Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * PCI Bus Services, see include/linux/pci.h for further explanation.
4 *
5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
6 * David Mosberger-Tang
7 *
8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
9 */
10
11#include <linux/acpi.h>
12#include <linux/kernel.h>
13#include <linux/delay.h>
14#include <linux/dmi.h>
15#include <linux/init.h>
16#include <linux/msi.h>
17#include <linux/of.h>
18#include <linux/pci.h>
19#include <linux/pm.h>
20#include <linux/slab.h>
21#include <linux/module.h>
22#include <linux/spinlock.h>
23#include <linux/string.h>
24#include <linux/log2.h>
25#include <linux/logic_pio.h>
26#include <linux/pm_wakeup.h>
27#include <linux/interrupt.h>
28#include <linux/device.h>
29#include <linux/pm_runtime.h>
30#include <linux/pci_hotplug.h>
31#include <linux/vmalloc.h>
32#include <asm/dma.h>
33#include <linux/aer.h>
34#include <linux/bitfield.h>
35#include "pci.h"
36
37DEFINE_MUTEX(pci_slot_mutex);
38
39const char *pci_power_names[] = {
40 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
41};
42EXPORT_SYMBOL_GPL(pci_power_names);
43
44#ifdef CONFIG_X86_32
45int isa_dma_bridge_buggy;
46EXPORT_SYMBOL(isa_dma_bridge_buggy);
47#endif
48
49int pci_pci_problems;
50EXPORT_SYMBOL(pci_pci_problems);
51
52unsigned int pci_pm_d3hot_delay;
53
54static void pci_pme_list_scan(struct work_struct *work);
55
56static LIST_HEAD(pci_pme_list);
57static DEFINE_MUTEX(pci_pme_list_mutex);
58static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
59
60struct pci_pme_device {
61 struct list_head list;
62 struct pci_dev *dev;
63};
64
65#define PME_TIMEOUT 1000 /* How long between PME checks */
66
67static void pci_dev_d3_sleep(struct pci_dev *dev)
68{
69 unsigned int delay_ms = max(dev->d3hot_delay, pci_pm_d3hot_delay);
70 unsigned int upper;
71
72 if (delay_ms) {
73 /* Use a 20% upper bound, 1ms minimum */
74 upper = max(DIV_ROUND_CLOSEST(delay_ms, 5), 1U);
75 usleep_range(delay_ms * USEC_PER_MSEC,
76 (delay_ms + upper) * USEC_PER_MSEC);
77 }
78}
79
80bool pci_reset_supported(struct pci_dev *dev)
81{
82 return dev->reset_methods[0] != 0;
83}
84
85#ifdef CONFIG_PCI_DOMAINS
86int pci_domains_supported = 1;
87#endif
88
89#define DEFAULT_CARDBUS_IO_SIZE (256)
90#define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
91/* pci=cbmemsize=nnM,cbiosize=nn can override this */
92unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
93unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
94
95#define DEFAULT_HOTPLUG_IO_SIZE (256)
96#define DEFAULT_HOTPLUG_MMIO_SIZE (2*1024*1024)
97#define DEFAULT_HOTPLUG_MMIO_PREF_SIZE (2*1024*1024)
98/* hpiosize=nn can override this */
99unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
100/*
101 * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size,
102 * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size;
103 * pci=hpmemsize=nnM overrides both
104 */
105unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE;
106unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE;
107
108#define DEFAULT_HOTPLUG_BUS_SIZE 1
109unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
110
111
112/* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */
113#ifdef CONFIG_PCIE_BUS_TUNE_OFF
114enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
115#elif defined CONFIG_PCIE_BUS_SAFE
116enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE;
117#elif defined CONFIG_PCIE_BUS_PERFORMANCE
118enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE;
119#elif defined CONFIG_PCIE_BUS_PEER2PEER
120enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER;
121#else
122enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
123#endif
124
125/*
126 * The default CLS is used if arch didn't set CLS explicitly and not
127 * all pci devices agree on the same value. Arch can override either
128 * the dfl or actual value as it sees fit. Don't forget this is
129 * measured in 32-bit words, not bytes.
130 */
131u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
132u8 pci_cache_line_size;
133
134/*
135 * If we set up a device for bus mastering, we need to check the latency
136 * timer as certain BIOSes forget to set it properly.
137 */
138unsigned int pcibios_max_latency = 255;
139
140/* If set, the PCIe ARI capability will not be used. */
141static bool pcie_ari_disabled;
142
143/* If set, the PCIe ATS capability will not be used. */
144static bool pcie_ats_disabled;
145
146/* If set, the PCI config space of each device is printed during boot. */
147bool pci_early_dump;
148
149bool pci_ats_disabled(void)
150{
151 return pcie_ats_disabled;
152}
153EXPORT_SYMBOL_GPL(pci_ats_disabled);
154
155/* Disable bridge_d3 for all PCIe ports */
156static bool pci_bridge_d3_disable;
157/* Force bridge_d3 for all PCIe ports */
158static bool pci_bridge_d3_force;
159
160static int __init pcie_port_pm_setup(char *str)
161{
162 if (!strcmp(str, "off"))
163 pci_bridge_d3_disable = true;
164 else if (!strcmp(str, "force"))
165 pci_bridge_d3_force = true;
166 return 1;
167}
168__setup("pcie_port_pm=", pcie_port_pm_setup);
169
170/* Time to wait after a reset for device to become responsive */
171#define PCIE_RESET_READY_POLL_MS 60000
172
173/**
174 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
175 * @bus: pointer to PCI bus structure to search
176 *
177 * Given a PCI bus, returns the highest PCI bus number present in the set
178 * including the given PCI bus and its list of child PCI buses.
179 */
180unsigned char pci_bus_max_busnr(struct pci_bus *bus)
181{
182 struct pci_bus *tmp;
183 unsigned char max, n;
184
185 max = bus->busn_res.end;
186 list_for_each_entry(tmp, &bus->children, node) {
187 n = pci_bus_max_busnr(tmp);
188 if (n > max)
189 max = n;
190 }
191 return max;
192}
193EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
194
195/**
196 * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS
197 * @pdev: the PCI device
198 *
199 * Returns error bits set in PCI_STATUS and clears them.
200 */
201int pci_status_get_and_clear_errors(struct pci_dev *pdev)
202{
203 u16 status;
204 int ret;
205
206 ret = pci_read_config_word(pdev, PCI_STATUS, &status);
207 if (ret != PCIBIOS_SUCCESSFUL)
208 return -EIO;
209
210 status &= PCI_STATUS_ERROR_BITS;
211 if (status)
212 pci_write_config_word(pdev, PCI_STATUS, status);
213
214 return status;
215}
216EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors);
217
218#ifdef CONFIG_HAS_IOMEM
219static void __iomem *__pci_ioremap_resource(struct pci_dev *pdev, int bar,
220 bool write_combine)
221{
222 struct resource *res = &pdev->resource[bar];
223 resource_size_t start = res->start;
224 resource_size_t size = resource_size(res);
225
226 /*
227 * Make sure the BAR is actually a memory resource, not an IO resource
228 */
229 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
230 pci_err(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
231 return NULL;
232 }
233
234 if (write_combine)
235 return ioremap_wc(start, size);
236
237 return ioremap(start, size);
238}
239
240void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
241{
242 return __pci_ioremap_resource(pdev, bar, false);
243}
244EXPORT_SYMBOL_GPL(pci_ioremap_bar);
245
246void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
247{
248 return __pci_ioremap_resource(pdev, bar, true);
249}
250EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
251#endif
252
253/**
254 * pci_dev_str_match_path - test if a path string matches a device
255 * @dev: the PCI device to test
256 * @path: string to match the device against
257 * @endptr: pointer to the string after the match
258 *
259 * Test if a string (typically from a kernel parameter) formatted as a
260 * path of device/function addresses matches a PCI device. The string must
261 * be of the form:
262 *
263 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
264 *
265 * A path for a device can be obtained using 'lspci -t'. Using a path
266 * is more robust against bus renumbering than using only a single bus,
267 * device and function address.
268 *
269 * Returns 1 if the string matches the device, 0 if it does not and
270 * a negative error code if it fails to parse the string.
271 */
272static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
273 const char **endptr)
274{
275 int ret;
276 unsigned int seg, bus, slot, func;
277 char *wpath, *p;
278 char end;
279
280 *endptr = strchrnul(path, ';');
281
282 wpath = kmemdup_nul(path, *endptr - path, GFP_ATOMIC);
283 if (!wpath)
284 return -ENOMEM;
285
286 while (1) {
287 p = strrchr(wpath, '/');
288 if (!p)
289 break;
290 ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
291 if (ret != 2) {
292 ret = -EINVAL;
293 goto free_and_exit;
294 }
295
296 if (dev->devfn != PCI_DEVFN(slot, func)) {
297 ret = 0;
298 goto free_and_exit;
299 }
300
301 /*
302 * Note: we don't need to get a reference to the upstream
303 * bridge because we hold a reference to the top level
304 * device which should hold a reference to the bridge,
305 * and so on.
306 */
307 dev = pci_upstream_bridge(dev);
308 if (!dev) {
309 ret = 0;
310 goto free_and_exit;
311 }
312
313 *p = 0;
314 }
315
316 ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
317 &func, &end);
318 if (ret != 4) {
319 seg = 0;
320 ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
321 if (ret != 3) {
322 ret = -EINVAL;
323 goto free_and_exit;
324 }
325 }
326
327 ret = (seg == pci_domain_nr(dev->bus) &&
328 bus == dev->bus->number &&
329 dev->devfn == PCI_DEVFN(slot, func));
330
331free_and_exit:
332 kfree(wpath);
333 return ret;
334}
335
336/**
337 * pci_dev_str_match - test if a string matches a device
338 * @dev: the PCI device to test
339 * @p: string to match the device against
340 * @endptr: pointer to the string after the match
341 *
342 * Test if a string (typically from a kernel parameter) matches a specified
343 * PCI device. The string may be of one of the following formats:
344 *
345 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
346 * pci:<vendor>:<device>[:<subvendor>:<subdevice>]
347 *
348 * The first format specifies a PCI bus/device/function address which
349 * may change if new hardware is inserted, if motherboard firmware changes,
350 * or due to changes caused in kernel parameters. If the domain is
351 * left unspecified, it is taken to be 0. In order to be robust against
352 * bus renumbering issues, a path of PCI device/function numbers may be used
353 * to address the specific device. The path for a device can be determined
354 * through the use of 'lspci -t'.
355 *
356 * The second format matches devices using IDs in the configuration
357 * space which may match multiple devices in the system. A value of 0
358 * for any field will match all devices. (Note: this differs from
359 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
360 * legacy reasons and convenience so users don't have to specify
361 * FFFFFFFFs on the command line.)
362 *
363 * Returns 1 if the string matches the device, 0 if it does not and
364 * a negative error code if the string cannot be parsed.
365 */
366static int pci_dev_str_match(struct pci_dev *dev, const char *p,
367 const char **endptr)
368{
369 int ret;
370 int count;
371 unsigned short vendor, device, subsystem_vendor, subsystem_device;
372
373 if (strncmp(p, "pci:", 4) == 0) {
374 /* PCI vendor/device (subvendor/subdevice) IDs are specified */
375 p += 4;
376 ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
377 &subsystem_vendor, &subsystem_device, &count);
378 if (ret != 4) {
379 ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
380 if (ret != 2)
381 return -EINVAL;
382
383 subsystem_vendor = 0;
384 subsystem_device = 0;
385 }
386
387 p += count;
388
389 if ((!vendor || vendor == dev->vendor) &&
390 (!device || device == dev->device) &&
391 (!subsystem_vendor ||
392 subsystem_vendor == dev->subsystem_vendor) &&
393 (!subsystem_device ||
394 subsystem_device == dev->subsystem_device))
395 goto found;
396 } else {
397 /*
398 * PCI Bus, Device, Function IDs are specified
399 * (optionally, may include a path of devfns following it)
400 */
401 ret = pci_dev_str_match_path(dev, p, &p);
402 if (ret < 0)
403 return ret;
404 else if (ret)
405 goto found;
406 }
407
408 *endptr = p;
409 return 0;
410
411found:
412 *endptr = p;
413 return 1;
414}
415
416static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
417 u8 pos, int cap, int *ttl)
418{
419 u8 id;
420 u16 ent;
421
422 pci_bus_read_config_byte(bus, devfn, pos, &pos);
423
424 while ((*ttl)--) {
425 if (pos < 0x40)
426 break;
427 pos &= ~3;
428 pci_bus_read_config_word(bus, devfn, pos, &ent);
429
430 id = ent & 0xff;
431 if (id == 0xff)
432 break;
433 if (id == cap)
434 return pos;
435 pos = (ent >> 8);
436 }
437 return 0;
438}
439
440static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
441 u8 pos, int cap)
442{
443 int ttl = PCI_FIND_CAP_TTL;
444
445 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
446}
447
448u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
449{
450 return __pci_find_next_cap(dev->bus, dev->devfn,
451 pos + PCI_CAP_LIST_NEXT, cap);
452}
453EXPORT_SYMBOL_GPL(pci_find_next_capability);
454
455static u8 __pci_bus_find_cap_start(struct pci_bus *bus,
456 unsigned int devfn, u8 hdr_type)
457{
458 u16 status;
459
460 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
461 if (!(status & PCI_STATUS_CAP_LIST))
462 return 0;
463
464 switch (hdr_type) {
465 case PCI_HEADER_TYPE_NORMAL:
466 case PCI_HEADER_TYPE_BRIDGE:
467 return PCI_CAPABILITY_LIST;
468 case PCI_HEADER_TYPE_CARDBUS:
469 return PCI_CB_CAPABILITY_LIST;
470 }
471
472 return 0;
473}
474
475/**
476 * pci_find_capability - query for devices' capabilities
477 * @dev: PCI device to query
478 * @cap: capability code
479 *
480 * Tell if a device supports a given PCI capability.
481 * Returns the address of the requested capability structure within the
482 * device's PCI configuration space or 0 in case the device does not
483 * support it. Possible values for @cap include:
484 *
485 * %PCI_CAP_ID_PM Power Management
486 * %PCI_CAP_ID_AGP Accelerated Graphics Port
487 * %PCI_CAP_ID_VPD Vital Product Data
488 * %PCI_CAP_ID_SLOTID Slot Identification
489 * %PCI_CAP_ID_MSI Message Signalled Interrupts
490 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
491 * %PCI_CAP_ID_PCIX PCI-X
492 * %PCI_CAP_ID_EXP PCI Express
493 */
494u8 pci_find_capability(struct pci_dev *dev, int cap)
495{
496 u8 pos;
497
498 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
499 if (pos)
500 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
501
502 return pos;
503}
504EXPORT_SYMBOL(pci_find_capability);
505
506/**
507 * pci_bus_find_capability - query for devices' capabilities
508 * @bus: the PCI bus to query
509 * @devfn: PCI device to query
510 * @cap: capability code
511 *
512 * Like pci_find_capability() but works for PCI devices that do not have a
513 * pci_dev structure set up yet.
514 *
515 * Returns the address of the requested capability structure within the
516 * device's PCI configuration space or 0 in case the device does not
517 * support it.
518 */
519u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
520{
521 u8 hdr_type, pos;
522
523 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
524
525 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
526 if (pos)
527 pos = __pci_find_next_cap(bus, devfn, pos, cap);
528
529 return pos;
530}
531EXPORT_SYMBOL(pci_bus_find_capability);
532
533/**
534 * pci_find_next_ext_capability - Find an extended capability
535 * @dev: PCI device to query
536 * @start: address at which to start looking (0 to start at beginning of list)
537 * @cap: capability code
538 *
539 * Returns the address of the next matching extended capability structure
540 * within the device's PCI configuration space or 0 if the device does
541 * not support it. Some capabilities can occur several times, e.g., the
542 * vendor-specific capability, and this provides a way to find them all.
543 */
544u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap)
545{
546 u32 header;
547 int ttl;
548 u16 pos = PCI_CFG_SPACE_SIZE;
549
550 /* minimum 8 bytes per capability */
551 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
552
553 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
554 return 0;
555
556 if (start)
557 pos = start;
558
559 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
560 return 0;
561
562 /*
563 * If we have no capabilities, this is indicated by cap ID,
564 * cap version and next pointer all being 0.
565 */
566 if (header == 0)
567 return 0;
568
569 while (ttl-- > 0) {
570 if (PCI_EXT_CAP_ID(header) == cap && pos != start)
571 return pos;
572
573 pos = PCI_EXT_CAP_NEXT(header);
574 if (pos < PCI_CFG_SPACE_SIZE)
575 break;
576
577 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
578 break;
579 }
580
581 return 0;
582}
583EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
584
585/**
586 * pci_find_ext_capability - Find an extended capability
587 * @dev: PCI device to query
588 * @cap: capability code
589 *
590 * Returns the address of the requested extended capability structure
591 * within the device's PCI configuration space or 0 if the device does
592 * not support it. Possible values for @cap include:
593 *
594 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
595 * %PCI_EXT_CAP_ID_VC Virtual Channel
596 * %PCI_EXT_CAP_ID_DSN Device Serial Number
597 * %PCI_EXT_CAP_ID_PWR Power Budgeting
598 */
599u16 pci_find_ext_capability(struct pci_dev *dev, int cap)
600{
601 return pci_find_next_ext_capability(dev, 0, cap);
602}
603EXPORT_SYMBOL_GPL(pci_find_ext_capability);
604
605/**
606 * pci_get_dsn - Read and return the 8-byte Device Serial Number
607 * @dev: PCI device to query
608 *
609 * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial
610 * Number.
611 *
612 * Returns the DSN, or zero if the capability does not exist.
613 */
614u64 pci_get_dsn(struct pci_dev *dev)
615{
616 u32 dword;
617 u64 dsn;
618 int pos;
619
620 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN);
621 if (!pos)
622 return 0;
623
624 /*
625 * The Device Serial Number is two dwords offset 4 bytes from the
626 * capability position. The specification says that the first dword is
627 * the lower half, and the second dword is the upper half.
628 */
629 pos += 4;
630 pci_read_config_dword(dev, pos, &dword);
631 dsn = (u64)dword;
632 pci_read_config_dword(dev, pos + 4, &dword);
633 dsn |= ((u64)dword) << 32;
634
635 return dsn;
636}
637EXPORT_SYMBOL_GPL(pci_get_dsn);
638
639static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap)
640{
641 int rc, ttl = PCI_FIND_CAP_TTL;
642 u8 cap, mask;
643
644 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
645 mask = HT_3BIT_CAP_MASK;
646 else
647 mask = HT_5BIT_CAP_MASK;
648
649 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
650 PCI_CAP_ID_HT, &ttl);
651 while (pos) {
652 rc = pci_read_config_byte(dev, pos + 3, &cap);
653 if (rc != PCIBIOS_SUCCESSFUL)
654 return 0;
655
656 if ((cap & mask) == ht_cap)
657 return pos;
658
659 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
660 pos + PCI_CAP_LIST_NEXT,
661 PCI_CAP_ID_HT, &ttl);
662 }
663
664 return 0;
665}
666
667/**
668 * pci_find_next_ht_capability - query a device's HyperTransport capabilities
669 * @dev: PCI device to query
670 * @pos: Position from which to continue searching
671 * @ht_cap: HyperTransport capability code
672 *
673 * To be used in conjunction with pci_find_ht_capability() to search for
674 * all capabilities matching @ht_cap. @pos should always be a value returned
675 * from pci_find_ht_capability().
676 *
677 * NB. To be 100% safe against broken PCI devices, the caller should take
678 * steps to avoid an infinite loop.
679 */
680u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap)
681{
682 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
683}
684EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
685
686/**
687 * pci_find_ht_capability - query a device's HyperTransport capabilities
688 * @dev: PCI device to query
689 * @ht_cap: HyperTransport capability code
690 *
691 * Tell if a device supports a given HyperTransport capability.
692 * Returns an address within the device's PCI configuration space
693 * or 0 in case the device does not support the request capability.
694 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
695 * which has a HyperTransport capability matching @ht_cap.
696 */
697u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
698{
699 u8 pos;
700
701 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
702 if (pos)
703 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
704
705 return pos;
706}
707EXPORT_SYMBOL_GPL(pci_find_ht_capability);
708
709/**
710 * pci_find_vsec_capability - Find a vendor-specific extended capability
711 * @dev: PCI device to query
712 * @vendor: Vendor ID for which capability is defined
713 * @cap: Vendor-specific capability ID
714 *
715 * If @dev has Vendor ID @vendor, search for a VSEC capability with
716 * VSEC ID @cap. If found, return the capability offset in
717 * config space; otherwise return 0.
718 */
719u16 pci_find_vsec_capability(struct pci_dev *dev, u16 vendor, int cap)
720{
721 u16 vsec = 0;
722 u32 header;
723
724 if (vendor != dev->vendor)
725 return 0;
726
727 while ((vsec = pci_find_next_ext_capability(dev, vsec,
728 PCI_EXT_CAP_ID_VNDR))) {
729 if (pci_read_config_dword(dev, vsec + PCI_VNDR_HEADER,
730 &header) == PCIBIOS_SUCCESSFUL &&
731 PCI_VNDR_HEADER_ID(header) == cap)
732 return vsec;
733 }
734
735 return 0;
736}
737EXPORT_SYMBOL_GPL(pci_find_vsec_capability);
738
739/**
740 * pci_find_dvsec_capability - Find DVSEC for vendor
741 * @dev: PCI device to query
742 * @vendor: Vendor ID to match for the DVSEC
743 * @dvsec: Designated Vendor-specific capability ID
744 *
745 * If DVSEC has Vendor ID @vendor and DVSEC ID @dvsec return the capability
746 * offset in config space; otherwise return 0.
747 */
748u16 pci_find_dvsec_capability(struct pci_dev *dev, u16 vendor, u16 dvsec)
749{
750 int pos;
751
752 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DVSEC);
753 if (!pos)
754 return 0;
755
756 while (pos) {
757 u16 v, id;
758
759 pci_read_config_word(dev, pos + PCI_DVSEC_HEADER1, &v);
760 pci_read_config_word(dev, pos + PCI_DVSEC_HEADER2, &id);
761 if (vendor == v && dvsec == id)
762 return pos;
763
764 pos = pci_find_next_ext_capability(dev, pos, PCI_EXT_CAP_ID_DVSEC);
765 }
766
767 return 0;
768}
769EXPORT_SYMBOL_GPL(pci_find_dvsec_capability);
770
771/**
772 * pci_find_parent_resource - return resource region of parent bus of given
773 * region
774 * @dev: PCI device structure contains resources to be searched
775 * @res: child resource record for which parent is sought
776 *
777 * For given resource region of given device, return the resource region of
778 * parent bus the given region is contained in.
779 */
780struct resource *pci_find_parent_resource(const struct pci_dev *dev,
781 struct resource *res)
782{
783 const struct pci_bus *bus = dev->bus;
784 struct resource *r;
785 int i;
786
787 pci_bus_for_each_resource(bus, r, i) {
788 if (!r)
789 continue;
790 if (resource_contains(r, res)) {
791
792 /*
793 * If the window is prefetchable but the BAR is
794 * not, the allocator made a mistake.
795 */
796 if (r->flags & IORESOURCE_PREFETCH &&
797 !(res->flags & IORESOURCE_PREFETCH))
798 return NULL;
799
800 /*
801 * If we're below a transparent bridge, there may
802 * be both a positively-decoded aperture and a
803 * subtractively-decoded region that contain the BAR.
804 * We want the positively-decoded one, so this depends
805 * on pci_bus_for_each_resource() giving us those
806 * first.
807 */
808 return r;
809 }
810 }
811 return NULL;
812}
813EXPORT_SYMBOL(pci_find_parent_resource);
814
815/**
816 * pci_find_resource - Return matching PCI device resource
817 * @dev: PCI device to query
818 * @res: Resource to look for
819 *
820 * Goes over standard PCI resources (BARs) and checks if the given resource
821 * is partially or fully contained in any of them. In that case the
822 * matching resource is returned, %NULL otherwise.
823 */
824struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
825{
826 int i;
827
828 for (i = 0; i < PCI_STD_NUM_BARS; i++) {
829 struct resource *r = &dev->resource[i];
830
831 if (r->start && resource_contains(r, res))
832 return r;
833 }
834
835 return NULL;
836}
837EXPORT_SYMBOL(pci_find_resource);
838
839/**
840 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
841 * @dev: the PCI device to operate on
842 * @pos: config space offset of status word
843 * @mask: mask of bit(s) to care about in status word
844 *
845 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
846 */
847int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
848{
849 int i;
850
851 /* Wait for Transaction Pending bit clean */
852 for (i = 0; i < 4; i++) {
853 u16 status;
854 if (i)
855 msleep((1 << (i - 1)) * 100);
856
857 pci_read_config_word(dev, pos, &status);
858 if (!(status & mask))
859 return 1;
860 }
861
862 return 0;
863}
864
865static int pci_acs_enable;
866
867/**
868 * pci_request_acs - ask for ACS to be enabled if supported
869 */
870void pci_request_acs(void)
871{
872 pci_acs_enable = 1;
873}
874
875static const char *disable_acs_redir_param;
876
877/**
878 * pci_disable_acs_redir - disable ACS redirect capabilities
879 * @dev: the PCI device
880 *
881 * For only devices specified in the disable_acs_redir parameter.
882 */
883static void pci_disable_acs_redir(struct pci_dev *dev)
884{
885 int ret = 0;
886 const char *p;
887 int pos;
888 u16 ctrl;
889
890 if (!disable_acs_redir_param)
891 return;
892
893 p = disable_acs_redir_param;
894 while (*p) {
895 ret = pci_dev_str_match(dev, p, &p);
896 if (ret < 0) {
897 pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
898 disable_acs_redir_param);
899
900 break;
901 } else if (ret == 1) {
902 /* Found a match */
903 break;
904 }
905
906 if (*p != ';' && *p != ',') {
907 /* End of param or invalid format */
908 break;
909 }
910 p++;
911 }
912
913 if (ret != 1)
914 return;
915
916 if (!pci_dev_specific_disable_acs_redir(dev))
917 return;
918
919 pos = dev->acs_cap;
920 if (!pos) {
921 pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
922 return;
923 }
924
925 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
926
927 /* P2P Request & Completion Redirect */
928 ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC);
929
930 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
931
932 pci_info(dev, "disabled ACS redirect\n");
933}
934
935/**
936 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
937 * @dev: the PCI device
938 */
939static void pci_std_enable_acs(struct pci_dev *dev)
940{
941 int pos;
942 u16 cap;
943 u16 ctrl;
944
945 pos = dev->acs_cap;
946 if (!pos)
947 return;
948
949 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
950 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
951
952 /* Source Validation */
953 ctrl |= (cap & PCI_ACS_SV);
954
955 /* P2P Request Redirect */
956 ctrl |= (cap & PCI_ACS_RR);
957
958 /* P2P Completion Redirect */
959 ctrl |= (cap & PCI_ACS_CR);
960
961 /* Upstream Forwarding */
962 ctrl |= (cap & PCI_ACS_UF);
963
964 /* Enable Translation Blocking for external devices and noats */
965 if (pci_ats_disabled() || dev->external_facing || dev->untrusted)
966 ctrl |= (cap & PCI_ACS_TB);
967
968 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
969}
970
971/**
972 * pci_enable_acs - enable ACS if hardware support it
973 * @dev: the PCI device
974 */
975static void pci_enable_acs(struct pci_dev *dev)
976{
977 if (!pci_acs_enable)
978 goto disable_acs_redir;
979
980 if (!pci_dev_specific_enable_acs(dev))
981 goto disable_acs_redir;
982
983 pci_std_enable_acs(dev);
984
985disable_acs_redir:
986 /*
987 * Note: pci_disable_acs_redir() must be called even if ACS was not
988 * enabled by the kernel because it may have been enabled by
989 * platform firmware. So if we are told to disable it, we should
990 * always disable it after setting the kernel's default
991 * preferences.
992 */
993 pci_disable_acs_redir(dev);
994}
995
996/**
997 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
998 * @dev: PCI device to have its BARs restored
999 *
1000 * Restore the BAR values for a given device, so as to make it
1001 * accessible by its driver.
1002 */
1003static void pci_restore_bars(struct pci_dev *dev)
1004{
1005 int i;
1006
1007 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
1008 pci_update_resource(dev, i);
1009}
1010
1011static inline bool platform_pci_power_manageable(struct pci_dev *dev)
1012{
1013 if (pci_use_mid_pm())
1014 return true;
1015
1016 return acpi_pci_power_manageable(dev);
1017}
1018
1019static inline int platform_pci_set_power_state(struct pci_dev *dev,
1020 pci_power_t t)
1021{
1022 if (pci_use_mid_pm())
1023 return mid_pci_set_power_state(dev, t);
1024
1025 return acpi_pci_set_power_state(dev, t);
1026}
1027
1028static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
1029{
1030 if (pci_use_mid_pm())
1031 return mid_pci_get_power_state(dev);
1032
1033 return acpi_pci_get_power_state(dev);
1034}
1035
1036static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
1037{
1038 if (!pci_use_mid_pm())
1039 acpi_pci_refresh_power_state(dev);
1040}
1041
1042static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
1043{
1044 if (pci_use_mid_pm())
1045 return PCI_POWER_ERROR;
1046
1047 return acpi_pci_choose_state(dev);
1048}
1049
1050static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
1051{
1052 if (pci_use_mid_pm())
1053 return PCI_POWER_ERROR;
1054
1055 return acpi_pci_wakeup(dev, enable);
1056}
1057
1058static inline bool platform_pci_need_resume(struct pci_dev *dev)
1059{
1060 if (pci_use_mid_pm())
1061 return false;
1062
1063 return acpi_pci_need_resume(dev);
1064}
1065
1066static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
1067{
1068 if (pci_use_mid_pm())
1069 return false;
1070
1071 return acpi_pci_bridge_d3(dev);
1072}
1073
1074/**
1075 * pci_update_current_state - Read power state of given device and cache it
1076 * @dev: PCI device to handle.
1077 * @state: State to cache in case the device doesn't have the PM capability
1078 *
1079 * The power state is read from the PMCSR register, which however is
1080 * inaccessible in D3cold. The platform firmware is therefore queried first
1081 * to detect accessibility of the register. In case the platform firmware
1082 * reports an incorrect state or the device isn't power manageable by the
1083 * platform at all, we try to detect D3cold by testing accessibility of the
1084 * vendor ID in config space.
1085 */
1086void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
1087{
1088 if (platform_pci_get_power_state(dev) == PCI_D3cold) {
1089 dev->current_state = PCI_D3cold;
1090 } else if (dev->pm_cap) {
1091 u16 pmcsr;
1092
1093 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1094 if (PCI_POSSIBLE_ERROR(pmcsr)) {
1095 dev->current_state = PCI_D3cold;
1096 return;
1097 }
1098 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1099 } else {
1100 dev->current_state = state;
1101 }
1102}
1103
1104/**
1105 * pci_refresh_power_state - Refresh the given device's power state data
1106 * @dev: Target PCI device.
1107 *
1108 * Ask the platform to refresh the devices power state information and invoke
1109 * pci_update_current_state() to update its current PCI power state.
1110 */
1111void pci_refresh_power_state(struct pci_dev *dev)
1112{
1113 platform_pci_refresh_power_state(dev);
1114 pci_update_current_state(dev, dev->current_state);
1115}
1116
1117/**
1118 * pci_platform_power_transition - Use platform to change device power state
1119 * @dev: PCI device to handle.
1120 * @state: State to put the device into.
1121 */
1122int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
1123{
1124 int error;
1125
1126 error = platform_pci_set_power_state(dev, state);
1127 if (!error)
1128 pci_update_current_state(dev, state);
1129 else if (!dev->pm_cap) /* Fall back to PCI_D0 */
1130 dev->current_state = PCI_D0;
1131
1132 return error;
1133}
1134EXPORT_SYMBOL_GPL(pci_platform_power_transition);
1135
1136static int pci_resume_one(struct pci_dev *pci_dev, void *ign)
1137{
1138 pm_request_resume(&pci_dev->dev);
1139 return 0;
1140}
1141
1142/**
1143 * pci_resume_bus - Walk given bus and runtime resume devices on it
1144 * @bus: Top bus of the subtree to walk.
1145 */
1146void pci_resume_bus(struct pci_bus *bus)
1147{
1148 if (bus)
1149 pci_walk_bus(bus, pci_resume_one, NULL);
1150}
1151
1152static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
1153{
1154 int delay = 1;
1155 u32 id;
1156
1157 /*
1158 * After reset, the device should not silently discard config
1159 * requests, but it may still indicate that it needs more time by
1160 * responding to them with CRS completions. The Root Port will
1161 * generally synthesize ~0 (PCI_ERROR_RESPONSE) data to complete
1162 * the read (except when CRS SV is enabled and the read was for the
1163 * Vendor ID; in that case it synthesizes 0x0001 data).
1164 *
1165 * Wait for the device to return a non-CRS completion. Read the
1166 * Command register instead of Vendor ID so we don't have to
1167 * contend with the CRS SV value.
1168 */
1169 pci_read_config_dword(dev, PCI_COMMAND, &id);
1170 while (PCI_POSSIBLE_ERROR(id)) {
1171 if (delay > timeout) {
1172 pci_warn(dev, "not ready %dms after %s; giving up\n",
1173 delay - 1, reset_type);
1174 return -ENOTTY;
1175 }
1176
1177 if (delay > 1000)
1178 pci_info(dev, "not ready %dms after %s; waiting\n",
1179 delay - 1, reset_type);
1180
1181 msleep(delay);
1182 delay *= 2;
1183 pci_read_config_dword(dev, PCI_COMMAND, &id);
1184 }
1185
1186 if (delay > 1000)
1187 pci_info(dev, "ready %dms after %s\n", delay - 1,
1188 reset_type);
1189
1190 return 0;
1191}
1192
1193/**
1194 * pci_power_up - Put the given device into D0
1195 * @dev: PCI device to power up
1196 *
1197 * On success, return 0 or 1, depending on whether or not it is necessary to
1198 * restore the device's BARs subsequently (1 is returned in that case).
1199 */
1200int pci_power_up(struct pci_dev *dev)
1201{
1202 bool need_restore;
1203 pci_power_t state;
1204 u16 pmcsr;
1205
1206 platform_pci_set_power_state(dev, PCI_D0);
1207
1208 if (!dev->pm_cap) {
1209 state = platform_pci_get_power_state(dev);
1210 if (state == PCI_UNKNOWN)
1211 dev->current_state = PCI_D0;
1212 else
1213 dev->current_state = state;
1214
1215 if (state == PCI_D0)
1216 return 0;
1217
1218 return -EIO;
1219 }
1220
1221 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1222 if (PCI_POSSIBLE_ERROR(pmcsr)) {
1223 pci_err(dev, "Unable to change power state from %s to D0, device inaccessible\n",
1224 pci_power_name(dev->current_state));
1225 dev->current_state = PCI_D3cold;
1226 return -EIO;
1227 }
1228
1229 state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1230
1231 need_restore = (state == PCI_D3hot || dev->current_state >= PCI_D3hot) &&
1232 !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET);
1233
1234 if (state == PCI_D0)
1235 goto end;
1236
1237 /*
1238 * Force the entire word to 0. This doesn't affect PME_Status, disables
1239 * PME_En, and sets PowerState to 0.
1240 */
1241 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, 0);
1242
1243 /* Mandatory transition delays; see PCI PM 1.2. */
1244 if (state == PCI_D3hot)
1245 pci_dev_d3_sleep(dev);
1246 else if (state == PCI_D2)
1247 udelay(PCI_PM_D2_DELAY);
1248
1249end:
1250 dev->current_state = PCI_D0;
1251 if (need_restore)
1252 return 1;
1253
1254 return 0;
1255}
1256
1257/**
1258 * pci_set_full_power_state - Put a PCI device into D0 and update its state
1259 * @dev: PCI device to power up
1260 *
1261 * Call pci_power_up() to put @dev into D0, read from its PCI_PM_CTRL register
1262 * to confirm the state change, restore its BARs if they might be lost and
1263 * reconfigure ASPM in acordance with the new power state.
1264 *
1265 * If pci_restore_state() is going to be called right after a power state change
1266 * to D0, it is more efficient to use pci_power_up() directly instead of this
1267 * function.
1268 */
1269static int pci_set_full_power_state(struct pci_dev *dev)
1270{
1271 u16 pmcsr;
1272 int ret;
1273
1274 ret = pci_power_up(dev);
1275 if (ret < 0)
1276 return ret;
1277
1278 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1279 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1280 if (dev->current_state != PCI_D0) {
1281 pci_info_ratelimited(dev, "Refused to change power state from %s to D0\n",
1282 pci_power_name(dev->current_state));
1283 } else if (ret > 0) {
1284 /*
1285 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
1286 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
1287 * from D3hot to D0 _may_ perform an internal reset, thereby
1288 * going to "D0 Uninitialized" rather than "D0 Initialized".
1289 * For example, at least some versions of the 3c905B and the
1290 * 3c556B exhibit this behaviour.
1291 *
1292 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
1293 * devices in a D3hot state at boot. Consequently, we need to
1294 * restore at least the BARs so that the device will be
1295 * accessible to its driver.
1296 */
1297 pci_restore_bars(dev);
1298 }
1299
1300 return 0;
1301}
1302
1303/**
1304 * __pci_dev_set_current_state - Set current state of a PCI device
1305 * @dev: Device to handle
1306 * @data: pointer to state to be set
1307 */
1308static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1309{
1310 pci_power_t state = *(pci_power_t *)data;
1311
1312 dev->current_state = state;
1313 return 0;
1314}
1315
1316/**
1317 * pci_bus_set_current_state - Walk given bus and set current state of devices
1318 * @bus: Top bus of the subtree to walk.
1319 * @state: state to be set
1320 */
1321void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1322{
1323 if (bus)
1324 pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1325}
1326
1327/**
1328 * pci_set_low_power_state - Put a PCI device into a low-power state.
1329 * @dev: PCI device to handle.
1330 * @state: PCI power state (D1, D2, D3hot) to put the device into.
1331 *
1332 * Use the device's PCI_PM_CTRL register to put it into a low-power state.
1333 *
1334 * RETURN VALUE:
1335 * -EINVAL if the requested state is invalid.
1336 * -EIO if device does not support PCI PM or its PM capabilities register has a
1337 * wrong version, or device doesn't support the requested state.
1338 * 0 if device already is in the requested state.
1339 * 0 if device's power state has been successfully changed.
1340 */
1341static int pci_set_low_power_state(struct pci_dev *dev, pci_power_t state)
1342{
1343 u16 pmcsr;
1344
1345 if (!dev->pm_cap)
1346 return -EIO;
1347
1348 /*
1349 * Validate transition: We can enter D0 from any state, but if
1350 * we're already in a low-power state, we can only go deeper. E.g.,
1351 * we can go from D1 to D3, but we can't go directly from D3 to D1;
1352 * we'd have to go from D3 to D0, then to D1.
1353 */
1354 if (dev->current_state <= PCI_D3cold && dev->current_state > state) {
1355 pci_dbg(dev, "Invalid power transition (from %s to %s)\n",
1356 pci_power_name(dev->current_state),
1357 pci_power_name(state));
1358 return -EINVAL;
1359 }
1360
1361 /* Check if this device supports the desired state */
1362 if ((state == PCI_D1 && !dev->d1_support)
1363 || (state == PCI_D2 && !dev->d2_support))
1364 return -EIO;
1365
1366 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1367 if (PCI_POSSIBLE_ERROR(pmcsr)) {
1368 pci_err(dev, "Unable to change power state from %s to %s, device inaccessible\n",
1369 pci_power_name(dev->current_state),
1370 pci_power_name(state));
1371 dev->current_state = PCI_D3cold;
1372 return -EIO;
1373 }
1374
1375 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
1376 pmcsr |= state;
1377
1378 /* Enter specified state */
1379 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1380
1381 /* Mandatory power management transition delays; see PCI PM 1.2. */
1382 if (state == PCI_D3hot)
1383 pci_dev_d3_sleep(dev);
1384 else if (state == PCI_D2)
1385 udelay(PCI_PM_D2_DELAY);
1386
1387 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1388 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1389 if (dev->current_state != state)
1390 pci_info_ratelimited(dev, "Refused to change power state from %s to %s\n",
1391 pci_power_name(dev->current_state),
1392 pci_power_name(state));
1393
1394 return 0;
1395}
1396
1397/**
1398 * pci_set_power_state - Set the power state of a PCI device
1399 * @dev: PCI device to handle.
1400 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1401 *
1402 * Transition a device to a new power state, using the platform firmware and/or
1403 * the device's PCI PM registers.
1404 *
1405 * RETURN VALUE:
1406 * -EINVAL if the requested state is invalid.
1407 * -EIO if device does not support PCI PM or its PM capabilities register has a
1408 * wrong version, or device doesn't support the requested state.
1409 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1410 * 0 if device already is in the requested state.
1411 * 0 if the transition is to D3 but D3 is not supported.
1412 * 0 if device's power state has been successfully changed.
1413 */
1414int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1415{
1416 int error;
1417
1418 /* Bound the state we're entering */
1419 if (state > PCI_D3cold)
1420 state = PCI_D3cold;
1421 else if (state < PCI_D0)
1422 state = PCI_D0;
1423 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1424
1425 /*
1426 * If the device or the parent bridge do not support PCI
1427 * PM, ignore the request if we're doing anything other
1428 * than putting it into D0 (which would only happen on
1429 * boot).
1430 */
1431 return 0;
1432
1433 /* Check if we're already there */
1434 if (dev->current_state == state)
1435 return 0;
1436
1437 if (state == PCI_D0)
1438 return pci_set_full_power_state(dev);
1439
1440 /*
1441 * This device is quirked not to be put into D3, so don't put it in
1442 * D3
1443 */
1444 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1445 return 0;
1446
1447 if (state == PCI_D3cold) {
1448 /*
1449 * To put the device in D3cold, put it into D3hot in the native
1450 * way, then put it into D3cold using platform ops.
1451 */
1452 error = pci_set_low_power_state(dev, PCI_D3hot);
1453
1454 if (pci_platform_power_transition(dev, PCI_D3cold))
1455 return error;
1456
1457 /* Powering off a bridge may power off the whole hierarchy */
1458 if (dev->current_state == PCI_D3cold)
1459 pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
1460 } else {
1461 error = pci_set_low_power_state(dev, state);
1462
1463 if (pci_platform_power_transition(dev, state))
1464 return error;
1465 }
1466
1467 return 0;
1468}
1469EXPORT_SYMBOL(pci_set_power_state);
1470
1471#define PCI_EXP_SAVE_REGS 7
1472
1473static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1474 u16 cap, bool extended)
1475{
1476 struct pci_cap_saved_state *tmp;
1477
1478 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1479 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1480 return tmp;
1481 }
1482 return NULL;
1483}
1484
1485struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1486{
1487 return _pci_find_saved_cap(dev, cap, false);
1488}
1489
1490struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1491{
1492 return _pci_find_saved_cap(dev, cap, true);
1493}
1494
1495static int pci_save_pcie_state(struct pci_dev *dev)
1496{
1497 int i = 0;
1498 struct pci_cap_saved_state *save_state;
1499 u16 *cap;
1500
1501 if (!pci_is_pcie(dev))
1502 return 0;
1503
1504 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1505 if (!save_state) {
1506 pci_err(dev, "buffer not found in %s\n", __func__);
1507 return -ENOMEM;
1508 }
1509
1510 cap = (u16 *)&save_state->cap.data[0];
1511 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1512 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1513 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1514 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]);
1515 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1516 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1517 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1518
1519 return 0;
1520}
1521
1522void pci_bridge_reconfigure_ltr(struct pci_dev *dev)
1523{
1524#ifdef CONFIG_PCIEASPM
1525 struct pci_dev *bridge;
1526 u32 ctl;
1527
1528 bridge = pci_upstream_bridge(dev);
1529 if (bridge && bridge->ltr_path) {
1530 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2, &ctl);
1531 if (!(ctl & PCI_EXP_DEVCTL2_LTR_EN)) {
1532 pci_dbg(bridge, "re-enabling LTR\n");
1533 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
1534 PCI_EXP_DEVCTL2_LTR_EN);
1535 }
1536 }
1537#endif
1538}
1539
1540static void pci_restore_pcie_state(struct pci_dev *dev)
1541{
1542 int i = 0;
1543 struct pci_cap_saved_state *save_state;
1544 u16 *cap;
1545
1546 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1547 if (!save_state)
1548 return;
1549
1550 /*
1551 * Downstream ports reset the LTR enable bit when link goes down.
1552 * Check and re-configure the bit here before restoring device.
1553 * PCIe r5.0, sec 7.5.3.16.
1554 */
1555 pci_bridge_reconfigure_ltr(dev);
1556
1557 cap = (u16 *)&save_state->cap.data[0];
1558 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1559 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1560 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1561 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1562 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1563 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1564 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1565}
1566
1567static int pci_save_pcix_state(struct pci_dev *dev)
1568{
1569 int pos;
1570 struct pci_cap_saved_state *save_state;
1571
1572 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1573 if (!pos)
1574 return 0;
1575
1576 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1577 if (!save_state) {
1578 pci_err(dev, "buffer not found in %s\n", __func__);
1579 return -ENOMEM;
1580 }
1581
1582 pci_read_config_word(dev, pos + PCI_X_CMD,
1583 (u16 *)save_state->cap.data);
1584
1585 return 0;
1586}
1587
1588static void pci_restore_pcix_state(struct pci_dev *dev)
1589{
1590 int i = 0, pos;
1591 struct pci_cap_saved_state *save_state;
1592 u16 *cap;
1593
1594 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1595 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1596 if (!save_state || !pos)
1597 return;
1598 cap = (u16 *)&save_state->cap.data[0];
1599
1600 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1601}
1602
1603static void pci_save_ltr_state(struct pci_dev *dev)
1604{
1605 int ltr;
1606 struct pci_cap_saved_state *save_state;
1607 u32 *cap;
1608
1609 if (!pci_is_pcie(dev))
1610 return;
1611
1612 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1613 if (!ltr)
1614 return;
1615
1616 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1617 if (!save_state) {
1618 pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n");
1619 return;
1620 }
1621
1622 /* Some broken devices only support dword access to LTR */
1623 cap = &save_state->cap.data[0];
1624 pci_read_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap);
1625}
1626
1627static void pci_restore_ltr_state(struct pci_dev *dev)
1628{
1629 struct pci_cap_saved_state *save_state;
1630 int ltr;
1631 u32 *cap;
1632
1633 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1634 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1635 if (!save_state || !ltr)
1636 return;
1637
1638 /* Some broken devices only support dword access to LTR */
1639 cap = &save_state->cap.data[0];
1640 pci_write_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap);
1641}
1642
1643/**
1644 * pci_save_state - save the PCI configuration space of a device before
1645 * suspending
1646 * @dev: PCI device that we're dealing with
1647 */
1648int pci_save_state(struct pci_dev *dev)
1649{
1650 int i;
1651 /* XXX: 100% dword access ok here? */
1652 for (i = 0; i < 16; i++) {
1653 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1654 pci_dbg(dev, "saving config space at offset %#x (reading %#x)\n",
1655 i * 4, dev->saved_config_space[i]);
1656 }
1657 dev->state_saved = true;
1658
1659 i = pci_save_pcie_state(dev);
1660 if (i != 0)
1661 return i;
1662
1663 i = pci_save_pcix_state(dev);
1664 if (i != 0)
1665 return i;
1666
1667 pci_save_ltr_state(dev);
1668 pci_save_dpc_state(dev);
1669 pci_save_aer_state(dev);
1670 pci_save_ptm_state(dev);
1671 return pci_save_vc_state(dev);
1672}
1673EXPORT_SYMBOL(pci_save_state);
1674
1675static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1676 u32 saved_val, int retry, bool force)
1677{
1678 u32 val;
1679
1680 pci_read_config_dword(pdev, offset, &val);
1681 if (!force && val == saved_val)
1682 return;
1683
1684 for (;;) {
1685 pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1686 offset, val, saved_val);
1687 pci_write_config_dword(pdev, offset, saved_val);
1688 if (retry-- <= 0)
1689 return;
1690
1691 pci_read_config_dword(pdev, offset, &val);
1692 if (val == saved_val)
1693 return;
1694
1695 mdelay(1);
1696 }
1697}
1698
1699static void pci_restore_config_space_range(struct pci_dev *pdev,
1700 int start, int end, int retry,
1701 bool force)
1702{
1703 int index;
1704
1705 for (index = end; index >= start; index--)
1706 pci_restore_config_dword(pdev, 4 * index,
1707 pdev->saved_config_space[index],
1708 retry, force);
1709}
1710
1711static void pci_restore_config_space(struct pci_dev *pdev)
1712{
1713 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1714 pci_restore_config_space_range(pdev, 10, 15, 0, false);
1715 /* Restore BARs before the command register. */
1716 pci_restore_config_space_range(pdev, 4, 9, 10, false);
1717 pci_restore_config_space_range(pdev, 0, 3, 0, false);
1718 } else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1719 pci_restore_config_space_range(pdev, 12, 15, 0, false);
1720
1721 /*
1722 * Force rewriting of prefetch registers to avoid S3 resume
1723 * issues on Intel PCI bridges that occur when these
1724 * registers are not explicitly written.
1725 */
1726 pci_restore_config_space_range(pdev, 9, 11, 0, true);
1727 pci_restore_config_space_range(pdev, 0, 8, 0, false);
1728 } else {
1729 pci_restore_config_space_range(pdev, 0, 15, 0, false);
1730 }
1731}
1732
1733static void pci_restore_rebar_state(struct pci_dev *pdev)
1734{
1735 unsigned int pos, nbars, i;
1736 u32 ctrl;
1737
1738 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1739 if (!pos)
1740 return;
1741
1742 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1743 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
1744 PCI_REBAR_CTRL_NBAR_SHIFT;
1745
1746 for (i = 0; i < nbars; i++, pos += 8) {
1747 struct resource *res;
1748 int bar_idx, size;
1749
1750 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1751 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1752 res = pdev->resource + bar_idx;
1753 size = pci_rebar_bytes_to_size(resource_size(res));
1754 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1755 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
1756 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1757 }
1758}
1759
1760/**
1761 * pci_restore_state - Restore the saved state of a PCI device
1762 * @dev: PCI device that we're dealing with
1763 */
1764void pci_restore_state(struct pci_dev *dev)
1765{
1766 if (!dev->state_saved)
1767 return;
1768
1769 /*
1770 * Restore max latencies (in the LTR capability) before enabling
1771 * LTR itself (in the PCIe capability).
1772 */
1773 pci_restore_ltr_state(dev);
1774
1775 pci_restore_pcie_state(dev);
1776 pci_restore_pasid_state(dev);
1777 pci_restore_pri_state(dev);
1778 pci_restore_ats_state(dev);
1779 pci_restore_vc_state(dev);
1780 pci_restore_rebar_state(dev);
1781 pci_restore_dpc_state(dev);
1782 pci_restore_ptm_state(dev);
1783
1784 pci_aer_clear_status(dev);
1785 pci_restore_aer_state(dev);
1786
1787 pci_restore_config_space(dev);
1788
1789 pci_restore_pcix_state(dev);
1790 pci_restore_msi_state(dev);
1791
1792 /* Restore ACS and IOV configuration state */
1793 pci_enable_acs(dev);
1794 pci_restore_iov_state(dev);
1795
1796 dev->state_saved = false;
1797}
1798EXPORT_SYMBOL(pci_restore_state);
1799
1800struct pci_saved_state {
1801 u32 config_space[16];
1802 struct pci_cap_saved_data cap[];
1803};
1804
1805/**
1806 * pci_store_saved_state - Allocate and return an opaque struct containing
1807 * the device saved state.
