Linux Audio

Check our new training course

Embedded Linux training

Mar 10-20, 2025, special US time zones
Register
Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
   4 * policies)
   5 */
   6
 
 
 
 
 
   7int sched_rr_timeslice = RR_TIMESLICE;
   8/* More than 4 hours if BW_SHIFT equals 20. */
   9static const u64 max_rt_runtime = MAX_BW;
  10
  11static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  12
  13struct rt_bandwidth def_rt_bandwidth;
  14
  15/*
  16 * period over which we measure -rt task CPU usage in us.
  17 * default: 1s
  18 */
  19unsigned int sysctl_sched_rt_period = 1000000;
  20
  21/*
  22 * part of the period that we allow rt tasks to run in us.
  23 * default: 0.95s
  24 */
  25int sysctl_sched_rt_runtime = 950000;
  26
  27#ifdef CONFIG_SYSCTL
  28static int sysctl_sched_rr_timeslice = (MSEC_PER_SEC / HZ) * RR_TIMESLICE;
  29static int sched_rt_handler(struct ctl_table *table, int write, void *buffer,
  30		size_t *lenp, loff_t *ppos);
  31static int sched_rr_handler(struct ctl_table *table, int write, void *buffer,
  32		size_t *lenp, loff_t *ppos);
  33static struct ctl_table sched_rt_sysctls[] = {
  34	{
  35		.procname       = "sched_rt_period_us",
  36		.data           = &sysctl_sched_rt_period,
  37		.maxlen         = sizeof(unsigned int),
  38		.mode           = 0644,
  39		.proc_handler   = sched_rt_handler,
  40	},
  41	{
  42		.procname       = "sched_rt_runtime_us",
  43		.data           = &sysctl_sched_rt_runtime,
  44		.maxlen         = sizeof(int),
  45		.mode           = 0644,
  46		.proc_handler   = sched_rt_handler,
  47	},
  48	{
  49		.procname       = "sched_rr_timeslice_ms",
  50		.data           = &sysctl_sched_rr_timeslice,
  51		.maxlen         = sizeof(int),
  52		.mode           = 0644,
  53		.proc_handler   = sched_rr_handler,
  54	},
  55	{}
  56};
  57
  58static int __init sched_rt_sysctl_init(void)
  59{
  60	register_sysctl_init("kernel", sched_rt_sysctls);
  61	return 0;
  62}
  63late_initcall(sched_rt_sysctl_init);
  64#endif
  65
  66static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  67{
  68	struct rt_bandwidth *rt_b =
  69		container_of(timer, struct rt_bandwidth, rt_period_timer);
  70	int idle = 0;
  71	int overrun;
  72
  73	raw_spin_lock(&rt_b->rt_runtime_lock);
  74	for (;;) {
  75		overrun = hrtimer_forward_now(timer, rt_b->rt_period);
  76		if (!overrun)
  77			break;
  78
  79		raw_spin_unlock(&rt_b->rt_runtime_lock);
  80		idle = do_sched_rt_period_timer(rt_b, overrun);
  81		raw_spin_lock(&rt_b->rt_runtime_lock);
  82	}
  83	if (idle)
  84		rt_b->rt_period_active = 0;
  85	raw_spin_unlock(&rt_b->rt_runtime_lock);
  86
  87	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  88}
  89
  90void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  91{
  92	rt_b->rt_period = ns_to_ktime(period);
  93	rt_b->rt_runtime = runtime;
  94
  95	raw_spin_lock_init(&rt_b->rt_runtime_lock);
  96
  97	hrtimer_init(&rt_b->rt_period_timer, CLOCK_MONOTONIC,
  98		     HRTIMER_MODE_REL_HARD);
  99	rt_b->rt_period_timer.function = sched_rt_period_timer;
 100}
 101
 102static inline void do_start_rt_bandwidth(struct rt_bandwidth *rt_b)
 103{
 
 
 
 104	raw_spin_lock(&rt_b->rt_runtime_lock);
 105	if (!rt_b->rt_period_active) {
 106		rt_b->rt_period_active = 1;
 107		/*
 108		 * SCHED_DEADLINE updates the bandwidth, as a run away
 109		 * RT task with a DL task could hog a CPU. But DL does
 110		 * not reset the period. If a deadline task was running
 111		 * without an RT task running, it can cause RT tasks to
 112		 * throttle when they start up. Kick the timer right away
 113		 * to update the period.
 114		 */
 115		hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0));
 116		hrtimer_start_expires(&rt_b->rt_period_timer,
 117				      HRTIMER_MODE_ABS_PINNED_HARD);
 118	}
 119	raw_spin_unlock(&rt_b->rt_runtime_lock);
 120}
 121
 122static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
 123{
 124	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
 125		return;
 126
 127	do_start_rt_bandwidth(rt_b);
 128}
 129
 130void init_rt_rq(struct rt_rq *rt_rq)
 131{
 132	struct rt_prio_array *array;
 133	int i;
 134
 135	array = &rt_rq->active;
 136	for (i = 0; i < MAX_RT_PRIO; i++) {
 137		INIT_LIST_HEAD(array->queue + i);
 138		__clear_bit(i, array->bitmap);
 139	}
 140	/* delimiter for bitsearch: */
 141	__set_bit(MAX_RT_PRIO, array->bitmap);
 142
 143#if defined CONFIG_SMP
 144	rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
 145	rt_rq->highest_prio.next = MAX_RT_PRIO-1;
 146	rt_rq->rt_nr_migratory = 0;
 147	rt_rq->overloaded = 0;
 148	plist_head_init(&rt_rq->pushable_tasks);
 
 
 
 
 
 
 
 149#endif /* CONFIG_SMP */
 150	/* We start is dequeued state, because no RT tasks are queued */
 151	rt_rq->rt_queued = 0;
 152
 153	rt_rq->rt_time = 0;
 154	rt_rq->rt_throttled = 0;
 155	rt_rq->rt_runtime = 0;
 156	raw_spin_lock_init(&rt_rq->rt_runtime_lock);
 157}
 158
 159#ifdef CONFIG_RT_GROUP_SCHED
 160static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
 161{
 162	hrtimer_cancel(&rt_b->rt_period_timer);
 163}
 164
 165#define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
 166
 167static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
 168{
 169#ifdef CONFIG_SCHED_DEBUG
 170	WARN_ON_ONCE(!rt_entity_is_task(rt_se));
 171#endif
 172	return container_of(rt_se, struct task_struct, rt);
 173}
 174
 175static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
 176{
 177	return rt_rq->rq;
 178}
 179
 180static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
 181{
 182	return rt_se->rt_rq;
 183}
 184
 185static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
 186{
 187	struct rt_rq *rt_rq = rt_se->rt_rq;
 188
 189	return rt_rq->rq;
 190}
 191
 192void unregister_rt_sched_group(struct task_group *tg)
 193{
 194	if (tg->rt_se)
 195		destroy_rt_bandwidth(&tg->rt_bandwidth);
 196
 197}
 198
 199void free_rt_sched_group(struct task_group *tg)
 200{
 201	int i;
 202
 
 
 
 203	for_each_possible_cpu(i) {
 204		if (tg->rt_rq)
 205			kfree(tg->rt_rq[i]);
 206		if (tg->rt_se)
 207			kfree(tg->rt_se[i]);
 208	}
 209
 210	kfree(tg->rt_rq);
 211	kfree(tg->rt_se);
 212}
 213
 214void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
 215		struct sched_rt_entity *rt_se, int cpu,
 216		struct sched_rt_entity *parent)
 217{
 218	struct rq *rq = cpu_rq(cpu);
 219
 220	rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
 221	rt_rq->rt_nr_boosted = 0;
 222	rt_rq->rq = rq;
 223	rt_rq->tg = tg;
 224
 225	tg->rt_rq[cpu] = rt_rq;
 226	tg->rt_se[cpu] = rt_se;
 227
 228	if (!rt_se)
 229		return;
 230
 231	if (!parent)
 232		rt_se->rt_rq = &rq->rt;
 233	else
 234		rt_se->rt_rq = parent->my_q;
 235
 236	rt_se->my_q = rt_rq;
 237	rt_se->parent = parent;
 238	INIT_LIST_HEAD(&rt_se->run_list);
 239}
 240
 241int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
 242{
 243	struct rt_rq *rt_rq;
 244	struct sched_rt_entity *rt_se;
 245	int i;
 246
 247	tg->rt_rq = kcalloc(nr_cpu_ids, sizeof(rt_rq), GFP_KERNEL);
 248	if (!tg->rt_rq)
 249		goto err;
 250	tg->rt_se = kcalloc(nr_cpu_ids, sizeof(rt_se), GFP_KERNEL);
 251	if (!tg->rt_se)
 252		goto err;
 253
 254	init_rt_bandwidth(&tg->rt_bandwidth,
 255			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
 256
 257	for_each_possible_cpu(i) {
 258		rt_rq = kzalloc_node(sizeof(struct rt_rq),
 259				     GFP_KERNEL, cpu_to_node(i));
 260		if (!rt_rq)
 261			goto err;
 262
 263		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
 264				     GFP_KERNEL, cpu_to_node(i));
 265		if (!rt_se)
 266			goto err_free_rq;
 267
 268		init_rt_rq(rt_rq);
 269		rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
 270		init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
 271	}
 272
 273	return 1;
 274
 275err_free_rq:
 276	kfree(rt_rq);
 277err:
 278	return 0;
 279}
 280
 281#else /* CONFIG_RT_GROUP_SCHED */
 282
 283#define rt_entity_is_task(rt_se) (1)
 284
 285static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
 286{
 287	return container_of(rt_se, struct task_struct, rt);
 288}
 289
 290static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
 291{
 292	return container_of(rt_rq, struct rq, rt);
 293}
 294
 295static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
 296{
 297	struct task_struct *p = rt_task_of(rt_se);
 298
 299	return task_rq(p);
 300}
 301
 302static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
 303{
 304	struct rq *rq = rq_of_rt_se(rt_se);
 305
 306	return &rq->rt;
 307}
 308
 309void unregister_rt_sched_group(struct task_group *tg) { }
 310
 311void free_rt_sched_group(struct task_group *tg) { }
 312
 313int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
 314{
 315	return 1;
 316}
 317#endif /* CONFIG_RT_GROUP_SCHED */
 318
 319#ifdef CONFIG_SMP
 320
 
 
 321static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
 322{
 323	/* Try to pull RT tasks here if we lower this rq's prio */
 324	return rq->online && rq->rt.highest_prio.curr > prev->prio;
 325}
 326
 327static inline int rt_overloaded(struct rq *rq)
 328{
 329	return atomic_read(&rq->rd->rto_count);
 330}
 331
 332static inline void rt_set_overload(struct rq *rq)
 333{
 334	if (!rq->online)
 335		return;
 336
 337	cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
 338	/*
 339	 * Make sure the mask is visible before we set
 340	 * the overload count. That is checked to determine
 341	 * if we should look at the mask. It would be a shame
 342	 * if we looked at the mask, but the mask was not
 343	 * updated yet.
 344	 *
 345	 * Matched by the barrier in pull_rt_task().
 346	 */
 347	smp_wmb();
 348	atomic_inc(&rq->rd->rto_count);
 349}
 350
 351static inline void rt_clear_overload(struct rq *rq)
 352{
 353	if (!rq->online)
 354		return;
 355
 356	/* the order here really doesn't matter */
 357	atomic_dec(&rq->rd->rto_count);
 358	cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
 359}
 360
 361static void update_rt_migration(struct rt_rq *rt_rq)
 362{
 363	if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
 364		if (!rt_rq->overloaded) {
 365			rt_set_overload(rq_of_rt_rq(rt_rq));
 366			rt_rq->overloaded = 1;
 367		}
 368	} else if (rt_rq->overloaded) {
 369		rt_clear_overload(rq_of_rt_rq(rt_rq));
 370		rt_rq->overloaded = 0;
 371	}
 372}
 373
 374static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
 375{
 376	struct task_struct *p;
 377
 378	if (!rt_entity_is_task(rt_se))
 379		return;
 380
 381	p = rt_task_of(rt_se);
 382	rt_rq = &rq_of_rt_rq(rt_rq)->rt;
 383
 384	rt_rq->rt_nr_total++;
 385	if (p->nr_cpus_allowed > 1)
 386		rt_rq->rt_nr_migratory++;
 387
 388	update_rt_migration(rt_rq);
 389}
 390
 391static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
 392{
 393	struct task_struct *p;
 394
 395	if (!rt_entity_is_task(rt_se))
 396		return;
 397
 398	p = rt_task_of(rt_se);
 399	rt_rq = &rq_of_rt_rq(rt_rq)->rt;
 400
 401	rt_rq->rt_nr_total--;
 402	if (p->nr_cpus_allowed > 1)
 403		rt_rq->rt_nr_migratory--;
 404
 405	update_rt_migration(rt_rq);
 406}
 407
 408static inline int has_pushable_tasks(struct rq *rq)
 409{
 410	return !plist_head_empty(&rq->rt.pushable_tasks);
 411}
 412
 413static DEFINE_PER_CPU(struct balance_callback, rt_push_head);
 414static DEFINE_PER_CPU(struct balance_callback, rt_pull_head);
 415
 416static void push_rt_tasks(struct rq *);
 417static void pull_rt_task(struct rq *);
 418
 419static inline void rt_queue_push_tasks(struct rq *rq)
 420{
 421	if (!has_pushable_tasks(rq))
 422		return;
 423
 424	queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
 425}
 426
 427static inline void rt_queue_pull_task(struct rq *rq)
 428{
 429	queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
 430}
 431
 432static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
 433{
 434	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
 435	plist_node_init(&p->pushable_tasks, p->prio);
 436	plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
 437
 438	/* Update the highest prio pushable task */
 439	if (p->prio < rq->rt.highest_prio.next)
 440		rq->rt.highest_prio.next = p->prio;
 441}
 442
 443static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
 444{
 445	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
 446
 447	/* Update the new highest prio pushable task */
 448	if (has_pushable_tasks(rq)) {
 449		p = plist_first_entry(&rq->rt.pushable_tasks,
 450				      struct task_struct, pushable_tasks);
 451		rq->rt.highest_prio.next = p->prio;
 452	} else {
 453		rq->rt.highest_prio.next = MAX_RT_PRIO-1;
 454	}
 455}
 456
 457#else
 458
 459static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
 460{
 461}
 462
 463static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
 464{
 465}
 466
 467static inline
 468void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
 469{
 470}
 471
 472static inline
 473void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
 474{
 475}
 476
 477static inline void rt_queue_push_tasks(struct rq *rq)
 478{
 
 479}
 480#endif /* CONFIG_SMP */
 481
 482static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
 483static void dequeue_top_rt_rq(struct rt_rq *rt_rq, unsigned int count);
 484
 485static inline int on_rt_rq(struct sched_rt_entity *rt_se)
 486{
 487	return rt_se->on_rq;
 488}
 489
 490#ifdef CONFIG_UCLAMP_TASK
 491/*
 492 * Verify the fitness of task @p to run on @cpu taking into account the uclamp
 493 * settings.
 494 *
 495 * This check is only important for heterogeneous systems where uclamp_min value
 496 * is higher than the capacity of a @cpu. For non-heterogeneous system this
 497 * function will always return true.
 498 *
 499 * The function will return true if the capacity of the @cpu is >= the
 500 * uclamp_min and false otherwise.
 501 *
 502 * Note that uclamp_min will be clamped to uclamp_max if uclamp_min
 503 * > uclamp_max.
 504 */
 505static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
 506{
 507	unsigned int min_cap;
 508	unsigned int max_cap;
 509	unsigned int cpu_cap;
 510
 511	/* Only heterogeneous systems can benefit from this check */
 512	if (!sched_asym_cpucap_active())
 513		return true;
 514
 515	min_cap = uclamp_eff_value(p, UCLAMP_MIN);
 516	max_cap = uclamp_eff_value(p, UCLAMP_MAX);
 517
 518	cpu_cap = capacity_orig_of(cpu);
 
