Linux Audio

Check our new training course

Embedded Linux training

Mar 31-Apr 8, 2025
Register
Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007,2008 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/sched.h>
   7#include <linux/slab.h>
   8#include <linux/rbtree.h>
   9#include <linux/mm.h>
  10#include <linux/error-injection.h>
  11#include "messages.h"
  12#include "ctree.h"
  13#include "disk-io.h"
  14#include "transaction.h"
  15#include "print-tree.h"
  16#include "locking.h"
  17#include "volumes.h"
  18#include "qgroup.h"
  19#include "tree-mod-log.h"
  20#include "tree-checker.h"
  21#include "fs.h"
  22#include "accessors.h"
  23#include "extent-tree.h"
  24#include "relocation.h"
  25#include "file-item.h"
  26
  27static struct kmem_cache *btrfs_path_cachep;
  28
  29static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
  30		      *root, struct btrfs_path *path, int level);
  31static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  32		      const struct btrfs_key *ins_key, struct btrfs_path *path,
  33		      int data_size, int extend);
  34static int push_node_left(struct btrfs_trans_handle *trans,
  35			  struct extent_buffer *dst,
  36			  struct extent_buffer *src, int empty);
  37static int balance_node_right(struct btrfs_trans_handle *trans,
  38			      struct extent_buffer *dst_buf,
  39			      struct extent_buffer *src_buf);
  40static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
  41		    int level, int slot);
  42
  43static const struct btrfs_csums {
  44	u16		size;
  45	const char	name[10];
  46	const char	driver[12];
  47} btrfs_csums[] = {
  48	[BTRFS_CSUM_TYPE_CRC32] = { .size = 4, .name = "crc32c" },
  49	[BTRFS_CSUM_TYPE_XXHASH] = { .size = 8, .name = "xxhash64" },
  50	[BTRFS_CSUM_TYPE_SHA256] = { .size = 32, .name = "sha256" },
  51	[BTRFS_CSUM_TYPE_BLAKE2] = { .size = 32, .name = "blake2b",
  52				     .driver = "blake2b-256" },
  53};
  54
  55/*
  56 * The leaf data grows from end-to-front in the node.  this returns the address
  57 * of the start of the last item, which is the stop of the leaf data stack.
  58 */
  59static unsigned int leaf_data_end(const struct extent_buffer *leaf)
  60{
  61	u32 nr = btrfs_header_nritems(leaf);
  62
  63	if (nr == 0)
  64		return BTRFS_LEAF_DATA_SIZE(leaf->fs_info);
  65	return btrfs_item_offset(leaf, nr - 1);
  66}
  67
  68/*
  69 * Move data in a @leaf (using memmove, safe for overlapping ranges).
  70 *
  71 * @leaf:	leaf that we're doing a memmove on
  72 * @dst_offset:	item data offset we're moving to
  73 * @src_offset:	item data offset were' moving from
  74 * @len:	length of the data we're moving
  75 *
  76 * Wrapper around memmove_extent_buffer() that takes into account the header on
  77 * the leaf.  The btrfs_item offset's start directly after the header, so we
  78 * have to adjust any offsets to account for the header in the leaf.  This
  79 * handles that math to simplify the callers.
  80 */
  81static inline void memmove_leaf_data(const struct extent_buffer *leaf,
  82				     unsigned long dst_offset,
  83				     unsigned long src_offset,
  84				     unsigned long len)
  85{
  86	memmove_extent_buffer(leaf, btrfs_item_nr_offset(leaf, 0) + dst_offset,
  87			      btrfs_item_nr_offset(leaf, 0) + src_offset, len);
  88}
  89
  90/*
  91 * Copy item data from @src into @dst at the given @offset.
  92 *
  93 * @dst:	destination leaf that we're copying into
  94 * @src:	source leaf that we're copying from
  95 * @dst_offset:	item data offset we're copying to
  96 * @src_offset:	item data offset were' copying from
  97 * @len:	length of the data we're copying
  98 *
  99 * Wrapper around copy_extent_buffer() that takes into account the header on
 100 * the leaf.  The btrfs_item offset's start directly after the header, so we
 101 * have to adjust any offsets to account for the header in the leaf.  This
 102 * handles that math to simplify the callers.
 103 */
 104static inline void copy_leaf_data(const struct extent_buffer *dst,
 105				  const struct extent_buffer *src,
 106				  unsigned long dst_offset,
 107				  unsigned long src_offset, unsigned long len)
 108{
 109	copy_extent_buffer(dst, src, btrfs_item_nr_offset(dst, 0) + dst_offset,
 110			   btrfs_item_nr_offset(src, 0) + src_offset, len);
 111}
 112
 113/*
 114 * Move items in a @leaf (using memmove).
 115 *
 116 * @dst:	destination leaf for the items
 117 * @dst_item:	the item nr we're copying into
 118 * @src_item:	the item nr we're copying from
 119 * @nr_items:	the number of items to copy
 120 *
 121 * Wrapper around memmove_extent_buffer() that does the math to get the
 122 * appropriate offsets into the leaf from the item numbers.
 123 */
 124static inline void memmove_leaf_items(const struct extent_buffer *leaf,
 125				      int dst_item, int src_item, int nr_items)
 126{
 127	memmove_extent_buffer(leaf, btrfs_item_nr_offset(leaf, dst_item),
 128			      btrfs_item_nr_offset(leaf, src_item),
 129			      nr_items * sizeof(struct btrfs_item));
 130}
 131
 132/*
 133 * Copy items from @src into @dst at the given @offset.
 134 *
 135 * @dst:	destination leaf for the items
 136 * @src:	source leaf for the items
 137 * @dst_item:	the item nr we're copying into
 138 * @src_item:	the item nr we're copying from
 139 * @nr_items:	the number of items to copy
 140 *
 141 * Wrapper around copy_extent_buffer() that does the math to get the
 142 * appropriate offsets into the leaf from the item numbers.
 143 */
 144static inline void copy_leaf_items(const struct extent_buffer *dst,
 145				   const struct extent_buffer *src,
 146				   int dst_item, int src_item, int nr_items)
 147{
 148	copy_extent_buffer(dst, src, btrfs_item_nr_offset(dst, dst_item),
 149			      btrfs_item_nr_offset(src, src_item),
 150			      nr_items * sizeof(struct btrfs_item));
 151}
 152
 
 
 
 
 
 
 153int btrfs_super_csum_size(const struct btrfs_super_block *s)
 154{
 155	u16 t = btrfs_super_csum_type(s);
 156	/*
 157	 * csum type is validated at mount time
 158	 */
 159	return btrfs_csums[t].size;
 160}
 161
 162const char *btrfs_super_csum_name(u16 csum_type)
 163{
 164	/* csum type is validated at mount time */
 165	return btrfs_csums[csum_type].name;
 166}
 167
 168/*
 169 * Return driver name if defined, otherwise the name that's also a valid driver
 170 * name
 171 */
 172const char *btrfs_super_csum_driver(u16 csum_type)
 173{
 174	/* csum type is validated at mount time */
 175	return btrfs_csums[csum_type].driver[0] ?
 176		btrfs_csums[csum_type].driver :
 177		btrfs_csums[csum_type].name;
 178}
 179
 180size_t __attribute_const__ btrfs_get_num_csums(void)
 181{
 182	return ARRAY_SIZE(btrfs_csums);
 183}
 184
 185struct btrfs_path *btrfs_alloc_path(void)
 186{
 187	might_sleep();
 188
 189	return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
 190}
 191
 192/* this also releases the path */
 193void btrfs_free_path(struct btrfs_path *p)
 194{
 195	if (!p)
 196		return;
 197	btrfs_release_path(p);
 198	kmem_cache_free(btrfs_path_cachep, p);
 199}
 200
 201/*
 202 * path release drops references on the extent buffers in the path
 203 * and it drops any locks held by this path
 204 *
 205 * It is safe to call this on paths that no locks or extent buffers held.
 206 */
 207noinline void btrfs_release_path(struct btrfs_path *p)
 208{
 209	int i;
 210
 211	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
 212		p->slots[i] = 0;
 213		if (!p->nodes[i])
 214			continue;
 215		if (p->locks[i]) {
 216			btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
 217			p->locks[i] = 0;
 218		}
 219		free_extent_buffer(p->nodes[i]);
 220		p->nodes[i] = NULL;
 221	}
 222}
 223
 224/*
 225 * We want the transaction abort to print stack trace only for errors where the
 226 * cause could be a bug, eg. due to ENOSPC, and not for common errors that are
 227 * caused by external factors.
 228 */
 229bool __cold abort_should_print_stack(int errno)
 230{
 231	switch (errno) {
 232	case -EIO:
 233	case -EROFS:
 234	case -ENOMEM:
 235		return false;
 236	}
 237	return true;
 238}
 239
 240/*
 241 * safely gets a reference on the root node of a tree.  A lock
 242 * is not taken, so a concurrent writer may put a different node
 243 * at the root of the tree.  See btrfs_lock_root_node for the
 244 * looping required.
 245 *
 246 * The extent buffer returned by this has a reference taken, so
 247 * it won't disappear.  It may stop being the root of the tree
 248 * at any time because there are no locks held.
 249 */
 250struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
 251{
 252	struct extent_buffer *eb;
 253
 254	while (1) {
 255		rcu_read_lock();
 256		eb = rcu_dereference(root->node);
 257
 258		/*
 259		 * RCU really hurts here, we could free up the root node because
 260		 * it was COWed but we may not get the new root node yet so do
 261		 * the inc_not_zero dance and if it doesn't work then
 262		 * synchronize_rcu and try again.
 263		 */
 264		if (atomic_inc_not_zero(&eb->refs)) {
 265			rcu_read_unlock();
 266			break;
 267		}
 268		rcu_read_unlock();
 269		synchronize_rcu();
 270	}
 271	return eb;
 272}
 273
 274/*
 275 * Cowonly root (not-shareable trees, everything not subvolume or reloc roots),
 276 * just get put onto a simple dirty list.  Transaction walks this list to make
 277 * sure they get properly updated on disk.
 278 */
 279static void add_root_to_dirty_list(struct btrfs_root *root)
 280{
 281	struct btrfs_fs_info *fs_info = root->fs_info;
 282
 283	if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
 284	    !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
 285		return;
 286
 287	spin_lock(&fs_info->trans_lock);
 288	if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
 289		/* Want the extent tree to be the last on the list */
 290		if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID)
 291			list_move_tail(&root->dirty_list,
 292				       &fs_info->dirty_cowonly_roots);
 293		else
 294			list_move(&root->dirty_list,
 295				  &fs_info->dirty_cowonly_roots);
 296	}
 297	spin_unlock(&fs_info->trans_lock);
 298}
 299
 300/*
 301 * used by snapshot creation to make a copy of a root for a tree with
 302 * a given objectid.  The buffer with the new root node is returned in
 303 * cow_ret, and this func returns zero on success or a negative error code.
 304 */
 305int btrfs_copy_root(struct btrfs_trans_handle *trans,
 306		      struct btrfs_root *root,
 307		      struct extent_buffer *buf,
 308		      struct extent_buffer **cow_ret, u64 new_root_objectid)
 309{
 310	struct btrfs_fs_info *fs_info = root->fs_info;
 311	struct extent_buffer *cow;
 312	int ret = 0;
 313	int level;
 314	struct btrfs_disk_key disk_key;
 
 315
 316	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
 317		trans->transid != fs_info->running_transaction->transid);
 318	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
 319		trans->transid != root->last_trans);
 320
 321	level = btrfs_header_level(buf);
 322	if (level == 0)
 323		btrfs_item_key(buf, &disk_key, 0);
 324	else
 325		btrfs_node_key(buf, &disk_key, 0);
 326
 
 
 327	cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
 328				     &disk_key, level, buf->start, 0,
 329				     BTRFS_NESTING_NEW_ROOT);
 330	if (IS_ERR(cow))
 331		return PTR_ERR(cow);
 332
 333	copy_extent_buffer_full(cow, buf);
 334	btrfs_set_header_bytenr(cow, cow->start);
 335	btrfs_set_header_generation(cow, trans->transid);
 336	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
 337	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
 338				     BTRFS_HEADER_FLAG_RELOC);
 339	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
 340		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
 341	else
 342		btrfs_set_header_owner(cow, new_root_objectid);
 343
 344	write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
 345
 346	WARN_ON(btrfs_header_generation(buf) > trans->transid);
 347	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
 348		ret = btrfs_inc_ref(trans, root, cow, 1);
 349	else
 350		ret = btrfs_inc_ref(trans, root, cow, 0);
 351	if (ret) {
 352		btrfs_tree_unlock(cow);
 353		free_extent_buffer(cow);
 354		btrfs_abort_transaction(trans, ret);
 355		return ret;
 356	}
 357
 358	btrfs_mark_buffer_dirty(cow);
 359	*cow_ret = cow;
 360	return 0;
 361}
 362
 363/*
 364 * check if the tree block can be shared by multiple trees
 365 */
 366int btrfs_block_can_be_shared(struct btrfs_root *root,
 367			      struct extent_buffer *buf)
 
 368{
 
 
 369	/*
 370	 * Tree blocks not in shareable trees and tree roots are never shared.
 371	 * If a block was allocated after the last snapshot and the block was
 372	 * not allocated by tree relocation, we know the block is not shared.
 373	 */
 374	if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
 375	    buf != root->node && buf != root->commit_root &&
 376	    (btrfs_header_generation(buf) <=
 377	     btrfs_root_last_snapshot(&root->root_item) ||
 378	     btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
 379		return 1;
 380
 381	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 382}
 383
 384static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
 385				       struct btrfs_root *root,
 386				       struct extent_buffer *buf,
 387				       struct extent_buffer *cow,
 388				       int *last_ref)
 389{
 390	struct btrfs_fs_info *fs_info = root->fs_info;
 391	u64 refs;
 392	u64 owner;
 393	u64 flags;
 394	u64 new_flags = 0;
 395	int ret;
 396
 397	/*
 398	 * Backrefs update rules:
 399	 *
 400	 * Always use full backrefs for extent pointers in tree block
 401	 * allocated by tree relocation.
 402	 *
 403	 * If a shared tree block is no longer referenced by its owner
 404	 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
 405	 * use full backrefs for extent pointers in tree block.
 406	 *
 407	 * If a tree block is been relocating
 408	 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
 409	 * use full backrefs for extent pointers in tree block.
 410	 * The reason for this is some operations (such as drop tree)
 411	 * are only allowed for blocks use full backrefs.
 412	 */
 413
 414	if (btrfs_block_can_be_shared(root, buf)) {
 415		ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
 416					       btrfs_header_level(buf), 1,
 417					       &refs, &flags);
 418		if (ret)
 419			return ret;
 420		if (refs == 0) {
 421			ret = -EROFS;
 422			btrfs_handle_fs_error(fs_info, ret, NULL);
 
 
 
 
 423			return ret;
 424		}
 425	} else {
 426		refs = 1;
 427		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
 428		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
 429			flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
 430		else
 431			flags = 0;
 432	}
 433
 434	owner = btrfs_header_owner(buf);
 435	BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
 436	       !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
 
 
 
 
 
 
 
 
 437
 438	if (refs > 1) {
 439		if ((owner == root->root_key.objectid ||
 440		     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
 441		    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
 442			ret = btrfs_inc_ref(trans, root, buf, 1);
 443			if (ret)
 444				return ret;
 445
 446			if (root->root_key.objectid ==
 447			    BTRFS_TREE_RELOC_OBJECTID) {
 448				ret = btrfs_dec_ref(trans, root, buf, 0);
 449				if (ret)
 450					return ret;
 451				ret = btrfs_inc_ref(trans, root, cow, 1);
 452				if (ret)
 453					return ret;
 454			}
 455			new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
 
 
 
 456		} else {
 457
 458			if (root->root_key.objectid ==
 459			    BTRFS_TREE_RELOC_OBJECTID)
 460				ret = btrfs_inc_ref(trans, root, cow, 1);
 461			else
 462				ret = btrfs_inc_ref(trans, root, cow, 0);
 463			if (ret)
 464				return ret;
 465		}
 466		if (new_flags != 0) {
 467			int level = btrfs_header_level(buf);
 468
 469			ret = btrfs_set_disk_extent_flags(trans, buf,
 470							  new_flags, level);
 471			if (ret)
 472				return ret;
 473		}
 474	} else {
 475		if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
 476			if (root->root_key.objectid ==
 477			    BTRFS_TREE_RELOC_OBJECTID)
 478				ret = btrfs_inc_ref(trans, root, cow, 1);
 479			else
 480				ret = btrfs_inc_ref(trans, root, cow, 0);
 481			if (ret)
 482				return ret;
 483			ret = btrfs_dec_ref(trans, root, buf, 1);
 484			if (ret)
 485				return ret;
 486		}
 487		btrfs_clean_tree_block(buf);
 488		*last_ref = 1;
 489	}
 490	return 0;
 491}
 492
 493/*
 494 * does the dirty work in cow of a single block.  The parent block (if
 495 * supplied) is updated to point to the new cow copy.  The new buffer is marked
 496 * dirty and returned locked.  If you modify the block it needs to be marked
 497 * dirty again.
 498 *
 499 * search_start -- an allocation hint for the new block
 500 *
 501 * empty_size -- a hint that you plan on doing more cow.  This is the size in
 502 * bytes the allocator should try to find free next to the block it returns.
 503 * This is just a hint and may be ignored by the allocator.
 504 */
 505static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
 506			     struct btrfs_root *root,
 507			     struct extent_buffer *buf,
 508			     struct extent_buffer *parent, int parent_slot,
 509			     struct extent_buffer **cow_ret,
 510			     u64 search_start, u64 empty_size,
 511			     enum btrfs_lock_nesting nest)
 512{
 513	struct btrfs_fs_info *fs_info = root->fs_info;
 514	struct btrfs_disk_key disk_key;
 515	struct extent_buffer *cow;
 516	int level, ret;
 517	int last_ref = 0;
 518	int unlock_orig = 0;
 519	u64 parent_start = 0;
 
 520
 521	if (*cow_ret == buf)
 522		unlock_orig = 1;
 523
 524	btrfs_assert_tree_write_locked(buf);
 525
 526	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
 527		trans->transid != fs_info->running_transaction->transid);
 528	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
 529		trans->transid != root->last_trans);
 530
 531	level = btrfs_header_level(buf);
 532
 533	if (level == 0)
 534		btrfs_item_key(buf, &disk_key, 0);
 535	else
 536		btrfs_node_key(buf, &disk_key, 0);
 537
 538	if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
 539		parent_start = parent->start;
 540
 
 
 541	cow = btrfs_alloc_tree_block(trans, root, parent_start,
 542				     root->root_key.objectid, &disk_key, level,
 543				     search_start, empty_size, nest);
 544	if (IS_ERR(cow))
 545		return PTR_ERR(cow);
 546
 547	/* cow is set to blocking by btrfs_init_new_buffer */
 548
 549	copy_extent_buffer_full(cow, buf);
 550	btrfs_set_header_bytenr(cow, cow->start);
 551	btrfs_set_header_generation(cow, trans->transid);
 552	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
 553	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
 554				     BTRFS_HEADER_FLAG_RELOC);
 555	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
 556		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
 557	else
 558		btrfs_set_header_owner(cow, root->root_key.objectid);
 559
 560	write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
 561
 562	ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
 563	if (ret) {
 564		btrfs_tree_unlock(cow);
 565		free_extent_buffer(cow);
 566		btrfs_abort_transaction(trans, ret);
 567		return ret;
 568	}
 569
 570	if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
 571		ret = btrfs_reloc_cow_block(trans, root, buf, cow);
 572		if (ret) {
 573			btrfs_tree_unlock(cow);
 574			free_extent_buffer(cow);
 575			btrfs_abort_transaction(trans, ret);
 576			return ret;
 577		}
 578	}
 579
 580	if (buf == root->node) {
 581		WARN_ON(parent && parent != buf);
 582		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
 583		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
 584			parent_start = buf->start;
 585
 586		atomic_inc(&cow->refs);
 587		ret = btrfs_tree_mod_log_insert_root(root->node, cow, true);
 588		BUG_ON(ret < 0);
 
 
 
 
 589		rcu_assign_pointer(root->node, cow);
 590
 591		btrfs_free_tree_block(trans, btrfs_root_id(root), buf,
 592				      parent_start, last_ref);
 593		free_extent_buffer(buf);
 594		add_root_to_dirty_list(root);
 
 
 
 
 595	} else {
 596		WARN_ON(trans->transid != btrfs_header_generation(parent));
 597		btrfs_tree_mod_log_insert_key(parent, parent_slot,
 598					      BTRFS_MOD_LOG_KEY_REPLACE);
 
 
 
 
 599		btrfs_set_node_blockptr(parent, parent_slot,
 600					cow->start);
 601		btrfs_set_node_ptr_generation(parent, parent_slot,
 602					      trans->transid);
 603		btrfs_mark_buffer_dirty(parent);
 604		if (last_ref) {
 605			ret = btrfs_tree_mod_log_free_eb(buf);
 606			if (ret) {
 607				btrfs_tree_unlock(cow);
 608				free_extent_buffer(cow);
 609				btrfs_abort_transaction(trans, ret);
 610				return ret;
 611			}
 612		}
 613		btrfs_free_tree_block(trans, btrfs_root_id(root), buf,
 614				      parent_start, last_ref);
 
 
 
 
 615	}
 
 
 616	if (unlock_orig)
 617		btrfs_tree_unlock(buf);
 618	free_extent_buffer_stale(buf);
 619	btrfs_mark_buffer_dirty(cow);
 620	*cow_ret = cow;
 621	return 0;
 
 
 
 
 
 622}
 623
 624static inline int should_cow_block(struct btrfs_trans_handle *trans,
 625				   struct btrfs_root *root,
 626				   struct extent_buffer *buf)
 627{
 628	if (btrfs_is_testing(root->fs_info))
 629		return 0;
 630
 631	/* Ensure we can see the FORCE_COW bit */
 632	smp_mb__before_atomic();
 633
 634	/*
 635	 * We do not need to cow a block if
 636	 * 1) this block is not created or changed in this transaction;
 637	 * 2) this block does not belong to TREE_RELOC tree;
 638	 * 3) the root is not forced COW.
 639	 *
 640	 * What is forced COW:
 641	 *    when we create snapshot during committing the transaction,
 642	 *    after we've finished copying src root, we must COW the shared
 643	 *    block to ensure the metadata consistency.
 644	 */
 645	if (btrfs_header_generation(buf) == trans->transid &&
 646	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
 647	    !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
 648	      btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
 649	    !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
 650		return 0;
 651	return 1;
 652}
 653
 654/*
 655 * cows a single block, see __btrfs_cow_block for the real work.
 656 * This version of it has extra checks so that a block isn't COWed more than
 657 * once per transaction, as long as it hasn't been written yet
 658 */
 659noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
 660		    struct btrfs_root *root, struct extent_buffer *buf,
 661		    struct extent_buffer *parent, int parent_slot,
 662		    struct extent_buffer **cow_ret,
 663		    enum btrfs_lock_nesting nest)
 664{
 665	struct btrfs_fs_info *fs_info = root->fs_info;
 666	u64 search_start;
 667	int ret;
 668
 669	if (test_bit(BTRFS_ROOT_DELETING, &root->state))
 670		btrfs_err(fs_info,
 671			"COW'ing blocks on a fs root that's being dropped");
 672
 673	if (trans->transaction != fs_info->running_transaction)
 674		WARN(1, KERN_CRIT "trans %llu running %llu\n",
 675		       trans->transid,
 676		       fs_info->running_transaction->transid);
 677
 678	if (trans->transid != fs_info->generation)
 679		WARN(1, KERN_CRIT "trans %llu running %llu\n",
 680		       trans->transid, fs_info->generation);
 
 
 
 
 
 
 
 
 
 
 
 
 681
 682	if (!should_cow_block(trans, root, buf)) {
 683		*cow_ret = buf;
 684		return 0;
 685	}
 686
 687	search_start = buf->start & ~((u64)SZ_1G - 1);
 688
 689	/*
 690	 * Before CoWing this block for later modification, check if it's
 691	 * the subtree root and do the delayed subtree trace if needed.
 692	 *
 693	 * Also We don't care about the error, as it's handled internally.
 694	 */
 695	btrfs_qgroup_trace_subtree_after_cow(trans, root, buf);
 696	ret = __btrfs_cow_block(trans, root, buf, parent,
 697				 parent_slot, cow_ret, search_start, 0, nest);
 698
 699	trace_btrfs_cow_block(root, buf, *cow_ret);
 700
 701	return ret;
 702}
 703ALLOW_ERROR_INJECTION(btrfs_cow_block, ERRNO);
 704
 705/*
 706 * helper function for defrag to decide if two blocks pointed to by a
 707 * node are actually close by
 708 */
 709static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
 710{
 711	if (blocknr < other && other - (blocknr + blocksize) < 32768)
 712		return 1;
 713	if (blocknr > other && blocknr - (other + blocksize) < 32768)
 714		return 1;
 715	return 0;
 716}
 717
 718#ifdef __LITTLE_ENDIAN
 719
 720/*
 721 * Compare two keys, on little-endian the disk order is same as CPU order and
 722 * we can avoid the conversion.
 723 */
 724static int comp_keys(const struct btrfs_disk_key *disk_key,
 725		     const struct btrfs_key *k2)
 726{
 727	const struct btrfs_key *k1 = (const struct btrfs_key *)disk_key;
 728
 729	return btrfs_comp_cpu_keys(k1, k2);
 730}
 731
 732#else
 733
 734/*
 735 * compare two keys in a memcmp fashion
 736 */
 737static int comp_keys(const struct btrfs_disk_key *disk,
 738		     const struct btrfs_key *k2)
 739{
 740	struct btrfs_key k1;
 741
 742	btrfs_disk_key_to_cpu(&k1, disk);
 743
 744	return btrfs_comp_cpu_keys(&k1, k2);
 745}
 746#endif
 747
 748/*
 749 * same as comp_keys only with two btrfs_key's
 750 */
 751int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
 752{
 753	if (k1->objectid > k2->objectid)
 754		return 1;
 755	if (k1->objectid < k2->objectid)
 756		return -1;
 757	if (k1->type > k2->type)
 758		return 1;
 759	if (k1->type < k2->type)
 760		return -1;
 761	if (k1->offset > k2->offset)
 762		return 1;
 763	if (k1->offset < k2->offset)
 764		return -1;
 765	return 0;
 766}
 767
 768/*
 769 * this is used by the defrag code to go through all the
 770 * leaves pointed to by a node and reallocate them so that
 771 * disk order is close to key order
 772 */
 773int btrfs_realloc_node(struct btrfs_trans_handle *trans,
 774		       struct btrfs_root *root, struct extent_buffer *parent,
 775		       int start_slot, u64 *last_ret,
 776		       struct btrfs_key *progress)
 777{
 778	struct btrfs_fs_info *fs_info = root->fs_info;
 779	struct extent_buffer *cur;
 780	u64 blocknr;
 781	u64 search_start = *last_ret;
 782	u64 last_block = 0;
 783	u64 other;
 784	u32 parent_nritems;
 785	int end_slot;
 786	int i;
 787	int err = 0;
 788	u32 blocksize;
 789	int progress_passed = 0;
 790	struct btrfs_disk_key disk_key;
 791
 792	WARN_ON(trans->transaction != fs_info->running_transaction);
 793	WARN_ON(trans->transid != fs_info->generation);
 794
 795	parent_nritems = btrfs_header_nritems(parent);
 796	blocksize = fs_info->nodesize;
 797	end_slot = parent_nritems - 1;
 798
 799	if (parent_nritems <= 1)
 800		return 0;
 801
 802	for (i = start_slot; i <= end_slot; i++) {
 803		int close = 1;
 804
 805		btrfs_node_key(parent, &disk_key, i);
 806		if (!progress_passed && comp_keys(&disk_key, progress) < 0)
 807			continue;
 808
 809		progress_passed = 1;
 810		blocknr = btrfs_node_blockptr(parent, i);
 811		if (last_block == 0)
 812			last_block = blocknr;
 813
 814		if (i > 0) {
 815			other = btrfs_node_blockptr(parent, i - 1);
 816			close = close_blocks(blocknr, other, blocksize);
 817		}
 818		if (!close && i < end_slot) {
 819			other = btrfs_node_blockptr(parent, i + 1);
 820			close = close_blocks(blocknr, other, blocksize);
 821		}
 822		if (close) {
 823			last_block = blocknr;
 824			continue;
 825		}
 826
 827		cur = btrfs_read_node_slot(parent, i);
 828		if (IS_ERR(cur))
 829			return PTR_ERR(cur);
 830		if (search_start == 0)
 831			search_start = last_block;
 832
 833		btrfs_tree_lock(cur);
 834		err = __btrfs_cow_block(trans, root, cur, parent, i,
 835					&cur, search_start,
 836					min(16 * blocksize,
 837					    (end_slot - i) * blocksize),
 838					BTRFS_NESTING_COW);
 839		if (err) {
 840			btrfs_tree_unlock(cur);
 841			free_extent_buffer(cur);
 842			break;
 843		}
 844		search_start = cur->start;
 845		last_block = cur->start;
 846		*last_ret = search_start;
 847		btrfs_tree_unlock(cur);
 848		free_extent_buffer(cur);
 849	}
 850	return err;
 851}
 852
 853/*
 854 * Search for a key in the given extent_buffer.
 855 *
 856 * The lower boundary for the search is specified by the slot number @low. Use a
 857 * value of 0 to search over the whole extent buffer.
 
 858 *
 859 * The slot in the extent buffer is returned via @slot. If the key exists in the
 860 * extent buffer, then @slot will point to the slot where the key is, otherwise
 861 * it points to the slot where you would insert the key.
 862 *
 863 * Slot may point to the total number of items (i.e. one position beyond the last
 864 * key) if the key is bigger than the last key in the extent buffer.
 865 */
 866static noinline int generic_bin_search(struct extent_buffer *eb, int low,
 867				       const struct btrfs_key *key, int *slot)
 868{
 869	unsigned long p;
 870	int item_size;
 871	int high = btrfs_header_nritems(eb);
 
 
 
 
 
 872	int ret;
 873	const int key_size = sizeof(struct btrfs_disk_key);
 874
 875	if (low > high) {
 876		btrfs_err(eb->fs_info,
 877		 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
 878			  __func__, low, high, eb->start,
 879			  btrfs_header_owner(eb), btrfs_header_level(eb));
 880		return -EINVAL;
 881	}
 882
 883	if (btrfs_header_level(eb) == 0) {
 884		p = offsetof(struct btrfs_leaf, items);
 885		item_size = sizeof(struct btrfs_item);
 886	} else {
 887		p = offsetof(struct btrfs_node, ptrs);
 888		item_size = sizeof(struct btrfs_key_ptr);
 889	}
 890
 891	while (low < high) {
 892		unsigned long oip;
 
 893		unsigned long offset;
 894		struct btrfs_disk_key *tmp;
 895		struct btrfs_disk_key unaligned;
 896		int mid;
 897
 898		mid = (low + high) / 2;
 899		offset = p + mid * item_size;
 900		oip = offset_in_page(offset);
 901
 902		if (oip + key_size <= PAGE_SIZE) {
 903			const unsigned long idx = get_eb_page_index(offset);
 904			char *kaddr = page_address(eb->pages[idx]);
 905
 906			oip = get_eb_offset_in_page(eb, offset);
 907			tmp = (struct btrfs_disk_key *)(kaddr + oip);
 908		} else {
 909			read_extent_buffer(eb, &unaligned, offset, key_size);
 910			tmp = &unaligned;
 911		}
 912
 913		ret = comp_keys(tmp, key);
 914
 915		if (ret < 0)
 916			low = mid + 1;
 917		else if (ret > 0)
 918			high = mid;
 919		else {
 920			*slot = mid;
 921			return 0;
 922		}
 923	}
 924	*slot = low;
 925	return 1;
 926}
 927
 928/*
 929 * Simple binary search on an extent buffer. Works for both leaves and nodes, and
 930 * always searches over the whole range of keys (slot 0 to slot 'nritems - 1').
 931 */
 932int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
 933		     int *slot)
 934{
 935	return generic_bin_search(eb, 0, key, slot);
 936}
 937
 938static void root_add_used(struct btrfs_root *root, u32 size)
 939{
 940	spin_lock(&root->accounting_lock);
 941	btrfs_set_root_used(&root->root_item,
 942			    btrfs_root_used(&root->root_item) + size);
 943	spin_unlock(&root->accounting_lock);
 944}
 945
 946static void root_sub_used(struct btrfs_root *root, u32 size)
 947{
 948	spin_lock(&root->accounting_lock);
 949	btrfs_set_root_used(&root->root_item,
 950			    btrfs_root_used(&root->root_item) - size);
 951	spin_unlock(&root->accounting_lock);
 952}
 953
 954/* given a node and slot number, this reads the blocks it points to.  The
 955 * extent buffer is returned with a reference taken (but unlocked).
 956 */
 957struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
 958					   int slot)
 959{
 960	int level = btrfs_header_level(parent);
 961	struct btrfs_tree_parent_check check = { 0 };
 962	struct extent_buffer *eb;
 963
 964	if (slot < 0 || slot >= btrfs_header_nritems(parent))
 965		return ERR_PTR(-ENOENT);
 966
 967	BUG_ON(level == 0);
 968
 969	check.level = level - 1;
 970	check.transid = btrfs_node_ptr_generation(parent, slot);
 971	check.owner_root = btrfs_header_owner(parent);
 972	check.has_first_key = true;
 973	btrfs_node_key_to_cpu(parent, &check.first_key, slot);
 974
 975	eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot),
 976			     &check);
 977	if (IS_ERR(eb))
 978		return eb;
 979	if (!extent_buffer_uptodate(eb)) {
 980		free_extent_buffer(eb);
 981		return ERR_PTR(-EIO);
 982	}
 983
 984	return eb;
 985}
 986
 987/*
 988 * node level balancing, used to make sure nodes are in proper order for
 989 * item deletion.  We balance from the top down, so we have to make sure
 990 * that a deletion won't leave an node completely empty later on.
 991 */
 992static noinline int balance_level(struct btrfs_trans_handle *trans,
 993			 struct btrfs_root *root,
 994			 struct btrfs_path *path, int level)
 995{
 996	struct btrfs_fs_info *fs_info = root->fs_info;
 997	struct extent_buffer *right = NULL;
 998	struct extent_buffer *mid;
 999	struct extent_buffer *left = NULL;
1000	struct extent_buffer *parent = NULL;
1001	int ret = 0;
1002	int wret;
1003	int pslot;
1004	int orig_slot = path->slots[level];
1005	u64 orig_ptr;
1006
1007	ASSERT(level > 0);
1008
1009	mid = path->nodes[level];
1010
1011	WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK);
1012	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1013
1014	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1015
1016	if (level < BTRFS_MAX_LEVEL - 1) {
1017		parent = path->nodes[level + 1];
1018		pslot = path->slots[level + 1];
1019	}
1020
1021	/*
1022	 * deal with the case where there is only one pointer in the root
1023	 * by promoting the node below to a root
1024	 */
1025	if (!parent) {
1026		struct extent_buffer *child;
1027
1028		if (btrfs_header_nritems(mid) != 1)
1029			return 0;
1030
1031		/* promote the child to a root */
1032		child = btrfs_read_node_slot(mid, 0);
1033		if (IS_ERR(child)) {
1034			ret = PTR_ERR(child);
1035			btrfs_handle_fs_error(fs_info, ret, NULL);
1036			goto enospc;
1037		}
1038
1039		btrfs_tree_lock(child);
1040		ret = btrfs_cow_block(trans, root, child, mid, 0, &child,
1041				      BTRFS_NESTING_COW);
1042		if (ret) {
1043			btrfs_tree_unlock(child);
1044			free_extent_buffer(child);
1045			goto enospc;
1046		}
1047
1048		ret = btrfs_tree_mod_log_insert_root(root->node, child, true);
1049		BUG_ON(ret < 0);
 
 
 
 
 
1050		rcu_assign_pointer(root->node, child);
1051
1052		add_root_to_dirty_list(root);
1053		btrfs_tree_unlock(child);
1054
1055		path->locks[level] = 0;
1056		path->nodes[level] = NULL;
1057		btrfs_clean_tree_block(mid);
1058		btrfs_tree_unlock(mid);
1059		/* once for the path */
1060		free_extent_buffer(mid);
1061
1062		root_sub_used(root, mid->len);
1063		btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1);
1064		/* once for the root ptr */
1065		free_extent_buffer_stale(mid);
 
 
 
 
1066		return 0;
1067	}
1068	if (btrfs_header_nritems(mid) >
1069	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
1070		return 0;
1071
1072	left = btrfs_read_node_slot(parent, pslot - 1);
1073	if (IS_ERR(left))
1074		left = NULL;
 
 
 
 
1075
1076	if (left) {
1077		__btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
1078		wret = btrfs_cow_block(trans, root, left,
1079				       parent, pslot - 1, &left,
1080				       BTRFS_NESTING_LEFT_COW);
1081		if (wret) {
1082			ret = wret;
1083			goto enospc;
1084		}
1085	}
1086
1087	right = btrfs_read_node_slot(parent, pslot + 1);
1088	if (IS_ERR(right))
1089		right = NULL;
 
 
 
 
1090
1091	if (right) {
1092		__btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
1093		wret = btrfs_cow_block(trans, root, right,
1094				       parent, pslot + 1, &right,
1095				       BTRFS_NESTING_RIGHT_COW);
1096		if (wret) {
1097			ret = wret;
1098			goto enospc;
1099		}
1100	}
1101
1102	/* first, try to make some room in the middle buffer */
1103	if (left) {
1104		orig_slot += btrfs_header_nritems(left);
1105		wret = push_node_left(trans, left, mid, 1);
1106		if (wret < 0)
1107			ret = wret;
1108	}
1109
1110	/*
1111	 * then try to empty the right most buffer into the middle
1112	 */
1113	if (right) {
1114		wret = push_node_left(trans, mid, right, 1);
1115		if (wret < 0 && wret != -ENOSPC)
1116			ret = wret;
1117		if (btrfs_header_nritems(right) == 0) {
1118			btrfs_clean_tree_block(right);
1119			btrfs_tree_unlock(right);
1120			del_ptr(root, path, level + 1, pslot + 1);
1121			root_sub_used(root, right->len);
1122			btrfs_free_tree_block(trans, btrfs_root_id(root), right,
1123					      0, 1);
 
 
 
 
 
1124			free_extent_buffer_stale(right);
1125			right = NULL;
 
 
 
 
1126		} else {
1127			struct btrfs_disk_key right_key;
1128			btrfs_node_key(right, &right_key, 0);
1129			ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
1130					BTRFS_MOD_LOG_KEY_REPLACE);
1131			BUG_ON(ret < 0);
 
 
 
1132			btrfs_set_node_key(parent, &right_key, pslot + 1);
1133			btrfs_mark_buffer_dirty(parent);
1134		}
1135	}
1136	if (btrfs_header_nritems(mid) == 1) {
1137		/*
1138		 * we're not allowed to leave a node with one item in the
1139		 * tree during a delete.  A deletion from lower in the tree
1140		 * could try to delete the only pointer in this node.
1141		 * So, pull some keys from the left.
1142		 * There has to be a left pointer at this point because
1143		 * otherwise we would have pulled some pointers from the
1144		 * right
1145		 */
1146		if (!left) {
1147			ret = -EROFS;
1148			btrfs_handle_fs_error(fs_info, ret, NULL);
1149			goto enospc;
 
 
 
 
1150		}
1151		wret = balance_node_right(trans, mid, left);
1152		if (wret < 0) {
1153			ret = wret;
1154			goto enospc;
1155		}
1156		if (wret == 1) {
1157			wret = push_node_left(trans, left, mid, 1);
1158			if (wret < 0)
1159				ret = wret;
1160		}
1161		BUG_ON(wret == 1);
1162	}
1163	if (btrfs_header_nritems(mid) == 0) {
1164		btrfs_clean_tree_block(mid);
1165		btrfs_tree_unlock(mid);
1166		del_ptr(root, path, level + 1, pslot);
1167		root_sub_used(root, mid->len);
1168		btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1);
 
 
 
 
 
1169		free_extent_buffer_stale(mid);
1170		mid = NULL;
 
 
 
 
1171	} else {
1172		/* update the parent key to reflect our changes */
1173		struct btrfs_disk_key mid_key;
1174		btrfs_node_key(mid, &mid_key, 0);
1175		ret = btrfs_tree_mod_log_insert_key(parent, pslot,
1176						    BTRFS_MOD_LOG_KEY_REPLACE);
1177		BUG_ON(ret < 0);
 
 
 
1178		btrfs_set_node_key(parent, &mid_key, pslot);
1179		btrfs_mark_buffer_dirty(parent);
1180	}
1181
1182	/* update the path */
1183	if (left) {
1184		if (btrfs_header_nritems(left) > orig_slot) {
1185			atomic_inc(&left->refs);
1186			/* left was locked after cow */
1187			path->nodes[level] = left;
1188			path->slots[level + 1] -= 1;
1189			path->slots[level] = orig_slot;
1190			if (mid) {
1191				btrfs_tree_unlock(mid);
1192				free_extent_buffer(mid);
1193			}
1194		} else {
1195			orig_slot -= btrfs_header_nritems(left);
1196			path->slots[level] = orig_slot;
1197		}
1198	}
1199	/* double check we haven't messed things up */
1200	if (orig_ptr !=
1201	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1202		BUG();
1203enospc:
1204	if (right) {
1205		btrfs_tree_unlock(right);
1206		free_extent_buffer(right);
1207	}
1208	if (left) {
1209		if (path->nodes[level] != left)
1210			btrfs_tree_unlock(left);
1211		free_extent_buffer(left);
1212	}
1213	return ret;
1214}
1215
1216/* Node balancing for insertion.  Here we only split or push nodes around
1217 * when they are completely full.  This is also done top down, so we
1218 * have to be pessimistic.
1219 */
1220static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1221					  struct btrfs_root *root,
1222					  struct btrfs_path *path, int level)
1223{
1224	struct btrfs_fs_info *fs_info = root->fs_info;
1225	struct extent_buffer *right = NULL;
1226	struct extent_buffer *mid;
1227	struct extent_buffer *left = NULL;
1228	struct extent_buffer *parent = NULL;
1229	int ret = 0;
1230	int wret;
1231	int pslot;
1232	int orig_slot = path->slots[level];
1233
1234	if (level == 0)
1235		return 1;
1236
1237	mid = path->nodes[level];
1238	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1239
1240	if (level < BTRFS_MAX_LEVEL - 1) {
1241		parent = path->nodes[level + 1];
1242		pslot = path->slots[level + 1];
1243	}
1244
1245	if (!parent)
1246		return 1;
1247
1248	left = btrfs_read_node_slot(parent, pslot - 1);
1249	if (IS_ERR(left))
1250		left = NULL;
1251
1252	/* first, try to make some room in the middle buffer */
1253	if (left) {
1254		u32 left_nr;
1255
1256		__btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
 