1808 * @dev: PCI device that we're dealing with
1809 *
1810 * Return NULL if no state or error.
1811 */
1812struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1813{
1814 struct pci_saved_state *state;
1815 struct pci_cap_saved_state *tmp;
1816 struct pci_cap_saved_data *cap;
1817 size_t size;
1818
1819 if (!dev->state_saved)
1820 return NULL;
1821
1822 size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1823
1824 hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1825 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1826
1827 state = kzalloc(size, GFP_KERNEL);
1828 if (!state)
1829 return NULL;
1830
1831 memcpy(state->config_space, dev->saved_config_space,
1832 sizeof(state->config_space));
1833
1834 cap = state->cap;
1835 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1836 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1837 memcpy(cap, &tmp->cap, len);
1838 cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1839 }
1840 /* Empty cap_save terminates list */
1841
1842 return state;
1843}
1844EXPORT_SYMBOL_GPL(pci_store_saved_state);
1845
1846/**
1847 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1848 * @dev: PCI device that we're dealing with
1849 * @state: Saved state returned from pci_store_saved_state()
1850 */
1851int pci_load_saved_state(struct pci_dev *dev,
1852 struct pci_saved_state *state)
1853{
1854 struct pci_cap_saved_data *cap;
1855
1856 dev->state_saved = false;
1857
1858 if (!state)
1859 return 0;
1860
1861 memcpy(dev->saved_config_space, state->config_space,
1862 sizeof(state->config_space));
1863
1864 cap = state->cap;
1865 while (cap->size) {
1866 struct pci_cap_saved_state *tmp;
1867
1868 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1869 if (!tmp || tmp->cap.size != cap->size)
1870 return -EINVAL;
1871
1872 memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1873 cap = (struct pci_cap_saved_data *)((u8 *)cap +
1874 sizeof(struct pci_cap_saved_data) + cap->size);
1875 }
1876
1877 dev->state_saved = true;
1878 return 0;
1879}
1880EXPORT_SYMBOL_GPL(pci_load_saved_state);
1881
1882/**
1883 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1884 * and free the memory allocated for it.
1885 * @dev: PCI device that we're dealing with
1886 * @state: Pointer to saved state returned from pci_store_saved_state()
1887 */
1888int pci_load_and_free_saved_state(struct pci_dev *dev,
1889 struct pci_saved_state **state)
1890{
1891 int ret = pci_load_saved_state(dev, *state);
1892 kfree(*state);
1893 *state = NULL;
1894 return ret;
1895}
1896EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1897
1898int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1899{
1900 return pci_enable_resources(dev, bars);
1901}
1902
1903static int do_pci_enable_device(struct pci_dev *dev, int bars)
1904{
1905 int err;
1906 struct pci_dev *bridge;
1907 u16 cmd;
1908 u8 pin;
1909
1910 err = pci_set_power_state(dev, PCI_D0);
1911 if (err < 0 && err != -EIO)
1912 return err;
1913
1914 bridge = pci_upstream_bridge(dev);
1915 if (bridge)
1916 pcie_aspm_powersave_config_link(bridge);
1917
1918 err = pcibios_enable_device(dev, bars);
1919 if (err < 0)
1920 return err;
1921 pci_fixup_device(pci_fixup_enable, dev);
1922
1923 if (dev->msi_enabled || dev->msix_enabled)
1924 return 0;
1925
1926 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1927 if (pin) {
1928 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1929 if (cmd & PCI_COMMAND_INTX_DISABLE)
1930 pci_write_config_word(dev, PCI_COMMAND,
1931 cmd & ~PCI_COMMAND_INTX_DISABLE);
1932 }
1933
1934 return 0;
1935}
1936
1937/**
1938 * pci_reenable_device - Resume abandoned device
1939 * @dev: PCI device to be resumed
1940 *
1941 * NOTE: This function is a backend of pci_default_resume() and is not supposed
1942 * to be called by normal code, write proper resume handler and use it instead.
1943 */
1944int pci_reenable_device(struct pci_dev *dev)
1945{
1946 if (pci_is_enabled(dev))
1947 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1948 return 0;
1949}
1950EXPORT_SYMBOL(pci_reenable_device);
1951
1952static void pci_enable_bridge(struct pci_dev *dev)
1953{
1954 struct pci_dev *bridge;
1955 int retval;
1956
1957 bridge = pci_upstream_bridge(dev);
1958 if (bridge)
1959 pci_enable_bridge(bridge);
1960
1961 if (pci_is_enabled(dev)) {
1962 if (!dev->is_busmaster)
1963 pci_set_master(dev);
1964 return;
1965 }
1966
1967 retval = pci_enable_device(dev);
1968 if (retval)
1969 pci_err(dev, "Error enabling bridge (%d), continuing\n",
1970 retval);
1971 pci_set_master(dev);
1972}
1973
1974static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1975{
1976 struct pci_dev *bridge;
1977 int err;
1978 int i, bars = 0;
1979
1980 /*
1981 * Power state could be unknown at this point, either due to a fresh
1982 * boot or a device removal call. So get the current power state
1983 * so that things like MSI message writing will behave as expected
1984 * (e.g. if the device really is in D0 at enable time).
1985 */
1986 pci_update_current_state(dev, dev->current_state);
1987
1988 if (atomic_inc_return(&dev->enable_cnt) > 1)
1989 return 0; /* already enabled */
1990
1991 bridge = pci_upstream_bridge(dev);
1992 if (bridge)
1993 pci_enable_bridge(bridge);
1994
1995 /* only skip sriov related */
1996 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1997 if (dev->resource[i].flags & flags)
1998 bars |= (1 << i);
1999 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
2000 if (dev->resource[i].flags & flags)
2001 bars |= (1 << i);
2002
2003 err = do_pci_enable_device(dev, bars);
2004 if (err < 0)
2005 atomic_dec(&dev->enable_cnt);
2006 return err;
2007}
2008
2009/**
2010 * pci_enable_device_io - Initialize a device for use with IO space
2011 * @dev: PCI device to be initialized
2012 *
2013 * Initialize device before it's used by a driver. Ask low-level code
2014 * to enable I/O resources. Wake up the device if it was suspended.
2015 * Beware, this function can fail.
2016 */
2017int pci_enable_device_io(struct pci_dev *dev)
2018{
2019 return pci_enable_device_flags(dev, IORESOURCE_IO);
2020}
2021EXPORT_SYMBOL(pci_enable_device_io);
2022
2023/**
2024 * pci_enable_device_mem - Initialize a device for use with Memory space
2025 * @dev: PCI device to be initialized
2026 *
2027 * Initialize device before it's used by a driver. Ask low-level code
2028 * to enable Memory resources. Wake up the device if it was suspended.
2029 * Beware, this function can fail.
2030 */
2031int pci_enable_device_mem(struct pci_dev *dev)
2032{
2033 return pci_enable_device_flags(dev, IORESOURCE_MEM);
2034}
2035EXPORT_SYMBOL(pci_enable_device_mem);
2036
2037/**
2038 * pci_enable_device - Initialize device before it's used by a driver.
2039 * @dev: PCI device to be initialized
2040 *
2041 * Initialize device before it's used by a driver. Ask low-level code
2042 * to enable I/O and memory. Wake up the device if it was suspended.
2043 * Beware, this function can fail.
2044 *
2045 * Note we don't actually enable the device many times if we call
2046 * this function repeatedly (we just increment the count).
2047 */
2048int pci_enable_device(struct pci_dev *dev)
2049{
2050 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
2051}
2052EXPORT_SYMBOL(pci_enable_device);
2053
2054/*
2055 * Managed PCI resources. This manages device on/off, INTx/MSI/MSI-X
2056 * on/off and BAR regions. pci_dev itself records MSI/MSI-X status, so
2057 * there's no need to track it separately. pci_devres is initialized
2058 * when a device is enabled using managed PCI device enable interface.
2059 */
2060struct pci_devres {
2061 unsigned int enabled:1;
2062 unsigned int pinned:1;
2063 unsigned int orig_intx:1;
2064 unsigned int restore_intx:1;
2065 unsigned int mwi:1;
2066 u32 region_mask;
2067};
2068
2069static void pcim_release(struct device *gendev, void *res)
2070{
2071 struct pci_dev *dev = to_pci_dev(gendev);
2072 struct pci_devres *this = res;
2073 int i;
2074
2075 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
2076 if (this->region_mask & (1 << i))
2077 pci_release_region(dev, i);
2078
2079 if (this->mwi)
2080 pci_clear_mwi(dev);
2081
2082 if (this->restore_intx)
2083 pci_intx(dev, this->orig_intx);
2084
2085 if (this->enabled && !this->pinned)
2086 pci_disable_device(dev);
2087}
2088
2089static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
2090{
2091 struct pci_devres *dr, *new_dr;
2092
2093 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
2094 if (dr)
2095 return dr;
2096
2097 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
2098 if (!new_dr)
2099 return NULL;
2100 return devres_get(&pdev->dev, new_dr, NULL, NULL);
2101}
2102
2103static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
2104{
2105 if (pci_is_managed(pdev))
2106 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
2107 return NULL;
2108}
2109
2110/**
2111 * pcim_enable_device - Managed pci_enable_device()
2112 * @pdev: PCI device to be initialized
2113 *
2114 * Managed pci_enable_device().
2115 */
2116int pcim_enable_device(struct pci_dev *pdev)
2117{
2118 struct pci_devres *dr;
2119 int rc;
2120
2121 dr = get_pci_dr(pdev);
2122 if (unlikely(!dr))
2123 return -ENOMEM;
2124 if (dr->enabled)
2125 return 0;
2126
2127 rc = pci_enable_device(pdev);
2128 if (!rc) {
2129 pdev->is_managed = 1;
2130 dr->enabled = 1;
2131 }
2132 return rc;
2133}
2134EXPORT_SYMBOL(pcim_enable_device);
2135
2136/**
2137 * pcim_pin_device - Pin managed PCI device
2138 * @pdev: PCI device to pin
2139 *
2140 * Pin managed PCI device @pdev. Pinned device won't be disabled on
2141 * driver detach. @pdev must have been enabled with
2142 * pcim_enable_device().
2143 */
2144void pcim_pin_device(struct pci_dev *pdev)
2145{
2146 struct pci_devres *dr;
2147
2148 dr = find_pci_dr(pdev);
2149 WARN_ON(!dr || !dr->enabled);
2150 if (dr)
2151 dr->pinned = 1;
2152}
2153EXPORT_SYMBOL(pcim_pin_device);
2154
2155/*
2156 * pcibios_device_add - provide arch specific hooks when adding device dev
2157 * @dev: the PCI device being added
2158 *
2159 * Permits the platform to provide architecture specific functionality when
2160 * devices are added. This is the default implementation. Architecture
2161 * implementations can override this.
2162 */
2163int __weak pcibios_device_add(struct pci_dev *dev)
2164{
2165 return 0;
2166}
2167
2168/**
2169 * pcibios_release_device - provide arch specific hooks when releasing
2170 * device dev
2171 * @dev: the PCI device being released
2172 *
2173 * Permits the platform to provide architecture specific functionality when
2174 * devices are released. This is the default implementation. Architecture
2175 * implementations can override this.
2176 */
2177void __weak pcibios_release_device(struct pci_dev *dev) {}
2178
2179/**
2180 * pcibios_disable_device - disable arch specific PCI resources for device dev
2181 * @dev: the PCI device to disable
2182 *
2183 * Disables architecture specific PCI resources for the device. This
2184 * is the default implementation. Architecture implementations can
2185 * override this.
2186 */
2187void __weak pcibios_disable_device(struct pci_dev *dev) {}
2188
2189/**
2190 * pcibios_penalize_isa_irq - penalize an ISA IRQ
2191 * @irq: ISA IRQ to penalize
2192 * @active: IRQ active or not
2193 *
2194 * Permits the platform to provide architecture-specific functionality when
2195 * penalizing ISA IRQs. This is the default implementation. Architecture
2196 * implementations can override this.
2197 */
2198void __weak pcibios_penalize_isa_irq(int irq, int active) {}
2199
2200static void do_pci_disable_device(struct pci_dev *dev)
2201{
2202 u16 pci_command;
2203
2204 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
2205 if (pci_command & PCI_COMMAND_MASTER) {
2206 pci_command &= ~PCI_COMMAND_MASTER;
2207 pci_write_config_word(dev, PCI_COMMAND, pci_command);
2208 }
2209
2210 pcibios_disable_device(dev);
2211}
2212
2213/**
2214 * pci_disable_enabled_device - Disable device without updating enable_cnt
2215 * @dev: PCI device to disable
2216 *
2217 * NOTE: This function is a backend of PCI power management routines and is
2218 * not supposed to be called drivers.
2219 */
2220void pci_disable_enabled_device(struct pci_dev *dev)
2221{
2222 if (pci_is_enabled(dev))
2223 do_pci_disable_device(dev);
2224}
2225
2226/**
2227 * pci_disable_device - Disable PCI device after use
2228 * @dev: PCI device to be disabled
2229 *
2230 * Signal to the system that the PCI device is not in use by the system
2231 * anymore. This only involves disabling PCI bus-mastering, if active.
2232 *
2233 * Note we don't actually disable the device until all callers of
2234 * pci_enable_device() have called pci_disable_device().
2235 */
2236void pci_disable_device(struct pci_dev *dev)
2237{
2238 struct pci_devres *dr;
2239
2240 dr = find_pci_dr(dev);
2241 if (dr)
2242 dr->enabled = 0;
2243
2244 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
2245 "disabling already-disabled device");
2246
2247 if (atomic_dec_return(&dev->enable_cnt) != 0)
2248 return;
2249
2250 do_pci_disable_device(dev);
2251
2252 dev->is_busmaster = 0;
2253}
2254EXPORT_SYMBOL(pci_disable_device);
2255
2256/**
2257 * pcibios_set_pcie_reset_state - set reset state for device dev
2258 * @dev: the PCIe device reset
2259 * @state: Reset state to enter into
2260 *
2261 * Set the PCIe reset state for the device. This is the default
2262 * implementation. Architecture implementations can override this.
2263 */
2264int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
2265 enum pcie_reset_state state)
2266{
2267 return -EINVAL;
2268}
2269
2270/**
2271 * pci_set_pcie_reset_state - set reset state for device dev
2272 * @dev: the PCIe device reset
2273 * @state: Reset state to enter into
2274 *
2275 * Sets the PCI reset state for the device.
2276 */
2277int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
2278{
2279 return pcibios_set_pcie_reset_state(dev, state);
2280}
2281EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2282
2283#ifdef CONFIG_PCIEAER
2284void pcie_clear_device_status(struct pci_dev *dev)
2285{
2286 u16 sta;
2287
2288 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta);
2289 pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta);
2290}
2291#endif
2292
2293/**
2294 * pcie_clear_root_pme_status - Clear root port PME interrupt status.
2295 * @dev: PCIe root port or event collector.
2296 */
2297void pcie_clear_root_pme_status(struct pci_dev *dev)
2298{
2299 pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
2300}
2301
2302/**
2303 * pci_check_pme_status - Check if given device has generated PME.
2304 * @dev: Device to check.
2305 *
2306 * Check the PME status of the device and if set, clear it and clear PME enable
2307 * (if set). Return 'true' if PME status and PME enable were both set or
2308 * 'false' otherwise.
2309 */
2310bool pci_check_pme_status(struct pci_dev *dev)
2311{
2312 int pmcsr_pos;
2313 u16 pmcsr;
2314 bool ret = false;
2315
2316 if (!dev->pm_cap)
2317 return false;
2318
2319 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2320 pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2321 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2322 return false;
2323
2324 /* Clear PME status. */
2325 pmcsr |= PCI_PM_CTRL_PME_STATUS;
2326 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2327 /* Disable PME to avoid interrupt flood. */
2328 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2329 ret = true;
2330 }
2331
2332 pci_write_config_word(dev, pmcsr_pos, pmcsr);
2333
2334 return ret;
2335}
2336
2337/**
2338 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2339 * @dev: Device to handle.
2340 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2341 *
2342 * Check if @dev has generated PME and queue a resume request for it in that
2343 * case.
2344 */
2345static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2346{
2347 if (pme_poll_reset && dev->pme_poll)
2348 dev->pme_poll = false;
2349
2350 if (pci_check_pme_status(dev)) {
2351 pci_wakeup_event(dev);
2352 pm_request_resume(&dev->dev);
2353 }
2354 return 0;
2355}
2356
2357/**
2358 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2359 * @bus: Top bus of the subtree to walk.
2360 */
2361void pci_pme_wakeup_bus(struct pci_bus *bus)
2362{
2363 if (bus)
2364 pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2365}
2366
2367
2368/**
2369 * pci_pme_capable - check the capability of PCI device to generate PME#
2370 * @dev: PCI device to handle.
2371 * @state: PCI state from which device will issue PME#.
2372 */
2373bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2374{
2375 if (!dev->pm_cap)
2376 return false;
2377
2378 return !!(dev->pme_support & (1 << state));
2379}
2380EXPORT_SYMBOL(pci_pme_capable);
2381
2382static void pci_pme_list_scan(struct work_struct *work)
2383{
2384 struct pci_pme_device *pme_dev, *n;
2385
2386 mutex_lock(&pci_pme_list_mutex);
2387 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2388 if (pme_dev->dev->pme_poll) {
2389 struct pci_dev *bridge;
2390
2391 bridge = pme_dev->dev->bus->self;
2392 /*
2393 * If bridge is in low power state, the
2394 * configuration space of subordinate devices
2395 * may be not accessible
2396 */
2397 if (bridge && bridge->current_state != PCI_D0)
2398 continue;
2399 /*
2400 * If the device is in D3cold it should not be
2401 * polled either.
2402 */
2403 if (pme_dev->dev->current_state == PCI_D3cold)
2404 continue;
2405
2406 pci_pme_wakeup(pme_dev->dev, NULL);
2407 } else {
2408 list_del(&pme_dev->list);
2409 kfree(pme_dev);
2410 }
2411 }
2412 if (!list_empty(&pci_pme_list))
2413 queue_delayed_work(system_freezable_wq, &pci_pme_work,
2414 msecs_to_jiffies(PME_TIMEOUT));
2415 mutex_unlock(&pci_pme_list_mutex);
2416}
2417
2418static void __pci_pme_active(struct pci_dev *dev, bool enable)
2419{
2420 u16 pmcsr;
2421
2422 if (!dev->pme_support)
2423 return;
2424
2425 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2426 /* Clear PME_Status by writing 1 to it and enable PME# */
2427 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2428 if (!enable)
2429 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2430
2431 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2432}
2433
2434/**
2435 * pci_pme_restore - Restore PME configuration after config space restore.
2436 * @dev: PCI device to update.
2437 */
2438void pci_pme_restore(struct pci_dev *dev)
2439{
2440 u16 pmcsr;
2441
2442 if (!dev->pme_support)
2443 return;
2444
2445 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2446 if (dev->wakeup_prepared) {
2447 pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2448 pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2449 } else {
2450 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2451 pmcsr |= PCI_PM_CTRL_PME_STATUS;
2452 }
2453 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2454}
2455
2456/**
2457 * pci_pme_active - enable or disable PCI device's PME# function
2458 * @dev: PCI device to handle.
2459 * @enable: 'true' to enable PME# generation; 'false' to disable it.
2460 *
2461 * The caller must verify that the device is capable of generating PME# before
2462 * calling this function with @enable equal to 'true'.
2463 */
2464void pci_pme_active(struct pci_dev *dev, bool enable)
2465{
2466 __pci_pme_active(dev, enable);
2467
2468 /*
2469 * PCI (as opposed to PCIe) PME requires that the device have
2470 * its PME# line hooked up correctly. Not all hardware vendors
2471 * do this, so the PME never gets delivered and the device
2472 * remains asleep. The easiest way around this is to
2473 * periodically walk the list of suspended devices and check
2474 * whether any have their PME flag set. The assumption is that
2475 * we'll wake up often enough anyway that this won't be a huge
2476 * hit, and the power savings from the devices will still be a
2477 * win.
2478 *
2479 * Although PCIe uses in-band PME message instead of PME# line
2480 * to report PME, PME does not work for some PCIe devices in
2481 * reality. For example, there are devices that set their PME
2482 * status bits, but don't really bother to send a PME message;
2483 * there are PCI Express Root Ports that don't bother to
2484 * trigger interrupts when they receive PME messages from the
2485 * devices below. So PME poll is used for PCIe devices too.
2486 */
2487
2488 if (dev->pme_poll) {
2489 struct pci_pme_device *pme_dev;
2490 if (enable) {
2491 pme_dev = kmalloc(sizeof(struct pci_pme_device),
2492 GFP_KERNEL);
2493 if (!pme_dev) {
2494 pci_warn(dev, "can't enable PME#\n");
2495 return;
2496 }
2497 pme_dev->dev = dev;
2498 mutex_lock(&pci_pme_list_mutex);
2499 list_add(&pme_dev->list, &pci_pme_list);
2500 if (list_is_singular(&pci_pme_list))
2501 queue_delayed_work(system_freezable_wq,
2502 &pci_pme_work,
2503 msecs_to_jiffies(PME_TIMEOUT));
2504 mutex_unlock(&pci_pme_list_mutex);
2505 } else {
2506 mutex_lock(&pci_pme_list_mutex);
2507 list_for_each_entry(pme_dev, &pci_pme_list, list) {
2508 if (pme_dev->dev == dev) {
2509 list_del(&pme_dev->list);
2510 kfree(pme_dev);
2511 break;
2512 }
2513 }
2514 mutex_unlock(&pci_pme_list_mutex);
2515 }
2516 }
2517
2518 pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2519}
2520EXPORT_SYMBOL(pci_pme_active);
2521
2522/**
2523 * __pci_enable_wake - enable PCI device as wakeup event source
2524 * @dev: PCI device affected
2525 * @state: PCI state from which device will issue wakeup events
2526 * @enable: True to enable event generation; false to disable
2527 *
2528 * This enables the device as a wakeup event source, or disables it.
2529 * When such events involves platform-specific hooks, those hooks are
2530 * called automatically by this routine.
2531 *
2532 * Devices with legacy power management (no standard PCI PM capabilities)
2533 * always require such platform hooks.
2534 *
2535 * RETURN VALUE:
2536 * 0 is returned on success
2537 * -EINVAL is returned if device is not supposed to wake up the system
2538 * Error code depending on the platform is returned if both the platform and
2539 * the native mechanism fail to enable the generation of wake-up events
2540 */
2541static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2542{
2543 int ret = 0;
2544
2545 /*
2546 * Bridges that are not power-manageable directly only signal
2547 * wakeup on behalf of subordinate devices which is set up
2548 * elsewhere, so skip them. However, bridges that are
2549 * power-manageable may signal wakeup for themselves (for example,
2550 * on a hotplug event) and they need to be covered here.
2551 */
2552 if (!pci_power_manageable(dev))
2553 return 0;
2554
2555 /* Don't do the same thing twice in a row for one device. */
2556 if (!!enable == !!dev->wakeup_prepared)
2557 return 0;
2558
2559 /*
2560 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2561 * Anderson we should be doing PME# wake enable followed by ACPI wake
2562 * enable. To disable wake-up we call the platform first, for symmetry.
2563 */
2564
2565 if (enable) {
2566 int error;
2567
2568 /*
2569 * Enable PME signaling if the device can signal PME from
2570 * D3cold regardless of whether or not it can signal PME from
2571 * the current target state, because that will allow it to
2572 * signal PME when the hierarchy above it goes into D3cold and
2573 * the device itself ends up in D3cold as a result of that.
2574 */
2575 if (pci_pme_capable(dev, state) || pci_pme_capable(dev, PCI_D3cold))
2576 pci_pme_active(dev, true);
2577 else
2578 ret = 1;
2579 error = platform_pci_set_wakeup(dev, true);
2580 if (ret)
2581 ret = error;
2582 if (!ret)
2583 dev->wakeup_prepared = true;
2584 } else {
2585 platform_pci_set_wakeup(dev, false);
2586 pci_pme_active(dev, false);
2587 dev->wakeup_prepared = false;
2588 }
2589
2590 return ret;
2591}
2592
2593/**
2594 * pci_enable_wake - change wakeup settings for a PCI device
2595 * @pci_dev: Target device
2596 * @state: PCI state from which device will issue wakeup events
2597 * @enable: Whether or not to enable event generation
2598 *
2599 * If @enable is set, check device_may_wakeup() for the device before calling
2600 * __pci_enable_wake() for it.
2601 */
2602int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2603{
2604 if (enable && !device_may_wakeup(&pci_dev->dev))
2605 return -EINVAL;
2606
2607 return __pci_enable_wake(pci_dev, state, enable);
2608}
2609EXPORT_SYMBOL(pci_enable_wake);
2610
2611/**
2612 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2613 * @dev: PCI device to prepare
2614 * @enable: True to enable wake-up event generation; false to disable
2615 *
2616 * Many drivers want the device to wake up the system from D3_hot or D3_cold
2617 * and this function allows them to set that up cleanly - pci_enable_wake()
2618 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2619 * ordering constraints.
2620 *
2621 * This function only returns error code if the device is not allowed to wake
2622 * up the system from sleep or it is not capable of generating PME# from both
2623 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2624 */
2625int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2626{
2627 return pci_pme_capable(dev, PCI_D3cold) ?
2628 pci_enable_wake(dev, PCI_D3cold, enable) :
2629 pci_enable_wake(dev, PCI_D3hot, enable);
2630}
2631EXPORT_SYMBOL(pci_wake_from_d3);
2632
2633/**
2634 * pci_target_state - find an appropriate low power state for a given PCI dev
2635 * @dev: PCI device
2636 * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2637 *
2638 * Use underlying platform code to find a supported low power state for @dev.
2639 * If the platform can't manage @dev, return the deepest state from which it
2640 * can generate wake events, based on any available PME info.
2641 */
2642static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2643{
2644 if (platform_pci_power_manageable(dev)) {
2645 /*
2646 * Call the platform to find the target state for the device.
2647 */
2648 pci_power_t state = platform_pci_choose_state(dev);
2649
2650 switch (state) {
2651 case PCI_POWER_ERROR:
2652 case PCI_UNKNOWN:
2653 return PCI_D3hot;
2654
2655 case PCI_D1:
2656 case PCI_D2:
2657 if (pci_no_d1d2(dev))
2658 return PCI_D3hot;
2659 }
2660
2661 return state;
2662 }
2663
2664 /*
2665 * If the device is in D3cold even though it's not power-manageable by
2666 * the platform, it may have been powered down by non-standard means.
2667 * Best to let it slumber.
2668 */
2669 if (dev->current_state == PCI_D3cold)
2670 return PCI_D3cold;
2671 else if (!dev->pm_cap)
2672 return PCI_D0;
2673
2674 if (wakeup && dev->pme_support) {
2675 pci_power_t state = PCI_D3hot;
2676
2677 /*
2678 * Find the deepest state from which the device can generate
2679 * PME#.
2680 */
2681 while (state && !(dev->pme_support & (1 << state)))
2682 state--;
2683
2684 if (state)
2685 return state;
2686 else if (dev->pme_support & 1)
2687 return PCI_D0;
2688 }
2689
2690 return PCI_D3hot;
2691}
2692
2693/**
2694 * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2695 * into a sleep state
2696 * @dev: Device to handle.
2697 *
2698 * Choose the power state appropriate for the device depending on whether
2699 * it can wake up the system and/or is power manageable by the platform
2700 * (PCI_D3hot is the default) and put the device into that state.
2701 */
2702int pci_prepare_to_sleep(struct pci_dev *dev)
2703{
2704 bool wakeup = device_may_wakeup(&dev->dev);
2705 pci_power_t target_state = pci_target_state(dev, wakeup);
2706 int error;
2707
2708 if (target_state == PCI_POWER_ERROR)
2709 return -EIO;
2710
2711 pci_enable_wake(dev, target_state, wakeup);
2712
2713 error = pci_set_power_state(dev, target_state);
2714
2715 if (error)
2716 pci_enable_wake(dev, target_state, false);
2717
2718 return error;
2719}
2720EXPORT_SYMBOL(pci_prepare_to_sleep);
2721
2722/**
2723 * pci_back_from_sleep - turn PCI device on during system-wide transition
2724 * into working state
2725 * @dev: Device to handle.
2726 *
2727 * Disable device's system wake-up capability and put it into D0.
2728 */
2729int pci_back_from_sleep(struct pci_dev *dev)
2730{
2731 int ret = pci_set_power_state(dev, PCI_D0);
2732
2733 if (ret)
2734 return ret;
2735
2736 pci_enable_wake(dev, PCI_D0, false);
2737 return 0;
2738}
2739EXPORT_SYMBOL(pci_back_from_sleep);
2740
2741/**
2742 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2743 * @dev: PCI device being suspended.
2744 *
2745 * Prepare @dev to generate wake-up events at run time and put it into a low
2746 * power state.
2747 */
2748int pci_finish_runtime_suspend(struct pci_dev *dev)
2749{
2750 pci_power_t target_state;
2751 int error;
2752
2753 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2754 if (target_state == PCI_POWER_ERROR)
2755 return -EIO;
2756
2757 __pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2758
2759 error = pci_set_power_state(dev, target_state);
2760
2761 if (error)
2762 pci_enable_wake(dev, target_state, false);
2763
2764 return error;
2765}
2766
2767/**
2768 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2769 * @dev: Device to check.
2770 *
2771 * Return true if the device itself is capable of generating wake-up events
2772 * (through the platform or using the native PCIe PME) or if the device supports
2773 * PME and one of its upstream bridges can generate wake-up events.
2774 */
2775bool pci_dev_run_wake(struct pci_dev *dev)
2776{
2777 struct pci_bus *bus = dev->bus;
2778
2779 if (!dev->pme_support)
2780 return false;
2781
2782 /* PME-capable in principle, but not from the target power state */
2783 if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2784 return false;
2785
2786 if (device_can_wakeup(&dev->dev))
2787 return true;
2788
2789 while (bus->parent) {
2790 struct pci_dev *bridge = bus->self;
2791
2792 if (device_can_wakeup(&bridge->dev))
2793 return true;
2794
2795 bus = bus->parent;
2796 }
2797
2798 /* We have reached the root bus. */
2799 if (bus->bridge)
2800 return device_can_wakeup(bus->bridge);
2801
2802 return false;
2803}
2804EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2805
2806/**
2807 * pci_dev_need_resume - Check if it is necessary to resume the device.
2808 * @pci_dev: Device to check.
2809 *
2810 * Return 'true' if the device is not runtime-suspended or it has to be
2811 * reconfigured due to wakeup settings difference between system and runtime
2812 * suspend, or the current power state of it is not suitable for the upcoming
2813 * (system-wide) transition.
2814 */
2815bool pci_dev_need_resume(struct pci_dev *pci_dev)
2816{
2817 struct device *dev = &pci_dev->dev;
2818 pci_power_t target_state;
2819
2820 if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
2821 return true;
2822
2823 target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
2824
2825 /*
2826 * If the earlier platform check has not triggered, D3cold is just power
2827 * removal on top of D3hot, so no need to resume the device in that
2828 * case.
2829 */
2830 return target_state != pci_dev->current_state &&
2831 target_state != PCI_D3cold &&
2832 pci_dev->current_state != PCI_D3hot;
2833}
2834
2835/**
2836 * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2837 * @pci_dev: Device to check.
2838 *
2839 * If the device is suspended and it is not configured for system wakeup,
2840 * disable PME for it to prevent it from waking up the system unnecessarily.
2841 *
2842 * Note that if the device's power state is D3cold and the platform check in
2843 * pci_dev_need_resume() has not triggered, the device's configuration need not
2844 * be changed.
2845 */
2846void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2847{
2848 struct device *dev = &pci_dev->dev;
2849
2850 spin_lock_irq(&dev->power.lock);
2851
2852 if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2853 pci_dev->current_state < PCI_D3cold)
2854 __pci_pme_active(pci_dev, false);
2855
2856 spin_unlock_irq(&dev->power.lock);
2857}
2858
2859/**
2860 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2861 * @pci_dev: Device to handle.
2862 *
2863 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2864 * it might have been disabled during the prepare phase of system suspend if
2865 * the device was not configured for system wakeup.
2866 */
2867void pci_dev_complete_resume(struct pci_dev *pci_dev)
2868{
2869 struct device *dev = &pci_dev->dev;
2870
2871 if (!pci_dev_run_wake(pci_dev))
2872 return;
2873
2874 spin_lock_irq(&dev->power.lock);
2875
2876 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2877 __pci_pme_active(pci_dev, true);
2878
2879 spin_unlock_irq(&dev->power.lock);
2880}
2881
2882/**
2883 * pci_choose_state - Choose the power state of a PCI device.
2884 * @dev: Target PCI device.
2885 * @state: Target state for the whole system.
2886 *
2887 * Returns PCI power state suitable for @dev and @state.
2888 */
2889pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
2890{
2891 if (state.event == PM_EVENT_ON)
2892 return PCI_D0;
2893
2894 return pci_target_state(dev, false);
2895}
2896EXPORT_SYMBOL(pci_choose_state);
2897
2898void pci_config_pm_runtime_get(struct pci_dev *pdev)
2899{
2900 struct device *dev = &pdev->dev;
2901 struct device *parent = dev->parent;
2902
2903 if (parent)
2904 pm_runtime_get_sync(parent);
2905 pm_runtime_get_noresume(dev);
2906 /*
2907 * pdev->current_state is set to PCI_D3cold during suspending,
2908 * so wait until suspending completes
2909 */
2910 pm_runtime_barrier(dev);
2911 /*
2912 * Only need to resume devices in D3cold, because config
2913 * registers are still accessible for devices suspended but
2914 * not in D3cold.
2915 */
2916 if (pdev->current_state == PCI_D3cold)
2917 pm_runtime_resume(dev);
2918}
2919
2920void pci_config_pm_runtime_put(struct pci_dev *pdev)
2921{
2922 struct device *dev = &pdev->dev;
2923 struct device *parent = dev->parent;
2924
2925 pm_runtime_put(dev);
2926 if (parent)
2927 pm_runtime_put_sync(parent);
2928}
2929
2930static const struct dmi_system_id bridge_d3_blacklist[] = {
2931#ifdef CONFIG_X86
2932 {
2933 /*
2934 * Gigabyte X299 root port is not marked as hotplug capable
2935 * which allows Linux to power manage it. However, this
2936 * confuses the BIOS SMI handler so don't power manage root
2937 * ports on that system.
2938 */
2939 .ident = "X299 DESIGNARE EX-CF",
2940 .matches = {
2941 DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
2942 DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
2943 },
2944 },
2945 {
2946 /*
2947 * Downstream device is not accessible after putting a root port
2948 * into D3cold and back into D0 on Elo i2.
2949 */
2950 .ident = "Elo i2",
2951 .matches = {
2952 DMI_MATCH(DMI_SYS_VENDOR, "Elo Touch Solutions"),
2953 DMI_MATCH(DMI_PRODUCT_NAME, "Elo i2"),
2954 DMI_MATCH(DMI_PRODUCT_VERSION, "RevB"),
2955 },
2956 },
2957#endif
2958 { }
2959};
2960
2961/**
2962 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2963 * @bridge: Bridge to check
2964 *
2965 * This function checks if it is possible to move the bridge to D3.
2966 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
2967 */
2968bool pci_bridge_d3_possible(struct pci_dev *bridge)
2969{
2970 if (!pci_is_pcie(bridge))
2971 return false;
2972
2973 switch (pci_pcie_type(bridge)) {
2974 case PCI_EXP_TYPE_ROOT_PORT:
2975 case PCI_EXP_TYPE_UPSTREAM:
2976 case PCI_EXP_TYPE_DOWNSTREAM:
2977 if (pci_bridge_d3_disable)
2978 return false;
2979
2980 /*
2981 * Hotplug ports handled by firmware in System Management Mode
2982 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2983 */
2984 if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
2985 return false;
2986
2987 if (pci_bridge_d3_force)
2988 return true;
2989
2990 /* Even the oldest 2010 Thunderbolt controller supports D3. */
2991 if (bridge->is_thunderbolt)
2992 return true;
2993
2994 /* Platform might know better if the bridge supports D3 */
2995 if (platform_pci_bridge_d3(bridge))
2996 return true;
2997
2998 /*
2999 * Hotplug ports handled natively by the OS were not validated
3000 * by vendors for runtime D3 at least until 2018 because there
3001 * was no OS support.
3002 */
3003 if (bridge->is_hotplug_bridge)
3004 return false;
3005
3006 if (dmi_check_system(bridge_d3_blacklist))
3007 return false;
3008
3009 /*
3010 * It should be safe to put PCIe ports from 2015 or newer
3011 * to D3.
3012 */
3013 if (dmi_get_bios_year() >= 2015)
3014 return true;
3015 break;
3016 }
3017
3018 return false;
3019}
3020
3021static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
3022{
3023 bool *d3cold_ok = data;
3024
3025 if (/* The device needs to be allowed to go D3cold ... */
3026 dev->no_d3cold || !dev->d3cold_allowed ||
3027
3028 /* ... and if it is wakeup capable to do so from D3cold. */
3029 (device_may_wakeup(&dev->dev) &&
3030 !pci_pme_capable(dev, PCI_D3cold)) ||
3031
3032 /* If it is a bridge it must be allowed to go to D3. */
3033 !pci_power_manageable(dev))
3034
3035 *d3cold_ok = false;
3036
3037 return !*d3cold_ok;
3038}
3039
3040/*
3041 * pci_bridge_d3_update - Update bridge D3 capabilities
3042 * @dev: PCI device which is changed
3043 *
3044 * Update upstream bridge PM capabilities accordingly depending on if the
3045 * device PM configuration was changed or the device is being removed. The
3046 * change is also propagated upstream.
3047 */
3048void pci_bridge_d3_update(struct pci_dev *dev)
3049{
3050 bool remove = !device_is_registered(&dev->dev);
3051 struct pci_dev *bridge;
3052 bool d3cold_ok = true;
3053
3054 bridge = pci_upstream_bridge(dev);
3055 if (!bridge || !pci_bridge_d3_possible(bridge))
3056 return;
3057
3058 /*
3059 * If D3 is currently allowed for the bridge, removing one of its
3060 * children won't change that.
3061 */
3062 if (remove && bridge->bridge_d3)
3063 return;
3064
3065 /*
3066 * If D3 is currently allowed for the bridge and a child is added or
3067 * changed, disallowance of D3 can only be caused by that child, so
3068 * we only need to check that single device, not any of its siblings.
3069 *
3070 * If D3 is currently not allowed for the bridge, checking the device
3071 * first may allow us to skip checking its siblings.
3072 */
3073 if (!remove)
3074 pci_dev_check_d3cold(dev, &d3cold_ok);
3075
3076 /*
3077 * If D3 is currently not allowed for the bridge, this may be caused
3078 * either by the device being changed/removed or any of its siblings,
3079 * so we need to go through all children to find out if one of them
3080 * continues to block D3.
3081 */
3082 if (d3cold_ok && !bridge->bridge_d3)
3083 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
3084 &d3cold_ok);
3085
3086 if (bridge->bridge_d3 != d3cold_ok) {
3087 bridge->bridge_d3 = d3cold_ok;
3088 /* Propagate change to upstream bridges */
3089 pci_bridge_d3_update(bridge);
3090 }
3091}
3092
3093/**
3094 * pci_d3cold_enable - Enable D3cold for device
3095 * @dev: PCI device to handle
3096 *
3097 * This function can be used in drivers to enable D3cold from the device
3098 * they handle. It also updates upstream PCI bridge PM capabilities
3099 * accordingly.
3100 */
3101void pci_d3cold_enable(struct pci_dev *dev)
3102{
3103 if (dev->no_d3cold) {
3104 dev->no_d3cold = false;
3105 pci_bridge_d3_update(dev);
3106 }
3107}
3108EXPORT_SYMBOL_GPL(pci_d3cold_enable);
3109
3110/**
3111 * pci_d3cold_disable - Disable D3cold for device
3112 * @dev: PCI device to handle
3113 *
3114 * This function can be used in drivers to disable D3cold from the device
3115 * they handle. It also updates upstream PCI bridge PM capabilities
3116 * accordingly.
3117 */
3118void pci_d3cold_disable(struct pci_dev *dev)
3119{
3120 if (!dev->no_d3cold) {
3121 dev->no_d3cold = true;
3122 pci_bridge_d3_update(dev);
3123 }
3124}
3125EXPORT_SYMBOL_GPL(pci_d3cold_disable);
3126
3127/**
3128 * pci_pm_init - Initialize PM functions of given PCI device
3129 * @dev: PCI device to handle.
3130 */
3131void pci_pm_init(struct pci_dev *dev)
3132{
3133 int pm;
3134 u16 status;
3135 u16 pmc;
3136
3137 pm_runtime_forbid(&dev->dev);
3138 pm_runtime_set_active(&dev->dev);
3139 pm_runtime_enable(&dev->dev);
3140 device_enable_async_suspend(&dev->dev);
3141 dev->wakeup_prepared = false;
3142
3143 dev->pm_cap = 0;
3144 dev->pme_support = 0;
3145
3146 /* find PCI PM capability in list */
3147 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
3148 if (!pm)
3149 return;
3150 /* Check device's ability to generate PME# */
3151 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
3152
3153 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
3154 pci_err(dev, "unsupported PM cap regs version (%u)\n",
3155 pmc & PCI_PM_CAP_VER_MASK);
3156 return;
3157 }
3158
3159 dev->pm_cap = pm;
3160 dev->d3hot_delay = PCI_PM_D3HOT_WAIT;
3161 dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
3162 dev->bridge_d3 = pci_bridge_d3_possible(dev);
3163 dev->d3cold_allowed = true;
3164
3165 dev->d1_support = false;
3166 dev->d2_support = false;
3167 if (!pci_no_d1d2(dev)) {
3168 if (pmc & PCI_PM_CAP_D1)
3169 dev->d1_support = true;
3170 if (pmc & PCI_PM_CAP_D2)
3171 dev->d2_support = true;
3172
3173 if (dev->d1_support || dev->d2_support)
3174 pci_info(dev, "supports%s%s\n",
3175 dev->d1_support ? " D1" : "",
3176 dev->d2_support ? " D2" : "");
3177 }
3178
3179 pmc &= PCI_PM_CAP_PME_MASK;
3180 if (pmc) {
3181 pci_info(dev, "PME# supported from%s%s%s%s%s\n",
3182 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
3183 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
3184 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
3185 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "",
3186 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
3187 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
3188 dev->pme_poll = true;
3189 /*
3190 * Make device's PM flags reflect the wake-up capability, but
3191 * let the user space enable it to wake up the system as needed.
3192 */
3193 device_set_wakeup_capable(&dev->dev, true);
3194 /* Disable the PME# generation functionality */
3195 pci_pme_active(dev, false);
3196 }
3197
3198 pci_read_config_word(dev, PCI_STATUS, &status);
3199 if (status & PCI_STATUS_IMM_READY)
3200 dev->imm_ready = 1;
3201}
3202
3203static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
3204{
3205 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
3206
3207 switch (prop) {
3208 case PCI_EA_P_MEM:
3209 case PCI_EA_P_VF_MEM:
3210 flags |= IORESOURCE_MEM;
3211 break;
3212 case PCI_EA_P_MEM_PREFETCH:
3213 case PCI_EA_P_VF_MEM_PREFETCH:
3214 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
3215 break;
3216 case PCI_EA_P_IO:
3217 flags |= IORESOURCE_IO;
3218 break;
3219 default:
3220 return 0;
3221 }
3222
3223 return flags;
3224}
3225
3226static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
3227 u8 prop)
3228{
3229 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
3230 return &dev->resource[bei];
3231#ifdef CONFIG_PCI_IOV
3232 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
3233 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
3234 return &dev->resource[PCI_IOV_RESOURCES +
3235 bei - PCI_EA_BEI_VF_BAR0];
3236#endif
3237 else if (bei == PCI_EA_BEI_ROM)
3238 return &dev->resource[PCI_ROM_RESOURCE];
3239 else
3240 return NULL;
3241}
3242
3243/* Read an Enhanced Allocation (EA) entry */
3244static int pci_ea_read(struct pci_dev *dev, int offset)
3245{
3246 struct resource *res;
3247 int ent_size, ent_offset = offset;
3248 resource_size_t start, end;
3249 unsigned long flags;
3250 u32 dw0, bei, base, max_offset;
3251 u8 prop;
3252 bool support_64 = (sizeof(resource_size_t) >= 8);
3253
3254 pci_read_config_dword(dev, ent_offset, &dw0);
3255 ent_offset += 4;
3256
3257 /* Entry size field indicates DWORDs after 1st */
3258 ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
3259
3260 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
3261 goto out;
3262
3263 bei = (dw0 & PCI_EA_BEI) >> 4;
3264 prop = (dw0 & PCI_EA_PP) >> 8;
3265
3266 /*
3267 * If the Property is in the reserved range, try the Secondary
3268 * Property instead.
3269 */
3270 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
3271 prop = (dw0 & PCI_EA_SP) >> 16;
3272 if (prop > PCI_EA_P_BRIDGE_IO)
3273 goto out;
3274
3275 res = pci_ea_get_resource(dev, bei, prop);
3276 if (!res) {
3277 pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
3278 goto out;
3279 }
3280
3281 flags = pci_ea_flags(dev, prop);
3282 if (!flags) {
3283 pci_err(dev, "Unsupported EA properties: %#x\n", prop);
3284 goto out;
3285 }
3286
3287 /* Read Base */
3288 pci_read_config_dword(dev, ent_offset, &base);
3289 start = (base & PCI_EA_FIELD_MASK);
3290 ent_offset += 4;
3291
3292 /* Read MaxOffset */
3293 pci_read_config_dword(dev, ent_offset, &max_offset);
3294 ent_offset += 4;
3295
3296 /* Read Base MSBs (if 64-bit entry) */
3297 if (base & PCI_EA_IS_64) {
3298 u32 base_upper;
3299
3300 pci_read_config_dword(dev, ent_offset, &base_upper);
3301 ent_offset += 4;
3302
3303 flags |= IORESOURCE_MEM_64;
3304
3305 /* entry starts above 32-bit boundary, can't use */
3306 if (!support_64 && base_upper)
3307 goto out;
3308
3309 if (support_64)
3310 start |= ((u64)base_upper << 32);
3311 }
3312
3313 end = start + (max_offset | 0x03);
3314
3315 /* Read MaxOffset MSBs (if 64-bit entry) */
3316 if (max_offset & PCI_EA_IS_64) {
3317 u32 max_offset_upper;
3318
3319 pci_read_config_dword(dev, ent_offset, &max_offset_upper);
3320 ent_offset += 4;
3321
3322 flags |= IORESOURCE_MEM_64;
3323
3324 /* entry too big, can't use */
3325 if (!support_64 && max_offset_upper)
3326 goto out;
3327
3328 if (support_64)
3329 end += ((u64)max_offset_upper << 32);
3330 }
3331
3332 if (end < start) {
3333 pci_err(dev, "EA Entry crosses address boundary\n");
3334 goto out;
3335 }
3336
3337 if (ent_size != ent_offset - offset) {
3338 pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
3339 ent_size, ent_offset - offset);
3340 goto out;
3341 }
3342
3343 res->name = pci_name(dev);
3344 res->start = start;
3345 res->end = end;
3346 res->flags = flags;
3347
3348 if (bei <= PCI_EA_BEI_BAR5)
3349 pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3350 bei, res, prop);
3351 else if (bei == PCI_EA_BEI_ROM)
3352 pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
3353 res, prop);
3354 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3355 pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3356 bei - PCI_EA_BEI_VF_BAR0, res, prop);
3357 else
3358 pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
3359 bei, res, prop);
3360
3361out:
3362 return offset + ent_size;
3363}
3364
3365/* Enhanced Allocation Initialization */
3366void pci_ea_init(struct pci_dev *dev)
3367{
3368 int ea;
3369 u8 num_ent;
3370 int offset;
3371 int i;
3372
3373 /* find PCI EA capability in list */
3374 ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3375 if (!ea)
3376 return;
3377
3378 /* determine the number of entries */
3379 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3380 &num_ent);
3381 num_ent &= PCI_EA_NUM_ENT_MASK;
3382
3383 offset = ea + PCI_EA_FIRST_ENT;
3384
3385 /* Skip DWORD 2 for type 1 functions */
3386 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3387 offset += 4;
3388
3389 /* parse each EA entry */
3390 for (i = 0; i < num_ent; ++i)
3391 offset = pci_ea_read(dev, offset);
3392}
3393
3394static void pci_add_saved_cap(struct pci_dev *pci_dev,
3395 struct pci_cap_saved_state *new_cap)
3396{
3397 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3398}
3399
3400/**
3401 * _pci_add_cap_save_buffer - allocate buffer for saving given
3402 * capability registers
3403 * @dev: the PCI device
3404 * @cap: the capability to allocate the buffer for
3405 * @extended: Standard or Extended capability ID
3406 * @size: requested size of the buffer
3407 */
3408static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3409 bool extended, unsigned int size)
3410{
3411 int pos;
3412 struct pci_cap_saved_state *save_state;
3413
3414 if (extended)
3415 pos = pci_find_ext_capability(dev, cap);
3416 else
3417 pos = pci_find_capability(dev, cap);
3418
3419 if (!pos)
3420 return 0;
3421
3422 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3423 if (!save_state)
3424 return -ENOMEM;
3425
3426 save_state->cap.cap_nr = cap;
3427 save_state->cap.cap_extended = extended;
3428 save_state->cap.size = size;
3429 pci_add_saved_cap(dev, save_state);
3430
3431 return 0;
3432}
3433
3434int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3435{
3436 return _pci_add_cap_save_buffer(dev, cap, false, size);
3437}
3438
3439int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3440{
3441 return _pci_add_cap_save_buffer(dev, cap, true, size);
3442}
3443
3444/**
3445 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3446 * @dev: the PCI device
3447 */
3448void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3449{
3450 int error;
3451
3452 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3453 PCI_EXP_SAVE_REGS * sizeof(u16));
3454 if (error)
3455 pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3456
3457 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3458 if (error)
3459 pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3460
3461 error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3462 2 * sizeof(u16));
3463 if (error)
3464 pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3465
3466 pci_allocate_vc_save_buffers(dev);
3467}
3468
3469void pci_free_cap_save_buffers(struct pci_dev *dev)
3470{
3471 struct pci_cap_saved_state *tmp;
3472 struct hlist_node *n;
3473
3474 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3475 kfree(tmp);
3476}
3477
3478/**
3479 * pci_configure_ari - enable or disable ARI forwarding
3480 * @dev: the PCI device
3481 *
3482 * If @dev and its upstream bridge both support ARI, enable ARI in the
3483 * bridge. Otherwise, disable ARI in the bridge.
3484 */
3485void pci_configure_ari(struct pci_dev *dev)
3486{
3487 u32 cap;
3488 struct pci_dev *bridge;
3489
3490 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3491 return;
3492
3493 bridge = dev->bus->self;
3494 if (!bridge)
3495 return;
3496
3497 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3498 if (!(cap & PCI_EXP_DEVCAP2_ARI))
3499 return;
3500
3501 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3502 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3503 PCI_EXP_DEVCTL2_ARI);
3504 bridge->ari_enabled = 1;
3505 } else {
3506 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3507 PCI_EXP_DEVCTL2_ARI);
3508 bridge->ari_enabled = 0;
3509 }
3510}
3511
3512static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3513{
3514 int pos;
3515 u16 cap, ctrl;
3516
3517 pos = pdev->acs_cap;
3518 if (!pos)
3519 return false;
3520
3521 /*
3522 * Except for egress control, capabilities are either required
3523 * or only required if controllable. Features missing from the
3524 * capability field can therefore be assumed as hard-wired enabled.