 519
 520	return cpu_cap >= min(min_cap, max_cap);
 521}
 522#else
 523static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
 524{
 525	return true;
 526}
 527#endif
 528
 529#ifdef CONFIG_RT_GROUP_SCHED
 530
 531static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
 532{
 533	if (!rt_rq->tg)
 534		return RUNTIME_INF;
 535
 536	return rt_rq->rt_runtime;
 537}
 538
 539static inline u64 sched_rt_period(struct rt_rq *rt_rq)
 540{
 541	return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
 542}
 543
 544typedef struct task_group *rt_rq_iter_t;
 545
 546static inline struct task_group *next_task_group(struct task_group *tg)
 547{
 548	do {
 549		tg = list_entry_rcu(tg->list.next,
 550			typeof(struct task_group), list);
 551	} while (&tg->list != &task_groups && task_group_is_autogroup(tg));
 552
 553	if (&tg->list == &task_groups)
 554		tg = NULL;
 555
 556	return tg;
 557}
 558
 559#define for_each_rt_rq(rt_rq, iter, rq)					\
 560	for (iter = container_of(&task_groups, typeof(*iter), list);	\
 561		(iter = next_task_group(iter)) &&			\
 562		(rt_rq = iter->rt_rq[cpu_of(rq)]);)
 563
 564#define for_each_sched_rt_entity(rt_se) \
 565	for (; rt_se; rt_se = rt_se->parent)
 566
 567static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
 568{
 569	return rt_se->my_q;
 570}
 571
 572static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
 573static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
 574
 575static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
 576{
 577	struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
 578	struct rq *rq = rq_of_rt_rq(rt_rq);
 579	struct sched_rt_entity *rt_se;
 580
 581	int cpu = cpu_of(rq);
 582
 583	rt_se = rt_rq->tg->rt_se[cpu];
 584
 585	if (rt_rq->rt_nr_running) {
 586		if (!rt_se)
 587			enqueue_top_rt_rq(rt_rq);
 588		else if (!on_rt_rq(rt_se))
 589			enqueue_rt_entity(rt_se, 0);
 590
 591		if (rt_rq->highest_prio.curr < curr->prio)
 592			resched_curr(rq);
 593	}
 594}
 595
 596static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
 597{
 598	struct sched_rt_entity *rt_se;
 599	int cpu = cpu_of(rq_of_rt_rq(rt_rq));
 600
 601	rt_se = rt_rq->tg->rt_se[cpu];
 602
 603	if (!rt_se) {
 604		dequeue_top_rt_rq(rt_rq, rt_rq->rt_nr_running);
 605		/* Kick cpufreq (see the comment in kernel/sched/sched.h). */
 606		cpufreq_update_util(rq_of_rt_rq(rt_rq), 0);
 607	}
 608	else if (on_rt_rq(rt_se))
 609		dequeue_rt_entity(rt_se, 0);
 610}
 611
 612static inline int rt_rq_throttled(struct rt_rq *rt_rq)
 613{
 614	return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
 615}
 616
 617static int rt_se_boosted(struct sched_rt_entity *rt_se)
 618{
 619	struct rt_rq *rt_rq = group_rt_rq(rt_se);
 620	struct task_struct *p;
 621
 622	if (rt_rq)
 623		return !!rt_rq->rt_nr_boosted;
 624
 625	p = rt_task_of(rt_se);
 626	return p->prio != p->normal_prio;
 627}
 628
 629#ifdef CONFIG_SMP
 630static inline const struct cpumask *sched_rt_period_mask(void)
 631{
 632	return this_rq()->rd->span;
 633}
 634#else
 635static inline const struct cpumask *sched_rt_period_mask(void)
 636{
 637	return cpu_online_mask;
 638}
 639#endif
 640
 641static inline
 642struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
 643{
 644	return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
 645}
 646
 647static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
 648{
 649	return &rt_rq->tg->rt_bandwidth;
 650}
 651
 652#else /* !CONFIG_RT_GROUP_SCHED */
 653
 654static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
 655{
 656	return rt_rq->rt_runtime;
 657}
 658
 659static inline u64 sched_rt_period(struct rt_rq *rt_rq)
 660{
 661	return ktime_to_ns(def_rt_bandwidth.rt_period);
 662}
 663
 664typedef struct rt_rq *rt_rq_iter_t;
 665
 666#define for_each_rt_rq(rt_rq, iter, rq) \
 667	for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
 668
 669#define for_each_sched_rt_entity(rt_se) \
 670	for (; rt_se; rt_se = NULL)
 671
 672static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
 673{
 674	return NULL;
 675}
 676
 677static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
 678{
 679	struct rq *rq = rq_of_rt_rq(rt_rq);
 680
 681	if (!rt_rq->rt_nr_running)
 682		return;
 683
 684	enqueue_top_rt_rq(rt_rq);
 685	resched_curr(rq);
 686}
 687
 688static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
 689{
 690	dequeue_top_rt_rq(rt_rq, rt_rq->rt_nr_running);
 691}
 692
 693static inline int rt_rq_throttled(struct rt_rq *rt_rq)
 694{
 695	return rt_rq->rt_throttled;
 696}
 697
 698static inline const struct cpumask *sched_rt_period_mask(void)
 699{
 700	return cpu_online_mask;
 701}
 702
 703static inline
 704struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
 705{
 706	return &cpu_rq(cpu)->rt;
 707}
 708
 709static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
 710{
 711	return &def_rt_bandwidth;
 712}
 713
 714#endif /* CONFIG_RT_GROUP_SCHED */
 715
 716bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
 717{
 718	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
 719
 720	return (hrtimer_active(&rt_b->rt_period_timer) ||
 721		rt_rq->rt_time < rt_b->rt_runtime);
 722}
 723
 724#ifdef CONFIG_SMP
 725/*
 726 * We ran out of runtime, see if we can borrow some from our neighbours.
 727 */
 728static void do_balance_runtime(struct rt_rq *rt_rq)
 729{
 730	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
 731	struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
 732	int i, weight;
 733	u64 rt_period;
 734
 735	weight = cpumask_weight(rd->span);
 736
 737	raw_spin_lock(&rt_b->rt_runtime_lock);
 738	rt_period = ktime_to_ns(rt_b->rt_period);
 739	for_each_cpu(i, rd->span) {
 740		struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
 741		s64 diff;
 742
 743		if (iter == rt_rq)
 744			continue;
 745
 746		raw_spin_lock(&iter->rt_runtime_lock);
 747		/*
 748		 * Either all rqs have inf runtime and there's nothing to steal
 749		 * or __disable_runtime() below sets a specific rq to inf to
 750		 * indicate its been disabled and disallow stealing.
 751		 */
 752		if (iter->rt_runtime == RUNTIME_INF)
 753			goto next;
 754
 755		/*
 756		 * From runqueues with spare time, take 1/n part of their
 757		 * spare time, but no more than our period.
 758		 */
 759		diff = iter->rt_runtime - iter->rt_time;
 760		if (diff > 0) {
 761			diff = div_u64((u64)diff, weight);
 762			if (rt_rq->rt_runtime + diff > rt_period)
 763				diff = rt_period - rt_rq->rt_runtime;
 764			iter->rt_runtime -= diff;
 765			rt_rq->rt_runtime += diff;
 766			if (rt_rq->rt_runtime == rt_period) {
 767				raw_spin_unlock(&iter->rt_runtime_lock);
 768				break;
 769			}
 770		}
 771next:
 772		raw_spin_unlock(&iter->rt_runtime_lock);
 773	}
 774	raw_spin_unlock(&rt_b->rt_runtime_lock);
 775}
 776
 777/*
 778 * Ensure this RQ takes back all the runtime it lend to its neighbours.
 779 */
 780static void __disable_runtime(struct rq *rq)
 781{
 782	struct root_domain *rd = rq->rd;
 783	rt_rq_iter_t iter;
 784	struct rt_rq *rt_rq;
 785
 786	if (unlikely(!scheduler_running))
 787		return;
 788
 789	for_each_rt_rq(rt_rq, iter, rq) {
 790		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
 791		s64 want;
 792		int i;
 793
 794		raw_spin_lock(&rt_b->rt_runtime_lock);
 795		raw_spin_lock(&rt_rq->rt_runtime_lock);
 796		/*
 797		 * Either we're all inf and nobody needs to borrow, or we're
 798		 * already disabled and thus have nothing to do, or we have
 799		 * exactly the right amount of runtime to take out.
 800		 */
 801		if (rt_rq->rt_runtime == RUNTIME_INF ||
 802				rt_rq->rt_runtime == rt_b->rt_runtime)
 803			goto balanced;
 804		raw_spin_unlock(&rt_rq->rt_runtime_lock);
 805
 806		/*
 807		 * Calculate the difference between what we started out with
 808		 * and what we current have, that's the amount of runtime
 809		 * we lend and now have to reclaim.
 810		 */
 811		want = rt_b->rt_runtime - rt_rq->rt_runtime;
 812
 813		/*
 814		 * Greedy reclaim, take back as much as we can.
 815		 */
 816		for_each_cpu(i, rd->span) {
 817			struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
 818			s64 diff;
 819
 820			/*
 821			 * Can't reclaim from ourselves or disabled runqueues.
 822			 */
 823			if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
 824				continue;
 825
 826			raw_spin_lock(&iter->rt_runtime_lock);
 827			if (want > 0) {
 828				diff = min_t(s64, iter->rt_runtime, want);
 829				iter->rt_runtime -= diff;
 830				want -= diff;
 831			} else {
 832				iter->rt_runtime -= want;
 833				want -= want;
 834			}
 835			raw_spin_unlock(&iter->rt_runtime_lock);
 836
 837			if (!want)
 838				break;
 839		}
 840
 841		raw_spin_lock(&rt_rq->rt_runtime_lock);
 842		/*
 843		 * We cannot be left wanting - that would mean some runtime
 844		 * leaked out of the system.
 845		 */
 846		WARN_ON_ONCE(want);
 847balanced:
 848		/*
 849		 * Disable all the borrow logic by pretending we have inf
 850		 * runtime - in which case borrowing doesn't make sense.
 851		 */
 852		rt_rq->rt_runtime = RUNTIME_INF;
 853		rt_rq->rt_throttled = 0;
 854		raw_spin_unlock(&rt_rq->rt_runtime_lock);
 855		raw_spin_unlock(&rt_b->rt_runtime_lock);
 856
 857		/* Make rt_rq available for pick_next_task() */
 858		sched_rt_rq_enqueue(rt_rq);
 859	}
 860}
 861
 862static void __enable_runtime(struct rq *rq)
 863{
 864	rt_rq_iter_t iter;
 865	struct rt_rq *rt_rq;
 866
 867	if (unlikely(!scheduler_running))
 868		return;
 869
 870	/*
 871	 * Reset each runqueue's bandwidth settings
 872	 */
 873	for_each_rt_rq(rt_rq, iter, rq) {
 874		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
 875
 876		raw_spin_lock(&rt_b->rt_runtime_lock);
 877		raw_spin_lock(&rt_rq->rt_runtime_lock);
 878		rt_rq->rt_runtime = rt_b->rt_runtime;
 879		rt_rq->rt_time = 0;
 880		rt_rq->rt_throttled = 0;
 881		raw_spin_unlock(&rt_rq->rt_runtime_lock);
 882		raw_spin_unlock(&rt_b->rt_runtime_lock);
 883	}
 884}
 885
 886static void balance_runtime(struct rt_rq *rt_rq)
 887{
 888	if (!sched_feat(RT_RUNTIME_SHARE))
 889		return;
 890
 891	if (rt_rq->rt_time > rt_rq->rt_runtime) {
 892		raw_spin_unlock(&rt_rq->rt_runtime_lock);
 893		do_balance_runtime(rt_rq);
 894		raw_spin_lock(&rt_rq->rt_runtime_lock);
 895	}
 896}
 897#else /* !CONFIG_SMP */
 898static inline void balance_runtime(struct rt_rq *rt_rq) {}
 899#endif /* CONFIG_SMP */
 900
 901static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
 902{
 903	int i, idle = 1, throttled = 0;
 904	const struct cpumask *span;
 905
 906	span = sched_rt_period_mask();
 907#ifdef CONFIG_RT_GROUP_SCHED
 908	/*
 909	 * FIXME: isolated CPUs should really leave the root task group,
 910	 * whether they are isolcpus or were isolated via cpusets, lest
 911	 * the timer run on a CPU which does not service all runqueues,
 912	 * potentially leaving other CPUs indefinitely throttled.  If
 913	 * isolation is really required, the user will turn the throttle
 914	 * off to kill the perturbations it causes anyway.  Meanwhile,
 915	 * this maintains functionality for boot and/or troubleshooting.
 916	 */
 917	if (rt_b == &root_task_group.rt_bandwidth)
 918		span = cpu_online_mask;
 919#endif
 920	for_each_cpu(i, span) {
 921		int enqueue = 0;
 922		struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
 923		struct rq *rq = rq_of_rt_rq(rt_rq);
 924		struct rq_flags rf;
 925		int skip;
 926
 927		/*
 928		 * When span == cpu_online_mask, taking each rq->lock
 929		 * can be time-consuming. Try to avoid it when possible.
 930		 */
 931		raw_spin_lock(&rt_rq->rt_runtime_lock);
 932		if (!sched_feat(RT_RUNTIME_SHARE) && rt_rq->rt_runtime != RUNTIME_INF)
 933			rt_rq->rt_runtime = rt_b->rt_runtime;
 934		skip = !rt_rq->rt_time && !rt_rq->rt_nr_running;
 935		raw_spin_unlock(&rt_rq->rt_runtime_lock);
 936		if (skip)
 937			continue;
 938
 939		rq_lock(rq, &rf);
 940		update_rq_clock(rq);
 941
 
 942		if (rt_rq->rt_time) {
 943			u64 runtime;
 944
 945			raw_spin_lock(&rt_rq->rt_runtime_lock);
 946			if (rt_rq->rt_throttled)
 947				balance_runtime(rt_rq);
 948			runtime = rt_rq->rt_runtime;
 949			rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
 950			if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
 951				rt_rq->rt_throttled = 0;
 952				enqueue = 1;
 953
 954				/*
 955				 * When we're idle and a woken (rt) task is
 956				 * throttled check_preempt_curr() will set
 957				 * skip_update and the time between the wakeup
 958				 * and this unthrottle will get accounted as
 959				 * 'runtime'.
 960				 */
 961				if (rt_rq->rt_nr_running && rq->curr == rq->idle)
 962					rq_clock_cancel_skipupdate(rq);
 963			}
 964			if (rt_rq->rt_time || rt_rq->rt_nr_running)
 965				idle = 0;
 966			raw_spin_unlock(&rt_rq->rt_runtime_lock);
 967		} else if (rt_rq->rt_nr_running) {
 968			idle = 0;
 969			if (!rt_rq_throttled(rt_rq))
 970				enqueue = 1;
 971		}
 972		if (rt_rq->rt_throttled)
 973			throttled = 1;
 974
 975		if (enqueue)
 976			sched_rt_rq_enqueue(rt_rq);
 977		rq_unlock(rq, &rf);
 978	}
 979
 980	if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
 981		return 1;
 982
 983	return idle;
 984}
 985
 986static inline int rt_se_prio(struct sched_rt_entity *rt_se)
 987{
 988#ifdef CONFIG_RT_GROUP_SCHED
 989	struct rt_rq *rt_rq = group_rt_rq(rt_se);
 990
 991	if (rt_rq)
 992		return rt_rq->highest_prio.curr;
 993#endif
 994
 995	return rt_task_of(rt_se)->prio;
 996}
 997
 998static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
 999{
1000	u64 runtime = sched_rt_runtime(rt_rq);
1001
1002	if (rt_rq->rt_throttled)
1003		return rt_rq_throttled(rt_rq);
1004
1005	if (runtime >= sched_rt_period(rt_rq))
1006		return 0;
1007
1008	balance_runtime(rt_rq);
1009	runtime = sched_rt_runtime(rt_rq);
1010	if (runtime == RUNTIME_INF)
1011		return 0;
1012
1013	if (rt_rq->rt_time > runtime) {
1014		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
1015
1016		/*
1017		 * Don't actually throttle groups that have no runtime assigned
1018		 * but accrue some time due to boosting.
1019		 */
1020		if (likely(rt_b->rt_runtime)) {
1021			rt_rq->rt_throttled = 1;
1022			printk_deferred_once("sched: RT throttling activated\n");
1023		} else {
1024			/*
1025			 * In case we did anyway, make it go away,
1026			 * replenishment is a joke, since it will replenish us
1027			 * with exactly 0 ns.
1028			 */
1029			rt_rq->rt_time = 0;
1030		}
1031
1032		if (rt_rq_throttled(rt_rq)) {
1033			sched_rt_rq_dequeue(rt_rq);
1034			return 1;
1035		}
1036	}
1037
1038	return 0;
1039}
1040
1041/*
1042 * Update the current task's runtime statistics. Skip current tasks that
1043 * are not in our scheduling class.
1044 */
1045static void update_curr_rt(struct rq *rq)
1046{
1047	struct task_struct *curr = rq->curr;
1048	struct sched_rt_entity *rt_se = &curr->rt;
1049	u64 delta_exec;
1050	u64 now;
1051
1052	if (curr->sched_class != &rt_sched_class)
1053		return;
1054
1055	now = rq_clock_task(rq);
1056	delta_exec = now - curr->se.exec_start;
 
 
 
1057	if (unlikely((s64)delta_exec <= 0))
1058		return;
1059
1060	schedstat_set(curr->stats.exec_max,
1061		      max(curr->stats.exec_max, delta_exec));
 
 
 
1062
1063	trace_sched_stat_runtime(curr, delta_exec, 0);
 
