Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007,2008 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/sched.h>
   7#include <linux/slab.h>
   8#include <linux/rbtree.h>
   9#include <linux/mm.h>
  10#include <linux/error-injection.h>
  11#include "messages.h"
  12#include "ctree.h"
  13#include "disk-io.h"
  14#include "transaction.h"
  15#include "print-tree.h"
  16#include "locking.h"
  17#include "volumes.h"
  18#include "qgroup.h"
  19#include "tree-mod-log.h"
  20#include "tree-checker.h"
  21#include "fs.h"
  22#include "accessors.h"
  23#include "extent-tree.h"
  24#include "relocation.h"
  25#include "file-item.h"
  26
  27static struct kmem_cache *btrfs_path_cachep;
  28
  29static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
  30		      *root, struct btrfs_path *path, int level);
  31static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  32		      const struct btrfs_key *ins_key, struct btrfs_path *path,
  33		      int data_size, int extend);
  34static int push_node_left(struct btrfs_trans_handle *trans,
  35			  struct extent_buffer *dst,
  36			  struct extent_buffer *src, int empty);
  37static int balance_node_right(struct btrfs_trans_handle *trans,
  38			      struct extent_buffer *dst_buf,
  39			      struct extent_buffer *src_buf);
  40static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
  41		    int level, int slot);
  42
  43static const struct btrfs_csums {
  44	u16		size;
  45	const char	name[10];
  46	const char	driver[12];
  47} btrfs_csums[] = {
  48	[BTRFS_CSUM_TYPE_CRC32] = { .size = 4, .name = "crc32c" },
  49	[BTRFS_CSUM_TYPE_XXHASH] = { .size = 8, .name = "xxhash64" },
  50	[BTRFS_CSUM_TYPE_SHA256] = { .size = 32, .name = "sha256" },
  51	[BTRFS_CSUM_TYPE_BLAKE2] = { .size = 32, .name = "blake2b",
  52				     .driver = "blake2b-256" },
  53};
  54
  55/*
  56 * The leaf data grows from end-to-front in the node.  this returns the address
  57 * of the start of the last item, which is the stop of the leaf data stack.
  58 */
  59static unsigned int leaf_data_end(const struct extent_buffer *leaf)
  60{
  61	u32 nr = btrfs_header_nritems(leaf);
  62
  63	if (nr == 0)
  64		return BTRFS_LEAF_DATA_SIZE(leaf->fs_info);
  65	return btrfs_item_offset(leaf, nr - 1);
  66}
  67
  68/*
  69 * Move data in a @leaf (using memmove, safe for overlapping ranges).
  70 *
  71 * @leaf:	leaf that we're doing a memmove on
  72 * @dst_offset:	item data offset we're moving to
  73 * @src_offset:	item data offset were' moving from
  74 * @len:	length of the data we're moving
  75 *
  76 * Wrapper around memmove_extent_buffer() that takes into account the header on
  77 * the leaf.  The btrfs_item offset's start directly after the header, so we
  78 * have to adjust any offsets to account for the header in the leaf.  This
  79 * handles that math to simplify the callers.
  80 */
  81static inline void memmove_leaf_data(const struct extent_buffer *leaf,
  82				     unsigned long dst_offset,
  83				     unsigned long src_offset,
  84				     unsigned long len)
  85{
  86	memmove_extent_buffer(leaf, btrfs_item_nr_offset(leaf, 0) + dst_offset,
  87			      btrfs_item_nr_offset(leaf, 0) + src_offset, len);
  88}
  89
  90/*
  91 * Copy item data from @src into @dst at the given @offset.
  92 *
  93 * @dst:	destination leaf that we're copying into
  94 * @src:	source leaf that we're copying from
  95 * @dst_offset:	item data offset we're copying to
  96 * @src_offset:	item data offset were' copying from
  97 * @len:	length of the data we're copying
  98 *
  99 * Wrapper around copy_extent_buffer() that takes into account the header on
 100 * the leaf.  The btrfs_item offset's start directly after the header, so we
 101 * have to adjust any offsets to account for the header in the leaf.  This
 102 * handles that math to simplify the callers.
 103 */
 104static inline void copy_leaf_data(const struct extent_buffer *dst,
 105				  const struct extent_buffer *src,
 106				  unsigned long dst_offset,
 107				  unsigned long src_offset, unsigned long len)
 108{
 109	copy_extent_buffer(dst, src, btrfs_item_nr_offset(dst, 0) + dst_offset,
 110			   btrfs_item_nr_offset(src, 0) + src_offset, len);
 111}
 112
 113/*
 114 * Move items in a @leaf (using memmove).
 115 *
 116 * @dst:	destination leaf for the items
 117 * @dst_item:	the item nr we're copying into
 118 * @src_item:	the item nr we're copying from
 119 * @nr_items:	the number of items to copy
 120 *
 121 * Wrapper around memmove_extent_buffer() that does the math to get the
 122 * appropriate offsets into the leaf from the item numbers.
 123 */
 124static inline void memmove_leaf_items(const struct extent_buffer *leaf,
 125				      int dst_item, int src_item, int nr_items)
 126{
 127	memmove_extent_buffer(leaf, btrfs_item_nr_offset(leaf, dst_item),
 128			      btrfs_item_nr_offset(leaf, src_item),
 129			      nr_items * sizeof(struct btrfs_item));
 130}
 131
 132/*
 133 * Copy items from @src into @dst at the given @offset.
 134 *
 135 * @dst:	destination leaf for the items
 136 * @src:	source leaf for the items
 137 * @dst_item:	the item nr we're copying into
 138 * @src_item:	the item nr we're copying from
 139 * @nr_items:	the number of items to copy
 140 *
 141 * Wrapper around copy_extent_buffer() that does the math to get the
 142 * appropriate offsets into the leaf from the item numbers.
 143 */
 144static inline void copy_leaf_items(const struct extent_buffer *dst,
 145				   const struct extent_buffer *src,
 146				   int dst_item, int src_item, int nr_items)
 147{
 148	copy_extent_buffer(dst, src, btrfs_item_nr_offset(dst, dst_item),
 149			      btrfs_item_nr_offset(src, src_item),
 150			      nr_items * sizeof(struct btrfs_item));
 151}
 152
 153int btrfs_super_csum_size(const struct btrfs_super_block *s)
 154{
 155	u16 t = btrfs_super_csum_type(s);
 156	/*
 157	 * csum type is validated at mount time
 158	 */
 159	return btrfs_csums[t].size;
 160}
 161
 162const char *btrfs_super_csum_name(u16 csum_type)
 163{
 164	/* csum type is validated at mount time */
 165	return btrfs_csums[csum_type].name;
 166}
 167
 168/*
 169 * Return driver name if defined, otherwise the name that's also a valid driver
 170 * name
 171 */
 172const char *btrfs_super_csum_driver(u16 csum_type)
 173{
 174	/* csum type is validated at mount time */
 175	return btrfs_csums[csum_type].driver[0] ?
 176		btrfs_csums[csum_type].driver :
 177		btrfs_csums[csum_type].name;
 178}
 179
 180size_t __attribute_const__ btrfs_get_num_csums(void)
 181{
 182	return ARRAY_SIZE(btrfs_csums);
 183}
 184
 185struct btrfs_path *btrfs_alloc_path(void)
 
 
 
 
 186{
 187	might_sleep();
 188
 189	return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 190}
 191
 192/* this also releases the path */
 193void btrfs_free_path(struct btrfs_path *p)
 194{
 195	if (!p)
 196		return;
 197	btrfs_release_path(p);
 198	kmem_cache_free(btrfs_path_cachep, p);
 199}
 200
 201/*
 202 * path release drops references on the extent buffers in the path
 203 * and it drops any locks held by this path
 204 *
 205 * It is safe to call this on paths that no locks or extent buffers held.
 206 */
 207noinline void btrfs_release_path(struct btrfs_path *p)
 208{
 209	int i;
 210
 211	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
 212		p->slots[i] = 0;
 213		if (!p->nodes[i])
 214			continue;
 215		if (p->locks[i]) {
 216			btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
 217			p->locks[i] = 0;
 218		}
 219		free_extent_buffer(p->nodes[i]);
 220		p->nodes[i] = NULL;
 221	}
 222}
 223
 224/*
 225 * We want the transaction abort to print stack trace only for errors where the
 226 * cause could be a bug, eg. due to ENOSPC, and not for common errors that are
 227 * caused by external factors.
 228 */
 229bool __cold abort_should_print_stack(int errno)
 230{
 231	switch (errno) {
 232	case -EIO:
 233	case -EROFS:
 234	case -ENOMEM:
 235		return false;
 236	}
 237	return true;
 238}
 239
 240/*
 241 * safely gets a reference on the root node of a tree.  A lock
 242 * is not taken, so a concurrent writer may put a different node
 243 * at the root of the tree.  See btrfs_lock_root_node for the
 244 * looping required.
 245 *
 246 * The extent buffer returned by this has a reference taken, so
 247 * it won't disappear.  It may stop being the root of the tree
 248 * at any time because there are no locks held.
 249 */
 250struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
 251{
 252	struct extent_buffer *eb;
 253
 254	while (1) {
 255		rcu_read_lock();
 256		eb = rcu_dereference(root->node);
 257
 258		/*
 259		 * RCU really hurts here, we could free up the root node because
 260		 * it was COWed but we may not get the new root node yet so do
 261		 * the inc_not_zero dance and if it doesn't work then
 262		 * synchronize_rcu and try again.
 263		 */
 264		if (atomic_inc_not_zero(&eb->refs)) {
 265			rcu_read_unlock();
 266			break;
 267		}
 268		rcu_read_unlock();
 269		synchronize_rcu();
 270	}
 271	return eb;
 272}
 273
 274/*
 275 * Cowonly root (not-shareable trees, everything not subvolume or reloc roots),
 276 * just get put onto a simple dirty list.  Transaction walks this list to make
 277 * sure they get properly updated on disk.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 278 */
 279static void add_root_to_dirty_list(struct btrfs_root *root)
 280{
 281	struct btrfs_fs_info *fs_info = root->fs_info;
 282
 283	if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
 284	    !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
 285		return;
 286
 287	spin_lock(&fs_info->trans_lock);
 288	if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
 289		/* Want the extent tree to be the last on the list */
 290		if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID)
 291			list_move_tail(&root->dirty_list,
 292				       &fs_info->dirty_cowonly_roots);
 293		else
 294			list_move(&root->dirty_list,
 295				  &fs_info->dirty_cowonly_roots);
 296	}
 297	spin_unlock(&fs_info->trans_lock);
 298}
 299
 300/*
 301 * used by snapshot creation to make a copy of a root for a tree with
 302 * a given objectid.  The buffer with the new root node is returned in
 303 * cow_ret, and this func returns zero on success or a negative error code.
 304 */
 305int btrfs_copy_root(struct btrfs_trans_handle *trans,
 306		      struct btrfs_root *root,
 307		      struct extent_buffer *buf,
 308		      struct extent_buffer **cow_ret, u64 new_root_objectid)
 309{
 310	struct btrfs_fs_info *fs_info = root->fs_info;
 311	struct extent_buffer *cow;
 312	int ret = 0;
 313	int level;
 314	struct btrfs_disk_key disk_key;
 315
 316	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
 317		trans->transid != fs_info->running_transaction->transid);
 318	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
 319		trans->transid != root->last_trans);
 320
 321	level = btrfs_header_level(buf);
 322	if (level == 0)
 323		btrfs_item_key(buf, &disk_key, 0);
 324	else
 325		btrfs_node_key(buf, &disk_key, 0);
 326
 327	cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
 328				     &disk_key, level, buf->start, 0,
 329				     BTRFS_NESTING_NEW_ROOT);
 330	if (IS_ERR(cow))
 331		return PTR_ERR(cow);
 332
 333	copy_extent_buffer_full(cow, buf);
 334	btrfs_set_header_bytenr(cow, cow->start);
 335	btrfs_set_header_generation(cow, trans->transid);
 336	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
 337	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
 338				     BTRFS_HEADER_FLAG_RELOC);
 339	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
 340		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
 341	else
 342		btrfs_set_header_owner(cow, new_root_objectid);
 343
 344	write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
 345
 346	WARN_ON(btrfs_header_generation(buf) > trans->transid);
 347	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
 348		ret = btrfs_inc_ref(trans, root, cow, 1);
 349	else
 350		ret = btrfs_inc_ref(trans, root, cow, 0);
 351	if (ret) {
 352		btrfs_tree_unlock(cow);
 353		free_extent_buffer(cow);
 354		btrfs_abort_transaction(trans, ret);
 355		return ret;
 356	}
 357
 358	btrfs_mark_buffer_dirty(cow);
 359	*cow_ret = cow;
 360	return 0;
 361}
 362
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 363/*
 364 * check if the tree block can be shared by multiple trees
 365 */
 366int btrfs_block_can_be_shared(struct btrfs_root *root,
 367			      struct extent_buffer *buf)
 368{
 369	/*
 370	 * Tree blocks not in shareable trees and tree roots are never shared.
 371	 * If a block was allocated after the last snapshot and the block was
 372	 * not allocated by tree relocation, we know the block is not shared.
 
 373	 */
 374	if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
 375	    buf != root->node && buf != root->commit_root &&
 376	    (btrfs_header_generation(buf) <=
 377	     btrfs_root_last_snapshot(&root->root_item) ||
 378	     btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
 379		return 1;
 380
 381	return 0;
 382}
 383
 384static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
 385				       struct btrfs_root *root,
 386				       struct extent_buffer *buf,
 387				       struct extent_buffer *cow,
 388				       int *last_ref)
 389{
 390	struct btrfs_fs_info *fs_info = root->fs_info;
 391	u64 refs;
 392	u64 owner;
 393	u64 flags;
 394	u64 new_flags = 0;
 395	int ret;
 396
 397	/*
 398	 * Backrefs update rules:
 399	 *
 400	 * Always use full backrefs for extent pointers in tree block
 401	 * allocated by tree relocation.
 402	 *
 403	 * If a shared tree block is no longer referenced by its owner
 404	 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
 405	 * use full backrefs for extent pointers in tree block.
 406	 *
 407	 * If a tree block is been relocating
 408	 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
 409	 * use full backrefs for extent pointers in tree block.
 410	 * The reason for this is some operations (such as drop tree)
 411	 * are only allowed for blocks use full backrefs.
 412	 */
 413
 414	if (btrfs_block_can_be_shared(root, buf)) {
 415		ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
 416					       btrfs_header_level(buf), 1,
 417					       &refs, &flags);
 418		if (ret)
 419			return ret;
 420		if (refs == 0) {
 421			ret = -EROFS;
 422			btrfs_handle_fs_error(fs_info, ret, NULL);
 423			return ret;
 424		}
 425	} else {
 426		refs = 1;
 427		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
 428		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
 429			flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
 430		else
 431			flags = 0;
 432	}
 433
 434	owner = btrfs_header_owner(buf);
 435	BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
 436	       !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
 437
 438	if (refs > 1) {
 439		if ((owner == root->root_key.objectid ||
 440		     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
 441		    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
 442			ret = btrfs_inc_ref(trans, root, buf, 1);
 443			if (ret)
 444				return ret;
 445
 446			if (root->root_key.objectid ==
 447			    BTRFS_TREE_RELOC_OBJECTID) {
 448				ret = btrfs_dec_ref(trans, root, buf, 0);
 449				if (ret)
 450					return ret;
 451				ret = btrfs_inc_ref(trans, root, cow, 1);
 452				if (ret)
 453					return ret;
 454			}
 455			new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
 456		} else {
 457
 458			if (root->root_key.objectid ==
 459			    BTRFS_TREE_RELOC_OBJECTID)
 460				ret = btrfs_inc_ref(trans, root, cow, 1);
 461			else
 462				ret = btrfs_inc_ref(trans, root, cow, 0);
 463			if (ret)
 464				return ret;
 465		}
 466		if (new_flags != 0) {
 467			int level = btrfs_header_level(buf);
 468
 469			ret = btrfs_set_disk_extent_flags(trans, buf,
 470							  new_flags, level);
 
 
 471			if (ret)
 472				return ret;
 473		}
 474	} else {
 475		if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
 476			if (root->root_key.objectid ==
 477			    BTRFS_TREE_RELOC_OBJECTID)
 478				ret = btrfs_inc_ref(trans, root, cow, 1);
 479			else
 480				ret = btrfs_inc_ref(trans, root, cow, 0);
 481			if (ret)
 482				return ret;
 483			ret = btrfs_dec_ref(trans, root, buf, 1);
 484			if (ret)
 485				return ret;
 486		}
 487		btrfs_clean_tree_block(buf);
 488		*last_ref = 1;
 489	}
 490	return 0;
 491}
 492
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 493/*
 494 * does the dirty work in cow of a single block.  The parent block (if
 495 * supplied) is updated to point to the new cow copy.  The new buffer is marked
 496 * dirty and returned locked.  If you modify the block it needs to be marked
 497 * dirty again.
 498 *
 499 * search_start -- an allocation hint for the new block
 500 *
 501 * empty_size -- a hint that you plan on doing more cow.  This is the size in
 502 * bytes the allocator should try to find free next to the block it returns.
 503 * This is just a hint and may be ignored by the allocator.
 504 */
 505static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
 506			     struct btrfs_root *root,
 507			     struct extent_buffer *buf,
 508			     struct extent_buffer *parent, int parent_slot,
 509			     struct extent_buffer **cow_ret,
 510			     u64 search_start, u64 empty_size,
 511			     enum btrfs_lock_nesting nest)
 512{
 513	struct btrfs_fs_info *fs_info = root->fs_info;
 514	struct btrfs_disk_key disk_key;
 515	struct extent_buffer *cow;
 516	int level, ret;
 517	int last_ref = 0;
 518	int unlock_orig = 0;
 519	u64 parent_start = 0;
 520
 521	if (*cow_ret == buf)
 522		unlock_orig = 1;
 523
 524	btrfs_assert_tree_write_locked(buf);
 525
 526	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
 527		trans->transid != fs_info->running_transaction->transid);
 528	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
 529		trans->transid != root->last_trans);
 530
 531	level = btrfs_header_level(buf);
 532
 533	if (level == 0)
 534		btrfs_item_key(buf, &disk_key, 0);
 535	else
 536		btrfs_node_key(buf, &disk_key, 0);
 537
 538	if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
 539		parent_start = parent->start;
 540
 541	cow = btrfs_alloc_tree_block(trans, root, parent_start,
 542				     root->root_key.objectid, &disk_key, level,
 543				     search_start, empty_size, nest);
 544	if (IS_ERR(cow))
 545		return PTR_ERR(cow);
 546
 547	/* cow is set to blocking by btrfs_init_new_buffer */
 548
 549	copy_extent_buffer_full(cow, buf);
 550	btrfs_set_header_bytenr(cow, cow->start);
 551	btrfs_set_header_generation(cow, trans->transid);
 552	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
 553	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
 554				     BTRFS_HEADER_FLAG_RELOC);
 555	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
 556		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
 557	else
 558		btrfs_set_header_owner(cow, root->root_key.objectid);
 559
 560	write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
 561
 562	ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
 563	if (ret) {
 564		btrfs_tree_unlock(cow);
 565		free_extent_buffer(cow);
 566		btrfs_abort_transaction(trans, ret);
 567		return ret;
 568	}
 569
 570	if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
 571		ret = btrfs_reloc_cow_block(trans, root, buf, cow);
 572		if (ret) {
 573			btrfs_tree_unlock(cow);
 574			free_extent_buffer(cow);
 575			btrfs_abort_transaction(trans, ret);
 576			return ret;
 577		}
 578	}
 579
 580	if (buf == root->node) {
 581		WARN_ON(parent && parent != buf);
 582		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
 583		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
 584			parent_start = buf->start;
 585
 586		atomic_inc(&cow->refs);
 587		ret = btrfs_tree_mod_log_insert_root(root->node, cow, true);
 588		BUG_ON(ret < 0);
 589		rcu_assign_pointer(root->node, cow);
 590
 591		btrfs_free_tree_block(trans, btrfs_root_id(root), buf,
 592				      parent_start, last_ref);
 593		free_extent_buffer(buf);
 594		add_root_to_dirty_list(root);
 595	} else {
 596		WARN_ON(trans->transid != btrfs_header_generation(parent));
 597		btrfs_tree_mod_log_insert_key(parent, parent_slot,
 598					      BTRFS_MOD_LOG_KEY_REPLACE);
 599		btrfs_set_node_blockptr(parent, parent_slot,
 600					cow->start);
 601		btrfs_set_node_ptr_generation(parent, parent_slot,
 602					      trans->transid);
 603		btrfs_mark_buffer_dirty(parent);
 604		if (last_ref) {
 605			ret = btrfs_tree_mod_log_free_eb(buf);
 606			if (ret) {
 607				btrfs_tree_unlock(cow);
 608				free_extent_buffer(cow);
 609				btrfs_abort_transaction(trans, ret);
 610				return ret;
 611			}
 612		}
 613		btrfs_free_tree_block(trans, btrfs_root_id(root), buf,
 614				      parent_start, last_ref);
 615	}
 616	if (unlock_orig)
 617		btrfs_tree_unlock(buf);
 618	free_extent_buffer_stale(buf);
 619	btrfs_mark_buffer_dirty(cow);
 620	*cow_ret = cow;
 621	return 0;
 622}
 623
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 624static inline int should_cow_block(struct btrfs_trans_handle *trans,
 625				   struct btrfs_root *root,
 626				   struct extent_buffer *buf)
 627{
 628	if (btrfs_is_testing(root->fs_info))
 629		return 0;
 630
 631	/* Ensure we can see the FORCE_COW bit */
 632	smp_mb__before_atomic();
 633
 634	/*
 635	 * We do not need to cow a block if
 636	 * 1) this block is not created or changed in this transaction;
 637	 * 2) this block does not belong to TREE_RELOC tree;
 638	 * 3) the root is not forced COW.
 639	 *
 640	 * What is forced COW:
 641	 *    when we create snapshot during committing the transaction,
 642	 *    after we've finished copying src root, we must COW the shared
 643	 *    block to ensure the metadata consistency.
 644	 */
 645	if (btrfs_header_generation(buf) == trans->transid &&
 646	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
 647	    !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
 648	      btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
 649	    !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
 650		return 0;
 651	return 1;
 652}
 653
 654/*
 655 * cows a single block, see __btrfs_cow_block for the real work.
 656 * This version of it has extra checks so that a block isn't COWed more than
 657 * once per transaction, as long as it hasn't been written yet
 658 */
 659noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
 660		    struct btrfs_root *root, struct extent_buffer *buf,
 661		    struct extent_buffer *parent, int parent_slot,
 662		    struct extent_buffer **cow_ret,
 663		    enum btrfs_lock_nesting nest)
 664{
 665	struct btrfs_fs_info *fs_info = root->fs_info;
 666	u64 search_start;
 667	int ret;
 668
 669	if (test_bit(BTRFS_ROOT_DELETING, &root->state))
 670		btrfs_err(fs_info,
 671			"COW'ing blocks on a fs root that's being dropped");
 672
 673	if (trans->transaction != fs_info->running_transaction)
 674		WARN(1, KERN_CRIT "trans %llu running %llu\n",
 675		       trans->transid,
 676		       fs_info->running_transaction->transid);
 677
 678	if (trans->transid != fs_info->generation)
 679		WARN(1, KERN_CRIT "trans %llu running %llu\n",
 680		       trans->transid, fs_info->generation);
 681
 682	if (!should_cow_block(trans, root, buf)) {
 
 683		*cow_ret = buf;
 684		return 0;
 685	}
 686
 687	search_start = buf->start & ~((u64)SZ_1G - 1);
 688
 
 
 
 
 689	/*
 690	 * Before CoWing this block for later modification, check if it's
 691	 * the subtree root and do the delayed subtree trace if needed.
 692	 *
 693	 * Also We don't care about the error, as it's handled internally.
 694	 */
 695	btrfs_qgroup_trace_subtree_after_cow(trans, root, buf);
 696	ret = __btrfs_cow_block(trans, root, buf, parent,
 697				 parent_slot, cow_ret, search_start, 0, nest);
 698
 699	trace_btrfs_cow_block(root, buf, *cow_ret);
 700
 701	return ret;
 702}
 703ALLOW_ERROR_INJECTION(btrfs_cow_block, ERRNO);
 704
 705/*
 706 * helper function for defrag to decide if two blocks pointed to by a
 707 * node are actually close by
 708 */
 709static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
 710{
 711	if (blocknr < other && other - (blocknr + blocksize) < 32768)
 712		return 1;
 713	if (blocknr > other && blocknr - (other + blocksize) < 32768)
 714		return 1;
 715	return 0;
 716}
 717
 718#ifdef __LITTLE_ENDIAN
 719
 720/*
 721 * Compare two keys, on little-endian the disk order is same as CPU order and
 722 * we can avoid the conversion.
 723 */
 724static int comp_keys(const struct btrfs_disk_key *disk_key,
 725		     const struct btrfs_key *k2)
 726{
 727	const struct btrfs_key *k1 = (const struct btrfs_key *)disk_key;
 728
 729	return btrfs_comp_cpu_keys(k1, k2);
 730}
 731
 732#else
 733
 734/*
 735 * compare two keys in a memcmp fashion
 736 */
 737static int comp_keys(const struct btrfs_disk_key *disk,
 738		     const struct btrfs_key *k2)
 739{
 740	struct btrfs_key k1;
 741
 742	btrfs_disk_key_to_cpu(&k1, disk);
 743
 744	return btrfs_comp_cpu_keys(&k1, k2);
 745}
 746#endif
 747
 748/*
 749 * same as comp_keys only with two btrfs_key's
 750 */
 751int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
 752{
 753	if (k1->objectid > k2->objectid)
 754		return 1;
 755	if (k1->objectid < k2->objectid)
 756		return -1;
 757	if (k1->type > k2->type)
 758		return 1;
 759	if (k1->type < k2->type)
 760		return -1;
 761	if (k1->offset > k2->offset)
 762		return 1;
 763	if (k1->offset < k2->offset)
 764		return -1;
 765	return 0;
 766}
 767
 768/*
 769 * this is used by the defrag code to go through all the
 770 * leaves pointed to by a node and reallocate them so that
 771 * disk order is close to key order
 772 */
 773int btrfs_realloc_node(struct btrfs_trans_handle *trans,
 774		       struct btrfs_root *root, struct extent_buffer *parent,
 775		       int start_slot, u64 *last_ret,
 776		       struct btrfs_key *progress)
 777{
 778	struct btrfs_fs_info *fs_info = root->fs_info;
 779	struct extent_buffer *cur;
 780	u64 blocknr;
 
 781	u64 search_start = *last_ret;
 782	u64 last_block = 0;
 783	u64 other;
 784	u32 parent_nritems;
 785	int end_slot;
 786	int i;
 787	int err = 0;
 
 
 788	u32 blocksize;
 789	int progress_passed = 0;
 790	struct btrfs_disk_key disk_key;
 791
 
 
 792	WARN_ON(trans->transaction != fs_info->running_transaction);
 793	WARN_ON(trans->transid != fs_info->generation);
 794
 795	parent_nritems = btrfs_header_nritems(parent);
 796	blocksize = fs_info->nodesize;
 797	end_slot = parent_nritems - 1;
 798
 799	if (parent_nritems <= 1)
 800		return 0;
 801
 
 
 802	for (i = start_slot; i <= end_slot; i++) {
 
 803		int close = 1;
 804
 805		btrfs_node_key(parent, &disk_key, i);
 806		if (!progress_passed && comp_keys(&disk_key, progress) < 0)
 807			continue;
 808
 809		progress_passed = 1;
 810		blocknr = btrfs_node_blockptr(parent, i);
 
 
 811		if (last_block == 0)
 812			last_block = blocknr;
 813
 814		if (i > 0) {
 815			other = btrfs_node_blockptr(parent, i - 1);
 816			close = close_blocks(blocknr, other, blocksize);
 817		}
 818		if (!close && i < end_slot) {
 819			other = btrfs_node_blockptr(parent, i + 1);
 820			close = close_blocks(blocknr, other, blocksize);
 821		}
 822		if (close) {
 823			last_block = blocknr;
 824			continue;
 825		}
 826
 827		cur = btrfs_read_node_slot(parent, i);
 828		if (IS_ERR(cur))
 829			return PTR_ERR(cur);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 830		if (search_start == 0)
 831			search_start = last_block;
 832
 833		btrfs_tree_lock(cur);
 
 834		err = __btrfs_cow_block(trans, root, cur, parent, i,
 835					&cur, search_start,
 836					min(16 * blocksize,
 837					    (end_slot - i) * blocksize),
 838					BTRFS_NESTING_COW);
 839		if (err) {
 840			btrfs_tree_unlock(cur);
 841			free_extent_buffer(cur);
 842			break;
 843		}
 844		search_start = cur->start;
 845		last_block = cur->start;
 846		*last_ret = search_start;
 847		btrfs_tree_unlock(cur);
 848		free_extent_buffer(cur);
 849	}
 850	return err;
 851}
 852
 853/*
 854 * Search for a key in the given extent_buffer.
 855 *
 856 * The lower boundary for the search is specified by the slot number @low. Use a
 857 * value of 0 to search over the whole extent buffer.
 858 *
 859 * The slot in the extent buffer is returned via @slot. If the key exists in the
 860 * extent buffer, then @slot will point to the slot where the key is, otherwise
 861 * it points to the slot where you would insert the key.
 862 *
 863 * Slot may point to the total number of items (i.e. one position beyond the last
 864 * key) if the key is bigger than the last key in the extent buffer.
 865 */
 866static noinline int generic_bin_search(struct extent_buffer *eb, int low,
 867				       const struct btrfs_key *key, int *slot)
 
 868{
 869	unsigned long p;
 870	int item_size;
 871	int high = btrfs_header_nritems(eb);
 872	int ret;
 873	const int key_size = sizeof(struct btrfs_disk_key);
 
 
 
 
 
 
 874
 875	if (low > high) {
 876		btrfs_err(eb->fs_info,
 877		 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
 878			  __func__, low, high, eb->start,
 879			  btrfs_header_owner(eb), btrfs_header_level(eb));
 880		return -EINVAL;
 881	}
 882
 883	if (btrfs_header_level(eb) == 0) {
 884		p = offsetof(struct btrfs_leaf, items);
 885		item_size = sizeof(struct btrfs_item);
 886	} else {
 887		p = offsetof(struct btrfs_node, ptrs);
 888		item_size = sizeof(struct btrfs_key_ptr);
 889	}
 890
 891	while (low < high) {
 892		unsigned long oip;
 893		unsigned long offset;
 894		struct btrfs_disk_key *tmp;
 895		struct btrfs_disk_key unaligned;
 896		int mid;
 897
 898		mid = (low + high) / 2;
 899		offset = p + mid * item_size;
 900		oip = offset_in_page(offset);
 901
 902		if (oip + key_size <= PAGE_SIZE) {
 903			const unsigned long idx = get_eb_page_index(offset);
 904			char *kaddr = page_address(eb->pages[idx]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 905
 906			oip = get_eb_offset_in_page(eb, offset);
 907			tmp = (struct btrfs_disk_key *)(kaddr + oip);
 908		} else {
 909			read_extent_buffer(eb, &unaligned, offset, key_size);
 910			tmp = &unaligned;
 911		}
 912
 913		ret = comp_keys(tmp, key);
 914
 915		if (ret < 0)
 916			low = mid + 1;
 917		else if (ret > 0)
 918			high = mid;
 919		else {
 920			*slot = mid;
 921			return 0;
 922		}
 923	}
 924	*slot = low;
 925	return 1;
 926}
 927
 928/*
 929 * Simple binary search on an extent buffer. Works for both leaves and nodes, and
 930 * always searches over the whole range of keys (slot 0 to slot 'nritems - 1').
 931 */
 932int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
 933		     int *slot)
 934{
 935	return generic_bin_search(eb, 0, key, slot);
 
