Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * mm/kmemleak.c
4 *
5 * Copyright (C) 2008 ARM Limited
6 * Written by Catalin Marinas <catalin.marinas@arm.com>
7 *
8 * For more information on the algorithm and kmemleak usage, please see
9 * Documentation/dev-tools/kmemleak.rst.
10 *
11 * Notes on locking
12 * ----------------
13 *
14 * The following locks and mutexes are used by kmemleak:
15 *
16 * - kmemleak_lock (raw_spinlock_t): protects the object_list modifications and
17 * accesses to the object_tree_root (or object_phys_tree_root). The
18 * object_list is the main list holding the metadata (struct kmemleak_object)
19 * for the allocated memory blocks. The object_tree_root and object_phys_tree_root
20 * are red black trees used to look-up metadata based on a pointer to the
21 * corresponding memory block. The object_phys_tree_root is for objects
22 * allocated with physical address. The kmemleak_object structures are
23 * added to the object_list and object_tree_root (or object_phys_tree_root)
24 * in the create_object() function called from the kmemleak_alloc() (or
25 * kmemleak_alloc_phys()) callback and removed in delete_object() called from
26 * the kmemleak_free() callback
27 * - kmemleak_object.lock (raw_spinlock_t): protects a kmemleak_object.
28 * Accesses to the metadata (e.g. count) are protected by this lock. Note
29 * that some members of this structure may be protected by other means
30 * (atomic or kmemleak_lock). This lock is also held when scanning the
31 * corresponding memory block to avoid the kernel freeing it via the
32 * kmemleak_free() callback. This is less heavyweight than holding a global
33 * lock like kmemleak_lock during scanning.
34 * - scan_mutex (mutex): ensures that only one thread may scan the memory for
35 * unreferenced objects at a time. The gray_list contains the objects which
36 * are already referenced or marked as false positives and need to be
37 * scanned. This list is only modified during a scanning episode when the
38 * scan_mutex is held. At the end of a scan, the gray_list is always empty.
39 * Note that the kmemleak_object.use_count is incremented when an object is
40 * added to the gray_list and therefore cannot be freed. This mutex also
41 * prevents multiple users of the "kmemleak" debugfs file together with
42 * modifications to the memory scanning parameters including the scan_thread
43 * pointer
44 *
45 * Locks and mutexes are acquired/nested in the following order:
46 *
47 * scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING)
48 *
49 * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex
50 * regions.
51 *
52 * The kmemleak_object structures have a use_count incremented or decremented
53 * using the get_object()/put_object() functions. When the use_count becomes
54 * 0, this count can no longer be incremented and put_object() schedules the
55 * kmemleak_object freeing via an RCU callback. All calls to the get_object()
56 * function must be protected by rcu_read_lock() to avoid accessing a freed
57 * structure.
58 */
59
60#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
61
62#include <linux/init.h>
63#include <linux/kernel.h>
64#include <linux/list.h>
65#include <linux/sched/signal.h>
66#include <linux/sched/task.h>
67#include <linux/sched/task_stack.h>
68#include <linux/jiffies.h>
69#include <linux/delay.h>
70#include <linux/export.h>
71#include <linux/kthread.h>
72#include <linux/rbtree.h>
73#include <linux/fs.h>
74#include <linux/debugfs.h>
75#include <linux/seq_file.h>
76#include <linux/cpumask.h>
77#include <linux/spinlock.h>
78#include <linux/module.h>
79#include <linux/mutex.h>
80#include <linux/rcupdate.h>
81#include <linux/stacktrace.h>
82#include <linux/stackdepot.h>
83#include <linux/cache.h>
84#include <linux/percpu.h>
85#include <linux/memblock.h>
86#include <linux/pfn.h>
87#include <linux/mmzone.h>
88#include <linux/slab.h>
89#include <linux/thread_info.h>
90#include <linux/err.h>
91#include <linux/uaccess.h>
92#include <linux/string.h>
93#include <linux/nodemask.h>
94#include <linux/mm.h>
95#include <linux/workqueue.h>
96#include <linux/crc32.h>
97
98#include <asm/sections.h>
99#include <asm/processor.h>
100#include <linux/atomic.h>
101
102#include <linux/kasan.h>
103#include <linux/kfence.h>
104#include <linux/kmemleak.h>
105#include <linux/memory_hotplug.h>
106
107/*
108 * Kmemleak configuration and common defines.
109 */
110#define MAX_TRACE 16 /* stack trace length */
111#define MSECS_MIN_AGE 5000 /* minimum object age for reporting */
112#define SECS_FIRST_SCAN 60 /* delay before the first scan */
113#define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */
114#define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */
115
116#define BYTES_PER_POINTER sizeof(void *)
117
118/* GFP bitmask for kmemleak internal allocations */
119#define gfp_kmemleak_mask(gfp) (((gfp) & (GFP_KERNEL | GFP_ATOMIC | \
120 __GFP_NOLOCKDEP)) | \
121 __GFP_NORETRY | __GFP_NOMEMALLOC | \
122 __GFP_NOWARN)
123
124/* scanning area inside a memory block */
125struct kmemleak_scan_area {
126 struct hlist_node node;
127 unsigned long start;
128 size_t size;
129};
130
131#define KMEMLEAK_GREY 0
132#define KMEMLEAK_BLACK -1
133
134/*
135 * Structure holding the metadata for each allocated memory block.
136 * Modifications to such objects should be made while holding the
137 * object->lock. Insertions or deletions from object_list, gray_list or
138 * rb_node are already protected by the corresponding locks or mutex (see
139 * the notes on locking above). These objects are reference-counted
140 * (use_count) and freed using the RCU mechanism.
141 */
142struct kmemleak_object {
143 raw_spinlock_t lock;
144 unsigned int flags; /* object status flags */
145 struct list_head object_list;
146 struct list_head gray_list;
147 struct rb_node rb_node;
148 struct rcu_head rcu; /* object_list lockless traversal */
149 /* object usage count; object freed when use_count == 0 */
150 atomic_t use_count;
151 unsigned long pointer;
152 size_t size;
153 /* pass surplus references to this pointer */
154 unsigned long excess_ref;
155 /* minimum number of a pointers found before it is considered leak */
156 int min_count;
157 /* the total number of pointers found pointing to this object */
158 int count;
159 /* checksum for detecting modified objects */
160 u32 checksum;
161 /* memory ranges to be scanned inside an object (empty for all) */
162 struct hlist_head area_list;
163 depot_stack_handle_t trace_handle;
164 unsigned long jiffies; /* creation timestamp */
165 pid_t pid; /* pid of the current task */
166 char comm[TASK_COMM_LEN]; /* executable name */
167};
168
169/* flag representing the memory block allocation status */
170#define OBJECT_ALLOCATED (1 << 0)
171/* flag set after the first reporting of an unreference object */
172#define OBJECT_REPORTED (1 << 1)
173/* flag set to not scan the object */
174#define OBJECT_NO_SCAN (1 << 2)
175/* flag set to fully scan the object when scan_area allocation failed */
176#define OBJECT_FULL_SCAN (1 << 3)
177/* flag set for object allocated with physical address */
178#define OBJECT_PHYS (1 << 4)
179
180#define HEX_PREFIX " "
181/* number of bytes to print per line; must be 16 or 32 */
182#define HEX_ROW_SIZE 16
183/* number of bytes to print at a time (1, 2, 4, 8) */
184#define HEX_GROUP_SIZE 1
185/* include ASCII after the hex output */
186#define HEX_ASCII 1
187/* max number of lines to be printed */
188#define HEX_MAX_LINES 2
189
190/* the list of all allocated objects */
191static LIST_HEAD(object_list);
192/* the list of gray-colored objects (see color_gray comment below) */
193static LIST_HEAD(gray_list);
194/* memory pool allocation */
195static struct kmemleak_object mem_pool[CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE];
196static int mem_pool_free_count = ARRAY_SIZE(mem_pool);
197static LIST_HEAD(mem_pool_free_list);
198/* search tree for object boundaries */
199static struct rb_root object_tree_root = RB_ROOT;
200/* search tree for object (with OBJECT_PHYS flag) boundaries */
201static struct rb_root object_phys_tree_root = RB_ROOT;
202/* protecting the access to object_list, object_tree_root (or object_phys_tree_root) */
203static DEFINE_RAW_SPINLOCK(kmemleak_lock);
204
205/* allocation caches for kmemleak internal data */
206static struct kmem_cache *object_cache;
207static struct kmem_cache *scan_area_cache;
208
209/* set if tracing memory operations is enabled */
210static int kmemleak_enabled = 1;
211/* same as above but only for the kmemleak_free() callback */
212static int kmemleak_free_enabled = 1;
213/* set in the late_initcall if there were no errors */
214static int kmemleak_initialized;
215/* set if a kmemleak warning was issued */
216static int kmemleak_warning;
217/* set if a fatal kmemleak error has occurred */
218static int kmemleak_error;
219
220/* minimum and maximum address that may be valid pointers */
221static unsigned long min_addr = ULONG_MAX;
222static unsigned long max_addr;
223
224static struct task_struct *scan_thread;
225/* used to avoid reporting of recently allocated objects */
226static unsigned long jiffies_min_age;
227static unsigned long jiffies_last_scan;
228/* delay between automatic memory scannings */
229static unsigned long jiffies_scan_wait;
230/* enables or disables the task stacks scanning */
231static int kmemleak_stack_scan = 1;
232/* protects the memory scanning, parameters and debug/kmemleak file access */
233static DEFINE_MUTEX(scan_mutex);
234/* setting kmemleak=on, will set this var, skipping the disable */
235static int kmemleak_skip_disable;
236/* If there are leaks that can be reported */
237static bool kmemleak_found_leaks;
238
239static bool kmemleak_verbose;
240module_param_named(verbose, kmemleak_verbose, bool, 0600);
241
242static void kmemleak_disable(void);
243
244/*
245 * Print a warning and dump the stack trace.
246 */
247#define kmemleak_warn(x...) do { \
248 pr_warn(x); \
249 dump_stack(); \
250 kmemleak_warning = 1; \
251} while (0)
252
253/*
254 * Macro invoked when a serious kmemleak condition occurred and cannot be
255 * recovered from. Kmemleak will be disabled and further allocation/freeing
256 * tracing no longer available.
257 */
258#define kmemleak_stop(x...) do { \
259 kmemleak_warn(x); \
260 kmemleak_disable(); \
261} while (0)
262
263#define warn_or_seq_printf(seq, fmt, ...) do { \
264 if (seq) \
265 seq_printf(seq, fmt, ##__VA_ARGS__); \
266 else \
267 pr_warn(fmt, ##__VA_ARGS__); \
268} while (0)
269
270static void warn_or_seq_hex_dump(struct seq_file *seq, int prefix_type,
271 int rowsize, int groupsize, const void *buf,
272 size_t len, bool ascii)
273{
274 if (seq)
275 seq_hex_dump(seq, HEX_PREFIX, prefix_type, rowsize, groupsize,
276 buf, len, ascii);
277 else
278 print_hex_dump(KERN_WARNING, pr_fmt(HEX_PREFIX), prefix_type,
279 rowsize, groupsize, buf, len, ascii);
280}
281
282/*
283 * Printing of the objects hex dump to the seq file. The number of lines to be
284 * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
285 * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
286 * with the object->lock held.
287 */
288static void hex_dump_object(struct seq_file *seq,
289 struct kmemleak_object *object)
290{
291 const u8 *ptr = (const u8 *)object->pointer;
292 size_t len;
293
294 if (WARN_ON_ONCE(object->flags & OBJECT_PHYS))
295 return;
296
297 /* limit the number of lines to HEX_MAX_LINES */
298 len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE);
299
300 warn_or_seq_printf(seq, " hex dump (first %zu bytes):\n", len);
301 kasan_disable_current();
302 warn_or_seq_hex_dump(seq, DUMP_PREFIX_NONE, HEX_ROW_SIZE,
303 HEX_GROUP_SIZE, kasan_reset_tag((void *)ptr), len, HEX_ASCII);
304 kasan_enable_current();
305}
306
307/*
308 * Object colors, encoded with count and min_count:
309 * - white - orphan object, not enough references to it (count < min_count)
310 * - gray - not orphan, not marked as false positive (min_count == 0) or
311 * sufficient references to it (count >= min_count)
312 * - black - ignore, it doesn't contain references (e.g. text section)
313 * (min_count == -1). No function defined for this color.
314 * Newly created objects don't have any color assigned (object->count == -1)
315 * before the next memory scan when they become white.
316 */
317static bool color_white(const struct kmemleak_object *object)
318{
319 return object->count != KMEMLEAK_BLACK &&
320 object->count < object->min_count;
321}
322
323static bool color_gray(const struct kmemleak_object *object)
324{
325 return object->min_count != KMEMLEAK_BLACK &&
326 object->count >= object->min_count;
327}
328
329/*
330 * Objects are considered unreferenced only if their color is white, they have
331 * not be deleted and have a minimum age to avoid false positives caused by
332 * pointers temporarily stored in CPU registers.
333 */
334static bool unreferenced_object(struct kmemleak_object *object)
335{
336 return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
337 time_before_eq(object->jiffies + jiffies_min_age,
338 jiffies_last_scan);
339}
340
341/*
342 * Printing of the unreferenced objects information to the seq file. The
343 * print_unreferenced function must be called with the object->lock held.
344 */
345static void print_unreferenced(struct seq_file *seq,
346 struct kmemleak_object *object)
347{
348 int i;
349 unsigned long *entries;
350 unsigned int nr_entries;
351 unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
352
353 nr_entries = stack_depot_fetch(object->trace_handle, &entries);
354 warn_or_seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
355 object->pointer, object->size);
356 warn_or_seq_printf(seq, " comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
357 object->comm, object->pid, object->jiffies,
358 msecs_age / 1000, msecs_age % 1000);
359 hex_dump_object(seq, object);
360 warn_or_seq_printf(seq, " backtrace:\n");
361
362 for (i = 0; i < nr_entries; i++) {
363 void *ptr = (void *)entries[i];
364 warn_or_seq_printf(seq, " [<%pK>] %pS\n", ptr, ptr);
365 }
366}
367
368/*
369 * Print the kmemleak_object information. This function is used mainly for
370 * debugging special cases when kmemleak operations. It must be called with
371 * the object->lock held.
372 */
373static void dump_object_info(struct kmemleak_object *object)
374{
375 pr_notice("Object 0x%08lx (size %zu):\n",
376 object->pointer, object->size);
377 pr_notice(" comm \"%s\", pid %d, jiffies %lu\n",
378 object->comm, object->pid, object->jiffies);
379 pr_notice(" min_count = %d\n", object->min_count);
380 pr_notice(" count = %d\n", object->count);
381 pr_notice(" flags = 0x%x\n", object->flags);
382 pr_notice(" checksum = %u\n", object->checksum);
383 pr_notice(" backtrace:\n");
384 if (object->trace_handle)
385 stack_depot_print(object->trace_handle);
386}
387
388/*
389 * Look-up a memory block metadata (kmemleak_object) in the object search
390 * tree based on a pointer value. If alias is 0, only values pointing to the
391 * beginning of the memory block are allowed. The kmemleak_lock must be held
392 * when calling this function.
393 */
394static struct kmemleak_object *__lookup_object(unsigned long ptr, int alias,
395 bool is_phys)
396{
397 struct rb_node *rb = is_phys ? object_phys_tree_root.rb_node :
398 object_tree_root.rb_node;
399 unsigned long untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
400
401 while (rb) {
402 struct kmemleak_object *object;
403 unsigned long untagged_objp;
404
405 object = rb_entry(rb, struct kmemleak_object, rb_node);
406 untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer);
407
408 if (untagged_ptr < untagged_objp)
409 rb = object->rb_node.rb_left;
410 else if (untagged_objp + object->size <= untagged_ptr)
411 rb = object->rb_node.rb_right;
412 else if (untagged_objp == untagged_ptr || alias)
413 return object;
414 else {
415 kmemleak_warn("Found object by alias at 0x%08lx\n",
416 ptr);
417 dump_object_info(object);
418 break;
419 }
420 }
421 return NULL;
422}
423
424/* Look-up a kmemleak object which allocated with virtual address. */
425static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
426{
427 return __lookup_object(ptr, alias, false);
428}
429
430/*
431 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
432 * that once an object's use_count reached 0, the RCU freeing was already
433 * registered and the object should no longer be used. This function must be
434 * called under the protection of rcu_read_lock().
435 */
436static int get_object(struct kmemleak_object *object)
437{
438 return atomic_inc_not_zero(&object->use_count);
439}
440
441/*
442 * Memory pool allocation and freeing. kmemleak_lock must not be held.
443 */
444static struct kmemleak_object *mem_pool_alloc(gfp_t gfp)
445{
446 unsigned long flags;
447 struct kmemleak_object *object;
448
449 /* try the slab allocator first */
450 if (object_cache) {
451 object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
452 if (object)
453 return object;
454 }
455
456 /* slab allocation failed, try the memory pool */
457 raw_spin_lock_irqsave(&kmemleak_lock, flags);
458 object = list_first_entry_or_null(&mem_pool_free_list,
459 typeof(*object), object_list);
460 if (object)
461 list_del(&object->object_list);
462 else if (mem_pool_free_count)
463 object = &mem_pool[--mem_pool_free_count];
464 else
465 pr_warn_once("Memory pool empty, consider increasing CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE\n");
466 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
467
468 return object;
469}
470
471/*
472 * Return the object to either the slab allocator or the memory pool.
473 */
474static void mem_pool_free(struct kmemleak_object *object)
475{
476 unsigned long flags;
477
478 if (object < mem_pool || object >= mem_pool + ARRAY_SIZE(mem_pool)) {
479 kmem_cache_free(object_cache, object);
480 return;
481 }
482
483 /* add the object to the memory pool free list */
484 raw_spin_lock_irqsave(&kmemleak_lock, flags);
485 list_add(&object->object_list, &mem_pool_free_list);
486 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
487}
488
489/*
490 * RCU callback to free a kmemleak_object.
