Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (C) 2007 Oracle.  All rights reserved.
  4 */
  5
  6#include <linux/err.h>
  7#include <linux/uuid.h>
  8#include "ctree.h"
  9#include "fs.h"
 10#include "messages.h"
 11#include "transaction.h"
 12#include "disk-io.h"
 13#include "print-tree.h"
 14#include "qgroup.h"
 15#include "space-info.h"
 16#include "accessors.h"
 17#include "root-tree.h"
 18#include "orphan.h"
 19
 20/*
 21 * Read a root item from the tree. In case we detect a root item smaller then
 22 * sizeof(root_item), we know it's an old version of the root structure and
 23 * initialize all new fields to zero. The same happens if we detect mismatching
 24 * generation numbers as then we know the root was once mounted with an older
 25 * kernel that was not aware of the root item structure change.
 26 */
 27static void btrfs_read_root_item(struct extent_buffer *eb, int slot,
 28				struct btrfs_root_item *item)
 29{
 30	u32 len;
 
 31	int need_reset = 0;
 32
 33	len = btrfs_item_size(eb, slot);
 34	read_extent_buffer(eb, item, btrfs_item_ptr_offset(eb, slot),
 35			   min_t(u32, len, sizeof(*item)));
 36	if (len < sizeof(*item))
 37		need_reset = 1;
 38	if (!need_reset && btrfs_root_generation(item)
 39		!= btrfs_root_generation_v2(item)) {
 40		if (btrfs_root_generation_v2(item) != 0) {
 41			btrfs_warn(eb->fs_info,
 42					"mismatching generation and generation_v2 found in root item. This root was probably mounted with an older kernel. Resetting all new fields.");
 43		}
 44		need_reset = 1;
 45	}
 46	if (need_reset) {
 47		/* Clear all members from generation_v2 onwards. */
 48		memset_startat(item, 0, generation_v2);
 49		generate_random_guid(item->uuid);
 
 
 
 50	}
 51}
 52
 53/*
 54 * btrfs_find_root - lookup the root by the key.
 55 * root: the root of the root tree
 56 * search_key: the key to search
 57 * path: the path we search
 58 * root_item: the root item of the tree we look for
 59 * root_key: the root key of the tree we look for
 60 *
 61 * If ->offset of 'search_key' is -1ULL, it means we are not sure the offset
 62 * of the search key, just lookup the root with the highest offset for a
 63 * given objectid.
 64 *
 65 * If we find something return 0, otherwise > 0, < 0 on error.
 66 */
 67int btrfs_find_root(struct btrfs_root *root, const struct btrfs_key *search_key,
 68		    struct btrfs_path *path, struct btrfs_root_item *root_item,
 69		    struct btrfs_key *root_key)
 70{
 71	struct btrfs_key found_key;
 72	struct extent_buffer *l;
 73	int ret;
 74	int slot;
 75
 76	ret = btrfs_search_slot(NULL, root, search_key, path, 0, 0);
 77	if (ret < 0)
 78		return ret;
 79
 80	if (search_key->offset != -1ULL) {	/* the search key is exact */
 81		if (ret > 0)
 82			goto out;
 83	} else {
 84		BUG_ON(ret == 0);		/* Logical error */
 85		if (path->slots[0] == 0)
 86			goto out;
 87		path->slots[0]--;
 88		ret = 0;
 89	}
 90
 91	l = path->nodes[0];
 92	slot = path->slots[0];
 93
 94	btrfs_item_key_to_cpu(l, &found_key, slot);
 95	if (found_key.objectid != search_key->objectid ||
 96	    found_key.type != BTRFS_ROOT_ITEM_KEY) {
 97		ret = 1;
 98		goto out;
 99	}
100
101	if (root_item)
102		btrfs_read_root_item(l, slot, root_item);
103	if (root_key)
104		memcpy(root_key, &found_key, sizeof(found_key));
105out:
106	btrfs_release_path(path);
107	return ret;
108}
109
110void btrfs_set_root_node(struct btrfs_root_item *item,
111			 struct extent_buffer *node)
112{
113	btrfs_set_root_bytenr(item, node->start);
114	btrfs_set_root_level(item, btrfs_header_level(node));
115	btrfs_set_root_generation(item, btrfs_header_generation(node));
116}
117
118/*
119 * copy the data in 'item' into the btree
120 */
121int btrfs_update_root(struct btrfs_trans_handle *trans, struct btrfs_root
122		      *root, struct btrfs_key *key, struct btrfs_root_item
123		      *item)
124{
125	struct btrfs_fs_info *fs_info = root->fs_info;
126	struct btrfs_path *path;
127	struct extent_buffer *l;
128	int ret;
129	int slot;
130	unsigned long ptr;
131	u32 old_len;
132
133	path = btrfs_alloc_path();
134	if (!path)
135		return -ENOMEM;
136
137	ret = btrfs_search_slot(trans, root, key, path, 0, 1);
138	if (ret < 0)
139		goto out;
140
141	if (ret > 0) {
142		btrfs_crit(fs_info,
143			"unable to find root key (%llu %u %llu) in tree %llu",
144			key->objectid, key->type, key->offset,
145			root->root_key.objectid);
146		ret = -EUCLEAN;
147		btrfs_abort_transaction(trans, ret);
148		goto out;
149	}
150
 
