Linux Audio

Check our new training course

In-person Linux kernel drivers training

Jun 16-20, 2025
Register
Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (C) 2007 Oracle.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  4 */
  5
  6#include <linux/err.h>
  7#include <linux/uuid.h>
  8#include "ctree.h"
  9#include "fs.h"
 10#include "messages.h"
 11#include "transaction.h"
 12#include "disk-io.h"
 13#include "print-tree.h"
 14#include "qgroup.h"
 15#include "space-info.h"
 16#include "accessors.h"
 17#include "root-tree.h"
 18#include "orphan.h"
 19
 20/*
 21 * Read a root item from the tree. In case we detect a root item smaller then
 22 * sizeof(root_item), we know it's an old version of the root structure and
 23 * initialize all new fields to zero. The same happens if we detect mismatching
 24 * generation numbers as then we know the root was once mounted with an older
 25 * kernel that was not aware of the root item structure change.
 26 */
 27static void btrfs_read_root_item(struct extent_buffer *eb, int slot,
 28				struct btrfs_root_item *item)
 29{
 30	u32 len;
 
 31	int need_reset = 0;
 32
 33	len = btrfs_item_size(eb, slot);
 34	read_extent_buffer(eb, item, btrfs_item_ptr_offset(eb, slot),
 35			   min_t(u32, len, sizeof(*item)));
 36	if (len < sizeof(*item))
 37		need_reset = 1;
 38	if (!need_reset && btrfs_root_generation(item)
 39		!= btrfs_root_generation_v2(item)) {
 40		if (btrfs_root_generation_v2(item) != 0) {
 41			btrfs_warn(eb->fs_info,
 42					"mismatching generation and generation_v2 found in root item. This root was probably mounted with an older kernel. Resetting all new fields.");
 43		}
 44		need_reset = 1;
 45	}
 46	if (need_reset) {
 47		/* Clear all members from generation_v2 onwards. */
 48		memset_startat(item, 0, generation_v2);
 49		generate_random_guid(item->uuid);
 
 
 
 50	}
 51}
 52
 53/*
 54 * btrfs_find_root - lookup the root by the key.
 55 * root: the root of the root tree
 56 * search_key: the key to search
 57 * path: the path we search
 58 * root_item: the root item of the tree we look for
 59 * root_key: the root key of the tree we look for
 60 *
 61 * If ->offset of 'search_key' is -1ULL, it means we are not sure the offset
 62 * of the search key, just lookup the root with the highest offset for a
 63 * given objectid.
 64 *
 65 * If we find something return 0, otherwise > 0, < 0 on error.
 66 */
 67int btrfs_find_root(struct btrfs_root *root, const struct btrfs_key *search_key,
 68		    struct btrfs_path *path, struct btrfs_root_item *root_item,
 69		    struct btrfs_key *root_key)
 70{
 71	struct btrfs_key found_key;
 72	struct extent_buffer *l;
 73	int ret;
 74	int slot;
 75
 76	ret = btrfs_search_slot(NULL, root, search_key, path, 0, 0);
 77	if (ret < 0)
 78		return ret;
 79
 80	if (search_key->offset != -1ULL) {	/* the search key is exact */
 81		if (ret > 0)
 82			goto out;
 83	} else {
 84		BUG_ON(ret == 0);		/* Logical error */
 85		if (path->slots[0] == 0)
 86			goto out;
 87		path->slots[0]--;
 88		ret = 0;
 89	}
 90
 91	l = path->nodes[0];
 92	slot = path->slots[0];
 93
 94	btrfs_item_key_to_cpu(l, &found_key, slot);
 95	if (found_key.objectid != search_key->objectid ||
 96	    found_key.type != BTRFS_ROOT_ITEM_KEY) {
 97		ret = 1;
 98		goto out;
 99	}
100
101	if (root_item)
102		btrfs_read_root_item(l, slot, root_item);
103	if (root_key)
104		memcpy(root_key, &found_key, sizeof(found_key));
105out:
106	btrfs_release_path(path);
107	return ret;
108}
109
110void btrfs_set_root_node(struct btrfs_root_item *item,
111			 struct extent_buffer *node)
112{
113	btrfs_set_root_bytenr(item, node->start);
114	btrfs_set_root_level(item, btrfs_header_level(node));
115	btrfs_set_root_generation(item, btrfs_header_generation(node));
116}
117
118/*
119 * copy the data in 'item' into the btree
120 */
121int btrfs_update_root(struct btrfs_trans_handle *trans, struct btrfs_root
122		      *root, struct btrfs_key *key, struct btrfs_root_item
123		      *item)
124{
125	struct btrfs_fs_info *fs_info = root->fs_info;
126	struct btrfs_path *path;
127	struct extent_buffer *l;
128	int ret;
129	int slot;
130	unsigned long ptr;
131	u32 old_len;
132
133	path = btrfs_alloc_path();
134	if (!path)
135		return -ENOMEM;
136
137	ret = btrfs_search_slot(trans, root, key, path, 0, 1);
138	if (ret < 0)
139		goto out;
140
141	if (ret > 0) {
142		btrfs_crit(fs_info,
143			"unable to find root key (%llu %u %llu) in tree %llu",
144			key->objectid, key->type, key->offset,
145			root->root_key.objectid);
146		ret = -EUCLEAN;
147		btrfs_abort_transaction(trans, ret);
148		goto out;
149	}
150
 
