Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (C) 2007 Oracle.  All rights reserved.
  4 */
  5
  6#include <linux/err.h>
  7#include <linux/uuid.h>
  8#include "ctree.h"
  9#include "fs.h"
 10#include "messages.h"
 11#include "transaction.h"
 12#include "disk-io.h"
 13#include "print-tree.h"
 14#include "qgroup.h"
 15#include "space-info.h"
 16#include "accessors.h"
 17#include "root-tree.h"
 18#include "orphan.h"
 19
 20/*
 21 * Read a root item from the tree. In case we detect a root item smaller then
 22 * sizeof(root_item), we know it's an old version of the root structure and
 23 * initialize all new fields to zero. The same happens if we detect mismatching
 24 * generation numbers as then we know the root was once mounted with an older
 25 * kernel that was not aware of the root item structure change.
 26 */
 27static void btrfs_read_root_item(struct extent_buffer *eb, int slot,
 28				struct btrfs_root_item *item)
 29{
 30	u32 len;
 31	int need_reset = 0;
 32
 33	len = btrfs_item_size(eb, slot);
 34	read_extent_buffer(eb, item, btrfs_item_ptr_offset(eb, slot),
 35			   min_t(u32, len, sizeof(*item)));
 36	if (len < sizeof(*item))
 37		need_reset = 1;
 38	if (!need_reset && btrfs_root_generation(item)
 39		!= btrfs_root_generation_v2(item)) {
 40		if (btrfs_root_generation_v2(item) != 0) {
 41			btrfs_warn(eb->fs_info,
 42					"mismatching generation and generation_v2 found in root item. This root was probably mounted with an older kernel. Resetting all new fields.");
 43		}
 44		need_reset = 1;
 45	}
 46	if (need_reset) {
 47		/* Clear all members from generation_v2 onwards. */
 48		memset_startat(item, 0, generation_v2);
 49		generate_random_guid(item->uuid);
 50	}
 51}
 52
 53/*
 54 * btrfs_find_root - lookup the root by the key.
 
 55 * root: the root of the root tree
 56 * search_key: the key to search
 57 * path: the path we search
 58 * root_item: the root item of the tree we look for
 59 * root_key: the root key of the tree we look for
 60 *
 61 * If ->offset of 'search_key' is -1ULL, it means we are not sure the offset
 62 * of the search key, just lookup the root with the highest offset for a
 63 * given objectid.
 64 *
 65 * If we find something return 0, otherwise > 0, < 0 on error.
 66 */
 67int btrfs_find_root(struct btrfs_root *root, const struct btrfs_key *search_key,
 68		    struct btrfs_path *path, struct btrfs_root_item *root_item,
 69		    struct btrfs_key *root_key)
 70{
 71	struct btrfs_key found_key;
 72	struct extent_buffer *l;
 73	int ret;
 74	int slot;
 75
 76	ret = btrfs_search_slot(NULL, root, search_key, path, 0, 0);
 77	if (ret < 0)
 78		return ret;
 79
 80	if (search_key->offset != -1ULL) {	/* the search key is exact */
 81		if (ret > 0)
 82			goto out;
 83	} else {
 84		BUG_ON(ret == 0);		/* Logical error */
 
 
 
 
 
 
 