 
 
 
 
 
 
151	l = path->nodes[0];
152	slot = path->slots[0];
153	ptr = btrfs_item_ptr_offset(l, slot);
154	old_len = btrfs_item_size(l, slot);
155
156	/*
157	 * If this is the first time we update the root item which originated
158	 * from an older kernel, we need to enlarge the item size to make room
159	 * for the added fields.
160	 */
161	if (old_len < sizeof(*item)) {
162		btrfs_release_path(path);
163		ret = btrfs_search_slot(trans, root, key, path,
164				-1, 1);
165		if (ret < 0) {
166			btrfs_abort_transaction(trans, ret);
167			goto out;
168		}
169
170		ret = btrfs_del_item(trans, root, path);
171		if (ret < 0) {
172			btrfs_abort_transaction(trans, ret);
173			goto out;
174		}
175		btrfs_release_path(path);
176		ret = btrfs_insert_empty_item(trans, root, path,
177				key, sizeof(*item));
178		if (ret < 0) {
179			btrfs_abort_transaction(trans, ret);
180			goto out;
181		}
182		l = path->nodes[0];
183		slot = path->slots[0];
184		ptr = btrfs_item_ptr_offset(l, slot);
185	}
186
187	/*
188	 * Update generation_v2 so at the next mount we know the new root
189	 * fields are valid.
190	 */
191	btrfs_set_root_generation_v2(item, btrfs_root_generation(item));
192
193	write_extent_buffer(l, item, ptr, sizeof(*item));
194	btrfs_mark_buffer_dirty(path->nodes[0]);
195out:
196	btrfs_free_path(path);
197	return ret;
198}
199
200int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
201		      const struct btrfs_key *key, struct btrfs_root_item *item)
202{
203	/*
204	 * Make sure generation v1 and v2 match. See update_root for details.
205	 */
206	btrfs_set_root_generation_v2(item, btrfs_root_generation(item));
207	return btrfs_insert_item(trans, root, key, item, sizeof(*item));
208}
209
210int btrfs_find_orphan_roots(struct btrfs_fs_info *fs_info)
211{
212	struct btrfs_root *tree_root = fs_info->tree_root;
213	struct extent_buffer *leaf;
214	struct btrfs_path *path;
215	struct btrfs_key key;
 
216	struct btrfs_root *root;
217	int err = 0;
218	int ret;
219
220	path = btrfs_alloc_path();
221	if (!path)
222		return -ENOMEM;
223
224	key.objectid = BTRFS_ORPHAN_OBJECTID;
225	key.type = BTRFS_ORPHAN_ITEM_KEY;
226	key.offset = 0;
227
228	while (1) {
229		u64 root_objectid;
230
 
231		ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
232		if (ret < 0) {
233			err = ret;
234			break;
235		}
236
237		leaf = path->nodes[0];
238		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
239			ret = btrfs_next_leaf(tree_root, path);
240			if (ret < 0)
241				err = ret;
242			if (ret != 0)
243				break;
244			leaf = path->nodes[0];
245		}
246
247		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
248		btrfs_release_path(path);
249
250		if (key.objectid != BTRFS_ORPHAN_OBJECTID ||
251		    key.type != BTRFS_ORPHAN_ITEM_KEY)
252			break;
253
254		root_objectid = key.offset;
255		key.offset++;
256
257		root = btrfs_get_fs_root(fs_info, root_objectid, false);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
258		err = PTR_ERR_OR_ZERO(root);
259		if (err && err != -ENOENT) {
260			break;
261		} else if (err == -ENOENT) {
262			struct btrfs_trans_handle *trans;
263
264			btrfs_release_path(path);
265
266			trans = btrfs_join_transaction(tree_root);
267			if (IS_ERR(trans)) {
268				err = PTR_ERR(trans);
269				btrfs_handle_fs_error(fs_info, err,
270					    "Failed to start trans to delete orphan item");
271				break;
272			}
273			err = btrfs_del_orphan_item(trans, tree_root,
274						    root_objectid);
275			btrfs_end_transaction(trans);
276			if (err) {
277				btrfs_handle_fs_error(fs_info, err,
278					    "Failed to delete root orphan item");
279				break;
280			}
281			continue;
282		}
283
284		WARN_ON(!test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state));
285		if (btrfs_root_refs(&root->root_item) == 0) {
286			struct btrfs_key drop_key;
287
288			btrfs_disk_key_to_cpu(&drop_key, &root->root_item.drop_progress);
289			/*
290			 * If we have a non-zero drop_progress then we know we
291			 * made it partly through deleting this snapshot, and
292			 * thus we need to make sure we block any balance from
293			 * happening until this snapshot is completely dropped.
294			 */
295			if (drop_key.objectid != 0 || drop_key.type != 0 ||
296			    drop_key.offset != 0) {
297				set_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags);
298				set_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state);
299			}
300
301			set_bit(BTRFS_ROOT_DEAD_TREE, &root->state);
302			btrfs_add_dead_root(root);
 
