Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * mm/kmemleak.c
   4 *
   5 * Copyright (C) 2008 ARM Limited
   6 * Written by Catalin Marinas <catalin.marinas@arm.com>
   7 *
   8 * For more information on the algorithm and kmemleak usage, please see
   9 * Documentation/dev-tools/kmemleak.rst.
  10 *
  11 * Notes on locking
  12 * ----------------
  13 *
  14 * The following locks and mutexes are used by kmemleak:
  15 *
  16 * - kmemleak_lock (raw_spinlock_t): protects the object_list modifications and
  17 *   accesses to the object_tree_root (or object_phys_tree_root). The
  18 *   object_list is the main list holding the metadata (struct kmemleak_object)
  19 *   for the allocated memory blocks. The object_tree_root and object_phys_tree_root
  20 *   are red black trees used to look-up metadata based on a pointer to the
  21 *   corresponding memory block. The object_phys_tree_root is for objects
  22 *   allocated with physical address. The kmemleak_object structures are
  23 *   added to the object_list and object_tree_root (or object_phys_tree_root)
  24 *   in the create_object() function called from the kmemleak_alloc() (or
  25 *   kmemleak_alloc_phys()) callback and removed in delete_object() called from
  26 *   the kmemleak_free() callback
  27 * - kmemleak_object.lock (raw_spinlock_t): protects a kmemleak_object.
  28 *   Accesses to the metadata (e.g. count) are protected by this lock. Note
  29 *   that some members of this structure may be protected by other means
  30 *   (atomic or kmemleak_lock). This lock is also held when scanning the
  31 *   corresponding memory block to avoid the kernel freeing it via the
  32 *   kmemleak_free() callback. This is less heavyweight than holding a global
  33 *   lock like kmemleak_lock during scanning.
  34 * - scan_mutex (mutex): ensures that only one thread may scan the memory for
  35 *   unreferenced objects at a time. The gray_list contains the objects which
  36 *   are already referenced or marked as false positives and need to be
  37 *   scanned. This list is only modified during a scanning episode when the
  38 *   scan_mutex is held. At the end of a scan, the gray_list is always empty.
  39 *   Note that the kmemleak_object.use_count is incremented when an object is
  40 *   added to the gray_list and therefore cannot be freed. This mutex also
  41 *   prevents multiple users of the "kmemleak" debugfs file together with
  42 *   modifications to the memory scanning parameters including the scan_thread
  43 *   pointer
  44 *
  45 * Locks and mutexes are acquired/nested in the following order:
  46 *
  47 *   scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING)
  48 *
  49 * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex
  50 * regions.
  51 *
  52 * The kmemleak_object structures have a use_count incremented or decremented
  53 * using the get_object()/put_object() functions. When the use_count becomes
  54 * 0, this count can no longer be incremented and put_object() schedules the
  55 * kmemleak_object freeing via an RCU callback. All calls to the get_object()
  56 * function must be protected by rcu_read_lock() to avoid accessing a freed
  57 * structure.
  58 */
  59
  60#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  61
  62#include <linux/init.h>
  63#include <linux/kernel.h>
  64#include <linux/list.h>
  65#include <linux/sched/signal.h>
  66#include <linux/sched/task.h>
  67#include <linux/sched/task_stack.h>
  68#include <linux/jiffies.h>
  69#include <linux/delay.h>
  70#include <linux/export.h>
  71#include <linux/kthread.h>
  72#include <linux/rbtree.h>
  73#include <linux/fs.h>
  74#include <linux/debugfs.h>
  75#include <linux/seq_file.h>
  76#include <linux/cpumask.h>
  77#include <linux/spinlock.h>
  78#include <linux/module.h>
  79#include <linux/mutex.h>
  80#include <linux/rcupdate.h>
  81#include <linux/stacktrace.h>
  82#include <linux/stackdepot.h>
  83#include <linux/cache.h>
  84#include <linux/percpu.h>
  85#include <linux/memblock.h>
  86#include <linux/pfn.h>
  87#include <linux/mmzone.h>
  88#include <linux/slab.h>
  89#include <linux/thread_info.h>
  90#include <linux/err.h>
  91#include <linux/uaccess.h>
  92#include <linux/string.h>
  93#include <linux/nodemask.h>
  94#include <linux/mm.h>
  95#include <linux/workqueue.h>
  96#include <linux/crc32.h>
  97
  98#include <asm/sections.h>
  99#include <asm/processor.h>
 100#include <linux/atomic.h>
 101
 102#include <linux/kasan.h>
 103#include <linux/kfence.h>
 104#include <linux/kmemleak.h>
 105#include <linux/memory_hotplug.h>
 106
 107/*
 108 * Kmemleak configuration and common defines.
 109 */
 110#define MAX_TRACE		16	/* stack trace length */
 111#define MSECS_MIN_AGE		5000	/* minimum object age for reporting */
 112#define SECS_FIRST_SCAN		60	/* delay before the first scan */
 113#define SECS_SCAN_WAIT		600	/* subsequent auto scanning delay */
 114#define MAX_SCAN_SIZE		4096	/* maximum size of a scanned block */
 115
 116#define BYTES_PER_POINTER	sizeof(void *)
 117
 118/* GFP bitmask for kmemleak internal allocations */
 119#define gfp_kmemleak_mask(gfp)	(((gfp) & (GFP_KERNEL | GFP_ATOMIC | \
 120					   __GFP_NOLOCKDEP)) | \
 121				 __GFP_NORETRY | __GFP_NOMEMALLOC | \
 122				 __GFP_NOWARN)
 123
 124/* scanning area inside a memory block */
 125struct kmemleak_scan_area {
 126	struct hlist_node node;
 127	unsigned long start;
 128	size_t size;
 129};
 130
 131#define KMEMLEAK_GREY	0
 132#define KMEMLEAK_BLACK	-1
 133
 134/*
 135 * Structure holding the metadata for each allocated memory block.
 136 * Modifications to such objects should be made while holding the
 137 * object->lock. Insertions or deletions from object_list, gray_list or
 138 * rb_node are already protected by the corresponding locks or mutex (see
 139 * the notes on locking above). These objects are reference-counted
 140 * (use_count) and freed using the RCU mechanism.
 141 */
 142struct kmemleak_object {
 143	raw_spinlock_t lock;
 144	unsigned int flags;		/* object status flags */
 145	struct list_head object_list;
 146	struct list_head gray_list;
 147	struct rb_node rb_node;
 148	struct rcu_head rcu;		/* object_list lockless traversal */
 149	/* object usage count; object freed when use_count == 0 */
 150	atomic_t use_count;
 
 151	unsigned long pointer;
 152	size_t size;
 153	/* pass surplus references to this pointer */
 154	unsigned long excess_ref;
 155	/* minimum number of a pointers found before it is considered leak */
 156	int min_count;
 157	/* the total number of pointers found pointing to this object */
 158	int count;
 159	/* checksum for detecting modified objects */
 160	u32 checksum;
 
 161	/* memory ranges to be scanned inside an object (empty for all) */
 162	struct hlist_head area_list;
 163	depot_stack_handle_t trace_handle;
 164	unsigned long jiffies;		/* creation timestamp */
 165	pid_t pid;			/* pid of the current task */
 166	char comm[TASK_COMM_LEN];	/* executable name */
 167};
 168
 169/* flag representing the memory block allocation status */
 170#define OBJECT_ALLOCATED	(1 << 0)
 171/* flag set after the first reporting of an unreference object */
 172#define OBJECT_REPORTED		(1 << 1)
 173/* flag set to not scan the object */
 174#define OBJECT_NO_SCAN		(1 << 2)
 175/* flag set to fully scan the object when scan_area allocation failed */
 176#define OBJECT_FULL_SCAN	(1 << 3)
 177/* flag set for object allocated with physical address */
 178#define OBJECT_PHYS		(1 << 4)
 
 
 
 
 
 
 
 179
 180#define HEX_PREFIX		"    "
 181/* number of bytes to print per line; must be 16 or 32 */
 182#define HEX_ROW_SIZE		16
 183/* number of bytes to print at a time (1, 2, 4, 8) */
 184#define HEX_GROUP_SIZE		1
 185/* include ASCII after the hex output */
 186#define HEX_ASCII		1
 187/* max number of lines to be printed */
 188#define HEX_MAX_LINES		2
 189
 190/* the list of all allocated objects */
 191static LIST_HEAD(object_list);
 192/* the list of gray-colored objects (see color_gray comment below) */
 193static LIST_HEAD(gray_list);
 194/* memory pool allocation */
 195static struct kmemleak_object mem_pool[CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE];
 196static int mem_pool_free_count = ARRAY_SIZE(mem_pool);
 197static LIST_HEAD(mem_pool_free_list);
 198/* search tree for object boundaries */
 199static struct rb_root object_tree_root = RB_ROOT;
 200/* search tree for object (with OBJECT_PHYS flag) boundaries */
 201static struct rb_root object_phys_tree_root = RB_ROOT;
 
 
 202/* protecting the access to object_list, object_tree_root (or object_phys_tree_root) */
 203static DEFINE_RAW_SPINLOCK(kmemleak_lock);
 204
 205/* allocation caches for kmemleak internal data */
 206static struct kmem_cache *object_cache;
 207static struct kmem_cache *scan_area_cache;
 208
 209/* set if tracing memory operations is enabled */
 210static int kmemleak_enabled = 1;
 211/* same as above but only for the kmemleak_free() callback */
 212static int kmemleak_free_enabled = 1;
 213/* set in the late_initcall if there were no errors */
 214static int kmemleak_initialized;
 215/* set if a kmemleak warning was issued */
 216static int kmemleak_warning;
 217/* set if a fatal kmemleak error has occurred */
 218static int kmemleak_error;
 219
 220/* minimum and maximum address that may be valid pointers */
 221static unsigned long min_addr = ULONG_MAX;
 222static unsigned long max_addr;
 223
 
 
 
 
 224static struct task_struct *scan_thread;
 225/* used to avoid reporting of recently allocated objects */
 226static unsigned long jiffies_min_age;
 227static unsigned long jiffies_last_scan;
 228/* delay between automatic memory scannings */
 229static unsigned long jiffies_scan_wait;
 230/* enables or disables the task stacks scanning */
 231static int kmemleak_stack_scan = 1;
 232/* protects the memory scanning, parameters and debug/kmemleak file access */
 233static DEFINE_MUTEX(scan_mutex);
 234/* setting kmemleak=on, will set this var, skipping the disable */
 235static int kmemleak_skip_disable;
 236/* If there are leaks that can be reported */
 237static bool kmemleak_found_leaks;
 238
 239static bool kmemleak_verbose;
 240module_param_named(verbose, kmemleak_verbose, bool, 0600);
 241
 242static void kmemleak_disable(void);
 243
 244/*
 245 * Print a warning and dump the stack trace.
 246 */
 247#define kmemleak_warn(x...)	do {		\
 248	pr_warn(x);				\
 249	dump_stack();				\
 250	kmemleak_warning = 1;			\
 251} while (0)
 252
 253/*
 254 * Macro invoked when a serious kmemleak condition occurred and cannot be
 255 * recovered from. Kmemleak will be disabled and further allocation/freeing
 256 * tracing no longer available.
 257 */
 258#define kmemleak_stop(x...)	do {	\
 259	kmemleak_warn(x);		\
 260	kmemleak_disable();		\
 261} while (0)
 262
 263#define warn_or_seq_printf(seq, fmt, ...)	do {	\
 264	if (seq)					\
 265		seq_printf(seq, fmt, ##__VA_ARGS__);	\
 266	else						\
 267		pr_warn(fmt, ##__VA_ARGS__);		\
 268} while (0)
 269
 270static void warn_or_seq_hex_dump(struct seq_file *seq, int prefix_type,
 271				 int rowsize, int groupsize, const void *buf,
 272				 size_t len, bool ascii)
 273{
 274	if (seq)
 275		seq_hex_dump(seq, HEX_PREFIX, prefix_type, rowsize, groupsize,
 276			     buf, len, ascii);
 277	else
 278		print_hex_dump(KERN_WARNING, pr_fmt(HEX_PREFIX), prefix_type,
 279			       rowsize, groupsize, buf, len, ascii);
 280}
 281
 282/*
 283 * Printing of the objects hex dump to the seq file. The number of lines to be
 284 * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
 285 * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
 286 * with the object->lock held.
 287 */
 288static void hex_dump_object(struct seq_file *seq,
 289			    struct kmemleak_object *object)
 290{
 291	const u8 *ptr = (const u8 *)object->pointer;
 292	size_t len;
 293
 294	if (WARN_ON_ONCE(object->flags & OBJECT_PHYS))
 295		return;
 296
 
 
 
 297	/* limit the number of lines to HEX_MAX_LINES */
 298	len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE);
 299
 300	warn_or_seq_printf(seq, "  hex dump (first %zu bytes):\n", len);
 
 
 
 
 301	kasan_disable_current();
 302	warn_or_seq_hex_dump(seq, DUMP_PREFIX_NONE, HEX_ROW_SIZE,
 303			     HEX_GROUP_SIZE, kasan_reset_tag((void *)ptr), len, HEX_ASCII);
 304	kasan_enable_current();
 305}
 306
 307/*
 308 * Object colors, encoded with count and min_count:
 309 * - white - orphan object, not enough references to it (count < min_count)
 310 * - gray  - not orphan, not marked as false positive (min_count == 0) or
 311 *		sufficient references to it (count >= min_count)
 312 * - black - ignore, it doesn't contain references (e.g. text section)
 313 *		(min_count == -1). No function defined for this color.
 314 * Newly created objects don't have any color assigned (object->count == -1)
 315 * before the next memory scan when they become white.
 316 */
 317static bool color_white(const struct kmemleak_object *object)
 318{
 319	return object->count != KMEMLEAK_BLACK &&
 320		object->count < object->min_count;
 321}
 322
 323static bool color_gray(const struct kmemleak_object *object)
 324{
 325	return object->min_count != KMEMLEAK_BLACK &&
 326		object->count >= object->min_count;
 327}
 328
 329/*
 330 * Objects are considered unreferenced only if their color is white, they have
 331 * not be deleted and have a minimum age to avoid false positives caused by
 332 * pointers temporarily stored in CPU registers.
 333 */
 334static bool unreferenced_object(struct kmemleak_object *object)
 335{
 336	return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
 337		time_before_eq(object->jiffies + jiffies_min_age,
 338			       jiffies_last_scan);
 339}
 340
 341/*
 342 * Printing of the unreferenced objects information to the seq file. The
 343 * print_unreferenced function must be called with the object->lock held.
 344 */
 345static void print_unreferenced(struct seq_file *seq,
 346			       struct kmemleak_object *object)
 347{
 348	int i;
 349	unsigned long *entries;
 350	unsigned int nr_entries;
 351	unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
 352
 353	nr_entries = stack_depot_fetch(object->trace_handle, &entries);
 354	warn_or_seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
 355			  object->pointer, object->size);
 356	warn_or_seq_printf(seq, "  comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
 357			   object->comm, object->pid, object->jiffies,
 358			   msecs_age / 1000, msecs_age % 1000);
 359	hex_dump_object(seq, object);
 360	warn_or_seq_printf(seq, "  backtrace:\n");
 361
 362	for (i = 0; i < nr_entries; i++) {
 363		void *ptr = (void *)entries[i];
 364		warn_or_seq_printf(seq, "    [<%pK>] %pS\n", ptr, ptr);
 365	}
 366}
 367
 368/*
 369 * Print the kmemleak_object information. This function is used mainly for
 370 * debugging special cases when kmemleak operations. It must be called with
 371 * the object->lock held.
 372 */
 373static void dump_object_info(struct kmemleak_object *object)
 374{
 375	pr_notice("Object 0x%08lx (size %zu):\n",
 376			object->pointer, object->size);
 377	pr_notice("  comm \"%s\", pid %d, jiffies %lu\n",
 378			object->comm, object->pid, object->jiffies);
 379	pr_notice("  min_count = %d\n", object->min_count);
 380	pr_notice("  count = %d\n", object->count);
 381	pr_notice("  flags = 0x%x\n", object->flags);
 382	pr_notice("  checksum = %u\n", object->checksum);
 383	pr_notice("  backtrace:\n");
 384	if (object->trace_handle)
 385		stack_depot_print(object->trace_handle);
 386}
 387
 
 
 
 
 
 
 
 
 
 388/*
 389 * Look-up a memory block metadata (kmemleak_object) in the object search
 390 * tree based on a pointer value. If alias is 0, only values pointing to the
 391 * beginning of the memory block are allowed. The kmemleak_lock must be held
 392 * when calling this function.
 393 */
 394static struct kmemleak_object *__lookup_object(unsigned long ptr, int alias,
 395					       bool is_phys)
 396{
 397	struct rb_node *rb = is_phys ? object_phys_tree_root.rb_node :
 398			     object_tree_root.rb_node;
 399	unsigned long untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
 400
 401	while (rb) {
 402		struct kmemleak_object *object;
 403		unsigned long untagged_objp;
 404
 405		object = rb_entry(rb, struct kmemleak_object, rb_node);
 406		untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer);
 407
 408		if (untagged_ptr < untagged_objp)
 409			rb = object->rb_node.rb_left;
 410		else if (untagged_objp + object->size <= untagged_ptr)
 411			rb = object->rb_node.rb_right;
 412		else if (untagged_objp == untagged_ptr || alias)
 413			return object;
 414		else {
 415			kmemleak_warn("Found object by alias at 0x%08lx\n",
 416				      ptr);
 417			dump_object_info(object);
 418			break;
 419		}
 420	}
 421	return NULL;
 422}
 423
 424/* Look-up a kmemleak object which allocated with virtual address. */
 425static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
 426{
 427	return __lookup_object(ptr, alias, false);
 428}
 429
 430/*
 431 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
 432 * that once an object's use_count reached 0, the RCU freeing was already
 433 * registered and the object should no longer be used. This function must be
 434 * called under the protection of rcu_read_lock().
 435 */
 436static int get_object(struct kmemleak_object *object)
 437{
 438	return atomic_inc_not_zero(&object->use_count);
 439}
 440
 441/*
 442 * Memory pool allocation and freeing. kmemleak_lock must not be held.
 443 */
 444static struct kmemleak_object *mem_pool_alloc(gfp_t gfp)
 445{
 446	unsigned long flags;
 447	struct kmemleak_object *object;
 448
 449	/* try the slab allocator first */
 450	if (object_cache) {
 451		object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
 
