Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
   4 * policies)
   5 */
   6
   7int sched_rr_timeslice = RR_TIMESLICE;
   8/* More than 4 hours if BW_SHIFT equals 20. */
   9static const u64 max_rt_runtime = MAX_BW;
  10
  11static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  12
  13struct rt_bandwidth def_rt_bandwidth;
  14
  15/*
  16 * period over which we measure -rt task CPU usage in us.
  17 * default: 1s
  18 */
  19unsigned int sysctl_sched_rt_period = 1000000;
  20
  21/*
  22 * part of the period that we allow rt tasks to run in us.
  23 * default: 0.95s
  24 */
  25int sysctl_sched_rt_runtime = 950000;
  26
  27#ifdef CONFIG_SYSCTL
  28static int sysctl_sched_rr_timeslice = (MSEC_PER_SEC / HZ) * RR_TIMESLICE;
  29static int sched_rt_handler(struct ctl_table *table, int write, void *buffer,
  30		size_t *lenp, loff_t *ppos);
  31static int sched_rr_handler(struct ctl_table *table, int write, void *buffer,
  32		size_t *lenp, loff_t *ppos);
  33static struct ctl_table sched_rt_sysctls[] = {
  34	{
  35		.procname       = "sched_rt_period_us",
  36		.data           = &sysctl_sched_rt_period,
  37		.maxlen         = sizeof(unsigned int),
  38		.mode           = 0644,
  39		.proc_handler   = sched_rt_handler,
 
 
  40	},
  41	{
  42		.procname       = "sched_rt_runtime_us",
  43		.data           = &sysctl_sched_rt_runtime,
  44		.maxlen         = sizeof(int),
  45		.mode           = 0644,
  46		.proc_handler   = sched_rt_handler,
 
 
  47	},
  48	{
  49		.procname       = "sched_rr_timeslice_ms",
  50		.data           = &sysctl_sched_rr_timeslice,
  51		.maxlen         = sizeof(int),
  52		.mode           = 0644,
  53		.proc_handler   = sched_rr_handler,
  54	},
  55	{}
  56};
  57
  58static int __init sched_rt_sysctl_init(void)
  59{
  60	register_sysctl_init("kernel", sched_rt_sysctls);
  61	return 0;
  62}
  63late_initcall(sched_rt_sysctl_init);
  64#endif
  65
  66static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  67{
  68	struct rt_bandwidth *rt_b =
  69		container_of(timer, struct rt_bandwidth, rt_period_timer);
  70	int idle = 0;
  71	int overrun;
  72
  73	raw_spin_lock(&rt_b->rt_runtime_lock);
  74	for (;;) {
  75		overrun = hrtimer_forward_now(timer, rt_b->rt_period);
  76		if (!overrun)
  77			break;
  78
  79		raw_spin_unlock(&rt_b->rt_runtime_lock);
  80		idle = do_sched_rt_period_timer(rt_b, overrun);
  81		raw_spin_lock(&rt_b->rt_runtime_lock);
  82	}
  83	if (idle)
  84		rt_b->rt_period_active = 0;
  85	raw_spin_unlock(&rt_b->rt_runtime_lock);
  86
  87	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  88}
  89
  90void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  91{
  92	rt_b->rt_period = ns_to_ktime(period);
  93	rt_b->rt_runtime = runtime;
  94
  95	raw_spin_lock_init(&rt_b->rt_runtime_lock);
  96
  97	hrtimer_init(&rt_b->rt_period_timer, CLOCK_MONOTONIC,
  98		     HRTIMER_MODE_REL_HARD);
  99	rt_b->rt_period_timer.function = sched_rt_period_timer;
 100}
 101
 102static inline void do_start_rt_bandwidth(struct rt_bandwidth *rt_b)
 103{
 104	raw_spin_lock(&rt_b->rt_runtime_lock);
 105	if (!rt_b->rt_period_active) {
 106		rt_b->rt_period_active = 1;
 107		/*
 108		 * SCHED_DEADLINE updates the bandwidth, as a run away
 109		 * RT task with a DL task could hog a CPU. But DL does
 110		 * not reset the period. If a deadline task was running
 111		 * without an RT task running, it can cause RT tasks to
 112		 * throttle when they start up. Kick the timer right away
 113		 * to update the period.
 114		 */
 115		hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0));
 116		hrtimer_start_expires(&rt_b->rt_period_timer,
 117				      HRTIMER_MODE_ABS_PINNED_HARD);
 118	}
 119	raw_spin_unlock(&rt_b->rt_runtime_lock);
 120}
 121
 122static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
 123{
 124	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
 125		return;
 126
 127	do_start_rt_bandwidth(rt_b);
 128}
 129
 130void init_rt_rq(struct rt_rq *rt_rq)
 131{
 132	struct rt_prio_array *array;
 133	int i;
 134
 135	array = &rt_rq->active;
 136	for (i = 0; i < MAX_RT_PRIO; i++) {
 137		INIT_LIST_HEAD(array->queue + i);
 138		__clear_bit(i, array->bitmap);
 139	}
 140	/* delimiter for bitsearch: */
 141	__set_bit(MAX_RT_PRIO, array->bitmap);
 142
 143#if defined CONFIG_SMP
 144	rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
 145	rt_rq->highest_prio.next = MAX_RT_PRIO-1;
 146	rt_rq->rt_nr_migratory = 0;
 147	rt_rq->overloaded = 0;
 148	plist_head_init(&rt_rq->pushable_tasks);
 149#endif /* CONFIG_SMP */
 150	/* We start is dequeued state, because no RT tasks are queued */
 151	rt_rq->rt_queued = 0;
 152
 153	rt_rq->rt_time = 0;
 154	rt_rq->rt_throttled = 0;
 155	rt_rq->rt_runtime = 0;
 156	raw_spin_lock_init(&rt_rq->rt_runtime_lock);
 157}
 158
 159#ifdef CONFIG_RT_GROUP_SCHED
 160static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
 161{
 162	hrtimer_cancel(&rt_b->rt_period_timer);
 163}
 164
 165#define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
 166
 167static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
 168{
 169#ifdef CONFIG_SCHED_DEBUG
 170	WARN_ON_ONCE(!rt_entity_is_task(rt_se));
 171#endif
 172	return container_of(rt_se, struct task_struct, rt);
 173}
 174
 175static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
 176{
 177	return rt_rq->rq;
 178}
 179
 180static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
 181{
 182	return rt_se->rt_rq;
 183}
 184
 185static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
 186{
 187	struct rt_rq *rt_rq = rt_se->rt_rq;
 188
 189	return rt_rq->rq;
 190}
 191
 192void unregister_rt_sched_group(struct task_group *tg)
 193{
 194	if (tg->rt_se)
 195		destroy_rt_bandwidth(&tg->rt_bandwidth);
 196
 197}
 198
 199void free_rt_sched_group(struct task_group *tg)
 200{
 201	int i;
 202
 203	for_each_possible_cpu(i) {
 204		if (tg->rt_rq)
 205			kfree(tg->rt_rq[i]);
 206		if (tg->rt_se)
 207			kfree(tg->rt_se[i]);
 208	}
 209
 210	kfree(tg->rt_rq);
 211	kfree(tg->rt_se);
 212}
 213
 214void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
 215		struct sched_rt_entity *rt_se, int cpu,
 216		struct sched_rt_entity *parent)
 217{
 218	struct rq *rq = cpu_rq(cpu);
 219
 220	rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
 221	rt_rq->rt_nr_boosted = 0;
 222	rt_rq->rq = rq;
 223	rt_rq->tg = tg;
 224
 225	tg->rt_rq[cpu] = rt_rq;
 226	tg->rt_se[cpu] = rt_se;
 227
 228	if (!rt_se)
 229		return;
 230
 231	if (!parent)
 232		rt_se->rt_rq = &rq->rt;
 233	else
 234		rt_se->rt_rq = parent->my_q;
 235
 236	rt_se->my_q = rt_rq;
 237	rt_se->parent = parent;
 238	INIT_LIST_HEAD(&rt_se->run_list);
 239}
 240
 241int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
 242{
 243	struct rt_rq *rt_rq;
 244	struct sched_rt_entity *rt_se;
 245	int i;
 246
 247	tg->rt_rq = kcalloc(nr_cpu_ids, sizeof(rt_rq), GFP_KERNEL);
 248	if (!tg->rt_rq)
 249		goto err;
 250	tg->rt_se = kcalloc(nr_cpu_ids, sizeof(rt_se), GFP_KERNEL);
 251	if (!tg->rt_se)
 252		goto err;
 253
 254	init_rt_bandwidth(&tg->rt_bandwidth,
 255			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
 256
 257	for_each_possible_cpu(i) {
 258		rt_rq = kzalloc_node(sizeof(struct rt_rq),
 259				     GFP_KERNEL, cpu_to_node(i));
 260		if (!rt_rq)
 261			goto err;
 262
 263		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
 264				     GFP_KERNEL, cpu_to_node(i));
 265		if (!rt_se)
 266			goto err_free_rq;
 267
 268		init_rt_rq(rt_rq);
 269		rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
 270		init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
 271	}
 272
 273	return 1;
 274
 275err_free_rq:
 276	kfree(rt_rq);
 277err:
 278	return 0;
 279}
 280
 281#else /* CONFIG_RT_GROUP_SCHED */
 282
 283#define rt_entity_is_task(rt_se) (1)
 284
 285static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
 286{
 287	return container_of(rt_se, struct task_struct, rt);
 288}
 289
 290static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
 291{
 292	return container_of(rt_rq, struct rq, rt);
 293}
 294
 295static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
 296{
 297	struct task_struct *p = rt_task_of(rt_se);
 298
 299	return task_rq(p);
 300}
 301
 302static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
 303{
 304	struct rq *rq = rq_of_rt_se(rt_se);
 305
 306	return &rq->rt;
 307}
 308
 309void unregister_rt_sched_group(struct task_group *tg) { }
 310
 311void free_rt_sched_group(struct task_group *tg) { }
 312
 313int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
 314{
 315	return 1;
 316}
 317#endif /* CONFIG_RT_GROUP_SCHED */
 318
 319#ifdef CONFIG_SMP
 320
 321static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
 322{
 323	/* Try to pull RT tasks here if we lower this rq's prio */
 324	return rq->online && rq->rt.highest_prio.curr > prev->prio;
 325}
 326
 327static inline int rt_overloaded(struct rq *rq)
 328{
 329	return atomic_read(&rq->rd->rto_count);
 330}
 331
 332static inline void rt_set_overload(struct rq *rq)
 333{
 334	if (!rq->online)
 335		return;
 336
 337	cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
 338	/*
 339	 * Make sure the mask is visible before we set
 340	 * the overload count. That is checked to determine
 341	 * if we should look at the mask. It would be a shame
 342	 * if we looked at the mask, but the mask was not
 343	 * updated yet.
 344	 *
 345	 * Matched by the barrier in pull_rt_task().
 346	 */
 347	smp_wmb();
 348	atomic_inc(&rq->rd->rto_count);
 349}
 350
 351static inline void rt_clear_overload(struct rq *rq)
 352{
 353	if (!rq->online)
 354		return;
 355
 356	/* the order here really doesn't matter */
 357	atomic_dec(&rq->rd->rto_count);
 358	cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
 359}
 360
 361static void update_rt_migration(struct rt_rq *rt_rq)
 362{
 363	if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
 364		if (!rt_rq->overloaded) {
 365			rt_set_overload(rq_of_rt_rq(rt_rq));
 366			rt_rq->overloaded = 1;
 367		}
 368	} else if (rt_rq->overloaded) {
 369		rt_clear_overload(rq_of_rt_rq(rt_rq));
 370		rt_rq->overloaded = 0;
 371	}
 372}
 373
 374static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
 375{
 376	struct task_struct *p;
 377
 378	if (!rt_entity_is_task(rt_se))
 379		return;
 380
 381	p = rt_task_of(rt_se);
 382	rt_rq = &rq_of_rt_rq(rt_rq)->rt;
 383
 384	rt_rq->rt_nr_total++;
 385	if (p->nr_cpus_allowed > 1)
 386		rt_rq->rt_nr_migratory++;
 387
 388	update_rt_migration(rt_rq);
 389}
 390
 391static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
 392{
 393	struct task_struct *p;
 394
 395	if (!rt_entity_is_task(rt_se))
 396		return;
 397
 398	p = rt_task_of(rt_se);
 399	rt_rq = &rq_of_rt_rq(rt_rq)->rt;
 400
 401	rt_rq->rt_nr_total--;
 402	if (p->nr_cpus_allowed > 1)
 403		rt_rq->rt_nr_migratory--;
 404
 405	update_rt_migration(rt_rq);
 406}
 407
 408static inline int has_pushable_tasks(struct rq *rq)
 409{
 410	return !plist_head_empty(&rq->rt.pushable_tasks);
 411}
 412
 413static DEFINE_PER_CPU(struct balance_callback, rt_push_head);
 414static DEFINE_PER_CPU(struct balance_callback, rt_pull_head);
 415
 416static void push_rt_tasks(struct rq *);
 417static void pull_rt_task(struct rq *);
 418
 419static inline void rt_queue_push_tasks(struct rq *rq)
 420{
 421	if (!has_pushable_tasks(rq))
 422		return;
 423
 424	queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
 425}
 426
 427static inline void rt_queue_pull_task(struct rq *rq)
 428{
 429	queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
 430}
 431
 432static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
 433{
 434	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
 435	plist_node_init(&p->pushable_tasks, p->prio);
 436	plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
 437
 438	/* Update the highest prio pushable task */
 439	if (p->prio < rq->rt.highest_prio.next)
 440		rq->rt.highest_prio.next = p->prio;
 
 
 
 
 
 441}
 442
 443static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
 444{
 445	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
 446
 447	/* Update the new highest prio pushable task */
 448	if (has_pushable_tasks(rq)) {
 449		p = plist_first_entry(&rq->rt.pushable_tasks,
 450				      struct task_struct, pushable_tasks);
 451		rq->rt.highest_prio.next = p->prio;
 452	} else {
 453		rq->rt.highest_prio.next = MAX_RT_PRIO-1;
 
 
 
 
 