1064
1065	update_current_exec_runtime(curr, now, delta_exec);
1066
1067	if (!rt_bandwidth_enabled())
1068		return;
1069
1070	for_each_sched_rt_entity(rt_se) {
1071		struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1072		int exceeded;
1073
1074		if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
1075			raw_spin_lock(&rt_rq->rt_runtime_lock);
1076			rt_rq->rt_time += delta_exec;
1077			exceeded = sched_rt_runtime_exceeded(rt_rq);
1078			if (exceeded)
1079				resched_curr(rq);
1080			raw_spin_unlock(&rt_rq->rt_runtime_lock);
1081			if (exceeded)
1082				do_start_rt_bandwidth(sched_rt_bandwidth(rt_rq));
1083		}
1084	}
1085}
1086
1087static void
1088dequeue_top_rt_rq(struct rt_rq *rt_rq, unsigned int count)
1089{
1090	struct rq *rq = rq_of_rt_rq(rt_rq);
1091
1092	BUG_ON(&rq->rt != rt_rq);
1093
1094	if (!rt_rq->rt_queued)
1095		return;
1096
1097	BUG_ON(!rq->nr_running);
1098
1099	sub_nr_running(rq, count);
1100	rt_rq->rt_queued = 0;
1101
1102}
1103
1104static void
1105enqueue_top_rt_rq(struct rt_rq *rt_rq)
1106{
1107	struct rq *rq = rq_of_rt_rq(rt_rq);
1108
1109	BUG_ON(&rq->rt != rt_rq);
1110
1111	if (rt_rq->rt_queued)
1112		return;
1113
1114	if (rt_rq_throttled(rt_rq))
1115		return;
1116
1117	if (rt_rq->rt_nr_running) {
1118		add_nr_running(rq, rt_rq->rt_nr_running);
1119		rt_rq->rt_queued = 1;
1120	}
1121
1122	/* Kick cpufreq (see the comment in kernel/sched/sched.h). */
1123	cpufreq_update_util(rq, 0);
1124}
1125
1126#if defined CONFIG_SMP
1127
1128static void
1129inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1130{
1131	struct rq *rq = rq_of_rt_rq(rt_rq);
1132
1133#ifdef CONFIG_RT_GROUP_SCHED
1134	/*
1135	 * Change rq's cpupri only if rt_rq is the top queue.
1136	 */
1137	if (&rq->rt != rt_rq)
1138		return;
1139#endif
1140	if (rq->online && prio < prev_prio)
1141		cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1142}
1143
1144static void
1145dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1146{
1147	struct rq *rq = rq_of_rt_rq(rt_rq);
1148
1149#ifdef CONFIG_RT_GROUP_SCHED
1150	/*
1151	 * Change rq's cpupri only if rt_rq is the top queue.
1152	 */
1153	if (&rq->rt != rt_rq)
1154		return;
1155#endif
1156	if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1157		cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1158}
1159
1160#else /* CONFIG_SMP */
1161
1162static inline
1163void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1164static inline
1165void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1166
1167#endif /* CONFIG_SMP */
1168
1169#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1170static void
1171inc_rt_prio(struct rt_rq *rt_rq, int prio)
1172{
1173	int prev_prio = rt_rq->highest_prio.curr;
1174
1175	if (prio < prev_prio)
1176		rt_rq->highest_prio.curr = prio;
1177
1178	inc_rt_prio_smp(rt_rq, prio, prev_prio);
1179}
1180
1181static void
1182dec_rt_prio(struct rt_rq *rt_rq, int prio)
1183{
1184	int prev_prio = rt_rq->highest_prio.curr;
1185
1186	if (rt_rq->rt_nr_running) {
1187
1188		WARN_ON(prio < prev_prio);
1189
1190		/*
1191		 * This may have been our highest task, and therefore
1192		 * we may have some recomputation to do
1193		 */
1194		if (prio == prev_prio) {
1195			struct rt_prio_array *array = &rt_rq->active;
1196
1197			rt_rq->highest_prio.curr =
1198				sched_find_first_bit(array->bitmap);
1199		}
1200
1201	} else {
1202		rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
1203	}
1204
1205	dec_rt_prio_smp(rt_rq, prio, prev_prio);
1206}
1207
1208#else
1209
1210static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1211static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1212
1213#endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1214
1215#ifdef CONFIG_RT_GROUP_SCHED
1216
1217static void
1218inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1219{
1220	if (rt_se_boosted(rt_se))
1221		rt_rq->rt_nr_boosted++;
1222
1223	if (rt_rq->tg)
1224		start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1225}
1226
1227static void
1228dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1229{
1230	if (rt_se_boosted(rt_se))
1231		rt_rq->rt_nr_boosted--;
1232
1233	WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1234}
1235
1236#else /* CONFIG_RT_GROUP_SCHED */
1237
1238static void
1239inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1240{
1241	start_rt_bandwidth(&def_rt_bandwidth);
1242}
1243
1244static inline
1245void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1246
1247#endif /* CONFIG_RT_GROUP_SCHED */
1248
1249static inline
1250unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1251{
1252	struct rt_rq *group_rq = group_rt_rq(rt_se);
1253
1254	if (group_rq)
1255		return group_rq->rt_nr_running;
1256	else
1257		return 1;
1258}
1259
1260static inline
1261unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se)
1262{
1263	struct rt_rq *group_rq = group_rt_rq(rt_se);
1264	struct task_struct *tsk;
1265
1266	if (group_rq)
1267		return group_rq->rr_nr_running;
1268
1269	tsk = rt_task_of(rt_se);
1270
1271	return (tsk->policy == SCHED_RR) ? 1 : 0;
1272}
1273
1274static inline
1275void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1276{
1277	int prio = rt_se_prio(rt_se);
1278
1279	WARN_ON(!rt_prio(prio));
1280	rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1281	rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se);
1282
1283	inc_rt_prio(rt_rq, prio);
1284	inc_rt_migration(rt_se, rt_rq);
1285	inc_rt_group(rt_se, rt_rq);
1286}
1287
1288static inline
1289void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1290{
1291	WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1292	WARN_ON(!rt_rq->rt_nr_running);
1293	rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1294	rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se);
1295
1296	dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1297	dec_rt_migration(rt_se, rt_rq);
1298	dec_rt_group(rt_se, rt_rq);
1299}
1300
1301/*
1302 * Change rt_se->run_list location unless SAVE && !MOVE
1303 *
1304 * assumes ENQUEUE/DEQUEUE flags match
1305 */
1306static inline bool move_entity(unsigned int flags)
1307{
1308	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
1309		return false;
1310
1311	return true;
1312}
1313
1314static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array)
1315{
1316	list_del_init(&rt_se->run_list);
1317
1318	if (list_empty(array->queue + rt_se_prio(rt_se)))
1319		__clear_bit(rt_se_prio(rt_se), array->bitmap);
1320
1321	rt_se->on_list = 0;
1322}
1323
1324static inline struct sched_statistics *
1325__schedstats_from_rt_se(struct sched_rt_entity *rt_se)
1326{
1327#ifdef CONFIG_RT_GROUP_SCHED
1328	/* schedstats is not supported for rt group. */
1329	if (!rt_entity_is_task(rt_se))
1330		return NULL;
1331#endif
1332
1333	return &rt_task_of(rt_se)->stats;
1334}
1335
1336static inline void
1337update_stats_wait_start_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1338{
1339	struct sched_statistics *stats;
1340	struct task_struct *p = NULL;
1341
1342	if (!schedstat_enabled())
1343		return;
1344
1345	if (rt_entity_is_task(rt_se))
1346		p = rt_task_of(rt_se);
1347
1348	stats = __schedstats_from_rt_se(rt_se);
1349	if (!stats)
1350		return;
1351
1352	__update_stats_wait_start(rq_of_rt_rq(rt_rq), p, stats);
1353}
1354
1355static inline void
1356update_stats_enqueue_sleeper_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1357{
1358	struct sched_statistics *stats;
1359	struct task_struct *p = NULL;
1360
1361	if (!schedstat_enabled())
1362		return;
1363
1364	if (rt_entity_is_task(rt_se))
1365		p = rt_task_of(rt_se);
1366
1367	stats = __schedstats_from_rt_se(rt_se);
1368	if (!stats)
1369		return;
1370
1371	__update_stats_enqueue_sleeper(rq_of_rt_rq(rt_rq), p, stats);
1372}
1373
1374static inline void
1375update_stats_enqueue_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
1376			int flags)
1377{
1378	if (!schedstat_enabled())
1379		return;
1380
1381	if (flags & ENQUEUE_WAKEUP)
1382		update_stats_enqueue_sleeper_rt(rt_rq, rt_se);
1383}
1384
1385static inline void
1386update_stats_wait_end_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1387{
1388	struct sched_statistics *stats;
1389	struct task_struct *p = NULL;
1390
1391	if (!schedstat_enabled())
1392		return;
1393
1394	if (rt_entity_is_task(rt_se))
1395		p = rt_task_of(rt_se);
1396
1397	stats = __schedstats_from_rt_se(rt_se);
1398	if (!stats)
1399		return;
1400
1401	__update_stats_wait_end(rq_of_rt_rq(rt_rq), p, stats);
1402}
1403
1404static inline void
1405update_stats_dequeue_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
1406			int flags)
1407{
1408	struct task_struct *p = NULL;
1409
1410	if (!schedstat_enabled())
1411		return;
1412
1413	if (rt_entity_is_task(rt_se))
1414		p = rt_task_of(rt_se);
1415
1416	if ((flags & DEQUEUE_SLEEP) && p) {
1417		unsigned int state;
1418
1419		state = READ_ONCE(p->__state);
1420		if (state & TASK_INTERRUPTIBLE)
1421			__schedstat_set(p->stats.sleep_start,
1422					rq_clock(rq_of_rt_rq(rt_rq)));
1423
1424		if (state & TASK_UNINTERRUPTIBLE)
1425			__schedstat_set(p->stats.block_start,
1426					rq_clock(rq_of_rt_rq(rt_rq)));
1427	}
1428}
1429
1430static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1431{
1432	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1433	struct rt_prio_array *array = &rt_rq->active;
1434	struct rt_rq *group_rq = group_rt_rq(rt_se);
1435	struct list_head *queue = array->queue + rt_se_prio(rt_se);
1436
1437	/*
1438	 * Don't enqueue the group if its throttled, or when empty.
1439	 * The latter is a consequence of the former when a child group
1440	 * get throttled and the current group doesn't have any other
1441	 * active members.
1442	 */
1443	if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) {
1444		if (rt_se->on_list)
1445			__delist_rt_entity(rt_se, array);
1446		return;
1447	}
1448
1449	if (move_entity(flags)) {
1450		WARN_ON_ONCE(rt_se->on_list);
1451		if (flags & ENQUEUE_HEAD)
1452			list_add(&rt_se->run_list, queue);
1453		else
1454			list_add_tail(&rt_se->run_list, queue);
1455
1456		__set_bit(rt_se_prio(rt_se), array->bitmap);
1457		rt_se->on_list = 1;
1458	}
1459	rt_se->on_rq = 1;
1460
1461	inc_rt_tasks(rt_se, rt_rq);
1462}
1463
1464static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1465{
1466	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1467	struct rt_prio_array *array = &rt_rq->active;
1468
1469	if (move_entity(flags)) {
1470		WARN_ON_ONCE(!rt_se->on_list);
1471		__delist_rt_entity(rt_se, array);
1472	}
1473	rt_se->on_rq = 0;
1474
1475	dec_rt_tasks(rt_se, rt_rq);
1476}
1477
1478/*
1479 * Because the prio of an upper entry depends on the lower
1480 * entries, we must remove entries top - down.
1481 */
1482static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags)
1483{
1484	struct sched_rt_entity *back = NULL;
1485	unsigned int rt_nr_running;
1486
1487	for_each_sched_rt_entity(rt_se) {
1488		rt_se->back = back;
1489		back = rt_se;
1490	}
1491
1492	rt_nr_running = rt_rq_of_se(back)->rt_nr_running;
1493
1494	for (rt_se = back; rt_se; rt_se = rt_se->back) {
1495		if (on_rt_rq(rt_se))
1496			__dequeue_rt_entity(rt_se, flags);
1497	}
1498
1499	dequeue_top_rt_rq(rt_rq_of_se(back), rt_nr_running);
1500}
1501
1502static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1503{
1504	struct rq *rq = rq_of_rt_se(rt_se);
1505
1506	update_stats_enqueue_rt(rt_rq_of_se(rt_se), rt_se, flags);
1507
1508	dequeue_rt_stack(rt_se, flags);
1509	for_each_sched_rt_entity(rt_se)
1510		__enqueue_rt_entity(rt_se, flags);
1511	enqueue_top_rt_rq(&rq->rt);
1512}
1513
1514static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1515{
1516	struct rq *rq = rq_of_rt_se(rt_se);
1517
1518	update_stats_dequeue_rt(rt_rq_of_se(rt_se), rt_se, flags);
1519
1520	dequeue_rt_stack(rt_se, flags);
1521
1522	for_each_sched_rt_entity(rt_se) {
1523		struct rt_rq *rt_rq = group_rt_rq(rt_se);
1524
1525		if (rt_rq && rt_rq->rt_nr_running)
1526			__enqueue_rt_entity(rt_se, flags);
1527	}
1528	enqueue_top_rt_rq(&rq->rt);
1529}
1530
1531/*
1532 * Adding/removing a task to/from a priority array:
1533 */
1534static void
1535enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1536{
1537	struct sched_rt_entity *rt_se = &p->rt;
1538
1539	if (flags & ENQUEUE_WAKEUP)
1540		rt_se->timeout = 0;
1541
1542	check_schedstat_required();
1543	update_stats_wait_start_rt(rt_rq_of_se(rt_se), rt_se);
1544
1545	enqueue_rt_entity(rt_se, flags);
1546
1547	if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1548		enqueue_pushable_task(rq, p);
1549}
1550
1551static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1552{
1553	struct sched_rt_entity *rt_se = &p->rt;
1554
1555	update_curr_rt(rq);
1556	dequeue_rt_entity(rt_se, flags);
1557
1558	dequeue_pushable_task(rq, p);
1559}
1560
1561/*
1562 * Put task to the head or the end of the run list without the overhead of
1563 * dequeue followed by enqueue.
1564 */
1565static void
1566requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1567{
1568	if (on_rt_rq(rt_se)) {
1569		struct rt_prio_array *array = &rt_rq->active;
1570		struct list_head *queue = array->queue + rt_se_prio(rt_se);
1571
1572		if (head)
1573			list_move(&rt_se->run_list, queue);
1574		else
1575			list_move_tail(&rt_se->run_list, queue);
1576	}
1577}
1578
1579static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1580{
1581	struct sched_rt_entity *rt_se = &p->rt;
1582	struct rt_rq *rt_rq;
1583
1584	for_each_sched_rt_entity(rt_se) {
1585		rt_rq = rt_rq_of_se(rt_se);
1586		requeue_rt_entity(rt_rq, rt_se, head);
1587	}
1588}
1589
1590static void yield_task_rt(struct rq *rq)
1591{
1592	requeue_task_rt(rq, rq->curr, 0);
1593}
1594
1595#ifdef CONFIG_SMP
1596static int find_lowest_rq(struct task_struct *task);
1597
1598static int
1599select_task_rq_rt(struct task_struct *p, int cpu, int flags)
1600{
1601	struct task_struct *curr;
1602	struct rq *rq;
1603	bool test;
1604
1605	/* For anything but wake ups, just return the task_cpu */
1606	if (!(flags & (WF_TTWU | WF_FORK)))
1607		goto out;
1608
1609	rq = cpu_rq(cpu);
1610
1611	rcu_read_lock();
1612	curr = READ_ONCE(rq->curr); /* unlocked access */
1613
1614	/*
1615	 * If the current task on @p's runqueue is an RT task, then
1616	 * try to see if we can wake this RT task up on another
1617	 * runqueue. Otherwise simply start this RT task
1618	 * on its current runqueue.
1619	 *
1620	 * We want to avoid overloading runqueues. If the woken
1621	 * task is a higher priority, then it will stay on this CPU
1622	 * and the lower prio task should be moved to another CPU.
1623	 * Even though this will probably make the lower prio task
1624	 * lose its cache, we do not want to bounce a higher task
1625	 * around just because it gave up its CPU, perhaps for a
1626	 * lock?
1627	 *
1628	 * For equal prio tasks, we just let the scheduler sort it out.
1629	 *
1630	 * Otherwise, just let it ride on the affined RQ and the
1631	 * post-schedule router will push the preempted task away
1632	 *
1633	 * This test is optimistic, if we get it wrong the load-balancer
1634	 * will have to sort it out.
1635	 *
1636	 * We take into account the capacity of the CPU to ensure it fits the
1637	 * requirement of the task - which is only important on heterogeneous
1638	 * systems like big.LITTLE.
1639	 */
1640	test = curr &&
1641	       unlikely(rt_task(curr)) &&
1642	       (curr->nr_cpus_allowed < 2 || curr->prio <= p->prio);
1643
1644	if (test || !rt_task_fits_capacity(p, cpu)) {
1645		int target = find_lowest_rq(p);
1646
1647		/*
1648		 * Bail out if we were forcing a migration to find a better
1649		 * fitting CPU but our search failed.
1650		 */
1651		if (!test && target != -1 && !rt_task_fits_capacity(p, target))
1652			goto out_unlock;
1653
1654		/*
1655		 * Don't bother moving it if the destination CPU is
1656		 * not running a lower priority task.
1657		 */
1658		if (target != -1 &&
1659		    p->prio < cpu_rq(target)->rt.highest_prio.curr)
1660			cpu = target;
1661	}
1662
1663out_unlock:
1664	rcu_read_unlock();
1665
1666out:
1667	return cpu;
1668}
1669
1670static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1671{
1672	/*
1673	 * Current can't be migrated, useless to reschedule,
1674	 * let's hope p can move out.
1675	 */
1676	if (rq->curr->nr_cpus_allowed == 1 ||
1677	    !cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1678		return;
1679
1680	/*
1681	 * p is migratable, so let's not schedule it and
1682	 * see if it is pushed or pulled somewhere else.
1683	 */
1684	if (p->nr_cpus_allowed != 1 &&
1685	    cpupri_find(&rq->rd->cpupri, p, NULL))
1686		return;
1687
1688	/*
1689	 * There appear to be other CPUs that can accept
1690	 * the current task but none can run 'p', so lets reschedule
1691	 * to try and push the current task away:
1692	 */
1693	requeue_task_rt(rq, p, 1);
1694	resched_curr(rq);
1695}
1696
1697static int balance_rt(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1698{
1699	if (!on_rt_rq(&p->rt) && need_pull_rt_task(rq, p)) {
1700		/*
1701		 * This is OK, because current is on_cpu, which avoids it being
1702		 * picked for load-balance and preemption/IRQs are still
1703		 * disabled avoiding further scheduler activity on it and we've
1704		 * not yet started the picking loop.
1705		 */
1706		rq_unpin_lock(rq, rf);
1707		pull_rt_task(rq);
1708		rq_repin_lock(rq, rf);
1709	}
1710
1711	return sched_stop_runnable(rq) || sched_dl_runnable(rq) || sched_rt_runnable(rq);
1712}
1713#endif /* CONFIG_SMP */
1714
1715/*
1716 * Preempt the current task with a newly woken task if needed:
1717 */
1718static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1719{
1720	if (p->prio < rq->curr->prio) {
1721		resched_curr(rq);
1722		return;
1723	}
1724
1725#ifdef CONFIG_SMP
1726	/*
1727	 * If:
1728	 *
1729	 * - the newly woken task is of equal priority to the current task
1730	 * - the newly woken task is non-migratable while current is migratable
1731	 * - current will be preempted on the next reschedule
1732	 *
1733	 * we should check to see if current can readily move to a different
1734	 * cpu.  If so, we will reschedule to allow the push logic to try
1735	 * to move current somewhere else, making room for our non-migratable
1736	 * task.
1737	 */
1738	if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1739		check_preempt_equal_prio(rq, p);
1740#endif
1741}
1742
1743static inline void set_next_task_rt(struct rq *rq, struct task_struct *p, bool first)
1744{
1745	struct sched_rt_entity *rt_se = &p->rt;
1746	struct rt_rq *rt_rq = &rq->rt;
1747
1748	p->se.exec_start = rq_clock_task(rq);
1749	if (on_rt_rq(&p->rt))
1750		update_stats_wait_end_rt(rt_rq, rt_se);
1751
1752	/* The running task is never eligible for pushing */
1753	dequeue_pushable_task(rq, p);
1754
1755	if (!first)
1756		return;
1757
1758	/*
1759	 * If prev task was rt, put_prev_task() has already updated the
1760	 * utilization. We only care of the case where we start to schedule a
1761	 * rt task
1762	 */
1763	if (rq->curr->sched_class != &rt_sched_class)
1764		update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
1765
1766	rt_queue_push_tasks(rq);
1767}
1768
1769static struct sched_rt_entity *pick_next_rt_entity(struct rt_rq *rt_rq)
1770{
1771	struct rt_prio_array *array = &rt_rq->active;
1772	struct sched_rt_entity *next = NULL;
1773	struct list_head *queue;
1774	int idx;
1775
1776	idx = sched_find_first_bit(array->bitmap);
1777	BUG_ON(idx >= MAX_RT_PRIO);
1778
1779	queue = array->queue + idx;
1780	next = list_entry(queue->next, struct sched_rt_entity, run_list);
1781
1782	return next;
1783}
1784
1785static struct task_struct *_pick_next_task_rt(struct rq *rq)
1786{
1787	struct sched_rt_entity *rt_se;
 
1788	struct rt_rq *rt_rq  = &rq->rt;
1789
1790	do {
1791		rt_se = pick_next_rt_entity(rt_rq);
1792		BUG_ON(!rt_se);
1793		rt_rq = group_rt_rq(rt_se);
1794	} while (rt_rq);
1795
1796	return rt_task_of(rt_se);
 
 
 
1797}
1798
1799static struct task_struct *pick_task_rt(struct rq *rq)
 
1800{
1801	struct task_struct *p;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1802
1803	if (!sched_rt_runnable(rq))
 
 
 
 
 
 
 
1804		return NULL;
1805
1806	p = _pick_next_task_rt(rq);
1807
1808	return p;
1809}
1810
1811static struct task_struct *pick_next_task_rt(struct rq *rq)
1812{
1813	struct task_struct *p = pick_task_rt(rq);
1814
1815	if (p)
1816		set_next_task_rt(rq, p, true);
1817
1818	return p;
1819}
1820
1821static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1822{
1823	struct sched_rt_entity *rt_se = &p->rt;
1824	struct rt_rq *rt_rq = &rq->rt;
1825
1826	if (on_rt_rq(&p->rt))
1827		update_stats_wait_start_rt(rt_rq, rt_se);
1828
1829	update_curr_rt(rq);
1830
1831	update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
1832
1833	/*
1834	 * The previous task needs to be made eligible for pushing
1835	 * if it is still active
1836	 */
1837	if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1838		enqueue_pushable_task(rq, p);
1839}
1840
1841#ifdef CONFIG_SMP
1842
1843/* Only try algorithms three times */
1844#define RT_MAX_TRIES 3
1845
1846static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1847{
1848	if (!task_on_cpu(rq, p) &&
1849	    cpumask_test_cpu(cpu, &p->cpus_mask))
1850		return 1;
1851
1852	return 0;
1853}
1854
1855/*
1856 * Return the highest pushable rq's task, which is suitable to be executed
1857 * on the CPU, NULL otherwise
1858 */
1859static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1860{
1861	struct plist_head *head = &rq->rt.pushable_tasks;
1862	struct task_struct *p;
1863
1864	if (!has_pushable_tasks(rq))
1865		return NULL;
1866
1867	plist_for_each_entry(p, head, pushable_tasks) {
1868		if (pick_rt_task(rq, p, cpu))
1869			return p;
1870	}
1871
1872	return NULL;
1873}
1874
1875static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1876
1877static int find_lowest_rq(struct task_struct *task)
1878{
1879	struct sched_domain *sd;
1880	struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
1881	int this_cpu = smp_processor_id();
1882	int cpu      = task_cpu(task);
1883	int ret;
1884
1885	/* Make sure the mask is initialized first */
1886	if (unlikely(!lowest_mask))
1887		return -1;
1888
1889	if (task->nr_cpus_allowed == 1)
1890		return -1; /* No other targets possible */
1891
1892	/*
1893	 * If we're on asym system ensure we consider the different capacities
1894	 * of the CPUs when searching for the lowest_mask.
1895	 */
1896	if (sched_asym_cpucap_active()) {
1897
1898		ret = cpupri_find_fitness(&task_rq(task)->rd->cpupri,
1899					  task, lowest_mask,
1900					  rt_task_fits_capacity);
1901	} else {
1902
1903		ret = cpupri_find(&task_rq(task)->rd->cpupri,
1904				  task, lowest_mask);
1905	}
1906
1907	if (!ret)
1908		return -1; /* No targets found */
1909
1910	/*
1911	 * At this point we have built a mask of CPUs representing the
1912	 * lowest priority tasks in the system.  Now we want to elect
1913	 * the best one based on our affinity and topology.
1914	 *
1915	 * We prioritize the last CPU that the task executed on since
1916	 * it is most likely cache-hot in that location.
1917	 */
1918	if (cpumask_test_cpu(cpu, lowest_mask))
1919		return cpu;
1920
1921	/*
1922	 * Otherwise, we consult the sched_domains span maps to figure
1923	 * out which CPU is logically closest to our hot cache data.
1924	 */
1925	if (!cpumask_test_cpu(this_cpu, lowest_mask))
1926		this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1927
1928	rcu_read_lock();
1929	for_each_domain(cpu, sd) {
1930		if (sd->flags & SD_WAKE_AFFINE) {
1931			int best_cpu;
1932
1933			/*
1934			 * "this_cpu" is cheaper to preempt than a
1935			 * remote processor.
1936			 */
1937			if (this_cpu != -1 &&
1938			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1939				rcu_read_unlock();
1940				return this_cpu;
1941			}
1942
1943			best_cpu = cpumask_any_and_distribute(lowest_mask,
1944							      sched_domain_span(sd));
1945			if (best_cpu < nr_cpu_ids) {
1946				rcu_read_unlock();
1947				return best_cpu;
1948			}
1949		}
1950	}
1951	rcu_read_unlock();
1952
1953	/*
1954	 * And finally, if there were no matches within the domains
1955	 * just give the caller *something* to work with from the compatible
1956	 * locations.
1957	 */
1958	if (this_cpu != -1)
1959		return this_cpu;
1960
1961	cpu = cpumask_any_distribute(lowest_mask);
1962	if (cpu < nr_cpu_ids)
1963		return cpu;
1964
1965	return -1;
1966}
1967
1968/* Will lock the rq it finds */
1969static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1970{
1971	struct rq *lowest_rq = NULL;
1972	int tries;
1973	int cpu;
1974
1975	for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1976		cpu = find_lowest_rq(task);
1977
1978		if ((cpu == -1) || (cpu == rq->cpu))
1979			break;
1980
1981		lowest_rq = cpu_rq(cpu);
1982
1983		if (lowest_rq->rt.highest_prio.curr <= task->prio) {
1984			/*
1985			 * Target rq has tasks of equal or higher priority,
1986			 * retrying does not release any lock and is unlikely
1987			 * to yield a different result.
1988			 */
1989			lowest_rq = NULL;
1990			break;
1991		}
1992
1993		/* if the prio of this runqueue changed, try again */
1994		if (double_lock_balance(rq, lowest_rq)) {
1995			/*
1996			 * We had to unlock the run queue. In
1997			 * the mean time, task could have
1998			 * migrated already or had its affinity changed.
1999			 * Also make sure that it wasn't scheduled on its rq.
2000			 */
2001			if (unlikely(task_rq(task) != rq ||
2002				     !cpumask_test_cpu(lowest_rq->cpu, &task->cpus_mask) ||
2003				     task_on_cpu(rq, task) ||
 
2004				     !rt_task(task) ||
2005				     !task_on_rq_queued(task))) {
2006
2007				double_unlock_balance(rq, lowest_rq);
2008				lowest_rq = NULL;
2009				break;
2010			}
2011		}
2012
2013		/* If this rq is still suitable use it. */
2014		if (lowest_rq->rt.highest_prio.curr > task->prio)
2015			break;
2016
2017		/* try again */
2018		double_unlock_balance(rq, lowest_rq);
2019		lowest_rq = NULL;
2020	}
2021
2022	return lowest_rq;
2023}
2024
2025static struct task_struct *pick_next_pushable_task(struct rq *rq)
2026{
2027	struct task_struct *p;
2028
2029	if (!has_pushable_tasks(rq))
2030		return NULL;
2031
2032	p = plist_first_entry(&rq->rt.pushable_tasks,
2033			      struct task_struct, pushable_tasks);
2034
2035	BUG_ON(rq->cpu != task_cpu(p));
2036	BUG_ON(task_current(rq, p));
2037	BUG_ON(p->nr_cpus_allowed <= 1);
2038
2039	BUG_ON(!task_on_rq_queued(p));
2040	BUG_ON(!rt_task(p));
2041
2042	return p;
2043}
2044
2045/*
2046 * If the current CPU has more than one RT task, see if the non
2047 * running task can migrate over to a CPU that is running a task
2048 * of lesser priority.
2049 */
2050static int push_rt_task(struct rq *rq, bool pull)
2051{
2052	struct task_struct *next_task;
2053	struct rq *lowest_rq;
2054	int ret = 0;
2055
2056	if (!rq->rt.overloaded)
2057		return 0;
2058
2059	next_task = pick_next_pushable_task(rq);
2060	if (!next_task)
2061		return 0;
2062
2063retry:
 
