Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007,2008 Oracle.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   4 */
   5
   6#include <linux/sched.h>
   7#include <linux/slab.h>
   8#include <linux/rbtree.h>
   9#include <linux/mm.h>
  10#include <linux/error-injection.h>
  11#include "messages.h"
  12#include "ctree.h"
  13#include "disk-io.h"
  14#include "transaction.h"
  15#include "print-tree.h"
  16#include "locking.h"
  17#include "volumes.h"
  18#include "qgroup.h"
  19#include "tree-mod-log.h"
  20#include "tree-checker.h"
  21#include "fs.h"
  22#include "accessors.h"
  23#include "extent-tree.h"
  24#include "relocation.h"
  25#include "file-item.h"
  26
  27static struct kmem_cache *btrfs_path_cachep;
  28
  29static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
  30		      *root, struct btrfs_path *path, int level);
  31static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  32		      const struct btrfs_key *ins_key, struct btrfs_path *path,
  33		      int data_size, int extend);
  34static int push_node_left(struct btrfs_trans_handle *trans,
  35			  struct extent_buffer *dst,
  36			  struct extent_buffer *src, int empty);
  37static int balance_node_right(struct btrfs_trans_handle *trans,
 
  38			      struct extent_buffer *dst_buf,
  39			      struct extent_buffer *src_buf);
  40static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
  41		    int level, int slot);
 
 
  42
  43static const struct btrfs_csums {
  44	u16		size;
  45	const char	name[10];
  46	const char	driver[12];
  47} btrfs_csums[] = {
  48	[BTRFS_CSUM_TYPE_CRC32] = { .size = 4, .name = "crc32c" },
  49	[BTRFS_CSUM_TYPE_XXHASH] = { .size = 8, .name = "xxhash64" },
  50	[BTRFS_CSUM_TYPE_SHA256] = { .size = 32, .name = "sha256" },
  51	[BTRFS_CSUM_TYPE_BLAKE2] = { .size = 32, .name = "blake2b",
  52				     .driver = "blake2b-256" },
  53};
  54
  55/*
  56 * The leaf data grows from end-to-front in the node.  this returns the address
  57 * of the start of the last item, which is the stop of the leaf data stack.
  58 */
  59static unsigned int leaf_data_end(const struct extent_buffer *leaf)
  60{
  61	u32 nr = btrfs_header_nritems(leaf);
  62
  63	if (nr == 0)
  64		return BTRFS_LEAF_DATA_SIZE(leaf->fs_info);
  65	return btrfs_item_offset(leaf, nr - 1);
  66}
  67
  68/*
  69 * Move data in a @leaf (using memmove, safe for overlapping ranges).
  70 *
  71 * @leaf:	leaf that we're doing a memmove on
  72 * @dst_offset:	item data offset we're moving to
  73 * @src_offset:	item data offset were' moving from
  74 * @len:	length of the data we're moving
  75 *
  76 * Wrapper around memmove_extent_buffer() that takes into account the header on
  77 * the leaf.  The btrfs_item offset's start directly after the header, so we
  78 * have to adjust any offsets to account for the header in the leaf.  This
  79 * handles that math to simplify the callers.
  80 */
  81static inline void memmove_leaf_data(const struct extent_buffer *leaf,
  82				     unsigned long dst_offset,
  83				     unsigned long src_offset,
  84				     unsigned long len)
  85{
  86	memmove_extent_buffer(leaf, btrfs_item_nr_offset(leaf, 0) + dst_offset,
  87			      btrfs_item_nr_offset(leaf, 0) + src_offset, len);
  88}
  89
  90/*
  91 * Copy item data from @src into @dst at the given @offset.
  92 *
  93 * @dst:	destination leaf that we're copying into
  94 * @src:	source leaf that we're copying from
  95 * @dst_offset:	item data offset we're copying to
  96 * @src_offset:	item data offset were' copying from
  97 * @len:	length of the data we're copying
  98 *
  99 * Wrapper around copy_extent_buffer() that takes into account the header on
 100 * the leaf.  The btrfs_item offset's start directly after the header, so we
 101 * have to adjust any offsets to account for the header in the leaf.  This
 102 * handles that math to simplify the callers.
 103 */
 104static inline void copy_leaf_data(const struct extent_buffer *dst,
 105				  const struct extent_buffer *src,
 106				  unsigned long dst_offset,
 107				  unsigned long src_offset, unsigned long len)
 108{
 109	copy_extent_buffer(dst, src, btrfs_item_nr_offset(dst, 0) + dst_offset,
 110			   btrfs_item_nr_offset(src, 0) + src_offset, len);
 
 111}
 112
 113/*
 114 * Move items in a @leaf (using memmove).
 115 *
 116 * @dst:	destination leaf for the items
 117 * @dst_item:	the item nr we're copying into
 118 * @src_item:	the item nr we're copying from
 119 * @nr_items:	the number of items to copy
 120 *
 121 * Wrapper around memmove_extent_buffer() that does the math to get the
 122 * appropriate offsets into the leaf from the item numbers.
 123 */
 124static inline void memmove_leaf_items(const struct extent_buffer *leaf,
 125				      int dst_item, int src_item, int nr_items)
 126{
 127	memmove_extent_buffer(leaf, btrfs_item_nr_offset(leaf, dst_item),
 128			      btrfs_item_nr_offset(leaf, src_item),
 129			      nr_items * sizeof(struct btrfs_item));
 
 
 
 
 
 
 
 130}
 131
 132/*
 133 * Copy items from @src into @dst at the given @offset.
 134 *
 135 * @dst:	destination leaf for the items
 136 * @src:	source leaf for the items
 137 * @dst_item:	the item nr we're copying into
 138 * @src_item:	the item nr we're copying from
 139 * @nr_items:	the number of items to copy
 140 *
 141 * Wrapper around copy_extent_buffer() that does the math to get the
 142 * appropriate offsets into the leaf from the item numbers.
 143 */
 144static inline void copy_leaf_items(const struct extent_buffer *dst,
 145				   const struct extent_buffer *src,
 146				   int dst_item, int src_item, int nr_items)
 147{
 148	copy_extent_buffer(dst, src, btrfs_item_nr_offset(dst, dst_item),
 149			      btrfs_item_nr_offset(src, src_item),
 150			      nr_items * sizeof(struct btrfs_item));
 151}
 152
 153int btrfs_super_csum_size(const struct btrfs_super_block *s)
 154{
 155	u16 t = btrfs_super_csum_type(s);
 156	/*
 157	 * csum type is validated at mount time
 158	 */
 159	return btrfs_csums[t].size;
 160}
 161
 162const char *btrfs_super_csum_name(u16 csum_type)
 163{
 164	/* csum type is validated at mount time */
 165	return btrfs_csums[csum_type].name;
 166}
 167
 168/*
 169 * Return driver name if defined, otherwise the name that's also a valid driver
 170 * name
 171 */
 172const char *btrfs_super_csum_driver(u16 csum_type)
 
 173{
 174	/* csum type is validated at mount time */
 175	return btrfs_csums[csum_type].driver[0] ?
 176		btrfs_csums[csum_type].driver :
 177		btrfs_csums[csum_type].name;
 178}
 179
 180size_t __attribute_const__ btrfs_get_num_csums(void)
 181{
 182	return ARRAY_SIZE(btrfs_csums);
 183}
 184
 185struct btrfs_path *btrfs_alloc_path(void)
 186{
 187	might_sleep();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 188
 189	return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
 
 190}
 191
 192/* this also releases the path */
 193void btrfs_free_path(struct btrfs_path *p)
 194{
 195	if (!p)
 196		return;
 197	btrfs_release_path(p);
 198	kmem_cache_free(btrfs_path_cachep, p);
 199}
 200
 201/*
 202 * path release drops references on the extent buffers in the path
 203 * and it drops any locks held by this path
 204 *
 205 * It is safe to call this on paths that no locks or extent buffers held.
 206 */
 207noinline void btrfs_release_path(struct btrfs_path *p)
 208{
 209	int i;
 210
 211	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
 212		p->slots[i] = 0;
 213		if (!p->nodes[i])
 214			continue;
 215		if (p->locks[i]) {
 216			btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
 217			p->locks[i] = 0;
 218		}
 219		free_extent_buffer(p->nodes[i]);
 220		p->nodes[i] = NULL;
 221	}
 222}
 223
 224/*
 225 * We want the transaction abort to print stack trace only for errors where the
 226 * cause could be a bug, eg. due to ENOSPC, and not for common errors that are
 227 * caused by external factors.
 228 */
 229bool __cold abort_should_print_stack(int errno)
 230{
 231	switch (errno) {
 232	case -EIO:
 233	case -EROFS:
 234	case -ENOMEM:
 235		return false;
 236	}
 237	return true;
 238}
 239
 240/*
 241 * safely gets a reference on the root node of a tree.  A lock
 242 * is not taken, so a concurrent writer may put a different node
 243 * at the root of the tree.  See btrfs_lock_root_node for the
 244 * looping required.
 245 *
 246 * The extent buffer returned by this has a reference taken, so
 247 * it won't disappear.  It may stop being the root of the tree
 248 * at any time because there are no locks held.
 249 */
 250struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
 251{
 252	struct extent_buffer *eb;
 253
 254	while (1) {
 255		rcu_read_lock();
 256		eb = rcu_dereference(root->node);
 257
 258		/*
 259		 * RCU really hurts here, we could free up the root node because
 260		 * it was COWed but we may not get the new root node yet so do
 261		 * the inc_not_zero dance and if it doesn't work then
 262		 * synchronize_rcu and try again.
 263		 */
 264		if (atomic_inc_not_zero(&eb->refs)) {
 265			rcu_read_unlock();
 266			break;
 267		}
 268		rcu_read_unlock();
 269		synchronize_rcu();
 270	}
 271	return eb;
 272}
 273
 274/*
 275 * Cowonly root (not-shareable trees, everything not subvolume or reloc roots),
 276 * just get put onto a simple dirty list.  Transaction walks this list to make
 277 * sure they get properly updated on disk.
 278 */
 279static void add_root_to_dirty_list(struct btrfs_root *root)
 280{
 281	struct btrfs_fs_info *fs_info = root->fs_info;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 282
 
 
 
 
 
 
 283	if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
 284	    !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
 285		return;
 286
 287	spin_lock(&fs_info->trans_lock);
 288	if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
 289		/* Want the extent tree to be the last on the list */
 290		if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID)
 291			list_move_tail(&root->dirty_list,
 292				       &fs_info->dirty_cowonly_roots);
 293		else
 294			list_move(&root->dirty_list,
 295				  &fs_info->dirty_cowonly_roots);
 296	}
 297	spin_unlock(&fs_info->trans_lock);
 298}
 299
 300/*
 301 * used by snapshot creation to make a copy of a root for a tree with
 302 * a given objectid.  The buffer with the new root node is returned in
 303 * cow_ret, and this func returns zero on success or a negative error code.
 304 */
 305int btrfs_copy_root(struct btrfs_trans_handle *trans,
 306		      struct btrfs_root *root,
 307		      struct extent_buffer *buf,
 308		      struct extent_buffer **cow_ret, u64 new_root_objectid)
 309{
 310	struct btrfs_fs_info *fs_info = root->fs_info;
 311	struct extent_buffer *cow;
 312	int ret = 0;
 313	int level;
 314	struct btrfs_disk_key disk_key;
 315
 316	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
 317		trans->transid != fs_info->running_transaction->transid);
 318	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
 319		trans->transid != root->last_trans);
 320
 321	level = btrfs_header_level(buf);
 322	if (level == 0)
 323		btrfs_item_key(buf, &disk_key, 0);
 324	else
 325		btrfs_node_key(buf, &disk_key, 0);
 326
 327	cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
 328				     &disk_key, level, buf->start, 0,
 329				     BTRFS_NESTING_NEW_ROOT);
 330	if (IS_ERR(cow))
 331		return PTR_ERR(cow);
 332
 333	copy_extent_buffer_full(cow, buf);
 334	btrfs_set_header_bytenr(cow, cow->start);
 335	btrfs_set_header_generation(cow, trans->transid);
 336	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
 337	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
 338				     BTRFS_HEADER_FLAG_RELOC);
 339	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
 340		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
 341	else
 342		btrfs_set_header_owner(cow, new_root_objectid);
 343
 344	write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
 
 345
 346	WARN_ON(btrfs_header_generation(buf) > trans->transid);
 347	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
 348		ret = btrfs_inc_ref(trans, root, cow, 1);
 349	else
 350		ret = btrfs_inc_ref(trans, root, cow, 0);
 351	if (ret) {
 352		btrfs_tree_unlock(cow);
 353		free_extent_buffer(cow);
 354		btrfs_abort_transaction(trans, ret);
 355		return ret;
 356	}
 357
 358	btrfs_mark_buffer_dirty(cow);
 359	*cow_ret = cow;
 360	return 0;
 361}
 362
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 363/*
 364 * check if the tree block can be shared by multiple trees
 365 */
 366int btrfs_block_can_be_shared(struct btrfs_root *root,
 367			      struct extent_buffer *buf)
 368{
 369	/*
 370	 * Tree blocks not in shareable trees and tree roots are never shared.
 371	 * If a block was allocated after the last snapshot and the block was
 372	 * not allocated by tree relocation, we know the block is not shared.
 
 373	 */
 374	if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
 375	    buf != root->node && buf != root->commit_root &&
 376	    (btrfs_header_generation(buf) <=
 377	     btrfs_root_last_snapshot(&root->root_item) ||
 378	     btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
 379		return 1;
 380
 
 
 
 
 381	return 0;
 382}
 383
 384static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
 385				       struct btrfs_root *root,
 386				       struct extent_buffer *buf,
 387				       struct extent_buffer *cow,
 388				       int *last_ref)
 389{
 390	struct btrfs_fs_info *fs_info = root->fs_info;
 391	u64 refs;
 392	u64 owner;
 393	u64 flags;
 394	u64 new_flags = 0;
 395	int ret;
 396
 397	/*
 398	 * Backrefs update rules:
 399	 *
 400	 * Always use full backrefs for extent pointers in tree block
 401	 * allocated by tree relocation.
 402	 *
 403	 * If a shared tree block is no longer referenced by its owner
 404	 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
 405	 * use full backrefs for extent pointers in tree block.
 406	 *
 407	 * If a tree block is been relocating
 408	 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
 409	 * use full backrefs for extent pointers in tree block.
 410	 * The reason for this is some operations (such as drop tree)
 411	 * are only allowed for blocks use full backrefs.
 412	 */
 413
 414	if (btrfs_block_can_be_shared(root, buf)) {
 415		ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
 416					       btrfs_header_level(buf), 1,
 417					       &refs, &flags);
 418		if (ret)
 419			return ret;
 420		if (refs == 0) {
 421			ret = -EROFS;
 422			btrfs_handle_fs_error(fs_info, ret, NULL);
 423			return ret;
 424		}
 425	} else {
 426		refs = 1;
 427		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
 428		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
 429			flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
 430		else
 431			flags = 0;
 432	}
 433
 434	owner = btrfs_header_owner(buf);
 435	BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
 436	       !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
 437
 438	if (refs > 1) {
 439		if ((owner == root->root_key.objectid ||
 440		     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
 441		    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
 442			ret = btrfs_inc_ref(trans, root, buf, 1);
 443			if (ret)
 444				return ret;
 445
 446			if (root->root_key.objectid ==
 447			    BTRFS_TREE_RELOC_OBJECTID) {
 448				ret = btrfs_dec_ref(trans, root, buf, 0);
 449				if (ret)
 450					return ret;
 451				ret = btrfs_inc_ref(trans, root, cow, 1);
 452				if (ret)
 453					return ret;
 454			}
 455			new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
 456		} else {
 457
 458			if (root->root_key.objectid ==
 459			    BTRFS_TREE_RELOC_OBJECTID)
 460				ret = btrfs_inc_ref(trans, root, cow, 1);
 461			else
 462				ret = btrfs_inc_ref(trans, root, cow, 0);
 463			if (ret)
 464				return ret;
 465		}
 466		if (new_flags != 0) {
 467			int level = btrfs_header_level(buf);
 468
 469			ret = btrfs_set_disk_extent_flags(trans, buf,
 470							  new_flags, level);
 
 
 471			if (ret)
 472				return ret;
 473		}
 474	} else {
 475		if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
 476			if (root->root_key.objectid ==
 477			    BTRFS_TREE_RELOC_OBJECTID)
 478				ret = btrfs_inc_ref(trans, root, cow, 1);
 479			else
 480				ret = btrfs_inc_ref(trans, root, cow, 0);
 481			if (ret)
 482				return ret;
 483			ret = btrfs_dec_ref(trans, root, buf, 1);
 484			if (ret)
 485				return ret;
 486		}
 487		btrfs_clean_tree_block(buf);
 488		*last_ref = 1;
 489	}
 490	return 0;
 491}
 492
 493/*
 494 * does the dirty work in cow of a single block.  The parent block (if
 495 * supplied) is updated to point to the new cow copy.  The new buffer is marked
 496 * dirty and returned locked.  If you modify the block it needs to be marked
 497 * dirty again.
 498 *
 499 * search_start -- an allocation hint for the new block
 500 *
 501 * empty_size -- a hint that you plan on doing more cow.  This is the size in
 502 * bytes the allocator should try to find free next to the block it returns.
 503 * This is just a hint and may be ignored by the allocator.
 504 */
 505static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
 506			     struct btrfs_root *root,
 507			     struct extent_buffer *buf,
 508			     struct extent_buffer *parent, int parent_slot,
 509			     struct extent_buffer **cow_ret,
 510			     u64 search_start, u64 empty_size,
 511			     enum btrfs_lock_nesting nest)
 512{
 513	struct btrfs_fs_info *fs_info = root->fs_info;
 514	struct btrfs_disk_key disk_key;
 515	struct extent_buffer *cow;
 516	int level, ret;
 517	int last_ref = 0;
 518	int unlock_orig = 0;
 519	u64 parent_start = 0;
 520
 521	if (*cow_ret == buf)
 522		unlock_orig = 1;
 523
 524	btrfs_assert_tree_write_locked(buf);
 525
 526	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
 527		trans->transid != fs_info->running_transaction->transid);
 528	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
 529		trans->transid != root->last_trans);
 530
 531	level = btrfs_header_level(buf);
 532
 533	if (level == 0)
 534		btrfs_item_key(buf, &disk_key, 0);
 535	else
 536		btrfs_node_key(buf, &disk_key, 0);
 537
 538	if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
 539		parent_start = parent->start;
 
 
 
 
 
 540
 541	cow = btrfs_alloc_tree_block(trans, root, parent_start,
 542				     root->root_key.objectid, &disk_key, level,
 543				     search_start, empty_size, nest);
 544	if (IS_ERR(cow))
 545		return PTR_ERR(cow);
 546
 547	/* cow is set to blocking by btrfs_init_new_buffer */
 548
 549	copy_extent_buffer_full(cow, buf);
 550	btrfs_set_header_bytenr(cow, cow->start);
 551	btrfs_set_header_generation(cow, trans->transid);
 552	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
 553	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
 554				     BTRFS_HEADER_FLAG_RELOC);
 555	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
 556		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
 557	else
 558		btrfs_set_header_owner(cow, root->root_key.objectid);
 559
 560	write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
 
 561
 562	ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
 563	if (ret) {
 564		btrfs_tree_unlock(cow);
 565		free_extent_buffer(cow);
 566		btrfs_abort_transaction(trans, ret);
 567		return ret;
 568	}
 569
 570	if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
 571		ret = btrfs_reloc_cow_block(trans, root, buf, cow);
 572		if (ret) {
 573			btrfs_tree_unlock(cow);
 574			free_extent_buffer(cow);
 575			btrfs_abort_transaction(trans, ret);
 576			return ret;
 577		}
 578	}
 579
 580	if (buf == root->node) {
 581		WARN_ON(parent && parent != buf);
 582		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
 583		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
 584			parent_start = buf->start;
 
 
 585
 586		atomic_inc(&cow->refs);
 587		ret = btrfs_tree_mod_log_insert_root(root->node, cow, true);
 588		BUG_ON(ret < 0);
 589		rcu_assign_pointer(root->node, cow);
 590
 591		btrfs_free_tree_block(trans, btrfs_root_id(root), buf,
 592				      parent_start, last_ref);
 593		free_extent_buffer(buf);
 594		add_root_to_dirty_list(root);
 595	} else {
 
 
 
 
 
 596		WARN_ON(trans->transid != btrfs_header_generation(parent));
 597		btrfs_tree_mod_log_insert_key(parent, parent_slot,
 598					      BTRFS_MOD_LOG_KEY_REPLACE);
 599		btrfs_set_node_blockptr(parent, parent_slot,
 600					cow->start);
 601		btrfs_set_node_ptr_generation(parent, parent_slot,
 602					      trans->transid);
 603		btrfs_mark_buffer_dirty(parent);
 604		if (last_ref) {
 605			ret = btrfs_tree_mod_log_free_eb(buf);
 606			if (ret) {
 607				btrfs_tree_unlock(cow);
 608				free_extent_buffer(cow);
 609				btrfs_abort_transaction(trans, ret);
 610				return ret;
 611			}
 612		}
 613		btrfs_free_tree_block(trans, btrfs_root_id(root), buf,
 614				      parent_start, last_ref);
 615	}
 616	if (unlock_orig)
 617		btrfs_tree_unlock(buf);
 618	free_extent_buffer_stale(buf);
 619	btrfs_mark_buffer_dirty(cow);
 620	*cow_ret = cow;
 621	return 0;
 622}
 623
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 624static inline int should_cow_block(struct btrfs_trans_handle *trans,
 625				   struct btrfs_root *root,
 626				   struct extent_buffer *buf)
 627{
 628	if (btrfs_is_testing(root->fs_info))
 629		return 0;
 630
 631	/* Ensure we can see the FORCE_COW bit */
 632	smp_mb__before_atomic();
 633
 634	/*
 635	 * We do not need to cow a block if
 636	 * 1) this block is not created or changed in this transaction;
 637	 * 2) this block does not belong to TREE_RELOC tree;
 638	 * 3) the root is not forced COW.
 639	 *
 640	 * What is forced COW:
 641	 *    when we create snapshot during committing the transaction,
 642	 *    after we've finished copying src root, we must COW the shared
 643	 *    block to ensure the metadata consistency.
 644	 */
 645	if (btrfs_header_generation(buf) == trans->transid &&
 646	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
 647	    !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
 648	      btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
 649	    !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
 650		return 0;
 651	return 1;
 652}
 653
 654/*
 655 * cows a single block, see __btrfs_cow_block for the real work.
 656 * This version of it has extra checks so that a block isn't COWed more than
 657 * once per transaction, as long as it hasn't been written yet
 658 */
 659noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
 660		    struct btrfs_root *root, struct extent_buffer *buf,
 661		    struct extent_buffer *parent, int parent_slot,
 662		    struct extent_buffer **cow_ret,
 663		    enum btrfs_lock_nesting nest)
 664{
 665	struct btrfs_fs_info *fs_info = root->fs_info;
 666	u64 search_start;
 667	int ret;
 668
 669	if (test_bit(BTRFS_ROOT_DELETING, &root->state))
 670		btrfs_err(fs_info,
 671			"COW'ing blocks on a fs root that's being dropped");
 672
 673	if (trans->transaction != fs_info->running_transaction)
 674		WARN(1, KERN_CRIT "trans %llu running %llu\n",
 675		       trans->transid,
 676		       fs_info->running_transaction->transid);
 677
 678	if (trans->transid != fs_info->generation)
 679		WARN(1, KERN_CRIT "trans %llu running %llu\n",
 680		       trans->transid, fs_info->generation);
 681
 682	if (!should_cow_block(trans, root, buf)) {
 683		*cow_ret = buf;
 684		return 0;
 685	}
 686
 687	search_start = buf->start & ~((u64)SZ_1G - 1);
 688
 689	/*
 690	 * Before CoWing this block for later modification, check if it's
 691	 * the subtree root and do the delayed subtree trace if needed.
 692	 *
 693	 * Also We don't care about the error, as it's handled internally.
 694	 */
 695	btrfs_qgroup_trace_subtree_after_cow(trans, root, buf);
 696	ret = __btrfs_cow_block(trans, root, buf, parent,
 697				 parent_slot, cow_ret, search_start, 0, nest);
 698
 699	trace_btrfs_cow_block(root, buf, *cow_ret);
 700
 701	return ret;
 702}
 703ALLOW_ERROR_INJECTION(btrfs_cow_block, ERRNO);
 704
 705/*
 706 * helper function for defrag to decide if two blocks pointed to by a
 707 * node are actually close by
 708 */
 709static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
 710{
 711	if (blocknr < other && other - (blocknr + blocksize) < 32768)
 712		return 1;
 713	if (blocknr > other && blocknr - (other + blocksize) < 32768)
 714		return 1;
 715	return 0;
 716}
 717
 718#ifdef __LITTLE_ENDIAN
 719
 720/*
 721 * Compare two keys, on little-endian the disk order is same as CPU order and
 722 * we can avoid the conversion.
 723 */
 724static int comp_keys(const struct btrfs_disk_key *disk_key,
 725		     const struct btrfs_key *k2)
 726{
 727	const struct btrfs_key *k1 = (const struct btrfs_key *)disk_key;
 728
 729	return btrfs_comp_cpu_keys(k1, k2);
 730}
 731
 732#else
 733
 734/*
 735 * compare two keys in a memcmp fashion
 736 */
 737static int comp_keys(const struct btrfs_disk_key *disk,
 738		     const struct btrfs_key *k2)
 739{
 740	struct btrfs_key k1;
 741
 742	btrfs_disk_key_to_cpu(&k1, disk);
 743
 744	return btrfs_comp_cpu_keys(&k1, k2);
 745}
 746#endif
 747
 748/*
 749 * same as comp_keys only with two btrfs_key's
 750 */
 751int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
 752{
 753	if (k1->objectid > k2->objectid)
 754		return 1;
 755	if (k1->objectid < k2->objectid)
 756		return -1;
 757	if (k1->type > k2->type)
 758		return 1;
 759	if (k1->type < k2->type)
 760		return -1;
 761	if (k1->offset > k2->offset)
 762		return 1;
 763	if (k1->offset < k2->offset)
 764		return -1;
 765	return 0;
 766}
 767
 768/*
 769 * this is used by the defrag code to go through all the
 770 * leaves pointed to by a node and reallocate them so that
 771 * disk order is close to key order
 772 */
 773int btrfs_realloc_node(struct btrfs_trans_handle *trans,
 774		       struct btrfs_root *root, struct extent_buffer *parent,
 775		       int start_slot, u64 *last_ret,
 776		       struct btrfs_key *progress)
 777{
 778	struct btrfs_fs_info *fs_info = root->fs_info;
 779	struct extent_buffer *cur;
 780	u64 blocknr;
 
 781	u64 search_start = *last_ret;
 782	u64 last_block = 0;
 783	u64 other;
 784	u32 parent_nritems;
 785	int end_slot;
 786	int i;
 787	int err = 0;
 
 
 788	u32 blocksize;
 789	int progress_passed = 0;
 790	struct btrfs_disk_key disk_key;
 791
 792	WARN_ON(trans->transaction != fs_info->running_transaction);
 793	WARN_ON(trans->transid != fs_info->generation);
 
 
 794
 795	parent_nritems = btrfs_header_nritems(parent);
 796	blocksize = fs_info->nodesize;
 797	end_slot = parent_nritems - 1;
 798
 799	if (parent_nritems <= 1)
 800		return 0;
 801
 
 
 802	for (i = start_slot; i <= end_slot; i++) {
 803		int close = 1;
 804
 805		btrfs_node_key(parent, &disk_key, i);
 806		if (!progress_passed && comp_keys(&disk_key, progress) < 0)
 807			continue;
 808
 809		progress_passed = 1;
 810		blocknr = btrfs_node_blockptr(parent, i);
 
 811		if (last_block == 0)
 812			last_block = blocknr;
 813
 814		if (i > 0) {
 815			other = btrfs_node_blockptr(parent, i - 1);
 816			close = close_blocks(blocknr, other, blocksize);
 817		}
 818		if (!close && i < end_slot) {
 819			other = btrfs_node_blockptr(parent, i + 1);
 820			close = close_blocks(blocknr, other, blocksize);
 821		}
 822		if (close) {
 823			last_block = blocknr;
 824			continue;
 825		}
 826
 827		cur = btrfs_read_node_slot(parent, i);
 828		if (IS_ERR(cur))
 829			return PTR_ERR(cur);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 830		if (search_start == 0)
 831			search_start = last_block;
 832
 833		btrfs_tree_lock(cur);
 
 834		err = __btrfs_cow_block(trans, root, cur, parent, i,
 835					&cur, search_start,
 836					min(16 * blocksize,
 837					    (end_slot - i) * blocksize),
 838					BTRFS_NESTING_COW);
 839		if (err) {
 840			btrfs_tree_unlock(cur);
 841			free_extent_buffer(cur);
 842			break;
 843		}
 844		search_start = cur->start;
 845		last_block = cur->start;
 846		*last_ret = search_start;
 847		btrfs_tree_unlock(cur);
 848		free_extent_buffer(cur);
 849	}
 850	return err;
 851}
 852
 853/*
 854 * Search for a key in the given extent_buffer.
 855 *
 856 * The lower boundary for the search is specified by the slot number @low. Use a
 857 * value of 0 to search over the whole extent buffer.
 
 
 
 
 
 
 
 
 
 
 
 
 
 858 *
 859 * The slot in the extent buffer is returned via @slot. If the key exists in the
 860 * extent buffer, then @slot will point to the slot where the key is, otherwise
 861 * it points to the slot where you would insert the key.
 862 *
 863 * Slot may point to the total number of items (i.e. one position beyond the last
 864 * key) if the key is bigger than the last key in the extent buffer.
 865 */
 866static noinline int generic_bin_search(struct extent_buffer *eb, int low,
 867				       const struct btrfs_key *key, int *slot)
 
 
 868{
 869	unsigned long p;
 870	int item_size;
 871	int high = btrfs_header_nritems(eb);
 872	int ret;
 873	const int key_size = sizeof(struct btrfs_disk_key);
 874
 875	if (low > high) {
 876		btrfs_err(eb->fs_info,
 877		 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
 878			  __func__, low, high, eb->start,
 879			  btrfs_header_owner(eb), btrfs_header_level(eb));
 880		return -EINVAL;
 881	}
 882
 883	if (btrfs_header_level(eb) == 0) {
 884		p = offsetof(struct btrfs_leaf, items);
 885		item_size = sizeof(struct btrfs_item);
 886	} else {
 887		p = offsetof(struct btrfs_node, ptrs);
 888		item_size = sizeof(struct btrfs_key_ptr);
 889	}
 890
 891	while (low < high) {
 892		unsigned long oip;
 893		unsigned long offset;
 894		struct btrfs_disk_key *tmp;
 895		struct btrfs_disk_key unaligned;
 896		int mid;
 897
 898		mid = (low + high) / 2;
 899		offset = p + mid * item_size;
 900		oip = offset_in_page(offset);
 901
 902		if (oip + key_size <= PAGE_SIZE) {
 903			const unsigned long idx = get_eb_page_index(offset);
 904			char *kaddr = page_address(eb->pages[idx]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 905
 906			oip = get_eb_offset_in_page(eb, offset);
 907			tmp = (struct btrfs_disk_key *)(kaddr + oip);
 908		} else {
 909			read_extent_buffer(eb, &unaligned, offset, key_size);
 910			tmp = &unaligned;
 911		}
 912
 913		ret = comp_keys(tmp, key);
 914
 915		if (ret < 0)
 916			low = mid + 1;
 917		else if (ret > 0)
 918			high = mid;
 919		else {
 920			*slot = mid;
 921			return 0;
 922		}
 923	}
 924	*slot = low;
 925	return 1;
 926}
 927
 928/*
 929 * Simple binary search on an extent buffer. Works for both leaves and nodes, and
 930 * always searches over the whole range of keys (slot 0 to slot 'nritems - 1').
 931 */
 932int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
 933		     int *slot)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 934{
 935	return generic_bin_search(eb, 0, key, slot);
 936}
 937
 938static void root_add_used(struct btrfs_root *root, u32 size)
 939{
 940	spin_lock(&root->accounting_lock);
 941	btrfs_set_root_used(&root->root_item,
 942			    btrfs_root_used(&root->root_item) + size);
 943	spin_unlock(&root->accounting_lock);
 944}
 945
 946static void root_sub_used(struct btrfs_root *root, u32 size)
 947{
 948	spin_lock(&root->accounting_lock);
 949	btrfs_set_root_used(&root->root_item,
 950			    btrfs_root_used(&root->root_item) - size);
 951	spin_unlock(&root->accounting_lock);
 952}
 953
 954/* given a node and slot number, this reads the blocks it points to.  The
 955 * extent buffer is returned with a reference taken (but unlocked).
 
 956 */
 957struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
 958					   int slot)
 959{
 960	int level = btrfs_header_level(parent);
 961	struct btrfs_tree_parent_check check = { 0 };
 962	struct extent_buffer *eb;
 963
 964	if (slot < 0 || slot >= btrfs_header_nritems(parent))
 965		return ERR_PTR(-ENOENT);
 
 
 966
 967	BUG_ON(level == 0);
 968
 969	check.level = level - 1;
 970	check.transid = btrfs_node_ptr_generation(parent, slot);
 971	check.owner_root = btrfs_header_owner(parent);
 972	check.has_first_key = true;
 973	btrfs_node_key_to_cpu(parent, &check.first_key, slot);
 974
 975	eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot),
 976			     &check);
 977	if (IS_ERR(eb))
 978		return eb;
 979	if (!extent_buffer_uptodate(eb)) {
 980		free_extent_buffer(eb);
 981		return ERR_PTR(-EIO);
 982	}
 983
 984	return eb;
 985}
 986
 987/*
 988 * node level balancing, used to make sure nodes are in proper order for
 989 * item deletion.  We balance from the top down, so we have to make sure
 990 * that a deletion won't leave an node completely empty later on.
 991 */
 992static noinline int balance_level(struct btrfs_trans_handle *trans,
 993			 struct btrfs_root *root,
 994			 struct btrfs_path *path, int level)
 995{
 996	struct btrfs_fs_info *fs_info = root->fs_info;
 997	struct extent_buffer *right = NULL;
 998	struct extent_buffer *mid;
 999	struct extent_buffer *left = NULL;
1000	struct extent_buffer *parent = NULL;
1001	int ret = 0;
1002	int wret;
1003	int pslot;
1004	int orig_slot = path->slots[level];
1005	u64 orig_ptr;
1006
1007	ASSERT(level > 0);
 
1008
1009	mid = path->nodes[level];
1010
1011	WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK);
 
1012	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1013
1014	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1015
1016	if (level < BTRFS_MAX_LEVEL - 1) {
1017		parent = path->nodes[level + 1];
1018		pslot = path->slots[level + 1];
1019	}
1020
1021	/*
1022	 * deal with the case where there is only one pointer in the root
1023	 * by promoting the node below to a root
1024	 */
1025	if (!parent) {
1026		struct extent_buffer *child;
1027
1028		if (btrfs_header_nritems(mid) != 1)
1029			return 0;
1030
1031		/* promote the child to a root */
1032		child = btrfs_read_node_slot(mid, 0);
1033		if (IS_ERR(child)) {
1034			ret = PTR_ERR(child);
1035			btrfs_handle_fs_error(fs_info, ret, NULL);
1036			goto enospc;
1037		}
1038
1039		btrfs_tree_lock(child);
1040		ret = btrfs_cow_block(trans, root, child, mid, 0, &child,
1041				      BTRFS_NESTING_COW);
1042		if (ret) {
1043			btrfs_tree_unlock(child);
1044			free_extent_buffer(child);
1045			goto enospc;
1046		}
1047
1048		ret = btrfs_tree_mod_log_insert_root(root->node, child, true);
1049		BUG_ON(ret < 0);
1050		rcu_assign_pointer(root->node, child);
1051
1052		add_root_to_dirty_list(root);
1053		btrfs_tree_unlock(child);
1054
1055		path->locks[level] = 0;
1056		path->nodes[level] = NULL;
1057		btrfs_clean_tree_block(mid);
1058		btrfs_tree_unlock(mid);
1059		/* once for the path */
1060		free_extent_buffer(mid);
1061
1062		root_sub_used(root, mid->len);
1063		btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1);
1064		/* once for the root ptr */
1065		free_extent_buffer_stale(mid);
1066		return 0;
1067	}
1068	if (btrfs_header_nritems(mid) >
1069	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
1070		return 0;
1071
1072	left = btrfs_read_node_slot(parent, pslot - 1);
1073	if (IS_ERR(left))
1074		left = NULL;
1075
1076	if (left) {
1077		__btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
 
1078		wret = btrfs_cow_block(trans, root, left,
1079				       parent, pslot - 1, &left,
1080				       BTRFS_NESTING_LEFT_COW);
1081		if (wret) {
1082			ret = wret;
1083			goto enospc;
1084		}
1085	}
1086
1087	right = btrfs_read_node_slot(parent, pslot + 1);
1088	if (IS_ERR(right))
1089		right = NULL;
1090
1091	if (right) {
1092		__btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
 
1093		wret = btrfs_cow_block(trans, root, right,
1094				       parent, pslot + 1, &right,
1095				       BTRFS_NESTING_RIGHT_COW);
1096		if (wret) {
1097			ret = wret;
1098			goto enospc;
1099		}
1100	}
1101
1102	/* first, try to make some room in the middle buffer */
1103	if (left) {
1104		orig_slot += btrfs_header_nritems(left);
1105		wret = push_node_left(trans, left, mid, 1);
1106		if (wret < 0)
1107			ret = wret;
1108	}
1109
1110	/*
1111	 * then try to empty the right most buffer into the middle
1112	 */
1113	if (right) {
1114		wret = push_node_left(trans, mid, right, 1);
1115		if (wret < 0 && wret != -ENOSPC)
1116			ret = wret;
1117		if (btrfs_header_nritems(right) == 0) {
1118			btrfs_clean_tree_block(right);
1119			btrfs_tree_unlock(right);
1120			del_ptr(root, path, level + 1, pslot + 1);
1121			root_sub_used(root, right->len);
1122			btrfs_free_tree_block(trans, btrfs_root_id(root), right,
1123					      0, 1);
1124			free_extent_buffer_stale(right);
1125			right = NULL;
1126		} else {
1127			struct btrfs_disk_key right_key;
1128			btrfs_node_key(right, &right_key, 0);
1129			ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
1130					BTRFS_MOD_LOG_KEY_REPLACE);
1131			BUG_ON(ret < 0);
1132			btrfs_set_node_key(parent, &right_key, pslot + 1);
1133			btrfs_mark_buffer_dirty(parent);
1134		}
1135	}
1136	if (btrfs_header_nritems(mid) == 1) {
1137		/*
1138		 * we're not allowed to leave a node with one item in the
1139		 * tree during a delete.  A deletion from lower in the tree
1140		 * could try to delete the only pointer in this node.
1141		 * So, pull some keys from the left.
1142		 * There has to be a left pointer at this point because
1143		 * otherwise we would have pulled some pointers from the
1144		 * right
1145		 */
1146		if (!left) {
1147			ret = -EROFS;
1148			btrfs_handle_fs_error(fs_info, ret, NULL);
1149			goto enospc;
1150		}
1151		wret = balance_node_right(trans, mid, left);
1152		if (wret < 0) {
1153			ret = wret;
1154			goto enospc;
1155		}
1156		if (wret == 1) {
1157			wret = push_node_left(trans, left, mid, 1);
1158			if (wret < 0)
1159				ret = wret;
1160		}
1161		BUG_ON(wret == 1);
1162	}
1163	if (btrfs_header_nritems(mid) == 0) {
1164		btrfs_clean_tree_block(mid);
1165		btrfs_tree_unlock(mid);
1166		del_ptr(root, path, level + 1, pslot);
1167		root_sub_used(root, mid->len);
1168		btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1);
1169		free_extent_buffer_stale(mid);
1170		mid = NULL;
1171	} else {
1172		/* update the parent key to reflect our changes */
1173		struct btrfs_disk_key mid_key;
1174		btrfs_node_key(mid, &mid_key, 0);
1175		ret = btrfs_tree_mod_log_insert_key(parent, pslot,
1176						    BTRFS_MOD_LOG_KEY_REPLACE);
1177		BUG_ON(ret < 0);
1178		btrfs_set_node_key(parent, &mid_key, pslot);
1179		btrfs_mark_buffer_dirty(parent);
1180	}
1181
1182	/* update the path */
1183	if (left) {
1184		if (btrfs_header_nritems(left) > orig_slot) {
1185			atomic_inc(&left->refs);
1186			/* left was locked after cow */
1187			path->nodes[level] = left;
1188			path->slots[level + 1] -= 1;
1189			path->slots[level] = orig_slot;
1190			if (mid) {
1191				btrfs_tree_unlock(mid);
1192				free_extent_buffer(mid);
1193			}
1194		} else {
1195			orig_slot -= btrfs_header_nritems(left);
1196			path->slots[level] = orig_slot;
1197		}
1198	}
1199	/* double check we haven't messed things up */
1200	if (orig_ptr !=
1201	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1202		BUG();
1203enospc:
1204	if (right) {
1205		btrfs_tree_unlock(right);
1206		free_extent_buffer(right);
1207	}
1208	if (left) {
1209		if (path->nodes[level] != left)
1210			btrfs_tree_unlock(left);
1211		free_extent_buffer(left);
1212	}
1213	return ret;
1214}
1215
1216/* Node balancing for insertion.  Here we only split or push nodes around
1217 * when they are completely full.  This is also done top down, so we
1218 * have to be pessimistic.
1219 */
1220static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1221					  struct btrfs_root *root,
1222					  struct btrfs_path *path, int level)
1223{
1224	struct btrfs_fs_info *fs_info = root->fs_info;
1225	struct extent_buffer *right = NULL;
1226	struct extent_buffer *mid;
1227	struct extent_buffer *left = NULL;
1228	struct extent_buffer *parent = NULL;
1229	int ret = 0;
1230	int wret;
1231	int pslot;
1232	int orig_slot = path->slots[level];
1233
1234	if (level == 0)
1235		return 1;
1236
1237	mid = path->nodes[level];
1238	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1239
1240	if (level < BTRFS_MAX_LEVEL - 1) {
1241		parent = path->nodes[level + 1];
1242		pslot = path->slots[level + 1];
1243	}
1244
1245	if (!parent)
1246		return 1;
1247
1248	left = btrfs_read_node_slot(parent, pslot - 1);
1249	if (IS_ERR(left))
1250		left = NULL;
1251
1252	/* first, try to make some room in the middle buffer */
1253	if (left) {
1254		u32 left_nr;
1255
1256		__btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
 
1257
1258		left_nr = btrfs_header_nritems(left);
1259		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
1260			wret = 1;
1261		} else {
1262			ret = btrfs_cow_block(trans, root, left, parent,
1263					      pslot - 1, &left,
1264					      BTRFS_NESTING_LEFT_COW);
1265			if (ret)
1266				wret = 1;
1267			else {
1268				wret = push_node_left(trans, left, mid, 0);
 
1269			}
1270		}
1271		if (wret < 0)
1272			ret = wret;
1273		if (wret == 0) {
1274			struct btrfs_disk_key disk_key;
1275			orig_slot += left_nr;
1276			btrfs_node_key(mid, &disk_key, 0);
1277			ret = btrfs_tree_mod_log_insert_key(parent, pslot,
1278					BTRFS_MOD_LOG_KEY_REPLACE);
1279			BUG_ON(ret < 0);
1280			btrfs_set_node_key(parent, &disk_key, pslot);
1281			btrfs_mark_buffer_dirty(parent);
1282			if (btrfs_header_nritems(left) > orig_slot) {
1283				path->nodes[level] = left;
1284				path->slots[level + 1] -= 1;
1285				path->slots[level] = orig_slot;
1286				btrfs_tree_unlock(mid);
1287				free_extent_buffer(mid);
1288			} else {
1289				orig_slot -=
1290					btrfs_header_nritems(left);
1291				path->slots[level] = orig_slot;
1292				btrfs_tree_unlock(left);
1293				free_extent_buffer(left);
1294			}
1295			return 0;
1296		}
1297		btrfs_tree_unlock(left);
1298		free_extent_buffer(left);
1299	}
1300	right = btrfs_read_node_slot(parent, pslot + 1);
1301	if (IS_ERR(right))
1302		right = NULL;
1303
1304	/*
1305	 * then try to empty the right most buffer into the middle
1306	 */
1307	if (right) {
1308		u32 right_nr;
1309
1310		__btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
 
1311
1312		right_nr = btrfs_header_nritems(right);
1313		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
1314			wret = 1;
1315		} else {
1316			ret = btrfs_cow_block(trans, root, right,
1317					      parent, pslot + 1,
1318					      &right, BTRFS_NESTING_RIGHT_COW);
1319			if (ret)
1320				wret = 1;
1321			else {
1322				wret = balance_node_right(trans, right, mid);
 
