Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * mm/kmemleak.c
4 *
5 * Copyright (C) 2008 ARM Limited
6 * Written by Catalin Marinas <catalin.marinas@arm.com>
7 *
8 * For more information on the algorithm and kmemleak usage, please see
9 * Documentation/dev-tools/kmemleak.rst.
10 *
11 * Notes on locking
12 * ----------------
13 *
14 * The following locks and mutexes are used by kmemleak:
15 *
16 * - kmemleak_lock (raw_spinlock_t): protects the object_list modifications and
17 * accesses to the object_tree_root (or object_phys_tree_root). The
18 * object_list is the main list holding the metadata (struct kmemleak_object)
19 * for the allocated memory blocks. The object_tree_root and object_phys_tree_root
20 * are red black trees used to look-up metadata based on a pointer to the
21 * corresponding memory block. The object_phys_tree_root is for objects
22 * allocated with physical address. The kmemleak_object structures are
23 * added to the object_list and object_tree_root (or object_phys_tree_root)
24 * in the create_object() function called from the kmemleak_alloc() (or
25 * kmemleak_alloc_phys()) callback and removed in delete_object() called from
26 * the kmemleak_free() callback
27 * - kmemleak_object.lock (raw_spinlock_t): protects a kmemleak_object.
28 * Accesses to the metadata (e.g. count) are protected by this lock. Note
29 * that some members of this structure may be protected by other means
30 * (atomic or kmemleak_lock). This lock is also held when scanning the
31 * corresponding memory block to avoid the kernel freeing it via the
32 * kmemleak_free() callback. This is less heavyweight than holding a global
33 * lock like kmemleak_lock during scanning.
34 * - scan_mutex (mutex): ensures that only one thread may scan the memory for
35 * unreferenced objects at a time. The gray_list contains the objects which
36 * are already referenced or marked as false positives and need to be
37 * scanned. This list is only modified during a scanning episode when the
38 * scan_mutex is held. At the end of a scan, the gray_list is always empty.
39 * Note that the kmemleak_object.use_count is incremented when an object is
40 * added to the gray_list and therefore cannot be freed. This mutex also
41 * prevents multiple users of the "kmemleak" debugfs file together with
42 * modifications to the memory scanning parameters including the scan_thread
43 * pointer
44 *
45 * Locks and mutexes are acquired/nested in the following order:
46 *
47 * scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING)
48 *
49 * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex
50 * regions.
51 *
52 * The kmemleak_object structures have a use_count incremented or decremented
53 * using the get_object()/put_object() functions. When the use_count becomes
54 * 0, this count can no longer be incremented and put_object() schedules the
55 * kmemleak_object freeing via an RCU callback. All calls to the get_object()
56 * function must be protected by rcu_read_lock() to avoid accessing a freed
57 * structure.
58 */
59
60#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
61
62#include <linux/init.h>
63#include <linux/kernel.h>
64#include <linux/list.h>
65#include <linux/sched/signal.h>
66#include <linux/sched/task.h>
67#include <linux/sched/task_stack.h>
68#include <linux/jiffies.h>
69#include <linux/delay.h>
70#include <linux/export.h>
71#include <linux/kthread.h>
72#include <linux/rbtree.h>
73#include <linux/fs.h>
74#include <linux/debugfs.h>
75#include <linux/seq_file.h>
76#include <linux/cpumask.h>
77#include <linux/spinlock.h>
78#include <linux/module.h>
79#include <linux/mutex.h>
80#include <linux/rcupdate.h>
81#include <linux/stacktrace.h>
82#include <linux/stackdepot.h>
83#include <linux/cache.h>
84#include <linux/percpu.h>
85#include <linux/memblock.h>
86#include <linux/pfn.h>
87#include <linux/mmzone.h>
88#include <linux/slab.h>
89#include <linux/thread_info.h>
90#include <linux/err.h>
91#include <linux/uaccess.h>
92#include <linux/string.h>
93#include <linux/nodemask.h>
94#include <linux/mm.h>
95#include <linux/workqueue.h>
96#include <linux/crc32.h>
97
98#include <asm/sections.h>
99#include <asm/processor.h>
100#include <linux/atomic.h>
101
102#include <linux/kasan.h>
103#include <linux/kfence.h>
104#include <linux/kmemleak.h>
105#include <linux/memory_hotplug.h>
106
107/*
108 * Kmemleak configuration and common defines.
109 */
110#define MAX_TRACE 16 /* stack trace length */
111#define MSECS_MIN_AGE 5000 /* minimum object age for reporting */
112#define SECS_FIRST_SCAN 60 /* delay before the first scan */
113#define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */
114#define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */
115
116#define BYTES_PER_POINTER sizeof(void *)
117
118/* GFP bitmask for kmemleak internal allocations */
119#define gfp_kmemleak_mask(gfp) (((gfp) & (GFP_KERNEL | GFP_ATOMIC | \
120 __GFP_NOLOCKDEP)) | \
121 __GFP_NORETRY | __GFP_NOMEMALLOC | \
122 __GFP_NOWARN)
123
124/* scanning area inside a memory block */
125struct kmemleak_scan_area {
126 struct hlist_node node;
127 unsigned long start;
128 size_t size;
129};
130
131#define KMEMLEAK_GREY 0
132#define KMEMLEAK_BLACK -1
133
134/*
135 * Structure holding the metadata for each allocated memory block.
136 * Modifications to such objects should be made while holding the
137 * object->lock. Insertions or deletions from object_list, gray_list or
138 * rb_node are already protected by the corresponding locks or mutex (see
139 * the notes on locking above). These objects are reference-counted
140 * (use_count) and freed using the RCU mechanism.
141 */
142struct kmemleak_object {
143 raw_spinlock_t lock;
144 unsigned int flags; /* object status flags */
145 struct list_head object_list;
146 struct list_head gray_list;
147 struct rb_node rb_node;
148 struct rcu_head rcu; /* object_list lockless traversal */
149 /* object usage count; object freed when use_count == 0 */
150 atomic_t use_count;
151 unsigned long pointer;
152 size_t size;
153 /* pass surplus references to this pointer */
154 unsigned long excess_ref;
155 /* minimum number of a pointers found before it is considered leak */
156 int min_count;
157 /* the total number of pointers found pointing to this object */
158 int count;
159 /* checksum for detecting modified objects */
160 u32 checksum;
161 /* memory ranges to be scanned inside an object (empty for all) */
162 struct hlist_head area_list;
163 depot_stack_handle_t trace_handle;
164 unsigned long jiffies; /* creation timestamp */
165 pid_t pid; /* pid of the current task */
166 char comm[TASK_COMM_LEN]; /* executable name */
167};
168
169/* flag representing the memory block allocation status */
170#define OBJECT_ALLOCATED (1 << 0)
171/* flag set after the first reporting of an unreference object */
172#define OBJECT_REPORTED (1 << 1)
173/* flag set to not scan the object */
174#define OBJECT_NO_SCAN (1 << 2)
175/* flag set to fully scan the object when scan_area allocation failed */
176#define OBJECT_FULL_SCAN (1 << 3)
177/* flag set for object allocated with physical address */
178#define OBJECT_PHYS (1 << 4)
179
180#define HEX_PREFIX " "
181/* number of bytes to print per line; must be 16 or 32 */
182#define HEX_ROW_SIZE 16
183/* number of bytes to print at a time (1, 2, 4, 8) */
184#define HEX_GROUP_SIZE 1
185/* include ASCII after the hex output */
186#define HEX_ASCII 1
187/* max number of lines to be printed */
188#define HEX_MAX_LINES 2
189
190/* the list of all allocated objects */
191static LIST_HEAD(object_list);
192/* the list of gray-colored objects (see color_gray comment below) */
193static LIST_HEAD(gray_list);
194/* memory pool allocation */
195static struct kmemleak_object mem_pool[CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE];
196static int mem_pool_free_count = ARRAY_SIZE(mem_pool);
197static LIST_HEAD(mem_pool_free_list);
198/* search tree for object boundaries */
199static struct rb_root object_tree_root = RB_ROOT;
200/* search tree for object (with OBJECT_PHYS flag) boundaries */
201static struct rb_root object_phys_tree_root = RB_ROOT;
202/* protecting the access to object_list, object_tree_root (or object_phys_tree_root) */
203static DEFINE_RAW_SPINLOCK(kmemleak_lock);
204
205/* allocation caches for kmemleak internal data */
206static struct kmem_cache *object_cache;
207static struct kmem_cache *scan_area_cache;
208
209/* set if tracing memory operations is enabled */
210static int kmemleak_enabled = 1;
211/* same as above but only for the kmemleak_free() callback */
212static int kmemleak_free_enabled = 1;
213/* set in the late_initcall if there were no errors */
214static int kmemleak_initialized;
215/* set if a kmemleak warning was issued */
216static int kmemleak_warning;
217/* set if a fatal kmemleak error has occurred */
218static int kmemleak_error;
219
220/* minimum and maximum address that may be valid pointers */
221static unsigned long min_addr = ULONG_MAX;
222static unsigned long max_addr;
223
224static struct task_struct *scan_thread;
225/* used to avoid reporting of recently allocated objects */
226static unsigned long jiffies_min_age;
227static unsigned long jiffies_last_scan;
228/* delay between automatic memory scannings */
229static unsigned long jiffies_scan_wait;
230/* enables or disables the task stacks scanning */
231static int kmemleak_stack_scan = 1;
232/* protects the memory scanning, parameters and debug/kmemleak file access */
233static DEFINE_MUTEX(scan_mutex);
234/* setting kmemleak=on, will set this var, skipping the disable */
235static int kmemleak_skip_disable;
236/* If there are leaks that can be reported */
237static bool kmemleak_found_leaks;
238
239static bool kmemleak_verbose;
240module_param_named(verbose, kmemleak_verbose, bool, 0600);
241
242static void kmemleak_disable(void);
243
244/*
245 * Print a warning and dump the stack trace.
246 */
247#define kmemleak_warn(x...) do { \
248 pr_warn(x); \
249 dump_stack(); \
250 kmemleak_warning = 1; \
251} while (0)
252
253/*
254 * Macro invoked when a serious kmemleak condition occurred and cannot be
255 * recovered from. Kmemleak will be disabled and further allocation/freeing
256 * tracing no longer available.
257 */
258#define kmemleak_stop(x...) do { \
259 kmemleak_warn(x); \
260 kmemleak_disable(); \
261} while (0)
262
263#define warn_or_seq_printf(seq, fmt, ...) do { \
264 if (seq) \
265 seq_printf(seq, fmt, ##__VA_ARGS__); \
266 else \
267 pr_warn(fmt, ##__VA_ARGS__); \
268} while (0)
269
270static void warn_or_seq_hex_dump(struct seq_file *seq, int prefix_type,
271 int rowsize, int groupsize, const void *buf,
272 size_t len, bool ascii)
273{
274 if (seq)
275 seq_hex_dump(seq, HEX_PREFIX, prefix_type, rowsize, groupsize,
276 buf, len, ascii);
277 else
278 print_hex_dump(KERN_WARNING, pr_fmt(HEX_PREFIX), prefix_type,
279 rowsize, groupsize, buf, len, ascii);
280}
281
282/*
283 * Printing of the objects hex dump to the seq file. The number of lines to be
284 * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
285 * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
286 * with the object->lock held.
287 */
288static void hex_dump_object(struct seq_file *seq,
289 struct kmemleak_object *object)
290{
291 const u8 *ptr = (const u8 *)object->pointer;
292 size_t len;
293
294 if (WARN_ON_ONCE(object->flags & OBJECT_PHYS))
295 return;
296
297 /* limit the number of lines to HEX_MAX_LINES */
298 len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE);
299
300 warn_or_seq_printf(seq, " hex dump (first %zu bytes):\n", len);
301 kasan_disable_current();
302 warn_or_seq_hex_dump(seq, DUMP_PREFIX_NONE, HEX_ROW_SIZE,
303 HEX_GROUP_SIZE, kasan_reset_tag((void *)ptr), len, HEX_ASCII);
304 kasan_enable_current();
305}
306
307/*
308 * Object colors, encoded with count and min_count:
309 * - white - orphan object, not enough references to it (count < min_count)
310 * - gray - not orphan, not marked as false positive (min_count == 0) or
311 * sufficient references to it (count >= min_count)
312 * - black - ignore, it doesn't contain references (e.g. text section)
313 * (min_count == -1). No function defined for this color.
314 * Newly created objects don't have any color assigned (object->count == -1)
315 * before the next memory scan when they become white.
316 */
317static bool color_white(const struct kmemleak_object *object)
318{
319 return object->count != KMEMLEAK_BLACK &&
320 object->count < object->min_count;
321}
322
323static bool color_gray(const struct kmemleak_object *object)
324{
325 return object->min_count != KMEMLEAK_BLACK &&
326 object->count >= object->min_count;
327}
328
329/*
330 * Objects are considered unreferenced only if their color is white, they have
331 * not be deleted and have a minimum age to avoid false positives caused by
332 * pointers temporarily stored in CPU registers.
333 */
334static bool unreferenced_object(struct kmemleak_object *object)
335{
336 return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
337 time_before_eq(object->jiffies + jiffies_min_age,
338 jiffies_last_scan);
339}
340
341/*
342 * Printing of the unreferenced objects information to the seq file. The
343 * print_unreferenced function must be called with the object->lock held.
344 */
345static void print_unreferenced(struct seq_file *seq,
346 struct kmemleak_object *object)
347{
348 int i;
349 unsigned long *entries;
350 unsigned int nr_entries;
351 unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
352
353 nr_entries = stack_depot_fetch(object->trace_handle, &entries);
354 warn_or_seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
355 object->pointer, object->size);
356 warn_or_seq_printf(seq, " comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
357 object->comm, object->pid, object->jiffies,
358 msecs_age / 1000, msecs_age % 1000);
359 hex_dump_object(seq, object);
360 warn_or_seq_printf(seq, " backtrace:\n");
361
362 for (i = 0; i < nr_entries; i++) {
363 void *ptr = (void *)entries[i];
364 warn_or_seq_printf(seq, " [<%pK>] %pS\n", ptr, ptr);
365 }
366}
367
368/*
369 * Print the kmemleak_object information. This function is used mainly for
370 * debugging special cases when kmemleak operations. It must be called with
371 * the object->lock held.
372 */
373static void dump_object_info(struct kmemleak_object *object)
374{
375 pr_notice("Object 0x%08lx (size %zu):\n",
376 object->pointer, object->size);
377 pr_notice(" comm \"%s\", pid %d, jiffies %lu\n",
378 object->comm, object->pid, object->jiffies);
379 pr_notice(" min_count = %d\n", object->min_count);
380 pr_notice(" count = %d\n", object->count);
381 pr_notice(" flags = 0x%x\n", object->flags);
382 pr_notice(" checksum = %u\n", object->checksum);
383 pr_notice(" backtrace:\n");
384 if (object->trace_handle)
385 stack_depot_print(object->trace_handle);
386}
387
388/*
389 * Look-up a memory block metadata (kmemleak_object) in the object search
390 * tree based on a pointer value. If alias is 0, only values pointing to the
391 * beginning of the memory block are allowed. The kmemleak_lock must be held
392 * when calling this function.
393 */
394static struct kmemleak_object *__lookup_object(unsigned long ptr, int alias,
395 bool is_phys)
396{
397 struct rb_node *rb = is_phys ? object_phys_tree_root.rb_node :
398 object_tree_root.rb_node;
399 unsigned long untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
400
401 while (rb) {
402 struct kmemleak_object *object;
403 unsigned long untagged_objp;
404
405 object = rb_entry(rb, struct kmemleak_object, rb_node);
406 untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer);
407
408 if (untagged_ptr < untagged_objp)
409 rb = object->rb_node.rb_left;
410 else if (untagged_objp + object->size <= untagged_ptr)
411 rb = object->rb_node.rb_right;
412 else if (untagged_objp == untagged_ptr || alias)
413 return object;
414 else {
415 kmemleak_warn("Found object by alias at 0x%08lx\n",
416 ptr);
417 dump_object_info(object);
418 break;
419 }
420 }
421 return NULL;
422}
423
424/* Look-up a kmemleak object which allocated with virtual address. */
425static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
426{
427 return __lookup_object(ptr, alias, false);
428}
429
430/*
431 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
432 * that once an object's use_count reached 0, the RCU freeing was already
433 * registered and the object should no longer be used. This function must be
434 * called under the protection of rcu_read_lock().