3525 */
3526 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3527 acs_flags &= (cap | PCI_ACS_EC);
3528
3529 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3530 return (ctrl & acs_flags) == acs_flags;
3531}
3532
3533/**
3534 * pci_acs_enabled - test ACS against required flags for a given device
3535 * @pdev: device to test
3536 * @acs_flags: required PCI ACS flags
3537 *
3538 * Return true if the device supports the provided flags. Automatically
3539 * filters out flags that are not implemented on multifunction devices.
3540 *
3541 * Note that this interface checks the effective ACS capabilities of the
3542 * device rather than the actual capabilities. For instance, most single
3543 * function endpoints are not required to support ACS because they have no
3544 * opportunity for peer-to-peer access. We therefore return 'true'
3545 * regardless of whether the device exposes an ACS capability. This makes
3546 * it much easier for callers of this function to ignore the actual type
3547 * or topology of the device when testing ACS support.
3548 */
3549bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3550{
3551 int ret;
3552
3553 ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3554 if (ret >= 0)
3555 return ret > 0;
3556
3557 /*
3558 * Conventional PCI and PCI-X devices never support ACS, either
3559 * effectively or actually. The shared bus topology implies that
3560 * any device on the bus can receive or snoop DMA.
3561 */
3562 if (!pci_is_pcie(pdev))
3563 return false;
3564
3565 switch (pci_pcie_type(pdev)) {
3566 /*
3567 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3568 * but since their primary interface is PCI/X, we conservatively
3569 * handle them as we would a non-PCIe device.
3570 */
3571 case PCI_EXP_TYPE_PCIE_BRIDGE:
3572 /*
3573 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never
3574 * applicable... must never implement an ACS Extended Capability...".
3575 * This seems arbitrary, but we take a conservative interpretation
3576 * of this statement.
3577 */
3578 case PCI_EXP_TYPE_PCI_BRIDGE:
3579 case PCI_EXP_TYPE_RC_EC:
3580 return false;
3581 /*
3582 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3583 * implement ACS in order to indicate their peer-to-peer capabilities,
3584 * regardless of whether they are single- or multi-function devices.
3585 */
3586 case PCI_EXP_TYPE_DOWNSTREAM:
3587 case PCI_EXP_TYPE_ROOT_PORT:
3588 return pci_acs_flags_enabled(pdev, acs_flags);
3589 /*
3590 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3591 * implemented by the remaining PCIe types to indicate peer-to-peer
3592 * capabilities, but only when they are part of a multifunction
3593 * device. The footnote for section 6.12 indicates the specific
3594 * PCIe types included here.
3595 */
3596 case PCI_EXP_TYPE_ENDPOINT:
3597 case PCI_EXP_TYPE_UPSTREAM:
3598 case PCI_EXP_TYPE_LEG_END:
3599 case PCI_EXP_TYPE_RC_END:
3600 if (!pdev->multifunction)
3601 break;
3602
3603 return pci_acs_flags_enabled(pdev, acs_flags);
3604 }
3605
3606 /*
3607 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3608 * to single function devices with the exception of downstream ports.
3609 */
3610 return true;
3611}
3612
3613/**
3614 * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy
3615 * @start: starting downstream device
3616 * @end: ending upstream device or NULL to search to the root bus
3617 * @acs_flags: required flags
3618 *
3619 * Walk up a device tree from start to end testing PCI ACS support. If
3620 * any step along the way does not support the required flags, return false.
3621 */
3622bool pci_acs_path_enabled(struct pci_dev *start,
3623 struct pci_dev *end, u16 acs_flags)
3624{
3625 struct pci_dev *pdev, *parent = start;
3626
3627 do {
3628 pdev = parent;
3629
3630 if (!pci_acs_enabled(pdev, acs_flags))
3631 return false;
3632
3633 if (pci_is_root_bus(pdev->bus))
3634 return (end == NULL);
3635
3636 parent = pdev->bus->self;
3637 } while (pdev != end);
3638
3639 return true;
3640}
3641
3642/**
3643 * pci_acs_init - Initialize ACS if hardware supports it
3644 * @dev: the PCI device
3645 */
3646void pci_acs_init(struct pci_dev *dev)
3647{
3648 dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3649
3650 /*
3651 * Attempt to enable ACS regardless of capability because some Root
3652 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have
3653 * the standard ACS capability but still support ACS via those
3654 * quirks.
3655 */
3656 pci_enable_acs(dev);
3657}
3658
3659/**
3660 * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3661 * @pdev: PCI device
3662 * @bar: BAR to find
3663 *
3664 * Helper to find the position of the ctrl register for a BAR.
3665 * Returns -ENOTSUPP if resizable BARs are not supported at all.
3666 * Returns -ENOENT if no ctrl register for the BAR could be found.
3667 */
3668static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3669{
3670 unsigned int pos, nbars, i;
3671 u32 ctrl;
3672
3673 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3674 if (!pos)
3675 return -ENOTSUPP;
3676
3677 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3678 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
3679 PCI_REBAR_CTRL_NBAR_SHIFT;
3680
3681 for (i = 0; i < nbars; i++, pos += 8) {
3682 int bar_idx;
3683
3684 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3685 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
3686 if (bar_idx == bar)
3687 return pos;
3688 }
3689
3690 return -ENOENT;
3691}
3692
3693/**
3694 * pci_rebar_get_possible_sizes - get possible sizes for BAR
3695 * @pdev: PCI device
3696 * @bar: BAR to query
3697 *
3698 * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3699 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3700 */
3701u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3702{
3703 int pos;
3704 u32 cap;
3705
3706 pos = pci_rebar_find_pos(pdev, bar);
3707 if (pos < 0)
3708 return 0;
3709
3710 pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3711 cap &= PCI_REBAR_CAP_SIZES;
3712
3713 /* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */
3714 if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f &&
3715 bar == 0 && cap == 0x7000)
3716 cap = 0x3f000;
3717
3718 return cap >> 4;
3719}
3720EXPORT_SYMBOL(pci_rebar_get_possible_sizes);
3721
3722/**
3723 * pci_rebar_get_current_size - get the current size of a BAR
3724 * @pdev: PCI device
3725 * @bar: BAR to set size to
3726 *
3727 * Read the size of a BAR from the resizable BAR config.
3728 * Returns size if found or negative error code.
3729 */
3730int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3731{
3732 int pos;
3733 u32 ctrl;
3734
3735 pos = pci_rebar_find_pos(pdev, bar);
3736 if (pos < 0)
3737 return pos;
3738
3739 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3740 return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT;
3741}
3742
3743/**
3744 * pci_rebar_set_size - set a new size for a BAR
3745 * @pdev: PCI device
3746 * @bar: BAR to set size to
3747 * @size: new size as defined in the spec (0=1MB, 19=512GB)
3748 *
3749 * Set the new size of a BAR as defined in the spec.
3750 * Returns zero if resizing was successful, error code otherwise.
3751 */
3752int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3753{
3754 int pos;
3755 u32 ctrl;
3756
3757 pos = pci_rebar_find_pos(pdev, bar);
3758 if (pos < 0)
3759 return pos;
3760
3761 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3762 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3763 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
3764 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3765 return 0;
3766}
3767
3768/**
3769 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3770 * @dev: the PCI device
3771 * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3772 * PCI_EXP_DEVCAP2_ATOMIC_COMP32
3773 * PCI_EXP_DEVCAP2_ATOMIC_COMP64
3774 * PCI_EXP_DEVCAP2_ATOMIC_COMP128
3775 *
3776 * Return 0 if all upstream bridges support AtomicOp routing, egress
3777 * blocking is disabled on all upstream ports, and the root port supports
3778 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3779 * AtomicOp completion), or negative otherwise.
3780 */
3781int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3782{
3783 struct pci_bus *bus = dev->bus;
3784 struct pci_dev *bridge;
3785 u32 cap, ctl2;
3786
3787 /*
3788 * Per PCIe r5.0, sec 9.3.5.10, the AtomicOp Requester Enable bit
3789 * in Device Control 2 is reserved in VFs and the PF value applies
3790 * to all associated VFs.
3791 */
3792 if (dev->is_virtfn)
3793 return -EINVAL;
3794
3795 if (!pci_is_pcie(dev))
3796 return -EINVAL;
3797
3798 /*
3799 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3800 * AtomicOp requesters. For now, we only support endpoints as
3801 * requesters and root ports as completers. No endpoints as
3802 * completers, and no peer-to-peer.
3803 */
3804
3805 switch (pci_pcie_type(dev)) {
3806 case PCI_EXP_TYPE_ENDPOINT:
3807 case PCI_EXP_TYPE_LEG_END:
3808 case PCI_EXP_TYPE_RC_END:
3809 break;
3810 default:
3811 return -EINVAL;
3812 }
3813
3814 while (bus->parent) {
3815 bridge = bus->self;
3816
3817 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3818
3819 switch (pci_pcie_type(bridge)) {
3820 /* Ensure switch ports support AtomicOp routing */
3821 case PCI_EXP_TYPE_UPSTREAM:
3822 case PCI_EXP_TYPE_DOWNSTREAM:
3823 if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3824 return -EINVAL;
3825 break;
3826
3827 /* Ensure root port supports all the sizes we care about */
3828 case PCI_EXP_TYPE_ROOT_PORT:
3829 if ((cap & cap_mask) != cap_mask)
3830 return -EINVAL;
3831 break;
3832 }
3833
3834 /* Ensure upstream ports don't block AtomicOps on egress */
3835 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
3836 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3837 &ctl2);
3838 if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3839 return -EINVAL;
3840 }
3841
3842 bus = bus->parent;
3843 }
3844
3845 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3846 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3847 return 0;
3848}
3849EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3850
3851/**
3852 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3853 * @dev: the PCI device
3854 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3855 *
3856 * Perform INTx swizzling for a device behind one level of bridge. This is
3857 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3858 * behind bridges on add-in cards. For devices with ARI enabled, the slot
3859 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3860 * the PCI Express Base Specification, Revision 2.1)
3861 */
3862u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3863{
3864 int slot;
3865
3866 if (pci_ari_enabled(dev->bus))
3867 slot = 0;
3868 else
3869 slot = PCI_SLOT(dev->devfn);
3870
3871 return (((pin - 1) + slot) % 4) + 1;
3872}
3873
3874int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3875{
3876 u8 pin;
3877
3878 pin = dev->pin;
3879 if (!pin)
3880 return -1;
3881
3882 while (!pci_is_root_bus(dev->bus)) {
3883 pin = pci_swizzle_interrupt_pin(dev, pin);
3884 dev = dev->bus->self;
3885 }
3886 *bridge = dev;
3887 return pin;
3888}
3889
3890/**
3891 * pci_common_swizzle - swizzle INTx all the way to root bridge
3892 * @dev: the PCI device
3893 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3894 *
3895 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
3896 * bridges all the way up to a PCI root bus.
3897 */
3898u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3899{
3900 u8 pin = *pinp;
3901
3902 while (!pci_is_root_bus(dev->bus)) {
3903 pin = pci_swizzle_interrupt_pin(dev, pin);
3904 dev = dev->bus->self;
3905 }
3906 *pinp = pin;
3907 return PCI_SLOT(dev->devfn);
3908}
3909EXPORT_SYMBOL_GPL(pci_common_swizzle);
3910
3911/**
3912 * pci_release_region - Release a PCI bar
3913 * @pdev: PCI device whose resources were previously reserved by
3914 * pci_request_region()
3915 * @bar: BAR to release
3916 *
3917 * Releases the PCI I/O and memory resources previously reserved by a
3918 * successful call to pci_request_region(). Call this function only
3919 * after all use of the PCI regions has ceased.
3920 */
3921void pci_release_region(struct pci_dev *pdev, int bar)
3922{
3923 struct pci_devres *dr;
3924
3925 if (pci_resource_len(pdev, bar) == 0)
3926 return;
3927 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3928 release_region(pci_resource_start(pdev, bar),
3929 pci_resource_len(pdev, bar));
3930 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3931 release_mem_region(pci_resource_start(pdev, bar),
3932 pci_resource_len(pdev, bar));
3933
3934 dr = find_pci_dr(pdev);
3935 if (dr)
3936 dr->region_mask &= ~(1 << bar);
3937}
3938EXPORT_SYMBOL(pci_release_region);
3939
3940/**
3941 * __pci_request_region - Reserved PCI I/O and memory resource
3942 * @pdev: PCI device whose resources are to be reserved
3943 * @bar: BAR to be reserved
3944 * @res_name: Name to be associated with resource.
3945 * @exclusive: whether the region access is exclusive or not
3946 *
3947 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3948 * being reserved by owner @res_name. Do not access any
3949 * address inside the PCI regions unless this call returns
3950 * successfully.
3951 *
3952 * If @exclusive is set, then the region is marked so that userspace
3953 * is explicitly not allowed to map the resource via /dev/mem or
3954 * sysfs MMIO access.
3955 *
3956 * Returns 0 on success, or %EBUSY on error. A warning
3957 * message is also printed on failure.
3958 */
3959static int __pci_request_region(struct pci_dev *pdev, int bar,
3960 const char *res_name, int exclusive)
3961{
3962 struct pci_devres *dr;
3963
3964 if (pci_resource_len(pdev, bar) == 0)
3965 return 0;
3966
3967 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3968 if (!request_region(pci_resource_start(pdev, bar),
3969 pci_resource_len(pdev, bar), res_name))
3970 goto err_out;
3971 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3972 if (!__request_mem_region(pci_resource_start(pdev, bar),
3973 pci_resource_len(pdev, bar), res_name,
3974 exclusive))
3975 goto err_out;
3976 }
3977
3978 dr = find_pci_dr(pdev);
3979 if (dr)
3980 dr->region_mask |= 1 << bar;
3981
3982 return 0;
3983
3984err_out:
3985 pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
3986 &pdev->resource[bar]);
3987 return -EBUSY;
3988}
3989
3990/**
3991 * pci_request_region - Reserve PCI I/O and memory resource
3992 * @pdev: PCI device whose resources are to be reserved
3993 * @bar: BAR to be reserved
3994 * @res_name: Name to be associated with resource
3995 *
3996 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3997 * being reserved by owner @res_name. Do not access any
3998 * address inside the PCI regions unless this call returns
3999 * successfully.
4000 *
4001 * Returns 0 on success, or %EBUSY on error. A warning
4002 * message is also printed on failure.
4003 */
4004int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
4005{
4006 return __pci_request_region(pdev, bar, res_name, 0);
4007}
4008EXPORT_SYMBOL(pci_request_region);
4009
4010/**
4011 * pci_release_selected_regions - Release selected PCI I/O and memory resources
4012 * @pdev: PCI device whose resources were previously reserved
4013 * @bars: Bitmask of BARs to be released
4014 *
4015 * Release selected PCI I/O and memory resources previously reserved.
4016 * Call this function only after all use of the PCI regions has ceased.
4017 */
4018void pci_release_selected_regions(struct pci_dev *pdev, int bars)
4019{
4020 int i;
4021
4022 for (i = 0; i < PCI_STD_NUM_BARS; i++)
4023 if (bars & (1 << i))
4024 pci_release_region(pdev, i);
4025}
4026EXPORT_SYMBOL(pci_release_selected_regions);
4027
4028static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
4029 const char *res_name, int excl)
4030{
4031 int i;
4032
4033 for (i = 0; i < PCI_STD_NUM_BARS; i++)
4034 if (bars & (1 << i))
4035 if (__pci_request_region(pdev, i, res_name, excl))
4036 goto err_out;
4037 return 0;
4038
4039err_out:
4040 while (--i >= 0)
4041 if (bars & (1 << i))
4042 pci_release_region(pdev, i);
4043
4044 return -EBUSY;
4045}
4046
4047
4048/**
4049 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
4050 * @pdev: PCI device whose resources are to be reserved
4051 * @bars: Bitmask of BARs to be requested
4052 * @res_name: Name to be associated with resource
4053 */
4054int pci_request_selected_regions(struct pci_dev *pdev, int bars,
4055 const char *res_name)
4056{
4057 return __pci_request_selected_regions(pdev, bars, res_name, 0);
4058}
4059EXPORT_SYMBOL(pci_request_selected_regions);
4060
4061int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
4062 const char *res_name)
4063{
4064 return __pci_request_selected_regions(pdev, bars, res_name,
4065 IORESOURCE_EXCLUSIVE);
4066}
4067EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
4068
4069/**
4070 * pci_release_regions - Release reserved PCI I/O and memory resources
4071 * @pdev: PCI device whose resources were previously reserved by
4072 * pci_request_regions()
4073 *
4074 * Releases all PCI I/O and memory resources previously reserved by a
4075 * successful call to pci_request_regions(). Call this function only
4076 * after all use of the PCI regions has ceased.
4077 */
4078
4079void pci_release_regions(struct pci_dev *pdev)
4080{
4081 pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1);
4082}
4083EXPORT_SYMBOL(pci_release_regions);
4084
4085/**
4086 * pci_request_regions - Reserve PCI I/O and memory resources
4087 * @pdev: PCI device whose resources are to be reserved
4088 * @res_name: Name to be associated with resource.
4089 *
4090 * Mark all PCI regions associated with PCI device @pdev as
4091 * being reserved by owner @res_name. Do not access any
4092 * address inside the PCI regions unless this call returns
4093 * successfully.
4094 *
4095 * Returns 0 on success, or %EBUSY on error. A warning
4096 * message is also printed on failure.
4097 */
4098int pci_request_regions(struct pci_dev *pdev, const char *res_name)
4099{
4100 return pci_request_selected_regions(pdev,
4101 ((1 << PCI_STD_NUM_BARS) - 1), res_name);
4102}
4103EXPORT_SYMBOL(pci_request_regions);
4104
4105/**
4106 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
4107 * @pdev: PCI device whose resources are to be reserved
4108 * @res_name: Name to be associated with resource.
4109 *
4110 * Mark all PCI regions associated with PCI device @pdev as being reserved
4111 * by owner @res_name. Do not access any address inside the PCI regions
4112 * unless this call returns successfully.
4113 *
4114 * pci_request_regions_exclusive() will mark the region so that /dev/mem
4115 * and the sysfs MMIO access will not be allowed.
4116 *
4117 * Returns 0 on success, or %EBUSY on error. A warning message is also
4118 * printed on failure.
4119 */
4120int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
4121{
4122 return pci_request_selected_regions_exclusive(pdev,
4123 ((1 << PCI_STD_NUM_BARS) - 1), res_name);
4124}
4125EXPORT_SYMBOL(pci_request_regions_exclusive);
4126
4127/*
4128 * Record the PCI IO range (expressed as CPU physical address + size).
4129 * Return a negative value if an error has occurred, zero otherwise
4130 */
4131int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
4132 resource_size_t size)
4133{
4134 int ret = 0;
4135#ifdef PCI_IOBASE
4136 struct logic_pio_hwaddr *range;
4137
4138 if (!size || addr + size < addr)
4139 return -EINVAL;
4140
4141 range = kzalloc(sizeof(*range), GFP_ATOMIC);
4142 if (!range)
4143 return -ENOMEM;
4144
4145 range->fwnode = fwnode;
4146 range->size = size;
4147 range->hw_start = addr;
4148 range->flags = LOGIC_PIO_CPU_MMIO;
4149
4150 ret = logic_pio_register_range(range);
4151 if (ret)
4152 kfree(range);
4153
4154 /* Ignore duplicates due to deferred probing */
4155 if (ret == -EEXIST)
4156 ret = 0;
4157#endif
4158
4159 return ret;
4160}
4161
4162phys_addr_t pci_pio_to_address(unsigned long pio)
4163{
4164 phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
4165
4166#ifdef PCI_IOBASE
4167 if (pio >= MMIO_UPPER_LIMIT)
4168 return address;
4169
4170 address = logic_pio_to_hwaddr(pio);
4171#endif
4172
4173 return address;
4174}
4175EXPORT_SYMBOL_GPL(pci_pio_to_address);
4176
4177unsigned long __weak pci_address_to_pio(phys_addr_t address)
4178{
4179#ifdef PCI_IOBASE
4180 return logic_pio_trans_cpuaddr(address);
4181#else
4182 if (address > IO_SPACE_LIMIT)
4183 return (unsigned long)-1;
4184
4185 return (unsigned long) address;
4186#endif
4187}
4188
4189/**
4190 * pci_remap_iospace - Remap the memory mapped I/O space
4191 * @res: Resource describing the I/O space
4192 * @phys_addr: physical address of range to be mapped
4193 *
4194 * Remap the memory mapped I/O space described by the @res and the CPU
4195 * physical address @phys_addr into virtual address space. Only
4196 * architectures that have memory mapped IO functions defined (and the
4197 * PCI_IOBASE value defined) should call this function.
4198 */
4199#ifndef pci_remap_iospace
4200int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
4201{
4202#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4203 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4204
4205 if (!(res->flags & IORESOURCE_IO))
4206 return -EINVAL;
4207
4208 if (res->end > IO_SPACE_LIMIT)
4209 return -EINVAL;
4210
4211 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
4212 pgprot_device(PAGE_KERNEL));
4213#else
4214 /*
4215 * This architecture does not have memory mapped I/O space,
4216 * so this function should never be called
4217 */
4218 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
4219 return -ENODEV;
4220#endif
4221}
4222EXPORT_SYMBOL(pci_remap_iospace);
4223#endif
4224
4225/**
4226 * pci_unmap_iospace - Unmap the memory mapped I/O space
4227 * @res: resource to be unmapped
4228 *
4229 * Unmap the CPU virtual address @res from virtual address space. Only
4230 * architectures that have memory mapped IO functions defined (and the
4231 * PCI_IOBASE value defined) should call this function.
4232 */
4233void pci_unmap_iospace(struct resource *res)
4234{
4235#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4236 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4237
4238 vunmap_range(vaddr, vaddr + resource_size(res));
4239#endif
4240}
4241EXPORT_SYMBOL(pci_unmap_iospace);
4242
4243static void devm_pci_unmap_iospace(struct device *dev, void *ptr)
4244{
4245 struct resource **res = ptr;
4246
4247 pci_unmap_iospace(*res);
4248}
4249
4250/**
4251 * devm_pci_remap_iospace - Managed pci_remap_iospace()
4252 * @dev: Generic device to remap IO address for
4253 * @res: Resource describing the I/O space
4254 * @phys_addr: physical address of range to be mapped
4255 *
4256 * Managed pci_remap_iospace(). Map is automatically unmapped on driver
4257 * detach.
4258 */
4259int devm_pci_remap_iospace(struct device *dev, const struct resource *res,
4260 phys_addr_t phys_addr)
4261{
4262 const struct resource **ptr;
4263 int error;
4264
4265 ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL);
4266 if (!ptr)
4267 return -ENOMEM;
4268
4269 error = pci_remap_iospace(res, phys_addr);
4270 if (error) {
4271 devres_free(ptr);
4272 } else {
4273 *ptr = res;
4274 devres_add(dev, ptr);
4275 }
4276
4277 return error;
4278}
4279EXPORT_SYMBOL(devm_pci_remap_iospace);
4280
4281/**
4282 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
4283 * @dev: Generic device to remap IO address for
4284 * @offset: Resource address to map
4285 * @size: Size of map
4286 *
4287 * Managed pci_remap_cfgspace(). Map is automatically unmapped on driver
4288 * detach.
4289 */
4290void __iomem *devm_pci_remap_cfgspace(struct device *dev,
4291 resource_size_t offset,
4292 resource_size_t size)
4293{
4294 void __iomem **ptr, *addr;
4295
4296 ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
4297 if (!ptr)
4298 return NULL;
4299
4300 addr = pci_remap_cfgspace(offset, size);
4301 if (addr) {
4302 *ptr = addr;
4303 devres_add(dev, ptr);
4304 } else
4305 devres_free(ptr);
4306
4307 return addr;
4308}
4309EXPORT_SYMBOL(devm_pci_remap_cfgspace);
4310
4311/**
4312 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
4313 * @dev: generic device to handle the resource for
4314 * @res: configuration space resource to be handled
4315 *
4316 * Checks that a resource is a valid memory region, requests the memory
4317 * region and ioremaps with pci_remap_cfgspace() API that ensures the
4318 * proper PCI configuration space memory attributes are guaranteed.
4319 *
4320 * All operations are managed and will be undone on driver detach.
4321 *
4322 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
4323 * on failure. Usage example::
4324 *
4325 * res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4326 * base = devm_pci_remap_cfg_resource(&pdev->dev, res);
4327 * if (IS_ERR(base))
4328 * return PTR_ERR(base);
4329 */
4330void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
4331 struct resource *res)
4332{
4333 resource_size_t size;
4334 const char *name;
4335 void __iomem *dest_ptr;
4336
4337 BUG_ON(!dev);
4338
4339 if (!res || resource_type(res) != IORESOURCE_MEM) {
4340 dev_err(dev, "invalid resource\n");
4341 return IOMEM_ERR_PTR(-EINVAL);
4342 }
4343
4344 size = resource_size(res);
4345
4346 if (res->name)
4347 name = devm_kasprintf(dev, GFP_KERNEL, "%s %s", dev_name(dev),
4348 res->name);
4349 else
4350 name = devm_kstrdup(dev, dev_name(dev), GFP_KERNEL);
4351 if (!name)
4352 return IOMEM_ERR_PTR(-ENOMEM);
4353
4354 if (!devm_request_mem_region(dev, res->start, size, name)) {
4355 dev_err(dev, "can't request region for resource %pR\n", res);
4356 return IOMEM_ERR_PTR(-EBUSY);
4357 }
4358
4359 dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
4360 if (!dest_ptr) {
4361 dev_err(dev, "ioremap failed for resource %pR\n", res);
4362 devm_release_mem_region(dev, res->start, size);
4363 dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
4364 }
4365
4366 return dest_ptr;
4367}
4368EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
4369
4370static void __pci_set_master(struct pci_dev *dev, bool enable)
4371{
4372 u16 old_cmd, cmd;
4373
4374 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4375 if (enable)
4376 cmd = old_cmd | PCI_COMMAND_MASTER;
4377 else
4378 cmd = old_cmd & ~PCI_COMMAND_MASTER;
4379 if (cmd != old_cmd) {
4380 pci_dbg(dev, "%s bus mastering\n",
4381 enable ? "enabling" : "disabling");
4382 pci_write_config_word(dev, PCI_COMMAND, cmd);
4383 }
4384 dev->is_busmaster = enable;
4385}
4386
4387/**
4388 * pcibios_setup - process "pci=" kernel boot arguments
4389 * @str: string used to pass in "pci=" kernel boot arguments
4390 *
4391 * Process kernel boot arguments. This is the default implementation.
4392 * Architecture specific implementations can override this as necessary.
4393 */
4394char * __weak __init pcibios_setup(char *str)
4395{
4396 return str;
4397}
4398
4399/**
4400 * pcibios_set_master - enable PCI bus-mastering for device dev
4401 * @dev: the PCI device to enable
4402 *
4403 * Enables PCI bus-mastering for the device. This is the default
4404 * implementation. Architecture specific implementations can override
4405 * this if necessary.
4406 */
4407void __weak pcibios_set_master(struct pci_dev *dev)
4408{
4409 u8 lat;
4410
4411 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4412 if (pci_is_pcie(dev))
4413 return;
4414
4415 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4416 if (lat < 16)
4417 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4418 else if (lat > pcibios_max_latency)
4419 lat = pcibios_max_latency;
4420 else
4421 return;
4422
4423 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4424}
4425
4426/**
4427 * pci_set_master - enables bus-mastering for device dev
4428 * @dev: the PCI device to enable
4429 *
4430 * Enables bus-mastering on the device and calls pcibios_set_master()
4431 * to do the needed arch specific settings.
4432 */
4433void pci_set_master(struct pci_dev *dev)
4434{
4435 __pci_set_master(dev, true);
4436 pcibios_set_master(dev);
4437}
4438EXPORT_SYMBOL(pci_set_master);
4439
4440/**
4441 * pci_clear_master - disables bus-mastering for device dev
4442 * @dev: the PCI device to disable
4443 */
4444void pci_clear_master(struct pci_dev *dev)
4445{
4446 __pci_set_master(dev, false);
4447}
4448EXPORT_SYMBOL(pci_clear_master);
4449
4450/**
4451 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4452 * @dev: the PCI device for which MWI is to be enabled
4453 *
4454 * Helper function for pci_set_mwi.
4455 * Originally copied from drivers/net/acenic.c.
4456 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4457 *
4458 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4459 */
4460int pci_set_cacheline_size(struct pci_dev *dev)
4461{
4462 u8 cacheline_size;
4463
4464 if (!pci_cache_line_size)
4465 return -EINVAL;
4466
4467 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4468 equal to or multiple of the right value. */
4469 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4470 if (cacheline_size >= pci_cache_line_size &&
4471 (cacheline_size % pci_cache_line_size) == 0)
4472 return 0;
4473
4474 /* Write the correct value. */
4475 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4476 /* Read it back. */
4477 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4478 if (cacheline_size == pci_cache_line_size)
4479 return 0;
4480
4481 pci_dbg(dev, "cache line size of %d is not supported\n",
4482 pci_cache_line_size << 2);
4483
4484 return -EINVAL;
4485}
4486EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4487
4488/**
4489 * pci_set_mwi - enables memory-write-invalidate PCI transaction
4490 * @dev: the PCI device for which MWI is enabled
4491 *
4492 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4493 *
4494 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4495 */
4496int pci_set_mwi(struct pci_dev *dev)
4497{
4498#ifdef PCI_DISABLE_MWI
4499 return 0;
4500#else
4501 int rc;
4502 u16 cmd;
4503
4504 rc = pci_set_cacheline_size(dev);
4505 if (rc)
4506 return rc;
4507
4508 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4509 if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4510 pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4511 cmd |= PCI_COMMAND_INVALIDATE;
4512 pci_write_config_word(dev, PCI_COMMAND, cmd);
4513 }
4514 return 0;
4515#endif
4516}
4517EXPORT_SYMBOL(pci_set_mwi);
4518
4519/**
4520 * pcim_set_mwi - a device-managed pci_set_mwi()
4521 * @dev: the PCI device for which MWI is enabled
4522 *
4523 * Managed pci_set_mwi().
4524 *
4525 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4526 */
4527int pcim_set_mwi(struct pci_dev *dev)
4528{
4529 struct pci_devres *dr;
4530
4531 dr = find_pci_dr(dev);
4532 if (!dr)
4533 return -ENOMEM;
4534
4535 dr->mwi = 1;
4536 return pci_set_mwi(dev);
4537}
4538EXPORT_SYMBOL(pcim_set_mwi);
4539
4540/**
4541 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4542 * @dev: the PCI device for which MWI is enabled
4543 *
4544 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4545 * Callers are not required to check the return value.
4546 *
4547 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4548 */
4549int pci_try_set_mwi(struct pci_dev *dev)
4550{
4551#ifdef PCI_DISABLE_MWI
4552 return 0;
4553#else
4554 return pci_set_mwi(dev);
4555#endif
4556}
4557EXPORT_SYMBOL(pci_try_set_mwi);
4558
4559/**
4560 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4561 * @dev: the PCI device to disable
4562 *
4563 * Disables PCI Memory-Write-Invalidate transaction on the device
4564 */
4565void pci_clear_mwi(struct pci_dev *dev)
4566{
4567#ifndef PCI_DISABLE_MWI
4568 u16 cmd;
4569
4570 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4571 if (cmd & PCI_COMMAND_INVALIDATE) {
4572 cmd &= ~PCI_COMMAND_INVALIDATE;
4573 pci_write_config_word(dev, PCI_COMMAND, cmd);
4574 }
4575#endif
4576}
4577EXPORT_SYMBOL(pci_clear_mwi);
4578
4579/**
4580 * pci_disable_parity - disable parity checking for device
4581 * @dev: the PCI device to operate on
4582 *
4583 * Disable parity checking for device @dev
4584 */
4585void pci_disable_parity(struct pci_dev *dev)
4586{
4587 u16 cmd;
4588
4589 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4590 if (cmd & PCI_COMMAND_PARITY) {
4591 cmd &= ~PCI_COMMAND_PARITY;
4592 pci_write_config_word(dev, PCI_COMMAND, cmd);
4593 }
4594}
4595
4596/**
4597 * pci_intx - enables/disables PCI INTx for device dev
4598 * @pdev: the PCI device to operate on
4599 * @enable: boolean: whether to enable or disable PCI INTx
4600 *
4601 * Enables/disables PCI INTx for device @pdev
4602 */
4603void pci_intx(struct pci_dev *pdev, int enable)
4604{
4605 u16 pci_command, new;
4606
4607 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4608
4609 if (enable)
4610 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4611 else
4612 new = pci_command | PCI_COMMAND_INTX_DISABLE;
4613
4614 if (new != pci_command) {
4615 struct pci_devres *dr;
4616
4617 pci_write_config_word(pdev, PCI_COMMAND, new);
4618
4619 dr = find_pci_dr(pdev);
4620 if (dr && !dr->restore_intx) {
4621 dr->restore_intx = 1;
4622 dr->orig_intx = !enable;
4623 }
4624 }
4625}
4626EXPORT_SYMBOL_GPL(pci_intx);
4627
4628static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
4629{
4630 struct pci_bus *bus = dev->bus;
4631 bool mask_updated = true;
4632 u32 cmd_status_dword;
4633 u16 origcmd, newcmd;
4634 unsigned long flags;
4635 bool irq_pending;
4636
4637 /*
4638 * We do a single dword read to retrieve both command and status.
4639 * Document assumptions that make this possible.
4640 */
4641 BUILD_BUG_ON(PCI_COMMAND % 4);
4642 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
4643
4644 raw_spin_lock_irqsave(&pci_lock, flags);
4645
4646 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
4647
4648 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
4649
4650 /*
4651 * Check interrupt status register to see whether our device
4652 * triggered the interrupt (when masking) or the next IRQ is
4653 * already pending (when unmasking).
4654 */
4655 if (mask != irq_pending) {
4656 mask_updated = false;
4657 goto done;
4658 }
4659
4660 origcmd = cmd_status_dword;
4661 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
4662 if (mask)
4663 newcmd |= PCI_COMMAND_INTX_DISABLE;
4664 if (newcmd != origcmd)
4665 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
4666
4667done:
4668 raw_spin_unlock_irqrestore(&pci_lock, flags);
4669
4670 return mask_updated;
4671}
4672
4673/**
4674 * pci_check_and_mask_intx - mask INTx on pending interrupt
4675 * @dev: the PCI device to operate on
4676 *
4677 * Check if the device dev has its INTx line asserted, mask it and return
4678 * true in that case. False is returned if no interrupt was pending.
4679 */
4680bool pci_check_and_mask_intx(struct pci_dev *dev)
4681{
4682 return pci_check_and_set_intx_mask(dev, true);
4683}
4684EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
4685
4686/**
4687 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
4688 * @dev: the PCI device to operate on
4689 *
4690 * Check if the device dev has its INTx line asserted, unmask it if not and
4691 * return true. False is returned and the mask remains active if there was
4692 * still an interrupt pending.
4693 */
4694bool pci_check_and_unmask_intx(struct pci_dev *dev)
4695{
4696 return pci_check_and_set_intx_mask(dev, false);
4697}
4698EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
4699
4700/**
4701 * pci_wait_for_pending_transaction - wait for pending transaction
4702 * @dev: the PCI device to operate on
4703 *
4704 * Return 0 if transaction is pending 1 otherwise.
4705 */
4706int pci_wait_for_pending_transaction(struct pci_dev *dev)
4707{
4708 if (!pci_is_pcie(dev))
4709 return 1;
4710
4711 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4712 PCI_EXP_DEVSTA_TRPND);
4713}
4714EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4715
4716/**
4717 * pcie_flr - initiate a PCIe function level reset
4718 * @dev: device to reset
4719 *
4720 * Initiate a function level reset unconditionally on @dev without
4721 * checking any flags and DEVCAP
4722 */
4723int pcie_flr(struct pci_dev *dev)
4724{
4725 if (!pci_wait_for_pending_transaction(dev))
4726 pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4727
4728 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4729
4730 if (dev->imm_ready)
4731 return 0;
4732
4733 /*
4734 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4735 * 100ms, but may silently discard requests while the FLR is in
4736 * progress. Wait 100ms before trying to access the device.
4737 */
4738 msleep(100);
4739
4740 return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4741}
4742EXPORT_SYMBOL_GPL(pcie_flr);
4743
4744/**
4745 * pcie_reset_flr - initiate a PCIe function level reset
4746 * @dev: device to reset
4747 * @probe: if true, return 0 if device can be reset this way
4748 *
4749 * Initiate a function level reset on @dev.
4750 */
4751int pcie_reset_flr(struct pci_dev *dev, bool probe)
4752{
4753 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4754 return -ENOTTY;
4755
4756 if (!(dev->devcap & PCI_EXP_DEVCAP_FLR))
4757 return -ENOTTY;
4758
4759 if (probe)
4760 return 0;
4761
4762 return pcie_flr(dev);
4763}
4764EXPORT_SYMBOL_GPL(pcie_reset_flr);
4765
4766static int pci_af_flr(struct pci_dev *dev, bool probe)
4767{
4768 int pos;
4769 u8 cap;
4770
4771 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4772 if (!pos)
4773 return -ENOTTY;
4774
4775 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4776 return -ENOTTY;
4777
4778 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4779 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4780 return -ENOTTY;
4781
4782 if (probe)
4783 return 0;
4784
4785 /*
4786 * Wait for Transaction Pending bit to clear. A word-aligned test
4787 * is used, so we use the control offset rather than status and shift
4788 * the test bit to match.
4789 */
4790 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4791 PCI_AF_STATUS_TP << 8))
4792 pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4793
4794 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4795
4796 if (dev->imm_ready)
4797 return 0;
4798
4799 /*
4800 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4801 * updated 27 July 2006; a device must complete an FLR within
4802 * 100ms, but may silently discard requests while the FLR is in
4803 * progress. Wait 100ms before trying to access the device.
4804 */
4805 msleep(100);
4806
4807 return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4808}
4809
4810/**
4811 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4812 * @dev: Device to reset.
4813 * @probe: if true, return 0 if the device can be reset this way.
4814 *
4815 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4816 * unset, it will be reinitialized internally when going from PCI_D3hot to
4817 * PCI_D0. If that's the case and the device is not in a low-power state
4818 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4819 *
4820 * NOTE: This causes the caller to sleep for twice the device power transition
4821 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4822 * by default (i.e. unless the @dev's d3hot_delay field has a different value).
4823 * Moreover, only devices in D0 can be reset by this function.
4824 */
4825static int pci_pm_reset(struct pci_dev *dev, bool probe)
4826{
4827 u16 csr;
4828
4829 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4830 return -ENOTTY;
4831
4832 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4833 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4834 return -ENOTTY;
4835
4836 if (probe)
4837 return 0;
4838
4839 if (dev->current_state != PCI_D0)
4840 return -EINVAL;
4841
4842 csr &= ~PCI_PM_CTRL_STATE_MASK;
4843 csr |= PCI_D3hot;
4844 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4845 pci_dev_d3_sleep(dev);
4846
4847 csr &= ~PCI_PM_CTRL_STATE_MASK;
4848 csr |= PCI_D0;
4849 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4850 pci_dev_d3_sleep(dev);
4851
4852 return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS);
4853}
4854
4855/**
4856 * pcie_wait_for_link_delay - Wait until link is active or inactive
4857 * @pdev: Bridge device
4858 * @active: waiting for active or inactive?
4859 * @delay: Delay to wait after link has become active (in ms)
4860 *
4861 * Use this to wait till link becomes active or inactive.
4862 */
4863static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active,
4864 int delay)
4865{
4866 int timeout = 1000;
4867 bool ret;
4868 u16 lnk_status;
4869
4870 /*
4871 * Some controllers might not implement link active reporting. In this
4872 * case, we wait for 1000 ms + any delay requested by the caller.
4873 */
4874 if (!pdev->link_active_reporting) {
4875 msleep(timeout + delay);
4876 return true;
4877 }
4878
4879 /*
4880 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4881 * after which we should expect an link active if the reset was
4882 * successful. If so, software must wait a minimum 100ms before sending
4883 * configuration requests to devices downstream this port.
4884 *
4885 * If the link fails to activate, either the device was physically
4886 * removed or the link is permanently failed.
4887 */
4888 if (active)
4889 msleep(20);
4890 for (;;) {
4891 pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status);
4892 ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA);
4893 if (ret == active)
4894 break;
4895 if (timeout <= 0)
4896 break;
4897 msleep(10);
4898 timeout -= 10;
4899 }
4900 if (active && ret)
4901 msleep(delay);
4902
4903 return ret == active;
4904}
4905
4906/**
4907 * pcie_wait_for_link - Wait until link is active or inactive
4908 * @pdev: Bridge device
4909 * @active: waiting for active or inactive?
4910 *
4911 * Use this to wait till link becomes active or inactive.
4912 */
4913bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
4914{
4915 return pcie_wait_for_link_delay(pdev, active, 100);
4916}
4917
4918/*
4919 * Find maximum D3cold delay required by all the devices on the bus. The
4920 * spec says 100 ms, but firmware can lower it and we allow drivers to
4921 * increase it as well.
4922 *
4923 * Called with @pci_bus_sem locked for reading.
4924 */
4925static int pci_bus_max_d3cold_delay(const struct pci_bus *bus)
4926{
4927 const struct pci_dev *pdev;
4928 int min_delay = 100;
4929 int max_delay = 0;
4930
4931 list_for_each_entry(pdev, &bus->devices, bus_list) {
4932 if (pdev->d3cold_delay < min_delay)
4933 min_delay = pdev->d3cold_delay;
4934 if (pdev->d3cold_delay > max_delay)
4935 max_delay = pdev->d3cold_delay;
4936 }
4937
4938 return max(min_delay, max_delay);
4939}
4940
4941/**
4942 * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible
4943 * @dev: PCI bridge
4944 *
4945 * Handle necessary delays before access to the devices on the secondary
4946 * side of the bridge are permitted after D3cold to D0 transition.
4947 *
4948 * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For
4949 * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section
4950 * 4.3.2.
4951 */
4952void pci_bridge_wait_for_secondary_bus(struct pci_dev *dev)
4953{
4954 struct pci_dev *child;
4955 int delay;
4956
4957 if (pci_dev_is_disconnected(dev))
4958 return;
4959
4960 if (!pci_is_bridge(dev) || !dev->bridge_d3)
4961 return;
4962
4963 down_read(&pci_bus_sem);
4964
4965 /*
4966 * We only deal with devices that are present currently on the bus.
4967 * For any hot-added devices the access delay is handled in pciehp
4968 * board_added(). In case of ACPI hotplug the firmware is expected
4969 * to configure the devices before OS is notified.
4970 */
4971 if (!dev->subordinate || list_empty(&dev->subordinate->devices)) {
4972 up_read(&pci_bus_sem);
4973 return;
4974 }
4975
4976 /* Take d3cold_delay requirements into account */
4977 delay = pci_bus_max_d3cold_delay(dev->subordinate);
4978 if (!delay) {
4979 up_read(&pci_bus_sem);
4980 return;
4981 }
4982
4983 child = list_first_entry(&dev->subordinate->devices, struct pci_dev,
4984 bus_list);
4985 up_read(&pci_bus_sem);
4986
4987 /*
4988 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before
4989 * accessing the device after reset (that is 1000 ms + 100 ms). In
4990 * practice this should not be needed because we don't do power
4991 * management for them (see pci_bridge_d3_possible()).
4992 */
4993 if (!pci_is_pcie(dev)) {
4994 pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay);
4995 msleep(1000 + delay);
4996 return;
4997 }
4998
4999 /*
5000 * For PCIe downstream and root ports that do not support speeds
5001 * greater than 5 GT/s need to wait minimum 100 ms. For higher
5002 * speeds (gen3) we need to wait first for the data link layer to
5003 * become active.
5004 *
5005 * However, 100 ms is the minimum and the PCIe spec says the
5006 * software must allow at least 1s before it can determine that the
5007 * device that did not respond is a broken device. There is
5008 * evidence that 100 ms is not always enough, for example certain
5009 * Titan Ridge xHCI controller does not always respond to
5010 * configuration requests if we only wait for 100 ms (see
5011 * https://bugzilla.kernel.org/show_bug.cgi?id=203885).
5012 *
5013 * Therefore we wait for 100 ms and check for the device presence.
5014 * If it is still not present give it an additional 100 ms.
5015 */
5016 if (!pcie_downstream_port(dev))
5017 return;
5018
5019 if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) {
5020 pci_dbg(dev, "waiting %d ms for downstream link\n", delay);
5021 msleep(delay);
5022 } else {
5023 pci_dbg(dev, "waiting %d ms for downstream link, after activation\n",
5024 delay);
5025 if (!pcie_wait_for_link_delay(dev, true, delay)) {
5026 /* Did not train, no need to wait any further */
5027 pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n");
5028 return;
5029 }
5030 }
5031
5032 if (!pci_device_is_present(child)) {
5033 pci_dbg(child, "waiting additional %d ms to become accessible\n", delay);
5034 msleep(delay);
5035 }
5036}
5037
5038void pci_reset_secondary_bus(struct pci_dev *dev)
5039{
5040 u16 ctrl;
5041
5042 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
5043 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
5044 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
5045
5046 /*
5047 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double
5048 * this to 2ms to ensure that we meet the minimum requirement.
5049 */
5050 msleep(2);
5051
5052 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
5053 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
5054
5055 /*
5056 * Trhfa for conventional PCI is 2^25 clock cycles.
5057 * Assuming a minimum 33MHz clock this results in a 1s
5058 * delay before we can consider subordinate devices to
5059 * be re-initialized. PCIe has some ways to shorten this,
5060 * but we don't make use of them yet.
5061 */
5062 ssleep(1);
5063}
5064
5065void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
5066{
5067 pci_reset_secondary_bus(dev);
5068}
5069
5070/**
5071 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
5072 * @dev: Bridge device
5073 *
5074 * Use the bridge control register to assert reset on the secondary bus.
5075 * Devices on the secondary bus are left in power-on state.
5076 */
5077int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
5078{
5079 pcibios_reset_secondary_bus(dev);
5080
5081 return pci_dev_wait(dev, "bus reset", PCIE_RESET_READY_POLL_MS);
5082}
5083EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
5084
5085static int pci_parent_bus_reset(struct pci_dev *dev, bool probe)
5086{
5087 struct pci_dev *pdev;
5088
5089 if (pci_is_root_bus(dev->bus) || dev->subordinate ||
5090 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5091 return -ENOTTY;
5092
5093 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
5094 if (pdev != dev)
5095 return -ENOTTY;
5096
5097 if (probe)
5098 return 0;
5099
5100 return pci_bridge_secondary_bus_reset(dev->bus->self);
5101}
5102
5103static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, bool probe)
5104{
5105 int rc = -ENOTTY;
5106
5107 if (!hotplug || !try_module_get(hotplug->owner))
5108 return rc;
5109
5110 if (hotplug->ops->reset_slot)
5111 rc = hotplug->ops->reset_slot(hotplug, probe);
5112
5113 module_put(hotplug->owner);
5114
5115 return rc;
5116}
5117
5118static int pci_dev_reset_slot_function(struct pci_dev *dev, bool probe)
5119{
5120 if (dev->multifunction || dev->subordinate || !dev->slot ||
5121 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5122 return -ENOTTY;
5123
5124 return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
5125}
5126
5127static int pci_reset_bus_function(struct pci_dev *dev, bool probe)
5128{
5129 int rc;
5130
5131 rc = pci_dev_reset_slot_function(dev, probe);
5132 if (rc != -ENOTTY)
5133 return rc;
5134 return pci_parent_bus_reset(dev, probe);
5135}
5136
5137void pci_dev_lock(struct pci_dev *dev)
5138{
5139 /* block PM suspend, driver probe, etc. */
5140 device_lock(&dev->dev);
5141 pci_cfg_access_lock(dev);
5142}
5143EXPORT_SYMBOL_GPL(pci_dev_lock);
5144
5145/* Return 1 on successful lock, 0 on contention */
5146int pci_dev_trylock(struct pci_dev *dev)
5147{
5148 if (device_trylock(&dev->dev)) {
5149 if (pci_cfg_access_trylock(dev))
5150 return 1;
5151 device_unlock(&dev->dev);
5152 }
5153
5154 return 0;
5155}
5156EXPORT_SYMBOL_GPL(pci_dev_trylock);
5157
5158void pci_dev_unlock(struct pci_dev *dev)
5159{
5160 pci_cfg_access_unlock(dev);
5161 device_unlock(&dev->dev);
5162}
5163EXPORT_SYMBOL_GPL(pci_dev_unlock);
5164
5165static void pci_dev_save_and_disable(struct pci_dev *dev)
5166{
5167 const struct pci_error_handlers *err_handler =
5168 dev->driver ? dev->driver->err_handler : NULL;
5169
5170 /*
5171 * dev->driver->err_handler->reset_prepare() is protected against
5172 * races with ->remove() by the device lock, which must be held by
5173 * the caller.
5174 */
5175 if (err_handler && err_handler->reset_prepare)
5176 err_handler->reset_prepare(dev);
5177
5178 /*
5179 * Wake-up device prior to save. PM registers default to D0 after
5180 * reset and a simple register restore doesn't reliably return
5181 * to a non-D0 state anyway.
5182 */
5183 pci_set_power_state(dev, PCI_D0);
5184
5185 pci_save_state(dev);
5186 /*
5187 * Disable the device by clearing the Command register, except for
5188 * INTx-disable which is set. This not only disables MMIO and I/O port
5189 * BARs, but also prevents the device from being Bus Master, preventing
5190 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3
5191 * compliant devices, INTx-disable prevents legacy interrupts.
5192 */
5193 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
5194}
5195
5196static void pci_dev_restore(struct pci_dev *dev)
5197{
5198 const struct pci_error_handlers *err_handler =
5199 dev->driver ? dev->driver->err_handler : NULL;
5200
5201 pci_restore_state(dev);
5202
5203 /*
5204 * dev->driver->err_handler->reset_done() is protected against
5205 * races with ->remove() by the device lock, which must be held by
5206 * the caller.
