dev = &pdev->dev;
2838	struct device *parent = dev->parent;
2839
2840	if (parent)
2841		pm_runtime_get_sync(parent);
2842	pm_runtime_get_noresume(dev);
2843	/*
2844	 * pdev->current_state is set to PCI_D3cold during suspending,
2845	 * so wait until suspending completes
2846	 */
2847	pm_runtime_barrier(dev);
2848	/*
2849	 * Only need to resume devices in D3cold, because config
2850	 * registers are still accessible for devices suspended but
2851	 * not in D3cold.
2852	 */
2853	if (pdev->current_state == PCI_D3cold)
2854		pm_runtime_resume(dev);
2855}
2856
2857void pci_config_pm_runtime_put(struct pci_dev *pdev)
2858{
2859	struct device *dev = &pdev->dev;
2860	struct device *parent = dev->parent;
2861
2862	pm_runtime_put(dev);
2863	if (parent)
2864		pm_runtime_put_sync(parent);
2865}
2866
2867static const struct dmi_system_id bridge_d3_blacklist[] = {
2868#ifdef CONFIG_X86
2869	{
2870		/*
2871		 * Gigabyte X299 root port is not marked as hotplug capable
2872		 * which allows Linux to power manage it.  However, this
2873		 * confuses the BIOS SMI handler so don't power manage root
2874		 * ports on that system.
2875		 */
2876		.ident = "X299 DESIGNARE EX-CF",
2877		.matches = {
2878			DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
2879			DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
2880		},
2881	},
 
 
 
 
 
 
 
 
 
 
 
 
2882#endif
2883	{ }
2884};
2885
2886/**
2887 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2888 * @bridge: Bridge to check
2889 *
2890 * This function checks if it is possible to move the bridge to D3.
2891 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
2892 */
2893bool pci_bridge_d3_possible(struct pci_dev *bridge)
2894{
2895	if (!pci_is_pcie(bridge))
2896		return false;
2897
2898	switch (pci_pcie_type(bridge)) {
2899	case PCI_EXP_TYPE_ROOT_PORT:
2900	case PCI_EXP_TYPE_UPSTREAM:
2901	case PCI_EXP_TYPE_DOWNSTREAM:
2902		if (pci_bridge_d3_disable)
2903			return false;
2904
2905		/*
2906		 * Hotplug ports handled by firmware in System Management Mode
2907		 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2908		 */
2909		if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
2910			return false;
2911
2912		if (pci_bridge_d3_force)
2913			return true;
2914
2915		/* Even the oldest 2010 Thunderbolt controller supports D3. */
2916		if (bridge->is_thunderbolt)
2917			return true;
2918
2919		/* Platform might know better if the bridge supports D3 */
2920		if (platform_pci_bridge_d3(bridge))
2921			return true;
2922
2923		/*
2924		 * Hotplug ports handled natively by the OS were not validated
2925		 * by vendors for runtime D3 at least until 2018 because there
2926		 * was no OS support.
2927		 */
2928		if (bridge->is_hotplug_bridge)
2929			return false;
2930
2931		if (dmi_check_system(bridge_d3_blacklist))
2932			return false;
2933
2934		/*
2935		 * It should be safe to put PCIe ports from 2015 or newer
2936		 * to D3.
2937		 */
2938		if (dmi_get_bios_year() >= 2015)
2939			return true;
2940		break;
2941	}
2942
2943	return false;
2944}
2945
2946static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
2947{
2948	bool *d3cold_ok = data;
2949
2950	if (/* The device needs to be allowed to go D3cold ... */
2951	    dev->no_d3cold || !dev->d3cold_allowed ||
2952
2953	    /* ... and if it is wakeup capable to do so from D3cold. */
2954	    (device_may_wakeup(&dev->dev) &&
2955	     !pci_pme_capable(dev, PCI_D3cold)) ||
2956
2957	    /* If it is a bridge it must be allowed to go to D3. */
2958	    !pci_power_manageable(dev))
2959
2960		*d3cold_ok = false;
2961
2962	return !*d3cold_ok;
2963}
2964
2965/*
2966 * pci_bridge_d3_update - Update bridge D3 capabilities
2967 * @dev: PCI device which is changed
2968 *
2969 * Update upstream bridge PM capabilities accordingly depending on if the
2970 * device PM configuration was changed or the device is being removed.  The
2971 * change is also propagated upstream.
2972 */
2973void pci_bridge_d3_update(struct pci_dev *dev)
2974{
2975	bool remove = !device_is_registered(&dev->dev);
2976	struct pci_dev *bridge;
2977	bool d3cold_ok = true;
2978
2979	bridge = pci_upstream_bridge(dev);
2980	if (!bridge || !pci_bridge_d3_possible(bridge))
2981		return;
2982
2983	/*
2984	 * If D3 is currently allowed for the bridge, removing one of its
2985	 * children won't change that.
2986	 */
2987	if (remove && bridge->bridge_d3)
2988		return;
2989
2990	/*
2991	 * If D3 is currently allowed for the bridge and a child is added or
2992	 * changed, disallowance of D3 can only be caused by that child, so
2993	 * we only need to check that single device, not any of its siblings.
2994	 *
2995	 * If D3 is currently not allowed for the bridge, checking the device
2996	 * first may allow us to skip checking its siblings.
2997	 */
2998	if (!remove)
2999		pci_dev_check_d3cold(dev, &d3cold_ok);
3000
3001	/*
3002	 * If D3 is currently not allowed for the bridge, this may be caused
3003	 * either by the device being changed/removed or any of its siblings,
3004	 * so we need to go through all children to find out if one of them
3005	 * continues to block D3.
3006	 */
3007	if (d3cold_ok && !bridge->bridge_d3)
3008		pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
3009			     &d3cold_ok);
3010
3011	if (bridge->bridge_d3 != d3cold_ok) {
3012		bridge->bridge_d3 = d3cold_ok;
3013		/* Propagate change to upstream bridges */
3014		pci_bridge_d3_update(bridge);
3015	}
3016}
3017
3018/**
3019 * pci_d3cold_enable - Enable D3cold for device
3020 * @dev: PCI device to handle
3021 *
3022 * This function can be used in drivers to enable D3cold from the device
3023 * they handle.  It also updates upstream PCI bridge PM capabilities
3024 * accordingly.
3025 */
3026void pci_d3cold_enable(struct pci_dev *dev)
3027{
3028	if (dev->no_d3cold) {
3029		dev->no_d3cold = false;
3030		pci_bridge_d3_update(dev);
3031	}
3032}
3033EXPORT_SYMBOL_GPL(pci_d3cold_enable);
3034
3035/**
3036 * pci_d3cold_disable - Disable D3cold for device
3037 * @dev: PCI device to handle
3038 *
3039 * This function can be used in drivers to disable D3cold from the device
3040 * they handle.  It also updates upstream PCI bridge PM capabilities
3041 * accordingly.
3042 */
3043void pci_d3cold_disable(struct pci_dev *dev)
3044{
3045	if (!dev->no_d3cold) {
3046		dev->no_d3cold = true;
3047		pci_bridge_d3_update(dev);
3048	}
3049}
3050EXPORT_SYMBOL_GPL(pci_d3cold_disable);
3051
3052/**
3053 * pci_pm_init - Initialize PM functions of given PCI device
3054 * @dev: PCI device to handle.
3055 */
3056void pci_pm_init(struct pci_dev *dev)
3057{
3058	int pm;
3059	u16 status;
3060	u16 pmc;
3061
3062	pm_runtime_forbid(&dev->dev);
3063	pm_runtime_set_active(&dev->dev);
3064	pm_runtime_enable(&dev->dev);
3065	device_enable_async_suspend(&dev->dev);
3066	dev->wakeup_prepared = false;
3067
3068	dev->pm_cap = 0;
3069	dev->pme_support = 0;
3070
3071	/* find PCI PM capability in list */
3072	pm = pci_find_capability(dev, PCI_CAP_ID_PM);
3073	if (!pm)
3074		return;
3075	/* Check device's ability to generate PME# */
3076	pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
3077
3078	if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
3079		pci_err(dev, "unsupported PM cap regs version (%u)\n",
3080			pmc & PCI_PM_CAP_VER_MASK);
3081		return;
3082	}
3083
3084	dev->pm_cap = pm;
3085	dev->d3hot_delay = PCI_PM_D3HOT_WAIT;
3086	dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
3087	dev->bridge_d3 = pci_bridge_d3_possible(dev);
3088	dev->d3cold_allowed = true;
3089
3090	dev->d1_support = false;
3091	dev->d2_support = false;
3092	if (!pci_no_d1d2(dev)) {
3093		if (pmc & PCI_PM_CAP_D1)
3094			dev->d1_support = true;
3095		if (pmc & PCI_PM_CAP_D2)
3096			dev->d2_support = true;
3097
3098		if (dev->d1_support || dev->d2_support)
3099			pci_info(dev, "supports%s%s\n",
3100				   dev->d1_support ? " D1" : "",
3101				   dev->d2_support ? " D2" : "");
3102	}
3103
3104	pmc &= PCI_PM_CAP_PME_MASK;
3105	if (pmc) {
3106		pci_info(dev, "PME# supported from%s%s%s%s%s\n",
3107			 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
3108			 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
3109			 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
3110			 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "",
3111			 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
3112		dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
3113		dev->pme_poll = true;
3114		/*
3115		 * Make device's PM flags reflect the wake-up capability, but
3116		 * let the user space enable it to wake up the system as needed.
3117		 */
3118		device_set_wakeup_capable(&dev->dev, true);
3119		/* Disable the PME# generation functionality */
3120		pci_pme_active(dev, false);
3121	}
3122
3123	pci_read_config_word(dev, PCI_STATUS, &status);
3124	if (status & PCI_STATUS_IMM_READY)
3125		dev->imm_ready = 1;
3126}
3127
3128static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
3129{
3130	unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
3131
3132	switch (prop) {
3133	case PCI_EA_P_MEM:
3134	case PCI_EA_P_VF_MEM:
3135		flags |= IORESOURCE_MEM;
3136		break;
3137	case PCI_EA_P_MEM_PREFETCH:
3138	case PCI_EA_P_VF_MEM_PREFETCH:
3139		flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
3140		break;
3141	case PCI_EA_P_IO:
3142		flags |= IORESOURCE_IO;
3143		break;
3144	default:
3145		return 0;
3146	}
3147
3148	return flags;
3149}
3150
3151static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
3152					    u8 prop)
3153{
3154	if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
3155		return &dev->resource[bei];
3156#ifdef CONFIG_PCI_IOV
3157	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
3158		 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
3159		return &dev->resource[PCI_IOV_RESOURCES +
3160				      bei - PCI_EA_BEI_VF_BAR0];
3161#endif
3162	else if (bei == PCI_EA_BEI_ROM)
3163		return &dev->resource[PCI_ROM_RESOURCE];
3164	else
3165		return NULL;
3166}
3167
3168/* Read an Enhanced Allocation (EA) entry */
3169static int pci_ea_read(struct pci_dev *dev, int offset)
3170{
3171	struct resource *res;
3172	int ent_size, ent_offset = offset;
3173	resource_size_t start, end;
3174	unsigned long flags;
3175	u32 dw0, bei, base, max_offset;
3176	u8 prop;
3177	bool support_64 = (sizeof(resource_size_t) >= 8);
3178
3179	pci_read_config_dword(dev, ent_offset, &dw0);
3180	ent_offset += 4;
3181
3182	/* Entry size field indicates DWORDs after 1st */
3183	ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
3184
3185	if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
3186		goto out;
3187
3188	bei = (dw0 & PCI_EA_BEI) >> 4;
3189	prop = (dw0 & PCI_EA_PP) >> 8;
3190
3191	/*
3192	 * If the Property is in the reserved range, try the Secondary
3193	 * Property instead.
3194	 */
3195	if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
3196		prop = (dw0 & PCI_EA_SP) >> 16;
3197	if (prop > PCI_EA_P_BRIDGE_IO)
3198		goto out;
3199
3200	res = pci_ea_get_resource(dev, bei, prop);
3201	if (!res) {
3202		pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
3203		goto out;
3204	}
3205
3206	flags = pci_ea_flags(dev, prop);
3207	if (!flags) {
3208		pci_err(dev, "Unsupported EA properties: %#x\n", prop);
3209		goto out;
3210	}
3211
3212	/* Read Base */
3213	pci_read_config_dword(dev, ent_offset, &base);
3214	start = (base & PCI_EA_FIELD_MASK);
3215	ent_offset += 4;
3216
3217	/* Read MaxOffset */
3218	pci_read_config_dword(dev, ent_offset, &max_offset);
3219	ent_offset += 4;
3220
3221	/* Read Base MSBs (if 64-bit entry) */
3222	if (base & PCI_EA_IS_64) {
3223		u32 base_upper;
3224
3225		pci_read_config_dword(dev, ent_offset, &base_upper);
3226		ent_offset += 4;
3227
3228		flags |= IORESOURCE_MEM_64;
3229
3230		/* entry starts above 32-bit boundary, can't use */
3231		if (!support_64 && base_upper)
3232			goto out;
3233
3234		if (support_64)
3235			start |= ((u64)base_upper << 32);
3236	}
3237
3238	end = start + (max_offset | 0x03);
3239
3240	/* Read MaxOffset MSBs (if 64-bit entry) */
3241	if (max_offset & PCI_EA_IS_64) {
3242		u32 max_offset_upper;
3243
3244		pci_read_config_dword(dev, ent_offset, &max_offset_upper);
3245		ent_offset += 4;
3246
3247		flags |= IORESOURCE_MEM_64;
3248
3249		/* entry too big, can't use */
3250		if (!support_64 && max_offset_upper)
3251			goto out;
3252
3253		if (support_64)
3254			end += ((u64)max_offset_upper << 32);
3255	}
3256
3257	if (end < start) {
3258		pci_err(dev, "EA Entry crosses address boundary\n");
3259		goto out;
3260	}
3261
3262	if (ent_size != ent_offset - offset) {
3263		pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
3264			ent_size, ent_offset - offset);
3265		goto out;
3266	}
3267
3268	res->name = pci_name(dev);
3269	res->start = start;
3270	res->end = end;
3271	res->flags = flags;
3272
3273	if (bei <= PCI_EA_BEI_BAR5)
3274		pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3275			   bei, res, prop);
3276	else if (bei == PCI_EA_BEI_ROM)
3277		pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
3278			   res, prop);
3279	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3280		pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3281			   bei - PCI_EA_BEI_VF_BAR0, res, prop);
3282	else
3283		pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
3284			   bei, res, prop);
3285
3286out:
3287	return offset + ent_size;
3288}
3289
3290/* Enhanced Allocation Initialization */
3291void pci_ea_init(struct pci_dev *dev)
3292{
3293	int ea;
3294	u8 num_ent;
3295	int offset;
3296	int i;
3297
3298	/* find PCI EA capability in list */
3299	ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3300	if (!ea)
3301		return;
3302
3303	/* determine the number of entries */
3304	pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3305					&num_ent);
3306	num_ent &= PCI_EA_NUM_ENT_MASK;
3307
3308	offset = ea + PCI_EA_FIRST_ENT;
3309
3310	/* Skip DWORD 2 for type 1 functions */
3311	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3312		offset += 4;
3313
3314	/* parse each EA entry */
3315	for (i = 0; i < num_ent; ++i)
3316		offset = pci_ea_read(dev, offset);
3317}
3318
3319static void pci_add_saved_cap(struct pci_dev *pci_dev,
3320	struct pci_cap_saved_state *new_cap)
3321{
3322	hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3323}
3324
3325/**
3326 * _pci_add_cap_save_buffer - allocate buffer for saving given
3327 *			      capability registers
3328 * @dev: the PCI device
3329 * @cap: the capability to allocate the buffer for
3330 * @extended: Standard or Extended capability ID
3331 * @size: requested size of the buffer
3332 */
3333static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3334				    bool extended, unsigned int size)
3335{
3336	int pos;
3337	struct pci_cap_saved_state *save_state;
3338
3339	if (extended)
3340		pos = pci_find_ext_capability(dev, cap);
3341	else
3342		pos = pci_find_capability(dev, cap);
3343
3344	if (!pos)
3345		return 0;
3346
3347	save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3348	if (!save_state)
3349		return -ENOMEM;
3350
3351	save_state->cap.cap_nr = cap;
3352	save_state->cap.cap_extended = extended;
3353	save_state->cap.size = size;
3354	pci_add_saved_cap(dev, save_state);
3355
3356	return 0;
3357}
3358
3359int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3360{
3361	return _pci_add_cap_save_buffer(dev, cap, false, size);
3362}
3363
3364int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3365{
3366	return _pci_add_cap_save_buffer(dev, cap, true, size);
3367}
3368
3369/**
3370 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3371 * @dev: the PCI device
3372 */
3373void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3374{
3375	int error;
3376
3377	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3378					PCI_EXP_SAVE_REGS * sizeof(u16));
3379	if (error)
3380		pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3381
3382	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3383	if (error)
3384		pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3385
3386	error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3387					    2 * sizeof(u16));
3388	if (error)
3389		pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3390
3391	pci_allocate_vc_save_buffers(dev);
3392}
3393
3394void pci_free_cap_save_buffers(struct pci_dev *dev)
3395{
3396	struct pci_cap_saved_state *tmp;
3397	struct hlist_node *n;
3398
3399	hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3400		kfree(tmp);
3401}
3402
3403/**
3404 * pci_configure_ari - enable or disable ARI forwarding
3405 * @dev: the PCI device
3406 *
3407 * If @dev and its upstream bridge both support ARI, enable ARI in the
3408 * bridge.  Otherwise, disable ARI in the bridge.
3409 */
3410void pci_configure_ari(struct pci_dev *dev)
3411{
3412	u32 cap;
3413	struct pci_dev *bridge;
3414
3415	if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3416		return;
3417
3418	bridge = dev->bus->self;
3419	if (!bridge)
3420		return;
3421
3422	pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3423	if (!(cap & PCI_EXP_DEVCAP2_ARI))
3424		return;
3425
3426	if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3427		pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3428					 PCI_EXP_DEVCTL2_ARI);
3429		bridge->ari_enabled = 1;
3430	} else {
3431		pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3432					   PCI_EXP_DEVCTL2_ARI);
3433		bridge->ari_enabled = 0;
3434	}
3435}
3436
3437static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3438{
3439	int pos;
3440	u16 cap, ctrl;
3441
3442	pos = pdev->acs_cap;
3443	if (!pos)
3444		return false;
3445
3446	/*
3447	 * Except for egress control, capabilities are either required
3448	 * or only required if controllable.  Features missing from the
3449	 * capability field can therefore be assumed as hard-wired enabled.
3450	 */
3451	pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3452	acs_flags &= (cap | PCI_ACS_EC);
3453
3454	pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3455	return (ctrl & acs_flags) == acs_flags;
3456}
3457
3458/**
3459 * pci_acs_enabled - test ACS against required flags for a given device
3460 * @pdev: device to test
3461 * @acs_flags: required PCI ACS flags
3462 *
3463 * Return true if the device supports the provided flags.  Automatically
3464 * filters out flags that are not implemented on multifunction devices.
3465 *
3466 * Note that this interface checks the effective ACS capabilities of the
3467 * device rather than the actual capabilities.  For instance, most single
3468 * function endpoints are not required to support ACS because they have no
3469 * opportunity for peer-to-peer access.  We therefore return 'true'
3470 * regardless of whether the device exposes an ACS capability.  This makes
3471 * it much easier for callers of this function to ignore the actual type
3472 * or topology of the device when testing ACS support.
3473 */
3474bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3475{
3476	int ret;
3477
3478	ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3479	if (ret >= 0)
3480		return ret > 0;
3481
3482	/*
3483	 * Conventional PCI and PCI-X devices never support ACS, either
3484	 * effectively or actually.  The shared bus topology implies that
3485	 * any device on the bus can receive or snoop DMA.
3486	 */
3487	if (!pci_is_pcie(pdev))
3488		return false;
3489
3490	switch (pci_pcie_type(pdev)) {
3491	/*
3492	 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3493	 * but since their primary interface is PCI/X, we conservatively
3494	 * handle them as we would a non-PCIe device.
3495	 */
3496	case PCI_EXP_TYPE_PCIE_BRIDGE:
3497	/*
3498	 * PCIe 3.0, 6.12.1 excludes ACS on these devices.  "ACS is never
3499	 * applicable... must never implement an ACS Extended Capability...".
3500	 * This seems arbitrary, but we take a conservative interpretation
3501	 * of this statement.
3502	 */
3503	case PCI_EXP_TYPE_PCI_BRIDGE:
3504	case PCI_EXP_TYPE_RC_EC:
3505		return false;
3506	/*
3507	 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3508	 * implement ACS in order to indicate their peer-to-peer capabilities,
3509	 * regardless of whether they are single- or multi-function devices.
3510	 */
3511	case PCI_EXP_TYPE_DOWNSTREAM:
3512	case PCI_EXP_TYPE_ROOT_PORT:
3513		return pci_acs_flags_enabled(pdev, acs_flags);
3514	/*
3515	 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3516	 * implemented by the remaining PCIe types to indicate peer-to-peer
3517	 * capabilities, but only when they are part of a multifunction
3518	 * device.  The footnote for section 6.12 indicates the specific
3519	 * PCIe types included here.
3520	 */
3521	case PCI_EXP_TYPE_ENDPOINT:
3522	case PCI_EXP_TYPE_UPSTREAM:
3523	case PCI_EXP_TYPE_LEG_END:
3524	case PCI_EXP_TYPE_RC_END:
3525		if (!pdev->multifunction)
3526			break;
3527
3528		return pci_acs_flags_enabled(pdev, acs_flags);
3529	}
3530
3531	/*
3532	 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3533	 * to single function devices with the exception of downstream ports.
3534	 */
3535	return true;
3536}
3537
3538/**
3539 * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy
3540 * @start: starting downstream device
3541 * @end: ending upstream device or NULL to search to the root bus
3542 * @acs_flags: required flags
3543 *
3544 * Walk up a device tree from start to end testing PCI ACS support.  If
3545 * any step along the way does not support the required flags, return false.
3546 */
3547bool pci_acs_path_enabled(struct pci_dev *start,
3548			  struct pci_dev *end, u16 acs_flags)
3549{
3550	struct pci_dev *pdev, *parent = start;
3551
3552	do {
3553		pdev = parent;
3554
3555		if (!pci_acs_enabled(pdev, acs_flags))
3556			return false;
3557
3558		if (pci_is_root_bus(pdev->bus))
3559			return (end == NULL);
3560
3561		parent = pdev->bus->self;
3562	} while (pdev != end);
3563
3564	return true;
3565}
3566
3567/**
3568 * pci_acs_init - Initialize ACS if hardware supports it
3569 * @dev: the PCI device
3570 */
3571void pci_acs_init(struct pci_dev *dev)
3572{
3573	dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3574
3575	/*
3576	 * Attempt to enable ACS regardless of capability because some Root
3577	 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have
3578	 * the standard ACS capability but still support ACS via those
3579	 * quirks.
3580	 */
3581	pci_enable_acs(dev);
3582}
3583
3584/**
3585 * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3586 * @pdev: PCI device
3587 * @bar: BAR to find
3588 *
3589 * Helper to find the position of the ctrl register for a BAR.
3590 * Returns -ENOTSUPP if resizable BARs are not supported at all.
3591 * Returns -ENOENT if no ctrl register for the BAR could be found.
3592 */
3593static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3594{
3595	unsigned int pos, nbars, i;
3596	u32 ctrl;
3597
3598	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3599	if (!pos)
3600		return -ENOTSUPP;
3601
3602	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3603	nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
3604		    PCI_REBAR_CTRL_NBAR_SHIFT;
3605
3606	for (i = 0; i < nbars; i++, pos += 8) {
3607		int bar_idx;
3608
3609		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3610		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
3611		if (bar_idx == bar)
3612			return pos;
3613	}
3614
3615	return -ENOENT;
3616}
3617
3618/**
3619 * pci_rebar_get_possible_sizes - get possible sizes for BAR
3620 * @pdev: PCI device
3621 * @bar: BAR to query
3622 *
3623 * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3624 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3625 */
3626u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3627{
3628	int pos;
3629	u32 cap;
3630
3631	pos = pci_rebar_find_pos(pdev, bar);
3632	if (pos < 0)
3633		return 0;
3634
3635	pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3636	cap &= PCI_REBAR_CAP_SIZES;
3637
3638	/* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */
3639	if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f &&
3640	    bar == 0 && cap == 0x7000)
3641		cap = 0x3f000;
3642
3643	return cap >> 4;
3644}
3645EXPORT_SYMBOL(pci_rebar_get_possible_sizes);
3646
3647/**
3648 * pci_rebar_get_current_size - get the current size of a BAR
3649 * @pdev: PCI device
3650 * @bar: BAR to set size to
3651 *
3652 * Read the size of a BAR from the resizable BAR config.
3653 * Returns size if found or negative error code.
3654 */
3655int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3656{
3657	int pos;
3658	u32 ctrl;
3659
3660	pos = pci_rebar_find_pos(pdev, bar);
3661	if (pos < 0)
3662		return pos;
3663
3664	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3665	return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT;
3666}
3667
3668/**
3669 * pci_rebar_set_size - set a new size for a BAR
3670 * @pdev: PCI device
3671 * @bar: BAR to set size to
3672 * @size: new size as defined in the spec (0=1MB, 19=512GB)
3673 *
3674 * Set the new size of a BAR as defined in the spec.
3675 * Returns zero if resizing was successful, error code otherwise.
3676 */
3677int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3678{
3679	int pos;
3680	u32 ctrl;
3681
3682	pos = pci_rebar_find_pos(pdev, bar);
3683	if (pos < 0)
3684		return pos;
3685
3686	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3687	ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3688	ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
3689	pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3690	return 0;
3691}
3692
3693/**
3694 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3695 * @dev: the PCI device
3696 * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3697 *	PCI_EXP_DEVCAP2_ATOMIC_COMP32
3698 *	PCI_EXP_DEVCAP2_ATOMIC_COMP64
3699 *	PCI_EXP_DEVCAP2_ATOMIC_COMP128
3700 *
3701 * Return 0 if all upstream bridges support AtomicOp routing, egress
3702 * blocking is disabled on all upstream ports, and the root port supports
3703 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3704 * AtomicOp completion), or negative otherwise.
3705 */
3706int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3707{
3708	struct pci_bus *bus = dev->bus;
3709	struct pci_dev *bridge;
3710	u32 cap, ctl2;
3711
 