435 */
436static int get_object(struct kmemleak_object *object)
437{
438 return atomic_inc_not_zero(&object->use_count);
439}
440
441/*
442 * Memory pool allocation and freeing. kmemleak_lock must not be held.
443 */
444static struct kmemleak_object *mem_pool_alloc(gfp_t gfp)
445{
446 unsigned long flags;
447 struct kmemleak_object *object;
448
449 /* try the slab allocator first */
450 if (object_cache) {
451 object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
452 if (object)
453 return object;
454 }
455
456 /* slab allocation failed, try the memory pool */
457 raw_spin_lock_irqsave(&kmemleak_lock, flags);
458 object = list_first_entry_or_null(&mem_pool_free_list,
459 typeof(*object), object_list);
460 if (object)
461 list_del(&object->object_list);
462 else if (mem_pool_free_count)
463 object = &mem_pool[--mem_pool_free_count];
464 else
465 pr_warn_once("Memory pool empty, consider increasing CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE\n");
466 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
467
468 return object;
469}
470
471/*
472 * Return the object to either the slab allocator or the memory pool.
473 */
474static void mem_pool_free(struct kmemleak_object *object)
475{
476 unsigned long flags;
477
478 if (object < mem_pool || object >= mem_pool + ARRAY_SIZE(mem_pool)) {
479 kmem_cache_free(object_cache, object);
480 return;
481 }
482
483 /* add the object to the memory pool free list */
484 raw_spin_lock_irqsave(&kmemleak_lock, flags);
485 list_add(&object->object_list, &mem_pool_free_list);
486 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
487}
488
489/*
490 * RCU callback to free a kmemleak_object.
491 */
492static void free_object_rcu(struct rcu_head *rcu)
493{
494 struct hlist_node *tmp;
495 struct kmemleak_scan_area *area;
496 struct kmemleak_object *object =
497 container_of(rcu, struct kmemleak_object, rcu);
498
499 /*
500 * Once use_count is 0 (guaranteed by put_object), there is no other
501 * code accessing this object, hence no need for locking.
502 */
503 hlist_for_each_entry_safe(area, tmp, &object->area_list, node) {
504 hlist_del(&area->node);
505 kmem_cache_free(scan_area_cache, area);
506 }
507 mem_pool_free(object);
508}
509
510/*
511 * Decrement the object use_count. Once the count is 0, free the object using
512 * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
513 * delete_object() path, the delayed RCU freeing ensures that there is no
514 * recursive call to the kernel allocator. Lock-less RCU object_list traversal
515 * is also possible.
516 */
517static void put_object(struct kmemleak_object *object)
518{
519 if (!atomic_dec_and_test(&object->use_count))
520 return;
521
522 /* should only get here after delete_object was called */
523 WARN_ON(object->flags & OBJECT_ALLOCATED);
524
525 /*
526 * It may be too early for the RCU callbacks, however, there is no
527 * concurrent object_list traversal when !object_cache and all objects
528 * came from the memory pool. Free the object directly.
529 */
530 if (object_cache)
531 call_rcu(&object->rcu, free_object_rcu);
532 else
533 free_object_rcu(&object->rcu);
534}
535
536/*
537 * Look up an object in the object search tree and increase its use_count.
538 */
539static struct kmemleak_object *__find_and_get_object(unsigned long ptr, int alias,
540 bool is_phys)
541{
542 unsigned long flags;
543 struct kmemleak_object *object;
544
545 rcu_read_lock();
546 raw_spin_lock_irqsave(&kmemleak_lock, flags);
547 object = __lookup_object(ptr, alias, is_phys);
548 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
549
550 /* check whether the object is still available */
551 if (object && !get_object(object))
552 object = NULL;
553 rcu_read_unlock();
554
555 return object;
556}
557
558/* Look up and get an object which allocated with virtual address. */
559static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
560{
561 return __find_and_get_object(ptr, alias, false);
562}
563
564/*
565 * Remove an object from the object_tree_root (or object_phys_tree_root)
566 * and object_list. Must be called with the kmemleak_lock held _if_ kmemleak
567 * is still enabled.
568 */
569static void __remove_object(struct kmemleak_object *object)
570{
571 rb_erase(&object->rb_node, object->flags & OBJECT_PHYS ?
572 &object_phys_tree_root :
573 &object_tree_root);
574 list_del_rcu(&object->object_list);
575}
576
577/*
578 * Look up an object in the object search tree and remove it from both
579 * object_tree_root (or object_phys_tree_root) and object_list. The
580 * returned object's use_count should be at least 1, as initially set
581 * by create_object().
582 */
583static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias,
584 bool is_phys)
585{
586 unsigned long flags;
587 struct kmemleak_object *object;
588
589 raw_spin_lock_irqsave(&kmemleak_lock, flags);
590 object = __lookup_object(ptr, alias, is_phys);
591 if (object)
592 __remove_object(object);
593 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
594
595 return object;
596}
597
598static noinline depot_stack_handle_t set_track_prepare(void)
599{
600 depot_stack_handle_t trace_handle;
601 unsigned long entries[MAX_TRACE];
602 unsigned int nr_entries;
603
604 if (!kmemleak_initialized)
605 return 0;
606 nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
607 trace_handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT);
608
609 return trace_handle;
610}
611
612/*
613 * Create the metadata (struct kmemleak_object) corresponding to an allocated
614 * memory block and add it to the object_list and object_tree_root (or
615 * object_phys_tree_root).
616 */
617static void __create_object(unsigned long ptr, size_t size,
618 int min_count, gfp_t gfp, bool is_phys)
619{
620 unsigned long flags;
621 struct kmemleak_object *object, *parent;
622 struct rb_node **link, *rb_parent;
623 unsigned long untagged_ptr;
624 unsigned long untagged_objp;
625
626 object = mem_pool_alloc(gfp);
627 if (!object) {
628 pr_warn("Cannot allocate a kmemleak_object structure\n");
629 kmemleak_disable();
630 return;
631 }
632
633 INIT_LIST_HEAD(&object->object_list);
634 INIT_LIST_HEAD(&object->gray_list);
635 INIT_HLIST_HEAD(&object->area_list);
636 raw_spin_lock_init(&object->lock);
637 atomic_set(&object->use_count, 1);
638 object->flags = OBJECT_ALLOCATED | (is_phys ? OBJECT_PHYS : 0);
639 object->pointer = ptr;
640 object->size = kfence_ksize((void *)ptr) ?: size;
641 object->excess_ref = 0;
642 object->min_count = min_count;
643 object->count = 0; /* white color initially */
644 object->jiffies = jiffies;
645 object->checksum = 0;
646
647 /* task information */
648 if (in_hardirq()) {
649 object->pid = 0;
650 strncpy(object->comm, "hardirq", sizeof(object->comm));
651 } else if (in_serving_softirq()) {
652 object->pid = 0;
653 strncpy(object->comm, "softirq", sizeof(object->comm));
654 } else {
655 object->pid = current->pid;
656 /*
657 * There is a small chance of a race with set_task_comm(),
658 * however using get_task_comm() here may cause locking
659 * dependency issues with current->alloc_lock. In the worst
660 * case, the command line is not correct.
661 */
662 strncpy(object->comm, current->comm, sizeof(object->comm));
663 }
664
665 /* kernel backtrace */
666 object->trace_handle = set_track_prepare();
667
668 raw_spin_lock_irqsave(&kmemleak_lock, flags);
669
670 untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
671 /*
672 * Only update min_addr and max_addr with object
673 * storing virtual address.
674 */
675 if (!is_phys) {
676 min_addr = min(min_addr, untagged_ptr);
677 max_addr = max(max_addr, untagged_ptr + size);
678 }
679 link = is_phys ? &object_phys_tree_root.rb_node :
680 &object_tree_root.rb_node;
681 rb_parent = NULL;
682 while (*link) {
683 rb_parent = *link;
684 parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
685 untagged_objp = (unsigned long)kasan_reset_tag((void *)parent->pointer);
686 if (untagged_ptr + size <= untagged_objp)
687 link = &parent->rb_node.rb_left;
688 else if (untagged_objp + parent->size <= untagged_ptr)
689 link = &parent->rb_node.rb_right;
690 else {
691 kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n",
692 ptr);
693 /*
694 * No need for parent->lock here since "parent" cannot
695 * be freed while the kmemleak_lock is held.
696 */
697 dump_object_info(parent);
698 kmem_cache_free(object_cache, object);
699 goto out;
700 }
701 }
702 rb_link_node(&object->rb_node, rb_parent, link);
703 rb_insert_color(&object->rb_node, is_phys ? &object_phys_tree_root :
704 &object_tree_root);
705 list_add_tail_rcu(&object->object_list, &object_list);
706out:
707 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
708}
709
710/* Create kmemleak object which allocated with virtual address. */
711static void create_object(unsigned long ptr, size_t size,
712 int min_count, gfp_t gfp)
713{
714 __create_object(ptr, size, min_count, gfp, false);
715}
716
717/* Create kmemleak object which allocated with physical address. */
718static void create_object_phys(unsigned long ptr, size_t size,
719 int min_count, gfp_t gfp)
720{
721 __create_object(ptr, size, min_count, gfp, true);
722}
723
724/*
725 * Mark the object as not allocated and schedule RCU freeing via put_object().
726 */
727static void __delete_object(struct kmemleak_object *object)
728{
729 unsigned long flags;
730
731 WARN_ON(!(object->flags & OBJECT_ALLOCATED));
732 WARN_ON(atomic_read(&object->use_count) < 1);
733
734 /*
735 * Locking here also ensures that the corresponding memory block
736 * cannot be freed when it is being scanned.
737 */
738 raw_spin_lock_irqsave(&object->lock, flags);
739 object->flags &= ~OBJECT_ALLOCATED;
740 raw_spin_unlock_irqrestore(&object->lock, flags);
741 put_object(object);
742}
743
744/*
745 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
746 * delete it.
747 */
748static void delete_object_full(unsigned long ptr)
749{
750 struct kmemleak_object *object;
751
752 object = find_and_remove_object(ptr, 0, false);
753 if (!object) {
754#ifdef DEBUG
755 kmemleak_warn("Freeing unknown object at 0x%08lx\n",
756 ptr);
757#endif
758 return;
759 }
760 __delete_object(object);
761}
762
763/*
764 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
765 * delete it. If the memory block is partially freed, the function may create
766 * additional metadata for the remaining parts of the block.
767 */
768static void delete_object_part(unsigned long ptr, size_t size, bool is_phys)
769{
770 struct kmemleak_object *object;
771 unsigned long start, end;
772
773 object = find_and_remove_object(ptr, 1, is_phys);
774 if (!object) {
775#ifdef DEBUG
776 kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n",
777 ptr, size);
778#endif
779 return;
780 }
781
782 /*
783 * Create one or two objects that may result from the memory block
784 * split. Note that partial freeing is only done by free_bootmem() and
785 * this happens before kmemleak_init() is called.
786 */
787 start = object->pointer;
788 end = object->pointer + object->size;
789 if (ptr > start)
790 __create_object(start, ptr - start, object->min_count,
791 GFP_KERNEL, is_phys);
792 if (ptr + size < end)
793 __create_object(ptr + size, end - ptr - size, object->min_count,
794 GFP_KERNEL, is_phys);
795
796 __delete_object(object);
797}
798
799static void __paint_it(struct kmemleak_object *object, int color)
800{
801 object->min_count = color;
802 if (color == KMEMLEAK_BLACK)
803 object->flags |= OBJECT_NO_SCAN;
804}
805
806static void paint_it(struct kmemleak_object *object, int color)
807{
808 unsigned long flags;
809
810 raw_spin_lock_irqsave(&object->lock, flags);
811 __paint_it(object, color);
812 raw_spin_unlock_irqrestore(&object->lock, flags);
813}
814
815static void paint_ptr(unsigned long ptr, int color, bool is_phys)
816{
817 struct kmemleak_object *object;
818
819 object = __find_and_get_object(ptr, 0, is_phys);
820 if (!object) {
821 kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n",
822 ptr,
823 (color == KMEMLEAK_GREY) ? "Grey" :
824 (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
825 return;
826 }
827 paint_it(object, color);
828 put_object(object);
829}
830
831/*
832 * Mark an object permanently as gray-colored so that it can no longer be
833 * reported as a leak. This is used in general to mark a false positive.
834 */
835static void make_gray_object(unsigned long ptr)
836{
837 paint_ptr(ptr, KMEMLEAK_GREY, false);
838}
839
840/*
841 * Mark the object as black-colored so that it is ignored from scans and
842 * reporting.
843 */
844static void make_black_object(unsigned long ptr, bool is_phys)
845{
846 paint_ptr(ptr, KMEMLEAK_BLACK, is_phys);
847}
848
849/*
850 * Add a scanning area to the object. If at least one such area is added,
851 * kmemleak will only scan these ranges rather than the whole memory block.
852 */
853static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
854{
855 unsigned long flags;
856 struct kmemleak_object *object;
857 struct kmemleak_scan_area *area = NULL;
858 unsigned long untagged_ptr;
859 unsigned long untagged_objp;
860
861 object = find_and_get_object(ptr, 1);
862 if (!object) {
863 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
864 ptr);
865 return;
866 }
867
868 untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
869 untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer);
870
871 if (scan_area_cache)
872 area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
873
874 raw_spin_lock_irqsave(&object->lock, flags);
875 if (!area) {
876 pr_warn_once("Cannot allocate a scan area, scanning the full object\n");
877 /* mark the object for full scan to avoid false positives */
878 object->flags |= OBJECT_FULL_SCAN;
879 goto out_unlock;
880 }
881 if (size == SIZE_MAX) {
882 size = untagged_objp + object->size - untagged_ptr;
883 } else if (untagged_ptr + size > untagged_objp + object->size) {
884 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
885 dump_object_info(object);
886 kmem_cache_free(scan_area_cache, area);
887 goto out_unlock;
888 }
889
890 INIT_HLIST_NODE(&area->node);
891 area->start = ptr;
892 area->size = size;
893
894 hlist_add_head(&area->node, &object->area_list);
895out_unlock:
896 raw_spin_unlock_irqrestore(&object->lock, flags);
897 put_object(object);
898}
899
900/*
901 * Any surplus references (object already gray) to 'ptr' are passed to
902 * 'excess_ref'. This is used in the vmalloc() case where a pointer to
903 * vm_struct may be used as an alternative reference to the vmalloc'ed object
904 * (see free_thread_stack()).
905 */
906static void object_set_excess_ref(unsigned long ptr, unsigned long excess_ref)
907{
908 unsigned long flags;
909 struct kmemleak_object *object;
910
911 object = find_and_get_object(ptr, 0);
912 if (!object) {
913 kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n",
914 ptr);
915 return;
916 }
917
918 raw_spin_lock_irqsave(&object->lock, flags);
919 object->excess_ref = excess_ref;
920 raw_spin_unlock_irqrestore(&object->lock, flags);
921 put_object(object);
922}
923
924/*
925 * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
926 * pointer. Such object will not be scanned by kmemleak but references to it
927 * are searched.
928 */
929static void object_no_scan(unsigned long ptr)
930{
931 unsigned long flags;
932 struct kmemleak_object *object;
933
934 object = find_and_get_object(ptr, 0);
935 if (!object) {
936 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
937 return;
938 }
939
940 raw_spin_lock_irqsave(&object->lock, flags);
941 object->flags |= OBJECT_NO_SCAN;
942 raw_spin_unlock_irqrestore(&object->lock, flags);
943 put_object(object);
944}
945
946/**
947 * kmemleak_alloc - register a newly allocated object
948 * @ptr: pointer to beginning of the object
949 * @size: size of the object
950 * @min_count: minimum number of references to this object. If during memory
951 * scanning a number of references less than @min_count is found,
952 * the object is reported as a memory leak. If @min_count is 0,
953 * the object is never reported as a leak. If @min_count is -1,
954 * the object is ignored (not scanned and not reported as a leak)
955 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
956 *
957 * This function is called from the kernel allocators when a new object
958 * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.).