 
 
 
 
 
 
151	l = path->nodes[0];
152	slot = path->slots[0];
153	ptr = btrfs_item_ptr_offset(l, slot);
154	old_len = btrfs_item_size(l, slot);
155
156	/*
157	 * If this is the first time we update the root item which originated
158	 * from an older kernel, we need to enlarge the item size to make room
159	 * for the added fields.
160	 */
161	if (old_len < sizeof(*item)) {
162		btrfs_release_path(path);
163		ret = btrfs_search_slot(trans, root, key, path,
164				-1, 1);
165		if (ret < 0) {
166			btrfs_abort_transaction(trans, ret);
167			goto out;
168		}
169
170		ret = btrfs_del_item(trans, root, path);
171		if (ret < 0) {
172			btrfs_abort_transaction(trans, ret);
173			goto out;
174		}
175		btrfs_release_path(path);
176		ret = btrfs_insert_empty_item(trans, root, path,
177				key, sizeof(*item));
178		if (ret < 0) {
179			btrfs_abort_transaction(trans, ret);
180			goto out;
181		}
182		l = path->nodes[0];
183		slot = path->slots[0];
184		ptr = btrfs_item_ptr_offset(l, slot);
185	}
186
187	/*
188	 * Update generation_v2 so at the next mount we know the new root
189	 * fields are valid.
190	 */
191	btrfs_set_root_generation_v2(item, btrfs_root_generation(item));
192
193	write_extent_buffer(l, item, ptr, sizeof(*item));
194	btrfs_mark_buffer_dirty(path->nodes[0]);
195out:
196	btrfs_free_path(path);
197	return ret;
198}
199
200int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
201		      const struct btrfs_key *key, struct btrfs_root_item *item)
202{
203	/*
204	 * Make sure generation v1 and v2 match. See update_root for details.
205	 */
206	btrfs_set_root_generation_v2(item, btrfs_root_generation(item));
207	return btrfs_insert_item(trans, root, key, item, sizeof(*item));
208}
209
210int btrfs_find_orphan_roots(struct btrfs_fs_info *fs_info)
211{
212	struct btrfs_root *tree_root = fs_info->tree_root;
213	struct extent_buffer *leaf;
214	struct btrfs_path *path;
215	struct btrfs_key key;
 
216	struct btrfs_root *root;
217	int err = 0;
218	int ret;
 
 
 
 
219
220	path = btrfs_alloc_path();
221	if (!path)
222		return -ENOMEM;
223
224	key.objectid = BTRFS_ORPHAN_OBJECTID;
225	key.type = BTRFS_ORPHAN_ITEM_KEY;
226	key.offset = 0;
227
228	while (1) {
229		u64 root_objectid;
230
 
231		ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
232		if (ret < 0) {
233			err = ret;
234			break;
235		}
236
237		leaf = path->nodes[0];
238		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
239			ret = btrfs_next_leaf(tree_root, path);
240			if (ret < 0)
241				err = ret;
242			if (ret != 0)
243				break;
244			leaf = path->nodes[0];
245		}
246
247		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
248		btrfs_release_path(path);
249
250		if (key.objectid != BTRFS_ORPHAN_OBJECTID ||
251		    key.type != BTRFS_ORPHAN_ITEM_KEY)
252			break;
253
254		root_objectid = key.offset;
255		key.offset++;
256
257		root = btrfs_get_fs_root(fs_info, root_objectid, false);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
258		err = PTR_ERR_OR_ZERO(root);
259		if (err && err != -ENOENT) {
260			break;
261		} else if (err == -ENOENT) {
262			struct btrfs_trans_handle *trans;
263
264			btrfs_release_path(path);
265
266			trans = btrfs_join_transaction(tree_root);
267			if (IS_ERR(trans)) {
268				err = PTR_ERR(trans);
269				btrfs_handle_fs_error(fs_info, err,
270					    "Failed to start trans to delete orphan item");
271				break;
272			}
273			err = btrfs_del_orphan_item(trans, tree_root,
274						    root_objectid);
275			btrfs_end_transaction(trans);
276			if (err) {
277				btrfs_handle_fs_error(fs_info, err,
278					    "Failed to delete root orphan item");
279				break;
280			}
281			continue;
282		}
283
284		WARN_ON(!test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state));
285		if (btrfs_root_refs(&root->root_item) == 0) {
286			struct btrfs_key drop_key;
287
288			btrfs_disk_key_to_cpu(&drop_key, &root->root_item.drop_progress);
289			/*
290			 * If we have a non-zero drop_progress then we know we
291			 * made it partly through deleting this snapshot, and
292			 * thus we need to make sure we block any balance from
293			 * happening until this snapshot is completely dropped.
294			 */
295			if (drop_key.objectid != 0 || drop_key.type != 0 ||
296			    drop_key.offset != 0) {
297				set_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags);
298				set_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state);
299			}
300
301			set_bit(BTRFS_ROOT_DEAD_TREE, &root->state);
302			btrfs_add_dead_root(root);
 