 85		if (path->slots[0] == 0)
 86			goto out;
 87		path->slots[0]--;
 88		ret = 0;
 89	}
 90
 91	l = path->nodes[0];
 92	slot = path->slots[0];
 93
 94	btrfs_item_key_to_cpu(l, &found_key, slot);
 95	if (found_key.objectid != search_key->objectid ||
 96	    found_key.type != BTRFS_ROOT_ITEM_KEY) {
 97		ret = 1;
 98		goto out;
 99	}
100
101	if (root_item)
102		btrfs_read_root_item(l, slot, root_item);
103	if (root_key)
104		memcpy(root_key, &found_key, sizeof(found_key));
105out:
106	btrfs_release_path(path);
107	return ret;
108}
109
110void btrfs_set_root_node(struct btrfs_root_item *item,
111			 struct extent_buffer *node)
112{
113	btrfs_set_root_bytenr(item, node->start);
114	btrfs_set_root_level(item, btrfs_header_level(node));
115	btrfs_set_root_generation(item, btrfs_header_generation(node));
116}
117
118/*
119 * copy the data in 'item' into the btree
120 */
121int btrfs_update_root(struct btrfs_trans_handle *trans, struct btrfs_root
122		      *root, struct btrfs_key *key, struct btrfs_root_item
123		      *item)
124{
125	struct btrfs_fs_info *fs_info = root->fs_info;
126	struct btrfs_path *path;
127	struct extent_buffer *l;
128	int ret;
129	int slot;
130	unsigned long ptr;
131	u32 old_len;
132
133	path = btrfs_alloc_path();
134	if (!path)
135		return -ENOMEM;
136
137	ret = btrfs_search_slot(trans, root, key, path, 0, 1);
138	if (ret < 0)
139		goto out;
140
141	if (ret > 0) {
142		btrfs_crit(fs_info,
143			"unable to find root key (%llu %u %llu) in tree %llu",
144			key->objectid, key->type, key->offset,
145			root->root_key.objectid);
146		ret = -EUCLEAN;
147		btrfs_abort_transaction(trans, ret);
148		goto out;
149	}
150
151	l = path->nodes[0];
152	slot = path->slots[0];
153	ptr = btrfs_item_ptr_offset(l, slot);
154	old_len = btrfs_item_size(l, slot);
155
156	/*
157	 * If this is the first time we update the root item which originated
158	 * from an older kernel, we need to enlarge the item size to make room
159	 * for the added fields.
160	 */
161	if (old_len < sizeof(*item)) {
162		btrfs_release_path(path);
163		ret = btrfs_search_slot(trans, root, key, path,
164				-1, 1);
165		if (ret < 0) {
166			btrfs_abort_transaction(trans, ret);
167			goto out;
168		}
169
170		ret = btrfs_del_item(trans, root, path);
171		if (ret < 0) {
172			btrfs_abort_transaction(trans, ret);
173			goto out;
174		}
175		btrfs_release_path(path);
176		ret = btrfs_insert_empty_item(trans, root, path,
177				key, sizeof(*item));
178		if (ret < 0) {
179			btrfs_abort_transaction(trans, ret);
180			goto out;
181		}
182		l = path->nodes[0];
183		slot = path->slots[0];
184		ptr = btrfs_item_ptr_offset(l, slot);
185	}
186
187	/*
188	 * Update generation_v2 so at the next mount we know the new root
189	 * fields are valid.
190	 */
191	btrfs_set_root_generation_v2(item, btrfs_root_generation(item));
192
193	write_extent_buffer(l, item, ptr, sizeof(*item));
194	btrfs_mark_buffer_dirty(path->nodes[0]);
195out:
196	btrfs_free_path(path);
197	return ret;
198}
199
200int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
201		      const struct btrfs_key *key, struct btrfs_root_item *item)
202{
203	/*
204	 * Make sure generation v1 and v2 match. See update_root for details.
205	 */
206	btrfs_set_root_generation_v2(item, btrfs_root_generation(item));
207	return btrfs_insert_item(trans, root, key, item, sizeof(*item));
208}
209
210int btrfs_find_orphan_roots(struct btrfs_fs_info *fs_info)
211{
212	struct btrfs_root *tree_root = fs_info->tree_root;
213	struct extent_buffer *leaf;
214	struct btrfs_path *path;
215	struct btrfs_key key;
216	struct btrfs_root *root;
217	int err = 0;
218	int ret;
219
220	path = btrfs_alloc_path();
221	if (!path)
222		return -ENOMEM;
223
224	key.objectid = BTRFS_ORPHAN_OBJECTID;
225	key.type = BTRFS_ORPHAN_ITEM_KEY;
226	key.offset = 0;
227
228	while (1) {
229		u64 root_objectid;
230
231		ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
232		if (ret < 0) {
233			err = ret;
234			break;
235		}
236
237		leaf = path->nodes[0];
238		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
239			ret = btrfs_next_leaf(tree_root, path);
240			if (ret < 0)
241				err = ret;
242			if (ret != 0)
243				break;
244			leaf = path->nodes[0];
245		}
246
247		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
248		btrfs_release_path(path);
249
250		if (key.objectid != BTRFS_ORPHAN_OBJECTID ||
251		    key.type != BTRFS_ORPHAN_ITEM_KEY)
252			break;
253
254		root_objectid = key.offset;
255		key.offset++;
256
257		root = btrfs_get_fs_root(fs_info, root_objectid, false);
258		err = PTR_ERR_OR_ZERO(root);
259		if (err && err != -ENOENT) {
260			break;
261		} else if (err == -ENOENT) {
262			struct btrfs_trans_handle *trans;
263
264			btrfs_release_path(path);
265
266			trans = btrfs_join_transaction(tree_root);
267			if (IS_ERR(trans)) {
268				err = PTR_ERR(trans);
269				btrfs_handle_fs_error(fs_info, err,
270					    "Failed to start trans to delete orphan item");
271				break;
272			}
273			err = btrfs_del_orphan_item(trans, tree_root,
274						    root_objectid);
275			btrfs_end_transaction(trans);
276			if (err) {
277				btrfs_handle_fs_error(fs_info, err,
278					    "Failed to delete root orphan item");
279				break;
280			}
281			continue;
282		}
283
284		WARN_ON(!test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state));
285		if (btrfs_root_refs(&root->root_item) == 0) {
286			struct btrfs_key drop_key;
287
288			btrfs_disk_key_to_cpu(&drop_key, &root->root_item.drop_progress);
289			/*
290			 * If we have a non-zero drop_progress then we know we
291			 * made it partly through deleting this snapshot, and
292			 * thus we need to make sure we block any balance from
293			 * happening until this snapshot is completely dropped.
294			 */
295			if (drop_key.objectid != 0 || drop_key.type != 0 ||
296			    drop_key.offset != 0) {
297				set_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags);
298				set_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state);
299			}
300
301			set_bit(BTRFS_ROOT_DEAD_TREE, &root->state);
302			btrfs_add_dead_root(root);
303		}
304		btrfs_put_root(root);
305	}
306
307	btrfs_free_path(path);
308	return err;
309}
310
311/* drop the root item for 'key' from the tree root */
312int btrfs_del_root(struct btrfs_trans_handle *trans,
313		   const struct btrfs_key *key)
314{
315	struct btrfs_root *root = trans->fs_info->tree_root;
316	struct btrfs_path *path;
317	int ret;
318
319	path = btrfs_alloc_path();
320	if (!path)
321		return -ENOMEM;
322	ret = btrfs_search_slot(trans, root, key, path, -1, 1);
323	if (ret < 0)
324		goto out;
325
326	BUG_ON(ret != 0);
 
