Linux Audio

Check our new training course

Real-Time Linux with PREEMPT_RT training

Feb 18-20, 2025
Register
Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (C) 2007 Oracle.  All rights reserved.
  4 */
  5
  6#include <linux/err.h>
  7#include <linux/uuid.h>
  8#include "ctree.h"
  9#include "fs.h"
 10#include "messages.h"
 11#include "transaction.h"
 12#include "disk-io.h"
 13#include "print-tree.h"
 14#include "qgroup.h"
 15#include "space-info.h"
 16#include "accessors.h"
 17#include "root-tree.h"
 18#include "orphan.h"
 19
 20/*
 21 * Read a root item from the tree. In case we detect a root item smaller then
 22 * sizeof(root_item), we know it's an old version of the root structure and
 23 * initialize all new fields to zero. The same happens if we detect mismatching
 24 * generation numbers as then we know the root was once mounted with an older
 25 * kernel that was not aware of the root item structure change.
 26 */
 27static void btrfs_read_root_item(struct extent_buffer *eb, int slot,
 28				struct btrfs_root_item *item)
 29{
 
 30	u32 len;
 31	int need_reset = 0;
 32
 33	len = btrfs_item_size(eb, slot);
 34	read_extent_buffer(eb, item, btrfs_item_ptr_offset(eb, slot),
 35			   min_t(u32, len, sizeof(*item)));
 36	if (len < sizeof(*item))
 37		need_reset = 1;
 38	if (!need_reset && btrfs_root_generation(item)
 39		!= btrfs_root_generation_v2(item)) {
 40		if (btrfs_root_generation_v2(item) != 0) {
 41			btrfs_warn(eb->fs_info,
 42					"mismatching generation and generation_v2 found in root item. This root was probably mounted with an older kernel. Resetting all new fields.");
 43		}
 44		need_reset = 1;
 45	}
 46	if (need_reset) {
 47		/* Clear all members from generation_v2 onwards. */
 48		memset_startat(item, 0, generation_v2);
 49		generate_random_guid(item->uuid);
 
 
 
 50	}
 51}
 52
 53/*
 54 * btrfs_find_root - lookup the root by the key.
 55 * root: the root of the root tree
 56 * search_key: the key to search
 57 * path: the path we search
 58 * root_item: the root item of the tree we look for
 59 * root_key: the root key of the tree we look for
 60 *
 61 * If ->offset of 'search_key' is -1ULL, it means we are not sure the offset
 62 * of the search key, just lookup the root with the highest offset for a
 63 * given objectid.
 64 *
 65 * If we find something return 0, otherwise > 0, < 0 on error.
 66 */
 67int btrfs_find_root(struct btrfs_root *root, const struct btrfs_key *search_key,
 68		    struct btrfs_path *path, struct btrfs_root_item *root_item,
 69		    struct btrfs_key *root_key)
 70{
 71	struct btrfs_key found_key;
 72	struct extent_buffer *l;
 73	int ret;
 74	int slot;
 75
 76	ret = btrfs_search_slot(NULL, root, search_key, path, 0, 0);
 77	if (ret < 0)
 78		return ret;
 79
 80	if (search_key->offset != -1ULL) {	/* the search key is exact */
 81		if (ret > 0)
 82			goto out;
 83	} else {
 84		BUG_ON(ret == 0);		/* Logical error */
 85		if (path->slots[0] == 0)
 86			goto out;
 87		path->slots[0]--;
 88		ret = 0;
 89	}
 90
 91	l = path->nodes[0];
 92	slot = path->slots[0];
 93
 94	btrfs_item_key_to_cpu(l, &found_key, slot);
 95	if (found_key.objectid != search_key->objectid ||
 96	    found_key.type != BTRFS_ROOT_ITEM_KEY) {
 97		ret = 1;
 98		goto out;
 99	}
100
101	if (root_item)
102		btrfs_read_root_item(l, slot, root_item);
103	if (root_key)
104		memcpy(root_key, &found_key, sizeof(found_key));
105out:
106	btrfs_release_path(path);
107	return ret;
108}
109
110void btrfs_set_root_node(struct btrfs_root_item *item,
111			 struct extent_buffer *node)
112{
113	btrfs_set_root_bytenr(item, node->start);
114	btrfs_set_root_level(item, btrfs_header_level(node));
115	btrfs_set_root_generation(item, btrfs_header_generation(node));
116}
117
118/*
119 * copy the data in 'item' into the btree
120 */
121int btrfs_update_root(struct btrfs_trans_handle *trans, struct btrfs_root
122		      *root, struct btrfs_key *key, struct btrfs_root_item
123		      *item)
124{
125	struct btrfs_fs_info *fs_info = root->fs_info;
126	struct btrfs_path *path;
127	struct extent_buffer *l;
128	int ret;
129	int slot;
130	unsigned long ptr;
131	u32 old_len;
132
133	path = btrfs_alloc_path();
134	if (!path)
135		return -ENOMEM;
136
137	ret = btrfs_search_slot(trans, root, key, path, 0, 1);
138	if (ret < 0)
139		goto out;
140
141	if (ret > 0) {
142		btrfs_crit(fs_info,
143			"unable to find root key (%llu %u %llu) in tree %llu",
144			key->objectid, key->type, key->offset,
145			root->root_key.objectid);
146		ret = -EUCLEAN;
147		btrfs_abort_transaction(trans, ret);
148		goto out;
149	}
150
151	l = path->nodes[0];
152	slot = path->slots[0];
153	ptr = btrfs_item_ptr_offset(l, slot);
154	old_len = btrfs_item_size(l, slot);
155
156	/*
157	 * If this is the first time we update the root item which originated
158	 * from an older kernel, we need to enlarge the item size to make room
159	 * for the added fields.
160	 */
161	if (old_len < sizeof(*item)) {
162		btrfs_release_path(path);
163		ret = btrfs_search_slot(trans, root, key, path,
164				-1, 1);
165		if (ret < 0) {
166			btrfs_abort_transaction(trans, ret);
167			goto out;
168		}
169
170		ret = btrfs_del_item(trans, root, path);
171		if (ret < 0) {
172			btrfs_abort_transaction(trans, ret);
173			goto out;
174		}
175		btrfs_release_path(path);
176		ret = btrfs_insert_empty_item(trans, root, path,
177				key, sizeof(*item));
178		if (ret < 0) {
179			btrfs_abort_transaction(trans, ret);
180			goto out;
181		}
182		l = path->nodes[0];
183		slot = path->slots[0];
184		ptr = btrfs_item_ptr_offset(l, slot);
185	}
186
187	/*
188	 * Update generation_v2 so at the next mount we know the new root
189	 * fields are valid.
190	 */
191	btrfs_set_root_generation_v2(item, btrfs_root_generation(item));
192
193	write_extent_buffer(l, item, ptr, sizeof(*item));
194	btrfs_mark_buffer_dirty(path->nodes[0]);
195out:
196	btrfs_free_path(path);
197	return ret;
198}
199
200int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
201		      const struct btrfs_key *key, struct btrfs_root_item *item)
202{
203	/*
204	 * Make sure generation v1 and v2 match. See update_root for details.
205	 */
206	btrfs_set_root_generation_v2(item, btrfs_root_generation(item));
207	return btrfs_insert_item(trans, root, key, item, sizeof(*item));
208}
209
210int btrfs_find_orphan_roots(struct btrfs_fs_info *fs_info)
211{
212	struct btrfs_root *tree_root = fs_info->tree_root;
213	struct extent_buffer *leaf;
214	struct btrfs_path *path;
215	struct btrfs_key key;
 
