Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
   4 * policies)
   5 */
 
   6
   7int sched_rr_timeslice = RR_TIMESLICE;
   8/* More than 4 hours if BW_SHIFT equals 20. */
   9static const u64 max_rt_runtime = MAX_BW;
  10
  11static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  12
  13struct rt_bandwidth def_rt_bandwidth;
  14
  15/*
  16 * period over which we measure -rt task CPU usage in us.
  17 * default: 1s
  18 */
  19unsigned int sysctl_sched_rt_period = 1000000;
  20
  21/*
  22 * part of the period that we allow rt tasks to run in us.
  23 * default: 0.95s
  24 */
  25int sysctl_sched_rt_runtime = 950000;
  26
  27#ifdef CONFIG_SYSCTL
  28static int sysctl_sched_rr_timeslice = (MSEC_PER_SEC / HZ) * RR_TIMESLICE;
  29static int sched_rt_handler(struct ctl_table *table, int write, void *buffer,
  30		size_t *lenp, loff_t *ppos);
  31static int sched_rr_handler(struct ctl_table *table, int write, void *buffer,
  32		size_t *lenp, loff_t *ppos);
  33static struct ctl_table sched_rt_sysctls[] = {
  34	{
  35		.procname       = "sched_rt_period_us",
  36		.data           = &sysctl_sched_rt_period,
  37		.maxlen         = sizeof(unsigned int),
  38		.mode           = 0644,
  39		.proc_handler   = sched_rt_handler,
  40	},
  41	{
  42		.procname       = "sched_rt_runtime_us",
  43		.data           = &sysctl_sched_rt_runtime,
  44		.maxlen         = sizeof(int),
  45		.mode           = 0644,
  46		.proc_handler   = sched_rt_handler,
  47	},
  48	{
  49		.procname       = "sched_rr_timeslice_ms",
  50		.data           = &sysctl_sched_rr_timeslice,
  51		.maxlen         = sizeof(int),
  52		.mode           = 0644,
  53		.proc_handler   = sched_rr_handler,
  54	},
  55	{}
  56};
  57
  58static int __init sched_rt_sysctl_init(void)
  59{
  60	register_sysctl_init("kernel", sched_rt_sysctls);
  61	return 0;
  62}
  63late_initcall(sched_rt_sysctl_init);
  64#endif
  65
  66static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  67{
  68	struct rt_bandwidth *rt_b =
  69		container_of(timer, struct rt_bandwidth, rt_period_timer);
  70	int idle = 0;
  71	int overrun;
  72
  73	raw_spin_lock(&rt_b->rt_runtime_lock);
  74	for (;;) {
  75		overrun = hrtimer_forward_now(timer, rt_b->rt_period);
  76		if (!overrun)
  77			break;
  78
  79		raw_spin_unlock(&rt_b->rt_runtime_lock);
  80		idle = do_sched_rt_period_timer(rt_b, overrun);
  81		raw_spin_lock(&rt_b->rt_runtime_lock);
  82	}
  83	if (idle)
  84		rt_b->rt_period_active = 0;
  85	raw_spin_unlock(&rt_b->rt_runtime_lock);
  86
  87	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  88}
  89
  90void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  91{
  92	rt_b->rt_period = ns_to_ktime(period);
  93	rt_b->rt_runtime = runtime;
  94
  95	raw_spin_lock_init(&rt_b->rt_runtime_lock);
  96
  97	hrtimer_init(&rt_b->rt_period_timer, CLOCK_MONOTONIC,
  98		     HRTIMER_MODE_REL_HARD);
  99	rt_b->rt_period_timer.function = sched_rt_period_timer;
 100}
 101
 102static inline void do_start_rt_bandwidth(struct rt_bandwidth *rt_b)
 103{
 
 
 
 104	raw_spin_lock(&rt_b->rt_runtime_lock);
 105	if (!rt_b->rt_period_active) {
 106		rt_b->rt_period_active = 1;
 107		/*
 108		 * SCHED_DEADLINE updates the bandwidth, as a run away
 109		 * RT task with a DL task could hog a CPU. But DL does
 110		 * not reset the period. If a deadline task was running
 111		 * without an RT task running, it can cause RT tasks to
 112		 * throttle when they start up. Kick the timer right away
 113		 * to update the period.
 114		 */
 115		hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0));
 116		hrtimer_start_expires(&rt_b->rt_period_timer,
 117				      HRTIMER_MODE_ABS_PINNED_HARD);
 118	}
 119	raw_spin_unlock(&rt_b->rt_runtime_lock);
 120}
 121
 122static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
 123{
 124	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
 125		return;
 126
 127	do_start_rt_bandwidth(rt_b);
 128}
 129
 130void init_rt_rq(struct rt_rq *rt_rq)
 131{
 132	struct rt_prio_array *array;
 133	int i;
 134
 135	array = &rt_rq->active;
 136	for (i = 0; i < MAX_RT_PRIO; i++) {
 137		INIT_LIST_HEAD(array->queue + i);
 138		__clear_bit(i, array->bitmap);
 139	}
 140	/* delimiter for bitsearch: */
 141	__set_bit(MAX_RT_PRIO, array->bitmap);
 142
 143#if defined CONFIG_SMP
 144	rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
 145	rt_rq->highest_prio.next = MAX_RT_PRIO-1;
 146	rt_rq->rt_nr_migratory = 0;
 147	rt_rq->overloaded = 0;
 148	plist_head_init(&rt_rq->pushable_tasks);
 149#endif /* CONFIG_SMP */
 150	/* We start is dequeued state, because no RT tasks are queued */
 151	rt_rq->rt_queued = 0;
 152
 153	rt_rq->rt_time = 0;
 154	rt_rq->rt_throttled = 0;
 155	rt_rq->rt_runtime = 0;
 156	raw_spin_lock_init(&rt_rq->rt_runtime_lock);
 157}
 158
 159#ifdef CONFIG_RT_GROUP_SCHED
 160static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
 161{
 162	hrtimer_cancel(&rt_b->rt_period_timer);
 163}
 164
 165#define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
 166
 167static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
 168{
 169#ifdef CONFIG_SCHED_DEBUG
 170	WARN_ON_ONCE(!rt_entity_is_task(rt_se));
 171#endif
 172	return container_of(rt_se, struct task_struct, rt);
 173}
 174
 175static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
 176{
 177	return rt_rq->rq;
 178}
 179
 180static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
 181{
 182	return rt_se->rt_rq;
 183}
 184
 185static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
 186{
 187	struct rt_rq *rt_rq = rt_se->rt_rq;
 188
 189	return rt_rq->rq;
 190}
 191
 192void unregister_rt_sched_group(struct task_group *tg)
 193{
 194	if (tg->rt_se)
 195		destroy_rt_bandwidth(&tg->rt_bandwidth);
 196
 197}
 198
 199void free_rt_sched_group(struct task_group *tg)
 200{
 201	int i;
 202
 
 
 
 203	for_each_possible_cpu(i) {
 204		if (tg->rt_rq)
 205			kfree(tg->rt_rq[i]);
 206		if (tg->rt_se)
 207			kfree(tg->rt_se[i]);
 208	}
 209
 210	kfree(tg->rt_rq);
 211	kfree(tg->rt_se);
 212}
 213
 214void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
 215		struct sched_rt_entity *rt_se, int cpu,
 216		struct sched_rt_entity *parent)
 217{
 218	struct rq *rq = cpu_rq(cpu);
 219
 220	rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
 221	rt_rq->rt_nr_boosted = 0;
 222	rt_rq->rq = rq;
 223	rt_rq->tg = tg;
 224
 225	tg->rt_rq[cpu] = rt_rq;
 226	tg->rt_se[cpu] = rt_se;
 227
 228	if (!rt_se)
 229		return;
 230
 231	if (!parent)
 232		rt_se->rt_rq = &rq->rt;
 233	else
 234		rt_se->rt_rq = parent->my_q;
 235
 236	rt_se->my_q = rt_rq;
 237	rt_se->parent = parent;
 238	INIT_LIST_HEAD(&rt_se->run_list);
 239}
 240
 241int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
 242{
 243	struct rt_rq *rt_rq;
 244	struct sched_rt_entity *rt_se;
 245	int i;
 246
 247	tg->rt_rq = kcalloc(nr_cpu_ids, sizeof(rt_rq), GFP_KERNEL);
 248	if (!tg->rt_rq)
 249		goto err;
 250	tg->rt_se = kcalloc(nr_cpu_ids, sizeof(rt_se), GFP_KERNEL);
 251	if (!tg->rt_se)
 252		goto err;
 253
 254	init_rt_bandwidth(&tg->rt_bandwidth,
 255			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
 256
 257	for_each_possible_cpu(i) {
 258		rt_rq = kzalloc_node(sizeof(struct rt_rq),
 259				     GFP_KERNEL, cpu_to_node(i));
 260		if (!rt_rq)
 261			goto err;
 262
 263		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
 264				     GFP_KERNEL, cpu_to_node(i));
 265		if (!rt_se)
 266			goto err_free_rq;
 267
 268		init_rt_rq(rt_rq);
 269		rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
 270		init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
 271	}
 272
 273	return 1;
 274
 275err_free_rq:
 276	kfree(rt_rq);
 277err:
 278	return 0;
 279}
 280
 281#else /* CONFIG_RT_GROUP_SCHED */
 282
 283#define rt_entity_is_task(rt_se) (1)
 284
 285static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
 286{
 287	return container_of(rt_se, struct task_struct, rt);
 288}
 289
 290static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
 291{
 292	return container_of(rt_rq, struct rq, rt);
 293}
 294
 295static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
 296{
 297	struct task_struct *p = rt_task_of(rt_se);
 298
 299	return task_rq(p);
 300}
 301
 302static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
 303{
 304	struct rq *rq = rq_of_rt_se(rt_se);
 305
 306	return &rq->rt;
 307}
 308
 309void unregister_rt_sched_group(struct task_group *tg) { }
 310
 311void free_rt_sched_group(struct task_group *tg) { }
 312
 313int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
 314{
 315	return 1;
 316}
 317#endif /* CONFIG_RT_GROUP_SCHED */
 318
 319#ifdef CONFIG_SMP
 320
 
 
 321static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
 322{
 323	/* Try to pull RT tasks here if we lower this rq's prio */
 324	return rq->online && rq->rt.highest_prio.curr > prev->prio;
 325}
 326
 327static inline int rt_overloaded(struct rq *rq)
 328{
 329	return atomic_read(&rq->rd->rto_count);
 330}
 331
 332static inline void rt_set_overload(struct rq *rq)
 333{
 334	if (!rq->online)
 335		return;
 336
 337	cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
 338	/*
 339	 * Make sure the mask is visible before we set
 340	 * the overload count. That is checked to determine
 341	 * if we should look at the mask. It would be a shame
 342	 * if we looked at the mask, but the mask was not
 343	 * updated yet.
 344	 *
 345	 * Matched by the barrier in pull_rt_task().
 346	 */
 347	smp_wmb();
 348	atomic_inc(&rq->rd->rto_count);
 349}
 350
 351static inline void rt_clear_overload(struct rq *rq)
 352{
 353	if (!rq->online)
 354		return;
 355
 356	/* the order here really doesn't matter */
 357	atomic_dec(&rq->rd->rto_count);
 358	cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
 359}
 360
 361static void update_rt_migration(struct rt_rq *rt_rq)
 362{
 363	if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
 364		if (!rt_rq->overloaded) {
 365			rt_set_overload(rq_of_rt_rq(rt_rq));
 366			rt_rq->overloaded = 1;
 367		}
 368	} else if (rt_rq->overloaded) {
 369		rt_clear_overload(rq_of_rt_rq(rt_rq));
 370		rt_rq->overloaded = 0;
 371	}
 372}
 373
 374static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
 375{
 376	struct task_struct *p;
 377
 378	if (!rt_entity_is_task(rt_se))
 379		return;
 380
 381	p = rt_task_of(rt_se);
 382	rt_rq = &rq_of_rt_rq(rt_rq)->rt;
 383
 384	rt_rq->rt_nr_total++;
 385	if (p->nr_cpus_allowed > 1)
 386		rt_rq->rt_nr_migratory++;
 387
 388	update_rt_migration(rt_rq);
 389}
 390
 391static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
 392{
 393	struct task_struct *p;
 394
 395	if (!rt_entity_is_task(rt_se))
 396		return;
 397
 398	p = rt_task_of(rt_se);
 399	rt_rq = &rq_of_rt_rq(rt_rq)->rt;
 400
 401	rt_rq->rt_nr_total--;
 402	if (p->nr_cpus_allowed > 1)
 403		rt_rq->rt_nr_migratory--;
 404
 405	update_rt_migration(rt_rq);
 406}
 407
 408static inline int has_pushable_tasks(struct rq *rq)
 409{
 410	return !plist_head_empty(&rq->rt.pushable_tasks);
 411}
 412
 413static DEFINE_PER_CPU(struct balance_callback, rt_push_head);
 414static DEFINE_PER_CPU(struct balance_callback, rt_pull_head);
 415
 416static void push_rt_tasks(struct rq *);
 417static void pull_rt_task(struct rq *);
 418
 419static inline void rt_queue_push_tasks(struct rq *rq)
 420{
 421	if (!has_pushable_tasks(rq))
 422		return;
 423
 424	queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
 425}
 426
 427static inline void rt_queue_pull_task(struct rq *rq)
 428{
 429	queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
 430}
 431
 432static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
 433{
 434	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
 435	plist_node_init(&p->pushable_tasks, p->prio);
 436	plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
 437
 438	/* Update the highest prio pushable task */
 439	if (p->prio < rq->rt.highest_prio.next)
 440		rq->rt.highest_prio.next = p->prio;
 441}
 442
 443static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
 444{
 445	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
 446
 447	/* Update the new highest prio pushable task */
 448	if (has_pushable_tasks(rq)) {
 449		p = plist_first_entry(&rq->rt.pushable_tasks,
 450				      struct task_struct, pushable_tasks);
 451		rq->rt.highest_prio.next = p->prio;
 452	} else {
 453		rq->rt.highest_prio.next = MAX_RT_PRIO-1;
 454	}
 455}
 456
 457#else
 458
 459static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
 460{
 461}
 462
 463static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
 464{
 465}
 466
 467static inline
 468void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
 469{
 470}
 471
 472static inline
 473void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
 474{
 475}
 476
 477static inline void rt_queue_push_tasks(struct rq *rq)
 478{
 
 479}
 480#endif /* CONFIG_SMP */
 481
 482static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
 483static void dequeue_top_rt_rq(struct rt_rq *rt_rq, unsigned int count);
 484
 485static inline int on_rt_rq(struct sched_rt_entity *rt_se)
 486{
 487	return rt_se->on_rq;
 488}
 489
 490#ifdef CONFIG_UCLAMP_TASK
 491/*
 492 * Verify the fitness of task @p to run on @cpu taking into account the uclamp
 493 * settings.
 494 *
 495 * This check is only important for heterogeneous systems where uclamp_min value
 496 * is higher than the capacity of a @cpu. For non-heterogeneous system this
 497 * function will always return true.
 498 *
 499 * The function will return true if the capacity of the @cpu is >= the
 500 * uclamp_min and false otherwise.
 501 *
 502 * Note that uclamp_min will be clamped to uclamp_max if uclamp_min
 503 * > uclamp_max.
 504 */
 505static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
 506{
 507	unsigned int min_cap;
 508	unsigned int max_cap;
 509	unsigned int cpu_cap;
 510
 511	/* Only heterogeneous systems can benefit from this check */
 512	if (!sched_asym_cpucap_active())
 513		return true;
 514
 515	min_cap = uclamp_eff_value(p, UCLAMP_MIN);
 516	max_cap = uclamp_eff_value(p, UCLAMP_MAX);
 517
 518	cpu_cap = capacity_orig_of(cpu);
 