1323			}
1324		}
1325		if (wret < 0)
1326			ret = wret;
1327		if (wret == 0) {
1328			struct btrfs_disk_key disk_key;
1329
1330			btrfs_node_key(right, &disk_key, 0);
1331			ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
1332					BTRFS_MOD_LOG_KEY_REPLACE);
1333			BUG_ON(ret < 0);
1334			btrfs_set_node_key(parent, &disk_key, pslot + 1);
1335			btrfs_mark_buffer_dirty(parent);
1336
1337			if (btrfs_header_nritems(mid) <= orig_slot) {
1338				path->nodes[level] = right;
1339				path->slots[level + 1] += 1;
1340				path->slots[level] = orig_slot -
1341					btrfs_header_nritems(mid);
1342				btrfs_tree_unlock(mid);
1343				free_extent_buffer(mid);
1344			} else {
1345				btrfs_tree_unlock(right);
1346				free_extent_buffer(right);
1347			}
1348			return 0;
1349		}
1350		btrfs_tree_unlock(right);
1351		free_extent_buffer(right);
1352	}
1353	return 1;
1354}
1355
1356/*
1357 * readahead one full node of leaves, finding things that are close
1358 * to the block in 'slot', and triggering ra on them.
1359 */
1360static void reada_for_search(struct btrfs_fs_info *fs_info,
1361			     struct btrfs_path *path,
1362			     int level, int slot, u64 objectid)
1363{
1364	struct extent_buffer *node;
1365	struct btrfs_disk_key disk_key;
1366	u32 nritems;
1367	u64 search;
1368	u64 target;
1369	u64 nread = 0;
1370	u64 nread_max;
 
1371	u32 nr;
1372	u32 blocksize;
1373	u32 nscan = 0;
1374
1375	if (level != 1 && path->reada != READA_FORWARD_ALWAYS)
1376		return;
1377
1378	if (!path->nodes[level])
1379		return;
1380
1381	node = path->nodes[level];
1382
1383	/*
1384	 * Since the time between visiting leaves is much shorter than the time
1385	 * between visiting nodes, limit read ahead of nodes to 1, to avoid too
1386	 * much IO at once (possibly random).
1387	 */
1388	if (path->reada == READA_FORWARD_ALWAYS) {
1389		if (level > 1)
1390			nread_max = node->fs_info->nodesize;
1391		else
1392			nread_max = SZ_128K;
1393	} else {
1394		nread_max = SZ_64K;
1395	}
1396
1397	search = btrfs_node_blockptr(node, slot);
1398	blocksize = fs_info->nodesize;
1399	if (path->reada != READA_FORWARD_ALWAYS) {
1400		struct extent_buffer *eb;
1401
1402		eb = find_extent_buffer(fs_info, search);
1403		if (eb) {
1404			free_extent_buffer(eb);
1405			return;
1406		}
1407	}
1408
1409	target = search;
1410
1411	nritems = btrfs_header_nritems(node);
1412	nr = slot;
1413
1414	while (1) {
1415		if (path->reada == READA_BACK) {
1416			if (nr == 0)
1417				break;
1418			nr--;
1419		} else if (path->reada == READA_FORWARD ||
1420			   path->reada == READA_FORWARD_ALWAYS) {
1421			nr++;
1422			if (nr >= nritems)
1423				break;
1424		}
1425		if (path->reada == READA_BACK && objectid) {
1426			btrfs_node_key(node, &disk_key, nr);
1427			if (btrfs_disk_key_objectid(&disk_key) != objectid)
1428				break;
1429		}
1430		search = btrfs_node_blockptr(node, nr);
1431		if (path->reada == READA_FORWARD_ALWAYS ||
1432		    (search <= target && target - search <= 65536) ||
1433		    (search > target && search - target <= 65536)) {
1434			btrfs_readahead_node_child(node, nr);
 
1435			nread += blocksize;
1436		}
1437		nscan++;
1438		if (nread > nread_max || nscan > 32)
1439			break;
1440	}
1441}
1442
1443static noinline void reada_for_balance(struct btrfs_path *path, int level)
 
1444{
1445	struct extent_buffer *parent;
1446	int slot;
1447	int nritems;
 
 
 
 
 
1448
1449	parent = path->nodes[level + 1];
1450	if (!parent)
1451		return;
1452
1453	nritems = btrfs_header_nritems(parent);
1454	slot = path->slots[level + 1];
1455
1456	if (slot > 0)
1457		btrfs_readahead_node_child(parent, slot - 1);
1458	if (slot + 1 < nritems)
1459		btrfs_readahead_node_child(parent, slot + 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1460}
1461
1462
1463/*
1464 * when we walk down the tree, it is usually safe to unlock the higher layers
1465 * in the tree.  The exceptions are when our path goes through slot 0, because
1466 * operations on the tree might require changing key pointers higher up in the
1467 * tree.
1468 *
1469 * callers might also have set path->keep_locks, which tells this code to keep
1470 * the lock if the path points to the last slot in the block.  This is part of
1471 * walking through the tree, and selecting the next slot in the higher block.
1472 *
1473 * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
1474 * if lowest_unlock is 1, level 0 won't be unlocked
1475 */
1476static noinline void unlock_up(struct btrfs_path *path, int level,
1477			       int lowest_unlock, int min_write_lock_level,
1478			       int *write_lock_level)
1479{
1480	int i;
1481	int skip_level = level;
1482	bool check_skip = true;
 
1483
1484	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1485		if (!path->nodes[i])
1486			break;
1487		if (!path->locks[i])
1488			break;
1489
1490		if (check_skip) {
1491			if (path->slots[i] == 0) {
 
 
 
 
 
 
1492				skip_level = i + 1;
1493				continue;
1494			}
1495
1496			if (path->keep_locks) {
1497				u32 nritems;
1498
1499				nritems = btrfs_header_nritems(path->nodes[i]);
1500				if (nritems < 1 || path->slots[i] >= nritems - 1) {
1501					skip_level = i + 1;
1502					continue;
1503				}
1504			}
1505		}
 
 
1506
1507		if (i >= lowest_unlock && i > skip_level) {
1508			check_skip = false;
1509			btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
1510			path->locks[i] = 0;
1511			if (write_lock_level &&
1512			    i > min_write_lock_level &&
1513			    i <= *write_lock_level) {
1514				*write_lock_level = i - 1;
1515			}
1516		}
1517	}
1518}
1519
1520/*
1521 * Helper function for btrfs_search_slot() and other functions that do a search
1522 * on a btree. The goal is to find a tree block in the cache (the radix tree at
1523 * fs_info->buffer_radix), but if we can't find it, or it's not up to date, read
1524 * its pages from disk.
1525 *
1526 * Returns -EAGAIN, with the path unlocked, if the caller needs to repeat the
1527 * whole btree search, starting again from the current root node.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1528 */
1529static int
1530read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
1531		      struct extent_buffer **eb_ret, int level, int slot,
1532		      const struct btrfs_key *key)
 
1533{
1534	struct btrfs_fs_info *fs_info = root->fs_info;
1535	struct btrfs_tree_parent_check check = { 0 };
1536	u64 blocknr;
1537	u64 gen;
 
1538	struct extent_buffer *tmp;
1539	int ret;
1540	int parent_level;
1541	bool unlock_up;
1542
1543	unlock_up = ((level + 1 < BTRFS_MAX_LEVEL) && p->locks[level + 1]);
1544	blocknr = btrfs_node_blockptr(*eb_ret, slot);
1545	gen = btrfs_node_ptr_generation(*eb_ret, slot);
1546	parent_level = btrfs_header_level(*eb_ret);
1547	btrfs_node_key_to_cpu(*eb_ret, &check.first_key, slot);
1548	check.has_first_key = true;
1549	check.level = parent_level - 1;
1550	check.transid = gen;
1551	check.owner_root = root->root_key.objectid;
1552
1553	/*
1554	 * If we need to read an extent buffer from disk and we are holding locks
1555	 * on upper level nodes, we unlock all the upper nodes before reading the
1556	 * extent buffer, and then return -EAGAIN to the caller as it needs to
1557	 * restart the search. We don't release the lock on the current level
1558	 * because we need to walk this node to figure out which blocks to read.
1559	 */
1560	tmp = find_extent_buffer(fs_info, blocknr);
1561	if (tmp) {
1562		if (p->reada == READA_FORWARD_ALWAYS)
1563			reada_for_search(fs_info, p, level, slot, key->objectid);
1564
1565		/* first we do an atomic uptodate check */
1566		if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
1567			/*
1568			 * Do extra check for first_key, eb can be stale due to
1569			 * being cached, read from scrub, or have multiple
1570			 * parents (shared tree blocks).
1571			 */
1572			if (btrfs_verify_level_key(tmp,
1573					parent_level - 1, &check.first_key, gen)) {
1574				free_extent_buffer(tmp);
1575				return -EUCLEAN;
1576			}
1577			*eb_ret = tmp;
1578			return 0;
1579		}
1580
1581		if (p->nowait) {
1582			free_extent_buffer(tmp);
1583			return -EAGAIN;
1584		}
1585
1586		if (unlock_up)
1587			btrfs_unlock_up_safe(p, level + 1);
1588
1589		/* now we're allowed to do a blocking uptodate check */
1590		ret = btrfs_read_extent_buffer(tmp, &check);
1591		if (ret) {
1592			free_extent_buffer(tmp);
1593			btrfs_release_path(p);
1594			return -EIO;
1595		}
1596		if (btrfs_check_eb_owner(tmp, root->root_key.objectid)) {
1597			free_extent_buffer(tmp);
1598			btrfs_release_path(p);
1599			return -EUCLEAN;
1600		}
1601
1602		if (unlock_up)
1603			ret = -EAGAIN;
1604
1605		goto out;
1606	} else if (p->nowait) {
1607		return -EAGAIN;
1608	}
1609
1610	if (unlock_up) {
1611		btrfs_unlock_up_safe(p, level + 1);
1612		ret = -EAGAIN;
1613	} else {
1614		ret = 0;
1615	}
 
 
 
1616
 
1617	if (p->reada != READA_NONE)
1618		reada_for_search(fs_info, p, level, slot, key->objectid);
1619
1620	tmp = read_tree_block(fs_info, blocknr, &check);
1621	if (IS_ERR(tmp)) {
1622		btrfs_release_path(p);
1623		return PTR_ERR(tmp);
1624	}
1625	/*
1626	 * If the read above didn't mark this buffer up to date,
1627	 * it will never end up being up to date.  Set ret to EIO now
1628	 * and give up so that our caller doesn't loop forever
1629	 * on our EAGAINs.
1630	 */
1631	if (!extent_buffer_uptodate(tmp))
1632		ret = -EIO;
1633
1634out:
1635	if (ret == 0) {
1636		*eb_ret = tmp;
1637	} else {
 
 
 
 
 
 
 
1638		free_extent_buffer(tmp);
1639		btrfs_release_path(p);
1640	}
1641
1642	return ret;
1643}
1644
1645/*
1646 * helper function for btrfs_search_slot.  This does all of the checks
1647 * for node-level blocks and does any balancing required based on
1648 * the ins_len.
1649 *
1650 * If no extra work was required, zero is returned.  If we had to
1651 * drop the path, -EAGAIN is returned and btrfs_search_slot must
1652 * start over
1653 */
1654static int
1655setup_nodes_for_search(struct btrfs_trans_handle *trans,
1656		       struct btrfs_root *root, struct btrfs_path *p,
1657		       struct extent_buffer *b, int level, int ins_len,
1658		       int *write_lock_level)
1659{
1660	struct btrfs_fs_info *fs_info = root->fs_info;
1661	int ret = 0;
1662
1663	if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
1664	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
 
1665
1666		if (*write_lock_level < level + 1) {
1667			*write_lock_level = level + 1;
1668			btrfs_release_path(p);
1669			return -EAGAIN;
1670		}
1671
1672		reada_for_balance(p, level);
1673		ret = split_node(trans, root, p, level);
 
 
1674
 
 
 
 
 
1675		b = p->nodes[level];
1676	} else if (ins_len < 0 && btrfs_header_nritems(b) <
1677		   BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
 
1678
1679		if (*write_lock_level < level + 1) {
1680			*write_lock_level = level + 1;
1681			btrfs_release_path(p);
1682			return -EAGAIN;
1683		}
1684
1685		reada_for_balance(p, level);
1686		ret = balance_level(trans, root, p, level);
1687		if (ret)
1688			return ret;
1689
 
 
 
 
1690		b = p->nodes[level];
1691		if (!b) {
1692			btrfs_release_path(p);
1693			return -EAGAIN;
1694		}
1695		BUG_ON(btrfs_header_nritems(b) == 1);
1696	}
 
 
 
 
 
1697	return ret;
1698}
1699
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1700int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
1701		u64 iobjectid, u64 ioff, u8 key_type,
1702		struct btrfs_key *found_key)
1703{
1704	int ret;
1705	struct btrfs_key key;
1706	struct extent_buffer *eb;
1707
1708	ASSERT(path);
1709	ASSERT(found_key);
1710
1711	key.type = key_type;
1712	key.objectid = iobjectid;
1713	key.offset = ioff;
1714
1715	ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1716	if (ret < 0)
1717		return ret;
1718
1719	eb = path->nodes[0];
1720	if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
1721		ret = btrfs_next_leaf(fs_root, path);
1722		if (ret)
1723			return ret;
1724		eb = path->nodes[0];
1725	}
1726
1727	btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
1728	if (found_key->type != key.type ||
1729			found_key->objectid != key.objectid)
1730		return 1;
1731
1732	return 0;
1733}
1734
1735static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
1736							struct btrfs_path *p,
1737							int write_lock_level)
1738{
1739	struct extent_buffer *b;
1740	int root_lock = 0;
1741	int level = 0;
1742
1743	if (p->search_commit_root) {
1744		b = root->commit_root;
1745		atomic_inc(&b->refs);
1746		level = btrfs_header_level(b);
1747		/*
1748		 * Ensure that all callers have set skip_locking when
1749		 * p->search_commit_root = 1.
1750		 */
1751		ASSERT(p->skip_locking == 1);
1752
1753		goto out;
1754	}
1755
1756	if (p->skip_locking) {
1757		b = btrfs_root_node(root);
1758		level = btrfs_header_level(b);
1759		goto out;
1760	}
1761
1762	/* We try very hard to do read locks on the root */
1763	root_lock = BTRFS_READ_LOCK;
1764
1765	/*
1766	 * If the level is set to maximum, we can skip trying to get the read
1767	 * lock.
1768	 */
1769	if (write_lock_level < BTRFS_MAX_LEVEL) {
1770		/*
1771		 * We don't know the level of the root node until we actually
1772		 * have it read locked
1773		 */
1774		if (p->nowait) {
1775			b = btrfs_try_read_lock_root_node(root);
1776			if (IS_ERR(b))
1777				return b;
1778		} else {
1779			b = btrfs_read_lock_root_node(root);
1780		}
1781		level = btrfs_header_level(b);
1782		if (level > write_lock_level)
1783			goto out;
1784
1785		/* Whoops, must trade for write lock */
1786		btrfs_tree_read_unlock(b);
1787		free_extent_buffer(b);
1788	}
1789
1790	b = btrfs_lock_root_node(root);
1791	root_lock = BTRFS_WRITE_LOCK;
1792
1793	/* The level might have changed, check again */
1794	level = btrfs_header_level(b);
1795
1796out:
1797	/*
1798	 * The root may have failed to write out at some point, and thus is no
1799	 * longer valid, return an error in this case.
1800	 */
1801	if (!extent_buffer_uptodate(b)) {
1802		if (root_lock)
1803			btrfs_tree_unlock_rw(b, root_lock);
1804		free_extent_buffer(b);
1805		return ERR_PTR(-EIO);
1806	}
1807
1808	p->nodes[level] = b;
1809	if (!p->skip_locking)
1810		p->locks[level] = root_lock;
1811	/*
1812	 * Callers are responsible for dropping b's references.
1813	 */
1814	return b;
1815}
1816
1817/*
1818 * Replace the extent buffer at the lowest level of the path with a cloned
1819 * version. The purpose is to be able to use it safely, after releasing the
1820 * commit root semaphore, even if relocation is happening in parallel, the
1821 * transaction used for relocation is committed and the extent buffer is
1822 * reallocated in the next transaction.
1823 *
1824 * This is used in a context where the caller does not prevent transaction
1825 * commits from happening, either by holding a transaction handle or holding
1826 * some lock, while it's doing searches through a commit root.
1827 * At the moment it's only used for send operations.
1828 */
1829static int finish_need_commit_sem_search(struct btrfs_path *path)
 
 
 
1830{
1831	const int i = path->lowest_level;
1832	const int slot = path->slots[i];
1833	struct extent_buffer *lowest = path->nodes[i];
1834	struct extent_buffer *clone;
1835
1836	ASSERT(path->need_commit_sem);
1837
1838	if (!lowest)
1839		return 0;
1840
1841	lockdep_assert_held_read(&lowest->fs_info->commit_root_sem);
1842
1843	clone = btrfs_clone_extent_buffer(lowest);
1844	if (!clone)
1845		return -ENOMEM;
1846
1847	btrfs_release_path(path);
1848	path->nodes[i] = clone;
1849	path->slots[i] = slot;
1850
1851	return 0;
1852}
1853
1854static inline int search_for_key_slot(struct extent_buffer *eb,
1855				      int search_low_slot,
1856				      const struct btrfs_key *key,
1857				      int prev_cmp,
1858				      int *slot)
1859{
1860	/*
1861	 * If a previous call to btrfs_bin_search() on a parent node returned an
1862	 * exact match (prev_cmp == 0), we can safely assume the target key will
1863	 * always be at slot 0 on lower levels, since each key pointer
1864	 * (struct btrfs_key_ptr) refers to the lowest key accessible from the
1865	 * subtree it points to. Thus we can skip searching lower levels.
1866	 */
1867	if (prev_cmp == 0) {
1868		*slot = 0;
1869		return 0;
1870	}
1871
1872	return generic_bin_search(eb, search_low_slot, key, slot);
1873}
1874
1875static int search_leaf(struct btrfs_trans_handle *trans,
1876		       struct btrfs_root *root,
1877		       const struct btrfs_key *key,
1878		       struct btrfs_path *path,
1879		       int ins_len,
1880		       int prev_cmp)
1881{
1882	struct extent_buffer *leaf = path->nodes[0];
1883	int leaf_free_space = -1;
1884	int search_low_slot = 0;
1885	int ret;
1886	bool do_bin_search = true;
1887
1888	/*
1889	 * If we are doing an insertion, the leaf has enough free space and the
1890	 * destination slot for the key is not slot 0, then we can unlock our
1891	 * write lock on the parent, and any other upper nodes, before doing the
1892	 * binary search on the leaf (with search_for_key_slot()), allowing other
1893	 * tasks to lock the parent and any other upper nodes.
1894	 */
1895	if (ins_len > 0) {
1896		/*
1897		 * Cache the leaf free space, since we will need it later and it
1898		 * will not change until then.
1899		 */
1900		leaf_free_space = btrfs_leaf_free_space(leaf);
1901
1902		/*
1903		 * !path->locks[1] means we have a single node tree, the leaf is
1904		 * the root of the tree.
1905		 */
1906		if (path->locks[1] && leaf_free_space >= ins_len) {
1907			struct btrfs_disk_key first_key;
1908
1909			ASSERT(btrfs_header_nritems(leaf) > 0);
1910			btrfs_item_key(leaf, &first_key, 0);
1911
1912			/*
1913			 * Doing the extra comparison with the first key is cheap,
1914			 * taking into account that the first key is very likely
1915			 * already in a cache line because it immediately follows
1916			 * the extent buffer's header and we have recently accessed
1917			 * the header's level field.
1918			 */
1919			ret = comp_keys(&first_key, key);
1920			if (ret < 0) {
1921				/*
1922				 * The first key is smaller than the key we want
1923				 * to insert, so we are safe to unlock all upper
1924				 * nodes and we have to do the binary search.
1925				 *
1926				 * We do use btrfs_unlock_up_safe() and not
1927				 * unlock_up() because the later does not unlock
1928				 * nodes with a slot of 0 - we can safely unlock
1929				 * any node even if its slot is 0 since in this
1930				 * case the key does not end up at slot 0 of the
1931				 * leaf and there's no need to split the leaf.
1932				 */
1933				btrfs_unlock_up_safe(path, 1);
1934				search_low_slot = 1;
1935			} else {
1936				/*
1937				 * The first key is >= then the key we want to
1938				 * insert, so we can skip the binary search as
1939				 * the target key will be at slot 0.
1940				 *
1941				 * We can not unlock upper nodes when the key is
1942				 * less than the first key, because we will need
1943				 * to update the key at slot 0 of the parent node
1944				 * and possibly of other upper nodes too.
1945				 * If the key matches the first key, then we can
1946				 * unlock all the upper nodes, using
1947				 * btrfs_unlock_up_safe() instead of unlock_up()
1948				 * as stated above.
1949				 */
1950				if (ret == 0)
1951					btrfs_unlock_up_safe(path, 1);
1952				/*
1953				 * ret is already 0 or 1, matching the result of
1954				 * a btrfs_bin_search() call, so there is no need
1955				 * to adjust it.
1956				 */
1957				do_bin_search = false;
1958				path->slots[0] = 0;
1959			}
1960		}
1961	}
1962
1963	if (do_bin_search) {
1964		ret = search_for_key_slot(leaf, search_low_slot, key,
1965					  prev_cmp, &path->slots[0]);
1966		if (ret < 0)
1967			return ret;
1968	}
1969
1970	if (ins_len > 0) {
1971		/*
1972		 * Item key already exists. In this case, if we are allowed to
1973		 * insert the item (for example, in dir_item case, item key
1974		 * collision is allowed), it will be merged with the original
1975		 * item. Only the item size grows, no new btrfs item will be
1976		 * added. If search_for_extension is not set, ins_len already
1977		 * accounts the size btrfs_item, deduct it here so leaf space
1978		 * check will be correct.
1979		 */
1980		if (ret == 0 && !path->search_for_extension) {
1981			ASSERT(ins_len >= sizeof(struct btrfs_item));
1982			ins_len -= sizeof(struct btrfs_item);
1983		}
1984
1985		ASSERT(leaf_free_space >= 0);
1986
1987		if (leaf_free_space < ins_len) {
1988			int err;
1989
1990			err = split_leaf(trans, root, key, path, ins_len,
1991					 (ret == 0));
1992			ASSERT(err <= 0);
1993			if (WARN_ON(err > 0))
1994				err = -EUCLEAN;
1995			if (err)
1996				ret = err;
1997		}
1998	}
1999
2000	return ret;
2001}
2002
2003/*
2004 * btrfs_search_slot - look for a key in a tree and perform necessary
2005 * modifications to preserve tree invariants.
2006 *
2007 * @trans:	Handle of transaction, used when modifying the tree
2008 * @p:		Holds all btree nodes along the search path
2009 * @root:	The root node of the tree
2010 * @key:	The key we are looking for
2011 * @ins_len:	Indicates purpose of search:
2012 *              >0  for inserts it's size of item inserted (*)
2013 *              <0  for deletions
2014 *               0  for plain searches, not modifying the tree
2015 *
2016 *              (*) If size of item inserted doesn't include
2017 *              sizeof(struct btrfs_item), then p->search_for_extension must
2018 *              be set.
2019 * @cow:	boolean should CoW operations be performed. Must always be 1
2020 *		when modifying the tree.
2021 *
2022 * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
2023 * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
2024 *
2025 * If @key is found, 0 is returned and you can find the item in the leaf level
2026 * of the path (level 0)
2027 *
2028 * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
2029 * points to the slot where it should be inserted
2030 *
2031 * If an error is encountered while searching the tree a negative error number
2032 * is returned
2033 */
2034int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2035		      const struct btrfs_key *key, struct btrfs_path *p,
2036		      int ins_len, int cow)
2037{
2038	struct btrfs_fs_info *fs_info = root->fs_info;
2039	struct extent_buffer *b;
2040	int slot;
2041	int ret;
2042	int err;
2043	int level;
2044	int lowest_unlock = 1;
 
2045	/* everything at write_lock_level or lower must be write locked */
2046	int write_lock_level = 0;
2047	u8 lowest_level = 0;
2048	int min_write_lock_level;
2049	int prev_cmp;
2050
2051	might_sleep();
2052
2053	lowest_level = p->lowest_level;
2054	WARN_ON(lowest_level && ins_len > 0);
2055	WARN_ON(p->nodes[0] != NULL);
2056	BUG_ON(!cow && ins_len);
2057
2058	/*
2059	 * For now only allow nowait for read only operations.  There's no
2060	 * strict reason why we can't, we just only need it for reads so it's
2061	 * only implemented for reads.
2062	 */
2063	ASSERT(!p->nowait || !cow);
2064
2065	if (ins_len < 0) {
2066		lowest_unlock = 2;
2067
2068		/* when we are removing items, we might have to go up to level
2069		 * two as we update tree pointers  Make sure we keep write
2070		 * for those levels as well
2071		 */
2072		write_lock_level = 2;
2073	} else if (ins_len > 0) {
2074		/*
2075		 * for inserting items, make sure we have a write lock on
2076		 * level 1 so we can update keys
2077		 */
2078		write_lock_level = 1;
2079	}
2080
2081	if (!cow)
2082		write_lock_level = -1;
2083
2084	if (cow && (p->keep_locks || p->lowest_level))
2085		write_lock_level = BTRFS_MAX_LEVEL;
2086
2087	min_write_lock_level = write_lock_level;
2088
2089	if (p->need_commit_sem) {
2090		ASSERT(p->search_commit_root);
2091		if (p->nowait) {
2092			if (!down_read_trylock(&fs_info->commit_root_sem))
2093				return -EAGAIN;
2094		} else {
2095			down_read(&fs_info->commit_root_sem);
2096		}
2097	}
2098
2099again:
2100	prev_cmp = -1;
2101	b = btrfs_search_slot_get_root(root, p, write_lock_level);
2102	if (IS_ERR(b)) {
2103		ret = PTR_ERR(b);
2104		goto done;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2105	}
 
 
 
2106
2107	while (b) {
2108		int dec = 0;
2109
2110		level = btrfs_header_level(b);
2111
 
 
 
 
2112		if (cow) {
2113			bool last_level = (level == (BTRFS_MAX_LEVEL - 1));
2114
2115			/*
2116			 * if we don't really need to cow this block
2117			 * then we don't want to set the path blocking,
2118			 * so we test it here
2119			 */
2120			if (!should_cow_block(trans, root, b))
2121				goto cow_done;
2122
2123			/*
2124			 * must have write locks on this node and the
2125			 * parent
2126			 */
2127			if (level > write_lock_level ||
2128			    (level + 1 > write_lock_level &&
2129			    level + 1 < BTRFS_MAX_LEVEL &&
2130			    p->nodes[level + 1])) {
2131				write_lock_level = level + 1;
2132				btrfs_release_path(p);
2133				goto again;
2134			}
2135
2136			if (last_level)
2137				err = btrfs_cow_block(trans, root, b, NULL, 0,
2138						      &b,
2139						      BTRFS_NESTING_COW);
2140			else
2141				err = btrfs_cow_block(trans, root, b,
2142						      p->nodes[level + 1],
2143						      p->slots[level + 1], &b,
2144						      BTRFS_NESTING_COW);
2145			if (err) {
2146				ret = err;
2147				goto done;
2148			}
2149		}
2150cow_done:
2151		p->nodes[level] = b;
 
2152
2153		/*
2154		 * we have a lock on b and as long as we aren't changing
2155		 * the tree, there is no way to for the items in b to change.
2156		 * It is safe to drop the lock on our parent before we
2157		 * go through the expensive btree search on b.
2158		 *
2159		 * If we're inserting or deleting (ins_len != 0), then we might
2160		 * be changing slot zero, which may require changing the parent.
2161		 * So, we can't drop the lock until after we know which slot
2162		 * we're operating on.
2163		 */
2164		if (!ins_len && !p->keep_locks) {
2165			int u = level + 1;
2166
2167			if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2168				btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2169				p->locks[u] = 0;
2170			}
2171		}
2172
2173		if (level == 0) {
2174			if (ins_len > 0)
2175				ASSERT(write_lock_level >= 1);
2176
2177			ret = search_leaf(trans, root, key, p, ins_len, prev_cmp);
2178			if (!p->search_for_split)
2179				unlock_up(p, level, lowest_unlock,
2180					  min_write_lock_level, NULL);
2181			goto done;
2182		}
2183
2184		ret = search_for_key_slot(b, 0, key, prev_cmp, &slot);
2185		if (ret < 0)
2186			goto done;
2187		prev_cmp = ret;
2188
2189		if (ret && slot > 0) {
2190			dec = 1;
2191			slot--;
2192		}
2193		p->slots[level] = slot;
2194		err = setup_nodes_for_search(trans, root, p, b, level, ins_len,
2195					     &write_lock_level);
2196		if (err == -EAGAIN)
2197			goto again;
2198		if (err) {
2199			ret = err;
2200			goto done;
2201		}
2202		b = p->nodes[level];
2203		slot = p->slots[level];
2204
2205		/*
2206		 * Slot 0 is special, if we change the key we have to update
2207		 * the parent pointer which means we must have a write lock on
2208		 * the parent
2209		 */
2210		if (slot == 0 && ins_len && write_lock_level < level + 1) {
2211			write_lock_level = level + 1;
2212			btrfs_release_path(p);
2213			goto again;
2214		}
2215
2216		unlock_up(p, level, lowest_unlock, min_write_lock_level,
2217			  &write_lock_level);
2218
2219		if (level == lowest_level) {
2220			if (dec)
2221				p->slots[level]++;
2222			goto done;
2223		}
 
 
 
 
 
 
 
2224
2225		err = read_block_for_search(root, p, &b, level, slot, key);
2226		if (err == -EAGAIN)
2227			goto again;
2228		if (err) {
2229			ret = err;
2230			goto done;
2231		}
2232
2233		if (!p->skip_locking) {
2234			level = btrfs_header_level(b);
 
 
 
2235
2236			btrfs_maybe_reset_lockdep_class(root, b);
 
 
 
 
 
 
 
2237
2238			if (level <= write_lock_level) {
2239				btrfs_tree_lock(b);
2240				p->locks[level] = BTRFS_WRITE_LOCK;
2241			} else {
2242				if (p->nowait) {
2243					if (!btrfs_try_tree_read_lock(b)) {
2244						free_extent_buffer(b);
2245						ret = -EAGAIN;
2246						goto done;
2247					}
 
2248				} else {
2249					btrfs_tree_read_lock(b);
 
 
 
 
 
 
 
2250				}
2251				p->locks[level] = BTRFS_READ_LOCK;
2252			}
2253			p->nodes[level] = b;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2254		}
2255	}
2256	ret = 1;
2257done:
 
 
 
 
 
 
2258	if (ret < 0 && !p->skip_release_on_error)
2259		btrfs_release_path(p);
2260
2261	if (p->need_commit_sem) {
2262		int ret2;
2263
2264		ret2 = finish_need_commit_sem_search(p);
2265		up_read(&fs_info->commit_root_sem);
2266		if (ret2)
2267			ret = ret2;
2268	}
2269
2270	return ret;
2271}
2272ALLOW_ERROR_INJECTION(btrfs_search_slot, ERRNO);
2273
2274/*
2275 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2276 * current state of the tree together with the operations recorded in the tree
2277 * modification log to search for the key in a previous version of this tree, as
2278 * denoted by the time_seq parameter.
2279 *
2280 * Naturally, there is no support for insert, delete or cow operations.
2281 *
2282 * The resulting path and return value will be set up as if we called
2283 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2284 */
2285int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
2286			  struct btrfs_path *p, u64 time_seq)
2287{
2288	struct btrfs_fs_info *fs_info = root->fs_info;
2289	struct extent_buffer *b;
2290	int slot;
2291	int ret;
2292	int err;
2293	int level;
2294	int lowest_unlock = 1;
2295	u8 lowest_level = 0;
 
2296
2297	lowest_level = p->lowest_level;
2298	WARN_ON(p->nodes[0] != NULL);
2299	ASSERT(!p->nowait);
2300
2301	if (p->search_commit_root) {
2302		BUG_ON(time_seq);
2303		return btrfs_search_slot(NULL, root, key, p, 0, 0);
2304	}
2305
2306again:
2307	b = btrfs_get_old_root(root, time_seq);
2308	if (!b) {
2309		ret = -EIO;
2310		goto done;
2311	}
2312	level = btrfs_header_level(b);
2313	p->locks[level] = BTRFS_READ_LOCK;
2314
2315	while (b) {
2316		int dec = 0;
2317
2318		level = btrfs_header_level(b);
2319		p->nodes[level] = b;
 
2320
2321		/*
2322		 * we have a lock on b and as long as we aren't changing
2323		 * the tree, there is no way to for the items in b to change.
2324		 * It is safe to drop the lock on our parent before we
2325		 * go through the expensive btree search on b.
2326		 */
2327		btrfs_unlock_up_safe(p, level + 1);
2328
2329		ret = btrfs_bin_search(b, key, &slot);
2330		if (ret < 0)
2331			goto done;
 
 
 
2332
2333		if (level == 0) {
 
 
 
 
 
2334			p->slots[level] = slot;
2335			unlock_up(p, level, lowest_unlock, 0, NULL);
2336			goto done;
2337		}
2338
2339		if (ret && slot > 0) {
2340			dec = 1;
2341			slot--;
2342		}
2343		p->slots[level] = slot;
2344		unlock_up(p, level, lowest_unlock, 0, NULL);
2345
2346		if (level == lowest_level) {
2347			if (dec)
2348				p->slots[level]++;
2349			goto done;
2350		}
2351
2352		err = read_block_for_search(root, p, &b, level, slot, key);
2353		if (err == -EAGAIN)
2354			goto again;
2355		if (err) {
2356			ret = err;
2357			goto done;
2358		}
 
2359
2360		level = btrfs_header_level(b);
2361		btrfs_tree_read_lock(b);
2362		b = btrfs_tree_mod_log_rewind(fs_info, p, b, time_seq);
2363		if (!b) {
2364			ret = -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
2365			goto done;
2366		}
2367		p->locks[level] = BTRFS_READ_LOCK;
2368		p->nodes[level] = b;
2369	}
2370	ret = 1;
2371done:
 
 
2372	if (ret < 0)
2373		btrfs_release_path(p);
2374
2375	return ret;
2376}
2377
2378/*
2379 * helper to use instead of search slot if no exact match is needed but
2380 * instead the next or previous item should be returned.
2381 * When find_higher is true, the next higher item is returned, the next lower
2382 * otherwise.
2383 * When return_any and find_higher are both true, and no higher item is found,
2384 * return the next lower instead.
2385 * When return_any is true and find_higher is false, and no lower item is found,
2386 * return the next higher instead.
2387 * It returns 0 if any item is found, 1 if none is found (tree empty), and
2388 * < 0 on error
2389 */
2390int btrfs_search_slot_for_read(struct btrfs_root *root,
2391			       const struct btrfs_key *key,
2392			       struct btrfs_path *p, int find_higher,
2393			       int return_any)
2394{
2395	int ret;
2396	struct extent_buffer *leaf;
2397
2398again:
2399	ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
2400	if (ret <= 0)
2401		return ret;
2402	/*
2403	 * a return value of 1 means the path is at the position where the
2404	 * item should be inserted. Normally this is the next bigger item,
2405	 * but in case the previous item is the last in a leaf, path points
2406	 * to the first free slot in the previous leaf, i.e. at an invalid
2407	 * item.
2408	 */
2409	leaf = p->nodes[0];
2410
2411	if (find_higher) {
2412		if (p->slots[0] >= btrfs_header_nritems(leaf)) {
2413			ret = btrfs_next_leaf(root, p);
2414			if (ret <= 0)
2415				return ret;
2416			if (!return_any)
2417				return 1;
2418			/*
2419			 * no higher item found, return the next
2420			 * lower instead
2421			 */
2422			return_any = 0;
2423			find_higher = 0;
2424			btrfs_release_path(p);
2425			goto again;
2426		}
2427	} else {
2428		if (p->slots[0] == 0) {
2429			ret = btrfs_prev_leaf(root, p);
2430			if (ret < 0)
2431				return ret;
2432			if (!ret) {
2433				leaf = p->nodes[0];
2434				if (p->slots[0] == btrfs_header_nritems(leaf))
2435					p->slots[0]--;
2436				return 0;
2437			}
2438			if (!return_any)
2439				return 1;
2440			/*
2441			 * no lower item found, return the next
2442			 * higher instead
2443			 */
2444			return_any = 0;
2445			find_higher = 1;
2446			btrfs_release_path(p);
2447			goto again;
2448		} else {
2449			--p->slots[0];
2450		}
2451	}
2452	return 0;
2453}
2454
2455/*
2456 * Execute search and call btrfs_previous_item to traverse backwards if the item
2457 * was not found.
2458 *
2459 * Return 0 if found, 1 if not found and < 0 if error.
2460 */
2461int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key,
2462			   struct btrfs_path *path)
2463{
2464	int ret;
2465
2466	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
2467	if (ret > 0)
2468		ret = btrfs_previous_item(root, path, key->objectid, key->type);
2469
2470	if (ret == 0)
2471		btrfs_item_key_to_cpu(path->nodes[0], key, path->slots[0]);
2472
2473	return ret;
2474}
2475
2476/*
2477 * Search for a valid slot for the given path.
2478 *
2479 * @root:	The root node of the tree.
2480 * @key:	Will contain a valid item if found.
2481 * @path:	The starting point to validate the slot.
2482 *
2483 * Return: 0  if the item is valid
2484 *         1  if not found
2485 *         <0 if error.
2486 */
2487int btrfs_get_next_valid_item(struct btrfs_root *root, struct btrfs_key *key,
2488			      struct btrfs_path *path)
2489{
2490	while (1) {
2491		int ret;
2492		const int slot = path->slots[0];
2493		const struct extent_buffer *leaf = path->nodes[0];
2494
2495		/* This is where we start walking the path. */
2496		if (slot >= btrfs_header_nritems(leaf)) {
2497			/*
2498			 * If we've reached the last slot in this leaf we need
2499			 * to go to the next leaf and reset the path.
2500			 */
2501			ret = btrfs_next_leaf(root, path);
2502			if (ret)
2503				return ret;
2504			continue;
2505		}
2506		/* Store the found, valid item in @key. */
2507		btrfs_item_key_to_cpu(leaf, key, slot);
2508		break;
2509	}
2510	return 0;
2511}
2512
2513/*
2514 * adjust the pointers going up the tree, starting at level
2515 * making sure the right key of each node is points to 'key'.
2516 * This is used after shifting pointers to the left, so it stops
2517 * fixing up pointers when a given leaf/node is not in slot 0 of the
2518 * higher levels
2519 *
2520 */
2521static void fixup_low_keys(struct btrfs_path *path,
 
2522			   struct btrfs_disk_key *key, int level)
2523{
2524	int i;
2525	struct extent_buffer *t;
2526	int ret;
2527
2528	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2529		int tslot = path->slots[i];
2530
2531		if (!path->nodes[i])
2532			break;
2533		t = path->nodes[i];
2534		ret = btrfs_tree_mod_log_insert_key(t, tslot,
2535						    BTRFS_MOD_LOG_KEY_REPLACE);
2536		BUG_ON(ret < 0);
2537		btrfs_set_node_key(t, key, tslot);
2538		btrfs_mark_buffer_dirty(path->nodes[i]);
2539		if (tslot != 0)
2540			break;
2541	}
2542}
2543
2544/*
2545 * update item key.
2546 *
2547 * This function isn't completely safe. It's the caller's responsibility
2548 * that the new key won't break the order
2549 */
2550void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
2551			     struct btrfs_path *path,
2552			     const struct btrfs_key *new_key)
2553{
2554	struct btrfs_disk_key disk_key;
2555	struct extent_buffer *eb;
2556	int slot;
2557
2558	eb = path->nodes[0];
2559	slot = path->slots[0];
2560	if (slot > 0) {
2561		btrfs_item_key(eb, &disk_key, slot - 1);
2562		if (unlikely(comp_keys(&disk_key, new_key) >= 0)) {
2563			btrfs_crit(fs_info,
2564		"slot %u key (%llu %u %llu) new key (%llu %u %llu)",
2565				   slot, btrfs_disk_key_objectid(&disk_key),
2566				   btrfs_disk_key_type(&disk_key),
2567				   btrfs_disk_key_offset(&disk_key),
2568				   new_key->objectid, new_key->type,
2569				   new_key->offset);
2570			btrfs_print_leaf(eb);
2571			BUG();
2572		}
2573	}
2574	if (slot < btrfs_header_nritems(eb) - 1) {
2575		btrfs_item_key(eb, &disk_key, slot + 1);
2576		if (unlikely(comp_keys(&disk_key, new_key) <= 0)) {
2577			btrfs_crit(fs_info,
2578		"slot %u key (%llu %u %llu) new key (%llu %u %llu)",
2579				   slot, btrfs_disk_key_objectid(&disk_key),
2580				   btrfs_disk_key_type(&disk_key),
2581				   btrfs_disk_key_offset(&disk_key),
2582				   new_key->objectid, new_key->type,
2583				   new_key->offset);
2584			btrfs_print_leaf(eb);
2585			BUG();
2586		}
2587	}
2588
2589	btrfs_cpu_key_to_disk(&disk_key, new_key);
2590	btrfs_set_item_key(eb, &disk_key, slot);
2591	btrfs_mark_buffer_dirty(eb);
2592	if (slot == 0)
2593		fixup_low_keys(path, &disk_key, 1);
2594}
2595
2596/*
2597 * Check key order of two sibling extent buffers.
2598 *
2599 * Return true if something is wrong.
2600 * Return false if everything is fine.
2601 *
2602 * Tree-checker only works inside one tree block, thus the following
2603 * corruption can not be detected by tree-checker:
2604 *
2605 * Leaf @left			| Leaf @right
2606 * --------------------------------------------------------------
2607 * | 1 | 2 | 3 | 4 | 5 | f6 |   | 7 | 8 |
2608 *
2609 * Key f6 in leaf @left itself is valid, but not valid when the next
2610 * key in leaf @right is 7.
2611 * This can only be checked at tree block merge time.
2612 * And since tree checker has ensured all key order in each tree block
2613 * is correct, we only need to bother the last key of @left and the first
2614 * key of @right.
2615 */
2616static bool check_sibling_keys(struct extent_buffer *left,
2617			       struct extent_buffer *right)
2618{
2619	struct btrfs_key left_last;
2620	struct btrfs_key right_first;
2621	int level = btrfs_header_level(left);
2622	int nr_left = btrfs_header_nritems(left);
2623	int nr_right = btrfs_header_nritems(right);
2624
2625	/* No key to check in one of the tree blocks */
2626	if (!nr_left || !nr_right)
2627		return false;
2628
2629	if (level) {
2630		btrfs_node_key_to_cpu(left, &left_last, nr_left - 1);
2631		btrfs_node_key_to_cpu(right, &right_first, 0);
2632	} else {
2633		btrfs_item_key_to_cpu(left, &left_last, nr_left - 1);
2634		btrfs_item_key_to_cpu(right, &right_first, 0);
2635	}
2636
2637	if (btrfs_comp_cpu_keys(&left_last, &right_first) >= 0) {
2638		btrfs_crit(left->fs_info,
2639"bad key order, sibling blocks, left last (%llu %u %llu) right first (%llu %u %llu)",
2640			   left_last.objectid, left_last.type,
2641			   left_last.offset, right_first.objectid,
2642			   right_first.type, right_first.offset);
2643		return true;
2644	}
2645	return false;
2646}
2647
2648/*
2649 * try to push data from one node into the next node left in the
2650 * tree.
2651 *
2652 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
2653 * error, and > 0 if there was no room in the left hand block.
2654 */
2655static int push_node_left(struct btrfs_trans_handle *trans,
2656			  struct extent_buffer *dst,
2657			  struct extent_buffer *src, int empty)
2658{
2659	struct btrfs_fs_info *fs_info = trans->fs_info;
2660	int push_items = 0;
2661	int src_nritems;
2662	int dst_nritems;
2663	int ret = 0;
2664
2665	src_nritems = btrfs_header_nritems(src);
2666	dst_nritems = btrfs_header_nritems(dst);
2667	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
2668	WARN_ON(btrfs_header_generation(src) != trans->transid);
2669	WARN_ON(btrfs_header_generation(dst) != trans->transid);
2670
2671	if (!empty && src_nritems <= 8)
2672		return 1;
2673
2674	if (push_items <= 0)
2675		return 1;
2676
2677	if (empty) {
2678		push_items = min(src_nritems, push_items);
2679		if (push_items < src_nritems) {
2680			/* leave at least 8 pointers in the node if
2681			 * we aren't going to empty it
2682			 */
2683			if (src_nritems - push_items < 8) {
2684				if (push_items <= 8)
2685					return 1;
2686				push_items -= 8;
2687			}
2688		}
2689	} else
2690		push_items = min(src_nritems - 8, push_items);
2691
2692	/* dst is the left eb, src is the middle eb */
2693	if (check_sibling_keys(dst, src)) {
2694		ret = -EUCLEAN;
2695		btrfs_abort_transaction(trans, ret);
2696		return ret;
2697	}
2698	ret = btrfs_tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items);
2699	if (ret) {
2700		btrfs_abort_transaction(trans, ret);
2701		return ret;
2702	}
2703	copy_extent_buffer(dst, src,
2704			   btrfs_node_key_ptr_offset(dst, dst_nritems),
2705			   btrfs_node_key_ptr_offset(src, 0),
2706			   push_items * sizeof(struct btrfs_key_ptr));
2707
2708	if (push_items < src_nritems) {
2709		/*
2710		 * Don't call btrfs_tree_mod_log_insert_move() here, key removal
2711		 * was already fully logged by btrfs_tree_mod_log_eb_copy() above.
2712		 */
2713		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(src, 0),
2714				      btrfs_node_key_ptr_offset(src, push_items),
2715				      (src_nritems - push_items) *
2716				      sizeof(struct btrfs_key_ptr));
2717	}
2718	btrfs_set_header_nritems(src, src_nritems - push_items);
2719	btrfs_set_header_nritems(dst, dst_nritems + push_items);
2720	btrfs_mark_buffer_dirty(src);
2721	btrfs_mark_buffer_dirty(dst);
2722
2723	return ret;
2724}
2725
2726/*
2727 * try to push data from one node into the next node right in the
2728 * tree.
2729 *
2730 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
2731 * error, and > 0 if there was no room in the right hand block.
2732 *
2733 * this will  only push up to 1/2 the contents of the left node over
2734 */
2735static int balance_node_right(struct btrfs_trans_handle *trans,
 