5207 */
5208 if (err_handler && err_handler->reset_done)
5209 err_handler->reset_done(dev);
5210}
5211
5212/* dev->reset_methods[] is a 0-terminated list of indices into this array */
5213static const struct pci_reset_fn_method pci_reset_fn_methods[] = {
5214 { },
5215 { pci_dev_specific_reset, .name = "device_specific" },
5216 { pci_dev_acpi_reset, .name = "acpi" },
5217 { pcie_reset_flr, .name = "flr" },
5218 { pci_af_flr, .name = "af_flr" },
5219 { pci_pm_reset, .name = "pm" },
5220 { pci_reset_bus_function, .name = "bus" },
5221};
5222
5223static ssize_t reset_method_show(struct device *dev,
5224 struct device_attribute *attr, char *buf)
5225{
5226 struct pci_dev *pdev = to_pci_dev(dev);
5227 ssize_t len = 0;
5228 int i, m;
5229
5230 for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5231 m = pdev->reset_methods[i];
5232 if (!m)
5233 break;
5234
5235 len += sysfs_emit_at(buf, len, "%s%s", len ? " " : "",
5236 pci_reset_fn_methods[m].name);
5237 }
5238
5239 if (len)
5240 len += sysfs_emit_at(buf, len, "\n");
5241
5242 return len;
5243}
5244
5245static int reset_method_lookup(const char *name)
5246{
5247 int m;
5248
5249 for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5250 if (sysfs_streq(name, pci_reset_fn_methods[m].name))
5251 return m;
5252 }
5253
5254 return 0; /* not found */
5255}
5256
5257static ssize_t reset_method_store(struct device *dev,
5258 struct device_attribute *attr,
5259 const char *buf, size_t count)
5260{
5261 struct pci_dev *pdev = to_pci_dev(dev);
5262 char *options, *name;
5263 int m, n;
5264 u8 reset_methods[PCI_NUM_RESET_METHODS] = { 0 };
5265
5266 if (sysfs_streq(buf, "")) {
5267 pdev->reset_methods[0] = 0;
5268 pci_warn(pdev, "All device reset methods disabled by user");
5269 return count;
5270 }
5271
5272 if (sysfs_streq(buf, "default")) {
5273 pci_init_reset_methods(pdev);
5274 return count;
5275 }
5276
5277 options = kstrndup(buf, count, GFP_KERNEL);
5278 if (!options)
5279 return -ENOMEM;
5280
5281 n = 0;
5282 while ((name = strsep(&options, " ")) != NULL) {
5283 if (sysfs_streq(name, ""))
5284 continue;
5285
5286 name = strim(name);
5287
5288 m = reset_method_lookup(name);
5289 if (!m) {
5290 pci_err(pdev, "Invalid reset method '%s'", name);
5291 goto error;
5292 }
5293
5294 if (pci_reset_fn_methods[m].reset_fn(pdev, PCI_RESET_PROBE)) {
5295 pci_err(pdev, "Unsupported reset method '%s'", name);
5296 goto error;
5297 }
5298
5299 if (n == PCI_NUM_RESET_METHODS - 1) {
5300 pci_err(pdev, "Too many reset methods\n");
5301 goto error;
5302 }
5303
5304 reset_methods[n++] = m;
5305 }
5306
5307 reset_methods[n] = 0;
5308
5309 /* Warn if dev-specific supported but not highest priority */
5310 if (pci_reset_fn_methods[1].reset_fn(pdev, PCI_RESET_PROBE) == 0 &&
5311 reset_methods[0] != 1)
5312 pci_warn(pdev, "Device-specific reset disabled/de-prioritized by user");
5313 memcpy(pdev->reset_methods, reset_methods, sizeof(pdev->reset_methods));
5314 kfree(options);
5315 return count;
5316
5317error:
5318 /* Leave previous methods unchanged */
5319 kfree(options);
5320 return -EINVAL;
5321}
5322static DEVICE_ATTR_RW(reset_method);
5323
5324static struct attribute *pci_dev_reset_method_attrs[] = {
5325 &dev_attr_reset_method.attr,
5326 NULL,
5327};
5328
5329static umode_t pci_dev_reset_method_attr_is_visible(struct kobject *kobj,
5330 struct attribute *a, int n)
5331{
5332 struct pci_dev *pdev = to_pci_dev(kobj_to_dev(kobj));
5333
5334 if (!pci_reset_supported(pdev))
5335 return 0;
5336
5337 return a->mode;
5338}
5339
5340const struct attribute_group pci_dev_reset_method_attr_group = {
5341 .attrs = pci_dev_reset_method_attrs,
5342 .is_visible = pci_dev_reset_method_attr_is_visible,
5343};
5344
5345/**
5346 * __pci_reset_function_locked - reset a PCI device function while holding
5347 * the @dev mutex lock.
5348 * @dev: PCI device to reset
5349 *
5350 * Some devices allow an individual function to be reset without affecting
5351 * other functions in the same device. The PCI device must be responsive
5352 * to PCI config space in order to use this function.
5353 *
5354 * The device function is presumed to be unused and the caller is holding
5355 * the device mutex lock when this function is called.
5356 *
5357 * Resetting the device will make the contents of PCI configuration space
5358 * random, so any caller of this must be prepared to reinitialise the
5359 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
5360 * etc.
5361 *
5362 * Returns 0 if the device function was successfully reset or negative if the
5363 * device doesn't support resetting a single function.
5364 */
5365int __pci_reset_function_locked(struct pci_dev *dev)
5366{
5367 int i, m, rc;
5368
5369 might_sleep();
5370
5371 /*
5372 * A reset method returns -ENOTTY if it doesn't support this device and
5373 * we should try the next method.
5374 *
5375 * If it returns 0 (success), we're finished. If it returns any other
5376 * error, we're also finished: this indicates that further reset
5377 * mechanisms might be broken on the device.
5378 */
5379 for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5380 m = dev->reset_methods[i];
5381 if (!m)
5382 return -ENOTTY;
5383
5384 rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_DO_RESET);
5385 if (!rc)
5386 return 0;
5387 if (rc != -ENOTTY)
5388 return rc;
5389 }
5390
5391 return -ENOTTY;
5392}
5393EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
5394
5395/**
5396 * pci_init_reset_methods - check whether device can be safely reset
5397 * and store supported reset mechanisms.
5398 * @dev: PCI device to check for reset mechanisms
5399 *
5400 * Some devices allow an individual function to be reset without affecting
5401 * other functions in the same device. The PCI device must be in D0-D3hot
5402 * state.
5403 *
5404 * Stores reset mechanisms supported by device in reset_methods byte array
5405 * which is a member of struct pci_dev.
5406 */
5407void pci_init_reset_methods(struct pci_dev *dev)
5408{
5409 int m, i, rc;
5410
5411 BUILD_BUG_ON(ARRAY_SIZE(pci_reset_fn_methods) != PCI_NUM_RESET_METHODS);
5412
5413 might_sleep();
5414
5415 i = 0;
5416 for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5417 rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_PROBE);
5418 if (!rc)
5419 dev->reset_methods[i++] = m;
5420 else if (rc != -ENOTTY)
5421 break;
5422 }
5423
5424 dev->reset_methods[i] = 0;
5425}
5426
5427/**
5428 * pci_reset_function - quiesce and reset a PCI device function
5429 * @dev: PCI device to reset
5430 *
5431 * Some devices allow an individual function to be reset without affecting
5432 * other functions in the same device. The PCI device must be responsive
5433 * to PCI config space in order to use this function.
5434 *
5435 * This function does not just reset the PCI portion of a device, but
5436 * clears all the state associated with the device. This function differs
5437 * from __pci_reset_function_locked() in that it saves and restores device state
5438 * over the reset and takes the PCI device lock.
5439 *
5440 * Returns 0 if the device function was successfully reset or negative if the
5441 * device doesn't support resetting a single function.
5442 */
5443int pci_reset_function(struct pci_dev *dev)
5444{
5445 int rc;
5446
5447 if (!pci_reset_supported(dev))
5448 return -ENOTTY;
5449
5450 pci_dev_lock(dev);
5451 pci_dev_save_and_disable(dev);
5452
5453 rc = __pci_reset_function_locked(dev);
5454
5455 pci_dev_restore(dev);
5456 pci_dev_unlock(dev);
5457
5458 return rc;
5459}
5460EXPORT_SYMBOL_GPL(pci_reset_function);
5461
5462/**
5463 * pci_reset_function_locked - quiesce and reset a PCI device function
5464 * @dev: PCI device to reset
5465 *
5466 * Some devices allow an individual function to be reset without affecting
5467 * other functions in the same device. The PCI device must be responsive
5468 * to PCI config space in order to use this function.
5469 *
5470 * This function does not just reset the PCI portion of a device, but
5471 * clears all the state associated with the device. This function differs
5472 * from __pci_reset_function_locked() in that it saves and restores device state
5473 * over the reset. It also differs from pci_reset_function() in that it
5474 * requires the PCI device lock to be held.
5475 *
5476 * Returns 0 if the device function was successfully reset or negative if the
5477 * device doesn't support resetting a single function.
5478 */
5479int pci_reset_function_locked(struct pci_dev *dev)
5480{
5481 int rc;
5482
5483 if (!pci_reset_supported(dev))
5484 return -ENOTTY;
5485
5486 pci_dev_save_and_disable(dev);
5487
5488 rc = __pci_reset_function_locked(dev);
5489
5490 pci_dev_restore(dev);
5491
5492 return rc;
5493}
5494EXPORT_SYMBOL_GPL(pci_reset_function_locked);
5495
5496/**
5497 * pci_try_reset_function - quiesce and reset a PCI device function
5498 * @dev: PCI device to reset
5499 *
5500 * Same as above, except return -EAGAIN if unable to lock device.
5501 */
5502int pci_try_reset_function(struct pci_dev *dev)
5503{
5504 int rc;
5505
5506 if (!pci_reset_supported(dev))
5507 return -ENOTTY;
5508
5509 if (!pci_dev_trylock(dev))
5510 return -EAGAIN;
5511
5512 pci_dev_save_and_disable(dev);
5513 rc = __pci_reset_function_locked(dev);
5514 pci_dev_restore(dev);
5515 pci_dev_unlock(dev);
5516
5517 return rc;
5518}
5519EXPORT_SYMBOL_GPL(pci_try_reset_function);
5520
5521/* Do any devices on or below this bus prevent a bus reset? */
5522static bool pci_bus_resetable(struct pci_bus *bus)
5523{
5524 struct pci_dev *dev;
5525
5526
5527 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5528 return false;
5529
5530 list_for_each_entry(dev, &bus->devices, bus_list) {
5531 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5532 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5533 return false;
5534 }
5535
5536 return true;
5537}
5538
5539/* Lock devices from the top of the tree down */
5540static void pci_bus_lock(struct pci_bus *bus)
5541{
5542 struct pci_dev *dev;
5543
5544 list_for_each_entry(dev, &bus->devices, bus_list) {
5545 pci_dev_lock(dev);
5546 if (dev->subordinate)
5547 pci_bus_lock(dev->subordinate);
5548 }
5549}
5550
5551/* Unlock devices from the bottom of the tree up */
5552static void pci_bus_unlock(struct pci_bus *bus)
5553{
5554 struct pci_dev *dev;
5555
5556 list_for_each_entry(dev, &bus->devices, bus_list) {
5557 if (dev->subordinate)
5558 pci_bus_unlock(dev->subordinate);
5559 pci_dev_unlock(dev);
5560 }
5561}
5562
5563/* Return 1 on successful lock, 0 on contention */
5564static int pci_bus_trylock(struct pci_bus *bus)
5565{
5566 struct pci_dev *dev;
5567
5568 list_for_each_entry(dev, &bus->devices, bus_list) {
5569 if (!pci_dev_trylock(dev))
5570 goto unlock;
5571 if (dev->subordinate) {
5572 if (!pci_bus_trylock(dev->subordinate)) {
5573 pci_dev_unlock(dev);
5574 goto unlock;
5575 }
5576 }
5577 }
5578 return 1;
5579
5580unlock:
5581 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5582 if (dev->subordinate)
5583 pci_bus_unlock(dev->subordinate);
5584 pci_dev_unlock(dev);
5585 }
5586 return 0;
5587}
5588
5589/* Do any devices on or below this slot prevent a bus reset? */
5590static bool pci_slot_resetable(struct pci_slot *slot)
5591{
5592 struct pci_dev *dev;
5593
5594 if (slot->bus->self &&
5595 (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5596 return false;
5597
5598 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5599 if (!dev->slot || dev->slot != slot)
5600 continue;
5601 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5602 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5603 return false;
5604 }
5605
5606 return true;
5607}
5608
5609/* Lock devices from the top of the tree down */
5610static void pci_slot_lock(struct pci_slot *slot)
5611{
5612 struct pci_dev *dev;
5613
5614 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5615 if (!dev->slot || dev->slot != slot)
5616 continue;
5617 pci_dev_lock(dev);
5618 if (dev->subordinate)
5619 pci_bus_lock(dev->subordinate);
5620 }
5621}
5622
5623/* Unlock devices from the bottom of the tree up */
5624static void pci_slot_unlock(struct pci_slot *slot)
5625{
5626 struct pci_dev *dev;
5627
5628 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5629 if (!dev->slot || dev->slot != slot)
5630 continue;
5631 if (dev->subordinate)
5632 pci_bus_unlock(dev->subordinate);
5633 pci_dev_unlock(dev);
5634 }
5635}
5636
5637/* Return 1 on successful lock, 0 on contention */
5638static int pci_slot_trylock(struct pci_slot *slot)
5639{
5640 struct pci_dev *dev;
5641
5642 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5643 if (!dev->slot || dev->slot != slot)
5644 continue;
5645 if (!pci_dev_trylock(dev))
5646 goto unlock;
5647 if (dev->subordinate) {
5648 if (!pci_bus_trylock(dev->subordinate)) {
5649 pci_dev_unlock(dev);
5650 goto unlock;
5651 }
5652 }
5653 }
5654 return 1;
5655
5656unlock:
5657 list_for_each_entry_continue_reverse(dev,
5658 &slot->bus->devices, bus_list) {
5659 if (!dev->slot || dev->slot != slot)
5660 continue;
5661 if (dev->subordinate)
5662 pci_bus_unlock(dev->subordinate);
5663 pci_dev_unlock(dev);
5664 }
5665 return 0;
5666}
5667
5668/*
5669 * Save and disable devices from the top of the tree down while holding
5670 * the @dev mutex lock for the entire tree.
5671 */
5672static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5673{
5674 struct pci_dev *dev;
5675
5676 list_for_each_entry(dev, &bus->devices, bus_list) {
5677 pci_dev_save_and_disable(dev);
5678 if (dev->subordinate)
5679 pci_bus_save_and_disable_locked(dev->subordinate);
5680 }
5681}
5682
5683/*
5684 * Restore devices from top of the tree down while holding @dev mutex lock
5685 * for the entire tree. Parent bridges need to be restored before we can
5686 * get to subordinate devices.
5687 */
5688static void pci_bus_restore_locked(struct pci_bus *bus)
5689{
5690 struct pci_dev *dev;
5691
5692 list_for_each_entry(dev, &bus->devices, bus_list) {
5693 pci_dev_restore(dev);
5694 if (dev->subordinate)
5695 pci_bus_restore_locked(dev->subordinate);
5696 }
5697}
5698
5699/*
5700 * Save and disable devices from the top of the tree down while holding
5701 * the @dev mutex lock for the entire tree.
5702 */
5703static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5704{
5705 struct pci_dev *dev;
5706
5707 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5708 if (!dev->slot || dev->slot != slot)
5709 continue;
5710 pci_dev_save_and_disable(dev);
5711 if (dev->subordinate)
5712 pci_bus_save_and_disable_locked(dev->subordinate);
5713 }
5714}
5715
5716/*
5717 * Restore devices from top of the tree down while holding @dev mutex lock
5718 * for the entire tree. Parent bridges need to be restored before we can
5719 * get to subordinate devices.
5720 */
5721static void pci_slot_restore_locked(struct pci_slot *slot)
5722{
5723 struct pci_dev *dev;
5724
5725 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5726 if (!dev->slot || dev->slot != slot)
5727 continue;
5728 pci_dev_restore(dev);
5729 if (dev->subordinate)
5730 pci_bus_restore_locked(dev->subordinate);
5731 }
5732}
5733
5734static int pci_slot_reset(struct pci_slot *slot, bool probe)
5735{
5736 int rc;
5737
5738 if (!slot || !pci_slot_resetable(slot))
5739 return -ENOTTY;
5740
5741 if (!probe)
5742 pci_slot_lock(slot);
5743
5744 might_sleep();
5745
5746 rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5747
5748 if (!probe)
5749 pci_slot_unlock(slot);
5750
5751 return rc;
5752}
5753
5754/**
5755 * pci_probe_reset_slot - probe whether a PCI slot can be reset
5756 * @slot: PCI slot to probe
5757 *
5758 * Return 0 if slot can be reset, negative if a slot reset is not supported.
5759 */
5760int pci_probe_reset_slot(struct pci_slot *slot)
5761{
5762 return pci_slot_reset(slot, PCI_RESET_PROBE);
5763}
5764EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5765
5766/**
5767 * __pci_reset_slot - Try to reset a PCI slot
5768 * @slot: PCI slot to reset
5769 *
5770 * A PCI bus may host multiple slots, each slot may support a reset mechanism
5771 * independent of other slots. For instance, some slots may support slot power
5772 * control. In the case of a 1:1 bus to slot architecture, this function may
5773 * wrap the bus reset to avoid spurious slot related events such as hotplug.
5774 * Generally a slot reset should be attempted before a bus reset. All of the
5775 * function of the slot and any subordinate buses behind the slot are reset
5776 * through this function. PCI config space of all devices in the slot and
5777 * behind the slot is saved before and restored after reset.
5778 *
5779 * Same as above except return -EAGAIN if the slot cannot be locked
5780 */
5781static int __pci_reset_slot(struct pci_slot *slot)
5782{
5783 int rc;
5784
5785 rc = pci_slot_reset(slot, PCI_RESET_PROBE);
5786 if (rc)
5787 return rc;
5788
5789 if (pci_slot_trylock(slot)) {
5790 pci_slot_save_and_disable_locked(slot);
5791 might_sleep();
5792 rc = pci_reset_hotplug_slot(slot->hotplug, PCI_RESET_DO_RESET);
5793 pci_slot_restore_locked(slot);
5794 pci_slot_unlock(slot);
5795 } else
5796 rc = -EAGAIN;
5797
5798 return rc;
5799}
5800
5801static int pci_bus_reset(struct pci_bus *bus, bool probe)
5802{
5803 int ret;
5804
5805 if (!bus->self || !pci_bus_resetable(bus))
5806 return -ENOTTY;
5807
5808 if (probe)
5809 return 0;
5810
5811 pci_bus_lock(bus);
5812
5813 might_sleep();
5814
5815 ret = pci_bridge_secondary_bus_reset(bus->self);
5816
5817 pci_bus_unlock(bus);
5818
5819 return ret;
5820}
5821
5822/**
5823 * pci_bus_error_reset - reset the bridge's subordinate bus
5824 * @bridge: The parent device that connects to the bus to reset
5825 *
5826 * This function will first try to reset the slots on this bus if the method is
5827 * available. If slot reset fails or is not available, this will fall back to a
5828 * secondary bus reset.
5829 */
5830int pci_bus_error_reset(struct pci_dev *bridge)
5831{
5832 struct pci_bus *bus = bridge->subordinate;
5833 struct pci_slot *slot;
5834
5835 if (!bus)
5836 return -ENOTTY;
5837
5838 mutex_lock(&pci_slot_mutex);
5839 if (list_empty(&bus->slots))
5840 goto bus_reset;
5841
5842 list_for_each_entry(slot, &bus->slots, list)
5843 if (pci_probe_reset_slot(slot))
5844 goto bus_reset;
5845
5846 list_for_each_entry(slot, &bus->slots, list)
5847 if (pci_slot_reset(slot, PCI_RESET_DO_RESET))
5848 goto bus_reset;
5849
5850 mutex_unlock(&pci_slot_mutex);
5851 return 0;
5852bus_reset:
5853 mutex_unlock(&pci_slot_mutex);
5854 return pci_bus_reset(bridge->subordinate, PCI_RESET_DO_RESET);
5855}
5856
5857/**
5858 * pci_probe_reset_bus - probe whether a PCI bus can be reset
5859 * @bus: PCI bus to probe
5860 *
5861 * Return 0 if bus can be reset, negative if a bus reset is not supported.
5862 */
5863int pci_probe_reset_bus(struct pci_bus *bus)
5864{
5865 return pci_bus_reset(bus, PCI_RESET_PROBE);
5866}
5867EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5868
5869/**
5870 * __pci_reset_bus - Try to reset a PCI bus
5871 * @bus: top level PCI bus to reset
5872 *
5873 * Same as above except return -EAGAIN if the bus cannot be locked
5874 */
5875static int __pci_reset_bus(struct pci_bus *bus)
5876{
5877 int rc;
5878
5879 rc = pci_bus_reset(bus, PCI_RESET_PROBE);
5880 if (rc)
5881 return rc;
5882
5883 if (pci_bus_trylock(bus)) {
5884 pci_bus_save_and_disable_locked(bus);
5885 might_sleep();
5886 rc = pci_bridge_secondary_bus_reset(bus->self);
5887 pci_bus_restore_locked(bus);
5888 pci_bus_unlock(bus);
5889 } else
5890 rc = -EAGAIN;
5891
5892 return rc;
5893}
5894
5895/**
5896 * pci_reset_bus - Try to reset a PCI bus
5897 * @pdev: top level PCI device to reset via slot/bus
5898 *
5899 * Same as above except return -EAGAIN if the bus cannot be locked
5900 */
5901int pci_reset_bus(struct pci_dev *pdev)
5902{
5903 return (!pci_probe_reset_slot(pdev->slot)) ?
5904 __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
5905}
5906EXPORT_SYMBOL_GPL(pci_reset_bus);
5907
5908/**
5909 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
5910 * @dev: PCI device to query
5911 *
5912 * Returns mmrbc: maximum designed memory read count in bytes or
5913 * appropriate error value.
5914 */
5915int pcix_get_max_mmrbc(struct pci_dev *dev)
5916{
5917 int cap;
5918 u32 stat;
5919
5920 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5921 if (!cap)
5922 return -EINVAL;
5923
5924 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5925 return -EINVAL;
5926
5927 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
5928}
5929EXPORT_SYMBOL(pcix_get_max_mmrbc);
5930
5931/**
5932 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
5933 * @dev: PCI device to query
5934 *
5935 * Returns mmrbc: maximum memory read count in bytes or appropriate error
5936 * value.
5937 */
5938int pcix_get_mmrbc(struct pci_dev *dev)
5939{
5940 int cap;
5941 u16 cmd;
5942
5943 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5944 if (!cap)
5945 return -EINVAL;
5946
5947 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5948 return -EINVAL;
5949
5950 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
5951}
5952EXPORT_SYMBOL(pcix_get_mmrbc);
5953
5954/**
5955 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
5956 * @dev: PCI device to query
5957 * @mmrbc: maximum memory read count in bytes
5958 * valid values are 512, 1024, 2048, 4096
5959 *
5960 * If possible sets maximum memory read byte count, some bridges have errata
5961 * that prevent this.
5962 */
5963int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
5964{
5965 int cap;
5966 u32 stat, v, o;
5967 u16 cmd;
5968
5969 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
5970 return -EINVAL;
5971
5972 v = ffs(mmrbc) - 10;
5973
5974 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5975 if (!cap)
5976 return -EINVAL;
5977
5978 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5979 return -EINVAL;
5980
5981 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
5982 return -E2BIG;
5983
5984 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5985 return -EINVAL;
5986
5987 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
5988 if (o != v) {
5989 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
5990 return -EIO;
5991
5992 cmd &= ~PCI_X_CMD_MAX_READ;
5993 cmd |= v << 2;
5994 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
5995 return -EIO;
5996 }
5997 return 0;
5998}
5999EXPORT_SYMBOL(pcix_set_mmrbc);
6000
6001/**
6002 * pcie_get_readrq - get PCI Express read request size
6003 * @dev: PCI device to query
6004 *
6005 * Returns maximum memory read request in bytes or appropriate error value.
6006 */
6007int pcie_get_readrq(struct pci_dev *dev)
6008{
6009 u16 ctl;
6010
6011 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
6012
6013 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
6014}
6015EXPORT_SYMBOL(pcie_get_readrq);
6016
6017/**
6018 * pcie_set_readrq - set PCI Express maximum memory read request
6019 * @dev: PCI device to query
6020 * @rq: maximum memory read count in bytes
6021 * valid values are 128, 256, 512, 1024, 2048, 4096
6022 *
6023 * If possible sets maximum memory read request in bytes
6024 */
6025int pcie_set_readrq(struct pci_dev *dev, int rq)
6026{
6027 u16 v;
6028 int ret;
6029
6030 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
6031 return -EINVAL;
6032
6033 /*
6034 * If using the "performance" PCIe config, we clamp the read rq
6035 * size to the max packet size to keep the host bridge from
6036 * generating requests larger than we can cope with.
6037 */
6038 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
6039 int mps = pcie_get_mps(dev);
6040
6041 if (mps < rq)
6042 rq = mps;
6043 }
6044
6045 v = (ffs(rq) - 8) << 12;
6046
6047 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6048 PCI_EXP_DEVCTL_READRQ, v);
6049
6050 return pcibios_err_to_errno(ret);
6051}
6052EXPORT_SYMBOL(pcie_set_readrq);
6053
6054/**
6055 * pcie_get_mps - get PCI Express maximum payload size
6056 * @dev: PCI device to query
6057 *
6058 * Returns maximum payload size in bytes
6059 */
6060int pcie_get_mps(struct pci_dev *dev)
6061{
6062 u16 ctl;
6063
6064 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
6065
6066 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6067}
6068EXPORT_SYMBOL(pcie_get_mps);
6069
6070/**
6071 * pcie_set_mps - set PCI Express maximum payload size
6072 * @dev: PCI device to query
6073 * @mps: maximum payload size in bytes
6074 * valid values are 128, 256, 512, 1024, 2048, 4096
6075 *
6076 * If possible sets maximum payload size
6077 */
6078int pcie_set_mps(struct pci_dev *dev, int mps)
6079{
6080 u16 v;
6081 int ret;
6082
6083 if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
6084 return -EINVAL;
6085
6086 v = ffs(mps) - 8;
6087 if (v > dev->pcie_mpss)
6088 return -EINVAL;
6089 v <<= 5;
6090
6091 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6092 PCI_EXP_DEVCTL_PAYLOAD, v);
6093
6094 return pcibios_err_to_errno(ret);
6095}
6096EXPORT_SYMBOL(pcie_set_mps);
6097
6098/**
6099 * pcie_bandwidth_available - determine minimum link settings of a PCIe
6100 * device and its bandwidth limitation
6101 * @dev: PCI device to query
6102 * @limiting_dev: storage for device causing the bandwidth limitation
6103 * @speed: storage for speed of limiting device
6104 * @width: storage for width of limiting device
6105 *
6106 * Walk up the PCI device chain and find the point where the minimum
6107 * bandwidth is available. Return the bandwidth available there and (if
6108 * limiting_dev, speed, and width pointers are supplied) information about
6109 * that point. The bandwidth returned is in Mb/s, i.e., megabits/second of
6110 * raw bandwidth.
6111 */
6112u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
6113 enum pci_bus_speed *speed,
6114 enum pcie_link_width *width)
6115{
6116 u16 lnksta;
6117 enum pci_bus_speed next_speed;
6118 enum pcie_link_width next_width;
6119 u32 bw, next_bw;
6120
6121 if (speed)
6122 *speed = PCI_SPEED_UNKNOWN;
6123 if (width)
6124 *width = PCIE_LNK_WIDTH_UNKNOWN;
6125
6126 bw = 0;
6127
6128 while (dev) {
6129 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
6130
6131 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
6132 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
6133 PCI_EXP_LNKSTA_NLW_SHIFT;
6134
6135 next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
6136
6137 /* Check if current device limits the total bandwidth */
6138 if (!bw || next_bw <= bw) {
6139 bw = next_bw;
6140
6141 if (limiting_dev)
6142 *limiting_dev = dev;
6143 if (speed)
6144 *speed = next_speed;
6145 if (width)
6146 *width = next_width;
6147 }
6148
6149 dev = pci_upstream_bridge(dev);
6150 }
6151
6152 return bw;
6153}
6154EXPORT_SYMBOL(pcie_bandwidth_available);
6155
6156/**
6157 * pcie_get_speed_cap - query for the PCI device's link speed capability
6158 * @dev: PCI device to query
6159 *
6160 * Query the PCI device speed capability. Return the maximum link speed
6161 * supported by the device.
6162 */
6163enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
6164{
6165 u32 lnkcap2, lnkcap;
6166
6167 /*
6168 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18. The
6169 * implementation note there recommends using the Supported Link
6170 * Speeds Vector in Link Capabilities 2 when supported.
6171 *
6172 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
6173 * should use the Supported Link Speeds field in Link Capabilities,
6174 * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
6175 */
6176 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
6177
6178 /* PCIe r3.0-compliant */
6179 if (lnkcap2)
6180 return PCIE_LNKCAP2_SLS2SPEED(lnkcap2);
6181
6182 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6183 if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
6184 return PCIE_SPEED_5_0GT;
6185 else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
6186 return PCIE_SPEED_2_5GT;
6187
6188 return PCI_SPEED_UNKNOWN;
6189}
6190EXPORT_SYMBOL(pcie_get_speed_cap);
6191
6192/**
6193 * pcie_get_width_cap - query for the PCI device's link width capability
6194 * @dev: PCI device to query
6195 *
6196 * Query the PCI device width capability. Return the maximum link width
6197 * supported by the device.
6198 */
6199enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
6200{
6201 u32 lnkcap;
6202
6203 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6204 if (lnkcap)
6205 return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4;
6206
6207 return PCIE_LNK_WIDTH_UNKNOWN;
6208}
6209EXPORT_SYMBOL(pcie_get_width_cap);
6210
6211/**
6212 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
6213 * @dev: PCI device
6214 * @speed: storage for link speed
6215 * @width: storage for link width
6216 *
6217 * Calculate a PCI device's link bandwidth by querying for its link speed
6218 * and width, multiplying them, and applying encoding overhead. The result
6219 * is in Mb/s, i.e., megabits/second of raw bandwidth.
6220 */
6221u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
6222 enum pcie_link_width *width)
6223{
6224 *speed = pcie_get_speed_cap(dev);
6225 *width = pcie_get_width_cap(dev);
6226
6227 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
6228 return 0;
6229
6230 return *width * PCIE_SPEED2MBS_ENC(*speed);
6231}
6232
6233/**
6234 * __pcie_print_link_status - Report the PCI device's link speed and width
6235 * @dev: PCI device to query
6236 * @verbose: Print info even when enough bandwidth is available
6237 *
6238 * If the available bandwidth at the device is less than the device is
6239 * capable of, report the device's maximum possible bandwidth and the
6240 * upstream link that limits its performance. If @verbose, always print
6241 * the available bandwidth, even if the device isn't constrained.
6242 */
6243void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
6244{
6245 enum pcie_link_width width, width_cap;
6246 enum pci_bus_speed speed, speed_cap;
6247 struct pci_dev *limiting_dev = NULL;
6248 u32 bw_avail, bw_cap;
6249
6250 bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
6251 bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
6252
6253 if (bw_avail >= bw_cap && verbose)
6254 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
6255 bw_cap / 1000, bw_cap % 1000,
6256 pci_speed_string(speed_cap), width_cap);
6257 else if (bw_avail < bw_cap)
6258 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
6259 bw_avail / 1000, bw_avail % 1000,
6260 pci_speed_string(speed), width,
6261 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
6262 bw_cap / 1000, bw_cap % 1000,
6263 pci_speed_string(speed_cap), width_cap);
6264}
6265
6266/**
6267 * pcie_print_link_status - Report the PCI device's link speed and width
6268 * @dev: PCI device to query
6269 *
6270 * Report the available bandwidth at the device.
6271 */
6272void pcie_print_link_status(struct pci_dev *dev)
6273{
6274 __pcie_print_link_status(dev, true);
6275}
6276EXPORT_SYMBOL(pcie_print_link_status);
6277
6278/**
6279 * pci_select_bars - Make BAR mask from the type of resource
6280 * @dev: the PCI device for which BAR mask is made
6281 * @flags: resource type mask to be selected
6282 *
6283 * This helper routine makes bar mask from the type of resource.
6284 */
6285int pci_select_bars(struct pci_dev *dev, unsigned long flags)
6286{
6287 int i, bars = 0;
6288 for (i = 0; i < PCI_NUM_RESOURCES; i++)
6289 if (pci_resource_flags(dev, i) & flags)
6290 bars |= (1 << i);
6291 return bars;
6292}
6293EXPORT_SYMBOL(pci_select_bars);
6294
6295/* Some architectures require additional programming to enable VGA */
6296static arch_set_vga_state_t arch_set_vga_state;
6297
6298void __init pci_register_set_vga_state(arch_set_vga_state_t func)
6299{
6300 arch_set_vga_state = func; /* NULL disables */
6301}
6302
6303static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
6304 unsigned int command_bits, u32 flags)
6305{
6306 if (arch_set_vga_state)
6307 return arch_set_vga_state(dev, decode, command_bits,
6308 flags);
6309 return 0;
6310}
6311
6312/**
6313 * pci_set_vga_state - set VGA decode state on device and parents if requested
6314 * @dev: the PCI device
6315 * @decode: true = enable decoding, false = disable decoding
6316 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
6317 * @flags: traverse ancestors and change bridges
6318 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
6319 */
6320int pci_set_vga_state(struct pci_dev *dev, bool decode,
6321 unsigned int command_bits, u32 flags)
6322{
6323 struct pci_bus *bus;
6324 struct pci_dev *bridge;
6325 u16 cmd;
6326 int rc;
6327
6328 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
6329
6330 /* ARCH specific VGA enables */
6331 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
6332 if (rc)
6333 return rc;
6334
6335 if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
6336 pci_read_config_word(dev, PCI_COMMAND, &cmd);
6337 if (decode)
6338 cmd |= command_bits;
6339 else
6340 cmd &= ~command_bits;
6341 pci_write_config_word(dev, PCI_COMMAND, cmd);
6342 }
6343
6344 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
6345 return 0;
6346
6347 bus = dev->bus;
6348 while (bus) {
6349 bridge = bus->self;
6350 if (bridge) {
6351 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
6352 &cmd);
6353 if (decode)
6354 cmd |= PCI_BRIDGE_CTL_VGA;
6355 else
6356 cmd &= ~PCI_BRIDGE_CTL_VGA;
6357 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
6358 cmd);
6359 }
6360 bus = bus->parent;
6361 }
6362 return 0;
6363}
6364
6365#ifdef CONFIG_ACPI
6366bool pci_pr3_present(struct pci_dev *pdev)
6367{
6368 struct acpi_device *adev;
6369
6370 if (acpi_disabled)
6371 return false;
6372
6373 adev = ACPI_COMPANION(&pdev->dev);
6374 if (!adev)
6375 return false;
6376
6377 return adev->power.flags.power_resources &&
6378 acpi_has_method(adev->handle, "_PR3");
6379}
6380EXPORT_SYMBOL_GPL(pci_pr3_present);
6381#endif
6382
6383/**
6384 * pci_add_dma_alias - Add a DMA devfn alias for a device
6385 * @dev: the PCI device for which alias is added
6386 * @devfn_from: alias slot and function
6387 * @nr_devfns: number of subsequent devfns to alias
6388 *
6389 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
6390 * which is used to program permissible bus-devfn source addresses for DMA
6391 * requests in an IOMMU. These aliases factor into IOMMU group creation
6392 * and are useful for devices generating DMA requests beyond or different
6393 * from their logical bus-devfn. Examples include device quirks where the
6394 * device simply uses the wrong devfn, as well as non-transparent bridges
6395 * where the alias may be a proxy for devices in another domain.
6396 *
6397 * IOMMU group creation is performed during device discovery or addition,
6398 * prior to any potential DMA mapping and therefore prior to driver probing
6399 * (especially for userspace assigned devices where IOMMU group definition
6400 * cannot be left as a userspace activity). DMA aliases should therefore
6401 * be configured via quirks, such as the PCI fixup header quirk.
6402 */
6403void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from,
6404 unsigned int nr_devfns)
6405{
6406 int devfn_to;
6407
6408 nr_devfns = min(nr_devfns, (unsigned int)MAX_NR_DEVFNS - devfn_from);
6409 devfn_to = devfn_from + nr_devfns - 1;
6410
6411 if (!dev->dma_alias_mask)
6412 dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL);
6413 if (!dev->dma_alias_mask) {
6414 pci_warn(dev, "Unable to allocate DMA alias mask\n");
6415 return;
6416 }
6417
6418 bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns);
6419
6420 if (nr_devfns == 1)
6421 pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
6422 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from));
6423 else if (nr_devfns > 1)
6424 pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n",
6425 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from),
6426 PCI_SLOT(devfn_to), PCI_FUNC(devfn_to));
6427}
6428
6429bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
6430{
6431 return (dev1->dma_alias_mask &&
6432 test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
6433 (dev2->dma_alias_mask &&
6434 test_bit(dev1->devfn, dev2->dma_alias_mask)) ||
6435 pci_real_dma_dev(dev1) == dev2 ||
6436 pci_real_dma_dev(dev2) == dev1;
6437}
6438
6439bool pci_device_is_present(struct pci_dev *pdev)
6440{
6441 u32 v;
6442
6443 /* Check PF if pdev is a VF, since VF Vendor/Device IDs are 0xffff */
6444 pdev = pci_physfn(pdev);
6445 if (pci_dev_is_disconnected(pdev))
6446 return false;
6447 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
6448}
6449EXPORT_SYMBOL_GPL(pci_device_is_present);
6450
6451void pci_ignore_hotplug(struct pci_dev *dev)
6452{
6453 struct pci_dev *bridge = dev->bus->self;
6454
6455 dev->ignore_hotplug = 1;
6456 /* Propagate the "ignore hotplug" setting to the parent bridge. */
6457 if (bridge)
6458 bridge->ignore_hotplug = 1;
6459}
6460EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
6461
6462/**
6463 * pci_real_dma_dev - Get PCI DMA device for PCI device
6464 * @dev: the PCI device that may have a PCI DMA alias
6465 *
6466 * Permits the platform to provide architecture-specific functionality to
6467 * devices needing to alias DMA to another PCI device on another PCI bus. If
6468 * the PCI device is on the same bus, it is recommended to use
6469 * pci_add_dma_alias(). This is the default implementation. Architecture
6470 * implementations can override this.
6471 */
6472struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev)
6473{
6474 return dev;
6475}
6476
6477resource_size_t __weak pcibios_default_alignment(void)
6478{
6479 return 0;
6480}
6481
6482/*
6483 * Arches that don't want to expose struct resource to userland as-is in
6484 * sysfs and /proc can implement their own pci_resource_to_user().
6485 */
6486void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
6487 const struct resource *rsrc,
6488 resource_size_t *start, resource_size_t *end)
6489{
6490 *start = rsrc->start;
6491 *end = rsrc->end;
6492}
6493
6494static char *resource_alignment_param;
6495static DEFINE_SPINLOCK(resource_alignment_lock);
6496
6497/**
6498 * pci_specified_resource_alignment - get resource alignment specified by user.
6499 * @dev: the PCI device to get
6500 * @resize: whether or not to change resources' size when reassigning alignment
6501 *
6502 * RETURNS: Resource alignment if it is specified.
6503 * Zero if it is not specified.
6504 */
6505static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
6506 bool *resize)
6507{
6508 int align_order, count;
6509 resource_size_t align = pcibios_default_alignment();
6510 const char *p;
6511 int ret;
6512
6513 spin_lock(&resource_alignment_lock);
6514 p = resource_alignment_param;
6515 if (!p || !*p)
6516 goto out;
6517 if (pci_has_flag(PCI_PROBE_ONLY)) {
6518 align = 0;
6519 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
6520 goto out;
6521 }
6522
6523 while (*p) {
6524 count = 0;
6525 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
6526 p[count] == '@') {
6527 p += count + 1;
6528 if (align_order > 63) {
6529 pr_err("PCI: Invalid requested alignment (order %d)\n",
6530 align_order);
6531 align_order = PAGE_SHIFT;
6532 }
6533 } else {
6534 align_order = PAGE_SHIFT;
6535 }
6536
6537 ret = pci_dev_str_match(dev, p, &p);
6538 if (ret == 1) {
6539 *resize = true;
6540 align = 1ULL << align_order;
6541 break;
6542 } else if (ret < 0) {
6543 pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
6544 p);
6545 break;
6546 }
6547
6548 if (*p != ';' && *p != ',') {
6549 /* End of param or invalid format */
6550 break;
6551 }
6552 p++;
6553 }
6554out:
6555 spin_unlock(&resource_alignment_lock);
6556 return align;
6557}
6558
6559static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
6560 resource_size_t align, bool resize)
6561{
6562 struct resource *r = &dev->resource[bar];
6563 resource_size_t size;
6564
6565 if (!(r->flags & IORESOURCE_MEM))
6566 return;
6567
6568 if (r->flags & IORESOURCE_PCI_FIXED) {
6569 pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
6570 bar, r, (unsigned long long)align);
6571 return;
6572 }
6573
6574 size = resource_size(r);
6575 if (size >= align)
6576 return;
6577
6578 /*
6579 * Increase the alignment of the resource. There are two ways we
6580 * can do this:
6581 *
6582 * 1) Increase the size of the resource. BARs are aligned on their
6583 * size, so when we reallocate space for this resource, we'll
6584 * allocate it with the larger alignment. This also prevents
6585 * assignment of any other BARs inside the alignment region, so
6586 * if we're requesting page alignment, this means no other BARs
6587 * will share the page.
6588 *
6589 * The disadvantage is that this makes the resource larger than
6590 * the hardware BAR, which may break drivers that compute things
6591 * based on the resource size, e.g., to find registers at a
6592 * fixed offset before the end of the BAR.
6593 *
6594 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6595 * set r->start to the desired alignment. By itself this
6596 * doesn't prevent other BARs being put inside the alignment
6597 * region, but if we realign *every* resource of every device in
6598 * the system, none of them will share an alignment region.
6599 *
6600 * When the user has requested alignment for only some devices via
6601 * the "pci=resource_alignment" argument, "resize" is true and we
6602 * use the first method. Otherwise we assume we're aligning all
6603 * devices and we use the second.
6604 */
6605
6606 pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n",
6607 bar, r, (unsigned long long)align);
6608
6609 if (resize) {
6610 r->start = 0;
6611 r->end = align - 1;
6612 } else {
6613 r->flags &= ~IORESOURCE_SIZEALIGN;
6614 r->flags |= IORESOURCE_STARTALIGN;
6615 r->start = align;
6616 r->end = r->start + size - 1;
6617 }
6618 r->flags |= IORESOURCE_UNSET;
6619}
6620
6621/*
6622 * This function disables memory decoding and releases memory resources
6623 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6624 * It also rounds up size to specified alignment.
6625 * Later on, the kernel will assign page-aligned memory resource back
6626 * to the device.
6627 */
6628void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6629{
6630 int i;
6631 struct resource *r;
6632 resource_size_t align;
6633 u16 command;
6634 bool resize = false;
6635
6636 /*
6637 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6638 * 3.4.1.11. Their resources are allocated from the space
6639 * described by the VF BARx register in the PF's SR-IOV capability.
6640 * We can't influence their alignment here.
6641 */
6642 if (dev->is_virtfn)
6643 return;
6644
6645 /* check if specified PCI is target device to reassign */
6646 align = pci_specified_resource_alignment(dev, &resize);
6647 if (!align)
6648 return;
6649
6650 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6651 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6652 pci_warn(dev, "Can't reassign resources to host bridge\n");
6653 return;
6654 }
6655
6656 pci_read_config_word(dev, PCI_COMMAND, &command);
6657 command &= ~PCI_COMMAND_MEMORY;
6658 pci_write_config_word(dev, PCI_COMMAND, command);
6659
6660 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6661 pci_request_resource_alignment(dev, i, align, resize);
6662
6663 /*
6664 * Need to disable bridge's resource window,
6665 * to enable the kernel to reassign new resource
6666 * window later on.
6667 */
6668 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6669 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6670 r = &dev->resource[i];
6671 if (!(r->flags & IORESOURCE_MEM))
6672 continue;
6673 r->flags |= IORESOURCE_UNSET;
6674 r->end = resource_size(r) - 1;
6675 r->start = 0;
6676 }
6677 pci_disable_bridge_window(dev);
6678 }
6679}
6680
6681static ssize_t resource_alignment_show(struct bus_type *bus, char *buf)
6682{
6683 size_t count = 0;
6684
6685 spin_lock(&resource_alignment_lock);
6686 if (resource_alignment_param)
6687 count = sysfs_emit(buf, "%s\n", resource_alignment_param);
6688 spin_unlock(&resource_alignment_lock);
6689
6690 return count;
6691}
6692
6693static ssize_t resource_alignment_store(struct bus_type *bus,
6694 const char *buf, size_t count)
6695{
6696 char *param, *old, *end;
6697
6698 if (count >= (PAGE_SIZE - 1))
6699 return -EINVAL;
6700
6701 param = kstrndup(buf, count, GFP_KERNEL);
6702 if (!param)
6703 return -ENOMEM;
6704
6705 end = strchr(param, '\n');
6706 if (end)
6707 *end = '\0';
6708
6709 spin_lock(&resource_alignment_lock);
6710 old = resource_alignment_param;
6711 if (strlen(param)) {
6712 resource_alignment_param = param;
6713 } else {
6714 kfree(param);
6715 resource_alignment_param = NULL;
6716 }
6717 spin_unlock(&resource_alignment_lock);
6718
6719 kfree(old);
6720
6721 return count;
6722}
6723
6724static BUS_ATTR_RW(resource_alignment);
6725
6726static int __init pci_resource_alignment_sysfs_init(void)
6727{
6728 return bus_create_file(&pci_bus_type,
6729 &bus_attr_resource_alignment);
6730}
6731late_initcall(pci_resource_alignment_sysfs_init);
6732
6733static void pci_no_domains(void)
6734{
6735#ifdef CONFIG_PCI_DOMAINS
6736 pci_domains_supported = 0;
6737#endif
6738}
6739
6740#ifdef CONFIG_PCI_DOMAINS_GENERIC
6741static DEFINE_IDA(pci_domain_nr_static_ida);
6742static DEFINE_IDA(pci_domain_nr_dynamic_ida);
6743
6744static void of_pci_reserve_static_domain_nr(void)
6745{
6746 struct device_node *np;
6747 int domain_nr;
6748
6749 for_each_node_by_type(np, "pci") {
6750 domain_nr = of_get_pci_domain_nr(np);
6751 if (domain_nr < 0)
6752 continue;
6753 /*
6754 * Permanently allocate domain_nr in dynamic_ida
6755 * to prevent it from dynamic allocation.
6756 */
6757 ida_alloc_range(&pci_domain_nr_dynamic_ida,
6758 domain_nr, domain_nr, GFP_KERNEL);
6759 }
6760}
6761
6762static int of_pci_bus_find_domain_nr(struct device *parent)
6763{
6764 static bool static_domains_reserved = false;
6765 int domain_nr;
6766
6767 /* On the first call scan device tree for static allocations. */
6768 if (!static_domains_reserved) {
6769 of_pci_reserve_static_domain_nr();
6770 static_domains_reserved = true;
6771 }
6772
6773 if (parent) {
6774 /*
6775 * If domain is in DT, allocate it in static IDA. This
6776 * prevents duplicate static allocations in case of errors
6777 * in DT.
6778 */
6779 domain_nr = of_get_pci_domain_nr(parent->of_node);
6780 if (domain_nr >= 0)
6781 return ida_alloc_range(&pci_domain_nr_static_ida,
6782 domain_nr, domain_nr,
6783 GFP_KERNEL);
6784 }
6785
6786 /*
6787 * If domain was not specified in DT, choose a free ID from dynamic
6788 * allocations. All domain numbers from DT are permanently in
6789 * dynamic allocations to prevent assigning them to other DT nodes
6790 * without static domain.
6791 */
6792 return ida_alloc(&pci_domain_nr_dynamic_ida, GFP_KERNEL);
6793}
6794
6795static void of_pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent)
6796{
6797 if (bus->domain_nr < 0)
6798 return;
6799
6800 /* Release domain from IDA where it was allocated. */
6801 if (of_get_pci_domain_nr(parent->of_node) == bus->domain_nr)
6802 ida_free(&pci_domain_nr_static_ida, bus->domain_nr);
6803 else
6804 ida_free(&pci_domain_nr_dynamic_ida, bus->domain_nr);
6805}
6806
6807int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6808{
6809 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6810 acpi_pci_bus_find_domain_nr(bus);
6811}
6812
6813void pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent)
6814{
6815 if (!acpi_disabled)
6816 return;
6817 of_pci_bus_release_domain_nr(bus, parent);
6818}
6819#endif
6820
6821/**
6822 * pci_ext_cfg_avail - can we access extended PCI config space?
6823 *
6824 * Returns 1 if we can access PCI extended config space (offsets
6825 * greater than 0xff). This is the default implementation. Architecture
6826 * implementations can override this.
6827 */
6828int __weak pci_ext_cfg_avail(void)
6829{
6830 return 1;
6831}
6832
6833void __weak pci_fixup_cardbus(struct pci_bus *bus)
6834{
6835}
6836EXPORT_SYMBOL(pci_fixup_cardbus);
6837
6838static int __init pci_setup(char *str)
6839{
6840 while (str) {
6841 char *k = strchr(str, ',');
6842 if (k)
6843 *k++ = 0;
6844 if (*str && (str = pcibios_setup(str)) && *str) {
6845 if (!strcmp(str, "nomsi")) {
6846 pci_no_msi();
6847 } else if (!strncmp(str, "noats", 5)) {
6848 pr_info("PCIe: ATS is disabled\n");
6849 pcie_ats_disabled = true;
6850 } else if (!strcmp(str, "noaer")) {
6851 pci_no_aer();
6852 } else if (!strcmp(str, "earlydump")) {
6853 pci_early_dump = true;
6854 } else if (!strncmp(str, "realloc=", 8)) {
6855 pci_realloc_get_opt(str + 8);
6856 } else if (!strncmp(str, "realloc", 7)) {
6857 pci_realloc_get_opt("on");
6858 } else if (!strcmp(str, "nodomains")) {
6859 pci_no_domains();
6860 } else if (!strncmp(str, "noari", 5)) {
6861 pcie_ari_disabled = true;
6862 } else if (!strncmp(str, "cbiosize=", 9)) {
6863 pci_cardbus_io_size = memparse(str + 9, &str);
6864 } else if (!strncmp(str, "cbmemsize=", 10)) {
6865 pci_cardbus_mem_size = memparse(str + 10, &str);
6866 } else if (!strncmp(str, "resource_alignment=", 19)) {
6867 resource_alignment_param = str + 19;
6868 } else if (!strncmp(str, "ecrc=", 5)) {
6869 pcie_ecrc_get_policy(str + 5);
6870 } else if (!strncmp(str, "hpiosize=", 9)) {
6871 pci_hotplug_io_size = memparse(str + 9, &str);
6872 } else if (!strncmp(str, "hpmmiosize=", 11)) {
6873 pci_hotplug_mmio_size = memparse(str + 11, &str);
6874 } else if (!strncmp(str, "hpmmioprefsize=", 15)) {
6875 pci_hotplug_mmio_pref_size = memparse(str + 15, &str);
6876 } else if (!strncmp(str, "hpmemsize=", 10)) {
6877 pci_hotplug_mmio_size = memparse(str + 10, &str);
6878 pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size;
6879 } else if (!strncmp(str, "hpbussize=", 10)) {
6880 pci_hotplug_bus_size =
6881 simple_strtoul(str + 10, &str, 0);
6882 if (pci_hotplug_bus_size > 0xff)
6883 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
6884 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
6885 pcie_bus_config = PCIE_BUS_TUNE_OFF;
6886 } else if (!strncmp(str, "pcie_bus_safe", 13)) {
6887 pcie_bus_config = PCIE_BUS_SAFE;
6888 } else if (!strncmp(str, "pcie_bus_perf", 13)) {
6889 pcie_bus_config = PCIE_BUS_PERFORMANCE;
6890 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
6891 pcie_bus_config = PCIE_BUS_PEER2PEER;
6892 } else if (!strncmp(str, "pcie_scan_all", 13)) {
6893 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
6894 } else if (!strncmp(str, "disable_acs_redir=", 18)) {
6895 disable_acs_redir_param = str + 18;
6896 } else {
6897 pr_err("PCI: Unknown option `%s'\n", str);
6898 }
6899 }
6900 str = k;
6901 }
6902 return 0;
6903}
6904early_param("pci", pci_setup);
6905
6906/*
6907 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
6908 * in pci_setup(), above, to point to data in the __initdata section which
6909 * will be freed after the init sequence is complete. We can't allocate memory
6910 * in pci_setup() because some architectures do not have any memory allocation
6911 * service available during an early_param() call. So we allocate memory and
6912 * copy the variable here before the init section is freed.