 
 
 
 
303		}
304		btrfs_put_root(root);
 
 
305	}
306
307	btrfs_free_path(path);
308	return err;
309}
310
311/* drop the root item for 'key' from the tree root */
312int btrfs_del_root(struct btrfs_trans_handle *trans,
313		   const struct btrfs_key *key)
314{
315	struct btrfs_root *root = trans->fs_info->tree_root;
316	struct btrfs_path *path;
317	int ret;
318
319	path = btrfs_alloc_path();
320	if (!path)
321		return -ENOMEM;
322	ret = btrfs_search_slot(trans, root, key, path, -1, 1);
323	if (ret < 0)
324		goto out;
325
326	BUG_ON(ret != 0);
327
328	ret = btrfs_del_item(trans, root, path);
329out:
330	btrfs_free_path(path);
331	return ret;
332}
333
334int btrfs_del_root_ref(struct btrfs_trans_handle *trans, u64 root_id,
335		       u64 ref_id, u64 dirid, u64 *sequence,
336		       const struct fscrypt_str *name)
 
 
337{
338	struct btrfs_root *tree_root = trans->fs_info->tree_root;
339	struct btrfs_path *path;
340	struct btrfs_root_ref *ref;
341	struct extent_buffer *leaf;
342	struct btrfs_key key;
343	unsigned long ptr;
 
344	int ret;
345
346	path = btrfs_alloc_path();
347	if (!path)
348		return -ENOMEM;
349
350	key.objectid = root_id;
351	key.type = BTRFS_ROOT_BACKREF_KEY;
352	key.offset = ref_id;
353again:
354	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
355	if (ret < 0) {
356		goto out;
357	} else if (ret == 0) {
358		leaf = path->nodes[0];
359		ref = btrfs_item_ptr(leaf, path->slots[0],
360				     struct btrfs_root_ref);
 
 
 
361		ptr = (unsigned long)(ref + 1);
362		if ((btrfs_root_ref_dirid(leaf, ref) != dirid) ||
363		    (btrfs_root_ref_name_len(leaf, ref) != name->len) ||
364		    memcmp_extent_buffer(leaf, name->name, ptr, name->len)) {
365			ret = -ENOENT;
366			goto out;
367		}
368		*sequence = btrfs_root_ref_sequence(leaf, ref);
369
370		ret = btrfs_del_item(trans, tree_root, path);
371		if (ret)
 
372			goto out;
373	} else {
374		ret = -ENOENT;
375		goto out;
376	}
377
378	if (key.type == BTRFS_ROOT_BACKREF_KEY) {
379		btrfs_release_path(path);
380		key.objectid = ref_id;
381		key.type = BTRFS_ROOT_REF_KEY;
382		key.offset = root_id;
383		goto again;
384	}
385
386out:
387	btrfs_free_path(path);
388	return ret;
389}
390
391/*
392 * add a btrfs_root_ref item.  type is either BTRFS_ROOT_REF_KEY
393 * or BTRFS_ROOT_BACKREF_KEY.
394 *
395 * The dirid, sequence, name and name_len refer to the directory entry
396 * that is referencing the root.
397 *
398 * For a forward ref, the root_id is the id of the tree referencing
399 * the root and ref_id is the id of the subvol  or snapshot.
400 *
401 * For a back ref the root_id is the id of the subvol or snapshot and
402 * ref_id is the id of the tree referencing it.
403 *
404 * Will return 0, -ENOMEM, or anything from the CoW path
405 */
406int btrfs_add_root_ref(struct btrfs_trans_handle *trans, u64 root_id,
407		       u64 ref_id, u64 dirid, u64 sequence,
408		       const struct fscrypt_str *name)
 