216	struct btrfs_root *root;
217	int err = 0;
218	int ret;
219
220	path = btrfs_alloc_path();
221	if (!path)
222		return -ENOMEM;
223
224	key.objectid = BTRFS_ORPHAN_OBJECTID;
225	key.type = BTRFS_ORPHAN_ITEM_KEY;
226	key.offset = 0;
227
228	while (1) {
229		u64 root_objectid;
230
 
231		ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
232		if (ret < 0) {
233			err = ret;
234			break;
235		}
236
237		leaf = path->nodes[0];
238		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
239			ret = btrfs_next_leaf(tree_root, path);
240			if (ret < 0)
241				err = ret;
242			if (ret != 0)
243				break;
244			leaf = path->nodes[0];
245		}
246
247		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
248		btrfs_release_path(path);
249
250		if (key.objectid != BTRFS_ORPHAN_OBJECTID ||
251		    key.type != BTRFS_ORPHAN_ITEM_KEY)
252			break;
253
254		root_objectid = key.offset;
255		key.offset++;
256
257		root = btrfs_get_fs_root(fs_info, root_objectid, false);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
258		err = PTR_ERR_OR_ZERO(root);
259		if (err && err != -ENOENT) {
260			break;
261		} else if (err == -ENOENT) {
262			struct btrfs_trans_handle *trans;
263
264			btrfs_release_path(path);
265
266			trans = btrfs_join_transaction(tree_root);
267			if (IS_ERR(trans)) {
268				err = PTR_ERR(trans);
269				btrfs_handle_fs_error(fs_info, err,
270					    "Failed to start trans to delete orphan item");
271				break;
272			}
273			err = btrfs_del_orphan_item(trans, tree_root,
274						    root_objectid);
275			btrfs_end_transaction(trans);
276			if (err) {
277				btrfs_handle_fs_error(fs_info, err,
278					    "Failed to delete root orphan item");
279				break;
280			}
281			continue;
282		}
283
284		WARN_ON(!test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state));
285		if (btrfs_root_refs(&root->root_item) == 0) {
286			struct btrfs_key drop_key;
 