6913 *
6914 */
6915static int __init pci_realloc_setup_params(void)
6916{
6917 resource_alignment_param = kstrdup(resource_alignment_param,
6918 GFP_KERNEL);
6919 disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
6920
6921 return 0;
6922}
6923pure_initcall(pci_realloc_setup_params);
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * PCI Bus Services, see include/linux/pci.h for further explanation.
4 *
5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
6 * David Mosberger-Tang
7 *
8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
9 */
10
11#include <linux/acpi.h>
12#include <linux/kernel.h>
13#include <linux/delay.h>
14#include <linux/dmi.h>
15#include <linux/init.h>
16#include <linux/msi.h>
17#include <linux/of.h>
18#include <linux/pci.h>
19#include <linux/pm.h>
20#include <linux/slab.h>
21#include <linux/module.h>
22#include <linux/spinlock.h>
23#include <linux/string.h>
24#include <linux/log2.h>
25#include <linux/logic_pio.h>
26#include <linux/pm_wakeup.h>
27#include <linux/device.h>
28#include <linux/pm_runtime.h>
29#include <linux/pci_hotplug.h>
30#include <linux/vmalloc.h>
31#include <asm/dma.h>
32#include <linux/aer.h>
33#include <linux/bitfield.h>
34#include "pci.h"
35
36DEFINE_MUTEX(pci_slot_mutex);
37
38const char *pci_power_names[] = {
39 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
40};
41EXPORT_SYMBOL_GPL(pci_power_names);
42
43#ifdef CONFIG_X86_32
44int isa_dma_bridge_buggy;
45EXPORT_SYMBOL(isa_dma_bridge_buggy);
46#endif
47
48int pci_pci_problems;
49EXPORT_SYMBOL(pci_pci_problems);
50
51unsigned int pci_pm_d3hot_delay;
52
53static void pci_pme_list_scan(struct work_struct *work);
54
55static LIST_HEAD(pci_pme_list);
56static DEFINE_MUTEX(pci_pme_list_mutex);
57static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
58
59struct pci_pme_device {
60 struct list_head list;
61 struct pci_dev *dev;
62};
63
64#define PME_TIMEOUT 1000 /* How long between PME checks */
65
66/*
67 * Following exit from Conventional Reset, devices must be ready within 1 sec
68 * (PCIe r6.0 sec 6.6.1). A D3cold to D0 transition implies a Conventional
69 * Reset (PCIe r6.0 sec 5.8).
70 */
71#define PCI_RESET_WAIT 1000 /* msec */
72
73/*
74 * Devices may extend the 1 sec period through Request Retry Status
75 * completions (PCIe r6.0 sec 2.3.1). The spec does not provide an upper
76 * limit, but 60 sec ought to be enough for any device to become
77 * responsive.
78 */
79#define PCIE_RESET_READY_POLL_MS 60000 /* msec */
80
81static void pci_dev_d3_sleep(struct pci_dev *dev)
82{
83 unsigned int delay_ms = max(dev->d3hot_delay, pci_pm_d3hot_delay);
84 unsigned int upper;
85
86 if (delay_ms) {
87 /* Use a 20% upper bound, 1ms minimum */
88 upper = max(DIV_ROUND_CLOSEST(delay_ms, 5), 1U);
89 usleep_range(delay_ms * USEC_PER_MSEC,
90 (delay_ms + upper) * USEC_PER_MSEC);
91 }
92}
93
94bool pci_reset_supported(struct pci_dev *dev)
95{
96 return dev->reset_methods[0] != 0;
97}
98
99#ifdef CONFIG_PCI_DOMAINS
100int pci_domains_supported = 1;
101#endif
102
103#define DEFAULT_CARDBUS_IO_SIZE (256)
104#define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
105/* pci=cbmemsize=nnM,cbiosize=nn can override this */
106unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
107unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
108
109#define DEFAULT_HOTPLUG_IO_SIZE (256)
110#define DEFAULT_HOTPLUG_MMIO_SIZE (2*1024*1024)
111#define DEFAULT_HOTPLUG_MMIO_PREF_SIZE (2*1024*1024)
112/* hpiosize=nn can override this */
113unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
114/*
115 * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size,
116 * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size;
117 * pci=hpmemsize=nnM overrides both
118 */
119unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE;
120unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE;
121
122#define DEFAULT_HOTPLUG_BUS_SIZE 1
123unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
124
125
126/* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */
127#ifdef CONFIG_PCIE_BUS_TUNE_OFF
128enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
129#elif defined CONFIG_PCIE_BUS_SAFE
130enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE;
131#elif defined CONFIG_PCIE_BUS_PERFORMANCE
132enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE;
133#elif defined CONFIG_PCIE_BUS_PEER2PEER
134enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER;
135#else
136enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
137#endif
138
139/*
140 * The default CLS is used if arch didn't set CLS explicitly and not
141 * all pci devices agree on the same value. Arch can override either
142 * the dfl or actual value as it sees fit. Don't forget this is
143 * measured in 32-bit words, not bytes.
144 */
145u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
146u8 pci_cache_line_size;
147
148/*
149 * If we set up a device for bus mastering, we need to check the latency
150 * timer as certain BIOSes forget to set it properly.
151 */
152unsigned int pcibios_max_latency = 255;
153
154/* If set, the PCIe ARI capability will not be used. */
155static bool pcie_ari_disabled;
156
157/* If set, the PCIe ATS capability will not be used. */
158static bool pcie_ats_disabled;
159
160/* If set, the PCI config space of each device is printed during boot. */
161bool pci_early_dump;
162
163bool pci_ats_disabled(void)
164{
165 return pcie_ats_disabled;
166}
167EXPORT_SYMBOL_GPL(pci_ats_disabled);
168
169/* Disable bridge_d3 for all PCIe ports */
170static bool pci_bridge_d3_disable;
171/* Force bridge_d3 for all PCIe ports */
172static bool pci_bridge_d3_force;
173
174static int __init pcie_port_pm_setup(char *str)
175{
176 if (!strcmp(str, "off"))
177 pci_bridge_d3_disable = true;
178 else if (!strcmp(str, "force"))
179 pci_bridge_d3_force = true;
180 return 1;
181}
182__setup("pcie_port_pm=", pcie_port_pm_setup);
183
184/**
185 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
186 * @bus: pointer to PCI bus structure to search
187 *
188 * Given a PCI bus, returns the highest PCI bus number present in the set
189 * including the given PCI bus and its list of child PCI buses.
190 */
191unsigned char pci_bus_max_busnr(struct pci_bus *bus)
192{
193 struct pci_bus *tmp;
194 unsigned char max, n;
195
196 max = bus->busn_res.end;
197 list_for_each_entry(tmp, &bus->children, node) {
198 n = pci_bus_max_busnr(tmp);
199 if (n > max)
200 max = n;
201 }
202 return max;
203}
204EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
205
206/**
207 * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS
208 * @pdev: the PCI device
209 *
210 * Returns error bits set in PCI_STATUS and clears them.
211 */
212int pci_status_get_and_clear_errors(struct pci_dev *pdev)
213{
214 u16 status;
215 int ret;
216
217 ret = pci_read_config_word(pdev, PCI_STATUS, &status);
218 if (ret != PCIBIOS_SUCCESSFUL)
219 return -EIO;
220
221 status &= PCI_STATUS_ERROR_BITS;
222 if (status)
223 pci_write_config_word(pdev, PCI_STATUS, status);
224
225 return status;
226}
227EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors);
228
229#ifdef CONFIG_HAS_IOMEM
230static void __iomem *__pci_ioremap_resource(struct pci_dev *pdev, int bar,
231 bool write_combine)
232{
233 struct resource *res = &pdev->resource[bar];
234 resource_size_t start = res->start;
235 resource_size_t size = resource_size(res);
236
237 /*
238 * Make sure the BAR is actually a memory resource, not an IO resource
239 */
240 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
241 pci_err(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
242 return NULL;
243 }
244
245 if (write_combine)
246 return ioremap_wc(start, size);
247
248 return ioremap(start, size);
249}
250
251void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
252{
253 return __pci_ioremap_resource(pdev, bar, false);
254}
255EXPORT_SYMBOL_GPL(pci_ioremap_bar);
256
257void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
258{
259 return __pci_ioremap_resource(pdev, bar, true);
260}
261EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
262#endif
263
264/**
265 * pci_dev_str_match_path - test if a path string matches a device
266 * @dev: the PCI device to test
267 * @path: string to match the device against
268 * @endptr: pointer to the string after the match
269 *
270 * Test if a string (typically from a kernel parameter) formatted as a
271 * path of device/function addresses matches a PCI device. The string must
272 * be of the form:
273 *
274 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
275 *
276 * A path for a device can be obtained using 'lspci -t'. Using a path
277 * is more robust against bus renumbering than using only a single bus,
278 * device and function address.
279 *
280 * Returns 1 if the string matches the device, 0 if it does not and
281 * a negative error code if it fails to parse the string.
282 */
283static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
284 const char **endptr)
285{
286 int ret;
287 unsigned int seg, bus, slot, func;
288 char *wpath, *p;
289 char end;
290
291 *endptr = strchrnul(path, ';');
292
293 wpath = kmemdup_nul(path, *endptr - path, GFP_ATOMIC);
294 if (!wpath)
295 return -ENOMEM;
296
297 while (1) {
298 p = strrchr(wpath, '/');
299 if (!p)
300 break;
301 ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
302 if (ret != 2) {
303 ret = -EINVAL;
304 goto free_and_exit;
305 }
306
307 if (dev->devfn != PCI_DEVFN(slot, func)) {
308 ret = 0;
309 goto free_and_exit;
310 }
311
312 /*
313 * Note: we don't need to get a reference to the upstream
314 * bridge because we hold a reference to the top level
315 * device which should hold a reference to the bridge,
316 * and so on.
317 */
318 dev = pci_upstream_bridge(dev);
319 if (!dev) {
320 ret = 0;
321 goto free_and_exit;
322 }
323
324 *p = 0;
325 }
326
327 ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
328 &func, &end);
329 if (ret != 4) {
330 seg = 0;
331 ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
332 if (ret != 3) {
333 ret = -EINVAL;
334 goto free_and_exit;
335 }
336 }
337
338 ret = (seg == pci_domain_nr(dev->bus) &&
339 bus == dev->bus->number &&
340 dev->devfn == PCI_DEVFN(slot, func));
341
342free_and_exit:
343 kfree(wpath);
344 return ret;
345}
346
347/**
348 * pci_dev_str_match - test if a string matches a device
349 * @dev: the PCI device to test
350 * @p: string to match the device against
351 * @endptr: pointer to the string after the match
352 *
353 * Test if a string (typically from a kernel parameter) matches a specified
354 * PCI device. The string may be of one of the following formats:
355 *
356 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
357 * pci:<vendor>:<device>[:<subvendor>:<subdevice>]
358 *
359 * The first format specifies a PCI bus/device/function address which
360 * may change if new hardware is inserted, if motherboard firmware changes,
361 * or due to changes caused in kernel parameters. If the domain is
362 * left unspecified, it is taken to be 0. In order to be robust against
363 * bus renumbering issues, a path of PCI device/function numbers may be used
364 * to address the specific device. The path for a device can be determined
365 * through the use of 'lspci -t'.
366 *
367 * The second format matches devices using IDs in the configuration
368 * space which may match multiple devices in the system. A value of 0
369 * for any field will match all devices. (Note: this differs from
370 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
371 * legacy reasons and convenience so users don't have to specify
372 * FFFFFFFFs on the command line.)
373 *
374 * Returns 1 if the string matches the device, 0 if it does not and
375 * a negative error code if the string cannot be parsed.
376 */
377static int pci_dev_str_match(struct pci_dev *dev, const char *p,
378 const char **endptr)
379{
380 int ret;
381 int count;
382 unsigned short vendor, device, subsystem_vendor, subsystem_device;
383
384 if (strncmp(p, "pci:", 4) == 0) {
385 /* PCI vendor/device (subvendor/subdevice) IDs are specified */
386 p += 4;
387 ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
388 &subsystem_vendor, &subsystem_device, &count);
389 if (ret != 4) {
390 ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
391 if (ret != 2)
392 return -EINVAL;
393
394 subsystem_vendor = 0;
395 subsystem_device = 0;
396 }
397
398 p += count;
399
400 if ((!vendor || vendor == dev->vendor) &&
401 (!device || device == dev->device) &&
402 (!subsystem_vendor ||
403 subsystem_vendor == dev->subsystem_vendor) &&
404 (!subsystem_device ||
405 subsystem_device == dev->subsystem_device))
406 goto found;
407 } else {
408 /*
409 * PCI Bus, Device, Function IDs are specified
410 * (optionally, may include a path of devfns following it)
411 */
412 ret = pci_dev_str_match_path(dev, p, &p);
413 if (ret < 0)
414 return ret;
415 else if (ret)
416 goto found;
417 }
418
419 *endptr = p;
420 return 0;
421
422found:
423 *endptr = p;
424 return 1;
425}
426
427static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
428 u8 pos, int cap, int *ttl)
429{
430 u8 id;
431 u16 ent;
432
433 pci_bus_read_config_byte(bus, devfn, pos, &pos);
434
435 while ((*ttl)--) {
436 if (pos < 0x40)
437 break;
438 pos &= ~3;
439 pci_bus_read_config_word(bus, devfn, pos, &ent);
440
441 id = ent & 0xff;
442 if (id == 0xff)
443 break;
444 if (id == cap)
445 return pos;
446 pos = (ent >> 8);
447 }
448 return 0;
449}
450
451static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
452 u8 pos, int cap)
453{
454 int ttl = PCI_FIND_CAP_TTL;
455
456 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
457}
458
459u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
460{
461 return __pci_find_next_cap(dev->bus, dev->devfn,
462 pos + PCI_CAP_LIST_NEXT, cap);
463}
464EXPORT_SYMBOL_GPL(pci_find_next_capability);
465
466static u8 __pci_bus_find_cap_start(struct pci_bus *bus,
467 unsigned int devfn, u8 hdr_type)
468{
469 u16 status;
470
471 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
472 if (!(status & PCI_STATUS_CAP_LIST))
473 return 0;
474
475 switch (hdr_type) {
476 case PCI_HEADER_TYPE_NORMAL:
477 case PCI_HEADER_TYPE_BRIDGE:
478 return PCI_CAPABILITY_LIST;
479 case PCI_HEADER_TYPE_CARDBUS:
480 return PCI_CB_CAPABILITY_LIST;
481 }
482
483 return 0;
484}
485
486/**
487 * pci_find_capability - query for devices' capabilities
488 * @dev: PCI device to query
489 * @cap: capability code
490 *
491 * Tell if a device supports a given PCI capability.
492 * Returns the address of the requested capability structure within the
493 * device's PCI configuration space or 0 in case the device does not
494 * support it. Possible values for @cap include:
495 *
496 * %PCI_CAP_ID_PM Power Management
497 * %PCI_CAP_ID_AGP Accelerated Graphics Port
498 * %PCI_CAP_ID_VPD Vital Product Data
499 * %PCI_CAP_ID_SLOTID Slot Identification
500 * %PCI_CAP_ID_MSI Message Signalled Interrupts
501 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
502 * %PCI_CAP_ID_PCIX PCI-X
503 * %PCI_CAP_ID_EXP PCI Express
504 */
505u8 pci_find_capability(struct pci_dev *dev, int cap)
506{
507 u8 pos;
508
509 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
510 if (pos)
511 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
512
513 return pos;
514}
515EXPORT_SYMBOL(pci_find_capability);
516
517/**
518 * pci_bus_find_capability - query for devices' capabilities
519 * @bus: the PCI bus to query
520 * @devfn: PCI device to query
521 * @cap: capability code
522 *
523 * Like pci_find_capability() but works for PCI devices that do not have a
524 * pci_dev structure set up yet.
525 *
526 * Returns the address of the requested capability structure within the
527 * device's PCI configuration space or 0 in case the device does not
528 * support it.
529 */
530u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
531{
532 u8 hdr_type, pos;
533
534 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
535
536 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & PCI_HEADER_TYPE_MASK);
537 if (pos)
538 pos = __pci_find_next_cap(bus, devfn, pos, cap);
539
540 return pos;
541}
542EXPORT_SYMBOL(pci_bus_find_capability);
543
544/**
545 * pci_find_next_ext_capability - Find an extended capability
546 * @dev: PCI device to query
547 * @start: address at which to start looking (0 to start at beginning of list)
548 * @cap: capability code
549 *
550 * Returns the address of the next matching extended capability structure
551 * within the device's PCI configuration space or 0 if the device does
552 * not support it. Some capabilities can occur several times, e.g., the
553 * vendor-specific capability, and this provides a way to find them all.
554 */
555u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap)
556{
557 u32 header;
558 int ttl;
559 u16 pos = PCI_CFG_SPACE_SIZE;
560
561 /* minimum 8 bytes per capability */
562 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
563
564 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
565 return 0;
566
567 if (start)
568 pos = start;
569
570 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
571 return 0;
572
573 /*
574 * If we have no capabilities, this is indicated by cap ID,
575 * cap version and next pointer all being 0.
576 */
577 if (header == 0)
578 return 0;
579
580 while (ttl-- > 0) {
581 if (PCI_EXT_CAP_ID(header) == cap && pos != start)
582 return pos;
583
584 pos = PCI_EXT_CAP_NEXT(header);
585 if (pos < PCI_CFG_SPACE_SIZE)
586 break;
587
588 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
589 break;
590 }
591
592 return 0;
593}
594EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
595
596/**
597 * pci_find_ext_capability - Find an extended capability
598 * @dev: PCI device to query
599 * @cap: capability code
600 *
601 * Returns the address of the requested extended capability structure
602 * within the device's PCI configuration space or 0 if the device does
603 * not support it. Possible values for @cap include:
604 *
605 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
606 * %PCI_EXT_CAP_ID_VC Virtual Channel
607 * %PCI_EXT_CAP_ID_DSN Device Serial Number
608 * %PCI_EXT_CAP_ID_PWR Power Budgeting
609 */
610u16 pci_find_ext_capability(struct pci_dev *dev, int cap)
611{
612 return pci_find_next_ext_capability(dev, 0, cap);
613}
614EXPORT_SYMBOL_GPL(pci_find_ext_capability);
615
616/**
617 * pci_get_dsn - Read and return the 8-byte Device Serial Number
618 * @dev: PCI device to query
619 *
620 * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial
621 * Number.
622 *
623 * Returns the DSN, or zero if the capability does not exist.
624 */
625u64 pci_get_dsn(struct pci_dev *dev)
626{
627 u32 dword;
628 u64 dsn;
629 int pos;
630
631 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN);
632 if (!pos)
633 return 0;
634
635 /*
636 * The Device Serial Number is two dwords offset 4 bytes from the
637 * capability position. The specification says that the first dword is
638 * the lower half, and the second dword is the upper half.
639 */
640 pos += 4;
641 pci_read_config_dword(dev, pos, &dword);
642 dsn = (u64)dword;
643 pci_read_config_dword(dev, pos + 4, &dword);
644 dsn |= ((u64)dword) << 32;
645
646 return dsn;
647}
648EXPORT_SYMBOL_GPL(pci_get_dsn);
649
650static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap)
651{
652 int rc, ttl = PCI_FIND_CAP_TTL;
653 u8 cap, mask;
654
655 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
656 mask = HT_3BIT_CAP_MASK;
657 else
658 mask = HT_5BIT_CAP_MASK;
659
660 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
661 PCI_CAP_ID_HT, &ttl);
662 while (pos) {
663 rc = pci_read_config_byte(dev, pos + 3, &cap);
664 if (rc != PCIBIOS_SUCCESSFUL)
665 return 0;
666
667 if ((cap & mask) == ht_cap)
668 return pos;
669
670 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
671 pos + PCI_CAP_LIST_NEXT,
672 PCI_CAP_ID_HT, &ttl);
673 }
674
675 return 0;
676}
677
678/**
679 * pci_find_next_ht_capability - query a device's HyperTransport capabilities
680 * @dev: PCI device to query
681 * @pos: Position from which to continue searching
682 * @ht_cap: HyperTransport capability code
683 *
684 * To be used in conjunction with pci_find_ht_capability() to search for
685 * all capabilities matching @ht_cap. @pos should always be a value returned
686 * from pci_find_ht_capability().
687 *
688 * NB. To be 100% safe against broken PCI devices, the caller should take
689 * steps to avoid an infinite loop.
690 */
691u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap)
692{
693 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
694}
695EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
696
697/**
698 * pci_find_ht_capability - query a device's HyperTransport capabilities
699 * @dev: PCI device to query
700 * @ht_cap: HyperTransport capability code
701 *
702 * Tell if a device supports a given HyperTransport capability.
703 * Returns an address within the device's PCI configuration space
704 * or 0 in case the device does not support the request capability.
705 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
706 * which has a HyperTransport capability matching @ht_cap.
707 */
708u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
709{
710 u8 pos;
711
712 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
713 if (pos)
714 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
715
716 return pos;
717}
718EXPORT_SYMBOL_GPL(pci_find_ht_capability);
719
720/**
721 * pci_find_vsec_capability - Find a vendor-specific extended capability
722 * @dev: PCI device to query
723 * @vendor: Vendor ID for which capability is defined
724 * @cap: Vendor-specific capability ID
725 *
726 * If @dev has Vendor ID @vendor, search for a VSEC capability with
727 * VSEC ID @cap. If found, return the capability offset in
728 * config space; otherwise return 0.
729 */
730u16 pci_find_vsec_capability(struct pci_dev *dev, u16 vendor, int cap)
731{
732 u16 vsec = 0;
733 u32 header;
734 int ret;
735
736 if (vendor != dev->vendor)
737 return 0;
738
739 while ((vsec = pci_find_next_ext_capability(dev, vsec,
740 PCI_EXT_CAP_ID_VNDR))) {
741 ret = pci_read_config_dword(dev, vsec + PCI_VNDR_HEADER, &header);
742 if (ret != PCIBIOS_SUCCESSFUL)
743 continue;
744
745 if (PCI_VNDR_HEADER_ID(header) == cap)
746 return vsec;
747 }
748
749 return 0;
750}
751EXPORT_SYMBOL_GPL(pci_find_vsec_capability);
752
753/**
754 * pci_find_dvsec_capability - Find DVSEC for vendor
755 * @dev: PCI device to query
756 * @vendor: Vendor ID to match for the DVSEC
757 * @dvsec: Designated Vendor-specific capability ID
758 *
759 * If DVSEC has Vendor ID @vendor and DVSEC ID @dvsec return the capability
760 * offset in config space; otherwise return 0.
761 */
762u16 pci_find_dvsec_capability(struct pci_dev *dev, u16 vendor, u16 dvsec)
763{
764 int pos;
765
766 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DVSEC);
767 if (!pos)
768 return 0;
769
770 while (pos) {
771 u16 v, id;
772
773 pci_read_config_word(dev, pos + PCI_DVSEC_HEADER1, &v);
774 pci_read_config_word(dev, pos + PCI_DVSEC_HEADER2, &id);
775 if (vendor == v && dvsec == id)
776 return pos;
777
778 pos = pci_find_next_ext_capability(dev, pos, PCI_EXT_CAP_ID_DVSEC);
779 }
780
781 return 0;
782}
783EXPORT_SYMBOL_GPL(pci_find_dvsec_capability);
784
785/**
786 * pci_find_parent_resource - return resource region of parent bus of given
787 * region
788 * @dev: PCI device structure contains resources to be searched
789 * @res: child resource record for which parent is sought
790 *
791 * For given resource region of given device, return the resource region of
792 * parent bus the given region is contained in.
793 */
794struct resource *pci_find_parent_resource(const struct pci_dev *dev,
795 struct resource *res)
796{
797 const struct pci_bus *bus = dev->bus;
798 struct resource *r;
799
800 pci_bus_for_each_resource(bus, r) {
801 if (!r)
802 continue;
803 if (resource_contains(r, res)) {
804
805 /*
806 * If the window is prefetchable but the BAR is
807 * not, the allocator made a mistake.
808 */
809 if (r->flags & IORESOURCE_PREFETCH &&
810 !(res->flags & IORESOURCE_PREFETCH))
811 return NULL;
812
813 /*
814 * If we're below a transparent bridge, there may
815 * be both a positively-decoded aperture and a
816 * subtractively-decoded region that contain the BAR.
817 * We want the positively-decoded one, so this depends
818 * on pci_bus_for_each_resource() giving us those
819 * first.
820 */
821 return r;
822 }
823 }
824 return NULL;
825}
826EXPORT_SYMBOL(pci_find_parent_resource);
827
828/**
829 * pci_find_resource - Return matching PCI device resource
830 * @dev: PCI device to query
831 * @res: Resource to look for
832 *
833 * Goes over standard PCI resources (BARs) and checks if the given resource
834 * is partially or fully contained in any of them. In that case the
835 * matching resource is returned, %NULL otherwise.
836 */
837struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
838{
839 int i;
840
841 for (i = 0; i < PCI_STD_NUM_BARS; i++) {
842 struct resource *r = &dev->resource[i];
843
844 if (r->start && resource_contains(r, res))
845 return r;
846 }
847
848 return NULL;
849}
850EXPORT_SYMBOL(pci_find_resource);
851
852/**
853 * pci_resource_name - Return the name of the PCI resource
854 * @dev: PCI device to query
855 * @i: index of the resource
856 *
857 * Return the standard PCI resource (BAR) name according to their index.
858 */
859const char *pci_resource_name(struct pci_dev *dev, unsigned int i)
860{
861 static const char * const bar_name[] = {
862 "BAR 0",
863 "BAR 1",
864 "BAR 2",
865 "BAR 3",
866 "BAR 4",
867 "BAR 5",
868 "ROM",
869#ifdef CONFIG_PCI_IOV
870 "VF BAR 0",
871 "VF BAR 1",
872 "VF BAR 2",
873 "VF BAR 3",
874 "VF BAR 4",
875 "VF BAR 5",
876#endif
877 "bridge window", /* "io" included in %pR */
878 "bridge window", /* "mem" included in %pR */
879 "bridge window", /* "mem pref" included in %pR */
880 };
881 static const char * const cardbus_name[] = {
882 "BAR 1",
883 "unknown",
884 "unknown",
885 "unknown",
886 "unknown",
887 "unknown",
888#ifdef CONFIG_PCI_IOV
889 "unknown",
890 "unknown",
891 "unknown",
892 "unknown",
893 "unknown",
894 "unknown",
895#endif
896 "CardBus bridge window 0", /* I/O */
897 "CardBus bridge window 1", /* I/O */
898 "CardBus bridge window 0", /* mem */
899 "CardBus bridge window 1", /* mem */
900 };
901
902 if (dev->hdr_type == PCI_HEADER_TYPE_CARDBUS &&
903 i < ARRAY_SIZE(cardbus_name))
904 return cardbus_name[i];
905
906 if (i < ARRAY_SIZE(bar_name))
907 return bar_name[i];
908
909 return "unknown";
910}
911
912/**
913 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
914 * @dev: the PCI device to operate on
915 * @pos: config space offset of status word
916 * @mask: mask of bit(s) to care about in status word
917 *
918 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
919 */
920int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
921{
922 int i;
923
924 /* Wait for Transaction Pending bit clean */
925 for (i = 0; i < 4; i++) {
926 u16 status;
927 if (i)
928 msleep((1 << (i - 1)) * 100);
929
930 pci_read_config_word(dev, pos, &status);
931 if (!(status & mask))
932 return 1;
933 }
934
935 return 0;
936}
937
938static int pci_acs_enable;
939
940/**
941 * pci_request_acs - ask for ACS to be enabled if supported
942 */
943void pci_request_acs(void)
944{
945 pci_acs_enable = 1;
946}
947
948static const char *disable_acs_redir_param;
949
950/**
951 * pci_disable_acs_redir - disable ACS redirect capabilities
952 * @dev: the PCI device
953 *
954 * For only devices specified in the disable_acs_redir parameter.
955 */
956static void pci_disable_acs_redir(struct pci_dev *dev)
957{
958 int ret = 0;
959 const char *p;
960 int pos;
961 u16 ctrl;
962
963 if (!disable_acs_redir_param)
964 return;
965
966 p = disable_acs_redir_param;
967 while (*p) {
968 ret = pci_dev_str_match(dev, p, &p);
969 if (ret < 0) {
970 pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
971 disable_acs_redir_param);
972
973 break;
974 } else if (ret == 1) {
975 /* Found a match */
976 break;
977 }
978
979 if (*p != ';' && *p != ',') {
980 /* End of param or invalid format */
981 break;
982 }
983 p++;
984 }
985
986 if (ret != 1)
987 return;
988
989 if (!pci_dev_specific_disable_acs_redir(dev))
990 return;
991
992 pos = dev->acs_cap;
993 if (!pos) {
994 pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
995 return;
996 }
997
998 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
999
1000 /* P2P Request & Completion Redirect */
1001 ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC);
1002
1003 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
1004
1005 pci_info(dev, "disabled ACS redirect\n");
1006}
1007
1008/**
1009 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
1010 * @dev: the PCI device
1011 */
1012static void pci_std_enable_acs(struct pci_dev *dev)
1013{
1014 int pos;
1015 u16 cap;
1016 u16 ctrl;
1017
1018 pos = dev->acs_cap;
1019 if (!pos)
1020 return;
1021
1022 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
1023 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
1024
1025 /* Source Validation */
1026 ctrl |= (cap & PCI_ACS_SV);
1027
1028 /* P2P Request Redirect */
1029 ctrl |= (cap & PCI_ACS_RR);
1030
1031 /* P2P Completion Redirect */
1032 ctrl |= (cap & PCI_ACS_CR);
1033
1034 /* Upstream Forwarding */
1035 ctrl |= (cap & PCI_ACS_UF);
1036
1037 /* Enable Translation Blocking for external devices and noats */
1038 if (pci_ats_disabled() || dev->external_facing || dev->untrusted)
1039 ctrl |= (cap & PCI_ACS_TB);
1040
1041 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
1042}
1043
1044/**
1045 * pci_enable_acs - enable ACS if hardware support it
1046 * @dev: the PCI device
1047 */
1048static void pci_enable_acs(struct pci_dev *dev)
1049{
1050 if (!pci_acs_enable)
1051 goto disable_acs_redir;
1052
1053 if (!pci_dev_specific_enable_acs(dev))
1054 goto disable_acs_redir;
1055
1056 pci_std_enable_acs(dev);
1057
1058disable_acs_redir:
1059 /*
1060 * Note: pci_disable_acs_redir() must be called even if ACS was not
1061 * enabled by the kernel because it may have been enabled by
1062 * platform firmware. So if we are told to disable it, we should
1063 * always disable it after setting the kernel's default
1064 * preferences.
1065 */
1066 pci_disable_acs_redir(dev);
1067}
1068
1069/**
1070 * pcie_read_tlp_log - read TLP Header Log
1071 * @dev: PCIe device
1072 * @where: PCI Config offset of TLP Header Log
1073 * @tlp_log: TLP Log structure to fill
1074 *
1075 * Fill @tlp_log from TLP Header Log registers, e.g., AER or DPC.
1076 *
1077 * Return: 0 on success and filled TLP Log structure, <0 on error.
1078 */
1079int pcie_read_tlp_log(struct pci_dev *dev, int where,
1080 struct pcie_tlp_log *tlp_log)
1081{
1082 int i, ret;
1083
1084 memset(tlp_log, 0, sizeof(*tlp_log));
1085
1086 for (i = 0; i < 4; i++) {
1087 ret = pci_read_config_dword(dev, where + i * 4,
1088 &tlp_log->dw[i]);
1089 if (ret)
1090 return pcibios_err_to_errno(ret);
1091 }
1092
1093 return 0;
1094}
1095EXPORT_SYMBOL_GPL(pcie_read_tlp_log);
1096
1097/**
1098 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
1099 * @dev: PCI device to have its BARs restored
1100 *
1101 * Restore the BAR values for a given device, so as to make it
1102 * accessible by its driver.
1103 */
1104static void pci_restore_bars(struct pci_dev *dev)
1105{
1106 int i;
1107
1108 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
1109 pci_update_resource(dev, i);
1110}
1111
1112static inline bool platform_pci_power_manageable(struct pci_dev *dev)
1113{
1114 if (pci_use_mid_pm())
1115 return true;
1116
1117 return acpi_pci_power_manageable(dev);
1118}
1119
1120static inline int platform_pci_set_power_state(struct pci_dev *dev,
1121 pci_power_t t)
1122{
1123 if (pci_use_mid_pm())
1124 return mid_pci_set_power_state(dev, t);
1125
1126 return acpi_pci_set_power_state(dev, t);
1127}
1128
1129static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
1130{
1131 if (pci_use_mid_pm())
1132 return mid_pci_get_power_state(dev);
1133
1134 return acpi_pci_get_power_state(dev);
1135}
1136
1137static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
1138{
1139 if (!pci_use_mid_pm())
1140 acpi_pci_refresh_power_state(dev);
1141}
1142
1143static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
1144{
1145 if (pci_use_mid_pm())
1146 return PCI_POWER_ERROR;
1147
1148 return acpi_pci_choose_state(dev);
1149}
1150
1151static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
1152{
1153 if (pci_use_mid_pm())
1154 return PCI_POWER_ERROR;
1155
1156 return acpi_pci_wakeup(dev, enable);
1157}
1158
1159static inline bool platform_pci_need_resume(struct pci_dev *dev)
1160{
1161 if (pci_use_mid_pm())
1162 return false;
1163
1164 return acpi_pci_need_resume(dev);
1165}
1166
1167static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
1168{
1169 if (pci_use_mid_pm())
1170 return false;
1171
1172 return acpi_pci_bridge_d3(dev);
1173}
1174
1175/**
1176 * pci_update_current_state - Read power state of given device and cache it
1177 * @dev: PCI device to handle.
1178 * @state: State to cache in case the device doesn't have the PM capability
1179 *
1180 * The power state is read from the PMCSR register, which however is
1181 * inaccessible in D3cold. The platform firmware is therefore queried first
1182 * to detect accessibility of the register. In case the platform firmware
1183 * reports an incorrect state or the device isn't power manageable by the
1184 * platform at all, we try to detect D3cold by testing accessibility of the
1185 * vendor ID in config space.
1186 */
1187void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
1188{
1189 if (platform_pci_get_power_state(dev) == PCI_D3cold) {
1190 dev->current_state = PCI_D3cold;
1191 } else if (dev->pm_cap) {
1192 u16 pmcsr;
1193
1194 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1195 if (PCI_POSSIBLE_ERROR(pmcsr)) {
1196 dev->current_state = PCI_D3cold;
1197 return;
1198 }
1199 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1200 } else {
1201 dev->current_state = state;
1202 }
1203}
1204
1205/**
1206 * pci_refresh_power_state - Refresh the given device's power state data
1207 * @dev: Target PCI device.
1208 *
1209 * Ask the platform to refresh the devices power state information and invoke
1210 * pci_update_current_state() to update its current PCI power state.
1211 */
1212void pci_refresh_power_state(struct pci_dev *dev)
1213{
1214 platform_pci_refresh_power_state(dev);
1215 pci_update_current_state(dev, dev->current_state);
1216}
1217
1218/**
1219 * pci_platform_power_transition - Use platform to change device power state
1220 * @dev: PCI device to handle.
1221 * @state: State to put the device into.
1222 */
1223int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
1224{
1225 int error;
1226
1227 error = platform_pci_set_power_state(dev, state);
1228 if (!error)
1229 pci_update_current_state(dev, state);
1230 else if (!dev->pm_cap) /* Fall back to PCI_D0 */
1231 dev->current_state = PCI_D0;
1232
1233 return error;
1234}
1235EXPORT_SYMBOL_GPL(pci_platform_power_transition);
1236
1237static int pci_resume_one(struct pci_dev *pci_dev, void *ign)
1238{
1239 pm_request_resume(&pci_dev->dev);
1240 return 0;
1241}
1242
1243/**
1244 * pci_resume_bus - Walk given bus and runtime resume devices on it
1245 * @bus: Top bus of the subtree to walk.
1246 */
1247void pci_resume_bus(struct pci_bus *bus)
1248{
1249 if (bus)
1250 pci_walk_bus(bus, pci_resume_one, NULL);
1251}
1252
1253static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
1254{
1255 int delay = 1;
1256 bool retrain = false;
1257 struct pci_dev *bridge;
1258
1259 if (pci_is_pcie(dev)) {
1260 bridge = pci_upstream_bridge(dev);
1261 if (bridge)
1262 retrain = true;
1263 }
1264
1265 /*
1266 * After reset, the device should not silently discard config
1267 * requests, but it may still indicate that it needs more time by
1268 * responding to them with CRS completions. The Root Port will
1269 * generally synthesize ~0 (PCI_ERROR_RESPONSE) data to complete
1270 * the read (except when CRS SV is enabled and the read was for the
1271 * Vendor ID; in that case it synthesizes 0x0001 data).
1272 *
1273 * Wait for the device to return a non-CRS completion. Read the
1274 * Command register instead of Vendor ID so we don't have to
1275 * contend with the CRS SV value.
1276 */
1277 for (;;) {
1278 u32 id;
1279
1280 pci_read_config_dword(dev, PCI_COMMAND, &id);
1281 if (!PCI_POSSIBLE_ERROR(id))
1282 break;
1283
1284 if (delay > timeout) {
1285 pci_warn(dev, "not ready %dms after %s; giving up\n",
1286 delay - 1, reset_type);
1287 return -ENOTTY;
1288 }
1289
1290 if (delay > PCI_RESET_WAIT) {
1291 if (retrain) {
1292 retrain = false;
1293 if (pcie_failed_link_retrain(bridge)) {
1294 delay = 1;
1295 continue;
1296 }
1297 }
1298 pci_info(dev, "not ready %dms after %s; waiting\n",
1299 delay - 1, reset_type);
1300 }
1301
1302 msleep(delay);
1303 delay *= 2;
1304 }
1305
1306 if (delay > PCI_RESET_WAIT)
1307 pci_info(dev, "ready %dms after %s\n", delay - 1,
1308 reset_type);
1309 else
1310 pci_dbg(dev, "ready %dms after %s\n", delay - 1,
1311 reset_type);
1312
1313 return 0;
1314}
1315
1316/**
1317 * pci_power_up - Put the given device into D0
1318 * @dev: PCI device to power up
1319 *
1320 * On success, return 0 or 1, depending on whether or not it is necessary to
1321 * restore the device's BARs subsequently (1 is returned in that case).
1322 *
1323 * On failure, return a negative error code. Always return failure if @dev
1324 * lacks a Power Management Capability, even if the platform was able to
1325 * put the device in D0 via non-PCI means.
1326 */
1327int pci_power_up(struct pci_dev *dev)
1328{
1329 bool need_restore;
1330 pci_power_t state;
1331 u16 pmcsr;
1332
1333 platform_pci_set_power_state(dev, PCI_D0);
1334
1335 if (!dev->pm_cap) {
1336 state = platform_pci_get_power_state(dev);
1337 if (state == PCI_UNKNOWN)
1338 dev->current_state = PCI_D0;
1339 else
1340 dev->current_state = state;
1341
1342 return -EIO;
1343 }
1344
1345 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1346 if (PCI_POSSIBLE_ERROR(pmcsr)) {
1347 pci_err(dev, "Unable to change power state from %s to D0, device inaccessible\n",
1348 pci_power_name(dev->current_state));
1349 dev->current_state = PCI_D3cold;
1350 return -EIO;
1351 }
1352
1353 state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1354
1355 need_restore = (state == PCI_D3hot || dev->current_state >= PCI_D3hot) &&
1356 !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET);
1357
1358 if (state == PCI_D0)
1359 goto end;
1360
1361 /*
1362 * Force the entire word to 0. This doesn't affect PME_Status, disables
1363 * PME_En, and sets PowerState to 0.
1364 */
1365 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, 0);
1366
1367 /* Mandatory transition delays; see PCI PM 1.2. */
1368 if (state == PCI_D3hot)
1369 pci_dev_d3_sleep(dev);
1370 else if (state == PCI_D2)
1371 udelay(PCI_PM_D2_DELAY);
1372
1373end:
1374 dev->current_state = PCI_D0;
1375 if (need_restore)
1376 return 1;
1377
1378 return 0;
1379}
1380
1381/**
1382 * pci_set_full_power_state - Put a PCI device into D0 and update its state
1383 * @dev: PCI device to power up
1384 * @locked: whether pci_bus_sem is held
1385 *
1386 * Call pci_power_up() to put @dev into D0, read from its PCI_PM_CTRL register
1387 * to confirm the state change, restore its BARs if they might be lost and
1388 * reconfigure ASPM in accordance with the new power state.
1389 *
1390 * If pci_restore_state() is going to be called right after a power state change
1391 * to D0, it is more efficient to use pci_power_up() directly instead of this
1392 * function.
1393 */
1394static int pci_set_full_power_state(struct pci_dev *dev, bool locked)
1395{
1396 u16 pmcsr;
1397 int ret;
1398
1399 ret = pci_power_up(dev);
1400 if (ret < 0) {
1401 if (dev->current_state == PCI_D0)
1402 return 0;
1403
1404 return ret;
1405 }
1406
1407 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1408 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1409 if (dev->current_state != PCI_D0) {
1410 pci_info_ratelimited(dev, "Refused to change power state from %s to D0\n",
1411 pci_power_name(dev->current_state));
1412 } else if (ret > 0) {
1413 /*
1414 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
1415 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
1416 * from D3hot to D0 _may_ perform an internal reset, thereby
1417 * going to "D0 Uninitialized" rather than "D0 Initialized".
1418 * For example, at least some versions of the 3c905B and the
1419 * 3c556B exhibit this behaviour.
1420 *
1421 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
1422 * devices in a D3hot state at boot. Consequently, we need to
1423 * restore at least the BARs so that the device will be
1424 * accessible to its driver.
1425 */
1426 pci_restore_bars(dev);
1427 }
1428
1429 if (dev->bus->self)
1430 pcie_aspm_pm_state_change(dev->bus->self, locked);
1431
1432 return 0;
1433}
1434
1435/**
1436 * __pci_dev_set_current_state - Set current state of a PCI device
1437 * @dev: Device to handle
1438 * @data: pointer to state to be set
1439 */
1440static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1441{
1442 pci_power_t state = *(pci_power_t *)data;
1443
1444 dev->current_state = state;
1445 return 0;
1446}
1447
1448/**
1449 * pci_bus_set_current_state - Walk given bus and set current state of devices
1450 * @bus: Top bus of the subtree to walk.
1451 * @state: state to be set
1452 */
1453void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1454{
1455 if (bus)
1456 pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1457}
1458
1459static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state, bool locked)
1460{
1461 if (!bus)
1462 return;
1463
1464 if (locked)
1465 pci_walk_bus_locked(bus, __pci_dev_set_current_state, &state);
1466 else
1467 pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1468}
1469
1470/**
1471 * pci_set_low_power_state - Put a PCI device into a low-power state.
1472 * @dev: PCI device to handle.
1473 * @state: PCI power state (D1, D2, D3hot) to put the device into.
1474 * @locked: whether pci_bus_sem is held
1475 *
1476 * Use the device's PCI_PM_CTRL register to put it into a low-power state.
1477 *
1478 * RETURN VALUE:
1479 * -EINVAL if the requested state is invalid.
1480 * -EIO if device does not support PCI PM or its PM capabilities register has a
1481 * wrong version, or device doesn't support the requested state.
1482 * 0 if device already is in the requested state.
1483 * 0 if device's power state has been successfully changed.
1484 */
1485static int pci_set_low_power_state(struct pci_dev *dev, pci_power_t state, bool locked)
1486{
1487 u16 pmcsr;
1488
1489 if (!dev->pm_cap)
1490 return -EIO;
1491
1492 /*
1493 * Validate transition: We can enter D0 from any state, but if
1494 * we're already in a low-power state, we can only go deeper. E.g.,
1495 * we can go from D1 to D3, but we can't go directly from D3 to D1;
1496 * we'd have to go from D3 to D0, then to D1.
1497 */
1498 if (dev->current_state <= PCI_D3cold && dev->current_state > state) {
1499 pci_dbg(dev, "Invalid power transition (from %s to %s)\n",
1500 pci_power_name(dev->current_state),
1501 pci_power_name(state));
1502 return -EINVAL;
1503 }
1504
1505 /* Check if this device supports the desired state */
1506 if ((state == PCI_D1 && !dev->d1_support)
1507 || (state == PCI_D2 && !dev->d2_support))
1508 return -EIO;
1509
1510 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1511 if (PCI_POSSIBLE_ERROR(pmcsr)) {
1512 pci_err(dev, "Unable to change power state from %s to %s, device inaccessible\n",
1513 pci_power_name(dev->current_state),
1514 pci_power_name(state));
1515 dev->current_state = PCI_D3cold;
1516 return -EIO;
1517 }
1518
1519 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
1520 pmcsr |= state;
1521
1522 /* Enter specified state */
1523 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1524
1525 /* Mandatory power management transition delays; see PCI PM 1.2. */
1526 if (state == PCI_D3hot)
1527 pci_dev_d3_sleep(dev);
1528 else if (state == PCI_D2)
1529 udelay(PCI_PM_D2_DELAY);
1530
1531 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1532 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1533 if (dev->current_state != state)
1534 pci_info_ratelimited(dev, "Refused to change power state from %s to %s\n",
1535 pci_power_name(dev->current_state),
1536 pci_power_name(state));
1537
1538 if (dev->bus->self)
1539 pcie_aspm_pm_state_change(dev->bus->self, locked);
1540
1541 return 0;
1542}
1543
1544static int __pci_set_power_state(struct pci_dev *dev, pci_power_t state, bool locked)
1545{
1546 int error;
1547
1548 /* Bound the state we're entering */
1549 if (state > PCI_D3cold)
1550 state = PCI_D3cold;
1551 else if (state < PCI_D0)
1552 state = PCI_D0;
1553 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1554
1555 /*
1556 * If the device or the parent bridge do not support PCI
1557 * PM, ignore the request if we're doing anything other
1558 * than putting it into D0 (which would only happen on
1559 * boot).
1560 */
1561 return 0;
1562
1563 /* Check if we're already there */
1564 if (dev->current_state == state)
1565 return 0;
1566
1567 if (state == PCI_D0)
1568 return pci_set_full_power_state(dev, locked);
1569
1570 /*
1571 * This device is quirked not to be put into D3, so don't put it in
1572 * D3
1573 */
1574 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1575 return 0;
1576
1577 if (state == PCI_D3cold) {
1578 /*
1579 * To put the device in D3cold, put it into D3hot in the native
1580 * way, then put it into D3cold using platform ops.
1581 */
1582 error = pci_set_low_power_state(dev, PCI_D3hot, locked);
1583
1584 if (pci_platform_power_transition(dev, PCI_D3cold))
1585 return error;
1586
1587 /* Powering off a bridge may power off the whole hierarchy */
1588 if (dev->current_state == PCI_D3cold)
1589 __pci_bus_set_current_state(dev->subordinate, PCI_D3cold, locked);
1590 } else {
1591 error = pci_set_low_power_state(dev, state, locked);
1592
1593 if (pci_platform_power_transition(dev, state))
1594 return error;
1595 }
1596
1597 return 0;
1598}
1599
1600/**
1601 * pci_set_power_state - Set the power state of a PCI device
1602 * @dev: PCI device to handle.
1603 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1604 *
1605 * Transition a device to a new power state, using the platform firmware and/or
1606 * the device's PCI PM registers.
1607 *
1608 * RETURN VALUE:
1609 * -EINVAL if the requested state is invalid.
1610 * -EIO if device does not support PCI PM or its PM capabilities register has a
1611 * wrong version, or device doesn't support the requested state.
1612 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1613 * 0 if device already is in the requested state.
1614 * 0 if the transition is to D3 but D3 is not supported.
1615 * 0 if device's power state has been successfully changed.
1616 */
1617int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1618{
1619 return __pci_set_power_state(dev, state, false);
1620}
1621EXPORT_SYMBOL(pci_set_power_state);
1622
1623int pci_set_power_state_locked(struct pci_dev *dev, pci_power_t state)
1624{
1625 lockdep_assert_held(&pci_bus_sem);
1626
1627 return __pci_set_power_state(dev, state, true);
1628}
1629EXPORT_SYMBOL(pci_set_power_state_locked);
1630
1631#define PCI_EXP_SAVE_REGS 7
1632
1633static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1634 u16 cap, bool extended)
1635{
1636 struct pci_cap_saved_state *tmp;
1637
1638 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1639 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1640 return tmp;
1641 }
1642 return NULL;
1643}
1644
1645struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1646{
1647 return _pci_find_saved_cap(dev, cap, false);
1648}
1649
1650struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1651{
1652 return _pci_find_saved_cap(dev, cap, true);
1653}
1654
1655static int pci_save_pcie_state(struct pci_dev *dev)
1656{
1657 int i = 0;
1658 struct pci_cap_saved_state *save_state;
1659 u16 *cap;
1660
1661 if (!pci_is_pcie(dev))
1662 return 0;
1663
1664 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1665 if (!save_state) {
1666 pci_err(dev, "buffer not found in %s\n", __func__);
1667 return -ENOMEM;
1668 }
1669
1670 cap = (u16 *)&save_state->cap.data[0];
1671 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1672 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1673 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1674 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]);
1675 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1676 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1677 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1678
1679 pci_save_aspm_l1ss_state(dev);
1680 pci_save_ltr_state(dev);
1681
1682 return 0;
1683}
1684
1685static void pci_restore_pcie_state(struct pci_dev *dev)
1686{
1687 int i = 0;
1688 struct pci_cap_saved_state *save_state;
1689 u16 *cap;
1690
1691 /*
1692 * Restore max latencies (in the LTR capability) before enabling
1693 * LTR itself in PCI_EXP_DEVCTL2.
1694 */
1695 pci_restore_ltr_state(dev);
1696 pci_restore_aspm_l1ss_state(dev);
1697
1698 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1699 if (!save_state)
1700 return;
1701
1702 /*
1703 * Downstream ports reset the LTR enable bit when link goes down.
1704 * Check and re-configure the bit here before restoring device.
1705 * PCIe r5.0, sec 7.5.3.16.