491 */
492static void free_object_rcu(struct rcu_head *rcu)
493{
494 struct hlist_node *tmp;
495 struct kmemleak_scan_area *area;
496 struct kmemleak_object *object =
497 container_of(rcu, struct kmemleak_object, rcu);
498
499 /*
500 * Once use_count is 0 (guaranteed by put_object), there is no other
501 * code accessing this object, hence no need for locking.
502 */
503 hlist_for_each_entry_safe(area, tmp, &object->area_list, node) {
504 hlist_del(&area->node);
505 kmem_cache_free(scan_area_cache, area);
506 }
507 mem_pool_free(object);
508}
509
510/*
511 * Decrement the object use_count. Once the count is 0, free the object using
512 * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
513 * delete_object() path, the delayed RCU freeing ensures that there is no
514 * recursive call to the kernel allocator. Lock-less RCU object_list traversal
515 * is also possible.
516 */
517static void put_object(struct kmemleak_object *object)
518{
519 if (!atomic_dec_and_test(&object->use_count))
520 return;
521
522 /* should only get here after delete_object was called */
523 WARN_ON(object->flags & OBJECT_ALLOCATED);
524
525 /*
526 * It may be too early for the RCU callbacks, however, there is no
527 * concurrent object_list traversal when !object_cache and all objects
528 * came from the memory pool. Free the object directly.
529 */
530 if (object_cache)
531 call_rcu(&object->rcu, free_object_rcu);
532 else
533 free_object_rcu(&object->rcu);
534}
535
536/*
537 * Look up an object in the object search tree and increase its use_count.
538 */
539static struct kmemleak_object *__find_and_get_object(unsigned long ptr, int alias,
540 bool is_phys)
541{
542 unsigned long flags;
543 struct kmemleak_object *object;
544
545 rcu_read_lock();
546 raw_spin_lock_irqsave(&kmemleak_lock, flags);
547 object = __lookup_object(ptr, alias, is_phys);
548 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
549
550 /* check whether the object is still available */
551 if (object && !get_object(object))
552 object = NULL;
553 rcu_read_unlock();
554
555 return object;
556}
557
558/* Look up and get an object which allocated with virtual address. */
559static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
560{
561 return __find_and_get_object(ptr, alias, false);
562}
563
564/*
565 * Remove an object from the object_tree_root (or object_phys_tree_root)
566 * and object_list. Must be called with the kmemleak_lock held _if_ kmemleak
567 * is still enabled.
568 */
569static void __remove_object(struct kmemleak_object *object)
570{
571 rb_erase(&object->rb_node, object->flags & OBJECT_PHYS ?
572 &object_phys_tree_root :
573 &object_tree_root);
574 list_del_rcu(&object->object_list);
575}
576
577/*
578 * Look up an object in the object search tree and remove it from both
579 * object_tree_root (or object_phys_tree_root) and object_list. The
580 * returned object's use_count should be at least 1, as initially set
581 * by create_object().
582 */
583static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias,
584 bool is_phys)
585{
586 unsigned long flags;
587 struct kmemleak_object *object;
588
589 raw_spin_lock_irqsave(&kmemleak_lock, flags);
590 object = __lookup_object(ptr, alias, is_phys);
591 if (object)
592 __remove_object(object);
593 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
594
595 return object;
596}
597
598static noinline depot_stack_handle_t set_track_prepare(void)
599{
600 depot_stack_handle_t trace_handle;
601 unsigned long entries[MAX_TRACE];
602 unsigned int nr_entries;
603
604 if (!kmemleak_initialized)
605 return 0;
606 nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
607 trace_handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT);
608
609 return trace_handle;
610}
611
612/*
613 * Create the metadata (struct kmemleak_object) corresponding to an allocated
614 * memory block and add it to the object_list and object_tree_root (or
615 * object_phys_tree_root).
616 */
617static void __create_object(unsigned long ptr, size_t size,
618 int min_count, gfp_t gfp, bool is_phys)
619{
620 unsigned long flags;
621 struct kmemleak_object *object, *parent;
622 struct rb_node **link, *rb_parent;
623 unsigned long untagged_ptr;
624 unsigned long untagged_objp;
625
626 object = mem_pool_alloc(gfp);
627 if (!object) {
628 pr_warn("Cannot allocate a kmemleak_object structure\n");
629 kmemleak_disable();
630 return;
631 }
632
633 INIT_LIST_HEAD(&object->object_list);
634 INIT_LIST_HEAD(&object->gray_list);
635 INIT_HLIST_HEAD(&object->area_list);
636 raw_spin_lock_init(&object->lock);
637 atomic_set(&object->use_count, 1);
638 object->flags = OBJECT_ALLOCATED | (is_phys ? OBJECT_PHYS : 0);
639 object->pointer = ptr;
640 object->size = kfence_ksize((void *)ptr) ?: size;
641 object->excess_ref = 0;
642 object->min_count = min_count;
643 object->count = 0; /* white color initially */
644 object->jiffies = jiffies;
645 object->checksum = 0;
646
647 /* task information */
648 if (in_hardirq()) {
649 object->pid = 0;
650 strncpy(object->comm, "hardirq", sizeof(object->comm));
651 } else if (in_serving_softirq()) {
652 object->pid = 0;
653 strncpy(object->comm, "softirq", sizeof(object->comm));
654 } else {
655 object->pid = current->pid;
656 /*
657 * There is a small chance of a race with set_task_comm(),
658 * however using get_task_comm() here may cause locking
659 * dependency issues with current->alloc_lock. In the worst
660 * case, the command line is not correct.
661 */
662 strncpy(object->comm, current->comm, sizeof(object->comm));
663 }
664
665 /* kernel backtrace */
666 object->trace_handle = set_track_prepare();
667
668 raw_spin_lock_irqsave(&kmemleak_lock, flags);
669
670 untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
671 /*
672 * Only update min_addr and max_addr with object
673 * storing virtual address.
674 */
675 if (!is_phys) {
676 min_addr = min(min_addr, untagged_ptr);
677 max_addr = max(max_addr, untagged_ptr + size);
678 }
679 link = is_phys ? &object_phys_tree_root.rb_node :
680 &object_tree_root.rb_node;
681 rb_parent = NULL;
682 while (*link) {
683 rb_parent = *link;
684 parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
685 untagged_objp = (unsigned long)kasan_reset_tag((void *)parent->pointer);
686 if (untagged_ptr + size <= untagged_objp)
687 link = &parent->rb_node.rb_left;
688 else if (untagged_objp + parent->size <= untagged_ptr)
689 link = &parent->rb_node.rb_right;
690 else {
691 kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n",
692 ptr);
693 /*
694 * No need for parent->lock here since "parent" cannot
695 * be freed while the kmemleak_lock is held.
696 */
697 dump_object_info(parent);
698 kmem_cache_free(object_cache, object);
699 goto out;
700 }
701 }
702 rb_link_node(&object->rb_node, rb_parent, link);
703 rb_insert_color(&object->rb_node, is_phys ? &object_phys_tree_root :
704 &object_tree_root);
705 list_add_tail_rcu(&object->object_list, &object_list);
706out:
707 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
708}
709
710/* Create kmemleak object which allocated with virtual address. */
711static void create_object(unsigned long ptr, size_t size,
712 int min_count, gfp_t gfp)
713{
714 __create_object(ptr, size, min_count, gfp, false);
715}
716
717/* Create kmemleak object which allocated with physical address. */
718static void create_object_phys(unsigned long ptr, size_t size,
719 int min_count, gfp_t gfp)
720{
721 __create_object(ptr, size, min_count, gfp, true);
722}
723
724/*
725 * Mark the object as not allocated and schedule RCU freeing via put_object().
726 */
727static void __delete_object(struct kmemleak_object *object)
728{
729 unsigned long flags;
730
731 WARN_ON(!(object->flags & OBJECT_ALLOCATED));
732 WARN_ON(atomic_read(&object->use_count) < 1);
733
734 /*
735 * Locking here also ensures that the corresponding memory block
736 * cannot be freed when it is being scanned.
737 */
738 raw_spin_lock_irqsave(&object->lock, flags);
739 object->flags &= ~OBJECT_ALLOCATED;
740 raw_spin_unlock_irqrestore(&object->lock, flags);
741 put_object(object);
742}
743
744/*
745 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
746 * delete it.
747 */
748static void delete_object_full(unsigned long ptr)
749{
750 struct kmemleak_object *object;
751
752 object = find_and_remove_object(ptr, 0, false);
753 if (!object) {
754#ifdef DEBUG
755 kmemleak_warn("Freeing unknown object at 0x%08lx\n",
756 ptr);
757#endif
758 return;
759 }
760 __delete_object(object);
761}
762
763/*
764 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
765 * delete it. If the memory block is partially freed, the function may create
766 * additional metadata for the remaining parts of the block.
767 */
768static void delete_object_part(unsigned long ptr, size_t size, bool is_phys)
769{
770 struct kmemleak_object *object;
771 unsigned long start, end;
772
773 object = find_and_remove_object(ptr, 1, is_phys);
774 if (!object) {
775#ifdef DEBUG
776 kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n",
777 ptr, size);
778#endif
779 return;
780 }
781
782 /*
783 * Create one or two objects that may result from the memory block
784 * split. Note that partial freeing is only done by free_bootmem() and
785 * this happens before kmemleak_init() is called.
786 */
787 start = object->pointer;
788 end = object->pointer + object->size;
789 if (ptr > start)
790 __create_object(start, ptr - start, object->min_count,
791 GFP_KERNEL, is_phys);
792 if (ptr + size < end)
793 __create_object(ptr + size, end - ptr - size, object->min_count,
794 GFP_KERNEL, is_phys);
795
796 __delete_object(object);
797}
798
799static void __paint_it(struct kmemleak_object *object, int color)
800{
801 object->min_count = color;
802 if (color == KMEMLEAK_BLACK)
803 object->flags |= OBJECT_NO_SCAN;
804}
805
806static void paint_it(struct kmemleak_object *object, int color)
807{
808 unsigned long flags;
809
810 raw_spin_lock_irqsave(&object->lock, flags);
811 __paint_it(object, color);
812 raw_spin_unlock_irqrestore(&object->lock, flags);
813}
814
815static void paint_ptr(unsigned long ptr, int color, bool is_phys)
816{
817 struct kmemleak_object *object;
818
819 object = __find_and_get_object(ptr, 0, is_phys);
820 if (!object) {
821 kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n",
822 ptr,
823 (color == KMEMLEAK_GREY) ? "Grey" :
824 (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
825 return;
826 }
827 paint_it(object, color);
828 put_object(object);
829}
830
831/*
832 * Mark an object permanently as gray-colored so that it can no longer be
833 * reported as a leak. This is used in general to mark a false positive.
834 */
835static void make_gray_object(unsigned long ptr)
836{
837 paint_ptr(ptr, KMEMLEAK_GREY, false);
838}
839
840/*
841 * Mark the object as black-colored so that it is ignored from scans and
842 * reporting.
843 */
844static void make_black_object(unsigned long ptr, bool is_phys)
845{
846 paint_ptr(ptr, KMEMLEAK_BLACK, is_phys);
847}
848
849/*
850 * Add a scanning area to the object. If at least one such area is added,
851 * kmemleak will only scan these ranges rather than the whole memory block.
852 */
853static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
854{
855 unsigned long flags;
856 struct kmemleak_object *object;
857 struct kmemleak_scan_area *area = NULL;
858 unsigned long untagged_ptr;
859 unsigned long untagged_objp;
860
861 object = find_and_get_object(ptr, 1);
862 if (!object) {
863 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
864 ptr);
865 return;
866 }
867
868 untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
869 untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer);
870
871 if (scan_area_cache)
872 area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
873
874 raw_spin_lock_irqsave(&object->lock, flags);
875 if (!area) {
876 pr_warn_once("Cannot allocate a scan area, scanning the full object\n");
877 /* mark the object for full scan to avoid false positives */
878 object->flags |= OBJECT_FULL_SCAN;
879 goto out_unlock;
880 }
881 if (size == SIZE_MAX) {
882 size = untagged_objp + object->size - untagged_ptr;
883 } else if (untagged_ptr + size > untagged_objp + object->size) {
884 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
885 dump_object_info(object);
886 kmem_cache_free(scan_area_cache, area);
887 goto out_unlock;
888 }
889
890 INIT_HLIST_NODE(&area->node);
891 area->start = ptr;
892 area->size = size;
893
894 hlist_add_head(&area->node, &object->area_list);
895out_unlock:
896 raw_spin_unlock_irqrestore(&object->lock, flags);
897 put_object(object);
898}
899
900/*
901 * Any surplus references (object already gray) to 'ptr' are passed to
902 * 'excess_ref'. This is used in the vmalloc() case where a pointer to
903 * vm_struct may be used as an alternative reference to the vmalloc'ed object
904 * (see free_thread_stack()).
905 */
906static void object_set_excess_ref(unsigned long ptr, unsigned long excess_ref)
907{
908 unsigned long flags;
909 struct kmemleak_object *object;
910
911 object = find_and_get_object(ptr, 0);
912 if (!object) {
913 kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n",
914 ptr);
915 return;
916 }
917
918 raw_spin_lock_irqsave(&object->lock, flags);
919 object->excess_ref = excess_ref;
920 raw_spin_unlock_irqrestore(&object->lock, flags);
921 put_object(object);
922}
923
924/*
925 * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
926 * pointer. Such object will not be scanned by kmemleak but references to it
927 * are searched.
928 */
929static void object_no_scan(unsigned long ptr)
930{
931 unsigned long flags;
932 struct kmemleak_object *object;
933
934 object = find_and_get_object(ptr, 0);
935 if (!object) {
936 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
937 return;
938 }
939
940 raw_spin_lock_irqsave(&object->lock, flags);
941 object->flags |= OBJECT_NO_SCAN;
942 raw_spin_unlock_irqrestore(&object->lock, flags);
943 put_object(object);
944}
945
946/**
947 * kmemleak_alloc - register a newly allocated object
948 * @ptr: pointer to beginning of the object
949 * @size: size of the object
950 * @min_count: minimum number of references to this object. If during memory
951 * scanning a number of references less than @min_count is found,
952 * the object is reported as a memory leak. If @min_count is 0,
953 * the object is never reported as a leak. If @min_count is -1,
954 * the object is ignored (not scanned and not reported as a leak)
955 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
956 *
957 * This function is called from the kernel allocators when a new object
958 * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.).
959 */
960void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
961 gfp_t gfp)
962{
963 pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
964
965 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
966 create_object((unsigned long)ptr, size, min_count, gfp);
967}
968EXPORT_SYMBOL_GPL(kmemleak_alloc);
969
970/**
971 * kmemleak_alloc_percpu - register a newly allocated __percpu object
972 * @ptr: __percpu pointer to beginning of the object
973 * @size: size of the object
974 * @gfp: flags used for kmemleak internal memory allocations
975 *
976 * This function is called from the kernel percpu allocator when a new object
977 * (memory block) is allocated (alloc_percpu).
978 */
979void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size,
980 gfp_t gfp)
981{
982 unsigned int cpu;
983
984 pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size);
985
986 /*
987 * Percpu allocations are only scanned and not reported as leaks
988 * (min_count is set to 0).
989 */
990 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
991 for_each_possible_cpu(cpu)
992 create_object((unsigned long)per_cpu_ptr(ptr, cpu),
993 size, 0, gfp);
994}
995EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
996
997/**
998 * kmemleak_vmalloc - register a newly vmalloc'ed object
999 * @area: pointer to vm_struct
1000 * @size: size of the object
1001 * @gfp: __vmalloc() flags used for kmemleak internal memory allocations
1002 *
1003 * This function is called from the vmalloc() kernel allocator when a new
1004 * object (memory block) is allocated.
1005 */
1006void __ref kmemleak_vmalloc(const struct vm_struct *area, size_t size, gfp_t gfp)
1007{
1008 pr_debug("%s(0x%p, %zu)\n", __func__, area, size);
1009
1010 /*
1011 * A min_count = 2 is needed because vm_struct contains a reference to
1012 * the virtual address of the vmalloc'ed block.
1013 */
1014 if (kmemleak_enabled) {
1015 create_object((unsigned long)area->addr, size, 2, gfp);
1016 object_set_excess_ref((unsigned long)area,
1017 (unsigned long)area->addr);
1018 }
1019}
1020EXPORT_SYMBOL_GPL(kmemleak_vmalloc);
1021
1022/**
1023 * kmemleak_free - unregister a previously registered object
1024 * @ptr: pointer to beginning of the object
1025 *
1026 * This function is called from the kernel allocators when an object (memory
1027 * block) is freed (kmem_cache_free, kfree, vfree etc.).
1028 */
1029void __ref kmemleak_free(const void *ptr)
1030{
1031 pr_debug("%s(0x%p)\n", __func__, ptr);
1032
1033 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
1034 delete_object_full((unsigned long)ptr);
1035}
1036EXPORT_SYMBOL_GPL(kmemleak_free);
1037
1038/**
1039 * kmemleak_free_part - partially unregister a previously registered object
1040 * @ptr: pointer to the beginning or inside the object. This also
1041 * represents the start of the range to be freed
1042 * @size: size to be unregistered
1043 *
1044 * This function is called when only a part of a memory block is freed
1045 * (usually from the bootmem allocator).
1046 */
1047void __ref kmemleak_free_part(const void *ptr, size_t size)
1048{
1049 pr_debug("%s(0x%p)\n", __func__, ptr);
1050
1051 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1052 delete_object_part((unsigned long)ptr, size, false);
1053}
1054EXPORT_SYMBOL_GPL(kmemleak_free_part);
1055
1056/**
1057 * kmemleak_free_percpu - unregister a previously registered __percpu object
1058 * @ptr: __percpu pointer to beginning of the object
1059 *
1060 * This function is called from the kernel percpu allocator when an object
1061 * (memory block) is freed (free_percpu).