 
287
288			btrfs_disk_key_to_cpu(&drop_key, &root->root_item.drop_progress);
289			/*
290			 * If we have a non-zero drop_progress then we know we
291			 * made it partly through deleting this snapshot, and
292			 * thus we need to make sure we block any balance from
293			 * happening until this snapshot is completely dropped.
294			 */
295			if (drop_key.objectid != 0 || drop_key.type != 0 ||
296			    drop_key.offset != 0) {
297				set_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags);
298				set_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state);
299			}
300
 
301			set_bit(BTRFS_ROOT_DEAD_TREE, &root->state);
302			btrfs_add_dead_root(root);
303		}
304		btrfs_put_root(root);
305	}
306
307	btrfs_free_path(path);
308	return err;
309}
310
311/* drop the root item for 'key' from the tree root */
312int btrfs_del_root(struct btrfs_trans_handle *trans,
313		   const struct btrfs_key *key)
314{
315	struct btrfs_root *root = trans->fs_info->tree_root;
316	struct btrfs_path *path;
317	int ret;
318
319	path = btrfs_alloc_path();
320	if (!path)
321		return -ENOMEM;
322	ret = btrfs_search_slot(trans, root, key, path, -1, 1);
323	if (ret < 0)
324		goto out;
325
326	BUG_ON(ret != 0);
327
328	ret = btrfs_del_item(trans, root, path);
329out:
330	btrfs_free_path(path);
331	return ret;
332}
333
334int btrfs_del_root_ref(struct btrfs_trans_handle *trans, u64 root_id,
335		       u64 ref_id, u64 dirid, u64 *sequence,
336		       const struct fscrypt_str *name)
 
337{
338	struct btrfs_root *tree_root = trans->fs_info->tree_root;
339	struct btrfs_path *path;
340	struct btrfs_root_ref *ref;
341	struct extent_buffer *leaf;
342	struct btrfs_key key;
343	unsigned long ptr;
 
344	int ret;
345
346	path = btrfs_alloc_path();
347	if (!path)
348		return -ENOMEM;
349
350	key.objectid = root_id;
351	key.type = BTRFS_ROOT_BACKREF_KEY;
352	key.offset = ref_id;
353again:
354	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
355	if (ret < 0) {
356		goto out;
357	} else if (ret == 0) {
358		leaf = path->nodes[0];
359		ref = btrfs_item_ptr(leaf, path->slots[0],
360				     struct btrfs_root_ref);
 
 
 
361		ptr = (unsigned long)(ref + 1);
362		if ((btrfs_root_ref_dirid(leaf, ref) != dirid) ||
363		    (btrfs_root_ref_name_len(leaf, ref) != name->len) ||
364		    memcmp_extent_buffer(leaf, name->name, ptr, name->len)) {
365			ret = -ENOENT;
366			goto out;
367		}
368		*sequence = btrfs_root_ref_sequence(leaf, ref);
369
370		ret = btrfs_del_item(trans, tree_root, path);
371		if (ret)
 