 
 
 
1257
1258		left_nr = btrfs_header_nritems(left);
1259		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
1260			wret = 1;
1261		} else {
1262			ret = btrfs_cow_block(trans, root, left, parent,
1263					      pslot - 1, &left,
1264					      BTRFS_NESTING_LEFT_COW);
1265			if (ret)
1266				wret = 1;
1267			else {
1268				wret = push_node_left(trans, left, mid, 0);
1269			}
1270		}
1271		if (wret < 0)
1272			ret = wret;
1273		if (wret == 0) {
1274			struct btrfs_disk_key disk_key;
1275			orig_slot += left_nr;
1276			btrfs_node_key(mid, &disk_key, 0);
1277			ret = btrfs_tree_mod_log_insert_key(parent, pslot,
1278					BTRFS_MOD_LOG_KEY_REPLACE);
1279			BUG_ON(ret < 0);
 
 
 
 
 
1280			btrfs_set_node_key(parent, &disk_key, pslot);
1281			btrfs_mark_buffer_dirty(parent);
1282			if (btrfs_header_nritems(left) > orig_slot) {
1283				path->nodes[level] = left;
1284				path->slots[level + 1] -= 1;
1285				path->slots[level] = orig_slot;
1286				btrfs_tree_unlock(mid);
1287				free_extent_buffer(mid);
1288			} else {
1289				orig_slot -=
1290					btrfs_header_nritems(left);
1291				path->slots[level] = orig_slot;
1292				btrfs_tree_unlock(left);
1293				free_extent_buffer(left);
1294			}
1295			return 0;
1296		}
1297		btrfs_tree_unlock(left);
1298		free_extent_buffer(left);
1299	}
1300	right = btrfs_read_node_slot(parent, pslot + 1);
1301	if (IS_ERR(right))
1302		right = NULL;
1303
1304	/*
1305	 * then try to empty the right most buffer into the middle
1306	 */
1307	if (right) {
1308		u32 right_nr;
1309
1310		__btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
 
 
 
 
1311
1312		right_nr = btrfs_header_nritems(right);
1313		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
1314			wret = 1;
1315		} else {
1316			ret = btrfs_cow_block(trans, root, right,
1317					      parent, pslot + 1,
1318					      &right, BTRFS_NESTING_RIGHT_COW);
1319			if (ret)
1320				wret = 1;
1321			else {
1322				wret = balance_node_right(trans, right, mid);
1323			}
1324		}
1325		if (wret < 0)
1326			ret = wret;
1327		if (wret == 0) {
1328			struct btrfs_disk_key disk_key;
1329
1330			btrfs_node_key(right, &disk_key, 0);
1331			ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
1332					BTRFS_MOD_LOG_KEY_REPLACE);
1333			BUG_ON(ret < 0);
 
 
 
 
 
1334			btrfs_set_node_key(parent, &disk_key, pslot + 1);
1335			btrfs_mark_buffer_dirty(parent);
1336
1337			if (btrfs_header_nritems(mid) <= orig_slot) {
1338				path->nodes[level] = right;
1339				path->slots[level + 1] += 1;
1340				path->slots[level] = orig_slot -
1341					btrfs_header_nritems(mid);
1342				btrfs_tree_unlock(mid);
1343				free_extent_buffer(mid);
1344			} else {
1345				btrfs_tree_unlock(right);
1346				free_extent_buffer(right);
1347			}
1348			return 0;
1349		}
1350		btrfs_tree_unlock(right);
1351		free_extent_buffer(right);
1352	}
1353	return 1;
1354}
1355
1356/*
1357 * readahead one full node of leaves, finding things that are close
1358 * to the block in 'slot', and triggering ra on them.
1359 */
1360static void reada_for_search(struct btrfs_fs_info *fs_info,
1361			     struct btrfs_path *path,
1362			     int level, int slot, u64 objectid)
1363{
1364	struct extent_buffer *node;
1365	struct btrfs_disk_key disk_key;
1366	u32 nritems;
1367	u64 search;
1368	u64 target;
1369	u64 nread = 0;
1370	u64 nread_max;
1371	u32 nr;
1372	u32 blocksize;
1373	u32 nscan = 0;
1374
1375	if (level != 1 && path->reada != READA_FORWARD_ALWAYS)
1376		return;
1377
1378	if (!path->nodes[level])
1379		return;
1380
1381	node = path->nodes[level];
1382
1383	/*
1384	 * Since the time between visiting leaves is much shorter than the time
1385	 * between visiting nodes, limit read ahead of nodes to 1, to avoid too
1386	 * much IO at once (possibly random).
1387	 */
1388	if (path->reada == READA_FORWARD_ALWAYS) {
1389		if (level > 1)
1390			nread_max = node->fs_info->nodesize;
1391		else
1392			nread_max = SZ_128K;
1393	} else {
1394		nread_max = SZ_64K;
1395	}
1396
1397	search = btrfs_node_blockptr(node, slot);
1398	blocksize = fs_info->nodesize;
1399	if (path->reada != READA_FORWARD_ALWAYS) {
1400		struct extent_buffer *eb;
1401
1402		eb = find_extent_buffer(fs_info, search);
1403		if (eb) {
1404			free_extent_buffer(eb);
1405			return;
1406		}
1407	}
1408
1409	target = search;
1410
1411	nritems = btrfs_header_nritems(node);
1412	nr = slot;
1413
1414	while (1) {
1415		if (path->reada == READA_BACK) {
1416			if (nr == 0)
1417				break;
1418			nr--;
1419		} else if (path->reada == READA_FORWARD ||
1420			   path->reada == READA_FORWARD_ALWAYS) {
1421			nr++;
1422			if (nr >= nritems)
1423				break;
1424		}
1425		if (path->reada == READA_BACK && objectid) {
1426			btrfs_node_key(node, &disk_key, nr);
1427			if (btrfs_disk_key_objectid(&disk_key) != objectid)
1428				break;
1429		}
1430		search = btrfs_node_blockptr(node, nr);
1431		if (path->reada == READA_FORWARD_ALWAYS ||
1432		    (search <= target && target - search <= 65536) ||
1433		    (search > target && search - target <= 65536)) {
1434			btrfs_readahead_node_child(node, nr);
1435			nread += blocksize;
1436		}
1437		nscan++;
1438		if (nread > nread_max || nscan > 32)
1439			break;
1440	}
1441}
1442
1443static noinline void reada_for_balance(struct btrfs_path *path, int level)
1444{
1445	struct extent_buffer *parent;
1446	int slot;
1447	int nritems;
1448
1449	parent = path->nodes[level + 1];
1450	if (!parent)
1451		return;
1452
1453	nritems = btrfs_header_nritems(parent);
1454	slot = path->slots[level + 1];
1455
1456	if (slot > 0)
1457		btrfs_readahead_node_child(parent, slot - 1);
1458	if (slot + 1 < nritems)
1459		btrfs_readahead_node_child(parent, slot + 1);
1460}
1461
1462
1463/*
1464 * when we walk down the tree, it is usually safe to unlock the higher layers
1465 * in the tree.  The exceptions are when our path goes through slot 0, because
1466 * operations on the tree might require changing key pointers higher up in the
1467 * tree.
1468 *
1469 * callers might also have set path->keep_locks, which tells this code to keep
1470 * the lock if the path points to the last slot in the block.  This is part of
1471 * walking through the tree, and selecting the next slot in the higher block.
1472 *
1473 * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
1474 * if lowest_unlock is 1, level 0 won't be unlocked
1475 */
1476static noinline void unlock_up(struct btrfs_path *path, int level,
1477			       int lowest_unlock, int min_write_lock_level,
1478			       int *write_lock_level)
1479{
1480	int i;
1481	int skip_level = level;
1482	bool check_skip = true;
1483
1484	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1485		if (!path->nodes[i])
1486			break;
1487		if (!path->locks[i])
1488			break;
1489
1490		if (check_skip) {
1491			if (path->slots[i] == 0) {
1492				skip_level = i + 1;
1493				continue;
1494			}
1495
1496			if (path->keep_locks) {
1497				u32 nritems;
1498
1499				nritems = btrfs_header_nritems(path->nodes[i]);
1500				if (nritems < 1 || path->slots[i] >= nritems - 1) {
1501					skip_level = i + 1;
1502					continue;
1503				}
1504			}
1505		}
1506
1507		if (i >= lowest_unlock && i > skip_level) {
1508			check_skip = false;
1509			btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
1510			path->locks[i] = 0;
1511			if (write_lock_level &&
1512			    i > min_write_lock_level &&
1513			    i <= *write_lock_level) {
1514				*write_lock_level = i - 1;
1515			}
1516		}
1517	}
1518}
1519
1520/*
1521 * Helper function for btrfs_search_slot() and other functions that do a search
1522 * on a btree. The goal is to find a tree block in the cache (the radix tree at
1523 * fs_info->buffer_radix), but if we can't find it, or it's not up to date, read
1524 * its pages from disk.
1525 *
1526 * Returns -EAGAIN, with the path unlocked, if the caller needs to repeat the
1527 * whole btree search, starting again from the current root node.
1528 */
1529static int
1530read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
1531		      struct extent_buffer **eb_ret, int level, int slot,
1532		      const struct btrfs_key *key)
1533{
1534	struct btrfs_fs_info *fs_info = root->fs_info;
1535	struct btrfs_tree_parent_check check = { 0 };
1536	u64 blocknr;
1537	u64 gen;
1538	struct extent_buffer *tmp;
1539	int ret;
1540	int parent_level;
1541	bool unlock_up;
 
 
 
1542
1543	unlock_up = ((level + 1 < BTRFS_MAX_LEVEL) && p->locks[level + 1]);
1544	blocknr = btrfs_node_blockptr(*eb_ret, slot);
1545	gen = btrfs_node_ptr_generation(*eb_ret, slot);
1546	parent_level = btrfs_header_level(*eb_ret);
1547	btrfs_node_key_to_cpu(*eb_ret, &check.first_key, slot);
1548	check.has_first_key = true;
1549	check.level = parent_level - 1;
1550	check.transid = gen;
1551	check.owner_root = root->root_key.objectid;
1552
1553	/*
1554	 * If we need to read an extent buffer from disk and we are holding locks
1555	 * on upper level nodes, we unlock all the upper nodes before reading the
1556	 * extent buffer, and then return -EAGAIN to the caller as it needs to
1557	 * restart the search. We don't release the lock on the current level
1558	 * because we need to walk this node to figure out which blocks to read.
1559	 */
1560	tmp = find_extent_buffer(fs_info, blocknr);
1561	if (tmp) {
1562		if (p->reada == READA_FORWARD_ALWAYS)
1563			reada_for_search(fs_info, p, level, slot, key->objectid);
1564
1565		/* first we do an atomic uptodate check */
1566		if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
1567			/*
1568			 * Do extra check for first_key, eb can be stale due to
1569			 * being cached, read from scrub, or have multiple
1570			 * parents (shared tree blocks).
1571			 */
1572			if (btrfs_verify_level_key(tmp,
1573					parent_level - 1, &check.first_key, gen)) {
1574				free_extent_buffer(tmp);
1575				return -EUCLEAN;
1576			}
1577			*eb_ret = tmp;
1578			return 0;
 
 
1579		}
1580
1581		if (p->nowait) {
1582			free_extent_buffer(tmp);
1583			return -EAGAIN;
1584		}
1585
1586		if (unlock_up)
1587			btrfs_unlock_up_safe(p, level + 1);
1588
1589		/* now we're allowed to do a blocking uptodate check */
1590		ret = btrfs_read_extent_buffer(tmp, &check);
1591		if (ret) {
1592			free_extent_buffer(tmp);
1593			btrfs_release_path(p);
1594			return -EIO;
1595		}
1596		if (btrfs_check_eb_owner(tmp, root->root_key.objectid)) {
1597			free_extent_buffer(tmp);
1598			btrfs_release_path(p);
1599			return -EUCLEAN;
 
1600		}
1601
1602		if (unlock_up)
1603			ret = -EAGAIN;
 
 
 
 
1604
 
 
 
 
 
1605		goto out;
1606	} else if (p->nowait) {
1607		return -EAGAIN;
 
1608	}
1609
1610	if (unlock_up) {
1611		btrfs_unlock_up_safe(p, level + 1);
1612		ret = -EAGAIN;
1613	} else {
1614		ret = 0;
1615	}
1616
1617	if (p->reada != READA_NONE)
1618		reada_for_search(fs_info, p, level, slot, key->objectid);
1619
1620	tmp = read_tree_block(fs_info, blocknr, &check);
1621	if (IS_ERR(tmp)) {
 
 
 
 
 
 
 
 
 
 
 
1622		btrfs_release_path(p);
1623		return PTR_ERR(tmp);
 
 
 
 
 
 
 
1624	}
 
1625	/*
1626	 * If the read above didn't mark this buffer up to date,
1627	 * it will never end up being up to date.  Set ret to EIO now
1628	 * and give up so that our caller doesn't loop forever
1629	 * on our EAGAINs.
1630	 */
1631	if (!extent_buffer_uptodate(tmp))
1632		ret = -EIO;
 
 
1633
1634out:
1635	if (ret == 0) {
 
1636		*eb_ret = tmp;
1637	} else {
1638		free_extent_buffer(tmp);
1639		btrfs_release_path(p);
1640	}
 
 
 
 
 
 
 
 
 
 
 
1641
1642	return ret;
1643}
1644
1645/*
1646 * helper function for btrfs_search_slot.  This does all of the checks
1647 * for node-level blocks and does any balancing required based on
1648 * the ins_len.
1649 *
1650 * If no extra work was required, zero is returned.  If we had to
1651 * drop the path, -EAGAIN is returned and btrfs_search_slot must
1652 * start over
1653 */
1654static int
1655setup_nodes_for_search(struct btrfs_trans_handle *trans,
1656		       struct btrfs_root *root, struct btrfs_path *p,
1657		       struct extent_buffer *b, int level, int ins_len,
1658		       int *write_lock_level)
1659{
1660	struct btrfs_fs_info *fs_info = root->fs_info;
1661	int ret = 0;
1662
1663	if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
1664	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
1665
1666		if (*write_lock_level < level + 1) {
1667			*write_lock_level = level + 1;
1668			btrfs_release_path(p);
1669			return -EAGAIN;
1670		}
1671
1672		reada_for_balance(p, level);
1673		ret = split_node(trans, root, p, level);
1674
1675		b = p->nodes[level];
1676	} else if (ins_len < 0 && btrfs_header_nritems(b) <
1677		   BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
1678
1679		if (*write_lock_level < level + 1) {
1680			*write_lock_level = level + 1;
1681			btrfs_release_path(p);
1682			return -EAGAIN;
1683		}
1684
1685		reada_for_balance(p, level);
1686		ret = balance_level(trans, root, p, level);
1687		if (ret)
1688			return ret;
1689
1690		b = p->nodes[level];
1691		if (!b) {
1692			btrfs_release_path(p);
1693			return -EAGAIN;
1694		}
1695		BUG_ON(btrfs_header_nritems(b) == 1);
1696	}
1697	return ret;
1698}
1699
1700int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
1701		u64 iobjectid, u64 ioff, u8 key_type,
1702		struct btrfs_key *found_key)
1703{
1704	int ret;
1705	struct btrfs_key key;
1706	struct extent_buffer *eb;
1707
1708	ASSERT(path);
1709	ASSERT(found_key);
1710
1711	key.type = key_type;
1712	key.objectid = iobjectid;
1713	key.offset = ioff;
1714
1715	ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1716	if (ret < 0)
1717		return ret;
1718
1719	eb = path->nodes[0];
1720	if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
1721		ret = btrfs_next_leaf(fs_root, path);
1722		if (ret)
1723			return ret;
1724		eb = path->nodes[0];
1725	}
1726
1727	btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
1728	if (found_key->type != key.type ||
1729			found_key->objectid != key.objectid)
1730		return 1;
1731
1732	return 0;
1733}
1734
1735static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
1736							struct btrfs_path *p,
1737							int write_lock_level)
1738{
1739	struct extent_buffer *b;
1740	int root_lock = 0;
1741	int level = 0;
1742
1743	if (p->search_commit_root) {
1744		b = root->commit_root;
1745		atomic_inc(&b->refs);
1746		level = btrfs_header_level(b);
1747		/*
1748		 * Ensure that all callers have set skip_locking when
1749		 * p->search_commit_root = 1.
1750		 */
1751		ASSERT(p->skip_locking == 1);
1752
1753		goto out;
1754	}
1755
1756	if (p->skip_locking) {
1757		b = btrfs_root_node(root);
1758		level = btrfs_header_level(b);
1759		goto out;
1760	}
1761
1762	/* We try very hard to do read locks on the root */
1763	root_lock = BTRFS_READ_LOCK;
1764
1765	/*
1766	 * If the level is set to maximum, we can skip trying to get the read
1767	 * lock.
1768	 */
1769	if (write_lock_level < BTRFS_MAX_LEVEL) {
1770		/*
1771		 * We don't know the level of the root node until we actually
1772		 * have it read locked
1773		 */
1774		if (p->nowait) {
1775			b = btrfs_try_read_lock_root_node(root);
1776			if (IS_ERR(b))
1777				return b;
1778		} else {
1779			b = btrfs_read_lock_root_node(root);
1780		}
1781		level = btrfs_header_level(b);
1782		if (level > write_lock_level)
1783			goto out;
1784
1785		/* Whoops, must trade for write lock */
1786		btrfs_tree_read_unlock(b);
1787		free_extent_buffer(b);
1788	}
1789
1790	b = btrfs_lock_root_node(root);
1791	root_lock = BTRFS_WRITE_LOCK;
1792
1793	/* The level might have changed, check again */
1794	level = btrfs_header_level(b);
1795
1796out:
1797	/*
1798	 * The root may have failed to write out at some point, and thus is no
1799	 * longer valid, return an error in this case.
1800	 */
1801	if (!extent_buffer_uptodate(b)) {
1802		if (root_lock)
1803			btrfs_tree_unlock_rw(b, root_lock);
1804		free_extent_buffer(b);
1805		return ERR_PTR(-EIO);
1806	}
1807
1808	p->nodes[level] = b;
1809	if (!p->skip_locking)
1810		p->locks[level] = root_lock;
1811	/*
1812	 * Callers are responsible for dropping b's references.
1813	 */
1814	return b;
1815}
1816
1817/*
1818 * Replace the extent buffer at the lowest level of the path with a cloned
1819 * version. The purpose is to be able to use it safely, after releasing the
1820 * commit root semaphore, even if relocation is happening in parallel, the
1821 * transaction used for relocation is committed and the extent buffer is
1822 * reallocated in the next transaction.
1823 *
1824 * This is used in a context where the caller does not prevent transaction
1825 * commits from happening, either by holding a transaction handle or holding
1826 * some lock, while it's doing searches through a commit root.
1827 * At the moment it's only used for send operations.
1828 */
1829static int finish_need_commit_sem_search(struct btrfs_path *path)
1830{
1831	const int i = path->lowest_level;
1832	const int slot = path->slots[i];
1833	struct extent_buffer *lowest = path->nodes[i];
1834	struct extent_buffer *clone;
1835
1836	ASSERT(path->need_commit_sem);
1837
1838	if (!lowest)
1839		return 0;
1840
1841	lockdep_assert_held_read(&lowest->fs_info->commit_root_sem);
1842
1843	clone = btrfs_clone_extent_buffer(lowest);
1844	if (!clone)
1845		return -ENOMEM;
1846
1847	btrfs_release_path(path);
1848	path->nodes[i] = clone;
1849	path->slots[i] = slot;
1850
1851	return 0;
1852}
1853
1854static inline int search_for_key_slot(struct extent_buffer *eb,
1855				      int search_low_slot,
1856				      const struct btrfs_key *key,
1857				      int prev_cmp,
1858				      int *slot)
1859{
1860	/*
1861	 * If a previous call to btrfs_bin_search() on a parent node returned an
1862	 * exact match (prev_cmp == 0), we can safely assume the target key will
1863	 * always be at slot 0 on lower levels, since each key pointer
1864	 * (struct btrfs_key_ptr) refers to the lowest key accessible from the
1865	 * subtree it points to. Thus we can skip searching lower levels.
1866	 */
1867	if (prev_cmp == 0) {
1868		*slot = 0;
1869		return 0;
1870	}
1871
1872	return generic_bin_search(eb, search_low_slot, key, slot);
1873}
1874
1875static int search_leaf(struct btrfs_trans_handle *trans,
1876		       struct btrfs_root *root,
1877		       const struct btrfs_key *key,
1878		       struct btrfs_path *path,
1879		       int ins_len,
1880		       int prev_cmp)
1881{
1882	struct extent_buffer *leaf = path->nodes[0];
1883	int leaf_free_space = -1;
1884	int search_low_slot = 0;
1885	int ret;
1886	bool do_bin_search = true;
1887
1888	/*
1889	 * If we are doing an insertion, the leaf has enough free space and the
1890	 * destination slot for the key is not slot 0, then we can unlock our
1891	 * write lock on the parent, and any other upper nodes, before doing the
1892	 * binary search on the leaf (with search_for_key_slot()), allowing other
1893	 * tasks to lock the parent and any other upper nodes.
1894	 */
1895	if (ins_len > 0) {
1896		/*
1897		 * Cache the leaf free space, since we will need it later and it
1898		 * will not change until then.
1899		 */
1900		leaf_free_space = btrfs_leaf_free_space(leaf);
1901
1902		/*
1903		 * !path->locks[1] means we have a single node tree, the leaf is
1904		 * the root of the tree.
1905		 */
1906		if (path->locks[1] && leaf_free_space >= ins_len) {
1907			struct btrfs_disk_key first_key;
1908
1909			ASSERT(btrfs_header_nritems(leaf) > 0);
1910			btrfs_item_key(leaf, &first_key, 0);
1911
1912			/*
1913			 * Doing the extra comparison with the first key is cheap,
1914			 * taking into account that the first key is very likely
1915			 * already in a cache line because it immediately follows
1916			 * the extent buffer's header and we have recently accessed
1917			 * the header's level field.
1918			 */
1919			ret = comp_keys(&first_key, key);
1920			if (ret < 0) {
1921				/*
1922				 * The first key is smaller than the key we want
1923				 * to insert, so we are safe to unlock all upper
1924				 * nodes and we have to do the binary search.
1925				 *
1926				 * We do use btrfs_unlock_up_safe() and not
1927				 * unlock_up() because the later does not unlock
1928				 * nodes with a slot of 0 - we can safely unlock
1929				 * any node even if its slot is 0 since in this
1930				 * case the key does not end up at slot 0 of the
1931				 * leaf and there's no need to split the leaf.
1932				 */
1933				btrfs_unlock_up_safe(path, 1);
1934				search_low_slot = 1;
1935			} else {
1936				/*
1937				 * The first key is >= then the key we want to
1938				 * insert, so we can skip the binary search as
1939				 * the target key will be at slot 0.
1940				 *
1941				 * We can not unlock upper nodes when the key is
1942				 * less than the first key, because we will need
1943				 * to update the key at slot 0 of the parent node
1944				 * and possibly of other upper nodes too.
1945				 * If the key matches the first key, then we can
1946				 * unlock all the upper nodes, using
1947				 * btrfs_unlock_up_safe() instead of unlock_up()
1948				 * as stated above.
1949				 */
1950				if (ret == 0)
1951					btrfs_unlock_up_safe(path, 1);
1952				/*
1953				 * ret is already 0 or 1, matching the result of
1954				 * a btrfs_bin_search() call, so there is no need
1955				 * to adjust it.
1956				 */
1957				do_bin_search = false;
1958				path->slots[0] = 0;
1959			}
1960		}
1961	}
1962
1963	if (do_bin_search) {
1964		ret = search_for_key_slot(leaf, search_low_slot, key,
1965					  prev_cmp, &path->slots[0]);
1966		if (ret < 0)
1967			return ret;
1968	}
1969
1970	if (ins_len > 0) {
1971		/*
1972		 * Item key already exists. In this case, if we are allowed to
1973		 * insert the item (for example, in dir_item case, item key
1974		 * collision is allowed), it will be merged with the original
1975		 * item. Only the item size grows, no new btrfs item will be
1976		 * added. If search_for_extension is not set, ins_len already
1977		 * accounts the size btrfs_item, deduct it here so leaf space
1978		 * check will be correct.
1979		 */
1980		if (ret == 0 && !path->search_for_extension) {
1981			ASSERT(ins_len >= sizeof(struct btrfs_item));
1982			ins_len -= sizeof(struct btrfs_item);
1983		}
1984
1985		ASSERT(leaf_free_space >= 0);
1986
1987		if (leaf_free_space < ins_len) {
1988			int err;
1989
1990			err = split_leaf(trans, root, key, path, ins_len,
1991					 (ret == 0));
1992			ASSERT(err <= 0);
1993			if (WARN_ON(err > 0))
1994				err = -EUCLEAN;
1995			if (err)
1996				ret = err;
1997		}
1998	}
1999
2000	return ret;
2001}
2002
2003/*
2004 * btrfs_search_slot - look for a key in a tree and perform necessary
2005 * modifications to preserve tree invariants.
2006 *
2007 * @trans:	Handle of transaction, used when modifying the tree
2008 * @p:		Holds all btree nodes along the search path
2009 * @root:	The root node of the tree
2010 * @key:	The key we are looking for
2011 * @ins_len:	Indicates purpose of search:
2012 *              >0  for inserts it's size of item inserted (*)
2013 *              <0  for deletions
2014 *               0  for plain searches, not modifying the tree
2015 *
2016 *              (*) If size of item inserted doesn't include
2017 *              sizeof(struct btrfs_item), then p->search_for_extension must
2018 *              be set.
2019 * @cow:	boolean should CoW operations be performed. Must always be 1
2020 *		when modifying the tree.
2021 *
2022 * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
2023 * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
2024 *
2025 * If @key is found, 0 is returned and you can find the item in the leaf level
2026 * of the path (level 0)
2027 *
2028 * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
2029 * points to the slot where it should be inserted
2030 *
2031 * If an error is encountered while searching the tree a negative error number
2032 * is returned
2033 */
2034int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2035		      const struct btrfs_key *key, struct btrfs_path *p,
2036		      int ins_len, int cow)
2037{
2038	struct btrfs_fs_info *fs_info = root->fs_info;
2039	struct extent_buffer *b;
2040	int slot;
2041	int ret;
2042	int err;
2043	int level;
2044	int lowest_unlock = 1;
2045	/* everything at write_lock_level or lower must be write locked */
2046	int write_lock_level = 0;
2047	u8 lowest_level = 0;
2048	int min_write_lock_level;
2049	int prev_cmp;
2050
 
 
 
 
2051	might_sleep();
2052
2053	lowest_level = p->lowest_level;
2054	WARN_ON(lowest_level && ins_len > 0);
2055	WARN_ON(p->nodes[0] != NULL);
2056	BUG_ON(!cow && ins_len);
2057
2058	/*
2059	 * For now only allow nowait for read only operations.  There's no
2060	 * strict reason why we can't, we just only need it for reads so it's
2061	 * only implemented for reads.
2062	 */
2063	ASSERT(!p->nowait || !cow);
2064
2065	if (ins_len < 0) {
2066		lowest_unlock = 2;
2067
2068		/* when we are removing items, we might have to go up to level
2069		 * two as we update tree pointers  Make sure we keep write
2070		 * for those levels as well
2071		 */
2072		write_lock_level = 2;
2073	} else if (ins_len > 0) {
2074		/*
2075		 * for inserting items, make sure we have a write lock on
2076		 * level 1 so we can update keys
2077		 */
2078		write_lock_level = 1;
2079	}
2080
2081	if (!cow)
2082		write_lock_level = -1;
2083
2084	if (cow && (p->keep_locks || p->lowest_level))
2085		write_lock_level = BTRFS_MAX_LEVEL;
2086
2087	min_write_lock_level = write_lock_level;
2088
2089	if (p->need_commit_sem) {
2090		ASSERT(p->search_commit_root);
2091		if (p->nowait) {
2092			if (!down_read_trylock(&fs_info->commit_root_sem))
2093				return -EAGAIN;
2094		} else {
2095			down_read(&fs_info->commit_root_sem);
2096		}
2097	}
2098
2099again:
2100	prev_cmp = -1;
2101	b = btrfs_search_slot_get_root(root, p, write_lock_level);
2102	if (IS_ERR(b)) {
2103		ret = PTR_ERR(b);
2104		goto done;
2105	}
2106
2107	while (b) {
2108		int dec = 0;
2109
2110		level = btrfs_header_level(b);
2111
2112		if (cow) {
2113			bool last_level = (level == (BTRFS_MAX_LEVEL - 1));
2114
2115			/*
2116			 * if we don't really need to cow this block
2117			 * then we don't want to set the path blocking,
2118			 * so we test it here
2119			 */
2120			if (!should_cow_block(trans, root, b))
2121				goto cow_done;
2122
2123			/*
2124			 * must have write locks on this node and the
2125			 * parent
2126			 */
2127			if (level > write_lock_level ||
2128			    (level + 1 > write_lock_level &&
2129			    level + 1 < BTRFS_MAX_LEVEL &&
2130			    p->nodes[level + 1])) {
2131				write_lock_level = level + 1;
2132				btrfs_release_path(p);
2133				goto again;
2134			}
2135
2136			if (last_level)
2137				err = btrfs_cow_block(trans, root, b, NULL, 0,
2138						      &b,
2139						      BTRFS_NESTING_COW);
2140			else
2141				err = btrfs_cow_block(trans, root, b,
2142						      p->nodes[level + 1],
2143						      p->slots[level + 1], &b,
2144						      BTRFS_NESTING_COW);
2145			if (err) {
2146				ret = err;
2147				goto done;
2148			}
2149		}
2150cow_done:
2151		p->nodes[level] = b;
2152
2153		/*
2154		 * we have a lock on b and as long as we aren't changing
2155		 * the tree, there is no way to for the items in b to change.
2156		 * It is safe to drop the lock on our parent before we
2157		 * go through the expensive btree search on b.
2158		 *
2159		 * If we're inserting or deleting (ins_len != 0), then we might
2160		 * be changing slot zero, which may require changing the parent.
2161		 * So, we can't drop the lock until after we know which slot
2162		 * we're operating on.
2163		 */
2164		if (!ins_len && !p->keep_locks) {
2165			int u = level + 1;
2166
2167			if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2168				btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2169				p->locks[u] = 0;
2170			}
2171		}
2172
2173		if (level == 0) {
2174			if (ins_len > 0)
2175				ASSERT(write_lock_level >= 1);
2176
2177			ret = search_leaf(trans, root, key, p, ins_len, prev_cmp);
2178			if (!p->search_for_split)
2179				unlock_up(p, level, lowest_unlock,
2180					  min_write_lock_level, NULL);
2181			goto done;
2182		}
2183
2184		ret = search_for_key_slot(b, 0, key, prev_cmp, &slot);
2185		if (ret < 0)
2186			goto done;
2187		prev_cmp = ret;
2188
2189		if (ret && slot > 0) {
2190			dec = 1;
2191			slot--;
2192		}
2193		p->slots[level] = slot;
2194		err = setup_nodes_for_search(trans, root, p, b, level, ins_len,
2195					     &write_lock_level);
2196		if (err == -EAGAIN)
2197			goto again;
2198		if (err) {
2199			ret = err;
2200			goto done;
2201		}
2202		b = p->nodes[level];
2203		slot = p->slots[level];
2204
2205		/*
2206		 * Slot 0 is special, if we change the key we have to update
2207		 * the parent pointer which means we must have a write lock on
2208		 * the parent
2209		 */
2210		if (slot == 0 && ins_len && write_lock_level < level + 1) {
2211			write_lock_level = level + 1;
2212			btrfs_release_path(p);
2213			goto again;
2214		}
2215
2216		unlock_up(p, level, lowest_unlock, min_write_lock_level,
2217			  &write_lock_level);
2218
2219		if (level == lowest_level) {
2220			if (dec)
2221				p->slots[level]++;
2222			goto done;
2223		}
2224
2225		err = read_block_for_search(root, p, &b, level, slot, key);
2226		if (err == -EAGAIN)
2227			goto again;
2228		if (err) {
2229			ret = err;
2230			goto done;
2231		}
2232
2233		if (!p->skip_locking) {
2234			level = btrfs_header_level(b);
2235
2236			btrfs_maybe_reset_lockdep_class(root, b);
2237
2238			if (level <= write_lock_level) {
2239				btrfs_tree_lock(b);
2240				p->locks[level] = BTRFS_WRITE_LOCK;
2241			} else {
2242				if (p->nowait) {
2243					if (!btrfs_try_tree_read_lock(b)) {
2244						free_extent_buffer(b);
2245						ret = -EAGAIN;
2246						goto done;
2247					}
2248				} else {
2249					btrfs_tree_read_lock(b);
2250				}
2251				p->locks[level] = BTRFS_READ_LOCK;
2252			}
2253			p->nodes[level] = b;
2254		}
2255	}
2256	ret = 1;
2257done:
2258	if (ret < 0 && !p->skip_release_on_error)
2259		btrfs_release_path(p);
2260
2261	if (p->need_commit_sem) {
2262		int ret2;
2263
2264		ret2 = finish_need_commit_sem_search(p);
2265		up_read(&fs_info->commit_root_sem);
2266		if (ret2)
2267			ret = ret2;
2268	}
2269
2270	return ret;
2271}
2272ALLOW_ERROR_INJECTION(btrfs_search_slot, ERRNO);
2273
2274/*
2275 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2276 * current state of the tree together with the operations recorded in the tree
2277 * modification log to search for the key in a previous version of this tree, as
2278 * denoted by the time_seq parameter.
2279 *
2280 * Naturally, there is no support for insert, delete or cow operations.
2281 *
2282 * The resulting path and return value will be set up as if we called
2283 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2284 */
2285int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
2286			  struct btrfs_path *p, u64 time_seq)
2287{
2288	struct btrfs_fs_info *fs_info = root->fs_info;
2289	struct extent_buffer *b;
2290	int slot;
2291	int ret;
2292	int err;
2293	int level;
2294	int lowest_unlock = 1;
2295	u8 lowest_level = 0;
2296
2297	lowest_level = p->lowest_level;
2298	WARN_ON(p->nodes[0] != NULL);
2299	ASSERT(!p->nowait);
2300
2301	if (p->search_commit_root) {
2302		BUG_ON(time_seq);
2303		return btrfs_search_slot(NULL, root, key, p, 0, 0);
2304	}
2305
2306again:
2307	b = btrfs_get_old_root(root, time_seq);
2308	if (!b) {
2309		ret = -EIO;
2310		goto done;
2311	}
2312	level = btrfs_header_level(b);
2313	p->locks[level] = BTRFS_READ_LOCK;
2314
2315	while (b) {
2316		int dec = 0;
2317
2318		level = btrfs_header_level(b);
2319		p->nodes[level] = b;
2320
2321		/*
2322		 * we have a lock on b and as long as we aren't changing
2323		 * the tree, there is no way to for the items in b to change.
2324		 * It is safe to drop the lock on our parent before we
2325		 * go through the expensive btree search on b.
2326		 */
2327		btrfs_unlock_up_safe(p, level + 1);
2328
2329		ret = btrfs_bin_search(b, key, &slot);
2330		if (ret < 0)
2331			goto done;
2332
2333		if (level == 0) {
2334			p->slots[level] = slot;
2335			unlock_up(p, level, lowest_unlock, 0, NULL);
2336			goto done;
2337		}
2338
2339		if (ret && slot > 0) {
2340			dec = 1;
2341			slot--;
2342		}
2343		p->slots[level] = slot;
2344		unlock_up(p, level, lowest_unlock, 0, NULL);
2345
2346		if (level == lowest_level) {
2347			if (dec)
2348				p->slots[level]++;
2349			goto done;
2350		}
2351
2352		err = read_block_for_search(root, p, &b, level, slot, key);
2353		if (err == -EAGAIN)
2354			goto again;
2355		if (err) {
2356			ret = err;
2357			goto done;
2358		}
2359
2360		level = btrfs_header_level(b);
2361		btrfs_tree_read_lock(b);
2362		b = btrfs_tree_mod_log_rewind(fs_info, p, b, time_seq);
2363		if (!b) {
2364			ret = -ENOMEM;
2365			goto done;
2366		}
2367		p->locks[level] = BTRFS_READ_LOCK;
2368		p->nodes[level] = b;
2369	}
2370	ret = 1;
2371done:
2372	if (ret < 0)
2373		btrfs_release_path(p);
2374
2375	return ret;
2376}
2377
2378/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2379 * helper to use instead of search slot if no exact match is needed but
2380 * instead the next or previous item should be returned.
2381 * When find_higher is true, the next higher item is returned, the next lower
2382 * otherwise.
2383 * When return_any and find_higher are both true, and no higher item is found,
2384 * return the next lower instead.
2385 * When return_any is true and find_higher is false, and no lower item is found,
2386 * return the next higher instead.
2387 * It returns 0 if any item is found, 1 if none is found (tree empty), and
2388 * < 0 on error
2389 */
2390int btrfs_search_slot_for_read(struct btrfs_root *root,
2391			       const struct btrfs_key *key,
2392			       struct btrfs_path *p, int find_higher,
2393			       int return_any)
2394{
2395	int ret;
2396	struct extent_buffer *leaf;
2397
2398again:
2399	ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
2400	if (ret <= 0)
2401		return ret;
2402	/*
2403	 * a return value of 1 means the path is at the position where the
2404	 * item should be inserted. Normally this is the next bigger item,
2405	 * but in case the previous item is the last in a leaf, path points
2406	 * to the first free slot in the previous leaf, i.e. at an invalid
2407	 * item.
2408	 */
2409	leaf = p->nodes[0];
2410
2411	if (find_higher) {
2412		if (p->slots[0] >= btrfs_header_nritems(leaf)) {
2413			ret = btrfs_next_leaf(root, p);
2414			if (ret <= 0)
2415				return ret;
2416			if (!return_any)
2417				return 1;
2418			/*
2419			 * no higher item found, return the next
2420			 * lower instead
2421			 */
2422			return_any = 0;
2423			find_higher = 0;
2424			btrfs_release_path(p);
2425			goto again;
2426		}
2427	} else {
2428		if (p->slots[0] == 0) {
2429			ret = btrfs_prev_leaf(root, p);
2430			if (ret < 0)
2431				return ret;
2432			if (!ret) {
2433				leaf = p->nodes[0];
2434				if (p->slots[0] == btrfs_header_nritems(leaf))
2435					p->slots[0]--;
2436				return 0;
2437			}
2438			if (!return_any)
2439				return 1;
2440			/*
2441			 * no lower item found, return the next
2442			 * higher instead
2443			 */
2444			return_any = 0;
2445			find_higher = 1;
2446			btrfs_release_path(p);
2447			goto again;
2448		} else {
2449			--p->slots[0];
2450		}
2451	}
2452	return 0;
2453}
2454
2455/*
2456 * Execute search and call btrfs_previous_item to traverse backwards if the item
2457 * was not found.
2458 *
2459 * Return 0 if found, 1 if not found and < 0 if error.
2460 */
2461int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key,
2462			   struct btrfs_path *path)
2463{
2464	int ret;
2465
2466	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
2467	if (ret > 0)
2468		ret = btrfs_previous_item(root, path, key->objectid, key->type);
2469
2470	if (ret == 0)
2471		btrfs_item_key_to_cpu(path->nodes[0], key, path->slots[0]);
2472
2473	return ret;
2474}
2475
2476/*
2477 * Search for a valid slot for the given path.
2478 *
2479 * @root:	The root node of the tree.
2480 * @key:	Will contain a valid item if found.
2481 * @path:	The starting point to validate the slot.
2482 *
2483 * Return: 0  if the item is valid
2484 *         1  if not found
2485 *         <0 if error.
2486 */
2487int btrfs_get_next_valid_item(struct btrfs_root *root, struct btrfs_key *key,
2488			      struct btrfs_path *path)
2489{
2490	while (1) {
2491		int ret;
2492		const int slot = path->slots[0];
2493		const struct extent_buffer *leaf = path->nodes[0];
2494
2495		/* This is where we start walking the path. */
2496		if (slot >= btrfs_header_nritems(leaf)) {
2497			/*
2498			 * If we've reached the last slot in this leaf we need
2499			 * to go to the next leaf and reset the path.
2500			 */
2501			ret = btrfs_next_leaf(root, path);
2502			if (ret)
2503				return ret;
2504			continue;
2505		}
2506		/* Store the found, valid item in @key. */
2507		btrfs_item_key_to_cpu(leaf, key, slot);
2508		break;
2509	}
 
 
2510	return 0;
2511}
2512
2513/*
2514 * adjust the pointers going up the tree, starting at level
2515 * making sure the right key of each node is points to 'key'.
2516 * This is used after shifting pointers to the left, so it stops
2517 * fixing up pointers when a given leaf/node is not in slot 0 of the
2518 * higher levels
2519 *
2520 */
2521static void fixup_low_keys(struct btrfs_path *path,
2522			   struct btrfs_disk_key *key, int level)
 
2523{
2524	int i;
2525	struct extent_buffer *t;
2526	int ret;
2527
2528	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2529		int tslot = path->slots[i];
2530
2531		if (!path->nodes[i])
2532			break;
2533		t = path->nodes[i];
2534		ret = btrfs_tree_mod_log_insert_key(t, tslot,
2535						    BTRFS_MOD_LOG_KEY_REPLACE);
2536		BUG_ON(ret < 0);
2537		btrfs_set_node_key(t, key, tslot);
2538		btrfs_mark_buffer_dirty(path->nodes[i]);
2539		if (tslot != 0)
2540			break;
2541	}
2542}
2543
2544/*
2545 * update item key.
2546 *
2547 * This function isn't completely safe. It's the caller's responsibility
2548 * that the new key won't break the order
2549 */
2550void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
2551			     struct btrfs_path *path,
2552			     const struct btrfs_key *new_key)
2553{
 
2554	struct btrfs_disk_key disk_key;
2555	struct extent_buffer *eb;
2556	int slot;
2557
2558	eb = path->nodes[0];
2559	slot = path->slots[0];
2560	if (slot > 0) {
2561		btrfs_item_key(eb, &disk_key, slot - 1);
2562		if (unlikely(comp_keys(&disk_key, new_key) >= 0)) {
 
2563			btrfs_crit(fs_info,
2564		"slot %u key (%llu %u %llu) new key (%llu %u %llu)",
2565				   slot, btrfs_disk_key_objectid(&disk_key),
2566				   btrfs_disk_key_type(&disk_key),
2567				   btrfs_disk_key_offset(&disk_key),
2568				   new_key->objectid, new_key->type,
2569				   new_key->offset);
2570			btrfs_print_leaf(eb);
2571			BUG();
2572		}
2573	}
2574	if (slot < btrfs_header_nritems(eb) - 1) {
2575		btrfs_item_key(eb, &disk_key, slot + 1);
2576		if (unlikely(comp_keys(&disk_key, new_key) <= 0)) {
 
