Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * mm/kmemleak.c
   4 *
   5 * Copyright (C) 2008 ARM Limited
   6 * Written by Catalin Marinas <catalin.marinas@arm.com>
   7 *
   8 * For more information on the algorithm and kmemleak usage, please see
   9 * Documentation/dev-tools/kmemleak.rst.
  10 *
  11 * Notes on locking
  12 * ----------------
  13 *
  14 * The following locks and mutexes are used by kmemleak:
  15 *
  16 * - kmemleak_lock (raw_spinlock_t): protects the object_list modifications and
  17 *   accesses to the object_tree_root (or object_phys_tree_root). The
  18 *   object_list is the main list holding the metadata (struct kmemleak_object)
  19 *   for the allocated memory blocks. The object_tree_root and object_phys_tree_root
  20 *   are red black trees used to look-up metadata based on a pointer to the
  21 *   corresponding memory block. The object_phys_tree_root is for objects
  22 *   allocated with physical address. The kmemleak_object structures are
  23 *   added to the object_list and object_tree_root (or object_phys_tree_root)
  24 *   in the create_object() function called from the kmemleak_alloc() (or
  25 *   kmemleak_alloc_phys()) callback and removed in delete_object() called from
  26 *   the kmemleak_free() callback
  27 * - kmemleak_object.lock (raw_spinlock_t): protects a kmemleak_object.
  28 *   Accesses to the metadata (e.g. count) are protected by this lock. Note
  29 *   that some members of this structure may be protected by other means
  30 *   (atomic or kmemleak_lock). This lock is also held when scanning the
  31 *   corresponding memory block to avoid the kernel freeing it via the
  32 *   kmemleak_free() callback. This is less heavyweight than holding a global
  33 *   lock like kmemleak_lock during scanning.
  34 * - scan_mutex (mutex): ensures that only one thread may scan the memory for
  35 *   unreferenced objects at a time. The gray_list contains the objects which
  36 *   are already referenced or marked as false positives and need to be
  37 *   scanned. This list is only modified during a scanning episode when the
  38 *   scan_mutex is held. At the end of a scan, the gray_list is always empty.
  39 *   Note that the kmemleak_object.use_count is incremented when an object is
  40 *   added to the gray_list and therefore cannot be freed. This mutex also
  41 *   prevents multiple users of the "kmemleak" debugfs file together with
  42 *   modifications to the memory scanning parameters including the scan_thread
  43 *   pointer
  44 *
  45 * Locks and mutexes are acquired/nested in the following order:
  46 *
  47 *   scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING)
  48 *
  49 * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex
  50 * regions.
  51 *
  52 * The kmemleak_object structures have a use_count incremented or decremented
  53 * using the get_object()/put_object() functions. When the use_count becomes
  54 * 0, this count can no longer be incremented and put_object() schedules the
  55 * kmemleak_object freeing via an RCU callback. All calls to the get_object()
  56 * function must be protected by rcu_read_lock() to avoid accessing a freed
  57 * structure.
  58 */
  59
  60#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  61
  62#include <linux/init.h>
  63#include <linux/kernel.h>
  64#include <linux/list.h>
  65#include <linux/sched/signal.h>
  66#include <linux/sched/task.h>
  67#include <linux/sched/task_stack.h>
  68#include <linux/jiffies.h>
  69#include <linux/delay.h>
  70#include <linux/export.h>
  71#include <linux/kthread.h>
  72#include <linux/rbtree.h>
  73#include <linux/fs.h>
  74#include <linux/debugfs.h>
  75#include <linux/seq_file.h>
  76#include <linux/cpumask.h>
  77#include <linux/spinlock.h>
  78#include <linux/module.h>
  79#include <linux/mutex.h>
  80#include <linux/rcupdate.h>
  81#include <linux/stacktrace.h>
  82#include <linux/stackdepot.h>
  83#include <linux/cache.h>
  84#include <linux/percpu.h>
  85#include <linux/memblock.h>
  86#include <linux/pfn.h>
  87#include <linux/mmzone.h>
  88#include <linux/slab.h>
  89#include <linux/thread_info.h>
  90#include <linux/err.h>
  91#include <linux/uaccess.h>
  92#include <linux/string.h>
  93#include <linux/nodemask.h>
  94#include <linux/mm.h>
  95#include <linux/workqueue.h>
  96#include <linux/crc32.h>
  97
  98#include <asm/sections.h>
  99#include <asm/processor.h>
 100#include <linux/atomic.h>
 101
 102#include <linux/kasan.h>
 103#include <linux/kfence.h>
 104#include <linux/kmemleak.h>
 105#include <linux/memory_hotplug.h>
 106
 107/*
 108 * Kmemleak configuration and common defines.
 109 */
 110#define MAX_TRACE		16	/* stack trace length */
 111#define MSECS_MIN_AGE		5000	/* minimum object age for reporting */
 112#define SECS_FIRST_SCAN		60	/* delay before the first scan */
 113#define SECS_SCAN_WAIT		600	/* subsequent auto scanning delay */
 114#define MAX_SCAN_SIZE		4096	/* maximum size of a scanned block */
 115
 116#define BYTES_PER_POINTER	sizeof(void *)
 117
 118/* GFP bitmask for kmemleak internal allocations */
 119#define gfp_kmemleak_mask(gfp)	(((gfp) & (GFP_KERNEL | GFP_ATOMIC | \
 120					   __GFP_NOLOCKDEP)) | \
 121				 __GFP_NORETRY | __GFP_NOMEMALLOC | \
 122				 __GFP_NOWARN)
 123
 124/* scanning area inside a memory block */
 125struct kmemleak_scan_area {
 126	struct hlist_node node;
 127	unsigned long start;
 128	size_t size;
 129};
 130
 131#define KMEMLEAK_GREY	0
 132#define KMEMLEAK_BLACK	-1
 133
 134/*
 135 * Structure holding the metadata for each allocated memory block.
 136 * Modifications to such objects should be made while holding the
 137 * object->lock. Insertions or deletions from object_list, gray_list or
 138 * rb_node are already protected by the corresponding locks or mutex (see
 139 * the notes on locking above). These objects are reference-counted
 140 * (use_count) and freed using the RCU mechanism.
 141 */
 142struct kmemleak_object {
 143	raw_spinlock_t lock;
 144	unsigned int flags;		/* object status flags */
 145	struct list_head object_list;
 146	struct list_head gray_list;
 147	struct rb_node rb_node;
 148	struct rcu_head rcu;		/* object_list lockless traversal */
 149	/* object usage count; object freed when use_count == 0 */
 150	atomic_t use_count;
 
 151	unsigned long pointer;
 152	size_t size;
 153	/* pass surplus references to this pointer */
 154	unsigned long excess_ref;
 155	/* minimum number of a pointers found before it is considered leak */
 156	int min_count;
 157	/* the total number of pointers found pointing to this object */
 158	int count;
 159	/* checksum for detecting modified objects */
 160	u32 checksum;
 161	/* memory ranges to be scanned inside an object (empty for all) */
 162	struct hlist_head area_list;
 163	depot_stack_handle_t trace_handle;
 164	unsigned long jiffies;		/* creation timestamp */
 165	pid_t pid;			/* pid of the current task */
 166	char comm[TASK_COMM_LEN];	/* executable name */
 167};
 168
 169/* flag representing the memory block allocation status */
 170#define OBJECT_ALLOCATED	(1 << 0)
 171/* flag set after the first reporting of an unreference object */
 172#define OBJECT_REPORTED		(1 << 1)
 173/* flag set to not scan the object */
 174#define OBJECT_NO_SCAN		(1 << 2)
 175/* flag set to fully scan the object when scan_area allocation failed */
 176#define OBJECT_FULL_SCAN	(1 << 3)
 177/* flag set for object allocated with physical address */
 178#define OBJECT_PHYS		(1 << 4)
 
 
 
 
 
 
 
 179
 180#define HEX_PREFIX		"    "
 181/* number of bytes to print per line; must be 16 or 32 */
 182#define HEX_ROW_SIZE		16
 183/* number of bytes to print at a time (1, 2, 4, 8) */
 184#define HEX_GROUP_SIZE		1
 185/* include ASCII after the hex output */
 186#define HEX_ASCII		1
 187/* max number of lines to be printed */
 188#define HEX_MAX_LINES		2
 189
 190/* the list of all allocated objects */
 191static LIST_HEAD(object_list);
 192/* the list of gray-colored objects (see color_gray comment below) */
 193static LIST_HEAD(gray_list);
 194/* memory pool allocation */
 195static struct kmemleak_object mem_pool[CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE];
 196static int mem_pool_free_count = ARRAY_SIZE(mem_pool);
 197static LIST_HEAD(mem_pool_free_list);
 198/* search tree for object boundaries */
 199static struct rb_root object_tree_root = RB_ROOT;
 200/* search tree for object (with OBJECT_PHYS flag) boundaries */
 201static struct rb_root object_phys_tree_root = RB_ROOT;
 
 
 202/* protecting the access to object_list, object_tree_root (or object_phys_tree_root) */
 203static DEFINE_RAW_SPINLOCK(kmemleak_lock);
 204
 205/* allocation caches for kmemleak internal data */
 206static struct kmem_cache *object_cache;
 207static struct kmem_cache *scan_area_cache;
 208
 209/* set if tracing memory operations is enabled */
 210static int kmemleak_enabled = 1;
 211/* same as above but only for the kmemleak_free() callback */
 212static int kmemleak_free_enabled = 1;
 213/* set in the late_initcall if there were no errors */
 214static int kmemleak_initialized;
 215/* set if a kmemleak warning was issued */
 216static int kmemleak_warning;
 217/* set if a fatal kmemleak error has occurred */
 218static int kmemleak_error;
 219
 220/* minimum and maximum address that may be valid pointers */
 221static unsigned long min_addr = ULONG_MAX;
 222static unsigned long max_addr;
 223
 224static struct task_struct *scan_thread;
 225/* used to avoid reporting of recently allocated objects */
 226static unsigned long jiffies_min_age;
 227static unsigned long jiffies_last_scan;
 228/* delay between automatic memory scannings */
 229static unsigned long jiffies_scan_wait;
 230/* enables or disables the task stacks scanning */
 231static int kmemleak_stack_scan = 1;
 232/* protects the memory scanning, parameters and debug/kmemleak file access */
 233static DEFINE_MUTEX(scan_mutex);
 234/* setting kmemleak=on, will set this var, skipping the disable */
 235static int kmemleak_skip_disable;
 236/* If there are leaks that can be reported */
 237static bool kmemleak_found_leaks;
 238
 239static bool kmemleak_verbose;
 240module_param_named(verbose, kmemleak_verbose, bool, 0600);
 241
 242static void kmemleak_disable(void);
 243
 244/*
 245 * Print a warning and dump the stack trace.
 246 */
 247#define kmemleak_warn(x...)	do {		\
 248	pr_warn(x);				\
 249	dump_stack();				\
 250	kmemleak_warning = 1;			\
 251} while (0)
 252
 253/*
 254 * Macro invoked when a serious kmemleak condition occurred and cannot be
 255 * recovered from. Kmemleak will be disabled and further allocation/freeing
 256 * tracing no longer available.
 257 */
 258#define kmemleak_stop(x...)	do {	\
 259	kmemleak_warn(x);		\
 260	kmemleak_disable();		\
 261} while (0)
 262
 263#define warn_or_seq_printf(seq, fmt, ...)	do {	\
 264	if (seq)					\
 265		seq_printf(seq, fmt, ##__VA_ARGS__);	\
 266	else						\
 267		pr_warn(fmt, ##__VA_ARGS__);		\
 268} while (0)
 269
 270static void warn_or_seq_hex_dump(struct seq_file *seq, int prefix_type,
 271				 int rowsize, int groupsize, const void *buf,
 272				 size_t len, bool ascii)
 273{
 274	if (seq)
 275		seq_hex_dump(seq, HEX_PREFIX, prefix_type, rowsize, groupsize,
 276			     buf, len, ascii);
 277	else
 278		print_hex_dump(KERN_WARNING, pr_fmt(HEX_PREFIX), prefix_type,
 279			       rowsize, groupsize, buf, len, ascii);
 280}
 281
 282/*
 283 * Printing of the objects hex dump to the seq file. The number of lines to be
 284 * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
 285 * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
 286 * with the object->lock held.
 287 */
 288static void hex_dump_object(struct seq_file *seq,
 289			    struct kmemleak_object *object)
 290{
 291	const u8 *ptr = (const u8 *)object->pointer;
 292	size_t len;
 293
 294	if (WARN_ON_ONCE(object->flags & OBJECT_PHYS))
 295		return;
 296
 297	/* limit the number of lines to HEX_MAX_LINES */
 298	len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE);
 299
 300	warn_or_seq_printf(seq, "  hex dump (first %zu bytes):\n", len);
 301	kasan_disable_current();
 302	warn_or_seq_hex_dump(seq, DUMP_PREFIX_NONE, HEX_ROW_SIZE,
 303			     HEX_GROUP_SIZE, kasan_reset_tag((void *)ptr), len, HEX_ASCII);
 304	kasan_enable_current();
 305}
 306
 307/*
 308 * Object colors, encoded with count and min_count:
 309 * - white - orphan object, not enough references to it (count < min_count)
 310 * - gray  - not orphan, not marked as false positive (min_count == 0) or
 311 *		sufficient references to it (count >= min_count)
 312 * - black - ignore, it doesn't contain references (e.g. text section)
 313 *		(min_count == -1). No function defined for this color.
 314 * Newly created objects don't have any color assigned (object->count == -1)
 315 * before the next memory scan when they become white.
 316 */
 317static bool color_white(const struct kmemleak_object *object)
 318{
 319	return object->count != KMEMLEAK_BLACK &&
 320		object->count < object->min_count;
 321}
 322
 323static bool color_gray(const struct kmemleak_object *object)
 324{
 325	return object->min_count != KMEMLEAK_BLACK &&
 326		object->count >= object->min_count;
 327}
 328
 329/*
 330 * Objects are considered unreferenced only if their color is white, they have
 331 * not be deleted and have a minimum age to avoid false positives caused by
 332 * pointers temporarily stored in CPU registers.
 333 */
 334static bool unreferenced_object(struct kmemleak_object *object)
 335{
 336	return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
 337		time_before_eq(object->jiffies + jiffies_min_age,
 338			       jiffies_last_scan);
 339}
 340
 341/*
 342 * Printing of the unreferenced objects information to the seq file. The
 343 * print_unreferenced function must be called with the object->lock held.
 344 */
 345static void print_unreferenced(struct seq_file *seq,
 346			       struct kmemleak_object *object)
 347{
 348	int i;
 349	unsigned long *entries;
 350	unsigned int nr_entries;
 351	unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
 352
 353	nr_entries = stack_depot_fetch(object->trace_handle, &entries);
 354	warn_or_seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
 355			  object->pointer, object->size);
 356	warn_or_seq_printf(seq, "  comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
 357			   object->comm, object->pid, object->jiffies,
 358			   msecs_age / 1000, msecs_age % 1000);
 359	hex_dump_object(seq, object);
 360	warn_or_seq_printf(seq, "  backtrace:\n");
 361
 362	for (i = 0; i < nr_entries; i++) {
 363		void *ptr = (void *)entries[i];
 364		warn_or_seq_printf(seq, "    [<%pK>] %pS\n", ptr, ptr);
 365	}
 366}
 367
 368/*
 369 * Print the kmemleak_object information. This function is used mainly for
 370 * debugging special cases when kmemleak operations. It must be called with
 371 * the object->lock held.
 372 */
 373static void dump_object_info(struct kmemleak_object *object)
 374{
 375	pr_notice("Object 0x%08lx (size %zu):\n",
 376			object->pointer, object->size);
 377	pr_notice("  comm \"%s\", pid %d, jiffies %lu\n",
 378			object->comm, object->pid, object->jiffies);
 379	pr_notice("  min_count = %d\n", object->min_count);
 380	pr_notice("  count = %d\n", object->count);
 381	pr_notice("  flags = 0x%x\n", object->flags);
 382	pr_notice("  checksum = %u\n", object->checksum);
 383	pr_notice("  backtrace:\n");
 384	if (object->trace_handle)
 385		stack_depot_print(object->trace_handle);
 386}
 387
 
 
 
 
 
 
 
 
 