372			goto out;
373	} else {
374		ret = -ENOENT;
375		goto out;
376	}
377
378	if (key.type == BTRFS_ROOT_BACKREF_KEY) {
379		btrfs_release_path(path);
380		key.objectid = ref_id;
381		key.type = BTRFS_ROOT_REF_KEY;
382		key.offset = root_id;
383		goto again;
384	}
385
386out:
387	btrfs_free_path(path);
388	return ret;
389}
390
391/*
392 * add a btrfs_root_ref item.  type is either BTRFS_ROOT_REF_KEY
393 * or BTRFS_ROOT_BACKREF_KEY.
394 *
395 * The dirid, sequence, name and name_len refer to the directory entry
396 * that is referencing the root.
397 *
398 * For a forward ref, the root_id is the id of the tree referencing
399 * the root and ref_id is the id of the subvol  or snapshot.
400 *
401 * For a back ref the root_id is the id of the subvol or snapshot and
402 * ref_id is the id of the tree referencing it.
403 *
404 * Will return 0, -ENOMEM, or anything from the CoW path
405 */
406int btrfs_add_root_ref(struct btrfs_trans_handle *trans, u64 root_id,
407		       u64 ref_id, u64 dirid, u64 sequence,
408		       const struct fscrypt_str *name)
409{
410	struct btrfs_root *tree_root = trans->fs_info->tree_root;
411	struct btrfs_key key;
412	int ret;
413	struct btrfs_path *path;
414	struct btrfs_root_ref *ref;
415	struct extent_buffer *leaf;
416	unsigned long ptr;
417
418	path = btrfs_alloc_path();
419	if (!path)
420		return -ENOMEM;
421
422	key.objectid = root_id;
423	key.type = BTRFS_ROOT_BACKREF_KEY;
424	key.offset = ref_id;
425again:
426	ret = btrfs_insert_empty_item(trans, tree_root, path, &key,
427				      sizeof(*ref) + name->len);
428	if (ret) {
429		btrfs_abort_transaction(trans, ret);
430		btrfs_free_path(path);
431		return ret;
432	}
433
434	leaf = path->nodes[0];
435	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
436	btrfs_set_root_ref_dirid(leaf, ref, dirid);
437	btrfs_set_root_ref_sequence(leaf, ref, sequence);
438	btrfs_set_root_ref_name_len(leaf, ref, name->len);
439	ptr = (unsigned long)(ref + 1);
440	write_extent_buffer(leaf, name->name, ptr, name->len);
441	btrfs_mark_buffer_dirty(leaf);
442
443	if (key.type == BTRFS_ROOT_BACKREF_KEY) {
444		btrfs_release_path(path);
445		key.objectid = ref_id;
446		key.type = BTRFS_ROOT_REF_KEY;
447		key.offset = root_id;
448		goto again;
449	}
450
451	btrfs_free_path(path);
452	return 0;
453}
454
455/*
456 * Old btrfs forgets to init root_item->flags and root_item->byte_limit
457 * for subvolumes. To work around this problem, we steal a bit from
458 * root_item->inode_item->flags, and use it to indicate if those fields
459 * have been properly initialized.
460 */
461void btrfs_check_and_init_root_item(struct btrfs_root_item *root_item)
462{
463	u64 inode_flags = btrfs_stack_inode_flags(&root_item->inode);
464
465	if (!(inode_flags & BTRFS_INODE_ROOT_ITEM_INIT)) {
466		inode_flags |= BTRFS_INODE_ROOT_ITEM_INIT;
467		btrfs_set_stack_inode_flags(&root_item->inode, inode_flags);
468		btrfs_set_root_flags(root_item, 0);
469		btrfs_set_root_limit(root_item, 0);
470	}
471}
472
473void btrfs_update_root_times(struct btrfs_trans_handle *trans,
474			     struct btrfs_root *root)
475{
476	struct btrfs_root_item *item = &root->root_item;
477	struct timespec64 ct;
478
479	ktime_get_real_ts64(&ct);
480	spin_lock(&root->root_item_lock);
481	btrfs_set_root_ctransid(item, trans->transid);
482	btrfs_set_stack_timespec_sec(&item->ctime, ct.tv_sec);
483	btrfs_set_stack_timespec_nsec(&item->ctime, ct.tv_nsec);
484	spin_unlock(&root->root_item_lock);
485}
486
487/*
488 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
489 * root: the root of the parent directory
490 * rsv: block reservation
491 * items: the number of items that we need do reservation
492 * use_global_rsv: allow fallback to the global block reservation
493 *
494 * This function is used to reserve the space for snapshot/subvolume
495 * creation and deletion. Those operations are different with the
496 * common file/directory operations, they change two fs/file trees
497 * and root tree, the number of items that the qgroup reserves is
498 * different with the free space reservation. So we can not use
499 * the space reservation mechanism in start_transaction().
500 */
501int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
502				     struct btrfs_block_rsv *rsv, int items,
503				     bool use_global_rsv)
504{
505	u64 qgroup_num_bytes = 0;
506	u64 num_bytes;
507	int ret;
508	struct btrfs_fs_info *fs_info = root->fs_info;
509	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
510
511	if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
512		/* One for parent inode, two for dir entries */
513		qgroup_num_bytes = 3 * fs_info->nodesize;
514		ret = btrfs_qgroup_reserve_meta_prealloc(root,
515							 qgroup_num_bytes, true,
516							 false);
517		if (ret)
518			return ret;
519	}
520
521	num_bytes = btrfs_calc_insert_metadata_size(fs_info, items);
522	rsv->space_info = btrfs_find_space_info(fs_info,
523					    BTRFS_BLOCK_GROUP_METADATA);
524	ret = btrfs_block_rsv_add(fs_info, rsv, num_bytes,
525				  BTRFS_RESERVE_FLUSH_ALL);
526
527	if (ret == -ENOSPC && use_global_rsv)
528		ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, true);
529
530	if (ret && qgroup_num_bytes)
531		btrfs_qgroup_free_meta_prealloc(root, qgroup_num_bytes);
532
533	if (!ret) {
534		spin_lock(&rsv->lock);
535		rsv->qgroup_rsv_reserved += qgroup_num_bytes;
536		spin_unlock(&rsv->lock);
537	}
538	return ret;
539}
540
541void btrfs_subvolume_release_metadata(struct btrfs_root *root,
542				      struct btrfs_block_rsv *rsv)
543{
544	struct btrfs_fs_info *fs_info = root->fs_info;
545	u64 qgroup_to_release;
546
547	btrfs_block_rsv_release(fs_info, rsv, (u64)-1, &qgroup_to_release);
548	btrfs_qgroup_convert_reserved_meta(root, qgroup_to_release);
549}
v5.4
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (C) 2007 Oracle.  All rights reserved.
  4 */
  5
  6#include <linux/err.h>
  7#include <linux/uuid.h>
  8#include "ctree.h"
 