959 */
960void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
961 gfp_t gfp)
962{
963 pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
964
965 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
966 create_object((unsigned long)ptr, size, min_count, gfp);
967}
968EXPORT_SYMBOL_GPL(kmemleak_alloc);
969
970/**
971 * kmemleak_alloc_percpu - register a newly allocated __percpu object
972 * @ptr: __percpu pointer to beginning of the object
973 * @size: size of the object
974 * @gfp: flags used for kmemleak internal memory allocations
975 *
976 * This function is called from the kernel percpu allocator when a new object
977 * (memory block) is allocated (alloc_percpu).
978 */
979void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size,
980 gfp_t gfp)
981{
982 unsigned int cpu;
983
984 pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size);
985
986 /*
987 * Percpu allocations are only scanned and not reported as leaks
988 * (min_count is set to 0).
989 */
990 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
991 for_each_possible_cpu(cpu)
992 create_object((unsigned long)per_cpu_ptr(ptr, cpu),
993 size, 0, gfp);
994}
995EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
996
997/**
998 * kmemleak_vmalloc - register a newly vmalloc'ed object
999 * @area: pointer to vm_struct
1000 * @size: size of the object
1001 * @gfp: __vmalloc() flags used for kmemleak internal memory allocations
1002 *
1003 * This function is called from the vmalloc() kernel allocator when a new
1004 * object (memory block) is allocated.
1005 */
1006void __ref kmemleak_vmalloc(const struct vm_struct *area, size_t size, gfp_t gfp)
1007{
1008 pr_debug("%s(0x%p, %zu)\n", __func__, area, size);
1009
1010 /*
1011 * A min_count = 2 is needed because vm_struct contains a reference to
1012 * the virtual address of the vmalloc'ed block.
1013 */
1014 if (kmemleak_enabled) {
1015 create_object((unsigned long)area->addr, size, 2, gfp);
1016 object_set_excess_ref((unsigned long)area,
1017 (unsigned long)area->addr);
1018 }
1019}
1020EXPORT_SYMBOL_GPL(kmemleak_vmalloc);
1021
1022/**
1023 * kmemleak_free - unregister a previously registered object
1024 * @ptr: pointer to beginning of the object
1025 *
1026 * This function is called from the kernel allocators when an object (memory
1027 * block) is freed (kmem_cache_free, kfree, vfree etc.).
1028 */
1029void __ref kmemleak_free(const void *ptr)
1030{
1031 pr_debug("%s(0x%p)\n", __func__, ptr);
1032
1033 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
1034 delete_object_full((unsigned long)ptr);
1035}
1036EXPORT_SYMBOL_GPL(kmemleak_free);
1037
1038/**
1039 * kmemleak_free_part - partially unregister a previously registered object
1040 * @ptr: pointer to the beginning or inside the object. This also
1041 * represents the start of the range to be freed
1042 * @size: size to be unregistered
1043 *
1044 * This function is called when only a part of a memory block is freed
1045 * (usually from the bootmem allocator).
1046 */
1047void __ref kmemleak_free_part(const void *ptr, size_t size)
1048{
1049 pr_debug("%s(0x%p)\n", __func__, ptr);
1050
1051 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1052 delete_object_part((unsigned long)ptr, size, false);
1053}
1054EXPORT_SYMBOL_GPL(kmemleak_free_part);
1055
1056/**
1057 * kmemleak_free_percpu - unregister a previously registered __percpu object
1058 * @ptr: __percpu pointer to beginning of the object
1059 *
1060 * This function is called from the kernel percpu allocator when an object
1061 * (memory block) is freed (free_percpu).
1062 */
1063void __ref kmemleak_free_percpu(const void __percpu *ptr)
1064{
1065 unsigned int cpu;
1066
1067 pr_debug("%s(0x%p)\n", __func__, ptr);
1068
1069 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
1070 for_each_possible_cpu(cpu)
1071 delete_object_full((unsigned long)per_cpu_ptr(ptr,
1072 cpu));
1073}
1074EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
1075
1076/**
1077 * kmemleak_update_trace - update object allocation stack trace
1078 * @ptr: pointer to beginning of the object
1079 *
1080 * Override the object allocation stack trace for cases where the actual
1081 * allocation place is not always useful.
1082 */
1083void __ref kmemleak_update_trace(const void *ptr)
1084{
1085 struct kmemleak_object *object;
1086 unsigned long flags;
1087
1088 pr_debug("%s(0x%p)\n", __func__, ptr);
1089
1090 if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr))
1091 return;
1092
1093 object = find_and_get_object((unsigned long)ptr, 1);
1094 if (!object) {
1095#ifdef DEBUG
1096 kmemleak_warn("Updating stack trace for unknown object at %p\n",
1097 ptr);
1098#endif
1099 return;
1100 }
1101
1102 raw_spin_lock_irqsave(&object->lock, flags);
1103 object->trace_handle = set_track_prepare();
1104 raw_spin_unlock_irqrestore(&object->lock, flags);
1105
1106 put_object(object);
1107}
1108EXPORT_SYMBOL(kmemleak_update_trace);
1109
1110/**
1111 * kmemleak_not_leak - mark an allocated object as false positive
1112 * @ptr: pointer to beginning of the object
1113 *
1114 * Calling this function on an object will cause the memory block to no longer
1115 * be reported as leak and always be scanned.
1116 */
1117void __ref kmemleak_not_leak(const void *ptr)
1118{
1119 pr_debug("%s(0x%p)\n", __func__, ptr);
1120
1121 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1122 make_gray_object((unsigned long)ptr);
1123}
1124EXPORT_SYMBOL(kmemleak_not_leak);
1125
1126/**
1127 * kmemleak_ignore - ignore an allocated object
1128 * @ptr: pointer to beginning of the object
1129 *
1130 * Calling this function on an object will cause the memory block to be
1131 * ignored (not scanned and not reported as a leak). This is usually done when
1132 * it is known that the corresponding block is not a leak and does not contain
1133 * any references to other allocated memory blocks.
1134 */
1135void __ref kmemleak_ignore(const void *ptr)
1136{
1137 pr_debug("%s(0x%p)\n", __func__, ptr);
1138
1139 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1140 make_black_object((unsigned long)ptr, false);
1141}
1142EXPORT_SYMBOL(kmemleak_ignore);
1143
1144/**
1145 * kmemleak_scan_area - limit the range to be scanned in an allocated object
1146 * @ptr: pointer to beginning or inside the object. This also
1147 * represents the start of the scan area
1148 * @size: size of the scan area
1149 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
1150 *
1151 * This function is used when it is known that only certain parts of an object
1152 * contain references to other objects. Kmemleak will only scan these areas
1153 * reducing the number false negatives.
1154 */
1155void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
1156{
1157 pr_debug("%s(0x%p)\n", __func__, ptr);
1158
1159 if (kmemleak_enabled && ptr && size && !IS_ERR(ptr))
1160 add_scan_area((unsigned long)ptr, size, gfp);
1161}
1162EXPORT_SYMBOL(kmemleak_scan_area);
1163
1164/**
1165 * kmemleak_no_scan - do not scan an allocated object
1166 * @ptr: pointer to beginning of the object
1167 *
1168 * This function notifies kmemleak not to scan the given memory block. Useful
1169 * in situations where it is known that the given object does not contain any
1170 * references to other objects. Kmemleak will not scan such objects reducing
1171 * the number of false negatives.
1172 */
1173void __ref kmemleak_no_scan(const void *ptr)
1174{
1175 pr_debug("%s(0x%p)\n", __func__, ptr);
1176
1177 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1178 object_no_scan((unsigned long)ptr);
1179}
1180EXPORT_SYMBOL(kmemleak_no_scan);
1181
1182/**
1183 * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical
1184 * address argument
1185 * @phys: physical address of the object
1186 * @size: size of the object
1187 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
1188 */
1189void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, gfp_t gfp)
1190{
1191 pr_debug("%s(0x%pa, %zu)\n", __func__, &phys, size);
1192
1193 if (kmemleak_enabled)
1194 /*
1195 * Create object with OBJECT_PHYS flag and
1196 * assume min_count 0.
1197 */
1198 create_object_phys((unsigned long)phys, size, 0, gfp);
1199}
1200EXPORT_SYMBOL(kmemleak_alloc_phys);
1201
1202/**
1203 * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a
1204 * physical address argument
1205 * @phys: physical address if the beginning or inside an object. This
1206 * also represents the start of the range to be freed
1207 * @size: size to be unregistered
1208 */
1209void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size)
1210{
1211 pr_debug("%s(0x%pa)\n", __func__, &phys);
1212
1213 if (kmemleak_enabled)
1214 delete_object_part((unsigned long)phys, size, true);
1215}
1216EXPORT_SYMBOL(kmemleak_free_part_phys);
1217
1218/**
1219 * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical
1220 * address argument
1221 * @phys: physical address of the object
1222 */
1223void __ref kmemleak_ignore_phys(phys_addr_t phys)
1224{
1225 pr_debug("%s(0x%pa)\n", __func__, &phys);
1226
1227 if (kmemleak_enabled)
1228 make_black_object((unsigned long)phys, true);
1229}
1230EXPORT_SYMBOL(kmemleak_ignore_phys);
1231
1232/*
1233 * Update an object's checksum and return true if it was modified.
1234 */
1235static bool update_checksum(struct kmemleak_object *object)
1236{
1237 u32 old_csum = object->checksum;
1238
1239 if (WARN_ON_ONCE(object->flags & OBJECT_PHYS))
1240 return false;
1241
1242 kasan_disable_current();
1243 kcsan_disable_current();
1244 object->checksum = crc32(0, kasan_reset_tag((void *)object->pointer), object->size);
1245 kasan_enable_current();
1246 kcsan_enable_current();
1247
1248 return object->checksum != old_csum;
1249}
1250
1251/*
1252 * Update an object's references. object->lock must be held by the caller.
1253 */
1254static void update_refs(struct kmemleak_object *object)
1255{
1256 if (!color_white(object)) {
1257 /* non-orphan, ignored or new */
1258 return;
1259 }
1260
1261 /*
1262 * Increase the object's reference count (number of pointers to the
1263 * memory block). If this count reaches the required minimum, the
1264 * object's color will become gray and it will be added to the
1265 * gray_list.
1266 */
1267 object->count++;
1268 if (color_gray(object)) {
1269 /* put_object() called when removing from gray_list */
1270 WARN_ON(!get_object(object));
1271 list_add_tail(&object->gray_list, &gray_list);
1272 }
1273}
1274
1275/*
1276 * Memory scanning is a long process and it needs to be interruptible. This
1277 * function checks whether such interrupt condition occurred.
1278 */
1279static int scan_should_stop(void)
1280{
1281 if (!kmemleak_enabled)
1282 return 1;
1283
1284 /*
1285 * This function may be called from either process or kthread context,
1286 * hence the need to check for both stop conditions.
1287 */
1288 if (current->mm)
1289 return signal_pending(current);
1290 else
1291 return kthread_should_stop();
1292
1293 return 0;
1294}
1295
1296/*
1297 * Scan a memory block (exclusive range) for valid pointers and add those
1298 * found to the gray list.
1299 */
1300static void scan_block(void *_start, void *_end,
1301 struct kmemleak_object *scanned)
1302{
1303 unsigned long *ptr;
1304 unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1305 unsigned long *end = _end - (BYTES_PER_POINTER - 1);
1306 unsigned long flags;
1307 unsigned long untagged_ptr;
1308
1309 raw_spin_lock_irqsave(&kmemleak_lock, flags);
1310 for (ptr = start; ptr < end; ptr++) {
1311 struct kmemleak_object *object;
1312 unsigned long pointer;
1313 unsigned long excess_ref;
1314
1315 if (scan_should_stop())
1316 break;
1317
1318 kasan_disable_current();
1319 pointer = *(unsigned long *)kasan_reset_tag((void *)ptr);
1320 kasan_enable_current();
1321
1322 untagged_ptr = (unsigned long)kasan_reset_tag((void *)pointer);
1323 if (untagged_ptr < min_addr || untagged_ptr >= max_addr)
1324 continue;
1325
1326 /*
1327 * No need for get_object() here since we hold kmemleak_lock.
1328 * object->use_count cannot be dropped to 0 while the object
1329 * is still present in object_tree_root and object_list
1330 * (with updates protected by kmemleak_lock).
1331 */
1332 object = lookup_object(pointer, 1);
1333 if (!object)
1334 continue;
1335 if (object == scanned)
1336 /* self referenced, ignore */
1337 continue;
1338
1339 /*
1340 * Avoid the lockdep recursive warning on object->lock being
1341 * previously acquired in scan_object(). These locks are
1342 * enclosed by scan_mutex.
1343 */
1344 raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1345 /* only pass surplus references (object already gray) */
1346 if (color_gray(object)) {
1347 excess_ref = object->excess_ref;
1348 /* no need for update_refs() if object already gray */
1349 } else {
1350 excess_ref = 0;
1351 update_refs(object);
1352 }
1353 raw_spin_unlock(&object->lock);
1354
1355 if (excess_ref) {
1356 object = lookup_object(excess_ref, 0);
1357 if (!object)
1358 continue;
1359 if (object == scanned)
1360 /* circular reference, ignore */
1361 continue;
1362 raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1363 update_refs(object);
1364 raw_spin_unlock(&object->lock);
1365 }
1366 }
1367 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
1368}
1369
1370/*
1371 * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency.
1372 */
1373#ifdef CONFIG_SMP
1374static void scan_large_block(void *start, void *end)
1375{
1376 void *next;
1377
1378 while (start < end) {
1379 next = min(start + MAX_SCAN_SIZE, end);
1380 scan_block(start, next, NULL);
1381 start = next;
1382 cond_resched();
1383 }
1384}
1385#endif
1386
1387/*
1388 * Scan a memory block corresponding to a kmemleak_object. A condition is
1389 * that object->use_count >= 1.
1390 */
1391static void scan_object(struct kmemleak_object *object)
1392{
1393 struct kmemleak_scan_area *area;
1394 unsigned long flags;
1395 void *obj_ptr;
1396
1397 /*
1398 * Once the object->lock is acquired, the corresponding memory block
1399 * cannot be freed (the same lock is acquired in delete_object).
1400 */
1401 raw_spin_lock_irqsave(&object->lock, flags);
1402 if (object->flags & OBJECT_NO_SCAN)
1403 goto out;
1404 if (!(object->flags & OBJECT_ALLOCATED))
1405 /* already freed object */
1406 goto out;
1407
1408 obj_ptr = object->flags & OBJECT_PHYS ?
1409 __va((phys_addr_t)object->pointer) :
1410 (void *)object->pointer;
1411
1412 if (hlist_empty(&object->area_list) ||
1413 object->flags & OBJECT_FULL_SCAN) {
1414 void *start = obj_ptr;
1415 void *end = obj_ptr + object->size;
1416 void *next;
1417
1418 do {
1419 next = min(start + MAX_SCAN_SIZE, end);
1420 scan_block(start, next, object);
1421
1422 start = next;
1423 if (start >= end)
1424 break;
1425
1426 raw_spin_unlock_irqrestore(&object->lock, flags);
1427 cond_resched();
1428 raw_spin_lock_irqsave(&object->lock, flags);
1429 } while (object->flags & OBJECT_ALLOCATED);
1430 } else
1431 hlist_for_each_entry(area, &object->area_list, node)
1432 scan_block((void *)area->start,
1433 (void *)(area->start + area->size),
1434 object);
1435out:
1436 raw_spin_unlock_irqrestore(&object->lock, flags);
1437}
1438
1439/*
1440 * Scan the objects already referenced (gray objects). More objects will be
1441 * referenced and, if there are no memory leaks, all the objects are scanned.