 
 
 
 
303		}
304		btrfs_put_root(root);
 
 
305	}
306
307	btrfs_free_path(path);
308	return err;
309}
310
311/* drop the root item for 'key' from the tree root */
312int btrfs_del_root(struct btrfs_trans_handle *trans,
313		   const struct btrfs_key *key)
314{
315	struct btrfs_root *root = trans->fs_info->tree_root;
316	struct btrfs_path *path;
317	int ret;
318
319	path = btrfs_alloc_path();
320	if (!path)
321		return -ENOMEM;
322	ret = btrfs_search_slot(trans, root, key, path, -1, 1);
323	if (ret < 0)
324		goto out;
325
326	BUG_ON(ret != 0);
327
328	ret = btrfs_del_item(trans, root, path);
329out:
330	btrfs_free_path(path);
331	return ret;
332}
333
334int btrfs_del_root_ref(struct btrfs_trans_handle *trans, u64 root_id,
335		       u64 ref_id, u64 dirid, u64 *sequence,
336		       const struct fscrypt_str *name)
 
 
337{
338	struct btrfs_root *tree_root = trans->fs_info->tree_root;
339	struct btrfs_path *path;
340	struct btrfs_root_ref *ref;
341	struct extent_buffer *leaf;
342	struct btrfs_key key;
343	unsigned long ptr;
 
344	int ret;
345
346	path = btrfs_alloc_path();
347	if (!path)
348		return -ENOMEM;
349
350	key.objectid = root_id;
351	key.type = BTRFS_ROOT_BACKREF_KEY;
352	key.offset = ref_id;
353again:
354	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
355	if (ret < 0) {
356		goto out;
357	} else if (ret == 0) {
358		leaf = path->nodes[0];
359		ref = btrfs_item_ptr(leaf, path->slots[0],
360				     struct btrfs_root_ref);
 
 
 
361		ptr = (unsigned long)(ref + 1);
362		if ((btrfs_root_ref_dirid(leaf, ref) != dirid) ||
363		    (btrfs_root_ref_name_len(leaf, ref) != name->len) ||
364		    memcmp_extent_buffer(leaf, name->name, ptr, name->len)) {
365			ret = -ENOENT;
366			goto out;
367		}
368		*sequence = btrfs_root_ref_sequence(leaf, ref);
369
370		ret = btrfs_del_item(trans, tree_root, path);
371		if (ret)
 
372			goto out;
373	} else {
374		ret = -ENOENT;
375		goto out;
376	}
377
378	if (key.type == BTRFS_ROOT_BACKREF_KEY) {
379		btrfs_release_path(path);
380		key.objectid = ref_id;
381		key.type = BTRFS_ROOT_REF_KEY;
382		key.offset = root_id;
383		goto again;
384	}
385
386out:
387	btrfs_free_path(path);
388	return ret;
389}
390
391/*
392 * add a btrfs_root_ref item.  type is either BTRFS_ROOT_REF_KEY
393 * or BTRFS_ROOT_BACKREF_KEY.
394 *
395 * The dirid, sequence, name and name_len refer to the directory entry
396 * that is referencing the root.
397 *
398 * For a forward ref, the root_id is the id of the tree referencing
399 * the root and ref_id is the id of the subvol  or snapshot.
400 *
401 * For a back ref the root_id is the id of the subvol or snapshot and
402 * ref_id is the id of the tree referencing it.
403 *
404 * Will return 0, -ENOMEM, or anything from the CoW path
405 */
406int btrfs_add_root_ref(struct btrfs_trans_handle *trans, u64 root_id,
407		       u64 ref_id, u64 dirid, u64 sequence,
408		       const struct fscrypt_str *name)
 