409{
410	struct btrfs_root *tree_root = trans->fs_info->tree_root;
411	struct btrfs_key key;
412	int ret;
413	struct btrfs_path *path;
414	struct btrfs_root_ref *ref;
415	struct extent_buffer *leaf;
416	unsigned long ptr;
417
418	path = btrfs_alloc_path();
419	if (!path)
420		return -ENOMEM;
421
422	key.objectid = root_id;
423	key.type = BTRFS_ROOT_BACKREF_KEY;
424	key.offset = ref_id;
425again:
426	ret = btrfs_insert_empty_item(trans, tree_root, path, &key,
427				      sizeof(*ref) + name->len);
428	if (ret) {
429		btrfs_abort_transaction(trans, ret);
430		btrfs_free_path(path);
431		return ret;
432	}
433
434	leaf = path->nodes[0];
435	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
436	btrfs_set_root_ref_dirid(leaf, ref, dirid);
437	btrfs_set_root_ref_sequence(leaf, ref, sequence);
438	btrfs_set_root_ref_name_len(leaf, ref, name->len);
439	ptr = (unsigned long)(ref + 1);
440	write_extent_buffer(leaf, name->name, ptr, name->len);
441	btrfs_mark_buffer_dirty(leaf);
442
443	if (key.type == BTRFS_ROOT_BACKREF_KEY) {
444		btrfs_release_path(path);
445		key.objectid = ref_id;
446		key.type = BTRFS_ROOT_REF_KEY;
447		key.offset = root_id;
448		goto again;
449	}
450
451	btrfs_free_path(path);
452	return 0;
453}
454
455/*
456 * Old btrfs forgets to init root_item->flags and root_item->byte_limit
457 * for subvolumes. To work around this problem, we steal a bit from
458 * root_item->inode_item->flags, and use it to indicate if those fields
459 * have been properly initialized.
460 */
461void btrfs_check_and_init_root_item(struct btrfs_root_item *root_item)
462{
463	u64 inode_flags = btrfs_stack_inode_flags(&root_item->inode);
464
465	if (!(inode_flags & BTRFS_INODE_ROOT_ITEM_INIT)) {
466		inode_flags |= BTRFS_INODE_ROOT_ITEM_INIT;
467		btrfs_set_stack_inode_flags(&root_item->inode, inode_flags);
468		btrfs_set_root_flags(root_item, 0);
469		btrfs_set_root_limit(root_item, 0);
470	}
471}
472
473void btrfs_update_root_times(struct btrfs_trans_handle *trans,
474			     struct btrfs_root *root)
475{
476	struct btrfs_root_item *item = &root->root_item;
477	struct timespec64 ct;
478
479	ktime_get_real_ts64(&ct);
480	spin_lock(&root->root_item_lock);
481	btrfs_set_root_ctransid(item, trans->transid);
482	btrfs_set_stack_timespec_sec(&item->ctime, ct.tv_sec);
483	btrfs_set_stack_timespec_nsec(&item->ctime, ct.tv_nsec);
484	spin_unlock(&root->root_item_lock);
485}
486
487/*
488 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
489 * root: the root of the parent directory
490 * rsv: block reservation
491 * items: the number of items that we need do reservation
492 * use_global_rsv: allow fallback to the global block reservation
493 *
494 * This function is used to reserve the space for snapshot/subvolume
495 * creation and deletion. Those operations are different with the
496 * common file/directory operations, they change two fs/file trees
497 * and root tree, the number of items that the qgroup reserves is
498 * different with the free space reservation. So we can not use
499 * the space reservation mechanism in start_transaction().
500 */
501int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
502				     struct btrfs_block_rsv *rsv, int items,
503				     bool use_global_rsv)
504{
505	u64 qgroup_num_bytes = 0;
506	u64 num_bytes;
507	int ret;
508	struct btrfs_fs_info *fs_info = root->fs_info;
509	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
510
511	if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
512		/* One for parent inode, two for dir entries */
513		qgroup_num_bytes = 3 * fs_info->nodesize;
514		ret = btrfs_qgroup_reserve_meta_prealloc(root,
515							 qgroup_num_bytes, true,
516							 false);
517		if (ret)
518			return ret;
519	}
520
521	num_bytes = btrfs_calc_insert_metadata_size(fs_info, items);
522	rsv->space_info = btrfs_find_space_info(fs_info,
523					    BTRFS_BLOCK_GROUP_METADATA);
524	ret = btrfs_block_rsv_add(fs_info, rsv, num_bytes,
525				  BTRFS_RESERVE_FLUSH_ALL);
526
527	if (ret == -ENOSPC && use_global_rsv)
528		ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, true);
529
530	if (ret && qgroup_num_bytes)
531		btrfs_qgroup_free_meta_prealloc(root, qgroup_num_bytes);
532
533	if (!ret) {
534		spin_lock(&rsv->lock);
535		rsv->qgroup_rsv_reserved += qgroup_num_bytes;
536		spin_unlock(&rsv->lock);
537	}
538	return ret;
539}
540
541void btrfs_subvolume_release_metadata(struct btrfs_root *root,
542				      struct btrfs_block_rsv *rsv)
543{
544	struct btrfs_fs_info *fs_info = root->fs_info;
545	u64 qgroup_to_release;
546
547	btrfs_block_rsv_release(fs_info, rsv, (u64)-1, &qgroup_to_release);
548	btrfs_qgroup_convert_reserved_meta(root, qgroup_to_release);
549}
v4.10.11
 