 388/*
 389 * Look-up a memory block metadata (kmemleak_object) in the object search
 390 * tree based on a pointer value. If alias is 0, only values pointing to the
 391 * beginning of the memory block are allowed. The kmemleak_lock must be held
 392 * when calling this function.
 393 */
 394static struct kmemleak_object *__lookup_object(unsigned long ptr, int alias,
 395					       bool is_phys)
 396{
 397	struct rb_node *rb = is_phys ? object_phys_tree_root.rb_node :
 398			     object_tree_root.rb_node;
 399	unsigned long untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
 400
 401	while (rb) {
 402		struct kmemleak_object *object;
 403		unsigned long untagged_objp;
 404
 405		object = rb_entry(rb, struct kmemleak_object, rb_node);
 406		untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer);
 407
 408		if (untagged_ptr < untagged_objp)
 409			rb = object->rb_node.rb_left;
 410		else if (untagged_objp + object->size <= untagged_ptr)
 411			rb = object->rb_node.rb_right;
 412		else if (untagged_objp == untagged_ptr || alias)
 413			return object;
 414		else {
 415			kmemleak_warn("Found object by alias at 0x%08lx\n",
 416				      ptr);
 417			dump_object_info(object);
 418			break;
 419		}
 420	}
 421	return NULL;
 422}
 423
 424/* Look-up a kmemleak object which allocated with virtual address. */
 425static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
 426{
 427	return __lookup_object(ptr, alias, false);
 428}
 429
 430/*
 431 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
 432 * that once an object's use_count reached 0, the RCU freeing was already
 433 * registered and the object should no longer be used. This function must be
 434 * called under the protection of rcu_read_lock().
 435 */
 436static int get_object(struct kmemleak_object *object)
 437{
 438	return atomic_inc_not_zero(&object->use_count);
 439}
 440
 441/*
 442 * Memory pool allocation and freeing. kmemleak_lock must not be held.
 443 */
 444static struct kmemleak_object *mem_pool_alloc(gfp_t gfp)
 445{
 446	unsigned long flags;
 447	struct kmemleak_object *object;
 448
 449	/* try the slab allocator first */
 450	if (object_cache) {
 451		object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
 452		if (object)
 453			return object;
 454	}
 455
 456	/* slab allocation failed, try the memory pool */
 457	raw_spin_lock_irqsave(&kmemleak_lock, flags);
 458	object = list_first_entry_or_null(&mem_pool_free_list,
 459					  typeof(*object), object_list);
 460	if (object)
 461		list_del(&object->object_list);
 462	else if (mem_pool_free_count)
 463		object = &mem_pool[--mem_pool_free_count];
 464	else
 465		pr_warn_once("Memory pool empty, consider increasing CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE\n");
 466	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
 467
 468	return object;
 469}
 470
 471/*
 472 * Return the object to either the slab allocator or the memory pool.
 473 */
 474static void mem_pool_free(struct kmemleak_object *object)
 475{
 476	unsigned long flags;
 477
 478	if (object < mem_pool || object >= mem_pool + ARRAY_SIZE(mem_pool)) {
 479		kmem_cache_free(object_cache, object);
 480		return;
 481	}
 482
 483	/* add the object to the memory pool free list */
 484	raw_spin_lock_irqsave(&kmemleak_lock, flags);
 485	list_add(&object->object_list, &mem_pool_free_list);
 486	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
 487}
 488
 489/*
 490 * RCU callback to free a kmemleak_object.
 491 */
 492static void free_object_rcu(struct rcu_head *rcu)
 493{
 494	struct hlist_node *tmp;
 495	struct kmemleak_scan_area *area;
 496	struct kmemleak_object *object =
 497		container_of(rcu, struct kmemleak_object, rcu);
 498
 499	/*
 500	 * Once use_count is 0 (guaranteed by put_object), there is no other
 501	 * code accessing this object, hence no need for locking.
 502	 */
 503	hlist_for_each_entry_safe(area, tmp, &object->area_list, node) {
 504		hlist_del(&area->node);
 505		kmem_cache_free(scan_area_cache, area);
 506	}
 507	mem_pool_free(object);
 508}
 509
 510/*
 511 * Decrement the object use_count. Once the count is 0, free the object using
 512 * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
 513 * delete_object() path, the delayed RCU freeing ensures that there is no
 514 * recursive call to the kernel allocator. Lock-less RCU object_list traversal
 515 * is also possible.
 516 */
 517static void put_object(struct kmemleak_object *object)
 518{
 519	if (!atomic_dec_and_test(&object->use_count))
 520		return;
 521
 522	/* should only get here after delete_object was called */
 523	WARN_ON(object->flags & OBJECT_ALLOCATED);
 524
 525	/*
 526	 * It may be too early for the RCU callbacks, however, there is no
 527	 * concurrent object_list traversal when !object_cache and all objects
 528	 * came from the memory pool. Free the object directly.
 529	 */
 530	if (object_cache)
 531		call_rcu(&object->rcu, free_object_rcu);
 532	else
 533		free_object_rcu(&object->rcu);
 534}
 535
 536/*
 537 * Look up an object in the object search tree and increase its use_count.
 538 */
 539static struct kmemleak_object *__find_and_get_object(unsigned long ptr, int alias,
 540						     bool is_phys)
 541{
 542	unsigned long flags;
 543	struct kmemleak_object *object;
 544
 545	rcu_read_lock();
 546	raw_spin_lock_irqsave(&kmemleak_lock, flags);
 547	object = __lookup_object(ptr, alias, is_phys);
 548	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
 549
 550	/* check whether the object is still available */
 551	if (object && !get_object(object))
 552		object = NULL;
 553	rcu_read_unlock();
 554
 555	return object;
 556}
 557
 558/* Look up and get an object which allocated with virtual address. */
 559static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
 560{
 561	return __find_and_get_object(ptr, alias, false);
 562}
 563
 564/*
 565 * Remove an object from the object_tree_root (or object_phys_tree_root)
 566 * and object_list. Must be called with the kmemleak_lock held _if_ kmemleak
 567 * is still enabled.
 568 */
 569static void __remove_object(struct kmemleak_object *object)
 570{
 571	rb_erase(&object->rb_node, object->flags & OBJECT_PHYS ?
 572				   &object_phys_tree_root :
 573				   &object_tree_root);
 574	list_del_rcu(&object->object_list);
 
 
 
 
 
 
 
 
 
 
 
 
 
 575}
 576
 577/*
 578 * Look up an object in the object search tree and remove it from both
 579 * object_tree_root (or object_phys_tree_root) and object_list. The
 580 * returned object's use_count should be at least 1, as initially set
 581 * by create_object().
 582 */
 583static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias,
 584						      bool is_phys)
 585{
 586	unsigned long flags;
 587	struct kmemleak_object *object;
 588
 589	raw_spin_lock_irqsave(&kmemleak_lock, flags);
 590	object = __lookup_object(ptr, alias, is_phys);
 591	if (object)
 592		__remove_object(object);
 593	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
 594
 595	return object;
 596}
 597
 598static noinline depot_stack_handle_t set_track_prepare(void)
 599{
 600	depot_stack_handle_t trace_handle;
 601	unsigned long entries[MAX_TRACE];
 602	unsigned int nr_entries;
 603
 604	if (!kmemleak_initialized)
 
 
 
 
 
 605		return 0;
 606	nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
 607	trace_handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT);
 608
 609	return trace_handle;
 610}
 611
 612/*
 613 * Create the metadata (struct kmemleak_object) corresponding to an allocated
 614 * memory block and add it to the object_list and object_tree_root (or
 615 * object_phys_tree_root).
 616 */
 617static void __create_object(unsigned long ptr, size_t size,
 618			    int min_count, gfp_t gfp, bool is_phys)
 619{
 620	unsigned long flags;
 621	struct kmemleak_object *object, *parent;
 622	struct rb_node **link, *rb_parent;
 623	unsigned long untagged_ptr;
 624	unsigned long untagged_objp;
 625
 626	object = mem_pool_alloc(gfp);
 627	if (!object) {
 628		pr_warn("Cannot allocate a kmemleak_object structure\n");
 629		kmemleak_disable();
 630		return;
 631	}
 632
 633	INIT_LIST_HEAD(&object->object_list);
 634	INIT_LIST_HEAD(&object->gray_list);
 635	INIT_HLIST_HEAD(&object->area_list);
 636	raw_spin_lock_init(&object->lock);
 637	atomic_set(&object->use_count, 1);
 638	object->flags = OBJECT_ALLOCATED | (is_phys ? OBJECT_PHYS : 0);
 639	object->pointer = ptr;
 640	object->size = kfence_ksize((void *)ptr) ?: size;
 641	object->excess_ref = 0;
 642	object->min_count = min_count;
 643	object->count = 0;			/* white color initially */
 644	object->jiffies = jiffies;
 645	object->checksum = 0;
 
 646
 647	/* task information */
 648	if (in_hardirq()) {
 649		object->pid = 0;
 650		strncpy(object->comm, "hardirq", sizeof(object->comm));
 651	} else if (in_serving_softirq()) {
 652		object->pid = 0;
 653		strncpy(object->comm, "softirq", sizeof(object->comm));
 654	} else {
 655		object->pid = current->pid;
 656		/*
 657		 * There is a small chance of a race with set_task_comm(),
 658		 * however using get_task_comm() here may cause locking
 659		 * dependency issues with current->alloc_lock. In the worst
 660		 * case, the command line is not correct.
 661		 */
 662		strncpy(object->comm, current->comm, sizeof(object->comm));
 663	}
 664
 665	/* kernel backtrace */
 666	object->trace_handle = set_track_prepare();
 667
 668	raw_spin_lock_irqsave(&kmemleak_lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 669
 670	untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
 671	/*
 672	 * Only update min_addr and max_addr with object
 673	 * storing virtual address.
 674	 */
 675	if (!is_phys) {
 676		min_addr = min(min_addr, untagged_ptr);
 677		max_addr = max(max_addr, untagged_ptr + size);
 678	}
 679	link = is_phys ? &object_phys_tree_root.rb_node :
 680		&object_tree_root.rb_node;
 681	rb_parent = NULL;
 682	while (*link) {
 683		rb_parent = *link;
 684		parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
 685		untagged_objp = (unsigned long)kasan_reset_tag((void *)parent->pointer);
 686		if (untagged_ptr + size <= untagged_objp)
 687			link = &parent->rb_node.rb_left;
 688		else if (untagged_objp + parent->size <= untagged_ptr)
 689			link = &parent->rb_node.rb_right;
 690		else {
 691			kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n",
 692				      ptr);
 693			/*
 694			 * No need for parent->lock here since "parent" cannot
 695			 * be freed while the kmemleak_lock is held.
 696			 */
 697			dump_object_info(parent);
 698			kmem_cache_free(object_cache, object);
 699			goto out;
 700		}
 701	}
 702	rb_link_node(&object->rb_node, rb_parent, link);
 703	rb_insert_color(&object->rb_node, is_phys ? &object_phys_tree_root :
 704					  &object_tree_root);
 705	list_add_tail_rcu(&object->object_list, &object_list);
 706out:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 707	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
 
 
 708}
 709
 710/* Create kmemleak object which allocated with virtual address. */
 711static void create_object(unsigned long ptr, size_t size,
 712			  int min_count, gfp_t gfp)
 713{
 714	__create_object(ptr, size, min_count, gfp, false);
 715}
 716
 717/* Create kmemleak object which allocated with physical address. */
 718static void create_object_phys(unsigned long ptr, size_t size,
 719			       int min_count, gfp_t gfp)
 720{
 721	__create_object(ptr, size, min_count, gfp, true);
 
 
 
 
 
 
 
 722}
 723
 724/*
 725 * Mark the object as not allocated and schedule RCU freeing via put_object().
 726 */
 727static void __delete_object(struct kmemleak_object *object)
 728{
 729	unsigned long flags;
 730
 731	WARN_ON(!(object->flags & OBJECT_ALLOCATED));
 732	WARN_ON(atomic_read(&object->use_count) < 1);
 733
 734	/*
 735	 * Locking here also ensures that the corresponding memory block
 736	 * cannot be freed when it is being scanned.
 737	 */
 738	raw_spin_lock_irqsave(&object->lock, flags);
 739	object->flags &= ~OBJECT_ALLOCATED;
 740	raw_spin_unlock_irqrestore(&object->lock, flags);
 741	put_object(object);
 742}
 743
 744/*
 745 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
 746 * delete it.
 747 */
 748static void delete_object_full(unsigned long ptr)
 749{
 750	struct kmemleak_object *object;
 751
 752	object = find_and_remove_object(ptr, 0, false);
 753	if (!object) {
 754#ifdef DEBUG
 755		kmemleak_warn("Freeing unknown object at 0x%08lx\n",
 756			      ptr);
 757#endif
 758		return;
 759	}
 760	__delete_object(object);
 761}
 762
 763/*
 764 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
 765 * delete it. If the memory block is partially freed, the function may create
 766 * additional metadata for the remaining parts of the block.
 767 */
 768static void delete_object_part(unsigned long ptr, size_t size, bool is_phys)
 
 769{
 770	struct kmemleak_object *object;
 771	unsigned long start, end;
 
 
 
 
 
 
 
 
 772
 773	object = find_and_remove_object(ptr, 1, is_phys);
 
 774	if (!object) {
 775#ifdef DEBUG
 776		kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n",
 777			      ptr, size);
 778#endif
 779		return;
 780	}
 781
 782	/*
 783	 * Create one or two objects that may result from the memory block
 784	 * split. Note that partial freeing is only done by free_bootmem() and
 785	 * this happens before kmemleak_init() is called.
 786	 */
 787	start = object->pointer;
 788	end = object->pointer + object->size;
 789	if (ptr > start)
 790		__create_object(start, ptr - start, object->min_count,
 791			      GFP_KERNEL, is_phys);
 792	if (ptr + size < end)
 793		__create_object(ptr + size, end - ptr - size, object->min_count,
 794			      GFP_KERNEL, is_phys);
 
 
 795
 796	__delete_object(object);
 
 
 
 
 
 
 
 
 
 797}
 798
 799static void __paint_it(struct kmemleak_object *object, int color)
 800{
 801	object->min_count = color;
 802	if (color == KMEMLEAK_BLACK)
 803		object->flags |= OBJECT_NO_SCAN;
 804}
 805
 806static void paint_it(struct kmemleak_object *object, int color)
 807{
 808	unsigned long flags;
 809
 810	raw_spin_lock_irqsave(&object->lock, flags);
 811	__paint_it(object, color);
 812	raw_spin_unlock_irqrestore(&object->lock, flags);
 813}
 814
 815static void paint_ptr(unsigned long ptr, int color, bool is_phys)
 816{
 817	struct kmemleak_object *object;
 818
 819	object = __find_and_get_object(ptr, 0, is_phys);
 820	if (!object) {
 821		kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n",
 822			      ptr,
 823			      (color == KMEMLEAK_GREY) ? "Grey" :
 824			      (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
 825		return;
 826	}
 827	paint_it(object, color);
 828	put_object(object);
 829}
 830
 831/*
 832 * Mark an object permanently as gray-colored so that it can no longer be
 833 * reported as a leak. This is used in general to mark a false positive.
 834 */
 835static void make_gray_object(unsigned long ptr)
 836{
 837	paint_ptr(ptr, KMEMLEAK_GREY, false);
 838}
 839
 840/*
 841 * Mark the object as black-colored so that it is ignored from scans and
 842 * reporting.
 843 */
 844static void make_black_object(unsigned long ptr, bool is_phys)
 845{
 846	paint_ptr(ptr, KMEMLEAK_BLACK, is_phys);
 847}
 848
 849/*
 850 * Add a scanning area to the object. If at least one such area is added,
 851 * kmemleak will only scan these ranges rather than the whole memory block.
 852 */
 853static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
 854{
 855	unsigned long flags;
 856	struct kmemleak_object *object;
 857	struct kmemleak_scan_area *area = NULL;
 858	unsigned long untagged_ptr;
 859	unsigned long untagged_objp;
 860
 861	object = find_and_get_object(ptr, 1);
 862	if (!object) {
 863		kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
 864			      ptr);
 865		return;
 866	}
 867
 868	untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
 869	untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer);
 870
 871	if (scan_area_cache)
 872		area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
 873
 874	raw_spin_lock_irqsave(&object->lock, flags);
 875	if (!area) {
 876		pr_warn_once("Cannot allocate a scan area, scanning the full object\n");
 877		/* mark the object for full scan to avoid false positives */
 878		object->flags |= OBJECT_FULL_SCAN;
 879		goto out_unlock;
 880	}
 881	if (size == SIZE_MAX) {
 882		size = untagged_objp + object->size - untagged_ptr;
 883	} else if (untagged_ptr + size > untagged_objp + object->size) {
 884		kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
 885		dump_object_info(object);
 886		kmem_cache_free(scan_area_cache, area);
 887		goto out_unlock;
 888	}
 889
 890	INIT_HLIST_NODE(&area->node);
 891	area->start = ptr;
 892	area->size = size;
 893
 894	hlist_add_head(&area->node, &object->area_list);
 895out_unlock:
 896	raw_spin_unlock_irqrestore(&object->lock, flags);
 897	put_object(object);
 898}
 899
 900/*
 901 * Any surplus references (object already gray) to 'ptr' are passed to
 902 * 'excess_ref'. This is used in the vmalloc() case where a pointer to
 903 * vm_struct may be used as an alternative reference to the vmalloc'ed object
 904 * (see free_thread_stack()).
 905 */
 906static void object_set_excess_ref(unsigned long ptr, unsigned long excess_ref)
 907{
 908	unsigned long flags;
 909	struct kmemleak_object *object;
 910
 911	object = find_and_get_object(ptr, 0);
 912	if (!object) {
 913		kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n",
 914			      ptr);
 915		return;
 916	}
 917
 918	raw_spin_lock_irqsave(&object->lock, flags);
 919	object->excess_ref = excess_ref;
 920	raw_spin_unlock_irqrestore(&object->lock, flags);
 921	put_object(object);
 922}
 923
 924/*
 925 * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
 926 * pointer. Such object will not be scanned by kmemleak but references to it
 927 * are searched.
 928 */
 929static void object_no_scan(unsigned long ptr)
 930{
 931	unsigned long flags;
 932	struct kmemleak_object *object;
 933
 934	object = find_and_get_object(ptr, 0);
 935	if (!object) {
 936		kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
 937		return;
 938	}
 939
 940	raw_spin_lock_irqsave(&object->lock, flags);
 941	object->flags |= OBJECT_NO_SCAN;
 942	raw_spin_unlock_irqrestore(&object->lock, flags);
 943	put_object(object);
 944}
 945
 946/**
 947 * kmemleak_alloc - register a newly allocated object
 948 * @ptr:	pointer to beginning of the object
 949 * @size:	size of the object
 950 * @min_count:	minimum number of references to this object. If during memory
 951 *		scanning a number of references less than @min_count is found,
 952 *		the object is reported as a memory leak. If @min_count is 0,
 953 *		the object is never reported as a leak. If @min_count is -1,
 954 *		the object is ignored (not scanned and not reported as a leak)
 955 * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
 956 *
 957 * This function is called from the kernel allocators when a new object
 958 * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.).
 959 */
 960void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
 961			  gfp_t gfp)
 962{
 963	pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
 964
 965	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
 966		create_object((unsigned long)ptr, size, min_count, gfp);
 967}
 968EXPORT_SYMBOL_GPL(kmemleak_alloc);
 969
 970/**
 971 * kmemleak_alloc_percpu - register a newly allocated __percpu object
 972 * @ptr:	__percpu pointer to beginning of the object
 973 * @size:	size of the object
 974 * @gfp:	flags used for kmemleak internal memory allocations
 975 *
 976 * This function is called from the kernel percpu allocator when a new object
 977 * (memory block) is allocated (alloc_percpu).
 978 */
 979void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size,
 980				 gfp_t gfp)
 981{
 982	unsigned int cpu;
 983
 984	pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size);
 985
 986	/*
 987	 * Percpu allocations are only scanned and not reported as leaks
 988	 * (min_count is set to 0).
 989	 */
 990	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
 991		for_each_possible_cpu(cpu)
 992			create_object((unsigned long)per_cpu_ptr(ptr, cpu),
 993				      size, 0, gfp);
 994}
 995EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
 996
 997/**
 998 * kmemleak_vmalloc - register a newly vmalloc'ed object
 999 * @area:	pointer to vm_struct
1000 * @size:	size of the object
1001 * @gfp:	__vmalloc() flags used for kmemleak internal memory allocations
1002 *
1003 * This function is called from the vmalloc() kernel allocator when a new
1004 * object (memory block) is allocated.
1005 */
1006void __ref kmemleak_vmalloc(const struct vm_struct *area, size_t size, gfp_t gfp)
1007{
1008	pr_debug("%s(0x%p, %zu)\n", __func__, area, size);
1009
1010	/*
1011	 * A min_count = 2 is needed because vm_struct contains a reference to
1012	 * the virtual address of the vmalloc'ed block.
1013	 */
1014	if (kmemleak_enabled) {
1015		create_object((unsigned long)area->addr, size, 2, gfp);
1016		object_set_excess_ref((unsigned long)area,
1017				      (unsigned long)area->addr);
1018	}
1019}
1020EXPORT_SYMBOL_GPL(kmemleak_vmalloc);
1021
1022/**
1023 * kmemleak_free - unregister a previously registered object
1024 * @ptr:	pointer to beginning of the object
1025 *
1026 * This function is called from the kernel allocators when an object (memory
1027 * block) is freed (kmem_cache_free, kfree, vfree etc.).
1028 */
1029void __ref kmemleak_free(const void *ptr)
1030{
1031	pr_debug("%s(0x%p)\n", __func__, ptr);
1032
1033	if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
1034		delete_object_full((unsigned long)ptr);
1035}
1036EXPORT_SYMBOL_GPL(kmemleak_free);
1037
1038/**
1039 * kmemleak_free_part - partially unregister a previously registered object
1040 * @ptr:	pointer to the beginning or inside the object. This also
1041 *		represents the start of the range to be freed
1042 * @size:	size to be unregistered
1043 *
1044 * This function is called when only a part of a memory block is freed
1045 * (usually from the bootmem allocator).
1046 */
1047void __ref kmemleak_free_part(const void *ptr, size_t size)
1048{
1049	pr_debug("%s(0x%p)\n", __func__, ptr);
1050
1051	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1052		delete_object_part((unsigned long)ptr, size, false);
1053}
1054EXPORT_SYMBOL_GPL(kmemleak_free_part);
1055
1056/**
1057 * kmemleak_free_percpu - unregister a previously registered __percpu object
1058 * @ptr:	__percpu pointer to beginning of the object
1059 *
1060 * This function is called from the kernel percpu allocator when an object
1061 * (memory block) is freed (free_percpu).
1062 */
1063void __ref kmemleak_free_percpu(const void __percpu *ptr)
1064{
1065	unsigned int cpu;
1066
1067	pr_debug("%s(0x%p)\n", __func__, ptr);
1068
1069	if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
1070		for_each_possible_cpu(cpu)
1071			delete_object_full((unsigned long)per_cpu_ptr(ptr,
1072								      cpu));
1073}
1074EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
1075
1076/**
1077 * kmemleak_update_trace - update object allocation stack trace
1078 * @ptr:	pointer to beginning of the object
1079 *
1080 * Override the object allocation stack trace for cases where the actual
1081 * allocation place is not always useful.
1082 */
1083void __ref kmemleak_update_trace(const void *ptr)
1084{
1085	struct kmemleak_object *object;
 