2736			      struct extent_buffer *dst,
2737			      struct extent_buffer *src)
2738{
2739	struct btrfs_fs_info *fs_info = trans->fs_info;
2740	int push_items = 0;
2741	int max_push;
2742	int src_nritems;
2743	int dst_nritems;
2744	int ret = 0;
2745
2746	WARN_ON(btrfs_header_generation(src) != trans->transid);
2747	WARN_ON(btrfs_header_generation(dst) != trans->transid);
2748
2749	src_nritems = btrfs_header_nritems(src);
2750	dst_nritems = btrfs_header_nritems(dst);
2751	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
2752	if (push_items <= 0)
2753		return 1;
2754
2755	if (src_nritems < 4)
2756		return 1;
2757
2758	max_push = src_nritems / 2 + 1;
2759	/* don't try to empty the node */
2760	if (max_push >= src_nritems)
2761		return 1;
2762
2763	if (max_push < push_items)
2764		push_items = max_push;
2765
2766	/* dst is the right eb, src is the middle eb */
2767	if (check_sibling_keys(src, dst)) {
2768		ret = -EUCLEAN;
2769		btrfs_abort_transaction(trans, ret);
2770		return ret;
2771	}
2772	ret = btrfs_tree_mod_log_insert_move(dst, push_items, 0, dst_nritems);
2773	BUG_ON(ret < 0);
2774	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(dst, push_items),
2775				      btrfs_node_key_ptr_offset(dst, 0),
2776				      (dst_nritems) *
2777				      sizeof(struct btrfs_key_ptr));
2778
2779	ret = btrfs_tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items,
2780					 push_items);
2781	if (ret) {
2782		btrfs_abort_transaction(trans, ret);
2783		return ret;
2784	}
2785	copy_extent_buffer(dst, src,
2786			   btrfs_node_key_ptr_offset(dst, 0),
2787			   btrfs_node_key_ptr_offset(src, src_nritems - push_items),
2788			   push_items * sizeof(struct btrfs_key_ptr));
2789
2790	btrfs_set_header_nritems(src, src_nritems - push_items);
2791	btrfs_set_header_nritems(dst, dst_nritems + push_items);
2792
2793	btrfs_mark_buffer_dirty(src);
2794	btrfs_mark_buffer_dirty(dst);
2795
2796	return ret;
2797}
2798
2799/*
2800 * helper function to insert a new root level in the tree.
2801 * A new node is allocated, and a single item is inserted to
2802 * point to the existing root
2803 *
2804 * returns zero on success or < 0 on failure.
2805 */
2806static noinline int insert_new_root(struct btrfs_trans_handle *trans,
2807			   struct btrfs_root *root,
2808			   struct btrfs_path *path, int level)
2809{
2810	struct btrfs_fs_info *fs_info = root->fs_info;
2811	u64 lower_gen;
2812	struct extent_buffer *lower;
2813	struct extent_buffer *c;
2814	struct extent_buffer *old;
2815	struct btrfs_disk_key lower_key;
2816	int ret;
2817
2818	BUG_ON(path->nodes[level]);
2819	BUG_ON(path->nodes[level-1] != root->node);
2820
2821	lower = path->nodes[level-1];
2822	if (level == 1)
2823		btrfs_item_key(lower, &lower_key, 0);
2824	else
2825		btrfs_node_key(lower, &lower_key, 0);
2826
2827	c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
2828				   &lower_key, level, root->node->start, 0,
2829				   BTRFS_NESTING_NEW_ROOT);
2830	if (IS_ERR(c))
2831		return PTR_ERR(c);
2832
2833	root_add_used(root, fs_info->nodesize);
2834
 
2835	btrfs_set_header_nritems(c, 1);
 
 
 
 
 
 
 
 
 
 
 
 
2836	btrfs_set_node_key(c, &lower_key, 0);
2837	btrfs_set_node_blockptr(c, 0, lower->start);
2838	lower_gen = btrfs_header_generation(lower);
2839	WARN_ON(lower_gen != trans->transid);
2840
2841	btrfs_set_node_ptr_generation(c, 0, lower_gen);
2842
2843	btrfs_mark_buffer_dirty(c);
2844
2845	old = root->node;
2846	ret = btrfs_tree_mod_log_insert_root(root->node, c, false);
2847	BUG_ON(ret < 0);
2848	rcu_assign_pointer(root->node, c);
2849
2850	/* the super has an extra ref to root->node */
2851	free_extent_buffer(old);
2852
2853	add_root_to_dirty_list(root);
2854	atomic_inc(&c->refs);
2855	path->nodes[level] = c;
2856	path->locks[level] = BTRFS_WRITE_LOCK;
2857	path->slots[level] = 0;
2858	return 0;
2859}
2860
2861/*
2862 * worker function to insert a single pointer in a node.
2863 * the node should have enough room for the pointer already
2864 *
2865 * slot and level indicate where you want the key to go, and
2866 * blocknr is the block the key points to.
2867 */
2868static void insert_ptr(struct btrfs_trans_handle *trans,
2869		       struct btrfs_path *path,
2870		       struct btrfs_disk_key *key, u64 bytenr,
2871		       int slot, int level)
2872{
2873	struct extent_buffer *lower;
2874	int nritems;
2875	int ret;
2876
2877	BUG_ON(!path->nodes[level]);
2878	btrfs_assert_tree_write_locked(path->nodes[level]);
2879	lower = path->nodes[level];
2880	nritems = btrfs_header_nritems(lower);
2881	BUG_ON(slot > nritems);
2882	BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info));
2883	if (slot != nritems) {
2884		if (level) {
2885			ret = btrfs_tree_mod_log_insert_move(lower, slot + 1,
2886					slot, nritems - slot);
2887			BUG_ON(ret < 0);
2888		}
2889		memmove_extent_buffer(lower,
2890			      btrfs_node_key_ptr_offset(lower, slot + 1),
2891			      btrfs_node_key_ptr_offset(lower, slot),
2892			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
2893	}
2894	if (level) {
2895		ret = btrfs_tree_mod_log_insert_key(lower, slot,
2896						    BTRFS_MOD_LOG_KEY_ADD);
2897		BUG_ON(ret < 0);
2898	}
2899	btrfs_set_node_key(lower, key, slot);
2900	btrfs_set_node_blockptr(lower, slot, bytenr);
2901	WARN_ON(trans->transid == 0);
2902	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
2903	btrfs_set_header_nritems(lower, nritems + 1);
2904	btrfs_mark_buffer_dirty(lower);
2905}
2906
2907/*
2908 * split the node at the specified level in path in two.
2909 * The path is corrected to point to the appropriate node after the split
2910 *
2911 * Before splitting this tries to make some room in the node by pushing
2912 * left and right, if either one works, it returns right away.
2913 *
2914 * returns 0 on success and < 0 on failure
2915 */
2916static noinline int split_node(struct btrfs_trans_handle *trans,
2917			       struct btrfs_root *root,
2918			       struct btrfs_path *path, int level)
2919{
2920	struct btrfs_fs_info *fs_info = root->fs_info;
2921	struct extent_buffer *c;
2922	struct extent_buffer *split;
2923	struct btrfs_disk_key disk_key;
2924	int mid;
2925	int ret;
2926	u32 c_nritems;
2927
2928	c = path->nodes[level];
2929	WARN_ON(btrfs_header_generation(c) != trans->transid);
2930	if (c == root->node) {
2931		/*
2932		 * trying to split the root, lets make a new one
2933		 *
2934		 * tree mod log: We don't log_removal old root in
2935		 * insert_new_root, because that root buffer will be kept as a
2936		 * normal node. We are going to log removal of half of the
2937		 * elements below with btrfs_tree_mod_log_eb_copy(). We're
2938		 * holding a tree lock on the buffer, which is why we cannot
2939		 * race with other tree_mod_log users.
2940		 */
2941		ret = insert_new_root(trans, root, path, level + 1);
2942		if (ret)
2943			return ret;
2944	} else {
2945		ret = push_nodes_for_insert(trans, root, path, level);
2946		c = path->nodes[level];
2947		if (!ret && btrfs_header_nritems(c) <
2948		    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
2949			return 0;
2950		if (ret < 0)
2951			return ret;
2952	}
2953
2954	c_nritems = btrfs_header_nritems(c);
2955	mid = (c_nritems + 1) / 2;
2956	btrfs_node_key(c, &disk_key, mid);
2957
2958	split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
2959				       &disk_key, level, c->start, 0,
2960				       BTRFS_NESTING_SPLIT);
2961	if (IS_ERR(split))
2962		return PTR_ERR(split);
2963
2964	root_add_used(root, fs_info->nodesize);
2965	ASSERT(btrfs_header_level(c) == level);
 
 
 
 
 
 
 
 
 
 
 
2966
2967	ret = btrfs_tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid);
 
2968	if (ret) {
2969		btrfs_abort_transaction(trans, ret);
2970		return ret;
2971	}
2972	copy_extent_buffer(split, c,
2973			   btrfs_node_key_ptr_offset(split, 0),
2974			   btrfs_node_key_ptr_offset(c, mid),
2975			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
2976	btrfs_set_header_nritems(split, c_nritems - mid);
2977	btrfs_set_header_nritems(c, mid);
 
2978
2979	btrfs_mark_buffer_dirty(c);
2980	btrfs_mark_buffer_dirty(split);
2981
2982	insert_ptr(trans, path, &disk_key, split->start,
2983		   path->slots[level + 1] + 1, level + 1);
2984
2985	if (path->slots[level] >= mid) {
2986		path->slots[level] -= mid;
2987		btrfs_tree_unlock(c);
2988		free_extent_buffer(c);
2989		path->nodes[level] = split;
2990		path->slots[level + 1] += 1;
2991	} else {
2992		btrfs_tree_unlock(split);
2993		free_extent_buffer(split);
2994	}
2995	return 0;
2996}
2997
2998/*
2999 * how many bytes are required to store the items in a leaf.  start
3000 * and nr indicate which items in the leaf to check.  This totals up the
3001 * space used both by the item structs and the item data
3002 */
3003static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3004{
 
 
 
3005	int data_len;
3006	int nritems = btrfs_header_nritems(l);
3007	int end = min(nritems, start + nr) - 1;
3008
3009	if (!nr)
3010		return 0;
3011	data_len = btrfs_item_offset(l, start) + btrfs_item_size(l, start);
3012	data_len = data_len - btrfs_item_offset(l, end);
 
 
 
 
3013	data_len += sizeof(struct btrfs_item) * nr;
3014	WARN_ON(data_len < 0);
3015	return data_len;
3016}
3017
3018/*
3019 * The space between the end of the leaf items and
3020 * the start of the leaf data.  IOW, how much room
3021 * the leaf has left for both items and data
3022 */
3023noinline int btrfs_leaf_free_space(struct extent_buffer *leaf)
 
3024{
3025	struct btrfs_fs_info *fs_info = leaf->fs_info;
3026	int nritems = btrfs_header_nritems(leaf);
3027	int ret;
3028
3029	ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
3030	if (ret < 0) {
3031		btrfs_crit(fs_info,
3032			   "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3033			   ret,
3034			   (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
3035			   leaf_space_used(leaf, 0, nritems), nritems);
3036	}
3037	return ret;
3038}
3039
3040/*
3041 * min slot controls the lowest index we're willing to push to the
3042 * right.  We'll push up to and including min_slot, but no lower
3043 */
3044static noinline int __push_leaf_right(struct btrfs_path *path,
 
 
3045				      int data_size, int empty,
3046				      struct extent_buffer *right,
3047				      int free_space, u32 left_nritems,
3048				      u32 min_slot)
3049{
3050	struct btrfs_fs_info *fs_info = right->fs_info;
3051	struct extent_buffer *left = path->nodes[0];
3052	struct extent_buffer *upper = path->nodes[1];
3053	struct btrfs_map_token token;
3054	struct btrfs_disk_key disk_key;
3055	int slot;
3056	u32 i;
3057	int push_space = 0;
3058	int push_items = 0;
 
3059	u32 nr;
3060	u32 right_nritems;
3061	u32 data_end;
3062	u32 this_item_size;
3063
 
 
3064	if (empty)
3065		nr = 0;
3066	else
3067		nr = max_t(u32, 1, min_slot);
3068
3069	if (path->slots[0] >= left_nritems)
3070		push_space += data_size;
3071
3072	slot = path->slots[1];
3073	i = left_nritems - 1;
3074	while (i >= nr) {
 
 
3075		if (!empty && push_items > 0) {
3076			if (path->slots[0] > i)
3077				break;
3078			if (path->slots[0] == i) {
3079				int space = btrfs_leaf_free_space(left);
3080
3081				if (space + push_space * 2 > free_space)
3082					break;
3083			}
3084		}
3085
3086		if (path->slots[0] == i)
3087			push_space += data_size;
3088
3089		this_item_size = btrfs_item_size(left, i);
3090		if (this_item_size + sizeof(struct btrfs_item) +
3091		    push_space > free_space)
3092			break;
3093
3094		push_items++;
3095		push_space += this_item_size + sizeof(struct btrfs_item);
3096		if (i == 0)
3097			break;
3098		i--;
3099	}
3100
3101	if (push_items == 0)
3102		goto out_unlock;
3103
3104	WARN_ON(!empty && push_items == left_nritems);
3105
3106	/* push left to right */
3107	right_nritems = btrfs_header_nritems(right);
3108
3109	push_space = btrfs_item_data_end(left, left_nritems - push_items);
3110	push_space -= leaf_data_end(left);
3111
3112	/* make room in the right data area */
3113	data_end = leaf_data_end(right);
3114	memmove_leaf_data(right, data_end - push_space, data_end,
3115			  BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
 
 
3116
3117	/* copy from the left data area */
3118	copy_leaf_data(right, left, BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3119		       leaf_data_end(left), push_space);
3120
3121	memmove_leaf_items(right, push_items, 0, right_nritems);
 
 
 
 
3122
3123	/* copy the items from left to right */
3124	copy_leaf_items(right, left, 0, left_nritems - push_items, push_items);
 
 
3125
3126	/* update the item pointers */
3127	btrfs_init_map_token(&token, right);
3128	right_nritems += push_items;
3129	btrfs_set_header_nritems(right, right_nritems);
3130	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3131	for (i = 0; i < right_nritems; i++) {
3132		push_space -= btrfs_token_item_size(&token, i);
3133		btrfs_set_token_item_offset(&token, i, push_space);
 
3134	}
3135
3136	left_nritems -= push_items;
3137	btrfs_set_header_nritems(left, left_nritems);
3138
3139	if (left_nritems)
3140		btrfs_mark_buffer_dirty(left);
3141	else
3142		btrfs_clean_tree_block(left);
3143
3144	btrfs_mark_buffer_dirty(right);
3145
3146	btrfs_item_key(right, &disk_key, 0);
3147	btrfs_set_node_key(upper, &disk_key, slot + 1);
3148	btrfs_mark_buffer_dirty(upper);
3149
3150	/* then fixup the leaf pointer in the path */
3151	if (path->slots[0] >= left_nritems) {
3152		path->slots[0] -= left_nritems;
3153		if (btrfs_header_nritems(path->nodes[0]) == 0)
3154			btrfs_clean_tree_block(path->nodes[0]);
3155		btrfs_tree_unlock(path->nodes[0]);
3156		free_extent_buffer(path->nodes[0]);
3157		path->nodes[0] = right;
3158		path->slots[1] += 1;
3159	} else {
3160		btrfs_tree_unlock(right);
3161		free_extent_buffer(right);
3162	}
3163	return 0;
3164
3165out_unlock:
3166	btrfs_tree_unlock(right);
3167	free_extent_buffer(right);
3168	return 1;
3169}
3170
3171/*
3172 * push some data in the path leaf to the right, trying to free up at
3173 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3174 *
3175 * returns 1 if the push failed because the other node didn't have enough
3176 * room, 0 if everything worked out and < 0 if there were major errors.
3177 *
3178 * this will push starting from min_slot to the end of the leaf.  It won't
3179 * push any slot lower than min_slot
3180 */
3181static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3182			   *root, struct btrfs_path *path,
3183			   int min_data_size, int data_size,
3184			   int empty, u32 min_slot)
3185{
3186	struct extent_buffer *left = path->nodes[0];
3187	struct extent_buffer *right;
3188	struct extent_buffer *upper;
3189	int slot;
3190	int free_space;
3191	u32 left_nritems;
3192	int ret;
3193
3194	if (!path->nodes[1])
3195		return 1;
3196
3197	slot = path->slots[1];
3198	upper = path->nodes[1];
3199	if (slot >= btrfs_header_nritems(upper) - 1)
3200		return 1;
3201
3202	btrfs_assert_tree_write_locked(path->nodes[1]);
3203
3204	right = btrfs_read_node_slot(upper, slot + 1);
3205	/*
3206	 * slot + 1 is not valid or we fail to read the right node,
3207	 * no big deal, just return.
3208	 */
3209	if (IS_ERR(right))
3210		return 1;
3211
3212	__btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
 
3213
3214	free_space = btrfs_leaf_free_space(right);
3215	if (free_space < data_size)
3216		goto out_unlock;
3217
 
3218	ret = btrfs_cow_block(trans, root, right, upper,
3219			      slot + 1, &right, BTRFS_NESTING_RIGHT_COW);
3220	if (ret)
3221		goto out_unlock;
3222
 
 
 
 
3223	left_nritems = btrfs_header_nritems(left);
3224	if (left_nritems == 0)
3225		goto out_unlock;
3226
3227	if (check_sibling_keys(left, right)) {
3228		ret = -EUCLEAN;
3229		btrfs_tree_unlock(right);
3230		free_extent_buffer(right);
3231		return ret;
3232	}
3233	if (path->slots[0] == left_nritems && !empty) {
3234		/* Key greater than all keys in the leaf, right neighbor has
3235		 * enough room for it and we're not emptying our leaf to delete
3236		 * it, therefore use right neighbor to insert the new item and
3237		 * no need to touch/dirty our left leaf. */
3238		btrfs_tree_unlock(left);
3239		free_extent_buffer(left);
3240		path->nodes[0] = right;
3241		path->slots[0] = 0;
3242		path->slots[1]++;
3243		return 0;
3244	}
3245
3246	return __push_leaf_right(path, min_data_size, empty,
3247				right, free_space, left_nritems, min_slot);
3248out_unlock:
3249	btrfs_tree_unlock(right);
3250	free_extent_buffer(right);
3251	return 1;
3252}
3253
3254/*
3255 * push some data in the path leaf to the left, trying to free up at
3256 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3257 *
3258 * max_slot can put a limit on how far into the leaf we'll push items.  The
3259 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3260 * items
3261 */
3262static noinline int __push_leaf_left(struct btrfs_path *path, int data_size,
 
 
3263				     int empty, struct extent_buffer *left,
3264				     int free_space, u32 right_nritems,
3265				     u32 max_slot)
3266{
3267	struct btrfs_fs_info *fs_info = left->fs_info;
3268	struct btrfs_disk_key disk_key;
3269	struct extent_buffer *right = path->nodes[0];
3270	int i;
3271	int push_space = 0;
3272	int push_items = 0;
 
3273	u32 old_left_nritems;
3274	u32 nr;
3275	int ret = 0;
3276	u32 this_item_size;
3277	u32 old_left_item_size;
3278	struct btrfs_map_token token;
3279
 
 
3280	if (empty)
3281		nr = min(right_nritems, max_slot);
3282	else
3283		nr = min(right_nritems - 1, max_slot);
3284
3285	for (i = 0; i < nr; i++) {
 
 
3286		if (!empty && push_items > 0) {
3287			if (path->slots[0] < i)
3288				break;
3289			if (path->slots[0] == i) {
3290				int space = btrfs_leaf_free_space(right);
3291
3292				if (space + push_space * 2 > free_space)
3293					break;
3294			}
3295		}
3296
3297		if (path->slots[0] == i)
3298			push_space += data_size;
3299
3300		this_item_size = btrfs_item_size(right, i);
3301		if (this_item_size + sizeof(struct btrfs_item) + push_space >
3302		    free_space)
3303			break;
3304
3305		push_items++;
3306		push_space += this_item_size + sizeof(struct btrfs_item);
3307	}
3308
3309	if (push_items == 0) {
3310		ret = 1;
3311		goto out;
3312	}
3313	WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3314
3315	/* push data from right to left */
3316	copy_leaf_items(left, right, btrfs_header_nritems(left), 0, push_items);
3317
3318	push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
3319		     btrfs_item_offset(right, push_items - 1);
3320
3321	copy_leaf_data(left, right, leaf_data_end(left) - push_space,
3322		       btrfs_item_offset(right, push_items - 1), push_space);
 
 
 
 
 
 
3323	old_left_nritems = btrfs_header_nritems(left);
3324	BUG_ON(old_left_nritems <= 0);
3325
3326	btrfs_init_map_token(&token, left);
3327	old_left_item_size = btrfs_item_offset(left, old_left_nritems - 1);
3328	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3329		u32 ioff;
3330
3331		ioff = btrfs_token_item_offset(&token, i);
3332		btrfs_set_token_item_offset(&token, i,
3333		      ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size));
 
 
 
3334	}
3335	btrfs_set_header_nritems(left, old_left_nritems + push_items);
3336
3337	/* fixup right node */
3338	if (push_items > right_nritems)
3339		WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3340		       right_nritems);
3341
3342	if (push_items < right_nritems) {
3343		push_space = btrfs_item_offset(right, push_items - 1) -
3344						  leaf_data_end(right);
3345		memmove_leaf_data(right,
3346				  BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3347				  leaf_data_end(right), push_space);
3348
3349		memmove_leaf_items(right, 0, push_items,
3350				   btrfs_header_nritems(right) - push_items);
 
 
 
3351	}
3352
3353	btrfs_init_map_token(&token, right);
3354	right_nritems -= push_items;
3355	btrfs_set_header_nritems(right, right_nritems);
3356	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3357	for (i = 0; i < right_nritems; i++) {
3358		push_space = push_space - btrfs_token_item_size(&token, i);
3359		btrfs_set_token_item_offset(&token, i, push_space);
 
 
 
3360	}
3361
3362	btrfs_mark_buffer_dirty(left);
3363	if (right_nritems)
3364		btrfs_mark_buffer_dirty(right);
3365	else
3366		btrfs_clean_tree_block(right);
3367
3368	btrfs_item_key(right, &disk_key, 0);
3369	fixup_low_keys(path, &disk_key, 1);
3370
3371	/* then fixup the leaf pointer in the path */
3372	if (path->slots[0] < push_items) {
3373		path->slots[0] += old_left_nritems;
3374		btrfs_tree_unlock(path->nodes[0]);
3375		free_extent_buffer(path->nodes[0]);
3376		path->nodes[0] = left;
3377		path->slots[1] -= 1;
3378	} else {
3379		btrfs_tree_unlock(left);
3380		free_extent_buffer(left);
3381		path->slots[0] -= push_items;
3382	}
3383	BUG_ON(path->slots[0] < 0);
3384	return ret;
3385out:
3386	btrfs_tree_unlock(left);
3387	free_extent_buffer(left);
3388	return ret;
3389}
3390
3391/*
3392 * push some data in the path leaf to the left, trying to free up at
3393 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3394 *
3395 * max_slot can put a limit on how far into the leaf we'll push items.  The
3396 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3397 * items
3398 */
3399static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3400			  *root, struct btrfs_path *path, int min_data_size,
3401			  int data_size, int empty, u32 max_slot)
3402{
3403	struct extent_buffer *right = path->nodes[0];
3404	struct extent_buffer *left;
3405	int slot;
3406	int free_space;
3407	u32 right_nritems;
3408	int ret = 0;
3409
3410	slot = path->slots[1];
3411	if (slot == 0)
3412		return 1;
3413	if (!path->nodes[1])
3414		return 1;
3415
3416	right_nritems = btrfs_header_nritems(right);
3417	if (right_nritems == 0)
3418		return 1;
3419
3420	btrfs_assert_tree_write_locked(path->nodes[1]);
3421
3422	left = btrfs_read_node_slot(path->nodes[1], slot - 1);
3423	/*
3424	 * slot - 1 is not valid or we fail to read the left node,
3425	 * no big deal, just return.
3426	 */
3427	if (IS_ERR(left))
3428		return 1;
3429
3430	__btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
 
3431
3432	free_space = btrfs_leaf_free_space(left);
3433	if (free_space < data_size) {
3434		ret = 1;
3435		goto out;
3436	}
3437
 
3438	ret = btrfs_cow_block(trans, root, left,
3439			      path->nodes[1], slot - 1, &left,
3440			      BTRFS_NESTING_LEFT_COW);
3441	if (ret) {
3442		/* we hit -ENOSPC, but it isn't fatal here */
3443		if (ret == -ENOSPC)
3444			ret = 1;
3445		goto out;
3446	}
3447
3448	if (check_sibling_keys(left, right)) {
3449		ret = -EUCLEAN;
 
3450		goto out;
3451	}
3452	return __push_leaf_left(path, min_data_size,
 
3453			       empty, left, free_space, right_nritems,
3454			       max_slot);
3455out:
3456	btrfs_tree_unlock(left);
3457	free_extent_buffer(left);
3458	return ret;
3459}
3460
3461/*
3462 * split the path's leaf in two, making sure there is at least data_size
3463 * available for the resulting leaf level of the path.
3464 */
3465static noinline void copy_for_split(struct btrfs_trans_handle *trans,
 
3466				    struct btrfs_path *path,
3467				    struct extent_buffer *l,
3468				    struct extent_buffer *right,
3469				    int slot, int mid, int nritems)
3470{
3471	struct btrfs_fs_info *fs_info = trans->fs_info;
3472	int data_copy_size;
3473	int rt_data_off;
3474	int i;
3475	struct btrfs_disk_key disk_key;
3476	struct btrfs_map_token token;
3477
 
 
3478	nritems = nritems - mid;
3479	btrfs_set_header_nritems(right, nritems);
3480	data_copy_size = btrfs_item_data_end(l, mid) - leaf_data_end(l);
3481
3482	copy_leaf_items(right, l, 0, mid, nritems);
3483
3484	copy_leaf_data(right, l, BTRFS_LEAF_DATA_SIZE(fs_info) - data_copy_size,
3485		       leaf_data_end(l), data_copy_size);
 
 
 
 
 
 
3486
3487	rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_data_end(l, mid);
 
3488
3489	btrfs_init_map_token(&token, right);
3490	for (i = 0; i < nritems; i++) {
 
3491		u32 ioff;
3492
3493		ioff = btrfs_token_item_offset(&token, i);
3494		btrfs_set_token_item_offset(&token, i, ioff + rt_data_off);
 
3495	}
3496
3497	btrfs_set_header_nritems(l, mid);
3498	btrfs_item_key(right, &disk_key, 0);
3499	insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1);
 
3500
3501	btrfs_mark_buffer_dirty(right);
3502	btrfs_mark_buffer_dirty(l);
3503	BUG_ON(path->slots[0] != slot);
3504
3505	if (mid <= slot) {
3506		btrfs_tree_unlock(path->nodes[0]);
3507		free_extent_buffer(path->nodes[0]);
3508		path->nodes[0] = right;
3509		path->slots[0] -= mid;
3510		path->slots[1] += 1;
3511	} else {
3512		btrfs_tree_unlock(right);
3513		free_extent_buffer(right);
3514	}
3515
3516	BUG_ON(path->slots[0] < 0);
3517}
3518
3519/*
3520 * double splits happen when we need to insert a big item in the middle
3521 * of a leaf.  A double split can leave us with 3 mostly empty leaves:
3522 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
3523 *          A                 B                 C
3524 *
3525 * We avoid this by trying to push the items on either side of our target
3526 * into the adjacent leaves.  If all goes well we can avoid the double split
3527 * completely.
3528 */
3529static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
3530					  struct btrfs_root *root,
3531					  struct btrfs_path *path,
3532					  int data_size)
3533{
3534	int ret;
3535	int progress = 0;
3536	int slot;
3537	u32 nritems;
3538	int space_needed = data_size;
3539
3540	slot = path->slots[0];
3541	if (slot < btrfs_header_nritems(path->nodes[0]))
3542		space_needed -= btrfs_leaf_free_space(path->nodes[0]);
3543
3544	/*
3545	 * try to push all the items after our slot into the
3546	 * right leaf
3547	 */
3548	ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
3549	if (ret < 0)
3550		return ret;
3551
3552	if (ret == 0)
3553		progress++;
3554
3555	nritems = btrfs_header_nritems(path->nodes[0]);
3556	/*
3557	 * our goal is to get our slot at the start or end of a leaf.  If
3558	 * we've done so we're done
3559	 */
3560	if (path->slots[0] == 0 || path->slots[0] == nritems)
3561		return 0;
3562
3563	if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
3564		return 0;
3565
3566	/* try to push all the items before our slot into the next leaf */
3567	slot = path->slots[0];
3568	space_needed = data_size;
3569	if (slot > 0)
3570		space_needed -= btrfs_leaf_free_space(path->nodes[0]);
3571	ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
3572	if (ret < 0)
3573		return ret;
3574
3575	if (ret == 0)
3576		progress++;
3577
3578	if (progress)
3579		return 0;
3580	return 1;
3581}
3582
3583/*
3584 * split the path's leaf in two, making sure there is at least data_size
3585 * available for the resulting leaf level of the path.
3586 *
3587 * returns 0 if all went well and < 0 on failure.
3588 */
3589static noinline int split_leaf(struct btrfs_trans_handle *trans,
3590			       struct btrfs_root *root,
3591			       const struct btrfs_key *ins_key,
3592			       struct btrfs_path *path, int data_size,
3593			       int extend)
3594{
3595	struct btrfs_disk_key disk_key;
3596	struct extent_buffer *l;
3597	u32 nritems;
3598	int mid;
3599	int slot;
3600	struct extent_buffer *right;
3601	struct btrfs_fs_info *fs_info = root->fs_info;
3602	int ret = 0;
3603	int wret;
3604	int split;
3605	int num_doubles = 0;
3606	int tried_avoid_double = 0;
3607
3608	l = path->nodes[0];
3609	slot = path->slots[0];
3610	if (extend && data_size + btrfs_item_size(l, slot) +
3611	    sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
3612		return -EOVERFLOW;
3613
3614	/* first try to make some room by pushing left and right */
3615	if (data_size && path->nodes[1]) {
3616		int space_needed = data_size;
3617
3618		if (slot < btrfs_header_nritems(l))
3619			space_needed -= btrfs_leaf_free_space(l);
3620
3621		wret = push_leaf_right(trans, root, path, space_needed,
3622				       space_needed, 0, 0);
3623		if (wret < 0)
3624			return wret;
3625		if (wret) {
3626			space_needed = data_size;
3627			if (slot > 0)
3628				space_needed -= btrfs_leaf_free_space(l);
3629			wret = push_leaf_left(trans, root, path, space_needed,
3630					      space_needed, 0, (u32)-1);
3631			if (wret < 0)
3632				return wret;
3633		}
3634		l = path->nodes[0];
3635
3636		/* did the pushes work? */
3637		if (btrfs_leaf_free_space(l) >= data_size)
3638			return 0;
3639	}
3640
3641	if (!path->nodes[1]) {
3642		ret = insert_new_root(trans, root, path, 1);
3643		if (ret)
3644			return ret;
3645	}
3646again:
3647	split = 1;
3648	l = path->nodes[0];
3649	slot = path->slots[0];
3650	nritems = btrfs_header_nritems(l);
3651	mid = (nritems + 1) / 2;
3652
3653	if (mid <= slot) {
3654		if (nritems == 1 ||
3655		    leaf_space_used(l, mid, nritems - mid) + data_size >
3656			BTRFS_LEAF_DATA_SIZE(fs_info)) {
3657			if (slot >= nritems) {
3658				split = 0;
3659			} else {
3660				mid = slot;
3661				if (mid != nritems &&
3662				    leaf_space_used(l, mid, nritems - mid) +
3663				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
3664					if (data_size && !tried_avoid_double)
3665						goto push_for_double;
3666					split = 2;
3667				}
3668			}
3669		}
3670	} else {
3671		if (leaf_space_used(l, 0, mid) + data_size >
3672			BTRFS_LEAF_DATA_SIZE(fs_info)) {
3673			if (!extend && data_size && slot == 0) {
3674				split = 0;
3675			} else if ((extend || !data_size) && slot == 0) {
3676				mid = 1;
3677			} else {
3678				mid = slot;
3679				if (mid != nritems &&
3680				    leaf_space_used(l, mid, nritems - mid) +
3681				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
3682					if (data_size && !tried_avoid_double)
3683						goto push_for_double;
3684					split = 2;
3685				}
3686			}
3687		}
3688	}
3689
3690	if (split == 0)
3691		btrfs_cpu_key_to_disk(&disk_key, ins_key);
3692	else
3693		btrfs_item_key(l, &disk_key, mid);
3694
3695	/*
3696	 * We have to about BTRFS_NESTING_NEW_ROOT here if we've done a double
3697	 * split, because we're only allowed to have MAX_LOCKDEP_SUBCLASSES
3698	 * subclasses, which is 8 at the time of this patch, and we've maxed it
3699	 * out.  In the future we could add a
3700	 * BTRFS_NESTING_SPLIT_THE_SPLITTENING if we need to, but for now just
3701	 * use BTRFS_NESTING_NEW_ROOT.
3702	 */
3703	right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3704				       &disk_key, 0, l->start, 0,
3705				       num_doubles ? BTRFS_NESTING_NEW_ROOT :
3706				       BTRFS_NESTING_SPLIT);
3707	if (IS_ERR(right))
3708		return PTR_ERR(right);
3709
3710	root_add_used(root, fs_info->nodesize);
 
 
 
 
 
 
 
 
 
 
 
 
 
3711
3712	if (split == 0) {
3713		if (mid <= slot) {
3714			btrfs_set_header_nritems(right, 0);
3715			insert_ptr(trans, path, &disk_key,
3716				   right->start, path->slots[1] + 1, 1);
3717			btrfs_tree_unlock(path->nodes[0]);
3718			free_extent_buffer(path->nodes[0]);
3719			path->nodes[0] = right;
3720			path->slots[0] = 0;
3721			path->slots[1] += 1;
3722		} else {
3723			btrfs_set_header_nritems(right, 0);
3724			insert_ptr(trans, path, &disk_key,
3725				   right->start, path->slots[1], 1);
3726			btrfs_tree_unlock(path->nodes[0]);
3727			free_extent_buffer(path->nodes[0]);
3728			path->nodes[0] = right;
3729			path->slots[0] = 0;
3730			if (path->slots[1] == 0)
3731				fixup_low_keys(path, &disk_key, 1);
3732		}
3733		/*
3734		 * We create a new leaf 'right' for the required ins_len and
3735		 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
3736		 * the content of ins_len to 'right'.
3737		 */
3738		return ret;
3739	}
3740
3741	copy_for_split(trans, path, l, right, slot, mid, nritems);
3742
3743	if (split == 2) {
3744		BUG_ON(num_doubles != 0);
3745		num_doubles++;
3746		goto again;
3747	}
3748
3749	return 0;
3750
3751push_for_double:
3752	push_for_double_split(trans, root, path, data_size);
3753	tried_avoid_double = 1;
3754	if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
3755		return 0;
3756	goto again;
3757}
3758
3759static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
3760					 struct btrfs_root *root,
3761					 struct btrfs_path *path, int ins_len)
3762{
3763	struct btrfs_key key;
3764	struct extent_buffer *leaf;
3765	struct btrfs_file_extent_item *fi;
3766	u64 extent_len = 0;
3767	u32 item_size;
3768	int ret;
3769
3770	leaf = path->nodes[0];
3771	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3772
3773	BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
3774	       key.type != BTRFS_EXTENT_CSUM_KEY);
3775
3776	if (btrfs_leaf_free_space(leaf) >= ins_len)
3777		return 0;
3778
3779	item_size = btrfs_item_size(leaf, path->slots[0]);
3780	if (key.type == BTRFS_EXTENT_DATA_KEY) {
3781		fi = btrfs_item_ptr(leaf, path->slots[0],
3782				    struct btrfs_file_extent_item);
3783		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
3784	}
3785	btrfs_release_path(path);
3786
3787	path->keep_locks = 1;
3788	path->search_for_split = 1;
3789	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
3790	path->search_for_split = 0;
3791	if (ret > 0)
3792		ret = -EAGAIN;
3793	if (ret < 0)
3794		goto err;
3795
3796	ret = -EAGAIN;
3797	leaf = path->nodes[0];
3798	/* if our item isn't there, return now */
3799	if (item_size != btrfs_item_size(leaf, path->slots[0]))
3800		goto err;
3801
3802	/* the leaf has  changed, it now has room.  return now */
3803	if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len)
3804		goto err;
3805
3806	if (key.type == BTRFS_EXTENT_DATA_KEY) {
3807		fi = btrfs_item_ptr(leaf, path->slots[0],
3808				    struct btrfs_file_extent_item);
3809		if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
3810			goto err;
3811	}
3812
 
3813	ret = split_leaf(trans, root, &key, path, ins_len, 1);
3814	if (ret)
3815		goto err;
3816
3817	path->keep_locks = 0;
3818	btrfs_unlock_up_safe(path, 1);
3819	return 0;
3820err:
3821	path->keep_locks = 0;
3822	return ret;
3823}
3824
3825static noinline int split_item(struct btrfs_path *path,
3826			       const struct btrfs_key *new_key,
 
 
3827			       unsigned long split_offset)
3828{
3829	struct extent_buffer *leaf;
3830	int orig_slot, slot;
 
 
3831	char *buf;
3832	u32 nritems;
3833	u32 item_size;
3834	u32 orig_offset;
3835	struct btrfs_disk_key disk_key;
3836
3837	leaf = path->nodes[0];
3838	BUG_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item));
3839
3840	orig_slot = path->slots[0];
3841	orig_offset = btrfs_item_offset(leaf, path->slots[0]);
3842	item_size = btrfs_item_size(leaf, path->slots[0]);
 
 
3843
3844	buf = kmalloc(item_size, GFP_NOFS);
3845	if (!buf)
3846		return -ENOMEM;
3847
3848	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
3849			    path->slots[0]), item_size);
3850
3851	slot = path->slots[0] + 1;
3852	nritems = btrfs_header_nritems(leaf);
3853	if (slot != nritems) {
3854		/* shift the items */
3855		memmove_leaf_items(leaf, slot + 1, slot, nritems - slot);
 
 
3856	}
3857
3858	btrfs_cpu_key_to_disk(&disk_key, new_key);
3859	btrfs_set_item_key(leaf, &disk_key, slot);
3860
3861	btrfs_set_item_offset(leaf, slot, orig_offset);
3862	btrfs_set_item_size(leaf, slot, item_size - split_offset);
 
 
3863
3864	btrfs_set_item_offset(leaf, orig_slot,
3865				 orig_offset + item_size - split_offset);
3866	btrfs_set_item_size(leaf, orig_slot, split_offset);
3867
3868	btrfs_set_header_nritems(leaf, nritems + 1);
3869
3870	/* write the data for the start of the original item */
3871	write_extent_buffer(leaf, buf,
3872			    btrfs_item_ptr_offset(leaf, path->slots[0]),
3873			    split_offset);
3874
3875	/* write the data for the new item */
3876	write_extent_buffer(leaf, buf + split_offset,
3877			    btrfs_item_ptr_offset(leaf, slot),
3878			    item_size - split_offset);
3879	btrfs_mark_buffer_dirty(leaf);
3880
3881	BUG_ON(btrfs_leaf_free_space(leaf) < 0);
3882	kfree(buf);
3883	return 0;
3884}
3885
3886/*
3887 * This function splits a single item into two items,
3888 * giving 'new_key' to the new item and splitting the
3889 * old one at split_offset (from the start of the item).
3890 *
3891 * The path may be released by this operation.  After
3892 * the split, the path is pointing to the old item.  The
3893 * new item is going to be in the same node as the old one.
3894 *
3895 * Note, the item being split must be smaller enough to live alone on
3896 * a tree block with room for one extra struct btrfs_item
3897 *
3898 * This allows us to split the item in place, keeping a lock on the
3899 * leaf the entire time.
3900 */
3901int btrfs_split_item(struct btrfs_trans_handle *trans,
3902		     struct btrfs_root *root,
3903		     struct btrfs_path *path,
3904		     const struct btrfs_key *new_key,
3905		     unsigned long split_offset)
3906{
3907	int ret;
3908	ret = setup_leaf_for_split(trans, root, path,
3909				   sizeof(struct btrfs_item));
3910	if (ret)
3911		return ret;
3912
3913	ret = split_item(path, new_key, split_offset);
3914	return ret;
3915}
3916
3917/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3918 * make the item pointed to by the path smaller.  new_size indicates
3919 * how small to make it, and from_end tells us if we just chop bytes
3920 * off the end of the item or if we shift the item to chop bytes off
3921 * the front.
3922 */
3923void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end)
 
3924{
3925	int slot;
3926	struct extent_buffer *leaf;
 
3927	u32 nritems;
3928	unsigned int data_end;
3929	unsigned int old_data_start;
3930	unsigned int old_size;
3931	unsigned int size_diff;
3932	int i;
3933	struct btrfs_map_token token;
3934
 
 
3935	leaf = path->nodes[0];
3936	slot = path->slots[0];
3937
3938	old_size = btrfs_item_size(leaf, slot);
3939	if (old_size == new_size)
3940		return;
3941
3942	nritems = btrfs_header_nritems(leaf);
3943	data_end = leaf_data_end(leaf);
3944
3945	old_data_start = btrfs_item_offset(leaf, slot);
3946
3947	size_diff = old_size - new_size;
3948
3949	BUG_ON(slot < 0);
3950	BUG_ON(slot >= nritems);
3951
3952	/*
3953	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3954	 */
3955	/* first correct the data pointers */
3956	btrfs_init_map_token(&token, leaf);
3957	for (i = slot; i < nritems; i++) {
3958		u32 ioff;
 
3959
3960		ioff = btrfs_token_item_offset(&token, i);
3961		btrfs_set_token_item_offset(&token, i, ioff + size_diff);
 
3962	}
3963
3964	/* shift the data */
3965	if (from_end) {
3966		memmove_leaf_data(leaf, data_end + size_diff, data_end,
3967				  old_data_start + new_size - data_end);
 
3968	} else {
3969		struct btrfs_disk_key disk_key;
3970		u64 offset;
3971
3972		btrfs_item_key(leaf, &disk_key, slot);
3973
3974		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
3975			unsigned long ptr;
3976			struct btrfs_file_extent_item *fi;
3977
3978			fi = btrfs_item_ptr(leaf, slot,
3979					    struct btrfs_file_extent_item);
3980			fi = (struct btrfs_file_extent_item *)(
3981			     (unsigned long)fi - size_diff);
3982
3983			if (btrfs_file_extent_type(leaf, fi) ==
3984			    BTRFS_FILE_EXTENT_INLINE) {
3985				ptr = btrfs_item_ptr_offset(leaf, slot);
3986				memmove_extent_buffer(leaf, ptr,
3987				      (unsigned long)fi,
3988				      BTRFS_FILE_EXTENT_INLINE_DATA_START);
3989			}
3990		}
3991
3992		memmove_leaf_data(leaf, data_end + size_diff, data_end,
3993				  old_data_start - data_end);
 
3994
3995		offset = btrfs_disk_key_offset(&disk_key);
3996		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
3997		btrfs_set_item_key(leaf, &disk_key, slot);
3998		if (slot == 0)
3999			fixup_low_keys(path, &disk_key, 1);
4000	}
4001
4002	btrfs_set_item_size(leaf, slot, new_size);
 
4003	btrfs_mark_buffer_dirty(leaf);
4004
4005	if (btrfs_leaf_free_space(leaf) < 0) {
4006		btrfs_print_leaf(leaf);
4007		BUG();
4008	}
4009}
4010
4011/*
4012 * make the item pointed to by the path bigger, data_size is the added size.
4013 */
4014void btrfs_extend_item(struct btrfs_path *path, u32 data_size)
 
4015{
4016	int slot;
4017	struct extent_buffer *leaf;
 
4018	u32 nritems;
4019	unsigned int data_end;
4020	unsigned int old_data;
4021	unsigned int old_size;
4022	int i;
4023	struct btrfs_map_token token;
4024
 