 
 
 
 
 
 
 
 
 
 
 936}
 937
 938static void root_add_used(struct btrfs_root *root, u32 size)
 939{
 940	spin_lock(&root->accounting_lock);
 941	btrfs_set_root_used(&root->root_item,
 942			    btrfs_root_used(&root->root_item) + size);
 943	spin_unlock(&root->accounting_lock);
 944}
 945
 946static void root_sub_used(struct btrfs_root *root, u32 size)
 947{
 948	spin_lock(&root->accounting_lock);
 949	btrfs_set_root_used(&root->root_item,
 950			    btrfs_root_used(&root->root_item) - size);
 951	spin_unlock(&root->accounting_lock);
 952}
 953
 954/* given a node and slot number, this reads the blocks it points to.  The
 955 * extent buffer is returned with a reference taken (but unlocked).
 956 */
 957struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
 958					   int slot)
 959{
 960	int level = btrfs_header_level(parent);
 961	struct btrfs_tree_parent_check check = { 0 };
 962	struct extent_buffer *eb;
 
 963
 964	if (slot < 0 || slot >= btrfs_header_nritems(parent))
 965		return ERR_PTR(-ENOENT);
 966
 967	BUG_ON(level == 0);
 968
 969	check.level = level - 1;
 970	check.transid = btrfs_node_ptr_generation(parent, slot);
 971	check.owner_root = btrfs_header_owner(parent);
 972	check.has_first_key = true;
 973	btrfs_node_key_to_cpu(parent, &check.first_key, slot);
 974
 975	eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot),
 976			     &check);
 977	if (IS_ERR(eb))
 978		return eb;
 979	if (!extent_buffer_uptodate(eb)) {
 980		free_extent_buffer(eb);
 981		return ERR_PTR(-EIO);
 982	}
 983
 984	return eb;
 985}
 986
 987/*
 988 * node level balancing, used to make sure nodes are in proper order for
 989 * item deletion.  We balance from the top down, so we have to make sure
 990 * that a deletion won't leave an node completely empty later on.
 991 */
 992static noinline int balance_level(struct btrfs_trans_handle *trans,
 993			 struct btrfs_root *root,
 994			 struct btrfs_path *path, int level)
 995{
 996	struct btrfs_fs_info *fs_info = root->fs_info;
 997	struct extent_buffer *right = NULL;
 998	struct extent_buffer *mid;
 999	struct extent_buffer *left = NULL;
1000	struct extent_buffer *parent = NULL;
1001	int ret = 0;
1002	int wret;
1003	int pslot;
1004	int orig_slot = path->slots[level];
1005	u64 orig_ptr;
1006
1007	ASSERT(level > 0);
1008
1009	mid = path->nodes[level];
1010
1011	WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK);
 
1012	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1013
1014	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1015
1016	if (level < BTRFS_MAX_LEVEL - 1) {
1017		parent = path->nodes[level + 1];
1018		pslot = path->slots[level + 1];
1019	}
1020
1021	/*
1022	 * deal with the case where there is only one pointer in the root
1023	 * by promoting the node below to a root
1024	 */
1025	if (!parent) {
1026		struct extent_buffer *child;
1027
1028		if (btrfs_header_nritems(mid) != 1)
1029			return 0;
1030
1031		/* promote the child to a root */
1032		child = btrfs_read_node_slot(mid, 0);
1033		if (IS_ERR(child)) {
1034			ret = PTR_ERR(child);
1035			btrfs_handle_fs_error(fs_info, ret, NULL);
1036			goto enospc;
1037		}
1038
1039		btrfs_tree_lock(child);
1040		ret = btrfs_cow_block(trans, root, child, mid, 0, &child,
1041				      BTRFS_NESTING_COW);
1042		if (ret) {
1043			btrfs_tree_unlock(child);
1044			free_extent_buffer(child);
1045			goto enospc;
1046		}
1047
1048		ret = btrfs_tree_mod_log_insert_root(root->node, child, true);
1049		BUG_ON(ret < 0);
1050		rcu_assign_pointer(root->node, child);
1051
1052		add_root_to_dirty_list(root);
1053		btrfs_tree_unlock(child);
1054
1055		path->locks[level] = 0;
1056		path->nodes[level] = NULL;
1057		btrfs_clean_tree_block(mid);
1058		btrfs_tree_unlock(mid);
1059		/* once for the path */
1060		free_extent_buffer(mid);
1061
1062		root_sub_used(root, mid->len);
1063		btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1);
1064		/* once for the root ptr */
1065		free_extent_buffer_stale(mid);
1066		return 0;
1067	}
1068	if (btrfs_header_nritems(mid) >
1069	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
1070		return 0;
1071
1072	left = btrfs_read_node_slot(parent, pslot - 1);
1073	if (IS_ERR(left))
1074		left = NULL;
1075
1076	if (left) {
1077		__btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
 
1078		wret = btrfs_cow_block(trans, root, left,
1079				       parent, pslot - 1, &left,
1080				       BTRFS_NESTING_LEFT_COW);
1081		if (wret) {
1082			ret = wret;
1083			goto enospc;
1084		}
1085	}
1086
1087	right = btrfs_read_node_slot(parent, pslot + 1);
1088	if (IS_ERR(right))
1089		right = NULL;
1090
1091	if (right) {
1092		__btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
 
1093		wret = btrfs_cow_block(trans, root, right,
1094				       parent, pslot + 1, &right,
1095				       BTRFS_NESTING_RIGHT_COW);
1096		if (wret) {
1097			ret = wret;
1098			goto enospc;
1099		}
1100	}
1101
1102	/* first, try to make some room in the middle buffer */
1103	if (left) {
1104		orig_slot += btrfs_header_nritems(left);
1105		wret = push_node_left(trans, left, mid, 1);
1106		if (wret < 0)
1107			ret = wret;
1108	}
1109
1110	/*
1111	 * then try to empty the right most buffer into the middle
1112	 */
1113	if (right) {
1114		wret = push_node_left(trans, mid, right, 1);
1115		if (wret < 0 && wret != -ENOSPC)
1116			ret = wret;
1117		if (btrfs_header_nritems(right) == 0) {
1118			btrfs_clean_tree_block(right);
1119			btrfs_tree_unlock(right);
1120			del_ptr(root, path, level + 1, pslot + 1);
1121			root_sub_used(root, right->len);
1122			btrfs_free_tree_block(trans, btrfs_root_id(root), right,
1123					      0, 1);
1124			free_extent_buffer_stale(right);
1125			right = NULL;
1126		} else {
1127			struct btrfs_disk_key right_key;
1128			btrfs_node_key(right, &right_key, 0);
1129			ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
1130					BTRFS_MOD_LOG_KEY_REPLACE);
1131			BUG_ON(ret < 0);
1132			btrfs_set_node_key(parent, &right_key, pslot + 1);
1133			btrfs_mark_buffer_dirty(parent);
1134		}
1135	}
1136	if (btrfs_header_nritems(mid) == 1) {
1137		/*
1138		 * we're not allowed to leave a node with one item in the
1139		 * tree during a delete.  A deletion from lower in the tree
1140		 * could try to delete the only pointer in this node.
1141		 * So, pull some keys from the left.
1142		 * There has to be a left pointer at this point because
1143		 * otherwise we would have pulled some pointers from the
1144		 * right
1145		 */
1146		if (!left) {
1147			ret = -EROFS;
1148			btrfs_handle_fs_error(fs_info, ret, NULL);
1149			goto enospc;
1150		}
1151		wret = balance_node_right(trans, mid, left);
1152		if (wret < 0) {
1153			ret = wret;
1154			goto enospc;
1155		}
1156		if (wret == 1) {
1157			wret = push_node_left(trans, left, mid, 1);
1158			if (wret < 0)
1159				ret = wret;
1160		}
1161		BUG_ON(wret == 1);
1162	}
1163	if (btrfs_header_nritems(mid) == 0) {
1164		btrfs_clean_tree_block(mid);
1165		btrfs_tree_unlock(mid);
1166		del_ptr(root, path, level + 1, pslot);
1167		root_sub_used(root, mid->len);
1168		btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1);
1169		free_extent_buffer_stale(mid);
1170		mid = NULL;
1171	} else {
1172		/* update the parent key to reflect our changes */
1173		struct btrfs_disk_key mid_key;
1174		btrfs_node_key(mid, &mid_key, 0);
1175		ret = btrfs_tree_mod_log_insert_key(parent, pslot,
1176						    BTRFS_MOD_LOG_KEY_REPLACE);
1177		BUG_ON(ret < 0);
1178		btrfs_set_node_key(parent, &mid_key, pslot);
1179		btrfs_mark_buffer_dirty(parent);
1180	}
1181
1182	/* update the path */
1183	if (left) {
1184		if (btrfs_header_nritems(left) > orig_slot) {
1185			atomic_inc(&left->refs);
1186			/* left was locked after cow */
1187			path->nodes[level] = left;
1188			path->slots[level + 1] -= 1;
1189			path->slots[level] = orig_slot;
1190			if (mid) {
1191				btrfs_tree_unlock(mid);
1192				free_extent_buffer(mid);
1193			}
1194		} else {
1195			orig_slot -= btrfs_header_nritems(left);
1196			path->slots[level] = orig_slot;
1197		}
1198	}
1199	/* double check we haven't messed things up */
1200	if (orig_ptr !=
1201	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1202		BUG();
1203enospc:
1204	if (right) {
1205		btrfs_tree_unlock(right);
1206		free_extent_buffer(right);
1207	}
1208	if (left) {
1209		if (path->nodes[level] != left)
1210			btrfs_tree_unlock(left);
1211		free_extent_buffer(left);
1212	}
1213	return ret;
1214}
1215
1216/* Node balancing for insertion.  Here we only split or push nodes around
1217 * when they are completely full.  This is also done top down, so we
1218 * have to be pessimistic.
1219 */
1220static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1221					  struct btrfs_root *root,
1222					  struct btrfs_path *path, int level)
1223{
1224	struct btrfs_fs_info *fs_info = root->fs_info;
1225	struct extent_buffer *right = NULL;
1226	struct extent_buffer *mid;
1227	struct extent_buffer *left = NULL;
1228	struct extent_buffer *parent = NULL;
1229	int ret = 0;
1230	int wret;
1231	int pslot;
1232	int orig_slot = path->slots[level];
1233
1234	if (level == 0)
1235		return 1;
1236
1237	mid = path->nodes[level];
1238	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1239
1240	if (level < BTRFS_MAX_LEVEL - 1) {
1241		parent = path->nodes[level + 1];
1242		pslot = path->slots[level + 1];
1243	}
1244
1245	if (!parent)
1246		return 1;
1247
1248	left = btrfs_read_node_slot(parent, pslot - 1);
1249	if (IS_ERR(left))
1250		left = NULL;
1251
1252	/* first, try to make some room in the middle buffer */
1253	if (left) {
1254		u32 left_nr;
1255
1256		__btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
 
1257
1258		left_nr = btrfs_header_nritems(left);
1259		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
1260			wret = 1;
1261		} else {
1262			ret = btrfs_cow_block(trans, root, left, parent,
1263					      pslot - 1, &left,
1264					      BTRFS_NESTING_LEFT_COW);
1265			if (ret)
1266				wret = 1;
1267			else {
1268				wret = push_node_left(trans, left, mid, 0);
1269			}
1270		}
1271		if (wret < 0)
1272			ret = wret;
1273		if (wret == 0) {
1274			struct btrfs_disk_key disk_key;
1275			orig_slot += left_nr;
1276			btrfs_node_key(mid, &disk_key, 0);
1277			ret = btrfs_tree_mod_log_insert_key(parent, pslot,
1278					BTRFS_MOD_LOG_KEY_REPLACE);
1279			BUG_ON(ret < 0);
1280			btrfs_set_node_key(parent, &disk_key, pslot);
1281			btrfs_mark_buffer_dirty(parent);
1282			if (btrfs_header_nritems(left) > orig_slot) {
1283				path->nodes[level] = left;
1284				path->slots[level + 1] -= 1;
1285				path->slots[level] = orig_slot;
1286				btrfs_tree_unlock(mid);
1287				free_extent_buffer(mid);
1288			} else {
1289				orig_slot -=
1290					btrfs_header_nritems(left);
1291				path->slots[level] = orig_slot;
1292				btrfs_tree_unlock(left);
1293				free_extent_buffer(left);
1294			}
1295			return 0;
1296		}
1297		btrfs_tree_unlock(left);
1298		free_extent_buffer(left);
1299	}
1300	right = btrfs_read_node_slot(parent, pslot + 1);
1301	if (IS_ERR(right))
1302		right = NULL;
1303
1304	/*
1305	 * then try to empty the right most buffer into the middle
1306	 */
1307	if (right) {
1308		u32 right_nr;
1309
1310		__btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
 
1311
1312		right_nr = btrfs_header_nritems(right);
1313		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
1314			wret = 1;
1315		} else {
1316			ret = btrfs_cow_block(trans, root, right,
1317					      parent, pslot + 1,
1318					      &right, BTRFS_NESTING_RIGHT_COW);
1319			if (ret)
1320				wret = 1;
1321			else {
1322				wret = balance_node_right(trans, right, mid);
1323			}
1324		}
1325		if (wret < 0)
1326			ret = wret;
1327		if (wret == 0) {
1328			struct btrfs_disk_key disk_key;
1329
1330			btrfs_node_key(right, &disk_key, 0);
1331			ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
1332					BTRFS_MOD_LOG_KEY_REPLACE);
1333			BUG_ON(ret < 0);
1334			btrfs_set_node_key(parent, &disk_key, pslot + 1);
1335			btrfs_mark_buffer_dirty(parent);
1336
1337			if (btrfs_header_nritems(mid) <= orig_slot) {
1338				path->nodes[level] = right;
1339				path->slots[level + 1] += 1;
1340				path->slots[level] = orig_slot -
1341					btrfs_header_nritems(mid);
1342				btrfs_tree_unlock(mid);
1343				free_extent_buffer(mid);
1344			} else {
1345				btrfs_tree_unlock(right);
1346				free_extent_buffer(right);
1347			}
1348			return 0;
1349		}
1350		btrfs_tree_unlock(right);
1351		free_extent_buffer(right);
1352	}
1353	return 1;
1354}
1355
1356/*
1357 * readahead one full node of leaves, finding things that are close
1358 * to the block in 'slot', and triggering ra on them.
1359 */
1360static void reada_for_search(struct btrfs_fs_info *fs_info,
1361			     struct btrfs_path *path,
1362			     int level, int slot, u64 objectid)
1363{
1364	struct extent_buffer *node;
1365	struct btrfs_disk_key disk_key;
1366	u32 nritems;
1367	u64 search;
1368	u64 target;
1369	u64 nread = 0;
1370	u64 nread_max;
1371	u32 nr;
1372	u32 blocksize;
1373	u32 nscan = 0;
1374
1375	if (level != 1 && path->reada != READA_FORWARD_ALWAYS)
1376		return;
1377
1378	if (!path->nodes[level])
1379		return;
1380
1381	node = path->nodes[level];
1382
1383	/*
1384	 * Since the time between visiting leaves is much shorter than the time
1385	 * between visiting nodes, limit read ahead of nodes to 1, to avoid too
1386	 * much IO at once (possibly random).
1387	 */
1388	if (path->reada == READA_FORWARD_ALWAYS) {
1389		if (level > 1)
1390			nread_max = node->fs_info->nodesize;
1391		else
1392			nread_max = SZ_128K;
1393	} else {
1394		nread_max = SZ_64K;
1395	}
1396
1397	search = btrfs_node_blockptr(node, slot);
1398	blocksize = fs_info->nodesize;
1399	if (path->reada != READA_FORWARD_ALWAYS) {
1400		struct extent_buffer *eb;
1401
1402		eb = find_extent_buffer(fs_info, search);
1403		if (eb) {
1404			free_extent_buffer(eb);
1405			return;
1406		}
1407	}
1408
1409	target = search;
1410
1411	nritems = btrfs_header_nritems(node);
1412	nr = slot;
1413
1414	while (1) {
1415		if (path->reada == READA_BACK) {
1416			if (nr == 0)
1417				break;
1418			nr--;
1419		} else if (path->reada == READA_FORWARD ||
1420			   path->reada == READA_FORWARD_ALWAYS) {
1421			nr++;
1422			if (nr >= nritems)
1423				break;
1424		}
1425		if (path->reada == READA_BACK && objectid) {
1426			btrfs_node_key(node, &disk_key, nr);
1427			if (btrfs_disk_key_objectid(&disk_key) != objectid)
1428				break;
1429		}
1430		search = btrfs_node_blockptr(node, nr);
1431		if (path->reada == READA_FORWARD_ALWAYS ||
1432		    (search <= target && target - search <= 65536) ||
1433		    (search > target && search - target <= 65536)) {
1434			btrfs_readahead_node_child(node, nr);
1435			nread += blocksize;
1436		}
1437		nscan++;
1438		if (nread > nread_max || nscan > 32)
1439			break;
1440	}
1441}
1442
1443static noinline void reada_for_balance(struct btrfs_path *path, int level)
 
1444{
1445	struct extent_buffer *parent;
1446	int slot;
1447	int nritems;
 
 
 
 
 
1448
1449	parent = path->nodes[level + 1];
1450	if (!parent)
1451		return;
1452
1453	nritems = btrfs_header_nritems(parent);
1454	slot = path->slots[level + 1];
1455
1456	if (slot > 0)
1457		btrfs_readahead_node_child(parent, slot - 1);
1458	if (slot + 1 < nritems)
1459		btrfs_readahead_node_child(parent, slot + 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1460}
1461
1462
1463/*
1464 * when we walk down the tree, it is usually safe to unlock the higher layers
1465 * in the tree.  The exceptions are when our path goes through slot 0, because
1466 * operations on the tree might require changing key pointers higher up in the
1467 * tree.
1468 *
1469 * callers might also have set path->keep_locks, which tells this code to keep
1470 * the lock if the path points to the last slot in the block.  This is part of
1471 * walking through the tree, and selecting the next slot in the higher block.
1472 *
1473 * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
1474 * if lowest_unlock is 1, level 0 won't be unlocked
1475 */
1476static noinline void unlock_up(struct btrfs_path *path, int level,
1477			       int lowest_unlock, int min_write_lock_level,
1478			       int *write_lock_level)
1479{
1480	int i;
1481	int skip_level = level;
1482	bool check_skip = true;
 
1483
1484	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1485		if (!path->nodes[i])
1486			break;
1487		if (!path->locks[i])
1488			break;
1489
1490		if (check_skip) {
1491			if (path->slots[i] == 0) {
 
 
 
 
 
 
1492				skip_level = i + 1;
1493				continue;
1494			}
1495
1496			if (path->keep_locks) {
1497				u32 nritems;
1498
1499				nritems = btrfs_header_nritems(path->nodes[i]);
1500				if (nritems < 1 || path->slots[i] >= nritems - 1) {
1501					skip_level = i + 1;
1502					continue;
1503				}
1504			}
1505		}
 
 
1506
 
1507		if (i >= lowest_unlock && i > skip_level) {
1508			check_skip = false;
1509			btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
1510			path->locks[i] = 0;
1511			if (write_lock_level &&
1512			    i > min_write_lock_level &&
1513			    i <= *write_lock_level) {
1514				*write_lock_level = i - 1;
1515			}
1516		}
1517	}
1518}
1519
1520/*
1521 * Helper function for btrfs_search_slot() and other functions that do a search
1522 * on a btree. The goal is to find a tree block in the cache (the radix tree at
1523 * fs_info->buffer_radix), but if we can't find it, or it's not up to date, read
1524 * its pages from disk.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1525 *
1526 * Returns -EAGAIN, with the path unlocked, if the caller needs to repeat the
1527 * whole btree search, starting again from the current root node.
1528 */
1529static int
1530read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
1531		      struct extent_buffer **eb_ret, int level, int slot,
1532		      const struct btrfs_key *key)
1533{
1534	struct btrfs_fs_info *fs_info = root->fs_info;
1535	struct btrfs_tree_parent_check check = { 0 };
1536	u64 blocknr;
1537	u64 gen;
 
1538	struct extent_buffer *tmp;
 
1539	int ret;
1540	int parent_level;
1541	bool unlock_up;
1542
1543	unlock_up = ((level + 1 < BTRFS_MAX_LEVEL) && p->locks[level + 1]);
1544	blocknr = btrfs_node_blockptr(*eb_ret, slot);
1545	gen = btrfs_node_ptr_generation(*eb_ret, slot);
1546	parent_level = btrfs_header_level(*eb_ret);
1547	btrfs_node_key_to_cpu(*eb_ret, &check.first_key, slot);
1548	check.has_first_key = true;
1549	check.level = parent_level - 1;
1550	check.transid = gen;
1551	check.owner_root = root->root_key.objectid;
1552
1553	/*
1554	 * If we need to read an extent buffer from disk and we are holding locks
1555	 * on upper level nodes, we unlock all the upper nodes before reading the
1556	 * extent buffer, and then return -EAGAIN to the caller as it needs to
1557	 * restart the search. We don't release the lock on the current level
1558	 * because we need to walk this node to figure out which blocks to read.
1559	 */
1560	tmp = find_extent_buffer(fs_info, blocknr);
1561	if (tmp) {
1562		if (p->reada == READA_FORWARD_ALWAYS)
1563			reada_for_search(fs_info, p, level, slot, key->objectid);
1564
1565		/* first we do an atomic uptodate check */
1566		if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
1567			/*
1568			 * Do extra check for first_key, eb can be stale due to
1569			 * being cached, read from scrub, or have multiple
1570			 * parents (shared tree blocks).
1571			 */
1572			if (btrfs_verify_level_key(tmp,
1573					parent_level - 1, &check.first_key, gen)) {
1574				free_extent_buffer(tmp);
1575				return -EUCLEAN;
1576			}
1577			*eb_ret = tmp;
1578			return 0;
1579		}
1580
1581		if (p->nowait) {
1582			free_extent_buffer(tmp);
1583			return -EAGAIN;
1584		}
1585
1586		if (unlock_up)
1587			btrfs_unlock_up_safe(p, level + 1);
1588
1589		/* now we're allowed to do a blocking uptodate check */
1590		ret = btrfs_read_extent_buffer(tmp, &check);
1591		if (ret) {
1592			free_extent_buffer(tmp);
1593			btrfs_release_path(p);
1594			return -EIO;
1595		}
1596		if (btrfs_check_eb_owner(tmp, root->root_key.objectid)) {
1597			free_extent_buffer(tmp);
1598			btrfs_release_path(p);
1599			return -EUCLEAN;
1600		}
1601
1602		if (unlock_up)
1603			ret = -EAGAIN;
1604
1605		goto out;
1606	} else if (p->nowait) {
1607		return -EAGAIN;
1608	}
1609
1610	if (unlock_up) {
1611		btrfs_unlock_up_safe(p, level + 1);
1612		ret = -EAGAIN;
1613	} else {
1614		ret = 0;
1615	}
 
 
 
1616
1617	if (p->reada != READA_NONE)
1618		reada_for_search(fs_info, p, level, slot, key->objectid);
1619
1620	tmp = read_tree_block(fs_info, blocknr, &check);
1621	if (IS_ERR(tmp)) {
1622		btrfs_release_path(p);
1623		return PTR_ERR(tmp);
1624	}
1625	/*
1626	 * If the read above didn't mark this buffer up to date,
1627	 * it will never end up being up to date.  Set ret to EIO now
1628	 * and give up so that our caller doesn't loop forever
1629	 * on our EAGAINs.
1630	 */
1631	if (!extent_buffer_uptodate(tmp))
1632		ret = -EIO;
1633
1634out:
1635	if (ret == 0) {
1636		*eb_ret = tmp;
1637	} else {
1638		free_extent_buffer(tmp);
1639		btrfs_release_path(p);
 
1640	}
1641
 
1642	return ret;
1643}
1644
1645/*
1646 * helper function for btrfs_search_slot.  This does all of the checks
1647 * for node-level blocks and does any balancing required based on
1648 * the ins_len.
1649 *
1650 * If no extra work was required, zero is returned.  If we had to
1651 * drop the path, -EAGAIN is returned and btrfs_search_slot must
1652 * start over
1653 */
1654static int
1655setup_nodes_for_search(struct btrfs_trans_handle *trans,
1656		       struct btrfs_root *root, struct btrfs_path *p,
1657		       struct extent_buffer *b, int level, int ins_len,
1658		       int *write_lock_level)
1659{
1660	struct btrfs_fs_info *fs_info = root->fs_info;
1661	int ret = 0;
1662
1663	if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
1664	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
 
1665
1666		if (*write_lock_level < level + 1) {
1667			*write_lock_level = level + 1;
1668			btrfs_release_path(p);
1669			return -EAGAIN;
1670		}
1671
1672		reada_for_balance(p, level);
1673		ret = split_node(trans, root, p, level);
 
1674
 
 
 
 
 
1675		b = p->nodes[level];
1676	} else if (ins_len < 0 && btrfs_header_nritems(b) <
1677		   BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
 
1678
1679		if (*write_lock_level < level + 1) {
1680			*write_lock_level = level + 1;
1681			btrfs_release_path(p);
1682			return -EAGAIN;
1683		}
1684
1685		reada_for_balance(p, level);
1686		ret = balance_level(trans, root, p, level);
1687		if (ret)
1688			return ret;
1689
 
 
 
 
1690		b = p->nodes[level];
1691		if (!b) {
1692			btrfs_release_path(p);
1693			return -EAGAIN;
1694		}
1695		BUG_ON(btrfs_header_nritems(b) == 1);
1696	}
 
 
 
 
 
1697	return ret;
1698}
1699
 
 
 
 
 
 
 
 
 
 
 
 
 
1700int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
1701		u64 iobjectid, u64 ioff, u8 key_type,
1702		struct btrfs_key *found_key)
1703{
1704	int ret;
1705	struct btrfs_key key;
1706	struct extent_buffer *eb;
1707
1708	ASSERT(path);
1709	ASSERT(found_key);
1710
1711	key.type = key_type;
1712	key.objectid = iobjectid;
1713	key.offset = ioff;
1714
1715	ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1716	if (ret < 0)
1717		return ret;
1718
1719	eb = path->nodes[0];
1720	if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
1721		ret = btrfs_next_leaf(fs_root, path);
1722		if (ret)
1723			return ret;
1724		eb = path->nodes[0];
1725	}
1726
1727	btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
1728	if (found_key->type != key.type ||
1729			found_key->objectid != key.objectid)
1730		return 1;
1731
1732	return 0;
1733}
1734
1735static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
1736							struct btrfs_path *p,
1737							int write_lock_level)
1738{
 
1739	struct extent_buffer *b;
1740	int root_lock = 0;
1741	int level = 0;
1742
 
 
 
