Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
   4 * policies)
   5 */
 
 
 
   6
   7int sched_rr_timeslice = RR_TIMESLICE;
 
   8/* More than 4 hours if BW_SHIFT equals 20. */
   9static const u64 max_rt_runtime = MAX_BW;
  10
  11static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  12
  13struct rt_bandwidth def_rt_bandwidth;
  14
  15/*
  16 * period over which we measure -rt task CPU usage in us.
  17 * default: 1s
  18 */
  19unsigned int sysctl_sched_rt_period = 1000000;
  20
  21/*
  22 * part of the period that we allow rt tasks to run in us.
  23 * default: 0.95s
  24 */
  25int sysctl_sched_rt_runtime = 950000;
  26
  27#ifdef CONFIG_SYSCTL
  28static int sysctl_sched_rr_timeslice = (MSEC_PER_SEC / HZ) * RR_TIMESLICE;
  29static int sched_rt_handler(struct ctl_table *table, int write, void *buffer,
  30		size_t *lenp, loff_t *ppos);
  31static int sched_rr_handler(struct ctl_table *table, int write, void *buffer,
  32		size_t *lenp, loff_t *ppos);
  33static struct ctl_table sched_rt_sysctls[] = {
  34	{
  35		.procname       = "sched_rt_period_us",
  36		.data           = &sysctl_sched_rt_period,
  37		.maxlen         = sizeof(unsigned int),
  38		.mode           = 0644,
  39		.proc_handler   = sched_rt_handler,
  40	},
  41	{
  42		.procname       = "sched_rt_runtime_us",
  43		.data           = &sysctl_sched_rt_runtime,
  44		.maxlen         = sizeof(int),
  45		.mode           = 0644,
  46		.proc_handler   = sched_rt_handler,
  47	},
  48	{
  49		.procname       = "sched_rr_timeslice_ms",
  50		.data           = &sysctl_sched_rr_timeslice,
  51		.maxlen         = sizeof(int),
  52		.mode           = 0644,
  53		.proc_handler   = sched_rr_handler,
  54	},
  55	{}
  56};
  57
  58static int __init sched_rt_sysctl_init(void)
  59{
  60	register_sysctl_init("kernel", sched_rt_sysctls);
  61	return 0;
  62}
  63late_initcall(sched_rt_sysctl_init);
  64#endif
  65
  66static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  67{
  68	struct rt_bandwidth *rt_b =
  69		container_of(timer, struct rt_bandwidth, rt_period_timer);
  70	int idle = 0;
  71	int overrun;
  72
  73	raw_spin_lock(&rt_b->rt_runtime_lock);
  74	for (;;) {
  75		overrun = hrtimer_forward_now(timer, rt_b->rt_period);
  76		if (!overrun)
  77			break;
  78
  79		raw_spin_unlock(&rt_b->rt_runtime_lock);
  80		idle = do_sched_rt_period_timer(rt_b, overrun);
  81		raw_spin_lock(&rt_b->rt_runtime_lock);
  82	}
  83	if (idle)
  84		rt_b->rt_period_active = 0;
  85	raw_spin_unlock(&rt_b->rt_runtime_lock);
  86
  87	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  88}
  89
  90void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  91{
  92	rt_b->rt_period = ns_to_ktime(period);
  93	rt_b->rt_runtime = runtime;
  94
  95	raw_spin_lock_init(&rt_b->rt_runtime_lock);
  96
  97	hrtimer_init(&rt_b->rt_period_timer, CLOCK_MONOTONIC,
  98		     HRTIMER_MODE_REL_HARD);
  99	rt_b->rt_period_timer.function = sched_rt_period_timer;
 100}
 101
 102static inline void do_start_rt_bandwidth(struct rt_bandwidth *rt_b)
 103{
 
 
 
 104	raw_spin_lock(&rt_b->rt_runtime_lock);
 105	if (!rt_b->rt_period_active) {
 106		rt_b->rt_period_active = 1;
 107		/*
 108		 * SCHED_DEADLINE updates the bandwidth, as a run away
 109		 * RT task with a DL task could hog a CPU. But DL does
 110		 * not reset the period. If a deadline task was running
 111		 * without an RT task running, it can cause RT tasks to
 112		 * throttle when they start up. Kick the timer right away
 113		 * to update the period.
 114		 */
 115		hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0));
 116		hrtimer_start_expires(&rt_b->rt_period_timer,
 117				      HRTIMER_MODE_ABS_PINNED_HARD);
 118	}
 119	raw_spin_unlock(&rt_b->rt_runtime_lock);
 120}
 121
 122static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
 123{
 124	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
 125		return;
 126
 127	do_start_rt_bandwidth(rt_b);
 128}
 129
 130void init_rt_rq(struct rt_rq *rt_rq)
 131{
 132	struct rt_prio_array *array;
 133	int i;
 134
 135	array = &rt_rq->active;
 136	for (i = 0; i < MAX_RT_PRIO; i++) {
 137		INIT_LIST_HEAD(array->queue + i);
 138		__clear_bit(i, array->bitmap);
 139	}
 140	/* delimiter for bitsearch: */
 141	__set_bit(MAX_RT_PRIO, array->bitmap);
 142
 143#if defined CONFIG_SMP
 144	rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
 145	rt_rq->highest_prio.next = MAX_RT_PRIO-1;
 146	rt_rq->rt_nr_migratory = 0;
 147	rt_rq->overloaded = 0;
 148	plist_head_init(&rt_rq->pushable_tasks);
 149#endif /* CONFIG_SMP */
 150	/* We start is dequeued state, because no RT tasks are queued */
 151	rt_rq->rt_queued = 0;
 152
 153	rt_rq->rt_time = 0;
 154	rt_rq->rt_throttled = 0;
 155	rt_rq->rt_runtime = 0;
 156	raw_spin_lock_init(&rt_rq->rt_runtime_lock);
 157}
 158
 159#ifdef CONFIG_RT_GROUP_SCHED
 160static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
 161{
 162	hrtimer_cancel(&rt_b->rt_period_timer);
 163}
 164
 165#define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
 166
 167static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
 168{
 169#ifdef CONFIG_SCHED_DEBUG
 170	WARN_ON_ONCE(!rt_entity_is_task(rt_se));
 171#endif
 172	return container_of(rt_se, struct task_struct, rt);
 173}
 174
 175static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
 176{
 177	return rt_rq->rq;
 178}
 179
 180static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
 181{
 182	return rt_se->rt_rq;
 183}
 184
 185static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
 186{
 187	struct rt_rq *rt_rq = rt_se->rt_rq;
 188
 189	return rt_rq->rq;
 190}
 191
 192void unregister_rt_sched_group(struct task_group *tg)
 193{
 194	if (tg->rt_se)
 195		destroy_rt_bandwidth(&tg->rt_bandwidth);
 196
 197}
 198
 199void free_rt_sched_group(struct task_group *tg)
 200{
 201	int i;
 202
 
 
 
 203	for_each_possible_cpu(i) {
 204		if (tg->rt_rq)
 205			kfree(tg->rt_rq[i]);
 206		if (tg->rt_se)
 207			kfree(tg->rt_se[i]);
 208	}
 209
 210	kfree(tg->rt_rq);
 211	kfree(tg->rt_se);
 212}
 213
 214void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
 215		struct sched_rt_entity *rt_se, int cpu,
 216		struct sched_rt_entity *parent)
 217{
 218	struct rq *rq = cpu_rq(cpu);
 219
 220	rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
 221	rt_rq->rt_nr_boosted = 0;
 222	rt_rq->rq = rq;
 223	rt_rq->tg = tg;
 224
 225	tg->rt_rq[cpu] = rt_rq;
 226	tg->rt_se[cpu] = rt_se;
 227
 228	if (!rt_se)
 229		return;
 230
 231	if (!parent)
 232		rt_se->rt_rq = &rq->rt;
 233	else
 234		rt_se->rt_rq = parent->my_q;
 235
 236	rt_se->my_q = rt_rq;
 237	rt_se->parent = parent;
 238	INIT_LIST_HEAD(&rt_se->run_list);
 239}
 240
 241int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
 242{
 243	struct rt_rq *rt_rq;
 244	struct sched_rt_entity *rt_se;
 245	int i;
 246
 247	tg->rt_rq = kcalloc(nr_cpu_ids, sizeof(rt_rq), GFP_KERNEL);
 248	if (!tg->rt_rq)
 249		goto err;
 250	tg->rt_se = kcalloc(nr_cpu_ids, sizeof(rt_se), GFP_KERNEL);
 251	if (!tg->rt_se)
 252		goto err;
 253
 254	init_rt_bandwidth(&tg->rt_bandwidth,
 255			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
 256
 257	for_each_possible_cpu(i) {
 258		rt_rq = kzalloc_node(sizeof(struct rt_rq),
 259				     GFP_KERNEL, cpu_to_node(i));
 260		if (!rt_rq)
 261			goto err;
 262
 263		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
 264				     GFP_KERNEL, cpu_to_node(i));
 265		if (!rt_se)
 266			goto err_free_rq;
 267
 268		init_rt_rq(rt_rq);
 269		rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
 270		init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
 271	}
 272
 273	return 1;
 274
 275err_free_rq:
 276	kfree(rt_rq);
 277err:
 278	return 0;
 279}
 280
 281#else /* CONFIG_RT_GROUP_SCHED */
 282
 283#define rt_entity_is_task(rt_se) (1)
 284
 285static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
 286{
 287	return container_of(rt_se, struct task_struct, rt);
 288}
 289
 290static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
 291{
 292	return container_of(rt_rq, struct rq, rt);
 293}
 294
 295static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
 296{
 297	struct task_struct *p = rt_task_of(rt_se);
 298
 299	return task_rq(p);
 300}
 301
 302static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
 303{
 304	struct rq *rq = rq_of_rt_se(rt_se);
 305
 306	return &rq->rt;
 307}
 308
 309void unregister_rt_sched_group(struct task_group *tg) { }
 310
 311void free_rt_sched_group(struct task_group *tg) { }
 312
 313int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
 314{
 315	return 1;
 316}
 317#endif /* CONFIG_RT_GROUP_SCHED */
 318
 319#ifdef CONFIG_SMP
 320
 
 
 321static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
 322{
 323	/* Try to pull RT tasks here if we lower this rq's prio */
 324	return rq->online && rq->rt.highest_prio.curr > prev->prio;
 325}
 326
 327static inline int rt_overloaded(struct rq *rq)
 328{
 329	return atomic_read(&rq->rd->rto_count);
 330}
 331
 332static inline void rt_set_overload(struct rq *rq)
 333{
 334	if (!rq->online)
 335		return;
 336
 337	cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
 338	/*
 339	 * Make sure the mask is visible before we set
 340	 * the overload count. That is checked to determine
 341	 * if we should look at the mask. It would be a shame
 342	 * if we looked at the mask, but the mask was not
 343	 * updated yet.
 344	 *
 345	 * Matched by the barrier in pull_rt_task().
 346	 */
 347	smp_wmb();
 348	atomic_inc(&rq->rd->rto_count);
 349}
 350
 351static inline void rt_clear_overload(struct rq *rq)
 352{
 353	if (!rq->online)
 354		return;
 355
 356	/* the order here really doesn't matter */
 357	atomic_dec(&rq->rd->rto_count);
 358	cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
 359}
 360
 361static void update_rt_migration(struct rt_rq *rt_rq)
 362{
 363	if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
 364		if (!rt_rq->overloaded) {
 365			rt_set_overload(rq_of_rt_rq(rt_rq));
 366			rt_rq->overloaded = 1;
 367		}
 368	} else if (rt_rq->overloaded) {
 369		rt_clear_overload(rq_of_rt_rq(rt_rq));
 370		rt_rq->overloaded = 0;
 371	}
 372}
 373
 374static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
 375{
 376	struct task_struct *p;
 377
 378	if (!rt_entity_is_task(rt_se))
 379		return;
 380
 381	p = rt_task_of(rt_se);
 382	rt_rq = &rq_of_rt_rq(rt_rq)->rt;
 383
 384	rt_rq->rt_nr_total++;
 385	if (p->nr_cpus_allowed > 1)
 386		rt_rq->rt_nr_migratory++;
 387
 388	update_rt_migration(rt_rq);
 389}
 390
 391static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
 392{
 393	struct task_struct *p;
 394
 395	if (!rt_entity_is_task(rt_se))
 396		return;
 397
 398	p = rt_task_of(rt_se);
 399	rt_rq = &rq_of_rt_rq(rt_rq)->rt;
 400
 401	rt_rq->rt_nr_total--;
 402	if (p->nr_cpus_allowed > 1)
 403		rt_rq->rt_nr_migratory--;
 404
 405	update_rt_migration(rt_rq);
 406}
 407
 408static inline int has_pushable_tasks(struct rq *rq)
 409{
 410	return !plist_head_empty(&rq->rt.pushable_tasks);
 411}
 412
 413static DEFINE_PER_CPU(struct balance_callback, rt_push_head);
 414static DEFINE_PER_CPU(struct balance_callback, rt_pull_head);
 415
 416static void push_rt_tasks(struct rq *);
 417static void pull_rt_task(struct rq *);
 418
 419static inline void rt_queue_push_tasks(struct rq *rq)
 420{
 421	if (!has_pushable_tasks(rq))
 422		return;
 423
 424	queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
 425}
 426
 427static inline void rt_queue_pull_task(struct rq *rq)
 428{
 429	queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
 430}
 431
 432static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
 433{
 434	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
 435	plist_node_init(&p->pushable_tasks, p->prio);
 436	plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
 437
 438	/* Update the highest prio pushable task */
 439	if (p->prio < rq->rt.highest_prio.next)
 440		rq->rt.highest_prio.next = p->prio;
 441}
 442
 443static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
 444{
 445	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
 446
 447	/* Update the new highest prio pushable task */
 448	if (has_pushable_tasks(rq)) {
 449		p = plist_first_entry(&rq->rt.pushable_tasks,
 450				      struct task_struct, pushable_tasks);
 451		rq->rt.highest_prio.next = p->prio;
 452	} else {
 453		rq->rt.highest_prio.next = MAX_RT_PRIO-1;
 454	}
 455}
 456
 457#else
 458
 459static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
 460{
 461}
 462
 463static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
 464{
 465}
 466
 467static inline
 468void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
 469{
 470}
 471
 472static inline
 473void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
 474{
 475}
 476
 
 
 
 
 
 
 
 
 