1442 */
1443static void scan_gray_list(void)
1444{
1445 struct kmemleak_object *object, *tmp;
1446
1447 /*
1448 * The list traversal is safe for both tail additions and removals
1449 * from inside the loop. The kmemleak objects cannot be freed from
1450 * outside the loop because their use_count was incremented.
1451 */
1452 object = list_entry(gray_list.next, typeof(*object), gray_list);
1453 while (&object->gray_list != &gray_list) {
1454 cond_resched();
1455
1456 /* may add new objects to the list */
1457 if (!scan_should_stop())
1458 scan_object(object);
1459
1460 tmp = list_entry(object->gray_list.next, typeof(*object),
1461 gray_list);
1462
1463 /* remove the object from the list and release it */
1464 list_del(&object->gray_list);
1465 put_object(object);
1466
1467 object = tmp;
1468 }
1469 WARN_ON(!list_empty(&gray_list));
1470}
1471
1472/*
1473 * Conditionally call resched() in an object iteration loop while making sure
1474 * that the given object won't go away without RCU read lock by performing a
1475 * get_object() if !pinned.
1476 *
1477 * Return: false if can't do a cond_resched() due to get_object() failure
1478 * true otherwise
1479 */
1480static bool kmemleak_cond_resched(struct kmemleak_object *object, bool pinned)
1481{
1482 if (!pinned && !get_object(object))
1483 return false;
1484
1485 rcu_read_unlock();
1486 cond_resched();
1487 rcu_read_lock();
1488 if (!pinned)
1489 put_object(object);
1490 return true;
1491}
1492
1493/*
1494 * Scan data sections and all the referenced memory blocks allocated via the
1495 * kernel's standard allocators. This function must be called with the
1496 * scan_mutex held.
1497 */
1498static void kmemleak_scan(void)
1499{
1500 struct kmemleak_object *object;
1501 struct zone *zone;
1502 int __maybe_unused i;
1503 int new_leaks = 0;
1504 int loop_cnt = 0;
1505
1506 jiffies_last_scan = jiffies;
1507
1508 /* prepare the kmemleak_object's */
1509 rcu_read_lock();
1510 list_for_each_entry_rcu(object, &object_list, object_list) {
1511 bool obj_pinned = false;
1512
1513 raw_spin_lock_irq(&object->lock);
1514#ifdef DEBUG
1515 /*
1516 * With a few exceptions there should be a maximum of
1517 * 1 reference to any object at this point.
1518 */
1519 if (atomic_read(&object->use_count) > 1) {
1520 pr_debug("object->use_count = %d\n",
1521 atomic_read(&object->use_count));
1522 dump_object_info(object);
1523 }
1524#endif
1525
1526 /* ignore objects outside lowmem (paint them black) */
1527 if ((object->flags & OBJECT_PHYS) &&
1528 !(object->flags & OBJECT_NO_SCAN)) {
1529 unsigned long phys = object->pointer;
1530
1531 if (PHYS_PFN(phys) < min_low_pfn ||
1532 PHYS_PFN(phys + object->size) >= max_low_pfn)
1533 __paint_it(object, KMEMLEAK_BLACK);
1534 }
1535
1536 /* reset the reference count (whiten the object) */
1537 object->count = 0;
1538 if (color_gray(object) && get_object(object)) {
1539 list_add_tail(&object->gray_list, &gray_list);
1540 obj_pinned = true;
1541 }
1542
1543 raw_spin_unlock_irq(&object->lock);
1544
1545 /*
1546 * Do a cond_resched() every 64k objects to avoid soft lockup.
1547 */
1548 if (!(++loop_cnt & 0xffff) &&
1549 !kmemleak_cond_resched(object, obj_pinned))
1550 loop_cnt--; /* Try again on next object */
1551 }
1552 rcu_read_unlock();
1553
1554#ifdef CONFIG_SMP
1555 /* per-cpu sections scanning */
1556 for_each_possible_cpu(i)
1557 scan_large_block(__per_cpu_start + per_cpu_offset(i),
1558 __per_cpu_end + per_cpu_offset(i));
1559#endif
1560
1561 /*
1562 * Struct page scanning for each node.
1563 */
1564 get_online_mems();
1565 for_each_populated_zone(zone) {
1566 unsigned long start_pfn = zone->zone_start_pfn;
1567 unsigned long end_pfn = zone_end_pfn(zone);
1568 unsigned long pfn;
1569
1570 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1571 struct page *page = pfn_to_online_page(pfn);
1572
1573 if (!page)
1574 continue;
1575
1576 /* only scan pages belonging to this zone */
1577 if (page_zone(page) != zone)
1578 continue;
1579 /* only scan if page is in use */
1580 if (page_count(page) == 0)
1581 continue;
1582 scan_block(page, page + 1, NULL);
1583 if (!(pfn & 63))
1584 cond_resched();
1585 }
1586 }
1587 put_online_mems();
1588
1589 /*
1590 * Scanning the task stacks (may introduce false negatives).
1591 */
1592 if (kmemleak_stack_scan) {
1593 struct task_struct *p, *g;
1594
1595 rcu_read_lock();
1596 for_each_process_thread(g, p) {
1597 void *stack = try_get_task_stack(p);
1598 if (stack) {
1599 scan_block(stack, stack + THREAD_SIZE, NULL);
1600 put_task_stack(p);
1601 }
1602 }
1603 rcu_read_unlock();
1604 }
1605
1606 /*
1607 * Scan the objects already referenced from the sections scanned
1608 * above.
1609 */
1610 scan_gray_list();
1611
1612 /*
1613 * Check for new or unreferenced objects modified since the previous
1614 * scan and color them gray until the next scan.
1615 */
1616 rcu_read_lock();
1617 loop_cnt = 0;
1618 list_for_each_entry_rcu(object, &object_list, object_list) {
1619 /*
1620 * Do a cond_resched() every 64k objects to avoid soft lockup.
1621 */
1622 if (!(++loop_cnt & 0xffff) &&
1623 !kmemleak_cond_resched(object, false))
1624 loop_cnt--; /* Try again on next object */
1625
1626 /*
1627 * This is racy but we can save the overhead of lock/unlock
1628 * calls. The missed objects, if any, should be caught in
1629 * the next scan.
1630 */
1631 if (!color_white(object))
1632 continue;
1633 raw_spin_lock_irq(&object->lock);
1634 if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1635 && update_checksum(object) && get_object(object)) {
1636 /* color it gray temporarily */
1637 object->count = object->min_count;
1638 list_add_tail(&object->gray_list, &gray_list);
1639 }
1640 raw_spin_unlock_irq(&object->lock);
1641 }
1642 rcu_read_unlock();
1643
1644 /*
1645 * Re-scan the gray list for modified unreferenced objects.
1646 */
1647 scan_gray_list();
1648
1649 /*
1650 * If scanning was stopped do not report any new unreferenced objects.
1651 */
1652 if (scan_should_stop())
1653 return;
1654
1655 /*
1656 * Scanning result reporting.
1657 */
1658 rcu_read_lock();
1659 loop_cnt = 0;
1660 list_for_each_entry_rcu(object, &object_list, object_list) {
1661 /*
1662 * Do a cond_resched() every 64k objects to avoid soft lockup.
1663 */
1664 if (!(++loop_cnt & 0xffff) &&
1665 !kmemleak_cond_resched(object, false))
1666 loop_cnt--; /* Try again on next object */
1667
1668 /*
1669 * This is racy but we can save the overhead of lock/unlock
1670 * calls. The missed objects, if any, should be caught in
1671 * the next scan.
1672 */
1673 if (!color_white(object))
1674 continue;
1675 raw_spin_lock_irq(&object->lock);
1676 if (unreferenced_object(object) &&
1677 !(object->flags & OBJECT_REPORTED)) {
1678 object->flags |= OBJECT_REPORTED;
1679
1680 if (kmemleak_verbose)
1681 print_unreferenced(NULL, object);
1682
1683 new_leaks++;
1684 }
1685 raw_spin_unlock_irq(&object->lock);
1686 }
1687 rcu_read_unlock();
1688
1689 if (new_leaks) {
1690 kmemleak_found_leaks = true;
1691
1692 pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n",
1693 new_leaks);
1694 }
1695
1696}
1697
1698/*
1699 * Thread function performing automatic memory scanning. Unreferenced objects
1700 * at the end of a memory scan are reported but only the first time.
1701 */
1702static int kmemleak_scan_thread(void *arg)
1703{
1704 static int first_run = IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN);
1705
1706 pr_info("Automatic memory scanning thread started\n");
1707 set_user_nice(current, 10);
1708
1709 /*
1710 * Wait before the first scan to allow the system to fully initialize.
1711 */
1712 if (first_run) {
1713 signed long timeout = msecs_to_jiffies(SECS_FIRST_SCAN * 1000);
1714 first_run = 0;
1715 while (timeout && !kthread_should_stop())
1716 timeout = schedule_timeout_interruptible(timeout);
1717 }
1718
1719 while (!kthread_should_stop()) {
1720 signed long timeout = READ_ONCE(jiffies_scan_wait);
1721
1722 mutex_lock(&scan_mutex);
1723 kmemleak_scan();
1724 mutex_unlock(&scan_mutex);
1725
1726 /* wait before the next scan */
1727 while (timeout && !kthread_should_stop())
1728 timeout = schedule_timeout_interruptible(timeout);
1729 }
1730
1731 pr_info("Automatic memory scanning thread ended\n");
1732
1733 return 0;
1734}
1735
1736/*
1737 * Start the automatic memory scanning thread. This function must be called
1738 * with the scan_mutex held.
1739 */
1740static void start_scan_thread(void)
1741{
1742 if (scan_thread)
1743 return;
1744 scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1745 if (IS_ERR(scan_thread)) {
1746 pr_warn("Failed to create the scan thread\n");
1747 scan_thread = NULL;
1748 }
1749}
1750
1751/*
1752 * Stop the automatic memory scanning thread.
1753 */
1754static void stop_scan_thread(void)
1755{
1756 if (scan_thread) {
1757 kthread_stop(scan_thread);
1758 scan_thread = NULL;
1759 }
1760}
1761
1762/*
1763 * Iterate over the object_list and return the first valid object at or after
1764 * the required position with its use_count incremented. The function triggers
1765 * a memory scanning when the pos argument points to the first position.
1766 */
1767static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1768{
1769 struct kmemleak_object *object;
1770 loff_t n = *pos;
1771 int err;
1772
1773 err = mutex_lock_interruptible(&scan_mutex);
1774 if (err < 0)
1775 return ERR_PTR(err);
1776
1777 rcu_read_lock();
1778 list_for_each_entry_rcu(object, &object_list, object_list) {
1779 if (n-- > 0)
1780 continue;
1781 if (get_object(object))
1782 goto out;
1783 }
1784 object = NULL;
1785out:
1786 return object;
1787}
1788
1789/*
1790 * Return the next object in the object_list. The function decrements the
1791 * use_count of the previous object and increases that of the next one.
1792 */
1793static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1794{
1795 struct kmemleak_object *prev_obj = v;
1796 struct kmemleak_object *next_obj = NULL;
1797 struct kmemleak_object *obj = prev_obj;
1798
1799 ++(*pos);
1800
1801 list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
1802 if (get_object(obj)) {
1803 next_obj = obj;
1804 break;
1805 }
1806 }
1807
1808 put_object(prev_obj);
1809 return next_obj;
1810}
1811
1812/*
1813 * Decrement the use_count of the last object required, if any.
1814 */
1815static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1816{
1817 if (!IS_ERR(v)) {
1818 /*
1819 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1820 * waiting was interrupted, so only release it if !IS_ERR.
1821 */
1822 rcu_read_unlock();
1823 mutex_unlock(&scan_mutex);
1824 if (v)
1825 put_object(v);
1826 }
1827}
1828
1829/*
1830 * Print the information for an unreferenced object to the seq file.
1831 */
1832static int kmemleak_seq_show(struct seq_file *seq, void *v)
1833{
1834 struct kmemleak_object *object = v;
1835 unsigned long flags;
1836
1837 raw_spin_lock_irqsave(&object->lock, flags);
1838 if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
1839 print_unreferenced(seq, object);
1840 raw_spin_unlock_irqrestore(&object->lock, flags);
1841 return 0;
1842}
1843
1844static const struct seq_operations kmemleak_seq_ops = {
1845 .start = kmemleak_seq_start,
1846 .next = kmemleak_seq_next,
1847 .stop = kmemleak_seq_stop,
1848 .show = kmemleak_seq_show,
1849};
1850
1851static int kmemleak_open(struct inode *inode, struct file *file)
1852{
1853 return seq_open(file, &kmemleak_seq_ops);
1854}
1855
1856static int dump_str_object_info(const char *str)
1857{
1858 unsigned long flags;
1859 struct kmemleak_object *object;
1860 unsigned long addr;
1861
1862 if (kstrtoul(str, 0, &addr))
1863 return -EINVAL;
1864 object = find_and_get_object(addr, 0);
1865 if (!object) {
1866 pr_info("Unknown object at 0x%08lx\n", addr);
1867 return -EINVAL;
1868 }
1869
1870 raw_spin_lock_irqsave(&object->lock, flags);
1871 dump_object_info(object);
1872 raw_spin_unlock_irqrestore(&object->lock, flags);
1873
1874 put_object(object);
1875 return 0;
1876}
1877
1878/*
1879 * We use grey instead of black to ensure we can do future scans on the same
1880 * objects. If we did not do future scans these black objects could
1881 * potentially contain references to newly allocated objects in the future and
1882 * we'd end up with false positives.
1883 */
1884static void kmemleak_clear(void)
1885{
1886 struct kmemleak_object *object;
1887
1888 rcu_read_lock();
1889 list_for_each_entry_rcu(object, &object_list, object_list) {
1890 raw_spin_lock_irq(&object->lock);
1891 if ((object->flags & OBJECT_REPORTED) &&
1892 unreferenced_object(object))
1893 __paint_it(object, KMEMLEAK_GREY);
1894 raw_spin_unlock_irq(&object->lock);
1895 }
1896 rcu_read_unlock();
1897
1898 kmemleak_found_leaks = false;
1899}
1900
1901static void __kmemleak_do_cleanup(void);
1902
1903/*
1904 * File write operation to configure kmemleak at run-time. The following
1905 * commands can be written to the /sys/kernel/debug/kmemleak file:
1906 * off - disable kmemleak (irreversible)
1907 * stack=on - enable the task stacks scanning
1908 * stack=off - disable the tasks stacks scanning
1909 * scan=on - start the automatic memory scanning thread
1910 * scan=off - stop the automatic memory scanning thread
1911 * scan=... - set the automatic memory scanning period in seconds (0 to
1912 * disable it)
1913 * scan - trigger a memory scan
1914 * clear - mark all current reported unreferenced kmemleak objects as
1915 * grey to ignore printing them, or free all kmemleak objects
1916 * if kmemleak has been disabled.