1743	if (p->search_commit_root) {
1744		b = root->commit_root;
1745		atomic_inc(&b->refs);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1746		level = btrfs_header_level(b);
1747		/*
1748		 * Ensure that all callers have set skip_locking when
1749		 * p->search_commit_root = 1.
1750		 */
1751		ASSERT(p->skip_locking == 1);
1752
1753		goto out;
1754	}
1755
1756	if (p->skip_locking) {
1757		b = btrfs_root_node(root);
1758		level = btrfs_header_level(b);
1759		goto out;
1760	}
1761
1762	/* We try very hard to do read locks on the root */
1763	root_lock = BTRFS_READ_LOCK;
1764
1765	/*
1766	 * If the level is set to maximum, we can skip trying to get the read
1767	 * lock.
1768	 */
1769	if (write_lock_level < BTRFS_MAX_LEVEL) {
1770		/*
1771		 * We don't know the level of the root node until we actually
1772		 * have it read locked
1773		 */
1774		if (p->nowait) {
1775			b = btrfs_try_read_lock_root_node(root);
1776			if (IS_ERR(b))
1777				return b;
1778		} else {
1779			b = btrfs_read_lock_root_node(root);
1780		}
1781		level = btrfs_header_level(b);
1782		if (level > write_lock_level)
1783			goto out;
1784
1785		/* Whoops, must trade for write lock */
1786		btrfs_tree_read_unlock(b);
1787		free_extent_buffer(b);
1788	}
1789
1790	b = btrfs_lock_root_node(root);
1791	root_lock = BTRFS_WRITE_LOCK;
1792
1793	/* The level might have changed, check again */
1794	level = btrfs_header_level(b);
1795
1796out:
1797	/*
1798	 * The root may have failed to write out at some point, and thus is no
1799	 * longer valid, return an error in this case.
1800	 */
1801	if (!extent_buffer_uptodate(b)) {
1802		if (root_lock)
1803			btrfs_tree_unlock_rw(b, root_lock);
1804		free_extent_buffer(b);
1805		return ERR_PTR(-EIO);
1806	}
1807
1808	p->nodes[level] = b;
1809	if (!p->skip_locking)
1810		p->locks[level] = root_lock;
1811	/*
1812	 * Callers are responsible for dropping b's references.
1813	 */
1814	return b;
1815}
1816
1817/*
1818 * Replace the extent buffer at the lowest level of the path with a cloned
1819 * version. The purpose is to be able to use it safely, after releasing the
1820 * commit root semaphore, even if relocation is happening in parallel, the
1821 * transaction used for relocation is committed and the extent buffer is
1822 * reallocated in the next transaction.
1823 *
1824 * This is used in a context where the caller does not prevent transaction
1825 * commits from happening, either by holding a transaction handle or holding
1826 * some lock, while it's doing searches through a commit root.
1827 * At the moment it's only used for send operations.
1828 */
1829static int finish_need_commit_sem_search(struct btrfs_path *path)
1830{
1831	const int i = path->lowest_level;
1832	const int slot = path->slots[i];
1833	struct extent_buffer *lowest = path->nodes[i];
1834	struct extent_buffer *clone;
1835
1836	ASSERT(path->need_commit_sem);
1837
1838	if (!lowest)
1839		return 0;
1840
1841	lockdep_assert_held_read(&lowest->fs_info->commit_root_sem);
1842
1843	clone = btrfs_clone_extent_buffer(lowest);
1844	if (!clone)
1845		return -ENOMEM;
1846
1847	btrfs_release_path(path);
1848	path->nodes[i] = clone;
1849	path->slots[i] = slot;
1850
1851	return 0;
1852}
1853
1854static inline int search_for_key_slot(struct extent_buffer *eb,
1855				      int search_low_slot,
1856				      const struct btrfs_key *key,
1857				      int prev_cmp,
1858				      int *slot)
1859{
1860	/*
1861	 * If a previous call to btrfs_bin_search() on a parent node returned an
1862	 * exact match (prev_cmp == 0), we can safely assume the target key will
1863	 * always be at slot 0 on lower levels, since each key pointer
1864	 * (struct btrfs_key_ptr) refers to the lowest key accessible from the
1865	 * subtree it points to. Thus we can skip searching lower levels.
1866	 */
1867	if (prev_cmp == 0) {
1868		*slot = 0;
1869		return 0;
1870	}
1871
1872	return generic_bin_search(eb, search_low_slot, key, slot);
1873}
1874
1875static int search_leaf(struct btrfs_trans_handle *trans,
1876		       struct btrfs_root *root,
1877		       const struct btrfs_key *key,
1878		       struct btrfs_path *path,
1879		       int ins_len,
1880		       int prev_cmp)
1881{
1882	struct extent_buffer *leaf = path->nodes[0];
1883	int leaf_free_space = -1;
1884	int search_low_slot = 0;
1885	int ret;
1886	bool do_bin_search = true;
1887
1888	/*
1889	 * If we are doing an insertion, the leaf has enough free space and the
1890	 * destination slot for the key is not slot 0, then we can unlock our
1891	 * write lock on the parent, and any other upper nodes, before doing the
1892	 * binary search on the leaf (with search_for_key_slot()), allowing other
1893	 * tasks to lock the parent and any other upper nodes.
1894	 */
1895	if (ins_len > 0) {
1896		/*
1897		 * Cache the leaf free space, since we will need it later and it
1898		 * will not change until then.
1899		 */
1900		leaf_free_space = btrfs_leaf_free_space(leaf);
1901
1902		/*
1903		 * !path->locks[1] means we have a single node tree, the leaf is
1904		 * the root of the tree.
1905		 */
1906		if (path->locks[1] && leaf_free_space >= ins_len) {
1907			struct btrfs_disk_key first_key;
1908
1909			ASSERT(btrfs_header_nritems(leaf) > 0);
1910			btrfs_item_key(leaf, &first_key, 0);
1911
1912			/*
1913			 * Doing the extra comparison with the first key is cheap,
1914			 * taking into account that the first key is very likely
1915			 * already in a cache line because it immediately follows
1916			 * the extent buffer's header and we have recently accessed
1917			 * the header's level field.
1918			 */
1919			ret = comp_keys(&first_key, key);
1920			if (ret < 0) {
1921				/*
1922				 * The first key is smaller than the key we want
1923				 * to insert, so we are safe to unlock all upper
1924				 * nodes and we have to do the binary search.
1925				 *
1926				 * We do use btrfs_unlock_up_safe() and not
1927				 * unlock_up() because the later does not unlock
1928				 * nodes with a slot of 0 - we can safely unlock
1929				 * any node even if its slot is 0 since in this
1930				 * case the key does not end up at slot 0 of the
1931				 * leaf and there's no need to split the leaf.
1932				 */
1933				btrfs_unlock_up_safe(path, 1);
1934				search_low_slot = 1;
1935			} else {
1936				/*
1937				 * The first key is >= then the key we want to
1938				 * insert, so we can skip the binary search as
1939				 * the target key will be at slot 0.
1940				 *
1941				 * We can not unlock upper nodes when the key is
1942				 * less than the first key, because we will need
1943				 * to update the key at slot 0 of the parent node
1944				 * and possibly of other upper nodes too.
1945				 * If the key matches the first key, then we can
1946				 * unlock all the upper nodes, using
1947				 * btrfs_unlock_up_safe() instead of unlock_up()
1948				 * as stated above.
1949				 */
1950				if (ret == 0)
1951					btrfs_unlock_up_safe(path, 1);
1952				/*
1953				 * ret is already 0 or 1, matching the result of
1954				 * a btrfs_bin_search() call, so there is no need
1955				 * to adjust it.
1956				 */
1957				do_bin_search = false;
1958				path->slots[0] = 0;
1959			}
1960		}
1961	}
1962
1963	if (do_bin_search) {
1964		ret = search_for_key_slot(leaf, search_low_slot, key,
1965					  prev_cmp, &path->slots[0]);
1966		if (ret < 0)
1967			return ret;
1968	}
1969
1970	if (ins_len > 0) {
1971		/*
1972		 * Item key already exists. In this case, if we are allowed to
1973		 * insert the item (for example, in dir_item case, item key
1974		 * collision is allowed), it will be merged with the original
1975		 * item. Only the item size grows, no new btrfs item will be
1976		 * added. If search_for_extension is not set, ins_len already
1977		 * accounts the size btrfs_item, deduct it here so leaf space
1978		 * check will be correct.
1979		 */
1980		if (ret == 0 && !path->search_for_extension) {
1981			ASSERT(ins_len >= sizeof(struct btrfs_item));
1982			ins_len -= sizeof(struct btrfs_item);
1983		}
1984
1985		ASSERT(leaf_free_space >= 0);
1986
1987		if (leaf_free_space < ins_len) {
1988			int err;
1989
1990			err = split_leaf(trans, root, key, path, ins_len,
1991					 (ret == 0));
1992			ASSERT(err <= 0);
1993			if (WARN_ON(err > 0))
1994				err = -EUCLEAN;
1995			if (err)
1996				ret = err;
1997		}
1998	}
1999
2000	return ret;
2001}
2002
2003/*
2004 * btrfs_search_slot - look for a key in a tree and perform necessary
2005 * modifications to preserve tree invariants.
2006 *
2007 * @trans:	Handle of transaction, used when modifying the tree
2008 * @p:		Holds all btree nodes along the search path
2009 * @root:	The root node of the tree
2010 * @key:	The key we are looking for
2011 * @ins_len:	Indicates purpose of search:
2012 *              >0  for inserts it's size of item inserted (*)
2013 *              <0  for deletions
2014 *               0  for plain searches, not modifying the tree
2015 *
2016 *              (*) If size of item inserted doesn't include
2017 *              sizeof(struct btrfs_item), then p->search_for_extension must
2018 *              be set.
2019 * @cow:	boolean should CoW operations be performed. Must always be 1
2020 *		when modifying the tree.
2021 *
2022 * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
2023 * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
2024 *
2025 * If @key is found, 0 is returned and you can find the item in the leaf level
2026 * of the path (level 0)
2027 *
2028 * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
2029 * points to the slot where it should be inserted
2030 *
2031 * If an error is encountered while searching the tree a negative error number
2032 * is returned
2033 */
2034int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2035		      const struct btrfs_key *key, struct btrfs_path *p,
2036		      int ins_len, int cow)
2037{
2038	struct btrfs_fs_info *fs_info = root->fs_info;
2039	struct extent_buffer *b;
2040	int slot;
2041	int ret;
2042	int err;
2043	int level;
2044	int lowest_unlock = 1;
2045	/* everything at write_lock_level or lower must be write locked */
2046	int write_lock_level = 0;
2047	u8 lowest_level = 0;
2048	int min_write_lock_level;
2049	int prev_cmp;
2050
2051	might_sleep();
2052
2053	lowest_level = p->lowest_level;
2054	WARN_ON(lowest_level && ins_len > 0);
2055	WARN_ON(p->nodes[0] != NULL);
2056	BUG_ON(!cow && ins_len);
2057
2058	/*
2059	 * For now only allow nowait for read only operations.  There's no
2060	 * strict reason why we can't, we just only need it for reads so it's
2061	 * only implemented for reads.
2062	 */
2063	ASSERT(!p->nowait || !cow);
2064
2065	if (ins_len < 0) {
2066		lowest_unlock = 2;
2067
2068		/* when we are removing items, we might have to go up to level
2069		 * two as we update tree pointers  Make sure we keep write
2070		 * for those levels as well
2071		 */
2072		write_lock_level = 2;
2073	} else if (ins_len > 0) {
2074		/*
2075		 * for inserting items, make sure we have a write lock on
2076		 * level 1 so we can update keys
2077		 */
2078		write_lock_level = 1;
2079	}
2080
2081	if (!cow)
2082		write_lock_level = -1;
2083
2084	if (cow && (p->keep_locks || p->lowest_level))
2085		write_lock_level = BTRFS_MAX_LEVEL;
2086
2087	min_write_lock_level = write_lock_level;
2088
2089	if (p->need_commit_sem) {
2090		ASSERT(p->search_commit_root);
2091		if (p->nowait) {
2092			if (!down_read_trylock(&fs_info->commit_root_sem))
2093				return -EAGAIN;
2094		} else {
2095			down_read(&fs_info->commit_root_sem);
2096		}
2097	}
2098
2099again:
2100	prev_cmp = -1;
2101	b = btrfs_search_slot_get_root(root, p, write_lock_level);
2102	if (IS_ERR(b)) {
2103		ret = PTR_ERR(b);
2104		goto done;
2105	}
2106
2107	while (b) {
2108		int dec = 0;
2109
2110		level = btrfs_header_level(b);
2111
 
 
 
 
2112		if (cow) {
2113			bool last_level = (level == (BTRFS_MAX_LEVEL - 1));
2114
2115			/*
2116			 * if we don't really need to cow this block
2117			 * then we don't want to set the path blocking,
2118			 * so we test it here
2119			 */
2120			if (!should_cow_block(trans, root, b))
 
2121				goto cow_done;
 
2122
2123			/*
2124			 * must have write locks on this node and the
2125			 * parent
2126			 */
2127			if (level > write_lock_level ||
2128			    (level + 1 > write_lock_level &&
2129			    level + 1 < BTRFS_MAX_LEVEL &&
2130			    p->nodes[level + 1])) {
2131				write_lock_level = level + 1;
2132				btrfs_release_path(p);
2133				goto again;
2134			}
2135
 
2136			if (last_level)
2137				err = btrfs_cow_block(trans, root, b, NULL, 0,
2138						      &b,
2139						      BTRFS_NESTING_COW);
2140			else
2141				err = btrfs_cow_block(trans, root, b,
2142						      p->nodes[level + 1],
2143						      p->slots[level + 1], &b,
2144						      BTRFS_NESTING_COW);
2145			if (err) {
2146				ret = err;
2147				goto done;
2148			}
2149		}
2150cow_done:
2151		p->nodes[level] = b;
 
 
 
 
2152
2153		/*
2154		 * we have a lock on b and as long as we aren't changing
2155		 * the tree, there is no way to for the items in b to change.
2156		 * It is safe to drop the lock on our parent before we
2157		 * go through the expensive btree search on b.
2158		 *
2159		 * If we're inserting or deleting (ins_len != 0), then we might
2160		 * be changing slot zero, which may require changing the parent.
2161		 * So, we can't drop the lock until after we know which slot
2162		 * we're operating on.
2163		 */
2164		if (!ins_len && !p->keep_locks) {
2165			int u = level + 1;
2166
2167			if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2168				btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2169				p->locks[u] = 0;
2170			}
2171		}
2172
2173		if (level == 0) {
2174			if (ins_len > 0)
2175				ASSERT(write_lock_level >= 1);
2176
2177			ret = search_leaf(trans, root, key, p, ins_len, prev_cmp);
2178			if (!p->search_for_split)
2179				unlock_up(p, level, lowest_unlock,
2180					  min_write_lock_level, NULL);
2181			goto done;
2182		}
2183
2184		ret = search_for_key_slot(b, 0, key, prev_cmp, &slot);
2185		if (ret < 0)
2186			goto done;
2187		prev_cmp = ret;
2188
2189		if (ret && slot > 0) {
2190			dec = 1;
2191			slot--;
2192		}
2193		p->slots[level] = slot;
2194		err = setup_nodes_for_search(trans, root, p, b, level, ins_len,
2195					     &write_lock_level);
2196		if (err == -EAGAIN)
2197			goto again;
2198		if (err) {
2199			ret = err;
2200			goto done;
2201		}
2202		b = p->nodes[level];
2203		slot = p->slots[level];
2204
2205		/*
2206		 * Slot 0 is special, if we change the key we have to update
2207		 * the parent pointer which means we must have a write lock on
2208		 * the parent
2209		 */
2210		if (slot == 0 && ins_len && write_lock_level < level + 1) {
2211			write_lock_level = level + 1;
2212			btrfs_release_path(p);
2213			goto again;
2214		}
2215
2216		unlock_up(p, level, lowest_unlock, min_write_lock_level,
2217			  &write_lock_level);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2218
2219		if (level == lowest_level) {
2220			if (dec)
2221				p->slots[level]++;
2222			goto done;
2223		}
 
 
 
 
 
 
 
2224
2225		err = read_block_for_search(root, p, &b, level, slot, key);
2226		if (err == -EAGAIN)
2227			goto again;
2228		if (err) {
2229			ret = err;
2230			goto done;
2231		}
2232
2233		if (!p->skip_locking) {
2234			level = btrfs_header_level(b);
 
 
 
2235
2236			btrfs_maybe_reset_lockdep_class(root, b);
 
 
 
 
 
 
 
2237
2238			if (level <= write_lock_level) {
2239				btrfs_tree_lock(b);
2240				p->locks[level] = BTRFS_WRITE_LOCK;
2241			} else {
2242				if (p->nowait) {
2243					if (!btrfs_try_tree_read_lock(b)) {
2244						free_extent_buffer(b);
2245						ret = -EAGAIN;
2246						goto done;
2247					}
 
2248				} else {
2249					btrfs_tree_read_lock(b);
 
 
 
 
2250				}
2251				p->locks[level] = BTRFS_READ_LOCK;
2252			}
2253			p->nodes[level] = b;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2254		}
2255	}
2256	ret = 1;
2257done:
 
 
 
 
 
 
2258	if (ret < 0 && !p->skip_release_on_error)
2259		btrfs_release_path(p);
2260
2261	if (p->need_commit_sem) {
2262		int ret2;
2263
2264		ret2 = finish_need_commit_sem_search(p);
2265		up_read(&fs_info->commit_root_sem);
2266		if (ret2)
2267			ret = ret2;
2268	}
2269
2270	return ret;
2271}
2272ALLOW_ERROR_INJECTION(btrfs_search_slot, ERRNO);
2273
2274/*
2275 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2276 * current state of the tree together with the operations recorded in the tree
2277 * modification log to search for the key in a previous version of this tree, as
2278 * denoted by the time_seq parameter.
2279 *
2280 * Naturally, there is no support for insert, delete or cow operations.
2281 *
2282 * The resulting path and return value will be set up as if we called
2283 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2284 */
2285int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
2286			  struct btrfs_path *p, u64 time_seq)
2287{
2288	struct btrfs_fs_info *fs_info = root->fs_info;
2289	struct extent_buffer *b;
2290	int slot;
2291	int ret;
2292	int err;
2293	int level;
2294	int lowest_unlock = 1;
2295	u8 lowest_level = 0;
 
2296
2297	lowest_level = p->lowest_level;
2298	WARN_ON(p->nodes[0] != NULL);
2299	ASSERT(!p->nowait);
2300
2301	if (p->search_commit_root) {
2302		BUG_ON(time_seq);
2303		return btrfs_search_slot(NULL, root, key, p, 0, 0);
2304	}
2305
2306again:
2307	b = btrfs_get_old_root(root, time_seq);
2308	if (!b) {
2309		ret = -EIO;
2310		goto done;
2311	}
2312	level = btrfs_header_level(b);
2313	p->locks[level] = BTRFS_READ_LOCK;
2314
2315	while (b) {
2316		int dec = 0;
2317
2318		level = btrfs_header_level(b);
2319		p->nodes[level] = b;
2320
2321		/*
2322		 * we have a lock on b and as long as we aren't changing
2323		 * the tree, there is no way to for the items in b to change.
2324		 * It is safe to drop the lock on our parent before we
2325		 * go through the expensive btree search on b.
2326		 */
2327		btrfs_unlock_up_safe(p, level + 1);
2328
2329		ret = btrfs_bin_search(b, key, &slot);
 
 
 
 
 
2330		if (ret < 0)
2331			goto done;
2332
2333		if (level == 0) {
 
 
 
 
 
2334			p->slots[level] = slot;
2335			unlock_up(p, level, lowest_unlock, 0, NULL);
2336			goto done;
2337		}
2338
2339		if (ret && slot > 0) {
2340			dec = 1;
2341			slot--;
2342		}
2343		p->slots[level] = slot;
2344		unlock_up(p, level, lowest_unlock, 0, NULL);
2345
2346		if (level == lowest_level) {
2347			if (dec)
2348				p->slots[level]++;
2349			goto done;
2350		}
2351
2352		err = read_block_for_search(root, p, &b, level, slot, key);
2353		if (err == -EAGAIN)
2354			goto again;
2355		if (err) {
2356			ret = err;
2357			goto done;
2358		}
 
2359
2360		level = btrfs_header_level(b);
2361		btrfs_tree_read_lock(b);
2362		b = btrfs_tree_mod_log_rewind(fs_info, p, b, time_seq);
2363		if (!b) {
2364			ret = -ENOMEM;
 
 
 
 
 
 
 
 
 
 
2365			goto done;
2366		}
2367		p->locks[level] = BTRFS_READ_LOCK;
2368		p->nodes[level] = b;
2369	}
2370	ret = 1;
2371done:
 
 
2372	if (ret < 0)
2373		btrfs_release_path(p);
2374
2375	return ret;
2376}
2377
2378/*
2379 * helper to use instead of search slot if no exact match is needed but
2380 * instead the next or previous item should be returned.
2381 * When find_higher is true, the next higher item is returned, the next lower
2382 * otherwise.
2383 * When return_any and find_higher are both true, and no higher item is found,
2384 * return the next lower instead.
2385 * When return_any is true and find_higher is false, and no lower item is found,
2386 * return the next higher instead.
2387 * It returns 0 if any item is found, 1 if none is found (tree empty), and
2388 * < 0 on error
2389 */
2390int btrfs_search_slot_for_read(struct btrfs_root *root,
2391			       const struct btrfs_key *key,
2392			       struct btrfs_path *p, int find_higher,
2393			       int return_any)
2394{
2395	int ret;
2396	struct extent_buffer *leaf;
2397
2398again:
2399	ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
2400	if (ret <= 0)
2401		return ret;
2402	/*
2403	 * a return value of 1 means the path is at the position where the
2404	 * item should be inserted. Normally this is the next bigger item,
2405	 * but in case the previous item is the last in a leaf, path points
2406	 * to the first free slot in the previous leaf, i.e. at an invalid
2407	 * item.
2408	 */
2409	leaf = p->nodes[0];
2410
2411	if (find_higher) {
2412		if (p->slots[0] >= btrfs_header_nritems(leaf)) {
2413			ret = btrfs_next_leaf(root, p);
2414			if (ret <= 0)
2415				return ret;
2416			if (!return_any)
2417				return 1;
2418			/*
2419			 * no higher item found, return the next
2420			 * lower instead
2421			 */
2422			return_any = 0;
2423			find_higher = 0;
2424			btrfs_release_path(p);
2425			goto again;
2426		}
2427	} else {
2428		if (p->slots[0] == 0) {
2429			ret = btrfs_prev_leaf(root, p);
2430			if (ret < 0)
2431				return ret;
2432			if (!ret) {
2433				leaf = p->nodes[0];
2434				if (p->slots[0] == btrfs_header_nritems(leaf))
2435					p->slots[0]--;
2436				return 0;
2437			}
2438			if (!return_any)
2439				return 1;
2440			/*
2441			 * no lower item found, return the next
2442			 * higher instead
2443			 */
2444			return_any = 0;
2445			find_higher = 1;
2446			btrfs_release_path(p);
2447			goto again;
2448		} else {
2449			--p->slots[0];
2450		}
2451	}
2452	return 0;
2453}
2454
2455/*
2456 * Execute search and call btrfs_previous_item to traverse backwards if the item
2457 * was not found.
2458 *
2459 * Return 0 if found, 1 if not found and < 0 if error.
2460 */
2461int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key,
2462			   struct btrfs_path *path)
2463{
2464	int ret;
2465
2466	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
2467	if (ret > 0)
2468		ret = btrfs_previous_item(root, path, key->objectid, key->type);
2469
2470	if (ret == 0)
2471		btrfs_item_key_to_cpu(path->nodes[0], key, path->slots[0]);
2472
2473	return ret;
2474}
2475
2476/*
2477 * Search for a valid slot for the given path.
2478 *
2479 * @root:	The root node of the tree.
2480 * @key:	Will contain a valid item if found.
2481 * @path:	The starting point to validate the slot.
2482 *
2483 * Return: 0  if the item is valid
2484 *         1  if not found
2485 *         <0 if error.
2486 */
2487int btrfs_get_next_valid_item(struct btrfs_root *root, struct btrfs_key *key,
2488			      struct btrfs_path *path)
2489{
2490	while (1) {
2491		int ret;
2492		const int slot = path->slots[0];
2493		const struct extent_buffer *leaf = path->nodes[0];
2494
2495		/* This is where we start walking the path. */
2496		if (slot >= btrfs_header_nritems(leaf)) {
2497			/*
2498			 * If we've reached the last slot in this leaf we need
2499			 * to go to the next leaf and reset the path.
2500			 */
2501			ret = btrfs_next_leaf(root, path);
2502			if (ret)
2503				return ret;
2504			continue;
2505		}
2506		/* Store the found, valid item in @key. */
2507		btrfs_item_key_to_cpu(leaf, key, slot);
2508		break;
2509	}
2510	return 0;
2511}
2512
2513/*
2514 * adjust the pointers going up the tree, starting at level
2515 * making sure the right key of each node is points to 'key'.
2516 * This is used after shifting pointers to the left, so it stops
2517 * fixing up pointers when a given leaf/node is not in slot 0 of the
2518 * higher levels
2519 *
2520 */
2521static void fixup_low_keys(struct btrfs_path *path,
2522			   struct btrfs_disk_key *key, int level)
2523{
2524	int i;
2525	struct extent_buffer *t;
2526	int ret;
2527
2528	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2529		int tslot = path->slots[i];
2530
2531		if (!path->nodes[i])
2532			break;
2533		t = path->nodes[i];
2534		ret = btrfs_tree_mod_log_insert_key(t, tslot,
2535						    BTRFS_MOD_LOG_KEY_REPLACE);
2536		BUG_ON(ret < 0);
2537		btrfs_set_node_key(t, key, tslot);
2538		btrfs_mark_buffer_dirty(path->nodes[i]);
2539		if (tslot != 0)
2540			break;
2541	}
2542}
2543
2544/*
2545 * update item key.
2546 *
2547 * This function isn't completely safe. It's the caller's responsibility
2548 * that the new key won't break the order
2549 */
2550void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
2551			     struct btrfs_path *path,
2552			     const struct btrfs_key *new_key)
2553{
2554	struct btrfs_disk_key disk_key;
2555	struct extent_buffer *eb;
2556	int slot;
2557
2558	eb = path->nodes[0];
2559	slot = path->slots[0];
2560	if (slot > 0) {
2561		btrfs_item_key(eb, &disk_key, slot - 1);
2562		if (unlikely(comp_keys(&disk_key, new_key) >= 0)) {
2563			btrfs_crit(fs_info,
2564		"slot %u key (%llu %u %llu) new key (%llu %u %llu)",
2565				   slot, btrfs_disk_key_objectid(&disk_key),
2566				   btrfs_disk_key_type(&disk_key),
2567				   btrfs_disk_key_offset(&disk_key),
2568				   new_key->objectid, new_key->type,
2569				   new_key->offset);
2570			btrfs_print_leaf(eb);
2571			BUG();
2572		}
2573	}
2574	if (slot < btrfs_header_nritems(eb) - 1) {
2575		btrfs_item_key(eb, &disk_key, slot + 1);
2576		if (unlikely(comp_keys(&disk_key, new_key) <= 0)) {
2577			btrfs_crit(fs_info,
2578		"slot %u key (%llu %u %llu) new key (%llu %u %llu)",
2579				   slot, btrfs_disk_key_objectid(&disk_key),
2580				   btrfs_disk_key_type(&disk_key),
2581				   btrfs_disk_key_offset(&disk_key),
2582				   new_key->objectid, new_key->type,
2583				   new_key->offset);
2584			btrfs_print_leaf(eb);
2585			BUG();
2586		}
2587	}
2588
2589	btrfs_cpu_key_to_disk(&disk_key, new_key);
2590	btrfs_set_item_key(eb, &disk_key, slot);
2591	btrfs_mark_buffer_dirty(eb);
2592	if (slot == 0)
2593		fixup_low_keys(path, &disk_key, 1);
2594}
2595
2596/*
2597 * Check key order of two sibling extent buffers.
2598 *
2599 * Return true if something is wrong.
2600 * Return false if everything is fine.
2601 *
2602 * Tree-checker only works inside one tree block, thus the following
2603 * corruption can not be detected by tree-checker:
2604 *
2605 * Leaf @left			| Leaf @right
2606 * --------------------------------------------------------------
2607 * | 1 | 2 | 3 | 4 | 5 | f6 |   | 7 | 8 |
2608 *
2609 * Key f6 in leaf @left itself is valid, but not valid when the next
2610 * key in leaf @right is 7.
2611 * This can only be checked at tree block merge time.
2612 * And since tree checker has ensured all key order in each tree block
2613 * is correct, we only need to bother the last key of @left and the first
2614 * key of @right.
2615 */
2616static bool check_sibling_keys(struct extent_buffer *left,
2617			       struct extent_buffer *right)
2618{
2619	struct btrfs_key left_last;
2620	struct btrfs_key right_first;
2621	int level = btrfs_header_level(left);
2622	int nr_left = btrfs_header_nritems(left);
2623	int nr_right = btrfs_header_nritems(right);
2624
2625	/* No key to check in one of the tree blocks */
2626	if (!nr_left || !nr_right)
2627		return false;
2628
2629	if (level) {
2630		btrfs_node_key_to_cpu(left, &left_last, nr_left - 1);
2631		btrfs_node_key_to_cpu(right, &right_first, 0);
2632	} else {
2633		btrfs_item_key_to_cpu(left, &left_last, nr_left - 1);
2634		btrfs_item_key_to_cpu(right, &right_first, 0);
2635	}
2636
2637	if (btrfs_comp_cpu_keys(&left_last, &right_first) >= 0) {
2638		btrfs_crit(left->fs_info,
2639"bad key order, sibling blocks, left last (%llu %u %llu) right first (%llu %u %llu)",
2640			   left_last.objectid, left_last.type,
2641			   left_last.offset, right_first.objectid,
2642			   right_first.type, right_first.offset);
2643		return true;
2644	}
2645	return false;
2646}
2647
2648/*
2649 * try to push data from one node into the next node left in the
2650 * tree.
2651 *
2652 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
2653 * error, and > 0 if there was no room in the left hand block.
2654 */
2655static int push_node_left(struct btrfs_trans_handle *trans,
2656			  struct extent_buffer *dst,
2657			  struct extent_buffer *src, int empty)
2658{
2659	struct btrfs_fs_info *fs_info = trans->fs_info;
2660	int push_items = 0;
2661	int src_nritems;
2662	int dst_nritems;
2663	int ret = 0;
2664
2665	src_nritems = btrfs_header_nritems(src);
2666	dst_nritems = btrfs_header_nritems(dst);
2667	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
2668	WARN_ON(btrfs_header_generation(src) != trans->transid);
2669	WARN_ON(btrfs_header_generation(dst) != trans->transid);
2670
2671	if (!empty && src_nritems <= 8)
2672		return 1;
2673
2674	if (push_items <= 0)
2675		return 1;
2676
2677	if (empty) {
2678		push_items = min(src_nritems, push_items);
2679		if (push_items < src_nritems) {
2680			/* leave at least 8 pointers in the node if
2681			 * we aren't going to empty it
2682			 */
2683			if (src_nritems - push_items < 8) {
2684				if (push_items <= 8)
2685					return 1;
2686				push_items -= 8;
2687			}
2688		}
2689	} else
2690		push_items = min(src_nritems - 8, push_items);
2691
2692	/* dst is the left eb, src is the middle eb */
2693	if (check_sibling_keys(dst, src)) {
2694		ret = -EUCLEAN;
2695		btrfs_abort_transaction(trans, ret);
2696		return ret;
2697	}
2698	ret = btrfs_tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items);
2699	if (ret) {
2700		btrfs_abort_transaction(trans, ret);
2701		return ret;
2702	}
2703	copy_extent_buffer(dst, src,
2704			   btrfs_node_key_ptr_offset(dst, dst_nritems),
2705			   btrfs_node_key_ptr_offset(src, 0),
2706			   push_items * sizeof(struct btrfs_key_ptr));
2707
2708	if (push_items < src_nritems) {
2709		/*
2710		 * Don't call btrfs_tree_mod_log_insert_move() here, key removal
2711		 * was already fully logged by btrfs_tree_mod_log_eb_copy() above.
2712		 */
2713		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(src, 0),
2714				      btrfs_node_key_ptr_offset(src, push_items),
2715				      (src_nritems - push_items) *
2716				      sizeof(struct btrfs_key_ptr));
2717	}
2718	btrfs_set_header_nritems(src, src_nritems - push_items);
2719	btrfs_set_header_nritems(dst, dst_nritems + push_items);
2720	btrfs_mark_buffer_dirty(src);
2721	btrfs_mark_buffer_dirty(dst);
2722
2723	return ret;
2724}
2725
2726/*
2727 * try to push data from one node into the next node right in the
2728 * tree.
2729 *
2730 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
2731 * error, and > 0 if there was no room in the right hand block.
2732 *
2733 * this will  only push up to 1/2 the contents of the left node over
2734 */
2735static int balance_node_right(struct btrfs_trans_handle *trans,
2736			      struct extent_buffer *dst,
2737			      struct extent_buffer *src)
2738{
2739	struct btrfs_fs_info *fs_info = trans->fs_info;
2740	int push_items = 0;
2741	int max_push;
2742	int src_nritems;
2743	int dst_nritems;
2744	int ret = 0;
2745
2746	WARN_ON(btrfs_header_generation(src) != trans->transid);
2747	WARN_ON(btrfs_header_generation(dst) != trans->transid);
2748
2749	src_nritems = btrfs_header_nritems(src);
2750	dst_nritems = btrfs_header_nritems(dst);
2751	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
2752	if (push_items <= 0)
2753		return 1;
2754
2755	if (src_nritems < 4)
2756		return 1;
2757
2758	max_push = src_nritems / 2 + 1;
2759	/* don't try to empty the node */
2760	if (max_push >= src_nritems)
2761		return 1;
2762
2763	if (max_push < push_items)
2764		push_items = max_push;
2765
2766	/* dst is the right eb, src is the middle eb */
2767	if (check_sibling_keys(src, dst)) {
2768		ret = -EUCLEAN;
2769		btrfs_abort_transaction(trans, ret);
2770		return ret;
2771	}
2772	ret = btrfs_tree_mod_log_insert_move(dst, push_items, 0, dst_nritems);
2773	BUG_ON(ret < 0);
2774	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(dst, push_items),
2775				      btrfs_node_key_ptr_offset(dst, 0),
2776				      (dst_nritems) *
2777				      sizeof(struct btrfs_key_ptr));
2778
2779	ret = btrfs_tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items,
2780					 push_items);
2781	if (ret) {
2782		btrfs_abort_transaction(trans, ret);
2783		return ret;
2784	}
2785	copy_extent_buffer(dst, src,
2786			   btrfs_node_key_ptr_offset(dst, 0),
2787			   btrfs_node_key_ptr_offset(src, src_nritems - push_items),
2788			   push_items * sizeof(struct btrfs_key_ptr));
2789
2790	btrfs_set_header_nritems(src, src_nritems - push_items);
2791	btrfs_set_header_nritems(dst, dst_nritems + push_items);
2792
2793	btrfs_mark_buffer_dirty(src);
2794	btrfs_mark_buffer_dirty(dst);
2795
2796	return ret;
2797}
2798
2799/*
2800 * helper function to insert a new root level in the tree.
2801 * A new node is allocated, and a single item is inserted to
2802 * point to the existing root
2803 *
2804 * returns zero on success or < 0 on failure.
2805 */
2806static noinline int insert_new_root(struct btrfs_trans_handle *trans,
2807			   struct btrfs_root *root,
2808			   struct btrfs_path *path, int level)
2809{
2810	struct btrfs_fs_info *fs_info = root->fs_info;
2811	u64 lower_gen;
2812	struct extent_buffer *lower;
2813	struct extent_buffer *c;
2814	struct extent_buffer *old;
2815	struct btrfs_disk_key lower_key;
2816	int ret;
2817
2818	BUG_ON(path->nodes[level]);
2819	BUG_ON(path->nodes[level-1] != root->node);
2820
2821	lower = path->nodes[level-1];
2822	if (level == 1)
2823		btrfs_item_key(lower, &lower_key, 0);
2824	else
2825		btrfs_node_key(lower, &lower_key, 0);
2826
2827	c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
2828				   &lower_key, level, root->node->start, 0,
2829				   BTRFS_NESTING_NEW_ROOT);
2830	if (IS_ERR(c))
2831		return PTR_ERR(c);
2832
2833	root_add_used(root, fs_info->nodesize);
2834
2835	btrfs_set_header_nritems(c, 1);
2836	btrfs_set_node_key(c, &lower_key, 0);
2837	btrfs_set_node_blockptr(c, 0, lower->start);
2838	lower_gen = btrfs_header_generation(lower);
2839	WARN_ON(lower_gen != trans->transid);
2840
2841	btrfs_set_node_ptr_generation(c, 0, lower_gen);
2842
2843	btrfs_mark_buffer_dirty(c);
2844
2845	old = root->node;
2846	ret = btrfs_tree_mod_log_insert_root(root->node, c, false);
2847	BUG_ON(ret < 0);
2848	rcu_assign_pointer(root->node, c);
2849
2850	/* the super has an extra ref to root->node */
2851	free_extent_buffer(old);
2852
2853	add_root_to_dirty_list(root);
2854	atomic_inc(&c->refs);
2855	path->nodes[level] = c;
2856	path->locks[level] = BTRFS_WRITE_LOCK;
2857	path->slots[level] = 0;
2858	return 0;
2859}
2860
2861/*
2862 * worker function to insert a single pointer in a node.
2863 * the node should have enough room for the pointer already
2864 *
2865 * slot and level indicate where you want the key to go, and
2866 * blocknr is the block the key points to.
2867 */
2868static void insert_ptr(struct btrfs_trans_handle *trans,
2869		       struct btrfs_path *path,
2870		       struct btrfs_disk_key *key, u64 bytenr,
2871		       int slot, int level)
2872{
2873	struct extent_buffer *lower;
2874	int nritems;
2875	int ret;
2876
2877	BUG_ON(!path->nodes[level]);
2878	btrfs_assert_tree_write_locked(path->nodes[level]);
2879	lower = path->nodes[level];
2880	nritems = btrfs_header_nritems(lower);
2881	BUG_ON(slot > nritems);
2882	BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info));
2883	if (slot != nritems) {
2884		if (level) {
2885			ret = btrfs_tree_mod_log_insert_move(lower, slot + 1,
2886					slot, nritems - slot);
2887			BUG_ON(ret < 0);
2888		}
2889		memmove_extent_buffer(lower,
2890			      btrfs_node_key_ptr_offset(lower, slot + 1),
2891			      btrfs_node_key_ptr_offset(lower, slot),
2892			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
2893	}
2894	if (level) {
2895		ret = btrfs_tree_mod_log_insert_key(lower, slot,
2896						    BTRFS_MOD_LOG_KEY_ADD);
2897		BUG_ON(ret < 0);
2898	}
2899	btrfs_set_node_key(lower, key, slot);
2900	btrfs_set_node_blockptr(lower, slot, bytenr);
2901	WARN_ON(trans->transid == 0);
2902	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
2903	btrfs_set_header_nritems(lower, nritems + 1);
2904	btrfs_mark_buffer_dirty(lower);
2905}
2906
2907/*
2908 * split the node at the specified level in path in two.
2909 * The path is corrected to point to the appropriate node after the split
2910 *
2911 * Before splitting this tries to make some room in the node by pushing
2912 * left and right, if either one works, it returns right away.
2913 *
2914 * returns 0 on success and < 0 on failure
2915 */
2916static noinline int split_node(struct btrfs_trans_handle *trans,
2917			       struct btrfs_root *root,
2918			       struct btrfs_path *path, int level)
2919{
2920	struct btrfs_fs_info *fs_info = root->fs_info;
2921	struct extent_buffer *c;
2922	struct extent_buffer *split;
2923	struct btrfs_disk_key disk_key;
2924	int mid;
2925	int ret;
2926	u32 c_nritems;
2927
2928	c = path->nodes[level];
2929	WARN_ON(btrfs_header_generation(c) != trans->transid);
2930	if (c == root->node) {
2931		/*
2932		 * trying to split the root, lets make a new one
2933		 *
2934		 * tree mod log: We don't log_removal old root in
2935		 * insert_new_root, because that root buffer will be kept as a
2936		 * normal node. We are going to log removal of half of the
2937		 * elements below with btrfs_tree_mod_log_eb_copy(). We're
2938		 * holding a tree lock on the buffer, which is why we cannot
2939		 * race with other tree_mod_log users.
2940		 */
2941		ret = insert_new_root(trans, root, path, level + 1);
2942		if (ret)
2943			return ret;
2944	} else {
2945		ret = push_nodes_for_insert(trans, root, path, level);
2946		c = path->nodes[level];
2947		if (!ret && btrfs_header_nritems(c) <
2948		    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
2949			return 0;
2950		if (ret < 0)
2951			return ret;
2952	}
2953
2954	c_nritems = btrfs_header_nritems(c);
2955	mid = (c_nritems + 1) / 2;
2956	btrfs_node_key(c, &disk_key, mid);
2957
2958	split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
2959				       &disk_key, level, c->start, 0,
2960				       BTRFS_NESTING_SPLIT);
2961	if (IS_ERR(split))
2962		return PTR_ERR(split);
2963
2964	root_add_used(root, fs_info->nodesize);
2965	ASSERT(btrfs_header_level(c) == level);
2966
2967	ret = btrfs_tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid);
2968	if (ret) {
2969		btrfs_abort_transaction(trans, ret);
2970		return ret;
2971	}
2972	copy_extent_buffer(split, c,
2973			   btrfs_node_key_ptr_offset(split, 0),
2974			   btrfs_node_key_ptr_offset(c, mid),
2975			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
2976	btrfs_set_header_nritems(split, c_nritems - mid);
2977	btrfs_set_header_nritems(c, mid);
 