 454	}
 455}
 456
 457#else
 458
 459static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
 460{
 461}
 462
 463static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
 464{
 465}
 466
 467static inline
 468void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
 469{
 470}
 471
 472static inline
 473void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
 474{
 475}
 476
 477static inline void rt_queue_push_tasks(struct rq *rq)
 478{
 479}
 480#endif /* CONFIG_SMP */
 481
 482static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
 483static void dequeue_top_rt_rq(struct rt_rq *rt_rq, unsigned int count);
 484
 485static inline int on_rt_rq(struct sched_rt_entity *rt_se)
 486{
 487	return rt_se->on_rq;
 488}
 489
 490#ifdef CONFIG_UCLAMP_TASK
 491/*
 492 * Verify the fitness of task @p to run on @cpu taking into account the uclamp
 493 * settings.
 494 *
 495 * This check is only important for heterogeneous systems where uclamp_min value
 496 * is higher than the capacity of a @cpu. For non-heterogeneous system this
 497 * function will always return true.
 498 *
 499 * The function will return true if the capacity of the @cpu is >= the
 500 * uclamp_min and false otherwise.
 501 *
 502 * Note that uclamp_min will be clamped to uclamp_max if uclamp_min
 503 * > uclamp_max.
 504 */
 505static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
 506{
 507	unsigned int min_cap;
 508	unsigned int max_cap;
 509	unsigned int cpu_cap;
 510
 511	/* Only heterogeneous systems can benefit from this check */
 512	if (!sched_asym_cpucap_active())
 513		return true;
 514
 515	min_cap = uclamp_eff_value(p, UCLAMP_MIN);
 516	max_cap = uclamp_eff_value(p, UCLAMP_MAX);
 517
 518	cpu_cap = capacity_orig_of(cpu);
 519
 520	return cpu_cap >= min(min_cap, max_cap);
 521}
 522#else
 523static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
 524{
 525	return true;
 526}
 527#endif
 528
 529#ifdef CONFIG_RT_GROUP_SCHED
 530
 531static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
 532{
 533	if (!rt_rq->tg)
 534		return RUNTIME_INF;
 535
 536	return rt_rq->rt_runtime;
 537}
 538
 539static inline u64 sched_rt_period(struct rt_rq *rt_rq)
 540{
 541	return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
 542}
 543
 544typedef struct task_group *rt_rq_iter_t;
 545
 546static inline struct task_group *next_task_group(struct task_group *tg)
 547{
 548	do {
 549		tg = list_entry_rcu(tg->list.next,
 550			typeof(struct task_group), list);
 551	} while (&tg->list != &task_groups && task_group_is_autogroup(tg));
 552
 553	if (&tg->list == &task_groups)
 554		tg = NULL;
 555
 556	return tg;
 557}
 558
 559#define for_each_rt_rq(rt_rq, iter, rq)					\
 560	for (iter = container_of(&task_groups, typeof(*iter), list);	\
 561		(iter = next_task_group(iter)) &&			\
 562		(rt_rq = iter->rt_rq[cpu_of(rq)]);)
 563
 564#define for_each_sched_rt_entity(rt_se) \
 565	for (; rt_se; rt_se = rt_se->parent)
 566
 567static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
 568{
 569	return rt_se->my_q;
 570}
 571
 572static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
 573static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
 574
 575static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
 576{
 577	struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
 578	struct rq *rq = rq_of_rt_rq(rt_rq);
 579	struct sched_rt_entity *rt_se;
 580
 581	int cpu = cpu_of(rq);
 582
 583	rt_se = rt_rq->tg->rt_se[cpu];
 584
 585	if (rt_rq->rt_nr_running) {
 586		if (!rt_se)
 587			enqueue_top_rt_rq(rt_rq);
 588		else if (!on_rt_rq(rt_se))
 589			enqueue_rt_entity(rt_se, 0);
 590
 591		if (rt_rq->highest_prio.curr < curr->prio)
 592			resched_curr(rq);
 593	}
 594}
 595
 596static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
 597{
 598	struct sched_rt_entity *rt_se;
 599	int cpu = cpu_of(rq_of_rt_rq(rt_rq));
 600
 601	rt_se = rt_rq->tg->rt_se[cpu];
 602
 603	if (!rt_se) {
 604		dequeue_top_rt_rq(rt_rq, rt_rq->rt_nr_running);
 605		/* Kick cpufreq (see the comment in kernel/sched/sched.h). */
 606		cpufreq_update_util(rq_of_rt_rq(rt_rq), 0);
 607	}
 608	else if (on_rt_rq(rt_se))
 609		dequeue_rt_entity(rt_se, 0);
 610}
 611
 612static inline int rt_rq_throttled(struct rt_rq *rt_rq)
 613{
 614	return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
 615}
 616
 617static int rt_se_boosted(struct sched_rt_entity *rt_se)
 618{
 619	struct rt_rq *rt_rq = group_rt_rq(rt_se);
 620	struct task_struct *p;
 621
 622	if (rt_rq)
 623		return !!rt_rq->rt_nr_boosted;
 624
 625	p = rt_task_of(rt_se);
 626	return p->prio != p->normal_prio;
 627}
 628
 629#ifdef CONFIG_SMP
 630static inline const struct cpumask *sched_rt_period_mask(void)
 631{
 632	return this_rq()->rd->span;
 633}
 634#else
 635static inline const struct cpumask *sched_rt_period_mask(void)
 636{
 637	return cpu_online_mask;
 638}
 639#endif
 640
 641static inline
 642struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
 643{
 644	return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
 645}
 646
 647static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
 648{
 649	return &rt_rq->tg->rt_bandwidth;
 650}
 651
 652#else /* !CONFIG_RT_GROUP_SCHED */
 653
 654static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
 655{
 656	return rt_rq->rt_runtime;
 657}
 658
 659static inline u64 sched_rt_period(struct rt_rq *rt_rq)
 660{
 661	return ktime_to_ns(def_rt_bandwidth.rt_period);
 662}
 663
 664typedef struct rt_rq *rt_rq_iter_t;
 665
 666#define for_each_rt_rq(rt_rq, iter, rq) \
 667	for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
 668
 669#define for_each_sched_rt_entity(rt_se) \
 670	for (; rt_se; rt_se = NULL)
 671
 672static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
 673{
 674	return NULL;
 675}
 676
 677static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
 678{
 679	struct rq *rq = rq_of_rt_rq(rt_rq);
 680
 681	if (!rt_rq->rt_nr_running)
 682		return;
 683
 684	enqueue_top_rt_rq(rt_rq);
 685	resched_curr(rq);
 686}
 687
 688static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
 689{
 690	dequeue_top_rt_rq(rt_rq, rt_rq->rt_nr_running);
 691}
 692
 693static inline int rt_rq_throttled(struct rt_rq *rt_rq)
 694{
 695	return rt_rq->rt_throttled;
 696}
 697
 698static inline const struct cpumask *sched_rt_period_mask(void)
 699{
 700	return cpu_online_mask;
 701}
 702
 703static inline
 704struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
 705{
 706	return &cpu_rq(cpu)->rt;
 707}
 708
 709static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
 710{
 711	return &def_rt_bandwidth;
 712}
 713
 714#endif /* CONFIG_RT_GROUP_SCHED */
 715
 716bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
 717{
 718	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
 719
 720	return (hrtimer_active(&rt_b->rt_period_timer) ||
 721		rt_rq->rt_time < rt_b->rt_runtime);
 722}
 723
 724#ifdef CONFIG_SMP
 725/*
 726 * We ran out of runtime, see if we can borrow some from our neighbours.
 727 */
 728static void do_balance_runtime(struct rt_rq *rt_rq)
 729{
 730	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
 731	struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
 732	int i, weight;
 733	u64 rt_period;
 734
 735	weight = cpumask_weight(rd->span);
 736
 737	raw_spin_lock(&rt_b->rt_runtime_lock);
 738	rt_period = ktime_to_ns(rt_b->rt_period);
 739	for_each_cpu(i, rd->span) {
 740		struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
 741		s64 diff;
 742
 743		if (iter == rt_rq)
 744			continue;
 745
 746		raw_spin_lock(&iter->rt_runtime_lock);
 747		/*
 748		 * Either all rqs have inf runtime and there's nothing to steal
 749		 * or __disable_runtime() below sets a specific rq to inf to
 750		 * indicate its been disabled and disallow stealing.
 751		 */
 752		if (iter->rt_runtime == RUNTIME_INF)
 753			goto next;
 754
 755		/*
 756		 * From runqueues with spare time, take 1/n part of their
 757		 * spare time, but no more than our period.
 758		 */
 759		diff = iter->rt_runtime - iter->rt_time;
 760		if (diff > 0) {
 761			diff = div_u64((u64)diff, weight);
 762			if (rt_rq->rt_runtime + diff > rt_period)
 763				diff = rt_period - rt_rq->rt_runtime;
 764			iter->rt_runtime -= diff;
 765			rt_rq->rt_runtime += diff;
 766			if (rt_rq->rt_runtime == rt_period) {
 767				raw_spin_unlock(&iter->rt_runtime_lock);
 768				break;
 769			}
 770		}
 771next:
 772		raw_spin_unlock(&iter->rt_runtime_lock);
 773	}
 774	raw_spin_unlock(&rt_b->rt_runtime_lock);
 775}
 776
 777/*
 778 * Ensure this RQ takes back all the runtime it lend to its neighbours.
 779 */
 780static void __disable_runtime(struct rq *rq)
 781{
 782	struct root_domain *rd = rq->rd;
 783	rt_rq_iter_t iter;
 784	struct rt_rq *rt_rq;
 785
 786	if (unlikely(!scheduler_running))
 787		return;
 788
 789	for_each_rt_rq(rt_rq, iter, rq) {
 790		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
 791		s64 want;
 792		int i;
 793
 794		raw_spin_lock(&rt_b->rt_runtime_lock);
 795		raw_spin_lock(&rt_rq->rt_runtime_lock);
 796		/*
 797		 * Either we're all inf and nobody needs to borrow, or we're
 798		 * already disabled and thus have nothing to do, or we have
 799		 * exactly the right amount of runtime to take out.
 800		 */
 801		if (rt_rq->rt_runtime == RUNTIME_INF ||
 802				rt_rq->rt_runtime == rt_b->rt_runtime)
 803			goto balanced;
 804		raw_spin_unlock(&rt_rq->rt_runtime_lock);
 805
 806		/*
 807		 * Calculate the difference between what we started out with
 808		 * and what we current have, that's the amount of runtime
 809		 * we lend and now have to reclaim.
 810		 */
 811		want = rt_b->rt_runtime - rt_rq->rt_runtime;
 812
 813		/*
 814		 * Greedy reclaim, take back as much as we can.
 815		 */
 816		for_each_cpu(i, rd->span) {
 817			struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
 818			s64 diff;
 819
 820			/*
 821			 * Can't reclaim from ourselves or disabled runqueues.
 822			 */
 823			if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
 824				continue;
 825
 826			raw_spin_lock(&iter->rt_runtime_lock);
 827			if (want > 0) {
 828				diff = min_t(s64, iter->rt_runtime, want);
 829				iter->rt_runtime -= diff;
 830				want -= diff;
 831			} else {
 832				iter->rt_runtime -= want;
 833				want -= want;
 834			}
 835			raw_spin_unlock(&iter->rt_runtime_lock);
 836
 837			if (!want)
 838				break;
 839		}
 840
 841		raw_spin_lock(&rt_rq->rt_runtime_lock);
 842		/*
 843		 * We cannot be left wanting - that would mean some runtime
 844		 * leaked out of the system.
 845		 */
 846		WARN_ON_ONCE(want);
 847balanced:
 848		/*
 849		 * Disable all the borrow logic by pretending we have inf
 850		 * runtime - in which case borrowing doesn't make sense.
 851		 */
 852		rt_rq->rt_runtime = RUNTIME_INF;
 853		rt_rq->rt_throttled = 0;
 854		raw_spin_unlock(&rt_rq->rt_runtime_lock);
 855		raw_spin_unlock(&rt_b->rt_runtime_lock);
 856
 857		/* Make rt_rq available for pick_next_task() */
 858		sched_rt_rq_enqueue(rt_rq);
 859	}
 860}
 861
 862static void __enable_runtime(struct rq *rq)
 863{
 864	rt_rq_iter_t iter;
 865	struct rt_rq *rt_rq;
 866
 867	if (unlikely(!scheduler_running))
 868		return;
 869
 870	/*
 871	 * Reset each runqueue's bandwidth settings
 872	 */
 873	for_each_rt_rq(rt_rq, iter, rq) {
 874		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
 875
 876		raw_spin_lock(&rt_b->rt_runtime_lock);
 877		raw_spin_lock(&rt_rq->rt_runtime_lock);
 878		rt_rq->rt_runtime = rt_b->rt_runtime;
 879		rt_rq->rt_time = 0;
 880		rt_rq->rt_throttled = 0;
 881		raw_spin_unlock(&rt_rq->rt_runtime_lock);
 882		raw_spin_unlock(&rt_b->rt_runtime_lock);
 883	}
 884}
 885
 886static void balance_runtime(struct rt_rq *rt_rq)
 887{
 888	if (!sched_feat(RT_RUNTIME_SHARE))
 889		return;
 890
 891	if (rt_rq->rt_time > rt_rq->rt_runtime) {
 892		raw_spin_unlock(&rt_rq->rt_runtime_lock);
 893		do_balance_runtime(rt_rq);
 894		raw_spin_lock(&rt_rq->rt_runtime_lock);
 895	}
 896}
 897#else /* !CONFIG_SMP */
 898static inline void balance_runtime(struct rt_rq *rt_rq) {}
 899#endif /* CONFIG_SMP */
 900
 901static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
 902{
 903	int i, idle = 1, throttled = 0;
 904	const struct cpumask *span;
 905
 906	span = sched_rt_period_mask();
 907#ifdef CONFIG_RT_GROUP_SCHED
 908	/*
 909	 * FIXME: isolated CPUs should really leave the root task group,
 910	 * whether they are isolcpus or were isolated via cpusets, lest
 911	 * the timer run on a CPU which does not service all runqueues,
 912	 * potentially leaving other CPUs indefinitely throttled.  If
 913	 * isolation is really required, the user will turn the throttle
 914	 * off to kill the perturbations it causes anyway.  Meanwhile,
 915	 * this maintains functionality for boot and/or troubleshooting.
 916	 */
 917	if (rt_b == &root_task_group.rt_bandwidth)
 918		span = cpu_online_mask;
 919#endif
 920	for_each_cpu(i, span) {
 921		int enqueue = 0;
 922		struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
 923		struct rq *rq = rq_of_rt_rq(rt_rq);
 924		struct rq_flags rf;
 925		int skip;
 926
 927		/*
 928		 * When span == cpu_online_mask, taking each rq->lock
 929		 * can be time-consuming. Try to avoid it when possible.
 930		 */
 931		raw_spin_lock(&rt_rq->rt_runtime_lock);
 932		if (!sched_feat(RT_RUNTIME_SHARE) && rt_rq->rt_runtime != RUNTIME_INF)
 933			rt_rq->rt_runtime = rt_b->rt_runtime;
 934		skip = !rt_rq->rt_time && !rt_rq->rt_nr_running;
 935		raw_spin_unlock(&rt_rq->rt_runtime_lock);
 936		if (skip)
 937			continue;
 938
 939		rq_lock(rq, &rf);
 940		update_rq_clock(rq);
 941
 942		if (rt_rq->rt_time) {
 943			u64 runtime;
 944
 945			raw_spin_lock(&rt_rq->rt_runtime_lock);
 946			if (rt_rq->rt_throttled)
 947				balance_runtime(rt_rq);
 948			runtime = rt_rq->rt_runtime;
 949			rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
 950			if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
 951				rt_rq->rt_throttled = 0;
 952				enqueue = 1;
 953
 954				/*
 955				 * When we're idle and a woken (rt) task is
 956				 * throttled check_preempt_curr() will set
 957				 * skip_update and the time between the wakeup
 958				 * and this unthrottle will get accounted as
 959				 * 'runtime'.
 960				 */
 961				if (rt_rq->rt_nr_running && rq->curr == rq->idle)
 962					rq_clock_cancel_skipupdate(rq);
 963			}
 964			if (rt_rq->rt_time || rt_rq->rt_nr_running)
 965				idle = 0;
 966			raw_spin_unlock(&rt_rq->rt_runtime_lock);
 967		} else if (rt_rq->rt_nr_running) {
 968			idle = 0;
 969			if (!rt_rq_throttled(rt_rq))
 970				enqueue = 1;
 971		}
 972		if (rt_rq->rt_throttled)
 973			throttled = 1;
 974
 975		if (enqueue)
 976			sched_rt_rq_enqueue(rt_rq);
 977		rq_unlock(rq, &rf);
 978	}
 979
 980	if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
 981		return 1;
 982
 983	return idle;
 984}
 985
 986static inline int rt_se_prio(struct sched_rt_entity *rt_se)
 987{
 988#ifdef CONFIG_RT_GROUP_SCHED
 989	struct rt_rq *rt_rq = group_rt_rq(rt_se);
 990
 991	if (rt_rq)
 992		return rt_rq->highest_prio.curr;
 993#endif
 994
 995	return rt_task_of(rt_se)->prio;
 996}
 997
 998static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
 999{
1000	u64 runtime = sched_rt_runtime(rt_rq);
1001
1002	if (rt_rq->rt_throttled)
1003		return rt_rq_throttled(rt_rq);
1004
1005	if (runtime >= sched_rt_period(rt_rq))
1006		return 0;
1007
1008	balance_runtime(rt_rq);
1009	runtime = sched_rt_runtime(rt_rq);
1010	if (runtime == RUNTIME_INF)
1011		return 0;
1012
1013	if (rt_rq->rt_time > runtime) {
1014		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
1015
1016		/*
1017		 * Don't actually throttle groups that have no runtime assigned
1018		 * but accrue some time due to boosting.
1019		 */
1020		if (likely(rt_b->rt_runtime)) {
1021			rt_rq->rt_throttled = 1;
1022			printk_deferred_once("sched: RT throttling activated\n");
1023		} else {
1024			/*
1025			 * In case we did anyway, make it go away,
1026			 * replenishment is a joke, since it will replenish us
1027			 * with exactly 0 ns.
1028			 */
1029			rt_rq->rt_time = 0;
1030		}
1031
1032		if (rt_rq_throttled(rt_rq)) {
1033			sched_rt_rq_dequeue(rt_rq);
1034			return 1;
1035		}
1036	}
1037
1038	return 0;
1039}
1040
1041/*
1042 * Update the current task's runtime statistics. Skip current tasks that
1043 * are not in our scheduling class.
1044 */
1045static void update_curr_rt(struct rq *rq)
1046{
1047	struct task_struct *curr = rq->curr;
1048	struct sched_rt_entity *rt_se = &curr->rt;
1049	u64 delta_exec;
1050	u64 now;
1051
1052	if (curr->sched_class != &rt_sched_class)
1053		return;
1054
1055	now = rq_clock_task(rq);
1056	delta_exec = now - curr->se.exec_start;
1057	if (unlikely((s64)delta_exec <= 0))
1058		return;
1059
1060	schedstat_set(curr->stats.exec_max,
1061		      max(curr->stats.exec_max, delta_exec));
1062
1063	trace_sched_stat_runtime(curr, delta_exec, 0);
1064
1065	update_current_exec_runtime(curr, now, delta_exec);
1066
1067	if (!rt_bandwidth_enabled())
1068		return;
1069
1070	for_each_sched_rt_entity(rt_se) {
1071		struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1072		int exceeded;
1073
1074		if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
1075			raw_spin_lock(&rt_rq->rt_runtime_lock);
1076			rt_rq->rt_time += delta_exec;
1077			exceeded = sched_rt_runtime_exceeded(rt_rq);
1078			if (exceeded)
1079				resched_curr(rq);
1080			raw_spin_unlock(&rt_rq->rt_runtime_lock);
1081			if (exceeded)
1082				do_start_rt_bandwidth(sched_rt_bandwidth(rt_rq));
1083		}
1084	}
1085}
1086
1087static void
1088dequeue_top_rt_rq(struct rt_rq *rt_rq, unsigned int count)
1089{
1090	struct rq *rq = rq_of_rt_rq(rt_rq);
1091
1092	BUG_ON(&rq->rt != rt_rq);
1093
1094	if (!rt_rq->rt_queued)
1095		return;
1096
1097	BUG_ON(!rq->nr_running);
1098
1099	sub_nr_running(rq, count);
1100	rt_rq->rt_queued = 0;
1101
1102}
1103
1104static void
1105enqueue_top_rt_rq(struct rt_rq *rt_rq)
1106{
1107	struct rq *rq = rq_of_rt_rq(rt_rq);
1108
1109	BUG_ON(&rq->rt != rt_rq);
1110
1111	if (rt_rq->rt_queued)
1112		return;
1113
1114	if (rt_rq_throttled(rt_rq))
1115		return;
1116
1117	if (rt_rq->rt_nr_running) {
1118		add_nr_running(rq, rt_rq->rt_nr_running);
1119		rt_rq->rt_queued = 1;
1120	}
1121
1122	/* Kick cpufreq (see the comment in kernel/sched/sched.h). */
1123	cpufreq_update_util(rq, 0);
1124}
1125
1126#if defined CONFIG_SMP
1127
1128static void
1129inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1130{
1131	struct rq *rq = rq_of_rt_rq(rt_rq);
1132
1133#ifdef CONFIG_RT_GROUP_SCHED
1134	/*
1135	 * Change rq's cpupri only if rt_rq is the top queue.
1136	 */
1137	if (&rq->rt != rt_rq)
1138		return;
1139#endif
1140	if (rq->online && prio < prev_prio)
1141		cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1142}
1143
1144static void
1145dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1146{
1147	struct rq *rq = rq_of_rt_rq(rt_rq);
1148
1149#ifdef CONFIG_RT_GROUP_SCHED
1150	/*
1151	 * Change rq's cpupri only if rt_rq is the top queue.
1152	 */
1153	if (&rq->rt != rt_rq)
1154		return;
1155#endif
1156	if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1157		cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1158}
1159
1160#else /* CONFIG_SMP */
1161
1162static inline
1163void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1164static inline
1165void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1166
1167#endif /* CONFIG_SMP */
1168
1169#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1170static void
1171inc_rt_prio(struct rt_rq *rt_rq, int prio)
1172{
1173	int prev_prio = rt_rq->highest_prio.curr;
1174
1175	if (prio < prev_prio)
1176		rt_rq->highest_prio.curr = prio;
1177
1178	inc_rt_prio_smp(rt_rq, prio, prev_prio);
1179}
1180
1181static void
1182dec_rt_prio(struct rt_rq *rt_rq, int prio)
1183{
1184	int prev_prio = rt_rq->highest_prio.curr;
1185
1186	if (rt_rq->rt_nr_running) {
1187
1188		WARN_ON(prio < prev_prio);
1189
1190		/*
1191		 * This may have been our highest task, and therefore
1192		 * we may have some recomputation to do
1193		 */
1194		if (prio == prev_prio) {
1195			struct rt_prio_array *array = &rt_rq->active;
1196
1197			rt_rq->highest_prio.curr =
1198				sched_find_first_bit(array->bitmap);
1199		}
1200
1201	} else {
1202		rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
1203	}
1204
1205	dec_rt_prio_smp(rt_rq, prio, prev_prio);
1206}
1207
1208#else
1209
1210static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1211static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1212
1213#endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1214
1215#ifdef CONFIG_RT_GROUP_SCHED
1216
1217static void
1218inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1219{
1220	if (rt_se_boosted(rt_se))
1221		rt_rq->rt_nr_boosted++;
1222
1223	if (rt_rq->tg)
1224		start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1225}
1226
1227static void
1228dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1229{
1230	if (rt_se_boosted(rt_se))
1231		rt_rq->rt_nr_boosted--;
1232
1233	WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1234}
1235
1236#else /* CONFIG_RT_GROUP_SCHED */
1237
1238static void
1239inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1240{
1241	start_rt_bandwidth(&def_rt_bandwidth);
1242}
1243
1244static inline
1245void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1246
1247#endif /* CONFIG_RT_GROUP_SCHED */
1248
1249static inline
1250unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1251{
1252	struct rt_rq *group_rq = group_rt_rq(rt_se);
1253
1254	if (group_rq)
1255		return group_rq->rt_nr_running;
1256	else
1257		return 1;
1258}
1259
1260static inline
1261unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se)
1262{
1263	struct rt_rq *group_rq = group_rt_rq(rt_se);
1264	struct task_struct *tsk;
1265
1266	if (group_rq)
1267		return group_rq->rr_nr_running;
1268
1269	tsk = rt_task_of(rt_se);
1270
1271	return (tsk->policy == SCHED_RR) ? 1 : 0;
1272}
1273
1274static inline
1275void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1276{
1277	int prio = rt_se_prio(rt_se);
1278
1279	WARN_ON(!rt_prio(prio));
1280	rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1281	rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se);
1282
1283	inc_rt_prio(rt_rq, prio);
1284	inc_rt_migration(rt_se, rt_rq);
1285	inc_rt_group(rt_se, rt_rq);
1286}
1287
1288static inline
1289void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1290{
1291	WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1292	WARN_ON(!rt_rq->rt_nr_running);
1293	rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1294	rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se);
1295
1296	dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1297	dec_rt_migration(rt_se, rt_rq);
1298	dec_rt_group(rt_se, rt_rq);
1299}
1300
1301/*
1302 * Change rt_se->run_list location unless SAVE && !MOVE
1303 *
1304 * assumes ENQUEUE/DEQUEUE flags match
1305 */
1306static inline bool move_entity(unsigned int flags)
1307{
1308	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
1309		return false;
1310
1311	return true;
1312}
1313
1314static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array)
1315{
1316	list_del_init(&rt_se->run_list);
1317
1318	if (list_empty(array->queue + rt_se_prio(rt_se)))
1319		__clear_bit(rt_se_prio(rt_se), array->bitmap);
1320
1321	rt_se->on_list = 0;
1322}
1323
1324static inline struct sched_statistics *
1325__schedstats_from_rt_se(struct sched_rt_entity *rt_se)
1326{
1327#ifdef CONFIG_RT_GROUP_SCHED
1328	/* schedstats is not supported for rt group. */
1329	if (!rt_entity_is_task(rt_se))
1330		return NULL;
1331#endif
1332
1333	return &rt_task_of(rt_se)->stats;
1334}
1335
1336static inline void
1337update_stats_wait_start_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1338{
1339	struct sched_statistics *stats;
1340	struct task_struct *p = NULL;
1341
1342	if (!schedstat_enabled())
1343		return;
1344
1345	if (rt_entity_is_task(rt_se))
1346		p = rt_task_of(rt_se);
1347
1348	stats = __schedstats_from_rt_se(rt_se);
1349	if (!stats)
1350		return;
1351
1352	__update_stats_wait_start(rq_of_rt_rq(rt_rq), p, stats);
1353}
1354
1355static inline void
1356update_stats_enqueue_sleeper_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1357{
1358	struct sched_statistics *stats;
1359	struct task_struct *p = NULL;
1360
1361	if (!schedstat_enabled())
1362		return;
1363
1364	if (rt_entity_is_task(rt_se))
1365		p = rt_task_of(rt_se);
1366
1367	stats = __schedstats_from_rt_se(rt_se);
1368	if (!stats)
1369		return;
1370
1371	__update_stats_enqueue_sleeper(rq_of_rt_rq(rt_rq), p, stats);
1372}
1373
1374static inline void
1375update_stats_enqueue_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
1376			int flags)
1377{
1378	if (!schedstat_enabled())
1379		return;
1380
1381	if (flags & ENQUEUE_WAKEUP)
1382		update_stats_enqueue_sleeper_rt(rt_rq, rt_se);
1383}
1384
1385static inline void
1386update_stats_wait_end_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1387{
1388	struct sched_statistics *stats;
1389	struct task_struct *p = NULL;
1390
1391	if (!schedstat_enabled())
1392		return;
1393
1394	if (rt_entity_is_task(rt_se))
1395		p = rt_task_of(rt_se);
1396
1397	stats = __schedstats_from_rt_se(rt_se);
1398	if (!stats)
1399		return;
1400
1401	__update_stats_wait_end(rq_of_rt_rq(rt_rq), p, stats);
1402}
1403
1404static inline void
1405update_stats_dequeue_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
1406			int flags)
1407{
1408	struct task_struct *p = NULL;
1409
1410	if (!schedstat_enabled())
1411		return;
1412
1413	if (rt_entity_is_task(rt_se))
1414		p = rt_task_of(rt_se);
1415
1416	if ((flags & DEQUEUE_SLEEP) && p) {
1417		unsigned int state;
1418
1419		state = READ_ONCE(p->__state);
1420		if (state & TASK_INTERRUPTIBLE)
1421			__schedstat_set(p->stats.sleep_start,
1422					rq_clock(rq_of_rt_rq(rt_rq)));
1423
1424		if (state & TASK_UNINTERRUPTIBLE)
1425			__schedstat_set(p->stats.block_start,
1426					rq_clock(rq_of_rt_rq(rt_rq)));
1427	}
1428}
1429
1430static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1431{
1432	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1433	struct rt_prio_array *array = &rt_rq->active;
1434	struct rt_rq *group_rq = group_rt_rq(rt_se);
1435	struct list_head *queue = array->queue + rt_se_prio(rt_se);
1436
1437	/*
1438	 * Don't enqueue the group if its throttled, or when empty.
1439	 * The latter is a consequence of the former when a child group
1440	 * get throttled and the current group doesn't have any other
1441	 * active members.
1442	 */
1443	if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) {
1444		if (rt_se->on_list)
1445			__delist_rt_entity(rt_se, array);
1446		return;
1447	}
1448
1449	if (move_entity(flags)) {
1450		WARN_ON_ONCE(rt_se->on_list);
1451		if (flags & ENQUEUE_HEAD)
1452			list_add(&rt_se->run_list, queue);
1453		else
1454			list_add_tail(&rt_se->run_list, queue);
1455
1456		__set_bit(rt_se_prio(rt_se), array->bitmap);
1457		rt_se->on_list = 1;
1458	}
1459	rt_se->on_rq = 1;
1460
1461	inc_rt_tasks(rt_se, rt_rq);
1462}
1463
1464static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1465{
1466	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1467	struct rt_prio_array *array = &rt_rq->active;
1468
1469	if (move_entity(flags)) {
1470		WARN_ON_ONCE(!rt_se->on_list);
1471		__delist_rt_entity(rt_se, array);
1472	}
1473	rt_se->on_rq = 0;
1474
1475	dec_rt_tasks(rt_se, rt_rq);
1476}
1477
1478/*
1479 * Because the prio of an upper entry depends on the lower
1480 * entries, we must remove entries top - down.
1481 */
1482static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags)
1483{
1484	struct sched_rt_entity *back = NULL;
1485	unsigned int rt_nr_running;
1486
1487	for_each_sched_rt_entity(rt_se) {
1488		rt_se->back = back;
1489		back = rt_se;
1490	}
1491
1492	rt_nr_running = rt_rq_of_se(back)->rt_nr_running;
1493
1494	for (rt_se = back; rt_se; rt_se = rt_se->back) {
1495		if (on_rt_rq(rt_se))
1496			__dequeue_rt_entity(rt_se, flags);
1497	}
1498
1499	dequeue_top_rt_rq(rt_rq_of_se(back), rt_nr_running);
1500}
1501
1502static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1503{
1504	struct rq *rq = rq_of_rt_se(rt_se);
1505
1506	update_stats_enqueue_rt(rt_rq_of_se(rt_se), rt_se, flags);
1507
1508	dequeue_rt_stack(rt_se, flags);
1509	for_each_sched_rt_entity(rt_se)
1510		__enqueue_rt_entity(rt_se, flags);
1511	enqueue_top_rt_rq(&rq->rt);
1512}
1513
1514static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1515{
1516	struct rq *rq = rq_of_rt_se(rt_se);
1517
1518	update_stats_dequeue_rt(rt_rq_of_se(rt_se), rt_se, flags);
1519
1520	dequeue_rt_stack(rt_se, flags);
1521
1522	for_each_sched_rt_entity(rt_se) {
1523		struct rt_rq *rt_rq = group_rt_rq(rt_se);
1524
1525		if (rt_rq && rt_rq->rt_nr_running)
1526			__enqueue_rt_entity(rt_se, flags);
1527	}
1528	enqueue_top_rt_rq(&rq->rt);
1529}
1530
1531/*
1532 * Adding/removing a task to/from a priority array:
1533 */
1534static void
1535enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1536{
1537	struct sched_rt_entity *rt_se = &p->rt;
1538
1539	if (flags & ENQUEUE_WAKEUP)
1540		rt_se->timeout = 0;
1541
1542	check_schedstat_required();
1543	update_stats_wait_start_rt(rt_rq_of_se(rt_se), rt_se);
1544
1545	enqueue_rt_entity(rt_se, flags);
1546
1547	if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1548		enqueue_pushable_task(rq, p);
1549}
1550
1551static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1552{
1553	struct sched_rt_entity *rt_se = &p->rt;
1554
1555	update_curr_rt(rq);
1556	dequeue_rt_entity(rt_se, flags);
1557
1558	dequeue_pushable_task(rq, p);
1559}
1560
1561/*
1562 * Put task to the head or the end of the run list without the overhead of
1563 * dequeue followed by enqueue.
1564 */
1565static void
1566requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1567{
1568	if (on_rt_rq(rt_se)) {
1569		struct rt_prio_array *array = &rt_rq->active;
1570		struct list_head *queue = array->queue + rt_se_prio(rt_se);
1571
1572		if (head)
1573			list_move(&rt_se->run_list, queue);
1574		else
1575			list_move_tail(&rt_se->run_list, queue);
1576	}
1577}
1578
1579static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1580{
1581	struct sched_rt_entity *rt_se = &p->rt;
1582	struct rt_rq *rt_rq;
1583
1584	for_each_sched_rt_entity(rt_se) {
1585		rt_rq = rt_rq_of_se(rt_se);
1586		requeue_rt_entity(rt_rq, rt_se, head);
1587	}
1588}
1589
1590static void yield_task_rt(struct rq *rq)
1591{
1592	requeue_task_rt(rq, rq->curr, 0);
1593}
1594
1595#ifdef CONFIG_SMP
1596static int find_lowest_rq(struct task_struct *task);
1597
1598static int
1599select_task_rq_rt(struct task_struct *p, int cpu, int flags)
1600{
1601	struct task_struct *curr;
1602	struct rq *rq;
1603	bool test;
1604
1605	/* For anything but wake ups, just return the task_cpu */
1606	if (!(flags & (WF_TTWU | WF_FORK)))
1607		goto out;
1608
1609	rq = cpu_rq(cpu);
1610
1611	rcu_read_lock();
1612	curr = READ_ONCE(rq->curr); /* unlocked access */
1613
1614	/*
1615	 * If the current task on @p's runqueue is an RT task, then
1616	 * try to see if we can wake this RT task up on another
1617	 * runqueue. Otherwise simply start this RT task
1618	 * on its current runqueue.
1619	 *
1620	 * We want to avoid overloading runqueues. If the woken
1621	 * task is a higher priority, then it will stay on this CPU
1622	 * and the lower prio task should be moved to another CPU.
1623	 * Even though this will probably make the lower prio task
1624	 * lose its cache, we do not want to bounce a higher task
1625	 * around just because it gave up its CPU, perhaps for a
1626	 * lock?
1627	 *
1628	 * For equal prio tasks, we just let the scheduler sort it out.
1629	 *
1630	 * Otherwise, just let it ride on the affined RQ and the
1631	 * post-schedule router will push the preempted task away
1632	 *
1633	 * This test is optimistic, if we get it wrong the load-balancer
1634	 * will have to sort it out.
1635	 *
1636	 * We take into account the capacity of the CPU to ensure it fits the
1637	 * requirement of the task - which is only important on heterogeneous
1638	 * systems like big.LITTLE.
1639	 */
1640	test = curr &&
1641	       unlikely(rt_task(curr)) &&
1642	       (curr->nr_cpus_allowed < 2 || curr->prio <= p->prio);
1643
1644	if (test || !rt_task_fits_capacity(p, cpu)) {
1645		int target = find_lowest_rq(p);
1646
1647		/*
1648		 * Bail out if we were forcing a migration to find a better
1649		 * fitting CPU but our search failed.
1650		 */
1651		if (!test && target != -1 && !rt_task_fits_capacity(p, target))
1652			goto out_unlock;
1653
1654		/*
1655		 * Don't bother moving it if the destination CPU is
1656		 * not running a lower priority task.
1657		 */
1658		if (target != -1 &&
1659		    p->prio < cpu_rq(target)->rt.highest_prio.curr)
1660			cpu = target;
1661	}
1662
1663out_unlock:
1664	rcu_read_unlock();
1665
1666out:
1667	return cpu;
1668}
1669
1670static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1671{
1672	/*
1673	 * Current can't be migrated, useless to reschedule,
1674	 * let's hope p can move out.
1675	 */
1676	if (rq->curr->nr_cpus_allowed == 1 ||
1677	    !cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1678		return;
1679
1680	/*
1681	 * p is migratable, so let's not schedule it and
1682	 * see if it is pushed or pulled somewhere else.
1683	 */
1684	if (p->nr_cpus_allowed != 1 &&
1685	    cpupri_find(&rq->rd->cpupri, p, NULL))
1686		return;
1687
1688	/*
1689	 * There appear to be other CPUs that can accept
1690	 * the current task but none can run 'p', so lets reschedule
1691	 * to try and push the current task away:
1692	 */
1693	requeue_task_rt(rq, p, 1);
1694	resched_curr(rq);
1695}
1696
1697static int balance_rt(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1698{
1699	if (!on_rt_rq(&p->rt) && need_pull_rt_task(rq, p)) {
1700		/*
1701		 * This is OK, because current is on_cpu, which avoids it being
1702		 * picked for load-balance and preemption/IRQs are still
1703		 * disabled avoiding further scheduler activity on it and we've
1704		 * not yet started the picking loop.
1705		 */
1706		rq_unpin_lock(rq, rf);
1707		pull_rt_task(rq);
1708		rq_repin_lock(rq, rf);
1709	}
1710
1711	return sched_stop_runnable(rq) || sched_dl_runnable(rq) || sched_rt_runnable(rq);
1712}
1713#endif /* CONFIG_SMP */
1714
1715/*
1716 * Preempt the current task with a newly woken task if needed:
1717 */
1718static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1719{
1720	if (p->prio < rq->curr->prio) {
1721		resched_curr(rq);
1722		return;
1723	}
1724
1725#ifdef CONFIG_SMP
1726	/*
1727	 * If:
1728	 *
1729	 * - the newly woken task is of equal priority to the current task
1730	 * - the newly woken task is non-migratable while current is migratable
1731	 * - current will be preempted on the next reschedule
1732	 *
1733	 * we should check to see if current can readily move to a different
1734	 * cpu.  If so, we will reschedule to allow the push logic to try
1735	 * to move current somewhere else, making room for our non-migratable
1736	 * task.
1737	 */
1738	if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1739		check_preempt_equal_prio(rq, p);
1740#endif
1741}
1742
1743static inline void set_next_task_rt(struct rq *rq, struct task_struct *p, bool first)
1744{
1745	struct sched_rt_entity *rt_se = &p->rt;
1746	struct rt_rq *rt_rq = &rq->rt;
1747
1748	p->se.exec_start = rq_clock_task(rq);
1749	if (on_rt_rq(&p->rt))
1750		update_stats_wait_end_rt(rt_rq, rt_se);
1751
1752	/* The running task is never eligible for pushing */
1753	dequeue_pushable_task(rq, p);
1754
1755	if (!first)
1756		return;
1757
1758	/*
1759	 * If prev task was rt, put_prev_task() has already updated the
1760	 * utilization. We only care of the case where we start to schedule a
1761	 * rt task
1762	 */
1763	if (rq->curr->sched_class != &rt_sched_class)
1764		update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
1765
1766	rt_queue_push_tasks(rq);
1767}
1768
1769static struct sched_rt_entity *pick_next_rt_entity(struct rt_rq *rt_rq)
1770{
1771	struct rt_prio_array *array = &rt_rq->active;
1772	struct sched_rt_entity *next = NULL;
1773	struct list_head *queue;
1774	int idx;
1775
1776	idx = sched_find_first_bit(array->bitmap);
1777	BUG_ON(idx >= MAX_RT_PRIO);
1778
1779	queue = array->queue + idx;
 