2577			btrfs_crit(fs_info,
2578		"slot %u key (%llu %u %llu) new key (%llu %u %llu)",
2579				   slot, btrfs_disk_key_objectid(&disk_key),
2580				   btrfs_disk_key_type(&disk_key),
2581				   btrfs_disk_key_offset(&disk_key),
2582				   new_key->objectid, new_key->type,
2583				   new_key->offset);
2584			btrfs_print_leaf(eb);
2585			BUG();
2586		}
2587	}
2588
2589	btrfs_cpu_key_to_disk(&disk_key, new_key);
2590	btrfs_set_item_key(eb, &disk_key, slot);
2591	btrfs_mark_buffer_dirty(eb);
2592	if (slot == 0)
2593		fixup_low_keys(path, &disk_key, 1);
2594}
2595
2596/*
2597 * Check key order of two sibling extent buffers.
2598 *
2599 * Return true if something is wrong.
2600 * Return false if everything is fine.
2601 *
2602 * Tree-checker only works inside one tree block, thus the following
2603 * corruption can not be detected by tree-checker:
2604 *
2605 * Leaf @left			| Leaf @right
2606 * --------------------------------------------------------------
2607 * | 1 | 2 | 3 | 4 | 5 | f6 |   | 7 | 8 |
2608 *
2609 * Key f6 in leaf @left itself is valid, but not valid when the next
2610 * key in leaf @right is 7.
2611 * This can only be checked at tree block merge time.
2612 * And since tree checker has ensured all key order in each tree block
2613 * is correct, we only need to bother the last key of @left and the first
2614 * key of @right.
2615 */
2616static bool check_sibling_keys(struct extent_buffer *left,
2617			       struct extent_buffer *right)
2618{
2619	struct btrfs_key left_last;
2620	struct btrfs_key right_first;
2621	int level = btrfs_header_level(left);
2622	int nr_left = btrfs_header_nritems(left);
2623	int nr_right = btrfs_header_nritems(right);
2624
2625	/* No key to check in one of the tree blocks */
2626	if (!nr_left || !nr_right)
2627		return false;
2628
2629	if (level) {
2630		btrfs_node_key_to_cpu(left, &left_last, nr_left - 1);
2631		btrfs_node_key_to_cpu(right, &right_first, 0);
2632	} else {
2633		btrfs_item_key_to_cpu(left, &left_last, nr_left - 1);
2634		btrfs_item_key_to_cpu(right, &right_first, 0);
2635	}
2636
2637	if (btrfs_comp_cpu_keys(&left_last, &right_first) >= 0) {
 
 
 
 
2638		btrfs_crit(left->fs_info,
2639"bad key order, sibling blocks, left last (%llu %u %llu) right first (%llu %u %llu)",
2640			   left_last.objectid, left_last.type,
2641			   left_last.offset, right_first.objectid,
2642			   right_first.type, right_first.offset);
2643		return true;
2644	}
2645	return false;
2646}
2647
2648/*
2649 * try to push data from one node into the next node left in the
2650 * tree.
2651 *
2652 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
2653 * error, and > 0 if there was no room in the left hand block.
2654 */
2655static int push_node_left(struct btrfs_trans_handle *trans,
2656			  struct extent_buffer *dst,
2657			  struct extent_buffer *src, int empty)
2658{
2659	struct btrfs_fs_info *fs_info = trans->fs_info;
2660	int push_items = 0;
2661	int src_nritems;
2662	int dst_nritems;
2663	int ret = 0;
2664
2665	src_nritems = btrfs_header_nritems(src);
2666	dst_nritems = btrfs_header_nritems(dst);
2667	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
2668	WARN_ON(btrfs_header_generation(src) != trans->transid);
2669	WARN_ON(btrfs_header_generation(dst) != trans->transid);
2670
2671	if (!empty && src_nritems <= 8)
2672		return 1;
2673
2674	if (push_items <= 0)
2675		return 1;
2676
2677	if (empty) {
2678		push_items = min(src_nritems, push_items);
2679		if (push_items < src_nritems) {
2680			/* leave at least 8 pointers in the node if
2681			 * we aren't going to empty it
2682			 */
2683			if (src_nritems - push_items < 8) {
2684				if (push_items <= 8)
2685					return 1;
2686				push_items -= 8;
2687			}
2688		}
2689	} else
2690		push_items = min(src_nritems - 8, push_items);
2691
2692	/* dst is the left eb, src is the middle eb */
2693	if (check_sibling_keys(dst, src)) {
2694		ret = -EUCLEAN;
2695		btrfs_abort_transaction(trans, ret);
2696		return ret;
2697	}
2698	ret = btrfs_tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items);
2699	if (ret) {
2700		btrfs_abort_transaction(trans, ret);
2701		return ret;
2702	}
2703	copy_extent_buffer(dst, src,
2704			   btrfs_node_key_ptr_offset(dst, dst_nritems),
2705			   btrfs_node_key_ptr_offset(src, 0),
2706			   push_items * sizeof(struct btrfs_key_ptr));
2707
2708	if (push_items < src_nritems) {
2709		/*
2710		 * Don't call btrfs_tree_mod_log_insert_move() here, key removal
2711		 * was already fully logged by btrfs_tree_mod_log_eb_copy() above.
2712		 */
2713		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(src, 0),
2714				      btrfs_node_key_ptr_offset(src, push_items),
2715				      (src_nritems - push_items) *
2716				      sizeof(struct btrfs_key_ptr));
2717	}
2718	btrfs_set_header_nritems(src, src_nritems - push_items);
2719	btrfs_set_header_nritems(dst, dst_nritems + push_items);
2720	btrfs_mark_buffer_dirty(src);
2721	btrfs_mark_buffer_dirty(dst);
2722
2723	return ret;
2724}
2725
2726/*
2727 * try to push data from one node into the next node right in the
2728 * tree.
2729 *
2730 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
2731 * error, and > 0 if there was no room in the right hand block.
2732 *
2733 * this will  only push up to 1/2 the contents of the left node over
2734 */
2735static int balance_node_right(struct btrfs_trans_handle *trans,
2736			      struct extent_buffer *dst,
2737			      struct extent_buffer *src)
2738{
2739	struct btrfs_fs_info *fs_info = trans->fs_info;
2740	int push_items = 0;
2741	int max_push;
2742	int src_nritems;
2743	int dst_nritems;
2744	int ret = 0;
2745
2746	WARN_ON(btrfs_header_generation(src) != trans->transid);
2747	WARN_ON(btrfs_header_generation(dst) != trans->transid);
2748
2749	src_nritems = btrfs_header_nritems(src);
2750	dst_nritems = btrfs_header_nritems(dst);
2751	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
2752	if (push_items <= 0)
2753		return 1;
2754
2755	if (src_nritems < 4)
2756		return 1;
2757
2758	max_push = src_nritems / 2 + 1;
2759	/* don't try to empty the node */
2760	if (max_push >= src_nritems)
2761		return 1;
2762
2763	if (max_push < push_items)
2764		push_items = max_push;
2765
2766	/* dst is the right eb, src is the middle eb */
2767	if (check_sibling_keys(src, dst)) {
2768		ret = -EUCLEAN;
2769		btrfs_abort_transaction(trans, ret);
2770		return ret;
2771	}
2772	ret = btrfs_tree_mod_log_insert_move(dst, push_items, 0, dst_nritems);
2773	BUG_ON(ret < 0);
 
 
 
2774	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(dst, push_items),
2775				      btrfs_node_key_ptr_offset(dst, 0),
2776				      (dst_nritems) *
2777				      sizeof(struct btrfs_key_ptr));
2778
2779	ret = btrfs_tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items,
2780					 push_items);
2781	if (ret) {
2782		btrfs_abort_transaction(trans, ret);
2783		return ret;
2784	}
2785	copy_extent_buffer(dst, src,
2786			   btrfs_node_key_ptr_offset(dst, 0),
2787			   btrfs_node_key_ptr_offset(src, src_nritems - push_items),
2788			   push_items * sizeof(struct btrfs_key_ptr));
2789
2790	btrfs_set_header_nritems(src, src_nritems - push_items);
2791	btrfs_set_header_nritems(dst, dst_nritems + push_items);
2792
2793	btrfs_mark_buffer_dirty(src);
2794	btrfs_mark_buffer_dirty(dst);
2795
2796	return ret;
2797}
2798
2799/*
2800 * helper function to insert a new root level in the tree.
2801 * A new node is allocated, and a single item is inserted to
2802 * point to the existing root
2803 *
2804 * returns zero on success or < 0 on failure.
2805 */
2806static noinline int insert_new_root(struct btrfs_trans_handle *trans,
2807			   struct btrfs_root *root,
2808			   struct btrfs_path *path, int level)
2809{
2810	struct btrfs_fs_info *fs_info = root->fs_info;
2811	u64 lower_gen;
2812	struct extent_buffer *lower;
2813	struct extent_buffer *c;
2814	struct extent_buffer *old;
2815	struct btrfs_disk_key lower_key;
2816	int ret;
2817
2818	BUG_ON(path->nodes[level]);
2819	BUG_ON(path->nodes[level-1] != root->node);
2820
2821	lower = path->nodes[level-1];
2822	if (level == 1)
2823		btrfs_item_key(lower, &lower_key, 0);
2824	else
2825		btrfs_node_key(lower, &lower_key, 0);
2826
2827	c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
2828				   &lower_key, level, root->node->start, 0,
2829				   BTRFS_NESTING_NEW_ROOT);
2830	if (IS_ERR(c))
2831		return PTR_ERR(c);
2832
2833	root_add_used(root, fs_info->nodesize);
2834
2835	btrfs_set_header_nritems(c, 1);
2836	btrfs_set_node_key(c, &lower_key, 0);
2837	btrfs_set_node_blockptr(c, 0, lower->start);
2838	lower_gen = btrfs_header_generation(lower);
2839	WARN_ON(lower_gen != trans->transid);
2840
2841	btrfs_set_node_ptr_generation(c, 0, lower_gen);
2842
2843	btrfs_mark_buffer_dirty(c);
2844
2845	old = root->node;
2846	ret = btrfs_tree_mod_log_insert_root(root->node, c, false);
2847	BUG_ON(ret < 0);
 
 
 
 
 
 
 
 
 
2848	rcu_assign_pointer(root->node, c);
2849
2850	/* the super has an extra ref to root->node */
2851	free_extent_buffer(old);
2852
2853	add_root_to_dirty_list(root);
2854	atomic_inc(&c->refs);
2855	path->nodes[level] = c;
2856	path->locks[level] = BTRFS_WRITE_LOCK;
2857	path->slots[level] = 0;
2858	return 0;
2859}
2860
2861/*
2862 * worker function to insert a single pointer in a node.
2863 * the node should have enough room for the pointer already
2864 *
2865 * slot and level indicate where you want the key to go, and
2866 * blocknr is the block the key points to.
2867 */
2868static void insert_ptr(struct btrfs_trans_handle *trans,
2869		       struct btrfs_path *path,
2870		       struct btrfs_disk_key *key, u64 bytenr,
2871		       int slot, int level)
2872{
2873	struct extent_buffer *lower;
2874	int nritems;
2875	int ret;
2876
2877	BUG_ON(!path->nodes[level]);
2878	btrfs_assert_tree_write_locked(path->nodes[level]);
2879	lower = path->nodes[level];
2880	nritems = btrfs_header_nritems(lower);
2881	BUG_ON(slot > nritems);
2882	BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info));
2883	if (slot != nritems) {
2884		if (level) {
2885			ret = btrfs_tree_mod_log_insert_move(lower, slot + 1,
2886					slot, nritems - slot);
2887			BUG_ON(ret < 0);
 
 
 
2888		}
2889		memmove_extent_buffer(lower,
2890			      btrfs_node_key_ptr_offset(lower, slot + 1),
2891			      btrfs_node_key_ptr_offset(lower, slot),
2892			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
2893	}
2894	if (level) {
2895		ret = btrfs_tree_mod_log_insert_key(lower, slot,
2896						    BTRFS_MOD_LOG_KEY_ADD);
2897		BUG_ON(ret < 0);
 
 
 
2898	}
2899	btrfs_set_node_key(lower, key, slot);
2900	btrfs_set_node_blockptr(lower, slot, bytenr);
2901	WARN_ON(trans->transid == 0);
2902	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
2903	btrfs_set_header_nritems(lower, nritems + 1);
2904	btrfs_mark_buffer_dirty(lower);
 
 
2905}
2906
2907/*
2908 * split the node at the specified level in path in two.
2909 * The path is corrected to point to the appropriate node after the split
2910 *
2911 * Before splitting this tries to make some room in the node by pushing
2912 * left and right, if either one works, it returns right away.
2913 *
2914 * returns 0 on success and < 0 on failure
2915 */
2916static noinline int split_node(struct btrfs_trans_handle *trans,
2917			       struct btrfs_root *root,
2918			       struct btrfs_path *path, int level)
2919{
2920	struct btrfs_fs_info *fs_info = root->fs_info;
2921	struct extent_buffer *c;
2922	struct extent_buffer *split;
2923	struct btrfs_disk_key disk_key;
2924	int mid;
2925	int ret;
2926	u32 c_nritems;
2927
2928	c = path->nodes[level];
2929	WARN_ON(btrfs_header_generation(c) != trans->transid);
2930	if (c == root->node) {
2931		/*
2932		 * trying to split the root, lets make a new one
2933		 *
2934		 * tree mod log: We don't log_removal old root in
2935		 * insert_new_root, because that root buffer will be kept as a
2936		 * normal node. We are going to log removal of half of the
2937		 * elements below with btrfs_tree_mod_log_eb_copy(). We're
2938		 * holding a tree lock on the buffer, which is why we cannot
2939		 * race with other tree_mod_log users.
2940		 */
2941		ret = insert_new_root(trans, root, path, level + 1);
2942		if (ret)
2943			return ret;
2944	} else {
2945		ret = push_nodes_for_insert(trans, root, path, level);
2946		c = path->nodes[level];
2947		if (!ret && btrfs_header_nritems(c) <
2948		    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
2949			return 0;
2950		if (ret < 0)
2951			return ret;
2952	}
2953
2954	c_nritems = btrfs_header_nritems(c);
2955	mid = (c_nritems + 1) / 2;
2956	btrfs_node_key(c, &disk_key, mid);
2957
2958	split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
2959				       &disk_key, level, c->start, 0,
2960				       BTRFS_NESTING_SPLIT);
2961	if (IS_ERR(split))
2962		return PTR_ERR(split);
2963
2964	root_add_used(root, fs_info->nodesize);
2965	ASSERT(btrfs_header_level(c) == level);
2966
2967	ret = btrfs_tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid);
2968	if (ret) {
 
 
2969		btrfs_abort_transaction(trans, ret);
2970		return ret;
2971	}
2972	copy_extent_buffer(split, c,
2973			   btrfs_node_key_ptr_offset(split, 0),
2974			   btrfs_node_key_ptr_offset(c, mid),
2975			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
2976	btrfs_set_header_nritems(split, c_nritems - mid);
2977	btrfs_set_header_nritems(c, mid);
2978
2979	btrfs_mark_buffer_dirty(c);
2980	btrfs_mark_buffer_dirty(split);
2981
2982	insert_ptr(trans, path, &disk_key, split->start,
2983		   path->slots[level + 1] + 1, level + 1);
 
 
 
 
 
2984
2985	if (path->slots[level] >= mid) {
2986		path->slots[level] -= mid;
2987		btrfs_tree_unlock(c);
2988		free_extent_buffer(c);
2989		path->nodes[level] = split;
2990		path->slots[level + 1] += 1;
2991	} else {
2992		btrfs_tree_unlock(split);
2993		free_extent_buffer(split);
2994	}
2995	return 0;
2996}
2997
2998/*
2999 * how many bytes are required to store the items in a leaf.  start
3000 * and nr indicate which items in the leaf to check.  This totals up the
3001 * space used both by the item structs and the item data
3002 */
3003static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3004{
3005	int data_len;
3006	int nritems = btrfs_header_nritems(l);
3007	int end = min(nritems, start + nr) - 1;
3008
3009	if (!nr)
3010		return 0;
3011	data_len = btrfs_item_offset(l, start) + btrfs_item_size(l, start);
3012	data_len = data_len - btrfs_item_offset(l, end);
3013	data_len += sizeof(struct btrfs_item) * nr;
3014	WARN_ON(data_len < 0);
3015	return data_len;
3016}
3017
3018/*
3019 * The space between the end of the leaf items and
3020 * the start of the leaf data.  IOW, how much room
3021 * the leaf has left for both items and data
3022 */
3023noinline int btrfs_leaf_free_space(struct extent_buffer *leaf)
3024{
3025	struct btrfs_fs_info *fs_info = leaf->fs_info;
3026	int nritems = btrfs_header_nritems(leaf);
3027	int ret;
3028
3029	ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
3030	if (ret < 0) {
3031		btrfs_crit(fs_info,
3032			   "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3033			   ret,
3034			   (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
3035			   leaf_space_used(leaf, 0, nritems), nritems);
3036	}
3037	return ret;
3038}
3039
3040/*
3041 * min slot controls the lowest index we're willing to push to the
3042 * right.  We'll push up to and including min_slot, but no lower
3043 */
3044static noinline int __push_leaf_right(struct btrfs_path *path,
 
3045				      int data_size, int empty,
3046				      struct extent_buffer *right,
3047				      int free_space, u32 left_nritems,
3048				      u32 min_slot)
3049{
3050	struct btrfs_fs_info *fs_info = right->fs_info;
3051	struct extent_buffer *left = path->nodes[0];
3052	struct extent_buffer *upper = path->nodes[1];
3053	struct btrfs_map_token token;
3054	struct btrfs_disk_key disk_key;
3055	int slot;
3056	u32 i;
3057	int push_space = 0;
3058	int push_items = 0;
3059	u32 nr;
3060	u32 right_nritems;
3061	u32 data_end;
3062	u32 this_item_size;
3063
3064	if (empty)
3065		nr = 0;
3066	else
3067		nr = max_t(u32, 1, min_slot);
3068
3069	if (path->slots[0] >= left_nritems)
3070		push_space += data_size;
3071
3072	slot = path->slots[1];
3073	i = left_nritems - 1;
3074	while (i >= nr) {
3075		if (!empty && push_items > 0) {
3076			if (path->slots[0] > i)
3077				break;
3078			if (path->slots[0] == i) {
3079				int space = btrfs_leaf_free_space(left);
3080
3081				if (space + push_space * 2 > free_space)
3082					break;
3083			}
3084		}
3085
3086		if (path->slots[0] == i)
3087			push_space += data_size;
3088
3089		this_item_size = btrfs_item_size(left, i);
3090		if (this_item_size + sizeof(struct btrfs_item) +
3091		    push_space > free_space)
3092			break;
3093
3094		push_items++;
3095		push_space += this_item_size + sizeof(struct btrfs_item);
3096		if (i == 0)
3097			break;
3098		i--;
3099	}
3100
3101	if (push_items == 0)
3102		goto out_unlock;
3103
3104	WARN_ON(!empty && push_items == left_nritems);
3105
3106	/* push left to right */
3107	right_nritems = btrfs_header_nritems(right);
3108
3109	push_space = btrfs_item_data_end(left, left_nritems - push_items);
3110	push_space -= leaf_data_end(left);
3111
3112	/* make room in the right data area */
3113	data_end = leaf_data_end(right);
3114	memmove_leaf_data(right, data_end - push_space, data_end,
3115			  BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
3116
3117	/* copy from the left data area */
3118	copy_leaf_data(right, left, BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3119		       leaf_data_end(left), push_space);
3120
3121	memmove_leaf_items(right, push_items, 0, right_nritems);
3122
3123	/* copy the items from left to right */
3124	copy_leaf_items(right, left, 0, left_nritems - push_items, push_items);
3125
3126	/* update the item pointers */
3127	btrfs_init_map_token(&token, right);
3128	right_nritems += push_items;
3129	btrfs_set_header_nritems(right, right_nritems);
3130	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3131	for (i = 0; i < right_nritems; i++) {
3132		push_space -= btrfs_token_item_size(&token, i);
3133		btrfs_set_token_item_offset(&token, i, push_space);
3134	}
3135
3136	left_nritems -= push_items;
3137	btrfs_set_header_nritems(left, left_nritems);
3138
3139	if (left_nritems)
3140		btrfs_mark_buffer_dirty(left);
3141	else
3142		btrfs_clean_tree_block(left);
3143
3144	btrfs_mark_buffer_dirty(right);
3145
3146	btrfs_item_key(right, &disk_key, 0);
3147	btrfs_set_node_key(upper, &disk_key, slot + 1);
3148	btrfs_mark_buffer_dirty(upper);
3149
3150	/* then fixup the leaf pointer in the path */
3151	if (path->slots[0] >= left_nritems) {
3152		path->slots[0] -= left_nritems;
3153		if (btrfs_header_nritems(path->nodes[0]) == 0)
3154			btrfs_clean_tree_block(path->nodes[0]);
3155		btrfs_tree_unlock(path->nodes[0]);
3156		free_extent_buffer(path->nodes[0]);
3157		path->nodes[0] = right;
3158		path->slots[1] += 1;
3159	} else {
3160		btrfs_tree_unlock(right);
3161		free_extent_buffer(right);
3162	}
3163	return 0;
3164
3165out_unlock:
3166	btrfs_tree_unlock(right);
3167	free_extent_buffer(right);
3168	return 1;
3169}
3170
3171/*
3172 * push some data in the path leaf to the right, trying to free up at
3173 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3174 *
3175 * returns 1 if the push failed because the other node didn't have enough
3176 * room, 0 if everything worked out and < 0 if there were major errors.
3177 *
3178 * this will push starting from min_slot to the end of the leaf.  It won't
3179 * push any slot lower than min_slot
3180 */
3181static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3182			   *root, struct btrfs_path *path,
3183			   int min_data_size, int data_size,
3184			   int empty, u32 min_slot)
3185{
3186	struct extent_buffer *left = path->nodes[0];
3187	struct extent_buffer *right;
3188	struct extent_buffer *upper;
3189	int slot;
3190	int free_space;
3191	u32 left_nritems;
3192	int ret;
3193
3194	if (!path->nodes[1])
3195		return 1;
3196
3197	slot = path->slots[1];
3198	upper = path->nodes[1];
3199	if (slot >= btrfs_header_nritems(upper) - 1)
3200		return 1;
3201
3202	btrfs_assert_tree_write_locked(path->nodes[1]);
3203
3204	right = btrfs_read_node_slot(upper, slot + 1);
3205	/*
3206	 * slot + 1 is not valid or we fail to read the right node,
3207	 * no big deal, just return.
3208	 */
3209	if (IS_ERR(right))
3210		return 1;
3211
3212	__btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
3213
3214	free_space = btrfs_leaf_free_space(right);
3215	if (free_space < data_size)
3216		goto out_unlock;
3217
3218	ret = btrfs_cow_block(trans, root, right, upper,
3219			      slot + 1, &right, BTRFS_NESTING_RIGHT_COW);
3220	if (ret)
3221		goto out_unlock;
3222
3223	left_nritems = btrfs_header_nritems(left);
3224	if (left_nritems == 0)
3225		goto out_unlock;
3226
3227	if (check_sibling_keys(left, right)) {
3228		ret = -EUCLEAN;
 
3229		btrfs_tree_unlock(right);
3230		free_extent_buffer(right);
3231		return ret;
3232	}
3233	if (path->slots[0] == left_nritems && !empty) {
3234		/* Key greater than all keys in the leaf, right neighbor has
3235		 * enough room for it and we're not emptying our leaf to delete
3236		 * it, therefore use right neighbor to insert the new item and
3237		 * no need to touch/dirty our left leaf. */
3238		btrfs_tree_unlock(left);
3239		free_extent_buffer(left);
3240		path->nodes[0] = right;
3241		path->slots[0] = 0;
3242		path->slots[1]++;
3243		return 0;
3244	}
3245
3246	return __push_leaf_right(path, min_data_size, empty,
3247				right, free_space, left_nritems, min_slot);
3248out_unlock:
3249	btrfs_tree_unlock(right);
3250	free_extent_buffer(right);
3251	return 1;
3252}
3253
3254/*
3255 * push some data in the path leaf to the left, trying to free up at
3256 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3257 *
3258 * max_slot can put a limit on how far into the leaf we'll push items.  The
3259 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3260 * items
3261 */
3262static noinline int __push_leaf_left(struct btrfs_path *path, int data_size,
 
3263				     int empty, struct extent_buffer *left,
3264				     int free_space, u32 right_nritems,
3265				     u32 max_slot)
3266{
3267	struct btrfs_fs_info *fs_info = left->fs_info;
3268	struct btrfs_disk_key disk_key;
3269	struct extent_buffer *right = path->nodes[0];
3270	int i;
3271	int push_space = 0;
3272	int push_items = 0;
3273	u32 old_left_nritems;
3274	u32 nr;
3275	int ret = 0;
3276	u32 this_item_size;
3277	u32 old_left_item_size;
3278	struct btrfs_map_token token;
3279
3280	if (empty)
3281		nr = min(right_nritems, max_slot);
3282	else
3283		nr = min(right_nritems - 1, max_slot);
3284
3285	for (i = 0; i < nr; i++) {
3286		if (!empty && push_items > 0) {
3287			if (path->slots[0] < i)
3288				break;
3289			if (path->slots[0] == i) {
3290				int space = btrfs_leaf_free_space(right);
3291
3292				if (space + push_space * 2 > free_space)
3293					break;
3294			}
3295		}
3296
3297		if (path->slots[0] == i)
3298			push_space += data_size;
3299
3300		this_item_size = btrfs_item_size(right, i);
3301		if (this_item_size + sizeof(struct btrfs_item) + push_space >
3302		    free_space)
3303			break;
3304
3305		push_items++;
3306		push_space += this_item_size + sizeof(struct btrfs_item);
3307	}
3308
3309	if (push_items == 0) {
3310		ret = 1;
3311		goto out;
3312	}
3313	WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3314
3315	/* push data from right to left */
3316	copy_leaf_items(left, right, btrfs_header_nritems(left), 0, push_items);
3317
3318	push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
3319		     btrfs_item_offset(right, push_items - 1);
3320
3321	copy_leaf_data(left, right, leaf_data_end(left) - push_space,
3322		       btrfs_item_offset(right, push_items - 1), push_space);
3323	old_left_nritems = btrfs_header_nritems(left);
3324	BUG_ON(old_left_nritems <= 0);
3325
3326	btrfs_init_map_token(&token, left);
3327	old_left_item_size = btrfs_item_offset(left, old_left_nritems - 1);
3328	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3329		u32 ioff;
3330
3331		ioff = btrfs_token_item_offset(&token, i);
3332		btrfs_set_token_item_offset(&token, i,
3333		      ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size));
3334	}
3335	btrfs_set_header_nritems(left, old_left_nritems + push_items);
3336
3337	/* fixup right node */
3338	if (push_items > right_nritems)
3339		WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3340		       right_nritems);
3341
3342	if (push_items < right_nritems) {
3343		push_space = btrfs_item_offset(right, push_items - 1) -
3344						  leaf_data_end(right);
3345		memmove_leaf_data(right,
3346				  BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3347				  leaf_data_end(right), push_space);
3348
3349		memmove_leaf_items(right, 0, push_items,
3350				   btrfs_header_nritems(right) - push_items);
3351	}
3352
3353	btrfs_init_map_token(&token, right);
3354	right_nritems -= push_items;
3355	btrfs_set_header_nritems(right, right_nritems);
3356	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3357	for (i = 0; i < right_nritems; i++) {
3358		push_space = push_space - btrfs_token_item_size(&token, i);
3359		btrfs_set_token_item_offset(&token, i, push_space);
3360	}
3361
3362	btrfs_mark_buffer_dirty(left);
3363	if (right_nritems)
3364		btrfs_mark_buffer_dirty(right);
3365	else
3366		btrfs_clean_tree_block(right);
3367
3368	btrfs_item_key(right, &disk_key, 0);
3369	fixup_low_keys(path, &disk_key, 1);
3370
3371	/* then fixup the leaf pointer in the path */
3372	if (path->slots[0] < push_items) {
3373		path->slots[0] += old_left_nritems;
3374		btrfs_tree_unlock(path->nodes[0]);
3375		free_extent_buffer(path->nodes[0]);
3376		path->nodes[0] = left;
3377		path->slots[1] -= 1;
3378	} else {
3379		btrfs_tree_unlock(left);
3380		free_extent_buffer(left);
3381		path->slots[0] -= push_items;
3382	}
3383	BUG_ON(path->slots[0] < 0);
3384	return ret;
3385out:
3386	btrfs_tree_unlock(left);
3387	free_extent_buffer(left);
3388	return ret;
3389}
3390
3391/*
3392 * push some data in the path leaf to the left, trying to free up at
3393 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3394 *
3395 * max_slot can put a limit on how far into the leaf we'll push items.  The
3396 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3397 * items
3398 */
3399static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3400			  *root, struct btrfs_path *path, int min_data_size,
3401			  int data_size, int empty, u32 max_slot)
3402{
3403	struct extent_buffer *right = path->nodes[0];
3404	struct extent_buffer *left;
3405	int slot;
3406	int free_space;
3407	u32 right_nritems;
3408	int ret = 0;
3409
3410	slot = path->slots[1];
3411	if (slot == 0)
3412		return 1;
3413	if (!path->nodes[1])
3414		return 1;
3415
3416	right_nritems = btrfs_header_nritems(right);
3417	if (right_nritems == 0)
3418		return 1;
3419
3420	btrfs_assert_tree_write_locked(path->nodes[1]);
3421
3422	left = btrfs_read_node_slot(path->nodes[1], slot - 1);
3423	/*
3424	 * slot - 1 is not valid or we fail to read the left node,
3425	 * no big deal, just return.
3426	 */
3427	if (IS_ERR(left))
3428		return 1;
3429
3430	__btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
3431
3432	free_space = btrfs_leaf_free_space(left);
3433	if (free_space < data_size) {
3434		ret = 1;
3435		goto out;
3436	}
3437
3438	ret = btrfs_cow_block(trans, root, left,
3439			      path->nodes[1], slot - 1, &left,
3440			      BTRFS_NESTING_LEFT_COW);
3441	if (ret) {
3442		/* we hit -ENOSPC, but it isn't fatal here */
3443		if (ret == -ENOSPC)
3444			ret = 1;
3445		goto out;
3446	}
3447
3448	if (check_sibling_keys(left, right)) {
3449		ret = -EUCLEAN;
 
3450		goto out;
3451	}
3452	return __push_leaf_left(path, min_data_size,
3453			       empty, left, free_space, right_nritems,
3454			       max_slot);
3455out:
3456	btrfs_tree_unlock(left);
3457	free_extent_buffer(left);
3458	return ret;
3459}
3460
3461/*
3462 * split the path's leaf in two, making sure there is at least data_size
3463 * available for the resulting leaf level of the path.
3464 */
3465static noinline void copy_for_split(struct btrfs_trans_handle *trans,
3466				    struct btrfs_path *path,
3467				    struct extent_buffer *l,
3468				    struct extent_buffer *right,
3469				    int slot, int mid, int nritems)
3470{
3471	struct btrfs_fs_info *fs_info = trans->fs_info;
3472	int data_copy_size;
3473	int rt_data_off;
3474	int i;
 
3475	struct btrfs_disk_key disk_key;
3476	struct btrfs_map_token token;
3477
3478	nritems = nritems - mid;
3479	btrfs_set_header_nritems(right, nritems);
3480	data_copy_size = btrfs_item_data_end(l, mid) - leaf_data_end(l);
3481
3482	copy_leaf_items(right, l, 0, mid, nritems);
3483
3484	copy_leaf_data(right, l, BTRFS_LEAF_DATA_SIZE(fs_info) - data_copy_size,
3485		       leaf_data_end(l), data_copy_size);
3486
3487	rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_data_end(l, mid);
3488
3489	btrfs_init_map_token(&token, right);
3490	for (i = 0; i < nritems; i++) {
3491		u32 ioff;
3492
3493		ioff = btrfs_token_item_offset(&token, i);
3494		btrfs_set_token_item_offset(&token, i, ioff + rt_data_off);
3495	}
3496
3497	btrfs_set_header_nritems(l, mid);
3498	btrfs_item_key(right, &disk_key, 0);
3499	insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1);
 
 
3500
3501	btrfs_mark_buffer_dirty(right);
3502	btrfs_mark_buffer_dirty(l);
3503	BUG_ON(path->slots[0] != slot);
3504
3505	if (mid <= slot) {
3506		btrfs_tree_unlock(path->nodes[0]);
3507		free_extent_buffer(path->nodes[0]);
3508		path->nodes[0] = right;
3509		path->slots[0] -= mid;
3510		path->slots[1] += 1;
3511	} else {
3512		btrfs_tree_unlock(right);
3513		free_extent_buffer(right);
3514	}
3515
3516	BUG_ON(path->slots[0] < 0);
 
 
3517}
3518
3519/*
3520 * double splits happen when we need to insert a big item in the middle
3521 * of a leaf.  A double split can leave us with 3 mostly empty leaves:
3522 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
3523 *          A                 B                 C
3524 *
3525 * We avoid this by trying to push the items on either side of our target
3526 * into the adjacent leaves.  If all goes well we can avoid the double split
3527 * completely.
3528 */
3529static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
3530					  struct btrfs_root *root,
3531					  struct btrfs_path *path,
3532					  int data_size)
3533{
3534	int ret;
3535	int progress = 0;
3536	int slot;
3537	u32 nritems;
3538	int space_needed = data_size;
3539
3540	slot = path->slots[0];
3541	if (slot < btrfs_header_nritems(path->nodes[0]))
3542		space_needed -= btrfs_leaf_free_space(path->nodes[0]);
3543
3544	/*
3545	 * try to push all the items after our slot into the
3546	 * right leaf
3547	 */
3548	ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
3549	if (ret < 0)
3550		return ret;
3551
3552	if (ret == 0)
3553		progress++;
3554
3555	nritems = btrfs_header_nritems(path->nodes[0]);
3556	/*
3557	 * our goal is to get our slot at the start or end of a leaf.  If
3558	 * we've done so we're done
3559	 */
3560	if (path->slots[0] == 0 || path->slots[0] == nritems)
3561		return 0;
3562
3563	if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
3564		return 0;
3565
3566	/* try to push all the items before our slot into the next leaf */
3567	slot = path->slots[0];
3568	space_needed = data_size;
3569	if (slot > 0)
3570		space_needed -= btrfs_leaf_free_space(path->nodes[0]);
3571	ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
3572	if (ret < 0)
3573		return ret;
3574
3575	if (ret == 0)
3576		progress++;
3577
3578	if (progress)
3579		return 0;
3580	return 1;
3581}
3582
3583/*
3584 * split the path's leaf in two, making sure there is at least data_size
3585 * available for the resulting leaf level of the path.
3586 *
3587 * returns 0 if all went well and < 0 on failure.
3588 */
3589static noinline int split_leaf(struct btrfs_trans_handle *trans,
3590			       struct btrfs_root *root,
3591			       const struct btrfs_key *ins_key,
3592			       struct btrfs_path *path, int data_size,
3593			       int extend)
3594{
3595	struct btrfs_disk_key disk_key;
3596	struct extent_buffer *l;
3597	u32 nritems;
3598	int mid;
3599	int slot;
3600	struct extent_buffer *right;
3601	struct btrfs_fs_info *fs_info = root->fs_info;
3602	int ret = 0;
3603	int wret;
3604	int split;
3605	int num_doubles = 0;
3606	int tried_avoid_double = 0;
3607
3608	l = path->nodes[0];
3609	slot = path->slots[0];
3610	if (extend && data_size + btrfs_item_size(l, slot) +
3611	    sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
3612		return -EOVERFLOW;
3613
3614	/* first try to make some room by pushing left and right */
3615	if (data_size && path->nodes[1]) {
3616		int space_needed = data_size;
3617
3618		if (slot < btrfs_header_nritems(l))
3619			space_needed -= btrfs_leaf_free_space(l);
3620
3621		wret = push_leaf_right(trans, root, path, space_needed,
3622				       space_needed, 0, 0);
3623		if (wret < 0)
3624			return wret;
3625		if (wret) {
3626			space_needed = data_size;
3627			if (slot > 0)
3628				space_needed -= btrfs_leaf_free_space(l);
3629			wret = push_leaf_left(trans, root, path, space_needed,
3630					      space_needed, 0, (u32)-1);
3631			if (wret < 0)
3632				return wret;
3633		}
3634		l = path->nodes[0];
3635
3636		/* did the pushes work? */
3637		if (btrfs_leaf_free_space(l) >= data_size)
3638			return 0;
3639	}
3640
3641	if (!path->nodes[1]) {
3642		ret = insert_new_root(trans, root, path, 1);
3643		if (ret)
3644			return ret;
3645	}
3646again:
3647	split = 1;
3648	l = path->nodes[0];
3649	slot = path->slots[0];
3650	nritems = btrfs_header_nritems(l);
3651	mid = (nritems + 1) / 2;
3652
3653	if (mid <= slot) {
3654		if (nritems == 1 ||
3655		    leaf_space_used(l, mid, nritems - mid) + data_size >
3656			BTRFS_LEAF_DATA_SIZE(fs_info)) {
3657			if (slot >= nritems) {
3658				split = 0;
3659			} else {
3660				mid = slot;
3661				if (mid != nritems &&
3662				    leaf_space_used(l, mid, nritems - mid) +
3663				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
3664					if (data_size && !tried_avoid_double)
3665						goto push_for_double;
3666					split = 2;
3667				}
3668			}
3669		}
3670	} else {
3671		if (leaf_space_used(l, 0, mid) + data_size >
3672			BTRFS_LEAF_DATA_SIZE(fs_info)) {
3673			if (!extend && data_size && slot == 0) {
3674				split = 0;
3675			} else if ((extend || !data_size) && slot == 0) {
3676				mid = 1;
3677			} else {
3678				mid = slot;
3679				if (mid != nritems &&
3680				    leaf_space_used(l, mid, nritems - mid) +
3681				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
3682					if (data_size && !tried_avoid_double)
3683						goto push_for_double;
3684					split = 2;
3685				}
3686			}
3687		}
3688	}
3689
3690	if (split == 0)
3691		btrfs_cpu_key_to_disk(&disk_key, ins_key);
3692	else
3693		btrfs_item_key(l, &disk_key, mid);
3694
3695	/*
3696	 * We have to about BTRFS_NESTING_NEW_ROOT here if we've done a double
3697	 * split, because we're only allowed to have MAX_LOCKDEP_SUBCLASSES
3698	 * subclasses, which is 8 at the time of this patch, and we've maxed it
3699	 * out.  In the future we could add a
3700	 * BTRFS_NESTING_SPLIT_THE_SPLITTENING if we need to, but for now just
3701	 * use BTRFS_NESTING_NEW_ROOT.
3702	 */
3703	right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3704				       &disk_key, 0, l->start, 0,
3705				       num_doubles ? BTRFS_NESTING_NEW_ROOT :
3706				       BTRFS_NESTING_SPLIT);
3707	if (IS_ERR(right))
3708		return PTR_ERR(right);
3709
3710	root_add_used(root, fs_info->nodesize);
3711
3712	if (split == 0) {
3713		if (mid <= slot) {
3714			btrfs_set_header_nritems(right, 0);
3715			insert_ptr(trans, path, &disk_key,
3716				   right->start, path->slots[1] + 1, 1);
 
 
 
 
 
3717			btrfs_tree_unlock(path->nodes[0]);
3718			free_extent_buffer(path->nodes[0]);
3719			path->nodes[0] = right;
3720			path->slots[0] = 0;
3721			path->slots[1] += 1;
3722		} else {
3723			btrfs_set_header_nritems(right, 0);
3724			insert_ptr(trans, path, &disk_key,
3725				   right->start, path->slots[1], 1);
 
 
 
 
 
3726			btrfs_tree_unlock(path->nodes[0]);
3727			free_extent_buffer(path->nodes[0]);
3728			path->nodes[0] = right;
3729			path->slots[0] = 0;
3730			if (path->slots[1] == 0)
3731				fixup_low_keys(path, &disk_key, 1);
3732		}
3733		/*
3734		 * We create a new leaf 'right' for the required ins_len and
3735		 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
3736		 * the content of ins_len to 'right'.
3737		 */
3738		return ret;
3739	}
3740
3741	copy_for_split(trans, path, l, right, slot, mid, nritems);
 
 
 
 
 
3742
3743	if (split == 2) {
3744		BUG_ON(num_doubles != 0);
3745		num_doubles++;
3746		goto again;
3747	}
3748
3749	return 0;
3750
3751push_for_double:
3752	push_for_double_split(trans, root, path, data_size);
3753	tried_avoid_double = 1;
3754	if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
3755		return 0;
3756	goto again;
3757}
3758
3759static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
3760					 struct btrfs_root *root,
3761					 struct btrfs_path *path, int ins_len)
3762{
3763	struct btrfs_key key;
3764	struct extent_buffer *leaf;
3765	struct btrfs_file_extent_item *fi;
3766	u64 extent_len = 0;
3767	u32 item_size;
3768	int ret;
3769
3770	leaf = path->nodes[0];
3771	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3772
3773	BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
3774	       key.type != BTRFS_EXTENT_CSUM_KEY);
3775
3776	if (btrfs_leaf_free_space(leaf) >= ins_len)
3777		return 0;
3778
3779	item_size = btrfs_item_size(leaf, path->slots[0]);
3780	if (key.type == BTRFS_EXTENT_DATA_KEY) {
3781		fi = btrfs_item_ptr(leaf, path->slots[0],
3782				    struct btrfs_file_extent_item);
3783		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
3784	}
3785	btrfs_release_path(path);
3786
3787	path->keep_locks = 1;
3788	path->search_for_split = 1;
3789	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
3790	path->search_for_split = 0;
3791	if (ret > 0)
3792		ret = -EAGAIN;
3793	if (ret < 0)
3794		goto err;
3795
3796	ret = -EAGAIN;
3797	leaf = path->nodes[0];
3798	/* if our item isn't there, return now */
3799	if (item_size != btrfs_item_size(leaf, path->slots[0]))
3800		goto err;
3801
3802	/* the leaf has  changed, it now has room.  return now */
3803	if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len)
3804		goto err;
3805
3806	if (key.type == BTRFS_EXTENT_DATA_KEY) {
3807		fi = btrfs_item_ptr(leaf, path->slots[0],
3808				    struct btrfs_file_extent_item);
3809		if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
3810			goto err;
3811	}
3812
3813	ret = split_leaf(trans, root, &key, path, ins_len, 1);
3814	if (ret)
3815		goto err;
3816
3817	path->keep_locks = 0;
3818	btrfs_unlock_up_safe(path, 1);
3819	return 0;
3820err:
3821	path->keep_locks = 0;
3822	return ret;
3823}
3824
3825static noinline int split_item(struct btrfs_path *path,
 