 
 
 
 
 
 
 
3712	if (!pci_is_pcie(dev))
3713		return -EINVAL;
3714
3715	/*
3716	 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3717	 * AtomicOp requesters.  For now, we only support endpoints as
3718	 * requesters and root ports as completers.  No endpoints as
3719	 * completers, and no peer-to-peer.
3720	 */
3721
3722	switch (pci_pcie_type(dev)) {
3723	case PCI_EXP_TYPE_ENDPOINT:
3724	case PCI_EXP_TYPE_LEG_END:
3725	case PCI_EXP_TYPE_RC_END:
3726		break;
3727	default:
3728		return -EINVAL;
3729	}
3730
3731	while (bus->parent) {
3732		bridge = bus->self;
3733
3734		pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3735
3736		switch (pci_pcie_type(bridge)) {
3737		/* Ensure switch ports support AtomicOp routing */
3738		case PCI_EXP_TYPE_UPSTREAM:
3739		case PCI_EXP_TYPE_DOWNSTREAM:
3740			if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3741				return -EINVAL;
3742			break;
3743
3744		/* Ensure root port supports all the sizes we care about */
3745		case PCI_EXP_TYPE_ROOT_PORT:
3746			if ((cap & cap_mask) != cap_mask)
3747				return -EINVAL;
3748			break;
3749		}
3750
3751		/* Ensure upstream ports don't block AtomicOps on egress */
3752		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
3753			pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3754						   &ctl2);
3755			if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3756				return -EINVAL;
3757		}
3758
3759		bus = bus->parent;
3760	}
3761
3762	pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3763				 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3764	return 0;
3765}
3766EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3767
3768/**
3769 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3770 * @dev: the PCI device
3771 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3772 *
3773 * Perform INTx swizzling for a device behind one level of bridge.  This is
3774 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3775 * behind bridges on add-in cards.  For devices with ARI enabled, the slot
3776 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3777 * the PCI Express Base Specification, Revision 2.1)
3778 */
3779u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3780{
3781	int slot;
3782
3783	if (pci_ari_enabled(dev->bus))
3784		slot = 0;
3785	else
3786		slot = PCI_SLOT(dev->devfn);
3787
3788	return (((pin - 1) + slot) % 4) + 1;
3789}
3790
3791int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3792{
3793	u8 pin;
3794
3795	pin = dev->pin;
3796	if (!pin)
3797		return -1;
3798
3799	while (!pci_is_root_bus(dev->bus)) {
3800		pin = pci_swizzle_interrupt_pin(dev, pin);
3801		dev = dev->bus->self;
3802	}
3803	*bridge = dev;
3804	return pin;
3805}
3806
3807/**
3808 * pci_common_swizzle - swizzle INTx all the way to root bridge
3809 * @dev: the PCI device
3810 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3811 *
3812 * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
3813 * bridges all the way up to a PCI root bus.
3814 */
3815u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3816{
3817	u8 pin = *pinp;
3818
3819	while (!pci_is_root_bus(dev->bus)) {
3820		pin = pci_swizzle_interrupt_pin(dev, pin);
3821		dev = dev->bus->self;
3822	}
3823	*pinp = pin;
3824	return PCI_SLOT(dev->devfn);
3825}
3826EXPORT_SYMBOL_GPL(pci_common_swizzle);
3827
3828/**
3829 * pci_release_region - Release a PCI bar
3830 * @pdev: PCI device whose resources were previously reserved by
3831 *	  pci_request_region()
3832 * @bar: BAR to release
3833 *
3834 * Releases the PCI I/O and memory resources previously reserved by a
3835 * successful call to pci_request_region().  Call this function only
3836 * after all use of the PCI regions has ceased.
3837 */
3838void pci_release_region(struct pci_dev *pdev, int bar)
3839{
3840	struct pci_devres *dr;
3841
3842	if (pci_resource_len(pdev, bar) == 0)
3843		return;
3844	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3845		release_region(pci_resource_start(pdev, bar),
3846				pci_resource_len(pdev, bar));
3847	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3848		release_mem_region(pci_resource_start(pdev, bar),
3849				pci_resource_len(pdev, bar));
3850
3851	dr = find_pci_dr(pdev);
3852	if (dr)
3853		dr->region_mask &= ~(1 << bar);
3854}
3855EXPORT_SYMBOL(pci_release_region);
3856
3857/**
3858 * __pci_request_region - Reserved PCI I/O and memory resource
3859 * @pdev: PCI device whose resources are to be reserved
3860 * @bar: BAR to be reserved
3861 * @res_name: Name to be associated with resource.
3862 * @exclusive: whether the region access is exclusive or not
3863 *
3864 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3865 * being reserved by owner @res_name.  Do not access any
3866 * address inside the PCI regions unless this call returns
3867 * successfully.
3868 *
3869 * If @exclusive is set, then the region is marked so that userspace
3870 * is explicitly not allowed to map the resource via /dev/mem or
3871 * sysfs MMIO access.
3872 *
3873 * Returns 0 on success, or %EBUSY on error.  A warning
3874 * message is also printed on failure.
3875 */
3876static int __pci_request_region(struct pci_dev *pdev, int bar,
3877				const char *res_name, int exclusive)
3878{
3879	struct pci_devres *dr;
3880
3881	if (pci_resource_len(pdev, bar) == 0)
3882		return 0;
3883
3884	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3885		if (!request_region(pci_resource_start(pdev, bar),
3886			    pci_resource_len(pdev, bar), res_name))
3887			goto err_out;
3888	} else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3889		if (!__request_mem_region(pci_resource_start(pdev, bar),
3890					pci_resource_len(pdev, bar), res_name,
3891					exclusive))
3892			goto err_out;
3893	}
3894
3895	dr = find_pci_dr(pdev);
3896	if (dr)
3897		dr->region_mask |= 1 << bar;
3898
3899	return 0;
3900
3901err_out:
3902	pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
3903		 &pdev->resource[bar]);
3904	return -EBUSY;
3905}
3906
3907/**
3908 * pci_request_region - Reserve PCI I/O and memory resource
3909 * @pdev: PCI device whose resources are to be reserved
3910 * @bar: BAR to be reserved
3911 * @res_name: Name to be associated with resource
3912 *
3913 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3914 * being reserved by owner @res_name.  Do not access any
3915 * address inside the PCI regions unless this call returns
3916 * successfully.
3917 *
3918 * Returns 0 on success, or %EBUSY on error.  A warning
3919 * message is also printed on failure.
3920 */
3921int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
3922{
3923	return __pci_request_region(pdev, bar, res_name, 0);
3924}
3925EXPORT_SYMBOL(pci_request_region);
3926
3927/**
3928 * pci_release_selected_regions - Release selected PCI I/O and memory resources
3929 * @pdev: PCI device whose resources were previously reserved
3930 * @bars: Bitmask of BARs to be released
3931 *
3932 * Release selected PCI I/O and memory resources previously reserved.
3933 * Call this function only after all use of the PCI regions has ceased.
3934 */
3935void pci_release_selected_regions(struct pci_dev *pdev, int bars)
3936{
3937	int i;
3938
3939	for (i = 0; i < PCI_STD_NUM_BARS; i++)
3940		if (bars & (1 << i))
3941			pci_release_region(pdev, i);
3942}
3943EXPORT_SYMBOL(pci_release_selected_regions);
3944
3945static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
3946					  const char *res_name, int excl)
3947{
3948	int i;
3949
3950	for (i = 0; i < PCI_STD_NUM_BARS; i++)
3951		if (bars & (1 << i))
3952			if (__pci_request_region(pdev, i, res_name, excl))
3953				goto err_out;
3954	return 0;
3955
3956err_out:
3957	while (--i >= 0)
3958		if (bars & (1 << i))
3959			pci_release_region(pdev, i);
3960
3961	return -EBUSY;
3962}
3963
3964
3965/**
3966 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3967 * @pdev: PCI device whose resources are to be reserved
3968 * @bars: Bitmask of BARs to be requested
3969 * @res_name: Name to be associated with resource
3970 */
3971int pci_request_selected_regions(struct pci_dev *pdev, int bars,
3972				 const char *res_name)
3973{
3974	return __pci_request_selected_regions(pdev, bars, res_name, 0);
3975}
3976EXPORT_SYMBOL(pci_request_selected_regions);
3977
3978int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
3979					   const char *res_name)
3980{
3981	return __pci_request_selected_regions(pdev, bars, res_name,
3982			IORESOURCE_EXCLUSIVE);
3983}
3984EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3985
3986/**
3987 * pci_release_regions - Release reserved PCI I/O and memory resources
3988 * @pdev: PCI device whose resources were previously reserved by
3989 *	  pci_request_regions()
3990 *
3991 * Releases all PCI I/O and memory resources previously reserved by a
3992 * successful call to pci_request_regions().  Call this function only
3993 * after all use of the PCI regions has ceased.
3994 */
3995
3996void pci_release_regions(struct pci_dev *pdev)
3997{
3998	pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1);
3999}
4000EXPORT_SYMBOL(pci_release_regions);
4001
4002/**
4003 * pci_request_regions - Reserve PCI I/O and memory resources
4004 * @pdev: PCI device whose resources are to be reserved
4005 * @res_name: Name to be associated with resource.
4006 *
4007 * Mark all PCI regions associated with PCI device @pdev as
4008 * being reserved by owner @res_name.  Do not access any
4009 * address inside the PCI regions unless this call returns
4010 * successfully.
4011 *
4012 * Returns 0 on success, or %EBUSY on error.  A warning
4013 * message is also printed on failure.
4014 */
4015int pci_request_regions(struct pci_dev *pdev, const char *res_name)
4016{
4017	return pci_request_selected_regions(pdev,
4018			((1 << PCI_STD_NUM_BARS) - 1), res_name);
4019}
4020EXPORT_SYMBOL(pci_request_regions);
4021
4022/**
4023 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
4024 * @pdev: PCI device whose resources are to be reserved
4025 * @res_name: Name to be associated with resource.
4026 *
4027 * Mark all PCI regions associated with PCI device @pdev as being reserved
4028 * by owner @res_name.  Do not access any address inside the PCI regions
4029 * unless this call returns successfully.
4030 *
4031 * pci_request_regions_exclusive() will mark the region so that /dev/mem
4032 * and the sysfs MMIO access will not be allowed.
4033 *
4034 * Returns 0 on success, or %EBUSY on error.  A warning message is also
4035 * printed on failure.
4036 */
4037int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
4038{
4039	return pci_request_selected_regions_exclusive(pdev,
4040				((1 << PCI_STD_NUM_BARS) - 1), res_name);
4041}
4042EXPORT_SYMBOL(pci_request_regions_exclusive);
4043
4044/*
4045 * Record the PCI IO range (expressed as CPU physical address + size).
4046 * Return a negative value if an error has occurred, zero otherwise
4047 */
4048int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
4049			resource_size_t	size)
4050{
4051	int ret = 0;
4052#ifdef PCI_IOBASE
4053	struct logic_pio_hwaddr *range;
4054
4055	if (!size || addr + size < addr)
4056		return -EINVAL;
4057
4058	range = kzalloc(sizeof(*range), GFP_ATOMIC);
4059	if (!range)
4060		return -ENOMEM;
4061
4062	range->fwnode = fwnode;
4063	range->size = size;
4064	range->hw_start = addr;
4065	range->flags = LOGIC_PIO_CPU_MMIO;
4066
4067	ret = logic_pio_register_range(range);
4068	if (ret)
4069		kfree(range);
4070
4071	/* Ignore duplicates due to deferred probing */
4072	if (ret == -EEXIST)
4073		ret = 0;
4074#endif
4075
4076	return ret;
4077}
4078
4079phys_addr_t pci_pio_to_address(unsigned long pio)
4080{
4081	phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
4082
4083#ifdef PCI_IOBASE
4084	if (pio >= MMIO_UPPER_LIMIT)
4085		return address;
4086
4087	address = logic_pio_to_hwaddr(pio);
4088#endif
4089
4090	return address;
4091}
4092EXPORT_SYMBOL_GPL(pci_pio_to_address);
4093
4094unsigned long __weak pci_address_to_pio(phys_addr_t address)
4095{
4096#ifdef PCI_IOBASE
4097	return logic_pio_trans_cpuaddr(address);
4098#else
4099	if (address > IO_SPACE_LIMIT)
4100		return (unsigned long)-1;
4101
4102	return (unsigned long) address;
4103#endif
4104}
4105
4106/**
4107 * pci_remap_iospace - Remap the memory mapped I/O space
4108 * @res: Resource describing the I/O space
4109 * @phys_addr: physical address of range to be mapped
4110 *
4111 * Remap the memory mapped I/O space described by the @res and the CPU
4112 * physical address @phys_addr into virtual address space.  Only
4113 * architectures that have memory mapped IO functions defined (and the
4114 * PCI_IOBASE value defined) should call this function.
4115 */
 
4116int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
4117{
4118#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4119	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4120
4121	if (!(res->flags & IORESOURCE_IO))
4122		return -EINVAL;
4123
4124	if (res->end > IO_SPACE_LIMIT)
4125		return -EINVAL;
4126
4127	return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
4128				  pgprot_device(PAGE_KERNEL));
4129#else
4130	/*
4131	 * This architecture does not have memory mapped I/O space,
4132	 * so this function should never be called
4133	 */
4134	WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
4135	return -ENODEV;
4136#endif
4137}
4138EXPORT_SYMBOL(pci_remap_iospace);
 