1062 */
1063void __ref kmemleak_free_percpu(const void __percpu *ptr)
1064{
1065 unsigned int cpu;
1066
1067 pr_debug("%s(0x%p)\n", __func__, ptr);
1068
1069 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
1070 for_each_possible_cpu(cpu)
1071 delete_object_full((unsigned long)per_cpu_ptr(ptr,
1072 cpu));
1073}
1074EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
1075
1076/**
1077 * kmemleak_update_trace - update object allocation stack trace
1078 * @ptr: pointer to beginning of the object
1079 *
1080 * Override the object allocation stack trace for cases where the actual
1081 * allocation place is not always useful.
1082 */
1083void __ref kmemleak_update_trace(const void *ptr)
1084{
1085 struct kmemleak_object *object;
1086 unsigned long flags;
1087
1088 pr_debug("%s(0x%p)\n", __func__, ptr);
1089
1090 if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr))
1091 return;
1092
1093 object = find_and_get_object((unsigned long)ptr, 1);
1094 if (!object) {
1095#ifdef DEBUG
1096 kmemleak_warn("Updating stack trace for unknown object at %p\n",
1097 ptr);
1098#endif
1099 return;
1100 }
1101
1102 raw_spin_lock_irqsave(&object->lock, flags);
1103 object->trace_handle = set_track_prepare();
1104 raw_spin_unlock_irqrestore(&object->lock, flags);
1105
1106 put_object(object);
1107}
1108EXPORT_SYMBOL(kmemleak_update_trace);
1109
1110/**
1111 * kmemleak_not_leak - mark an allocated object as false positive
1112 * @ptr: pointer to beginning of the object
1113 *
1114 * Calling this function on an object will cause the memory block to no longer
1115 * be reported as leak and always be scanned.
1116 */
1117void __ref kmemleak_not_leak(const void *ptr)
1118{
1119 pr_debug("%s(0x%p)\n", __func__, ptr);
1120
1121 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1122 make_gray_object((unsigned long)ptr);
1123}
1124EXPORT_SYMBOL(kmemleak_not_leak);
1125
1126/**
1127 * kmemleak_ignore - ignore an allocated object
1128 * @ptr: pointer to beginning of the object
1129 *
1130 * Calling this function on an object will cause the memory block to be
1131 * ignored (not scanned and not reported as a leak). This is usually done when
1132 * it is known that the corresponding block is not a leak and does not contain
1133 * any references to other allocated memory blocks.
1134 */
1135void __ref kmemleak_ignore(const void *ptr)
1136{
1137 pr_debug("%s(0x%p)\n", __func__, ptr);
1138
1139 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1140 make_black_object((unsigned long)ptr, false);
1141}
1142EXPORT_SYMBOL(kmemleak_ignore);
1143
1144/**
1145 * kmemleak_scan_area - limit the range to be scanned in an allocated object
1146 * @ptr: pointer to beginning or inside the object. This also
1147 * represents the start of the scan area
1148 * @size: size of the scan area
1149 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
1150 *
1151 * This function is used when it is known that only certain parts of an object
1152 * contain references to other objects. Kmemleak will only scan these areas
1153 * reducing the number false negatives.
1154 */
1155void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
1156{
1157 pr_debug("%s(0x%p)\n", __func__, ptr);
1158
1159 if (kmemleak_enabled && ptr && size && !IS_ERR(ptr))
1160 add_scan_area((unsigned long)ptr, size, gfp);
1161}
1162EXPORT_SYMBOL(kmemleak_scan_area);
1163
1164/**
1165 * kmemleak_no_scan - do not scan an allocated object
1166 * @ptr: pointer to beginning of the object
1167 *
1168 * This function notifies kmemleak not to scan the given memory block. Useful
1169 * in situations where it is known that the given object does not contain any
1170 * references to other objects. Kmemleak will not scan such objects reducing
1171 * the number of false negatives.
1172 */
1173void __ref kmemleak_no_scan(const void *ptr)
1174{
1175 pr_debug("%s(0x%p)\n", __func__, ptr);
1176
1177 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1178 object_no_scan((unsigned long)ptr);
1179}
1180EXPORT_SYMBOL(kmemleak_no_scan);
1181
1182/**
1183 * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical
1184 * address argument
1185 * @phys: physical address of the object
1186 * @size: size of the object
1187 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
1188 */
1189void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, gfp_t gfp)
1190{
1191 pr_debug("%s(0x%pa, %zu)\n", __func__, &phys, size);
1192
1193 if (kmemleak_enabled)
1194 /*
1195 * Create object with OBJECT_PHYS flag and
1196 * assume min_count 0.
1197 */
1198 create_object_phys((unsigned long)phys, size, 0, gfp);
1199}
1200EXPORT_SYMBOL(kmemleak_alloc_phys);
1201
1202/**
1203 * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a
1204 * physical address argument
1205 * @phys: physical address if the beginning or inside an object. This
1206 * also represents the start of the range to be freed
1207 * @size: size to be unregistered
1208 */
1209void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size)
1210{
1211 pr_debug("%s(0x%pa)\n", __func__, &phys);
1212
1213 if (kmemleak_enabled)
1214 delete_object_part((unsigned long)phys, size, true);
1215}
1216EXPORT_SYMBOL(kmemleak_free_part_phys);
1217
1218/**
1219 * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical
1220 * address argument
1221 * @phys: physical address of the object
1222 */
1223void __ref kmemleak_ignore_phys(phys_addr_t phys)
1224{
1225 pr_debug("%s(0x%pa)\n", __func__, &phys);
1226
1227 if (kmemleak_enabled)
1228 make_black_object((unsigned long)phys, true);
1229}
1230EXPORT_SYMBOL(kmemleak_ignore_phys);
1231
1232/*
1233 * Update an object's checksum and return true if it was modified.
1234 */
1235static bool update_checksum(struct kmemleak_object *object)
1236{
1237 u32 old_csum = object->checksum;
1238
1239 if (WARN_ON_ONCE(object->flags & OBJECT_PHYS))
1240 return false;
1241
1242 kasan_disable_current();
1243 kcsan_disable_current();
1244 object->checksum = crc32(0, kasan_reset_tag((void *)object->pointer), object->size);
1245 kasan_enable_current();
1246 kcsan_enable_current();
1247
1248 return object->checksum != old_csum;
1249}
1250
1251/*
1252 * Update an object's references. object->lock must be held by the caller.
1253 */
1254static void update_refs(struct kmemleak_object *object)
1255{
1256 if (!color_white(object)) {
1257 /* non-orphan, ignored or new */
1258 return;
1259 }
1260
1261 /*
1262 * Increase the object's reference count (number of pointers to the
1263 * memory block). If this count reaches the required minimum, the
1264 * object's color will become gray and it will be added to the
1265 * gray_list.
1266 */
1267 object->count++;
1268 if (color_gray(object)) {
1269 /* put_object() called when removing from gray_list */
1270 WARN_ON(!get_object(object));
1271 list_add_tail(&object->gray_list, &gray_list);
1272 }
1273}
1274
1275/*
1276 * Memory scanning is a long process and it needs to be interruptible. This
1277 * function checks whether such interrupt condition occurred.
1278 */
1279static int scan_should_stop(void)
1280{
1281 if (!kmemleak_enabled)
1282 return 1;
1283
1284 /*
1285 * This function may be called from either process or kthread context,
1286 * hence the need to check for both stop conditions.
1287 */
1288 if (current->mm)
1289 return signal_pending(current);
1290 else
1291 return kthread_should_stop();
1292
1293 return 0;
1294}
1295
1296/*
1297 * Scan a memory block (exclusive range) for valid pointers and add those
1298 * found to the gray list.
1299 */
1300static void scan_block(void *_start, void *_end,
1301 struct kmemleak_object *scanned)
1302{
1303 unsigned long *ptr;
1304 unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1305 unsigned long *end = _end - (BYTES_PER_POINTER - 1);
1306 unsigned long flags;
1307 unsigned long untagged_ptr;
1308
1309 raw_spin_lock_irqsave(&kmemleak_lock, flags);
1310 for (ptr = start; ptr < end; ptr++) {
1311 struct kmemleak_object *object;
1312 unsigned long pointer;
1313 unsigned long excess_ref;
1314
1315 if (scan_should_stop())
1316 break;
1317
1318 kasan_disable_current();
1319 pointer = *(unsigned long *)kasan_reset_tag((void *)ptr);
1320 kasan_enable_current();
1321
1322 untagged_ptr = (unsigned long)kasan_reset_tag((void *)pointer);
1323 if (untagged_ptr < min_addr || untagged_ptr >= max_addr)
1324 continue;
1325
1326 /*
1327 * No need for get_object() here since we hold kmemleak_lock.
1328 * object->use_count cannot be dropped to 0 while the object
1329 * is still present in object_tree_root and object_list
1330 * (with updates protected by kmemleak_lock).
1331 */
1332 object = lookup_object(pointer, 1);
1333 if (!object)
1334 continue;
1335 if (object == scanned)
1336 /* self referenced, ignore */
1337 continue;
1338
1339 /*
1340 * Avoid the lockdep recursive warning on object->lock being
1341 * previously acquired in scan_object(). These locks are
1342 * enclosed by scan_mutex.
1343 */
1344 raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1345 /* only pass surplus references (object already gray) */
1346 if (color_gray(object)) {
1347 excess_ref = object->excess_ref;
1348 /* no need for update_refs() if object already gray */
1349 } else {
1350 excess_ref = 0;
1351 update_refs(object);
1352 }
1353 raw_spin_unlock(&object->lock);
1354
1355 if (excess_ref) {
1356 object = lookup_object(excess_ref, 0);
1357 if (!object)
1358 continue;
1359 if (object == scanned)
1360 /* circular reference, ignore */
1361 continue;
1362 raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1363 update_refs(object);
1364 raw_spin_unlock(&object->lock);
1365 }
1366 }
1367 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
1368}
1369
1370/*
1371 * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency.
1372 */
1373#ifdef CONFIG_SMP
1374static void scan_large_block(void *start, void *end)
1375{
1376 void *next;
1377
1378 while (start < end) {
1379 next = min(start + MAX_SCAN_SIZE, end);
1380 scan_block(start, next, NULL);
1381 start = next;
1382 cond_resched();
1383 }
1384}
1385#endif
1386
1387/*
1388 * Scan a memory block corresponding to a kmemleak_object. A condition is
1389 * that object->use_count >= 1.
1390 */
1391static void scan_object(struct kmemleak_object *object)
1392{
1393 struct kmemleak_scan_area *area;
1394 unsigned long flags;
1395 void *obj_ptr;
1396
1397 /*
1398 * Once the object->lock is acquired, the corresponding memory block
1399 * cannot be freed (the same lock is acquired in delete_object).
1400 */
1401 raw_spin_lock_irqsave(&object->lock, flags);
1402 if (object->flags & OBJECT_NO_SCAN)
1403 goto out;
1404 if (!(object->flags & OBJECT_ALLOCATED))
1405 /* already freed object */
1406 goto out;
1407
1408 obj_ptr = object->flags & OBJECT_PHYS ?
1409 __va((phys_addr_t)object->pointer) :
1410 (void *)object->pointer;
1411
1412 if (hlist_empty(&object->area_list) ||
1413 object->flags & OBJECT_FULL_SCAN) {
1414 void *start = obj_ptr;
1415 void *end = obj_ptr + object->size;
1416 void *next;
1417
1418 do {
1419 next = min(start + MAX_SCAN_SIZE, end);
1420 scan_block(start, next, object);
1421
1422 start = next;
1423 if (start >= end)
1424 break;
1425
1426 raw_spin_unlock_irqrestore(&object->lock, flags);
1427 cond_resched();
1428 raw_spin_lock_irqsave(&object->lock, flags);
1429 } while (object->flags & OBJECT_ALLOCATED);
1430 } else
1431 hlist_for_each_entry(area, &object->area_list, node)
1432 scan_block((void *)area->start,
1433 (void *)(area->start + area->size),
1434 object);
1435out:
1436 raw_spin_unlock_irqrestore(&object->lock, flags);
1437}
1438
1439/*
1440 * Scan the objects already referenced (gray objects). More objects will be
1441 * referenced and, if there are no memory leaks, all the objects are scanned.
1442 */
1443static void scan_gray_list(void)
1444{
1445 struct kmemleak_object *object, *tmp;
1446
1447 /*
1448 * The list traversal is safe for both tail additions and removals
1449 * from inside the loop. The kmemleak objects cannot be freed from
1450 * outside the loop because their use_count was incremented.
1451 */
1452 object = list_entry(gray_list.next, typeof(*object), gray_list);
1453 while (&object->gray_list != &gray_list) {
1454 cond_resched();
1455
1456 /* may add new objects to the list */
1457 if (!scan_should_stop())
1458 scan_object(object);
1459
1460 tmp = list_entry(object->gray_list.next, typeof(*object),
1461 gray_list);
1462
1463 /* remove the object from the list and release it */
1464 list_del(&object->gray_list);
1465 put_object(object);
1466
1467 object = tmp;
1468 }
1469 WARN_ON(!list_empty(&gray_list));
1470}
1471
1472/*
1473 * Conditionally call resched() in an object iteration loop while making sure
1474 * that the given object won't go away without RCU read lock by performing a
1475 * get_object() if !pinned.
1476 *
1477 * Return: false if can't do a cond_resched() due to get_object() failure
1478 * true otherwise
1479 */
1480static bool kmemleak_cond_resched(struct kmemleak_object *object, bool pinned)
1481{
1482 if (!pinned && !get_object(object))
1483 return false;
1484
1485 rcu_read_unlock();
1486 cond_resched();
1487 rcu_read_lock();
1488 if (!pinned)
1489 put_object(object);
1490 return true;
1491}
1492
1493/*
1494 * Scan data sections and all the referenced memory blocks allocated via the
1495 * kernel's standard allocators. This function must be called with the
1496 * scan_mutex held.
1497 */
1498static void kmemleak_scan(void)
1499{
1500 struct kmemleak_object *object;
1501 struct zone *zone;
1502 int __maybe_unused i;
1503 int new_leaks = 0;
1504 int loop_cnt = 0;
1505
1506 jiffies_last_scan = jiffies;
1507
1508 /* prepare the kmemleak_object's */
1509 rcu_read_lock();
1510 list_for_each_entry_rcu(object, &object_list, object_list) {
1511 bool obj_pinned = false;
1512
1513 raw_spin_lock_irq(&object->lock);
1514#ifdef DEBUG
1515 /*
1516 * With a few exceptions there should be a maximum of
1517 * 1 reference to any object at this point.
1518 */
1519 if (atomic_read(&object->use_count) > 1) {
1520 pr_debug("object->use_count = %d\n",
1521 atomic_read(&object->use_count));
1522 dump_object_info(object);
1523 }
1524#endif
1525
1526 /* ignore objects outside lowmem (paint them black) */
1527 if ((object->flags & OBJECT_PHYS) &&
1528 !(object->flags & OBJECT_NO_SCAN)) {
1529 unsigned long phys = object->pointer;
1530
1531 if (PHYS_PFN(phys) < min_low_pfn ||
1532 PHYS_PFN(phys + object->size) >= max_low_pfn)
1533 __paint_it(object, KMEMLEAK_BLACK);
1534 }
1535
1536 /* reset the reference count (whiten the object) */
1537 object->count = 0;
1538 if (color_gray(object) && get_object(object)) {
1539 list_add_tail(&object->gray_list, &gray_list);
1540 obj_pinned = true;
1541 }
1542
1543 raw_spin_unlock_irq(&object->lock);
1544
1545 /*
1546 * Do a cond_resched() every 64k objects to avoid soft lockup.
1547 */
1548 if (!(++loop_cnt & 0xffff) &&
1549 !kmemleak_cond_resched(object, obj_pinned))
1550 loop_cnt--; /* Try again on next object */
1551 }
1552 rcu_read_unlock();
1553
1554#ifdef CONFIG_SMP
1555 /* per-cpu sections scanning */
1556 for_each_possible_cpu(i)
1557 scan_large_block(__per_cpu_start + per_cpu_offset(i),
1558 __per_cpu_end + per_cpu_offset(i));
1559#endif
1560
1561 /*
1562 * Struct page scanning for each node.
1563 */
1564 get_online_mems();
1565 for_each_populated_zone(zone) {
1566 unsigned long start_pfn = zone->zone_start_pfn;
1567 unsigned long end_pfn = zone_end_pfn(zone);
1568 unsigned long pfn;
1569
1570 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1571 struct page *page = pfn_to_online_page(pfn);
1572
1573 if (!page)
1574 continue;
1575
1576 /* only scan pages belonging to this zone */
1577 if (page_zone(page) != zone)
1578 continue;
1579 /* only scan if page is in use */
1580 if (page_count(page) == 0)
1581 continue;
1582 scan_block(page, page + 1, NULL);
1583 if (!(pfn & 63))
1584 cond_resched();
1585 }
1586 }
1587 put_online_mems();
1588
1589 /*
1590 * Scanning the task stacks (may introduce false negatives).
1591 */
1592 if (kmemleak_stack_scan) {
1593 struct task_struct *p, *g;
1594
1595 rcu_read_lock();
1596 for_each_process_thread(g, p) {
1597 void *stack = try_get_task_stack(p);
1598 if (stack) {
1599 scan_block(stack, stack + THREAD_SIZE, NULL);
1600 put_task_stack(p);
1601 }
1602 }
1603 rcu_read_unlock();
1604 }
1605
1606 /*
1607 * Scan the objects already referenced from the sections scanned
1608 * above.
1609 */
1610 scan_gray_list();
1611
1612 /*
1613 * Check for new or unreferenced objects modified since the previous
1614 * scan and color them gray until the next scan.
1615 */
1616 rcu_read_lock();
1617 loop_cnt = 0;
1618 list_for_each_entry_rcu(object, &object_list, object_list) {
1619 /*
1620 * Do a cond_resched() every 64k objects to avoid soft lockup.
