Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * mm/kmemleak.c
4 *
5 * Copyright (C) 2008 ARM Limited
6 * Written by Catalin Marinas <catalin.marinas@arm.com>
7 *
8 * For more information on the algorithm and kmemleak usage, please see
9 * Documentation/dev-tools/kmemleak.rst.
10 *
11 * Notes on locking
12 * ----------------
13 *
14 * The following locks and mutexes are used by kmemleak:
15 *
16 * - kmemleak_lock (raw_spinlock_t): protects the object_list modifications and
17 * accesses to the object_tree_root (or object_phys_tree_root). The
18 * object_list is the main list holding the metadata (struct kmemleak_object)
19 * for the allocated memory blocks. The object_tree_root and object_phys_tree_root
20 * are red black trees used to look-up metadata based on a pointer to the
21 * corresponding memory block. The object_phys_tree_root is for objects
22 * allocated with physical address. The kmemleak_object structures are
23 * added to the object_list and object_tree_root (or object_phys_tree_root)
24 * in the create_object() function called from the kmemleak_alloc() (or
25 * kmemleak_alloc_phys()) callback and removed in delete_object() called from
26 * the kmemleak_free() callback
27 * - kmemleak_object.lock (raw_spinlock_t): protects a kmemleak_object.
28 * Accesses to the metadata (e.g. count) are protected by this lock. Note
29 * that some members of this structure may be protected by other means
30 * (atomic or kmemleak_lock). This lock is also held when scanning the
31 * corresponding memory block to avoid the kernel freeing it via the
32 * kmemleak_free() callback. This is less heavyweight than holding a global
33 * lock like kmemleak_lock during scanning.
34 * - scan_mutex (mutex): ensures that only one thread may scan the memory for
35 * unreferenced objects at a time. The gray_list contains the objects which
36 * are already referenced or marked as false positives and need to be
37 * scanned. This list is only modified during a scanning episode when the
38 * scan_mutex is held. At the end of a scan, the gray_list is always empty.
39 * Note that the kmemleak_object.use_count is incremented when an object is
40 * added to the gray_list and therefore cannot be freed. This mutex also
41 * prevents multiple users of the "kmemleak" debugfs file together with
42 * modifications to the memory scanning parameters including the scan_thread
43 * pointer
44 *
45 * Locks and mutexes are acquired/nested in the following order:
46 *
47 * scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING)
48 *
49 * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex
50 * regions.
51 *
52 * The kmemleak_object structures have a use_count incremented or decremented
53 * using the get_object()/put_object() functions. When the use_count becomes
54 * 0, this count can no longer be incremented and put_object() schedules the
55 * kmemleak_object freeing via an RCU callback. All calls to the get_object()
56 * function must be protected by rcu_read_lock() to avoid accessing a freed
57 * structure.
58 */
59
60#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
61
62#include <linux/init.h>
63#include <linux/kernel.h>
64#include <linux/list.h>
65#include <linux/sched/signal.h>
66#include <linux/sched/task.h>
67#include <linux/sched/task_stack.h>
68#include <linux/jiffies.h>
69#include <linux/delay.h>
70#include <linux/export.h>
71#include <linux/kthread.h>
72#include <linux/rbtree.h>
73#include <linux/fs.h>
74#include <linux/debugfs.h>
75#include <linux/seq_file.h>
76#include <linux/cpumask.h>
77#include <linux/spinlock.h>
78#include <linux/module.h>
79#include <linux/mutex.h>
80#include <linux/rcupdate.h>
81#include <linux/stacktrace.h>
82#include <linux/stackdepot.h>
83#include <linux/cache.h>
84#include <linux/percpu.h>
85#include <linux/memblock.h>
86#include <linux/pfn.h>
87#include <linux/mmzone.h>
88#include <linux/slab.h>
89#include <linux/thread_info.h>
90#include <linux/err.h>
91#include <linux/uaccess.h>
92#include <linux/string.h>
93#include <linux/nodemask.h>
94#include <linux/mm.h>
95#include <linux/workqueue.h>
96#include <linux/crc32.h>
97
98#include <asm/sections.h>
99#include <asm/processor.h>
100#include <linux/atomic.h>
101
102#include <linux/kasan.h>
103#include <linux/kfence.h>
104#include <linux/kmemleak.h>
105#include <linux/memory_hotplug.h>
106
107/*
108 * Kmemleak configuration and common defines.
109 */
110#define MAX_TRACE 16 /* stack trace length */
111#define MSECS_MIN_AGE 5000 /* minimum object age for reporting */
112#define SECS_FIRST_SCAN 60 /* delay before the first scan */
113#define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */
114#define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */
115
116#define BYTES_PER_POINTER sizeof(void *)
117
118/* GFP bitmask for kmemleak internal allocations */
119#define gfp_kmemleak_mask(gfp) (((gfp) & (GFP_KERNEL | GFP_ATOMIC | \
120 __GFP_NOLOCKDEP)) | \
121 __GFP_NORETRY | __GFP_NOMEMALLOC | \
122 __GFP_NOWARN)
123
124/* scanning area inside a memory block */
125struct kmemleak_scan_area {
126 struct hlist_node node;
127 unsigned long start;
128 size_t size;
129};
130
131#define KMEMLEAK_GREY 0
132#define KMEMLEAK_BLACK -1
133
134/*
135 * Structure holding the metadata for each allocated memory block.
136 * Modifications to such objects should be made while holding the
137 * object->lock. Insertions or deletions from object_list, gray_list or
138 * rb_node are already protected by the corresponding locks or mutex (see
139 * the notes on locking above). These objects are reference-counted
140 * (use_count) and freed using the RCU mechanism.
141 */
142struct kmemleak_object {
143 raw_spinlock_t lock;
144 unsigned int flags; /* object status flags */
145 struct list_head object_list;
146 struct list_head gray_list;
147 struct rb_node rb_node;
148 struct rcu_head rcu; /* object_list lockless traversal */
149 /* object usage count; object freed when use_count == 0 */
150 atomic_t use_count;
151 unsigned long pointer;
152 size_t size;
153 /* pass surplus references to this pointer */
154 unsigned long excess_ref;
155 /* minimum number of a pointers found before it is considered leak */
156 int min_count;
157 /* the total number of pointers found pointing to this object */
158 int count;
159 /* checksum for detecting modified objects */
160 u32 checksum;
161 /* memory ranges to be scanned inside an object (empty for all) */
162 struct hlist_head area_list;
163 depot_stack_handle_t trace_handle;
164 unsigned long jiffies; /* creation timestamp */
165 pid_t pid; /* pid of the current task */
166 char comm[TASK_COMM_LEN]; /* executable name */
167};
168
169/* flag representing the memory block allocation status */
170#define OBJECT_ALLOCATED (1 << 0)
171/* flag set after the first reporting of an unreference object */
172#define OBJECT_REPORTED (1 << 1)
173/* flag set to not scan the object */
174#define OBJECT_NO_SCAN (1 << 2)
175/* flag set to fully scan the object when scan_area allocation failed */
176#define OBJECT_FULL_SCAN (1 << 3)
177/* flag set for object allocated with physical address */
178#define OBJECT_PHYS (1 << 4)
179
180#define HEX_PREFIX " "
181/* number of bytes to print per line; must be 16 or 32 */
182#define HEX_ROW_SIZE 16
183/* number of bytes to print at a time (1, 2, 4, 8) */
184#define HEX_GROUP_SIZE 1
185/* include ASCII after the hex output */
186#define HEX_ASCII 1
187/* max number of lines to be printed */
188#define HEX_MAX_LINES 2
189
190/* the list of all allocated objects */
191static LIST_HEAD(object_list);
192/* the list of gray-colored objects (see color_gray comment below) */
193static LIST_HEAD(gray_list);
194/* memory pool allocation */
195static struct kmemleak_object mem_pool[CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE];
196static int mem_pool_free_count = ARRAY_SIZE(mem_pool);
197static LIST_HEAD(mem_pool_free_list);
198/* search tree for object boundaries */
199static struct rb_root object_tree_root = RB_ROOT;
200/* search tree for object (with OBJECT_PHYS flag) boundaries */
201static struct rb_root object_phys_tree_root = RB_ROOT;
202/* protecting the access to object_list, object_tree_root (or object_phys_tree_root) */
203static DEFINE_RAW_SPINLOCK(kmemleak_lock);
204
205/* allocation caches for kmemleak internal data */
206static struct kmem_cache *object_cache;
207static struct kmem_cache *scan_area_cache;
208
209/* set if tracing memory operations is enabled */
210static int kmemleak_enabled = 1;
211/* same as above but only for the kmemleak_free() callback */
212static int kmemleak_free_enabled = 1;
213/* set in the late_initcall if there were no errors */
214static int kmemleak_initialized;
215/* set if a kmemleak warning was issued */
216static int kmemleak_warning;
217/* set if a fatal kmemleak error has occurred */
218static int kmemleak_error;
219
220/* minimum and maximum address that may be valid pointers */
221static unsigned long min_addr = ULONG_MAX;
222static unsigned long max_addr;
223
224static struct task_struct *scan_thread;
225/* used to avoid reporting of recently allocated objects */
226static unsigned long jiffies_min_age;
227static unsigned long jiffies_last_scan;
228/* delay between automatic memory scannings */
229static unsigned long jiffies_scan_wait;
230/* enables or disables the task stacks scanning */
231static int kmemleak_stack_scan = 1;
232/* protects the memory scanning, parameters and debug/kmemleak file access */
233static DEFINE_MUTEX(scan_mutex);
234/* setting kmemleak=on, will set this var, skipping the disable */
235static int kmemleak_skip_disable;
236/* If there are leaks that can be reported */
237static bool kmemleak_found_leaks;
238
239static bool kmemleak_verbose;
240module_param_named(verbose, kmemleak_verbose, bool, 0600);
241
242static void kmemleak_disable(void);
243
244/*
245 * Print a warning and dump the stack trace.
246 */
247#define kmemleak_warn(x...) do { \
248 pr_warn(x); \
249 dump_stack(); \
250 kmemleak_warning = 1; \
251} while (0)
252
253/*
254 * Macro invoked when a serious kmemleak condition occurred and cannot be
255 * recovered from. Kmemleak will be disabled and further allocation/freeing
256 * tracing no longer available.
257 */
258#define kmemleak_stop(x...) do { \
259 kmemleak_warn(x); \
260 kmemleak_disable(); \
261} while (0)
262
263#define warn_or_seq_printf(seq, fmt, ...) do { \
264 if (seq) \
265 seq_printf(seq, fmt, ##__VA_ARGS__); \
266 else \
267 pr_warn(fmt, ##__VA_ARGS__); \
268} while (0)
269
270static void warn_or_seq_hex_dump(struct seq_file *seq, int prefix_type,
271 int rowsize, int groupsize, const void *buf,
272 size_t len, bool ascii)
273{
274 if (seq)
275 seq_hex_dump(seq, HEX_PREFIX, prefix_type, rowsize, groupsize,
276 buf, len, ascii);
277 else
278 print_hex_dump(KERN_WARNING, pr_fmt(HEX_PREFIX), prefix_type,
279 rowsize, groupsize, buf, len, ascii);
280}
281
282/*
283 * Printing of the objects hex dump to the seq file. The number of lines to be
284 * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
285 * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
286 * with the object->lock held.
287 */
288static void hex_dump_object(struct seq_file *seq,
289 struct kmemleak_object *object)
290{
291 const u8 *ptr = (const u8 *)object->pointer;
292 size_t len;
293
294 if (WARN_ON_ONCE(object->flags & OBJECT_PHYS))
295 return;
296
297 /* limit the number of lines to HEX_MAX_LINES */
298 len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE);
299
300 warn_or_seq_printf(seq, " hex dump (first %zu bytes):\n", len);
301 kasan_disable_current();
302 warn_or_seq_hex_dump(seq, DUMP_PREFIX_NONE, HEX_ROW_SIZE,
303 HEX_GROUP_SIZE, kasan_reset_tag((void *)ptr), len, HEX_ASCII);
304 kasan_enable_current();
305}
306
307/*
308 * Object colors, encoded with count and min_count:
309 * - white - orphan object, not enough references to it (count < min_count)
310 * - gray - not orphan, not marked as false positive (min_count == 0) or
311 * sufficient references to it (count >= min_count)
312 * - black - ignore, it doesn't contain references (e.g. text section)
313 * (min_count == -1). No function defined for this color.
314 * Newly created objects don't have any color assigned (object->count == -1)
315 * before the next memory scan when they become white.
316 */
317static bool color_white(const struct kmemleak_object *object)
318{
319 return object->count != KMEMLEAK_BLACK &&
320 object->count < object->min_count;
321}
322
323static bool color_gray(const struct kmemleak_object *object)
324{
325 return object->min_count != KMEMLEAK_BLACK &&
326 object->count >= object->min_count;
327}
328
329/*
330 * Objects are considered unreferenced only if their color is white, they have
331 * not be deleted and have a minimum age to avoid false positives caused by
332 * pointers temporarily stored in CPU registers.
333 */
334static bool unreferenced_object(struct kmemleak_object *object)
335{
336 return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
337 time_before_eq(object->jiffies + jiffies_min_age,
338 jiffies_last_scan);
339}
340
341/*
342 * Printing of the unreferenced objects information to the seq file. The
343 * print_unreferenced function must be called with the object->lock held.
344 */
345static void print_unreferenced(struct seq_file *seq,
346 struct kmemleak_object *object)
347{
348 int i;
349 unsigned long *entries;
350 unsigned int nr_entries;
351 unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
352
353 nr_entries = stack_depot_fetch(object->trace_handle, &entries);
354 warn_or_seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
355 object->pointer, object->size);
356 warn_or_seq_printf(seq, " comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
357 object->comm, object->pid, object->jiffies,
358 msecs_age / 1000, msecs_age % 1000);
359 hex_dump_object(seq, object);
360 warn_or_seq_printf(seq, " backtrace:\n");
361
362 for (i = 0; i < nr_entries; i++) {
363 void *ptr = (void *)entries[i];
364 warn_or_seq_printf(seq, " [<%pK>] %pS\n", ptr, ptr);
365 }
366}
367
368/*
369 * Print the kmemleak_object information. This function is used mainly for
370 * debugging special cases when kmemleak operations. It must be called with
371 * the object->lock held.
372 */
373static void dump_object_info(struct kmemleak_object *object)
374{
375 pr_notice("Object 0x%08lx (size %zu):\n",
376 object->pointer, object->size);
377 pr_notice(" comm \"%s\", pid %d, jiffies %lu\n",
378 object->comm, object->pid, object->jiffies);
379 pr_notice(" min_count = %d\n", object->min_count);
380 pr_notice(" count = %d\n", object->count);
381 pr_notice(" flags = 0x%x\n", object->flags);
382 pr_notice(" checksum = %u\n", object->checksum);
383 pr_notice(" backtrace:\n");
384 if (object->trace_handle)
385 stack_depot_print(object->trace_handle);
386}
387
388/*
389 * Look-up a memory block metadata (kmemleak_object) in the object search
390 * tree based on a pointer value. If alias is 0, only values pointing to the
391 * beginning of the memory block are allowed. The kmemleak_lock must be held
392 * when calling this function.
393 */
394static struct kmemleak_object *__lookup_object(unsigned long ptr, int alias,
395 bool is_phys)
396{
397 struct rb_node *rb = is_phys ? object_phys_tree_root.rb_node :
398 object_tree_root.rb_node;
399 unsigned long untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
400
401 while (rb) {
402 struct kmemleak_object *object;
403 unsigned long untagged_objp;
404
405 object = rb_entry(rb, struct kmemleak_object, rb_node);
406 untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer);
407
408 if (untagged_ptr < untagged_objp)
409 rb = object->rb_node.rb_left;
410 else if (untagged_objp + object->size <= untagged_ptr)
411 rb = object->rb_node.rb_right;
412 else if (untagged_objp == untagged_ptr || alias)
413 return object;
414 else {
415 kmemleak_warn("Found object by alias at 0x%08lx\n",
416 ptr);
417 dump_object_info(object);
418 break;
419 }
420 }
421 return NULL;
422}
423
424/* Look-up a kmemleak object which allocated with virtual address. */
425static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
426{
427 return __lookup_object(ptr, alias, false);
428}
429
430/*
431 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
432 * that once an object's use_count reached 0, the RCU freeing was already
433 * registered and the object should no longer be used. This function must be
434 * called under the protection of rcu_read_lock().
435 */
436static int get_object(struct kmemleak_object *object)
437{
438 return atomic_inc_not_zero(&object->use_count);
439}
440
441/*
442 * Memory pool allocation and freeing. kmemleak_lock must not be held.
443 */
444static struct kmemleak_object *mem_pool_alloc(gfp_t gfp)
445{
446 unsigned long flags;
447 struct kmemleak_object *object;
448
449 /* try the slab allocator first */
450 if (object_cache) {
451 object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
452 if (object)
453 return object;
454 }
455
456 /* slab allocation failed, try the memory pool */
457 raw_spin_lock_irqsave(&kmemleak_lock, flags);
458 object = list_first_entry_or_null(&mem_pool_free_list,
459 typeof(*object), object_list);
460 if (object)
461 list_del(&object->object_list);
462 else if (mem_pool_free_count)
463 object = &mem_pool[--mem_pool_free_count];
464 else
465 pr_warn_once("Memory pool empty, consider increasing CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE\n");
466 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
467
468 return object;
469}
470
471/*
472 * Return the object to either the slab allocator or the memory pool.