1086	unsigned long flags;
1087
1088	pr_debug("%s(0x%p)\n", __func__, ptr);
1089
1090	if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr))
1091		return;
1092
1093	object = find_and_get_object((unsigned long)ptr, 1);
1094	if (!object) {
1095#ifdef DEBUG
1096		kmemleak_warn("Updating stack trace for unknown object at %p\n",
1097			      ptr);
1098#endif
1099		return;
1100	}
1101
 
1102	raw_spin_lock_irqsave(&object->lock, flags);
1103	object->trace_handle = set_track_prepare();
1104	raw_spin_unlock_irqrestore(&object->lock, flags);
1105
1106	put_object(object);
1107}
1108EXPORT_SYMBOL(kmemleak_update_trace);
1109
1110/**
1111 * kmemleak_not_leak - mark an allocated object as false positive
1112 * @ptr:	pointer to beginning of the object
1113 *
1114 * Calling this function on an object will cause the memory block to no longer
1115 * be reported as leak and always be scanned.
1116 */
1117void __ref kmemleak_not_leak(const void *ptr)
1118{
1119	pr_debug("%s(0x%p)\n", __func__, ptr);
1120
1121	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1122		make_gray_object((unsigned long)ptr);
1123}
1124EXPORT_SYMBOL(kmemleak_not_leak);
1125
1126/**
1127 * kmemleak_ignore - ignore an allocated object
1128 * @ptr:	pointer to beginning of the object
1129 *
1130 * Calling this function on an object will cause the memory block to be
1131 * ignored (not scanned and not reported as a leak). This is usually done when
1132 * it is known that the corresponding block is not a leak and does not contain
1133 * any references to other allocated memory blocks.
1134 */
1135void __ref kmemleak_ignore(const void *ptr)
1136{
1137	pr_debug("%s(0x%p)\n", __func__, ptr);
1138
1139	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1140		make_black_object((unsigned long)ptr, false);
1141}
1142EXPORT_SYMBOL(kmemleak_ignore);
1143
1144/**
1145 * kmemleak_scan_area - limit the range to be scanned in an allocated object
1146 * @ptr:	pointer to beginning or inside the object. This also
1147 *		represents the start of the scan area
1148 * @size:	size of the scan area
1149 * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
1150 *
1151 * This function is used when it is known that only certain parts of an object
1152 * contain references to other objects. Kmemleak will only scan these areas
1153 * reducing the number false negatives.
1154 */
1155void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
1156{
1157	pr_debug("%s(0x%p)\n", __func__, ptr);
1158
1159	if (kmemleak_enabled && ptr && size && !IS_ERR(ptr))
1160		add_scan_area((unsigned long)ptr, size, gfp);
1161}
1162EXPORT_SYMBOL(kmemleak_scan_area);
1163
1164/**
1165 * kmemleak_no_scan - do not scan an allocated object
1166 * @ptr:	pointer to beginning of the object
1167 *
1168 * This function notifies kmemleak not to scan the given memory block. Useful
1169 * in situations where it is known that the given object does not contain any
1170 * references to other objects. Kmemleak will not scan such objects reducing
1171 * the number of false negatives.
1172 */
1173void __ref kmemleak_no_scan(const void *ptr)
1174{
1175	pr_debug("%s(0x%p)\n", __func__, ptr);
1176
1177	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1178		object_no_scan((unsigned long)ptr);
1179}
1180EXPORT_SYMBOL(kmemleak_no_scan);
1181
1182/**
1183 * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical
1184 *			 address argument
1185 * @phys:	physical address of the object
1186 * @size:	size of the object
1187 * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
1188 */
1189void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, gfp_t gfp)
1190{
1191	pr_debug("%s(0x%pa, %zu)\n", __func__, &phys, size);
1192
1193	if (kmemleak_enabled)
1194		/*
1195		 * Create object with OBJECT_PHYS flag and
1196		 * assume min_count 0.
1197		 */
1198		create_object_phys((unsigned long)phys, size, 0, gfp);
1199}
1200EXPORT_SYMBOL(kmemleak_alloc_phys);
1201
1202/**
1203 * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a
1204 *			     physical address argument
1205 * @phys:	physical address if the beginning or inside an object. This
1206 *		also represents the start of the range to be freed
1207 * @size:	size to be unregistered
1208 */
1209void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size)
1210{
1211	pr_debug("%s(0x%pa)\n", __func__, &phys);
1212
1213	if (kmemleak_enabled)
1214		delete_object_part((unsigned long)phys, size, true);
1215}
1216EXPORT_SYMBOL(kmemleak_free_part_phys);
1217
1218/**
1219 * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical
1220 *			  address argument
1221 * @phys:	physical address of the object
1222 */
1223void __ref kmemleak_ignore_phys(phys_addr_t phys)
1224{
1225	pr_debug("%s(0x%pa)\n", __func__, &phys);
1226
1227	if (kmemleak_enabled)
1228		make_black_object((unsigned long)phys, true);
1229}
1230EXPORT_SYMBOL(kmemleak_ignore_phys);
1231
1232/*
1233 * Update an object's checksum and return true if it was modified.
1234 */
1235static bool update_checksum(struct kmemleak_object *object)
1236{
1237	u32 old_csum = object->checksum;
1238
1239	if (WARN_ON_ONCE(object->flags & OBJECT_PHYS))
1240		return false;
1241
1242	kasan_disable_current();
1243	kcsan_disable_current();
1244	object->checksum = crc32(0, kasan_reset_tag((void *)object->pointer), object->size);
1245	kasan_enable_current();
1246	kcsan_enable_current();
1247
1248	return object->checksum != old_csum;
1249}
1250
1251/*
1252 * Update an object's references. object->lock must be held by the caller.
1253 */
1254static void update_refs(struct kmemleak_object *object)
1255{
1256	if (!color_white(object)) {
1257		/* non-orphan, ignored or new */
1258		return;
1259	}
1260
1261	/*
1262	 * Increase the object's reference count (number of pointers to the
1263	 * memory block). If this count reaches the required minimum, the
1264	 * object's color will become gray and it will be added to the
1265	 * gray_list.
1266	 */
1267	object->count++;
1268	if (color_gray(object)) {
1269		/* put_object() called when removing from gray_list */
1270		WARN_ON(!get_object(object));
1271		list_add_tail(&object->gray_list, &gray_list);
1272	}
1273}
1274
1275/*
1276 * Memory scanning is a long process and it needs to be interruptible. This
1277 * function checks whether such interrupt condition occurred.
1278 */
1279static int scan_should_stop(void)
1280{
1281	if (!kmemleak_enabled)
1282		return 1;
1283
1284	/*
1285	 * This function may be called from either process or kthread context,
1286	 * hence the need to check for both stop conditions.
1287	 */
1288	if (current->mm)
1289		return signal_pending(current);
1290	else
1291		return kthread_should_stop();
1292
1293	return 0;
1294}
1295
1296/*
1297 * Scan a memory block (exclusive range) for valid pointers and add those
1298 * found to the gray list.
1299 */
1300static void scan_block(void *_start, void *_end,
1301		       struct kmemleak_object *scanned)
1302{
1303	unsigned long *ptr;
1304	unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1305	unsigned long *end = _end - (BYTES_PER_POINTER - 1);
1306	unsigned long flags;
1307	unsigned long untagged_ptr;
1308
1309	raw_spin_lock_irqsave(&kmemleak_lock, flags);
1310	for (ptr = start; ptr < end; ptr++) {
1311		struct kmemleak_object *object;
1312		unsigned long pointer;
1313		unsigned long excess_ref;
1314
1315		if (scan_should_stop())
1316			break;
1317
1318		kasan_disable_current();
1319		pointer = *(unsigned long *)kasan_reset_tag((void *)ptr);
1320		kasan_enable_current();
1321
1322		untagged_ptr = (unsigned long)kasan_reset_tag((void *)pointer);
1323		if (untagged_ptr < min_addr || untagged_ptr >= max_addr)
1324			continue;
1325
1326		/*
1327		 * No need for get_object() here since we hold kmemleak_lock.
1328		 * object->use_count cannot be dropped to 0 while the object
1329		 * is still present in object_tree_root and object_list
1330		 * (with updates protected by kmemleak_lock).
1331		 */
1332		object = lookup_object(pointer, 1);
1333		if (!object)
1334			continue;
1335		if (object == scanned)
1336			/* self referenced, ignore */
1337			continue;
1338
1339		/*
1340		 * Avoid the lockdep recursive warning on object->lock being
1341		 * previously acquired in scan_object(). These locks are
1342		 * enclosed by scan_mutex.
1343		 */
1344		raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1345		/* only pass surplus references (object already gray) */
1346		if (color_gray(object)) {
1347			excess_ref = object->excess_ref;
1348			/* no need for update_refs() if object already gray */
1349		} else {
1350			excess_ref = 0;
1351			update_refs(object);
1352		}
1353		raw_spin_unlock(&object->lock);
1354
1355		if (excess_ref) {
1356			object = lookup_object(excess_ref, 0);
1357			if (!object)
1358				continue;
1359			if (object == scanned)
1360				/* circular reference, ignore */
1361				continue;
1362			raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1363			update_refs(object);
1364			raw_spin_unlock(&object->lock);
1365		}
1366	}
1367	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
1368}
1369
1370/*
1371 * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency.
1372 */
1373#ifdef CONFIG_SMP
1374static void scan_large_block(void *start, void *end)
1375{
1376	void *next;
1377
1378	while (start < end) {
1379		next = min(start + MAX_SCAN_SIZE, end);
1380		scan_block(start, next, NULL);
1381		start = next;
1382		cond_resched();
1383	}
1384}
1385#endif
1386
1387/*
1388 * Scan a memory block corresponding to a kmemleak_object. A condition is
1389 * that object->use_count >= 1.
1390 */
1391static void scan_object(struct kmemleak_object *object)
1392{
1393	struct kmemleak_scan_area *area;
1394	unsigned long flags;
1395	void *obj_ptr;
1396
1397	/*
1398	 * Once the object->lock is acquired, the corresponding memory block
1399	 * cannot be freed (the same lock is acquired in delete_object).
1400	 */
1401	raw_spin_lock_irqsave(&object->lock, flags);
1402	if (object->flags & OBJECT_NO_SCAN)
1403		goto out;
1404	if (!(object->flags & OBJECT_ALLOCATED))
1405		/* already freed object */
1406		goto out;
1407
1408	obj_ptr = object->flags & OBJECT_PHYS ?
1409		  __va((phys_addr_t)object->pointer) :
1410		  (void *)object->pointer;
 
 
 
1411
1412	if (hlist_empty(&object->area_list) ||
 
 
 
 
 
 
 
 
1413	    object->flags & OBJECT_FULL_SCAN) {
1414		void *start = obj_ptr;
1415		void *end = obj_ptr + object->size;
 
 
1416		void *next;
1417
1418		do {
1419			next = min(start + MAX_SCAN_SIZE, end);
1420			scan_block(start, next, object);
1421
1422			start = next;
1423			if (start >= end)
1424				break;
1425
1426			raw_spin_unlock_irqrestore(&object->lock, flags);
1427			cond_resched();
1428			raw_spin_lock_irqsave(&object->lock, flags);
1429		} while (object->flags & OBJECT_ALLOCATED);
1430	} else
1431		hlist_for_each_entry(area, &object->area_list, node)
1432			scan_block((void *)area->start,
1433				   (void *)(area->start + area->size),
1434				   object);
 
1435out:
1436	raw_spin_unlock_irqrestore(&object->lock, flags);
1437}
1438
1439/*
1440 * Scan the objects already referenced (gray objects). More objects will be
1441 * referenced and, if there are no memory leaks, all the objects are scanned.
1442 */
1443static void scan_gray_list(void)
1444{
1445	struct kmemleak_object *object, *tmp;
1446
1447	/*
1448	 * The list traversal is safe for both tail additions and removals
1449	 * from inside the loop. The kmemleak objects cannot be freed from
1450	 * outside the loop because their use_count was incremented.
1451	 */
1452	object = list_entry(gray_list.next, typeof(*object), gray_list);
1453	while (&object->gray_list != &gray_list) {
1454		cond_resched();
1455
1456		/* may add new objects to the list */
1457		if (!scan_should_stop())
1458			scan_object(object);
1459
1460		tmp = list_entry(object->gray_list.next, typeof(*object),
1461				 gray_list);
1462
1463		/* remove the object from the list and release it */
1464		list_del(&object->gray_list);
1465		put_object(object);
1466
1467		object = tmp;
1468	}
1469	WARN_ON(!list_empty(&gray_list));
1470}
1471
1472/*
1473 * Conditionally call resched() in an object iteration loop while making sure
1474 * that the given object won't go away without RCU read lock by performing a
1475 * get_object() if !pinned.
1476 *
1477 * Return: false if can't do a cond_resched() due to get_object() failure
1478 *	   true otherwise
1479 */
1480static bool kmemleak_cond_resched(struct kmemleak_object *object, bool pinned)
1481{
1482	if (!pinned && !get_object(object))
1483		return false;
 
 
 
 
 
 
1484
1485	rcu_read_unlock();
1486	cond_resched();
1487	rcu_read_lock();
1488	if (!pinned)
1489		put_object(object);
1490	return true;
 
 
 
 
 
1491}
1492
1493/*
1494 * Scan data sections and all the referenced memory blocks allocated via the
1495 * kernel's standard allocators. This function must be called with the
1496 * scan_mutex held.
1497 */
1498static void kmemleak_scan(void)
1499{
1500	struct kmemleak_object *object;
1501	struct zone *zone;
1502	int __maybe_unused i;
1503	int new_leaks = 0;
1504	int loop_cnt = 0;
1505
1506	jiffies_last_scan = jiffies;
1507
1508	/* prepare the kmemleak_object's */
1509	rcu_read_lock();
1510	list_for_each_entry_rcu(object, &object_list, object_list) {
1511		bool obj_pinned = false;
1512
1513		raw_spin_lock_irq(&object->lock);
1514#ifdef DEBUG
1515		/*
1516		 * With a few exceptions there should be a maximum of
1517		 * 1 reference to any object at this point.
1518		 */
1519		if (atomic_read(&object->use_count) > 1) {
1520			pr_debug("object->use_count = %d\n",
1521				 atomic_read(&object->use_count));
1522			dump_object_info(object);
1523		}
1524#endif
1525
1526		/* ignore objects outside lowmem (paint them black) */
1527		if ((object->flags & OBJECT_PHYS) &&
1528		   !(object->flags & OBJECT_NO_SCAN)) {
1529			unsigned long phys = object->pointer;
1530
1531			if (PHYS_PFN(phys) < min_low_pfn ||
1532			    PHYS_PFN(phys + object->size) >= max_low_pfn)
1533				__paint_it(object, KMEMLEAK_BLACK);
1534		}
1535
1536		/* reset the reference count (whiten the object) */
1537		object->count = 0;
1538		if (color_gray(object) && get_object(object)) {
1539			list_add_tail(&object->gray_list, &gray_list);
1540			obj_pinned = true;
1541		}
1542
1543		raw_spin_unlock_irq(&object->lock);
1544
1545		/*
1546		 * Do a cond_resched() every 64k objects to avoid soft lockup.
1547		 */
1548		if (!(++loop_cnt & 0xffff) &&
1549		    !kmemleak_cond_resched(object, obj_pinned))
1550			loop_cnt--; /* Try again on next object */
1551	}
1552	rcu_read_unlock();
1553
1554#ifdef CONFIG_SMP
1555	/* per-cpu sections scanning */
1556	for_each_possible_cpu(i)
1557		scan_large_block(__per_cpu_start + per_cpu_offset(i),
1558				 __per_cpu_end + per_cpu_offset(i));
1559#endif
1560
1561	/*
1562	 * Struct page scanning for each node.
1563	 */
1564	get_online_mems();
1565	for_each_populated_zone(zone) {
1566		unsigned long start_pfn = zone->zone_start_pfn;
1567		unsigned long end_pfn = zone_end_pfn(zone);
1568		unsigned long pfn;
1569
1570		for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1571			struct page *page = pfn_to_online_page(pfn);
1572
 
 
 