1706 */
1707 pci_bridge_reconfigure_ltr(dev);
1708
1709 cap = (u16 *)&save_state->cap.data[0];
1710 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1711 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1712 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1713 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1714 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1715 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1716 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1717}
1718
1719static int pci_save_pcix_state(struct pci_dev *dev)
1720{
1721 int pos;
1722 struct pci_cap_saved_state *save_state;
1723
1724 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1725 if (!pos)
1726 return 0;
1727
1728 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1729 if (!save_state) {
1730 pci_err(dev, "buffer not found in %s\n", __func__);
1731 return -ENOMEM;
1732 }
1733
1734 pci_read_config_word(dev, pos + PCI_X_CMD,
1735 (u16 *)save_state->cap.data);
1736
1737 return 0;
1738}
1739
1740static void pci_restore_pcix_state(struct pci_dev *dev)
1741{
1742 int i = 0, pos;
1743 struct pci_cap_saved_state *save_state;
1744 u16 *cap;
1745
1746 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1747 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1748 if (!save_state || !pos)
1749 return;
1750 cap = (u16 *)&save_state->cap.data[0];
1751
1752 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1753}
1754
1755/**
1756 * pci_save_state - save the PCI configuration space of a device before
1757 * suspending
1758 * @dev: PCI device that we're dealing with
1759 */
1760int pci_save_state(struct pci_dev *dev)
1761{
1762 int i;
1763 /* XXX: 100% dword access ok here? */
1764 for (i = 0; i < 16; i++) {
1765 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1766 pci_dbg(dev, "save config %#04x: %#010x\n",
1767 i * 4, dev->saved_config_space[i]);
1768 }
1769 dev->state_saved = true;
1770
1771 i = pci_save_pcie_state(dev);
1772 if (i != 0)
1773 return i;
1774
1775 i = pci_save_pcix_state(dev);
1776 if (i != 0)
1777 return i;
1778
1779 pci_save_dpc_state(dev);
1780 pci_save_aer_state(dev);
1781 pci_save_ptm_state(dev);
1782 return pci_save_vc_state(dev);
1783}
1784EXPORT_SYMBOL(pci_save_state);
1785
1786static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1787 u32 saved_val, int retry, bool force)
1788{
1789 u32 val;
1790
1791 pci_read_config_dword(pdev, offset, &val);
1792 if (!force && val == saved_val)
1793 return;
1794
1795 for (;;) {
1796 pci_dbg(pdev, "restore config %#04x: %#010x -> %#010x\n",
1797 offset, val, saved_val);
1798 pci_write_config_dword(pdev, offset, saved_val);
1799 if (retry-- <= 0)
1800 return;
1801
1802 pci_read_config_dword(pdev, offset, &val);
1803 if (val == saved_val)
1804 return;
1805
1806 mdelay(1);
1807 }
1808}
1809
1810static void pci_restore_config_space_range(struct pci_dev *pdev,
1811 int start, int end, int retry,
1812 bool force)
1813{
1814 int index;
1815
1816 for (index = end; index >= start; index--)
1817 pci_restore_config_dword(pdev, 4 * index,
1818 pdev->saved_config_space[index],
1819 retry, force);
1820}
1821
1822static void pci_restore_config_space(struct pci_dev *pdev)
1823{
1824 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1825 pci_restore_config_space_range(pdev, 10, 15, 0, false);
1826 /* Restore BARs before the command register. */
1827 pci_restore_config_space_range(pdev, 4, 9, 10, false);
1828 pci_restore_config_space_range(pdev, 0, 3, 0, false);
1829 } else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1830 pci_restore_config_space_range(pdev, 12, 15, 0, false);
1831
1832 /*
1833 * Force rewriting of prefetch registers to avoid S3 resume
1834 * issues on Intel PCI bridges that occur when these
1835 * registers are not explicitly written.
1836 */
1837 pci_restore_config_space_range(pdev, 9, 11, 0, true);
1838 pci_restore_config_space_range(pdev, 0, 8, 0, false);
1839 } else {
1840 pci_restore_config_space_range(pdev, 0, 15, 0, false);
1841 }
1842}
1843
1844static void pci_restore_rebar_state(struct pci_dev *pdev)
1845{
1846 unsigned int pos, nbars, i;
1847 u32 ctrl;
1848
1849 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1850 if (!pos)
1851 return;
1852
1853 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1854 nbars = FIELD_GET(PCI_REBAR_CTRL_NBAR_MASK, ctrl);
1855
1856 for (i = 0; i < nbars; i++, pos += 8) {
1857 struct resource *res;
1858 int bar_idx, size;
1859
1860 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1861 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1862 res = pdev->resource + bar_idx;
1863 size = pci_rebar_bytes_to_size(resource_size(res));
1864 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1865 ctrl |= FIELD_PREP(PCI_REBAR_CTRL_BAR_SIZE, size);
1866 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1867 }
1868}
1869
1870/**
1871 * pci_restore_state - Restore the saved state of a PCI device
1872 * @dev: PCI device that we're dealing with
1873 */
1874void pci_restore_state(struct pci_dev *dev)
1875{
1876 if (!dev->state_saved)
1877 return;
1878
1879 pci_restore_pcie_state(dev);
1880 pci_restore_pasid_state(dev);
1881 pci_restore_pri_state(dev);
1882 pci_restore_ats_state(dev);
1883 pci_restore_vc_state(dev);
1884 pci_restore_rebar_state(dev);
1885 pci_restore_dpc_state(dev);
1886 pci_restore_ptm_state(dev);
1887
1888 pci_aer_clear_status(dev);
1889 pci_restore_aer_state(dev);
1890
1891 pci_restore_config_space(dev);
1892
1893 pci_restore_pcix_state(dev);
1894 pci_restore_msi_state(dev);
1895
1896 /* Restore ACS and IOV configuration state */
1897 pci_enable_acs(dev);
1898 pci_restore_iov_state(dev);
1899
1900 dev->state_saved = false;
1901}
1902EXPORT_SYMBOL(pci_restore_state);
1903
1904struct pci_saved_state {
1905 u32 config_space[16];
1906 struct pci_cap_saved_data cap[];
1907};
1908
1909/**
1910 * pci_store_saved_state - Allocate and return an opaque struct containing
1911 * the device saved state.
1912 * @dev: PCI device that we're dealing with
1913 *
1914 * Return NULL if no state or error.
1915 */
1916struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1917{
1918 struct pci_saved_state *state;
1919 struct pci_cap_saved_state *tmp;
1920 struct pci_cap_saved_data *cap;
1921 size_t size;
1922
1923 if (!dev->state_saved)
1924 return NULL;
1925
1926 size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1927
1928 hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1929 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1930
1931 state = kzalloc(size, GFP_KERNEL);
1932 if (!state)
1933 return NULL;
1934
1935 memcpy(state->config_space, dev->saved_config_space,
1936 sizeof(state->config_space));
1937
1938 cap = state->cap;
1939 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1940 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1941 memcpy(cap, &tmp->cap, len);
1942 cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1943 }
1944 /* Empty cap_save terminates list */
1945
1946 return state;
1947}
1948EXPORT_SYMBOL_GPL(pci_store_saved_state);
1949
1950/**
1951 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1952 * @dev: PCI device that we're dealing with
1953 * @state: Saved state returned from pci_store_saved_state()
1954 */
1955int pci_load_saved_state(struct pci_dev *dev,
1956 struct pci_saved_state *state)
1957{
1958 struct pci_cap_saved_data *cap;
1959
1960 dev->state_saved = false;
1961
1962 if (!state)
1963 return 0;
1964
1965 memcpy(dev->saved_config_space, state->config_space,
1966 sizeof(state->config_space));
1967
1968 cap = state->cap;
1969 while (cap->size) {
1970 struct pci_cap_saved_state *tmp;
1971
1972 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1973 if (!tmp || tmp->cap.size != cap->size)
1974 return -EINVAL;
1975
1976 memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1977 cap = (struct pci_cap_saved_data *)((u8 *)cap +
1978 sizeof(struct pci_cap_saved_data) + cap->size);
1979 }
1980
1981 dev->state_saved = true;
1982 return 0;
1983}
1984EXPORT_SYMBOL_GPL(pci_load_saved_state);
1985
1986/**
1987 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1988 * and free the memory allocated for it.
1989 * @dev: PCI device that we're dealing with
1990 * @state: Pointer to saved state returned from pci_store_saved_state()
1991 */
1992int pci_load_and_free_saved_state(struct pci_dev *dev,
1993 struct pci_saved_state **state)
1994{
1995 int ret = pci_load_saved_state(dev, *state);
1996 kfree(*state);
1997 *state = NULL;
1998 return ret;
1999}
2000EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
2001
2002int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
2003{
2004 return pci_enable_resources(dev, bars);
2005}
2006
2007static int do_pci_enable_device(struct pci_dev *dev, int bars)
2008{
2009 int err;
2010 struct pci_dev *bridge;
2011 u16 cmd;
2012 u8 pin;
2013
2014 err = pci_set_power_state(dev, PCI_D0);
2015 if (err < 0 && err != -EIO)
2016 return err;
2017
2018 bridge = pci_upstream_bridge(dev);
2019 if (bridge)
2020 pcie_aspm_powersave_config_link(bridge);
2021
2022 err = pcibios_enable_device(dev, bars);
2023 if (err < 0)
2024 return err;
2025 pci_fixup_device(pci_fixup_enable, dev);
2026
2027 if (dev->msi_enabled || dev->msix_enabled)
2028 return 0;
2029
2030 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
2031 if (pin) {
2032 pci_read_config_word(dev, PCI_COMMAND, &cmd);
2033 if (cmd & PCI_COMMAND_INTX_DISABLE)
2034 pci_write_config_word(dev, PCI_COMMAND,
2035 cmd & ~PCI_COMMAND_INTX_DISABLE);
2036 }
2037
2038 return 0;
2039}
2040
2041/**
2042 * pci_reenable_device - Resume abandoned device
2043 * @dev: PCI device to be resumed
2044 *
2045 * NOTE: This function is a backend of pci_default_resume() and is not supposed
2046 * to be called by normal code, write proper resume handler and use it instead.
2047 */
2048int pci_reenable_device(struct pci_dev *dev)
2049{
2050 if (pci_is_enabled(dev))
2051 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
2052 return 0;
2053}
2054EXPORT_SYMBOL(pci_reenable_device);
2055
2056static void pci_enable_bridge(struct pci_dev *dev)
2057{
2058 struct pci_dev *bridge;
2059 int retval;
2060
2061 bridge = pci_upstream_bridge(dev);
2062 if (bridge)
2063 pci_enable_bridge(bridge);
2064
2065 if (pci_is_enabled(dev)) {
2066 if (!dev->is_busmaster)
2067 pci_set_master(dev);
2068 return;
2069 }
2070
2071 retval = pci_enable_device(dev);
2072 if (retval)
2073 pci_err(dev, "Error enabling bridge (%d), continuing\n",
2074 retval);
2075 pci_set_master(dev);
2076}
2077
2078static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
2079{
2080 struct pci_dev *bridge;
2081 int err;
2082 int i, bars = 0;
2083
2084 /*
2085 * Power state could be unknown at this point, either due to a fresh
2086 * boot or a device removal call. So get the current power state
2087 * so that things like MSI message writing will behave as expected
2088 * (e.g. if the device really is in D0 at enable time).
2089 */
2090 pci_update_current_state(dev, dev->current_state);
2091
2092 if (atomic_inc_return(&dev->enable_cnt) > 1)
2093 return 0; /* already enabled */
2094
2095 bridge = pci_upstream_bridge(dev);
2096 if (bridge)
2097 pci_enable_bridge(bridge);
2098
2099 /* only skip sriov related */
2100 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
2101 if (dev->resource[i].flags & flags)
2102 bars |= (1 << i);
2103 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
2104 if (dev->resource[i].flags & flags)
2105 bars |= (1 << i);
2106
2107 err = do_pci_enable_device(dev, bars);
2108 if (err < 0)
2109 atomic_dec(&dev->enable_cnt);
2110 return err;
2111}
2112
2113/**
2114 * pci_enable_device_io - Initialize a device for use with IO space
2115 * @dev: PCI device to be initialized
2116 *
2117 * Initialize device before it's used by a driver. Ask low-level code
2118 * to enable I/O resources. Wake up the device if it was suspended.
2119 * Beware, this function can fail.
2120 */
2121int pci_enable_device_io(struct pci_dev *dev)
2122{
2123 return pci_enable_device_flags(dev, IORESOURCE_IO);
2124}
2125EXPORT_SYMBOL(pci_enable_device_io);
2126
2127/**
2128 * pci_enable_device_mem - Initialize a device for use with Memory space
2129 * @dev: PCI device to be initialized
2130 *
2131 * Initialize device before it's used by a driver. Ask low-level code
2132 * to enable Memory resources. Wake up the device if it was suspended.
2133 * Beware, this function can fail.
2134 */
2135int pci_enable_device_mem(struct pci_dev *dev)
2136{
2137 return pci_enable_device_flags(dev, IORESOURCE_MEM);
2138}
2139EXPORT_SYMBOL(pci_enable_device_mem);
2140
2141/**
2142 * pci_enable_device - Initialize device before it's used by a driver.
2143 * @dev: PCI device to be initialized
2144 *
2145 * Initialize device before it's used by a driver. Ask low-level code
2146 * to enable I/O and memory. Wake up the device if it was suspended.
2147 * Beware, this function can fail.
2148 *
2149 * Note we don't actually enable the device many times if we call
2150 * this function repeatedly (we just increment the count).
2151 */
2152int pci_enable_device(struct pci_dev *dev)
2153{
2154 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
2155}
2156EXPORT_SYMBOL(pci_enable_device);
2157
2158/*
2159 * pcibios_device_add - provide arch specific hooks when adding device dev
2160 * @dev: the PCI device being added
2161 *
2162 * Permits the platform to provide architecture specific functionality when
2163 * devices are added. This is the default implementation. Architecture
2164 * implementations can override this.
2165 */
2166int __weak pcibios_device_add(struct pci_dev *dev)
2167{
2168 return 0;
2169}
2170
2171/**
2172 * pcibios_release_device - provide arch specific hooks when releasing
2173 * device dev
2174 * @dev: the PCI device being released
2175 *
2176 * Permits the platform to provide architecture specific functionality when
2177 * devices are released. This is the default implementation. Architecture
2178 * implementations can override this.
2179 */
2180void __weak pcibios_release_device(struct pci_dev *dev) {}
2181
2182/**
2183 * pcibios_disable_device - disable arch specific PCI resources for device dev
2184 * @dev: the PCI device to disable
2185 *
2186 * Disables architecture specific PCI resources for the device. This
2187 * is the default implementation. Architecture implementations can
2188 * override this.
2189 */
2190void __weak pcibios_disable_device(struct pci_dev *dev) {}
2191
2192static void do_pci_disable_device(struct pci_dev *dev)
2193{
2194 u16 pci_command;
2195
2196 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
2197 if (pci_command & PCI_COMMAND_MASTER) {
2198 pci_command &= ~PCI_COMMAND_MASTER;
2199 pci_write_config_word(dev, PCI_COMMAND, pci_command);
2200 }
2201
2202 pcibios_disable_device(dev);
2203}
2204
2205/**
2206 * pci_disable_enabled_device - Disable device without updating enable_cnt
2207 * @dev: PCI device to disable
2208 *
2209 * NOTE: This function is a backend of PCI power management routines and is
2210 * not supposed to be called drivers.
2211 */
2212void pci_disable_enabled_device(struct pci_dev *dev)
2213{
2214 if (pci_is_enabled(dev))
2215 do_pci_disable_device(dev);
2216}
2217
2218/**
2219 * pci_disable_device - Disable PCI device after use
2220 * @dev: PCI device to be disabled
2221 *
2222 * Signal to the system that the PCI device is not in use by the system
2223 * anymore. This only involves disabling PCI bus-mastering, if active.
2224 *
2225 * Note we don't actually disable the device until all callers of
2226 * pci_enable_device() have called pci_disable_device().
2227 */
2228void pci_disable_device(struct pci_dev *dev)
2229{
2230 struct pci_devres *dr;
2231
2232 dr = find_pci_dr(dev);
2233 if (dr)
2234 dr->enabled = 0;
2235
2236 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
2237 "disabling already-disabled device");
2238
2239 if (atomic_dec_return(&dev->enable_cnt) != 0)
2240 return;
2241
2242 do_pci_disable_device(dev);
2243
2244 dev->is_busmaster = 0;
2245}
2246EXPORT_SYMBOL(pci_disable_device);
2247
2248/**
2249 * pcibios_set_pcie_reset_state - set reset state for device dev
2250 * @dev: the PCIe device reset
2251 * @state: Reset state to enter into
2252 *
2253 * Set the PCIe reset state for the device. This is the default
2254 * implementation. Architecture implementations can override this.
2255 */
2256int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
2257 enum pcie_reset_state state)
2258{
2259 return -EINVAL;
2260}
2261
2262/**
2263 * pci_set_pcie_reset_state - set reset state for device dev
2264 * @dev: the PCIe device reset
2265 * @state: Reset state to enter into
2266 *
2267 * Sets the PCI reset state for the device.
2268 */
2269int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
2270{
2271 return pcibios_set_pcie_reset_state(dev, state);
2272}
2273EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2274
2275#ifdef CONFIG_PCIEAER
2276void pcie_clear_device_status(struct pci_dev *dev)
2277{
2278 u16 sta;
2279
2280 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta);
2281 pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta);
2282}
2283#endif
2284
2285/**
2286 * pcie_clear_root_pme_status - Clear root port PME interrupt status.
2287 * @dev: PCIe root port or event collector.
2288 */
2289void pcie_clear_root_pme_status(struct pci_dev *dev)
2290{
2291 pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
2292}
2293
2294/**
2295 * pci_check_pme_status - Check if given device has generated PME.
2296 * @dev: Device to check.
2297 *
2298 * Check the PME status of the device and if set, clear it and clear PME enable
2299 * (if set). Return 'true' if PME status and PME enable were both set or
2300 * 'false' otherwise.
2301 */
2302bool pci_check_pme_status(struct pci_dev *dev)
2303{
2304 int pmcsr_pos;
2305 u16 pmcsr;
2306 bool ret = false;
2307
2308 if (!dev->pm_cap)
2309 return false;
2310
2311 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2312 pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2313 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2314 return false;
2315
2316 /* Clear PME status. */
2317 pmcsr |= PCI_PM_CTRL_PME_STATUS;
2318 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2319 /* Disable PME to avoid interrupt flood. */
2320 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2321 ret = true;
2322 }
2323
2324 pci_write_config_word(dev, pmcsr_pos, pmcsr);
2325
2326 return ret;
2327}
2328
2329/**
2330 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2331 * @dev: Device to handle.
2332 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2333 *
2334 * Check if @dev has generated PME and queue a resume request for it in that
2335 * case.
2336 */
2337static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2338{
2339 if (pme_poll_reset && dev->pme_poll)
2340 dev->pme_poll = false;
2341
2342 if (pci_check_pme_status(dev)) {
2343 pci_wakeup_event(dev);
2344 pm_request_resume(&dev->dev);
2345 }
2346 return 0;
2347}
2348
2349/**
2350 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2351 * @bus: Top bus of the subtree to walk.
2352 */
2353void pci_pme_wakeup_bus(struct pci_bus *bus)
2354{
2355 if (bus)
2356 pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2357}
2358
2359
2360/**
2361 * pci_pme_capable - check the capability of PCI device to generate PME#
2362 * @dev: PCI device to handle.
2363 * @state: PCI state from which device will issue PME#.
2364 */
2365bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2366{
2367 if (!dev->pm_cap)
2368 return false;
2369
2370 return !!(dev->pme_support & (1 << state));
2371}
2372EXPORT_SYMBOL(pci_pme_capable);
2373
2374static void pci_pme_list_scan(struct work_struct *work)
2375{
2376 struct pci_pme_device *pme_dev, *n;
2377
2378 mutex_lock(&pci_pme_list_mutex);
2379 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2380 struct pci_dev *pdev = pme_dev->dev;
2381
2382 if (pdev->pme_poll) {
2383 struct pci_dev *bridge = pdev->bus->self;
2384 struct device *dev = &pdev->dev;
2385 struct device *bdev = bridge ? &bridge->dev : NULL;
2386 int bref = 0;
2387
2388 /*
2389 * If we have a bridge, it should be in an active/D0
2390 * state or the configuration space of subordinate
2391 * devices may not be accessible or stable over the
2392 * course of the call.
2393 */
2394 if (bdev) {
2395 bref = pm_runtime_get_if_active(bdev);
2396 if (!bref)
2397 continue;
2398
2399 if (bridge->current_state != PCI_D0)
2400 goto put_bridge;
2401 }
2402
2403 /*
2404 * The device itself should be suspended but config
2405 * space must be accessible, therefore it cannot be in
2406 * D3cold.
2407 */
2408 if (pm_runtime_suspended(dev) &&
2409 pdev->current_state != PCI_D3cold)
2410 pci_pme_wakeup(pdev, NULL);
2411
2412put_bridge:
2413 if (bref > 0)
2414 pm_runtime_put(bdev);
2415 } else {
2416 list_del(&pme_dev->list);
2417 kfree(pme_dev);
2418 }
2419 }
2420 if (!list_empty(&pci_pme_list))
2421 queue_delayed_work(system_freezable_wq, &pci_pme_work,
2422 msecs_to_jiffies(PME_TIMEOUT));
2423 mutex_unlock(&pci_pme_list_mutex);
2424}
2425
2426static void __pci_pme_active(struct pci_dev *dev, bool enable)
2427{
2428 u16 pmcsr;
2429
2430 if (!dev->pme_support)
2431 return;
2432
2433 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2434 /* Clear PME_Status by writing 1 to it and enable PME# */
2435 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2436 if (!enable)
2437 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2438
2439 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2440}
2441
2442/**
2443 * pci_pme_restore - Restore PME configuration after config space restore.
2444 * @dev: PCI device to update.
2445 */
2446void pci_pme_restore(struct pci_dev *dev)
2447{
2448 u16 pmcsr;
2449
2450 if (!dev->pme_support)
2451 return;
2452
2453 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2454 if (dev->wakeup_prepared) {
2455 pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2456 pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2457 } else {
2458 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2459 pmcsr |= PCI_PM_CTRL_PME_STATUS;
2460 }
2461 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2462}
2463
2464/**
2465 * pci_pme_active - enable or disable PCI device's PME# function
2466 * @dev: PCI device to handle.
2467 * @enable: 'true' to enable PME# generation; 'false' to disable it.
2468 *
2469 * The caller must verify that the device is capable of generating PME# before
2470 * calling this function with @enable equal to 'true'.
2471 */
2472void pci_pme_active(struct pci_dev *dev, bool enable)
2473{
2474 __pci_pme_active(dev, enable);
2475
2476 /*
2477 * PCI (as opposed to PCIe) PME requires that the device have
2478 * its PME# line hooked up correctly. Not all hardware vendors
2479 * do this, so the PME never gets delivered and the device
2480 * remains asleep. The easiest way around this is to
2481 * periodically walk the list of suspended devices and check
2482 * whether any have their PME flag set. The assumption is that
2483 * we'll wake up often enough anyway that this won't be a huge
2484 * hit, and the power savings from the devices will still be a
2485 * win.
2486 *
2487 * Although PCIe uses in-band PME message instead of PME# line
2488 * to report PME, PME does not work for some PCIe devices in
2489 * reality. For example, there are devices that set their PME
2490 * status bits, but don't really bother to send a PME message;
2491 * there are PCI Express Root Ports that don't bother to
2492 * trigger interrupts when they receive PME messages from the
2493 * devices below. So PME poll is used for PCIe devices too.
2494 */
2495
2496 if (dev->pme_poll) {
2497 struct pci_pme_device *pme_dev;
2498 if (enable) {
2499 pme_dev = kmalloc(sizeof(struct pci_pme_device),
2500 GFP_KERNEL);
2501 if (!pme_dev) {
2502 pci_warn(dev, "can't enable PME#\n");
2503 return;
2504 }
2505 pme_dev->dev = dev;
2506 mutex_lock(&pci_pme_list_mutex);
2507 list_add(&pme_dev->list, &pci_pme_list);
2508 if (list_is_singular(&pci_pme_list))
2509 queue_delayed_work(system_freezable_wq,
2510 &pci_pme_work,
2511 msecs_to_jiffies(PME_TIMEOUT));
2512 mutex_unlock(&pci_pme_list_mutex);
2513 } else {
2514 mutex_lock(&pci_pme_list_mutex);
2515 list_for_each_entry(pme_dev, &pci_pme_list, list) {
2516 if (pme_dev->dev == dev) {
2517 list_del(&pme_dev->list);
2518 kfree(pme_dev);
2519 break;
2520 }
2521 }
2522 mutex_unlock(&pci_pme_list_mutex);
2523 }
2524 }
2525
2526 pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2527}
2528EXPORT_SYMBOL(pci_pme_active);
2529
2530/**
2531 * __pci_enable_wake - enable PCI device as wakeup event source
2532 * @dev: PCI device affected
2533 * @state: PCI state from which device will issue wakeup events
2534 * @enable: True to enable event generation; false to disable
2535 *
2536 * This enables the device as a wakeup event source, or disables it.
2537 * When such events involves platform-specific hooks, those hooks are
2538 * called automatically by this routine.
2539 *
2540 * Devices with legacy power management (no standard PCI PM capabilities)
2541 * always require such platform hooks.
2542 *
2543 * RETURN VALUE:
2544 * 0 is returned on success
2545 * -EINVAL is returned if device is not supposed to wake up the system
2546 * Error code depending on the platform is returned if both the platform and
2547 * the native mechanism fail to enable the generation of wake-up events
2548 */
2549static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2550{
2551 int ret = 0;
2552
2553 /*
2554 * Bridges that are not power-manageable directly only signal
2555 * wakeup on behalf of subordinate devices which is set up
2556 * elsewhere, so skip them. However, bridges that are
2557 * power-manageable may signal wakeup for themselves (for example,
2558 * on a hotplug event) and they need to be covered here.
2559 */
2560 if (!pci_power_manageable(dev))
2561 return 0;
2562
2563 /* Don't do the same thing twice in a row for one device. */
2564 if (!!enable == !!dev->wakeup_prepared)
2565 return 0;
2566
2567 /*
2568 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2569 * Anderson we should be doing PME# wake enable followed by ACPI wake
2570 * enable. To disable wake-up we call the platform first, for symmetry.
2571 */
2572
2573 if (enable) {
2574 int error;
2575
2576 /*
2577 * Enable PME signaling if the device can signal PME from
2578 * D3cold regardless of whether or not it can signal PME from
2579 * the current target state, because that will allow it to
2580 * signal PME when the hierarchy above it goes into D3cold and
2581 * the device itself ends up in D3cold as a result of that.
2582 */
2583 if (pci_pme_capable(dev, state) || pci_pme_capable(dev, PCI_D3cold))
2584 pci_pme_active(dev, true);
2585 else
2586 ret = 1;
2587 error = platform_pci_set_wakeup(dev, true);
2588 if (ret)
2589 ret = error;
2590 if (!ret)
2591 dev->wakeup_prepared = true;
2592 } else {
2593 platform_pci_set_wakeup(dev, false);
2594 pci_pme_active(dev, false);
2595 dev->wakeup_prepared = false;
2596 }
2597
2598 return ret;
2599}
2600
2601/**
2602 * pci_enable_wake - change wakeup settings for a PCI device
2603 * @pci_dev: Target device
2604 * @state: PCI state from which device will issue wakeup events
2605 * @enable: Whether or not to enable event generation
2606 *
2607 * If @enable is set, check device_may_wakeup() for the device before calling
2608 * __pci_enable_wake() for it.
2609 */
2610int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2611{
2612 if (enable && !device_may_wakeup(&pci_dev->dev))
2613 return -EINVAL;
2614
2615 return __pci_enable_wake(pci_dev, state, enable);
2616}
2617EXPORT_SYMBOL(pci_enable_wake);
2618
2619/**
2620 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2621 * @dev: PCI device to prepare
2622 * @enable: True to enable wake-up event generation; false to disable
2623 *
2624 * Many drivers want the device to wake up the system from D3_hot or D3_cold
2625 * and this function allows them to set that up cleanly - pci_enable_wake()
2626 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2627 * ordering constraints.
2628 *
2629 * This function only returns error code if the device is not allowed to wake
2630 * up the system from sleep or it is not capable of generating PME# from both
2631 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2632 */
2633int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2634{
2635 return pci_pme_capable(dev, PCI_D3cold) ?
2636 pci_enable_wake(dev, PCI_D3cold, enable) :
2637 pci_enable_wake(dev, PCI_D3hot, enable);
2638}
2639EXPORT_SYMBOL(pci_wake_from_d3);
2640
2641/**
2642 * pci_target_state - find an appropriate low power state for a given PCI dev
2643 * @dev: PCI device
2644 * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2645 *
2646 * Use underlying platform code to find a supported low power state for @dev.
2647 * If the platform can't manage @dev, return the deepest state from which it
2648 * can generate wake events, based on any available PME info.
2649 */
2650static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2651{
2652 if (platform_pci_power_manageable(dev)) {
2653 /*
2654 * Call the platform to find the target state for the device.
2655 */
2656 pci_power_t state = platform_pci_choose_state(dev);
2657
2658 switch (state) {
2659 case PCI_POWER_ERROR:
2660 case PCI_UNKNOWN:
2661 return PCI_D3hot;
2662
2663 case PCI_D1:
2664 case PCI_D2:
2665 if (pci_no_d1d2(dev))
2666 return PCI_D3hot;
2667 }
2668
2669 return state;
2670 }
2671
2672 /*
2673 * If the device is in D3cold even though it's not power-manageable by
2674 * the platform, it may have been powered down by non-standard means.
2675 * Best to let it slumber.
2676 */
2677 if (dev->current_state == PCI_D3cold)
2678 return PCI_D3cold;
2679 else if (!dev->pm_cap)
2680 return PCI_D0;
2681
2682 if (wakeup && dev->pme_support) {
2683 pci_power_t state = PCI_D3hot;
2684
2685 /*
2686 * Find the deepest state from which the device can generate
2687 * PME#.
2688 */
2689 while (state && !(dev->pme_support & (1 << state)))
2690 state--;
2691
2692 if (state)
2693 return state;
2694 else if (dev->pme_support & 1)
2695 return PCI_D0;
2696 }
2697
2698 return PCI_D3hot;
2699}
2700
2701/**
2702 * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2703 * into a sleep state
2704 * @dev: Device to handle.
2705 *
2706 * Choose the power state appropriate for the device depending on whether
2707 * it can wake up the system and/or is power manageable by the platform
2708 * (PCI_D3hot is the default) and put the device into that state.
2709 */
2710int pci_prepare_to_sleep(struct pci_dev *dev)
2711{
2712 bool wakeup = device_may_wakeup(&dev->dev);
2713 pci_power_t target_state = pci_target_state(dev, wakeup);
2714 int error;
2715
2716 if (target_state == PCI_POWER_ERROR)
2717 return -EIO;
2718
2719 pci_enable_wake(dev, target_state, wakeup);
2720
2721 error = pci_set_power_state(dev, target_state);
2722
2723 if (error)
2724 pci_enable_wake(dev, target_state, false);
2725
2726 return error;
2727}
2728EXPORT_SYMBOL(pci_prepare_to_sleep);
2729
2730/**
2731 * pci_back_from_sleep - turn PCI device on during system-wide transition
2732 * into working state
2733 * @dev: Device to handle.
2734 *
2735 * Disable device's system wake-up capability and put it into D0.
2736 */
2737int pci_back_from_sleep(struct pci_dev *dev)
2738{
2739 int ret = pci_set_power_state(dev, PCI_D0);
2740
2741 if (ret)
2742 return ret;
2743
2744 pci_enable_wake(dev, PCI_D0, false);
2745 return 0;
2746}
2747EXPORT_SYMBOL(pci_back_from_sleep);
2748
2749/**
2750 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2751 * @dev: PCI device being suspended.
2752 *
2753 * Prepare @dev to generate wake-up events at run time and put it into a low
2754 * power state.
2755 */
2756int pci_finish_runtime_suspend(struct pci_dev *dev)
2757{
2758 pci_power_t target_state;
2759 int error;
2760
2761 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2762 if (target_state == PCI_POWER_ERROR)
2763 return -EIO;
2764
2765 __pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2766
2767 error = pci_set_power_state(dev, target_state);
2768
2769 if (error)
2770 pci_enable_wake(dev, target_state, false);
2771
2772 return error;
2773}
2774
2775/**
2776 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2777 * @dev: Device to check.
2778 *
2779 * Return true if the device itself is capable of generating wake-up events
2780 * (through the platform or using the native PCIe PME) or if the device supports
2781 * PME and one of its upstream bridges can generate wake-up events.
2782 */
2783bool pci_dev_run_wake(struct pci_dev *dev)
2784{
2785 struct pci_bus *bus = dev->bus;
2786
2787 if (!dev->pme_support)
2788 return false;
2789
2790 /* PME-capable in principle, but not from the target power state */
2791 if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2792 return false;
2793
2794 if (device_can_wakeup(&dev->dev))
2795 return true;
2796
2797 while (bus->parent) {
2798 struct pci_dev *bridge = bus->self;
2799
2800 if (device_can_wakeup(&bridge->dev))
2801 return true;
2802
2803 bus = bus->parent;
2804 }
2805
2806 /* We have reached the root bus. */
2807 if (bus->bridge)
2808 return device_can_wakeup(bus->bridge);
2809
2810 return false;
2811}
2812EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2813
2814/**
2815 * pci_dev_need_resume - Check if it is necessary to resume the device.
2816 * @pci_dev: Device to check.
2817 *
2818 * Return 'true' if the device is not runtime-suspended or it has to be
2819 * reconfigured due to wakeup settings difference between system and runtime
2820 * suspend, or the current power state of it is not suitable for the upcoming
2821 * (system-wide) transition.
2822 */
2823bool pci_dev_need_resume(struct pci_dev *pci_dev)
2824{
2825 struct device *dev = &pci_dev->dev;
2826 pci_power_t target_state;
2827
2828 if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
2829 return true;
2830
2831 target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
2832
2833 /*
2834 * If the earlier platform check has not triggered, D3cold is just power
2835 * removal on top of D3hot, so no need to resume the device in that
2836 * case.
2837 */
2838 return target_state != pci_dev->current_state &&
2839 target_state != PCI_D3cold &&
2840 pci_dev->current_state != PCI_D3hot;
2841}
2842
2843/**
2844 * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2845 * @pci_dev: Device to check.
2846 *
2847 * If the device is suspended and it is not configured for system wakeup,
2848 * disable PME for it to prevent it from waking up the system unnecessarily.
2849 *
2850 * Note that if the device's power state is D3cold and the platform check in
2851 * pci_dev_need_resume() has not triggered, the device's configuration need not
2852 * be changed.
2853 */
2854void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2855{
2856 struct device *dev = &pci_dev->dev;
2857
2858 spin_lock_irq(&dev->power.lock);
2859
2860 if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2861 pci_dev->current_state < PCI_D3cold)
2862 __pci_pme_active(pci_dev, false);
2863
2864 spin_unlock_irq(&dev->power.lock);
2865}
2866
2867/**
2868 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2869 * @pci_dev: Device to handle.
2870 *
2871 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2872 * it might have been disabled during the prepare phase of system suspend if
2873 * the device was not configured for system wakeup.
2874 */
2875void pci_dev_complete_resume(struct pci_dev *pci_dev)
2876{
2877 struct device *dev = &pci_dev->dev;
2878
2879 if (!pci_dev_run_wake(pci_dev))
2880 return;
2881
2882 spin_lock_irq(&dev->power.lock);
2883
2884 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2885 __pci_pme_active(pci_dev, true);
2886
2887 spin_unlock_irq(&dev->power.lock);
2888}
2889
2890/**
2891 * pci_choose_state - Choose the power state of a PCI device.
2892 * @dev: Target PCI device.
2893 * @state: Target state for the whole system.
2894 *
2895 * Returns PCI power state suitable for @dev and @state.
2896 */
2897pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
2898{
2899 if (state.event == PM_EVENT_ON)
2900 return PCI_D0;
2901
2902 return pci_target_state(dev, false);
2903}
2904EXPORT_SYMBOL(pci_choose_state);
2905
2906void pci_config_pm_runtime_get(struct pci_dev *pdev)
2907{
2908 struct device *dev = &pdev->dev;
2909 struct device *parent = dev->parent;
2910
2911 if (parent)
2912 pm_runtime_get_sync(parent);
2913 pm_runtime_get_noresume(dev);
2914 /*
2915 * pdev->current_state is set to PCI_D3cold during suspending,
2916 * so wait until suspending completes
2917 */
2918 pm_runtime_barrier(dev);
2919 /*
2920 * Only need to resume devices in D3cold, because config
2921 * registers are still accessible for devices suspended but
2922 * not in D3cold.
2923 */
2924 if (pdev->current_state == PCI_D3cold)
2925 pm_runtime_resume(dev);
2926}
2927
2928void pci_config_pm_runtime_put(struct pci_dev *pdev)
2929{
2930 struct device *dev = &pdev->dev;
2931 struct device *parent = dev->parent;
2932
2933 pm_runtime_put(dev);
2934 if (parent)
2935 pm_runtime_put_sync(parent);
2936}
2937
2938static const struct dmi_system_id bridge_d3_blacklist[] = {
2939#ifdef CONFIG_X86
2940 {
2941 /*
2942 * Gigabyte X299 root port is not marked as hotplug capable
2943 * which allows Linux to power manage it. However, this
2944 * confuses the BIOS SMI handler so don't power manage root
2945 * ports on that system.
2946 */
2947 .ident = "X299 DESIGNARE EX-CF",
2948 .matches = {
2949 DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
2950 DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
2951 },
2952 },
2953 {
2954 /*
2955 * Downstream device is not accessible after putting a root port
2956 * into D3cold and back into D0 on Elo Continental Z2 board
2957 */
2958 .ident = "Elo Continental Z2",
2959 .matches = {
2960 DMI_MATCH(DMI_BOARD_VENDOR, "Elo Touch Solutions"),
2961 DMI_MATCH(DMI_BOARD_NAME, "Geminilake"),
2962 DMI_MATCH(DMI_BOARD_VERSION, "Continental Z2"),
2963 },
2964 },
2965#endif
2966 { }
2967};
2968
2969/**
2970 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2971 * @bridge: Bridge to check
2972 *
2973 * This function checks if it is possible to move the bridge to D3.
2974 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
2975 */
2976bool pci_bridge_d3_possible(struct pci_dev *bridge)
2977{
2978 if (!pci_is_pcie(bridge))
2979 return false;
2980
2981 switch (pci_pcie_type(bridge)) {
2982 case PCI_EXP_TYPE_ROOT_PORT:
2983 case PCI_EXP_TYPE_UPSTREAM:
2984 case PCI_EXP_TYPE_DOWNSTREAM:
2985 if (pci_bridge_d3_disable)
2986 return false;
2987
2988 /*
2989 * Hotplug ports handled by firmware in System Management Mode
2990 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2991 */
2992 if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
2993 return false;
2994
2995 if (pci_bridge_d3_force)
2996 return true;
2997
2998 /* Even the oldest 2010 Thunderbolt controller supports D3. */
2999 if (bridge->is_thunderbolt)
3000 return true;
3001
3002 /* Platform might know better if the bridge supports D3 */
3003 if (platform_pci_bridge_d3(bridge))
3004 return true;
3005
3006 /*
3007 * Hotplug ports handled natively by the OS were not validated
3008 * by vendors for runtime D3 at least until 2018 because there
3009 * was no OS support.
3010 */
3011 if (bridge->is_hotplug_bridge)
3012 return false;
3013
3014 if (dmi_check_system(bridge_d3_blacklist))
3015 return false;
3016
3017 /*
3018 * It should be safe to put PCIe ports from 2015 or newer
3019 * to D3.
3020 */
3021 if (dmi_get_bios_year() >= 2015)
3022 return true;
3023 break;
3024 }
3025
3026 return false;
3027}
3028
3029static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
3030{
3031 bool *d3cold_ok = data;
3032
3033 if (/* The device needs to be allowed to go D3cold ... */
3034 dev->no_d3cold || !dev->d3cold_allowed ||
3035
3036 /* ... and if it is wakeup capable to do so from D3cold. */
3037 (device_may_wakeup(&dev->dev) &&
3038 !pci_pme_capable(dev, PCI_D3cold)) ||
3039
3040 /* If it is a bridge it must be allowed to go to D3. */
3041 !pci_power_manageable(dev))
3042
3043 *d3cold_ok = false;
3044
3045 return !*d3cold_ok;
3046}
3047
3048/*
3049 * pci_bridge_d3_update - Update bridge D3 capabilities
3050 * @dev: PCI device which is changed
3051 *
3052 * Update upstream bridge PM capabilities accordingly depending on if the
3053 * device PM configuration was changed or the device is being removed. The
3054 * change is also propagated upstream.
3055 */
3056void pci_bridge_d3_update(struct pci_dev *dev)
3057{
3058 bool remove = !device_is_registered(&dev->dev);
3059 struct pci_dev *bridge;
3060 bool d3cold_ok = true;
3061
3062 bridge = pci_upstream_bridge(dev);
3063 if (!bridge || !pci_bridge_d3_possible(bridge))
3064 return;
3065
3066 /*
3067 * If D3 is currently allowed for the bridge, removing one of its
3068 * children won't change that.
3069 */
3070 if (remove && bridge->bridge_d3)
3071 return;
3072
3073 /*
3074 * If D3 is currently allowed for the bridge and a child is added or
3075 * changed, disallowance of D3 can only be caused by that child, so
3076 * we only need to check that single device, not any of its siblings.
3077 *
3078 * If D3 is currently not allowed for the bridge, checking the device
3079 * first may allow us to skip checking its siblings.
3080 */
3081 if (!remove)
3082 pci_dev_check_d3cold(dev, &d3cold_ok);
3083
3084 /*
3085 * If D3 is currently not allowed for the bridge, this may be caused
3086 * either by the device being changed/removed or any of its siblings,
3087 * so we need to go through all children to find out if one of them
3088 * continues to block D3.
3089 */
3090 if (d3cold_ok && !bridge->bridge_d3)
3091 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
3092 &d3cold_ok);
3093
3094 if (bridge->bridge_d3 != d3cold_ok) {
3095 bridge->bridge_d3 = d3cold_ok;
3096 /* Propagate change to upstream bridges */
3097 pci_bridge_d3_update(bridge);
3098 }
3099}
3100
3101/**
3102 * pci_d3cold_enable - Enable D3cold for device
3103 * @dev: PCI device to handle
3104 *
3105 * This function can be used in drivers to enable D3cold from the device
3106 * they handle. It also updates upstream PCI bridge PM capabilities
3107 * accordingly.
3108 */
3109void pci_d3cold_enable(struct pci_dev *dev)
3110{
3111 if (dev->no_d3cold) {
3112 dev->no_d3cold = false;
3113 pci_bridge_d3_update(dev);
3114 }
3115}
3116EXPORT_SYMBOL_GPL(pci_d3cold_enable);
3117
3118/**
3119 * pci_d3cold_disable - Disable D3cold for device
3120 * @dev: PCI device to handle
3121 *
3122 * This function can be used in drivers to disable D3cold from the device
3123 * they handle. It also updates upstream PCI bridge PM capabilities
3124 * accordingly.
3125 */
3126void pci_d3cold_disable(struct pci_dev *dev)
3127{
3128 if (!dev->no_d3cold) {
3129 dev->no_d3cold = true;
3130 pci_bridge_d3_update(dev);
3131 }
3132}
3133EXPORT_SYMBOL_GPL(pci_d3cold_disable);
3134
3135/**
3136 * pci_pm_init - Initialize PM functions of given PCI device
3137 * @dev: PCI device to handle.
3138 */
3139void pci_pm_init(struct pci_dev *dev)
3140{
3141 int pm;
3142 u16 status;
3143 u16 pmc;
3144
3145 pm_runtime_forbid(&dev->dev);
3146 pm_runtime_set_active(&dev->dev);
3147 pm_runtime_enable(&dev->dev);
3148 device_enable_async_suspend(&dev->dev);
3149 dev->wakeup_prepared = false;
3150
3151 dev->pm_cap = 0;
3152 dev->pme_support = 0;
3153
3154 /* find PCI PM capability in list */
3155 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
3156 if (!pm)
3157 return;
3158 /* Check device's ability to generate PME# */
3159 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
3160
3161 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
3162 pci_err(dev, "unsupported PM cap regs version (%u)\n",
3163 pmc & PCI_PM_CAP_VER_MASK);
3164 return;
3165 }
3166
3167 dev->pm_cap = pm;
3168 dev->d3hot_delay = PCI_PM_D3HOT_WAIT;
3169 dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
3170 dev->bridge_d3 = pci_bridge_d3_possible(dev);
3171 dev->d3cold_allowed = true;
3172
3173 dev->d1_support = false;
3174 dev->d2_support = false;
3175 if (!pci_no_d1d2(dev)) {
3176 if (pmc & PCI_PM_CAP_D1)
3177 dev->d1_support = true;
3178 if (pmc & PCI_PM_CAP_D2)
3179 dev->d2_support = true;
3180
3181 if (dev->d1_support || dev->d2_support)
3182 pci_info(dev, "supports%s%s\n",
3183 dev->d1_support ? " D1" : "",
3184 dev->d2_support ? " D2" : "");
3185 }
3186
3187 pmc &= PCI_PM_CAP_PME_MASK;
3188 if (pmc) {
3189 pci_info(dev, "PME# supported from%s%s%s%s%s\n",
3190 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
3191 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
3192 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
3193 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "",
3194 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
3195 dev->pme_support = FIELD_GET(PCI_PM_CAP_PME_MASK, pmc);
3196 dev->pme_poll = true;
3197 /*
3198 * Make device's PM flags reflect the wake-up capability, but
3199 * let the user space enable it to wake up the system as needed.
3200 */
3201 device_set_wakeup_capable(&dev->dev, true);
3202 /* Disable the PME# generation functionality */
3203 pci_pme_active(dev, false);
3204 }
3205
3206 pci_read_config_word(dev, PCI_STATUS, &status);
3207 if (status & PCI_STATUS_IMM_READY)
3208 dev->imm_ready = 1;
3209}
3210
3211static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
3212{
3213 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
3214
3215 switch (prop) {
3216 case PCI_EA_P_MEM:
3217 case PCI_EA_P_VF_MEM:
3218 flags |= IORESOURCE_MEM;
3219 break;
3220 case PCI_EA_P_MEM_PREFETCH:
3221 case PCI_EA_P_VF_MEM_PREFETCH:
3222 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
3223 break;
3224 case PCI_EA_P_IO:
3225 flags |= IORESOURCE_IO;
3226 break;
3227 default:
3228 return 0;
3229 }
3230
3231 return flags;
3232}
3233
3234static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
3235 u8 prop)
3236{
3237 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
3238 return &dev->resource[bei];
3239#ifdef CONFIG_PCI_IOV
3240 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
3241 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
3242 return &dev->resource[PCI_IOV_RESOURCES +
3243 bei - PCI_EA_BEI_VF_BAR0];
3244#endif
3245 else if (bei == PCI_EA_BEI_ROM)
3246 return &dev->resource[PCI_ROM_RESOURCE];
3247 else
3248 return NULL;
3249}
3250
3251/* Read an Enhanced Allocation (EA) entry */
3252static int pci_ea_read(struct pci_dev *dev, int offset)
3253{
3254 struct resource *res;
3255 const char *res_name;
3256 int ent_size, ent_offset = offset;
3257 resource_size_t start, end;
3258 unsigned long flags;
3259 u32 dw0, bei, base, max_offset;
3260 u8 prop;
3261 bool support_64 = (sizeof(resource_size_t) >= 8);
3262
3263 pci_read_config_dword(dev, ent_offset, &dw0);
3264 ent_offset += 4;
3265
3266 /* Entry size field indicates DWORDs after 1st */
3267 ent_size = (FIELD_GET(PCI_EA_ES, dw0) + 1) << 2;
3268
3269 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
3270 goto out;
3271
3272 bei = FIELD_GET(PCI_EA_BEI, dw0);
3273 prop = FIELD_GET(PCI_EA_PP, dw0);
3274
3275 /*
3276 * If the Property is in the reserved range, try the Secondary
3277 * Property instead.
3278 */
3279 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
3280 prop = FIELD_GET(PCI_EA_SP, dw0);
3281 if (prop > PCI_EA_P_BRIDGE_IO)
3282 goto out;
3283
3284 res = pci_ea_get_resource(dev, bei, prop);
3285 res_name = pci_resource_name(dev, bei);
3286 if (!res) {
3287 pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
3288 goto out;
3289 }
3290
3291 flags = pci_ea_flags(dev, prop);
3292 if (!flags) {
3293 pci_err(dev, "Unsupported EA properties: %#x\n", prop);
3294 goto out;
3295 }
3296
3297 /* Read Base */
3298 pci_read_config_dword(dev, ent_offset, &base);
3299 start = (base & PCI_EA_FIELD_MASK);
3300 ent_offset += 4;
3301
3302 /* Read MaxOffset */
3303 pci_read_config_dword(dev, ent_offset, &max_offset);
3304 ent_offset += 4;
3305
3306 /* Read Base MSBs (if 64-bit entry) */
3307 if (base & PCI_EA_IS_64) {
3308 u32 base_upper;
3309
3310 pci_read_config_dword(dev, ent_offset, &base_upper);
3311 ent_offset += 4;
3312
3313 flags |= IORESOURCE_MEM_64;
3314
3315 /* entry starts above 32-bit boundary, can't use */
3316 if (!support_64 && base_upper)
3317 goto out;
3318
3319 if (support_64)
3320 start |= ((u64)base_upper << 32);
3321 }
3322
3323 end = start + (max_offset | 0x03);
3324
3325 /* Read MaxOffset MSBs (if 64-bit entry) */
3326 if (max_offset & PCI_EA_IS_64) {
3327 u32 max_offset_upper;
3328
3329 pci_read_config_dword(dev, ent_offset, &max_offset_upper);
3330 ent_offset += 4;
3331
3332 flags |= IORESOURCE_MEM_64;
3333
3334 /* entry too big, can't use */
3335 if (!support_64 && max_offset_upper)
3336 goto out;
3337
3338 if (support_64)
3339 end += ((u64)max_offset_upper << 32);
3340 }
3341
3342 if (end < start) {
3343 pci_err(dev, "EA Entry crosses address boundary\n");
3344 goto out;
3345 }
3346
3347 if (ent_size != ent_offset - offset) {
3348 pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
3349 ent_size, ent_offset - offset);
3350 goto out;
3351 }
3352
3353 res->name = pci_name(dev);
3354 res->start = start;
3355 res->end = end;
3356 res->flags = flags;
3357
3358 if (bei <= PCI_EA_BEI_BAR5)
3359 pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n",
3360 res_name, res, prop);
3361 else if (bei == PCI_EA_BEI_ROM)
3362 pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n",
3363 res_name, res, prop);
3364 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3365 pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n",
3366 res_name, res, prop);
3367 else
3368 pci_info(dev, "BEI %d %pR: from Enhanced Allocation, properties %#02x\n",
3369 bei, res, prop);
3370
3371out:
3372 return offset + ent_size;
3373}
3374
3375/* Enhanced Allocation Initialization */
3376void pci_ea_init(struct pci_dev *dev)
3377{
3378 int ea;
3379 u8 num_ent;
3380 int offset;
3381 int i;
3382
3383 /* find PCI EA capability in list */
3384 ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3385 if (!ea)
3386 return;
3387
3388 /* determine the number of entries */
3389 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3390 &num_ent);
3391 num_ent &= PCI_EA_NUM_ENT_MASK;
3392
3393 offset = ea + PCI_EA_FIRST_ENT;
3394
3395 /* Skip DWORD 2 for type 1 functions */
3396 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3397 offset += 4;
3398
3399 /* parse each EA entry */
3400 for (i = 0; i < num_ent; ++i)
3401 offset = pci_ea_read(dev, offset);
3402}
3403
3404static void pci_add_saved_cap(struct pci_dev *pci_dev,
3405 struct pci_cap_saved_state *new_cap)
3406{
3407 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3408}
3409
3410/**
3411 * _pci_add_cap_save_buffer - allocate buffer for saving given
3412 * capability registers
3413 * @dev: the PCI device
3414 * @cap: the capability to allocate the buffer for
3415 * @extended: Standard or Extended capability ID
3416 * @size: requested size of the buffer
3417 */
3418static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3419 bool extended, unsigned int size)
3420{
3421 int pos;
3422 struct pci_cap_saved_state *save_state;
3423
3424 if (extended)
3425 pos = pci_find_ext_capability(dev, cap);
3426 else
3427 pos = pci_find_capability(dev, cap);
3428
3429 if (!pos)
3430 return 0;
3431
3432 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3433 if (!save_state)
3434 return -ENOMEM;
3435
3436 save_state->cap.cap_nr = cap;
3437 save_state->cap.cap_extended = extended;
3438 save_state->cap.size = size;
3439 pci_add_saved_cap(dev, save_state);
3440
3441 return 0;
3442}
3443
3444int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3445{
3446 return _pci_add_cap_save_buffer(dev, cap, false, size);
3447}
3448
3449int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3450{
3451 return _pci_add_cap_save_buffer(dev, cap, true, size);
3452}
3453
3454/**
3455 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3456 * @dev: the PCI device
3457 */
3458void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3459{
3460 int error;
3461
3462 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3463 PCI_EXP_SAVE_REGS * sizeof(u16));
3464 if (error)
3465 pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3466
3467 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3468 if (error)
3469 pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3470
3471 error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3472 2 * sizeof(u16));
3473 if (error)
3474 pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3475
3476 pci_allocate_vc_save_buffers(dev);
3477}
3478
3479void pci_free_cap_save_buffers(struct pci_dev *dev)
3480{
3481 struct pci_cap_saved_state *tmp;
3482 struct hlist_node *n;
3483
3484 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3485 kfree(tmp);
3486}
3487
3488/**
3489 * pci_configure_ari - enable or disable ARI forwarding
3490 * @dev: the PCI device
3491 *
3492 * If @dev and its upstream bridge both support ARI, enable ARI in the
3493 * bridge. Otherwise, disable ARI in the bridge.