473 */
474static void mem_pool_free(struct kmemleak_object *object)
475{
476 unsigned long flags;
477
478 if (object < mem_pool || object >= mem_pool + ARRAY_SIZE(mem_pool)) {
479 kmem_cache_free(object_cache, object);
480 return;
481 }
482
483 /* add the object to the memory pool free list */
484 raw_spin_lock_irqsave(&kmemleak_lock, flags);
485 list_add(&object->object_list, &mem_pool_free_list);
486 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
487}
488
489/*
490 * RCU callback to free a kmemleak_object.
491 */
492static void free_object_rcu(struct rcu_head *rcu)
493{
494 struct hlist_node *tmp;
495 struct kmemleak_scan_area *area;
496 struct kmemleak_object *object =
497 container_of(rcu, struct kmemleak_object, rcu);
498
499 /*
500 * Once use_count is 0 (guaranteed by put_object), there is no other
501 * code accessing this object, hence no need for locking.
502 */
503 hlist_for_each_entry_safe(area, tmp, &object->area_list, node) {
504 hlist_del(&area->node);
505 kmem_cache_free(scan_area_cache, area);
506 }
507 mem_pool_free(object);
508}
509
510/*
511 * Decrement the object use_count. Once the count is 0, free the object using
512 * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
513 * delete_object() path, the delayed RCU freeing ensures that there is no
514 * recursive call to the kernel allocator. Lock-less RCU object_list traversal
515 * is also possible.
516 */
517static void put_object(struct kmemleak_object *object)
518{
519 if (!atomic_dec_and_test(&object->use_count))
520 return;
521
522 /* should only get here after delete_object was called */
523 WARN_ON(object->flags & OBJECT_ALLOCATED);
524
525 /*
526 * It may be too early for the RCU callbacks, however, there is no
527 * concurrent object_list traversal when !object_cache and all objects
528 * came from the memory pool. Free the object directly.
529 */
530 if (object_cache)
531 call_rcu(&object->rcu, free_object_rcu);
532 else
533 free_object_rcu(&object->rcu);
534}
535
536/*
537 * Look up an object in the object search tree and increase its use_count.
538 */
539static struct kmemleak_object *__find_and_get_object(unsigned long ptr, int alias,
540 bool is_phys)
541{
542 unsigned long flags;
543 struct kmemleak_object *object;
544
545 rcu_read_lock();
546 raw_spin_lock_irqsave(&kmemleak_lock, flags);
547 object = __lookup_object(ptr, alias, is_phys);
548 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
549
550 /* check whether the object is still available */
551 if (object && !get_object(object))
552 object = NULL;
553 rcu_read_unlock();
554
555 return object;
556}
557
558/* Look up and get an object which allocated with virtual address. */
559static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
560{
561 return __find_and_get_object(ptr, alias, false);
562}
563
564/*
565 * Remove an object from the object_tree_root (or object_phys_tree_root)
566 * and object_list. Must be called with the kmemleak_lock held _if_ kmemleak
567 * is still enabled.
568 */
569static void __remove_object(struct kmemleak_object *object)
570{
571 rb_erase(&object->rb_node, object->flags & OBJECT_PHYS ?
572 &object_phys_tree_root :
573 &object_tree_root);
574 list_del_rcu(&object->object_list);
575}
576
577/*
578 * Look up an object in the object search tree and remove it from both
579 * object_tree_root (or object_phys_tree_root) and object_list. The
580 * returned object's use_count should be at least 1, as initially set
581 * by create_object().
582 */
583static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias,
584 bool is_phys)
585{
586 unsigned long flags;
587 struct kmemleak_object *object;
588
589 raw_spin_lock_irqsave(&kmemleak_lock, flags);
590 object = __lookup_object(ptr, alias, is_phys);
591 if (object)
592 __remove_object(object);
593 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
594
595 return object;
596}
597
598static noinline depot_stack_handle_t set_track_prepare(void)
599{
600 depot_stack_handle_t trace_handle;
601 unsigned long entries[MAX_TRACE];
602 unsigned int nr_entries;
603
604 if (!kmemleak_initialized)
605 return 0;
606 nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
607 trace_handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT);
608
609 return trace_handle;
610}
611
612/*
613 * Create the metadata (struct kmemleak_object) corresponding to an allocated
614 * memory block and add it to the object_list and object_tree_root (or
615 * object_phys_tree_root).
616 */
617static void __create_object(unsigned long ptr, size_t size,
618 int min_count, gfp_t gfp, bool is_phys)
619{
620 unsigned long flags;
621 struct kmemleak_object *object, *parent;
622 struct rb_node **link, *rb_parent;
623 unsigned long untagged_ptr;
624 unsigned long untagged_objp;
625
626 object = mem_pool_alloc(gfp);
627 if (!object) {
628 pr_warn("Cannot allocate a kmemleak_object structure\n");
629 kmemleak_disable();
630 return;
631 }
632
633 INIT_LIST_HEAD(&object->object_list);
634 INIT_LIST_HEAD(&object->gray_list);
635 INIT_HLIST_HEAD(&object->area_list);
636 raw_spin_lock_init(&object->lock);
637 atomic_set(&object->use_count, 1);
638 object->flags = OBJECT_ALLOCATED | (is_phys ? OBJECT_PHYS : 0);
639 object->pointer = ptr;
640 object->size = kfence_ksize((void *)ptr) ?: size;
641 object->excess_ref = 0;
642 object->min_count = min_count;
643 object->count = 0; /* white color initially */
644 object->jiffies = jiffies;
645 object->checksum = 0;
646
647 /* task information */
648 if (in_hardirq()) {
649 object->pid = 0;
650 strncpy(object->comm, "hardirq", sizeof(object->comm));
651 } else if (in_serving_softirq()) {
652 object->pid = 0;
653 strncpy(object->comm, "softirq", sizeof(object->comm));
654 } else {
655 object->pid = current->pid;
656 /*
657 * There is a small chance of a race with set_task_comm(),
658 * however using get_task_comm() here may cause locking
659 * dependency issues with current->alloc_lock. In the worst
660 * case, the command line is not correct.
661 */
662 strncpy(object->comm, current->comm, sizeof(object->comm));
663 }
664
665 /* kernel backtrace */
666 object->trace_handle = set_track_prepare();
667
668 raw_spin_lock_irqsave(&kmemleak_lock, flags);
669
670 untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
671 /*
672 * Only update min_addr and max_addr with object
673 * storing virtual address.
674 */
675 if (!is_phys) {
676 min_addr = min(min_addr, untagged_ptr);
677 max_addr = max(max_addr, untagged_ptr + size);
678 }
679 link = is_phys ? &object_phys_tree_root.rb_node :
680 &object_tree_root.rb_node;
681 rb_parent = NULL;
682 while (*link) {
683 rb_parent = *link;
684 parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
685 untagged_objp = (unsigned long)kasan_reset_tag((void *)parent->pointer);
686 if (untagged_ptr + size <= untagged_objp)
687 link = &parent->rb_node.rb_left;
688 else if (untagged_objp + parent->size <= untagged_ptr)
689 link = &parent->rb_node.rb_right;
690 else {
691 kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n",
692 ptr);
693 /*
694 * No need for parent->lock here since "parent" cannot
695 * be freed while the kmemleak_lock is held.
696 */
697 dump_object_info(parent);
698 kmem_cache_free(object_cache, object);
699 goto out;
700 }
701 }
702 rb_link_node(&object->rb_node, rb_parent, link);
703 rb_insert_color(&object->rb_node, is_phys ? &object_phys_tree_root :
704 &object_tree_root);
705 list_add_tail_rcu(&object->object_list, &object_list);
706out:
707 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
708}
709
710/* Create kmemleak object which allocated with virtual address. */
711static void create_object(unsigned long ptr, size_t size,
712 int min_count, gfp_t gfp)
713{
714 __create_object(ptr, size, min_count, gfp, false);
715}
716
717/* Create kmemleak object which allocated with physical address. */
718static void create_object_phys(unsigned long ptr, size_t size,
719 int min_count, gfp_t gfp)
720{
721 __create_object(ptr, size, min_count, gfp, true);
722}
723
724/*
725 * Mark the object as not allocated and schedule RCU freeing via put_object().
726 */
727static void __delete_object(struct kmemleak_object *object)
728{
729 unsigned long flags;
730
731 WARN_ON(!(object->flags & OBJECT_ALLOCATED));
732 WARN_ON(atomic_read(&object->use_count) < 1);
733
734 /*
735 * Locking here also ensures that the corresponding memory block
736 * cannot be freed when it is being scanned.
737 */
738 raw_spin_lock_irqsave(&object->lock, flags);
739 object->flags &= ~OBJECT_ALLOCATED;
740 raw_spin_unlock_irqrestore(&object->lock, flags);
741 put_object(object);
742}
743
744/*
745 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
746 * delete it.
747 */
748static void delete_object_full(unsigned long ptr)
749{
750 struct kmemleak_object *object;
751
752 object = find_and_remove_object(ptr, 0, false);
753 if (!object) {
754#ifdef DEBUG
755 kmemleak_warn("Freeing unknown object at 0x%08lx\n",
756 ptr);
757#endif
758 return;
759 }
760 __delete_object(object);
761}
762
763/*
764 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
765 * delete it. If the memory block is partially freed, the function may create
766 * additional metadata for the remaining parts of the block.
767 */
768static void delete_object_part(unsigned long ptr, size_t size, bool is_phys)
769{
770 struct kmemleak_object *object;
771 unsigned long start, end;
772
773 object = find_and_remove_object(ptr, 1, is_phys);
774 if (!object) {
775#ifdef DEBUG
776 kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n",
777 ptr, size);
778#endif
779 return;
780 }
781
782 /*
783 * Create one or two objects that may result from the memory block
784 * split. Note that partial freeing is only done by free_bootmem() and
785 * this happens before kmemleak_init() is called.
786 */
787 start = object->pointer;
788 end = object->pointer + object->size;
789 if (ptr > start)
790 __create_object(start, ptr - start, object->min_count,
791 GFP_KERNEL, is_phys);
792 if (ptr + size < end)
793 __create_object(ptr + size, end - ptr - size, object->min_count,
794 GFP_KERNEL, is_phys);
795
796 __delete_object(object);
797}
798
799static void __paint_it(struct kmemleak_object *object, int color)
800{
801 object->min_count = color;
802 if (color == KMEMLEAK_BLACK)
803 object->flags |= OBJECT_NO_SCAN;
804}
805
806static void paint_it(struct kmemleak_object *object, int color)
807{
808 unsigned long flags;
809
810 raw_spin_lock_irqsave(&object->lock, flags);
811 __paint_it(object, color);
812 raw_spin_unlock_irqrestore(&object->lock, flags);
813}
814
815static void paint_ptr(unsigned long ptr, int color, bool is_phys)
816{
817 struct kmemleak_object *object;
818
819 object = __find_and_get_object(ptr, 0, is_phys);
820 if (!object) {
821 kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n",
822 ptr,
823 (color == KMEMLEAK_GREY) ? "Grey" :
824 (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
825 return;
826 }
827 paint_it(object, color);
828 put_object(object);
829}
830
831/*
832 * Mark an object permanently as gray-colored so that it can no longer be
833 * reported as a leak. This is used in general to mark a false positive.
834 */
835static void make_gray_object(unsigned long ptr)
836{
837 paint_ptr(ptr, KMEMLEAK_GREY, false);
838}
839
840/*
841 * Mark the object as black-colored so that it is ignored from scans and
842 * reporting.
843 */
844static void make_black_object(unsigned long ptr, bool is_phys)
845{
846 paint_ptr(ptr, KMEMLEAK_BLACK, is_phys);
847}
848
849/*
850 * Add a scanning area to the object. If at least one such area is added,
851 * kmemleak will only scan these ranges rather than the whole memory block.
852 */
853static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
854{
855 unsigned long flags;
856 struct kmemleak_object *object;
857 struct kmemleak_scan_area *area = NULL;
858 unsigned long untagged_ptr;
859 unsigned long untagged_objp;
860
861 object = find_and_get_object(ptr, 1);
862 if (!object) {
863 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
864 ptr);
865 return;
866 }
867
868 untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
869 untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer);
870
871 if (scan_area_cache)
872 area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
873
874 raw_spin_lock_irqsave(&object->lock, flags);
875 if (!area) {
876 pr_warn_once("Cannot allocate a scan area, scanning the full object\n");
877 /* mark the object for full scan to avoid false positives */
878 object->flags |= OBJECT_FULL_SCAN;
879 goto out_unlock;
880 }
881 if (size == SIZE_MAX) {
882 size = untagged_objp + object->size - untagged_ptr;
883 } else if (untagged_ptr + size > untagged_objp + object->size) {
884 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
885 dump_object_info(object);
886 kmem_cache_free(scan_area_cache, area);
887 goto out_unlock;
888 }
889
890 INIT_HLIST_NODE(&area->node);
891 area->start = ptr;
892 area->size = size;
893
894 hlist_add_head(&area->node, &object->area_list);
895out_unlock:
896 raw_spin_unlock_irqrestore(&object->lock, flags);
897 put_object(object);
898}
899
900/*
901 * Any surplus references (object already gray) to 'ptr' are passed to
902 * 'excess_ref'. This is used in the vmalloc() case where a pointer to
903 * vm_struct may be used as an alternative reference to the vmalloc'ed object
904 * (see free_thread_stack()).
905 */
906static void object_set_excess_ref(unsigned long ptr, unsigned long excess_ref)
907{
908 unsigned long flags;
909 struct kmemleak_object *object;
910
911 object = find_and_get_object(ptr, 0);
912 if (!object) {
913 kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n",
914 ptr);
915 return;
916 }
917
918 raw_spin_lock_irqsave(&object->lock, flags);
919 object->excess_ref = excess_ref;
920 raw_spin_unlock_irqrestore(&object->lock, flags);
921 put_object(object);
922}
923
924/*
925 * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
926 * pointer. Such object will not be scanned by kmemleak but references to it
927 * are searched.
928 */
929static void object_no_scan(unsigned long ptr)
930{
931 unsigned long flags;
932 struct kmemleak_object *object;
933
934 object = find_and_get_object(ptr, 0);
935 if (!object) {
936 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
937 return;
938 }
939
940 raw_spin_lock_irqsave(&object->lock, flags);
941 object->flags |= OBJECT_NO_SCAN;
942 raw_spin_unlock_irqrestore(&object->lock, flags);
943 put_object(object);
944}
945
946/**
947 * kmemleak_alloc - register a newly allocated object
948 * @ptr: pointer to beginning of the object
949 * @size: size of the object
950 * @min_count: minimum number of references to this object. If during memory
951 * scanning a number of references less than @min_count is found,
952 * the object is reported as a memory leak. If @min_count is 0,
953 * the object is never reported as a leak. If @min_count is -1,
954 * the object is ignored (not scanned and not reported as a leak)
955 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
956 *
957 * This function is called from the kernel allocators when a new object
958 * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.).
959 */
960void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
961 gfp_t gfp)
962{
963 pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
964
965 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
966 create_object((unsigned long)ptr, size, min_count, gfp);
967}
968EXPORT_SYMBOL_GPL(kmemleak_alloc);
969
970/**
971 * kmemleak_alloc_percpu - register a newly allocated __percpu object
972 * @ptr: __percpu pointer to beginning of the object
973 * @size: size of the object
974 * @gfp: flags used for kmemleak internal memory allocations
975 *
976 * This function is called from the kernel percpu allocator when a new object
977 * (memory block) is allocated (alloc_percpu).
978 */
979void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size,
980 gfp_t gfp)
981{
982 unsigned int cpu;
983
984 pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size);
985
986 /*
987 * Percpu allocations are only scanned and not reported as leaks
988 * (min_count is set to 0).
989 */
990 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
991 for_each_possible_cpu(cpu)
992 create_object((unsigned long)per_cpu_ptr(ptr, cpu),
993 size, 0, gfp);
994}
995EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
996
997/**
998 * kmemleak_vmalloc - register a newly vmalloc'ed object
999 * @area: pointer to vm_struct
1000 * @size: size of the object
1001 * @gfp: __vmalloc() flags used for kmemleak internal memory allocations
1002 *
1003 * This function is called from the vmalloc() kernel allocator when a new
1004 * object (memory block) is allocated.
1005 */
1006void __ref kmemleak_vmalloc(const struct vm_struct *area, size_t size, gfp_t gfp)
1007{
1008 pr_debug("%s(0x%p, %zu)\n", __func__, area, size);
1009
1010 /*
1011 * A min_count = 2 is needed because vm_struct contains a reference to
1012 * the virtual address of the vmalloc'ed block.
1013 */
1014 if (kmemleak_enabled) {
1015 create_object((unsigned long)area->addr, size, 2, gfp);
1016 object_set_excess_ref((unsigned long)area,
1017 (unsigned long)area->addr);
1018 }
1019}
1020EXPORT_SYMBOL_GPL(kmemleak_vmalloc);
1021
1022/**
1023 * kmemleak_free - unregister a previously registered object
1024 * @ptr: pointer to beginning of the object
1025 *
1026 * This function is called from the kernel allocators when an object (memory
1027 * block) is freed (kmem_cache_free, kfree, vfree etc.).