 519
 520	return cpu_cap >= min(min_cap, max_cap);
 521}
 522#else
 523static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
 524{
 525	return true;
 526}
 527#endif
 528
 529#ifdef CONFIG_RT_GROUP_SCHED
 530
 531static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
 532{
 533	if (!rt_rq->tg)
 534		return RUNTIME_INF;
 535
 536	return rt_rq->rt_runtime;
 537}
 538
 539static inline u64 sched_rt_period(struct rt_rq *rt_rq)
 540{
 541	return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
 542}
 543
 544typedef struct task_group *rt_rq_iter_t;
 545
 546static inline struct task_group *next_task_group(struct task_group *tg)
 547{
 548	do {
 549		tg = list_entry_rcu(tg->list.next,
 550			typeof(struct task_group), list);
 551	} while (&tg->list != &task_groups && task_group_is_autogroup(tg));
 552
 553	if (&tg->list == &task_groups)
 554		tg = NULL;
 555
 556	return tg;
 557}
 558
 559#define for_each_rt_rq(rt_rq, iter, rq)					\
 560	for (iter = container_of(&task_groups, typeof(*iter), list);	\
 561		(iter = next_task_group(iter)) &&			\
 562		(rt_rq = iter->rt_rq[cpu_of(rq)]);)
 563
 564#define for_each_sched_rt_entity(rt_se) \
 565	for (; rt_se; rt_se = rt_se->parent)
 566
 567static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
 568{
 569	return rt_se->my_q;
 570}
 571
 572static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
 573static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
 574
 575static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
 576{
 577	struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
 578	struct rq *rq = rq_of_rt_rq(rt_rq);
 579	struct sched_rt_entity *rt_se;
 580
 581	int cpu = cpu_of(rq);
 582
 583	rt_se = rt_rq->tg->rt_se[cpu];
 584
 585	if (rt_rq->rt_nr_running) {
 586		if (!rt_se)
 587			enqueue_top_rt_rq(rt_rq);
 588		else if (!on_rt_rq(rt_se))
 589			enqueue_rt_entity(rt_se, 0);
 590
 591		if (rt_rq->highest_prio.curr < curr->prio)
 592			resched_curr(rq);
 593	}
 594}
 595
 596static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
 597{
 598	struct sched_rt_entity *rt_se;
 599	int cpu = cpu_of(rq_of_rt_rq(rt_rq));
 600
 601	rt_se = rt_rq->tg->rt_se[cpu];
 602
 603	if (!rt_se) {
 604		dequeue_top_rt_rq(rt_rq, rt_rq->rt_nr_running);
 605		/* Kick cpufreq (see the comment in kernel/sched/sched.h). */
 606		cpufreq_update_util(rq_of_rt_rq(rt_rq), 0);
 607	}
 608	else if (on_rt_rq(rt_se))
 609		dequeue_rt_entity(rt_se, 0);
 610}
 611
 612static inline int rt_rq_throttled(struct rt_rq *rt_rq)
 613{
 614	return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
 615}
 616
 617static int rt_se_boosted(struct sched_rt_entity *rt_se)
 618{
 619	struct rt_rq *rt_rq = group_rt_rq(rt_se);
 620	struct task_struct *p;
 621
 622	if (rt_rq)
 623		return !!rt_rq->rt_nr_boosted;
 624
 625	p = rt_task_of(rt_se);
 626	return p->prio != p->normal_prio;
 627}
 628
 629#ifdef CONFIG_SMP
 630static inline const struct cpumask *sched_rt_period_mask(void)
 631{
 632	return this_rq()->rd->span;
 633}
 634#else
 635static inline const struct cpumask *sched_rt_period_mask(void)
 636{
 637	return cpu_online_mask;
 638}
 639#endif
 640
 641static inline
 642struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
 643{
 644	return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
 645}
 646
 647static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
 648{
 649	return &rt_rq->tg->rt_bandwidth;
 650}
 651
 652#else /* !CONFIG_RT_GROUP_SCHED */
 653
 654static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
 655{
 656	return rt_rq->rt_runtime;
 657}
 658
 659static inline u64 sched_rt_period(struct rt_rq *rt_rq)
 660{
 661	return ktime_to_ns(def_rt_bandwidth.rt_period);
 662}
 663
 664typedef struct rt_rq *rt_rq_iter_t;
 665
 666#define for_each_rt_rq(rt_rq, iter, rq) \
 667	for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
 668
 669#define for_each_sched_rt_entity(rt_se) \
 670	for (; rt_se; rt_se = NULL)
 671
 672static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
 673{
 674	return NULL;
 675}
 676
 677static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
 678{
 679	struct rq *rq = rq_of_rt_rq(rt_rq);
 680
 681	if (!rt_rq->rt_nr_running)
 682		return;
 683
 684	enqueue_top_rt_rq(rt_rq);
 685	resched_curr(rq);
 686}
 687
 688static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
 689{
 690	dequeue_top_rt_rq(rt_rq, rt_rq->rt_nr_running);
 691}
 692
 693static inline int rt_rq_throttled(struct rt_rq *rt_rq)
 694{
 695	return rt_rq->rt_throttled;
 696}
 697
 698static inline const struct cpumask *sched_rt_period_mask(void)
 699{
 700	return cpu_online_mask;
 701}
 702
 703static inline
 704struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
 705{
 706	return &cpu_rq(cpu)->rt;
 707}
 708
 709static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
 710{
 711	return &def_rt_bandwidth;
 712}
 713
 714#endif /* CONFIG_RT_GROUP_SCHED */
 715
 716bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
 717{
 718	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
 719
 720	return (hrtimer_active(&rt_b->rt_period_timer) ||
 721		rt_rq->rt_time < rt_b->rt_runtime);
 722}
 723
 724#ifdef CONFIG_SMP
 725/*
 726 * We ran out of runtime, see if we can borrow some from our neighbours.
 727 */
 728static void do_balance_runtime(struct rt_rq *rt_rq)
 729{
 730	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
 731	struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
 732	int i, weight;
 733	u64 rt_period;
 734
 735	weight = cpumask_weight(rd->span);
 736
 737	raw_spin_lock(&rt_b->rt_runtime_lock);
 738	rt_period = ktime_to_ns(rt_b->rt_period);
 739	for_each_cpu(i, rd->span) {
 740		struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
 741		s64 diff;
 742
 743		if (iter == rt_rq)
 744			continue;
 745
 746		raw_spin_lock(&iter->rt_runtime_lock);
 747		/*
 748		 * Either all rqs have inf runtime and there's nothing to steal
 749		 * or __disable_runtime() below sets a specific rq to inf to
 750		 * indicate its been disabled and disallow stealing.
 751		 */
 752		if (iter->rt_runtime == RUNTIME_INF)
 753			goto next;
 754
 755		/*
 756		 * From runqueues with spare time, take 1/n part of their
 757		 * spare time, but no more than our period.
 758		 */
 759		diff = iter->rt_runtime - iter->rt_time;
 760		if (diff > 0) {
 761			diff = div_u64((u64)diff, weight);
 762			if (rt_rq->rt_runtime + diff > rt_period)
 763				diff = rt_period - rt_rq->rt_runtime;
 764			iter->rt_runtime -= diff;
 765			rt_rq->rt_runtime += diff;
 766			if (rt_rq->rt_runtime == rt_period) {
 767				raw_spin_unlock(&iter->rt_runtime_lock);
 768				break;
 769			}
 770		}
 771next:
 772		raw_spin_unlock(&iter->rt_runtime_lock);
 773	}
 774	raw_spin_unlock(&rt_b->rt_runtime_lock);
 775}
 776
 777/*
 778 * Ensure this RQ takes back all the runtime it lend to its neighbours.
 779 */
 780static void __disable_runtime(struct rq *rq)
 781{
 782	struct root_domain *rd = rq->rd;
 783	rt_rq_iter_t iter;
 784	struct rt_rq *rt_rq;
 785
 786	if (unlikely(!scheduler_running))
 787		return;
 788
 789	for_each_rt_rq(rt_rq, iter, rq) {
 790		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
 791		s64 want;
 792		int i;
 793
 794		raw_spin_lock(&rt_b->rt_runtime_lock);
 795		raw_spin_lock(&rt_rq->rt_runtime_lock);
 796		/*
 797		 * Either we're all inf and nobody needs to borrow, or we're
 798		 * already disabled and thus have nothing to do, or we have
 799		 * exactly the right amount of runtime to take out.
 800		 */
 801		if (rt_rq->rt_runtime == RUNTIME_INF ||
 802				rt_rq->rt_runtime == rt_b->rt_runtime)
 803			goto balanced;
 804		raw_spin_unlock(&rt_rq->rt_runtime_lock);
 805
 806		/*
 807		 * Calculate the difference between what we started out with
 808		 * and what we current have, that's the amount of runtime
 809		 * we lend and now have to reclaim.
 810		 */
 811		want = rt_b->rt_runtime - rt_rq->rt_runtime;
 812
 813		/*
 814		 * Greedy reclaim, take back as much as we can.
 815		 */
 816		for_each_cpu(i, rd->span) {
 817			struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
 818			s64 diff;
 819
 820			/*
 821			 * Can't reclaim from ourselves or disabled runqueues.
 822			 */
 823			if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
 824				continue;
 825
 826			raw_spin_lock(&iter->rt_runtime_lock);
 827			if (want > 0) {
 828				diff = min_t(s64, iter->rt_runtime, want);
 829				iter->rt_runtime -= diff;
 830				want -= diff;
 831			} else {
 832				iter->rt_runtime -= want;
 833				want -= want;
 834			}
 835			raw_spin_unlock(&iter->rt_runtime_lock);
 836
 837			if (!want)
 838				break;
 839		}
 840
 841		raw_spin_lock(&rt_rq->rt_runtime_lock);
 842		/*
 843		 * We cannot be left wanting - that would mean some runtime
 844		 * leaked out of the system.
 845		 */
 846		WARN_ON_ONCE(want);
 847balanced:
 848		/*
 849		 * Disable all the borrow logic by pretending we have inf
 850		 * runtime - in which case borrowing doesn't make sense.
 851		 */
 852		rt_rq->rt_runtime = RUNTIME_INF;
 853		rt_rq->rt_throttled = 0;
 854		raw_spin_unlock(&rt_rq->rt_runtime_lock);
 855		raw_spin_unlock(&rt_b->rt_runtime_lock);
 856
 857		/* Make rt_rq available for pick_next_task() */
 858		sched_rt_rq_enqueue(rt_rq);
 859	}
 860}
 861
 862static void __enable_runtime(struct rq *rq)
 863{
 864	rt_rq_iter_t iter;
 865	struct rt_rq *rt_rq;
 866
 867	if (unlikely(!scheduler_running))
 868		return;
 869
 870	/*
 871	 * Reset each runqueue's bandwidth settings
 872	 */
 873	for_each_rt_rq(rt_rq, iter, rq) {
 874		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
 875
 876		raw_spin_lock(&rt_b->rt_runtime_lock);
 877		raw_spin_lock(&rt_rq->rt_runtime_lock);
 878		rt_rq->rt_runtime = rt_b->rt_runtime;
 879		rt_rq->rt_time = 0;
 880		rt_rq->rt_throttled = 0;
 881		raw_spin_unlock(&rt_rq->rt_runtime_lock);
 882		raw_spin_unlock(&rt_b->rt_runtime_lock);
 883	}
 884}
 885
 886static void balance_runtime(struct rt_rq *rt_rq)
 887{
 888	if (!sched_feat(RT_RUNTIME_SHARE))
 889		return;
 890
 891	if (rt_rq->rt_time > rt_rq->rt_runtime) {
 892		raw_spin_unlock(&rt_rq->rt_runtime_lock);
 893		do_balance_runtime(rt_rq);
 894		raw_spin_lock(&rt_rq->rt_runtime_lock);
 895	}
 896}
 897#else /* !CONFIG_SMP */
 898static inline void balance_runtime(struct rt_rq *rt_rq) {}
 899#endif /* CONFIG_SMP */
 900
 901static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
 902{
 903	int i, idle = 1, throttled = 0;
 904	const struct cpumask *span;
 905
 906	span = sched_rt_period_mask();
 907#ifdef CONFIG_RT_GROUP_SCHED
 908	/*
 909	 * FIXME: isolated CPUs should really leave the root task group,
 910	 * whether they are isolcpus or were isolated via cpusets, lest
 911	 * the timer run on a CPU which does not service all runqueues,
 912	 * potentially leaving other CPUs indefinitely throttled.  If
 913	 * isolation is really required, the user will turn the throttle
 914	 * off to kill the perturbations it causes anyway.  Meanwhile,
 915	 * this maintains functionality for boot and/or troubleshooting.
 916	 */
 917	if (rt_b == &root_task_group.rt_bandwidth)
 918		span = cpu_online_mask;
 919#endif
 920	for_each_cpu(i, span) {
 921		int enqueue = 0;
 922		struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
 923		struct rq *rq = rq_of_rt_rq(rt_rq);
 924		struct rq_flags rf;
 925		int skip;
 926
 927		/*
 928		 * When span == cpu_online_mask, taking each rq->lock
 929		 * can be time-consuming. Try to avoid it when possible.
 930		 */
 931		raw_spin_lock(&rt_rq->rt_runtime_lock);
 932		if (!sched_feat(RT_RUNTIME_SHARE) && rt_rq->rt_runtime != RUNTIME_INF)
 933			rt_rq->rt_runtime = rt_b->rt_runtime;
 934		skip = !rt_rq->rt_time && !rt_rq->rt_nr_running;
 935		raw_spin_unlock(&rt_rq->rt_runtime_lock);
 936		if (skip)
 937			continue;
 938
 939		rq_lock(rq, &rf);
 940		update_rq_clock(rq);
 941
 942		if (rt_rq->rt_time) {
 943			u64 runtime;
 944
 945			raw_spin_lock(&rt_rq->rt_runtime_lock);
 946			if (rt_rq->rt_throttled)
 947				balance_runtime(rt_rq);
 948			runtime = rt_rq->rt_runtime;
 949			rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
 950			if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
 951				rt_rq->rt_throttled = 0;
 952				enqueue = 1;
 953
 954				/*
 955				 * When we're idle and a woken (rt) task is
 956				 * throttled check_preempt_curr() will set
 957				 * skip_update and the time between the wakeup
 958				 * and this unthrottle will get accounted as
 959				 * 'runtime'.
 960				 */
 961				if (rt_rq->rt_nr_running && rq->curr == rq->idle)
 962					rq_clock_cancel_skipupdate(rq);
 963			}
 964			if (rt_rq->rt_time || rt_rq->rt_nr_running)
 965				idle = 0;
 966			raw_spin_unlock(&rt_rq->rt_runtime_lock);
 967		} else if (rt_rq->rt_nr_running) {
 968			idle = 0;
 969			if (!rt_rq_throttled(rt_rq))
 970				enqueue = 1;
 971		}
 972		if (rt_rq->rt_throttled)
 973			throttled = 1;
 974
 975		if (enqueue)
 976			sched_rt_rq_enqueue(rt_rq);
 977		rq_unlock(rq, &rf);
 978	}
 979
 980	if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
 981		return 1;
 982
 983	return idle;
 984}
 985
 986static inline int rt_se_prio(struct sched_rt_entity *rt_se)
 987{
 988#ifdef CONFIG_RT_GROUP_SCHED
 989	struct rt_rq *rt_rq = group_rt_rq(rt_se);
 990
 991	if (rt_rq)
 992		return rt_rq->highest_prio.curr;
 993#endif
 994
 995	return rt_task_of(rt_se)->prio;
 996}
 997
 998static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
 999{
1000	u64 runtime = sched_rt_runtime(rt_rq);
1001
1002	if (rt_rq->rt_throttled)
1003		return rt_rq_throttled(rt_rq);
1004
1005	if (runtime >= sched_rt_period(rt_rq))
1006		return 0;
1007
1008	balance_runtime(rt_rq);
1009	runtime = sched_rt_runtime(rt_rq);
1010	if (runtime == RUNTIME_INF)
1011		return 0;
1012
1013	if (rt_rq->rt_time > runtime) {
1014		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
1015
1016		/*
1017		 * Don't actually throttle groups that have no runtime assigned
1018		 * but accrue some time due to boosting.
1019		 */
1020		if (likely(rt_b->rt_runtime)) {
1021			rt_rq->rt_throttled = 1;
1022			printk_deferred_once("sched: RT throttling activated\n");
1023		} else {
1024			/*
1025			 * In case we did anyway, make it go away,
1026			 * replenishment is a joke, since it will replenish us
1027			 * with exactly 0 ns.
1028			 */
1029			rt_rq->rt_time = 0;
1030		}
1031
1032		if (rt_rq_throttled(rt_rq)) {
1033			sched_rt_rq_dequeue(rt_rq);
1034			return 1;
1035		}
1036	}
1037
1038	return 0;
1039}
1040
1041/*
1042 * Update the current task's runtime statistics. Skip current tasks that
1043 * are not in our scheduling class.
1044 */
1045static void update_curr_rt(struct rq *rq)
1046{
1047	struct task_struct *curr = rq->curr;
1048	struct sched_rt_entity *rt_se = &curr->rt;
1049	u64 delta_exec;
1050	u64 now;
1051
1052	if (curr->sched_class != &rt_sched_class)
1053		return;
1054
1055	now = rq_clock_task(rq);
1056	delta_exec = now - curr->se.exec_start;
1057	if (unlikely((s64)delta_exec <= 0))
1058		return;
1059
1060	schedstat_set(curr->stats.exec_max,
1061		      max(curr->stats.exec_max, delta_exec));
1062
1063	trace_sched_stat_runtime(curr, delta_exec, 0);
 
1064
1065	update_current_exec_runtime(curr, now, delta_exec);
 
 
 
1066
1067	if (!rt_bandwidth_enabled())
1068		return;
1069
1070	for_each_sched_rt_entity(rt_se) {
1071		struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1072		int exceeded;
1073
1074		if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
1075			raw_spin_lock(&rt_rq->rt_runtime_lock);
1076			rt_rq->rt_time += delta_exec;
1077			exceeded = sched_rt_runtime_exceeded(rt_rq);
1078			if (exceeded)
1079				resched_curr(rq);
1080			raw_spin_unlock(&rt_rq->rt_runtime_lock);
1081			if (exceeded)
1082				do_start_rt_bandwidth(sched_rt_bandwidth(rt_rq));
1083		}
1084	}
1085}
1086
1087static void
1088dequeue_top_rt_rq(struct rt_rq *rt_rq, unsigned int count)
1089{
1090	struct rq *rq = rq_of_rt_rq(rt_rq);
1091
1092	BUG_ON(&rq->rt != rt_rq);
1093
1094	if (!rt_rq->rt_queued)
1095		return;
1096
1097	BUG_ON(!rq->nr_running);
1098
1099	sub_nr_running(rq, count);
1100	rt_rq->rt_queued = 0;
1101
 