 
 
327
328	ret = btrfs_del_item(trans, root, path);
329out:
330	btrfs_free_path(path);
331	return ret;
332}
333
334int btrfs_del_root_ref(struct btrfs_trans_handle *trans, u64 root_id,
335		       u64 ref_id, u64 dirid, u64 *sequence,
336		       const struct fscrypt_str *name)
337{
338	struct btrfs_root *tree_root = trans->fs_info->tree_root;
339	struct btrfs_path *path;
340	struct btrfs_root_ref *ref;
341	struct extent_buffer *leaf;
342	struct btrfs_key key;
343	unsigned long ptr;
344	int ret;
345
346	path = btrfs_alloc_path();
347	if (!path)
348		return -ENOMEM;
349
350	key.objectid = root_id;
351	key.type = BTRFS_ROOT_BACKREF_KEY;
352	key.offset = ref_id;
353again:
354	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
355	if (ret < 0) {
356		goto out;
357	} else if (ret == 0) {
358		leaf = path->nodes[0];
359		ref = btrfs_item_ptr(leaf, path->slots[0],
360				     struct btrfs_root_ref);
361		ptr = (unsigned long)(ref + 1);
362		if ((btrfs_root_ref_dirid(leaf, ref) != dirid) ||
363		    (btrfs_root_ref_name_len(leaf, ref) != name->len) ||
364		    memcmp_extent_buffer(leaf, name->name, ptr, name->len)) {
365			ret = -ENOENT;
366			goto out;
367		}
368		*sequence = btrfs_root_ref_sequence(leaf, ref);
369
370		ret = btrfs_del_item(trans, tree_root, path);
371		if (ret)
372			goto out;
373	} else {
374		ret = -ENOENT;
375		goto out;
376	}
377
378	if (key.type == BTRFS_ROOT_BACKREF_KEY) {
379		btrfs_release_path(path);
380		key.objectid = ref_id;
381		key.type = BTRFS_ROOT_REF_KEY;
382		key.offset = root_id;
383		goto again;
384	}
385
386out:
387	btrfs_free_path(path);
388	return ret;
389}
390
391/*
392 * add a btrfs_root_ref item.  type is either BTRFS_ROOT_REF_KEY
393 * or BTRFS_ROOT_BACKREF_KEY.
394 *
395 * The dirid, sequence, name and name_len refer to the directory entry
396 * that is referencing the root.
397 *
398 * For a forward ref, the root_id is the id of the tree referencing
399 * the root and ref_id is the id of the subvol  or snapshot.
400 *
401 * For a back ref the root_id is the id of the subvol or snapshot and
402 * ref_id is the id of the tree referencing it.
403 *
404 * Will return 0, -ENOMEM, or anything from the CoW path
405 */
406int btrfs_add_root_ref(struct btrfs_trans_handle *trans, u64 root_id,
407		       u64 ref_id, u64 dirid, u64 sequence,
408		       const struct fscrypt_str *name)
409{
410	struct btrfs_root *tree_root = trans->fs_info->tree_root;
411	struct btrfs_key key;
412	int ret;
413	struct btrfs_path *path;
414	struct btrfs_root_ref *ref;
415	struct extent_buffer *leaf;
416	unsigned long ptr;
417
418	path = btrfs_alloc_path();
419	if (!path)
420		return -ENOMEM;
421
422	key.objectid = root_id;
423	key.type = BTRFS_ROOT_BACKREF_KEY;
424	key.offset = ref_id;
425again:
426	ret = btrfs_insert_empty_item(trans, tree_root, path, &key,
427				      sizeof(*ref) + name->len);
428	if (ret) {
429		btrfs_abort_transaction(trans, ret);
430		btrfs_free_path(path);
431		return ret;
432	}
433
434	leaf = path->nodes[0];
435	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
436	btrfs_set_root_ref_dirid(leaf, ref, dirid);
437	btrfs_set_root_ref_sequence(leaf, ref, sequence);
438	btrfs_set_root_ref_name_len(leaf, ref, name->len);
439	ptr = (unsigned long)(ref + 1);
440	write_extent_buffer(leaf, name->name, ptr, name->len);
441	btrfs_mark_buffer_dirty(leaf);
442
443	if (key.type == BTRFS_ROOT_BACKREF_KEY) {
444		btrfs_release_path(path);
445		key.objectid = ref_id;
446		key.type = BTRFS_ROOT_REF_KEY;
447		key.offset = root_id;
448		goto again;
449	}
450
451	btrfs_free_path(path);
452	return 0;
453}
454
455/*
456 * Old btrfs forgets to init root_item->flags and root_item->byte_limit
457 * for subvolumes. To work around this problem, we steal a bit from
458 * root_item->inode_item->flags, and use it to indicate if those fields
459 * have been properly initialized.
460 */
461void btrfs_check_and_init_root_item(struct btrfs_root_item *root_item)
462{
463	u64 inode_flags = btrfs_stack_inode_flags(&root_item->inode);
464
465	if (!(inode_flags & BTRFS_INODE_ROOT_ITEM_INIT)) {
466		inode_flags |= BTRFS_INODE_ROOT_ITEM_INIT;
467		btrfs_set_stack_inode_flags(&root_item->inode, inode_flags);
468		btrfs_set_root_flags(root_item, 0);
469		btrfs_set_root_limit(root_item, 0);
470	}
471}
472
473void btrfs_update_root_times(struct btrfs_trans_handle *trans,
474			     struct btrfs_root *root)
475{
476	struct btrfs_root_item *item = &root->root_item;
477	struct timespec64 ct;
478
479	ktime_get_real_ts64(&ct);
480	spin_lock(&root->root_item_lock);
481	btrfs_set_root_ctransid(item, trans->transid);
482	btrfs_set_stack_timespec_sec(&item->ctime, ct.tv_sec);
483	btrfs_set_stack_timespec_nsec(&item->ctime, ct.tv_nsec);
484	spin_unlock(&root->root_item_lock);
485}
486
487/*
488 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
 