1028 */
1029void __ref kmemleak_free(const void *ptr)
1030{
1031 pr_debug("%s(0x%p)\n", __func__, ptr);
1032
1033 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
1034 delete_object_full((unsigned long)ptr);
1035}
1036EXPORT_SYMBOL_GPL(kmemleak_free);
1037
1038/**
1039 * kmemleak_free_part - partially unregister a previously registered object
1040 * @ptr: pointer to the beginning or inside the object. This also
1041 * represents the start of the range to be freed
1042 * @size: size to be unregistered
1043 *
1044 * This function is called when only a part of a memory block is freed
1045 * (usually from the bootmem allocator).
1046 */
1047void __ref kmemleak_free_part(const void *ptr, size_t size)
1048{
1049 pr_debug("%s(0x%p)\n", __func__, ptr);
1050
1051 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1052 delete_object_part((unsigned long)ptr, size, false);
1053}
1054EXPORT_SYMBOL_GPL(kmemleak_free_part);
1055
1056/**
1057 * kmemleak_free_percpu - unregister a previously registered __percpu object
1058 * @ptr: __percpu pointer to beginning of the object
1059 *
1060 * This function is called from the kernel percpu allocator when an object
1061 * (memory block) is freed (free_percpu).
1062 */
1063void __ref kmemleak_free_percpu(const void __percpu *ptr)
1064{
1065 unsigned int cpu;
1066
1067 pr_debug("%s(0x%p)\n", __func__, ptr);
1068
1069 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
1070 for_each_possible_cpu(cpu)
1071 delete_object_full((unsigned long)per_cpu_ptr(ptr,
1072 cpu));
1073}
1074EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
1075
1076/**
1077 * kmemleak_update_trace - update object allocation stack trace
1078 * @ptr: pointer to beginning of the object
1079 *
1080 * Override the object allocation stack trace for cases where the actual
1081 * allocation place is not always useful.
1082 */
1083void __ref kmemleak_update_trace(const void *ptr)
1084{
1085 struct kmemleak_object *object;
1086 unsigned long flags;
1087
1088 pr_debug("%s(0x%p)\n", __func__, ptr);
1089
1090 if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr))
1091 return;
1092
1093 object = find_and_get_object((unsigned long)ptr, 1);
1094 if (!object) {
1095#ifdef DEBUG
1096 kmemleak_warn("Updating stack trace for unknown object at %p\n",
1097 ptr);
1098#endif
1099 return;
1100 }
1101
1102 raw_spin_lock_irqsave(&object->lock, flags);
1103 object->trace_handle = set_track_prepare();
1104 raw_spin_unlock_irqrestore(&object->lock, flags);
1105
1106 put_object(object);
1107}
1108EXPORT_SYMBOL(kmemleak_update_trace);
1109
1110/**
1111 * kmemleak_not_leak - mark an allocated object as false positive
1112 * @ptr: pointer to beginning of the object
1113 *
1114 * Calling this function on an object will cause the memory block to no longer
1115 * be reported as leak and always be scanned.
1116 */
1117void __ref kmemleak_not_leak(const void *ptr)
1118{
1119 pr_debug("%s(0x%p)\n", __func__, ptr);
1120
1121 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1122 make_gray_object((unsigned long)ptr);
1123}
1124EXPORT_SYMBOL(kmemleak_not_leak);
1125
1126/**
1127 * kmemleak_ignore - ignore an allocated object
1128 * @ptr: pointer to beginning of the object
1129 *
1130 * Calling this function on an object will cause the memory block to be
1131 * ignored (not scanned and not reported as a leak). This is usually done when
1132 * it is known that the corresponding block is not a leak and does not contain
1133 * any references to other allocated memory blocks.
1134 */
1135void __ref kmemleak_ignore(const void *ptr)
1136{
1137 pr_debug("%s(0x%p)\n", __func__, ptr);
1138
1139 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1140 make_black_object((unsigned long)ptr, false);
1141}
1142EXPORT_SYMBOL(kmemleak_ignore);
1143
1144/**
1145 * kmemleak_scan_area - limit the range to be scanned in an allocated object
1146 * @ptr: pointer to beginning or inside the object. This also
1147 * represents the start of the scan area
1148 * @size: size of the scan area
1149 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
1150 *
1151 * This function is used when it is known that only certain parts of an object
1152 * contain references to other objects. Kmemleak will only scan these areas
1153 * reducing the number false negatives.
1154 */
1155void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
1156{
1157 pr_debug("%s(0x%p)\n", __func__, ptr);
1158
1159 if (kmemleak_enabled && ptr && size && !IS_ERR(ptr))
1160 add_scan_area((unsigned long)ptr, size, gfp);
1161}
1162EXPORT_SYMBOL(kmemleak_scan_area);
1163
1164/**
1165 * kmemleak_no_scan - do not scan an allocated object
1166 * @ptr: pointer to beginning of the object
1167 *
1168 * This function notifies kmemleak not to scan the given memory block. Useful
1169 * in situations where it is known that the given object does not contain any
1170 * references to other objects. Kmemleak will not scan such objects reducing
1171 * the number of false negatives.
1172 */
1173void __ref kmemleak_no_scan(const void *ptr)
1174{
1175 pr_debug("%s(0x%p)\n", __func__, ptr);
1176
1177 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1178 object_no_scan((unsigned long)ptr);
1179}
1180EXPORT_SYMBOL(kmemleak_no_scan);
1181
1182/**
1183 * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical
1184 * address argument
1185 * @phys: physical address of the object
1186 * @size: size of the object
1187 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
1188 */
1189void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, gfp_t gfp)
1190{
1191 pr_debug("%s(0x%pa, %zu)\n", __func__, &phys, size);
1192
1193 if (kmemleak_enabled)
1194 /*
1195 * Create object with OBJECT_PHYS flag and
1196 * assume min_count 0.
1197 */
1198 create_object_phys((unsigned long)phys, size, 0, gfp);
1199}
1200EXPORT_SYMBOL(kmemleak_alloc_phys);
1201
1202/**
1203 * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a
1204 * physical address argument
1205 * @phys: physical address if the beginning or inside an object. This
1206 * also represents the start of the range to be freed
1207 * @size: size to be unregistered
1208 */
1209void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size)
1210{
1211 pr_debug("%s(0x%pa)\n", __func__, &phys);
1212
1213 if (kmemleak_enabled)
1214 delete_object_part((unsigned long)phys, size, true);
1215}
1216EXPORT_SYMBOL(kmemleak_free_part_phys);
1217
1218/**
1219 * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical
1220 * address argument
1221 * @phys: physical address of the object
1222 */
1223void __ref kmemleak_ignore_phys(phys_addr_t phys)
1224{
1225 pr_debug("%s(0x%pa)\n", __func__, &phys);
1226
1227 if (kmemleak_enabled)
1228 make_black_object((unsigned long)phys, true);
1229}
1230EXPORT_SYMBOL(kmemleak_ignore_phys);
1231
1232/*
1233 * Update an object's checksum and return true if it was modified.
1234 */
1235static bool update_checksum(struct kmemleak_object *object)
1236{
1237 u32 old_csum = object->checksum;
1238
1239 if (WARN_ON_ONCE(object->flags & OBJECT_PHYS))
1240 return false;
1241
1242 kasan_disable_current();
1243 kcsan_disable_current();
1244 object->checksum = crc32(0, kasan_reset_tag((void *)object->pointer), object->size);
1245 kasan_enable_current();
1246 kcsan_enable_current();
1247
1248 return object->checksum != old_csum;
1249}
1250
1251/*
1252 * Update an object's references. object->lock must be held by the caller.
1253 */
1254static void update_refs(struct kmemleak_object *object)
1255{
1256 if (!color_white(object)) {
1257 /* non-orphan, ignored or new */
1258 return;
1259 }
1260
1261 /*
1262 * Increase the object's reference count (number of pointers to the
1263 * memory block). If this count reaches the required minimum, the
1264 * object's color will become gray and it will be added to the
1265 * gray_list.
1266 */
1267 object->count++;
1268 if (color_gray(object)) {
1269 /* put_object() called when removing from gray_list */
1270 WARN_ON(!get_object(object));
1271 list_add_tail(&object->gray_list, &gray_list);
1272 }
1273}
1274
1275/*
1276 * Memory scanning is a long process and it needs to be interruptible. This
1277 * function checks whether such interrupt condition occurred.
1278 */
1279static int scan_should_stop(void)
1280{
1281 if (!kmemleak_enabled)
1282 return 1;
1283
1284 /*
1285 * This function may be called from either process or kthread context,
1286 * hence the need to check for both stop conditions.
1287 */
1288 if (current->mm)
1289 return signal_pending(current);
1290 else
1291 return kthread_should_stop();
1292
1293 return 0;
1294}
1295
1296/*
1297 * Scan a memory block (exclusive range) for valid pointers and add those
1298 * found to the gray list.
1299 */
1300static void scan_block(void *_start, void *_end,
1301 struct kmemleak_object *scanned)
1302{
1303 unsigned long *ptr;
1304 unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1305 unsigned long *end = _end - (BYTES_PER_POINTER - 1);
1306 unsigned long flags;
1307 unsigned long untagged_ptr;
1308
1309 raw_spin_lock_irqsave(&kmemleak_lock, flags);
1310 for (ptr = start; ptr < end; ptr++) {
1311 struct kmemleak_object *object;
1312 unsigned long pointer;
1313 unsigned long excess_ref;
1314
1315 if (scan_should_stop())
1316 break;
1317
1318 kasan_disable_current();
1319 pointer = *(unsigned long *)kasan_reset_tag((void *)ptr);
1320 kasan_enable_current();
1321
1322 untagged_ptr = (unsigned long)kasan_reset_tag((void *)pointer);
1323 if (untagged_ptr < min_addr || untagged_ptr >= max_addr)
1324 continue;
1325
1326 /*
1327 * No need for get_object() here since we hold kmemleak_lock.
1328 * object->use_count cannot be dropped to 0 while the object
1329 * is still present in object_tree_root and object_list
1330 * (with updates protected by kmemleak_lock).
1331 */
1332 object = lookup_object(pointer, 1);
1333 if (!object)
1334 continue;
1335 if (object == scanned)
1336 /* self referenced, ignore */
1337 continue;
1338
1339 /*
1340 * Avoid the lockdep recursive warning on object->lock being
1341 * previously acquired in scan_object(). These locks are
1342 * enclosed by scan_mutex.
1343 */
1344 raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1345 /* only pass surplus references (object already gray) */
1346 if (color_gray(object)) {
1347 excess_ref = object->excess_ref;
1348 /* no need for update_refs() if object already gray */
1349 } else {
1350 excess_ref = 0;
1351 update_refs(object);
1352 }
1353 raw_spin_unlock(&object->lock);
1354
1355 if (excess_ref) {
1356 object = lookup_object(excess_ref, 0);
1357 if (!object)
1358 continue;
1359 if (object == scanned)
1360 /* circular reference, ignore */
1361 continue;
1362 raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1363 update_refs(object);
1364 raw_spin_unlock(&object->lock);
1365 }
1366 }
1367 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
1368}
1369
1370/*
1371 * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency.
1372 */
1373#ifdef CONFIG_SMP
1374static void scan_large_block(void *start, void *end)
1375{
1376 void *next;
1377
1378 while (start < end) {
1379 next = min(start + MAX_SCAN_SIZE, end);
1380 scan_block(start, next, NULL);
1381 start = next;
1382 cond_resched();
1383 }
1384}
1385#endif
1386
1387/*
1388 * Scan a memory block corresponding to a kmemleak_object. A condition is
1389 * that object->use_count >= 1.
1390 */
1391static void scan_object(struct kmemleak_object *object)
1392{
1393 struct kmemleak_scan_area *area;
1394 unsigned long flags;
1395 void *obj_ptr;
1396
1397 /*
1398 * Once the object->lock is acquired, the corresponding memory block
1399 * cannot be freed (the same lock is acquired in delete_object).
1400 */
1401 raw_spin_lock_irqsave(&object->lock, flags);
1402 if (object->flags & OBJECT_NO_SCAN)
1403 goto out;
1404 if (!(object->flags & OBJECT_ALLOCATED))
1405 /* already freed object */
1406 goto out;
1407
1408 obj_ptr = object->flags & OBJECT_PHYS ?
1409 __va((phys_addr_t)object->pointer) :
1410 (void *)object->pointer;
1411
1412 if (hlist_empty(&object->area_list) ||
1413 object->flags & OBJECT_FULL_SCAN) {
1414 void *start = obj_ptr;
1415 void *end = obj_ptr + object->size;
1416 void *next;
1417
1418 do {
1419 next = min(start + MAX_SCAN_SIZE, end);
1420 scan_block(start, next, object);
1421
1422 start = next;
1423 if (start >= end)
1424 break;
1425
1426 raw_spin_unlock_irqrestore(&object->lock, flags);
1427 cond_resched();
1428 raw_spin_lock_irqsave(&object->lock, flags);
1429 } while (object->flags & OBJECT_ALLOCATED);
1430 } else
1431 hlist_for_each_entry(area, &object->area_list, node)
1432 scan_block((void *)area->start,
1433 (void *)(area->start + area->size),
1434 object);
1435out:
1436 raw_spin_unlock_irqrestore(&object->lock, flags);
1437}
1438
1439/*
1440 * Scan the objects already referenced (gray objects). More objects will be
1441 * referenced and, if there are no memory leaks, all the objects are scanned.
1442 */
1443static void scan_gray_list(void)
1444{
1445 struct kmemleak_object *object, *tmp;
1446
1447 /*
1448 * The list traversal is safe for both tail additions and removals
1449 * from inside the loop. The kmemleak objects cannot be freed from
1450 * outside the loop because their use_count was incremented.
1451 */
1452 object = list_entry(gray_list.next, typeof(*object), gray_list);
1453 while (&object->gray_list != &gray_list) {
1454 cond_resched();
1455
1456 /* may add new objects to the list */
1457 if (!scan_should_stop())
1458 scan_object(object);
1459
1460 tmp = list_entry(object->gray_list.next, typeof(*object),
1461 gray_list);
1462
1463 /* remove the object from the list and release it */
1464 list_del(&object->gray_list);
1465 put_object(object);
1466
1467 object = tmp;
1468 }
1469 WARN_ON(!list_empty(&gray_list));
1470}
1471
1472/*
1473 * Conditionally call resched() in an object iteration loop while making sure
1474 * that the given object won't go away without RCU read lock by performing a
1475 * get_object() if !pinned.
1476 *
1477 * Return: false if can't do a cond_resched() due to get_object() failure
1478 * true otherwise
1479 */
1480static bool kmemleak_cond_resched(struct kmemleak_object *object, bool pinned)
1481{
1482 if (!pinned && !get_object(object))
1483 return false;
1484
1485 rcu_read_unlock();
1486 cond_resched();
1487 rcu_read_lock();
1488 if (!pinned)
1489 put_object(object);
1490 return true;
1491}
1492
1493/*
1494 * Scan data sections and all the referenced memory blocks allocated via the
1495 * kernel's standard allocators. This function must be called with the
1496 * scan_mutex held.
1497 */
1498static void kmemleak_scan(void)
1499{
1500 struct kmemleak_object *object;
1501 struct zone *zone;
1502 int __maybe_unused i;
1503 int new_leaks = 0;
1504 int loop_cnt = 0;
1505
1506 jiffies_last_scan = jiffies;
1507
1508 /* prepare the kmemleak_object's */
1509 rcu_read_lock();
1510 list_for_each_entry_rcu(object, &object_list, object_list) {
1511 bool obj_pinned = false;
1512
1513 raw_spin_lock_irq(&object->lock);
1514#ifdef DEBUG
1515 /*
1516 * With a few exceptions there should be a maximum of
1517 * 1 reference to any object at this point.
1518 */
1519 if (atomic_read(&object->use_count) > 1) {
1520 pr_debug("object->use_count = %d\n",
1521 atomic_read(&object->use_count));
1522 dump_object_info(object);
1523 }
1524#endif
1525
1526 /* ignore objects outside lowmem (paint them black) */
1527 if ((object->flags & OBJECT_PHYS) &&
1528 !(object->flags & OBJECT_NO_SCAN)) {
1529 unsigned long phys = object->pointer;
1530
1531 if (PHYS_PFN(phys) < min_low_pfn ||
1532 PHYS_PFN(phys + object->size) >= max_low_pfn)
1533 __paint_it(object, KMEMLEAK_BLACK);
1534 }
1535
1536 /* reset the reference count (whiten the object) */
1537 object->count = 0;
1538 if (color_gray(object) && get_object(object)) {
1539 list_add_tail(&object->gray_list, &gray_list);
1540 obj_pinned = true;
1541 }
1542
1543 raw_spin_unlock_irq(&object->lock);
1544
1545 /*
1546 * Do a cond_resched() every 64k objects to avoid soft lockup.
1547 */
1548 if (!(++loop_cnt & 0xffff) &&
1549 !kmemleak_cond_resched(object, obj_pinned))
1550 loop_cnt--; /* Try again on next object */
1551 }
1552 rcu_read_unlock();
1553
1554#ifdef CONFIG_SMP
1555 /* per-cpu sections scanning */
1556 for_each_possible_cpu(i)
1557 scan_large_block(__per_cpu_start + per_cpu_offset(i),
1558 __per_cpu_end + per_cpu_offset(i));
1559#endif
1560
1561 /*
1562 * Struct page scanning for each node.