 
 
 
 
2064	/*
2065	 * It's possible that the next_task slipped in of
2066	 * higher priority than current. If that's the case
2067	 * just reschedule current.
2068	 */
2069	if (unlikely(next_task->prio < rq->curr->prio)) {
2070		resched_curr(rq);
2071		return 0;
2072	}
2073
2074	if (is_migration_disabled(next_task)) {
2075		struct task_struct *push_task = NULL;
2076		int cpu;
2077
2078		if (!pull || rq->push_busy)
2079			return 0;
2080
2081		/*
2082		 * Invoking find_lowest_rq() on anything but an RT task doesn't
2083		 * make sense. Per the above priority check, curr has to
2084		 * be of higher priority than next_task, so no need to
2085		 * reschedule when bailing out.
2086		 *
2087		 * Note that the stoppers are masqueraded as SCHED_FIFO
2088		 * (cf. sched_set_stop_task()), so we can't rely on rt_task().
2089		 */
2090		if (rq->curr->sched_class != &rt_sched_class)
2091			return 0;
2092
2093		cpu = find_lowest_rq(rq->curr);
2094		if (cpu == -1 || cpu == rq->cpu)
2095			return 0;
2096
2097		/*
2098		 * Given we found a CPU with lower priority than @next_task,
2099		 * therefore it should be running. However we cannot migrate it
2100		 * to this other CPU, instead attempt to push the current
2101		 * running task on this CPU away.
2102		 */
2103		push_task = get_push_task(rq);
2104		if (push_task) {
2105			raw_spin_rq_unlock(rq);
2106			stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2107					    push_task, &rq->push_work);
2108			raw_spin_rq_lock(rq);
2109		}
2110
2111		return 0;
2112	}
2113
2114	if (WARN_ON(next_task == rq->curr))
2115		return 0;
2116
2117	/* We might release rq lock */
2118	get_task_struct(next_task);
2119
2120	/* find_lock_lowest_rq locks the rq if found */
2121	lowest_rq = find_lock_lowest_rq(next_task, rq);
2122	if (!lowest_rq) {
2123		struct task_struct *task;
2124		/*
2125		 * find_lock_lowest_rq releases rq->lock
2126		 * so it is possible that next_task has migrated.
2127		 *
2128		 * We need to make sure that the task is still on the same
2129		 * run-queue and is also still the next task eligible for
2130		 * pushing.
2131		 */
2132		task = pick_next_pushable_task(rq);
2133		if (task == next_task) {
2134			/*
2135			 * The task hasn't migrated, and is still the next
2136			 * eligible task, but we failed to find a run-queue
2137			 * to push it to.  Do not retry in this case, since
2138			 * other CPUs will pull from us when ready.
2139			 */
2140			goto out;
2141		}
2142
2143		if (!task)
2144			/* No more tasks, just exit */
2145			goto out;
2146
2147		/*
2148		 * Something has shifted, try again.
2149		 */
2150		put_task_struct(next_task);
2151		next_task = task;
2152		goto retry;
2153	}
2154
2155	deactivate_task(rq, next_task, 0);
2156	set_task_cpu(next_task, lowest_rq->cpu);
2157	activate_task(lowest_rq, next_task, 0);
2158	resched_curr(lowest_rq);
2159	ret = 1;
2160
 
 
2161	double_unlock_balance(rq, lowest_rq);
 
2162out:
2163	put_task_struct(next_task);
2164
2165	return ret;
2166}
2167
2168static void push_rt_tasks(struct rq *rq)
2169{
2170	/* push_rt_task will return true if it moved an RT */
2171	while (push_rt_task(rq, false))
2172		;
2173}
2174
2175#ifdef HAVE_RT_PUSH_IPI
2176
2177/*
2178 * When a high priority task schedules out from a CPU and a lower priority
2179 * task is scheduled in, a check is made to see if there's any RT tasks
2180 * on other CPUs that are waiting to run because a higher priority RT task
2181 * is currently running on its CPU. In this case, the CPU with multiple RT
2182 * tasks queued on it (overloaded) needs to be notified that a CPU has opened
2183 * up that may be able to run one of its non-running queued RT tasks.
2184 *
2185 * All CPUs with overloaded RT tasks need to be notified as there is currently
2186 * no way to know which of these CPUs have the highest priority task waiting
2187 * to run. Instead of trying to take a spinlock on each of these CPUs,
2188 * which has shown to cause large latency when done on machines with many
2189 * CPUs, sending an IPI to the CPUs to have them push off the overloaded
2190 * RT tasks waiting to run.
2191 *
2192 * Just sending an IPI to each of the CPUs is also an issue, as on large
2193 * count CPU machines, this can cause an IPI storm on a CPU, especially
2194 * if its the only CPU with multiple RT tasks queued, and a large number
2195 * of CPUs scheduling a lower priority task at the same time.
2196 *
2197 * Each root domain has its own irq work function that can iterate over
2198 * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT
2199 * task must be checked if there's one or many CPUs that are lowering
2200 * their priority, there's a single irq work iterator that will try to
2201 * push off RT tasks that are waiting to run.
2202 *
2203 * When a CPU schedules a lower priority task, it will kick off the
2204 * irq work iterator that will jump to each CPU with overloaded RT tasks.
2205 * As it only takes the first CPU that schedules a lower priority task
2206 * to start the process, the rto_start variable is incremented and if
2207 * the atomic result is one, then that CPU will try to take the rto_lock.
2208 * This prevents high contention on the lock as the process handles all
2209 * CPUs scheduling lower priority tasks.
2210 *
2211 * All CPUs that are scheduling a lower priority task will increment the
2212 * rt_loop_next variable. This will make sure that the irq work iterator
2213 * checks all RT overloaded CPUs whenever a CPU schedules a new lower
2214 * priority task, even if the iterator is in the middle of a scan. Incrementing
2215 * the rt_loop_next will cause the iterator to perform another scan.
2216 *
 
 
2217 */
2218static int rto_next_cpu(struct root_domain *rd)
2219{
2220	int next;
2221	int cpu;
2222
 
 
2223	/*
2224	 * When starting the IPI RT pushing, the rto_cpu is set to -1,
2225	 * rt_next_cpu() will simply return the first CPU found in
2226	 * the rto_mask.
2227	 *
2228	 * If rto_next_cpu() is called with rto_cpu is a valid CPU, it
2229	 * will return the next CPU found in the rto_mask.
2230	 *
2231	 * If there are no more CPUs left in the rto_mask, then a check is made
2232	 * against rto_loop and rto_loop_next. rto_loop is only updated with
2233	 * the rto_lock held, but any CPU may increment the rto_loop_next
2234	 * without any locking.
2235	 */
2236	for (;;) {
2237
2238		/* When rto_cpu is -1 this acts like cpumask_first() */
2239		cpu = cpumask_next(rd->rto_cpu, rd->rto_mask);
2240
2241		rd->rto_cpu = cpu;
2242
2243		if (cpu < nr_cpu_ids)
2244			return cpu;
2245
2246		rd->rto_cpu = -1;
2247
 
2248		/*
2249		 * ACQUIRE ensures we see the @rto_mask changes
2250		 * made prior to the @next value observed.
2251		 *
2252		 * Matches WMB in rt_set_overload().
2253		 */
2254		next = atomic_read_acquire(&rd->rto_loop_next);
2255
2256		if (rd->rto_loop == next)
2257			break;
2258
2259		rd->rto_loop = next;
2260	}
 
2261
2262	return -1;
 
2263}
2264
2265static inline bool rto_start_trylock(atomic_t *v)
2266{
2267	return !atomic_cmpxchg_acquire(v, 0, 1);
2268}
2269
2270static inline void rto_start_unlock(atomic_t *v)
2271{
2272	atomic_set_release(v, 0);
 
 
 
 
 
 
 
 
 
2273}
2274
 
 
 
2275static void tell_cpu_to_push(struct rq *rq)
2276{
2277	int cpu = -1;
2278
2279	/* Keep the loop going if the IPI is currently active */
2280	atomic_inc(&rq->rd->rto_loop_next);
2281
2282	/* Only one CPU can initiate a loop at a time */
2283	if (!rto_start_trylock(&rq->rd->rto_loop_start))
2284		return;
2285
2286	raw_spin_lock(&rq->rd->rto_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
2287
2288	/*
2289	 * The rto_cpu is updated under the lock, if it has a valid CPU
2290	 * then the IPI is still running and will continue due to the
2291	 * update to loop_next, and nothing needs to be done here.
2292	 * Otherwise it is finishing up and an ipi needs to be sent.
2293	 */
2294	if (rq->rd->rto_cpu < 0)
2295		cpu = rto_next_cpu(rq->rd);
2296
2297	raw_spin_unlock(&rq->rd->rto_lock);
 
 
 
2298
2299	rto_start_unlock(&rq->rd->rto_loop_start);
2300
2301	if (cpu >= 0) {
2302		/* Make sure the rd does not get freed while pushing */
2303		sched_get_rd(rq->rd);
2304		irq_work_queue_on(&rq->rd->rto_push_work, cpu);
2305	}
2306}
2307
2308/* Called from hardirq context */
2309void rto_push_irq_work_func(struct irq_work *work)
2310{
2311	struct root_domain *rd =
2312		container_of(work, struct root_domain, rto_push_work);
2313	struct rq *rq;
2314	int cpu;
2315
2316	rq = this_rq();
2317
2318	/*
2319	 * We do not need to grab the lock to check for has_pushable_tasks.
2320	 * When it gets updated, a check is made if a push is possible.
2321	 */
 
 
 
2322	if (has_pushable_tasks(rq)) {
2323		raw_spin_rq_lock(rq);
2324		while (push_rt_task(rq, true))
2325			;
2326		raw_spin_rq_unlock(rq);
2327	}
2328
2329	raw_spin_lock(&rd->rto_lock);
2330
2331	/* Pass the IPI to the next rt overloaded queue */
2332	cpu = rto_next_cpu(rd);
 
 
 
 
 
 
 
 
2333
2334	raw_spin_unlock(&rd->rto_lock);
2335
2336	if (cpu < 0) {
2337		sched_put_rd(rd);
 
 
 
2338		return;
2339	}
 
 
 
 
 
 
 
2340
2341	/* Try the next RT overloaded CPU */
2342	irq_work_queue_on(&rd->rto_push_work, cpu);
 
 
 
 
 
 
 
2343}
2344#endif /* HAVE_RT_PUSH_IPI */
2345
2346static void pull_rt_task(struct rq *this_rq)
2347{
2348	int this_cpu = this_rq->cpu, cpu;
2349	bool resched = false;
2350	struct task_struct *p, *push_task;
2351	struct rq *src_rq;
2352	int rt_overload_count = rt_overloaded(this_rq);
2353
2354	if (likely(!rt_overload_count))
2355		return;
2356
2357	/*
2358	 * Match the barrier from rt_set_overloaded; this guarantees that if we
2359	 * see overloaded we must also see the rto_mask bit.
2360	 */
2361	smp_rmb();
2362
2363	/* If we are the only overloaded CPU do nothing */
2364	if (rt_overload_count == 1 &&
2365	    cpumask_test_cpu(this_rq->cpu, this_rq->rd->rto_mask))
2366		return;
2367
2368#ifdef HAVE_RT_PUSH_IPI
2369	if (sched_feat(RT_PUSH_IPI)) {
2370		tell_cpu_to_push(this_rq);
2371		return;
2372	}
2373#endif
2374
2375	for_each_cpu(cpu, this_rq->rd->rto_mask) {
2376		if (this_cpu == cpu)
2377			continue;
2378
2379		src_rq = cpu_rq(cpu);
2380
2381		/*
2382		 * Don't bother taking the src_rq->lock if the next highest
2383		 * task is known to be lower-priority than our current task.
2384		 * This may look racy, but if this value is about to go
2385		 * logically higher, the src_rq will push this task away.
2386		 * And if its going logically lower, we do not care
2387		 */
2388		if (src_rq->rt.highest_prio.next >=
2389		    this_rq->rt.highest_prio.curr)
2390			continue;
2391
2392		/*
2393		 * We can potentially drop this_rq's lock in
2394		 * double_lock_balance, and another CPU could
2395		 * alter this_rq
2396		 */
2397		push_task = NULL;
2398		double_lock_balance(this_rq, src_rq);
2399
2400		/*
2401		 * We can pull only a task, which is pushable
2402		 * on its rq, and no others.
2403		 */
2404		p = pick_highest_pushable_task(src_rq, this_cpu);
2405
2406		/*
2407		 * Do we have an RT task that preempts
2408		 * the to-be-scheduled task?
2409		 */
2410		if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
2411			WARN_ON(p == src_rq->curr);
2412			WARN_ON(!task_on_rq_queued(p));
2413
2414			/*
2415			 * There's a chance that p is higher in priority
2416			 * than what's currently running on its CPU.
2417			 * This is just that p is waking up and hasn't
2418			 * had a chance to schedule. We only pull
2419			 * p if it is lower in priority than the
2420			 * current task on the run queue
2421			 */
2422			if (p->prio < src_rq->curr->prio)
2423				goto skip;
2424
2425			if (is_migration_disabled(p)) {
2426				push_task = get_push_task(src_rq);
2427			} else {
2428				deactivate_task(src_rq, p, 0);
2429				set_task_cpu(p, this_cpu);
2430				activate_task(this_rq, p, 0);
2431				resched = true;
2432			}
2433			/*
2434			 * We continue with the search, just in
2435			 * case there's an even higher prio task
2436			 * in another runqueue. (low likelihood
2437			 * but possible)
2438			 */
2439		}
2440skip:
2441		double_unlock_balance(this_rq, src_rq);
2442
2443		if (push_task) {
2444			raw_spin_rq_unlock(this_rq);
2445			stop_one_cpu_nowait(src_rq->cpu, push_cpu_stop,
2446					    push_task, &src_rq->push_work);
2447			raw_spin_rq_lock(this_rq);
2448		}
2449	}
2450
2451	if (resched)
2452		resched_curr(this_rq);
2453}
2454
2455/*
2456 * If we are not running and we are not going to reschedule soon, we should
2457 * try to push tasks away now
2458 */
2459static void task_woken_rt(struct rq *rq, struct task_struct *p)
2460{
2461	bool need_to_push = !task_on_cpu(rq, p) &&
2462			    !test_tsk_need_resched(rq->curr) &&
2463			    p->nr_cpus_allowed > 1 &&
2464			    (dl_task(rq->curr) || rt_task(rq->curr)) &&
2465			    (rq->curr->nr_cpus_allowed < 2 ||
2466			     rq->curr->prio <= p->prio);
2467
2468	if (need_to_push)
2469		push_rt_tasks(rq);
2470}
2471
2472/* Assumes rq->lock is held */
2473static void rq_online_rt(struct rq *rq)
2474{
2475	if (rq->rt.overloaded)
2476		rt_set_overload(rq);
2477
2478	__enable_runtime(rq);
2479
2480	cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
2481}
2482
2483/* Assumes rq->lock is held */
2484static void rq_offline_rt(struct rq *rq)
2485{
2486	if (rq->rt.overloaded)
2487		rt_clear_overload(rq);
2488
2489	__disable_runtime(rq);
2490
2491	cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
2492}
2493
2494/*
2495 * When switch from the rt queue, we bring ourselves to a position
2496 * that we might want to pull RT tasks from other runqueues.
2497 */
2498static void switched_from_rt(struct rq *rq, struct task_struct *p)
2499{
2500	/*
2501	 * If there are other RT tasks then we will reschedule
2502	 * and the scheduling of the other RT tasks will handle
2503	 * the balancing. But if we are the last RT task
2504	 * we may need to handle the pulling of RT tasks
2505	 * now.
2506	 */
2507	if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
2508		return;
2509
2510	rt_queue_pull_task(rq);
2511}
2512
2513void __init init_sched_rt_class(void)
2514{
2515	unsigned int i;
2516
2517	for_each_possible_cpu(i) {
2518		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
2519					GFP_KERNEL, cpu_to_node(i));
2520	}
2521}
2522#endif /* CONFIG_SMP */
2523
2524/*
2525 * When switching a task to RT, we may overload the runqueue
2526 * with RT tasks. In this case we try to push them off to
2527 * other runqueues.
2528 */
2529static void switched_to_rt(struct rq *rq, struct task_struct *p)
2530{
2531	/*
2532	 * If we are running, update the avg_rt tracking, as the running time
2533	 * will now on be accounted into the latter.
2534	 */
2535	if (task_current(rq, p)) {
2536		update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
2537		return;
2538	}
2539
2540	/*
2541	 * If we are not running we may need to preempt the current
2542	 * running task. If that current running task is also an RT task
2543	 * then see if we can move to another run queue.
2544	 */
2545	if (task_on_rq_queued(p)) {
2546#ifdef CONFIG_SMP
2547		if (p->nr_cpus_allowed > 1 && rq->rt.overloaded)
2548			rt_queue_push_tasks(rq);
2549#endif /* CONFIG_SMP */
2550		if (p->prio < rq->curr->prio && cpu_online(cpu_of(rq)))
2551			resched_curr(rq);
 
2552	}
2553}
2554
2555/*
2556 * Priority of the task has changed. This may cause
2557 * us to initiate a push or pull.
2558 */
2559static void
2560prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
2561{
2562	if (!task_on_rq_queued(p))
2563		return;
2564
2565	if (task_current(rq, p)) {
2566#ifdef CONFIG_SMP
2567		/*
2568		 * If our priority decreases while running, we
2569		 * may need to pull tasks to this runqueue.
2570		 */
2571		if (oldprio < p->prio)
2572			rt_queue_pull_task(rq);
2573
2574		/*
2575		 * If there's a higher priority task waiting to run
2576		 * then reschedule.
2577		 */
2578		if (p->prio > rq->rt.highest_prio.curr)
2579			resched_curr(rq);
2580#else
2581		/* For UP simply resched on drop of prio */
2582		if (oldprio < p->prio)
2583			resched_curr(rq);
2584#endif /* CONFIG_SMP */
2585	} else {
2586		/*
2587		 * This task is not running, but if it is
2588		 * greater than the current running task
2589		 * then reschedule.
2590		 */
2591		if (p->prio < rq->curr->prio)
2592			resched_curr(rq);
2593	}
2594}
2595
2596#ifdef CONFIG_POSIX_TIMERS
2597static void watchdog(struct rq *rq, struct task_struct *p)
2598{
2599	unsigned long soft, hard;
2600
2601	/* max may change after cur was read, this will be fixed next tick */
2602	soft = task_rlimit(p, RLIMIT_RTTIME);
2603	hard = task_rlimit_max(p, RLIMIT_RTTIME);
2604
2605	if (soft != RLIM_INFINITY) {
2606		unsigned long next;
2607
2608		if (p->rt.watchdog_stamp != jiffies) {
2609			p->rt.timeout++;
2610			p->rt.watchdog_stamp = jiffies;
2611		}
2612
2613		next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2614		if (p->rt.timeout > next) {
2615			posix_cputimers_rt_watchdog(&p->posix_cputimers,
2616						    p->se.sum_exec_runtime);
2617		}
2618	}
2619}
2620#else
2621static inline void watchdog(struct rq *rq, struct task_struct *p) { }
2622#endif
2623
2624/*
2625 * scheduler tick hitting a task of our scheduling class.
2626 *
2627 * NOTE: This function can be called remotely by the tick offload that
2628 * goes along full dynticks. Therefore no local assumption can be made
2629 * and everything must be accessed through the @rq and @curr passed in
2630 * parameters.
2631 */
2632static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2633{
2634	struct sched_rt_entity *rt_se = &p->rt;
2635
2636	update_curr_rt(rq);
2637	update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2638
2639	watchdog(rq, p);
2640
2641	/*
2642	 * RR tasks need a special form of timeslice management.
2643	 * FIFO tasks have no timeslices.
2644	 */
2645	if (p->policy != SCHED_RR)
2646		return;
2647
2648	if (--p->rt.time_slice)
2649		return;
2650
2651	p->rt.time_slice = sched_rr_timeslice;
2652
2653	/*
2654	 * Requeue to the end of queue if we (and all of our ancestors) are not
2655	 * the only element on the queue
2656	 */
2657	for_each_sched_rt_entity(rt_se) {
2658		if (rt_se->run_list.prev != rt_se->run_list.next) {
2659			requeue_task_rt(rq, p, 0);
2660			resched_curr(rq);
2661			return;
2662		}
2663	}
2664}
2665
 
 
 
 
 
 
 
 
 
 
2666static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2667{
2668	/*
2669	 * Time slice is 0 for SCHED_FIFO tasks
2670	 */
2671	if (task->policy == SCHED_RR)
2672		return sched_rr_timeslice;
2673	else
2674		return 0;
2675}
2676
2677DEFINE_SCHED_CLASS(rt) = {
2678
2679	.enqueue_task		= enqueue_task_rt,
2680	.dequeue_task		= dequeue_task_rt,
2681	.yield_task		= yield_task_rt,
2682
2683	.check_preempt_curr	= check_preempt_curr_rt,
2684
2685	.pick_next_task		= pick_next_task_rt,
2686	.put_prev_task		= put_prev_task_rt,
2687	.set_next_task          = set_next_task_rt,
2688
2689#ifdef CONFIG_SMP
2690	.balance		= balance_rt,
2691	.pick_task		= pick_task_rt,
2692	.select_task_rq		= select_task_rq_rt,
 