 452		if (object)
 453			return object;
 454	}
 455
 456	/* slab allocation failed, try the memory pool */
 457	raw_spin_lock_irqsave(&kmemleak_lock, flags);
 458	object = list_first_entry_or_null(&mem_pool_free_list,
 459					  typeof(*object), object_list);
 460	if (object)
 461		list_del(&object->object_list);
 462	else if (mem_pool_free_count)
 463		object = &mem_pool[--mem_pool_free_count];
 464	else
 465		pr_warn_once("Memory pool empty, consider increasing CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE\n");
 466	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
 467
 468	return object;
 469}
 470
 471/*
 472 * Return the object to either the slab allocator or the memory pool.
 473 */
 474static void mem_pool_free(struct kmemleak_object *object)
 475{
 476	unsigned long flags;
 477
 478	if (object < mem_pool || object >= mem_pool + ARRAY_SIZE(mem_pool)) {
 479		kmem_cache_free(object_cache, object);
 480		return;
 481	}
 482
 483	/* add the object to the memory pool free list */
 484	raw_spin_lock_irqsave(&kmemleak_lock, flags);
 485	list_add(&object->object_list, &mem_pool_free_list);
 486	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
 487}
 488
 489/*
 490 * RCU callback to free a kmemleak_object.
 491 */
 492static void free_object_rcu(struct rcu_head *rcu)
 493{
 494	struct hlist_node *tmp;
 495	struct kmemleak_scan_area *area;
 496	struct kmemleak_object *object =
 497		container_of(rcu, struct kmemleak_object, rcu);
 498
 499	/*
 500	 * Once use_count is 0 (guaranteed by put_object), there is no other
 501	 * code accessing this object, hence no need for locking.
 502	 */
 503	hlist_for_each_entry_safe(area, tmp, &object->area_list, node) {
 504		hlist_del(&area->node);
 505		kmem_cache_free(scan_area_cache, area);
 506	}
 507	mem_pool_free(object);
 508}
 509
 510/*
 511 * Decrement the object use_count. Once the count is 0, free the object using
 512 * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
 513 * delete_object() path, the delayed RCU freeing ensures that there is no
 514 * recursive call to the kernel allocator. Lock-less RCU object_list traversal
 515 * is also possible.
 516 */
 517static void put_object(struct kmemleak_object *object)
 518{
 519	if (!atomic_dec_and_test(&object->use_count))
 520		return;
 521
 522	/* should only get here after delete_object was called */
 523	WARN_ON(object->flags & OBJECT_ALLOCATED);
 524
 525	/*
 526	 * It may be too early for the RCU callbacks, however, there is no
 527	 * concurrent object_list traversal when !object_cache and all objects
 528	 * came from the memory pool. Free the object directly.
 529	 */
 530	if (object_cache)
 531		call_rcu(&object->rcu, free_object_rcu);
 532	else
 533		free_object_rcu(&object->rcu);
 534}
 535
 536/*
 537 * Look up an object in the object search tree and increase its use_count.
 538 */
 539static struct kmemleak_object *__find_and_get_object(unsigned long ptr, int alias,
 540						     bool is_phys)
 541{
 542	unsigned long flags;
 543	struct kmemleak_object *object;
 544
 545	rcu_read_lock();
 546	raw_spin_lock_irqsave(&kmemleak_lock, flags);
 547	object = __lookup_object(ptr, alias, is_phys);
 548	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
 549
 550	/* check whether the object is still available */
 551	if (object && !get_object(object))
 552		object = NULL;
 553	rcu_read_unlock();
 554
 555	return object;
 556}
 557
 558/* Look up and get an object which allocated with virtual address. */
 559static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
 560{
 561	return __find_and_get_object(ptr, alias, false);
 562}
 563
 564/*
 565 * Remove an object from the object_tree_root (or object_phys_tree_root)
 566 * and object_list. Must be called with the kmemleak_lock held _if_ kmemleak
 567 * is still enabled.
 568 */
 569static void __remove_object(struct kmemleak_object *object)
 570{
 571	rb_erase(&object->rb_node, object->flags & OBJECT_PHYS ?
 572				   &object_phys_tree_root :
 573				   &object_tree_root);
 574	list_del_rcu(&object->object_list);
 
 
 
 
 
 
 
 
 
 
 
 
 
 575}
 576
 577/*
 578 * Look up an object in the object search tree and remove it from both
 579 * object_tree_root (or object_phys_tree_root) and object_list. The
 580 * returned object's use_count should be at least 1, as initially set
 581 * by create_object().
 582 */
 583static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias,
 584						      bool is_phys)
 585{
 586	unsigned long flags;
 587	struct kmemleak_object *object;
 588
 589	raw_spin_lock_irqsave(&kmemleak_lock, flags);
 590	object = __lookup_object(ptr, alias, is_phys);
 591	if (object)
 592		__remove_object(object);
 593	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
 594
 595	return object;
 596}
 597
 598static noinline depot_stack_handle_t set_track_prepare(void)
 599{
 600	depot_stack_handle_t trace_handle;
 601	unsigned long entries[MAX_TRACE];
 602	unsigned int nr_entries;
 603
 604	if (!kmemleak_initialized)
 
 
 
 
 
 605		return 0;
 606	nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
 607	trace_handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT);
 608
 609	return trace_handle;
 610}
 611
 612/*
 613 * Create the metadata (struct kmemleak_object) corresponding to an allocated
 614 * memory block and add it to the object_list and object_tree_root (or
 615 * object_phys_tree_root).
 616 */
 617static void __create_object(unsigned long ptr, size_t size,
 618			    int min_count, gfp_t gfp, bool is_phys)
 619{
 620	unsigned long flags;
 621	struct kmemleak_object *object, *parent;
 622	struct rb_node **link, *rb_parent;
 623	unsigned long untagged_ptr;
 624	unsigned long untagged_objp;
 625
 626	object = mem_pool_alloc(gfp);
 627	if (!object) {
 628		pr_warn("Cannot allocate a kmemleak_object structure\n");
 629		kmemleak_disable();
 630		return;
 631	}
 632
 633	INIT_LIST_HEAD(&object->object_list);
 634	INIT_LIST_HEAD(&object->gray_list);
 635	INIT_HLIST_HEAD(&object->area_list);
 636	raw_spin_lock_init(&object->lock);
 637	atomic_set(&object->use_count, 1);
 638	object->flags = OBJECT_ALLOCATED | (is_phys ? OBJECT_PHYS : 0);
 639	object->pointer = ptr;
 640	object->size = kfence_ksize((void *)ptr) ?: size;
 641	object->excess_ref = 0;
 642	object->min_count = min_count;
 643	object->count = 0;			/* white color initially */
 644	object->jiffies = jiffies;
 645	object->checksum = 0;
 
 646
 647	/* task information */
 648	if (in_hardirq()) {
 649		object->pid = 0;
 650		strncpy(object->comm, "hardirq", sizeof(object->comm));
 651	} else if (in_serving_softirq()) {
 652		object->pid = 0;
 653		strncpy(object->comm, "softirq", sizeof(object->comm));
 654	} else {
 655		object->pid = current->pid;
 656		/*
 657		 * There is a small chance of a race with set_task_comm(),
 658		 * however using get_task_comm() here may cause locking
 659		 * dependency issues with current->alloc_lock. In the worst
 660		 * case, the command line is not correct.
 661		 */
 662		strncpy(object->comm, current->comm, sizeof(object->comm));
 663	}
 664
 665	/* kernel backtrace */
 666	object->trace_handle = set_track_prepare();
 667
 668	raw_spin_lock_irqsave(&kmemleak_lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 669
 670	untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
 671	/*
 672	 * Only update min_addr and max_addr with object
 673	 * storing virtual address.
 674	 */
 675	if (!is_phys) {
 
 
 
 
 676		min_addr = min(min_addr, untagged_ptr);
 677		max_addr = max(max_addr, untagged_ptr + size);
 678	}
 679	link = is_phys ? &object_phys_tree_root.rb_node :
 680		&object_tree_root.rb_node;
 681	rb_parent = NULL;
 682	while (*link) {
 683		rb_parent = *link;
 684		parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
 685		untagged_objp = (unsigned long)kasan_reset_tag((void *)parent->pointer);
 686		if (untagged_ptr + size <= untagged_objp)
 687			link = &parent->rb_node.rb_left;
 688		else if (untagged_objp + parent->size <= untagged_ptr)
 689			link = &parent->rb_node.rb_right;
 690		else {
 691			kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n",
 692				      ptr);
 693			/*
 694			 * No need for parent->lock here since "parent" cannot
 695			 * be freed while the kmemleak_lock is held.
 696			 */
 697			dump_object_info(parent);
 698			kmem_cache_free(object_cache, object);
 699			goto out;
 700		}
 701	}
 702	rb_link_node(&object->rb_node, rb_parent, link);
 703	rb_insert_color(&object->rb_node, is_phys ? &object_phys_tree_root :
 704					  &object_tree_root);
 705	list_add_tail_rcu(&object->object_list, &object_list);
 706out:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 707	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
 
 
 708}
 709
 710/* Create kmemleak object which allocated with virtual address. */
 711static void create_object(unsigned long ptr, size_t size,
 712			  int min_count, gfp_t gfp)
 713{
 714	__create_object(ptr, size, min_count, gfp, false);
 715}
 716
 717/* Create kmemleak object which allocated with physical address. */
 718static void create_object_phys(unsigned long ptr, size_t size,
 719			       int min_count, gfp_t gfp)
 720{
 721	__create_object(ptr, size, min_count, gfp, true);
 
 
 
 
 
 
 
 722}
 723
 724/*
 725 * Mark the object as not allocated and schedule RCU freeing via put_object().
 726 */
 727static void __delete_object(struct kmemleak_object *object)
 728{
 729	unsigned long flags;
 730
 731	WARN_ON(!(object->flags & OBJECT_ALLOCATED));
 732	WARN_ON(atomic_read(&object->use_count) < 1);
 733
 734	/*
 735	 * Locking here also ensures that the corresponding memory block
 736	 * cannot be freed when it is being scanned.
 737	 */
 738	raw_spin_lock_irqsave(&object->lock, flags);
 739	object->flags &= ~OBJECT_ALLOCATED;
 740	raw_spin_unlock_irqrestore(&object->lock, flags);
 741	put_object(object);
 742}
 743
 744/*
 745 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
 746 * delete it.
 747 */
 748static void delete_object_full(unsigned long ptr)
 749{
 750	struct kmemleak_object *object;
 751
 752	object = find_and_remove_object(ptr, 0, false);
 753	if (!object) {
 754#ifdef DEBUG
 755		kmemleak_warn("Freeing unknown object at 0x%08lx\n",
 756			      ptr);
 757#endif
 758		return;
 759	}
 760	__delete_object(object);
 761}
 762
 763/*
 764 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
 765 * delete it. If the memory block is partially freed, the function may create
 766 * additional metadata for the remaining parts of the block.
 767 */
 768static void delete_object_part(unsigned long ptr, size_t size, bool is_phys)
 
 769{
 770	struct kmemleak_object *object;
 771	unsigned long start, end;
 
 
 
 
 772
 773	object = find_and_remove_object(ptr, 1, is_phys);
 
 
 
 
 
 774	if (!object) {
 775#ifdef DEBUG
 776		kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n",
 777			      ptr, size);
 778#endif
 779		return;
 780	}
 781
 782	/*
 783	 * Create one or two objects that may result from the memory block
 784	 * split. Note that partial freeing is only done by free_bootmem() and
 785	 * this happens before kmemleak_init() is called.
 786	 */
 787	start = object->pointer;
 788	end = object->pointer + object->size;
 789	if (ptr > start)
 790		__create_object(start, ptr - start, object->min_count,
 791			      GFP_KERNEL, is_phys);
 792	if (ptr + size < end)
 793		__create_object(ptr + size, end - ptr - size, object->min_count,
 794			      GFP_KERNEL, is_phys);
 
 
 795
 796	__delete_object(object);
 
 
 
 
 
 
 
 
 
 797}
 798
 799static void __paint_it(struct kmemleak_object *object, int color)
 800{
 801	object->min_count = color;
 802	if (color == KMEMLEAK_BLACK)
 803		object->flags |= OBJECT_NO_SCAN;
 804}
 805
 806static void paint_it(struct kmemleak_object *object, int color)
 807{
 808	unsigned long flags;
 809
 810	raw_spin_lock_irqsave(&object->lock, flags);
 811	__paint_it(object, color);
 812	raw_spin_unlock_irqrestore(&object->lock, flags);
 813}
 814
 815static void paint_ptr(unsigned long ptr, int color, bool is_phys)
 816{
 817	struct kmemleak_object *object;
 818
 819	object = __find_and_get_object(ptr, 0, is_phys);
 820	if (!object) {
 821		kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n",
 822			      ptr,
 823			      (color == KMEMLEAK_GREY) ? "Grey" :
 824			      (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
 825		return;
 826	}
 827	paint_it(object, color);
 828	put_object(object);
 829}
 830
 831/*
 832 * Mark an object permanently as gray-colored so that it can no longer be
 833 * reported as a leak. This is used in general to mark a false positive.
 834 */
 835static void make_gray_object(unsigned long ptr)
 836{
 837	paint_ptr(ptr, KMEMLEAK_GREY, false);
 838}
 839
 840/*
 841 * Mark the object as black-colored so that it is ignored from scans and
 842 * reporting.
 843 */
 844static void make_black_object(unsigned long ptr, bool is_phys)
 845{
 846	paint_ptr(ptr, KMEMLEAK_BLACK, is_phys);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 847}
 848
 849/*
 850 * Add a scanning area to the object. If at least one such area is added,
 851 * kmemleak will only scan these ranges rather than the whole memory block.
 852 */
 853static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
 854{
 855	unsigned long flags;
 856	struct kmemleak_object *object;
 857	struct kmemleak_scan_area *area = NULL;
 858	unsigned long untagged_ptr;
 859	unsigned long untagged_objp;
 860
 861	object = find_and_get_object(ptr, 1);
 862	if (!object) {
 863		kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
 864			      ptr);
 865		return;
 866	}
 867
 868	untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
 869	untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer);
 870
 871	if (scan_area_cache)
 872		area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
 
 873
 874	raw_spin_lock_irqsave(&object->lock, flags);
 875	if (!area) {
 876		pr_warn_once("Cannot allocate a scan area, scanning the full object\n");
 877		/* mark the object for full scan to avoid false positives */
 878		object->flags |= OBJECT_FULL_SCAN;
 879		goto out_unlock;
 880	}
 881	if (size == SIZE_MAX) {
 882		size = untagged_objp + object->size - untagged_ptr;
 883	} else if (untagged_ptr + size > untagged_objp + object->size) {
 884		kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
 885		dump_object_info(object);
 886		kmem_cache_free(scan_area_cache, area);
 887		goto out_unlock;
 888	}
 889
 890	INIT_HLIST_NODE(&area->node);
 891	area->start = ptr;
 892	area->size = size;
 893
 894	hlist_add_head(&area->node, &object->area_list);
 895out_unlock:
 896	raw_spin_unlock_irqrestore(&object->lock, flags);
 897	put_object(object);
 898}
 899
 900/*
 901 * Any surplus references (object already gray) to 'ptr' are passed to
 902 * 'excess_ref'. This is used in the vmalloc() case where a pointer to
 903 * vm_struct may be used as an alternative reference to the vmalloc'ed object
 904 * (see free_thread_stack()).
 905 */
 906static void object_set_excess_ref(unsigned long ptr, unsigned long excess_ref)
 907{
 908	unsigned long flags;
 909	struct kmemleak_object *object;
 910
 911	object = find_and_get_object(ptr, 0);
 912	if (!object) {
 913		kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n",
 914			      ptr);
 915		return;
 916	}
 917
 918	raw_spin_lock_irqsave(&object->lock, flags);
 919	object->excess_ref = excess_ref;
 920	raw_spin_unlock_irqrestore(&object->lock, flags);
 921	put_object(object);
 922}
 923
 924/*
 925 * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
 926 * pointer. Such object will not be scanned by kmemleak but references to it
 927 * are searched.
 928 */
 929static void object_no_scan(unsigned long ptr)
 930{
 931	unsigned long flags;
 932	struct kmemleak_object *object;
 933
 934	object = find_and_get_object(ptr, 0);
 935	if (!object) {
 936		kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
 937		return;
 938	}
 939
 940	raw_spin_lock_irqsave(&object->lock, flags);
 941	object->flags |= OBJECT_NO_SCAN;
 942	raw_spin_unlock_irqrestore(&object->lock, flags);
 943	put_object(object);
 944}
 945
 946/**
 947 * kmemleak_alloc - register a newly allocated object
 948 * @ptr:	pointer to beginning of the object
 949 * @size:	size of the object
 950 * @min_count:	minimum number of references to this object. If during memory
 951 *		scanning a number of references less than @min_count is found,
 952 *		the object is reported as a memory leak. If @min_count is 0,
 953 *		the object is never reported as a leak. If @min_count is -1,
 954 *		the object is ignored (not scanned and not reported as a leak)
 955 * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
 956 *
 957 * This function is called from the kernel allocators when a new object
 958 * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.).
 959 */
 960void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
 961			  gfp_t gfp)
 962{
 963	pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
 964
 965	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
 966		create_object((unsigned long)ptr, size, min_count, gfp);
 967}
 968EXPORT_SYMBOL_GPL(kmemleak_alloc);
 969
 970/**
 971 * kmemleak_alloc_percpu - register a newly allocated __percpu object
 972 * @ptr:	__percpu pointer to beginning of the object
 973 * @size:	size of the object
 974 * @gfp:	flags used for kmemleak internal memory allocations
 975 *
 976 * This function is called from the kernel percpu allocator when a new object
 977 * (memory block) is allocated (alloc_percpu).
 978 */
 979void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size,
 980				 gfp_t gfp)
 981{
 982	unsigned int cpu;
 983
 984	pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size);
 985
 986	/*
 987	 * Percpu allocations are only scanned and not reported as leaks
 988	 * (min_count is set to 0).
 989	 */
 990	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
 991		for_each_possible_cpu(cpu)
 992			create_object((unsigned long)per_cpu_ptr(ptr, cpu),
 993				      size, 0, gfp);
 994}
 995EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
 996
 997/**
 998 * kmemleak_vmalloc - register a newly vmalloc'ed object
 999 * @area:	pointer to vm_struct
1000 * @size:	size of the object
1001 * @gfp:	__vmalloc() flags used for kmemleak internal memory allocations
1002 *
1003 * This function is called from the vmalloc() kernel allocator when a new
1004 * object (memory block) is allocated.
1005 */
1006void __ref kmemleak_vmalloc(const struct vm_struct *area, size_t size, gfp_t gfp)
1007{
1008	pr_debug("%s(0x%p, %zu)\n", __func__, area, size);
1009
1010	/*
1011	 * A min_count = 2 is needed because vm_struct contains a reference to
1012	 * the virtual address of the vmalloc'ed block.
1013	 */
1014	if (kmemleak_enabled) {
1015		create_object((unsigned long)area->addr, size, 2, gfp);
1016		object_set_excess_ref((unsigned long)area,
1017				      (unsigned long)area->addr);
1018	}
1019}
1020EXPORT_SYMBOL_GPL(kmemleak_vmalloc);
1021
1022/**
1023 * kmemleak_free - unregister a previously registered object
1024 * @ptr:	pointer to beginning of the object
1025 *
1026 * This function is called from the kernel allocators when an object (memory
1027 * block) is freed (kmem_cache_free, kfree, vfree etc.).
1028 */
1029void __ref kmemleak_free(const void *ptr)
1030{
1031	pr_debug("%s(0x%p)\n", __func__, ptr);
1032
1033	if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
1034		delete_object_full((unsigned long)ptr);
1035}
1036EXPORT_SYMBOL_GPL(kmemleak_free);
1037
1038/**
1039 * kmemleak_free_part - partially unregister a previously registered object
1040 * @ptr:	pointer to the beginning or inside the object. This also
1041 *		represents the start of the range to be freed
1042 * @size:	size to be unregistered
1043 *
1044 * This function is called when only a part of a memory block is freed
1045 * (usually from the bootmem allocator).
1046 */
1047void __ref kmemleak_free_part(const void *ptr, size_t size)
1048{
1049	pr_debug("%s(0x%p)\n", __func__, ptr);
1050
1051	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1052		delete_object_part((unsigned long)ptr, size, false);
1053}
1054EXPORT_SYMBOL_GPL(kmemleak_free_part);
1055
1056/**
1057 * kmemleak_free_percpu - unregister a previously registered __percpu object
1058 * @ptr:	__percpu pointer to beginning of the object
1059 *
1060 * This function is called from the kernel percpu allocator when an object
1061 * (memory block) is freed (free_percpu).
1062 */
1063void __ref kmemleak_free_percpu(const void __percpu *ptr)
1064{
1065	unsigned int cpu;
1066
1067	pr_debug("%s(0x%p)\n", __func__, ptr);
1068
1069	if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
1070		for_each_possible_cpu(cpu)
1071			delete_object_full((unsigned long)per_cpu_ptr(ptr,
1072								      cpu));
1073}
1074EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
1075
1076/**
1077 * kmemleak_update_trace - update object allocation stack trace
1078 * @ptr:	pointer to beginning of the object
1079 *
1080 * Override the object allocation stack trace for cases where the actual
1081 * allocation place is not always useful.
1082 */
1083void __ref kmemleak_update_trace(const void *ptr)
1084{
1085	struct kmemleak_object *object;
 