1563 */
1564 get_online_mems();
1565 for_each_populated_zone(zone) {
1566 unsigned long start_pfn = zone->zone_start_pfn;
1567 unsigned long end_pfn = zone_end_pfn(zone);
1568 unsigned long pfn;
1569
1570 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1571 struct page *page = pfn_to_online_page(pfn);
1572
1573 if (!page)
1574 continue;
1575
1576 /* only scan pages belonging to this zone */
1577 if (page_zone(page) != zone)
1578 continue;
1579 /* only scan if page is in use */
1580 if (page_count(page) == 0)
1581 continue;
1582 scan_block(page, page + 1, NULL);
1583 if (!(pfn & 63))
1584 cond_resched();
1585 }
1586 }
1587 put_online_mems();
1588
1589 /*
1590 * Scanning the task stacks (may introduce false negatives).
1591 */
1592 if (kmemleak_stack_scan) {
1593 struct task_struct *p, *g;
1594
1595 rcu_read_lock();
1596 for_each_process_thread(g, p) {
1597 void *stack = try_get_task_stack(p);
1598 if (stack) {
1599 scan_block(stack, stack + THREAD_SIZE, NULL);
1600 put_task_stack(p);
1601 }
1602 }
1603 rcu_read_unlock();
1604 }
1605
1606 /*
1607 * Scan the objects already referenced from the sections scanned
1608 * above.
1609 */
1610 scan_gray_list();
1611
1612 /*
1613 * Check for new or unreferenced objects modified since the previous
1614 * scan and color them gray until the next scan.
1615 */
1616 rcu_read_lock();
1617 loop_cnt = 0;
1618 list_for_each_entry_rcu(object, &object_list, object_list) {
1619 /*
1620 * Do a cond_resched() every 64k objects to avoid soft lockup.
1621 */
1622 if (!(++loop_cnt & 0xffff) &&
1623 !kmemleak_cond_resched(object, false))
1624 loop_cnt--; /* Try again on next object */
1625
1626 /*
1627 * This is racy but we can save the overhead of lock/unlock
1628 * calls. The missed objects, if any, should be caught in
1629 * the next scan.
1630 */
1631 if (!color_white(object))
1632 continue;
1633 raw_spin_lock_irq(&object->lock);
1634 if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1635 && update_checksum(object) && get_object(object)) {
1636 /* color it gray temporarily */
1637 object->count = object->min_count;
1638 list_add_tail(&object->gray_list, &gray_list);
1639 }
1640 raw_spin_unlock_irq(&object->lock);
1641 }
1642 rcu_read_unlock();
1643
1644 /*
1645 * Re-scan the gray list for modified unreferenced objects.
1646 */
1647 scan_gray_list();
1648
1649 /*
1650 * If scanning was stopped do not report any new unreferenced objects.
1651 */
1652 if (scan_should_stop())
1653 return;
1654
1655 /*
1656 * Scanning result reporting.
1657 */
1658 rcu_read_lock();
1659 loop_cnt = 0;
1660 list_for_each_entry_rcu(object, &object_list, object_list) {
1661 /*
1662 * Do a cond_resched() every 64k objects to avoid soft lockup.
1663 */
1664 if (!(++loop_cnt & 0xffff) &&
1665 !kmemleak_cond_resched(object, false))
1666 loop_cnt--; /* Try again on next object */
1667
1668 /*
1669 * This is racy but we can save the overhead of lock/unlock
1670 * calls. The missed objects, if any, should be caught in
1671 * the next scan.
1672 */
1673 if (!color_white(object))
1674 continue;
1675 raw_spin_lock_irq(&object->lock);
1676 if (unreferenced_object(object) &&
1677 !(object->flags & OBJECT_REPORTED)) {
1678 object->flags |= OBJECT_REPORTED;
1679
1680 if (kmemleak_verbose)
1681 print_unreferenced(NULL, object);
1682
1683 new_leaks++;
1684 }
1685 raw_spin_unlock_irq(&object->lock);
1686 }
1687 rcu_read_unlock();
1688
1689 if (new_leaks) {
1690 kmemleak_found_leaks = true;
1691
1692 pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n",
1693 new_leaks);
1694 }
1695
1696}
1697
1698/*
1699 * Thread function performing automatic memory scanning. Unreferenced objects
1700 * at the end of a memory scan are reported but only the first time.
1701 */
1702static int kmemleak_scan_thread(void *arg)
1703{
1704 static int first_run = IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN);
1705
1706 pr_info("Automatic memory scanning thread started\n");
1707 set_user_nice(current, 10);
1708
1709 /*
1710 * Wait before the first scan to allow the system to fully initialize.
1711 */
1712 if (first_run) {
1713 signed long timeout = msecs_to_jiffies(SECS_FIRST_SCAN * 1000);
1714 first_run = 0;
1715 while (timeout && !kthread_should_stop())
1716 timeout = schedule_timeout_interruptible(timeout);
1717 }
1718
1719 while (!kthread_should_stop()) {
1720 signed long timeout = READ_ONCE(jiffies_scan_wait);
1721
1722 mutex_lock(&scan_mutex);
1723 kmemleak_scan();
1724 mutex_unlock(&scan_mutex);
1725
1726 /* wait before the next scan */
1727 while (timeout && !kthread_should_stop())
1728 timeout = schedule_timeout_interruptible(timeout);
1729 }
1730
1731 pr_info("Automatic memory scanning thread ended\n");
1732
1733 return 0;
1734}
1735
1736/*
1737 * Start the automatic memory scanning thread. This function must be called
1738 * with the scan_mutex held.
1739 */
1740static void start_scan_thread(void)
1741{
1742 if (scan_thread)
1743 return;
1744 scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1745 if (IS_ERR(scan_thread)) {
1746 pr_warn("Failed to create the scan thread\n");
1747 scan_thread = NULL;
1748 }
1749}
1750
1751/*
1752 * Stop the automatic memory scanning thread.
1753 */
1754static void stop_scan_thread(void)
1755{
1756 if (scan_thread) {
1757 kthread_stop(scan_thread);
1758 scan_thread = NULL;
1759 }
1760}
1761
1762/*
1763 * Iterate over the object_list and return the first valid object at or after
1764 * the required position with its use_count incremented. The function triggers
1765 * a memory scanning when the pos argument points to the first position.
1766 */
1767static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1768{
1769 struct kmemleak_object *object;
1770 loff_t n = *pos;
1771 int err;
1772
1773 err = mutex_lock_interruptible(&scan_mutex);
1774 if (err < 0)
1775 return ERR_PTR(err);
1776
1777 rcu_read_lock();
1778 list_for_each_entry_rcu(object, &object_list, object_list) {
1779 if (n-- > 0)
1780 continue;
1781 if (get_object(object))
1782 goto out;
1783 }
1784 object = NULL;
1785out:
1786 return object;
1787}
1788
1789/*
1790 * Return the next object in the object_list. The function decrements the
1791 * use_count of the previous object and increases that of the next one.
1792 */
1793static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1794{
1795 struct kmemleak_object *prev_obj = v;
1796 struct kmemleak_object *next_obj = NULL;
1797 struct kmemleak_object *obj = prev_obj;
1798
1799 ++(*pos);
1800
1801 list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
1802 if (get_object(obj)) {
1803 next_obj = obj;
1804 break;
1805 }
1806 }
1807
1808 put_object(prev_obj);
1809 return next_obj;
1810}
1811
1812/*
1813 * Decrement the use_count of the last object required, if any.
1814 */
1815static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1816{
1817 if (!IS_ERR(v)) {
1818 /*
1819 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1820 * waiting was interrupted, so only release it if !IS_ERR.
1821 */
1822 rcu_read_unlock();
1823 mutex_unlock(&scan_mutex);
1824 if (v)
1825 put_object(v);
1826 }
1827}
1828
1829/*
1830 * Print the information for an unreferenced object to the seq file.
1831 */
1832static int kmemleak_seq_show(struct seq_file *seq, void *v)
1833{
1834 struct kmemleak_object *object = v;
1835 unsigned long flags;
1836
1837 raw_spin_lock_irqsave(&object->lock, flags);
1838 if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
1839 print_unreferenced(seq, object);
1840 raw_spin_unlock_irqrestore(&object->lock, flags);
1841 return 0;
1842}
1843
1844static const struct seq_operations kmemleak_seq_ops = {
1845 .start = kmemleak_seq_start,
1846 .next = kmemleak_seq_next,
1847 .stop = kmemleak_seq_stop,
1848 .show = kmemleak_seq_show,
1849};
1850
1851static int kmemleak_open(struct inode *inode, struct file *file)
1852{
1853 return seq_open(file, &kmemleak_seq_ops);
1854}
1855
1856static int dump_str_object_info(const char *str)
1857{
1858 unsigned long flags;
1859 struct kmemleak_object *object;
1860 unsigned long addr;
1861
1862 if (kstrtoul(str, 0, &addr))
1863 return -EINVAL;
1864 object = find_and_get_object(addr, 0);
1865 if (!object) {
1866 pr_info("Unknown object at 0x%08lx\n", addr);
1867 return -EINVAL;
1868 }
1869
1870 raw_spin_lock_irqsave(&object->lock, flags);
1871 dump_object_info(object);
1872 raw_spin_unlock_irqrestore(&object->lock, flags);
1873
1874 put_object(object);
1875 return 0;
1876}
1877
1878/*
1879 * We use grey instead of black to ensure we can do future scans on the same
1880 * objects. If we did not do future scans these black objects could
1881 * potentially contain references to newly allocated objects in the future and
1882 * we'd end up with false positives.
1883 */
1884static void kmemleak_clear(void)
1885{
1886 struct kmemleak_object *object;
1887
1888 rcu_read_lock();
1889 list_for_each_entry_rcu(object, &object_list, object_list) {
1890 raw_spin_lock_irq(&object->lock);
1891 if ((object->flags & OBJECT_REPORTED) &&
1892 unreferenced_object(object))
1893 __paint_it(object, KMEMLEAK_GREY);
1894 raw_spin_unlock_irq(&object->lock);
1895 }
1896 rcu_read_unlock();
1897
1898 kmemleak_found_leaks = false;
1899}
1900
1901static void __kmemleak_do_cleanup(void);
1902
1903/*
1904 * File write operation to configure kmemleak at run-time. The following
1905 * commands can be written to the /sys/kernel/debug/kmemleak file:
1906 * off - disable kmemleak (irreversible)
1907 * stack=on - enable the task stacks scanning
1908 * stack=off - disable the tasks stacks scanning
1909 * scan=on - start the automatic memory scanning thread
1910 * scan=off - stop the automatic memory scanning thread
1911 * scan=... - set the automatic memory scanning period in seconds (0 to
1912 * disable it)
1913 * scan - trigger a memory scan
1914 * clear - mark all current reported unreferenced kmemleak objects as
1915 * grey to ignore printing them, or free all kmemleak objects
1916 * if kmemleak has been disabled.
1917 * dump=... - dump information about the object found at the given address
1918 */
1919static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1920 size_t size, loff_t *ppos)
1921{
1922 char buf[64];
1923 int buf_size;
1924 int ret;
1925
1926 buf_size = min(size, (sizeof(buf) - 1));
1927 if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1928 return -EFAULT;
1929 buf[buf_size] = 0;
1930
1931 ret = mutex_lock_interruptible(&scan_mutex);
1932 if (ret < 0)
1933 return ret;
1934
1935 if (strncmp(buf, "clear", 5) == 0) {
1936 if (kmemleak_enabled)
1937 kmemleak_clear();
1938 else
1939 __kmemleak_do_cleanup();
1940 goto out;
1941 }
1942
1943 if (!kmemleak_enabled) {
1944 ret = -EPERM;
1945 goto out;
1946 }
1947
1948 if (strncmp(buf, "off", 3) == 0)
1949 kmemleak_disable();
1950 else if (strncmp(buf, "stack=on", 8) == 0)
1951 kmemleak_stack_scan = 1;
1952 else if (strncmp(buf, "stack=off", 9) == 0)
1953 kmemleak_stack_scan = 0;
1954 else if (strncmp(buf, "scan=on", 7) == 0)
1955 start_scan_thread();
1956 else if (strncmp(buf, "scan=off", 8) == 0)
1957 stop_scan_thread();
1958 else if (strncmp(buf, "scan=", 5) == 0) {
1959 unsigned secs;
1960 unsigned long msecs;
1961
1962 ret = kstrtouint(buf + 5, 0, &secs);
1963 if (ret < 0)
1964 goto out;
1965
1966 msecs = secs * MSEC_PER_SEC;
1967 if (msecs > UINT_MAX)
1968 msecs = UINT_MAX;
1969
1970 stop_scan_thread();
1971 if (msecs) {
1972 WRITE_ONCE(jiffies_scan_wait, msecs_to_jiffies(msecs));
1973 start_scan_thread();
1974 }
1975 } else if (strncmp(buf, "scan", 4) == 0)
1976 kmemleak_scan();
1977 else if (strncmp(buf, "dump=", 5) == 0)
1978 ret = dump_str_object_info(buf + 5);
1979 else
1980 ret = -EINVAL;
1981
1982out:
1983 mutex_unlock(&scan_mutex);
1984 if (ret < 0)
1985 return ret;
1986
1987 /* ignore the rest of the buffer, only one command at a time */
1988 *ppos += size;
1989 return size;
1990}
1991
1992static const struct file_operations kmemleak_fops = {
1993 .owner = THIS_MODULE,
1994 .open = kmemleak_open,
1995 .read = seq_read,
1996 .write = kmemleak_write,
1997 .llseek = seq_lseek,
1998 .release = seq_release,
1999};
2000
2001static void __kmemleak_do_cleanup(void)
2002{
2003 struct kmemleak_object *object, *tmp;
2004
2005 /*
2006 * Kmemleak has already been disabled, no need for RCU list traversal
2007 * or kmemleak_lock held.
2008 */
2009 list_for_each_entry_safe(object, tmp, &object_list, object_list) {
2010 __remove_object(object);
2011 __delete_object(object);
2012 }
2013}
2014
2015/*
2016 * Stop the memory scanning thread and free the kmemleak internal objects if
2017 * no previous scan thread (otherwise, kmemleak may still have some useful
2018 * information on memory leaks).
2019 */
2020static void kmemleak_do_cleanup(struct work_struct *work)
2021{
2022 stop_scan_thread();
2023
2024 mutex_lock(&scan_mutex);
2025 /*
2026 * Once it is made sure that kmemleak_scan has stopped, it is safe to no
2027 * longer track object freeing. Ordering of the scan thread stopping and
2028 * the memory accesses below is guaranteed by the kthread_stop()
2029 * function.
2030 */
2031 kmemleak_free_enabled = 0;
2032 mutex_unlock(&scan_mutex);
2033
2034 if (!kmemleak_found_leaks)
2035 __kmemleak_do_cleanup();
2036 else
2037 pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n");
2038}
2039
2040static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
2041
2042/*
2043 * Disable kmemleak. No memory allocation/freeing will be traced once this
2044 * function is called. Disabling kmemleak is an irreversible operation.
2045 */
2046static void kmemleak_disable(void)
2047{
2048 /* atomically check whether it was already invoked */
2049 if (cmpxchg(&kmemleak_error, 0, 1))
2050 return;
2051
2052 /* stop any memory operation tracing */
2053 kmemleak_enabled = 0;
2054
2055 /* check whether it is too early for a kernel thread */
2056 if (kmemleak_initialized)
2057 schedule_work(&cleanup_work);
2058 else
2059 kmemleak_free_enabled = 0;
2060
2061 pr_info("Kernel memory leak detector disabled\n");
2062}
2063
2064/*
2065 * Allow boot-time kmemleak disabling (enabled by default).
2066 */
2067static int __init kmemleak_boot_config(char *str)
2068{
2069 if (!str)
2070 return -EINVAL;
2071 if (strcmp(str, "off") == 0)
2072 kmemleak_disable();
2073 else if (strcmp(str, "on") == 0) {
2074 kmemleak_skip_disable = 1;
2075 stack_depot_want_early_init();
2076 }
2077 else
2078 return -EINVAL;
2079 return 0;
2080}
2081early_param("kmemleak", kmemleak_boot_config);
2082
2083/*
2084 * Kmemleak initialization.
2085 */
2086void __init kmemleak_init(void)
2087{
2088#ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
2089 if (!kmemleak_skip_disable) {
2090 kmemleak_disable();
2091 return;
2092 }
2093#endif
2094
2095 if (kmemleak_error)
2096 return;
2097
2098 jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
2099 jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
2100
2101 object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
2102 scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
2103
2104 /* register the data/bss sections */
2105 create_object((unsigned long)_sdata, _edata - _sdata,
2106 KMEMLEAK_GREY, GFP_ATOMIC);
2107 create_object((unsigned long)__bss_start, __bss_stop - __bss_start,
2108 KMEMLEAK_GREY, GFP_ATOMIC);
2109 /* only register .data..ro_after_init if not within .data */
2110 if (&__start_ro_after_init < &_sdata || &__end_ro_after_init > &_edata)
2111 create_object((unsigned long)__start_ro_after_init,
2112 __end_ro_after_init - __start_ro_after_init,
2113 KMEMLEAK_GREY, GFP_ATOMIC);
2114}
2115
2116/*
2117 * Late initialization function.