409{
410	struct btrfs_root *tree_root = trans->fs_info->tree_root;
411	struct btrfs_key key;
412	int ret;
413	struct btrfs_path *path;
414	struct btrfs_root_ref *ref;
415	struct extent_buffer *leaf;
416	unsigned long ptr;
417
418	path = btrfs_alloc_path();
419	if (!path)
420		return -ENOMEM;
421
422	key.objectid = root_id;
423	key.type = BTRFS_ROOT_BACKREF_KEY;
424	key.offset = ref_id;
425again:
426	ret = btrfs_insert_empty_item(trans, tree_root, path, &key,
427				      sizeof(*ref) + name->len);
428	if (ret) {
429		btrfs_abort_transaction(trans, ret);
430		btrfs_free_path(path);
431		return ret;
432	}
433
434	leaf = path->nodes[0];
435	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
436	btrfs_set_root_ref_dirid(leaf, ref, dirid);
437	btrfs_set_root_ref_sequence(leaf, ref, sequence);
438	btrfs_set_root_ref_name_len(leaf, ref, name->len);
439	ptr = (unsigned long)(ref + 1);
440	write_extent_buffer(leaf, name->name, ptr, name->len);
441	btrfs_mark_buffer_dirty(leaf);
442
443	if (key.type == BTRFS_ROOT_BACKREF_KEY) {
444		btrfs_release_path(path);
445		key.objectid = ref_id;
446		key.type = BTRFS_ROOT_REF_KEY;
447		key.offset = root_id;
448		goto again;
449	}
450
451	btrfs_free_path(path);
452	return 0;
453}
454
455/*
456 * Old btrfs forgets to init root_item->flags and root_item->byte_limit
457 * for subvolumes. To work around this problem, we steal a bit from
458 * root_item->inode_item->flags, and use it to indicate if those fields
459 * have been properly initialized.
460 */
461void btrfs_check_and_init_root_item(struct btrfs_root_item *root_item)
462{
463	u64 inode_flags = btrfs_stack_inode_flags(&root_item->inode);
464
465	if (!(inode_flags & BTRFS_INODE_ROOT_ITEM_INIT)) {
466		inode_flags |= BTRFS_INODE_ROOT_ITEM_INIT;
467		btrfs_set_stack_inode_flags(&root_item->inode, inode_flags);
468		btrfs_set_root_flags(root_item, 0);
469		btrfs_set_root_limit(root_item, 0);
470	}
471}
472
473void btrfs_update_root_times(struct btrfs_trans_handle *trans,
474			     struct btrfs_root *root)
475{
476	struct btrfs_root_item *item = &root->root_item;
477	struct timespec64 ct;
478
479	ktime_get_real_ts64(&ct);
480	spin_lock(&root->root_item_lock);
481	btrfs_set_root_ctransid(item, trans->transid);
482	btrfs_set_stack_timespec_sec(&item->ctime, ct.tv_sec);
483	btrfs_set_stack_timespec_nsec(&item->ctime, ct.tv_nsec);
484	spin_unlock(&root->root_item_lock);
485}
486
487/*
488 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
489 * root: the root of the parent directory
490 * rsv: block reservation
491 * items: the number of items that we need do reservation
492 * use_global_rsv: allow fallback to the global block reservation
493 *
494 * This function is used to reserve the space for snapshot/subvolume
495 * creation and deletion. Those operations are different with the
496 * common file/directory operations, they change two fs/file trees
497 * and root tree, the number of items that the qgroup reserves is
498 * different with the free space reservation. So we can not use
499 * the space reservation mechanism in start_transaction().
500 */
501int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
502				     struct btrfs_block_rsv *rsv, int items,
503				     bool use_global_rsv)
504{
505	u64 qgroup_num_bytes = 0;
506	u64 num_bytes;
507	int ret;
508	struct btrfs_fs_info *fs_info = root->fs_info;
509	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
510
511	if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
512		/* One for parent inode, two for dir entries */
513		qgroup_num_bytes = 3 * fs_info->nodesize;
514		ret = btrfs_qgroup_reserve_meta_prealloc(root,
515							 qgroup_num_bytes, true,
516							 false);
517		if (ret)
518			return ret;
519	}
520
521	num_bytes = btrfs_calc_insert_metadata_size(fs_info, items);
522	rsv->space_info = btrfs_find_space_info(fs_info,
523					    BTRFS_BLOCK_GROUP_METADATA);
524	ret = btrfs_block_rsv_add(fs_info, rsv, num_bytes,
525				  BTRFS_RESERVE_FLUSH_ALL);
526
527	if (ret == -ENOSPC && use_global_rsv)
528		ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, true);
529
530	if (ret && qgroup_num_bytes)
531		btrfs_qgroup_free_meta_prealloc(root, qgroup_num_bytes);
532
533	if (!ret) {
534		spin_lock(&rsv->lock);
535		rsv->qgroup_rsv_reserved += qgroup_num_bytes;
536		spin_unlock(&rsv->lock);
537	}
538	return ret;
539}
540
541void btrfs_subvolume_release_metadata(struct btrfs_root *root,
542				      struct btrfs_block_rsv *rsv)
543{
544	struct btrfs_fs_info *fs_info = root->fs_info;
545	u64 qgroup_to_release;
546
547	btrfs_block_rsv_release(fs_info, rsv, (u64)-1, &qgroup_to_release);
548	btrfs_qgroup_convert_reserved_meta(root, qgroup_to_release);
549}
v4.17
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (C) 2007 Oracle.  All rights reserved.
  4 */
  5
  6#include <linux/err.h>
  7#include <linux/uuid.h>
  8#include "ctree.h"
 