 
1780	next = list_entry(queue->next, struct sched_rt_entity, run_list);
1781
1782	return next;
1783}
1784
1785static struct task_struct *_pick_next_task_rt(struct rq *rq)
1786{
1787	struct sched_rt_entity *rt_se;
1788	struct rt_rq *rt_rq  = &rq->rt;
1789
1790	do {
1791		rt_se = pick_next_rt_entity(rt_rq);
1792		BUG_ON(!rt_se);
 
1793		rt_rq = group_rt_rq(rt_se);
1794	} while (rt_rq);
1795
1796	return rt_task_of(rt_se);
1797}
1798
1799static struct task_struct *pick_task_rt(struct rq *rq)
1800{
1801	struct task_struct *p;
1802
1803	if (!sched_rt_runnable(rq))
1804		return NULL;
1805
1806	p = _pick_next_task_rt(rq);
1807
1808	return p;
1809}
1810
1811static struct task_struct *pick_next_task_rt(struct rq *rq)
1812{
1813	struct task_struct *p = pick_task_rt(rq);
1814
1815	if (p)
1816		set_next_task_rt(rq, p, true);
1817
1818	return p;
1819}
1820
1821static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1822{
1823	struct sched_rt_entity *rt_se = &p->rt;
1824	struct rt_rq *rt_rq = &rq->rt;
1825
1826	if (on_rt_rq(&p->rt))
1827		update_stats_wait_start_rt(rt_rq, rt_se);
1828
1829	update_curr_rt(rq);
1830
1831	update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
1832
1833	/*
1834	 * The previous task needs to be made eligible for pushing
1835	 * if it is still active
1836	 */
1837	if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1838		enqueue_pushable_task(rq, p);
1839}
1840
1841#ifdef CONFIG_SMP
1842
1843/* Only try algorithms three times */
1844#define RT_MAX_TRIES 3
1845
1846static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1847{
1848	if (!task_on_cpu(rq, p) &&
1849	    cpumask_test_cpu(cpu, &p->cpus_mask))
1850		return 1;
1851
1852	return 0;
1853}
1854
1855/*
1856 * Return the highest pushable rq's task, which is suitable to be executed
1857 * on the CPU, NULL otherwise
1858 */
1859static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1860{
1861	struct plist_head *head = &rq->rt.pushable_tasks;
1862	struct task_struct *p;
1863
1864	if (!has_pushable_tasks(rq))
1865		return NULL;
1866
1867	plist_for_each_entry(p, head, pushable_tasks) {
1868		if (pick_rt_task(rq, p, cpu))
1869			return p;
1870	}
1871
1872	return NULL;
1873}
1874
1875static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1876
1877static int find_lowest_rq(struct task_struct *task)
1878{
1879	struct sched_domain *sd;
1880	struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
1881	int this_cpu = smp_processor_id();
1882	int cpu      = task_cpu(task);
1883	int ret;
1884
1885	/* Make sure the mask is initialized first */
1886	if (unlikely(!lowest_mask))
1887		return -1;
1888
1889	if (task->nr_cpus_allowed == 1)
1890		return -1; /* No other targets possible */
1891
1892	/*
1893	 * If we're on asym system ensure we consider the different capacities
1894	 * of the CPUs when searching for the lowest_mask.
1895	 */
1896	if (sched_asym_cpucap_active()) {
1897
1898		ret = cpupri_find_fitness(&task_rq(task)->rd->cpupri,
1899					  task, lowest_mask,
1900					  rt_task_fits_capacity);
1901	} else {
1902
1903		ret = cpupri_find(&task_rq(task)->rd->cpupri,
1904				  task, lowest_mask);
1905	}
1906
1907	if (!ret)
1908		return -1; /* No targets found */
1909
1910	/*
1911	 * At this point we have built a mask of CPUs representing the
1912	 * lowest priority tasks in the system.  Now we want to elect
1913	 * the best one based on our affinity and topology.
1914	 *
1915	 * We prioritize the last CPU that the task executed on since
1916	 * it is most likely cache-hot in that location.
1917	 */
1918	if (cpumask_test_cpu(cpu, lowest_mask))
1919		return cpu;
1920
1921	/*
1922	 * Otherwise, we consult the sched_domains span maps to figure
1923	 * out which CPU is logically closest to our hot cache data.
1924	 */
1925	if (!cpumask_test_cpu(this_cpu, lowest_mask))
1926		this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1927
1928	rcu_read_lock();
1929	for_each_domain(cpu, sd) {
1930		if (sd->flags & SD_WAKE_AFFINE) {
1931			int best_cpu;
1932
1933			/*
1934			 * "this_cpu" is cheaper to preempt than a
1935			 * remote processor.
1936			 */
1937			if (this_cpu != -1 &&
1938			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1939				rcu_read_unlock();
1940				return this_cpu;
1941			}
1942
1943			best_cpu = cpumask_any_and_distribute(lowest_mask,
1944							      sched_domain_span(sd));
1945			if (best_cpu < nr_cpu_ids) {
1946				rcu_read_unlock();
1947				return best_cpu;
1948			}
1949		}
1950	}
1951	rcu_read_unlock();
1952
1953	/*
1954	 * And finally, if there were no matches within the domains
1955	 * just give the caller *something* to work with from the compatible
1956	 * locations.
1957	 */
1958	if (this_cpu != -1)
1959		return this_cpu;
1960
1961	cpu = cpumask_any_distribute(lowest_mask);
1962	if (cpu < nr_cpu_ids)
1963		return cpu;
1964
1965	return -1;
1966}
1967
1968/* Will lock the rq it finds */
1969static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1970{
1971	struct rq *lowest_rq = NULL;
1972	int tries;
1973	int cpu;
1974
1975	for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1976		cpu = find_lowest_rq(task);
1977
1978		if ((cpu == -1) || (cpu == rq->cpu))
1979			break;
1980
1981		lowest_rq = cpu_rq(cpu);
1982
1983		if (lowest_rq->rt.highest_prio.curr <= task->prio) {
1984			/*
1985			 * Target rq has tasks of equal or higher priority,
1986			 * retrying does not release any lock and is unlikely
1987			 * to yield a different result.
1988			 */
1989			lowest_rq = NULL;
1990			break;
1991		}
1992
1993		/* if the prio of this runqueue changed, try again */
1994		if (double_lock_balance(rq, lowest_rq)) {
1995			/*
1996			 * We had to unlock the run queue. In
1997			 * the mean time, task could have
1998			 * migrated already or had its affinity changed.
1999			 * Also make sure that it wasn't scheduled on its rq.
 
 
 
2000			 */
2001			if (unlikely(task_rq(task) != rq ||
2002				     !cpumask_test_cpu(lowest_rq->cpu, &task->cpus_mask) ||
2003				     task_on_cpu(rq, task) ||
2004				     !rt_task(task) ||
 
2005				     !task_on_rq_queued(task))) {
2006
2007				double_unlock_balance(rq, lowest_rq);
2008				lowest_rq = NULL;
2009				break;
2010			}
2011		}
2012
2013		/* If this rq is still suitable use it. */
2014		if (lowest_rq->rt.highest_prio.curr > task->prio)
2015			break;
2016
2017		/* try again */
2018		double_unlock_balance(rq, lowest_rq);
2019		lowest_rq = NULL;
2020	}
2021
2022	return lowest_rq;
2023}
2024
2025static struct task_struct *pick_next_pushable_task(struct rq *rq)
2026{
2027	struct task_struct *p;
2028
2029	if (!has_pushable_tasks(rq))
2030		return NULL;
2031
2032	p = plist_first_entry(&rq->rt.pushable_tasks,
2033			      struct task_struct, pushable_tasks);
2034
2035	BUG_ON(rq->cpu != task_cpu(p));
2036	BUG_ON(task_current(rq, p));
2037	BUG_ON(p->nr_cpus_allowed <= 1);
2038
2039	BUG_ON(!task_on_rq_queued(p));
2040	BUG_ON(!rt_task(p));
2041
2042	return p;
2043}
2044
2045/*
2046 * If the current CPU has more than one RT task, see if the non
2047 * running task can migrate over to a CPU that is running a task
2048 * of lesser priority.
2049 */
2050static int push_rt_task(struct rq *rq, bool pull)
2051{
2052	struct task_struct *next_task;
2053	struct rq *lowest_rq;
2054	int ret = 0;
2055
2056	if (!rq->rt.overloaded)
2057		return 0;
2058
2059	next_task = pick_next_pushable_task(rq);
2060	if (!next_task)
2061		return 0;
2062
2063retry:
2064	/*
2065	 * It's possible that the next_task slipped in of
2066	 * higher priority than current. If that's the case
2067	 * just reschedule current.
2068	 */
2069	if (unlikely(next_task->prio < rq->curr->prio)) {
2070		resched_curr(rq);
2071		return 0;
2072	}
2073
2074	if (is_migration_disabled(next_task)) {
2075		struct task_struct *push_task = NULL;
2076		int cpu;
2077
2078		if (!pull || rq->push_busy)
2079			return 0;
2080
2081		/*
2082		 * Invoking find_lowest_rq() on anything but an RT task doesn't
2083		 * make sense. Per the above priority check, curr has to
2084		 * be of higher priority than next_task, so no need to
2085		 * reschedule when bailing out.
2086		 *
2087		 * Note that the stoppers are masqueraded as SCHED_FIFO
2088		 * (cf. sched_set_stop_task()), so we can't rely on rt_task().
2089		 */
2090		if (rq->curr->sched_class != &rt_sched_class)
2091			return 0;
2092
2093		cpu = find_lowest_rq(rq->curr);
2094		if (cpu == -1 || cpu == rq->cpu)
2095			return 0;
2096
2097		/*
2098		 * Given we found a CPU with lower priority than @next_task,
2099		 * therefore it should be running. However we cannot migrate it
2100		 * to this other CPU, instead attempt to push the current
2101		 * running task on this CPU away.
2102		 */
2103		push_task = get_push_task(rq);
2104		if (push_task) {
 
2105			raw_spin_rq_unlock(rq);
2106			stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2107					    push_task, &rq->push_work);
 
2108			raw_spin_rq_lock(rq);
2109		}
2110
2111		return 0;
2112	}
2113
2114	if (WARN_ON(next_task == rq->curr))
2115		return 0;
2116
2117	/* We might release rq lock */
2118	get_task_struct(next_task);
2119
2120	/* find_lock_lowest_rq locks the rq if found */
2121	lowest_rq = find_lock_lowest_rq(next_task, rq);
2122	if (!lowest_rq) {
2123		struct task_struct *task;
2124		/*
2125		 * find_lock_lowest_rq releases rq->lock
2126		 * so it is possible that next_task has migrated.
2127		 *
2128		 * We need to make sure that the task is still on the same
2129		 * run-queue and is also still the next task eligible for
2130		 * pushing.
2131		 */
2132		task = pick_next_pushable_task(rq);
2133		if (task == next_task) {
2134			/*
2135			 * The task hasn't migrated, and is still the next
2136			 * eligible task, but we failed to find a run-queue
2137			 * to push it to.  Do not retry in this case, since
2138			 * other CPUs will pull from us when ready.
2139			 */
2140			goto out;
2141		}
2142
2143		if (!task)
2144			/* No more tasks, just exit */
2145			goto out;
2146
2147		/*
2148		 * Something has shifted, try again.
2149		 */
2150		put_task_struct(next_task);
2151		next_task = task;
2152		goto retry;
2153	}
2154
2155	deactivate_task(rq, next_task, 0);
2156	set_task_cpu(next_task, lowest_rq->cpu);
2157	activate_task(lowest_rq, next_task, 0);
2158	resched_curr(lowest_rq);
2159	ret = 1;
2160
2161	double_unlock_balance(rq, lowest_rq);
2162out:
2163	put_task_struct(next_task);
2164
2165	return ret;
2166}
2167
2168static void push_rt_tasks(struct rq *rq)
2169{
2170	/* push_rt_task will return true if it moved an RT */
2171	while (push_rt_task(rq, false))
2172		;
2173}
2174
2175#ifdef HAVE_RT_PUSH_IPI
2176
2177/*
2178 * When a high priority task schedules out from a CPU and a lower priority
2179 * task is scheduled in, a check is made to see if there's any RT tasks
2180 * on other CPUs that are waiting to run because a higher priority RT task
2181 * is currently running on its CPU. In this case, the CPU with multiple RT
2182 * tasks queued on it (overloaded) needs to be notified that a CPU has opened
2183 * up that may be able to run one of its non-running queued RT tasks.
2184 *
2185 * All CPUs with overloaded RT tasks need to be notified as there is currently
2186 * no way to know which of these CPUs have the highest priority task waiting
2187 * to run. Instead of trying to take a spinlock on each of these CPUs,
2188 * which has shown to cause large latency when done on machines with many
2189 * CPUs, sending an IPI to the CPUs to have them push off the overloaded
2190 * RT tasks waiting to run.
2191 *
2192 * Just sending an IPI to each of the CPUs is also an issue, as on large
2193 * count CPU machines, this can cause an IPI storm on a CPU, especially
2194 * if its the only CPU with multiple RT tasks queued, and a large number
2195 * of CPUs scheduling a lower priority task at the same time.
2196 *
2197 * Each root domain has its own irq work function that can iterate over
2198 * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT
2199 * task must be checked if there's one or many CPUs that are lowering
2200 * their priority, there's a single irq work iterator that will try to
2201 * push off RT tasks that are waiting to run.
2202 *
2203 * When a CPU schedules a lower priority task, it will kick off the
2204 * irq work iterator that will jump to each CPU with overloaded RT tasks.
2205 * As it only takes the first CPU that schedules a lower priority task
2206 * to start the process, the rto_start variable is incremented and if
2207 * the atomic result is one, then that CPU will try to take the rto_lock.
2208 * This prevents high contention on the lock as the process handles all
2209 * CPUs scheduling lower priority tasks.
2210 *
2211 * All CPUs that are scheduling a lower priority task will increment the
2212 * rt_loop_next variable. This will make sure that the irq work iterator
2213 * checks all RT overloaded CPUs whenever a CPU schedules a new lower
2214 * priority task, even if the iterator is in the middle of a scan. Incrementing
2215 * the rt_loop_next will cause the iterator to perform another scan.
2216 *
2217 */
2218static int rto_next_cpu(struct root_domain *rd)
2219{
2220	int next;
2221	int cpu;
2222
2223	/*
2224	 * When starting the IPI RT pushing, the rto_cpu is set to -1,
2225	 * rt_next_cpu() will simply return the first CPU found in
2226	 * the rto_mask.
2227	 *
2228	 * If rto_next_cpu() is called with rto_cpu is a valid CPU, it
2229	 * will return the next CPU found in the rto_mask.
2230	 *
2231	 * If there are no more CPUs left in the rto_mask, then a check is made
2232	 * against rto_loop and rto_loop_next. rto_loop is only updated with
2233	 * the rto_lock held, but any CPU may increment the rto_loop_next
2234	 * without any locking.
2235	 */
2236	for (;;) {
2237
2238		/* When rto_cpu is -1 this acts like cpumask_first() */
2239		cpu = cpumask_next(rd->rto_cpu, rd->rto_mask);
2240
2241		rd->rto_cpu = cpu;
2242
2243		if (cpu < nr_cpu_ids)
2244			return cpu;
2245
2246		rd->rto_cpu = -1;
2247
2248		/*
2249		 * ACQUIRE ensures we see the @rto_mask changes
2250		 * made prior to the @next value observed.
2251		 *
2252		 * Matches WMB in rt_set_overload().
2253		 */
2254		next = atomic_read_acquire(&rd->rto_loop_next);
2255
2256		if (rd->rto_loop == next)
2257			break;
2258
2259		rd->rto_loop = next;
2260	}
2261
2262	return -1;
2263}
2264
2265static inline bool rto_start_trylock(atomic_t *v)
2266{
2267	return !atomic_cmpxchg_acquire(v, 0, 1);
2268}
2269
2270static inline void rto_start_unlock(atomic_t *v)
2271{
2272	atomic_set_release(v, 0);
2273}
2274
2275static void tell_cpu_to_push(struct rq *rq)
2276{
2277	int cpu = -1;
2278
2279	/* Keep the loop going if the IPI is currently active */
2280	atomic_inc(&rq->rd->rto_loop_next);
2281
2282	/* Only one CPU can initiate a loop at a time */
2283	if (!rto_start_trylock(&rq->rd->rto_loop_start))
2284		return;
2285
2286	raw_spin_lock(&rq->rd->rto_lock);
2287
2288	/*
2289	 * The rto_cpu is updated under the lock, if it has a valid CPU
2290	 * then the IPI is still running and will continue due to the
2291	 * update to loop_next, and nothing needs to be done here.
2292	 * Otherwise it is finishing up and an ipi needs to be sent.
2293	 */
2294	if (rq->rd->rto_cpu < 0)
2295		cpu = rto_next_cpu(rq->rd);
2296
2297	raw_spin_unlock(&rq->rd->rto_lock);
2298
2299	rto_start_unlock(&rq->rd->rto_loop_start);
2300
2301	if (cpu >= 0) {
2302		/* Make sure the rd does not get freed while pushing */
2303		sched_get_rd(rq->rd);
2304		irq_work_queue_on(&rq->rd->rto_push_work, cpu);
2305	}
2306}
2307
2308/* Called from hardirq context */
2309void rto_push_irq_work_func(struct irq_work *work)
2310{
2311	struct root_domain *rd =
2312		container_of(work, struct root_domain, rto_push_work);
2313	struct rq *rq;
2314	int cpu;
2315
2316	rq = this_rq();
2317
2318	/*
2319	 * We do not need to grab the lock to check for has_pushable_tasks.
2320	 * When it gets updated, a check is made if a push is possible.
2321	 */
2322	if (has_pushable_tasks(rq)) {
2323		raw_spin_rq_lock(rq);
2324		while (push_rt_task(rq, true))
2325			;
2326		raw_spin_rq_unlock(rq);
2327	}
2328
2329	raw_spin_lock(&rd->rto_lock);
2330
2331	/* Pass the IPI to the next rt overloaded queue */
2332	cpu = rto_next_cpu(rd);
2333
2334	raw_spin_unlock(&rd->rto_lock);
2335
2336	if (cpu < 0) {
2337		sched_put_rd(rd);
2338		return;
2339	}
2340
2341	/* Try the next RT overloaded CPU */
2342	irq_work_queue_on(&rd->rto_push_work, cpu);
2343}
2344#endif /* HAVE_RT_PUSH_IPI */
2345
2346static void pull_rt_task(struct rq *this_rq)
2347{
2348	int this_cpu = this_rq->cpu, cpu;
2349	bool resched = false;
2350	struct task_struct *p, *push_task;
2351	struct rq *src_rq;
2352	int rt_overload_count = rt_overloaded(this_rq);
2353
2354	if (likely(!rt_overload_count))
2355		return;
2356
2357	/*
2358	 * Match the barrier from rt_set_overloaded; this guarantees that if we
2359	 * see overloaded we must also see the rto_mask bit.
2360	 */
2361	smp_rmb();
2362
2363	/* If we are the only overloaded CPU do nothing */
2364	if (rt_overload_count == 1 &&
2365	    cpumask_test_cpu(this_rq->cpu, this_rq->rd->rto_mask))
2366		return;
2367
2368#ifdef HAVE_RT_PUSH_IPI
2369	if (sched_feat(RT_PUSH_IPI)) {
2370		tell_cpu_to_push(this_rq);
2371		return;
2372	}
2373#endif
2374
2375	for_each_cpu(cpu, this_rq->rd->rto_mask) {
2376		if (this_cpu == cpu)
2377			continue;
2378
2379		src_rq = cpu_rq(cpu);
2380
2381		/*
2382		 * Don't bother taking the src_rq->lock if the next highest
2383		 * task is known to be lower-priority than our current task.
2384		 * This may look racy, but if this value is about to go
2385		 * logically higher, the src_rq will push this task away.
2386		 * And if its going logically lower, we do not care
2387		 */
2388		if (src_rq->rt.highest_prio.next >=
2389		    this_rq->rt.highest_prio.curr)
2390			continue;
2391
2392		/*
2393		 * We can potentially drop this_rq's lock in
2394		 * double_lock_balance, and another CPU could
2395		 * alter this_rq
2396		 */
2397		push_task = NULL;
2398		double_lock_balance(this_rq, src_rq);
2399
2400		/*
2401		 * We can pull only a task, which is pushable
2402		 * on its rq, and no others.
2403		 */
2404		p = pick_highest_pushable_task(src_rq, this_cpu);
2405
2406		/*
2407		 * Do we have an RT task that preempts
2408		 * the to-be-scheduled task?
2409		 */
2410		if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
2411			WARN_ON(p == src_rq->curr);
2412			WARN_ON(!task_on_rq_queued(p));
2413
2414			/*
2415			 * There's a chance that p is higher in priority
2416			 * than what's currently running on its CPU.
2417			 * This is just that p is waking up and hasn't
2418			 * had a chance to schedule. We only pull
2419			 * p if it is lower in priority than the
2420			 * current task on the run queue
2421			 */
2422			if (p->prio < src_rq->curr->prio)
2423				goto skip;
2424
2425			if (is_migration_disabled(p)) {
2426				push_task = get_push_task(src_rq);
2427			} else {
2428				deactivate_task(src_rq, p, 0);
2429				set_task_cpu(p, this_cpu);
2430				activate_task(this_rq, p, 0);
2431				resched = true;
2432			}
2433			/*
2434			 * We continue with the search, just in
2435			 * case there's an even higher prio task
2436			 * in another runqueue. (low likelihood
2437			 * but possible)
2438			 */
2439		}
2440skip:
2441		double_unlock_balance(this_rq, src_rq);
2442
2443		if (push_task) {
 