 
4025	leaf = path->nodes[0];
4026
4027	nritems = btrfs_header_nritems(leaf);
4028	data_end = leaf_data_end(leaf);
4029
4030	if (btrfs_leaf_free_space(leaf) < data_size) {
4031		btrfs_print_leaf(leaf);
4032		BUG();
4033	}
4034	slot = path->slots[0];
4035	old_data = btrfs_item_data_end(leaf, slot);
4036
4037	BUG_ON(slot < 0);
4038	if (slot >= nritems) {
4039		btrfs_print_leaf(leaf);
4040		btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d",
4041			   slot, nritems);
4042		BUG();
4043	}
4044
4045	/*
4046	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4047	 */
4048	/* first correct the data pointers */
4049	btrfs_init_map_token(&token, leaf);
4050	for (i = slot; i < nritems; i++) {
4051		u32 ioff;
 
4052
4053		ioff = btrfs_token_item_offset(&token, i);
4054		btrfs_set_token_item_offset(&token, i, ioff - data_size);
 
4055	}
4056
4057	/* shift the data */
4058	memmove_leaf_data(leaf, data_end - data_size, data_end,
4059			  old_data - data_end);
 
4060
4061	data_end = old_data;
4062	old_size = btrfs_item_size(leaf, slot);
4063	btrfs_set_item_size(leaf, slot, old_size + data_size);
 
4064	btrfs_mark_buffer_dirty(leaf);
4065
4066	if (btrfs_leaf_free_space(leaf) < 0) {
4067		btrfs_print_leaf(leaf);
4068		BUG();
4069	}
4070}
4071
4072/*
4073 * Make space in the node before inserting one or more items.
4074 *
4075 * @root:	root we are inserting items to
4076 * @path:	points to the leaf/slot where we are going to insert new items
4077 * @batch:      information about the batch of items to insert
4078 *
4079 * Main purpose is to save stack depth by doing the bulk of the work in a
4080 * function that doesn't call btrfs_search_slot
4081 */
4082static void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4083				   const struct btrfs_item_batch *batch)
4084{
4085	struct btrfs_fs_info *fs_info = root->fs_info;
4086	int i;
4087	u32 nritems;
4088	unsigned int data_end;
4089	struct btrfs_disk_key disk_key;
4090	struct extent_buffer *leaf;
4091	int slot;
4092	struct btrfs_map_token token;
4093	u32 total_size;
4094
4095	/*
4096	 * Before anything else, update keys in the parent and other ancestors
4097	 * if needed, then release the write locks on them, so that other tasks
4098	 * can use them while we modify the leaf.
4099	 */
4100	if (path->slots[0] == 0) {
4101		btrfs_cpu_key_to_disk(&disk_key, &batch->keys[0]);
4102		fixup_low_keys(path, &disk_key, 1);
4103	}
4104	btrfs_unlock_up_safe(path, 1);
4105
 
 
4106	leaf = path->nodes[0];
4107	slot = path->slots[0];
4108
4109	nritems = btrfs_header_nritems(leaf);
4110	data_end = leaf_data_end(leaf);
4111	total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item));
4112
4113	if (btrfs_leaf_free_space(leaf) < total_size) {
4114		btrfs_print_leaf(leaf);
4115		btrfs_crit(fs_info, "not enough freespace need %u have %d",
4116			   total_size, btrfs_leaf_free_space(leaf));
4117		BUG();
4118	}
4119
4120	btrfs_init_map_token(&token, leaf);
4121	if (slot != nritems) {
4122		unsigned int old_data = btrfs_item_data_end(leaf, slot);
4123
4124		if (old_data < data_end) {
4125			btrfs_print_leaf(leaf);
4126			btrfs_crit(fs_info,
4127		"item at slot %d with data offset %u beyond data end of leaf %u",
4128				   slot, old_data, data_end);
4129			BUG();
4130		}
4131		/*
4132		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4133		 */
4134		/* first correct the data pointers */
4135		for (i = slot; i < nritems; i++) {
4136			u32 ioff;
4137
4138			ioff = btrfs_token_item_offset(&token, i);
4139			btrfs_set_token_item_offset(&token, i,
4140						       ioff - batch->total_data_size);
 
4141		}
4142		/* shift the items */
4143		memmove_leaf_items(leaf, slot + batch->nr, slot, nritems - slot);
 
 
4144
4145		/* shift the data */
4146		memmove_leaf_data(leaf, data_end - batch->total_data_size,
4147				  data_end, old_data - data_end);
 
4148		data_end = old_data;
4149	}
4150
4151	/* setup the item for the new data */
4152	for (i = 0; i < batch->nr; i++) {
4153		btrfs_cpu_key_to_disk(&disk_key, &batch->keys[i]);
4154		btrfs_set_item_key(leaf, &disk_key, slot + i);
4155		data_end -= batch->data_sizes[i];
4156		btrfs_set_token_item_offset(&token, slot + i, data_end);
4157		btrfs_set_token_item_size(&token, slot + i, batch->data_sizes[i]);
 
 
4158	}
4159
4160	btrfs_set_header_nritems(leaf, nritems + batch->nr);
4161	btrfs_mark_buffer_dirty(leaf);
4162
4163	if (btrfs_leaf_free_space(leaf) < 0) {
4164		btrfs_print_leaf(leaf);
4165		BUG();
4166	}
4167}
4168
4169/*
4170 * Insert a new item into a leaf.
4171 *
4172 * @root:      The root of the btree.
4173 * @path:      A path pointing to the target leaf and slot.
4174 * @key:       The key of the new item.
4175 * @data_size: The size of the data associated with the new key.
4176 */
4177void btrfs_setup_item_for_insert(struct btrfs_root *root,
4178				 struct btrfs_path *path,
4179				 const struct btrfs_key *key,
4180				 u32 data_size)
4181{
4182	struct btrfs_item_batch batch;
4183
4184	batch.keys = key;
4185	batch.data_sizes = &data_size;
4186	batch.total_data_size = data_size;
4187	batch.nr = 1;
4188
4189	setup_items_for_insert(root, path, &batch);
4190}
4191
4192/*
4193 * Given a key and some data, insert items into the tree.
4194 * This does all the path init required, making room in the tree if needed.
4195 */
4196int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4197			    struct btrfs_root *root,
4198			    struct btrfs_path *path,
4199			    const struct btrfs_item_batch *batch)
 
4200{
4201	int ret = 0;
4202	int slot;
4203	u32 total_size;
 
 
4204
4205	total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item));
4206	ret = btrfs_search_slot(trans, root, &batch->keys[0], path, total_size, 1);
 
 
 
4207	if (ret == 0)
4208		return -EEXIST;
4209	if (ret < 0)
4210		return ret;
4211
4212	slot = path->slots[0];
4213	BUG_ON(slot < 0);
4214
4215	setup_items_for_insert(root, path, batch);
 
4216	return 0;
4217}
4218
4219/*
4220 * Given a key and some data, insert an item into the tree.
4221 * This does all the path init required, making room in the tree if needed.
4222 */
4223int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4224		      const struct btrfs_key *cpu_key, void *data,
4225		      u32 data_size)
4226{
4227	int ret = 0;
4228	struct btrfs_path *path;
4229	struct extent_buffer *leaf;
4230	unsigned long ptr;
4231
4232	path = btrfs_alloc_path();
4233	if (!path)
4234		return -ENOMEM;
4235	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4236	if (!ret) {
4237		leaf = path->nodes[0];
4238		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4239		write_extent_buffer(leaf, data, ptr, data_size);
4240		btrfs_mark_buffer_dirty(leaf);
4241	}
4242	btrfs_free_path(path);
4243	return ret;
4244}
4245
4246/*
4247 * This function duplicates an item, giving 'new_key' to the new item.
4248 * It guarantees both items live in the same tree leaf and the new item is
4249 * contiguous with the original item.
4250 *
4251 * This allows us to split a file extent in place, keeping a lock on the leaf
4252 * the entire time.
4253 */
4254int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4255			 struct btrfs_root *root,
4256			 struct btrfs_path *path,
4257			 const struct btrfs_key *new_key)
4258{
4259	struct extent_buffer *leaf;
4260	int ret;
4261	u32 item_size;
4262
4263	leaf = path->nodes[0];
4264	item_size = btrfs_item_size(leaf, path->slots[0]);
4265	ret = setup_leaf_for_split(trans, root, path,
4266				   item_size + sizeof(struct btrfs_item));
4267	if (ret)
4268		return ret;
4269
4270	path->slots[0]++;
4271	btrfs_setup_item_for_insert(root, path, new_key, item_size);
4272	leaf = path->nodes[0];
4273	memcpy_extent_buffer(leaf,
4274			     btrfs_item_ptr_offset(leaf, path->slots[0]),
4275			     btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4276			     item_size);
4277	return 0;
4278}
4279
4280/*
4281 * delete the pointer from a given node.
4282 *
4283 * the tree should have been previously balanced so the deletion does not
4284 * empty a node.
4285 */
4286static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4287		    int level, int slot)
4288{
4289	struct extent_buffer *parent = path->nodes[level];
4290	u32 nritems;
4291	int ret;
4292
4293	nritems = btrfs_header_nritems(parent);
4294	if (slot != nritems - 1) {
4295		if (level) {
4296			ret = btrfs_tree_mod_log_insert_move(parent, slot,
4297					slot + 1, nritems - slot - 1);
4298			BUG_ON(ret < 0);
4299		}
4300		memmove_extent_buffer(parent,
4301			      btrfs_node_key_ptr_offset(parent, slot),
4302			      btrfs_node_key_ptr_offset(parent, slot + 1),
4303			      sizeof(struct btrfs_key_ptr) *
4304			      (nritems - slot - 1));
4305	} else if (level) {
4306		ret = btrfs_tree_mod_log_insert_key(parent, slot,
4307						    BTRFS_MOD_LOG_KEY_REMOVE);
4308		BUG_ON(ret < 0);
4309	}
4310
4311	nritems--;
4312	btrfs_set_header_nritems(parent, nritems);
4313	if (nritems == 0 && parent == root->node) {
4314		BUG_ON(btrfs_header_level(root->node) != 1);
4315		/* just turn the root into a leaf and break */
4316		btrfs_set_header_level(root->node, 0);
4317	} else if (slot == 0) {
4318		struct btrfs_disk_key disk_key;
4319
4320		btrfs_node_key(parent, &disk_key, 0);
4321		fixup_low_keys(path, &disk_key, level + 1);
4322	}
4323	btrfs_mark_buffer_dirty(parent);
4324}
4325
4326/*
4327 * a helper function to delete the leaf pointed to by path->slots[1] and
4328 * path->nodes[1].
4329 *
4330 * This deletes the pointer in path->nodes[1] and frees the leaf
4331 * block extent.  zero is returned if it all worked out, < 0 otherwise.
4332 *
4333 * The path must have already been setup for deleting the leaf, including
4334 * all the proper balancing.  path->nodes[1] must be locked.
4335 */
4336static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4337				    struct btrfs_root *root,
4338				    struct btrfs_path *path,
4339				    struct extent_buffer *leaf)
4340{
4341	WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4342	del_ptr(root, path, 1, path->slots[1]);
4343
4344	/*
4345	 * btrfs_free_extent is expensive, we want to make sure we
4346	 * aren't holding any locks when we call it
4347	 */
4348	btrfs_unlock_up_safe(path, 0);
4349
4350	root_sub_used(root, leaf->len);
4351
4352	atomic_inc(&leaf->refs);
4353	btrfs_free_tree_block(trans, btrfs_root_id(root), leaf, 0, 1);
4354	free_extent_buffer_stale(leaf);
4355}
4356/*
4357 * delete the item at the leaf level in path.  If that empties
4358 * the leaf, remove it from the tree
4359 */
4360int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4361		    struct btrfs_path *path, int slot, int nr)
4362{
4363	struct btrfs_fs_info *fs_info = root->fs_info;
4364	struct extent_buffer *leaf;
 
 
 
4365	int ret = 0;
4366	int wret;
 
4367	u32 nritems;
 
 
 
4368
4369	leaf = path->nodes[0];
 
 
 
 
 
4370	nritems = btrfs_header_nritems(leaf);
4371
4372	if (slot + nr != nritems) {
4373		const u32 last_off = btrfs_item_offset(leaf, slot + nr - 1);
4374		const int data_end = leaf_data_end(leaf);
4375		struct btrfs_map_token token;
4376		u32 dsize = 0;
4377		int i;
4378
4379		for (i = 0; i < nr; i++)
4380			dsize += btrfs_item_size(leaf, slot + i);
4381
4382		memmove_leaf_data(leaf, data_end + dsize, data_end,
4383				  last_off - data_end);
 
 
4384
4385		btrfs_init_map_token(&token, leaf);
4386		for (i = slot + nr; i < nritems; i++) {
4387			u32 ioff;
4388
4389			ioff = btrfs_token_item_offset(&token, i);
4390			btrfs_set_token_item_offset(&token, i, ioff + dsize);
 
 
4391		}
4392
4393		memmove_leaf_items(leaf, slot, slot + nr, nritems - slot - nr);
 
 
 
4394	}
4395	btrfs_set_header_nritems(leaf, nritems - nr);
4396	nritems -= nr;
4397
4398	/* delete the leaf if we've emptied it */
4399	if (nritems == 0) {
4400		if (leaf == root->node) {
4401			btrfs_set_header_level(leaf, 0);
4402		} else {
4403			btrfs_clean_tree_block(leaf);
 
4404			btrfs_del_leaf(trans, root, path, leaf);
4405		}
4406	} else {
4407		int used = leaf_space_used(leaf, 0, nritems);
4408		if (slot == 0) {
4409			struct btrfs_disk_key disk_key;
4410
4411			btrfs_item_key(leaf, &disk_key, 0);
4412			fixup_low_keys(path, &disk_key, 1);
4413		}
4414
4415		/*
4416		 * Try to delete the leaf if it is mostly empty. We do this by
4417		 * trying to move all its items into its left and right neighbours.
4418		 * If we can't move all the items, then we don't delete it - it's
4419		 * not ideal, but future insertions might fill the leaf with more
4420		 * items, or items from other leaves might be moved later into our
4421		 * leaf due to deletions on those leaves.
4422		 */
4423		if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
4424			u32 min_push_space;
4425
4426			/* push_leaf_left fixes the path.
4427			 * make sure the path still points to our leaf
4428			 * for possible call to del_ptr below
4429			 */
4430			slot = path->slots[1];
4431			atomic_inc(&leaf->refs);
4432			/*
4433			 * We want to be able to at least push one item to the
4434			 * left neighbour leaf, and that's the first item.
4435			 */
4436			min_push_space = sizeof(struct btrfs_item) +
4437				btrfs_item_size(leaf, 0);
4438			wret = push_leaf_left(trans, root, path, 0,
4439					      min_push_space, 1, (u32)-1);
4440			if (wret < 0 && wret != -ENOSPC)
4441				ret = wret;
4442
4443			if (path->nodes[0] == leaf &&
4444			    btrfs_header_nritems(leaf)) {
4445				/*
4446				 * If we were not able to push all items from our
4447				 * leaf to its left neighbour, then attempt to
4448				 * either push all the remaining items to the
4449				 * right neighbour or none. There's no advantage
4450				 * in pushing only some items, instead of all, as
4451				 * it's pointless to end up with a leaf having
4452				 * too few items while the neighbours can be full
4453				 * or nearly full.
4454				 */
4455				nritems = btrfs_header_nritems(leaf);
4456				min_push_space = leaf_space_used(leaf, 0, nritems);
4457				wret = push_leaf_right(trans, root, path, 0,
4458						       min_push_space, 1, 0);
4459				if (wret < 0 && wret != -ENOSPC)
4460					ret = wret;
4461			}
4462
4463			if (btrfs_header_nritems(leaf) == 0) {
4464				path->slots[1] = slot;
4465				btrfs_del_leaf(trans, root, path, leaf);
4466				free_extent_buffer(leaf);
4467				ret = 0;
4468			} else {
4469				/* if we're still in the path, make sure
4470				 * we're dirty.  Otherwise, one of the
4471				 * push_leaf functions must have already
4472				 * dirtied this buffer
4473				 */
4474				if (path->nodes[0] == leaf)
4475					btrfs_mark_buffer_dirty(leaf);
4476				free_extent_buffer(leaf);
4477			}
4478		} else {
4479			btrfs_mark_buffer_dirty(leaf);
4480		}
4481	}
4482	return ret;
4483}
4484
4485/*
4486 * search the tree again to find a leaf with lesser keys
4487 * returns 0 if it found something or 1 if there are no lesser leaves.
4488 * returns < 0 on io errors.
4489 *
4490 * This may release the path, and so you may lose any locks held at the
4491 * time you call it.
4492 */
4493int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
4494{
4495	struct btrfs_key key;
4496	struct btrfs_disk_key found_key;
4497	int ret;
4498
4499	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
4500
4501	if (key.offset > 0) {
4502		key.offset--;
4503	} else if (key.type > 0) {
4504		key.type--;
4505		key.offset = (u64)-1;
4506	} else if (key.objectid > 0) {
4507		key.objectid--;
4508		key.type = (u8)-1;
4509		key.offset = (u64)-1;
4510	} else {
4511		return 1;
4512	}
4513
4514	btrfs_release_path(path);
4515	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4516	if (ret < 0)
4517		return ret;
4518	btrfs_item_key(path->nodes[0], &found_key, 0);
4519	ret = comp_keys(&found_key, &key);
4520	/*
4521	 * We might have had an item with the previous key in the tree right
4522	 * before we released our path. And after we released our path, that
4523	 * item might have been pushed to the first slot (0) of the leaf we
4524	 * were holding due to a tree balance. Alternatively, an item with the
4525	 * previous key can exist as the only element of a leaf (big fat item).
4526	 * Therefore account for these 2 cases, so that our callers (like
4527	 * btrfs_previous_item) don't miss an existing item with a key matching
4528	 * the previous key we computed above.
4529	 */
4530	if (ret <= 0)
4531		return 0;
4532	return 1;
4533}
4534
4535/*
4536 * A helper function to walk down the tree starting at min_key, and looking
4537 * for nodes or leaves that are have a minimum transaction id.
4538 * This is used by the btree defrag code, and tree logging
4539 *
4540 * This does not cow, but it does stuff the starting key it finds back
4541 * into min_key, so you can call btrfs_search_slot with cow=1 on the
4542 * key and get a writable path.
4543 *
 
 
 
4544 * This honors path->lowest_level to prevent descent past a given level
4545 * of the tree.
4546 *
4547 * min_trans indicates the oldest transaction that you are interested
4548 * in walking through.  Any nodes or leaves older than min_trans are
4549 * skipped over (without reading them).
4550 *
4551 * returns zero if something useful was found, < 0 on error and 1 if there
4552 * was nothing in the tree that matched the search criteria.
4553 */
4554int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
4555			 struct btrfs_path *path,
4556			 u64 min_trans)
4557{
4558	struct extent_buffer *cur;
4559	struct btrfs_key found_key;
4560	int slot;
4561	int sret;
4562	u32 nritems;
4563	int level;
4564	int ret = 1;
4565	int keep_locks = path->keep_locks;
4566
4567	ASSERT(!path->nowait);
4568	path->keep_locks = 1;
4569again:
4570	cur = btrfs_read_lock_root_node(root);
4571	level = btrfs_header_level(cur);
4572	WARN_ON(path->nodes[level]);
4573	path->nodes[level] = cur;
4574	path->locks[level] = BTRFS_READ_LOCK;
4575
4576	if (btrfs_header_generation(cur) < min_trans) {
4577		ret = 1;
4578		goto out;
4579	}
4580	while (1) {
4581		nritems = btrfs_header_nritems(cur);
4582		level = btrfs_header_level(cur);
4583		sret = btrfs_bin_search(cur, min_key, &slot);
4584		if (sret < 0) {
4585			ret = sret;
4586			goto out;
4587		}
4588
4589		/* at the lowest level, we're done, setup the path and exit */
4590		if (level == path->lowest_level) {
4591			if (slot >= nritems)
4592				goto find_next_key;
4593			ret = 0;
4594			path->slots[level] = slot;
4595			btrfs_item_key_to_cpu(cur, &found_key, slot);
4596			goto out;
4597		}
4598		if (sret && slot > 0)
4599			slot--;
4600		/*
4601		 * check this node pointer against the min_trans parameters.
4602		 * If it is too old, skip to the next one.
4603		 */
4604		while (slot < nritems) {
4605			u64 gen;
4606
4607			gen = btrfs_node_ptr_generation(cur, slot);
4608			if (gen < min_trans) {
4609				slot++;
4610				continue;
4611			}
4612			break;
4613		}
4614find_next_key:
4615		/*
4616		 * we didn't find a candidate key in this node, walk forward
4617		 * and find another one
4618		 */
4619		if (slot >= nritems) {
4620			path->slots[level] = slot;
 
4621			sret = btrfs_find_next_key(root, path, min_key, level,
4622						  min_trans);
4623			if (sret == 0) {
4624				btrfs_release_path(path);
4625				goto again;
4626			} else {
4627				goto out;
4628			}
4629		}
4630		/* save our key for returning back */
4631		btrfs_node_key_to_cpu(cur, &found_key, slot);
4632		path->slots[level] = slot;
4633		if (level == path->lowest_level) {
4634			ret = 0;
4635			goto out;
4636		}
4637		cur = btrfs_read_node_slot(cur, slot);
4638		if (IS_ERR(cur)) {
4639			ret = PTR_ERR(cur);
4640			goto out;
4641		}
4642
4643		btrfs_tree_read_lock(cur);
4644
4645		path->locks[level - 1] = BTRFS_READ_LOCK;
4646		path->nodes[level - 1] = cur;
4647		unlock_up(path, level, 1, 0, NULL);
 
4648	}
4649out:
4650	path->keep_locks = keep_locks;
4651	if (ret == 0) {
4652		btrfs_unlock_up_safe(path, path->lowest_level + 1);
 
4653		memcpy(min_key, &found_key, sizeof(found_key));
4654	}
4655	return ret;
4656}
4657
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4658/*
4659 * this is similar to btrfs_next_leaf, but does not try to preserve
4660 * and fixup the path.  It looks for and returns the next key in the
4661 * tree based on the current path and the min_trans parameters.
4662 *
4663 * 0 is returned if another key is found, < 0 if there are any errors
4664 * and 1 is returned if there are no higher keys in the tree
4665 *
4666 * path->keep_locks should be set to 1 on the search made before
4667 * calling this function.
4668 */
4669int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
4670			struct btrfs_key *key, int level, u64 min_trans)
4671{
4672	int slot;
4673	struct extent_buffer *c;
4674
4675	WARN_ON(!path->keep_locks && !path->skip_locking);
4676	while (level < BTRFS_MAX_LEVEL) {
4677		if (!path->nodes[level])
4678			return 1;
4679
4680		slot = path->slots[level] + 1;
4681		c = path->nodes[level];
4682next:
4683		if (slot >= btrfs_header_nritems(c)) {
4684			int ret;
4685			int orig_lowest;
4686			struct btrfs_key cur_key;
4687			if (level + 1 >= BTRFS_MAX_LEVEL ||
4688			    !path->nodes[level + 1])
4689				return 1;
4690
4691			if (path->locks[level + 1] || path->skip_locking) {
4692				level++;
4693				continue;
4694			}
4695
4696			slot = btrfs_header_nritems(c) - 1;
4697			if (level == 0)
4698				btrfs_item_key_to_cpu(c, &cur_key, slot);
4699			else
4700				btrfs_node_key_to_cpu(c, &cur_key, slot);
4701
4702			orig_lowest = path->lowest_level;
4703			btrfs_release_path(path);
4704			path->lowest_level = level;
4705			ret = btrfs_search_slot(NULL, root, &cur_key, path,
4706						0, 0);
4707			path->lowest_level = orig_lowest;
4708			if (ret < 0)
4709				return ret;
4710
4711			c = path->nodes[level];
4712			slot = path->slots[level];
4713			if (ret == 0)
4714				slot++;
4715			goto next;
4716		}
4717
4718		if (level == 0)
4719			btrfs_item_key_to_cpu(c, key, slot);
4720		else {
4721			u64 gen = btrfs_node_ptr_generation(c, slot);
4722
4723			if (gen < min_trans) {
4724				slot++;
4725				goto next;
4726			}
4727			btrfs_node_key_to_cpu(c, key, slot);
4728		}
4729		return 0;
4730	}
4731	return 1;
4732}
4733
 
 
 
 
 
 
 
 
 
 
4734int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
4735			u64 time_seq)
4736{
4737	int slot;
4738	int level;
4739	struct extent_buffer *c;
4740	struct extent_buffer *next;
4741	struct btrfs_fs_info *fs_info = root->fs_info;
4742	struct btrfs_key key;
4743	bool need_commit_sem = false;
4744	u32 nritems;
4745	int ret;
4746	int i;
4747
4748	/*
4749	 * The nowait semantics are used only for write paths, where we don't
4750	 * use the tree mod log and sequence numbers.
4751	 */
4752	if (time_seq)
4753		ASSERT(!path->nowait);
4754
4755	nritems = btrfs_header_nritems(path->nodes[0]);
4756	if (nritems == 0)
4757		return 1;
4758
4759	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
4760again:
4761	level = 1;
4762	next = NULL;
 
4763	btrfs_release_path(path);
4764
4765	path->keep_locks = 1;
 
4766
4767	if (time_seq) {
4768		ret = btrfs_search_old_slot(root, &key, path, time_seq);
4769	} else {
4770		if (path->need_commit_sem) {
4771			path->need_commit_sem = 0;
4772			need_commit_sem = true;
4773			if (path->nowait) {
4774				if (!down_read_trylock(&fs_info->commit_root_sem)) {
4775					ret = -EAGAIN;
4776					goto done;
4777				}
4778			} else {
4779				down_read(&fs_info->commit_root_sem);
4780			}
4781		}
4782		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4783	}
4784	path->keep_locks = 0;
4785
4786	if (ret < 0)
4787		goto done;
4788
4789	nritems = btrfs_header_nritems(path->nodes[0]);
4790	/*
4791	 * by releasing the path above we dropped all our locks.  A balance
4792	 * could have added more items next to the key that used to be
4793	 * at the very end of the block.  So, check again here and
4794	 * advance the path if there are now more items available.
4795	 */
4796	if (nritems > 0 && path->slots[0] < nritems - 1) {
4797		if (ret == 0)
4798			path->slots[0]++;
4799		ret = 0;
4800		goto done;
4801	}
4802	/*
4803	 * So the above check misses one case:
4804	 * - after releasing the path above, someone has removed the item that
4805	 *   used to be at the very end of the block, and balance between leafs
4806	 *   gets another one with bigger key.offset to replace it.
4807	 *
4808	 * This one should be returned as well, or we can get leaf corruption
4809	 * later(esp. in __btrfs_drop_extents()).
4810	 *
4811	 * And a bit more explanation about this check,
4812	 * with ret > 0, the key isn't found, the path points to the slot
4813	 * where it should be inserted, so the path->slots[0] item must be the
4814	 * bigger one.
4815	 */
4816	if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
4817		ret = 0;
4818		goto done;
4819	}
4820
4821	while (level < BTRFS_MAX_LEVEL) {
4822		if (!path->nodes[level]) {
4823			ret = 1;
4824			goto done;
4825		}
4826
4827		slot = path->slots[level] + 1;
4828		c = path->nodes[level];
4829		if (slot >= btrfs_header_nritems(c)) {
4830			level++;
4831			if (level == BTRFS_MAX_LEVEL) {
4832				ret = 1;
4833				goto done;
4834			}
4835			continue;
4836		}
4837
4838
4839		/*
4840		 * Our current level is where we're going to start from, and to
4841		 * make sure lockdep doesn't complain we need to drop our locks
4842		 * and nodes from 0 to our current level.
4843		 */
4844		for (i = 0; i < level; i++) {
4845			if (path->locks[level]) {
4846				btrfs_tree_read_unlock(path->nodes[i]);
4847				path->locks[i] = 0;
4848			}
4849			free_extent_buffer(path->nodes[i]);
4850			path->nodes[i] = NULL;
4851		}
4852
4853		next = c;
4854		ret = read_block_for_search(root, path, &next, level,
4855					    slot, &key);
4856		if (ret == -EAGAIN && !path->nowait)
 
4857			goto again;
4858
4859		if (ret < 0) {
4860			btrfs_release_path(path);
4861			goto done;
4862		}
4863
4864		if (!path->skip_locking) {
4865			ret = btrfs_try_tree_read_lock(next);
4866			if (!ret && path->nowait) {
4867				ret = -EAGAIN;
4868				goto done;
4869			}
4870			if (!ret && time_seq) {
4871				/*
4872				 * If we don't get the lock, we may be racing
4873				 * with push_leaf_left, holding that lock while
4874				 * itself waiting for the leaf we've currently
4875				 * locked. To solve this situation, we give up
4876				 * on our lock and cycle.
4877				 */
4878				free_extent_buffer(next);
4879				btrfs_release_path(path);
4880				cond_resched();
4881				goto again;
4882			}
4883			if (!ret)
 
4884				btrfs_tree_read_lock(next);
 
 
 
 
4885		}
4886		break;
4887	}
4888	path->slots[level] = slot;
4889	while (1) {
4890		level--;
 
 
 
 
 
4891		path->nodes[level] = next;
4892		path->slots[level] = 0;
4893		if (!path->skip_locking)
4894			path->locks[level] = BTRFS_READ_LOCK;
4895		if (!level)
4896			break;
4897
4898		ret = read_block_for_search(root, path, &next, level,
4899					    0, &key);
4900		if (ret == -EAGAIN && !path->nowait)
4901			goto again;
4902
4903		if (ret < 0) {
4904			btrfs_release_path(path);
4905			goto done;
4906		}
4907
4908		if (!path->skip_locking) {
4909			if (path->nowait) {
4910				if (!btrfs_try_tree_read_lock(next)) {
4911					ret = -EAGAIN;
4912					goto done;
4913				}
4914			} else {
4915				btrfs_tree_read_lock(next);
 
 
4916			}
 
4917		}
4918	}
4919	ret = 0;
4920done:
4921	unlock_up(path, 0, 1, 0, NULL);
4922	if (need_commit_sem) {
4923		int ret2;
4924
4925		path->need_commit_sem = 1;
4926		ret2 = finish_need_commit_sem_search(path);
4927		up_read(&fs_info->commit_root_sem);
4928		if (ret2)
4929			ret = ret2;
4930	}
4931
4932	return ret;
4933}
4934
4935int btrfs_next_old_item(struct btrfs_root *root, struct btrfs_path *path, u64 time_seq)
4936{
4937	path->slots[0]++;
4938	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0]))
4939		return btrfs_next_old_leaf(root, path, time_seq);
4940	return 0;
4941}
4942
4943/*
4944 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
4945 * searching until it gets past min_objectid or finds an item of 'type'
4946 *
4947 * returns 0 if something is found, 1 if nothing was found and < 0 on error
4948 */
4949int btrfs_previous_item(struct btrfs_root *root,
4950			struct btrfs_path *path, u64 min_objectid,
4951			int type)
4952{
4953	struct btrfs_key found_key;
4954	struct extent_buffer *leaf;
4955	u32 nritems;
4956	int ret;
4957
4958	while (1) {
4959		if (path->slots[0] == 0) {
 
4960			ret = btrfs_prev_leaf(root, path);
4961			if (ret != 0)
4962				return ret;
4963		} else {
4964			path->slots[0]--;
4965		}
4966		leaf = path->nodes[0];
4967		nritems = btrfs_header_nritems(leaf);
4968		if (nritems == 0)
4969			return 1;
4970		if (path->slots[0] == nritems)
4971			path->slots[0]--;
4972
4973		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4974		if (found_key.objectid < min_objectid)
4975			break;
4976		if (found_key.type == type)
4977			return 0;
4978		if (found_key.objectid == min_objectid &&
4979		    found_key.type < type)
4980			break;
4981	}
4982	return 1;
4983}
4984
4985/*
4986 * search in extent tree to find a previous Metadata/Data extent item with
4987 * min objecitd.
4988 *
4989 * returns 0 if something is found, 1 if nothing was found and < 0 on error
4990 */
4991int btrfs_previous_extent_item(struct btrfs_root *root,
4992			struct btrfs_path *path, u64 min_objectid)
4993{
4994	struct btrfs_key found_key;
4995	struct extent_buffer *leaf;
4996	u32 nritems;
4997	int ret;
4998
4999	while (1) {
5000		if (path->slots[0] == 0) {
 
5001			ret = btrfs_prev_leaf(root, path);
5002			if (ret != 0)
5003				return ret;
5004		} else {
5005			path->slots[0]--;
5006		}
5007		leaf = path->nodes[0];
5008		nritems = btrfs_header_nritems(leaf);
5009		if (nritems == 0)
5010			return 1;
5011		if (path->slots[0] == nritems)
5012			path->slots[0]--;
5013
5014		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5015		if (found_key.objectid < min_objectid)
5016			break;
5017		if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5018		    found_key.type == BTRFS_METADATA_ITEM_KEY)
5019			return 0;
5020		if (found_key.objectid == min_objectid &&
5021		    found_key.type < BTRFS_EXTENT_ITEM_KEY)
5022			break;
5023	}
5024	return 1;
5025}
5026
5027int __init btrfs_ctree_init(void)
5028{
5029	btrfs_path_cachep = kmem_cache_create("btrfs_path",
5030			sizeof(struct btrfs_path), 0,
5031			SLAB_MEM_SPREAD, NULL);
5032	if (!btrfs_path_cachep)
5033		return -ENOMEM;
5034	return 0;
5035}
5036
5037void __cold btrfs_ctree_exit(void)
5038{
5039	kmem_cache_destroy(btrfs_path_cachep);
5040}
v4.6
 
   1/*
   2 * Copyright (C) 2007,2008 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/sched.h>
  20#include <linux/slab.h>
  21#include <linux/rbtree.h>
  22#include <linux/vmalloc.h>
 
 
  23#include "ctree.h"
  24#include "disk-io.h"
  25#include "transaction.h"
  26#include "print-tree.h"
  27#include "locking.h"
 
 
 
 
 
 
 
 
 
 
 
  28
  29static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
  30		      *root, struct btrfs_path *path, int level);
  31static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
  32		      *root, struct btrfs_key *ins_key,
  33		      struct btrfs_path *path, int data_size, int extend);
  34static int push_node_left(struct btrfs_trans_handle *trans,
  35			  struct btrfs_root *root, struct extent_buffer *dst,
  36			  struct extent_buffer *src, int empty);
  37static int balance_node_right(struct btrfs_trans_handle *trans,
  38			      struct btrfs_root *root,
  39			      struct extent_buffer *dst_buf,
  40			      struct extent_buffer *src_buf);
  41static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
  42		    int level, int slot);
  43static int tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
  44				 struct extent_buffer *eb);
  45
  46struct btrfs_path *btrfs_alloc_path(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  47{
  48	struct btrfs_path *path;
  49	path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
  50	return path;
  51}
  52
  53/*
  54 * set all locked nodes in the path to blocking locks.  This should
  55 * be done before scheduling
 
 
 
 
 
 
 
  56 */
  57noinline void btrfs_set_path_blocking(struct btrfs_path *p)
 
  58{
  59	int i;
  60	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
  61		if (!p->nodes[i] || !p->locks[i])
  62			continue;
  63		btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
  64		if (p->locks[i] == BTRFS_READ_LOCK)
  65			p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
  66		else if (p->locks[i] == BTRFS_WRITE_LOCK)
  67			p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
  68	}
  69}
  70
  71/*
  72 * reset all the locked nodes in the patch to spinning locks.
 
 
 
 
 
 
  73 *
  74 * held is used to keep lockdep happy, when lockdep is enabled
  75 * we set held to a blocking lock before we go around and
  76 * retake all the spinlocks in the path.  You can safely use NULL
  77 * for held
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  78 */
  79noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
  80					struct extent_buffer *held, int held_rw)
  81{
  82	int i;
 
 
 
 
 
 
 
 
 
  83
  84	if (held) {
  85		btrfs_set_lock_blocking_rw(held, held_rw);
  86		if (held_rw == BTRFS_WRITE_LOCK)
  87			held_rw = BTRFS_WRITE_LOCK_BLOCKING;
  88		else if (held_rw == BTRFS_READ_LOCK)
  89			held_rw = BTRFS_READ_LOCK_BLOCKING;
  90	}
  91	btrfs_set_path_blocking(p);
  92
  93	for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
  94		if (p->nodes[i] && p->locks[i]) {
  95			btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
  96			if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
  97				p->locks[i] = BTRFS_WRITE_LOCK;
  98			else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
  99				p->locks[i] = BTRFS_READ_LOCK;
 100		}
 101	}
 102
 103	if (held)
 104		btrfs_clear_lock_blocking_rw(held, held_rw);
 105}
 106
 107/* this also releases the path */
 108void btrfs_free_path(struct btrfs_path *p)
 109{
 110	if (!p)
 111		return;
 112	btrfs_release_path(p);
 113	kmem_cache_free(btrfs_path_cachep, p);
 114}
 115
 116/*
 117 * path release drops references on the extent buffers in the path
 118 * and it drops any locks held by this path
 119 *
 120 * It is safe to call this on paths that no locks or extent buffers held.
 121 */
 122noinline void btrfs_release_path(struct btrfs_path *p)
 123{
 124	int i;
 125
 126	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
 127		p->slots[i] = 0;
 128		if (!p->nodes[i])
 129			continue;
 130		if (p->locks[i]) {
 131			btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
 132			p->locks[i] = 0;
 133		}
 134		free_extent_buffer(p->nodes[i]);
 135		p->nodes[i] = NULL;
 136	}
 137}
 138
 139/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 140 * safely gets a reference on the root node of a tree.  A lock
 141 * is not taken, so a concurrent writer may put a different node
 142 * at the root of the tree.  See btrfs_lock_root_node for the
 143 * looping required.
 144 *
 145 * The extent buffer returned by this has a reference taken, so
 146 * it won't disappear.  It may stop being the root of the tree
 147 * at any time because there are no locks held.
 148 */
 149struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
 150{
 151	struct extent_buffer *eb;
 152
 153	while (1) {
 154		rcu_read_lock();
 155		eb = rcu_dereference(root->node);
 156
 157		/*
 158		 * RCU really hurts here, we could free up the root node because
 159		 * it was cow'ed but we may not get the new root node yet so do
 160		 * the inc_not_zero dance and if it doesn't work then
 161		 * synchronize_rcu and try again.
 162		 */
 163		if (atomic_inc_not_zero(&eb->refs)) {
 164			rcu_read_unlock();
 165			break;
 166		}
 167		rcu_read_unlock();
 168		synchronize_rcu();
 169	}
 170	return eb;
 171}
 172
 173/* loop around taking references on and locking the root node of the
 174 * tree until you end up with a lock on the root.  A locked buffer
 175 * is returned, with a reference held.
 