 
  9#include "transaction.h"
 10#include "disk-io.h"
 11#include "print-tree.h"
 
 
 
 
 
 12
 13/*
 14 * Read a root item from the tree. In case we detect a root item smaller then
 15 * sizeof(root_item), we know it's an old version of the root structure and
 16 * initialize all new fields to zero. The same happens if we detect mismatching
 17 * generation numbers as then we know the root was once mounted with an older
 18 * kernel that was not aware of the root item structure change.
 19 */
 20static void btrfs_read_root_item(struct extent_buffer *eb, int slot,
 21				struct btrfs_root_item *item)
 22{
 23	uuid_le uuid;
 24	int len;
 25	int need_reset = 0;
 26
 27	len = btrfs_item_size_nr(eb, slot);
 28	read_extent_buffer(eb, item, btrfs_item_ptr_offset(eb, slot),
 29			min_t(int, len, (int)sizeof(*item)));
 30	if (len < sizeof(*item))
 31		need_reset = 1;
 32	if (!need_reset && btrfs_root_generation(item)
 33		!= btrfs_root_generation_v2(item)) {
 34		if (btrfs_root_generation_v2(item) != 0) {
 35			btrfs_warn(eb->fs_info,
 36					"mismatching generation and generation_v2 found in root item. This root was probably mounted with an older kernel. Resetting all new fields.");
 37		}
 38		need_reset = 1;
 39	}
 40	if (need_reset) {
 41		memset(&item->generation_v2, 0,
 42			sizeof(*item) - offsetof(struct btrfs_root_item,
 43					generation_v2));
 44
 45		uuid_le_gen(&uuid);
 46		memcpy(item->uuid, uuid.b, BTRFS_UUID_SIZE);
 47	}
 48}
 49
 50/*
 51 * btrfs_find_root - lookup the root by the key.
 52 * root: the root of the root tree
 53 * search_key: the key to search
 54 * path: the path we search
 55 * root_item: the root item of the tree we look for
 56 * root_key: the root key of the tree we look for
 57 *
 58 * If ->offset of 'search_key' is -1ULL, it means we are not sure the offset
 59 * of the search key, just lookup the root with the highest offset for a
 60 * given objectid.
 61 *
 62 * If we find something return 0, otherwise > 0, < 0 on error.
 63 */
 64int btrfs_find_root(struct btrfs_root *root, const struct btrfs_key *search_key,
 65		    struct btrfs_path *path, struct btrfs_root_item *root_item,
 66		    struct btrfs_key *root_key)
 67{
 68	struct btrfs_key found_key;
 69	struct extent_buffer *l;
 70	int ret;
 71	int slot;
 72
 73	ret = btrfs_search_slot(NULL, root, search_key, path, 0, 0);
 74	if (ret < 0)
 75		return ret;
 76
 77	if (search_key->offset != -1ULL) {	/* the search key is exact */
 78		if (ret > 0)
 79			goto out;
 80	} else {
 81		BUG_ON(ret == 0);		/* Logical error */
 82		if (path->slots[0] == 0)
 83			goto out;
 84		path->slots[0]--;
 85		ret = 0;
 86	}
 87
 88	l = path->nodes[0];
 89	slot = path->slots[0];
 90
 91	btrfs_item_key_to_cpu(l, &found_key, slot);
 92	if (found_key.objectid != search_key->objectid ||
 93	    found_key.type != BTRFS_ROOT_ITEM_KEY) {
 94		ret = 1;
 95		goto out;
 96	}
 97
 98	if (root_item)
 99		btrfs_read_root_item(l, slot, root_item);
100	if (root_key)
101		memcpy(root_key, &found_key, sizeof(found_key));
102out:
103	btrfs_release_path(path);
104	return ret;
105}
106
107void btrfs_set_root_node(struct btrfs_root_item *item,
108			 struct extent_buffer *node)
109{
110	btrfs_set_root_bytenr(item, node->start);
111	btrfs_set_root_level(item, btrfs_header_level(node));
112	btrfs_set_root_generation(item, btrfs_header_generation(node));
113}
114
115/*
116 * copy the data in 'item' into the btree
117 */
118int btrfs_update_root(struct btrfs_trans_handle *trans, struct btrfs_root
119		      *root, struct btrfs_key *key, struct btrfs_root_item
120		      *item)
121{
122	struct btrfs_fs_info *fs_info = root->fs_info;
123	struct btrfs_path *path;
124	struct extent_buffer *l;
125	int ret;
126	int slot;
127	unsigned long ptr;
128	u32 old_len;
129
130	path = btrfs_alloc_path();
131	if (!path)
132		return -ENOMEM;
133
134	ret = btrfs_search_slot(trans, root, key, path, 0, 1);
135	if (ret < 0) {
 