 
1102}
1103
1104static void
1105enqueue_top_rt_rq(struct rt_rq *rt_rq)
1106{
1107	struct rq *rq = rq_of_rt_rq(rt_rq);
1108
1109	BUG_ON(&rq->rt != rt_rq);
1110
1111	if (rt_rq->rt_queued)
1112		return;
1113
1114	if (rt_rq_throttled(rt_rq))
1115		return;
1116
1117	if (rt_rq->rt_nr_running) {
1118		add_nr_running(rq, rt_rq->rt_nr_running);
1119		rt_rq->rt_queued = 1;
1120	}
1121
1122	/* Kick cpufreq (see the comment in kernel/sched/sched.h). */
1123	cpufreq_update_util(rq, 0);
1124}
1125
1126#if defined CONFIG_SMP
1127
1128static void
1129inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1130{
1131	struct rq *rq = rq_of_rt_rq(rt_rq);
1132
1133#ifdef CONFIG_RT_GROUP_SCHED
1134	/*
1135	 * Change rq's cpupri only if rt_rq is the top queue.
1136	 */
1137	if (&rq->rt != rt_rq)
1138		return;
1139#endif
1140	if (rq->online && prio < prev_prio)
1141		cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1142}
1143
1144static void
1145dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1146{
1147	struct rq *rq = rq_of_rt_rq(rt_rq);
1148
1149#ifdef CONFIG_RT_GROUP_SCHED
1150	/*
1151	 * Change rq's cpupri only if rt_rq is the top queue.
1152	 */
1153	if (&rq->rt != rt_rq)
1154		return;
1155#endif
1156	if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1157		cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1158}
1159
1160#else /* CONFIG_SMP */
1161
1162static inline
1163void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1164static inline
1165void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1166
1167#endif /* CONFIG_SMP */
1168
1169#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1170static void
1171inc_rt_prio(struct rt_rq *rt_rq, int prio)
1172{
1173	int prev_prio = rt_rq->highest_prio.curr;
1174
1175	if (prio < prev_prio)
1176		rt_rq->highest_prio.curr = prio;
1177
1178	inc_rt_prio_smp(rt_rq, prio, prev_prio);
1179}
1180
1181static void
1182dec_rt_prio(struct rt_rq *rt_rq, int prio)
1183{
1184	int prev_prio = rt_rq->highest_prio.curr;
1185
1186	if (rt_rq->rt_nr_running) {
1187
1188		WARN_ON(prio < prev_prio);
1189
1190		/*
1191		 * This may have been our highest task, and therefore
1192		 * we may have some recomputation to do
1193		 */
1194		if (prio == prev_prio) {
1195			struct rt_prio_array *array = &rt_rq->active;
1196
1197			rt_rq->highest_prio.curr =
1198				sched_find_first_bit(array->bitmap);
1199		}
1200
1201	} else {
1202		rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
1203	}
1204
1205	dec_rt_prio_smp(rt_rq, prio, prev_prio);
1206}
1207
1208#else
1209
1210static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1211static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1212
1213#endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1214
1215#ifdef CONFIG_RT_GROUP_SCHED
1216
1217static void
1218inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1219{
1220	if (rt_se_boosted(rt_se))
1221		rt_rq->rt_nr_boosted++;
1222
1223	if (rt_rq->tg)
1224		start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1225}
1226
1227static void
1228dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1229{
1230	if (rt_se_boosted(rt_se))
1231		rt_rq->rt_nr_boosted--;
1232
1233	WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1234}
1235
1236#else /* CONFIG_RT_GROUP_SCHED */
1237
1238static void
1239inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1240{
1241	start_rt_bandwidth(&def_rt_bandwidth);
1242}
1243
1244static inline
1245void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1246
1247#endif /* CONFIG_RT_GROUP_SCHED */
1248
1249static inline
1250unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1251{
1252	struct rt_rq *group_rq = group_rt_rq(rt_se);
1253
1254	if (group_rq)
1255		return group_rq->rt_nr_running;
1256	else
1257		return 1;
1258}
1259
1260static inline
1261unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se)
1262{
1263	struct rt_rq *group_rq = group_rt_rq(rt_se);
1264	struct task_struct *tsk;
1265
1266	if (group_rq)
1267		return group_rq->rr_nr_running;
1268
1269	tsk = rt_task_of(rt_se);
1270
1271	return (tsk->policy == SCHED_RR) ? 1 : 0;
1272}
1273
1274static inline
1275void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1276{
1277	int prio = rt_se_prio(rt_se);
1278
1279	WARN_ON(!rt_prio(prio));
1280	rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1281	rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se);
1282
1283	inc_rt_prio(rt_rq, prio);
1284	inc_rt_migration(rt_se, rt_rq);
1285	inc_rt_group(rt_se, rt_rq);
1286}
1287
1288static inline
1289void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1290{
1291	WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1292	WARN_ON(!rt_rq->rt_nr_running);
1293	rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1294	rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se);
1295
1296	dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1297	dec_rt_migration(rt_se, rt_rq);
1298	dec_rt_group(rt_se, rt_rq);
1299}
1300
1301/*
1302 * Change rt_se->run_list location unless SAVE && !MOVE
1303 *
1304 * assumes ENQUEUE/DEQUEUE flags match
1305 */
1306static inline bool move_entity(unsigned int flags)
1307{
1308	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
1309		return false;
1310
1311	return true;
1312}
1313
1314static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array)
1315{
1316	list_del_init(&rt_se->run_list);
1317
1318	if (list_empty(array->queue + rt_se_prio(rt_se)))
1319		__clear_bit(rt_se_prio(rt_se), array->bitmap);
1320
1321	rt_se->on_list = 0;
1322}
1323
1324static inline struct sched_statistics *
1325__schedstats_from_rt_se(struct sched_rt_entity *rt_se)
1326{
1327#ifdef CONFIG_RT_GROUP_SCHED
1328	/* schedstats is not supported for rt group. */
1329	if (!rt_entity_is_task(rt_se))
1330		return NULL;
1331#endif
1332
1333	return &rt_task_of(rt_se)->stats;
1334}
1335
1336static inline void
1337update_stats_wait_start_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1338{
1339	struct sched_statistics *stats;
1340	struct task_struct *p = NULL;
1341
1342	if (!schedstat_enabled())
1343		return;
1344
1345	if (rt_entity_is_task(rt_se))
1346		p = rt_task_of(rt_se);
1347
1348	stats = __schedstats_from_rt_se(rt_se);
1349	if (!stats)
1350		return;
1351
1352	__update_stats_wait_start(rq_of_rt_rq(rt_rq), p, stats);
1353}
1354
1355static inline void
1356update_stats_enqueue_sleeper_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1357{
1358	struct sched_statistics *stats;
1359	struct task_struct *p = NULL;
1360
1361	if (!schedstat_enabled())
1362		return;
1363
1364	if (rt_entity_is_task(rt_se))
1365		p = rt_task_of(rt_se);
1366
1367	stats = __schedstats_from_rt_se(rt_se);
1368	if (!stats)
1369		return;
1370
1371	__update_stats_enqueue_sleeper(rq_of_rt_rq(rt_rq), p, stats);
1372}
1373
1374static inline void
1375update_stats_enqueue_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
1376			int flags)
1377{
1378	if (!schedstat_enabled())
1379		return;
1380
1381	if (flags & ENQUEUE_WAKEUP)
1382		update_stats_enqueue_sleeper_rt(rt_rq, rt_se);
1383}
1384
1385static inline void
1386update_stats_wait_end_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1387{
1388	struct sched_statistics *stats;
1389	struct task_struct *p = NULL;
1390
1391	if (!schedstat_enabled())
1392		return;
1393
1394	if (rt_entity_is_task(rt_se))
1395		p = rt_task_of(rt_se);
1396
1397	stats = __schedstats_from_rt_se(rt_se);
1398	if (!stats)
1399		return;
1400
1401	__update_stats_wait_end(rq_of_rt_rq(rt_rq), p, stats);
1402}
1403
1404static inline void
1405update_stats_dequeue_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
1406			int flags)
1407{
1408	struct task_struct *p = NULL;
1409
1410	if (!schedstat_enabled())
1411		return;
1412
1413	if (rt_entity_is_task(rt_se))
1414		p = rt_task_of(rt_se);
1415
1416	if ((flags & DEQUEUE_SLEEP) && p) {
1417		unsigned int state;
1418
1419		state = READ_ONCE(p->__state);
1420		if (state & TASK_INTERRUPTIBLE)
1421			__schedstat_set(p->stats.sleep_start,
1422					rq_clock(rq_of_rt_rq(rt_rq)));
1423
1424		if (state & TASK_UNINTERRUPTIBLE)
1425			__schedstat_set(p->stats.block_start,
1426					rq_clock(rq_of_rt_rq(rt_rq)));
1427	}
1428}
1429
1430static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1431{
1432	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1433	struct rt_prio_array *array = &rt_rq->active;
1434	struct rt_rq *group_rq = group_rt_rq(rt_se);
1435	struct list_head *queue = array->queue + rt_se_prio(rt_se);
1436
1437	/*
1438	 * Don't enqueue the group if its throttled, or when empty.
1439	 * The latter is a consequence of the former when a child group
1440	 * get throttled and the current group doesn't have any other
1441	 * active members.
1442	 */
1443	if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) {
1444		if (rt_se->on_list)
1445			__delist_rt_entity(rt_se, array);
1446		return;
1447	}
1448
1449	if (move_entity(flags)) {
1450		WARN_ON_ONCE(rt_se->on_list);
1451		if (flags & ENQUEUE_HEAD)
1452			list_add(&rt_se->run_list, queue);
1453		else
1454			list_add_tail(&rt_se->run_list, queue);
1455
1456		__set_bit(rt_se_prio(rt_se), array->bitmap);
1457		rt_se->on_list = 1;
1458	}
1459	rt_se->on_rq = 1;
1460
1461	inc_rt_tasks(rt_se, rt_rq);
1462}
1463
1464static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1465{
1466	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1467	struct rt_prio_array *array = &rt_rq->active;
1468
1469	if (move_entity(flags)) {
1470		WARN_ON_ONCE(!rt_se->on_list);
1471		__delist_rt_entity(rt_se, array);
1472	}
1473	rt_se->on_rq = 0;
1474
1475	dec_rt_tasks(rt_se, rt_rq);
1476}
1477
1478/*
1479 * Because the prio of an upper entry depends on the lower
1480 * entries, we must remove entries top - down.
1481 */
1482static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags)
1483{
1484	struct sched_rt_entity *back = NULL;
1485	unsigned int rt_nr_running;
1486
1487	for_each_sched_rt_entity(rt_se) {
1488		rt_se->back = back;
1489		back = rt_se;
1490	}
1491
1492	rt_nr_running = rt_rq_of_se(back)->rt_nr_running;
1493
1494	for (rt_se = back; rt_se; rt_se = rt_se->back) {
1495		if (on_rt_rq(rt_se))
1496			__dequeue_rt_entity(rt_se, flags);
1497	}
1498
1499	dequeue_top_rt_rq(rt_rq_of_se(back), rt_nr_running);
1500}
1501
1502static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1503{
1504	struct rq *rq = rq_of_rt_se(rt_se);
1505
1506	update_stats_enqueue_rt(rt_rq_of_se(rt_se), rt_se, flags);
1507
1508	dequeue_rt_stack(rt_se, flags);
1509	for_each_sched_rt_entity(rt_se)
1510		__enqueue_rt_entity(rt_se, flags);
1511	enqueue_top_rt_rq(&rq->rt);
1512}
1513
1514static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1515{
1516	struct rq *rq = rq_of_rt_se(rt_se);
1517
1518	update_stats_dequeue_rt(rt_rq_of_se(rt_se), rt_se, flags);
1519
1520	dequeue_rt_stack(rt_se, flags);
1521
1522	for_each_sched_rt_entity(rt_se) {
1523		struct rt_rq *rt_rq = group_rt_rq(rt_se);
1524
1525		if (rt_rq && rt_rq->rt_nr_running)
1526			__enqueue_rt_entity(rt_se, flags);
1527	}
1528	enqueue_top_rt_rq(&rq->rt);
1529}
1530
1531/*
1532 * Adding/removing a task to/from a priority array:
1533 */
1534static void
1535enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1536{
1537	struct sched_rt_entity *rt_se = &p->rt;
1538
1539	if (flags & ENQUEUE_WAKEUP)
1540		rt_se->timeout = 0;
1541
1542	check_schedstat_required();
1543	update_stats_wait_start_rt(rt_rq_of_se(rt_se), rt_se);
1544
1545	enqueue_rt_entity(rt_se, flags);
1546
1547	if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1548		enqueue_pushable_task(rq, p);
1549}
1550
1551static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1552{
1553	struct sched_rt_entity *rt_se = &p->rt;
1554
1555	update_curr_rt(rq);
1556	dequeue_rt_entity(rt_se, flags);
1557
1558	dequeue_pushable_task(rq, p);
1559}
1560
1561/*
1562 * Put task to the head or the end of the run list without the overhead of
1563 * dequeue followed by enqueue.
1564 */
1565static void
1566requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1567{
1568	if (on_rt_rq(rt_se)) {
1569		struct rt_prio_array *array = &rt_rq->active;
1570		struct list_head *queue = array->queue + rt_se_prio(rt_se);
1571
1572		if (head)
1573			list_move(&rt_se->run_list, queue);
1574		else
1575			list_move_tail(&rt_se->run_list, queue);
1576	}
1577}
1578
1579static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1580{
1581	struct sched_rt_entity *rt_se = &p->rt;
1582	struct rt_rq *rt_rq;
1583
1584	for_each_sched_rt_entity(rt_se) {
1585		rt_rq = rt_rq_of_se(rt_se);
1586		requeue_rt_entity(rt_rq, rt_se, head);
1587	}
1588}
1589
1590static void yield_task_rt(struct rq *rq)
1591{
1592	requeue_task_rt(rq, rq->curr, 0);
1593}
1594
1595#ifdef CONFIG_SMP
1596static int find_lowest_rq(struct task_struct *task);
1597
1598static int
1599select_task_rq_rt(struct task_struct *p, int cpu, int flags)
1600{
1601	struct task_struct *curr;
1602	struct rq *rq;
1603	bool test;
1604
1605	/* For anything but wake ups, just return the task_cpu */
1606	if (!(flags & (WF_TTWU | WF_FORK)))
1607		goto out;
1608
1609	rq = cpu_rq(cpu);
1610
1611	rcu_read_lock();
1612	curr = READ_ONCE(rq->curr); /* unlocked access */
1613
1614	/*
1615	 * If the current task on @p's runqueue is an RT task, then
1616	 * try to see if we can wake this RT task up on another
1617	 * runqueue. Otherwise simply start this RT task
1618	 * on its current runqueue.
1619	 *
1620	 * We want to avoid overloading runqueues. If the woken
1621	 * task is a higher priority, then it will stay on this CPU
1622	 * and the lower prio task should be moved to another CPU.
1623	 * Even though this will probably make the lower prio task
1624	 * lose its cache, we do not want to bounce a higher task
1625	 * around just because it gave up its CPU, perhaps for a
1626	 * lock?
1627	 *
1628	 * For equal prio tasks, we just let the scheduler sort it out.
1629	 *
1630	 * Otherwise, just let it ride on the affined RQ and the
1631	 * post-schedule router will push the preempted task away
1632	 *
1633	 * This test is optimistic, if we get it wrong the load-balancer
1634	 * will have to sort it out.
1635	 *
1636	 * We take into account the capacity of the CPU to ensure it fits the
1637	 * requirement of the task - which is only important on heterogeneous
1638	 * systems like big.LITTLE.
1639	 */
1640	test = curr &&
1641	       unlikely(rt_task(curr)) &&
1642	       (curr->nr_cpus_allowed < 2 || curr->prio <= p->prio);
1643
1644	if (test || !rt_task_fits_capacity(p, cpu)) {
1645		int target = find_lowest_rq(p);
1646
1647		/*
1648		 * Bail out if we were forcing a migration to find a better
1649		 * fitting CPU but our search failed.
1650		 */
1651		if (!test && target != -1 && !rt_task_fits_capacity(p, target))
1652			goto out_unlock;
1653
1654		/*
1655		 * Don't bother moving it if the destination CPU is
1656		 * not running a lower priority task.
1657		 */
1658		if (target != -1 &&
1659		    p->prio < cpu_rq(target)->rt.highest_prio.curr)
1660			cpu = target;
1661	}
1662
1663out_unlock:
1664	rcu_read_unlock();
1665
1666out:
1667	return cpu;
1668}
1669
1670static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1671{
1672	/*
1673	 * Current can't be migrated, useless to reschedule,
1674	 * let's hope p can move out.
1675	 */
1676	if (rq->curr->nr_cpus_allowed == 1 ||
1677	    !cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1678		return;
1679
1680	/*
1681	 * p is migratable, so let's not schedule it and
1682	 * see if it is pushed or pulled somewhere else.
1683	 */
1684	if (p->nr_cpus_allowed != 1 &&
1685	    cpupri_find(&rq->rd->cpupri, p, NULL))
1686		return;
1687
1688	/*
1689	 * There appear to be other CPUs that can accept
1690	 * the current task but none can run 'p', so lets reschedule
1691	 * to try and push the current task away:
1692	 */
1693	requeue_task_rt(rq, p, 1);
1694	resched_curr(rq);
1695}
1696
1697static int balance_rt(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1698{
1699	if (!on_rt_rq(&p->rt) && need_pull_rt_task(rq, p)) {
1700		/*
1701		 * This is OK, because current is on_cpu, which avoids it being
1702		 * picked for load-balance and preemption/IRQs are still
1703		 * disabled avoiding further scheduler activity on it and we've
1704		 * not yet started the picking loop.
1705		 */
1706		rq_unpin_lock(rq, rf);
1707		pull_rt_task(rq);
1708		rq_repin_lock(rq, rf);
1709	}
1710
1711	return sched_stop_runnable(rq) || sched_dl_runnable(rq) || sched_rt_runnable(rq);
1712}
1713#endif /* CONFIG_SMP */
1714
1715/*
1716 * Preempt the current task with a newly woken task if needed:
1717 */
1718static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1719{
1720	if (p->prio < rq->curr->prio) {
1721		resched_curr(rq);
1722		return;
1723	}
1724
1725#ifdef CONFIG_SMP
1726	/*
1727	 * If:
1728	 *
1729	 * - the newly woken task is of equal priority to the current task
1730	 * - the newly woken task is non-migratable while current is migratable
1731	 * - current will be preempted on the next reschedule
1732	 *
1733	 * we should check to see if current can readily move to a different
1734	 * cpu.  If so, we will reschedule to allow the push logic to try
1735	 * to move current somewhere else, making room for our non-migratable
1736	 * task.
1737	 */
1738	if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1739		check_preempt_equal_prio(rq, p);
1740#endif
1741}
1742
1743static inline void set_next_task_rt(struct rq *rq, struct task_struct *p, bool first)
1744{
1745	struct sched_rt_entity *rt_se = &p->rt;
1746	struct rt_rq *rt_rq = &rq->rt;
1747
1748	p->se.exec_start = rq_clock_task(rq);
1749	if (on_rt_rq(&p->rt))
1750		update_stats_wait_end_rt(rt_rq, rt_se);
1751
1752	/* The running task is never eligible for pushing */
1753	dequeue_pushable_task(rq, p);
1754
1755	if (!first)
1756		return;
1757
1758	/*
1759	 * If prev task was rt, put_prev_task() has already updated the
1760	 * utilization. We only care of the case where we start to schedule a
1761	 * rt task
1762	 */
1763	if (rq->curr->sched_class != &rt_sched_class)
1764		update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
1765
1766	rt_queue_push_tasks(rq);
1767}
1768
1769static struct sched_rt_entity *pick_next_rt_entity(struct rt_rq *rt_rq)
1770{
1771	struct rt_prio_array *array = &rt_rq->active;
1772	struct sched_rt_entity *next = NULL;
1773	struct list_head *queue;
1774	int idx;
1775
1776	idx = sched_find_first_bit(array->bitmap);
1777	BUG_ON(idx >= MAX_RT_PRIO);
1778
1779	queue = array->queue + idx;
1780	next = list_entry(queue->next, struct sched_rt_entity, run_list);
1781
1782	return next;
1783}
1784
1785static struct task_struct *_pick_next_task_rt(struct rq *rq)
1786{
1787	struct sched_rt_entity *rt_se;
 
1788	struct rt_rq *rt_rq  = &rq->rt;
1789
1790	do {
1791		rt_se = pick_next_rt_entity(rt_rq);
1792		BUG_ON(!rt_se);
1793		rt_rq = group_rt_rq(rt_se);
1794	} while (rt_rq);
1795
1796	return rt_task_of(rt_se);
 
 
 
1797}
1798
1799static struct task_struct *pick_task_rt(struct rq *rq)
 
1800{
1801	struct task_struct *p;
 
1802
1803	if (!sched_rt_runnable(rq))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1804		return NULL;
1805
1806	p = _pick_next_task_rt(rq);
1807
1808	return p;
1809}
1810
1811static struct task_struct *pick_next_task_rt(struct rq *rq)
1812{
1813	struct task_struct *p = pick_task_rt(rq);
1814
1815	if (p)
1816		set_next_task_rt(rq, p, true);
1817
1818	return p;
1819}
1820
1821static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1822{
1823	struct sched_rt_entity *rt_se = &p->rt;
1824	struct rt_rq *rt_rq = &rq->rt;
1825
1826	if (on_rt_rq(&p->rt))
1827		update_stats_wait_start_rt(rt_rq, rt_se);
1828
1829	update_curr_rt(rq);
1830
1831	update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
1832
1833	/*
1834	 * The previous task needs to be made eligible for pushing
1835	 * if it is still active
1836	 */
1837	if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1838		enqueue_pushable_task(rq, p);
1839}
1840
1841#ifdef CONFIG_SMP
1842
1843/* Only try algorithms three times */
1844#define RT_MAX_TRIES 3
1845
1846static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1847{
1848	if (!task_on_cpu(rq, p) &&
1849	    cpumask_test_cpu(cpu, &p->cpus_mask))
1850		return 1;
1851
1852	return 0;
1853}
1854
1855/*
1856 * Return the highest pushable rq's task, which is suitable to be executed
1857 * on the CPU, NULL otherwise
1858 */
1859static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1860{
1861	struct plist_head *head = &rq->rt.pushable_tasks;
1862	struct task_struct *p;
1863
1864	if (!has_pushable_tasks(rq))
1865		return NULL;
1866
1867	plist_for_each_entry(p, head, pushable_tasks) {
1868		if (pick_rt_task(rq, p, cpu))
1869			return p;
1870	}
1871
1872	return NULL;
1873}
1874
1875static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1876
1877static int find_lowest_rq(struct task_struct *task)
1878{
1879	struct sched_domain *sd;
1880	struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
1881	int this_cpu = smp_processor_id();
1882	int cpu      = task_cpu(task);
1883	int ret;
1884
1885	/* Make sure the mask is initialized first */
1886	if (unlikely(!lowest_mask))
1887		return -1;
1888
1889	if (task->nr_cpus_allowed == 1)
1890		return -1; /* No other targets possible */
1891
1892	/*
1893	 * If we're on asym system ensure we consider the different capacities
1894	 * of the CPUs when searching for the lowest_mask.
1895	 */
1896	if (sched_asym_cpucap_active()) {
1897
1898		ret = cpupri_find_fitness(&task_rq(task)->rd->cpupri,
1899					  task, lowest_mask,
1900					  rt_task_fits_capacity);
1901	} else {
1902
1903		ret = cpupri_find(&task_rq(task)->rd->cpupri,
1904				  task, lowest_mask);
1905	}
1906
1907	if (!ret)
1908		return -1; /* No targets found */
1909
1910	/*
1911	 * At this point we have built a mask of CPUs representing the
1912	 * lowest priority tasks in the system.  Now we want to elect
1913	 * the best one based on our affinity and topology.
1914	 *
1915	 * We prioritize the last CPU that the task executed on since
1916	 * it is most likely cache-hot in that location.
1917	 */
1918	if (cpumask_test_cpu(cpu, lowest_mask))
1919		return cpu;
1920
1921	/*
1922	 * Otherwise, we consult the sched_domains span maps to figure
1923	 * out which CPU is logically closest to our hot cache data.
1924	 */
1925	if (!cpumask_test_cpu(this_cpu, lowest_mask))
1926		this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1927
1928	rcu_read_lock();
1929	for_each_domain(cpu, sd) {
1930		if (sd->flags & SD_WAKE_AFFINE) {
1931			int best_cpu;
1932
1933			/*
1934			 * "this_cpu" is cheaper to preempt than a
1935			 * remote processor.
1936			 */
1937			if (this_cpu != -1 &&
1938			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1939				rcu_read_unlock();
1940				return this_cpu;
1941			}
1942
1943			best_cpu = cpumask_any_and_distribute(lowest_mask,
1944							      sched_domain_span(sd));
1945			if (best_cpu < nr_cpu_ids) {
1946				rcu_read_unlock();
1947				return best_cpu;
1948			}
1949		}
1950	}
1951	rcu_read_unlock();
1952
1953	/*
1954	 * And finally, if there were no matches within the domains
1955	 * just give the caller *something* to work with from the compatible
1956	 * locations.
1957	 */
1958	if (this_cpu != -1)
1959		return this_cpu;
1960
1961	cpu = cpumask_any_distribute(lowest_mask);
1962	if (cpu < nr_cpu_ids)
1963		return cpu;
1964
1965	return -1;
1966}
1967
1968/* Will lock the rq it finds */
1969static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1970{
1971	struct rq *lowest_rq = NULL;
1972	int tries;
1973	int cpu;
1974
1975	for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1976		cpu = find_lowest_rq(task);
1977
1978		if ((cpu == -1) || (cpu == rq->cpu))
1979			break;
1980
1981		lowest_rq = cpu_rq(cpu);
1982
1983		if (lowest_rq->rt.highest_prio.curr <= task->prio) {
1984			/*
1985			 * Target rq has tasks of equal or higher priority,
1986			 * retrying does not release any lock and is unlikely
1987			 * to yield a different result.
1988			 */
1989			lowest_rq = NULL;
1990			break;
1991		}
1992
1993		/* if the prio of this runqueue changed, try again */
1994		if (double_lock_balance(rq, lowest_rq)) {
1995			/*
1996			 * We had to unlock the run queue. In
1997			 * the mean time, task could have
1998			 * migrated already or had its affinity changed.
1999			 * Also make sure that it wasn't scheduled on its rq.
2000			 */
2001			if (unlikely(task_rq(task) != rq ||
2002				     !cpumask_test_cpu(lowest_rq->cpu, &task->cpus_mask) ||
2003				     task_on_cpu(rq, task) ||
2004				     !rt_task(task) ||
2005				     !task_on_rq_queued(task))) {
2006
2007				double_unlock_balance(rq, lowest_rq);
2008				lowest_rq = NULL;
2009				break;
2010			}
2011		}
2012
2013		/* If this rq is still suitable use it. */
2014		if (lowest_rq->rt.highest_prio.curr > task->prio)
2015			break;
2016
2017		/* try again */
2018		double_unlock_balance(rq, lowest_rq);
2019		lowest_rq = NULL;
2020	}
2021
2022	return lowest_rq;
2023}
2024
2025static struct task_struct *pick_next_pushable_task(struct rq *rq)
2026{
2027	struct task_struct *p;
2028
2029	if (!has_pushable_tasks(rq))
2030		return NULL;
2031
2032	p = plist_first_entry(&rq->rt.pushable_tasks,
2033			      struct task_struct, pushable_tasks);
2034
2035	BUG_ON(rq->cpu != task_cpu(p));
2036	BUG_ON(task_current(rq, p));
2037	BUG_ON(p->nr_cpus_allowed <= 1);
2038
2039	BUG_ON(!task_on_rq_queued(p));
2040	BUG_ON(!rt_task(p));
2041
2042	return p;
2043}
2044
2045/*
2046 * If the current CPU has more than one RT task, see if the non
2047 * running task can migrate over to a CPU that is running a task
2048 * of lesser priority.
2049 */
2050static int push_rt_task(struct rq *rq, bool pull)
2051{
2052	struct task_struct *next_task;
2053	struct rq *lowest_rq;
2054	int ret = 0;
2055
2056	if (!rq->rt.overloaded)
2057		return 0;
2058
2059	next_task = pick_next_pushable_task(rq);
2060	if (!next_task)
2061		return 0;
2062
2063retry:
 
 
 
 
 
2064	/*
2065	 * It's possible that the next_task slipped in of
2066	 * higher priority than current. If that's the case
2067	 * just reschedule current.
2068	 */
2069	if (unlikely(next_task->prio < rq->curr->prio)) {
2070		resched_curr(rq);
2071		return 0;
2072	}
2073
2074	if (is_migration_disabled(next_task)) {
2075		struct task_struct *push_task = NULL;
2076		int cpu;
2077
2078		if (!pull || rq->push_busy)
2079			return 0;
2080
2081		/*
2082		 * Invoking find_lowest_rq() on anything but an RT task doesn't
2083		 * make sense. Per the above priority check, curr has to
2084		 * be of higher priority than next_task, so no need to
2085		 * reschedule when bailing out.
2086		 *
2087		 * Note that the stoppers are masqueraded as SCHED_FIFO
2088		 * (cf. sched_set_stop_task()), so we can't rely on rt_task().
2089		 */
2090		if (rq->curr->sched_class != &rt_sched_class)
2091			return 0;
2092
2093		cpu = find_lowest_rq(rq->curr);
2094		if (cpu == -1 || cpu == rq->cpu)
2095			return 0;
2096
2097		/*
2098		 * Given we found a CPU with lower priority than @next_task,
2099		 * therefore it should be running. However we cannot migrate it
2100		 * to this other CPU, instead attempt to push the current
2101		 * running task on this CPU away.
2102		 */
2103		push_task = get_push_task(rq);
2104		if (push_task) {
2105			raw_spin_rq_unlock(rq);
2106			stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2107					    push_task, &rq->push_work);
2108			raw_spin_rq_lock(rq);
2109		}
2110
2111		return 0;
2112	}
2113
2114	if (WARN_ON(next_task == rq->curr))
2115		return 0;
2116
2117	/* We might release rq lock */
2118	get_task_struct(next_task);
2119
2120	/* find_lock_lowest_rq locks the rq if found */
2121	lowest_rq = find_lock_lowest_rq(next_task, rq);
2122	if (!lowest_rq) {
2123		struct task_struct *task;
2124		/*
2125		 * find_lock_lowest_rq releases rq->lock
2126		 * so it is possible that next_task has migrated.
2127		 *
2128		 * We need to make sure that the task is still on the same
2129		 * run-queue and is also still the next task eligible for
2130		 * pushing.
2131		 */
2132		task = pick_next_pushable_task(rq);
2133		if (task == next_task) {
2134			/*
2135			 * The task hasn't migrated, and is still the next
2136			 * eligible task, but we failed to find a run-queue
2137			 * to push it to.  Do not retry in this case, since
2138			 * other CPUs will pull from us when ready.
2139			 */
2140			goto out;
2141		}
2142
2143		if (!task)
2144			/* No more tasks, just exit */
2145			goto out;
2146
2147		/*
2148		 * Something has shifted, try again.
2149		 */
2150		put_task_struct(next_task);
2151		next_task = task;
2152		goto retry;
2153	}
2154
2155	deactivate_task(rq, next_task, 0);
2156	set_task_cpu(next_task, lowest_rq->cpu);
2157	activate_task(lowest_rq, next_task, 0);
2158	resched_curr(lowest_rq);
2159	ret = 1;
2160
 
 
2161	double_unlock_balance(rq, lowest_rq);
 