1917 * dump=... - dump information about the object found at the given address
1918 */
1919static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1920 size_t size, loff_t *ppos)
1921{
1922 char buf[64];
1923 int buf_size;
1924 int ret;
1925
1926 buf_size = min(size, (sizeof(buf) - 1));
1927 if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1928 return -EFAULT;
1929 buf[buf_size] = 0;
1930
1931 ret = mutex_lock_interruptible(&scan_mutex);
1932 if (ret < 0)
1933 return ret;
1934
1935 if (strncmp(buf, "clear", 5) == 0) {
1936 if (kmemleak_enabled)
1937 kmemleak_clear();
1938 else
1939 __kmemleak_do_cleanup();
1940 goto out;
1941 }
1942
1943 if (!kmemleak_enabled) {
1944 ret = -EPERM;
1945 goto out;
1946 }
1947
1948 if (strncmp(buf, "off", 3) == 0)
1949 kmemleak_disable();
1950 else if (strncmp(buf, "stack=on", 8) == 0)
1951 kmemleak_stack_scan = 1;
1952 else if (strncmp(buf, "stack=off", 9) == 0)
1953 kmemleak_stack_scan = 0;
1954 else if (strncmp(buf, "scan=on", 7) == 0)
1955 start_scan_thread();
1956 else if (strncmp(buf, "scan=off", 8) == 0)
1957 stop_scan_thread();
1958 else if (strncmp(buf, "scan=", 5) == 0) {
1959 unsigned secs;
1960 unsigned long msecs;
1961
1962 ret = kstrtouint(buf + 5, 0, &secs);
1963 if (ret < 0)
1964 goto out;
1965
1966 msecs = secs * MSEC_PER_SEC;
1967 if (msecs > UINT_MAX)
1968 msecs = UINT_MAX;
1969
1970 stop_scan_thread();
1971 if (msecs) {
1972 WRITE_ONCE(jiffies_scan_wait, msecs_to_jiffies(msecs));
1973 start_scan_thread();
1974 }
1975 } else if (strncmp(buf, "scan", 4) == 0)
1976 kmemleak_scan();
1977 else if (strncmp(buf, "dump=", 5) == 0)
1978 ret = dump_str_object_info(buf + 5);
1979 else
1980 ret = -EINVAL;
1981
1982out:
1983 mutex_unlock(&scan_mutex);
1984 if (ret < 0)
1985 return ret;
1986
1987 /* ignore the rest of the buffer, only one command at a time */
1988 *ppos += size;
1989 return size;
1990}
1991
1992static const struct file_operations kmemleak_fops = {
1993 .owner = THIS_MODULE,
1994 .open = kmemleak_open,
1995 .read = seq_read,
1996 .write = kmemleak_write,
1997 .llseek = seq_lseek,
1998 .release = seq_release,
1999};
2000
2001static void __kmemleak_do_cleanup(void)
2002{
2003 struct kmemleak_object *object, *tmp;
2004
2005 /*
2006 * Kmemleak has already been disabled, no need for RCU list traversal
2007 * or kmemleak_lock held.
2008 */
2009 list_for_each_entry_safe(object, tmp, &object_list, object_list) {
2010 __remove_object(object);
2011 __delete_object(object);
2012 }
2013}
2014
2015/*
2016 * Stop the memory scanning thread and free the kmemleak internal objects if
2017 * no previous scan thread (otherwise, kmemleak may still have some useful
2018 * information on memory leaks).
2019 */
2020static void kmemleak_do_cleanup(struct work_struct *work)
2021{
2022 stop_scan_thread();
2023
2024 mutex_lock(&scan_mutex);
2025 /*
2026 * Once it is made sure that kmemleak_scan has stopped, it is safe to no
2027 * longer track object freeing. Ordering of the scan thread stopping and
2028 * the memory accesses below is guaranteed by the kthread_stop()
2029 * function.
2030 */
2031 kmemleak_free_enabled = 0;
2032 mutex_unlock(&scan_mutex);
2033
2034 if (!kmemleak_found_leaks)
2035 __kmemleak_do_cleanup();
2036 else
2037 pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n");
2038}
2039
2040static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
2041
2042/*
2043 * Disable kmemleak. No memory allocation/freeing will be traced once this
2044 * function is called. Disabling kmemleak is an irreversible operation.
2045 */
2046static void kmemleak_disable(void)
2047{
2048 /* atomically check whether it was already invoked */
2049 if (cmpxchg(&kmemleak_error, 0, 1))
2050 return;
2051
2052 /* stop any memory operation tracing */
2053 kmemleak_enabled = 0;
2054
2055 /* check whether it is too early for a kernel thread */
2056 if (kmemleak_initialized)
2057 schedule_work(&cleanup_work);
2058 else
2059 kmemleak_free_enabled = 0;
2060
2061 pr_info("Kernel memory leak detector disabled\n");
2062}
2063
2064/*
2065 * Allow boot-time kmemleak disabling (enabled by default).
2066 */
2067static int __init kmemleak_boot_config(char *str)
2068{
2069 if (!str)
2070 return -EINVAL;
2071 if (strcmp(str, "off") == 0)
2072 kmemleak_disable();
2073 else if (strcmp(str, "on") == 0) {
2074 kmemleak_skip_disable = 1;
2075 stack_depot_want_early_init();
2076 }
2077 else
2078 return -EINVAL;
2079 return 0;
2080}
2081early_param("kmemleak", kmemleak_boot_config);
2082
2083/*
2084 * Kmemleak initialization.
2085 */
2086void __init kmemleak_init(void)
2087{
2088#ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
2089 if (!kmemleak_skip_disable) {
2090 kmemleak_disable();
2091 return;
2092 }
2093#endif
2094
2095 if (kmemleak_error)
2096 return;
2097
2098 jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
2099 jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
2100
2101 object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
2102 scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
2103
2104 /* register the data/bss sections */
2105 create_object((unsigned long)_sdata, _edata - _sdata,
2106 KMEMLEAK_GREY, GFP_ATOMIC);
2107 create_object((unsigned long)__bss_start, __bss_stop - __bss_start,
2108 KMEMLEAK_GREY, GFP_ATOMIC);
2109 /* only register .data..ro_after_init if not within .data */
2110 if (&__start_ro_after_init < &_sdata || &__end_ro_after_init > &_edata)
2111 create_object((unsigned long)__start_ro_after_init,
2112 __end_ro_after_init - __start_ro_after_init,
2113 KMEMLEAK_GREY, GFP_ATOMIC);
2114}
2115
2116/*
2117 * Late initialization function.
2118 */
2119static int __init kmemleak_late_init(void)
2120{
2121 kmemleak_initialized = 1;
2122
2123 debugfs_create_file("kmemleak", 0644, NULL, NULL, &kmemleak_fops);
2124
2125 if (kmemleak_error) {
2126 /*
2127 * Some error occurred and kmemleak was disabled. There is a
2128 * small chance that kmemleak_disable() was called immediately
2129 * after setting kmemleak_initialized and we may end up with
2130 * two clean-up threads but serialized by scan_mutex.
2131 */
2132 schedule_work(&cleanup_work);
2133 return -ENOMEM;
2134 }
2135
2136 if (IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN)) {
2137 mutex_lock(&scan_mutex);
2138 start_scan_thread();
2139 mutex_unlock(&scan_mutex);
2140 }
2141
2142 pr_info("Kernel memory leak detector initialized (mem pool available: %d)\n",
2143 mem_pool_free_count);
2144
2145 return 0;
2146}
2147late_initcall(kmemleak_late_init);
1/*
2 * mm/kmemleak.c
3 *
4 * Copyright (C) 2008 ARM Limited
5 * Written by Catalin Marinas <catalin.marinas@arm.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 *
20 *
21 * For more information on the algorithm and kmemleak usage, please see
22 * Documentation/kmemleak.txt.
23 *
24 * Notes on locking
25 * ----------------
26 *
27 * The following locks and mutexes are used by kmemleak:
28 *
29 * - kmemleak_lock (rwlock): protects the object_list modifications and
30 * accesses to the object_tree_root. The object_list is the main list
31 * holding the metadata (struct kmemleak_object) for the allocated memory
32 * blocks. The object_tree_root is a priority search tree used to look-up
33 * metadata based on a pointer to the corresponding memory block. The
34 * kmemleak_object structures are added to the object_list and
35 * object_tree_root in the create_object() function called from the
36 * kmemleak_alloc() callback and removed in delete_object() called from the
37 * kmemleak_free() callback
38 * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to
39 * the metadata (e.g. count) are protected by this lock. Note that some
40 * members of this structure may be protected by other means (atomic or
41 * kmemleak_lock). This lock is also held when scanning the corresponding
42 * memory block to avoid the kernel freeing it via the kmemleak_free()
43 * callback. This is less heavyweight than holding a global lock like
44 * kmemleak_lock during scanning
45 * - scan_mutex (mutex): ensures that only one thread may scan the memory for
46 * unreferenced objects at a time. The gray_list contains the objects which
47 * are already referenced or marked as false positives and need to be
48 * scanned. This list is only modified during a scanning episode when the
49 * scan_mutex is held. At the end of a scan, the gray_list is always empty.
50 * Note that the kmemleak_object.use_count is incremented when an object is
51 * added to the gray_list and therefore cannot be freed. This mutex also
52 * prevents multiple users of the "kmemleak" debugfs file together with
53 * modifications to the memory scanning parameters including the scan_thread
54 * pointer
55 *
56 * The kmemleak_object structures have a use_count incremented or decremented
57 * using the get_object()/put_object() functions. When the use_count becomes
58 * 0, this count can no longer be incremented and put_object() schedules the
59 * kmemleak_object freeing via an RCU callback. All calls to the get_object()
60 * function must be protected by rcu_read_lock() to avoid accessing a freed
61 * structure.
62 */
63
64#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
65
66#include <linux/init.h>
67#include <linux/kernel.h>
68#include <linux/list.h>
69#include <linux/sched.h>
70#include <linux/jiffies.h>
71#include <linux/delay.h>
72#include <linux/module.h>
73#include <linux/kthread.h>
74#include <linux/prio_tree.h>
75#include <linux/fs.h>
76#include <linux/debugfs.h>
77#include <linux/seq_file.h>
78#include <linux/cpumask.h>
79#include <linux/spinlock.h>
80#include <linux/mutex.h>
81#include <linux/rcupdate.h>
82#include <linux/stacktrace.h>
83#include <linux/cache.h>
84#include <linux/percpu.h>
85#include <linux/hardirq.h>
86#include <linux/mmzone.h>
87#include <linux/slab.h>
88#include <linux/thread_info.h>
89#include <linux/err.h>
90#include <linux/uaccess.h>
91#include <linux/string.h>
92#include <linux/nodemask.h>
93#include <linux/mm.h>
94#include <linux/workqueue.h>
95#include <linux/crc32.h>
96
97#include <asm/sections.h>
98#include <asm/processor.h>
99#include <linux/atomic.h>
100
101#include <linux/kmemcheck.h>
102#include <linux/kmemleak.h>
103
104/*
105 * Kmemleak configuration and common defines.
106 */
107#define MAX_TRACE 16 /* stack trace length */
108#define MSECS_MIN_AGE 5000 /* minimum object age for reporting */
109#define SECS_FIRST_SCAN 60 /* delay before the first scan */
110#define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */
111#define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */
112
113#define BYTES_PER_POINTER sizeof(void *)
114
115/* GFP bitmask for kmemleak internal allocations */
116#define gfp_kmemleak_mask(gfp) (((gfp) & (GFP_KERNEL | GFP_ATOMIC)) | \
117 __GFP_NORETRY | __GFP_NOMEMALLOC | \
118 __GFP_NOWARN)
119
120/* scanning area inside a memory block */
121struct kmemleak_scan_area {
122 struct hlist_node node;
123 unsigned long start;
124 size_t size;
125};
126
127#define KMEMLEAK_GREY 0
128#define KMEMLEAK_BLACK -1
129
130/*
131 * Structure holding the metadata for each allocated memory block.
132 * Modifications to such objects should be made while holding the
133 * object->lock. Insertions or deletions from object_list, gray_list or
134 * tree_node are already protected by the corresponding locks or mutex (see
135 * the notes on locking above). These objects are reference-counted
136 * (use_count) and freed using the RCU mechanism.
137 */
138struct kmemleak_object {
139 spinlock_t lock;
140 unsigned long flags; /* object status flags */
141 struct list_head object_list;
142 struct list_head gray_list;
143 struct prio_tree_node tree_node;
144 struct rcu_head rcu; /* object_list lockless traversal */
145 /* object usage count; object freed when use_count == 0 */
146 atomic_t use_count;
147 unsigned long pointer;
148 size_t size;
149 /* minimum number of a pointers found before it is considered leak */
150 int min_count;
151 /* the total number of pointers found pointing to this object */
152 int count;
153 /* checksum for detecting modified objects */
154 u32 checksum;
155 /* memory ranges to be scanned inside an object (empty for all) */
156 struct hlist_head area_list;
157 unsigned long trace[MAX_TRACE];
158 unsigned int trace_len;
159 unsigned long jiffies; /* creation timestamp */
160 pid_t pid; /* pid of the current task */
161 char comm[TASK_COMM_LEN]; /* executable name */
162};
163
164/* flag representing the memory block allocation status */
165#define OBJECT_ALLOCATED (1 << 0)
166/* flag set after the first reporting of an unreference object */
167#define OBJECT_REPORTED (1 << 1)
168/* flag set to not scan the object */
169#define OBJECT_NO_SCAN (1 << 2)
170
171/* number of bytes to print per line; must be 16 or 32 */
172#define HEX_ROW_SIZE 16
173/* number of bytes to print at a time (1, 2, 4, 8) */
174#define HEX_GROUP_SIZE 1
175/* include ASCII after the hex output */
176#define HEX_ASCII 1
177/* max number of lines to be printed */
178#define HEX_MAX_LINES 2
179
180/* the list of all allocated objects */
181static LIST_HEAD(object_list);
182/* the list of gray-colored objects (see color_gray comment below) */
183static LIST_HEAD(gray_list);
184/* prio search tree for object boundaries */
185static struct prio_tree_root object_tree_root;
186/* rw_lock protecting the access to object_list and prio_tree_root */
187static DEFINE_RWLOCK(kmemleak_lock);
188
189/* allocation caches for kmemleak internal data */
190static struct kmem_cache *object_cache;
191static struct kmem_cache *scan_area_cache;
192
193/* set if tracing memory operations is enabled */
194static atomic_t kmemleak_enabled = ATOMIC_INIT(0);
195/* set in the late_initcall if there were no errors */
196static atomic_t kmemleak_initialized = ATOMIC_INIT(0);
197/* enables or disables early logging of the memory operations */
198static atomic_t kmemleak_early_log = ATOMIC_INIT(1);
199/* set if a fata kmemleak error has occurred */
200static atomic_t kmemleak_error = ATOMIC_INIT(0);
201
202/* minimum and maximum address that may be valid pointers */
203static unsigned long min_addr = ULONG_MAX;
204static unsigned long max_addr;
205
206static struct task_struct *scan_thread;
207/* used to avoid reporting of recently allocated objects */
208static unsigned long jiffies_min_age;
209static unsigned long jiffies_last_scan;
210/* delay between automatic memory scannings */
211static signed long jiffies_scan_wait;
212/* enables or disables the task stacks scanning */
213static int kmemleak_stack_scan = 1;
214/* protects the memory scanning, parameters and debug/kmemleak file access */
215static DEFINE_MUTEX(scan_mutex);
216/* setting kmemleak=on, will set this var, skipping the disable */
217static int kmemleak_skip_disable;
218
219
220/*
221 * Early object allocation/freeing logging. Kmemleak is initialized after the
222 * kernel allocator. However, both the kernel allocator and kmemleak may
223 * allocate memory blocks which need to be tracked. Kmemleak defines an
224 * arbitrary buffer to hold the allocation/freeing information before it is
225 * fully initialized.
226 */
227
228/* kmemleak operation type for early logging */
229enum {
230 KMEMLEAK_ALLOC,
231 KMEMLEAK_FREE,
232 KMEMLEAK_FREE_PART,
233 KMEMLEAK_NOT_LEAK,
234 KMEMLEAK_IGNORE,
235 KMEMLEAK_SCAN_AREA,
236 KMEMLEAK_NO_SCAN
237};
238
239/*
240 * Structure holding the information passed to kmemleak callbacks during the
241 * early logging.
242 */
243struct early_log {
244 int op_type; /* kmemleak operation type */
245 const void *ptr; /* allocated/freed memory block */
246 size_t size; /* memory block size */
247 int min_count; /* minimum reference count */
248 unsigned long trace[MAX_TRACE]; /* stack trace */
249 unsigned int trace_len; /* stack trace length */
250};
251
252/* early logging buffer and current position */
253static struct early_log
254 early_log[CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE] __initdata;
255static int crt_early_log __initdata;
256
257static void kmemleak_disable(void);
258
259/*
260 * Print a warning and dump the stack trace.
261 */
262#define kmemleak_warn(x...) do { \
263 pr_warning(x); \
264 dump_stack(); \
265} while (0)
266
267/*
268 * Macro invoked when a serious kmemleak condition occurred and cannot be
269 * recovered from. Kmemleak will be disabled and further allocation/freeing
270 * tracing no longer available.