1086	unsigned long flags;
1087
1088	pr_debug("%s(0x%p)\n", __func__, ptr);
1089
1090	if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr))
1091		return;
1092
1093	object = find_and_get_object((unsigned long)ptr, 1);
1094	if (!object) {
1095#ifdef DEBUG
1096		kmemleak_warn("Updating stack trace for unknown object at %p\n",
1097			      ptr);
1098#endif
1099		return;
1100	}
1101
 
1102	raw_spin_lock_irqsave(&object->lock, flags);
1103	object->trace_handle = set_track_prepare();
1104	raw_spin_unlock_irqrestore(&object->lock, flags);
1105
1106	put_object(object);
1107}
1108EXPORT_SYMBOL(kmemleak_update_trace);
1109
1110/**
1111 * kmemleak_not_leak - mark an allocated object as false positive
1112 * @ptr:	pointer to beginning of the object
1113 *
1114 * Calling this function on an object will cause the memory block to no longer
1115 * be reported as leak and always be scanned.
1116 */
1117void __ref kmemleak_not_leak(const void *ptr)
1118{
1119	pr_debug("%s(0x%p)\n", __func__, ptr);
1120
1121	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1122		make_gray_object((unsigned long)ptr);
1123}
1124EXPORT_SYMBOL(kmemleak_not_leak);
1125
1126/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1127 * kmemleak_ignore - ignore an allocated object
1128 * @ptr:	pointer to beginning of the object
1129 *
1130 * Calling this function on an object will cause the memory block to be
1131 * ignored (not scanned and not reported as a leak). This is usually done when
1132 * it is known that the corresponding block is not a leak and does not contain
1133 * any references to other allocated memory blocks.
1134 */
1135void __ref kmemleak_ignore(const void *ptr)
1136{
1137	pr_debug("%s(0x%p)\n", __func__, ptr);
1138
1139	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1140		make_black_object((unsigned long)ptr, false);
1141}
1142EXPORT_SYMBOL(kmemleak_ignore);
1143
1144/**
1145 * kmemleak_scan_area - limit the range to be scanned in an allocated object
1146 * @ptr:	pointer to beginning or inside the object. This also
1147 *		represents the start of the scan area
1148 * @size:	size of the scan area
1149 * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
1150 *
1151 * This function is used when it is known that only certain parts of an object
1152 * contain references to other objects. Kmemleak will only scan these areas
1153 * reducing the number false negatives.
1154 */
1155void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
1156{
1157	pr_debug("%s(0x%p)\n", __func__, ptr);
1158
1159	if (kmemleak_enabled && ptr && size && !IS_ERR(ptr))
1160		add_scan_area((unsigned long)ptr, size, gfp);
1161}
1162EXPORT_SYMBOL(kmemleak_scan_area);
1163
1164/**
1165 * kmemleak_no_scan - do not scan an allocated object
1166 * @ptr:	pointer to beginning of the object
1167 *
1168 * This function notifies kmemleak not to scan the given memory block. Useful
1169 * in situations where it is known that the given object does not contain any
1170 * references to other objects. Kmemleak will not scan such objects reducing
1171 * the number of false negatives.
1172 */
1173void __ref kmemleak_no_scan(const void *ptr)
1174{
1175	pr_debug("%s(0x%p)\n", __func__, ptr);
1176
1177	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1178		object_no_scan((unsigned long)ptr);
1179}
1180EXPORT_SYMBOL(kmemleak_no_scan);
1181
1182/**
1183 * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical
1184 *			 address argument
1185 * @phys:	physical address of the object
1186 * @size:	size of the object
1187 * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
1188 */
1189void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, gfp_t gfp)
1190{
1191	pr_debug("%s(0x%pa, %zu)\n", __func__, &phys, size);
1192
1193	if (kmemleak_enabled)
1194		/*
1195		 * Create object with OBJECT_PHYS flag and
1196		 * assume min_count 0.
1197		 */
1198		create_object_phys((unsigned long)phys, size, 0, gfp);
1199}
1200EXPORT_SYMBOL(kmemleak_alloc_phys);
1201
1202/**
1203 * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a
1204 *			     physical address argument
1205 * @phys:	physical address if the beginning or inside an object. This
1206 *		also represents the start of the range to be freed
1207 * @size:	size to be unregistered
1208 */
1209void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size)
1210{
1211	pr_debug("%s(0x%pa)\n", __func__, &phys);
1212
1213	if (kmemleak_enabled)
1214		delete_object_part((unsigned long)phys, size, true);
1215}
1216EXPORT_SYMBOL(kmemleak_free_part_phys);
1217
1218/**
1219 * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical
1220 *			  address argument
1221 * @phys:	physical address of the object
1222 */
1223void __ref kmemleak_ignore_phys(phys_addr_t phys)
1224{
1225	pr_debug("%s(0x%pa)\n", __func__, &phys);
1226
1227	if (kmemleak_enabled)
1228		make_black_object((unsigned long)phys, true);
1229}
1230EXPORT_SYMBOL(kmemleak_ignore_phys);
1231
1232/*
1233 * Update an object's checksum and return true if it was modified.
1234 */
1235static bool update_checksum(struct kmemleak_object *object)
1236{
1237	u32 old_csum = object->checksum;
1238
1239	if (WARN_ON_ONCE(object->flags & OBJECT_PHYS))
1240		return false;
1241
1242	kasan_disable_current();
1243	kcsan_disable_current();
1244	object->checksum = crc32(0, kasan_reset_tag((void *)object->pointer), object->size);
 
 
 
 
 
 
 
 
 
 
 
1245	kasan_enable_current();
1246	kcsan_enable_current();
1247
1248	return object->checksum != old_csum;
1249}
1250
1251/*
1252 * Update an object's references. object->lock must be held by the caller.
1253 */
1254static void update_refs(struct kmemleak_object *object)
1255{
1256	if (!color_white(object)) {
1257		/* non-orphan, ignored or new */
1258		return;
1259	}
1260
1261	/*
1262	 * Increase the object's reference count (number of pointers to the
1263	 * memory block). If this count reaches the required minimum, the
1264	 * object's color will become gray and it will be added to the
1265	 * gray_list.
1266	 */
1267	object->count++;
1268	if (color_gray(object)) {
1269		/* put_object() called when removing from gray_list */
1270		WARN_ON(!get_object(object));
1271		list_add_tail(&object->gray_list, &gray_list);
1272	}
1273}
1274
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1275/*
1276 * Memory scanning is a long process and it needs to be interruptible. This
1277 * function checks whether such interrupt condition occurred.
1278 */
1279static int scan_should_stop(void)
1280{
1281	if (!kmemleak_enabled)
1282		return 1;
1283
1284	/*
1285	 * This function may be called from either process or kthread context,
1286	 * hence the need to check for both stop conditions.
1287	 */
1288	if (current->mm)
1289		return signal_pending(current);
1290	else
1291		return kthread_should_stop();
1292
1293	return 0;
1294}
1295
1296/*
1297 * Scan a memory block (exclusive range) for valid pointers and add those
1298 * found to the gray list.
1299 */
1300static void scan_block(void *_start, void *_end,
1301		       struct kmemleak_object *scanned)
1302{
1303	unsigned long *ptr;
1304	unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1305	unsigned long *end = _end - (BYTES_PER_POINTER - 1);
1306	unsigned long flags;
1307	unsigned long untagged_ptr;
1308
1309	raw_spin_lock_irqsave(&kmemleak_lock, flags);
1310	for (ptr = start; ptr < end; ptr++) {
1311		struct kmemleak_object *object;
1312		unsigned long pointer;
1313		unsigned long excess_ref;
1314
1315		if (scan_should_stop())
1316			break;
1317
1318		kasan_disable_current();
1319		pointer = *(unsigned long *)kasan_reset_tag((void *)ptr);
1320		kasan_enable_current();
1321
1322		untagged_ptr = (unsigned long)kasan_reset_tag((void *)pointer);
1323		if (untagged_ptr < min_addr || untagged_ptr >= max_addr)
1324			continue;
1325
1326		/*
1327		 * No need for get_object() here since we hold kmemleak_lock.
1328		 * object->use_count cannot be dropped to 0 while the object
1329		 * is still present in object_tree_root and object_list
1330		 * (with updates protected by kmemleak_lock).
1331		 */
1332		object = lookup_object(pointer, 1);
1333		if (!object)
1334			continue;
1335		if (object == scanned)
1336			/* self referenced, ignore */
1337			continue;
1338
1339		/*
1340		 * Avoid the lockdep recursive warning on object->lock being
1341		 * previously acquired in scan_object(). These locks are
1342		 * enclosed by scan_mutex.
1343		 */
1344		raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1345		/* only pass surplus references (object already gray) */
1346		if (color_gray(object)) {
1347			excess_ref = object->excess_ref;
1348			/* no need for update_refs() if object already gray */
1349		} else {
1350			excess_ref = 0;
1351			update_refs(object);
1352		}
1353		raw_spin_unlock(&object->lock);
1354
1355		if (excess_ref) {
1356			object = lookup_object(excess_ref, 0);
1357			if (!object)
1358				continue;
1359			if (object == scanned)
1360				/* circular reference, ignore */
1361				continue;
1362			raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1363			update_refs(object);
1364			raw_spin_unlock(&object->lock);
1365		}
1366	}
1367	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
1368}
1369
1370/*
1371 * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency.
1372 */
1373#ifdef CONFIG_SMP
1374static void scan_large_block(void *start, void *end)
1375{
1376	void *next;
1377
1378	while (start < end) {
1379		next = min(start + MAX_SCAN_SIZE, end);
1380		scan_block(start, next, NULL);
1381		start = next;
1382		cond_resched();
1383	}
1384}
1385#endif
1386
1387/*
1388 * Scan a memory block corresponding to a kmemleak_object. A condition is
1389 * that object->use_count >= 1.
1390 */
1391static void scan_object(struct kmemleak_object *object)
1392{
1393	struct kmemleak_scan_area *area;
1394	unsigned long flags;
1395	void *obj_ptr;
1396
1397	/*
1398	 * Once the object->lock is acquired, the corresponding memory block
1399	 * cannot be freed (the same lock is acquired in delete_object).
1400	 */
1401	raw_spin_lock_irqsave(&object->lock, flags);
1402	if (object->flags & OBJECT_NO_SCAN)
1403		goto out;
1404	if (!(object->flags & OBJECT_ALLOCATED))
1405		/* already freed object */
1406		goto out;
1407
1408	obj_ptr = object->flags & OBJECT_PHYS ?
1409		  __va((phys_addr_t)object->pointer) :
1410		  (void *)object->pointer;
1411
1412	if (hlist_empty(&object->area_list) ||
 
 
 
 
 
 
 
 
 
 
 
 
1413	    object->flags & OBJECT_FULL_SCAN) {
1414		void *start = obj_ptr;
1415		void *end = obj_ptr + object->size;
 
 
1416		void *next;
1417
1418		do {
1419			next = min(start + MAX_SCAN_SIZE, end);
1420			scan_block(start, next, object);
1421
1422			start = next;
1423			if (start >= end)
1424				break;
1425
1426			raw_spin_unlock_irqrestore(&object->lock, flags);
1427			cond_resched();
1428			raw_spin_lock_irqsave(&object->lock, flags);
1429		} while (object->flags & OBJECT_ALLOCATED);
1430	} else
1431		hlist_for_each_entry(area, &object->area_list, node)
1432			scan_block((void *)area->start,
1433				   (void *)(area->start + area->size),
1434				   object);
 
1435out:
1436	raw_spin_unlock_irqrestore(&object->lock, flags);
1437}
1438
1439/*
1440 * Scan the objects already referenced (gray objects). More objects will be
1441 * referenced and, if there are no memory leaks, all the objects are scanned.
1442 */
1443static void scan_gray_list(void)
1444{
1445	struct kmemleak_object *object, *tmp;
1446
1447	/*
1448	 * The list traversal is safe for both tail additions and removals
1449	 * from inside the loop. The kmemleak objects cannot be freed from
1450	 * outside the loop because their use_count was incremented.
1451	 */
1452	object = list_entry(gray_list.next, typeof(*object), gray_list);
1453	while (&object->gray_list != &gray_list) {
1454		cond_resched();
1455
1456		/* may add new objects to the list */
1457		if (!scan_should_stop())
1458			scan_object(object);
1459
1460		tmp = list_entry(object->gray_list.next, typeof(*object),
1461				 gray_list);
1462
1463		/* remove the object from the list and release it */
1464		list_del(&object->gray_list);
1465		put_object(object);
1466
1467		object = tmp;
1468	}
1469	WARN_ON(!list_empty(&gray_list));
1470}
1471
1472/*
1473 * Conditionally call resched() in an object iteration loop while making sure
1474 * that the given object won't go away without RCU read lock by performing a
1475 * get_object() if !pinned.
1476 *
1477 * Return: false if can't do a cond_resched() due to get_object() failure
1478 *	   true otherwise
1479 */
1480static bool kmemleak_cond_resched(struct kmemleak_object *object, bool pinned)
1481{
1482	if (!pinned && !get_object(object))
1483		return false;
 
 
 
 
 
 
1484
1485	rcu_read_unlock();
1486	cond_resched();
1487	rcu_read_lock();
1488	if (!pinned)
1489		put_object(object);
1490	return true;
 
 
 
 
 
1491}
1492
1493/*
1494 * Scan data sections and all the referenced memory blocks allocated via the
1495 * kernel's standard allocators. This function must be called with the
1496 * scan_mutex held.
1497 */
1498static void kmemleak_scan(void)
1499{
1500	struct kmemleak_object *object;
1501	struct zone *zone;
1502	int __maybe_unused i;
1503	int new_leaks = 0;
1504	int loop_cnt = 0;
1505
1506	jiffies_last_scan = jiffies;
1507
1508	/* prepare the kmemleak_object's */
1509	rcu_read_lock();
1510	list_for_each_entry_rcu(object, &object_list, object_list) {
1511		bool obj_pinned = false;
1512
1513		raw_spin_lock_irq(&object->lock);
1514#ifdef DEBUG
1515		/*
1516		 * With a few exceptions there should be a maximum of
1517		 * 1 reference to any object at this point.
1518		 */
1519		if (atomic_read(&object->use_count) > 1) {
1520			pr_debug("object->use_count = %d\n",
1521				 atomic_read(&object->use_count));
1522			dump_object_info(object);
1523		}
1524#endif
1525
1526		/* ignore objects outside lowmem (paint them black) */
1527		if ((object->flags & OBJECT_PHYS) &&
1528		   !(object->flags & OBJECT_NO_SCAN)) {
1529			unsigned long phys = object->pointer;
1530
1531			if (PHYS_PFN(phys) < min_low_pfn ||
1532			    PHYS_PFN(phys + object->size) >= max_low_pfn)
1533				__paint_it(object, KMEMLEAK_BLACK);
1534		}
1535
1536		/* reset the reference count (whiten the object) */
1537		object->count = 0;
1538		if (color_gray(object) && get_object(object)) {
1539			list_add_tail(&object->gray_list, &gray_list);
1540			obj_pinned = true;
1541		}
1542
1543		raw_spin_unlock_irq(&object->lock);
1544
1545		/*
1546		 * Do a cond_resched() every 64k objects to avoid soft lockup.
1547		 */
1548		if (!(++loop_cnt & 0xffff) &&
1549		    !kmemleak_cond_resched(object, obj_pinned))
1550			loop_cnt--; /* Try again on next object */
1551	}
1552	rcu_read_unlock();
1553
1554#ifdef CONFIG_SMP
1555	/* per-cpu sections scanning */
1556	for_each_possible_cpu(i)
1557		scan_large_block(__per_cpu_start + per_cpu_offset(i),
1558				 __per_cpu_end + per_cpu_offset(i));
1559#endif
1560
1561	/*
1562	 * Struct page scanning for each node.
1563	 */
1564	get_online_mems();
1565	for_each_populated_zone(zone) {
1566		unsigned long start_pfn = zone->zone_start_pfn;
1567		unsigned long end_pfn = zone_end_pfn(zone);
1568		unsigned long pfn;
1569
1570		for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1571			struct page *page = pfn_to_online_page(pfn);
1572
 
 
 