489 * root: the root of the parent directory
490 * rsv: block reservation
491 * items: the number of items that we need do reservation
492 * use_global_rsv: allow fallback to the global block reservation
493 *
494 * This function is used to reserve the space for snapshot/subvolume
495 * creation and deletion. Those operations are different with the
496 * common file/directory operations, they change two fs/file trees
497 * and root tree, the number of items that the qgroup reserves is
498 * different with the free space reservation. So we can not use
499 * the space reservation mechanism in start_transaction().
500 */
501int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
502				     struct btrfs_block_rsv *rsv, int items,
503				     bool use_global_rsv)
504{
505	u64 qgroup_num_bytes = 0;
506	u64 num_bytes;
507	int ret;
508	struct btrfs_fs_info *fs_info = root->fs_info;
509	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
510
511	if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
512		/* One for parent inode, two for dir entries */
513		qgroup_num_bytes = 3 * fs_info->nodesize;
514		ret = btrfs_qgroup_reserve_meta_prealloc(root,
515							 qgroup_num_bytes, true,
516							 false);
517		if (ret)
518			return ret;
519	}
520
521	num_bytes = btrfs_calc_insert_metadata_size(fs_info, items);
522	rsv->space_info = btrfs_find_space_info(fs_info,
523					    BTRFS_BLOCK_GROUP_METADATA);
524	ret = btrfs_block_rsv_add(fs_info, rsv, num_bytes,
525				  BTRFS_RESERVE_FLUSH_ALL);
526
527	if (ret == -ENOSPC && use_global_rsv)
528		ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, true);
529
530	if (ret && qgroup_num_bytes)
531		btrfs_qgroup_free_meta_prealloc(root, qgroup_num_bytes);
532
533	if (!ret) {
534		spin_lock(&rsv->lock);
535		rsv->qgroup_rsv_reserved += qgroup_num_bytes;
536		spin_unlock(&rsv->lock);
537	}
538	return ret;
539}
540
541void btrfs_subvolume_release_metadata(struct btrfs_root *root,
542				      struct btrfs_block_rsv *rsv)
543{
544	struct btrfs_fs_info *fs_info = root->fs_info;
545	u64 qgroup_to_release;
546
547	btrfs_block_rsv_release(fs_info, rsv, (u64)-1, &qgroup_to_release);
548	btrfs_qgroup_convert_reserved_meta(root, qgroup_to_release);
549}
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (C) 2007 Oracle.  All rights reserved.
  4 */
  5
  6#include <linux/err.h>
  7#include <linux/uuid.h>
  8#include "ctree.h"
  9#include "fs.h"
 10#include "messages.h"
 11#include "transaction.h"
 12#include "disk-io.h"
 