4139
4140/**
4141 * pci_unmap_iospace - Unmap the memory mapped I/O space
4142 * @res: resource to be unmapped
4143 *
4144 * Unmap the CPU virtual address @res from virtual address space.  Only
4145 * architectures that have memory mapped IO functions defined (and the
4146 * PCI_IOBASE value defined) should call this function.
4147 */
4148void pci_unmap_iospace(struct resource *res)
4149{
4150#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4151	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4152
4153	vunmap_range(vaddr, vaddr + resource_size(res));
4154#endif
4155}
4156EXPORT_SYMBOL(pci_unmap_iospace);
4157
4158static void devm_pci_unmap_iospace(struct device *dev, void *ptr)
4159{
4160	struct resource **res = ptr;
4161
4162	pci_unmap_iospace(*res);
4163}
4164
4165/**
4166 * devm_pci_remap_iospace - Managed pci_remap_iospace()
4167 * @dev: Generic device to remap IO address for
4168 * @res: Resource describing the I/O space
4169 * @phys_addr: physical address of range to be mapped
4170 *
4171 * Managed pci_remap_iospace().  Map is automatically unmapped on driver
4172 * detach.
4173 */
4174int devm_pci_remap_iospace(struct device *dev, const struct resource *res,
4175			   phys_addr_t phys_addr)
4176{
4177	const struct resource **ptr;
4178	int error;
4179
4180	ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL);
4181	if (!ptr)
4182		return -ENOMEM;
4183
4184	error = pci_remap_iospace(res, phys_addr);
4185	if (error) {
4186		devres_free(ptr);
4187	} else	{
4188		*ptr = res;
4189		devres_add(dev, ptr);
4190	}
4191
4192	return error;
4193}
4194EXPORT_SYMBOL(devm_pci_remap_iospace);
4195
4196/**
4197 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
4198 * @dev: Generic device to remap IO address for
4199 * @offset: Resource address to map
4200 * @size: Size of map
4201 *
4202 * Managed pci_remap_cfgspace().  Map is automatically unmapped on driver
4203 * detach.
4204 */
4205void __iomem *devm_pci_remap_cfgspace(struct device *dev,
4206				      resource_size_t offset,
4207				      resource_size_t size)
4208{
4209	void __iomem **ptr, *addr;
4210
4211	ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
4212	if (!ptr)
4213		return NULL;
4214
4215	addr = pci_remap_cfgspace(offset, size);
4216	if (addr) {
4217		*ptr = addr;
4218		devres_add(dev, ptr);
4219	} else
4220		devres_free(ptr);
4221
4222	return addr;
4223}
4224EXPORT_SYMBOL(devm_pci_remap_cfgspace);
4225
4226/**
4227 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
4228 * @dev: generic device to handle the resource for
4229 * @res: configuration space resource to be handled
4230 *
4231 * Checks that a resource is a valid memory region, requests the memory
4232 * region and ioremaps with pci_remap_cfgspace() API that ensures the
4233 * proper PCI configuration space memory attributes are guaranteed.
4234 *
4235 * All operations are managed and will be undone on driver detach.
4236 *
4237 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
4238 * on failure. Usage example::
4239 *
4240 *	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4241 *	base = devm_pci_remap_cfg_resource(&pdev->dev, res);
4242 *	if (IS_ERR(base))
4243 *		return PTR_ERR(base);
4244 */
4245void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
4246					  struct resource *res)
4247{
4248	resource_size_t size;
4249	const char *name;
4250	void __iomem *dest_ptr;
4251
4252	BUG_ON(!dev);
4253
4254	if (!res || resource_type(res) != IORESOURCE_MEM) {
4255		dev_err(dev, "invalid resource\n");
4256		return IOMEM_ERR_PTR(-EINVAL);
4257	}
4258
4259	size = resource_size(res);
4260
4261	if (res->name)
4262		name = devm_kasprintf(dev, GFP_KERNEL, "%s %s", dev_name(dev),
4263				      res->name);
4264	else
4265		name = devm_kstrdup(dev, dev_name(dev), GFP_KERNEL);
4266	if (!name)
4267		return IOMEM_ERR_PTR(-ENOMEM);
4268
4269	if (!devm_request_mem_region(dev, res->start, size, name)) {
4270		dev_err(dev, "can't request region for resource %pR\n", res);
4271		return IOMEM_ERR_PTR(-EBUSY);
4272	}
4273
4274	dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
4275	if (!dest_ptr) {
4276		dev_err(dev, "ioremap failed for resource %pR\n", res);
4277		devm_release_mem_region(dev, res->start, size);
4278		dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
4279	}
4280
4281	return dest_ptr;
4282}
4283EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
4284
4285static void __pci_set_master(struct pci_dev *dev, bool enable)
4286{
4287	u16 old_cmd, cmd;
4288
4289	pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4290	if (enable)
4291		cmd = old_cmd | PCI_COMMAND_MASTER;
4292	else
4293		cmd = old_cmd & ~PCI_COMMAND_MASTER;
4294	if (cmd != old_cmd) {
4295		pci_dbg(dev, "%s bus mastering\n",
4296			enable ? "enabling" : "disabling");
4297		pci_write_config_word(dev, PCI_COMMAND, cmd);
4298	}
4299	dev->is_busmaster = enable;
4300}
4301
4302/**
4303 * pcibios_setup - process "pci=" kernel boot arguments
4304 * @str: string used to pass in "pci=" kernel boot arguments
4305 *
4306 * Process kernel boot arguments.  This is the default implementation.
4307 * Architecture specific implementations can override this as necessary.
4308 */
4309char * __weak __init pcibios_setup(char *str)
4310{
4311	return str;
4312}
4313
4314/**
4315 * pcibios_set_master - enable PCI bus-mastering for device dev
4316 * @dev: the PCI device to enable
4317 *
4318 * Enables PCI bus-mastering for the device.  This is the default
4319 * implementation.  Architecture specific implementations can override
4320 * this if necessary.
4321 */
4322void __weak pcibios_set_master(struct pci_dev *dev)
4323{
4324	u8 lat;
4325
4326	/* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4327	if (pci_is_pcie(dev))
4328		return;
4329
4330	pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4331	if (lat < 16)
4332		lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4333	else if (lat > pcibios_max_latency)
4334		lat = pcibios_max_latency;
4335	else
4336		return;
4337
4338	pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4339}
4340
4341/**
4342 * pci_set_master - enables bus-mastering for device dev
4343 * @dev: the PCI device to enable
4344 *
4345 * Enables bus-mastering on the device and calls pcibios_set_master()
4346 * to do the needed arch specific settings.
4347 */
4348void pci_set_master(struct pci_dev *dev)
4349{
4350	__pci_set_master(dev, true);
4351	pcibios_set_master(dev);
4352}
4353EXPORT_SYMBOL(pci_set_master);
4354
4355/**
4356 * pci_clear_master - disables bus-mastering for device dev
4357 * @dev: the PCI device to disable
4358 */
4359void pci_clear_master(struct pci_dev *dev)
4360{
4361	__pci_set_master(dev, false);
4362}
4363EXPORT_SYMBOL(pci_clear_master);
4364
4365/**
4366 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4367 * @dev: the PCI device for which MWI is to be enabled
4368 *
4369 * Helper function for pci_set_mwi.
4370 * Originally copied from drivers/net/acenic.c.
4371 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4372 *
4373 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4374 */
4375int pci_set_cacheline_size(struct pci_dev *dev)
4376{
4377	u8 cacheline_size;
4378
4379	if (!pci_cache_line_size)
4380		return -EINVAL;
4381
4382	/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4383	   equal to or multiple of the right value. */
4384	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4385	if (cacheline_size >= pci_cache_line_size &&
4386	    (cacheline_size % pci_cache_line_size) == 0)
4387		return 0;
4388
4389	/* Write the correct value. */
4390	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4391	/* Read it back. */
4392	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4393	if (cacheline_size == pci_cache_line_size)
4394		return 0;
4395
4396	pci_dbg(dev, "cache line size of %d is not supported\n",
4397		   pci_cache_line_size << 2);
4398
4399	return -EINVAL;
4400}
4401EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4402
4403/**
4404 * pci_set_mwi - enables memory-write-invalidate PCI transaction
4405 * @dev: the PCI device for which MWI is enabled
4406 *
4407 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4408 *
4409 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4410 */
4411int pci_set_mwi(struct pci_dev *dev)
4412{
4413#ifdef PCI_DISABLE_MWI
4414	return 0;
4415#else
4416	int rc;
4417	u16 cmd;
4418
4419	rc = pci_set_cacheline_size(dev);
4420	if (rc)
4421		return rc;
4422
4423	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4424	if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4425		pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4426		cmd |= PCI_COMMAND_INVALIDATE;
4427		pci_write_config_word(dev, PCI_COMMAND, cmd);
4428	}
4429	return 0;
4430#endif
4431}
4432EXPORT_SYMBOL(pci_set_mwi);
4433
4434/**
4435 * pcim_set_mwi - a device-managed pci_set_mwi()
4436 * @dev: the PCI device for which MWI is enabled
4437 *
4438 * Managed pci_set_mwi().
4439 *
4440 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4441 */
4442int pcim_set_mwi(struct pci_dev *dev)
4443{
4444	struct pci_devres *dr;
4445
4446	dr = find_pci_dr(dev);
4447	if (!dr)
4448		return -ENOMEM;
4449
4450	dr->mwi = 1;
4451	return pci_set_mwi(dev);
4452}
4453EXPORT_SYMBOL(pcim_set_mwi);
4454
4455/**
4456 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4457 * @dev: the PCI device for which MWI is enabled
4458 *
4459 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4460 * Callers are not required to check the return value.
4461 *
4462 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4463 */
4464int pci_try_set_mwi(struct pci_dev *dev)
4465{
4466#ifdef PCI_DISABLE_MWI
4467	return 0;
4468#else
4469	return pci_set_mwi(dev);
4470#endif
4471}
4472EXPORT_SYMBOL(pci_try_set_mwi);
4473
4474/**
4475 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4476 * @dev: the PCI device to disable
4477 *
4478 * Disables PCI Memory-Write-Invalidate transaction on the device
4479 */
4480void pci_clear_mwi(struct pci_dev *dev)
4481{
4482#ifndef PCI_DISABLE_MWI
4483	u16 cmd;
4484
4485	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4486	if (cmd & PCI_COMMAND_INVALIDATE) {
4487		cmd &= ~PCI_COMMAND_INVALIDATE;
4488		pci_write_config_word(dev, PCI_COMMAND, cmd);
4489	}
4490#endif
4491}
4492EXPORT_SYMBOL(pci_clear_mwi);
4493
4494/**
4495 * pci_disable_parity - disable parity checking for device
4496 * @dev: the PCI device to operate on
4497 *
4498 * Disable parity checking for device @dev
4499 */
4500void pci_disable_parity(struct pci_dev *dev)
4501{
4502	u16 cmd;
4503
4504	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4505	if (cmd & PCI_COMMAND_PARITY) {
4506		cmd &= ~PCI_COMMAND_PARITY;
4507		pci_write_config_word(dev, PCI_COMMAND, cmd);
4508	}
4509}
4510
4511/**
4512 * pci_intx - enables/disables PCI INTx for device dev
4513 * @pdev: the PCI device to operate on
4514 * @enable: boolean: whether to enable or disable PCI INTx
4515 *
4516 * Enables/disables PCI INTx for device @pdev
4517 */
4518void pci_intx(struct pci_dev *pdev, int enable)
4519{
4520	u16 pci_command, new;
4521
4522	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4523
4524	if (enable)
4525		new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4526	else
4527		new = pci_command | PCI_COMMAND_INTX_DISABLE;
4528
4529	if (new != pci_command) {
4530		struct pci_devres *dr;
4531
4532		pci_write_config_word(pdev, PCI_COMMAND, new);
4533
4534		dr = find_pci_dr(pdev);
4535		if (dr && !dr->restore_intx) {
4536			dr->restore_intx = 1;
4537			dr->orig_intx = !enable;
4538		}
4539	}
4540}
4541EXPORT_SYMBOL_GPL(pci_intx);
4542
4543static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
4544{
4545	struct pci_bus *bus = dev->bus;
4546	bool mask_updated = true;
4547	u32 cmd_status_dword;
4548	u16 origcmd, newcmd;
4549	unsigned long flags;
4550	bool irq_pending;
4551
4552	/*
4553	 * We do a single dword read to retrieve both command and status.
4554	 * Document assumptions that make this possible.
4555	 */
4556	BUILD_BUG_ON(PCI_COMMAND % 4);
4557	BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
4558
4559	raw_spin_lock_irqsave(&pci_lock, flags);
4560
4561	bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
4562
4563	irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
4564
4565	/*
4566	 * Check interrupt status register to see whether our device
4567	 * triggered the interrupt (when masking) or the next IRQ is
4568	 * already pending (when unmasking).
4569	 */
4570	if (mask != irq_pending) {
4571		mask_updated = false;
4572		goto done;
4573	}
4574
4575	origcmd = cmd_status_dword;
4576	newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
4577	if (mask)
4578		newcmd |= PCI_COMMAND_INTX_DISABLE;
4579	if (newcmd != origcmd)
4580		bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
4581
4582done:
4583	raw_spin_unlock_irqrestore(&pci_lock, flags);
4584
4585	return mask_updated;
4586}
4587
4588/**
4589 * pci_check_and_mask_intx - mask INTx on pending interrupt
4590 * @dev: the PCI device to operate on
4591 *
4592 * Check if the device dev has its INTx line asserted, mask it and return
4593 * true in that case. False is returned if no interrupt was pending.
4594 */
4595bool pci_check_and_mask_intx(struct pci_dev *dev)
4596{
4597	return pci_check_and_set_intx_mask(dev, true);
4598}
4599EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
4600
4601/**
4602 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
4603 * @dev: the PCI device to operate on
4604 *
4605 * Check if the device dev has its INTx line asserted, unmask it if not and
4606 * return true. False is returned and the mask remains active if there was
4607 * still an interrupt pending.
4608 */
4609bool pci_check_and_unmask_intx(struct pci_dev *dev)
4610{
4611	return pci_check_and_set_intx_mask(dev, false);
4612}
4613EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
4614
4615/**
4616 * pci_wait_for_pending_transaction - wait for pending transaction
4617 * @dev: the PCI device to operate on
4618 *
4619 * Return 0 if transaction is pending 1 otherwise.
4620 */
4621int pci_wait_for_pending_transaction(struct pci_dev *dev)
4622{
4623	if (!pci_is_pcie(dev))
4624		return 1;
4625
4626	return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4627				    PCI_EXP_DEVSTA_TRPND);
4628}
4629EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4630
4631/**
4632 * pcie_has_flr - check if a device supports function level resets
4633 * @dev: device to check
4634 *
4635 * Returns true if the device advertises support for PCIe function level
4636 * resets.
4637 */
4638bool pcie_has_flr(struct pci_dev *dev)
4639{
4640	u32 cap;
4641
4642	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4643		return false;
4644
4645	pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
4646	return cap & PCI_EXP_DEVCAP_FLR;
4647}
4648EXPORT_SYMBOL_GPL(pcie_has_flr);
4649
4650/**
4651 * pcie_flr - initiate a PCIe function level reset
4652 * @dev: device to reset
4653 *
4654 * Initiate a function level reset on @dev.  The caller should ensure the
4655 * device supports FLR before calling this function, e.g. by using the
4656 * pcie_has_flr() helper.
4657 */
4658int pcie_flr(struct pci_dev *dev)
4659{
4660	if (!pci_wait_for_pending_transaction(dev))
4661		pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4662
4663	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4664
4665	if (dev->imm_ready)
4666		return 0;
4667
4668	/*
4669	 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4670	 * 100ms, but may silently discard requests while the FLR is in
4671	 * progress.  Wait 100ms before trying to access the device.
4672	 */
4673	msleep(100);
4674
4675	return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4676}
4677EXPORT_SYMBOL_GPL(pcie_flr);
4678
4679static int pci_af_flr(struct pci_dev *dev, int probe)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4680{
4681	int pos;
4682	u8 cap;
4683
4684	pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4685	if (!pos)
4686		return -ENOTTY;
4687
4688	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4689		return -ENOTTY;
4690
4691	pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4692	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4693		return -ENOTTY;
4694
4695	if (probe)
4696		return 0;
4697
4698	/*
4699	 * Wait for Transaction Pending bit to clear.  A word-aligned test
4700	 * is used, so we use the control offset rather than status and shift
4701	 * the test bit to match.
4702	 */
4703	if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4704				 PCI_AF_STATUS_TP << 8))
4705		pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4706
4707	pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4708
4709	if (dev->imm_ready)
4710		return 0;
4711
4712	/*
4713	 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4714	 * updated 27 July 2006; a device must complete an FLR within
4715	 * 100ms, but may silently discard requests while the FLR is in
4716	 * progress.  Wait 100ms before trying to access the device.
4717	 */
4718	msleep(100);
4719
4720	return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4721}
4722
4723/**
4724 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4725 * @dev: Device to reset.
4726 * @probe: If set, only check if the device can be reset this way.
4727 *
4728 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4729 * unset, it will be reinitialized internally when going from PCI_D3hot to
4730 * PCI_D0.  If that's the case and the device is not in a low-power state
4731 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4732 *
4733 * NOTE: This causes the caller to sleep for twice the device power transition
4734 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4735 * by default (i.e. unless the @dev's d3hot_delay field has a different value).
4736 * Moreover, only devices in D0 can be reset by this function.
4737 */
4738static int pci_pm_reset(struct pci_dev *dev, int probe)
4739{
4740	u16 csr;
4741
4742	if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4743		return -ENOTTY;
4744
4745	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4746	if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4747		return -ENOTTY;
4748
4749	if (probe)
4750		return 0;
4751
4752	if (dev->current_state != PCI_D0)
4753		return -EINVAL;
4754
4755	csr &= ~PCI_PM_CTRL_STATE_MASK;
4756	csr |= PCI_D3hot;
4757	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4758	pci_dev_d3_sleep(dev);
4759
4760	csr &= ~PCI_PM_CTRL_STATE_MASK;
4761	csr |= PCI_D0;
4762	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4763	pci_dev_d3_sleep(dev);
4764
4765	return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS);
4766}
4767
4768/**
4769 * pcie_wait_for_link_delay - Wait until link is active or inactive
4770 * @pdev: Bridge device
4771 * @active: waiting for active or inactive?
4772 * @delay: Delay to wait after link has become active (in ms)
4773 *
4774 * Use this to wait till link becomes active or inactive.
4775 */
4776static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active,
4777				     int delay)
4778{
4779	int timeout = 1000;
4780	bool ret;
4781	u16 lnk_status;
4782
4783	/*
4784	 * Some controllers might not implement link active reporting. In this
4785	 * case, we wait for 1000 ms + any delay requested by the caller.
4786	 */
4787	if (!pdev->link_active_reporting) {
4788		msleep(timeout + delay);
4789		return true;
4790	}
4791
4792	/*
4793	 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4794	 * after which we should expect an link active if the reset was
4795	 * successful. If so, software must wait a minimum 100ms before sending
4796	 * configuration requests to devices downstream this port.
4797	 *
4798	 * If the link fails to activate, either the device was physically
4799	 * removed or the link is permanently failed.
4800	 */
4801	if (active)
4802		msleep(20);
4803	for (;;) {
4804		pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status);
4805		ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA);
4806		if (ret == active)
4807			break;
4808		if (timeout <= 0)
4809			break;
4810		msleep(10);
4811		timeout -= 10;
4812	}
4813	if (active && ret)
4814		msleep(delay);
4815
4816	return ret == active;
4817}
4818
4819/**
4820 * pcie_wait_for_link - Wait until link is active or inactive
4821 * @pdev: Bridge device
4822 * @active: waiting for active or inactive?
4823 *
4824 * Use this to wait till link becomes active or inactive.
4825 */
4826bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
4827{
4828	return pcie_wait_for_link_delay(pdev, active, 100);
4829}
4830
4831/*
4832 * Find maximum D3cold delay required by all the devices on the bus.  The
4833 * spec says 100 ms, but firmware can lower it and we allow drivers to
4834 * increase it as well.
4835 *
4836 * Called with @pci_bus_sem locked for reading.
4837 */
4838static int pci_bus_max_d3cold_delay(const struct pci_bus *bus)
4839{
4840	const struct pci_dev *pdev;
4841	int min_delay = 100;
4842	int max_delay = 0;
4843
4844	list_for_each_entry(pdev, &bus->devices, bus_list) {
4845		if (pdev->d3cold_delay < min_delay)
4846			min_delay = pdev->d3cold_delay;
4847		if (pdev->d3cold_delay > max_delay)
4848			max_delay = pdev->d3cold_delay;
4849	}
4850
4851	return max(min_delay, max_delay);
4852}
4853
4854/**
4855 * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible
4856 * @dev: PCI bridge
4857 *
4858 * Handle necessary delays before access to the devices on the secondary
4859 * side of the bridge are permitted after D3cold to D0 transition.
4860 *
4861 * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For
4862 * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section
4863 * 4.3.2.
4864 */
4865void pci_bridge_wait_for_secondary_bus(struct pci_dev *dev)
4866{
4867	struct pci_dev *child;
4868	int delay;
4869
4870	if (pci_dev_is_disconnected(dev))
4871		return;
4872
4873	if (!pci_is_bridge(dev) || !dev->bridge_d3)
4874		return;
4875
4876	down_read(&pci_bus_sem);
4877
4878	/*
4879	 * We only deal with devices that are present currently on the bus.
4880	 * For any hot-added devices the access delay is handled in pciehp
4881	 * board_added(). In case of ACPI hotplug the firmware is expected
4882	 * to configure the devices before OS is notified.
4883	 */
4884	if (!dev->subordinate || list_empty(&dev->subordinate->devices)) {
4885		up_read(&pci_bus_sem);
4886		return;
4887	}
4888
4889	/* Take d3cold_delay requirements into account */
4890	delay = pci_bus_max_d3cold_delay(dev->subordinate);
4891	if (!delay) {
4892		up_read(&pci_bus_sem);
4893		return;
4894	}
4895
4896	child = list_first_entry(&dev->subordinate->devices, struct pci_dev,
4897				 bus_list);
4898	up_read(&pci_bus_sem);
4899
4900	/*
4901	 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before
4902	 * accessing the device after reset (that is 1000 ms + 100 ms). In
4903	 * practice this should not be needed because we don't do power
4904	 * management for them (see pci_bridge_d3_possible()).
4905	 */
4906	if (!pci_is_pcie(dev)) {
4907		pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay);
4908		msleep(1000 + delay);
4909		return;
4910	}
4911
4912	/*
4913	 * For PCIe downstream and root ports that do not support speeds
4914	 * greater than 5 GT/s need to wait minimum 100 ms. For higher
4915	 * speeds (gen3) we need to wait first for the data link layer to
4916	 * become active.
4917	 *
4918	 * However, 100 ms is the minimum and the PCIe spec says the
4919	 * software must allow at least 1s before it can determine that the
4920	 * device that did not respond is a broken device. There is
4921	 * evidence that 100 ms is not always enough, for example certain
4922	 * Titan Ridge xHCI controller does not always respond to
4923	 * configuration requests if we only wait for 100 ms (see
4924	 * https://bugzilla.kernel.org/show_bug.cgi?id=203885).
4925	 *
4926	 * Therefore we wait for 100 ms and check for the device presence.
4927	 * If it is still not present give it an additional 100 ms.
4928	 */
4929	if (!pcie_downstream_port(dev))
4930		return;
4931
4932	if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) {
4933		pci_dbg(dev, "waiting %d ms for downstream link\n", delay);
4934		msleep(delay);
4935	} else {
4936		pci_dbg(dev, "waiting %d ms for downstream link, after activation\n",
4937			delay);
4938		if (!pcie_wait_for_link_delay(dev, true, delay)) {
4939			/* Did not train, no need to wait any further */
4940			pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n");
4941			return;
4942		}
4943	}
4944
4945	if (!pci_device_is_present(child)) {
4946		pci_dbg(child, "waiting additional %d ms to become accessible\n", delay);
4947		msleep(delay);
4948	}
4949}
4950
4951void pci_reset_secondary_bus(struct pci_dev *dev)
4952{
4953	u16 ctrl;
4954
4955	pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
4956	ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
4957	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4958
4959	/*
4960	 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms.  Double
4961	 * this to 2ms to ensure that we meet the minimum requirement.
4962	 */
4963	msleep(2);
4964
4965	ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
4966	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4967
4968	/*
4969	 * Trhfa for conventional PCI is 2^25 clock cycles.
4970	 * Assuming a minimum 33MHz clock this results in a 1s
4971	 * delay before we can consider subordinate devices to
4972	 * be re-initialized.  PCIe has some ways to shorten this,
4973	 * but we don't make use of them yet.
4974	 */
4975	ssleep(1);
4976}
4977
4978void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
4979{
4980	pci_reset_secondary_bus(dev);
4981}
4982
4983/**
4984 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
4985 * @dev: Bridge device
4986 *
4987 * Use the bridge control register to assert reset on the secondary bus.
4988 * Devices on the secondary bus are left in power-on state.
4989 */
4990int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
4991{
4992	pcibios_reset_secondary_bus(dev);
4993
4994	return pci_dev_wait(dev, "bus reset", PCIE_RESET_READY_POLL_MS);
4995}
4996EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
4997
4998static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
4999{
5000	struct pci_dev *pdev;
5001
5002	if (pci_is_root_bus(dev->bus) || dev->subordinate ||
5003	    !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5004		return -ENOTTY;
5005
5006	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
5007		if (pdev != dev)
5008			return -ENOTTY;
5009
5010	if (probe)
5011		return 0;
5012
5013	return pci_bridge_secondary_bus_reset(dev->bus->self);
5014}
5015
5016static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
5017{
5018	int rc = -ENOTTY;
5019
5020	if (!hotplug || !try_module_get(hotplug->owner))
5021		return rc;
5022
5023	if (hotplug->ops->reset_slot)
5024		rc = hotplug->ops->reset_slot(hotplug, probe);
5025
5026	module_put(hotplug->owner);
5027
5028	return rc;
5029}
5030
5031static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
5032{
5033	if (dev->multifunction || dev->subordinate || !dev->slot ||
5034	    dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5035		return -ENOTTY;
5036
5037	return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
5038}
5039
5040static int pci_reset_bus_function(struct pci_dev *dev, int probe)
5041{
5042	int rc;
5043
5044	rc = pci_dev_reset_slot_function(dev, probe);
5045	if (rc != -ENOTTY)
5046		return rc;
5047	return pci_parent_bus_reset(dev, probe);
5048}
5049
5050static void pci_dev_lock(struct pci_dev *dev)
5051{
5052	pci_cfg_access_lock(dev);
5053	/* block PM suspend, driver probe, etc. */
5054	device_lock(&dev->dev);
 