2118 */
2119static int __init kmemleak_late_init(void)
2120{
2121 kmemleak_initialized = 1;
2122
2123 debugfs_create_file("kmemleak", 0644, NULL, NULL, &kmemleak_fops);
2124
2125 if (kmemleak_error) {
2126 /*
2127 * Some error occurred and kmemleak was disabled. There is a
2128 * small chance that kmemleak_disable() was called immediately
2129 * after setting kmemleak_initialized and we may end up with
2130 * two clean-up threads but serialized by scan_mutex.
2131 */
2132 schedule_work(&cleanup_work);
2133 return -ENOMEM;
2134 }
2135
2136 if (IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN)) {
2137 mutex_lock(&scan_mutex);
2138 start_scan_thread();
2139 mutex_unlock(&scan_mutex);
2140 }
2141
2142 pr_info("Kernel memory leak detector initialized (mem pool available: %d)\n",
2143 mem_pool_free_count);
2144
2145 return 0;
2146}
2147late_initcall(kmemleak_late_init);
1/*
2 * mm/kmemleak.c
3 *
4 * Copyright (C) 2008 ARM Limited
5 * Written by Catalin Marinas <catalin.marinas@arm.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 *
20 *
21 * For more information on the algorithm and kmemleak usage, please see
22 * Documentation/dev-tools/kmemleak.rst.
23 *
24 * Notes on locking
25 * ----------------
26 *
27 * The following locks and mutexes are used by kmemleak:
28 *
29 * - kmemleak_lock (rwlock): protects the object_list modifications and
30 * accesses to the object_tree_root. The object_list is the main list
31 * holding the metadata (struct kmemleak_object) for the allocated memory
32 * blocks. The object_tree_root is a red black tree used to look-up
33 * metadata based on a pointer to the corresponding memory block. The
34 * kmemleak_object structures are added to the object_list and
35 * object_tree_root in the create_object() function called from the
36 * kmemleak_alloc() callback and removed in delete_object() called from the
37 * kmemleak_free() callback
38 * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to
39 * the metadata (e.g. count) are protected by this lock. Note that some
40 * members of this structure may be protected by other means (atomic or
41 * kmemleak_lock). This lock is also held when scanning the corresponding
42 * memory block to avoid the kernel freeing it via the kmemleak_free()
43 * callback. This is less heavyweight than holding a global lock like
44 * kmemleak_lock during scanning
45 * - scan_mutex (mutex): ensures that only one thread may scan the memory for
46 * unreferenced objects at a time. The gray_list contains the objects which
47 * are already referenced or marked as false positives and need to be
48 * scanned. This list is only modified during a scanning episode when the
49 * scan_mutex is held. At the end of a scan, the gray_list is always empty.
50 * Note that the kmemleak_object.use_count is incremented when an object is
51 * added to the gray_list and therefore cannot be freed. This mutex also
52 * prevents multiple users of the "kmemleak" debugfs file together with
53 * modifications to the memory scanning parameters including the scan_thread
54 * pointer
55 *
56 * Locks and mutexes are acquired/nested in the following order:
57 *
58 * scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING)
59 *
60 * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex
61 * regions.
62 *
63 * The kmemleak_object structures have a use_count incremented or decremented
64 * using the get_object()/put_object() functions. When the use_count becomes
65 * 0, this count can no longer be incremented and put_object() schedules the
66 * kmemleak_object freeing via an RCU callback. All calls to the get_object()
67 * function must be protected by rcu_read_lock() to avoid accessing a freed
68 * structure.
69 */
70
71#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
72
73#include <linux/init.h>
74#include <linux/kernel.h>
75#include <linux/list.h>
76#include <linux/sched/signal.h>
77#include <linux/sched/task.h>
78#include <linux/sched/task_stack.h>
79#include <linux/jiffies.h>
80#include <linux/delay.h>
81#include <linux/export.h>
82#include <linux/kthread.h>
83#include <linux/rbtree.h>
84#include <linux/fs.h>
85#include <linux/debugfs.h>
86#include <linux/seq_file.h>
87#include <linux/cpumask.h>
88#include <linux/spinlock.h>
89#include <linux/mutex.h>
90#include <linux/rcupdate.h>
91#include <linux/stacktrace.h>
92#include <linux/cache.h>
93#include <linux/percpu.h>
94#include <linux/bootmem.h>
95#include <linux/pfn.h>
96#include <linux/mmzone.h>
97#include <linux/slab.h>
98#include <linux/thread_info.h>
99#include <linux/err.h>
100#include <linux/uaccess.h>
101#include <linux/string.h>
102#include <linux/nodemask.h>
103#include <linux/mm.h>
104#include <linux/workqueue.h>
105#include <linux/crc32.h>
106
107#include <asm/sections.h>
108#include <asm/processor.h>
109#include <linux/atomic.h>
110
111#include <linux/kasan.h>
112#include <linux/kmemleak.h>
113#include <linux/memory_hotplug.h>
114
115/*
116 * Kmemleak configuration and common defines.
117 */
118#define MAX_TRACE 16 /* stack trace length */
119#define MSECS_MIN_AGE 5000 /* minimum object age for reporting */
120#define SECS_FIRST_SCAN 60 /* delay before the first scan */
121#define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */
122#define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */
123
124#define BYTES_PER_POINTER sizeof(void *)
125
126/* GFP bitmask for kmemleak internal allocations */
127#define gfp_kmemleak_mask(gfp) (((gfp) & (GFP_KERNEL | GFP_ATOMIC)) | \
128 __GFP_NORETRY | __GFP_NOMEMALLOC | \
129 __GFP_NOWARN | __GFP_NOFAIL)
130
131/* scanning area inside a memory block */
132struct kmemleak_scan_area {
133 struct hlist_node node;
134 unsigned long start;
135 size_t size;
136};
137
138#define KMEMLEAK_GREY 0
139#define KMEMLEAK_BLACK -1
140
141/*
142 * Structure holding the metadata for each allocated memory block.
143 * Modifications to such objects should be made while holding the
144 * object->lock. Insertions or deletions from object_list, gray_list or
145 * rb_node are already protected by the corresponding locks or mutex (see
146 * the notes on locking above). These objects are reference-counted
147 * (use_count) and freed using the RCU mechanism.
148 */
149struct kmemleak_object {
150 spinlock_t lock;
151 unsigned int flags; /* object status flags */
152 struct list_head object_list;
153 struct list_head gray_list;
154 struct rb_node rb_node;
155 struct rcu_head rcu; /* object_list lockless traversal */
156 /* object usage count; object freed when use_count == 0 */
157 atomic_t use_count;
158 unsigned long pointer;
159 size_t size;
160 /* pass surplus references to this pointer */
161 unsigned long excess_ref;
162 /* minimum number of a pointers found before it is considered leak */
163 int min_count;
164 /* the total number of pointers found pointing to this object */
165 int count;
166 /* checksum for detecting modified objects */
167 u32 checksum;
168 /* memory ranges to be scanned inside an object (empty for all) */
169 struct hlist_head area_list;
170 unsigned long trace[MAX_TRACE];
171 unsigned int trace_len;
172 unsigned long jiffies; /* creation timestamp */
173 pid_t pid; /* pid of the current task */
174 char comm[TASK_COMM_LEN]; /* executable name */
175};
176
177/* flag representing the memory block allocation status */
178#define OBJECT_ALLOCATED (1 << 0)
179/* flag set after the first reporting of an unreference object */
180#define OBJECT_REPORTED (1 << 1)
181/* flag set to not scan the object */
182#define OBJECT_NO_SCAN (1 << 2)
183
184/* number of bytes to print per line; must be 16 or 32 */
185#define HEX_ROW_SIZE 16
186/* number of bytes to print at a time (1, 2, 4, 8) */
187#define HEX_GROUP_SIZE 1
188/* include ASCII after the hex output */
189#define HEX_ASCII 1
190/* max number of lines to be printed */
191#define HEX_MAX_LINES 2
192
193/* the list of all allocated objects */
194static LIST_HEAD(object_list);
195/* the list of gray-colored objects (see color_gray comment below) */
196static LIST_HEAD(gray_list);
197/* search tree for object boundaries */
198static struct rb_root object_tree_root = RB_ROOT;
199/* rw_lock protecting the access to object_list and object_tree_root */
200static DEFINE_RWLOCK(kmemleak_lock);
201
202/* allocation caches for kmemleak internal data */
203static struct kmem_cache *object_cache;
204static struct kmem_cache *scan_area_cache;
205
206/* set if tracing memory operations is enabled */
207static int kmemleak_enabled;
208/* same as above but only for the kmemleak_free() callback */
209static int kmemleak_free_enabled;
210/* set in the late_initcall if there were no errors */
211static int kmemleak_initialized;
212/* enables or disables early logging of the memory operations */
213static int kmemleak_early_log = 1;
214/* set if a kmemleak warning was issued */
215static int kmemleak_warning;
216/* set if a fatal kmemleak error has occurred */
217static int kmemleak_error;
218
219/* minimum and maximum address that may be valid pointers */
220static unsigned long min_addr = ULONG_MAX;
221static unsigned long max_addr;
222
223static struct task_struct *scan_thread;
224/* used to avoid reporting of recently allocated objects */
225static unsigned long jiffies_min_age;
226static unsigned long jiffies_last_scan;
227/* delay between automatic memory scannings */
228static signed long jiffies_scan_wait;
229/* enables or disables the task stacks scanning */
230static int kmemleak_stack_scan = 1;
231/* protects the memory scanning, parameters and debug/kmemleak file access */
232static DEFINE_MUTEX(scan_mutex);
233/* setting kmemleak=on, will set this var, skipping the disable */
234static int kmemleak_skip_disable;
235/* If there are leaks that can be reported */
236static bool kmemleak_found_leaks;
237
238/*
239 * Early object allocation/freeing logging. Kmemleak is initialized after the
240 * kernel allocator. However, both the kernel allocator and kmemleak may
241 * allocate memory blocks which need to be tracked. Kmemleak defines an
242 * arbitrary buffer to hold the allocation/freeing information before it is
243 * fully initialized.
244 */
245
246/* kmemleak operation type for early logging */
247enum {
248 KMEMLEAK_ALLOC,
249 KMEMLEAK_ALLOC_PERCPU,
250 KMEMLEAK_FREE,
251 KMEMLEAK_FREE_PART,
252 KMEMLEAK_FREE_PERCPU,
253 KMEMLEAK_NOT_LEAK,
254 KMEMLEAK_IGNORE,
255 KMEMLEAK_SCAN_AREA,
256 KMEMLEAK_NO_SCAN,
257 KMEMLEAK_SET_EXCESS_REF
258};
259
260/*
261 * Structure holding the information passed to kmemleak callbacks during the
262 * early logging.
263 */
264struct early_log {
265 int op_type; /* kmemleak operation type */
266 int min_count; /* minimum reference count */
267 const void *ptr; /* allocated/freed memory block */
268 union {
269 size_t size; /* memory block size */
270 unsigned long excess_ref; /* surplus reference passing */
271 };
272 unsigned long trace[MAX_TRACE]; /* stack trace */
273 unsigned int trace_len; /* stack trace length */
274};
275
276/* early logging buffer and current position */
277static struct early_log
278 early_log[CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE] __initdata;
279static int crt_early_log __initdata;
280
281static void kmemleak_disable(void);
282
283/*
284 * Print a warning and dump the stack trace.
285 */
286#define kmemleak_warn(x...) do { \
287 pr_warn(x); \
288 dump_stack(); \
289 kmemleak_warning = 1; \
290} while (0)
291
292/*
293 * Macro invoked when a serious kmemleak condition occurred and cannot be
294 * recovered from. Kmemleak will be disabled and further allocation/freeing
295 * tracing no longer available.
296 */
297#define kmemleak_stop(x...) do { \
298 kmemleak_warn(x); \
299 kmemleak_disable(); \
300} while (0)
301
302/*
303 * Printing of the objects hex dump to the seq file. The number of lines to be
304 * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
305 * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
306 * with the object->lock held.
307 */
308static void hex_dump_object(struct seq_file *seq,
309 struct kmemleak_object *object)
310{
311 const u8 *ptr = (const u8 *)object->pointer;
312 size_t len;
313
314 /* limit the number of lines to HEX_MAX_LINES */
315 len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE);
316
317 seq_printf(seq, " hex dump (first %zu bytes):\n", len);
318 kasan_disable_current();
319 seq_hex_dump(seq, " ", DUMP_PREFIX_NONE, HEX_ROW_SIZE,
320 HEX_GROUP_SIZE, ptr, len, HEX_ASCII);
321 kasan_enable_current();
322}
323
324/*
325 * Object colors, encoded with count and min_count:
326 * - white - orphan object, not enough references to it (count < min_count)
327 * - gray - not orphan, not marked as false positive (min_count == 0) or
328 * sufficient references to it (count >= min_count)
329 * - black - ignore, it doesn't contain references (e.g. text section)
330 * (min_count == -1). No function defined for this color.
331 * Newly created objects don't have any color assigned (object->count == -1)
332 * before the next memory scan when they become white.
333 */
334static bool color_white(const struct kmemleak_object *object)
335{
336 return object->count != KMEMLEAK_BLACK &&
337 object->count < object->min_count;
338}
339
340static bool color_gray(const struct kmemleak_object *object)
341{
342 return object->min_count != KMEMLEAK_BLACK &&
343 object->count >= object->min_count;
344}
345
346/*
347 * Objects are considered unreferenced only if their color is white, they have
348 * not be deleted and have a minimum age to avoid false positives caused by
349 * pointers temporarily stored in CPU registers.
350 */
351static bool unreferenced_object(struct kmemleak_object *object)
352{
353 return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
354 time_before_eq(object->jiffies + jiffies_min_age,
355 jiffies_last_scan);
356}
357
358/*
359 * Printing of the unreferenced objects information to the seq file. The
360 * print_unreferenced function must be called with the object->lock held.
361 */
362static void print_unreferenced(struct seq_file *seq,
363 struct kmemleak_object *object)
364{
365 int i;
366 unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
367
368 seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
369 object->pointer, object->size);
370 seq_printf(seq, " comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
371 object->comm, object->pid, object->jiffies,
372 msecs_age / 1000, msecs_age % 1000);
373 hex_dump_object(seq, object);
374 seq_printf(seq, " backtrace:\n");
375
376 for (i = 0; i < object->trace_len; i++) {
377 void *ptr = (void *)object->trace[i];
378 seq_printf(seq, " [<%p>] %pS\n", ptr, ptr);
379 }
380}
381
382/*
383 * Print the kmemleak_object information. This function is used mainly for
384 * debugging special cases when kmemleak operations. It must be called with
385 * the object->lock held.
386 */
387static void dump_object_info(struct kmemleak_object *object)
388{
389 struct stack_trace trace;
390
391 trace.nr_entries = object->trace_len;
392 trace.entries = object->trace;
393
394 pr_notice("Object 0x%08lx (size %zu):\n",
395 object->pointer, object->size);
396 pr_notice(" comm \"%s\", pid %d, jiffies %lu\n",
397 object->comm, object->pid, object->jiffies);
398 pr_notice(" min_count = %d\n", object->min_count);
399 pr_notice(" count = %d\n", object->count);
400 pr_notice(" flags = 0x%x\n", object->flags);
401 pr_notice(" checksum = %u\n", object->checksum);
402 pr_notice(" backtrace:\n");
403 print_stack_trace(&trace, 4);
404}
405
406/*
407 * Look-up a memory block metadata (kmemleak_object) in the object search
408 * tree based on a pointer value. If alias is 0, only values pointing to the
409 * beginning of the memory block are allowed. The kmemleak_lock must be held
410 * when calling this function.
411 */
412static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
413{
414 struct rb_node *rb = object_tree_root.rb_node;
415
416 while (rb) {
417 struct kmemleak_object *object =
418 rb_entry(rb, struct kmemleak_object, rb_node);
419 if (ptr < object->pointer)
420 rb = object->rb_node.rb_left;
421 else if (object->pointer + object->size <= ptr)
422 rb = object->rb_node.rb_right;
423 else if (object->pointer == ptr || alias)
424 return object;
425 else {
426 kmemleak_warn("Found object by alias at 0x%08lx\n",
427 ptr);
428 dump_object_info(object);
429 break;
430 }
431 }
432 return NULL;
433}
434
435/*
436 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
437 * that once an object's use_count reached 0, the RCU freeing was already
438 * registered and the object should no longer be used. This function must be
439 * called under the protection of rcu_read_lock().
440 */
441static int get_object(struct kmemleak_object *object)
442{
443 return atomic_inc_not_zero(&object->use_count);
444}
445
446/*
447 * RCU callback to free a kmemleak_object.
448 */
449static void free_object_rcu(struct rcu_head *rcu)
450{
451 struct hlist_node *tmp;
452 struct kmemleak_scan_area *area;
453 struct kmemleak_object *object =
454 container_of(rcu, struct kmemleak_object, rcu);
455
456 /*
457 * Once use_count is 0 (guaranteed by put_object), there is no other
458 * code accessing this object, hence no need for locking.
459 */
460 hlist_for_each_entry_safe(area, tmp, &object->area_list, node) {
461 hlist_del(&area->node);
462 kmem_cache_free(scan_area_cache, area);
463 }
464 kmem_cache_free(object_cache, object);
465}
466
467/*
468 * Decrement the object use_count. Once the count is 0, free the object using
469 * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
470 * delete_object() path, the delayed RCU freeing ensures that there is no
471 * recursive call to the kernel allocator. Lock-less RCU object_list traversal
472 * is also possible.