 
 
 
 
 
 
 
136		btrfs_abort_transaction(trans, ret);
137		goto out;
138	}
139
140	if (ret != 0) {
141		btrfs_print_leaf(path->nodes[0]);
142		btrfs_crit(fs_info, "unable to update root key %llu %u %llu",
143			   key->objectid, key->type, key->offset);
144		BUG_ON(1);
145	}
146
147	l = path->nodes[0];
148	slot = path->slots[0];
149	ptr = btrfs_item_ptr_offset(l, slot);
150	old_len = btrfs_item_size_nr(l, slot);
151
152	/*
153	 * If this is the first time we update the root item which originated
154	 * from an older kernel, we need to enlarge the item size to make room
155	 * for the added fields.
156	 */
157	if (old_len < sizeof(*item)) {
158		btrfs_release_path(path);
159		ret = btrfs_search_slot(trans, root, key, path,
160				-1, 1);
161		if (ret < 0) {
162			btrfs_abort_transaction(trans, ret);
163			goto out;
164		}
165
166		ret = btrfs_del_item(trans, root, path);
167		if (ret < 0) {
168			btrfs_abort_transaction(trans, ret);
169			goto out;
170		}
171		btrfs_release_path(path);
172		ret = btrfs_insert_empty_item(trans, root, path,
173				key, sizeof(*item));
174		if (ret < 0) {
175			btrfs_abort_transaction(trans, ret);
176			goto out;
177		}
178		l = path->nodes[0];
179		slot = path->slots[0];
180		ptr = btrfs_item_ptr_offset(l, slot);
181	}
182
183	/*
184	 * Update generation_v2 so at the next mount we know the new root
185	 * fields are valid.
186	 */
187	btrfs_set_root_generation_v2(item, btrfs_root_generation(item));
188
189	write_extent_buffer(l, item, ptr, sizeof(*item));
190	btrfs_mark_buffer_dirty(path->nodes[0]);
191out:
192	btrfs_free_path(path);
193	return ret;
194}
195
196int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
197		      const struct btrfs_key *key, struct btrfs_root_item *item)
198{
199	/*
200	 * Make sure generation v1 and v2 match. See update_root for details.
201	 */
202	btrfs_set_root_generation_v2(item, btrfs_root_generation(item));
203	return btrfs_insert_item(trans, root, key, item, sizeof(*item));
204}
205
206int btrfs_find_orphan_roots(struct btrfs_fs_info *fs_info)
207{
208	struct btrfs_root *tree_root = fs_info->tree_root;
209	struct extent_buffer *leaf;
210	struct btrfs_path *path;
211	struct btrfs_key key;
212	struct btrfs_key root_key;
213	struct btrfs_root *root;
214	int err = 0;
215	int ret;
216
217	path = btrfs_alloc_path();
218	if (!path)
219		return -ENOMEM;
220
221	key.objectid = BTRFS_ORPHAN_OBJECTID;
222	key.type = BTRFS_ORPHAN_ITEM_KEY;
223	key.offset = 0;
224
225	root_key.type = BTRFS_ROOT_ITEM_KEY;
226	root_key.offset = (u64)-1;
227
228	while (1) {
229		ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
230		if (ret < 0) {
231			err = ret;
232			break;
233		}
234
235		leaf = path->nodes[0];
236		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
237			ret = btrfs_next_leaf(tree_root, path);
238			if (ret < 0)
239				err = ret;
240			if (ret != 0)
241				break;
242			leaf = path->nodes[0];
243		}
244
245		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
246		btrfs_release_path(path);
247
248		if (key.objectid != BTRFS_ORPHAN_OBJECTID ||
249		    key.type != BTRFS_ORPHAN_ITEM_KEY)
250			break;
251
252		root_key.objectid = key.offset;
253		key.offset++;
254
255		/*
256		 * The root might have been inserted already, as before we look
257		 * for orphan roots, log replay might have happened, which
258		 * triggers a transaction commit and qgroup accounting, which
259		 * in turn reads and inserts fs roots while doing backref
260		 * walking.
261		 */
262		root = btrfs_lookup_fs_root(fs_info, root_key.objectid);
263		if (root) {
264			WARN_ON(!test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
265					  &root->state));
266			if (btrfs_root_refs(&root->root_item) == 0)
267				btrfs_add_dead_root(root);
268			continue;
269		}
270
271		root = btrfs_read_fs_root(tree_root, &root_key);
272		err = PTR_ERR_OR_ZERO(root);
273		if (err && err != -ENOENT) {
274			break;
275		} else if (err == -ENOENT) {
276			struct btrfs_trans_handle *trans;
277
278			btrfs_release_path(path);
279
280			trans = btrfs_join_transaction(tree_root);
281			if (IS_ERR(trans)) {
282				err = PTR_ERR(trans);
283				btrfs_handle_fs_error(fs_info, err,
284					    "Failed to start trans to delete orphan item");
285				break;
286			}
287			err = btrfs_del_orphan_item(trans, tree_root,
288						    root_key.objectid);
289			btrfs_end_transaction(trans);
290			if (err) {
291				btrfs_handle_fs_error(fs_info, err,
292					    "Failed to delete root orphan item");
293				break;
294			}
295			continue;
296		}
297
298		err = btrfs_init_fs_root(root);
299		if (err) {
300			btrfs_free_fs_root(root);
301			break;
302		}
 