1573			if (!page)
1574				continue;
1575
1576			/* only scan pages belonging to this zone */
1577			if (page_zone(page) != zone)
1578				continue;
1579			/* only scan if page is in use */
1580			if (page_count(page) == 0)
1581				continue;
1582			scan_block(page, page + 1, NULL);
1583			if (!(pfn & 63))
1584				cond_resched();
1585		}
1586	}
1587	put_online_mems();
1588
1589	/*
1590	 * Scanning the task stacks (may introduce false negatives).
1591	 */
1592	if (kmemleak_stack_scan) {
1593		struct task_struct *p, *g;
1594
1595		rcu_read_lock();
1596		for_each_process_thread(g, p) {
1597			void *stack = try_get_task_stack(p);
1598			if (stack) {
1599				scan_block(stack, stack + THREAD_SIZE, NULL);
1600				put_task_stack(p);
1601			}
1602		}
1603		rcu_read_unlock();
1604	}
1605
1606	/*
1607	 * Scan the objects already referenced from the sections scanned
1608	 * above.
1609	 */
1610	scan_gray_list();
1611
1612	/*
1613	 * Check for new or unreferenced objects modified since the previous
1614	 * scan and color them gray until the next scan.
1615	 */
1616	rcu_read_lock();
1617	loop_cnt = 0;
1618	list_for_each_entry_rcu(object, &object_list, object_list) {
1619		/*
1620		 * Do a cond_resched() every 64k objects to avoid soft lockup.
1621		 */
1622		if (!(++loop_cnt & 0xffff) &&
1623		    !kmemleak_cond_resched(object, false))
1624			loop_cnt--;	/* Try again on next object */
1625
1626		/*
1627		 * This is racy but we can save the overhead of lock/unlock
1628		 * calls. The missed objects, if any, should be caught in
1629		 * the next scan.
1630		 */
1631		if (!color_white(object))
1632			continue;
1633		raw_spin_lock_irq(&object->lock);
1634		if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1635		    && update_checksum(object) && get_object(object)) {
1636			/* color it gray temporarily */
1637			object->count = object->min_count;
1638			list_add_tail(&object->gray_list, &gray_list);
1639		}
1640		raw_spin_unlock_irq(&object->lock);
1641	}
1642	rcu_read_unlock();
1643
1644	/*
1645	 * Re-scan the gray list for modified unreferenced objects.
1646	 */
1647	scan_gray_list();
1648
1649	/*
1650	 * If scanning was stopped do not report any new unreferenced objects.
1651	 */
1652	if (scan_should_stop())
1653		return;
1654
1655	/*
1656	 * Scanning result reporting.
1657	 */
1658	rcu_read_lock();
1659	loop_cnt = 0;
1660	list_for_each_entry_rcu(object, &object_list, object_list) {
1661		/*
1662		 * Do a cond_resched() every 64k objects to avoid soft lockup.
1663		 */
1664		if (!(++loop_cnt & 0xffff) &&
1665		    !kmemleak_cond_resched(object, false))
1666			loop_cnt--;	/* Try again on next object */
1667
1668		/*
1669		 * This is racy but we can save the overhead of lock/unlock
1670		 * calls. The missed objects, if any, should be caught in
1671		 * the next scan.
1672		 */
1673		if (!color_white(object))
1674			continue;
1675		raw_spin_lock_irq(&object->lock);
1676		if (unreferenced_object(object) &&
1677		    !(object->flags & OBJECT_REPORTED)) {
1678			object->flags |= OBJECT_REPORTED;
1679
1680			if (kmemleak_verbose)
1681				print_unreferenced(NULL, object);
1682
1683			new_leaks++;
1684		}
1685		raw_spin_unlock_irq(&object->lock);
1686	}
1687	rcu_read_unlock();
1688
1689	if (new_leaks) {
1690		kmemleak_found_leaks = true;
1691
1692		pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n",
1693			new_leaks);
1694	}
1695
1696}
1697
1698/*
1699 * Thread function performing automatic memory scanning. Unreferenced objects
1700 * at the end of a memory scan are reported but only the first time.
1701 */
1702static int kmemleak_scan_thread(void *arg)
1703{
1704	static int first_run = IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN);
1705
1706	pr_info("Automatic memory scanning thread started\n");
1707	set_user_nice(current, 10);
1708
1709	/*
1710	 * Wait before the first scan to allow the system to fully initialize.
1711	 */
1712	if (first_run) {
1713		signed long timeout = msecs_to_jiffies(SECS_FIRST_SCAN * 1000);
1714		first_run = 0;
1715		while (timeout && !kthread_should_stop())
1716			timeout = schedule_timeout_interruptible(timeout);
1717	}
1718
1719	while (!kthread_should_stop()) {
1720		signed long timeout = READ_ONCE(jiffies_scan_wait);
1721
1722		mutex_lock(&scan_mutex);
1723		kmemleak_scan();
1724		mutex_unlock(&scan_mutex);
1725
1726		/* wait before the next scan */
1727		while (timeout && !kthread_should_stop())
1728			timeout = schedule_timeout_interruptible(timeout);
1729	}
1730
1731	pr_info("Automatic memory scanning thread ended\n");
1732
1733	return 0;
1734}
1735
1736/*
1737 * Start the automatic memory scanning thread. This function must be called
1738 * with the scan_mutex held.
1739 */
1740static void start_scan_thread(void)
1741{
1742	if (scan_thread)
1743		return;
1744	scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1745	if (IS_ERR(scan_thread)) {
1746		pr_warn("Failed to create the scan thread\n");
1747		scan_thread = NULL;
1748	}
1749}
1750
1751/*
1752 * Stop the automatic memory scanning thread.
1753 */
1754static void stop_scan_thread(void)
1755{
1756	if (scan_thread) {
1757		kthread_stop(scan_thread);
1758		scan_thread = NULL;
1759	}
1760}
1761
1762/*
1763 * Iterate over the object_list and return the first valid object at or after
1764 * the required position with its use_count incremented. The function triggers
1765 * a memory scanning when the pos argument points to the first position.
1766 */
1767static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1768{
1769	struct kmemleak_object *object;
1770	loff_t n = *pos;
1771	int err;
1772
1773	err = mutex_lock_interruptible(&scan_mutex);
1774	if (err < 0)
1775		return ERR_PTR(err);
1776
1777	rcu_read_lock();
1778	list_for_each_entry_rcu(object, &object_list, object_list) {
1779		if (n-- > 0)
1780			continue;
1781		if (get_object(object))
1782			goto out;
1783	}
1784	object = NULL;
1785out:
1786	return object;
1787}
1788
1789/*
1790 * Return the next object in the object_list. The function decrements the
1791 * use_count of the previous object and increases that of the next one.
1792 */
1793static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1794{
1795	struct kmemleak_object *prev_obj = v;
1796	struct kmemleak_object *next_obj = NULL;
1797	struct kmemleak_object *obj = prev_obj;
1798
1799	++(*pos);
1800
1801	list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
1802		if (get_object(obj)) {
1803			next_obj = obj;
1804			break;
1805		}
1806	}
1807
1808	put_object(prev_obj);
1809	return next_obj;
1810}
1811
1812/*
1813 * Decrement the use_count of the last object required, if any.
1814 */
1815static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1816{
1817	if (!IS_ERR(v)) {
1818		/*
1819		 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1820		 * waiting was interrupted, so only release it if !IS_ERR.
1821		 */
1822		rcu_read_unlock();
1823		mutex_unlock(&scan_mutex);
1824		if (v)
1825			put_object(v);
1826	}
1827}
1828
1829/*
1830 * Print the information for an unreferenced object to the seq file.
1831 */
1832static int kmemleak_seq_show(struct seq_file *seq, void *v)
1833{
1834	struct kmemleak_object *object = v;
1835	unsigned long flags;
1836
1837	raw_spin_lock_irqsave(&object->lock, flags);
1838	if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
1839		print_unreferenced(seq, object);
1840	raw_spin_unlock_irqrestore(&object->lock, flags);
1841	return 0;
1842}
1843
1844static const struct seq_operations kmemleak_seq_ops = {
1845	.start = kmemleak_seq_start,
1846	.next  = kmemleak_seq_next,
1847	.stop  = kmemleak_seq_stop,
1848	.show  = kmemleak_seq_show,
1849};
1850
1851static int kmemleak_open(struct inode *inode, struct file *file)
1852{
1853	return seq_open(file, &kmemleak_seq_ops);
1854}
1855
1856static int dump_str_object_info(const char *str)
1857{
1858	unsigned long flags;
1859	struct kmemleak_object *object;
1860	unsigned long addr;
1861
1862	if (kstrtoul(str, 0, &addr))
1863		return -EINVAL;
1864	object = find_and_get_object(addr, 0);
1865	if (!object) {
1866		pr_info("Unknown object at 0x%08lx\n", addr);
1867		return -EINVAL;
1868	}
1869
1870	raw_spin_lock_irqsave(&object->lock, flags);
1871	dump_object_info(object);
1872	raw_spin_unlock_irqrestore(&object->lock, flags);
1873
1874	put_object(object);
1875	return 0;
1876}
1877
1878/*
1879 * We use grey instead of black to ensure we can do future scans on the same
1880 * objects. If we did not do future scans these black objects could
1881 * potentially contain references to newly allocated objects in the future and
1882 * we'd end up with false positives.
1883 */
1884static void kmemleak_clear(void)
1885{
1886	struct kmemleak_object *object;
1887
1888	rcu_read_lock();
1889	list_for_each_entry_rcu(object, &object_list, object_list) {
1890		raw_spin_lock_irq(&object->lock);
1891		if ((object->flags & OBJECT_REPORTED) &&
1892		    unreferenced_object(object))
1893			__paint_it(object, KMEMLEAK_GREY);
1894		raw_spin_unlock_irq(&object->lock);
1895	}
1896	rcu_read_unlock();
1897
1898	kmemleak_found_leaks = false;
1899}
1900
1901static void __kmemleak_do_cleanup(void);
1902
1903/*
1904 * File write operation to configure kmemleak at run-time. The following
1905 * commands can be written to the /sys/kernel/debug/kmemleak file:
1906 *   off	- disable kmemleak (irreversible)
1907 *   stack=on	- enable the task stacks scanning
1908 *   stack=off	- disable the tasks stacks scanning
1909 *   scan=on	- start the automatic memory scanning thread
1910 *   scan=off	- stop the automatic memory scanning thread
1911 *   scan=...	- set the automatic memory scanning period in seconds (0 to
1912 *		  disable it)
1913 *   scan	- trigger a memory scan
1914 *   clear	- mark all current reported unreferenced kmemleak objects as
1915 *		  grey to ignore printing them, or free all kmemleak objects
1916 *		  if kmemleak has been disabled.
1917 *   dump=...	- dump information about the object found at the given address
1918 */
1919static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1920			      size_t size, loff_t *ppos)
1921{
1922	char buf[64];
1923	int buf_size;
1924	int ret;
1925
1926	buf_size = min(size, (sizeof(buf) - 1));
1927	if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1928		return -EFAULT;
1929	buf[buf_size] = 0;
1930
1931	ret = mutex_lock_interruptible(&scan_mutex);
1932	if (ret < 0)
1933		return ret;
1934
1935	if (strncmp(buf, "clear", 5) == 0) {
1936		if (kmemleak_enabled)
1937			kmemleak_clear();
1938		else
1939			__kmemleak_do_cleanup();
1940		goto out;
1941	}
1942
1943	if (!kmemleak_enabled) {
1944		ret = -EPERM;
1945		goto out;
1946	}
1947
1948	if (strncmp(buf, "off", 3) == 0)
1949		kmemleak_disable();
1950	else if (strncmp(buf, "stack=on", 8) == 0)
1951		kmemleak_stack_scan = 1;
1952	else if (strncmp(buf, "stack=off", 9) == 0)
1953		kmemleak_stack_scan = 0;
1954	else if (strncmp(buf, "scan=on", 7) == 0)
1955		start_scan_thread();
1956	else if (strncmp(buf, "scan=off", 8) == 0)
1957		stop_scan_thread();
1958	else if (strncmp(buf, "scan=", 5) == 0) {
1959		unsigned secs;
1960		unsigned long msecs;
1961
1962		ret = kstrtouint(buf + 5, 0, &secs);
1963		if (ret < 0)
1964			goto out;
1965
1966		msecs = secs * MSEC_PER_SEC;
1967		if (msecs > UINT_MAX)
1968			msecs = UINT_MAX;
1969
1970		stop_scan_thread();
1971		if (msecs) {
1972			WRITE_ONCE(jiffies_scan_wait, msecs_to_jiffies(msecs));
1973			start_scan_thread();
1974		}
1975	} else if (strncmp(buf, "scan", 4) == 0)
1976		kmemleak_scan();
1977	else if (strncmp(buf, "dump=", 5) == 0)
1978		ret = dump_str_object_info(buf + 5);
1979	else
1980		ret = -EINVAL;
1981
1982out:
1983	mutex_unlock(&scan_mutex);
1984	if (ret < 0)
1985		return ret;
1986
1987	/* ignore the rest of the buffer, only one command at a time */
1988	*ppos += size;
1989	return size;
1990}
1991
1992static const struct file_operations kmemleak_fops = {
1993	.owner		= THIS_MODULE,
1994	.open		= kmemleak_open,
1995	.read		= seq_read,
1996	.write		= kmemleak_write,
1997	.llseek		= seq_lseek,
1998	.release	= seq_release,
1999};
2000
2001static void __kmemleak_do_cleanup(void)
2002{
2003	struct kmemleak_object *object, *tmp;
2004
2005	/*
2006	 * Kmemleak has already been disabled, no need for RCU list traversal
2007	 * or kmemleak_lock held.
2008	 */
2009	list_for_each_entry_safe(object, tmp, &object_list, object_list) {
2010		__remove_object(object);
2011		__delete_object(object);
2012	}
2013}
2014
2015/*
2016 * Stop the memory scanning thread and free the kmemleak internal objects if
2017 * no previous scan thread (otherwise, kmemleak may still have some useful
2018 * information on memory leaks).
2019 */
2020static void kmemleak_do_cleanup(struct work_struct *work)
2021{
2022	stop_scan_thread();
2023
2024	mutex_lock(&scan_mutex);
2025	/*
2026	 * Once it is made sure that kmemleak_scan has stopped, it is safe to no
2027	 * longer track object freeing. Ordering of the scan thread stopping and
2028	 * the memory accesses below is guaranteed by the kthread_stop()
2029	 * function.
2030	 */
2031	kmemleak_free_enabled = 0;
2032	mutex_unlock(&scan_mutex);
2033
2034	if (!kmemleak_found_leaks)
2035		__kmemleak_do_cleanup();
2036	else
2037		pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n");
2038}
2039
2040static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
2041
2042/*
2043 * Disable kmemleak. No memory allocation/freeing will be traced once this
2044 * function is called. Disabling kmemleak is an irreversible operation.
2045 */
2046static void kmemleak_disable(void)
2047{
2048	/* atomically check whether it was already invoked */
2049	if (cmpxchg(&kmemleak_error, 0, 1))
2050		return;
2051
2052	/* stop any memory operation tracing */
2053	kmemleak_enabled = 0;
2054
2055	/* check whether it is too early for a kernel thread */
2056	if (kmemleak_initialized)
2057		schedule_work(&cleanup_work);
2058	else
2059		kmemleak_free_enabled = 0;
2060
2061	pr_info("Kernel memory leak detector disabled\n");
2062}
2063
2064/*
2065 * Allow boot-time kmemleak disabling (enabled by default).
2066 */
2067static int __init kmemleak_boot_config(char *str)
2068{
2069	if (!str)
2070		return -EINVAL;
2071	if (strcmp(str, "off") == 0)
2072		kmemleak_disable();
2073	else if (strcmp(str, "on") == 0) {
2074		kmemleak_skip_disable = 1;
2075		stack_depot_want_early_init();
2076	}
2077	else
2078		return -EINVAL;
2079	return 0;
2080}
2081early_param("kmemleak", kmemleak_boot_config);
2082
2083/*
2084 * Kmemleak initialization.
2085 */
2086void __init kmemleak_init(void)
2087{
2088#ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
2089	if (!kmemleak_skip_disable) {
2090		kmemleak_disable();
2091		return;
2092	}
2093#endif
2094
2095	if (kmemleak_error)
2096		return;
2097
2098	jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
2099	jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
2100
2101	object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
2102	scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
2103
2104	/* register the data/bss sections */
2105	create_object((unsigned long)_sdata, _edata - _sdata,
2106		      KMEMLEAK_GREY, GFP_ATOMIC);
2107	create_object((unsigned long)__bss_start, __bss_stop - __bss_start,
2108		      KMEMLEAK_GREY, GFP_ATOMIC);
2109	/* only register .data..ro_after_init if not within .data */
2110	if (&__start_ro_after_init < &_sdata || &__end_ro_after_init > &_edata)
2111		create_object((unsigned long)__start_ro_after_init,
2112			      __end_ro_after_init - __start_ro_after_init,
2113			      KMEMLEAK_GREY, GFP_ATOMIC);
2114}
2115
2116/*
2117 * Late initialization function.
2118 */
2119static int __init kmemleak_late_init(void)
2120{
2121	kmemleak_initialized = 1;
2122
2123	debugfs_create_file("kmemleak", 0644, NULL, NULL, &kmemleak_fops);
2124
2125	if (kmemleak_error) {
2126		/*
2127		 * Some error occurred and kmemleak was disabled. There is a
2128		 * small chance that kmemleak_disable() was called immediately
2129		 * after setting kmemleak_initialized and we may end up with
2130		 * two clean-up threads but serialized by scan_mutex.
2131		 */
2132		schedule_work(&cleanup_work);
2133		return -ENOMEM;
2134	}
2135
2136	if (IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN)) {
2137		mutex_lock(&scan_mutex);
2138		start_scan_thread();
2139		mutex_unlock(&scan_mutex);
2140	}
2141
2142	pr_info("Kernel memory leak detector initialized (mem pool available: %d)\n",
2143		mem_pool_free_count);
2144
2145	return 0;
2146}
2147late_initcall(kmemleak_late_init);
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * mm/kmemleak.c
   4 *
   5 * Copyright (C) 2008 ARM Limited
   6 * Written by Catalin Marinas <catalin.marinas@arm.com>
   7 *
   8 * For more information on the algorithm and kmemleak usage, please see
   9 * Documentation/dev-tools/kmemleak.rst.
  10 *
  11 * Notes on locking
  12 * ----------------
  13 *
  14 * The following locks and mutexes are used by kmemleak:
  15 *
  16 * - kmemleak_lock (raw_spinlock_t): protects the object_list as well as
  17 *   del_state modifications and accesses to the object trees
  18 *   (object_tree_root, object_phys_tree_root, object_percpu_tree_root). The
  19 *   object_list is the main list holding the metadata (struct
  20 *   kmemleak_object) for the allocated memory blocks. The object trees are
  21 *   red black trees used to look-up metadata based on a pointer to the
  22 *   corresponding memory block. The kmemleak_object structures are added to
  23 *   the object_list and the object tree root in the create_object() function
  24 *   called from the kmemleak_alloc{,_phys,_percpu}() callback and removed in
  25 *   delete_object() called from the kmemleak_free{,_phys,_percpu}() callback
 