2693	.set_cpus_allowed       = set_cpus_allowed_common,
2694	.rq_online              = rq_online_rt,
2695	.rq_offline             = rq_offline_rt,
2696	.task_woken		= task_woken_rt,
2697	.switched_from		= switched_from_rt,
2698	.find_lock_rq		= find_lock_lowest_rq,
2699#endif
2700
 
2701	.task_tick		= task_tick_rt,
2702
2703	.get_rr_interval	= get_rr_interval_rt,
2704
2705	.prio_changed		= prio_changed_rt,
2706	.switched_to		= switched_to_rt,
2707
2708	.update_curr		= update_curr_rt,
2709
2710#ifdef CONFIG_UCLAMP_TASK
2711	.uclamp_enabled		= 1,
2712#endif
2713};
2714
2715#ifdef CONFIG_RT_GROUP_SCHED
2716/*
2717 * Ensure that the real time constraints are schedulable.
2718 */
2719static DEFINE_MUTEX(rt_constraints_mutex);
2720
2721static inline int tg_has_rt_tasks(struct task_group *tg)
2722{
2723	struct task_struct *task;
2724	struct css_task_iter it;
2725	int ret = 0;
2726
2727	/*
2728	 * Autogroups do not have RT tasks; see autogroup_create().
2729	 */
2730	if (task_group_is_autogroup(tg))
2731		return 0;
2732
2733	css_task_iter_start(&tg->css, 0, &it);
2734	while (!ret && (task = css_task_iter_next(&it)))
2735		ret |= rt_task(task);
2736	css_task_iter_end(&it);
2737
2738	return ret;
2739}
2740
2741struct rt_schedulable_data {
2742	struct task_group *tg;
2743	u64 rt_period;
2744	u64 rt_runtime;
2745};
2746
2747static int tg_rt_schedulable(struct task_group *tg, void *data)
2748{
2749	struct rt_schedulable_data *d = data;
2750	struct task_group *child;
2751	unsigned long total, sum = 0;
2752	u64 period, runtime;
2753
2754	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2755	runtime = tg->rt_bandwidth.rt_runtime;
2756
2757	if (tg == d->tg) {
2758		period = d->rt_period;
2759		runtime = d->rt_runtime;
2760	}
2761
2762	/*
2763	 * Cannot have more runtime than the period.
2764	 */
2765	if (runtime > period && runtime != RUNTIME_INF)
2766		return -EINVAL;
2767
2768	/*
2769	 * Ensure we don't starve existing RT tasks if runtime turns zero.
2770	 */
2771	if (rt_bandwidth_enabled() && !runtime &&
2772	    tg->rt_bandwidth.rt_runtime && tg_has_rt_tasks(tg))
2773		return -EBUSY;
2774
2775	total = to_ratio(period, runtime);
2776
2777	/*
2778	 * Nobody can have more than the global setting allows.
2779	 */
2780	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
2781		return -EINVAL;
2782
2783	/*
2784	 * The sum of our children's runtime should not exceed our own.
2785	 */
2786	list_for_each_entry_rcu(child, &tg->children, siblings) {
2787		period = ktime_to_ns(child->rt_bandwidth.rt_period);
2788		runtime = child->rt_bandwidth.rt_runtime;
2789
2790		if (child == d->tg) {
2791			period = d->rt_period;
2792			runtime = d->rt_runtime;
2793		}
2794
2795		sum += to_ratio(period, runtime);
2796	}
2797
2798	if (sum > total)
2799		return -EINVAL;
2800
2801	return 0;
2802}
2803
2804static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
2805{
2806	int ret;
2807
2808	struct rt_schedulable_data data = {
2809		.tg = tg,
2810		.rt_period = period,
2811		.rt_runtime = runtime,
2812	};
2813
2814	rcu_read_lock();
2815	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
2816	rcu_read_unlock();
2817
2818	return ret;
2819}
2820
2821static int tg_set_rt_bandwidth(struct task_group *tg,
2822		u64 rt_period, u64 rt_runtime)
2823{
2824	int i, err = 0;
2825
2826	/*
2827	 * Disallowing the root group RT runtime is BAD, it would disallow the
2828	 * kernel creating (and or operating) RT threads.
2829	 */
2830	if (tg == &root_task_group && rt_runtime == 0)
2831		return -EINVAL;
2832
2833	/* No period doesn't make any sense. */
2834	if (rt_period == 0)
2835		return -EINVAL;
2836
2837	/*
2838	 * Bound quota to defend quota against overflow during bandwidth shift.
2839	 */
2840	if (rt_runtime != RUNTIME_INF && rt_runtime > max_rt_runtime)
2841		return -EINVAL;
2842
2843	mutex_lock(&rt_constraints_mutex);
2844	err = __rt_schedulable(tg, rt_period, rt_runtime);
2845	if (err)
2846		goto unlock;
2847
2848	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2849	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
2850	tg->rt_bandwidth.rt_runtime = rt_runtime;
2851
2852	for_each_possible_cpu(i) {
2853		struct rt_rq *rt_rq = tg->rt_rq[i];
2854
2855		raw_spin_lock(&rt_rq->rt_runtime_lock);
2856		rt_rq->rt_runtime = rt_runtime;
2857		raw_spin_unlock(&rt_rq->rt_runtime_lock);
2858	}
2859	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2860unlock:
2861	mutex_unlock(&rt_constraints_mutex);
2862
2863	return err;
2864}
2865
2866int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
2867{
2868	u64 rt_runtime, rt_period;
2869
2870	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2871	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
2872	if (rt_runtime_us < 0)
2873		rt_runtime = RUNTIME_INF;
2874	else if ((u64)rt_runtime_us > U64_MAX / NSEC_PER_USEC)
2875		return -EINVAL;
2876
2877	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2878}
2879
2880long sched_group_rt_runtime(struct task_group *tg)
2881{
2882	u64 rt_runtime_us;
2883
2884	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
2885		return -1;
2886
2887	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
2888	do_div(rt_runtime_us, NSEC_PER_USEC);
2889	return rt_runtime_us;
2890}
2891
2892int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
2893{
2894	u64 rt_runtime, rt_period;
2895
2896	if (rt_period_us > U64_MAX / NSEC_PER_USEC)
2897		return -EINVAL;
2898
2899	rt_period = rt_period_us * NSEC_PER_USEC;
2900	rt_runtime = tg->rt_bandwidth.rt_runtime;
2901
2902	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2903}
2904
2905long sched_group_rt_period(struct task_group *tg)
2906{
2907	u64 rt_period_us;
2908
2909	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
2910	do_div(rt_period_us, NSEC_PER_USEC);
2911	return rt_period_us;
2912}
2913
2914#ifdef CONFIG_SYSCTL
2915static int sched_rt_global_constraints(void)
2916{
2917	int ret = 0;
2918
2919	mutex_lock(&rt_constraints_mutex);
2920	ret = __rt_schedulable(NULL, 0, 0);
2921	mutex_unlock(&rt_constraints_mutex);
2922
2923	return ret;
2924}
2925#endif /* CONFIG_SYSCTL */
2926
2927int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
2928{
2929	/* Don't accept realtime tasks when there is no way for them to run */
2930	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
2931		return 0;
2932
2933	return 1;
2934}
2935
2936#else /* !CONFIG_RT_GROUP_SCHED */
2937
2938#ifdef CONFIG_SYSCTL
2939static int sched_rt_global_constraints(void)
2940{
2941	unsigned long flags;
2942	int i;
2943
2944	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
2945	for_each_possible_cpu(i) {
2946		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
2947
2948		raw_spin_lock(&rt_rq->rt_runtime_lock);
2949		rt_rq->rt_runtime = global_rt_runtime();
2950		raw_spin_unlock(&rt_rq->rt_runtime_lock);
2951	}
2952	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
2953
2954	return 0;
2955}
2956#endif /* CONFIG_SYSCTL */
2957#endif /* CONFIG_RT_GROUP_SCHED */
2958
2959#ifdef CONFIG_SYSCTL
2960static int sched_rt_global_validate(void)
2961{
2962	if (sysctl_sched_rt_period <= 0)
2963		return -EINVAL;
2964
2965	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
2966		((sysctl_sched_rt_runtime > sysctl_sched_rt_period) ||
2967		 ((u64)sysctl_sched_rt_runtime *
2968			NSEC_PER_USEC > max_rt_runtime)))
2969		return -EINVAL;
2970
2971	return 0;
2972}
2973
2974static void sched_rt_do_global(void)
2975{
2976	unsigned long flags;
2977
2978	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
2979	def_rt_bandwidth.rt_runtime = global_rt_runtime();
2980	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
2981	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
2982}
2983
2984static int sched_rt_handler(struct ctl_table *table, int write, void *buffer,
2985		size_t *lenp, loff_t *ppos)
2986{
2987	int old_period, old_runtime;
2988	static DEFINE_MUTEX(mutex);
2989	int ret;
2990
2991	mutex_lock(&mutex);
2992	old_period = sysctl_sched_rt_period;
2993	old_runtime = sysctl_sched_rt_runtime;
2994
2995	ret = proc_dointvec(table, write, buffer, lenp, ppos);
2996
2997	if (!ret && write) {
2998		ret = sched_rt_global_validate();
2999		if (ret)
3000			goto undo;
3001
3002		ret = sched_dl_global_validate();
3003		if (ret)
3004			goto undo;
3005
3006		ret = sched_rt_global_constraints();
3007		if (ret)
3008			goto undo;
3009
3010		sched_rt_do_global();
3011		sched_dl_do_global();
3012	}
3013	if (0) {
3014undo:
3015		sysctl_sched_rt_period = old_period;
3016		sysctl_sched_rt_runtime = old_runtime;
3017	}
3018	mutex_unlock(&mutex);
3019
3020	return ret;
3021}
3022
3023static int sched_rr_handler(struct ctl_table *table, int write, void *buffer,
3024		size_t *lenp, loff_t *ppos)
3025{
3026	int ret;
3027	static DEFINE_MUTEX(mutex);
3028
3029	mutex_lock(&mutex);
3030	ret = proc_dointvec(table, write, buffer, lenp, ppos);
3031	/*
3032	 * Make sure that internally we keep jiffies.
3033	 * Also, writing zero resets the timeslice to default:
3034	 */
3035	if (!ret && write) {
3036		sched_rr_timeslice =
3037			sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE :
3038			msecs_to_jiffies(sysctl_sched_rr_timeslice);
3039	}
3040	mutex_unlock(&mutex);
3041
3042	return ret;
3043}
3044#endif /* CONFIG_SYSCTL */
3045
3046#ifdef CONFIG_SCHED_DEBUG
 
 
3047void print_rt_stats(struct seq_file *m, int cpu)
3048{
3049	rt_rq_iter_t iter;
3050	struct rt_rq *rt_rq;
3051
3052	rcu_read_lock();
3053	for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
3054		print_rt_rq(m, cpu, rt_rq);
3055	rcu_read_unlock();
3056}
3057#endif /* CONFIG_SCHED_DEBUG */
v4.6
 
   1/*
   2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
   3 * policies)
   4 */
   5
   6#include "sched.h"
   7
   8#include <linux/slab.h>
   9#include <linux/irq_work.h>
  10
  11int sched_rr_timeslice = RR_TIMESLICE;
 
 
  12
  13static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  14
  15struct rt_bandwidth def_rt_bandwidth;
  16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  17static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  18{
  19	struct rt_bandwidth *rt_b =
  20		container_of(timer, struct rt_bandwidth, rt_period_timer);
  21	int idle = 0;
  22	int overrun;
  23
  24	raw_spin_lock(&rt_b->rt_runtime_lock);
  25	for (;;) {
  26		overrun = hrtimer_forward_now(timer, rt_b->rt_period);
  27		if (!overrun)
  28			break;
  29
  30		raw_spin_unlock(&rt_b->rt_runtime_lock);
  31		idle = do_sched_rt_period_timer(rt_b, overrun);
  32		raw_spin_lock(&rt_b->rt_runtime_lock);
  33	}
  34	if (idle)
  35		rt_b->rt_period_active = 0;
  36	raw_spin_unlock(&rt_b->rt_runtime_lock);
  37
  38	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  39}
  40
  41void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  42{
  43	rt_b->rt_period = ns_to_ktime(period);
  44	rt_b->rt_runtime = runtime;
  45
  46	raw_spin_lock_init(&rt_b->rt_runtime_lock);
  47
  48	hrtimer_init(&rt_b->rt_period_timer,
  49			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  50	rt_b->rt_period_timer.function = sched_rt_period_timer;
  51}
  52
  53static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  54{
  55	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
  56		return;
  57
  58	raw_spin_lock(&rt_b->rt_runtime_lock);
  59	if (!rt_b->rt_period_active) {
  60		rt_b->rt_period_active = 1;
  61		/*
  62		 * SCHED_DEADLINE updates the bandwidth, as a run away
  63		 * RT task with a DL task could hog a CPU. But DL does
  64		 * not reset the period. If a deadline task was running
  65		 * without an RT task running, it can cause RT tasks to
  66		 * throttle when they start up. Kick the timer right away
  67		 * to update the period.
  68		 */
  69		hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0));
  70		hrtimer_start_expires(&rt_b->rt_period_timer, HRTIMER_MODE_ABS_PINNED);
 
  71	}
  72	raw_spin_unlock(&rt_b->rt_runtime_lock);
  73}
  74
  75#if defined(CONFIG_SMP) && defined(HAVE_RT_PUSH_IPI)
  76static void push_irq_work_func(struct irq_work *work);
  77#endif
 
 
 
 
  78
  79void init_rt_rq(struct rt_rq *rt_rq)
  80{
  81	struct rt_prio_array *array;
  82	int i;
  83
  84	array = &rt_rq->active;
  85	for (i = 0; i < MAX_RT_PRIO; i++) {
  86		INIT_LIST_HEAD(array->queue + i);
  87		__clear_bit(i, array->bitmap);
  88	}
  89	/* delimiter for bitsearch: */
  90	__set_bit(MAX_RT_PRIO, array->bitmap);
  91
  92#if defined CONFIG_SMP
  93	rt_rq->highest_prio.curr = MAX_RT_PRIO;
  94	rt_rq->highest_prio.next = MAX_RT_PRIO;
  95	rt_rq->rt_nr_migratory = 0;
  96	rt_rq->overloaded = 0;
  97	plist_head_init(&rt_rq->pushable_tasks);
  98
  99#ifdef HAVE_RT_PUSH_IPI
 100	rt_rq->push_flags = 0;
 101	rt_rq->push_cpu = nr_cpu_ids;
 102	raw_spin_lock_init(&rt_rq->push_lock);
 103	init_irq_work(&rt_rq->push_work, push_irq_work_func);
 104#endif
 105#endif /* CONFIG_SMP */
 106	/* We start is dequeued state, because no RT tasks are queued */
 107	rt_rq->rt_queued = 0;
 108
 109	rt_rq->rt_time = 0;
 110	rt_rq->rt_throttled = 0;
 111	rt_rq->rt_runtime = 0;
 112	raw_spin_lock_init(&rt_rq->rt_runtime_lock);
 113}
 114
 115#ifdef CONFIG_RT_GROUP_SCHED
 116static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
 117{
 118	hrtimer_cancel(&rt_b->rt_period_timer);
 119}
 120
 121#define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
 122
 123static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
 124{
 125#ifdef CONFIG_SCHED_DEBUG
 126	WARN_ON_ONCE(!rt_entity_is_task(rt_se));
 127#endif
 128	return container_of(rt_se, struct task_struct, rt);
 129}
 130
 131static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
 132{
 133	return rt_rq->rq;
 134}
 135
 136static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
 137{
 138	return rt_se->rt_rq;
 139}
 140
 141static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
 142{
 143	struct rt_rq *rt_rq = rt_se->rt_rq;
 144
 145	return rt_rq->rq;
 146}
 147
 
 
 
 
 
 
 
 148void free_rt_sched_group(struct task_group *tg)
 149{
 150	int i;
 151
 152	if (tg->rt_se)
 153		destroy_rt_bandwidth(&tg->rt_bandwidth);
 154
 155	for_each_possible_cpu(i) {
 156		if (tg->rt_rq)
 157			kfree(tg->rt_rq[i]);
 158		if (tg->rt_se)
 159			kfree(tg->rt_se[i]);
 160	}
 161
 162	kfree(tg->rt_rq);
 163	kfree(tg->rt_se);
 164}
 165
 166void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
 167		struct sched_rt_entity *rt_se, int cpu,
 168		struct sched_rt_entity *parent)
 169{
 170	struct rq *rq = cpu_rq(cpu);
 171
 172	rt_rq->highest_prio.curr = MAX_RT_PRIO;
 173	rt_rq->rt_nr_boosted = 0;
 174	rt_rq->rq = rq;
 175	rt_rq->tg = tg;
 176
 177	tg->rt_rq[cpu] = rt_rq;
 178	tg->rt_se[cpu] = rt_se;
 179
 180	if (!rt_se)
 181		return;
 182
 183	if (!parent)
 184		rt_se->rt_rq = &rq->rt;
 185	else
 186		rt_se->rt_rq = parent->my_q;
 187
 188	rt_se->my_q = rt_rq;
 189	rt_se->parent = parent;
 190	INIT_LIST_HEAD(&rt_se->run_list);
 191}
 192
 193int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
 194{
 195	struct rt_rq *rt_rq;
 196	struct sched_rt_entity *rt_se;
 197	int i;
 198
 199	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
 200	if (!tg->rt_rq)
 201		goto err;
 202	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
 203	if (!tg->rt_se)
 204		goto err;
 205
 206	init_rt_bandwidth(&tg->rt_bandwidth,
 207			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
 208
 209	for_each_possible_cpu(i) {
 210		rt_rq = kzalloc_node(sizeof(struct rt_rq),
 211				     GFP_KERNEL, cpu_to_node(i));
 212		if (!rt_rq)
 213			goto err;
 214
 215		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
 216				     GFP_KERNEL, cpu_to_node(i));
 217		if (!rt_se)
 218			goto err_free_rq;
 219
 220		init_rt_rq(rt_rq);
 221		rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
 222		init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
 223	}
 224
 225	return 1;
 226
 227err_free_rq:
 228	kfree(rt_rq);
 229err:
 230	return 0;
 231}
 232
 233#else /* CONFIG_RT_GROUP_SCHED */
 234
 235#define rt_entity_is_task(rt_se) (1)
 236
 237static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
 238{
 239	return container_of(rt_se, struct task_struct, rt);
 240}
 241
 242static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
 243{
 244	return container_of(rt_rq, struct rq, rt);
 245}
 246
 247static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
 248{
 249	struct task_struct *p = rt_task_of(rt_se);
 250
 251	return task_rq(p);
 252}
 253
 254static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
 255{
 256	struct rq *rq = rq_of_rt_se(rt_se);
 257
 258	return &rq->rt;
 259}
 260
 