 
 
 
 
 
 
 
 
 
 
303
304		set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
305
306		err = btrfs_insert_fs_root(fs_info, root);
307		if (err) {
308			BUG_ON(err == -EEXIST);
309			btrfs_free_fs_root(root);
310			break;
311		}
312
313		if (btrfs_root_refs(&root->root_item) == 0)
314			btrfs_add_dead_root(root);
315	}
316
317	btrfs_free_path(path);
318	return err;
319}
320
321/* drop the root item for 'key' from the tree root */
322int btrfs_del_root(struct btrfs_trans_handle *trans,
323		   struct btrfs_fs_info *fs_info, const struct btrfs_key *key)
324{
325	struct btrfs_root *root = fs_info->tree_root;
326	struct btrfs_path *path;
327	int ret;
328
329	path = btrfs_alloc_path();
330	if (!path)
331		return -ENOMEM;
332	ret = btrfs_search_slot(trans, root, key, path, -1, 1);
333	if (ret < 0)
334		goto out;
335
336	BUG_ON(ret != 0);
337
338	ret = btrfs_del_item(trans, root, path);
339out:
340	btrfs_free_path(path);
341	return ret;
342}
343
344int btrfs_del_root_ref(struct btrfs_trans_handle *trans,
345		       struct btrfs_fs_info *fs_info,
346		       u64 root_id, u64 ref_id, u64 dirid, u64 *sequence,
347		       const char *name, int name_len)
348
349{
350	struct btrfs_root *tree_root = fs_info->tree_root;
351	struct btrfs_path *path;
352	struct btrfs_root_ref *ref;
353	struct extent_buffer *leaf;
354	struct btrfs_key key;
355	unsigned long ptr;
356	int err = 0;
357	int ret;
358
359	path = btrfs_alloc_path();
360	if (!path)
361		return -ENOMEM;
362
363	key.objectid = root_id;
364	key.type = BTRFS_ROOT_BACKREF_KEY;
365	key.offset = ref_id;
366again:
367	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
368	BUG_ON(ret < 0);
369	if (ret == 0) {
 
370		leaf = path->nodes[0];
371		ref = btrfs_item_ptr(leaf, path->slots[0],
372				     struct btrfs_root_ref);
373
374		WARN_ON(btrfs_root_ref_dirid(leaf, ref) != dirid);
375		WARN_ON(btrfs_root_ref_name_len(leaf, ref) != name_len);
376		ptr = (unsigned long)(ref + 1);
377		WARN_ON(memcmp_extent_buffer(leaf, name, ptr, name_len));
 