271 */
272#define kmemleak_stop(x...) do { \
273 kmemleak_warn(x); \
274 kmemleak_disable(); \
275} while (0)
276
277/*
278 * Printing of the objects hex dump to the seq file. The number of lines to be
279 * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
280 * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
281 * with the object->lock held.
282 */
283static void hex_dump_object(struct seq_file *seq,
284 struct kmemleak_object *object)
285{
286 const u8 *ptr = (const u8 *)object->pointer;
287 int i, len, remaining;
288 unsigned char linebuf[HEX_ROW_SIZE * 5];
289
290 /* limit the number of lines to HEX_MAX_LINES */
291 remaining = len =
292 min(object->size, (size_t)(HEX_MAX_LINES * HEX_ROW_SIZE));
293
294 seq_printf(seq, " hex dump (first %d bytes):\n", len);
295 for (i = 0; i < len; i += HEX_ROW_SIZE) {
296 int linelen = min(remaining, HEX_ROW_SIZE);
297
298 remaining -= HEX_ROW_SIZE;
299 hex_dump_to_buffer(ptr + i, linelen, HEX_ROW_SIZE,
300 HEX_GROUP_SIZE, linebuf, sizeof(linebuf),
301 HEX_ASCII);
302 seq_printf(seq, " %s\n", linebuf);
303 }
304}
305
306/*
307 * Object colors, encoded with count and min_count:
308 * - white - orphan object, not enough references to it (count < min_count)
309 * - gray - not orphan, not marked as false positive (min_count == 0) or
310 * sufficient references to it (count >= min_count)
311 * - black - ignore, it doesn't contain references (e.g. text section)
312 * (min_count == -1). No function defined for this color.
313 * Newly created objects don't have any color assigned (object->count == -1)
314 * before the next memory scan when they become white.
315 */
316static bool color_white(const struct kmemleak_object *object)
317{
318 return object->count != KMEMLEAK_BLACK &&
319 object->count < object->min_count;
320}
321
322static bool color_gray(const struct kmemleak_object *object)
323{
324 return object->min_count != KMEMLEAK_BLACK &&
325 object->count >= object->min_count;
326}
327
328/*
329 * Objects are considered unreferenced only if their color is white, they have
330 * not be deleted and have a minimum age to avoid false positives caused by
331 * pointers temporarily stored in CPU registers.
332 */
333static bool unreferenced_object(struct kmemleak_object *object)
334{
335 return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
336 time_before_eq(object->jiffies + jiffies_min_age,
337 jiffies_last_scan);
338}
339
340/*
341 * Printing of the unreferenced objects information to the seq file. The
342 * print_unreferenced function must be called with the object->lock held.
343 */
344static void print_unreferenced(struct seq_file *seq,
345 struct kmemleak_object *object)
346{
347 int i;
348 unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
349
350 seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
351 object->pointer, object->size);
352 seq_printf(seq, " comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
353 object->comm, object->pid, object->jiffies,
354 msecs_age / 1000, msecs_age % 1000);
355 hex_dump_object(seq, object);
356 seq_printf(seq, " backtrace:\n");
357
358 for (i = 0; i < object->trace_len; i++) {
359 void *ptr = (void *)object->trace[i];
360 seq_printf(seq, " [<%p>] %pS\n", ptr, ptr);
361 }
362}
363
364/*
365 * Print the kmemleak_object information. This function is used mainly for
366 * debugging special cases when kmemleak operations. It must be called with
367 * the object->lock held.
368 */
369static void dump_object_info(struct kmemleak_object *object)
370{
371 struct stack_trace trace;
372
373 trace.nr_entries = object->trace_len;
374 trace.entries = object->trace;
375
376 pr_notice("Object 0x%08lx (size %zu):\n",
377 object->tree_node.start, object->size);
378 pr_notice(" comm \"%s\", pid %d, jiffies %lu\n",
379 object->comm, object->pid, object->jiffies);
380 pr_notice(" min_count = %d\n", object->min_count);
381 pr_notice(" count = %d\n", object->count);
382 pr_notice(" flags = 0x%lx\n", object->flags);
383 pr_notice(" checksum = %d\n", object->checksum);
384 pr_notice(" backtrace:\n");
385 print_stack_trace(&trace, 4);
386}
387
388/*
389 * Look-up a memory block metadata (kmemleak_object) in the priority search
390 * tree based on a pointer value. If alias is 0, only values pointing to the
391 * beginning of the memory block are allowed. The kmemleak_lock must be held
392 * when calling this function.
393 */
394static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
395{
396 struct prio_tree_node *node;
397 struct prio_tree_iter iter;
398 struct kmemleak_object *object;
399
400 prio_tree_iter_init(&iter, &object_tree_root, ptr, ptr);
401 node = prio_tree_next(&iter);
402 if (node) {
403 object = prio_tree_entry(node, struct kmemleak_object,
404 tree_node);
405 if (!alias && object->pointer != ptr) {
406 pr_warning("Found object by alias at 0x%08lx\n", ptr);
407 dump_stack();
408 dump_object_info(object);
409 object = NULL;
410 }
411 } else
412 object = NULL;
413
414 return object;
415}
416
417/*
418 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
419 * that once an object's use_count reached 0, the RCU freeing was already
420 * registered and the object should no longer be used. This function must be
421 * called under the protection of rcu_read_lock().
422 */
423static int get_object(struct kmemleak_object *object)
424{
425 return atomic_inc_not_zero(&object->use_count);
426}
427
428/*
429 * RCU callback to free a kmemleak_object.
430 */
431static void free_object_rcu(struct rcu_head *rcu)
432{
433 struct hlist_node *elem, *tmp;
434 struct kmemleak_scan_area *area;
435 struct kmemleak_object *object =
436 container_of(rcu, struct kmemleak_object, rcu);
437
438 /*
439 * Once use_count is 0 (guaranteed by put_object), there is no other
440 * code accessing this object, hence no need for locking.
441 */
442 hlist_for_each_entry_safe(area, elem, tmp, &object->area_list, node) {
443 hlist_del(elem);
444 kmem_cache_free(scan_area_cache, area);
445 }
446 kmem_cache_free(object_cache, object);
447}
448
449/*
450 * Decrement the object use_count. Once the count is 0, free the object using
451 * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
452 * delete_object() path, the delayed RCU freeing ensures that there is no
453 * recursive call to the kernel allocator. Lock-less RCU object_list traversal
454 * is also possible.
455 */
456static void put_object(struct kmemleak_object *object)
457{
458 if (!atomic_dec_and_test(&object->use_count))
459 return;
460
461 /* should only get here after delete_object was called */
462 WARN_ON(object->flags & OBJECT_ALLOCATED);
463
464 call_rcu(&object->rcu, free_object_rcu);
465}
466
467/*
468 * Look up an object in the prio search tree and increase its use_count.
469 */
470static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
471{
472 unsigned long flags;
473 struct kmemleak_object *object = NULL;
474
475 rcu_read_lock();
476 read_lock_irqsave(&kmemleak_lock, flags);
477 if (ptr >= min_addr && ptr < max_addr)
478 object = lookup_object(ptr, alias);
479 read_unlock_irqrestore(&kmemleak_lock, flags);
480
481 /* check whether the object is still available */
482 if (object && !get_object(object))
483 object = NULL;
484 rcu_read_unlock();
485
486 return object;
487}
488
489/*
490 * Save stack trace to the given array of MAX_TRACE size.
491 */
492static int __save_stack_trace(unsigned long *trace)
493{
494 struct stack_trace stack_trace;
495
496 stack_trace.max_entries = MAX_TRACE;
497 stack_trace.nr_entries = 0;
498 stack_trace.entries = trace;
499 stack_trace.skip = 2;
500 save_stack_trace(&stack_trace);
501
502 return stack_trace.nr_entries;
503}
504
505/*
506 * Create the metadata (struct kmemleak_object) corresponding to an allocated
507 * memory block and add it to the object_list and object_tree_root.
508 */
509static struct kmemleak_object *create_object(unsigned long ptr, size_t size,
510 int min_count, gfp_t gfp)
511{
512 unsigned long flags;
513 struct kmemleak_object *object;
514 struct prio_tree_node *node;
515
516 object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
517 if (!object) {
518 pr_warning("Cannot allocate a kmemleak_object structure\n");
519 kmemleak_disable();
520 return NULL;
521 }
522
523 INIT_LIST_HEAD(&object->object_list);
524 INIT_LIST_HEAD(&object->gray_list);
525 INIT_HLIST_HEAD(&object->area_list);
526 spin_lock_init(&object->lock);
527 atomic_set(&object->use_count, 1);
528 object->flags = OBJECT_ALLOCATED;
529 object->pointer = ptr;
530 object->size = size;
531 object->min_count = min_count;
532 object->count = 0; /* white color initially */
533 object->jiffies = jiffies;
534 object->checksum = 0;
535
536 /* task information */
537 if (in_irq()) {
538 object->pid = 0;
539 strncpy(object->comm, "hardirq", sizeof(object->comm));
540 } else if (in_softirq()) {
541 object->pid = 0;
542 strncpy(object->comm, "softirq", sizeof(object->comm));
543 } else {
544 object->pid = current->pid;
545 /*
546 * There is a small chance of a race with set_task_comm(),
547 * however using get_task_comm() here may cause locking
548 * dependency issues with current->alloc_lock. In the worst
549 * case, the command line is not correct.
550 */
551 strncpy(object->comm, current->comm, sizeof(object->comm));
552 }
553
554 /* kernel backtrace */
555 object->trace_len = __save_stack_trace(object->trace);
556
557 INIT_PRIO_TREE_NODE(&object->tree_node);
558 object->tree_node.start = ptr;
559 object->tree_node.last = ptr + size - 1;
560
561 write_lock_irqsave(&kmemleak_lock, flags);
562
563 min_addr = min(min_addr, ptr);
564 max_addr = max(max_addr, ptr + size);
565 node = prio_tree_insert(&object_tree_root, &object->tree_node);
566 /*
567 * The code calling the kernel does not yet have the pointer to the
568 * memory block to be able to free it. However, we still hold the
569 * kmemleak_lock here in case parts of the kernel started freeing
570 * random memory blocks.
571 */
572 if (node != &object->tree_node) {
573 kmemleak_stop("Cannot insert 0x%lx into the object search tree "
574 "(already existing)\n", ptr);
575 object = lookup_object(ptr, 1);
576 spin_lock(&object->lock);
577 dump_object_info(object);
578 spin_unlock(&object->lock);
579
580 goto out;
581 }
582 list_add_tail_rcu(&object->object_list, &object_list);
583out:
584 write_unlock_irqrestore(&kmemleak_lock, flags);
585 return object;
586}
587
588/*
589 * Remove the metadata (struct kmemleak_object) for a memory block from the
590 * object_list and object_tree_root and decrement its use_count.
591 */
592static void __delete_object(struct kmemleak_object *object)
593{
594 unsigned long flags;
595
596 write_lock_irqsave(&kmemleak_lock, flags);
597 prio_tree_remove(&object_tree_root, &object->tree_node);
598 list_del_rcu(&object->object_list);
599 write_unlock_irqrestore(&kmemleak_lock, flags);
600
601 WARN_ON(!(object->flags & OBJECT_ALLOCATED));
602 WARN_ON(atomic_read(&object->use_count) < 2);
603
604 /*
605 * Locking here also ensures that the corresponding memory block
606 * cannot be freed when it is being scanned.
607 */
608 spin_lock_irqsave(&object->lock, flags);
609 object->flags &= ~OBJECT_ALLOCATED;
610 spin_unlock_irqrestore(&object->lock, flags);
611 put_object(object);
612}
613
614/*
615 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
616 * delete it.
617 */
618static void delete_object_full(unsigned long ptr)
619{
620 struct kmemleak_object *object;
621
622 object = find_and_get_object(ptr, 0);
623 if (!object) {
624#ifdef DEBUG
625 kmemleak_warn("Freeing unknown object at 0x%08lx\n",
626 ptr);
627#endif
628 return;
629 }
630 __delete_object(object);
631 put_object(object);
632}
633
634/*
635 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
636 * delete it. If the memory block is partially freed, the function may create
637 * additional metadata for the remaining parts of the block.
638 */
639static void delete_object_part(unsigned long ptr, size_t size)
640{
641 struct kmemleak_object *object;
642 unsigned long start, end;
643
644 object = find_and_get_object(ptr, 1);
645 if (!object) {
646#ifdef DEBUG
647 kmemleak_warn("Partially freeing unknown object at 0x%08lx "
648 "(size %zu)\n", ptr, size);
649#endif
650 return;
651 }
652 __delete_object(object);
653
654 /*
655 * Create one or two objects that may result from the memory block
656 * split. Note that partial freeing is only done by free_bootmem() and
657 * this happens before kmemleak_init() is called. The path below is
658 * only executed during early log recording in kmemleak_init(), so
659 * GFP_KERNEL is enough.
660 */
661 start = object->pointer;
662 end = object->pointer + object->size;
663 if (ptr > start)
664 create_object(start, ptr - start, object->min_count,
665 GFP_KERNEL);
666 if (ptr + size < end)
667 create_object(ptr + size, end - ptr - size, object->min_count,
668 GFP_KERNEL);
669
670 put_object(object);
671}
672
673static void __paint_it(struct kmemleak_object *object, int color)
674{
675 object->min_count = color;
676 if (color == KMEMLEAK_BLACK)
677 object->flags |= OBJECT_NO_SCAN;
678}
679
680static void paint_it(struct kmemleak_object *object, int color)
681{
682 unsigned long flags;
683
684 spin_lock_irqsave(&object->lock, flags);
685 __paint_it(object, color);
686 spin_unlock_irqrestore(&object->lock, flags);
687}
688
689static void paint_ptr(unsigned long ptr, int color)
690{
691 struct kmemleak_object *object;
692
693 object = find_and_get_object(ptr, 0);
694 if (!object) {
695 kmemleak_warn("Trying to color unknown object "
696 "at 0x%08lx as %s\n", ptr,
697 (color == KMEMLEAK_GREY) ? "Grey" :
698 (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
699 return;
700 }
701 paint_it(object, color);
702 put_object(object);
703}
704
705/*
706 * Mark an object permanently as gray-colored so that it can no longer be
707 * reported as a leak. This is used in general to mark a false positive.
708 */
709static void make_gray_object(unsigned long ptr)
710{
711 paint_ptr(ptr, KMEMLEAK_GREY);
712}
713
714/*
715 * Mark the object as black-colored so that it is ignored from scans and
716 * reporting.
717 */
718static void make_black_object(unsigned long ptr)
719{
720 paint_ptr(ptr, KMEMLEAK_BLACK);
721}
722
723/*
724 * Add a scanning area to the object. If at least one such area is added,
725 * kmemleak will only scan these ranges rather than the whole memory block.
726 */
727static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
728{
729 unsigned long flags;
730 struct kmemleak_object *object;
731 struct kmemleak_scan_area *area;
732
733 object = find_and_get_object(ptr, 1);
734 if (!object) {
735 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
736 ptr);
737 return;
738 }
739
740 area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
741 if (!area) {
742 pr_warning("Cannot allocate a scan area\n");
743 goto out;
744 }
745
746 spin_lock_irqsave(&object->lock, flags);
747 if (ptr + size > object->pointer + object->size) {
748 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
749 dump_object_info(object);
750 kmem_cache_free(scan_area_cache, area);
751 goto out_unlock;
752 }
753
754 INIT_HLIST_NODE(&area->node);
755 area->start = ptr;
756 area->size = size;
757
758 hlist_add_head(&area->node, &object->area_list);
759out_unlock:
760 spin_unlock_irqrestore(&object->lock, flags);
761out:
762 put_object(object);
763}
764
765/*
766 * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
767 * pointer. Such object will not be scanned by kmemleak but references to it
768 * are searched.