5055}
 
5056
5057/* Return 1 on successful lock, 0 on contention */
5058int pci_dev_trylock(struct pci_dev *dev)
5059{
5060	if (pci_cfg_access_trylock(dev)) {
5061		if (device_trylock(&dev->dev))
5062			return 1;
5063		pci_cfg_access_unlock(dev);
5064	}
5065
5066	return 0;
5067}
5068EXPORT_SYMBOL_GPL(pci_dev_trylock);
5069
5070void pci_dev_unlock(struct pci_dev *dev)
5071{
 
5072	device_unlock(&dev->dev);
5073	pci_cfg_access_unlock(dev);
5074}
5075EXPORT_SYMBOL_GPL(pci_dev_unlock);
5076
5077static void pci_dev_save_and_disable(struct pci_dev *dev)
5078{
5079	const struct pci_error_handlers *err_handler =
5080			dev->driver ? dev->driver->err_handler : NULL;
5081
5082	/*
5083	 * dev->driver->err_handler->reset_prepare() is protected against
5084	 * races with ->remove() by the device lock, which must be held by
5085	 * the caller.
5086	 */
5087	if (err_handler && err_handler->reset_prepare)
5088		err_handler->reset_prepare(dev);
5089
5090	/*
5091	 * Wake-up device prior to save.  PM registers default to D0 after
5092	 * reset and a simple register restore doesn't reliably return
5093	 * to a non-D0 state anyway.
5094	 */
5095	pci_set_power_state(dev, PCI_D0);
5096
5097	pci_save_state(dev);
5098	/*
5099	 * Disable the device by clearing the Command register, except for
5100	 * INTx-disable which is set.  This not only disables MMIO and I/O port
5101	 * BARs, but also prevents the device from being Bus Master, preventing
5102	 * DMA from the device including MSI/MSI-X interrupts.  For PCI 2.3
5103	 * compliant devices, INTx-disable prevents legacy interrupts.
5104	 */
5105	pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
5106}
5107
5108static void pci_dev_restore(struct pci_dev *dev)
5109{
5110	const struct pci_error_handlers *err_handler =
5111			dev->driver ? dev->driver->err_handler : NULL;
5112
5113	pci_restore_state(dev);
5114
5115	/*
5116	 * dev->driver->err_handler->reset_done() is protected against
5117	 * races with ->remove() by the device lock, which must be held by
5118	 * the caller.
5119	 */
5120	if (err_handler && err_handler->reset_done)
5121		err_handler->reset_done(dev);
5122}
5123
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5124/**
5125 * __pci_reset_function_locked - reset a PCI device function while holding
5126 * the @dev mutex lock.
5127 * @dev: PCI device to reset
5128 *
5129 * Some devices allow an individual function to be reset without affecting
5130 * other functions in the same device.  The PCI device must be responsive
5131 * to PCI config space in order to use this function.
5132 *
5133 * The device function is presumed to be unused and the caller is holding
5134 * the device mutex lock when this function is called.
5135 *
5136 * Resetting the device will make the contents of PCI configuration space
5137 * random, so any caller of this must be prepared to reinitialise the
5138 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
5139 * etc.
5140 *
5141 * Returns 0 if the device function was successfully reset or negative if the
5142 * device doesn't support resetting a single function.
5143 */
5144int __pci_reset_function_locked(struct pci_dev *dev)
5145{
5146	int rc;
5147
5148	might_sleep();
5149
5150	/*
5151	 * A reset method returns -ENOTTY if it doesn't support this device
5152	 * and we should try the next method.
5153	 *
5154	 * If it returns 0 (success), we're finished.  If it returns any
5155	 * other error, we're also finished: this indicates that further
5156	 * reset mechanisms might be broken on the device.
5157	 */
5158	rc = pci_dev_specific_reset(dev, 0);
5159	if (rc != -ENOTTY)
5160		return rc;
5161	if (pcie_has_flr(dev)) {
5162		rc = pcie_flr(dev);
 
 
 
5163		if (rc != -ENOTTY)
5164			return rc;
5165	}
5166	rc = pci_af_flr(dev, 0);
5167	if (rc != -ENOTTY)
5168		return rc;
5169	rc = pci_pm_reset(dev, 0);
5170	if (rc != -ENOTTY)
5171		return rc;
5172	return pci_reset_bus_function(dev, 0);
5173}
5174EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
5175
5176/**
5177 * pci_probe_reset_function - check whether the device can be safely reset
5178 * @dev: PCI device to reset
 
5179 *
5180 * Some devices allow an individual function to be reset without affecting
5181 * other functions in the same device.  The PCI device must be responsive
5182 * to PCI config space in order to use this function.
5183 *
5184 * Returns 0 if the device function can be reset or negative if the
5185 * device doesn't support resetting a single function.
5186 */
5187int pci_probe_reset_function(struct pci_dev *dev)
5188{
5189	int rc;
 