3826			       const struct btrfs_key *new_key,
3827			       unsigned long split_offset)
3828{
3829	struct extent_buffer *leaf;
3830	int orig_slot, slot;
3831	char *buf;
3832	u32 nritems;
3833	u32 item_size;
3834	u32 orig_offset;
3835	struct btrfs_disk_key disk_key;
3836
3837	leaf = path->nodes[0];
3838	BUG_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item));
 
 
 
 
 
3839
3840	orig_slot = path->slots[0];
3841	orig_offset = btrfs_item_offset(leaf, path->slots[0]);
3842	item_size = btrfs_item_size(leaf, path->slots[0]);
3843
3844	buf = kmalloc(item_size, GFP_NOFS);
3845	if (!buf)
3846		return -ENOMEM;
3847
3848	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
3849			    path->slots[0]), item_size);
3850
3851	slot = path->slots[0] + 1;
3852	nritems = btrfs_header_nritems(leaf);
3853	if (slot != nritems) {
3854		/* shift the items */
3855		memmove_leaf_items(leaf, slot + 1, slot, nritems - slot);
3856	}
3857
3858	btrfs_cpu_key_to_disk(&disk_key, new_key);
3859	btrfs_set_item_key(leaf, &disk_key, slot);
3860
3861	btrfs_set_item_offset(leaf, slot, orig_offset);
3862	btrfs_set_item_size(leaf, slot, item_size - split_offset);
3863
3864	btrfs_set_item_offset(leaf, orig_slot,
3865				 orig_offset + item_size - split_offset);
3866	btrfs_set_item_size(leaf, orig_slot, split_offset);
3867
3868	btrfs_set_header_nritems(leaf, nritems + 1);
3869
3870	/* write the data for the start of the original item */
3871	write_extent_buffer(leaf, buf,
3872			    btrfs_item_ptr_offset(leaf, path->slots[0]),
3873			    split_offset);
3874
3875	/* write the data for the new item */
3876	write_extent_buffer(leaf, buf + split_offset,
3877			    btrfs_item_ptr_offset(leaf, slot),
3878			    item_size - split_offset);
3879	btrfs_mark_buffer_dirty(leaf);
3880
3881	BUG_ON(btrfs_leaf_free_space(leaf) < 0);
3882	kfree(buf);
3883	return 0;
3884}
3885
3886/*
3887 * This function splits a single item into two items,
3888 * giving 'new_key' to the new item and splitting the
3889 * old one at split_offset (from the start of the item).
3890 *
3891 * The path may be released by this operation.  After
3892 * the split, the path is pointing to the old item.  The
3893 * new item is going to be in the same node as the old one.
3894 *
3895 * Note, the item being split must be smaller enough to live alone on
3896 * a tree block with room for one extra struct btrfs_item
3897 *
3898 * This allows us to split the item in place, keeping a lock on the
3899 * leaf the entire time.
3900 */
3901int btrfs_split_item(struct btrfs_trans_handle *trans,
3902		     struct btrfs_root *root,
3903		     struct btrfs_path *path,
3904		     const struct btrfs_key *new_key,
3905		     unsigned long split_offset)
3906{
3907	int ret;
3908	ret = setup_leaf_for_split(trans, root, path,
3909				   sizeof(struct btrfs_item));
3910	if (ret)
3911		return ret;
3912
3913	ret = split_item(path, new_key, split_offset);
3914	return ret;
3915}
3916
3917/*
3918 * make the item pointed to by the path smaller.  new_size indicates
3919 * how small to make it, and from_end tells us if we just chop bytes
3920 * off the end of the item or if we shift the item to chop bytes off
3921 * the front.
3922 */
3923void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end)
 
3924{
3925	int slot;
3926	struct extent_buffer *leaf;
3927	u32 nritems;
3928	unsigned int data_end;
3929	unsigned int old_data_start;
3930	unsigned int old_size;
3931	unsigned int size_diff;
3932	int i;
3933	struct btrfs_map_token token;
3934
3935	leaf = path->nodes[0];
3936	slot = path->slots[0];
3937
3938	old_size = btrfs_item_size(leaf, slot);
3939	if (old_size == new_size)
3940		return;
3941
3942	nritems = btrfs_header_nritems(leaf);
3943	data_end = leaf_data_end(leaf);
3944
3945	old_data_start = btrfs_item_offset(leaf, slot);
3946
3947	size_diff = old_size - new_size;
3948
3949	BUG_ON(slot < 0);
3950	BUG_ON(slot >= nritems);
3951
3952	/*
3953	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3954	 */
3955	/* first correct the data pointers */
3956	btrfs_init_map_token(&token, leaf);
3957	for (i = slot; i < nritems; i++) {
3958		u32 ioff;
3959
3960		ioff = btrfs_token_item_offset(&token, i);
3961		btrfs_set_token_item_offset(&token, i, ioff + size_diff);
3962	}
3963
3964	/* shift the data */
3965	if (from_end) {
3966		memmove_leaf_data(leaf, data_end + size_diff, data_end,
3967				  old_data_start + new_size - data_end);
3968	} else {
3969		struct btrfs_disk_key disk_key;
3970		u64 offset;
3971
3972		btrfs_item_key(leaf, &disk_key, slot);
3973
3974		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
3975			unsigned long ptr;
3976			struct btrfs_file_extent_item *fi;
3977
3978			fi = btrfs_item_ptr(leaf, slot,
3979					    struct btrfs_file_extent_item);
3980			fi = (struct btrfs_file_extent_item *)(
3981			     (unsigned long)fi - size_diff);
3982
3983			if (btrfs_file_extent_type(leaf, fi) ==
3984			    BTRFS_FILE_EXTENT_INLINE) {
3985				ptr = btrfs_item_ptr_offset(leaf, slot);
3986				memmove_extent_buffer(leaf, ptr,
3987				      (unsigned long)fi,
3988				      BTRFS_FILE_EXTENT_INLINE_DATA_START);
3989			}
3990		}
3991
3992		memmove_leaf_data(leaf, data_end + size_diff, data_end,
3993				  old_data_start - data_end);
3994
3995		offset = btrfs_disk_key_offset(&disk_key);
3996		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
3997		btrfs_set_item_key(leaf, &disk_key, slot);
3998		if (slot == 0)
3999			fixup_low_keys(path, &disk_key, 1);
4000	}
4001
4002	btrfs_set_item_size(leaf, slot, new_size);
4003	btrfs_mark_buffer_dirty(leaf);
4004
4005	if (btrfs_leaf_free_space(leaf) < 0) {
4006		btrfs_print_leaf(leaf);
4007		BUG();
4008	}
4009}
4010
4011/*
4012 * make the item pointed to by the path bigger, data_size is the added size.
4013 */
4014void btrfs_extend_item(struct btrfs_path *path, u32 data_size)
 
4015{
4016	int slot;
4017	struct extent_buffer *leaf;
4018	u32 nritems;
4019	unsigned int data_end;
4020	unsigned int old_data;
4021	unsigned int old_size;
4022	int i;
4023	struct btrfs_map_token token;
4024
4025	leaf = path->nodes[0];
4026
4027	nritems = btrfs_header_nritems(leaf);
4028	data_end = leaf_data_end(leaf);
4029
4030	if (btrfs_leaf_free_space(leaf) < data_size) {
4031		btrfs_print_leaf(leaf);
4032		BUG();
4033	}
4034	slot = path->slots[0];
4035	old_data = btrfs_item_data_end(leaf, slot);
4036
4037	BUG_ON(slot < 0);
4038	if (slot >= nritems) {
4039		btrfs_print_leaf(leaf);
4040		btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d",
4041			   slot, nritems);
4042		BUG();
4043	}
4044
4045	/*
4046	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4047	 */
4048	/* first correct the data pointers */
4049	btrfs_init_map_token(&token, leaf);
4050	for (i = slot; i < nritems; i++) {
4051		u32 ioff;
4052
4053		ioff = btrfs_token_item_offset(&token, i);
4054		btrfs_set_token_item_offset(&token, i, ioff - data_size);
4055	}
4056
4057	/* shift the data */
4058	memmove_leaf_data(leaf, data_end - data_size, data_end,
4059			  old_data - data_end);
4060
4061	data_end = old_data;
4062	old_size = btrfs_item_size(leaf, slot);
4063	btrfs_set_item_size(leaf, slot, old_size + data_size);
4064	btrfs_mark_buffer_dirty(leaf);
4065
4066	if (btrfs_leaf_free_space(leaf) < 0) {
4067		btrfs_print_leaf(leaf);
4068		BUG();
4069	}
4070}
4071
4072/*
4073 * Make space in the node before inserting one or more items.
4074 *
 
4075 * @root:	root we are inserting items to
4076 * @path:	points to the leaf/slot where we are going to insert new items
4077 * @batch:      information about the batch of items to insert
4078 *
4079 * Main purpose is to save stack depth by doing the bulk of the work in a
4080 * function that doesn't call btrfs_search_slot
4081 */
4082static void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
 
4083				   const struct btrfs_item_batch *batch)
4084{
4085	struct btrfs_fs_info *fs_info = root->fs_info;
4086	int i;
4087	u32 nritems;
4088	unsigned int data_end;
4089	struct btrfs_disk_key disk_key;
4090	struct extent_buffer *leaf;
4091	int slot;
4092	struct btrfs_map_token token;
4093	u32 total_size;
4094
4095	/*
4096	 * Before anything else, update keys in the parent and other ancestors
4097	 * if needed, then release the write locks on them, so that other tasks
4098	 * can use them while we modify the leaf.
4099	 */
4100	if (path->slots[0] == 0) {
4101		btrfs_cpu_key_to_disk(&disk_key, &batch->keys[0]);
4102		fixup_low_keys(path, &disk_key, 1);
4103	}
4104	btrfs_unlock_up_safe(path, 1);
4105
4106	leaf = path->nodes[0];
4107	slot = path->slots[0];
4108
4109	nritems = btrfs_header_nritems(leaf);
4110	data_end = leaf_data_end(leaf);
4111	total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item));
4112
4113	if (btrfs_leaf_free_space(leaf) < total_size) {
4114		btrfs_print_leaf(leaf);
4115		btrfs_crit(fs_info, "not enough freespace need %u have %d",
4116			   total_size, btrfs_leaf_free_space(leaf));
4117		BUG();
4118	}
4119
4120	btrfs_init_map_token(&token, leaf);
4121	if (slot != nritems) {
4122		unsigned int old_data = btrfs_item_data_end(leaf, slot);
4123
4124		if (old_data < data_end) {
4125			btrfs_print_leaf(leaf);
4126			btrfs_crit(fs_info,
4127		"item at slot %d with data offset %u beyond data end of leaf %u",
4128				   slot, old_data, data_end);
4129			BUG();
4130		}
4131		/*
4132		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4133		 */
4134		/* first correct the data pointers */
4135		for (i = slot; i < nritems; i++) {
4136			u32 ioff;
4137
4138			ioff = btrfs_token_item_offset(&token, i);
4139			btrfs_set_token_item_offset(&token, i,
4140						       ioff - batch->total_data_size);
4141		}
4142		/* shift the items */
4143		memmove_leaf_items(leaf, slot + batch->nr, slot, nritems - slot);
4144
4145		/* shift the data */
4146		memmove_leaf_data(leaf, data_end - batch->total_data_size,
4147				  data_end, old_data - data_end);
4148		data_end = old_data;
4149	}
4150
4151	/* setup the item for the new data */
4152	for (i = 0; i < batch->nr; i++) {
4153		btrfs_cpu_key_to_disk(&disk_key, &batch->keys[i]);
4154		btrfs_set_item_key(leaf, &disk_key, slot + i);
4155		data_end -= batch->data_sizes[i];
4156		btrfs_set_token_item_offset(&token, slot + i, data_end);
4157		btrfs_set_token_item_size(&token, slot + i, batch->data_sizes[i]);
4158	}
4159
4160	btrfs_set_header_nritems(leaf, nritems + batch->nr);
4161	btrfs_mark_buffer_dirty(leaf);
4162
4163	if (btrfs_leaf_free_space(leaf) < 0) {
4164		btrfs_print_leaf(leaf);
4165		BUG();
4166	}
4167}
4168
4169/*
4170 * Insert a new item into a leaf.
4171 *
 
4172 * @root:      The root of the btree.
4173 * @path:      A path pointing to the target leaf and slot.
4174 * @key:       The key of the new item.
4175 * @data_size: The size of the data associated with the new key.
4176 */
4177void btrfs_setup_item_for_insert(struct btrfs_root *root,
 
4178				 struct btrfs_path *path,
4179				 const struct btrfs_key *key,
4180				 u32 data_size)
4181{
4182	struct btrfs_item_batch batch;
4183
4184	batch.keys = key;
4185	batch.data_sizes = &data_size;
4186	batch.total_data_size = data_size;
4187	batch.nr = 1;
4188
4189	setup_items_for_insert(root, path, &batch);
4190}
4191
4192/*
4193 * Given a key and some data, insert items into the tree.
4194 * This does all the path init required, making room in the tree if needed.
 
 
 
 
4195 */
4196int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4197			    struct btrfs_root *root,
4198			    struct btrfs_path *path,
4199			    const struct btrfs_item_batch *batch)
4200{
4201	int ret = 0;
4202	int slot;
4203	u32 total_size;
4204
4205	total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item));
4206	ret = btrfs_search_slot(trans, root, &batch->keys[0], path, total_size, 1);
4207	if (ret == 0)
4208		return -EEXIST;
4209	if (ret < 0)
4210		return ret;
4211
4212	slot = path->slots[0];
4213	BUG_ON(slot < 0);
4214
4215	setup_items_for_insert(root, path, batch);
4216	return 0;
4217}
4218
4219/*
4220 * Given a key and some data, insert an item into the tree.
4221 * This does all the path init required, making room in the tree if needed.
4222 */
4223int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4224		      const struct btrfs_key *cpu_key, void *data,
4225		      u32 data_size)
4226{
4227	int ret = 0;
4228	struct btrfs_path *path;
4229	struct extent_buffer *leaf;
4230	unsigned long ptr;
4231
4232	path = btrfs_alloc_path();
4233	if (!path)
4234		return -ENOMEM;
4235	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4236	if (!ret) {
4237		leaf = path->nodes[0];
4238		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4239		write_extent_buffer(leaf, data, ptr, data_size);
4240		btrfs_mark_buffer_dirty(leaf);
4241	}
4242	btrfs_free_path(path);
4243	return ret;
4244}
4245
4246/*
4247 * This function duplicates an item, giving 'new_key' to the new item.
4248 * It guarantees both items live in the same tree leaf and the new item is
4249 * contiguous with the original item.
4250 *
4251 * This allows us to split a file extent in place, keeping a lock on the leaf
4252 * the entire time.
4253 */
4254int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4255			 struct btrfs_root *root,
4256			 struct btrfs_path *path,
4257			 const struct btrfs_key *new_key)
4258{
4259	struct extent_buffer *leaf;
4260	int ret;
4261	u32 item_size;
4262
4263	leaf = path->nodes[0];
4264	item_size = btrfs_item_size(leaf, path->slots[0]);
4265	ret = setup_leaf_for_split(trans, root, path,
4266				   item_size + sizeof(struct btrfs_item));
4267	if (ret)
4268		return ret;
4269
4270	path->slots[0]++;
4271	btrfs_setup_item_for_insert(root, path, new_key, item_size);
4272	leaf = path->nodes[0];
4273	memcpy_extent_buffer(leaf,
4274			     btrfs_item_ptr_offset(leaf, path->slots[0]),
4275			     btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4276			     item_size);
4277	return 0;
4278}
4279
4280/*
4281 * delete the pointer from a given node.
4282 *
4283 * the tree should have been previously balanced so the deletion does not
4284 * empty a node.
 
 
4285 */
4286static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4287		    int level, int slot)
4288{
4289	struct extent_buffer *parent = path->nodes[level];
4290	u32 nritems;
4291	int ret;
4292
4293	nritems = btrfs_header_nritems(parent);
4294	if (slot != nritems - 1) {
4295		if (level) {
4296			ret = btrfs_tree_mod_log_insert_move(parent, slot,
4297					slot + 1, nritems - slot - 1);
4298			BUG_ON(ret < 0);
 
 
 
4299		}
4300		memmove_extent_buffer(parent,
4301			      btrfs_node_key_ptr_offset(parent, slot),
4302			      btrfs_node_key_ptr_offset(parent, slot + 1),
4303			      sizeof(struct btrfs_key_ptr) *
4304			      (nritems - slot - 1));
4305	} else if (level) {
4306		ret = btrfs_tree_mod_log_insert_key(parent, slot,
4307						    BTRFS_MOD_LOG_KEY_REMOVE);
4308		BUG_ON(ret < 0);
 
 
 
4309	}
4310
4311	nritems--;
4312	btrfs_set_header_nritems(parent, nritems);
4313	if (nritems == 0 && parent == root->node) {
4314		BUG_ON(btrfs_header_level(root->node) != 1);
4315		/* just turn the root into a leaf and break */
4316		btrfs_set_header_level(root->node, 0);
4317	} else if (slot == 0) {
4318		struct btrfs_disk_key disk_key;
4319
4320		btrfs_node_key(parent, &disk_key, 0);
4321		fixup_low_keys(path, &disk_key, level + 1);
4322	}
4323	btrfs_mark_buffer_dirty(parent);
 
4324}
4325
4326/*
4327 * a helper function to delete the leaf pointed to by path->slots[1] and
4328 * path->nodes[1].
4329 *
4330 * This deletes the pointer in path->nodes[1] and frees the leaf
4331 * block extent.  zero is returned if it all worked out, < 0 otherwise.
4332 *
4333 * The path must have already been setup for deleting the leaf, including
4334 * all the proper balancing.  path->nodes[1] must be locked.
4335 */
4336static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4337				    struct btrfs_root *root,
4338				    struct btrfs_path *path,
4339				    struct extent_buffer *leaf)
4340{
 
 
4341	WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4342	del_ptr(root, path, 1, path->slots[1]);
 
 
4343
4344	/*
4345	 * btrfs_free_extent is expensive, we want to make sure we
4346	 * aren't holding any locks when we call it
4347	 */
4348	btrfs_unlock_up_safe(path, 0);
4349
4350	root_sub_used(root, leaf->len);
4351
4352	atomic_inc(&leaf->refs);
4353	btrfs_free_tree_block(trans, btrfs_root_id(root), leaf, 0, 1);
4354	free_extent_buffer_stale(leaf);
 
 
 
 
4355}
4356/*
4357 * delete the item at the leaf level in path.  If that empties
4358 * the leaf, remove it from the tree
4359 */
4360int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4361		    struct btrfs_path *path, int slot, int nr)
4362{
4363	struct btrfs_fs_info *fs_info = root->fs_info;
4364	struct extent_buffer *leaf;
4365	int ret = 0;
4366	int wret;
4367	u32 nritems;
4368
4369	leaf = path->nodes[0];
4370	nritems = btrfs_header_nritems(leaf);
4371
4372	if (slot + nr != nritems) {
4373		const u32 last_off = btrfs_item_offset(leaf, slot + nr - 1);
4374		const int data_end = leaf_data_end(leaf);
4375		struct btrfs_map_token token;
4376		u32 dsize = 0;
4377		int i;
4378
4379		for (i = 0; i < nr; i++)
4380			dsize += btrfs_item_size(leaf, slot + i);
4381
4382		memmove_leaf_data(leaf, data_end + dsize, data_end,
4383				  last_off - data_end);
4384
4385		btrfs_init_map_token(&token, leaf);
4386		for (i = slot + nr; i < nritems; i++) {
4387			u32 ioff;
4388
4389			ioff = btrfs_token_item_offset(&token, i);
4390			btrfs_set_token_item_offset(&token, i, ioff + dsize);
4391		}
4392
4393		memmove_leaf_items(leaf, slot, slot + nr, nritems - slot - nr);
4394	}
4395	btrfs_set_header_nritems(leaf, nritems - nr);
4396	nritems -= nr;
4397
4398	/* delete the leaf if we've emptied it */
4399	if (nritems == 0) {
4400		if (leaf == root->node) {
4401			btrfs_set_header_level(leaf, 0);
4402		} else {
4403			btrfs_clean_tree_block(leaf);
4404			btrfs_del_leaf(trans, root, path, leaf);
 
 
4405		}
4406	} else {
4407		int used = leaf_space_used(leaf, 0, nritems);
4408		if (slot == 0) {
4409			struct btrfs_disk_key disk_key;
4410
4411			btrfs_item_key(leaf, &disk_key, 0);
4412			fixup_low_keys(path, &disk_key, 1);
4413		}
4414
4415		/*
4416		 * Try to delete the leaf if it is mostly empty. We do this by
4417		 * trying to move all its items into its left and right neighbours.
4418		 * If we can't move all the items, then we don't delete it - it's
4419		 * not ideal, but future insertions might fill the leaf with more
4420		 * items, or items from other leaves might be moved later into our
4421		 * leaf due to deletions on those leaves.
4422		 */
4423		if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
4424			u32 min_push_space;
4425
4426			/* push_leaf_left fixes the path.
4427			 * make sure the path still points to our leaf
4428			 * for possible call to del_ptr below
4429			 */
4430			slot = path->slots[1];
4431			atomic_inc(&leaf->refs);
4432			/*
4433			 * We want to be able to at least push one item to the
4434			 * left neighbour leaf, and that's the first item.
4435			 */
4436			min_push_space = sizeof(struct btrfs_item) +
4437				btrfs_item_size(leaf, 0);
4438			wret = push_leaf_left(trans, root, path, 0,
4439					      min_push_space, 1, (u32)-1);
4440			if (wret < 0 && wret != -ENOSPC)
4441				ret = wret;
4442
4443			if (path->nodes[0] == leaf &&
4444			    btrfs_header_nritems(leaf)) {
4445				/*
4446				 * If we were not able to push all items from our
4447				 * leaf to its left neighbour, then attempt to
4448				 * either push all the remaining items to the
4449				 * right neighbour or none. There's no advantage
4450				 * in pushing only some items, instead of all, as
4451				 * it's pointless to end up with a leaf having
4452				 * too few items while the neighbours can be full
4453				 * or nearly full.
4454				 */
4455				nritems = btrfs_header_nritems(leaf);
4456				min_push_space = leaf_space_used(leaf, 0, nritems);
4457				wret = push_leaf_right(trans, root, path, 0,
4458						       min_push_space, 1, 0);
4459				if (wret < 0 && wret != -ENOSPC)
4460					ret = wret;
4461			}
4462
4463			if (btrfs_header_nritems(leaf) == 0) {
4464				path->slots[1] = slot;
4465				btrfs_del_leaf(trans, root, path, leaf);
 
 
4466				free_extent_buffer(leaf);
4467				ret = 0;
4468			} else {
4469				/* if we're still in the path, make sure
4470				 * we're dirty.  Otherwise, one of the
4471				 * push_leaf functions must have already
4472				 * dirtied this buffer
4473				 */
4474				if (path->nodes[0] == leaf)
4475					btrfs_mark_buffer_dirty(leaf);
4476				free_extent_buffer(leaf);
4477			}
4478		} else {
4479			btrfs_mark_buffer_dirty(leaf);
4480		}
4481	}
4482	return ret;
4483}
4484
4485/*
4486 * search the tree again to find a leaf with lesser keys
4487 * returns 0 if it found something or 1 if there are no lesser leaves.
4488 * returns < 0 on io errors.
4489 *
4490 * This may release the path, and so you may lose any locks held at the
4491 * time you call it.
4492 */
4493int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
4494{
4495	struct btrfs_key key;
4496	struct btrfs_disk_key found_key;
4497	int ret;
4498
4499	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
4500
4501	if (key.offset > 0) {
4502		key.offset--;
4503	} else if (key.type > 0) {
4504		key.type--;
4505		key.offset = (u64)-1;
4506	} else if (key.objectid > 0) {
4507		key.objectid--;
4508		key.type = (u8)-1;
4509		key.offset = (u64)-1;
4510	} else {
4511		return 1;
4512	}
4513
4514	btrfs_release_path(path);
4515	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4516	if (ret < 0)
4517		return ret;
4518	btrfs_item_key(path->nodes[0], &found_key, 0);
4519	ret = comp_keys(&found_key, &key);
4520	/*
4521	 * We might have had an item with the previous key in the tree right
4522	 * before we released our path. And after we released our path, that
4523	 * item might have been pushed to the first slot (0) of the leaf we
4524	 * were holding due to a tree balance. Alternatively, an item with the
4525	 * previous key can exist as the only element of a leaf (big fat item).
4526	 * Therefore account for these 2 cases, so that our callers (like
4527	 * btrfs_previous_item) don't miss an existing item with a key matching
4528	 * the previous key we computed above.
4529	 */
4530	if (ret <= 0)
4531		return 0;
4532	return 1;
4533}
4534
4535/*
4536 * A helper function to walk down the tree starting at min_key, and looking
4537 * for nodes or leaves that are have a minimum transaction id.
4538 * This is used by the btree defrag code, and tree logging
4539 *
4540 * This does not cow, but it does stuff the starting key it finds back
4541 * into min_key, so you can call btrfs_search_slot with cow=1 on the
4542 * key and get a writable path.
4543 *
4544 * This honors path->lowest_level to prevent descent past a given level
4545 * of the tree.
4546 *
4547 * min_trans indicates the oldest transaction that you are interested
4548 * in walking through.  Any nodes or leaves older than min_trans are
4549 * skipped over (without reading them).
4550 *
4551 * returns zero if something useful was found, < 0 on error and 1 if there
4552 * was nothing in the tree that matched the search criteria.
4553 */
4554int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
4555			 struct btrfs_path *path,
4556			 u64 min_trans)
4557{
4558	struct extent_buffer *cur;
4559	struct btrfs_key found_key;
4560	int slot;
4561	int sret;
4562	u32 nritems;
4563	int level;
4564	int ret = 1;
4565	int keep_locks = path->keep_locks;
4566
4567	ASSERT(!path->nowait);
4568	path->keep_locks = 1;
4569again:
4570	cur = btrfs_read_lock_root_node(root);
4571	level = btrfs_header_level(cur);
4572	WARN_ON(path->nodes[level]);
4573	path->nodes[level] = cur;
4574	path->locks[level] = BTRFS_READ_LOCK;
4575
4576	if (btrfs_header_generation(cur) < min_trans) {
4577		ret = 1;
4578		goto out;
4579	}
4580	while (1) {
4581		nritems = btrfs_header_nritems(cur);
4582		level = btrfs_header_level(cur);
4583		sret = btrfs_bin_search(cur, min_key, &slot);
4584		if (sret < 0) {
4585			ret = sret;
4586			goto out;
4587		}
4588
4589		/* at the lowest level, we're done, setup the path and exit */
4590		if (level == path->lowest_level) {
4591			if (slot >= nritems)
4592				goto find_next_key;
4593			ret = 0;
4594			path->slots[level] = slot;
4595			btrfs_item_key_to_cpu(cur, &found_key, slot);
4596			goto out;
4597		}
4598		if (sret && slot > 0)
4599			slot--;
4600		/*
4601		 * check this node pointer against the min_trans parameters.
4602		 * If it is too old, skip to the next one.
4603		 */
4604		while (slot < nritems) {
4605			u64 gen;
4606
4607			gen = btrfs_node_ptr_generation(cur, slot);
4608			if (gen < min_trans) {
4609				slot++;
4610				continue;
4611			}
4612			break;
4613		}
4614find_next_key:
4615		/*
4616		 * we didn't find a candidate key in this node, walk forward
4617		 * and find another one
4618		 */
4619		if (slot >= nritems) {
4620			path->slots[level] = slot;
4621			sret = btrfs_find_next_key(root, path, min_key, level,
4622						  min_trans);
4623			if (sret == 0) {
4624				btrfs_release_path(path);
4625				goto again;
4626			} else {
4627				goto out;
4628			}
4629		}
4630		/* save our key for returning back */
4631		btrfs_node_key_to_cpu(cur, &found_key, slot);
4632		path->slots[level] = slot;
4633		if (level == path->lowest_level) {
4634			ret = 0;
4635			goto out;
4636		}
4637		cur = btrfs_read_node_slot(cur, slot);
4638		if (IS_ERR(cur)) {
4639			ret = PTR_ERR(cur);
4640			goto out;
4641		}
4642
4643		btrfs_tree_read_lock(cur);
4644
4645		path->locks[level - 1] = BTRFS_READ_LOCK;
4646		path->nodes[level - 1] = cur;
4647		unlock_up(path, level, 1, 0, NULL);
4648	}
4649out:
4650	path->keep_locks = keep_locks;
4651	if (ret == 0) {
4652		btrfs_unlock_up_safe(path, path->lowest_level + 1);
4653		memcpy(min_key, &found_key, sizeof(found_key));
4654	}
4655	return ret;
4656}
4657
4658/*
4659 * this is similar to btrfs_next_leaf, but does not try to preserve
4660 * and fixup the path.  It looks for and returns the next key in the
4661 * tree based on the current path and the min_trans parameters.
4662 *
4663 * 0 is returned if another key is found, < 0 if there are any errors
4664 * and 1 is returned if there are no higher keys in the tree
4665 *
4666 * path->keep_locks should be set to 1 on the search made before
4667 * calling this function.
4668 */
4669int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
4670			struct btrfs_key *key, int level, u64 min_trans)
4671{
4672	int slot;
4673	struct extent_buffer *c;
4674
4675	WARN_ON(!path->keep_locks && !path->skip_locking);
4676	while (level < BTRFS_MAX_LEVEL) {
4677		if (!path->nodes[level])
4678			return 1;
4679
4680		slot = path->slots[level] + 1;
4681		c = path->nodes[level];
4682next:
4683		if (slot >= btrfs_header_nritems(c)) {
4684			int ret;
4685			int orig_lowest;
4686			struct btrfs_key cur_key;
4687			if (level + 1 >= BTRFS_MAX_LEVEL ||
4688			    !path->nodes[level + 1])
4689				return 1;
4690
4691			if (path->locks[level + 1] || path->skip_locking) {
4692				level++;
4693				continue;
4694			}
4695
4696			slot = btrfs_header_nritems(c) - 1;
4697			if (level == 0)
4698				btrfs_item_key_to_cpu(c, &cur_key, slot);
4699			else
4700				btrfs_node_key_to_cpu(c, &cur_key, slot);
4701
4702			orig_lowest = path->lowest_level;
4703			btrfs_release_path(path);
4704			path->lowest_level = level;
4705			ret = btrfs_search_slot(NULL, root, &cur_key, path,
4706						0, 0);
4707			path->lowest_level = orig_lowest;
4708			if (ret < 0)
4709				return ret;
4710
4711			c = path->nodes[level];
4712			slot = path->slots[level];
4713			if (ret == 0)
4714				slot++;
4715			goto next;
4716		}
4717
4718		if (level == 0)
4719			btrfs_item_key_to_cpu(c, key, slot);
4720		else {
4721			u64 gen = btrfs_node_ptr_generation(c, slot);
4722
4723			if (gen < min_trans) {
4724				slot++;
4725				goto next;
4726			}
4727			btrfs_node_key_to_cpu(c, key, slot);
4728		}
4729		return 0;
4730	}
4731	return 1;
4732}
4733
4734int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
4735			u64 time_seq)
4736{
4737	int slot;
4738	int level;
4739	struct extent_buffer *c;
4740	struct extent_buffer *next;
4741	struct btrfs_fs_info *fs_info = root->fs_info;
4742	struct btrfs_key key;
4743	bool need_commit_sem = false;
4744	u32 nritems;
4745	int ret;
4746	int i;
4747
4748	/*
4749	 * The nowait semantics are used only for write paths, where we don't
4750	 * use the tree mod log and sequence numbers.
4751	 */
4752	if (time_seq)
4753		ASSERT(!path->nowait);
4754
4755	nritems = btrfs_header_nritems(path->nodes[0]);
4756	if (nritems == 0)
4757		return 1;
4758
4759	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
4760again:
4761	level = 1;
4762	next = NULL;
4763	btrfs_release_path(path);
4764
4765	path->keep_locks = 1;
4766
4767	if (time_seq) {
4768		ret = btrfs_search_old_slot(root, &key, path, time_seq);
4769	} else {
4770		if (path->need_commit_sem) {
4771			path->need_commit_sem = 0;
4772			need_commit_sem = true;
4773			if (path->nowait) {
4774				if (!down_read_trylock(&fs_info->commit_root_sem)) {
4775					ret = -EAGAIN;
4776					goto done;
4777				}
4778			} else {
4779				down_read(&fs_info->commit_root_sem);
4780			}
4781		}
4782		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4783	}
4784	path->keep_locks = 0;
4785
4786	if (ret < 0)
4787		goto done;
4788
4789	nritems = btrfs_header_nritems(path->nodes[0]);
4790	/*
4791	 * by releasing the path above we dropped all our locks.  A balance
4792	 * could have added more items next to the key that used to be
4793	 * at the very end of the block.  So, check again here and
4794	 * advance the path if there are now more items available.
4795	 */
4796	if (nritems > 0 && path->slots[0] < nritems - 1) {
4797		if (ret == 0)
4798			path->slots[0]++;
4799		ret = 0;
4800		goto done;
4801	}
4802	/*
4803	 * So the above check misses one case:
4804	 * - after releasing the path above, someone has removed the item that
4805	 *   used to be at the very end of the block, and balance between leafs
4806	 *   gets another one with bigger key.offset to replace it.
4807	 *
4808	 * This one should be returned as well, or we can get leaf corruption
4809	 * later(esp. in __btrfs_drop_extents()).
4810	 *
4811	 * And a bit more explanation about this check,
4812	 * with ret > 0, the key isn't found, the path points to the slot
4813	 * where it should be inserted, so the path->slots[0] item must be the
4814	 * bigger one.
4815	 */
4816	if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
4817		ret = 0;
4818		goto done;
4819	}
4820
4821	while (level < BTRFS_MAX_LEVEL) {
4822		if (!path->nodes[level]) {
4823			ret = 1;
4824			goto done;
4825		}
4826
4827		slot = path->slots[level] + 1;
4828		c = path->nodes[level];
4829		if (slot >= btrfs_header_nritems(c)) {
4830			level++;
4831			if (level == BTRFS_MAX_LEVEL) {
4832				ret = 1;
4833				goto done;
4834			}
4835			continue;
4836		}
4837
4838
4839		/*
4840		 * Our current level is where we're going to start from, and to
4841		 * make sure lockdep doesn't complain we need to drop our locks
4842		 * and nodes from 0 to our current level.
4843		 */
4844		for (i = 0; i < level; i++) {
4845			if (path->locks[level]) {
4846				btrfs_tree_read_unlock(path->nodes[i]);
4847				path->locks[i] = 0;
4848			}
4849			free_extent_buffer(path->nodes[i]);
4850			path->nodes[i] = NULL;
4851		}
4852
4853		next = c;
4854		ret = read_block_for_search(root, path, &next, level,
4855					    slot, &key);
4856		if (ret == -EAGAIN && !path->nowait)
4857			goto again;
4858
4859		if (ret < 0) {
4860			btrfs_release_path(path);
4861			goto done;
4862		}
4863
4864		if (!path->skip_locking) {
4865			ret = btrfs_try_tree_read_lock(next);
4866			if (!ret && path->nowait) {
4867				ret = -EAGAIN;
4868				goto done;
4869			}
4870			if (!ret && time_seq) {
4871				/*
4872				 * If we don't get the lock, we may be racing
4873				 * with push_leaf_left, holding that lock while
4874				 * itself waiting for the leaf we've currently
4875				 * locked. To solve this situation, we give up
4876				 * on our lock and cycle.
4877				 */
4878				free_extent_buffer(next);
4879				btrfs_release_path(path);
4880				cond_resched();
4881				goto again;
4882			}
4883			if (!ret)
4884				btrfs_tree_read_lock(next);
4885		}
4886		break;
4887	}
4888	path->slots[level] = slot;
4889	while (1) {
4890		level--;
4891		path->nodes[level] = next;
4892		path->slots[level] = 0;
4893		if (!path->skip_locking)
4894			path->locks[level] = BTRFS_READ_LOCK;
4895		if (!level)
4896			break;
4897
4898		ret = read_block_for_search(root, path, &next, level,
4899					    0, &key);
4900		if (ret == -EAGAIN && !path->nowait)
4901			goto again;
4902
4903		if (ret < 0) {
4904			btrfs_release_path(path);
4905			goto done;
4906		}
4907
4908		if (!path->skip_locking) {
4909			if (path->nowait) {
4910				if (!btrfs_try_tree_read_lock(next)) {
4911					ret = -EAGAIN;
4912					goto done;
4913				}
4914			} else {
4915				btrfs_tree_read_lock(next);
4916			}
4917		}
4918	}
4919	ret = 0;
4920done:
4921	unlock_up(path, 0, 1, 0, NULL);
4922	if (need_commit_sem) {
4923		int ret2;
4924
4925		path->need_commit_sem = 1;
4926		ret2 = finish_need_commit_sem_search(path);
4927		up_read(&fs_info->commit_root_sem);
4928		if (ret2)
4929			ret = ret2;
4930	}
4931
4932	return ret;
4933}
4934
4935int btrfs_next_old_item(struct btrfs_root *root, struct btrfs_path *path, u64 time_seq)
4936{
4937	path->slots[0]++;
4938	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0]))
4939		return btrfs_next_old_leaf(root, path, time_seq);
4940	return 0;
4941}
4942
4943/*
4944 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
4945 * searching until it gets past min_objectid or finds an item of 'type'
4946 *
4947 * returns 0 if something is found, 1 if nothing was found and < 0 on error
4948 */
4949int btrfs_previous_item(struct btrfs_root *root,
4950			struct btrfs_path *path, u64 min_objectid,
4951			int type)
4952{
4953	struct btrfs_key found_key;
4954	struct extent_buffer *leaf;
4955	u32 nritems;
4956	int ret;
4957
4958	while (1) {
4959		if (path->slots[0] == 0) {
4960			ret = btrfs_prev_leaf(root, path);
4961			if (ret != 0)
4962				return ret;
4963		} else {
4964			path->slots[0]--;
4965		}
4966		leaf = path->nodes[0];
4967		nritems = btrfs_header_nritems(leaf);
4968		if (nritems == 0)
4969			return 1;
4970		if (path->slots[0] == nritems)
4971			path->slots[0]--;
4972
4973		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4974		if (found_key.objectid < min_objectid)
4975			break;
4976		if (found_key.type == type)
4977			return 0;
4978		if (found_key.objectid == min_objectid &&
4979		    found_key.type < type)
4980			break;
4981	}
4982	return 1;
4983}
4984
4985/*
4986 * search in extent tree to find a previous Metadata/Data extent item with
4987 * min objecitd.
4988 *
4989 * returns 0 if something is found, 1 if nothing was found and < 0 on error
4990 */
4991int btrfs_previous_extent_item(struct btrfs_root *root,
4992			struct btrfs_path *path, u64 min_objectid)
4993{
4994	struct btrfs_key found_key;
4995	struct extent_buffer *leaf;
4996	u32 nritems;
4997	int ret;
4998
4999	while (1) {
5000		if (path->slots[0] == 0) {
5001			ret = btrfs_prev_leaf(root, path);
5002			if (ret != 0)
5003				return ret;
5004		} else {
5005			path->slots[0]--;
5006		}
5007		leaf = path->nodes[0];
5008		nritems = btrfs_header_nritems(leaf);
5009		if (nritems == 0)
5010			return 1;
5011		if (path->slots[0] == nritems)
5012			path->slots[0]--;
5013
5014		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5015		if (found_key.objectid < min_objectid)
5016			break;
5017		if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5018		    found_key.type == BTRFS_METADATA_ITEM_KEY)
5019			return 0;
5020		if (found_key.objectid == min_objectid &&
5021		    found_key.type < BTRFS_EXTENT_ITEM_KEY)
5022			break;
5023	}
5024	return 1;
5025}
5026
5027int __init btrfs_ctree_init(void)
5028{
5029	btrfs_path_cachep = kmem_cache_create("btrfs_path",
5030			sizeof(struct btrfs_path), 0,
5031			SLAB_MEM_SPREAD, NULL);
5032	if (!btrfs_path_cachep)
5033		return -ENOMEM;
5034	return 0;
5035}
5036
5037void __cold btrfs_ctree_exit(void)
5038{
5039	kmem_cache_destroy(btrfs_path_cachep);
5040}
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007,2008 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/sched.h>
   7#include <linux/slab.h>
   8#include <linux/rbtree.h>
   9#include <linux/mm.h>
  10#include <linux/error-injection.h>
  11#include "messages.h"
  12#include "ctree.h"
  13#include "disk-io.h"
  14#include "transaction.h"
  15#include "print-tree.h"
  16#include "locking.h"
  17#include "volumes.h"
  18#include "qgroup.h"
  19#include "tree-mod-log.h"
  20#include "tree-checker.h"
  21#include "fs.h"
  22#include "accessors.h"
  23#include "extent-tree.h"
  24#include "relocation.h"
  25#include "file-item.h"
  26
  27static struct kmem_cache *btrfs_path_cachep;
  28
  29static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
  30		      *root, struct btrfs_path *path, int level);
  31static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  32		      const struct btrfs_key *ins_key, struct btrfs_path *path,
  33		      int data_size, int extend);
  34static int push_node_left(struct btrfs_trans_handle *trans,
  35			  struct extent_buffer *dst,
  36			  struct extent_buffer *src, int empty);
  37static int balance_node_right(struct btrfs_trans_handle *trans,
  38			      struct extent_buffer *dst_buf,
  39			      struct extent_buffer *src_buf);
 