769 */
770static void object_no_scan(unsigned long ptr)
771{
772 unsigned long flags;
773 struct kmemleak_object *object;
774
775 object = find_and_get_object(ptr, 0);
776 if (!object) {
777 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
778 return;
779 }
780
781 spin_lock_irqsave(&object->lock, flags);
782 object->flags |= OBJECT_NO_SCAN;
783 spin_unlock_irqrestore(&object->lock, flags);
784 put_object(object);
785}
786
787/*
788 * Log an early kmemleak_* call to the early_log buffer. These calls will be
789 * processed later once kmemleak is fully initialized.
790 */
791static void __init log_early(int op_type, const void *ptr, size_t size,
792 int min_count)
793{
794 unsigned long flags;
795 struct early_log *log;
796
797 if (crt_early_log >= ARRAY_SIZE(early_log)) {
798 pr_warning("Early log buffer exceeded, "
799 "please increase DEBUG_KMEMLEAK_EARLY_LOG_SIZE\n");
800 kmemleak_disable();
801 return;
802 }
803
804 /*
805 * There is no need for locking since the kernel is still in UP mode
806 * at this stage. Disabling the IRQs is enough.
807 */
808 local_irq_save(flags);
809 log = &early_log[crt_early_log];
810 log->op_type = op_type;
811 log->ptr = ptr;
812 log->size = size;
813 log->min_count = min_count;
814 if (op_type == KMEMLEAK_ALLOC)
815 log->trace_len = __save_stack_trace(log->trace);
816 crt_early_log++;
817 local_irq_restore(flags);
818}
819
820/*
821 * Log an early allocated block and populate the stack trace.
822 */
823static void early_alloc(struct early_log *log)
824{
825 struct kmemleak_object *object;
826 unsigned long flags;
827 int i;
828
829 if (!atomic_read(&kmemleak_enabled) || !log->ptr || IS_ERR(log->ptr))
830 return;
831
832 /*
833 * RCU locking needed to ensure object is not freed via put_object().
834 */
835 rcu_read_lock();
836 object = create_object((unsigned long)log->ptr, log->size,
837 log->min_count, GFP_ATOMIC);
838 if (!object)
839 goto out;
840 spin_lock_irqsave(&object->lock, flags);
841 for (i = 0; i < log->trace_len; i++)
842 object->trace[i] = log->trace[i];
843 object->trace_len = log->trace_len;
844 spin_unlock_irqrestore(&object->lock, flags);
845out:
846 rcu_read_unlock();
847}
848
849/**
850 * kmemleak_alloc - register a newly allocated object
851 * @ptr: pointer to beginning of the object
852 * @size: size of the object
853 * @min_count: minimum number of references to this object. If during memory
854 * scanning a number of references less than @min_count is found,
855 * the object is reported as a memory leak. If @min_count is 0,
856 * the object is never reported as a leak. If @min_count is -1,
857 * the object is ignored (not scanned and not reported as a leak)
858 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
859 *
860 * This function is called from the kernel allocators when a new object
861 * (memory block) is allocated (kmem_cache_alloc, kmalloc, vmalloc etc.).
862 */
863void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
864 gfp_t gfp)
865{
866 pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
867
868 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
869 create_object((unsigned long)ptr, size, min_count, gfp);
870 else if (atomic_read(&kmemleak_early_log))
871 log_early(KMEMLEAK_ALLOC, ptr, size, min_count);
872}
873EXPORT_SYMBOL_GPL(kmemleak_alloc);
874
875/**
876 * kmemleak_free - unregister a previously registered object
877 * @ptr: pointer to beginning of the object
878 *
879 * This function is called from the kernel allocators when an object (memory
880 * block) is freed (kmem_cache_free, kfree, vfree etc.).
881 */
882void __ref kmemleak_free(const void *ptr)
883{
884 pr_debug("%s(0x%p)\n", __func__, ptr);
885
886 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
887 delete_object_full((unsigned long)ptr);
888 else if (atomic_read(&kmemleak_early_log))
889 log_early(KMEMLEAK_FREE, ptr, 0, 0);
890}
891EXPORT_SYMBOL_GPL(kmemleak_free);
892
893/**
894 * kmemleak_free_part - partially unregister a previously registered object
895 * @ptr: pointer to the beginning or inside the object. This also
896 * represents the start of the range to be freed
897 * @size: size to be unregistered
898 *
899 * This function is called when only a part of a memory block is freed
900 * (usually from the bootmem allocator).
901 */
902void __ref kmemleak_free_part(const void *ptr, size_t size)
903{
904 pr_debug("%s(0x%p)\n", __func__, ptr);
905
906 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
907 delete_object_part((unsigned long)ptr, size);
908 else if (atomic_read(&kmemleak_early_log))
909 log_early(KMEMLEAK_FREE_PART, ptr, size, 0);
910}
911EXPORT_SYMBOL_GPL(kmemleak_free_part);
912
913/**
914 * kmemleak_not_leak - mark an allocated object as false positive
915 * @ptr: pointer to beginning of the object
916 *
917 * Calling this function on an object will cause the memory block to no longer
918 * be reported as leak and always be scanned.
919 */
920void __ref kmemleak_not_leak(const void *ptr)
921{
922 pr_debug("%s(0x%p)\n", __func__, ptr);
923
924 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
925 make_gray_object((unsigned long)ptr);
926 else if (atomic_read(&kmemleak_early_log))
927 log_early(KMEMLEAK_NOT_LEAK, ptr, 0, 0);
928}
929EXPORT_SYMBOL(kmemleak_not_leak);
930
931/**
932 * kmemleak_ignore - ignore an allocated object
933 * @ptr: pointer to beginning of the object
934 *
935 * Calling this function on an object will cause the memory block to be
936 * ignored (not scanned and not reported as a leak). This is usually done when
937 * it is known that the corresponding block is not a leak and does not contain
938 * any references to other allocated memory blocks.
939 */
940void __ref kmemleak_ignore(const void *ptr)
941{
942 pr_debug("%s(0x%p)\n", __func__, ptr);
943
944 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
945 make_black_object((unsigned long)ptr);
946 else if (atomic_read(&kmemleak_early_log))
947 log_early(KMEMLEAK_IGNORE, ptr, 0, 0);
948}
949EXPORT_SYMBOL(kmemleak_ignore);
950
951/**
952 * kmemleak_scan_area - limit the range to be scanned in an allocated object
953 * @ptr: pointer to beginning or inside the object. This also
954 * represents the start of the scan area
955 * @size: size of the scan area
956 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
957 *
958 * This function is used when it is known that only certain parts of an object
959 * contain references to other objects. Kmemleak will only scan these areas
960 * reducing the number false negatives.
961 */
962void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
963{
964 pr_debug("%s(0x%p)\n", __func__, ptr);
965
966 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
967 add_scan_area((unsigned long)ptr, size, gfp);
968 else if (atomic_read(&kmemleak_early_log))
969 log_early(KMEMLEAK_SCAN_AREA, ptr, size, 0);
970}
971EXPORT_SYMBOL(kmemleak_scan_area);
972
973/**
974 * kmemleak_no_scan - do not scan an allocated object
975 * @ptr: pointer to beginning of the object
976 *
977 * This function notifies kmemleak not to scan the given memory block. Useful
978 * in situations where it is known that the given object does not contain any
979 * references to other objects. Kmemleak will not scan such objects reducing
980 * the number of false negatives.
981 */
982void __ref kmemleak_no_scan(const void *ptr)
983{
984 pr_debug("%s(0x%p)\n", __func__, ptr);
985
986 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
987 object_no_scan((unsigned long)ptr);
988 else if (atomic_read(&kmemleak_early_log))
989 log_early(KMEMLEAK_NO_SCAN, ptr, 0, 0);
990}
991EXPORT_SYMBOL(kmemleak_no_scan);
992
993/*
994 * Update an object's checksum and return true if it was modified.
995 */
996static bool update_checksum(struct kmemleak_object *object)
997{
998 u32 old_csum = object->checksum;
999
1000 if (!kmemcheck_is_obj_initialized(object->pointer, object->size))
1001 return false;
1002
1003 object->checksum = crc32(0, (void *)object->pointer, object->size);
1004 return object->checksum != old_csum;
1005}
1006
1007/*
1008 * Memory scanning is a long process and it needs to be interruptable. This
1009 * function checks whether such interrupt condition occurred.
1010 */
1011static int scan_should_stop(void)
1012{
1013 if (!atomic_read(&kmemleak_enabled))
1014 return 1;
1015
1016 /*
1017 * This function may be called from either process or kthread context,
1018 * hence the need to check for both stop conditions.
1019 */
1020 if (current->mm)
1021 return signal_pending(current);
1022 else
1023 return kthread_should_stop();
1024
1025 return 0;
1026}
1027
1028/*
1029 * Scan a memory block (exclusive range) for valid pointers and add those
1030 * found to the gray list.
1031 */
1032static void scan_block(void *_start, void *_end,
1033 struct kmemleak_object *scanned, int allow_resched)
1034{
1035 unsigned long *ptr;
1036 unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1037 unsigned long *end = _end - (BYTES_PER_POINTER - 1);
1038
1039 for (ptr = start; ptr < end; ptr++) {
1040 struct kmemleak_object *object;
1041 unsigned long flags;
1042 unsigned long pointer;
1043
1044 if (allow_resched)
1045 cond_resched();
1046 if (scan_should_stop())
1047 break;
1048
1049 /* don't scan uninitialized memory */
1050 if (!kmemcheck_is_obj_initialized((unsigned long)ptr,
1051 BYTES_PER_POINTER))
1052 continue;
1053
1054 pointer = *ptr;
1055
1056 object = find_and_get_object(pointer, 1);
1057 if (!object)
1058 continue;
1059 if (object == scanned) {
1060 /* self referenced, ignore */
1061 put_object(object);
1062 continue;
1063 }
1064
1065 /*
1066 * Avoid the lockdep recursive warning on object->lock being
1067 * previously acquired in scan_object(). These locks are
1068 * enclosed by scan_mutex.
1069 */
1070 spin_lock_irqsave_nested(&object->lock, flags,
1071 SINGLE_DEPTH_NESTING);
1072 if (!color_white(object)) {
1073 /* non-orphan, ignored or new */
1074 spin_unlock_irqrestore(&object->lock, flags);
1075 put_object(object);
1076 continue;
1077 }
1078
1079 /*
1080 * Increase the object's reference count (number of pointers
1081 * to the memory block). If this count reaches the required
1082 * minimum, the object's color will become gray and it will be
1083 * added to the gray_list.
1084 */
1085 object->count++;
1086 if (color_gray(object)) {
1087 list_add_tail(&object->gray_list, &gray_list);
1088 spin_unlock_irqrestore(&object->lock, flags);
1089 continue;
1090 }
1091
1092 spin_unlock_irqrestore(&object->lock, flags);
1093 put_object(object);
1094 }
1095}
1096
1097/*
1098 * Scan a memory block corresponding to a kmemleak_object. A condition is
1099 * that object->use_count >= 1.
1100 */
1101static void scan_object(struct kmemleak_object *object)
1102{
1103 struct kmemleak_scan_area *area;
1104 struct hlist_node *elem;
1105 unsigned long flags;
1106
1107 /*
1108 * Once the object->lock is acquired, the corresponding memory block
1109 * cannot be freed (the same lock is acquired in delete_object).
1110 */
1111 spin_lock_irqsave(&object->lock, flags);
1112 if (object->flags & OBJECT_NO_SCAN)
1113 goto out;
1114 if (!(object->flags & OBJECT_ALLOCATED))
1115 /* already freed object */
1116 goto out;
1117 if (hlist_empty(&object->area_list)) {
1118 void *start = (void *)object->pointer;
1119 void *end = (void *)(object->pointer + object->size);
1120
1121 while (start < end && (object->flags & OBJECT_ALLOCATED) &&
1122 !(object->flags & OBJECT_NO_SCAN)) {
1123 scan_block(start, min(start + MAX_SCAN_SIZE, end),
1124 object, 0);
1125 start += MAX_SCAN_SIZE;
1126
1127 spin_unlock_irqrestore(&object->lock, flags);
1128 cond_resched();
1129 spin_lock_irqsave(&object->lock, flags);
1130 }
1131 } else
1132 hlist_for_each_entry(area, elem, &object->area_list, node)
1133 scan_block((void *)area->start,
1134 (void *)(area->start + area->size),
1135 object, 0);
1136out:
1137 spin_unlock_irqrestore(&object->lock, flags);
1138}
1139
1140/*
1141 * Scan the objects already referenced (gray objects). More objects will be
1142 * referenced and, if there are no memory leaks, all the objects are scanned.
1143 */
1144static void scan_gray_list(void)
1145{
1146 struct kmemleak_object *object, *tmp;
1147
1148 /*
1149 * The list traversal is safe for both tail additions and removals
1150 * from inside the loop. The kmemleak objects cannot be freed from
1151 * outside the loop because their use_count was incremented.
1152 */
1153 object = list_entry(gray_list.next, typeof(*object), gray_list);
1154 while (&object->gray_list != &gray_list) {
1155 cond_resched();
1156
1157 /* may add new objects to the list */
1158 if (!scan_should_stop())
1159 scan_object(object);
1160
1161 tmp = list_entry(object->gray_list.next, typeof(*object),
1162 gray_list);
1163
1164 /* remove the object from the list and release it */
1165 list_del(&object->gray_list);
1166 put_object(object);
1167
1168 object = tmp;
1169 }
1170 WARN_ON(!list_empty(&gray_list));
1171}
1172
1173/*
1174 * Scan data sections and all the referenced memory blocks allocated via the
1175 * kernel's standard allocators. This function must be called with the
1176 * scan_mutex held.
1177 */
1178static void kmemleak_scan(void)
1179{
1180 unsigned long flags;
1181 struct kmemleak_object *object;
1182 int i;
1183 int new_leaks = 0;
1184
1185 jiffies_last_scan = jiffies;
1186
1187 /* prepare the kmemleak_object's */
1188 rcu_read_lock();
1189 list_for_each_entry_rcu(object, &object_list, object_list) {
1190 spin_lock_irqsave(&object->lock, flags);
1191#ifdef DEBUG
1192 /*
1193 * With a few exceptions there should be a maximum of
1194 * 1 reference to any object at this point.
1195 */
1196 if (atomic_read(&object->use_count) > 1) {
1197 pr_debug("object->use_count = %d\n",
1198 atomic_read(&object->use_count));
1199 dump_object_info(object);
1200 }
1201#endif
1202 /* reset the reference count (whiten the object) */
1203 object->count = 0;
1204 if (color_gray(object) && get_object(object))
1205 list_add_tail(&object->gray_list, &gray_list);
1206
1207 spin_unlock_irqrestore(&object->lock, flags);
1208 }
1209 rcu_read_unlock();
1210
1211 /* data/bss scanning */
1212 scan_block(_sdata, _edata, NULL, 1);
1213 scan_block(__bss_start, __bss_stop, NULL, 1);
1214
1215#ifdef CONFIG_SMP
1216 /* per-cpu sections scanning */
1217 for_each_possible_cpu(i)
1218 scan_block(__per_cpu_start + per_cpu_offset(i),
1219 __per_cpu_end + per_cpu_offset(i), NULL, 1);
1220#endif
1221
1222 /*
1223 * Struct page scanning for each node. The code below is not yet safe
1224 * with MEMORY_HOTPLUG.
1225 */
1226 for_each_online_node(i) {
1227 pg_data_t *pgdat = NODE_DATA(i);
1228 unsigned long start_pfn = pgdat->node_start_pfn;
1229 unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages;
1230 unsigned long pfn;
1231
1232 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1233 struct page *page;
1234
1235 if (!pfn_valid(pfn))
1236 continue;
1237 page = pfn_to_page(pfn);
1238 /* only scan if page is in use */
1239 if (page_count(page) == 0)
1240 continue;
1241 scan_block(page, page + 1, NULL, 1);
1242 }
1243 }
1244
1245 /*
1246 * Scanning the task stacks (may introduce false negatives).
1247 */
1248 if (kmemleak_stack_scan) {
1249 struct task_struct *p, *g;
1250
1251 read_lock(&tasklist_lock);
1252 do_each_thread(g, p) {
1253 scan_block(task_stack_page(p), task_stack_page(p) +
1254 THREAD_SIZE, NULL, 0);
1255 } while_each_thread(g, p);
1256 read_unlock(&tasklist_lock);
1257 }
1258
1259 /*
1260 * Scan the objects already referenced from the sections scanned
1261 * above.