 13#include "qgroup.h"
 14#include "space-info.h"
 15#include "accessors.h"
 16#include "root-tree.h"
 17#include "orphan.h"
 18
 19/*
 20 * Read a root item from the tree. In case we detect a root item smaller then
 21 * sizeof(root_item), we know it's an old version of the root structure and
 22 * initialize all new fields to zero. The same happens if we detect mismatching
 23 * generation numbers as then we know the root was once mounted with an older
 24 * kernel that was not aware of the root item structure change.
 25 */
 26static void btrfs_read_root_item(struct extent_buffer *eb, int slot,
 27				struct btrfs_root_item *item)
 28{
 29	u32 len;
 30	int need_reset = 0;
 31
 32	len = btrfs_item_size(eb, slot);
 33	read_extent_buffer(eb, item, btrfs_item_ptr_offset(eb, slot),
 34			   min_t(u32, len, sizeof(*item)));
 35	if (len < sizeof(*item))
 36		need_reset = 1;
 37	if (!need_reset && btrfs_root_generation(item)
 38		!= btrfs_root_generation_v2(item)) {
 39		if (btrfs_root_generation_v2(item) != 0) {
 40			btrfs_warn(eb->fs_info,
 41					"mismatching generation and generation_v2 found in root item. This root was probably mounted with an older kernel. Resetting all new fields.");
 42		}
 43		need_reset = 1;
 44	}
 45	if (need_reset) {
 46		/* Clear all members from generation_v2 onwards. */
 47		memset_startat(item, 0, generation_v2);
 48		generate_random_guid(item->uuid);
 49	}
 50}
 51
 52/*
 53 * Lookup the root by the key.
 54 *
 55 * root: the root of the root tree
 56 * search_key: the key to search
 57 * path: the path we search
 58 * root_item: the root item of the tree we look for
 59 * root_key: the root key of the tree we look for
 60 *
 61 * If ->offset of 'search_key' is -1ULL, it means we are not sure the offset
 62 * of the search key, just lookup the root with the highest offset for a
 63 * given objectid.
 64 *
 65 * If we find something return 0, otherwise > 0, < 0 on error.
 66 */
 67int btrfs_find_root(struct btrfs_root *root, const struct btrfs_key *search_key,
 68		    struct btrfs_path *path, struct btrfs_root_item *root_item,
 69		    struct btrfs_key *root_key)
 70{
 71	struct btrfs_key found_key;
 72	struct extent_buffer *l;
 73	int ret;
 74	int slot;
 75
 76	ret = btrfs_search_slot(NULL, root, search_key, path, 0, 0);
 77	if (ret < 0)
 78		return ret;
 79
 80	if (search_key->offset != -1ULL) {	/* the search key is exact */
 81		if (ret > 0)
 82			goto out;
 83	} else {
 84		/*
 85		 * Key with offset -1 found, there would have to exist a root
 86		 * with such id, but this is out of the valid range.
 87		 */
 88		if (ret == 0) {
 89			ret = -EUCLEAN;
 90			goto out;
 91		}
 92		if (path->slots[0] == 0)
 93			goto out;
 94		path->slots[0]--;
 95		ret = 0;
 96	}
 97
 98	l = path->nodes[0];
 99	slot = path->slots[0];
100
101	btrfs_item_key_to_cpu(l, &found_key, slot);
102	if (found_key.objectid != search_key->objectid ||
103	    found_key.type != BTRFS_ROOT_ITEM_KEY) {
104		ret = 1;
105		goto out;
106	}
107
108	if (root_item)
109		btrfs_read_root_item(l, slot, root_item);
110	if (root_key)
111		memcpy(root_key, &found_key, sizeof(found_key));
112out:
113	btrfs_release_path(path);
114	return ret;
115}
116
117void btrfs_set_root_node(struct btrfs_root_item *item,
118			 struct extent_buffer *node)
119{
120	btrfs_set_root_bytenr(item, node->start);
121	btrfs_set_root_level(item, btrfs_header_level(node));
122	btrfs_set_root_generation(item, btrfs_header_generation(node));
123}
124
125/*
126 * copy the data in 'item' into the btree
127 */
128int btrfs_update_root(struct btrfs_trans_handle *trans, struct btrfs_root
129		      *root, struct btrfs_key *key, struct btrfs_root_item
130		      *item)
131{
132	struct btrfs_fs_info *fs_info = root->fs_info;
133	struct btrfs_path *path;
134	struct extent_buffer *l;
135	int ret;
136	int slot;
137	unsigned long ptr;
138	u32 old_len;
139
140	path = btrfs_alloc_path();
141	if (!path)
142		return -ENOMEM;
143
144	ret = btrfs_search_slot(trans, root, key, path, 0, 1);
145	if (ret < 0)
146		goto out;
147
148	if (ret > 0) {
149		btrfs_crit(fs_info,
150			"unable to find root key (%llu %u %llu) in tree %llu",
151			key->objectid, key->type, key->offset, btrfs_root_id(root));
 