 477static inline void rt_queue_push_tasks(struct rq *rq)
 478{
 479}
 480#endif /* CONFIG_SMP */
 481
 482static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
 483static void dequeue_top_rt_rq(struct rt_rq *rt_rq, unsigned int count);
 484
 485static inline int on_rt_rq(struct sched_rt_entity *rt_se)
 486{
 487	return rt_se->on_rq;
 488}
 489
 490#ifdef CONFIG_UCLAMP_TASK
 491/*
 492 * Verify the fitness of task @p to run on @cpu taking into account the uclamp
 493 * settings.
 494 *
 495 * This check is only important for heterogeneous systems where uclamp_min value
 496 * is higher than the capacity of a @cpu. For non-heterogeneous system this
 497 * function will always return true.
 498 *
 499 * The function will return true if the capacity of the @cpu is >= the
 500 * uclamp_min and false otherwise.
 501 *
 502 * Note that uclamp_min will be clamped to uclamp_max if uclamp_min
 503 * > uclamp_max.
 504 */
 505static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
 506{
 507	unsigned int min_cap;
 508	unsigned int max_cap;
 509	unsigned int cpu_cap;
 510
 511	/* Only heterogeneous systems can benefit from this check */
 512	if (!sched_asym_cpucap_active())
 513		return true;
 514
 515	min_cap = uclamp_eff_value(p, UCLAMP_MIN);
 516	max_cap = uclamp_eff_value(p, UCLAMP_MAX);
 517
 518	cpu_cap = capacity_orig_of(cpu);
 519
 520	return cpu_cap >= min(min_cap, max_cap);
 521}
 522#else
 523static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
 524{
 525	return true;
 526}
 527#endif
 528
 529#ifdef CONFIG_RT_GROUP_SCHED
 530
 531static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
 532{
 533	if (!rt_rq->tg)
 534		return RUNTIME_INF;
 535
 536	return rt_rq->rt_runtime;
 537}
 538
 539static inline u64 sched_rt_period(struct rt_rq *rt_rq)
 540{
 541	return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
 542}
 543
 544typedef struct task_group *rt_rq_iter_t;
 545
 546static inline struct task_group *next_task_group(struct task_group *tg)
 547{
 548	do {
 549		tg = list_entry_rcu(tg->list.next,
 550			typeof(struct task_group), list);
 551	} while (&tg->list != &task_groups && task_group_is_autogroup(tg));
 552
 553	if (&tg->list == &task_groups)
 554		tg = NULL;
 555
 556	return tg;
 557}
 558
 559#define for_each_rt_rq(rt_rq, iter, rq)					\
 560	for (iter = container_of(&task_groups, typeof(*iter), list);	\
 561		(iter = next_task_group(iter)) &&			\
 562		(rt_rq = iter->rt_rq[cpu_of(rq)]);)
 563
 564#define for_each_sched_rt_entity(rt_se) \
 565	for (; rt_se; rt_se = rt_se->parent)
 566
 567static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
 568{
 569	return rt_se->my_q;
 570}
 571
 572static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
 573static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
 574
 575static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
 576{
 577	struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
 578	struct rq *rq = rq_of_rt_rq(rt_rq);
 579	struct sched_rt_entity *rt_se;
 580
 581	int cpu = cpu_of(rq);
 582
 583	rt_se = rt_rq->tg->rt_se[cpu];
 584
 585	if (rt_rq->rt_nr_running) {
 586		if (!rt_se)
 587			enqueue_top_rt_rq(rt_rq);
 588		else if (!on_rt_rq(rt_se))
 589			enqueue_rt_entity(rt_se, 0);
 590
 591		if (rt_rq->highest_prio.curr < curr->prio)
 592			resched_curr(rq);
 593	}
 594}
 595
 596static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
 597{
 598	struct sched_rt_entity *rt_se;
 599	int cpu = cpu_of(rq_of_rt_rq(rt_rq));
 600
 601	rt_se = rt_rq->tg->rt_se[cpu];
 602
 603	if (!rt_se) {
 604		dequeue_top_rt_rq(rt_rq, rt_rq->rt_nr_running);
 605		/* Kick cpufreq (see the comment in kernel/sched/sched.h). */
 606		cpufreq_update_util(rq_of_rt_rq(rt_rq), 0);
 607	}
 608	else if (on_rt_rq(rt_se))
 609		dequeue_rt_entity(rt_se, 0);
 610}
 611
 612static inline int rt_rq_throttled(struct rt_rq *rt_rq)
 613{
 614	return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
 615}
 616
 617static int rt_se_boosted(struct sched_rt_entity *rt_se)
 618{
 619	struct rt_rq *rt_rq = group_rt_rq(rt_se);
 620	struct task_struct *p;
 621
 622	if (rt_rq)
 623		return !!rt_rq->rt_nr_boosted;
 624
 625	p = rt_task_of(rt_se);
 626	return p->prio != p->normal_prio;
 627}
 628
 629#ifdef CONFIG_SMP
 630static inline const struct cpumask *sched_rt_period_mask(void)
 631{
 632	return this_rq()->rd->span;
 633}
 634#else
 635static inline const struct cpumask *sched_rt_period_mask(void)
 636{
 637	return cpu_online_mask;
 638}
 639#endif
 640
 641static inline
 642struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
 643{
 644	return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
 645}
 646
 647static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
 648{
 649	return &rt_rq->tg->rt_bandwidth;
 650}
 651
 652#else /* !CONFIG_RT_GROUP_SCHED */
 653
 654static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
 655{
 656	return rt_rq->rt_runtime;
 657}
 658
 659static inline u64 sched_rt_period(struct rt_rq *rt_rq)
 660{
 661	return ktime_to_ns(def_rt_bandwidth.rt_period);
 662}
 663
 664typedef struct rt_rq *rt_rq_iter_t;
 665
 666#define for_each_rt_rq(rt_rq, iter, rq) \
 667	for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
 668
 669#define for_each_sched_rt_entity(rt_se) \
 670	for (; rt_se; rt_se = NULL)
 671
 672static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
 673{
 674	return NULL;
 675}
 676
 677static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
 678{
 679	struct rq *rq = rq_of_rt_rq(rt_rq);
 680
 681	if (!rt_rq->rt_nr_running)
 682		return;
 683
 684	enqueue_top_rt_rq(rt_rq);
 685	resched_curr(rq);
 686}
 687
 688static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
 689{
 690	dequeue_top_rt_rq(rt_rq, rt_rq->rt_nr_running);
 691}
 692
 693static inline int rt_rq_throttled(struct rt_rq *rt_rq)
 694{
 695	return rt_rq->rt_throttled;
 696}
 697
 698static inline const struct cpumask *sched_rt_period_mask(void)
 699{
 700	return cpu_online_mask;
 701}
 702
 703static inline
 704struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
 705{
 706	return &cpu_rq(cpu)->rt;
 707}
 708
 709static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
 710{
 711	return &def_rt_bandwidth;
 712}
 713
 714#endif /* CONFIG_RT_GROUP_SCHED */
 715
 716bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
 717{
 718	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
 719
 720	return (hrtimer_active(&rt_b->rt_period_timer) ||
 721		rt_rq->rt_time < rt_b->rt_runtime);
 722}
 723
 724#ifdef CONFIG_SMP
 725/*
 726 * We ran out of runtime, see if we can borrow some from our neighbours.
 727 */
 728static void do_balance_runtime(struct rt_rq *rt_rq)
 729{
 730	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
 731	struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
 732	int i, weight;
 733	u64 rt_period;
 734
 735	weight = cpumask_weight(rd->span);
 736
 737	raw_spin_lock(&rt_b->rt_runtime_lock);
 738	rt_period = ktime_to_ns(rt_b->rt_period);
 739	for_each_cpu(i, rd->span) {
 740		struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
 741		s64 diff;
 742
 743		if (iter == rt_rq)
 744			continue;
 745
 746		raw_spin_lock(&iter->rt_runtime_lock);
 747		/*
 748		 * Either all rqs have inf runtime and there's nothing to steal
 749		 * or __disable_runtime() below sets a specific rq to inf to
 750		 * indicate its been disabled and disallow stealing.
 751		 */
 752		if (iter->rt_runtime == RUNTIME_INF)
 753			goto next;
 754
 755		/*
 756		 * From runqueues with spare time, take 1/n part of their
 757		 * spare time, but no more than our period.
 758		 */
 759		diff = iter->rt_runtime - iter->rt_time;
 760		if (diff > 0) {
 761			diff = div_u64((u64)diff, weight);
 762			if (rt_rq->rt_runtime + diff > rt_period)
 763				diff = rt_period - rt_rq->rt_runtime;
 764			iter->rt_runtime -= diff;
 765			rt_rq->rt_runtime += diff;
 766			if (rt_rq->rt_runtime == rt_period) {
 767				raw_spin_unlock(&iter->rt_runtime_lock);
 768				break;
 769			}
 770		}
 771next:
 772		raw_spin_unlock(&iter->rt_runtime_lock);
 773	}
 774	raw_spin_unlock(&rt_b->rt_runtime_lock);
 775}
 776
 777/*
 778 * Ensure this RQ takes back all the runtime it lend to its neighbours.
 779 */
 780static void __disable_runtime(struct rq *rq)
 781{
 782	struct root_domain *rd = rq->rd;
 783	rt_rq_iter_t iter;
 784	struct rt_rq *rt_rq;
 785
 786	if (unlikely(!scheduler_running))
 787		return;
 788
 789	for_each_rt_rq(rt_rq, iter, rq) {
 790		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
 791		s64 want;
 792		int i;
 793
 794		raw_spin_lock(&rt_b->rt_runtime_lock);
 795		raw_spin_lock(&rt_rq->rt_runtime_lock);
 796		/*
 797		 * Either we're all inf and nobody needs to borrow, or we're
 798		 * already disabled and thus have nothing to do, or we have
 799		 * exactly the right amount of runtime to take out.
 800		 */
 801		if (rt_rq->rt_runtime == RUNTIME_INF ||
 802				rt_rq->rt_runtime == rt_b->rt_runtime)
 803			goto balanced;
 804		raw_spin_unlock(&rt_rq->rt_runtime_lock);
 805
 806		/*
 807		 * Calculate the difference between what we started out with
 808		 * and what we current have, that's the amount of runtime
 809		 * we lend and now have to reclaim.
 810		 */
 811		want = rt_b->rt_runtime - rt_rq->rt_runtime;
 812
 813		/*
 814		 * Greedy reclaim, take back as much as we can.
 815		 */
 816		for_each_cpu(i, rd->span) {
 817			struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
 818			s64 diff;
 819
 820			/*
 821			 * Can't reclaim from ourselves or disabled runqueues.
 822			 */
 823			if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
 824				continue;
 825
 826			raw_spin_lock(&iter->rt_runtime_lock);
 827			if (want > 0) {
 828				diff = min_t(s64, iter->rt_runtime, want);
 829				iter->rt_runtime -= diff;
 830				want -= diff;
 831			} else {
 832				iter->rt_runtime -= want;
 833				want -= want;
 834			}
 835			raw_spin_unlock(&iter->rt_runtime_lock);
 836
 837			if (!want)
 838				break;
 839		}
 840
 841		raw_spin_lock(&rt_rq->rt_runtime_lock);
 842		/*
 843		 * We cannot be left wanting - that would mean some runtime
 844		 * leaked out of the system.
 845		 */
 846		WARN_ON_ONCE(want);
 847balanced:
 848		/*
 849		 * Disable all the borrow logic by pretending we have inf
 850		 * runtime - in which case borrowing doesn't make sense.
 851		 */
 852		rt_rq->rt_runtime = RUNTIME_INF;
 853		rt_rq->rt_throttled = 0;
 854		raw_spin_unlock(&rt_rq->rt_runtime_lock);
 855		raw_spin_unlock(&rt_b->rt_runtime_lock);
 856
 857		/* Make rt_rq available for pick_next_task() */
 858		sched_rt_rq_enqueue(rt_rq);
 859	}
 860}
 861
 862static void __enable_runtime(struct rq *rq)
 863{
 864	rt_rq_iter_t iter;
 865	struct rt_rq *rt_rq;
 866
 867	if (unlikely(!scheduler_running))
 868		return;
 869
 870	/*
 871	 * Reset each runqueue's bandwidth settings
 872	 */
 873	for_each_rt_rq(rt_rq, iter, rq) {
 874		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
 875
 876		raw_spin_lock(&rt_b->rt_runtime_lock);
 877		raw_spin_lock(&rt_rq->rt_runtime_lock);
 878		rt_rq->rt_runtime = rt_b->rt_runtime;
 879		rt_rq->rt_time = 0;
 880		rt_rq->rt_throttled = 0;
 881		raw_spin_unlock(&rt_rq->rt_runtime_lock);
 882		raw_spin_unlock(&rt_b->rt_runtime_lock);
 883	}
 884}
 885
 886static void balance_runtime(struct rt_rq *rt_rq)
 887{
 888	if (!sched_feat(RT_RUNTIME_SHARE))
 889		return;
 890
 891	if (rt_rq->rt_time > rt_rq->rt_runtime) {
 892		raw_spin_unlock(&rt_rq->rt_runtime_lock);
 893		do_balance_runtime(rt_rq);
 894		raw_spin_lock(&rt_rq->rt_runtime_lock);
 895	}
 896}
 897#else /* !CONFIG_SMP */
 898static inline void balance_runtime(struct rt_rq *rt_rq) {}
 899#endif /* CONFIG_SMP */
 900
 901static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
 902{
 903	int i, idle = 1, throttled = 0;
 904	const struct cpumask *span;
 905
 906	span = sched_rt_period_mask();
 907#ifdef CONFIG_RT_GROUP_SCHED
 908	/*
 909	 * FIXME: isolated CPUs should really leave the root task group,
 910	 * whether they are isolcpus or were isolated via cpusets, lest
 911	 * the timer run on a CPU which does not service all runqueues,
 912	 * potentially leaving other CPUs indefinitely throttled.  If
 913	 * isolation is really required, the user will turn the throttle
 914	 * off to kill the perturbations it causes anyway.  Meanwhile,
 915	 * this maintains functionality for boot and/or troubleshooting.
 916	 */
 917	if (rt_b == &root_task_group.rt_bandwidth)
 918		span = cpu_online_mask;
 919#endif
 920	for_each_cpu(i, span) {
 921		int enqueue = 0;
 922		struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
 923		struct rq *rq = rq_of_rt_rq(rt_rq);
 924		struct rq_flags rf;
 925		int skip;
 926
 927		/*
 928		 * When span == cpu_online_mask, taking each rq->lock
 929		 * can be time-consuming. Try to avoid it when possible.
 930		 */
 931		raw_spin_lock(&rt_rq->rt_runtime_lock);
 932		if (!sched_feat(RT_RUNTIME_SHARE) && rt_rq->rt_runtime != RUNTIME_INF)
 933			rt_rq->rt_runtime = rt_b->rt_runtime;
 934		skip = !rt_rq->rt_time && !rt_rq->rt_nr_running;
 935		raw_spin_unlock(&rt_rq->rt_runtime_lock);
 936		if (skip)
 937			continue;
 938
 939		rq_lock(rq, &rf);
 940		update_rq_clock(rq);
 941
 942		if (rt_rq->rt_time) {
 943			u64 runtime;
 944
 945			raw_spin_lock(&rt_rq->rt_runtime_lock);
 946			if (rt_rq->rt_throttled)
 947				balance_runtime(rt_rq);
 948			runtime = rt_rq->rt_runtime;
 949			rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
 950			if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
 951				rt_rq->rt_throttled = 0;
 952				enqueue = 1;
 953
 954				/*
 955				 * When we're idle and a woken (rt) task is
 956				 * throttled check_preempt_curr() will set
 957				 * skip_update and the time between the wakeup
 958				 * and this unthrottle will get accounted as
 959				 * 'runtime'.
 960				 */
 961				if (rt_rq->rt_nr_running && rq->curr == rq->idle)
 962					rq_clock_cancel_skipupdate(rq);
 963			}
 964			if (rt_rq->rt_time || rt_rq->rt_nr_running)
 965				idle = 0;
 966			raw_spin_unlock(&rt_rq->rt_runtime_lock);
 967		} else if (rt_rq->rt_nr_running) {
 968			idle = 0;
 969			if (!rt_rq_throttled(rt_rq))
 970				enqueue = 1;
 971		}
 972		if (rt_rq->rt_throttled)
 973			throttled = 1;
 974
 975		if (enqueue)
 976			sched_rt_rq_enqueue(rt_rq);
 977		rq_unlock(rq, &rf);
 978	}
 979
 980	if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
 981		return 1;
 982
 983	return idle;
 984}
 985
 986static inline int rt_se_prio(struct sched_rt_entity *rt_se)
 987{
 988#ifdef CONFIG_RT_GROUP_SCHED
 989	struct rt_rq *rt_rq = group_rt_rq(rt_se);
 990
 991	if (rt_rq)
 992		return rt_rq->highest_prio.curr;
 993#endif
 994
 995	return rt_task_of(rt_se)->prio;
 996}
 997
 998static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
 999{
1000	u64 runtime = sched_rt_runtime(rt_rq);
1001
1002	if (rt_rq->rt_throttled)
1003		return rt_rq_throttled(rt_rq);
1004
1005	if (runtime >= sched_rt_period(rt_rq))
1006		return 0;
1007
1008	balance_runtime(rt_rq);
1009	runtime = sched_rt_runtime(rt_rq);
1010	if (runtime == RUNTIME_INF)
1011		return 0;
1012
1013	if (rt_rq->rt_time > runtime) {
1014		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
1015
1016		/*
1017		 * Don't actually throttle groups that have no runtime assigned
1018		 * but accrue some time due to boosting.
1019		 */
1020		if (likely(rt_b->rt_runtime)) {
1021			rt_rq->rt_throttled = 1;
1022			printk_deferred_once("sched: RT throttling activated\n");
1023		} else {
1024			/*
1025			 * In case we did anyway, make it go away,
1026			 * replenishment is a joke, since it will replenish us
1027			 * with exactly 0 ns.
1028			 */
1029			rt_rq->rt_time = 0;
1030		}
1031
1032		if (rt_rq_throttled(rt_rq)) {
1033			sched_rt_rq_dequeue(rt_rq);
1034			return 1;
1035		}
1036	}
1037
1038	return 0;
1039}
1040
1041/*
1042 * Update the current task's runtime statistics. Skip current tasks that
1043 * are not in our scheduling class.
1044 */
1045static void update_curr_rt(struct rq *rq)
1046{
1047	struct task_struct *curr = rq->curr;
1048	struct sched_rt_entity *rt_se = &curr->rt;
1049	u64 delta_exec;
1050	u64 now;
1051
1052	if (curr->sched_class != &rt_sched_class)
1053		return;
1054
1055	now = rq_clock_task(rq);
1056	delta_exec = now - curr->se.exec_start;
1057	if (unlikely((s64)delta_exec <= 0))
1058		return;
1059
1060	schedstat_set(curr->stats.exec_max,
1061		      max(curr->stats.exec_max, delta_exec));
1062
1063	trace_sched_stat_runtime(curr, delta_exec, 0);
 
1064
1065	update_current_exec_runtime(curr, now, delta_exec);
 
1066
1067	if (!rt_bandwidth_enabled())
1068		return;
1069
1070	for_each_sched_rt_entity(rt_se) {
1071		struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1072		int exceeded;
1073
1074		if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
1075			raw_spin_lock(&rt_rq->rt_runtime_lock);
1076			rt_rq->rt_time += delta_exec;
1077			exceeded = sched_rt_runtime_exceeded(rt_rq);
1078			if (exceeded)
1079				resched_curr(rq);
1080			raw_spin_unlock(&rt_rq->rt_runtime_lock);
1081			if (exceeded)
1082				do_start_rt_bandwidth(sched_rt_bandwidth(rt_rq));
1083		}
1084	}
1085}
1086
1087static void
1088dequeue_top_rt_rq(struct rt_rq *rt_rq, unsigned int count)
1089{
1090	struct rq *rq = rq_of_rt_rq(rt_rq);
1091
1092	BUG_ON(&rq->rt != rt_rq);
1093
1094	if (!rt_rq->rt_queued)
1095		return;
1096
1097	BUG_ON(!rq->nr_running);
1098
1099	sub_nr_running(rq, count);
1100	rt_rq->rt_queued = 0;
1101
1102}
1103
1104static void
1105enqueue_top_rt_rq(struct rt_rq *rt_rq)
1106{
1107	struct rq *rq = rq_of_rt_rq(rt_rq);
1108
1109	BUG_ON(&rq->rt != rt_rq);
1110
1111	if (rt_rq->rt_queued)
1112		return;
1113
1114	if (rt_rq_throttled(rt_rq))
1115		return;
1116
1117	if (rt_rq->rt_nr_running) {
1118		add_nr_running(rq, rt_rq->rt_nr_running);
1119		rt_rq->rt_queued = 1;
1120	}
1121
1122	/* Kick cpufreq (see the comment in kernel/sched/sched.h). */
1123	cpufreq_update_util(rq, 0);
1124}
1125
1126#if defined CONFIG_SMP
1127
1128static void
1129inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1130{
1131	struct rq *rq = rq_of_rt_rq(rt_rq);
1132
1133#ifdef CONFIG_RT_GROUP_SCHED
1134	/*
1135	 * Change rq's cpupri only if rt_rq is the top queue.
1136	 */
1137	if (&rq->rt != rt_rq)
1138		return;
1139#endif
1140	if (rq->online && prio < prev_prio)
1141		cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1142}
1143
1144static void
1145dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1146{
1147	struct rq *rq = rq_of_rt_rq(rt_rq);
1148
1149#ifdef CONFIG_RT_GROUP_SCHED
1150	/*
1151	 * Change rq's cpupri only if rt_rq is the top queue.
1152	 */
1153	if (&rq->rt != rt_rq)
1154		return;
1155#endif
1156	if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1157		cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1158}
1159
1160#else /* CONFIG_SMP */
1161
1162static inline
1163void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1164static inline
1165void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1166
1167#endif /* CONFIG_SMP */
1168
1169#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1170static void
1171inc_rt_prio(struct rt_rq *rt_rq, int prio)
1172{
1173	int prev_prio = rt_rq->highest_prio.curr;
1174
1175	if (prio < prev_prio)
1176		rt_rq->highest_prio.curr = prio;
1177
1178	inc_rt_prio_smp(rt_rq, prio, prev_prio);
1179}
1180
1181static void
1182dec_rt_prio(struct rt_rq *rt_rq, int prio)
1183{
1184	int prev_prio = rt_rq->highest_prio.curr;
1185
1186	if (rt_rq->rt_nr_running) {
1187
1188		WARN_ON(prio < prev_prio);
1189
1190		/*
1191		 * This may have been our highest task, and therefore
1192		 * we may have some recomputation to do
1193		 */
1194		if (prio == prev_prio) {
1195			struct rt_prio_array *array = &rt_rq->active;
1196
1197			rt_rq->highest_prio.curr =
1198				sched_find_first_bit(array->bitmap);
1199		}
1200
1201	} else {
1202		rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
1203	}
1204
1205	dec_rt_prio_smp(rt_rq, prio, prev_prio);
1206}
1207
1208#else
1209
1210static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1211static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1212
1213#endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1214
1215#ifdef CONFIG_RT_GROUP_SCHED
1216
1217static void
1218inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1219{
1220	if (rt_se_boosted(rt_se))
1221		rt_rq->rt_nr_boosted++;
1222
1223	if (rt_rq->tg)
1224		start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1225}
1226
1227static void
1228dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1229{
1230	if (rt_se_boosted(rt_se))
1231		rt_rq->rt_nr_boosted--;
1232
1233	WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1234}
1235
1236#else /* CONFIG_RT_GROUP_SCHED */
1237
1238static void
1239inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1240{
1241	start_rt_bandwidth(&def_rt_bandwidth);
1242}
1243
1244static inline
1245void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1246
1247#endif /* CONFIG_RT_GROUP_SCHED */
1248
1249static inline
1250unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1251{
1252	struct rt_rq *group_rq = group_rt_rq(rt_se);
1253
1254	if (group_rq)
1255		return group_rq->rt_nr_running;
1256	else
1257		return 1;
1258}
1259
1260static inline
1261unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se)
1262{
1263	struct rt_rq *group_rq = group_rt_rq(rt_se);
1264	struct task_struct *tsk;
1265
1266	if (group_rq)
1267		return group_rq->rr_nr_running;
1268
1269	tsk = rt_task_of(rt_se);
1270
1271	return (tsk->policy == SCHED_RR) ? 1 : 0;
1272}
1273
1274static inline
1275void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1276{
1277	int prio = rt_se_prio(rt_se);
1278
1279	WARN_ON(!rt_prio(prio));
1280	rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1281	rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se);
1282
1283	inc_rt_prio(rt_rq, prio);
1284	inc_rt_migration(rt_se, rt_rq);
1285	inc_rt_group(rt_se, rt_rq);
1286}
1287
1288static inline
1289void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1290{
1291	WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1292	WARN_ON(!rt_rq->rt_nr_running);
1293	rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1294	rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se);
1295
1296	dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1297	dec_rt_migration(rt_se, rt_rq);
1298	dec_rt_group(rt_se, rt_rq);
1299}
1300
1301/*
1302 * Change rt_se->run_list location unless SAVE && !MOVE
1303 *
1304 * assumes ENQUEUE/DEQUEUE flags match
1305 */
1306static inline bool move_entity(unsigned int flags)
1307{
1308	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
1309		return false;
1310
1311	return true;
1312}
1313
1314static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array)
1315{
1316	list_del_init(&rt_se->run_list);
1317
1318	if (list_empty(array->queue + rt_se_prio(rt_se)))
1319		__clear_bit(rt_se_prio(rt_se), array->bitmap);
1320
1321	rt_se->on_list = 0;
1322}
1323
1324static inline struct sched_statistics *
1325__schedstats_from_rt_se(struct sched_rt_entity *rt_se)
1326{
1327#ifdef CONFIG_RT_GROUP_SCHED
1328	/* schedstats is not supported for rt group. */
1329	if (!rt_entity_is_task(rt_se))
1330		return NULL;
1331#endif
1332
1333	return &rt_task_of(rt_se)->stats;
1334}
1335
1336static inline void
1337update_stats_wait_start_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1338{
1339	struct sched_statistics *stats;
1340	struct task_struct *p = NULL;
1341
1342	if (!schedstat_enabled())
1343		return;
1344
1345	if (rt_entity_is_task(rt_se))
1346		p = rt_task_of(rt_se);
1347
1348	stats = __schedstats_from_rt_se(rt_se);
1349	if (!stats)
1350		return;
1351
1352	__update_stats_wait_start(rq_of_rt_rq(rt_rq), p, stats);
1353}
1354
1355static inline void
1356update_stats_enqueue_sleeper_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1357{
1358	struct sched_statistics *stats;
1359	struct task_struct *p = NULL;
1360
1361	if (!schedstat_enabled())
1362		return;
1363
1364	if (rt_entity_is_task(rt_se))
1365		p = rt_task_of(rt_se);
1366
1367	stats = __schedstats_from_rt_se(rt_se);
1368	if (!stats)
1369		return;
1370
1371	__update_stats_enqueue_sleeper(rq_of_rt_rq(rt_rq), p, stats);
1372}
1373
1374static inline void
1375update_stats_enqueue_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
1376			int flags)
1377{
1378	if (!schedstat_enabled())
1379		return;
1380
1381	if (flags & ENQUEUE_WAKEUP)
1382		update_stats_enqueue_sleeper_rt(rt_rq, rt_se);
1383}
1384
1385static inline void
1386update_stats_wait_end_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1387{
1388	struct sched_statistics *stats;
1389	struct task_struct *p = NULL;
1390
1391	if (!schedstat_enabled())
1392		return;
1393
1394	if (rt_entity_is_task(rt_se))
1395		p = rt_task_of(rt_se);
1396
1397	stats = __schedstats_from_rt_se(rt_se);
1398	if (!stats)
1399		return;
1400
1401	__update_stats_wait_end(rq_of_rt_rq(rt_rq), p, stats);
1402}
1403
1404static inline void
1405update_stats_dequeue_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
1406			int flags)
1407{
1408	struct task_struct *p = NULL;
1409
1410	if (!schedstat_enabled())
1411		return;
1412
1413	if (rt_entity_is_task(rt_se))
1414		p = rt_task_of(rt_se);
1415
1416	if ((flags & DEQUEUE_SLEEP) && p) {
1417		unsigned int state;
1418
1419		state = READ_ONCE(p->__state);
1420		if (state & TASK_INTERRUPTIBLE)
1421			__schedstat_set(p->stats.sleep_start,
1422					rq_clock(rq_of_rt_rq(rt_rq)));
1423
1424		if (state & TASK_UNINTERRUPTIBLE)
1425			__schedstat_set(p->stats.block_start,
1426					rq_clock(rq_of_rt_rq(rt_rq)));
1427	}
1428}
1429
1430static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1431{
1432	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1433	struct rt_prio_array *array = &rt_rq->active;
1434	struct rt_rq *group_rq = group_rt_rq(rt_se);
1435	struct list_head *queue = array->queue + rt_se_prio(rt_se);
1436
1437	/*
1438	 * Don't enqueue the group if its throttled, or when empty.
1439	 * The latter is a consequence of the former when a child group
1440	 * get throttled and the current group doesn't have any other
1441	 * active members.
1442	 */
1443	if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) {
1444		if (rt_se->on_list)
1445			__delist_rt_entity(rt_se, array);
1446		return;
1447	}
1448
1449	if (move_entity(flags)) {
1450		WARN_ON_ONCE(rt_se->on_list);
1451		if (flags & ENQUEUE_HEAD)
1452			list_add(&rt_se->run_list, queue);
1453		else
1454			list_add_tail(&rt_se->run_list, queue);
1455
1456		__set_bit(rt_se_prio(rt_se), array->bitmap);
1457		rt_se->on_list = 1;
1458	}
1459	rt_se->on_rq = 1;
1460
1461	inc_rt_tasks(rt_se, rt_rq);
1462}
1463
1464static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1465{
1466	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1467	struct rt_prio_array *array = &rt_rq->active;
1468
1469	if (move_entity(flags)) {
1470		WARN_ON_ONCE(!rt_se->on_list);
1471		__delist_rt_entity(rt_se, array);
1472	}
1473	rt_se->on_rq = 0;
1474
1475	dec_rt_tasks(rt_se, rt_rq);
1476}
1477
1478/*
1479 * Because the prio of an upper entry depends on the lower
1480 * entries, we must remove entries top - down.
1481 */
1482static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags)
1483{
1484	struct sched_rt_entity *back = NULL;
1485	unsigned int rt_nr_running;
1486
1487	for_each_sched_rt_entity(rt_se) {
1488		rt_se->back = back;
1489		back = rt_se;
1490	}
1491
1492	rt_nr_running = rt_rq_of_se(back)->rt_nr_running;
1493
1494	for (rt_se = back; rt_se; rt_se = rt_se->back) {
1495		if (on_rt_rq(rt_se))
1496			__dequeue_rt_entity(rt_se, flags);
1497	}
1498
1499	dequeue_top_rt_rq(rt_rq_of_se(back), rt_nr_running);
1500}
1501
1502static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1503{
1504	struct rq *rq = rq_of_rt_se(rt_se);
1505
1506	update_stats_enqueue_rt(rt_rq_of_se(rt_se), rt_se, flags);
1507
1508	dequeue_rt_stack(rt_se, flags);
1509	for_each_sched_rt_entity(rt_se)
1510		__enqueue_rt_entity(rt_se, flags);
1511	enqueue_top_rt_rq(&rq->rt);
1512}
1513
1514static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1515{
1516	struct rq *rq = rq_of_rt_se(rt_se);
1517
1518	update_stats_dequeue_rt(rt_rq_of_se(rt_se), rt_se, flags);
1519
1520	dequeue_rt_stack(rt_se, flags);
1521
1522	for_each_sched_rt_entity(rt_se) {
1523		struct rt_rq *rt_rq = group_rt_rq(rt_se);
1524
1525		if (rt_rq && rt_rq->rt_nr_running)
1526			__enqueue_rt_entity(rt_se, flags);
1527	}
1528	enqueue_top_rt_rq(&rq->rt);
1529}
1530
1531/*
1532 * Adding/removing a task to/from a priority array:
1533 */
1534static void
1535enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1536{
1537	struct sched_rt_entity *rt_se = &p->rt;
1538
1539	if (flags & ENQUEUE_WAKEUP)
1540		rt_se->timeout = 0;
1541
1542	check_schedstat_required();
1543	update_stats_wait_start_rt(rt_rq_of_se(rt_se), rt_se);
1544
1545	enqueue_rt_entity(rt_se, flags);
1546
1547	if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1548		enqueue_pushable_task(rq, p);
1549}
1550
1551static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1552{
1553	struct sched_rt_entity *rt_se = &p->rt;
1554
1555	update_curr_rt(rq);
1556	dequeue_rt_entity(rt_se, flags);
1557
1558	dequeue_pushable_task(rq, p);
1559}
1560
1561/*
1562 * Put task to the head or the end of the run list without the overhead of
1563 * dequeue followed by enqueue.
1564 */
1565static void
1566requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1567{
1568	if (on_rt_rq(rt_se)) {
1569		struct rt_prio_array *array = &rt_rq->active;
1570		struct list_head *queue = array->queue + rt_se_prio(rt_se);
1571
1572		if (head)
1573			list_move(&rt_se->run_list, queue);
1574		else
1575			list_move_tail(&rt_se->run_list, queue);
1576	}
1577}
1578
1579static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1580{
1581	struct sched_rt_entity *rt_se = &p->rt;
1582	struct rt_rq *rt_rq;
1583
1584	for_each_sched_rt_entity(rt_se) {
1585		rt_rq = rt_rq_of_se(rt_se);
1586		requeue_rt_entity(rt_rq, rt_se, head);
1587	}
1588}
1589
1590static void yield_task_rt(struct rq *rq)
1591{
1592	requeue_task_rt(rq, rq->curr, 0);
1593}
1594
1595#ifdef CONFIG_SMP
1596static int find_lowest_rq(struct task_struct *task);
1597
1598static int
1599select_task_rq_rt(struct task_struct *p, int cpu, int flags)
1600{
1601	struct task_struct *curr;
1602	struct rq *rq;
1603	bool test;
1604
1605	/* For anything but wake ups, just return the task_cpu */
1606	if (!(flags & (WF_TTWU | WF_FORK)))
1607		goto out;
1608
1609	rq = cpu_rq(cpu);
1610
1611	rcu_read_lock();
1612	curr = READ_ONCE(rq->curr); /* unlocked access */
1613
1614	/*
1615	 * If the current task on @p's runqueue is an RT task, then
1616	 * try to see if we can wake this RT task up on another
1617	 * runqueue. Otherwise simply start this RT task
1618	 * on its current runqueue.
1619	 *
1620	 * We want to avoid overloading runqueues. If the woken
1621	 * task is a higher priority, then it will stay on this CPU
1622	 * and the lower prio task should be moved to another CPU.
1623	 * Even though this will probably make the lower prio task
1624	 * lose its cache, we do not want to bounce a higher task
1625	 * around just because it gave up its CPU, perhaps for a
1626	 * lock?
1627	 *
1628	 * For equal prio tasks, we just let the scheduler sort it out.
1629	 *
1630	 * Otherwise, just let it ride on the affined RQ and the
1631	 * post-schedule router will push the preempted task away
1632	 *
1633	 * This test is optimistic, if we get it wrong the load-balancer
1634	 * will have to sort it out.
1635	 *
1636	 * We take into account the capacity of the CPU to ensure it fits the
1637	 * requirement of the task - which is only important on heterogeneous
1638	 * systems like big.LITTLE.
1639	 */
1640	test = curr &&
1641	       unlikely(rt_task(curr)) &&
1642	       (curr->nr_cpus_allowed < 2 || curr->prio <= p->prio);
1643
1644	if (test || !rt_task_fits_capacity(p, cpu)) {
1645		int target = find_lowest_rq(p);
1646
1647		/*
1648		 * Bail out if we were forcing a migration to find a better
1649		 * fitting CPU but our search failed.
1650		 */
1651		if (!test && target != -1 && !rt_task_fits_capacity(p, target))
1652			goto out_unlock;
1653
1654		/*
1655		 * Don't bother moving it if the destination CPU is
1656		 * not running a lower priority task.
1657		 */
1658		if (target != -1 &&
1659		    p->prio < cpu_rq(target)->rt.highest_prio.curr)
1660			cpu = target;
1661	}
1662
1663out_unlock:
1664	rcu_read_unlock();
1665
1666out:
1667	return cpu;
1668}
1669
1670static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1671{
1672	/*
1673	 * Current can't be migrated, useless to reschedule,
1674	 * let's hope p can move out.
1675	 */
1676	if (rq->curr->nr_cpus_allowed == 1 ||
1677	    !cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1678		return;
1679
1680	/*
1681	 * p is migratable, so let's not schedule it and
1682	 * see if it is pushed or pulled somewhere else.
1683	 */
1684	if (p->nr_cpus_allowed != 1 &&
1685	    cpupri_find(&rq->rd->cpupri, p, NULL))
1686		return;
1687
1688	/*
1689	 * There appear to be other CPUs that can accept
1690	 * the current task but none can run 'p', so lets reschedule
1691	 * to try and push the current task away:
1692	 */
1693	requeue_task_rt(rq, p, 1);
1694	resched_curr(rq);
1695}
1696
1697static int balance_rt(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1698{
1699	if (!on_rt_rq(&p->rt) && need_pull_rt_task(rq, p)) {
1700		/*
1701		 * This is OK, because current is on_cpu, which avoids it being
1702		 * picked for load-balance and preemption/IRQs are still
1703		 * disabled avoiding further scheduler activity on it and we've
1704		 * not yet started the picking loop.
1705		 */
1706		rq_unpin_lock(rq, rf);
1707		pull_rt_task(rq);
1708		rq_repin_lock(rq, rf);
1709	}
1710
1711	return sched_stop_runnable(rq) || sched_dl_runnable(rq) || sched_rt_runnable(rq);
1712}
1713#endif /* CONFIG_SMP */
1714
1715/*
1716 * Preempt the current task with a newly woken task if needed:
1717 */
1718static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1719{
1720	if (p->prio < rq->curr->prio) {
1721		resched_curr(rq);
1722		return;
1723	}
1724
1725#ifdef CONFIG_SMP
1726	/*
1727	 * If:
1728	 *
1729	 * - the newly woken task is of equal priority to the current task
1730	 * - the newly woken task is non-migratable while current is migratable
1731	 * - current will be preempted on the next reschedule
1732	 *
1733	 * we should check to see if current can readily move to a different
1734	 * cpu.  If so, we will reschedule to allow the push logic to try
1735	 * to move current somewhere else, making room for our non-migratable
1736	 * task.
1737	 */
1738	if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1739		check_preempt_equal_prio(rq, p);
1740#endif
1741}
1742
1743static inline void set_next_task_rt(struct rq *rq, struct task_struct *p, bool first)
1744{
1745	struct sched_rt_entity *rt_se = &p->rt;
1746	struct rt_rq *rt_rq = &rq->rt;
1747
1748	p->se.exec_start = rq_clock_task(rq);
1749	if (on_rt_rq(&p->rt))
1750		update_stats_wait_end_rt(rt_rq, rt_se);
1751
1752	/* The running task is never eligible for pushing */
1753	dequeue_pushable_task(rq, p);
1754
1755	if (!first)
1756		return;
1757
1758	/*
1759	 * If prev task was rt, put_prev_task() has already updated the
1760	 * utilization. We only care of the case where we start to schedule a
1761	 * rt task
1762	 */
1763	if (rq->curr->sched_class != &rt_sched_class)
1764		update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
1765
1766	rt_queue_push_tasks(rq);
1767}
1768
1769static struct sched_rt_entity *pick_next_rt_entity(struct rt_rq *rt_rq)
 