 176 */
 177struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
 178{
 179	struct extent_buffer *eb;
 180
 181	while (1) {
 182		eb = btrfs_root_node(root);
 183		btrfs_tree_lock(eb);
 184		if (eb == root->node)
 185			break;
 186		btrfs_tree_unlock(eb);
 187		free_extent_buffer(eb);
 188	}
 189	return eb;
 190}
 191
 192/* loop around taking references on and locking the root node of the
 193 * tree until you end up with a lock on the root.  A locked buffer
 194 * is returned, with a reference held.
 195 */
 196static struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
 197{
 198	struct extent_buffer *eb;
 199
 200	while (1) {
 201		eb = btrfs_root_node(root);
 202		btrfs_tree_read_lock(eb);
 203		if (eb == root->node)
 204			break;
 205		btrfs_tree_read_unlock(eb);
 206		free_extent_buffer(eb);
 207	}
 208	return eb;
 209}
 210
 211/* cowonly root (everything not a reference counted cow subvolume), just get
 212 * put onto a simple dirty list.  transaction.c walks this to make sure they
 213 * get properly updated on disk.
 214 */
 215static void add_root_to_dirty_list(struct btrfs_root *root)
 216{
 217	if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
 218	    !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
 219		return;
 220
 221	spin_lock(&root->fs_info->trans_lock);
 222	if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
 223		/* Want the extent tree to be the last on the list */
 224		if (root->objectid == BTRFS_EXTENT_TREE_OBJECTID)
 225			list_move_tail(&root->dirty_list,
 226				       &root->fs_info->dirty_cowonly_roots);
 227		else
 228			list_move(&root->dirty_list,
 229				  &root->fs_info->dirty_cowonly_roots);
 230	}
 231	spin_unlock(&root->fs_info->trans_lock);
 232}
 233
 234/*
 235 * used by snapshot creation to make a copy of a root for a tree with
 236 * a given objectid.  The buffer with the new root node is returned in
 237 * cow_ret, and this func returns zero on success or a negative error code.
 238 */
 239int btrfs_copy_root(struct btrfs_trans_handle *trans,
 240		      struct btrfs_root *root,
 241		      struct extent_buffer *buf,
 242		      struct extent_buffer **cow_ret, u64 new_root_objectid)
 243{
 
 244	struct extent_buffer *cow;
 245	int ret = 0;
 246	int level;
 247	struct btrfs_disk_key disk_key;
 248
 249	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
 250		trans->transid != root->fs_info->running_transaction->transid);
 251	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
 252		trans->transid != root->last_trans);
 253
 254	level = btrfs_header_level(buf);
 255	if (level == 0)
 256		btrfs_item_key(buf, &disk_key, 0);
 257	else
 258		btrfs_node_key(buf, &disk_key, 0);
 259
 260	cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
 261			&disk_key, level, buf->start, 0);
 
 262	if (IS_ERR(cow))
 263		return PTR_ERR(cow);
 264
 265	copy_extent_buffer(cow, buf, 0, 0, cow->len);
 266	btrfs_set_header_bytenr(cow, cow->start);
 267	btrfs_set_header_generation(cow, trans->transid);
 268	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
 269	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
 270				     BTRFS_HEADER_FLAG_RELOC);
 271	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
 272		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
 273	else
 274		btrfs_set_header_owner(cow, new_root_objectid);
 275
 276	write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(),
 277			    BTRFS_FSID_SIZE);
 278
 279	WARN_ON(btrfs_header_generation(buf) > trans->transid);
 280	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
 281		ret = btrfs_inc_ref(trans, root, cow, 1);
 282	else
 283		ret = btrfs_inc_ref(trans, root, cow, 0);
 284
 285	if (ret)
 
 
 286		return ret;
 
 287
 288	btrfs_mark_buffer_dirty(cow);
 289	*cow_ret = cow;
 290	return 0;
 291}
 292
 293enum mod_log_op {
 294	MOD_LOG_KEY_REPLACE,
 295	MOD_LOG_KEY_ADD,
 296	MOD_LOG_KEY_REMOVE,
 297	MOD_LOG_KEY_REMOVE_WHILE_FREEING,
 298	MOD_LOG_KEY_REMOVE_WHILE_MOVING,
 299	MOD_LOG_MOVE_KEYS,
 300	MOD_LOG_ROOT_REPLACE,
 301};
 302
 303struct tree_mod_move {
 304	int dst_slot;
 305	int nr_items;
 306};
 307
 308struct tree_mod_root {
 309	u64 logical;
 310	u8 level;
 311};
 312
 313struct tree_mod_elem {
 314	struct rb_node node;
 315	u64 logical;
 316	u64 seq;
 317	enum mod_log_op op;
 318
 319	/* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
 320	int slot;
 321
 322	/* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
 323	u64 generation;
 324
 325	/* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
 326	struct btrfs_disk_key key;
 327	u64 blockptr;
 328
 329	/* this is used for op == MOD_LOG_MOVE_KEYS */
 330	struct tree_mod_move move;
 331
 332	/* this is used for op == MOD_LOG_ROOT_REPLACE */
 333	struct tree_mod_root old_root;
 334};
 335
 336static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info)
 337{
 338	read_lock(&fs_info->tree_mod_log_lock);
 339}
 340
 341static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info)
 342{
 343	read_unlock(&fs_info->tree_mod_log_lock);
 344}
 345
 346static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info)
 347{
 348	write_lock(&fs_info->tree_mod_log_lock);
 349}
 350
 351static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info)
 352{
 353	write_unlock(&fs_info->tree_mod_log_lock);
 354}
 355
 356/*
 357 * Pull a new tree mod seq number for our operation.
 358 */
 359static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
 360{
 361	return atomic64_inc_return(&fs_info->tree_mod_seq);
 362}
 363
 364/*
 365 * This adds a new blocker to the tree mod log's blocker list if the @elem
 366 * passed does not already have a sequence number set. So when a caller expects
 367 * to record tree modifications, it should ensure to set elem->seq to zero
 368 * before calling btrfs_get_tree_mod_seq.
 369 * Returns a fresh, unused tree log modification sequence number, even if no new
 370 * blocker was added.
 371 */
 372u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
 373			   struct seq_list *elem)
 374{
 375	tree_mod_log_write_lock(fs_info);
 376	spin_lock(&fs_info->tree_mod_seq_lock);
 377	if (!elem->seq) {
 378		elem->seq = btrfs_inc_tree_mod_seq(fs_info);
 379		list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
 380	}
 381	spin_unlock(&fs_info->tree_mod_seq_lock);
 382	tree_mod_log_write_unlock(fs_info);
 383
 384	return elem->seq;
 385}
 386
 387void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
 388			    struct seq_list *elem)
 389{
 390	struct rb_root *tm_root;
 391	struct rb_node *node;
 392	struct rb_node *next;
 393	struct seq_list *cur_elem;
 394	struct tree_mod_elem *tm;
 395	u64 min_seq = (u64)-1;
 396	u64 seq_putting = elem->seq;
 397
 398	if (!seq_putting)
 399		return;
 400
 401	spin_lock(&fs_info->tree_mod_seq_lock);
 402	list_del(&elem->list);
 403	elem->seq = 0;
 404
 405	list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
 406		if (cur_elem->seq < min_seq) {
 407			if (seq_putting > cur_elem->seq) {
 408				/*
 409				 * blocker with lower sequence number exists, we
 410				 * cannot remove anything from the log
 411				 */
 412				spin_unlock(&fs_info->tree_mod_seq_lock);
 413				return;
 414			}
 415			min_seq = cur_elem->seq;
 416		}
 417	}
 418	spin_unlock(&fs_info->tree_mod_seq_lock);
 419
 420	/*
 421	 * anything that's lower than the lowest existing (read: blocked)
 422	 * sequence number can be removed from the tree.
 423	 */
 424	tree_mod_log_write_lock(fs_info);
 425	tm_root = &fs_info->tree_mod_log;
 426	for (node = rb_first(tm_root); node; node = next) {
 427		next = rb_next(node);
 428		tm = container_of(node, struct tree_mod_elem, node);
 429		if (tm->seq > min_seq)
 430			continue;
 431		rb_erase(node, tm_root);
 432		kfree(tm);
 433	}
 434	tree_mod_log_write_unlock(fs_info);
 435}
 436
 437/*
 438 * key order of the log:
 439 *       node/leaf start address -> sequence
 440 *
 441 * The 'start address' is the logical address of the *new* root node
 442 * for root replace operations, or the logical address of the affected
 443 * block for all other operations.
 444 *
 445 * Note: must be called with write lock (tree_mod_log_write_lock).
 446 */
 447static noinline int
 448__tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
 449{
 450	struct rb_root *tm_root;
 451	struct rb_node **new;
 452	struct rb_node *parent = NULL;
 453	struct tree_mod_elem *cur;
 454
 455	BUG_ON(!tm);
 456
 457	tm->seq = btrfs_inc_tree_mod_seq(fs_info);
 458
 459	tm_root = &fs_info->tree_mod_log;
 460	new = &tm_root->rb_node;
 461	while (*new) {
 462		cur = container_of(*new, struct tree_mod_elem, node);
 463		parent = *new;
 464		if (cur->logical < tm->logical)
 465			new = &((*new)->rb_left);
 466		else if (cur->logical > tm->logical)
 467			new = &((*new)->rb_right);
 468		else if (cur->seq < tm->seq)
 469			new = &((*new)->rb_left);
 470		else if (cur->seq > tm->seq)
 471			new = &((*new)->rb_right);
 472		else
 473			return -EEXIST;
 474	}
 475
 476	rb_link_node(&tm->node, parent, new);
 477	rb_insert_color(&tm->node, tm_root);
 478	return 0;
 479}
 480
 481/*
 482 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
 483 * returns zero with the tree_mod_log_lock acquired. The caller must hold
 484 * this until all tree mod log insertions are recorded in the rb tree and then
 485 * call tree_mod_log_write_unlock() to release.
 486 */
 487static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
 488				    struct extent_buffer *eb) {
 489	smp_mb();
 490	if (list_empty(&(fs_info)->tree_mod_seq_list))
 491		return 1;
 492	if (eb && btrfs_header_level(eb) == 0)
 493		return 1;
 494
 495	tree_mod_log_write_lock(fs_info);
 496	if (list_empty(&(fs_info)->tree_mod_seq_list)) {
 497		tree_mod_log_write_unlock(fs_info);
 498		return 1;
 499	}
 500
 501	return 0;
 502}
 503
 504/* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
 505static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
 506				    struct extent_buffer *eb)
 507{
 508	smp_mb();
 509	if (list_empty(&(fs_info)->tree_mod_seq_list))
 510		return 0;
 511	if (eb && btrfs_header_level(eb) == 0)
 512		return 0;
 513
 514	return 1;
 515}
 516
 517static struct tree_mod_elem *
 518alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
 519		    enum mod_log_op op, gfp_t flags)
 520{
 521	struct tree_mod_elem *tm;
 522
 523	tm = kzalloc(sizeof(*tm), flags);
 524	if (!tm)
 525		return NULL;
 526
 527	tm->logical = eb->start;
 528	if (op != MOD_LOG_KEY_ADD) {
 529		btrfs_node_key(eb, &tm->key, slot);
 530		tm->blockptr = btrfs_node_blockptr(eb, slot);
 531	}
 532	tm->op = op;
 533	tm->slot = slot;
 534	tm->generation = btrfs_node_ptr_generation(eb, slot);
 535	RB_CLEAR_NODE(&tm->node);
 536
 537	return tm;
 538}
 539
 540static noinline int
 541tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
 542			struct extent_buffer *eb, int slot,
 543			enum mod_log_op op, gfp_t flags)
 544{
 545	struct tree_mod_elem *tm;
 546	int ret;
 547
 548	if (!tree_mod_need_log(fs_info, eb))
 549		return 0;
 550
 551	tm = alloc_tree_mod_elem(eb, slot, op, flags);
 552	if (!tm)
 553		return -ENOMEM;
 554
 555	if (tree_mod_dont_log(fs_info, eb)) {
 556		kfree(tm);
 557		return 0;
 558	}
 559
 560	ret = __tree_mod_log_insert(fs_info, tm);
 561	tree_mod_log_write_unlock(fs_info);
 562	if (ret)
 563		kfree(tm);
 564
 565	return ret;
 566}
 567
 568static noinline int
 569tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
 570			 struct extent_buffer *eb, int dst_slot, int src_slot,
 571			 int nr_items, gfp_t flags)
 572{
 573	struct tree_mod_elem *tm = NULL;
 574	struct tree_mod_elem **tm_list = NULL;
 575	int ret = 0;
 576	int i;
 577	int locked = 0;
 578
 579	if (!tree_mod_need_log(fs_info, eb))
 580		return 0;
 581
 582	tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), flags);
 583	if (!tm_list)
 584		return -ENOMEM;
 585
 586	tm = kzalloc(sizeof(*tm), flags);
 587	if (!tm) {
 588		ret = -ENOMEM;
 589		goto free_tms;
 590	}
 591
 592	tm->logical = eb->start;
 593	tm->slot = src_slot;
 594	tm->move.dst_slot = dst_slot;
 595	tm->move.nr_items = nr_items;
 596	tm->op = MOD_LOG_MOVE_KEYS;
 597
 598	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
 599		tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
 600		    MOD_LOG_KEY_REMOVE_WHILE_MOVING, flags);
 601		if (!tm_list[i]) {
 602			ret = -ENOMEM;
 603			goto free_tms;
 604		}
 605	}
 606
 607	if (tree_mod_dont_log(fs_info, eb))
 608		goto free_tms;
 609	locked = 1;
 610
 611	/*
 612	 * When we override something during the move, we log these removals.
 613	 * This can only happen when we move towards the beginning of the
 614	 * buffer, i.e. dst_slot < src_slot.
 615	 */
 616	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
 617		ret = __tree_mod_log_insert(fs_info, tm_list[i]);
 618		if (ret)
 619			goto free_tms;
 620	}
 621
 622	ret = __tree_mod_log_insert(fs_info, tm);
 623	if (ret)
 624		goto free_tms;
 625	tree_mod_log_write_unlock(fs_info);
 626	kfree(tm_list);
 627
 628	return 0;
 629free_tms:
 630	for (i = 0; i < nr_items; i++) {
 631		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
 632			rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
 633		kfree(tm_list[i]);
 634	}
 635	if (locked)
 636		tree_mod_log_write_unlock(fs_info);
 637	kfree(tm_list);
 638	kfree(tm);
 639
 640	return ret;
 641}
 642
 643static inline int
 644__tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
 645		       struct tree_mod_elem **tm_list,
 646		       int nritems)
 647{
 648	int i, j;
 649	int ret;
 650
 651	for (i = nritems - 1; i >= 0; i--) {
 652		ret = __tree_mod_log_insert(fs_info, tm_list[i]);
 653		if (ret) {
 654			for (j = nritems - 1; j > i; j--)
 655				rb_erase(&tm_list[j]->node,
 656					 &fs_info->tree_mod_log);
 657			return ret;
 658		}
 659	}
 660
 661	return 0;
 662}
 663
 664static noinline int
 665tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
 666			 struct extent_buffer *old_root,
 667			 struct extent_buffer *new_root, gfp_t flags,
 668			 int log_removal)
 669{
 670	struct tree_mod_elem *tm = NULL;
 671	struct tree_mod_elem **tm_list = NULL;
 672	int nritems = 0;
 673	int ret = 0;
 674	int i;
 675
 676	if (!tree_mod_need_log(fs_info, NULL))
 677		return 0;
 678
 679	if (log_removal && btrfs_header_level(old_root) > 0) {
 680		nritems = btrfs_header_nritems(old_root);
 681		tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
 682				  flags);
 683		if (!tm_list) {
 684			ret = -ENOMEM;
 685			goto free_tms;
 686		}
 687		for (i = 0; i < nritems; i++) {
 688			tm_list[i] = alloc_tree_mod_elem(old_root, i,
 689			    MOD_LOG_KEY_REMOVE_WHILE_FREEING, flags);
 690			if (!tm_list[i]) {
 691				ret = -ENOMEM;
 692				goto free_tms;
 693			}
 694		}
 695	}
 696
 697	tm = kzalloc(sizeof(*tm), flags);
 698	if (!tm) {
 699		ret = -ENOMEM;
 700		goto free_tms;
 701	}
 702
 703	tm->logical = new_root->start;
 704	tm->old_root.logical = old_root->start;
 705	tm->old_root.level = btrfs_header_level(old_root);
 706	tm->generation = btrfs_header_generation(old_root);
 707	tm->op = MOD_LOG_ROOT_REPLACE;
 708
 709	if (tree_mod_dont_log(fs_info, NULL))
 710		goto free_tms;
 711
 712	if (tm_list)
 713		ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
 714	if (!ret)
 715		ret = __tree_mod_log_insert(fs_info, tm);
 716
 717	tree_mod_log_write_unlock(fs_info);
 718	if (ret)
 719		goto free_tms;
 720	kfree(tm_list);
 721
 722	return ret;
 723
 724free_tms:
 725	if (tm_list) {
 726		for (i = 0; i < nritems; i++)
 727			kfree(tm_list[i]);
 728		kfree(tm_list);
 729	}
 730	kfree(tm);
 731
 732	return ret;
 733}
 734
 735static struct tree_mod_elem *
 736__tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
 737		      int smallest)
 738{
 739	struct rb_root *tm_root;
 740	struct rb_node *node;
 741	struct tree_mod_elem *cur = NULL;
 742	struct tree_mod_elem *found = NULL;
 743
 744	tree_mod_log_read_lock(fs_info);
 745	tm_root = &fs_info->tree_mod_log;
 746	node = tm_root->rb_node;
 747	while (node) {
 748		cur = container_of(node, struct tree_mod_elem, node);
 749		if (cur->logical < start) {
 750			node = node->rb_left;
 751		} else if (cur->logical > start) {
 752			node = node->rb_right;
 753		} else if (cur->seq < min_seq) {
 754			node = node->rb_left;
 755		} else if (!smallest) {
 756			/* we want the node with the highest seq */
 757			if (found)
 758				BUG_ON(found->seq > cur->seq);
 759			found = cur;
 760			node = node->rb_left;
 761		} else if (cur->seq > min_seq) {
 762			/* we want the node with the smallest seq */
 763			if (found)
 764				BUG_ON(found->seq < cur->seq);
 765			found = cur;
 766			node = node->rb_right;
 767		} else {
 768			found = cur;
 769			break;
 770		}
 771	}
 772	tree_mod_log_read_unlock(fs_info);
 773
 774	return found;
 775}
 776
 777/*
 778 * this returns the element from the log with the smallest time sequence
 779 * value that's in the log (the oldest log item). any element with a time
 780 * sequence lower than min_seq will be ignored.
 781 */
 782static struct tree_mod_elem *
 783tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
 784			   u64 min_seq)
 785{
 786	return __tree_mod_log_search(fs_info, start, min_seq, 1);
 787}
 788
 789/*
 790 * this returns the element from the log with the largest time sequence
 791 * value that's in the log (the most recent log item). any element with
 792 * a time sequence lower than min_seq will be ignored.
 793 */
 794static struct tree_mod_elem *
 795tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
 796{
 797	return __tree_mod_log_search(fs_info, start, min_seq, 0);
 798}
 799
 800static noinline int
 801tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
 802		     struct extent_buffer *src, unsigned long dst_offset,
 803		     unsigned long src_offset, int nr_items)
 804{
 805	int ret = 0;
 806	struct tree_mod_elem **tm_list = NULL;
 807	struct tree_mod_elem **tm_list_add, **tm_list_rem;
 808	int i;
 809	int locked = 0;
 810
 811	if (!tree_mod_need_log(fs_info, NULL))
 812		return 0;
 813
 814	if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
 815		return 0;
 816
 817	tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
 818			  GFP_NOFS);
 819	if (!tm_list)
 820		return -ENOMEM;
 821
 822	tm_list_add = tm_list;
 823	tm_list_rem = tm_list + nr_items;
 824	for (i = 0; i < nr_items; i++) {
 825		tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
 826		    MOD_LOG_KEY_REMOVE, GFP_NOFS);
 827		if (!tm_list_rem[i]) {
 828			ret = -ENOMEM;
 829			goto free_tms;
 830		}
 831
 832		tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
 833		    MOD_LOG_KEY_ADD, GFP_NOFS);
 834		if (!tm_list_add[i]) {
 835			ret = -ENOMEM;
 836			goto free_tms;
 837		}
 838	}
 839
 840	if (tree_mod_dont_log(fs_info, NULL))
 841		goto free_tms;
 842	locked = 1;
 843
 844	for (i = 0; i < nr_items; i++) {
 845		ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
 846		if (ret)
 847			goto free_tms;
 848		ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
 849		if (ret)
 850			goto free_tms;
 851	}
 852
 853	tree_mod_log_write_unlock(fs_info);
 854	kfree(tm_list);
 855
 856	return 0;
 857
 858free_tms:
 859	for (i = 0; i < nr_items * 2; i++) {
 860		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
 861			rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
 862		kfree(tm_list[i]);
 863	}
 864	if (locked)
 865		tree_mod_log_write_unlock(fs_info);
 866	kfree(tm_list);
 867
 868	return ret;
 869}
 870
 871static inline void
 872tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
 873		     int dst_offset, int src_offset, int nr_items)
 874{
 875	int ret;
 876	ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
 877				       nr_items, GFP_NOFS);
 878	BUG_ON(ret < 0);
 879}
 880
 881static noinline void
 882tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
 883			  struct extent_buffer *eb, int slot, int atomic)
 884{
 885	int ret;
 886
 887	ret = tree_mod_log_insert_key(fs_info, eb, slot,
 888					MOD_LOG_KEY_REPLACE,
 889					atomic ? GFP_ATOMIC : GFP_NOFS);
 890	BUG_ON(ret < 0);
 891}
 892
 893static noinline int
 894tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
 895{
 896	struct tree_mod_elem **tm_list = NULL;
 897	int nritems = 0;
 898	int i;
 899	int ret = 0;
 900
 901	if (btrfs_header_level(eb) == 0)
 902		return 0;
 903
 904	if (!tree_mod_need_log(fs_info, NULL))
 905		return 0;
 906
 907	nritems = btrfs_header_nritems(eb);
 908	tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
 909	if (!tm_list)
 910		return -ENOMEM;
 911
 912	for (i = 0; i < nritems; i++) {
 913		tm_list[i] = alloc_tree_mod_elem(eb, i,
 914		    MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
 915		if (!tm_list[i]) {
 916			ret = -ENOMEM;
 917			goto free_tms;
 918		}
 919	}
 920
 921	if (tree_mod_dont_log(fs_info, eb))
 922		goto free_tms;
 923
 924	ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
 925	tree_mod_log_write_unlock(fs_info);
 926	if (ret)
 927		goto free_tms;
 928	kfree(tm_list);
 929
 930	return 0;
 931
 932free_tms:
 933	for (i = 0; i < nritems; i++)
 934		kfree(tm_list[i]);
 935	kfree(tm_list);
 936
 937	return ret;
 938}
 939
 940static noinline void
 941tree_mod_log_set_root_pointer(struct btrfs_root *root,
 942			      struct extent_buffer *new_root_node,
 943			      int log_removal)
 944{
 945	int ret;
 946	ret = tree_mod_log_insert_root(root->fs_info, root->node,
 947				       new_root_node, GFP_NOFS, log_removal);
 948	BUG_ON(ret < 0);
 949}
 950
 951/*
 952 * check if the tree block can be shared by multiple trees
 953 */
 954int btrfs_block_can_be_shared(struct btrfs_root *root,
 955			      struct extent_buffer *buf)
 956{
 957	/*
 958	 * Tree blocks not in refernece counted trees and tree roots
 959	 * are never shared. If a block was allocated after the last
 960	 * snapshot and the block was not allocated by tree relocation,
 961	 * we know the block is not shared.
 962	 */
 963	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
 964	    buf != root->node && buf != root->commit_root &&
 965	    (btrfs_header_generation(buf) <=
 966	     btrfs_root_last_snapshot(&root->root_item) ||
 967	     btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
 968		return 1;
 969#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 970	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
 971	    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
 972		return 1;
 973#endif
 974	return 0;
 975}
 976
 977static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
 978				       struct btrfs_root *root,
 979				       struct extent_buffer *buf,
 980				       struct extent_buffer *cow,
 981				       int *last_ref)
 982{
 
 983	u64 refs;
 984	u64 owner;
 985	u64 flags;
 986	u64 new_flags = 0;
 987	int ret;
 988
 989	/*
 990	 * Backrefs update rules:
 991	 *
 992	 * Always use full backrefs for extent pointers in tree block
 993	 * allocated by tree relocation.
 994	 *
 995	 * If a shared tree block is no longer referenced by its owner
 996	 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
 997	 * use full backrefs for extent pointers in tree block.
 998	 *
 999	 * If a tree block is been relocating
1000	 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
1001	 * use full backrefs for extent pointers in tree block.
1002	 * The reason for this is some operations (such as drop tree)
1003	 * are only allowed for blocks use full backrefs.
1004	 */
1005
1006	if (btrfs_block_can_be_shared(root, buf)) {
1007		ret = btrfs_lookup_extent_info(trans, root, buf->start,
1008					       btrfs_header_level(buf), 1,
1009					       &refs, &flags);
1010		if (ret)
1011			return ret;
1012		if (refs == 0) {
1013			ret = -EROFS;
1014			btrfs_std_error(root->fs_info, ret, NULL);
1015			return ret;
1016		}
1017	} else {
1018		refs = 1;
1019		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1020		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1021			flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
1022		else
1023			flags = 0;
1024	}
1025
1026	owner = btrfs_header_owner(buf);
1027	BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
1028	       !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
1029
1030	if (refs > 1) {
1031		if ((owner == root->root_key.objectid ||
1032		     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
1033		    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
1034			ret = btrfs_inc_ref(trans, root, buf, 1);
1035			BUG_ON(ret); /* -ENOMEM */
 
1036
1037			if (root->root_key.objectid ==
1038			    BTRFS_TREE_RELOC_OBJECTID) {
1039				ret = btrfs_dec_ref(trans, root, buf, 0);
1040				BUG_ON(ret); /* -ENOMEM */
 
1041				ret = btrfs_inc_ref(trans, root, cow, 1);
1042				BUG_ON(ret); /* -ENOMEM */
 
1043			}
1044			new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
1045		} else {
1046
1047			if (root->root_key.objectid ==
1048			    BTRFS_TREE_RELOC_OBJECTID)
1049				ret = btrfs_inc_ref(trans, root, cow, 1);
1050			else
1051				ret = btrfs_inc_ref(trans, root, cow, 0);
1052			BUG_ON(ret); /* -ENOMEM */
 
1053		}
1054		if (new_flags != 0) {
1055			int level = btrfs_header_level(buf);
1056
1057			ret = btrfs_set_disk_extent_flags(trans, root,
1058							  buf->start,
1059							  buf->len,
1060							  new_flags, level, 0);
1061			if (ret)
1062				return ret;
1063		}
1064	} else {
1065		if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
1066			if (root->root_key.objectid ==
1067			    BTRFS_TREE_RELOC_OBJECTID)
1068				ret = btrfs_inc_ref(trans, root, cow, 1);
1069			else
1070				ret = btrfs_inc_ref(trans, root, cow, 0);
1071			BUG_ON(ret); /* -ENOMEM */
 
1072			ret = btrfs_dec_ref(trans, root, buf, 1);
1073			BUG_ON(ret); /* -ENOMEM */
 
1074		}
1075		clean_tree_block(trans, root->fs_info, buf);
1076		*last_ref = 1;
1077	}
1078	return 0;
1079}
1080
1081/*
1082 * does the dirty work in cow of a single block.  The parent block (if
1083 * supplied) is updated to point to the new cow copy.  The new buffer is marked
1084 * dirty and returned locked.  If you modify the block it needs to be marked
1085 * dirty again.
1086 *
1087 * search_start -- an allocation hint for the new block
1088 *
1089 * empty_size -- a hint that you plan on doing more cow.  This is the size in
1090 * bytes the allocator should try to find free next to the block it returns.
1091 * This is just a hint and may be ignored by the allocator.
1092 */
1093static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
1094			     struct btrfs_root *root,
1095			     struct extent_buffer *buf,
1096			     struct extent_buffer *parent, int parent_slot,
1097			     struct extent_buffer **cow_ret,
1098			     u64 search_start, u64 empty_size)
 
1099{
 
1100	struct btrfs_disk_key disk_key;
1101	struct extent_buffer *cow;
1102	int level, ret;
1103	int last_ref = 0;
1104	int unlock_orig = 0;
1105	u64 parent_start;
1106
1107	if (*cow_ret == buf)
1108		unlock_orig = 1;
1109
1110	btrfs_assert_tree_locked(buf);
1111
1112	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1113		trans->transid != root->fs_info->running_transaction->transid);
1114	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1115		trans->transid != root->last_trans);
1116
1117	level = btrfs_header_level(buf);
1118
1119	if (level == 0)
1120		btrfs_item_key(buf, &disk_key, 0);
1121	else
1122		btrfs_node_key(buf, &disk_key, 0);
1123
1124	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
1125		if (parent)
1126			parent_start = parent->start;
1127		else
1128			parent_start = 0;
1129	} else
1130		parent_start = 0;
1131
1132	cow = btrfs_alloc_tree_block(trans, root, parent_start,
1133			root->root_key.objectid, &disk_key, level,
1134			search_start, empty_size);
1135	if (IS_ERR(cow))
1136		return PTR_ERR(cow);
1137
1138	/* cow is set to blocking by btrfs_init_new_buffer */
1139
1140	copy_extent_buffer(cow, buf, 0, 0, cow->len);
1141	btrfs_set_header_bytenr(cow, cow->start);
1142	btrfs_set_header_generation(cow, trans->transid);
1143	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1144	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1145				     BTRFS_HEADER_FLAG_RELOC);
1146	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1147		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1148	else
1149		btrfs_set_header_owner(cow, root->root_key.objectid);
1150
1151	write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(),
1152			    BTRFS_FSID_SIZE);
1153
1154	ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1155	if (ret) {
1156		btrfs_abort_transaction(trans, root, ret);
 
 
1157		return ret;
1158	}
1159
1160	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
1161		ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1162		if (ret) {
1163			btrfs_abort_transaction(trans, root, ret);
 
 
1164			return ret;
1165		}
1166	}
1167
1168	if (buf == root->node) {
1169		WARN_ON(parent && parent != buf);
1170		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1171		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1172			parent_start = buf->start;
1173		else
1174			parent_start = 0;
1175
1176		extent_buffer_get(cow);
1177		tree_mod_log_set_root_pointer(root, cow, 1);
 
1178		rcu_assign_pointer(root->node, cow);
1179
1180		btrfs_free_tree_block(trans, root, buf, parent_start,
1181				      last_ref);
1182		free_extent_buffer(buf);
1183		add_root_to_dirty_list(root);
1184	} else {
1185		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1186			parent_start = parent->start;
1187		else
1188			parent_start = 0;
1189
1190		WARN_ON(trans->transid != btrfs_header_generation(parent));
1191		tree_mod_log_insert_key(root->fs_info, parent, parent_slot,
1192					MOD_LOG_KEY_REPLACE, GFP_NOFS);
1193		btrfs_set_node_blockptr(parent, parent_slot,
1194					cow->start);
1195		btrfs_set_node_ptr_generation(parent, parent_slot,
1196					      trans->transid);
1197		btrfs_mark_buffer_dirty(parent);
1198		if (last_ref) {
1199			ret = tree_mod_log_free_eb(root->fs_info, buf);
1200			if (ret) {
1201				btrfs_abort_transaction(trans, root, ret);
 
 
1202				return ret;
1203			}
1204		}
1205		btrfs_free_tree_block(trans, root, buf, parent_start,
1206				      last_ref);
1207	}
1208	if (unlock_orig)
1209		btrfs_tree_unlock(buf);
1210	free_extent_buffer_stale(buf);
1211	btrfs_mark_buffer_dirty(cow);
1212	*cow_ret = cow;
1213	return 0;
1214}
1215
1216/*
1217 * returns the logical address of the oldest predecessor of the given root.
1218 * entries older than time_seq are ignored.
1219 */
1220static struct tree_mod_elem *
1221__tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
1222			   struct extent_buffer *eb_root, u64 time_seq)
1223{
1224	struct tree_mod_elem *tm;
1225	struct tree_mod_elem *found = NULL;
1226	u64 root_logical = eb_root->start;
1227	int looped = 0;
1228
1229	if (!time_seq)
1230		return NULL;
1231
1232	/*
1233	 * the very last operation that's logged for a root is the
1234	 * replacement operation (if it is replaced at all). this has
1235	 * the logical address of the *new* root, making it the very
1236	 * first operation that's logged for this root.
1237	 */
1238	while (1) {
1239		tm = tree_mod_log_search_oldest(fs_info, root_logical,
1240						time_seq);
1241		if (!looped && !tm)
1242			return NULL;
1243		/*
1244		 * if there are no tree operation for the oldest root, we simply
1245		 * return it. this should only happen if that (old) root is at
1246		 * level 0.
1247		 */
1248		if (!tm)
1249			break;
1250
1251		/*
1252		 * if there's an operation that's not a root replacement, we
1253		 * found the oldest version of our root. normally, we'll find a
1254		 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1255		 */
1256		if (tm->op != MOD_LOG_ROOT_REPLACE)
1257			break;
1258
1259		found = tm;
1260		root_logical = tm->old_root.logical;
1261		looped = 1;
1262	}
1263
1264	/* if there's no old root to return, return what we found instead */
1265	if (!found)
1266		found = tm;
1267
1268	return found;
1269}
1270
1271/*
1272 * tm is a pointer to the first operation to rewind within eb. then, all
1273 * previous operations will be rewinded (until we reach something older than
1274 * time_seq).
1275 */
1276static void
1277__tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1278		      u64 time_seq, struct tree_mod_elem *first_tm)
1279{
1280	u32 n;
1281	struct rb_node *next;
1282	struct tree_mod_elem *tm = first_tm;
1283	unsigned long o_dst;
1284	unsigned long o_src;
1285	unsigned long p_size = sizeof(struct btrfs_key_ptr);
1286
1287	n = btrfs_header_nritems(eb);
1288	tree_mod_log_read_lock(fs_info);
1289	while (tm && tm->seq >= time_seq) {
1290		/*
1291		 * all the operations are recorded with the operator used for
1292		 * the modification. as we're going backwards, we do the
1293		 * opposite of each operation here.
1294		 */
1295		switch (tm->op) {
1296		case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1297			BUG_ON(tm->slot < n);
1298			/* Fallthrough */
1299		case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1300		case MOD_LOG_KEY_REMOVE:
1301			btrfs_set_node_key(eb, &tm->key, tm->slot);
1302			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1303			btrfs_set_node_ptr_generation(eb, tm->slot,
1304						      tm->generation);
1305			n++;
1306			break;
1307		case MOD_LOG_KEY_REPLACE:
1308			BUG_ON(tm->slot >= n);
1309			btrfs_set_node_key(eb, &tm->key, tm->slot);
1310			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1311			btrfs_set_node_ptr_generation(eb, tm->slot,
1312						      tm->generation);
1313			break;
1314		case MOD_LOG_KEY_ADD:
1315			/* if a move operation is needed it's in the log */
1316			n--;
1317			break;
1318		case MOD_LOG_MOVE_KEYS:
1319			o_dst = btrfs_node_key_ptr_offset(tm->slot);
1320			o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1321			memmove_extent_buffer(eb, o_dst, o_src,
1322					      tm->move.nr_items * p_size);
1323			break;
1324		case MOD_LOG_ROOT_REPLACE:
1325			/*
1326			 * this operation is special. for roots, this must be
1327			 * handled explicitly before rewinding.
1328			 * for non-roots, this operation may exist if the node
1329			 * was a root: root A -> child B; then A gets empty and
1330			 * B is promoted to the new root. in the mod log, we'll
1331			 * have a root-replace operation for B, a tree block
1332			 * that is no root. we simply ignore that operation.
1333			 */
1334			break;
1335		}
1336		next = rb_next(&tm->node);
1337		if (!next)
1338			break;
1339		tm = container_of(next, struct tree_mod_elem, node);
1340		if (tm->logical != first_tm->logical)
1341			break;
1342	}
1343	tree_mod_log_read_unlock(fs_info);
1344	btrfs_set_header_nritems(eb, n);
1345}
1346
1347/*
1348 * Called with eb read locked. If the buffer cannot be rewinded, the same buffer
1349 * is returned. If rewind operations happen, a fresh buffer is returned. The
1350 * returned buffer is always read-locked. If the returned buffer is not the
1351 * input buffer, the lock on the input buffer is released and the input buffer
1352 * is freed (its refcount is decremented).
1353 */
1354static struct extent_buffer *
1355tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
1356		    struct extent_buffer *eb, u64 time_seq)
1357{
1358	struct extent_buffer *eb_rewin;
1359	struct tree_mod_elem *tm;
1360
1361	if (!time_seq)
1362		return eb;
1363
1364	if (btrfs_header_level(eb) == 0)
1365		return eb;
1366
1367	tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1368	if (!tm)
1369		return eb;
1370
1371	btrfs_set_path_blocking(path);
1372	btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1373
1374	if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1375		BUG_ON(tm->slot != 0);
1376		eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start);
1377		if (!eb_rewin) {
1378			btrfs_tree_read_unlock_blocking(eb);
1379			free_extent_buffer(eb);
1380			return NULL;
1381		}
1382		btrfs_set_header_bytenr(eb_rewin, eb->start);
1383		btrfs_set_header_backref_rev(eb_rewin,
1384					     btrfs_header_backref_rev(eb));
1385		btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1386		btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1387	} else {
1388		eb_rewin = btrfs_clone_extent_buffer(eb);
1389		if (!eb_rewin) {
1390			btrfs_tree_read_unlock_blocking(eb);
1391			free_extent_buffer(eb);
1392			return NULL;
1393		}
1394	}
1395
1396	btrfs_clear_path_blocking(path, NULL, BTRFS_READ_LOCK);
1397	btrfs_tree_read_unlock_blocking(eb);
1398	free_extent_buffer(eb);
1399
1400	extent_buffer_get(eb_rewin);
1401	btrfs_tree_read_lock(eb_rewin);
1402	__tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1403	WARN_ON(btrfs_header_nritems(eb_rewin) >
1404		BTRFS_NODEPTRS_PER_BLOCK(fs_info->tree_root));
1405
1406	return eb_rewin;
1407}
1408
1409/*
1410 * get_old_root() rewinds the state of @root's root node to the given @time_seq
1411 * value. If there are no changes, the current root->root_node is returned. If
1412 * anything changed in between, there's a fresh buffer allocated on which the
1413 * rewind operations are done. In any case, the returned buffer is read locked.
1414 * Returns NULL on error (with no locks held).
1415 */
1416static inline struct extent_buffer *
1417get_old_root(struct btrfs_root *root, u64 time_seq)
1418{
1419	struct tree_mod_elem *tm;
1420	struct extent_buffer *eb = NULL;
1421	struct extent_buffer *eb_root;
1422	struct extent_buffer *old;
1423	struct tree_mod_root *old_root = NULL;
1424	u64 old_generation = 0;
1425	u64 logical;
1426
1427	eb_root = btrfs_read_lock_root_node(root);
1428	tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1429	if (!tm)
1430		return eb_root;
1431
1432	if (tm->op == MOD_LOG_ROOT_REPLACE) {
1433		old_root = &tm->old_root;
1434		old_generation = tm->generation;
1435		logical = old_root->logical;
1436	} else {
1437		logical = eb_root->start;
1438	}
1439
1440	tm = tree_mod_log_search(root->fs_info, logical, time_seq);
1441	if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1442		btrfs_tree_read_unlock(eb_root);
1443		free_extent_buffer(eb_root);
1444		old = read_tree_block(root, logical, 0);
1445		if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
1446			if (!IS_ERR(old))
1447				free_extent_buffer(old);
1448			btrfs_warn(root->fs_info,
1449				"failed to read tree block %llu from get_old_root", logical);
1450		} else {
1451			eb = btrfs_clone_extent_buffer(old);
1452			free_extent_buffer(old);
1453		}
1454	} else if (old_root) {
1455		btrfs_tree_read_unlock(eb_root);
1456		free_extent_buffer(eb_root);
1457		eb = alloc_dummy_extent_buffer(root->fs_info, logical);
1458	} else {
1459		btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK);
1460		eb = btrfs_clone_extent_buffer(eb_root);
1461		btrfs_tree_read_unlock_blocking(eb_root);
1462		free_extent_buffer(eb_root);
1463	}
1464
1465	if (!eb)
1466		return NULL;
1467	extent_buffer_get(eb);
1468	btrfs_tree_read_lock(eb);
1469	if (old_root) {
1470		btrfs_set_header_bytenr(eb, eb->start);
1471		btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1472		btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
1473		btrfs_set_header_level(eb, old_root->level);
1474		btrfs_set_header_generation(eb, old_generation);
1475	}
1476	if (tm)
1477		__tree_mod_log_rewind(root->fs_info, eb, time_seq, tm);
1478	else
1479		WARN_ON(btrfs_header_level(eb) != 0);
1480	WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(root));
1481
1482	return eb;
1483}
1484
1485int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1486{
1487	struct tree_mod_elem *tm;
1488	int level;
1489	struct extent_buffer *eb_root = btrfs_root_node(root);
1490
1491	tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1492	if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1493		level = tm->old_root.level;
1494	} else {
1495		level = btrfs_header_level(eb_root);
1496	}
1497	free_extent_buffer(eb_root);
1498
1499	return level;
1500}
1501
1502static inline int should_cow_block(struct btrfs_trans_handle *trans,
1503				   struct btrfs_root *root,
1504				   struct extent_buffer *buf)
1505{
1506	if (btrfs_test_is_dummy_root(root))
1507		return 0;
1508
1509	/* ensure we can see the force_cow */
1510	smp_rmb();
1511
1512	/*
1513	 * We do not need to cow a block if
1514	 * 1) this block is not created or changed in this transaction;
1515	 * 2) this block does not belong to TREE_RELOC tree;
1516	 * 3) the root is not forced COW.
1517	 *
1518	 * What is forced COW:
1519	 *    when we create snapshot during commiting the transaction,
1520	 *    after we've finished coping src root, we must COW the shared
1521	 *    block to ensure the metadata consistency.
1522	 */
1523	if (btrfs_header_generation(buf) == trans->transid &&
1524	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1525	    !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1526	      btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1527	    !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
1528		return 0;
1529	return 1;
1530}
1531
1532/*
1533 * cows a single block, see __btrfs_cow_block for the real work.
1534 * This version of it has extra checks so that a block isn't cow'd more than
1535 * once per transaction, as long as it hasn't been written yet
1536 */
1537noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1538		    struct btrfs_root *root, struct extent_buffer *buf,
1539		    struct extent_buffer *parent, int parent_slot,
1540		    struct extent_buffer **cow_ret)
 
1541{
 
1542	u64 search_start;
1543	int ret;
1544
1545	if (trans->transaction != root->fs_info->running_transaction)
 
 
 
 
1546		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1547		       trans->transid,
1548		       root->fs_info->running_transaction->transid);
1549
1550	if (trans->transid != root->fs_info->generation)
1551		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1552		       trans->transid, root->fs_info->generation);
1553
1554	if (!should_cow_block(trans, root, buf)) {
1555		*cow_ret = buf;
1556		return 0;
1557	}
1558
1559	search_start = buf->start & ~((u64)SZ_1G - 1);
1560
1561	if (parent)
1562		btrfs_set_lock_blocking(parent);
1563	btrfs_set_lock_blocking(buf);
1564
 
 
 
1565	ret = __btrfs_cow_block(trans, root, buf, parent,
1566				 parent_slot, cow_ret, search_start, 0);
1567
1568	trace_btrfs_cow_block(root, buf, *cow_ret);
1569
1570	return ret;
1571}
 
1572
1573/*
1574 * helper function for defrag to decide if two blocks pointed to by a
1575 * node are actually close by
1576 */
1577static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1578{
1579	if (blocknr < other && other - (blocknr + blocksize) < 32768)
1580		return 1;
1581	if (blocknr > other && blocknr - (other + blocksize) < 32768)
1582		return 1;
1583	return 0;
1584}
1585
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1586/*
1587 * compare two keys in a memcmp fashion
1588 */
1589static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
 
1590{
1591	struct btrfs_key k1;
1592
1593	btrfs_disk_key_to_cpu(&k1, disk);
1594
1595	return btrfs_comp_cpu_keys(&k1, k2);
1596}
 
1597
1598/*
1599 * same as comp_keys only with two btrfs_key's
1600 */
1601int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
1602{
1603	if (k1->objectid > k2->objectid)
1604		return 1;
1605	if (k1->objectid < k2->objectid)
1606		return -1;
1607	if (k1->type > k2->type)
1608		return 1;
1609	if (k1->type < k2->type)
1610		return -1;
1611	if (k1->offset > k2->offset)
1612		return 1;
1613	if (k1->offset < k2->offset)
1614		return -1;
1615	return 0;
1616}
1617
1618/*
1619 * this is used by the defrag code to go through all the
1620 * leaves pointed to by a node and reallocate them so that
1621 * disk order is close to key order
1622 */
1623int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1624		       struct btrfs_root *root, struct extent_buffer *parent,
1625		       int start_slot, u64 *last_ret,
1626		       struct btrfs_key *progress)
1627{
 
1628	struct extent_buffer *cur;
1629	u64 blocknr;
1630	u64 gen;
1631	u64 search_start = *last_ret;
1632	u64 last_block = 0;
1633	u64 other;
1634	u32 parent_nritems;
1635	int end_slot;
1636	int i;
1637	int err = 0;
1638	int parent_level;
1639	int uptodate;
1640	u32 blocksize;
1641	int progress_passed = 0;
1642	struct btrfs_disk_key disk_key;
1643
1644	parent_level = btrfs_header_level(parent);
1645
1646	WARN_ON(trans->transaction != root->fs_info->running_transaction);
1647	WARN_ON(trans->transid != root->fs_info->generation);
1648
1649	parent_nritems = btrfs_header_nritems(parent);
1650	blocksize = root->nodesize;
1651	end_slot = parent_nritems - 1;
1652
1653	if (parent_nritems <= 1)
1654		return 0;
1655
1656	btrfs_set_lock_blocking(parent);
1657
1658	for (i = start_slot; i <= end_slot; i++) {
1659		int close = 1;
1660
1661		btrfs_node_key(parent, &disk_key, i);
1662		if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1663			continue;
1664
1665		progress_passed = 1;
1666		blocknr = btrfs_node_blockptr(parent, i);
1667		gen = btrfs_node_ptr_generation(parent, i);
1668		if (last_block == 0)
1669			last_block = blocknr;
1670
1671		if (i > 0) {
1672			other = btrfs_node_blockptr(parent, i - 1);
1673			close = close_blocks(blocknr, other, blocksize);
1674		}
1675		if (!close && i < end_slot) {
1676			other = btrfs_node_blockptr(parent, i + 1);
1677			close = close_blocks(blocknr, other, blocksize);
1678		}
1679		if (close) {
1680			last_block = blocknr;
1681			continue;
1682		}
1683
1684		cur = btrfs_find_tree_block(root->fs_info, blocknr);
1685		if (cur)
1686			uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1687		else
1688			uptodate = 0;
1689		if (!cur || !uptodate) {
1690			if (!cur) {
1691				cur = read_tree_block(root, blocknr, gen);
1692				if (IS_ERR(cur)) {
1693					return PTR_ERR(cur);
1694				} else if (!extent_buffer_uptodate(cur)) {
1695					free_extent_buffer(cur);
1696					return -EIO;
1697				}
1698			} else if (!uptodate) {
1699				err = btrfs_read_buffer(cur, gen);
1700				if (err) {
1701					free_extent_buffer(cur);
1702					return err;
1703				}
1704			}
1705		}
1706		if (search_start == 0)
1707			search_start = last_block;
1708
1709		btrfs_tree_lock(cur);
1710		btrfs_set_lock_blocking(cur);
1711		err = __btrfs_cow_block(trans, root, cur, parent, i,
1712					&cur, search_start,
1713					min(16 * blocksize,
1714					    (end_slot - i) * blocksize));
 
1715		if (err) {
1716			btrfs_tree_unlock(cur);
1717			free_extent_buffer(cur);
1718			break;
1719		}
1720		search_start = cur->start;
1721		last_block = cur->start;
1722		*last_ret = search_start;
1723		btrfs_tree_unlock(cur);
1724		free_extent_buffer(cur);
1725	}
1726	return err;
1727}
1728
1729/*
1730 * The leaf data grows from end-to-front in the node.
1731 * this returns the address of the start of the last item,
1732 * which is the stop of the leaf data stack
1733 */
1734static inline unsigned int leaf_data_end(struct btrfs_root *root,
1735					 struct extent_buffer *leaf)
1736{
1737	u32 nr = btrfs_header_nritems(leaf);
1738	if (nr == 0)
1739		return BTRFS_LEAF_DATA_SIZE(root);
1740	return btrfs_item_offset_nr(leaf, nr - 1);
1741}
1742
1743
1744/*
1745 * search for key in the extent_buffer.  The items start at offset p,
1746 * and they are item_size apart.  There are 'max' items in p.
1747 *
1748 * the slot in the array is returned via slot, and it points to
1749 * the place where you would insert key if it is not found in
1750 * the array.
1751 *
1752 * slot may point to max if the key is bigger than all of the keys
 
1753 */
1754static noinline int generic_bin_search(struct extent_buffer *eb,
1755				       unsigned long p,
1756				       int item_size, struct btrfs_key *key,
1757				       int max, int *slot)
1758{
1759	int low = 0;
1760	int high = max;
1761	int mid;
1762	int ret;
1763	struct btrfs_disk_key *tmp = NULL;
1764	struct btrfs_disk_key unaligned;
1765	unsigned long offset;
1766	char *kaddr = NULL;
1767	unsigned long map_start = 0;
1768	unsigned long map_len = 0;
1769	int err;
 
 
 
 
 
 
 
 
 
 
1770
1771	while (low < high) {
 
 
 
 
 
 
1772		mid = (low + high) / 2;
1773		offset = p + mid * item_size;
 
1774
1775		if (!kaddr || offset < map_start ||
1776		    (offset + sizeof(struct btrfs_disk_key)) >
1777		    map_start + map_len) {
1778
1779			err = map_private_extent_buffer(eb, offset,
1780						sizeof(struct btrfs_disk_key),
1781						&kaddr, &map_start, &map_len);
1782
1783			if (!err) {
1784				tmp = (struct btrfs_disk_key *)(kaddr + offset -
1785							map_start);
1786			} else {
1787				read_extent_buffer(eb, &unaligned,
1788						   offset, sizeof(unaligned));
1789				tmp = &unaligned;
1790			}
1791
 
 
1792		} else {
1793			tmp = (struct btrfs_disk_key *)(kaddr + offset -
1794							map_start);
1795		}
 