  26 * - kmemleak_object.lock (raw_spinlock_t): protects a kmemleak_object.
  27 *   Accesses to the metadata (e.g. count) are protected by this lock. Note
  28 *   that some members of this structure may be protected by other means
  29 *   (atomic or kmemleak_lock). This lock is also held when scanning the
  30 *   corresponding memory block to avoid the kernel freeing it via the
  31 *   kmemleak_free() callback. This is less heavyweight than holding a global
  32 *   lock like kmemleak_lock during scanning.
  33 * - scan_mutex (mutex): ensures that only one thread may scan the memory for
  34 *   unreferenced objects at a time. The gray_list contains the objects which
  35 *   are already referenced or marked as false positives and need to be
  36 *   scanned. This list is only modified during a scanning episode when the
  37 *   scan_mutex is held. At the end of a scan, the gray_list is always empty.
  38 *   Note that the kmemleak_object.use_count is incremented when an object is
  39 *   added to the gray_list and therefore cannot be freed. This mutex also
  40 *   prevents multiple users of the "kmemleak" debugfs file together with
  41 *   modifications to the memory scanning parameters including the scan_thread
  42 *   pointer
  43 *
  44 * Locks and mutexes are acquired/nested in the following order:
  45 *
  46 *   scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING)
  47 *
  48 * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex
  49 * regions.
  50 *
  51 * The kmemleak_object structures have a use_count incremented or decremented
  52 * using the get_object()/put_object() functions. When the use_count becomes
  53 * 0, this count can no longer be incremented and put_object() schedules the
  54 * kmemleak_object freeing via an RCU callback. All calls to the get_object()
  55 * function must be protected by rcu_read_lock() to avoid accessing a freed
  56 * structure.
  57 */
  58
  59#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  60
  61#include <linux/init.h>
  62#include <linux/kernel.h>
  63#include <linux/list.h>
  64#include <linux/sched/signal.h>
  65#include <linux/sched/task.h>
  66#include <linux/sched/task_stack.h>
  67#include <linux/jiffies.h>
  68#include <linux/delay.h>
  69#include <linux/export.h>
  70#include <linux/kthread.h>
  71#include <linux/rbtree.h>
  72#include <linux/fs.h>
  73#include <linux/debugfs.h>
  74#include <linux/seq_file.h>
  75#include <linux/cpumask.h>
  76#include <linux/spinlock.h>
  77#include <linux/module.h>
  78#include <linux/mutex.h>
  79#include <linux/rcupdate.h>
  80#include <linux/stacktrace.h>
  81#include <linux/stackdepot.h>
  82#include <linux/cache.h>
  83#include <linux/percpu.h>
  84#include <linux/memblock.h>
  85#include <linux/pfn.h>
  86#include <linux/mmzone.h>
  87#include <linux/slab.h>
  88#include <linux/thread_info.h>
  89#include <linux/err.h>
  90#include <linux/uaccess.h>
  91#include <linux/string.h>
  92#include <linux/nodemask.h>
  93#include <linux/mm.h>
  94#include <linux/workqueue.h>
  95#include <linux/crc32.h>
  96
  97#include <asm/sections.h>
  98#include <asm/processor.h>
  99#include <linux/atomic.h>
 100
 101#include <linux/kasan.h>
 102#include <linux/kfence.h>
 103#include <linux/kmemleak.h>
 104#include <linux/memory_hotplug.h>
 105
 106/*
 107 * Kmemleak configuration and common defines.
 108 */
 109#define MAX_TRACE		16	/* stack trace length */
 110#define MSECS_MIN_AGE		5000	/* minimum object age for reporting */
 111#define SECS_FIRST_SCAN		60	/* delay before the first scan */
 112#define SECS_SCAN_WAIT		600	/* subsequent auto scanning delay */
 113#define MAX_SCAN_SIZE		4096	/* maximum size of a scanned block */
 114
 115#define BYTES_PER_POINTER	sizeof(void *)
 116
 
 
 
 
 
 
 117/* scanning area inside a memory block */
 118struct kmemleak_scan_area {
 119	struct hlist_node node;
 120	unsigned long start;
 121	size_t size;
 122};
 123
 124#define KMEMLEAK_GREY	0
 125#define KMEMLEAK_BLACK	-1
 126
 127/*
 128 * Structure holding the metadata for each allocated memory block.
 129 * Modifications to such objects should be made while holding the
 130 * object->lock. Insertions or deletions from object_list, gray_list or
 131 * rb_node are already protected by the corresponding locks or mutex (see
 132 * the notes on locking above). These objects are reference-counted
 133 * (use_count) and freed using the RCU mechanism.
 134 */
 135struct kmemleak_object {
 136	raw_spinlock_t lock;
 137	unsigned int flags;		/* object status flags */
 138	struct list_head object_list;
 139	struct list_head gray_list;
 140	struct rb_node rb_node;
 141	struct rcu_head rcu;		/* object_list lockless traversal */
 142	/* object usage count; object freed when use_count == 0 */
 143	atomic_t use_count;
 144	unsigned int del_state;		/* deletion state */
 145	unsigned long pointer;
 146	size_t size;
 147	/* pass surplus references to this pointer */
 148	unsigned long excess_ref;
 149	/* minimum number of a pointers found before it is considered leak */
 150	int min_count;
 151	/* the total number of pointers found pointing to this object */
 152	int count;
 153	/* checksum for detecting modified objects */
 154	u32 checksum;
 155	depot_stack_handle_t trace_handle;
 156	/* memory ranges to be scanned inside an object (empty for all) */
 157	struct hlist_head area_list;
 
 158	unsigned long jiffies;		/* creation timestamp */
 159	pid_t pid;			/* pid of the current task */
 160	char comm[TASK_COMM_LEN];	/* executable name */
 161};
 162
 163/* flag representing the memory block allocation status */
 164#define OBJECT_ALLOCATED	(1 << 0)
 165/* flag set after the first reporting of an unreference object */
 166#define OBJECT_REPORTED		(1 << 1)
 167/* flag set to not scan the object */
 168#define OBJECT_NO_SCAN		(1 << 2)
 169/* flag set to fully scan the object when scan_area allocation failed */
 170#define OBJECT_FULL_SCAN	(1 << 3)
 171/* flag set for object allocated with physical address */
 172#define OBJECT_PHYS		(1 << 4)
 173/* flag set for per-CPU pointers */
 174#define OBJECT_PERCPU		(1 << 5)
 175
 176/* set when __remove_object() called */
 177#define DELSTATE_REMOVED	(1 << 0)
 178/* set to temporarily prevent deletion from object_list */
 179#define DELSTATE_NO_DELETE	(1 << 1)
 180
 181#define HEX_PREFIX		"    "
 182/* number of bytes to print per line; must be 16 or 32 */
 183#define HEX_ROW_SIZE		16
 184/* number of bytes to print at a time (1, 2, 4, 8) */
 185#define HEX_GROUP_SIZE		1
 186/* include ASCII after the hex output */
 187#define HEX_ASCII		1
 188/* max number of lines to be printed */
 189#define HEX_MAX_LINES		2
 190
 191/* the list of all allocated objects */
 192static LIST_HEAD(object_list);
 193/* the list of gray-colored objects (see color_gray comment below) */
 194static LIST_HEAD(gray_list);
 195/* memory pool allocation */
 196static struct kmemleak_object mem_pool[CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE];
 197static int mem_pool_free_count = ARRAY_SIZE(mem_pool);
 198static LIST_HEAD(mem_pool_free_list);
 199/* search tree for object boundaries */
 200static struct rb_root object_tree_root = RB_ROOT;
 201/* search tree for object (with OBJECT_PHYS flag) boundaries */
 202static struct rb_root object_phys_tree_root = RB_ROOT;
 203/* search tree for object (with OBJECT_PERCPU flag) boundaries */
 204static struct rb_root object_percpu_tree_root = RB_ROOT;
 205/* protecting the access to object_list, object_tree_root (or object_phys_tree_root) */
 206static DEFINE_RAW_SPINLOCK(kmemleak_lock);
 207
 208/* allocation caches for kmemleak internal data */
 209static struct kmem_cache *object_cache;
 210static struct kmem_cache *scan_area_cache;
 211
 212/* set if tracing memory operations is enabled */
 213static int kmemleak_enabled = 1;
 214/* same as above but only for the kmemleak_free() callback */
 215static int kmemleak_free_enabled = 1;
 216/* set in the late_initcall if there were no errors */
 217static int kmemleak_late_initialized;
 218/* set if a kmemleak warning was issued */
 219static int kmemleak_warning;
 220/* set if a fatal kmemleak error has occurred */
 221static int kmemleak_error;
 222
 223/* minimum and maximum address that may be valid pointers */
 224static unsigned long min_addr = ULONG_MAX;
 225static unsigned long max_addr;
 226
 227/* minimum and maximum address that may be valid per-CPU pointers */
 228static unsigned long min_percpu_addr = ULONG_MAX;
 229static unsigned long max_percpu_addr;
 230
 231static struct task_struct *scan_thread;
 232/* used to avoid reporting of recently allocated objects */
 233static unsigned long jiffies_min_age;
 234static unsigned long jiffies_last_scan;
 235/* delay between automatic memory scannings */
 236static unsigned long jiffies_scan_wait;
 237/* enables or disables the task stacks scanning */
 238static int kmemleak_stack_scan = 1;
 239/* protects the memory scanning, parameters and debug/kmemleak file access */
 240static DEFINE_MUTEX(scan_mutex);
 241/* setting kmemleak=on, will set this var, skipping the disable */
 242static int kmemleak_skip_disable;
 243/* If there are leaks that can be reported */
 244static bool kmemleak_found_leaks;
 245
 246static bool kmemleak_verbose;
 247module_param_named(verbose, kmemleak_verbose, bool, 0600);
 248
 249static void kmemleak_disable(void);
 250
 251/*
 252 * Print a warning and dump the stack trace.
 253 */
 254#define kmemleak_warn(x...)	do {		\
 255	pr_warn(x);				\
 256	dump_stack();				\
 257	kmemleak_warning = 1;			\
 258} while (0)
 259
 260/*
 261 * Macro invoked when a serious kmemleak condition occurred and cannot be
 262 * recovered from. Kmemleak will be disabled and further allocation/freeing
 263 * tracing no longer available.
 264 */
 265#define kmemleak_stop(x...)	do {	\
 266	kmemleak_warn(x);		\
 267	kmemleak_disable();		\
 268} while (0)
 269
 270#define warn_or_seq_printf(seq, fmt, ...)	do {	\
 271	if (seq)					\
 272		seq_printf(seq, fmt, ##__VA_ARGS__);	\
 273	else						\
 274		pr_warn(fmt, ##__VA_ARGS__);		\
 275} while (0)
 276
 277static void warn_or_seq_hex_dump(struct seq_file *seq, int prefix_type,
 278				 int rowsize, int groupsize, const void *buf,
 279				 size_t len, bool ascii)
 280{
 281	if (seq)
 282		seq_hex_dump(seq, HEX_PREFIX, prefix_type, rowsize, groupsize,
 283			     buf, len, ascii);
 284	else
 285		print_hex_dump(KERN_WARNING, pr_fmt(HEX_PREFIX), prefix_type,
 286			       rowsize, groupsize, buf, len, ascii);
 287}
 288
 289/*
 290 * Printing of the objects hex dump to the seq file. The number of lines to be
 291 * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
 292 * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
 293 * with the object->lock held.
 294 */
 295static void hex_dump_object(struct seq_file *seq,
 296			    struct kmemleak_object *object)
 297{
 298	const u8 *ptr = (const u8 *)object->pointer;
 299	size_t len;
 300
 301	if (WARN_ON_ONCE(object->flags & OBJECT_PHYS))
 302		return;
 303
 304	if (object->flags & OBJECT_PERCPU)
 305		ptr = (const u8 *)this_cpu_ptr((void __percpu *)object->pointer);
 306
 307	/* limit the number of lines to HEX_MAX_LINES */
 308	len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE);
 309
 310	if (object->flags & OBJECT_PERCPU)
 311		warn_or_seq_printf(seq, "  hex dump (first %zu bytes on cpu %d):\n",
 312				   len, raw_smp_processor_id());
 313	else
 314		warn_or_seq_printf(seq, "  hex dump (first %zu bytes):\n", len);
 315	kasan_disable_current();
 316	warn_or_seq_hex_dump(seq, DUMP_PREFIX_NONE, HEX_ROW_SIZE,
 317			     HEX_GROUP_SIZE, kasan_reset_tag((void *)ptr), len, HEX_ASCII);
 318	kasan_enable_current();
 319}
 320
 321/*
 322 * Object colors, encoded with count and min_count:
 323 * - white - orphan object, not enough references to it (count < min_count)
 324 * - gray  - not orphan, not marked as false positive (min_count == 0) or
 325 *		sufficient references to it (count >= min_count)
 326 * - black - ignore, it doesn't contain references (e.g. text section)
 327 *		(min_count == -1). No function defined for this color.
 328 * Newly created objects don't have any color assigned (object->count == -1)
 329 * before the next memory scan when they become white.
 330 */
 331static bool color_white(const struct kmemleak_object *object)
 332{
 333	return object->count != KMEMLEAK_BLACK &&
 334		object->count < object->min_count;
 335}
 336
 337static bool color_gray(const struct kmemleak_object *object)
 338{
 339	return object->min_count != KMEMLEAK_BLACK &&
 340		object->count >= object->min_count;
 341}
 342
 343/*
 344 * Objects are considered unreferenced only if their color is white, they have
 345 * not be deleted and have a minimum age to avoid false positives caused by
 346 * pointers temporarily stored in CPU registers.
 347 */
 348static bool unreferenced_object(struct kmemleak_object *object)
 349{
 350	return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
 351		time_before_eq(object->jiffies + jiffies_min_age,
 352			       jiffies_last_scan);
 353}
 354
 355/*
 356 * Printing of the unreferenced objects information to the seq file. The
 357 * print_unreferenced function must be called with the object->lock held.
 358 */
 359static void print_unreferenced(struct seq_file *seq,
 360			       struct kmemleak_object *object)
 361{
 362	int i;
 363	unsigned long *entries;
 364	unsigned int nr_entries;
 
 365
 366	nr_entries = stack_depot_fetch(object->trace_handle, &entries);
 367	warn_or_seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
 368			  object->pointer, object->size);
 369	warn_or_seq_printf(seq, "  comm \"%s\", pid %d, jiffies %lu\n",
 370			   object->comm, object->pid, object->jiffies);
 
 371	hex_dump_object(seq, object);
 372	warn_or_seq_printf(seq, "  backtrace (crc %x):\n", object->checksum);
 373
 374	for (i = 0; i < nr_entries; i++) {
 375		void *ptr = (void *)entries[i];
 376		warn_or_seq_printf(seq, "    %pS\n", ptr);
 377	}
 378}
 379
 380/*
 381 * Print the kmemleak_object information. This function is used mainly for
 382 * debugging special cases when kmemleak operations. It must be called with
 383 * the object->lock held.
 384 */
 385static void dump_object_info(struct kmemleak_object *object)
 386{
 387	pr_notice("Object 0x%08lx (size %zu):\n",
 388			object->pointer, object->size);
 389	pr_notice("  comm \"%s\", pid %d, jiffies %lu\n",
 390			object->comm, object->pid, object->jiffies);
 391	pr_notice("  min_count = %d\n", object->min_count);
 392	pr_notice("  count = %d\n", object->count);
 393	pr_notice("  flags = 0x%x\n", object->flags);
 394	pr_notice("  checksum = %u\n", object->checksum);
 395	pr_notice("  backtrace:\n");
 396	if (object->trace_handle)
 397		stack_depot_print(object->trace_handle);
 398}
 399
 400static struct rb_root *object_tree(unsigned long objflags)
 401{
 402	if (objflags & OBJECT_PHYS)
 403		return &object_phys_tree_root;
 404	if (objflags & OBJECT_PERCPU)
 405		return &object_percpu_tree_root;
 406	return &object_tree_root;
 407}
 408
 409/*
 410 * Look-up a memory block metadata (kmemleak_object) in the object search
 411 * tree based on a pointer value. If alias is 0, only values pointing to the
 412 * beginning of the memory block are allowed. The kmemleak_lock must be held
 413 * when calling this function.
 414 */
 415static struct kmemleak_object *__lookup_object(unsigned long ptr, int alias,
 416					       unsigned int objflags)
 417{
 418	struct rb_node *rb = object_tree(objflags)->rb_node;
 
 419	unsigned long untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
 420
 421	while (rb) {
 422		struct kmemleak_object *object;
 423		unsigned long untagged_objp;
 424
 425		object = rb_entry(rb, struct kmemleak_object, rb_node);
 426		untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer);
 427
 428		if (untagged_ptr < untagged_objp)
 429			rb = object->rb_node.rb_left;
 430		else if (untagged_objp + object->size <= untagged_ptr)
 431			rb = object->rb_node.rb_right;
 432		else if (untagged_objp == untagged_ptr || alias)
 433			return object;
 434		else {
 435			kmemleak_warn("Found object by alias at 0x%08lx\n",
 436				      ptr);
 437			dump_object_info(object);
 438			break;
 439		}
 440	}
 441	return NULL;
 442}
 443
 444/* Look-up a kmemleak object which allocated with virtual address. */
 445static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
 446{
 447	return __lookup_object(ptr, alias, 0);
 448}
 449
 450/*
 451 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
 452 * that once an object's use_count reached 0, the RCU freeing was already
 453 * registered and the object should no longer be used. This function must be
 454 * called under the protection of rcu_read_lock().
 455 */
 456static int get_object(struct kmemleak_object *object)
 457{
 458	return atomic_inc_not_zero(&object->use_count);
 459}
 460
 461/*
 462 * Memory pool allocation and freeing. kmemleak_lock must not be held.
 463 */
 464static struct kmemleak_object *mem_pool_alloc(gfp_t gfp)
 465{
 466	unsigned long flags;
 467	struct kmemleak_object *object;
 468
 469	/* try the slab allocator first */
 470	if (object_cache) {
 471		object = kmem_cache_alloc_noprof(object_cache,
 472						 gfp_nested_mask(gfp));
 473		if (object)
 474			return object;
 475	}
 476
 477	/* slab allocation failed, try the memory pool */
 478	raw_spin_lock_irqsave(&kmemleak_lock, flags);
 479	object = list_first_entry_or_null(&mem_pool_free_list,
 480					  typeof(*object), object_list);
 481	if (object)
 482		list_del(&object->object_list);
 483	else if (mem_pool_free_count)
 484		object = &mem_pool[--mem_pool_free_count];
 485	else
 486		pr_warn_once("Memory pool empty, consider increasing CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE\n");
 487	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
 488
 489	return object;
 490}
 491
 492/*
 493 * Return the object to either the slab allocator or the memory pool.
 494 */
 495static void mem_pool_free(struct kmemleak_object *object)
 496{
 497	unsigned long flags;
 498
 499	if (object < mem_pool || object >= mem_pool + ARRAY_SIZE(mem_pool)) {
 500		kmem_cache_free(object_cache, object);
 501		return;
 502	}
 503
 504	/* add the object to the memory pool free list */
 505	raw_spin_lock_irqsave(&kmemleak_lock, flags);
 506	list_add(&object->object_list, &mem_pool_free_list);
 507	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
 508}
 509
 510/*
 511 * RCU callback to free a kmemleak_object.
 512 */
 513static void free_object_rcu(struct rcu_head *rcu)
 514{
 515	struct hlist_node *tmp;
 516	struct kmemleak_scan_area *area;
 517	struct kmemleak_object *object =
 518		container_of(rcu, struct kmemleak_object, rcu);
 519
 520	/*
 521	 * Once use_count is 0 (guaranteed by put_object), there is no other
 522	 * code accessing this object, hence no need for locking.
 523	 */
 524	hlist_for_each_entry_safe(area, tmp, &object->area_list, node) {
 525		hlist_del(&area->node);
 526		kmem_cache_free(scan_area_cache, area);
 527	}
 528	mem_pool_free(object);
 529}
 530
 531/*
 532 * Decrement the object use_count. Once the count is 0, free the object using
 533 * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
 534 * delete_object() path, the delayed RCU freeing ensures that there is no
 535 * recursive call to the kernel allocator. Lock-less RCU object_list traversal
 536 * is also possible.
 537 */
 538static void put_object(struct kmemleak_object *object)
 539{
 540	if (!atomic_dec_and_test(&object->use_count))
 541		return;
 542
 543	/* should only get here after delete_object was called */
 544	WARN_ON(object->flags & OBJECT_ALLOCATED);
 545
 546	/*
 547	 * It may be too early for the RCU callbacks, however, there is no
 548	 * concurrent object_list traversal when !object_cache and all objects
 549	 * came from the memory pool. Free the object directly.
 550	 */
 551	if (object_cache)
 552		call_rcu(&object->rcu, free_object_rcu);
 553	else
 554		free_object_rcu(&object->rcu);
 555}
 556
 557/*
 558 * Look up an object in the object search tree and increase its use_count.
 559 */
 560static struct kmemleak_object *__find_and_get_object(unsigned long ptr, int alias,
 561						     unsigned int objflags)
 562{
 563	unsigned long flags;
 564	struct kmemleak_object *object;
 565
 566	rcu_read_lock();
 567	raw_spin_lock_irqsave(&kmemleak_lock, flags);
 568	object = __lookup_object(ptr, alias, objflags);
 569	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
 570
 571	/* check whether the object is still available */
 572	if (object && !get_object(object))
 573		object = NULL;
 574	rcu_read_unlock();
 575
 576	return object;
 577}
 578
 579/* Look up and get an object which allocated with virtual address. */
 580static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
 581{
 582	return __find_and_get_object(ptr, alias, 0);
 583}
 584
 585/*
 586 * Remove an object from its object tree and object_list. Must be called with
 587 * the kmemleak_lock held _if_ kmemleak is still enabled.
 