1770{
1771	struct rt_prio_array *array = &rt_rq->active;
1772	struct sched_rt_entity *next = NULL;
1773	struct list_head *queue;
1774	int idx;
1775
1776	idx = sched_find_first_bit(array->bitmap);
1777	BUG_ON(idx >= MAX_RT_PRIO);
1778
1779	queue = array->queue + idx;
1780	next = list_entry(queue->next, struct sched_rt_entity, run_list);
1781
1782	return next;
1783}
1784
1785static struct task_struct *_pick_next_task_rt(struct rq *rq)
1786{
1787	struct sched_rt_entity *rt_se;
1788	struct rt_rq *rt_rq  = &rq->rt;
1789
1790	do {
1791		rt_se = pick_next_rt_entity(rt_rq);
1792		BUG_ON(!rt_se);
1793		rt_rq = group_rt_rq(rt_se);
1794	} while (rt_rq);
1795
1796	return rt_task_of(rt_se);
1797}
1798
1799static struct task_struct *pick_task_rt(struct rq *rq)
1800{
1801	struct task_struct *p;
1802
1803	if (!sched_rt_runnable(rq))
1804		return NULL;
1805
1806	p = _pick_next_task_rt(rq);
1807
1808	return p;
1809}
1810
1811static struct task_struct *pick_next_task_rt(struct rq *rq)
1812{
1813	struct task_struct *p = pick_task_rt(rq);
1814
1815	if (p)
1816		set_next_task_rt(rq, p, true);
1817
1818	return p;
1819}
1820
1821static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1822{
1823	struct sched_rt_entity *rt_se = &p->rt;
1824	struct rt_rq *rt_rq = &rq->rt;
1825
1826	if (on_rt_rq(&p->rt))
1827		update_stats_wait_start_rt(rt_rq, rt_se);
1828
1829	update_curr_rt(rq);
1830
1831	update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
1832
1833	/*
1834	 * The previous task needs to be made eligible for pushing
1835	 * if it is still active
1836	 */
1837	if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1838		enqueue_pushable_task(rq, p);
1839}
1840
1841#ifdef CONFIG_SMP
1842
1843/* Only try algorithms three times */
1844#define RT_MAX_TRIES 3
1845
1846static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1847{
1848	if (!task_on_cpu(rq, p) &&
1849	    cpumask_test_cpu(cpu, &p->cpus_mask))
1850		return 1;
1851
1852	return 0;
1853}
1854
1855/*
1856 * Return the highest pushable rq's task, which is suitable to be executed
1857 * on the CPU, NULL otherwise
1858 */
1859static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1860{
1861	struct plist_head *head = &rq->rt.pushable_tasks;
1862	struct task_struct *p;
1863
1864	if (!has_pushable_tasks(rq))
1865		return NULL;
1866
1867	plist_for_each_entry(p, head, pushable_tasks) {
1868		if (pick_rt_task(rq, p, cpu))
1869			return p;
1870	}
1871
1872	return NULL;
1873}
1874
1875static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1876
1877static int find_lowest_rq(struct task_struct *task)
1878{
1879	struct sched_domain *sd;
1880	struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
1881	int this_cpu = smp_processor_id();
1882	int cpu      = task_cpu(task);
1883	int ret;
1884
1885	/* Make sure the mask is initialized first */
1886	if (unlikely(!lowest_mask))
1887		return -1;
1888
1889	if (task->nr_cpus_allowed == 1)
1890		return -1; /* No other targets possible */
1891
1892	/*
1893	 * If we're on asym system ensure we consider the different capacities
1894	 * of the CPUs when searching for the lowest_mask.
1895	 */
1896	if (sched_asym_cpucap_active()) {
1897
1898		ret = cpupri_find_fitness(&task_rq(task)->rd->cpupri,
1899					  task, lowest_mask,
1900					  rt_task_fits_capacity);
1901	} else {
1902
1903		ret = cpupri_find(&task_rq(task)->rd->cpupri,
1904				  task, lowest_mask);
1905	}
1906
1907	if (!ret)
1908		return -1; /* No targets found */
1909
1910	/*
1911	 * At this point we have built a mask of CPUs representing the
1912	 * lowest priority tasks in the system.  Now we want to elect
1913	 * the best one based on our affinity and topology.
1914	 *
1915	 * We prioritize the last CPU that the task executed on since
1916	 * it is most likely cache-hot in that location.
1917	 */
1918	if (cpumask_test_cpu(cpu, lowest_mask))
1919		return cpu;
1920
1921	/*
1922	 * Otherwise, we consult the sched_domains span maps to figure
1923	 * out which CPU is logically closest to our hot cache data.
1924	 */
1925	if (!cpumask_test_cpu(this_cpu, lowest_mask))
1926		this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1927
1928	rcu_read_lock();
1929	for_each_domain(cpu, sd) {
1930		if (sd->flags & SD_WAKE_AFFINE) {
1931			int best_cpu;
1932
1933			/*
1934			 * "this_cpu" is cheaper to preempt than a
1935			 * remote processor.
1936			 */
1937			if (this_cpu != -1 &&
1938			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1939				rcu_read_unlock();
1940				return this_cpu;
1941			}
1942
1943			best_cpu = cpumask_any_and_distribute(lowest_mask,
1944							      sched_domain_span(sd));
1945			if (best_cpu < nr_cpu_ids) {
1946				rcu_read_unlock();
1947				return best_cpu;
1948			}
1949		}
1950	}
1951	rcu_read_unlock();
1952
1953	/*
1954	 * And finally, if there were no matches within the domains
1955	 * just give the caller *something* to work with from the compatible
1956	 * locations.
1957	 */
1958	if (this_cpu != -1)
1959		return this_cpu;
1960
1961	cpu = cpumask_any_distribute(lowest_mask);
1962	if (cpu < nr_cpu_ids)
1963		return cpu;
1964
1965	return -1;
1966}
1967
1968/* Will lock the rq it finds */
1969static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1970{
1971	struct rq *lowest_rq = NULL;
1972	int tries;
1973	int cpu;
1974
1975	for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1976		cpu = find_lowest_rq(task);
1977
1978		if ((cpu == -1) || (cpu == rq->cpu))
1979			break;
1980
1981		lowest_rq = cpu_rq(cpu);
1982
1983		if (lowest_rq->rt.highest_prio.curr <= task->prio) {
1984			/*
1985			 * Target rq has tasks of equal or higher priority,
1986			 * retrying does not release any lock and is unlikely
1987			 * to yield a different result.
1988			 */
1989			lowest_rq = NULL;
1990			break;
1991		}
1992
1993		/* if the prio of this runqueue changed, try again */
1994		if (double_lock_balance(rq, lowest_rq)) {
1995			/*
1996			 * We had to unlock the run queue. In
1997			 * the mean time, task could have
1998			 * migrated already or had its affinity changed.
1999			 * Also make sure that it wasn't scheduled on its rq.
2000			 */
2001			if (unlikely(task_rq(task) != rq ||
2002				     !cpumask_test_cpu(lowest_rq->cpu, &task->cpus_mask) ||
2003				     task_on_cpu(rq, task) ||
2004				     !rt_task(task) ||
2005				     !task_on_rq_queued(task))) {
2006
2007				double_unlock_balance(rq, lowest_rq);
2008				lowest_rq = NULL;
2009				break;
2010			}
2011		}
2012
2013		/* If this rq is still suitable use it. */
2014		if (lowest_rq->rt.highest_prio.curr > task->prio)
2015			break;
2016
2017		/* try again */
2018		double_unlock_balance(rq, lowest_rq);
2019		lowest_rq = NULL;
2020	}
2021
2022	return lowest_rq;
2023}
2024
2025static struct task_struct *pick_next_pushable_task(struct rq *rq)
2026{
2027	struct task_struct *p;
2028
2029	if (!has_pushable_tasks(rq))
2030		return NULL;
2031
2032	p = plist_first_entry(&rq->rt.pushable_tasks,
2033			      struct task_struct, pushable_tasks);
2034
2035	BUG_ON(rq->cpu != task_cpu(p));
2036	BUG_ON(task_current(rq, p));
2037	BUG_ON(p->nr_cpus_allowed <= 1);
2038
2039	BUG_ON(!task_on_rq_queued(p));
2040	BUG_ON(!rt_task(p));
2041
2042	return p;
2043}
2044
2045/*
2046 * If the current CPU has more than one RT task, see if the non
2047 * running task can migrate over to a CPU that is running a task
2048 * of lesser priority.
2049 */
2050static int push_rt_task(struct rq *rq, bool pull)
2051{
2052	struct task_struct *next_task;
2053	struct rq *lowest_rq;
2054	int ret = 0;
2055
2056	if (!rq->rt.overloaded)
2057		return 0;
2058
2059	next_task = pick_next_pushable_task(rq);
2060	if (!next_task)
2061		return 0;
2062
2063retry:
 
 
 
2064	/*
2065	 * It's possible that the next_task slipped in of
2066	 * higher priority than current. If that's the case
2067	 * just reschedule current.
2068	 */
2069	if (unlikely(next_task->prio < rq->curr->prio)) {
2070		resched_curr(rq);
2071		return 0;
2072	}
2073
2074	if (is_migration_disabled(next_task)) {
2075		struct task_struct *push_task = NULL;
2076		int cpu;
2077
2078		if (!pull || rq->push_busy)
2079			return 0;
2080
2081		/*
2082		 * Invoking find_lowest_rq() on anything but an RT task doesn't
2083		 * make sense. Per the above priority check, curr has to
2084		 * be of higher priority than next_task, so no need to
2085		 * reschedule when bailing out.
2086		 *
2087		 * Note that the stoppers are masqueraded as SCHED_FIFO
2088		 * (cf. sched_set_stop_task()), so we can't rely on rt_task().
2089		 */
2090		if (rq->curr->sched_class != &rt_sched_class)
2091			return 0;
2092
2093		cpu = find_lowest_rq(rq->curr);
2094		if (cpu == -1 || cpu == rq->cpu)
2095			return 0;
2096
2097		/*
2098		 * Given we found a CPU with lower priority than @next_task,
2099		 * therefore it should be running. However we cannot migrate it
2100		 * to this other CPU, instead attempt to push the current
2101		 * running task on this CPU away.
2102		 */
2103		push_task = get_push_task(rq);
2104		if (push_task) {
2105			raw_spin_rq_unlock(rq);
2106			stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2107					    push_task, &rq->push_work);
2108			raw_spin_rq_lock(rq);
2109		}
2110
2111		return 0;
2112	}
2113
2114	if (WARN_ON(next_task == rq->curr))
2115		return 0;
2116
2117	/* We might release rq lock */
2118	get_task_struct(next_task);
2119
2120	/* find_lock_lowest_rq locks the rq if found */
2121	lowest_rq = find_lock_lowest_rq(next_task, rq);
2122	if (!lowest_rq) {
2123		struct task_struct *task;
2124		/*
2125		 * find_lock_lowest_rq releases rq->lock
2126		 * so it is possible that next_task has migrated.
2127		 *
2128		 * We need to make sure that the task is still on the same
2129		 * run-queue and is also still the next task eligible for
2130		 * pushing.
2131		 */
2132		task = pick_next_pushable_task(rq);
2133		if (task == next_task) {
2134			/*
2135			 * The task hasn't migrated, and is still the next
2136			 * eligible task, but we failed to find a run-queue
2137			 * to push it to.  Do not retry in this case, since
2138			 * other CPUs will pull from us when ready.
2139			 */
2140			goto out;
2141		}
2142
2143		if (!task)
2144			/* No more tasks, just exit */
2145			goto out;
2146
2147		/*
2148		 * Something has shifted, try again.
2149		 */
2150		put_task_struct(next_task);
2151		next_task = task;
2152		goto retry;
2153	}
2154
2155	deactivate_task(rq, next_task, 0);
2156	set_task_cpu(next_task, lowest_rq->cpu);
2157	activate_task(lowest_rq, next_task, 0);
2158	resched_curr(lowest_rq);
2159	ret = 1;
2160
 
 
2161	double_unlock_balance(rq, lowest_rq);
 