 
5190
5191	might_sleep();
5192
5193	rc = pci_dev_specific_reset(dev, 1);
5194	if (rc != -ENOTTY)
5195		return rc;
5196	if (pcie_has_flr(dev))
5197		return 0;
5198	rc = pci_af_flr(dev, 1);
5199	if (rc != -ENOTTY)
5200		return rc;
5201	rc = pci_pm_reset(dev, 1);
5202	if (rc != -ENOTTY)
5203		return rc;
5204
5205	return pci_reset_bus_function(dev, 1);
5206}
5207
5208/**
5209 * pci_reset_function - quiesce and reset a PCI device function
5210 * @dev: PCI device to reset
5211 *
5212 * Some devices allow an individual function to be reset without affecting
5213 * other functions in the same device.  The PCI device must be responsive
5214 * to PCI config space in order to use this function.
5215 *
5216 * This function does not just reset the PCI portion of a device, but
5217 * clears all the state associated with the device.  This function differs
5218 * from __pci_reset_function_locked() in that it saves and restores device state
5219 * over the reset and takes the PCI device lock.
5220 *
5221 * Returns 0 if the device function was successfully reset or negative if the
5222 * device doesn't support resetting a single function.
5223 */
5224int pci_reset_function(struct pci_dev *dev)
5225{
5226	int rc;
5227
5228	if (!dev->reset_fn)
5229		return -ENOTTY;
5230
5231	pci_dev_lock(dev);
5232	pci_dev_save_and_disable(dev);
5233
5234	rc = __pci_reset_function_locked(dev);
5235
5236	pci_dev_restore(dev);
5237	pci_dev_unlock(dev);
5238
5239	return rc;
5240}
5241EXPORT_SYMBOL_GPL(pci_reset_function);
5242
5243/**
5244 * pci_reset_function_locked - quiesce and reset a PCI device function
5245 * @dev: PCI device to reset
5246 *
5247 * Some devices allow an individual function to be reset without affecting
5248 * other functions in the same device.  The PCI device must be responsive
5249 * to PCI config space in order to use this function.
5250 *
5251 * This function does not just reset the PCI portion of a device, but
5252 * clears all the state associated with the device.  This function differs
5253 * from __pci_reset_function_locked() in that it saves and restores device state
5254 * over the reset.  It also differs from pci_reset_function() in that it
5255 * requires the PCI device lock to be held.
5256 *
5257 * Returns 0 if the device function was successfully reset or negative if the
5258 * device doesn't support resetting a single function.
5259 */
5260int pci_reset_function_locked(struct pci_dev *dev)
5261{
5262	int rc;
5263
5264	if (!dev->reset_fn)
5265		return -ENOTTY;
5266
5267	pci_dev_save_and_disable(dev);
5268
5269	rc = __pci_reset_function_locked(dev);
5270
5271	pci_dev_restore(dev);
5272
5273	return rc;
5274}
5275EXPORT_SYMBOL_GPL(pci_reset_function_locked);
5276
5277/**
5278 * pci_try_reset_function - quiesce and reset a PCI device function
5279 * @dev: PCI device to reset
5280 *
5281 * Same as above, except return -EAGAIN if unable to lock device.
5282 */
5283int pci_try_reset_function(struct pci_dev *dev)
5284{
5285	int rc;
5286
5287	if (!dev->reset_fn)
5288		return -ENOTTY;
5289
5290	if (!pci_dev_trylock(dev))
5291		return -EAGAIN;
5292
5293	pci_dev_save_and_disable(dev);
5294	rc = __pci_reset_function_locked(dev);
5295	pci_dev_restore(dev);
5296	pci_dev_unlock(dev);
5297
5298	return rc;
5299}
5300EXPORT_SYMBOL_GPL(pci_try_reset_function);
5301
5302/* Do any devices on or below this bus prevent a bus reset? */
5303static bool pci_bus_resetable(struct pci_bus *bus)
5304{
5305	struct pci_dev *dev;
5306
5307
5308	if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5309		return false;
5310
5311	list_for_each_entry(dev, &bus->devices, bus_list) {
5312		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5313		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5314			return false;
5315	}
5316
5317	return true;
5318}
5319
5320/* Lock devices from the top of the tree down */
5321static void pci_bus_lock(struct pci_bus *bus)
5322{
5323	struct pci_dev *dev;
5324
5325	list_for_each_entry(dev, &bus->devices, bus_list) {
5326		pci_dev_lock(dev);
5327		if (dev->subordinate)
5328			pci_bus_lock(dev->subordinate);
5329	}
5330}
5331
5332/* Unlock devices from the bottom of the tree up */
5333static void pci_bus_unlock(struct pci_bus *bus)
5334{
5335	struct pci_dev *dev;
5336
5337	list_for_each_entry(dev, &bus->devices, bus_list) {
5338		if (dev->subordinate)
5339			pci_bus_unlock(dev->subordinate);
5340		pci_dev_unlock(dev);
5341	}
5342}
5343
5344/* Return 1 on successful lock, 0 on contention */
5345static int pci_bus_trylock(struct pci_bus *bus)
5346{
5347	struct pci_dev *dev;
5348
5349	list_for_each_entry(dev, &bus->devices, bus_list) {
5350		if (!pci_dev_trylock(dev))
5351			goto unlock;
5352		if (dev->subordinate) {
5353			if (!pci_bus_trylock(dev->subordinate)) {
5354				pci_dev_unlock(dev);
5355				goto unlock;
5356			}
5357		}
5358	}
5359	return 1;
5360
5361unlock:
5362	list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5363		if (dev->subordinate)
5364			pci_bus_unlock(dev->subordinate);
5365		pci_dev_unlock(dev);
5366	}
5367	return 0;
5368}
5369
5370/* Do any devices on or below this slot prevent a bus reset? */
5371static bool pci_slot_resetable(struct pci_slot *slot)
5372{
5373	struct pci_dev *dev;
5374
5375	if (slot->bus->self &&
5376	    (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5377		return false;
5378
5379	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5380		if (!dev->slot || dev->slot != slot)
5381			continue;
5382		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5383		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5384			return false;
5385	}
5386
5387	return true;
5388}
5389
5390/* Lock devices from the top of the tree down */
5391static void pci_slot_lock(struct pci_slot *slot)
5392{
5393	struct pci_dev *dev;
5394
5395	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5396		if (!dev->slot || dev->slot != slot)
5397			continue;
5398		pci_dev_lock(dev);
5399		if (dev->subordinate)
5400			pci_bus_lock(dev->subordinate);
5401	}
5402}
5403
5404/* Unlock devices from the bottom of the tree up */
5405static void pci_slot_unlock(struct pci_slot *slot)
5406{
5407	struct pci_dev *dev;
5408
5409	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5410		if (!dev->slot || dev->slot != slot)
5411			continue;
5412		if (dev->subordinate)
5413			pci_bus_unlock(dev->subordinate);
5414		pci_dev_unlock(dev);
5415	}
5416}
5417
5418/* Return 1 on successful lock, 0 on contention */
5419static int pci_slot_trylock(struct pci_slot *slot)
5420{
5421	struct pci_dev *dev;
5422
5423	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5424		if (!dev->slot || dev->slot != slot)
5425			continue;
5426		if (!pci_dev_trylock(dev))
5427			goto unlock;
5428		if (dev->subordinate) {
5429			if (!pci_bus_trylock(dev->subordinate)) {
5430				pci_dev_unlock(dev);
5431				goto unlock;
5432			}
5433		}
5434	}
5435	return 1;
5436
5437unlock:
5438	list_for_each_entry_continue_reverse(dev,
5439					     &slot->bus->devices, bus_list) {
5440		if (!dev->slot || dev->slot != slot)
5441			continue;
5442		if (dev->subordinate)
5443			pci_bus_unlock(dev->subordinate);
5444		pci_dev_unlock(dev);
5445	}
5446	return 0;
5447}
5448
5449/*
5450 * Save and disable devices from the top of the tree down while holding
5451 * the @dev mutex lock for the entire tree.
5452 */
5453static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5454{
5455	struct pci_dev *dev;
5456
5457	list_for_each_entry(dev, &bus->devices, bus_list) {
5458		pci_dev_save_and_disable(dev);
5459		if (dev->subordinate)
5460			pci_bus_save_and_disable_locked(dev->subordinate);
5461	}
5462}
5463
5464/*
5465 * Restore devices from top of the tree down while holding @dev mutex lock
5466 * for the entire tree.  Parent bridges need to be restored before we can
5467 * get to subordinate devices.
5468 */
5469static void pci_bus_restore_locked(struct pci_bus *bus)
5470{
5471	struct pci_dev *dev;
5472
5473	list_for_each_entry(dev, &bus->devices, bus_list) {
5474		pci_dev_restore(dev);
5475		if (dev->subordinate)
5476			pci_bus_restore_locked(dev->subordinate);
5477	}
5478}
5479
5480/*
5481 * Save and disable devices from the top of the tree down while holding
5482 * the @dev mutex lock for the entire tree.
5483 */
5484static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5485{
5486	struct pci_dev *dev;
5487
5488	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5489		if (!dev->slot || dev->slot != slot)
5490			continue;
5491		pci_dev_save_and_disable(dev);
5492		if (dev->subordinate)
5493			pci_bus_save_and_disable_locked(dev->subordinate);
5494	}
5495}
5496
5497/*
5498 * Restore devices from top of the tree down while holding @dev mutex lock
5499 * for the entire tree.  Parent bridges need to be restored before we can
5500 * get to subordinate devices.
5501 */
5502static void pci_slot_restore_locked(struct pci_slot *slot)
5503{
5504	struct pci_dev *dev;
5505
5506	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5507		if (!dev->slot || dev->slot != slot)
5508			continue;
5509		pci_dev_restore(dev);
5510		if (dev->subordinate)
5511			pci_bus_restore_locked(dev->subordinate);
5512	}
5513}
5514
5515static int pci_slot_reset(struct pci_slot *slot, int probe)
5516{
5517	int rc;
5518
5519	if (!slot || !pci_slot_resetable(slot))
5520		return -ENOTTY;
5521
5522	if (!probe)
5523		pci_slot_lock(slot);
5524
5525	might_sleep();
5526
5527	rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5528
5529	if (!probe)
5530		pci_slot_unlock(slot);
5531
5532	return rc;
5533}
5534
5535/**
5536 * pci_probe_reset_slot - probe whether a PCI slot can be reset
5537 * @slot: PCI slot to probe
5538 *
5539 * Return 0 if slot can be reset, negative if a slot reset is not supported.
5540 */
5541int pci_probe_reset_slot(struct pci_slot *slot)
5542{
5543	return pci_slot_reset(slot, 1);
5544}
5545EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5546
5547/**
5548 * __pci_reset_slot - Try to reset a PCI slot
5549 * @slot: PCI slot to reset
5550 *
5551 * A PCI bus may host multiple slots, each slot may support a reset mechanism
5552 * independent of other slots.  For instance, some slots may support slot power
5553 * control.  In the case of a 1:1 bus to slot architecture, this function may
5554 * wrap the bus reset to avoid spurious slot related events such as hotplug.
5555 * Generally a slot reset should be attempted before a bus reset.  All of the
5556 * function of the slot and any subordinate buses behind the slot are reset
5557 * through this function.  PCI config space of all devices in the slot and
5558 * behind the slot is saved before and restored after reset.
5559 *
5560 * Same as above except return -EAGAIN if the slot cannot be locked
5561 */
5562static int __pci_reset_slot(struct pci_slot *slot)
5563{
5564	int rc;
5565
5566	rc = pci_slot_reset(slot, 1);
5567	if (rc)
5568		return rc;
5569
5570	if (pci_slot_trylock(slot)) {
5571		pci_slot_save_and_disable_locked(slot);
5572		might_sleep();
5573		rc = pci_reset_hotplug_slot(slot->hotplug, 0);
5574		pci_slot_restore_locked(slot);
5575		pci_slot_unlock(slot);
5576	} else
5577		rc = -EAGAIN;
5578
5579	return rc;
5580}
5581
5582static int pci_bus_reset(struct pci_bus *bus, int probe)
5583{
5584	int ret;
5585
5586	if (!bus->self || !pci_bus_resetable(bus))
5587		return -ENOTTY;
5588
5589	if (probe)
5590		return 0;
5591
5592	pci_bus_lock(bus);
5593
5594	might_sleep();
5595
5596	ret = pci_bridge_secondary_bus_reset(bus->self);
5597
5598	pci_bus_unlock(bus);
5599
5600	return ret;
5601}
5602
5603/**
5604 * pci_bus_error_reset - reset the bridge's subordinate bus
5605 * @bridge: The parent device that connects to the bus to reset
5606 *
5607 * This function will first try to reset the slots on this bus if the method is
5608 * available. If slot reset fails or is not available, this will fall back to a
5609 * secondary bus reset.
5610 */
5611int pci_bus_error_reset(struct pci_dev *bridge)
5612{
5613	struct pci_bus *bus = bridge->subordinate;
5614	struct pci_slot *slot;
5615
5616	if (!bus)
5617		return -ENOTTY;
5618
5619	mutex_lock(&pci_slot_mutex);
5620	if (list_empty(&bus->slots))
5621		goto bus_reset;
5622
5623	list_for_each_entry(slot, &bus->slots, list)
5624		if (pci_probe_reset_slot(slot))
5625			goto bus_reset;
5626
5627	list_for_each_entry(slot, &bus->slots, list)
5628		if (pci_slot_reset(slot, 0))
5629			goto bus_reset;
5630
5631	mutex_unlock(&pci_slot_mutex);
5632	return 0;
5633bus_reset:
5634	mutex_unlock(&pci_slot_mutex);
5635	return pci_bus_reset(bridge->subordinate, 0);
5636}
5637
5638/**
5639 * pci_probe_reset_bus - probe whether a PCI bus can be reset
5640 * @bus: PCI bus to probe
5641 *
5642 * Return 0 if bus can be reset, negative if a bus reset is not supported.
5643 */
5644int pci_probe_reset_bus(struct pci_bus *bus)
5645{
5646	return pci_bus_reset(bus, 1);
5647}
5648EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5649
5650/**
5651 * __pci_reset_bus - Try to reset a PCI bus
5652 * @bus: top level PCI bus to reset
5653 *
5654 * Same as above except return -EAGAIN if the bus cannot be locked
5655 */
5656static int __pci_reset_bus(struct pci_bus *bus)
5657{
5658	int rc;
5659
5660	rc = pci_bus_reset(bus, 1);
5661	if (rc)
5662		return rc;
5663
5664	if (pci_bus_trylock(bus)) {
5665		pci_bus_save_and_disable_locked(bus);
5666		might_sleep();
5667		rc = pci_bridge_secondary_bus_reset(bus->self);
5668		pci_bus_restore_locked(bus);
5669		pci_bus_unlock(bus);
5670	} else
5671		rc = -EAGAIN;
5672
5673	return rc;
5674}
5675
5676/**
5677 * pci_reset_bus - Try to reset a PCI bus
5678 * @pdev: top level PCI device to reset via slot/bus
5679 *
5680 * Same as above except return -EAGAIN if the bus cannot be locked
5681 */
5682int pci_reset_bus(struct pci_dev *pdev)
5683{
5684	return (!pci_probe_reset_slot(pdev->slot)) ?
5685	    __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
5686}
5687EXPORT_SYMBOL_GPL(pci_reset_bus);
5688
5689/**
5690 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
5691 * @dev: PCI device to query
5692 *
5693 * Returns mmrbc: maximum designed memory read count in bytes or
5694 * appropriate error value.
5695 */
5696int pcix_get_max_mmrbc(struct pci_dev *dev)
5697{
5698	int cap;
5699	u32 stat;
5700
5701	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5702	if (!cap)
5703		return -EINVAL;
5704
5705	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5706		return -EINVAL;
5707
5708	return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
5709}
5710EXPORT_SYMBOL(pcix_get_max_mmrbc);
5711
5712/**
5713 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
5714 * @dev: PCI device to query
5715 *