1573			if (!page)
1574				continue;
1575
1576			/* only scan pages belonging to this zone */
1577			if (page_zone(page) != zone)
1578				continue;
1579			/* only scan if page is in use */
1580			if (page_count(page) == 0)
1581				continue;
1582			scan_block(page, page + 1, NULL);
1583			if (!(pfn & 63))
1584				cond_resched();
1585		}
1586	}
1587	put_online_mems();
1588
1589	/*
1590	 * Scanning the task stacks (may introduce false negatives).
1591	 */
1592	if (kmemleak_stack_scan) {
1593		struct task_struct *p, *g;
1594
1595		rcu_read_lock();
1596		for_each_process_thread(g, p) {
1597			void *stack = try_get_task_stack(p);
1598			if (stack) {
1599				scan_block(stack, stack + THREAD_SIZE, NULL);
1600				put_task_stack(p);
1601			}
1602		}
1603		rcu_read_unlock();
1604	}
1605
1606	/*
1607	 * Scan the objects already referenced from the sections scanned
1608	 * above.
1609	 */
1610	scan_gray_list();
1611
1612	/*
1613	 * Check for new or unreferenced objects modified since the previous
1614	 * scan and color them gray until the next scan.
1615	 */
1616	rcu_read_lock();
1617	loop_cnt = 0;
1618	list_for_each_entry_rcu(object, &object_list, object_list) {
1619		/*
1620		 * Do a cond_resched() every 64k objects to avoid soft lockup.
1621		 */
1622		if (!(++loop_cnt & 0xffff) &&
1623		    !kmemleak_cond_resched(object, false))
1624			loop_cnt--;	/* Try again on next object */
1625
1626		/*
1627		 * This is racy but we can save the overhead of lock/unlock
1628		 * calls. The missed objects, if any, should be caught in
1629		 * the next scan.
1630		 */
1631		if (!color_white(object))
1632			continue;
1633		raw_spin_lock_irq(&object->lock);
1634		if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1635		    && update_checksum(object) && get_object(object)) {
1636			/* color it gray temporarily */
1637			object->count = object->min_count;
1638			list_add_tail(&object->gray_list, &gray_list);
1639		}
1640		raw_spin_unlock_irq(&object->lock);
1641	}
1642	rcu_read_unlock();
1643
1644	/*
1645	 * Re-scan the gray list for modified unreferenced objects.
1646	 */
1647	scan_gray_list();
1648
1649	/*
1650	 * If scanning was stopped do not report any new unreferenced objects.
1651	 */
1652	if (scan_should_stop())
1653		return;
1654
1655	/*
1656	 * Scanning result reporting.
1657	 */
1658	rcu_read_lock();
1659	loop_cnt = 0;
1660	list_for_each_entry_rcu(object, &object_list, object_list) {
1661		/*
1662		 * Do a cond_resched() every 64k objects to avoid soft lockup.
1663		 */
1664		if (!(++loop_cnt & 0xffff) &&
1665		    !kmemleak_cond_resched(object, false))
1666			loop_cnt--;	/* Try again on next object */
1667
1668		/*
1669		 * This is racy but we can save the overhead of lock/unlock
1670		 * calls. The missed objects, if any, should be caught in
1671		 * the next scan.
1672		 */
1673		if (!color_white(object))
1674			continue;
1675		raw_spin_lock_irq(&object->lock);
1676		if (unreferenced_object(object) &&
1677		    !(object->flags & OBJECT_REPORTED)) {
1678			object->flags |= OBJECT_REPORTED;
1679
1680			if (kmemleak_verbose)
1681				print_unreferenced(NULL, object);
1682
1683			new_leaks++;
1684		}
1685		raw_spin_unlock_irq(&object->lock);
1686	}
1687	rcu_read_unlock();
1688
1689	if (new_leaks) {
1690		kmemleak_found_leaks = true;
1691
1692		pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n",
1693			new_leaks);
1694	}
1695
1696}
1697
1698/*
1699 * Thread function performing automatic memory scanning. Unreferenced objects
1700 * at the end of a memory scan are reported but only the first time.
1701 */
1702static int kmemleak_scan_thread(void *arg)
1703{
1704	static int first_run = IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN);
1705
1706	pr_info("Automatic memory scanning thread started\n");
1707	set_user_nice(current, 10);
1708
1709	/*
1710	 * Wait before the first scan to allow the system to fully initialize.
1711	 */
1712	if (first_run) {
1713		signed long timeout = msecs_to_jiffies(SECS_FIRST_SCAN * 1000);
1714		first_run = 0;
1715		while (timeout && !kthread_should_stop())
1716			timeout = schedule_timeout_interruptible(timeout);
1717	}
1718
1719	while (!kthread_should_stop()) {
1720		signed long timeout = READ_ONCE(jiffies_scan_wait);
1721
1722		mutex_lock(&scan_mutex);
1723		kmemleak_scan();
1724		mutex_unlock(&scan_mutex);
1725
1726		/* wait before the next scan */
1727		while (timeout && !kthread_should_stop())
1728			timeout = schedule_timeout_interruptible(timeout);
1729	}
1730
1731	pr_info("Automatic memory scanning thread ended\n");
1732
1733	return 0;
1734}
1735
1736/*
1737 * Start the automatic memory scanning thread. This function must be called
1738 * with the scan_mutex held.
1739 */
1740static void start_scan_thread(void)
1741{
1742	if (scan_thread)
1743		return;
1744	scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1745	if (IS_ERR(scan_thread)) {
1746		pr_warn("Failed to create the scan thread\n");
1747		scan_thread = NULL;
1748	}
1749}
1750
1751/*
1752 * Stop the automatic memory scanning thread.
1753 */
1754static void stop_scan_thread(void)
1755{
1756	if (scan_thread) {
1757		kthread_stop(scan_thread);
1758		scan_thread = NULL;
1759	}
1760}
1761
1762/*
1763 * Iterate over the object_list and return the first valid object at or after
1764 * the required position with its use_count incremented. The function triggers
1765 * a memory scanning when the pos argument points to the first position.
1766 */
1767static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1768{
1769	struct kmemleak_object *object;
1770	loff_t n = *pos;
1771	int err;
1772
1773	err = mutex_lock_interruptible(&scan_mutex);
1774	if (err < 0)
1775		return ERR_PTR(err);
1776
1777	rcu_read_lock();
1778	list_for_each_entry_rcu(object, &object_list, object_list) {
1779		if (n-- > 0)
1780			continue;
1781		if (get_object(object))
1782			goto out;
1783	}
1784	object = NULL;
1785out:
1786	return object;
1787}
1788
1789/*
1790 * Return the next object in the object_list. The function decrements the
1791 * use_count of the previous object and increases that of the next one.
1792 */
1793static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1794{
1795	struct kmemleak_object *prev_obj = v;
1796	struct kmemleak_object *next_obj = NULL;
1797	struct kmemleak_object *obj = prev_obj;
1798
1799	++(*pos);
1800
1801	list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
1802		if (get_object(obj)) {
1803			next_obj = obj;
1804			break;
1805		}
1806	}
1807
1808	put_object(prev_obj);
1809	return next_obj;
1810}
1811
1812/*
1813 * Decrement the use_count of the last object required, if any.
1814 */
1815static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1816{
1817	if (!IS_ERR(v)) {
1818		/*
1819		 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1820		 * waiting was interrupted, so only release it if !IS_ERR.
1821		 */
1822		rcu_read_unlock();
1823		mutex_unlock(&scan_mutex);
1824		if (v)
1825			put_object(v);
1826	}
1827}
1828
1829/*
1830 * Print the information for an unreferenced object to the seq file.
1831 */
1832static int kmemleak_seq_show(struct seq_file *seq, void *v)
1833{
1834	struct kmemleak_object *object = v;
1835	unsigned long flags;
1836
1837	raw_spin_lock_irqsave(&object->lock, flags);
1838	if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
1839		print_unreferenced(seq, object);
1840	raw_spin_unlock_irqrestore(&object->lock, flags);
1841	return 0;
1842}
1843
1844static const struct seq_operations kmemleak_seq_ops = {
1845	.start = kmemleak_seq_start,
1846	.next  = kmemleak_seq_next,
1847	.stop  = kmemleak_seq_stop,
1848	.show  = kmemleak_seq_show,
1849};
1850
1851static int kmemleak_open(struct inode *inode, struct file *file)
1852{
1853	return seq_open(file, &kmemleak_seq_ops);
1854}
1855
1856static int dump_str_object_info(const char *str)
1857{
1858	unsigned long flags;
1859	struct kmemleak_object *object;
1860	unsigned long addr;
1861
1862	if (kstrtoul(str, 0, &addr))
1863		return -EINVAL;
1864	object = find_and_get_object(addr, 0);
1865	if (!object) {
1866		pr_info("Unknown object at 0x%08lx\n", addr);
1867		return -EINVAL;
1868	}
1869
1870	raw_spin_lock_irqsave(&object->lock, flags);
1871	dump_object_info(object);
1872	raw_spin_unlock_irqrestore(&object->lock, flags);
1873
1874	put_object(object);
1875	return 0;
1876}
1877
1878/*
1879 * We use grey instead of black to ensure we can do future scans on the same
1880 * objects. If we did not do future scans these black objects could
1881 * potentially contain references to newly allocated objects in the future and
1882 * we'd end up with false positives.
1883 */
1884static void kmemleak_clear(void)
1885{
1886	struct kmemleak_object *object;
1887
1888	rcu_read_lock();
1889	list_for_each_entry_rcu(object, &object_list, object_list) {
1890		raw_spin_lock_irq(&object->lock);
1891		if ((object->flags & OBJECT_REPORTED) &&
1892		    unreferenced_object(object))
1893			__paint_it(object, KMEMLEAK_GREY);
1894		raw_spin_unlock_irq(&object->lock);
1895	}
1896	rcu_read_unlock();
1897
1898	kmemleak_found_leaks = false;
1899}
1900
1901static void __kmemleak_do_cleanup(void);
1902
1903/*
1904 * File write operation to configure kmemleak at run-time. The following
1905 * commands can be written to the /sys/kernel/debug/kmemleak file:
1906 *   off	- disable kmemleak (irreversible)
1907 *   stack=on	- enable the task stacks scanning
1908 *   stack=off	- disable the tasks stacks scanning
1909 *   scan=on	- start the automatic memory scanning thread
1910 *   scan=off	- stop the automatic memory scanning thread
1911 *   scan=...	- set the automatic memory scanning period in seconds (0 to
1912 *		  disable it)
1913 *   scan	- trigger a memory scan
1914 *   clear	- mark all current reported unreferenced kmemleak objects as
1915 *		  grey to ignore printing them, or free all kmemleak objects
1916 *		  if kmemleak has been disabled.
1917 *   dump=...	- dump information about the object found at the given address
1918 */
1919static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1920			      size_t size, loff_t *ppos)
1921{
1922	char buf[64];
1923	int buf_size;
1924	int ret;
1925
1926	buf_size = min(size, (sizeof(buf) - 1));
1927	if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1928		return -EFAULT;
1929	buf[buf_size] = 0;
1930
1931	ret = mutex_lock_interruptible(&scan_mutex);
1932	if (ret < 0)
1933		return ret;
1934
1935	if (strncmp(buf, "clear", 5) == 0) {
1936		if (kmemleak_enabled)
1937			kmemleak_clear();
1938		else
1939			__kmemleak_do_cleanup();
1940		goto out;
1941	}
1942
1943	if (!kmemleak_enabled) {
1944		ret = -EPERM;
1945		goto out;
1946	}
1947
1948	if (strncmp(buf, "off", 3) == 0)
1949		kmemleak_disable();
1950	else if (strncmp(buf, "stack=on", 8) == 0)
1951		kmemleak_stack_scan = 1;
1952	else if (strncmp(buf, "stack=off", 9) == 0)
1953		kmemleak_stack_scan = 0;
1954	else if (strncmp(buf, "scan=on", 7) == 0)
1955		start_scan_thread();
1956	else if (strncmp(buf, "scan=off", 8) == 0)
1957		stop_scan_thread();
1958	else if (strncmp(buf, "scan=", 5) == 0) {
1959		unsigned secs;
1960		unsigned long msecs;
1961
1962		ret = kstrtouint(buf + 5, 0, &secs);
1963		if (ret < 0)
1964			goto out;
1965
1966		msecs = secs * MSEC_PER_SEC;
1967		if (msecs > UINT_MAX)
1968			msecs = UINT_MAX;
1969
1970		stop_scan_thread();
1971		if (msecs) {
1972			WRITE_ONCE(jiffies_scan_wait, msecs_to_jiffies(msecs));
1973			start_scan_thread();
1974		}
1975	} else if (strncmp(buf, "scan", 4) == 0)
1976		kmemleak_scan();
1977	else if (strncmp(buf, "dump=", 5) == 0)
1978		ret = dump_str_object_info(buf + 5);
1979	else
1980		ret = -EINVAL;
1981
1982out:
1983	mutex_unlock(&scan_mutex);
1984	if (ret < 0)
1985		return ret;
1986
1987	/* ignore the rest of the buffer, only one command at a time */
1988	*ppos += size;
1989	return size;
1990}
1991
1992static const struct file_operations kmemleak_fops = {
1993	.owner		= THIS_MODULE,
1994	.open		= kmemleak_open,
1995	.read		= seq_read,
1996	.write		= kmemleak_write,
1997	.llseek		= seq_lseek,
1998	.release	= seq_release,
1999};
2000
2001static void __kmemleak_do_cleanup(void)
2002{
2003	struct kmemleak_object *object, *tmp;
2004
2005	/*
2006	 * Kmemleak has already been disabled, no need for RCU list traversal
2007	 * or kmemleak_lock held.
2008	 */
2009	list_for_each_entry_safe(object, tmp, &object_list, object_list) {
2010		__remove_object(object);
2011		__delete_object(object);
2012	}
2013}
2014
2015/*
2016 * Stop the memory scanning thread and free the kmemleak internal objects if
2017 * no previous scan thread (otherwise, kmemleak may still have some useful
2018 * information on memory leaks).
2019 */
2020static void kmemleak_do_cleanup(struct work_struct *work)
2021{
2022	stop_scan_thread();
2023
2024	mutex_lock(&scan_mutex);
2025	/*
2026	 * Once it is made sure that kmemleak_scan has stopped, it is safe to no
2027	 * longer track object freeing. Ordering of the scan thread stopping and
2028	 * the memory accesses below is guaranteed by the kthread_stop()
2029	 * function.
2030	 */
2031	kmemleak_free_enabled = 0;
2032	mutex_unlock(&scan_mutex);
2033
2034	if (!kmemleak_found_leaks)
2035		__kmemleak_do_cleanup();
2036	else
2037		pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n");
2038}
2039
2040static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
2041
2042/*
2043 * Disable kmemleak. No memory allocation/freeing will be traced once this
2044 * function is called. Disabling kmemleak is an irreversible operation.
2045 */
2046static void kmemleak_disable(void)
2047{
2048	/* atomically check whether it was already invoked */
2049	if (cmpxchg(&kmemleak_error, 0, 1))
2050		return;
2051
2052	/* stop any memory operation tracing */
2053	kmemleak_enabled = 0;
2054
2055	/* check whether it is too early for a kernel thread */
2056	if (kmemleak_initialized)
2057		schedule_work(&cleanup_work);
2058	else
2059		kmemleak_free_enabled = 0;
2060
2061	pr_info("Kernel memory leak detector disabled\n");
2062}
2063
2064/*
2065 * Allow boot-time kmemleak disabling (enabled by default).
2066 */
2067static int __init kmemleak_boot_config(char *str)
2068{
2069	if (!str)
2070		return -EINVAL;
2071	if (strcmp(str, "off") == 0)
2072		kmemleak_disable();
2073	else if (strcmp(str, "on") == 0) {
2074		kmemleak_skip_disable = 1;
2075		stack_depot_want_early_init();
2076	}
2077	else
2078		return -EINVAL;
2079	return 0;
2080}
2081early_param("kmemleak", kmemleak_boot_config);
2082
2083/*
2084 * Kmemleak initialization.
2085 */
2086void __init kmemleak_init(void)
2087{
2088#ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
2089	if (!kmemleak_skip_disable) {
2090		kmemleak_disable();
2091		return;
2092	}
2093#endif
2094
2095	if (kmemleak_error)
2096		return;
2097
2098	jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
2099	jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
2100
2101	object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
2102	scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
2103
2104	/* register the data/bss sections */
2105	create_object((unsigned long)_sdata, _edata - _sdata,
2106		      KMEMLEAK_GREY, GFP_ATOMIC);
2107	create_object((unsigned long)__bss_start, __bss_stop - __bss_start,
2108		      KMEMLEAK_GREY, GFP_ATOMIC);
2109	/* only register .data..ro_after_init if not within .data */
2110	if (&__start_ro_after_init < &_sdata || &__end_ro_after_init > &_edata)
2111		create_object((unsigned long)__start_ro_after_init,
2112			      __end_ro_after_init - __start_ro_after_init,
2113			      KMEMLEAK_GREY, GFP_ATOMIC);
2114}
2115
2116/*
2117 * Late initialization function.
2118 */
2119static int __init kmemleak_late_init(void)
2120{
2121	kmemleak_initialized = 1;
2122
2123	debugfs_create_file("kmemleak", 0644, NULL, NULL, &kmemleak_fops);
2124
2125	if (kmemleak_error) {
2126		/*
2127		 * Some error occurred and kmemleak was disabled. There is a
2128		 * small chance that kmemleak_disable() was called immediately
2129		 * after setting kmemleak_initialized and we may end up with
2130		 * two clean-up threads but serialized by scan_mutex.
2131		 */
2132		schedule_work(&cleanup_work);
2133		return -ENOMEM;
2134	}
2135
2136	if (IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN)) {
2137		mutex_lock(&scan_mutex);
2138		start_scan_thread();
2139		mutex_unlock(&scan_mutex);
2140	}
2141
2142	pr_info("Kernel memory leak detector initialized (mem pool available: %d)\n",
2143		mem_pool_free_count);
2144
2145	return 0;
2146}
2147late_initcall(kmemleak_late_init);
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * mm/kmemleak.c
   4 *
   5 * Copyright (C) 2008 ARM Limited
   6 * Written by Catalin Marinas <catalin.marinas@arm.com>
   7 *
   8 * For more information on the algorithm and kmemleak usage, please see
   9 * Documentation/dev-tools/kmemleak.rst.
  10 *
  11 * Notes on locking
  12 * ----------------
  13 *
  14 * The following locks and mutexes are used by kmemleak:
  15 *
  16 * - kmemleak_lock (raw_spinlock_t): protects the object_list as well as
  17 *   del_state modifications and accesses to the object trees
  18 *   (object_tree_root, object_phys_tree_root, object_percpu_tree_root). The
  19 *   object_list is the main list holding the metadata (struct
  20 *   kmemleak_object) for the allocated memory blocks. The object trees are
  21 *   red black trees used to look-up metadata based on a pointer to the
  22 *   corresponding memory block. The kmemleak_object structures are added to
  23 *   the object_list and the object tree root in the create_object() function
  24 *   called from the kmemleak_alloc{,_phys,_percpu}() callback and removed in
  25 *   delete_object() called from the kmemleak_free{,_phys,_percpu}() callback
 