 
 261void free_rt_sched_group(struct task_group *tg) { }
 262
 263int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
 264{
 265	return 1;
 266}
 267#endif /* CONFIG_RT_GROUP_SCHED */
 268
 269#ifdef CONFIG_SMP
 270
 271static void pull_rt_task(struct rq *this_rq);
 272
 273static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
 274{
 275	/* Try to pull RT tasks here if we lower this rq's prio */
 276	return rq->rt.highest_prio.curr > prev->prio;
 277}
 278
 279static inline int rt_overloaded(struct rq *rq)
 280{
 281	return atomic_read(&rq->rd->rto_count);
 282}
 283
 284static inline void rt_set_overload(struct rq *rq)
 285{
 286	if (!rq->online)
 287		return;
 288
 289	cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
 290	/*
 291	 * Make sure the mask is visible before we set
 292	 * the overload count. That is checked to determine
 293	 * if we should look at the mask. It would be a shame
 294	 * if we looked at the mask, but the mask was not
 295	 * updated yet.
 296	 *
 297	 * Matched by the barrier in pull_rt_task().
 298	 */
 299	smp_wmb();
 300	atomic_inc(&rq->rd->rto_count);
 301}
 302
 303static inline void rt_clear_overload(struct rq *rq)
 304{
 305	if (!rq->online)
 306		return;
 307
 308	/* the order here really doesn't matter */
 309	atomic_dec(&rq->rd->rto_count);
 310	cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
 311}
 312
 313static void update_rt_migration(struct rt_rq *rt_rq)
 314{
 315	if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
 316		if (!rt_rq->overloaded) {
 317			rt_set_overload(rq_of_rt_rq(rt_rq));
 318			rt_rq->overloaded = 1;
 319		}
 320	} else if (rt_rq->overloaded) {
 321		rt_clear_overload(rq_of_rt_rq(rt_rq));
 322		rt_rq->overloaded = 0;
 323	}
 324}
 325
 326static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
 327{
 328	struct task_struct *p;
 329
 330	if (!rt_entity_is_task(rt_se))
 331		return;
 332
 333	p = rt_task_of(rt_se);
 334	rt_rq = &rq_of_rt_rq(rt_rq)->rt;
 335
 336	rt_rq->rt_nr_total++;
 337	if (p->nr_cpus_allowed > 1)
 338		rt_rq->rt_nr_migratory++;
 339
 340	update_rt_migration(rt_rq);
 341}
 342
 343static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
 344{
 345	struct task_struct *p;
 346
 347	if (!rt_entity_is_task(rt_se))
 348		return;
 349
 350	p = rt_task_of(rt_se);
 351	rt_rq = &rq_of_rt_rq(rt_rq)->rt;
 352
 353	rt_rq->rt_nr_total--;
 354	if (p->nr_cpus_allowed > 1)
 355		rt_rq->rt_nr_migratory--;
 356
 357	update_rt_migration(rt_rq);
 358}
 359
 360static inline int has_pushable_tasks(struct rq *rq)
 361{
 362	return !plist_head_empty(&rq->rt.pushable_tasks);
 363}
 364
 365static DEFINE_PER_CPU(struct callback_head, rt_push_head);
 366static DEFINE_PER_CPU(struct callback_head, rt_pull_head);
 367
 368static void push_rt_tasks(struct rq *);
 369static void pull_rt_task(struct rq *);
 370
 371static inline void queue_push_tasks(struct rq *rq)
 372{
 373	if (!has_pushable_tasks(rq))
 374		return;
 375
 376	queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
 377}
 378
 379static inline void queue_pull_task(struct rq *rq)
 380{
 381	queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
 382}
 383
 384static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
 385{
 386	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
 387	plist_node_init(&p->pushable_tasks, p->prio);
 388	plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
 389
 390	/* Update the highest prio pushable task */
 391	if (p->prio < rq->rt.highest_prio.next)
 392		rq->rt.highest_prio.next = p->prio;
 393}
 394
 395static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
 396{
 397	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
 398
 399	/* Update the new highest prio pushable task */
 400	if (has_pushable_tasks(rq)) {
 401		p = plist_first_entry(&rq->rt.pushable_tasks,
 402				      struct task_struct, pushable_tasks);
 403		rq->rt.highest_prio.next = p->prio;
 404	} else
 405		rq->rt.highest_prio.next = MAX_RT_PRIO;
 
 406}
 407
 408#else
 409
 410static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
 411{
 412}
 413
 414static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
 415{
 416}
 417
 418static inline
 419void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
 420{
 421}
 422
 423static inline
 424void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
 425{
 426}
 427
 428static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
 429{
 430	return false;
 431}
 
 
 
 
 432
 433static inline void pull_rt_task(struct rq *this_rq)
 434{
 
 435}
 436
 437static inline void queue_push_tasks(struct rq *rq)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 438{
 439}
 440#endif /* CONFIG_SMP */
 
 
 
 
 
 
 
 
 441
 442static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
 443static void dequeue_top_rt_rq(struct rt_rq *rt_rq);
 444
 445static inline int on_rt_rq(struct sched_rt_entity *rt_se)
 
 
 
 446{
 447	return rt_se->on_rq;
 448}
 
 449
 450#ifdef CONFIG_RT_GROUP_SCHED
 451
 452static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
 453{
 454	if (!rt_rq->tg)
 455		return RUNTIME_INF;
 456
 457	return rt_rq->rt_runtime;
 458}
 459
 460static inline u64 sched_rt_period(struct rt_rq *rt_rq)
 461{
 462	return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
 463}
 464
 465typedef struct task_group *rt_rq_iter_t;
 466
 467static inline struct task_group *next_task_group(struct task_group *tg)
 468{
 469	do {
 470		tg = list_entry_rcu(tg->list.next,
 471			typeof(struct task_group), list);
 472	} while (&tg->list != &task_groups && task_group_is_autogroup(tg));
 473
 474	if (&tg->list == &task_groups)
 475		tg = NULL;
 476
 477	return tg;
 478}
 479
 480#define for_each_rt_rq(rt_rq, iter, rq)					\
 481	for (iter = container_of(&task_groups, typeof(*iter), list);	\
 482		(iter = next_task_group(iter)) &&			\
 483		(rt_rq = iter->rt_rq[cpu_of(rq)]);)
 484
 485#define for_each_sched_rt_entity(rt_se) \
 486	for (; rt_se; rt_se = rt_se->parent)
 487
 488static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
 489{
 490	return rt_se->my_q;
 491}
 492
 493static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
 494static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
 495
 496static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
 497{
 498	struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
 499	struct rq *rq = rq_of_rt_rq(rt_rq);
 500	struct sched_rt_entity *rt_se;
 501
 502	int cpu = cpu_of(rq);
 503
 504	rt_se = rt_rq->tg->rt_se[cpu];
 505
 506	if (rt_rq->rt_nr_running) {
 507		if (!rt_se)
 508			enqueue_top_rt_rq(rt_rq);
 509		else if (!on_rt_rq(rt_se))
 510			enqueue_rt_entity(rt_se, 0);
 511
 512		if (rt_rq->highest_prio.curr < curr->prio)
 513			resched_curr(rq);
 514	}
 515}
 516
 517static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
 518{
 519	struct sched_rt_entity *rt_se;
 520	int cpu = cpu_of(rq_of_rt_rq(rt_rq));
 521
 522	rt_se = rt_rq->tg->rt_se[cpu];
 523
 524	if (!rt_se)
 525		dequeue_top_rt_rq(rt_rq);
 
 
 
 526	else if (on_rt_rq(rt_se))
 527		dequeue_rt_entity(rt_se, 0);
 528}
 529
 530static inline int rt_rq_throttled(struct rt_rq *rt_rq)
 531{
 532	return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
 533}
 534
 535static int rt_se_boosted(struct sched_rt_entity *rt_se)
 536{
 537	struct rt_rq *rt_rq = group_rt_rq(rt_se);
 538	struct task_struct *p;
 539
 540	if (rt_rq)
 541		return !!rt_rq->rt_nr_boosted;
 542
 543	p = rt_task_of(rt_se);
 544	return p->prio != p->normal_prio;
 545}
 546
 547#ifdef CONFIG_SMP
 548static inline const struct cpumask *sched_rt_period_mask(void)
 549{
 550	return this_rq()->rd->span;
 551}
 552#else
 553static inline const struct cpumask *sched_rt_period_mask(void)
 554{
 555	return cpu_online_mask;
 556}
 557#endif
 558
 559static inline
 560struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
 561{
 562	return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
 563}
 564
 565static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
 566{
 567	return &rt_rq->tg->rt_bandwidth;
 568}
 569
 570#else /* !CONFIG_RT_GROUP_SCHED */
 571
 572static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
 573{
 574	return rt_rq->rt_runtime;
 575}
 576
 577static inline u64 sched_rt_period(struct rt_rq *rt_rq)
 578{
 579	return ktime_to_ns(def_rt_bandwidth.rt_period);
 580}
 581
 582typedef struct rt_rq *rt_rq_iter_t;
 583
 584#define for_each_rt_rq(rt_rq, iter, rq) \
 585	for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
 586
 587#define for_each_sched_rt_entity(rt_se) \
 588	for (; rt_se; rt_se = NULL)
 589
 590static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
 591{
 592	return NULL;
 593}
 594
 595static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
 596{
 597	struct rq *rq = rq_of_rt_rq(rt_rq);
 598
 599	if (!rt_rq->rt_nr_running)
 600		return;
 601
 602	enqueue_top_rt_rq(rt_rq);
 603	resched_curr(rq);
 604}
 605
 606static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
 607{
 608	dequeue_top_rt_rq(rt_rq);
 609}
 610
 611static inline int rt_rq_throttled(struct rt_rq *rt_rq)
 612{
 613	return rt_rq->rt_throttled;
 614}
 615
 616static inline const struct cpumask *sched_rt_period_mask(void)
 617{
 618	return cpu_online_mask;
 619}
 620
 621static inline
 622struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
 623{
 624	return &cpu_rq(cpu)->rt;
 625}
 626
 627static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
 628{
 629	return &def_rt_bandwidth;
 630}
 631
 632#endif /* CONFIG_RT_GROUP_SCHED */
 633
 634bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
 635{
 636	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
 637
 638	return (hrtimer_active(&rt_b->rt_period_timer) ||
 639		rt_rq->rt_time < rt_b->rt_runtime);
 640}
 641
 642#ifdef CONFIG_SMP
 643/*
 644 * We ran out of runtime, see if we can borrow some from our neighbours.
 645 */
 646static void do_balance_runtime(struct rt_rq *rt_rq)
 647{
 648	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
 649	struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
 650	int i, weight;
 651	u64 rt_period;
 652
 653	weight = cpumask_weight(rd->span);
 654
 655	raw_spin_lock(&rt_b->rt_runtime_lock);
 656	rt_period = ktime_to_ns(rt_b->rt_period);
 657	for_each_cpu(i, rd->span) {
 658		struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
 659		s64 diff;
 660
 661		if (iter == rt_rq)
 662			continue;
 663
 664		raw_spin_lock(&iter->rt_runtime_lock);
 665		/*
 666		 * Either all rqs have inf runtime and there's nothing to steal
 667		 * or __disable_runtime() below sets a specific rq to inf to
 668		 * indicate its been disabled and disalow stealing.
 669		 */
 670		if (iter->rt_runtime == RUNTIME_INF)
 671			goto next;
 672
 673		/*
 674		 * From runqueues with spare time, take 1/n part of their
 675		 * spare time, but no more than our period.
 676		 */
 677		diff = iter->rt_runtime - iter->rt_time;
 678		if (diff > 0) {
 679			diff = div_u64((u64)diff, weight);
 680			if (rt_rq->rt_runtime + diff > rt_period)
 681				diff = rt_period - rt_rq->rt_runtime;
 682			iter->rt_runtime -= diff;
 683			rt_rq->rt_runtime += diff;
 684			if (rt_rq->rt_runtime == rt_period) {
 685				raw_spin_unlock(&iter->rt_runtime_lock);
 686				break;
 687			}
 688		}
 689next:
 690		raw_spin_unlock(&iter->rt_runtime_lock);
 691	}
 692	raw_spin_unlock(&rt_b->rt_runtime_lock);
 693}
 694
 695/*
 696 * Ensure this RQ takes back all the runtime it lend to its neighbours.
 697 */
 698static void __disable_runtime(struct rq *rq)
 699{
 700	struct root_domain *rd = rq->rd;
 701	rt_rq_iter_t iter;
 702	struct rt_rq *rt_rq;
 703
 704	if (unlikely(!scheduler_running))
 705		return;
 706
 707	for_each_rt_rq(rt_rq, iter, rq) {
 708		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
 709		s64 want;
 710		int i;
 711
 712		raw_spin_lock(&rt_b->rt_runtime_lock);
 713		raw_spin_lock(&rt_rq->rt_runtime_lock);
 714		/*
 715		 * Either we're all inf and nobody needs to borrow, or we're
 716		 * already disabled and thus have nothing to do, or we have
 717		 * exactly the right amount of runtime to take out.
 718		 */
 719		if (rt_rq->rt_runtime == RUNTIME_INF ||
 720				rt_rq->rt_runtime == rt_b->rt_runtime)
 721			goto balanced;
 722		raw_spin_unlock(&rt_rq->rt_runtime_lock);
 723
 724		/*
 725		 * Calculate the difference between what we started out with
 726		 * and what we current have, that's the amount of runtime
 727		 * we lend and now have to reclaim.
 728		 */
 729		want = rt_b->rt_runtime - rt_rq->rt_runtime;
 730
 731		/*
 732		 * Greedy reclaim, take back as much as we can.
 733		 */
 734		for_each_cpu(i, rd->span) {
 735			struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
 736			s64 diff;
 737
 738			/*
 739			 * Can't reclaim from ourselves or disabled runqueues.
 740			 */
 741			if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
 742				continue;
 743
 744			raw_spin_lock(&iter->rt_runtime_lock);
 745			if (want > 0) {
 746				diff = min_t(s64, iter->rt_runtime, want);
 747				iter->rt_runtime -= diff;
 748				want -= diff;
 749			} else {
 750				iter->rt_runtime -= want;
 751				want -= want;
 752			}
 753			raw_spin_unlock(&iter->rt_runtime_lock);
 754
 755			if (!want)
 756				break;
 757		}
 758
 759		raw_spin_lock(&rt_rq->rt_runtime_lock);
 760		/*
 761		 * We cannot be left wanting - that would mean some runtime
 762		 * leaked out of the system.
 763		 */
 764		BUG_ON(want);
 765balanced:
 766		/*
 767		 * Disable all the borrow logic by pretending we have inf
 768		 * runtime - in which case borrowing doesn't make sense.
 769		 */
 770		rt_rq->rt_runtime = RUNTIME_INF;
 771		rt_rq->rt_throttled = 0;
 772		raw_spin_unlock(&rt_rq->rt_runtime_lock);
 773		raw_spin_unlock(&rt_b->rt_runtime_lock);
 774
 775		/* Make rt_rq available for pick_next_task() */
 776		sched_rt_rq_enqueue(rt_rq);
 777	}
 778}
 779
 780static void __enable_runtime(struct rq *rq)
 781{
 782	rt_rq_iter_t iter;
 783	struct rt_rq *rt_rq;
 784
 785	if (unlikely(!scheduler_running))
 786		return;
 787
 788	/*
 789	 * Reset each runqueue's bandwidth settings
 790	 */
 791	for_each_rt_rq(rt_rq, iter, rq) {
 792		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
 793
 794		raw_spin_lock(&rt_b->rt_runtime_lock);
 795		raw_spin_lock(&rt_rq->rt_runtime_lock);
 796		rt_rq->rt_runtime = rt_b->rt_runtime;
 797		rt_rq->rt_time = 0;
 798		rt_rq->rt_throttled = 0;
 799		raw_spin_unlock(&rt_rq->rt_runtime_lock);
 800		raw_spin_unlock(&rt_b->rt_runtime_lock);
 801	}
 802}
 803
 804static void balance_runtime(struct rt_rq *rt_rq)
 805{
 806	if (!sched_feat(RT_RUNTIME_SHARE))
 807		return;
 808
 809	if (rt_rq->rt_time > rt_rq->rt_runtime) {
 810		raw_spin_unlock(&rt_rq->rt_runtime_lock);
 811		do_balance_runtime(rt_rq);
 812		raw_spin_lock(&rt_rq->rt_runtime_lock);
 813	}
 814}
 815#else /* !CONFIG_SMP */
 816static inline void balance_runtime(struct rt_rq *rt_rq) {}
 817#endif /* CONFIG_SMP */
 818
 819static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
 820{
 821	int i, idle = 1, throttled = 0;
 822	const struct cpumask *span;
 823
 824	span = sched_rt_period_mask();
 825#ifdef CONFIG_RT_GROUP_SCHED
 826	/*
 827	 * FIXME: isolated CPUs should really leave the root task group,
 828	 * whether they are isolcpus or were isolated via cpusets, lest
 829	 * the timer run on a CPU which does not service all runqueues,
 830	 * potentially leaving other CPUs indefinitely throttled.  If
 831	 * isolation is really required, the user will turn the throttle
 832	 * off to kill the perturbations it causes anyway.  Meanwhile,
 833	 * this maintains functionality for boot and/or troubleshooting.
 834	 */
 835	if (rt_b == &root_task_group.rt_bandwidth)
 836		span = cpu_online_mask;
 837#endif
 838	for_each_cpu(i, span) {
 839		int enqueue = 0;
 840		struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
 841		struct rq *rq = rq_of_rt_rq(rt_rq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 842
 843		raw_spin_lock(&rq->lock);
 844		if (rt_rq->rt_time) {
 845			u64 runtime;
 846
 847			raw_spin_lock(&rt_rq->rt_runtime_lock);
 848			if (rt_rq->rt_throttled)
 849				balance_runtime(rt_rq);
 850			runtime = rt_rq->rt_runtime;
 851			rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
 852			if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
 853				rt_rq->rt_throttled = 0;
 854				enqueue = 1;
 855
 856				/*
 857				 * When we're idle and a woken (rt) task is
 858				 * throttled check_preempt_curr() will set
 859				 * skip_update and the time between the wakeup
 860				 * and this unthrottle will get accounted as
 861				 * 'runtime'.
 862				 */
 863				if (rt_rq->rt_nr_running && rq->curr == rq->idle)
 864					rq_clock_skip_update(rq, false);
 865			}
 866			if (rt_rq->rt_time || rt_rq->rt_nr_running)
 867				idle = 0;
 868			raw_spin_unlock(&rt_rq->rt_runtime_lock);
 869		} else if (rt_rq->rt_nr_running) {
 870			idle = 0;
 871			if (!rt_rq_throttled(rt_rq))
 872				enqueue = 1;
 873		}
 874		if (rt_rq->rt_throttled)
 875			throttled = 1;
 876
 877		if (enqueue)
 878			sched_rt_rq_enqueue(rt_rq);
 879		raw_spin_unlock(&rq->lock);
 880	}
 881
 882	if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
 883		return 1;
 884
 885	return idle;
 886}
 887
 888static inline int rt_se_prio(struct sched_rt_entity *rt_se)
 889{
 890#ifdef CONFIG_RT_GROUP_SCHED
 891	struct rt_rq *rt_rq = group_rt_rq(rt_se);
 892
 893	if (rt_rq)
 894		return rt_rq->highest_prio.curr;
 895#endif
 896
 897	return rt_task_of(rt_se)->prio;
 898}
 899
 900static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
 901{
 902	u64 runtime = sched_rt_runtime(rt_rq);
 903
 904	if (rt_rq->rt_throttled)
 905		return rt_rq_throttled(rt_rq);
 906
 907	if (runtime >= sched_rt_period(rt_rq))
 908		return 0;
 909
 910	balance_runtime(rt_rq);
 911	runtime = sched_rt_runtime(rt_rq);
 912	if (runtime == RUNTIME_INF)
 913		return 0;
 914
 915	if (rt_rq->rt_time > runtime) {
 916		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
 917
 918		/*
 919		 * Don't actually throttle groups that have no runtime assigned
 920		 * but accrue some time due to boosting.
 921		 */
 922		if (likely(rt_b->rt_runtime)) {
 923			rt_rq->rt_throttled = 1;
 924			printk_deferred_once("sched: RT throttling activated\n");
 925		} else {
 926			/*
 927			 * In case we did anyway, make it go away,
 928			 * replenishment is a joke, since it will replenish us
 929			 * with exactly 0 ns.
 930			 */
 931			rt_rq->rt_time = 0;
 932		}
 933
 934		if (rt_rq_throttled(rt_rq)) {
 935			sched_rt_rq_dequeue(rt_rq);
 936			return 1;
 937		}
 938	}
 939
 940	return 0;
 941}
 942
 943/*
 944 * Update the current task's runtime statistics. Skip current tasks that
 945 * are not in our scheduling class.
 946 */
 947static void update_curr_rt(struct rq *rq)
 948{
 949	struct task_struct *curr = rq->curr;
 950	struct sched_rt_entity *rt_se = &curr->rt;
 951	u64 delta_exec;
 
 952
 953	if (curr->sched_class != &rt_sched_class)
 954		return;
 955
 956	/* Kick cpufreq (see the comment in linux/cpufreq.h). */
 957	if (cpu_of(rq) == smp_processor_id())
 958		cpufreq_trigger_update(rq_clock(rq));
 959
 960	delta_exec = rq_clock_task(rq) - curr->se.exec_start;
 961	if (unlikely((s64)delta_exec <= 0))
 962		return;
 963
 964	schedstat_set(curr->se.statistics.exec_max,
 965		      max(curr->se.statistics.exec_max, delta_exec));
 966
 967	curr->se.sum_exec_runtime += delta_exec;
 968	account_group_exec_runtime(curr, delta_exec);
 969
 970	curr->se.exec_start = rq_clock_task(rq);
 971	cpuacct_charge(curr, delta_exec);
 972
 973	sched_rt_avg_update(rq, delta_exec);
 974
 975	if (!rt_bandwidth_enabled())
 976		return;
 977
 978	for_each_sched_rt_entity(rt_se) {
 979		struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
 
 980
 981		if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
 982			raw_spin_lock(&rt_rq->rt_runtime_lock);
 983			rt_rq->rt_time += delta_exec;
 984			if (sched_rt_runtime_exceeded(rt_rq))
 
 985				resched_curr(rq);
 986			raw_spin_unlock(&rt_rq->rt_runtime_lock);
 
 
 987		}
 988	}
 989}
 990
 991static void
 992dequeue_top_rt_rq(struct rt_rq *rt_rq)
 993{
 994	struct rq *rq = rq_of_rt_rq(rt_rq);
 995
 996	BUG_ON(&rq->rt != rt_rq);
 997
 998	if (!rt_rq->rt_queued)
 999		return;
1000
1001	BUG_ON(!rq->nr_running);
1002
1003	sub_nr_running(rq, rt_rq->rt_nr_running);
1004	rt_rq->rt_queued = 0;
 