2162out:
2163	put_task_struct(next_task);
2164
2165	return ret;
2166}
2167
2168static void push_rt_tasks(struct rq *rq)
2169{
2170	/* push_rt_task will return true if it moved an RT */
2171	while (push_rt_task(rq, false))
2172		;
2173}
2174
2175#ifdef HAVE_RT_PUSH_IPI
2176
2177/*
2178 * When a high priority task schedules out from a CPU and a lower priority
2179 * task is scheduled in, a check is made to see if there's any RT tasks
2180 * on other CPUs that are waiting to run because a higher priority RT task
2181 * is currently running on its CPU. In this case, the CPU with multiple RT
2182 * tasks queued on it (overloaded) needs to be notified that a CPU has opened
2183 * up that may be able to run one of its non-running queued RT tasks.
2184 *
2185 * All CPUs with overloaded RT tasks need to be notified as there is currently
2186 * no way to know which of these CPUs have the highest priority task waiting
2187 * to run. Instead of trying to take a spinlock on each of these CPUs,
2188 * which has shown to cause large latency when done on machines with many
2189 * CPUs, sending an IPI to the CPUs to have them push off the overloaded
2190 * RT tasks waiting to run.
2191 *
2192 * Just sending an IPI to each of the CPUs is also an issue, as on large
2193 * count CPU machines, this can cause an IPI storm on a CPU, especially
2194 * if its the only CPU with multiple RT tasks queued, and a large number
2195 * of CPUs scheduling a lower priority task at the same time.
2196 *
2197 * Each root domain has its own irq work function that can iterate over
2198 * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT
2199 * task must be checked if there's one or many CPUs that are lowering
2200 * their priority, there's a single irq work iterator that will try to
2201 * push off RT tasks that are waiting to run.
2202 *
2203 * When a CPU schedules a lower priority task, it will kick off the
2204 * irq work iterator that will jump to each CPU with overloaded RT tasks.
2205 * As it only takes the first CPU that schedules a lower priority task
2206 * to start the process, the rto_start variable is incremented and if
2207 * the atomic result is one, then that CPU will try to take the rto_lock.
2208 * This prevents high contention on the lock as the process handles all
2209 * CPUs scheduling lower priority tasks.
2210 *
2211 * All CPUs that are scheduling a lower priority task will increment the
2212 * rt_loop_next variable. This will make sure that the irq work iterator
2213 * checks all RT overloaded CPUs whenever a CPU schedules a new lower
2214 * priority task, even if the iterator is in the middle of a scan. Incrementing
2215 * the rt_loop_next will cause the iterator to perform another scan.
2216 *
2217 */
2218static int rto_next_cpu(struct root_domain *rd)
2219{
2220	int next;
2221	int cpu;
2222
2223	/*
2224	 * When starting the IPI RT pushing, the rto_cpu is set to -1,
2225	 * rt_next_cpu() will simply return the first CPU found in
2226	 * the rto_mask.
2227	 *
2228	 * If rto_next_cpu() is called with rto_cpu is a valid CPU, it
2229	 * will return the next CPU found in the rto_mask.
2230	 *
2231	 * If there are no more CPUs left in the rto_mask, then a check is made
2232	 * against rto_loop and rto_loop_next. rto_loop is only updated with
2233	 * the rto_lock held, but any CPU may increment the rto_loop_next
2234	 * without any locking.
2235	 */
2236	for (;;) {
2237
2238		/* When rto_cpu is -1 this acts like cpumask_first() */
2239		cpu = cpumask_next(rd->rto_cpu, rd->rto_mask);
2240
2241		rd->rto_cpu = cpu;
2242
2243		if (cpu < nr_cpu_ids)
2244			return cpu;
2245
2246		rd->rto_cpu = -1;
2247
2248		/*
2249		 * ACQUIRE ensures we see the @rto_mask changes
2250		 * made prior to the @next value observed.
2251		 *
2252		 * Matches WMB in rt_set_overload().
2253		 */
2254		next = atomic_read_acquire(&rd->rto_loop_next);
2255
2256		if (rd->rto_loop == next)
2257			break;
2258
2259		rd->rto_loop = next;
2260	}
2261
2262	return -1;
2263}
2264
2265static inline bool rto_start_trylock(atomic_t *v)
2266{
2267	return !atomic_cmpxchg_acquire(v, 0, 1);
2268}
2269
2270static inline void rto_start_unlock(atomic_t *v)
2271{
2272	atomic_set_release(v, 0);
2273}
2274
2275static void tell_cpu_to_push(struct rq *rq)
2276{
2277	int cpu = -1;
2278
2279	/* Keep the loop going if the IPI is currently active */
2280	atomic_inc(&rq->rd->rto_loop_next);
2281
2282	/* Only one CPU can initiate a loop at a time */
2283	if (!rto_start_trylock(&rq->rd->rto_loop_start))
2284		return;
2285
2286	raw_spin_lock(&rq->rd->rto_lock);
2287
2288	/*
2289	 * The rto_cpu is updated under the lock, if it has a valid CPU
2290	 * then the IPI is still running and will continue due to the
2291	 * update to loop_next, and nothing needs to be done here.
2292	 * Otherwise it is finishing up and an ipi needs to be sent.
2293	 */
2294	if (rq->rd->rto_cpu < 0)
2295		cpu = rto_next_cpu(rq->rd);
2296
2297	raw_spin_unlock(&rq->rd->rto_lock);
2298
2299	rto_start_unlock(&rq->rd->rto_loop_start);
2300
2301	if (cpu >= 0) {
2302		/* Make sure the rd does not get freed while pushing */
2303		sched_get_rd(rq->rd);
2304		irq_work_queue_on(&rq->rd->rto_push_work, cpu);
2305	}
2306}
2307
2308/* Called from hardirq context */
2309void rto_push_irq_work_func(struct irq_work *work)
2310{
2311	struct root_domain *rd =
2312		container_of(work, struct root_domain, rto_push_work);
2313	struct rq *rq;
2314	int cpu;
2315
2316	rq = this_rq();
2317
2318	/*
2319	 * We do not need to grab the lock to check for has_pushable_tasks.
2320	 * When it gets updated, a check is made if a push is possible.
2321	 */
2322	if (has_pushable_tasks(rq)) {
2323		raw_spin_rq_lock(rq);
2324		while (push_rt_task(rq, true))
2325			;
2326		raw_spin_rq_unlock(rq);
2327	}
2328
2329	raw_spin_lock(&rd->rto_lock);
2330
2331	/* Pass the IPI to the next rt overloaded queue */
2332	cpu = rto_next_cpu(rd);
2333
2334	raw_spin_unlock(&rd->rto_lock);
2335
2336	if (cpu < 0) {
2337		sched_put_rd(rd);
2338		return;
2339	}
2340
2341	/* Try the next RT overloaded CPU */
2342	irq_work_queue_on(&rd->rto_push_work, cpu);
2343}
2344#endif /* HAVE_RT_PUSH_IPI */
2345
2346static void pull_rt_task(struct rq *this_rq)
2347{
2348	int this_cpu = this_rq->cpu, cpu;
2349	bool resched = false;
2350	struct task_struct *p, *push_task;
2351	struct rq *src_rq;
2352	int rt_overload_count = rt_overloaded(this_rq);
2353
2354	if (likely(!rt_overload_count))
2355		return;
2356
2357	/*
2358	 * Match the barrier from rt_set_overloaded; this guarantees that if we
2359	 * see overloaded we must also see the rto_mask bit.
2360	 */
2361	smp_rmb();
2362
2363	/* If we are the only overloaded CPU do nothing */
2364	if (rt_overload_count == 1 &&
2365	    cpumask_test_cpu(this_rq->cpu, this_rq->rd->rto_mask))
2366		return;
2367
2368#ifdef HAVE_RT_PUSH_IPI
2369	if (sched_feat(RT_PUSH_IPI)) {
2370		tell_cpu_to_push(this_rq);
2371		return;
2372	}
2373#endif
2374
2375	for_each_cpu(cpu, this_rq->rd->rto_mask) {
2376		if (this_cpu == cpu)
2377			continue;
2378
2379		src_rq = cpu_rq(cpu);
2380
2381		/*
2382		 * Don't bother taking the src_rq->lock if the next highest
2383		 * task is known to be lower-priority than our current task.
2384		 * This may look racy, but if this value is about to go
2385		 * logically higher, the src_rq will push this task away.
2386		 * And if its going logically lower, we do not care
2387		 */
2388		if (src_rq->rt.highest_prio.next >=
2389		    this_rq->rt.highest_prio.curr)
2390			continue;
2391
2392		/*
2393		 * We can potentially drop this_rq's lock in
2394		 * double_lock_balance, and another CPU could
2395		 * alter this_rq
2396		 */
2397		push_task = NULL;
2398		double_lock_balance(this_rq, src_rq);
2399
2400		/*
2401		 * We can pull only a task, which is pushable
2402		 * on its rq, and no others.
2403		 */
2404		p = pick_highest_pushable_task(src_rq, this_cpu);
2405
2406		/*
2407		 * Do we have an RT task that preempts
2408		 * the to-be-scheduled task?
2409		 */
2410		if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
2411			WARN_ON(p == src_rq->curr);
2412			WARN_ON(!task_on_rq_queued(p));
2413
2414			/*
2415			 * There's a chance that p is higher in priority
2416			 * than what's currently running on its CPU.
2417			 * This is just that p is waking up and hasn't
2418			 * had a chance to schedule. We only pull
2419			 * p if it is lower in priority than the
2420			 * current task on the run queue
2421			 */
2422			if (p->prio < src_rq->curr->prio)
2423				goto skip;
2424
2425			if (is_migration_disabled(p)) {
2426				push_task = get_push_task(src_rq);
2427			} else {
2428				deactivate_task(src_rq, p, 0);
2429				set_task_cpu(p, this_cpu);
2430				activate_task(this_rq, p, 0);
2431				resched = true;
2432			}
2433			/*
2434			 * We continue with the search, just in
2435			 * case there's an even higher prio task
2436			 * in another runqueue. (low likelihood
2437			 * but possible)
2438			 */
2439		}
2440skip:
2441		double_unlock_balance(this_rq, src_rq);
2442
2443		if (push_task) {
2444			raw_spin_rq_unlock(this_rq);
2445			stop_one_cpu_nowait(src_rq->cpu, push_cpu_stop,
2446					    push_task, &src_rq->push_work);
2447			raw_spin_rq_lock(this_rq);
2448		}
2449	}
2450
2451	if (resched)
2452		resched_curr(this_rq);
2453}
2454
2455/*
2456 * If we are not running and we are not going to reschedule soon, we should
2457 * try to push tasks away now
2458 */
2459static void task_woken_rt(struct rq *rq, struct task_struct *p)
2460{
2461	bool need_to_push = !task_on_cpu(rq, p) &&
2462			    !test_tsk_need_resched(rq->curr) &&
2463			    p->nr_cpus_allowed > 1 &&
2464			    (dl_task(rq->curr) || rt_task(rq->curr)) &&
2465			    (rq->curr->nr_cpus_allowed < 2 ||
2466			     rq->curr->prio <= p->prio);
2467
2468	if (need_to_push)
2469		push_rt_tasks(rq);
2470}
2471
2472/* Assumes rq->lock is held */
2473static void rq_online_rt(struct rq *rq)
2474{
2475	if (rq->rt.overloaded)
2476		rt_set_overload(rq);
2477
2478	__enable_runtime(rq);
2479
2480	cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
2481}
2482
2483/* Assumes rq->lock is held */
2484static void rq_offline_rt(struct rq *rq)
2485{
2486	if (rq->rt.overloaded)
2487		rt_clear_overload(rq);
2488
2489	__disable_runtime(rq);
2490
2491	cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
2492}
2493
2494/*
2495 * When switch from the rt queue, we bring ourselves to a position
2496 * that we might want to pull RT tasks from other runqueues.
2497 */
2498static void switched_from_rt(struct rq *rq, struct task_struct *p)
2499{
2500	/*
2501	 * If there are other RT tasks then we will reschedule
2502	 * and the scheduling of the other RT tasks will handle
2503	 * the balancing. But if we are the last RT task
2504	 * we may need to handle the pulling of RT tasks
2505	 * now.
2506	 */
2507	if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
2508		return;
2509
2510	rt_queue_pull_task(rq);
2511}
2512
2513void __init init_sched_rt_class(void)
2514{
2515	unsigned int i;
2516
2517	for_each_possible_cpu(i) {
2518		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
2519					GFP_KERNEL, cpu_to_node(i));
2520	}
2521}
2522#endif /* CONFIG_SMP */
2523
2524/*
2525 * When switching a task to RT, we may overload the runqueue
2526 * with RT tasks. In this case we try to push them off to
2527 * other runqueues.
2528 */
2529static void switched_to_rt(struct rq *rq, struct task_struct *p)
2530{
2531	/*
2532	 * If we are running, update the avg_rt tracking, as the running time
2533	 * will now on be accounted into the latter.
2534	 */
2535	if (task_current(rq, p)) {
2536		update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
2537		return;
2538	}
2539
2540	/*
2541	 * If we are not running we may need to preempt the current
2542	 * running task. If that current running task is also an RT task
2543	 * then see if we can move to another run queue.
2544	 */
2545	if (task_on_rq_queued(p)) {
2546#ifdef CONFIG_SMP
2547		if (p->nr_cpus_allowed > 1 && rq->rt.overloaded)
2548			rt_queue_push_tasks(rq);
2549#endif /* CONFIG_SMP */
2550		if (p->prio < rq->curr->prio && cpu_online(cpu_of(rq)))
2551			resched_curr(rq);
2552	}
2553}
2554
2555/*
2556 * Priority of the task has changed. This may cause
2557 * us to initiate a push or pull.
2558 */
2559static void
2560prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
2561{
2562	if (!task_on_rq_queued(p))
2563		return;
2564
2565	if (task_current(rq, p)) {
2566#ifdef CONFIG_SMP
2567		/*
2568		 * If our priority decreases while running, we
2569		 * may need to pull tasks to this runqueue.
2570		 */
2571		if (oldprio < p->prio)
2572			rt_queue_pull_task(rq);
2573
2574		/*
2575		 * If there's a higher priority task waiting to run
2576		 * then reschedule.
2577		 */
2578		if (p->prio > rq->rt.highest_prio.curr)
2579			resched_curr(rq);
2580#else
2581		/* For UP simply resched on drop of prio */
2582		if (oldprio < p->prio)
2583			resched_curr(rq);
2584#endif /* CONFIG_SMP */
2585	} else {
2586		/*
2587		 * This task is not running, but if it is
2588		 * greater than the current running task
2589		 * then reschedule.
2590		 */
2591		if (p->prio < rq->curr->prio)
2592			resched_curr(rq);
2593	}
2594}
2595
2596#ifdef CONFIG_POSIX_TIMERS
2597static void watchdog(struct rq *rq, struct task_struct *p)
2598{
2599	unsigned long soft, hard;
2600
2601	/* max may change after cur was read, this will be fixed next tick */
2602	soft = task_rlimit(p, RLIMIT_RTTIME);
2603	hard = task_rlimit_max(p, RLIMIT_RTTIME);
2604
2605	if (soft != RLIM_INFINITY) {
2606		unsigned long next;
2607
2608		if (p->rt.watchdog_stamp != jiffies) {
2609			p->rt.timeout++;
2610			p->rt.watchdog_stamp = jiffies;
2611		}
2612
2613		next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2614		if (p->rt.timeout > next) {
2615			posix_cputimers_rt_watchdog(&p->posix_cputimers,
2616						    p->se.sum_exec_runtime);
2617		}
2618	}
2619}
2620#else
2621static inline void watchdog(struct rq *rq, struct task_struct *p) { }
2622#endif
2623
2624/*
2625 * scheduler tick hitting a task of our scheduling class.
2626 *
2627 * NOTE: This function can be called remotely by the tick offload that
2628 * goes along full dynticks. Therefore no local assumption can be made
2629 * and everything must be accessed through the @rq and @curr passed in
2630 * parameters.
2631 */
2632static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2633{
2634	struct sched_rt_entity *rt_se = &p->rt;
2635
2636	update_curr_rt(rq);
2637	update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2638
2639	watchdog(rq, p);
2640
2641	/*
2642	 * RR tasks need a special form of timeslice management.
2643	 * FIFO tasks have no timeslices.
2644	 */
2645	if (p->policy != SCHED_RR)
2646		return;
2647
2648	if (--p->rt.time_slice)
2649		return;
2650
2651	p->rt.time_slice = sched_rr_timeslice;
2652
2653	/*
2654	 * Requeue to the end of queue if we (and all of our ancestors) are not
2655	 * the only element on the queue
2656	 */
2657	for_each_sched_rt_entity(rt_se) {
2658		if (rt_se->run_list.prev != rt_se->run_list.next) {
2659			requeue_task_rt(rq, p, 0);
2660			resched_curr(rq);
2661			return;
2662		}
2663	}
2664}
2665
 
 
 
 
 
 
 
 
 
 
2666static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2667{
2668	/*
2669	 * Time slice is 0 for SCHED_FIFO tasks
2670	 */
2671	if (task->policy == SCHED_RR)
2672		return sched_rr_timeslice;
2673	else
2674		return 0;
2675}
2676
2677DEFINE_SCHED_CLASS(rt) = {
2678
2679	.enqueue_task		= enqueue_task_rt,
2680	.dequeue_task		= dequeue_task_rt,
2681	.yield_task		= yield_task_rt,
2682
2683	.check_preempt_curr	= check_preempt_curr_rt,
2684
2685	.pick_next_task		= pick_next_task_rt,
2686	.put_prev_task		= put_prev_task_rt,
2687	.set_next_task          = set_next_task_rt,
2688
2689#ifdef CONFIG_SMP
2690	.balance		= balance_rt,
2691	.pick_task		= pick_task_rt,
2692	.select_task_rq		= select_task_rq_rt,
 
2693	.set_cpus_allowed       = set_cpus_allowed_common,
2694	.rq_online              = rq_online_rt,
2695	.rq_offline             = rq_offline_rt,
2696	.task_woken		= task_woken_rt,
2697	.switched_from		= switched_from_rt,
2698	.find_lock_rq		= find_lock_lowest_rq,
2699#endif
2700
 
2701	.task_tick		= task_tick_rt,
2702
2703	.get_rr_interval	= get_rr_interval_rt,
2704
2705	.prio_changed		= prio_changed_rt,
2706	.switched_to		= switched_to_rt,
2707
2708	.update_curr		= update_curr_rt,
2709
2710#ifdef CONFIG_UCLAMP_TASK
2711	.uclamp_enabled		= 1,
2712#endif
2713};
2714
2715#ifdef CONFIG_RT_GROUP_SCHED
2716/*
2717 * Ensure that the real time constraints are schedulable.
2718 */
2719static DEFINE_MUTEX(rt_constraints_mutex);
2720
 
2721static inline int tg_has_rt_tasks(struct task_group *tg)
2722{
2723	struct task_struct *task;
2724	struct css_task_iter it;
2725	int ret = 0;
2726
2727	/*
2728	 * Autogroups do not have RT tasks; see autogroup_create().
2729	 */
2730	if (task_group_is_autogroup(tg))
2731		return 0;
2732
2733	css_task_iter_start(&tg->css, 0, &it);
2734	while (!ret && (task = css_task_iter_next(&it)))
2735		ret |= rt_task(task);
2736	css_task_iter_end(&it);
2737
2738	return ret;
2739}
2740
2741struct rt_schedulable_data {
2742	struct task_group *tg;
2743	u64 rt_period;
2744	u64 rt_runtime;
2745};
2746
2747static int tg_rt_schedulable(struct task_group *tg, void *data)
2748{
2749	struct rt_schedulable_data *d = data;
2750	struct task_group *child;
2751	unsigned long total, sum = 0;
2752	u64 period, runtime;
2753
2754	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2755	runtime = tg->rt_bandwidth.rt_runtime;
2756
2757	if (tg == d->tg) {
2758		period = d->rt_period;
2759		runtime = d->rt_runtime;
2760	}
2761
2762	/*
2763	 * Cannot have more runtime than the period.
2764	 */
2765	if (runtime > period && runtime != RUNTIME_INF)
2766		return -EINVAL;
2767
2768	/*
2769	 * Ensure we don't starve existing RT tasks if runtime turns zero.
2770	 */
2771	if (rt_bandwidth_enabled() && !runtime &&
2772	    tg->rt_bandwidth.rt_runtime && tg_has_rt_tasks(tg))
2773		return -EBUSY;
2774
2775	total = to_ratio(period, runtime);
2776
2777	/*
2778	 * Nobody can have more than the global setting allows.
2779	 */
2780	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
2781		return -EINVAL;
2782
2783	/*
2784	 * The sum of our children's runtime should not exceed our own.
2785	 */
2786	list_for_each_entry_rcu(child, &tg->children, siblings) {
2787		period = ktime_to_ns(child->rt_bandwidth.rt_period);
2788		runtime = child->rt_bandwidth.rt_runtime;
2789
2790		if (child == d->tg) {
2791			period = d->rt_period;
2792			runtime = d->rt_runtime;
2793		}
2794
2795		sum += to_ratio(period, runtime);
2796	}
2797
2798	if (sum > total)
2799		return -EINVAL;
2800
2801	return 0;
2802}
2803
2804static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
2805{
2806	int ret;
2807
2808	struct rt_schedulable_data data = {
2809		.tg = tg,
2810		.rt_period = period,
2811		.rt_runtime = runtime,
2812	};
2813
2814	rcu_read_lock();
2815	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
2816	rcu_read_unlock();
2817
2818	return ret;
2819}
2820
2821static int tg_set_rt_bandwidth(struct task_group *tg,
2822		u64 rt_period, u64 rt_runtime)
2823{
2824	int i, err = 0;
2825
2826	/*
2827	 * Disallowing the root group RT runtime is BAD, it would disallow the
2828	 * kernel creating (and or operating) RT threads.
2829	 */
2830	if (tg == &root_task_group && rt_runtime == 0)
2831		return -EINVAL;
2832
2833	/* No period doesn't make any sense. */
2834	if (rt_period == 0)
2835		return -EINVAL;
2836
2837	/*
2838	 * Bound quota to defend quota against overflow during bandwidth shift.
2839	 */
2840	if (rt_runtime != RUNTIME_INF && rt_runtime > max_rt_runtime)
2841		return -EINVAL;
2842
2843	mutex_lock(&rt_constraints_mutex);
 
2844	err = __rt_schedulable(tg, rt_period, rt_runtime);
2845	if (err)
2846		goto unlock;
2847
2848	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2849	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
2850	tg->rt_bandwidth.rt_runtime = rt_runtime;
2851
2852	for_each_possible_cpu(i) {
2853		struct rt_rq *rt_rq = tg->rt_rq[i];
2854
2855		raw_spin_lock(&rt_rq->rt_runtime_lock);
2856		rt_rq->rt_runtime = rt_runtime;
2857		raw_spin_unlock(&rt_rq->rt_runtime_lock);
2858	}
2859	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2860unlock:
 