  26 * - kmemleak_object.lock (raw_spinlock_t): protects a kmemleak_object.
  27 *   Accesses to the metadata (e.g. count) are protected by this lock. Note
  28 *   that some members of this structure may be protected by other means
  29 *   (atomic or kmemleak_lock). This lock is also held when scanning the
  30 *   corresponding memory block to avoid the kernel freeing it via the
  31 *   kmemleak_free() callback. This is less heavyweight than holding a global
  32 *   lock like kmemleak_lock during scanning.
  33 * - scan_mutex (mutex): ensures that only one thread may scan the memory for
  34 *   unreferenced objects at a time. The gray_list contains the objects which
  35 *   are already referenced or marked as false positives and need to be
  36 *   scanned. This list is only modified during a scanning episode when the
  37 *   scan_mutex is held. At the end of a scan, the gray_list is always empty.
  38 *   Note that the kmemleak_object.use_count is incremented when an object is
  39 *   added to the gray_list and therefore cannot be freed. This mutex also
  40 *   prevents multiple users of the "kmemleak" debugfs file together with
  41 *   modifications to the memory scanning parameters including the scan_thread
  42 *   pointer
  43 *
  44 * Locks and mutexes are acquired/nested in the following order:
  45 *
  46 *   scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING)
  47 *
  48 * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex
  49 * regions.
  50 *
  51 * The kmemleak_object structures have a use_count incremented or decremented
  52 * using the get_object()/put_object() functions. When the use_count becomes
  53 * 0, this count can no longer be incremented and put_object() schedules the
  54 * kmemleak_object freeing via an RCU callback. All calls to the get_object()
  55 * function must be protected by rcu_read_lock() to avoid accessing a freed
  56 * structure.
  57 */
  58
  59#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  60
  61#include <linux/init.h>
  62#include <linux/kernel.h>
  63#include <linux/list.h>
  64#include <linux/sched/signal.h>
  65#include <linux/sched/task.h>
  66#include <linux/sched/task_stack.h>
  67#include <linux/jiffies.h>
  68#include <linux/delay.h>
  69#include <linux/export.h>
  70#include <linux/kthread.h>
  71#include <linux/rbtree.h>
  72#include <linux/fs.h>
  73#include <linux/debugfs.h>
  74#include <linux/seq_file.h>
  75#include <linux/cpumask.h>
  76#include <linux/spinlock.h>
  77#include <linux/module.h>
  78#include <linux/mutex.h>
  79#include <linux/rcupdate.h>
  80#include <linux/stacktrace.h>
  81#include <linux/stackdepot.h>
  82#include <linux/cache.h>
  83#include <linux/percpu.h>
  84#include <linux/memblock.h>
  85#include <linux/pfn.h>
  86#include <linux/mmzone.h>
  87#include <linux/slab.h>
  88#include <linux/thread_info.h>
  89#include <linux/err.h>
  90#include <linux/uaccess.h>
  91#include <linux/string.h>
  92#include <linux/nodemask.h>
  93#include <linux/mm.h>
  94#include <linux/workqueue.h>
  95#include <linux/crc32.h>
  96
  97#include <asm/sections.h>
  98#include <asm/processor.h>
  99#include <linux/atomic.h>
 100
 101#include <linux/kasan.h>
 102#include <linux/kfence.h>
 103#include <linux/kmemleak.h>
 104#include <linux/memory_hotplug.h>
 105
 106/*
 107 * Kmemleak configuration and common defines.
 108 */
 109#define MAX_TRACE		16	/* stack trace length */
 110#define MSECS_MIN_AGE		5000	/* minimum object age for reporting */
 111#define SECS_FIRST_SCAN		60	/* delay before the first scan */
 112#define SECS_SCAN_WAIT		600	/* subsequent auto scanning delay */
 113#define MAX_SCAN_SIZE		4096	/* maximum size of a scanned block */
 114
 115#define BYTES_PER_POINTER	sizeof(void *)
 116
 117/* GFP bitmask for kmemleak internal allocations */
 118#define gfp_kmemleak_mask(gfp)	(((gfp) & (GFP_KERNEL | GFP_ATOMIC | \
 119					   __GFP_NOLOCKDEP)) | \
 120				 __GFP_NORETRY | __GFP_NOMEMALLOC | \
 121				 __GFP_NOWARN)
 122
 123/* scanning area inside a memory block */
 124struct kmemleak_scan_area {
 125	struct hlist_node node;
 126	unsigned long start;
 127	size_t size;
 128};
 129
 130#define KMEMLEAK_GREY	0
 131#define KMEMLEAK_BLACK	-1
 132
 133/*
 134 * Structure holding the metadata for each allocated memory block.
 135 * Modifications to such objects should be made while holding the
 136 * object->lock. Insertions or deletions from object_list, gray_list or
 137 * rb_node are already protected by the corresponding locks or mutex (see
 138 * the notes on locking above). These objects are reference-counted
 139 * (use_count) and freed using the RCU mechanism.
 140 */
 141struct kmemleak_object {
 142	raw_spinlock_t lock;
 143	unsigned int flags;		/* object status flags */
 144	struct list_head object_list;
 145	struct list_head gray_list;
 146	struct rb_node rb_node;
 147	struct rcu_head rcu;		/* object_list lockless traversal */
 148	/* object usage count; object freed when use_count == 0 */
 149	atomic_t use_count;
 150	unsigned int del_state;		/* deletion state */
 151	unsigned long pointer;
 152	size_t size;
 153	/* pass surplus references to this pointer */
 154	unsigned long excess_ref;
 155	/* minimum number of a pointers found before it is considered leak */
 156	int min_count;
 157	/* the total number of pointers found pointing to this object */
 158	int count;
 159	/* checksum for detecting modified objects */
 160	u32 checksum;
 161	/* memory ranges to be scanned inside an object (empty for all) */
 162	struct hlist_head area_list;
 163	depot_stack_handle_t trace_handle;
 164	unsigned long jiffies;		/* creation timestamp */
 165	pid_t pid;			/* pid of the current task */
 166	char comm[TASK_COMM_LEN];	/* executable name */
 167};
 168
 169/* flag representing the memory block allocation status */
 170#define OBJECT_ALLOCATED	(1 << 0)
 171/* flag set after the first reporting of an unreference object */
 172#define OBJECT_REPORTED		(1 << 1)
 173/* flag set to not scan the object */
 174#define OBJECT_NO_SCAN		(1 << 2)
 175/* flag set to fully scan the object when scan_area allocation failed */
 176#define OBJECT_FULL_SCAN	(1 << 3)
 177/* flag set for object allocated with physical address */
 178#define OBJECT_PHYS		(1 << 4)
 179/* flag set for per-CPU pointers */
 180#define OBJECT_PERCPU		(1 << 5)
 181
 182/* set when __remove_object() called */
 183#define DELSTATE_REMOVED	(1 << 0)
 184/* set to temporarily prevent deletion from object_list */
 185#define DELSTATE_NO_DELETE	(1 << 1)
 186
 187#define HEX_PREFIX		"    "
 188/* number of bytes to print per line; must be 16 or 32 */
 189#define HEX_ROW_SIZE		16
 190/* number of bytes to print at a time (1, 2, 4, 8) */
 191#define HEX_GROUP_SIZE		1
 192/* include ASCII after the hex output */
 193#define HEX_ASCII		1
 194/* max number of lines to be printed */
 195#define HEX_MAX_LINES		2
 196
 197/* the list of all allocated objects */
 198static LIST_HEAD(object_list);
 199/* the list of gray-colored objects (see color_gray comment below) */
 200static LIST_HEAD(gray_list);
 201/* memory pool allocation */
 202static struct kmemleak_object mem_pool[CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE];
 203static int mem_pool_free_count = ARRAY_SIZE(mem_pool);
 204static LIST_HEAD(mem_pool_free_list);
 205/* search tree for object boundaries */
 206static struct rb_root object_tree_root = RB_ROOT;
 207/* search tree for object (with OBJECT_PHYS flag) boundaries */
 208static struct rb_root object_phys_tree_root = RB_ROOT;
 209/* search tree for object (with OBJECT_PERCPU flag) boundaries */
 210static struct rb_root object_percpu_tree_root = RB_ROOT;
 211/* protecting the access to object_list, object_tree_root (or object_phys_tree_root) */
 212static DEFINE_RAW_SPINLOCK(kmemleak_lock);
 213
 214/* allocation caches for kmemleak internal data */
 215static struct kmem_cache *object_cache;
 216static struct kmem_cache *scan_area_cache;
 217
 218/* set if tracing memory operations is enabled */
 219static int kmemleak_enabled = 1;
 220/* same as above but only for the kmemleak_free() callback */
 221static int kmemleak_free_enabled = 1;
 222/* set in the late_initcall if there were no errors */
 223static int kmemleak_late_initialized;
 224/* set if a kmemleak warning was issued */
 225static int kmemleak_warning;
 226/* set if a fatal kmemleak error has occurred */
 227static int kmemleak_error;
 228
 229/* minimum and maximum address that may be valid pointers */
 230static unsigned long min_addr = ULONG_MAX;
 231static unsigned long max_addr;
 232
 233static struct task_struct *scan_thread;
 234/* used to avoid reporting of recently allocated objects */
 235static unsigned long jiffies_min_age;
 236static unsigned long jiffies_last_scan;
 237/* delay between automatic memory scannings */
 238static unsigned long jiffies_scan_wait;
 239/* enables or disables the task stacks scanning */
 240static int kmemleak_stack_scan = 1;
 241/* protects the memory scanning, parameters and debug/kmemleak file access */
 242static DEFINE_MUTEX(scan_mutex);
 243/* setting kmemleak=on, will set this var, skipping the disable */
 244static int kmemleak_skip_disable;
 245/* If there are leaks that can be reported */
 246static bool kmemleak_found_leaks;
 247
 248static bool kmemleak_verbose;
 249module_param_named(verbose, kmemleak_verbose, bool, 0600);
 250
 251static void kmemleak_disable(void);
 252
 253/*
 254 * Print a warning and dump the stack trace.
 255 */
 256#define kmemleak_warn(x...)	do {		\
 257	pr_warn(x);				\
 258	dump_stack();				\
 259	kmemleak_warning = 1;			\
 260} while (0)
 261
 262/*
 263 * Macro invoked when a serious kmemleak condition occurred and cannot be
 264 * recovered from. Kmemleak will be disabled and further allocation/freeing
 265 * tracing no longer available.
 266 */
 267#define kmemleak_stop(x...)	do {	\
 268	kmemleak_warn(x);		\
 269	kmemleak_disable();		\
 270} while (0)
 271
 272#define warn_or_seq_printf(seq, fmt, ...)	do {	\
 273	if (seq)					\
 274		seq_printf(seq, fmt, ##__VA_ARGS__);	\
 275	else						\
 276		pr_warn(fmt, ##__VA_ARGS__);		\
 277} while (0)
 278
 279static void warn_or_seq_hex_dump(struct seq_file *seq, int prefix_type,
 280				 int rowsize, int groupsize, const void *buf,
 281				 size_t len, bool ascii)
 282{
 283	if (seq)
 284		seq_hex_dump(seq, HEX_PREFIX, prefix_type, rowsize, groupsize,
 285			     buf, len, ascii);
 286	else
 287		print_hex_dump(KERN_WARNING, pr_fmt(HEX_PREFIX), prefix_type,
 288			       rowsize, groupsize, buf, len, ascii);
 289}
 290
 291/*
 292 * Printing of the objects hex dump to the seq file. The number of lines to be
 293 * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
 294 * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
 295 * with the object->lock held.
 296 */
 297static void hex_dump_object(struct seq_file *seq,
 298			    struct kmemleak_object *object)
 299{
 300	const u8 *ptr = (const u8 *)object->pointer;
 301	size_t len;
 302
 303	if (WARN_ON_ONCE(object->flags & (OBJECT_PHYS | OBJECT_PERCPU)))
 304		return;
 305
 306	/* limit the number of lines to HEX_MAX_LINES */
 307	len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE);
 308
 309	warn_or_seq_printf(seq, "  hex dump (first %zu bytes):\n", len);
 310	kasan_disable_current();
 311	warn_or_seq_hex_dump(seq, DUMP_PREFIX_NONE, HEX_ROW_SIZE,
 312			     HEX_GROUP_SIZE, kasan_reset_tag((void *)ptr), len, HEX_ASCII);
 313	kasan_enable_current();
 314}
 315
 316/*
 317 * Object colors, encoded with count and min_count:
 318 * - white - orphan object, not enough references to it (count < min_count)
 319 * - gray  - not orphan, not marked as false positive (min_count == 0) or
 320 *		sufficient references to it (count >= min_count)
 321 * - black - ignore, it doesn't contain references (e.g. text section)
 322 *		(min_count == -1). No function defined for this color.
 323 * Newly created objects don't have any color assigned (object->count == -1)
 324 * before the next memory scan when they become white.
 325 */
 326static bool color_white(const struct kmemleak_object *object)
 327{
 328	return object->count != KMEMLEAK_BLACK &&
 329		object->count < object->min_count;
 330}
 331
 332static bool color_gray(const struct kmemleak_object *object)
 333{
 334	return object->min_count != KMEMLEAK_BLACK &&
 335		object->count >= object->min_count;
 336}
 337
 338/*
 339 * Objects are considered unreferenced only if their color is white, they have
 340 * not be deleted and have a minimum age to avoid false positives caused by
 341 * pointers temporarily stored in CPU registers.
 342 */
 343static bool unreferenced_object(struct kmemleak_object *object)
 344{
 345	return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
 346		time_before_eq(object->jiffies + jiffies_min_age,
 347			       jiffies_last_scan);
 348}
 349
 350/*
 351 * Printing of the unreferenced objects information to the seq file. The
 352 * print_unreferenced function must be called with the object->lock held.
 353 */
 354static void print_unreferenced(struct seq_file *seq,
 355			       struct kmemleak_object *object)
 356{
 357	int i;
 358	unsigned long *entries;
 359	unsigned int nr_entries;
 
 360
 361	nr_entries = stack_depot_fetch(object->trace_handle, &entries);
 362	warn_or_seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
 363			  object->pointer, object->size);
 364	warn_or_seq_printf(seq, "  comm \"%s\", pid %d, jiffies %lu\n",
 365			   object->comm, object->pid, object->jiffies);
 
 366	hex_dump_object(seq, object);
 367	warn_or_seq_printf(seq, "  backtrace (crc %x):\n", object->checksum);
 368
 369	for (i = 0; i < nr_entries; i++) {
 370		void *ptr = (void *)entries[i];
 371		warn_or_seq_printf(seq, "    [<%pK>] %pS\n", ptr, ptr);
 372	}
 373}
 374
 375/*
 376 * Print the kmemleak_object information. This function is used mainly for
 377 * debugging special cases when kmemleak operations. It must be called with
 378 * the object->lock held.
 379 */
 380static void dump_object_info(struct kmemleak_object *object)
 381{
 382	pr_notice("Object 0x%08lx (size %zu):\n",
 383			object->pointer, object->size);
 384	pr_notice("  comm \"%s\", pid %d, jiffies %lu\n",
 385			object->comm, object->pid, object->jiffies);
 386	pr_notice("  min_count = %d\n", object->min_count);
 387	pr_notice("  count = %d\n", object->count);
 388	pr_notice("  flags = 0x%x\n", object->flags);
 389	pr_notice("  checksum = %u\n", object->checksum);
 390	pr_notice("  backtrace:\n");
 391	if (object->trace_handle)
 392		stack_depot_print(object->trace_handle);
 393}
 394
 395static struct rb_root *object_tree(unsigned long objflags)
 396{
 397	if (objflags & OBJECT_PHYS)
 398		return &object_phys_tree_root;
 399	if (objflags & OBJECT_PERCPU)
 400		return &object_percpu_tree_root;
 401	return &object_tree_root;
 402}
 403
 404/*
 405 * Look-up a memory block metadata (kmemleak_object) in the object search
 406 * tree based on a pointer value. If alias is 0, only values pointing to the
 407 * beginning of the memory block are allowed. The kmemleak_lock must be held
 408 * when calling this function.
 409 */
 410static struct kmemleak_object *__lookup_object(unsigned long ptr, int alias,
 411					       unsigned int objflags)
 412{
 413	struct rb_node *rb = object_tree(objflags)->rb_node;
 
 414	unsigned long untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
 415
 416	while (rb) {
 417		struct kmemleak_object *object;
 418		unsigned long untagged_objp;
 419
 420		object = rb_entry(rb, struct kmemleak_object, rb_node);
 421		untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer);
 422
 423		if (untagged_ptr < untagged_objp)
 424			rb = object->rb_node.rb_left;
 425		else if (untagged_objp + object->size <= untagged_ptr)
 426			rb = object->rb_node.rb_right;
 427		else if (untagged_objp == untagged_ptr || alias)
 428			return object;
 429		else {
 430			kmemleak_warn("Found object by alias at 0x%08lx\n",
 431				      ptr);
 432			dump_object_info(object);
 433			break;
 434		}
 435	}
 436	return NULL;
 437}
 438
 439/* Look-up a kmemleak object which allocated with virtual address. */
 440static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
 441{
 442	return __lookup_object(ptr, alias, 0);
 443}
 444
 445/*
 446 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
 447 * that once an object's use_count reached 0, the RCU freeing was already
 448 * registered and the object should no longer be used. This function must be
 449 * called under the protection of rcu_read_lock().
 450 */
 451static int get_object(struct kmemleak_object *object)
 452{
 453	return atomic_inc_not_zero(&object->use_count);
 454}
 455
 456/*
 457 * Memory pool allocation and freeing. kmemleak_lock must not be held.
 458 */
 459static struct kmemleak_object *mem_pool_alloc(gfp_t gfp)
 460{
 461	unsigned long flags;
 462	struct kmemleak_object *object;
 463
 464	/* try the slab allocator first */
 465	if (object_cache) {
 466		object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
 467		if (object)
 468			return object;
 469	}
 470
 471	/* slab allocation failed, try the memory pool */
 472	raw_spin_lock_irqsave(&kmemleak_lock, flags);
 473	object = list_first_entry_or_null(&mem_pool_free_list,
 474					  typeof(*object), object_list);
 475	if (object)
 476		list_del(&object->object_list);
 477	else if (mem_pool_free_count)
 478		object = &mem_pool[--mem_pool_free_count];
 479	else
 480		pr_warn_once("Memory pool empty, consider increasing CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE\n");
 481	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
 482
 483	return object;
 484}
 485
 486/*
 487 * Return the object to either the slab allocator or the memory pool.
 488 */
 489static void mem_pool_free(struct kmemleak_object *object)
 490{
 491	unsigned long flags;
 492
 493	if (object < mem_pool || object >= mem_pool + ARRAY_SIZE(mem_pool)) {
 494		kmem_cache_free(object_cache, object);
 495		return;
 496	}
 497
 498	/* add the object to the memory pool free list */
 499	raw_spin_lock_irqsave(&kmemleak_lock, flags);
 500	list_add(&object->object_list, &mem_pool_free_list);
 501	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
 502}
 503
 504/*
 505 * RCU callback to free a kmemleak_object.
 506 */
 507static void free_object_rcu(struct rcu_head *rcu)
 508{
 509	struct hlist_node *tmp;
 510	struct kmemleak_scan_area *area;
 511	struct kmemleak_object *object =
 512		container_of(rcu, struct kmemleak_object, rcu);
 513
 514	/*
 515	 * Once use_count is 0 (guaranteed by put_object), there is no other
 516	 * code accessing this object, hence no need for locking.
 517	 */
 518	hlist_for_each_entry_safe(area, tmp, &object->area_list, node) {
 519		hlist_del(&area->node);
 520		kmem_cache_free(scan_area_cache, area);
 521	}
 522	mem_pool_free(object);
 523}
 524
 525/*
 526 * Decrement the object use_count. Once the count is 0, free the object using
 527 * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
 528 * delete_object() path, the delayed RCU freeing ensures that there is no
 529 * recursive call to the kernel allocator. Lock-less RCU object_list traversal
 530 * is also possible.
 531 */
 532static void put_object(struct kmemleak_object *object)
 533{
 534	if (!atomic_dec_and_test(&object->use_count))
 535		return;
 536
 537	/* should only get here after delete_object was called */
 538	WARN_ON(object->flags & OBJECT_ALLOCATED);
 539
 540	/*
 541	 * It may be too early for the RCU callbacks, however, there is no
 542	 * concurrent object_list traversal when !object_cache and all objects
 543	 * came from the memory pool. Free the object directly.
 544	 */
 545	if (object_cache)
 546		call_rcu(&object->rcu, free_object_rcu);
 547	else
 548		free_object_rcu(&object->rcu);
 549}
 550
 551/*
 552 * Look up an object in the object search tree and increase its use_count.
 553 */
 554static struct kmemleak_object *__find_and_get_object(unsigned long ptr, int alias,
 555						     unsigned int objflags)
 556{
 557	unsigned long flags;
 558	struct kmemleak_object *object;
 559
 560	rcu_read_lock();
 561	raw_spin_lock_irqsave(&kmemleak_lock, flags);
 562	object = __lookup_object(ptr, alias, objflags);
 563	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
 564
 565	/* check whether the object is still available */
 566	if (object && !get_object(object))
 567		object = NULL;
 568	rcu_read_unlock();
 569
 570	return object;
 571}
 572
 573/* Look up and get an object which allocated with virtual address. */
 574static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
 575{
 576	return __find_and_get_object(ptr, alias, 0);
 577}
 578
 579/*
 580 * Remove an object from its object tree and object_list. Must be called with
 581 * the kmemleak_lock held _if_ kmemleak is still enabled.
 