 588 */
 589static void __remove_object(struct kmemleak_object *object)
 590{
 591	rb_erase(&object->rb_node, object_tree(object->flags));
 592	if (!(object->del_state & DELSTATE_NO_DELETE))
 593		list_del_rcu(&object->object_list);
 594	object->del_state |= DELSTATE_REMOVED;
 595}
 596
 597static struct kmemleak_object *__find_and_remove_object(unsigned long ptr,
 598							int alias,
 599							unsigned int objflags)
 600{
 601	struct kmemleak_object *object;
 602
 603	object = __lookup_object(ptr, alias, objflags);
 604	if (object)
 605		__remove_object(object);
 606
 607	return object;
 608}
 609
 610/*
 611 * Look up an object in the object search tree and remove it from both object
 612 * tree root and object_list. The returned object's use_count should be at
 613 * least 1, as initially set by create_object().
 
 614 */
 615static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias,
 616						      unsigned int objflags)
 617{
 618	unsigned long flags;
 619	struct kmemleak_object *object;
 620
 621	raw_spin_lock_irqsave(&kmemleak_lock, flags);
 622	object = __find_and_remove_object(ptr, alias, objflags);
 
 
 623	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
 624
 625	return object;
 626}
 627
 628static noinline depot_stack_handle_t set_track_prepare(void)
 629{
 630	depot_stack_handle_t trace_handle;
 631	unsigned long entries[MAX_TRACE];
 632	unsigned int nr_entries;
 633
 634	/*
 635	 * Use object_cache to determine whether kmemleak_init() has
 636	 * been invoked. stack_depot_early_init() is called before
 637	 * kmemleak_init() in mm_core_init().
 638	 */
 639	if (!object_cache)
 640		return 0;
 641	nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
 642	trace_handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT);
 643
 644	return trace_handle;
 645}
 646
 647static struct kmemleak_object *__alloc_object(gfp_t gfp)
 
 
 
 
 
 
 648{
 649	struct kmemleak_object *object;
 
 
 
 
 650
 651	object = mem_pool_alloc(gfp);
 652	if (!object) {
 653		pr_warn("Cannot allocate a kmemleak_object structure\n");
 654		kmemleak_disable();
 655		return NULL;
 656	}
 657
 658	INIT_LIST_HEAD(&object->object_list);
 659	INIT_LIST_HEAD(&object->gray_list);
 660	INIT_HLIST_HEAD(&object->area_list);
 661	raw_spin_lock_init(&object->lock);
 662	atomic_set(&object->use_count, 1);
 
 
 
 663	object->excess_ref = 0;
 
 664	object->count = 0;			/* white color initially */
 
 665	object->checksum = 0;
 666	object->del_state = 0;
 667
 668	/* task information */
 669	if (in_hardirq()) {
 670		object->pid = 0;
 671		strscpy(object->comm, "hardirq");
 672	} else if (in_serving_softirq()) {
 673		object->pid = 0;
 674		strscpy(object->comm, "softirq");
 675	} else {
 676		object->pid = current->pid;
 677		/*
 678		 * There is a small chance of a race with set_task_comm(),
 679		 * however using get_task_comm() here may cause locking
 680		 * dependency issues with current->alloc_lock. In the worst
 681		 * case, the command line is not correct.
 682		 */
 683		strscpy(object->comm, current->comm);
 684	}
 685
 686	/* kernel backtrace */
 687	object->trace_handle = set_track_prepare();
 688
 689	return object;
 690}
 691
 692static int __link_object(struct kmemleak_object *object, unsigned long ptr,
 693			 size_t size, int min_count, unsigned int objflags)
 694{
 695
 696	struct kmemleak_object *parent;
 697	struct rb_node **link, *rb_parent;
 698	unsigned long untagged_ptr;
 699	unsigned long untagged_objp;
 700
 701	object->flags = OBJECT_ALLOCATED | objflags;
 702	object->pointer = ptr;
 703	object->size = kfence_ksize((void *)ptr) ?: size;
 704	object->min_count = min_count;
 705	object->jiffies = jiffies;
 706
 707	untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
 708	/*
 709	 * Only update min_addr and max_addr with object storing virtual
 710	 * address. And update min_percpu_addr max_percpu_addr for per-CPU
 711	 * objects.
 712	 */
 713	if (objflags & OBJECT_PERCPU) {
 714		min_percpu_addr = min(min_percpu_addr, untagged_ptr);
 715		max_percpu_addr = max(max_percpu_addr, untagged_ptr + size);
 716	} else if (!(objflags & OBJECT_PHYS)) {
 717		min_addr = min(min_addr, untagged_ptr);
 718		max_addr = max(max_addr, untagged_ptr + size);
 719	}
 720	link = &object_tree(objflags)->rb_node;
 
 721	rb_parent = NULL;
 722	while (*link) {
 723		rb_parent = *link;
 724		parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
 725		untagged_objp = (unsigned long)kasan_reset_tag((void *)parent->pointer);
 726		if (untagged_ptr + size <= untagged_objp)
 727			link = &parent->rb_node.rb_left;
 728		else if (untagged_objp + parent->size <= untagged_ptr)
 729			link = &parent->rb_node.rb_right;
 730		else {
 731			kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n",
 732				      ptr);
 733			/*
 734			 * No need for parent->lock here since "parent" cannot
 735			 * be freed while the kmemleak_lock is held.
 736			 */
 737			dump_object_info(parent);
 738			return -EEXIST;
 
 739		}
 740	}
 741	rb_link_node(&object->rb_node, rb_parent, link);
 742	rb_insert_color(&object->rb_node, object_tree(objflags));
 
 743	list_add_tail_rcu(&object->object_list, &object_list);
 744
 745	return 0;
 746}
 747
 748/*
 749 * Create the metadata (struct kmemleak_object) corresponding to an allocated
 750 * memory block and add it to the object_list and object tree.
 751 */
 752static void __create_object(unsigned long ptr, size_t size,
 753				int min_count, gfp_t gfp, unsigned int objflags)
 754{
 755	struct kmemleak_object *object;
 756	unsigned long flags;
 757	int ret;
 758
 759	object = __alloc_object(gfp);
 760	if (!object)
 761		return;
 762
 763	raw_spin_lock_irqsave(&kmemleak_lock, flags);
 764	ret = __link_object(object, ptr, size, min_count, objflags);
 765	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
 766	if (ret)
 767		mem_pool_free(object);
 768}
 769
 770/* Create kmemleak object which allocated with virtual address. */
 771static void create_object(unsigned long ptr, size_t size,
 772			  int min_count, gfp_t gfp)
 773{
 774	__create_object(ptr, size, min_count, gfp, 0);
 775}
 776
 777/* Create kmemleak object which allocated with physical address. */
 778static void create_object_phys(unsigned long ptr, size_t size,
 779			       int min_count, gfp_t gfp)
 780{
 781	__create_object(ptr, size, min_count, gfp, OBJECT_PHYS);
 782}
 783
 784/* Create kmemleak object corresponding to a per-CPU allocation. */
 785static void create_object_percpu(unsigned long ptr, size_t size,
 786				 int min_count, gfp_t gfp)
 787{
 788	__create_object(ptr, size, min_count, gfp, OBJECT_PERCPU);
 789}
 790
 791/*
 792 * Mark the object as not allocated and schedule RCU freeing via put_object().
 793 */
 794static void __delete_object(struct kmemleak_object *object)
 795{
 796	unsigned long flags;
 797
 798	WARN_ON(!(object->flags & OBJECT_ALLOCATED));
 799	WARN_ON(atomic_read(&object->use_count) < 1);
 800
 801	/*
 802	 * Locking here also ensures that the corresponding memory block
 803	 * cannot be freed when it is being scanned.
 804	 */
 805	raw_spin_lock_irqsave(&object->lock, flags);
 806	object->flags &= ~OBJECT_ALLOCATED;
 807	raw_spin_unlock_irqrestore(&object->lock, flags);
 808	put_object(object);
 809}
 810
 811/*
 812 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
 813 * delete it.
 814 */
 815static void delete_object_full(unsigned long ptr, unsigned int objflags)
 816{
 817	struct kmemleak_object *object;
 818
 819	object = find_and_remove_object(ptr, 0, objflags);
 820	if (!object) {
 821#ifdef DEBUG
 822		kmemleak_warn("Freeing unknown object at 0x%08lx\n",
 823			      ptr);
 824#endif
 825		return;
 826	}
 827	__delete_object(object);
 828}
 829
 830/*
 831 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
 832 * delete it. If the memory block is partially freed, the function may create
 833 * additional metadata for the remaining parts of the block.
 834 */
 835static void delete_object_part(unsigned long ptr, size_t size,
 836			       unsigned int objflags)
 837{
 838	struct kmemleak_object *object, *object_l, *object_r;
 839	unsigned long start, end, flags;
 840
 841	object_l = __alloc_object(GFP_KERNEL);
 842	if (!object_l)
 843		return;
 844
 845	object_r = __alloc_object(GFP_KERNEL);
 846	if (!object_r)
 847		goto out;
 848
 849	raw_spin_lock_irqsave(&kmemleak_lock, flags);
 850	object = __find_and_remove_object(ptr, 1, objflags);
 851	if (!object) {
 852#ifdef DEBUG
 853		kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n",
 854			      ptr, size);
 855#endif
 856		goto unlock;
 857	}
 858
 859	/*
 860	 * Create one or two objects that may result from the memory block
 861	 * split. Note that partial freeing is only done by free_bootmem() and
 862	 * this happens before kmemleak_init() is called.
 863	 */
 864	start = object->pointer;
 865	end = object->pointer + object->size;
 866	if ((ptr > start) &&
 867	    !__link_object(object_l, start, ptr - start,
 868			   object->min_count, objflags))
 869		object_l = NULL;
 870	if ((ptr + size < end) &&
 871	    !__link_object(object_r, ptr + size, end - ptr - size,
 872			   object->min_count, objflags))
 873		object_r = NULL;
 874
 875unlock:
 876	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
 877	if (object)
 878		__delete_object(object);
 879
 880out:
 881	if (object_l)
 882		mem_pool_free(object_l);
 883	if (object_r)
 884		mem_pool_free(object_r);
 885}
 886
 887static void __paint_it(struct kmemleak_object *object, int color)
 888{
 889	object->min_count = color;
 890	if (color == KMEMLEAK_BLACK)
 891		object->flags |= OBJECT_NO_SCAN;
 892}
 893
 894static void paint_it(struct kmemleak_object *object, int color)
 895{
 896	unsigned long flags;
 897
 898	raw_spin_lock_irqsave(&object->lock, flags);
 899	__paint_it(object, color);
 900	raw_spin_unlock_irqrestore(&object->lock, flags);
 901}
 902
 903static void paint_ptr(unsigned long ptr, int color, unsigned int objflags)
 904{
 905	struct kmemleak_object *object;
 906
 907	object = __find_and_get_object(ptr, 0, objflags);
 908	if (!object) {
 909		kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n",
 910			      ptr,
 911			      (color == KMEMLEAK_GREY) ? "Grey" :
 912			      (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
 913		return;
 914	}
 915	paint_it(object, color);
 916	put_object(object);
 917}
 918
 919/*
 920 * Mark an object permanently as gray-colored so that it can no longer be
 921 * reported as a leak. This is used in general to mark a false positive.
 922 */
 923static void make_gray_object(unsigned long ptr)
 924{
 925	paint_ptr(ptr, KMEMLEAK_GREY, 0);
 926}
 927
 928/*
 929 * Mark the object as black-colored so that it is ignored from scans and
 930 * reporting.
 931 */
 932static void make_black_object(unsigned long ptr, unsigned int objflags)
 933{
 934	paint_ptr(ptr, KMEMLEAK_BLACK, objflags);
 935}
 936
 937/*
 938 * Reset the checksum of an object. The immediate effect is that it will not
 939 * be reported as a leak during the next scan until its checksum is updated.
 940 */
 941static void reset_checksum(unsigned long ptr)
 942{
 943	unsigned long flags;
 944	struct kmemleak_object *object;
 945
 946	object = find_and_get_object(ptr, 0);
 947	if (!object) {
 948		kmemleak_warn("Not resetting the checksum of an unknown object at 0x%08lx\n",
 949			      ptr);
 950		return;
 951	}
 952
 953	raw_spin_lock_irqsave(&object->lock, flags);
 954	object->checksum = 0;
 955	raw_spin_unlock_irqrestore(&object->lock, flags);
 956	put_object(object);
 957}
 958
 959/*
 960 * Add a scanning area to the object. If at least one such area is added,
 961 * kmemleak will only scan these ranges rather than the whole memory block.
 962 */
 963static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
 964{
 965	unsigned long flags;
 966	struct kmemleak_object *object;
 967	struct kmemleak_scan_area *area = NULL;
 968	unsigned long untagged_ptr;
 969	unsigned long untagged_objp;
 970
 971	object = find_and_get_object(ptr, 1);
 972	if (!object) {
 973		kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
 974			      ptr);
 975		return;
 976	}
 977
 978	untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
 979	untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer);
 980
 981	if (scan_area_cache)
 982		area = kmem_cache_alloc_noprof(scan_area_cache,
 983					       gfp_nested_mask(gfp));
 984
 985	raw_spin_lock_irqsave(&object->lock, flags);
 986	if (!area) {
 987		pr_warn_once("Cannot allocate a scan area, scanning the full object\n");
 988		/* mark the object for full scan to avoid false positives */
 989		object->flags |= OBJECT_FULL_SCAN;
 990		goto out_unlock;
 991	}
 992	if (size == SIZE_MAX) {
 993		size = untagged_objp + object->size - untagged_ptr;
 994	} else if (untagged_ptr + size > untagged_objp + object->size) {
 995		kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
 996		dump_object_info(object);
 997		kmem_cache_free(scan_area_cache, area);
 998		goto out_unlock;
 999	}
1000
1001	INIT_HLIST_NODE(&area->node);
1002	area->start = ptr;
1003	area->size = size;
1004
1005	hlist_add_head(&area->node, &object->area_list);
1006out_unlock:
1007	raw_spin_unlock_irqrestore(&object->lock, flags);
1008	put_object(object);
1009}
1010
1011/*
1012 * Any surplus references (object already gray) to 'ptr' are passed to
1013 * 'excess_ref'. This is used in the vmalloc() case where a pointer to
1014 * vm_struct may be used as an alternative reference to the vmalloc'ed object
1015 * (see free_thread_stack()).
1016 */
1017static void object_set_excess_ref(unsigned long ptr, unsigned long excess_ref)
1018{
1019	unsigned long flags;
1020	struct kmemleak_object *object;
1021
1022	object = find_and_get_object(ptr, 0);
1023	if (!object) {
1024		kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n",
1025			      ptr);
1026		return;
1027	}
1028
1029	raw_spin_lock_irqsave(&object->lock, flags);
1030	object->excess_ref = excess_ref;
1031	raw_spin_unlock_irqrestore(&object->lock, flags);
1032	put_object(object);
1033}
1034
1035/*
1036 * Set the OBJECT_NO_SCAN flag for the object corresponding to the given
1037 * pointer. Such object will not be scanned by kmemleak but references to it
1038 * are searched.
1039 */
1040static void object_no_scan(unsigned long ptr)
1041{
1042	unsigned long flags;
1043	struct kmemleak_object *object;
1044
1045	object = find_and_get_object(ptr, 0);
1046	if (!object) {
1047		kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
1048		return;
1049	}
1050
1051	raw_spin_lock_irqsave(&object->lock, flags);
1052	object->flags |= OBJECT_NO_SCAN;
1053	raw_spin_unlock_irqrestore(&object->lock, flags);
1054	put_object(object);
1055}
1056
1057/**
1058 * kmemleak_alloc - register a newly allocated object
1059 * @ptr:	pointer to beginning of the object
1060 * @size:	size of the object
1061 * @min_count:	minimum number of references to this object. If during memory
1062 *		scanning a number of references less than @min_count is found,
1063 *		the object is reported as a memory leak. If @min_count is 0,
1064 *		the object is never reported as a leak. If @min_count is -1,
1065 *		the object is ignored (not scanned and not reported as a leak)
1066 * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
1067 *
1068 * This function is called from the kernel allocators when a new object
1069 * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.).
1070 */
1071void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
1072			  gfp_t gfp)
1073{
1074	pr_debug("%s(0x%px, %zu, %d)\n", __func__, ptr, size, min_count);
1075
1076	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1077		create_object((unsigned long)ptr, size, min_count, gfp);
1078}
1079EXPORT_SYMBOL_GPL(kmemleak_alloc);
1080
1081/**
1082 * kmemleak_alloc_percpu - register a newly allocated __percpu object
1083 * @ptr:	__percpu pointer to beginning of the object
1084 * @size:	size of the object
1085 * @gfp:	flags used for kmemleak internal memory allocations
1086 *
1087 * This function is called from the kernel percpu allocator when a new object
1088 * (memory block) is allocated (alloc_percpu).
1089 */
1090void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size,
1091				 gfp_t gfp)
1092{
1093	pr_debug("%s(0x%px, %zu)\n", __func__, ptr, size);
 
 
1094
1095	if (kmemleak_enabled && ptr && !IS_ERR_PCPU(ptr))
1096		create_object_percpu((__force unsigned long)ptr, size, 1, gfp);
 
 
 
 
 