2861	mutex_unlock(&rt_constraints_mutex);
2862
2863	return err;
2864}
2865
2866int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
2867{
2868	u64 rt_runtime, rt_period;
2869
2870	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2871	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
2872	if (rt_runtime_us < 0)
2873		rt_runtime = RUNTIME_INF;
2874	else if ((u64)rt_runtime_us > U64_MAX / NSEC_PER_USEC)
2875		return -EINVAL;
2876
2877	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2878}
2879
2880long sched_group_rt_runtime(struct task_group *tg)
2881{
2882	u64 rt_runtime_us;
2883
2884	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
2885		return -1;
2886
2887	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
2888	do_div(rt_runtime_us, NSEC_PER_USEC);
2889	return rt_runtime_us;
2890}
2891
2892int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
2893{
2894	u64 rt_runtime, rt_period;
2895
2896	if (rt_period_us > U64_MAX / NSEC_PER_USEC)
2897		return -EINVAL;
2898
2899	rt_period = rt_period_us * NSEC_PER_USEC;
2900	rt_runtime = tg->rt_bandwidth.rt_runtime;
2901
2902	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2903}
2904
2905long sched_group_rt_period(struct task_group *tg)
2906{
2907	u64 rt_period_us;
2908
2909	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
2910	do_div(rt_period_us, NSEC_PER_USEC);
2911	return rt_period_us;
2912}
2913
2914#ifdef CONFIG_SYSCTL
2915static int sched_rt_global_constraints(void)
2916{
2917	int ret = 0;
2918
2919	mutex_lock(&rt_constraints_mutex);
 
2920	ret = __rt_schedulable(NULL, 0, 0);
 
2921	mutex_unlock(&rt_constraints_mutex);
2922
2923	return ret;
2924}
2925#endif /* CONFIG_SYSCTL */
2926
2927int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
2928{
2929	/* Don't accept realtime tasks when there is no way for them to run */
2930	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
2931		return 0;
2932
2933	return 1;
2934}
2935
2936#else /* !CONFIG_RT_GROUP_SCHED */
2937
2938#ifdef CONFIG_SYSCTL
2939static int sched_rt_global_constraints(void)
2940{
2941	unsigned long flags;
2942	int i;
2943
2944	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
2945	for_each_possible_cpu(i) {
2946		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
2947
2948		raw_spin_lock(&rt_rq->rt_runtime_lock);
2949		rt_rq->rt_runtime = global_rt_runtime();
2950		raw_spin_unlock(&rt_rq->rt_runtime_lock);
2951	}
2952	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
2953
2954	return 0;
2955}
2956#endif /* CONFIG_SYSCTL */
2957#endif /* CONFIG_RT_GROUP_SCHED */
2958
2959#ifdef CONFIG_SYSCTL
2960static int sched_rt_global_validate(void)
2961{
2962	if (sysctl_sched_rt_period <= 0)
2963		return -EINVAL;
2964
2965	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
2966		((sysctl_sched_rt_runtime > sysctl_sched_rt_period) ||
2967		 ((u64)sysctl_sched_rt_runtime *
2968			NSEC_PER_USEC > max_rt_runtime)))
2969		return -EINVAL;
2970
2971	return 0;
2972}
2973
2974static void sched_rt_do_global(void)
2975{
2976	unsigned long flags;
2977
2978	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
2979	def_rt_bandwidth.rt_runtime = global_rt_runtime();
2980	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
2981	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
2982}
2983
2984static int sched_rt_handler(struct ctl_table *table, int write, void *buffer,
2985		size_t *lenp, loff_t *ppos)
 
2986{
2987	int old_period, old_runtime;
2988	static DEFINE_MUTEX(mutex);
2989	int ret;
2990
2991	mutex_lock(&mutex);
2992	old_period = sysctl_sched_rt_period;
2993	old_runtime = sysctl_sched_rt_runtime;
2994
2995	ret = proc_dointvec(table, write, buffer, lenp, ppos);
2996
2997	if (!ret && write) {
2998		ret = sched_rt_global_validate();
2999		if (ret)
3000			goto undo;
3001
3002		ret = sched_dl_global_validate();
3003		if (ret)
3004			goto undo;
3005
3006		ret = sched_rt_global_constraints();
3007		if (ret)
3008			goto undo;
3009
3010		sched_rt_do_global();
3011		sched_dl_do_global();
3012	}
3013	if (0) {
3014undo:
3015		sysctl_sched_rt_period = old_period;
3016		sysctl_sched_rt_runtime = old_runtime;
3017	}
3018	mutex_unlock(&mutex);
3019
3020	return ret;
3021}
3022
3023static int sched_rr_handler(struct ctl_table *table, int write, void *buffer,
3024		size_t *lenp, loff_t *ppos)
 
3025{
3026	int ret;
3027	static DEFINE_MUTEX(mutex);
3028
3029	mutex_lock(&mutex);
3030	ret = proc_dointvec(table, write, buffer, lenp, ppos);
3031	/*
3032	 * Make sure that internally we keep jiffies.
3033	 * Also, writing zero resets the timeslice to default:
3034	 */
3035	if (!ret && write) {
3036		sched_rr_timeslice =
3037			sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE :
3038			msecs_to_jiffies(sysctl_sched_rr_timeslice);
3039	}
3040	mutex_unlock(&mutex);
3041
3042	return ret;
3043}
3044#endif /* CONFIG_SYSCTL */
3045
3046#ifdef CONFIG_SCHED_DEBUG
3047void print_rt_stats(struct seq_file *m, int cpu)
3048{
3049	rt_rq_iter_t iter;
3050	struct rt_rq *rt_rq;
3051
3052	rcu_read_lock();
3053	for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
3054		print_rt_rq(m, cpu, rt_rq);
3055	rcu_read_unlock();
3056}
3057#endif /* CONFIG_SCHED_DEBUG */
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
   4 * policies)
   5 */
   6#include "sched.h"
   7
   8int sched_rr_timeslice = RR_TIMESLICE;
   9int sysctl_sched_rr_timeslice = (MSEC_PER_SEC / HZ) * RR_TIMESLICE;
 
  10
  11static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  12
  13struct rt_bandwidth def_rt_bandwidth;
  14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  15static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  16{
  17	struct rt_bandwidth *rt_b =
  18		container_of(timer, struct rt_bandwidth, rt_period_timer);
  19	int idle = 0;
  20	int overrun;
  21
  22	raw_spin_lock(&rt_b->rt_runtime_lock);
  23	for (;;) {
  24		overrun = hrtimer_forward_now(timer, rt_b->rt_period);
  25		if (!overrun)
  26			break;
  27
  28		raw_spin_unlock(&rt_b->rt_runtime_lock);
  29		idle = do_sched_rt_period_timer(rt_b, overrun);
  30		raw_spin_lock(&rt_b->rt_runtime_lock);
  31	}
  32	if (idle)
  33		rt_b->rt_period_active = 0;
  34	raw_spin_unlock(&rt_b->rt_runtime_lock);
  35
  36	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  37}
  38
  39void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  40{
  41	rt_b->rt_period = ns_to_ktime(period);
  42	rt_b->rt_runtime = runtime;
  43
  44	raw_spin_lock_init(&rt_b->rt_runtime_lock);
  45
  46	hrtimer_init(&rt_b->rt_period_timer,
  47			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  48	rt_b->rt_period_timer.function = sched_rt_period_timer;
  49}
  50
  51static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  52{
  53	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
  54		return;
  55
  56	raw_spin_lock(&rt_b->rt_runtime_lock);
  57	if (!rt_b->rt_period_active) {
  58		rt_b->rt_period_active = 1;
  59		/*
  60		 * SCHED_DEADLINE updates the bandwidth, as a run away
  61		 * RT task with a DL task could hog a CPU. But DL does
  62		 * not reset the period. If a deadline task was running
  63		 * without an RT task running, it can cause RT tasks to
  64		 * throttle when they start up. Kick the timer right away
  65		 * to update the period.
  66		 */
  67		hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0));
  68		hrtimer_start_expires(&rt_b->rt_period_timer, HRTIMER_MODE_ABS_PINNED);
 
  69	}
  70	raw_spin_unlock(&rt_b->rt_runtime_lock);
  71}
  72
 
 
 
 
 
 
 
 
  73void init_rt_rq(struct rt_rq *rt_rq)
  74{
  75	struct rt_prio_array *array;
  76	int i;
  77
  78	array = &rt_rq->active;
  79	for (i = 0; i < MAX_RT_PRIO; i++) {
  80		INIT_LIST_HEAD(array->queue + i);
  81		__clear_bit(i, array->bitmap);
  82	}
  83	/* delimiter for bitsearch: */
  84	__set_bit(MAX_RT_PRIO, array->bitmap);
  85
  86#if defined CONFIG_SMP
  87	rt_rq->highest_prio.curr = MAX_RT_PRIO;
  88	rt_rq->highest_prio.next = MAX_RT_PRIO;
  89	rt_rq->rt_nr_migratory = 0;
  90	rt_rq->overloaded = 0;
  91	plist_head_init(&rt_rq->pushable_tasks);
  92#endif /* CONFIG_SMP */
  93	/* We start is dequeued state, because no RT tasks are queued */
  94	rt_rq->rt_queued = 0;
  95
  96	rt_rq->rt_time = 0;
  97	rt_rq->rt_throttled = 0;
  98	rt_rq->rt_runtime = 0;
  99	raw_spin_lock_init(&rt_rq->rt_runtime_lock);
 100}
 101
 102#ifdef CONFIG_RT_GROUP_SCHED
 103static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
 104{
 105	hrtimer_cancel(&rt_b->rt_period_timer);
 106}
 107
 108#define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
 109
 110static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
 111{
 112#ifdef CONFIG_SCHED_DEBUG
 113	WARN_ON_ONCE(!rt_entity_is_task(rt_se));
 114#endif
 115	return container_of(rt_se, struct task_struct, rt);
 116}
 117
 118static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
 119{
 120	return rt_rq->rq;
 121}
 122
 123static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
 124{
 125	return rt_se->rt_rq;
 126}
 127
 128static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
 129{
 130	struct rt_rq *rt_rq = rt_se->rt_rq;
 131
 132	return rt_rq->rq;
 133}
 134
 
 
 
 
 
 
 
 135void free_rt_sched_group(struct task_group *tg)
 136{
 137	int i;
 138
 139	if (tg->rt_se)
 140		destroy_rt_bandwidth(&tg->rt_bandwidth);
 141
 142	for_each_possible_cpu(i) {
 143		if (tg->rt_rq)
 144			kfree(tg->rt_rq[i]);
 145		if (tg->rt_se)
 146			kfree(tg->rt_se[i]);
 147	}
 148
 149	kfree(tg->rt_rq);
 150	kfree(tg->rt_se);
 151}
 152
 153void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
 154		struct sched_rt_entity *rt_se, int cpu,
 155		struct sched_rt_entity *parent)
 156{
 157	struct rq *rq = cpu_rq(cpu);
 158
 159	rt_rq->highest_prio.curr = MAX_RT_PRIO;
 160	rt_rq->rt_nr_boosted = 0;
 161	rt_rq->rq = rq;
 162	rt_rq->tg = tg;
 163
 164	tg->rt_rq[cpu] = rt_rq;
 165	tg->rt_se[cpu] = rt_se;
 166
 167	if (!rt_se)
 168		return;
 169
 170	if (!parent)
 171		rt_se->rt_rq = &rq->rt;
 172	else
 173		rt_se->rt_rq = parent->my_q;
 174
 175	rt_se->my_q = rt_rq;
 176	rt_se->parent = parent;
 177	INIT_LIST_HEAD(&rt_se->run_list);
 178}
 179
 180int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
 181{
 182	struct rt_rq *rt_rq;
 183	struct sched_rt_entity *rt_se;
 184	int i;
 185
 186	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
 187	if (!tg->rt_rq)
 188		goto err;
 189	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
 190	if (!tg->rt_se)
 191		goto err;
 192
 193	init_rt_bandwidth(&tg->rt_bandwidth,
 194			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
 195
 196	for_each_possible_cpu(i) {
 197		rt_rq = kzalloc_node(sizeof(struct rt_rq),
 198				     GFP_KERNEL, cpu_to_node(i));
 199		if (!rt_rq)
 200			goto err;
 201
 202		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
 203				     GFP_KERNEL, cpu_to_node(i));
 204		if (!rt_se)
 205			goto err_free_rq;
 206
 207		init_rt_rq(rt_rq);
 208		rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
 209		init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
 210	}
 211
 212	return 1;
 213
 214err_free_rq:
 215	kfree(rt_rq);
 216err:
 217	return 0;
 218}
 219
 220#else /* CONFIG_RT_GROUP_SCHED */
 221
 222#define rt_entity_is_task(rt_se) (1)
 223
 224static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
 225{
 226	return container_of(rt_se, struct task_struct, rt);
 227}
 228
 229static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
 230{
 231	return container_of(rt_rq, struct rq, rt);
 232}
 233
 234static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
 235{
 236	struct task_struct *p = rt_task_of(rt_se);
 237
 238	return task_rq(p);
 239}
 240
 241static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
 242{
 243	struct rq *rq = rq_of_rt_se(rt_se);
 244
 245	return &rq->rt;
 246}
 247
 
 
 248void free_rt_sched_group(struct task_group *tg) { }
 249
 250int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
 251{
 252	return 1;
 253}
 254#endif /* CONFIG_RT_GROUP_SCHED */
 255
 256#ifdef CONFIG_SMP
 257
 258static void pull_rt_task(struct rq *this_rq);
 259
 260static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
 261{
 262	/* Try to pull RT tasks here if we lower this rq's prio */
 263	return rq->rt.highest_prio.curr > prev->prio;
 264}
 265
 266static inline int rt_overloaded(struct rq *rq)
 267{
 268	return atomic_read(&rq->rd->rto_count);
 269}
 270
 271static inline void rt_set_overload(struct rq *rq)
 272{
 273	if (!rq->online)
 274		return;
 275
 276	cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
 277	/*
 278	 * Make sure the mask is visible before we set
 279	 * the overload count. That is checked to determine
 280	 * if we should look at the mask. It would be a shame
 281	 * if we looked at the mask, but the mask was not
 282	 * updated yet.
 283	 *
 284	 * Matched by the barrier in pull_rt_task().
 285	 */
 286	smp_wmb();
 287	atomic_inc(&rq->rd->rto_count);
 288}
 289
 290static inline void rt_clear_overload(struct rq *rq)
 291{
 292	if (!rq->online)
 293		return;
 294
 295	/* the order here really doesn't matter */
 296	atomic_dec(&rq->rd->rto_count);
 297	cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
 298}
 299
 300static void update_rt_migration(struct rt_rq *rt_rq)
 301{
 302	if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
 303		if (!rt_rq->overloaded) {
 304			rt_set_overload(rq_of_rt_rq(rt_rq));
 305			rt_rq->overloaded = 1;
 306		}
 307	} else if (rt_rq->overloaded) {
 308		rt_clear_overload(rq_of_rt_rq(rt_rq));
 309		rt_rq->overloaded = 0;
 310	}
 311}
 312
 313static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
 314{
 315	struct task_struct *p;
 316
 317	if (!rt_entity_is_task(rt_se))
 318		return;
 319
 320	p = rt_task_of(rt_se);
 321	rt_rq = &rq_of_rt_rq(rt_rq)->rt;
 322
 323	rt_rq->rt_nr_total++;
 324	if (p->nr_cpus_allowed > 1)
 325		rt_rq->rt_nr_migratory++;
 326
 327	update_rt_migration(rt_rq);
 328}
 329
 330static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
 331{
 332	struct task_struct *p;
 333
 334	if (!rt_entity_is_task(rt_se))
 335		return;
 336
 337	p = rt_task_of(rt_se);
 338	rt_rq = &rq_of_rt_rq(rt_rq)->rt;
 339
 340	rt_rq->rt_nr_total--;
 341	if (p->nr_cpus_allowed > 1)
 342		rt_rq->rt_nr_migratory--;
 343
 344	update_rt_migration(rt_rq);
 345}
 346
 347static inline int has_pushable_tasks(struct rq *rq)
 348{
 349	return !plist_head_empty(&rq->rt.pushable_tasks);
 350}
 351
 352static DEFINE_PER_CPU(struct callback_head, rt_push_head);
 353static DEFINE_PER_CPU(struct callback_head, rt_pull_head);
 354
 355static void push_rt_tasks(struct rq *);
 356static void pull_rt_task(struct rq *);
 357
 358static inline void rt_queue_push_tasks(struct rq *rq)
 359{
 360	if (!has_pushable_tasks(rq))
 361		return;
 362
 363	queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
 364}
 365
 366static inline void rt_queue_pull_task(struct rq *rq)
 367{
 368	queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
 369}
 370
 371static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
 372{
 373	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
 374	plist_node_init(&p->pushable_tasks, p->prio);
 375	plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
 376
 377	/* Update the highest prio pushable task */
 378	if (p->prio < rq->rt.highest_prio.next)
 379		rq->rt.highest_prio.next = p->prio;
 380}
 381
 382static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
 383{
 384	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
 385
 386	/* Update the new highest prio pushable task */
 387	if (has_pushable_tasks(rq)) {
 388		p = plist_first_entry(&rq->rt.pushable_tasks,
 389				      struct task_struct, pushable_tasks);
 390		rq->rt.highest_prio.next = p->prio;
 391	} else
 392		rq->rt.highest_prio.next = MAX_RT_PRIO;
 
 393}
 394
 395#else
 396
 397static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
 398{
 399}
 400
 401static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
 402{
 403}
 404
 405static inline
 406void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
 407{
 408}
 409
 410static inline
 411void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
 412{
 413}
 414
 415static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
 416{
 417	return false;
 418}
 
 
 
 
 419
 420static inline void pull_rt_task(struct rq *this_rq)
 421{
 
 422}
 423
 424static inline void rt_queue_push_tasks(struct rq *rq)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 425{
 426}
 427#endif /* CONFIG_SMP */
 
 
 
 
 
 
 
 
 428
 429static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
 430static void dequeue_top_rt_rq(struct rt_rq *rt_rq);
 431
 432static inline int on_rt_rq(struct sched_rt_entity *rt_se)
 
 
 
 433{
 434	return rt_se->on_rq;
 435}
 
 436
 437#ifdef CONFIG_RT_GROUP_SCHED
 438
 439static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
 440{
 441	if (!rt_rq->tg)
 442		return RUNTIME_INF;
 443
 444	return rt_rq->rt_runtime;
 445}
 446
 447static inline u64 sched_rt_period(struct rt_rq *rt_rq)
 448{
 449	return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
 450}
 451
 452typedef struct task_group *rt_rq_iter_t;
 453
 454static inline struct task_group *next_task_group(struct task_group *tg)
 455{
 456	do {
 457		tg = list_entry_rcu(tg->list.next,
 458			typeof(struct task_group), list);
 459	} while (&tg->list != &task_groups && task_group_is_autogroup(tg));
 460
 461	if (&tg->list == &task_groups)
 462		tg = NULL;
 463
 464	return tg;
 465}
 466
 467#define for_each_rt_rq(rt_rq, iter, rq)					\
 468	for (iter = container_of(&task_groups, typeof(*iter), list);	\
 469		(iter = next_task_group(iter)) &&			\
 470		(rt_rq = iter->rt_rq[cpu_of(rq)]);)
 471
 472#define for_each_sched_rt_entity(rt_se) \
 473	for (; rt_se; rt_se = rt_se->parent)
 474
 475static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
 476{
 477	return rt_se->my_q;
 478}
 479
 480static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
 481static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
 482
 483static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
 484{
 485	struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
 486	struct rq *rq = rq_of_rt_rq(rt_rq);
 487	struct sched_rt_entity *rt_se;
 488
 489	int cpu = cpu_of(rq);
 490
 491	rt_se = rt_rq->tg->rt_se[cpu];
 492
 493	if (rt_rq->rt_nr_running) {
 494		if (!rt_se)
 495			enqueue_top_rt_rq(rt_rq);
 496		else if (!on_rt_rq(rt_se))
 497			enqueue_rt_entity(rt_se, 0);
 498
 499		if (rt_rq->highest_prio.curr < curr->prio)
 500			resched_curr(rq);
 501	}
 502}
 503
 504static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
 505{
 506	struct sched_rt_entity *rt_se;
 507	int cpu = cpu_of(rq_of_rt_rq(rt_rq));
 508
 509	rt_se = rt_rq->tg->rt_se[cpu];
 510
 511	if (!rt_se)
 512		dequeue_top_rt_rq(rt_rq);
 
 
 