473 */
474static void put_object(struct kmemleak_object *object)
475{
476 if (!atomic_dec_and_test(&object->use_count))
477 return;
478
479 /* should only get here after delete_object was called */
480 WARN_ON(object->flags & OBJECT_ALLOCATED);
481
482 call_rcu(&object->rcu, free_object_rcu);
483}
484
485/*
486 * Look up an object in the object search tree and increase its use_count.
487 */
488static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
489{
490 unsigned long flags;
491 struct kmemleak_object *object;
492
493 rcu_read_lock();
494 read_lock_irqsave(&kmemleak_lock, flags);
495 object = lookup_object(ptr, alias);
496 read_unlock_irqrestore(&kmemleak_lock, flags);
497
498 /* check whether the object is still available */
499 if (object && !get_object(object))
500 object = NULL;
501 rcu_read_unlock();
502
503 return object;
504}
505
506/*
507 * Look up an object in the object search tree and remove it from both
508 * object_tree_root and object_list. The returned object's use_count should be
509 * at least 1, as initially set by create_object().
510 */
511static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias)
512{
513 unsigned long flags;
514 struct kmemleak_object *object;
515
516 write_lock_irqsave(&kmemleak_lock, flags);
517 object = lookup_object(ptr, alias);
518 if (object) {
519 rb_erase(&object->rb_node, &object_tree_root);
520 list_del_rcu(&object->object_list);
521 }
522 write_unlock_irqrestore(&kmemleak_lock, flags);
523
524 return object;
525}
526
527/*
528 * Save stack trace to the given array of MAX_TRACE size.
529 */
530static int __save_stack_trace(unsigned long *trace)
531{
532 struct stack_trace stack_trace;
533
534 stack_trace.max_entries = MAX_TRACE;
535 stack_trace.nr_entries = 0;
536 stack_trace.entries = trace;
537 stack_trace.skip = 2;
538 save_stack_trace(&stack_trace);
539
540 return stack_trace.nr_entries;
541}
542
543/*
544 * Create the metadata (struct kmemleak_object) corresponding to an allocated
545 * memory block and add it to the object_list and object_tree_root.
546 */
547static struct kmemleak_object *create_object(unsigned long ptr, size_t size,
548 int min_count, gfp_t gfp)
549{
550 unsigned long flags;
551 struct kmemleak_object *object, *parent;
552 struct rb_node **link, *rb_parent;
553
554 object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
555 if (!object) {
556 pr_warn("Cannot allocate a kmemleak_object structure\n");
557 kmemleak_disable();
558 return NULL;
559 }
560
561 INIT_LIST_HEAD(&object->object_list);
562 INIT_LIST_HEAD(&object->gray_list);
563 INIT_HLIST_HEAD(&object->area_list);
564 spin_lock_init(&object->lock);
565 atomic_set(&object->use_count, 1);
566 object->flags = OBJECT_ALLOCATED;
567 object->pointer = ptr;
568 object->size = size;
569 object->excess_ref = 0;
570 object->min_count = min_count;
571 object->count = 0; /* white color initially */
572 object->jiffies = jiffies;
573 object->checksum = 0;
574
575 /* task information */
576 if (in_irq()) {
577 object->pid = 0;
578 strncpy(object->comm, "hardirq", sizeof(object->comm));
579 } else if (in_softirq()) {
580 object->pid = 0;
581 strncpy(object->comm, "softirq", sizeof(object->comm));
582 } else {
583 object->pid = current->pid;
584 /*
585 * There is a small chance of a race with set_task_comm(),
586 * however using get_task_comm() here may cause locking
587 * dependency issues with current->alloc_lock. In the worst
588 * case, the command line is not correct.
589 */
590 strncpy(object->comm, current->comm, sizeof(object->comm));
591 }
592
593 /* kernel backtrace */
594 object->trace_len = __save_stack_trace(object->trace);
595
596 write_lock_irqsave(&kmemleak_lock, flags);
597
598 min_addr = min(min_addr, ptr);
599 max_addr = max(max_addr, ptr + size);
600 link = &object_tree_root.rb_node;
601 rb_parent = NULL;
602 while (*link) {
603 rb_parent = *link;
604 parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
605 if (ptr + size <= parent->pointer)
606 link = &parent->rb_node.rb_left;
607 else if (parent->pointer + parent->size <= ptr)
608 link = &parent->rb_node.rb_right;
609 else {
610 kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n",
611 ptr);
612 /*
613 * No need for parent->lock here since "parent" cannot
614 * be freed while the kmemleak_lock is held.
615 */
616 dump_object_info(parent);
617 kmem_cache_free(object_cache, object);
618 object = NULL;
619 goto out;
620 }
621 }
622 rb_link_node(&object->rb_node, rb_parent, link);
623 rb_insert_color(&object->rb_node, &object_tree_root);
624
625 list_add_tail_rcu(&object->object_list, &object_list);
626out:
627 write_unlock_irqrestore(&kmemleak_lock, flags);
628 return object;
629}
630
631/*
632 * Mark the object as not allocated and schedule RCU freeing via put_object().
633 */
634static void __delete_object(struct kmemleak_object *object)
635{
636 unsigned long flags;
637
638 WARN_ON(!(object->flags & OBJECT_ALLOCATED));
639 WARN_ON(atomic_read(&object->use_count) < 1);
640
641 /*
642 * Locking here also ensures that the corresponding memory block
643 * cannot be freed when it is being scanned.
644 */
645 spin_lock_irqsave(&object->lock, flags);
646 object->flags &= ~OBJECT_ALLOCATED;
647 spin_unlock_irqrestore(&object->lock, flags);
648 put_object(object);
649}
650
651/*
652 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
653 * delete it.
654 */
655static void delete_object_full(unsigned long ptr)
656{
657 struct kmemleak_object *object;
658
659 object = find_and_remove_object(ptr, 0);
660 if (!object) {
661#ifdef DEBUG
662 kmemleak_warn("Freeing unknown object at 0x%08lx\n",
663 ptr);
664#endif
665 return;
666 }
667 __delete_object(object);
668}
669
670/*
671 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
672 * delete it. If the memory block is partially freed, the function may create
673 * additional metadata for the remaining parts of the block.
674 */
675static void delete_object_part(unsigned long ptr, size_t size)
676{
677 struct kmemleak_object *object;
678 unsigned long start, end;
679
680 object = find_and_remove_object(ptr, 1);
681 if (!object) {
682#ifdef DEBUG
683 kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n",
684 ptr, size);
685#endif
686 return;
687 }
688
689 /*
690 * Create one or two objects that may result from the memory block
691 * split. Note that partial freeing is only done by free_bootmem() and
692 * this happens before kmemleak_init() is called. The path below is
693 * only executed during early log recording in kmemleak_init(), so
694 * GFP_KERNEL is enough.
695 */
696 start = object->pointer;
697 end = object->pointer + object->size;
698 if (ptr > start)
699 create_object(start, ptr - start, object->min_count,
700 GFP_KERNEL);
701 if (ptr + size < end)
702 create_object(ptr + size, end - ptr - size, object->min_count,
703 GFP_KERNEL);
704
705 __delete_object(object);
706}
707
708static void __paint_it(struct kmemleak_object *object, int color)
709{
710 object->min_count = color;
711 if (color == KMEMLEAK_BLACK)
712 object->flags |= OBJECT_NO_SCAN;
713}
714
715static void paint_it(struct kmemleak_object *object, int color)
716{
717 unsigned long flags;
718
719 spin_lock_irqsave(&object->lock, flags);
720 __paint_it(object, color);
721 spin_unlock_irqrestore(&object->lock, flags);
722}
723
724static void paint_ptr(unsigned long ptr, int color)
725{
726 struct kmemleak_object *object;
727
728 object = find_and_get_object(ptr, 0);
729 if (!object) {
730 kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n",
731 ptr,
732 (color == KMEMLEAK_GREY) ? "Grey" :
733 (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
734 return;
735 }
736 paint_it(object, color);
737 put_object(object);
738}
739
740/*
741 * Mark an object permanently as gray-colored so that it can no longer be
742 * reported as a leak. This is used in general to mark a false positive.
743 */
744static void make_gray_object(unsigned long ptr)
745{
746 paint_ptr(ptr, KMEMLEAK_GREY);
747}
748
749/*
750 * Mark the object as black-colored so that it is ignored from scans and
751 * reporting.
752 */
753static void make_black_object(unsigned long ptr)
754{
755 paint_ptr(ptr, KMEMLEAK_BLACK);
756}
757
758/*
759 * Add a scanning area to the object. If at least one such area is added,
760 * kmemleak will only scan these ranges rather than the whole memory block.
761 */
762static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
763{
764 unsigned long flags;
765 struct kmemleak_object *object;
766 struct kmemleak_scan_area *area;
767
768 object = find_and_get_object(ptr, 1);
769 if (!object) {
770 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
771 ptr);
772 return;
773 }
774
775 area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
776 if (!area) {
777 pr_warn("Cannot allocate a scan area\n");
778 goto out;
779 }
780
781 spin_lock_irqsave(&object->lock, flags);
782 if (size == SIZE_MAX) {
783 size = object->pointer + object->size - ptr;
784 } else if (ptr + size > object->pointer + object->size) {
785 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
786 dump_object_info(object);
787 kmem_cache_free(scan_area_cache, area);
788 goto out_unlock;
789 }
790
791 INIT_HLIST_NODE(&area->node);
792 area->start = ptr;
793 area->size = size;
794
795 hlist_add_head(&area->node, &object->area_list);
796out_unlock:
797 spin_unlock_irqrestore(&object->lock, flags);
798out:
799 put_object(object);
800}
801
802/*
803 * Any surplus references (object already gray) to 'ptr' are passed to
804 * 'excess_ref'. This is used in the vmalloc() case where a pointer to
805 * vm_struct may be used as an alternative reference to the vmalloc'ed object
806 * (see free_thread_stack()).
807 */
808static void object_set_excess_ref(unsigned long ptr, unsigned long excess_ref)
809{
810 unsigned long flags;
811 struct kmemleak_object *object;
812
813 object = find_and_get_object(ptr, 0);
814 if (!object) {
815 kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n",
816 ptr);
817 return;
818 }
819
820 spin_lock_irqsave(&object->lock, flags);
821 object->excess_ref = excess_ref;
822 spin_unlock_irqrestore(&object->lock, flags);
823 put_object(object);
824}
825
826/*
827 * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
828 * pointer. Such object will not be scanned by kmemleak but references to it
829 * are searched.
830 */
831static void object_no_scan(unsigned long ptr)
832{
833 unsigned long flags;
834 struct kmemleak_object *object;
835
836 object = find_and_get_object(ptr, 0);
837 if (!object) {
838 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
839 return;
840 }
841
842 spin_lock_irqsave(&object->lock, flags);
843 object->flags |= OBJECT_NO_SCAN;
844 spin_unlock_irqrestore(&object->lock, flags);
845 put_object(object);
846}
847
848/*
849 * Log an early kmemleak_* call to the early_log buffer. These calls will be
850 * processed later once kmemleak is fully initialized.
851 */
852static void __init log_early(int op_type, const void *ptr, size_t size,
853 int min_count)
854{
855 unsigned long flags;
856 struct early_log *log;
857
858 if (kmemleak_error) {
859 /* kmemleak stopped recording, just count the requests */
860 crt_early_log++;
861 return;
862 }
863
864 if (crt_early_log >= ARRAY_SIZE(early_log)) {
865 crt_early_log++;
866 kmemleak_disable();
867 return;
868 }
869
870 /*
871 * There is no need for locking since the kernel is still in UP mode
872 * at this stage. Disabling the IRQs is enough.
873 */
874 local_irq_save(flags);
875 log = &early_log[crt_early_log];
876 log->op_type = op_type;
877 log->ptr = ptr;
878 log->size = size;
879 log->min_count = min_count;
880 log->trace_len = __save_stack_trace(log->trace);
881 crt_early_log++;
882 local_irq_restore(flags);
883}
884
885/*
886 * Log an early allocated block and populate the stack trace.
887 */
888static void early_alloc(struct early_log *log)
889{
890 struct kmemleak_object *object;
891 unsigned long flags;
892 int i;
893
894 if (!kmemleak_enabled || !log->ptr || IS_ERR(log->ptr))
895 return;
896
897 /*
898 * RCU locking needed to ensure object is not freed via put_object().
899 */
900 rcu_read_lock();
901 object = create_object((unsigned long)log->ptr, log->size,
902 log->min_count, GFP_ATOMIC);
903 if (!object)
904 goto out;
905 spin_lock_irqsave(&object->lock, flags);
906 for (i = 0; i < log->trace_len; i++)
907 object->trace[i] = log->trace[i];
908 object->trace_len = log->trace_len;
909 spin_unlock_irqrestore(&object->lock, flags);
910out:
911 rcu_read_unlock();
912}
913
914/*
915 * Log an early allocated block and populate the stack trace.
916 */
917static void early_alloc_percpu(struct early_log *log)
918{
919 unsigned int cpu;
920 const void __percpu *ptr = log->ptr;
921
922 for_each_possible_cpu(cpu) {
923 log->ptr = per_cpu_ptr(ptr, cpu);
924 early_alloc(log);
925 }
926}
927
928/**
929 * kmemleak_alloc - register a newly allocated object
930 * @ptr: pointer to beginning of the object
931 * @size: size of the object
932 * @min_count: minimum number of references to this object. If during memory
933 * scanning a number of references less than @min_count is found,
934 * the object is reported as a memory leak. If @min_count is 0,
935 * the object is never reported as a leak. If @min_count is -1,
936 * the object is ignored (not scanned and not reported as a leak)
937 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
938 *
939 * This function is called from the kernel allocators when a new object
940 * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.).
941 */
942void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
943 gfp_t gfp)
944{
945 pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
946
947 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
948 create_object((unsigned long)ptr, size, min_count, gfp);
949 else if (kmemleak_early_log)
950 log_early(KMEMLEAK_ALLOC, ptr, size, min_count);
951}
952EXPORT_SYMBOL_GPL(kmemleak_alloc);
953
954/**
955 * kmemleak_alloc_percpu - register a newly allocated __percpu object
956 * @ptr: __percpu pointer to beginning of the object
957 * @size: size of the object
958 * @gfp: flags used for kmemleak internal memory allocations
959 *
960 * This function is called from the kernel percpu allocator when a new object
961 * (memory block) is allocated (alloc_percpu).
962 */
963void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size,
964 gfp_t gfp)
965{
966 unsigned int cpu;
967
968 pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size);
969
970 /*
971 * Percpu allocations are only scanned and not reported as leaks
972 * (min_count is set to 0).
973 */
974 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
975 for_each_possible_cpu(cpu)
976 create_object((unsigned long)per_cpu_ptr(ptr, cpu),
977 size, 0, gfp);
978 else if (kmemleak_early_log)
979 log_early(KMEMLEAK_ALLOC_PERCPU, ptr, size, 0);
980}
981EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
982
983/**
984 * kmemleak_vmalloc - register a newly vmalloc'ed object
985 * @area: pointer to vm_struct
986 * @size: size of the object
987 * @gfp: __vmalloc() flags used for kmemleak internal memory allocations
988 *
989 * This function is called from the vmalloc() kernel allocator when a new
990 * object (memory block) is allocated.
991 */
992void __ref kmemleak_vmalloc(const struct vm_struct *area, size_t size, gfp_t gfp)
993{
994 pr_debug("%s(0x%p, %zu)\n", __func__, area, size);
995
996 /*
997 * A min_count = 2 is needed because vm_struct contains a reference to
998 * the virtual address of the vmalloc'ed block.
999 */
1000 if (kmemleak_enabled) {
1001 create_object((unsigned long)area->addr, size, 2, gfp);
1002 object_set_excess_ref((unsigned long)area,
1003 (unsigned long)area->addr);
1004 } else if (kmemleak_early_log) {
1005 log_early(KMEMLEAK_ALLOC, area->addr, size, 2);
1006 /* reusing early_log.size for storing area->addr */
1007 log_early(KMEMLEAK_SET_EXCESS_REF,
1008 area, (unsigned long)area->addr, 0);
1009 }
1010}
1011EXPORT_SYMBOL_GPL(kmemleak_vmalloc);
1012
1013/**
1014 * kmemleak_free - unregister a previously registered object
1015 * @ptr: pointer to beginning of the object
1016 *
1017 * This function is called from the kernel allocators when an object (memory
1018 * block) is freed (kmem_cache_free, kfree, vfree etc.).
1019 */
1020void __ref kmemleak_free(const void *ptr)
1021{
1022 pr_debug("%s(0x%p)\n", __func__, ptr);
1023
1024 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
1025 delete_object_full((unsigned long)ptr);
1026 else if (kmemleak_early_log)
1027 log_early(KMEMLEAK_FREE, ptr, 0, 0);
1028}
1029EXPORT_SYMBOL_GPL(kmemleak_free);
1030
1031/**
1032 * kmemleak_free_part - partially unregister a previously registered object
1033 * @ptr: pointer to the beginning or inside the object. This also
1034 * represents the start of the range to be freed
1035 * @size: size to be unregistered
1036 *
1037 * This function is called when only a part of a memory block is freed
1038 * (usually from the bootmem allocator).