152		ret = -EUCLEAN;
153		btrfs_abort_transaction(trans, ret);
154		goto out;
155	}
156
157	l = path->nodes[0];
158	slot = path->slots[0];
159	ptr = btrfs_item_ptr_offset(l, slot);
160	old_len = btrfs_item_size(l, slot);
161
162	/*
163	 * If this is the first time we update the root item which originated
164	 * from an older kernel, we need to enlarge the item size to make room
165	 * for the added fields.
166	 */
167	if (old_len < sizeof(*item)) {
168		btrfs_release_path(path);
169		ret = btrfs_search_slot(trans, root, key, path,
170				-1, 1);
171		if (ret < 0) {
172			btrfs_abort_transaction(trans, ret);
173			goto out;
174		}
175
176		ret = btrfs_del_item(trans, root, path);
177		if (ret < 0) {
178			btrfs_abort_transaction(trans, ret);
179			goto out;
180		}
181		btrfs_release_path(path);
182		ret = btrfs_insert_empty_item(trans, root, path,
183				key, sizeof(*item));
184		if (ret < 0) {
185			btrfs_abort_transaction(trans, ret);
186			goto out;
187		}
188		l = path->nodes[0];
189		slot = path->slots[0];
190		ptr = btrfs_item_ptr_offset(l, slot);
191	}
192
193	/*
194	 * Update generation_v2 so at the next mount we know the new root
195	 * fields are valid.
196	 */
197	btrfs_set_root_generation_v2(item, btrfs_root_generation(item));
198
199	write_extent_buffer(l, item, ptr, sizeof(*item));
200	btrfs_mark_buffer_dirty(trans, path->nodes[0]);
201out:
202	btrfs_free_path(path);
203	return ret;
204}
205
206int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
207		      const struct btrfs_key *key, struct btrfs_root_item *item)
208{
209	/*
210	 * Make sure generation v1 and v2 match. See update_root for details.
211	 */
212	btrfs_set_root_generation_v2(item, btrfs_root_generation(item));
213	return btrfs_insert_item(trans, root, key, item, sizeof(*item));
214}
215
216int btrfs_find_orphan_roots(struct btrfs_fs_info *fs_info)
217{
218	struct btrfs_root *tree_root = fs_info->tree_root;
219	struct extent_buffer *leaf;
220	struct btrfs_path *path;
221	struct btrfs_key key;
222	struct btrfs_root *root;
223	int err = 0;
224	int ret;
225
226	path = btrfs_alloc_path();
227	if (!path)
228		return -ENOMEM;
229
230	key.objectid = BTRFS_ORPHAN_OBJECTID;
231	key.type = BTRFS_ORPHAN_ITEM_KEY;
232	key.offset = 0;
233
234	while (1) {
235		u64 root_objectid;
236
237		ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
238		if (ret < 0) {
239			err = ret;
240			break;
241		}
242
243		leaf = path->nodes[0];
244		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
245			ret = btrfs_next_leaf(tree_root, path);
246			if (ret < 0)
247				err = ret;
248			if (ret != 0)
249				break;
250			leaf = path->nodes[0];
251		}
252
253		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
254		btrfs_release_path(path);
255
256		if (key.objectid != BTRFS_ORPHAN_OBJECTID ||
257		    key.type != BTRFS_ORPHAN_ITEM_KEY)
258			break;
259
260		root_objectid = key.offset;
261		key.offset++;
262
263		root = btrfs_get_fs_root(fs_info, root_objectid, false);
264		err = PTR_ERR_OR_ZERO(root);
265		if (err && err != -ENOENT) {
266			break;
267		} else if (err == -ENOENT) {
268			struct btrfs_trans_handle *trans;
269
270			btrfs_release_path(path);
271
272			trans = btrfs_join_transaction(tree_root);
273			if (IS_ERR(trans)) {
274				err = PTR_ERR(trans);
275				btrfs_handle_fs_error(fs_info, err,
276					    "Failed to start trans to delete orphan item");
277				break;
278			}
279			err = btrfs_del_orphan_item(trans, tree_root,
280						    root_objectid);
281			btrfs_end_transaction(trans);
282			if (err) {
283				btrfs_handle_fs_error(fs_info, err,
284					    "Failed to delete root orphan item");
285				break;
286			}
287			continue;
288		}
289
290		WARN_ON(!test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state));
291		if (btrfs_root_refs(&root->root_item) == 0) {
292			struct btrfs_key drop_key;
293
294			btrfs_disk_key_to_cpu(&drop_key, &root->root_item.drop_progress);
295			/*