2978
2979	btrfs_mark_buffer_dirty(c);
2980	btrfs_mark_buffer_dirty(split);
2981
2982	insert_ptr(trans, path, &disk_key, split->start,
2983		   path->slots[level + 1] + 1, level + 1);
2984
2985	if (path->slots[level] >= mid) {
2986		path->slots[level] -= mid;
2987		btrfs_tree_unlock(c);
2988		free_extent_buffer(c);
2989		path->nodes[level] = split;
2990		path->slots[level + 1] += 1;
2991	} else {
2992		btrfs_tree_unlock(split);
2993		free_extent_buffer(split);
2994	}
2995	return 0;
2996}
2997
2998/*
2999 * how many bytes are required to store the items in a leaf.  start
3000 * and nr indicate which items in the leaf to check.  This totals up the
3001 * space used both by the item structs and the item data
3002 */
3003static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3004{
 
 
 
3005	int data_len;
3006	int nritems = btrfs_header_nritems(l);
3007	int end = min(nritems, start + nr) - 1;
3008
3009	if (!nr)
3010		return 0;
3011	data_len = btrfs_item_offset(l, start) + btrfs_item_size(l, start);
3012	data_len = data_len - btrfs_item_offset(l, end);
 
 
 
 
3013	data_len += sizeof(struct btrfs_item) * nr;
3014	WARN_ON(data_len < 0);
3015	return data_len;
3016}
3017
3018/*
3019 * The space between the end of the leaf items and
3020 * the start of the leaf data.  IOW, how much room
3021 * the leaf has left for both items and data
3022 */
3023noinline int btrfs_leaf_free_space(struct extent_buffer *leaf)
3024{
3025	struct btrfs_fs_info *fs_info = leaf->fs_info;
3026	int nritems = btrfs_header_nritems(leaf);
3027	int ret;
3028
3029	ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
3030	if (ret < 0) {
3031		btrfs_crit(fs_info,
3032			   "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3033			   ret,
3034			   (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
3035			   leaf_space_used(leaf, 0, nritems), nritems);
3036	}
3037	return ret;
3038}
3039
3040/*
3041 * min slot controls the lowest index we're willing to push to the
3042 * right.  We'll push up to and including min_slot, but no lower
3043 */
3044static noinline int __push_leaf_right(struct btrfs_path *path,
3045				      int data_size, int empty,
3046				      struct extent_buffer *right,
3047				      int free_space, u32 left_nritems,
3048				      u32 min_slot)
3049{
3050	struct btrfs_fs_info *fs_info = right->fs_info;
3051	struct extent_buffer *left = path->nodes[0];
3052	struct extent_buffer *upper = path->nodes[1];
3053	struct btrfs_map_token token;
3054	struct btrfs_disk_key disk_key;
3055	int slot;
3056	u32 i;
3057	int push_space = 0;
3058	int push_items = 0;
 
3059	u32 nr;
3060	u32 right_nritems;
3061	u32 data_end;
3062	u32 this_item_size;
3063
3064	if (empty)
3065		nr = 0;
3066	else
3067		nr = max_t(u32, 1, min_slot);
3068
3069	if (path->slots[0] >= left_nritems)
3070		push_space += data_size;
3071
3072	slot = path->slots[1];
3073	i = left_nritems - 1;
3074	while (i >= nr) {
 
 
3075		if (!empty && push_items > 0) {
3076			if (path->slots[0] > i)
3077				break;
3078			if (path->slots[0] == i) {
3079				int space = btrfs_leaf_free_space(left);
3080
3081				if (space + push_space * 2 > free_space)
3082					break;
3083			}
3084		}
3085
3086		if (path->slots[0] == i)
3087			push_space += data_size;
3088
3089		this_item_size = btrfs_item_size(left, i);
3090		if (this_item_size + sizeof(struct btrfs_item) +
3091		    push_space > free_space)
3092			break;
3093
3094		push_items++;
3095		push_space += this_item_size + sizeof(struct btrfs_item);
3096		if (i == 0)
3097			break;
3098		i--;
3099	}
3100
3101	if (push_items == 0)
3102		goto out_unlock;
3103
3104	WARN_ON(!empty && push_items == left_nritems);
3105
3106	/* push left to right */
3107	right_nritems = btrfs_header_nritems(right);
3108
3109	push_space = btrfs_item_data_end(left, left_nritems - push_items);
3110	push_space -= leaf_data_end(left);
3111
3112	/* make room in the right data area */
3113	data_end = leaf_data_end(right);
3114	memmove_leaf_data(right, data_end - push_space, data_end,
3115			  BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
 
 
3116
3117	/* copy from the left data area */
3118	copy_leaf_data(right, left, BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3119		       leaf_data_end(left), push_space);
3120
3121	memmove_leaf_items(right, push_items, 0, right_nritems);
 
 
 
 
3122
3123	/* copy the items from left to right */
3124	copy_leaf_items(right, left, 0, left_nritems - push_items, push_items);
 
 
3125
3126	/* update the item pointers */
3127	btrfs_init_map_token(&token, right);
3128	right_nritems += push_items;
3129	btrfs_set_header_nritems(right, right_nritems);
3130	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3131	for (i = 0; i < right_nritems; i++) {
3132		push_space -= btrfs_token_item_size(&token, i);
3133		btrfs_set_token_item_offset(&token, i, push_space);
 
3134	}
3135
3136	left_nritems -= push_items;
3137	btrfs_set_header_nritems(left, left_nritems);
3138
3139	if (left_nritems)
3140		btrfs_mark_buffer_dirty(left);
3141	else
3142		btrfs_clean_tree_block(left);
3143
3144	btrfs_mark_buffer_dirty(right);
3145
3146	btrfs_item_key(right, &disk_key, 0);
3147	btrfs_set_node_key(upper, &disk_key, slot + 1);
3148	btrfs_mark_buffer_dirty(upper);
3149
3150	/* then fixup the leaf pointer in the path */
3151	if (path->slots[0] >= left_nritems) {
3152		path->slots[0] -= left_nritems;
3153		if (btrfs_header_nritems(path->nodes[0]) == 0)
3154			btrfs_clean_tree_block(path->nodes[0]);
3155		btrfs_tree_unlock(path->nodes[0]);
3156		free_extent_buffer(path->nodes[0]);
3157		path->nodes[0] = right;
3158		path->slots[1] += 1;
3159	} else {
3160		btrfs_tree_unlock(right);
3161		free_extent_buffer(right);
3162	}
3163	return 0;
3164
3165out_unlock:
3166	btrfs_tree_unlock(right);
3167	free_extent_buffer(right);
3168	return 1;
3169}
3170
3171/*
3172 * push some data in the path leaf to the right, trying to free up at
3173 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3174 *
3175 * returns 1 if the push failed because the other node didn't have enough
3176 * room, 0 if everything worked out and < 0 if there were major errors.
3177 *
3178 * this will push starting from min_slot to the end of the leaf.  It won't
3179 * push any slot lower than min_slot
3180 */
3181static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3182			   *root, struct btrfs_path *path,
3183			   int min_data_size, int data_size,
3184			   int empty, u32 min_slot)
3185{
3186	struct extent_buffer *left = path->nodes[0];
3187	struct extent_buffer *right;
3188	struct extent_buffer *upper;
3189	int slot;
3190	int free_space;
3191	u32 left_nritems;
3192	int ret;
3193
3194	if (!path->nodes[1])
3195		return 1;
3196
3197	slot = path->slots[1];
3198	upper = path->nodes[1];
3199	if (slot >= btrfs_header_nritems(upper) - 1)
3200		return 1;
3201
3202	btrfs_assert_tree_write_locked(path->nodes[1]);
3203
3204	right = btrfs_read_node_slot(upper, slot + 1);
3205	/*
3206	 * slot + 1 is not valid or we fail to read the right node,
3207	 * no big deal, just return.
3208	 */
3209	if (IS_ERR(right))
3210		return 1;
3211
3212	__btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
 
3213
3214	free_space = btrfs_leaf_free_space(right);
3215	if (free_space < data_size)
3216		goto out_unlock;
3217
 
3218	ret = btrfs_cow_block(trans, root, right, upper,
3219			      slot + 1, &right, BTRFS_NESTING_RIGHT_COW);
3220	if (ret)
3221		goto out_unlock;
3222
 
 
 
 
3223	left_nritems = btrfs_header_nritems(left);
3224	if (left_nritems == 0)
3225		goto out_unlock;
3226
3227	if (check_sibling_keys(left, right)) {
3228		ret = -EUCLEAN;
3229		btrfs_tree_unlock(right);
3230		free_extent_buffer(right);
3231		return ret;
3232	}
3233	if (path->slots[0] == left_nritems && !empty) {
3234		/* Key greater than all keys in the leaf, right neighbor has
3235		 * enough room for it and we're not emptying our leaf to delete
3236		 * it, therefore use right neighbor to insert the new item and
3237		 * no need to touch/dirty our left leaf. */
3238		btrfs_tree_unlock(left);
3239		free_extent_buffer(left);
3240		path->nodes[0] = right;
3241		path->slots[0] = 0;
3242		path->slots[1]++;
3243		return 0;
3244	}
3245
3246	return __push_leaf_right(path, min_data_size, empty,
3247				right, free_space, left_nritems, min_slot);
3248out_unlock:
3249	btrfs_tree_unlock(right);
3250	free_extent_buffer(right);
3251	return 1;
3252}
3253
3254/*
3255 * push some data in the path leaf to the left, trying to free up at
3256 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3257 *
3258 * max_slot can put a limit on how far into the leaf we'll push items.  The
3259 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3260 * items
3261 */
3262static noinline int __push_leaf_left(struct btrfs_path *path, int data_size,
3263				     int empty, struct extent_buffer *left,
3264				     int free_space, u32 right_nritems,
3265				     u32 max_slot)
3266{
3267	struct btrfs_fs_info *fs_info = left->fs_info;
3268	struct btrfs_disk_key disk_key;
3269	struct extent_buffer *right = path->nodes[0];
3270	int i;
3271	int push_space = 0;
3272	int push_items = 0;
 
3273	u32 old_left_nritems;
3274	u32 nr;
3275	int ret = 0;
3276	u32 this_item_size;
3277	u32 old_left_item_size;
3278	struct btrfs_map_token token;
3279
3280	if (empty)
3281		nr = min(right_nritems, max_slot);
3282	else
3283		nr = min(right_nritems - 1, max_slot);
3284
3285	for (i = 0; i < nr; i++) {
 
 
3286		if (!empty && push_items > 0) {
3287			if (path->slots[0] < i)
3288				break;
3289			if (path->slots[0] == i) {
3290				int space = btrfs_leaf_free_space(right);
3291
3292				if (space + push_space * 2 > free_space)
3293					break;
3294			}
3295		}
3296
3297		if (path->slots[0] == i)
3298			push_space += data_size;
3299
3300		this_item_size = btrfs_item_size(right, i);
3301		if (this_item_size + sizeof(struct btrfs_item) + push_space >
3302		    free_space)
3303			break;
3304
3305		push_items++;
3306		push_space += this_item_size + sizeof(struct btrfs_item);
3307	}
3308
3309	if (push_items == 0) {
3310		ret = 1;
3311		goto out;
3312	}
3313	WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3314
3315	/* push data from right to left */
3316	copy_leaf_items(left, right, btrfs_header_nritems(left), 0, push_items);
 
 
 
3317
3318	push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
3319		     btrfs_item_offset(right, push_items - 1);
3320
3321	copy_leaf_data(left, right, leaf_data_end(left) - push_space,
3322		       btrfs_item_offset(right, push_items - 1), push_space);
 
 
 
3323	old_left_nritems = btrfs_header_nritems(left);
3324	BUG_ON(old_left_nritems <= 0);
3325
3326	btrfs_init_map_token(&token, left);
3327	old_left_item_size = btrfs_item_offset(left, old_left_nritems - 1);
3328	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3329		u32 ioff;
3330
3331		ioff = btrfs_token_item_offset(&token, i);
3332		btrfs_set_token_item_offset(&token, i,
3333		      ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size));
 
 
 
3334	}
3335	btrfs_set_header_nritems(left, old_left_nritems + push_items);
3336
3337	/* fixup right node */
3338	if (push_items > right_nritems)
3339		WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3340		       right_nritems);
3341
3342	if (push_items < right_nritems) {
3343		push_space = btrfs_item_offset(right, push_items - 1) -
3344						  leaf_data_end(right);
3345		memmove_leaf_data(right,
3346				  BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3347				  leaf_data_end(right), push_space);
3348
3349		memmove_leaf_items(right, 0, push_items,
3350				   btrfs_header_nritems(right) - push_items);
 
 
 
3351	}
3352
3353	btrfs_init_map_token(&token, right);
3354	right_nritems -= push_items;
3355	btrfs_set_header_nritems(right, right_nritems);
3356	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3357	for (i = 0; i < right_nritems; i++) {
3358		push_space = push_space - btrfs_token_item_size(&token, i);
3359		btrfs_set_token_item_offset(&token, i, push_space);
 
 
 
3360	}
3361
3362	btrfs_mark_buffer_dirty(left);
3363	if (right_nritems)
3364		btrfs_mark_buffer_dirty(right);
3365	else
3366		btrfs_clean_tree_block(right);
3367
3368	btrfs_item_key(right, &disk_key, 0);
3369	fixup_low_keys(path, &disk_key, 1);
3370
3371	/* then fixup the leaf pointer in the path */
3372	if (path->slots[0] < push_items) {
3373		path->slots[0] += old_left_nritems;
3374		btrfs_tree_unlock(path->nodes[0]);
3375		free_extent_buffer(path->nodes[0]);
3376		path->nodes[0] = left;
3377		path->slots[1] -= 1;
3378	} else {
3379		btrfs_tree_unlock(left);
3380		free_extent_buffer(left);
3381		path->slots[0] -= push_items;
3382	}
3383	BUG_ON(path->slots[0] < 0);
3384	return ret;
3385out:
3386	btrfs_tree_unlock(left);
3387	free_extent_buffer(left);
3388	return ret;
3389}
3390
3391/*
3392 * push some data in the path leaf to the left, trying to free up at
3393 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3394 *
3395 * max_slot can put a limit on how far into the leaf we'll push items.  The
3396 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3397 * items
3398 */
3399static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3400			  *root, struct btrfs_path *path, int min_data_size,
3401			  int data_size, int empty, u32 max_slot)
3402{
3403	struct extent_buffer *right = path->nodes[0];
3404	struct extent_buffer *left;
3405	int slot;
3406	int free_space;
3407	u32 right_nritems;
3408	int ret = 0;
3409
3410	slot = path->slots[1];
3411	if (slot == 0)
3412		return 1;
3413	if (!path->nodes[1])
3414		return 1;
3415
3416	right_nritems = btrfs_header_nritems(right);
3417	if (right_nritems == 0)
3418		return 1;
3419
3420	btrfs_assert_tree_write_locked(path->nodes[1]);
3421
3422	left = btrfs_read_node_slot(path->nodes[1], slot - 1);
3423	/*
3424	 * slot - 1 is not valid or we fail to read the left node,
3425	 * no big deal, just return.
3426	 */
3427	if (IS_ERR(left))
3428		return 1;
3429
3430	__btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
 
3431
3432	free_space = btrfs_leaf_free_space(left);
3433	if (free_space < data_size) {
3434		ret = 1;
3435		goto out;
3436	}
3437
 
3438	ret = btrfs_cow_block(trans, root, left,
3439			      path->nodes[1], slot - 1, &left,
3440			      BTRFS_NESTING_LEFT_COW);
3441	if (ret) {
3442		/* we hit -ENOSPC, but it isn't fatal here */
3443		if (ret == -ENOSPC)
3444			ret = 1;
3445		goto out;
3446	}
3447
3448	if (check_sibling_keys(left, right)) {
3449		ret = -EUCLEAN;
 
3450		goto out;
3451	}
 
3452	return __push_leaf_left(path, min_data_size,
3453			       empty, left, free_space, right_nritems,
3454			       max_slot);
3455out:
3456	btrfs_tree_unlock(left);
3457	free_extent_buffer(left);
3458	return ret;
3459}
3460
3461/*
3462 * split the path's leaf in two, making sure there is at least data_size
3463 * available for the resulting leaf level of the path.
3464 */
3465static noinline void copy_for_split(struct btrfs_trans_handle *trans,
3466				    struct btrfs_path *path,
3467				    struct extent_buffer *l,
3468				    struct extent_buffer *right,
3469				    int slot, int mid, int nritems)
3470{
3471	struct btrfs_fs_info *fs_info = trans->fs_info;
3472	int data_copy_size;
3473	int rt_data_off;
3474	int i;
3475	struct btrfs_disk_key disk_key;
3476	struct btrfs_map_token token;
3477
3478	nritems = nritems - mid;
3479	btrfs_set_header_nritems(right, nritems);
3480	data_copy_size = btrfs_item_data_end(l, mid) - leaf_data_end(l);
3481
3482	copy_leaf_items(right, l, 0, mid, nritems);
3483
3484	copy_leaf_data(right, l, BTRFS_LEAF_DATA_SIZE(fs_info) - data_copy_size,
3485		       leaf_data_end(l), data_copy_size);
 
 
 
 
 
 
3486
3487	rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_data_end(l, mid);
3488
3489	btrfs_init_map_token(&token, right);
3490	for (i = 0; i < nritems; i++) {
 
3491		u32 ioff;
3492
3493		ioff = btrfs_token_item_offset(&token, i);
3494		btrfs_set_token_item_offset(&token, i, ioff + rt_data_off);
 
3495	}
3496
3497	btrfs_set_header_nritems(l, mid);
3498	btrfs_item_key(right, &disk_key, 0);
3499	insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1);
3500
3501	btrfs_mark_buffer_dirty(right);
3502	btrfs_mark_buffer_dirty(l);
3503	BUG_ON(path->slots[0] != slot);
3504
3505	if (mid <= slot) {
3506		btrfs_tree_unlock(path->nodes[0]);
3507		free_extent_buffer(path->nodes[0]);
3508		path->nodes[0] = right;
3509		path->slots[0] -= mid;
3510		path->slots[1] += 1;
3511	} else {
3512		btrfs_tree_unlock(right);
3513		free_extent_buffer(right);
3514	}
3515
3516	BUG_ON(path->slots[0] < 0);
3517}
3518
3519/*
3520 * double splits happen when we need to insert a big item in the middle
3521 * of a leaf.  A double split can leave us with 3 mostly empty leaves:
3522 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
3523 *          A                 B                 C
3524 *
3525 * We avoid this by trying to push the items on either side of our target
3526 * into the adjacent leaves.  If all goes well we can avoid the double split
3527 * completely.
3528 */
3529static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
3530					  struct btrfs_root *root,
3531					  struct btrfs_path *path,
3532					  int data_size)
3533{
3534	int ret;
3535	int progress = 0;
3536	int slot;
3537	u32 nritems;
3538	int space_needed = data_size;
3539
3540	slot = path->slots[0];
3541	if (slot < btrfs_header_nritems(path->nodes[0]))
3542		space_needed -= btrfs_leaf_free_space(path->nodes[0]);
3543
3544	/*
3545	 * try to push all the items after our slot into the
3546	 * right leaf
3547	 */
3548	ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
3549	if (ret < 0)
3550		return ret;
3551
3552	if (ret == 0)
3553		progress++;
3554
3555	nritems = btrfs_header_nritems(path->nodes[0]);
3556	/*
3557	 * our goal is to get our slot at the start or end of a leaf.  If
3558	 * we've done so we're done
3559	 */
3560	if (path->slots[0] == 0 || path->slots[0] == nritems)
3561		return 0;
3562
3563	if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
3564		return 0;
3565
3566	/* try to push all the items before our slot into the next leaf */
3567	slot = path->slots[0];
3568	space_needed = data_size;
3569	if (slot > 0)
3570		space_needed -= btrfs_leaf_free_space(path->nodes[0]);
3571	ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
3572	if (ret < 0)
3573		return ret;
3574
3575	if (ret == 0)
3576		progress++;
3577
3578	if (progress)
3579		return 0;
3580	return 1;
3581}
3582
3583/*
3584 * split the path's leaf in two, making sure there is at least data_size
3585 * available for the resulting leaf level of the path.
3586 *
3587 * returns 0 if all went well and < 0 on failure.
3588 */
3589static noinline int split_leaf(struct btrfs_trans_handle *trans,
3590			       struct btrfs_root *root,
3591			       const struct btrfs_key *ins_key,
3592			       struct btrfs_path *path, int data_size,
3593			       int extend)
3594{
3595	struct btrfs_disk_key disk_key;
3596	struct extent_buffer *l;
3597	u32 nritems;
3598	int mid;
3599	int slot;
3600	struct extent_buffer *right;
3601	struct btrfs_fs_info *fs_info = root->fs_info;
3602	int ret = 0;
3603	int wret;
3604	int split;
3605	int num_doubles = 0;
3606	int tried_avoid_double = 0;
3607
3608	l = path->nodes[0];
3609	slot = path->slots[0];
3610	if (extend && data_size + btrfs_item_size(l, slot) +
3611	    sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
3612		return -EOVERFLOW;
3613
3614	/* first try to make some room by pushing left and right */
3615	if (data_size && path->nodes[1]) {
3616		int space_needed = data_size;
3617
3618		if (slot < btrfs_header_nritems(l))
3619			space_needed -= btrfs_leaf_free_space(l);
3620
3621		wret = push_leaf_right(trans, root, path, space_needed,
3622				       space_needed, 0, 0);
3623		if (wret < 0)
3624			return wret;
3625		if (wret) {
3626			space_needed = data_size;
3627			if (slot > 0)
3628				space_needed -= btrfs_leaf_free_space(l);
3629			wret = push_leaf_left(trans, root, path, space_needed,
3630					      space_needed, 0, (u32)-1);
3631			if (wret < 0)
3632				return wret;
3633		}
3634		l = path->nodes[0];
3635
3636		/* did the pushes work? */
3637		if (btrfs_leaf_free_space(l) >= data_size)
3638			return 0;
3639	}
3640
3641	if (!path->nodes[1]) {
3642		ret = insert_new_root(trans, root, path, 1);
3643		if (ret)
3644			return ret;
3645	}
3646again:
3647	split = 1;
3648	l = path->nodes[0];
3649	slot = path->slots[0];
3650	nritems = btrfs_header_nritems(l);
3651	mid = (nritems + 1) / 2;
3652
3653	if (mid <= slot) {
3654		if (nritems == 1 ||
3655		    leaf_space_used(l, mid, nritems - mid) + data_size >
3656			BTRFS_LEAF_DATA_SIZE(fs_info)) {
3657			if (slot >= nritems) {
3658				split = 0;
3659			} else {
3660				mid = slot;
3661				if (mid != nritems &&
3662				    leaf_space_used(l, mid, nritems - mid) +
3663				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
3664					if (data_size && !tried_avoid_double)
3665						goto push_for_double;
3666					split = 2;
3667				}
3668			}
3669		}
3670	} else {
3671		if (leaf_space_used(l, 0, mid) + data_size >
3672			BTRFS_LEAF_DATA_SIZE(fs_info)) {
3673			if (!extend && data_size && slot == 0) {
3674				split = 0;
3675			} else if ((extend || !data_size) && slot == 0) {
3676				mid = 1;
3677			} else {
3678				mid = slot;
3679				if (mid != nritems &&
3680				    leaf_space_used(l, mid, nritems - mid) +
3681				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
3682					if (data_size && !tried_avoid_double)
3683						goto push_for_double;
3684					split = 2;
3685				}
3686			}
3687		}
3688	}
3689
3690	if (split == 0)
3691		btrfs_cpu_key_to_disk(&disk_key, ins_key);
3692	else
3693		btrfs_item_key(l, &disk_key, mid);
3694
3695	/*
3696	 * We have to about BTRFS_NESTING_NEW_ROOT here if we've done a double
3697	 * split, because we're only allowed to have MAX_LOCKDEP_SUBCLASSES
3698	 * subclasses, which is 8 at the time of this patch, and we've maxed it
3699	 * out.  In the future we could add a
3700	 * BTRFS_NESTING_SPLIT_THE_SPLITTENING if we need to, but for now just
3701	 * use BTRFS_NESTING_NEW_ROOT.
3702	 */
3703	right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3704				       &disk_key, 0, l->start, 0,
3705				       num_doubles ? BTRFS_NESTING_NEW_ROOT :
3706				       BTRFS_NESTING_SPLIT);
3707	if (IS_ERR(right))
3708		return PTR_ERR(right);
3709
3710	root_add_used(root, fs_info->nodesize);
3711
3712	if (split == 0) {
3713		if (mid <= slot) {
3714			btrfs_set_header_nritems(right, 0);
3715			insert_ptr(trans, path, &disk_key,
3716				   right->start, path->slots[1] + 1, 1);
3717			btrfs_tree_unlock(path->nodes[0]);
3718			free_extent_buffer(path->nodes[0]);
3719			path->nodes[0] = right;
3720			path->slots[0] = 0;
3721			path->slots[1] += 1;
3722		} else {
3723			btrfs_set_header_nritems(right, 0);
3724			insert_ptr(trans, path, &disk_key,
3725				   right->start, path->slots[1], 1);
3726			btrfs_tree_unlock(path->nodes[0]);
3727			free_extent_buffer(path->nodes[0]);
3728			path->nodes[0] = right;
3729			path->slots[0] = 0;
3730			if (path->slots[1] == 0)
3731				fixup_low_keys(path, &disk_key, 1);
3732		}
3733		/*
3734		 * We create a new leaf 'right' for the required ins_len and
3735		 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
3736		 * the content of ins_len to 'right'.
3737		 */
3738		return ret;
3739	}
3740
3741	copy_for_split(trans, path, l, right, slot, mid, nritems);
3742
3743	if (split == 2) {
3744		BUG_ON(num_doubles != 0);
3745		num_doubles++;
3746		goto again;
3747	}
3748
3749	return 0;
3750
3751push_for_double:
3752	push_for_double_split(trans, root, path, data_size);
3753	tried_avoid_double = 1;
3754	if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
3755		return 0;
3756	goto again;
3757}
3758
3759static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
3760					 struct btrfs_root *root,
3761					 struct btrfs_path *path, int ins_len)
3762{
3763	struct btrfs_key key;
3764	struct extent_buffer *leaf;
3765	struct btrfs_file_extent_item *fi;
3766	u64 extent_len = 0;
3767	u32 item_size;
3768	int ret;
3769
3770	leaf = path->nodes[0];
3771	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3772
3773	BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
3774	       key.type != BTRFS_EXTENT_CSUM_KEY);
3775
3776	if (btrfs_leaf_free_space(leaf) >= ins_len)
3777		return 0;
3778
3779	item_size = btrfs_item_size(leaf, path->slots[0]);
3780	if (key.type == BTRFS_EXTENT_DATA_KEY) {
3781		fi = btrfs_item_ptr(leaf, path->slots[0],
3782				    struct btrfs_file_extent_item);
3783		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
3784	}
3785	btrfs_release_path(path);
3786
3787	path->keep_locks = 1;
3788	path->search_for_split = 1;
3789	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
3790	path->search_for_split = 0;
3791	if (ret > 0)
3792		ret = -EAGAIN;
3793	if (ret < 0)
3794		goto err;
3795
3796	ret = -EAGAIN;
3797	leaf = path->nodes[0];
3798	/* if our item isn't there, return now */
3799	if (item_size != btrfs_item_size(leaf, path->slots[0]))
3800		goto err;
3801
3802	/* the leaf has  changed, it now has room.  return now */
3803	if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len)
3804		goto err;
3805
3806	if (key.type == BTRFS_EXTENT_DATA_KEY) {
3807		fi = btrfs_item_ptr(leaf, path->slots[0],
3808				    struct btrfs_file_extent_item);
3809		if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
3810			goto err;
3811	}
3812
 