 582 */
 583static void __remove_object(struct kmemleak_object *object)
 584{
 585	rb_erase(&object->rb_node, object_tree(object->flags));
 586	if (!(object->del_state & DELSTATE_NO_DELETE))
 587		list_del_rcu(&object->object_list);
 588	object->del_state |= DELSTATE_REMOVED;
 589}
 590
 591static struct kmemleak_object *__find_and_remove_object(unsigned long ptr,
 592							int alias,
 593							unsigned int objflags)
 594{
 595	struct kmemleak_object *object;
 596
 597	object = __lookup_object(ptr, alias, objflags);
 598	if (object)
 599		__remove_object(object);
 600
 601	return object;
 602}
 603
 604/*
 605 * Look up an object in the object search tree and remove it from both object
 606 * tree root and object_list. The returned object's use_count should be at
 607 * least 1, as initially set by create_object().
 
 608 */
 609static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias,
 610						      unsigned int objflags)
 611{
 612	unsigned long flags;
 613	struct kmemleak_object *object;
 614
 615	raw_spin_lock_irqsave(&kmemleak_lock, flags);
 616	object = __find_and_remove_object(ptr, alias, objflags);
 
 
 617	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
 618
 619	return object;
 620}
 621
 622static noinline depot_stack_handle_t set_track_prepare(void)
 623{
 624	depot_stack_handle_t trace_handle;
 625	unsigned long entries[MAX_TRACE];
 626	unsigned int nr_entries;
 627
 628	/*
 629	 * Use object_cache to determine whether kmemleak_init() has
 630	 * been invoked. stack_depot_early_init() is called before
 631	 * kmemleak_init() in mm_core_init().
 632	 */
 633	if (!object_cache)
 634		return 0;
 635	nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
 636	trace_handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT);
 637
 638	return trace_handle;
 639}
 640
 641static struct kmemleak_object *__alloc_object(gfp_t gfp)
 
 
 
 
 
 
 642{
 643	struct kmemleak_object *object;
 
 
 
 
 644
 645	object = mem_pool_alloc(gfp);
 646	if (!object) {
 647		pr_warn("Cannot allocate a kmemleak_object structure\n");
 648		kmemleak_disable();
 649		return NULL;
 650	}
 651
 652	INIT_LIST_HEAD(&object->object_list);
 653	INIT_LIST_HEAD(&object->gray_list);
 654	INIT_HLIST_HEAD(&object->area_list);
 655	raw_spin_lock_init(&object->lock);
 656	atomic_set(&object->use_count, 1);
 
 
 
 657	object->excess_ref = 0;
 
 658	object->count = 0;			/* white color initially */
 
 659	object->checksum = 0;
 660	object->del_state = 0;
 661
 662	/* task information */
 663	if (in_hardirq()) {
 664		object->pid = 0;
 665		strncpy(object->comm, "hardirq", sizeof(object->comm));
 666	} else if (in_serving_softirq()) {
 667		object->pid = 0;
 668		strncpy(object->comm, "softirq", sizeof(object->comm));
 669	} else {
 670		object->pid = current->pid;
 671		/*
 672		 * There is a small chance of a race with set_task_comm(),
 673		 * however using get_task_comm() here may cause locking
 674		 * dependency issues with current->alloc_lock. In the worst
 675		 * case, the command line is not correct.
 676		 */
 677		strncpy(object->comm, current->comm, sizeof(object->comm));
 678	}
 679
 680	/* kernel backtrace */
 681	object->trace_handle = set_track_prepare();
 682
 683	return object;
 684}
 685
 686static int __link_object(struct kmemleak_object *object, unsigned long ptr,
 687			 size_t size, int min_count, unsigned int objflags)
 688{
 689
 690	struct kmemleak_object *parent;
 691	struct rb_node **link, *rb_parent;
 692	unsigned long untagged_ptr;
 693	unsigned long untagged_objp;
 694
 695	object->flags = OBJECT_ALLOCATED | objflags;
 696	object->pointer = ptr;
 697	object->size = kfence_ksize((void *)ptr) ?: size;
 698	object->min_count = min_count;
 699	object->jiffies = jiffies;
 700
 701	untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
 702	/*
 703	 * Only update min_addr and max_addr with object
 704	 * storing virtual address.
 705	 */
 706	if (!(objflags & (OBJECT_PHYS | OBJECT_PERCPU))) {
 707		min_addr = min(min_addr, untagged_ptr);
 708		max_addr = max(max_addr, untagged_ptr + size);
 709	}
 710	link = &object_tree(objflags)->rb_node;
 
 711	rb_parent = NULL;
 712	while (*link) {
 713		rb_parent = *link;
 714		parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
 715		untagged_objp = (unsigned long)kasan_reset_tag((void *)parent->pointer);
 716		if (untagged_ptr + size <= untagged_objp)
 717			link = &parent->rb_node.rb_left;
 718		else if (untagged_objp + parent->size <= untagged_ptr)
 719			link = &parent->rb_node.rb_right;
 720		else {
 721			kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n",
 722				      ptr);
 723			/*
 724			 * No need for parent->lock here since "parent" cannot
 725			 * be freed while the kmemleak_lock is held.
 726			 */
 727			dump_object_info(parent);
 728			return -EEXIST;
 
 729		}
 730	}
 731	rb_link_node(&object->rb_node, rb_parent, link);
 732	rb_insert_color(&object->rb_node, object_tree(objflags));
 
 733	list_add_tail_rcu(&object->object_list, &object_list);
 734
 735	return 0;
 736}
 737
 738/*
 739 * Create the metadata (struct kmemleak_object) corresponding to an allocated
 740 * memory block and add it to the object_list and object tree.
 741 */
 742static void __create_object(unsigned long ptr, size_t size,
 743				int min_count, gfp_t gfp, unsigned int objflags)
 744{
 745	struct kmemleak_object *object;
 746	unsigned long flags;
 747	int ret;
 748
 749	object = __alloc_object(gfp);
 750	if (!object)
 751		return;
 752
 753	raw_spin_lock_irqsave(&kmemleak_lock, flags);
 754	ret = __link_object(object, ptr, size, min_count, objflags);
 755	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
 756	if (ret)
 757		mem_pool_free(object);
 758}
 759
 760/* Create kmemleak object which allocated with virtual address. */
 761static void create_object(unsigned long ptr, size_t size,
 762			  int min_count, gfp_t gfp)
 763{
 764	__create_object(ptr, size, min_count, gfp, 0);
 765}
 766
 767/* Create kmemleak object which allocated with physical address. */
 768static void create_object_phys(unsigned long ptr, size_t size,
 769			       int min_count, gfp_t gfp)
 770{
 771	__create_object(ptr, size, min_count, gfp, OBJECT_PHYS);
 772}
 773
 774/* Create kmemleak object corresponding to a per-CPU allocation. */
 775static void create_object_percpu(unsigned long ptr, size_t size,
 776				 int min_count, gfp_t gfp)
 777{
 778	__create_object(ptr, size, min_count, gfp, OBJECT_PERCPU);
 779}
 780
 781/*
 782 * Mark the object as not allocated and schedule RCU freeing via put_object().
 783 */
 784static void __delete_object(struct kmemleak_object *object)
 785{
 786	unsigned long flags;
 787
 788	WARN_ON(!(object->flags & OBJECT_ALLOCATED));
 789	WARN_ON(atomic_read(&object->use_count) < 1);
 790
 791	/*
 792	 * Locking here also ensures that the corresponding memory block
 793	 * cannot be freed when it is being scanned.
 794	 */
 795	raw_spin_lock_irqsave(&object->lock, flags);
 796	object->flags &= ~OBJECT_ALLOCATED;
 797	raw_spin_unlock_irqrestore(&object->lock, flags);
 798	put_object(object);
 799}
 800
 801/*
 802 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
 803 * delete it.
 804 */
 805static void delete_object_full(unsigned long ptr, unsigned int objflags)
 806{
 807	struct kmemleak_object *object;
 808
 809	object = find_and_remove_object(ptr, 0, objflags);
 810	if (!object) {
 811#ifdef DEBUG
 812		kmemleak_warn("Freeing unknown object at 0x%08lx\n",
 813			      ptr);
 814#endif
 815		return;
 816	}
 817	__delete_object(object);
 818}
 819
 820/*
 821 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
 822 * delete it. If the memory block is partially freed, the function may create
 823 * additional metadata for the remaining parts of the block.
 824 */
 825static void delete_object_part(unsigned long ptr, size_t size,
 826			       unsigned int objflags)
 827{
 828	struct kmemleak_object *object, *object_l, *object_r;
 829	unsigned long start, end, flags;
 830
 831	object_l = __alloc_object(GFP_KERNEL);
 832	if (!object_l)
 833		return;
 834
 835	object_r = __alloc_object(GFP_KERNEL);
 836	if (!object_r)
 837		goto out;
 838
 839	raw_spin_lock_irqsave(&kmemleak_lock, flags);
 840	object = __find_and_remove_object(ptr, 1, objflags);
 841	if (!object) {
 842#ifdef DEBUG
 843		kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n",
 844			      ptr, size);
 845#endif
 846		goto unlock;
 847	}
 848
 849	/*
 850	 * Create one or two objects that may result from the memory block
 851	 * split. Note that partial freeing is only done by free_bootmem() and
 852	 * this happens before kmemleak_init() is called.
 853	 */
 854	start = object->pointer;
 855	end = object->pointer + object->size;
 856	if ((ptr > start) &&
 857	    !__link_object(object_l, start, ptr - start,
 858			   object->min_count, objflags))
 859		object_l = NULL;
 860	if ((ptr + size < end) &&
 861	    !__link_object(object_r, ptr + size, end - ptr - size,
 862			   object->min_count, objflags))
 863		object_r = NULL;
 864
 865unlock:
 866	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
 867	if (object)
 868		__delete_object(object);
 869
 870out:
 871	if (object_l)
 872		mem_pool_free(object_l);
 873	if (object_r)
 874		mem_pool_free(object_r);
 875}
 876
 877static void __paint_it(struct kmemleak_object *object, int color)
 878{
 879	object->min_count = color;
 880	if (color == KMEMLEAK_BLACK)
 881		object->flags |= OBJECT_NO_SCAN;
 882}
 883
 884static void paint_it(struct kmemleak_object *object, int color)
 885{
 886	unsigned long flags;
 887
 888	raw_spin_lock_irqsave(&object->lock, flags);
 889	__paint_it(object, color);
 890	raw_spin_unlock_irqrestore(&object->lock, flags);
 891}
 892
 893static void paint_ptr(unsigned long ptr, int color, unsigned int objflags)
 894{
 895	struct kmemleak_object *object;
 896
 897	object = __find_and_get_object(ptr, 0, objflags);
 898	if (!object) {
 899		kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n",
 900			      ptr,
 901			      (color == KMEMLEAK_GREY) ? "Grey" :
 902			      (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
 903		return;
 904	}
 905	paint_it(object, color);
 906	put_object(object);
 907}
 908
 909/*
 910 * Mark an object permanently as gray-colored so that it can no longer be
 911 * reported as a leak. This is used in general to mark a false positive.
 912 */
 913static void make_gray_object(unsigned long ptr)
 914{
 915	paint_ptr(ptr, KMEMLEAK_GREY, 0);
 916}
 917
 918/*
 919 * Mark the object as black-colored so that it is ignored from scans and
 920 * reporting.
 921 */
 922static void make_black_object(unsigned long ptr, unsigned int objflags)
 923{
 924	paint_ptr(ptr, KMEMLEAK_BLACK, objflags);
 925}
 926
 927/*
 928 * Add a scanning area to the object. If at least one such area is added,
 929 * kmemleak will only scan these ranges rather than the whole memory block.
 930 */
 931static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
 932{
 933	unsigned long flags;
 934	struct kmemleak_object *object;
 935	struct kmemleak_scan_area *area = NULL;
 936	unsigned long untagged_ptr;
 937	unsigned long untagged_objp;
 938
 939	object = find_and_get_object(ptr, 1);
 940	if (!object) {
 941		kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
 942			      ptr);
 943		return;
 944	}
 945
 946	untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
 947	untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer);
 948
 949	if (scan_area_cache)
 950		area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
 951
 952	raw_spin_lock_irqsave(&object->lock, flags);
 953	if (!area) {
 954		pr_warn_once("Cannot allocate a scan area, scanning the full object\n");
 955		/* mark the object for full scan to avoid false positives */
 956		object->flags |= OBJECT_FULL_SCAN;
 957		goto out_unlock;
 958	}
 959	if (size == SIZE_MAX) {
 960		size = untagged_objp + object->size - untagged_ptr;
 961	} else if (untagged_ptr + size > untagged_objp + object->size) {
 962		kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
 963		dump_object_info(object);
 964		kmem_cache_free(scan_area_cache, area);
 965		goto out_unlock;
 966	}
 967
 968	INIT_HLIST_NODE(&area->node);
 969	area->start = ptr;
 970	area->size = size;
 971
 972	hlist_add_head(&area->node, &object->area_list);
 973out_unlock:
 974	raw_spin_unlock_irqrestore(&object->lock, flags);
 975	put_object(object);
 976}
 977
 978/*
 979 * Any surplus references (object already gray) to 'ptr' are passed to
 980 * 'excess_ref'. This is used in the vmalloc() case where a pointer to
 981 * vm_struct may be used as an alternative reference to the vmalloc'ed object
 982 * (see free_thread_stack()).
 983 */
 984static void object_set_excess_ref(unsigned long ptr, unsigned long excess_ref)
 985{
 986	unsigned long flags;
 987	struct kmemleak_object *object;
 988
 989	object = find_and_get_object(ptr, 0);
 990	if (!object) {
 991		kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n",
 992			      ptr);
 993		return;
 994	}
 995
 996	raw_spin_lock_irqsave(&object->lock, flags);
 997	object->excess_ref = excess_ref;
 998	raw_spin_unlock_irqrestore(&object->lock, flags);
 999	put_object(object);
1000}
1001
1002/*
1003 * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
1004 * pointer. Such object will not be scanned by kmemleak but references to it
1005 * are searched.
1006 */
1007static void object_no_scan(unsigned long ptr)
1008{
1009	unsigned long flags;
1010	struct kmemleak_object *object;
1011
1012	object = find_and_get_object(ptr, 0);
1013	if (!object) {
1014		kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
1015		return;
1016	}
1017
1018	raw_spin_lock_irqsave(&object->lock, flags);
1019	object->flags |= OBJECT_NO_SCAN;
1020	raw_spin_unlock_irqrestore(&object->lock, flags);
1021	put_object(object);
1022}
1023
1024/**
1025 * kmemleak_alloc - register a newly allocated object
1026 * @ptr:	pointer to beginning of the object
1027 * @size:	size of the object
1028 * @min_count:	minimum number of references to this object. If during memory
1029 *		scanning a number of references less than @min_count is found,
1030 *		the object is reported as a memory leak. If @min_count is 0,
1031 *		the object is never reported as a leak. If @min_count is -1,
1032 *		the object is ignored (not scanned and not reported as a leak)
1033 * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
1034 *
1035 * This function is called from the kernel allocators when a new object
1036 * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.).
1037 */
1038void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
1039			  gfp_t gfp)
1040{
1041	pr_debug("%s(0x%px, %zu, %d)\n", __func__, ptr, size, min_count);
1042
1043	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1044		create_object((unsigned long)ptr, size, min_count, gfp);
1045}
1046EXPORT_SYMBOL_GPL(kmemleak_alloc);
1047
1048/**
1049 * kmemleak_alloc_percpu - register a newly allocated __percpu object
1050 * @ptr:	__percpu pointer to beginning of the object
1051 * @size:	size of the object
1052 * @gfp:	flags used for kmemleak internal memory allocations
1053 *
1054 * This function is called from the kernel percpu allocator when a new object
1055 * (memory block) is allocated (alloc_percpu).
1056 */
1057void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size,
1058				 gfp_t gfp)
1059{
1060	pr_debug("%s(0x%px, %zu)\n", __func__, ptr, size);
 
 
1061
1062	/*
1063	 * Percpu allocations are only scanned and not reported as leaks
1064	 * (min_count is set to 0).
1065	 */
1066	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1067		create_object_percpu((unsigned long)ptr, size, 0, gfp);
 