 
  9#include "transaction.h"
 10#include "disk-io.h"
 11#include "print-tree.h"
 12#include "qgroup.h"
 13#include "space-info.h"
 
 
 
 14
 15/*
 16 * Read a root item from the tree. In case we detect a root item smaller then
 17 * sizeof(root_item), we know it's an old version of the root structure and
 18 * initialize all new fields to zero. The same happens if we detect mismatching
 19 * generation numbers as then we know the root was once mounted with an older
 20 * kernel that was not aware of the root item structure change.
 21 */
 22static void btrfs_read_root_item(struct extent_buffer *eb, int slot,
 23				struct btrfs_root_item *item)
 24{
 25	uuid_le uuid;
 26	u32 len;
 27	int need_reset = 0;
 28
 29	len = btrfs_item_size_nr(eb, slot);
 30	read_extent_buffer(eb, item, btrfs_item_ptr_offset(eb, slot),
 31			   min_t(u32, len, sizeof(*item)));
 32	if (len < sizeof(*item))
 33		need_reset = 1;
 34	if (!need_reset && btrfs_root_generation(item)
 35		!= btrfs_root_generation_v2(item)) {
 36		if (btrfs_root_generation_v2(item) != 0) {
 37			btrfs_warn(eb->fs_info,
 38					"mismatching generation and generation_v2 found in root item. This root was probably mounted with an older kernel. Resetting all new fields.");
 39		}
 40		need_reset = 1;
 41	}
 42	if (need_reset) {
 43		memset(&item->generation_v2, 0,
 44			sizeof(*item) - offsetof(struct btrfs_root_item,
 45					generation_v2));
 46
 47		uuid_le_gen(&uuid);
 48		memcpy(item->uuid, uuid.b, BTRFS_UUID_SIZE);
 49	}
 50}
 51
 52/*
 53 * btrfs_find_root - lookup the root by the key.
 54 * root: the root of the root tree
 55 * search_key: the key to search
 56 * path: the path we search
 57 * root_item: the root item of the tree we look for
 58 * root_key: the root key of the tree we look for
 59 *
 60 * If ->offset of 'search_key' is -1ULL, it means we are not sure the offset
 61 * of the search key, just lookup the root with the highest offset for a
 62 * given objectid.
 63 *
 64 * If we find something return 0, otherwise > 0, < 0 on error.
 65 */
 66int btrfs_find_root(struct btrfs_root *root, const struct btrfs_key *search_key,
 67		    struct btrfs_path *path, struct btrfs_root_item *root_item,
 68		    struct btrfs_key *root_key)
 69{
 70	struct btrfs_key found_key;
 71	struct extent_buffer *l;
 72	int ret;
 73	int slot;
 74
 75	ret = btrfs_search_slot(NULL, root, search_key, path, 0, 0);
 76	if (ret < 0)
 77		return ret;
 78
 79	if (search_key->offset != -1ULL) {	/* the search key is exact */
 80		if (ret > 0)
 81			goto out;
 82	} else {
 83		BUG_ON(ret == 0);		/* Logical error */
 84		if (path->slots[0] == 0)
 85			goto out;
 86		path->slots[0]--;
 87		ret = 0;
 88	}
 89
 90	l = path->nodes[0];
 91	slot = path->slots[0];
 92
 93	btrfs_item_key_to_cpu(l, &found_key, slot);
 94	if (found_key.objectid != search_key->objectid ||
 95	    found_key.type != BTRFS_ROOT_ITEM_KEY) {
 96		ret = 1;
 97		goto out;
 98	}
 99
100	if (root_item)
101		btrfs_read_root_item(l, slot, root_item);
102	if (root_key)
103		memcpy(root_key, &found_key, sizeof(found_key));
104out:
105	btrfs_release_path(path);
106	return ret;
107}
108
109void btrfs_set_root_node(struct btrfs_root_item *item,
110			 struct extent_buffer *node)
111{
112	btrfs_set_root_bytenr(item, node->start);
113	btrfs_set_root_level(item, btrfs_header_level(node));
114	btrfs_set_root_generation(item, btrfs_header_generation(node));
115}
116
117/*
118 * copy the data in 'item' into the btree
119 */
120int btrfs_update_root(struct btrfs_trans_handle *trans, struct btrfs_root
121		      *root, struct btrfs_key *key, struct btrfs_root_item
122		      *item)
123{
124	struct btrfs_fs_info *fs_info = root->fs_info;
125	struct btrfs_path *path;
126	struct extent_buffer *l;
127	int ret;
128	int slot;
129	unsigned long ptr;
130	u32 old_len;
131
132	path = btrfs_alloc_path();
133	if (!path)
134		return -ENOMEM;
135
136	ret = btrfs_search_slot(trans, root, key, path, 0, 1);
137	if (ret < 0)
138		goto out;
139
140	if (ret > 0) {
141		btrfs_crit(fs_info,
142			"unable to find root key (%llu %u %llu) in tree %llu",
143			key->objectid, key->type, key->offset,
144			root->root_key.objectid);
145		ret = -EUCLEAN;
146		btrfs_abort_transaction(trans, ret);
147		goto out;
148	}
149
150	l = path->nodes[0];
151	slot = path->slots[0];
152	ptr = btrfs_item_ptr_offset(l, slot);
153	old_len = btrfs_item_size_nr(l, slot);
154
155	/*
156	 * If this is the first time we update the root item which originated