3813	ret = split_leaf(trans, root, &key, path, ins_len, 1);
3814	if (ret)
3815		goto err;
3816
3817	path->keep_locks = 0;
3818	btrfs_unlock_up_safe(path, 1);
3819	return 0;
3820err:
3821	path->keep_locks = 0;
3822	return ret;
3823}
3824
3825static noinline int split_item(struct btrfs_path *path,
3826			       const struct btrfs_key *new_key,
3827			       unsigned long split_offset)
3828{
3829	struct extent_buffer *leaf;
3830	int orig_slot, slot;
 
 
3831	char *buf;
3832	u32 nritems;
3833	u32 item_size;
3834	u32 orig_offset;
3835	struct btrfs_disk_key disk_key;
3836
3837	leaf = path->nodes[0];
3838	BUG_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item));
3839
3840	orig_slot = path->slots[0];
3841	orig_offset = btrfs_item_offset(leaf, path->slots[0]);
3842	item_size = btrfs_item_size(leaf, path->slots[0]);
 
 
3843
3844	buf = kmalloc(item_size, GFP_NOFS);
3845	if (!buf)
3846		return -ENOMEM;
3847
3848	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
3849			    path->slots[0]), item_size);
3850
3851	slot = path->slots[0] + 1;
3852	nritems = btrfs_header_nritems(leaf);
3853	if (slot != nritems) {
3854		/* shift the items */
3855		memmove_leaf_items(leaf, slot + 1, slot, nritems - slot);
 
 
3856	}
3857
3858	btrfs_cpu_key_to_disk(&disk_key, new_key);
3859	btrfs_set_item_key(leaf, &disk_key, slot);
3860
3861	btrfs_set_item_offset(leaf, slot, orig_offset);
3862	btrfs_set_item_size(leaf, slot, item_size - split_offset);
 
 
3863
3864	btrfs_set_item_offset(leaf, orig_slot,
3865				 orig_offset + item_size - split_offset);
3866	btrfs_set_item_size(leaf, orig_slot, split_offset);
3867
3868	btrfs_set_header_nritems(leaf, nritems + 1);
3869
3870	/* write the data for the start of the original item */
3871	write_extent_buffer(leaf, buf,
3872			    btrfs_item_ptr_offset(leaf, path->slots[0]),
3873			    split_offset);
3874
3875	/* write the data for the new item */
3876	write_extent_buffer(leaf, buf + split_offset,
3877			    btrfs_item_ptr_offset(leaf, slot),
3878			    item_size - split_offset);
3879	btrfs_mark_buffer_dirty(leaf);
3880
3881	BUG_ON(btrfs_leaf_free_space(leaf) < 0);
3882	kfree(buf);
3883	return 0;
3884}
3885
3886/*
3887 * This function splits a single item into two items,
3888 * giving 'new_key' to the new item and splitting the
3889 * old one at split_offset (from the start of the item).
3890 *
3891 * The path may be released by this operation.  After
3892 * the split, the path is pointing to the old item.  The
3893 * new item is going to be in the same node as the old one.
3894 *
3895 * Note, the item being split must be smaller enough to live alone on
3896 * a tree block with room for one extra struct btrfs_item
3897 *
3898 * This allows us to split the item in place, keeping a lock on the
3899 * leaf the entire time.
3900 */
3901int btrfs_split_item(struct btrfs_trans_handle *trans,
3902		     struct btrfs_root *root,
3903		     struct btrfs_path *path,
3904		     const struct btrfs_key *new_key,
3905		     unsigned long split_offset)
3906{
3907	int ret;
3908	ret = setup_leaf_for_split(trans, root, path,
3909				   sizeof(struct btrfs_item));
3910	if (ret)
3911		return ret;
3912
3913	ret = split_item(path, new_key, split_offset);
3914	return ret;
3915}
3916
3917/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3918 * make the item pointed to by the path smaller.  new_size indicates
3919 * how small to make it, and from_end tells us if we just chop bytes
3920 * off the end of the item or if we shift the item to chop bytes off
3921 * the front.
3922 */
3923void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end)
3924{
3925	int slot;
3926	struct extent_buffer *leaf;
 
3927	u32 nritems;
3928	unsigned int data_end;
3929	unsigned int old_data_start;
3930	unsigned int old_size;
3931	unsigned int size_diff;
3932	int i;
3933	struct btrfs_map_token token;
3934
3935	leaf = path->nodes[0];
3936	slot = path->slots[0];
3937
3938	old_size = btrfs_item_size(leaf, slot);
3939	if (old_size == new_size)
3940		return;
3941
3942	nritems = btrfs_header_nritems(leaf);
3943	data_end = leaf_data_end(leaf);
3944
3945	old_data_start = btrfs_item_offset(leaf, slot);
3946
3947	size_diff = old_size - new_size;
3948
3949	BUG_ON(slot < 0);
3950	BUG_ON(slot >= nritems);
3951
3952	/*
3953	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3954	 */
3955	/* first correct the data pointers */
3956	btrfs_init_map_token(&token, leaf);
3957	for (i = slot; i < nritems; i++) {
3958		u32 ioff;
 
3959
3960		ioff = btrfs_token_item_offset(&token, i);
3961		btrfs_set_token_item_offset(&token, i, ioff + size_diff);
 
3962	}
3963
3964	/* shift the data */
3965	if (from_end) {
3966		memmove_leaf_data(leaf, data_end + size_diff, data_end,
3967				  old_data_start + new_size - data_end);
 
3968	} else {
3969		struct btrfs_disk_key disk_key;
3970		u64 offset;
3971
3972		btrfs_item_key(leaf, &disk_key, slot);
3973
3974		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
3975			unsigned long ptr;
3976			struct btrfs_file_extent_item *fi;
3977
3978			fi = btrfs_item_ptr(leaf, slot,
3979					    struct btrfs_file_extent_item);
3980			fi = (struct btrfs_file_extent_item *)(
3981			     (unsigned long)fi - size_diff);
3982
3983			if (btrfs_file_extent_type(leaf, fi) ==
3984			    BTRFS_FILE_EXTENT_INLINE) {
3985				ptr = btrfs_item_ptr_offset(leaf, slot);
3986				memmove_extent_buffer(leaf, ptr,
3987				      (unsigned long)fi,
3988				      BTRFS_FILE_EXTENT_INLINE_DATA_START);
3989			}
3990		}
3991
3992		memmove_leaf_data(leaf, data_end + size_diff, data_end,
3993				  old_data_start - data_end);
 
3994
3995		offset = btrfs_disk_key_offset(&disk_key);
3996		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
3997		btrfs_set_item_key(leaf, &disk_key, slot);
3998		if (slot == 0)
3999			fixup_low_keys(path, &disk_key, 1);
4000	}
4001
4002	btrfs_set_item_size(leaf, slot, new_size);
 
4003	btrfs_mark_buffer_dirty(leaf);
4004
4005	if (btrfs_leaf_free_space(leaf) < 0) {
4006		btrfs_print_leaf(leaf);
4007		BUG();
4008	}
4009}
4010
4011/*
4012 * make the item pointed to by the path bigger, data_size is the added size.
4013 */
4014void btrfs_extend_item(struct btrfs_path *path, u32 data_size)
4015{
4016	int slot;
4017	struct extent_buffer *leaf;
 
4018	u32 nritems;
4019	unsigned int data_end;
4020	unsigned int old_data;
4021	unsigned int old_size;
4022	int i;
4023	struct btrfs_map_token token;
4024
4025	leaf = path->nodes[0];
4026
4027	nritems = btrfs_header_nritems(leaf);
4028	data_end = leaf_data_end(leaf);
4029
4030	if (btrfs_leaf_free_space(leaf) < data_size) {
4031		btrfs_print_leaf(leaf);
4032		BUG();
4033	}
4034	slot = path->slots[0];
4035	old_data = btrfs_item_data_end(leaf, slot);
4036
4037	BUG_ON(slot < 0);
4038	if (slot >= nritems) {
4039		btrfs_print_leaf(leaf);
4040		btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d",
4041			   slot, nritems);
4042		BUG();
4043	}
4044
4045	/*
4046	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4047	 */
4048	/* first correct the data pointers */
4049	btrfs_init_map_token(&token, leaf);
4050	for (i = slot; i < nritems; i++) {
4051		u32 ioff;
 
4052
4053		ioff = btrfs_token_item_offset(&token, i);
4054		btrfs_set_token_item_offset(&token, i, ioff - data_size);
 
4055	}
4056
4057	/* shift the data */
4058	memmove_leaf_data(leaf, data_end - data_size, data_end,
4059			  old_data - data_end);
 
4060
4061	data_end = old_data;
4062	old_size = btrfs_item_size(leaf, slot);
4063	btrfs_set_item_size(leaf, slot, old_size + data_size);
 
4064	btrfs_mark_buffer_dirty(leaf);
4065
4066	if (btrfs_leaf_free_space(leaf) < 0) {
4067		btrfs_print_leaf(leaf);
4068		BUG();
4069	}
4070}
4071
4072/*
4073 * Make space in the node before inserting one or more items.
4074 *
4075 * @root:	root we are inserting items to
4076 * @path:	points to the leaf/slot where we are going to insert new items
4077 * @batch:      information about the batch of items to insert
4078 *
4079 * Main purpose is to save stack depth by doing the bulk of the work in a
4080 * function that doesn't call btrfs_search_slot
4081 */
4082static void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4083				   const struct btrfs_item_batch *batch)
4084{
4085	struct btrfs_fs_info *fs_info = root->fs_info;
 
4086	int i;
4087	u32 nritems;
4088	unsigned int data_end;
4089	struct btrfs_disk_key disk_key;
4090	struct extent_buffer *leaf;
4091	int slot;
4092	struct btrfs_map_token token;
4093	u32 total_size;
4094
4095	/*
4096	 * Before anything else, update keys in the parent and other ancestors
4097	 * if needed, then release the write locks on them, so that other tasks
4098	 * can use them while we modify the leaf.
4099	 */
4100	if (path->slots[0] == 0) {
4101		btrfs_cpu_key_to_disk(&disk_key, &batch->keys[0]);
4102		fixup_low_keys(path, &disk_key, 1);
4103	}
4104	btrfs_unlock_up_safe(path, 1);
4105
4106	leaf = path->nodes[0];
4107	slot = path->slots[0];
4108
4109	nritems = btrfs_header_nritems(leaf);
4110	data_end = leaf_data_end(leaf);
4111	total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item));
4112
4113	if (btrfs_leaf_free_space(leaf) < total_size) {
4114		btrfs_print_leaf(leaf);
4115		btrfs_crit(fs_info, "not enough freespace need %u have %d",
4116			   total_size, btrfs_leaf_free_space(leaf));
4117		BUG();
4118	}
4119
4120	btrfs_init_map_token(&token, leaf);
4121	if (slot != nritems) {
4122		unsigned int old_data = btrfs_item_data_end(leaf, slot);
4123
4124		if (old_data < data_end) {
4125			btrfs_print_leaf(leaf);
4126			btrfs_crit(fs_info,
4127		"item at slot %d with data offset %u beyond data end of leaf %u",
4128				   slot, old_data, data_end);
4129			BUG();
4130		}
4131		/*
4132		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4133		 */
4134		/* first correct the data pointers */
4135		for (i = slot; i < nritems; i++) {
4136			u32 ioff;
4137
4138			ioff = btrfs_token_item_offset(&token, i);
4139			btrfs_set_token_item_offset(&token, i,
4140						       ioff - batch->total_data_size);
 
4141		}
4142		/* shift the items */
4143		memmove_leaf_items(leaf, slot + batch->nr, slot, nritems - slot);
 
 
4144
4145		/* shift the data */
4146		memmove_leaf_data(leaf, data_end - batch->total_data_size,
4147				  data_end, old_data - data_end);
 
4148		data_end = old_data;
4149	}
4150
4151	/* setup the item for the new data */
4152	for (i = 0; i < batch->nr; i++) {
4153		btrfs_cpu_key_to_disk(&disk_key, &batch->keys[i]);
4154		btrfs_set_item_key(leaf, &disk_key, slot + i);
4155		data_end -= batch->data_sizes[i];
4156		btrfs_set_token_item_offset(&token, slot + i, data_end);
4157		btrfs_set_token_item_size(&token, slot + i, batch->data_sizes[i]);
 
 
4158	}
4159
4160	btrfs_set_header_nritems(leaf, nritems + batch->nr);
4161	btrfs_mark_buffer_dirty(leaf);
4162
4163	if (btrfs_leaf_free_space(leaf) < 0) {
4164		btrfs_print_leaf(leaf);
4165		BUG();
4166	}
4167}
4168
4169/*
4170 * Insert a new item into a leaf.
4171 *
4172 * @root:      The root of the btree.
4173 * @path:      A path pointing to the target leaf and slot.
4174 * @key:       The key of the new item.
4175 * @data_size: The size of the data associated with the new key.
4176 */
4177void btrfs_setup_item_for_insert(struct btrfs_root *root,
4178				 struct btrfs_path *path,
4179				 const struct btrfs_key *key,
4180				 u32 data_size)
4181{
4182	struct btrfs_item_batch batch;
4183
4184	batch.keys = key;
4185	batch.data_sizes = &data_size;
4186	batch.total_data_size = data_size;
4187	batch.nr = 1;
4188
4189	setup_items_for_insert(root, path, &batch);
4190}
4191
4192/*
4193 * Given a key and some data, insert items into the tree.
4194 * This does all the path init required, making room in the tree if needed.
4195 */
4196int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4197			    struct btrfs_root *root,
4198			    struct btrfs_path *path,
4199			    const struct btrfs_item_batch *batch)
 
4200{
4201	int ret = 0;
4202	int slot;
4203	u32 total_size;
 
 
 
 
 
4204
4205	total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item));
4206	ret = btrfs_search_slot(trans, root, &batch->keys[0], path, total_size, 1);
4207	if (ret == 0)
4208		return -EEXIST;
4209	if (ret < 0)
4210		return ret;
4211
4212	slot = path->slots[0];
4213	BUG_ON(slot < 0);
4214
4215	setup_items_for_insert(root, path, batch);
 
4216	return 0;
4217}
4218
4219/*
4220 * Given a key and some data, insert an item into the tree.
4221 * This does all the path init required, making room in the tree if needed.
4222 */
4223int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4224		      const struct btrfs_key *cpu_key, void *data,
4225		      u32 data_size)
4226{
4227	int ret = 0;
4228	struct btrfs_path *path;
4229	struct extent_buffer *leaf;
4230	unsigned long ptr;
4231
4232	path = btrfs_alloc_path();
4233	if (!path)
4234		return -ENOMEM;
4235	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4236	if (!ret) {
4237		leaf = path->nodes[0];
4238		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4239		write_extent_buffer(leaf, data, ptr, data_size);
4240		btrfs_mark_buffer_dirty(leaf);
4241	}
4242	btrfs_free_path(path);
4243	return ret;
4244}
4245
4246/*
4247 * This function duplicates an item, giving 'new_key' to the new item.
4248 * It guarantees both items live in the same tree leaf and the new item is
4249 * contiguous with the original item.
4250 *
4251 * This allows us to split a file extent in place, keeping a lock on the leaf
4252 * the entire time.
4253 */
4254int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4255			 struct btrfs_root *root,
4256			 struct btrfs_path *path,
4257			 const struct btrfs_key *new_key)
4258{
4259	struct extent_buffer *leaf;
4260	int ret;
4261	u32 item_size;
4262
4263	leaf = path->nodes[0];
4264	item_size = btrfs_item_size(leaf, path->slots[0]);
4265	ret = setup_leaf_for_split(trans, root, path,
4266				   item_size + sizeof(struct btrfs_item));
4267	if (ret)
4268		return ret;
4269
4270	path->slots[0]++;
4271	btrfs_setup_item_for_insert(root, path, new_key, item_size);
4272	leaf = path->nodes[0];
4273	memcpy_extent_buffer(leaf,
4274			     btrfs_item_ptr_offset(leaf, path->slots[0]),
4275			     btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4276			     item_size);
4277	return 0;
4278}
4279
4280/*
4281 * delete the pointer from a given node.
4282 *
4283 * the tree should have been previously balanced so the deletion does not
4284 * empty a node.
4285 */
4286static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4287		    int level, int slot)
4288{
4289	struct extent_buffer *parent = path->nodes[level];
4290	u32 nritems;
4291	int ret;
4292
4293	nritems = btrfs_header_nritems(parent);
4294	if (slot != nritems - 1) {
4295		if (level) {
4296			ret = btrfs_tree_mod_log_insert_move(parent, slot,
4297					slot + 1, nritems - slot - 1);
4298			BUG_ON(ret < 0);
4299		}
4300		memmove_extent_buffer(parent,
4301			      btrfs_node_key_ptr_offset(parent, slot),
4302			      btrfs_node_key_ptr_offset(parent, slot + 1),
4303			      sizeof(struct btrfs_key_ptr) *
4304			      (nritems - slot - 1));
4305	} else if (level) {
4306		ret = btrfs_tree_mod_log_insert_key(parent, slot,
4307						    BTRFS_MOD_LOG_KEY_REMOVE);
4308		BUG_ON(ret < 0);
4309	}
4310
4311	nritems--;
4312	btrfs_set_header_nritems(parent, nritems);
4313	if (nritems == 0 && parent == root->node) {
4314		BUG_ON(btrfs_header_level(root->node) != 1);
4315		/* just turn the root into a leaf and break */
4316		btrfs_set_header_level(root->node, 0);
4317	} else if (slot == 0) {
4318		struct btrfs_disk_key disk_key;
4319
4320		btrfs_node_key(parent, &disk_key, 0);
4321		fixup_low_keys(path, &disk_key, level + 1);
4322	}
4323	btrfs_mark_buffer_dirty(parent);
4324}
4325
4326/*
4327 * a helper function to delete the leaf pointed to by path->slots[1] and
4328 * path->nodes[1].
4329 *
4330 * This deletes the pointer in path->nodes[1] and frees the leaf
4331 * block extent.  zero is returned if it all worked out, < 0 otherwise.
4332 *
4333 * The path must have already been setup for deleting the leaf, including
4334 * all the proper balancing.  path->nodes[1] must be locked.
4335 */
4336static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4337				    struct btrfs_root *root,
4338				    struct btrfs_path *path,
4339				    struct extent_buffer *leaf)
4340{
4341	WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4342	del_ptr(root, path, 1, path->slots[1]);
4343
4344	/*
4345	 * btrfs_free_extent is expensive, we want to make sure we
4346	 * aren't holding any locks when we call it
4347	 */
4348	btrfs_unlock_up_safe(path, 0);
4349
4350	root_sub_used(root, leaf->len);
4351
4352	atomic_inc(&leaf->refs);
4353	btrfs_free_tree_block(trans, btrfs_root_id(root), leaf, 0, 1);
4354	free_extent_buffer_stale(leaf);
4355}
4356/*
4357 * delete the item at the leaf level in path.  If that empties
4358 * the leaf, remove it from the tree
4359 */
4360int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4361		    struct btrfs_path *path, int slot, int nr)
4362{
4363	struct btrfs_fs_info *fs_info = root->fs_info;
4364	struct extent_buffer *leaf;
 
 
 
4365	int ret = 0;
4366	int wret;
 
4367	u32 nritems;
4368
4369	leaf = path->nodes[0];
 
 
 
 
 
4370	nritems = btrfs_header_nritems(leaf);
4371
4372	if (slot + nr != nritems) {
4373		const u32 last_off = btrfs_item_offset(leaf, slot + nr - 1);
4374		const int data_end = leaf_data_end(leaf);
4375		struct btrfs_map_token token;
4376		u32 dsize = 0;
4377		int i;
4378
4379		for (i = 0; i < nr; i++)
4380			dsize += btrfs_item_size(leaf, slot + i);
4381
4382		memmove_leaf_data(leaf, data_end + dsize, data_end,
4383				  last_off - data_end);
4384
4385		btrfs_init_map_token(&token, leaf);
4386		for (i = slot + nr; i < nritems; i++) {
4387			u32 ioff;
4388
4389			ioff = btrfs_token_item_offset(&token, i);
4390			btrfs_set_token_item_offset(&token, i, ioff + dsize);
 
 
4391		}
4392
4393		memmove_leaf_items(leaf, slot, slot + nr, nritems - slot - nr);
 
 
 
4394	}
4395	btrfs_set_header_nritems(leaf, nritems - nr);
4396	nritems -= nr;
4397
4398	/* delete the leaf if we've emptied it */
4399	if (nritems == 0) {
4400		if (leaf == root->node) {
4401			btrfs_set_header_level(leaf, 0);
4402		} else {
 
4403			btrfs_clean_tree_block(leaf);
4404			btrfs_del_leaf(trans, root, path, leaf);
4405		}
4406	} else {
4407		int used = leaf_space_used(leaf, 0, nritems);
4408		if (slot == 0) {
4409			struct btrfs_disk_key disk_key;
4410
4411			btrfs_item_key(leaf, &disk_key, 0);
4412			fixup_low_keys(path, &disk_key, 1);
4413		}
4414
4415		/*
4416		 * Try to delete the leaf if it is mostly empty. We do this by
4417		 * trying to move all its items into its left and right neighbours.
4418		 * If we can't move all the items, then we don't delete it - it's
4419		 * not ideal, but future insertions might fill the leaf with more
4420		 * items, or items from other leaves might be moved later into our
4421		 * leaf due to deletions on those leaves.
4422		 */
4423		if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
4424			u32 min_push_space;
4425
4426			/* push_leaf_left fixes the path.
4427			 * make sure the path still points to our leaf
4428			 * for possible call to del_ptr below
4429			 */
4430			slot = path->slots[1];
4431			atomic_inc(&leaf->refs);
4432			/*
4433			 * We want to be able to at least push one item to the
4434			 * left neighbour leaf, and that's the first item.
4435			 */
4436			min_push_space = sizeof(struct btrfs_item) +
4437				btrfs_item_size(leaf, 0);
4438			wret = push_leaf_left(trans, root, path, 0,
4439					      min_push_space, 1, (u32)-1);
4440			if (wret < 0 && wret != -ENOSPC)
4441				ret = wret;
4442
4443			if (path->nodes[0] == leaf &&
4444			    btrfs_header_nritems(leaf)) {
4445				/*
4446				 * If we were not able to push all items from our
4447				 * leaf to its left neighbour, then attempt to
4448				 * either push all the remaining items to the
4449				 * right neighbour or none. There's no advantage
4450				 * in pushing only some items, instead of all, as
4451				 * it's pointless to end up with a leaf having
4452				 * too few items while the neighbours can be full
4453				 * or nearly full.
4454				 */
4455				nritems = btrfs_header_nritems(leaf);
4456				min_push_space = leaf_space_used(leaf, 0, nritems);
4457				wret = push_leaf_right(trans, root, path, 0,
4458						       min_push_space, 1, 0);
4459				if (wret < 0 && wret != -ENOSPC)
4460					ret = wret;
4461			}
4462
4463			if (btrfs_header_nritems(leaf) == 0) {
4464				path->slots[1] = slot;
4465				btrfs_del_leaf(trans, root, path, leaf);
4466				free_extent_buffer(leaf);
4467				ret = 0;
4468			} else {
4469				/* if we're still in the path, make sure
4470				 * we're dirty.  Otherwise, one of the
4471				 * push_leaf functions must have already
4472				 * dirtied this buffer
4473				 */
4474				if (path->nodes[0] == leaf)
4475					btrfs_mark_buffer_dirty(leaf);
4476				free_extent_buffer(leaf);
4477			}
4478		} else {
4479			btrfs_mark_buffer_dirty(leaf);
4480		}
4481	}
4482	return ret;
4483}
4484
4485/*
4486 * search the tree again to find a leaf with lesser keys
4487 * returns 0 if it found something or 1 if there are no lesser leaves.
4488 * returns < 0 on io errors.
4489 *
4490 * This may release the path, and so you may lose any locks held at the
4491 * time you call it.
4492 */
4493int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
4494{
4495	struct btrfs_key key;
4496	struct btrfs_disk_key found_key;
4497	int ret;
4498
4499	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
4500
4501	if (key.offset > 0) {
4502		key.offset--;
4503	} else if (key.type > 0) {
4504		key.type--;
4505		key.offset = (u64)-1;
4506	} else if (key.objectid > 0) {
4507		key.objectid--;
4508		key.type = (u8)-1;
4509		key.offset = (u64)-1;
4510	} else {
4511		return 1;
4512	}
4513
4514	btrfs_release_path(path);
4515	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4516	if (ret < 0)
4517		return ret;
4518	btrfs_item_key(path->nodes[0], &found_key, 0);
4519	ret = comp_keys(&found_key, &key);
4520	/*
4521	 * We might have had an item with the previous key in the tree right
4522	 * before we released our path. And after we released our path, that
4523	 * item might have been pushed to the first slot (0) of the leaf we
4524	 * were holding due to a tree balance. Alternatively, an item with the
4525	 * previous key can exist as the only element of a leaf (big fat item).
4526	 * Therefore account for these 2 cases, so that our callers (like
4527	 * btrfs_previous_item) don't miss an existing item with a key matching
4528	 * the previous key we computed above.
4529	 */
4530	if (ret <= 0)
4531		return 0;
4532	return 1;
4533}
4534
4535/*
4536 * A helper function to walk down the tree starting at min_key, and looking
4537 * for nodes or leaves that are have a minimum transaction id.
4538 * This is used by the btree defrag code, and tree logging
4539 *
4540 * This does not cow, but it does stuff the starting key it finds back
4541 * into min_key, so you can call btrfs_search_slot with cow=1 on the
4542 * key and get a writable path.
4543 *
4544 * This honors path->lowest_level to prevent descent past a given level
4545 * of the tree.
4546 *
4547 * min_trans indicates the oldest transaction that you are interested
4548 * in walking through.  Any nodes or leaves older than min_trans are
4549 * skipped over (without reading them).
4550 *
4551 * returns zero if something useful was found, < 0 on error and 1 if there
4552 * was nothing in the tree that matched the search criteria.
4553 */
4554int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
4555			 struct btrfs_path *path,
4556			 u64 min_trans)
4557{
4558	struct extent_buffer *cur;
4559	struct btrfs_key found_key;
4560	int slot;
4561	int sret;
4562	u32 nritems;
4563	int level;
4564	int ret = 1;
4565	int keep_locks = path->keep_locks;
4566
4567	ASSERT(!path->nowait);
4568	path->keep_locks = 1;
4569again:
4570	cur = btrfs_read_lock_root_node(root);
4571	level = btrfs_header_level(cur);
4572	WARN_ON(path->nodes[level]);
4573	path->nodes[level] = cur;
4574	path->locks[level] = BTRFS_READ_LOCK;
4575
4576	if (btrfs_header_generation(cur) < min_trans) {
4577		ret = 1;
4578		goto out;
4579	}
4580	while (1) {
4581		nritems = btrfs_header_nritems(cur);
4582		level = btrfs_header_level(cur);
4583		sret = btrfs_bin_search(cur, min_key, &slot);
4584		if (sret < 0) {
4585			ret = sret;
4586			goto out;
4587		}
4588
4589		/* at the lowest level, we're done, setup the path and exit */
4590		if (level == path->lowest_level) {
4591			if (slot >= nritems)
4592				goto find_next_key;
4593			ret = 0;
4594			path->slots[level] = slot;
4595			btrfs_item_key_to_cpu(cur, &found_key, slot);
4596			goto out;
4597		}
4598		if (sret && slot > 0)
4599			slot--;
4600		/*
4601		 * check this node pointer against the min_trans parameters.
4602		 * If it is too old, skip to the next one.
4603		 */
4604		while (slot < nritems) {
4605			u64 gen;
4606
4607			gen = btrfs_node_ptr_generation(cur, slot);
4608			if (gen < min_trans) {
4609				slot++;
4610				continue;
4611			}
4612			break;
4613		}
4614find_next_key:
4615		/*
4616		 * we didn't find a candidate key in this node, walk forward
4617		 * and find another one
4618		 */
4619		if (slot >= nritems) {
4620			path->slots[level] = slot;
 