  1/*
  2 * Copyright (C) 2007 Oracle.  All rights reserved.
  3 *
  4 * This program is free software; you can redistribute it and/or
  5 * modify it under the terms of the GNU General Public
  6 * License v2 as published by the Free Software Foundation.
  7 *
  8 * This program is distributed in the hope that it will be useful,
  9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 11 * General Public License for more details.
 12 *
 13 * You should have received a copy of the GNU General Public
 14 * License along with this program; if not, write to the
 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 16 * Boston, MA 021110-1307, USA.
 17 */
 18
 19#include <linux/err.h>
 20#include <linux/uuid.h>
 21#include "ctree.h"
 
 
 22#include "transaction.h"
 23#include "disk-io.h"
 24#include "print-tree.h"
 
 
 
 
 
 25
 26/*
 27 * Read a root item from the tree. In case we detect a root item smaller then
 28 * sizeof(root_item), we know it's an old version of the root structure and
 29 * initialize all new fields to zero. The same happens if we detect mismatching
 30 * generation numbers as then we know the root was once mounted with an older
 31 * kernel that was not aware of the root item structure change.
 32 */
 33static void btrfs_read_root_item(struct extent_buffer *eb, int slot,
 34				struct btrfs_root_item *item)
 35{
 36	uuid_le uuid;
 37	int len;
 38	int need_reset = 0;
 39
 40	len = btrfs_item_size_nr(eb, slot);
 41	read_extent_buffer(eb, item, btrfs_item_ptr_offset(eb, slot),
 42			min_t(int, len, (int)sizeof(*item)));
 43	if (len < sizeof(*item))
 44		need_reset = 1;
 45	if (!need_reset && btrfs_root_generation(item)
 46		!= btrfs_root_generation_v2(item)) {
 47		if (btrfs_root_generation_v2(item) != 0) {
 48			btrfs_warn(eb->fs_info,
 49					"mismatching generation and generation_v2 found in root item. This root was probably mounted with an older kernel. Resetting all new fields.");
 50		}
 51		need_reset = 1;
 52	}
 53	if (need_reset) {
 54		memset(&item->generation_v2, 0,
 55			sizeof(*item) - offsetof(struct btrfs_root_item,
 56					generation_v2));
 57
 58		uuid_le_gen(&uuid);
 59		memcpy(item->uuid, uuid.b, BTRFS_UUID_SIZE);
 60	}
 61}
 62
 63/*
 64 * btrfs_find_root - lookup the root by the key.
 65 * root: the root of the root tree
 66 * search_key: the key to search
 67 * path: the path we search
 68 * root_item: the root item of the tree we look for
 69 * root_key: the root key of the tree we look for
 70 *
 71 * If ->offset of 'search_key' is -1ULL, it means we are not sure the offset
 72 * of the search key, just lookup the root with the highest offset for a
 73 * given objectid.
 74 *
 75 * If we find something return 0, otherwise > 0, < 0 on error.
 76 */
 77int btrfs_find_root(struct btrfs_root *root, struct btrfs_key *search_key,
 78		    struct btrfs_path *path, struct btrfs_root_item *root_item,
 79		    struct btrfs_key *root_key)
 80{
 81	struct btrfs_key found_key;
 82	struct extent_buffer *l;
 83	int ret;
 84	int slot;
 85
 86	ret = btrfs_search_slot(NULL, root, search_key, path, 0, 0);
 87	if (ret < 0)
 88		return ret;
 89
 90	if (search_key->offset != -1ULL) {	/* the search key is exact */
 91		if (ret > 0)
 92			goto out;
 93	} else {
 94		BUG_ON(ret == 0);		/* Logical error */
 95		if (path->slots[0] == 0)
 96			goto out;
 97		path->slots[0]--;
 98		ret = 0;
 99	}
100
101	l = path->nodes[0];
102	slot = path->slots[0];
103
104	btrfs_item_key_to_cpu(l, &found_key, slot);
105	if (found_key.objectid != search_key->objectid ||
106	    found_key.type != BTRFS_ROOT_ITEM_KEY) {
107		ret = 1;
108		goto out;
109	}
110
111	if (root_item)
112		btrfs_read_root_item(l, slot, root_item);
113	if (root_key)
114		memcpy(root_key, &found_key, sizeof(found_key));
115out:
116	btrfs_release_path(path);
117	return ret;
118}
119
120void btrfs_set_root_node(struct btrfs_root_item *item,
121			 struct extent_buffer *node)
122{
123	btrfs_set_root_bytenr(item, node->start);
124	btrfs_set_root_level(item, btrfs_header_level(node));
125	btrfs_set_root_generation(item, btrfs_header_generation(node));
126}
127
128/*
129 * copy the data in 'item' into the btree
130 */
131int btrfs_update_root(struct btrfs_trans_handle *trans, struct btrfs_root
132		      *root, struct btrfs_key *key, struct btrfs_root_item
133		      *item)
134{
135	struct btrfs_fs_info *fs_info = root->fs_info;
136	struct btrfs_path *path;
137	struct extent_buffer *l;
138	int ret;
139	int slot;
140	unsigned long ptr;
141	u32 old_len;
142
143	path = btrfs_alloc_path();
144	if (!path)
145		return -ENOMEM;
146
147	ret = btrfs_search_slot(trans, root, key, path, 0, 1);
148	if (ret < 0) {
 