1621 */
1622 if (!(++loop_cnt & 0xffff) &&
1623 !kmemleak_cond_resched(object, false))
1624 loop_cnt--; /* Try again on next object */
1625
1626 /*
1627 * This is racy but we can save the overhead of lock/unlock
1628 * calls. The missed objects, if any, should be caught in
1629 * the next scan.
1630 */
1631 if (!color_white(object))
1632 continue;
1633 raw_spin_lock_irq(&object->lock);
1634 if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1635 && update_checksum(object) && get_object(object)) {
1636 /* color it gray temporarily */
1637 object->count = object->min_count;
1638 list_add_tail(&object->gray_list, &gray_list);
1639 }
1640 raw_spin_unlock_irq(&object->lock);
1641 }
1642 rcu_read_unlock();
1643
1644 /*
1645 * Re-scan the gray list for modified unreferenced objects.
1646 */
1647 scan_gray_list();
1648
1649 /*
1650 * If scanning was stopped do not report any new unreferenced objects.
1651 */
1652 if (scan_should_stop())
1653 return;
1654
1655 /*
1656 * Scanning result reporting.
1657 */
1658 rcu_read_lock();
1659 loop_cnt = 0;
1660 list_for_each_entry_rcu(object, &object_list, object_list) {
1661 /*
1662 * Do a cond_resched() every 64k objects to avoid soft lockup.
1663 */
1664 if (!(++loop_cnt & 0xffff) &&
1665 !kmemleak_cond_resched(object, false))
1666 loop_cnt--; /* Try again on next object */
1667
1668 /*
1669 * This is racy but we can save the overhead of lock/unlock
1670 * calls. The missed objects, if any, should be caught in
1671 * the next scan.
1672 */
1673 if (!color_white(object))
1674 continue;
1675 raw_spin_lock_irq(&object->lock);
1676 if (unreferenced_object(object) &&
1677 !(object->flags & OBJECT_REPORTED)) {
1678 object->flags |= OBJECT_REPORTED;
1679
1680 if (kmemleak_verbose)
1681 print_unreferenced(NULL, object);
1682
1683 new_leaks++;
1684 }
1685 raw_spin_unlock_irq(&object->lock);
1686 }
1687 rcu_read_unlock();
1688
1689 if (new_leaks) {
1690 kmemleak_found_leaks = true;
1691
1692 pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n",
1693 new_leaks);
1694 }
1695
1696}
1697
1698/*
1699 * Thread function performing automatic memory scanning. Unreferenced objects
1700 * at the end of a memory scan are reported but only the first time.
1701 */
1702static int kmemleak_scan_thread(void *arg)
1703{
1704 static int first_run = IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN);
1705
1706 pr_info("Automatic memory scanning thread started\n");
1707 set_user_nice(current, 10);
1708
1709 /*
1710 * Wait before the first scan to allow the system to fully initialize.
1711 */
1712 if (first_run) {
1713 signed long timeout = msecs_to_jiffies(SECS_FIRST_SCAN * 1000);
1714 first_run = 0;
1715 while (timeout && !kthread_should_stop())
1716 timeout = schedule_timeout_interruptible(timeout);
1717 }
1718
1719 while (!kthread_should_stop()) {
1720 signed long timeout = READ_ONCE(jiffies_scan_wait);
1721
1722 mutex_lock(&scan_mutex);
1723 kmemleak_scan();
1724 mutex_unlock(&scan_mutex);
1725
1726 /* wait before the next scan */
1727 while (timeout && !kthread_should_stop())
1728 timeout = schedule_timeout_interruptible(timeout);
1729 }
1730
1731 pr_info("Automatic memory scanning thread ended\n");
1732
1733 return 0;
1734}
1735
1736/*
1737 * Start the automatic memory scanning thread. This function must be called
1738 * with the scan_mutex held.
1739 */
1740static void start_scan_thread(void)
1741{
1742 if (scan_thread)
1743 return;
1744 scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1745 if (IS_ERR(scan_thread)) {
1746 pr_warn("Failed to create the scan thread\n");
1747 scan_thread = NULL;
1748 }
1749}
1750
1751/*
1752 * Stop the automatic memory scanning thread.
1753 */
1754static void stop_scan_thread(void)
1755{
1756 if (scan_thread) {
1757 kthread_stop(scan_thread);
1758 scan_thread = NULL;
1759 }
1760}
1761
1762/*
1763 * Iterate over the object_list and return the first valid object at or after
1764 * the required position with its use_count incremented. The function triggers
1765 * a memory scanning when the pos argument points to the first position.
1766 */
1767static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1768{
1769 struct kmemleak_object *object;
1770 loff_t n = *pos;
1771 int err;
1772
1773 err = mutex_lock_interruptible(&scan_mutex);
1774 if (err < 0)
1775 return ERR_PTR(err);
1776
1777 rcu_read_lock();
1778 list_for_each_entry_rcu(object, &object_list, object_list) {
1779 if (n-- > 0)
1780 continue;
1781 if (get_object(object))
1782 goto out;
1783 }
1784 object = NULL;
1785out:
1786 return object;
1787}
1788
1789/*
1790 * Return the next object in the object_list. The function decrements the
1791 * use_count of the previous object and increases that of the next one.
1792 */
1793static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1794{
1795 struct kmemleak_object *prev_obj = v;
1796 struct kmemleak_object *next_obj = NULL;
1797 struct kmemleak_object *obj = prev_obj;
1798
1799 ++(*pos);
1800
1801 list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
1802 if (get_object(obj)) {
1803 next_obj = obj;
1804 break;
1805 }
1806 }
1807
1808 put_object(prev_obj);
1809 return next_obj;
1810}
1811
1812/*
1813 * Decrement the use_count of the last object required, if any.
1814 */
1815static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1816{
1817 if (!IS_ERR(v)) {
1818 /*
1819 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1820 * waiting was interrupted, so only release it if !IS_ERR.
1821 */
1822 rcu_read_unlock();
1823 mutex_unlock(&scan_mutex);
1824 if (v)
1825 put_object(v);
1826 }
1827}
1828
1829/*
1830 * Print the information for an unreferenced object to the seq file.
1831 */
1832static int kmemleak_seq_show(struct seq_file *seq, void *v)
1833{
1834 struct kmemleak_object *object = v;
1835 unsigned long flags;
1836
1837 raw_spin_lock_irqsave(&object->lock, flags);
1838 if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
1839 print_unreferenced(seq, object);
1840 raw_spin_unlock_irqrestore(&object->lock, flags);
1841 return 0;
1842}
1843
1844static const struct seq_operations kmemleak_seq_ops = {
1845 .start = kmemleak_seq_start,
1846 .next = kmemleak_seq_next,
1847 .stop = kmemleak_seq_stop,
1848 .show = kmemleak_seq_show,
1849};
1850
1851static int kmemleak_open(struct inode *inode, struct file *file)
1852{
1853 return seq_open(file, &kmemleak_seq_ops);
1854}
1855
1856static int dump_str_object_info(const char *str)
1857{
1858 unsigned long flags;
1859 struct kmemleak_object *object;
1860 unsigned long addr;
1861
1862 if (kstrtoul(str, 0, &addr))
1863 return -EINVAL;
1864 object = find_and_get_object(addr, 0);
1865 if (!object) {
1866 pr_info("Unknown object at 0x%08lx\n", addr);
1867 return -EINVAL;
1868 }
1869
1870 raw_spin_lock_irqsave(&object->lock, flags);
1871 dump_object_info(object);
1872 raw_spin_unlock_irqrestore(&object->lock, flags);
1873
1874 put_object(object);
1875 return 0;
1876}
1877
1878/*
1879 * We use grey instead of black to ensure we can do future scans on the same
1880 * objects. If we did not do future scans these black objects could
1881 * potentially contain references to newly allocated objects in the future and
1882 * we'd end up with false positives.
1883 */
1884static void kmemleak_clear(void)
1885{
1886 struct kmemleak_object *object;
1887
1888 rcu_read_lock();
1889 list_for_each_entry_rcu(object, &object_list, object_list) {
1890 raw_spin_lock_irq(&object->lock);
1891 if ((object->flags & OBJECT_REPORTED) &&
1892 unreferenced_object(object))
1893 __paint_it(object, KMEMLEAK_GREY);
1894 raw_spin_unlock_irq(&object->lock);
1895 }
1896 rcu_read_unlock();
1897
1898 kmemleak_found_leaks = false;
1899}
1900
1901static void __kmemleak_do_cleanup(void);
1902
1903/*
1904 * File write operation to configure kmemleak at run-time. The following
1905 * commands can be written to the /sys/kernel/debug/kmemleak file:
1906 * off - disable kmemleak (irreversible)
1907 * stack=on - enable the task stacks scanning
1908 * stack=off - disable the tasks stacks scanning
1909 * scan=on - start the automatic memory scanning thread
1910 * scan=off - stop the automatic memory scanning thread
1911 * scan=... - set the automatic memory scanning period in seconds (0 to
1912 * disable it)
1913 * scan - trigger a memory scan
1914 * clear - mark all current reported unreferenced kmemleak objects as
1915 * grey to ignore printing them, or free all kmemleak objects
1916 * if kmemleak has been disabled.
1917 * dump=... - dump information about the object found at the given address
1918 */
1919static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1920 size_t size, loff_t *ppos)
1921{
1922 char buf[64];
1923 int buf_size;
1924 int ret;
1925
1926 buf_size = min(size, (sizeof(buf) - 1));
1927 if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1928 return -EFAULT;
1929 buf[buf_size] = 0;
1930
1931 ret = mutex_lock_interruptible(&scan_mutex);
1932 if (ret < 0)
1933 return ret;
1934
1935 if (strncmp(buf, "clear", 5) == 0) {
1936 if (kmemleak_enabled)
1937 kmemleak_clear();
1938 else
1939 __kmemleak_do_cleanup();
1940 goto out;
1941 }
1942
1943 if (!kmemleak_enabled) {
1944 ret = -EPERM;
1945 goto out;
1946 }
1947
1948 if (strncmp(buf, "off", 3) == 0)
1949 kmemleak_disable();
1950 else if (strncmp(buf, "stack=on", 8) == 0)
1951 kmemleak_stack_scan = 1;
1952 else if (strncmp(buf, "stack=off", 9) == 0)
1953 kmemleak_stack_scan = 0;
1954 else if (strncmp(buf, "scan=on", 7) == 0)
1955 start_scan_thread();
1956 else if (strncmp(buf, "scan=off", 8) == 0)
1957 stop_scan_thread();
1958 else if (strncmp(buf, "scan=", 5) == 0) {
1959 unsigned secs;
1960 unsigned long msecs;
1961
1962 ret = kstrtouint(buf + 5, 0, &secs);
1963 if (ret < 0)
1964 goto out;
1965
1966 msecs = secs * MSEC_PER_SEC;
1967 if (msecs > UINT_MAX)
1968 msecs = UINT_MAX;
1969
1970 stop_scan_thread();
1971 if (msecs) {
1972 WRITE_ONCE(jiffies_scan_wait, msecs_to_jiffies(msecs));
1973 start_scan_thread();
1974 }
1975 } else if (strncmp(buf, "scan", 4) == 0)
1976 kmemleak_scan();
1977 else if (strncmp(buf, "dump=", 5) == 0)
1978 ret = dump_str_object_info(buf + 5);
1979 else
1980 ret = -EINVAL;
1981
1982out:
1983 mutex_unlock(&scan_mutex);
1984 if (ret < 0)
1985 return ret;
1986
1987 /* ignore the rest of the buffer, only one command at a time */
1988 *ppos += size;
1989 return size;
1990}
1991
1992static const struct file_operations kmemleak_fops = {
1993 .owner = THIS_MODULE,
1994 .open = kmemleak_open,
1995 .read = seq_read,
1996 .write = kmemleak_write,
1997 .llseek = seq_lseek,
1998 .release = seq_release,
1999};
2000
2001static void __kmemleak_do_cleanup(void)
2002{
2003 struct kmemleak_object *object, *tmp;
2004
2005 /*
2006 * Kmemleak has already been disabled, no need for RCU list traversal
2007 * or kmemleak_lock held.
2008 */
2009 list_for_each_entry_safe(object, tmp, &object_list, object_list) {
2010 __remove_object(object);
2011 __delete_object(object);
2012 }
2013}
2014
2015/*
2016 * Stop the memory scanning thread and free the kmemleak internal objects if
2017 * no previous scan thread (otherwise, kmemleak may still have some useful
2018 * information on memory leaks).
2019 */
2020static void kmemleak_do_cleanup(struct work_struct *work)
2021{
2022 stop_scan_thread();
2023
2024 mutex_lock(&scan_mutex);
2025 /*
2026 * Once it is made sure that kmemleak_scan has stopped, it is safe to no
2027 * longer track object freeing. Ordering of the scan thread stopping and
2028 * the memory accesses below is guaranteed by the kthread_stop()
2029 * function.
2030 */
2031 kmemleak_free_enabled = 0;
2032 mutex_unlock(&scan_mutex);
2033
2034 if (!kmemleak_found_leaks)
2035 __kmemleak_do_cleanup();
2036 else
2037 pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n");
2038}
2039
2040static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
2041
2042/*
2043 * Disable kmemleak. No memory allocation/freeing will be traced once this
2044 * function is called. Disabling kmemleak is an irreversible operation.
2045 */
2046static void kmemleak_disable(void)
2047{
2048 /* atomically check whether it was already invoked */
2049 if (cmpxchg(&kmemleak_error, 0, 1))
2050 return;
2051
2052 /* stop any memory operation tracing */
2053 kmemleak_enabled = 0;
2054
2055 /* check whether it is too early for a kernel thread */
2056 if (kmemleak_initialized)
2057 schedule_work(&cleanup_work);
2058 else
2059 kmemleak_free_enabled = 0;
2060
2061 pr_info("Kernel memory leak detector disabled\n");
2062}
2063
2064/*
2065 * Allow boot-time kmemleak disabling (enabled by default).
2066 */
2067static int __init kmemleak_boot_config(char *str)
2068{
2069 if (!str)
2070 return -EINVAL;
2071 if (strcmp(str, "off") == 0)
2072 kmemleak_disable();
2073 else if (strcmp(str, "on") == 0) {
2074 kmemleak_skip_disable = 1;
2075 stack_depot_want_early_init();
2076 }
2077 else
2078 return -EINVAL;
2079 return 0;
2080}
2081early_param("kmemleak", kmemleak_boot_config);
2082
2083/*
2084 * Kmemleak initialization.
2085 */
2086void __init kmemleak_init(void)
2087{
2088#ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
2089 if (!kmemleak_skip_disable) {
2090 kmemleak_disable();
2091 return;
2092 }
2093#endif
2094
2095 if (kmemleak_error)
2096 return;
2097
2098 jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
2099 jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
2100
2101 object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
2102 scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
2103
2104 /* register the data/bss sections */
2105 create_object((unsigned long)_sdata, _edata - _sdata,
2106 KMEMLEAK_GREY, GFP_ATOMIC);
2107 create_object((unsigned long)__bss_start, __bss_stop - __bss_start,
2108 KMEMLEAK_GREY, GFP_ATOMIC);
2109 /* only register .data..ro_after_init if not within .data */
2110 if (&__start_ro_after_init < &_sdata || &__end_ro_after_init > &_edata)
2111 create_object((unsigned long)__start_ro_after_init,
2112 __end_ro_after_init - __start_ro_after_init,
2113 KMEMLEAK_GREY, GFP_ATOMIC);
2114}
2115
2116/*
2117 * Late initialization function.
2118 */
2119static int __init kmemleak_late_init(void)
2120{
2121 kmemleak_initialized = 1;
2122
2123 debugfs_create_file("kmemleak", 0644, NULL, NULL, &kmemleak_fops);
2124
2125 if (kmemleak_error) {
2126 /*
2127 * Some error occurred and kmemleak was disabled. There is a
2128 * small chance that kmemleak_disable() was called immediately
2129 * after setting kmemleak_initialized and we may end up with
2130 * two clean-up threads but serialized by scan_mutex.
2131 */
2132 schedule_work(&cleanup_work);
2133 return -ENOMEM;
2134 }
2135
2136 if (IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN)) {
2137 mutex_lock(&scan_mutex);
2138 start_scan_thread();
2139 mutex_unlock(&scan_mutex);
2140 }
2141
2142 pr_info("Kernel memory leak detector initialized (mem pool available: %d)\n",
2143 mem_pool_free_count);
2144
2145 return 0;
2146}
2147late_initcall(kmemleak_late_init);
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * mm/kmemleak.c
4 *
5 * Copyright (C) 2008 ARM Limited
6 * Written by Catalin Marinas <catalin.marinas@arm.com>
7 *
8 * For more information on the algorithm and kmemleak usage, please see
9 * Documentation/dev-tools/kmemleak.rst.
10 *
11 * Notes on locking
12 * ----------------
13 *
14 * The following locks and mutexes are used by kmemleak:
15 *
16 * - kmemleak_lock (raw_spinlock_t): protects the object_list as well as
17 * del_state modifications and accesses to the object trees
18 * (object_tree_root, object_phys_tree_root, object_percpu_tree_root). The
19 * object_list is the main list holding the metadata (struct
20 * kmemleak_object) for the allocated memory blocks. The object trees are
21 * red black trees used to look-up metadata based on a pointer to the
22 * corresponding memory block. The kmemleak_object structures are added to
23 * the object_list and the object tree root in the create_object() function
24 * called from the kmemleak_alloc{,_phys,_percpu}() callback and removed in
25 * delete_object() called from the kmemleak_free{,_phys,_percpu}() callback
26 * - kmemleak_object.lock (raw_spinlock_t): protects a kmemleak_object.
27 * Accesses to the metadata (e.g. count) are protected by this lock. Note
28 * that some members of this structure may be protected by other means
29 * (atomic or kmemleak_lock). This lock is also held when scanning the
30 * corresponding memory block to avoid the kernel freeing it via the
31 * kmemleak_free() callback. This is less heavyweight than holding a global
32 * lock like kmemleak_lock during scanning.