4621			sret = btrfs_find_next_key(root, path, min_key, level,
4622						  min_trans);
4623			if (sret == 0) {
4624				btrfs_release_path(path);
4625				goto again;
4626			} else {
4627				goto out;
4628			}
4629		}
4630		/* save our key for returning back */
4631		btrfs_node_key_to_cpu(cur, &found_key, slot);
4632		path->slots[level] = slot;
4633		if (level == path->lowest_level) {
4634			ret = 0;
4635			goto out;
4636		}
 
4637		cur = btrfs_read_node_slot(cur, slot);
4638		if (IS_ERR(cur)) {
4639			ret = PTR_ERR(cur);
4640			goto out;
4641		}
4642
4643		btrfs_tree_read_lock(cur);
4644
4645		path->locks[level - 1] = BTRFS_READ_LOCK;
4646		path->nodes[level - 1] = cur;
4647		unlock_up(path, level, 1, 0, NULL);
4648	}
4649out:
4650	path->keep_locks = keep_locks;
4651	if (ret == 0) {
4652		btrfs_unlock_up_safe(path, path->lowest_level + 1);
 
4653		memcpy(min_key, &found_key, sizeof(found_key));
4654	}
4655	return ret;
4656}
4657
4658/*
4659 * this is similar to btrfs_next_leaf, but does not try to preserve
4660 * and fixup the path.  It looks for and returns the next key in the
4661 * tree based on the current path and the min_trans parameters.
4662 *
4663 * 0 is returned if another key is found, < 0 if there are any errors
4664 * and 1 is returned if there are no higher keys in the tree
4665 *
4666 * path->keep_locks should be set to 1 on the search made before
4667 * calling this function.
4668 */
4669int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
4670			struct btrfs_key *key, int level, u64 min_trans)
4671{
4672	int slot;
4673	struct extent_buffer *c;
4674
4675	WARN_ON(!path->keep_locks && !path->skip_locking);
4676	while (level < BTRFS_MAX_LEVEL) {
4677		if (!path->nodes[level])
4678			return 1;
4679
4680		slot = path->slots[level] + 1;
4681		c = path->nodes[level];
4682next:
4683		if (slot >= btrfs_header_nritems(c)) {
4684			int ret;
4685			int orig_lowest;
4686			struct btrfs_key cur_key;
4687			if (level + 1 >= BTRFS_MAX_LEVEL ||
4688			    !path->nodes[level + 1])
4689				return 1;
4690
4691			if (path->locks[level + 1] || path->skip_locking) {
4692				level++;
4693				continue;
4694			}
4695
4696			slot = btrfs_header_nritems(c) - 1;
4697			if (level == 0)
4698				btrfs_item_key_to_cpu(c, &cur_key, slot);
4699			else
4700				btrfs_node_key_to_cpu(c, &cur_key, slot);
4701
4702			orig_lowest = path->lowest_level;
4703			btrfs_release_path(path);
4704			path->lowest_level = level;
4705			ret = btrfs_search_slot(NULL, root, &cur_key, path,
4706						0, 0);
4707			path->lowest_level = orig_lowest;
4708			if (ret < 0)
4709				return ret;
4710
4711			c = path->nodes[level];
4712			slot = path->slots[level];
4713			if (ret == 0)
4714				slot++;
4715			goto next;
4716		}
4717
4718		if (level == 0)
4719			btrfs_item_key_to_cpu(c, key, slot);
4720		else {
4721			u64 gen = btrfs_node_ptr_generation(c, slot);
4722
4723			if (gen < min_trans) {
4724				slot++;
4725				goto next;
4726			}
4727			btrfs_node_key_to_cpu(c, key, slot);
4728		}
4729		return 0;
4730	}
4731	return 1;
4732}
4733
 
 
 
 
 
 
 
 
 
 
4734int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
4735			u64 time_seq)
4736{
4737	int slot;
4738	int level;
4739	struct extent_buffer *c;
4740	struct extent_buffer *next;
4741	struct btrfs_fs_info *fs_info = root->fs_info;
4742	struct btrfs_key key;
4743	bool need_commit_sem = false;
4744	u32 nritems;
4745	int ret;
4746	int i;
4747
4748	/*
4749	 * The nowait semantics are used only for write paths, where we don't
4750	 * use the tree mod log and sequence numbers.
4751	 */
4752	if (time_seq)
4753		ASSERT(!path->nowait);
4754
4755	nritems = btrfs_header_nritems(path->nodes[0]);
4756	if (nritems == 0)
4757		return 1;
4758
4759	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
4760again:
4761	level = 1;
4762	next = NULL;
 
4763	btrfs_release_path(path);
4764
4765	path->keep_locks = 1;
 
4766
4767	if (time_seq) {
4768		ret = btrfs_search_old_slot(root, &key, path, time_seq);
4769	} else {
4770		if (path->need_commit_sem) {
4771			path->need_commit_sem = 0;
4772			need_commit_sem = true;
4773			if (path->nowait) {
4774				if (!down_read_trylock(&fs_info->commit_root_sem)) {
4775					ret = -EAGAIN;
4776					goto done;
4777				}
4778			} else {
4779				down_read(&fs_info->commit_root_sem);
4780			}
4781		}
4782		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4783	}
4784	path->keep_locks = 0;
4785
4786	if (ret < 0)
4787		goto done;
4788
4789	nritems = btrfs_header_nritems(path->nodes[0]);
4790	/*
4791	 * by releasing the path above we dropped all our locks.  A balance
4792	 * could have added more items next to the key that used to be
4793	 * at the very end of the block.  So, check again here and
4794	 * advance the path if there are now more items available.
4795	 */
4796	if (nritems > 0 && path->slots[0] < nritems - 1) {
4797		if (ret == 0)
4798			path->slots[0]++;
4799		ret = 0;
4800		goto done;
4801	}
4802	/*
4803	 * So the above check misses one case:
4804	 * - after releasing the path above, someone has removed the item that
4805	 *   used to be at the very end of the block, and balance between leafs
4806	 *   gets another one with bigger key.offset to replace it.
4807	 *
4808	 * This one should be returned as well, or we can get leaf corruption
4809	 * later(esp. in __btrfs_drop_extents()).
4810	 *
4811	 * And a bit more explanation about this check,
4812	 * with ret > 0, the key isn't found, the path points to the slot
4813	 * where it should be inserted, so the path->slots[0] item must be the
4814	 * bigger one.
4815	 */
4816	if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
4817		ret = 0;
4818		goto done;
4819	}
4820
4821	while (level < BTRFS_MAX_LEVEL) {
4822		if (!path->nodes[level]) {
4823			ret = 1;
4824			goto done;
4825		}
4826
4827		slot = path->slots[level] + 1;
4828		c = path->nodes[level];
4829		if (slot >= btrfs_header_nritems(c)) {
4830			level++;
4831			if (level == BTRFS_MAX_LEVEL) {
4832				ret = 1;
4833				goto done;
4834			}
4835			continue;
4836		}
4837
4838
4839		/*
4840		 * Our current level is where we're going to start from, and to
4841		 * make sure lockdep doesn't complain we need to drop our locks
4842		 * and nodes from 0 to our current level.
4843		 */
4844		for (i = 0; i < level; i++) {
4845			if (path->locks[level]) {
4846				btrfs_tree_read_unlock(path->nodes[i]);
4847				path->locks[i] = 0;
4848			}
4849			free_extent_buffer(path->nodes[i]);
4850			path->nodes[i] = NULL;
4851		}
4852
4853		next = c;
 
4854		ret = read_block_for_search(root, path, &next, level,
4855					    slot, &key);
4856		if (ret == -EAGAIN && !path->nowait)
4857			goto again;
4858
4859		if (ret < 0) {
4860			btrfs_release_path(path);
4861			goto done;
4862		}
4863
4864		if (!path->skip_locking) {
4865			ret = btrfs_try_tree_read_lock(next);
4866			if (!ret && path->nowait) {
4867				ret = -EAGAIN;
4868				goto done;
4869			}
4870			if (!ret && time_seq) {
4871				/*
4872				 * If we don't get the lock, we may be racing
4873				 * with push_leaf_left, holding that lock while
4874				 * itself waiting for the leaf we've currently
4875				 * locked. To solve this situation, we give up
4876				 * on our lock and cycle.
4877				 */
4878				free_extent_buffer(next);
4879				btrfs_release_path(path);
4880				cond_resched();
4881				goto again;
4882			}
4883			if (!ret)
 
4884				btrfs_tree_read_lock(next);
 
 
4885		}
4886		break;
4887	}
4888	path->slots[level] = slot;
4889	while (1) {
4890		level--;
 
 
 
 
 
4891		path->nodes[level] = next;
4892		path->slots[level] = 0;
4893		if (!path->skip_locking)
4894			path->locks[level] = BTRFS_READ_LOCK;
4895		if (!level)
4896			break;
4897
4898		ret = read_block_for_search(root, path, &next, level,
4899					    0, &key);
4900		if (ret == -EAGAIN && !path->nowait)
4901			goto again;
4902
4903		if (ret < 0) {
4904			btrfs_release_path(path);
4905			goto done;
4906		}
4907
4908		if (!path->skip_locking) {
4909			if (path->nowait) {
4910				if (!btrfs_try_tree_read_lock(next)) {
4911					ret = -EAGAIN;
4912					goto done;
4913				}
4914			} else {
4915				btrfs_tree_read_lock(next);
4916			}
 
4917		}
4918	}
4919	ret = 0;
4920done:
4921	unlock_up(path, 0, 1, 0, NULL);
4922	if (need_commit_sem) {
4923		int ret2;
4924
4925		path->need_commit_sem = 1;
4926		ret2 = finish_need_commit_sem_search(path);
4927		up_read(&fs_info->commit_root_sem);
4928		if (ret2)
4929			ret = ret2;
4930	}
4931
4932	return ret;
4933}
4934
4935int btrfs_next_old_item(struct btrfs_root *root, struct btrfs_path *path, u64 time_seq)
4936{
4937	path->slots[0]++;
4938	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0]))
4939		return btrfs_next_old_leaf(root, path, time_seq);
4940	return 0;
4941}
4942
4943/*
4944 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
4945 * searching until it gets past min_objectid or finds an item of 'type'
4946 *
4947 * returns 0 if something is found, 1 if nothing was found and < 0 on error
4948 */
4949int btrfs_previous_item(struct btrfs_root *root,
4950			struct btrfs_path *path, u64 min_objectid,
4951			int type)
4952{
4953	struct btrfs_key found_key;
4954	struct extent_buffer *leaf;
4955	u32 nritems;
4956	int ret;
4957
4958	while (1) {
4959		if (path->slots[0] == 0) {
 
4960			ret = btrfs_prev_leaf(root, path);
4961			if (ret != 0)
4962				return ret;
4963		} else {
4964			path->slots[0]--;
4965		}
4966		leaf = path->nodes[0];
4967		nritems = btrfs_header_nritems(leaf);
4968		if (nritems == 0)
4969			return 1;
4970		if (path->slots[0] == nritems)
4971			path->slots[0]--;
4972
4973		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4974		if (found_key.objectid < min_objectid)
4975			break;
4976		if (found_key.type == type)
4977			return 0;
4978		if (found_key.objectid == min_objectid &&
4979		    found_key.type < type)
4980			break;
4981	}
4982	return 1;
4983}
4984
4985/*
4986 * search in extent tree to find a previous Metadata/Data extent item with
4987 * min objecitd.
4988 *
4989 * returns 0 if something is found, 1 if nothing was found and < 0 on error
4990 */
4991int btrfs_previous_extent_item(struct btrfs_root *root,
4992			struct btrfs_path *path, u64 min_objectid)
4993{
4994	struct btrfs_key found_key;
4995	struct extent_buffer *leaf;
4996	u32 nritems;
4997	int ret;
4998
4999	while (1) {
5000		if (path->slots[0] == 0) {
 
5001			ret = btrfs_prev_leaf(root, path);
5002			if (ret != 0)
5003				return ret;
5004		} else {
5005			path->slots[0]--;
5006		}
5007		leaf = path->nodes[0];
5008		nritems = btrfs_header_nritems(leaf);
5009		if (nritems == 0)
5010			return 1;
5011		if (path->slots[0] == nritems)
5012			path->slots[0]--;
5013
5014		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5015		if (found_key.objectid < min_objectid)
5016			break;
5017		if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5018		    found_key.type == BTRFS_METADATA_ITEM_KEY)
5019			return 0;
5020		if (found_key.objectid == min_objectid &&
5021		    found_key.type < BTRFS_EXTENT_ITEM_KEY)
5022			break;
5023	}
5024	return 1;
5025}
5026
5027int __init btrfs_ctree_init(void)
5028{
5029	btrfs_path_cachep = kmem_cache_create("btrfs_path",
5030			sizeof(struct btrfs_path), 0,
5031			SLAB_MEM_SPREAD, NULL);
5032	if (!btrfs_path_cachep)
5033		return -ENOMEM;
5034	return 0;
5035}
5036
5037void __cold btrfs_ctree_exit(void)
5038{
5039	kmem_cache_destroy(btrfs_path_cachep);
5040}
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007,2008 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/sched.h>
   7#include <linux/slab.h>
   8#include <linux/rbtree.h>
   9#include <linux/mm.h>
 
 
  10#include "ctree.h"
  11#include "disk-io.h"
  12#include "transaction.h"
  13#include "print-tree.h"
  14#include "locking.h"
  15#include "volumes.h"
  16#include "qgroup.h"
 
 
 
 
 
 
 
 
 
  17
  18static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
  19		      *root, struct btrfs_path *path, int level);
  20static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  21		      const struct btrfs_key *ins_key, struct btrfs_path *path,
  22		      int data_size, int extend);
  23static int push_node_left(struct btrfs_trans_handle *trans,
  24			  struct extent_buffer *dst,
  25			  struct extent_buffer *src, int empty);
  26static int balance_node_right(struct btrfs_trans_handle *trans,
  27			      struct extent_buffer *dst_buf,
  28			      struct extent_buffer *src_buf);
  29static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
  30		    int level, int slot);
  31
  32static const struct btrfs_csums {
  33	u16		size;
  34	const char	*name;
 
  35} btrfs_csums[] = {
  36	[BTRFS_CSUM_TYPE_CRC32] = { .size = 4, .name = "crc32c" },
 
 
 
 
  37};
  38
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  39int btrfs_super_csum_size(const struct btrfs_super_block *s)
  40{
  41	u16 t = btrfs_super_csum_type(s);
  42	/*
  43	 * csum type is validated at mount time
  44	 */
  45	return btrfs_csums[t].size;
  46}
  47
  48const char *btrfs_super_csum_name(u16 csum_type)
  49{
  50	/* csum type is validated at mount time */
  51	return btrfs_csums[csum_type].name;
  52}
  53
  54struct btrfs_path *btrfs_alloc_path(void)
 
 
 
 
 
 
 
 
 
 
 
 
  55{
  56	return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
  57}
  58
  59/*
  60 * set all locked nodes in the path to blocking locks.  This should
  61 * be done before scheduling
  62 */
  63noinline void btrfs_set_path_blocking(struct btrfs_path *p)
  64{
  65	int i;
  66	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
  67		if (!p->nodes[i] || !p->locks[i])
  68			continue;
  69		/*
  70		 * If we currently have a spinning reader or writer lock this
  71		 * will bump the count of blocking holders and drop the
  72		 * spinlock.
  73		 */
  74		if (p->locks[i] == BTRFS_READ_LOCK) {
  75			btrfs_set_lock_blocking_read(p->nodes[i]);
  76			p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
  77		} else if (p->locks[i] == BTRFS_WRITE_LOCK) {
  78			btrfs_set_lock_blocking_write(p->nodes[i]);
  79			p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
  80		}
  81	}
  82}
  83
  84/* this also releases the path */
  85void btrfs_free_path(struct btrfs_path *p)
  86{
  87	if (!p)
  88		return;
  89	btrfs_release_path(p);
  90	kmem_cache_free(btrfs_path_cachep, p);
  91}
  92
  93/*
  94 * path release drops references on the extent buffers in the path
  95 * and it drops any locks held by this path
  96 *
  97 * It is safe to call this on paths that no locks or extent buffers held.
  98 */
  99noinline void btrfs_release_path(struct btrfs_path *p)
 100{
 101	int i;
 102
 103	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
 104		p->slots[i] = 0;
 105		if (!p->nodes[i])
 106			continue;
 107		if (p->locks[i]) {
 108			btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
 109			p->locks[i] = 0;
 110		}
 111		free_extent_buffer(p->nodes[i]);
 112		p->nodes[i] = NULL;
 113	}
 114}
 115
 116/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 117 * safely gets a reference on the root node of a tree.  A lock
 118 * is not taken, so a concurrent writer may put a different node
 119 * at the root of the tree.  See btrfs_lock_root_node for the
 120 * looping required.
 121 *
 122 * The extent buffer returned by this has a reference taken, so
 123 * it won't disappear.  It may stop being the root of the tree
 124 * at any time because there are no locks held.
 125 */
 126struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
 127{
 128	struct extent_buffer *eb;
 129
 130	while (1) {
 131		rcu_read_lock();
 132		eb = rcu_dereference(root->node);
 133
 134		/*
 135		 * RCU really hurts here, we could free up the root node because
 136		 * it was COWed but we may not get the new root node yet so do
 137		 * the inc_not_zero dance and if it doesn't work then
 138		 * synchronize_rcu and try again.
 139		 */
 140		if (atomic_inc_not_zero(&eb->refs)) {
 141			rcu_read_unlock();
 142			break;
 143		}
 144		rcu_read_unlock();
 145		synchronize_rcu();
 146	}
 147	return eb;
 148}
 149
 150/* loop around taking references on and locking the root node of the
 151 * tree until you end up with a lock on the root.  A locked buffer
 152 * is returned, with a reference held.
 153 */
 154struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
 155{
 156	struct extent_buffer *eb;
 157
 158	while (1) {
 159		eb = btrfs_root_node(root);
 160		btrfs_tree_lock(eb);
 161		if (eb == root->node)
 162			break;
 163		btrfs_tree_unlock(eb);
 164		free_extent_buffer(eb);
 165	}
 166	return eb;
 167}
 168
 169/* loop around taking references on and locking the root node of the
 170 * tree until you end up with a lock on the root.  A locked buffer
 171 * is returned, with a reference held.
 172 */
 173struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
 174{
 175	struct extent_buffer *eb;
 176
 177	while (1) {
 178		eb = btrfs_root_node(root);
 179		btrfs_tree_read_lock(eb);
 180		if (eb == root->node)
 181			break;
 182		btrfs_tree_read_unlock(eb);
 183		free_extent_buffer(eb);
 184	}
 185	return eb;
 186}
 187
 188/* cowonly root (everything not a reference counted cow subvolume), just get
 189 * put onto a simple dirty list.  transaction.c walks this to make sure they
 190 * get properly updated on disk.
 191 */
 192static void add_root_to_dirty_list(struct btrfs_root *root)
 193{
 194	struct btrfs_fs_info *fs_info = root->fs_info;
 195
 196	if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
 197	    !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
 198		return;
 199
 200	spin_lock(&fs_info->trans_lock);
 201	if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
 202		/* Want the extent tree to be the last on the list */
 203		if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID)
 204			list_move_tail(&root->dirty_list,
 205				       &fs_info->dirty_cowonly_roots);
 206		else
 207			list_move(&root->dirty_list,
 208				  &fs_info->dirty_cowonly_roots);
 209	}
 210	spin_unlock(&fs_info->trans_lock);
 211}
 212
 213/*
 214 * used by snapshot creation to make a copy of a root for a tree with
 215 * a given objectid.  The buffer with the new root node is returned in
 216 * cow_ret, and this func returns zero on success or a negative error code.
 217 */
 218int btrfs_copy_root(struct btrfs_trans_handle *trans,
 219		      struct btrfs_root *root,
 220		      struct extent_buffer *buf,
 221		      struct extent_buffer **cow_ret, u64 new_root_objectid)
 222{
 223	struct btrfs_fs_info *fs_info = root->fs_info;
 224	struct extent_buffer *cow;
 225	int ret = 0;
 226	int level;
 227	struct btrfs_disk_key disk_key;
 228
 229	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
 230		trans->transid != fs_info->running_transaction->transid);
 231	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
 232		trans->transid != root->last_trans);
 233
 234	level = btrfs_header_level(buf);
 235	if (level == 0)
 236		btrfs_item_key(buf, &disk_key, 0);
 237	else
 238		btrfs_node_key(buf, &disk_key, 0);
 239
 240	cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
 241			&disk_key, level, buf->start, 0);
 
 242	if (IS_ERR(cow))
 243		return PTR_ERR(cow);
 244
 245	copy_extent_buffer_full(cow, buf);
 246	btrfs_set_header_bytenr(cow, cow->start);
 247	btrfs_set_header_generation(cow, trans->transid);
 248	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
 249	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
 250				     BTRFS_HEADER_FLAG_RELOC);
 251	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
 252		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
 253	else
 254		btrfs_set_header_owner(cow, new_root_objectid);
 255
 256	write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
 257
 258	WARN_ON(btrfs_header_generation(buf) > trans->transid);
 259	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
 260		ret = btrfs_inc_ref(trans, root, cow, 1);
 261	else
 262		ret = btrfs_inc_ref(trans, root, cow, 0);
 263
 264	if (ret)
 
 
 265		return ret;
 