 
  40
  41static const struct btrfs_csums {
  42	u16		size;
  43	const char	name[10];
  44	const char	driver[12];
  45} btrfs_csums[] = {
  46	[BTRFS_CSUM_TYPE_CRC32] = { .size = 4, .name = "crc32c" },
  47	[BTRFS_CSUM_TYPE_XXHASH] = { .size = 8, .name = "xxhash64" },
  48	[BTRFS_CSUM_TYPE_SHA256] = { .size = 32, .name = "sha256" },
  49	[BTRFS_CSUM_TYPE_BLAKE2] = { .size = 32, .name = "blake2b",
  50				     .driver = "blake2b-256" },
  51};
  52
  53/*
  54 * The leaf data grows from end-to-front in the node.  this returns the address
  55 * of the start of the last item, which is the stop of the leaf data stack.
  56 */
  57static unsigned int leaf_data_end(const struct extent_buffer *leaf)
  58{
  59	u32 nr = btrfs_header_nritems(leaf);
  60
  61	if (nr == 0)
  62		return BTRFS_LEAF_DATA_SIZE(leaf->fs_info);
  63	return btrfs_item_offset(leaf, nr - 1);
  64}
  65
  66/*
  67 * Move data in a @leaf (using memmove, safe for overlapping ranges).
  68 *
  69 * @leaf:	leaf that we're doing a memmove on
  70 * @dst_offset:	item data offset we're moving to
  71 * @src_offset:	item data offset were' moving from
  72 * @len:	length of the data we're moving
  73 *
  74 * Wrapper around memmove_extent_buffer() that takes into account the header on
  75 * the leaf.  The btrfs_item offset's start directly after the header, so we
  76 * have to adjust any offsets to account for the header in the leaf.  This
  77 * handles that math to simplify the callers.
  78 */
  79static inline void memmove_leaf_data(const struct extent_buffer *leaf,
  80				     unsigned long dst_offset,
  81				     unsigned long src_offset,
  82				     unsigned long len)
  83{
  84	memmove_extent_buffer(leaf, btrfs_item_nr_offset(leaf, 0) + dst_offset,
  85			      btrfs_item_nr_offset(leaf, 0) + src_offset, len);
  86}
  87
  88/*
  89 * Copy item data from @src into @dst at the given @offset.
  90 *
  91 * @dst:	destination leaf that we're copying into
  92 * @src:	source leaf that we're copying from
  93 * @dst_offset:	item data offset we're copying to
  94 * @src_offset:	item data offset were' copying from
  95 * @len:	length of the data we're copying
  96 *
  97 * Wrapper around copy_extent_buffer() that takes into account the header on
  98 * the leaf.  The btrfs_item offset's start directly after the header, so we
  99 * have to adjust any offsets to account for the header in the leaf.  This
 100 * handles that math to simplify the callers.
 101 */
 102static inline void copy_leaf_data(const struct extent_buffer *dst,
 103				  const struct extent_buffer *src,
 104				  unsigned long dst_offset,
 105				  unsigned long src_offset, unsigned long len)
 106{
 107	copy_extent_buffer(dst, src, btrfs_item_nr_offset(dst, 0) + dst_offset,
 108			   btrfs_item_nr_offset(src, 0) + src_offset, len);
 109}
 110
 111/*
 112 * Move items in a @leaf (using memmove).
 113 *
 114 * @dst:	destination leaf for the items
 115 * @dst_item:	the item nr we're copying into
 116 * @src_item:	the item nr we're copying from
 117 * @nr_items:	the number of items to copy
 118 *
 119 * Wrapper around memmove_extent_buffer() that does the math to get the
 120 * appropriate offsets into the leaf from the item numbers.
 121 */
 122static inline void memmove_leaf_items(const struct extent_buffer *leaf,
 123				      int dst_item, int src_item, int nr_items)
 124{
 125	memmove_extent_buffer(leaf, btrfs_item_nr_offset(leaf, dst_item),
 126			      btrfs_item_nr_offset(leaf, src_item),
 127			      nr_items * sizeof(struct btrfs_item));
 128}
 129
 130/*
 131 * Copy items from @src into @dst at the given @offset.
 132 *
 133 * @dst:	destination leaf for the items
 134 * @src:	source leaf for the items
 135 * @dst_item:	the item nr we're copying into
 136 * @src_item:	the item nr we're copying from
 137 * @nr_items:	the number of items to copy
 138 *
 139 * Wrapper around copy_extent_buffer() that does the math to get the
 140 * appropriate offsets into the leaf from the item numbers.
 141 */
 142static inline void copy_leaf_items(const struct extent_buffer *dst,
 143				   const struct extent_buffer *src,
 144				   int dst_item, int src_item, int nr_items)
 145{
 146	copy_extent_buffer(dst, src, btrfs_item_nr_offset(dst, dst_item),
 147			      btrfs_item_nr_offset(src, src_item),
 148			      nr_items * sizeof(struct btrfs_item));
 149}
 150
 151/* This exists for btrfs-progs usages. */
 152u16 btrfs_csum_type_size(u16 type)
 153{
 154	return btrfs_csums[type].size;
 155}
 156
 157int btrfs_super_csum_size(const struct btrfs_super_block *s)
 158{
 159	u16 t = btrfs_super_csum_type(s);
 160	/*
 161	 * csum type is validated at mount time
 162	 */
 163	return btrfs_csum_type_size(t);
 164}
 165
 166const char *btrfs_super_csum_name(u16 csum_type)
 167{
 168	/* csum type is validated at mount time */
 169	return btrfs_csums[csum_type].name;
 170}
 171
 172/*
 173 * Return driver name if defined, otherwise the name that's also a valid driver
 174 * name
 175 */
 176const char *btrfs_super_csum_driver(u16 csum_type)
 177{
 178	/* csum type is validated at mount time */
 179	return btrfs_csums[csum_type].driver[0] ?
 180		btrfs_csums[csum_type].driver :
 181		btrfs_csums[csum_type].name;
 182}
 183
 184size_t __attribute_const__ btrfs_get_num_csums(void)
 185{
 186	return ARRAY_SIZE(btrfs_csums);
 187}
 188
 189struct btrfs_path *btrfs_alloc_path(void)
 190{
 191	might_sleep();
 192
 193	return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
 194}
 195
 196/* this also releases the path */
 197void btrfs_free_path(struct btrfs_path *p)
 198{
 199	if (!p)
 200		return;
 201	btrfs_release_path(p);
 202	kmem_cache_free(btrfs_path_cachep, p);
 203}
 204
 205/*
 206 * path release drops references on the extent buffers in the path
 207 * and it drops any locks held by this path
 208 *
 209 * It is safe to call this on paths that no locks or extent buffers held.
 210 */
 211noinline void btrfs_release_path(struct btrfs_path *p)
 212{
 213	int i;
 214
 215	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
 216		p->slots[i] = 0;
 217		if (!p->nodes[i])
 218			continue;
 219		if (p->locks[i]) {
 220			btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
 221			p->locks[i] = 0;
 222		}
 223		free_extent_buffer(p->nodes[i]);
 224		p->nodes[i] = NULL;
 225	}
 226}
 227
 228/*
 229 * We want the transaction abort to print stack trace only for errors where the
 230 * cause could be a bug, eg. due to ENOSPC, and not for common errors that are
 231 * caused by external factors.
 232 */
 233bool __cold abort_should_print_stack(int error)
 234{
 235	switch (error) {
 236	case -EIO:
 237	case -EROFS:
 238	case -ENOMEM:
 239		return false;
 240	}
 241	return true;
 242}
 243
 244/*
 245 * safely gets a reference on the root node of a tree.  A lock
 246 * is not taken, so a concurrent writer may put a different node
 247 * at the root of the tree.  See btrfs_lock_root_node for the
 248 * looping required.
 249 *
 250 * The extent buffer returned by this has a reference taken, so
 251 * it won't disappear.  It may stop being the root of the tree
 252 * at any time because there are no locks held.
 253 */
 254struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
 255{
 256	struct extent_buffer *eb;
 257
 258	while (1) {
 259		rcu_read_lock();
 260		eb = rcu_dereference(root->node);
 261
 262		/*
 263		 * RCU really hurts here, we could free up the root node because
 264		 * it was COWed but we may not get the new root node yet so do
 265		 * the inc_not_zero dance and if it doesn't work then
 266		 * synchronize_rcu and try again.
 267		 */
 268		if (atomic_inc_not_zero(&eb->refs)) {
 269			rcu_read_unlock();
 270			break;
 271		}
 272		rcu_read_unlock();
 273		synchronize_rcu();
 274	}
 275	return eb;
 276}
 277
 278/*
 279 * Cowonly root (not-shareable trees, everything not subvolume or reloc roots),
 280 * just get put onto a simple dirty list.  Transaction walks this list to make
 281 * sure they get properly updated on disk.
 282 */
 283static void add_root_to_dirty_list(struct btrfs_root *root)
 284{
 285	struct btrfs_fs_info *fs_info = root->fs_info;
 286
 287	if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
 288	    !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
 289		return;
 290
 291	spin_lock(&fs_info->trans_lock);
 292	if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
 293		/* Want the extent tree to be the last on the list */
 294		if (btrfs_root_id(root) == BTRFS_EXTENT_TREE_OBJECTID)
 295			list_move_tail(&root->dirty_list,
 296				       &fs_info->dirty_cowonly_roots);
 297		else
 298			list_move(&root->dirty_list,
 299				  &fs_info->dirty_cowonly_roots);
 300	}
 301	spin_unlock(&fs_info->trans_lock);
 302}
 303
 304/*
 305 * used by snapshot creation to make a copy of a root for a tree with
 306 * a given objectid.  The buffer with the new root node is returned in
 307 * cow_ret, and this func returns zero on success or a negative error code.
 308 */
 309int btrfs_copy_root(struct btrfs_trans_handle *trans,
 310		      struct btrfs_root *root,
 311		      struct extent_buffer *buf,
 312		      struct extent_buffer **cow_ret, u64 new_root_objectid)
 313{
 314	struct btrfs_fs_info *fs_info = root->fs_info;
 315	struct extent_buffer *cow;
 316	int ret = 0;
 317	int level;
 318	struct btrfs_disk_key disk_key;
 319	u64 reloc_src_root = 0;
 320
 321	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
 322		trans->transid != fs_info->running_transaction->transid);
 323	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
 324		trans->transid != btrfs_get_root_last_trans(root));
 325
 326	level = btrfs_header_level(buf);
 327	if (level == 0)
 328		btrfs_item_key(buf, &disk_key, 0);
 329	else
 330		btrfs_node_key(buf, &disk_key, 0);
 331
 332	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
 333		reloc_src_root = btrfs_header_owner(buf);
 334	cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
 335				     &disk_key, level, buf->start, 0,
 336				     reloc_src_root, BTRFS_NESTING_NEW_ROOT);
 337	if (IS_ERR(cow))
 338		return PTR_ERR(cow);
 339
 340	copy_extent_buffer_full(cow, buf);
 341	btrfs_set_header_bytenr(cow, cow->start);
 342	btrfs_set_header_generation(cow, trans->transid);
 343	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
 344	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
 345				     BTRFS_HEADER_FLAG_RELOC);
 346	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
 347		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
 348	else
 349		btrfs_set_header_owner(cow, new_root_objectid);
 350
 351	write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
 352
 353	WARN_ON(btrfs_header_generation(buf) > trans->transid);
 354	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
 355		ret = btrfs_inc_ref(trans, root, cow, 1);
 356	else
 357		ret = btrfs_inc_ref(trans, root, cow, 0);
 358	if (ret) {
 359		btrfs_tree_unlock(cow);
 360		free_extent_buffer(cow);
 361		btrfs_abort_transaction(trans, ret);
 362		return ret;
 363	}
 364
 365	btrfs_mark_buffer_dirty(trans, cow);
 366	*cow_ret = cow;
 367	return 0;
 368}
 369
 370/*
 371 * check if the tree block can be shared by multiple trees
 372 */
 373bool btrfs_block_can_be_shared(struct btrfs_trans_handle *trans,
 374			       struct btrfs_root *root,
 375			       struct extent_buffer *buf)
 376{
 377	const u64 buf_gen = btrfs_header_generation(buf);
 378
 379	/*
 380	 * Tree blocks not in shareable trees and tree roots are never shared.
 381	 * If a block was allocated after the last snapshot and the block was
 382	 * not allocated by tree relocation, we know the block is not shared.
 383	 */
 
 
 
 
 
 
 384
 385	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
 386		return false;
 387
 388	if (buf == root->node)
 389		return false;
 390
 391	if (buf_gen > btrfs_root_last_snapshot(&root->root_item) &&
 392	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC))
 393		return false;
 394
 395	if (buf != root->commit_root)
 396		return true;
 397
 398	/*
 399	 * An extent buffer that used to be the commit root may still be shared
 400	 * because the tree height may have increased and it became a child of a
 401	 * higher level root. This can happen when snapshotting a subvolume
 402	 * created in the current transaction.
 403	 */
 404	if (buf_gen == trans->transid)
 405		return true;
 406
 407	return false;
 408}
 409
 410static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
 411				       struct btrfs_root *root,
 412				       struct extent_buffer *buf,
 413				       struct extent_buffer *cow,
 414				       int *last_ref)
 415{
 416	struct btrfs_fs_info *fs_info = root->fs_info;
 417	u64 refs;
 418	u64 owner;
 419	u64 flags;
 
 420	int ret;
 421
 422	/*
 423	 * Backrefs update rules:
 424	 *
 425	 * Always use full backrefs for extent pointers in tree block
 426	 * allocated by tree relocation.
 427	 *
 428	 * If a shared tree block is no longer referenced by its owner
 429	 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
 430	 * use full backrefs for extent pointers in tree block.
 431	 *
 432	 * If a tree block is been relocating
 433	 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
 434	 * use full backrefs for extent pointers in tree block.
 435	 * The reason for this is some operations (such as drop tree)
 436	 * are only allowed for blocks use full backrefs.
 437	 */
 438
 439	if (btrfs_block_can_be_shared(trans, root, buf)) {
 440		ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
 441					       btrfs_header_level(buf), 1,
 442					       &refs, &flags, NULL);
 443		if (ret)
 444			return ret;
 445		if (unlikely(refs == 0)) {
 446			btrfs_crit(fs_info,
 447		"found 0 references for tree block at bytenr %llu level %d root %llu",
 448				   buf->start, btrfs_header_level(buf),
 449				   btrfs_root_id(root));
 450			ret = -EUCLEAN;
 451			btrfs_abort_transaction(trans, ret);
 452			return ret;
 453		}
 454	} else {
 455		refs = 1;
 456		if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID ||
 457		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
 458			flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
 459		else
 460			flags = 0;
 461	}
 462
 463	owner = btrfs_header_owner(buf);
 464	if (unlikely(owner == BTRFS_TREE_RELOC_OBJECTID &&
 465		     !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))) {
 466		btrfs_crit(fs_info,
 467"found tree block at bytenr %llu level %d root %llu refs %llu flags %llx without full backref flag set",
 468			   buf->start, btrfs_header_level(buf),
 469			   btrfs_root_id(root), refs, flags);
 470		ret = -EUCLEAN;
 471		btrfs_abort_transaction(trans, ret);
 472		return ret;
 473	}
 474
 475	if (refs > 1) {
 476		if ((owner == btrfs_root_id(root) ||
 477		     btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID) &&
 478		    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
 479			ret = btrfs_inc_ref(trans, root, buf, 1);
 480			if (ret)
 481				return ret;
 482
 483			if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID) {
 
 484				ret = btrfs_dec_ref(trans, root, buf, 0);
 485				if (ret)
 486					return ret;
 487				ret = btrfs_inc_ref(trans, root, cow, 1);
 488				if (ret)
 489					return ret;
 490			}
 491			ret = btrfs_set_disk_extent_flags(trans, buf,
 492						  BTRFS_BLOCK_FLAG_FULL_BACKREF);
 493			if (ret)
 494				return ret;
 495		} else {
 496
 497			if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID)
 
 498				ret = btrfs_inc_ref(trans, root, cow, 1);
 499			else
 500				ret = btrfs_inc_ref(trans, root, cow, 0);
 501			if (ret)
 502				return ret;
 503		}
 
 
 
 
 
 
 
 
 504	} else {
 505		if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
 506			if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID)
 
 507				ret = btrfs_inc_ref(trans, root, cow, 1);
 508			else
 509				ret = btrfs_inc_ref(trans, root, cow, 0);
 510			if (ret)
 511				return ret;
 512			ret = btrfs_dec_ref(trans, root, buf, 1);
 513			if (ret)
 514				return ret;
 515		}
 516		btrfs_clear_buffer_dirty(trans, buf);
 517		*last_ref = 1;
 518	}
 519	return 0;
 520}
 521
 522/*
 523 * does the dirty work in cow of a single block.  The parent block (if
 524 * supplied) is updated to point to the new cow copy.  The new buffer is marked
 525 * dirty and returned locked.  If you modify the block it needs to be marked
 526 * dirty again.
 527 *
 528 * search_start -- an allocation hint for the new block
 529 *
 530 * empty_size -- a hint that you plan on doing more cow.  This is the size in
 531 * bytes the allocator should try to find free next to the block it returns.
 532 * This is just a hint and may be ignored by the allocator.
 533 */
 534int btrfs_force_cow_block(struct btrfs_trans_handle *trans,
 535			  struct btrfs_root *root,
 536			  struct extent_buffer *buf,
 537			  struct extent_buffer *parent, int parent_slot,
 538			  struct extent_buffer **cow_ret,
 539			  u64 search_start, u64 empty_size,
 540			  enum btrfs_lock_nesting nest)
 541{
 542	struct btrfs_fs_info *fs_info = root->fs_info;
 543	struct btrfs_disk_key disk_key;
 544	struct extent_buffer *cow;
 545	int level, ret;
 546	int last_ref = 0;
 547	int unlock_orig = 0;
 548	u64 parent_start = 0;
 549	u64 reloc_src_root = 0;
 550
 551	if (*cow_ret == buf)
 552		unlock_orig = 1;
 553
 554	btrfs_assert_tree_write_locked(buf);
 555
 556	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
 557		trans->transid != fs_info->running_transaction->transid);
 558	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
 559		trans->transid != btrfs_get_root_last_trans(root));
 560
 561	level = btrfs_header_level(buf);
 562
 563	if (level == 0)
 564		btrfs_item_key(buf, &disk_key, 0);
 565	else
 566		btrfs_node_key(buf, &disk_key, 0);
 567
 568	if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID) {
 569		if (parent)
 570			parent_start = parent->start;
 571		reloc_src_root = btrfs_header_owner(buf);
 572	}
 573	cow = btrfs_alloc_tree_block(trans, root, parent_start,
 574				     btrfs_root_id(root), &disk_key, level,
 575				     search_start, empty_size, reloc_src_root, nest);
 576	if (IS_ERR(cow))
 577		return PTR_ERR(cow);
 578
 579	/* cow is set to blocking by btrfs_init_new_buffer */
 580
 581	copy_extent_buffer_full(cow, buf);
 582	btrfs_set_header_bytenr(cow, cow->start);
 583	btrfs_set_header_generation(cow, trans->transid);
 584	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
 585	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
 586				     BTRFS_HEADER_FLAG_RELOC);
 587	if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID)
 588		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
 589	else
 590		btrfs_set_header_owner(cow, btrfs_root_id(root));
 591
 592	write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
 593
 594	ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
 595	if (ret) {
 
 
 596		btrfs_abort_transaction(trans, ret);
 597		goto error_unlock_cow;
 598	}
 599
 600	if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
 601		ret = btrfs_reloc_cow_block(trans, root, buf, cow);
 602		if (ret) {
 
 
 603			btrfs_abort_transaction(trans, ret);
 604			goto error_unlock_cow;
 605		}
 606	}
 607
 608	if (buf == root->node) {
 609		WARN_ON(parent && parent != buf);
 610		if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID ||
 611		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
 612			parent_start = buf->start;
 613
 
 614		ret = btrfs_tree_mod_log_insert_root(root->node, cow, true);
 615		if (ret < 0) {
 616			btrfs_abort_transaction(trans, ret);
 617			goto error_unlock_cow;
 618		}
 619		atomic_inc(&cow->refs);
 620		rcu_assign_pointer(root->node, cow);
 621
 622		ret = btrfs_free_tree_block(trans, btrfs_root_id(root), buf,
 623					    parent_start, last_ref);
 624		free_extent_buffer(buf);
 625		add_root_to_dirty_list(root);
 626		if (ret < 0) {
 627			btrfs_abort_transaction(trans, ret);
 628			goto error_unlock_cow;
 629		}
 630	} else {
 631		WARN_ON(trans->transid != btrfs_header_generation(parent));
 632		ret = btrfs_tree_mod_log_insert_key(parent, parent_slot,
 633						    BTRFS_MOD_LOG_KEY_REPLACE);
 634		if (ret) {
 635			btrfs_abort_transaction(trans, ret);
 636			goto error_unlock_cow;
 637		}
 638		btrfs_set_node_blockptr(parent, parent_slot,
 639					cow->start);
 640		btrfs_set_node_ptr_generation(parent, parent_slot,
 641					      trans->transid);
 642		btrfs_mark_buffer_dirty(trans, parent);
 643		if (last_ref) {
 644			ret = btrfs_tree_mod_log_free_eb(buf);
 645			if (ret) {
 
 
 646				btrfs_abort_transaction(trans, ret);
 647				goto error_unlock_cow;
 648			}
 649		}
 650		ret = btrfs_free_tree_block(trans, btrfs_root_id(root), buf,
 651					    parent_start, last_ref);
 652		if (ret < 0) {
 653			btrfs_abort_transaction(trans, ret);
 654			goto error_unlock_cow;
 655		}
 656	}
 657
 658	trace_btrfs_cow_block(root, buf, cow);
 659	if (unlock_orig)
 660		btrfs_tree_unlock(buf);
 661	free_extent_buffer_stale(buf);
 662	btrfs_mark_buffer_dirty(trans, cow);
 663	*cow_ret = cow;
 664	return 0;
 665
 666error_unlock_cow:
 667	btrfs_tree_unlock(cow);
 668	free_extent_buffer(cow);
 669	return ret;
 670}
 671
 672static inline int should_cow_block(struct btrfs_trans_handle *trans,
 673				   struct btrfs_root *root,
 674				   struct extent_buffer *buf)
 675{
 676	if (btrfs_is_testing(root->fs_info))
 677		return 0;
 678
 679	/* Ensure we can see the FORCE_COW bit */
 680	smp_mb__before_atomic();
 681
 682	/*
 683	 * We do not need to cow a block if
 684	 * 1) this block is not created or changed in this transaction;
 685	 * 2) this block does not belong to TREE_RELOC tree;
 686	 * 3) the root is not forced COW.
 687	 *
 688	 * What is forced COW:
 689	 *    when we create snapshot during committing the transaction,
 690	 *    after we've finished copying src root, we must COW the shared
 691	 *    block to ensure the metadata consistency.
 692	 */
 693	if (btrfs_header_generation(buf) == trans->transid &&
 694	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
 695	    !(btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID &&
 696	      btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
 697	    !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
 698		return 0;
 699	return 1;
 700}
 701
 702/*
 703 * COWs a single block, see btrfs_force_cow_block() for the real work.
 704 * This version of it has extra checks so that a block isn't COWed more than
 705 * once per transaction, as long as it hasn't been written yet
 706 */
 707int btrfs_cow_block(struct btrfs_trans_handle *trans,
 708		    struct btrfs_root *root, struct extent_buffer *buf,
 709		    struct extent_buffer *parent, int parent_slot,
 710		    struct extent_buffer **cow_ret,
 711		    enum btrfs_lock_nesting nest)
 712{
 713	struct btrfs_fs_info *fs_info = root->fs_info;
 714	u64 search_start;
 
 715
 716	if (unlikely(test_bit(BTRFS_ROOT_DELETING, &root->state))) {
 717		btrfs_abort_transaction(trans, -EUCLEAN);
 718		btrfs_crit(fs_info,
 719		   "attempt to COW block %llu on root %llu that is being deleted",
 720			   buf->start, btrfs_root_id(root));
 721		return -EUCLEAN;
 722	}
 723
 724	/*
 725	 * COWing must happen through a running transaction, which always
 726	 * matches the current fs generation (it's a transaction with a state
 727	 * less than TRANS_STATE_UNBLOCKED). If it doesn't, then turn the fs
 728	 * into error state to prevent the commit of any transaction.
 729	 */
 730	if (unlikely(trans->transaction != fs_info->running_transaction ||
 731		     trans->transid != fs_info->generation)) {
 732		btrfs_abort_transaction(trans, -EUCLEAN);
 733		btrfs_crit(fs_info,
 734"unexpected transaction when attempting to COW block %llu on root %llu, transaction %llu running transaction %llu fs generation %llu",
 735			   buf->start, btrfs_root_id(root), trans->transid,
 736			   fs_info->running_transaction->transid,
 737			   fs_info->generation);
 738		return -EUCLEAN;
 739	}
 740
 741	if (!should_cow_block(trans, root, buf)) {
 742		*cow_ret = buf;
 743		return 0;
 744	}
 745
 746	search_start = round_down(buf->start, SZ_1G);
 747
 748	/*
 749	 * Before CoWing this block for later modification, check if it's
 750	 * the subtree root and do the delayed subtree trace if needed.
 751	 *
 752	 * Also We don't care about the error, as it's handled internally.
 753	 */
 754	btrfs_qgroup_trace_subtree_after_cow(trans, root, buf);
 755	return btrfs_force_cow_block(trans, root, buf, parent, parent_slot,
 756				     cow_ret, search_start, 0, nest);
 
 
 
 
 757}
 758ALLOW_ERROR_INJECTION(btrfs_cow_block, ERRNO);
 759
 760/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 761 * same as comp_keys only with two btrfs_key's
 762 */
 763int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
 764{
 765	if (k1->objectid > k2->objectid)
 766		return 1;
 767	if (k1->objectid < k2->objectid)
 768		return -1;
 769	if (k1->type > k2->type)
 770		return 1;
 771	if (k1->type < k2->type)
 772		return -1;
 773	if (k1->offset > k2->offset)
 774		return 1;
 775	if (k1->offset < k2->offset)
 776		return -1;
 777	return 0;
 778}
 779
 780/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 781 * Search for a key in the given extent_buffer.
 782 *
 783 * The lower boundary for the search is specified by the slot number @first_slot.
 784 * Use a value of 0 to search over the whole extent buffer. Works for both
 785 * leaves and nodes.
 786 *
 787 * The slot in the extent buffer is returned via @slot. If the key exists in the
 788 * extent buffer, then @slot will point to the slot where the key is, otherwise
 789 * it points to the slot where you would insert the key.
 790 *
 791 * Slot may point to the total number of items (i.e. one position beyond the last
 792 * key) if the key is bigger than the last key in the extent buffer.
 793 */
 794int btrfs_bin_search(struct extent_buffer *eb, int first_slot,
 795		     const struct btrfs_key *key, int *slot)
 796{
 797	unsigned long p;
 798	int item_size;
 799	/*
 800	 * Use unsigned types for the low and high slots, so that we get a more
 801	 * efficient division in the search loop below.
 802	 */
 803	u32 low = first_slot;
 804	u32 high = btrfs_header_nritems(eb);
 805	int ret;
 806	const int key_size = sizeof(struct btrfs_disk_key);
 807
 808	if (unlikely(low > high)) {
 809		btrfs_err(eb->fs_info,
 810		 "%s: low (%u) > high (%u) eb %llu owner %llu level %d",
 811			  __func__, low, high, eb->start,
 812			  btrfs_header_owner(eb), btrfs_header_level(eb));
 813		return -EINVAL;
 814	}
 815
 816	if (btrfs_header_level(eb) == 0) {
 817		p = offsetof(struct btrfs_leaf, items);
 818		item_size = sizeof(struct btrfs_item);
 819	} else {
 820		p = offsetof(struct btrfs_node, ptrs);
 821		item_size = sizeof(struct btrfs_key_ptr);
 822	}
 823
 824	while (low < high) {
 825		const int unit_size = eb->folio_size;
 826		unsigned long oil;
 827		unsigned long offset;
 828		struct btrfs_disk_key *tmp;
 829		struct btrfs_disk_key unaligned;
 830		int mid;
 831
 832		mid = (low + high) / 2;
 833		offset = p + mid * item_size;
 834		oil = get_eb_offset_in_folio(eb, offset);
 835
 836		if (oil + key_size <= unit_size) {
 837			const unsigned long idx = get_eb_folio_index(eb, offset);
 838			char *kaddr = folio_address(eb->folios[idx]);
 839
 840			oil = get_eb_offset_in_folio(eb, offset);
 841			tmp = (struct btrfs_disk_key *)(kaddr + oil);
 842		} else {
 843			read_extent_buffer(eb, &unaligned, offset, key_size);
 844			tmp = &unaligned;
 845		}
 846
 847		ret = btrfs_comp_keys(tmp, key);
 848
 849		if (ret < 0)
 850			low = mid + 1;
 851		else if (ret > 0)
 852			high = mid;
 853		else {
 854			*slot = mid;
 855			return 0;
 856		}
 857	}
 858	*slot = low;
 859	return 1;
 860}
 861
 862static void root_add_used_bytes(struct btrfs_root *root)
 
 
 
 
 
 
 
 
 
 
 863{
 864	spin_lock(&root->accounting_lock);
 865	btrfs_set_root_used(&root->root_item,
 866		btrfs_root_used(&root->root_item) + root->fs_info->nodesize);
 867	spin_unlock(&root->accounting_lock);
 868}
 869
 870static void root_sub_used_bytes(struct btrfs_root *root)
 871{
 872	spin_lock(&root->accounting_lock);
 873	btrfs_set_root_used(&root->root_item,
 874		btrfs_root_used(&root->root_item) - root->fs_info->nodesize);
 875	spin_unlock(&root->accounting_lock);
 876}
 877
 878/* given a node and slot number, this reads the blocks it points to.  The
 879 * extent buffer is returned with a reference taken (but unlocked).
 880 */
 881struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
 882					   int slot)
 883{
 884	int level = btrfs_header_level(parent);
 885	struct btrfs_tree_parent_check check = { 0 };
 886	struct extent_buffer *eb;
 887
 888	if (slot < 0 || slot >= btrfs_header_nritems(parent))
 889		return ERR_PTR(-ENOENT);
 890
 891	ASSERT(level);
 892
 893	check.level = level - 1;
 894	check.transid = btrfs_node_ptr_generation(parent, slot);
 895	check.owner_root = btrfs_header_owner(parent);
 896	check.has_first_key = true;
 897	btrfs_node_key_to_cpu(parent, &check.first_key, slot);
 898
 899	eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot),
 900			     &check);
 901	if (IS_ERR(eb))
 902		return eb;
 903	if (!extent_buffer_uptodate(eb)) {
 904		free_extent_buffer(eb);
 905		return ERR_PTR(-EIO);
 906	}
 907
 908	return eb;
 909}
 910
 911/*
 912 * node level balancing, used to make sure nodes are in proper order for
 913 * item deletion.  We balance from the top down, so we have to make sure
 914 * that a deletion won't leave an node completely empty later on.
 915 */
 916static noinline int balance_level(struct btrfs_trans_handle *trans,
 917			 struct btrfs_root *root,
 918			 struct btrfs_path *path, int level)
 919{
 920	struct btrfs_fs_info *fs_info = root->fs_info;
 921	struct extent_buffer *right = NULL;
 922	struct extent_buffer *mid;
 923	struct extent_buffer *left = NULL;
 924	struct extent_buffer *parent = NULL;
 925	int ret = 0;
 926	int wret;
 927	int pslot;
 928	int orig_slot = path->slots[level];
 929	u64 orig_ptr;
 930
 931	ASSERT(level > 0);
 932
 933	mid = path->nodes[level];
 934
 935	WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK);
 936	WARN_ON(btrfs_header_generation(mid) != trans->transid);
 937
 938	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
 939
 940	if (level < BTRFS_MAX_LEVEL - 1) {
 941		parent = path->nodes[level + 1];
 942		pslot = path->slots[level + 1];
 943	}
 944
 945	/*
 946	 * deal with the case where there is only one pointer in the root
 947	 * by promoting the node below to a root
 948	 */
 949	if (!parent) {
 950		struct extent_buffer *child;
 951
 952		if (btrfs_header_nritems(mid) != 1)
 953			return 0;
 954
 955		/* promote the child to a root */
 956		child = btrfs_read_node_slot(mid, 0);
 957		if (IS_ERR(child)) {
 958			ret = PTR_ERR(child);
 959			goto out;
 
 960		}
 961
 962		btrfs_tree_lock(child);
 963		ret = btrfs_cow_block(trans, root, child, mid, 0, &child,
 964				      BTRFS_NESTING_COW);
 965		if (ret) {
 966			btrfs_tree_unlock(child);
 967			free_extent_buffer(child);
 968			goto out;
 969		}
 970
 971		ret = btrfs_tree_mod_log_insert_root(root->node, child, true);
 972		if (ret < 0) {
 973			btrfs_tree_unlock(child);
 974			free_extent_buffer(child);
 975			btrfs_abort_transaction(trans, ret);
 976			goto out;
 977		}
 978		rcu_assign_pointer(root->node, child);
 979
 980		add_root_to_dirty_list(root);
 981		btrfs_tree_unlock(child);
 982
 983		path->locks[level] = 0;
 984		path->nodes[level] = NULL;
 985		btrfs_clear_buffer_dirty(trans, mid);
 986		btrfs_tree_unlock(mid);
 987		/* once for the path */
 988		free_extent_buffer(mid);
 989
 990		root_sub_used_bytes(root);
 991		ret = btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1);
 992		/* once for the root ptr */
 993		free_extent_buffer_stale(mid);
 994		if (ret < 0) {
 995			btrfs_abort_transaction(trans, ret);
 996			goto out;
 997		}
 998		return 0;
 999	}
1000	if (btrfs_header_nritems(mid) >
1001	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
1002		return 0;
1003
1004	if (pslot) {
1005		left = btrfs_read_node_slot(parent, pslot - 1);
1006		if (IS_ERR(left)) {
1007			ret = PTR_ERR(left);
1008			left = NULL;
1009			goto out;
1010		}
1011
1012		btrfs_tree_lock_nested(left, BTRFS_NESTING_LEFT);
 
1013		wret = btrfs_cow_block(trans, root, left,
1014				       parent, pslot - 1, &left,
1015				       BTRFS_NESTING_LEFT_COW);
1016		if (wret) {
1017			ret = wret;
1018			goto out;
1019		}
1020	}
1021
1022	if (pslot + 1 < btrfs_header_nritems(parent)) {
1023		right = btrfs_read_node_slot(parent, pslot + 1);
1024		if (IS_ERR(right)) {
1025			ret = PTR_ERR(right);
1026			right = NULL;
1027			goto out;
1028		}
1029
1030		btrfs_tree_lock_nested(right, BTRFS_NESTING_RIGHT);
 
1031		wret = btrfs_cow_block(trans, root, right,
1032				       parent, pslot + 1, &right,
1033				       BTRFS_NESTING_RIGHT_COW);
1034		if (wret) {
1035			ret = wret;
1036			goto out;
1037		}
1038	}
1039
1040	/* first, try to make some room in the middle buffer */
1041	if (left) {
1042		orig_slot += btrfs_header_nritems(left);
1043		wret = push_node_left(trans, left, mid, 1);
1044		if (wret < 0)
1045			ret = wret;
1046	}
1047
1048	/*
1049	 * then try to empty the right most buffer into the middle
1050	 */
1051	if (right) {
1052		wret = push_node_left(trans, mid, right, 1);
1053		if (wret < 0 && wret != -ENOSPC)
1054			ret = wret;
1055		if (btrfs_header_nritems(right) == 0) {
1056			btrfs_clear_buffer_dirty(trans, right);
1057			btrfs_tree_unlock(right);
1058			ret = btrfs_del_ptr(trans, root, path, level + 1, pslot + 1);
1059			if (ret < 0) {
1060				free_extent_buffer_stale(right);
1061				right = NULL;
1062				goto out;
1063			}
1064			root_sub_used_bytes(root);
1065			ret = btrfs_free_tree_block(trans, btrfs_root_id(root),
1066						    right, 0, 1);
1067			free_extent_buffer_stale(right);
1068			right = NULL;
1069			if (ret < 0) {
1070				btrfs_abort_transaction(trans, ret);
1071				goto out;
1072			}
1073		} else {
1074			struct btrfs_disk_key right_key;
1075			btrfs_node_key(right, &right_key, 0);
1076			ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
1077					BTRFS_MOD_LOG_KEY_REPLACE);
1078			if (ret < 0) {
1079				btrfs_abort_transaction(trans, ret);
1080				goto out;
1081			}
1082			btrfs_set_node_key(parent, &right_key, pslot + 1);
1083			btrfs_mark_buffer_dirty(trans, parent);
1084		}
1085	}
1086	if (btrfs_header_nritems(mid) == 1) {
1087		/*
1088		 * we're not allowed to leave a node with one item in the
1089		 * tree during a delete.  A deletion from lower in the tree
1090		 * could try to delete the only pointer in this node.
1091		 * So, pull some keys from the left.
1092		 * There has to be a left pointer at this point because
1093		 * otherwise we would have pulled some pointers from the
1094		 * right
1095		 */
1096		if (unlikely(!left)) {
1097			btrfs_crit(fs_info,
1098"missing left child when middle child only has 1 item, parent bytenr %llu level %d mid bytenr %llu root %llu",
1099				   parent->start, btrfs_header_level(parent),
1100				   mid->start, btrfs_root_id(root));
1101			ret = -EUCLEAN;
1102			btrfs_abort_transaction(trans, ret);
1103			goto out;
1104		}
1105		wret = balance_node_right(trans, mid, left);
1106		if (wret < 0) {
1107			ret = wret;
1108			goto out;
1109		}
1110		if (wret == 1) {
1111			wret = push_node_left(trans, left, mid, 1);
1112			if (wret < 0)
1113				ret = wret;
1114		}
1115		BUG_ON(wret == 1);
1116	}
1117	if (btrfs_header_nritems(mid) == 0) {
1118		btrfs_clear_buffer_dirty(trans, mid);
1119		btrfs_tree_unlock(mid);
1120		ret = btrfs_del_ptr(trans, root, path, level + 1, pslot);
1121		if (ret < 0) {
1122			free_extent_buffer_stale(mid);
1123			mid = NULL;
1124			goto out;
1125		}
1126		root_sub_used_bytes(root);
1127		ret = btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1);
1128		free_extent_buffer_stale(mid);
1129		mid = NULL;
1130		if (ret < 0) {
1131			btrfs_abort_transaction(trans, ret);
1132			goto out;
1133		}
1134	} else {
1135		/* update the parent key to reflect our changes */
1136		struct btrfs_disk_key mid_key;
1137		btrfs_node_key(mid, &mid_key, 0);
1138		ret = btrfs_tree_mod_log_insert_key(parent, pslot,
1139						    BTRFS_MOD_LOG_KEY_REPLACE);
1140		if (ret < 0) {
1141			btrfs_abort_transaction(trans, ret);
1142			goto out;
1143		}
1144		btrfs_set_node_key(parent, &mid_key, pslot);
1145		btrfs_mark_buffer_dirty(trans, parent);
1146	}
1147
1148	/* update the path */
1149	if (left) {
1150		if (btrfs_header_nritems(left) > orig_slot) {
1151			atomic_inc(&left->refs);
1152			/* left was locked after cow */
1153			path->nodes[level] = left;
1154			path->slots[level + 1] -= 1;
1155			path->slots[level] = orig_slot;
1156			if (mid) {
1157				btrfs_tree_unlock(mid);
1158				free_extent_buffer(mid);
1159			}
1160		} else {
1161			orig_slot -= btrfs_header_nritems(left);
1162			path->slots[level] = orig_slot;
1163		}
1164	}
1165	/* double check we haven't messed things up */
1166	if (orig_ptr !=
1167	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1168		BUG();
1169out:
1170	if (right) {
1171		btrfs_tree_unlock(right);
1172		free_extent_buffer(right);
1173	}
1174	if (left) {
1175		if (path->nodes[level] != left)
1176			btrfs_tree_unlock(left);
1177		free_extent_buffer(left);
1178	}
1179	return ret;
1180}
1181
1182/* Node balancing for insertion.  Here we only split or push nodes around
1183 * when they are completely full.  This is also done top down, so we
1184 * have to be pessimistic.
1185 */
1186static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1187					  struct btrfs_root *root,
1188					  struct btrfs_path *path, int level)
1189{
1190	struct btrfs_fs_info *fs_info = root->fs_info;
1191	struct extent_buffer *right = NULL;
1192	struct extent_buffer *mid;
1193	struct extent_buffer *left = NULL;
1194	struct extent_buffer *parent = NULL;
1195	int ret = 0;
1196	int wret;
1197	int pslot;
1198	int orig_slot = path->slots[level];
1199
1200	if (level == 0)
1201		return 1;
1202
1203	mid = path->nodes[level];
1204	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1205
1206	if (level < BTRFS_MAX_LEVEL - 1) {
1207		parent = path->nodes[level + 1];
1208		pslot = path->slots[level + 1];
1209	}
1210
1211	if (!parent)
1212		return 1;
1213
 
 
 
 
1214	/* first, try to make some room in the middle buffer */
1215	if (pslot) {
1216		u32 left_nr;
1217
1218		left = btrfs_read_node_slot(parent, pslot - 1);
1219		if (IS_ERR(left))
1220			return PTR_ERR(left);
1221
1222		btrfs_tree_lock_nested(left, BTRFS_NESTING_LEFT);
1223
1224		left_nr = btrfs_header_nritems(left);
1225		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
1226			wret = 1;
1227		} else {
1228			ret = btrfs_cow_block(trans, root, left, parent,
1229					      pslot - 1, &left,
1230					      BTRFS_NESTING_LEFT_COW);
1231			if (ret)
1232				wret = 1;
1233			else {
1234				wret = push_node_left(trans, left, mid, 0);
1235			}
1236		}
1237		if (wret < 0)
1238			ret = wret;
1239		if (wret == 0) {
1240			struct btrfs_disk_key disk_key;
1241			orig_slot += left_nr;
1242			btrfs_node_key(mid, &disk_key, 0);
1243			ret = btrfs_tree_mod_log_insert_key(parent, pslot,
1244					BTRFS_MOD_LOG_KEY_REPLACE);
1245			if (ret < 0) {
1246				btrfs_tree_unlock(left);
1247				free_extent_buffer(left);
1248				btrfs_abort_transaction(trans, ret);
1249				return ret;
1250			}
1251			btrfs_set_node_key(parent, &disk_key, pslot);
1252			btrfs_mark_buffer_dirty(trans, parent);
1253			if (btrfs_header_nritems(left) > orig_slot) {
1254				path->nodes[level] = left;
1255				path->slots[level + 1] -= 1;
1256				path->slots[level] = orig_slot;
1257				btrfs_tree_unlock(mid);
1258				free_extent_buffer(mid);
1259			} else {
1260				orig_slot -=
1261					btrfs_header_nritems(left);
1262				path->slots[level] = orig_slot;
1263				btrfs_tree_unlock(left);
1264				free_extent_buffer(left);
1265			}
1266			return 0;
1267		}
1268		btrfs_tree_unlock(left);
1269		free_extent_buffer(left);
1270	}
 
 
 