 
1068}
1069EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
1070
1071/**
1072 * kmemleak_vmalloc - register a newly vmalloc'ed object
1073 * @area:	pointer to vm_struct
1074 * @size:	size of the object
1075 * @gfp:	__vmalloc() flags used for kmemleak internal memory allocations
1076 *
1077 * This function is called from the vmalloc() kernel allocator when a new
1078 * object (memory block) is allocated.
1079 */
1080void __ref kmemleak_vmalloc(const struct vm_struct *area, size_t size, gfp_t gfp)
1081{
1082	pr_debug("%s(0x%px, %zu)\n", __func__, area, size);
1083
1084	/*
1085	 * A min_count = 2 is needed because vm_struct contains a reference to
1086	 * the virtual address of the vmalloc'ed block.
1087	 */
1088	if (kmemleak_enabled) {
1089		create_object((unsigned long)area->addr, size, 2, gfp);
1090		object_set_excess_ref((unsigned long)area,
1091				      (unsigned long)area->addr);
1092	}
1093}
1094EXPORT_SYMBOL_GPL(kmemleak_vmalloc);
1095
1096/**
1097 * kmemleak_free - unregister a previously registered object
1098 * @ptr:	pointer to beginning of the object
1099 *
1100 * This function is called from the kernel allocators when an object (memory
1101 * block) is freed (kmem_cache_free, kfree, vfree etc.).
1102 */
1103void __ref kmemleak_free(const void *ptr)
1104{
1105	pr_debug("%s(0x%px)\n", __func__, ptr);
1106
1107	if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
1108		delete_object_full((unsigned long)ptr, 0);
1109}
1110EXPORT_SYMBOL_GPL(kmemleak_free);
1111
1112/**
1113 * kmemleak_free_part - partially unregister a previously registered object
1114 * @ptr:	pointer to the beginning or inside the object. This also
1115 *		represents the start of the range to be freed
1116 * @size:	size to be unregistered
1117 *
1118 * This function is called when only a part of a memory block is freed
1119 * (usually from the bootmem allocator).
1120 */
1121void __ref kmemleak_free_part(const void *ptr, size_t size)
1122{
1123	pr_debug("%s(0x%px)\n", __func__, ptr);
1124
1125	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1126		delete_object_part((unsigned long)ptr, size, 0);
1127}
1128EXPORT_SYMBOL_GPL(kmemleak_free_part);
1129
1130/**
1131 * kmemleak_free_percpu - unregister a previously registered __percpu object
1132 * @ptr:	__percpu pointer to beginning of the object
1133 *
1134 * This function is called from the kernel percpu allocator when an object
1135 * (memory block) is freed (free_percpu).
1136 */
1137void __ref kmemleak_free_percpu(const void __percpu *ptr)
1138{
1139	pr_debug("%s(0x%px)\n", __func__, ptr);
 
 
1140
1141	if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
1142		delete_object_full((unsigned long)ptr, OBJECT_PERCPU);
 
 
1143}
1144EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
1145
1146/**
1147 * kmemleak_update_trace - update object allocation stack trace
1148 * @ptr:	pointer to beginning of the object
1149 *
1150 * Override the object allocation stack trace for cases where the actual
1151 * allocation place is not always useful.
1152 */
1153void __ref kmemleak_update_trace(const void *ptr)
1154{
1155	struct kmemleak_object *object;
1156	depot_stack_handle_t trace_handle;
1157	unsigned long flags;
1158
1159	pr_debug("%s(0x%px)\n", __func__, ptr);
1160
1161	if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr))
1162		return;
1163
1164	object = find_and_get_object((unsigned long)ptr, 1);
1165	if (!object) {
1166#ifdef DEBUG
1167		kmemleak_warn("Updating stack trace for unknown object at %p\n",
1168			      ptr);
1169#endif
1170		return;
1171	}
1172
1173	trace_handle = set_track_prepare();
1174	raw_spin_lock_irqsave(&object->lock, flags);
1175	object->trace_handle = trace_handle;
1176	raw_spin_unlock_irqrestore(&object->lock, flags);
1177
1178	put_object(object);
1179}
1180EXPORT_SYMBOL(kmemleak_update_trace);
1181
1182/**
1183 * kmemleak_not_leak - mark an allocated object as false positive
1184 * @ptr:	pointer to beginning of the object
1185 *
1186 * Calling this function on an object will cause the memory block to no longer
1187 * be reported as leak and always be scanned.
1188 */
1189void __ref kmemleak_not_leak(const void *ptr)
1190{
1191	pr_debug("%s(0x%px)\n", __func__, ptr);
1192
1193	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1194		make_gray_object((unsigned long)ptr);
1195}
1196EXPORT_SYMBOL(kmemleak_not_leak);
1197
1198/**
1199 * kmemleak_ignore - ignore an allocated object
1200 * @ptr:	pointer to beginning of the object
1201 *
1202 * Calling this function on an object will cause the memory block to be
1203 * ignored (not scanned and not reported as a leak). This is usually done when
1204 * it is known that the corresponding block is not a leak and does not contain
1205 * any references to other allocated memory blocks.
1206 */
1207void __ref kmemleak_ignore(const void *ptr)
1208{
1209	pr_debug("%s(0x%px)\n", __func__, ptr);
1210
1211	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1212		make_black_object((unsigned long)ptr, 0);
1213}
1214EXPORT_SYMBOL(kmemleak_ignore);
1215
1216/**
1217 * kmemleak_scan_area - limit the range to be scanned in an allocated object
1218 * @ptr:	pointer to beginning or inside the object. This also
1219 *		represents the start of the scan area
1220 * @size:	size of the scan area
1221 * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
1222 *
1223 * This function is used when it is known that only certain parts of an object
1224 * contain references to other objects. Kmemleak will only scan these areas
1225 * reducing the number false negatives.
1226 */
1227void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
1228{
1229	pr_debug("%s(0x%px)\n", __func__, ptr);
1230
1231	if (kmemleak_enabled && ptr && size && !IS_ERR(ptr))
1232		add_scan_area((unsigned long)ptr, size, gfp);
1233}
1234EXPORT_SYMBOL(kmemleak_scan_area);
1235
1236/**
1237 * kmemleak_no_scan - do not scan an allocated object
1238 * @ptr:	pointer to beginning of the object
1239 *
1240 * This function notifies kmemleak not to scan the given memory block. Useful
1241 * in situations where it is known that the given object does not contain any
1242 * references to other objects. Kmemleak will not scan such objects reducing
1243 * the number of false negatives.
1244 */
1245void __ref kmemleak_no_scan(const void *ptr)
1246{
1247	pr_debug("%s(0x%px)\n", __func__, ptr);
1248
1249	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1250		object_no_scan((unsigned long)ptr);
1251}
1252EXPORT_SYMBOL(kmemleak_no_scan);
1253
1254/**
1255 * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical
1256 *			 address argument
1257 * @phys:	physical address of the object
1258 * @size:	size of the object
1259 * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
1260 */
1261void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, gfp_t gfp)
1262{
1263	pr_debug("%s(0x%px, %zu)\n", __func__, &phys, size);
1264
1265	if (kmemleak_enabled)
1266		/*
1267		 * Create object with OBJECT_PHYS flag and
1268		 * assume min_count 0.
1269		 */
1270		create_object_phys((unsigned long)phys, size, 0, gfp);
1271}
1272EXPORT_SYMBOL(kmemleak_alloc_phys);
1273
1274/**
1275 * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a
1276 *			     physical address argument
1277 * @phys:	physical address if the beginning or inside an object. This
1278 *		also represents the start of the range to be freed
1279 * @size:	size to be unregistered
1280 */
1281void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size)
1282{
1283	pr_debug("%s(0x%px)\n", __func__, &phys);
1284
1285	if (kmemleak_enabled)
1286		delete_object_part((unsigned long)phys, size, OBJECT_PHYS);
1287}
1288EXPORT_SYMBOL(kmemleak_free_part_phys);
1289
1290/**
1291 * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical
1292 *			  address argument
1293 * @phys:	physical address of the object
1294 */
1295void __ref kmemleak_ignore_phys(phys_addr_t phys)
1296{
1297	pr_debug("%s(0x%px)\n", __func__, &phys);
1298
1299	if (kmemleak_enabled)
1300		make_black_object((unsigned long)phys, OBJECT_PHYS);
1301}
1302EXPORT_SYMBOL(kmemleak_ignore_phys);
1303
1304/*
1305 * Update an object's checksum and return true if it was modified.
1306 */
1307static bool update_checksum(struct kmemleak_object *object)
1308{
1309	u32 old_csum = object->checksum;
1310
1311	if (WARN_ON_ONCE(object->flags & (OBJECT_PHYS | OBJECT_PERCPU)))
1312		return false;
1313
1314	kasan_disable_current();
1315	kcsan_disable_current();
1316	object->checksum = crc32(0, kasan_reset_tag((void *)object->pointer), object->size);
1317	kasan_enable_current();
1318	kcsan_enable_current();
1319
1320	return object->checksum != old_csum;
1321}
1322
1323/*
1324 * Update an object's references. object->lock must be held by the caller.
1325 */
1326static void update_refs(struct kmemleak_object *object)
1327{
1328	if (!color_white(object)) {
1329		/* non-orphan, ignored or new */
1330		return;
1331	}
1332
1333	/*
1334	 * Increase the object's reference count (number of pointers to the
1335	 * memory block). If this count reaches the required minimum, the
1336	 * object's color will become gray and it will be added to the
1337	 * gray_list.
1338	 */
1339	object->count++;
1340	if (color_gray(object)) {
1341		/* put_object() called when removing from gray_list */
1342		WARN_ON(!get_object(object));
1343		list_add_tail(&object->gray_list, &gray_list);
1344	}
1345}
1346
1347/*
1348 * Memory scanning is a long process and it needs to be interruptible. This
1349 * function checks whether such interrupt condition occurred.
1350 */
1351static int scan_should_stop(void)
1352{
1353	if (!kmemleak_enabled)
1354		return 1;
1355
1356	/*
1357	 * This function may be called from either process or kthread context,
1358	 * hence the need to check for both stop conditions.
1359	 */
1360	if (current->mm)
1361		return signal_pending(current);
1362	else
1363		return kthread_should_stop();
1364
1365	return 0;
1366}
1367
1368/*
1369 * Scan a memory block (exclusive range) for valid pointers and add those
1370 * found to the gray list.
1371 */
1372static void scan_block(void *_start, void *_end,
1373		       struct kmemleak_object *scanned)
1374{
1375	unsigned long *ptr;
1376	unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1377	unsigned long *end = _end - (BYTES_PER_POINTER - 1);
1378	unsigned long flags;
1379	unsigned long untagged_ptr;
1380
1381	raw_spin_lock_irqsave(&kmemleak_lock, flags);
1382	for (ptr = start; ptr < end; ptr++) {
1383		struct kmemleak_object *object;
1384		unsigned long pointer;
1385		unsigned long excess_ref;
1386
1387		if (scan_should_stop())
1388			break;
1389
1390		kasan_disable_current();
1391		pointer = *(unsigned long *)kasan_reset_tag((void *)ptr);
1392		kasan_enable_current();
1393
1394		untagged_ptr = (unsigned long)kasan_reset_tag((void *)pointer);
1395		if (untagged_ptr < min_addr || untagged_ptr >= max_addr)
1396			continue;
1397
1398		/*
1399		 * No need for get_object() here since we hold kmemleak_lock.
1400		 * object->use_count cannot be dropped to 0 while the object
1401		 * is still present in object_tree_root and object_list
1402		 * (with updates protected by kmemleak_lock).
1403		 */
1404		object = lookup_object(pointer, 1);
1405		if (!object)
1406			continue;
1407		if (object == scanned)
1408			/* self referenced, ignore */
1409			continue;
1410
1411		/*
1412		 * Avoid the lockdep recursive warning on object->lock being
1413		 * previously acquired in scan_object(). These locks are
1414		 * enclosed by scan_mutex.
1415		 */
1416		raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1417		/* only pass surplus references (object already gray) */
1418		if (color_gray(object)) {
1419			excess_ref = object->excess_ref;
1420			/* no need for update_refs() if object already gray */
1421		} else {
1422			excess_ref = 0;
1423			update_refs(object);
1424		}
1425		raw_spin_unlock(&object->lock);
1426
1427		if (excess_ref) {
1428			object = lookup_object(excess_ref, 0);
1429			if (!object)
1430				continue;
1431			if (object == scanned)
1432				/* circular reference, ignore */
1433				continue;
1434			raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1435			update_refs(object);
1436			raw_spin_unlock(&object->lock);
1437		}
1438	}
1439	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
1440}
1441
1442/*
1443 * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency.
1444 */
1445#ifdef CONFIG_SMP
1446static void scan_large_block(void *start, void *end)
1447{
1448	void *next;
1449
1450	while (start < end) {
1451		next = min(start + MAX_SCAN_SIZE, end);
1452		scan_block(start, next, NULL);
1453		start = next;
1454		cond_resched();
1455	}
1456}
1457#endif
1458
1459/*
1460 * Scan a memory block corresponding to a kmemleak_object. A condition is
1461 * that object->use_count >= 1.
1462 */
1463static void scan_object(struct kmemleak_object *object)
1464{
1465	struct kmemleak_scan_area *area;
1466	unsigned long flags;
 
1467
1468	/*
1469	 * Once the object->lock is acquired, the corresponding memory block
1470	 * cannot be freed (the same lock is acquired in delete_object).
1471	 */
1472	raw_spin_lock_irqsave(&object->lock, flags);
1473	if (object->flags & OBJECT_NO_SCAN)
1474		goto out;
1475	if (!(object->flags & OBJECT_ALLOCATED))
1476		/* already freed object */
1477		goto out;
1478
1479	if (object->flags & OBJECT_PERCPU) {
1480		unsigned int cpu;
1481
1482		for_each_possible_cpu(cpu) {
1483			void *start = per_cpu_ptr((void __percpu *)object->pointer, cpu);
1484			void *end = start + object->size;
1485
1486			scan_block(start, end, object);
1487
1488			raw_spin_unlock_irqrestore(&object->lock, flags);
1489			cond_resched();
1490			raw_spin_lock_irqsave(&object->lock, flags);
1491			if (!(object->flags & OBJECT_ALLOCATED))
1492				break;
1493		}
1494	} else if (hlist_empty(&object->area_list) ||
1495	    object->flags & OBJECT_FULL_SCAN) {
1496		void *start = object->flags & OBJECT_PHYS ?
1497				__va((phys_addr_t)object->pointer) :
1498				(void *)object->pointer;
1499		void *end = start + object->size;
1500		void *next;
1501
1502		do {
1503			next = min(start + MAX_SCAN_SIZE, end);
1504			scan_block(start, next, object);
1505
1506			start = next;
1507			if (start >= end)
1508				break;
1509
1510			raw_spin_unlock_irqrestore(&object->lock, flags);
1511			cond_resched();
1512			raw_spin_lock_irqsave(&object->lock, flags);
1513		} while (object->flags & OBJECT_ALLOCATED);
1514	} else {
1515		hlist_for_each_entry(area, &object->area_list, node)
1516			scan_block((void *)area->start,
1517				   (void *)(area->start + area->size),
1518				   object);
1519	}
1520out:
1521	raw_spin_unlock_irqrestore(&object->lock, flags);
1522}
1523
1524/*
1525 * Scan the objects already referenced (gray objects). More objects will be
1526 * referenced and, if there are no memory leaks, all the objects are scanned.
1527 */
1528static void scan_gray_list(void)
1529{
1530	struct kmemleak_object *object, *tmp;
1531
1532	/*
1533	 * The list traversal is safe for both tail additions and removals
1534	 * from inside the loop. The kmemleak objects cannot be freed from
1535	 * outside the loop because their use_count was incremented.
1536	 */
1537	object = list_entry(gray_list.next, typeof(*object), gray_list);
1538	while (&object->gray_list != &gray_list) {
1539		cond_resched();
1540
1541		/* may add new objects to the list */
1542		if (!scan_should_stop())
1543			scan_object(object);
1544
1545		tmp = list_entry(object->gray_list.next, typeof(*object),
1546				 gray_list);
1547
1548		/* remove the object from the list and release it */
1549		list_del(&object->gray_list);
1550		put_object(object);
1551
1552		object = tmp;
1553	}
1554	WARN_ON(!list_empty(&gray_list));
1555}
1556
1557/*
1558 * Conditionally call resched() in an object iteration loop while making sure
1559 * that the given object won't go away without RCU read lock by performing a
1560 * get_object() if necessaary.
 