 513	else if (on_rt_rq(rt_se))
 514		dequeue_rt_entity(rt_se, 0);
 515}
 516
 517static inline int rt_rq_throttled(struct rt_rq *rt_rq)
 518{
 519	return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
 520}
 521
 522static int rt_se_boosted(struct sched_rt_entity *rt_se)
 523{
 524	struct rt_rq *rt_rq = group_rt_rq(rt_se);
 525	struct task_struct *p;
 526
 527	if (rt_rq)
 528		return !!rt_rq->rt_nr_boosted;
 529
 530	p = rt_task_of(rt_se);
 531	return p->prio != p->normal_prio;
 532}
 533
 534#ifdef CONFIG_SMP
 535static inline const struct cpumask *sched_rt_period_mask(void)
 536{
 537	return this_rq()->rd->span;
 538}
 539#else
 540static inline const struct cpumask *sched_rt_period_mask(void)
 541{
 542	return cpu_online_mask;
 543}
 544#endif
 545
 546static inline
 547struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
 548{
 549	return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
 550}
 551
 552static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
 553{
 554	return &rt_rq->tg->rt_bandwidth;
 555}
 556
 557#else /* !CONFIG_RT_GROUP_SCHED */
 558
 559static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
 560{
 561	return rt_rq->rt_runtime;
 562}
 563
 564static inline u64 sched_rt_period(struct rt_rq *rt_rq)
 565{
 566	return ktime_to_ns(def_rt_bandwidth.rt_period);
 567}
 568
 569typedef struct rt_rq *rt_rq_iter_t;
 570
 571#define for_each_rt_rq(rt_rq, iter, rq) \
 572	for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
 573
 574#define for_each_sched_rt_entity(rt_se) \
 575	for (; rt_se; rt_se = NULL)
 576
 577static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
 578{
 579	return NULL;
 580}
 581
 582static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
 583{
 584	struct rq *rq = rq_of_rt_rq(rt_rq);
 585
 586	if (!rt_rq->rt_nr_running)
 587		return;
 588
 589	enqueue_top_rt_rq(rt_rq);
 590	resched_curr(rq);
 591}
 592
 593static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
 594{
 595	dequeue_top_rt_rq(rt_rq);
 596}
 597
 598static inline int rt_rq_throttled(struct rt_rq *rt_rq)
 599{
 600	return rt_rq->rt_throttled;
 601}
 602
 603static inline const struct cpumask *sched_rt_period_mask(void)
 604{
 605	return cpu_online_mask;
 606}
 607
 608static inline
 609struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
 610{
 611	return &cpu_rq(cpu)->rt;
 612}
 613
 614static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
 615{
 616	return &def_rt_bandwidth;
 617}
 618
 619#endif /* CONFIG_RT_GROUP_SCHED */
 620
 621bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
 622{
 623	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
 624
 625	return (hrtimer_active(&rt_b->rt_period_timer) ||
 626		rt_rq->rt_time < rt_b->rt_runtime);
 627}
 628
 629#ifdef CONFIG_SMP
 630/*
 631 * We ran out of runtime, see if we can borrow some from our neighbours.
 632 */
 633static void do_balance_runtime(struct rt_rq *rt_rq)
 634{
 635	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
 636	struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
 637	int i, weight;
 638	u64 rt_period;
 639
 640	weight = cpumask_weight(rd->span);
 641
 642	raw_spin_lock(&rt_b->rt_runtime_lock);
 643	rt_period = ktime_to_ns(rt_b->rt_period);
 644	for_each_cpu(i, rd->span) {
 645		struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
 646		s64 diff;
 647
 648		if (iter == rt_rq)
 649			continue;
 650
 651		raw_spin_lock(&iter->rt_runtime_lock);
 652		/*
 653		 * Either all rqs have inf runtime and there's nothing to steal
 654		 * or __disable_runtime() below sets a specific rq to inf to
 655		 * indicate its been disabled and disalow stealing.
 656		 */
 657		if (iter->rt_runtime == RUNTIME_INF)
 658			goto next;
 659
 660		/*
 661		 * From runqueues with spare time, take 1/n part of their
 662		 * spare time, but no more than our period.
 663		 */
 664		diff = iter->rt_runtime - iter->rt_time;
 665		if (diff > 0) {
 666			diff = div_u64((u64)diff, weight);
 667			if (rt_rq->rt_runtime + diff > rt_period)
 668				diff = rt_period - rt_rq->rt_runtime;
 669			iter->rt_runtime -= diff;
 670			rt_rq->rt_runtime += diff;
 671			if (rt_rq->rt_runtime == rt_period) {
 672				raw_spin_unlock(&iter->rt_runtime_lock);
 673				break;
 674			}
 675		}
 676next:
 677		raw_spin_unlock(&iter->rt_runtime_lock);
 678	}
 679	raw_spin_unlock(&rt_b->rt_runtime_lock);
 680}
 681
 682/*
 683 * Ensure this RQ takes back all the runtime it lend to its neighbours.
 684 */
 685static void __disable_runtime(struct rq *rq)
 686{
 687	struct root_domain *rd = rq->rd;
 688	rt_rq_iter_t iter;
 689	struct rt_rq *rt_rq;
 690
 691	if (unlikely(!scheduler_running))
 692		return;
 693
 694	for_each_rt_rq(rt_rq, iter, rq) {
 695		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
 696		s64 want;
 697		int i;
 698
 699		raw_spin_lock(&rt_b->rt_runtime_lock);
 700		raw_spin_lock(&rt_rq->rt_runtime_lock);
 701		/*
 702		 * Either we're all inf and nobody needs to borrow, or we're
 703		 * already disabled and thus have nothing to do, or we have
 704		 * exactly the right amount of runtime to take out.
 705		 */
 706		if (rt_rq->rt_runtime == RUNTIME_INF ||
 707				rt_rq->rt_runtime == rt_b->rt_runtime)
 708			goto balanced;
 709		raw_spin_unlock(&rt_rq->rt_runtime_lock);
 710
 711		/*
 712		 * Calculate the difference between what we started out with
 713		 * and what we current have, that's the amount of runtime
 714		 * we lend and now have to reclaim.
 715		 */
 716		want = rt_b->rt_runtime - rt_rq->rt_runtime;
 717
 718		/*
 719		 * Greedy reclaim, take back as much as we can.
 720		 */
 721		for_each_cpu(i, rd->span) {
 722			struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
 723			s64 diff;
 724
 725			/*
 726			 * Can't reclaim from ourselves or disabled runqueues.
 727			 */
 728			if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
 729				continue;
 730
 731			raw_spin_lock(&iter->rt_runtime_lock);
 732			if (want > 0) {
 733				diff = min_t(s64, iter->rt_runtime, want);
 734				iter->rt_runtime -= diff;
 735				want -= diff;
 736			} else {
 737				iter->rt_runtime -= want;
 738				want -= want;
 739			}
 740			raw_spin_unlock(&iter->rt_runtime_lock);
 741
 742			if (!want)
 743				break;
 744		}
 745
 746		raw_spin_lock(&rt_rq->rt_runtime_lock);
 747		/*
 748		 * We cannot be left wanting - that would mean some runtime
 749		 * leaked out of the system.
 750		 */
 751		BUG_ON(want);
 752balanced:
 753		/*
 754		 * Disable all the borrow logic by pretending we have inf
 755		 * runtime - in which case borrowing doesn't make sense.
 756		 */
 757		rt_rq->rt_runtime = RUNTIME_INF;
 758		rt_rq->rt_throttled = 0;
 759		raw_spin_unlock(&rt_rq->rt_runtime_lock);
 760		raw_spin_unlock(&rt_b->rt_runtime_lock);
 761
 762		/* Make rt_rq available for pick_next_task() */
 763		sched_rt_rq_enqueue(rt_rq);
 764	}
 765}
 766
 767static void __enable_runtime(struct rq *rq)
 768{
 769	rt_rq_iter_t iter;
 770	struct rt_rq *rt_rq;
 771
 772	if (unlikely(!scheduler_running))
 773		return;
 774
 775	/*
 776	 * Reset each runqueue's bandwidth settings
 777	 */
 778	for_each_rt_rq(rt_rq, iter, rq) {
 779		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
 780
 781		raw_spin_lock(&rt_b->rt_runtime_lock);
 782		raw_spin_lock(&rt_rq->rt_runtime_lock);
 783		rt_rq->rt_runtime = rt_b->rt_runtime;
 784		rt_rq->rt_time = 0;
 785		rt_rq->rt_throttled = 0;
 786		raw_spin_unlock(&rt_rq->rt_runtime_lock);
 787		raw_spin_unlock(&rt_b->rt_runtime_lock);
 788	}
 789}
 790
 791static void balance_runtime(struct rt_rq *rt_rq)
 792{
 793	if (!sched_feat(RT_RUNTIME_SHARE))
 794		return;
 795
 796	if (rt_rq->rt_time > rt_rq->rt_runtime) {
 797		raw_spin_unlock(&rt_rq->rt_runtime_lock);
 798		do_balance_runtime(rt_rq);
 799		raw_spin_lock(&rt_rq->rt_runtime_lock);
 800	}
 801}
 802#else /* !CONFIG_SMP */
 803static inline void balance_runtime(struct rt_rq *rt_rq) {}
 804#endif /* CONFIG_SMP */
 805
 806static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
 807{
 808	int i, idle = 1, throttled = 0;
 809	const struct cpumask *span;
 810
 811	span = sched_rt_period_mask();
 812#ifdef CONFIG_RT_GROUP_SCHED
 813	/*
 814	 * FIXME: isolated CPUs should really leave the root task group,
 815	 * whether they are isolcpus or were isolated via cpusets, lest
 816	 * the timer run on a CPU which does not service all runqueues,
 817	 * potentially leaving other CPUs indefinitely throttled.  If
 818	 * isolation is really required, the user will turn the throttle
 819	 * off to kill the perturbations it causes anyway.  Meanwhile,
 820	 * this maintains functionality for boot and/or troubleshooting.
 821	 */
 822	if (rt_b == &root_task_group.rt_bandwidth)
 823		span = cpu_online_mask;
 824#endif
 825	for_each_cpu(i, span) {
 826		int enqueue = 0;
 827		struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
 828		struct rq *rq = rq_of_rt_rq(rt_rq);
 
 829		int skip;
 830
 831		/*
 832		 * When span == cpu_online_mask, taking each rq->lock
 833		 * can be time-consuming. Try to avoid it when possible.
 834		 */
 835		raw_spin_lock(&rt_rq->rt_runtime_lock);
 
 
 836		skip = !rt_rq->rt_time && !rt_rq->rt_nr_running;
 837		raw_spin_unlock(&rt_rq->rt_runtime_lock);
 838		if (skip)
 839			continue;
 840
 841		raw_spin_lock(&rq->lock);
 842		update_rq_clock(rq);
 843
 844		if (rt_rq->rt_time) {
 845			u64 runtime;
 846
 847			raw_spin_lock(&rt_rq->rt_runtime_lock);
 848			if (rt_rq->rt_throttled)
 849				balance_runtime(rt_rq);
 850			runtime = rt_rq->rt_runtime;
 851			rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
 852			if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
 853				rt_rq->rt_throttled = 0;
 854				enqueue = 1;
 855
 856				/*
 857				 * When we're idle and a woken (rt) task is
 858				 * throttled check_preempt_curr() will set
 859				 * skip_update and the time between the wakeup
 860				 * and this unthrottle will get accounted as
 861				 * 'runtime'.
 862				 */
 863				if (rt_rq->rt_nr_running && rq->curr == rq->idle)
 864					rq_clock_cancel_skipupdate(rq);
 865			}
 866			if (rt_rq->rt_time || rt_rq->rt_nr_running)
 867				idle = 0;
 868			raw_spin_unlock(&rt_rq->rt_runtime_lock);
 869		} else if (rt_rq->rt_nr_running) {
 870			idle = 0;
 871			if (!rt_rq_throttled(rt_rq))
 872				enqueue = 1;
 873		}
 874		if (rt_rq->rt_throttled)
 875			throttled = 1;
 876
 877		if (enqueue)
 878			sched_rt_rq_enqueue(rt_rq);
 879		raw_spin_unlock(&rq->lock);
 880	}
 881
 882	if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
 883		return 1;
 884
 885	return idle;
 886}
 887
 888static inline int rt_se_prio(struct sched_rt_entity *rt_se)
 889{
 890#ifdef CONFIG_RT_GROUP_SCHED
 891	struct rt_rq *rt_rq = group_rt_rq(rt_se);
 892
 893	if (rt_rq)
 894		return rt_rq->highest_prio.curr;
 895#endif
 896
 897	return rt_task_of(rt_se)->prio;
 898}
 899
 900static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
 901{
 902	u64 runtime = sched_rt_runtime(rt_rq);
 903
 904	if (rt_rq->rt_throttled)
 905		return rt_rq_throttled(rt_rq);
 906
 907	if (runtime >= sched_rt_period(rt_rq))
 908		return 0;
 909
 910	balance_runtime(rt_rq);
 911	runtime = sched_rt_runtime(rt_rq);
 912	if (runtime == RUNTIME_INF)
 913		return 0;
 914
 915	if (rt_rq->rt_time > runtime) {
 916		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
 917
 918		/*
 919		 * Don't actually throttle groups that have no runtime assigned
 920		 * but accrue some time due to boosting.
 921		 */
 922		if (likely(rt_b->rt_runtime)) {
 923			rt_rq->rt_throttled = 1;
 924			printk_deferred_once("sched: RT throttling activated\n");
 925		} else {
 926			/*
 927			 * In case we did anyway, make it go away,
 928			 * replenishment is a joke, since it will replenish us
 929			 * with exactly 0 ns.
 930			 */
 931			rt_rq->rt_time = 0;
 932		}
 933
 934		if (rt_rq_throttled(rt_rq)) {
 935			sched_rt_rq_dequeue(rt_rq);
 936			return 1;
 937		}
 938	}
 939
 940	return 0;
 941}
 942
 943/*
 944 * Update the current task's runtime statistics. Skip current tasks that
 945 * are not in our scheduling class.
 946 */
 947static void update_curr_rt(struct rq *rq)
 948{
 949	struct task_struct *curr = rq->curr;
 950	struct sched_rt_entity *rt_se = &curr->rt;
 951	u64 delta_exec;
 952	u64 now;
 953
 954	if (curr->sched_class != &rt_sched_class)
 955		return;
 956
 957	now = rq_clock_task(rq);
 958	delta_exec = now - curr->se.exec_start;
 959	if (unlikely((s64)delta_exec <= 0))
 960		return;
 961
 962	schedstat_set(curr->se.statistics.exec_max,
 963		      max(curr->se.statistics.exec_max, delta_exec));
 964
 965	curr->se.sum_exec_runtime += delta_exec;
 966	account_group_exec_runtime(curr, delta_exec);
 967
 968	curr->se.exec_start = now;
 969	cgroup_account_cputime(curr, delta_exec);
 970
 971	sched_rt_avg_update(rq, delta_exec);
 972
 973	if (!rt_bandwidth_enabled())
 974		return;
 975
 976	for_each_sched_rt_entity(rt_se) {
 977		struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
 
 978
 979		if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
 980			raw_spin_lock(&rt_rq->rt_runtime_lock);
 981			rt_rq->rt_time += delta_exec;
 982			if (sched_rt_runtime_exceeded(rt_rq))
 
 983				resched_curr(rq);
 984			raw_spin_unlock(&rt_rq->rt_runtime_lock);
 
 
 985		}
 986	}
 987}
 988
 989static void
 990dequeue_top_rt_rq(struct rt_rq *rt_rq)
 991{
 992	struct rq *rq = rq_of_rt_rq(rt_rq);
 993
 994	BUG_ON(&rq->rt != rt_rq);
 995
 996	if (!rt_rq->rt_queued)
 997		return;
 998
 999	BUG_ON(!rq->nr_running);
1000
1001	sub_nr_running(rq, rt_rq->rt_nr_running);
1002	rt_rq->rt_queued = 0;
1003
1004	/* Kick cpufreq (see the comment in kernel/sched/sched.h). */
1005	cpufreq_update_util(rq, 0);
1006}
1007
1008static void
1009enqueue_top_rt_rq(struct rt_rq *rt_rq)
1010{
1011	struct rq *rq = rq_of_rt_rq(rt_rq);
1012
1013	BUG_ON(&rq->rt != rt_rq);
1014
1015	if (rt_rq->rt_queued)
1016		return;
1017	if (rt_rq_throttled(rt_rq) || !rt_rq->rt_nr_running)
 
1018		return;
1019
1020	add_nr_running(rq, rt_rq->rt_nr_running);
1021	rt_rq->rt_queued = 1;
 
 
1022
1023	/* Kick cpufreq (see the comment in kernel/sched/sched.h). */
1024	cpufreq_update_util(rq, 0);
1025}
1026
1027#if defined CONFIG_SMP
1028
1029static void
1030inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1031{
1032	struct rq *rq = rq_of_rt_rq(rt_rq);
1033
1034#ifdef CONFIG_RT_GROUP_SCHED
1035	/*
1036	 * Change rq's cpupri only if rt_rq is the top queue.
1037	 */
1038	if (&rq->rt != rt_rq)
1039		return;
1040#endif
1041	if (rq->online && prio < prev_prio)
1042		cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1043}
1044
1045static void
1046dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1047{
1048	struct rq *rq = rq_of_rt_rq(rt_rq);
1049
1050#ifdef CONFIG_RT_GROUP_SCHED
1051	/*
1052	 * Change rq's cpupri only if rt_rq is the top queue.
1053	 */
1054	if (&rq->rt != rt_rq)
1055		return;
1056#endif
1057	if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1058		cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1059}
1060
1061#else /* CONFIG_SMP */
1062
1063static inline
1064void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1065static inline
1066void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1067
1068#endif /* CONFIG_SMP */
1069
1070#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1071static void
1072inc_rt_prio(struct rt_rq *rt_rq, int prio)
1073{
1074	int prev_prio = rt_rq->highest_prio.curr;
1075
1076	if (prio < prev_prio)
1077		rt_rq->highest_prio.curr = prio;
1078
1079	inc_rt_prio_smp(rt_rq, prio, prev_prio);
1080}
1081
1082static void
1083dec_rt_prio(struct rt_rq *rt_rq, int prio)
1084{
1085	int prev_prio = rt_rq->highest_prio.curr;
1086
1087	if (rt_rq->rt_nr_running) {
1088
1089		WARN_ON(prio < prev_prio);
1090
1091		/*
1092		 * This may have been our highest task, and therefore
1093		 * we may have some recomputation to do
1094		 */
1095		if (prio == prev_prio) {
1096			struct rt_prio_array *array = &rt_rq->active;
1097
1098			rt_rq->highest_prio.curr =
1099				sched_find_first_bit(array->bitmap);
1100		}
1101
1102	} else
1103		rt_rq->highest_prio.curr = MAX_RT_PRIO;
 
1104
1105	dec_rt_prio_smp(rt_rq, prio, prev_prio);
1106}
1107
1108#else
1109
1110static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1111static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1112
1113#endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1114
1115#ifdef CONFIG_RT_GROUP_SCHED
1116
1117static void
1118inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1119{
1120	if (rt_se_boosted(rt_se))
1121		rt_rq->rt_nr_boosted++;
1122
1123	if (rt_rq->tg)
1124		start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1125}
1126
1127static void
1128dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1129{
1130	if (rt_se_boosted(rt_se))
1131		rt_rq->rt_nr_boosted--;
1132
1133	WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1134}
1135
1136#else /* CONFIG_RT_GROUP_SCHED */
1137
1138static void
1139inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1140{
1141	start_rt_bandwidth(&def_rt_bandwidth);
1142}
1143
1144static inline
1145void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1146
1147#endif /* CONFIG_RT_GROUP_SCHED */
1148
1149static inline
1150unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1151{
1152	struct rt_rq *group_rq = group_rt_rq(rt_se);
1153
1154	if (group_rq)
1155		return group_rq->rt_nr_running;
1156	else
1157		return 1;
1158}
1159
1160static inline
1161unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se)
1162{
1163	struct rt_rq *group_rq = group_rt_rq(rt_se);
1164	struct task_struct *tsk;
1165
1166	if (group_rq)
1167		return group_rq->rr_nr_running;
1168
1169	tsk = rt_task_of(rt_se);
1170
1171	return (tsk->policy == SCHED_RR) ? 1 : 0;
1172}
1173
1174static inline
1175void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1176{
1177	int prio = rt_se_prio(rt_se);
1178
1179	WARN_ON(!rt_prio(prio));
1180	rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1181	rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se);
1182
1183	inc_rt_prio(rt_rq, prio);
1184	inc_rt_migration(rt_se, rt_rq);
1185	inc_rt_group(rt_se, rt_rq);
1186}
1187
1188static inline
1189void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1190{
1191	WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1192	WARN_ON(!rt_rq->rt_nr_running);
1193	rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1194	rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se);
1195
1196	dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1197	dec_rt_migration(rt_se, rt_rq);
1198	dec_rt_group(rt_se, rt_rq);
1199}
1200
1201/*
1202 * Change rt_se->run_list location unless SAVE && !MOVE
1203 *
1204 * assumes ENQUEUE/DEQUEUE flags match
1205 */
1206static inline bool move_entity(unsigned int flags)
1207{
1208	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
1209		return false;
1210
1211	return true;
1212}
1213
1214static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array)
1215{
1216	list_del_init(&rt_se->run_list);
1217
1218	if (list_empty(array->queue + rt_se_prio(rt_se)))
1219		__clear_bit(rt_se_prio(rt_se), array->bitmap);
1220
1221	rt_se->on_list = 0;
1222}
1223
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1224static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1225{
1226	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1227	struct rt_prio_array *array = &rt_rq->active;
1228	struct rt_rq *group_rq = group_rt_rq(rt_se);
1229	struct list_head *queue = array->queue + rt_se_prio(rt_se);
1230
1231	/*
1232	 * Don't enqueue the group if its throttled, or when empty.
1233	 * The latter is a consequence of the former when a child group
1234	 * get throttled and the current group doesn't have any other
1235	 * active members.
1236	 */
1237	if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) {
1238		if (rt_se->on_list)
1239			__delist_rt_entity(rt_se, array);
1240		return;
1241	}
1242
1243	if (move_entity(flags)) {
1244		WARN_ON_ONCE(rt_se->on_list);
1245		if (flags & ENQUEUE_HEAD)
1246			list_add(&rt_se->run_list, queue);
1247		else
1248			list_add_tail(&rt_se->run_list, queue);
1249
1250		__set_bit(rt_se_prio(rt_se), array->bitmap);
1251		rt_se->on_list = 1;
1252	}
1253	rt_se->on_rq = 1;
1254
1255	inc_rt_tasks(rt_se, rt_rq);
1256}
1257
1258static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1259{
1260	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1261	struct rt_prio_array *array = &rt_rq->active;
1262
1263	if (move_entity(flags)) {
1264		WARN_ON_ONCE(!rt_se->on_list);
1265		__delist_rt_entity(rt_se, array);
1266	}
1267	rt_se->on_rq = 0;
1268
1269	dec_rt_tasks(rt_se, rt_rq);
1270}
1271
1272/*
1273 * Because the prio of an upper entry depends on the lower
1274 * entries, we must remove entries top - down.
1275 */
1276static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags)
1277{
1278	struct sched_rt_entity *back = NULL;
 
1279
1280	for_each_sched_rt_entity(rt_se) {
1281		rt_se->back = back;
1282		back = rt_se;
1283	}
1284
1285	dequeue_top_rt_rq(rt_rq_of_se(back));
1286
1287	for (rt_se = back; rt_se; rt_se = rt_se->back) {
1288		if (on_rt_rq(rt_se))
1289			__dequeue_rt_entity(rt_se, flags);
1290	}
 