 
1097}
1098EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
1099
1100/**
1101 * kmemleak_vmalloc - register a newly vmalloc'ed object
1102 * @area:	pointer to vm_struct
1103 * @size:	size of the object
1104 * @gfp:	__vmalloc() flags used for kmemleak internal memory allocations
1105 *
1106 * This function is called from the vmalloc() kernel allocator when a new
1107 * object (memory block) is allocated.
1108 */
1109void __ref kmemleak_vmalloc(const struct vm_struct *area, size_t size, gfp_t gfp)
1110{
1111	pr_debug("%s(0x%px, %zu)\n", __func__, area, size);
1112
1113	/*
1114	 * A min_count = 2 is needed because vm_struct contains a reference to
1115	 * the virtual address of the vmalloc'ed block.
1116	 */
1117	if (kmemleak_enabled) {
1118		create_object((unsigned long)area->addr, size, 2, gfp);
1119		object_set_excess_ref((unsigned long)area,
1120				      (unsigned long)area->addr);
1121	}
1122}
1123EXPORT_SYMBOL_GPL(kmemleak_vmalloc);
1124
1125/**
1126 * kmemleak_free - unregister a previously registered object
1127 * @ptr:	pointer to beginning of the object
1128 *
1129 * This function is called from the kernel allocators when an object (memory
1130 * block) is freed (kmem_cache_free, kfree, vfree etc.).
1131 */
1132void __ref kmemleak_free(const void *ptr)
1133{
1134	pr_debug("%s(0x%px)\n", __func__, ptr);
1135
1136	if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
1137		delete_object_full((unsigned long)ptr, 0);
1138}
1139EXPORT_SYMBOL_GPL(kmemleak_free);
1140
1141/**
1142 * kmemleak_free_part - partially unregister a previously registered object
1143 * @ptr:	pointer to the beginning or inside the object. This also
1144 *		represents the start of the range to be freed
1145 * @size:	size to be unregistered
1146 *
1147 * This function is called when only a part of a memory block is freed
1148 * (usually from the bootmem allocator).
1149 */
1150void __ref kmemleak_free_part(const void *ptr, size_t size)
1151{
1152	pr_debug("%s(0x%px)\n", __func__, ptr);
1153
1154	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1155		delete_object_part((unsigned long)ptr, size, 0);
1156}
1157EXPORT_SYMBOL_GPL(kmemleak_free_part);
1158
1159/**
1160 * kmemleak_free_percpu - unregister a previously registered __percpu object
1161 * @ptr:	__percpu pointer to beginning of the object
1162 *
1163 * This function is called from the kernel percpu allocator when an object
1164 * (memory block) is freed (free_percpu).
1165 */
1166void __ref kmemleak_free_percpu(const void __percpu *ptr)
1167{
1168	pr_debug("%s(0x%px)\n", __func__, ptr);
1169
1170	if (kmemleak_free_enabled && ptr && !IS_ERR_PCPU(ptr))
1171		delete_object_full((__force unsigned long)ptr, OBJECT_PERCPU);
 
 
 
 
1172}
1173EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
1174
1175/**
1176 * kmemleak_update_trace - update object allocation stack trace
1177 * @ptr:	pointer to beginning of the object
1178 *
1179 * Override the object allocation stack trace for cases where the actual
1180 * allocation place is not always useful.
1181 */
1182void __ref kmemleak_update_trace(const void *ptr)
1183{
1184	struct kmemleak_object *object;
1185	depot_stack_handle_t trace_handle;
1186	unsigned long flags;
1187
1188	pr_debug("%s(0x%px)\n", __func__, ptr);
1189
1190	if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr))
1191		return;
1192
1193	object = find_and_get_object((unsigned long)ptr, 1);
1194	if (!object) {
1195#ifdef DEBUG
1196		kmemleak_warn("Updating stack trace for unknown object at %p\n",
1197			      ptr);
1198#endif
1199		return;
1200	}
1201
1202	trace_handle = set_track_prepare();
1203	raw_spin_lock_irqsave(&object->lock, flags);
1204	object->trace_handle = trace_handle;
1205	raw_spin_unlock_irqrestore(&object->lock, flags);
1206
1207	put_object(object);
1208}
1209EXPORT_SYMBOL(kmemleak_update_trace);
1210
1211/**
1212 * kmemleak_not_leak - mark an allocated object as false positive
1213 * @ptr:	pointer to beginning of the object
1214 *
1215 * Calling this function on an object will cause the memory block to no longer
1216 * be reported as leak and always be scanned.
1217 */
1218void __ref kmemleak_not_leak(const void *ptr)
1219{
1220	pr_debug("%s(0x%px)\n", __func__, ptr);
1221
1222	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1223		make_gray_object((unsigned long)ptr);
1224}
1225EXPORT_SYMBOL(kmemleak_not_leak);
1226
1227/**
1228 * kmemleak_transient_leak - mark an allocated object as transient false positive
1229 * @ptr:	pointer to beginning of the object
1230 *
1231 * Calling this function on an object will cause the memory block to not be
1232 * reported as a leak temporarily. This may happen, for example, if the object
1233 * is part of a singly linked list and the ->next reference to it is changed.
1234 */
1235void __ref kmemleak_transient_leak(const void *ptr)
1236{
1237	pr_debug("%s(0x%px)\n", __func__, ptr);
1238
1239	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1240		reset_checksum((unsigned long)ptr);
1241}
1242EXPORT_SYMBOL(kmemleak_transient_leak);
1243
1244/**
1245 * kmemleak_ignore - ignore an allocated object
1246 * @ptr:	pointer to beginning of the object
1247 *
1248 * Calling this function on an object will cause the memory block to be
1249 * ignored (not scanned and not reported as a leak). This is usually done when
1250 * it is known that the corresponding block is not a leak and does not contain
1251 * any references to other allocated memory blocks.
1252 */
1253void __ref kmemleak_ignore(const void *ptr)
1254{
1255	pr_debug("%s(0x%px)\n", __func__, ptr);
1256
1257	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1258		make_black_object((unsigned long)ptr, 0);
1259}
1260EXPORT_SYMBOL(kmemleak_ignore);
1261
1262/**
1263 * kmemleak_scan_area - limit the range to be scanned in an allocated object
1264 * @ptr:	pointer to beginning or inside the object. This also
1265 *		represents the start of the scan area
1266 * @size:	size of the scan area
1267 * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
1268 *
1269 * This function is used when it is known that only certain parts of an object
1270 * contain references to other objects. Kmemleak will only scan these areas
1271 * reducing the number false negatives.
1272 */
1273void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
1274{
1275	pr_debug("%s(0x%px)\n", __func__, ptr);
1276
1277	if (kmemleak_enabled && ptr && size && !IS_ERR(ptr))
1278		add_scan_area((unsigned long)ptr, size, gfp);
1279}
1280EXPORT_SYMBOL(kmemleak_scan_area);
1281
1282/**
1283 * kmemleak_no_scan - do not scan an allocated object
1284 * @ptr:	pointer to beginning of the object
1285 *
1286 * This function notifies kmemleak not to scan the given memory block. Useful
1287 * in situations where it is known that the given object does not contain any
1288 * references to other objects. Kmemleak will not scan such objects reducing
1289 * the number of false negatives.
1290 */
1291void __ref kmemleak_no_scan(const void *ptr)
1292{
1293	pr_debug("%s(0x%px)\n", __func__, ptr);
1294
1295	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1296		object_no_scan((unsigned long)ptr);
1297}
1298EXPORT_SYMBOL(kmemleak_no_scan);
1299
1300/**
1301 * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical
1302 *			 address argument
1303 * @phys:	physical address of the object
1304 * @size:	size of the object
1305 * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
1306 */
1307void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, gfp_t gfp)
1308{
1309	pr_debug("%s(0x%px, %zu)\n", __func__, &phys, size);
1310
1311	if (kmemleak_enabled)
1312		/*
1313		 * Create object with OBJECT_PHYS flag and
1314		 * assume min_count 0.
1315		 */
1316		create_object_phys((unsigned long)phys, size, 0, gfp);
1317}
1318EXPORT_SYMBOL(kmemleak_alloc_phys);
1319
1320/**
1321 * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a
1322 *			     physical address argument
1323 * @phys:	physical address if the beginning or inside an object. This
1324 *		also represents the start of the range to be freed
1325 * @size:	size to be unregistered
1326 */
1327void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size)
1328{
1329	pr_debug("%s(0x%px)\n", __func__, &phys);
1330
1331	if (kmemleak_enabled)
1332		delete_object_part((unsigned long)phys, size, OBJECT_PHYS);
1333}
1334EXPORT_SYMBOL(kmemleak_free_part_phys);
1335
1336/**
1337 * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical
1338 *			  address argument
1339 * @phys:	physical address of the object
1340 */
1341void __ref kmemleak_ignore_phys(phys_addr_t phys)
1342{
1343	pr_debug("%s(0x%px)\n", __func__, &phys);
1344
1345	if (kmemleak_enabled)
1346		make_black_object((unsigned long)phys, OBJECT_PHYS);
1347}
1348EXPORT_SYMBOL(kmemleak_ignore_phys);
1349
1350/*
1351 * Update an object's checksum and return true if it was modified.
1352 */
1353static bool update_checksum(struct kmemleak_object *object)
1354{
1355	u32 old_csum = object->checksum;
1356
1357	if (WARN_ON_ONCE(object->flags & OBJECT_PHYS))
1358		return false;
1359
1360	kasan_disable_current();
1361	kcsan_disable_current();
1362	if (object->flags & OBJECT_PERCPU) {
1363		unsigned int cpu;
1364
1365		object->checksum = 0;
1366		for_each_possible_cpu(cpu) {
1367			void *ptr = per_cpu_ptr((void __percpu *)object->pointer, cpu);
1368
1369			object->checksum ^= crc32(0, kasan_reset_tag((void *)ptr), object->size);
1370		}
1371	} else {
1372		object->checksum = crc32(0, kasan_reset_tag((void *)object->pointer), object->size);
1373	}
1374	kasan_enable_current();
1375	kcsan_enable_current();
1376
1377	return object->checksum != old_csum;
1378}
1379
1380/*
1381 * Update an object's references. object->lock must be held by the caller.
1382 */
1383static void update_refs(struct kmemleak_object *object)
1384{
1385	if (!color_white(object)) {
1386		/* non-orphan, ignored or new */
1387		return;
1388	}
1389
1390	/*
1391	 * Increase the object's reference count (number of pointers to the
1392	 * memory block). If this count reaches the required minimum, the
1393	 * object's color will become gray and it will be added to the
1394	 * gray_list.
1395	 */
1396	object->count++;
1397	if (color_gray(object)) {
1398		/* put_object() called when removing from gray_list */
1399		WARN_ON(!get_object(object));
1400		list_add_tail(&object->gray_list, &gray_list);
1401	}
1402}
1403
1404static void pointer_update_refs(struct kmemleak_object *scanned,
1405			 unsigned long pointer, unsigned int objflags)
1406{
1407	struct kmemleak_object *object;
1408	unsigned long untagged_ptr;
1409	unsigned long excess_ref;
1410
1411	untagged_ptr = (unsigned long)kasan_reset_tag((void *)pointer);
1412	if (objflags & OBJECT_PERCPU) {
1413		if (untagged_ptr < min_percpu_addr || untagged_ptr >= max_percpu_addr)
1414			return;
1415	} else {
1416		if (untagged_ptr < min_addr || untagged_ptr >= max_addr)
1417			return;
1418	}
1419
1420	/*
1421	 * No need for get_object() here since we hold kmemleak_lock.
1422	 * object->use_count cannot be dropped to 0 while the object
1423	 * is still present in object_tree_root and object_list
1424	 * (with updates protected by kmemleak_lock).
1425	 */
1426	object = __lookup_object(pointer, 1, objflags);
1427	if (!object)
1428		return;
1429	if (object == scanned)
1430		/* self referenced, ignore */
1431		return;
1432
1433	/*
1434	 * Avoid the lockdep recursive warning on object->lock being
1435	 * previously acquired in scan_object(). These locks are
1436	 * enclosed by scan_mutex.
1437	 */
1438	raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1439	/* only pass surplus references (object already gray) */
1440	if (color_gray(object)) {
1441		excess_ref = object->excess_ref;
1442		/* no need for update_refs() if object already gray */
1443	} else {
1444		excess_ref = 0;
1445		update_refs(object);
1446	}
1447	raw_spin_unlock(&object->lock);
1448
1449	if (excess_ref) {
1450		object = lookup_object(excess_ref, 0);
1451		if (!object)
1452			return;
1453		if (object == scanned)
1454			/* circular reference, ignore */
1455			return;
1456		raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1457		update_refs(object);
1458		raw_spin_unlock(&object->lock);
1459	}
1460}
1461
1462/*
1463 * Memory scanning is a long process and it needs to be interruptible. This
1464 * function checks whether such interrupt condition occurred.
1465 */
1466static int scan_should_stop(void)
1467{
1468	if (!kmemleak_enabled)
1469		return 1;
1470
1471	/*
1472	 * This function may be called from either process or kthread context,
1473	 * hence the need to check for both stop conditions.
1474	 */
1475	if (current->mm)
1476		return signal_pending(current);
1477	else
1478		return kthread_should_stop();
1479
1480	return 0;
1481}
1482
1483/*
1484 * Scan a memory block (exclusive range) for valid pointers and add those
1485 * found to the gray list.
1486 */
1487static void scan_block(void *_start, void *_end,
1488		       struct kmemleak_object *scanned)
1489{
1490	unsigned long *ptr;
1491	unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1492	unsigned long *end = _end - (BYTES_PER_POINTER - 1);
1493	unsigned long flags;
 
1494
1495	raw_spin_lock_irqsave(&kmemleak_lock, flags);
1496	for (ptr = start; ptr < end; ptr++) {
 
1497		unsigned long pointer;
 
1498
1499		if (scan_should_stop())
1500			break;
1501
1502		kasan_disable_current();
1503		pointer = *(unsigned long *)kasan_reset_tag((void *)ptr);
1504		kasan_enable_current();
1505
1506		pointer_update_refs(scanned, pointer, 0);
1507		pointer_update_refs(scanned, pointer, OBJECT_PERCPU);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1508	}
1509	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
1510}
1511
1512/*
1513 * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency.
1514 */
1515#ifdef CONFIG_SMP
1516static void scan_large_block(void *start, void *end)
1517{
1518	void *next;
1519
1520	while (start < end) {
1521		next = min(start + MAX_SCAN_SIZE, end);
1522		scan_block(start, next, NULL);
1523		start = next;
1524		cond_resched();
1525	}
1526}
1527#endif
1528
1529/*
1530 * Scan a memory block corresponding to a kmemleak_object. A condition is
1531 * that object->use_count >= 1.
1532 */
1533static void scan_object(struct kmemleak_object *object)
1534{
1535	struct kmemleak_scan_area *area;
1536	unsigned long flags;
 
1537
1538	/*
1539	 * Once the object->lock is acquired, the corresponding memory block
1540	 * cannot be freed (the same lock is acquired in delete_object).
1541	 */
1542	raw_spin_lock_irqsave(&object->lock, flags);
1543	if (object->flags & OBJECT_NO_SCAN)
1544		goto out;
1545	if (!(object->flags & OBJECT_ALLOCATED))
1546		/* already freed object */
1547		goto out;
1548
1549	if (object->flags & OBJECT_PERCPU) {
1550		unsigned int cpu;
 
1551
1552		for_each_possible_cpu(cpu) {
1553			void *start = per_cpu_ptr((void __percpu *)object->pointer, cpu);
1554			void *end = start + object->size;
1555
1556			scan_block(start, end, object);
1557
1558			raw_spin_unlock_irqrestore(&object->lock, flags);
1559			cond_resched();
1560			raw_spin_lock_irqsave(&object->lock, flags);
1561			if (!(object->flags & OBJECT_ALLOCATED))
1562				break;
1563		}
1564	} else if (hlist_empty(&object->area_list) ||
1565	    object->flags & OBJECT_FULL_SCAN) {
1566		void *start = object->flags & OBJECT_PHYS ?
1567				__va((phys_addr_t)object->pointer) :
1568				(void *)object->pointer;
1569		void *end = start + object->size;
1570		void *next;
1571
1572		do {
1573			next = min(start + MAX_SCAN_SIZE, end);
1574			scan_block(start, next, object);
1575
1576			start = next;
1577			if (start >= end)
1578				break;
1579
1580			raw_spin_unlock_irqrestore(&object->lock, flags);
1581			cond_resched();
1582			raw_spin_lock_irqsave(&object->lock, flags);
1583		} while (object->flags & OBJECT_ALLOCATED);
1584	} else {
1585		hlist_for_each_entry(area, &object->area_list, node)
1586			scan_block((void *)area->start,
1587				   (void *)(area->start + area->size),
1588				   object);
1589	}
1590out:
1591	raw_spin_unlock_irqrestore(&object->lock, flags);
1592}
1593
1594/*
1595 * Scan the objects already referenced (gray objects). More objects will be
1596 * referenced and, if there are no memory leaks, all the objects are scanned.
1597 */
1598static void scan_gray_list(void)
1599{
1600	struct kmemleak_object *object, *tmp;
1601
1602	/*
1603	 * The list traversal is safe for both tail additions and removals
1604	 * from inside the loop. The kmemleak objects cannot be freed from
1605	 * outside the loop because their use_count was incremented.
1606	 */
1607	object = list_entry(gray_list.next, typeof(*object), gray_list);
1608	while (&object->gray_list != &gray_list) {
1609		cond_resched();
1610
1611		/* may add new objects to the list */
1612		if (!scan_should_stop())
1613			scan_object(object);
1614
1615		tmp = list_entry(object->gray_list.next, typeof(*object),
1616				 gray_list);
1617
1618		/* remove the object from the list and release it */
1619		list_del(&object->gray_list);
1620		put_object(object);
1621
1622		object = tmp;
1623	}
1624	WARN_ON(!list_empty(&gray_list));
1625}
1626
1627/*
1628 * Conditionally call resched() in an object iteration loop while making sure
1629 * that the given object won't go away without RCU read lock by performing a
1630 * get_object() if necessaary.
 