33 * - scan_mutex (mutex): ensures that only one thread may scan the memory for
34 * unreferenced objects at a time. The gray_list contains the objects which
35 * are already referenced or marked as false positives and need to be
36 * scanned. This list is only modified during a scanning episode when the
37 * scan_mutex is held. At the end of a scan, the gray_list is always empty.
38 * Note that the kmemleak_object.use_count is incremented when an object is
39 * added to the gray_list and therefore cannot be freed. This mutex also
40 * prevents multiple users of the "kmemleak" debugfs file together with
41 * modifications to the memory scanning parameters including the scan_thread
42 * pointer
43 *
44 * Locks and mutexes are acquired/nested in the following order:
45 *
46 * scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING)
47 *
48 * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex
49 * regions.
50 *
51 * The kmemleak_object structures have a use_count incremented or decremented
52 * using the get_object()/put_object() functions. When the use_count becomes
53 * 0, this count can no longer be incremented and put_object() schedules the
54 * kmemleak_object freeing via an RCU callback. All calls to the get_object()
55 * function must be protected by rcu_read_lock() to avoid accessing a freed
56 * structure.
57 */
58
59#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
60
61#include <linux/init.h>
62#include <linux/kernel.h>
63#include <linux/list.h>
64#include <linux/sched/signal.h>
65#include <linux/sched/task.h>
66#include <linux/sched/task_stack.h>
67#include <linux/jiffies.h>
68#include <linux/delay.h>
69#include <linux/export.h>
70#include <linux/kthread.h>
71#include <linux/rbtree.h>
72#include <linux/fs.h>
73#include <linux/debugfs.h>
74#include <linux/seq_file.h>
75#include <linux/cpumask.h>
76#include <linux/spinlock.h>
77#include <linux/module.h>
78#include <linux/mutex.h>
79#include <linux/rcupdate.h>
80#include <linux/stacktrace.h>
81#include <linux/stackdepot.h>
82#include <linux/cache.h>
83#include <linux/percpu.h>
84#include <linux/memblock.h>
85#include <linux/pfn.h>
86#include <linux/mmzone.h>
87#include <linux/slab.h>
88#include <linux/thread_info.h>
89#include <linux/err.h>
90#include <linux/uaccess.h>
91#include <linux/string.h>
92#include <linux/nodemask.h>
93#include <linux/mm.h>
94#include <linux/workqueue.h>
95#include <linux/crc32.h>
96
97#include <asm/sections.h>
98#include <asm/processor.h>
99#include <linux/atomic.h>
100
101#include <linux/kasan.h>
102#include <linux/kfence.h>
103#include <linux/kmemleak.h>
104#include <linux/memory_hotplug.h>
105
106/*
107 * Kmemleak configuration and common defines.
108 */
109#define MAX_TRACE 16 /* stack trace length */
110#define MSECS_MIN_AGE 5000 /* minimum object age for reporting */
111#define SECS_FIRST_SCAN 60 /* delay before the first scan */
112#define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */
113#define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */
114
115#define BYTES_PER_POINTER sizeof(void *)
116
117/* GFP bitmask for kmemleak internal allocations */
118#define gfp_kmemleak_mask(gfp) (((gfp) & (GFP_KERNEL | GFP_ATOMIC | \
119 __GFP_NOLOCKDEP)) | \
120 __GFP_NORETRY | __GFP_NOMEMALLOC | \
121 __GFP_NOWARN)
122
123/* scanning area inside a memory block */
124struct kmemleak_scan_area {
125 struct hlist_node node;
126 unsigned long start;
127 size_t size;
128};
129
130#define KMEMLEAK_GREY 0
131#define KMEMLEAK_BLACK -1
132
133/*
134 * Structure holding the metadata for each allocated memory block.
135 * Modifications to such objects should be made while holding the
136 * object->lock. Insertions or deletions from object_list, gray_list or
137 * rb_node are already protected by the corresponding locks or mutex (see
138 * the notes on locking above). These objects are reference-counted
139 * (use_count) and freed using the RCU mechanism.
140 */
141struct kmemleak_object {
142 raw_spinlock_t lock;
143 unsigned int flags; /* object status flags */
144 struct list_head object_list;
145 struct list_head gray_list;
146 struct rb_node rb_node;
147 struct rcu_head rcu; /* object_list lockless traversal */
148 /* object usage count; object freed when use_count == 0 */
149 atomic_t use_count;
150 unsigned int del_state; /* deletion state */
151 unsigned long pointer;
152 size_t size;
153 /* pass surplus references to this pointer */
154 unsigned long excess_ref;
155 /* minimum number of a pointers found before it is considered leak */
156 int min_count;
157 /* the total number of pointers found pointing to this object */
158 int count;
159 /* checksum for detecting modified objects */
160 u32 checksum;
161 /* memory ranges to be scanned inside an object (empty for all) */
162 struct hlist_head area_list;
163 depot_stack_handle_t trace_handle;
164 unsigned long jiffies; /* creation timestamp */
165 pid_t pid; /* pid of the current task */
166 char comm[TASK_COMM_LEN]; /* executable name */
167};
168
169/* flag representing the memory block allocation status */
170#define OBJECT_ALLOCATED (1 << 0)
171/* flag set after the first reporting of an unreference object */
172#define OBJECT_REPORTED (1 << 1)
173/* flag set to not scan the object */
174#define OBJECT_NO_SCAN (1 << 2)
175/* flag set to fully scan the object when scan_area allocation failed */
176#define OBJECT_FULL_SCAN (1 << 3)
177/* flag set for object allocated with physical address */
178#define OBJECT_PHYS (1 << 4)
179/* flag set for per-CPU pointers */
180#define OBJECT_PERCPU (1 << 5)
181
182/* set when __remove_object() called */
183#define DELSTATE_REMOVED (1 << 0)
184/* set to temporarily prevent deletion from object_list */
185#define DELSTATE_NO_DELETE (1 << 1)
186
187#define HEX_PREFIX " "
188/* number of bytes to print per line; must be 16 or 32 */
189#define HEX_ROW_SIZE 16
190/* number of bytes to print at a time (1, 2, 4, 8) */
191#define HEX_GROUP_SIZE 1
192/* include ASCII after the hex output */
193#define HEX_ASCII 1
194/* max number of lines to be printed */
195#define HEX_MAX_LINES 2
196
197/* the list of all allocated objects */
198static LIST_HEAD(object_list);
199/* the list of gray-colored objects (see color_gray comment below) */
200static LIST_HEAD(gray_list);
201/* memory pool allocation */
202static struct kmemleak_object mem_pool[CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE];
203static int mem_pool_free_count = ARRAY_SIZE(mem_pool);
204static LIST_HEAD(mem_pool_free_list);
205/* search tree for object boundaries */
206static struct rb_root object_tree_root = RB_ROOT;
207/* search tree for object (with OBJECT_PHYS flag) boundaries */
208static struct rb_root object_phys_tree_root = RB_ROOT;
209/* search tree for object (with OBJECT_PERCPU flag) boundaries */
210static struct rb_root object_percpu_tree_root = RB_ROOT;
211/* protecting the access to object_list, object_tree_root (or object_phys_tree_root) */
212static DEFINE_RAW_SPINLOCK(kmemleak_lock);
213
214/* allocation caches for kmemleak internal data */
215static struct kmem_cache *object_cache;
216static struct kmem_cache *scan_area_cache;
217
218/* set if tracing memory operations is enabled */
219static int kmemleak_enabled = 1;
220/* same as above but only for the kmemleak_free() callback */
221static int kmemleak_free_enabled = 1;
222/* set in the late_initcall if there were no errors */
223static int kmemleak_late_initialized;
224/* set if a kmemleak warning was issued */
225static int kmemleak_warning;
226/* set if a fatal kmemleak error has occurred */
227static int kmemleak_error;
228
229/* minimum and maximum address that may be valid pointers */
230static unsigned long min_addr = ULONG_MAX;
231static unsigned long max_addr;
232
233static struct task_struct *scan_thread;
234/* used to avoid reporting of recently allocated objects */
235static unsigned long jiffies_min_age;
236static unsigned long jiffies_last_scan;
237/* delay between automatic memory scannings */
238static unsigned long jiffies_scan_wait;
239/* enables or disables the task stacks scanning */
240static int kmemleak_stack_scan = 1;
241/* protects the memory scanning, parameters and debug/kmemleak file access */
242static DEFINE_MUTEX(scan_mutex);
243/* setting kmemleak=on, will set this var, skipping the disable */
244static int kmemleak_skip_disable;
245/* If there are leaks that can be reported */
246static bool kmemleak_found_leaks;
247
248static bool kmemleak_verbose;
249module_param_named(verbose, kmemleak_verbose, bool, 0600);
250
251static void kmemleak_disable(void);
252
253/*
254 * Print a warning and dump the stack trace.
255 */
256#define kmemleak_warn(x...) do { \
257 pr_warn(x); \
258 dump_stack(); \
259 kmemleak_warning = 1; \
260} while (0)
261
262/*
263 * Macro invoked when a serious kmemleak condition occurred and cannot be
264 * recovered from. Kmemleak will be disabled and further allocation/freeing
265 * tracing no longer available.
266 */
267#define kmemleak_stop(x...) do { \
268 kmemleak_warn(x); \
269 kmemleak_disable(); \
270} while (0)
271
272#define warn_or_seq_printf(seq, fmt, ...) do { \
273 if (seq) \
274 seq_printf(seq, fmt, ##__VA_ARGS__); \
275 else \
276 pr_warn(fmt, ##__VA_ARGS__); \
277} while (0)
278
279static void warn_or_seq_hex_dump(struct seq_file *seq, int prefix_type,
280 int rowsize, int groupsize, const void *buf,
281 size_t len, bool ascii)
282{
283 if (seq)
284 seq_hex_dump(seq, HEX_PREFIX, prefix_type, rowsize, groupsize,
285 buf, len, ascii);
286 else
287 print_hex_dump(KERN_WARNING, pr_fmt(HEX_PREFIX), prefix_type,
288 rowsize, groupsize, buf, len, ascii);
289}
290
291/*
292 * Printing of the objects hex dump to the seq file. The number of lines to be
293 * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
294 * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
295 * with the object->lock held.
296 */
297static void hex_dump_object(struct seq_file *seq,
298 struct kmemleak_object *object)
299{
300 const u8 *ptr = (const u8 *)object->pointer;
301 size_t len;
302
303 if (WARN_ON_ONCE(object->flags & (OBJECT_PHYS | OBJECT_PERCPU)))
304 return;
305
306 /* limit the number of lines to HEX_MAX_LINES */
307 len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE);
308
309 warn_or_seq_printf(seq, " hex dump (first %zu bytes):\n", len);
310 kasan_disable_current();
311 warn_or_seq_hex_dump(seq, DUMP_PREFIX_NONE, HEX_ROW_SIZE,
312 HEX_GROUP_SIZE, kasan_reset_tag((void *)ptr), len, HEX_ASCII);
313 kasan_enable_current();
314}
315
316/*
317 * Object colors, encoded with count and min_count:
318 * - white - orphan object, not enough references to it (count < min_count)
319 * - gray - not orphan, not marked as false positive (min_count == 0) or
320 * sufficient references to it (count >= min_count)
321 * - black - ignore, it doesn't contain references (e.g. text section)
322 * (min_count == -1). No function defined for this color.
323 * Newly created objects don't have any color assigned (object->count == -1)
324 * before the next memory scan when they become white.
325 */
326static bool color_white(const struct kmemleak_object *object)
327{
328 return object->count != KMEMLEAK_BLACK &&
329 object->count < object->min_count;
330}
331
332static bool color_gray(const struct kmemleak_object *object)
333{
334 return object->min_count != KMEMLEAK_BLACK &&
335 object->count >= object->min_count;
336}
337
338/*
339 * Objects are considered unreferenced only if their color is white, they have
340 * not be deleted and have a minimum age to avoid false positives caused by
341 * pointers temporarily stored in CPU registers.
342 */
343static bool unreferenced_object(struct kmemleak_object *object)
344{
345 return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
346 time_before_eq(object->jiffies + jiffies_min_age,
347 jiffies_last_scan);
348}
349
350/*
351 * Printing of the unreferenced objects information to the seq file. The
352 * print_unreferenced function must be called with the object->lock held.
353 */
354static void print_unreferenced(struct seq_file *seq,
355 struct kmemleak_object *object)
356{
357 int i;
358 unsigned long *entries;
359 unsigned int nr_entries;
360
361 nr_entries = stack_depot_fetch(object->trace_handle, &entries);
362 warn_or_seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
363 object->pointer, object->size);
364 warn_or_seq_printf(seq, " comm \"%s\", pid %d, jiffies %lu\n",
365 object->comm, object->pid, object->jiffies);
366 hex_dump_object(seq, object);
367 warn_or_seq_printf(seq, " backtrace (crc %x):\n", object->checksum);
368
369 for (i = 0; i < nr_entries; i++) {
370 void *ptr = (void *)entries[i];
371 warn_or_seq_printf(seq, " [<%pK>] %pS\n", ptr, ptr);
372 }
373}
374
375/*
376 * Print the kmemleak_object information. This function is used mainly for
377 * debugging special cases when kmemleak operations. It must be called with
378 * the object->lock held.
379 */
380static void dump_object_info(struct kmemleak_object *object)
381{
382 pr_notice("Object 0x%08lx (size %zu):\n",
383 object->pointer, object->size);
384 pr_notice(" comm \"%s\", pid %d, jiffies %lu\n",
385 object->comm, object->pid, object->jiffies);
386 pr_notice(" min_count = %d\n", object->min_count);
387 pr_notice(" count = %d\n", object->count);
388 pr_notice(" flags = 0x%x\n", object->flags);
389 pr_notice(" checksum = %u\n", object->checksum);
390 pr_notice(" backtrace:\n");
391 if (object->trace_handle)
392 stack_depot_print(object->trace_handle);
393}
394
395static struct rb_root *object_tree(unsigned long objflags)
396{
397 if (objflags & OBJECT_PHYS)
398 return &object_phys_tree_root;
399 if (objflags & OBJECT_PERCPU)
400 return &object_percpu_tree_root;
401 return &object_tree_root;
402}
403
404/*
405 * Look-up a memory block metadata (kmemleak_object) in the object search
406 * tree based on a pointer value. If alias is 0, only values pointing to the
407 * beginning of the memory block are allowed. The kmemleak_lock must be held
408 * when calling this function.
409 */
410static struct kmemleak_object *__lookup_object(unsigned long ptr, int alias,
411 unsigned int objflags)
412{
413 struct rb_node *rb = object_tree(objflags)->rb_node;
414 unsigned long untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
415
416 while (rb) {
417 struct kmemleak_object *object;
418 unsigned long untagged_objp;
419
420 object = rb_entry(rb, struct kmemleak_object, rb_node);
421 untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer);
422
423 if (untagged_ptr < untagged_objp)
424 rb = object->rb_node.rb_left;
425 else if (untagged_objp + object->size <= untagged_ptr)
426 rb = object->rb_node.rb_right;
427 else if (untagged_objp == untagged_ptr || alias)
428 return object;
429 else {
430 kmemleak_warn("Found object by alias at 0x%08lx\n",
431 ptr);
432 dump_object_info(object);
433 break;
434 }
435 }
436 return NULL;
437}
438
439/* Look-up a kmemleak object which allocated with virtual address. */
440static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
441{
442 return __lookup_object(ptr, alias, 0);
443}
444
445/*
446 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
447 * that once an object's use_count reached 0, the RCU freeing was already
448 * registered and the object should no longer be used. This function must be
449 * called under the protection of rcu_read_lock().
450 */
451static int get_object(struct kmemleak_object *object)
452{
453 return atomic_inc_not_zero(&object->use_count);
454}
455
456/*
457 * Memory pool allocation and freeing. kmemleak_lock must not be held.
458 */
459static struct kmemleak_object *mem_pool_alloc(gfp_t gfp)
460{
461 unsigned long flags;
462 struct kmemleak_object *object;
463
464 /* try the slab allocator first */
465 if (object_cache) {
466 object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
467 if (object)
468 return object;
469 }
470
471 /* slab allocation failed, try the memory pool */
472 raw_spin_lock_irqsave(&kmemleak_lock, flags);
473 object = list_first_entry_or_null(&mem_pool_free_list,
474 typeof(*object), object_list);
475 if (object)
476 list_del(&object->object_list);
477 else if (mem_pool_free_count)
478 object = &mem_pool[--mem_pool_free_count];
479 else
480 pr_warn_once("Memory pool empty, consider increasing CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE\n");
481 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
482
483 return object;
484}
485
486/*
487 * Return the object to either the slab allocator or the memory pool.
488 */
489static void mem_pool_free(struct kmemleak_object *object)
490{
491 unsigned long flags;
492
493 if (object < mem_pool || object >= mem_pool + ARRAY_SIZE(mem_pool)) {
494 kmem_cache_free(object_cache, object);
495 return;
496 }
497
498 /* add the object to the memory pool free list */
499 raw_spin_lock_irqsave(&kmemleak_lock, flags);
500 list_add(&object->object_list, &mem_pool_free_list);
501 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
502}
503
504/*
505 * RCU callback to free a kmemleak_object.
506 */
507static void free_object_rcu(struct rcu_head *rcu)
508{
509 struct hlist_node *tmp;
510 struct kmemleak_scan_area *area;
511 struct kmemleak_object *object =
512 container_of(rcu, struct kmemleak_object, rcu);
513
514 /*
515 * Once use_count is 0 (guaranteed by put_object), there is no other
516 * code accessing this object, hence no need for locking.
517 */
518 hlist_for_each_entry_safe(area, tmp, &object->area_list, node) {
519 hlist_del(&area->node);
520 kmem_cache_free(scan_area_cache, area);
521 }
522 mem_pool_free(object);
523}
524
525/*
526 * Decrement the object use_count. Once the count is 0, free the object using
527 * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
528 * delete_object() path, the delayed RCU freeing ensures that there is no
529 * recursive call to the kernel allocator. Lock-less RCU object_list traversal
530 * is also possible.