2444			raw_spin_rq_unlock(this_rq);
2445			stop_one_cpu_nowait(src_rq->cpu, push_cpu_stop,
2446					    push_task, &src_rq->push_work);
 
2447			raw_spin_rq_lock(this_rq);
2448		}
2449	}
2450
2451	if (resched)
2452		resched_curr(this_rq);
2453}
2454
2455/*
2456 * If we are not running and we are not going to reschedule soon, we should
2457 * try to push tasks away now
2458 */
2459static void task_woken_rt(struct rq *rq, struct task_struct *p)
2460{
2461	bool need_to_push = !task_on_cpu(rq, p) &&
2462			    !test_tsk_need_resched(rq->curr) &&
2463			    p->nr_cpus_allowed > 1 &&
2464			    (dl_task(rq->curr) || rt_task(rq->curr)) &&
2465			    (rq->curr->nr_cpus_allowed < 2 ||
2466			     rq->curr->prio <= p->prio);
2467
2468	if (need_to_push)
2469		push_rt_tasks(rq);
2470}
2471
2472/* Assumes rq->lock is held */
2473static void rq_online_rt(struct rq *rq)
2474{
2475	if (rq->rt.overloaded)
2476		rt_set_overload(rq);
2477
2478	__enable_runtime(rq);
2479
2480	cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
2481}
2482
2483/* Assumes rq->lock is held */
2484static void rq_offline_rt(struct rq *rq)
2485{
2486	if (rq->rt.overloaded)
2487		rt_clear_overload(rq);
2488
2489	__disable_runtime(rq);
2490
2491	cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
2492}
2493
2494/*
2495 * When switch from the rt queue, we bring ourselves to a position
2496 * that we might want to pull RT tasks from other runqueues.
2497 */
2498static void switched_from_rt(struct rq *rq, struct task_struct *p)
2499{
2500	/*
2501	 * If there are other RT tasks then we will reschedule
2502	 * and the scheduling of the other RT tasks will handle
2503	 * the balancing. But if we are the last RT task
2504	 * we may need to handle the pulling of RT tasks
2505	 * now.
2506	 */
2507	if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
2508		return;
2509
2510	rt_queue_pull_task(rq);
2511}
2512
2513void __init init_sched_rt_class(void)
2514{
2515	unsigned int i;
2516
2517	for_each_possible_cpu(i) {
2518		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
2519					GFP_KERNEL, cpu_to_node(i));
2520	}
2521}
2522#endif /* CONFIG_SMP */
2523
2524/*
2525 * When switching a task to RT, we may overload the runqueue
2526 * with RT tasks. In this case we try to push them off to
2527 * other runqueues.
2528 */
2529static void switched_to_rt(struct rq *rq, struct task_struct *p)
2530{
2531	/*
2532	 * If we are running, update the avg_rt tracking, as the running time
2533	 * will now on be accounted into the latter.
2534	 */
2535	if (task_current(rq, p)) {
2536		update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
2537		return;
2538	}
2539
2540	/*
2541	 * If we are not running we may need to preempt the current
2542	 * running task. If that current running task is also an RT task
2543	 * then see if we can move to another run queue.
2544	 */
2545	if (task_on_rq_queued(p)) {
2546#ifdef CONFIG_SMP
2547		if (p->nr_cpus_allowed > 1 && rq->rt.overloaded)
2548			rt_queue_push_tasks(rq);
2549#endif /* CONFIG_SMP */
2550		if (p->prio < rq->curr->prio && cpu_online(cpu_of(rq)))
2551			resched_curr(rq);
2552	}
2553}
2554
2555/*
2556 * Priority of the task has changed. This may cause
2557 * us to initiate a push or pull.
2558 */
2559static void
2560prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
2561{
2562	if (!task_on_rq_queued(p))
2563		return;
2564
2565	if (task_current(rq, p)) {
2566#ifdef CONFIG_SMP
2567		/*
2568		 * If our priority decreases while running, we
2569		 * may need to pull tasks to this runqueue.
2570		 */
2571		if (oldprio < p->prio)
2572			rt_queue_pull_task(rq);
2573
2574		/*
2575		 * If there's a higher priority task waiting to run
2576		 * then reschedule.
2577		 */
2578		if (p->prio > rq->rt.highest_prio.curr)
2579			resched_curr(rq);
2580#else
2581		/* For UP simply resched on drop of prio */
2582		if (oldprio < p->prio)
2583			resched_curr(rq);
2584#endif /* CONFIG_SMP */
2585	} else {
2586		/*
2587		 * This task is not running, but if it is
2588		 * greater than the current running task
2589		 * then reschedule.
2590		 */
2591		if (p->prio < rq->curr->prio)
2592			resched_curr(rq);
2593	}
2594}
2595
2596#ifdef CONFIG_POSIX_TIMERS
2597static void watchdog(struct rq *rq, struct task_struct *p)
2598{
2599	unsigned long soft, hard;
2600
2601	/* max may change after cur was read, this will be fixed next tick */
2602	soft = task_rlimit(p, RLIMIT_RTTIME);
2603	hard = task_rlimit_max(p, RLIMIT_RTTIME);
2604
2605	if (soft != RLIM_INFINITY) {
2606		unsigned long next;
2607
2608		if (p->rt.watchdog_stamp != jiffies) {
2609			p->rt.timeout++;
2610			p->rt.watchdog_stamp = jiffies;
2611		}
2612
2613		next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2614		if (p->rt.timeout > next) {
2615			posix_cputimers_rt_watchdog(&p->posix_cputimers,
2616						    p->se.sum_exec_runtime);
2617		}
2618	}
2619}
2620#else
2621static inline void watchdog(struct rq *rq, struct task_struct *p) { }
2622#endif
2623
2624/*
2625 * scheduler tick hitting a task of our scheduling class.
2626 *
2627 * NOTE: This function can be called remotely by the tick offload that
2628 * goes along full dynticks. Therefore no local assumption can be made
2629 * and everything must be accessed through the @rq and @curr passed in
2630 * parameters.
2631 */
2632static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2633{
2634	struct sched_rt_entity *rt_se = &p->rt;
2635
2636	update_curr_rt(rq);
2637	update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2638
2639	watchdog(rq, p);
2640
2641	/*
2642	 * RR tasks need a special form of timeslice management.
2643	 * FIFO tasks have no timeslices.
2644	 */
2645	if (p->policy != SCHED_RR)
2646		return;
2647
2648	if (--p->rt.time_slice)
2649		return;
2650
2651	p->rt.time_slice = sched_rr_timeslice;
2652
2653	/*
2654	 * Requeue to the end of queue if we (and all of our ancestors) are not
2655	 * the only element on the queue
2656	 */
2657	for_each_sched_rt_entity(rt_se) {
2658		if (rt_se->run_list.prev != rt_se->run_list.next) {
2659			requeue_task_rt(rq, p, 0);
2660			resched_curr(rq);
2661			return;
2662		}
2663	}
2664}
2665
2666static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2667{
2668	/*
2669	 * Time slice is 0 for SCHED_FIFO tasks
2670	 */
2671	if (task->policy == SCHED_RR)
2672		return sched_rr_timeslice;
2673	else
2674		return 0;
2675}
2676
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2677DEFINE_SCHED_CLASS(rt) = {
2678
2679	.enqueue_task		= enqueue_task_rt,
2680	.dequeue_task		= dequeue_task_rt,
2681	.yield_task		= yield_task_rt,
2682
2683	.check_preempt_curr	= check_preempt_curr_rt,
2684
2685	.pick_next_task		= pick_next_task_rt,
2686	.put_prev_task		= put_prev_task_rt,
2687	.set_next_task          = set_next_task_rt,
2688
2689#ifdef CONFIG_SMP
2690	.balance		= balance_rt,
2691	.pick_task		= pick_task_rt,
2692	.select_task_rq		= select_task_rq_rt,
2693	.set_cpus_allowed       = set_cpus_allowed_common,
2694	.rq_online              = rq_online_rt,
2695	.rq_offline             = rq_offline_rt,
2696	.task_woken		= task_woken_rt,
2697	.switched_from		= switched_from_rt,
2698	.find_lock_rq		= find_lock_lowest_rq,
2699#endif
2700
2701	.task_tick		= task_tick_rt,
2702
2703	.get_rr_interval	= get_rr_interval_rt,
2704
2705	.prio_changed		= prio_changed_rt,
2706	.switched_to		= switched_to_rt,
2707
2708	.update_curr		= update_curr_rt,
2709
 
 
 
 
2710#ifdef CONFIG_UCLAMP_TASK
2711	.uclamp_enabled		= 1,
2712#endif
2713};
2714
2715#ifdef CONFIG_RT_GROUP_SCHED
2716/*
2717 * Ensure that the real time constraints are schedulable.
2718 */
2719static DEFINE_MUTEX(rt_constraints_mutex);
2720
2721static inline int tg_has_rt_tasks(struct task_group *tg)
2722{
2723	struct task_struct *task;
2724	struct css_task_iter it;
2725	int ret = 0;
2726
2727	/*
2728	 * Autogroups do not have RT tasks; see autogroup_create().
2729	 */
2730	if (task_group_is_autogroup(tg))
2731		return 0;
2732
2733	css_task_iter_start(&tg->css, 0, &it);
2734	while (!ret && (task = css_task_iter_next(&it)))
2735		ret |= rt_task(task);
2736	css_task_iter_end(&it);
2737
2738	return ret;
2739}
2740
2741struct rt_schedulable_data {
2742	struct task_group *tg;
2743	u64 rt_period;
2744	u64 rt_runtime;
2745};
2746
2747static int tg_rt_schedulable(struct task_group *tg, void *data)
2748{
2749	struct rt_schedulable_data *d = data;
2750	struct task_group *child;
2751	unsigned long total, sum = 0;
2752	u64 period, runtime;
2753
2754	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2755	runtime = tg->rt_bandwidth.rt_runtime;
2756
2757	if (tg == d->tg) {
2758		period = d->rt_period;
2759		runtime = d->rt_runtime;
2760	}
2761
2762	/*
2763	 * Cannot have more runtime than the period.
2764	 */
2765	if (runtime > period && runtime != RUNTIME_INF)
2766		return -EINVAL;
2767
2768	/*
2769	 * Ensure we don't starve existing RT tasks if runtime turns zero.
2770	 */
2771	if (rt_bandwidth_enabled() && !runtime &&
2772	    tg->rt_bandwidth.rt_runtime && tg_has_rt_tasks(tg))
2773		return -EBUSY;
2774
2775	total = to_ratio(period, runtime);
2776
2777	/*
2778	 * Nobody can have more than the global setting allows.
2779	 */
2780	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
2781		return -EINVAL;
2782
2783	/*
2784	 * The sum of our children's runtime should not exceed our own.
2785	 */
2786	list_for_each_entry_rcu(child, &tg->children, siblings) {
2787		period = ktime_to_ns(child->rt_bandwidth.rt_period);
2788		runtime = child->rt_bandwidth.rt_runtime;
2789
2790		if (child == d->tg) {
2791			period = d->rt_period;
2792			runtime = d->rt_runtime;
2793		}
2794
2795		sum += to_ratio(period, runtime);
2796	}
2797
2798	if (sum > total)
2799		return -EINVAL;
2800
2801	return 0;
2802}
2803
2804static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
2805{
2806	int ret;
2807
2808	struct rt_schedulable_data data = {
2809		.tg = tg,
2810		.rt_period = period,
2811		.rt_runtime = runtime,
2812	};
2813
2814	rcu_read_lock();
2815	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
2816	rcu_read_unlock();
2817
2818	return ret;
2819}
2820
2821static int tg_set_rt_bandwidth(struct task_group *tg,
2822		u64 rt_period, u64 rt_runtime)
2823{
2824	int i, err = 0;
2825
2826	/*
2827	 * Disallowing the root group RT runtime is BAD, it would disallow the
2828	 * kernel creating (and or operating) RT threads.
2829	 */
2830	if (tg == &root_task_group && rt_runtime == 0)
2831		return -EINVAL;
2832
2833	/* No period doesn't make any sense. */
2834	if (rt_period == 0)
2835		return -EINVAL;
2836
2837	/*
2838	 * Bound quota to defend quota against overflow during bandwidth shift.
2839	 */
2840	if (rt_runtime != RUNTIME_INF && rt_runtime > max_rt_runtime)
2841		return -EINVAL;
2842
2843	mutex_lock(&rt_constraints_mutex);
2844	err = __rt_schedulable(tg, rt_period, rt_runtime);
2845	if (err)
2846		goto unlock;
2847
2848	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2849	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
2850	tg->rt_bandwidth.rt_runtime = rt_runtime;
2851
2852	for_each_possible_cpu(i) {
2853		struct rt_rq *rt_rq = tg->rt_rq[i];
2854
2855		raw_spin_lock(&rt_rq->rt_runtime_lock);
2856		rt_rq->rt_runtime = rt_runtime;
2857		raw_spin_unlock(&rt_rq->rt_runtime_lock);
2858	}
2859	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2860unlock:
2861	mutex_unlock(&rt_constraints_mutex);
2862
2863	return err;
2864}
2865
2866int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
2867{
2868	u64 rt_runtime, rt_period;
2869
2870	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2871	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
2872	if (rt_runtime_us < 0)
2873		rt_runtime = RUNTIME_INF;
2874	else if ((u64)rt_runtime_us > U64_MAX / NSEC_PER_USEC)
2875		return -EINVAL;
2876
2877	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2878}
2879
2880long sched_group_rt_runtime(struct task_group *tg)
2881{
2882	u64 rt_runtime_us;
2883
2884	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
2885		return -1;
2886
2887	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
2888	do_div(rt_runtime_us, NSEC_PER_USEC);
2889	return rt_runtime_us;
2890}
2891
2892int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
2893{
2894	u64 rt_runtime, rt_period;
2895
2896	if (rt_period_us > U64_MAX / NSEC_PER_USEC)
2897		return -EINVAL;
2898
2899	rt_period = rt_period_us * NSEC_PER_USEC;
2900	rt_runtime = tg->rt_bandwidth.rt_runtime;
2901
2902	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2903}
2904
2905long sched_group_rt_period(struct task_group *tg)
2906{
2907	u64 rt_period_us;
2908
2909	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
2910	do_div(rt_period_us, NSEC_PER_USEC);
2911	return rt_period_us;
2912}
2913
2914#ifdef CONFIG_SYSCTL
2915static int sched_rt_global_constraints(void)
2916{
2917	int ret = 0;
2918
2919	mutex_lock(&rt_constraints_mutex);
2920	ret = __rt_schedulable(NULL, 0, 0);
2921	mutex_unlock(&rt_constraints_mutex);
2922
2923	return ret;
2924}
2925#endif /* CONFIG_SYSCTL */
2926
2927int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
2928{
2929	/* Don't accept realtime tasks when there is no way for them to run */
2930	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
2931		return 0;
2932
2933	return 1;
2934}
2935
2936#else /* !CONFIG_RT_GROUP_SCHED */
2937
2938#ifdef CONFIG_SYSCTL
2939static int sched_rt_global_constraints(void)
2940{
2941	unsigned long flags;
2942	int i;
2943
2944	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
2945	for_each_possible_cpu(i) {
2946		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
2947
2948		raw_spin_lock(&rt_rq->rt_runtime_lock);
2949		rt_rq->rt_runtime = global_rt_runtime();
2950		raw_spin_unlock(&rt_rq->rt_runtime_lock);
2951	}
2952	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
2953
2954	return 0;
2955}
2956#endif /* CONFIG_SYSCTL */
2957#endif /* CONFIG_RT_GROUP_SCHED */
2958
2959#ifdef CONFIG_SYSCTL
2960static int sched_rt_global_validate(void)
2961{
2962	if (sysctl_sched_rt_period <= 0)
2963		return -EINVAL;
2964
2965	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
2966		((sysctl_sched_rt_runtime > sysctl_sched_rt_period) ||
2967		 ((u64)sysctl_sched_rt_runtime *
2968			NSEC_PER_USEC > max_rt_runtime)))
2969		return -EINVAL;
2970
2971	return 0;
2972}
2973
2974static void sched_rt_do_global(void)
2975{
2976	unsigned long flags;
2977
2978	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
2979	def_rt_bandwidth.rt_runtime = global_rt_runtime();
2980	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
2981	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
2982}
2983
2984static int sched_rt_handler(struct ctl_table *table, int write, void *buffer,
2985		size_t *lenp, loff_t *ppos)
2986{
2987	int old_period, old_runtime;
2988	static DEFINE_MUTEX(mutex);
2989	int ret;
2990
2991	mutex_lock(&mutex);
2992	old_period = sysctl_sched_rt_period;
2993	old_runtime = sysctl_sched_rt_runtime;
2994
2995	ret = proc_dointvec(table, write, buffer, lenp, ppos);
2996
2997	if (!ret && write) {
2998		ret = sched_rt_global_validate();
2999		if (ret)
3000			goto undo;
3001
3002		ret = sched_dl_global_validate();
3003		if (ret)
3004			goto undo;
3005
3006		ret = sched_rt_global_constraints();
3007		if (ret)
3008			goto undo;
3009
3010		sched_rt_do_global();
3011		sched_dl_do_global();
3012	}
3013	if (0) {
3014undo:
3015		sysctl_sched_rt_period = old_period;
3016		sysctl_sched_rt_runtime = old_runtime;
3017	}
3018	mutex_unlock(&mutex);
3019
3020	return ret;
3021}
3022
3023static int sched_rr_handler(struct ctl_table *table, int write, void *buffer,
3024		size_t *lenp, loff_t *ppos)
3025{
3026	int ret;
3027	static DEFINE_MUTEX(mutex);
3028
3029	mutex_lock(&mutex);
3030	ret = proc_dointvec(table, write, buffer, lenp, ppos);
3031	/*
3032	 * Make sure that internally we keep jiffies.
3033	 * Also, writing zero resets the timeslice to default:
3034	 */
3035	if (!ret && write) {
3036		sched_rr_timeslice =
3037			sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE :
3038			msecs_to_jiffies(sysctl_sched_rr_timeslice);
 
 
 