 266
 267	btrfs_mark_buffer_dirty(cow);
 268	*cow_ret = cow;
 269	return 0;
 270}
 271
 272enum mod_log_op {
 273	MOD_LOG_KEY_REPLACE,
 274	MOD_LOG_KEY_ADD,
 275	MOD_LOG_KEY_REMOVE,
 276	MOD_LOG_KEY_REMOVE_WHILE_FREEING,
 277	MOD_LOG_KEY_REMOVE_WHILE_MOVING,
 278	MOD_LOG_MOVE_KEYS,
 279	MOD_LOG_ROOT_REPLACE,
 280};
 281
 282struct tree_mod_root {
 283	u64 logical;
 284	u8 level;
 285};
 286
 287struct tree_mod_elem {
 288	struct rb_node node;
 289	u64 logical;
 290	u64 seq;
 291	enum mod_log_op op;
 292
 293	/* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
 294	int slot;
 295
 296	/* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
 297	u64 generation;
 298
 299	/* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
 300	struct btrfs_disk_key key;
 301	u64 blockptr;
 302
 303	/* this is used for op == MOD_LOG_MOVE_KEYS */
 304	struct {
 305		int dst_slot;
 306		int nr_items;
 307	} move;
 308
 309	/* this is used for op == MOD_LOG_ROOT_REPLACE */
 310	struct tree_mod_root old_root;
 311};
 312
 313/*
 314 * Pull a new tree mod seq number for our operation.
 315 */
 316static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
 317{
 318	return atomic64_inc_return(&fs_info->tree_mod_seq);
 319}
 320
 321/*
 322 * This adds a new blocker to the tree mod log's blocker list if the @elem
 323 * passed does not already have a sequence number set. So when a caller expects
 324 * to record tree modifications, it should ensure to set elem->seq to zero
 325 * before calling btrfs_get_tree_mod_seq.
 326 * Returns a fresh, unused tree log modification sequence number, even if no new
 327 * blocker was added.
 328 */
 329u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
 330			   struct seq_list *elem)
 331{
 332	write_lock(&fs_info->tree_mod_log_lock);
 333	spin_lock(&fs_info->tree_mod_seq_lock);
 334	if (!elem->seq) {
 335		elem->seq = btrfs_inc_tree_mod_seq(fs_info);
 336		list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
 337	}
 338	spin_unlock(&fs_info->tree_mod_seq_lock);
 339	write_unlock(&fs_info->tree_mod_log_lock);
 340
 341	return elem->seq;
 342}
 343
 344void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
 345			    struct seq_list *elem)
 346{
 347	struct rb_root *tm_root;
 348	struct rb_node *node;
 349	struct rb_node *next;
 350	struct seq_list *cur_elem;
 351	struct tree_mod_elem *tm;
 352	u64 min_seq = (u64)-1;
 353	u64 seq_putting = elem->seq;
 354
 355	if (!seq_putting)
 356		return;
 357
 358	spin_lock(&fs_info->tree_mod_seq_lock);
 359	list_del(&elem->list);
 360	elem->seq = 0;
 361
 362	list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
 363		if (cur_elem->seq < min_seq) {
 364			if (seq_putting > cur_elem->seq) {
 365				/*
 366				 * blocker with lower sequence number exists, we
 367				 * cannot remove anything from the log
 368				 */
 369				spin_unlock(&fs_info->tree_mod_seq_lock);
 370				return;
 371			}
 372			min_seq = cur_elem->seq;
 373		}
 374	}
 375	spin_unlock(&fs_info->tree_mod_seq_lock);
 376
 377	/*
 378	 * anything that's lower than the lowest existing (read: blocked)
 379	 * sequence number can be removed from the tree.
 380	 */
 381	write_lock(&fs_info->tree_mod_log_lock);
 382	tm_root = &fs_info->tree_mod_log;
 383	for (node = rb_first(tm_root); node; node = next) {
 384		next = rb_next(node);
 385		tm = rb_entry(node, struct tree_mod_elem, node);
 386		if (tm->seq > min_seq)
 387			continue;
 388		rb_erase(node, tm_root);
 389		kfree(tm);
 390	}
 391	write_unlock(&fs_info->tree_mod_log_lock);
 392}
 393
 394/*
 395 * key order of the log:
 396 *       node/leaf start address -> sequence
 397 *
 398 * The 'start address' is the logical address of the *new* root node
 399 * for root replace operations, or the logical address of the affected
 400 * block for all other operations.
 401 */
 402static noinline int
 403__tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
 404{
 405	struct rb_root *tm_root;
 406	struct rb_node **new;
 407	struct rb_node *parent = NULL;
 408	struct tree_mod_elem *cur;
 409
 410	lockdep_assert_held_write(&fs_info->tree_mod_log_lock);
 411
 412	tm->seq = btrfs_inc_tree_mod_seq(fs_info);
 413
 414	tm_root = &fs_info->tree_mod_log;
 415	new = &tm_root->rb_node;
 416	while (*new) {
 417		cur = rb_entry(*new, struct tree_mod_elem, node);
 418		parent = *new;
 419		if (cur->logical < tm->logical)
 420			new = &((*new)->rb_left);
 421		else if (cur->logical > tm->logical)
 422			new = &((*new)->rb_right);
 423		else if (cur->seq < tm->seq)
 424			new = &((*new)->rb_left);
 425		else if (cur->seq > tm->seq)
 426			new = &((*new)->rb_right);
 427		else
 428			return -EEXIST;
 429	}
 430
 431	rb_link_node(&tm->node, parent, new);
 432	rb_insert_color(&tm->node, tm_root);
 433	return 0;
 434}
 435
 436/*
 437 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
 438 * returns zero with the tree_mod_log_lock acquired. The caller must hold
 439 * this until all tree mod log insertions are recorded in the rb tree and then
 440 * write unlock fs_info::tree_mod_log_lock.
 441 */
 442static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
 443				    struct extent_buffer *eb) {
 444	smp_mb();
 445	if (list_empty(&(fs_info)->tree_mod_seq_list))
 446		return 1;
 447	if (eb && btrfs_header_level(eb) == 0)
 448		return 1;
 449
 450	write_lock(&fs_info->tree_mod_log_lock);
 451	if (list_empty(&(fs_info)->tree_mod_seq_list)) {
 452		write_unlock(&fs_info->tree_mod_log_lock);
 453		return 1;
 454	}
 455
 456	return 0;
 457}
 458
 459/* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
 460static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
 461				    struct extent_buffer *eb)
 462{
 463	smp_mb();
 464	if (list_empty(&(fs_info)->tree_mod_seq_list))
 465		return 0;
 466	if (eb && btrfs_header_level(eb) == 0)
 467		return 0;
 468
 469	return 1;
 470}
 471
 472static struct tree_mod_elem *
 473alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
 474		    enum mod_log_op op, gfp_t flags)
 475{
 476	struct tree_mod_elem *tm;
 477
 478	tm = kzalloc(sizeof(*tm), flags);
 479	if (!tm)
 480		return NULL;
 481
 482	tm->logical = eb->start;
 483	if (op != MOD_LOG_KEY_ADD) {
 484		btrfs_node_key(eb, &tm->key, slot);
 485		tm->blockptr = btrfs_node_blockptr(eb, slot);
 486	}
 487	tm->op = op;
 488	tm->slot = slot;
 489	tm->generation = btrfs_node_ptr_generation(eb, slot);
 490	RB_CLEAR_NODE(&tm->node);
 491
 492	return tm;
 493}
 494
 495static noinline int tree_mod_log_insert_key(struct extent_buffer *eb, int slot,
 496		enum mod_log_op op, gfp_t flags)
 497{
 498	struct tree_mod_elem *tm;
 499	int ret;
 500
 501	if (!tree_mod_need_log(eb->fs_info, eb))
 502		return 0;
 503
 504	tm = alloc_tree_mod_elem(eb, slot, op, flags);
 505	if (!tm)
 506		return -ENOMEM;
 507
 508	if (tree_mod_dont_log(eb->fs_info, eb)) {
 509		kfree(tm);
 510		return 0;
 511	}
 512
 513	ret = __tree_mod_log_insert(eb->fs_info, tm);
 514	write_unlock(&eb->fs_info->tree_mod_log_lock);
 515	if (ret)
 516		kfree(tm);
 517
 518	return ret;
 519}
 520
 521static noinline int tree_mod_log_insert_move(struct extent_buffer *eb,
 522		int dst_slot, int src_slot, int nr_items)
 523{
 524	struct tree_mod_elem *tm = NULL;
 525	struct tree_mod_elem **tm_list = NULL;
 526	int ret = 0;
 527	int i;
 528	int locked = 0;
 529
 530	if (!tree_mod_need_log(eb->fs_info, eb))
 531		return 0;
 532
 533	tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), GFP_NOFS);
 534	if (!tm_list)
 535		return -ENOMEM;
 536
 537	tm = kzalloc(sizeof(*tm), GFP_NOFS);
 538	if (!tm) {
 539		ret = -ENOMEM;
 540		goto free_tms;
 541	}
 542
 543	tm->logical = eb->start;
 544	tm->slot = src_slot;
 545	tm->move.dst_slot = dst_slot;
 546	tm->move.nr_items = nr_items;
 547	tm->op = MOD_LOG_MOVE_KEYS;
 548
 549	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
 550		tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
 551		    MOD_LOG_KEY_REMOVE_WHILE_MOVING, GFP_NOFS);
 552		if (!tm_list[i]) {
 553			ret = -ENOMEM;
 554			goto free_tms;
 555		}
 556	}
 557
 558	if (tree_mod_dont_log(eb->fs_info, eb))
 559		goto free_tms;
 560	locked = 1;
 561
 562	/*
 563	 * When we override something during the move, we log these removals.
 564	 * This can only happen when we move towards the beginning of the
 565	 * buffer, i.e. dst_slot < src_slot.
 566	 */
 567	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
 568		ret = __tree_mod_log_insert(eb->fs_info, tm_list[i]);
 569		if (ret)
 570			goto free_tms;
 571	}
 572
 573	ret = __tree_mod_log_insert(eb->fs_info, tm);
 574	if (ret)
 575		goto free_tms;
 576	write_unlock(&eb->fs_info->tree_mod_log_lock);
 577	kfree(tm_list);
 578
 579	return 0;
 580free_tms:
 581	for (i = 0; i < nr_items; i++) {
 582		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
 583			rb_erase(&tm_list[i]->node, &eb->fs_info->tree_mod_log);
 584		kfree(tm_list[i]);
 585	}
 586	if (locked)
 587		write_unlock(&eb->fs_info->tree_mod_log_lock);
 588	kfree(tm_list);
 589	kfree(tm);
 590
 591	return ret;
 592}
 593
 594static inline int
 595__tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
 596		       struct tree_mod_elem **tm_list,
 597		       int nritems)
 598{
 599	int i, j;
 600	int ret;
 601
 602	for (i = nritems - 1; i >= 0; i--) {
 603		ret = __tree_mod_log_insert(fs_info, tm_list[i]);
 604		if (ret) {
 605			for (j = nritems - 1; j > i; j--)
 606				rb_erase(&tm_list[j]->node,
 607					 &fs_info->tree_mod_log);
 608			return ret;
 609		}
 610	}
 611
 612	return 0;
 613}
 614
 615static noinline int tree_mod_log_insert_root(struct extent_buffer *old_root,
 616			 struct extent_buffer *new_root, int log_removal)
 617{
 618	struct btrfs_fs_info *fs_info = old_root->fs_info;
 619	struct tree_mod_elem *tm = NULL;
 620	struct tree_mod_elem **tm_list = NULL;
 621	int nritems = 0;
 622	int ret = 0;
 623	int i;
 624
 625	if (!tree_mod_need_log(fs_info, NULL))
 626		return 0;
 627
 628	if (log_removal && btrfs_header_level(old_root) > 0) {
 629		nritems = btrfs_header_nritems(old_root);
 630		tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
 631				  GFP_NOFS);
 632		if (!tm_list) {
 633			ret = -ENOMEM;
 634			goto free_tms;
 635		}
 636		for (i = 0; i < nritems; i++) {
 637			tm_list[i] = alloc_tree_mod_elem(old_root, i,
 638			    MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
 639			if (!tm_list[i]) {
 640				ret = -ENOMEM;
 641				goto free_tms;
 642			}
 643		}
 644	}
 645
 646	tm = kzalloc(sizeof(*tm), GFP_NOFS);
 647	if (!tm) {
 648		ret = -ENOMEM;
 649		goto free_tms;
 650	}
 651
 652	tm->logical = new_root->start;
 653	tm->old_root.logical = old_root->start;
 654	tm->old_root.level = btrfs_header_level(old_root);
 655	tm->generation = btrfs_header_generation(old_root);
 656	tm->op = MOD_LOG_ROOT_REPLACE;
 657
 658	if (tree_mod_dont_log(fs_info, NULL))
 659		goto free_tms;
 660
 661	if (tm_list)
 662		ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
 663	if (!ret)
 664		ret = __tree_mod_log_insert(fs_info, tm);
 665
 666	write_unlock(&fs_info->tree_mod_log_lock);
 667	if (ret)
 668		goto free_tms;
 669	kfree(tm_list);
 670
 671	return ret;
 672
 673free_tms:
 674	if (tm_list) {
 675		for (i = 0; i < nritems; i++)
 676			kfree(tm_list[i]);
 677		kfree(tm_list);
 678	}
 679	kfree(tm);
 680
 681	return ret;
 682}
 683
 684static struct tree_mod_elem *
 685__tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
 686		      int smallest)
 687{
 688	struct rb_root *tm_root;
 689	struct rb_node *node;
 690	struct tree_mod_elem *cur = NULL;
 691	struct tree_mod_elem *found = NULL;
 692
 693	read_lock(&fs_info->tree_mod_log_lock);
 694	tm_root = &fs_info->tree_mod_log;
 695	node = tm_root->rb_node;
 696	while (node) {
 697		cur = rb_entry(node, struct tree_mod_elem, node);
 698		if (cur->logical < start) {
 699			node = node->rb_left;
 700		} else if (cur->logical > start) {
 701			node = node->rb_right;
 702		} else if (cur->seq < min_seq) {
 703			node = node->rb_left;
 704		} else if (!smallest) {
 705			/* we want the node with the highest seq */
 706			if (found)
 707				BUG_ON(found->seq > cur->seq);
 708			found = cur;
 709			node = node->rb_left;
 710		} else if (cur->seq > min_seq) {
 711			/* we want the node with the smallest seq */
 712			if (found)
 713				BUG_ON(found->seq < cur->seq);
 714			found = cur;
 715			node = node->rb_right;
 716		} else {
 717			found = cur;
 718			break;
 719		}
 720	}
 721	read_unlock(&fs_info->tree_mod_log_lock);
 722
 723	return found;
 724}
 725
 726/*
 727 * this returns the element from the log with the smallest time sequence
 728 * value that's in the log (the oldest log item). any element with a time
 729 * sequence lower than min_seq will be ignored.
 730 */
 731static struct tree_mod_elem *
 732tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
 733			   u64 min_seq)
 734{
 735	return __tree_mod_log_search(fs_info, start, min_seq, 1);
 736}
 737
 738/*
 739 * this returns the element from the log with the largest time sequence
 740 * value that's in the log (the most recent log item). any element with
 741 * a time sequence lower than min_seq will be ignored.
 742 */
 743static struct tree_mod_elem *
 744tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
 745{
 746	return __tree_mod_log_search(fs_info, start, min_seq, 0);
 747}
 748
 749static noinline int tree_mod_log_eb_copy(struct extent_buffer *dst,
 750		     struct extent_buffer *src, unsigned long dst_offset,
 751		     unsigned long src_offset, int nr_items)
 752{
 753	struct btrfs_fs_info *fs_info = dst->fs_info;
 754	int ret = 0;
 755	struct tree_mod_elem **tm_list = NULL;
 756	struct tree_mod_elem **tm_list_add, **tm_list_rem;
 757	int i;
 758	int locked = 0;
 759
 760	if (!tree_mod_need_log(fs_info, NULL))
 761		return 0;
 762
 763	if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
 764		return 0;
 765
 766	tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
 767			  GFP_NOFS);
 768	if (!tm_list)
 769		return -ENOMEM;
 770
 771	tm_list_add = tm_list;
 772	tm_list_rem = tm_list + nr_items;
 773	for (i = 0; i < nr_items; i++) {
 774		tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
 775		    MOD_LOG_KEY_REMOVE, GFP_NOFS);
 776		if (!tm_list_rem[i]) {
 777			ret = -ENOMEM;
 778			goto free_tms;
 779		}
 780
 781		tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
 782		    MOD_LOG_KEY_ADD, GFP_NOFS);
 783		if (!tm_list_add[i]) {
 784			ret = -ENOMEM;
 785			goto free_tms;
 786		}
 787	}
 788
 789	if (tree_mod_dont_log(fs_info, NULL))
 790		goto free_tms;
 791	locked = 1;
 792
 793	for (i = 0; i < nr_items; i++) {
 794		ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
 795		if (ret)
 796			goto free_tms;
 797		ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
 798		if (ret)
 799			goto free_tms;
 800	}
 801
 802	write_unlock(&fs_info->tree_mod_log_lock);
 803	kfree(tm_list);
 804
 805	return 0;
 806
 807free_tms:
 808	for (i = 0; i < nr_items * 2; i++) {
 809		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
 810			rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
 811		kfree(tm_list[i]);
 812	}
 813	if (locked)
 814		write_unlock(&fs_info->tree_mod_log_lock);
 815	kfree(tm_list);
 816
 817	return ret;
 818}
 819
 820static noinline int tree_mod_log_free_eb(struct extent_buffer *eb)
 821{
 822	struct tree_mod_elem **tm_list = NULL;
 823	int nritems = 0;
 824	int i;
 825	int ret = 0;
 826
 827	if (btrfs_header_level(eb) == 0)
 828		return 0;
 829
 830	if (!tree_mod_need_log(eb->fs_info, NULL))
 831		return 0;
 832
 833	nritems = btrfs_header_nritems(eb);
 834	tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
 835	if (!tm_list)
 836		return -ENOMEM;
 837
 838	for (i = 0; i < nritems; i++) {
 839		tm_list[i] = alloc_tree_mod_elem(eb, i,
 840		    MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
 841		if (!tm_list[i]) {
 842			ret = -ENOMEM;
 843			goto free_tms;
 844		}
 845	}
 846
 847	if (tree_mod_dont_log(eb->fs_info, eb))
 848		goto free_tms;
 849
 850	ret = __tree_mod_log_free_eb(eb->fs_info, tm_list, nritems);
 851	write_unlock(&eb->fs_info->tree_mod_log_lock);
 852	if (ret)
 853		goto free_tms;
 854	kfree(tm_list);
 855
 856	return 0;
 857
 858free_tms:
 859	for (i = 0; i < nritems; i++)
 860		kfree(tm_list[i]);
 861	kfree(tm_list);
 862
 863	return ret;
 864}
 865
 866/*
 867 * check if the tree block can be shared by multiple trees
 868 */
 869int btrfs_block_can_be_shared(struct btrfs_root *root,
 870			      struct extent_buffer *buf)
 871{
 872	/*
 873	 * Tree blocks not in reference counted trees and tree roots
 874	 * are never shared. If a block was allocated after the last
 875	 * snapshot and the block was not allocated by tree relocation,
 876	 * we know the block is not shared.
 877	 */
 878	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
 879	    buf != root->node && buf != root->commit_root &&
 880	    (btrfs_header_generation(buf) <=
 881	     btrfs_root_last_snapshot(&root->root_item) ||
 882	     btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
 883		return 1;
 884
 885	return 0;
 886}
 887
 888static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
 889				       struct btrfs_root *root,
 890				       struct extent_buffer *buf,
 891				       struct extent_buffer *cow,
 892				       int *last_ref)
 893{
 894	struct btrfs_fs_info *fs_info = root->fs_info;
 895	u64 refs;
 896	u64 owner;
 897	u64 flags;
 898	u64 new_flags = 0;
 899	int ret;
 900
 901	/*
 902	 * Backrefs update rules:
 903	 *
 904	 * Always use full backrefs for extent pointers in tree block
 905	 * allocated by tree relocation.
 906	 *
 907	 * If a shared tree block is no longer referenced by its owner
 908	 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
 909	 * use full backrefs for extent pointers in tree block.
 910	 *
 911	 * If a tree block is been relocating
 912	 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
 913	 * use full backrefs for extent pointers in tree block.
 914	 * The reason for this is some operations (such as drop tree)
 915	 * are only allowed for blocks use full backrefs.
 916	 */
 917
 918	if (btrfs_block_can_be_shared(root, buf)) {
 919		ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
 920					       btrfs_header_level(buf), 1,
 921					       &refs, &flags);
 922		if (ret)
 923			return ret;
 924		if (refs == 0) {
 925			ret = -EROFS;
 926			btrfs_handle_fs_error(fs_info, ret, NULL);
 927			return ret;
 928		}
 929	} else {
 930		refs = 1;
 931		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
 932		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
 933			flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
 934		else
 935			flags = 0;
 936	}
 937
 938	owner = btrfs_header_owner(buf);
 939	BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
 940	       !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
 941
 942	if (refs > 1) {
 943		if ((owner == root->root_key.objectid ||
 944		     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
 945		    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
 946			ret = btrfs_inc_ref(trans, root, buf, 1);
 947			if (ret)
 948				return ret;
 949
 950			if (root->root_key.objectid ==
 951			    BTRFS_TREE_RELOC_OBJECTID) {
 952				ret = btrfs_dec_ref(trans, root, buf, 0);
 953				if (ret)
 954					return ret;
 955				ret = btrfs_inc_ref(trans, root, cow, 1);
 956				if (ret)
 957					return ret;
 958			}
 959			new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
 960		} else {
 961
 962			if (root->root_key.objectid ==
 963			    BTRFS_TREE_RELOC_OBJECTID)
 964				ret = btrfs_inc_ref(trans, root, cow, 1);
 965			else
 966				ret = btrfs_inc_ref(trans, root, cow, 0);
 967			if (ret)
 968				return ret;
 969		}
 970		if (new_flags != 0) {
 971			int level = btrfs_header_level(buf);
 972
 973			ret = btrfs_set_disk_extent_flags(trans,
 974							  buf->start,
 975							  buf->len,
 976							  new_flags, level, 0);
 977			if (ret)
 978				return ret;
 979		}
 980	} else {
 981		if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
 982			if (root->root_key.objectid ==
 983			    BTRFS_TREE_RELOC_OBJECTID)
 984				ret = btrfs_inc_ref(trans, root, cow, 1);
 985			else
 986				ret = btrfs_inc_ref(trans, root, cow, 0);
 987			if (ret)
 988				return ret;
 989			ret = btrfs_dec_ref(trans, root, buf, 1);
 990			if (ret)
 991				return ret;
 992		}
 993		btrfs_clean_tree_block(buf);
 994		*last_ref = 1;
 995	}
 996	return 0;
 997}
 998
 999static struct extent_buffer *alloc_tree_block_no_bg_flush(
1000					  struct btrfs_trans_handle *trans,
1001					  struct btrfs_root *root,
1002					  u64 parent_start,
1003					  const struct btrfs_disk_key *disk_key,
1004					  int level,
1005					  u64 hint,
1006					  u64 empty_size)
1007{
1008	struct btrfs_fs_info *fs_info = root->fs_info;
1009	struct extent_buffer *ret;
1010
1011	/*
1012	 * If we are COWing a node/leaf from the extent, chunk, device or free
1013	 * space trees, make sure that we do not finish block group creation of
1014	 * pending block groups. We do this to avoid a deadlock.
1015	 * COWing can result in allocation of a new chunk, and flushing pending
1016	 * block groups (btrfs_create_pending_block_groups()) can be triggered
1017	 * when finishing allocation of a new chunk. Creation of a pending block
1018	 * group modifies the extent, chunk, device and free space trees,
1019	 * therefore we could deadlock with ourselves since we are holding a
1020	 * lock on an extent buffer that btrfs_create_pending_block_groups() may
1021	 * try to COW later.
1022	 * For similar reasons, we also need to delay flushing pending block
1023	 * groups when splitting a leaf or node, from one of those trees, since
1024	 * we are holding a write lock on it and its parent or when inserting a
1025	 * new root node for one of those trees.
1026	 */
1027	if (root == fs_info->extent_root ||
1028	    root == fs_info->chunk_root ||
1029	    root == fs_info->dev_root ||
1030	    root == fs_info->free_space_root)
1031		trans->can_flush_pending_bgs = false;
1032
1033	ret = btrfs_alloc_tree_block(trans, root, parent_start,
1034				     root->root_key.objectid, disk_key, level,
1035				     hint, empty_size);
1036	trans->can_flush_pending_bgs = true;
1037
1038	return ret;
1039}
1040
1041/*
1042 * does the dirty work in cow of a single block.  The parent block (if
1043 * supplied) is updated to point to the new cow copy.  The new buffer is marked
1044 * dirty and returned locked.  If you modify the block it needs to be marked
1045 * dirty again.
1046 *
1047 * search_start -- an allocation hint for the new block
1048 *
1049 * empty_size -- a hint that you plan on doing more cow.  This is the size in
1050 * bytes the allocator should try to find free next to the block it returns.
1051 * This is just a hint and may be ignored by the allocator.
1052 */
1053static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
1054			     struct btrfs_root *root,
1055			     struct extent_buffer *buf,
1056			     struct extent_buffer *parent, int parent_slot,
1057			     struct extent_buffer **cow_ret,
1058			     u64 search_start, u64 empty_size)
 
1059{
1060	struct btrfs_fs_info *fs_info = root->fs_info;
1061	struct btrfs_disk_key disk_key;
1062	struct extent_buffer *cow;
1063	int level, ret;
1064	int last_ref = 0;
1065	int unlock_orig = 0;
1066	u64 parent_start = 0;
1067
1068	if (*cow_ret == buf)
1069		unlock_orig = 1;
1070
1071	btrfs_assert_tree_locked(buf);
1072
1073	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1074		trans->transid != fs_info->running_transaction->transid);
1075	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1076		trans->transid != root->last_trans);
1077
1078	level = btrfs_header_level(buf);
1079
1080	if (level == 0)
1081		btrfs_item_key(buf, &disk_key, 0);
1082	else
1083		btrfs_node_key(buf, &disk_key, 0);
1084
1085	if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
1086		parent_start = parent->start;
1087
1088	cow = alloc_tree_block_no_bg_flush(trans, root, parent_start, &disk_key,
1089					   level, search_start, empty_size);
 
1090	if (IS_ERR(cow))
1091		return PTR_ERR(cow);
1092
1093	/* cow is set to blocking by btrfs_init_new_buffer */
1094
1095	copy_extent_buffer_full(cow, buf);
1096	btrfs_set_header_bytenr(cow, cow->start);
1097	btrfs_set_header_generation(cow, trans->transid);
1098	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1099	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1100				     BTRFS_HEADER_FLAG_RELOC);
1101	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1102		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1103	else
1104		btrfs_set_header_owner(cow, root->root_key.objectid);
1105
1106	write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
1107
1108	ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1109	if (ret) {
 
 
1110		btrfs_abort_transaction(trans, ret);
1111		return ret;
1112	}
1113
1114	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
1115		ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1116		if (ret) {
 
 
1117			btrfs_abort_transaction(trans, ret);
1118			return ret;
1119		}
1120	}
1121
1122	if (buf == root->node) {
1123		WARN_ON(parent && parent != buf);
1124		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1125		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1126			parent_start = buf->start;
1127
1128		extent_buffer_get(cow);
1129		ret = tree_mod_log_insert_root(root->node, cow, 1);
1130		BUG_ON(ret < 0);
1131		rcu_assign_pointer(root->node, cow);
1132
1133		btrfs_free_tree_block(trans, root, buf, parent_start,
1134				      last_ref);
1135		free_extent_buffer(buf);
1136		add_root_to_dirty_list(root);
1137	} else {
1138		WARN_ON(trans->transid != btrfs_header_generation(parent));
1139		tree_mod_log_insert_key(parent, parent_slot,
1140					MOD_LOG_KEY_REPLACE, GFP_NOFS);
1141		btrfs_set_node_blockptr(parent, parent_slot,
1142					cow->start);
1143		btrfs_set_node_ptr_generation(parent, parent_slot,
1144					      trans->transid);
1145		btrfs_mark_buffer_dirty(parent);
1146		if (last_ref) {
1147			ret = tree_mod_log_free_eb(buf);
1148			if (ret) {
 
 
1149				btrfs_abort_transaction(trans, ret);
1150				return ret;
1151			}
1152		}
1153		btrfs_free_tree_block(trans, root, buf, parent_start,
1154				      last_ref);
1155	}
1156	if (unlock_orig)
1157		btrfs_tree_unlock(buf);
1158	free_extent_buffer_stale(buf);
1159	btrfs_mark_buffer_dirty(cow);
1160	*cow_ret = cow;
1161	return 0;
1162}
1163
1164/*
1165 * returns the logical address of the oldest predecessor of the given root.
1166 * entries older than time_seq are ignored.
1167 */
1168static struct tree_mod_elem *__tree_mod_log_oldest_root(
1169		struct extent_buffer *eb_root, u64 time_seq)
1170{
1171	struct tree_mod_elem *tm;
1172	struct tree_mod_elem *found = NULL;
1173	u64 root_logical = eb_root->start;
1174	int looped = 0;
1175
1176	if (!time_seq)
1177		return NULL;
1178
1179	/*
1180	 * the very last operation that's logged for a root is the
1181	 * replacement operation (if it is replaced at all). this has
1182	 * the logical address of the *new* root, making it the very
1183	 * first operation that's logged for this root.
1184	 */
1185	while (1) {
1186		tm = tree_mod_log_search_oldest(eb_root->fs_info, root_logical,
1187						time_seq);
1188		if (!looped && !tm)
1189			return NULL;
1190		/*
1191		 * if there are no tree operation for the oldest root, we simply
1192		 * return it. this should only happen if that (old) root is at
1193		 * level 0.
1194		 */
1195		if (!tm)
1196			break;
1197
1198		/*
1199		 * if there's an operation that's not a root replacement, we
1200		 * found the oldest version of our root. normally, we'll find a
1201		 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1202		 */
1203		if (tm->op != MOD_LOG_ROOT_REPLACE)
1204			break;
1205
1206		found = tm;
1207		root_logical = tm->old_root.logical;
1208		looped = 1;
1209	}
1210
1211	/* if there's no old root to return, return what we found instead */
1212	if (!found)
1213		found = tm;
1214
1215	return found;
1216}
1217
1218/*
1219 * tm is a pointer to the first operation to rewind within eb. then, all
1220 * previous operations will be rewound (until we reach something older than
1221 * time_seq).
1222 */
1223static void
1224__tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1225		      u64 time_seq, struct tree_mod_elem *first_tm)
1226{
1227	u32 n;
1228	struct rb_node *next;
1229	struct tree_mod_elem *tm = first_tm;
1230	unsigned long o_dst;
1231	unsigned long o_src;
1232	unsigned long p_size = sizeof(struct btrfs_key_ptr);
1233
1234	n = btrfs_header_nritems(eb);
1235	read_lock(&fs_info->tree_mod_log_lock);
1236	while (tm && tm->seq >= time_seq) {
1237		/*
1238		 * all the operations are recorded with the operator used for
1239		 * the modification. as we're going backwards, we do the
1240		 * opposite of each operation here.
1241		 */
1242		switch (tm->op) {
1243		case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1244			BUG_ON(tm->slot < n);
1245			/* Fallthrough */
1246		case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1247		case MOD_LOG_KEY_REMOVE:
1248			btrfs_set_node_key(eb, &tm->key, tm->slot);
1249			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1250			btrfs_set_node_ptr_generation(eb, tm->slot,
1251						      tm->generation);
1252			n++;
1253			break;
1254		case MOD_LOG_KEY_REPLACE:
1255			BUG_ON(tm->slot >= n);
1256			btrfs_set_node_key(eb, &tm->key, tm->slot);
1257			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1258			btrfs_set_node_ptr_generation(eb, tm->slot,
1259						      tm->generation);
1260			break;
1261		case MOD_LOG_KEY_ADD:
1262			/* if a move operation is needed it's in the log */
1263			n--;
1264			break;
1265		case MOD_LOG_MOVE_KEYS:
1266			o_dst = btrfs_node_key_ptr_offset(tm->slot);
1267			o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1268			memmove_extent_buffer(eb, o_dst, o_src,
1269					      tm->move.nr_items * p_size);
1270			break;
1271		case MOD_LOG_ROOT_REPLACE:
1272			/*
1273			 * this operation is special. for roots, this must be
1274			 * handled explicitly before rewinding.
1275			 * for non-roots, this operation may exist if the node
1276			 * was a root: root A -> child B; then A gets empty and
1277			 * B is promoted to the new root. in the mod log, we'll
1278			 * have a root-replace operation for B, a tree block
1279			 * that is no root. we simply ignore that operation.
1280			 */
1281			break;
1282		}
1283		next = rb_next(&tm->node);
1284		if (!next)
1285			break;
1286		tm = rb_entry(next, struct tree_mod_elem, node);
1287		if (tm->logical != first_tm->logical)
1288			break;
1289	}
1290	read_unlock(&fs_info->tree_mod_log_lock);
1291	btrfs_set_header_nritems(eb, n);
1292}
1293
1294/*
1295 * Called with eb read locked. If the buffer cannot be rewound, the same buffer
1296 * is returned. If rewind operations happen, a fresh buffer is returned. The
1297 * returned buffer is always read-locked. If the returned buffer is not the
1298 * input buffer, the lock on the input buffer is released and the input buffer
1299 * is freed (its refcount is decremented).
1300 */
1301static struct extent_buffer *
1302tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
1303		    struct extent_buffer *eb, u64 time_seq)
1304{
1305	struct extent_buffer *eb_rewin;
1306	struct tree_mod_elem *tm;
1307
1308	if (!time_seq)
1309		return eb;
1310
1311	if (btrfs_header_level(eb) == 0)
1312		return eb;
1313
1314	tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1315	if (!tm)
1316		return eb;
1317
1318	btrfs_set_path_blocking(path);
1319	btrfs_set_lock_blocking_read(eb);
1320
1321	if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1322		BUG_ON(tm->slot != 0);
1323		eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start);
1324		if (!eb_rewin) {
1325			btrfs_tree_read_unlock_blocking(eb);
1326			free_extent_buffer(eb);
1327			return NULL;
1328		}
1329		btrfs_set_header_bytenr(eb_rewin, eb->start);
1330		btrfs_set_header_backref_rev(eb_rewin,
1331					     btrfs_header_backref_rev(eb));
1332		btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1333		btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1334	} else {
1335		eb_rewin = btrfs_clone_extent_buffer(eb);
1336		if (!eb_rewin) {
1337			btrfs_tree_read_unlock_blocking(eb);
1338			free_extent_buffer(eb);
1339			return NULL;
1340		}
1341	}
1342
1343	btrfs_tree_read_unlock_blocking(eb);
1344	free_extent_buffer(eb);
1345
1346	btrfs_tree_read_lock(eb_rewin);
1347	__tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1348	WARN_ON(btrfs_header_nritems(eb_rewin) >
1349		BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1350
1351	return eb_rewin;
1352}
1353
1354/*
1355 * get_old_root() rewinds the state of @root's root node to the given @time_seq
1356 * value. If there are no changes, the current root->root_node is returned. If
1357 * anything changed in between, there's a fresh buffer allocated on which the
1358 * rewind operations are done. In any case, the returned buffer is read locked.
1359 * Returns NULL on error (with no locks held).
1360 */
1361static inline struct extent_buffer *
1362get_old_root(struct btrfs_root *root, u64 time_seq)
1363{
1364	struct btrfs_fs_info *fs_info = root->fs_info;
1365	struct tree_mod_elem *tm;
1366	struct extent_buffer *eb = NULL;
1367	struct extent_buffer *eb_root;
1368	u64 eb_root_owner = 0;
1369	struct extent_buffer *old;
1370	struct tree_mod_root *old_root = NULL;
1371	u64 old_generation = 0;
1372	u64 logical;
1373	int level;
1374
1375	eb_root = btrfs_read_lock_root_node(root);
1376	tm = __tree_mod_log_oldest_root(eb_root, time_seq);
1377	if (!tm)
1378		return eb_root;
1379
1380	if (tm->op == MOD_LOG_ROOT_REPLACE) {
1381		old_root = &tm->old_root;
1382		old_generation = tm->generation;
1383		logical = old_root->logical;
1384		level = old_root->level;
1385	} else {
1386		logical = eb_root->start;
1387		level = btrfs_header_level(eb_root);
1388	}
1389
1390	tm = tree_mod_log_search(fs_info, logical, time_seq);
1391	if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1392		btrfs_tree_read_unlock(eb_root);
1393		free_extent_buffer(eb_root);
1394		old = read_tree_block(fs_info, logical, 0, level, NULL);
1395		if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
1396			if (!IS_ERR(old))
1397				free_extent_buffer(old);
1398			btrfs_warn(fs_info,
1399				   "failed to read tree block %llu from get_old_root",
1400				   logical);
1401		} else {
1402			eb = btrfs_clone_extent_buffer(old);
1403			free_extent_buffer(old);
1404		}
1405	} else if (old_root) {
1406		eb_root_owner = btrfs_header_owner(eb_root);
1407		btrfs_tree_read_unlock(eb_root);
1408		free_extent_buffer(eb_root);
1409		eb = alloc_dummy_extent_buffer(fs_info, logical);
1410	} else {
1411		btrfs_set_lock_blocking_read(eb_root);
1412		eb = btrfs_clone_extent_buffer(eb_root);
1413		btrfs_tree_read_unlock_blocking(eb_root);
1414		free_extent_buffer(eb_root);
1415	}
1416
1417	if (!eb)
1418		return NULL;
1419	btrfs_tree_read_lock(eb);
1420	if (old_root) {
1421		btrfs_set_header_bytenr(eb, eb->start);
1422		btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1423		btrfs_set_header_owner(eb, eb_root_owner);
1424		btrfs_set_header_level(eb, old_root->level);
1425		btrfs_set_header_generation(eb, old_generation);
1426	}
1427	if (tm)
1428		__tree_mod_log_rewind(fs_info, eb, time_seq, tm);
1429	else
1430		WARN_ON(btrfs_header_level(eb) != 0);
1431	WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1432
1433	return eb;
1434}
1435
1436int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1437{
1438	struct tree_mod_elem *tm;
1439	int level;
1440	struct extent_buffer *eb_root = btrfs_root_node(root);
1441
1442	tm = __tree_mod_log_oldest_root(eb_root, time_seq);
1443	if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1444		level = tm->old_root.level;
1445	} else {
1446		level = btrfs_header_level(eb_root);
1447	}
1448	free_extent_buffer(eb_root);
1449
1450	return level;
1451}
1452
1453static inline int should_cow_block(struct btrfs_trans_handle *trans,
1454				   struct btrfs_root *root,
1455				   struct extent_buffer *buf)
1456{
1457	if (btrfs_is_testing(root->fs_info))
1458		return 0;
1459
1460	/* Ensure we can see the FORCE_COW bit */
1461	smp_mb__before_atomic();
1462
1463	/*
1464	 * We do not need to cow a block if
1465	 * 1) this block is not created or changed in this transaction;
1466	 * 2) this block does not belong to TREE_RELOC tree;
1467	 * 3) the root is not forced COW.
1468	 *
1469	 * What is forced COW:
1470	 *    when we create snapshot during committing the transaction,
1471	 *    after we've finished copying src root, we must COW the shared
1472	 *    block to ensure the metadata consistency.
1473	 */
1474	if (btrfs_header_generation(buf) == trans->transid &&
1475	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1476	    !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1477	      btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1478	    !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
1479		return 0;
1480	return 1;
1481}
1482
1483/*
1484 * cows a single block, see __btrfs_cow_block for the real work.
1485 * This version of it has extra checks so that a block isn't COWed more than
1486 * once per transaction, as long as it hasn't been written yet
1487 */
1488noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1489		    struct btrfs_root *root, struct extent_buffer *buf,
1490		    struct extent_buffer *parent, int parent_slot,
1491		    struct extent_buffer **cow_ret)
 