1039 */
1040void __ref kmemleak_free_part(const void *ptr, size_t size)
1041{
1042 pr_debug("%s(0x%p)\n", __func__, ptr);
1043
1044 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1045 delete_object_part((unsigned long)ptr, size);
1046 else if (kmemleak_early_log)
1047 log_early(KMEMLEAK_FREE_PART, ptr, size, 0);
1048}
1049EXPORT_SYMBOL_GPL(kmemleak_free_part);
1050
1051/**
1052 * kmemleak_free_percpu - unregister a previously registered __percpu object
1053 * @ptr: __percpu pointer to beginning of the object
1054 *
1055 * This function is called from the kernel percpu allocator when an object
1056 * (memory block) is freed (free_percpu).
1057 */
1058void __ref kmemleak_free_percpu(const void __percpu *ptr)
1059{
1060 unsigned int cpu;
1061
1062 pr_debug("%s(0x%p)\n", __func__, ptr);
1063
1064 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
1065 for_each_possible_cpu(cpu)
1066 delete_object_full((unsigned long)per_cpu_ptr(ptr,
1067 cpu));
1068 else if (kmemleak_early_log)
1069 log_early(KMEMLEAK_FREE_PERCPU, ptr, 0, 0);
1070}
1071EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
1072
1073/**
1074 * kmemleak_update_trace - update object allocation stack trace
1075 * @ptr: pointer to beginning of the object
1076 *
1077 * Override the object allocation stack trace for cases where the actual
1078 * allocation place is not always useful.
1079 */
1080void __ref kmemleak_update_trace(const void *ptr)
1081{
1082 struct kmemleak_object *object;
1083 unsigned long flags;
1084
1085 pr_debug("%s(0x%p)\n", __func__, ptr);
1086
1087 if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr))
1088 return;
1089
1090 object = find_and_get_object((unsigned long)ptr, 1);
1091 if (!object) {
1092#ifdef DEBUG
1093 kmemleak_warn("Updating stack trace for unknown object at %p\n",
1094 ptr);
1095#endif
1096 return;
1097 }
1098
1099 spin_lock_irqsave(&object->lock, flags);
1100 object->trace_len = __save_stack_trace(object->trace);
1101 spin_unlock_irqrestore(&object->lock, flags);
1102
1103 put_object(object);
1104}
1105EXPORT_SYMBOL(kmemleak_update_trace);
1106
1107/**
1108 * kmemleak_not_leak - mark an allocated object as false positive
1109 * @ptr: pointer to beginning of the object
1110 *
1111 * Calling this function on an object will cause the memory block to no longer
1112 * be reported as leak and always be scanned.
1113 */
1114void __ref kmemleak_not_leak(const void *ptr)
1115{
1116 pr_debug("%s(0x%p)\n", __func__, ptr);
1117
1118 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1119 make_gray_object((unsigned long)ptr);
1120 else if (kmemleak_early_log)
1121 log_early(KMEMLEAK_NOT_LEAK, ptr, 0, 0);
1122}
1123EXPORT_SYMBOL(kmemleak_not_leak);
1124
1125/**
1126 * kmemleak_ignore - ignore an allocated object
1127 * @ptr: pointer to beginning of the object
1128 *
1129 * Calling this function on an object will cause the memory block to be
1130 * ignored (not scanned and not reported as a leak). This is usually done when
1131 * it is known that the corresponding block is not a leak and does not contain
1132 * any references to other allocated memory blocks.
1133 */
1134void __ref kmemleak_ignore(const void *ptr)
1135{
1136 pr_debug("%s(0x%p)\n", __func__, ptr);
1137
1138 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1139 make_black_object((unsigned long)ptr);
1140 else if (kmemleak_early_log)
1141 log_early(KMEMLEAK_IGNORE, ptr, 0, 0);
1142}
1143EXPORT_SYMBOL(kmemleak_ignore);
1144
1145/**
1146 * kmemleak_scan_area - limit the range to be scanned in an allocated object
1147 * @ptr: pointer to beginning or inside the object. This also
1148 * represents the start of the scan area
1149 * @size: size of the scan area
1150 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
1151 *
1152 * This function is used when it is known that only certain parts of an object
1153 * contain references to other objects. Kmemleak will only scan these areas
1154 * reducing the number false negatives.
1155 */
1156void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
1157{
1158 pr_debug("%s(0x%p)\n", __func__, ptr);
1159
1160 if (kmemleak_enabled && ptr && size && !IS_ERR(ptr))
1161 add_scan_area((unsigned long)ptr, size, gfp);
1162 else if (kmemleak_early_log)
1163 log_early(KMEMLEAK_SCAN_AREA, ptr, size, 0);
1164}
1165EXPORT_SYMBOL(kmemleak_scan_area);
1166
1167/**
1168 * kmemleak_no_scan - do not scan an allocated object
1169 * @ptr: pointer to beginning of the object
1170 *
1171 * This function notifies kmemleak not to scan the given memory block. Useful
1172 * in situations where it is known that the given object does not contain any
1173 * references to other objects. Kmemleak will not scan such objects reducing
1174 * the number of false negatives.
1175 */
1176void __ref kmemleak_no_scan(const void *ptr)
1177{
1178 pr_debug("%s(0x%p)\n", __func__, ptr);
1179
1180 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1181 object_no_scan((unsigned long)ptr);
1182 else if (kmemleak_early_log)
1183 log_early(KMEMLEAK_NO_SCAN, ptr, 0, 0);
1184}
1185EXPORT_SYMBOL(kmemleak_no_scan);
1186
1187/**
1188 * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical
1189 * address argument
1190 * @phys: physical address of the object
1191 * @size: size of the object
1192 * @min_count: minimum number of references to this object.
1193 * See kmemleak_alloc()
1194 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
1195 */
1196void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, int min_count,
1197 gfp_t gfp)
1198{
1199 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1200 kmemleak_alloc(__va(phys), size, min_count, gfp);
1201}
1202EXPORT_SYMBOL(kmemleak_alloc_phys);
1203
1204/**
1205 * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a
1206 * physical address argument
1207 * @phys: physical address if the beginning or inside an object. This
1208 * also represents the start of the range to be freed
1209 * @size: size to be unregistered
1210 */
1211void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size)
1212{
1213 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1214 kmemleak_free_part(__va(phys), size);
1215}
1216EXPORT_SYMBOL(kmemleak_free_part_phys);
1217
1218/**
1219 * kmemleak_not_leak_phys - similar to kmemleak_not_leak but taking a physical
1220 * address argument
1221 * @phys: physical address of the object
1222 */
1223void __ref kmemleak_not_leak_phys(phys_addr_t phys)
1224{
1225 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1226 kmemleak_not_leak(__va(phys));
1227}
1228EXPORT_SYMBOL(kmemleak_not_leak_phys);
1229
1230/**
1231 * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical
1232 * address argument
1233 * @phys: physical address of the object
1234 */
1235void __ref kmemleak_ignore_phys(phys_addr_t phys)
1236{
1237 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1238 kmemleak_ignore(__va(phys));
1239}
1240EXPORT_SYMBOL(kmemleak_ignore_phys);
1241
1242/*
1243 * Update an object's checksum and return true if it was modified.
1244 */
1245static bool update_checksum(struct kmemleak_object *object)
1246{
1247 u32 old_csum = object->checksum;
1248
1249 kasan_disable_current();
1250 object->checksum = crc32(0, (void *)object->pointer, object->size);
1251 kasan_enable_current();
1252
1253 return object->checksum != old_csum;
1254}
1255
1256/*
1257 * Update an object's references. object->lock must be held by the caller.
1258 */
1259static void update_refs(struct kmemleak_object *object)
1260{
1261 if (!color_white(object)) {
1262 /* non-orphan, ignored or new */
1263 return;
1264 }
1265
1266 /*
1267 * Increase the object's reference count (number of pointers to the
1268 * memory block). If this count reaches the required minimum, the
1269 * object's color will become gray and it will be added to the
1270 * gray_list.
1271 */
1272 object->count++;
1273 if (color_gray(object)) {
1274 /* put_object() called when removing from gray_list */
1275 WARN_ON(!get_object(object));
1276 list_add_tail(&object->gray_list, &gray_list);
1277 }
1278}
1279
1280/*
1281 * Memory scanning is a long process and it needs to be interruptable. This
1282 * function checks whether such interrupt condition occurred.
1283 */
1284static int scan_should_stop(void)
1285{
1286 if (!kmemleak_enabled)
1287 return 1;
1288
1289 /*
1290 * This function may be called from either process or kthread context,
1291 * hence the need to check for both stop conditions.
1292 */
1293 if (current->mm)
1294 return signal_pending(current);
1295 else
1296 return kthread_should_stop();
1297
1298 return 0;
1299}
1300
1301/*
1302 * Scan a memory block (exclusive range) for valid pointers and add those
1303 * found to the gray list.
1304 */
1305static void scan_block(void *_start, void *_end,
1306 struct kmemleak_object *scanned)
1307{
1308 unsigned long *ptr;
1309 unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1310 unsigned long *end = _end - (BYTES_PER_POINTER - 1);
1311 unsigned long flags;
1312
1313 read_lock_irqsave(&kmemleak_lock, flags);
1314 for (ptr = start; ptr < end; ptr++) {
1315 struct kmemleak_object *object;
1316 unsigned long pointer;
1317 unsigned long excess_ref;
1318
1319 if (scan_should_stop())
1320 break;
1321
1322 kasan_disable_current();
1323 pointer = *ptr;
1324 kasan_enable_current();
1325
1326 if (pointer < min_addr || pointer >= max_addr)
1327 continue;
1328
1329 /*
1330 * No need for get_object() here since we hold kmemleak_lock.
1331 * object->use_count cannot be dropped to 0 while the object
1332 * is still present in object_tree_root and object_list
1333 * (with updates protected by kmemleak_lock).
1334 */
1335 object = lookup_object(pointer, 1);
1336 if (!object)
1337 continue;
1338 if (object == scanned)
1339 /* self referenced, ignore */
1340 continue;
1341
1342 /*
1343 * Avoid the lockdep recursive warning on object->lock being
1344 * previously acquired in scan_object(). These locks are
1345 * enclosed by scan_mutex.
1346 */
1347 spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1348 /* only pass surplus references (object already gray) */
1349 if (color_gray(object)) {
1350 excess_ref = object->excess_ref;
1351 /* no need for update_refs() if object already gray */
1352 } else {
1353 excess_ref = 0;
1354 update_refs(object);
1355 }
1356 spin_unlock(&object->lock);
1357
1358 if (excess_ref) {
1359 object = lookup_object(excess_ref, 0);
1360 if (!object)
1361 continue;
1362 if (object == scanned)
1363 /* circular reference, ignore */
1364 continue;
1365 spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1366 update_refs(object);
1367 spin_unlock(&object->lock);
1368 }
1369 }
1370 read_unlock_irqrestore(&kmemleak_lock, flags);
1371}
1372
1373/*
1374 * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency.
1375 */
1376static void scan_large_block(void *start, void *end)
1377{
1378 void *next;
1379
1380 while (start < end) {
1381 next = min(start + MAX_SCAN_SIZE, end);
1382 scan_block(start, next, NULL);
1383 start = next;
1384 cond_resched();
1385 }
1386}
1387
1388/*
1389 * Scan a memory block corresponding to a kmemleak_object. A condition is
1390 * that object->use_count >= 1.
1391 */
1392static void scan_object(struct kmemleak_object *object)
1393{
1394 struct kmemleak_scan_area *area;
1395 unsigned long flags;
1396
1397 /*
1398 * Once the object->lock is acquired, the corresponding memory block
1399 * cannot be freed (the same lock is acquired in delete_object).
1400 */
1401 spin_lock_irqsave(&object->lock, flags);
1402 if (object->flags & OBJECT_NO_SCAN)
1403 goto out;
1404 if (!(object->flags & OBJECT_ALLOCATED))
1405 /* already freed object */
1406 goto out;
1407 if (hlist_empty(&object->area_list)) {
1408 void *start = (void *)object->pointer;
1409 void *end = (void *)(object->pointer + object->size);
1410 void *next;
1411
1412 do {
1413 next = min(start + MAX_SCAN_SIZE, end);
1414 scan_block(start, next, object);
1415
1416 start = next;
1417 if (start >= end)
1418 break;
1419
1420 spin_unlock_irqrestore(&object->lock, flags);
1421 cond_resched();
1422 spin_lock_irqsave(&object->lock, flags);
1423 } while (object->flags & OBJECT_ALLOCATED);
1424 } else
1425 hlist_for_each_entry(area, &object->area_list, node)
1426 scan_block((void *)area->start,
1427 (void *)(area->start + area->size),
1428 object);
1429out:
1430 spin_unlock_irqrestore(&object->lock, flags);
1431}
1432
1433/*
1434 * Scan the objects already referenced (gray objects). More objects will be
1435 * referenced and, if there are no memory leaks, all the objects are scanned.
1436 */
1437static void scan_gray_list(void)
1438{
1439 struct kmemleak_object *object, *tmp;
1440
1441 /*
1442 * The list traversal is safe for both tail additions and removals
1443 * from inside the loop. The kmemleak objects cannot be freed from
1444 * outside the loop because their use_count was incremented.
1445 */
1446 object = list_entry(gray_list.next, typeof(*object), gray_list);
1447 while (&object->gray_list != &gray_list) {
1448 cond_resched();
1449
1450 /* may add new objects to the list */
1451 if (!scan_should_stop())
1452 scan_object(object);
1453
1454 tmp = list_entry(object->gray_list.next, typeof(*object),
1455 gray_list);
1456
1457 /* remove the object from the list and release it */
1458 list_del(&object->gray_list);
1459 put_object(object);
1460
1461 object = tmp;
1462 }
1463 WARN_ON(!list_empty(&gray_list));
1464}
1465
1466/*
1467 * Scan data sections and all the referenced memory blocks allocated via the
1468 * kernel's standard allocators. This function must be called with the
1469 * scan_mutex held.
1470 */
1471static void kmemleak_scan(void)
1472{
1473 unsigned long flags;
1474 struct kmemleak_object *object;
1475 int i;
1476 int new_leaks = 0;
1477
1478 jiffies_last_scan = jiffies;
1479
1480 /* prepare the kmemleak_object's */
1481 rcu_read_lock();
1482 list_for_each_entry_rcu(object, &object_list, object_list) {
1483 spin_lock_irqsave(&object->lock, flags);
1484#ifdef DEBUG
1485 /*
1486 * With a few exceptions there should be a maximum of
1487 * 1 reference to any object at this point.
1488 */
1489 if (atomic_read(&object->use_count) > 1) {
1490 pr_debug("object->use_count = %d\n",
1491 atomic_read(&object->use_count));
1492 dump_object_info(object);
1493 }
1494#endif
1495 /* reset the reference count (whiten the object) */
1496 object->count = 0;
1497 if (color_gray(object) && get_object(object))
1498 list_add_tail(&object->gray_list, &gray_list);
1499
1500 spin_unlock_irqrestore(&object->lock, flags);
1501 }
1502 rcu_read_unlock();
1503
1504 /* data/bss scanning */
1505 scan_large_block(_sdata, _edata);
1506 scan_large_block(__bss_start, __bss_stop);
1507 scan_large_block(__start_ro_after_init, __end_ro_after_init);
1508
1509#ifdef CONFIG_SMP
1510 /* per-cpu sections scanning */
1511 for_each_possible_cpu(i)
1512 scan_large_block(__per_cpu_start + per_cpu_offset(i),
1513 __per_cpu_end + per_cpu_offset(i));
1514#endif
1515
1516 /*
1517 * Struct page scanning for each node.
1518 */
1519 get_online_mems();
1520 for_each_online_node(i) {
1521 unsigned long start_pfn = node_start_pfn(i);
1522 unsigned long end_pfn = node_end_pfn(i);
1523 unsigned long pfn;
1524
1525 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1526 struct page *page;
1527
1528 if (!pfn_valid(pfn))
1529 continue;
1530 page = pfn_to_page(pfn);
1531 /* only scan if page is in use */
1532 if (page_count(page) == 0)
1533 continue;
1534 scan_block(page, page + 1, NULL);
1535 if (!(pfn & 63))
1536 cond_resched();
1537 }
1538 }
1539 put_online_mems();
1540
1541 /*
1542 * Scanning the task stacks (may introduce false negatives).
1543 */
1544 if (kmemleak_stack_scan) {
1545 struct task_struct *p, *g;
1546
1547 read_lock(&tasklist_lock);
1548 do_each_thread(g, p) {
1549 void *stack = try_get_task_stack(p);
1550 if (stack) {
1551 scan_block(stack, stack + THREAD_SIZE, NULL);
1552 put_task_stack(p);
1553 }
1554 } while_each_thread(g, p);
1555 read_unlock(&tasklist_lock);
1556 }
1557
1558 /*
1559 * Scan the objects already referenced from the sections scanned
1560 * above.
1561 */
1562 scan_gray_list();
1563
1564 /*
1565 * Check for new or unreferenced objects modified since the previous
1566 * scan and color them gray until the next scan.