2162out:
2163	put_task_struct(next_task);
2164
2165	return ret;
2166}
2167
2168static void push_rt_tasks(struct rq *rq)
2169{
2170	/* push_rt_task will return true if it moved an RT */
2171	while (push_rt_task(rq, false))
2172		;
2173}
2174
2175#ifdef HAVE_RT_PUSH_IPI
2176
2177/*
2178 * When a high priority task schedules out from a CPU and a lower priority
2179 * task is scheduled in, a check is made to see if there's any RT tasks
2180 * on other CPUs that are waiting to run because a higher priority RT task
2181 * is currently running on its CPU. In this case, the CPU with multiple RT
2182 * tasks queued on it (overloaded) needs to be notified that a CPU has opened
2183 * up that may be able to run one of its non-running queued RT tasks.
2184 *
2185 * All CPUs with overloaded RT tasks need to be notified as there is currently
2186 * no way to know which of these CPUs have the highest priority task waiting
2187 * to run. Instead of trying to take a spinlock on each of these CPUs,
2188 * which has shown to cause large latency when done on machines with many
2189 * CPUs, sending an IPI to the CPUs to have them push off the overloaded
2190 * RT tasks waiting to run.
2191 *
2192 * Just sending an IPI to each of the CPUs is also an issue, as on large
2193 * count CPU machines, this can cause an IPI storm on a CPU, especially
2194 * if its the only CPU with multiple RT tasks queued, and a large number
2195 * of CPUs scheduling a lower priority task at the same time.
2196 *
2197 * Each root domain has its own irq work function that can iterate over
2198 * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT
2199 * task must be checked if there's one or many CPUs that are lowering
2200 * their priority, there's a single irq work iterator that will try to
2201 * push off RT tasks that are waiting to run.
2202 *
2203 * When a CPU schedules a lower priority task, it will kick off the
2204 * irq work iterator that will jump to each CPU with overloaded RT tasks.
2205 * As it only takes the first CPU that schedules a lower priority task
2206 * to start the process, the rto_start variable is incremented and if
2207 * the atomic result is one, then that CPU will try to take the rto_lock.
2208 * This prevents high contention on the lock as the process handles all
2209 * CPUs scheduling lower priority tasks.
2210 *
2211 * All CPUs that are scheduling a lower priority task will increment the
2212 * rt_loop_next variable. This will make sure that the irq work iterator
2213 * checks all RT overloaded CPUs whenever a CPU schedules a new lower
2214 * priority task, even if the iterator is in the middle of a scan. Incrementing
2215 * the rt_loop_next will cause the iterator to perform another scan.
2216 *
2217 */
2218static int rto_next_cpu(struct root_domain *rd)
2219{
2220	int next;
2221	int cpu;
2222
2223	/*
2224	 * When starting the IPI RT pushing, the rto_cpu is set to -1,
2225	 * rt_next_cpu() will simply return the first CPU found in
2226	 * the rto_mask.
2227	 *
2228	 * If rto_next_cpu() is called with rto_cpu is a valid CPU, it
2229	 * will return the next CPU found in the rto_mask.
2230	 *
2231	 * If there are no more CPUs left in the rto_mask, then a check is made
2232	 * against rto_loop and rto_loop_next. rto_loop is only updated with
2233	 * the rto_lock held, but any CPU may increment the rto_loop_next
2234	 * without any locking.
2235	 */
2236	for (;;) {
2237
2238		/* When rto_cpu is -1 this acts like cpumask_first() */
2239		cpu = cpumask_next(rd->rto_cpu, rd->rto_mask);
2240
2241		rd->rto_cpu = cpu;
2242
2243		if (cpu < nr_cpu_ids)
2244			return cpu;
2245
2246		rd->rto_cpu = -1;
2247
2248		/*
2249		 * ACQUIRE ensures we see the @rto_mask changes
2250		 * made prior to the @next value observed.
2251		 *
2252		 * Matches WMB in rt_set_overload().
2253		 */
2254		next = atomic_read_acquire(&rd->rto_loop_next);
2255
2256		if (rd->rto_loop == next)
2257			break;
2258
2259		rd->rto_loop = next;
2260	}
2261
2262	return -1;
2263}
2264
2265static inline bool rto_start_trylock(atomic_t *v)
2266{
2267	return !atomic_cmpxchg_acquire(v, 0, 1);
2268}
2269
2270static inline void rto_start_unlock(atomic_t *v)
2271{
2272	atomic_set_release(v, 0);
2273}
2274
2275static void tell_cpu_to_push(struct rq *rq)
2276{
2277	int cpu = -1;
2278
2279	/* Keep the loop going if the IPI is currently active */
2280	atomic_inc(&rq->rd->rto_loop_next);
2281
2282	/* Only one CPU can initiate a loop at a time */
2283	if (!rto_start_trylock(&rq->rd->rto_loop_start))
2284		return;
2285
2286	raw_spin_lock(&rq->rd->rto_lock);
2287
2288	/*
2289	 * The rto_cpu is updated under the lock, if it has a valid CPU
2290	 * then the IPI is still running and will continue due to the
2291	 * update to loop_next, and nothing needs to be done here.
2292	 * Otherwise it is finishing up and an ipi needs to be sent.
2293	 */
2294	if (rq->rd->rto_cpu < 0)
2295		cpu = rto_next_cpu(rq->rd);
2296
2297	raw_spin_unlock(&rq->rd->rto_lock);
2298
2299	rto_start_unlock(&rq->rd->rto_loop_start);
2300
2301	if (cpu >= 0) {
2302		/* Make sure the rd does not get freed while pushing */
2303		sched_get_rd(rq->rd);
2304		irq_work_queue_on(&rq->rd->rto_push_work, cpu);
2305	}
2306}
2307
2308/* Called from hardirq context */
2309void rto_push_irq_work_func(struct irq_work *work)
2310{
2311	struct root_domain *rd =
2312		container_of(work, struct root_domain, rto_push_work);
2313	struct rq *rq;
2314	int cpu;
2315
2316	rq = this_rq();
2317
2318	/*
2319	 * We do not need to grab the lock to check for has_pushable_tasks.
2320	 * When it gets updated, a check is made if a push is possible.
2321	 */
2322	if (has_pushable_tasks(rq)) {
2323		raw_spin_rq_lock(rq);
2324		while (push_rt_task(rq, true))
2325			;
2326		raw_spin_rq_unlock(rq);
2327	}
2328
2329	raw_spin_lock(&rd->rto_lock);
2330
2331	/* Pass the IPI to the next rt overloaded queue */
2332	cpu = rto_next_cpu(rd);
2333
2334	raw_spin_unlock(&rd->rto_lock);
2335
2336	if (cpu < 0) {
2337		sched_put_rd(rd);
2338		return;
2339	}
2340
2341	/* Try the next RT overloaded CPU */
2342	irq_work_queue_on(&rd->rto_push_work, cpu);
2343}
2344#endif /* HAVE_RT_PUSH_IPI */
2345
2346static void pull_rt_task(struct rq *this_rq)
2347{
2348	int this_cpu = this_rq->cpu, cpu;
2349	bool resched = false;
2350	struct task_struct *p, *push_task;
2351	struct rq *src_rq;
2352	int rt_overload_count = rt_overloaded(this_rq);
2353
2354	if (likely(!rt_overload_count))
2355		return;
2356
2357	/*
2358	 * Match the barrier from rt_set_overloaded; this guarantees that if we
2359	 * see overloaded we must also see the rto_mask bit.
2360	 */
2361	smp_rmb();
2362
2363	/* If we are the only overloaded CPU do nothing */
2364	if (rt_overload_count == 1 &&
2365	    cpumask_test_cpu(this_rq->cpu, this_rq->rd->rto_mask))
2366		return;
2367
2368#ifdef HAVE_RT_PUSH_IPI
2369	if (sched_feat(RT_PUSH_IPI)) {
2370		tell_cpu_to_push(this_rq);
2371		return;
2372	}
2373#endif
2374
2375	for_each_cpu(cpu, this_rq->rd->rto_mask) {
2376		if (this_cpu == cpu)
2377			continue;
2378
2379		src_rq = cpu_rq(cpu);
2380
2381		/*
2382		 * Don't bother taking the src_rq->lock if the next highest
2383		 * task is known to be lower-priority than our current task.
2384		 * This may look racy, but if this value is about to go
2385		 * logically higher, the src_rq will push this task away.
2386		 * And if its going logically lower, we do not care
2387		 */
2388		if (src_rq->rt.highest_prio.next >=
2389		    this_rq->rt.highest_prio.curr)
2390			continue;
2391
2392		/*
2393		 * We can potentially drop this_rq's lock in
2394		 * double_lock_balance, and another CPU could
2395		 * alter this_rq
2396		 */
2397		push_task = NULL;
2398		double_lock_balance(this_rq, src_rq);
2399
2400		/*
2401		 * We can pull only a task, which is pushable
2402		 * on its rq, and no others.
2403		 */
2404		p = pick_highest_pushable_task(src_rq, this_cpu);
2405
2406		/*
2407		 * Do we have an RT task that preempts
2408		 * the to-be-scheduled task?
2409		 */
2410		if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
2411			WARN_ON(p == src_rq->curr);
2412			WARN_ON(!task_on_rq_queued(p));
2413
2414			/*
2415			 * There's a chance that p is higher in priority
2416			 * than what's currently running on its CPU.
2417			 * This is just that p is waking up and hasn't
2418			 * had a chance to schedule. We only pull
2419			 * p if it is lower in priority than the
2420			 * current task on the run queue
2421			 */
2422			if (p->prio < src_rq->curr->prio)
2423				goto skip;
2424
2425			if (is_migration_disabled(p)) {
2426				push_task = get_push_task(src_rq);
2427			} else {
2428				deactivate_task(src_rq, p, 0);
2429				set_task_cpu(p, this_cpu);
2430				activate_task(this_rq, p, 0);
2431				resched = true;
2432			}
2433			/*
2434			 * We continue with the search, just in
2435			 * case there's an even higher prio task
2436			 * in another runqueue. (low likelihood
2437			 * but possible)
2438			 */
2439		}
2440skip:
2441		double_unlock_balance(this_rq, src_rq);
2442
2443		if (push_task) {
2444			raw_spin_rq_unlock(this_rq);
2445			stop_one_cpu_nowait(src_rq->cpu, push_cpu_stop,
2446					    push_task, &src_rq->push_work);
2447			raw_spin_rq_lock(this_rq);
2448		}
2449	}
2450
2451	if (resched)
2452		resched_curr(this_rq);
2453}
2454
2455/*
2456 * If we are not running and we are not going to reschedule soon, we should
2457 * try to push tasks away now
2458 */
2459static void task_woken_rt(struct rq *rq, struct task_struct *p)
2460{
2461	bool need_to_push = !task_on_cpu(rq, p) &&
2462			    !test_tsk_need_resched(rq->curr) &&
2463			    p->nr_cpus_allowed > 1 &&
2464			    (dl_task(rq->curr) || rt_task(rq->curr)) &&
2465			    (rq->curr->nr_cpus_allowed < 2 ||
2466			     rq->curr->prio <= p->prio);
2467
2468	if (need_to_push)
2469		push_rt_tasks(rq);
2470}
2471
2472/* Assumes rq->lock is held */
2473static void rq_online_rt(struct rq *rq)
2474{
2475	if (rq->rt.overloaded)
2476		rt_set_overload(rq);
2477
2478	__enable_runtime(rq);
2479
2480	cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
2481}
2482
2483/* Assumes rq->lock is held */
2484static void rq_offline_rt(struct rq *rq)
2485{
2486	if (rq->rt.overloaded)
2487		rt_clear_overload(rq);
2488
2489	__disable_runtime(rq);
2490
2491	cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
2492}
2493
2494/*
2495 * When switch from the rt queue, we bring ourselves to a position
2496 * that we might want to pull RT tasks from other runqueues.
2497 */
2498static void switched_from_rt(struct rq *rq, struct task_struct *p)
2499{
2500	/*
2501	 * If there are other RT tasks then we will reschedule
2502	 * and the scheduling of the other RT tasks will handle
2503	 * the balancing. But if we are the last RT task
2504	 * we may need to handle the pulling of RT tasks
2505	 * now.
2506	 */
2507	if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
2508		return;
2509
2510	rt_queue_pull_task(rq);
2511}
2512
2513void __init init_sched_rt_class(void)
2514{
2515	unsigned int i;
2516
2517	for_each_possible_cpu(i) {
2518		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
2519					GFP_KERNEL, cpu_to_node(i));
2520	}
2521}
2522#endif /* CONFIG_SMP */
2523
2524/*
2525 * When switching a task to RT, we may overload the runqueue
2526 * with RT tasks. In this case we try to push them off to
2527 * other runqueues.
2528 */
2529static void switched_to_rt(struct rq *rq, struct task_struct *p)
2530{
2531	/*
2532	 * If we are running, update the avg_rt tracking, as the running time
2533	 * will now on be accounted into the latter.
2534	 */
2535	if (task_current(rq, p)) {
2536		update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
2537		return;
2538	}
2539
2540	/*
2541	 * If we are not running we may need to preempt the current
2542	 * running task. If that current running task is also an RT task
2543	 * then see if we can move to another run queue.
2544	 */
2545	if (task_on_rq_queued(p)) {
2546#ifdef CONFIG_SMP
2547		if (p->nr_cpus_allowed > 1 && rq->rt.overloaded)
2548			rt_queue_push_tasks(rq);
2549#endif /* CONFIG_SMP */
2550		if (p->prio < rq->curr->prio && cpu_online(cpu_of(rq)))
2551			resched_curr(rq);
2552	}
2553}
2554
2555/*
2556 * Priority of the task has changed. This may cause
2557 * us to initiate a push or pull.
2558 */
2559static void
2560prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
2561{
2562	if (!task_on_rq_queued(p))
2563		return;
2564
2565	if (task_current(rq, p)) {
2566#ifdef CONFIG_SMP
2567		/*
2568		 * If our priority decreases while running, we
2569		 * may need to pull tasks to this runqueue.
2570		 */
2571		if (oldprio < p->prio)
2572			rt_queue_pull_task(rq);
2573
2574		/*
2575		 * If there's a higher priority task waiting to run
2576		 * then reschedule.
2577		 */
2578		if (p->prio > rq->rt.highest_prio.curr)
2579			resched_curr(rq);
2580#else
2581		/* For UP simply resched on drop of prio */
2582		if (oldprio < p->prio)
2583			resched_curr(rq);
2584#endif /* CONFIG_SMP */
2585	} else {
2586		/*
2587		 * This task is not running, but if it is
2588		 * greater than the current running task
2589		 * then reschedule.
2590		 */
2591		if (p->prio < rq->curr->prio)
2592			resched_curr(rq);
2593	}
2594}
2595
2596#ifdef CONFIG_POSIX_TIMERS
2597static void watchdog(struct rq *rq, struct task_struct *p)
2598{
2599	unsigned long soft, hard;
2600
2601	/* max may change after cur was read, this will be fixed next tick */
2602	soft = task_rlimit(p, RLIMIT_RTTIME);
2603	hard = task_rlimit_max(p, RLIMIT_RTTIME);
2604
2605	if (soft != RLIM_INFINITY) {
2606		unsigned long next;
2607
2608		if (p->rt.watchdog_stamp != jiffies) {
2609			p->rt.timeout++;
2610			p->rt.watchdog_stamp = jiffies;
2611		}
2612
2613		next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2614		if (p->rt.timeout > next) {
2615			posix_cputimers_rt_watchdog(&p->posix_cputimers,
2616						    p->se.sum_exec_runtime);
2617		}
2618	}
2619}
2620#else
2621static inline void watchdog(struct rq *rq, struct task_struct *p) { }
2622#endif
2623
2624/*
2625 * scheduler tick hitting a task of our scheduling class.
2626 *
2627 * NOTE: This function can be called remotely by the tick offload that
2628 * goes along full dynticks. Therefore no local assumption can be made
2629 * and everything must be accessed through the @rq and @curr passed in
2630 * parameters.
2631 */
2632static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2633{
2634	struct sched_rt_entity *rt_se = &p->rt;
2635
2636	update_curr_rt(rq);
2637	update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2638
2639	watchdog(rq, p);
2640
2641	/*
2642	 * RR tasks need a special form of timeslice management.
2643	 * FIFO tasks have no timeslices.
2644	 */
2645	if (p->policy != SCHED_RR)
2646		return;
2647
2648	if (--p->rt.time_slice)
2649		return;
2650
2651	p->rt.time_slice = sched_rr_timeslice;
2652
2653	/*
2654	 * Requeue to the end of queue if we (and all of our ancestors) are not
2655	 * the only element on the queue
2656	 */
2657	for_each_sched_rt_entity(rt_se) {
2658		if (rt_se->run_list.prev != rt_se->run_list.next) {
2659			requeue_task_rt(rq, p, 0);
2660			resched_curr(rq);
2661			return;
2662		}
2663	}
2664}
2665
2666static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2667{
2668	/*
2669	 * Time slice is 0 for SCHED_FIFO tasks
2670	 */
2671	if (task->policy == SCHED_RR)
2672		return sched_rr_timeslice;
2673	else
2674		return 0;
2675}
2676
2677DEFINE_SCHED_CLASS(rt) = {
2678
2679	.enqueue_task		= enqueue_task_rt,
2680	.dequeue_task		= dequeue_task_rt,
2681	.yield_task		= yield_task_rt,
2682
2683	.check_preempt_curr	= check_preempt_curr_rt,
2684
2685	.pick_next_task		= pick_next_task_rt,
2686	.put_prev_task		= put_prev_task_rt,
2687	.set_next_task          = set_next_task_rt,
2688
2689#ifdef CONFIG_SMP
2690	.balance		= balance_rt,
2691	.pick_task		= pick_task_rt,
2692	.select_task_rq		= select_task_rq_rt,
2693	.set_cpus_allowed       = set_cpus_allowed_common,
2694	.rq_online              = rq_online_rt,
2695	.rq_offline             = rq_offline_rt,
2696	.task_woken		= task_woken_rt,
2697	.switched_from		= switched_from_rt,
2698	.find_lock_rq		= find_lock_lowest_rq,
2699#endif
2700
2701	.task_tick		= task_tick_rt,
2702
2703	.get_rr_interval	= get_rr_interval_rt,
2704
2705	.prio_changed		= prio_changed_rt,
2706	.switched_to		= switched_to_rt,
2707
2708	.update_curr		= update_curr_rt,
2709
2710#ifdef CONFIG_UCLAMP_TASK
2711	.uclamp_enabled		= 1,
2712#endif
2713};
2714
2715#ifdef CONFIG_RT_GROUP_SCHED
2716/*
2717 * Ensure that the real time constraints are schedulable.
2718 */
2719static DEFINE_MUTEX(rt_constraints_mutex);
2720
2721static inline int tg_has_rt_tasks(struct task_group *tg)
2722{
2723	struct task_struct *task;
2724	struct css_task_iter it;
2725	int ret = 0;
2726
2727	/*
2728	 * Autogroups do not have RT tasks; see autogroup_create().
2729	 */
2730	if (task_group_is_autogroup(tg))
2731		return 0;
2732
2733	css_task_iter_start(&tg->css, 0, &it);
2734	while (!ret && (task = css_task_iter_next(&it)))
2735		ret |= rt_task(task);
2736	css_task_iter_end(&it);
2737
2738	return ret;
2739}
2740
2741struct rt_schedulable_data {
2742	struct task_group *tg;
2743	u64 rt_period;
2744	u64 rt_runtime;
2745};
2746
2747static int tg_rt_schedulable(struct task_group *tg, void *data)
2748{
2749	struct rt_schedulable_data *d = data;
2750	struct task_group *child;
2751	unsigned long total, sum = 0;
2752	u64 period, runtime;
2753
2754	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2755	runtime = tg->rt_bandwidth.rt_runtime;
2756
2757	if (tg == d->tg) {
2758		period = d->rt_period;
2759		runtime = d->rt_runtime;
2760	}
2761
2762	/*
2763	 * Cannot have more runtime than the period.
2764	 */
2765	if (runtime > period && runtime != RUNTIME_INF)
2766		return -EINVAL;
2767
2768	/*
2769	 * Ensure we don't starve existing RT tasks if runtime turns zero.
2770	 */
2771	if (rt_bandwidth_enabled() && !runtime &&
2772	    tg->rt_bandwidth.rt_runtime && tg_has_rt_tasks(tg))
2773		return -EBUSY;
2774
2775	total = to_ratio(period, runtime);
2776
2777	/*
2778	 * Nobody can have more than the global setting allows.
2779	 */
2780	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
2781		return -EINVAL;
2782
2783	/*
2784	 * The sum of our children's runtime should not exceed our own.
2785	 */
2786	list_for_each_entry_rcu(child, &tg->children, siblings) {
2787		period = ktime_to_ns(child->rt_bandwidth.rt_period);
2788		runtime = child->rt_bandwidth.rt_runtime;
2789
2790		if (child == d->tg) {
2791			period = d->rt_period;
2792			runtime = d->rt_runtime;
2793		}
2794
2795		sum += to_ratio(period, runtime);
2796	}
2797
2798	if (sum > total)
2799		return -EINVAL;
2800
2801	return 0;
2802}
2803
2804static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
2805{
2806	int ret;
2807
2808	struct rt_schedulable_data data = {
2809		.tg = tg,
2810		.rt_period = period,
2811		.rt_runtime = runtime,
2812	};
2813
2814	rcu_read_lock();
2815	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
2816	rcu_read_unlock();
2817
2818	return ret;
2819}
2820
2821static int tg_set_rt_bandwidth(struct task_group *tg,
2822		u64 rt_period, u64 rt_runtime)
2823{
2824	int i, err = 0;
2825
2826	/*
2827	 * Disallowing the root group RT runtime is BAD, it would disallow the
2828	 * kernel creating (and or operating) RT threads.
2829	 */
2830	if (tg == &root_task_group && rt_runtime == 0)
2831		return -EINVAL;
2832
2833	/* No period doesn't make any sense. */
2834	if (rt_period == 0)
2835		return -EINVAL;
2836
2837	/*
2838	 * Bound quota to defend quota against overflow during bandwidth shift.
2839	 */
2840	if (rt_runtime != RUNTIME_INF && rt_runtime > max_rt_runtime)
2841		return -EINVAL;
2842
2843	mutex_lock(&rt_constraints_mutex);
2844	err = __rt_schedulable(tg, rt_period, rt_runtime);
2845	if (err)
2846		goto unlock;
2847
2848	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2849	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
2850	tg->rt_bandwidth.rt_runtime = rt_runtime;
2851
2852	for_each_possible_cpu(i) {
2853		struct rt_rq *rt_rq = tg->rt_rq[i];
2854
2855		raw_spin_lock(&rt_rq->rt_runtime_lock);
2856		rt_rq->rt_runtime = rt_runtime;
2857		raw_spin_unlock(&rt_rq->rt_runtime_lock);
2858	}
2859	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2860unlock:
2861	mutex_unlock(&rt_constraints_mutex);
2862
2863	return err;
2864}
2865
2866int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
2867{
2868	u64 rt_runtime, rt_period;
2869
2870	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2871	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
2872	if (rt_runtime_us < 0)
2873		rt_runtime = RUNTIME_INF;
2874	else if ((u64)rt_runtime_us > U64_MAX / NSEC_PER_USEC)
2875		return -EINVAL;
2876
2877	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2878}
2879
2880long sched_group_rt_runtime(struct task_group *tg)
2881{
2882	u64 rt_runtime_us;
2883
2884	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
2885		return -1;
2886
2887	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
2888	do_div(rt_runtime_us, NSEC_PER_USEC);
2889	return rt_runtime_us;
2890}
2891
2892int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
2893{
2894	u64 rt_runtime, rt_period;
2895
2896	if (rt_period_us > U64_MAX / NSEC_PER_USEC)
2897		return -EINVAL;
2898
2899	rt_period = rt_period_us * NSEC_PER_USEC;
2900	rt_runtime = tg->rt_bandwidth.rt_runtime;
2901
2902	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2903}
2904
2905long sched_group_rt_period(struct task_group *tg)
2906{
2907	u64 rt_period_us;
2908
2909	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
2910	do_div(rt_period_us, NSEC_PER_USEC);
2911	return rt_period_us;
2912}
2913
2914#ifdef CONFIG_SYSCTL
2915static int sched_rt_global_constraints(void)
2916{
2917	int ret = 0;
2918
2919	mutex_lock(&rt_constraints_mutex);
2920	ret = __rt_schedulable(NULL, 0, 0);
2921	mutex_unlock(&rt_constraints_mutex);
2922
2923	return ret;
2924}
2925#endif /* CONFIG_SYSCTL */
2926
2927int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
2928{
2929	/* Don't accept realtime tasks when there is no way for them to run */
2930	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
2931		return 0;
2932
2933	return 1;
2934}
2935
2936#else /* !CONFIG_RT_GROUP_SCHED */
2937
2938#ifdef CONFIG_SYSCTL
2939static int sched_rt_global_constraints(void)
2940{
2941	unsigned long flags;
2942	int i;
2943
2944	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
2945	for_each_possible_cpu(i) {
2946		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
2947
2948		raw_spin_lock(&rt_rq->rt_runtime_lock);
2949		rt_rq->rt_runtime = global_rt_runtime();
2950		raw_spin_unlock(&rt_rq->rt_runtime_lock);
2951	}
2952	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
2953
2954	return 0;
2955}
2956#endif /* CONFIG_SYSCTL */
2957#endif /* CONFIG_RT_GROUP_SCHED */
2958
2959#ifdef CONFIG_SYSCTL
2960static int sched_rt_global_validate(void)
2961{
2962	if (sysctl_sched_rt_period <= 0)
2963		return -EINVAL;
2964
2965	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
2966		((sysctl_sched_rt_runtime > sysctl_sched_rt_period) ||
2967		 ((u64)sysctl_sched_rt_runtime *
2968			NSEC_PER_USEC > max_rt_runtime)))
2969		return -EINVAL;
2970
2971	return 0;
2972}
2973
2974static void sched_rt_do_global(void)
2975{
2976	unsigned long flags;
2977
2978	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
2979	def_rt_bandwidth.rt_runtime = global_rt_runtime();
2980	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
2981	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
2982}
2983
2984static int sched_rt_handler(struct ctl_table *table, int write, void *buffer,
2985		size_t *lenp, loff_t *ppos)
2986{
2987	int old_period, old_runtime;
2988	static DEFINE_MUTEX(mutex);
2989	int ret;
2990
2991	mutex_lock(&mutex);
2992	old_period = sysctl_sched_rt_period;
2993	old_runtime = sysctl_sched_rt_runtime;
2994
2995	ret = proc_dointvec(table, write, buffer, lenp, ppos);
2996
2997	if (!ret && write) {
2998		ret = sched_rt_global_validate();
2999		if (ret)
3000			goto undo;
3001
3002		ret = sched_dl_global_validate();
3003		if (ret)
3004			goto undo;
3005
3006		ret = sched_rt_global_constraints();
3007		if (ret)
3008			goto undo;
3009
3010		sched_rt_do_global();
3011		sched_dl_do_global();
3012	}
3013	if (0) {
3014undo:
3015		sysctl_sched_rt_period = old_period;
3016		sysctl_sched_rt_runtime = old_runtime;
3017	}
3018	mutex_unlock(&mutex);
3019
3020	return ret;
3021}
3022
3023static int sched_rr_handler(struct ctl_table *table, int write, void *buffer,
3024		size_t *lenp, loff_t *ppos)
3025{
3026	int ret;
3027	static DEFINE_MUTEX(mutex);
3028
3029	mutex_lock(&mutex);
3030	ret = proc_dointvec(table, write, buffer, lenp, ppos);
3031	/*
3032	 * Make sure that internally we keep jiffies.
3033	 * Also, writing zero resets the timeslice to default:
3034	 */
3035	if (!ret && write) {
3036		sched_rr_timeslice =
3037			sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE :
3038			msecs_to_jiffies(sysctl_sched_rr_timeslice);
3039	}
3040	mutex_unlock(&mutex);
3041
3042	return ret;
3043}
3044#endif /* CONFIG_SYSCTL */
3045
3046#ifdef CONFIG_SCHED_DEBUG
3047void print_rt_stats(struct seq_file *m, int cpu)
3048{
3049	rt_rq_iter_t iter;
3050	struct rt_rq *rt_rq;
3051
3052	rcu_read_lock();
3053	for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
3054		print_rt_rq(m, cpu, rt_rq);
3055	rcu_read_unlock();
3056}
3057#endif /* CONFIG_SCHED_DEBUG */
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
   4 * policies)
   5 */
   6#include "sched.h"
   7
   8#include "pelt.h"
   9
  10int sched_rr_timeslice = RR_TIMESLICE;
  11int sysctl_sched_rr_timeslice = (MSEC_PER_SEC / HZ) * RR_TIMESLICE;
  12/* More than 4 hours if BW_SHIFT equals 20. */
  13static const u64 max_rt_runtime = MAX_BW;
  14
  15static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  16
  17struct rt_bandwidth def_rt_bandwidth;
  18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  19static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  20{
  21	struct rt_bandwidth *rt_b =
  22		container_of(timer, struct rt_bandwidth, rt_period_timer);
  23	int idle = 0;
  24	int overrun;
  25
  26	raw_spin_lock(&rt_b->rt_runtime_lock);
  27	for (;;) {
  28		overrun = hrtimer_forward_now(timer, rt_b->rt_period);
  29		if (!overrun)
  30			break;
  31
  32		raw_spin_unlock(&rt_b->rt_runtime_lock);
  33		idle = do_sched_rt_period_timer(rt_b, overrun);
  34		raw_spin_lock(&rt_b->rt_runtime_lock);
  35	}
  36	if (idle)
  37		rt_b->rt_period_active = 0;
  38	raw_spin_unlock(&rt_b->rt_runtime_lock);
  39
  40	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  41}
  42
  43void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  44{
  45	rt_b->rt_period = ns_to_ktime(period);
  46	rt_b->rt_runtime = runtime;
  47
  48	raw_spin_lock_init(&rt_b->rt_runtime_lock);
  49
  50	hrtimer_init(&rt_b->rt_period_timer, CLOCK_MONOTONIC,
  51		     HRTIMER_MODE_REL_HARD);
  52	rt_b->rt_period_timer.function = sched_rt_period_timer;
  53}
  54
  55static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  56{
  57	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
  58		return;
  59
  60	raw_spin_lock(&rt_b->rt_runtime_lock);
  61	if (!rt_b->rt_period_active) {
  62		rt_b->rt_period_active = 1;
  63		/*
  64		 * SCHED_DEADLINE updates the bandwidth, as a run away
  65		 * RT task with a DL task could hog a CPU. But DL does
  66		 * not reset the period. If a deadline task was running
  67		 * without an RT task running, it can cause RT tasks to
  68		 * throttle when they start up. Kick the timer right away
  69		 * to update the period.
  70		 */
  71		hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0));
  72		hrtimer_start_expires(&rt_b->rt_period_timer,
  73				      HRTIMER_MODE_ABS_PINNED_HARD);
  74	}
  75	raw_spin_unlock(&rt_b->rt_runtime_lock);
  76}
  77
 