1005}
1006
1007static void
1008enqueue_top_rt_rq(struct rt_rq *rt_rq)
1009{
1010	struct rq *rq = rq_of_rt_rq(rt_rq);
1011
1012	BUG_ON(&rq->rt != rt_rq);
1013
1014	if (rt_rq->rt_queued)
1015		return;
1016	if (rt_rq_throttled(rt_rq) || !rt_rq->rt_nr_running)
 
1017		return;
1018
1019	add_nr_running(rq, rt_rq->rt_nr_running);
1020	rt_rq->rt_queued = 1;
 
 
 
 
 
1021}
1022
1023#if defined CONFIG_SMP
1024
1025static void
1026inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1027{
1028	struct rq *rq = rq_of_rt_rq(rt_rq);
1029
1030#ifdef CONFIG_RT_GROUP_SCHED
1031	/*
1032	 * Change rq's cpupri only if rt_rq is the top queue.
1033	 */
1034	if (&rq->rt != rt_rq)
1035		return;
1036#endif
1037	if (rq->online && prio < prev_prio)
1038		cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1039}
1040
1041static void
1042dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1043{
1044	struct rq *rq = rq_of_rt_rq(rt_rq);
1045
1046#ifdef CONFIG_RT_GROUP_SCHED
1047	/*
1048	 * Change rq's cpupri only if rt_rq is the top queue.
1049	 */
1050	if (&rq->rt != rt_rq)
1051		return;
1052#endif
1053	if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1054		cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1055}
1056
1057#else /* CONFIG_SMP */
1058
1059static inline
1060void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1061static inline
1062void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1063
1064#endif /* CONFIG_SMP */
1065
1066#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1067static void
1068inc_rt_prio(struct rt_rq *rt_rq, int prio)
1069{
1070	int prev_prio = rt_rq->highest_prio.curr;
1071
1072	if (prio < prev_prio)
1073		rt_rq->highest_prio.curr = prio;
1074
1075	inc_rt_prio_smp(rt_rq, prio, prev_prio);
1076}
1077
1078static void
1079dec_rt_prio(struct rt_rq *rt_rq, int prio)
1080{
1081	int prev_prio = rt_rq->highest_prio.curr;
1082
1083	if (rt_rq->rt_nr_running) {
1084
1085		WARN_ON(prio < prev_prio);
1086
1087		/*
1088		 * This may have been our highest task, and therefore
1089		 * we may have some recomputation to do
1090		 */
1091		if (prio == prev_prio) {
1092			struct rt_prio_array *array = &rt_rq->active;
1093
1094			rt_rq->highest_prio.curr =
1095				sched_find_first_bit(array->bitmap);
1096		}
1097
1098	} else
1099		rt_rq->highest_prio.curr = MAX_RT_PRIO;
 
1100
1101	dec_rt_prio_smp(rt_rq, prio, prev_prio);
1102}
1103
1104#else
1105
1106static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1107static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1108
1109#endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1110
1111#ifdef CONFIG_RT_GROUP_SCHED
1112
1113static void
1114inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1115{
1116	if (rt_se_boosted(rt_se))
1117		rt_rq->rt_nr_boosted++;
1118
1119	if (rt_rq->tg)
1120		start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1121}
1122
1123static void
1124dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1125{
1126	if (rt_se_boosted(rt_se))
1127		rt_rq->rt_nr_boosted--;
1128
1129	WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1130}
1131
1132#else /* CONFIG_RT_GROUP_SCHED */
1133
1134static void
1135inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1136{
1137	start_rt_bandwidth(&def_rt_bandwidth);
1138}
1139
1140static inline
1141void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1142
1143#endif /* CONFIG_RT_GROUP_SCHED */
1144
1145static inline
1146unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1147{
1148	struct rt_rq *group_rq = group_rt_rq(rt_se);
1149
1150	if (group_rq)
1151		return group_rq->rt_nr_running;
1152	else
1153		return 1;
1154}
1155
1156static inline
1157unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se)
1158{
1159	struct rt_rq *group_rq = group_rt_rq(rt_se);
1160	struct task_struct *tsk;
1161
1162	if (group_rq)
1163		return group_rq->rr_nr_running;
1164
1165	tsk = rt_task_of(rt_se);
1166
1167	return (tsk->policy == SCHED_RR) ? 1 : 0;
1168}
1169
1170static inline
1171void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1172{
1173	int prio = rt_se_prio(rt_se);
1174
1175	WARN_ON(!rt_prio(prio));
1176	rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1177	rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se);
1178
1179	inc_rt_prio(rt_rq, prio);
1180	inc_rt_migration(rt_se, rt_rq);
1181	inc_rt_group(rt_se, rt_rq);
1182}
1183
1184static inline
1185void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1186{
1187	WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1188	WARN_ON(!rt_rq->rt_nr_running);
1189	rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1190	rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se);
1191
1192	dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1193	dec_rt_migration(rt_se, rt_rq);
1194	dec_rt_group(rt_se, rt_rq);
1195}
1196
1197/*
1198 * Change rt_se->run_list location unless SAVE && !MOVE
1199 *
1200 * assumes ENQUEUE/DEQUEUE flags match
1201 */
1202static inline bool move_entity(unsigned int flags)
1203{
1204	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
1205		return false;
1206
1207	return true;
1208}
1209
1210static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array)
1211{
1212	list_del_init(&rt_se->run_list);
1213
1214	if (list_empty(array->queue + rt_se_prio(rt_se)))
1215		__clear_bit(rt_se_prio(rt_se), array->bitmap);
1216
1217	rt_se->on_list = 0;
1218}
1219
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1220static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1221{
1222	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1223	struct rt_prio_array *array = &rt_rq->active;
1224	struct rt_rq *group_rq = group_rt_rq(rt_se);
1225	struct list_head *queue = array->queue + rt_se_prio(rt_se);
1226
1227	/*
1228	 * Don't enqueue the group if its throttled, or when empty.
1229	 * The latter is a consequence of the former when a child group
1230	 * get throttled and the current group doesn't have any other
1231	 * active members.
1232	 */
1233	if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) {
1234		if (rt_se->on_list)
1235			__delist_rt_entity(rt_se, array);
1236		return;
1237	}
1238
1239	if (move_entity(flags)) {
1240		WARN_ON_ONCE(rt_se->on_list);
1241		if (flags & ENQUEUE_HEAD)
1242			list_add(&rt_se->run_list, queue);
1243		else
1244			list_add_tail(&rt_se->run_list, queue);
1245
1246		__set_bit(rt_se_prio(rt_se), array->bitmap);
1247		rt_se->on_list = 1;
1248	}
1249	rt_se->on_rq = 1;
1250
1251	inc_rt_tasks(rt_se, rt_rq);
1252}
1253
1254static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1255{
1256	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1257	struct rt_prio_array *array = &rt_rq->active;
1258
1259	if (move_entity(flags)) {
1260		WARN_ON_ONCE(!rt_se->on_list);
1261		__delist_rt_entity(rt_se, array);
1262	}
1263	rt_se->on_rq = 0;
1264
1265	dec_rt_tasks(rt_se, rt_rq);
1266}
1267
1268/*
1269 * Because the prio of an upper entry depends on the lower
1270 * entries, we must remove entries top - down.
1271 */
1272static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags)
1273{
1274	struct sched_rt_entity *back = NULL;
 
1275
1276	for_each_sched_rt_entity(rt_se) {
1277		rt_se->back = back;
1278		back = rt_se;
1279	}
1280
1281	dequeue_top_rt_rq(rt_rq_of_se(back));
1282
1283	for (rt_se = back; rt_se; rt_se = rt_se->back) {
1284		if (on_rt_rq(rt_se))
1285			__dequeue_rt_entity(rt_se, flags);
1286	}
 
 
1287}
1288
1289static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1290{
1291	struct rq *rq = rq_of_rt_se(rt_se);
1292
 
 
1293	dequeue_rt_stack(rt_se, flags);
1294	for_each_sched_rt_entity(rt_se)
1295		__enqueue_rt_entity(rt_se, flags);
1296	enqueue_top_rt_rq(&rq->rt);
1297}
1298
1299static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1300{
1301	struct rq *rq = rq_of_rt_se(rt_se);
1302
 
 
1303	dequeue_rt_stack(rt_se, flags);
1304
1305	for_each_sched_rt_entity(rt_se) {
1306		struct rt_rq *rt_rq = group_rt_rq(rt_se);
1307
1308		if (rt_rq && rt_rq->rt_nr_running)
1309			__enqueue_rt_entity(rt_se, flags);
1310	}
1311	enqueue_top_rt_rq(&rq->rt);
1312}
1313
1314/*
1315 * Adding/removing a task to/from a priority array:
1316 */
1317static void
1318enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1319{
1320	struct sched_rt_entity *rt_se = &p->rt;
1321
1322	if (flags & ENQUEUE_WAKEUP)
1323		rt_se->timeout = 0;
1324
 
 
 
1325	enqueue_rt_entity(rt_se, flags);
1326
1327	if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1328		enqueue_pushable_task(rq, p);
1329}
1330
1331static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1332{
1333	struct sched_rt_entity *rt_se = &p->rt;
1334
1335	update_curr_rt(rq);
1336	dequeue_rt_entity(rt_se, flags);
1337
1338	dequeue_pushable_task(rq, p);
1339}
1340
1341/*
1342 * Put task to the head or the end of the run list without the overhead of
1343 * dequeue followed by enqueue.
1344 */
1345static void
1346requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1347{
1348	if (on_rt_rq(rt_se)) {
1349		struct rt_prio_array *array = &rt_rq->active;
1350		struct list_head *queue = array->queue + rt_se_prio(rt_se);
1351
1352		if (head)
1353			list_move(&rt_se->run_list, queue);
1354		else
1355			list_move_tail(&rt_se->run_list, queue);
1356	}
1357}
1358
1359static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1360{
1361	struct sched_rt_entity *rt_se = &p->rt;
1362	struct rt_rq *rt_rq;
1363
1364	for_each_sched_rt_entity(rt_se) {
1365		rt_rq = rt_rq_of_se(rt_se);
1366		requeue_rt_entity(rt_rq, rt_se, head);
1367	}
1368}
1369
1370static void yield_task_rt(struct rq *rq)
1371{
1372	requeue_task_rt(rq, rq->curr, 0);
1373}
1374
1375#ifdef CONFIG_SMP
1376static int find_lowest_rq(struct task_struct *task);
1377
1378static int
1379select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags)
1380{
1381	struct task_struct *curr;
1382	struct rq *rq;
 
1383
1384	/* For anything but wake ups, just return the task_cpu */
1385	if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
1386		goto out;
1387
1388	rq = cpu_rq(cpu);
1389
1390	rcu_read_lock();
1391	curr = READ_ONCE(rq->curr); /* unlocked access */
1392
1393	/*
1394	 * If the current task on @p's runqueue is an RT task, then
1395	 * try to see if we can wake this RT task up on another
1396	 * runqueue. Otherwise simply start this RT task
1397	 * on its current runqueue.
1398	 *
1399	 * We want to avoid overloading runqueues. If the woken
1400	 * task is a higher priority, then it will stay on this CPU
1401	 * and the lower prio task should be moved to another CPU.
1402	 * Even though this will probably make the lower prio task
1403	 * lose its cache, we do not want to bounce a higher task
1404	 * around just because it gave up its CPU, perhaps for a
1405	 * lock?
1406	 *
1407	 * For equal prio tasks, we just let the scheduler sort it out.
1408	 *
1409	 * Otherwise, just let it ride on the affined RQ and the
1410	 * post-schedule router will push the preempted task away
1411	 *
1412	 * This test is optimistic, if we get it wrong the load-balancer
1413	 * will have to sort it out.
1414	 */
1415	if (curr && unlikely(rt_task(curr)) &&
1416	    (curr->nr_cpus_allowed < 2 ||
1417	     curr->prio <= p->prio)) {
 
 
 
 
 
 
1418		int target = find_lowest_rq(p);
1419
1420		/*
 
 
 
 
 
 
 
1421		 * Don't bother moving it if the destination CPU is
1422		 * not running a lower priority task.
1423		 */
1424		if (target != -1 &&
1425		    p->prio < cpu_rq(target)->rt.highest_prio.curr)
1426			cpu = target;
1427	}
 
 
1428	rcu_read_unlock();
1429
1430out:
1431	return cpu;
1432}
1433
1434static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1435{
1436	/*
1437	 * Current can't be migrated, useless to reschedule,
1438	 * let's hope p can move out.
1439	 */
1440	if (rq->curr->nr_cpus_allowed == 1 ||
1441	    !cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1442		return;
1443
1444	/*
1445	 * p is migratable, so let's not schedule it and
1446	 * see if it is pushed or pulled somewhere else.
1447	 */
1448	if (p->nr_cpus_allowed != 1
1449	    && cpupri_find(&rq->rd->cpupri, p, NULL))
1450		return;
1451
1452	/*
1453	 * There appears to be other cpus that can accept
1454	 * current and none to run 'p', so lets reschedule
1455	 * to try and push current away:
1456	 */
1457	requeue_task_rt(rq, p, 1);
1458	resched_curr(rq);
1459}
1460
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1461#endif /* CONFIG_SMP */
1462
1463/*
1464 * Preempt the current task with a newly woken task if needed:
1465 */
1466static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1467{
1468	if (p->prio < rq->curr->prio) {
1469		resched_curr(rq);
1470		return;
1471	}
1472
1473#ifdef CONFIG_SMP
1474	/*
1475	 * If:
1476	 *
1477	 * - the newly woken task is of equal priority to the current task
1478	 * - the newly woken task is non-migratable while current is migratable
1479	 * - current will be preempted on the next reschedule
1480	 *
1481	 * we should check to see if current can readily move to a different
1482	 * cpu.  If so, we will reschedule to allow the push logic to try
1483	 * to move current somewhere else, making room for our non-migratable
1484	 * task.
1485	 */
1486	if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1487		check_preempt_equal_prio(rq, p);
1488#endif
1489}
1490
1491static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1492						   struct rt_rq *rt_rq)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1493{
1494	struct rt_prio_array *array = &rt_rq->active;
1495	struct sched_rt_entity *next = NULL;
1496	struct list_head *queue;
1497	int idx;
1498
1499	idx = sched_find_first_bit(array->bitmap);
1500	BUG_ON(idx >= MAX_RT_PRIO);
1501
1502	queue = array->queue + idx;
1503	next = list_entry(queue->next, struct sched_rt_entity, run_list);
1504
1505	return next;
1506}
1507
1508static struct task_struct *_pick_next_task_rt(struct rq *rq)
1509{
1510	struct sched_rt_entity *rt_se;
1511	struct task_struct *p;
1512	struct rt_rq *rt_rq  = &rq->rt;
1513
1514	do {
1515		rt_se = pick_next_rt_entity(rq, rt_rq);
1516		BUG_ON(!rt_se);
1517		rt_rq = group_rt_rq(rt_se);
1518	} while (rt_rq);
1519
1520	p = rt_task_of(rt_se);
1521	p->se.exec_start = rq_clock_task(rq);
1522
1523	return p;
1524}
1525
1526static struct task_struct *
1527pick_next_task_rt(struct rq *rq, struct task_struct *prev)
1528{
1529	struct task_struct *p;
1530	struct rt_rq *rt_rq = &rq->rt;
1531
1532	if (need_pull_rt_task(rq, prev)) {
1533		/*
1534		 * This is OK, because current is on_cpu, which avoids it being
1535		 * picked for load-balance and preemption/IRQs are still
1536		 * disabled avoiding further scheduler activity on it and we're
1537		 * being very careful to re-start the picking loop.
1538		 */
1539		lockdep_unpin_lock(&rq->lock);
1540		pull_rt_task(rq);
1541		lockdep_pin_lock(&rq->lock);
1542		/*
1543		 * pull_rt_task() can drop (and re-acquire) rq->lock; this
1544		 * means a dl or stop task can slip in, in which case we need
1545		 * to re-start task selection.
1546		 */
1547		if (unlikely((rq->stop && task_on_rq_queued(rq->stop)) ||
1548			     rq->dl.dl_nr_running))
1549			return RETRY_TASK;
1550	}
1551
1552	/*
1553	 * We may dequeue prev's rt_rq in put_prev_task().
1554	 * So, we update time before rt_nr_running check.
1555	 */
1556	if (prev->sched_class == &rt_sched_class)
1557		update_curr_rt(rq);
1558
1559	if (!rt_rq->rt_queued)
1560		return NULL;
1561
1562	put_prev_task(rq, prev);
1563
1564	p = _pick_next_task_rt(rq);
 
1565
1566	/* The running task is never eligible for pushing */
1567	dequeue_pushable_task(rq, p);
 
1568
1569	queue_push_tasks(rq);
 
1570
1571	return p;
1572}
1573
1574static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1575{
 
 
 
 
 
 
1576	update_curr_rt(rq);
1577
 
 
1578	/*
1579	 * The previous task needs to be made eligible for pushing
1580	 * if it is still active
1581	 */
1582	if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1583		enqueue_pushable_task(rq, p);
1584}
1585
1586#ifdef CONFIG_SMP
1587
1588/* Only try algorithms three times */
1589#define RT_MAX_TRIES 3
1590
1591static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1592{
1593	if (!task_running(rq, p) &&
1594	    cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
1595		return 1;
 
1596	return 0;
1597}
1598
1599/*
1600 * Return the highest pushable rq's task, which is suitable to be executed
1601 * on the cpu, NULL otherwise
1602 */
1603static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1604{
1605	struct plist_head *head = &rq->rt.pushable_tasks;
1606	struct task_struct *p;
1607
1608	if (!has_pushable_tasks(rq))
1609		return NULL;
1610
1611	plist_for_each_entry(p, head, pushable_tasks) {
1612		if (pick_rt_task(rq, p, cpu))
1613			return p;
1614	}
1615
1616	return NULL;
1617}
1618
1619static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1620
1621static int find_lowest_rq(struct task_struct *task)
1622{
1623	struct sched_domain *sd;
1624	struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
1625	int this_cpu = smp_processor_id();
1626	int cpu      = task_cpu(task);
 
1627
1628	/* Make sure the mask is initialized first */
1629	if (unlikely(!lowest_mask))
1630		return -1;
1631
1632	if (task->nr_cpus_allowed == 1)
1633		return -1; /* No other targets possible */
1634
1635	if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1636		return -1; /* No targets found */
1637
1638	/*
1639	 * At this point we have built a mask of cpus representing the
1640	 * lowest priority tasks in the system.  Now we want to elect
1641	 * the best one based on our affinity and topology.
1642	 *
1643	 * We prioritize the last cpu that the task executed on since
1644	 * it is most likely cache-hot in that location.
1645	 */
1646	if (cpumask_test_cpu(cpu, lowest_mask))
1647		return cpu;
1648
1649	/*
1650	 * Otherwise, we consult the sched_domains span maps to figure
1651	 * out which cpu is logically closest to our hot cache data.
1652	 */
1653	if (!cpumask_test_cpu(this_cpu, lowest_mask))
1654		this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1655
1656	rcu_read_lock();
1657	for_each_domain(cpu, sd) {
1658		if (sd->flags & SD_WAKE_AFFINE) {
1659			int best_cpu;
1660
1661			/*
1662			 * "this_cpu" is cheaper to preempt than a
1663			 * remote processor.
1664			 */
1665			if (this_cpu != -1 &&
1666			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1667				rcu_read_unlock();
1668				return this_cpu;
1669			}
1670
1671			best_cpu = cpumask_first_and(lowest_mask,
1672						     sched_domain_span(sd));
1673			if (best_cpu < nr_cpu_ids) {
1674				rcu_read_unlock();
1675				return best_cpu;
1676			}
1677		}
1678	}
1679	rcu_read_unlock();
1680
1681	/*
1682	 * And finally, if there were no matches within the domains
1683	 * just give the caller *something* to work with from the compatible
1684	 * locations.
1685	 */
1686	if (this_cpu != -1)
1687		return this_cpu;
1688
1689	cpu = cpumask_any(lowest_mask);
1690	if (cpu < nr_cpu_ids)
1691		return cpu;
 