 
 
1631 */
1632static void kmemleak_cond_resched(struct kmemleak_object *object)
1633{
1634	if (!get_object(object))
1635		return;	/* Try next object */
1636
1637	raw_spin_lock_irq(&kmemleak_lock);
1638	if (object->del_state & DELSTATE_REMOVED)
1639		goto unlock_put;	/* Object removed */
1640	object->del_state |= DELSTATE_NO_DELETE;
1641	raw_spin_unlock_irq(&kmemleak_lock);
1642
1643	rcu_read_unlock();
1644	cond_resched();
1645	rcu_read_lock();
1646
1647	raw_spin_lock_irq(&kmemleak_lock);
1648	if (object->del_state & DELSTATE_REMOVED)
1649		list_del_rcu(&object->object_list);
1650	object->del_state &= ~DELSTATE_NO_DELETE;
1651unlock_put:
1652	raw_spin_unlock_irq(&kmemleak_lock);
1653	put_object(object);
1654}
1655
1656/*
1657 * Scan data sections and all the referenced memory blocks allocated via the
1658 * kernel's standard allocators. This function must be called with the
1659 * scan_mutex held.
1660 */
1661static void kmemleak_scan(void)
1662{
1663	struct kmemleak_object *object;
1664	struct zone *zone;
1665	int __maybe_unused i;
1666	int new_leaks = 0;
 
1667
1668	jiffies_last_scan = jiffies;
1669
1670	/* prepare the kmemleak_object's */
1671	rcu_read_lock();
1672	list_for_each_entry_rcu(object, &object_list, object_list) {
 
 
1673		raw_spin_lock_irq(&object->lock);
1674#ifdef DEBUG
1675		/*
1676		 * With a few exceptions there should be a maximum of
1677		 * 1 reference to any object at this point.
1678		 */
1679		if (atomic_read(&object->use_count) > 1) {
1680			pr_debug("object->use_count = %d\n",
1681				 atomic_read(&object->use_count));
1682			dump_object_info(object);
1683		}
1684#endif
1685
1686		/* ignore objects outside lowmem (paint them black) */
1687		if ((object->flags & OBJECT_PHYS) &&
1688		   !(object->flags & OBJECT_NO_SCAN)) {
1689			unsigned long phys = object->pointer;
1690
1691			if (PHYS_PFN(phys) < min_low_pfn ||
1692			    PHYS_PFN(phys + object->size) > max_low_pfn)
1693				__paint_it(object, KMEMLEAK_BLACK);
1694		}
1695
1696		/* reset the reference count (whiten the object) */
1697		object->count = 0;
1698		if (color_gray(object) && get_object(object))
1699			list_add_tail(&object->gray_list, &gray_list);
 
 
1700
1701		raw_spin_unlock_irq(&object->lock);
1702
1703		if (need_resched())
1704			kmemleak_cond_resched(object);
 
 
 
 
1705	}
1706	rcu_read_unlock();
1707
1708#ifdef CONFIG_SMP
1709	/* per-cpu sections scanning */
1710	for_each_possible_cpu(i)
1711		scan_large_block(__per_cpu_start + per_cpu_offset(i),
1712				 __per_cpu_end + per_cpu_offset(i));
1713#endif
1714
1715	/*
1716	 * Struct page scanning for each node.
1717	 */
1718	get_online_mems();
1719	for_each_populated_zone(zone) {
1720		unsigned long start_pfn = zone->zone_start_pfn;
1721		unsigned long end_pfn = zone_end_pfn(zone);
1722		unsigned long pfn;
1723
1724		for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1725			struct page *page = pfn_to_online_page(pfn);
1726
1727			if (!(pfn & 63))
1728				cond_resched();
1729
1730			if (!page)
1731				continue;
1732
1733			/* only scan pages belonging to this zone */
1734			if (page_zone(page) != zone)
1735				continue;
1736			/* only scan if page is in use */
1737			if (page_count(page) == 0)
1738				continue;
1739			scan_block(page, page + 1, NULL);
 
 
1740		}
1741	}
1742	put_online_mems();
1743
1744	/*
1745	 * Scanning the task stacks (may introduce false negatives).
1746	 */
1747	if (kmemleak_stack_scan) {
1748		struct task_struct *p, *g;
1749
1750		rcu_read_lock();
1751		for_each_process_thread(g, p) {
1752			void *stack = try_get_task_stack(p);
1753			if (stack) {
1754				scan_block(stack, stack + THREAD_SIZE, NULL);
1755				put_task_stack(p);
1756			}
1757		}
1758		rcu_read_unlock();
1759	}
1760
1761	/*
1762	 * Scan the objects already referenced from the sections scanned
1763	 * above.
1764	 */
1765	scan_gray_list();
1766
1767	/*
1768	 * Check for new or unreferenced objects modified since the previous
1769	 * scan and color them gray until the next scan.
1770	 */
1771	rcu_read_lock();
 
1772	list_for_each_entry_rcu(object, &object_list, object_list) {
1773		if (need_resched())
1774			kmemleak_cond_resched(object);
 
 
 
 
1775
1776		/*
1777		 * This is racy but we can save the overhead of lock/unlock
1778		 * calls. The missed objects, if any, should be caught in
1779		 * the next scan.
1780		 */
1781		if (!color_white(object))
1782			continue;
1783		raw_spin_lock_irq(&object->lock);
1784		if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1785		    && update_checksum(object) && get_object(object)) {
1786			/* color it gray temporarily */
1787			object->count = object->min_count;
1788			list_add_tail(&object->gray_list, &gray_list);
1789		}
1790		raw_spin_unlock_irq(&object->lock);
1791	}
1792	rcu_read_unlock();
1793
1794	/*
1795	 * Re-scan the gray list for modified unreferenced objects.
1796	 */
1797	scan_gray_list();
1798
1799	/*
1800	 * If scanning was stopped do not report any new unreferenced objects.
1801	 */
1802	if (scan_should_stop())
1803		return;
1804
1805	/*
1806	 * Scanning result reporting.
1807	 */
1808	rcu_read_lock();
 
1809	list_for_each_entry_rcu(object, &object_list, object_list) {
1810		if (need_resched())
1811			kmemleak_cond_resched(object);
 
 
 
 
1812
1813		/*
1814		 * This is racy but we can save the overhead of lock/unlock
1815		 * calls. The missed objects, if any, should be caught in
1816		 * the next scan.
1817		 */
1818		if (!color_white(object))
1819			continue;
1820		raw_spin_lock_irq(&object->lock);
1821		if (unreferenced_object(object) &&
1822		    !(object->flags & OBJECT_REPORTED)) {
1823			object->flags |= OBJECT_REPORTED;
1824
1825			if (kmemleak_verbose)
1826				print_unreferenced(NULL, object);
1827
1828			new_leaks++;
1829		}
1830		raw_spin_unlock_irq(&object->lock);
1831	}
1832	rcu_read_unlock();
1833
1834	if (new_leaks) {
1835		kmemleak_found_leaks = true;
1836
1837		pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n",
1838			new_leaks);
1839	}
1840
1841}
1842
1843/*
1844 * Thread function performing automatic memory scanning. Unreferenced objects
1845 * at the end of a memory scan are reported but only the first time.
1846 */
1847static int kmemleak_scan_thread(void *arg)
1848{
1849	static int first_run = IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN);
1850
1851	pr_info("Automatic memory scanning thread started\n");
1852	set_user_nice(current, 10);
1853
1854	/*
1855	 * Wait before the first scan to allow the system to fully initialize.
1856	 */
1857	if (first_run) {
1858		signed long timeout = msecs_to_jiffies(SECS_FIRST_SCAN * 1000);
1859		first_run = 0;
1860		while (timeout && !kthread_should_stop())
1861			timeout = schedule_timeout_interruptible(timeout);
1862	}
1863
1864	while (!kthread_should_stop()) {
1865		signed long timeout = READ_ONCE(jiffies_scan_wait);
1866
1867		mutex_lock(&scan_mutex);
1868		kmemleak_scan();
1869		mutex_unlock(&scan_mutex);
1870
1871		/* wait before the next scan */
1872		while (timeout && !kthread_should_stop())
1873			timeout = schedule_timeout_interruptible(timeout);
1874	}
1875
1876	pr_info("Automatic memory scanning thread ended\n");
1877
1878	return 0;
1879}
1880
1881/*
1882 * Start the automatic memory scanning thread. This function must be called
1883 * with the scan_mutex held.
1884 */
1885static void start_scan_thread(void)
1886{
1887	if (scan_thread)
1888		return;
1889	scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1890	if (IS_ERR(scan_thread)) {
1891		pr_warn("Failed to create the scan thread\n");
1892		scan_thread = NULL;
1893	}
1894}
1895
1896/*
1897 * Stop the automatic memory scanning thread.
1898 */
1899static void stop_scan_thread(void)
1900{
1901	if (scan_thread) {
1902		kthread_stop(scan_thread);
1903		scan_thread = NULL;
1904	}
1905}
1906
1907/*
1908 * Iterate over the object_list and return the first valid object at or after
1909 * the required position with its use_count incremented. The function triggers
1910 * a memory scanning when the pos argument points to the first position.
1911 */
1912static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1913{
1914	struct kmemleak_object *object;
1915	loff_t n = *pos;
1916	int err;
1917
1918	err = mutex_lock_interruptible(&scan_mutex);
1919	if (err < 0)
1920		return ERR_PTR(err);
1921
1922	rcu_read_lock();
1923	list_for_each_entry_rcu(object, &object_list, object_list) {
1924		if (n-- > 0)
1925			continue;
1926		if (get_object(object))
1927			goto out;
1928	}
1929	object = NULL;
1930out:
1931	return object;
1932}
1933
1934/*
1935 * Return the next object in the object_list. The function decrements the
1936 * use_count of the previous object and increases that of the next one.
1937 */
1938static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1939{
1940	struct kmemleak_object *prev_obj = v;
1941	struct kmemleak_object *next_obj = NULL;
1942	struct kmemleak_object *obj = prev_obj;
1943
1944	++(*pos);
1945
1946	list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
1947		if (get_object(obj)) {
1948			next_obj = obj;
1949			break;
1950		}
1951	}
1952
1953	put_object(prev_obj);
1954	return next_obj;
1955}
1956
1957/*
1958 * Decrement the use_count of the last object required, if any.
1959 */
1960static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1961{
1962	if (!IS_ERR(v)) {
1963		/*
1964		 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1965		 * waiting was interrupted, so only release it if !IS_ERR.
1966		 */
1967		rcu_read_unlock();
1968		mutex_unlock(&scan_mutex);
1969		if (v)
1970			put_object(v);
1971	}
1972}
1973
1974/*
1975 * Print the information for an unreferenced object to the seq file.
1976 */
1977static int kmemleak_seq_show(struct seq_file *seq, void *v)
1978{
1979	struct kmemleak_object *object = v;
1980	unsigned long flags;
1981
1982	raw_spin_lock_irqsave(&object->lock, flags);
1983	if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
1984		print_unreferenced(seq, object);
1985	raw_spin_unlock_irqrestore(&object->lock, flags);
1986	return 0;
1987}
1988
1989static const struct seq_operations kmemleak_seq_ops = {
1990	.start = kmemleak_seq_start,
1991	.next  = kmemleak_seq_next,
1992	.stop  = kmemleak_seq_stop,
1993	.show  = kmemleak_seq_show,
1994};
1995
1996static int kmemleak_open(struct inode *inode, struct file *file)
1997{
1998	return seq_open(file, &kmemleak_seq_ops);
1999}
2000
2001static int dump_str_object_info(const char *str)
2002{
2003	unsigned long flags;
2004	struct kmemleak_object *object;
2005	unsigned long addr;
2006
2007	if (kstrtoul(str, 0, &addr))
2008		return -EINVAL;
2009	object = find_and_get_object(addr, 0);
2010	if (!object) {
2011		pr_info("Unknown object at 0x%08lx\n", addr);
2012		return -EINVAL;
2013	}
2014
2015	raw_spin_lock_irqsave(&object->lock, flags);
2016	dump_object_info(object);
2017	raw_spin_unlock_irqrestore(&object->lock, flags);
2018
2019	put_object(object);
2020	return 0;
2021}
2022
2023/*
2024 * We use grey instead of black to ensure we can do future scans on the same
2025 * objects. If we did not do future scans these black objects could
2026 * potentially contain references to newly allocated objects in the future and
2027 * we'd end up with false positives.
2028 */
2029static void kmemleak_clear(void)
2030{
2031	struct kmemleak_object *object;
2032
2033	rcu_read_lock();
2034	list_for_each_entry_rcu(object, &object_list, object_list) {
2035		raw_spin_lock_irq(&object->lock);
2036		if ((object->flags & OBJECT_REPORTED) &&
2037		    unreferenced_object(object))
2038			__paint_it(object, KMEMLEAK_GREY);
2039		raw_spin_unlock_irq(&object->lock);
2040	}
2041	rcu_read_unlock();
2042
2043	kmemleak_found_leaks = false;
2044}
2045
2046static void __kmemleak_do_cleanup(void);
2047
2048/*
2049 * File write operation to configure kmemleak at run-time. The following
2050 * commands can be written to the /sys/kernel/debug/kmemleak file:
2051 *   off	- disable kmemleak (irreversible)
2052 *   stack=on	- enable the task stacks scanning
2053 *   stack=off	- disable the tasks stacks scanning
2054 *   scan=on	- start the automatic memory scanning thread
2055 *   scan=off	- stop the automatic memory scanning thread
2056 *   scan=...	- set the automatic memory scanning period in seconds (0 to
2057 *		  disable it)
2058 *   scan	- trigger a memory scan
2059 *   clear	- mark all current reported unreferenced kmemleak objects as
2060 *		  grey to ignore printing them, or free all kmemleak objects
2061 *		  if kmemleak has been disabled.
2062 *   dump=...	- dump information about the object found at the given address
2063 */
2064static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
2065			      size_t size, loff_t *ppos)
2066{
2067	char buf[64];
2068	int buf_size;
2069	int ret;
2070
2071	buf_size = min(size, (sizeof(buf) - 1));
2072	if (strncpy_from_user(buf, user_buf, buf_size) < 0)
2073		return -EFAULT;
2074	buf[buf_size] = 0;
2075
2076	ret = mutex_lock_interruptible(&scan_mutex);
2077	if (ret < 0)
2078		return ret;
2079
2080	if (strncmp(buf, "clear", 5) == 0) {
2081		if (kmemleak_enabled)
2082			kmemleak_clear();
2083		else
2084			__kmemleak_do_cleanup();
2085		goto out;
2086	}
2087
2088	if (!kmemleak_enabled) {
2089		ret = -EPERM;
2090		goto out;
2091	}
2092
2093	if (strncmp(buf, "off", 3) == 0)
2094		kmemleak_disable();
2095	else if (strncmp(buf, "stack=on", 8) == 0)
2096		kmemleak_stack_scan = 1;
2097	else if (strncmp(buf, "stack=off", 9) == 0)
2098		kmemleak_stack_scan = 0;
2099	else if (strncmp(buf, "scan=on", 7) == 0)
2100		start_scan_thread();
2101	else if (strncmp(buf, "scan=off", 8) == 0)
2102		stop_scan_thread();
2103	else if (strncmp(buf, "scan=", 5) == 0) {
2104		unsigned secs;
2105		unsigned long msecs;
2106
2107		ret = kstrtouint(buf + 5, 0, &secs);
2108		if (ret < 0)
2109			goto out;
2110
2111		msecs = secs * MSEC_PER_SEC;
2112		if (msecs > UINT_MAX)
2113			msecs = UINT_MAX;
2114
2115		stop_scan_thread();
2116		if (msecs) {
2117			WRITE_ONCE(jiffies_scan_wait, msecs_to_jiffies(msecs));
2118			start_scan_thread();
2119		}
2120	} else if (strncmp(buf, "scan", 4) == 0)
2121		kmemleak_scan();
2122	else if (strncmp(buf, "dump=", 5) == 0)
2123		ret = dump_str_object_info(buf + 5);
2124	else
2125		ret = -EINVAL;
2126
2127out:
2128	mutex_unlock(&scan_mutex);
2129	if (ret < 0)
2130		return ret;
2131
2132	/* ignore the rest of the buffer, only one command at a time */
2133	*ppos += size;
2134	return size;
2135}
2136
2137static const struct file_operations kmemleak_fops = {
2138	.owner		= THIS_MODULE,
2139	.open		= kmemleak_open,
2140	.read		= seq_read,
2141	.write		= kmemleak_write,
2142	.llseek		= seq_lseek,
2143	.release	= seq_release,
2144};
2145
2146static void __kmemleak_do_cleanup(void)
2147{
2148	struct kmemleak_object *object, *tmp;
2149
2150	/*
2151	 * Kmemleak has already been disabled, no need for RCU list traversal
2152	 * or kmemleak_lock held.
2153	 */
2154	list_for_each_entry_safe(object, tmp, &object_list, object_list) {
2155		__remove_object(object);
2156		__delete_object(object);
2157	}
2158}
2159
2160/*
2161 * Stop the memory scanning thread and free the kmemleak internal objects if
2162 * no previous scan thread (otherwise, kmemleak may still have some useful
2163 * information on memory leaks).
2164 */
2165static void kmemleak_do_cleanup(struct work_struct *work)
2166{
2167	stop_scan_thread();
2168
2169	mutex_lock(&scan_mutex);
2170	/*
2171	 * Once it is made sure that kmemleak_scan has stopped, it is safe to no
2172	 * longer track object freeing. Ordering of the scan thread stopping and
2173	 * the memory accesses below is guaranteed by the kthread_stop()
2174	 * function.
2175	 */
2176	kmemleak_free_enabled = 0;
2177	mutex_unlock(&scan_mutex);
2178
2179	if (!kmemleak_found_leaks)
2180		__kmemleak_do_cleanup();
2181	else
2182		pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n");
2183}
2184
2185static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
2186
2187/*
2188 * Disable kmemleak. No memory allocation/freeing will be traced once this
2189 * function is called. Disabling kmemleak is an irreversible operation.
2190 */
2191static void kmemleak_disable(void)
2192{
2193	/* atomically check whether it was already invoked */
2194	if (cmpxchg(&kmemleak_error, 0, 1))
2195		return;
2196
2197	/* stop any memory operation tracing */
2198	kmemleak_enabled = 0;
2199
2200	/* check whether it is too early for a kernel thread */
2201	if (kmemleak_late_initialized)
2202		schedule_work(&cleanup_work);
2203	else
2204		kmemleak_free_enabled = 0;
2205
2206	pr_info("Kernel memory leak detector disabled\n");
2207}
2208
2209/*
2210 * Allow boot-time kmemleak disabling (enabled by default).
2211 */
2212static int __init kmemleak_boot_config(char *str)
2213{
2214	if (!str)
2215		return -EINVAL;
2216	if (strcmp(str, "off") == 0)
2217		kmemleak_disable();
2218	else if (strcmp(str, "on") == 0) {
2219		kmemleak_skip_disable = 1;
2220		stack_depot_request_early_init();
2221	}
2222	else
2223		return -EINVAL;
2224	return 0;
2225}
2226early_param("kmemleak", kmemleak_boot_config);
2227
2228/*
2229 * Kmemleak initialization.
2230 */
2231void __init kmemleak_init(void)
2232{
2233#ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
2234	if (!kmemleak_skip_disable) {
2235		kmemleak_disable();
2236		return;
2237	}
2238#endif
2239
2240	if (kmemleak_error)
2241		return;
2242
2243	jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
2244	jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
2245
2246	object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
2247	scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
2248
2249	/* register the data/bss sections */
2250	create_object((unsigned long)_sdata, _edata - _sdata,
2251		      KMEMLEAK_GREY, GFP_ATOMIC);
2252	create_object((unsigned long)__bss_start, __bss_stop - __bss_start,
2253		      KMEMLEAK_GREY, GFP_ATOMIC);
2254	/* only register .data..ro_after_init if not within .data */
2255	if (&__start_ro_after_init < &_sdata || &__end_ro_after_init > &_edata)
2256		create_object((unsigned long)__start_ro_after_init,
2257			      __end_ro_after_init - __start_ro_after_init,
2258			      KMEMLEAK_GREY, GFP_ATOMIC);
2259}
2260
2261/*
2262 * Late initialization function.
2263 */
2264static int __init kmemleak_late_init(void)
2265{
2266	kmemleak_late_initialized = 1;
2267
2268	debugfs_create_file("kmemleak", 0644, NULL, NULL, &kmemleak_fops);
2269
2270	if (kmemleak_error) {
2271		/*
2272		 * Some error occurred and kmemleak was disabled. There is a
2273		 * small chance that kmemleak_disable() was called immediately
2274		 * after setting kmemleak_late_initialized and we may end up with
2275		 * two clean-up threads but serialized by scan_mutex.
2276		 */
2277		schedule_work(&cleanup_work);
2278		return -ENOMEM;
2279	}
2280
2281	if (IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN)) {
2282		mutex_lock(&scan_mutex);
2283		start_scan_thread();
2284		mutex_unlock(&scan_mutex);
2285	}
2286
2287	pr_info("Kernel memory leak detector initialized (mem pool available: %d)\n",
2288		mem_pool_free_count);
2289
2290	return 0;
2291}
2292late_initcall(kmemleak_late_init);