5716 * Returns mmrbc: maximum memory read count in bytes or appropriate error
5717 * value.
5718 */
5719int pcix_get_mmrbc(struct pci_dev *dev)
5720{
5721	int cap;
5722	u16 cmd;
5723
5724	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5725	if (!cap)
5726		return -EINVAL;
5727
5728	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5729		return -EINVAL;
5730
5731	return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
5732}
5733EXPORT_SYMBOL(pcix_get_mmrbc);
5734
5735/**
5736 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
5737 * @dev: PCI device to query
5738 * @mmrbc: maximum memory read count in bytes
5739 *    valid values are 512, 1024, 2048, 4096
5740 *
5741 * If possible sets maximum memory read byte count, some bridges have errata
5742 * that prevent this.
5743 */
5744int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
5745{
5746	int cap;
5747	u32 stat, v, o;
5748	u16 cmd;
5749
5750	if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
5751		return -EINVAL;
5752
5753	v = ffs(mmrbc) - 10;
5754
5755	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5756	if (!cap)
5757		return -EINVAL;
5758
5759	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5760		return -EINVAL;
5761
5762	if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
5763		return -E2BIG;
5764
5765	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5766		return -EINVAL;
5767
5768	o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
5769	if (o != v) {
5770		if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
5771			return -EIO;
5772
5773		cmd &= ~PCI_X_CMD_MAX_READ;
5774		cmd |= v << 2;
5775		if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
5776			return -EIO;
5777	}
5778	return 0;
5779}
5780EXPORT_SYMBOL(pcix_set_mmrbc);
5781
5782/**
5783 * pcie_get_readrq - get PCI Express read request size
5784 * @dev: PCI device to query
5785 *
5786 * Returns maximum memory read request in bytes or appropriate error value.
5787 */
5788int pcie_get_readrq(struct pci_dev *dev)
5789{
5790	u16 ctl;
5791
5792	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5793
5794	return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
5795}
5796EXPORT_SYMBOL(pcie_get_readrq);
5797
5798/**
5799 * pcie_set_readrq - set PCI Express maximum memory read request
5800 * @dev: PCI device to query
5801 * @rq: maximum memory read count in bytes
5802 *    valid values are 128, 256, 512, 1024, 2048, 4096
5803 *
5804 * If possible sets maximum memory read request in bytes
5805 */
5806int pcie_set_readrq(struct pci_dev *dev, int rq)
5807{
5808	u16 v;
5809	int ret;
5810
5811	if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
5812		return -EINVAL;
5813
5814	/*
5815	 * If using the "performance" PCIe config, we clamp the read rq
5816	 * size to the max packet size to keep the host bridge from
5817	 * generating requests larger than we can cope with.
5818	 */
5819	if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
5820		int mps = pcie_get_mps(dev);
5821
5822		if (mps < rq)
5823			rq = mps;
5824	}
5825
5826	v = (ffs(rq) - 8) << 12;
5827
5828	ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5829						  PCI_EXP_DEVCTL_READRQ, v);
5830
5831	return pcibios_err_to_errno(ret);
5832}
5833EXPORT_SYMBOL(pcie_set_readrq);
5834
5835/**
5836 * pcie_get_mps - get PCI Express maximum payload size
5837 * @dev: PCI device to query
5838 *
5839 * Returns maximum payload size in bytes
5840 */
5841int pcie_get_mps(struct pci_dev *dev)
5842{
5843	u16 ctl;
5844
5845	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5846
5847	return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
5848}
5849EXPORT_SYMBOL(pcie_get_mps);
5850
5851/**
5852 * pcie_set_mps - set PCI Express maximum payload size
5853 * @dev: PCI device to query
5854 * @mps: maximum payload size in bytes
5855 *    valid values are 128, 256, 512, 1024, 2048, 4096
5856 *
5857 * If possible sets maximum payload size
5858 */
5859int pcie_set_mps(struct pci_dev *dev, int mps)
5860{
5861	u16 v;
5862	int ret;
5863
5864	if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
5865		return -EINVAL;
5866
5867	v = ffs(mps) - 8;
5868	if (v > dev->pcie_mpss)
5869		return -EINVAL;
5870	v <<= 5;
5871
5872	ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5873						  PCI_EXP_DEVCTL_PAYLOAD, v);
5874
5875	return pcibios_err_to_errno(ret);
5876}
5877EXPORT_SYMBOL(pcie_set_mps);
5878
5879/**
5880 * pcie_bandwidth_available - determine minimum link settings of a PCIe
5881 *			      device and its bandwidth limitation
5882 * @dev: PCI device to query
5883 * @limiting_dev: storage for device causing the bandwidth limitation
5884 * @speed: storage for speed of limiting device
5885 * @width: storage for width of limiting device
5886 *
5887 * Walk up the PCI device chain and find the point where the minimum
5888 * bandwidth is available.  Return the bandwidth available there and (if
5889 * limiting_dev, speed, and width pointers are supplied) information about
5890 * that point.  The bandwidth returned is in Mb/s, i.e., megabits/second of
5891 * raw bandwidth.
5892 */
5893u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
5894			     enum pci_bus_speed *speed,
5895			     enum pcie_link_width *width)
5896{
5897	u16 lnksta;
5898	enum pci_bus_speed next_speed;
5899	enum pcie_link_width next_width;
5900	u32 bw, next_bw;
5901
5902	if (speed)
5903		*speed = PCI_SPEED_UNKNOWN;
5904	if (width)
5905		*width = PCIE_LNK_WIDTH_UNKNOWN;
5906
5907	bw = 0;
5908
5909	while (dev) {
5910		pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
5911
5912		next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
5913		next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
5914			PCI_EXP_LNKSTA_NLW_SHIFT;
5915
5916		next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
5917
5918		/* Check if current device limits the total bandwidth */
5919		if (!bw || next_bw <= bw) {
5920			bw = next_bw;
5921
5922			if (limiting_dev)
5923				*limiting_dev = dev;
5924			if (speed)
5925				*speed = next_speed;
5926			if (width)
5927				*width = next_width;
5928		}
5929
5930		dev = pci_upstream_bridge(dev);
5931	}
5932
5933	return bw;
5934}
5935EXPORT_SYMBOL(pcie_bandwidth_available);
5936
5937/**
5938 * pcie_get_speed_cap - query for the PCI device's link speed capability
5939 * @dev: PCI device to query
5940 *
5941 * Query the PCI device speed capability.  Return the maximum link speed
5942 * supported by the device.
5943 */
5944enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
5945{
5946	u32 lnkcap2, lnkcap;
5947
5948	/*
5949	 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18.  The
5950	 * implementation note there recommends using the Supported Link
5951	 * Speeds Vector in Link Capabilities 2 when supported.
5952	 *
5953	 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
5954	 * should use the Supported Link Speeds field in Link Capabilities,
5955	 * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
5956	 */
5957	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
5958
5959	/* PCIe r3.0-compliant */
5960	if (lnkcap2)
5961		return PCIE_LNKCAP2_SLS2SPEED(lnkcap2);
5962
5963	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5964	if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
5965		return PCIE_SPEED_5_0GT;
5966	else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
5967		return PCIE_SPEED_2_5GT;
5968
5969	return PCI_SPEED_UNKNOWN;
5970}
5971EXPORT_SYMBOL(pcie_get_speed_cap);
5972
5973/**
5974 * pcie_get_width_cap - query for the PCI device's link width capability
5975 * @dev: PCI device to query
5976 *
5977 * Query the PCI device width capability.  Return the maximum link width
5978 * supported by the device.
5979 */
5980enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
5981{
5982	u32 lnkcap;
5983
5984	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5985	if (lnkcap)
5986		return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4;
5987
5988	return PCIE_LNK_WIDTH_UNKNOWN;
5989}
5990EXPORT_SYMBOL(pcie_get_width_cap);
5991
5992/**
5993 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
5994 * @dev: PCI device
5995 * @speed: storage for link speed
5996 * @width: storage for link width
5997 *
5998 * Calculate a PCI device's link bandwidth by querying for its link speed
5999 * and width, multiplying them, and applying encoding overhead.  The result
6000 * is in Mb/s, i.e., megabits/second of raw bandwidth.
6001 */
6002u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
6003			   enum pcie_link_width *width)
6004{
6005	*speed = pcie_get_speed_cap(dev);
6006	*width = pcie_get_width_cap(dev);
6007
6008	if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
6009		return 0;
6010
6011	return *width * PCIE_SPEED2MBS_ENC(*speed);
6012}
6013
6014/**
6015 * __pcie_print_link_status - Report the PCI device's link speed and width
6016 * @dev: PCI device to query
6017 * @verbose: Print info even when enough bandwidth is available
6018 *
6019 * If the available bandwidth at the device is less than the device is
6020 * capable of, report the device's maximum possible bandwidth and the
6021 * upstream link that limits its performance.  If @verbose, always print
6022 * the available bandwidth, even if the device isn't constrained.
6023 */
6024void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
6025{
6026	enum pcie_link_width width, width_cap;
6027	enum pci_bus_speed speed, speed_cap;
6028	struct pci_dev *limiting_dev = NULL;
6029	u32 bw_avail, bw_cap;
6030
6031	bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
6032	bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
6033
6034	if (bw_avail >= bw_cap && verbose)
6035		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
6036			 bw_cap / 1000, bw_cap % 1000,
6037			 pci_speed_string(speed_cap), width_cap);
6038	else if (bw_avail < bw_cap)
6039		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
6040			 bw_avail / 1000, bw_avail % 1000,
6041			 pci_speed_string(speed), width,
6042			 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
6043			 bw_cap / 1000, bw_cap % 1000,
6044			 pci_speed_string(speed_cap), width_cap);
6045}
6046
6047/**
6048 * pcie_print_link_status - Report the PCI device's link speed and width
6049 * @dev: PCI device to query
6050 *
6051 * Report the available bandwidth at the device.
6052 */
6053void pcie_print_link_status(struct pci_dev *dev)
6054{
6055	__pcie_print_link_status(dev, true);
6056}
6057EXPORT_SYMBOL(pcie_print_link_status);
6058
6059/**
6060 * pci_select_bars - Make BAR mask from the type of resource
6061 * @dev: the PCI device for which BAR mask is made
6062 * @flags: resource type mask to be selected
6063 *
6064 * This helper routine makes bar mask from the type of resource.
6065 */
6066int pci_select_bars(struct pci_dev *dev, unsigned long flags)
6067{
6068	int i, bars = 0;
6069	for (i = 0; i < PCI_NUM_RESOURCES; i++)
6070		if (pci_resource_flags(dev, i) & flags)
6071			bars |= (1 << i);
6072	return bars;
6073}
6074EXPORT_SYMBOL(pci_select_bars);
6075
6076/* Some architectures require additional programming to enable VGA */
6077static arch_set_vga_state_t arch_set_vga_state;
6078
6079void __init pci_register_set_vga_state(arch_set_vga_state_t func)
6080{
6081	arch_set_vga_state = func;	/* NULL disables */
6082}
6083
6084static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
6085				  unsigned int command_bits, u32 flags)
6086{
6087	if (arch_set_vga_state)
6088		return arch_set_vga_state(dev, decode, command_bits,
6089						flags);
6090	return 0;
6091}
6092
6093/**
6094 * pci_set_vga_state - set VGA decode state on device and parents if requested
6095 * @dev: the PCI device
6096 * @decode: true = enable decoding, false = disable decoding
6097 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
6098 * @flags: traverse ancestors and change bridges
6099 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
6100 */
6101int pci_set_vga_state(struct pci_dev *dev, bool decode,
6102		      unsigned int command_bits, u32 flags)
6103{
6104	struct pci_bus *bus;
6105	struct pci_dev *bridge;
6106	u16 cmd;
6107	int rc;
6108
6109	WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
6110
6111	/* ARCH specific VGA enables */
6112	rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
6113	if (rc)
6114		return rc;
6115
6116	if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
6117		pci_read_config_word(dev, PCI_COMMAND, &cmd);
6118		if (decode)
6119			cmd |= command_bits;
6120		else
6121			cmd &= ~command_bits;
6122		pci_write_config_word(dev, PCI_COMMAND, cmd);
6123	}
6124
6125	if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
6126		return 0;
6127
6128	bus = dev->bus;
6129	while (bus) {
6130		bridge = bus->self;
6131		if (bridge) {
6132			pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
6133					     &cmd);
6134			if (decode)
6135				cmd |= PCI_BRIDGE_CTL_VGA;
6136			else
6137				cmd &= ~PCI_BRIDGE_CTL_VGA;
6138			pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
6139					      cmd);
6140		}
6141		bus = bus->parent;
6142	}
6143	return 0;
6144}
6145
6146#ifdef CONFIG_ACPI
6147bool pci_pr3_present(struct pci_dev *pdev)
6148{
6149	struct acpi_device *adev;
6150
6151	if (acpi_disabled)
6152		return false;
6153
6154	adev = ACPI_COMPANION(&pdev->dev);
6155	if (!adev)
6156		return false;
6157
6158	return adev->power.flags.power_resources &&
6159		acpi_has_method(adev->handle, "_PR3");
6160}
6161EXPORT_SYMBOL_GPL(pci_pr3_present);
6162#endif
6163
6164/**
6165 * pci_add_dma_alias - Add a DMA devfn alias for a device
6166 * @dev: the PCI device for which alias is added
6167 * @devfn_from: alias slot and function
6168 * @nr_devfns: number of subsequent devfns to alias
6169 *
6170 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
6171 * which is used to program permissible bus-devfn source addresses for DMA
6172 * requests in an IOMMU.  These aliases factor into IOMMU group creation
6173 * and are useful for devices generating DMA requests beyond or different
6174 * from their logical bus-devfn.  Examples include device quirks where the
6175 * device simply uses the wrong devfn, as well as non-transparent bridges
6176 * where the alias may be a proxy for devices in another domain.
6177 *
6178 * IOMMU group creation is performed during device discovery or addition,
6179 * prior to any potential DMA mapping and therefore prior to driver probing
6180 * (especially for userspace assigned devices where IOMMU group definition
6181 * cannot be left as a userspace activity).  DMA aliases should therefore
6182 * be configured via quirks, such as the PCI fixup header quirk.
6183 */
6184void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from, unsigned nr_devfns)
 