 
 
 
 
 
 
 
  78void init_rt_rq(struct rt_rq *rt_rq)
  79{
  80	struct rt_prio_array *array;
  81	int i;
  82
  83	array = &rt_rq->active;
  84	for (i = 0; i < MAX_RT_PRIO; i++) {
  85		INIT_LIST_HEAD(array->queue + i);
  86		__clear_bit(i, array->bitmap);
  87	}
  88	/* delimiter for bitsearch: */
  89	__set_bit(MAX_RT_PRIO, array->bitmap);
  90
  91#if defined CONFIG_SMP
  92	rt_rq->highest_prio.curr = MAX_RT_PRIO;
  93	rt_rq->highest_prio.next = MAX_RT_PRIO;
  94	rt_rq->rt_nr_migratory = 0;
  95	rt_rq->overloaded = 0;
  96	plist_head_init(&rt_rq->pushable_tasks);
  97#endif /* CONFIG_SMP */
  98	/* We start is dequeued state, because no RT tasks are queued */
  99	rt_rq->rt_queued = 0;
 100
 101	rt_rq->rt_time = 0;
 102	rt_rq->rt_throttled = 0;
 103	rt_rq->rt_runtime = 0;
 104	raw_spin_lock_init(&rt_rq->rt_runtime_lock);
 105}
 106
 107#ifdef CONFIG_RT_GROUP_SCHED
 108static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
 109{
 110	hrtimer_cancel(&rt_b->rt_period_timer);
 111}
 112
 113#define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
 114
 115static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
 116{
 117#ifdef CONFIG_SCHED_DEBUG
 118	WARN_ON_ONCE(!rt_entity_is_task(rt_se));
 119#endif
 120	return container_of(rt_se, struct task_struct, rt);
 121}
 122
 123static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
 124{
 125	return rt_rq->rq;
 126}
 127
 128static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
 129{
 130	return rt_se->rt_rq;
 131}
 132
 133static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
 134{
 135	struct rt_rq *rt_rq = rt_se->rt_rq;
 136
 137	return rt_rq->rq;
 138}
 139
 
 
 
 
 
 
 
 140void free_rt_sched_group(struct task_group *tg)
 141{
 142	int i;
 143
 144	if (tg->rt_se)
 145		destroy_rt_bandwidth(&tg->rt_bandwidth);
 146
 147	for_each_possible_cpu(i) {
 148		if (tg->rt_rq)
 149			kfree(tg->rt_rq[i]);
 150		if (tg->rt_se)
 151			kfree(tg->rt_se[i]);
 152	}
 153
 154	kfree(tg->rt_rq);
 155	kfree(tg->rt_se);
 156}
 157
 158void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
 159		struct sched_rt_entity *rt_se, int cpu,
 160		struct sched_rt_entity *parent)
 161{
 162	struct rq *rq = cpu_rq(cpu);
 163
 164	rt_rq->highest_prio.curr = MAX_RT_PRIO;
 165	rt_rq->rt_nr_boosted = 0;
 166	rt_rq->rq = rq;
 167	rt_rq->tg = tg;
 168
 169	tg->rt_rq[cpu] = rt_rq;
 170	tg->rt_se[cpu] = rt_se;
 171
 172	if (!rt_se)
 173		return;
 174
 175	if (!parent)
 176		rt_se->rt_rq = &rq->rt;
 177	else
 178		rt_se->rt_rq = parent->my_q;
 179
 180	rt_se->my_q = rt_rq;
 181	rt_se->parent = parent;
 182	INIT_LIST_HEAD(&rt_se->run_list);
 183}
 184
 185int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
 186{
 187	struct rt_rq *rt_rq;
 188	struct sched_rt_entity *rt_se;
 189	int i;
 190
 191	tg->rt_rq = kcalloc(nr_cpu_ids, sizeof(rt_rq), GFP_KERNEL);
 192	if (!tg->rt_rq)
 193		goto err;
 194	tg->rt_se = kcalloc(nr_cpu_ids, sizeof(rt_se), GFP_KERNEL);
 195	if (!tg->rt_se)
 196		goto err;
 197
 198	init_rt_bandwidth(&tg->rt_bandwidth,
 199			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
 200
 201	for_each_possible_cpu(i) {
 202		rt_rq = kzalloc_node(sizeof(struct rt_rq),
 203				     GFP_KERNEL, cpu_to_node(i));
 204		if (!rt_rq)
 205			goto err;
 206
 207		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
 208				     GFP_KERNEL, cpu_to_node(i));
 209		if (!rt_se)
 210			goto err_free_rq;
 211
 212		init_rt_rq(rt_rq);
 213		rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
 214		init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
 215	}
 216
 217	return 1;
 218
 219err_free_rq:
 220	kfree(rt_rq);
 221err:
 222	return 0;
 223}
 224
 225#else /* CONFIG_RT_GROUP_SCHED */
 226
 227#define rt_entity_is_task(rt_se) (1)
 228
 229static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
 230{
 231	return container_of(rt_se, struct task_struct, rt);
 232}
 233
 234static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
 235{
 236	return container_of(rt_rq, struct rq, rt);
 237}
 238
 239static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
 240{
 241	struct task_struct *p = rt_task_of(rt_se);
 242
 243	return task_rq(p);
 244}
 245
 246static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
 247{
 248	struct rq *rq = rq_of_rt_se(rt_se);
 249
 250	return &rq->rt;
 251}
 252
 
 
 253void free_rt_sched_group(struct task_group *tg) { }
 254
 255int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
 256{
 257	return 1;
 258}
 259#endif /* CONFIG_RT_GROUP_SCHED */
 260
 261#ifdef CONFIG_SMP
 262
 263static void pull_rt_task(struct rq *this_rq);
 264
 265static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
 266{
 267	/* Try to pull RT tasks here if we lower this rq's prio */
 268	return rq->rt.highest_prio.curr > prev->prio;
 269}
 270
 271static inline int rt_overloaded(struct rq *rq)
 272{
 273	return atomic_read(&rq->rd->rto_count);
 274}
 275
 276static inline void rt_set_overload(struct rq *rq)
 277{
 278	if (!rq->online)
 279		return;
 280
 281	cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
 282	/*
 283	 * Make sure the mask is visible before we set
 284	 * the overload count. That is checked to determine
 285	 * if we should look at the mask. It would be a shame
 286	 * if we looked at the mask, but the mask was not
 287	 * updated yet.
 288	 *
 289	 * Matched by the barrier in pull_rt_task().
 290	 */
 291	smp_wmb();
 292	atomic_inc(&rq->rd->rto_count);
 293}
 294
 295static inline void rt_clear_overload(struct rq *rq)
 296{
 297	if (!rq->online)
 298		return;
 299
 300	/* the order here really doesn't matter */
 301	atomic_dec(&rq->rd->rto_count);
 302	cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
 303}
 304
 305static void update_rt_migration(struct rt_rq *rt_rq)
 306{
 307	if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
 308		if (!rt_rq->overloaded) {
 309			rt_set_overload(rq_of_rt_rq(rt_rq));
 310			rt_rq->overloaded = 1;
 311		}
 312	} else if (rt_rq->overloaded) {
 313		rt_clear_overload(rq_of_rt_rq(rt_rq));
 314		rt_rq->overloaded = 0;
 315	}
 316}
 317
 318static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
 319{
 320	struct task_struct *p;
 321
 322	if (!rt_entity_is_task(rt_se))
 323		return;
 324
 325	p = rt_task_of(rt_se);
 326	rt_rq = &rq_of_rt_rq(rt_rq)->rt;
 327
 328	rt_rq->rt_nr_total++;
 329	if (p->nr_cpus_allowed > 1)
 330		rt_rq->rt_nr_migratory++;
 331
 332	update_rt_migration(rt_rq);
 333}
 334
 335static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
 336{
 337	struct task_struct *p;
 338
 339	if (!rt_entity_is_task(rt_se))
 340		return;
 341
 342	p = rt_task_of(rt_se);
 343	rt_rq = &rq_of_rt_rq(rt_rq)->rt;
 344
 345	rt_rq->rt_nr_total--;
 346	if (p->nr_cpus_allowed > 1)
 347		rt_rq->rt_nr_migratory--;
 348
 349	update_rt_migration(rt_rq);
 350}
 351
 352static inline int has_pushable_tasks(struct rq *rq)
 353{
 354	return !plist_head_empty(&rq->rt.pushable_tasks);
 355}
 356
 357static DEFINE_PER_CPU(struct callback_head, rt_push_head);
 358static DEFINE_PER_CPU(struct callback_head, rt_pull_head);
 359
 360static void push_rt_tasks(struct rq *);
 361static void pull_rt_task(struct rq *);
 362
 363static inline void rt_queue_push_tasks(struct rq *rq)
 364{
 365	if (!has_pushable_tasks(rq))
 366		return;
 367
 368	queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
 369}
 370
 371static inline void rt_queue_pull_task(struct rq *rq)
 372{
 373	queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
 374}
 375
 376static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
 377{
 378	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
 379	plist_node_init(&p->pushable_tasks, p->prio);
 380	plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
 381
 382	/* Update the highest prio pushable task */
 383	if (p->prio < rq->rt.highest_prio.next)
 384		rq->rt.highest_prio.next = p->prio;
 385}
 386
 387static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
 388{
 389	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
 390
 391	/* Update the new highest prio pushable task */
 392	if (has_pushable_tasks(rq)) {
 393		p = plist_first_entry(&rq->rt.pushable_tasks,
 394				      struct task_struct, pushable_tasks);
 395		rq->rt.highest_prio.next = p->prio;
 396	} else
 397		rq->rt.highest_prio.next = MAX_RT_PRIO;
 