 
 
 
 
378		*sequence = btrfs_root_ref_sequence(leaf, ref);
379
380		ret = btrfs_del_item(trans, tree_root, path);
381		if (ret) {
382			err = ret;
383			goto out;
384		}
385	} else
386		err = -ENOENT;
 
387
388	if (key.type == BTRFS_ROOT_BACKREF_KEY) {
389		btrfs_release_path(path);
390		key.objectid = ref_id;
391		key.type = BTRFS_ROOT_REF_KEY;
392		key.offset = root_id;
393		goto again;
394	}
395
396out:
397	btrfs_free_path(path);
398	return err;
399}
400
401/*
402 * add a btrfs_root_ref item.  type is either BTRFS_ROOT_REF_KEY
403 * or BTRFS_ROOT_BACKREF_KEY.
404 *
405 * The dirid, sequence, name and name_len refer to the directory entry
406 * that is referencing the root.
407 *
408 * For a forward ref, the root_id is the id of the tree referencing
409 * the root and ref_id is the id of the subvol  or snapshot.
410 *
411 * For a back ref the root_id is the id of the subvol or snapshot and
412 * ref_id is the id of the tree referencing it.
413 *
414 * Will return 0, -ENOMEM, or anything from the CoW path
415 */
416int btrfs_add_root_ref(struct btrfs_trans_handle *trans,
417		       struct btrfs_fs_info *fs_info,
418		       u64 root_id, u64 ref_id, u64 dirid, u64 sequence,
419		       const char *name, int name_len)
420{
421	struct btrfs_root *tree_root = fs_info->tree_root;
422	struct btrfs_key key;
423	int ret;
424	struct btrfs_path *path;
425	struct btrfs_root_ref *ref;
426	struct extent_buffer *leaf;
427	unsigned long ptr;
428
429	path = btrfs_alloc_path();
430	if (!path)
431		return -ENOMEM;
432
433	key.objectid = root_id;
434	key.type = BTRFS_ROOT_BACKREF_KEY;
435	key.offset = ref_id;
436again:
437	ret = btrfs_insert_empty_item(trans, tree_root, path, &key,
438				      sizeof(*ref) + name_len);
439	if (ret) {
440		btrfs_abort_transaction(trans, ret);
441		btrfs_free_path(path);
442		return ret;
443	}
444
445	leaf = path->nodes[0];
446	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
447	btrfs_set_root_ref_dirid(leaf, ref, dirid);
448	btrfs_set_root_ref_sequence(leaf, ref, sequence);
449	btrfs_set_root_ref_name_len(leaf, ref, name_len);
450	ptr = (unsigned long)(ref + 1);
451	write_extent_buffer(leaf, name, ptr, name_len);
452	btrfs_mark_buffer_dirty(leaf);
453
454	if (key.type == BTRFS_ROOT_BACKREF_KEY) {
455		btrfs_release_path(path);
456		key.objectid = ref_id;
457		key.type = BTRFS_ROOT_REF_KEY;
458		key.offset = root_id;
459		goto again;
460	}
461
462	btrfs_free_path(path);
463	return 0;
464}
465
466/*
467 * Old btrfs forgets to init root_item->flags and root_item->byte_limit
468 * for subvolumes. To work around this problem, we steal a bit from
469 * root_item->inode_item->flags, and use it to indicate if those fields
470 * have been properly initialized.
471 */
472void btrfs_check_and_init_root_item(struct btrfs_root_item *root_item)
473{
474	u64 inode_flags = btrfs_stack_inode_flags(&root_item->inode);
475
476	if (!(inode_flags & BTRFS_INODE_ROOT_ITEM_INIT)) {
477		inode_flags |= BTRFS_INODE_ROOT_ITEM_INIT;
478		btrfs_set_stack_inode_flags(&root_item->inode, inode_flags);
479		btrfs_set_root_flags(root_item, 0);
480		btrfs_set_root_limit(root_item, 0);
481	}
482}
483
484void btrfs_update_root_times(struct btrfs_trans_handle *trans,
485			     struct btrfs_root *root)
486{
487	struct btrfs_root_item *item = &root->root_item;
488	struct timespec ct;
489
490	ktime_get_real_ts(&ct);
491	spin_lock(&root->root_item_lock);
492	btrfs_set_root_ctransid(item, trans->transid);
493	btrfs_set_stack_timespec_sec(&item->ctime, ct.tv_sec);
494	btrfs_set_stack_timespec_nsec(&item->ctime, ct.tv_nsec);
495	spin_unlock(&root->root_item_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
496}