6185{
6186	int devfn_to;
6187
6188	nr_devfns = min(nr_devfns, (unsigned) MAX_NR_DEVFNS - devfn_from);
6189	devfn_to = devfn_from + nr_devfns - 1;
6190
6191	if (!dev->dma_alias_mask)
6192		dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL);
6193	if (!dev->dma_alias_mask) {
6194		pci_warn(dev, "Unable to allocate DMA alias mask\n");
6195		return;
6196	}
6197
6198	bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns);
6199
6200	if (nr_devfns == 1)
6201		pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
6202				PCI_SLOT(devfn_from), PCI_FUNC(devfn_from));
6203	else if (nr_devfns > 1)
6204		pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n",
6205				PCI_SLOT(devfn_from), PCI_FUNC(devfn_from),
6206				PCI_SLOT(devfn_to), PCI_FUNC(devfn_to));
6207}
6208
6209bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
6210{
6211	return (dev1->dma_alias_mask &&
6212		test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
6213	       (dev2->dma_alias_mask &&
6214		test_bit(dev1->devfn, dev2->dma_alias_mask)) ||
6215	       pci_real_dma_dev(dev1) == dev2 ||
6216	       pci_real_dma_dev(dev2) == dev1;
6217}
6218
6219bool pci_device_is_present(struct pci_dev *pdev)
6220{
6221	u32 v;
6222
 