 398}
 399
 400#else
 401
 402static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
 403{
 404}
 405
 406static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
 407{
 408}
 409
 410static inline
 411void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
 412{
 413}
 414
 415static inline
 416void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
 417{
 418}
 419
 420static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
 421{
 422	return false;
 423}
 424
 425static inline void pull_rt_task(struct rq *this_rq)
 426{
 427}
 428
 429static inline void rt_queue_push_tasks(struct rq *rq)
 430{
 431}
 432#endif /* CONFIG_SMP */
 433
 434static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
 435static void dequeue_top_rt_rq(struct rt_rq *rt_rq);
 436
 437static inline int on_rt_rq(struct sched_rt_entity *rt_se)
 438{
 439	return rt_se->on_rq;
 440}
 441
 442#ifdef CONFIG_UCLAMP_TASK
 443/*
 444 * Verify the fitness of task @p to run on @cpu taking into account the uclamp
 445 * settings.
 446 *
 447 * This check is only important for heterogeneous systems where uclamp_min value
 448 * is higher than the capacity of a @cpu. For non-heterogeneous system this
 449 * function will always return true.
 450 *
 451 * The function will return true if the capacity of the @cpu is >= the
 452 * uclamp_min and false otherwise.
 453 *
 454 * Note that uclamp_min will be clamped to uclamp_max if uclamp_min
 455 * > uclamp_max.
 456 */
 457static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
 458{
 459	unsigned int min_cap;
 460	unsigned int max_cap;
 461	unsigned int cpu_cap;
 462
 463	/* Only heterogeneous systems can benefit from this check */
 464	if (!static_branch_unlikely(&sched_asym_cpucapacity))
 465		return true;
 466
 467	min_cap = uclamp_eff_value(p, UCLAMP_MIN);
 468	max_cap = uclamp_eff_value(p, UCLAMP_MAX);
 469
 470	cpu_cap = capacity_orig_of(cpu);
 471
 472	return cpu_cap >= min(min_cap, max_cap);
 473}
 474#else
 475static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
 476{
 477	return true;
 478}
 479#endif
 480
 481#ifdef CONFIG_RT_GROUP_SCHED
 482
 483static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
 484{
 485	if (!rt_rq->tg)
 486		return RUNTIME_INF;
 487
 488	return rt_rq->rt_runtime;
 489}
 490
 491static inline u64 sched_rt_period(struct rt_rq *rt_rq)
 492{
 493	return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
 494}
 495
 496typedef struct task_group *rt_rq_iter_t;
 497
 498static inline struct task_group *next_task_group(struct task_group *tg)
 499{
 500	do {
 501		tg = list_entry_rcu(tg->list.next,
 502			typeof(struct task_group), list);
 503	} while (&tg->list != &task_groups && task_group_is_autogroup(tg));
 504
 505	if (&tg->list == &task_groups)
 506		tg = NULL;
 507
 508	return tg;
 509}
 510
 511#define for_each_rt_rq(rt_rq, iter, rq)					\
 512	for (iter = container_of(&task_groups, typeof(*iter), list);	\
 513		(iter = next_task_group(iter)) &&			\
 514		(rt_rq = iter->rt_rq[cpu_of(rq)]);)
 515
 516#define for_each_sched_rt_entity(rt_se) \
 517	for (; rt_se; rt_se = rt_se->parent)
 518
 519static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
 520{
 521	return rt_se->my_q;
 522}
 523
 524static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
 525static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
 526
 527static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
 528{
 529	struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
 530	struct rq *rq = rq_of_rt_rq(rt_rq);
 531	struct sched_rt_entity *rt_se;
 532
 533	int cpu = cpu_of(rq);
 534
 535	rt_se = rt_rq->tg->rt_se[cpu];
 536
 537	if (rt_rq->rt_nr_running) {
 538		if (!rt_se)
 539			enqueue_top_rt_rq(rt_rq);
 540		else if (!on_rt_rq(rt_se))
 541			enqueue_rt_entity(rt_se, 0);
 542
 543		if (rt_rq->highest_prio.curr < curr->prio)
 544			resched_curr(rq);
 545	}
 546}
 547
 548static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
 549{
 550	struct sched_rt_entity *rt_se;
 551	int cpu = cpu_of(rq_of_rt_rq(rt_rq));
 552
 553	rt_se = rt_rq->tg->rt_se[cpu];
 554
 555	if (!rt_se) {
 556		dequeue_top_rt_rq(rt_rq);
 557		/* Kick cpufreq (see the comment in kernel/sched/sched.h). */
 558		cpufreq_update_util(rq_of_rt_rq(rt_rq), 0);
 559	}
 560	else if (on_rt_rq(rt_se))
 561		dequeue_rt_entity(rt_se, 0);
 562}
 563
 564static inline int rt_rq_throttled(struct rt_rq *rt_rq)
 565{
 566	return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
 567}
 568
 569static int rt_se_boosted(struct sched_rt_entity *rt_se)
 570{
 571	struct rt_rq *rt_rq = group_rt_rq(rt_se);
 572	struct task_struct *p;
 573
 574	if (rt_rq)
 575		return !!rt_rq->rt_nr_boosted;
 576
 577	p = rt_task_of(rt_se);
 578	return p->prio != p->normal_prio;
 579}
 580
 581#ifdef CONFIG_SMP
 582static inline const struct cpumask *sched_rt_period_mask(void)
 583{
 584	return this_rq()->rd->span;
 585}
 586#else
 587static inline const struct cpumask *sched_rt_period_mask(void)
 588{
 589	return cpu_online_mask;
 590}
 591#endif
 592
 593static inline
 594struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
 595{
 596	return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
 597}
 598
 599static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
 600{
 601	return &rt_rq->tg->rt_bandwidth;
 602}
 603
 604#else /* !CONFIG_RT_GROUP_SCHED */
 605
 606static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
 607{
 608	return rt_rq->rt_runtime;
 609}
 610
 611static inline u64 sched_rt_period(struct rt_rq *rt_rq)
 612{
 613	return ktime_to_ns(def_rt_bandwidth.rt_period);
 614}
 615
 616typedef struct rt_rq *rt_rq_iter_t;
 617
 618#define for_each_rt_rq(rt_rq, iter, rq) \
 619	for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
 620
 621#define for_each_sched_rt_entity(rt_se) \
 622	for (; rt_se; rt_se = NULL)
 623
 624static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
 625{
 626	return NULL;
 627}
 628
 629static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
 630{
 631	struct rq *rq = rq_of_rt_rq(rt_rq);
 632
 633	if (!rt_rq->rt_nr_running)
 634		return;
 635
 636	enqueue_top_rt_rq(rt_rq);
 637	resched_curr(rq);
 638}
 639
 640static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
 641{
 642	dequeue_top_rt_rq(rt_rq);
 643}
 644
 645static inline int rt_rq_throttled(struct rt_rq *rt_rq)
 646{
 647	return rt_rq->rt_throttled;
 648}
 649
 650static inline const struct cpumask *sched_rt_period_mask(void)
 651{
 652	return cpu_online_mask;
 653}
 654
 655static inline
 656struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
 657{
 658	return &cpu_rq(cpu)->rt;
 659}
 660
 661static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
 662{
 663	return &def_rt_bandwidth;
 664}
 665
 666#endif /* CONFIG_RT_GROUP_SCHED */
 667
 668bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
 669{
 670	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
 671
 672	return (hrtimer_active(&rt_b->rt_period_timer) ||
 673		rt_rq->rt_time < rt_b->rt_runtime);
 674}
 675
 676#ifdef CONFIG_SMP
 677/*
 678 * We ran out of runtime, see if we can borrow some from our neighbours.
 679 */
 680static void do_balance_runtime(struct rt_rq *rt_rq)
 681{
 682	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
 683	struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
 684	int i, weight;
 685	u64 rt_period;
 686
 687	weight = cpumask_weight(rd->span);
 688
 689	raw_spin_lock(&rt_b->rt_runtime_lock);
 690	rt_period = ktime_to_ns(rt_b->rt_period);
 691	for_each_cpu(i, rd->span) {
 692		struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
 693		s64 diff;
 694
 695		if (iter == rt_rq)
 696			continue;
 697
 698		raw_spin_lock(&iter->rt_runtime_lock);
 699		/*
 700		 * Either all rqs have inf runtime and there's nothing to steal
 701		 * or __disable_runtime() below sets a specific rq to inf to
 702		 * indicate its been disabled and disalow stealing.
 703		 */
 704		if (iter->rt_runtime == RUNTIME_INF)
 705			goto next;
 706
 707		/*
 708		 * From runqueues with spare time, take 1/n part of their
 709		 * spare time, but no more than our period.
 710		 */
 711		diff = iter->rt_runtime - iter->rt_time;
 712		if (diff > 0) {
 713			diff = div_u64((u64)diff, weight);
 714			if (rt_rq->rt_runtime + diff > rt_period)
 715				diff = rt_period - rt_rq->rt_runtime;
 716			iter->rt_runtime -= diff;
 717			rt_rq->rt_runtime += diff;
 718			if (rt_rq->rt_runtime == rt_period) {
 719				raw_spin_unlock(&iter->rt_runtime_lock);
 720				break;
 721			}
 722		}
 723next:
 724		raw_spin_unlock(&iter->rt_runtime_lock);
 725	}
 726	raw_spin_unlock(&rt_b->rt_runtime_lock);
 727}
 728
 729/*
 730 * Ensure this RQ takes back all the runtime it lend to its neighbours.
 731 */
 732static void __disable_runtime(struct rq *rq)
 733{
 734	struct root_domain *rd = rq->rd;
 735	rt_rq_iter_t iter;
 736	struct rt_rq *rt_rq;
 737
 738	if (unlikely(!scheduler_running))
 739		return;
 740
 741	for_each_rt_rq(rt_rq, iter, rq) {
 742		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
 743		s64 want;
 744		int i;
 745
 746		raw_spin_lock(&rt_b->rt_runtime_lock);
 747		raw_spin_lock(&rt_rq->rt_runtime_lock);
 748		/*
 749		 * Either we're all inf and nobody needs to borrow, or we're
 750		 * already disabled and thus have nothing to do, or we have
 751		 * exactly the right amount of runtime to take out.
 752		 */
 753		if (rt_rq->rt_runtime == RUNTIME_INF ||
 754				rt_rq->rt_runtime == rt_b->rt_runtime)
 755			goto balanced;
 756		raw_spin_unlock(&rt_rq->rt_runtime_lock);
 757
 758		/*
 759		 * Calculate the difference between what we started out with
 760		 * and what we current have, that's the amount of runtime
 761		 * we lend and now have to reclaim.
 762		 */
 763		want = rt_b->rt_runtime - rt_rq->rt_runtime;
 764
 765		/*
 766		 * Greedy reclaim, take back as much as we can.
 767		 */
 768		for_each_cpu(i, rd->span) {
 769			struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
 770			s64 diff;
 771
 772			/*
 773			 * Can't reclaim from ourselves or disabled runqueues.
 774			 */
 775			if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
 776				continue;
 777
 778			raw_spin_lock(&iter->rt_runtime_lock);
 779			if (want > 0) {
 780				diff = min_t(s64, iter->rt_runtime, want);
 781				iter->rt_runtime -= diff;
 782				want -= diff;
 783			} else {
 784				iter->rt_runtime -= want;
 785				want -= want;
 786			}
 787			raw_spin_unlock(&iter->rt_runtime_lock);
 788
 789			if (!want)
 790				break;
 791		}
 792
 793		raw_spin_lock(&rt_rq->rt_runtime_lock);
 794		/*
 795		 * We cannot be left wanting - that would mean some runtime
 796		 * leaked out of the system.
 797		 */
 798		BUG_ON(want);
 799balanced:
 800		/*
 801		 * Disable all the borrow logic by pretending we have inf
 802		 * runtime - in which case borrowing doesn't make sense.
 803		 */
 804		rt_rq->rt_runtime = RUNTIME_INF;
 805		rt_rq->rt_throttled = 0;
 806		raw_spin_unlock(&rt_rq->rt_runtime_lock);
 807		raw_spin_unlock(&rt_b->rt_runtime_lock);
 808
 809		/* Make rt_rq available for pick_next_task() */
 810		sched_rt_rq_enqueue(rt_rq);
 811	}
 812}
 813
 814static void __enable_runtime(struct rq *rq)
 815{
 816	rt_rq_iter_t iter;
 817	struct rt_rq *rt_rq;
 818
 819	if (unlikely(!scheduler_running))
 820		return;
 821
 822	/*
 823	 * Reset each runqueue's bandwidth settings
 824	 */
 825	for_each_rt_rq(rt_rq, iter, rq) {
 826		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
 827
 828		raw_spin_lock(&rt_b->rt_runtime_lock);
 829		raw_spin_lock(&rt_rq->rt_runtime_lock);
 830		rt_rq->rt_runtime = rt_b->rt_runtime;
 831		rt_rq->rt_time = 0;
 832		rt_rq->rt_throttled = 0;
 833		raw_spin_unlock(&rt_rq->rt_runtime_lock);
 834		raw_spin_unlock(&rt_b->rt_runtime_lock);
 835	}
 836}
 837
 838static void balance_runtime(struct rt_rq *rt_rq)
 839{
 840	if (!sched_feat(RT_RUNTIME_SHARE))
 841		return;
 842
 843	if (rt_rq->rt_time > rt_rq->rt_runtime) {
 844		raw_spin_unlock(&rt_rq->rt_runtime_lock);
 845		do_balance_runtime(rt_rq);
 846		raw_spin_lock(&rt_rq->rt_runtime_lock);
 847	}
 848}
 849#else /* !CONFIG_SMP */
 850static inline void balance_runtime(struct rt_rq *rt_rq) {}
 851#endif /* CONFIG_SMP */
 852
 853static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
 854{
 855	int i, idle = 1, throttled = 0;
 856	const struct cpumask *span;
 857
 858	span = sched_rt_period_mask();
 859#ifdef CONFIG_RT_GROUP_SCHED
 860	/*
 861	 * FIXME: isolated CPUs should really leave the root task group,
 862	 * whether they are isolcpus or were isolated via cpusets, lest
 863	 * the timer run on a CPU which does not service all runqueues,
 864	 * potentially leaving other CPUs indefinitely throttled.  If
 865	 * isolation is really required, the user will turn the throttle
 866	 * off to kill the perturbations it causes anyway.  Meanwhile,
 867	 * this maintains functionality for boot and/or troubleshooting.
 868	 */
 869	if (rt_b == &root_task_group.rt_bandwidth)
 870		span = cpu_online_mask;
 871#endif
 872	for_each_cpu(i, span) {
 873		int enqueue = 0;
 874		struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
 875		struct rq *rq = rq_of_rt_rq(rt_rq);
 
 876		int skip;
 877
 878		/*
 879		 * When span == cpu_online_mask, taking each rq->lock
 880		 * can be time-consuming. Try to avoid it when possible.
 881		 */
 882		raw_spin_lock(&rt_rq->rt_runtime_lock);
 883		if (!sched_feat(RT_RUNTIME_SHARE) && rt_rq->rt_runtime != RUNTIME_INF)
 884			rt_rq->rt_runtime = rt_b->rt_runtime;
 885		skip = !rt_rq->rt_time && !rt_rq->rt_nr_running;
 886		raw_spin_unlock(&rt_rq->rt_runtime_lock);
 887		if (skip)
 888			continue;
 889
 890		raw_spin_lock(&rq->lock);
 891		update_rq_clock(rq);
 892
 893		if (rt_rq->rt_time) {
 894			u64 runtime;
 895
 896			raw_spin_lock(&rt_rq->rt_runtime_lock);
 897			if (rt_rq->rt_throttled)
 898				balance_runtime(rt_rq);
 899			runtime = rt_rq->rt_runtime;
 900			rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
 901			if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
 902				rt_rq->rt_throttled = 0;
 903				enqueue = 1;
 904
 905				/*
 906				 * When we're idle and a woken (rt) task is
 907				 * throttled check_preempt_curr() will set
 908				 * skip_update and the time between the wakeup
 909				 * and this unthrottle will get accounted as
 910				 * 'runtime'.
 911				 */
 912				if (rt_rq->rt_nr_running && rq->curr == rq->idle)
 913					rq_clock_cancel_skipupdate(rq);
 914			}
 915			if (rt_rq->rt_time || rt_rq->rt_nr_running)
 916				idle = 0;
 917			raw_spin_unlock(&rt_rq->rt_runtime_lock);
 918		} else if (rt_rq->rt_nr_running) {
 919			idle = 0;
 920			if (!rt_rq_throttled(rt_rq))
 921				enqueue = 1;
 922		}
 923		if (rt_rq->rt_throttled)
 924			throttled = 1;
 925
 926		if (enqueue)
 927			sched_rt_rq_enqueue(rt_rq);
 928		raw_spin_unlock(&rq->lock);
 929	}
 930
 931	if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
 932		return 1;
 933
 934	return idle;
 935}
 936
 937static inline int rt_se_prio(struct sched_rt_entity *rt_se)
 938{
 939#ifdef CONFIG_RT_GROUP_SCHED
 940	struct rt_rq *rt_rq = group_rt_rq(rt_se);
 941
 942	if (rt_rq)
 943		return rt_rq->highest_prio.curr;
 944#endif
 945
 946	return rt_task_of(rt_se)->prio;
 947}
 948
 949static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
 950{
 951	u64 runtime = sched_rt_runtime(rt_rq);
 952
 953	if (rt_rq->rt_throttled)
 954		return rt_rq_throttled(rt_rq);
 955
 956	if (runtime >= sched_rt_period(rt_rq))
 957		return 0;
 958
 959	balance_runtime(rt_rq);
 960	runtime = sched_rt_runtime(rt_rq);
 961	if (runtime == RUNTIME_INF)
 962		return 0;
 963
 964	if (rt_rq->rt_time > runtime) {
 965		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
 966
 967		/*
 968		 * Don't actually throttle groups that have no runtime assigned
 969		 * but accrue some time due to boosting.
 970		 */
 971		if (likely(rt_b->rt_runtime)) {
 972			rt_rq->rt_throttled = 1;
 973			printk_deferred_once("sched: RT throttling activated\n");
 974		} else {
 975			/*
 976			 * In case we did anyway, make it go away,
 977			 * replenishment is a joke, since it will replenish us
 978			 * with exactly 0 ns.
 979			 */
 980			rt_rq->rt_time = 0;
 981		}
 982
 983		if (rt_rq_throttled(rt_rq)) {
 984			sched_rt_rq_dequeue(rt_rq);
 985			return 1;
 986		}
 987	}
 988
 989	return 0;
 990}
 991
 992/*
 993 * Update the current task's runtime statistics. Skip current tasks that
 994 * are not in our scheduling class.
 995 */
 996static void update_curr_rt(struct rq *rq)
 997{
 998	struct task_struct *curr = rq->curr;
 999	struct sched_rt_entity *rt_se = &curr->rt;
1000	u64 delta_exec;
1001	u64 now;
1002
1003	if (curr->sched_class != &rt_sched_class)
1004		return;
1005
1006	now = rq_clock_task(rq);
1007	delta_exec = now - curr->se.exec_start;
1008	if (unlikely((s64)delta_exec <= 0))
1009		return;
1010
1011	schedstat_set(curr->se.statistics.exec_max,
1012		      max(curr->se.statistics.exec_max, delta_exec));
1013
1014	curr->se.sum_exec_runtime += delta_exec;
1015	account_group_exec_runtime(curr, delta_exec);
1016
1017	curr->se.exec_start = now;
1018	cgroup_account_cputime(curr, delta_exec);
1019
1020	if (!rt_bandwidth_enabled())
1021		return;
1022
1023	for_each_sched_rt_entity(rt_se) {
1024		struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
 
1025
1026		if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
1027			raw_spin_lock(&rt_rq->rt_runtime_lock);
1028			rt_rq->rt_time += delta_exec;
1029			if (sched_rt_runtime_exceeded(rt_rq))
 
1030				resched_curr(rq);
1031			raw_spin_unlock(&rt_rq->rt_runtime_lock);
 
 
1032		}
1033	}
1034}
1035
1036static void
1037dequeue_top_rt_rq(struct rt_rq *rt_rq)
1038{
1039	struct rq *rq = rq_of_rt_rq(rt_rq);
1040
1041	BUG_ON(&rq->rt != rt_rq);
1042
1043	if (!rt_rq->rt_queued)
1044		return;
1045
1046	BUG_ON(!rq->nr_running);
1047
1048	sub_nr_running(rq, rt_rq->rt_nr_running);
1049	rt_rq->rt_queued = 0;
1050
1051}
1052
1053static void
1054enqueue_top_rt_rq(struct rt_rq *rt_rq)
1055{
1056	struct rq *rq = rq_of_rt_rq(rt_rq);
1057
1058	BUG_ON(&rq->rt != rt_rq);
1059
1060	if (rt_rq->rt_queued)
1061		return;
1062
1063	if (rt_rq_throttled(rt_rq))
1064		return;
1065
1066	if (rt_rq->rt_nr_running) {
1067		add_nr_running(rq, rt_rq->rt_nr_running);
1068		rt_rq->rt_queued = 1;
1069	}
1070
1071	/* Kick cpufreq (see the comment in kernel/sched/sched.h). */
1072	cpufreq_update_util(rq, 0);
1073}
1074
1075#if defined CONFIG_SMP
1076
1077static void
1078inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1079{
1080	struct rq *rq = rq_of_rt_rq(rt_rq);
1081
1082#ifdef CONFIG_RT_GROUP_SCHED
1083	/*
1084	 * Change rq's cpupri only if rt_rq is the top queue.
1085	 */
1086	if (&rq->rt != rt_rq)
1087		return;
1088#endif
1089	if (rq->online && prio < prev_prio)
1090		cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1091}
1092
1093static void
1094dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1095{
1096	struct rq *rq = rq_of_rt_rq(rt_rq);
1097
1098#ifdef CONFIG_RT_GROUP_SCHED
1099	/*
1100	 * Change rq's cpupri only if rt_rq is the top queue.
1101	 */
1102	if (&rq->rt != rt_rq)
1103		return;
1104#endif
1105	if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1106		cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1107}
1108
1109#else /* CONFIG_SMP */
1110
1111static inline
1112void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1113static inline
1114void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1115
1116#endif /* CONFIG_SMP */
1117
1118#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1119static void
1120inc_rt_prio(struct rt_rq *rt_rq, int prio)
1121{
1122	int prev_prio = rt_rq->highest_prio.curr;
1123
1124	if (prio < prev_prio)
1125		rt_rq->highest_prio.curr = prio;
1126
1127	inc_rt_prio_smp(rt_rq, prio, prev_prio);
1128}
1129
1130static void
1131dec_rt_prio(struct rt_rq *rt_rq, int prio)
1132{
1133	int prev_prio = rt_rq->highest_prio.curr;
1134
1135	if (rt_rq->rt_nr_running) {
1136
1137		WARN_ON(prio < prev_prio);
1138
1139		/*
1140		 * This may have been our highest task, and therefore
1141		 * we may have some recomputation to do
1142		 */
1143		if (prio == prev_prio) {
1144			struct rt_prio_array *array = &rt_rq->active;
1145
1146			rt_rq->highest_prio.curr =
1147				sched_find_first_bit(array->bitmap);
1148		}
1149
1150	} else
1151		rt_rq->highest_prio.curr = MAX_RT_PRIO;
 
1152
1153	dec_rt_prio_smp(rt_rq, prio, prev_prio);
1154}
1155
1156#else
1157
1158static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1159static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1160
1161#endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1162
1163#ifdef CONFIG_RT_GROUP_SCHED
1164
1165static void
1166inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1167{
1168	if (rt_se_boosted(rt_se))
1169		rt_rq->rt_nr_boosted++;
1170
1171	if (rt_rq->tg)
1172		start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1173}
1174
1175static void
1176dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1177{
1178	if (rt_se_boosted(rt_se))
1179		rt_rq->rt_nr_boosted--;
1180
1181	WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1182}
1183
1184#else /* CONFIG_RT_GROUP_SCHED */
1185
1186static void
1187inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1188{
1189	start_rt_bandwidth(&def_rt_bandwidth);
1190}
1191
1192static inline
1193void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1194
1195#endif /* CONFIG_RT_GROUP_SCHED */
1196
1197static inline
1198unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1199{
1200	struct rt_rq *group_rq = group_rt_rq(rt_se);
1201
1202	if (group_rq)
1203		return group_rq->rt_nr_running;
1204	else
1205		return 1;
1206}
1207
1208static inline
1209unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se)
1210{
1211	struct rt_rq *group_rq = group_rt_rq(rt_se);
1212	struct task_struct *tsk;
1213
1214	if (group_rq)
1215		return group_rq->rr_nr_running;
1216
1217	tsk = rt_task_of(rt_se);
1218
1219	return (tsk->policy == SCHED_RR) ? 1 : 0;
1220}
1221
1222static inline
1223void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1224{
1225	int prio = rt_se_prio(rt_se);
1226
1227	WARN_ON(!rt_prio(prio));
1228	rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1229	rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se);
1230
1231	inc_rt_prio(rt_rq, prio);
1232	inc_rt_migration(rt_se, rt_rq);
1233	inc_rt_group(rt_se, rt_rq);
1234}
1235
1236static inline
1237void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1238{
1239	WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1240	WARN_ON(!rt_rq->rt_nr_running);
1241	rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1242	rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se);
1243
1244	dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1245	dec_rt_migration(rt_se, rt_rq);
1246	dec_rt_group(rt_se, rt_rq);
1247}
1248
1249/*
1250 * Change rt_se->run_list location unless SAVE && !MOVE
1251 *
1252 * assumes ENQUEUE/DEQUEUE flags match
1253 */
1254static inline bool move_entity(unsigned int flags)
1255{
1256	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
1257		return false;
1258
1259	return true;
1260}
1261
1262static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array)
1263{
1264	list_del_init(&rt_se->run_list);
1265
1266	if (list_empty(array->queue + rt_se_prio(rt_se)))
1267		__clear_bit(rt_se_prio(rt_se), array->bitmap);
1268
1269	rt_se->on_list = 0;
1270}
1271
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1272static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1273{
1274	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1275	struct rt_prio_array *array = &rt_rq->active;
1276	struct rt_rq *group_rq = group_rt_rq(rt_se);
1277	struct list_head *queue = array->queue + rt_se_prio(rt_se);
1278
1279	/*
1280	 * Don't enqueue the group if its throttled, or when empty.
1281	 * The latter is a consequence of the former when a child group
1282	 * get throttled and the current group doesn't have any other
1283	 * active members.
1284	 */
1285	if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) {
1286		if (rt_se->on_list)
1287			__delist_rt_entity(rt_se, array);
1288		return;
1289	}
1290
1291	if (move_entity(flags)) {
1292		WARN_ON_ONCE(rt_se->on_list);
1293		if (flags & ENQUEUE_HEAD)
1294			list_add(&rt_se->run_list, queue);
1295		else
1296			list_add_tail(&rt_se->run_list, queue);
1297
1298		__set_bit(rt_se_prio(rt_se), array->bitmap);
1299		rt_se->on_list = 1;
1300	}
1301	rt_se->on_rq = 1;
1302
1303	inc_rt_tasks(rt_se, rt_rq);
1304}
1305
1306static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1307{
1308	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1309	struct rt_prio_array *array = &rt_rq->active;
1310
1311	if (move_entity(flags)) {
1312		WARN_ON_ONCE(!rt_se->on_list);
1313		__delist_rt_entity(rt_se, array);
1314	}
1315	rt_se->on_rq = 0;
1316
1317	dec_rt_tasks(rt_se, rt_rq);
1318}
1319
1320/*
1321 * Because the prio of an upper entry depends on the lower
1322 * entries, we must remove entries top - down.
1323 */
1324static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags)
1325{
1326	struct sched_rt_entity *back = NULL;
 
1327
1328	for_each_sched_rt_entity(rt_se) {
1329		rt_se->back = back;
1330		back = rt_se;
1331	}
1332
1333	dequeue_top_rt_rq(rt_rq_of_se(back));
1334
1335	for (rt_se = back; rt_se; rt_se = rt_se->back) {
1336		if (on_rt_rq(rt_se))
1337			__dequeue_rt_entity(rt_se, flags);
1338	}
 
 
1339}
1340
1341static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1342{
1343	struct rq *rq = rq_of_rt_se(rt_se);
1344
 
 
1345	dequeue_rt_stack(rt_se, flags);
1346	for_each_sched_rt_entity(rt_se)
1347		__enqueue_rt_entity(rt_se, flags);
1348	enqueue_top_rt_rq(&rq->rt);
1349}
1350
1351static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1352{
1353	struct rq *rq = rq_of_rt_se(rt_se);
1354
 