157	 * from an older kernel, we need to enlarge the item size to make room
158	 * for the added fields.
159	 */
160	if (old_len < sizeof(*item)) {
161		btrfs_release_path(path);
162		ret = btrfs_search_slot(trans, root, key, path,
163				-1, 1);
164		if (ret < 0) {
165			btrfs_abort_transaction(trans, ret);
166			goto out;
167		}
168
169		ret = btrfs_del_item(trans, root, path);
170		if (ret < 0) {
171			btrfs_abort_transaction(trans, ret);
172			goto out;
173		}
174		btrfs_release_path(path);
175		ret = btrfs_insert_empty_item(trans, root, path,
176				key, sizeof(*item));
177		if (ret < 0) {
178			btrfs_abort_transaction(trans, ret);
179			goto out;
180		}
181		l = path->nodes[0];
182		slot = path->slots[0];
183		ptr = btrfs_item_ptr_offset(l, slot);
184	}
185
186	/*
187	 * Update generation_v2 so at the next mount we know the new root
188	 * fields are valid.
189	 */
190	btrfs_set_root_generation_v2(item, btrfs_root_generation(item));
191
192	write_extent_buffer(l, item, ptr, sizeof(*item));
193	btrfs_mark_buffer_dirty(path->nodes[0]);
194out:
195	btrfs_free_path(path);
196	return ret;
197}
198
199int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
200		      const struct btrfs_key *key, struct btrfs_root_item *item)
201{
202	/*
203	 * Make sure generation v1 and v2 match. See update_root for details.
204	 */
205	btrfs_set_root_generation_v2(item, btrfs_root_generation(item));
206	return btrfs_insert_item(trans, root, key, item, sizeof(*item));
207}
208
209int btrfs_find_orphan_roots(struct btrfs_fs_info *fs_info)
210{
211	struct btrfs_root *tree_root = fs_info->tree_root;
212	struct extent_buffer *leaf;
213	struct btrfs_path *path;
214	struct btrfs_key key;
215	struct btrfs_key root_key;
216	struct btrfs_root *root;
217	int err = 0;
218	int ret;
219
220	path = btrfs_alloc_path();
221	if (!path)
222		return -ENOMEM;
223
224	key.objectid = BTRFS_ORPHAN_OBJECTID;
225	key.type = BTRFS_ORPHAN_ITEM_KEY;
226	key.offset = 0;
227
228	root_key.type = BTRFS_ROOT_ITEM_KEY;
229	root_key.offset = (u64)-1;
230
231	while (1) {
232		ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
233		if (ret < 0) {
234			err = ret;
235			break;
236		}
237
238		leaf = path->nodes[0];
239		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
240			ret = btrfs_next_leaf(tree_root, path);
241			if (ret < 0)
242				err = ret;
243			if (ret != 0)
244				break;
245			leaf = path->nodes[0];
246		}
247
248		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
249		btrfs_release_path(path);
250
251		if (key.objectid != BTRFS_ORPHAN_OBJECTID ||
252		    key.type != BTRFS_ORPHAN_ITEM_KEY)
253			break;
254
255		root_key.objectid = key.offset;
256		key.offset++;
257
258		/*
259		 * The root might have been inserted already, as before we look
260		 * for orphan roots, log replay might have happened, which
261		 * triggers a transaction commit and qgroup accounting, which
262		 * in turn reads and inserts fs roots while doing backref
263		 * walking.
264		 */
265		root = btrfs_lookup_fs_root(fs_info, root_key.objectid);
266		if (root) {
267			WARN_ON(!test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
268					  &root->state));
269			if (btrfs_root_refs(&root->root_item) == 0) {
270				set_bit(BTRFS_ROOT_DEAD_TREE, &root->state);
271				btrfs_add_dead_root(root);
272			}
273			continue;
274		}
275
276		root = btrfs_read_fs_root(tree_root, &root_key);
277		err = PTR_ERR_OR_ZERO(root);
278		if (err && err != -ENOENT) {
279			break;
280		} else if (err == -ENOENT) {
281			struct btrfs_trans_handle *trans;
282
283			btrfs_release_path(path);
284
285			trans = btrfs_join_transaction(tree_root);
286			if (IS_ERR(trans)) {
287				err = PTR_ERR(trans);
288				btrfs_handle_fs_error(fs_info, err,
289					    "Failed to start trans to delete orphan item");
290				break;
291			}
292			err = btrfs_del_orphan_item(trans, tree_root,
293						    root_key.objectid);
294			btrfs_end_transaction(trans);
295			if (err) {
296				btrfs_handle_fs_error(fs_info, err,
297					    "Failed to delete root orphan item");
298				break;
299			}
300			continue;
301		}
302
303		err = btrfs_init_fs_root(root);
304		if (err) {
305			btrfs_free_fs_root(root);
306			break;
307		}
308
309		set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
310
311		err = btrfs_insert_fs_root(fs_info, root);
312		if (err) {
313			BUG_ON(err == -EEXIST);
314			btrfs_free_fs_root(root);
315			break;
316		}
 