 
1291}
1292
1293static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1294{
1295	struct rq *rq = rq_of_rt_se(rt_se);
1296
 
 
1297	dequeue_rt_stack(rt_se, flags);
1298	for_each_sched_rt_entity(rt_se)
1299		__enqueue_rt_entity(rt_se, flags);
1300	enqueue_top_rt_rq(&rq->rt);
1301}
1302
1303static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1304{
1305	struct rq *rq = rq_of_rt_se(rt_se);
1306
 
 
1307	dequeue_rt_stack(rt_se, flags);
1308
1309	for_each_sched_rt_entity(rt_se) {
1310		struct rt_rq *rt_rq = group_rt_rq(rt_se);
1311
1312		if (rt_rq && rt_rq->rt_nr_running)
1313			__enqueue_rt_entity(rt_se, flags);
1314	}
1315	enqueue_top_rt_rq(&rq->rt);
1316}
1317
1318/*
1319 * Adding/removing a task to/from a priority array:
1320 */
1321static void
1322enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1323{
1324	struct sched_rt_entity *rt_se = &p->rt;
1325
1326	if (flags & ENQUEUE_WAKEUP)
1327		rt_se->timeout = 0;
1328
 
 
 
1329	enqueue_rt_entity(rt_se, flags);
1330
1331	if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1332		enqueue_pushable_task(rq, p);
1333}
1334
1335static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1336{
1337	struct sched_rt_entity *rt_se = &p->rt;
1338
1339	update_curr_rt(rq);
1340	dequeue_rt_entity(rt_se, flags);
1341
1342	dequeue_pushable_task(rq, p);
1343}
1344
1345/*
1346 * Put task to the head or the end of the run list without the overhead of
1347 * dequeue followed by enqueue.
1348 */
1349static void
1350requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1351{
1352	if (on_rt_rq(rt_se)) {
1353		struct rt_prio_array *array = &rt_rq->active;
1354		struct list_head *queue = array->queue + rt_se_prio(rt_se);
1355
1356		if (head)
1357			list_move(&rt_se->run_list, queue);
1358		else
1359			list_move_tail(&rt_se->run_list, queue);
1360	}
1361}
1362
1363static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1364{
1365	struct sched_rt_entity *rt_se = &p->rt;
1366	struct rt_rq *rt_rq;
1367
1368	for_each_sched_rt_entity(rt_se) {
1369		rt_rq = rt_rq_of_se(rt_se);
1370		requeue_rt_entity(rt_rq, rt_se, head);
1371	}
1372}
1373
1374static void yield_task_rt(struct rq *rq)
1375{
1376	requeue_task_rt(rq, rq->curr, 0);
1377}
1378
1379#ifdef CONFIG_SMP
1380static int find_lowest_rq(struct task_struct *task);
1381
1382static int
1383select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags)
1384{
1385	struct task_struct *curr;
1386	struct rq *rq;
 
1387
1388	/* For anything but wake ups, just return the task_cpu */
1389	if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
1390		goto out;
1391
1392	rq = cpu_rq(cpu);
1393
1394	rcu_read_lock();
1395	curr = READ_ONCE(rq->curr); /* unlocked access */
1396
1397	/*
1398	 * If the current task on @p's runqueue is an RT task, then
1399	 * try to see if we can wake this RT task up on another
1400	 * runqueue. Otherwise simply start this RT task
1401	 * on its current runqueue.
1402	 *
1403	 * We want to avoid overloading runqueues. If the woken
1404	 * task is a higher priority, then it will stay on this CPU
1405	 * and the lower prio task should be moved to another CPU.
1406	 * Even though this will probably make the lower prio task
1407	 * lose its cache, we do not want to bounce a higher task
1408	 * around just because it gave up its CPU, perhaps for a
1409	 * lock?
1410	 *
1411	 * For equal prio tasks, we just let the scheduler sort it out.
1412	 *
1413	 * Otherwise, just let it ride on the affined RQ and the
1414	 * post-schedule router will push the preempted task away
1415	 *
1416	 * This test is optimistic, if we get it wrong the load-balancer
1417	 * will have to sort it out.
1418	 */
1419	if (curr && unlikely(rt_task(curr)) &&
1420	    (curr->nr_cpus_allowed < 2 ||
1421	     curr->prio <= p->prio)) {
 
 
 
 
 
 
1422		int target = find_lowest_rq(p);
1423
1424		/*
 
 
 
 
 
 
 
1425		 * Don't bother moving it if the destination CPU is
1426		 * not running a lower priority task.
1427		 */
1428		if (target != -1 &&
1429		    p->prio < cpu_rq(target)->rt.highest_prio.curr)
1430			cpu = target;
1431	}
 
 
1432	rcu_read_unlock();
1433
1434out:
1435	return cpu;
1436}
1437
1438static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1439{
1440	/*
1441	 * Current can't be migrated, useless to reschedule,
1442	 * let's hope p can move out.
1443	 */
1444	if (rq->curr->nr_cpus_allowed == 1 ||
1445	    !cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1446		return;
1447
1448	/*
1449	 * p is migratable, so let's not schedule it and
1450	 * see if it is pushed or pulled somewhere else.
1451	 */
1452	if (p->nr_cpus_allowed != 1
1453	    && cpupri_find(&rq->rd->cpupri, p, NULL))
1454		return;
1455
1456	/*
1457	 * There appear to be other CPUs that can accept
1458	 * the current task but none can run 'p', so lets reschedule
1459	 * to try and push the current task away:
1460	 */
1461	requeue_task_rt(rq, p, 1);
1462	resched_curr(rq);
1463}
1464
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1465#endif /* CONFIG_SMP */
1466
1467/*
1468 * Preempt the current task with a newly woken task if needed:
1469 */
1470static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1471{
1472	if (p->prio < rq->curr->prio) {
1473		resched_curr(rq);
1474		return;
1475	}
1476
1477#ifdef CONFIG_SMP
1478	/*
1479	 * If:
1480	 *
1481	 * - the newly woken task is of equal priority to the current task
1482	 * - the newly woken task is non-migratable while current is migratable
1483	 * - current will be preempted on the next reschedule
1484	 *
1485	 * we should check to see if current can readily move to a different
1486	 * cpu.  If so, we will reschedule to allow the push logic to try
1487	 * to move current somewhere else, making room for our non-migratable
1488	 * task.
1489	 */
1490	if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1491		check_preempt_equal_prio(rq, p);
1492#endif
1493}
1494
1495static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1496						   struct rt_rq *rt_rq)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1497{
1498	struct rt_prio_array *array = &rt_rq->active;
1499	struct sched_rt_entity *next = NULL;
1500	struct list_head *queue;
1501	int idx;
1502
1503	idx = sched_find_first_bit(array->bitmap);
1504	BUG_ON(idx >= MAX_RT_PRIO);
1505
1506	queue = array->queue + idx;
1507	next = list_entry(queue->next, struct sched_rt_entity, run_list);
1508
1509	return next;
1510}
1511
1512static struct task_struct *_pick_next_task_rt(struct rq *rq)
1513{
1514	struct sched_rt_entity *rt_se;
1515	struct task_struct *p;
1516	struct rt_rq *rt_rq  = &rq->rt;
1517
1518	do {
1519		rt_se = pick_next_rt_entity(rq, rt_rq);
1520		BUG_ON(!rt_se);
1521		rt_rq = group_rt_rq(rt_se);
1522	} while (rt_rq);
1523
1524	p = rt_task_of(rt_se);
1525	p->se.exec_start = rq_clock_task(rq);
1526
1527	return p;
1528}
1529
1530static struct task_struct *
1531pick_next_task_rt(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
1532{
1533	struct task_struct *p;
1534	struct rt_rq *rt_rq = &rq->rt;
1535
1536	if (need_pull_rt_task(rq, prev)) {
1537		/*
1538		 * This is OK, because current is on_cpu, which avoids it being
1539		 * picked for load-balance and preemption/IRQs are still
1540		 * disabled avoiding further scheduler activity on it and we're
1541		 * being very careful to re-start the picking loop.
1542		 */
1543		rq_unpin_lock(rq, rf);
1544		pull_rt_task(rq);
1545		rq_repin_lock(rq, rf);
1546		/*
1547		 * pull_rt_task() can drop (and re-acquire) rq->lock; this
1548		 * means a dl or stop task can slip in, in which case we need
1549		 * to re-start task selection.
1550		 */
1551		if (unlikely((rq->stop && task_on_rq_queued(rq->stop)) ||
1552			     rq->dl.dl_nr_running))
1553			return RETRY_TASK;
1554	}
1555
1556	/*
1557	 * We may dequeue prev's rt_rq in put_prev_task().
1558	 * So, we update time before rt_nr_running check.
1559	 */
1560	if (prev->sched_class == &rt_sched_class)
1561		update_curr_rt(rq);
1562
1563	if (!rt_rq->rt_queued)
1564		return NULL;
1565
1566	put_prev_task(rq, prev);
1567
1568	p = _pick_next_task_rt(rq);
 
1569
1570	/* The running task is never eligible for pushing */
1571	dequeue_pushable_task(rq, p);
 
1572
1573	rt_queue_push_tasks(rq);
 
1574
1575	return p;
1576}
1577
1578static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1579{
 
 
 
 
 
 
1580	update_curr_rt(rq);
1581
 
 
1582	/*
1583	 * The previous task needs to be made eligible for pushing
1584	 * if it is still active
1585	 */
1586	if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1587		enqueue_pushable_task(rq, p);
1588}
1589
1590#ifdef CONFIG_SMP
1591
1592/* Only try algorithms three times */
1593#define RT_MAX_TRIES 3
1594
1595static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1596{
1597	if (!task_running(rq, p) &&
1598	    cpumask_test_cpu(cpu, &p->cpus_allowed))
1599		return 1;
1600
1601	return 0;
1602}
1603
1604/*
1605 * Return the highest pushable rq's task, which is suitable to be executed
1606 * on the CPU, NULL otherwise
1607 */
1608static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1609{
1610	struct plist_head *head = &rq->rt.pushable_tasks;
1611	struct task_struct *p;
1612
1613	if (!has_pushable_tasks(rq))
1614		return NULL;
1615
1616	plist_for_each_entry(p, head, pushable_tasks) {
1617		if (pick_rt_task(rq, p, cpu))
1618			return p;
1619	}
1620
1621	return NULL;
1622}
1623
1624static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1625
1626static int find_lowest_rq(struct task_struct *task)
1627{
1628	struct sched_domain *sd;
1629	struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
1630	int this_cpu = smp_processor_id();
1631	int cpu      = task_cpu(task);
 
1632
1633	/* Make sure the mask is initialized first */
1634	if (unlikely(!lowest_mask))
1635		return -1;
1636
1637	if (task->nr_cpus_allowed == 1)
1638		return -1; /* No other targets possible */
1639
1640	if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1641		return -1; /* No targets found */
1642
1643	/*
1644	 * At this point we have built a mask of CPUs representing the
1645	 * lowest priority tasks in the system.  Now we want to elect
1646	 * the best one based on our affinity and topology.
1647	 *
1648	 * We prioritize the last CPU that the task executed on since
1649	 * it is most likely cache-hot in that location.
1650	 */
1651	if (cpumask_test_cpu(cpu, lowest_mask))
1652		return cpu;
1653
1654	/*
1655	 * Otherwise, we consult the sched_domains span maps to figure
1656	 * out which CPU is logically closest to our hot cache data.
1657	 */
1658	if (!cpumask_test_cpu(this_cpu, lowest_mask))
1659		this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1660
1661	rcu_read_lock();
1662	for_each_domain(cpu, sd) {
1663		if (sd->flags & SD_WAKE_AFFINE) {
1664			int best_cpu;
1665
1666			/*
1667			 * "this_cpu" is cheaper to preempt than a
1668			 * remote processor.
1669			 */
1670			if (this_cpu != -1 &&
1671			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1672				rcu_read_unlock();
1673				return this_cpu;
1674			}
1675
1676			best_cpu = cpumask_first_and(lowest_mask,
1677						     sched_domain_span(sd));
1678			if (best_cpu < nr_cpu_ids) {
1679				rcu_read_unlock();
1680				return best_cpu;
1681			}
1682		}
1683	}
1684	rcu_read_unlock();
1685
1686	/*
1687	 * And finally, if there were no matches within the domains
1688	 * just give the caller *something* to work with from the compatible
1689	 * locations.
1690	 */
1691	if (this_cpu != -1)
1692		return this_cpu;
1693
1694	cpu = cpumask_any(lowest_mask);
1695	if (cpu < nr_cpu_ids)
1696		return cpu;
1697
1698	return -1;
1699}
1700
1701/* Will lock the rq it finds */
1702static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1703{
1704	struct rq *lowest_rq = NULL;
1705	int tries;
1706	int cpu;
1707
1708	for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1709		cpu = find_lowest_rq(task);
1710
1711		if ((cpu == -1) || (cpu == rq->cpu))
1712			break;
1713
1714		lowest_rq = cpu_rq(cpu);
1715
1716		if (lowest_rq->rt.highest_prio.curr <= task->prio) {
1717			/*
1718			 * Target rq has tasks of equal or higher priority,
1719			 * retrying does not release any lock and is unlikely
1720			 * to yield a different result.
1721			 */
1722			lowest_rq = NULL;
1723			break;
1724		}
1725
1726		/* if the prio of this runqueue changed, try again */
1727		if (double_lock_balance(rq, lowest_rq)) {
1728			/*
1729			 * We had to unlock the run queue. In
1730			 * the mean time, task could have
1731			 * migrated already or had its affinity changed.
1732			 * Also make sure that it wasn't scheduled on its rq.
1733			 */
1734			if (unlikely(task_rq(task) != rq ||
1735				     !cpumask_test_cpu(lowest_rq->cpu, &task->cpus_allowed) ||
1736				     task_running(rq, task) ||
1737				     !rt_task(task) ||
1738				     !task_on_rq_queued(task))) {
1739
1740				double_unlock_balance(rq, lowest_rq);
1741				lowest_rq = NULL;
1742				break;
1743			}
1744		}
1745
1746		/* If this rq is still suitable use it. */
1747		if (lowest_rq->rt.highest_prio.curr > task->prio)
1748			break;
1749
1750		/* try again */
1751		double_unlock_balance(rq, lowest_rq);
1752		lowest_rq = NULL;
1753	}
1754
1755	return lowest_rq;
1756}
1757
1758static struct task_struct *pick_next_pushable_task(struct rq *rq)
1759{
1760	struct task_struct *p;
1761
1762	if (!has_pushable_tasks(rq))
1763		return NULL;
1764
1765	p = plist_first_entry(&rq->rt.pushable_tasks,
1766			      struct task_struct, pushable_tasks);
1767
1768	BUG_ON(rq->cpu != task_cpu(p));
1769	BUG_ON(task_current(rq, p));
1770	BUG_ON(p->nr_cpus_allowed <= 1);
1771
1772	BUG_ON(!task_on_rq_queued(p));
1773	BUG_ON(!rt_task(p));
1774
1775	return p;
1776}
1777
1778/*
1779 * If the current CPU has more than one RT task, see if the non
1780 * running task can migrate over to a CPU that is running a task
1781 * of lesser priority.
1782 */
1783static int push_rt_task(struct rq *rq)
1784{
1785	struct task_struct *next_task;
1786	struct rq *lowest_rq;
1787	int ret = 0;
1788
1789	if (!rq->rt.overloaded)
1790		return 0;
1791
1792	next_task = pick_next_pushable_task(rq);
1793	if (!next_task)
1794		return 0;
1795
1796retry:
1797	if (unlikely(next_task == rq->curr)) {
1798		WARN_ON(1);
1799		return 0;
1800	}
1801
1802	/*
1803	 * It's possible that the next_task slipped in of
1804	 * higher priority than current. If that's the case
1805	 * just reschedule current.
1806	 */
1807	if (unlikely(next_task->prio < rq->curr->prio)) {
1808		resched_curr(rq);
1809		return 0;
1810	}
1811
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1812	/* We might release rq lock */
1813	get_task_struct(next_task);
1814
1815	/* find_lock_lowest_rq locks the rq if found */
1816	lowest_rq = find_lock_lowest_rq(next_task, rq);
1817	if (!lowest_rq) {
1818		struct task_struct *task;
1819		/*
1820		 * find_lock_lowest_rq releases rq->lock
1821		 * so it is possible that next_task has migrated.
1822		 *
1823		 * We need to make sure that the task is still on the same
1824		 * run-queue and is also still the next task eligible for
1825		 * pushing.
1826		 */
1827		task = pick_next_pushable_task(rq);
1828		if (task == next_task) {
1829			/*
1830			 * The task hasn't migrated, and is still the next
1831			 * eligible task, but we failed to find a run-queue
1832			 * to push it to.  Do not retry in this case, since
1833			 * other CPUs will pull from us when ready.
1834			 */
1835			goto out;
1836		}
1837
1838		if (!task)
1839			/* No more tasks, just exit */
1840			goto out;
1841
1842		/*
1843		 * Something has shifted, try again.
1844		 */
1845		put_task_struct(next_task);
1846		next_task = task;
1847		goto retry;
1848	}
1849
1850	deactivate_task(rq, next_task, 0);
1851	set_task_cpu(next_task, lowest_rq->cpu);
1852	activate_task(lowest_rq, next_task, 0);
 
1853	ret = 1;
1854
1855	resched_curr(lowest_rq);
1856
1857	double_unlock_balance(rq, lowest_rq);
1858
1859out:
1860	put_task_struct(next_task);
1861
1862	return ret;
1863}
1864
1865static void push_rt_tasks(struct rq *rq)
1866{
1867	/* push_rt_task will return true if it moved an RT */
1868	while (push_rt_task(rq))
1869		;
1870}
1871
1872#ifdef HAVE_RT_PUSH_IPI
1873
1874/*
1875 * When a high priority task schedules out from a CPU and a lower priority
1876 * task is scheduled in, a check is made to see if there's any RT tasks
1877 * on other CPUs that are waiting to run because a higher priority RT task
1878 * is currently running on its CPU. In this case, the CPU with multiple RT
1879 * tasks queued on it (overloaded) needs to be notified that a CPU has opened
1880 * up that may be able to run one of its non-running queued RT tasks.
1881 *
1882 * All CPUs with overloaded RT tasks need to be notified as there is currently
1883 * no way to know which of these CPUs have the highest priority task waiting
1884 * to run. Instead of trying to take a spinlock on each of these CPUs,
1885 * which has shown to cause large latency when done on machines with many
1886 * CPUs, sending an IPI to the CPUs to have them push off the overloaded
1887 * RT tasks waiting to run.
1888 *
1889 * Just sending an IPI to each of the CPUs is also an issue, as on large
1890 * count CPU machines, this can cause an IPI storm on a CPU, especially
1891 * if its the only CPU with multiple RT tasks queued, and a large number
1892 * of CPUs scheduling a lower priority task at the same time.
1893 *
1894 * Each root domain has its own irq work function that can iterate over
1895 * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT
1896 * tassk must be checked if there's one or many CPUs that are lowering
1897 * their priority, there's a single irq work iterator that will try to
1898 * push off RT tasks that are waiting to run.
1899 *
1900 * When a CPU schedules a lower priority task, it will kick off the
1901 * irq work iterator that will jump to each CPU with overloaded RT tasks.
1902 * As it only takes the first CPU that schedules a lower priority task
1903 * to start the process, the rto_start variable is incremented and if
1904 * the atomic result is one, then that CPU will try to take the rto_lock.
1905 * This prevents high contention on the lock as the process handles all
1906 * CPUs scheduling lower priority tasks.
1907 *
1908 * All CPUs that are scheduling a lower priority task will increment the
1909 * rt_loop_next variable. This will make sure that the irq work iterator
1910 * checks all RT overloaded CPUs whenever a CPU schedules a new lower
1911 * priority task, even if the iterator is in the middle of a scan. Incrementing
1912 * the rt_loop_next will cause the iterator to perform another scan.
1913 *
1914 */
1915static int rto_next_cpu(struct root_domain *rd)
1916{
1917	int next;
1918	int cpu;
1919
1920	/*
1921	 * When starting the IPI RT pushing, the rto_cpu is set to -1,
1922	 * rt_next_cpu() will simply return the first CPU found in
1923	 * the rto_mask.
1924	 *
1925	 * If rto_next_cpu() is called with rto_cpu is a valid CPU, it
1926	 * will return the next CPU found in the rto_mask.
1927	 *
1928	 * If there are no more CPUs left in the rto_mask, then a check is made
1929	 * against rto_loop and rto_loop_next. rto_loop is only updated with
1930	 * the rto_lock held, but any CPU may increment the rto_loop_next
1931	 * without any locking.
1932	 */
1933	for (;;) {
1934
1935		/* When rto_cpu is -1 this acts like cpumask_first() */
1936		cpu = cpumask_next(rd->rto_cpu, rd->rto_mask);
1937
1938		rd->rto_cpu = cpu;
1939
1940		if (cpu < nr_cpu_ids)
1941			return cpu;
1942
1943		rd->rto_cpu = -1;
1944
1945		/*
1946		 * ACQUIRE ensures we see the @rto_mask changes
1947		 * made prior to the @next value observed.
1948		 *
1949		 * Matches WMB in rt_set_overload().
1950		 */
1951		next = atomic_read_acquire(&rd->rto_loop_next);
1952
1953		if (rd->rto_loop == next)
1954			break;
1955
1956		rd->rto_loop = next;
1957	}
1958
1959	return -1;
1960}
1961
1962static inline bool rto_start_trylock(atomic_t *v)
1963{
1964	return !atomic_cmpxchg_acquire(v, 0, 1);
1965}
1966
1967static inline void rto_start_unlock(atomic_t *v)
1968{
1969	atomic_set_release(v, 0);
1970}
1971
1972static void tell_cpu_to_push(struct rq *rq)
1973{
1974	int cpu = -1;
1975
1976	/* Keep the loop going if the IPI is currently active */
1977	atomic_inc(&rq->rd->rto_loop_next);
1978
1979	/* Only one CPU can initiate a loop at a time */
1980	if (!rto_start_trylock(&rq->rd->rto_loop_start))
1981		return;
1982
1983	raw_spin_lock(&rq->rd->rto_lock);
1984
1985	/*
1986	 * The rto_cpu is updated under the lock, if it has a valid CPU
1987	 * then the IPI is still running and will continue due to the
1988	 * update to loop_next, and nothing needs to be done here.
1989	 * Otherwise it is finishing up and an ipi needs to be sent.
1990	 */
1991	if (rq->rd->rto_cpu < 0)
1992		cpu = rto_next_cpu(rq->rd);
1993
1994	raw_spin_unlock(&rq->rd->rto_lock);
1995
1996	rto_start_unlock(&rq->rd->rto_loop_start);
1997
1998	if (cpu >= 0) {
1999		/* Make sure the rd does not get freed while pushing */
2000		sched_get_rd(rq->rd);
2001		irq_work_queue_on(&rq->rd->rto_push_work, cpu);
2002	}
2003}
2004
2005/* Called from hardirq context */
2006void rto_push_irq_work_func(struct irq_work *work)
2007{
2008	struct root_domain *rd =
2009		container_of(work, struct root_domain, rto_push_work);
2010	struct rq *rq;
2011	int cpu;
2012
2013	rq = this_rq();
2014
2015	/*
2016	 * We do not need to grab the lock to check for has_pushable_tasks.
2017	 * When it gets updated, a check is made if a push is possible.
2018	 */
2019	if (has_pushable_tasks(rq)) {
2020		raw_spin_lock(&rq->lock);
2021		push_rt_tasks(rq);
2022		raw_spin_unlock(&rq->lock);
 