531 */
532static void put_object(struct kmemleak_object *object)
533{
534 if (!atomic_dec_and_test(&object->use_count))
535 return;
536
537 /* should only get here after delete_object was called */
538 WARN_ON(object->flags & OBJECT_ALLOCATED);
539
540 /*
541 * It may be too early for the RCU callbacks, however, there is no
542 * concurrent object_list traversal when !object_cache and all objects
543 * came from the memory pool. Free the object directly.
544 */
545 if (object_cache)
546 call_rcu(&object->rcu, free_object_rcu);
547 else
548 free_object_rcu(&object->rcu);
549}
550
551/*
552 * Look up an object in the object search tree and increase its use_count.
553 */
554static struct kmemleak_object *__find_and_get_object(unsigned long ptr, int alias,
555 unsigned int objflags)
556{
557 unsigned long flags;
558 struct kmemleak_object *object;
559
560 rcu_read_lock();
561 raw_spin_lock_irqsave(&kmemleak_lock, flags);
562 object = __lookup_object(ptr, alias, objflags);
563 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
564
565 /* check whether the object is still available */
566 if (object && !get_object(object))
567 object = NULL;
568 rcu_read_unlock();
569
570 return object;
571}
572
573/* Look up and get an object which allocated with virtual address. */
574static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
575{
576 return __find_and_get_object(ptr, alias, 0);
577}
578
579/*
580 * Remove an object from its object tree and object_list. Must be called with
581 * the kmemleak_lock held _if_ kmemleak is still enabled.
582 */
583static void __remove_object(struct kmemleak_object *object)
584{
585 rb_erase(&object->rb_node, object_tree(object->flags));
586 if (!(object->del_state & DELSTATE_NO_DELETE))
587 list_del_rcu(&object->object_list);
588 object->del_state |= DELSTATE_REMOVED;
589}
590
591static struct kmemleak_object *__find_and_remove_object(unsigned long ptr,
592 int alias,
593 unsigned int objflags)
594{
595 struct kmemleak_object *object;
596
597 object = __lookup_object(ptr, alias, objflags);
598 if (object)
599 __remove_object(object);
600
601 return object;
602}
603
604/*
605 * Look up an object in the object search tree and remove it from both object
606 * tree root and object_list. The returned object's use_count should be at
607 * least 1, as initially set by create_object().
608 */
609static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias,
610 unsigned int objflags)
611{
612 unsigned long flags;
613 struct kmemleak_object *object;
614
615 raw_spin_lock_irqsave(&kmemleak_lock, flags);
616 object = __find_and_remove_object(ptr, alias, objflags);
617 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
618
619 return object;
620}
621
622static noinline depot_stack_handle_t set_track_prepare(void)
623{
624 depot_stack_handle_t trace_handle;
625 unsigned long entries[MAX_TRACE];
626 unsigned int nr_entries;
627
628 /*
629 * Use object_cache to determine whether kmemleak_init() has
630 * been invoked. stack_depot_early_init() is called before
631 * kmemleak_init() in mm_core_init().
632 */
633 if (!object_cache)
634 return 0;
635 nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
636 trace_handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT);
637
638 return trace_handle;
639}
640
641static struct kmemleak_object *__alloc_object(gfp_t gfp)
642{
643 struct kmemleak_object *object;
644
645 object = mem_pool_alloc(gfp);
646 if (!object) {
647 pr_warn("Cannot allocate a kmemleak_object structure\n");
648 kmemleak_disable();
649 return NULL;
650 }
651
652 INIT_LIST_HEAD(&object->object_list);
653 INIT_LIST_HEAD(&object->gray_list);
654 INIT_HLIST_HEAD(&object->area_list);
655 raw_spin_lock_init(&object->lock);
656 atomic_set(&object->use_count, 1);
657 object->excess_ref = 0;
658 object->count = 0; /* white color initially */
659 object->checksum = 0;
660 object->del_state = 0;
661
662 /* task information */
663 if (in_hardirq()) {
664 object->pid = 0;
665 strncpy(object->comm, "hardirq", sizeof(object->comm));
666 } else if (in_serving_softirq()) {
667 object->pid = 0;
668 strncpy(object->comm, "softirq", sizeof(object->comm));
669 } else {
670 object->pid = current->pid;
671 /*
672 * There is a small chance of a race with set_task_comm(),
673 * however using get_task_comm() here may cause locking
674 * dependency issues with current->alloc_lock. In the worst
675 * case, the command line is not correct.
676 */
677 strncpy(object->comm, current->comm, sizeof(object->comm));
678 }
679
680 /* kernel backtrace */
681 object->trace_handle = set_track_prepare();
682
683 return object;
684}
685
686static int __link_object(struct kmemleak_object *object, unsigned long ptr,
687 size_t size, int min_count, unsigned int objflags)
688{
689
690 struct kmemleak_object *parent;
691 struct rb_node **link, *rb_parent;
692 unsigned long untagged_ptr;
693 unsigned long untagged_objp;
694
695 object->flags = OBJECT_ALLOCATED | objflags;
696 object->pointer = ptr;
697 object->size = kfence_ksize((void *)ptr) ?: size;
698 object->min_count = min_count;
699 object->jiffies = jiffies;
700
701 untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
702 /*
703 * Only update min_addr and max_addr with object
704 * storing virtual address.
705 */
706 if (!(objflags & (OBJECT_PHYS | OBJECT_PERCPU))) {
707 min_addr = min(min_addr, untagged_ptr);
708 max_addr = max(max_addr, untagged_ptr + size);
709 }
710 link = &object_tree(objflags)->rb_node;
711 rb_parent = NULL;
712 while (*link) {
713 rb_parent = *link;
714 parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
715 untagged_objp = (unsigned long)kasan_reset_tag((void *)parent->pointer);
716 if (untagged_ptr + size <= untagged_objp)
717 link = &parent->rb_node.rb_left;
718 else if (untagged_objp + parent->size <= untagged_ptr)
719 link = &parent->rb_node.rb_right;
720 else {
721 kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n",
722 ptr);
723 /*
724 * No need for parent->lock here since "parent" cannot
725 * be freed while the kmemleak_lock is held.
726 */
727 dump_object_info(parent);
728 return -EEXIST;
729 }
730 }
731 rb_link_node(&object->rb_node, rb_parent, link);
732 rb_insert_color(&object->rb_node, object_tree(objflags));
733 list_add_tail_rcu(&object->object_list, &object_list);
734
735 return 0;
736}
737
738/*
739 * Create the metadata (struct kmemleak_object) corresponding to an allocated
740 * memory block and add it to the object_list and object tree.
741 */
742static void __create_object(unsigned long ptr, size_t size,
743 int min_count, gfp_t gfp, unsigned int objflags)
744{
745 struct kmemleak_object *object;
746 unsigned long flags;
747 int ret;
748
749 object = __alloc_object(gfp);
750 if (!object)
751 return;
752
753 raw_spin_lock_irqsave(&kmemleak_lock, flags);
754 ret = __link_object(object, ptr, size, min_count, objflags);
755 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
756 if (ret)
757 mem_pool_free(object);
758}
759
760/* Create kmemleak object which allocated with virtual address. */
761static void create_object(unsigned long ptr, size_t size,
762 int min_count, gfp_t gfp)
763{
764 __create_object(ptr, size, min_count, gfp, 0);
765}
766
767/* Create kmemleak object which allocated with physical address. */
768static void create_object_phys(unsigned long ptr, size_t size,
769 int min_count, gfp_t gfp)
770{
771 __create_object(ptr, size, min_count, gfp, OBJECT_PHYS);
772}
773
774/* Create kmemleak object corresponding to a per-CPU allocation. */
775static void create_object_percpu(unsigned long ptr, size_t size,
776 int min_count, gfp_t gfp)
777{
778 __create_object(ptr, size, min_count, gfp, OBJECT_PERCPU);
779}
780
781/*
782 * Mark the object as not allocated and schedule RCU freeing via put_object().
783 */
784static void __delete_object(struct kmemleak_object *object)
785{
786 unsigned long flags;
787
788 WARN_ON(!(object->flags & OBJECT_ALLOCATED));
789 WARN_ON(atomic_read(&object->use_count) < 1);
790
791 /*
792 * Locking here also ensures that the corresponding memory block
793 * cannot be freed when it is being scanned.
794 */
795 raw_spin_lock_irqsave(&object->lock, flags);
796 object->flags &= ~OBJECT_ALLOCATED;
797 raw_spin_unlock_irqrestore(&object->lock, flags);
798 put_object(object);
799}
800
801/*
802 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
803 * delete it.
804 */
805static void delete_object_full(unsigned long ptr, unsigned int objflags)
806{
807 struct kmemleak_object *object;
808
809 object = find_and_remove_object(ptr, 0, objflags);
810 if (!object) {
811#ifdef DEBUG
812 kmemleak_warn("Freeing unknown object at 0x%08lx\n",
813 ptr);
814#endif
815 return;
816 }
817 __delete_object(object);
818}
819
820/*
821 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
822 * delete it. If the memory block is partially freed, the function may create
823 * additional metadata for the remaining parts of the block.
824 */
825static void delete_object_part(unsigned long ptr, size_t size,
826 unsigned int objflags)
827{
828 struct kmemleak_object *object, *object_l, *object_r;
829 unsigned long start, end, flags;
830
831 object_l = __alloc_object(GFP_KERNEL);
832 if (!object_l)
833 return;
834
835 object_r = __alloc_object(GFP_KERNEL);
836 if (!object_r)
837 goto out;
838
839 raw_spin_lock_irqsave(&kmemleak_lock, flags);
840 object = __find_and_remove_object(ptr, 1, objflags);
841 if (!object) {
842#ifdef DEBUG
843 kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n",
844 ptr, size);
845#endif
846 goto unlock;
847 }
848
849 /*
850 * Create one or two objects that may result from the memory block
851 * split. Note that partial freeing is only done by free_bootmem() and
852 * this happens before kmemleak_init() is called.
853 */
854 start = object->pointer;
855 end = object->pointer + object->size;
856 if ((ptr > start) &&
857 !__link_object(object_l, start, ptr - start,
858 object->min_count, objflags))
859 object_l = NULL;
860 if ((ptr + size < end) &&
861 !__link_object(object_r, ptr + size, end - ptr - size,
862 object->min_count, objflags))
863 object_r = NULL;
864
865unlock:
866 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
867 if (object)
868 __delete_object(object);
869
870out:
871 if (object_l)
872 mem_pool_free(object_l);
873 if (object_r)
874 mem_pool_free(object_r);
875}
876
877static void __paint_it(struct kmemleak_object *object, int color)
878{
879 object->min_count = color;
880 if (color == KMEMLEAK_BLACK)
881 object->flags |= OBJECT_NO_SCAN;
882}
883
884static void paint_it(struct kmemleak_object *object, int color)
885{
886 unsigned long flags;
887
888 raw_spin_lock_irqsave(&object->lock, flags);
889 __paint_it(object, color);
890 raw_spin_unlock_irqrestore(&object->lock, flags);
891}
892
893static void paint_ptr(unsigned long ptr, int color, unsigned int objflags)
894{
895 struct kmemleak_object *object;
896
897 object = __find_and_get_object(ptr, 0, objflags);
898 if (!object) {
899 kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n",
900 ptr,
901 (color == KMEMLEAK_GREY) ? "Grey" :
902 (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
903 return;
904 }
905 paint_it(object, color);
906 put_object(object);
907}
908
909/*
910 * Mark an object permanently as gray-colored so that it can no longer be
911 * reported as a leak. This is used in general to mark a false positive.
912 */
913static void make_gray_object(unsigned long ptr)
914{
915 paint_ptr(ptr, KMEMLEAK_GREY, 0);
916}
917
918/*
919 * Mark the object as black-colored so that it is ignored from scans and
920 * reporting.
921 */
922static void make_black_object(unsigned long ptr, unsigned int objflags)
923{
924 paint_ptr(ptr, KMEMLEAK_BLACK, objflags);
925}
926
927/*
928 * Add a scanning area to the object. If at least one such area is added,
929 * kmemleak will only scan these ranges rather than the whole memory block.
930 */
931static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
932{
933 unsigned long flags;
934 struct kmemleak_object *object;
935 struct kmemleak_scan_area *area = NULL;
936 unsigned long untagged_ptr;
937 unsigned long untagged_objp;
938
939 object = find_and_get_object(ptr, 1);
940 if (!object) {
941 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
942 ptr);
943 return;
944 }
945
946 untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
947 untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer);
948
949 if (scan_area_cache)
950 area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
951
952 raw_spin_lock_irqsave(&object->lock, flags);
953 if (!area) {
954 pr_warn_once("Cannot allocate a scan area, scanning the full object\n");
955 /* mark the object for full scan to avoid false positives */
956 object->flags |= OBJECT_FULL_SCAN;
957 goto out_unlock;
958 }
959 if (size == SIZE_MAX) {
960 size = untagged_objp + object->size - untagged_ptr;
961 } else if (untagged_ptr + size > untagged_objp + object->size) {
962 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
963 dump_object_info(object);
964 kmem_cache_free(scan_area_cache, area);
965 goto out_unlock;
966 }
967
968 INIT_HLIST_NODE(&area->node);
969 area->start = ptr;
970 area->size = size;
971
972 hlist_add_head(&area->node, &object->area_list);
973out_unlock:
974 raw_spin_unlock_irqrestore(&object->lock, flags);
975 put_object(object);
976}
977
978/*
979 * Any surplus references (object already gray) to 'ptr' are passed to
980 * 'excess_ref'. This is used in the vmalloc() case where a pointer to
981 * vm_struct may be used as an alternative reference to the vmalloc'ed object
982 * (see free_thread_stack()).
983 */
984static void object_set_excess_ref(unsigned long ptr, unsigned long excess_ref)
985{
986 unsigned long flags;
987 struct kmemleak_object *object;
988
989 object = find_and_get_object(ptr, 0);
990 if (!object) {
991 kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n",
992 ptr);
993 return;
994 }
995
996 raw_spin_lock_irqsave(&object->lock, flags);
997 object->excess_ref = excess_ref;
998 raw_spin_unlock_irqrestore(&object->lock, flags);
999 put_object(object);
1000}
1001
1002/*
1003 * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
1004 * pointer. Such object will not be scanned by kmemleak but references to it
1005 * are searched.
1006 */
1007static void object_no_scan(unsigned long ptr)
1008{
1009 unsigned long flags;
1010 struct kmemleak_object *object;
1011
1012 object = find_and_get_object(ptr, 0);
1013 if (!object) {
1014 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
1015 return;
1016 }
1017
1018 raw_spin_lock_irqsave(&object->lock, flags);
1019 object->flags |= OBJECT_NO_SCAN;
1020 raw_spin_unlock_irqrestore(&object->lock, flags);
1021 put_object(object);
1022}
1023
1024/**
1025 * kmemleak_alloc - register a newly allocated object
1026 * @ptr: pointer to beginning of the object
1027 * @size: size of the object
1028 * @min_count: minimum number of references to this object. If during memory
1029 * scanning a number of references less than @min_count is found,
1030 * the object is reported as a memory leak. If @min_count is 0,
1031 * the object is never reported as a leak. If @min_count is -1,
1032 * the object is ignored (not scanned and not reported as a leak)
1033 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
1034 *
1035 * This function is called from the kernel allocators when a new object
1036 * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.).
1037 */
1038void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
1039 gfp_t gfp)
1040{
1041 pr_debug("%s(0x%px, %zu, %d)\n", __func__, ptr, size, min_count);
1042
1043 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1044 create_object((unsigned long)ptr, size, min_count, gfp);
1045}
1046EXPORT_SYMBOL_GPL(kmemleak_alloc);
1047
1048/**
1049 * kmemleak_alloc_percpu - register a newly allocated __percpu object
1050 * @ptr: __percpu pointer to beginning of the object
1051 * @size: size of the object
1052 * @gfp: flags used for kmemleak internal memory allocations
1053 *
1054 * This function is called from the kernel percpu allocator when a new object
1055 * (memory block) is allocated (alloc_percpu).
1056 */
1057void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size,
1058 gfp_t gfp)
1059{
1060 pr_debug("%s(0x%px, %zu)\n", __func__, ptr, size);
1061
1062 /*
1063 * Percpu allocations are only scanned and not reported as leaks
1064 * (min_count is set to 0).
1065 */
1066 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1067 create_object_percpu((unsigned long)ptr, size, 0, gfp);
1068}
1069EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
1070
1071/**
1072 * kmemleak_vmalloc - register a newly vmalloc'ed object
1073 * @area: pointer to vm_struct
1074 * @size: size of the object
1075 * @gfp: __vmalloc() flags used for kmemleak internal memory allocations
1076 *
1077 * This function is called from the vmalloc() kernel allocator when a new
1078 * object (memory block) is allocated.
1079 */
1080void __ref kmemleak_vmalloc(const struct vm_struct *area, size_t size, gfp_t gfp)
1081{
1082 pr_debug("%s(0x%px, %zu)\n", __func__, area, size);
1083
1084 /*
1085 * A min_count = 2 is needed because vm_struct contains a reference to
1086 * the virtual address of the vmalloc'ed block.
1087 */
1088 if (kmemleak_enabled) {
1089 create_object((unsigned long)area->addr, size, 2, gfp);
1090 object_set_excess_ref((unsigned long)area,
1091 (unsigned long)area->addr);
1092 }
1093}
1094EXPORT_SYMBOL_GPL(kmemleak_vmalloc);
1095
1096/**
1097 * kmemleak_free - unregister a previously registered object
1098 * @ptr: pointer to beginning of the object
1099 *
1100 * This function is called from the kernel allocators when an object (memory
1101 * block) is freed (kmem_cache_free, kfree, vfree etc.).