1692	return -1;
1693}
1694
1695/* Will lock the rq it finds */
1696static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1697{
1698	struct rq *lowest_rq = NULL;
1699	int tries;
1700	int cpu;
1701
1702	for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1703		cpu = find_lowest_rq(task);
1704
1705		if ((cpu == -1) || (cpu == rq->cpu))
1706			break;
1707
1708		lowest_rq = cpu_rq(cpu);
1709
1710		if (lowest_rq->rt.highest_prio.curr <= task->prio) {
1711			/*
1712			 * Target rq has tasks of equal or higher priority,
1713			 * retrying does not release any lock and is unlikely
1714			 * to yield a different result.
1715			 */
1716			lowest_rq = NULL;
1717			break;
1718		}
1719
1720		/* if the prio of this runqueue changed, try again */
1721		if (double_lock_balance(rq, lowest_rq)) {
1722			/*
1723			 * We had to unlock the run queue. In
1724			 * the mean time, task could have
1725			 * migrated already or had its affinity changed.
1726			 * Also make sure that it wasn't scheduled on its rq.
1727			 */
1728			if (unlikely(task_rq(task) != rq ||
1729				     !cpumask_test_cpu(lowest_rq->cpu,
1730						       tsk_cpus_allowed(task)) ||
1731				     task_running(rq, task) ||
1732				     !rt_task(task) ||
1733				     !task_on_rq_queued(task))) {
1734
1735				double_unlock_balance(rq, lowest_rq);
1736				lowest_rq = NULL;
1737				break;
1738			}
1739		}
1740
1741		/* If this rq is still suitable use it. */
1742		if (lowest_rq->rt.highest_prio.curr > task->prio)
1743			break;
1744
1745		/* try again */
1746		double_unlock_balance(rq, lowest_rq);
1747		lowest_rq = NULL;
1748	}
1749
1750	return lowest_rq;
1751}
1752
1753static struct task_struct *pick_next_pushable_task(struct rq *rq)
1754{
1755	struct task_struct *p;
1756
1757	if (!has_pushable_tasks(rq))
1758		return NULL;
1759
1760	p = plist_first_entry(&rq->rt.pushable_tasks,
1761			      struct task_struct, pushable_tasks);
1762
1763	BUG_ON(rq->cpu != task_cpu(p));
1764	BUG_ON(task_current(rq, p));
1765	BUG_ON(p->nr_cpus_allowed <= 1);
1766
1767	BUG_ON(!task_on_rq_queued(p));
1768	BUG_ON(!rt_task(p));
1769
1770	return p;
1771}
1772
1773/*
1774 * If the current CPU has more than one RT task, see if the non
1775 * running task can migrate over to a CPU that is running a task
1776 * of lesser priority.
1777 */
1778static int push_rt_task(struct rq *rq)
1779{
1780	struct task_struct *next_task;
1781	struct rq *lowest_rq;
1782	int ret = 0;
1783
1784	if (!rq->rt.overloaded)
1785		return 0;
1786
1787	next_task = pick_next_pushable_task(rq);
1788	if (!next_task)
1789		return 0;
1790
1791retry:
1792	if (unlikely(next_task == rq->curr)) {
1793		WARN_ON(1);
1794		return 0;
1795	}
1796
1797	/*
1798	 * It's possible that the next_task slipped in of
1799	 * higher priority than current. If that's the case
1800	 * just reschedule current.
1801	 */
1802	if (unlikely(next_task->prio < rq->curr->prio)) {
1803		resched_curr(rq);
1804		return 0;
1805	}
1806
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1807	/* We might release rq lock */
1808	get_task_struct(next_task);
1809
1810	/* find_lock_lowest_rq locks the rq if found */
1811	lowest_rq = find_lock_lowest_rq(next_task, rq);
1812	if (!lowest_rq) {
1813		struct task_struct *task;
1814		/*
1815		 * find_lock_lowest_rq releases rq->lock
1816		 * so it is possible that next_task has migrated.
1817		 *
1818		 * We need to make sure that the task is still on the same
1819		 * run-queue and is also still the next task eligible for
1820		 * pushing.
1821		 */
1822		task = pick_next_pushable_task(rq);
1823		if (task_cpu(next_task) == rq->cpu && task == next_task) {
1824			/*
1825			 * The task hasn't migrated, and is still the next
1826			 * eligible task, but we failed to find a run-queue
1827			 * to push it to.  Do not retry in this case, since
1828			 * other cpus will pull from us when ready.
1829			 */
1830			goto out;
1831		}
1832
1833		if (!task)
1834			/* No more tasks, just exit */
1835			goto out;
1836
1837		/*
1838		 * Something has shifted, try again.
1839		 */
1840		put_task_struct(next_task);
1841		next_task = task;
1842		goto retry;
1843	}
1844
1845	deactivate_task(rq, next_task, 0);
1846	set_task_cpu(next_task, lowest_rq->cpu);
1847	activate_task(lowest_rq, next_task, 0);
 
1848	ret = 1;
1849
1850	resched_curr(lowest_rq);
1851
1852	double_unlock_balance(rq, lowest_rq);
1853
1854out:
1855	put_task_struct(next_task);
1856
1857	return ret;
1858}
1859
1860static void push_rt_tasks(struct rq *rq)
1861{
1862	/* push_rt_task will return true if it moved an RT */
1863	while (push_rt_task(rq))
1864		;
1865}
1866
1867#ifdef HAVE_RT_PUSH_IPI
 
1868/*
1869 * The search for the next cpu always starts at rq->cpu and ends
1870 * when we reach rq->cpu again. It will never return rq->cpu.
1871 * This returns the next cpu to check, or nr_cpu_ids if the loop
1872 * is complete.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1873 *
1874 * rq->rt.push_cpu holds the last cpu returned by this function,
1875 * or if this is the first instance, it must hold rq->cpu.
1876 */
1877static int rto_next_cpu(struct rq *rq)
1878{
1879	int prev_cpu = rq->rt.push_cpu;
1880	int cpu;
1881
1882	cpu = cpumask_next(prev_cpu, rq->rd->rto_mask);
1883
1884	/*
1885	 * If the previous cpu is less than the rq's CPU, then it already
1886	 * passed the end of the mask, and has started from the beginning.
1887	 * We end if the next CPU is greater or equal to rq's CPU.
 
 
 
 
 
 
 
 
1888	 */
1889	if (prev_cpu < rq->cpu) {
1890		if (cpu >= rq->cpu)
1891			return nr_cpu_ids;
 
 
 
 
 
 
 
 
1892
1893	} else if (cpu >= nr_cpu_ids) {
1894		/*
1895		 * We passed the end of the mask, start at the beginning.
1896		 * If the result is greater or equal to the rq's CPU, then
1897		 * the loop is finished.
 
1898		 */
1899		cpu = cpumask_first(rq->rd->rto_mask);
1900		if (cpu >= rq->cpu)
1901			return nr_cpu_ids;
 
 
 
1902	}
1903	rq->rt.push_cpu = cpu;
1904
1905	/* Return cpu to let the caller know if the loop is finished or not */
1906	return cpu;
1907}
1908
1909static int find_next_push_cpu(struct rq *rq)
1910{
1911	struct rq *next_rq;
1912	int cpu;
1913
1914	while (1) {
1915		cpu = rto_next_cpu(rq);
1916		if (cpu >= nr_cpu_ids)
1917			break;
1918		next_rq = cpu_rq(cpu);
1919
1920		/* Make sure the next rq can push to this rq */
1921		if (next_rq->rt.highest_prio.next < rq->rt.highest_prio.curr)
1922			break;
1923	}
1924
1925	return cpu;
1926}
1927
1928#define RT_PUSH_IPI_EXECUTING		1
1929#define RT_PUSH_IPI_RESTART		2
1930
1931static void tell_cpu_to_push(struct rq *rq)
1932{
1933	int cpu;
 
 
 
 
 
 
 
1934
1935	if (rq->rt.push_flags & RT_PUSH_IPI_EXECUTING) {
1936		raw_spin_lock(&rq->rt.push_lock);
1937		/* Make sure it's still executing */
1938		if (rq->rt.push_flags & RT_PUSH_IPI_EXECUTING) {
1939			/*
1940			 * Tell the IPI to restart the loop as things have
1941			 * changed since it started.
1942			 */
1943			rq->rt.push_flags |= RT_PUSH_IPI_RESTART;
1944			raw_spin_unlock(&rq->rt.push_lock);
1945			return;
1946		}
1947		raw_spin_unlock(&rq->rt.push_lock);
1948	}
1949
1950	/* When here, there's no IPI going around */
 
 
 
 
 
 
 
1951
1952	rq->rt.push_cpu = rq->cpu;
1953	cpu = find_next_push_cpu(rq);
1954	if (cpu >= nr_cpu_ids)
1955		return;
1956
1957	rq->rt.push_flags = RT_PUSH_IPI_EXECUTING;
1958
1959	irq_work_queue_on(&rq->rt.push_work, cpu);
 
 
 
 
1960}
1961
1962/* Called from hardirq context */
1963static void try_to_push_tasks(void *arg)
1964{
1965	struct rt_rq *rt_rq = arg;
1966	struct rq *rq, *src_rq;
1967	int this_cpu;
1968	int cpu;
1969
1970	this_cpu = rt_rq->push_cpu;
1971
1972	/* Paranoid check */
1973	BUG_ON(this_cpu != smp_processor_id());
1974
1975	rq = cpu_rq(this_cpu);
1976	src_rq = rq_of_rt_rq(rt_rq);
1977
1978again:
1979	if (has_pushable_tasks(rq)) {
1980		raw_spin_lock(&rq->lock);
1981		push_rt_task(rq);
1982		raw_spin_unlock(&rq->lock);
 
1983	}
1984
 
 
1985	/* Pass the IPI to the next rt overloaded queue */
1986	raw_spin_lock(&rt_rq->push_lock);
1987	/*
1988	 * If the source queue changed since the IPI went out,
1989	 * we need to restart the search from that CPU again.
1990	 */
1991	if (rt_rq->push_flags & RT_PUSH_IPI_RESTART) {
1992		rt_rq->push_flags &= ~RT_PUSH_IPI_RESTART;
1993		rt_rq->push_cpu = src_rq->cpu;
1994	}
1995
1996	cpu = find_next_push_cpu(src_rq);
1997
1998	if (cpu >= nr_cpu_ids)
1999		rt_rq->push_flags &= ~RT_PUSH_IPI_EXECUTING;
2000	raw_spin_unlock(&rt_rq->push_lock);
2001
2002	if (cpu >= nr_cpu_ids)
2003		return;
2004
2005	/*
2006	 * It is possible that a restart caused this CPU to be
2007	 * chosen again. Don't bother with an IPI, just see if we
2008	 * have more to push.
2009	 */
2010	if (unlikely(cpu == rq->cpu))
2011		goto again;
2012
2013	/* Try the next RT overloaded CPU */
2014	irq_work_queue_on(&rt_rq->push_work, cpu);
2015}
2016
2017static void push_irq_work_func(struct irq_work *work)
2018{
2019	struct rt_rq *rt_rq = container_of(work, struct rt_rq, push_work);
2020
2021	try_to_push_tasks(rt_rq);
2022}
2023#endif /* HAVE_RT_PUSH_IPI */
2024
2025static void pull_rt_task(struct rq *this_rq)
2026{
2027	int this_cpu = this_rq->cpu, cpu;
2028	bool resched = false;
2029	struct task_struct *p;
2030	struct rq *src_rq;
 
2031
2032	if (likely(!rt_overloaded(this_rq)))
2033		return;
2034
2035	/*
2036	 * Match the barrier from rt_set_overloaded; this guarantees that if we
2037	 * see overloaded we must also see the rto_mask bit.
2038	 */
2039	smp_rmb();
2040
 
 
 
 
 
2041#ifdef HAVE_RT_PUSH_IPI
2042	if (sched_feat(RT_PUSH_IPI)) {
2043		tell_cpu_to_push(this_rq);
2044		return;
2045	}
2046#endif
2047
2048	for_each_cpu(cpu, this_rq->rd->rto_mask) {
2049		if (this_cpu == cpu)
2050			continue;
2051
2052		src_rq = cpu_rq(cpu);
2053
2054		/*
2055		 * Don't bother taking the src_rq->lock if the next highest
2056		 * task is known to be lower-priority than our current task.
2057		 * This may look racy, but if this value is about to go
2058		 * logically higher, the src_rq will push this task away.
2059		 * And if its going logically lower, we do not care
2060		 */
2061		if (src_rq->rt.highest_prio.next >=
2062		    this_rq->rt.highest_prio.curr)
2063			continue;
2064
2065		/*
2066		 * We can potentially drop this_rq's lock in
2067		 * double_lock_balance, and another CPU could
2068		 * alter this_rq
2069		 */
 
2070		double_lock_balance(this_rq, src_rq);
2071
2072		/*
2073		 * We can pull only a task, which is pushable
2074		 * on its rq, and no others.
2075		 */
2076		p = pick_highest_pushable_task(src_rq, this_cpu);
2077
2078		/*
2079		 * Do we have an RT task that preempts
2080		 * the to-be-scheduled task?
2081		 */
2082		if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
2083			WARN_ON(p == src_rq->curr);
2084			WARN_ON(!task_on_rq_queued(p));
2085
2086			/*
2087			 * There's a chance that p is higher in priority
2088			 * than what's currently running on its cpu.
2089			 * This is just that p is wakeing up and hasn't
2090			 * had a chance to schedule. We only pull
2091			 * p if it is lower in priority than the
2092			 * current task on the run queue
2093			 */
2094			if (p->prio < src_rq->curr->prio)
2095				goto skip;
2096
2097			resched = true;
2098
2099			deactivate_task(src_rq, p, 0);
2100			set_task_cpu(p, this_cpu);
2101			activate_task(this_rq, p, 0);
 
 
 
2102			/*
2103			 * We continue with the search, just in
2104			 * case there's an even higher prio task
2105			 * in another runqueue. (low likelihood
2106			 * but possible)
2107			 */
2108		}
2109skip:
2110		double_unlock_balance(this_rq, src_rq);
 
 
 
 
 
 
 
2111	}
2112
2113	if (resched)
2114		resched_curr(this_rq);
2115}
2116
2117/*
2118 * If we are not running and we are not going to reschedule soon, we should
2119 * try to push tasks away now
2120 */
2121static void task_woken_rt(struct rq *rq, struct task_struct *p)
2122{
2123	if (!task_running(rq, p) &&
2124	    !test_tsk_need_resched(rq->curr) &&
2125	    p->nr_cpus_allowed > 1 &&
2126	    (dl_task(rq->curr) || rt_task(rq->curr)) &&
2127	    (rq->curr->nr_cpus_allowed < 2 ||
2128	     rq->curr->prio <= p->prio))
 
 
2129		push_rt_tasks(rq);
2130}
2131
2132/* Assumes rq->lock is held */
2133static void rq_online_rt(struct rq *rq)
2134{
2135	if (rq->rt.overloaded)
2136		rt_set_overload(rq);
2137
2138	__enable_runtime(rq);
2139
2140	cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
2141}
2142
2143/* Assumes rq->lock is held */
2144static void rq_offline_rt(struct rq *rq)
2145{
2146	if (rq->rt.overloaded)
2147		rt_clear_overload(rq);
2148
2149	__disable_runtime(rq);
2150
2151	cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
2152}
2153
2154/*
2155 * When switch from the rt queue, we bring ourselves to a position
2156 * that we might want to pull RT tasks from other runqueues.
2157 */
2158static void switched_from_rt(struct rq *rq, struct task_struct *p)
2159{
2160	/*
2161	 * If there are other RT tasks then we will reschedule
2162	 * and the scheduling of the other RT tasks will handle
2163	 * the balancing. But if we are the last RT task
2164	 * we may need to handle the pulling of RT tasks
2165	 * now.
2166	 */
2167	if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
2168		return;
2169
2170	queue_pull_task(rq);
2171}
2172
2173void __init init_sched_rt_class(void)
2174{
2175	unsigned int i;
2176
2177	for_each_possible_cpu(i) {
2178		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
2179					GFP_KERNEL, cpu_to_node(i));
2180	}
2181}
2182#endif /* CONFIG_SMP */
2183
2184/*
2185 * When switching a task to RT, we may overload the runqueue
2186 * with RT tasks. In this case we try to push them off to
2187 * other runqueues.
2188 */
2189static void switched_to_rt(struct rq *rq, struct task_struct *p)
2190{
2191	/*
2192	 * If we are already running, then there's nothing
2193	 * that needs to be done. But if we are not running
2194	 * we may need to preempt the current running task.
2195	 * If that current running task is also an RT task
 
 
 
 
 
 
 
2196	 * then see if we can move to another run queue.
2197	 */
2198	if (task_on_rq_queued(p) && rq->curr != p) {
2199#ifdef CONFIG_SMP
2200		if (p->nr_cpus_allowed > 1 && rq->rt.overloaded)
2201			queue_push_tasks(rq);
2202#else
2203		if (p->prio < rq->curr->prio)
2204			resched_curr(rq);
2205#endif /* CONFIG_SMP */
2206	}
2207}
2208
2209/*
2210 * Priority of the task has changed. This may cause
2211 * us to initiate a push or pull.
2212 */
2213static void
2214prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
2215{
2216	if (!task_on_rq_queued(p))
2217		return;
2218
2219	if (rq->curr == p) {
2220#ifdef CONFIG_SMP
2221		/*
2222		 * If our priority decreases while running, we
2223		 * may need to pull tasks to this runqueue.
2224		 */
2225		if (oldprio < p->prio)
2226			queue_pull_task(rq);
2227
2228		/*
2229		 * If there's a higher priority task waiting to run
2230		 * then reschedule.
2231		 */
2232		if (p->prio > rq->rt.highest_prio.curr)
2233			resched_curr(rq);
2234#else
2235		/* For UP simply resched on drop of prio */
2236		if (oldprio < p->prio)
2237			resched_curr(rq);
2238#endif /* CONFIG_SMP */
2239	} else {
2240		/*
2241		 * This task is not running, but if it is
2242		 * greater than the current running task
2243		 * then reschedule.
2244		 */
2245		if (p->prio < rq->curr->prio)
2246			resched_curr(rq);
2247	}
2248}
2249
 
2250static void watchdog(struct rq *rq, struct task_struct *p)
2251{
2252	unsigned long soft, hard;
2253
2254	/* max may change after cur was read, this will be fixed next tick */
2255	soft = task_rlimit(p, RLIMIT_RTTIME);
2256	hard = task_rlimit_max(p, RLIMIT_RTTIME);
2257
2258	if (soft != RLIM_INFINITY) {
2259		unsigned long next;
2260
2261		if (p->rt.watchdog_stamp != jiffies) {
2262			p->rt.timeout++;
2263			p->rt.watchdog_stamp = jiffies;
2264		}
2265
2266		next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2267		if (p->rt.timeout > next)
2268			p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
 
 
2269	}
2270}
 
 
 
2271
 
 
 
 
 
 
 
 
2272static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2273{
2274	struct sched_rt_entity *rt_se = &p->rt;
2275
2276	update_curr_rt(rq);
 
2277
2278	watchdog(rq, p);
2279
2280	/*
2281	 * RR tasks need a special form of timeslice management.
2282	 * FIFO tasks have no timeslices.
2283	 */
2284	if (p->policy != SCHED_RR)
2285		return;
2286
2287	if (--p->rt.time_slice)
2288		return;
2289
2290	p->rt.time_slice = sched_rr_timeslice;
2291
2292	/*
2293	 * Requeue to the end of queue if we (and all of our ancestors) are not
2294	 * the only element on the queue
2295	 */
2296	for_each_sched_rt_entity(rt_se) {
2297		if (rt_se->run_list.prev != rt_se->run_list.next) {
2298			requeue_task_rt(rq, p, 0);
2299			resched_curr(rq);
2300			return;
2301		}
2302	}
2303}
2304
2305static void set_curr_task_rt(struct rq *rq)
2306{
2307	struct task_struct *p = rq->curr;
2308
2309	p->se.exec_start = rq_clock_task(rq);
2310
2311	/* The running task is never eligible for pushing */
2312	dequeue_pushable_task(rq, p);
2313}
2314
2315static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2316{
2317	/*
2318	 * Time slice is 0 for SCHED_FIFO tasks
2319	 */
2320	if (task->policy == SCHED_RR)
2321		return sched_rr_timeslice;
2322	else
2323		return 0;
2324}
2325
2326const struct sched_class rt_sched_class = {
2327	.next			= &fair_sched_class,
2328	.enqueue_task		= enqueue_task_rt,
2329	.dequeue_task		= dequeue_task_rt,
2330	.yield_task		= yield_task_rt,
2331
2332	.check_preempt_curr	= check_preempt_curr_rt,
2333
2334	.pick_next_task		= pick_next_task_rt,
2335	.put_prev_task		= put_prev_task_rt,
 
2336
2337#ifdef CONFIG_SMP
 
 
2338	.select_task_rq		= select_task_rq_rt,
2339
2340	.set_cpus_allowed       = set_cpus_allowed_common,
2341	.rq_online              = rq_online_rt,
2342	.rq_offline             = rq_offline_rt,
2343	.task_woken		= task_woken_rt,
2344	.switched_from		= switched_from_rt,
 
2345#endif
2346
2347	.set_curr_task          = set_curr_task_rt,
2348	.task_tick		= task_tick_rt,
2349
2350	.get_rr_interval	= get_rr_interval_rt,
2351
2352	.prio_changed		= prio_changed_rt,
2353	.switched_to		= switched_to_rt,
2354
2355	.update_curr		= update_curr_rt,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2356};
2357
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2358#ifdef CONFIG_SCHED_DEBUG
2359extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2360
2361void print_rt_stats(struct seq_file *m, int cpu)
2362{
2363	rt_rq_iter_t iter;
2364	struct rt_rq *rt_rq;
2365
2366	rcu_read_lock();
2367	for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
2368		print_rt_rq(m, cpu, rt_rq);
2369	rcu_read_unlock();
2370}
2371#endif /* CONFIG_SCHED_DEBUG */