3494 */
3495void pci_configure_ari(struct pci_dev *dev)
3496{
3497 u32 cap;
3498 struct pci_dev *bridge;
3499
3500 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3501 return;
3502
3503 bridge = dev->bus->self;
3504 if (!bridge)
3505 return;
3506
3507 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3508 if (!(cap & PCI_EXP_DEVCAP2_ARI))
3509 return;
3510
3511 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3512 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3513 PCI_EXP_DEVCTL2_ARI);
3514 bridge->ari_enabled = 1;
3515 } else {
3516 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3517 PCI_EXP_DEVCTL2_ARI);
3518 bridge->ari_enabled = 0;
3519 }
3520}
3521
3522static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3523{
3524 int pos;
3525 u16 cap, ctrl;
3526
3527 pos = pdev->acs_cap;
3528 if (!pos)
3529 return false;
3530
3531 /*
3532 * Except for egress control, capabilities are either required
3533 * or only required if controllable. Features missing from the
3534 * capability field can therefore be assumed as hard-wired enabled.
3535 */
3536 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3537 acs_flags &= (cap | PCI_ACS_EC);
3538
3539 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3540 return (ctrl & acs_flags) == acs_flags;
3541}
3542
3543/**
3544 * pci_acs_enabled - test ACS against required flags for a given device
3545 * @pdev: device to test
3546 * @acs_flags: required PCI ACS flags
3547 *
3548 * Return true if the device supports the provided flags. Automatically
3549 * filters out flags that are not implemented on multifunction devices.
3550 *
3551 * Note that this interface checks the effective ACS capabilities of the
3552 * device rather than the actual capabilities. For instance, most single
3553 * function endpoints are not required to support ACS because they have no
3554 * opportunity for peer-to-peer access. We therefore return 'true'
3555 * regardless of whether the device exposes an ACS capability. This makes
3556 * it much easier for callers of this function to ignore the actual type
3557 * or topology of the device when testing ACS support.
3558 */
3559bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3560{
3561 int ret;
3562
3563 ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3564 if (ret >= 0)
3565 return ret > 0;
3566
3567 /*
3568 * Conventional PCI and PCI-X devices never support ACS, either
3569 * effectively or actually. The shared bus topology implies that
3570 * any device on the bus can receive or snoop DMA.
3571 */
3572 if (!pci_is_pcie(pdev))
3573 return false;
3574
3575 switch (pci_pcie_type(pdev)) {
3576 /*
3577 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3578 * but since their primary interface is PCI/X, we conservatively
3579 * handle them as we would a non-PCIe device.
3580 */
3581 case PCI_EXP_TYPE_PCIE_BRIDGE:
3582 /*
3583 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never
3584 * applicable... must never implement an ACS Extended Capability...".
3585 * This seems arbitrary, but we take a conservative interpretation
3586 * of this statement.
3587 */
3588 case PCI_EXP_TYPE_PCI_BRIDGE:
3589 case PCI_EXP_TYPE_RC_EC:
3590 return false;
3591 /*
3592 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3593 * implement ACS in order to indicate their peer-to-peer capabilities,
3594 * regardless of whether they are single- or multi-function devices.
3595 */
3596 case PCI_EXP_TYPE_DOWNSTREAM:
3597 case PCI_EXP_TYPE_ROOT_PORT:
3598 return pci_acs_flags_enabled(pdev, acs_flags);
3599 /*
3600 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3601 * implemented by the remaining PCIe types to indicate peer-to-peer
3602 * capabilities, but only when they are part of a multifunction
3603 * device. The footnote for section 6.12 indicates the specific
3604 * PCIe types included here.
3605 */
3606 case PCI_EXP_TYPE_ENDPOINT:
3607 case PCI_EXP_TYPE_UPSTREAM:
3608 case PCI_EXP_TYPE_LEG_END:
3609 case PCI_EXP_TYPE_RC_END:
3610 if (!pdev->multifunction)
3611 break;
3612
3613 return pci_acs_flags_enabled(pdev, acs_flags);
3614 }
3615
3616 /*
3617 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3618 * to single function devices with the exception of downstream ports.
3619 */
3620 return true;
3621}
3622
3623/**
3624 * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy
3625 * @start: starting downstream device
3626 * @end: ending upstream device or NULL to search to the root bus
3627 * @acs_flags: required flags
3628 *
3629 * Walk up a device tree from start to end testing PCI ACS support. If
3630 * any step along the way does not support the required flags, return false.
3631 */
3632bool pci_acs_path_enabled(struct pci_dev *start,
3633 struct pci_dev *end, u16 acs_flags)
3634{
3635 struct pci_dev *pdev, *parent = start;
3636
3637 do {
3638 pdev = parent;
3639
3640 if (!pci_acs_enabled(pdev, acs_flags))
3641 return false;
3642
3643 if (pci_is_root_bus(pdev->bus))
3644 return (end == NULL);
3645
3646 parent = pdev->bus->self;
3647 } while (pdev != end);
3648
3649 return true;
3650}
3651
3652/**
3653 * pci_acs_init - Initialize ACS if hardware supports it
3654 * @dev: the PCI device
3655 */
3656void pci_acs_init(struct pci_dev *dev)
3657{
3658 dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3659
3660 /*
3661 * Attempt to enable ACS regardless of capability because some Root
3662 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have
3663 * the standard ACS capability but still support ACS via those
3664 * quirks.
3665 */
3666 pci_enable_acs(dev);
3667}
3668
3669/**
3670 * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3671 * @pdev: PCI device
3672 * @bar: BAR to find
3673 *
3674 * Helper to find the position of the ctrl register for a BAR.
3675 * Returns -ENOTSUPP if resizable BARs are not supported at all.
3676 * Returns -ENOENT if no ctrl register for the BAR could be found.
3677 */
3678static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3679{
3680 unsigned int pos, nbars, i;
3681 u32 ctrl;
3682
3683 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3684 if (!pos)
3685 return -ENOTSUPP;
3686
3687 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3688 nbars = FIELD_GET(PCI_REBAR_CTRL_NBAR_MASK, ctrl);
3689
3690 for (i = 0; i < nbars; i++, pos += 8) {
3691 int bar_idx;
3692
3693 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3694 bar_idx = FIELD_GET(PCI_REBAR_CTRL_BAR_IDX, ctrl);
3695 if (bar_idx == bar)
3696 return pos;
3697 }
3698
3699 return -ENOENT;
3700}
3701
3702/**
3703 * pci_rebar_get_possible_sizes - get possible sizes for BAR
3704 * @pdev: PCI device
3705 * @bar: BAR to query
3706 *
3707 * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3708 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3709 */
3710u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3711{
3712 int pos;
3713 u32 cap;
3714
3715 pos = pci_rebar_find_pos(pdev, bar);
3716 if (pos < 0)
3717 return 0;
3718
3719 pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3720 cap = FIELD_GET(PCI_REBAR_CAP_SIZES, cap);
3721
3722 /* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */
3723 if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f &&
3724 bar == 0 && cap == 0x700)
3725 return 0x3f00;
3726
3727 return cap;
3728}
3729EXPORT_SYMBOL(pci_rebar_get_possible_sizes);
3730
3731/**
3732 * pci_rebar_get_current_size - get the current size of a BAR
3733 * @pdev: PCI device
3734 * @bar: BAR to set size to
3735 *
3736 * Read the size of a BAR from the resizable BAR config.
3737 * Returns size if found or negative error code.
3738 */
3739int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3740{
3741 int pos;
3742 u32 ctrl;
3743
3744 pos = pci_rebar_find_pos(pdev, bar);
3745 if (pos < 0)
3746 return pos;
3747
3748 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3749 return FIELD_GET(PCI_REBAR_CTRL_BAR_SIZE, ctrl);
3750}
3751
3752/**
3753 * pci_rebar_set_size - set a new size for a BAR
3754 * @pdev: PCI device
3755 * @bar: BAR to set size to
3756 * @size: new size as defined in the spec (0=1MB, 19=512GB)
3757 *
3758 * Set the new size of a BAR as defined in the spec.
3759 * Returns zero if resizing was successful, error code otherwise.
3760 */
3761int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3762{
3763 int pos;
3764 u32 ctrl;
3765
3766 pos = pci_rebar_find_pos(pdev, bar);
3767 if (pos < 0)
3768 return pos;
3769
3770 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3771 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3772 ctrl |= FIELD_PREP(PCI_REBAR_CTRL_BAR_SIZE, size);
3773 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3774 return 0;
3775}
3776
3777/**
3778 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3779 * @dev: the PCI device
3780 * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3781 * PCI_EXP_DEVCAP2_ATOMIC_COMP32
3782 * PCI_EXP_DEVCAP2_ATOMIC_COMP64
3783 * PCI_EXP_DEVCAP2_ATOMIC_COMP128
3784 *
3785 * Return 0 if all upstream bridges support AtomicOp routing, egress
3786 * blocking is disabled on all upstream ports, and the root port supports
3787 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3788 * AtomicOp completion), or negative otherwise.
3789 */
3790int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3791{
3792 struct pci_bus *bus = dev->bus;
3793 struct pci_dev *bridge;
3794 u32 cap, ctl2;
3795
3796 /*
3797 * Per PCIe r5.0, sec 9.3.5.10, the AtomicOp Requester Enable bit
3798 * in Device Control 2 is reserved in VFs and the PF value applies
3799 * to all associated VFs.
3800 */
3801 if (dev->is_virtfn)
3802 return -EINVAL;
3803
3804 if (!pci_is_pcie(dev))
3805 return -EINVAL;
3806
3807 /*
3808 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3809 * AtomicOp requesters. For now, we only support endpoints as
3810 * requesters and root ports as completers. No endpoints as
3811 * completers, and no peer-to-peer.
3812 */
3813
3814 switch (pci_pcie_type(dev)) {
3815 case PCI_EXP_TYPE_ENDPOINT:
3816 case PCI_EXP_TYPE_LEG_END:
3817 case PCI_EXP_TYPE_RC_END:
3818 break;
3819 default:
3820 return -EINVAL;
3821 }
3822
3823 while (bus->parent) {
3824 bridge = bus->self;
3825
3826 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3827
3828 switch (pci_pcie_type(bridge)) {
3829 /* Ensure switch ports support AtomicOp routing */
3830 case PCI_EXP_TYPE_UPSTREAM:
3831 case PCI_EXP_TYPE_DOWNSTREAM:
3832 if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3833 return -EINVAL;
3834 break;
3835
3836 /* Ensure root port supports all the sizes we care about */
3837 case PCI_EXP_TYPE_ROOT_PORT:
3838 if ((cap & cap_mask) != cap_mask)
3839 return -EINVAL;
3840 break;
3841 }
3842
3843 /* Ensure upstream ports don't block AtomicOps on egress */
3844 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
3845 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3846 &ctl2);
3847 if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3848 return -EINVAL;
3849 }
3850
3851 bus = bus->parent;
3852 }
3853
3854 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3855 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3856 return 0;
3857}
3858EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3859
3860/**
3861 * pci_release_region - Release a PCI bar
3862 * @pdev: PCI device whose resources were previously reserved by
3863 * pci_request_region()
3864 * @bar: BAR to release
3865 *
3866 * Releases the PCI I/O and memory resources previously reserved by a
3867 * successful call to pci_request_region(). Call this function only
3868 * after all use of the PCI regions has ceased.
3869 */
3870void pci_release_region(struct pci_dev *pdev, int bar)
3871{
3872 struct pci_devres *dr;
3873
3874 if (pci_resource_len(pdev, bar) == 0)
3875 return;
3876 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3877 release_region(pci_resource_start(pdev, bar),
3878 pci_resource_len(pdev, bar));
3879 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3880 release_mem_region(pci_resource_start(pdev, bar),
3881 pci_resource_len(pdev, bar));
3882
3883 dr = find_pci_dr(pdev);
3884 if (dr)
3885 dr->region_mask &= ~(1 << bar);
3886}
3887EXPORT_SYMBOL(pci_release_region);
3888
3889/**
3890 * __pci_request_region - Reserved PCI I/O and memory resource
3891 * @pdev: PCI device whose resources are to be reserved
3892 * @bar: BAR to be reserved
3893 * @res_name: Name to be associated with resource.
3894 * @exclusive: whether the region access is exclusive or not
3895 *
3896 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3897 * being reserved by owner @res_name. Do not access any
3898 * address inside the PCI regions unless this call returns
3899 * successfully.
3900 *
3901 * If @exclusive is set, then the region is marked so that userspace
3902 * is explicitly not allowed to map the resource via /dev/mem or
3903 * sysfs MMIO access.
3904 *
3905 * Returns 0 on success, or %EBUSY on error. A warning
3906 * message is also printed on failure.
3907 */
3908static int __pci_request_region(struct pci_dev *pdev, int bar,
3909 const char *res_name, int exclusive)
3910{
3911 struct pci_devres *dr;
3912
3913 if (pci_resource_len(pdev, bar) == 0)
3914 return 0;
3915
3916 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3917 if (!request_region(pci_resource_start(pdev, bar),
3918 pci_resource_len(pdev, bar), res_name))
3919 goto err_out;
3920 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3921 if (!__request_mem_region(pci_resource_start(pdev, bar),
3922 pci_resource_len(pdev, bar), res_name,
3923 exclusive))
3924 goto err_out;
3925 }
3926
3927 dr = find_pci_dr(pdev);
3928 if (dr)
3929 dr->region_mask |= 1 << bar;
3930
3931 return 0;
3932
3933err_out:
3934 pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
3935 &pdev->resource[bar]);
3936 return -EBUSY;
3937}
3938
3939/**
3940 * pci_request_region - Reserve PCI I/O and memory resource
3941 * @pdev: PCI device whose resources are to be reserved
3942 * @bar: BAR to be reserved
3943 * @res_name: Name to be associated with resource
3944 *
3945 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3946 * being reserved by owner @res_name. Do not access any
3947 * address inside the PCI regions unless this call returns
3948 * successfully.
3949 *
3950 * Returns 0 on success, or %EBUSY on error. A warning
3951 * message is also printed on failure.
3952 */
3953int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
3954{
3955 return __pci_request_region(pdev, bar, res_name, 0);
3956}
3957EXPORT_SYMBOL(pci_request_region);
3958
3959/**
3960 * pci_release_selected_regions - Release selected PCI I/O and memory resources
3961 * @pdev: PCI device whose resources were previously reserved
3962 * @bars: Bitmask of BARs to be released
3963 *
3964 * Release selected PCI I/O and memory resources previously reserved.
3965 * Call this function only after all use of the PCI regions has ceased.
3966 */
3967void pci_release_selected_regions(struct pci_dev *pdev, int bars)
3968{
3969 int i;
3970
3971 for (i = 0; i < PCI_STD_NUM_BARS; i++)
3972 if (bars & (1 << i))
3973 pci_release_region(pdev, i);
3974}
3975EXPORT_SYMBOL(pci_release_selected_regions);
3976
3977static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
3978 const char *res_name, int excl)
3979{
3980 int i;
3981
3982 for (i = 0; i < PCI_STD_NUM_BARS; i++)
3983 if (bars & (1 << i))
3984 if (__pci_request_region(pdev, i, res_name, excl))
3985 goto err_out;
3986 return 0;
3987
3988err_out:
3989 while (--i >= 0)
3990 if (bars & (1 << i))
3991 pci_release_region(pdev, i);
3992
3993 return -EBUSY;
3994}
3995
3996
3997/**
3998 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3999 * @pdev: PCI device whose resources are to be reserved
4000 * @bars: Bitmask of BARs to be requested
4001 * @res_name: Name to be associated with resource
4002 */
4003int pci_request_selected_regions(struct pci_dev *pdev, int bars,
4004 const char *res_name)
4005{
4006 return __pci_request_selected_regions(pdev, bars, res_name, 0);
4007}
4008EXPORT_SYMBOL(pci_request_selected_regions);
4009
4010int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
4011 const char *res_name)
4012{
4013 return __pci_request_selected_regions(pdev, bars, res_name,
4014 IORESOURCE_EXCLUSIVE);
4015}
4016EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
4017
4018/**
4019 * pci_release_regions - Release reserved PCI I/O and memory resources
4020 * @pdev: PCI device whose resources were previously reserved by
4021 * pci_request_regions()
4022 *
4023 * Releases all PCI I/O and memory resources previously reserved by a
4024 * successful call to pci_request_regions(). Call this function only
4025 * after all use of the PCI regions has ceased.
4026 */
4027
4028void pci_release_regions(struct pci_dev *pdev)
4029{
4030 pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1);
4031}
4032EXPORT_SYMBOL(pci_release_regions);
4033
4034/**
4035 * pci_request_regions - Reserve PCI I/O and memory resources
4036 * @pdev: PCI device whose resources are to be reserved
4037 * @res_name: Name to be associated with resource.
4038 *
4039 * Mark all PCI regions associated with PCI device @pdev as
4040 * being reserved by owner @res_name. Do not access any
4041 * address inside the PCI regions unless this call returns
4042 * successfully.
4043 *
4044 * Returns 0 on success, or %EBUSY on error. A warning
4045 * message is also printed on failure.
4046 */
4047int pci_request_regions(struct pci_dev *pdev, const char *res_name)
4048{
4049 return pci_request_selected_regions(pdev,
4050 ((1 << PCI_STD_NUM_BARS) - 1), res_name);
4051}
4052EXPORT_SYMBOL(pci_request_regions);
4053
4054/**
4055 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
4056 * @pdev: PCI device whose resources are to be reserved
4057 * @res_name: Name to be associated with resource.
4058 *
4059 * Mark all PCI regions associated with PCI device @pdev as being reserved
4060 * by owner @res_name. Do not access any address inside the PCI regions
4061 * unless this call returns successfully.
4062 *
4063 * pci_request_regions_exclusive() will mark the region so that /dev/mem
4064 * and the sysfs MMIO access will not be allowed.
4065 *
4066 * Returns 0 on success, or %EBUSY on error. A warning message is also
4067 * printed on failure.
4068 */
4069int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
4070{
4071 return pci_request_selected_regions_exclusive(pdev,
4072 ((1 << PCI_STD_NUM_BARS) - 1), res_name);
4073}
4074EXPORT_SYMBOL(pci_request_regions_exclusive);
4075
4076/*
4077 * Record the PCI IO range (expressed as CPU physical address + size).
4078 * Return a negative value if an error has occurred, zero otherwise
4079 */
4080int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
4081 resource_size_t size)
4082{
4083 int ret = 0;
4084#ifdef PCI_IOBASE
4085 struct logic_pio_hwaddr *range;
4086
4087 if (!size || addr + size < addr)
4088 return -EINVAL;
4089
4090 range = kzalloc(sizeof(*range), GFP_ATOMIC);
4091 if (!range)
4092 return -ENOMEM;
4093
4094 range->fwnode = fwnode;
4095 range->size = size;
4096 range->hw_start = addr;
4097 range->flags = LOGIC_PIO_CPU_MMIO;
4098
4099 ret = logic_pio_register_range(range);
4100 if (ret)
4101 kfree(range);
4102
4103 /* Ignore duplicates due to deferred probing */
4104 if (ret == -EEXIST)
4105 ret = 0;
4106#endif
4107
4108 return ret;
4109}
4110
4111phys_addr_t pci_pio_to_address(unsigned long pio)
4112{
4113#ifdef PCI_IOBASE
4114 if (pio < MMIO_UPPER_LIMIT)
4115 return logic_pio_to_hwaddr(pio);
4116#endif
4117
4118 return (phys_addr_t) OF_BAD_ADDR;
4119}
4120EXPORT_SYMBOL_GPL(pci_pio_to_address);
4121
4122unsigned long __weak pci_address_to_pio(phys_addr_t address)
4123{
4124#ifdef PCI_IOBASE
4125 return logic_pio_trans_cpuaddr(address);
4126#else
4127 if (address > IO_SPACE_LIMIT)
4128 return (unsigned long)-1;
4129
4130 return (unsigned long) address;
4131#endif
4132}
4133
4134/**
4135 * pci_remap_iospace - Remap the memory mapped I/O space
4136 * @res: Resource describing the I/O space
4137 * @phys_addr: physical address of range to be mapped
4138 *
4139 * Remap the memory mapped I/O space described by the @res and the CPU
4140 * physical address @phys_addr into virtual address space. Only
4141 * architectures that have memory mapped IO functions defined (and the
4142 * PCI_IOBASE value defined) should call this function.
4143 */
4144#ifndef pci_remap_iospace
4145int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
4146{
4147#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4148 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4149
4150 if (!(res->flags & IORESOURCE_IO))
4151 return -EINVAL;
4152
4153 if (res->end > IO_SPACE_LIMIT)
4154 return -EINVAL;
4155
4156 return vmap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
4157 pgprot_device(PAGE_KERNEL));
4158#else
4159 /*
4160 * This architecture does not have memory mapped I/O space,
4161 * so this function should never be called
4162 */
4163 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
4164 return -ENODEV;
4165#endif
4166}
4167EXPORT_SYMBOL(pci_remap_iospace);
4168#endif
4169
4170/**
4171 * pci_unmap_iospace - Unmap the memory mapped I/O space
4172 * @res: resource to be unmapped
4173 *
4174 * Unmap the CPU virtual address @res from virtual address space. Only
4175 * architectures that have memory mapped IO functions defined (and the
4176 * PCI_IOBASE value defined) should call this function.
4177 */
4178void pci_unmap_iospace(struct resource *res)
4179{
4180#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4181 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4182
4183 vunmap_range(vaddr, vaddr + resource_size(res));
4184#endif
4185}
4186EXPORT_SYMBOL(pci_unmap_iospace);
4187
4188static void __pci_set_master(struct pci_dev *dev, bool enable)
4189{
4190 u16 old_cmd, cmd;
4191
4192 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4193 if (enable)
4194 cmd = old_cmd | PCI_COMMAND_MASTER;
4195 else
4196 cmd = old_cmd & ~PCI_COMMAND_MASTER;
4197 if (cmd != old_cmd) {
4198 pci_dbg(dev, "%s bus mastering\n",
4199 enable ? "enabling" : "disabling");
4200 pci_write_config_word(dev, PCI_COMMAND, cmd);
4201 }
4202 dev->is_busmaster = enable;
4203}
4204
4205/**
4206 * pcibios_setup - process "pci=" kernel boot arguments
4207 * @str: string used to pass in "pci=" kernel boot arguments
4208 *
4209 * Process kernel boot arguments. This is the default implementation.
4210 * Architecture specific implementations can override this as necessary.
4211 */
4212char * __weak __init pcibios_setup(char *str)
4213{
4214 return str;
4215}
4216
4217/**
4218 * pcibios_set_master - enable PCI bus-mastering for device dev
4219 * @dev: the PCI device to enable
4220 *
4221 * Enables PCI bus-mastering for the device. This is the default
4222 * implementation. Architecture specific implementations can override
4223 * this if necessary.
4224 */
4225void __weak pcibios_set_master(struct pci_dev *dev)
4226{
4227 u8 lat;
4228
4229 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4230 if (pci_is_pcie(dev))
4231 return;
4232
4233 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4234 if (lat < 16)
4235 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4236 else if (lat > pcibios_max_latency)
4237 lat = pcibios_max_latency;
4238 else
4239 return;
4240
4241 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4242}
4243
4244/**
4245 * pci_set_master - enables bus-mastering for device dev
4246 * @dev: the PCI device to enable
4247 *
4248 * Enables bus-mastering on the device and calls pcibios_set_master()
4249 * to do the needed arch specific settings.
4250 */
4251void pci_set_master(struct pci_dev *dev)
4252{
4253 __pci_set_master(dev, true);
4254 pcibios_set_master(dev);
4255}
4256EXPORT_SYMBOL(pci_set_master);
4257
4258/**
4259 * pci_clear_master - disables bus-mastering for device dev
4260 * @dev: the PCI device to disable
4261 */
4262void pci_clear_master(struct pci_dev *dev)
4263{
4264 __pci_set_master(dev, false);
4265}
4266EXPORT_SYMBOL(pci_clear_master);
4267
4268/**
4269 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4270 * @dev: the PCI device for which MWI is to be enabled
4271 *
4272 * Helper function for pci_set_mwi.
4273 * Originally copied from drivers/net/acenic.c.
4274 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4275 *
4276 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4277 */
4278int pci_set_cacheline_size(struct pci_dev *dev)
4279{
4280 u8 cacheline_size;
4281
4282 if (!pci_cache_line_size)
4283 return -EINVAL;
4284
4285 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4286 equal to or multiple of the right value. */
4287 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4288 if (cacheline_size >= pci_cache_line_size &&
4289 (cacheline_size % pci_cache_line_size) == 0)
4290 return 0;
4291
4292 /* Write the correct value. */
4293 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4294 /* Read it back. */
4295 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4296 if (cacheline_size == pci_cache_line_size)
4297 return 0;
4298
4299 pci_dbg(dev, "cache line size of %d is not supported\n",
4300 pci_cache_line_size << 2);
4301
4302 return -EINVAL;
4303}
4304EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4305
4306/**
4307 * pci_set_mwi - enables memory-write-invalidate PCI transaction
4308 * @dev: the PCI device for which MWI is enabled
4309 *
4310 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4311 *
4312 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4313 */
4314int pci_set_mwi(struct pci_dev *dev)
4315{
4316#ifdef PCI_DISABLE_MWI
4317 return 0;
4318#else
4319 int rc;
4320 u16 cmd;
4321
4322 rc = pci_set_cacheline_size(dev);
4323 if (rc)
4324 return rc;
4325
4326 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4327 if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4328 pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4329 cmd |= PCI_COMMAND_INVALIDATE;
4330 pci_write_config_word(dev, PCI_COMMAND, cmd);
4331 }
4332 return 0;
4333#endif
4334}
4335EXPORT_SYMBOL(pci_set_mwi);
4336
4337/**
4338 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4339 * @dev: the PCI device for which MWI is enabled
4340 *
4341 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4342 * Callers are not required to check the return value.
4343 *
4344 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4345 */
4346int pci_try_set_mwi(struct pci_dev *dev)
4347{
4348#ifdef PCI_DISABLE_MWI
4349 return 0;
4350#else
4351 return pci_set_mwi(dev);
4352#endif
4353}
4354EXPORT_SYMBOL(pci_try_set_mwi);
4355
4356/**
4357 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4358 * @dev: the PCI device to disable
4359 *
4360 * Disables PCI Memory-Write-Invalidate transaction on the device
4361 */
4362void pci_clear_mwi(struct pci_dev *dev)
4363{
4364#ifndef PCI_DISABLE_MWI
4365 u16 cmd;
4366
4367 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4368 if (cmd & PCI_COMMAND_INVALIDATE) {
4369 cmd &= ~PCI_COMMAND_INVALIDATE;
4370 pci_write_config_word(dev, PCI_COMMAND, cmd);
4371 }
4372#endif
4373}
4374EXPORT_SYMBOL(pci_clear_mwi);
4375
4376/**
4377 * pci_disable_parity - disable parity checking for device
4378 * @dev: the PCI device to operate on
4379 *
4380 * Disable parity checking for device @dev
4381 */
4382void pci_disable_parity(struct pci_dev *dev)
4383{
4384 u16 cmd;
4385
4386 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4387 if (cmd & PCI_COMMAND_PARITY) {
4388 cmd &= ~PCI_COMMAND_PARITY;
4389 pci_write_config_word(dev, PCI_COMMAND, cmd);
4390 }
4391}
4392
4393/**
4394 * pci_intx - enables/disables PCI INTx for device dev
4395 * @pdev: the PCI device to operate on
4396 * @enable: boolean: whether to enable or disable PCI INTx
4397 *
4398 * Enables/disables PCI INTx for device @pdev
4399 */
4400void pci_intx(struct pci_dev *pdev, int enable)
4401{
4402 u16 pci_command, new;
4403
4404 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4405
4406 if (enable)
4407 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4408 else
4409 new = pci_command | PCI_COMMAND_INTX_DISABLE;
4410
4411 if (new != pci_command) {
4412 struct pci_devres *dr;
4413
4414 pci_write_config_word(pdev, PCI_COMMAND, new);
4415
4416 dr = find_pci_dr(pdev);
4417 if (dr && !dr->restore_intx) {
4418 dr->restore_intx = 1;
4419 dr->orig_intx = !enable;
4420 }
4421 }
4422}
4423EXPORT_SYMBOL_GPL(pci_intx);
4424
4425/**
4426 * pci_wait_for_pending_transaction - wait for pending transaction
4427 * @dev: the PCI device to operate on
4428 *
4429 * Return 0 if transaction is pending 1 otherwise.
4430 */
4431int pci_wait_for_pending_transaction(struct pci_dev *dev)
4432{
4433 if (!pci_is_pcie(dev))
4434 return 1;
4435
4436 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4437 PCI_EXP_DEVSTA_TRPND);
4438}
4439EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4440
4441/**
4442 * pcie_flr - initiate a PCIe function level reset
4443 * @dev: device to reset
4444 *
4445 * Initiate a function level reset unconditionally on @dev without
4446 * checking any flags and DEVCAP
4447 */
4448int pcie_flr(struct pci_dev *dev)
4449{
4450 if (!pci_wait_for_pending_transaction(dev))
4451 pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4452
4453 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4454
4455 if (dev->imm_ready)
4456 return 0;
4457
4458 /*
4459 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4460 * 100ms, but may silently discard requests while the FLR is in
4461 * progress. Wait 100ms before trying to access the device.
4462 */
4463 msleep(100);
4464
4465 return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4466}
4467EXPORT_SYMBOL_GPL(pcie_flr);
4468
4469/**
4470 * pcie_reset_flr - initiate a PCIe function level reset
4471 * @dev: device to reset
4472 * @probe: if true, return 0 if device can be reset this way
4473 *
4474 * Initiate a function level reset on @dev.
4475 */
4476int pcie_reset_flr(struct pci_dev *dev, bool probe)
4477{
4478 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4479 return -ENOTTY;
4480
4481 if (!(dev->devcap & PCI_EXP_DEVCAP_FLR))
4482 return -ENOTTY;
4483
4484 if (probe)
4485 return 0;
4486
4487 return pcie_flr(dev);
4488}
4489EXPORT_SYMBOL_GPL(pcie_reset_flr);
4490
4491static int pci_af_flr(struct pci_dev *dev, bool probe)
4492{
4493 int pos;
4494 u8 cap;
4495
4496 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4497 if (!pos)
4498 return -ENOTTY;
4499
4500 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4501 return -ENOTTY;
4502
4503 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4504 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4505 return -ENOTTY;
4506
4507 if (probe)
4508 return 0;
4509
4510 /*
4511 * Wait for Transaction Pending bit to clear. A word-aligned test
4512 * is used, so we use the control offset rather than status and shift
4513 * the test bit to match.
4514 */
4515 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4516 PCI_AF_STATUS_TP << 8))
4517 pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4518
4519 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4520
4521 if (dev->imm_ready)
4522 return 0;
4523
4524 /*
4525 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4526 * updated 27 July 2006; a device must complete an FLR within
4527 * 100ms, but may silently discard requests while the FLR is in
4528 * progress. Wait 100ms before trying to access the device.
4529 */
4530 msleep(100);
4531
4532 return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4533}
4534
4535/**
4536 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4537 * @dev: Device to reset.
4538 * @probe: if true, return 0 if the device can be reset this way.
4539 *
4540 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4541 * unset, it will be reinitialized internally when going from PCI_D3hot to
4542 * PCI_D0. If that's the case and the device is not in a low-power state
4543 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4544 *
4545 * NOTE: This causes the caller to sleep for twice the device power transition
4546 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4547 * by default (i.e. unless the @dev's d3hot_delay field has a different value).
4548 * Moreover, only devices in D0 can be reset by this function.
4549 */
4550static int pci_pm_reset(struct pci_dev *dev, bool probe)
4551{
4552 u16 csr;
4553
4554 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4555 return -ENOTTY;
4556
4557 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4558 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4559 return -ENOTTY;
4560
4561 if (probe)
4562 return 0;
4563
4564 if (dev->current_state != PCI_D0)
4565 return -EINVAL;
4566
4567 csr &= ~PCI_PM_CTRL_STATE_MASK;
4568 csr |= PCI_D3hot;
4569 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4570 pci_dev_d3_sleep(dev);
4571
4572 csr &= ~PCI_PM_CTRL_STATE_MASK;
4573 csr |= PCI_D0;
4574 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4575 pci_dev_d3_sleep(dev);
4576
4577 return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS);
4578}
4579
4580/**
4581 * pcie_wait_for_link_status - Wait for link status change
4582 * @pdev: Device whose link to wait for.
4583 * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE.
4584 * @active: Waiting for active or inactive?
4585 *
4586 * Return 0 if successful, or -ETIMEDOUT if status has not changed within
4587 * PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds.
4588 */
4589static int pcie_wait_for_link_status(struct pci_dev *pdev,
4590 bool use_lt, bool active)
4591{
4592 u16 lnksta_mask, lnksta_match;
4593 unsigned long end_jiffies;
4594 u16 lnksta;
4595
4596 lnksta_mask = use_lt ? PCI_EXP_LNKSTA_LT : PCI_EXP_LNKSTA_DLLLA;
4597 lnksta_match = active ? lnksta_mask : 0;
4598
4599 end_jiffies = jiffies + msecs_to_jiffies(PCIE_LINK_RETRAIN_TIMEOUT_MS);
4600 do {
4601 pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnksta);
4602 if ((lnksta & lnksta_mask) == lnksta_match)
4603 return 0;
4604 msleep(1);
4605 } while (time_before(jiffies, end_jiffies));
4606
4607 return -ETIMEDOUT;
4608}
4609
4610/**
4611 * pcie_retrain_link - Request a link retrain and wait for it to complete
4612 * @pdev: Device whose link to retrain.
4613 * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE, for status.
4614 *
4615 * Retrain completion status is retrieved from the Link Status Register
4616 * according to @use_lt. It is not verified whether the use of the DLLLA
4617 * bit is valid.
4618 *
4619 * Return 0 if successful, or -ETIMEDOUT if training has not completed
4620 * within PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds.
4621 */
4622int pcie_retrain_link(struct pci_dev *pdev, bool use_lt)
4623{
4624 int rc;
4625
4626 /*
4627 * Ensure the updated LNKCTL parameters are used during link
4628 * training by checking that there is no ongoing link training to
4629 * avoid LTSSM race as recommended in Implementation Note at the
4630 * end of PCIe r6.0.1 sec 7.5.3.7.
4631 */
4632 rc = pcie_wait_for_link_status(pdev, true, false);
4633 if (rc)
4634 return rc;
4635
4636 pcie_capability_set_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL);
4637 if (pdev->clear_retrain_link) {
4638 /*
4639 * Due to an erratum in some devices the Retrain Link bit
4640 * needs to be cleared again manually to allow the link
4641 * training to succeed.
4642 */
4643 pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL);
4644 }
4645
4646 return pcie_wait_for_link_status(pdev, use_lt, !use_lt);
4647}
4648
4649/**
4650 * pcie_wait_for_link_delay - Wait until link is active or inactive
4651 * @pdev: Bridge device
4652 * @active: waiting for active or inactive?
4653 * @delay: Delay to wait after link has become active (in ms)
4654 *
4655 * Use this to wait till link becomes active or inactive.
4656 */
4657static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active,
4658 int delay)
4659{
4660 int rc;
4661
4662 /*
4663 * Some controllers might not implement link active reporting. In this
4664 * case, we wait for 1000 ms + any delay requested by the caller.
4665 */
4666 if (!pdev->link_active_reporting) {
4667 msleep(PCIE_LINK_RETRAIN_TIMEOUT_MS + delay);
4668 return true;
4669 }
4670
4671 /*
4672 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4673 * after which we should expect an link active if the reset was
4674 * successful. If so, software must wait a minimum 100ms before sending
4675 * configuration requests to devices downstream this port.
4676 *
4677 * If the link fails to activate, either the device was physically
4678 * removed or the link is permanently failed.
4679 */
4680 if (active)
4681 msleep(20);
4682 rc = pcie_wait_for_link_status(pdev, false, active);
4683 if (active) {
4684 if (rc)
4685 rc = pcie_failed_link_retrain(pdev);
4686 if (rc)
4687 return false;
4688
4689 msleep(delay);
4690 return true;
4691 }
4692
4693 if (rc)
4694 return false;
4695
4696 return true;
4697}
4698
4699/**
4700 * pcie_wait_for_link - Wait until link is active or inactive
4701 * @pdev: Bridge device
4702 * @active: waiting for active or inactive?
4703 *
4704 * Use this to wait till link becomes active or inactive.
4705 */
4706bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
4707{
4708 return pcie_wait_for_link_delay(pdev, active, 100);
4709}
4710
4711/*
4712 * Find maximum D3cold delay required by all the devices on the bus. The
4713 * spec says 100 ms, but firmware can lower it and we allow drivers to
4714 * increase it as well.
4715 *
4716 * Called with @pci_bus_sem locked for reading.
4717 */
4718static int pci_bus_max_d3cold_delay(const struct pci_bus *bus)
4719{
4720 const struct pci_dev *pdev;
4721 int min_delay = 100;
4722 int max_delay = 0;
4723
4724 list_for_each_entry(pdev, &bus->devices, bus_list) {
4725 if (pdev->d3cold_delay < min_delay)
4726 min_delay = pdev->d3cold_delay;
4727 if (pdev->d3cold_delay > max_delay)
4728 max_delay = pdev->d3cold_delay;
4729 }
4730
4731 return max(min_delay, max_delay);
4732}
4733
4734/**
4735 * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible
4736 * @dev: PCI bridge
4737 * @reset_type: reset type in human-readable form
4738 *
4739 * Handle necessary delays before access to the devices on the secondary
4740 * side of the bridge are permitted after D3cold to D0 transition
4741 * or Conventional Reset.
4742 *
4743 * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For
4744 * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section
4745 * 4.3.2.
4746 *
4747 * Return 0 on success or -ENOTTY if the first device on the secondary bus
4748 * failed to become accessible.
4749 */
4750int pci_bridge_wait_for_secondary_bus(struct pci_dev *dev, char *reset_type)
4751{
4752 struct pci_dev *child;
4753 int delay;
4754
4755 if (pci_dev_is_disconnected(dev))
4756 return 0;
4757
4758 if (!pci_is_bridge(dev))
4759 return 0;
4760
4761 down_read(&pci_bus_sem);
4762
4763 /*
4764 * We only deal with devices that are present currently on the bus.
4765 * For any hot-added devices the access delay is handled in pciehp
4766 * board_added(). In case of ACPI hotplug the firmware is expected
4767 * to configure the devices before OS is notified.
4768 */
4769 if (!dev->subordinate || list_empty(&dev->subordinate->devices)) {
4770 up_read(&pci_bus_sem);
4771 return 0;
4772 }
4773
4774 /* Take d3cold_delay requirements into account */
4775 delay = pci_bus_max_d3cold_delay(dev->subordinate);
4776 if (!delay) {
4777 up_read(&pci_bus_sem);
4778 return 0;
4779 }
4780
4781 child = list_first_entry(&dev->subordinate->devices, struct pci_dev,
4782 bus_list);
4783 up_read(&pci_bus_sem);
4784
4785 /*
4786 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before
4787 * accessing the device after reset (that is 1000 ms + 100 ms).
4788 */
4789 if (!pci_is_pcie(dev)) {
4790 pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay);
4791 msleep(1000 + delay);
4792 return 0;
4793 }
4794
4795 /*
4796 * For PCIe downstream and root ports that do not support speeds
4797 * greater than 5 GT/s need to wait minimum 100 ms. For higher
4798 * speeds (gen3) we need to wait first for the data link layer to
4799 * become active.
4800 *
4801 * However, 100 ms is the minimum and the PCIe spec says the
4802 * software must allow at least 1s before it can determine that the
4803 * device that did not respond is a broken device. Also device can
4804 * take longer than that to respond if it indicates so through Request
4805 * Retry Status completions.
4806 *
4807 * Therefore we wait for 100 ms and check for the device presence
4808 * until the timeout expires.
4809 */
4810 if (!pcie_downstream_port(dev))
4811 return 0;
4812
4813 if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) {
4814 u16 status;
4815
4816 pci_dbg(dev, "waiting %d ms for downstream link\n", delay);
4817 msleep(delay);
4818
4819 if (!pci_dev_wait(child, reset_type, PCI_RESET_WAIT - delay))
4820 return 0;
4821
4822 /*
4823 * If the port supports active link reporting we now check
4824 * whether the link is active and if not bail out early with
4825 * the assumption that the device is not present anymore.
4826 */
4827 if (!dev->link_active_reporting)
4828 return -ENOTTY;
4829
4830 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &status);
4831 if (!(status & PCI_EXP_LNKSTA_DLLLA))
4832 return -ENOTTY;
4833
4834 return pci_dev_wait(child, reset_type,
4835 PCIE_RESET_READY_POLL_MS - PCI_RESET_WAIT);
4836 }
4837
4838 pci_dbg(dev, "waiting %d ms for downstream link, after activation\n",
4839 delay);
4840 if (!pcie_wait_for_link_delay(dev, true, delay)) {
4841 /* Did not train, no need to wait any further */
4842 pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n");
4843 return -ENOTTY;
4844 }
4845
4846 return pci_dev_wait(child, reset_type,
4847 PCIE_RESET_READY_POLL_MS - delay);
4848}
4849
4850void pci_reset_secondary_bus(struct pci_dev *dev)
4851{
4852 u16 ctrl;
4853
4854 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
4855 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
4856 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4857
4858 /*
4859 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double
4860 * this to 2ms to ensure that we meet the minimum requirement.
4861 */
4862 msleep(2);
4863
4864 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
4865 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4866}
4867
4868void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
4869{
4870 pci_reset_secondary_bus(dev);
4871}
4872
4873/**
4874 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
4875 * @dev: Bridge device
4876 *
4877 * Use the bridge control register to assert reset on the secondary bus.
4878 * Devices on the secondary bus are left in power-on state.
4879 */
4880int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
4881{
4882 pcibios_reset_secondary_bus(dev);
4883
4884 return pci_bridge_wait_for_secondary_bus(dev, "bus reset");
4885}
4886EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
4887
4888static int pci_parent_bus_reset(struct pci_dev *dev, bool probe)
4889{
4890 struct pci_dev *pdev;
4891
4892 if (pci_is_root_bus(dev->bus) || dev->subordinate ||
4893 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4894 return -ENOTTY;
4895
4896 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4897 if (pdev != dev)
4898 return -ENOTTY;
4899
4900 if (probe)
4901 return 0;
4902
4903 return pci_bridge_secondary_bus_reset(dev->bus->self);
4904}
4905
4906static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, bool probe)
4907{
4908 int rc = -ENOTTY;
4909
4910 if (!hotplug || !try_module_get(hotplug->owner))
4911 return rc;
4912
4913 if (hotplug->ops->reset_slot)
4914 rc = hotplug->ops->reset_slot(hotplug, probe);
4915
4916 module_put(hotplug->owner);
4917
4918 return rc;
4919}
4920
4921static int pci_dev_reset_slot_function(struct pci_dev *dev, bool probe)
4922{
4923 if (dev->multifunction || dev->subordinate || !dev->slot ||
4924 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4925 return -ENOTTY;
4926
4927 return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
4928}
4929
4930static int pci_reset_bus_function(struct pci_dev *dev, bool probe)
4931{
4932 int rc;
4933
4934 rc = pci_dev_reset_slot_function(dev, probe);
4935 if (rc != -ENOTTY)
4936 return rc;
4937 return pci_parent_bus_reset(dev, probe);
4938}
4939
4940void pci_dev_lock(struct pci_dev *dev)
4941{
4942 /* block PM suspend, driver probe, etc. */
4943 device_lock(&dev->dev);
4944 pci_cfg_access_lock(dev);
4945}
4946EXPORT_SYMBOL_GPL(pci_dev_lock);
4947
4948/* Return 1 on successful lock, 0 on contention */
4949int pci_dev_trylock(struct pci_dev *dev)
4950{
4951 if (device_trylock(&dev->dev)) {
4952 if (pci_cfg_access_trylock(dev))
4953 return 1;
4954 device_unlock(&dev->dev);
4955 }
4956
4957 return 0;
4958}
4959EXPORT_SYMBOL_GPL(pci_dev_trylock);
4960
4961void pci_dev_unlock(struct pci_dev *dev)
4962{
4963 pci_cfg_access_unlock(dev);
4964 device_unlock(&dev->dev);
4965}
4966EXPORT_SYMBOL_GPL(pci_dev_unlock);
4967
4968static void pci_dev_save_and_disable(struct pci_dev *dev)
4969{
4970 const struct pci_error_handlers *err_handler =
4971 dev->driver ? dev->driver->err_handler : NULL;
4972
4973 /*
4974 * dev->driver->err_handler->reset_prepare() is protected against
4975 * races with ->remove() by the device lock, which must be held by
4976 * the caller.
4977 */
4978 if (err_handler && err_handler->reset_prepare)
4979 err_handler->reset_prepare(dev);
4980
4981 /*
4982 * Wake-up device prior to save. PM registers default to D0 after
4983 * reset and a simple register restore doesn't reliably return
4984 * to a non-D0 state anyway.
4985 */
4986 pci_set_power_state(dev, PCI_D0);
4987
4988 pci_save_state(dev);
4989 /*
4990 * Disable the device by clearing the Command register, except for
4991 * INTx-disable which is set. This not only disables MMIO and I/O port
4992 * BARs, but also prevents the device from being Bus Master, preventing
4993 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3
4994 * compliant devices, INTx-disable prevents legacy interrupts.
4995 */
4996 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
4997}
4998
4999static void pci_dev_restore(struct pci_dev *dev)
5000{
5001 const struct pci_error_handlers *err_handler =
5002 dev->driver ? dev->driver->err_handler : NULL;
5003
5004 pci_restore_state(dev);
5005
5006 /*
5007 * dev->driver->err_handler->reset_done() is protected against
5008 * races with ->remove() by the device lock, which must be held by
5009 * the caller.
5010 */
5011 if (err_handler && err_handler->reset_done)
5012 err_handler->reset_done(dev);
5013}
5014
5015/* dev->reset_methods[] is a 0-terminated list of indices into this array */
5016static const struct pci_reset_fn_method pci_reset_fn_methods[] = {
5017 { },
5018 { pci_dev_specific_reset, .name = "device_specific" },
5019 { pci_dev_acpi_reset, .name = "acpi" },
5020 { pcie_reset_flr, .name = "flr" },
5021 { pci_af_flr, .name = "af_flr" },
5022 { pci_pm_reset, .name = "pm" },
5023 { pci_reset_bus_function, .name = "bus" },
5024};
5025
5026static ssize_t reset_method_show(struct device *dev,
5027 struct device_attribute *attr, char *buf)
5028{
5029 struct pci_dev *pdev = to_pci_dev(dev);
5030 ssize_t len = 0;
5031 int i, m;
5032
5033 for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5034 m = pdev->reset_methods[i];
5035 if (!m)
5036 break;
5037
5038 len += sysfs_emit_at(buf, len, "%s%s", len ? " " : "",
5039 pci_reset_fn_methods[m].name);
5040 }
5041
5042 if (len)
5043 len += sysfs_emit_at(buf, len, "\n");
5044
5045 return len;
5046}
5047
5048static int reset_method_lookup(const char *name)
5049{
5050 int m;
5051
5052 for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5053 if (sysfs_streq(name, pci_reset_fn_methods[m].name))
5054 return m;
5055 }
5056
5057 return 0; /* not found */
5058}
5059
5060static ssize_t reset_method_store(struct device *dev,
5061 struct device_attribute *attr,
5062 const char *buf, size_t count)
5063{
5064 struct pci_dev *pdev = to_pci_dev(dev);
5065 char *options, *name;
5066 int m, n;
5067 u8 reset_methods[PCI_NUM_RESET_METHODS] = { 0 };
5068
5069 if (sysfs_streq(buf, "")) {
5070 pdev->reset_methods[0] = 0;
5071 pci_warn(pdev, "All device reset methods disabled by user");
5072 return count;
5073 }
5074
5075 if (sysfs_streq(buf, "default")) {
5076 pci_init_reset_methods(pdev);
5077 return count;
5078 }
5079
5080 options = kstrndup(buf, count, GFP_KERNEL);
5081 if (!options)
5082 return -ENOMEM;
5083
5084 n = 0;
5085 while ((name = strsep(&options, " ")) != NULL) {
5086 if (sysfs_streq(name, ""))
5087 continue;
5088
5089 name = strim(name);
5090
5091 m = reset_method_lookup(name);
5092 if (!m) {
5093 pci_err(pdev, "Invalid reset method '%s'", name);
5094 goto error;
5095 }
5096
5097 if (pci_reset_fn_methods[m].reset_fn(pdev, PCI_RESET_PROBE)) {
5098 pci_err(pdev, "Unsupported reset method '%s'", name);
5099 goto error;
5100 }
5101
5102 if (n == PCI_NUM_RESET_METHODS - 1) {
5103 pci_err(pdev, "Too many reset methods\n");
5104 goto error;
5105 }
5106
5107 reset_methods[n++] = m;
5108 }
5109
5110 reset_methods[n] = 0;
5111
5112 /* Warn if dev-specific supported but not highest priority */
5113 if (pci_reset_fn_methods[1].reset_fn(pdev, PCI_RESET_PROBE) == 0 &&
5114 reset_methods[0] != 1)
5115 pci_warn(pdev, "Device-specific reset disabled/de-prioritized by user");
5116 memcpy(pdev->reset_methods, reset_methods, sizeof(pdev->reset_methods));
5117 kfree(options);
5118 return count;
5119
5120error:
5121 /* Leave previous methods unchanged */
5122 kfree(options);
5123 return -EINVAL;
5124}
5125static DEVICE_ATTR_RW(reset_method);
5126
5127static struct attribute *pci_dev_reset_method_attrs[] = {
5128 &dev_attr_reset_method.attr,
5129 NULL,
5130};
5131
5132static umode_t pci_dev_reset_method_attr_is_visible(struct kobject *kobj,
5133 struct attribute *a, int n)
5134{
5135 struct pci_dev *pdev = to_pci_dev(kobj_to_dev(kobj));
5136
5137 if (!pci_reset_supported(pdev))
5138 return 0;
5139
5140 return a->mode;
5141}
5142
5143const struct attribute_group pci_dev_reset_method_attr_group = {
5144 .attrs = pci_dev_reset_method_attrs,
5145 .is_visible = pci_dev_reset_method_attr_is_visible,
5146};
5147
5148/**
5149 * __pci_reset_function_locked - reset a PCI device function while holding
5150 * the @dev mutex lock.