3039	}
3040	mutex_unlock(&mutex);
3041
3042	return ret;
3043}
3044#endif /* CONFIG_SYSCTL */
3045
3046#ifdef CONFIG_SCHED_DEBUG
3047void print_rt_stats(struct seq_file *m, int cpu)
3048{
3049	rt_rq_iter_t iter;
3050	struct rt_rq *rt_rq;
3051
3052	rcu_read_lock();
3053	for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
3054		print_rt_rq(m, cpu, rt_rq);
3055	rcu_read_unlock();
3056}
3057#endif /* CONFIG_SCHED_DEBUG */
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
   4 * policies)
   5 */
   6
   7int sched_rr_timeslice = RR_TIMESLICE;
   8/* More than 4 hours if BW_SHIFT equals 20. */
   9static const u64 max_rt_runtime = MAX_BW;
  10
  11static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  12
  13struct rt_bandwidth def_rt_bandwidth;
  14
  15/*
  16 * period over which we measure -rt task CPU usage in us.
  17 * default: 1s
  18 */
  19int sysctl_sched_rt_period = 1000000;
  20
  21/*
  22 * part of the period that we allow rt tasks to run in us.
  23 * default: 0.95s
  24 */
  25int sysctl_sched_rt_runtime = 950000;
  26
  27#ifdef CONFIG_SYSCTL
  28static int sysctl_sched_rr_timeslice = (MSEC_PER_SEC * RR_TIMESLICE) / HZ;
  29static int sched_rt_handler(struct ctl_table *table, int write, void *buffer,
  30		size_t *lenp, loff_t *ppos);
  31static int sched_rr_handler(struct ctl_table *table, int write, void *buffer,
  32		size_t *lenp, loff_t *ppos);
  33static struct ctl_table sched_rt_sysctls[] = {
  34	{
  35		.procname       = "sched_rt_period_us",
  36		.data           = &sysctl_sched_rt_period,
  37		.maxlen         = sizeof(int),
  38		.mode           = 0644,
  39		.proc_handler   = sched_rt_handler,
  40		.extra1         = SYSCTL_ONE,
  41		.extra2         = SYSCTL_INT_MAX,
  42	},
  43	{
  44		.procname       = "sched_rt_runtime_us",
  45		.data           = &sysctl_sched_rt_runtime,
  46		.maxlen         = sizeof(int),
  47		.mode           = 0644,
  48		.proc_handler   = sched_rt_handler,
  49		.extra1         = SYSCTL_NEG_ONE,
  50		.extra2         = (void *)&sysctl_sched_rt_period,
  51	},
  52	{
  53		.procname       = "sched_rr_timeslice_ms",
  54		.data           = &sysctl_sched_rr_timeslice,
  55		.maxlen         = sizeof(int),
  56		.mode           = 0644,
  57		.proc_handler   = sched_rr_handler,
  58	},
  59	{}
  60};
  61
  62static int __init sched_rt_sysctl_init(void)
  63{
  64	register_sysctl_init("kernel", sched_rt_sysctls);
  65	return 0;
  66}
  67late_initcall(sched_rt_sysctl_init);
  68#endif
  69
  70static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  71{
  72	struct rt_bandwidth *rt_b =
  73		container_of(timer, struct rt_bandwidth, rt_period_timer);
  74	int idle = 0;
  75	int overrun;
  76
  77	raw_spin_lock(&rt_b->rt_runtime_lock);
  78	for (;;) {
  79		overrun = hrtimer_forward_now(timer, rt_b->rt_period);
  80		if (!overrun)
  81			break;
  82
  83		raw_spin_unlock(&rt_b->rt_runtime_lock);
  84		idle = do_sched_rt_period_timer(rt_b, overrun);
  85		raw_spin_lock(&rt_b->rt_runtime_lock);
  86	}
  87	if (idle)
  88		rt_b->rt_period_active = 0;
  89	raw_spin_unlock(&rt_b->rt_runtime_lock);
  90
  91	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  92}
  93
  94void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  95{
  96	rt_b->rt_period = ns_to_ktime(period);
  97	rt_b->rt_runtime = runtime;
  98
  99	raw_spin_lock_init(&rt_b->rt_runtime_lock);
 100
 101	hrtimer_init(&rt_b->rt_period_timer, CLOCK_MONOTONIC,
 102		     HRTIMER_MODE_REL_HARD);
 103	rt_b->rt_period_timer.function = sched_rt_period_timer;
 104}
 105
 106static inline void do_start_rt_bandwidth(struct rt_bandwidth *rt_b)
 107{
 108	raw_spin_lock(&rt_b->rt_runtime_lock);
 109	if (!rt_b->rt_period_active) {
 110		rt_b->rt_period_active = 1;
 111		/*
 112		 * SCHED_DEADLINE updates the bandwidth, as a run away
 113		 * RT task with a DL task could hog a CPU. But DL does
 114		 * not reset the period. If a deadline task was running
 115		 * without an RT task running, it can cause RT tasks to
 116		 * throttle when they start up. Kick the timer right away
 117		 * to update the period.
 118		 */
 119		hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0));
 120		hrtimer_start_expires(&rt_b->rt_period_timer,
 121				      HRTIMER_MODE_ABS_PINNED_HARD);
 122	}
 123	raw_spin_unlock(&rt_b->rt_runtime_lock);
 124}
 125
 126static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
 127{
 128	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
 129		return;
 130
 131	do_start_rt_bandwidth(rt_b);
 132}
 133
 134void init_rt_rq(struct rt_rq *rt_rq)
 135{
 136	struct rt_prio_array *array;
 137	int i;
 138
 139	array = &rt_rq->active;
 140	for (i = 0; i < MAX_RT_PRIO; i++) {
 141		INIT_LIST_HEAD(array->queue + i);
 142		__clear_bit(i, array->bitmap);
 143	}
 144	/* delimiter for bitsearch: */
 145	__set_bit(MAX_RT_PRIO, array->bitmap);
 146
 147#if defined CONFIG_SMP
 148	rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
 149	rt_rq->highest_prio.next = MAX_RT_PRIO-1;
 
 150	rt_rq->overloaded = 0;
 151	plist_head_init(&rt_rq->pushable_tasks);
 152#endif /* CONFIG_SMP */
 153	/* We start is dequeued state, because no RT tasks are queued */
 154	rt_rq->rt_queued = 0;
 155
 156	rt_rq->rt_time = 0;
 157	rt_rq->rt_throttled = 0;
 158	rt_rq->rt_runtime = 0;
 159	raw_spin_lock_init(&rt_rq->rt_runtime_lock);
 160}
 161
 162#ifdef CONFIG_RT_GROUP_SCHED
 163static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
 164{
 165	hrtimer_cancel(&rt_b->rt_period_timer);
 166}
 167
 168#define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
 169
 170static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
 171{
 172#ifdef CONFIG_SCHED_DEBUG
 173	WARN_ON_ONCE(!rt_entity_is_task(rt_se));
 174#endif
 175	return container_of(rt_se, struct task_struct, rt);
 176}
 177
 178static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
 179{
 180	return rt_rq->rq;
 181}
 182
 183static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
 184{
 185	return rt_se->rt_rq;
 186}
 187
 188static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
 189{
 190	struct rt_rq *rt_rq = rt_se->rt_rq;
 191
 192	return rt_rq->rq;
 193}
 194
 195void unregister_rt_sched_group(struct task_group *tg)
 196{
 197	if (tg->rt_se)
 198		destroy_rt_bandwidth(&tg->rt_bandwidth);
 199
 200}
 201
 202void free_rt_sched_group(struct task_group *tg)
 203{
 204	int i;
 205
 206	for_each_possible_cpu(i) {
 207		if (tg->rt_rq)
 208			kfree(tg->rt_rq[i]);
 209		if (tg->rt_se)
 210			kfree(tg->rt_se[i]);
 211	}
 212
 213	kfree(tg->rt_rq);
 214	kfree(tg->rt_se);
 215}
 216
 217void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
 218		struct sched_rt_entity *rt_se, int cpu,
 219		struct sched_rt_entity *parent)
 220{
 221	struct rq *rq = cpu_rq(cpu);
 222
 223	rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
 224	rt_rq->rt_nr_boosted = 0;
 225	rt_rq->rq = rq;
 226	rt_rq->tg = tg;
 227
 228	tg->rt_rq[cpu] = rt_rq;
 229	tg->rt_se[cpu] = rt_se;
 230
 231	if (!rt_se)
 232		return;
 233
 234	if (!parent)
 235		rt_se->rt_rq = &rq->rt;
 236	else
 237		rt_se->rt_rq = parent->my_q;
 238
 239	rt_se->my_q = rt_rq;
 240	rt_se->parent = parent;
 241	INIT_LIST_HEAD(&rt_se->run_list);
 242}
 243
 244int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
 245{
 246	struct rt_rq *rt_rq;
 247	struct sched_rt_entity *rt_se;
 248	int i;
 249
 250	tg->rt_rq = kcalloc(nr_cpu_ids, sizeof(rt_rq), GFP_KERNEL);
 251	if (!tg->rt_rq)
 252		goto err;
 253	tg->rt_se = kcalloc(nr_cpu_ids, sizeof(rt_se), GFP_KERNEL);
 254	if (!tg->rt_se)
 255		goto err;
 256
 257	init_rt_bandwidth(&tg->rt_bandwidth,
 258			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
 259
 260	for_each_possible_cpu(i) {
 261		rt_rq = kzalloc_node(sizeof(struct rt_rq),
 262				     GFP_KERNEL, cpu_to_node(i));
 263		if (!rt_rq)
 264			goto err;
 265
 266		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
 267				     GFP_KERNEL, cpu_to_node(i));
 268		if (!rt_se)
 269			goto err_free_rq;
 270
 271		init_rt_rq(rt_rq);
 272		rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
 273		init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
 274	}
 275
 276	return 1;
 277
 278err_free_rq:
 279	kfree(rt_rq);
 280err:
 281	return 0;
 282}
 283
 284#else /* CONFIG_RT_GROUP_SCHED */
 285
 286#define rt_entity_is_task(rt_se) (1)
 287
 288static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
 289{
 290	return container_of(rt_se, struct task_struct, rt);
 291}
 292
 293static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
 294{
 295	return container_of(rt_rq, struct rq, rt);
 296}
 297
 298static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
 299{
 300	struct task_struct *p = rt_task_of(rt_se);
 301
 302	return task_rq(p);
 303}
 304
 305static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
 306{
 307	struct rq *rq = rq_of_rt_se(rt_se);
 308
 309	return &rq->rt;
 310}
 311
 312void unregister_rt_sched_group(struct task_group *tg) { }
 313
 314void free_rt_sched_group(struct task_group *tg) { }
 315
 316int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
 317{
 318	return 1;
 319}
 320#endif /* CONFIG_RT_GROUP_SCHED */
 321
 322#ifdef CONFIG_SMP
 323
 324static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
 325{
 326	/* Try to pull RT tasks here if we lower this rq's prio */
 327	return rq->online && rq->rt.highest_prio.curr > prev->prio;
 328}
 329
 330static inline int rt_overloaded(struct rq *rq)
 331{
 332	return atomic_read(&rq->rd->rto_count);
 333}
 334
 335static inline void rt_set_overload(struct rq *rq)
 336{
 337	if (!rq->online)
 338		return;
 339
 340	cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
 341	/*
 342	 * Make sure the mask is visible before we set
 343	 * the overload count. That is checked to determine
 344	 * if we should look at the mask. It would be a shame
 345	 * if we looked at the mask, but the mask was not
 346	 * updated yet.
 347	 *
 348	 * Matched by the barrier in pull_rt_task().
 349	 */
 350	smp_wmb();
 351	atomic_inc(&rq->rd->rto_count);
 352}
 353
 354static inline void rt_clear_overload(struct rq *rq)
 355{
 356	if (!rq->online)
 357		return;
 358
 359	/* the order here really doesn't matter */
 360	atomic_dec(&rq->rd->rto_count);
 361	cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
 362}
 363
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 364static inline int has_pushable_tasks(struct rq *rq)
 365{
 366	return !plist_head_empty(&rq->rt.pushable_tasks);
 367}
 368
 369static DEFINE_PER_CPU(struct balance_callback, rt_push_head);
 370static DEFINE_PER_CPU(struct balance_callback, rt_pull_head);
 371
 372static void push_rt_tasks(struct rq *);
 373static void pull_rt_task(struct rq *);
 374
 375static inline void rt_queue_push_tasks(struct rq *rq)
 376{
 377	if (!has_pushable_tasks(rq))
 378		return;
 379
 380	queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
 381}
 382
 383static inline void rt_queue_pull_task(struct rq *rq)
 384{
 385	queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
 386}
 387
 388static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
 389{
 390	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
 391	plist_node_init(&p->pushable_tasks, p->prio);
 392	plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
 393
 394	/* Update the highest prio pushable task */
 395	if (p->prio < rq->rt.highest_prio.next)
 396		rq->rt.highest_prio.next = p->prio;
 397
 398	if (!rq->rt.overloaded) {
 399		rt_set_overload(rq);
 400		rq->rt.overloaded = 1;
 401	}
 402}
 403
 404static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
 405{
 406	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
 407
 408	/* Update the new highest prio pushable task */
 409	if (has_pushable_tasks(rq)) {
 410		p = plist_first_entry(&rq->rt.pushable_tasks,
 411				      struct task_struct, pushable_tasks);
 412		rq->rt.highest_prio.next = p->prio;
 413	} else {
 414		rq->rt.highest_prio.next = MAX_RT_PRIO-1;
 415
 416		if (rq->rt.overloaded) {
 417			rt_clear_overload(rq);
 418			rq->rt.overloaded = 0;
 419		}
 420	}
 421}
 422
 423#else
 424
 425static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
 426{
 427}
 428
 429static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
 430{
 431}
 432
 
 
 
 
 
 
 
 
 
 
 433static inline void rt_queue_push_tasks(struct rq *rq)
 434{
 435}
 436#endif /* CONFIG_SMP */
 437
 438static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
 439static void dequeue_top_rt_rq(struct rt_rq *rt_rq, unsigned int count);
 440
 441static inline int on_rt_rq(struct sched_rt_entity *rt_se)
 442{
 443	return rt_se->on_rq;
 444}
 445
 446#ifdef CONFIG_UCLAMP_TASK
 447/*
 448 * Verify the fitness of task @p to run on @cpu taking into account the uclamp
 449 * settings.
 450 *
 451 * This check is only important for heterogeneous systems where uclamp_min value
 452 * is higher than the capacity of a @cpu. For non-heterogeneous system this
 453 * function will always return true.
 454 *
 455 * The function will return true if the capacity of the @cpu is >= the
 456 * uclamp_min and false otherwise.
 457 *
 458 * Note that uclamp_min will be clamped to uclamp_max if uclamp_min
 459 * > uclamp_max.
 460 */
 461static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
 462{
 463	unsigned int min_cap;
 464	unsigned int max_cap;
 465	unsigned int cpu_cap;
 466
 467	/* Only heterogeneous systems can benefit from this check */
 468	if (!sched_asym_cpucap_active())
 469		return true;
 470
 471	min_cap = uclamp_eff_value(p, UCLAMP_MIN);
 472	max_cap = uclamp_eff_value(p, UCLAMP_MAX);
 473
 474	cpu_cap = arch_scale_cpu_capacity(cpu);
 475
 476	return cpu_cap >= min(min_cap, max_cap);
 477}
 478#else
 479static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
 480{
 481	return true;
 482}
 483#endif
 484
 485#ifdef CONFIG_RT_GROUP_SCHED
 486
 487static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
 488{
 489	if (!rt_rq->tg)
 490		return RUNTIME_INF;
 491
 492	return rt_rq->rt_runtime;
 493}
 494
 495static inline u64 sched_rt_period(struct rt_rq *rt_rq)
 496{
 497	return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
 498}
 499
 500typedef struct task_group *rt_rq_iter_t;
 501
 502static inline struct task_group *next_task_group(struct task_group *tg)
 503{
 504	do {
 505		tg = list_entry_rcu(tg->list.next,
 506			typeof(struct task_group), list);
 507	} while (&tg->list != &task_groups && task_group_is_autogroup(tg));
 508
 509	if (&tg->list == &task_groups)
 510		tg = NULL;
 511
 512	return tg;
 513}
 514
 515#define for_each_rt_rq(rt_rq, iter, rq)					\
 516	for (iter = container_of(&task_groups, typeof(*iter), list);	\
 517		(iter = next_task_group(iter)) &&			\
 518		(rt_rq = iter->rt_rq[cpu_of(rq)]);)
 519
 520#define for_each_sched_rt_entity(rt_se) \
 521	for (; rt_se; rt_se = rt_se->parent)
 522
 523static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
 524{
 525	return rt_se->my_q;
 526}
 527
 528static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
 529static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
 530
 531static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
 532{
 533	struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
 534	struct rq *rq = rq_of_rt_rq(rt_rq);
 535	struct sched_rt_entity *rt_se;
 536
 537	int cpu = cpu_of(rq);
 538
 539	rt_se = rt_rq->tg->rt_se[cpu];
 540
 541	if (rt_rq->rt_nr_running) {
 542		if (!rt_se)
 543			enqueue_top_rt_rq(rt_rq);
 544		else if (!on_rt_rq(rt_se))
 545			enqueue_rt_entity(rt_se, 0);
 546
 547		if (rt_rq->highest_prio.curr < curr->prio)
 548			resched_curr(rq);
 549	}
 550}
 551
 552static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
 553{
 554	struct sched_rt_entity *rt_se;
 555	int cpu = cpu_of(rq_of_rt_rq(rt_rq));
 556
 557	rt_se = rt_rq->tg->rt_se[cpu];
 558
 559	if (!rt_se) {
 560		dequeue_top_rt_rq(rt_rq, rt_rq->rt_nr_running);
 561		/* Kick cpufreq (see the comment in kernel/sched/sched.h). */
 562		cpufreq_update_util(rq_of_rt_rq(rt_rq), 0);
 563	}
 564	else if (on_rt_rq(rt_se))
 565		dequeue_rt_entity(rt_se, 0);
 566}
 567
 568static inline int rt_rq_throttled(struct rt_rq *rt_rq)
 569{
 570	return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
 571}
 572
 573static int rt_se_boosted(struct sched_rt_entity *rt_se)
 574{
 575	struct rt_rq *rt_rq = group_rt_rq(rt_se);
 576	struct task_struct *p;
 577
 578	if (rt_rq)
 579		return !!rt_rq->rt_nr_boosted;
 580
 581	p = rt_task_of(rt_se);
 582	return p->prio != p->normal_prio;
 583}
 584
 585#ifdef CONFIG_SMP
 586static inline const struct cpumask *sched_rt_period_mask(void)
 587{
 588	return this_rq()->rd->span;
 589}
 590#else
 591static inline const struct cpumask *sched_rt_period_mask(void)
 592{
 593	return cpu_online_mask;
 594}
 595#endif
 596
 597static inline
 598struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
 599{
 600	return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
 601}
 602
 603static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
 604{
 605	return &rt_rq->tg->rt_bandwidth;
 606}
 607
 608#else /* !CONFIG_RT_GROUP_SCHED */
 609
 610static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
 611{
 612	return rt_rq->rt_runtime;
 613}
 614
 615static inline u64 sched_rt_period(struct rt_rq *rt_rq)
 616{
 617	return ktime_to_ns(def_rt_bandwidth.rt_period);
 618}
 619
 620typedef struct rt_rq *rt_rq_iter_t;
 621
 622#define for_each_rt_rq(rt_rq, iter, rq) \
 623	for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
 624
 625#define for_each_sched_rt_entity(rt_se) \
 626	for (; rt_se; rt_se = NULL)
 627
 628static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
 629{
 630	return NULL;
 631}
 632
 633static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
 634{
 635	struct rq *rq = rq_of_rt_rq(rt_rq);
 636
 637	if (!rt_rq->rt_nr_running)
 638		return;
 639
 640	enqueue_top_rt_rq(rt_rq);
 641	resched_curr(rq);
 642}
 643
 644static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
 645{
 646	dequeue_top_rt_rq(rt_rq, rt_rq->rt_nr_running);
 647}
 648
 649static inline int rt_rq_throttled(struct rt_rq *rt_rq)
 650{
 651	return rt_rq->rt_throttled;
 652}
 653
 654static inline const struct cpumask *sched_rt_period_mask(void)
 655{
 656	return cpu_online_mask;
 657}
 658
 659static inline
 660struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
 661{
 662	return &cpu_rq(cpu)->rt;
 663}
 664
 665static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
 666{
 667	return &def_rt_bandwidth;
 668}
 669
 670#endif /* CONFIG_RT_GROUP_SCHED */
 671
 672bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
 673{
 674	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
 675
 676	return (hrtimer_active(&rt_b->rt_period_timer) ||
 677		rt_rq->rt_time < rt_b->rt_runtime);
 678}
 679
 680#ifdef CONFIG_SMP
 681/*
 682 * We ran out of runtime, see if we can borrow some from our neighbours.
 683 */
 684static void do_balance_runtime(struct rt_rq *rt_rq)
 685{
 686	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
 687	struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
 688	int i, weight;
 689	u64 rt_period;
 690
 691	weight = cpumask_weight(rd->span);
 692
 693	raw_spin_lock(&rt_b->rt_runtime_lock);
 694	rt_period = ktime_to_ns(rt_b->rt_period);
 695	for_each_cpu(i, rd->span) {
 696		struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
 697		s64 diff;
 698
 699		if (iter == rt_rq)
 700			continue;
 701
 702		raw_spin_lock(&iter->rt_runtime_lock);
 703		/*
 704		 * Either all rqs have inf runtime and there's nothing to steal
 705		 * or __disable_runtime() below sets a specific rq to inf to
 706		 * indicate its been disabled and disallow stealing.
 707		 */
 708		if (iter->rt_runtime == RUNTIME_INF)
 709			goto next;
 710
 711		/*
 712		 * From runqueues with spare time, take 1/n part of their
 713		 * spare time, but no more than our period.
 714		 */
 715		diff = iter->rt_runtime - iter->rt_time;
 716		if (diff > 0) {
 717			diff = div_u64((u64)diff, weight);
 718			if (rt_rq->rt_runtime + diff > rt_period)
 719				diff = rt_period - rt_rq->rt_runtime;
 720			iter->rt_runtime -= diff;
 721			rt_rq->rt_runtime += diff;
 722			if (rt_rq->rt_runtime == rt_period) {
 723				raw_spin_unlock(&iter->rt_runtime_lock);
 724				break;
 725			}
 726		}
 727next:
 728		raw_spin_unlock(&iter->rt_runtime_lock);
 729	}
 730	raw_spin_unlock(&rt_b->rt_runtime_lock);
 731}
 732
 733/*
 734 * Ensure this RQ takes back all the runtime it lend to its neighbours.
 735 */
 736static void __disable_runtime(struct rq *rq)
 737{
 738	struct root_domain *rd = rq->rd;
 739	rt_rq_iter_t iter;
 740	struct rt_rq *rt_rq;
 741
 742	if (unlikely(!scheduler_running))
 743		return;
 744
 745	for_each_rt_rq(rt_rq, iter, rq) {
 746		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
 747		s64 want;
 748		int i;
 749
 750		raw_spin_lock(&rt_b->rt_runtime_lock);
 751		raw_spin_lock(&rt_rq->rt_runtime_lock);
 752		/*
 753		 * Either we're all inf and nobody needs to borrow, or we're
 754		 * already disabled and thus have nothing to do, or we have
 755		 * exactly the right amount of runtime to take out.
 756		 */
 757		if (rt_rq->rt_runtime == RUNTIME_INF ||
 758				rt_rq->rt_runtime == rt_b->rt_runtime)
 759			goto balanced;
 760		raw_spin_unlock(&rt_rq->rt_runtime_lock);
 761
 762		/*
 763		 * Calculate the difference between what we started out with
 764		 * and what we current have, that's the amount of runtime
 765		 * we lend and now have to reclaim.
 766		 */
 767		want = rt_b->rt_runtime - rt_rq->rt_runtime;
 768
 769		/*
 770		 * Greedy reclaim, take back as much as we can.
 771		 */
 772		for_each_cpu(i, rd->span) {
 773			struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
 774			s64 diff;
 775
 776			/*
 777			 * Can't reclaim from ourselves or disabled runqueues.
 778			 */
 779			if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
 780				continue;
 781
 782			raw_spin_lock(&iter->rt_runtime_lock);
 783			if (want > 0) {
 784				diff = min_t(s64, iter->rt_runtime, want);
 785				iter->rt_runtime -= diff;
 786				want -= diff;
 787			} else {
 788				iter->rt_runtime -= want;
 789				want -= want;
 790			}
 791			raw_spin_unlock(&iter->rt_runtime_lock);
 792
 793			if (!want)
 794				break;
 795		}
 796
 797		raw_spin_lock(&rt_rq->rt_runtime_lock);
 798		/*
 799		 * We cannot be left wanting - that would mean some runtime
 800		 * leaked out of the system.
 801		 */
 802		WARN_ON_ONCE(want);
 803balanced:
 804		/*
 805		 * Disable all the borrow logic by pretending we have inf
 806		 * runtime - in which case borrowing doesn't make sense.
 807		 */
 808		rt_rq->rt_runtime = RUNTIME_INF;
 809		rt_rq->rt_throttled = 0;
 810		raw_spin_unlock(&rt_rq->rt_runtime_lock);
 811		raw_spin_unlock(&rt_b->rt_runtime_lock);
 812
 813		/* Make rt_rq available for pick_next_task() */
 814		sched_rt_rq_enqueue(rt_rq);
 815	}
 816}
 817
 818static void __enable_runtime(struct rq *rq)
 819{
 820	rt_rq_iter_t iter;
 821	struct rt_rq *rt_rq;
 822
 823	if (unlikely(!scheduler_running))
 824		return;
 825
 826	/*
 827	 * Reset each runqueue's bandwidth settings
 828	 */
 829	for_each_rt_rq(rt_rq, iter, rq) {
 830		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
 831
 832		raw_spin_lock(&rt_b->rt_runtime_lock);
 833		raw_spin_lock(&rt_rq->rt_runtime_lock);
 834		rt_rq->rt_runtime = rt_b->rt_runtime;
 835		rt_rq->rt_time = 0;
 836		rt_rq->rt_throttled = 0;
 837		raw_spin_unlock(&rt_rq->rt_runtime_lock);
 838		raw_spin_unlock(&rt_b->rt_runtime_lock);
 839	}
 840}
 841
 842static void balance_runtime(struct rt_rq *rt_rq)
 843{
 844	if (!sched_feat(RT_RUNTIME_SHARE))
 845		return;
 846
 847	if (rt_rq->rt_time > rt_rq->rt_runtime) {
 848		raw_spin_unlock(&rt_rq->rt_runtime_lock);
 849		do_balance_runtime(rt_rq);
 850		raw_spin_lock(&rt_rq->rt_runtime_lock);
 851	}
 852}
 853#else /* !CONFIG_SMP */
 854static inline void balance_runtime(struct rt_rq *rt_rq) {}
 855#endif /* CONFIG_SMP */
 856
 857static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
 858{
 859	int i, idle = 1, throttled = 0;
 860	const struct cpumask *span;
 861
 862	span = sched_rt_period_mask();
 863#ifdef CONFIG_RT_GROUP_SCHED
 864	/*
 865	 * FIXME: isolated CPUs should really leave the root task group,
 866	 * whether they are isolcpus or were isolated via cpusets, lest
 867	 * the timer run on a CPU which does not service all runqueues,
 868	 * potentially leaving other CPUs indefinitely throttled.  If
 869	 * isolation is really required, the user will turn the throttle
 870	 * off to kill the perturbations it causes anyway.  Meanwhile,
 871	 * this maintains functionality for boot and/or troubleshooting.
 872	 */
 873	if (rt_b == &root_task_group.rt_bandwidth)
 874		span = cpu_online_mask;
 875#endif
 876	for_each_cpu(i, span) {
 877		int enqueue = 0;
 878		struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
 879		struct rq *rq = rq_of_rt_rq(rt_rq);
 880		struct rq_flags rf;
 881		int skip;
 882
 883		/*
 884		 * When span == cpu_online_mask, taking each rq->lock
 885		 * can be time-consuming. Try to avoid it when possible.
 886		 */
 887		raw_spin_lock(&rt_rq->rt_runtime_lock);
 888		if (!sched_feat(RT_RUNTIME_SHARE) && rt_rq->rt_runtime != RUNTIME_INF)
 889			rt_rq->rt_runtime = rt_b->rt_runtime;
 890		skip = !rt_rq->rt_time && !rt_rq->rt_nr_running;
 891		raw_spin_unlock(&rt_rq->rt_runtime_lock);
 892		if (skip)
 893			continue;
 894
 895		rq_lock(rq, &rf);
 896		update_rq_clock(rq);
 897
 898		if (rt_rq->rt_time) {
 899			u64 runtime;
 900
 901			raw_spin_lock(&rt_rq->rt_runtime_lock);
 902			if (rt_rq->rt_throttled)
 903				balance_runtime(rt_rq);
 904			runtime = rt_rq->rt_runtime;
 905			rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
 906			if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
 907				rt_rq->rt_throttled = 0;
 908				enqueue = 1;
 909
 910				/*
 911				 * When we're idle and a woken (rt) task is
 912				 * throttled wakeup_preempt() will set
 913				 * skip_update and the time between the wakeup
 914				 * and this unthrottle will get accounted as
 915				 * 'runtime'.
 916				 */
 917				if (rt_rq->rt_nr_running && rq->curr == rq->idle)
 918					rq_clock_cancel_skipupdate(rq);
 919			}
 920			if (rt_rq->rt_time || rt_rq->rt_nr_running)
 921				idle = 0;
 922			raw_spin_unlock(&rt_rq->rt_runtime_lock);
 923		} else if (rt_rq->rt_nr_running) {
 924			idle = 0;
 925			if (!rt_rq_throttled(rt_rq))
 926				enqueue = 1;
 927		}
 928		if (rt_rq->rt_throttled)
 929			throttled = 1;
 930
 931		if (enqueue)
 932			sched_rt_rq_enqueue(rt_rq);
 933		rq_unlock(rq, &rf);
 934	}
 935
 936	if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
 937		return 1;
 938
 939	return idle;
 940}
 941
 942static inline int rt_se_prio(struct sched_rt_entity *rt_se)
 943{
 944#ifdef CONFIG_RT_GROUP_SCHED
 945	struct rt_rq *rt_rq = group_rt_rq(rt_se);
 946
 947	if (rt_rq)
 948		return rt_rq->highest_prio.curr;
 949#endif
 950
 951	return rt_task_of(rt_se)->prio;
 952}
 953
 954static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
 955{
 956	u64 runtime = sched_rt_runtime(rt_rq);
 957
 958	if (rt_rq->rt_throttled)
 959		return rt_rq_throttled(rt_rq);
 960
 961	if (runtime >= sched_rt_period(rt_rq))
 962		return 0;
 963
 964	balance_runtime(rt_rq);
 965	runtime = sched_rt_runtime(rt_rq);
 966	if (runtime == RUNTIME_INF)
 967		return 0;
 968
 969	if (rt_rq->rt_time > runtime) {
 970		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
 971
 972		/*
 973		 * Don't actually throttle groups that have no runtime assigned
 974		 * but accrue some time due to boosting.
 975		 */
 976		if (likely(rt_b->rt_runtime)) {
 977			rt_rq->rt_throttled = 1;
 978			printk_deferred_once("sched: RT throttling activated\n");
 979		} else {
 980			/*
 981			 * In case we did anyway, make it go away,
 982			 * replenishment is a joke, since it will replenish us
 983			 * with exactly 0 ns.
 984			 */
 985			rt_rq->rt_time = 0;
 986		}
 987
 988		if (rt_rq_throttled(rt_rq)) {
 989			sched_rt_rq_dequeue(rt_rq);
 990			return 1;
 991		}
 992	}
 993
 994	return 0;
 995}
 996
 997/*
 998 * Update the current task's runtime statistics. Skip current tasks that
 999 * are not in our scheduling class.
1000 */
1001static void update_curr_rt(struct rq *rq)
1002{
1003	struct task_struct *curr = rq->curr;
1004	struct sched_rt_entity *rt_se = &curr->rt;
1005	s64 delta_exec;
 