1796		ret = comp_keys(tmp, key);
1797
1798		if (ret < 0)
1799			low = mid + 1;
1800		else if (ret > 0)
1801			high = mid;
1802		else {
1803			*slot = mid;
1804			return 0;
1805		}
1806	}
1807	*slot = low;
1808	return 1;
1809}
1810
1811/*
1812 * simple bin_search frontend that does the right thing for
1813 * leaves vs nodes
1814 */
1815static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1816		      int level, int *slot)
1817{
1818	if (level == 0)
1819		return generic_bin_search(eb,
1820					  offsetof(struct btrfs_leaf, items),
1821					  sizeof(struct btrfs_item),
1822					  key, btrfs_header_nritems(eb),
1823					  slot);
1824	else
1825		return generic_bin_search(eb,
1826					  offsetof(struct btrfs_node, ptrs),
1827					  sizeof(struct btrfs_key_ptr),
1828					  key, btrfs_header_nritems(eb),
1829					  slot);
1830}
1831
1832int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1833		     int level, int *slot)
1834{
1835	return bin_search(eb, key, level, slot);
1836}
1837
1838static void root_add_used(struct btrfs_root *root, u32 size)
1839{
1840	spin_lock(&root->accounting_lock);
1841	btrfs_set_root_used(&root->root_item,
1842			    btrfs_root_used(&root->root_item) + size);
1843	spin_unlock(&root->accounting_lock);
1844}
1845
1846static void root_sub_used(struct btrfs_root *root, u32 size)
1847{
1848	spin_lock(&root->accounting_lock);
1849	btrfs_set_root_used(&root->root_item,
1850			    btrfs_root_used(&root->root_item) - size);
1851	spin_unlock(&root->accounting_lock);
1852}
1853
1854/* given a node and slot number, this reads the blocks it points to.  The
1855 * extent buffer is returned with a reference taken (but unlocked).
1856 * NULL is returned on error.
1857 */
1858static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
1859				   struct extent_buffer *parent, int slot)
1860{
1861	int level = btrfs_header_level(parent);
 
1862	struct extent_buffer *eb;
1863
1864	if (slot < 0)
1865		return NULL;
1866	if (slot >= btrfs_header_nritems(parent))
1867		return NULL;
1868
1869	BUG_ON(level == 0);
1870
1871	eb = read_tree_block(root, btrfs_node_blockptr(parent, slot),
1872			     btrfs_node_ptr_generation(parent, slot));
1873	if (IS_ERR(eb) || !extent_buffer_uptodate(eb)) {
1874		if (!IS_ERR(eb))
1875			free_extent_buffer(eb);
1876		eb = NULL;
 
 
 
 
 
 
 
1877	}
1878
1879	return eb;
1880}
1881
1882/*
1883 * node level balancing, used to make sure nodes are in proper order for
1884 * item deletion.  We balance from the top down, so we have to make sure
1885 * that a deletion won't leave an node completely empty later on.
1886 */
1887static noinline int balance_level(struct btrfs_trans_handle *trans,
1888			 struct btrfs_root *root,
1889			 struct btrfs_path *path, int level)
1890{
 
1891	struct extent_buffer *right = NULL;
1892	struct extent_buffer *mid;
1893	struct extent_buffer *left = NULL;
1894	struct extent_buffer *parent = NULL;
1895	int ret = 0;
1896	int wret;
1897	int pslot;
1898	int orig_slot = path->slots[level];
1899	u64 orig_ptr;
1900
1901	if (level == 0)
1902		return 0;
1903
1904	mid = path->nodes[level];
1905
1906	WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1907		path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1908	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1909
1910	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1911
1912	if (level < BTRFS_MAX_LEVEL - 1) {
1913		parent = path->nodes[level + 1];
1914		pslot = path->slots[level + 1];
1915	}
1916
1917	/*
1918	 * deal with the case where there is only one pointer in the root
1919	 * by promoting the node below to a root
1920	 */
1921	if (!parent) {
1922		struct extent_buffer *child;
1923
1924		if (btrfs_header_nritems(mid) != 1)
1925			return 0;
1926
1927		/* promote the child to a root */
1928		child = read_node_slot(root, mid, 0);
1929		if (!child) {
1930			ret = -EROFS;
1931			btrfs_std_error(root->fs_info, ret, NULL);
1932			goto enospc;
1933		}
1934
1935		btrfs_tree_lock(child);
1936		btrfs_set_lock_blocking(child);
1937		ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1938		if (ret) {
1939			btrfs_tree_unlock(child);
1940			free_extent_buffer(child);
1941			goto enospc;
1942		}
1943
1944		tree_mod_log_set_root_pointer(root, child, 1);
 
1945		rcu_assign_pointer(root->node, child);
1946
1947		add_root_to_dirty_list(root);
1948		btrfs_tree_unlock(child);
1949
1950		path->locks[level] = 0;
1951		path->nodes[level] = NULL;
1952		clean_tree_block(trans, root->fs_info, mid);
1953		btrfs_tree_unlock(mid);
1954		/* once for the path */
1955		free_extent_buffer(mid);
1956
1957		root_sub_used(root, mid->len);
1958		btrfs_free_tree_block(trans, root, mid, 0, 1);
1959		/* once for the root ptr */
1960		free_extent_buffer_stale(mid);
1961		return 0;
1962	}
1963	if (btrfs_header_nritems(mid) >
1964	    BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
1965		return 0;
1966
1967	left = read_node_slot(root, parent, pslot - 1);
 
 
 
1968	if (left) {
1969		btrfs_tree_lock(left);
1970		btrfs_set_lock_blocking(left);
1971		wret = btrfs_cow_block(trans, root, left,
1972				       parent, pslot - 1, &left);
 
1973		if (wret) {
1974			ret = wret;
1975			goto enospc;
1976		}
1977	}
1978	right = read_node_slot(root, parent, pslot + 1);
 
 
 
 
1979	if (right) {
1980		btrfs_tree_lock(right);
1981		btrfs_set_lock_blocking(right);
1982		wret = btrfs_cow_block(trans, root, right,
1983				       parent, pslot + 1, &right);
 
1984		if (wret) {
1985			ret = wret;
1986			goto enospc;
1987		}
1988	}
1989
1990	/* first, try to make some room in the middle buffer */
1991	if (left) {
1992		orig_slot += btrfs_header_nritems(left);
1993		wret = push_node_left(trans, root, left, mid, 1);
1994		if (wret < 0)
1995			ret = wret;
1996	}
1997
1998	/*
1999	 * then try to empty the right most buffer into the middle
2000	 */
2001	if (right) {
2002		wret = push_node_left(trans, root, mid, right, 1);
2003		if (wret < 0 && wret != -ENOSPC)
2004			ret = wret;
2005		if (btrfs_header_nritems(right) == 0) {
2006			clean_tree_block(trans, root->fs_info, right);
2007			btrfs_tree_unlock(right);
2008			del_ptr(root, path, level + 1, pslot + 1);
2009			root_sub_used(root, right->len);
2010			btrfs_free_tree_block(trans, root, right, 0, 1);
 
2011			free_extent_buffer_stale(right);
2012			right = NULL;
2013		} else {
2014			struct btrfs_disk_key right_key;
2015			btrfs_node_key(right, &right_key, 0);
2016			tree_mod_log_set_node_key(root->fs_info, parent,
2017						  pslot + 1, 0);
 
2018			btrfs_set_node_key(parent, &right_key, pslot + 1);
2019			btrfs_mark_buffer_dirty(parent);
2020		}
2021	}
2022	if (btrfs_header_nritems(mid) == 1) {
2023		/*
2024		 * we're not allowed to leave a node with one item in the
2025		 * tree during a delete.  A deletion from lower in the tree
2026		 * could try to delete the only pointer in this node.
2027		 * So, pull some keys from the left.
2028		 * There has to be a left pointer at this point because
2029		 * otherwise we would have pulled some pointers from the
2030		 * right
2031		 */
2032		if (!left) {
2033			ret = -EROFS;
2034			btrfs_std_error(root->fs_info, ret, NULL);
2035			goto enospc;
2036		}
2037		wret = balance_node_right(trans, root, mid, left);
2038		if (wret < 0) {
2039			ret = wret;
2040			goto enospc;
2041		}
2042		if (wret == 1) {
2043			wret = push_node_left(trans, root, left, mid, 1);
2044			if (wret < 0)
2045				ret = wret;
2046		}
2047		BUG_ON(wret == 1);
2048	}
2049	if (btrfs_header_nritems(mid) == 0) {
2050		clean_tree_block(trans, root->fs_info, mid);
2051		btrfs_tree_unlock(mid);
2052		del_ptr(root, path, level + 1, pslot);
2053		root_sub_used(root, mid->len);
2054		btrfs_free_tree_block(trans, root, mid, 0, 1);
2055		free_extent_buffer_stale(mid);
2056		mid = NULL;
2057	} else {
2058		/* update the parent key to reflect our changes */
2059		struct btrfs_disk_key mid_key;
2060		btrfs_node_key(mid, &mid_key, 0);
2061		tree_mod_log_set_node_key(root->fs_info, parent,
2062					  pslot, 0);
 
2063		btrfs_set_node_key(parent, &mid_key, pslot);
2064		btrfs_mark_buffer_dirty(parent);
2065	}
2066
2067	/* update the path */
2068	if (left) {
2069		if (btrfs_header_nritems(left) > orig_slot) {
2070			extent_buffer_get(left);
2071			/* left was locked after cow */
2072			path->nodes[level] = left;
2073			path->slots[level + 1] -= 1;
2074			path->slots[level] = orig_slot;
2075			if (mid) {
2076				btrfs_tree_unlock(mid);
2077				free_extent_buffer(mid);
2078			}
2079		} else {
2080			orig_slot -= btrfs_header_nritems(left);
2081			path->slots[level] = orig_slot;
2082		}
2083	}
2084	/* double check we haven't messed things up */
2085	if (orig_ptr !=
2086	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
2087		BUG();
2088enospc:
2089	if (right) {
2090		btrfs_tree_unlock(right);
2091		free_extent_buffer(right);
2092	}
2093	if (left) {
2094		if (path->nodes[level] != left)
2095			btrfs_tree_unlock(left);
2096		free_extent_buffer(left);
2097	}
2098	return ret;
2099}
2100
2101/* Node balancing for insertion.  Here we only split or push nodes around
2102 * when they are completely full.  This is also done top down, so we
2103 * have to be pessimistic.
2104 */
2105static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
2106					  struct btrfs_root *root,
2107					  struct btrfs_path *path, int level)
2108{
 
2109	struct extent_buffer *right = NULL;
2110	struct extent_buffer *mid;
2111	struct extent_buffer *left = NULL;
2112	struct extent_buffer *parent = NULL;
2113	int ret = 0;
2114	int wret;
2115	int pslot;
2116	int orig_slot = path->slots[level];
2117
2118	if (level == 0)
2119		return 1;
2120
2121	mid = path->nodes[level];
2122	WARN_ON(btrfs_header_generation(mid) != trans->transid);
2123
2124	if (level < BTRFS_MAX_LEVEL - 1) {
2125		parent = path->nodes[level + 1];
2126		pslot = path->slots[level + 1];
2127	}
2128
2129	if (!parent)
2130		return 1;
2131
2132	left = read_node_slot(root, parent, pslot - 1);
 
 
2133
2134	/* first, try to make some room in the middle buffer */
2135	if (left) {
2136		u32 left_nr;
2137
2138		btrfs_tree_lock(left);
2139		btrfs_set_lock_blocking(left);
2140
2141		left_nr = btrfs_header_nritems(left);
2142		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2143			wret = 1;
2144		} else {
2145			ret = btrfs_cow_block(trans, root, left, parent,
2146					      pslot - 1, &left);
 
2147			if (ret)
2148				wret = 1;
2149			else {
2150				wret = push_node_left(trans, root,
2151						      left, mid, 0);
2152			}
2153		}
2154		if (wret < 0)
2155			ret = wret;
2156		if (wret == 0) {
2157			struct btrfs_disk_key disk_key;
2158			orig_slot += left_nr;
2159			btrfs_node_key(mid, &disk_key, 0);
2160			tree_mod_log_set_node_key(root->fs_info, parent,
2161						  pslot, 0);
 
2162			btrfs_set_node_key(parent, &disk_key, pslot);
2163			btrfs_mark_buffer_dirty(parent);
2164			if (btrfs_header_nritems(left) > orig_slot) {
2165				path->nodes[level] = left;
2166				path->slots[level + 1] -= 1;
2167				path->slots[level] = orig_slot;
2168				btrfs_tree_unlock(mid);
2169				free_extent_buffer(mid);
2170			} else {
2171				orig_slot -=
2172					btrfs_header_nritems(left);
2173				path->slots[level] = orig_slot;
2174				btrfs_tree_unlock(left);
2175				free_extent_buffer(left);
2176			}
2177			return 0;
2178		}
2179		btrfs_tree_unlock(left);
2180		free_extent_buffer(left);
2181	}
2182	right = read_node_slot(root, parent, pslot + 1);
 
 
2183
2184	/*
2185	 * then try to empty the right most buffer into the middle
2186	 */
2187	if (right) {
2188		u32 right_nr;
2189
2190		btrfs_tree_lock(right);
2191		btrfs_set_lock_blocking(right);
2192
2193		right_nr = btrfs_header_nritems(right);
2194		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2195			wret = 1;
2196		} else {
2197			ret = btrfs_cow_block(trans, root, right,
2198					      parent, pslot + 1,
2199					      &right);
2200			if (ret)
2201				wret = 1;
2202			else {
2203				wret = balance_node_right(trans, root,
2204							  right, mid);
2205			}
2206		}
2207		if (wret < 0)
2208			ret = wret;
2209		if (wret == 0) {
2210			struct btrfs_disk_key disk_key;
2211
2212			btrfs_node_key(right, &disk_key, 0);
2213			tree_mod_log_set_node_key(root->fs_info, parent,
2214						  pslot + 1, 0);
 
2215			btrfs_set_node_key(parent, &disk_key, pslot + 1);
2216			btrfs_mark_buffer_dirty(parent);
2217
2218			if (btrfs_header_nritems(mid) <= orig_slot) {
2219				path->nodes[level] = right;
2220				path->slots[level + 1] += 1;
2221				path->slots[level] = orig_slot -
2222					btrfs_header_nritems(mid);
2223				btrfs_tree_unlock(mid);
2224				free_extent_buffer(mid);
2225			} else {
2226				btrfs_tree_unlock(right);
2227				free_extent_buffer(right);
2228			}
2229			return 0;
2230		}
2231		btrfs_tree_unlock(right);
2232		free_extent_buffer(right);
2233	}
2234	return 1;
2235}
2236
2237/*
2238 * readahead one full node of leaves, finding things that are close
2239 * to the block in 'slot', and triggering ra on them.
2240 */
2241static void reada_for_search(struct btrfs_root *root,
2242			     struct btrfs_path *path,
2243			     int level, int slot, u64 objectid)
2244{
2245	struct extent_buffer *node;
2246	struct btrfs_disk_key disk_key;
2247	u32 nritems;
2248	u64 search;
2249	u64 target;
2250	u64 nread = 0;
2251	u64 gen;
2252	struct extent_buffer *eb;
2253	u32 nr;
2254	u32 blocksize;
2255	u32 nscan = 0;
2256
2257	if (level != 1)
2258		return;
2259
2260	if (!path->nodes[level])
2261		return;
2262
2263	node = path->nodes[level];
2264
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2265	search = btrfs_node_blockptr(node, slot);
2266	blocksize = root->nodesize;
2267	eb = btrfs_find_tree_block(root->fs_info, search);
2268	if (eb) {
2269		free_extent_buffer(eb);
2270		return;
 
 
 
 
2271	}
2272
2273	target = search;
2274
2275	nritems = btrfs_header_nritems(node);
2276	nr = slot;
2277
2278	while (1) {
2279		if (path->reada == READA_BACK) {
2280			if (nr == 0)
2281				break;
2282			nr--;
2283		} else if (path->reada == READA_FORWARD) {
 
2284			nr++;
2285			if (nr >= nritems)
2286				break;
2287		}
2288		if (path->reada == READA_BACK && objectid) {
2289			btrfs_node_key(node, &disk_key, nr);
2290			if (btrfs_disk_key_objectid(&disk_key) != objectid)
2291				break;
2292		}
2293		search = btrfs_node_blockptr(node, nr);
2294		if ((search <= target && target - search <= 65536) ||
 
2295		    (search > target && search - target <= 65536)) {
2296			gen = btrfs_node_ptr_generation(node, nr);
2297			readahead_tree_block(root, search);
2298			nread += blocksize;
2299		}
2300		nscan++;
2301		if ((nread > 65536 || nscan > 32))
2302			break;
2303	}
2304}
2305
2306static noinline void reada_for_balance(struct btrfs_root *root,
2307				       struct btrfs_path *path, int level)
2308{
 
2309	int slot;
2310	int nritems;
2311	struct extent_buffer *parent;
2312	struct extent_buffer *eb;
2313	u64 gen;
2314	u64 block1 = 0;
2315	u64 block2 = 0;
2316
2317	parent = path->nodes[level + 1];
2318	if (!parent)
2319		return;
2320
2321	nritems = btrfs_header_nritems(parent);
2322	slot = path->slots[level + 1];
2323
2324	if (slot > 0) {
2325		block1 = btrfs_node_blockptr(parent, slot - 1);
2326		gen = btrfs_node_ptr_generation(parent, slot - 1);
2327		eb = btrfs_find_tree_block(root->fs_info, block1);
2328		/*
2329		 * if we get -eagain from btrfs_buffer_uptodate, we
2330		 * don't want to return eagain here.  That will loop
2331		 * forever
2332		 */
2333		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2334			block1 = 0;
2335		free_extent_buffer(eb);
2336	}
2337	if (slot + 1 < nritems) {
2338		block2 = btrfs_node_blockptr(parent, slot + 1);
2339		gen = btrfs_node_ptr_generation(parent, slot + 1);
2340		eb = btrfs_find_tree_block(root->fs_info, block2);
2341		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2342			block2 = 0;
2343		free_extent_buffer(eb);
2344	}
2345
2346	if (block1)
2347		readahead_tree_block(root, block1);
2348	if (block2)
2349		readahead_tree_block(root, block2);
2350}
2351
2352
2353/*
2354 * when we walk down the tree, it is usually safe to unlock the higher layers
2355 * in the tree.  The exceptions are when our path goes through slot 0, because
2356 * operations on the tree might require changing key pointers higher up in the
2357 * tree.
2358 *
2359 * callers might also have set path->keep_locks, which tells this code to keep
2360 * the lock if the path points to the last slot in the block.  This is part of
2361 * walking through the tree, and selecting the next slot in the higher block.
2362 *
2363 * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
2364 * if lowest_unlock is 1, level 0 won't be unlocked
2365 */
2366static noinline void unlock_up(struct btrfs_path *path, int level,
2367			       int lowest_unlock, int min_write_lock_level,
2368			       int *write_lock_level)
2369{
2370	int i;
2371	int skip_level = level;
2372	int no_skips = 0;
2373	struct extent_buffer *t;
2374
2375	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2376		if (!path->nodes[i])
2377			break;
2378		if (!path->locks[i])
2379			break;
2380		if (!no_skips && path->slots[i] == 0) {
2381			skip_level = i + 1;
2382			continue;
2383		}
2384		if (!no_skips && path->keep_locks) {
2385			u32 nritems;
2386			t = path->nodes[i];
2387			nritems = btrfs_header_nritems(t);
2388			if (nritems < 1 || path->slots[i] >= nritems - 1) {
2389				skip_level = i + 1;
2390				continue;
2391			}
 
 
 
 
 
 
 
 
 
 
2392		}
2393		if (skip_level < i && i >= lowest_unlock)
2394			no_skips = 1;
2395
2396		t = path->nodes[i];
2397		if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
2398			btrfs_tree_unlock_rw(t, path->locks[i]);
2399			path->locks[i] = 0;
2400			if (write_lock_level &&
2401			    i > min_write_lock_level &&
2402			    i <= *write_lock_level) {
2403				*write_lock_level = i - 1;
2404			}
2405		}
2406	}
2407}
2408
2409/*
2410 * This releases any locks held in the path starting at level and
2411 * going all the way up to the root.
 
 
2412 *
2413 * btrfs_search_slot will keep the lock held on higher nodes in a few
2414 * corner cases, such as COW of the block at slot zero in the node.  This
2415 * ignores those rules, and it should only be called when there are no
2416 * more updates to be done higher up in the tree.
2417 */
2418noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2419{
2420	int i;
2421
2422	if (path->keep_locks)
2423		return;
2424
2425	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2426		if (!path->nodes[i])
2427			continue;
2428		if (!path->locks[i])
2429			continue;
2430		btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2431		path->locks[i] = 0;
2432	}
2433}
2434
2435/*
2436 * helper function for btrfs_search_slot.  The goal is to find a block
2437 * in cache without setting the path to blocking.  If we find the block
2438 * we return zero and the path is unchanged.
2439 *
2440 * If we can't find the block, we set the path blocking and do some
2441 * reada.  -EAGAIN is returned and the search must be repeated.
2442 */
2443static int
2444read_block_for_search(struct btrfs_trans_handle *trans,
2445		       struct btrfs_root *root, struct btrfs_path *p,
2446		       struct extent_buffer **eb_ret, int level, int slot,
2447		       struct btrfs_key *key, u64 time_seq)
2448{
 
 
2449	u64 blocknr;
2450	u64 gen;
2451	struct extent_buffer *b = *eb_ret;
2452	struct extent_buffer *tmp;
2453	int ret;
 
 
2454
2455	blocknr = btrfs_node_blockptr(b, slot);
2456	gen = btrfs_node_ptr_generation(b, slot);
 
 
 
 
 
 
 
2457
2458	tmp = btrfs_find_tree_block(root->fs_info, blocknr);
 
 
 
 
 
 
 
2459	if (tmp) {
 
 
 
2460		/* first we do an atomic uptodate check */
2461		if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
 
 
 
 
 
 
 
 
 
 
2462			*eb_ret = tmp;
2463			return 0;
2464		}
2465
2466		/* the pages were up to date, but we failed
2467		 * the generation number check.  Do a full
2468		 * read for the generation number that is correct.
2469		 * We must do this without dropping locks so
2470		 * we can trust our generation number
2471		 */
2472		btrfs_set_path_blocking(p);
2473
2474		/* now we're allowed to do a blocking uptodate check */
2475		ret = btrfs_read_buffer(tmp, gen);
2476		if (!ret) {
2477			*eb_ret = tmp;
2478			return 0;
 
 
 
 
 
 
2479		}
2480		free_extent_buffer(tmp);
2481		btrfs_release_path(p);
2482		return -EIO;
 
 
 
 
2483	}
2484
2485	/*
2486	 * reduce lock contention at high levels
2487	 * of the btree by dropping locks before
2488	 * we read.  Don't release the lock on the current
2489	 * level because we need to walk this node to figure
2490	 * out which blocks to read.
2491	 */
2492	btrfs_unlock_up_safe(p, level + 1);
2493	btrfs_set_path_blocking(p);
2494
2495	free_extent_buffer(tmp);
2496	if (p->reada != READA_NONE)
2497		reada_for_search(root, p, level, slot, key->objectid);
2498
2499	btrfs_release_path(p);
 
 
 
 
 
 
 
 
 
 
 
 
2500
2501	ret = -EAGAIN;
2502	tmp = read_tree_block(root, blocknr, 0);
2503	if (!IS_ERR(tmp)) {
2504		/*
2505		 * If the read above didn't mark this buffer up to date,
2506		 * it will never end up being up to date.  Set ret to EIO now
2507		 * and give up so that our caller doesn't loop forever
2508		 * on our EAGAINs.
2509		 */
2510		if (!btrfs_buffer_uptodate(tmp, 0, 0))
2511			ret = -EIO;
2512		free_extent_buffer(tmp);
 
2513	}
 
2514	return ret;
2515}
2516
2517/*
2518 * helper function for btrfs_search_slot.  This does all of the checks
2519 * for node-level blocks and does any balancing required based on
2520 * the ins_len.
2521 *
2522 * If no extra work was required, zero is returned.  If we had to
2523 * drop the path, -EAGAIN is returned and btrfs_search_slot must
2524 * start over
2525 */
2526static int
2527setup_nodes_for_search(struct btrfs_trans_handle *trans,
2528		       struct btrfs_root *root, struct btrfs_path *p,
2529		       struct extent_buffer *b, int level, int ins_len,
2530		       int *write_lock_level)
2531{
2532	int ret;
 
 
2533	if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2534	    BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
2535		int sret;
2536
2537		if (*write_lock_level < level + 1) {
2538			*write_lock_level = level + 1;
2539			btrfs_release_path(p);
2540			goto again;
2541		}
2542
2543		btrfs_set_path_blocking(p);
2544		reada_for_balance(root, p, level);
2545		sret = split_node(trans, root, p, level);
2546		btrfs_clear_path_blocking(p, NULL, 0);
2547
2548		BUG_ON(sret > 0);
2549		if (sret) {
2550			ret = sret;
2551			goto done;
2552		}
2553		b = p->nodes[level];
2554	} else if (ins_len < 0 && btrfs_header_nritems(b) <
2555		   BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
2556		int sret;
2557
2558		if (*write_lock_level < level + 1) {
2559			*write_lock_level = level + 1;
2560			btrfs_release_path(p);
2561			goto again;
2562		}
2563
2564		btrfs_set_path_blocking(p);
2565		reada_for_balance(root, p, level);
2566		sret = balance_level(trans, root, p, level);
2567		btrfs_clear_path_blocking(p, NULL, 0);
2568
2569		if (sret) {
2570			ret = sret;
2571			goto done;
2572		}
2573		b = p->nodes[level];
2574		if (!b) {
2575			btrfs_release_path(p);
2576			goto again;
2577		}
2578		BUG_ON(btrfs_header_nritems(b) == 1);
2579	}
2580	return 0;
2581
2582again:
2583	ret = -EAGAIN;
2584done:
2585	return ret;
2586}
2587
2588static void key_search_validate(struct extent_buffer *b,
2589				struct btrfs_key *key,
2590				int level)
2591{
2592#ifdef CONFIG_BTRFS_ASSERT
2593	struct btrfs_disk_key disk_key;
2594
2595	btrfs_cpu_key_to_disk(&disk_key, key);
2596
2597	if (level == 0)
2598		ASSERT(!memcmp_extent_buffer(b, &disk_key,
2599		    offsetof(struct btrfs_leaf, items[0].key),
2600		    sizeof(disk_key)));
2601	else
2602		ASSERT(!memcmp_extent_buffer(b, &disk_key,
2603		    offsetof(struct btrfs_node, ptrs[0].key),
2604		    sizeof(disk_key)));
2605#endif
2606}
2607
2608static int key_search(struct extent_buffer *b, struct btrfs_key *key,
2609		      int level, int *prev_cmp, int *slot)
2610{
2611	if (*prev_cmp != 0) {
2612		*prev_cmp = bin_search(b, key, level, slot);
2613		return *prev_cmp;
2614	}
2615
2616	key_search_validate(b, key, level);
2617	*slot = 0;
2618
2619	return 0;
2620}
2621
2622int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2623		u64 iobjectid, u64 ioff, u8 key_type,
2624		struct btrfs_key *found_key)
2625{
2626	int ret;
2627	struct btrfs_key key;
2628	struct extent_buffer *eb;
2629
2630	ASSERT(path);
2631	ASSERT(found_key);
2632
2633	key.type = key_type;
2634	key.objectid = iobjectid;
2635	key.offset = ioff;
2636
2637	ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
2638	if (ret < 0)
2639		return ret;
2640
2641	eb = path->nodes[0];
2642	if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
2643		ret = btrfs_next_leaf(fs_root, path);
2644		if (ret)
2645			return ret;
2646		eb = path->nodes[0];
2647	}
2648
2649	btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
2650	if (found_key->type != key.type ||
2651			found_key->objectid != key.objectid)
2652		return 1;
2653
2654	return 0;
2655}
2656
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2657/*
2658 * look for key in the tree.  path is filled in with nodes along the way
2659 * if key is found, we return zero and you can find the item in the leaf
2660 * level of the path (level 0)
2661 *
2662 * If the key isn't found, the path points to the slot where it should
2663 * be inserted, and 1 is returned.  If there are other errors during the
2664 * search a negative error number is returned.
2665 *
2666 * if ins_len > 0, nodes and leaves will be split as we walk down the
2667 * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
2668 * possible)
2669 */
2670int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
2671		      *root, struct btrfs_key *key, struct btrfs_path *p, int
2672		      ins_len, int cow)
2673{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2674	struct extent_buffer *b;
2675	int slot;
2676	int ret;
2677	int err;
2678	int level;
2679	int lowest_unlock = 1;
2680	int root_lock;
2681	/* everything at write_lock_level or lower must be write locked */
2682	int write_lock_level = 0;
2683	u8 lowest_level = 0;
2684	int min_write_lock_level;
2685	int prev_cmp;
2686
 
 
2687	lowest_level = p->lowest_level;
2688	WARN_ON(lowest_level && ins_len > 0);
2689	WARN_ON(p->nodes[0] != NULL);
2690	BUG_ON(!cow && ins_len);
2691
 
 
 
 
 
 
 
2692	if (ins_len < 0) {
2693		lowest_unlock = 2;
2694
2695		/* when we are removing items, we might have to go up to level
2696		 * two as we update tree pointers  Make sure we keep write
2697		 * for those levels as well
2698		 */
2699		write_lock_level = 2;
2700	} else if (ins_len > 0) {
2701		/*
2702		 * for inserting items, make sure we have a write lock on
2703		 * level 1 so we can update keys
2704		 */
2705		write_lock_level = 1;
2706	}
2707
2708	if (!cow)
2709		write_lock_level = -1;
2710
2711	if (cow && (p->keep_locks || p->lowest_level))
2712		write_lock_level = BTRFS_MAX_LEVEL;
2713
2714	min_write_lock_level = write_lock_level;
2715
 
 
 
 
 
 
 
 
 
 
2716again:
2717	prev_cmp = -1;
2718	/*
2719	 * we try very hard to do read locks on the root
2720	 */
2721	root_lock = BTRFS_READ_LOCK;
2722	level = 0;
2723	if (p->search_commit_root) {
2724		/*
2725		 * the commit roots are read only
2726		 * so we always do read locks
2727		 */
2728		if (p->need_commit_sem)
2729			down_read(&root->fs_info->commit_root_sem);
2730		b = root->commit_root;
2731		extent_buffer_get(b);
2732		level = btrfs_header_level(b);
2733		if (p->need_commit_sem)
2734			up_read(&root->fs_info->commit_root_sem);
2735		if (!p->skip_locking)
2736			btrfs_tree_read_lock(b);
2737	} else {
2738		if (p->skip_locking) {
2739			b = btrfs_root_node(root);
2740			level = btrfs_header_level(b);
2741		} else {
2742			/* we don't know the level of the root node
2743			 * until we actually have it read locked
2744			 */
2745			b = btrfs_read_lock_root_node(root);
2746			level = btrfs_header_level(b);
2747			if (level <= write_lock_level) {
2748				/* whoops, must trade for write lock */
2749				btrfs_tree_read_unlock(b);
2750				free_extent_buffer(b);
2751				b = btrfs_lock_root_node(root);
2752				root_lock = BTRFS_WRITE_LOCK;
2753
2754				/* the level might have changed, check again */
2755				level = btrfs_header_level(b);
2756			}
2757		}
2758	}
2759	p->nodes[level] = b;
2760	if (!p->skip_locking)
2761		p->locks[level] = root_lock;
2762
2763	while (b) {
 
 
2764		level = btrfs_header_level(b);
2765
2766		/*
2767		 * setup the path here so we can release it under lock
2768		 * contention with the cow code
2769		 */
2770		if (cow) {
 
 
2771			/*
2772			 * if we don't really need to cow this block
2773			 * then we don't want to set the path blocking,
2774			 * so we test it here
2775			 */
2776			if (!should_cow_block(trans, root, b))
2777				goto cow_done;
2778
2779			/*
2780			 * must have write locks on this node and the
2781			 * parent
2782			 */
2783			if (level > write_lock_level ||
2784			    (level + 1 > write_lock_level &&
2785			    level + 1 < BTRFS_MAX_LEVEL &&
2786			    p->nodes[level + 1])) {
2787				write_lock_level = level + 1;
2788				btrfs_release_path(p);
2789				goto again;
2790			}
2791
2792			btrfs_set_path_blocking(p);
2793			err = btrfs_cow_block(trans, root, b,
2794					      p->nodes[level + 1],
2795					      p->slots[level + 1], &b);
 
 
 
 
 
2796			if (err) {
2797				ret = err;
2798				goto done;
2799			}
2800		}
2801cow_done:
2802		p->nodes[level] = b;
2803		btrfs_clear_path_blocking(p, NULL, 0);
2804
2805		/*
2806		 * we have a lock on b and as long as we aren't changing
2807		 * the tree, there is no way to for the items in b to change.
2808		 * It is safe to drop the lock on our parent before we
2809		 * go through the expensive btree search on b.
2810		 *
2811		 * If we're inserting or deleting (ins_len != 0), then we might
2812		 * be changing slot zero, which may require changing the parent.
2813		 * So, we can't drop the lock until after we know which slot
2814		 * we're operating on.
2815		 */
2816		if (!ins_len && !p->keep_locks) {
2817			int u = level + 1;
2818
2819			if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2820				btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2821				p->locks[u] = 0;
2822			}
2823		}
2824
2825		ret = key_search(b, key, level, &prev_cmp, &slot);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2826
2827		if (level != 0) {
2828			int dec = 0;
2829			if (ret && slot > 0) {
2830				dec = 1;
2831				slot -= 1;
2832			}
2833			p->slots[level] = slot;
2834			err = setup_nodes_for_search(trans, root, p, b, level,
2835					     ins_len, &write_lock_level);
2836			if (err == -EAGAIN)
2837				goto again;
2838			if (err) {
2839				ret = err;
2840				goto done;
2841			}
2842			b = p->nodes[level];
2843			slot = p->slots[level];
 
 
 
 
 
 
 
 
 
 
 
 
2844
2845			/*
2846			 * slot 0 is special, if we change the key
2847			 * we have to update the parent pointer
2848			 * which means we must have a write lock
2849			 * on the parent
2850			 */
2851			if (slot == 0 && ins_len &&
2852			    write_lock_level < level + 1) {
2853				write_lock_level = level + 1;
2854				btrfs_release_path(p);
2855				goto again;
2856			}
2857
2858			unlock_up(p, level, lowest_unlock,
2859				  min_write_lock_level, &write_lock_level);
 
 
 
 
 
2860
2861			if (level == lowest_level) {
2862				if (dec)
2863					p->slots[level]++;
2864				goto done;
2865			}
2866
2867			err = read_block_for_search(trans, root, p,
2868						    &b, level, slot, key, 0);
2869			if (err == -EAGAIN)
2870				goto again;
2871			if (err) {
2872				ret = err;
2873				goto done;
2874			}
2875
2876			if (!p->skip_locking) {
2877				level = btrfs_header_level(b);
2878				if (level <= write_lock_level) {
2879					err = btrfs_try_tree_write_lock(b);
2880					if (!err) {
2881						btrfs_set_path_blocking(p);
2882						btrfs_tree_lock(b);
2883						btrfs_clear_path_blocking(p, b,
2884								  BTRFS_WRITE_LOCK);
2885					}
2886					p->locks[level] = BTRFS_WRITE_LOCK;
2887				} else {
2888					err = btrfs_tree_read_lock_atomic(b);
2889					if (!err) {
2890						btrfs_set_path_blocking(p);
2891						btrfs_tree_read_lock(b);
2892						btrfs_clear_path_blocking(p, b,
2893								  BTRFS_READ_LOCK);
2894					}
2895					p->locks[level] = BTRFS_READ_LOCK;
2896				}
2897				p->nodes[level] = b;
2898			}
2899		} else {
2900			p->slots[level] = slot;
2901			if (ins_len > 0 &&
2902			    btrfs_leaf_free_space(root, b) < ins_len) {
2903				if (write_lock_level < 1) {
2904					write_lock_level = 1;
2905					btrfs_release_path(p);
2906					goto again;
2907				}
2908
2909				btrfs_set_path_blocking(p);
2910				err = split_leaf(trans, root, key,
2911						 p, ins_len, ret == 0);
2912				btrfs_clear_path_blocking(p, NULL, 0);
2913
2914				BUG_ON(err > 0);
2915				if (err) {
2916					ret = err;
2917					goto done;
2918				}
2919			}
2920			if (!p->search_for_split)
2921				unlock_up(p, level, lowest_unlock,
2922					  min_write_lock_level, &write_lock_level);
2923			goto done;
2924		}
2925	}
2926	ret = 1;
2927done:
2928	/*
2929	 * we don't really know what they plan on doing with the path
2930	 * from here on, so for now just mark it as blocking
2931	 */
2932	if (!p->leave_spinning)
2933		btrfs_set_path_blocking(p);
2934	if (ret < 0 && !p->skip_release_on_error)
2935		btrfs_release_path(p);
 
 
 
 
 
 
 
 
 
 
2936	return ret;
2937}
 
2938
2939/*
2940 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2941 * current state of the tree together with the operations recorded in the tree
2942 * modification log to search for the key in a previous version of this tree, as
2943 * denoted by the time_seq parameter.
2944 *
2945 * Naturally, there is no support for insert, delete or cow operations.
2946 *
2947 * The resulting path and return value will be set up as if we called
2948 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2949 */
2950int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
2951			  struct btrfs_path *p, u64 time_seq)
2952{
 
2953	struct extent_buffer *b;
2954	int slot;
2955	int ret;
2956	int err;
2957	int level;
2958	int lowest_unlock = 1;
2959	u8 lowest_level = 0;
2960	int prev_cmp = -1;
2961
2962	lowest_level = p->lowest_level;
2963	WARN_ON(p->nodes[0] != NULL);
 
2964
2965	if (p->search_commit_root) {
2966		BUG_ON(time_seq);
2967		return btrfs_search_slot(NULL, root, key, p, 0, 0);
2968	}
2969
2970again:
2971	b = get_old_root(root, time_seq);
 
 
 
 
2972	level = btrfs_header_level(b);
2973	p->locks[level] = BTRFS_READ_LOCK;
2974
2975	while (b) {
 
 
2976		level = btrfs_header_level(b);
2977		p->nodes[level] = b;
2978		btrfs_clear_path_blocking(p, NULL, 0);
2979
2980		/*
2981		 * we have a lock on b and as long as we aren't changing
2982		 * the tree, there is no way to for the items in b to change.
2983		 * It is safe to drop the lock on our parent before we
2984		 * go through the expensive btree search on b.
2985		 */
2986		btrfs_unlock_up_safe(p, level + 1);
2987
2988		/*
2989		 * Since we can unwind eb's we want to do a real search every
2990		 * time.
2991		 */
2992		prev_cmp = -1;
2993		ret = key_search(b, key, level, &prev_cmp, &slot);
2994
2995		if (level != 0) {
2996			int dec = 0;
2997			if (ret && slot > 0) {
2998				dec = 1;
2999				slot -= 1;
3000			}
3001			p->slots[level] = slot;
3002			unlock_up(p, level, lowest_unlock, 0, NULL);
 
 
 
 
 
 
 
 
 
3003
3004			if (level == lowest_level) {
3005				if (dec)
3006					p->slots[level]++;
3007				goto done;
3008			}
3009
3010			err = read_block_for_search(NULL, root, p, &b, level,
3011						    slot, key, time_seq);
3012			if (err == -EAGAIN)
3013				goto again;
3014			if (err) {
3015				ret = err;
3016				goto done;
3017			}
3018
3019			level = btrfs_header_level(b);
3020			err = btrfs_tree_read_lock_atomic(b);
3021			if (!err) {
3022				btrfs_set_path_blocking(p);
3023				btrfs_tree_read_lock(b);
3024				btrfs_clear_path_blocking(p, b,
3025							  BTRFS_READ_LOCK);
3026			}
3027			b = tree_mod_log_rewind(root->fs_info, p, b, time_seq);
3028			if (!b) {
3029				ret = -ENOMEM;
3030				goto done;
3031			}
3032			p->locks[level] = BTRFS_READ_LOCK;
3033			p->nodes[level] = b;
3034		} else {
3035			p->slots[level] = slot;
3036			unlock_up(p, level, lowest_unlock, 0, NULL);
3037			goto done;
3038		}
 
 
3039	}
3040	ret = 1;
3041done:
3042	if (!p->leave_spinning)
3043		btrfs_set_path_blocking(p);
3044	if (ret < 0)
3045		btrfs_release_path(p);
3046
3047	return ret;
3048}
3049
3050/*
3051 * helper to use instead of search slot if no exact match is needed but
3052 * instead the next or previous item should be returned.
3053 * When find_higher is true, the next higher item is returned, the next lower
3054 * otherwise.
3055 * When return_any and find_higher are both true, and no higher item is found,
3056 * return the next lower instead.
3057 * When return_any is true and find_higher is false, and no lower item is found,
3058 * return the next higher instead.
3059 * It returns 0 if any item is found, 1 if none is found (tree empty), and
3060 * < 0 on error
3061 */
3062int btrfs_search_slot_for_read(struct btrfs_root *root,
3063			       struct btrfs_key *key, struct btrfs_path *p,
3064			       int find_higher, int return_any)
 
3065{
3066	int ret;
3067	struct extent_buffer *leaf;
3068
3069again:
3070	ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
3071	if (ret <= 0)
3072		return ret;
3073	/*
3074	 * a return value of 1 means the path is at the position where the
3075	 * item should be inserted. Normally this is the next bigger item,
3076	 * but in case the previous item is the last in a leaf, path points
3077	 * to the first free slot in the previous leaf, i.e. at an invalid
3078	 * item.
3079	 */
3080	leaf = p->nodes[0];
3081
3082	if (find_higher) {
3083		if (p->slots[0] >= btrfs_header_nritems(leaf)) {
3084			ret = btrfs_next_leaf(root, p);
3085			if (ret <= 0)
3086				return ret;
3087			if (!return_any)
3088				return 1;
3089			/*
3090			 * no higher item found, return the next
3091			 * lower instead
3092			 */
3093			return_any = 0;
3094			find_higher = 0;
3095			btrfs_release_path(p);
3096			goto again;
3097		}
3098	} else {
3099		if (p->slots[0] == 0) {
3100			ret = btrfs_prev_leaf(root, p);
3101			if (ret < 0)
3102				return ret;
3103			if (!ret) {
3104				leaf = p->nodes[0];
3105				if (p->slots[0] == btrfs_header_nritems(leaf))
3106					p->slots[0]--;
3107				return 0;
3108			}
3109			if (!return_any)
3110				return 1;
3111			/*
3112			 * no lower item found, return the next
3113			 * higher instead
3114			 */
3115			return_any = 0;
3116			find_higher = 1;
3117			btrfs_release_path(p);
3118			goto again;
3119		} else {
3120			--p->slots[0];
3121		}
3122	}
3123	return 0;
3124}
3125
3126/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3127 * adjust the pointers going up the tree, starting at level
3128 * making sure the right key of each node is points to 'key'.
3129 * This is used after shifting pointers to the left, so it stops
3130 * fixing up pointers when a given leaf/node is not in slot 0 of the
3131 * higher levels
3132 *
3133 */
3134static void fixup_low_keys(struct btrfs_fs_info *fs_info,
3135			   struct btrfs_path *path,
3136			   struct btrfs_disk_key *key, int level)
3137{
3138	int i;
3139	struct extent_buffer *t;
 
3140
3141	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
3142		int tslot = path->slots[i];
 
3143		if (!path->nodes[i])
3144			break;
3145		t = path->nodes[i];
3146		tree_mod_log_set_node_key(fs_info, t, tslot, 1);
 
 
3147		btrfs_set_node_key(t, key, tslot);
3148		btrfs_mark_buffer_dirty(path->nodes[i]);
3149		if (tslot != 0)
3150			break;
3151	}
3152}
3153
3154/*
3155 * update item key.
3156 *
3157 * This function isn't completely safe. It's the caller's responsibility
3158 * that the new key won't break the order
3159 */
3160void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
3161			     struct btrfs_path *path,
3162			     struct btrfs_key *new_key)
3163{
3164	struct btrfs_disk_key disk_key;
3165	struct extent_buffer *eb;
3166	int slot;
3167
3168	eb = path->nodes[0];
3169	slot = path->slots[0];
3170	if (slot > 0) {
3171		btrfs_item_key(eb, &disk_key, slot - 1);
3172		BUG_ON(comp_keys(&disk_key, new_key) >= 0);
 
 
 
 
 
 
 
 
 
 
3173	}
3174	if (slot < btrfs_header_nritems(eb) - 1) {
3175		btrfs_item_key(eb, &disk_key, slot + 1);
3176		BUG_ON(comp_keys(&disk_key, new_key) <= 0);
 
 
 
 
 
 
 
 
 
 
3177	}
3178
3179	btrfs_cpu_key_to_disk(&disk_key, new_key);
3180	btrfs_set_item_key(eb, &disk_key, slot);
3181	btrfs_mark_buffer_dirty(eb);
3182	if (slot == 0)
3183		fixup_low_keys(fs_info, path, &disk_key, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3184}
3185
3186/*
3187 * try to push data from one node into the next node left in the
3188 * tree.
3189 *
3190 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3191 * error, and > 0 if there was no room in the left hand block.
3192 */
3193static int push_node_left(struct btrfs_trans_handle *trans,
3194			  struct btrfs_root *root, struct extent_buffer *dst,
3195			  struct extent_buffer *src, int empty)
3196{
 