1271
1272	/*
1273	 * then try to empty the right most buffer into the middle
1274	 */
1275	if (pslot + 1 < btrfs_header_nritems(parent)) {
1276		u32 right_nr;
1277
1278		right = btrfs_read_node_slot(parent, pslot + 1);
1279		if (IS_ERR(right))
1280			return PTR_ERR(right);
1281
1282		btrfs_tree_lock_nested(right, BTRFS_NESTING_RIGHT);
1283
1284		right_nr = btrfs_header_nritems(right);
1285		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
1286			wret = 1;
1287		} else {
1288			ret = btrfs_cow_block(trans, root, right,
1289					      parent, pslot + 1,
1290					      &right, BTRFS_NESTING_RIGHT_COW);
1291			if (ret)
1292				wret = 1;
1293			else {
1294				wret = balance_node_right(trans, right, mid);
1295			}
1296		}
1297		if (wret < 0)
1298			ret = wret;
1299		if (wret == 0) {
1300			struct btrfs_disk_key disk_key;
1301
1302			btrfs_node_key(right, &disk_key, 0);
1303			ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
1304					BTRFS_MOD_LOG_KEY_REPLACE);
1305			if (ret < 0) {
1306				btrfs_tree_unlock(right);
1307				free_extent_buffer(right);
1308				btrfs_abort_transaction(trans, ret);
1309				return ret;
1310			}
1311			btrfs_set_node_key(parent, &disk_key, pslot + 1);
1312			btrfs_mark_buffer_dirty(trans, parent);
1313
1314			if (btrfs_header_nritems(mid) <= orig_slot) {
1315				path->nodes[level] = right;
1316				path->slots[level + 1] += 1;
1317				path->slots[level] = orig_slot -
1318					btrfs_header_nritems(mid);
1319				btrfs_tree_unlock(mid);
1320				free_extent_buffer(mid);
1321			} else {
1322				btrfs_tree_unlock(right);
1323				free_extent_buffer(right);
1324			}
1325			return 0;
1326		}
1327		btrfs_tree_unlock(right);
1328		free_extent_buffer(right);
1329	}
1330	return 1;
1331}
1332
1333/*
1334 * readahead one full node of leaves, finding things that are close
1335 * to the block in 'slot', and triggering ra on them.
1336 */
1337static void reada_for_search(struct btrfs_fs_info *fs_info,
1338			     struct btrfs_path *path,
1339			     int level, int slot, u64 objectid)
1340{
1341	struct extent_buffer *node;
1342	struct btrfs_disk_key disk_key;
1343	u32 nritems;
1344	u64 search;
1345	u64 target;
1346	u64 nread = 0;
1347	u64 nread_max;
1348	u32 nr;
1349	u32 blocksize;
1350	u32 nscan = 0;
1351
1352	if (level != 1 && path->reada != READA_FORWARD_ALWAYS)
1353		return;
1354
1355	if (!path->nodes[level])
1356		return;
1357
1358	node = path->nodes[level];
1359
1360	/*
1361	 * Since the time between visiting leaves is much shorter than the time
1362	 * between visiting nodes, limit read ahead of nodes to 1, to avoid too
1363	 * much IO at once (possibly random).
1364	 */
1365	if (path->reada == READA_FORWARD_ALWAYS) {
1366		if (level > 1)
1367			nread_max = node->fs_info->nodesize;
1368		else
1369			nread_max = SZ_128K;
1370	} else {
1371		nread_max = SZ_64K;
1372	}
1373
1374	search = btrfs_node_blockptr(node, slot);
1375	blocksize = fs_info->nodesize;
1376	if (path->reada != READA_FORWARD_ALWAYS) {
1377		struct extent_buffer *eb;
1378
1379		eb = find_extent_buffer(fs_info, search);
1380		if (eb) {
1381			free_extent_buffer(eb);
1382			return;
1383		}
1384	}
1385
1386	target = search;
1387
1388	nritems = btrfs_header_nritems(node);
1389	nr = slot;
1390
1391	while (1) {
1392		if (path->reada == READA_BACK) {
1393			if (nr == 0)
1394				break;
1395			nr--;
1396		} else if (path->reada == READA_FORWARD ||
1397			   path->reada == READA_FORWARD_ALWAYS) {
1398			nr++;
1399			if (nr >= nritems)
1400				break;
1401		}
1402		if (path->reada == READA_BACK && objectid) {
1403			btrfs_node_key(node, &disk_key, nr);
1404			if (btrfs_disk_key_objectid(&disk_key) != objectid)
1405				break;
1406		}
1407		search = btrfs_node_blockptr(node, nr);
1408		if (path->reada == READA_FORWARD_ALWAYS ||
1409		    (search <= target && target - search <= 65536) ||
1410		    (search > target && search - target <= 65536)) {
1411			btrfs_readahead_node_child(node, nr);
1412			nread += blocksize;
1413		}
1414		nscan++;
1415		if (nread > nread_max || nscan > 32)
1416			break;
1417	}
1418}
1419
1420static noinline void reada_for_balance(struct btrfs_path *path, int level)
1421{
1422	struct extent_buffer *parent;
1423	int slot;
1424	int nritems;
1425
1426	parent = path->nodes[level + 1];
1427	if (!parent)
1428		return;
1429
1430	nritems = btrfs_header_nritems(parent);
1431	slot = path->slots[level + 1];
1432
1433	if (slot > 0)
1434		btrfs_readahead_node_child(parent, slot - 1);
1435	if (slot + 1 < nritems)
1436		btrfs_readahead_node_child(parent, slot + 1);
1437}
1438
1439
1440/*
1441 * when we walk down the tree, it is usually safe to unlock the higher layers
1442 * in the tree.  The exceptions are when our path goes through slot 0, because
1443 * operations on the tree might require changing key pointers higher up in the
1444 * tree.
1445 *
1446 * callers might also have set path->keep_locks, which tells this code to keep
1447 * the lock if the path points to the last slot in the block.  This is part of
1448 * walking through the tree, and selecting the next slot in the higher block.
1449 *
1450 * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
1451 * if lowest_unlock is 1, level 0 won't be unlocked
1452 */
1453static noinline void unlock_up(struct btrfs_path *path, int level,
1454			       int lowest_unlock, int min_write_lock_level,
1455			       int *write_lock_level)
1456{
1457	int i;
1458	int skip_level = level;
1459	bool check_skip = true;
1460
1461	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1462		if (!path->nodes[i])
1463			break;
1464		if (!path->locks[i])
1465			break;
1466
1467		if (check_skip) {
1468			if (path->slots[i] == 0) {
1469				skip_level = i + 1;
1470				continue;
1471			}
1472
1473			if (path->keep_locks) {
1474				u32 nritems;
1475
1476				nritems = btrfs_header_nritems(path->nodes[i]);
1477				if (nritems < 1 || path->slots[i] >= nritems - 1) {
1478					skip_level = i + 1;
1479					continue;
1480				}
1481			}
1482		}
1483
1484		if (i >= lowest_unlock && i > skip_level) {
1485			check_skip = false;
1486			btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
1487			path->locks[i] = 0;
1488			if (write_lock_level &&
1489			    i > min_write_lock_level &&
1490			    i <= *write_lock_level) {
1491				*write_lock_level = i - 1;
1492			}
1493		}
1494	}
1495}
1496
1497/*
1498 * Helper function for btrfs_search_slot() and other functions that do a search
1499 * on a btree. The goal is to find a tree block in the cache (the radix tree at
1500 * fs_info->buffer_radix), but if we can't find it, or it's not up to date, read
1501 * its pages from disk.
1502 *
1503 * Returns -EAGAIN, with the path unlocked, if the caller needs to repeat the
1504 * whole btree search, starting again from the current root node.
1505 */
1506static int
1507read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
1508		      struct extent_buffer **eb_ret, int slot,
1509		      const struct btrfs_key *key)
1510{
1511	struct btrfs_fs_info *fs_info = root->fs_info;
1512	struct btrfs_tree_parent_check check = { 0 };
1513	u64 blocknr;
1514	struct extent_buffer *tmp = NULL;
1515	int ret = 0;
 
1516	int parent_level;
1517	int err;
1518	bool read_tmp = false;
1519	bool tmp_locked = false;
1520	bool path_released = false;
1521
 
1522	blocknr = btrfs_node_blockptr(*eb_ret, slot);
 
1523	parent_level = btrfs_header_level(*eb_ret);
1524	btrfs_node_key_to_cpu(*eb_ret, &check.first_key, slot);
1525	check.has_first_key = true;
1526	check.level = parent_level - 1;
1527	check.transid = btrfs_node_ptr_generation(*eb_ret, slot);
1528	check.owner_root = btrfs_root_id(root);
1529
1530	/*
1531	 * If we need to read an extent buffer from disk and we are holding locks
1532	 * on upper level nodes, we unlock all the upper nodes before reading the
1533	 * extent buffer, and then return -EAGAIN to the caller as it needs to
1534	 * restart the search. We don't release the lock on the current level
1535	 * because we need to walk this node to figure out which blocks to read.
1536	 */
1537	tmp = find_extent_buffer(fs_info, blocknr);
1538	if (tmp) {
1539		if (p->reada == READA_FORWARD_ALWAYS)
1540			reada_for_search(fs_info, p, parent_level, slot, key->objectid);
1541
1542		/* first we do an atomic uptodate check */
1543		if (btrfs_buffer_uptodate(tmp, check.transid, 1) > 0) {
1544			/*
1545			 * Do extra check for first_key, eb can be stale due to
1546			 * being cached, read from scrub, or have multiple
1547			 * parents (shared tree blocks).
1548			 */
1549			if (btrfs_verify_level_key(tmp, &check)) {
1550				ret = -EUCLEAN;
1551				goto out;
 
1552			}
1553			*eb_ret = tmp;
1554			tmp = NULL;
1555			ret = 0;
1556			goto out;
1557		}
1558
1559		if (p->nowait) {
1560			ret = -EAGAIN;
1561			goto out;
1562		}
1563
1564		if (!p->skip_locking) {
1565			btrfs_unlock_up_safe(p, parent_level + 1);
1566			btrfs_maybe_reset_lockdep_class(root, tmp);
1567			tmp_locked = true;
1568			btrfs_tree_read_lock(tmp);
 
 
 
 
 
 
 
1569			btrfs_release_path(p);
1570			ret = -EAGAIN;
1571			path_released = true;
1572		}
1573
1574		/* Now we're allowed to do a blocking uptodate check. */
1575		err = btrfs_read_extent_buffer(tmp, &check);
1576		if (err) {
1577			ret = err;
1578			goto out;
1579		}
1580
1581		if (ret == 0) {
1582			ASSERT(!tmp_locked);
1583			*eb_ret = tmp;
1584			tmp = NULL;
1585		}
1586		goto out;
1587	} else if (p->nowait) {
1588		ret = -EAGAIN;
1589		goto out;
1590	}
1591
1592	if (!p->skip_locking) {
1593		btrfs_unlock_up_safe(p, parent_level + 1);
1594		ret = -EAGAIN;
 
 
1595	}
1596
1597	if (p->reada != READA_NONE)
1598		reada_for_search(fs_info, p, parent_level, slot, key->objectid);
1599
1600	tmp = btrfs_find_create_tree_block(fs_info, blocknr, check.owner_root, check.level);
1601	if (IS_ERR(tmp)) {
1602		ret = PTR_ERR(tmp);
1603		tmp = NULL;
1604		goto out;
1605	}
1606	read_tmp = true;
1607
1608	if (!p->skip_locking) {
1609		ASSERT(ret == -EAGAIN);
1610		btrfs_maybe_reset_lockdep_class(root, tmp);
1611		tmp_locked = true;
1612		btrfs_tree_read_lock(tmp);
1613		btrfs_release_path(p);
1614		path_released = true;
1615	}
1616
1617	/* Now we're allowed to do a blocking uptodate check. */
1618	err = btrfs_read_extent_buffer(tmp, &check);
1619	if (err) {
1620		ret = err;
1621		goto out;
1622	}
1623
1624	/*
1625	 * If the read above didn't mark this buffer up to date,
1626	 * it will never end up being up to date.  Set ret to EIO now
1627	 * and give up so that our caller doesn't loop forever
1628	 * on our EAGAINs.
1629	 */
1630	if (!extent_buffer_uptodate(tmp)) {
1631		ret = -EIO;
1632		goto out;
1633	}
1634
 
1635	if (ret == 0) {
1636		ASSERT(!tmp_locked);
1637		*eb_ret = tmp;
1638		tmp = NULL;
 
 
1639	}
1640out:
1641	if (tmp) {
1642		if (tmp_locked)
1643			btrfs_tree_read_unlock(tmp);
1644		if (read_tmp && ret && ret != -EAGAIN)
1645			free_extent_buffer_stale(tmp);
1646		else
1647			free_extent_buffer(tmp);
1648	}
1649	if (ret && !path_released)
1650		btrfs_release_path(p);
1651
1652	return ret;
1653}
1654
1655/*
1656 * helper function for btrfs_search_slot.  This does all of the checks
1657 * for node-level blocks and does any balancing required based on
1658 * the ins_len.
1659 *
1660 * If no extra work was required, zero is returned.  If we had to
1661 * drop the path, -EAGAIN is returned and btrfs_search_slot must
1662 * start over
1663 */
1664static int
1665setup_nodes_for_search(struct btrfs_trans_handle *trans,
1666		       struct btrfs_root *root, struct btrfs_path *p,
1667		       struct extent_buffer *b, int level, int ins_len,
1668		       int *write_lock_level)
1669{
1670	struct btrfs_fs_info *fs_info = root->fs_info;
1671	int ret = 0;
1672
1673	if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
1674	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
1675
1676		if (*write_lock_level < level + 1) {
1677			*write_lock_level = level + 1;
1678			btrfs_release_path(p);
1679			return -EAGAIN;
1680		}
1681
1682		reada_for_balance(p, level);
1683		ret = split_node(trans, root, p, level);
1684
1685		b = p->nodes[level];
1686	} else if (ins_len < 0 && btrfs_header_nritems(b) <
1687		   BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
1688
1689		if (*write_lock_level < level + 1) {
1690			*write_lock_level = level + 1;
1691			btrfs_release_path(p);
1692			return -EAGAIN;
1693		}
1694
1695		reada_for_balance(p, level);
1696		ret = balance_level(trans, root, p, level);
1697		if (ret)
1698			return ret;
1699
1700		b = p->nodes[level];
1701		if (!b) {
1702			btrfs_release_path(p);
1703			return -EAGAIN;
1704		}
1705		BUG_ON(btrfs_header_nritems(b) == 1);
1706	}
1707	return ret;
1708}
1709
1710int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
1711		u64 iobjectid, u64 ioff, u8 key_type,
1712		struct btrfs_key *found_key)
1713{
1714	int ret;
1715	struct btrfs_key key;
1716	struct extent_buffer *eb;
1717
1718	ASSERT(path);
1719	ASSERT(found_key);
1720
1721	key.type = key_type;
1722	key.objectid = iobjectid;
1723	key.offset = ioff;
1724
1725	ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1726	if (ret < 0)
1727		return ret;
1728
1729	eb = path->nodes[0];
1730	if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
1731		ret = btrfs_next_leaf(fs_root, path);
1732		if (ret)
1733			return ret;
1734		eb = path->nodes[0];
1735	}
1736
1737	btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
1738	if (found_key->type != key.type ||
1739			found_key->objectid != key.objectid)
1740		return 1;
1741
1742	return 0;
1743}
1744
1745static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
1746							struct btrfs_path *p,
1747							int write_lock_level)
1748{
1749	struct extent_buffer *b;
1750	int root_lock = 0;
1751	int level = 0;
1752
1753	if (p->search_commit_root) {
1754		b = root->commit_root;
1755		atomic_inc(&b->refs);
1756		level = btrfs_header_level(b);
1757		/*
1758		 * Ensure that all callers have set skip_locking when
1759		 * p->search_commit_root = 1.
1760		 */
1761		ASSERT(p->skip_locking == 1);
1762
1763		goto out;
1764	}
1765
1766	if (p->skip_locking) {
1767		b = btrfs_root_node(root);
1768		level = btrfs_header_level(b);
1769		goto out;
1770	}
1771
1772	/* We try very hard to do read locks on the root */
1773	root_lock = BTRFS_READ_LOCK;
1774
1775	/*
1776	 * If the level is set to maximum, we can skip trying to get the read
1777	 * lock.
1778	 */
1779	if (write_lock_level < BTRFS_MAX_LEVEL) {
1780		/*
1781		 * We don't know the level of the root node until we actually
1782		 * have it read locked
1783		 */
1784		if (p->nowait) {
1785			b = btrfs_try_read_lock_root_node(root);
1786			if (IS_ERR(b))
1787				return b;
1788		} else {
1789			b = btrfs_read_lock_root_node(root);
1790		}
1791		level = btrfs_header_level(b);
1792		if (level > write_lock_level)
1793			goto out;
1794
1795		/* Whoops, must trade for write lock */
1796		btrfs_tree_read_unlock(b);
1797		free_extent_buffer(b);
1798	}
1799
1800	b = btrfs_lock_root_node(root);
1801	root_lock = BTRFS_WRITE_LOCK;
1802
1803	/* The level might have changed, check again */
1804	level = btrfs_header_level(b);
1805
1806out:
1807	/*
1808	 * The root may have failed to write out at some point, and thus is no
1809	 * longer valid, return an error in this case.
1810	 */
1811	if (!extent_buffer_uptodate(b)) {
1812		if (root_lock)
1813			btrfs_tree_unlock_rw(b, root_lock);
1814		free_extent_buffer(b);
1815		return ERR_PTR(-EIO);
1816	}
1817
1818	p->nodes[level] = b;
1819	if (!p->skip_locking)
1820		p->locks[level] = root_lock;
1821	/*
1822	 * Callers are responsible for dropping b's references.
1823	 */
1824	return b;
1825}
1826
1827/*
1828 * Replace the extent buffer at the lowest level of the path with a cloned
1829 * version. The purpose is to be able to use it safely, after releasing the
1830 * commit root semaphore, even if relocation is happening in parallel, the
1831 * transaction used for relocation is committed and the extent buffer is
1832 * reallocated in the next transaction.
1833 *
1834 * This is used in a context where the caller does not prevent transaction
1835 * commits from happening, either by holding a transaction handle or holding
1836 * some lock, while it's doing searches through a commit root.
1837 * At the moment it's only used for send operations.
1838 */
1839static int finish_need_commit_sem_search(struct btrfs_path *path)
1840{
1841	const int i = path->lowest_level;
1842	const int slot = path->slots[i];
1843	struct extent_buffer *lowest = path->nodes[i];
1844	struct extent_buffer *clone;
1845
1846	ASSERT(path->need_commit_sem);
1847
1848	if (!lowest)
1849		return 0;
1850
1851	lockdep_assert_held_read(&lowest->fs_info->commit_root_sem);
1852
1853	clone = btrfs_clone_extent_buffer(lowest);
1854	if (!clone)
1855		return -ENOMEM;
1856
1857	btrfs_release_path(path);
1858	path->nodes[i] = clone;
1859	path->slots[i] = slot;
1860
1861	return 0;
1862}
1863
1864static inline int search_for_key_slot(struct extent_buffer *eb,
1865				      int search_low_slot,
1866				      const struct btrfs_key *key,
1867				      int prev_cmp,
1868				      int *slot)
1869{
1870	/*
1871	 * If a previous call to btrfs_bin_search() on a parent node returned an
1872	 * exact match (prev_cmp == 0), we can safely assume the target key will
1873	 * always be at slot 0 on lower levels, since each key pointer
1874	 * (struct btrfs_key_ptr) refers to the lowest key accessible from the
1875	 * subtree it points to. Thus we can skip searching lower levels.
1876	 */
1877	if (prev_cmp == 0) {
1878		*slot = 0;
1879		return 0;
1880	}
1881
1882	return btrfs_bin_search(eb, search_low_slot, key, slot);
1883}
1884
1885static int search_leaf(struct btrfs_trans_handle *trans,
1886		       struct btrfs_root *root,
1887		       const struct btrfs_key *key,
1888		       struct btrfs_path *path,
1889		       int ins_len,
1890		       int prev_cmp)
1891{
1892	struct extent_buffer *leaf = path->nodes[0];
1893	int leaf_free_space = -1;
1894	int search_low_slot = 0;
1895	int ret;
1896	bool do_bin_search = true;
1897
1898	/*
1899	 * If we are doing an insertion, the leaf has enough free space and the
1900	 * destination slot for the key is not slot 0, then we can unlock our
1901	 * write lock on the parent, and any other upper nodes, before doing the
1902	 * binary search on the leaf (with search_for_key_slot()), allowing other
1903	 * tasks to lock the parent and any other upper nodes.
1904	 */
1905	if (ins_len > 0) {
1906		/*
1907		 * Cache the leaf free space, since we will need it later and it
1908		 * will not change until then.
1909		 */
1910		leaf_free_space = btrfs_leaf_free_space(leaf);
1911
1912		/*
1913		 * !path->locks[1] means we have a single node tree, the leaf is
1914		 * the root of the tree.
1915		 */
1916		if (path->locks[1] && leaf_free_space >= ins_len) {
1917			struct btrfs_disk_key first_key;
1918
1919			ASSERT(btrfs_header_nritems(leaf) > 0);
1920			btrfs_item_key(leaf, &first_key, 0);
1921
1922			/*
1923			 * Doing the extra comparison with the first key is cheap,
1924			 * taking into account that the first key is very likely
1925			 * already in a cache line because it immediately follows
1926			 * the extent buffer's header and we have recently accessed
1927			 * the header's level field.
1928			 */
1929			ret = btrfs_comp_keys(&first_key, key);
1930			if (ret < 0) {
1931				/*
1932				 * The first key is smaller than the key we want
1933				 * to insert, so we are safe to unlock all upper
1934				 * nodes and we have to do the binary search.
1935				 *
1936				 * We do use btrfs_unlock_up_safe() and not
1937				 * unlock_up() because the later does not unlock
1938				 * nodes with a slot of 0 - we can safely unlock
1939				 * any node even if its slot is 0 since in this
1940				 * case the key does not end up at slot 0 of the
1941				 * leaf and there's no need to split the leaf.
1942				 */
1943				btrfs_unlock_up_safe(path, 1);
1944				search_low_slot = 1;
1945			} else {
1946				/*
1947				 * The first key is >= then the key we want to
1948				 * insert, so we can skip the binary search as
1949				 * the target key will be at slot 0.
1950				 *
1951				 * We can not unlock upper nodes when the key is
1952				 * less than the first key, because we will need
1953				 * to update the key at slot 0 of the parent node
1954				 * and possibly of other upper nodes too.
1955				 * If the key matches the first key, then we can
1956				 * unlock all the upper nodes, using
1957				 * btrfs_unlock_up_safe() instead of unlock_up()
1958				 * as stated above.
1959				 */
1960				if (ret == 0)
1961					btrfs_unlock_up_safe(path, 1);
1962				/*
1963				 * ret is already 0 or 1, matching the result of
1964				 * a btrfs_bin_search() call, so there is no need
1965				 * to adjust it.
1966				 */
1967				do_bin_search = false;
1968				path->slots[0] = 0;
1969			}
1970		}
1971	}
1972
1973	if (do_bin_search) {
1974		ret = search_for_key_slot(leaf, search_low_slot, key,
1975					  prev_cmp, &path->slots[0]);
1976		if (ret < 0)
1977			return ret;
1978	}
1979
1980	if (ins_len > 0) {
1981		/*
1982		 * Item key already exists. In this case, if we are allowed to
1983		 * insert the item (for example, in dir_item case, item key
1984		 * collision is allowed), it will be merged with the original
1985		 * item. Only the item size grows, no new btrfs item will be
1986		 * added. If search_for_extension is not set, ins_len already
1987		 * accounts the size btrfs_item, deduct it here so leaf space
1988		 * check will be correct.
1989		 */
1990		if (ret == 0 && !path->search_for_extension) {
1991			ASSERT(ins_len >= sizeof(struct btrfs_item));
1992			ins_len -= sizeof(struct btrfs_item);
1993		}
1994
1995		ASSERT(leaf_free_space >= 0);
1996
1997		if (leaf_free_space < ins_len) {
1998			int err;
1999
2000			err = split_leaf(trans, root, key, path, ins_len,
2001					 (ret == 0));
2002			ASSERT(err <= 0);
2003			if (WARN_ON(err > 0))
2004				err = -EUCLEAN;
2005			if (err)
2006				ret = err;
2007		}
2008	}
2009
2010	return ret;
2011}
2012
2013/*
2014 * Look for a key in a tree and perform necessary modifications to preserve
2015 * tree invariants.
2016 *
2017 * @trans:	Handle of transaction, used when modifying the tree
2018 * @p:		Holds all btree nodes along the search path
2019 * @root:	The root node of the tree
2020 * @key:	The key we are looking for
2021 * @ins_len:	Indicates purpose of search:
2022 *              >0  for inserts it's size of item inserted (*)
2023 *              <0  for deletions
2024 *               0  for plain searches, not modifying the tree
2025 *
2026 *              (*) If size of item inserted doesn't include
2027 *              sizeof(struct btrfs_item), then p->search_for_extension must
2028 *              be set.
2029 * @cow:	boolean should CoW operations be performed. Must always be 1
2030 *		when modifying the tree.
2031 *
2032 * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
2033 * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
2034 *
2035 * If @key is found, 0 is returned and you can find the item in the leaf level
2036 * of the path (level 0)
2037 *
2038 * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
2039 * points to the slot where it should be inserted
2040 *
2041 * If an error is encountered while searching the tree a negative error number
2042 * is returned
2043 */
2044int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2045		      const struct btrfs_key *key, struct btrfs_path *p,
2046		      int ins_len, int cow)
2047{
2048	struct btrfs_fs_info *fs_info;
2049	struct extent_buffer *b;
2050	int slot;
2051	int ret;
2052	int err;
2053	int level;
2054	int lowest_unlock = 1;
2055	/* everything at write_lock_level or lower must be write locked */
2056	int write_lock_level = 0;
2057	u8 lowest_level = 0;
2058	int min_write_lock_level;
2059	int prev_cmp;
2060
2061	if (!root)
2062		return -EINVAL;
2063
2064	fs_info = root->fs_info;
2065	might_sleep();
2066
2067	lowest_level = p->lowest_level;
2068	WARN_ON(lowest_level && ins_len > 0);
2069	WARN_ON(p->nodes[0] != NULL);
2070	BUG_ON(!cow && ins_len);
2071
2072	/*
2073	 * For now only allow nowait for read only operations.  There's no
2074	 * strict reason why we can't, we just only need it for reads so it's
2075	 * only implemented for reads.
2076	 */
2077	ASSERT(!p->nowait || !cow);
2078
2079	if (ins_len < 0) {
2080		lowest_unlock = 2;
2081
2082		/* when we are removing items, we might have to go up to level
2083		 * two as we update tree pointers  Make sure we keep write
2084		 * for those levels as well
2085		 */
2086		write_lock_level = 2;
2087	} else if (ins_len > 0) {
2088		/*
2089		 * for inserting items, make sure we have a write lock on
2090		 * level 1 so we can update keys
2091		 */
2092		write_lock_level = 1;
2093	}
2094
2095	if (!cow)
2096		write_lock_level = -1;
2097
2098	if (cow && (p->keep_locks || p->lowest_level))
2099		write_lock_level = BTRFS_MAX_LEVEL;
2100
2101	min_write_lock_level = write_lock_level;
2102
2103	if (p->need_commit_sem) {
2104		ASSERT(p->search_commit_root);
2105		if (p->nowait) {
2106			if (!down_read_trylock(&fs_info->commit_root_sem))
2107				return -EAGAIN;
2108		} else {
2109			down_read(&fs_info->commit_root_sem);
2110		}
2111	}
2112
2113again:
2114	prev_cmp = -1;
2115	b = btrfs_search_slot_get_root(root, p, write_lock_level);
2116	if (IS_ERR(b)) {
2117		ret = PTR_ERR(b);
2118		goto done;
2119	}
2120
2121	while (b) {
2122		int dec = 0;
2123
2124		level = btrfs_header_level(b);
2125
2126		if (cow) {
2127			bool last_level = (level == (BTRFS_MAX_LEVEL - 1));
2128
2129			/*
2130			 * if we don't really need to cow this block
2131			 * then we don't want to set the path blocking,
2132			 * so we test it here
2133			 */
2134			if (!should_cow_block(trans, root, b))
2135				goto cow_done;
2136
2137			/*
2138			 * must have write locks on this node and the
2139			 * parent
2140			 */
2141			if (level > write_lock_level ||
2142			    (level + 1 > write_lock_level &&
2143			    level + 1 < BTRFS_MAX_LEVEL &&
2144			    p->nodes[level + 1])) {
2145				write_lock_level = level + 1;
2146				btrfs_release_path(p);
2147				goto again;
2148			}
2149
2150			if (last_level)
2151				err = btrfs_cow_block(trans, root, b, NULL, 0,
2152						      &b,
2153						      BTRFS_NESTING_COW);
2154			else
2155				err = btrfs_cow_block(trans, root, b,
2156						      p->nodes[level + 1],
2157						      p->slots[level + 1], &b,
2158						      BTRFS_NESTING_COW);
2159			if (err) {
2160				ret = err;
2161				goto done;
2162			}
2163		}
2164cow_done:
2165		p->nodes[level] = b;
2166
2167		/*
2168		 * we have a lock on b and as long as we aren't changing
2169		 * the tree, there is no way to for the items in b to change.
2170		 * It is safe to drop the lock on our parent before we
2171		 * go through the expensive btree search on b.
2172		 *
2173		 * If we're inserting or deleting (ins_len != 0), then we might
2174		 * be changing slot zero, which may require changing the parent.
2175		 * So, we can't drop the lock until after we know which slot
2176		 * we're operating on.
2177		 */
2178		if (!ins_len && !p->keep_locks) {
2179			int u = level + 1;
2180
2181			if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2182				btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2183				p->locks[u] = 0;
2184			}
2185		}
2186
2187		if (level == 0) {
2188			if (ins_len > 0)
2189				ASSERT(write_lock_level >= 1);
2190
2191			ret = search_leaf(trans, root, key, p, ins_len, prev_cmp);
2192			if (!p->search_for_split)
2193				unlock_up(p, level, lowest_unlock,
2194					  min_write_lock_level, NULL);
2195			goto done;
2196		}
2197
2198		ret = search_for_key_slot(b, 0, key, prev_cmp, &slot);
2199		if (ret < 0)
2200			goto done;
2201		prev_cmp = ret;
2202
2203		if (ret && slot > 0) {
2204			dec = 1;
2205			slot--;
2206		}
2207		p->slots[level] = slot;
2208		err = setup_nodes_for_search(trans, root, p, b, level, ins_len,
2209					     &write_lock_level);
2210		if (err == -EAGAIN)
2211			goto again;
2212		if (err) {
2213			ret = err;
2214			goto done;
2215		}
2216		b = p->nodes[level];
2217		slot = p->slots[level];
2218
2219		/*
2220		 * Slot 0 is special, if we change the key we have to update
2221		 * the parent pointer which means we must have a write lock on
2222		 * the parent
2223		 */
2224		if (slot == 0 && ins_len && write_lock_level < level + 1) {
2225			write_lock_level = level + 1;
2226			btrfs_release_path(p);
2227			goto again;
2228		}
2229
2230		unlock_up(p, level, lowest_unlock, min_write_lock_level,
2231			  &write_lock_level);
2232
2233		if (level == lowest_level) {
2234			if (dec)
2235				p->slots[level]++;
2236			goto done;
2237		}
2238
2239		err = read_block_for_search(root, p, &b, slot, key);
2240		if (err == -EAGAIN && !p->nowait)
2241			goto again;
2242		if (err) {
2243			ret = err;
2244			goto done;
2245		}
2246
2247		if (!p->skip_locking) {
2248			level = btrfs_header_level(b);
2249
2250			btrfs_maybe_reset_lockdep_class(root, b);
2251
2252			if (level <= write_lock_level) {
2253				btrfs_tree_lock(b);
2254				p->locks[level] = BTRFS_WRITE_LOCK;
2255			} else {
2256				if (p->nowait) {
2257					if (!btrfs_try_tree_read_lock(b)) {
2258						free_extent_buffer(b);
2259						ret = -EAGAIN;
2260						goto done;
2261					}
2262				} else {
2263					btrfs_tree_read_lock(b);
2264				}
2265				p->locks[level] = BTRFS_READ_LOCK;
2266			}
2267			p->nodes[level] = b;
2268		}
2269	}
2270	ret = 1;
2271done:
2272	if (ret < 0 && !p->skip_release_on_error)
2273		btrfs_release_path(p);
2274
2275	if (p->need_commit_sem) {
2276		int ret2;
2277
2278		ret2 = finish_need_commit_sem_search(p);
2279		up_read(&fs_info->commit_root_sem);
2280		if (ret2)
2281			ret = ret2;
2282	}
2283
2284	return ret;
2285}
2286ALLOW_ERROR_INJECTION(btrfs_search_slot, ERRNO);
2287
2288/*
2289 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2290 * current state of the tree together with the operations recorded in the tree
2291 * modification log to search for the key in a previous version of this tree, as
2292 * denoted by the time_seq parameter.
2293 *
2294 * Naturally, there is no support for insert, delete or cow operations.
2295 *
2296 * The resulting path and return value will be set up as if we called
2297 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2298 */
2299int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
2300			  struct btrfs_path *p, u64 time_seq)
2301{
2302	struct btrfs_fs_info *fs_info = root->fs_info;
2303	struct extent_buffer *b;
2304	int slot;
2305	int ret;
2306	int err;
2307	int level;
2308	int lowest_unlock = 1;
2309	u8 lowest_level = 0;
2310
2311	lowest_level = p->lowest_level;
2312	WARN_ON(p->nodes[0] != NULL);
2313	ASSERT(!p->nowait);
2314
2315	if (p->search_commit_root) {
2316		BUG_ON(time_seq);
2317		return btrfs_search_slot(NULL, root, key, p, 0, 0);
2318	}
2319
2320again:
2321	b = btrfs_get_old_root(root, time_seq);
2322	if (!b) {
2323		ret = -EIO;
2324		goto done;
2325	}
2326	level = btrfs_header_level(b);
2327	p->locks[level] = BTRFS_READ_LOCK;
2328
2329	while (b) {
2330		int dec = 0;
2331
2332		level = btrfs_header_level(b);
2333		p->nodes[level] = b;
2334
2335		/*
2336		 * we have a lock on b and as long as we aren't changing
2337		 * the tree, there is no way to for the items in b to change.
2338		 * It is safe to drop the lock on our parent before we
2339		 * go through the expensive btree search on b.
2340		 */
2341		btrfs_unlock_up_safe(p, level + 1);
2342
2343		ret = btrfs_bin_search(b, 0, key, &slot);
2344		if (ret < 0)
2345			goto done;
2346
2347		if (level == 0) {
2348			p->slots[level] = slot;
2349			unlock_up(p, level, lowest_unlock, 0, NULL);
2350			goto done;
2351		}
2352
2353		if (ret && slot > 0) {
2354			dec = 1;
2355			slot--;
2356		}
2357		p->slots[level] = slot;
2358		unlock_up(p, level, lowest_unlock, 0, NULL);
2359
2360		if (level == lowest_level) {
2361			if (dec)
2362				p->slots[level]++;
2363			goto done;
2364		}
2365
2366		err = read_block_for_search(root, p, &b, slot, key);
2367		if (err == -EAGAIN && !p->nowait)
2368			goto again;
2369		if (err) {
2370			ret = err;
2371			goto done;
2372		}
2373
2374		level = btrfs_header_level(b);
2375		btrfs_tree_read_lock(b);
2376		b = btrfs_tree_mod_log_rewind(fs_info, b, time_seq);
2377		if (!b) {
2378			ret = -ENOMEM;
2379			goto done;
2380		}
2381		p->locks[level] = BTRFS_READ_LOCK;
2382		p->nodes[level] = b;
2383	}
2384	ret = 1;
2385done:
2386	if (ret < 0)
2387		btrfs_release_path(p);
2388
2389	return ret;
2390}
2391
2392/*
2393 * Search the tree again to find a leaf with smaller keys.
2394 * Returns 0 if it found something.
2395 * Returns 1 if there are no smaller keys.
2396 * Returns < 0 on error.
2397 *
2398 * This may release the path, and so you may lose any locks held at the
2399 * time you call it.
2400 */
2401static int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
2402{
2403	struct btrfs_key key;
2404	struct btrfs_key orig_key;
2405	struct btrfs_disk_key found_key;
2406	int ret;
2407
2408	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
2409	orig_key = key;
2410
2411	if (key.offset > 0) {
2412		key.offset--;
2413	} else if (key.type > 0) {
2414		key.type--;
2415		key.offset = (u64)-1;
2416	} else if (key.objectid > 0) {
2417		key.objectid--;
2418		key.type = (u8)-1;
2419		key.offset = (u64)-1;
2420	} else {
2421		return 1;
2422	}
2423
2424	btrfs_release_path(path);
2425	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2426	if (ret <= 0)
2427		return ret;
2428
2429	/*
2430	 * Previous key not found. Even if we were at slot 0 of the leaf we had
2431	 * before releasing the path and calling btrfs_search_slot(), we now may
2432	 * be in a slot pointing to the same original key - this can happen if
2433	 * after we released the path, one of more items were moved from a
2434	 * sibling leaf into the front of the leaf we had due to an insertion
2435	 * (see push_leaf_right()).
2436	 * If we hit this case and our slot is > 0 and just decrement the slot
2437	 * so that the caller does not process the same key again, which may or
2438	 * may not break the caller, depending on its logic.
2439	 */
2440	if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
2441		btrfs_item_key(path->nodes[0], &found_key, path->slots[0]);
2442		ret = btrfs_comp_keys(&found_key, &orig_key);
2443		if (ret == 0) {
2444			if (path->slots[0] > 0) {
2445				path->slots[0]--;
2446				return 0;
2447			}
2448			/*
2449			 * At slot 0, same key as before, it means orig_key is
2450			 * the lowest, leftmost, key in the tree. We're done.
2451			 */
2452			return 1;
2453		}
2454	}
2455
2456	btrfs_item_key(path->nodes[0], &found_key, 0);
2457	ret = btrfs_comp_keys(&found_key, &key);
2458	/*
2459	 * We might have had an item with the previous key in the tree right
2460	 * before we released our path. And after we released our path, that
2461	 * item might have been pushed to the first slot (0) of the leaf we
2462	 * were holding due to a tree balance. Alternatively, an item with the
2463	 * previous key can exist as the only element of a leaf (big fat item).
2464	 * Therefore account for these 2 cases, so that our callers (like
2465	 * btrfs_previous_item) don't miss an existing item with a key matching
2466	 * the previous key we computed above.
2467	 */
2468	if (ret <= 0)
2469		return 0;
2470	return 1;
2471}
2472
2473/*
2474 * helper to use instead of search slot if no exact match is needed but
2475 * instead the next or previous item should be returned.
2476 * When find_higher is true, the next higher item is returned, the next lower
2477 * otherwise.
2478 * When return_any and find_higher are both true, and no higher item is found,
2479 * return the next lower instead.
2480 * When return_any is true and find_higher is false, and no lower item is found,
2481 * return the next higher instead.
2482 * It returns 0 if any item is found, 1 if none is found (tree empty), and
2483 * < 0 on error
2484 */
2485int btrfs_search_slot_for_read(struct btrfs_root *root,
2486			       const struct btrfs_key *key,
2487			       struct btrfs_path *p, int find_higher,
2488			       int return_any)
2489{
2490	int ret;
2491	struct extent_buffer *leaf;
2492
2493again:
2494	ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
2495	if (ret <= 0)
2496		return ret;
2497	/*
2498	 * a return value of 1 means the path is at the position where the
2499	 * item should be inserted. Normally this is the next bigger item,
2500	 * but in case the previous item is the last in a leaf, path points
2501	 * to the first free slot in the previous leaf, i.e. at an invalid
2502	 * item.
2503	 */
2504	leaf = p->nodes[0];
2505
2506	if (find_higher) {
2507		if (p->slots[0] >= btrfs_header_nritems(leaf)) {
2508			ret = btrfs_next_leaf(root, p);
2509			if (ret <= 0)
2510				return ret;
2511			if (!return_any)
2512				return 1;
2513			/*
2514			 * no higher item found, return the next
2515			 * lower instead
2516			 */
2517			return_any = 0;
2518			find_higher = 0;
2519			btrfs_release_path(p);
2520			goto again;
2521		}
2522	} else {
2523		if (p->slots[0] == 0) {
2524			ret = btrfs_prev_leaf(root, p);
2525			if (ret < 0)
2526				return ret;
2527			if (!ret) {
2528				leaf = p->nodes[0];
2529				if (p->slots[0] == btrfs_header_nritems(leaf))
2530					p->slots[0]--;
2531				return 0;
2532			}
2533			if (!return_any)
2534				return 1;
2535			/*
2536			 * no lower item found, return the next
2537			 * higher instead
2538			 */
2539			return_any = 0;
2540			find_higher = 1;
2541			btrfs_release_path(p);
2542			goto again;
2543		} else {
2544			--p->slots[0];
2545		}
2546	}
2547	return 0;
2548}
2549
2550/*
2551 * Execute search and call btrfs_previous_item to traverse backwards if the item
2552 * was not found.
2553 *
2554 * Return 0 if found, 1 if not found and < 0 if error.
2555 */
2556int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key,
2557			   struct btrfs_path *path)
2558{
2559	int ret;
2560
2561	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
2562	if (ret > 0)
2563		ret = btrfs_previous_item(root, path, key->objectid, key->type);
2564
2565	if (ret == 0)
2566		btrfs_item_key_to_cpu(path->nodes[0], key, path->slots[0]);
2567
2568	return ret;
2569}
2570
2571/*
2572 * Search for a valid slot for the given path.
2573 *
2574 * @root:	The root node of the tree.
2575 * @key:	Will contain a valid item if found.
2576 * @path:	The starting point to validate the slot.
2577 *
2578 * Return: 0  if the item is valid
2579 *         1  if not found
2580 *         <0 if error.
2581 */
2582int btrfs_get_next_valid_item(struct btrfs_root *root, struct btrfs_key *key,
2583			      struct btrfs_path *path)
2584{
2585	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2586		int ret;
 
 
2587
2588		ret = btrfs_next_leaf(root, path);
2589		if (ret)
2590			return ret;
 
 
 
 
 
 
 
 
 
 
 
2591	}
2592
2593	btrfs_item_key_to_cpu(path->nodes[0], key, path->slots[0]);
2594	return 0;
2595}
2596
2597/*
2598 * adjust the pointers going up the tree, starting at level
2599 * making sure the right key of each node is points to 'key'.
2600 * This is used after shifting pointers to the left, so it stops
2601 * fixing up pointers when a given leaf/node is not in slot 0 of the
2602 * higher levels
2603 *
2604 */
2605static void fixup_low_keys(struct btrfs_trans_handle *trans,
2606			   const struct btrfs_path *path,
2607			   const struct btrfs_disk_key *key, int level)
2608{
2609	int i;
2610	struct extent_buffer *t;
2611	int ret;
2612
2613	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2614		int tslot = path->slots[i];
2615
2616		if (!path->nodes[i])
2617			break;
2618		t = path->nodes[i];
2619		ret = btrfs_tree_mod_log_insert_key(t, tslot,
2620						    BTRFS_MOD_LOG_KEY_REPLACE);
2621		BUG_ON(ret < 0);
2622		btrfs_set_node_key(t, key, tslot);
2623		btrfs_mark_buffer_dirty(trans, path->nodes[i]);
2624		if (tslot != 0)
2625			break;
2626	}
2627}
2628
2629/*
2630 * update item key.
2631 *
2632 * This function isn't completely safe. It's the caller's responsibility
2633 * that the new key won't break the order
2634 */
2635void btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
2636			     const struct btrfs_path *path,
2637			     const struct btrfs_key *new_key)
2638{
2639	struct btrfs_fs_info *fs_info = trans->fs_info;
2640	struct btrfs_disk_key disk_key;
2641	struct extent_buffer *eb;
2642	int slot;
2643
2644	eb = path->nodes[0];
2645	slot = path->slots[0];
2646	if (slot > 0) {
2647		btrfs_item_key(eb, &disk_key, slot - 1);
2648		if (unlikely(btrfs_comp_keys(&disk_key, new_key) >= 0)) {
2649			btrfs_print_leaf(eb);
2650			btrfs_crit(fs_info,
2651		"slot %u key (%llu %u %llu) new key (%llu %u %llu)",
2652				   slot, btrfs_disk_key_objectid(&disk_key),
2653				   btrfs_disk_key_type(&disk_key),
2654				   btrfs_disk_key_offset(&disk_key),
2655				   new_key->objectid, new_key->type,
2656				   new_key->offset);
 