1006
1007	if (curr->sched_class != &rt_sched_class)
1008		return;
1009
1010	delta_exec = update_curr_common(rq);
1011	if (unlikely(delta_exec <= 0))
 
1012		return;
1013
 
 
 
 
 
 
 
1014	if (!rt_bandwidth_enabled())
1015		return;
1016
1017	for_each_sched_rt_entity(rt_se) {
1018		struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1019		int exceeded;
1020
1021		if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
1022			raw_spin_lock(&rt_rq->rt_runtime_lock);
1023			rt_rq->rt_time += delta_exec;
1024			exceeded = sched_rt_runtime_exceeded(rt_rq);
1025			if (exceeded)
1026				resched_curr(rq);
1027			raw_spin_unlock(&rt_rq->rt_runtime_lock);
1028			if (exceeded)
1029				do_start_rt_bandwidth(sched_rt_bandwidth(rt_rq));
1030		}
1031	}
1032}
1033
1034static void
1035dequeue_top_rt_rq(struct rt_rq *rt_rq, unsigned int count)
1036{
1037	struct rq *rq = rq_of_rt_rq(rt_rq);
1038
1039	BUG_ON(&rq->rt != rt_rq);
1040
1041	if (!rt_rq->rt_queued)
1042		return;
1043
1044	BUG_ON(!rq->nr_running);
1045
1046	sub_nr_running(rq, count);
1047	rt_rq->rt_queued = 0;
1048
1049}
1050
1051static void
1052enqueue_top_rt_rq(struct rt_rq *rt_rq)
1053{
1054	struct rq *rq = rq_of_rt_rq(rt_rq);
1055
1056	BUG_ON(&rq->rt != rt_rq);
1057
1058	if (rt_rq->rt_queued)
1059		return;
1060
1061	if (rt_rq_throttled(rt_rq))
1062		return;
1063
1064	if (rt_rq->rt_nr_running) {
1065		add_nr_running(rq, rt_rq->rt_nr_running);
1066		rt_rq->rt_queued = 1;
1067	}
1068
1069	/* Kick cpufreq (see the comment in kernel/sched/sched.h). */
1070	cpufreq_update_util(rq, 0);
1071}
1072
1073#if defined CONFIG_SMP
1074
1075static void
1076inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1077{
1078	struct rq *rq = rq_of_rt_rq(rt_rq);
1079
1080#ifdef CONFIG_RT_GROUP_SCHED
1081	/*
1082	 * Change rq's cpupri only if rt_rq is the top queue.
1083	 */
1084	if (&rq->rt != rt_rq)
1085		return;
1086#endif
1087	if (rq->online && prio < prev_prio)
1088		cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1089}
1090
1091static void
1092dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1093{
1094	struct rq *rq = rq_of_rt_rq(rt_rq);
1095
1096#ifdef CONFIG_RT_GROUP_SCHED
1097	/*
1098	 * Change rq's cpupri only if rt_rq is the top queue.
1099	 */
1100	if (&rq->rt != rt_rq)
1101		return;
1102#endif
1103	if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1104		cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1105}
1106
1107#else /* CONFIG_SMP */
1108
1109static inline
1110void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1111static inline
1112void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1113
1114#endif /* CONFIG_SMP */
1115
1116#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1117static void
1118inc_rt_prio(struct rt_rq *rt_rq, int prio)
1119{
1120	int prev_prio = rt_rq->highest_prio.curr;
1121
1122	if (prio < prev_prio)
1123		rt_rq->highest_prio.curr = prio;
1124
1125	inc_rt_prio_smp(rt_rq, prio, prev_prio);
1126}
1127
1128static void
1129dec_rt_prio(struct rt_rq *rt_rq, int prio)
1130{
1131	int prev_prio = rt_rq->highest_prio.curr;
1132
1133	if (rt_rq->rt_nr_running) {
1134
1135		WARN_ON(prio < prev_prio);
1136
1137		/*
1138		 * This may have been our highest task, and therefore
1139		 * we may have some recomputation to do
1140		 */
1141		if (prio == prev_prio) {
1142			struct rt_prio_array *array = &rt_rq->active;
1143
1144			rt_rq->highest_prio.curr =
1145				sched_find_first_bit(array->bitmap);
1146		}
1147
1148	} else {
1149		rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
1150	}
1151
1152	dec_rt_prio_smp(rt_rq, prio, prev_prio);
1153}
1154
1155#else
1156
1157static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1158static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1159
1160#endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1161
1162#ifdef CONFIG_RT_GROUP_SCHED
1163
1164static void
1165inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1166{
1167	if (rt_se_boosted(rt_se))
1168		rt_rq->rt_nr_boosted++;
1169
1170	if (rt_rq->tg)
1171		start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1172}
1173
1174static void
1175dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1176{
1177	if (rt_se_boosted(rt_se))
1178		rt_rq->rt_nr_boosted--;
1179
1180	WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1181}
1182
1183#else /* CONFIG_RT_GROUP_SCHED */
1184
1185static void
1186inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1187{
1188	start_rt_bandwidth(&def_rt_bandwidth);
1189}
1190
1191static inline
1192void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1193
1194#endif /* CONFIG_RT_GROUP_SCHED */
1195
1196static inline
1197unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1198{
1199	struct rt_rq *group_rq = group_rt_rq(rt_se);
1200
1201	if (group_rq)
1202		return group_rq->rt_nr_running;
1203	else
1204		return 1;
1205}
1206
1207static inline
1208unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se)
1209{
1210	struct rt_rq *group_rq = group_rt_rq(rt_se);
1211	struct task_struct *tsk;
1212
1213	if (group_rq)
1214		return group_rq->rr_nr_running;
1215
1216	tsk = rt_task_of(rt_se);
1217
1218	return (tsk->policy == SCHED_RR) ? 1 : 0;
1219}
1220
1221static inline
1222void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1223{
1224	int prio = rt_se_prio(rt_se);
1225
1226	WARN_ON(!rt_prio(prio));
1227	rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1228	rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se);
1229
1230	inc_rt_prio(rt_rq, prio);
 
1231	inc_rt_group(rt_se, rt_rq);
1232}
1233
1234static inline
1235void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1236{
1237	WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1238	WARN_ON(!rt_rq->rt_nr_running);
1239	rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1240	rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se);
1241
1242	dec_rt_prio(rt_rq, rt_se_prio(rt_se));
 