1102 */
1103void __ref kmemleak_free(const void *ptr)
1104{
1105 pr_debug("%s(0x%px)\n", __func__, ptr);
1106
1107 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
1108 delete_object_full((unsigned long)ptr, 0);
1109}
1110EXPORT_SYMBOL_GPL(kmemleak_free);
1111
1112/**
1113 * kmemleak_free_part - partially unregister a previously registered object
1114 * @ptr: pointer to the beginning or inside the object. This also
1115 * represents the start of the range to be freed
1116 * @size: size to be unregistered
1117 *
1118 * This function is called when only a part of a memory block is freed
1119 * (usually from the bootmem allocator).
1120 */
1121void __ref kmemleak_free_part(const void *ptr, size_t size)
1122{
1123 pr_debug("%s(0x%px)\n", __func__, ptr);
1124
1125 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1126 delete_object_part((unsigned long)ptr, size, 0);
1127}
1128EXPORT_SYMBOL_GPL(kmemleak_free_part);
1129
1130/**
1131 * kmemleak_free_percpu - unregister a previously registered __percpu object
1132 * @ptr: __percpu pointer to beginning of the object
1133 *
1134 * This function is called from the kernel percpu allocator when an object
1135 * (memory block) is freed (free_percpu).
1136 */
1137void __ref kmemleak_free_percpu(const void __percpu *ptr)
1138{
1139 pr_debug("%s(0x%px)\n", __func__, ptr);
1140
1141 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
1142 delete_object_full((unsigned long)ptr, OBJECT_PERCPU);
1143}
1144EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
1145
1146/**
1147 * kmemleak_update_trace - update object allocation stack trace
1148 * @ptr: pointer to beginning of the object
1149 *
1150 * Override the object allocation stack trace for cases where the actual
1151 * allocation place is not always useful.
1152 */
1153void __ref kmemleak_update_trace(const void *ptr)
1154{
1155 struct kmemleak_object *object;
1156 depot_stack_handle_t trace_handle;
1157 unsigned long flags;
1158
1159 pr_debug("%s(0x%px)\n", __func__, ptr);
1160
1161 if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr))
1162 return;
1163
1164 object = find_and_get_object((unsigned long)ptr, 1);
1165 if (!object) {
1166#ifdef DEBUG
1167 kmemleak_warn("Updating stack trace for unknown object at %p\n",
1168 ptr);
1169#endif
1170 return;
1171 }
1172
1173 trace_handle = set_track_prepare();
1174 raw_spin_lock_irqsave(&object->lock, flags);
1175 object->trace_handle = trace_handle;
1176 raw_spin_unlock_irqrestore(&object->lock, flags);
1177
1178 put_object(object);
1179}
1180EXPORT_SYMBOL(kmemleak_update_trace);
1181
1182/**
1183 * kmemleak_not_leak - mark an allocated object as false positive
1184 * @ptr: pointer to beginning of the object
1185 *
1186 * Calling this function on an object will cause the memory block to no longer
1187 * be reported as leak and always be scanned.
1188 */
1189void __ref kmemleak_not_leak(const void *ptr)
1190{
1191 pr_debug("%s(0x%px)\n", __func__, ptr);
1192
1193 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1194 make_gray_object((unsigned long)ptr);
1195}
1196EXPORT_SYMBOL(kmemleak_not_leak);
1197
1198/**
1199 * kmemleak_ignore - ignore an allocated object
1200 * @ptr: pointer to beginning of the object
1201 *
1202 * Calling this function on an object will cause the memory block to be
1203 * ignored (not scanned and not reported as a leak). This is usually done when
1204 * it is known that the corresponding block is not a leak and does not contain
1205 * any references to other allocated memory blocks.
1206 */
1207void __ref kmemleak_ignore(const void *ptr)
1208{
1209 pr_debug("%s(0x%px)\n", __func__, ptr);
1210
1211 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1212 make_black_object((unsigned long)ptr, 0);
1213}
1214EXPORT_SYMBOL(kmemleak_ignore);
1215
1216/**
1217 * kmemleak_scan_area - limit the range to be scanned in an allocated object
1218 * @ptr: pointer to beginning or inside the object. This also
1219 * represents the start of the scan area
1220 * @size: size of the scan area
1221 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
1222 *
1223 * This function is used when it is known that only certain parts of an object
1224 * contain references to other objects. Kmemleak will only scan these areas
1225 * reducing the number false negatives.
1226 */
1227void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
1228{
1229 pr_debug("%s(0x%px)\n", __func__, ptr);
1230
1231 if (kmemleak_enabled && ptr && size && !IS_ERR(ptr))
1232 add_scan_area((unsigned long)ptr, size, gfp);
1233}
1234EXPORT_SYMBOL(kmemleak_scan_area);
1235
1236/**
1237 * kmemleak_no_scan - do not scan an allocated object
1238 * @ptr: pointer to beginning of the object
1239 *
1240 * This function notifies kmemleak not to scan the given memory block. Useful
1241 * in situations where it is known that the given object does not contain any
1242 * references to other objects. Kmemleak will not scan such objects reducing
1243 * the number of false negatives.
1244 */
1245void __ref kmemleak_no_scan(const void *ptr)
1246{
1247 pr_debug("%s(0x%px)\n", __func__, ptr);
1248
1249 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1250 object_no_scan((unsigned long)ptr);
1251}
1252EXPORT_SYMBOL(kmemleak_no_scan);
1253
1254/**
1255 * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical
1256 * address argument
1257 * @phys: physical address of the object
1258 * @size: size of the object
1259 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
1260 */
1261void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, gfp_t gfp)
1262{
1263 pr_debug("%s(0x%px, %zu)\n", __func__, &phys, size);
1264
1265 if (kmemleak_enabled)
1266 /*
1267 * Create object with OBJECT_PHYS flag and
1268 * assume min_count 0.
1269 */
1270 create_object_phys((unsigned long)phys, size, 0, gfp);
1271}
1272EXPORT_SYMBOL(kmemleak_alloc_phys);
1273
1274/**
1275 * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a
1276 * physical address argument
1277 * @phys: physical address if the beginning or inside an object. This
1278 * also represents the start of the range to be freed
1279 * @size: size to be unregistered
1280 */
1281void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size)
1282{
1283 pr_debug("%s(0x%px)\n", __func__, &phys);
1284
1285 if (kmemleak_enabled)
1286 delete_object_part((unsigned long)phys, size, OBJECT_PHYS);
1287}
1288EXPORT_SYMBOL(kmemleak_free_part_phys);
1289
1290/**
1291 * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical
1292 * address argument
1293 * @phys: physical address of the object
1294 */
1295void __ref kmemleak_ignore_phys(phys_addr_t phys)
1296{
1297 pr_debug("%s(0x%px)\n", __func__, &phys);
1298
1299 if (kmemleak_enabled)
1300 make_black_object((unsigned long)phys, OBJECT_PHYS);
1301}
1302EXPORT_SYMBOL(kmemleak_ignore_phys);
1303
1304/*
1305 * Update an object's checksum and return true if it was modified.
1306 */
1307static bool update_checksum(struct kmemleak_object *object)
1308{
1309 u32 old_csum = object->checksum;
1310
1311 if (WARN_ON_ONCE(object->flags & (OBJECT_PHYS | OBJECT_PERCPU)))
1312 return false;
1313
1314 kasan_disable_current();
1315 kcsan_disable_current();
1316 object->checksum = crc32(0, kasan_reset_tag((void *)object->pointer), object->size);
1317 kasan_enable_current();
1318 kcsan_enable_current();
1319
1320 return object->checksum != old_csum;
1321}
1322
1323/*
1324 * Update an object's references. object->lock must be held by the caller.
1325 */
1326static void update_refs(struct kmemleak_object *object)
1327{
1328 if (!color_white(object)) {
1329 /* non-orphan, ignored or new */
1330 return;
1331 }
1332
1333 /*
1334 * Increase the object's reference count (number of pointers to the
1335 * memory block). If this count reaches the required minimum, the
1336 * object's color will become gray and it will be added to the
1337 * gray_list.
1338 */
1339 object->count++;
1340 if (color_gray(object)) {
1341 /* put_object() called when removing from gray_list */
1342 WARN_ON(!get_object(object));
1343 list_add_tail(&object->gray_list, &gray_list);
1344 }
1345}
1346
1347/*
1348 * Memory scanning is a long process and it needs to be interruptible. This
1349 * function checks whether such interrupt condition occurred.
1350 */
1351static int scan_should_stop(void)
1352{
1353 if (!kmemleak_enabled)
1354 return 1;
1355
1356 /*
1357 * This function may be called from either process or kthread context,
1358 * hence the need to check for both stop conditions.
1359 */
1360 if (current->mm)
1361 return signal_pending(current);
1362 else
1363 return kthread_should_stop();
1364
1365 return 0;
1366}
1367
1368/*
1369 * Scan a memory block (exclusive range) for valid pointers and add those
1370 * found to the gray list.
1371 */
1372static void scan_block(void *_start, void *_end,
1373 struct kmemleak_object *scanned)
1374{
1375 unsigned long *ptr;
1376 unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1377 unsigned long *end = _end - (BYTES_PER_POINTER - 1);
1378 unsigned long flags;
1379 unsigned long untagged_ptr;
1380
1381 raw_spin_lock_irqsave(&kmemleak_lock, flags);
1382 for (ptr = start; ptr < end; ptr++) {
1383 struct kmemleak_object *object;
1384 unsigned long pointer;
1385 unsigned long excess_ref;
1386
1387 if (scan_should_stop())
1388 break;
1389
1390 kasan_disable_current();
1391 pointer = *(unsigned long *)kasan_reset_tag((void *)ptr);
1392 kasan_enable_current();
1393
1394 untagged_ptr = (unsigned long)kasan_reset_tag((void *)pointer);
1395 if (untagged_ptr < min_addr || untagged_ptr >= max_addr)
1396 continue;
1397
1398 /*
1399 * No need for get_object() here since we hold kmemleak_lock.
1400 * object->use_count cannot be dropped to 0 while the object
1401 * is still present in object_tree_root and object_list
1402 * (with updates protected by kmemleak_lock).
1403 */
1404 object = lookup_object(pointer, 1);
1405 if (!object)
1406 continue;
1407 if (object == scanned)
1408 /* self referenced, ignore */
1409 continue;
1410
1411 /*
1412 * Avoid the lockdep recursive warning on object->lock being
1413 * previously acquired in scan_object(). These locks are
1414 * enclosed by scan_mutex.
1415 */
1416 raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1417 /* only pass surplus references (object already gray) */
1418 if (color_gray(object)) {
1419 excess_ref = object->excess_ref;
1420 /* no need for update_refs() if object already gray */
1421 } else {
1422 excess_ref = 0;
1423 update_refs(object);
1424 }
1425 raw_spin_unlock(&object->lock);
1426
1427 if (excess_ref) {
1428 object = lookup_object(excess_ref, 0);
1429 if (!object)
1430 continue;
1431 if (object == scanned)
1432 /* circular reference, ignore */
1433 continue;
1434 raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1435 update_refs(object);
1436 raw_spin_unlock(&object->lock);
1437 }
1438 }
1439 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
1440}
1441
1442/*
1443 * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency.
1444 */
1445#ifdef CONFIG_SMP
1446static void scan_large_block(void *start, void *end)
1447{
1448 void *next;
1449
1450 while (start < end) {
1451 next = min(start + MAX_SCAN_SIZE, end);
1452 scan_block(start, next, NULL);
1453 start = next;
1454 cond_resched();
1455 }
1456}
1457#endif
1458
1459/*
1460 * Scan a memory block corresponding to a kmemleak_object. A condition is
1461 * that object->use_count >= 1.
1462 */
1463static void scan_object(struct kmemleak_object *object)
1464{
1465 struct kmemleak_scan_area *area;
1466 unsigned long flags;
1467
1468 /*
1469 * Once the object->lock is acquired, the corresponding memory block
1470 * cannot be freed (the same lock is acquired in delete_object).
1471 */
1472 raw_spin_lock_irqsave(&object->lock, flags);
1473 if (object->flags & OBJECT_NO_SCAN)
1474 goto out;
1475 if (!(object->flags & OBJECT_ALLOCATED))
1476 /* already freed object */
1477 goto out;
1478
1479 if (object->flags & OBJECT_PERCPU) {
1480 unsigned int cpu;
1481
1482 for_each_possible_cpu(cpu) {
1483 void *start = per_cpu_ptr((void __percpu *)object->pointer, cpu);
1484 void *end = start + object->size;
1485
1486 scan_block(start, end, object);
1487
1488 raw_spin_unlock_irqrestore(&object->lock, flags);
1489 cond_resched();
1490 raw_spin_lock_irqsave(&object->lock, flags);
1491 if (!(object->flags & OBJECT_ALLOCATED))
1492 break;
1493 }
1494 } else if (hlist_empty(&object->area_list) ||
1495 object->flags & OBJECT_FULL_SCAN) {
1496 void *start = object->flags & OBJECT_PHYS ?
1497 __va((phys_addr_t)object->pointer) :
1498 (void *)object->pointer;
1499 void *end = start + object->size;
1500 void *next;
1501
1502 do {
1503 next = min(start + MAX_SCAN_SIZE, end);
1504 scan_block(start, next, object);
1505
1506 start = next;
1507 if (start >= end)
1508 break;
1509
1510 raw_spin_unlock_irqrestore(&object->lock, flags);
1511 cond_resched();
1512 raw_spin_lock_irqsave(&object->lock, flags);
1513 } while (object->flags & OBJECT_ALLOCATED);
1514 } else {
1515 hlist_for_each_entry(area, &object->area_list, node)
1516 scan_block((void *)area->start,
1517 (void *)(area->start + area->size),
1518 object);
1519 }
1520out:
1521 raw_spin_unlock_irqrestore(&object->lock, flags);
1522}
1523
1524/*
1525 * Scan the objects already referenced (gray objects). More objects will be
1526 * referenced and, if there are no memory leaks, all the objects are scanned.
1527 */
1528static void scan_gray_list(void)
1529{
1530 struct kmemleak_object *object, *tmp;
1531
1532 /*
1533 * The list traversal is safe for both tail additions and removals
1534 * from inside the loop. The kmemleak objects cannot be freed from
1535 * outside the loop because their use_count was incremented.
1536 */
1537 object = list_entry(gray_list.next, typeof(*object), gray_list);
1538 while (&object->gray_list != &gray_list) {
1539 cond_resched();
1540
1541 /* may add new objects to the list */
1542 if (!scan_should_stop())
1543 scan_object(object);
1544
1545 tmp = list_entry(object->gray_list.next, typeof(*object),
1546 gray_list);
1547
1548 /* remove the object from the list and release it */
1549 list_del(&object->gray_list);
1550 put_object(object);
1551
1552 object = tmp;
1553 }
1554 WARN_ON(!list_empty(&gray_list));
1555}
1556
1557/*
1558 * Conditionally call resched() in an object iteration loop while making sure
1559 * that the given object won't go away without RCU read lock by performing a
1560 * get_object() if necessaary.
1561 */
1562static void kmemleak_cond_resched(struct kmemleak_object *object)
1563{
1564 if (!get_object(object))
1565 return; /* Try next object */
1566
1567 raw_spin_lock_irq(&kmemleak_lock);
1568 if (object->del_state & DELSTATE_REMOVED)
1569 goto unlock_put; /* Object removed */
1570 object->del_state |= DELSTATE_NO_DELETE;
1571 raw_spin_unlock_irq(&kmemleak_lock);
1572
1573 rcu_read_unlock();
1574 cond_resched();
1575 rcu_read_lock();
1576
1577 raw_spin_lock_irq(&kmemleak_lock);
1578 if (object->del_state & DELSTATE_REMOVED)
1579 list_del_rcu(&object->object_list);
1580 object->del_state &= ~DELSTATE_NO_DELETE;
1581unlock_put:
1582 raw_spin_unlock_irq(&kmemleak_lock);
1583 put_object(object);
1584}
1585
1586/*
1587 * Scan data sections and all the referenced memory blocks allocated via the
1588 * kernel's standard allocators. This function must be called with the
1589 * scan_mutex held.
1590 */
1591static void kmemleak_scan(void)
1592{
1593 struct kmemleak_object *object;
1594 struct zone *zone;
1595 int __maybe_unused i;
1596 int new_leaks = 0;
1597
1598 jiffies_last_scan = jiffies;
1599
1600 /* prepare the kmemleak_object's */
1601 rcu_read_lock();
1602 list_for_each_entry_rcu(object, &object_list, object_list) {
1603 raw_spin_lock_irq(&object->lock);
1604#ifdef DEBUG
1605 /*
1606 * With a few exceptions there should be a maximum of
1607 * 1 reference to any object at this point.
1608 */
1609 if (atomic_read(&object->use_count) > 1) {
1610 pr_debug("object->use_count = %d\n",
1611 atomic_read(&object->use_count));
1612 dump_object_info(object);
1613 }
1614#endif
1615
1616 /* ignore objects outside lowmem (paint them black) */
1617 if ((object->flags & OBJECT_PHYS) &&
1618 !(object->flags & OBJECT_NO_SCAN)) {
1619 unsigned long phys = object->pointer;
1620
1621 if (PHYS_PFN(phys) < min_low_pfn ||
1622 PHYS_PFN(phys + object->size) >= max_low_pfn)
1623 __paint_it(object, KMEMLEAK_BLACK);
1624 }
1625
1626 /* reset the reference count (whiten the object) */
1627 object->count = 0;
1628 if (color_gray(object) && get_object(object))
1629 list_add_tail(&object->gray_list, &gray_list);
1630
1631 raw_spin_unlock_irq(&object->lock);
1632
1633 if (need_resched())
1634 kmemleak_cond_resched(object);
1635 }
1636 rcu_read_unlock();
1637
1638#ifdef CONFIG_SMP
1639 /* per-cpu sections scanning */
1640 for_each_possible_cpu(i)
1641 scan_large_block(__per_cpu_start + per_cpu_offset(i),
1642 __per_cpu_end + per_cpu_offset(i));
1643#endif
1644
1645 /*
1646 * Struct page scanning for each node.