 
1355	dequeue_rt_stack(rt_se, flags);
1356
1357	for_each_sched_rt_entity(rt_se) {
1358		struct rt_rq *rt_rq = group_rt_rq(rt_se);
1359
1360		if (rt_rq && rt_rq->rt_nr_running)
1361			__enqueue_rt_entity(rt_se, flags);
1362	}
1363	enqueue_top_rt_rq(&rq->rt);
1364}
1365
1366/*
1367 * Adding/removing a task to/from a priority array:
1368 */
1369static void
1370enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1371{
1372	struct sched_rt_entity *rt_se = &p->rt;
1373
1374	if (flags & ENQUEUE_WAKEUP)
1375		rt_se->timeout = 0;
1376
 
 
 
1377	enqueue_rt_entity(rt_se, flags);
1378
1379	if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1380		enqueue_pushable_task(rq, p);
1381}
1382
1383static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1384{
1385	struct sched_rt_entity *rt_se = &p->rt;
1386
1387	update_curr_rt(rq);
1388	dequeue_rt_entity(rt_se, flags);
1389
1390	dequeue_pushable_task(rq, p);
1391}
1392
1393/*
1394 * Put task to the head or the end of the run list without the overhead of
1395 * dequeue followed by enqueue.
1396 */
1397static void
1398requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1399{
1400	if (on_rt_rq(rt_se)) {
1401		struct rt_prio_array *array = &rt_rq->active;
1402		struct list_head *queue = array->queue + rt_se_prio(rt_se);
1403
1404		if (head)
1405			list_move(&rt_se->run_list, queue);
1406		else
1407			list_move_tail(&rt_se->run_list, queue);
1408	}
1409}
1410
1411static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1412{
1413	struct sched_rt_entity *rt_se = &p->rt;
1414	struct rt_rq *rt_rq;
1415
1416	for_each_sched_rt_entity(rt_se) {
1417		rt_rq = rt_rq_of_se(rt_se);
1418		requeue_rt_entity(rt_rq, rt_se, head);
1419	}
1420}
1421
1422static void yield_task_rt(struct rq *rq)
1423{
1424	requeue_task_rt(rq, rq->curr, 0);
1425}
1426
1427#ifdef CONFIG_SMP
1428static int find_lowest_rq(struct task_struct *task);
1429
1430static int
1431select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags)
1432{
1433	struct task_struct *curr;
1434	struct rq *rq;
1435	bool test;
1436
1437	/* For anything but wake ups, just return the task_cpu */
1438	if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
1439		goto out;
1440
1441	rq = cpu_rq(cpu);
1442
1443	rcu_read_lock();
1444	curr = READ_ONCE(rq->curr); /* unlocked access */
1445
1446	/*
1447	 * If the current task on @p's runqueue is an RT task, then
1448	 * try to see if we can wake this RT task up on another
1449	 * runqueue. Otherwise simply start this RT task
1450	 * on its current runqueue.
1451	 *
1452	 * We want to avoid overloading runqueues. If the woken
1453	 * task is a higher priority, then it will stay on this CPU
1454	 * and the lower prio task should be moved to another CPU.
1455	 * Even though this will probably make the lower prio task
1456	 * lose its cache, we do not want to bounce a higher task
1457	 * around just because it gave up its CPU, perhaps for a
1458	 * lock?
1459	 *
1460	 * For equal prio tasks, we just let the scheduler sort it out.
1461	 *
1462	 * Otherwise, just let it ride on the affined RQ and the
1463	 * post-schedule router will push the preempted task away
1464	 *
1465	 * This test is optimistic, if we get it wrong the load-balancer
1466	 * will have to sort it out.
1467	 *
1468	 * We take into account the capacity of the CPU to ensure it fits the
1469	 * requirement of the task - which is only important on heterogeneous
1470	 * systems like big.LITTLE.
1471	 */
1472	test = curr &&
1473	       unlikely(rt_task(curr)) &&
1474	       (curr->nr_cpus_allowed < 2 || curr->prio <= p->prio);
1475
1476	if (test || !rt_task_fits_capacity(p, cpu)) {
1477		int target = find_lowest_rq(p);
1478
1479		/*
1480		 * Bail out if we were forcing a migration to find a better
1481		 * fitting CPU but our search failed.
1482		 */
1483		if (!test && target != -1 && !rt_task_fits_capacity(p, target))
1484			goto out_unlock;
1485
1486		/*
1487		 * Don't bother moving it if the destination CPU is
1488		 * not running a lower priority task.
1489		 */
1490		if (target != -1 &&
1491		    p->prio < cpu_rq(target)->rt.highest_prio.curr)
1492			cpu = target;
1493	}
1494
1495out_unlock:
1496	rcu_read_unlock();
1497
1498out:
1499	return cpu;
1500}
1501
1502static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1503{
1504	/*
1505	 * Current can't be migrated, useless to reschedule,
1506	 * let's hope p can move out.
1507	 */
1508	if (rq->curr->nr_cpus_allowed == 1 ||
1509	    !cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1510		return;
1511
1512	/*
1513	 * p is migratable, so let's not schedule it and
1514	 * see if it is pushed or pulled somewhere else.
1515	 */
1516	if (p->nr_cpus_allowed != 1 &&
1517	    cpupri_find(&rq->rd->cpupri, p, NULL))
1518		return;
1519
1520	/*
1521	 * There appear to be other CPUs that can accept
1522	 * the current task but none can run 'p', so lets reschedule
1523	 * to try and push the current task away:
1524	 */
1525	requeue_task_rt(rq, p, 1);
1526	resched_curr(rq);
1527}
1528
1529static int balance_rt(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1530{
1531	if (!on_rt_rq(&p->rt) && need_pull_rt_task(rq, p)) {
1532		/*
1533		 * This is OK, because current is on_cpu, which avoids it being
1534		 * picked for load-balance and preemption/IRQs are still
1535		 * disabled avoiding further scheduler activity on it and we've
1536		 * not yet started the picking loop.
1537		 */
1538		rq_unpin_lock(rq, rf);
1539		pull_rt_task(rq);
1540		rq_repin_lock(rq, rf);
1541	}
1542
1543	return sched_stop_runnable(rq) || sched_dl_runnable(rq) || sched_rt_runnable(rq);
1544}
1545#endif /* CONFIG_SMP */
1546
1547/*
1548 * Preempt the current task with a newly woken task if needed:
1549 */
1550static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1551{
1552	if (p->prio < rq->curr->prio) {
1553		resched_curr(rq);
1554		return;
1555	}
1556
1557#ifdef CONFIG_SMP
1558	/*
1559	 * If:
1560	 *
1561	 * - the newly woken task is of equal priority to the current task
1562	 * - the newly woken task is non-migratable while current is migratable
1563	 * - current will be preempted on the next reschedule
1564	 *
1565	 * we should check to see if current can readily move to a different
1566	 * cpu.  If so, we will reschedule to allow the push logic to try
1567	 * to move current somewhere else, making room for our non-migratable
1568	 * task.
1569	 */
1570	if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1571		check_preempt_equal_prio(rq, p);
1572#endif
1573}
1574
1575static inline void set_next_task_rt(struct rq *rq, struct task_struct *p, bool first)
1576{
 
 
 
1577	p->se.exec_start = rq_clock_task(rq);
 
 
1578
1579	/* The running task is never eligible for pushing */
1580	dequeue_pushable_task(rq, p);
1581
1582	if (!first)
1583		return;
1584
1585	/*
1586	 * If prev task was rt, put_prev_task() has already updated the
1587	 * utilization. We only care of the case where we start to schedule a
1588	 * rt task
1589	 */
1590	if (rq->curr->sched_class != &rt_sched_class)
1591		update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
1592
1593	rt_queue_push_tasks(rq);
1594}
1595
1596static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1597						   struct rt_rq *rt_rq)
1598{
1599	struct rt_prio_array *array = &rt_rq->active;
1600	struct sched_rt_entity *next = NULL;
1601	struct list_head *queue;
1602	int idx;
1603
1604	idx = sched_find_first_bit(array->bitmap);
1605	BUG_ON(idx >= MAX_RT_PRIO);
1606
1607	queue = array->queue + idx;
1608	next = list_entry(queue->next, struct sched_rt_entity, run_list);
1609
1610	return next;
1611}
1612
1613static struct task_struct *_pick_next_task_rt(struct rq *rq)
1614{
1615	struct sched_rt_entity *rt_se;
1616	struct rt_rq *rt_rq  = &rq->rt;
1617
1618	do {
1619		rt_se = pick_next_rt_entity(rq, rt_rq);
1620		BUG_ON(!rt_se);
1621		rt_rq = group_rt_rq(rt_se);
1622	} while (rt_rq);
1623
1624	return rt_task_of(rt_se);
1625}
1626
1627static struct task_struct *pick_next_task_rt(struct rq *rq)
1628{
1629	struct task_struct *p;
1630
1631	if (!sched_rt_runnable(rq))
1632		return NULL;
1633
1634	p = _pick_next_task_rt(rq);
1635	set_next_task_rt(rq, p, true);
 
 
 
 
 
 
 
 
 
 
1636	return p;
1637}
1638
1639static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1640{
 
 
 
 
 
 
1641	update_curr_rt(rq);
1642
1643	update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
1644
1645	/*
1646	 * The previous task needs to be made eligible for pushing
1647	 * if it is still active
1648	 */
1649	if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1650		enqueue_pushable_task(rq, p);
1651}
1652
1653#ifdef CONFIG_SMP
1654
1655/* Only try algorithms three times */
1656#define RT_MAX_TRIES 3
1657
1658static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1659{
1660	if (!task_running(rq, p) &&
1661	    cpumask_test_cpu(cpu, p->cpus_ptr))
1662		return 1;
1663
1664	return 0;
1665}
1666
1667/*
1668 * Return the highest pushable rq's task, which is suitable to be executed
1669 * on the CPU, NULL otherwise
1670 */
1671static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1672{
1673	struct plist_head *head = &rq->rt.pushable_tasks;
1674	struct task_struct *p;
1675
1676	if (!has_pushable_tasks(rq))
1677		return NULL;
1678
1679	plist_for_each_entry(p, head, pushable_tasks) {
1680		if (pick_rt_task(rq, p, cpu))
1681			return p;
1682	}
1683
1684	return NULL;
1685}
1686
1687static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1688
1689static int find_lowest_rq(struct task_struct *task)
1690{
1691	struct sched_domain *sd;
1692	struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
1693	int this_cpu = smp_processor_id();
1694	int cpu      = task_cpu(task);
1695	int ret;
1696
1697	/* Make sure the mask is initialized first */
1698	if (unlikely(!lowest_mask))
1699		return -1;
1700
1701	if (task->nr_cpus_allowed == 1)
1702		return -1; /* No other targets possible */
1703
1704	/*
1705	 * If we're on asym system ensure we consider the different capacities
1706	 * of the CPUs when searching for the lowest_mask.
1707	 */
1708	if (static_branch_unlikely(&sched_asym_cpucapacity)) {
1709
1710		ret = cpupri_find_fitness(&task_rq(task)->rd->cpupri,
1711					  task, lowest_mask,
1712					  rt_task_fits_capacity);
1713	} else {
1714
1715		ret = cpupri_find(&task_rq(task)->rd->cpupri,
1716				  task, lowest_mask);
1717	}
1718
1719	if (!ret)
1720		return -1; /* No targets found */
1721
1722	/*
1723	 * At this point we have built a mask of CPUs representing the
1724	 * lowest priority tasks in the system.  Now we want to elect
1725	 * the best one based on our affinity and topology.
1726	 *
1727	 * We prioritize the last CPU that the task executed on since
1728	 * it is most likely cache-hot in that location.
1729	 */
1730	if (cpumask_test_cpu(cpu, lowest_mask))
1731		return cpu;
1732
1733	/*
1734	 * Otherwise, we consult the sched_domains span maps to figure
1735	 * out which CPU is logically closest to our hot cache data.
1736	 */
1737	if (!cpumask_test_cpu(this_cpu, lowest_mask))
1738		this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1739
1740	rcu_read_lock();
1741	for_each_domain(cpu, sd) {
1742		if (sd->flags & SD_WAKE_AFFINE) {
1743			int best_cpu;
1744
1745			/*
1746			 * "this_cpu" is cheaper to preempt than a
1747			 * remote processor.
1748			 */
1749			if (this_cpu != -1 &&
1750			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1751				rcu_read_unlock();
1752				return this_cpu;
1753			}
1754
1755			best_cpu = cpumask_first_and(lowest_mask,
1756						     sched_domain_span(sd));
1757			if (best_cpu < nr_cpu_ids) {
1758				rcu_read_unlock();
1759				return best_cpu;
1760			}
1761		}
1762	}
1763	rcu_read_unlock();
1764
1765	/*
1766	 * And finally, if there were no matches within the domains
1767	 * just give the caller *something* to work with from the compatible
1768	 * locations.
1769	 */
1770	if (this_cpu != -1)
1771		return this_cpu;
1772
1773	cpu = cpumask_any(lowest_mask);
1774	if (cpu < nr_cpu_ids)
1775		return cpu;
1776
1777	return -1;
1778}
1779
1780/* Will lock the rq it finds */
1781static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1782{
1783	struct rq *lowest_rq = NULL;
1784	int tries;
1785	int cpu;
1786
1787	for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1788		cpu = find_lowest_rq(task);
1789
1790		if ((cpu == -1) || (cpu == rq->cpu))
1791			break;
1792
1793		lowest_rq = cpu_rq(cpu);
1794
1795		if (lowest_rq->rt.highest_prio.curr <= task->prio) {
1796			/*
1797			 * Target rq has tasks of equal or higher priority,
1798			 * retrying does not release any lock and is unlikely
1799			 * to yield a different result.
1800			 */
1801			lowest_rq = NULL;
1802			break;
1803		}
1804
1805		/* if the prio of this runqueue changed, try again */
1806		if (double_lock_balance(rq, lowest_rq)) {
1807			/*
1808			 * We had to unlock the run queue. In
1809			 * the mean time, task could have
1810			 * migrated already or had its affinity changed.
1811			 * Also make sure that it wasn't scheduled on its rq.
1812			 */
1813			if (unlikely(task_rq(task) != rq ||
1814				     !cpumask_test_cpu(lowest_rq->cpu, task->cpus_ptr) ||
1815				     task_running(rq, task) ||
1816				     !rt_task(task) ||
1817				     !task_on_rq_queued(task))) {
1818
1819				double_unlock_balance(rq, lowest_rq);
1820				lowest_rq = NULL;
1821				break;
1822			}
1823		}
1824
1825		/* If this rq is still suitable use it. */
1826		if (lowest_rq->rt.highest_prio.curr > task->prio)
1827			break;
1828
1829		/* try again */
1830		double_unlock_balance(rq, lowest_rq);
1831		lowest_rq = NULL;
1832	}
1833
1834	return lowest_rq;
1835}
1836
1837static struct task_struct *pick_next_pushable_task(struct rq *rq)
1838{
1839	struct task_struct *p;
1840
1841	if (!has_pushable_tasks(rq))
1842		return NULL;
1843
1844	p = plist_first_entry(&rq->rt.pushable_tasks,
1845			      struct task_struct, pushable_tasks);
1846
1847	BUG_ON(rq->cpu != task_cpu(p));
1848	BUG_ON(task_current(rq, p));
1849	BUG_ON(p->nr_cpus_allowed <= 1);
1850
1851	BUG_ON(!task_on_rq_queued(p));
1852	BUG_ON(!rt_task(p));
1853
1854	return p;
1855}
1856
1857/*
1858 * If the current CPU has more than one RT task, see if the non
1859 * running task can migrate over to a CPU that is running a task
1860 * of lesser priority.
1861 */
1862static int push_rt_task(struct rq *rq)
1863{
1864	struct task_struct *next_task;
1865	struct rq *lowest_rq;
1866	int ret = 0;
1867
1868	if (!rq->rt.overloaded)
1869		return 0;
1870
1871	next_task = pick_next_pushable_task(rq);
1872	if (!next_task)
1873		return 0;
1874
1875retry:
1876	if (WARN_ON(next_task == rq->curr))
1877		return 0;
1878
1879	/*
1880	 * It's possible that the next_task slipped in of
1881	 * higher priority than current. If that's the case
1882	 * just reschedule current.
1883	 */
1884	if (unlikely(next_task->prio < rq->curr->prio)) {
1885		resched_curr(rq);
1886		return 0;
1887	}
1888
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1889	/* We might release rq lock */
1890	get_task_struct(next_task);
1891
1892	/* find_lock_lowest_rq locks the rq if found */
1893	lowest_rq = find_lock_lowest_rq(next_task, rq);
1894	if (!lowest_rq) {
1895		struct task_struct *task;
1896		/*
1897		 * find_lock_lowest_rq releases rq->lock
1898		 * so it is possible that next_task has migrated.
1899		 *
1900		 * We need to make sure that the task is still on the same
1901		 * run-queue and is also still the next task eligible for
1902		 * pushing.
1903		 */
1904		task = pick_next_pushable_task(rq);
1905		if (task == next_task) {
1906			/*
1907			 * The task hasn't migrated, and is still the next
1908			 * eligible task, but we failed to find a run-queue
1909			 * to push it to.  Do not retry in this case, since
1910			 * other CPUs will pull from us when ready.
1911			 */
1912			goto out;
1913		}
1914
1915		if (!task)
1916			/* No more tasks, just exit */
1917			goto out;
1918
1919		/*
1920		 * Something has shifted, try again.
1921		 */
1922		put_task_struct(next_task);
1923		next_task = task;
1924		goto retry;
1925	}
1926
1927	deactivate_task(rq, next_task, 0);
1928	set_task_cpu(next_task, lowest_rq->cpu);
1929	activate_task(lowest_rq, next_task, 0);
 
1930	ret = 1;
1931
1932	resched_curr(lowest_rq);
1933
1934	double_unlock_balance(rq, lowest_rq);
1935
1936out:
1937	put_task_struct(next_task);
1938
1939	return ret;
1940}
1941
1942static void push_rt_tasks(struct rq *rq)
1943{
1944	/* push_rt_task will return true if it moved an RT */
1945	while (push_rt_task(rq))
1946		;
1947}
1948
1949#ifdef HAVE_RT_PUSH_IPI
1950
1951/*
1952 * When a high priority task schedules out from a CPU and a lower priority
1953 * task is scheduled in, a check is made to see if there's any RT tasks
1954 * on other CPUs that are waiting to run because a higher priority RT task
1955 * is currently running on its CPU. In this case, the CPU with multiple RT
1956 * tasks queued on it (overloaded) needs to be notified that a CPU has opened
1957 * up that may be able to run one of its non-running queued RT tasks.
1958 *
1959 * All CPUs with overloaded RT tasks need to be notified as there is currently
1960 * no way to know which of these CPUs have the highest priority task waiting
1961 * to run. Instead of trying to take a spinlock on each of these CPUs,
1962 * which has shown to cause large latency when done on machines with many
1963 * CPUs, sending an IPI to the CPUs to have them push off the overloaded
1964 * RT tasks waiting to run.
1965 *
1966 * Just sending an IPI to each of the CPUs is also an issue, as on large
1967 * count CPU machines, this can cause an IPI storm on a CPU, especially
1968 * if its the only CPU with multiple RT tasks queued, and a large number
1969 * of CPUs scheduling a lower priority task at the same time.
1970 *
1971 * Each root domain has its own irq work function that can iterate over
1972 * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT
1973 * tassk must be checked if there's one or many CPUs that are lowering
1974 * their priority, there's a single irq work iterator that will try to
1975 * push off RT tasks that are waiting to run.
1976 *
1977 * When a CPU schedules a lower priority task, it will kick off the
1978 * irq work iterator that will jump to each CPU with overloaded RT tasks.
1979 * As it only takes the first CPU that schedules a lower priority task
1980 * to start the process, the rto_start variable is incremented and if
1981 * the atomic result is one, then that CPU will try to take the rto_lock.
1982 * This prevents high contention on the lock as the process handles all
1983 * CPUs scheduling lower priority tasks.
1984 *
1985 * All CPUs that are scheduling a lower priority task will increment the
1986 * rt_loop_next variable. This will make sure that the irq work iterator
1987 * checks all RT overloaded CPUs whenever a CPU schedules a new lower
1988 * priority task, even if the iterator is in the middle of a scan. Incrementing
1989 * the rt_loop_next will cause the iterator to perform another scan.
1990 *
1991 */
1992static int rto_next_cpu(struct root_domain *rd)
1993{
1994	int next;
1995	int cpu;
1996
1997	/*
1998	 * When starting the IPI RT pushing, the rto_cpu is set to -1,
1999	 * rt_next_cpu() will simply return the first CPU found in
2000	 * the rto_mask.
2001	 *
2002	 * If rto_next_cpu() is called with rto_cpu is a valid CPU, it
2003	 * will return the next CPU found in the rto_mask.
2004	 *
2005	 * If there are no more CPUs left in the rto_mask, then a check is made
2006	 * against rto_loop and rto_loop_next. rto_loop is only updated with
2007	 * the rto_lock held, but any CPU may increment the rto_loop_next
2008	 * without any locking.
2009	 */
2010	for (;;) {
2011
2012		/* When rto_cpu is -1 this acts like cpumask_first() */
2013		cpu = cpumask_next(rd->rto_cpu, rd->rto_mask);
2014
2015		rd->rto_cpu = cpu;
2016
2017		if (cpu < nr_cpu_ids)
2018			return cpu;
2019
2020		rd->rto_cpu = -1;
2021
2022		/*
2023		 * ACQUIRE ensures we see the @rto_mask changes
2024		 * made prior to the @next value observed.
2025		 *
2026		 * Matches WMB in rt_set_overload().
2027		 */
2028		next = atomic_read_acquire(&rd->rto_loop_next);
2029
2030		if (rd->rto_loop == next)
2031			break;
2032
2033		rd->rto_loop = next;
2034	}
2035
2036	return -1;
2037}
2038
2039static inline bool rto_start_trylock(atomic_t *v)
2040{
2041	return !atomic_cmpxchg_acquire(v, 0, 1);
2042}
2043
2044static inline void rto_start_unlock(atomic_t *v)
2045{
2046	atomic_set_release(v, 0);
2047}
2048
2049static void tell_cpu_to_push(struct rq *rq)
2050{
2051	int cpu = -1;
2052
2053	/* Keep the loop going if the IPI is currently active */
2054	atomic_inc(&rq->rd->rto_loop_next);
2055
2056	/* Only one CPU can initiate a loop at a time */
2057	if (!rto_start_trylock(&rq->rd->rto_loop_start))
2058		return;
2059
2060	raw_spin_lock(&rq->rd->rto_lock);
2061
2062	/*
2063	 * The rto_cpu is updated under the lock, if it has a valid CPU
2064	 * then the IPI is still running and will continue due to the
2065	 * update to loop_next, and nothing needs to be done here.
2066	 * Otherwise it is finishing up and an ipi needs to be sent.
2067	 */
2068	if (rq->rd->rto_cpu < 0)
2069		cpu = rto_next_cpu(rq->rd);
2070
2071	raw_spin_unlock(&rq->rd->rto_lock);
2072
2073	rto_start_unlock(&rq->rd->rto_loop_start);
2074
2075	if (cpu >= 0) {
2076		/* Make sure the rd does not get freed while pushing */
2077		sched_get_rd(rq->rd);
2078		irq_work_queue_on(&rq->rd->rto_push_work, cpu);
2079	}
2080}
2081
2082/* Called from hardirq context */
2083void rto_push_irq_work_func(struct irq_work *work)
2084{
2085	struct root_domain *rd =
2086		container_of(work, struct root_domain, rto_push_work);
2087	struct rq *rq;
2088	int cpu;
2089
2090	rq = this_rq();
2091
2092	/*
2093	 * We do not need to grab the lock to check for has_pushable_tasks.
2094	 * When it gets updated, a check is made if a push is possible.
2095	 */
2096	if (has_pushable_tasks(rq)) {
2097		raw_spin_lock(&rq->lock);
2098		push_rt_tasks(rq);
2099		raw_spin_unlock(&rq->lock);
 