1243	dec_rt_group(rt_se, rt_rq);
1244}
1245
1246/*
1247 * Change rt_se->run_list location unless SAVE && !MOVE
1248 *
1249 * assumes ENQUEUE/DEQUEUE flags match
1250 */
1251static inline bool move_entity(unsigned int flags)
1252{
1253	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
1254		return false;
1255
1256	return true;
1257}
1258
1259static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array)
1260{
1261	list_del_init(&rt_se->run_list);
1262
1263	if (list_empty(array->queue + rt_se_prio(rt_se)))
1264		__clear_bit(rt_se_prio(rt_se), array->bitmap);
1265
1266	rt_se->on_list = 0;
1267}
1268
1269static inline struct sched_statistics *
1270__schedstats_from_rt_se(struct sched_rt_entity *rt_se)
1271{
1272#ifdef CONFIG_RT_GROUP_SCHED
1273	/* schedstats is not supported for rt group. */
1274	if (!rt_entity_is_task(rt_se))
1275		return NULL;
1276#endif
1277
1278	return &rt_task_of(rt_se)->stats;
1279}
1280
1281static inline void
1282update_stats_wait_start_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1283{
1284	struct sched_statistics *stats;
1285	struct task_struct *p = NULL;
1286
1287	if (!schedstat_enabled())
1288		return;
1289
1290	if (rt_entity_is_task(rt_se))
1291		p = rt_task_of(rt_se);
1292
1293	stats = __schedstats_from_rt_se(rt_se);
1294	if (!stats)
1295		return;
1296
1297	__update_stats_wait_start(rq_of_rt_rq(rt_rq), p, stats);
1298}
1299
1300static inline void
1301update_stats_enqueue_sleeper_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1302{
1303	struct sched_statistics *stats;
1304	struct task_struct *p = NULL;
1305
1306	if (!schedstat_enabled())
1307		return;
1308
1309	if (rt_entity_is_task(rt_se))
1310		p = rt_task_of(rt_se);
1311
1312	stats = __schedstats_from_rt_se(rt_se);
1313	if (!stats)
1314		return;
1315
1316	__update_stats_enqueue_sleeper(rq_of_rt_rq(rt_rq), p, stats);
1317}
1318
1319static inline void
1320update_stats_enqueue_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
1321			int flags)
1322{
1323	if (!schedstat_enabled())
1324		return;
1325
1326	if (flags & ENQUEUE_WAKEUP)
1327		update_stats_enqueue_sleeper_rt(rt_rq, rt_se);
1328}
1329
1330static inline void
1331update_stats_wait_end_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1332{
1333	struct sched_statistics *stats;
1334	struct task_struct *p = NULL;
1335
1336	if (!schedstat_enabled())
1337		return;
1338
1339	if (rt_entity_is_task(rt_se))
1340		p = rt_task_of(rt_se);
1341
1342	stats = __schedstats_from_rt_se(rt_se);
1343	if (!stats)
1344		return;
1345
1346	__update_stats_wait_end(rq_of_rt_rq(rt_rq), p, stats);
1347}
1348
1349static inline void
1350update_stats_dequeue_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
1351			int flags)
1352{
1353	struct task_struct *p = NULL;
1354
1355	if (!schedstat_enabled())
1356		return;
1357
1358	if (rt_entity_is_task(rt_se))
1359		p = rt_task_of(rt_se);
1360
1361	if ((flags & DEQUEUE_SLEEP) && p) {
1362		unsigned int state;
1363
1364		state = READ_ONCE(p->__state);
1365		if (state & TASK_INTERRUPTIBLE)
1366			__schedstat_set(p->stats.sleep_start,
1367					rq_clock(rq_of_rt_rq(rt_rq)));
1368
1369		if (state & TASK_UNINTERRUPTIBLE)
1370			__schedstat_set(p->stats.block_start,
1371					rq_clock(rq_of_rt_rq(rt_rq)));
1372	}
1373}
1374
1375static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1376{
1377	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1378	struct rt_prio_array *array = &rt_rq->active;
1379	struct rt_rq *group_rq = group_rt_rq(rt_se);
1380	struct list_head *queue = array->queue + rt_se_prio(rt_se);
1381
1382	/*
1383	 * Don't enqueue the group if its throttled, or when empty.
1384	 * The latter is a consequence of the former when a child group
1385	 * get throttled and the current group doesn't have any other
1386	 * active members.
1387	 */
1388	if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) {
1389		if (rt_se->on_list)
1390			__delist_rt_entity(rt_se, array);
1391		return;
1392	}
1393
1394	if (move_entity(flags)) {
1395		WARN_ON_ONCE(rt_se->on_list);
1396		if (flags & ENQUEUE_HEAD)
1397			list_add(&rt_se->run_list, queue);
1398		else
1399			list_add_tail(&rt_se->run_list, queue);
1400
1401		__set_bit(rt_se_prio(rt_se), array->bitmap);
1402		rt_se->on_list = 1;
1403	}
1404	rt_se->on_rq = 1;
1405
1406	inc_rt_tasks(rt_se, rt_rq);
1407}
1408
1409static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1410{
1411	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1412	struct rt_prio_array *array = &rt_rq->active;
1413
1414	if (move_entity(flags)) {
1415		WARN_ON_ONCE(!rt_se->on_list);
1416		__delist_rt_entity(rt_se, array);
1417	}
1418	rt_se->on_rq = 0;
1419
1420	dec_rt_tasks(rt_se, rt_rq);
1421}
1422
1423/*
1424 * Because the prio of an upper entry depends on the lower
1425 * entries, we must remove entries top - down.
1426 */
1427static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags)
1428{
1429	struct sched_rt_entity *back = NULL;
1430	unsigned int rt_nr_running;
1431
1432	for_each_sched_rt_entity(rt_se) {
1433		rt_se->back = back;
1434		back = rt_se;
1435	}
1436
1437	rt_nr_running = rt_rq_of_se(back)->rt_nr_running;
1438
1439	for (rt_se = back; rt_se; rt_se = rt_se->back) {
1440		if (on_rt_rq(rt_se))
1441			__dequeue_rt_entity(rt_se, flags);
1442	}
1443
1444	dequeue_top_rt_rq(rt_rq_of_se(back), rt_nr_running);
1445}
1446
1447static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1448{
1449	struct rq *rq = rq_of_rt_se(rt_se);
1450
1451	update_stats_enqueue_rt(rt_rq_of_se(rt_se), rt_se, flags);
1452
1453	dequeue_rt_stack(rt_se, flags);
1454	for_each_sched_rt_entity(rt_se)
1455		__enqueue_rt_entity(rt_se, flags);
1456	enqueue_top_rt_rq(&rq->rt);
1457}
1458
1459static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1460{
1461	struct rq *rq = rq_of_rt_se(rt_se);
1462
1463	update_stats_dequeue_rt(rt_rq_of_se(rt_se), rt_se, flags);
1464
1465	dequeue_rt_stack(rt_se, flags);
1466
1467	for_each_sched_rt_entity(rt_se) {
1468		struct rt_rq *rt_rq = group_rt_rq(rt_se);
1469
1470		if (rt_rq && rt_rq->rt_nr_running)
1471			__enqueue_rt_entity(rt_se, flags);
1472	}
1473	enqueue_top_rt_rq(&rq->rt);
1474}
1475
1476/*
1477 * Adding/removing a task to/from a priority array:
1478 */
1479static void
1480enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1481{
1482	struct sched_rt_entity *rt_se = &p->rt;
1483
1484	if (flags & ENQUEUE_WAKEUP)
1485		rt_se->timeout = 0;
1486
1487	check_schedstat_required();
1488	update_stats_wait_start_rt(rt_rq_of_se(rt_se), rt_se);
1489
1490	enqueue_rt_entity(rt_se, flags);
1491
1492	if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1493		enqueue_pushable_task(rq, p);
1494}
1495
1496static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1497{
1498	struct sched_rt_entity *rt_se = &p->rt;
1499
1500	update_curr_rt(rq);
1501	dequeue_rt_entity(rt_se, flags);
1502
1503	dequeue_pushable_task(rq, p);
1504}
1505
1506/*
1507 * Put task to the head or the end of the run list without the overhead of
1508 * dequeue followed by enqueue.
1509 */
1510static void
1511requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1512{
1513	if (on_rt_rq(rt_se)) {
1514		struct rt_prio_array *array = &rt_rq->active;
1515		struct list_head *queue = array->queue + rt_se_prio(rt_se);
1516
1517		if (head)
1518			list_move(&rt_se->run_list, queue);
1519		else
1520			list_move_tail(&rt_se->run_list, queue);
1521	}
1522}
1523
1524static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1525{
1526	struct sched_rt_entity *rt_se = &p->rt;
1527	struct rt_rq *rt_rq;
1528
1529	for_each_sched_rt_entity(rt_se) {
1530		rt_rq = rt_rq_of_se(rt_se);
1531		requeue_rt_entity(rt_rq, rt_se, head);
1532	}
1533}
1534
1535static void yield_task_rt(struct rq *rq)
1536{
1537	requeue_task_rt(rq, rq->curr, 0);
1538}
1539
1540#ifdef CONFIG_SMP
1541static int find_lowest_rq(struct task_struct *task);
1542
1543static int
1544select_task_rq_rt(struct task_struct *p, int cpu, int flags)
1545{
1546	struct task_struct *curr;
1547	struct rq *rq;
1548	bool test;
1549
1550	/* For anything but wake ups, just return the task_cpu */
1551	if (!(flags & (WF_TTWU | WF_FORK)))
1552		goto out;
1553
1554	rq = cpu_rq(cpu);
1555
1556	rcu_read_lock();
1557	curr = READ_ONCE(rq->curr); /* unlocked access */
1558
1559	/*
1560	 * If the current task on @p's runqueue is an RT task, then
1561	 * try to see if we can wake this RT task up on another
1562	 * runqueue. Otherwise simply start this RT task
1563	 * on its current runqueue.
1564	 *
1565	 * We want to avoid overloading runqueues. If the woken
1566	 * task is a higher priority, then it will stay on this CPU
1567	 * and the lower prio task should be moved to another CPU.
1568	 * Even though this will probably make the lower prio task
1569	 * lose its cache, we do not want to bounce a higher task
1570	 * around just because it gave up its CPU, perhaps for a
1571	 * lock?
1572	 *
1573	 * For equal prio tasks, we just let the scheduler sort it out.
1574	 *
1575	 * Otherwise, just let it ride on the affined RQ and the
1576	 * post-schedule router will push the preempted task away
1577	 *
1578	 * This test is optimistic, if we get it wrong the load-balancer
1579	 * will have to sort it out.
1580	 *
1581	 * We take into account the capacity of the CPU to ensure it fits the
1582	 * requirement of the task - which is only important on heterogeneous
1583	 * systems like big.LITTLE.
1584	 */
1585	test = curr &&
1586	       unlikely(rt_task(curr)) &&
1587	       (curr->nr_cpus_allowed < 2 || curr->prio <= p->prio);
1588
1589	if (test || !rt_task_fits_capacity(p, cpu)) {
1590		int target = find_lowest_rq(p);
1591
1592		/*
1593		 * Bail out if we were forcing a migration to find a better
1594		 * fitting CPU but our search failed.
1595		 */
1596		if (!test && target != -1 && !rt_task_fits_capacity(p, target))
1597			goto out_unlock;
1598
1599		/*
1600		 * Don't bother moving it if the destination CPU is
1601		 * not running a lower priority task.
1602		 */
1603		if (target != -1 &&
1604		    p->prio < cpu_rq(target)->rt.highest_prio.curr)
1605			cpu = target;
1606	}
1607
1608out_unlock:
1609	rcu_read_unlock();
1610
1611out:
1612	return cpu;
1613}
1614
1615static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1616{
1617	/*
1618	 * Current can't be migrated, useless to reschedule,
1619	 * let's hope p can move out.
1620	 */
1621	if (rq->curr->nr_cpus_allowed == 1 ||
1622	    !cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1623		return;
1624
1625	/*
1626	 * p is migratable, so let's not schedule it and
1627	 * see if it is pushed or pulled somewhere else.
1628	 */
1629	if (p->nr_cpus_allowed != 1 &&
1630	    cpupri_find(&rq->rd->cpupri, p, NULL))
1631		return;
1632
1633	/*
1634	 * There appear to be other CPUs that can accept
1635	 * the current task but none can run 'p', so lets reschedule
1636	 * to try and push the current task away:
1637	 */
1638	requeue_task_rt(rq, p, 1);
1639	resched_curr(rq);
1640}
1641
1642static int balance_rt(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1643{
1644	if (!on_rt_rq(&p->rt) && need_pull_rt_task(rq, p)) {
1645		/*
1646		 * This is OK, because current is on_cpu, which avoids it being
1647		 * picked for load-balance and preemption/IRQs are still
1648		 * disabled avoiding further scheduler activity on it and we've
1649		 * not yet started the picking loop.
1650		 */
1651		rq_unpin_lock(rq, rf);
1652		pull_rt_task(rq);
1653		rq_repin_lock(rq, rf);
1654	}
1655
1656	return sched_stop_runnable(rq) || sched_dl_runnable(rq) || sched_rt_runnable(rq);
1657}
1658#endif /* CONFIG_SMP */
1659
1660/*
1661 * Preempt the current task with a newly woken task if needed:
1662 */
1663static void wakeup_preempt_rt(struct rq *rq, struct task_struct *p, int flags)
1664{
1665	if (p->prio < rq->curr->prio) {
1666		resched_curr(rq);
1667		return;
1668	}
1669
1670#ifdef CONFIG_SMP
1671	/*
1672	 * If:
1673	 *
1674	 * - the newly woken task is of equal priority to the current task
1675	 * - the newly woken task is non-migratable while current is migratable
1676	 * - current will be preempted on the next reschedule
1677	 *
1678	 * we should check to see if current can readily move to a different
1679	 * cpu.  If so, we will reschedule to allow the push logic to try
1680	 * to move current somewhere else, making room for our non-migratable
1681	 * task.
1682	 */
1683	if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1684		check_preempt_equal_prio(rq, p);
1685#endif
1686}
1687
1688static inline void set_next_task_rt(struct rq *rq, struct task_struct *p, bool first)
1689{
1690	struct sched_rt_entity *rt_se = &p->rt;
1691	struct rt_rq *rt_rq = &rq->rt;
1692
1693	p->se.exec_start = rq_clock_task(rq);
1694	if (on_rt_rq(&p->rt))
1695		update_stats_wait_end_rt(rt_rq, rt_se);
1696
1697	/* The running task is never eligible for pushing */
1698	dequeue_pushable_task(rq, p);
1699
1700	if (!first)
1701		return;
1702
1703	/*
1704	 * If prev task was rt, put_prev_task() has already updated the
1705	 * utilization. We only care of the case where we start to schedule a
1706	 * rt task
1707	 */
1708	if (rq->curr->sched_class != &rt_sched_class)
1709		update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
1710
1711	rt_queue_push_tasks(rq);
1712}
1713
1714static struct sched_rt_entity *pick_next_rt_entity(struct rt_rq *rt_rq)
1715{
1716	struct rt_prio_array *array = &rt_rq->active;
1717	struct sched_rt_entity *next = NULL;
1718	struct list_head *queue;
1719	int idx;
1720
1721	idx = sched_find_first_bit(array->bitmap);
1722	BUG_ON(idx >= MAX_RT_PRIO);
1723
1724	queue = array->queue + idx;
1725	if (SCHED_WARN_ON(list_empty(queue)))
1726		return NULL;
1727	next = list_entry(queue->next, struct sched_rt_entity, run_list);
1728
1729	return next;
1730}
1731
1732static struct task_struct *_pick_next_task_rt(struct rq *rq)
1733{
1734	struct sched_rt_entity *rt_se;
1735	struct rt_rq *rt_rq  = &rq->rt;
1736
1737	do {
1738		rt_se = pick_next_rt_entity(rt_rq);
1739		if (unlikely(!rt_se))
1740			return NULL;
1741		rt_rq = group_rt_rq(rt_se);
1742	} while (rt_rq);
1743
1744	return rt_task_of(rt_se);
1745}
1746
1747static struct task_struct *pick_task_rt(struct rq *rq)
1748{
1749	struct task_struct *p;
1750
1751	if (!sched_rt_runnable(rq))
1752		return NULL;
1753
1754	p = _pick_next_task_rt(rq);
1755
1756	return p;
1757}
1758
1759static struct task_struct *pick_next_task_rt(struct rq *rq)
1760{
1761	struct task_struct *p = pick_task_rt(rq);
1762
1763	if (p)
1764		set_next_task_rt(rq, p, true);
1765
1766	return p;
1767}
1768
1769static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1770{
1771	struct sched_rt_entity *rt_se = &p->rt;
1772	struct rt_rq *rt_rq = &rq->rt;
1773
1774	if (on_rt_rq(&p->rt))
1775		update_stats_wait_start_rt(rt_rq, rt_se);
1776
1777	update_curr_rt(rq);
1778
1779	update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
1780
1781	/*
1782	 * The previous task needs to be made eligible for pushing
1783	 * if it is still active
1784	 */
1785	if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1786		enqueue_pushable_task(rq, p);
1787}
1788
1789#ifdef CONFIG_SMP
1790
1791/* Only try algorithms three times */
1792#define RT_MAX_TRIES 3
1793
1794static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1795{
1796	if (!task_on_cpu(rq, p) &&
1797	    cpumask_test_cpu(cpu, &p->cpus_mask))
1798		return 1;
1799
1800	return 0;
1801}
1802
1803/*
1804 * Return the highest pushable rq's task, which is suitable to be executed
1805 * on the CPU, NULL otherwise
1806 */
1807static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1808{
1809	struct plist_head *head = &rq->rt.pushable_tasks;
1810	struct task_struct *p;
1811
1812	if (!has_pushable_tasks(rq))
1813		return NULL;
1814
1815	plist_for_each_entry(p, head, pushable_tasks) {
1816		if (pick_rt_task(rq, p, cpu))
1817			return p;
1818	}
1819
1820	return NULL;
1821}
1822
1823static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1824
1825static int find_lowest_rq(struct task_struct *task)
1826{
1827	struct sched_domain *sd;
1828	struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
1829	int this_cpu = smp_processor_id();
1830	int cpu      = task_cpu(task);
1831	int ret;
1832
1833	/* Make sure the mask is initialized first */
1834	if (unlikely(!lowest_mask))
1835		return -1;
1836
1837	if (task->nr_cpus_allowed == 1)
1838		return -1; /* No other targets possible */
1839
1840	/*
1841	 * If we're on asym system ensure we consider the different capacities
1842	 * of the CPUs when searching for the lowest_mask.
1843	 */
1844	if (sched_asym_cpucap_active()) {
1845
1846		ret = cpupri_find_fitness(&task_rq(task)->rd->cpupri,
1847					  task, lowest_mask,
1848					  rt_task_fits_capacity);
1849	} else {
1850
1851		ret = cpupri_find(&task_rq(task)->rd->cpupri,
1852				  task, lowest_mask);
1853	}
1854
1855	if (!ret)
1856		return -1; /* No targets found */
1857
1858	/*
1859	 * At this point we have built a mask of CPUs representing the
1860	 * lowest priority tasks in the system.  Now we want to elect
1861	 * the best one based on our affinity and topology.
1862	 *
1863	 * We prioritize the last CPU that the task executed on since
1864	 * it is most likely cache-hot in that location.
1865	 */
1866	if (cpumask_test_cpu(cpu, lowest_mask))
1867		return cpu;
1868
1869	/*
1870	 * Otherwise, we consult the sched_domains span maps to figure
1871	 * out which CPU is logically closest to our hot cache data.
1872	 */
1873	if (!cpumask_test_cpu(this_cpu, lowest_mask))
1874		this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1875
1876	rcu_read_lock();
1877	for_each_domain(cpu, sd) {
1878		if (sd->flags & SD_WAKE_AFFINE) {
1879			int best_cpu;
1880
1881			/*
1882			 * "this_cpu" is cheaper to preempt than a
1883			 * remote processor.
1884			 */
1885			if (this_cpu != -1 &&
1886			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1887				rcu_read_unlock();
1888				return this_cpu;
1889			}
1890
1891			best_cpu = cpumask_any_and_distribute(lowest_mask,
1892							      sched_domain_span(sd));
1893			if (best_cpu < nr_cpu_ids) {
1894				rcu_read_unlock();
1895				return best_cpu;
1896			}
1897		}
1898	}
1899	rcu_read_unlock();
1900
1901	/*
1902	 * And finally, if there were no matches within the domains
1903	 * just give the caller *something* to work with from the compatible
1904	 * locations.
1905	 */
1906	if (this_cpu != -1)
1907		return this_cpu;
1908
1909	cpu = cpumask_any_distribute(lowest_mask);
1910	if (cpu < nr_cpu_ids)
1911		return cpu;
1912
1913	return -1;
1914}
1915
1916/* Will lock the rq it finds */
1917static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1918{
1919	struct rq *lowest_rq = NULL;
1920	int tries;
1921	int cpu;
1922
1923	for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1924		cpu = find_lowest_rq(task);
1925
1926		if ((cpu == -1) || (cpu == rq->cpu))
1927			break;
1928
1929		lowest_rq = cpu_rq(cpu);
1930
1931		if (lowest_rq->rt.highest_prio.curr <= task->prio) {
1932			/*
1933			 * Target rq has tasks of equal or higher priority,
1934			 * retrying does not release any lock and is unlikely
1935			 * to yield a different result.
1936			 */
1937			lowest_rq = NULL;
1938			break;
1939		}
1940
1941		/* if the prio of this runqueue changed, try again */
1942		if (double_lock_balance(rq, lowest_rq)) {
1943			/*
1944			 * We had to unlock the run queue. In
1945			 * the mean time, task could have
1946			 * migrated already or had its affinity changed.
1947			 * Also make sure that it wasn't scheduled on its rq.
1948			 * It is possible the task was scheduled, set
1949			 * "migrate_disabled" and then got preempted, so we must
1950			 * check the task migration disable flag here too.
1951			 */
1952			if (unlikely(task_rq(task) != rq ||
1953				     !cpumask_test_cpu(lowest_rq->cpu, &task->cpus_mask) ||
1954				     task_on_cpu(rq, task) ||
1955				     !rt_task(task) ||
1956				     is_migration_disabled(task) ||
1957				     !task_on_rq_queued(task))) {
1958
1959				double_unlock_balance(rq, lowest_rq);
1960				lowest_rq = NULL;
1961				break;
1962			}
1963		}
1964
1965		/* If this rq is still suitable use it. */
1966		if (lowest_rq->rt.highest_prio.curr > task->prio)
1967			break;
1968
1969		/* try again */
1970		double_unlock_balance(rq, lowest_rq);
1971		lowest_rq = NULL;
1972	}
1973
1974	return lowest_rq;
1975}
1976
1977static struct task_struct *pick_next_pushable_task(struct rq *rq)
1978{
1979	struct task_struct *p;
1980
1981	if (!has_pushable_tasks(rq))
1982		return NULL;
1983
1984	p = plist_first_entry(&rq->rt.pushable_tasks,
1985			      struct task_struct, pushable_tasks);
1986
1987	BUG_ON(rq->cpu != task_cpu(p));
1988	BUG_ON(task_current(rq, p));
1989	BUG_ON(p->nr_cpus_allowed <= 1);
1990
1991	BUG_ON(!task_on_rq_queued(p));
1992	BUG_ON(!rt_task(p));
1993
1994	return p;
1995}
1996
1997/*
1998 * If the current CPU has more than one RT task, see if the non
1999 * running task can migrate over to a CPU that is running a task
2000 * of lesser priority.
2001 */
2002static int push_rt_task(struct rq *rq, bool pull)
2003{
2004	struct task_struct *next_task;
2005	struct rq *lowest_rq;
2006	int ret = 0;
2007
2008	if (!rq->rt.overloaded)
2009		return 0;
2010
2011	next_task = pick_next_pushable_task(rq);
2012	if (!next_task)
2013		return 0;
2014
2015retry:
2016	/*
2017	 * It's possible that the next_task slipped in of
2018	 * higher priority than current. If that's the case
2019	 * just reschedule current.
2020	 */
2021	if (unlikely(next_task->prio < rq->curr->prio)) {
2022		resched_curr(rq);
2023		return 0;
2024	}
2025
2026	if (is_migration_disabled(next_task)) {
2027		struct task_struct *push_task = NULL;
2028		int cpu;
2029
2030		if (!pull || rq->push_busy)
2031			return 0;
2032
2033		/*
2034		 * Invoking find_lowest_rq() on anything but an RT task doesn't
2035		 * make sense. Per the above priority check, curr has to
2036		 * be of higher priority than next_task, so no need to
2037		 * reschedule when bailing out.
2038		 *
2039		 * Note that the stoppers are masqueraded as SCHED_FIFO
2040		 * (cf. sched_set_stop_task()), so we can't rely on rt_task().
2041		 */
2042		if (rq->curr->sched_class != &rt_sched_class)
2043			return 0;
2044
2045		cpu = find_lowest_rq(rq->curr);
2046		if (cpu == -1 || cpu == rq->cpu)
2047			return 0;
2048
2049		/*
2050		 * Given we found a CPU with lower priority than @next_task,
2051		 * therefore it should be running. However we cannot migrate it
2052		 * to this other CPU, instead attempt to push the current
2053		 * running task on this CPU away.
2054		 */
2055		push_task = get_push_task(rq);
2056		if (push_task) {
2057			preempt_disable();
2058			raw_spin_rq_unlock(rq);
2059			stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2060					    push_task, &rq->push_work);
2061			preempt_enable();
2062			raw_spin_rq_lock(rq);
2063		}
2064
2065		return 0;
2066	}
2067
2068	if (WARN_ON(next_task == rq->curr))
2069		return 0;
2070
2071	/* We might release rq lock */
2072	get_task_struct(next_task);
2073
2074	/* find_lock_lowest_rq locks the rq if found */
2075	lowest_rq = find_lock_lowest_rq(next_task, rq);
2076	if (!lowest_rq) {
2077		struct task_struct *task;
2078		/*
2079		 * find_lock_lowest_rq releases rq->lock
2080		 * so it is possible that next_task has migrated.
2081		 *
2082		 * We need to make sure that the task is still on the same
2083		 * run-queue and is also still the next task eligible for
2084		 * pushing.
2085		 */
2086		task = pick_next_pushable_task(rq);
2087		if (task == next_task) {
2088			/*
2089			 * The task hasn't migrated, and is still the next
2090			 * eligible task, but we failed to find a run-queue
2091			 * to push it to.  Do not retry in this case, since
2092			 * other CPUs will pull from us when ready.
2093			 */
2094			goto out;
2095		}
2096
2097		if (!task)
2098			/* No more tasks, just exit */
2099			goto out;
2100
2101		/*
2102		 * Something has shifted, try again.
2103		 */
2104		put_task_struct(next_task);
2105		next_task = task;
2106		goto retry;
2107	}
2108
2109	deactivate_task(rq, next_task, 0);
2110	set_task_cpu(next_task, lowest_rq->cpu);
2111	activate_task(lowest_rq, next_task, 0);
2112	resched_curr(lowest_rq);
2113	ret = 1;
2114
2115	double_unlock_balance(rq, lowest_rq);
2116out:
2117	put_task_struct(next_task);
2118
2119	return ret;
2120}
2121
2122static void push_rt_tasks(struct rq *rq)
2123{
2124	/* push_rt_task will return true if it moved an RT */
2125	while (push_rt_task(rq, false))
2126		;
2127}
2128
2129#ifdef HAVE_RT_PUSH_IPI
2130
2131/*
2132 * When a high priority task schedules out from a CPU and a lower priority
2133 * task is scheduled in, a check is made to see if there's any RT tasks
2134 * on other CPUs that are waiting to run because a higher priority RT task
2135 * is currently running on its CPU. In this case, the CPU with multiple RT
2136 * tasks queued on it (overloaded) needs to be notified that a CPU has opened
2137 * up that may be able to run one of its non-running queued RT tasks.
2138 *
2139 * All CPUs with overloaded RT tasks need to be notified as there is currently
2140 * no way to know which of these CPUs have the highest priority task waiting
2141 * to run. Instead of trying to take a spinlock on each of these CPUs,
2142 * which has shown to cause large latency when done on machines with many
2143 * CPUs, sending an IPI to the CPUs to have them push off the overloaded
2144 * RT tasks waiting to run.
2145 *
2146 * Just sending an IPI to each of the CPUs is also an issue, as on large
2147 * count CPU machines, this can cause an IPI storm on a CPU, especially
2148 * if its the only CPU with multiple RT tasks queued, and a large number
2149 * of CPUs scheduling a lower priority task at the same time.
2150 *
2151 * Each root domain has its own irq work function that can iterate over
2152 * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT
2153 * task must be checked if there's one or many CPUs that are lowering
2154 * their priority, there's a single irq work iterator that will try to
2155 * push off RT tasks that are waiting to run.
2156 *
2157 * When a CPU schedules a lower priority task, it will kick off the
2158 * irq work iterator that will jump to each CPU with overloaded RT tasks.
2159 * As it only takes the first CPU that schedules a lower priority task
2160 * to start the process, the rto_start variable is incremented and if
2161 * the atomic result is one, then that CPU will try to take the rto_lock.
2162 * This prevents high contention on the lock as the process handles all
2163 * CPUs scheduling lower priority tasks.
2164 *
2165 * All CPUs that are scheduling a lower priority task will increment the
2166 * rt_loop_next variable. This will make sure that the irq work iterator
2167 * checks all RT overloaded CPUs whenever a CPU schedules a new lower
2168 * priority task, even if the iterator is in the middle of a scan. Incrementing
2169 * the rt_loop_next will cause the iterator to perform another scan.
2170 *
2171 */
2172static int rto_next_cpu(struct root_domain *rd)
2173{
2174	int next;
2175	int cpu;
2176
2177	/*
2178	 * When starting the IPI RT pushing, the rto_cpu is set to -1,
2179	 * rt_next_cpu() will simply return the first CPU found in
2180	 * the rto_mask.
2181	 *
2182	 * If rto_next_cpu() is called with rto_cpu is a valid CPU, it
2183	 * will return the next CPU found in the rto_mask.
2184	 *
2185	 * If there are no more CPUs left in the rto_mask, then a check is made
2186	 * against rto_loop and rto_loop_next. rto_loop is only updated with
2187	 * the rto_lock held, but any CPU may increment the rto_loop_next
2188	 * without any locking.
2189	 */
2190	for (;;) {
2191
2192		/* When rto_cpu is -1 this acts like cpumask_first() */
2193		cpu = cpumask_next(rd->rto_cpu, rd->rto_mask);
2194
2195		rd->rto_cpu = cpu;
2196
2197		if (cpu < nr_cpu_ids)
2198			return cpu;
2199
2200		rd->rto_cpu = -1;
2201
2202		/*
2203		 * ACQUIRE ensures we see the @rto_mask changes
2204		 * made prior to the @next value observed.
2205		 *
2206		 * Matches WMB in rt_set_overload().
2207		 */
2208		next = atomic_read_acquire(&rd->rto_loop_next);
2209
2210		if (rd->rto_loop == next)
2211			break;
2212
2213		rd->rto_loop = next;
2214	}
2215
2216	return -1;
2217}
2218
2219static inline bool rto_start_trylock(atomic_t *v)
2220{
2221	return !atomic_cmpxchg_acquire(v, 0, 1);
2222}
2223
2224static inline void rto_start_unlock(atomic_t *v)
2225{
2226	atomic_set_release(v, 0);
2227}
2228
2229static void tell_cpu_to_push(struct rq *rq)
2230{
2231	int cpu = -1;
2232
2233	/* Keep the loop going if the IPI is currently active */
2234	atomic_inc(&rq->rd->rto_loop_next);
2235
2236	/* Only one CPU can initiate a loop at a time */
2237	if (!rto_start_trylock(&rq->rd->rto_loop_start))
2238		return;
2239
2240	raw_spin_lock(&rq->rd->rto_lock);
2241
2242	/*
2243	 * The rto_cpu is updated under the lock, if it has a valid CPU
2244	 * then the IPI is still running and will continue due to the
2245	 * update to loop_next, and nothing needs to be done here.
2246	 * Otherwise it is finishing up and an ipi needs to be sent.
2247	 */
2248	if (rq->rd->rto_cpu < 0)
2249		cpu = rto_next_cpu(rq->rd);
2250
2251	raw_spin_unlock(&rq->rd->rto_lock);
2252
2253	rto_start_unlock(&rq->rd->rto_loop_start);
2254
2255	if (cpu >= 0) {
2256		/* Make sure the rd does not get freed while pushing */
2257		sched_get_rd(rq->rd);
2258		irq_work_queue_on(&rq->rd->rto_push_work, cpu);
2259	}
2260}
2261
2262/* Called from hardirq context */
2263void rto_push_irq_work_func(struct irq_work *work)
2264{
2265	struct root_domain *rd =
2266		container_of(work, struct root_domain, rto_push_work);
2267	struct rq *rq;
2268	int cpu;
2269
2270	rq = this_rq();
2271
2272	/*
2273	 * We do not need to grab the lock to check for has_pushable_tasks.
2274	 * When it gets updated, a check is made if a push is possible.
2275	 */
2276	if (has_pushable_tasks(rq)) {
2277		raw_spin_rq_lock(rq);
2278		while (push_rt_task(rq, true))
2279			;
2280		raw_spin_rq_unlock(rq);
2281	}
2282
2283	raw_spin_lock(&rd->rto_lock);
2284
2285	/* Pass the IPI to the next rt overloaded queue */
2286	cpu = rto_next_cpu(rd);
2287
2288	raw_spin_unlock(&rd->rto_lock);
2289
2290	if (cpu < 0) {
2291		sched_put_rd(rd);
2292		return;
2293	}
2294
2295	/* Try the next RT overloaded CPU */
2296	irq_work_queue_on(&rd->rto_push_work, cpu);
2297}
2298#endif /* HAVE_RT_PUSH_IPI */
2299
2300static void pull_rt_task(struct rq *this_rq)
2301{
2302	int this_cpu = this_rq->cpu, cpu;
2303	bool resched = false;
2304	struct task_struct *p, *push_task;
2305	struct rq *src_rq;
2306	int rt_overload_count = rt_overloaded(this_rq);
2307
2308	if (likely(!rt_overload_count))
2309		return;
2310
2311	/*
2312	 * Match the barrier from rt_set_overloaded; this guarantees that if we
2313	 * see overloaded we must also see the rto_mask bit.
2314	 */
2315	smp_rmb();
2316
2317	/* If we are the only overloaded CPU do nothing */
2318	if (rt_overload_count == 1 &&
2319	    cpumask_test_cpu(this_rq->cpu, this_rq->rd->rto_mask))
2320		return;
2321
2322#ifdef HAVE_RT_PUSH_IPI
2323	if (sched_feat(RT_PUSH_IPI)) {
2324		tell_cpu_to_push(this_rq);
2325		return;
2326	}
2327#endif
2328
2329	for_each_cpu(cpu, this_rq->rd->rto_mask) {
2330		if (this_cpu == cpu)
2331			continue;
2332
2333		src_rq = cpu_rq(cpu);
2334
2335		/*
2336		 * Don't bother taking the src_rq->lock if the next highest
2337		 * task is known to be lower-priority than our current task.
2338		 * This may look racy, but if this value is about to go
2339		 * logically higher, the src_rq will push this task away.
2340		 * And if its going logically lower, we do not care
2341		 */
2342		if (src_rq->rt.highest_prio.next >=
2343		    this_rq->rt.highest_prio.curr)
2344			continue;
2345
2346		/*
2347		 * We can potentially drop this_rq's lock in
2348		 * double_lock_balance, and another CPU could
2349		 * alter this_rq
2350		 */
2351		push_task = NULL;
2352		double_lock_balance(this_rq, src_rq);
2353
2354		/*
2355		 * We can pull only a task, which is pushable
2356		 * on its rq, and no others.
2357		 */
2358		p = pick_highest_pushable_task(src_rq, this_cpu);
2359
2360		/*
2361		 * Do we have an RT task that preempts
2362		 * the to-be-scheduled task?
2363		 */
2364		if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
2365			WARN_ON(p == src_rq->curr);
2366			WARN_ON(!task_on_rq_queued(p));
2367
2368			/*
2369			 * There's a chance that p is higher in priority
2370			 * than what's currently running on its CPU.
2371			 * This is just that p is waking up and hasn't
2372			 * had a chance to schedule. We only pull
2373			 * p if it is lower in priority than the
2374			 * current task on the run queue
2375			 */
2376			if (p->prio < src_rq->curr->prio)
2377				goto skip;
2378
2379			if (is_migration_disabled(p)) {
2380				push_task = get_push_task(src_rq);
2381			} else {
2382				deactivate_task(src_rq, p, 0);
2383				set_task_cpu(p, this_cpu);
2384				activate_task(this_rq, p, 0);
2385				resched = true;
2386			}
2387			/*
2388			 * We continue with the search, just in
2389			 * case there's an even higher prio task
2390			 * in another runqueue. (low likelihood
2391			 * but possible)
2392			 */
2393		}
2394skip:
2395		double_unlock_balance(this_rq, src_rq);
2396
2397		if (push_task) {
2398			preempt_disable();
2399			raw_spin_rq_unlock(this_rq);
2400			stop_one_cpu_nowait(src_rq->cpu, push_cpu_stop,
2401					    push_task, &src_rq->push_work);
2402			preempt_enable();
2403			raw_spin_rq_lock(this_rq);
2404		}
2405	}
2406
2407	if (resched)
2408		resched_curr(this_rq);
2409}
2410
2411/*
2412 * If we are not running and we are not going to reschedule soon, we should
2413 * try to push tasks away now
2414 */
2415static void task_woken_rt(struct rq *rq, struct task_struct *p)
2416{
2417	bool need_to_push = !task_on_cpu(rq, p) &&
2418			    !test_tsk_need_resched(rq->curr) &&
2419			    p->nr_cpus_allowed > 1 &&
2420			    (dl_task(rq->curr) || rt_task(rq->curr)) &&
2421			    (rq->curr->nr_cpus_allowed < 2 ||
2422			     rq->curr->prio <= p->prio);
2423
2424	if (need_to_push)
2425		push_rt_tasks(rq);
2426}
2427
2428/* Assumes rq->lock is held */
2429static void rq_online_rt(struct rq *rq)
2430{
2431	if (rq->rt.overloaded)
2432		rt_set_overload(rq);
2433
2434	__enable_runtime(rq);
2435
2436	cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
2437}
2438
2439/* Assumes rq->lock is held */
2440static void rq_offline_rt(struct rq *rq)
2441{
2442	if (rq->rt.overloaded)
2443		rt_clear_overload(rq);
2444
2445	__disable_runtime(rq);
2446
2447	cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
2448}
2449
2450/*
2451 * When switch from the rt queue, we bring ourselves to a position
2452 * that we might want to pull RT tasks from other runqueues.
2453 */
2454static void switched_from_rt(struct rq *rq, struct task_struct *p)
2455{
2456	/*
2457	 * If there are other RT tasks then we will reschedule
2458	 * and the scheduling of the other RT tasks will handle
2459	 * the balancing. But if we are the last RT task
2460	 * we may need to handle the pulling of RT tasks
2461	 * now.
2462	 */
2463	if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
2464		return;
2465
2466	rt_queue_pull_task(rq);
2467}
2468
2469void __init init_sched_rt_class(void)
2470{
2471	unsigned int i;
2472
2473	for_each_possible_cpu(i) {
2474		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
2475					GFP_KERNEL, cpu_to_node(i));
2476	}
2477}
2478#endif /* CONFIG_SMP */
2479
2480/*
2481 * When switching a task to RT, we may overload the runqueue
2482 * with RT tasks. In this case we try to push them off to
2483 * other runqueues.
2484 */
2485static void switched_to_rt(struct rq *rq, struct task_struct *p)
2486{
2487	/*
2488	 * If we are running, update the avg_rt tracking, as the running time
2489	 * will now on be accounted into the latter.
2490	 */
2491	if (task_current(rq, p)) {
2492		update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
2493		return;
2494	}
2495
2496	/*
2497	 * If we are not running we may need to preempt the current
2498	 * running task. If that current running task is also an RT task
2499	 * then see if we can move to another run queue.
2500	 */
2501	if (task_on_rq_queued(p)) {
2502#ifdef CONFIG_SMP
2503		if (p->nr_cpus_allowed > 1 && rq->rt.overloaded)
2504			rt_queue_push_tasks(rq);
2505#endif /* CONFIG_SMP */
2506		if (p->prio < rq->curr->prio && cpu_online(cpu_of(rq)))
2507			resched_curr(rq);
2508	}
2509}
2510
2511/*
2512 * Priority of the task has changed. This may cause
2513 * us to initiate a push or pull.
2514 */
2515static void
2516prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
2517{
2518	if (!task_on_rq_queued(p))
2519		return;
2520
2521	if (task_current(rq, p)) {
2522#ifdef CONFIG_SMP
2523		/*
2524		 * If our priority decreases while running, we
2525		 * may need to pull tasks to this runqueue.
2526		 */
2527		if (oldprio < p->prio)
2528			rt_queue_pull_task(rq);
2529
2530		/*
2531		 * If there's a higher priority task waiting to run
2532		 * then reschedule.
2533		 */
2534		if (p->prio > rq->rt.highest_prio.curr)
2535			resched_curr(rq);
2536#else
2537		/* For UP simply resched on drop of prio */
2538		if (oldprio < p->prio)
2539			resched_curr(rq);
2540#endif /* CONFIG_SMP */
2541	} else {
2542		/*
2543		 * This task is not running, but if it is
2544		 * greater than the current running task
2545		 * then reschedule.
2546		 */
2547		if (p->prio < rq->curr->prio)
2548			resched_curr(rq);
2549	}
2550}
2551
2552#ifdef CONFIG_POSIX_TIMERS
2553static void watchdog(struct rq *rq, struct task_struct *p)
2554{
2555	unsigned long soft, hard;
2556
2557	/* max may change after cur was read, this will be fixed next tick */
2558	soft = task_rlimit(p, RLIMIT_RTTIME);
2559	hard = task_rlimit_max(p, RLIMIT_RTTIME);
2560
2561	if (soft != RLIM_INFINITY) {
2562		unsigned long next;
2563
2564		if (p->rt.watchdog_stamp != jiffies) {
2565			p->rt.timeout++;
2566			p->rt.watchdog_stamp = jiffies;
2567		}
2568
2569		next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2570		if (p->rt.timeout > next) {
2571			posix_cputimers_rt_watchdog(&p->posix_cputimers,
2572						    p->se.sum_exec_runtime);
2573		}
2574	}
2575}
2576#else
2577static inline void watchdog(struct rq *rq, struct task_struct *p) { }
2578#endif
2579
2580/*
2581 * scheduler tick hitting a task of our scheduling class.
2582 *
2583 * NOTE: This function can be called remotely by the tick offload that
2584 * goes along full dynticks. Therefore no local assumption can be made
2585 * and everything must be accessed through the @rq and @curr passed in
2586 * parameters.
2587 */
2588static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2589{
2590	struct sched_rt_entity *rt_se = &p->rt;
2591
2592	update_curr_rt(rq);
2593	update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2594
2595	watchdog(rq, p);
2596
2597	/*
2598	 * RR tasks need a special form of timeslice management.
2599	 * FIFO tasks have no timeslices.
2600	 */
2601	if (p->policy != SCHED_RR)
2602		return;
2603
2604	if (--p->rt.time_slice)
2605		return;
2606
2607	p->rt.time_slice = sched_rr_timeslice;
2608
2609	/*
2610	 * Requeue to the end of queue if we (and all of our ancestors) are not
2611	 * the only element on the queue
2612	 */
2613	for_each_sched_rt_entity(rt_se) {
2614		if (rt_se->run_list.prev != rt_se->run_list.next) {
2615			requeue_task_rt(rq, p, 0);
2616			resched_curr(rq);
2617			return;
2618		}
2619	}
2620}
2621
2622static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2623{
2624	/*
2625	 * Time slice is 0 for SCHED_FIFO tasks
2626	 */
2627	if (task->policy == SCHED_RR)
2628		return sched_rr_timeslice;
2629	else
2630		return 0;
2631}
2632
2633#ifdef CONFIG_SCHED_CORE
2634static int task_is_throttled_rt(struct task_struct *p, int cpu)
2635{
2636	struct rt_rq *rt_rq;
2637
2638#ifdef CONFIG_RT_GROUP_SCHED
2639	rt_rq = task_group(p)->rt_rq[cpu];
2640#else
2641	rt_rq = &cpu_rq(cpu)->rt;
2642#endif
2643
2644	return rt_rq_throttled(rt_rq);
2645}
2646#endif
2647
2648DEFINE_SCHED_CLASS(rt) = {
2649
2650	.enqueue_task		= enqueue_task_rt,
2651	.dequeue_task		= dequeue_task_rt,
2652	.yield_task		= yield_task_rt,
2653
2654	.wakeup_preempt		= wakeup_preempt_rt,
2655
2656	.pick_next_task		= pick_next_task_rt,
2657	.put_prev_task		= put_prev_task_rt,
2658	.set_next_task          = set_next_task_rt,
2659
2660#ifdef CONFIG_SMP
2661	.balance		= balance_rt,
2662	.pick_task		= pick_task_rt,
2663	.select_task_rq		= select_task_rq_rt,
2664	.set_cpus_allowed       = set_cpus_allowed_common,
2665	.rq_online              = rq_online_rt,
2666	.rq_offline             = rq_offline_rt,
2667	.task_woken		= task_woken_rt,
2668	.switched_from		= switched_from_rt,
2669	.find_lock_rq		= find_lock_lowest_rq,
2670#endif
2671
2672	.task_tick		= task_tick_rt,
2673
2674	.get_rr_interval	= get_rr_interval_rt,
2675
2676	.prio_changed		= prio_changed_rt,
2677	.switched_to		= switched_to_rt,
2678
2679	.update_curr		= update_curr_rt,
2680
2681#ifdef CONFIG_SCHED_CORE
2682	.task_is_throttled	= task_is_throttled_rt,
2683#endif
2684
2685#ifdef CONFIG_UCLAMP_TASK
2686	.uclamp_enabled		= 1,
2687#endif
2688};
2689
2690#ifdef CONFIG_RT_GROUP_SCHED
2691/*
2692 * Ensure that the real time constraints are schedulable.
2693 */
2694static DEFINE_MUTEX(rt_constraints_mutex);
2695
2696static inline int tg_has_rt_tasks(struct task_group *tg)
2697{
2698	struct task_struct *task;
2699	struct css_task_iter it;
2700	int ret = 0;
2701
2702	/*
2703	 * Autogroups do not have RT tasks; see autogroup_create().
2704	 */
2705	if (task_group_is_autogroup(tg))
2706		return 0;
2707
2708	css_task_iter_start(&tg->css, 0, &it);
2709	while (!ret && (task = css_task_iter_next(&it)))
2710		ret |= rt_task(task);
2711	css_task_iter_end(&it);
2712
2713	return ret;
2714}
2715
2716struct rt_schedulable_data {
2717	struct task_group *tg;
2718	u64 rt_period;
2719	u64 rt_runtime;
2720};
2721
2722static int tg_rt_schedulable(struct task_group *tg, void *data)
2723{
2724	struct rt_schedulable_data *d = data;
2725	struct task_group *child;
2726	unsigned long total, sum = 0;
2727	u64 period, runtime;
2728
2729	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2730	runtime = tg->rt_bandwidth.rt_runtime;
2731
2732	if (tg == d->tg) {
2733		period = d->rt_period;
2734		runtime = d->rt_runtime;
2735	}
2736
2737	/*
2738	 * Cannot have more runtime than the period.
2739	 */
2740	if (runtime > period && runtime != RUNTIME_INF)
2741		return -EINVAL;
2742
2743	/*
2744	 * Ensure we don't starve existing RT tasks if runtime turns zero.
2745	 */
2746	if (rt_bandwidth_enabled() && !runtime &&
2747	    tg->rt_bandwidth.rt_runtime && tg_has_rt_tasks(tg))
2748		return -EBUSY;
2749
2750	total = to_ratio(period, runtime);
2751
2752	/*
2753	 * Nobody can have more than the global setting allows.
2754	 */
2755	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
2756		return -EINVAL;
2757
2758	/*
2759	 * The sum of our children's runtime should not exceed our own.
2760	 */
2761	list_for_each_entry_rcu(child, &tg->children, siblings) {
2762		period = ktime_to_ns(child->rt_bandwidth.rt_period);
2763		runtime = child->rt_bandwidth.rt_runtime;
2764
2765		if (child == d->tg) {
2766			period = d->rt_period;
2767			runtime = d->rt_runtime;
2768		}
2769
2770		sum += to_ratio(period, runtime);
2771	}
2772
2773	if (sum > total)
2774		return -EINVAL;
2775
2776	return 0;
2777}
2778
2779static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
2780{
2781	int ret;
2782
2783	struct rt_schedulable_data data = {
2784		.tg = tg,
2785		.rt_period = period,
2786		.rt_runtime = runtime,
2787	};
2788
2789	rcu_read_lock();
2790	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
2791	rcu_read_unlock();
2792
2793	return ret;
2794}
2795
2796static int tg_set_rt_bandwidth(struct task_group *tg,
2797		u64 rt_period, u64 rt_runtime)
2798{
2799	int i, err = 0;
2800
2801	/*
2802	 * Disallowing the root group RT runtime is BAD, it would disallow the
2803	 * kernel creating (and or operating) RT threads.
2804	 */
2805	if (tg == &root_task_group && rt_runtime == 0)
2806		return -EINVAL;
2807
2808	/* No period doesn't make any sense. */
2809	if (rt_period == 0)
2810		return -EINVAL;
2811
2812	/*
2813	 * Bound quota to defend quota against overflow during bandwidth shift.
2814	 */
2815	if (rt_runtime != RUNTIME_INF && rt_runtime > max_rt_runtime)
2816		return -EINVAL;
2817
2818	mutex_lock(&rt_constraints_mutex);
2819	err = __rt_schedulable(tg, rt_period, rt_runtime);
2820	if (err)
2821		goto unlock;
2822
2823	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2824	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
2825	tg->rt_bandwidth.rt_runtime = rt_runtime;
2826
2827	for_each_possible_cpu(i) {
2828		struct rt_rq *rt_rq = tg->rt_rq[i];
2829
2830		raw_spin_lock(&rt_rq->rt_runtime_lock);
2831		rt_rq->rt_runtime = rt_runtime;
2832		raw_spin_unlock(&rt_rq->rt_runtime_lock);
2833	}
2834	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2835unlock:
2836	mutex_unlock(&rt_constraints_mutex);
2837
2838	return err;
2839}
2840
2841int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
2842{
2843	u64 rt_runtime, rt_period;
2844
2845	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2846	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
2847	if (rt_runtime_us < 0)
2848		rt_runtime = RUNTIME_INF;
2849	else if ((u64)rt_runtime_us > U64_MAX / NSEC_PER_USEC)
2850		return -EINVAL;
2851
2852	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2853}
2854
2855long sched_group_rt_runtime(struct task_group *tg)
2856{
2857	u64 rt_runtime_us;
2858
2859	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
2860		return -1;
2861
2862	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
2863	do_div(rt_runtime_us, NSEC_PER_USEC);
2864	return rt_runtime_us;
2865}
2866
2867int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
2868{
2869	u64 rt_runtime, rt_period;
2870
2871	if (rt_period_us > U64_MAX / NSEC_PER_USEC)
2872		return -EINVAL;
2873
2874	rt_period = rt_period_us * NSEC_PER_USEC;
2875	rt_runtime = tg->rt_bandwidth.rt_runtime;
2876
2877	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2878}
2879
2880long sched_group_rt_period(struct task_group *tg)
2881{
2882	u64 rt_period_us;
2883
2884	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
2885	do_div(rt_period_us, NSEC_PER_USEC);
2886	return rt_period_us;
2887}
2888
2889#ifdef CONFIG_SYSCTL
2890static int sched_rt_global_constraints(void)
2891{
2892	int ret = 0;
2893
2894	mutex_lock(&rt_constraints_mutex);
2895	ret = __rt_schedulable(NULL, 0, 0);
2896	mutex_unlock(&rt_constraints_mutex);
2897
2898	return ret;
2899}
2900#endif /* CONFIG_SYSCTL */
2901
2902int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
2903{
2904	/* Don't accept realtime tasks when there is no way for them to run */
2905	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
2906		return 0;
2907
2908	return 1;
2909}
2910
2911#else /* !CONFIG_RT_GROUP_SCHED */
2912
2913#ifdef CONFIG_SYSCTL
2914static int sched_rt_global_constraints(void)
2915{
2916	unsigned long flags;
2917	int i;
2918
2919	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
2920	for_each_possible_cpu(i) {
2921		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
2922
2923		raw_spin_lock(&rt_rq->rt_runtime_lock);
2924		rt_rq->rt_runtime = global_rt_runtime();
2925		raw_spin_unlock(&rt_rq->rt_runtime_lock);
2926	}
2927	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
2928
2929	return 0;
2930}
2931#endif /* CONFIG_SYSCTL */
2932#endif /* CONFIG_RT_GROUP_SCHED */
2933
2934#ifdef CONFIG_SYSCTL
2935static int sched_rt_global_validate(void)
2936{
 