296			 * If we have a non-zero drop_progress then we know we
297			 * made it partly through deleting this snapshot, and
298			 * thus we need to make sure we block any balance from
299			 * happening until this snapshot is completely dropped.
300			 */
301			if (drop_key.objectid != 0 || drop_key.type != 0 ||
302			    drop_key.offset != 0) {
303				set_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags);
304				set_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state);
305			}
306
307			set_bit(BTRFS_ROOT_DEAD_TREE, &root->state);
308			btrfs_add_dead_root(root);
309		}
310		btrfs_put_root(root);
311	}
312
313	btrfs_free_path(path);
314	return err;
315}
316
317/* drop the root item for 'key' from the tree root */
318int btrfs_del_root(struct btrfs_trans_handle *trans,
319		   const struct btrfs_key *key)
320{
321	struct btrfs_root *root = trans->fs_info->tree_root;
322	struct btrfs_path *path;
323	int ret;
324
325	path = btrfs_alloc_path();
326	if (!path)
327		return -ENOMEM;
328	ret = btrfs_search_slot(trans, root, key, path, -1, 1);
329	if (ret < 0)
330		goto out;
331	if (ret != 0) {
332		/* The root must exist but we did not find it by the key. */
333		ret = -EUCLEAN;
334		goto out;
335	}
336
337	ret = btrfs_del_item(trans, root, path);
338out:
339	btrfs_free_path(path);
340	return ret;
341}
342
343int btrfs_del_root_ref(struct btrfs_trans_handle *trans, u64 root_id,
344		       u64 ref_id, u64 dirid, u64 *sequence,
345		       const struct fscrypt_str *name)
346{
347	struct btrfs_root *tree_root = trans->fs_info->tree_root;
348	struct btrfs_path *path;
349	struct btrfs_root_ref *ref;
350	struct extent_buffer *leaf;
351	struct btrfs_key key;
352	unsigned long ptr;
353	int ret;
354
355	path = btrfs_alloc_path();
356	if (!path)
357		return -ENOMEM;
358
359	key.objectid = root_id;
360	key.type = BTRFS_ROOT_BACKREF_KEY;
361	key.offset = ref_id;
362again:
363	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
364	if (ret < 0) {
365		goto out;
366	} else if (ret == 0) {
367		leaf = path->nodes[0];
368		ref = btrfs_item_ptr(leaf, path->slots[0],
369				     struct btrfs_root_ref);
370		ptr = (unsigned long)(ref + 1);
371		if ((btrfs_root_ref_dirid(leaf, ref) != dirid) ||
372		    (btrfs_root_ref_name_len(leaf, ref) != name->len) ||
373		    memcmp_extent_buffer(leaf, name->name, ptr, name->len)) {
374			ret = -ENOENT;
375			goto out;
376		}
377		*sequence = btrfs_root_ref_sequence(leaf, ref);
378
379		ret = btrfs_del_item(trans, tree_root, path);
380		if (ret)
381			goto out;
382	} else {
383		ret = -ENOENT;
384		goto out;
385	}
386
387	if (key.type == BTRFS_ROOT_BACKREF_KEY) {
388		btrfs_release_path(path);
389		key.objectid = ref_id;
390		key.type = BTRFS_ROOT_REF_KEY;
391		key.offset = root_id;
392		goto again;
393	}
394
395out:
396	btrfs_free_path(path);
397	return ret;
398}
399
400/*
401 * add a btrfs_root_ref item.  type is either BTRFS_ROOT_REF_KEY
402 * or BTRFS_ROOT_BACKREF_KEY.
403 *
404 * The dirid, sequence, name and name_len refer to the directory entry
405 * that is referencing the root.
406 *
407 * For a forward ref, the root_id is the id of the tree referencing
408 * the root and ref_id is the id of the subvol  or snapshot.
409 *
410 * For a back ref the root_id is the id of the subvol or snapshot and
411 * ref_id is the id of the tree referencing it.
412 *
413 * Will return 0, -ENOMEM, or anything from the CoW path
414 */
415int btrfs_add_root_ref(struct btrfs_trans_handle *trans, u64 root_id,
416		       u64 ref_id, u64 dirid, u64 sequence,
417		       const struct fscrypt_str *name)
418{
419	struct btrfs_root *tree_root = trans->fs_info->tree_root;
420	struct btrfs_key key;
421	int ret;
422	struct btrfs_path *path;
423	struct btrfs_root_ref *ref;
424	struct extent_buffer *leaf;
425	unsigned long ptr;
426
427	path = btrfs_alloc_path();
428	if (!path)
429		return -ENOMEM;
430
431	key.objectid = root_id;
432	key.type = BTRFS_ROOT_BACKREF_KEY;
433	key.offset = ref_id;