1567 */
1568 rcu_read_lock();
1569 list_for_each_entry_rcu(object, &object_list, object_list) {
1570 spin_lock_irqsave(&object->lock, flags);
1571 if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1572 && update_checksum(object) && get_object(object)) {
1573 /* color it gray temporarily */
1574 object->count = object->min_count;
1575 list_add_tail(&object->gray_list, &gray_list);
1576 }
1577 spin_unlock_irqrestore(&object->lock, flags);
1578 }
1579 rcu_read_unlock();
1580
1581 /*
1582 * Re-scan the gray list for modified unreferenced objects.
1583 */
1584 scan_gray_list();
1585
1586 /*
1587 * If scanning was stopped do not report any new unreferenced objects.
1588 */
1589 if (scan_should_stop())
1590 return;
1591
1592 /*
1593 * Scanning result reporting.
1594 */
1595 rcu_read_lock();
1596 list_for_each_entry_rcu(object, &object_list, object_list) {
1597 spin_lock_irqsave(&object->lock, flags);
1598 if (unreferenced_object(object) &&
1599 !(object->flags & OBJECT_REPORTED)) {
1600 object->flags |= OBJECT_REPORTED;
1601 new_leaks++;
1602 }
1603 spin_unlock_irqrestore(&object->lock, flags);
1604 }
1605 rcu_read_unlock();
1606
1607 if (new_leaks) {
1608 kmemleak_found_leaks = true;
1609
1610 pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n",
1611 new_leaks);
1612 }
1613
1614}
1615
1616/*
1617 * Thread function performing automatic memory scanning. Unreferenced objects
1618 * at the end of a memory scan are reported but only the first time.
1619 */
1620static int kmemleak_scan_thread(void *arg)
1621{
1622 static int first_run = 1;
1623
1624 pr_info("Automatic memory scanning thread started\n");
1625 set_user_nice(current, 10);
1626
1627 /*
1628 * Wait before the first scan to allow the system to fully initialize.
1629 */
1630 if (first_run) {
1631 signed long timeout = msecs_to_jiffies(SECS_FIRST_SCAN * 1000);
1632 first_run = 0;
1633 while (timeout && !kthread_should_stop())
1634 timeout = schedule_timeout_interruptible(timeout);
1635 }
1636
1637 while (!kthread_should_stop()) {
1638 signed long timeout = jiffies_scan_wait;
1639
1640 mutex_lock(&scan_mutex);
1641 kmemleak_scan();
1642 mutex_unlock(&scan_mutex);
1643
1644 /* wait before the next scan */
1645 while (timeout && !kthread_should_stop())
1646 timeout = schedule_timeout_interruptible(timeout);
1647 }
1648
1649 pr_info("Automatic memory scanning thread ended\n");
1650
1651 return 0;
1652}
1653
1654/*
1655 * Start the automatic memory scanning thread. This function must be called
1656 * with the scan_mutex held.
1657 */
1658static void start_scan_thread(void)
1659{
1660 if (scan_thread)
1661 return;
1662 scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1663 if (IS_ERR(scan_thread)) {
1664 pr_warn("Failed to create the scan thread\n");
1665 scan_thread = NULL;
1666 }
1667}
1668
1669/*
1670 * Stop the automatic memory scanning thread.
1671 */
1672static void stop_scan_thread(void)
1673{
1674 if (scan_thread) {
1675 kthread_stop(scan_thread);
1676 scan_thread = NULL;
1677 }
1678}
1679
1680/*
1681 * Iterate over the object_list and return the first valid object at or after
1682 * the required position with its use_count incremented. The function triggers
1683 * a memory scanning when the pos argument points to the first position.
1684 */
1685static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1686{
1687 struct kmemleak_object *object;
1688 loff_t n = *pos;
1689 int err;
1690
1691 err = mutex_lock_interruptible(&scan_mutex);
1692 if (err < 0)
1693 return ERR_PTR(err);
1694
1695 rcu_read_lock();
1696 list_for_each_entry_rcu(object, &object_list, object_list) {
1697 if (n-- > 0)
1698 continue;
1699 if (get_object(object))
1700 goto out;
1701 }
1702 object = NULL;
1703out:
1704 return object;
1705}
1706
1707/*
1708 * Return the next object in the object_list. The function decrements the
1709 * use_count of the previous object and increases that of the next one.
1710 */
1711static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1712{
1713 struct kmemleak_object *prev_obj = v;
1714 struct kmemleak_object *next_obj = NULL;
1715 struct kmemleak_object *obj = prev_obj;
1716
1717 ++(*pos);
1718
1719 list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
1720 if (get_object(obj)) {
1721 next_obj = obj;
1722 break;
1723 }
1724 }
1725
1726 put_object(prev_obj);
1727 return next_obj;
1728}
1729
1730/*
1731 * Decrement the use_count of the last object required, if any.
1732 */
1733static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1734{
1735 if (!IS_ERR(v)) {
1736 /*
1737 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1738 * waiting was interrupted, so only release it if !IS_ERR.
1739 */
1740 rcu_read_unlock();
1741 mutex_unlock(&scan_mutex);
1742 if (v)
1743 put_object(v);
1744 }
1745}
1746
1747/*
1748 * Print the information for an unreferenced object to the seq file.
1749 */
1750static int kmemleak_seq_show(struct seq_file *seq, void *v)
1751{
1752 struct kmemleak_object *object = v;
1753 unsigned long flags;
1754
1755 spin_lock_irqsave(&object->lock, flags);
1756 if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
1757 print_unreferenced(seq, object);
1758 spin_unlock_irqrestore(&object->lock, flags);
1759 return 0;
1760}
1761
1762static const struct seq_operations kmemleak_seq_ops = {
1763 .start = kmemleak_seq_start,
1764 .next = kmemleak_seq_next,
1765 .stop = kmemleak_seq_stop,
1766 .show = kmemleak_seq_show,
1767};
1768
1769static int kmemleak_open(struct inode *inode, struct file *file)
1770{
1771 return seq_open(file, &kmemleak_seq_ops);
1772}
1773
1774static int dump_str_object_info(const char *str)
1775{
1776 unsigned long flags;
1777 struct kmemleak_object *object;
1778 unsigned long addr;
1779
1780 if (kstrtoul(str, 0, &addr))
1781 return -EINVAL;
1782 object = find_and_get_object(addr, 0);
1783 if (!object) {
1784 pr_info("Unknown object at 0x%08lx\n", addr);
1785 return -EINVAL;
1786 }
1787
1788 spin_lock_irqsave(&object->lock, flags);
1789 dump_object_info(object);
1790 spin_unlock_irqrestore(&object->lock, flags);
1791
1792 put_object(object);
1793 return 0;
1794}
1795
1796/*
1797 * We use grey instead of black to ensure we can do future scans on the same
1798 * objects. If we did not do future scans these black objects could
1799 * potentially contain references to newly allocated objects in the future and
1800 * we'd end up with false positives.
1801 */
1802static void kmemleak_clear(void)
1803{
1804 struct kmemleak_object *object;
1805 unsigned long flags;
1806
1807 rcu_read_lock();
1808 list_for_each_entry_rcu(object, &object_list, object_list) {
1809 spin_lock_irqsave(&object->lock, flags);
1810 if ((object->flags & OBJECT_REPORTED) &&
1811 unreferenced_object(object))
1812 __paint_it(object, KMEMLEAK_GREY);
1813 spin_unlock_irqrestore(&object->lock, flags);
1814 }
1815 rcu_read_unlock();
1816
1817 kmemleak_found_leaks = false;
1818}
1819
1820static void __kmemleak_do_cleanup(void);
1821
1822/*
1823 * File write operation to configure kmemleak at run-time. The following
1824 * commands can be written to the /sys/kernel/debug/kmemleak file:
1825 * off - disable kmemleak (irreversible)
1826 * stack=on - enable the task stacks scanning
1827 * stack=off - disable the tasks stacks scanning
1828 * scan=on - start the automatic memory scanning thread
1829 * scan=off - stop the automatic memory scanning thread
1830 * scan=... - set the automatic memory scanning period in seconds (0 to
1831 * disable it)
1832 * scan - trigger a memory scan
1833 * clear - mark all current reported unreferenced kmemleak objects as
1834 * grey to ignore printing them, or free all kmemleak objects
1835 * if kmemleak has been disabled.
1836 * dump=... - dump information about the object found at the given address
1837 */
1838static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1839 size_t size, loff_t *ppos)
1840{
1841 char buf[64];
1842 int buf_size;
1843 int ret;
1844
1845 buf_size = min(size, (sizeof(buf) - 1));
1846 if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1847 return -EFAULT;
1848 buf[buf_size] = 0;
1849
1850 ret = mutex_lock_interruptible(&scan_mutex);
1851 if (ret < 0)
1852 return ret;
1853
1854 if (strncmp(buf, "clear", 5) == 0) {
1855 if (kmemleak_enabled)
1856 kmemleak_clear();
1857 else
1858 __kmemleak_do_cleanup();
1859 goto out;
1860 }
1861
1862 if (!kmemleak_enabled) {
1863 ret = -EBUSY;
1864 goto out;
1865 }
1866
1867 if (strncmp(buf, "off", 3) == 0)
1868 kmemleak_disable();
1869 else if (strncmp(buf, "stack=on", 8) == 0)
1870 kmemleak_stack_scan = 1;
1871 else if (strncmp(buf, "stack=off", 9) == 0)
1872 kmemleak_stack_scan = 0;
1873 else if (strncmp(buf, "scan=on", 7) == 0)
1874 start_scan_thread();
1875 else if (strncmp(buf, "scan=off", 8) == 0)
1876 stop_scan_thread();
1877 else if (strncmp(buf, "scan=", 5) == 0) {
1878 unsigned long secs;
1879
1880 ret = kstrtoul(buf + 5, 0, &secs);
1881 if (ret < 0)
1882 goto out;
1883 stop_scan_thread();
1884 if (secs) {
1885 jiffies_scan_wait = msecs_to_jiffies(secs * 1000);
1886 start_scan_thread();
1887 }
1888 } else if (strncmp(buf, "scan", 4) == 0)
1889 kmemleak_scan();
1890 else if (strncmp(buf, "dump=", 5) == 0)
1891 ret = dump_str_object_info(buf + 5);
1892 else
1893 ret = -EINVAL;
1894
1895out:
1896 mutex_unlock(&scan_mutex);
1897 if (ret < 0)
1898 return ret;
1899
1900 /* ignore the rest of the buffer, only one command at a time */
1901 *ppos += size;
1902 return size;
1903}
1904
1905static const struct file_operations kmemleak_fops = {
1906 .owner = THIS_MODULE,
1907 .open = kmemleak_open,
1908 .read = seq_read,
1909 .write = kmemleak_write,
1910 .llseek = seq_lseek,
1911 .release = seq_release,
1912};
1913
1914static void __kmemleak_do_cleanup(void)
1915{
1916 struct kmemleak_object *object;
1917
1918 rcu_read_lock();
1919 list_for_each_entry_rcu(object, &object_list, object_list)
1920 delete_object_full(object->pointer);
1921 rcu_read_unlock();
1922}
1923
1924/*
1925 * Stop the memory scanning thread and free the kmemleak internal objects if
1926 * no previous scan thread (otherwise, kmemleak may still have some useful
1927 * information on memory leaks).
1928 */
1929static void kmemleak_do_cleanup(struct work_struct *work)
1930{
1931 stop_scan_thread();
1932
1933 mutex_lock(&scan_mutex);
1934 /*
1935 * Once it is made sure that kmemleak_scan has stopped, it is safe to no
1936 * longer track object freeing. Ordering of the scan thread stopping and
1937 * the memory accesses below is guaranteed by the kthread_stop()
1938 * function.
1939 */
1940 kmemleak_free_enabled = 0;
1941 mutex_unlock(&scan_mutex);
1942
1943 if (!kmemleak_found_leaks)
1944 __kmemleak_do_cleanup();
1945 else
1946 pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n");
1947}
1948
1949static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
1950
1951/*
1952 * Disable kmemleak. No memory allocation/freeing will be traced once this
1953 * function is called. Disabling kmemleak is an irreversible operation.
1954 */
1955static void kmemleak_disable(void)
1956{
1957 /* atomically check whether it was already invoked */
1958 if (cmpxchg(&kmemleak_error, 0, 1))
1959 return;
1960
1961 /* stop any memory operation tracing */
1962 kmemleak_enabled = 0;
1963
1964 /* check whether it is too early for a kernel thread */
1965 if (kmemleak_initialized)
1966 schedule_work(&cleanup_work);
1967 else
1968 kmemleak_free_enabled = 0;
1969
1970 pr_info("Kernel memory leak detector disabled\n");
1971}
1972
1973/*
1974 * Allow boot-time kmemleak disabling (enabled by default).
1975 */
1976static int __init kmemleak_boot_config(char *str)
1977{
1978 if (!str)
1979 return -EINVAL;
1980 if (strcmp(str, "off") == 0)
1981 kmemleak_disable();
1982 else if (strcmp(str, "on") == 0)
1983 kmemleak_skip_disable = 1;
1984 else
1985 return -EINVAL;
1986 return 0;
1987}
1988early_param("kmemleak", kmemleak_boot_config);
1989
1990static void __init print_log_trace(struct early_log *log)
1991{
1992 struct stack_trace trace;
1993
1994 trace.nr_entries = log->trace_len;
1995 trace.entries = log->trace;
1996
1997 pr_notice("Early log backtrace:\n");
1998 print_stack_trace(&trace, 2);
1999}
2000
2001/*
2002 * Kmemleak initialization.
2003 */
2004void __init kmemleak_init(void)
2005{
2006 int i;
2007 unsigned long flags;
2008
2009#ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
2010 if (!kmemleak_skip_disable) {
2011 kmemleak_early_log = 0;
2012 kmemleak_disable();
2013 return;
2014 }
2015#endif
2016
2017 jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
2018 jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
2019
2020 object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
2021 scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
2022
2023 if (crt_early_log > ARRAY_SIZE(early_log))
2024 pr_warn("Early log buffer exceeded (%d), please increase DEBUG_KMEMLEAK_EARLY_LOG_SIZE\n",
2025 crt_early_log);
2026
2027 /* the kernel is still in UP mode, so disabling the IRQs is enough */
2028 local_irq_save(flags);
2029 kmemleak_early_log = 0;
2030 if (kmemleak_error) {
2031 local_irq_restore(flags);
2032 return;
2033 } else {
2034 kmemleak_enabled = 1;
2035 kmemleak_free_enabled = 1;
2036 }
2037 local_irq_restore(flags);
2038
2039 /*
2040 * This is the point where tracking allocations is safe. Automatic
2041 * scanning is started during the late initcall. Add the early logged
2042 * callbacks to the kmemleak infrastructure.
2043 */
2044 for (i = 0; i < crt_early_log; i++) {
2045 struct early_log *log = &early_log[i];
2046
2047 switch (log->op_type) {
2048 case KMEMLEAK_ALLOC:
2049 early_alloc(log);
2050 break;
2051 case KMEMLEAK_ALLOC_PERCPU:
2052 early_alloc_percpu(log);
2053 break;
2054 case KMEMLEAK_FREE:
2055 kmemleak_free(log->ptr);
2056 break;
2057 case KMEMLEAK_FREE_PART:
2058 kmemleak_free_part(log->ptr, log->size);
2059 break;
2060 case KMEMLEAK_FREE_PERCPU:
2061 kmemleak_free_percpu(log->ptr);
2062 break;
2063 case KMEMLEAK_NOT_LEAK:
2064 kmemleak_not_leak(log->ptr);
2065 break;
2066 case KMEMLEAK_IGNORE:
2067 kmemleak_ignore(log->ptr);
2068 break;
2069 case KMEMLEAK_SCAN_AREA:
2070 kmemleak_scan_area(log->ptr, log->size, GFP_KERNEL);
2071 break;
2072 case KMEMLEAK_NO_SCAN:
2073 kmemleak_no_scan(log->ptr);
2074 break;
2075 case KMEMLEAK_SET_EXCESS_REF:
2076 object_set_excess_ref((unsigned long)log->ptr,
2077 log->excess_ref);
2078 break;
2079 default:
2080 kmemleak_warn("Unknown early log operation: %d\n",
2081 log->op_type);
2082 }
2083
2084 if (kmemleak_warning) {
2085 print_log_trace(log);
2086 kmemleak_warning = 0;
2087 }
2088 }
2089}
2090
2091/*
2092 * Late initialization function.
2093 */
2094static int __init kmemleak_late_init(void)
2095{
2096 struct dentry *dentry;
2097
2098 kmemleak_initialized = 1;
2099
2100 if (kmemleak_error) {
2101 /*
2102 * Some error occurred and kmemleak was disabled. There is a
2103 * small chance that kmemleak_disable() was called immediately
2104 * after setting kmemleak_initialized and we may end up with
2105 * two clean-up threads but serialized by scan_mutex.
2106 */
2107 schedule_work(&cleanup_work);
2108 return -ENOMEM;
2109 }
2110
2111 dentry = debugfs_create_file("kmemleak", 0644, NULL, NULL,
2112 &kmemleak_fops);
2113 if (!dentry)
2114 pr_warn("Failed to create the debugfs kmemleak file\n");
2115 mutex_lock(&scan_mutex);
2116 start_scan_thread();
2117 mutex_unlock(&scan_mutex);
2118
2119 pr_info("Kernel memory leak detector initialized\n");
2120
2121 return 0;
2122}
2123late_initcall(kmemleak_late_init);