2657			BUG();
2658		}
2659	}
2660	if (slot < btrfs_header_nritems(eb) - 1) {
2661		btrfs_item_key(eb, &disk_key, slot + 1);
2662		if (unlikely(btrfs_comp_keys(&disk_key, new_key) <= 0)) {
2663			btrfs_print_leaf(eb);
2664			btrfs_crit(fs_info,
2665		"slot %u key (%llu %u %llu) new key (%llu %u %llu)",
2666				   slot, btrfs_disk_key_objectid(&disk_key),
2667				   btrfs_disk_key_type(&disk_key),
2668				   btrfs_disk_key_offset(&disk_key),
2669				   new_key->objectid, new_key->type,
2670				   new_key->offset);
 
2671			BUG();
2672		}
2673	}
2674
2675	btrfs_cpu_key_to_disk(&disk_key, new_key);
2676	btrfs_set_item_key(eb, &disk_key, slot);
2677	btrfs_mark_buffer_dirty(trans, eb);
2678	if (slot == 0)
2679		fixup_low_keys(trans, path, &disk_key, 1);
2680}
2681
2682/*
2683 * Check key order of two sibling extent buffers.
2684 *
2685 * Return true if something is wrong.
2686 * Return false if everything is fine.
2687 *
2688 * Tree-checker only works inside one tree block, thus the following
2689 * corruption can not be detected by tree-checker:
2690 *
2691 * Leaf @left			| Leaf @right
2692 * --------------------------------------------------------------
2693 * | 1 | 2 | 3 | 4 | 5 | f6 |   | 7 | 8 |
2694 *
2695 * Key f6 in leaf @left itself is valid, but not valid when the next
2696 * key in leaf @right is 7.
2697 * This can only be checked at tree block merge time.
2698 * And since tree checker has ensured all key order in each tree block
2699 * is correct, we only need to bother the last key of @left and the first
2700 * key of @right.
2701 */
2702static bool check_sibling_keys(const struct extent_buffer *left,
2703			       const struct extent_buffer *right)
2704{
2705	struct btrfs_key left_last;
2706	struct btrfs_key right_first;
2707	int level = btrfs_header_level(left);
2708	int nr_left = btrfs_header_nritems(left);
2709	int nr_right = btrfs_header_nritems(right);
2710
2711	/* No key to check in one of the tree blocks */
2712	if (!nr_left || !nr_right)
2713		return false;
2714
2715	if (level) {
2716		btrfs_node_key_to_cpu(left, &left_last, nr_left - 1);
2717		btrfs_node_key_to_cpu(right, &right_first, 0);
2718	} else {
2719		btrfs_item_key_to_cpu(left, &left_last, nr_left - 1);
2720		btrfs_item_key_to_cpu(right, &right_first, 0);
2721	}
2722
2723	if (unlikely(btrfs_comp_cpu_keys(&left_last, &right_first) >= 0)) {
2724		btrfs_crit(left->fs_info, "left extent buffer:");
2725		btrfs_print_tree(left, false);
2726		btrfs_crit(left->fs_info, "right extent buffer:");
2727		btrfs_print_tree(right, false);
2728		btrfs_crit(left->fs_info,
2729"bad key order, sibling blocks, left last (%llu %u %llu) right first (%llu %u %llu)",
2730			   left_last.objectid, left_last.type,
2731			   left_last.offset, right_first.objectid,
2732			   right_first.type, right_first.offset);
2733		return true;
2734	}
2735	return false;
2736}
2737
2738/*
2739 * try to push data from one node into the next node left in the
2740 * tree.
2741 *
2742 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
2743 * error, and > 0 if there was no room in the left hand block.
2744 */
2745static int push_node_left(struct btrfs_trans_handle *trans,
2746			  struct extent_buffer *dst,
2747			  struct extent_buffer *src, int empty)
2748{
2749	struct btrfs_fs_info *fs_info = trans->fs_info;
2750	int push_items = 0;
2751	int src_nritems;
2752	int dst_nritems;
2753	int ret = 0;
2754
2755	src_nritems = btrfs_header_nritems(src);
2756	dst_nritems = btrfs_header_nritems(dst);
2757	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
2758	WARN_ON(btrfs_header_generation(src) != trans->transid);
2759	WARN_ON(btrfs_header_generation(dst) != trans->transid);
2760
2761	if (!empty && src_nritems <= 8)
2762		return 1;
2763
2764	if (push_items <= 0)
2765		return 1;
2766
2767	if (empty) {
2768		push_items = min(src_nritems, push_items);
2769		if (push_items < src_nritems) {
2770			/* leave at least 8 pointers in the node if
2771			 * we aren't going to empty it
2772			 */
2773			if (src_nritems - push_items < 8) {
2774				if (push_items <= 8)
2775					return 1;
2776				push_items -= 8;
2777			}
2778		}
2779	} else
2780		push_items = min(src_nritems - 8, push_items);
2781
2782	/* dst is the left eb, src is the middle eb */
2783	if (check_sibling_keys(dst, src)) {
2784		ret = -EUCLEAN;
2785		btrfs_abort_transaction(trans, ret);
2786		return ret;
2787	}
2788	ret = btrfs_tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items);
2789	if (ret) {
2790		btrfs_abort_transaction(trans, ret);
2791		return ret;
2792	}
2793	copy_extent_buffer(dst, src,
2794			   btrfs_node_key_ptr_offset(dst, dst_nritems),
2795			   btrfs_node_key_ptr_offset(src, 0),
2796			   push_items * sizeof(struct btrfs_key_ptr));
2797
2798	if (push_items < src_nritems) {
2799		/*
2800		 * btrfs_tree_mod_log_eb_copy handles logging the move, so we
2801		 * don't need to do an explicit tree mod log operation for it.
2802		 */
2803		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(src, 0),
2804				      btrfs_node_key_ptr_offset(src, push_items),
2805				      (src_nritems - push_items) *
2806				      sizeof(struct btrfs_key_ptr));
2807	}
2808	btrfs_set_header_nritems(src, src_nritems - push_items);
2809	btrfs_set_header_nritems(dst, dst_nritems + push_items);
2810	btrfs_mark_buffer_dirty(trans, src);
2811	btrfs_mark_buffer_dirty(trans, dst);
2812
2813	return ret;
2814}
2815
2816/*
2817 * try to push data from one node into the next node right in the
2818 * tree.
2819 *
2820 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
2821 * error, and > 0 if there was no room in the right hand block.
2822 *
2823 * this will  only push up to 1/2 the contents of the left node over
2824 */
2825static int balance_node_right(struct btrfs_trans_handle *trans,
2826			      struct extent_buffer *dst,
2827			      struct extent_buffer *src)
2828{
2829	struct btrfs_fs_info *fs_info = trans->fs_info;
2830	int push_items = 0;
2831	int max_push;
2832	int src_nritems;
2833	int dst_nritems;
2834	int ret = 0;
2835
2836	WARN_ON(btrfs_header_generation(src) != trans->transid);
2837	WARN_ON(btrfs_header_generation(dst) != trans->transid);
2838
2839	src_nritems = btrfs_header_nritems(src);
2840	dst_nritems = btrfs_header_nritems(dst);
2841	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
2842	if (push_items <= 0)
2843		return 1;
2844
2845	if (src_nritems < 4)
2846		return 1;
2847
2848	max_push = src_nritems / 2 + 1;
2849	/* don't try to empty the node */
2850	if (max_push >= src_nritems)
2851		return 1;
2852
2853	if (max_push < push_items)
2854		push_items = max_push;
2855
2856	/* dst is the right eb, src is the middle eb */
2857	if (check_sibling_keys(src, dst)) {
2858		ret = -EUCLEAN;
2859		btrfs_abort_transaction(trans, ret);
2860		return ret;
2861	}
2862
2863	/*
2864	 * btrfs_tree_mod_log_eb_copy handles logging the move, so we don't
2865	 * need to do an explicit tree mod log operation for it.
2866	 */
2867	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(dst, push_items),
2868				      btrfs_node_key_ptr_offset(dst, 0),
2869				      (dst_nritems) *
2870				      sizeof(struct btrfs_key_ptr));
2871
2872	ret = btrfs_tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items,
2873					 push_items);
2874	if (ret) {
2875		btrfs_abort_transaction(trans, ret);
2876		return ret;
2877	}
2878	copy_extent_buffer(dst, src,
2879			   btrfs_node_key_ptr_offset(dst, 0),
2880			   btrfs_node_key_ptr_offset(src, src_nritems - push_items),
2881			   push_items * sizeof(struct btrfs_key_ptr));
2882
2883	btrfs_set_header_nritems(src, src_nritems - push_items);
2884	btrfs_set_header_nritems(dst, dst_nritems + push_items);
2885
2886	btrfs_mark_buffer_dirty(trans, src);
2887	btrfs_mark_buffer_dirty(trans, dst);
2888
2889	return ret;
2890}
2891
2892/*
2893 * helper function to insert a new root level in the tree.
2894 * A new node is allocated, and a single item is inserted to
2895 * point to the existing root
2896 *
2897 * returns zero on success or < 0 on failure.
2898 */
2899static noinline int insert_new_root(struct btrfs_trans_handle *trans,
2900			   struct btrfs_root *root,
2901			   struct btrfs_path *path, int level)
2902{
 
2903	u64 lower_gen;
2904	struct extent_buffer *lower;
2905	struct extent_buffer *c;
2906	struct extent_buffer *old;
2907	struct btrfs_disk_key lower_key;
2908	int ret;
2909
2910	BUG_ON(path->nodes[level]);
2911	BUG_ON(path->nodes[level-1] != root->node);
2912
2913	lower = path->nodes[level-1];
2914	if (level == 1)
2915		btrfs_item_key(lower, &lower_key, 0);
2916	else
2917		btrfs_node_key(lower, &lower_key, 0);
2918
2919	c = btrfs_alloc_tree_block(trans, root, 0, btrfs_root_id(root),
2920				   &lower_key, level, root->node->start, 0,
2921				   0, BTRFS_NESTING_NEW_ROOT);
2922	if (IS_ERR(c))
2923		return PTR_ERR(c);
2924
2925	root_add_used_bytes(root);
2926
2927	btrfs_set_header_nritems(c, 1);
2928	btrfs_set_node_key(c, &lower_key, 0);
2929	btrfs_set_node_blockptr(c, 0, lower->start);
2930	lower_gen = btrfs_header_generation(lower);
2931	WARN_ON(lower_gen != trans->transid);
2932
2933	btrfs_set_node_ptr_generation(c, 0, lower_gen);
2934
2935	btrfs_mark_buffer_dirty(trans, c);
2936
2937	old = root->node;
2938	ret = btrfs_tree_mod_log_insert_root(root->node, c, false);
2939	if (ret < 0) {
2940		int ret2;
2941
2942		ret2 = btrfs_free_tree_block(trans, btrfs_root_id(root), c, 0, 1);
2943		if (ret2 < 0)
2944			btrfs_abort_transaction(trans, ret2);
2945		btrfs_tree_unlock(c);
2946		free_extent_buffer(c);
2947		return ret;
2948	}
2949	rcu_assign_pointer(root->node, c);
2950
2951	/* the super has an extra ref to root->node */
2952	free_extent_buffer(old);
2953
2954	add_root_to_dirty_list(root);
2955	atomic_inc(&c->refs);
2956	path->nodes[level] = c;
2957	path->locks[level] = BTRFS_WRITE_LOCK;
2958	path->slots[level] = 0;
2959	return 0;
2960}
2961
2962/*
2963 * worker function to insert a single pointer in a node.
2964 * the node should have enough room for the pointer already
2965 *
2966 * slot and level indicate where you want the key to go, and
2967 * blocknr is the block the key points to.
2968 */
2969static int insert_ptr(struct btrfs_trans_handle *trans,
2970		      const struct btrfs_path *path,
2971		      const struct btrfs_disk_key *key, u64 bytenr,
2972		      int slot, int level)
2973{
2974	struct extent_buffer *lower;
2975	int nritems;
2976	int ret;
2977
2978	BUG_ON(!path->nodes[level]);
2979	btrfs_assert_tree_write_locked(path->nodes[level]);
2980	lower = path->nodes[level];
2981	nritems = btrfs_header_nritems(lower);
2982	BUG_ON(slot > nritems);
2983	BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info));
2984	if (slot != nritems) {
2985		if (level) {
2986			ret = btrfs_tree_mod_log_insert_move(lower, slot + 1,
2987					slot, nritems - slot);
2988			if (ret < 0) {
2989				btrfs_abort_transaction(trans, ret);
2990				return ret;
2991			}
2992		}
2993		memmove_extent_buffer(lower,
2994			      btrfs_node_key_ptr_offset(lower, slot + 1),
2995			      btrfs_node_key_ptr_offset(lower, slot),
2996			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
2997	}
2998	if (level) {
2999		ret = btrfs_tree_mod_log_insert_key(lower, slot,
3000						    BTRFS_MOD_LOG_KEY_ADD);
3001		if (ret < 0) {
3002			btrfs_abort_transaction(trans, ret);
3003			return ret;
3004		}
3005	}
3006	btrfs_set_node_key(lower, key, slot);
3007	btrfs_set_node_blockptr(lower, slot, bytenr);
3008	WARN_ON(trans->transid == 0);
3009	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3010	btrfs_set_header_nritems(lower, nritems + 1);
3011	btrfs_mark_buffer_dirty(trans, lower);
3012
3013	return 0;
3014}
3015
3016/*
3017 * split the node at the specified level in path in two.
3018 * The path is corrected to point to the appropriate node after the split
3019 *
3020 * Before splitting this tries to make some room in the node by pushing
3021 * left and right, if either one works, it returns right away.
3022 *
3023 * returns 0 on success and < 0 on failure
3024 */
3025static noinline int split_node(struct btrfs_trans_handle *trans,
3026			       struct btrfs_root *root,
3027			       struct btrfs_path *path, int level)
3028{
3029	struct btrfs_fs_info *fs_info = root->fs_info;
3030	struct extent_buffer *c;
3031	struct extent_buffer *split;
3032	struct btrfs_disk_key disk_key;
3033	int mid;
3034	int ret;
3035	u32 c_nritems;
3036
3037	c = path->nodes[level];
3038	WARN_ON(btrfs_header_generation(c) != trans->transid);
3039	if (c == root->node) {
3040		/*
3041		 * trying to split the root, lets make a new one
3042		 *
3043		 * tree mod log: We don't log_removal old root in
3044		 * insert_new_root, because that root buffer will be kept as a
3045		 * normal node. We are going to log removal of half of the
3046		 * elements below with btrfs_tree_mod_log_eb_copy(). We're
3047		 * holding a tree lock on the buffer, which is why we cannot
3048		 * race with other tree_mod_log users.
3049		 */
3050		ret = insert_new_root(trans, root, path, level + 1);
3051		if (ret)
3052			return ret;
3053	} else {
3054		ret = push_nodes_for_insert(trans, root, path, level);
3055		c = path->nodes[level];
3056		if (!ret && btrfs_header_nritems(c) <
3057		    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
3058			return 0;
3059		if (ret < 0)
3060			return ret;
3061	}
3062
3063	c_nritems = btrfs_header_nritems(c);
3064	mid = (c_nritems + 1) / 2;
3065	btrfs_node_key(c, &disk_key, mid);
3066
3067	split = btrfs_alloc_tree_block(trans, root, 0, btrfs_root_id(root),
3068				       &disk_key, level, c->start, 0,
3069				       0, BTRFS_NESTING_SPLIT);
3070	if (IS_ERR(split))
3071		return PTR_ERR(split);
3072
3073	root_add_used_bytes(root);
3074	ASSERT(btrfs_header_level(c) == level);
3075
3076	ret = btrfs_tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid);
3077	if (ret) {
3078		btrfs_tree_unlock(split);
3079		free_extent_buffer(split);
3080		btrfs_abort_transaction(trans, ret);
3081		return ret;
3082	}
3083	copy_extent_buffer(split, c,
3084			   btrfs_node_key_ptr_offset(split, 0),
3085			   btrfs_node_key_ptr_offset(c, mid),
3086			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3087	btrfs_set_header_nritems(split, c_nritems - mid);
3088	btrfs_set_header_nritems(c, mid);
3089
3090	btrfs_mark_buffer_dirty(trans, c);
3091	btrfs_mark_buffer_dirty(trans, split);
3092
3093	ret = insert_ptr(trans, path, &disk_key, split->start,
3094			 path->slots[level + 1] + 1, level + 1);
3095	if (ret < 0) {
3096		btrfs_tree_unlock(split);
3097		free_extent_buffer(split);
3098		return ret;
3099	}
3100
3101	if (path->slots[level] >= mid) {
3102		path->slots[level] -= mid;
3103		btrfs_tree_unlock(c);
3104		free_extent_buffer(c);
3105		path->nodes[level] = split;
3106		path->slots[level + 1] += 1;
3107	} else {
3108		btrfs_tree_unlock(split);
3109		free_extent_buffer(split);
3110	}
3111	return 0;
3112}
3113
3114/*
3115 * how many bytes are required to store the items in a leaf.  start
3116 * and nr indicate which items in the leaf to check.  This totals up the
3117 * space used both by the item structs and the item data
3118 */
3119static int leaf_space_used(const struct extent_buffer *l, int start, int nr)
3120{
3121	int data_len;
3122	int nritems = btrfs_header_nritems(l);
3123	int end = min(nritems, start + nr) - 1;
3124
3125	if (!nr)
3126		return 0;
3127	data_len = btrfs_item_offset(l, start) + btrfs_item_size(l, start);
3128	data_len = data_len - btrfs_item_offset(l, end);
3129	data_len += sizeof(struct btrfs_item) * nr;
3130	WARN_ON(data_len < 0);
3131	return data_len;
3132}
3133
3134/*
3135 * The space between the end of the leaf items and
3136 * the start of the leaf data.  IOW, how much room
3137 * the leaf has left for both items and data
3138 */
3139int btrfs_leaf_free_space(const struct extent_buffer *leaf)
3140{
3141	struct btrfs_fs_info *fs_info = leaf->fs_info;
3142	int nritems = btrfs_header_nritems(leaf);
3143	int ret;
3144
3145	ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
3146	if (ret < 0) {
3147		btrfs_crit(fs_info,
3148			   "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3149			   ret,
3150			   (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
3151			   leaf_space_used(leaf, 0, nritems), nritems);
3152	}
3153	return ret;
3154}
3155
3156/*
3157 * min slot controls the lowest index we're willing to push to the
3158 * right.  We'll push up to and including min_slot, but no lower
3159 */
3160static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3161				      struct btrfs_path *path,
3162				      int data_size, int empty,
3163				      struct extent_buffer *right,
3164				      int free_space, u32 left_nritems,
3165				      u32 min_slot)
3166{
3167	struct btrfs_fs_info *fs_info = right->fs_info;
3168	struct extent_buffer *left = path->nodes[0];
3169	struct extent_buffer *upper = path->nodes[1];
3170	struct btrfs_map_token token;
3171	struct btrfs_disk_key disk_key;
3172	int slot;
3173	u32 i;
3174	int push_space = 0;
3175	int push_items = 0;
3176	u32 nr;
3177	u32 right_nritems;
3178	u32 data_end;
3179	u32 this_item_size;
3180
3181	if (empty)
3182		nr = 0;
3183	else
3184		nr = max_t(u32, 1, min_slot);
3185
3186	if (path->slots[0] >= left_nritems)
3187		push_space += data_size;
3188
3189	slot = path->slots[1];
3190	i = left_nritems - 1;
3191	while (i >= nr) {
3192		if (!empty && push_items > 0) {
3193			if (path->slots[0] > i)
3194				break;
3195			if (path->slots[0] == i) {
3196				int space = btrfs_leaf_free_space(left);
3197
3198				if (space + push_space * 2 > free_space)
3199					break;
3200			}
3201		}
3202
3203		if (path->slots[0] == i)
3204			push_space += data_size;
3205
3206		this_item_size = btrfs_item_size(left, i);
3207		if (this_item_size + sizeof(struct btrfs_item) +
3208		    push_space > free_space)
3209			break;
3210
3211		push_items++;
3212		push_space += this_item_size + sizeof(struct btrfs_item);
3213		if (i == 0)
3214			break;
3215		i--;
3216	}
3217
3218	if (push_items == 0)
3219		goto out_unlock;
3220
3221	WARN_ON(!empty && push_items == left_nritems);
3222
3223	/* push left to right */
3224	right_nritems = btrfs_header_nritems(right);
3225
3226	push_space = btrfs_item_data_end(left, left_nritems - push_items);
3227	push_space -= leaf_data_end(left);
3228
3229	/* make room in the right data area */
3230	data_end = leaf_data_end(right);
3231	memmove_leaf_data(right, data_end - push_space, data_end,
3232			  BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
3233
3234	/* copy from the left data area */
3235	copy_leaf_data(right, left, BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3236		       leaf_data_end(left), push_space);
3237
3238	memmove_leaf_items(right, push_items, 0, right_nritems);
3239
3240	/* copy the items from left to right */
3241	copy_leaf_items(right, left, 0, left_nritems - push_items, push_items);
3242
3243	/* update the item pointers */
3244	btrfs_init_map_token(&token, right);
3245	right_nritems += push_items;
3246	btrfs_set_header_nritems(right, right_nritems);
3247	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3248	for (i = 0; i < right_nritems; i++) {
3249		push_space -= btrfs_token_item_size(&token, i);
3250		btrfs_set_token_item_offset(&token, i, push_space);
3251	}
3252
3253	left_nritems -= push_items;
3254	btrfs_set_header_nritems(left, left_nritems);
3255
3256	if (left_nritems)
3257		btrfs_mark_buffer_dirty(trans, left);
3258	else
3259		btrfs_clear_buffer_dirty(trans, left);
3260
3261	btrfs_mark_buffer_dirty(trans, right);
3262
3263	btrfs_item_key(right, &disk_key, 0);
3264	btrfs_set_node_key(upper, &disk_key, slot + 1);
3265	btrfs_mark_buffer_dirty(trans, upper);
3266
3267	/* then fixup the leaf pointer in the path */
3268	if (path->slots[0] >= left_nritems) {
3269		path->slots[0] -= left_nritems;
3270		if (btrfs_header_nritems(path->nodes[0]) == 0)
3271			btrfs_clear_buffer_dirty(trans, path->nodes[0]);
3272		btrfs_tree_unlock(path->nodes[0]);
3273		free_extent_buffer(path->nodes[0]);
3274		path->nodes[0] = right;
3275		path->slots[1] += 1;
3276	} else {
3277		btrfs_tree_unlock(right);
3278		free_extent_buffer(right);
3279	}
3280	return 0;
3281
3282out_unlock:
3283	btrfs_tree_unlock(right);
3284	free_extent_buffer(right);
3285	return 1;
3286}
3287
3288/*
3289 * push some data in the path leaf to the right, trying to free up at
3290 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3291 *
3292 * returns 1 if the push failed because the other node didn't have enough
3293 * room, 0 if everything worked out and < 0 if there were major errors.
3294 *
3295 * this will push starting from min_slot to the end of the leaf.  It won't
3296 * push any slot lower than min_slot
3297 */
3298static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3299			   *root, struct btrfs_path *path,
3300			   int min_data_size, int data_size,
3301			   int empty, u32 min_slot)
3302{
3303	struct extent_buffer *left = path->nodes[0];
3304	struct extent_buffer *right;
3305	struct extent_buffer *upper;
3306	int slot;
3307	int free_space;
3308	u32 left_nritems;
3309	int ret;
3310
3311	if (!path->nodes[1])
3312		return 1;
3313
3314	slot = path->slots[1];
3315	upper = path->nodes[1];
3316	if (slot >= btrfs_header_nritems(upper) - 1)
3317		return 1;
3318
3319	btrfs_assert_tree_write_locked(path->nodes[1]);
3320
3321	right = btrfs_read_node_slot(upper, slot + 1);
 
 
 
 
3322	if (IS_ERR(right))
3323		return PTR_ERR(right);
3324
3325	btrfs_tree_lock_nested(right, BTRFS_NESTING_RIGHT);
3326
3327	free_space = btrfs_leaf_free_space(right);
3328	if (free_space < data_size)
3329		goto out_unlock;
3330
3331	ret = btrfs_cow_block(trans, root, right, upper,
3332			      slot + 1, &right, BTRFS_NESTING_RIGHT_COW);
3333	if (ret)
3334		goto out_unlock;
3335
3336	left_nritems = btrfs_header_nritems(left);
3337	if (left_nritems == 0)
3338		goto out_unlock;
3339
3340	if (check_sibling_keys(left, right)) {
3341		ret = -EUCLEAN;
3342		btrfs_abort_transaction(trans, ret);
3343		btrfs_tree_unlock(right);
3344		free_extent_buffer(right);
3345		return ret;
3346	}
3347	if (path->slots[0] == left_nritems && !empty) {
3348		/* Key greater than all keys in the leaf, right neighbor has
3349		 * enough room for it and we're not emptying our leaf to delete
3350		 * it, therefore use right neighbor to insert the new item and
3351		 * no need to touch/dirty our left leaf. */
3352		btrfs_tree_unlock(left);
3353		free_extent_buffer(left);
3354		path->nodes[0] = right;
3355		path->slots[0] = 0;
3356		path->slots[1]++;
3357		return 0;
3358	}
3359
3360	return __push_leaf_right(trans, path, min_data_size, empty, right,
3361				 free_space, left_nritems, min_slot);
3362out_unlock:
3363	btrfs_tree_unlock(right);
3364	free_extent_buffer(right);
3365	return 1;
3366}
3367
3368/*
3369 * push some data in the path leaf to the left, trying to free up at
3370 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3371 *
3372 * max_slot can put a limit on how far into the leaf we'll push items.  The
3373 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3374 * items
3375 */
3376static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3377				     struct btrfs_path *path, int data_size,
3378				     int empty, struct extent_buffer *left,
3379				     int free_space, u32 right_nritems,
3380				     u32 max_slot)
3381{
3382	struct btrfs_fs_info *fs_info = left->fs_info;
3383	struct btrfs_disk_key disk_key;
3384	struct extent_buffer *right = path->nodes[0];
3385	int i;
3386	int push_space = 0;
3387	int push_items = 0;
3388	u32 old_left_nritems;
3389	u32 nr;
3390	int ret = 0;
3391	u32 this_item_size;
3392	u32 old_left_item_size;
3393	struct btrfs_map_token token;
3394
3395	if (empty)
3396		nr = min(right_nritems, max_slot);
3397	else
3398		nr = min(right_nritems - 1, max_slot);
3399
3400	for (i = 0; i < nr; i++) {
3401		if (!empty && push_items > 0) {
3402			if (path->slots[0] < i)
3403				break;
3404			if (path->slots[0] == i) {
3405				int space = btrfs_leaf_free_space(right);
3406
3407				if (space + push_space * 2 > free_space)
3408					break;
3409			}
3410		}
3411
3412		if (path->slots[0] == i)
3413			push_space += data_size;
3414
3415		this_item_size = btrfs_item_size(right, i);
3416		if (this_item_size + sizeof(struct btrfs_item) + push_space >
3417		    free_space)
3418			break;
3419
3420		push_items++;
3421		push_space += this_item_size + sizeof(struct btrfs_item);
3422	}
3423
3424	if (push_items == 0) {
3425		ret = 1;
3426		goto out;
3427	}
3428	WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3429
3430	/* push data from right to left */
3431	copy_leaf_items(left, right, btrfs_header_nritems(left), 0, push_items);
3432
3433	push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
3434		     btrfs_item_offset(right, push_items - 1);
3435
3436	copy_leaf_data(left, right, leaf_data_end(left) - push_space,
3437		       btrfs_item_offset(right, push_items - 1), push_space);
3438	old_left_nritems = btrfs_header_nritems(left);
3439	BUG_ON(old_left_nritems <= 0);
3440
3441	btrfs_init_map_token(&token, left);
3442	old_left_item_size = btrfs_item_offset(left, old_left_nritems - 1);
3443	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3444		u32 ioff;
3445
3446		ioff = btrfs_token_item_offset(&token, i);
3447		btrfs_set_token_item_offset(&token, i,
3448		      ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size));
3449	}
3450	btrfs_set_header_nritems(left, old_left_nritems + push_items);
3451
3452	/* fixup right node */
3453	if (push_items > right_nritems)
3454		WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3455		       right_nritems);
3456
3457	if (push_items < right_nritems) {
3458		push_space = btrfs_item_offset(right, push_items - 1) -
3459						  leaf_data_end(right);
3460		memmove_leaf_data(right,
3461				  BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3462				  leaf_data_end(right), push_space);
3463
3464		memmove_leaf_items(right, 0, push_items,
3465				   btrfs_header_nritems(right) - push_items);
3466	}
3467
3468	btrfs_init_map_token(&token, right);
3469	right_nritems -= push_items;
3470	btrfs_set_header_nritems(right, right_nritems);
3471	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3472	for (i = 0; i < right_nritems; i++) {
3473		push_space = push_space - btrfs_token_item_size(&token, i);
3474		btrfs_set_token_item_offset(&token, i, push_space);
3475	}
3476
3477	btrfs_mark_buffer_dirty(trans, left);
3478	if (right_nritems)
3479		btrfs_mark_buffer_dirty(trans, right);
3480	else
3481		btrfs_clear_buffer_dirty(trans, right);
3482
3483	btrfs_item_key(right, &disk_key, 0);
3484	fixup_low_keys(trans, path, &disk_key, 1);
3485
3486	/* then fixup the leaf pointer in the path */
3487	if (path->slots[0] < push_items) {
3488		path->slots[0] += old_left_nritems;
3489		btrfs_tree_unlock(path->nodes[0]);
3490		free_extent_buffer(path->nodes[0]);
3491		path->nodes[0] = left;
3492		path->slots[1] -= 1;
3493	} else {
3494		btrfs_tree_unlock(left);
3495		free_extent_buffer(left);
3496		path->slots[0] -= push_items;
3497	}
3498	BUG_ON(path->slots[0] < 0);
3499	return ret;
3500out:
3501	btrfs_tree_unlock(left);
3502	free_extent_buffer(left);
3503	return ret;
3504}
3505
3506/*
3507 * push some data in the path leaf to the left, trying to free up at
3508 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3509 *
3510 * max_slot can put a limit on how far into the leaf we'll push items.  The
3511 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3512 * items
3513 */
3514static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3515			  *root, struct btrfs_path *path, int min_data_size,
3516			  int data_size, int empty, u32 max_slot)
3517{
3518	struct extent_buffer *right = path->nodes[0];
3519	struct extent_buffer *left;
3520	int slot;
3521	int free_space;
3522	u32 right_nritems;
3523	int ret = 0;
3524
3525	slot = path->slots[1];
3526	if (slot == 0)
3527		return 1;
3528	if (!path->nodes[1])
3529		return 1;
3530
3531	right_nritems = btrfs_header_nritems(right);
3532	if (right_nritems == 0)
3533		return 1;
3534
3535	btrfs_assert_tree_write_locked(path->nodes[1]);
3536
3537	left = btrfs_read_node_slot(path->nodes[1], slot - 1);
 
 
 
 
3538	if (IS_ERR(left))
3539		return PTR_ERR(left);
3540
3541	btrfs_tree_lock_nested(left, BTRFS_NESTING_LEFT);
3542
3543	free_space = btrfs_leaf_free_space(left);
3544	if (free_space < data_size) {
3545		ret = 1;
3546		goto out;
3547	}
3548
3549	ret = btrfs_cow_block(trans, root, left,
3550			      path->nodes[1], slot - 1, &left,
3551			      BTRFS_NESTING_LEFT_COW);
3552	if (ret) {
3553		/* we hit -ENOSPC, but it isn't fatal here */
3554		if (ret == -ENOSPC)
3555			ret = 1;
3556		goto out;
3557	}
3558
3559	if (check_sibling_keys(left, right)) {
3560		ret = -EUCLEAN;
3561		btrfs_abort_transaction(trans, ret);
3562		goto out;
3563	}
3564	return __push_leaf_left(trans, path, min_data_size, empty, left,
3565				free_space, right_nritems, max_slot);
 