5151 * @dev: PCI device to reset
5152 *
5153 * Some devices allow an individual function to be reset without affecting
5154 * other functions in the same device. The PCI device must be responsive
5155 * to PCI config space in order to use this function.
5156 *
5157 * The device function is presumed to be unused and the caller is holding
5158 * the device mutex lock when this function is called.
5159 *
5160 * Resetting the device will make the contents of PCI configuration space
5161 * random, so any caller of this must be prepared to reinitialise the
5162 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
5163 * etc.
5164 *
5165 * Returns 0 if the device function was successfully reset or negative if the
5166 * device doesn't support resetting a single function.
5167 */
5168int __pci_reset_function_locked(struct pci_dev *dev)
5169{
5170 int i, m, rc;
5171
5172 might_sleep();
5173
5174 /*
5175 * A reset method returns -ENOTTY if it doesn't support this device and
5176 * we should try the next method.
5177 *
5178 * If it returns 0 (success), we're finished. If it returns any other
5179 * error, we're also finished: this indicates that further reset
5180 * mechanisms might be broken on the device.
5181 */
5182 for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5183 m = dev->reset_methods[i];
5184 if (!m)
5185 return -ENOTTY;
5186
5187 rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_DO_RESET);
5188 if (!rc)
5189 return 0;
5190 if (rc != -ENOTTY)
5191 return rc;
5192 }
5193
5194 return -ENOTTY;
5195}
5196EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
5197
5198/**
5199 * pci_init_reset_methods - check whether device can be safely reset
5200 * and store supported reset mechanisms.
5201 * @dev: PCI device to check for reset mechanisms
5202 *
5203 * Some devices allow an individual function to be reset without affecting
5204 * other functions in the same device. The PCI device must be in D0-D3hot
5205 * state.
5206 *
5207 * Stores reset mechanisms supported by device in reset_methods byte array
5208 * which is a member of struct pci_dev.
5209 */
5210void pci_init_reset_methods(struct pci_dev *dev)
5211{
5212 int m, i, rc;
5213
5214 BUILD_BUG_ON(ARRAY_SIZE(pci_reset_fn_methods) != PCI_NUM_RESET_METHODS);
5215
5216 might_sleep();
5217
5218 i = 0;
5219 for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5220 rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_PROBE);
5221 if (!rc)
5222 dev->reset_methods[i++] = m;
5223 else if (rc != -ENOTTY)
5224 break;
5225 }
5226
5227 dev->reset_methods[i] = 0;
5228}
5229
5230/**
5231 * pci_reset_function - quiesce and reset a PCI device function
5232 * @dev: PCI device to reset
5233 *
5234 * Some devices allow an individual function to be reset without affecting
5235 * other functions in the same device. The PCI device must be responsive
5236 * to PCI config space in order to use this function.
5237 *
5238 * This function does not just reset the PCI portion of a device, but
5239 * clears all the state associated with the device. This function differs
5240 * from __pci_reset_function_locked() in that it saves and restores device state
5241 * over the reset and takes the PCI device lock.
5242 *
5243 * Returns 0 if the device function was successfully reset or negative if the
5244 * device doesn't support resetting a single function.
5245 */
5246int pci_reset_function(struct pci_dev *dev)
5247{
5248 int rc;
5249
5250 if (!pci_reset_supported(dev))
5251 return -ENOTTY;
5252
5253 pci_dev_lock(dev);
5254 pci_dev_save_and_disable(dev);
5255
5256 rc = __pci_reset_function_locked(dev);
5257
5258 pci_dev_restore(dev);
5259 pci_dev_unlock(dev);
5260
5261 return rc;
5262}
5263EXPORT_SYMBOL_GPL(pci_reset_function);
5264
5265/**
5266 * pci_reset_function_locked - quiesce and reset a PCI device function
5267 * @dev: PCI device to reset
5268 *
5269 * Some devices allow an individual function to be reset without affecting
5270 * other functions in the same device. The PCI device must be responsive
5271 * to PCI config space in order to use this function.
5272 *
5273 * This function does not just reset the PCI portion of a device, but
5274 * clears all the state associated with the device. This function differs
5275 * from __pci_reset_function_locked() in that it saves and restores device state
5276 * over the reset. It also differs from pci_reset_function() in that it
5277 * requires the PCI device lock to be held.
5278 *
5279 * Returns 0 if the device function was successfully reset or negative if the
5280 * device doesn't support resetting a single function.
5281 */
5282int pci_reset_function_locked(struct pci_dev *dev)
5283{
5284 int rc;
5285
5286 if (!pci_reset_supported(dev))
5287 return -ENOTTY;
5288
5289 pci_dev_save_and_disable(dev);
5290
5291 rc = __pci_reset_function_locked(dev);
5292
5293 pci_dev_restore(dev);
5294
5295 return rc;
5296}
5297EXPORT_SYMBOL_GPL(pci_reset_function_locked);
5298
5299/**
5300 * pci_try_reset_function - quiesce and reset a PCI device function
5301 * @dev: PCI device to reset
5302 *
5303 * Same as above, except return -EAGAIN if unable to lock device.
5304 */
5305int pci_try_reset_function(struct pci_dev *dev)
5306{
5307 int rc;
5308
5309 if (!pci_reset_supported(dev))
5310 return -ENOTTY;
5311
5312 if (!pci_dev_trylock(dev))
5313 return -EAGAIN;
5314
5315 pci_dev_save_and_disable(dev);
5316 rc = __pci_reset_function_locked(dev);
5317 pci_dev_restore(dev);
5318 pci_dev_unlock(dev);
5319
5320 return rc;
5321}
5322EXPORT_SYMBOL_GPL(pci_try_reset_function);
5323
5324/* Do any devices on or below this bus prevent a bus reset? */
5325static bool pci_bus_resettable(struct pci_bus *bus)
5326{
5327 struct pci_dev *dev;
5328
5329
5330 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5331 return false;
5332
5333 list_for_each_entry(dev, &bus->devices, bus_list) {
5334 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5335 (dev->subordinate && !pci_bus_resettable(dev->subordinate)))
5336 return false;
5337 }
5338
5339 return true;
5340}
5341
5342/* Lock devices from the top of the tree down */
5343static void pci_bus_lock(struct pci_bus *bus)
5344{
5345 struct pci_dev *dev;
5346
5347 list_for_each_entry(dev, &bus->devices, bus_list) {
5348 pci_dev_lock(dev);
5349 if (dev->subordinate)
5350 pci_bus_lock(dev->subordinate);
5351 }
5352}
5353
5354/* Unlock devices from the bottom of the tree up */
5355static void pci_bus_unlock(struct pci_bus *bus)
5356{
5357 struct pci_dev *dev;
5358
5359 list_for_each_entry(dev, &bus->devices, bus_list) {
5360 if (dev->subordinate)
5361 pci_bus_unlock(dev->subordinate);
5362 pci_dev_unlock(dev);
5363 }
5364}
5365
5366/* Return 1 on successful lock, 0 on contention */
5367static int pci_bus_trylock(struct pci_bus *bus)
5368{
5369 struct pci_dev *dev;
5370
5371 list_for_each_entry(dev, &bus->devices, bus_list) {
5372 if (!pci_dev_trylock(dev))
5373 goto unlock;
5374 if (dev->subordinate) {
5375 if (!pci_bus_trylock(dev->subordinate)) {
5376 pci_dev_unlock(dev);
5377 goto unlock;
5378 }
5379 }
5380 }
5381 return 1;
5382
5383unlock:
5384 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5385 if (dev->subordinate)
5386 pci_bus_unlock(dev->subordinate);
5387 pci_dev_unlock(dev);
5388 }
5389 return 0;
5390}
5391
5392/* Do any devices on or below this slot prevent a bus reset? */
5393static bool pci_slot_resettable(struct pci_slot *slot)
5394{
5395 struct pci_dev *dev;
5396
5397 if (slot->bus->self &&
5398 (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5399 return false;
5400
5401 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5402 if (!dev->slot || dev->slot != slot)
5403 continue;
5404 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5405 (dev->subordinate && !pci_bus_resettable(dev->subordinate)))
5406 return false;
5407 }
5408
5409 return true;
5410}
5411
5412/* Lock devices from the top of the tree down */
5413static void pci_slot_lock(struct pci_slot *slot)
5414{
5415 struct pci_dev *dev;
5416
5417 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5418 if (!dev->slot || dev->slot != slot)
5419 continue;
5420 pci_dev_lock(dev);
5421 if (dev->subordinate)
5422 pci_bus_lock(dev->subordinate);
5423 }
5424}
5425
5426/* Unlock devices from the bottom of the tree up */
5427static void pci_slot_unlock(struct pci_slot *slot)
5428{
5429 struct pci_dev *dev;
5430
5431 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5432 if (!dev->slot || dev->slot != slot)
5433 continue;
5434 if (dev->subordinate)
5435 pci_bus_unlock(dev->subordinate);
5436 pci_dev_unlock(dev);
5437 }
5438}
5439
5440/* Return 1 on successful lock, 0 on contention */
5441static int pci_slot_trylock(struct pci_slot *slot)
5442{
5443 struct pci_dev *dev;
5444
5445 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5446 if (!dev->slot || dev->slot != slot)
5447 continue;
5448 if (!pci_dev_trylock(dev))
5449 goto unlock;
5450 if (dev->subordinate) {
5451 if (!pci_bus_trylock(dev->subordinate)) {
5452 pci_dev_unlock(dev);
5453 goto unlock;
5454 }
5455 }
5456 }
5457 return 1;
5458
5459unlock:
5460 list_for_each_entry_continue_reverse(dev,
5461 &slot->bus->devices, bus_list) {
5462 if (!dev->slot || dev->slot != slot)
5463 continue;
5464 if (dev->subordinate)
5465 pci_bus_unlock(dev->subordinate);
5466 pci_dev_unlock(dev);
5467 }
5468 return 0;
5469}
5470
5471/*
5472 * Save and disable devices from the top of the tree down while holding
5473 * the @dev mutex lock for the entire tree.
5474 */
5475static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5476{
5477 struct pci_dev *dev;
5478
5479 list_for_each_entry(dev, &bus->devices, bus_list) {
5480 pci_dev_save_and_disable(dev);
5481 if (dev->subordinate)
5482 pci_bus_save_and_disable_locked(dev->subordinate);
5483 }
5484}
5485
5486/*
5487 * Restore devices from top of the tree down while holding @dev mutex lock
5488 * for the entire tree. Parent bridges need to be restored before we can
5489 * get to subordinate devices.
5490 */
5491static void pci_bus_restore_locked(struct pci_bus *bus)
5492{
5493 struct pci_dev *dev;
5494
5495 list_for_each_entry(dev, &bus->devices, bus_list) {
5496 pci_dev_restore(dev);
5497 if (dev->subordinate)
5498 pci_bus_restore_locked(dev->subordinate);
5499 }
5500}
5501
5502/*
5503 * Save and disable devices from the top of the tree down while holding
5504 * the @dev mutex lock for the entire tree.
5505 */
5506static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5507{
5508 struct pci_dev *dev;
5509
5510 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5511 if (!dev->slot || dev->slot != slot)
5512 continue;
5513 pci_dev_save_and_disable(dev);
5514 if (dev->subordinate)
5515 pci_bus_save_and_disable_locked(dev->subordinate);
5516 }
5517}
5518
5519/*
5520 * Restore devices from top of the tree down while holding @dev mutex lock
5521 * for the entire tree. Parent bridges need to be restored before we can
5522 * get to subordinate devices.
5523 */
5524static void pci_slot_restore_locked(struct pci_slot *slot)
5525{
5526 struct pci_dev *dev;
5527
5528 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5529 if (!dev->slot || dev->slot != slot)
5530 continue;
5531 pci_dev_restore(dev);
5532 if (dev->subordinate)
5533 pci_bus_restore_locked(dev->subordinate);
5534 }
5535}
5536
5537static int pci_slot_reset(struct pci_slot *slot, bool probe)
5538{
5539 int rc;
5540
5541 if (!slot || !pci_slot_resettable(slot))
5542 return -ENOTTY;
5543
5544 if (!probe)
5545 pci_slot_lock(slot);
5546
5547 might_sleep();
5548
5549 rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5550
5551 if (!probe)
5552 pci_slot_unlock(slot);
5553
5554 return rc;
5555}
5556
5557/**
5558 * pci_probe_reset_slot - probe whether a PCI slot can be reset
5559 * @slot: PCI slot to probe
5560 *
5561 * Return 0 if slot can be reset, negative if a slot reset is not supported.
5562 */
5563int pci_probe_reset_slot(struct pci_slot *slot)
5564{
5565 return pci_slot_reset(slot, PCI_RESET_PROBE);
5566}
5567EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5568
5569/**
5570 * __pci_reset_slot - Try to reset a PCI slot
5571 * @slot: PCI slot to reset
5572 *
5573 * A PCI bus may host multiple slots, each slot may support a reset mechanism
5574 * independent of other slots. For instance, some slots may support slot power
5575 * control. In the case of a 1:1 bus to slot architecture, this function may
5576 * wrap the bus reset to avoid spurious slot related events such as hotplug.
5577 * Generally a slot reset should be attempted before a bus reset. All of the
5578 * function of the slot and any subordinate buses behind the slot are reset
5579 * through this function. PCI config space of all devices in the slot and
5580 * behind the slot is saved before and restored after reset.
5581 *
5582 * Same as above except return -EAGAIN if the slot cannot be locked
5583 */
5584static int __pci_reset_slot(struct pci_slot *slot)
5585{
5586 int rc;
5587
5588 rc = pci_slot_reset(slot, PCI_RESET_PROBE);
5589 if (rc)
5590 return rc;
5591
5592 if (pci_slot_trylock(slot)) {
5593 pci_slot_save_and_disable_locked(slot);
5594 might_sleep();
5595 rc = pci_reset_hotplug_slot(slot->hotplug, PCI_RESET_DO_RESET);
5596 pci_slot_restore_locked(slot);
5597 pci_slot_unlock(slot);
5598 } else
5599 rc = -EAGAIN;
5600
5601 return rc;
5602}
5603
5604static int pci_bus_reset(struct pci_bus *bus, bool probe)
5605{
5606 int ret;
5607
5608 if (!bus->self || !pci_bus_resettable(bus))
5609 return -ENOTTY;
5610
5611 if (probe)
5612 return 0;
5613
5614 pci_bus_lock(bus);
5615
5616 might_sleep();
5617
5618 ret = pci_bridge_secondary_bus_reset(bus->self);
5619
5620 pci_bus_unlock(bus);
5621
5622 return ret;
5623}
5624
5625/**
5626 * pci_bus_error_reset - reset the bridge's subordinate bus
5627 * @bridge: The parent device that connects to the bus to reset
5628 *
5629 * This function will first try to reset the slots on this bus if the method is
5630 * available. If slot reset fails or is not available, this will fall back to a
5631 * secondary bus reset.
5632 */
5633int pci_bus_error_reset(struct pci_dev *bridge)
5634{
5635 struct pci_bus *bus = bridge->subordinate;
5636 struct pci_slot *slot;
5637
5638 if (!bus)
5639 return -ENOTTY;
5640
5641 mutex_lock(&pci_slot_mutex);
5642 if (list_empty(&bus->slots))
5643 goto bus_reset;
5644
5645 list_for_each_entry(slot, &bus->slots, list)
5646 if (pci_probe_reset_slot(slot))
5647 goto bus_reset;
5648
5649 list_for_each_entry(slot, &bus->slots, list)
5650 if (pci_slot_reset(slot, PCI_RESET_DO_RESET))
5651 goto bus_reset;
5652
5653 mutex_unlock(&pci_slot_mutex);
5654 return 0;
5655bus_reset:
5656 mutex_unlock(&pci_slot_mutex);
5657 return pci_bus_reset(bridge->subordinate, PCI_RESET_DO_RESET);
5658}
5659
5660/**
5661 * pci_probe_reset_bus - probe whether a PCI bus can be reset
5662 * @bus: PCI bus to probe
5663 *
5664 * Return 0 if bus can be reset, negative if a bus reset is not supported.
5665 */
5666int pci_probe_reset_bus(struct pci_bus *bus)
5667{
5668 return pci_bus_reset(bus, PCI_RESET_PROBE);
5669}
5670EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5671
5672/**
5673 * __pci_reset_bus - Try to reset a PCI bus
5674 * @bus: top level PCI bus to reset
5675 *
5676 * Same as above except return -EAGAIN if the bus cannot be locked
5677 */
5678static int __pci_reset_bus(struct pci_bus *bus)
5679{
5680 int rc;
5681
5682 rc = pci_bus_reset(bus, PCI_RESET_PROBE);
5683 if (rc)
5684 return rc;
5685
5686 if (pci_bus_trylock(bus)) {
5687 pci_bus_save_and_disable_locked(bus);
5688 might_sleep();
5689 rc = pci_bridge_secondary_bus_reset(bus->self);
5690 pci_bus_restore_locked(bus);
5691 pci_bus_unlock(bus);
5692 } else
5693 rc = -EAGAIN;
5694
5695 return rc;
5696}
5697
5698/**
5699 * pci_reset_bus - Try to reset a PCI bus
5700 * @pdev: top level PCI device to reset via slot/bus
5701 *
5702 * Same as above except return -EAGAIN if the bus cannot be locked
5703 */
5704int pci_reset_bus(struct pci_dev *pdev)
5705{
5706 return (!pci_probe_reset_slot(pdev->slot)) ?
5707 __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
5708}
5709EXPORT_SYMBOL_GPL(pci_reset_bus);
5710
5711/**
5712 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
5713 * @dev: PCI device to query
5714 *
5715 * Returns mmrbc: maximum designed memory read count in bytes or
5716 * appropriate error value.
5717 */
5718int pcix_get_max_mmrbc(struct pci_dev *dev)
5719{
5720 int cap;
5721 u32 stat;
5722
5723 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5724 if (!cap)
5725 return -EINVAL;
5726
5727 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5728 return -EINVAL;
5729
5730 return 512 << FIELD_GET(PCI_X_STATUS_MAX_READ, stat);
5731}
5732EXPORT_SYMBOL(pcix_get_max_mmrbc);
5733
5734/**
5735 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
5736 * @dev: PCI device to query
5737 *
5738 * Returns mmrbc: maximum memory read count in bytes or appropriate error
5739 * value.
5740 */
5741int pcix_get_mmrbc(struct pci_dev *dev)
5742{
5743 int cap;
5744 u16 cmd;
5745
5746 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5747 if (!cap)
5748 return -EINVAL;
5749
5750 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5751 return -EINVAL;
5752
5753 return 512 << FIELD_GET(PCI_X_CMD_MAX_READ, cmd);
5754}
5755EXPORT_SYMBOL(pcix_get_mmrbc);
5756
5757/**
5758 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
5759 * @dev: PCI device to query
5760 * @mmrbc: maximum memory read count in bytes
5761 * valid values are 512, 1024, 2048, 4096
5762 *
5763 * If possible sets maximum memory read byte count, some bridges have errata
5764 * that prevent this.
5765 */
5766int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
5767{
5768 int cap;
5769 u32 stat, v, o;
5770 u16 cmd;
5771
5772 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
5773 return -EINVAL;
5774
5775 v = ffs(mmrbc) - 10;
5776
5777 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5778 if (!cap)
5779 return -EINVAL;
5780
5781 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5782 return -EINVAL;
5783
5784 if (v > FIELD_GET(PCI_X_STATUS_MAX_READ, stat))
5785 return -E2BIG;
5786
5787 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5788 return -EINVAL;
5789
5790 o = FIELD_GET(PCI_X_CMD_MAX_READ, cmd);
5791 if (o != v) {
5792 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
5793 return -EIO;
5794
5795 cmd &= ~PCI_X_CMD_MAX_READ;
5796 cmd |= FIELD_PREP(PCI_X_CMD_MAX_READ, v);
5797 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
5798 return -EIO;
5799 }
5800 return 0;
5801}
5802EXPORT_SYMBOL(pcix_set_mmrbc);
5803
5804/**
5805 * pcie_get_readrq - get PCI Express read request size
5806 * @dev: PCI device to query
5807 *
5808 * Returns maximum memory read request in bytes or appropriate error value.
5809 */
5810int pcie_get_readrq(struct pci_dev *dev)
5811{
5812 u16 ctl;
5813
5814 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5815
5816 return 128 << FIELD_GET(PCI_EXP_DEVCTL_READRQ, ctl);
5817}
5818EXPORT_SYMBOL(pcie_get_readrq);
5819
5820/**
5821 * pcie_set_readrq - set PCI Express maximum memory read request
5822 * @dev: PCI device to query
5823 * @rq: maximum memory read count in bytes
5824 * valid values are 128, 256, 512, 1024, 2048, 4096
5825 *
5826 * If possible sets maximum memory read request in bytes
5827 */
5828int pcie_set_readrq(struct pci_dev *dev, int rq)
5829{
5830 u16 v;
5831 int ret;
5832 struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
5833
5834 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
5835 return -EINVAL;
5836
5837 /*
5838 * If using the "performance" PCIe config, we clamp the read rq
5839 * size to the max packet size to keep the host bridge from
5840 * generating requests larger than we can cope with.
5841 */
5842 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
5843 int mps = pcie_get_mps(dev);
5844
5845 if (mps < rq)
5846 rq = mps;
5847 }
5848
5849 v = FIELD_PREP(PCI_EXP_DEVCTL_READRQ, ffs(rq) - 8);
5850
5851 if (bridge->no_inc_mrrs) {
5852 int max_mrrs = pcie_get_readrq(dev);
5853
5854 if (rq > max_mrrs) {
5855 pci_info(dev, "can't set Max_Read_Request_Size to %d; max is %d\n", rq, max_mrrs);
5856 return -EINVAL;
5857 }
5858 }
5859
5860 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5861 PCI_EXP_DEVCTL_READRQ, v);
5862
5863 return pcibios_err_to_errno(ret);
5864}
5865EXPORT_SYMBOL(pcie_set_readrq);
5866
5867/**
5868 * pcie_get_mps - get PCI Express maximum payload size
5869 * @dev: PCI device to query
5870 *
5871 * Returns maximum payload size in bytes
5872 */
5873int pcie_get_mps(struct pci_dev *dev)
5874{
5875 u16 ctl;
5876
5877 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5878
5879 return 128 << FIELD_GET(PCI_EXP_DEVCTL_PAYLOAD, ctl);
5880}
5881EXPORT_SYMBOL(pcie_get_mps);
5882
5883/**
5884 * pcie_set_mps - set PCI Express maximum payload size
5885 * @dev: PCI device to query
5886 * @mps: maximum payload size in bytes
5887 * valid values are 128, 256, 512, 1024, 2048, 4096
5888 *
5889 * If possible sets maximum payload size
5890 */
5891int pcie_set_mps(struct pci_dev *dev, int mps)
5892{
5893 u16 v;
5894 int ret;
5895
5896 if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
5897 return -EINVAL;
5898
5899 v = ffs(mps) - 8;
5900 if (v > dev->pcie_mpss)
5901 return -EINVAL;
5902 v = FIELD_PREP(PCI_EXP_DEVCTL_PAYLOAD, v);
5903
5904 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5905 PCI_EXP_DEVCTL_PAYLOAD, v);
5906
5907 return pcibios_err_to_errno(ret);
5908}
5909EXPORT_SYMBOL(pcie_set_mps);
5910
5911static enum pci_bus_speed to_pcie_link_speed(u16 lnksta)
5912{
5913 return pcie_link_speed[FIELD_GET(PCI_EXP_LNKSTA_CLS, lnksta)];
5914}
5915
5916int pcie_link_speed_mbps(struct pci_dev *pdev)
5917{
5918 u16 lnksta;
5919 int err;
5920
5921 err = pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnksta);
5922 if (err)
5923 return err;
5924
5925 switch (to_pcie_link_speed(lnksta)) {
5926 case PCIE_SPEED_2_5GT:
5927 return 2500;
5928 case PCIE_SPEED_5_0GT:
5929 return 5000;
5930 case PCIE_SPEED_8_0GT:
5931 return 8000;
5932 case PCIE_SPEED_16_0GT:
5933 return 16000;
5934 case PCIE_SPEED_32_0GT:
5935 return 32000;
5936 case PCIE_SPEED_64_0GT:
5937 return 64000;
5938 default:
5939 break;
5940 }
5941
5942 return -EINVAL;
5943}
5944EXPORT_SYMBOL(pcie_link_speed_mbps);
5945
5946/**
5947 * pcie_bandwidth_available - determine minimum link settings of a PCIe
5948 * device and its bandwidth limitation
5949 * @dev: PCI device to query
5950 * @limiting_dev: storage for device causing the bandwidth limitation
5951 * @speed: storage for speed of limiting device
5952 * @width: storage for width of limiting device
5953 *
5954 * Walk up the PCI device chain and find the point where the minimum
5955 * bandwidth is available. Return the bandwidth available there and (if
5956 * limiting_dev, speed, and width pointers are supplied) information about
5957 * that point. The bandwidth returned is in Mb/s, i.e., megabits/second of
5958 * raw bandwidth.
5959 */
5960u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
5961 enum pci_bus_speed *speed,
5962 enum pcie_link_width *width)
5963{
5964 u16 lnksta;
5965 enum pci_bus_speed next_speed;
5966 enum pcie_link_width next_width;
5967 u32 bw, next_bw;
5968
5969 if (speed)
5970 *speed = PCI_SPEED_UNKNOWN;
5971 if (width)
5972 *width = PCIE_LNK_WIDTH_UNKNOWN;
5973
5974 bw = 0;
5975
5976 while (dev) {
5977 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
5978
5979 next_speed = to_pcie_link_speed(lnksta);
5980 next_width = FIELD_GET(PCI_EXP_LNKSTA_NLW, lnksta);
5981
5982 next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
5983
5984 /* Check if current device limits the total bandwidth */
5985 if (!bw || next_bw <= bw) {
5986 bw = next_bw;
5987
5988 if (limiting_dev)
5989 *limiting_dev = dev;
5990 if (speed)
5991 *speed = next_speed;
5992 if (width)
5993 *width = next_width;
5994 }
5995
5996 dev = pci_upstream_bridge(dev);
5997 }
5998
5999 return bw;
6000}
6001EXPORT_SYMBOL(pcie_bandwidth_available);
6002
6003/**
6004 * pcie_get_speed_cap - query for the PCI device's link speed capability
6005 * @dev: PCI device to query
6006 *
6007 * Query the PCI device speed capability. Return the maximum link speed
6008 * supported by the device.
6009 */
6010enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
6011{
6012 u32 lnkcap2, lnkcap;
6013
6014 /*
6015 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18. The
6016 * implementation note there recommends using the Supported Link
6017 * Speeds Vector in Link Capabilities 2 when supported.
6018 *
6019 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
6020 * should use the Supported Link Speeds field in Link Capabilities,
6021 * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
6022 */
6023 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
6024
6025 /* PCIe r3.0-compliant */
6026 if (lnkcap2)
6027 return PCIE_LNKCAP2_SLS2SPEED(lnkcap2);
6028
6029 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6030 if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
6031 return PCIE_SPEED_5_0GT;
6032 else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
6033 return PCIE_SPEED_2_5GT;
6034
6035 return PCI_SPEED_UNKNOWN;
6036}
6037EXPORT_SYMBOL(pcie_get_speed_cap);
6038
6039/**
6040 * pcie_get_width_cap - query for the PCI device's link width capability
6041 * @dev: PCI device to query
6042 *
6043 * Query the PCI device width capability. Return the maximum link width
6044 * supported by the device.
6045 */
6046enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
6047{
6048 u32 lnkcap;
6049
6050 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6051 if (lnkcap)
6052 return FIELD_GET(PCI_EXP_LNKCAP_MLW, lnkcap);
6053
6054 return PCIE_LNK_WIDTH_UNKNOWN;
6055}
6056EXPORT_SYMBOL(pcie_get_width_cap);
6057
6058/**
6059 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
6060 * @dev: PCI device
6061 * @speed: storage for link speed
6062 * @width: storage for link width
6063 *
6064 * Calculate a PCI device's link bandwidth by querying for its link speed
6065 * and width, multiplying them, and applying encoding overhead. The result
6066 * is in Mb/s, i.e., megabits/second of raw bandwidth.
6067 */
6068u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
6069 enum pcie_link_width *width)
6070{
6071 *speed = pcie_get_speed_cap(dev);
6072 *width = pcie_get_width_cap(dev);
6073
6074 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
6075 return 0;
6076
6077 return *width * PCIE_SPEED2MBS_ENC(*speed);
6078}
6079
6080/**
6081 * __pcie_print_link_status - Report the PCI device's link speed and width
6082 * @dev: PCI device to query
6083 * @verbose: Print info even when enough bandwidth is available
6084 *
6085 * If the available bandwidth at the device is less than the device is
6086 * capable of, report the device's maximum possible bandwidth and the
6087 * upstream link that limits its performance. If @verbose, always print
6088 * the available bandwidth, even if the device isn't constrained.
6089 */
6090void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
6091{
6092 enum pcie_link_width width, width_cap;
6093 enum pci_bus_speed speed, speed_cap;
6094 struct pci_dev *limiting_dev = NULL;
6095 u32 bw_avail, bw_cap;
6096
6097 bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
6098 bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
6099
6100 if (bw_avail >= bw_cap && verbose)
6101 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
6102 bw_cap / 1000, bw_cap % 1000,
6103 pci_speed_string(speed_cap), width_cap);
6104 else if (bw_avail < bw_cap)
6105 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
6106 bw_avail / 1000, bw_avail % 1000,
6107 pci_speed_string(speed), width,
6108 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
6109 bw_cap / 1000, bw_cap % 1000,
6110 pci_speed_string(speed_cap), width_cap);
6111}
6112
6113/**
6114 * pcie_print_link_status - Report the PCI device's link speed and width
6115 * @dev: PCI device to query
6116 *
6117 * Report the available bandwidth at the device.
6118 */
6119void pcie_print_link_status(struct pci_dev *dev)
6120{
6121 __pcie_print_link_status(dev, true);
6122}
6123EXPORT_SYMBOL(pcie_print_link_status);
6124
6125/**
6126 * pci_select_bars - Make BAR mask from the type of resource
6127 * @dev: the PCI device for which BAR mask is made
6128 * @flags: resource type mask to be selected
6129 *
6130 * This helper routine makes bar mask from the type of resource.
6131 */
6132int pci_select_bars(struct pci_dev *dev, unsigned long flags)
6133{
6134 int i, bars = 0;
6135 for (i = 0; i < PCI_NUM_RESOURCES; i++)
6136 if (pci_resource_flags(dev, i) & flags)
6137 bars |= (1 << i);
6138 return bars;
6139}
6140EXPORT_SYMBOL(pci_select_bars);
6141
6142/* Some architectures require additional programming to enable VGA */
6143static arch_set_vga_state_t arch_set_vga_state;
6144
6145void __init pci_register_set_vga_state(arch_set_vga_state_t func)
6146{
6147 arch_set_vga_state = func; /* NULL disables */
6148}
6149
6150static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
6151 unsigned int command_bits, u32 flags)
6152{
6153 if (arch_set_vga_state)
6154 return arch_set_vga_state(dev, decode, command_bits,
6155 flags);
6156 return 0;
6157}
6158
6159/**
6160 * pci_set_vga_state - set VGA decode state on device and parents if requested
6161 * @dev: the PCI device
6162 * @decode: true = enable decoding, false = disable decoding
6163 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
6164 * @flags: traverse ancestors and change bridges
6165 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
6166 */
6167int pci_set_vga_state(struct pci_dev *dev, bool decode,
6168 unsigned int command_bits, u32 flags)
6169{
6170 struct pci_bus *bus;
6171 struct pci_dev *bridge;
6172 u16 cmd;
6173 int rc;
6174
6175 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
6176
6177 /* ARCH specific VGA enables */
6178 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
6179 if (rc)
6180 return rc;
6181
6182 if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
6183 pci_read_config_word(dev, PCI_COMMAND, &cmd);
6184 if (decode)
6185 cmd |= command_bits;
6186 else
6187 cmd &= ~command_bits;
6188 pci_write_config_word(dev, PCI_COMMAND, cmd);
6189 }
6190
6191 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
6192 return 0;
6193
6194 bus = dev->bus;
6195 while (bus) {
6196 bridge = bus->self;
6197 if (bridge) {
6198 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
6199 &cmd);
6200 if (decode)
6201 cmd |= PCI_BRIDGE_CTL_VGA;
6202 else
6203 cmd &= ~PCI_BRIDGE_CTL_VGA;
6204 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
6205 cmd);
6206 }
6207 bus = bus->parent;
6208 }
6209 return 0;
6210}
6211
6212#ifdef CONFIG_ACPI
6213bool pci_pr3_present(struct pci_dev *pdev)
6214{
6215 struct acpi_device *adev;
6216
6217 if (acpi_disabled)
6218 return false;
6219
6220 adev = ACPI_COMPANION(&pdev->dev);
6221 if (!adev)
6222 return false;
6223
6224 return adev->power.flags.power_resources &&
6225 acpi_has_method(adev->handle, "_PR3");
6226}
6227EXPORT_SYMBOL_GPL(pci_pr3_present);
6228#endif
6229
6230/**
6231 * pci_add_dma_alias - Add a DMA devfn alias for a device
6232 * @dev: the PCI device for which alias is added
6233 * @devfn_from: alias slot and function
6234 * @nr_devfns: number of subsequent devfns to alias
6235 *
6236 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
6237 * which is used to program permissible bus-devfn source addresses for DMA
6238 * requests in an IOMMU. These aliases factor into IOMMU group creation
6239 * and are useful for devices generating DMA requests beyond or different
6240 * from their logical bus-devfn. Examples include device quirks where the
6241 * device simply uses the wrong devfn, as well as non-transparent bridges
6242 * where the alias may be a proxy for devices in another domain.
6243 *
6244 * IOMMU group creation is performed during device discovery or addition,
6245 * prior to any potential DMA mapping and therefore prior to driver probing
6246 * (especially for userspace assigned devices where IOMMU group definition
6247 * cannot be left as a userspace activity). DMA aliases should therefore
6248 * be configured via quirks, such as the PCI fixup header quirk.
6249 */
6250void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from,
6251 unsigned int nr_devfns)
6252{
6253 int devfn_to;
6254
6255 nr_devfns = min(nr_devfns, (unsigned int)MAX_NR_DEVFNS - devfn_from);
6256 devfn_to = devfn_from + nr_devfns - 1;
6257
6258 if (!dev->dma_alias_mask)
6259 dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL);
6260 if (!dev->dma_alias_mask) {
6261 pci_warn(dev, "Unable to allocate DMA alias mask\n");
6262 return;
6263 }
6264
6265 bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns);
6266
6267 if (nr_devfns == 1)
6268 pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
6269 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from));
6270 else if (nr_devfns > 1)
6271 pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n",
6272 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from),
6273 PCI_SLOT(devfn_to), PCI_FUNC(devfn_to));
6274}
6275
6276bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
6277{
6278 return (dev1->dma_alias_mask &&
6279 test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
6280 (dev2->dma_alias_mask &&
6281 test_bit(dev1->devfn, dev2->dma_alias_mask)) ||
6282 pci_real_dma_dev(dev1) == dev2 ||
6283 pci_real_dma_dev(dev2) == dev1;
6284}
6285
6286bool pci_device_is_present(struct pci_dev *pdev)
6287{
6288 u32 v;
6289
6290 /* Check PF if pdev is a VF, since VF Vendor/Device IDs are 0xffff */
6291 pdev = pci_physfn(pdev);
6292 if (pci_dev_is_disconnected(pdev))
6293 return false;
6294 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
6295}
6296EXPORT_SYMBOL_GPL(pci_device_is_present);
6297
6298void pci_ignore_hotplug(struct pci_dev *dev)
6299{
6300 struct pci_dev *bridge = dev->bus->self;
6301
6302 dev->ignore_hotplug = 1;
6303 /* Propagate the "ignore hotplug" setting to the parent bridge. */
6304 if (bridge)
6305 bridge->ignore_hotplug = 1;
6306}
6307EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
6308
6309/**
6310 * pci_real_dma_dev - Get PCI DMA device for PCI device
6311 * @dev: the PCI device that may have a PCI DMA alias
6312 *
6313 * Permits the platform to provide architecture-specific functionality to
6314 * devices needing to alias DMA to another PCI device on another PCI bus. If
6315 * the PCI device is on the same bus, it is recommended to use
6316 * pci_add_dma_alias(). This is the default implementation. Architecture
6317 * implementations can override this.
6318 */
6319struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev)
6320{
6321 return dev;
6322}
6323
6324resource_size_t __weak pcibios_default_alignment(void)
6325{
6326 return 0;
6327}
6328
6329/*
6330 * Arches that don't want to expose struct resource to userland as-is in
6331 * sysfs and /proc can implement their own pci_resource_to_user().
6332 */
6333void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
6334 const struct resource *rsrc,
6335 resource_size_t *start, resource_size_t *end)
6336{
6337 *start = rsrc->start;
6338 *end = rsrc->end;
6339}
6340
6341static char *resource_alignment_param;
6342static DEFINE_SPINLOCK(resource_alignment_lock);
6343
6344/**
6345 * pci_specified_resource_alignment - get resource alignment specified by user.
6346 * @dev: the PCI device to get
6347 * @resize: whether or not to change resources' size when reassigning alignment
6348 *
6349 * RETURNS: Resource alignment if it is specified.
6350 * Zero if it is not specified.
6351 */
6352static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
6353 bool *resize)
6354{
6355 int align_order, count;
6356 resource_size_t align = pcibios_default_alignment();
6357 const char *p;
6358 int ret;
6359
6360 spin_lock(&resource_alignment_lock);
6361 p = resource_alignment_param;
6362 if (!p || !*p)
6363 goto out;
6364 if (pci_has_flag(PCI_PROBE_ONLY)) {
6365 align = 0;
6366 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
6367 goto out;
6368 }
6369
6370 while (*p) {
6371 count = 0;
6372 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
6373 p[count] == '@') {
6374 p += count + 1;
6375 if (align_order > 63) {
6376 pr_err("PCI: Invalid requested alignment (order %d)\n",
6377 align_order);
6378 align_order = PAGE_SHIFT;
6379 }
6380 } else {
6381 align_order = PAGE_SHIFT;
6382 }
6383
6384 ret = pci_dev_str_match(dev, p, &p);
6385 if (ret == 1) {
6386 *resize = true;
6387 align = 1ULL << align_order;
6388 break;
6389 } else if (ret < 0) {
6390 pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
6391 p);
6392 break;
6393 }
6394
6395 if (*p != ';' && *p != ',') {
6396 /* End of param or invalid format */
6397 break;
6398 }
6399 p++;
6400 }
6401out:
6402 spin_unlock(&resource_alignment_lock);
6403 return align;
6404}
6405
6406static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
6407 resource_size_t align, bool resize)
6408{
6409 struct resource *r = &dev->resource[bar];
6410 const char *r_name = pci_resource_name(dev, bar);
6411 resource_size_t size;
6412
6413 if (!(r->flags & IORESOURCE_MEM))
6414 return;
6415
6416 if (r->flags & IORESOURCE_PCI_FIXED) {
6417 pci_info(dev, "%s %pR: ignoring requested alignment %#llx\n",
6418 r_name, r, (unsigned long long)align);
6419 return;
6420 }
6421
6422 size = resource_size(r);
6423 if (size >= align)
6424 return;
6425
6426 /*
6427 * Increase the alignment of the resource. There are two ways we
6428 * can do this:
6429 *
6430 * 1) Increase the size of the resource. BARs are aligned on their
6431 * size, so when we reallocate space for this resource, we'll
6432 * allocate it with the larger alignment. This also prevents
6433 * assignment of any other BARs inside the alignment region, so
6434 * if we're requesting page alignment, this means no other BARs
6435 * will share the page.
6436 *
6437 * The disadvantage is that this makes the resource larger than
6438 * the hardware BAR, which may break drivers that compute things
6439 * based on the resource size, e.g., to find registers at a
6440 * fixed offset before the end of the BAR.
6441 *
6442 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6443 * set r->start to the desired alignment. By itself this
6444 * doesn't prevent other BARs being put inside the alignment
6445 * region, but if we realign *every* resource of every device in
6446 * the system, none of them will share an alignment region.
6447 *
6448 * When the user has requested alignment for only some devices via
6449 * the "pci=resource_alignment" argument, "resize" is true and we
6450 * use the first method. Otherwise we assume we're aligning all
6451 * devices and we use the second.
6452 */
6453
6454 pci_info(dev, "%s %pR: requesting alignment to %#llx\n",
6455 r_name, r, (unsigned long long)align);
6456
6457 if (resize) {
6458 r->start = 0;
6459 r->end = align - 1;
6460 } else {
6461 r->flags &= ~IORESOURCE_SIZEALIGN;
6462 r->flags |= IORESOURCE_STARTALIGN;
6463 r->start = align;
6464 r->end = r->start + size - 1;
6465 }
6466 r->flags |= IORESOURCE_UNSET;
6467}
6468
6469/*
6470 * This function disables memory decoding and releases memory resources
6471 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6472 * It also rounds up size to specified alignment.
6473 * Later on, the kernel will assign page-aligned memory resource back
6474 * to the device.
6475 */
6476void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6477{
6478 int i;
6479 struct resource *r;
6480 resource_size_t align;
6481 u16 command;
6482 bool resize = false;
6483
6484 /*
6485 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6486 * 3.4.1.11. Their resources are allocated from the space
6487 * described by the VF BARx register in the PF's SR-IOV capability.
6488 * We can't influence their alignment here.
6489 */
6490 if (dev->is_virtfn)
6491 return;
6492
6493 /* check if specified PCI is target device to reassign */
6494 align = pci_specified_resource_alignment(dev, &resize);
6495 if (!align)
6496 return;
6497
6498 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6499 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6500 pci_warn(dev, "Can't reassign resources to host bridge\n");
6501 return;
6502 }
6503
6504 pci_read_config_word(dev, PCI_COMMAND, &command);
6505 command &= ~PCI_COMMAND_MEMORY;
6506 pci_write_config_word(dev, PCI_COMMAND, command);
6507
6508 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6509 pci_request_resource_alignment(dev, i, align, resize);
6510
6511 /*
6512 * Need to disable bridge's resource window,
6513 * to enable the kernel to reassign new resource
6514 * window later on.
6515 */
6516 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6517 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6518 r = &dev->resource[i];
6519 if (!(r->flags & IORESOURCE_MEM))
6520 continue;
6521 r->flags |= IORESOURCE_UNSET;
6522 r->end = resource_size(r) - 1;
6523 r->start = 0;
6524 }
6525 pci_disable_bridge_window(dev);
6526 }
6527}
6528
6529static ssize_t resource_alignment_show(const struct bus_type *bus, char *buf)
6530{
6531 size_t count = 0;
6532
6533 spin_lock(&resource_alignment_lock);
6534 if (resource_alignment_param)
6535 count = sysfs_emit(buf, "%s\n", resource_alignment_param);
6536 spin_unlock(&resource_alignment_lock);
6537
6538 return count;
6539}
6540
6541static ssize_t resource_alignment_store(const struct bus_type *bus,
6542 const char *buf, size_t count)
6543{
6544 char *param, *old, *end;
6545
6546 if (count >= (PAGE_SIZE - 1))
6547 return -EINVAL;
6548
6549 param = kstrndup(buf, count, GFP_KERNEL);
6550 if (!param)
6551 return -ENOMEM;
6552
6553 end = strchr(param, '\n');
6554 if (end)
6555 *end = '\0';
6556
6557 spin_lock(&resource_alignment_lock);
6558 old = resource_alignment_param;
6559 if (strlen(param)) {
6560 resource_alignment_param = param;
6561 } else {
6562 kfree(param);
6563 resource_alignment_param = NULL;
6564 }
6565 spin_unlock(&resource_alignment_lock);
6566
6567 kfree(old);
6568
6569 return count;
6570}
6571
6572static BUS_ATTR_RW(resource_alignment);
6573
6574static int __init pci_resource_alignment_sysfs_init(void)
6575{
6576 return bus_create_file(&pci_bus_type,
6577 &bus_attr_resource_alignment);
6578}
6579late_initcall(pci_resource_alignment_sysfs_init);
6580
6581static void pci_no_domains(void)
6582{
6583#ifdef CONFIG_PCI_DOMAINS
6584 pci_domains_supported = 0;
6585#endif
6586}
6587
6588#ifdef CONFIG_PCI_DOMAINS_GENERIC
6589static DEFINE_IDA(pci_domain_nr_static_ida);
6590static DEFINE_IDA(pci_domain_nr_dynamic_ida);
6591
6592static void of_pci_reserve_static_domain_nr(void)
6593{
6594 struct device_node *np;
6595 int domain_nr;
6596
6597 for_each_node_by_type(np, "pci") {
6598 domain_nr = of_get_pci_domain_nr(np);
6599 if (domain_nr < 0)
6600 continue;
6601 /*
6602 * Permanently allocate domain_nr in dynamic_ida
6603 * to prevent it from dynamic allocation.
6604 */
6605 ida_alloc_range(&pci_domain_nr_dynamic_ida,
6606 domain_nr, domain_nr, GFP_KERNEL);
6607 }
6608}
6609
6610static int of_pci_bus_find_domain_nr(struct device *parent)
6611{
6612 static bool static_domains_reserved = false;
6613 int domain_nr;
6614
6615 /* On the first call scan device tree for static allocations. */
6616 if (!static_domains_reserved) {
6617 of_pci_reserve_static_domain_nr();
6618 static_domains_reserved = true;
6619 }
6620
6621 if (parent) {
6622 /*
6623 * If domain is in DT, allocate it in static IDA. This
6624 * prevents duplicate static allocations in case of errors
6625 * in DT.
6626 */
6627 domain_nr = of_get_pci_domain_nr(parent->of_node);
6628 if (domain_nr >= 0)
6629 return ida_alloc_range(&pci_domain_nr_static_ida,
6630 domain_nr, domain_nr,
6631 GFP_KERNEL);
6632 }
6633
6634 /*
6635 * If domain was not specified in DT, choose a free ID from dynamic
6636 * allocations. All domain numbers from DT are permanently in
6637 * dynamic allocations to prevent assigning them to other DT nodes
6638 * without static domain.
6639 */
6640 return ida_alloc(&pci_domain_nr_dynamic_ida, GFP_KERNEL);
6641}
6642
6643static void of_pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent)
6644{
6645 if (bus->domain_nr < 0)
6646 return;
6647
6648 /* Release domain from IDA where it was allocated. */
6649 if (of_get_pci_domain_nr(parent->of_node) == bus->domain_nr)
6650 ida_free(&pci_domain_nr_static_ida, bus->domain_nr);
6651 else
6652 ida_free(&pci_domain_nr_dynamic_ida, bus->domain_nr);
6653}
6654
6655int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6656{
6657 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6658 acpi_pci_bus_find_domain_nr(bus);
6659}
6660
6661void pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent)
6662{
6663 if (!acpi_disabled)
6664 return;
6665 of_pci_bus_release_domain_nr(bus, parent);
6666}
6667#endif
6668
6669/**
6670 * pci_ext_cfg_avail - can we access extended PCI config space?
6671 *
6672 * Returns 1 if we can access PCI extended config space (offsets
6673 * greater than 0xff). This is the default implementation. Architecture
6674 * implementations can override this.
6675 */
6676int __weak pci_ext_cfg_avail(void)
6677{
6678 return 1;
6679}
6680
6681void __weak pci_fixup_cardbus(struct pci_bus *bus)
6682{
6683}
6684EXPORT_SYMBOL(pci_fixup_cardbus);
6685
6686static int __init pci_setup(char *str)
6687{
6688 while (str) {
6689 char *k = strchr(str, ',');
6690 if (k)
6691 *k++ = 0;
6692 if (*str && (str = pcibios_setup(str)) && *str) {
6693 if (!strcmp(str, "nomsi")) {
6694 pci_no_msi();
6695 } else if (!strncmp(str, "noats", 5)) {
6696 pr_info("PCIe: ATS is disabled\n");
6697 pcie_ats_disabled = true;
6698 } else if (!strcmp(str, "noaer")) {
6699 pci_no_aer();
6700 } else if (!strcmp(str, "earlydump")) {
6701 pci_early_dump = true;
6702 } else if (!strncmp(str, "realloc=", 8)) {
6703 pci_realloc_get_opt(str + 8);
6704 } else if (!strncmp(str, "realloc", 7)) {
6705 pci_realloc_get_opt("on");
6706 } else if (!strcmp(str, "nodomains")) {
6707 pci_no_domains();
6708 } else if (!strncmp(str, "noari", 5)) {
6709 pcie_ari_disabled = true;
6710 } else if (!strncmp(str, "cbiosize=", 9)) {
6711 pci_cardbus_io_size = memparse(str + 9, &str);
6712 } else if (!strncmp(str, "cbmemsize=", 10)) {
6713 pci_cardbus_mem_size = memparse(str + 10, &str);
6714 } else if (!strncmp(str, "resource_alignment=", 19)) {
6715 resource_alignment_param = str + 19;
6716 } else if (!strncmp(str, "ecrc=", 5)) {
6717 pcie_ecrc_get_policy(str + 5);
6718 } else if (!strncmp(str, "hpiosize=", 9)) {
6719 pci_hotplug_io_size = memparse(str + 9, &str);
6720 } else if (!strncmp(str, "hpmmiosize=", 11)) {
6721 pci_hotplug_mmio_size = memparse(str + 11, &str);
6722 } else if (!strncmp(str, "hpmmioprefsize=", 15)) {
6723 pci_hotplug_mmio_pref_size = memparse(str + 15, &str);
6724 } else if (!strncmp(str, "hpmemsize=", 10)) {
6725 pci_hotplug_mmio_size = memparse(str + 10, &str);
6726 pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size;
6727 } else if (!strncmp(str, "hpbussize=", 10)) {
6728 pci_hotplug_bus_size =
6729 simple_strtoul(str + 10, &str, 0);
6730 if (pci_hotplug_bus_size > 0xff)
6731 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
6732 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
6733 pcie_bus_config = PCIE_BUS_TUNE_OFF;
6734 } else if (!strncmp(str, "pcie_bus_safe", 13)) {
6735 pcie_bus_config = PCIE_BUS_SAFE;
6736 } else if (!strncmp(str, "pcie_bus_perf", 13)) {
6737 pcie_bus_config = PCIE_BUS_PERFORMANCE;
6738 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
6739 pcie_bus_config = PCIE_BUS_PEER2PEER;
6740 } else if (!strncmp(str, "pcie_scan_all", 13)) {
6741 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
6742 } else if (!strncmp(str, "disable_acs_redir=", 18)) {
6743 disable_acs_redir_param = str + 18;
6744 } else {
6745 pr_err("PCI: Unknown option `%s'\n", str);
6746 }
6747 }
6748 str = k;
6749 }
6750 return 0;
6751}
6752early_param("pci", pci_setup);
6753
6754/*
6755 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
6756 * in pci_setup(), above, to point to data in the __initdata section which
6757 * will be freed after the init sequence is complete. We can't allocate memory
6758 * in pci_setup() because some architectures do not have any memory allocation
6759 * service available during an early_param() call. So we allocate memory and
6760 * copy the variable here before the init section is freed.
6761 *
6762 */
6763static int __init pci_realloc_setup_params(void)
6764{
6765 resource_alignment_param = kstrdup(resource_alignment_param,
6766 GFP_KERNEL);
6767 disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
6768
6769 return 0;
6770}
6771pure_initcall(pci_realloc_setup_params);