434again:
435	ret = btrfs_insert_empty_item(trans, tree_root, path, &key,
436				      sizeof(*ref) + name->len);
437	if (ret) {
438		btrfs_abort_transaction(trans, ret);
439		btrfs_free_path(path);
440		return ret;
441	}
442
443	leaf = path->nodes[0];
444	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
445	btrfs_set_root_ref_dirid(leaf, ref, dirid);
446	btrfs_set_root_ref_sequence(leaf, ref, sequence);
447	btrfs_set_root_ref_name_len(leaf, ref, name->len);
448	ptr = (unsigned long)(ref + 1);
449	write_extent_buffer(leaf, name->name, ptr, name->len);
450	btrfs_mark_buffer_dirty(trans, leaf);
451
452	if (key.type == BTRFS_ROOT_BACKREF_KEY) {
453		btrfs_release_path(path);
454		key.objectid = ref_id;
455		key.type = BTRFS_ROOT_REF_KEY;
456		key.offset = root_id;
457		goto again;
458	}
459
460	btrfs_free_path(path);
461	return 0;
462}
463
464/*
465 * Old btrfs forgets to init root_item->flags and root_item->byte_limit
466 * for subvolumes. To work around this problem, we steal a bit from
467 * root_item->inode_item->flags, and use it to indicate if those fields
468 * have been properly initialized.
469 */
470void btrfs_check_and_init_root_item(struct btrfs_root_item *root_item)
471{
472	u64 inode_flags = btrfs_stack_inode_flags(&root_item->inode);
473
474	if (!(inode_flags & BTRFS_INODE_ROOT_ITEM_INIT)) {
475		inode_flags |= BTRFS_INODE_ROOT_ITEM_INIT;
476		btrfs_set_stack_inode_flags(&root_item->inode, inode_flags);
477		btrfs_set_root_flags(root_item, 0);
478		btrfs_set_root_limit(root_item, 0);
479	}
480}
481
482void btrfs_update_root_times(struct btrfs_trans_handle *trans,
483			     struct btrfs_root *root)
484{
485	struct btrfs_root_item *item = &root->root_item;
486	struct timespec64 ct;
487
488	ktime_get_real_ts64(&ct);
489	spin_lock(&root->root_item_lock);
490	btrfs_set_root_ctransid(item, trans->transid);
491	btrfs_set_stack_timespec_sec(&item->ctime, ct.tv_sec);
492	btrfs_set_stack_timespec_nsec(&item->ctime, ct.tv_nsec);
493	spin_unlock(&root->root_item_lock);
494}
495
496/*
497 * Reserve space for subvolume operation.
498 *
499 * root: the root of the parent directory
500 * rsv: block reservation
501 * items: the number of items that we need do reservation
502 * use_global_rsv: allow fallback to the global block reservation
503 *
504 * This function is used to reserve the space for snapshot/subvolume
505 * creation and deletion. Those operations are different with the
506 * common file/directory operations, they change two fs/file trees
507 * and root tree, the number of items that the qgroup reserves is
508 * different with the free space reservation. So we can not use
509 * the space reservation mechanism in start_transaction().
510 */
511int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
512				     struct btrfs_block_rsv *rsv, int items,
513				     bool use_global_rsv)
514{
515	u64 qgroup_num_bytes = 0;
516	u64 num_bytes;
517	int ret;
518	struct btrfs_fs_info *fs_info = root->fs_info;
519	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
520
521	if (btrfs_qgroup_enabled(fs_info)) {
522		/* One for parent inode, two for dir entries */
523		qgroup_num_bytes = 3 * fs_info->nodesize;
524		ret = btrfs_qgroup_reserve_meta_prealloc(root,
525							 qgroup_num_bytes, true,
526							 false);
527		if (ret)
528			return ret;
529	}
530
531	num_bytes = btrfs_calc_insert_metadata_size(fs_info, items);
532	rsv->space_info = btrfs_find_space_info(fs_info,
533					    BTRFS_BLOCK_GROUP_METADATA);
534	ret = btrfs_block_rsv_add(fs_info, rsv, num_bytes,
535				  BTRFS_RESERVE_FLUSH_ALL);
536
537	if (ret == -ENOSPC && use_global_rsv)
538		ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, true);
539
540	if (ret && qgroup_num_bytes)
541		btrfs_qgroup_free_meta_prealloc(root, qgroup_num_bytes);
542
543	if (!ret) {
544		spin_lock(&rsv->lock);
545		rsv->qgroup_rsv_reserved += qgroup_num_bytes;
546		spin_unlock(&rsv->lock);
547	}
548	return ret;
 
 
 
 
 
 
 
 
 
 
549}