3197	int push_items = 0;
3198	int src_nritems;
3199	int dst_nritems;
3200	int ret = 0;
3201
3202	src_nritems = btrfs_header_nritems(src);
3203	dst_nritems = btrfs_header_nritems(dst);
3204	push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3205	WARN_ON(btrfs_header_generation(src) != trans->transid);
3206	WARN_ON(btrfs_header_generation(dst) != trans->transid);
3207
3208	if (!empty && src_nritems <= 8)
3209		return 1;
3210
3211	if (push_items <= 0)
3212		return 1;
3213
3214	if (empty) {
3215		push_items = min(src_nritems, push_items);
3216		if (push_items < src_nritems) {
3217			/* leave at least 8 pointers in the node if
3218			 * we aren't going to empty it
3219			 */
3220			if (src_nritems - push_items < 8) {
3221				if (push_items <= 8)
3222					return 1;
3223				push_items -= 8;
3224			}
3225		}
3226	} else
3227		push_items = min(src_nritems - 8, push_items);
3228
3229	ret = tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0,
3230				   push_items);
 
 
 
 
 
3231	if (ret) {
3232		btrfs_abort_transaction(trans, root, ret);
3233		return ret;
3234	}
3235	copy_extent_buffer(dst, src,
3236			   btrfs_node_key_ptr_offset(dst_nritems),
3237			   btrfs_node_key_ptr_offset(0),
3238			   push_items * sizeof(struct btrfs_key_ptr));
3239
3240	if (push_items < src_nritems) {
3241		/*
3242		 * don't call tree_mod_log_eb_move here, key removal was already
3243		 * fully logged by tree_mod_log_eb_copy above.
3244		 */
3245		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3246				      btrfs_node_key_ptr_offset(push_items),
3247				      (src_nritems - push_items) *
3248				      sizeof(struct btrfs_key_ptr));
3249	}
3250	btrfs_set_header_nritems(src, src_nritems - push_items);
3251	btrfs_set_header_nritems(dst, dst_nritems + push_items);
3252	btrfs_mark_buffer_dirty(src);
3253	btrfs_mark_buffer_dirty(dst);
3254
3255	return ret;
3256}
3257
3258/*
3259 * try to push data from one node into the next node right in the
3260 * tree.
3261 *
3262 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3263 * error, and > 0 if there was no room in the right hand block.
3264 *
3265 * this will  only push up to 1/2 the contents of the left node over
3266 */
3267static int balance_node_right(struct btrfs_trans_handle *trans,
3268			      struct btrfs_root *root,
3269			      struct extent_buffer *dst,
3270			      struct extent_buffer *src)
3271{
 
3272	int push_items = 0;
3273	int max_push;
3274	int src_nritems;
3275	int dst_nritems;
3276	int ret = 0;
3277
3278	WARN_ON(btrfs_header_generation(src) != trans->transid);
3279	WARN_ON(btrfs_header_generation(dst) != trans->transid);
3280
3281	src_nritems = btrfs_header_nritems(src);
3282	dst_nritems = btrfs_header_nritems(dst);
3283	push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3284	if (push_items <= 0)
3285		return 1;
3286
3287	if (src_nritems < 4)
3288		return 1;
3289
3290	max_push = src_nritems / 2 + 1;
3291	/* don't try to empty the node */
3292	if (max_push >= src_nritems)
3293		return 1;
3294
3295	if (max_push < push_items)
3296		push_items = max_push;
3297
3298	tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems);
3299	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3300				      btrfs_node_key_ptr_offset(0),
 
 
 
 
 
 
 
3301				      (dst_nritems) *
3302				      sizeof(struct btrfs_key_ptr));
3303
3304	ret = tree_mod_log_eb_copy(root->fs_info, dst, src, 0,
3305				   src_nritems - push_items, push_items);
3306	if (ret) {
3307		btrfs_abort_transaction(trans, root, ret);
3308		return ret;
3309	}
3310	copy_extent_buffer(dst, src,
3311			   btrfs_node_key_ptr_offset(0),
3312			   btrfs_node_key_ptr_offset(src_nritems - push_items),
3313			   push_items * sizeof(struct btrfs_key_ptr));
3314
3315	btrfs_set_header_nritems(src, src_nritems - push_items);
3316	btrfs_set_header_nritems(dst, dst_nritems + push_items);
3317
3318	btrfs_mark_buffer_dirty(src);
3319	btrfs_mark_buffer_dirty(dst);
3320
3321	return ret;
3322}
3323
3324/*
3325 * helper function to insert a new root level in the tree.
3326 * A new node is allocated, and a single item is inserted to
3327 * point to the existing root
3328 *
3329 * returns zero on success or < 0 on failure.
3330 */
3331static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3332			   struct btrfs_root *root,
3333			   struct btrfs_path *path, int level)
3334{
 
3335	u64 lower_gen;
3336	struct extent_buffer *lower;
3337	struct extent_buffer *c;
3338	struct extent_buffer *old;
3339	struct btrfs_disk_key lower_key;
 
3340
3341	BUG_ON(path->nodes[level]);
3342	BUG_ON(path->nodes[level-1] != root->node);
3343
3344	lower = path->nodes[level-1];
3345	if (level == 1)
3346		btrfs_item_key(lower, &lower_key, 0);
3347	else
3348		btrfs_node_key(lower, &lower_key, 0);
3349
3350	c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3351				   &lower_key, level, root->node->start, 0);
 
3352	if (IS_ERR(c))
3353		return PTR_ERR(c);
3354
3355	root_add_used(root, root->nodesize);
3356
3357	memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
3358	btrfs_set_header_nritems(c, 1);
3359	btrfs_set_header_level(c, level);
3360	btrfs_set_header_bytenr(c, c->start);
3361	btrfs_set_header_generation(c, trans->transid);
3362	btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
3363	btrfs_set_header_owner(c, root->root_key.objectid);
3364
3365	write_extent_buffer(c, root->fs_info->fsid, btrfs_header_fsid(),
3366			    BTRFS_FSID_SIZE);
3367
3368	write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
3369			    btrfs_header_chunk_tree_uuid(c), BTRFS_UUID_SIZE);
3370
3371	btrfs_set_node_key(c, &lower_key, 0);
3372	btrfs_set_node_blockptr(c, 0, lower->start);
3373	lower_gen = btrfs_header_generation(lower);
3374	WARN_ON(lower_gen != trans->transid);
3375
3376	btrfs_set_node_ptr_generation(c, 0, lower_gen);
3377
3378	btrfs_mark_buffer_dirty(c);
3379
3380	old = root->node;
3381	tree_mod_log_set_root_pointer(root, c, 0);
 
3382	rcu_assign_pointer(root->node, c);
3383
3384	/* the super has an extra ref to root->node */
3385	free_extent_buffer(old);
3386
3387	add_root_to_dirty_list(root);
3388	extent_buffer_get(c);
3389	path->nodes[level] = c;
3390	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
3391	path->slots[level] = 0;
3392	return 0;
3393}
3394
3395/*
3396 * worker function to insert a single pointer in a node.
3397 * the node should have enough room for the pointer already
3398 *
3399 * slot and level indicate where you want the key to go, and
3400 * blocknr is the block the key points to.
3401 */
3402static void insert_ptr(struct btrfs_trans_handle *trans,
3403		       struct btrfs_root *root, struct btrfs_path *path,
3404		       struct btrfs_disk_key *key, u64 bytenr,
3405		       int slot, int level)
3406{
3407	struct extent_buffer *lower;
3408	int nritems;
3409	int ret;
3410
3411	BUG_ON(!path->nodes[level]);
3412	btrfs_assert_tree_locked(path->nodes[level]);
3413	lower = path->nodes[level];
3414	nritems = btrfs_header_nritems(lower);
3415	BUG_ON(slot > nritems);
3416	BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root));
3417	if (slot != nritems) {
3418		if (level)
3419			tree_mod_log_eb_move(root->fs_info, lower, slot + 1,
3420					     slot, nritems - slot);
 
 
3421		memmove_extent_buffer(lower,
3422			      btrfs_node_key_ptr_offset(slot + 1),
3423			      btrfs_node_key_ptr_offset(slot),
3424			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
3425	}
3426	if (level) {
3427		ret = tree_mod_log_insert_key(root->fs_info, lower, slot,
3428					      MOD_LOG_KEY_ADD, GFP_NOFS);
3429		BUG_ON(ret < 0);
3430	}
3431	btrfs_set_node_key(lower, key, slot);
3432	btrfs_set_node_blockptr(lower, slot, bytenr);
3433	WARN_ON(trans->transid == 0);
3434	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3435	btrfs_set_header_nritems(lower, nritems + 1);
3436	btrfs_mark_buffer_dirty(lower);
3437}
3438
3439/*
3440 * split the node at the specified level in path in two.
3441 * The path is corrected to point to the appropriate node after the split
3442 *
3443 * Before splitting this tries to make some room in the node by pushing
3444 * left and right, if either one works, it returns right away.
3445 *
3446 * returns 0 on success and < 0 on failure
3447 */
3448static noinline int split_node(struct btrfs_trans_handle *trans,
3449			       struct btrfs_root *root,
3450			       struct btrfs_path *path, int level)
3451{
 
3452	struct extent_buffer *c;
3453	struct extent_buffer *split;
3454	struct btrfs_disk_key disk_key;
3455	int mid;
3456	int ret;
3457	u32 c_nritems;
3458
3459	c = path->nodes[level];
3460	WARN_ON(btrfs_header_generation(c) != trans->transid);
3461	if (c == root->node) {
3462		/*
3463		 * trying to split the root, lets make a new one
3464		 *
3465		 * tree mod log: We don't log_removal old root in
3466		 * insert_new_root, because that root buffer will be kept as a
3467		 * normal node. We are going to log removal of half of the
3468		 * elements below with tree_mod_log_eb_copy. We're holding a
3469		 * tree lock on the buffer, which is why we cannot race with
3470		 * other tree_mod_log users.
3471		 */
3472		ret = insert_new_root(trans, root, path, level + 1);
3473		if (ret)
3474			return ret;
3475	} else {
3476		ret = push_nodes_for_insert(trans, root, path, level);
3477		c = path->nodes[level];
3478		if (!ret && btrfs_header_nritems(c) <
3479		    BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
3480			return 0;
3481		if (ret < 0)
3482			return ret;
3483	}
3484
3485	c_nritems = btrfs_header_nritems(c);
3486	mid = (c_nritems + 1) / 2;
3487	btrfs_node_key(c, &disk_key, mid);
3488
3489	split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3490			&disk_key, level, c->start, 0);
 
3491	if (IS_ERR(split))
3492		return PTR_ERR(split);
3493
3494	root_add_used(root, root->nodesize);
3495
3496	memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
3497	btrfs_set_header_level(split, btrfs_header_level(c));
3498	btrfs_set_header_bytenr(split, split->start);
3499	btrfs_set_header_generation(split, trans->transid);
3500	btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
3501	btrfs_set_header_owner(split, root->root_key.objectid);
3502	write_extent_buffer(split, root->fs_info->fsid,
3503			    btrfs_header_fsid(), BTRFS_FSID_SIZE);
3504	write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
3505			    btrfs_header_chunk_tree_uuid(split),
3506			    BTRFS_UUID_SIZE);
3507
3508	ret = tree_mod_log_eb_copy(root->fs_info, split, c, 0,
3509				   mid, c_nritems - mid);
3510	if (ret) {
3511		btrfs_abort_transaction(trans, root, ret);
3512		return ret;
3513	}
3514	copy_extent_buffer(split, c,
3515			   btrfs_node_key_ptr_offset(0),
3516			   btrfs_node_key_ptr_offset(mid),
3517			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3518	btrfs_set_header_nritems(split, c_nritems - mid);
3519	btrfs_set_header_nritems(c, mid);
3520	ret = 0;
3521
3522	btrfs_mark_buffer_dirty(c);
3523	btrfs_mark_buffer_dirty(split);
3524
3525	insert_ptr(trans, root, path, &disk_key, split->start,
3526		   path->slots[level + 1] + 1, level + 1);
3527
3528	if (path->slots[level] >= mid) {
3529		path->slots[level] -= mid;
3530		btrfs_tree_unlock(c);
3531		free_extent_buffer(c);
3532		path->nodes[level] = split;
3533		path->slots[level + 1] += 1;
3534	} else {
3535		btrfs_tree_unlock(split);
3536		free_extent_buffer(split);
3537	}
3538	return ret;
3539}
3540
3541/*
3542 * how many bytes are required to store the items in a leaf.  start
3543 * and nr indicate which items in the leaf to check.  This totals up the
3544 * space used both by the item structs and the item data
3545 */
3546static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3547{
3548	struct btrfs_item *start_item;
3549	struct btrfs_item *end_item;
3550	struct btrfs_map_token token;
3551	int data_len;
3552	int nritems = btrfs_header_nritems(l);
3553	int end = min(nritems, start + nr) - 1;
3554
3555	if (!nr)
3556		return 0;
3557	btrfs_init_map_token(&token);
3558	start_item = btrfs_item_nr(start);
3559	end_item = btrfs_item_nr(end);
3560	data_len = btrfs_token_item_offset(l, start_item, &token) +
3561		btrfs_token_item_size(l, start_item, &token);
3562	data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
3563	data_len += sizeof(struct btrfs_item) * nr;
3564	WARN_ON(data_len < 0);
3565	return data_len;
3566}
3567
3568/*
3569 * The space between the end of the leaf items and
3570 * the start of the leaf data.  IOW, how much room
3571 * the leaf has left for both items and data
3572 */
3573noinline int btrfs_leaf_free_space(struct btrfs_root *root,
3574				   struct extent_buffer *leaf)
3575{
 
3576	int nritems = btrfs_header_nritems(leaf);
3577	int ret;
3578	ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
 
3579	if (ret < 0) {
3580		btrfs_crit(root->fs_info,
3581			"leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3582		       ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
3583		       leaf_space_used(leaf, 0, nritems), nritems);
 
3584	}
3585	return ret;
3586}
3587
3588/*
3589 * min slot controls the lowest index we're willing to push to the
3590 * right.  We'll push up to and including min_slot, but no lower
3591 */
3592static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3593				      struct btrfs_root *root,
3594				      struct btrfs_path *path,
3595				      int data_size, int empty,
3596				      struct extent_buffer *right,
3597				      int free_space, u32 left_nritems,
3598				      u32 min_slot)
3599{
 
3600	struct extent_buffer *left = path->nodes[0];
3601	struct extent_buffer *upper = path->nodes[1];
3602	struct btrfs_map_token token;
3603	struct btrfs_disk_key disk_key;
3604	int slot;
3605	u32 i;
3606	int push_space = 0;
3607	int push_items = 0;
3608	struct btrfs_item *item;
3609	u32 nr;
3610	u32 right_nritems;
3611	u32 data_end;
3612	u32 this_item_size;
3613
3614	btrfs_init_map_token(&token);
3615
3616	if (empty)
3617		nr = 0;
3618	else
3619		nr = max_t(u32, 1, min_slot);
3620
3621	if (path->slots[0] >= left_nritems)
3622		push_space += data_size;
3623
3624	slot = path->slots[1];
3625	i = left_nritems - 1;
3626	while (i >= nr) {
3627		item = btrfs_item_nr(i);
3628
3629		if (!empty && push_items > 0) {
3630			if (path->slots[0] > i)
3631				break;
3632			if (path->slots[0] == i) {
3633				int space = btrfs_leaf_free_space(root, left);
 
3634				if (space + push_space * 2 > free_space)
3635					break;
3636			}
3637		}
3638
3639		if (path->slots[0] == i)
3640			push_space += data_size;
3641
3642		this_item_size = btrfs_item_size(left, item);
3643		if (this_item_size + sizeof(*item) + push_space > free_space)
 
3644			break;
3645
3646		push_items++;
3647		push_space += this_item_size + sizeof(*item);
3648		if (i == 0)
3649			break;
3650		i--;
3651	}
3652
3653	if (push_items == 0)
3654		goto out_unlock;
3655
3656	WARN_ON(!empty && push_items == left_nritems);
3657
3658	/* push left to right */
3659	right_nritems = btrfs_header_nritems(right);
3660
3661	push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3662	push_space -= leaf_data_end(root, left);
3663
3664	/* make room in the right data area */
3665	data_end = leaf_data_end(root, right);
3666	memmove_extent_buffer(right,
3667			      btrfs_leaf_data(right) + data_end - push_space,
3668			      btrfs_leaf_data(right) + data_end,
3669			      BTRFS_LEAF_DATA_SIZE(root) - data_end);
3670
3671	/* copy from the left data area */
3672	copy_extent_buffer(right, left, btrfs_leaf_data(right) +
3673		     BTRFS_LEAF_DATA_SIZE(root) - push_space,
3674		     btrfs_leaf_data(left) + leaf_data_end(root, left),
3675		     push_space);
3676
3677	memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3678			      btrfs_item_nr_offset(0),
3679			      right_nritems * sizeof(struct btrfs_item));
3680
3681	/* copy the items from left to right */
3682	copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3683		   btrfs_item_nr_offset(left_nritems - push_items),
3684		   push_items * sizeof(struct btrfs_item));
3685
3686	/* update the item pointers */
 
3687	right_nritems += push_items;
3688	btrfs_set_header_nritems(right, right_nritems);
3689	push_space = BTRFS_LEAF_DATA_SIZE(root);
3690	for (i = 0; i < right_nritems; i++) {
3691		item = btrfs_item_nr(i);
3692		push_space -= btrfs_token_item_size(right, item, &token);
3693		btrfs_set_token_item_offset(right, item, push_space, &token);
3694	}
3695
3696	left_nritems -= push_items;
3697	btrfs_set_header_nritems(left, left_nritems);
3698
3699	if (left_nritems)
3700		btrfs_mark_buffer_dirty(left);
3701	else
3702		clean_tree_block(trans, root->fs_info, left);
3703
3704	btrfs_mark_buffer_dirty(right);
3705
3706	btrfs_item_key(right, &disk_key, 0);
3707	btrfs_set_node_key(upper, &disk_key, slot + 1);
3708	btrfs_mark_buffer_dirty(upper);
3709
3710	/* then fixup the leaf pointer in the path */
3711	if (path->slots[0] >= left_nritems) {
3712		path->slots[0] -= left_nritems;
3713		if (btrfs_header_nritems(path->nodes[0]) == 0)
3714			clean_tree_block(trans, root->fs_info, path->nodes[0]);
3715		btrfs_tree_unlock(path->nodes[0]);
3716		free_extent_buffer(path->nodes[0]);
3717		path->nodes[0] = right;
3718		path->slots[1] += 1;
3719	} else {
3720		btrfs_tree_unlock(right);
3721		free_extent_buffer(right);
3722	}
3723	return 0;
3724
3725out_unlock:
3726	btrfs_tree_unlock(right);
3727	free_extent_buffer(right);
3728	return 1;
3729}
3730
3731/*
3732 * push some data in the path leaf to the right, trying to free up at
3733 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3734 *
3735 * returns 1 if the push failed because the other node didn't have enough
3736 * room, 0 if everything worked out and < 0 if there were major errors.
3737 *
3738 * this will push starting from min_slot to the end of the leaf.  It won't
3739 * push any slot lower than min_slot
3740 */
3741static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3742			   *root, struct btrfs_path *path,
3743			   int min_data_size, int data_size,
3744			   int empty, u32 min_slot)
3745{
3746	struct extent_buffer *left = path->nodes[0];
3747	struct extent_buffer *right;
3748	struct extent_buffer *upper;
3749	int slot;
3750	int free_space;
3751	u32 left_nritems;
3752	int ret;
3753
3754	if (!path->nodes[1])
3755		return 1;
3756
3757	slot = path->slots[1];
3758	upper = path->nodes[1];
3759	if (slot >= btrfs_header_nritems(upper) - 1)
3760		return 1;
3761
3762	btrfs_assert_tree_locked(path->nodes[1]);
3763
3764	right = read_node_slot(root, upper, slot + 1);
3765	if (right == NULL)
 
 
 
 
3766		return 1;
3767
3768	btrfs_tree_lock(right);
3769	btrfs_set_lock_blocking(right);
3770
3771	free_space = btrfs_leaf_free_space(root, right);
3772	if (free_space < data_size)
3773		goto out_unlock;
3774
3775	/* cow and double check */
3776	ret = btrfs_cow_block(trans, root, right, upper,
3777			      slot + 1, &right);
3778	if (ret)
3779		goto out_unlock;
3780
3781	free_space = btrfs_leaf_free_space(root, right);
3782	if (free_space < data_size)
3783		goto out_unlock;
3784
3785	left_nritems = btrfs_header_nritems(left);
3786	if (left_nritems == 0)
3787		goto out_unlock;
3788
 
 
 
 
 
 
3789	if (path->slots[0] == left_nritems && !empty) {
3790		/* Key greater than all keys in the leaf, right neighbor has
3791		 * enough room for it and we're not emptying our leaf to delete
3792		 * it, therefore use right neighbor to insert the new item and
3793		 * no need to touch/dirty our left leaft. */
3794		btrfs_tree_unlock(left);
3795		free_extent_buffer(left);
3796		path->nodes[0] = right;
3797		path->slots[0] = 0;
3798		path->slots[1]++;
3799		return 0;
3800	}
3801
3802	return __push_leaf_right(trans, root, path, min_data_size, empty,
3803				right, free_space, left_nritems, min_slot);
3804out_unlock:
3805	btrfs_tree_unlock(right);
3806	free_extent_buffer(right);
3807	return 1;
3808}
3809
3810/*
3811 * push some data in the path leaf to the left, trying to free up at
3812 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3813 *
3814 * max_slot can put a limit on how far into the leaf we'll push items.  The
3815 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3816 * items
3817 */
3818static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3819				     struct btrfs_root *root,
3820				     struct btrfs_path *path, int data_size,
3821				     int empty, struct extent_buffer *left,
3822				     int free_space, u32 right_nritems,
3823				     u32 max_slot)
3824{
 
3825	struct btrfs_disk_key disk_key;
3826	struct extent_buffer *right = path->nodes[0];
3827	int i;
3828	int push_space = 0;
3829	int push_items = 0;
3830	struct btrfs_item *item;
3831	u32 old_left_nritems;
3832	u32 nr;
3833	int ret = 0;
3834	u32 this_item_size;
3835	u32 old_left_item_size;
3836	struct btrfs_map_token token;
3837
3838	btrfs_init_map_token(&token);
3839
3840	if (empty)
3841		nr = min(right_nritems, max_slot);
3842	else
3843		nr = min(right_nritems - 1, max_slot);
3844
3845	for (i = 0; i < nr; i++) {
3846		item = btrfs_item_nr(i);
3847
3848		if (!empty && push_items > 0) {
3849			if (path->slots[0] < i)
3850				break;
3851			if (path->slots[0] == i) {
3852				int space = btrfs_leaf_free_space(root, right);
 
3853				if (space + push_space * 2 > free_space)
3854					break;
3855			}
3856		}
3857
3858		if (path->slots[0] == i)
3859			push_space += data_size;
3860
3861		this_item_size = btrfs_item_size(right, item);
3862		if (this_item_size + sizeof(*item) + push_space > free_space)
 
3863			break;
3864
3865		push_items++;
3866		push_space += this_item_size + sizeof(*item);
3867	}
3868
3869	if (push_items == 0) {
3870		ret = 1;
3871		goto out;
3872	}
3873	WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3874
3875	/* push data from right to left */
3876	copy_extent_buffer(left, right,
3877			   btrfs_item_nr_offset(btrfs_header_nritems(left)),
3878			   btrfs_item_nr_offset(0),
3879			   push_items * sizeof(struct btrfs_item));
3880
3881	push_space = BTRFS_LEAF_DATA_SIZE(root) -
3882		     btrfs_item_offset_nr(right, push_items - 1);
3883
3884	copy_extent_buffer(left, right, btrfs_leaf_data(left) +
3885		     leaf_data_end(root, left) - push_space,
3886		     btrfs_leaf_data(right) +
3887		     btrfs_item_offset_nr(right, push_items - 1),
3888		     push_space);
3889	old_left_nritems = btrfs_header_nritems(left);
3890	BUG_ON(old_left_nritems <= 0);
3891
3892	old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
 
3893	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3894		u32 ioff;
3895
3896		item = btrfs_item_nr(i);
3897
3898		ioff = btrfs_token_item_offset(left, item, &token);
3899		btrfs_set_token_item_offset(left, item,
3900		      ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size),
3901		      &token);
3902	}
3903	btrfs_set_header_nritems(left, old_left_nritems + push_items);
3904
3905	/* fixup right node */
3906	if (push_items > right_nritems)
3907		WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3908		       right_nritems);
3909
3910	if (push_items < right_nritems) {
3911		push_space = btrfs_item_offset_nr(right, push_items - 1) -
3912						  leaf_data_end(root, right);
3913		memmove_extent_buffer(right, btrfs_leaf_data(right) +
3914				      BTRFS_LEAF_DATA_SIZE(root) - push_space,
3915				      btrfs_leaf_data(right) +
3916				      leaf_data_end(root, right), push_space);
3917
3918		memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3919			      btrfs_item_nr_offset(push_items),
3920			     (btrfs_header_nritems(right) - push_items) *
3921			     sizeof(struct btrfs_item));
3922	}
 
 
3923	right_nritems -= push_items;
3924	btrfs_set_header_nritems(right, right_nritems);
3925	push_space = BTRFS_LEAF_DATA_SIZE(root);
3926	for (i = 0; i < right_nritems; i++) {
3927		item = btrfs_item_nr(i);
3928
3929		push_space = push_space - btrfs_token_item_size(right,
3930								item, &token);
3931		btrfs_set_token_item_offset(right, item, push_space, &token);
3932	}
3933
3934	btrfs_mark_buffer_dirty(left);
3935	if (right_nritems)
3936		btrfs_mark_buffer_dirty(right);
3937	else
3938		clean_tree_block(trans, root->fs_info, right);
3939
3940	btrfs_item_key(right, &disk_key, 0);
3941	fixup_low_keys(root->fs_info, path, &disk_key, 1);
3942
3943	/* then fixup the leaf pointer in the path */
3944	if (path->slots[0] < push_items) {
3945		path->slots[0] += old_left_nritems;
3946		btrfs_tree_unlock(path->nodes[0]);
3947		free_extent_buffer(path->nodes[0]);
3948		path->nodes[0] = left;
3949		path->slots[1] -= 1;
3950	} else {
3951		btrfs_tree_unlock(left);
3952		free_extent_buffer(left);
3953		path->slots[0] -= push_items;
3954	}
3955	BUG_ON(path->slots[0] < 0);
3956	return ret;
3957out:
3958	btrfs_tree_unlock(left);
3959	free_extent_buffer(left);
3960	return ret;
3961}
3962
3963/*
3964 * push some data in the path leaf to the left, trying to free up at
3965 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3966 *
3967 * max_slot can put a limit on how far into the leaf we'll push items.  The
3968 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3969 * items
3970 */
3971static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3972			  *root, struct btrfs_path *path, int min_data_size,
3973			  int data_size, int empty, u32 max_slot)
3974{
3975	struct extent_buffer *right = path->nodes[0];
3976	struct extent_buffer *left;
3977	int slot;
3978	int free_space;
3979	u32 right_nritems;
3980	int ret = 0;
3981
3982	slot = path->slots[1];
3983	if (slot == 0)
3984		return 1;
3985	if (!path->nodes[1])
3986		return 1;
3987
3988	right_nritems = btrfs_header_nritems(right);
3989	if (right_nritems == 0)
3990		return 1;
3991
3992	btrfs_assert_tree_locked(path->nodes[1]);
3993
3994	left = read_node_slot(root, path->nodes[1], slot - 1);
3995	if (left == NULL)
 
 
 
 
3996		return 1;
3997
3998	btrfs_tree_lock(left);
3999	btrfs_set_lock_blocking(left);
4000
4001	free_space = btrfs_leaf_free_space(root, left);
4002	if (free_space < data_size) {
4003		ret = 1;
4004		goto out;
4005	}
4006
4007	/* cow and double check */
4008	ret = btrfs_cow_block(trans, root, left,
4009			      path->nodes[1], slot - 1, &left);
 
4010	if (ret) {
4011		/* we hit -ENOSPC, but it isn't fatal here */
4012		if (ret == -ENOSPC)
4013			ret = 1;
4014		goto out;
4015	}
4016
4017	free_space = btrfs_leaf_free_space(root, left);
4018	if (free_space < data_size) {
4019		ret = 1;
4020		goto out;
4021	}
4022
4023	return __push_leaf_left(trans, root, path, min_data_size,
4024			       empty, left, free_space, right_nritems,
4025			       max_slot);
4026out:
4027	btrfs_tree_unlock(left);
4028	free_extent_buffer(left);
4029	return ret;
4030}
4031
4032/*
4033 * split the path's leaf in two, making sure there is at least data_size
4034 * available for the resulting leaf level of the path.
4035 */
4036static noinline void copy_for_split(struct btrfs_trans_handle *trans,
4037				    struct btrfs_root *root,
4038				    struct btrfs_path *path,
4039				    struct extent_buffer *l,
4040				    struct extent_buffer *right,
4041				    int slot, int mid, int nritems)
4042{
 
4043	int data_copy_size;
4044	int rt_data_off;
4045	int i;
4046	struct btrfs_disk_key disk_key;
4047	struct btrfs_map_token token;
4048
4049	btrfs_init_map_token(&token);
4050
4051	nritems = nritems - mid;
4052	btrfs_set_header_nritems(right, nritems);
4053	data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
 
 
4054
4055	copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
4056			   btrfs_item_nr_offset(mid),
4057			   nritems * sizeof(struct btrfs_item));
4058
4059	copy_extent_buffer(right, l,
4060		     btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
4061		     data_copy_size, btrfs_leaf_data(l) +
4062		     leaf_data_end(root, l), data_copy_size);
4063
4064	rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
4065		      btrfs_item_end_nr(l, mid);
4066
 
4067	for (i = 0; i < nritems; i++) {
4068		struct btrfs_item *item = btrfs_item_nr(i);
4069		u32 ioff;
4070
4071		ioff = btrfs_token_item_offset(right, item, &token);
4072		btrfs_set_token_item_offset(right, item,
4073					    ioff + rt_data_off, &token);
4074	}
4075
4076	btrfs_set_header_nritems(l, mid);
4077	btrfs_item_key(right, &disk_key, 0);
4078	insert_ptr(trans, root, path, &disk_key, right->start,
4079		   path->slots[1] + 1, 1);
4080
4081	btrfs_mark_buffer_dirty(right);
4082	btrfs_mark_buffer_dirty(l);
4083	BUG_ON(path->slots[0] != slot);
4084
4085	if (mid <= slot) {
4086		btrfs_tree_unlock(path->nodes[0]);
4087		free_extent_buffer(path->nodes[0]);
4088		path->nodes[0] = right;
4089		path->slots[0] -= mid;
4090		path->slots[1] += 1;
4091	} else {
4092		btrfs_tree_unlock(right);
4093		free_extent_buffer(right);
4094	}
4095
4096	BUG_ON(path->slots[0] < 0);
4097}
4098
4099/*
4100 * double splits happen when we need to insert a big item in the middle
4101 * of a leaf.  A double split can leave us with 3 mostly empty leaves:
4102 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
4103 *          A                 B                 C
4104 *
4105 * We avoid this by trying to push the items on either side of our target
4106 * into the adjacent leaves.  If all goes well we can avoid the double split
4107 * completely.
4108 */
4109static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
4110					  struct btrfs_root *root,
4111					  struct btrfs_path *path,
4112					  int data_size)
4113{
4114	int ret;
4115	int progress = 0;
4116	int slot;
4117	u32 nritems;
4118	int space_needed = data_size;
4119
4120	slot = path->slots[0];
4121	if (slot < btrfs_header_nritems(path->nodes[0]))
4122		space_needed -= btrfs_leaf_free_space(root, path->nodes[0]);
4123
4124	/*
4125	 * try to push all the items after our slot into the
4126	 * right leaf
4127	 */
4128	ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
4129	if (ret < 0)
4130		return ret;
4131
4132	if (ret == 0)
4133		progress++;
4134
4135	nritems = btrfs_header_nritems(path->nodes[0]);
4136	/*
4137	 * our goal is to get our slot at the start or end of a leaf.  If
4138	 * we've done so we're done
4139	 */
4140	if (path->slots[0] == 0 || path->slots[0] == nritems)
4141		return 0;
4142
4143	if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4144		return 0;
4145
4146	/* try to push all the items before our slot into the next leaf */
4147	slot = path->slots[0];
 
 
 
4148	ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
4149	if (ret < 0)
4150		return ret;
4151
4152	if (ret == 0)
4153		progress++;
4154
4155	if (progress)
4156		return 0;
4157	return 1;
4158}
4159
4160/*
4161 * split the path's leaf in two, making sure there is at least data_size
4162 * available for the resulting leaf level of the path.
4163 *
4164 * returns 0 if all went well and < 0 on failure.
4165 */
4166static noinline int split_leaf(struct btrfs_trans_handle *trans,
4167			       struct btrfs_root *root,
4168			       struct btrfs_key *ins_key,
4169			       struct btrfs_path *path, int data_size,
4170			       int extend)
4171{
4172	struct btrfs_disk_key disk_key;
4173	struct extent_buffer *l;
4174	u32 nritems;
4175	int mid;
4176	int slot;
4177	struct extent_buffer *right;
4178	struct btrfs_fs_info *fs_info = root->fs_info;
4179	int ret = 0;
4180	int wret;
4181	int split;
4182	int num_doubles = 0;
4183	int tried_avoid_double = 0;
4184
4185	l = path->nodes[0];
4186	slot = path->slots[0];
4187	if (extend && data_size + btrfs_item_size_nr(l, slot) +
4188	    sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
4189		return -EOVERFLOW;
4190
4191	/* first try to make some room by pushing left and right */
4192	if (data_size && path->nodes[1]) {
4193		int space_needed = data_size;
4194
4195		if (slot < btrfs_header_nritems(l))
4196			space_needed -= btrfs_leaf_free_space(root, l);
4197
4198		wret = push_leaf_right(trans, root, path, space_needed,
4199				       space_needed, 0, 0);
4200		if (wret < 0)
4201			return wret;
4202		if (wret) {
 
 
 
4203			wret = push_leaf_left(trans, root, path, space_needed,
4204					      space_needed, 0, (u32)-1);
4205			if (wret < 0)
4206				return wret;
4207		}
4208		l = path->nodes[0];
4209
4210		/* did the pushes work? */
4211		if (btrfs_leaf_free_space(root, l) >= data_size)
4212			return 0;
4213	}
4214
4215	if (!path->nodes[1]) {
4216		ret = insert_new_root(trans, root, path, 1);
4217		if (ret)
4218			return ret;
4219	}
4220again:
4221	split = 1;
4222	l = path->nodes[0];
4223	slot = path->slots[0];
4224	nritems = btrfs_header_nritems(l);
4225	mid = (nritems + 1) / 2;
4226
4227	if (mid <= slot) {
4228		if (nritems == 1 ||
4229		    leaf_space_used(l, mid, nritems - mid) + data_size >
4230			BTRFS_LEAF_DATA_SIZE(root)) {
4231			if (slot >= nritems) {
4232				split = 0;
4233			} else {
4234				mid = slot;
4235				if (mid != nritems &&
4236				    leaf_space_used(l, mid, nritems - mid) +
4237				    data_size > BTRFS_LEAF_DATA_SIZE(root)) {
4238					if (data_size && !tried_avoid_double)
4239						goto push_for_double;
4240					split = 2;
4241				}
4242			}
4243		}
4244	} else {
4245		if (leaf_space_used(l, 0, mid) + data_size >
4246			BTRFS_LEAF_DATA_SIZE(root)) {
4247			if (!extend && data_size && slot == 0) {
4248				split = 0;
4249			} else if ((extend || !data_size) && slot == 0) {
4250				mid = 1;
4251			} else {
4252				mid = slot;
4253				if (mid != nritems &&
4254				    leaf_space_used(l, mid, nritems - mid) +
4255				    data_size > BTRFS_LEAF_DATA_SIZE(root)) {
4256					if (data_size && !tried_avoid_double)
4257						goto push_for_double;
4258					split = 2;
4259				}
4260			}
4261		}
4262	}
4263
4264	if (split == 0)
4265		btrfs_cpu_key_to_disk(&disk_key, ins_key);
4266	else
4267		btrfs_item_key(l, &disk_key, mid);
4268
 
 
 
 
 
 
 
 
4269	right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
4270			&disk_key, 0, l->start, 0);
 
 
4271	if (IS_ERR(right))
4272		return PTR_ERR(right);
4273
4274	root_add_used(root, root->nodesize);
4275
4276	memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
4277	btrfs_set_header_bytenr(right, right->start);
4278	btrfs_set_header_generation(right, trans->transid);
4279	btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
4280	btrfs_set_header_owner(right, root->root_key.objectid);
4281	btrfs_set_header_level(right, 0);
4282	write_extent_buffer(right, fs_info->fsid,
4283			    btrfs_header_fsid(), BTRFS_FSID_SIZE);
4284
4285	write_extent_buffer(right, fs_info->chunk_tree_uuid,
4286			    btrfs_header_chunk_tree_uuid(right),
4287			    BTRFS_UUID_SIZE);
4288
4289	if (split == 0) {
4290		if (mid <= slot) {
4291			btrfs_set_header_nritems(right, 0);
4292			insert_ptr(trans, root, path, &disk_key, right->start,
4293				   path->slots[1] + 1, 1);
4294			btrfs_tree_unlock(path->nodes[0]);
4295			free_extent_buffer(path->nodes[0]);
4296			path->nodes[0] = right;
4297			path->slots[0] = 0;
4298			path->slots[1] += 1;
4299		} else {
4300			btrfs_set_header_nritems(right, 0);
4301			insert_ptr(trans, root, path, &disk_key, right->start,
4302					  path->slots[1], 1);
4303			btrfs_tree_unlock(path->nodes[0]);
4304			free_extent_buffer(path->nodes[0]);
4305			path->nodes[0] = right;
4306			path->slots[0] = 0;
4307			if (path->slots[1] == 0)
4308				fixup_low_keys(fs_info, path, &disk_key, 1);
4309		}
4310		btrfs_mark_buffer_dirty(right);
 
 
 
 
4311		return ret;
4312	}
4313
4314	copy_for_split(trans, root, path, l, right, slot, mid, nritems);
4315
4316	if (split == 2) {
4317		BUG_ON(num_doubles != 0);
4318		num_doubles++;
4319		goto again;
4320	}
4321
4322	return 0;
4323
4324push_for_double:
4325	push_for_double_split(trans, root, path, data_size);
4326	tried_avoid_double = 1;
4327	if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4328		return 0;
4329	goto again;
4330}
4331
4332static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4333					 struct btrfs_root *root,
4334					 struct btrfs_path *path, int ins_len)
4335{
4336	struct btrfs_key key;
4337	struct extent_buffer *leaf;
4338	struct btrfs_file_extent_item *fi;
4339	u64 extent_len = 0;
4340	u32 item_size;
4341	int ret;
4342
4343	leaf = path->nodes[0];
4344	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4345
4346	BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4347	       key.type != BTRFS_EXTENT_CSUM_KEY);
4348
4349	if (btrfs_leaf_free_space(root, leaf) >= ins_len)
4350		return 0;
4351
4352	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4353	if (key.type == BTRFS_EXTENT_DATA_KEY) {
4354		fi = btrfs_item_ptr(leaf, path->slots[0],
4355				    struct btrfs_file_extent_item);
4356		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4357	}
4358	btrfs_release_path(path);
4359
4360	path->keep_locks = 1;
4361	path->search_for_split = 1;
4362	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4363	path->search_for_split = 0;
4364	if (ret > 0)
4365		ret = -EAGAIN;
4366	if (ret < 0)
4367		goto err;
4368
4369	ret = -EAGAIN;
4370	leaf = path->nodes[0];
4371	/* if our item isn't there, return now */
4372	if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4373		goto err;
4374
4375	/* the leaf has  changed, it now has room.  return now */
4376	if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
4377		goto err;
4378
4379	if (key.type == BTRFS_EXTENT_DATA_KEY) {
4380		fi = btrfs_item_ptr(leaf, path->slots[0],
4381				    struct btrfs_file_extent_item);
4382		if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4383			goto err;
4384	}
4385
4386	btrfs_set_path_blocking(path);
4387	ret = split_leaf(trans, root, &key, path, ins_len, 1);
4388	if (ret)
4389		goto err;
4390
4391	path->keep_locks = 0;
4392	btrfs_unlock_up_safe(path, 1);
4393	return 0;
4394err:
4395	path->keep_locks = 0;
4396	return ret;
4397}
4398
4399static noinline int split_item(struct btrfs_trans_handle *trans,
4400			       struct btrfs_root *root,
4401			       struct btrfs_path *path,
4402			       struct btrfs_key *new_key,
4403			       unsigned long split_offset)
4404{
4405	struct extent_buffer *leaf;
4406	struct btrfs_item *item;
4407	struct btrfs_item *new_item;
4408	int slot;
4409	char *buf;
4410	u32 nritems;
4411	u32 item_size;
4412	u32 orig_offset;
4413	struct btrfs_disk_key disk_key;
4414
4415	leaf = path->nodes[0];
4416	BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
4417
4418	btrfs_set_path_blocking(path);
4419
4420	item = btrfs_item_nr(path->slots[0]);
4421	orig_offset = btrfs_item_offset(leaf, item);
4422	item_size = btrfs_item_size(leaf, item);
4423
4424	buf = kmalloc(item_size, GFP_NOFS);
4425	if (!buf)
4426		return -ENOMEM;
4427
4428	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4429			    path->slots[0]), item_size);
4430
4431	slot = path->slots[0] + 1;
4432	nritems = btrfs_header_nritems(leaf);
4433	if (slot != nritems) {
4434		/* shift the items */
4435		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4436				btrfs_item_nr_offset(slot),
4437				(nritems - slot) * sizeof(struct btrfs_item));
4438	}
4439
4440	btrfs_cpu_key_to_disk(&disk_key, new_key);
4441	btrfs_set_item_key(leaf, &disk_key, slot);
4442
4443	new_item = btrfs_item_nr(slot);
4444
4445	btrfs_set_item_offset(leaf, new_item, orig_offset);
4446	btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4447
4448	btrfs_set_item_offset(leaf, item,
4449			      orig_offset + item_size - split_offset);
4450	btrfs_set_item_size(leaf, item, split_offset);
4451
4452	btrfs_set_header_nritems(leaf, nritems + 1);
4453
4454	/* write the data for the start of the original item */
4455	write_extent_buffer(leaf, buf,
4456			    btrfs_item_ptr_offset(leaf, path->slots[0]),
4457			    split_offset);
4458
4459	/* write the data for the new item */
4460	write_extent_buffer(leaf, buf + split_offset,
4461			    btrfs_item_ptr_offset(leaf, slot),
4462			    item_size - split_offset);
4463	btrfs_mark_buffer_dirty(leaf);
4464
4465	BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
4466	kfree(buf);
4467	return 0;
4468}
4469
4470/*
4471 * This function splits a single item into two items,
4472 * giving 'new_key' to the new item and splitting the
4473 * old one at split_offset (from the start of the item).
4474 *
4475 * The path may be released by this operation.  After
4476 * the split, the path is pointing to the old item.  The
4477 * new item is going to be in the same node as the old one.
4478 *
4479 * Note, the item being split must be smaller enough to live alone on
4480 * a tree block with room for one extra struct btrfs_item
4481 *
4482 * This allows us to split the item in place, keeping a lock on the
4483 * leaf the entire time.
4484 */
4485int btrfs_split_item(struct btrfs_trans_handle *trans,
4486		     struct btrfs_root *root,
4487		     struct btrfs_path *path,
4488		     struct btrfs_key *new_key,
4489		     unsigned long split_offset)
4490{
4491	int ret;
4492	ret = setup_leaf_for_split(trans, root, path,
4493				   sizeof(struct btrfs_item));
4494	if (ret)
4495		return ret;
4496
4497	ret = split_item(trans, root, path, new_key, split_offset);
4498	return ret;
4499}
4500
4501/*
4502 * This function duplicate a item, giving 'new_key' to the new item.
4503 * It guarantees both items live in the same tree leaf and the new item
4504 * is contiguous with the original item.
4505 *
4506 * This allows us to split file extent in place, keeping a lock on the
4507 * leaf the entire time.
4508 */
4509int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4510			 struct btrfs_root *root,
4511			 struct btrfs_path *path,
4512			 struct btrfs_key *new_key)
4513{
4514	struct extent_buffer *leaf;
4515	int ret;
4516	u32 item_size;
4517
4518	leaf = path->nodes[0];
4519	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4520	ret = setup_leaf_for_split(trans, root, path,
4521				   item_size + sizeof(struct btrfs_item));
4522	if (ret)
4523		return ret;
4524
4525	path->slots[0]++;
4526	setup_items_for_insert(root, path, new_key, &item_size,
4527			       item_size, item_size +
4528			       sizeof(struct btrfs_item), 1);
4529	leaf = path->nodes[0];
4530	memcpy_extent_buffer(leaf,
4531			     btrfs_item_ptr_offset(leaf, path->slots[0]),
4532			     btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4533			     item_size);
4534	return 0;
4535}
4536
4537/*
4538 * make the item pointed to by the path smaller.  new_size indicates
4539 * how small to make it, and from_end tells us if we just chop bytes
4540 * off the end of the item or if we shift the item to chop bytes off
4541 * the front.
4542 */
4543void btrfs_truncate_item(struct btrfs_root *root, struct btrfs_path *path,
4544			 u32 new_size, int from_end)
4545{
4546	int slot;
4547	struct extent_buffer *leaf;
4548	struct btrfs_item *item;
4549	u32 nritems;
4550	unsigned int data_end;
4551	unsigned int old_data_start;
4552	unsigned int old_size;
4553	unsigned int size_diff;
4554	int i;
4555	struct btrfs_map_token token;
4556
4557	btrfs_init_map_token(&token);
4558
4559	leaf = path->nodes[0];
4560	slot = path->slots[0];
4561
4562	old_size = btrfs_item_size_nr(leaf, slot);
4563	if (old_size == new_size)
4564		return;
4565
4566	nritems = btrfs_header_nritems(leaf);
4567	data_end = leaf_data_end(root, leaf);
4568
4569	old_data_start = btrfs_item_offset_nr(leaf, slot);
4570
4571	size_diff = old_size - new_size;
4572
4573	BUG_ON(slot < 0);
4574	BUG_ON(slot >= nritems);
4575
4576	/*
4577	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4578	 */
4579	/* first correct the data pointers */
 