 
 
 
 
 
 
 
149		btrfs_abort_transaction(trans, ret);
150		goto out;
151	}
152
153	if (ret != 0) {
154		btrfs_print_leaf(fs_info, path->nodes[0]);
155		btrfs_crit(fs_info, "unable to update root key %llu %u %llu",
156			   key->objectid, key->type, key->offset);
157		BUG_ON(1);
158	}
159
160	l = path->nodes[0];
161	slot = path->slots[0];
162	ptr = btrfs_item_ptr_offset(l, slot);
163	old_len = btrfs_item_size_nr(l, slot);
164
165	/*
166	 * If this is the first time we update the root item which originated
167	 * from an older kernel, we need to enlarge the item size to make room
168	 * for the added fields.
169	 */
170	if (old_len < sizeof(*item)) {
171		btrfs_release_path(path);
172		ret = btrfs_search_slot(trans, root, key, path,
173				-1, 1);
174		if (ret < 0) {
175			btrfs_abort_transaction(trans, ret);
176			goto out;
177		}
178
179		ret = btrfs_del_item(trans, root, path);
180		if (ret < 0) {
181			btrfs_abort_transaction(trans, ret);
182			goto out;
183		}
184		btrfs_release_path(path);
185		ret = btrfs_insert_empty_item(trans, root, path,
186				key, sizeof(*item));
187		if (ret < 0) {
188			btrfs_abort_transaction(trans, ret);
189			goto out;
190		}
191		l = path->nodes[0];
192		slot = path->slots[0];
193		ptr = btrfs_item_ptr_offset(l, slot);
194	}
195
196	/*
197	 * Update generation_v2 so at the next mount we know the new root
198	 * fields are valid.
199	 */
200	btrfs_set_root_generation_v2(item, btrfs_root_generation(item));
201
202	write_extent_buffer(l, item, ptr, sizeof(*item));
203	btrfs_mark_buffer_dirty(path->nodes[0]);
204out:
205	btrfs_free_path(path);
206	return ret;
207}
208
209int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
210		      struct btrfs_key *key, struct btrfs_root_item *item)
211{
212	/*
213	 * Make sure generation v1 and v2 match. See update_root for details.
214	 */
215	btrfs_set_root_generation_v2(item, btrfs_root_generation(item));
216	return btrfs_insert_item(trans, root, key, item, sizeof(*item));
217}
218
219int btrfs_find_orphan_roots(struct btrfs_fs_info *fs_info)
220{
221	struct btrfs_root *tree_root = fs_info->tree_root;
222	struct extent_buffer *leaf;
223	struct btrfs_path *path;
224	struct btrfs_key key;
225	struct btrfs_key root_key;
226	struct btrfs_root *root;
227	int err = 0;
228	int ret;
229	bool can_recover = true;
230
231	if (fs_info->sb->s_flags & MS_RDONLY)
232		can_recover = false;
233
234	path = btrfs_alloc_path();
235	if (!path)
236		return -ENOMEM;
237
238	key.objectid = BTRFS_ORPHAN_OBJECTID;
239	key.type = BTRFS_ORPHAN_ITEM_KEY;
240	key.offset = 0;
241
242	root_key.type = BTRFS_ROOT_ITEM_KEY;
243	root_key.offset = (u64)-1;
244
245	while (1) {
246		ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
247		if (ret < 0) {
248			err = ret;
249			break;
250		}
251
252		leaf = path->nodes[0];
253		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
254			ret = btrfs_next_leaf(tree_root, path);
255			if (ret < 0)
256				err = ret;
257			if (ret != 0)
258				break;
259			leaf = path->nodes[0];
260		}
261
262		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
263		btrfs_release_path(path);
264
265		if (key.objectid != BTRFS_ORPHAN_OBJECTID ||
266		    key.type != BTRFS_ORPHAN_ITEM_KEY)
267			break;
268
269		root_key.objectid = key.offset;
270		key.offset++;
271
272		/*
273		 * The root might have been inserted already, as before we look
274		 * for orphan roots, log replay might have happened, which
275		 * triggers a transaction commit and qgroup accounting, which
276		 * in turn reads and inserts fs roots while doing backref
277		 * walking.
278		 */
279		root = btrfs_lookup_fs_root(fs_info, root_key.objectid);
280		if (root) {
281			WARN_ON(!test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
282					  &root->state));
283			if (btrfs_root_refs(&root->root_item) == 0)
284				btrfs_add_dead_root(root);
285			continue;
286		}
287
288		root = btrfs_read_fs_root(tree_root, &root_key);
289		err = PTR_ERR_OR_ZERO(root);
290		if (err && err != -ENOENT) {
291			break;
292		} else if (err == -ENOENT) {
293			struct btrfs_trans_handle *trans;
294
295			btrfs_release_path(path);
296
297			trans = btrfs_join_transaction(tree_root);
298			if (IS_ERR(trans)) {
299				err = PTR_ERR(trans);
300				btrfs_handle_fs_error(fs_info, err,
301					    "Failed to start trans to delete orphan item");
302				break;
303			}
304			err = btrfs_del_orphan_item(trans, tree_root,
305						    root_key.objectid);
306			btrfs_end_transaction(trans);
307			if (err) {
308				btrfs_handle_fs_error(fs_info, err,
309					    "Failed to delete root orphan item");
310				break;
311			}
312			continue;
313		}
314
315		err = btrfs_init_fs_root(root);
316		if (err) {
317			btrfs_free_fs_root(root);
318			break;
319		}
 