1262 */
1263 scan_gray_list();
1264
1265 /*
1266 * Check for new or unreferenced objects modified since the previous
1267 * scan and color them gray until the next scan.
1268 */
1269 rcu_read_lock();
1270 list_for_each_entry_rcu(object, &object_list, object_list) {
1271 spin_lock_irqsave(&object->lock, flags);
1272 if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1273 && update_checksum(object) && get_object(object)) {
1274 /* color it gray temporarily */
1275 object->count = object->min_count;
1276 list_add_tail(&object->gray_list, &gray_list);
1277 }
1278 spin_unlock_irqrestore(&object->lock, flags);
1279 }
1280 rcu_read_unlock();
1281
1282 /*
1283 * Re-scan the gray list for modified unreferenced objects.
1284 */
1285 scan_gray_list();
1286
1287 /*
1288 * If scanning was stopped do not report any new unreferenced objects.
1289 */
1290 if (scan_should_stop())
1291 return;
1292
1293 /*
1294 * Scanning result reporting.
1295 */
1296 rcu_read_lock();
1297 list_for_each_entry_rcu(object, &object_list, object_list) {
1298 spin_lock_irqsave(&object->lock, flags);
1299 if (unreferenced_object(object) &&
1300 !(object->flags & OBJECT_REPORTED)) {
1301 object->flags |= OBJECT_REPORTED;
1302 new_leaks++;
1303 }
1304 spin_unlock_irqrestore(&object->lock, flags);
1305 }
1306 rcu_read_unlock();
1307
1308 if (new_leaks)
1309 pr_info("%d new suspected memory leaks (see "
1310 "/sys/kernel/debug/kmemleak)\n", new_leaks);
1311
1312}
1313
1314/*
1315 * Thread function performing automatic memory scanning. Unreferenced objects
1316 * at the end of a memory scan are reported but only the first time.
1317 */
1318static int kmemleak_scan_thread(void *arg)
1319{
1320 static int first_run = 1;
1321
1322 pr_info("Automatic memory scanning thread started\n");
1323 set_user_nice(current, 10);
1324
1325 /*
1326 * Wait before the first scan to allow the system to fully initialize.
1327 */
1328 if (first_run) {
1329 first_run = 0;
1330 ssleep(SECS_FIRST_SCAN);
1331 }
1332
1333 while (!kthread_should_stop()) {
1334 signed long timeout = jiffies_scan_wait;
1335
1336 mutex_lock(&scan_mutex);
1337 kmemleak_scan();
1338 mutex_unlock(&scan_mutex);
1339
1340 /* wait before the next scan */
1341 while (timeout && !kthread_should_stop())
1342 timeout = schedule_timeout_interruptible(timeout);
1343 }
1344
1345 pr_info("Automatic memory scanning thread ended\n");
1346
1347 return 0;
1348}
1349
1350/*
1351 * Start the automatic memory scanning thread. This function must be called
1352 * with the scan_mutex held.
1353 */
1354static void start_scan_thread(void)
1355{
1356 if (scan_thread)
1357 return;
1358 scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1359 if (IS_ERR(scan_thread)) {
1360 pr_warning("Failed to create the scan thread\n");
1361 scan_thread = NULL;
1362 }
1363}
1364
1365/*
1366 * Stop the automatic memory scanning thread. This function must be called
1367 * with the scan_mutex held.
1368 */
1369static void stop_scan_thread(void)
1370{
1371 if (scan_thread) {
1372 kthread_stop(scan_thread);
1373 scan_thread = NULL;
1374 }
1375}
1376
1377/*
1378 * Iterate over the object_list and return the first valid object at or after
1379 * the required position with its use_count incremented. The function triggers
1380 * a memory scanning when the pos argument points to the first position.
1381 */
1382static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1383{
1384 struct kmemleak_object *object;
1385 loff_t n = *pos;
1386 int err;
1387
1388 err = mutex_lock_interruptible(&scan_mutex);
1389 if (err < 0)
1390 return ERR_PTR(err);
1391
1392 rcu_read_lock();
1393 list_for_each_entry_rcu(object, &object_list, object_list) {
1394 if (n-- > 0)
1395 continue;
1396 if (get_object(object))
1397 goto out;
1398 }
1399 object = NULL;
1400out:
1401 return object;
1402}
1403
1404/*
1405 * Return the next object in the object_list. The function decrements the
1406 * use_count of the previous object and increases that of the next one.
1407 */
1408static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1409{
1410 struct kmemleak_object *prev_obj = v;
1411 struct kmemleak_object *next_obj = NULL;
1412 struct list_head *n = &prev_obj->object_list;
1413
1414 ++(*pos);
1415
1416 list_for_each_continue_rcu(n, &object_list) {
1417 struct kmemleak_object *obj =
1418 list_entry(n, struct kmemleak_object, object_list);
1419 if (get_object(obj)) {
1420 next_obj = obj;
1421 break;
1422 }
1423 }
1424
1425 put_object(prev_obj);
1426 return next_obj;
1427}
1428
1429/*
1430 * Decrement the use_count of the last object required, if any.
1431 */
1432static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1433{
1434 if (!IS_ERR(v)) {
1435 /*
1436 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1437 * waiting was interrupted, so only release it if !IS_ERR.
1438 */
1439 rcu_read_unlock();
1440 mutex_unlock(&scan_mutex);
1441 if (v)
1442 put_object(v);
1443 }
1444}
1445
1446/*
1447 * Print the information for an unreferenced object to the seq file.
1448 */
1449static int kmemleak_seq_show(struct seq_file *seq, void *v)
1450{
1451 struct kmemleak_object *object = v;
1452 unsigned long flags;
1453
1454 spin_lock_irqsave(&object->lock, flags);
1455 if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
1456 print_unreferenced(seq, object);
1457 spin_unlock_irqrestore(&object->lock, flags);
1458 return 0;
1459}
1460
1461static const struct seq_operations kmemleak_seq_ops = {
1462 .start = kmemleak_seq_start,
1463 .next = kmemleak_seq_next,
1464 .stop = kmemleak_seq_stop,
1465 .show = kmemleak_seq_show,
1466};
1467
1468static int kmemleak_open(struct inode *inode, struct file *file)
1469{
1470 if (!atomic_read(&kmemleak_enabled))
1471 return -EBUSY;
1472
1473 return seq_open(file, &kmemleak_seq_ops);
1474}
1475
1476static int kmemleak_release(struct inode *inode, struct file *file)
1477{
1478 return seq_release(inode, file);
1479}
1480
1481static int dump_str_object_info(const char *str)
1482{
1483 unsigned long flags;
1484 struct kmemleak_object *object;
1485 unsigned long addr;
1486
1487 addr= simple_strtoul(str, NULL, 0);
1488 object = find_and_get_object(addr, 0);
1489 if (!object) {
1490 pr_info("Unknown object at 0x%08lx\n", addr);
1491 return -EINVAL;
1492 }
1493
1494 spin_lock_irqsave(&object->lock, flags);
1495 dump_object_info(object);
1496 spin_unlock_irqrestore(&object->lock, flags);
1497
1498 put_object(object);
1499 return 0;
1500}
1501
1502/*
1503 * We use grey instead of black to ensure we can do future scans on the same
1504 * objects. If we did not do future scans these black objects could
1505 * potentially contain references to newly allocated objects in the future and
1506 * we'd end up with false positives.
1507 */
1508static void kmemleak_clear(void)
1509{
1510 struct kmemleak_object *object;
1511 unsigned long flags;
1512
1513 rcu_read_lock();
1514 list_for_each_entry_rcu(object, &object_list, object_list) {
1515 spin_lock_irqsave(&object->lock, flags);
1516 if ((object->flags & OBJECT_REPORTED) &&
1517 unreferenced_object(object))
1518 __paint_it(object, KMEMLEAK_GREY);
1519 spin_unlock_irqrestore(&object->lock, flags);
1520 }
1521 rcu_read_unlock();
1522}
1523
1524/*
1525 * File write operation to configure kmemleak at run-time. The following
1526 * commands can be written to the /sys/kernel/debug/kmemleak file:
1527 * off - disable kmemleak (irreversible)
1528 * stack=on - enable the task stacks scanning
1529 * stack=off - disable the tasks stacks scanning
1530 * scan=on - start the automatic memory scanning thread
1531 * scan=off - stop the automatic memory scanning thread
1532 * scan=... - set the automatic memory scanning period in seconds (0 to
1533 * disable it)
1534 * scan - trigger a memory scan
1535 * clear - mark all current reported unreferenced kmemleak objects as
1536 * grey to ignore printing them
1537 * dump=... - dump information about the object found at the given address
1538 */
1539static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1540 size_t size, loff_t *ppos)
1541{
1542 char buf[64];
1543 int buf_size;
1544 int ret;
1545
1546 buf_size = min(size, (sizeof(buf) - 1));
1547 if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1548 return -EFAULT;
1549 buf[buf_size] = 0;
1550
1551 ret = mutex_lock_interruptible(&scan_mutex);
1552 if (ret < 0)
1553 return ret;
1554
1555 if (strncmp(buf, "off", 3) == 0)
1556 kmemleak_disable();
1557 else if (strncmp(buf, "stack=on", 8) == 0)
1558 kmemleak_stack_scan = 1;
1559 else if (strncmp(buf, "stack=off", 9) == 0)
1560 kmemleak_stack_scan = 0;
1561 else if (strncmp(buf, "scan=on", 7) == 0)
1562 start_scan_thread();
1563 else if (strncmp(buf, "scan=off", 8) == 0)
1564 stop_scan_thread();
1565 else if (strncmp(buf, "scan=", 5) == 0) {
1566 unsigned long secs;
1567
1568 ret = strict_strtoul(buf + 5, 0, &secs);
1569 if (ret < 0)
1570 goto out;
1571 stop_scan_thread();
1572 if (secs) {
1573 jiffies_scan_wait = msecs_to_jiffies(secs * 1000);
1574 start_scan_thread();
1575 }
1576 } else if (strncmp(buf, "scan", 4) == 0)
1577 kmemleak_scan();
1578 else if (strncmp(buf, "clear", 5) == 0)
1579 kmemleak_clear();
1580 else if (strncmp(buf, "dump=", 5) == 0)
1581 ret = dump_str_object_info(buf + 5);
1582 else
1583 ret = -EINVAL;
1584
1585out:
1586 mutex_unlock(&scan_mutex);
1587 if (ret < 0)
1588 return ret;
1589
1590 /* ignore the rest of the buffer, only one command at a time */
1591 *ppos += size;
1592 return size;
1593}
1594
1595static const struct file_operations kmemleak_fops = {
1596 .owner = THIS_MODULE,
1597 .open = kmemleak_open,
1598 .read = seq_read,
1599 .write = kmemleak_write,
1600 .llseek = seq_lseek,
1601 .release = kmemleak_release,
1602};
1603
1604/*
1605 * Perform the freeing of the kmemleak internal objects after waiting for any
1606 * current memory scan to complete.
1607 */
1608static void kmemleak_do_cleanup(struct work_struct *work)
1609{
1610 struct kmemleak_object *object;
1611
1612 mutex_lock(&scan_mutex);
1613 stop_scan_thread();
1614
1615 rcu_read_lock();
1616 list_for_each_entry_rcu(object, &object_list, object_list)
1617 delete_object_full(object->pointer);
1618 rcu_read_unlock();
1619 mutex_unlock(&scan_mutex);
1620}
1621
1622static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
1623
1624/*
1625 * Disable kmemleak. No memory allocation/freeing will be traced once this
1626 * function is called. Disabling kmemleak is an irreversible operation.
1627 */
1628static void kmemleak_disable(void)
1629{
1630 /* atomically check whether it was already invoked */
1631 if (atomic_cmpxchg(&kmemleak_error, 0, 1))
1632 return;
1633
1634 /* stop any memory operation tracing */
1635 atomic_set(&kmemleak_early_log, 0);
1636 atomic_set(&kmemleak_enabled, 0);
1637
1638 /* check whether it is too early for a kernel thread */
1639 if (atomic_read(&kmemleak_initialized))
1640 schedule_work(&cleanup_work);
1641
1642 pr_info("Kernel memory leak detector disabled\n");
1643}
1644
1645/*
1646 * Allow boot-time kmemleak disabling (enabled by default).
1647 */
1648static int kmemleak_boot_config(char *str)
1649{
1650 if (!str)
1651 return -EINVAL;
1652 if (strcmp(str, "off") == 0)
1653 kmemleak_disable();
1654 else if (strcmp(str, "on") == 0)
1655 kmemleak_skip_disable = 1;
1656 else
1657 return -EINVAL;
1658 return 0;
1659}
1660early_param("kmemleak", kmemleak_boot_config);
1661
1662/*
1663 * Kmemleak initialization.
1664 */
1665void __init kmemleak_init(void)
1666{
1667 int i;
1668 unsigned long flags;
1669
1670#ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
1671 if (!kmemleak_skip_disable) {
1672 kmemleak_disable();
1673 return;
1674 }
1675#endif
1676
1677 jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
1678 jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
1679
1680 object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
1681 scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
1682 INIT_PRIO_TREE_ROOT(&object_tree_root);
1683
1684 /* the kernel is still in UP mode, so disabling the IRQs is enough */
1685 local_irq_save(flags);
1686 if (!atomic_read(&kmemleak_error)) {
1687 atomic_set(&kmemleak_enabled, 1);
1688 atomic_set(&kmemleak_early_log, 0);
1689 }
1690 local_irq_restore(flags);
1691
1692 /*
1693 * This is the point where tracking allocations is safe. Automatic
1694 * scanning is started during the late initcall. Add the early logged
1695 * callbacks to the kmemleak infrastructure.
1696 */
1697 for (i = 0; i < crt_early_log; i++) {
1698 struct early_log *log = &early_log[i];
1699
1700 switch (log->op_type) {
1701 case KMEMLEAK_ALLOC:
1702 early_alloc(log);
1703 break;
1704 case KMEMLEAK_FREE:
1705 kmemleak_free(log->ptr);
1706 break;
1707 case KMEMLEAK_FREE_PART:
1708 kmemleak_free_part(log->ptr, log->size);
1709 break;
1710 case KMEMLEAK_NOT_LEAK:
1711 kmemleak_not_leak(log->ptr);
1712 break;
1713 case KMEMLEAK_IGNORE:
1714 kmemleak_ignore(log->ptr);
1715 break;
1716 case KMEMLEAK_SCAN_AREA:
1717 kmemleak_scan_area(log->ptr, log->size, GFP_KERNEL);
1718 break;
1719 case KMEMLEAK_NO_SCAN:
1720 kmemleak_no_scan(log->ptr);
1721 break;
1722 default:
1723 WARN_ON(1);
1724 }
1725 }
1726}
1727
1728/*
1729 * Late initialization function.
1730 */
1731static int __init kmemleak_late_init(void)
1732{
1733 struct dentry *dentry;
1734
1735 atomic_set(&kmemleak_initialized, 1);
1736
1737 if (atomic_read(&kmemleak_error)) {
1738 /*
1739 * Some error occurred and kmemleak was disabled. There is a
1740 * small chance that kmemleak_disable() was called immediately
1741 * after setting kmemleak_initialized and we may end up with
1742 * two clean-up threads but serialized by scan_mutex.
1743 */
1744 schedule_work(&cleanup_work);
1745 return -ENOMEM;
1746 }
1747
1748 dentry = debugfs_create_file("kmemleak", S_IRUGO, NULL, NULL,
1749 &kmemleak_fops);
1750 if (!dentry)
1751 pr_warning("Failed to create the debugfs kmemleak file\n");
1752 mutex_lock(&scan_mutex);
1753 start_scan_thread();
1754 mutex_unlock(&scan_mutex);
1755
1756 pr_info("Kernel memory leak detector initialized\n");
1757
1758 return 0;
1759}
1760late_initcall(kmemleak_late_init);