 
6223	if (pci_dev_is_disconnected(pdev))
6224		return false;
6225	return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
6226}
6227EXPORT_SYMBOL_GPL(pci_device_is_present);
6228
6229void pci_ignore_hotplug(struct pci_dev *dev)
6230{
6231	struct pci_dev *bridge = dev->bus->self;
6232
6233	dev->ignore_hotplug = 1;
6234	/* Propagate the "ignore hotplug" setting to the parent bridge. */
6235	if (bridge)
6236		bridge->ignore_hotplug = 1;
6237}
6238EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
6239
6240/**
6241 * pci_real_dma_dev - Get PCI DMA device for PCI device
6242 * @dev: the PCI device that may have a PCI DMA alias
6243 *
6244 * Permits the platform to provide architecture-specific functionality to
6245 * devices needing to alias DMA to another PCI device on another PCI bus. If
6246 * the PCI device is on the same bus, it is recommended to use
6247 * pci_add_dma_alias(). This is the default implementation. Architecture
6248 * implementations can override this.
6249 */
6250struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev)
6251{
6252	return dev;
6253}
6254
6255resource_size_t __weak pcibios_default_alignment(void)
6256{
6257	return 0;
6258}
6259
6260/*
6261 * Arches that don't want to expose struct resource to userland as-is in
6262 * sysfs and /proc can implement their own pci_resource_to_user().
6263 */
6264void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
6265				 const struct resource *rsrc,
6266				 resource_size_t *start, resource_size_t *end)
6267{
6268	*start = rsrc->start;
6269	*end = rsrc->end;
6270}
6271
6272static char *resource_alignment_param;
6273static DEFINE_SPINLOCK(resource_alignment_lock);
6274
6275/**
6276 * pci_specified_resource_alignment - get resource alignment specified by user.
6277 * @dev: the PCI device to get
6278 * @resize: whether or not to change resources' size when reassigning alignment
6279 *
6280 * RETURNS: Resource alignment if it is specified.
6281 *          Zero if it is not specified.
6282 */
6283static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
6284							bool *resize)
6285{
6286	int align_order, count;
6287	resource_size_t align = pcibios_default_alignment();
6288	const char *p;
6289	int ret;
6290
6291	spin_lock(&resource_alignment_lock);
6292	p = resource_alignment_param;
6293	if (!p || !*p)
6294		goto out;
6295	if (pci_has_flag(PCI_PROBE_ONLY)) {
6296		align = 0;
6297		pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
6298		goto out;
6299	}
6300
6301	while (*p) {
6302		count = 0;
6303		if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
6304		    p[count] == '@') {
6305			p += count + 1;
6306			if (align_order > 63) {
6307				pr_err("PCI: Invalid requested alignment (order %d)\n",
6308				       align_order);
6309				align_order = PAGE_SHIFT;
6310			}
6311		} else {
6312			align_order = PAGE_SHIFT;
6313		}
6314
6315		ret = pci_dev_str_match(dev, p, &p);
6316		if (ret == 1) {
6317			*resize = true;
6318			align = 1ULL << align_order;
6319			break;
6320		} else if (ret < 0) {
6321			pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
6322			       p);
6323			break;
6324		}
6325
6326		if (*p != ';' && *p != ',') {
6327			/* End of param or invalid format */
6328			break;
6329		}
6330		p++;
6331	}
6332out:
6333	spin_unlock(&resource_alignment_lock);
6334	return align;
6335}
6336
6337static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
6338					   resource_size_t align, bool resize)
6339{
6340	struct resource *r = &dev->resource[bar];
6341	resource_size_t size;
6342
6343	if (!(r->flags & IORESOURCE_MEM))
6344		return;
6345
6346	if (r->flags & IORESOURCE_PCI_FIXED) {
6347		pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
6348			 bar, r, (unsigned long long)align);
6349		return;
6350	}
6351
6352	size = resource_size(r);
6353	if (size >= align)
6354		return;
6355
6356	/*
6357	 * Increase the alignment of the resource.  There are two ways we
6358	 * can do this:
6359	 *
6360	 * 1) Increase the size of the resource.  BARs are aligned on their
6361	 *    size, so when we reallocate space for this resource, we'll
6362	 *    allocate it with the larger alignment.  This also prevents
6363	 *    assignment of any other BARs inside the alignment region, so
6364	 *    if we're requesting page alignment, this means no other BARs
6365	 *    will share the page.
6366	 *
6367	 *    The disadvantage is that this makes the resource larger than
6368	 *    the hardware BAR, which may break drivers that compute things
6369	 *    based on the resource size, e.g., to find registers at a
6370	 *    fixed offset before the end of the BAR.
6371	 *
6372	 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6373	 *    set r->start to the desired alignment.  By itself this
6374	 *    doesn't prevent other BARs being put inside the alignment
6375	 *    region, but if we realign *every* resource of every device in
6376	 *    the system, none of them will share an alignment region.
6377	 *
6378	 * When the user has requested alignment for only some devices via
6379	 * the "pci=resource_alignment" argument, "resize" is true and we
6380	 * use the first method.  Otherwise we assume we're aligning all
6381	 * devices and we use the second.
6382	 */
6383
6384	pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n",
6385		 bar, r, (unsigned long long)align);
6386
6387	if (resize) {
6388		r->start = 0;
6389		r->end = align - 1;
6390	} else {
6391		r->flags &= ~IORESOURCE_SIZEALIGN;
6392		r->flags |= IORESOURCE_STARTALIGN;
6393		r->start = align;
6394		r->end = r->start + size - 1;
6395	}
6396	r->flags |= IORESOURCE_UNSET;
6397}
6398
6399/*
6400 * This function disables memory decoding and releases memory resources
6401 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6402 * It also rounds up size to specified alignment.
6403 * Later on, the kernel will assign page-aligned memory resource back
6404 * to the device.
6405 */
6406void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6407{
6408	int i;
6409	struct resource *r;
6410	resource_size_t align;
6411	u16 command;
6412	bool resize = false;
6413
6414	/*
6415	 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6416	 * 3.4.1.11.  Their resources are allocated from the space
6417	 * described by the VF BARx register in the PF's SR-IOV capability.
6418	 * We can't influence their alignment here.
6419	 */
6420	if (dev->is_virtfn)
6421		return;
6422
6423	/* check if specified PCI is target device to reassign */
6424	align = pci_specified_resource_alignment(dev, &resize);
6425	if (!align)
6426		return;
6427
6428	if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6429	    (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6430		pci_warn(dev, "Can't reassign resources to host bridge\n");
6431		return;
6432	}
6433
6434	pci_read_config_word(dev, PCI_COMMAND, &command);
6435	command &= ~PCI_COMMAND_MEMORY;
6436	pci_write_config_word(dev, PCI_COMMAND, command);
6437
6438	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6439		pci_request_resource_alignment(dev, i, align, resize);
6440
6441	/*
6442	 * Need to disable bridge's resource window,
6443	 * to enable the kernel to reassign new resource
6444	 * window later on.
6445	 */
6446	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6447		for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6448			r = &dev->resource[i];
6449			if (!(r->flags & IORESOURCE_MEM))
6450				continue;
6451			r->flags |= IORESOURCE_UNSET;
6452			r->end = resource_size(r) - 1;
6453			r->start = 0;
6454		}
6455		pci_disable_bridge_window(dev);
6456	}
6457}
6458
6459static ssize_t resource_alignment_show(struct bus_type *bus, char *buf)
6460{
6461	size_t count = 0;
6462
6463	spin_lock(&resource_alignment_lock);
6464	if (resource_alignment_param)
6465		count = sysfs_emit(buf, "%s\n", resource_alignment_param);
6466	spin_unlock(&resource_alignment_lock);
6467
6468	return count;
6469}
6470
6471static ssize_t resource_alignment_store(struct bus_type *bus,
6472					const char *buf, size_t count)
6473{
6474	char *param, *old, *end;
6475
6476	if (count >= (PAGE_SIZE - 1))
6477		return -EINVAL;
6478
6479	param = kstrndup(buf, count, GFP_KERNEL);
6480	if (!param)
6481		return -ENOMEM;
6482
6483	end = strchr(param, '\n');
6484	if (end)
6485		*end = '\0';
6486
6487	spin_lock(&resource_alignment_lock);
6488	old = resource_alignment_param;
6489	if (strlen(param)) {
6490		resource_alignment_param = param;
6491	} else {
6492		kfree(param);
6493		resource_alignment_param = NULL;
6494	}
6495	spin_unlock(&resource_alignment_lock);
6496
6497	kfree(old);
6498
6499	return count;
6500}
6501
6502static BUS_ATTR_RW(resource_alignment);
6503
6504static int __init pci_resource_alignment_sysfs_init(void)
6505{
6506	return bus_create_file(&pci_bus_type,
6507					&bus_attr_resource_alignment);
6508}
6509late_initcall(pci_resource_alignment_sysfs_init);
6510
6511static void pci_no_domains(void)
6512{
6513#ifdef CONFIG_PCI_DOMAINS
6514	pci_domains_supported = 0;
6515#endif
6516}
6517
6518#ifdef CONFIG_PCI_DOMAINS_GENERIC
6519static atomic_t __domain_nr = ATOMIC_INIT(-1);
 
6520
6521static int pci_get_new_domain_nr(void)
6522{
6523	return atomic_inc_return(&__domain_nr);
 
 
 
 
 
 
 
 
 
 
 
 
 
6524}
6525
6526static int of_pci_bus_find_domain_nr(struct device *parent)
6527{
6528	static int use_dt_domains = -1;
6529	int domain = -1;
 
 
 
 
 
 
6530
6531	if (parent)
6532		domain = of_get_pci_domain_nr(parent->of_node);
 
 
 
 
 
 
 
 
 
 
6533
6534	/*
6535	 * Check DT domain and use_dt_domains values.
6536	 *
6537	 * If DT domain property is valid (domain >= 0) and
6538	 * use_dt_domains != 0, the DT assignment is valid since this means
6539	 * we have not previously allocated a domain number by using
6540	 * pci_get_new_domain_nr(); we should also update use_dt_domains to
6541	 * 1, to indicate that we have just assigned a domain number from
6542	 * DT.
6543	 *
6544	 * If DT domain property value is not valid (ie domain < 0), and we
6545	 * have not previously assigned a domain number from DT
6546	 * (use_dt_domains != 1) we should assign a domain number by
6547	 * using the:
6548	 *
6549	 * pci_get_new_domain_nr()
6550	 *
6551	 * API and update the use_dt_domains value to keep track of method we
6552	 * are using to assign domain numbers (use_dt_domains = 0).
6553	 *
6554	 * All other combinations imply we have a platform that is trying
6555	 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
6556	 * which is a recipe for domain mishandling and it is prevented by
6557	 * invalidating the domain value (domain = -1) and printing a
6558	 * corresponding error.
6559	 */
6560	if (domain >= 0 && use_dt_domains) {
6561		use_dt_domains = 1;
6562	} else if (domain < 0 && use_dt_domains != 1) {
6563		use_dt_domains = 0;
6564		domain = pci_get_new_domain_nr();
6565	} else {
6566		if (parent)
6567			pr_err("Node %pOF has ", parent->of_node);
6568		pr_err("Inconsistent \"linux,pci-domain\" property in DT\n");
6569		domain = -1;
6570	}
6571
6572	return domain;
 
 
 
 
6573}
6574
6575int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6576{
6577	return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6578			       acpi_pci_bus_find_domain_nr(bus);
 
 
 
 
 
 
 
6579}
6580#endif
6581
6582/**
6583 * pci_ext_cfg_avail - can we access extended PCI config space?
6584 *
6585 * Returns 1 if we can access PCI extended config space (offsets
6586 * greater than 0xff). This is the default implementation. Architecture
6587 * implementations can override this.
6588 */
6589int __weak pci_ext_cfg_avail(void)
6590{
6591	return 1;
6592}
6593
6594void __weak pci_fixup_cardbus(struct pci_bus *bus)
6595{
6596}
6597EXPORT_SYMBOL(pci_fixup_cardbus);
6598
6599static int __init pci_setup(char *str)
6600{
6601	while (str) {
6602		char *k = strchr(str, ',');
6603		if (k)
6604			*k++ = 0;
6605		if (*str && (str = pcibios_setup(str)) && *str) {
6606			if (!strcmp(str, "nomsi")) {
6607				pci_no_msi();
6608			} else if (!strncmp(str, "noats", 5)) {
6609				pr_info("PCIe: ATS is disabled\n");
6610				pcie_ats_disabled = true;
6611			} else if (!strcmp(str, "noaer")) {
6612				pci_no_aer();
6613			} else if (!strcmp(str, "earlydump")) {
6614				pci_early_dump = true;
6615			} else if (!strncmp(str, "realloc=", 8)) {
6616				pci_realloc_get_opt(str + 8);
6617			} else if (!strncmp(str, "realloc", 7)) {
6618				pci_realloc_get_opt("on");
6619			} else if (!strcmp(str, "nodomains")) {
6620				pci_no_domains();
6621			} else if (!strncmp(str, "noari", 5)) {
6622				pcie_ari_disabled = true;
6623			} else if (!strncmp(str, "cbiosize=", 9)) {
6624				pci_cardbus_io_size = memparse(str + 9, &str);
6625			} else if (!strncmp(str, "cbmemsize=", 10)) {
6626				pci_cardbus_mem_size = memparse(str + 10, &str);
6627			} else if (!strncmp(str, "resource_alignment=", 19)) {
6628				resource_alignment_param = str + 19;
6629			} else if (!strncmp(str, "ecrc=", 5)) {
6630				pcie_ecrc_get_policy(str + 5);
6631			} else if (!strncmp(str, "hpiosize=", 9)) {
6632				pci_hotplug_io_size = memparse(str + 9, &str);
6633			} else if (!strncmp(str, "hpmmiosize=", 11)) {
6634				pci_hotplug_mmio_size = memparse(str + 11, &str);
6635			} else if (!strncmp(str, "hpmmioprefsize=", 15)) {
6636				pci_hotplug_mmio_pref_size = memparse(str + 15, &str);
6637			} else if (!strncmp(str, "hpmemsize=", 10)) {
6638				pci_hotplug_mmio_size = memparse(str + 10, &str);
6639				pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size;
6640			} else if (!strncmp(str, "hpbussize=", 10)) {
6641				pci_hotplug_bus_size =
6642					simple_strtoul(str + 10, &str, 0);
6643				if (pci_hotplug_bus_size > 0xff)
6644					pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
6645			} else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
6646				pcie_bus_config = PCIE_BUS_TUNE_OFF;
6647			} else if (!strncmp(str, "pcie_bus_safe", 13)) {
6648				pcie_bus_config = PCIE_BUS_SAFE;
6649			} else if (!strncmp(str, "pcie_bus_perf", 13)) {
6650				pcie_bus_config = PCIE_BUS_PERFORMANCE;
6651			} else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
6652				pcie_bus_config = PCIE_BUS_PEER2PEER;
6653			} else if (!strncmp(str, "pcie_scan_all", 13)) {
6654				pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
6655			} else if (!strncmp(str, "disable_acs_redir=", 18)) {
6656				disable_acs_redir_param = str + 18;
6657			} else {
6658				pr_err("PCI: Unknown option `%s'\n", str);
6659			}
6660		}
6661		str = k;
6662	}
6663	return 0;
6664}
6665early_param("pci", pci_setup);
6666
6667/*
6668 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
6669 * in pci_setup(), above, to point to data in the __initdata section which
6670 * will be freed after the init sequence is complete. We can't allocate memory
6671 * in pci_setup() because some architectures do not have any memory allocation
6672 * service available during an early_param() call. So we allocate memory and
6673 * copy the variable here before the init section is freed.
6674 *
6675 */
6676static int __init pci_realloc_setup_params(void)
6677{
6678	resource_alignment_param = kstrdup(resource_alignment_param,
6679					   GFP_KERNEL);
6680	disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
6681
6682	return 0;
6683}
6684pure_initcall(pci_realloc_setup_params);