2100	}
2101
2102	raw_spin_lock(&rd->rto_lock);
2103
2104	/* Pass the IPI to the next rt overloaded queue */
2105	cpu = rto_next_cpu(rd);
2106
2107	raw_spin_unlock(&rd->rto_lock);
2108
2109	if (cpu < 0) {
2110		sched_put_rd(rd);
2111		return;
2112	}
2113
2114	/* Try the next RT overloaded CPU */
2115	irq_work_queue_on(&rd->rto_push_work, cpu);
2116}
2117#endif /* HAVE_RT_PUSH_IPI */
2118
2119static void pull_rt_task(struct rq *this_rq)
2120{
2121	int this_cpu = this_rq->cpu, cpu;
2122	bool resched = false;
2123	struct task_struct *p;
2124	struct rq *src_rq;
2125	int rt_overload_count = rt_overloaded(this_rq);
2126
2127	if (likely(!rt_overload_count))
2128		return;
2129
2130	/*
2131	 * Match the barrier from rt_set_overloaded; this guarantees that if we
2132	 * see overloaded we must also see the rto_mask bit.
2133	 */
2134	smp_rmb();
2135
2136	/* If we are the only overloaded CPU do nothing */
2137	if (rt_overload_count == 1 &&
2138	    cpumask_test_cpu(this_rq->cpu, this_rq->rd->rto_mask))
2139		return;
2140
2141#ifdef HAVE_RT_PUSH_IPI
2142	if (sched_feat(RT_PUSH_IPI)) {
2143		tell_cpu_to_push(this_rq);
2144		return;
2145	}
2146#endif
2147
2148	for_each_cpu(cpu, this_rq->rd->rto_mask) {
2149		if (this_cpu == cpu)
2150			continue;
2151
2152		src_rq = cpu_rq(cpu);
2153
2154		/*
2155		 * Don't bother taking the src_rq->lock if the next highest
2156		 * task is known to be lower-priority than our current task.
2157		 * This may look racy, but if this value is about to go
2158		 * logically higher, the src_rq will push this task away.
2159		 * And if its going logically lower, we do not care
2160		 */
2161		if (src_rq->rt.highest_prio.next >=
2162		    this_rq->rt.highest_prio.curr)
2163			continue;
2164
2165		/*
2166		 * We can potentially drop this_rq's lock in
2167		 * double_lock_balance, and another CPU could
2168		 * alter this_rq
2169		 */
 
2170		double_lock_balance(this_rq, src_rq);
2171
2172		/*
2173		 * We can pull only a task, which is pushable
2174		 * on its rq, and no others.
2175		 */
2176		p = pick_highest_pushable_task(src_rq, this_cpu);
2177
2178		/*
2179		 * Do we have an RT task that preempts
2180		 * the to-be-scheduled task?
2181		 */
2182		if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
2183			WARN_ON(p == src_rq->curr);
2184			WARN_ON(!task_on_rq_queued(p));
2185
2186			/*
2187			 * There's a chance that p is higher in priority
2188			 * than what's currently running on its CPU.
2189			 * This is just that p is wakeing up and hasn't
2190			 * had a chance to schedule. We only pull
2191			 * p if it is lower in priority than the
2192			 * current task on the run queue
2193			 */
2194			if (p->prio < src_rq->curr->prio)
2195				goto skip;
2196
2197			resched = true;
2198
2199			deactivate_task(src_rq, p, 0);
2200			set_task_cpu(p, this_cpu);
2201			activate_task(this_rq, p, 0);
 
 
 
2202			/*
2203			 * We continue with the search, just in
2204			 * case there's an even higher prio task
2205			 * in another runqueue. (low likelihood
2206			 * but possible)
2207			 */
2208		}
2209skip:
2210		double_unlock_balance(this_rq, src_rq);
 
 
 
 
 
 
 
2211	}
2212
2213	if (resched)
2214		resched_curr(this_rq);
2215}
2216
2217/*
2218 * If we are not running and we are not going to reschedule soon, we should
2219 * try to push tasks away now
2220 */
2221static void task_woken_rt(struct rq *rq, struct task_struct *p)
2222{
2223	bool need_to_push = !task_running(rq, p) &&
2224			    !test_tsk_need_resched(rq->curr) &&
2225			    p->nr_cpus_allowed > 1 &&
2226			    (dl_task(rq->curr) || rt_task(rq->curr)) &&
2227			    (rq->curr->nr_cpus_allowed < 2 ||
2228			     rq->curr->prio <= p->prio);
2229
2230	if (need_to_push)
2231		push_rt_tasks(rq);
2232}
2233
2234/* Assumes rq->lock is held */
2235static void rq_online_rt(struct rq *rq)
2236{
2237	if (rq->rt.overloaded)
2238		rt_set_overload(rq);
2239
2240	__enable_runtime(rq);
2241
2242	cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
2243}
2244
2245/* Assumes rq->lock is held */
2246static void rq_offline_rt(struct rq *rq)
2247{
2248	if (rq->rt.overloaded)
2249		rt_clear_overload(rq);
2250
2251	__disable_runtime(rq);
2252
2253	cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
2254}
2255
2256/*
2257 * When switch from the rt queue, we bring ourselves to a position
2258 * that we might want to pull RT tasks from other runqueues.
2259 */
2260static void switched_from_rt(struct rq *rq, struct task_struct *p)
2261{
2262	/*
2263	 * If there are other RT tasks then we will reschedule
2264	 * and the scheduling of the other RT tasks will handle
2265	 * the balancing. But if we are the last RT task
2266	 * we may need to handle the pulling of RT tasks
2267	 * now.
2268	 */
2269	if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
2270		return;
2271
2272	rt_queue_pull_task(rq);
2273}
2274
2275void __init init_sched_rt_class(void)
2276{
2277	unsigned int i;
2278
2279	for_each_possible_cpu(i) {
2280		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
2281					GFP_KERNEL, cpu_to_node(i));
2282	}
2283}
2284#endif /* CONFIG_SMP */
2285
2286/*
2287 * When switching a task to RT, we may overload the runqueue
2288 * with RT tasks. In this case we try to push them off to
2289 * other runqueues.
2290 */
2291static void switched_to_rt(struct rq *rq, struct task_struct *p)
2292{
2293	/*
2294	 * If we are already running, then there's nothing
2295	 * that needs to be done. But if we are not running
2296	 * we may need to preempt the current running task.
2297	 * If that current running task is also an RT task
 
 
 
 
 
 
 
2298	 * then see if we can move to another run queue.
2299	 */
2300	if (task_on_rq_queued(p) && rq->curr != p) {
2301#ifdef CONFIG_SMP
2302		if (p->nr_cpus_allowed > 1 && rq->rt.overloaded)
2303			rt_queue_push_tasks(rq);
2304#endif /* CONFIG_SMP */
2305		if (p->prio < rq->curr->prio && cpu_online(cpu_of(rq)))
2306			resched_curr(rq);
2307	}
2308}
2309
2310/*
2311 * Priority of the task has changed. This may cause
2312 * us to initiate a push or pull.
2313 */
2314static void
2315prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
2316{
2317	if (!task_on_rq_queued(p))
2318		return;
2319
2320	if (rq->curr == p) {
2321#ifdef CONFIG_SMP
2322		/*
2323		 * If our priority decreases while running, we
2324		 * may need to pull tasks to this runqueue.
2325		 */
2326		if (oldprio < p->prio)
2327			rt_queue_pull_task(rq);
2328
2329		/*
2330		 * If there's a higher priority task waiting to run
2331		 * then reschedule.
2332		 */
2333		if (p->prio > rq->rt.highest_prio.curr)
2334			resched_curr(rq);
2335#else
2336		/* For UP simply resched on drop of prio */
2337		if (oldprio < p->prio)
2338			resched_curr(rq);
2339#endif /* CONFIG_SMP */
2340	} else {
2341		/*
2342		 * This task is not running, but if it is
2343		 * greater than the current running task
2344		 * then reschedule.
2345		 */
2346		if (p->prio < rq->curr->prio)
2347			resched_curr(rq);
2348	}
2349}
2350
2351#ifdef CONFIG_POSIX_TIMERS
2352static void watchdog(struct rq *rq, struct task_struct *p)
2353{
2354	unsigned long soft, hard;
2355
2356	/* max may change after cur was read, this will be fixed next tick */
2357	soft = task_rlimit(p, RLIMIT_RTTIME);
2358	hard = task_rlimit_max(p, RLIMIT_RTTIME);
2359
2360	if (soft != RLIM_INFINITY) {
2361		unsigned long next;
2362
2363		if (p->rt.watchdog_stamp != jiffies) {
2364			p->rt.timeout++;
2365			p->rt.watchdog_stamp = jiffies;
2366		}
2367
2368		next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2369		if (p->rt.timeout > next) {
2370			posix_cputimers_rt_watchdog(&p->posix_cputimers,
2371						    p->se.sum_exec_runtime);
2372		}
2373	}
2374}
2375#else
2376static inline void watchdog(struct rq *rq, struct task_struct *p) { }
2377#endif
2378
2379/*
2380 * scheduler tick hitting a task of our scheduling class.
2381 *
2382 * NOTE: This function can be called remotely by the tick offload that
2383 * goes along full dynticks. Therefore no local assumption can be made
2384 * and everything must be accessed through the @rq and @curr passed in
2385 * parameters.
2386 */
2387static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2388{
2389	struct sched_rt_entity *rt_se = &p->rt;
2390
2391	update_curr_rt(rq);
2392	update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2393
2394	watchdog(rq, p);
2395
2396	/*
2397	 * RR tasks need a special form of timeslice management.
2398	 * FIFO tasks have no timeslices.
2399	 */
2400	if (p->policy != SCHED_RR)
2401		return;
2402
2403	if (--p->rt.time_slice)
2404		return;
2405
2406	p->rt.time_slice = sched_rr_timeslice;
2407
2408	/*
2409	 * Requeue to the end of queue if we (and all of our ancestors) are not
2410	 * the only element on the queue
2411	 */
2412	for_each_sched_rt_entity(rt_se) {
2413		if (rt_se->run_list.prev != rt_se->run_list.next) {
2414			requeue_task_rt(rq, p, 0);
2415			resched_curr(rq);
2416			return;
2417		}
2418	}
2419}
2420
2421static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2422{
2423	/*
2424	 * Time slice is 0 for SCHED_FIFO tasks
2425	 */
2426	if (task->policy == SCHED_RR)
2427		return sched_rr_timeslice;
2428	else
2429		return 0;
2430}
2431
2432const struct sched_class rt_sched_class
2433	__attribute__((section("__rt_sched_class"))) = {
2434	.enqueue_task		= enqueue_task_rt,
2435	.dequeue_task		= dequeue_task_rt,
2436	.yield_task		= yield_task_rt,
2437
2438	.check_preempt_curr	= check_preempt_curr_rt,
2439
2440	.pick_next_task		= pick_next_task_rt,
2441	.put_prev_task		= put_prev_task_rt,
2442	.set_next_task          = set_next_task_rt,
2443
2444#ifdef CONFIG_SMP
2445	.balance		= balance_rt,
 
2446	.select_task_rq		= select_task_rq_rt,
2447	.set_cpus_allowed       = set_cpus_allowed_common,
2448	.rq_online              = rq_online_rt,
2449	.rq_offline             = rq_offline_rt,
2450	.task_woken		= task_woken_rt,
2451	.switched_from		= switched_from_rt,
 
2452#endif
2453
2454	.task_tick		= task_tick_rt,
2455
2456	.get_rr_interval	= get_rr_interval_rt,
2457
2458	.prio_changed		= prio_changed_rt,
2459	.switched_to		= switched_to_rt,
2460
2461	.update_curr		= update_curr_rt,
2462
2463#ifdef CONFIG_UCLAMP_TASK
2464	.uclamp_enabled		= 1,
2465#endif
2466};
2467
2468#ifdef CONFIG_RT_GROUP_SCHED
2469/*
2470 * Ensure that the real time constraints are schedulable.
2471 */
2472static DEFINE_MUTEX(rt_constraints_mutex);
2473
2474static inline int tg_has_rt_tasks(struct task_group *tg)
2475{
2476	struct task_struct *task;
2477	struct css_task_iter it;
2478	int ret = 0;
2479
2480	/*
2481	 * Autogroups do not have RT tasks; see autogroup_create().
2482	 */
2483	if (task_group_is_autogroup(tg))
2484		return 0;
2485
2486	css_task_iter_start(&tg->css, 0, &it);
2487	while (!ret && (task = css_task_iter_next(&it)))
2488		ret |= rt_task(task);
2489	css_task_iter_end(&it);
2490
2491	return ret;
2492}
2493
2494struct rt_schedulable_data {
2495	struct task_group *tg;
2496	u64 rt_period;
2497	u64 rt_runtime;
2498};
2499
2500static int tg_rt_schedulable(struct task_group *tg, void *data)
2501{
2502	struct rt_schedulable_data *d = data;
2503	struct task_group *child;
2504	unsigned long total, sum = 0;
2505	u64 period, runtime;
2506
2507	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2508	runtime = tg->rt_bandwidth.rt_runtime;
2509
2510	if (tg == d->tg) {
2511		period = d->rt_period;
2512		runtime = d->rt_runtime;
2513	}
2514
2515	/*
2516	 * Cannot have more runtime than the period.
2517	 */
2518	if (runtime > period && runtime != RUNTIME_INF)
2519		return -EINVAL;
2520
2521	/*
2522	 * Ensure we don't starve existing RT tasks if runtime turns zero.
2523	 */
2524	if (rt_bandwidth_enabled() && !runtime &&
2525	    tg->rt_bandwidth.rt_runtime && tg_has_rt_tasks(tg))
2526		return -EBUSY;
2527
2528	total = to_ratio(period, runtime);
2529
2530	/*
2531	 * Nobody can have more than the global setting allows.
2532	 */
2533	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
2534		return -EINVAL;
2535
2536	/*
2537	 * The sum of our children's runtime should not exceed our own.
2538	 */
2539	list_for_each_entry_rcu(child, &tg->children, siblings) {
2540		period = ktime_to_ns(child->rt_bandwidth.rt_period);
2541		runtime = child->rt_bandwidth.rt_runtime;
2542
2543		if (child == d->tg) {
2544			period = d->rt_period;
2545			runtime = d->rt_runtime;
2546		}
2547
2548		sum += to_ratio(period, runtime);
2549	}
2550
2551	if (sum > total)
2552		return -EINVAL;
2553
2554	return 0;
2555}
2556
2557static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
2558{
2559	int ret;
2560
2561	struct rt_schedulable_data data = {
2562		.tg = tg,
2563		.rt_period = period,
2564		.rt_runtime = runtime,
2565	};
2566
2567	rcu_read_lock();
2568	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
2569	rcu_read_unlock();
2570
2571	return ret;
2572}
2573
2574static int tg_set_rt_bandwidth(struct task_group *tg,
2575		u64 rt_period, u64 rt_runtime)
2576{
2577	int i, err = 0;
2578
2579	/*
2580	 * Disallowing the root group RT runtime is BAD, it would disallow the
2581	 * kernel creating (and or operating) RT threads.
2582	 */
2583	if (tg == &root_task_group && rt_runtime == 0)
2584		return -EINVAL;
2585
2586	/* No period doesn't make any sense. */
2587	if (rt_period == 0)
2588		return -EINVAL;
2589
2590	/*
2591	 * Bound quota to defend quota against overflow during bandwidth shift.
2592	 */
2593	if (rt_runtime != RUNTIME_INF && rt_runtime > max_rt_runtime)
2594		return -EINVAL;
2595
2596	mutex_lock(&rt_constraints_mutex);
2597	err = __rt_schedulable(tg, rt_period, rt_runtime);
2598	if (err)
2599		goto unlock;
2600
2601	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2602	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
2603	tg->rt_bandwidth.rt_runtime = rt_runtime;
2604
2605	for_each_possible_cpu(i) {
2606		struct rt_rq *rt_rq = tg->rt_rq[i];
2607
2608		raw_spin_lock(&rt_rq->rt_runtime_lock);
2609		rt_rq->rt_runtime = rt_runtime;
2610		raw_spin_unlock(&rt_rq->rt_runtime_lock);
2611	}
2612	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2613unlock:
2614	mutex_unlock(&rt_constraints_mutex);
2615
2616	return err;
2617}
2618
2619int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
2620{
2621	u64 rt_runtime, rt_period;
2622
2623	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2624	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
2625	if (rt_runtime_us < 0)
2626		rt_runtime = RUNTIME_INF;
2627	else if ((u64)rt_runtime_us > U64_MAX / NSEC_PER_USEC)
2628		return -EINVAL;
2629
2630	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2631}
2632
2633long sched_group_rt_runtime(struct task_group *tg)
2634{
2635	u64 rt_runtime_us;
2636
2637	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
2638		return -1;
2639
2640	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
2641	do_div(rt_runtime_us, NSEC_PER_USEC);
2642	return rt_runtime_us;
2643}
2644
2645int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
2646{
2647	u64 rt_runtime, rt_period;
2648
2649	if (rt_period_us > U64_MAX / NSEC_PER_USEC)
2650		return -EINVAL;
2651
2652	rt_period = rt_period_us * NSEC_PER_USEC;
2653	rt_runtime = tg->rt_bandwidth.rt_runtime;
2654
2655	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2656}
2657
2658long sched_group_rt_period(struct task_group *tg)
2659{
2660	u64 rt_period_us;
2661
2662	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
2663	do_div(rt_period_us, NSEC_PER_USEC);
2664	return rt_period_us;
2665}
2666
 
2667static int sched_rt_global_constraints(void)
2668{
2669	int ret = 0;
2670
2671	mutex_lock(&rt_constraints_mutex);
2672	ret = __rt_schedulable(NULL, 0, 0);
2673	mutex_unlock(&rt_constraints_mutex);
2674
2675	return ret;
2676}
 
2677
2678int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
2679{
2680	/* Don't accept realtime tasks when there is no way for them to run */
2681	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
2682		return 0;
2683
2684	return 1;
2685}
2686
2687#else /* !CONFIG_RT_GROUP_SCHED */
 
 
2688static int sched_rt_global_constraints(void)
2689{
2690	unsigned long flags;
2691	int i;
2692
2693	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
2694	for_each_possible_cpu(i) {
2695		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
2696
2697		raw_spin_lock(&rt_rq->rt_runtime_lock);
2698		rt_rq->rt_runtime = global_rt_runtime();
2699		raw_spin_unlock(&rt_rq->rt_runtime_lock);
2700	}
2701	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
2702
2703	return 0;
2704}
 
2705#endif /* CONFIG_RT_GROUP_SCHED */
2706
 
2707static int sched_rt_global_validate(void)
2708{
2709	if (sysctl_sched_rt_period <= 0)
2710		return -EINVAL;
2711
2712	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
2713		((sysctl_sched_rt_runtime > sysctl_sched_rt_period) ||
2714		 ((u64)sysctl_sched_rt_runtime *
2715			NSEC_PER_USEC > max_rt_runtime)))
2716		return -EINVAL;
2717
2718	return 0;
2719}
2720
2721static void sched_rt_do_global(void)
2722{
 
 
 
2723	def_rt_bandwidth.rt_runtime = global_rt_runtime();
2724	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
 
2725}
2726
2727int sched_rt_handler(struct ctl_table *table, int write, void *buffer,
2728		size_t *lenp, loff_t *ppos)
2729{
2730	int old_period, old_runtime;
2731	static DEFINE_MUTEX(mutex);
2732	int ret;
2733
2734	mutex_lock(&mutex);
2735	old_period = sysctl_sched_rt_period;
2736	old_runtime = sysctl_sched_rt_runtime;
2737
2738	ret = proc_dointvec(table, write, buffer, lenp, ppos);
2739
2740	if (!ret && write) {
2741		ret = sched_rt_global_validate();
2742		if (ret)
2743			goto undo;
2744
2745		ret = sched_dl_global_validate();
2746		if (ret)
2747			goto undo;
2748
2749		ret = sched_rt_global_constraints();
2750		if (ret)
2751			goto undo;
2752
2753		sched_rt_do_global();
2754		sched_dl_do_global();
2755	}
2756	if (0) {
2757undo:
2758		sysctl_sched_rt_period = old_period;
2759		sysctl_sched_rt_runtime = old_runtime;
2760	}
2761	mutex_unlock(&mutex);
2762
2763	return ret;
2764}
2765
2766int sched_rr_handler(struct ctl_table *table, int write, void *buffer,
2767		size_t *lenp, loff_t *ppos)
2768{
2769	int ret;
2770	static DEFINE_MUTEX(mutex);
2771
2772	mutex_lock(&mutex);
2773	ret = proc_dointvec(table, write, buffer, lenp, ppos);
2774	/*
2775	 * Make sure that internally we keep jiffies.
2776	 * Also, writing zero resets the timeslice to default:
2777	 */
2778	if (!ret && write) {
2779		sched_rr_timeslice =
2780			sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE :
2781			msecs_to_jiffies(sysctl_sched_rr_timeslice);
2782	}
2783	mutex_unlock(&mutex);
2784
2785	return ret;
2786}
 
2787
2788#ifdef CONFIG_SCHED_DEBUG
2789void print_rt_stats(struct seq_file *m, int cpu)
2790{
2791	rt_rq_iter_t iter;
2792	struct rt_rq *rt_rq;
2793
2794	rcu_read_lock();
2795	for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
2796		print_rt_rq(m, cpu, rt_rq);
2797	rcu_read_unlock();
2798}
2799#endif /* CONFIG_SCHED_DEBUG */