 
 
 
317
318		if (btrfs_root_refs(&root->root_item) == 0) {
319			set_bit(BTRFS_ROOT_DEAD_TREE, &root->state);
320			btrfs_add_dead_root(root);
321		}
 
322	}
323
324	btrfs_free_path(path);
325	return err;
326}
327
328/* drop the root item for 'key' from the tree root */
329int btrfs_del_root(struct btrfs_trans_handle *trans,
330		   const struct btrfs_key *key)
331{
332	struct btrfs_root *root = trans->fs_info->tree_root;
333	struct btrfs_path *path;
334	int ret;
335
336	path = btrfs_alloc_path();
337	if (!path)
338		return -ENOMEM;
339	ret = btrfs_search_slot(trans, root, key, path, -1, 1);
340	if (ret < 0)
341		goto out;
342
343	BUG_ON(ret != 0);
344
345	ret = btrfs_del_item(trans, root, path);
346out:
347	btrfs_free_path(path);
348	return ret;
349}
350
351int btrfs_del_root_ref(struct btrfs_trans_handle *trans, u64 root_id,
352		       u64 ref_id, u64 dirid, u64 *sequence, const char *name,
353		       int name_len)
354
355{
356	struct btrfs_root *tree_root = trans->fs_info->tree_root;
357	struct btrfs_path *path;
358	struct btrfs_root_ref *ref;
359	struct extent_buffer *leaf;
360	struct btrfs_key key;
361	unsigned long ptr;
362	int err = 0;
363	int ret;
364
365	path = btrfs_alloc_path();
366	if (!path)
367		return -ENOMEM;
368
369	key.objectid = root_id;
370	key.type = BTRFS_ROOT_BACKREF_KEY;
371	key.offset = ref_id;
372again:
373	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
374	BUG_ON(ret < 0);
375	if (ret == 0) {
 
376		leaf = path->nodes[0];
377		ref = btrfs_item_ptr(leaf, path->slots[0],
378				     struct btrfs_root_ref);
379
380		WARN_ON(btrfs_root_ref_dirid(leaf, ref) != dirid);
381		WARN_ON(btrfs_root_ref_name_len(leaf, ref) != name_len);
382		ptr = (unsigned long)(ref + 1);
383		WARN_ON(memcmp_extent_buffer(leaf, name, ptr, name_len));
 
 
 
 
 
384		*sequence = btrfs_root_ref_sequence(leaf, ref);
385
386		ret = btrfs_del_item(trans, tree_root, path);
387		if (ret) {
388			err = ret;
389			goto out;
390		}
391	} else
392		err = -ENOENT;
 