1647 */
1648 get_online_mems();
1649 for_each_populated_zone(zone) {
1650 unsigned long start_pfn = zone->zone_start_pfn;
1651 unsigned long end_pfn = zone_end_pfn(zone);
1652 unsigned long pfn;
1653
1654 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1655 struct page *page = pfn_to_online_page(pfn);
1656
1657 if (!(pfn & 63))
1658 cond_resched();
1659
1660 if (!page)
1661 continue;
1662
1663 /* only scan pages belonging to this zone */
1664 if (page_zone(page) != zone)
1665 continue;
1666 /* only scan if page is in use */
1667 if (page_count(page) == 0)
1668 continue;
1669 scan_block(page, page + 1, NULL);
1670 }
1671 }
1672 put_online_mems();
1673
1674 /*
1675 * Scanning the task stacks (may introduce false negatives).
1676 */
1677 if (kmemleak_stack_scan) {
1678 struct task_struct *p, *g;
1679
1680 rcu_read_lock();
1681 for_each_process_thread(g, p) {
1682 void *stack = try_get_task_stack(p);
1683 if (stack) {
1684 scan_block(stack, stack + THREAD_SIZE, NULL);
1685 put_task_stack(p);
1686 }
1687 }
1688 rcu_read_unlock();
1689 }
1690
1691 /*
1692 * Scan the objects already referenced from the sections scanned
1693 * above.
1694 */
1695 scan_gray_list();
1696
1697 /*
1698 * Check for new or unreferenced objects modified since the previous
1699 * scan and color them gray until the next scan.
1700 */
1701 rcu_read_lock();
1702 list_for_each_entry_rcu(object, &object_list, object_list) {
1703 if (need_resched())
1704 kmemleak_cond_resched(object);
1705
1706 /*
1707 * This is racy but we can save the overhead of lock/unlock
1708 * calls. The missed objects, if any, should be caught in
1709 * the next scan.
1710 */
1711 if (!color_white(object))
1712 continue;
1713 raw_spin_lock_irq(&object->lock);
1714 if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1715 && update_checksum(object) && get_object(object)) {
1716 /* color it gray temporarily */
1717 object->count = object->min_count;
1718 list_add_tail(&object->gray_list, &gray_list);
1719 }
1720 raw_spin_unlock_irq(&object->lock);
1721 }
1722 rcu_read_unlock();
1723
1724 /*
1725 * Re-scan the gray list for modified unreferenced objects.
1726 */
1727 scan_gray_list();
1728
1729 /*
1730 * If scanning was stopped do not report any new unreferenced objects.
1731 */
1732 if (scan_should_stop())
1733 return;
1734
1735 /*
1736 * Scanning result reporting.
1737 */
1738 rcu_read_lock();
1739 list_for_each_entry_rcu(object, &object_list, object_list) {
1740 if (need_resched())
1741 kmemleak_cond_resched(object);
1742
1743 /*
1744 * This is racy but we can save the overhead of lock/unlock
1745 * calls. The missed objects, if any, should be caught in
1746 * the next scan.
1747 */
1748 if (!color_white(object))
1749 continue;
1750 raw_spin_lock_irq(&object->lock);
1751 if (unreferenced_object(object) &&
1752 !(object->flags & OBJECT_REPORTED)) {
1753 object->flags |= OBJECT_REPORTED;
1754
1755 if (kmemleak_verbose)
1756 print_unreferenced(NULL, object);
1757
1758 new_leaks++;
1759 }
1760 raw_spin_unlock_irq(&object->lock);
1761 }
1762 rcu_read_unlock();
1763
1764 if (new_leaks) {
1765 kmemleak_found_leaks = true;
1766
1767 pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n",
1768 new_leaks);
1769 }
1770
1771}
1772
1773/*
1774 * Thread function performing automatic memory scanning. Unreferenced objects
1775 * at the end of a memory scan are reported but only the first time.
1776 */
1777static int kmemleak_scan_thread(void *arg)
1778{
1779 static int first_run = IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN);
1780
1781 pr_info("Automatic memory scanning thread started\n");
1782 set_user_nice(current, 10);
1783
1784 /*
1785 * Wait before the first scan to allow the system to fully initialize.
1786 */
1787 if (first_run) {
1788 signed long timeout = msecs_to_jiffies(SECS_FIRST_SCAN * 1000);
1789 first_run = 0;
1790 while (timeout && !kthread_should_stop())
1791 timeout = schedule_timeout_interruptible(timeout);
1792 }
1793
1794 while (!kthread_should_stop()) {
1795 signed long timeout = READ_ONCE(jiffies_scan_wait);
1796
1797 mutex_lock(&scan_mutex);
1798 kmemleak_scan();
1799 mutex_unlock(&scan_mutex);
1800
1801 /* wait before the next scan */
1802 while (timeout && !kthread_should_stop())
1803 timeout = schedule_timeout_interruptible(timeout);
1804 }
1805
1806 pr_info("Automatic memory scanning thread ended\n");
1807
1808 return 0;
1809}
1810
1811/*
1812 * Start the automatic memory scanning thread. This function must be called
1813 * with the scan_mutex held.
1814 */
1815static void start_scan_thread(void)
1816{
1817 if (scan_thread)
1818 return;
1819 scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1820 if (IS_ERR(scan_thread)) {
1821 pr_warn("Failed to create the scan thread\n");
1822 scan_thread = NULL;
1823 }
1824}
1825
1826/*
1827 * Stop the automatic memory scanning thread.
1828 */
1829static void stop_scan_thread(void)
1830{
1831 if (scan_thread) {
1832 kthread_stop(scan_thread);
1833 scan_thread = NULL;
1834 }
1835}
1836
1837/*
1838 * Iterate over the object_list and return the first valid object at or after
1839 * the required position with its use_count incremented. The function triggers
1840 * a memory scanning when the pos argument points to the first position.
1841 */
1842static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1843{
1844 struct kmemleak_object *object;
1845 loff_t n = *pos;
1846 int err;
1847
1848 err = mutex_lock_interruptible(&scan_mutex);
1849 if (err < 0)
1850 return ERR_PTR(err);
1851
1852 rcu_read_lock();
1853 list_for_each_entry_rcu(object, &object_list, object_list) {
1854 if (n-- > 0)
1855 continue;
1856 if (get_object(object))
1857 goto out;
1858 }
1859 object = NULL;
1860out:
1861 return object;
1862}
1863
1864/*
1865 * Return the next object in the object_list. The function decrements the
1866 * use_count of the previous object and increases that of the next one.
1867 */
1868static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1869{
1870 struct kmemleak_object *prev_obj = v;
1871 struct kmemleak_object *next_obj = NULL;
1872 struct kmemleak_object *obj = prev_obj;
1873
1874 ++(*pos);
1875
1876 list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
1877 if (get_object(obj)) {
1878 next_obj = obj;
1879 break;
1880 }
1881 }
1882
1883 put_object(prev_obj);
1884 return next_obj;
1885}
1886
1887/*
1888 * Decrement the use_count of the last object required, if any.
1889 */
1890static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1891{
1892 if (!IS_ERR(v)) {
1893 /*
1894 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1895 * waiting was interrupted, so only release it if !IS_ERR.
1896 */
1897 rcu_read_unlock();
1898 mutex_unlock(&scan_mutex);
1899 if (v)
1900 put_object(v);
1901 }
1902}
1903
1904/*
1905 * Print the information for an unreferenced object to the seq file.
1906 */
1907static int kmemleak_seq_show(struct seq_file *seq, void *v)
1908{
1909 struct kmemleak_object *object = v;
1910 unsigned long flags;
1911
1912 raw_spin_lock_irqsave(&object->lock, flags);
1913 if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
1914 print_unreferenced(seq, object);
1915 raw_spin_unlock_irqrestore(&object->lock, flags);
1916 return 0;
1917}
1918
1919static const struct seq_operations kmemleak_seq_ops = {
1920 .start = kmemleak_seq_start,
1921 .next = kmemleak_seq_next,
1922 .stop = kmemleak_seq_stop,
1923 .show = kmemleak_seq_show,
1924};
1925
1926static int kmemleak_open(struct inode *inode, struct file *file)
1927{
1928 return seq_open(file, &kmemleak_seq_ops);
1929}
1930
1931static int dump_str_object_info(const char *str)
1932{
1933 unsigned long flags;
1934 struct kmemleak_object *object;
1935 unsigned long addr;
1936
1937 if (kstrtoul(str, 0, &addr))
1938 return -EINVAL;
1939 object = find_and_get_object(addr, 0);
1940 if (!object) {
1941 pr_info("Unknown object at 0x%08lx\n", addr);
1942 return -EINVAL;
1943 }
1944
1945 raw_spin_lock_irqsave(&object->lock, flags);
1946 dump_object_info(object);
1947 raw_spin_unlock_irqrestore(&object->lock, flags);
1948
1949 put_object(object);
1950 return 0;
1951}
1952
1953/*
1954 * We use grey instead of black to ensure we can do future scans on the same
1955 * objects. If we did not do future scans these black objects could
1956 * potentially contain references to newly allocated objects in the future and
1957 * we'd end up with false positives.
1958 */
1959static void kmemleak_clear(void)
1960{
1961 struct kmemleak_object *object;
1962
1963 rcu_read_lock();
1964 list_for_each_entry_rcu(object, &object_list, object_list) {
1965 raw_spin_lock_irq(&object->lock);
1966 if ((object->flags & OBJECT_REPORTED) &&
1967 unreferenced_object(object))
1968 __paint_it(object, KMEMLEAK_GREY);
1969 raw_spin_unlock_irq(&object->lock);
1970 }
1971 rcu_read_unlock();
1972
1973 kmemleak_found_leaks = false;
1974}
1975
1976static void __kmemleak_do_cleanup(void);
1977
1978/*
1979 * File write operation to configure kmemleak at run-time. The following
1980 * commands can be written to the /sys/kernel/debug/kmemleak file:
1981 * off - disable kmemleak (irreversible)
1982 * stack=on - enable the task stacks scanning
1983 * stack=off - disable the tasks stacks scanning
1984 * scan=on - start the automatic memory scanning thread
1985 * scan=off - stop the automatic memory scanning thread
1986 * scan=... - set the automatic memory scanning period in seconds (0 to
1987 * disable it)
1988 * scan - trigger a memory scan
1989 * clear - mark all current reported unreferenced kmemleak objects as
1990 * grey to ignore printing them, or free all kmemleak objects
1991 * if kmemleak has been disabled.
1992 * dump=... - dump information about the object found at the given address
1993 */
1994static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1995 size_t size, loff_t *ppos)
1996{
1997 char buf[64];
1998 int buf_size;
1999 int ret;
2000
2001 buf_size = min(size, (sizeof(buf) - 1));
2002 if (strncpy_from_user(buf, user_buf, buf_size) < 0)
2003 return -EFAULT;
2004 buf[buf_size] = 0;
2005
2006 ret = mutex_lock_interruptible(&scan_mutex);
2007 if (ret < 0)
2008 return ret;
2009
2010 if (strncmp(buf, "clear", 5) == 0) {
2011 if (kmemleak_enabled)
2012 kmemleak_clear();
2013 else
2014 __kmemleak_do_cleanup();
2015 goto out;
2016 }
2017
2018 if (!kmemleak_enabled) {
2019 ret = -EPERM;
2020 goto out;
2021 }
2022
2023 if (strncmp(buf, "off", 3) == 0)
2024 kmemleak_disable();
2025 else if (strncmp(buf, "stack=on", 8) == 0)
2026 kmemleak_stack_scan = 1;
2027 else if (strncmp(buf, "stack=off", 9) == 0)
2028 kmemleak_stack_scan = 0;
2029 else if (strncmp(buf, "scan=on", 7) == 0)
2030 start_scan_thread();
2031 else if (strncmp(buf, "scan=off", 8) == 0)
2032 stop_scan_thread();
2033 else if (strncmp(buf, "scan=", 5) == 0) {
2034 unsigned secs;
2035 unsigned long msecs;
2036
2037 ret = kstrtouint(buf + 5, 0, &secs);
2038 if (ret < 0)
2039 goto out;
2040
2041 msecs = secs * MSEC_PER_SEC;
2042 if (msecs > UINT_MAX)
2043 msecs = UINT_MAX;
2044
2045 stop_scan_thread();
2046 if (msecs) {
2047 WRITE_ONCE(jiffies_scan_wait, msecs_to_jiffies(msecs));
2048 start_scan_thread();
2049 }
2050 } else if (strncmp(buf, "scan", 4) == 0)
2051 kmemleak_scan();
2052 else if (strncmp(buf, "dump=", 5) == 0)
2053 ret = dump_str_object_info(buf + 5);
2054 else
2055 ret = -EINVAL;
2056
2057out:
2058 mutex_unlock(&scan_mutex);
2059 if (ret < 0)
2060 return ret;
2061
2062 /* ignore the rest of the buffer, only one command at a time */
2063 *ppos += size;
2064 return size;
2065}
2066
2067static const struct file_operations kmemleak_fops = {
2068 .owner = THIS_MODULE,
2069 .open = kmemleak_open,
2070 .read = seq_read,
2071 .write = kmemleak_write,
2072 .llseek = seq_lseek,
2073 .release = seq_release,
2074};
2075
2076static void __kmemleak_do_cleanup(void)
2077{
2078 struct kmemleak_object *object, *tmp;
2079
2080 /*
2081 * Kmemleak has already been disabled, no need for RCU list traversal
2082 * or kmemleak_lock held.
2083 */
2084 list_for_each_entry_safe(object, tmp, &object_list, object_list) {
2085 __remove_object(object);
2086 __delete_object(object);
2087 }
2088}
2089
2090/*
2091 * Stop the memory scanning thread and free the kmemleak internal objects if
2092 * no previous scan thread (otherwise, kmemleak may still have some useful
2093 * information on memory leaks).
2094 */
2095static void kmemleak_do_cleanup(struct work_struct *work)
2096{
2097 stop_scan_thread();
2098
2099 mutex_lock(&scan_mutex);
2100 /*
2101 * Once it is made sure that kmemleak_scan has stopped, it is safe to no
2102 * longer track object freeing. Ordering of the scan thread stopping and
2103 * the memory accesses below is guaranteed by the kthread_stop()
2104 * function.
2105 */
2106 kmemleak_free_enabled = 0;
2107 mutex_unlock(&scan_mutex);
2108
2109 if (!kmemleak_found_leaks)
2110 __kmemleak_do_cleanup();
2111 else
2112 pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n");
2113}
2114
2115static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
2116
2117/*
2118 * Disable kmemleak. No memory allocation/freeing will be traced once this
2119 * function is called. Disabling kmemleak is an irreversible operation.
2120 */
2121static void kmemleak_disable(void)
2122{
2123 /* atomically check whether it was already invoked */
2124 if (cmpxchg(&kmemleak_error, 0, 1))
2125 return;
2126
2127 /* stop any memory operation tracing */
2128 kmemleak_enabled = 0;
2129
2130 /* check whether it is too early for a kernel thread */
2131 if (kmemleak_late_initialized)
2132 schedule_work(&cleanup_work);
2133 else
2134 kmemleak_free_enabled = 0;
2135
2136 pr_info("Kernel memory leak detector disabled\n");
2137}
2138
2139/*
2140 * Allow boot-time kmemleak disabling (enabled by default).
2141 */
2142static int __init kmemleak_boot_config(char *str)
2143{
2144 if (!str)
2145 return -EINVAL;
2146 if (strcmp(str, "off") == 0)
2147 kmemleak_disable();
2148 else if (strcmp(str, "on") == 0) {
2149 kmemleak_skip_disable = 1;
2150 stack_depot_request_early_init();
2151 }
2152 else
2153 return -EINVAL;
2154 return 0;
2155}
2156early_param("kmemleak", kmemleak_boot_config);
2157
2158/*
2159 * Kmemleak initialization.
2160 */
2161void __init kmemleak_init(void)
2162{
2163#ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
2164 if (!kmemleak_skip_disable) {
2165 kmemleak_disable();
2166 return;
2167 }
2168#endif
2169
2170 if (kmemleak_error)
2171 return;
2172
2173 jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
2174 jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
2175
2176 object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
2177 scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
2178
2179 /* register the data/bss sections */
2180 create_object((unsigned long)_sdata, _edata - _sdata,
2181 KMEMLEAK_GREY, GFP_ATOMIC);
2182 create_object((unsigned long)__bss_start, __bss_stop - __bss_start,
2183 KMEMLEAK_GREY, GFP_ATOMIC);
2184 /* only register .data..ro_after_init if not within .data */
2185 if (&__start_ro_after_init < &_sdata || &__end_ro_after_init > &_edata)
2186 create_object((unsigned long)__start_ro_after_init,
2187 __end_ro_after_init - __start_ro_after_init,
2188 KMEMLEAK_GREY, GFP_ATOMIC);
2189}
2190
2191/*
2192 * Late initialization function.
2193 */
2194static int __init kmemleak_late_init(void)
2195{
2196 kmemleak_late_initialized = 1;
2197
2198 debugfs_create_file("kmemleak", 0644, NULL, NULL, &kmemleak_fops);
2199
2200 if (kmemleak_error) {
2201 /*
2202 * Some error occurred and kmemleak was disabled. There is a
2203 * small chance that kmemleak_disable() was called immediately
2204 * after setting kmemleak_late_initialized and we may end up with
2205 * two clean-up threads but serialized by scan_mutex.
2206 */
2207 schedule_work(&cleanup_work);
2208 return -ENOMEM;
2209 }
2210
2211 if (IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN)) {
2212 mutex_lock(&scan_mutex);
2213 start_scan_thread();
2214 mutex_unlock(&scan_mutex);
2215 }
2216
2217 pr_info("Kernel memory leak detector initialized (mem pool available: %d)\n",
2218 mem_pool_free_count);
2219
2220 return 0;
2221}
2222late_initcall(kmemleak_late_init);