 
 
1561 */
1562static void kmemleak_cond_resched(struct kmemleak_object *object)
1563{
1564	if (!get_object(object))
1565		return;	/* Try next object */
1566
1567	raw_spin_lock_irq(&kmemleak_lock);
1568	if (object->del_state & DELSTATE_REMOVED)
1569		goto unlock_put;	/* Object removed */
1570	object->del_state |= DELSTATE_NO_DELETE;
1571	raw_spin_unlock_irq(&kmemleak_lock);
1572
1573	rcu_read_unlock();
1574	cond_resched();
1575	rcu_read_lock();
1576
1577	raw_spin_lock_irq(&kmemleak_lock);
1578	if (object->del_state & DELSTATE_REMOVED)
1579		list_del_rcu(&object->object_list);
1580	object->del_state &= ~DELSTATE_NO_DELETE;
1581unlock_put:
1582	raw_spin_unlock_irq(&kmemleak_lock);
1583	put_object(object);
1584}
1585
1586/*
1587 * Scan data sections and all the referenced memory blocks allocated via the
1588 * kernel's standard allocators. This function must be called with the
1589 * scan_mutex held.
1590 */
1591static void kmemleak_scan(void)
1592{
1593	struct kmemleak_object *object;
1594	struct zone *zone;
1595	int __maybe_unused i;
1596	int new_leaks = 0;
 
1597
1598	jiffies_last_scan = jiffies;
1599
1600	/* prepare the kmemleak_object's */
1601	rcu_read_lock();
1602	list_for_each_entry_rcu(object, &object_list, object_list) {
 
 
1603		raw_spin_lock_irq(&object->lock);
1604#ifdef DEBUG
1605		/*
1606		 * With a few exceptions there should be a maximum of
1607		 * 1 reference to any object at this point.
1608		 */
1609		if (atomic_read(&object->use_count) > 1) {
1610			pr_debug("object->use_count = %d\n",
1611				 atomic_read(&object->use_count));
1612			dump_object_info(object);
1613		}
1614#endif
1615
1616		/* ignore objects outside lowmem (paint them black) */
1617		if ((object->flags & OBJECT_PHYS) &&
1618		   !(object->flags & OBJECT_NO_SCAN)) {
1619			unsigned long phys = object->pointer;
1620
1621			if (PHYS_PFN(phys) < min_low_pfn ||
1622			    PHYS_PFN(phys + object->size) >= max_low_pfn)
1623				__paint_it(object, KMEMLEAK_BLACK);
1624		}
1625
1626		/* reset the reference count (whiten the object) */
1627		object->count = 0;
1628		if (color_gray(object) && get_object(object))
1629			list_add_tail(&object->gray_list, &gray_list);
 
 
1630
1631		raw_spin_unlock_irq(&object->lock);
1632
1633		if (need_resched())
1634			kmemleak_cond_resched(object);
 
 
 
 
1635	}
1636	rcu_read_unlock();
1637
1638#ifdef CONFIG_SMP
1639	/* per-cpu sections scanning */
1640	for_each_possible_cpu(i)
1641		scan_large_block(__per_cpu_start + per_cpu_offset(i),
1642				 __per_cpu_end + per_cpu_offset(i));
1643#endif
1644
1645	/*
1646	 * Struct page scanning for each node.
1647	 */
1648	get_online_mems();
1649	for_each_populated_zone(zone) {
1650		unsigned long start_pfn = zone->zone_start_pfn;
1651		unsigned long end_pfn = zone_end_pfn(zone);
1652		unsigned long pfn;
1653
1654		for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1655			struct page *page = pfn_to_online_page(pfn);
1656
1657			if (!(pfn & 63))
1658				cond_resched();
1659
1660			if (!page)
1661				continue;
1662
1663			/* only scan pages belonging to this zone */
1664			if (page_zone(page) != zone)
1665				continue;
1666			/* only scan if page is in use */
1667			if (page_count(page) == 0)
1668				continue;
1669			scan_block(page, page + 1, NULL);
 
 
1670		}
1671	}
1672	put_online_mems();
1673
1674	/*
1675	 * Scanning the task stacks (may introduce false negatives).
1676	 */
1677	if (kmemleak_stack_scan) {
1678		struct task_struct *p, *g;
1679
1680		rcu_read_lock();
1681		for_each_process_thread(g, p) {
1682			void *stack = try_get_task_stack(p);
1683			if (stack) {
1684				scan_block(stack, stack + THREAD_SIZE, NULL);
1685				put_task_stack(p);
1686			}
1687		}
1688		rcu_read_unlock();
1689	}
1690
1691	/*
1692	 * Scan the objects already referenced from the sections scanned
1693	 * above.
1694	 */
1695	scan_gray_list();
1696
1697	/*
1698	 * Check for new or unreferenced objects modified since the previous
1699	 * scan and color them gray until the next scan.
1700	 */
1701	rcu_read_lock();
 
1702	list_for_each_entry_rcu(object, &object_list, object_list) {
1703		if (need_resched())
1704			kmemleak_cond_resched(object);
 
 
 
 
1705
1706		/*
1707		 * This is racy but we can save the overhead of lock/unlock
1708		 * calls. The missed objects, if any, should be caught in
1709		 * the next scan.
1710		 */
1711		if (!color_white(object))
1712			continue;
1713		raw_spin_lock_irq(&object->lock);
1714		if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1715		    && update_checksum(object) && get_object(object)) {
1716			/* color it gray temporarily */
1717			object->count = object->min_count;
1718			list_add_tail(&object->gray_list, &gray_list);
1719		}
1720		raw_spin_unlock_irq(&object->lock);
1721	}
1722	rcu_read_unlock();
1723
1724	/*
1725	 * Re-scan the gray list for modified unreferenced objects.
1726	 */
1727	scan_gray_list();
1728
1729	/*
1730	 * If scanning was stopped do not report any new unreferenced objects.
1731	 */
1732	if (scan_should_stop())
1733		return;
1734
1735	/*
1736	 * Scanning result reporting.
1737	 */
1738	rcu_read_lock();
 
1739	list_for_each_entry_rcu(object, &object_list, object_list) {
1740		if (need_resched())
1741			kmemleak_cond_resched(object);
 
 
 
 
1742
1743		/*
1744		 * This is racy but we can save the overhead of lock/unlock
1745		 * calls. The missed objects, if any, should be caught in
1746		 * the next scan.
1747		 */
1748		if (!color_white(object))
1749			continue;
1750		raw_spin_lock_irq(&object->lock);
1751		if (unreferenced_object(object) &&
1752		    !(object->flags & OBJECT_REPORTED)) {
1753			object->flags |= OBJECT_REPORTED;
1754
1755			if (kmemleak_verbose)
1756				print_unreferenced(NULL, object);
1757
1758			new_leaks++;
1759		}
1760		raw_spin_unlock_irq(&object->lock);
1761	}
1762	rcu_read_unlock();
1763
1764	if (new_leaks) {
1765		kmemleak_found_leaks = true;
1766
1767		pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n",
1768			new_leaks);
1769	}
1770
1771}
1772
1773/*
1774 * Thread function performing automatic memory scanning. Unreferenced objects
1775 * at the end of a memory scan are reported but only the first time.
1776 */
1777static int kmemleak_scan_thread(void *arg)
1778{
1779	static int first_run = IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN);
1780
1781	pr_info("Automatic memory scanning thread started\n");
1782	set_user_nice(current, 10);
1783
1784	/*
1785	 * Wait before the first scan to allow the system to fully initialize.
1786	 */
1787	if (first_run) {
1788		signed long timeout = msecs_to_jiffies(SECS_FIRST_SCAN * 1000);
1789		first_run = 0;
1790		while (timeout && !kthread_should_stop())
1791			timeout = schedule_timeout_interruptible(timeout);
1792	}
1793
1794	while (!kthread_should_stop()) {
1795		signed long timeout = READ_ONCE(jiffies_scan_wait);
1796
1797		mutex_lock(&scan_mutex);
1798		kmemleak_scan();
1799		mutex_unlock(&scan_mutex);
1800
1801		/* wait before the next scan */
1802		while (timeout && !kthread_should_stop())
1803			timeout = schedule_timeout_interruptible(timeout);
1804	}
1805
1806	pr_info("Automatic memory scanning thread ended\n");
1807
1808	return 0;
1809}
1810
1811/*
1812 * Start the automatic memory scanning thread. This function must be called
1813 * with the scan_mutex held.
1814 */
1815static void start_scan_thread(void)
1816{
1817	if (scan_thread)
1818		return;
1819	scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1820	if (IS_ERR(scan_thread)) {
1821		pr_warn("Failed to create the scan thread\n");
1822		scan_thread = NULL;
1823	}
1824}
1825
1826/*
1827 * Stop the automatic memory scanning thread.
1828 */
1829static void stop_scan_thread(void)
1830{
1831	if (scan_thread) {
1832		kthread_stop(scan_thread);
1833		scan_thread = NULL;
1834	}
1835}
1836
1837/*
1838 * Iterate over the object_list and return the first valid object at or after
1839 * the required position with its use_count incremented. The function triggers
1840 * a memory scanning when the pos argument points to the first position.
1841 */
1842static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1843{
1844	struct kmemleak_object *object;
1845	loff_t n = *pos;
1846	int err;
1847
1848	err = mutex_lock_interruptible(&scan_mutex);
1849	if (err < 0)
1850		return ERR_PTR(err);
1851
1852	rcu_read_lock();
1853	list_for_each_entry_rcu(object, &object_list, object_list) {
1854		if (n-- > 0)
1855			continue;
1856		if (get_object(object))
1857			goto out;
1858	}
1859	object = NULL;
1860out:
1861	return object;
1862}
1863
1864/*
1865 * Return the next object in the object_list. The function decrements the
1866 * use_count of the previous object and increases that of the next one.
1867 */
1868static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1869{
1870	struct kmemleak_object *prev_obj = v;
1871	struct kmemleak_object *next_obj = NULL;
1872	struct kmemleak_object *obj = prev_obj;
1873
1874	++(*pos);
1875
1876	list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
1877		if (get_object(obj)) {
1878			next_obj = obj;
1879			break;
1880		}
1881	}
1882
1883	put_object(prev_obj);
1884	return next_obj;
1885}
1886
1887/*
1888 * Decrement the use_count of the last object required, if any.
1889 */
1890static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1891{
1892	if (!IS_ERR(v)) {
1893		/*
1894		 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1895		 * waiting was interrupted, so only release it if !IS_ERR.
1896		 */
1897		rcu_read_unlock();
1898		mutex_unlock(&scan_mutex);
1899		if (v)
1900			put_object(v);
1901	}
1902}
1903
1904/*
1905 * Print the information for an unreferenced object to the seq file.
1906 */
1907static int kmemleak_seq_show(struct seq_file *seq, void *v)
1908{
1909	struct kmemleak_object *object = v;
1910	unsigned long flags;
1911
1912	raw_spin_lock_irqsave(&object->lock, flags);
1913	if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
1914		print_unreferenced(seq, object);
1915	raw_spin_unlock_irqrestore(&object->lock, flags);
1916	return 0;
1917}
1918
1919static const struct seq_operations kmemleak_seq_ops = {
1920	.start = kmemleak_seq_start,
1921	.next  = kmemleak_seq_next,
1922	.stop  = kmemleak_seq_stop,
1923	.show  = kmemleak_seq_show,
1924};
1925
1926static int kmemleak_open(struct inode *inode, struct file *file)
1927{
1928	return seq_open(file, &kmemleak_seq_ops);
1929}
1930
1931static int dump_str_object_info(const char *str)
1932{
1933	unsigned long flags;
1934	struct kmemleak_object *object;
1935	unsigned long addr;
1936
1937	if (kstrtoul(str, 0, &addr))
1938		return -EINVAL;
1939	object = find_and_get_object(addr, 0);
1940	if (!object) {
1941		pr_info("Unknown object at 0x%08lx\n", addr);
1942		return -EINVAL;
1943	}
1944
1945	raw_spin_lock_irqsave(&object->lock, flags);
1946	dump_object_info(object);
1947	raw_spin_unlock_irqrestore(&object->lock, flags);
1948
1949	put_object(object);
1950	return 0;
1951}
1952
1953/*
1954 * We use grey instead of black to ensure we can do future scans on the same
1955 * objects. If we did not do future scans these black objects could
1956 * potentially contain references to newly allocated objects in the future and
1957 * we'd end up with false positives.
1958 */
1959static void kmemleak_clear(void)
1960{
1961	struct kmemleak_object *object;
1962
1963	rcu_read_lock();
1964	list_for_each_entry_rcu(object, &object_list, object_list) {
1965		raw_spin_lock_irq(&object->lock);
1966		if ((object->flags & OBJECT_REPORTED) &&
1967		    unreferenced_object(object))
1968			__paint_it(object, KMEMLEAK_GREY);
1969		raw_spin_unlock_irq(&object->lock);
1970	}
1971	rcu_read_unlock();
1972
1973	kmemleak_found_leaks = false;
1974}
1975
1976static void __kmemleak_do_cleanup(void);
1977
1978/*
1979 * File write operation to configure kmemleak at run-time. The following
1980 * commands can be written to the /sys/kernel/debug/kmemleak file:
1981 *   off	- disable kmemleak (irreversible)
1982 *   stack=on	- enable the task stacks scanning
1983 *   stack=off	- disable the tasks stacks scanning
1984 *   scan=on	- start the automatic memory scanning thread
1985 *   scan=off	- stop the automatic memory scanning thread
1986 *   scan=...	- set the automatic memory scanning period in seconds (0 to
1987 *		  disable it)
1988 *   scan	- trigger a memory scan
1989 *   clear	- mark all current reported unreferenced kmemleak objects as
1990 *		  grey to ignore printing them, or free all kmemleak objects
1991 *		  if kmemleak has been disabled.
1992 *   dump=...	- dump information about the object found at the given address
1993 */
1994static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1995			      size_t size, loff_t *ppos)
1996{
1997	char buf[64];
1998	int buf_size;
1999	int ret;
2000
2001	buf_size = min(size, (sizeof(buf) - 1));
2002	if (strncpy_from_user(buf, user_buf, buf_size) < 0)
2003		return -EFAULT;
2004	buf[buf_size] = 0;
2005
2006	ret = mutex_lock_interruptible(&scan_mutex);
2007	if (ret < 0)
2008		return ret;
2009
2010	if (strncmp(buf, "clear", 5) == 0) {
2011		if (kmemleak_enabled)
2012			kmemleak_clear();
2013		else
2014			__kmemleak_do_cleanup();
2015		goto out;
2016	}
2017
2018	if (!kmemleak_enabled) {
2019		ret = -EPERM;
2020		goto out;
2021	}
2022
2023	if (strncmp(buf, "off", 3) == 0)
2024		kmemleak_disable();
2025	else if (strncmp(buf, "stack=on", 8) == 0)
2026		kmemleak_stack_scan = 1;
2027	else if (strncmp(buf, "stack=off", 9) == 0)
2028		kmemleak_stack_scan = 0;
2029	else if (strncmp(buf, "scan=on", 7) == 0)
2030		start_scan_thread();
2031	else if (strncmp(buf, "scan=off", 8) == 0)
2032		stop_scan_thread();
2033	else if (strncmp(buf, "scan=", 5) == 0) {
2034		unsigned secs;
2035		unsigned long msecs;
2036
2037		ret = kstrtouint(buf + 5, 0, &secs);
2038		if (ret < 0)
2039			goto out;
2040
2041		msecs = secs * MSEC_PER_SEC;
2042		if (msecs > UINT_MAX)
2043			msecs = UINT_MAX;
2044
2045		stop_scan_thread();
2046		if (msecs) {
2047			WRITE_ONCE(jiffies_scan_wait, msecs_to_jiffies(msecs));
2048			start_scan_thread();
2049		}
2050	} else if (strncmp(buf, "scan", 4) == 0)
2051		kmemleak_scan();
2052	else if (strncmp(buf, "dump=", 5) == 0)
2053		ret = dump_str_object_info(buf + 5);
2054	else
2055		ret = -EINVAL;
2056
2057out:
2058	mutex_unlock(&scan_mutex);
2059	if (ret < 0)
2060		return ret;
2061
2062	/* ignore the rest of the buffer, only one command at a time */
2063	*ppos += size;
2064	return size;
2065}
2066
2067static const struct file_operations kmemleak_fops = {
2068	.owner		= THIS_MODULE,
2069	.open		= kmemleak_open,
2070	.read		= seq_read,
2071	.write		= kmemleak_write,
2072	.llseek		= seq_lseek,
2073	.release	= seq_release,
2074};
2075
2076static void __kmemleak_do_cleanup(void)
2077{
2078	struct kmemleak_object *object, *tmp;
2079
2080	/*
2081	 * Kmemleak has already been disabled, no need for RCU list traversal
2082	 * or kmemleak_lock held.
2083	 */
2084	list_for_each_entry_safe(object, tmp, &object_list, object_list) {
2085		__remove_object(object);
2086		__delete_object(object);
2087	}
2088}
2089
2090/*
2091 * Stop the memory scanning thread and free the kmemleak internal objects if
2092 * no previous scan thread (otherwise, kmemleak may still have some useful
2093 * information on memory leaks).
2094 */
2095static void kmemleak_do_cleanup(struct work_struct *work)
2096{
2097	stop_scan_thread();
2098
2099	mutex_lock(&scan_mutex);
2100	/*
2101	 * Once it is made sure that kmemleak_scan has stopped, it is safe to no
2102	 * longer track object freeing. Ordering of the scan thread stopping and
2103	 * the memory accesses below is guaranteed by the kthread_stop()
2104	 * function.
2105	 */
2106	kmemleak_free_enabled = 0;
2107	mutex_unlock(&scan_mutex);
2108
2109	if (!kmemleak_found_leaks)
2110		__kmemleak_do_cleanup();
2111	else
2112		pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n");
2113}
2114
2115static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
2116
2117/*
2118 * Disable kmemleak. No memory allocation/freeing will be traced once this
2119 * function is called. Disabling kmemleak is an irreversible operation.
2120 */
2121static void kmemleak_disable(void)
2122{
2123	/* atomically check whether it was already invoked */
2124	if (cmpxchg(&kmemleak_error, 0, 1))
2125		return;
2126
2127	/* stop any memory operation tracing */
2128	kmemleak_enabled = 0;
2129
2130	/* check whether it is too early for a kernel thread */
2131	if (kmemleak_late_initialized)
2132		schedule_work(&cleanup_work);
2133	else
2134		kmemleak_free_enabled = 0;
2135
2136	pr_info("Kernel memory leak detector disabled\n");
2137}
2138
2139/*
2140 * Allow boot-time kmemleak disabling (enabled by default).
2141 */
2142static int __init kmemleak_boot_config(char *str)
2143{
2144	if (!str)
2145		return -EINVAL;
2146	if (strcmp(str, "off") == 0)
2147		kmemleak_disable();
2148	else if (strcmp(str, "on") == 0) {
2149		kmemleak_skip_disable = 1;
2150		stack_depot_request_early_init();
2151	}
2152	else
2153		return -EINVAL;
2154	return 0;
2155}
2156early_param("kmemleak", kmemleak_boot_config);
2157
2158/*
2159 * Kmemleak initialization.
2160 */
2161void __init kmemleak_init(void)
2162{
2163#ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
2164	if (!kmemleak_skip_disable) {
2165		kmemleak_disable();
2166		return;
2167	}
2168#endif
2169
2170	if (kmemleak_error)
2171		return;
2172
2173	jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
2174	jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
2175
2176	object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
2177	scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
2178
2179	/* register the data/bss sections */
2180	create_object((unsigned long)_sdata, _edata - _sdata,
2181		      KMEMLEAK_GREY, GFP_ATOMIC);
2182	create_object((unsigned long)__bss_start, __bss_stop - __bss_start,
2183		      KMEMLEAK_GREY, GFP_ATOMIC);
2184	/* only register .data..ro_after_init if not within .data */
2185	if (&__start_ro_after_init < &_sdata || &__end_ro_after_init > &_edata)
2186		create_object((unsigned long)__start_ro_after_init,
2187			      __end_ro_after_init - __start_ro_after_init,
2188			      KMEMLEAK_GREY, GFP_ATOMIC);
2189}
2190
2191/*
2192 * Late initialization function.
2193 */
2194static int __init kmemleak_late_init(void)
2195{
2196	kmemleak_late_initialized = 1;
2197
2198	debugfs_create_file("kmemleak", 0644, NULL, NULL, &kmemleak_fops);
2199
2200	if (kmemleak_error) {
2201		/*
2202		 * Some error occurred and kmemleak was disabled. There is a
2203		 * small chance that kmemleak_disable() was called immediately
2204		 * after setting kmemleak_late_initialized and we may end up with
2205		 * two clean-up threads but serialized by scan_mutex.
2206		 */
2207		schedule_work(&cleanup_work);
2208		return -ENOMEM;
2209	}
2210
2211	if (IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN)) {
2212		mutex_lock(&scan_mutex);
2213		start_scan_thread();
2214		mutex_unlock(&scan_mutex);
2215	}
2216
2217	pr_info("Kernel memory leak detector initialized (mem pool available: %d)\n",
2218		mem_pool_free_count);
2219
2220	return 0;
2221}
2222late_initcall(kmemleak_late_init);