 
 
 
 
 
 
 
 
 
 
320
321		set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
322
323		err = btrfs_insert_fs_root(fs_info, root);
324		if (err) {
325			BUG_ON(err == -EEXIST);
326			btrfs_free_fs_root(root);
327			break;
328		}
329
330		if (btrfs_root_refs(&root->root_item) == 0)
331			btrfs_add_dead_root(root);
332	}
333
334	btrfs_free_path(path);
335	return err;
336}
337
338/* drop the root item for 'key' from 'root' */
339int btrfs_del_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
340		   struct btrfs_key *key)
341{
 
342	struct btrfs_path *path;
343	int ret;
344
345	path = btrfs_alloc_path();
346	if (!path)
347		return -ENOMEM;
348	ret = btrfs_search_slot(trans, root, key, path, -1, 1);
349	if (ret < 0)
350		goto out;
351
352	BUG_ON(ret != 0);
353
354	ret = btrfs_del_item(trans, root, path);
355out:
356	btrfs_free_path(path);
357	return ret;
358}
359
360int btrfs_del_root_ref(struct btrfs_trans_handle *trans,
361		       struct btrfs_fs_info *fs_info,
362		       u64 root_id, u64 ref_id, u64 dirid, u64 *sequence,
363		       const char *name, int name_len)
364
365{
366	struct btrfs_root *tree_root = fs_info->tree_root;
367	struct btrfs_path *path;
368	struct btrfs_root_ref *ref;
369	struct extent_buffer *leaf;
370	struct btrfs_key key;
371	unsigned long ptr;
372	int err = 0;
373	int ret;
374
375	path = btrfs_alloc_path();
376	if (!path)
377		return -ENOMEM;
378
379	key.objectid = root_id;
380	key.type = BTRFS_ROOT_BACKREF_KEY;
381	key.offset = ref_id;
382again:
383	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
384	BUG_ON(ret < 0);
385	if (ret == 0) {
 
386		leaf = path->nodes[0];
387		ref = btrfs_item_ptr(leaf, path->slots[0],
388				     struct btrfs_root_ref);
389
390		WARN_ON(btrfs_root_ref_dirid(leaf, ref) != dirid);
391		WARN_ON(btrfs_root_ref_name_len(leaf, ref) != name_len);
392		ptr = (unsigned long)(ref + 1);
393		WARN_ON(memcmp_extent_buffer(leaf, name, ptr, name_len));
 