4580	for (i = slot; i < nritems; i++) {
4581		u32 ioff;
4582		item = btrfs_item_nr(i);
4583
4584		ioff = btrfs_token_item_offset(leaf, item, &token);
4585		btrfs_set_token_item_offset(leaf, item,
4586					    ioff + size_diff, &token);
4587	}
4588
4589	/* shift the data */
4590	if (from_end) {
4591		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4592			      data_end + size_diff, btrfs_leaf_data(leaf) +
4593			      data_end, old_data_start + new_size - data_end);
4594	} else {
4595		struct btrfs_disk_key disk_key;
4596		u64 offset;
4597
4598		btrfs_item_key(leaf, &disk_key, slot);
4599
4600		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4601			unsigned long ptr;
4602			struct btrfs_file_extent_item *fi;
4603
4604			fi = btrfs_item_ptr(leaf, slot,
4605					    struct btrfs_file_extent_item);
4606			fi = (struct btrfs_file_extent_item *)(
4607			     (unsigned long)fi - size_diff);
4608
4609			if (btrfs_file_extent_type(leaf, fi) ==
4610			    BTRFS_FILE_EXTENT_INLINE) {
4611				ptr = btrfs_item_ptr_offset(leaf, slot);
4612				memmove_extent_buffer(leaf, ptr,
4613				      (unsigned long)fi,
4614				      BTRFS_FILE_EXTENT_INLINE_DATA_START);
4615			}
4616		}
4617
4618		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4619			      data_end + size_diff, btrfs_leaf_data(leaf) +
4620			      data_end, old_data_start - data_end);
4621
4622		offset = btrfs_disk_key_offset(&disk_key);
4623		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4624		btrfs_set_item_key(leaf, &disk_key, slot);
4625		if (slot == 0)
4626			fixup_low_keys(root->fs_info, path, &disk_key, 1);
4627	}
4628
4629	item = btrfs_item_nr(slot);
4630	btrfs_set_item_size(leaf, item, new_size);
4631	btrfs_mark_buffer_dirty(leaf);
4632
4633	if (btrfs_leaf_free_space(root, leaf) < 0) {
4634		btrfs_print_leaf(root, leaf);
4635		BUG();
4636	}
4637}
4638
4639/*
4640 * make the item pointed to by the path bigger, data_size is the added size.
4641 */
4642void btrfs_extend_item(struct btrfs_root *root, struct btrfs_path *path,
4643		       u32 data_size)
4644{
4645	int slot;
4646	struct extent_buffer *leaf;
4647	struct btrfs_item *item;
4648	u32 nritems;
4649	unsigned int data_end;
4650	unsigned int old_data;
4651	unsigned int old_size;
4652	int i;
4653	struct btrfs_map_token token;
4654
4655	btrfs_init_map_token(&token);
4656
4657	leaf = path->nodes[0];
4658
4659	nritems = btrfs_header_nritems(leaf);
4660	data_end = leaf_data_end(root, leaf);
4661
4662	if (btrfs_leaf_free_space(root, leaf) < data_size) {
4663		btrfs_print_leaf(root, leaf);
4664		BUG();
4665	}
4666	slot = path->slots[0];
4667	old_data = btrfs_item_end_nr(leaf, slot);
4668
4669	BUG_ON(slot < 0);
4670	if (slot >= nritems) {
4671		btrfs_print_leaf(root, leaf);
4672		btrfs_crit(root->fs_info, "slot %d too large, nritems %d",
4673		       slot, nritems);
4674		BUG_ON(1);
4675	}
4676
4677	/*
4678	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4679	 */
4680	/* first correct the data pointers */
 
4681	for (i = slot; i < nritems; i++) {
4682		u32 ioff;
4683		item = btrfs_item_nr(i);
4684
4685		ioff = btrfs_token_item_offset(leaf, item, &token);
4686		btrfs_set_token_item_offset(leaf, item,
4687					    ioff - data_size, &token);
4688	}
4689
4690	/* shift the data */
4691	memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4692		      data_end - data_size, btrfs_leaf_data(leaf) +
4693		      data_end, old_data - data_end);
4694
4695	data_end = old_data;
4696	old_size = btrfs_item_size_nr(leaf, slot);
4697	item = btrfs_item_nr(slot);
4698	btrfs_set_item_size(leaf, item, old_size + data_size);
4699	btrfs_mark_buffer_dirty(leaf);
4700
4701	if (btrfs_leaf_free_space(root, leaf) < 0) {
4702		btrfs_print_leaf(root, leaf);
4703		BUG();
4704	}
4705}
4706
4707/*
4708 * this is a helper for btrfs_insert_empty_items, the main goal here is
4709 * to save stack depth by doing the bulk of the work in a function
4710 * that doesn't call btrfs_search_slot
4711 */
4712void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4713			    struct btrfs_key *cpu_key, u32 *data_size,
4714			    u32 total_data, u32 total_size, int nr)
 
 
 
 
4715{
4716	struct btrfs_item *item;
4717	int i;
4718	u32 nritems;
4719	unsigned int data_end;
4720	struct btrfs_disk_key disk_key;
4721	struct extent_buffer *leaf;
4722	int slot;
4723	struct btrfs_map_token token;
 
4724
 
 
 
 
 
4725	if (path->slots[0] == 0) {
4726		btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4727		fixup_low_keys(root->fs_info, path, &disk_key, 1);
4728	}
4729	btrfs_unlock_up_safe(path, 1);
4730
4731	btrfs_init_map_token(&token);
4732
4733	leaf = path->nodes[0];
4734	slot = path->slots[0];
4735
4736	nritems = btrfs_header_nritems(leaf);
4737	data_end = leaf_data_end(root, leaf);
 
4738
4739	if (btrfs_leaf_free_space(root, leaf) < total_size) {
4740		btrfs_print_leaf(root, leaf);
4741		btrfs_crit(root->fs_info, "not enough freespace need %u have %d",
4742		       total_size, btrfs_leaf_free_space(root, leaf));
4743		BUG();
4744	}
4745
 
4746	if (slot != nritems) {
4747		unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4748
4749		if (old_data < data_end) {
4750			btrfs_print_leaf(root, leaf);
4751			btrfs_crit(root->fs_info, "slot %d old_data %d data_end %d",
4752			       slot, old_data, data_end);
4753			BUG_ON(1);
 
4754		}
4755		/*
4756		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4757		 */
4758		/* first correct the data pointers */
4759		for (i = slot; i < nritems; i++) {
4760			u32 ioff;
4761
4762			item = btrfs_item_nr( i);
4763			ioff = btrfs_token_item_offset(leaf, item, &token);
4764			btrfs_set_token_item_offset(leaf, item,
4765						    ioff - total_data, &token);
4766		}
4767		/* shift the items */
4768		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4769			      btrfs_item_nr_offset(slot),
4770			      (nritems - slot) * sizeof(struct btrfs_item));
4771
4772		/* shift the data */
4773		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4774			      data_end - total_data, btrfs_leaf_data(leaf) +
4775			      data_end, old_data - data_end);
4776		data_end = old_data;
4777	}
4778
4779	/* setup the item for the new data */
4780	for (i = 0; i < nr; i++) {
4781		btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4782		btrfs_set_item_key(leaf, &disk_key, slot + i);
4783		item = btrfs_item_nr(slot + i);
4784		btrfs_set_token_item_offset(leaf, item,
4785					    data_end - data_size[i], &token);
4786		data_end -= data_size[i];
4787		btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4788	}
4789
4790	btrfs_set_header_nritems(leaf, nritems + nr);
4791	btrfs_mark_buffer_dirty(leaf);
4792
4793	if (btrfs_leaf_free_space(root, leaf) < 0) {
4794		btrfs_print_leaf(root, leaf);
4795		BUG();
4796	}
4797}
4798
4799/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4800 * Given a key and some data, insert items into the tree.
4801 * This does all the path init required, making room in the tree if needed.
4802 */
4803int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4804			    struct btrfs_root *root,
4805			    struct btrfs_path *path,
4806			    struct btrfs_key *cpu_key, u32 *data_size,
4807			    int nr)
4808{
4809	int ret = 0;
4810	int slot;
4811	int i;
4812	u32 total_size = 0;
4813	u32 total_data = 0;
4814
4815	for (i = 0; i < nr; i++)
4816		total_data += data_size[i];
4817
4818	total_size = total_data + (nr * sizeof(struct btrfs_item));
4819	ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4820	if (ret == 0)
4821		return -EEXIST;
4822	if (ret < 0)
4823		return ret;
4824
4825	slot = path->slots[0];
4826	BUG_ON(slot < 0);
4827
4828	setup_items_for_insert(root, path, cpu_key, data_size,
4829			       total_data, total_size, nr);
4830	return 0;
4831}
4832
4833/*
4834 * Given a key and some data, insert an item into the tree.
4835 * This does all the path init required, making room in the tree if needed.
4836 */
4837int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
4838		      *root, struct btrfs_key *cpu_key, void *data, u32
4839		      data_size)
4840{
4841	int ret = 0;
4842	struct btrfs_path *path;
4843	struct extent_buffer *leaf;
4844	unsigned long ptr;
4845
4846	path = btrfs_alloc_path();
4847	if (!path)
4848		return -ENOMEM;
4849	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4850	if (!ret) {
4851		leaf = path->nodes[0];
4852		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4853		write_extent_buffer(leaf, data, ptr, data_size);
4854		btrfs_mark_buffer_dirty(leaf);
4855	}
4856	btrfs_free_path(path);
4857	return ret;
4858}
4859
4860/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4861 * delete the pointer from a given node.
4862 *
4863 * the tree should have been previously balanced so the deletion does not
4864 * empty a node.
4865 */
4866static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4867		    int level, int slot)
4868{
4869	struct extent_buffer *parent = path->nodes[level];
4870	u32 nritems;
4871	int ret;
4872
4873	nritems = btrfs_header_nritems(parent);
4874	if (slot != nritems - 1) {
4875		if (level)
4876			tree_mod_log_eb_move(root->fs_info, parent, slot,
4877					     slot + 1, nritems - slot - 1);
 
 
4878		memmove_extent_buffer(parent,
4879			      btrfs_node_key_ptr_offset(slot),
4880			      btrfs_node_key_ptr_offset(slot + 1),
4881			      sizeof(struct btrfs_key_ptr) *
4882			      (nritems - slot - 1));
4883	} else if (level) {
4884		ret = tree_mod_log_insert_key(root->fs_info, parent, slot,
4885					      MOD_LOG_KEY_REMOVE, GFP_NOFS);
4886		BUG_ON(ret < 0);
4887	}
4888
4889	nritems--;
4890	btrfs_set_header_nritems(parent, nritems);
4891	if (nritems == 0 && parent == root->node) {
4892		BUG_ON(btrfs_header_level(root->node) != 1);
4893		/* just turn the root into a leaf and break */
4894		btrfs_set_header_level(root->node, 0);
4895	} else if (slot == 0) {
4896		struct btrfs_disk_key disk_key;
4897
4898		btrfs_node_key(parent, &disk_key, 0);
4899		fixup_low_keys(root->fs_info, path, &disk_key, level + 1);
4900	}
4901	btrfs_mark_buffer_dirty(parent);
4902}
4903
4904/*
4905 * a helper function to delete the leaf pointed to by path->slots[1] and
4906 * path->nodes[1].
4907 *
4908 * This deletes the pointer in path->nodes[1] and frees the leaf
4909 * block extent.  zero is returned if it all worked out, < 0 otherwise.
4910 *
4911 * The path must have already been setup for deleting the leaf, including
4912 * all the proper balancing.  path->nodes[1] must be locked.
4913 */
4914static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4915				    struct btrfs_root *root,
4916				    struct btrfs_path *path,
4917				    struct extent_buffer *leaf)
4918{
4919	WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4920	del_ptr(root, path, 1, path->slots[1]);
4921
4922	/*
4923	 * btrfs_free_extent is expensive, we want to make sure we
4924	 * aren't holding any locks when we call it
4925	 */
4926	btrfs_unlock_up_safe(path, 0);
4927
4928	root_sub_used(root, leaf->len);
4929
4930	extent_buffer_get(leaf);
4931	btrfs_free_tree_block(trans, root, leaf, 0, 1);
4932	free_extent_buffer_stale(leaf);
4933}
4934/*
4935 * delete the item at the leaf level in path.  If that empties
4936 * the leaf, remove it from the tree
4937 */
4938int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4939		    struct btrfs_path *path, int slot, int nr)
4940{
 
4941	struct extent_buffer *leaf;
4942	struct btrfs_item *item;
4943	u32 last_off;
4944	u32 dsize = 0;
4945	int ret = 0;
4946	int wret;
4947	int i;
4948	u32 nritems;
4949	struct btrfs_map_token token;
4950
4951	btrfs_init_map_token(&token);
4952
4953	leaf = path->nodes[0];
4954	last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4955
4956	for (i = 0; i < nr; i++)
4957		dsize += btrfs_item_size_nr(leaf, slot + i);
4958
4959	nritems = btrfs_header_nritems(leaf);
4960
4961	if (slot + nr != nritems) {
4962		int data_end = leaf_data_end(root, leaf);
 
 
 
 
 
 
 
4963
4964		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4965			      data_end + dsize,
4966			      btrfs_leaf_data(leaf) + data_end,
4967			      last_off - data_end);
4968
 
4969		for (i = slot + nr; i < nritems; i++) {
4970			u32 ioff;
4971
4972			item = btrfs_item_nr(i);
4973			ioff = btrfs_token_item_offset(leaf, item, &token);
4974			btrfs_set_token_item_offset(leaf, item,
4975						    ioff + dsize, &token);
4976		}
4977
4978		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4979			      btrfs_item_nr_offset(slot + nr),
4980			      sizeof(struct btrfs_item) *
4981			      (nritems - slot - nr));
4982	}
4983	btrfs_set_header_nritems(leaf, nritems - nr);
4984	nritems -= nr;
4985
4986	/* delete the leaf if we've emptied it */
4987	if (nritems == 0) {
4988		if (leaf == root->node) {
4989			btrfs_set_header_level(leaf, 0);
4990		} else {
4991			btrfs_set_path_blocking(path);
4992			clean_tree_block(trans, root->fs_info, leaf);
4993			btrfs_del_leaf(trans, root, path, leaf);
4994		}
4995	} else {
4996		int used = leaf_space_used(leaf, 0, nritems);
4997		if (slot == 0) {
4998			struct btrfs_disk_key disk_key;
4999
5000			btrfs_item_key(leaf, &disk_key, 0);
5001			fixup_low_keys(root->fs_info, path, &disk_key, 1);
5002		}
5003
5004		/* delete the leaf if it is mostly empty */
5005		if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
 
 
 
 
 
 
 
 
 
5006			/* push_leaf_left fixes the path.
5007			 * make sure the path still points to our leaf
5008			 * for possible call to del_ptr below
5009			 */
5010			slot = path->slots[1];
5011			extent_buffer_get(leaf);
5012
5013			btrfs_set_path_blocking(path);
5014			wret = push_leaf_left(trans, root, path, 1, 1,
5015					      1, (u32)-1);
 
 
 
 
5016			if (wret < 0 && wret != -ENOSPC)
5017				ret = wret;
5018
5019			if (path->nodes[0] == leaf &&
5020			    btrfs_header_nritems(leaf)) {
5021				wret = push_leaf_right(trans, root, path, 1,
5022						       1, 1, 0);
 
 
 
 
 
 
 
 
 
 
 
 
5023				if (wret < 0 && wret != -ENOSPC)
5024					ret = wret;
5025			}
5026
5027			if (btrfs_header_nritems(leaf) == 0) {
5028				path->slots[1] = slot;
5029				btrfs_del_leaf(trans, root, path, leaf);
5030				free_extent_buffer(leaf);
5031				ret = 0;
5032			} else {
5033				/* if we're still in the path, make sure
5034				 * we're dirty.  Otherwise, one of the
5035				 * push_leaf functions must have already
5036				 * dirtied this buffer
5037				 */
5038				if (path->nodes[0] == leaf)
5039					btrfs_mark_buffer_dirty(leaf);
5040				free_extent_buffer(leaf);
5041			}
5042		} else {
5043			btrfs_mark_buffer_dirty(leaf);
5044		}
5045	}
5046	return ret;
5047}
5048
5049/*
5050 * search the tree again to find a leaf with lesser keys
5051 * returns 0 if it found something or 1 if there are no lesser leaves.
5052 * returns < 0 on io errors.
5053 *
5054 * This may release the path, and so you may lose any locks held at the
5055 * time you call it.
5056 */
5057int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
5058{
5059	struct btrfs_key key;
5060	struct btrfs_disk_key found_key;
5061	int ret;
5062
5063	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
5064
5065	if (key.offset > 0) {
5066		key.offset--;
5067	} else if (key.type > 0) {
5068		key.type--;
5069		key.offset = (u64)-1;
5070	} else if (key.objectid > 0) {
5071		key.objectid--;
5072		key.type = (u8)-1;
5073		key.offset = (u64)-1;
5074	} else {
5075		return 1;
5076	}
5077
5078	btrfs_release_path(path);
5079	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5080	if (ret < 0)
5081		return ret;
5082	btrfs_item_key(path->nodes[0], &found_key, 0);
5083	ret = comp_keys(&found_key, &key);
5084	/*
5085	 * We might have had an item with the previous key in the tree right
5086	 * before we released our path. And after we released our path, that
5087	 * item might have been pushed to the first slot (0) of the leaf we
5088	 * were holding due to a tree balance. Alternatively, an item with the
5089	 * previous key can exist as the only element of a leaf (big fat item).
5090	 * Therefore account for these 2 cases, so that our callers (like
5091	 * btrfs_previous_item) don't miss an existing item with a key matching
5092	 * the previous key we computed above.
5093	 */
5094	if (ret <= 0)
5095		return 0;
5096	return 1;
5097}
5098
5099/*
5100 * A helper function to walk down the tree starting at min_key, and looking
5101 * for nodes or leaves that are have a minimum transaction id.
5102 * This is used by the btree defrag code, and tree logging
5103 *
5104 * This does not cow, but it does stuff the starting key it finds back
5105 * into min_key, so you can call btrfs_search_slot with cow=1 on the
5106 * key and get a writable path.
5107 *
5108 * This does lock as it descends, and path->keep_locks should be set
5109 * to 1 by the caller.
5110 *
5111 * This honors path->lowest_level to prevent descent past a given level
5112 * of the tree.
5113 *
5114 * min_trans indicates the oldest transaction that you are interested
5115 * in walking through.  Any nodes or leaves older than min_trans are
5116 * skipped over (without reading them).
5117 *
5118 * returns zero if something useful was found, < 0 on error and 1 if there
5119 * was nothing in the tree that matched the search criteria.
5120 */
5121int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
5122			 struct btrfs_path *path,
5123			 u64 min_trans)
5124{
5125	struct extent_buffer *cur;
5126	struct btrfs_key found_key;
5127	int slot;
5128	int sret;
5129	u32 nritems;
5130	int level;
5131	int ret = 1;
5132	int keep_locks = path->keep_locks;
5133
 
5134	path->keep_locks = 1;
5135again:
5136	cur = btrfs_read_lock_root_node(root);
5137	level = btrfs_header_level(cur);
5138	WARN_ON(path->nodes[level]);
5139	path->nodes[level] = cur;
5140	path->locks[level] = BTRFS_READ_LOCK;
5141
5142	if (btrfs_header_generation(cur) < min_trans) {
5143		ret = 1;
5144		goto out;
5145	}
5146	while (1) {
5147		nritems = btrfs_header_nritems(cur);
5148		level = btrfs_header_level(cur);
5149		sret = bin_search(cur, min_key, level, &slot);
 
 
 
 
5150
5151		/* at the lowest level, we're done, setup the path and exit */
5152		if (level == path->lowest_level) {
5153			if (slot >= nritems)
5154				goto find_next_key;
5155			ret = 0;
5156			path->slots[level] = slot;
5157			btrfs_item_key_to_cpu(cur, &found_key, slot);
5158			goto out;
5159		}
5160		if (sret && slot > 0)
5161			slot--;
5162		/*
5163		 * check this node pointer against the min_trans parameters.
5164		 * If it is too old, old, skip to the next one.
5165		 */
5166		while (slot < nritems) {
5167			u64 gen;
5168
5169			gen = btrfs_node_ptr_generation(cur, slot);
5170			if (gen < min_trans) {
5171				slot++;
5172				continue;
5173			}
5174			break;
5175		}
5176find_next_key:
5177		/*
5178		 * we didn't find a candidate key in this node, walk forward
5179		 * and find another one
5180		 */
5181		if (slot >= nritems) {
5182			path->slots[level] = slot;
5183			btrfs_set_path_blocking(path);
5184			sret = btrfs_find_next_key(root, path, min_key, level,
5185						  min_trans);
5186			if (sret == 0) {
5187				btrfs_release_path(path);
5188				goto again;
5189			} else {
5190				goto out;
5191			}
5192		}
5193		/* save our key for returning back */
5194		btrfs_node_key_to_cpu(cur, &found_key, slot);
5195		path->slots[level] = slot;
5196		if (level == path->lowest_level) {
5197			ret = 0;
5198			goto out;
5199		}
5200		btrfs_set_path_blocking(path);
5201		cur = read_node_slot(root, cur, slot);
5202		BUG_ON(!cur); /* -ENOMEM */
 
 
5203
5204		btrfs_tree_read_lock(cur);
5205
5206		path->locks[level - 1] = BTRFS_READ_LOCK;
5207		path->nodes[level - 1] = cur;
5208		unlock_up(path, level, 1, 0, NULL);
5209		btrfs_clear_path_blocking(path, NULL, 0);
5210	}
5211out:
5212	path->keep_locks = keep_locks;
5213	if (ret == 0) {
5214		btrfs_unlock_up_safe(path, path->lowest_level + 1);
5215		btrfs_set_path_blocking(path);
5216		memcpy(min_key, &found_key, sizeof(found_key));
5217	}
5218	return ret;
5219}
5220
5221static void tree_move_down(struct btrfs_root *root,
5222			   struct btrfs_path *path,
5223			   int *level, int root_level)
5224{
5225	BUG_ON(*level == 0);
5226	path->nodes[*level - 1] = read_node_slot(root, path->nodes[*level],
5227					path->slots[*level]);
5228	path->slots[*level - 1] = 0;
5229	(*level)--;
5230}
5231
5232static int tree_move_next_or_upnext(struct btrfs_root *root,
5233				    struct btrfs_path *path,
5234				    int *level, int root_level)
5235{
5236	int ret = 0;
5237	int nritems;
5238	nritems = btrfs_header_nritems(path->nodes[*level]);
5239
5240	path->slots[*level]++;
5241
5242	while (path->slots[*level] >= nritems) {
5243		if (*level == root_level)
5244			return -1;
5245
5246		/* move upnext */
5247		path->slots[*level] = 0;
5248		free_extent_buffer(path->nodes[*level]);
5249		path->nodes[*level] = NULL;
5250		(*level)++;
5251		path->slots[*level]++;
5252
5253		nritems = btrfs_header_nritems(path->nodes[*level]);
5254		ret = 1;
5255	}
5256	return ret;
5257}
5258
5259/*
5260 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5261 * or down.
5262 */
5263static int tree_advance(struct btrfs_root *root,
5264			struct btrfs_path *path,
5265			int *level, int root_level,
5266			int allow_down,
5267			struct btrfs_key *key)
5268{
5269	int ret;
5270
5271	if (*level == 0 || !allow_down) {
5272		ret = tree_move_next_or_upnext(root, path, level, root_level);
5273	} else {
5274		tree_move_down(root, path, level, root_level);
5275		ret = 0;
5276	}
5277	if (ret >= 0) {
5278		if (*level == 0)
5279			btrfs_item_key_to_cpu(path->nodes[*level], key,
5280					path->slots[*level]);
5281		else
5282			btrfs_node_key_to_cpu(path->nodes[*level], key,
5283					path->slots[*level]);
5284	}
5285	return ret;
5286}
5287
5288static int tree_compare_item(struct btrfs_root *left_root,
5289			     struct btrfs_path *left_path,
5290			     struct btrfs_path *right_path,
5291			     char *tmp_buf)
5292{
5293	int cmp;
5294	int len1, len2;
5295	unsigned long off1, off2;
5296
5297	len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5298	len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5299	if (len1 != len2)
5300		return 1;
5301
5302	off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5303	off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5304				right_path->slots[0]);
5305
5306	read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5307
5308	cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5309	if (cmp)
5310		return 1;
5311	return 0;
5312}
5313
5314#define ADVANCE 1
5315#define ADVANCE_ONLY_NEXT -1
5316
5317/*
5318 * This function compares two trees and calls the provided callback for
5319 * every changed/new/deleted item it finds.
5320 * If shared tree blocks are encountered, whole subtrees are skipped, making
5321 * the compare pretty fast on snapshotted subvolumes.
5322 *
5323 * This currently works on commit roots only. As commit roots are read only,
5324 * we don't do any locking. The commit roots are protected with transactions.
5325 * Transactions are ended and rejoined when a commit is tried in between.
5326 *
5327 * This function checks for modifications done to the trees while comparing.
5328 * If it detects a change, it aborts immediately.
5329 */
5330int btrfs_compare_trees(struct btrfs_root *left_root,
5331			struct btrfs_root *right_root,
5332			btrfs_changed_cb_t changed_cb, void *ctx)
5333{
5334	int ret;
5335	int cmp;
5336	struct btrfs_path *left_path = NULL;
5337	struct btrfs_path *right_path = NULL;
5338	struct btrfs_key left_key;
5339	struct btrfs_key right_key;
5340	char *tmp_buf = NULL;
5341	int left_root_level;
5342	int right_root_level;
5343	int left_level;
5344	int right_level;
5345	int left_end_reached;
5346	int right_end_reached;
5347	int advance_left;
5348	int advance_right;
5349	u64 left_blockptr;
5350	u64 right_blockptr;
5351	u64 left_gen;
5352	u64 right_gen;
5353
5354	left_path = btrfs_alloc_path();
5355	if (!left_path) {
5356		ret = -ENOMEM;
5357		goto out;
5358	}
5359	right_path = btrfs_alloc_path();
5360	if (!right_path) {
5361		ret = -ENOMEM;
5362		goto out;
5363	}
5364
5365	tmp_buf = kmalloc(left_root->nodesize, GFP_KERNEL | __GFP_NOWARN);
5366	if (!tmp_buf) {
5367		tmp_buf = vmalloc(left_root->nodesize);
5368		if (!tmp_buf) {
5369			ret = -ENOMEM;
5370			goto out;
5371		}
5372	}
5373
5374	left_path->search_commit_root = 1;
5375	left_path->skip_locking = 1;
5376	right_path->search_commit_root = 1;
5377	right_path->skip_locking = 1;
5378
5379	/*
5380	 * Strategy: Go to the first items of both trees. Then do
5381	 *
5382	 * If both trees are at level 0
5383	 *   Compare keys of current items
5384	 *     If left < right treat left item as new, advance left tree
5385	 *       and repeat
5386	 *     If left > right treat right item as deleted, advance right tree
5387	 *       and repeat
5388	 *     If left == right do deep compare of items, treat as changed if
5389	 *       needed, advance both trees and repeat
5390	 * If both trees are at the same level but not at level 0
5391	 *   Compare keys of current nodes/leafs
5392	 *     If left < right advance left tree and repeat
5393	 *     If left > right advance right tree and repeat
5394	 *     If left == right compare blockptrs of the next nodes/leafs
5395	 *       If they match advance both trees but stay at the same level
5396	 *         and repeat
5397	 *       If they don't match advance both trees while allowing to go
5398	 *         deeper and repeat
5399	 * If tree levels are different
5400	 *   Advance the tree that needs it and repeat
5401	 *
5402	 * Advancing a tree means:
5403	 *   If we are at level 0, try to go to the next slot. If that's not
5404	 *   possible, go one level up and repeat. Stop when we found a level
5405	 *   where we could go to the next slot. We may at this point be on a
5406	 *   node or a leaf.
5407	 *
5408	 *   If we are not at level 0 and not on shared tree blocks, go one
5409	 *   level deeper.
5410	 *
5411	 *   If we are not at level 0 and on shared tree blocks, go one slot to
5412	 *   the right if possible or go up and right.
5413	 */
5414
5415	down_read(&left_root->fs_info->commit_root_sem);
5416	left_level = btrfs_header_level(left_root->commit_root);
5417	left_root_level = left_level;
5418	left_path->nodes[left_level] = left_root->commit_root;
5419	extent_buffer_get(left_path->nodes[left_level]);
5420
5421	right_level = btrfs_header_level(right_root->commit_root);
5422	right_root_level = right_level;
5423	right_path->nodes[right_level] = right_root->commit_root;
5424	extent_buffer_get(right_path->nodes[right_level]);
5425	up_read(&left_root->fs_info->commit_root_sem);
5426
5427	if (left_level == 0)
5428		btrfs_item_key_to_cpu(left_path->nodes[left_level],
5429				&left_key, left_path->slots[left_level]);
5430	else
5431		btrfs_node_key_to_cpu(left_path->nodes[left_level],
5432				&left_key, left_path->slots[left_level]);
5433	if (right_level == 0)
5434		btrfs_item_key_to_cpu(right_path->nodes[right_level],
5435				&right_key, right_path->slots[right_level]);
5436	else
5437		btrfs_node_key_to_cpu(right_path->nodes[right_level],
5438				&right_key, right_path->slots[right_level]);
5439
5440	left_end_reached = right_end_reached = 0;
5441	advance_left = advance_right = 0;
5442
5443	while (1) {
5444		if (advance_left && !left_end_reached) {
5445			ret = tree_advance(left_root, left_path, &left_level,
5446					left_root_level,
5447					advance_left != ADVANCE_ONLY_NEXT,
5448					&left_key);
5449			if (ret < 0)
5450				left_end_reached = ADVANCE;
5451			advance_left = 0;
5452		}
5453		if (advance_right && !right_end_reached) {
5454			ret = tree_advance(right_root, right_path, &right_level,
5455					right_root_level,
5456					advance_right != ADVANCE_ONLY_NEXT,
5457					&right_key);
5458			if (ret < 0)
5459				right_end_reached = ADVANCE;
5460			advance_right = 0;
5461		}
5462
5463		if (left_end_reached && right_end_reached) {
5464			ret = 0;
5465			goto out;
5466		} else if (left_end_reached) {
5467			if (right_level == 0) {
5468				ret = changed_cb(left_root, right_root,
5469						left_path, right_path,
5470						&right_key,
5471						BTRFS_COMPARE_TREE_DELETED,
5472						ctx);
5473				if (ret < 0)
5474					goto out;
5475			}
5476			advance_right = ADVANCE;
5477			continue;
5478		} else if (right_end_reached) {
5479			if (left_level == 0) {
5480				ret = changed_cb(left_root, right_root,
5481						left_path, right_path,
5482						&left_key,
5483						BTRFS_COMPARE_TREE_NEW,
5484						ctx);
5485				if (ret < 0)
5486					goto out;
5487			}
5488			advance_left = ADVANCE;
5489			continue;
5490		}
5491
5492		if (left_level == 0 && right_level == 0) {
5493			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5494			if (cmp < 0) {
5495				ret = changed_cb(left_root, right_root,
5496						left_path, right_path,
5497						&left_key,
5498						BTRFS_COMPARE_TREE_NEW,
5499						ctx);
5500				if (ret < 0)
5501					goto out;
5502				advance_left = ADVANCE;
5503			} else if (cmp > 0) {
5504				ret = changed_cb(left_root, right_root,
5505						left_path, right_path,
5506						&right_key,
5507						BTRFS_COMPARE_TREE_DELETED,
5508						ctx);
5509				if (ret < 0)
5510					goto out;
5511				advance_right = ADVANCE;
5512			} else {
5513				enum btrfs_compare_tree_result result;
5514
5515				WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5516				ret = tree_compare_item(left_root, left_path,
5517						right_path, tmp_buf);
5518				if (ret)
5519					result = BTRFS_COMPARE_TREE_CHANGED;
5520				else
5521					result = BTRFS_COMPARE_TREE_SAME;
5522				ret = changed_cb(left_root, right_root,
5523						 left_path, right_path,
5524						 &left_key, result, ctx);
5525				if (ret < 0)
5526					goto out;
5527				advance_left = ADVANCE;
5528				advance_right = ADVANCE;
5529			}
5530		} else if (left_level == right_level) {
5531			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5532			if (cmp < 0) {
5533				advance_left = ADVANCE;
5534			} else if (cmp > 0) {
5535				advance_right = ADVANCE;
5536			} else {
5537				left_blockptr = btrfs_node_blockptr(
5538						left_path->nodes[left_level],
5539						left_path->slots[left_level]);
5540				right_blockptr = btrfs_node_blockptr(
5541						right_path->nodes[right_level],
5542						right_path->slots[right_level]);
5543				left_gen = btrfs_node_ptr_generation(
5544						left_path->nodes[left_level],
5545						left_path->slots[left_level]);
5546				right_gen = btrfs_node_ptr_generation(
5547						right_path->nodes[right_level],
5548						right_path->slots[right_level]);
5549				if (left_blockptr == right_blockptr &&
5550				    left_gen == right_gen) {
5551					/*
5552					 * As we're on a shared block, don't
5553					 * allow to go deeper.
5554					 */
5555					advance_left = ADVANCE_ONLY_NEXT;
5556					advance_right = ADVANCE_ONLY_NEXT;
5557				} else {
5558					advance_left = ADVANCE;
5559					advance_right = ADVANCE;
5560				}
5561			}
5562		} else if (left_level < right_level) {
5563			advance_right = ADVANCE;
5564		} else {
5565			advance_left = ADVANCE;
5566		}
5567	}
5568
5569out:
5570	btrfs_free_path(left_path);
5571	btrfs_free_path(right_path);
5572	kvfree(tmp_buf);
5573	return ret;
5574}
5575
5576/*
5577 * this is similar to btrfs_next_leaf, but does not try to preserve
5578 * and fixup the path.  It looks for and returns the next key in the
5579 * tree based on the current path and the min_trans parameters.
5580 *
5581 * 0 is returned if another key is found, < 0 if there are any errors
5582 * and 1 is returned if there are no higher keys in the tree
5583 *
5584 * path->keep_locks should be set to 1 on the search made before
5585 * calling this function.
5586 */
5587int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5588			struct btrfs_key *key, int level, u64 min_trans)
5589{
5590	int slot;
5591	struct extent_buffer *c;
5592
5593	WARN_ON(!path->keep_locks);
5594	while (level < BTRFS_MAX_LEVEL) {
5595		if (!path->nodes[level])
5596			return 1;
5597
5598		slot = path->slots[level] + 1;
5599		c = path->nodes[level];
5600next:
5601		if (slot >= btrfs_header_nritems(c)) {
5602			int ret;
5603			int orig_lowest;
5604			struct btrfs_key cur_key;
5605			if (level + 1 >= BTRFS_MAX_LEVEL ||
5606			    !path->nodes[level + 1])
5607				return 1;
5608
5609			if (path->locks[level + 1]) {
5610				level++;
5611				continue;
5612			}
5613
5614			slot = btrfs_header_nritems(c) - 1;
5615			if (level == 0)
5616				btrfs_item_key_to_cpu(c, &cur_key, slot);
5617			else
5618				btrfs_node_key_to_cpu(c, &cur_key, slot);
5619
5620			orig_lowest = path->lowest_level;
5621			btrfs_release_path(path);
5622			path->lowest_level = level;
5623			ret = btrfs_search_slot(NULL, root, &cur_key, path,
5624						0, 0);
5625			path->lowest_level = orig_lowest;
5626			if (ret < 0)
5627				return ret;
5628
5629			c = path->nodes[level];
5630			slot = path->slots[level];
5631			if (ret == 0)
5632				slot++;
5633			goto next;
5634		}
5635
5636		if (level == 0)
5637			btrfs_item_key_to_cpu(c, key, slot);
5638		else {
5639			u64 gen = btrfs_node_ptr_generation(c, slot);
5640
5641			if (gen < min_trans) {
5642				slot++;
5643				goto next;
5644			}
5645			btrfs_node_key_to_cpu(c, key, slot);
5646		}
5647		return 0;
5648	}
5649	return 1;
5650}
5651
5652/*
5653 * search the tree again to find a leaf with greater keys
5654 * returns 0 if it found something or 1 if there are no greater leaves.
5655 * returns < 0 on io errors.
5656 */
5657int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5658{
5659	return btrfs_next_old_leaf(root, path, 0);
5660}
5661
5662int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5663			u64 time_seq)
5664{
5665	int slot;
5666	int level;
5667	struct extent_buffer *c;
5668	struct extent_buffer *next;
 
5669	struct btrfs_key key;
 
5670	u32 nritems;
5671	int ret;
5672	int old_spinning = path->leave_spinning;
5673	int next_rw_lock = 0;
 
 
 
 
 
 
5674
5675	nritems = btrfs_header_nritems(path->nodes[0]);
5676	if (nritems == 0)
5677		return 1;
5678
5679	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5680again:
5681	level = 1;
5682	next = NULL;
5683	next_rw_lock = 0;
5684	btrfs_release_path(path);
5685
5686	path->keep_locks = 1;
5687	path->leave_spinning = 1;
5688
5689	if (time_seq)
5690		ret = btrfs_search_old_slot(root, &key, path, time_seq);
5691	else
 
 
 
 
 
 
 
 
 
 
 
 
5692		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 
5693	path->keep_locks = 0;
5694
5695	if (ret < 0)
5696		return ret;
5697
5698	nritems = btrfs_header_nritems(path->nodes[0]);
5699	/*
5700	 * by releasing the path above we dropped all our locks.  A balance
5701	 * could have added more items next to the key that used to be
5702	 * at the very end of the block.  So, check again here and
5703	 * advance the path if there are now more items available.
5704	 */
5705	if (nritems > 0 && path->slots[0] < nritems - 1) {
5706		if (ret == 0)
5707			path->slots[0]++;
5708		ret = 0;
5709		goto done;
5710	}
5711	/*
5712	 * So the above check misses one case:
5713	 * - after releasing the path above, someone has removed the item that
5714	 *   used to be at the very end of the block, and balance between leafs
5715	 *   gets another one with bigger key.offset to replace it.
5716	 *
5717	 * This one should be returned as well, or we can get leaf corruption
5718	 * later(esp. in __btrfs_drop_extents()).
5719	 *
5720	 * And a bit more explanation about this check,
5721	 * with ret > 0, the key isn't found, the path points to the slot
5722	 * where it should be inserted, so the path->slots[0] item must be the
5723	 * bigger one.
5724	 */
5725	if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
5726		ret = 0;
5727		goto done;
5728	}
5729
5730	while (level < BTRFS_MAX_LEVEL) {
5731		if (!path->nodes[level]) {
5732			ret = 1;
5733			goto done;
5734		}
5735
5736		slot = path->slots[level] + 1;
5737		c = path->nodes[level];
5738		if (slot >= btrfs_header_nritems(c)) {
5739			level++;
5740			if (level == BTRFS_MAX_LEVEL) {
5741				ret = 1;
5742				goto done;
5743			}
5744			continue;
5745		}
5746
5747		if (next) {
5748			btrfs_tree_unlock_rw(next, next_rw_lock);
5749			free_extent_buffer(next);
 
 
 
 
 
 
 
 
 
 
5750		}
5751
5752		next = c;
5753		next_rw_lock = path->locks[level];
5754		ret = read_block_for_search(NULL, root, path, &next, level,
5755					    slot, &key, 0);
5756		if (ret == -EAGAIN)
5757			goto again;
5758
5759		if (ret < 0) {
5760			btrfs_release_path(path);
5761			goto done;
5762		}
5763
5764		if (!path->skip_locking) {
5765			ret = btrfs_try_tree_read_lock(next);
 
 
 
 
5766			if (!ret && time_seq) {
5767				/*
5768				 * If we don't get the lock, we may be racing
5769				 * with push_leaf_left, holding that lock while
5770				 * itself waiting for the leaf we've currently
5771				 * locked. To solve this situation, we give up
5772				 * on our lock and cycle.
5773				 */
5774				free_extent_buffer(next);
5775				btrfs_release_path(path);
5776				cond_resched();
5777				goto again;
5778			}
5779			if (!ret) {
5780				btrfs_set_path_blocking(path);
5781				btrfs_tree_read_lock(next);
5782				btrfs_clear_path_blocking(path, next,
5783							  BTRFS_READ_LOCK);
5784			}
5785			next_rw_lock = BTRFS_READ_LOCK;
5786		}
5787		break;
5788	}
5789	path->slots[level] = slot;
5790	while (1) {
5791		level--;
5792		c = path->nodes[level];
5793		if (path->locks[level])
5794			btrfs_tree_unlock_rw(c, path->locks[level]);
5795
5796		free_extent_buffer(c);
5797		path->nodes[level] = next;
5798		path->slots[level] = 0;
5799		if (!path->skip_locking)
5800			path->locks[level] = next_rw_lock;
5801		if (!level)
5802			break;
5803
5804		ret = read_block_for_search(NULL, root, path, &next, level,
5805					    0, &key, 0);
5806		if (ret == -EAGAIN)
5807			goto again;
5808
5809		if (ret < 0) {
5810			btrfs_release_path(path);
5811			goto done;
5812		}
5813
5814		if (!path->skip_locking) {
5815			ret = btrfs_try_tree_read_lock(next);
5816			if (!ret) {
5817				btrfs_set_path_blocking(path);
 
 
 
5818				btrfs_tree_read_lock(next);
5819				btrfs_clear_path_blocking(path, next,
5820							  BTRFS_READ_LOCK);
5821			}
5822			next_rw_lock = BTRFS_READ_LOCK;
5823		}
5824	}
5825	ret = 0;
5826done:
5827	unlock_up(path, 0, 1, 0, NULL);
5828	path->leave_spinning = old_spinning;
5829	if (!old_spinning)
5830		btrfs_set_path_blocking(path);
 
 
 
 
 
 
5831
5832	return ret;
5833}
5834
 
 
 
 
 
 
 
 
5835/*
5836 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5837 * searching until it gets past min_objectid or finds an item of 'type'
5838 *
5839 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5840 */
5841int btrfs_previous_item(struct btrfs_root *root,
5842			struct btrfs_path *path, u64 min_objectid,
5843			int type)
5844{
5845	struct btrfs_key found_key;
5846	struct extent_buffer *leaf;
5847	u32 nritems;
5848	int ret;
5849
5850	while (1) {
5851		if (path->slots[0] == 0) {
5852			btrfs_set_path_blocking(path);
5853			ret = btrfs_prev_leaf(root, path);
5854			if (ret != 0)
5855				return ret;
5856		} else {
5857			path->slots[0]--;
5858		}
5859		leaf = path->nodes[0];
5860		nritems = btrfs_header_nritems(leaf);
5861		if (nritems == 0)
5862			return 1;
5863		if (path->slots[0] == nritems)
5864			path->slots[0]--;
5865
5866		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5867		if (found_key.objectid < min_objectid)
5868			break;
5869		if (found_key.type == type)
5870			return 0;
5871		if (found_key.objectid == min_objectid &&
5872		    found_key.type < type)
5873			break;
5874	}
5875	return 1;
5876}
5877
5878/*
5879 * search in extent tree to find a previous Metadata/Data extent item with
5880 * min objecitd.
5881 *
5882 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5883 */
5884int btrfs_previous_extent_item(struct btrfs_root *root,
5885			struct btrfs_path *path, u64 min_objectid)
5886{
5887	struct btrfs_key found_key;
5888	struct extent_buffer *leaf;
5889	u32 nritems;
5890	int ret;
5891
5892	while (1) {
5893		if (path->slots[0] == 0) {
5894			btrfs_set_path_blocking(path);
5895			ret = btrfs_prev_leaf(root, path);
5896			if (ret != 0)
5897				return ret;
5898		} else {
5899			path->slots[0]--;
5900		}
5901		leaf = path->nodes[0];
5902		nritems = btrfs_header_nritems(leaf);
5903		if (nritems == 0)
5904			return 1;
5905		if (path->slots[0] == nritems)
5906			path->slots[0]--;
5907
5908		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5909		if (found_key.objectid < min_objectid)
5910			break;
5911		if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5912		    found_key.type == BTRFS_METADATA_ITEM_KEY)
5913			return 0;
5914		if (found_key.objectid == min_objectid &&
5915		    found_key.type < BTRFS_EXTENT_ITEM_KEY)
5916			break;
5917	}
5918	return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5919}