393
394	if (key.type == BTRFS_ROOT_BACKREF_KEY) {
395		btrfs_release_path(path);
396		key.objectid = ref_id;
397		key.type = BTRFS_ROOT_REF_KEY;
398		key.offset = root_id;
399		goto again;
400	}
401
402out:
403	btrfs_free_path(path);
404	return err;
405}
406
407/*
408 * add a btrfs_root_ref item.  type is either BTRFS_ROOT_REF_KEY
409 * or BTRFS_ROOT_BACKREF_KEY.
410 *
411 * The dirid, sequence, name and name_len refer to the directory entry
412 * that is referencing the root.
413 *
414 * For a forward ref, the root_id is the id of the tree referencing
415 * the root and ref_id is the id of the subvol  or snapshot.
416 *
417 * For a back ref the root_id is the id of the subvol or snapshot and
418 * ref_id is the id of the tree referencing it.
419 *
420 * Will return 0, -ENOMEM, or anything from the CoW path
421 */
422int btrfs_add_root_ref(struct btrfs_trans_handle *trans, u64 root_id,
423		       u64 ref_id, u64 dirid, u64 sequence, const char *name,
424		       int name_len)
425{
426	struct btrfs_root *tree_root = trans->fs_info->tree_root;
427	struct btrfs_key key;
428	int ret;
429	struct btrfs_path *path;
430	struct btrfs_root_ref *ref;
431	struct extent_buffer *leaf;
432	unsigned long ptr;
433
434	path = btrfs_alloc_path();
435	if (!path)
436		return -ENOMEM;
437
438	key.objectid = root_id;
439	key.type = BTRFS_ROOT_BACKREF_KEY;
440	key.offset = ref_id;
441again:
442	ret = btrfs_insert_empty_item(trans, tree_root, path, &key,
443				      sizeof(*ref) + name_len);
444	if (ret) {
445		btrfs_abort_transaction(trans, ret);
446		btrfs_free_path(path);
447		return ret;
448	}
449
450	leaf = path->nodes[0];
451	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
452	btrfs_set_root_ref_dirid(leaf, ref, dirid);
453	btrfs_set_root_ref_sequence(leaf, ref, sequence);
454	btrfs_set_root_ref_name_len(leaf, ref, name_len);
455	ptr = (unsigned long)(ref + 1);
456	write_extent_buffer(leaf, name, ptr, name_len);
457	btrfs_mark_buffer_dirty(leaf);
458
459	if (key.type == BTRFS_ROOT_BACKREF_KEY) {
460		btrfs_release_path(path);
461		key.objectid = ref_id;
462		key.type = BTRFS_ROOT_REF_KEY;
463		key.offset = root_id;
464		goto again;
465	}
466
467	btrfs_free_path(path);
468	return 0;
469}
470
471/*
472 * Old btrfs forgets to init root_item->flags and root_item->byte_limit
473 * for subvolumes. To work around this problem, we steal a bit from
474 * root_item->inode_item->flags, and use it to indicate if those fields
475 * have been properly initialized.
476 */
477void btrfs_check_and_init_root_item(struct btrfs_root_item *root_item)
478{
479	u64 inode_flags = btrfs_stack_inode_flags(&root_item->inode);
480
481	if (!(inode_flags & BTRFS_INODE_ROOT_ITEM_INIT)) {
482		inode_flags |= BTRFS_INODE_ROOT_ITEM_INIT;
483		btrfs_set_stack_inode_flags(&root_item->inode, inode_flags);
484		btrfs_set_root_flags(root_item, 0);
485		btrfs_set_root_limit(root_item, 0);
486	}
487}
488
489void btrfs_update_root_times(struct btrfs_trans_handle *trans,
490			     struct btrfs_root *root)
491{
492	struct btrfs_root_item *item = &root->root_item;
493	struct timespec64 ct;
494
495	ktime_get_real_ts64(&ct);
496	spin_lock(&root->root_item_lock);
497	btrfs_set_root_ctransid(item, trans->transid);
498	btrfs_set_stack_timespec_sec(&item->ctime, ct.tv_sec);
499	btrfs_set_stack_timespec_nsec(&item->ctime, ct.tv_nsec);
500	spin_unlock(&root->root_item_lock);
501}
502
503/*
504 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
505 * root: the root of the parent directory
506 * rsv: block reservation
507 * items: the number of items that we need do reservation
508 * use_global_rsv: allow fallback to the global block reservation
509 *
510 * This function is used to reserve the space for snapshot/subvolume
511 * creation and deletion. Those operations are different with the
512 * common file/directory operations, they change two fs/file trees
513 * and root tree, the number of items that the qgroup reserves is
514 * different with the free space reservation. So we can not use
515 * the space reservation mechanism in start_transaction().
516 */
517int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
518				     struct btrfs_block_rsv *rsv, int items,
519				     bool use_global_rsv)
520{
521	u64 qgroup_num_bytes = 0;
522	u64 num_bytes;
523	int ret;
524	struct btrfs_fs_info *fs_info = root->fs_info;
525	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
526
527	if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
528		/* One for parent inode, two for dir entries */
529		qgroup_num_bytes = 3 * fs_info->nodesize;
530		ret = btrfs_qgroup_reserve_meta_prealloc(root,
531				qgroup_num_bytes, true);
 
532		if (ret)
533			return ret;
534	}
535
536	num_bytes = btrfs_calc_insert_metadata_size(fs_info, items);
537	rsv->space_info = btrfs_find_space_info(fs_info,
538					    BTRFS_BLOCK_GROUP_METADATA);
539	ret = btrfs_block_rsv_add(root, rsv, num_bytes,
540				  BTRFS_RESERVE_FLUSH_ALL);
541
542	if (ret == -ENOSPC && use_global_rsv)
543		ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, true);
544
545	if (ret && qgroup_num_bytes)
546		btrfs_qgroup_free_meta_prealloc(root, qgroup_num_bytes);
547
 
 
 
 
 
548	return ret;
549}
550
551void btrfs_subvolume_release_metadata(struct btrfs_fs_info *fs_info,
552				      struct btrfs_block_rsv *rsv)
553{
554	btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
 
 
 
 
555}