 
 
 
 
394		*sequence = btrfs_root_ref_sequence(leaf, ref);
395
396		ret = btrfs_del_item(trans, tree_root, path);
397		if (ret) {
398			err = ret;
399			goto out;
400		}
401	} else
402		err = -ENOENT;
 
403
404	if (key.type == BTRFS_ROOT_BACKREF_KEY) {
405		btrfs_release_path(path);
406		key.objectid = ref_id;
407		key.type = BTRFS_ROOT_REF_KEY;
408		key.offset = root_id;
409		goto again;
410	}
411
412out:
413	btrfs_free_path(path);
414	return err;
415}
416
417/*
418 * add a btrfs_root_ref item.  type is either BTRFS_ROOT_REF_KEY
419 * or BTRFS_ROOT_BACKREF_KEY.
420 *
421 * The dirid, sequence, name and name_len refer to the directory entry
422 * that is referencing the root.
423 *
424 * For a forward ref, the root_id is the id of the tree referencing
425 * the root and ref_id is the id of the subvol  or snapshot.
426 *
427 * For a back ref the root_id is the id of the subvol or snapshot and
428 * ref_id is the id of the tree referencing it.
429 *
430 * Will return 0, -ENOMEM, or anything from the CoW path
431 */
432int btrfs_add_root_ref(struct btrfs_trans_handle *trans,
433		       struct btrfs_fs_info *fs_info,
434		       u64 root_id, u64 ref_id, u64 dirid, u64 sequence,
435		       const char *name, int name_len)
436{
437	struct btrfs_root *tree_root = fs_info->tree_root;
438	struct btrfs_key key;
439	int ret;
440	struct btrfs_path *path;
441	struct btrfs_root_ref *ref;
442	struct extent_buffer *leaf;
443	unsigned long ptr;
444
445	path = btrfs_alloc_path();
446	if (!path)
447		return -ENOMEM;
448
449	key.objectid = root_id;
450	key.type = BTRFS_ROOT_BACKREF_KEY;
451	key.offset = ref_id;
452again:
453	ret = btrfs_insert_empty_item(trans, tree_root, path, &key,
454				      sizeof(*ref) + name_len);
455	if (ret) {
456		btrfs_abort_transaction(trans, ret);
457		btrfs_free_path(path);
458		return ret;
459	}
460
461	leaf = path->nodes[0];
462	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
463	btrfs_set_root_ref_dirid(leaf, ref, dirid);
464	btrfs_set_root_ref_sequence(leaf, ref, sequence);
465	btrfs_set_root_ref_name_len(leaf, ref, name_len);
466	ptr = (unsigned long)(ref + 1);
467	write_extent_buffer(leaf, name, ptr, name_len);
468	btrfs_mark_buffer_dirty(leaf);
469
470	if (key.type == BTRFS_ROOT_BACKREF_KEY) {
471		btrfs_release_path(path);
472		key.objectid = ref_id;
473		key.type = BTRFS_ROOT_REF_KEY;
474		key.offset = root_id;
475		goto again;
476	}
477
478	btrfs_free_path(path);
479	return 0;
480}
481
482/*
483 * Old btrfs forgets to init root_item->flags and root_item->byte_limit
484 * for subvolumes. To work around this problem, we steal a bit from
485 * root_item->inode_item->flags, and use it to indicate if those fields
486 * have been properly initialized.
487 */
488void btrfs_check_and_init_root_item(struct btrfs_root_item *root_item)
489{
490	u64 inode_flags = btrfs_stack_inode_flags(&root_item->inode);
491
492	if (!(inode_flags & BTRFS_INODE_ROOT_ITEM_INIT)) {
493		inode_flags |= BTRFS_INODE_ROOT_ITEM_INIT;
494		btrfs_set_stack_inode_flags(&root_item->inode, inode_flags);
495		btrfs_set_root_flags(root_item, 0);
496		btrfs_set_root_limit(root_item, 0);
497	}
498}
499
500void btrfs_update_root_times(struct btrfs_trans_handle *trans,
501			     struct btrfs_root *root)
502{
503	struct btrfs_root_item *item = &root->root_item;
504	struct timespec ct = current_fs_time(root->fs_info->sb);
505
 
506	spin_lock(&root->root_item_lock);
507	btrfs_set_root_ctransid(item, trans->transid);
508	btrfs_set_stack_timespec_sec(&item->ctime, ct.tv_sec);
509	btrfs_set_stack_timespec_nsec(&item->ctime, ct.tv_nsec);
510	spin_unlock(&root->root_item_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
511}