 
 
2937	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
2938		((sysctl_sched_rt_runtime > sysctl_sched_rt_period) ||
2939		 ((u64)sysctl_sched_rt_runtime *
2940			NSEC_PER_USEC > max_rt_runtime)))
2941		return -EINVAL;
2942
2943	return 0;
2944}
2945
2946static void sched_rt_do_global(void)
2947{
2948	unsigned long flags;
2949
2950	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
2951	def_rt_bandwidth.rt_runtime = global_rt_runtime();
2952	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
2953	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
2954}
2955
2956static int sched_rt_handler(struct ctl_table *table, int write, void *buffer,
2957		size_t *lenp, loff_t *ppos)
2958{
2959	int old_period, old_runtime;
2960	static DEFINE_MUTEX(mutex);
2961	int ret;
2962
2963	mutex_lock(&mutex);
2964	old_period = sysctl_sched_rt_period;
2965	old_runtime = sysctl_sched_rt_runtime;
2966
2967	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2968
2969	if (!ret && write) {
2970		ret = sched_rt_global_validate();
2971		if (ret)
2972			goto undo;
2973
2974		ret = sched_dl_global_validate();
2975		if (ret)
2976			goto undo;
2977
2978		ret = sched_rt_global_constraints();
2979		if (ret)
2980			goto undo;
2981
2982		sched_rt_do_global();
2983		sched_dl_do_global();
2984	}
2985	if (0) {
2986undo:
2987		sysctl_sched_rt_period = old_period;
2988		sysctl_sched_rt_runtime = old_runtime;
2989	}
2990	mutex_unlock(&mutex);
2991
2992	return ret;
2993}
2994
2995static int sched_rr_handler(struct ctl_table *table, int write, void *buffer,
2996		size_t *lenp, loff_t *ppos)
2997{
2998	int ret;
2999	static DEFINE_MUTEX(mutex);
3000
3001	mutex_lock(&mutex);
3002	ret = proc_dointvec(table, write, buffer, lenp, ppos);
3003	/*
3004	 * Make sure that internally we keep jiffies.
3005	 * Also, writing zero resets the timeslice to default:
3006	 */
3007	if (!ret && write) {
3008		sched_rr_timeslice =
3009			sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE :
3010			msecs_to_jiffies(sysctl_sched_rr_timeslice);
3011
3012		if (sysctl_sched_rr_timeslice <= 0)
3013			sysctl_sched_rr_timeslice = jiffies_to_msecs(RR_TIMESLICE);
3014	}
3015	mutex_unlock(&mutex);
3016
3017	return ret;
3018}
3019#endif /* CONFIG_SYSCTL */
3020
3021#ifdef CONFIG_SCHED_DEBUG
3022void print_rt_stats(struct seq_file *m, int cpu)
3023{
3024	rt_rq_iter_t iter;
3025	struct rt_rq *rt_rq;
3026
3027	rcu_read_lock();
3028	for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
3029		print_rt_rq(m, cpu, rt_rq);
3030	rcu_read_unlock();
3031}
3032#endif /* CONFIG_SCHED_DEBUG */