3566out:
3567	btrfs_tree_unlock(left);
3568	free_extent_buffer(left);
3569	return ret;
3570}
3571
3572/*
3573 * split the path's leaf in two, making sure there is at least data_size
3574 * available for the resulting leaf level of the path.
3575 */
3576static noinline int copy_for_split(struct btrfs_trans_handle *trans,
3577				   struct btrfs_path *path,
3578				   struct extent_buffer *l,
3579				   struct extent_buffer *right,
3580				   int slot, int mid, int nritems)
3581{
3582	struct btrfs_fs_info *fs_info = trans->fs_info;
3583	int data_copy_size;
3584	int rt_data_off;
3585	int i;
3586	int ret;
3587	struct btrfs_disk_key disk_key;
3588	struct btrfs_map_token token;
3589
3590	nritems = nritems - mid;
3591	btrfs_set_header_nritems(right, nritems);
3592	data_copy_size = btrfs_item_data_end(l, mid) - leaf_data_end(l);
3593
3594	copy_leaf_items(right, l, 0, mid, nritems);
3595
3596	copy_leaf_data(right, l, BTRFS_LEAF_DATA_SIZE(fs_info) - data_copy_size,
3597		       leaf_data_end(l), data_copy_size);
3598
3599	rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_data_end(l, mid);
3600
3601	btrfs_init_map_token(&token, right);
3602	for (i = 0; i < nritems; i++) {
3603		u32 ioff;
3604
3605		ioff = btrfs_token_item_offset(&token, i);
3606		btrfs_set_token_item_offset(&token, i, ioff + rt_data_off);
3607	}
3608
3609	btrfs_set_header_nritems(l, mid);
3610	btrfs_item_key(right, &disk_key, 0);
3611	ret = insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1);
3612	if (ret < 0)
3613		return ret;
3614
3615	btrfs_mark_buffer_dirty(trans, right);
3616	btrfs_mark_buffer_dirty(trans, l);
3617	BUG_ON(path->slots[0] != slot);
3618
3619	if (mid <= slot) {
3620		btrfs_tree_unlock(path->nodes[0]);
3621		free_extent_buffer(path->nodes[0]);
3622		path->nodes[0] = right;
3623		path->slots[0] -= mid;
3624		path->slots[1] += 1;
3625	} else {
3626		btrfs_tree_unlock(right);
3627		free_extent_buffer(right);
3628	}
3629
3630	BUG_ON(path->slots[0] < 0);
3631
3632	return 0;
3633}
3634
3635/*
3636 * double splits happen when we need to insert a big item in the middle
3637 * of a leaf.  A double split can leave us with 3 mostly empty leaves:
3638 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
3639 *          A                 B                 C
3640 *
3641 * We avoid this by trying to push the items on either side of our target
3642 * into the adjacent leaves.  If all goes well we can avoid the double split
3643 * completely.
3644 */
3645static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
3646					  struct btrfs_root *root,
3647					  struct btrfs_path *path,
3648					  int data_size)
3649{
3650	int ret;
3651	int progress = 0;
3652	int slot;
3653	u32 nritems;
3654	int space_needed = data_size;
3655
3656	slot = path->slots[0];
3657	if (slot < btrfs_header_nritems(path->nodes[0]))
3658		space_needed -= btrfs_leaf_free_space(path->nodes[0]);
3659
3660	/*
3661	 * try to push all the items after our slot into the
3662	 * right leaf
3663	 */
3664	ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
3665	if (ret < 0)
3666		return ret;
3667
3668	if (ret == 0)
3669		progress++;
3670
3671	nritems = btrfs_header_nritems(path->nodes[0]);
3672	/*
3673	 * our goal is to get our slot at the start or end of a leaf.  If
3674	 * we've done so we're done
3675	 */
3676	if (path->slots[0] == 0 || path->slots[0] == nritems)
3677		return 0;
3678
3679	if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
3680		return 0;
3681
3682	/* try to push all the items before our slot into the next leaf */
3683	slot = path->slots[0];
3684	space_needed = data_size;
3685	if (slot > 0)
3686		space_needed -= btrfs_leaf_free_space(path->nodes[0]);
3687	ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
3688	if (ret < 0)
3689		return ret;
3690
3691	if (ret == 0)
3692		progress++;
3693
3694	if (progress)
3695		return 0;
3696	return 1;
3697}
3698
3699/*
3700 * split the path's leaf in two, making sure there is at least data_size
3701 * available for the resulting leaf level of the path.
3702 *
3703 * returns 0 if all went well and < 0 on failure.
3704 */
3705static noinline int split_leaf(struct btrfs_trans_handle *trans,
3706			       struct btrfs_root *root,
3707			       const struct btrfs_key *ins_key,
3708			       struct btrfs_path *path, int data_size,
3709			       int extend)
3710{
3711	struct btrfs_disk_key disk_key;
3712	struct extent_buffer *l;
3713	u32 nritems;
3714	int mid;
3715	int slot;
3716	struct extent_buffer *right;
3717	struct btrfs_fs_info *fs_info = root->fs_info;
3718	int ret = 0;
3719	int wret;
3720	int split;
3721	int num_doubles = 0;
3722	int tried_avoid_double = 0;
3723
3724	l = path->nodes[0];
3725	slot = path->slots[0];
3726	if (extend && data_size + btrfs_item_size(l, slot) +
3727	    sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
3728		return -EOVERFLOW;
3729
3730	/* first try to make some room by pushing left and right */
3731	if (data_size && path->nodes[1]) {
3732		int space_needed = data_size;
3733
3734		if (slot < btrfs_header_nritems(l))
3735			space_needed -= btrfs_leaf_free_space(l);
3736
3737		wret = push_leaf_right(trans, root, path, space_needed,
3738				       space_needed, 0, 0);
3739		if (wret < 0)
3740			return wret;
3741		if (wret) {
3742			space_needed = data_size;
3743			if (slot > 0)
3744				space_needed -= btrfs_leaf_free_space(l);
3745			wret = push_leaf_left(trans, root, path, space_needed,
3746					      space_needed, 0, (u32)-1);
3747			if (wret < 0)
3748				return wret;
3749		}
3750		l = path->nodes[0];
3751
3752		/* did the pushes work? */
3753		if (btrfs_leaf_free_space(l) >= data_size)
3754			return 0;
3755	}
3756
3757	if (!path->nodes[1]) {
3758		ret = insert_new_root(trans, root, path, 1);
3759		if (ret)
3760			return ret;
3761	}
3762again:
3763	split = 1;
3764	l = path->nodes[0];
3765	slot = path->slots[0];
3766	nritems = btrfs_header_nritems(l);
3767	mid = (nritems + 1) / 2;
3768
3769	if (mid <= slot) {
3770		if (nritems == 1 ||
3771		    leaf_space_used(l, mid, nritems - mid) + data_size >
3772			BTRFS_LEAF_DATA_SIZE(fs_info)) {
3773			if (slot >= nritems) {
3774				split = 0;
3775			} else {
3776				mid = slot;
3777				if (mid != nritems &&
3778				    leaf_space_used(l, mid, nritems - mid) +
3779				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
3780					if (data_size && !tried_avoid_double)
3781						goto push_for_double;
3782					split = 2;
3783				}
3784			}
3785		}
3786	} else {
3787		if (leaf_space_used(l, 0, mid) + data_size >
3788			BTRFS_LEAF_DATA_SIZE(fs_info)) {
3789			if (!extend && data_size && slot == 0) {
3790				split = 0;
3791			} else if ((extend || !data_size) && slot == 0) {
3792				mid = 1;
3793			} else {
3794				mid = slot;
3795				if (mid != nritems &&
3796				    leaf_space_used(l, mid, nritems - mid) +
3797				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
3798					if (data_size && !tried_avoid_double)
3799						goto push_for_double;
3800					split = 2;
3801				}
3802			}
3803		}
3804	}
3805
3806	if (split == 0)
3807		btrfs_cpu_key_to_disk(&disk_key, ins_key);
3808	else
3809		btrfs_item_key(l, &disk_key, mid);
3810
3811	/*
3812	 * We have to about BTRFS_NESTING_NEW_ROOT here if we've done a double
3813	 * split, because we're only allowed to have MAX_LOCKDEP_SUBCLASSES
3814	 * subclasses, which is 8 at the time of this patch, and we've maxed it
3815	 * out.  In the future we could add a
3816	 * BTRFS_NESTING_SPLIT_THE_SPLITTENING if we need to, but for now just
3817	 * use BTRFS_NESTING_NEW_ROOT.
3818	 */
3819	right = btrfs_alloc_tree_block(trans, root, 0, btrfs_root_id(root),
3820				       &disk_key, 0, l->start, 0, 0,
3821				       num_doubles ? BTRFS_NESTING_NEW_ROOT :
3822				       BTRFS_NESTING_SPLIT);
3823	if (IS_ERR(right))
3824		return PTR_ERR(right);
3825
3826	root_add_used_bytes(root);
3827
3828	if (split == 0) {
3829		if (mid <= slot) {
3830			btrfs_set_header_nritems(right, 0);
3831			ret = insert_ptr(trans, path, &disk_key,
3832					 right->start, path->slots[1] + 1, 1);
3833			if (ret < 0) {
3834				btrfs_tree_unlock(right);
3835				free_extent_buffer(right);
3836				return ret;
3837			}
3838			btrfs_tree_unlock(path->nodes[0]);
3839			free_extent_buffer(path->nodes[0]);
3840			path->nodes[0] = right;
3841			path->slots[0] = 0;
3842			path->slots[1] += 1;
3843		} else {
3844			btrfs_set_header_nritems(right, 0);
3845			ret = insert_ptr(trans, path, &disk_key,
3846					 right->start, path->slots[1], 1);
3847			if (ret < 0) {
3848				btrfs_tree_unlock(right);
3849				free_extent_buffer(right);
3850				return ret;
3851			}
3852			btrfs_tree_unlock(path->nodes[0]);
3853			free_extent_buffer(path->nodes[0]);
3854			path->nodes[0] = right;
3855			path->slots[0] = 0;
3856			if (path->slots[1] == 0)
3857				fixup_low_keys(trans, path, &disk_key, 1);
3858		}
3859		/*
3860		 * We create a new leaf 'right' for the required ins_len and
3861		 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
3862		 * the content of ins_len to 'right'.
3863		 */
3864		return ret;
3865	}
3866
3867	ret = copy_for_split(trans, path, l, right, slot, mid, nritems);
3868	if (ret < 0) {
3869		btrfs_tree_unlock(right);
3870		free_extent_buffer(right);
3871		return ret;
3872	}
3873
3874	if (split == 2) {
3875		BUG_ON(num_doubles != 0);
3876		num_doubles++;
3877		goto again;
3878	}
3879
3880	return 0;
3881
3882push_for_double:
3883	push_for_double_split(trans, root, path, data_size);
3884	tried_avoid_double = 1;
3885	if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
3886		return 0;
3887	goto again;
3888}
3889
3890static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
3891					 struct btrfs_root *root,
3892					 struct btrfs_path *path, int ins_len)
3893{
3894	struct btrfs_key key;
3895	struct extent_buffer *leaf;
3896	struct btrfs_file_extent_item *fi;
3897	u64 extent_len = 0;
3898	u32 item_size;
3899	int ret;
3900
3901	leaf = path->nodes[0];
3902	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3903
3904	BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
3905	       key.type != BTRFS_EXTENT_CSUM_KEY);
3906
3907	if (btrfs_leaf_free_space(leaf) >= ins_len)
3908		return 0;
3909
3910	item_size = btrfs_item_size(leaf, path->slots[0]);
3911	if (key.type == BTRFS_EXTENT_DATA_KEY) {
3912		fi = btrfs_item_ptr(leaf, path->slots[0],
3913				    struct btrfs_file_extent_item);
3914		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
3915	}
3916	btrfs_release_path(path);
3917
3918	path->keep_locks = 1;
3919	path->search_for_split = 1;
3920	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
3921	path->search_for_split = 0;
3922	if (ret > 0)
3923		ret = -EAGAIN;
3924	if (ret < 0)
3925		goto err;
3926
3927	ret = -EAGAIN;
3928	leaf = path->nodes[0];
3929	/* if our item isn't there, return now */
3930	if (item_size != btrfs_item_size(leaf, path->slots[0]))
3931		goto err;
3932
3933	/* the leaf has  changed, it now has room.  return now */
3934	if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len)
3935		goto err;
3936
3937	if (key.type == BTRFS_EXTENT_DATA_KEY) {
3938		fi = btrfs_item_ptr(leaf, path->slots[0],
3939				    struct btrfs_file_extent_item);
3940		if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
3941			goto err;
3942	}
3943
3944	ret = split_leaf(trans, root, &key, path, ins_len, 1);
3945	if (ret)
3946		goto err;
3947
3948	path->keep_locks = 0;
3949	btrfs_unlock_up_safe(path, 1);
3950	return 0;
3951err:
3952	path->keep_locks = 0;
3953	return ret;
3954}
3955
3956static noinline int split_item(struct btrfs_trans_handle *trans,
3957			       struct btrfs_path *path,
3958			       const struct btrfs_key *new_key,
3959			       unsigned long split_offset)
3960{
3961	struct extent_buffer *leaf;
3962	int orig_slot, slot;
3963	char *buf;
3964	u32 nritems;
3965	u32 item_size;
3966	u32 orig_offset;
3967	struct btrfs_disk_key disk_key;
3968
3969	leaf = path->nodes[0];
3970	/*
3971	 * Shouldn't happen because the caller must have previously called
3972	 * setup_leaf_for_split() to make room for the new item in the leaf.
3973	 */
3974	if (WARN_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item)))
3975		return -ENOSPC;
3976
3977	orig_slot = path->slots[0];
3978	orig_offset = btrfs_item_offset(leaf, path->slots[0]);
3979	item_size = btrfs_item_size(leaf, path->slots[0]);
3980
3981	buf = kmalloc(item_size, GFP_NOFS);
3982	if (!buf)
3983		return -ENOMEM;
3984
3985	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
3986			    path->slots[0]), item_size);
3987
3988	slot = path->slots[0] + 1;
3989	nritems = btrfs_header_nritems(leaf);
3990	if (slot != nritems) {
3991		/* shift the items */
3992		memmove_leaf_items(leaf, slot + 1, slot, nritems - slot);
3993	}
3994
3995	btrfs_cpu_key_to_disk(&disk_key, new_key);
3996	btrfs_set_item_key(leaf, &disk_key, slot);
3997
3998	btrfs_set_item_offset(leaf, slot, orig_offset);
3999	btrfs_set_item_size(leaf, slot, item_size - split_offset);
4000
4001	btrfs_set_item_offset(leaf, orig_slot,
4002				 orig_offset + item_size - split_offset);
4003	btrfs_set_item_size(leaf, orig_slot, split_offset);
4004
4005	btrfs_set_header_nritems(leaf, nritems + 1);
4006
4007	/* write the data for the start of the original item */
4008	write_extent_buffer(leaf, buf,
4009			    btrfs_item_ptr_offset(leaf, path->slots[0]),
4010			    split_offset);
4011
4012	/* write the data for the new item */
4013	write_extent_buffer(leaf, buf + split_offset,
4014			    btrfs_item_ptr_offset(leaf, slot),
4015			    item_size - split_offset);
4016	btrfs_mark_buffer_dirty(trans, leaf);
4017
4018	BUG_ON(btrfs_leaf_free_space(leaf) < 0);
4019	kfree(buf);
4020	return 0;
4021}
4022
4023/*
4024 * This function splits a single item into two items,
4025 * giving 'new_key' to the new item and splitting the
4026 * old one at split_offset (from the start of the item).
4027 *
4028 * The path may be released by this operation.  After
4029 * the split, the path is pointing to the old item.  The
4030 * new item is going to be in the same node as the old one.
4031 *
4032 * Note, the item being split must be smaller enough to live alone on
4033 * a tree block with room for one extra struct btrfs_item
4034 *
4035 * This allows us to split the item in place, keeping a lock on the
4036 * leaf the entire time.
4037 */
4038int btrfs_split_item(struct btrfs_trans_handle *trans,
4039		     struct btrfs_root *root,
4040		     struct btrfs_path *path,
4041		     const struct btrfs_key *new_key,
4042		     unsigned long split_offset)
4043{
4044	int ret;
4045	ret = setup_leaf_for_split(trans, root, path,
4046				   sizeof(struct btrfs_item));
4047	if (ret)
4048		return ret;
4049
4050	ret = split_item(trans, path, new_key, split_offset);
4051	return ret;
4052}
4053
4054/*
4055 * make the item pointed to by the path smaller.  new_size indicates
4056 * how small to make it, and from_end tells us if we just chop bytes
4057 * off the end of the item or if we shift the item to chop bytes off
4058 * the front.
4059 */
4060void btrfs_truncate_item(struct btrfs_trans_handle *trans,
4061			 const struct btrfs_path *path, u32 new_size, int from_end)
4062{
4063	int slot;
4064	struct extent_buffer *leaf;
4065	u32 nritems;
4066	unsigned int data_end;
4067	unsigned int old_data_start;
4068	unsigned int old_size;
4069	unsigned int size_diff;
4070	int i;
4071	struct btrfs_map_token token;
4072
4073	leaf = path->nodes[0];
4074	slot = path->slots[0];
4075
4076	old_size = btrfs_item_size(leaf, slot);
4077	if (old_size == new_size)
4078		return;
4079
4080	nritems = btrfs_header_nritems(leaf);
4081	data_end = leaf_data_end(leaf);
4082
4083	old_data_start = btrfs_item_offset(leaf, slot);
4084
4085	size_diff = old_size - new_size;
4086
4087	BUG_ON(slot < 0);
4088	BUG_ON(slot >= nritems);
4089
4090	/*
4091	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4092	 */
4093	/* first correct the data pointers */
4094	btrfs_init_map_token(&token, leaf);
4095	for (i = slot; i < nritems; i++) {
4096		u32 ioff;
4097
4098		ioff = btrfs_token_item_offset(&token, i);
4099		btrfs_set_token_item_offset(&token, i, ioff + size_diff);
4100	}
4101
4102	/* shift the data */
4103	if (from_end) {
4104		memmove_leaf_data(leaf, data_end + size_diff, data_end,
4105				  old_data_start + new_size - data_end);
4106	} else {
4107		struct btrfs_disk_key disk_key;
4108		u64 offset;
4109
4110		btrfs_item_key(leaf, &disk_key, slot);
4111
4112		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4113			unsigned long ptr;
4114			struct btrfs_file_extent_item *fi;
4115
4116			fi = btrfs_item_ptr(leaf, slot,
4117					    struct btrfs_file_extent_item);
4118			fi = (struct btrfs_file_extent_item *)(
4119			     (unsigned long)fi - size_diff);
4120
4121			if (btrfs_file_extent_type(leaf, fi) ==
4122			    BTRFS_FILE_EXTENT_INLINE) {
4123				ptr = btrfs_item_ptr_offset(leaf, slot);
4124				memmove_extent_buffer(leaf, ptr,
4125				      (unsigned long)fi,
4126				      BTRFS_FILE_EXTENT_INLINE_DATA_START);
4127			}
4128		}
4129
4130		memmove_leaf_data(leaf, data_end + size_diff, data_end,
4131				  old_data_start - data_end);
4132
4133		offset = btrfs_disk_key_offset(&disk_key);
4134		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4135		btrfs_set_item_key(leaf, &disk_key, slot);
4136		if (slot == 0)
4137			fixup_low_keys(trans, path, &disk_key, 1);
4138	}
4139
4140	btrfs_set_item_size(leaf, slot, new_size);
4141	btrfs_mark_buffer_dirty(trans, leaf);
4142
4143	if (btrfs_leaf_free_space(leaf) < 0) {
4144		btrfs_print_leaf(leaf);
4145		BUG();
4146	}
4147}
4148
4149/*
4150 * make the item pointed to by the path bigger, data_size is the added size.
4151 */
4152void btrfs_extend_item(struct btrfs_trans_handle *trans,
4153		       const struct btrfs_path *path, u32 data_size)
4154{
4155	int slot;
4156	struct extent_buffer *leaf;
4157	u32 nritems;
4158	unsigned int data_end;
4159	unsigned int old_data;
4160	unsigned int old_size;
4161	int i;
4162	struct btrfs_map_token token;
4163
4164	leaf = path->nodes[0];
4165
4166	nritems = btrfs_header_nritems(leaf);
4167	data_end = leaf_data_end(leaf);
4168
4169	if (btrfs_leaf_free_space(leaf) < data_size) {
4170		btrfs_print_leaf(leaf);
4171		BUG();
4172	}
4173	slot = path->slots[0];
4174	old_data = btrfs_item_data_end(leaf, slot);
4175
4176	BUG_ON(slot < 0);
4177	if (slot >= nritems) {
4178		btrfs_print_leaf(leaf);
4179		btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d",
4180			   slot, nritems);
4181		BUG();
4182	}
4183
4184	/*
4185	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4186	 */
4187	/* first correct the data pointers */
4188	btrfs_init_map_token(&token, leaf);
4189	for (i = slot; i < nritems; i++) {
4190		u32 ioff;
4191
4192		ioff = btrfs_token_item_offset(&token, i);
4193		btrfs_set_token_item_offset(&token, i, ioff - data_size);
4194	}
4195
4196	/* shift the data */
4197	memmove_leaf_data(leaf, data_end - data_size, data_end,
4198			  old_data - data_end);
4199
4200	data_end = old_data;
4201	old_size = btrfs_item_size(leaf, slot);
4202	btrfs_set_item_size(leaf, slot, old_size + data_size);
4203	btrfs_mark_buffer_dirty(trans, leaf);
4204
4205	if (btrfs_leaf_free_space(leaf) < 0) {
4206		btrfs_print_leaf(leaf);
4207		BUG();
4208	}
4209}
4210
4211/*
4212 * Make space in the node before inserting one or more items.
4213 *
4214 * @trans:	transaction handle
4215 * @root:	root we are inserting items to
4216 * @path:	points to the leaf/slot where we are going to insert new items
4217 * @batch:      information about the batch of items to insert
4218 *
4219 * Main purpose is to save stack depth by doing the bulk of the work in a
4220 * function that doesn't call btrfs_search_slot
4221 */
4222static void setup_items_for_insert(struct btrfs_trans_handle *trans,
4223				   struct btrfs_root *root, struct btrfs_path *path,
4224				   const struct btrfs_item_batch *batch)
4225{
4226	struct btrfs_fs_info *fs_info = root->fs_info;
4227	int i;
4228	u32 nritems;
4229	unsigned int data_end;
4230	struct btrfs_disk_key disk_key;
4231	struct extent_buffer *leaf;
4232	int slot;
4233	struct btrfs_map_token token;
4234	u32 total_size;
4235
4236	/*
4237	 * Before anything else, update keys in the parent and other ancestors
4238	 * if needed, then release the write locks on them, so that other tasks
4239	 * can use them while we modify the leaf.
4240	 */
4241	if (path->slots[0] == 0) {
4242		btrfs_cpu_key_to_disk(&disk_key, &batch->keys[0]);
4243		fixup_low_keys(trans, path, &disk_key, 1);
4244	}
4245	btrfs_unlock_up_safe(path, 1);
4246
4247	leaf = path->nodes[0];
4248	slot = path->slots[0];
4249
4250	nritems = btrfs_header_nritems(leaf);
4251	data_end = leaf_data_end(leaf);
4252	total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item));
4253
4254	if (btrfs_leaf_free_space(leaf) < total_size) {
4255		btrfs_print_leaf(leaf);
4256		btrfs_crit(fs_info, "not enough freespace need %u have %d",
4257			   total_size, btrfs_leaf_free_space(leaf));
4258		BUG();
4259	}
4260
4261	btrfs_init_map_token(&token, leaf);
4262	if (slot != nritems) {
4263		unsigned int old_data = btrfs_item_data_end(leaf, slot);
4264
4265		if (old_data < data_end) {
4266			btrfs_print_leaf(leaf);
4267			btrfs_crit(fs_info,
4268		"item at slot %d with data offset %u beyond data end of leaf %u",
4269				   slot, old_data, data_end);
4270			BUG();
4271		}
4272		/*
4273		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4274		 */
4275		/* first correct the data pointers */
4276		for (i = slot; i < nritems; i++) {
4277			u32 ioff;
4278
4279			ioff = btrfs_token_item_offset(&token, i);
4280			btrfs_set_token_item_offset(&token, i,
4281						       ioff - batch->total_data_size);
4282		}
4283		/* shift the items */
4284		memmove_leaf_items(leaf, slot + batch->nr, slot, nritems - slot);
4285
4286		/* shift the data */
4287		memmove_leaf_data(leaf, data_end - batch->total_data_size,
4288				  data_end, old_data - data_end);
4289		data_end = old_data;
4290	}
4291
4292	/* setup the item for the new data */
4293	for (i = 0; i < batch->nr; i++) {
4294		btrfs_cpu_key_to_disk(&disk_key, &batch->keys[i]);
4295		btrfs_set_item_key(leaf, &disk_key, slot + i);
4296		data_end -= batch->data_sizes[i];
4297		btrfs_set_token_item_offset(&token, slot + i, data_end);
4298		btrfs_set_token_item_size(&token, slot + i, batch->data_sizes[i]);
4299	}
4300
4301	btrfs_set_header_nritems(leaf, nritems + batch->nr);
4302	btrfs_mark_buffer_dirty(trans, leaf);
4303
4304	if (btrfs_leaf_free_space(leaf) < 0) {
4305		btrfs_print_leaf(leaf);
4306		BUG();
4307	}
4308}
4309
4310/*
4311 * Insert a new item into a leaf.
4312 *
4313 * @trans:     Transaction handle.
4314 * @root:      The root of the btree.
4315 * @path:      A path pointing to the target leaf and slot.
4316 * @key:       The key of the new item.
4317 * @data_size: The size of the data associated with the new key.
4318 */
4319void btrfs_setup_item_for_insert(struct btrfs_trans_handle *trans,
4320				 struct btrfs_root *root,
4321				 struct btrfs_path *path,
4322				 const struct btrfs_key *key,
4323				 u32 data_size)
4324{
4325	struct btrfs_item_batch batch;
4326
4327	batch.keys = key;
4328	batch.data_sizes = &data_size;
4329	batch.total_data_size = data_size;
4330	batch.nr = 1;
4331
4332	setup_items_for_insert(trans, root, path, &batch);
4333}
4334
4335/*
4336 * Given a key and some data, insert items into the tree.
4337 * This does all the path init required, making room in the tree if needed.
4338 *
4339 * Returns: 0        on success
4340 *          -EEXIST  if the first key already exists
4341 *          < 0      on other errors
4342 */
4343int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4344			    struct btrfs_root *root,
4345			    struct btrfs_path *path,
4346			    const struct btrfs_item_batch *batch)
4347{
4348	int ret = 0;
4349	int slot;
4350	u32 total_size;
4351
4352	total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item));
4353	ret = btrfs_search_slot(trans, root, &batch->keys[0], path, total_size, 1);
4354	if (ret == 0)
4355		return -EEXIST;
4356	if (ret < 0)
4357		return ret;
4358
4359	slot = path->slots[0];
4360	BUG_ON(slot < 0);
4361
4362	setup_items_for_insert(trans, root, path, batch);
4363	return 0;
4364}
4365
4366/*
4367 * Given a key and some data, insert an item into the tree.
4368 * This does all the path init required, making room in the tree if needed.
4369 */
4370int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4371		      const struct btrfs_key *cpu_key, void *data,
4372		      u32 data_size)
4373{
4374	int ret = 0;
4375	struct btrfs_path *path;
4376	struct extent_buffer *leaf;
4377	unsigned long ptr;
4378
4379	path = btrfs_alloc_path();
4380	if (!path)
4381		return -ENOMEM;
4382	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4383	if (!ret) {
4384		leaf = path->nodes[0];
4385		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4386		write_extent_buffer(leaf, data, ptr, data_size);
4387		btrfs_mark_buffer_dirty(trans, leaf);
4388	}
4389	btrfs_free_path(path);
4390	return ret;
4391}
4392
4393/*
4394 * This function duplicates an item, giving 'new_key' to the new item.
4395 * It guarantees both items live in the same tree leaf and the new item is
4396 * contiguous with the original item.
4397 *
4398 * This allows us to split a file extent in place, keeping a lock on the leaf
4399 * the entire time.
4400 */
4401int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4402			 struct btrfs_root *root,
4403			 struct btrfs_path *path,
4404			 const struct btrfs_key *new_key)
4405{
4406	struct extent_buffer *leaf;
4407	int ret;
4408	u32 item_size;
4409
4410	leaf = path->nodes[0];
4411	item_size = btrfs_item_size(leaf, path->slots[0]);
4412	ret = setup_leaf_for_split(trans, root, path,
4413				   item_size + sizeof(struct btrfs_item));
4414	if (ret)
4415		return ret;
4416
4417	path->slots[0]++;
4418	btrfs_setup_item_for_insert(trans, root, path, new_key, item_size);
4419	leaf = path->nodes[0];
4420	memcpy_extent_buffer(leaf,
4421			     btrfs_item_ptr_offset(leaf, path->slots[0]),
4422			     btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4423			     item_size);
4424	return 0;
4425}
4426
4427/*
4428 * delete the pointer from a given node.
4429 *
4430 * the tree should have been previously balanced so the deletion does not
4431 * empty a node.
4432 *
4433 * This is exported for use inside btrfs-progs, don't un-export it.
4434 */
4435int btrfs_del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4436		  struct btrfs_path *path, int level, int slot)
4437{
4438	struct extent_buffer *parent = path->nodes[level];
4439	u32 nritems;
4440	int ret;
4441
4442	nritems = btrfs_header_nritems(parent);
4443	if (slot != nritems - 1) {
4444		if (level) {
4445			ret = btrfs_tree_mod_log_insert_move(parent, slot,
4446					slot + 1, nritems - slot - 1);
4447			if (ret < 0) {
4448				btrfs_abort_transaction(trans, ret);
4449				return ret;
4450			}
4451		}
4452		memmove_extent_buffer(parent,
4453			      btrfs_node_key_ptr_offset(parent, slot),
4454			      btrfs_node_key_ptr_offset(parent, slot + 1),
4455			      sizeof(struct btrfs_key_ptr) *
4456			      (nritems - slot - 1));
4457	} else if (level) {
4458		ret = btrfs_tree_mod_log_insert_key(parent, slot,
4459						    BTRFS_MOD_LOG_KEY_REMOVE);
4460		if (ret < 0) {
4461			btrfs_abort_transaction(trans, ret);
4462			return ret;
4463		}
4464	}
4465
4466	nritems--;
4467	btrfs_set_header_nritems(parent, nritems);
4468	if (nritems == 0 && parent == root->node) {
4469		BUG_ON(btrfs_header_level(root->node) != 1);
4470		/* just turn the root into a leaf and break */
4471		btrfs_set_header_level(root->node, 0);
4472	} else if (slot == 0) {
4473		struct btrfs_disk_key disk_key;
4474
4475		btrfs_node_key(parent, &disk_key, 0);
4476		fixup_low_keys(trans, path, &disk_key, level + 1);
4477	}
4478	btrfs_mark_buffer_dirty(trans, parent);
4479	return 0;
4480}
4481
4482/*
4483 * a helper function to delete the leaf pointed to by path->slots[1] and
4484 * path->nodes[1].
4485 *
4486 * This deletes the pointer in path->nodes[1] and frees the leaf
4487 * block extent.  zero is returned if it all worked out, < 0 otherwise.
4488 *
4489 * The path must have already been setup for deleting the leaf, including
4490 * all the proper balancing.  path->nodes[1] must be locked.
4491 */
4492static noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans,
4493				   struct btrfs_root *root,
4494				   struct btrfs_path *path,
4495				   struct extent_buffer *leaf)
4496{
4497	int ret;
4498
4499	WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4500	ret = btrfs_del_ptr(trans, root, path, 1, path->slots[1]);
4501	if (ret < 0)
4502		return ret;
4503
4504	/*
4505	 * btrfs_free_extent is expensive, we want to make sure we
4506	 * aren't holding any locks when we call it
4507	 */
4508	btrfs_unlock_up_safe(path, 0);
4509
4510	root_sub_used_bytes(root);
4511
4512	atomic_inc(&leaf->refs);
4513	ret = btrfs_free_tree_block(trans, btrfs_root_id(root), leaf, 0, 1);
4514	free_extent_buffer_stale(leaf);
4515	if (ret < 0)
4516		btrfs_abort_transaction(trans, ret);
4517
4518	return ret;
4519}
4520/*
4521 * delete the item at the leaf level in path.  If that empties
4522 * the leaf, remove it from the tree
4523 */
4524int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4525		    struct btrfs_path *path, int slot, int nr)
4526{
4527	struct btrfs_fs_info *fs_info = root->fs_info;
4528	struct extent_buffer *leaf;
4529	int ret = 0;
4530	int wret;
4531	u32 nritems;
4532
4533	leaf = path->nodes[0];
4534	nritems = btrfs_header_nritems(leaf);
4535
4536	if (slot + nr != nritems) {
4537		const u32 last_off = btrfs_item_offset(leaf, slot + nr - 1);
4538		const int data_end = leaf_data_end(leaf);
4539		struct btrfs_map_token token;
4540		u32 dsize = 0;
4541		int i;
4542
4543		for (i = 0; i < nr; i++)
4544			dsize += btrfs_item_size(leaf, slot + i);
4545
4546		memmove_leaf_data(leaf, data_end + dsize, data_end,
4547				  last_off - data_end);
4548
4549		btrfs_init_map_token(&token, leaf);
4550		for (i = slot + nr; i < nritems; i++) {
4551			u32 ioff;
4552
4553			ioff = btrfs_token_item_offset(&token, i);
4554			btrfs_set_token_item_offset(&token, i, ioff + dsize);
4555		}
4556
4557		memmove_leaf_items(leaf, slot, slot + nr, nritems - slot - nr);
4558	}
4559	btrfs_set_header_nritems(leaf, nritems - nr);
4560	nritems -= nr;
4561
4562	/* delete the leaf if we've emptied it */
4563	if (nritems == 0) {
4564		if (leaf == root->node) {
4565			btrfs_set_header_level(leaf, 0);
4566		} else {
4567			btrfs_clear_buffer_dirty(trans, leaf);
4568			ret = btrfs_del_leaf(trans, root, path, leaf);
4569			if (ret < 0)
4570				return ret;
4571		}
4572	} else {
4573		int used = leaf_space_used(leaf, 0, nritems);
4574		if (slot == 0) {
4575			struct btrfs_disk_key disk_key;
4576
4577			btrfs_item_key(leaf, &disk_key, 0);
4578			fixup_low_keys(trans, path, &disk_key, 1);
4579		}
4580
4581		/*
4582		 * Try to delete the leaf if it is mostly empty. We do this by
4583		 * trying to move all its items into its left and right neighbours.
4584		 * If we can't move all the items, then we don't delete it - it's
4585		 * not ideal, but future insertions might fill the leaf with more
4586		 * items, or items from other leaves might be moved later into our
4587		 * leaf due to deletions on those leaves.
4588		 */
4589		if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
4590			u32 min_push_space;
4591
4592			/* push_leaf_left fixes the path.
4593			 * make sure the path still points to our leaf
4594			 * for possible call to btrfs_del_ptr below
4595			 */
4596			slot = path->slots[1];
4597			atomic_inc(&leaf->refs);
4598			/*
4599			 * We want to be able to at least push one item to the
4600			 * left neighbour leaf, and that's the first item.
4601			 */
4602			min_push_space = sizeof(struct btrfs_item) +
4603				btrfs_item_size(leaf, 0);
4604			wret = push_leaf_left(trans, root, path, 0,
4605					      min_push_space, 1, (u32)-1);
4606			if (wret < 0 && wret != -ENOSPC)
4607				ret = wret;
4608
4609			if (path->nodes[0] == leaf &&
4610			    btrfs_header_nritems(leaf)) {
4611				/*
4612				 * If we were not able to push all items from our
4613				 * leaf to its left neighbour, then attempt to
4614				 * either push all the remaining items to the
4615				 * right neighbour or none. There's no advantage
4616				 * in pushing only some items, instead of all, as
4617				 * it's pointless to end up with a leaf having
4618				 * too few items while the neighbours can be full
4619				 * or nearly full.
4620				 */
4621				nritems = btrfs_header_nritems(leaf);
4622				min_push_space = leaf_space_used(leaf, 0, nritems);
4623				wret = push_leaf_right(trans, root, path, 0,
4624						       min_push_space, 1, 0);
4625				if (wret < 0 && wret != -ENOSPC)
4626					ret = wret;
4627			}
4628
4629			if (btrfs_header_nritems(leaf) == 0) {
4630				path->slots[1] = slot;
4631				ret = btrfs_del_leaf(trans, root, path, leaf);
4632				if (ret < 0)
4633					return ret;
4634				free_extent_buffer(leaf);
4635				ret = 0;
4636			} else {
4637				/* if we're still in the path, make sure
4638				 * we're dirty.  Otherwise, one of the
4639				 * push_leaf functions must have already
4640				 * dirtied this buffer
4641				 */
4642				if (path->nodes[0] == leaf)
4643					btrfs_mark_buffer_dirty(trans, leaf);
4644				free_extent_buffer(leaf);
4645			}
4646		} else {
4647			btrfs_mark_buffer_dirty(trans, leaf);
4648		}
4649	}
4650	return ret;
4651}
4652
4653/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4654 * A helper function to walk down the tree starting at min_key, and looking
4655 * for nodes or leaves that are have a minimum transaction id.
4656 * This is used by the btree defrag code, and tree logging
4657 *
4658 * This does not cow, but it does stuff the starting key it finds back
4659 * into min_key, so you can call btrfs_search_slot with cow=1 on the
4660 * key and get a writable path.
4661 *
4662 * This honors path->lowest_level to prevent descent past a given level
4663 * of the tree.
4664 *
4665 * min_trans indicates the oldest transaction that you are interested
4666 * in walking through.  Any nodes or leaves older than min_trans are
4667 * skipped over (without reading them).
4668 *
4669 * returns zero if something useful was found, < 0 on error and 1 if there
4670 * was nothing in the tree that matched the search criteria.
4671 */
4672int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
4673			 struct btrfs_path *path,
4674			 u64 min_trans)
4675{
4676	struct extent_buffer *cur;
4677	struct btrfs_key found_key;
4678	int slot;
4679	int sret;
4680	u32 nritems;
4681	int level;
4682	int ret = 1;
4683	int keep_locks = path->keep_locks;
4684
4685	ASSERT(!path->nowait);
4686	path->keep_locks = 1;
4687again:
4688	cur = btrfs_read_lock_root_node(root);
4689	level = btrfs_header_level(cur);
4690	WARN_ON(path->nodes[level]);
4691	path->nodes[level] = cur;
4692	path->locks[level] = BTRFS_READ_LOCK;
4693
4694	if (btrfs_header_generation(cur) < min_trans) {
4695		ret = 1;
4696		goto out;
4697	}
4698	while (1) {
4699		nritems = btrfs_header_nritems(cur);
4700		level = btrfs_header_level(cur);
4701		sret = btrfs_bin_search(cur, 0, min_key, &slot);
4702		if (sret < 0) {
4703			ret = sret;
4704			goto out;
4705		}
4706
4707		/* at the lowest level, we're done, setup the path and exit */
4708		if (level == path->lowest_level) {
4709			if (slot >= nritems)
4710				goto find_next_key;
4711			ret = 0;
4712			path->slots[level] = slot;
4713			btrfs_item_key_to_cpu(cur, &found_key, slot);
4714			goto out;
4715		}
4716		if (sret && slot > 0)
4717			slot--;
4718		/*
4719		 * check this node pointer against the min_trans parameters.
4720		 * If it is too old, skip to the next one.
4721		 */
4722		while (slot < nritems) {
4723			u64 gen;
4724
4725			gen = btrfs_node_ptr_generation(cur, slot);
4726			if (gen < min_trans) {
4727				slot++;
4728				continue;
4729			}
4730			break;
4731		}
4732find_next_key:
4733		/*
4734		 * we didn't find a candidate key in this node, walk forward
4735		 * and find another one
4736		 */
4737		if (slot >= nritems) {
4738			path->slots[level] = slot;
4739			sret = btrfs_find_next_key(root, path, min_key, level,
4740						  min_trans);
4741			if (sret == 0) {
4742				btrfs_release_path(path);
4743				goto again;
4744			} else {
4745				goto out;
4746			}
4747		}
4748		/* save our key for returning back */
4749		btrfs_node_key_to_cpu(cur, &found_key, slot);
4750		path->slots[level] = slot;
4751		if (level == path->lowest_level) {
4752			ret = 0;
4753			goto out;
4754		}
4755		cur = btrfs_read_node_slot(cur, slot);
4756		if (IS_ERR(cur)) {
4757			ret = PTR_ERR(cur);
4758			goto out;
4759		}
4760
4761		btrfs_tree_read_lock(cur);
4762
4763		path->locks[level - 1] = BTRFS_READ_LOCK;
4764		path->nodes[level - 1] = cur;
4765		unlock_up(path, level, 1, 0, NULL);
4766	}
4767out:
4768	path->keep_locks = keep_locks;
4769	if (ret == 0) {
4770		btrfs_unlock_up_safe(path, path->lowest_level + 1);
4771		memcpy(min_key, &found_key, sizeof(found_key));
4772	}
4773	return ret;
4774}
4775
4776/*
4777 * this is similar to btrfs_next_leaf, but does not try to preserve
4778 * and fixup the path.  It looks for and returns the next key in the
4779 * tree based on the current path and the min_trans parameters.
4780 *
4781 * 0 is returned if another key is found, < 0 if there are any errors
4782 * and 1 is returned if there are no higher keys in the tree
4783 *
4784 * path->keep_locks should be set to 1 on the search made before
4785 * calling this function.
4786 */
4787int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
4788			struct btrfs_key *key, int level, u64 min_trans)
4789{
4790	int slot;
4791	struct extent_buffer *c;
4792
4793	WARN_ON(!path->keep_locks && !path->skip_locking);
4794	while (level < BTRFS_MAX_LEVEL) {
4795		if (!path->nodes[level])
4796			return 1;
4797
4798		slot = path->slots[level] + 1;
4799		c = path->nodes[level];
4800next:
4801		if (slot >= btrfs_header_nritems(c)) {
4802			int ret;
4803			int orig_lowest;
4804			struct btrfs_key cur_key;
4805			if (level + 1 >= BTRFS_MAX_LEVEL ||
4806			    !path->nodes[level + 1])
4807				return 1;
4808
4809			if (path->locks[level + 1] || path->skip_locking) {
4810				level++;
4811				continue;
4812			}
4813
4814			slot = btrfs_header_nritems(c) - 1;
4815			if (level == 0)
4816				btrfs_item_key_to_cpu(c, &cur_key, slot);
4817			else
4818				btrfs_node_key_to_cpu(c, &cur_key, slot);
4819
4820			orig_lowest = path->lowest_level;
4821			btrfs_release_path(path);
4822			path->lowest_level = level;
4823			ret = btrfs_search_slot(NULL, root, &cur_key, path,
4824						0, 0);
4825			path->lowest_level = orig_lowest;
4826			if (ret < 0)
4827				return ret;
4828
4829			c = path->nodes[level];
4830			slot = path->slots[level];
4831			if (ret == 0)
4832				slot++;
4833			goto next;
4834		}
4835
4836		if (level == 0)
4837			btrfs_item_key_to_cpu(c, key, slot);
4838		else {
4839			u64 gen = btrfs_node_ptr_generation(c, slot);
4840
4841			if (gen < min_trans) {
4842				slot++;
4843				goto next;
4844			}
4845			btrfs_node_key_to_cpu(c, key, slot);
4846		}
4847		return 0;
4848	}
4849	return 1;
4850}
4851
4852int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
4853			u64 time_seq)
4854{
4855	int slot;
4856	int level;
4857	struct extent_buffer *c;
4858	struct extent_buffer *next;
4859	struct btrfs_fs_info *fs_info = root->fs_info;
4860	struct btrfs_key key;
4861	bool need_commit_sem = false;
4862	u32 nritems;
4863	int ret;
4864	int i;
4865
4866	/*
4867	 * The nowait semantics are used only for write paths, where we don't
4868	 * use the tree mod log and sequence numbers.
4869	 */
4870	if (time_seq)
4871		ASSERT(!path->nowait);
4872
4873	nritems = btrfs_header_nritems(path->nodes[0]);
4874	if (nritems == 0)
4875		return 1;
4876
4877	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
4878again:
4879	level = 1;
4880	next = NULL;
4881	btrfs_release_path(path);
4882
4883	path->keep_locks = 1;
4884
4885	if (time_seq) {
4886		ret = btrfs_search_old_slot(root, &key, path, time_seq);
4887	} else {
4888		if (path->need_commit_sem) {
4889			path->need_commit_sem = 0;
4890			need_commit_sem = true;
4891			if (path->nowait) {
4892				if (!down_read_trylock(&fs_info->commit_root_sem)) {
4893					ret = -EAGAIN;
4894					goto done;
4895				}
4896			} else {
4897				down_read(&fs_info->commit_root_sem);
4898			}
4899		}
4900		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4901	}
4902	path->keep_locks = 0;
4903
4904	if (ret < 0)
4905		goto done;
4906
4907	nritems = btrfs_header_nritems(path->nodes[0]);
4908	/*
4909	 * by releasing the path above we dropped all our locks.  A balance
4910	 * could have added more items next to the key that used to be
4911	 * at the very end of the block.  So, check again here and
4912	 * advance the path if there are now more items available.
4913	 */
4914	if (nritems > 0 && path->slots[0] < nritems - 1) {
4915		if (ret == 0)
4916			path->slots[0]++;
4917		ret = 0;
4918		goto done;
4919	}
4920	/*
4921	 * So the above check misses one case:
4922	 * - after releasing the path above, someone has removed the item that
4923	 *   used to be at the very end of the block, and balance between leafs
4924	 *   gets another one with bigger key.offset to replace it.
4925	 *
4926	 * This one should be returned as well, or we can get leaf corruption
4927	 * later(esp. in __btrfs_drop_extents()).
4928	 *
4929	 * And a bit more explanation about this check,
4930	 * with ret > 0, the key isn't found, the path points to the slot
4931	 * where it should be inserted, so the path->slots[0] item must be the
4932	 * bigger one.
4933	 */
4934	if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
4935		ret = 0;
4936		goto done;
4937	}
4938
4939	while (level < BTRFS_MAX_LEVEL) {
4940		if (!path->nodes[level]) {
4941			ret = 1;
4942			goto done;
4943		}
4944
4945		slot = path->slots[level] + 1;
4946		c = path->nodes[level];
4947		if (slot >= btrfs_header_nritems(c)) {
4948			level++;
4949			if (level == BTRFS_MAX_LEVEL) {
4950				ret = 1;
4951				goto done;
4952			}
4953			continue;
4954		}
4955
4956
4957		/*
4958		 * Our current level is where we're going to start from, and to
4959		 * make sure lockdep doesn't complain we need to drop our locks
4960		 * and nodes from 0 to our current level.
4961		 */
4962		for (i = 0; i < level; i++) {
4963			if (path->locks[level]) {
4964				btrfs_tree_read_unlock(path->nodes[i]);
4965				path->locks[i] = 0;
4966			}
4967			free_extent_buffer(path->nodes[i]);
4968			path->nodes[i] = NULL;
4969		}
4970
4971		next = c;
4972		ret = read_block_for_search(root, path, &next, slot, &key);
 
4973		if (ret == -EAGAIN && !path->nowait)
4974			goto again;
4975
4976		if (ret < 0) {
4977			btrfs_release_path(path);
4978			goto done;
4979		}
4980
4981		if (!path->skip_locking) {
4982			ret = btrfs_try_tree_read_lock(next);
4983			if (!ret && path->nowait) {
4984				ret = -EAGAIN;
4985				goto done;
4986			}
4987			if (!ret && time_seq) {
4988				/*
4989				 * If we don't get the lock, we may be racing
4990				 * with push_leaf_left, holding that lock while
4991				 * itself waiting for the leaf we've currently
4992				 * locked. To solve this situation, we give up
4993				 * on our lock and cycle.
4994				 */
4995				free_extent_buffer(next);
4996				btrfs_release_path(path);
4997				cond_resched();
4998				goto again;
4999			}
5000			if (!ret)
5001				btrfs_tree_read_lock(next);
5002		}
5003		break;
5004	}
5005	path->slots[level] = slot;
5006	while (1) {
5007		level--;
5008		path->nodes[level] = next;
5009		path->slots[level] = 0;
5010		if (!path->skip_locking)
5011			path->locks[level] = BTRFS_READ_LOCK;
5012		if (!level)
5013			break;
5014
5015		ret = read_block_for_search(root, path, &next, 0, &key);
 
5016		if (ret == -EAGAIN && !path->nowait)
5017			goto again;
5018
5019		if (ret < 0) {
5020			btrfs_release_path(path);
5021			goto done;
5022		}
5023
5024		if (!path->skip_locking) {
5025			if (path->nowait) {
5026				if (!btrfs_try_tree_read_lock(next)) {
5027					ret = -EAGAIN;
5028					goto done;
5029				}
5030			} else {
5031				btrfs_tree_read_lock(next);
5032			}
5033		}
5034	}
5035	ret = 0;
5036done:
5037	unlock_up(path, 0, 1, 0, NULL);
5038	if (need_commit_sem) {
5039		int ret2;
5040
5041		path->need_commit_sem = 1;
5042		ret2 = finish_need_commit_sem_search(path);
5043		up_read(&fs_info->commit_root_sem);
5044		if (ret2)
5045			ret = ret2;
5046	}
5047
5048	return ret;
5049}
5050
5051int btrfs_next_old_item(struct btrfs_root *root, struct btrfs_path *path, u64 time_seq)
5052{
5053	path->slots[0]++;
5054	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0]))
5055		return btrfs_next_old_leaf(root, path, time_seq);
5056	return 0;
5057}
5058
5059/*
5060 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5061 * searching until it gets past min_objectid or finds an item of 'type'
5062 *
5063 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5064 */
5065int btrfs_previous_item(struct btrfs_root *root,
5066			struct btrfs_path *path, u64 min_objectid,
5067			int type)
5068{
5069	struct btrfs_key found_key;
5070	struct extent_buffer *leaf;
5071	u32 nritems;
5072	int ret;
5073
5074	while (1) {
5075		if (path->slots[0] == 0) {
5076			ret = btrfs_prev_leaf(root, path);
5077			if (ret != 0)
5078				return ret;
5079		} else {
5080			path->slots[0]--;
5081		}
5082		leaf = path->nodes[0];
5083		nritems = btrfs_header_nritems(leaf);
5084		if (nritems == 0)
5085			return 1;
5086		if (path->slots[0] == nritems)
5087			path->slots[0]--;
5088
5089		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5090		if (found_key.objectid < min_objectid)
5091			break;
5092		if (found_key.type == type)
5093			return 0;
5094		if (found_key.objectid == min_objectid &&
5095		    found_key.type < type)
5096			break;
5097	}
5098	return 1;
5099}
5100
5101/*
5102 * search in extent tree to find a previous Metadata/Data extent item with
5103 * min objecitd.
5104 *
5105 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5106 */
5107int btrfs_previous_extent_item(struct btrfs_root *root,
5108			struct btrfs_path *path, u64 min_objectid)
5109{
5110	struct btrfs_key found_key;
5111	struct extent_buffer *leaf;
5112	u32 nritems;
5113	int ret;
5114
5115	while (1) {
5116		if (path->slots[0] == 0) {
5117			ret = btrfs_prev_leaf(root, path);
5118			if (ret != 0)
5119				return ret;
5120		} else {
5121			path->slots[0]--;
5122		}
5123		leaf = path->nodes[0];
5124		nritems = btrfs_header_nritems(leaf);
5125		if (nritems == 0)
5126			return 1;
5127		if (path->slots[0] == nritems)
5128			path->slots[0]--;
5129
5130		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5131		if (found_key.objectid < min_objectid)
5132			break;
5133		if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5134		    found_key.type == BTRFS_METADATA_ITEM_KEY)
5135			return 0;
5136		if (found_key.objectid == min_objectid &&
5137		    found_key.type < BTRFS_EXTENT_ITEM_KEY)
5138			break;
5139	}
5140	return 1;
5141}
5142
5143int __init btrfs_ctree_init(void)
5144{
5145	btrfs_path_cachep = KMEM_CACHE(btrfs_path, 0);
 
 
5146	if (!btrfs_path_cachep)
5147		return -ENOMEM;
5148	return 0;
5149}
5150
5151void __cold btrfs_ctree_exit(void)
5152{
5153	kmem_cache_destroy(btrfs_path_cachep);
5154}