2023	}
2024
2025	raw_spin_lock(&rd->rto_lock);
2026
2027	/* Pass the IPI to the next rt overloaded queue */
2028	cpu = rto_next_cpu(rd);
2029
2030	raw_spin_unlock(&rd->rto_lock);
2031
2032	if (cpu < 0) {
2033		sched_put_rd(rd);
2034		return;
2035	}
2036
2037	/* Try the next RT overloaded CPU */
2038	irq_work_queue_on(&rd->rto_push_work, cpu);
2039}
2040#endif /* HAVE_RT_PUSH_IPI */
2041
2042static void pull_rt_task(struct rq *this_rq)
2043{
2044	int this_cpu = this_rq->cpu, cpu;
2045	bool resched = false;
2046	struct task_struct *p;
2047	struct rq *src_rq;
2048	int rt_overload_count = rt_overloaded(this_rq);
2049
2050	if (likely(!rt_overload_count))
2051		return;
2052
2053	/*
2054	 * Match the barrier from rt_set_overloaded; this guarantees that if we
2055	 * see overloaded we must also see the rto_mask bit.
2056	 */
2057	smp_rmb();
2058
2059	/* If we are the only overloaded CPU do nothing */
2060	if (rt_overload_count == 1 &&
2061	    cpumask_test_cpu(this_rq->cpu, this_rq->rd->rto_mask))
2062		return;
2063
2064#ifdef HAVE_RT_PUSH_IPI
2065	if (sched_feat(RT_PUSH_IPI)) {
2066		tell_cpu_to_push(this_rq);
2067		return;
2068	}
2069#endif
2070
2071	for_each_cpu(cpu, this_rq->rd->rto_mask) {
2072		if (this_cpu == cpu)
2073			continue;
2074
2075		src_rq = cpu_rq(cpu);
2076
2077		/*
2078		 * Don't bother taking the src_rq->lock if the next highest
2079		 * task is known to be lower-priority than our current task.
2080		 * This may look racy, but if this value is about to go
2081		 * logically higher, the src_rq will push this task away.
2082		 * And if its going logically lower, we do not care
2083		 */
2084		if (src_rq->rt.highest_prio.next >=
2085		    this_rq->rt.highest_prio.curr)
2086			continue;
2087
2088		/*
2089		 * We can potentially drop this_rq's lock in
2090		 * double_lock_balance, and another CPU could
2091		 * alter this_rq
2092		 */
 
2093		double_lock_balance(this_rq, src_rq);
2094
2095		/*
2096		 * We can pull only a task, which is pushable
2097		 * on its rq, and no others.
2098		 */
2099		p = pick_highest_pushable_task(src_rq, this_cpu);
2100
2101		/*
2102		 * Do we have an RT task that preempts
2103		 * the to-be-scheduled task?
2104		 */
2105		if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
2106			WARN_ON(p == src_rq->curr);
2107			WARN_ON(!task_on_rq_queued(p));
2108
2109			/*
2110			 * There's a chance that p is higher in priority
2111			 * than what's currently running on its CPU.
2112			 * This is just that p is wakeing up and hasn't
2113			 * had a chance to schedule. We only pull
2114			 * p if it is lower in priority than the
2115			 * current task on the run queue
2116			 */
2117			if (p->prio < src_rq->curr->prio)
2118				goto skip;
2119
2120			resched = true;
2121
2122			deactivate_task(src_rq, p, 0);
2123			set_task_cpu(p, this_cpu);
2124			activate_task(this_rq, p, 0);
 
 
 
2125			/*
2126			 * We continue with the search, just in
2127			 * case there's an even higher prio task
2128			 * in another runqueue. (low likelihood
2129			 * but possible)
2130			 */
2131		}
2132skip:
2133		double_unlock_balance(this_rq, src_rq);
 
 
 
 
 
 
 
2134	}
2135
2136	if (resched)
2137		resched_curr(this_rq);
2138}
2139
2140/*
2141 * If we are not running and we are not going to reschedule soon, we should
2142 * try to push tasks away now
2143 */
2144static void task_woken_rt(struct rq *rq, struct task_struct *p)
2145{
2146	if (!task_running(rq, p) &&
2147	    !test_tsk_need_resched(rq->curr) &&
2148	    p->nr_cpus_allowed > 1 &&
2149	    (dl_task(rq->curr) || rt_task(rq->curr)) &&
2150	    (rq->curr->nr_cpus_allowed < 2 ||
2151	     rq->curr->prio <= p->prio))
 
 
2152		push_rt_tasks(rq);
2153}
2154
2155/* Assumes rq->lock is held */
2156static void rq_online_rt(struct rq *rq)
2157{
2158	if (rq->rt.overloaded)
2159		rt_set_overload(rq);
2160
2161	__enable_runtime(rq);
2162
2163	cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
2164}
2165
2166/* Assumes rq->lock is held */
2167static void rq_offline_rt(struct rq *rq)
2168{
2169	if (rq->rt.overloaded)
2170		rt_clear_overload(rq);
2171
2172	__disable_runtime(rq);
2173
2174	cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
2175}
2176
2177/*
2178 * When switch from the rt queue, we bring ourselves to a position
2179 * that we might want to pull RT tasks from other runqueues.
2180 */
2181static void switched_from_rt(struct rq *rq, struct task_struct *p)
2182{
2183	/*
2184	 * If there are other RT tasks then we will reschedule
2185	 * and the scheduling of the other RT tasks will handle
2186	 * the balancing. But if we are the last RT task
2187	 * we may need to handle the pulling of RT tasks
2188	 * now.
2189	 */
2190	if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
2191		return;
2192
2193	rt_queue_pull_task(rq);
2194}
2195
2196void __init init_sched_rt_class(void)
2197{
2198	unsigned int i;
2199
2200	for_each_possible_cpu(i) {
2201		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
2202					GFP_KERNEL, cpu_to_node(i));
2203	}
2204}
2205#endif /* CONFIG_SMP */
2206
2207/*
2208 * When switching a task to RT, we may overload the runqueue
2209 * with RT tasks. In this case we try to push them off to
2210 * other runqueues.
2211 */
2212static void switched_to_rt(struct rq *rq, struct task_struct *p)
2213{
2214	/*
2215	 * If we are already running, then there's nothing
2216	 * that needs to be done. But if we are not running
2217	 * we may need to preempt the current running task.
2218	 * If that current running task is also an RT task
 
 
 
 
 
 
 
2219	 * then see if we can move to another run queue.
2220	 */
2221	if (task_on_rq_queued(p) && rq->curr != p) {
2222#ifdef CONFIG_SMP
2223		if (p->nr_cpus_allowed > 1 && rq->rt.overloaded)
2224			rt_queue_push_tasks(rq);
2225#endif /* CONFIG_SMP */
2226		if (p->prio < rq->curr->prio && cpu_online(cpu_of(rq)))
2227			resched_curr(rq);
2228	}
2229}
2230
2231/*
2232 * Priority of the task has changed. This may cause
2233 * us to initiate a push or pull.
2234 */
2235static void
2236prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
2237{
2238	if (!task_on_rq_queued(p))
2239		return;
2240
2241	if (rq->curr == p) {
2242#ifdef CONFIG_SMP
2243		/*
2244		 * If our priority decreases while running, we
2245		 * may need to pull tasks to this runqueue.
2246		 */
2247		if (oldprio < p->prio)
2248			rt_queue_pull_task(rq);
2249
2250		/*
2251		 * If there's a higher priority task waiting to run
2252		 * then reschedule.
2253		 */
2254		if (p->prio > rq->rt.highest_prio.curr)
2255			resched_curr(rq);
2256#else
2257		/* For UP simply resched on drop of prio */
2258		if (oldprio < p->prio)
2259			resched_curr(rq);
2260#endif /* CONFIG_SMP */
2261	} else {
2262		/*
2263		 * This task is not running, but if it is
2264		 * greater than the current running task
2265		 * then reschedule.
2266		 */
2267		if (p->prio < rq->curr->prio)
2268			resched_curr(rq);
2269	}
2270}
2271
2272#ifdef CONFIG_POSIX_TIMERS
2273static void watchdog(struct rq *rq, struct task_struct *p)
2274{
2275	unsigned long soft, hard;
2276
2277	/* max may change after cur was read, this will be fixed next tick */
2278	soft = task_rlimit(p, RLIMIT_RTTIME);
2279	hard = task_rlimit_max(p, RLIMIT_RTTIME);
2280
2281	if (soft != RLIM_INFINITY) {
2282		unsigned long next;
2283
2284		if (p->rt.watchdog_stamp != jiffies) {
2285			p->rt.timeout++;
2286			p->rt.watchdog_stamp = jiffies;
2287		}
2288
2289		next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2290		if (p->rt.timeout > next)
2291			p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
 
 
2292	}
2293}
2294#else
2295static inline void watchdog(struct rq *rq, struct task_struct *p) { }
2296#endif
2297
2298/*
2299 * scheduler tick hitting a task of our scheduling class.
2300 *
2301 * NOTE: This function can be called remotely by the tick offload that
2302 * goes along full dynticks. Therefore no local assumption can be made
2303 * and everything must be accessed through the @rq and @curr passed in
2304 * parameters.
2305 */
2306static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2307{
2308	struct sched_rt_entity *rt_se = &p->rt;
2309
2310	update_curr_rt(rq);
 
2311
2312	watchdog(rq, p);
2313
2314	/*
2315	 * RR tasks need a special form of timeslice management.
2316	 * FIFO tasks have no timeslices.
2317	 */
2318	if (p->policy != SCHED_RR)
2319		return;
2320
2321	if (--p->rt.time_slice)
2322		return;
2323
2324	p->rt.time_slice = sched_rr_timeslice;
2325
2326	/*
2327	 * Requeue to the end of queue if we (and all of our ancestors) are not
2328	 * the only element on the queue
2329	 */
2330	for_each_sched_rt_entity(rt_se) {
2331		if (rt_se->run_list.prev != rt_se->run_list.next) {
2332			requeue_task_rt(rq, p, 0);
2333			resched_curr(rq);
2334			return;
2335		}
2336	}
2337}
2338
2339static void set_curr_task_rt(struct rq *rq)
2340{
2341	struct task_struct *p = rq->curr;
2342
2343	p->se.exec_start = rq_clock_task(rq);
2344
2345	/* The running task is never eligible for pushing */
2346	dequeue_pushable_task(rq, p);
2347}
2348
2349static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2350{
2351	/*
2352	 * Time slice is 0 for SCHED_FIFO tasks
2353	 */
2354	if (task->policy == SCHED_RR)
2355		return sched_rr_timeslice;
2356	else
2357		return 0;
2358}
2359
2360const struct sched_class rt_sched_class = {
2361	.next			= &fair_sched_class,
2362	.enqueue_task		= enqueue_task_rt,
2363	.dequeue_task		= dequeue_task_rt,
2364	.yield_task		= yield_task_rt,
2365
2366	.check_preempt_curr	= check_preempt_curr_rt,
2367
2368	.pick_next_task		= pick_next_task_rt,
2369	.put_prev_task		= put_prev_task_rt,
 
2370
2371#ifdef CONFIG_SMP
 
 
2372	.select_task_rq		= select_task_rq_rt,
2373
2374	.set_cpus_allowed       = set_cpus_allowed_common,
2375	.rq_online              = rq_online_rt,
2376	.rq_offline             = rq_offline_rt,
2377	.task_woken		= task_woken_rt,
2378	.switched_from		= switched_from_rt,
 
2379#endif
2380
2381	.set_curr_task          = set_curr_task_rt,
2382	.task_tick		= task_tick_rt,
2383
2384	.get_rr_interval	= get_rr_interval_rt,
2385
2386	.prio_changed		= prio_changed_rt,
2387	.switched_to		= switched_to_rt,
2388
2389	.update_curr		= update_curr_rt,
 
 
 
 
2390};
2391
2392#ifdef CONFIG_RT_GROUP_SCHED
2393/*
2394 * Ensure that the real time constraints are schedulable.
2395 */
2396static DEFINE_MUTEX(rt_constraints_mutex);
2397
2398/* Must be called with tasklist_lock held */
2399static inline int tg_has_rt_tasks(struct task_group *tg)
2400{
2401	struct task_struct *g, *p;
 
 
2402
2403	/*
2404	 * Autogroups do not have RT tasks; see autogroup_create().
2405	 */
2406	if (task_group_is_autogroup(tg))
2407		return 0;
2408
2409	for_each_process_thread(g, p) {
2410		if (rt_task(p) && task_group(p) == tg)
2411			return 1;
2412	}
2413
2414	return 0;
2415}
2416
2417struct rt_schedulable_data {
2418	struct task_group *tg;
2419	u64 rt_period;
2420	u64 rt_runtime;
2421};
2422
2423static int tg_rt_schedulable(struct task_group *tg, void *data)
2424{
2425	struct rt_schedulable_data *d = data;
2426	struct task_group *child;
2427	unsigned long total, sum = 0;
2428	u64 period, runtime;
2429
2430	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2431	runtime = tg->rt_bandwidth.rt_runtime;
2432
2433	if (tg == d->tg) {
2434		period = d->rt_period;
2435		runtime = d->rt_runtime;
2436	}
2437
2438	/*
2439	 * Cannot have more runtime than the period.
2440	 */
2441	if (runtime > period && runtime != RUNTIME_INF)
2442		return -EINVAL;
2443
2444	/*
2445	 * Ensure we don't starve existing RT tasks.
2446	 */
2447	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
 
2448		return -EBUSY;
2449
2450	total = to_ratio(period, runtime);
2451
2452	/*
2453	 * Nobody can have more than the global setting allows.
2454	 */
2455	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
2456		return -EINVAL;
2457
2458	/*
2459	 * The sum of our children's runtime should not exceed our own.
2460	 */
2461	list_for_each_entry_rcu(child, &tg->children, siblings) {
2462		period = ktime_to_ns(child->rt_bandwidth.rt_period);
2463		runtime = child->rt_bandwidth.rt_runtime;
2464
2465		if (child == d->tg) {
2466			period = d->rt_period;
2467			runtime = d->rt_runtime;
2468		}
2469
2470		sum += to_ratio(period, runtime);
2471	}
2472
2473	if (sum > total)
2474		return -EINVAL;
2475
2476	return 0;
2477}
2478
2479static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
2480{
2481	int ret;
2482
2483	struct rt_schedulable_data data = {
2484		.tg = tg,
2485		.rt_period = period,
2486		.rt_runtime = runtime,
2487	};
2488
2489	rcu_read_lock();
2490	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
2491	rcu_read_unlock();
2492
2493	return ret;
2494}
2495
2496static int tg_set_rt_bandwidth(struct task_group *tg,
2497		u64 rt_period, u64 rt_runtime)
2498{
2499	int i, err = 0;
2500
2501	/*
2502	 * Disallowing the root group RT runtime is BAD, it would disallow the
2503	 * kernel creating (and or operating) RT threads.
2504	 */
2505	if (tg == &root_task_group && rt_runtime == 0)
2506		return -EINVAL;
2507
2508	/* No period doesn't make any sense. */
2509	if (rt_period == 0)
2510		return -EINVAL;
2511
 
 
 
 
 
 
2512	mutex_lock(&rt_constraints_mutex);
2513	read_lock(&tasklist_lock);
2514	err = __rt_schedulable(tg, rt_period, rt_runtime);
2515	if (err)
2516		goto unlock;
2517
2518	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2519	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
2520	tg->rt_bandwidth.rt_runtime = rt_runtime;
2521
2522	for_each_possible_cpu(i) {
2523		struct rt_rq *rt_rq = tg->rt_rq[i];
2524
2525		raw_spin_lock(&rt_rq->rt_runtime_lock);
2526		rt_rq->rt_runtime = rt_runtime;
2527		raw_spin_unlock(&rt_rq->rt_runtime_lock);
2528	}
2529	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2530unlock:
2531	read_unlock(&tasklist_lock);
2532	mutex_unlock(&rt_constraints_mutex);
2533
2534	return err;
2535}
2536
2537int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
2538{
2539	u64 rt_runtime, rt_period;
2540
2541	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2542	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
2543	if (rt_runtime_us < 0)
2544		rt_runtime = RUNTIME_INF;
 
 
2545
2546	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2547}
2548
2549long sched_group_rt_runtime(struct task_group *tg)
2550{
2551	u64 rt_runtime_us;
2552
2553	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
2554		return -1;
2555
2556	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
2557	do_div(rt_runtime_us, NSEC_PER_USEC);
2558	return rt_runtime_us;
2559}
2560
2561int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
2562{
2563	u64 rt_runtime, rt_period;
2564
 
 
 
2565	rt_period = rt_period_us * NSEC_PER_USEC;
2566	rt_runtime = tg->rt_bandwidth.rt_runtime;
2567
2568	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2569}
2570
2571long sched_group_rt_period(struct task_group *tg)
2572{
2573	u64 rt_period_us;
2574
2575	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
2576	do_div(rt_period_us, NSEC_PER_USEC);
2577	return rt_period_us;
2578}
2579
 
2580static int sched_rt_global_constraints(void)
2581{
2582	int ret = 0;
2583
2584	mutex_lock(&rt_constraints_mutex);
2585	read_lock(&tasklist_lock);
2586	ret = __rt_schedulable(NULL, 0, 0);
2587	read_unlock(&tasklist_lock);
2588	mutex_unlock(&rt_constraints_mutex);
2589
2590	return ret;
2591}
 
2592
2593int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
2594{
2595	/* Don't accept realtime tasks when there is no way for them to run */
2596	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
2597		return 0;
2598
2599	return 1;
2600}
2601
2602#else /* !CONFIG_RT_GROUP_SCHED */
 
 
2603static int sched_rt_global_constraints(void)
2604{
2605	unsigned long flags;
2606	int i;
2607
2608	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
2609	for_each_possible_cpu(i) {
2610		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
2611
2612		raw_spin_lock(&rt_rq->rt_runtime_lock);
2613		rt_rq->rt_runtime = global_rt_runtime();
2614		raw_spin_unlock(&rt_rq->rt_runtime_lock);
2615	}
2616	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
2617
2618	return 0;
2619}
 
2620#endif /* CONFIG_RT_GROUP_SCHED */
2621
 
2622static int sched_rt_global_validate(void)
2623{
2624	if (sysctl_sched_rt_period <= 0)
2625		return -EINVAL;
2626
2627	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
2628		(sysctl_sched_rt_runtime > sysctl_sched_rt_period))
 
 
2629		return -EINVAL;
2630
2631	return 0;
2632}
2633
2634static void sched_rt_do_global(void)
2635{
 
 
 
2636	def_rt_bandwidth.rt_runtime = global_rt_runtime();
2637	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
 
2638}
2639
2640int sched_rt_handler(struct ctl_table *table, int write,
2641		void __user *buffer, size_t *lenp,
2642		loff_t *ppos)
2643{
2644	int old_period, old_runtime;
2645	static DEFINE_MUTEX(mutex);
2646	int ret;
2647
2648	mutex_lock(&mutex);
2649	old_period = sysctl_sched_rt_period;
2650	old_runtime = sysctl_sched_rt_runtime;
2651
2652	ret = proc_dointvec(table, write, buffer, lenp, ppos);
2653
2654	if (!ret && write) {
2655		ret = sched_rt_global_validate();
2656		if (ret)
2657			goto undo;
2658
2659		ret = sched_dl_global_validate();
2660		if (ret)
2661			goto undo;
2662
2663		ret = sched_rt_global_constraints();
2664		if (ret)
2665			goto undo;
2666
2667		sched_rt_do_global();
2668		sched_dl_do_global();
2669	}
2670	if (0) {
2671undo:
2672		sysctl_sched_rt_period = old_period;
2673		sysctl_sched_rt_runtime = old_runtime;
2674	}
2675	mutex_unlock(&mutex);
2676
2677	return ret;
2678}
2679
2680int sched_rr_handler(struct ctl_table *table, int write,
2681		void __user *buffer, size_t *lenp,
2682		loff_t *ppos)
2683{
2684	int ret;
2685	static DEFINE_MUTEX(mutex);
2686
2687	mutex_lock(&mutex);
2688	ret = proc_dointvec(table, write, buffer, lenp, ppos);
2689	/*
2690	 * Make sure that internally we keep jiffies.
2691	 * Also, writing zero resets the timeslice to default:
2692	 */
2693	if (!ret && write) {
2694		sched_rr_timeslice =
2695			sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE :
2696			msecs_to_jiffies(sysctl_sched_rr_timeslice);
2697	}
2698	mutex_unlock(&mutex);
2699
2700	return ret;
2701}
 
2702
2703#ifdef CONFIG_SCHED_DEBUG
2704void print_rt_stats(struct seq_file *m, int cpu)
2705{
2706	rt_rq_iter_t iter;
2707	struct rt_rq *rt_rq;
2708
2709	rcu_read_lock();
2710	for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
2711		print_rt_rq(m, cpu, rt_rq);
2712	rcu_read_unlock();
2713}
2714#endif /* CONFIG_SCHED_DEBUG */