1492{
1493	struct btrfs_fs_info *fs_info = root->fs_info;
1494	u64 search_start;
1495	int ret;
1496
1497	if (test_bit(BTRFS_ROOT_DELETING, &root->state))
1498		btrfs_err(fs_info,
1499			"COW'ing blocks on a fs root that's being dropped");
1500
1501	if (trans->transaction != fs_info->running_transaction)
1502		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1503		       trans->transid,
1504		       fs_info->running_transaction->transid);
1505
1506	if (trans->transid != fs_info->generation)
1507		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1508		       trans->transid, fs_info->generation);
1509
1510	if (!should_cow_block(trans, root, buf)) {
1511		trans->dirty = true;
1512		*cow_ret = buf;
1513		return 0;
1514	}
1515
1516	search_start = buf->start & ~((u64)SZ_1G - 1);
1517
1518	if (parent)
1519		btrfs_set_lock_blocking_write(parent);
1520	btrfs_set_lock_blocking_write(buf);
1521
1522	/*
1523	 * Before CoWing this block for later modification, check if it's
1524	 * the subtree root and do the delayed subtree trace if needed.
1525	 *
1526	 * Also We don't care about the error, as it's handled internally.
1527	 */
1528	btrfs_qgroup_trace_subtree_after_cow(trans, root, buf);
1529	ret = __btrfs_cow_block(trans, root, buf, parent,
1530				 parent_slot, cow_ret, search_start, 0);
1531
1532	trace_btrfs_cow_block(root, buf, *cow_ret);
1533
1534	return ret;
1535}
 
1536
1537/*
1538 * helper function for defrag to decide if two blocks pointed to by a
1539 * node are actually close by
1540 */
1541static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1542{
1543	if (blocknr < other && other - (blocknr + blocksize) < 32768)
1544		return 1;
1545	if (blocknr > other && blocknr - (other + blocksize) < 32768)
1546		return 1;
1547	return 0;
1548}
1549
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1550/*
1551 * compare two keys in a memcmp fashion
1552 */
1553static int comp_keys(const struct btrfs_disk_key *disk,
1554		     const struct btrfs_key *k2)
1555{
1556	struct btrfs_key k1;
1557
1558	btrfs_disk_key_to_cpu(&k1, disk);
1559
1560	return btrfs_comp_cpu_keys(&k1, k2);
1561}
 
1562
1563/*
1564 * same as comp_keys only with two btrfs_key's
1565 */
1566int btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
1567{
1568	if (k1->objectid > k2->objectid)
1569		return 1;
1570	if (k1->objectid < k2->objectid)
1571		return -1;
1572	if (k1->type > k2->type)
1573		return 1;
1574	if (k1->type < k2->type)
1575		return -1;
1576	if (k1->offset > k2->offset)
1577		return 1;
1578	if (k1->offset < k2->offset)
1579		return -1;
1580	return 0;
1581}
1582
1583/*
1584 * this is used by the defrag code to go through all the
1585 * leaves pointed to by a node and reallocate them so that
1586 * disk order is close to key order
1587 */
1588int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1589		       struct btrfs_root *root, struct extent_buffer *parent,
1590		       int start_slot, u64 *last_ret,
1591		       struct btrfs_key *progress)
1592{
1593	struct btrfs_fs_info *fs_info = root->fs_info;
1594	struct extent_buffer *cur;
1595	u64 blocknr;
1596	u64 gen;
1597	u64 search_start = *last_ret;
1598	u64 last_block = 0;
1599	u64 other;
1600	u32 parent_nritems;
1601	int end_slot;
1602	int i;
1603	int err = 0;
1604	int parent_level;
1605	int uptodate;
1606	u32 blocksize;
1607	int progress_passed = 0;
1608	struct btrfs_disk_key disk_key;
1609
1610	parent_level = btrfs_header_level(parent);
1611
1612	WARN_ON(trans->transaction != fs_info->running_transaction);
1613	WARN_ON(trans->transid != fs_info->generation);
1614
1615	parent_nritems = btrfs_header_nritems(parent);
1616	blocksize = fs_info->nodesize;
1617	end_slot = parent_nritems - 1;
1618
1619	if (parent_nritems <= 1)
1620		return 0;
1621
1622	btrfs_set_lock_blocking_write(parent);
1623
1624	for (i = start_slot; i <= end_slot; i++) {
1625		struct btrfs_key first_key;
1626		int close = 1;
1627
1628		btrfs_node_key(parent, &disk_key, i);
1629		if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1630			continue;
1631
1632		progress_passed = 1;
1633		blocknr = btrfs_node_blockptr(parent, i);
1634		gen = btrfs_node_ptr_generation(parent, i);
1635		btrfs_node_key_to_cpu(parent, &first_key, i);
1636		if (last_block == 0)
1637			last_block = blocknr;
1638
1639		if (i > 0) {
1640			other = btrfs_node_blockptr(parent, i - 1);
1641			close = close_blocks(blocknr, other, blocksize);
1642		}
1643		if (!close && i < end_slot) {
1644			other = btrfs_node_blockptr(parent, i + 1);
1645			close = close_blocks(blocknr, other, blocksize);
1646		}
1647		if (close) {
1648			last_block = blocknr;
1649			continue;
1650		}
1651
1652		cur = find_extent_buffer(fs_info, blocknr);
1653		if (cur)
1654			uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1655		else
1656			uptodate = 0;
1657		if (!cur || !uptodate) {
1658			if (!cur) {
1659				cur = read_tree_block(fs_info, blocknr, gen,
1660						      parent_level - 1,
1661						      &first_key);
1662				if (IS_ERR(cur)) {
1663					return PTR_ERR(cur);
1664				} else if (!extent_buffer_uptodate(cur)) {
1665					free_extent_buffer(cur);
1666					return -EIO;
1667				}
1668			} else if (!uptodate) {
1669				err = btrfs_read_buffer(cur, gen,
1670						parent_level - 1,&first_key);
1671				if (err) {
1672					free_extent_buffer(cur);
1673					return err;
1674				}
1675			}
1676		}
1677		if (search_start == 0)
1678			search_start = last_block;
1679
1680		btrfs_tree_lock(cur);
1681		btrfs_set_lock_blocking_write(cur);
1682		err = __btrfs_cow_block(trans, root, cur, parent, i,
1683					&cur, search_start,
1684					min(16 * blocksize,
1685					    (end_slot - i) * blocksize));
 
1686		if (err) {
1687			btrfs_tree_unlock(cur);
1688			free_extent_buffer(cur);
1689			break;
1690		}
1691		search_start = cur->start;
1692		last_block = cur->start;
1693		*last_ret = search_start;
1694		btrfs_tree_unlock(cur);
1695		free_extent_buffer(cur);
1696	}
1697	return err;
1698}
1699
1700/*
1701 * search for key in the extent_buffer.  The items start at offset p,
1702 * and they are item_size apart.  There are 'max' items in p.
 
 
1703 *
1704 * the slot in the array is returned via slot, and it points to
1705 * the place where you would insert key if it is not found in
1706 * the array.
1707 *
1708 * slot may point to max if the key is bigger than all of the keys
1709 */
1710static noinline int generic_bin_search(struct extent_buffer *eb,
1711				       unsigned long p, int item_size,
1712				       const struct btrfs_key *key,
1713				       int max, int *slot)
1714{
1715	int low = 0;
1716	int high = max;
1717	int mid;
1718	int ret;
1719	struct btrfs_disk_key *tmp = NULL;
1720	struct btrfs_disk_key unaligned;
1721	unsigned long offset;
1722	char *kaddr = NULL;
1723	unsigned long map_start = 0;
1724	unsigned long map_len = 0;
1725	int err;
1726
1727	if (low > high) {
1728		btrfs_err(eb->fs_info,
1729		 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
1730			  __func__, low, high, eb->start,
1731			  btrfs_header_owner(eb), btrfs_header_level(eb));
1732		return -EINVAL;
1733	}
1734
 
 
 
 
 
 
 
 
1735	while (low < high) {
 
 
 
 
 
 
1736		mid = (low + high) / 2;
1737		offset = p + mid * item_size;
 
1738
1739		if (!kaddr || offset < map_start ||
1740		    (offset + sizeof(struct btrfs_disk_key)) >
1741		    map_start + map_len) {
1742
1743			err = map_private_extent_buffer(eb, offset,
1744						sizeof(struct btrfs_disk_key),
1745						&kaddr, &map_start, &map_len);
1746
1747			if (!err) {
1748				tmp = (struct btrfs_disk_key *)(kaddr + offset -
1749							map_start);
1750			} else if (err == 1) {
1751				read_extent_buffer(eb, &unaligned,
1752						   offset, sizeof(unaligned));
1753				tmp = &unaligned;
1754			} else {
1755				return err;
1756			}
1757
 
 
1758		} else {
1759			tmp = (struct btrfs_disk_key *)(kaddr + offset -
1760							map_start);
1761		}
 
1762		ret = comp_keys(tmp, key);
1763
1764		if (ret < 0)
1765			low = mid + 1;
1766		else if (ret > 0)
1767			high = mid;
1768		else {
1769			*slot = mid;
1770			return 0;
1771		}
1772	}
1773	*slot = low;
1774	return 1;
1775}
1776
1777/*
1778 * simple bin_search frontend that does the right thing for
1779 * leaves vs nodes
1780 */
1781int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
1782		     int level, int *slot)
1783{
1784	if (level == 0)
1785		return generic_bin_search(eb,
1786					  offsetof(struct btrfs_leaf, items),
1787					  sizeof(struct btrfs_item),
1788					  key, btrfs_header_nritems(eb),
1789					  slot);
1790	else
1791		return generic_bin_search(eb,
1792					  offsetof(struct btrfs_node, ptrs),
1793					  sizeof(struct btrfs_key_ptr),
1794					  key, btrfs_header_nritems(eb),
1795					  slot);
1796}
1797
1798static void root_add_used(struct btrfs_root *root, u32 size)
1799{
1800	spin_lock(&root->accounting_lock);
1801	btrfs_set_root_used(&root->root_item,
1802			    btrfs_root_used(&root->root_item) + size);
1803	spin_unlock(&root->accounting_lock);
1804}
1805
1806static void root_sub_used(struct btrfs_root *root, u32 size)
1807{
1808	spin_lock(&root->accounting_lock);
1809	btrfs_set_root_used(&root->root_item,
1810			    btrfs_root_used(&root->root_item) - size);
1811	spin_unlock(&root->accounting_lock);
1812}
1813
1814/* given a node and slot number, this reads the blocks it points to.  The
1815 * extent buffer is returned with a reference taken (but unlocked).
1816 */
1817struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
1818					   int slot)
1819{
1820	int level = btrfs_header_level(parent);
 
1821	struct extent_buffer *eb;
1822	struct btrfs_key first_key;
1823
1824	if (slot < 0 || slot >= btrfs_header_nritems(parent))
1825		return ERR_PTR(-ENOENT);
1826
1827	BUG_ON(level == 0);
1828
1829	btrfs_node_key_to_cpu(parent, &first_key, slot);
 
 
 
 
 
1830	eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot),
1831			     btrfs_node_ptr_generation(parent, slot),
1832			     level - 1, &first_key);
1833	if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) {
 
1834		free_extent_buffer(eb);
1835		eb = ERR_PTR(-EIO);
1836	}
1837
1838	return eb;
1839}
1840
1841/*
1842 * node level balancing, used to make sure nodes are in proper order for
1843 * item deletion.  We balance from the top down, so we have to make sure
1844 * that a deletion won't leave an node completely empty later on.
1845 */
1846static noinline int balance_level(struct btrfs_trans_handle *trans,
1847			 struct btrfs_root *root,
1848			 struct btrfs_path *path, int level)
1849{
1850	struct btrfs_fs_info *fs_info = root->fs_info;
1851	struct extent_buffer *right = NULL;
1852	struct extent_buffer *mid;
1853	struct extent_buffer *left = NULL;
1854	struct extent_buffer *parent = NULL;
1855	int ret = 0;
1856	int wret;
1857	int pslot;
1858	int orig_slot = path->slots[level];
1859	u64 orig_ptr;
1860
1861	ASSERT(level > 0);
1862
1863	mid = path->nodes[level];
1864
1865	WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1866		path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1867	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1868
1869	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1870
1871	if (level < BTRFS_MAX_LEVEL - 1) {
1872		parent = path->nodes[level + 1];
1873		pslot = path->slots[level + 1];
1874	}
1875
1876	/*
1877	 * deal with the case where there is only one pointer in the root
1878	 * by promoting the node below to a root
1879	 */
1880	if (!parent) {
1881		struct extent_buffer *child;
1882
1883		if (btrfs_header_nritems(mid) != 1)
1884			return 0;
1885
1886		/* promote the child to a root */
1887		child = btrfs_read_node_slot(mid, 0);
1888		if (IS_ERR(child)) {
1889			ret = PTR_ERR(child);
1890			btrfs_handle_fs_error(fs_info, ret, NULL);
1891			goto enospc;
1892		}
1893
1894		btrfs_tree_lock(child);
1895		btrfs_set_lock_blocking_write(child);
1896		ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1897		if (ret) {
1898			btrfs_tree_unlock(child);
1899			free_extent_buffer(child);
1900			goto enospc;
1901		}
1902
1903		ret = tree_mod_log_insert_root(root->node, child, 1);
1904		BUG_ON(ret < 0);
1905		rcu_assign_pointer(root->node, child);
1906
1907		add_root_to_dirty_list(root);
1908		btrfs_tree_unlock(child);
1909
1910		path->locks[level] = 0;
1911		path->nodes[level] = NULL;
1912		btrfs_clean_tree_block(mid);
1913		btrfs_tree_unlock(mid);
1914		/* once for the path */
1915		free_extent_buffer(mid);
1916
1917		root_sub_used(root, mid->len);
1918		btrfs_free_tree_block(trans, root, mid, 0, 1);
1919		/* once for the root ptr */
1920		free_extent_buffer_stale(mid);
1921		return 0;
1922	}
1923	if (btrfs_header_nritems(mid) >
1924	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
1925		return 0;
1926
1927	left = btrfs_read_node_slot(parent, pslot - 1);
1928	if (IS_ERR(left))
1929		left = NULL;
1930
1931	if (left) {
1932		btrfs_tree_lock(left);
1933		btrfs_set_lock_blocking_write(left);
1934		wret = btrfs_cow_block(trans, root, left,
1935				       parent, pslot - 1, &left);
 
1936		if (wret) {
1937			ret = wret;
1938			goto enospc;
1939		}
1940	}
1941
1942	right = btrfs_read_node_slot(parent, pslot + 1);
1943	if (IS_ERR(right))
1944		right = NULL;
1945
1946	if (right) {
1947		btrfs_tree_lock(right);
1948		btrfs_set_lock_blocking_write(right);
1949		wret = btrfs_cow_block(trans, root, right,
1950				       parent, pslot + 1, &right);
 
1951		if (wret) {
1952			ret = wret;
1953			goto enospc;
1954		}
1955	}
1956
1957	/* first, try to make some room in the middle buffer */
1958	if (left) {
1959		orig_slot += btrfs_header_nritems(left);
1960		wret = push_node_left(trans, left, mid, 1);
1961		if (wret < 0)
1962			ret = wret;
1963	}
1964
1965	/*
1966	 * then try to empty the right most buffer into the middle
1967	 */
1968	if (right) {
1969		wret = push_node_left(trans, mid, right, 1);
1970		if (wret < 0 && wret != -ENOSPC)
1971			ret = wret;
1972		if (btrfs_header_nritems(right) == 0) {
1973			btrfs_clean_tree_block(right);
1974			btrfs_tree_unlock(right);
1975			del_ptr(root, path, level + 1, pslot + 1);
1976			root_sub_used(root, right->len);
1977			btrfs_free_tree_block(trans, root, right, 0, 1);
 
1978			free_extent_buffer_stale(right);
1979			right = NULL;
1980		} else {
1981			struct btrfs_disk_key right_key;
1982			btrfs_node_key(right, &right_key, 0);
1983			ret = tree_mod_log_insert_key(parent, pslot + 1,
1984					MOD_LOG_KEY_REPLACE, GFP_NOFS);
1985			BUG_ON(ret < 0);
1986			btrfs_set_node_key(parent, &right_key, pslot + 1);
1987			btrfs_mark_buffer_dirty(parent);
1988		}
1989	}
1990	if (btrfs_header_nritems(mid) == 1) {
1991		/*
1992		 * we're not allowed to leave a node with one item in the
1993		 * tree during a delete.  A deletion from lower in the tree
1994		 * could try to delete the only pointer in this node.
1995		 * So, pull some keys from the left.
1996		 * There has to be a left pointer at this point because
1997		 * otherwise we would have pulled some pointers from the
1998		 * right
1999		 */
2000		if (!left) {
2001			ret = -EROFS;
2002			btrfs_handle_fs_error(fs_info, ret, NULL);
2003			goto enospc;
2004		}
2005		wret = balance_node_right(trans, mid, left);
2006		if (wret < 0) {
2007			ret = wret;
2008			goto enospc;
2009		}
2010		if (wret == 1) {
2011			wret = push_node_left(trans, left, mid, 1);
2012			if (wret < 0)
2013				ret = wret;
2014		}
2015		BUG_ON(wret == 1);
2016	}
2017	if (btrfs_header_nritems(mid) == 0) {
2018		btrfs_clean_tree_block(mid);
2019		btrfs_tree_unlock(mid);
2020		del_ptr(root, path, level + 1, pslot);
2021		root_sub_used(root, mid->len);
2022		btrfs_free_tree_block(trans, root, mid, 0, 1);
2023		free_extent_buffer_stale(mid);
2024		mid = NULL;
2025	} else {
2026		/* update the parent key to reflect our changes */
2027		struct btrfs_disk_key mid_key;
2028		btrfs_node_key(mid, &mid_key, 0);
2029		ret = tree_mod_log_insert_key(parent, pslot,
2030				MOD_LOG_KEY_REPLACE, GFP_NOFS);
2031		BUG_ON(ret < 0);
2032		btrfs_set_node_key(parent, &mid_key, pslot);
2033		btrfs_mark_buffer_dirty(parent);
2034	}
2035
2036	/* update the path */
2037	if (left) {
2038		if (btrfs_header_nritems(left) > orig_slot) {
2039			extent_buffer_get(left);
2040			/* left was locked after cow */
2041			path->nodes[level] = left;
2042			path->slots[level + 1] -= 1;
2043			path->slots[level] = orig_slot;
2044			if (mid) {
2045				btrfs_tree_unlock(mid);
2046				free_extent_buffer(mid);
2047			}
2048		} else {
2049			orig_slot -= btrfs_header_nritems(left);
2050			path->slots[level] = orig_slot;
2051		}
2052	}
2053	/* double check we haven't messed things up */
2054	if (orig_ptr !=
2055	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
2056		BUG();
2057enospc:
2058	if (right) {
2059		btrfs_tree_unlock(right);
2060		free_extent_buffer(right);
2061	}
2062	if (left) {
2063		if (path->nodes[level] != left)
2064			btrfs_tree_unlock(left);
2065		free_extent_buffer(left);
2066	}
2067	return ret;
2068}
2069
2070/* Node balancing for insertion.  Here we only split or push nodes around
2071 * when they are completely full.  This is also done top down, so we
2072 * have to be pessimistic.
2073 */
2074static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
2075					  struct btrfs_root *root,
2076					  struct btrfs_path *path, int level)
2077{
2078	struct btrfs_fs_info *fs_info = root->fs_info;
2079	struct extent_buffer *right = NULL;
2080	struct extent_buffer *mid;
2081	struct extent_buffer *left = NULL;
2082	struct extent_buffer *parent = NULL;
2083	int ret = 0;
2084	int wret;
2085	int pslot;
2086	int orig_slot = path->slots[level];
2087
2088	if (level == 0)
2089		return 1;
2090
2091	mid = path->nodes[level];
2092	WARN_ON(btrfs_header_generation(mid) != trans->transid);
2093
2094	if (level < BTRFS_MAX_LEVEL - 1) {
2095		parent = path->nodes[level + 1];
2096		pslot = path->slots[level + 1];
2097	}
2098
2099	if (!parent)
2100		return 1;
2101
2102	left = btrfs_read_node_slot(parent, pslot - 1);
2103	if (IS_ERR(left))
2104		left = NULL;
2105
2106	/* first, try to make some room in the middle buffer */
2107	if (left) {
2108		u32 left_nr;
2109
2110		btrfs_tree_lock(left);
2111		btrfs_set_lock_blocking_write(left);
2112
2113		left_nr = btrfs_header_nritems(left);
2114		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
2115			wret = 1;
2116		} else {
2117			ret = btrfs_cow_block(trans, root, left, parent,
2118					      pslot - 1, &left);
 
2119			if (ret)
2120				wret = 1;
2121			else {
2122				wret = push_node_left(trans, left, mid, 0);
2123			}
2124		}
2125		if (wret < 0)
2126			ret = wret;
2127		if (wret == 0) {
2128			struct btrfs_disk_key disk_key;
2129			orig_slot += left_nr;
2130			btrfs_node_key(mid, &disk_key, 0);
2131			ret = tree_mod_log_insert_key(parent, pslot,
2132					MOD_LOG_KEY_REPLACE, GFP_NOFS);
2133			BUG_ON(ret < 0);
2134			btrfs_set_node_key(parent, &disk_key, pslot);
2135			btrfs_mark_buffer_dirty(parent);
2136			if (btrfs_header_nritems(left) > orig_slot) {
2137				path->nodes[level] = left;
2138				path->slots[level + 1] -= 1;
2139				path->slots[level] = orig_slot;
2140				btrfs_tree_unlock(mid);
2141				free_extent_buffer(mid);
2142			} else {
2143				orig_slot -=
2144					btrfs_header_nritems(left);
2145				path->slots[level] = orig_slot;
2146				btrfs_tree_unlock(left);
2147				free_extent_buffer(left);
2148			}
2149			return 0;
2150		}
2151		btrfs_tree_unlock(left);
2152		free_extent_buffer(left);
2153	}
2154	right = btrfs_read_node_slot(parent, pslot + 1);
2155	if (IS_ERR(right))
2156		right = NULL;
2157
2158	/*
2159	 * then try to empty the right most buffer into the middle
2160	 */
2161	if (right) {
2162		u32 right_nr;
2163
2164		btrfs_tree_lock(right);
2165		btrfs_set_lock_blocking_write(right);
2166
2167		right_nr = btrfs_header_nritems(right);
2168		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
2169			wret = 1;
2170		} else {
2171			ret = btrfs_cow_block(trans, root, right,
2172					      parent, pslot + 1,
2173					      &right);
2174			if (ret)
2175				wret = 1;
2176			else {
2177				wret = balance_node_right(trans, right, mid);
2178			}
2179		}
2180		if (wret < 0)
2181			ret = wret;
2182		if (wret == 0) {
2183			struct btrfs_disk_key disk_key;
2184
2185			btrfs_node_key(right, &disk_key, 0);
2186			ret = tree_mod_log_insert_key(parent, pslot + 1,
2187					MOD_LOG_KEY_REPLACE, GFP_NOFS);
2188			BUG_ON(ret < 0);
2189			btrfs_set_node_key(parent, &disk_key, pslot + 1);
2190			btrfs_mark_buffer_dirty(parent);
2191
2192			if (btrfs_header_nritems(mid) <= orig_slot) {
2193				path->nodes[level] = right;
2194				path->slots[level + 1] += 1;
2195				path->slots[level] = orig_slot -
2196					btrfs_header_nritems(mid);
2197				btrfs_tree_unlock(mid);
2198				free_extent_buffer(mid);
2199			} else {
2200				btrfs_tree_unlock(right);
2201				free_extent_buffer(right);
2202			}
2203			return 0;
2204		}
2205		btrfs_tree_unlock(right);
2206		free_extent_buffer(right);
2207	}
2208	return 1;
2209}
2210
2211/*
2212 * readahead one full node of leaves, finding things that are close
2213 * to the block in 'slot', and triggering ra on them.
2214 */
2215static void reada_for_search(struct btrfs_fs_info *fs_info,
2216			     struct btrfs_path *path,
2217			     int level, int slot, u64 objectid)
2218{
2219	struct extent_buffer *node;
2220	struct btrfs_disk_key disk_key;
2221	u32 nritems;
2222	u64 search;
2223	u64 target;
2224	u64 nread = 0;
2225	struct extent_buffer *eb;
2226	u32 nr;
2227	u32 blocksize;
2228	u32 nscan = 0;
2229
2230	if (level != 1)
2231		return;
2232
2233	if (!path->nodes[level])
2234		return;
2235
2236	node = path->nodes[level];
2237
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2238	search = btrfs_node_blockptr(node, slot);
2239	blocksize = fs_info->nodesize;
2240	eb = find_extent_buffer(fs_info, search);
2241	if (eb) {
2242		free_extent_buffer(eb);
2243		return;
 
 
 
 
2244	}
2245
2246	target = search;
2247
2248	nritems = btrfs_header_nritems(node);
2249	nr = slot;
2250
2251	while (1) {
2252		if (path->reada == READA_BACK) {
2253			if (nr == 0)
2254				break;
2255			nr--;
2256		} else if (path->reada == READA_FORWARD) {
 
2257			nr++;
2258			if (nr >= nritems)
2259				break;
2260		}
2261		if (path->reada == READA_BACK && objectid) {
2262			btrfs_node_key(node, &disk_key, nr);
2263			if (btrfs_disk_key_objectid(&disk_key) != objectid)
2264				break;
2265		}
2266		search = btrfs_node_blockptr(node, nr);
2267		if ((search <= target && target - search <= 65536) ||
 
2268		    (search > target && search - target <= 65536)) {
2269			readahead_tree_block(fs_info, search);
2270			nread += blocksize;
2271		}
2272		nscan++;
2273		if ((nread > 65536 || nscan > 32))
2274			break;
2275	}
2276}
2277
2278static noinline void reada_for_balance(struct btrfs_fs_info *fs_info,
2279				       struct btrfs_path *path, int level)
2280{
 
2281	int slot;
2282	int nritems;
2283	struct extent_buffer *parent;
2284	struct extent_buffer *eb;
2285	u64 gen;
2286	u64 block1 = 0;
2287	u64 block2 = 0;
2288
2289	parent = path->nodes[level + 1];
2290	if (!parent)
2291		return;
2292
2293	nritems = btrfs_header_nritems(parent);
2294	slot = path->slots[level + 1];
2295
2296	if (slot > 0) {
2297		block1 = btrfs_node_blockptr(parent, slot - 1);
2298		gen = btrfs_node_ptr_generation(parent, slot - 1);
2299		eb = find_extent_buffer(fs_info, block1);
2300		/*
2301		 * if we get -eagain from btrfs_buffer_uptodate, we
2302		 * don't want to return eagain here.  That will loop
2303		 * forever
2304		 */
2305		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2306			block1 = 0;
2307		free_extent_buffer(eb);
2308	}
2309	if (slot + 1 < nritems) {
2310		block2 = btrfs_node_blockptr(parent, slot + 1);
2311		gen = btrfs_node_ptr_generation(parent, slot + 1);
2312		eb = find_extent_buffer(fs_info, block2);
2313		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2314			block2 = 0;
2315		free_extent_buffer(eb);
2316	}
2317
2318	if (block1)
2319		readahead_tree_block(fs_info, block1);
2320	if (block2)
2321		readahead_tree_block(fs_info, block2);
2322}
2323
2324
2325/*
2326 * when we walk down the tree, it is usually safe to unlock the higher layers
2327 * in the tree.  The exceptions are when our path goes through slot 0, because
2328 * operations on the tree might require changing key pointers higher up in the
2329 * tree.
2330 *
2331 * callers might also have set path->keep_locks, which tells this code to keep
2332 * the lock if the path points to the last slot in the block.  This is part of
2333 * walking through the tree, and selecting the next slot in the higher block.
2334 *
2335 * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
2336 * if lowest_unlock is 1, level 0 won't be unlocked
2337 */
2338static noinline void unlock_up(struct btrfs_path *path, int level,
2339			       int lowest_unlock, int min_write_lock_level,
2340			       int *write_lock_level)
2341{
2342	int i;
2343	int skip_level = level;
2344	int no_skips = 0;
2345	struct extent_buffer *t;
2346
2347	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2348		if (!path->nodes[i])
2349			break;
2350		if (!path->locks[i])
2351			break;
2352		if (!no_skips && path->slots[i] == 0) {
2353			skip_level = i + 1;
2354			continue;
2355		}
2356		if (!no_skips && path->keep_locks) {
2357			u32 nritems;
2358			t = path->nodes[i];
2359			nritems = btrfs_header_nritems(t);
2360			if (nritems < 1 || path->slots[i] >= nritems - 1) {
2361				skip_level = i + 1;
2362				continue;
2363			}
 
 
 
 
 
 
 
 
 
 
2364		}
2365		if (skip_level < i && i >= lowest_unlock)
2366			no_skips = 1;
2367
2368		t = path->nodes[i];
2369		if (i >= lowest_unlock && i > skip_level) {
2370			btrfs_tree_unlock_rw(t, path->locks[i]);
 
2371			path->locks[i] = 0;
2372			if (write_lock_level &&
2373			    i > min_write_lock_level &&
2374			    i <= *write_lock_level) {
2375				*write_lock_level = i - 1;
2376			}
2377		}
2378	}
2379}
2380
2381/*
2382 * This releases any locks held in the path starting at level and
2383 * going all the way up to the root.
2384 *
2385 * btrfs_search_slot will keep the lock held on higher nodes in a few
2386 * corner cases, such as COW of the block at slot zero in the node.  This
2387 * ignores those rules, and it should only be called when there are no
2388 * more updates to be done higher up in the tree.
2389 */
2390noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2391{
2392	int i;
2393
2394	if (path->keep_locks)
2395		return;
2396
2397	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2398		if (!path->nodes[i])
2399			continue;
2400		if (!path->locks[i])
2401			continue;
2402		btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2403		path->locks[i] = 0;
2404	}
2405}
2406
2407/*
2408 * helper function for btrfs_search_slot.  The goal is to find a block
2409 * in cache without setting the path to blocking.  If we find the block
2410 * we return zero and the path is unchanged.
2411 *
2412 * If we can't find the block, we set the path blocking and do some
2413 * reada.  -EAGAIN is returned and the search must be repeated.
2414 */
2415static int
2416read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
2417		      struct extent_buffer **eb_ret, int level, int slot,
2418		      const struct btrfs_key *key)
2419{
2420	struct btrfs_fs_info *fs_info = root->fs_info;
 
2421	u64 blocknr;
2422	u64 gen;
2423	struct extent_buffer *b = *eb_ret;
2424	struct extent_buffer *tmp;
2425	struct btrfs_key first_key;
2426	int ret;
2427	int parent_level;
 
2428
2429	blocknr = btrfs_node_blockptr(b, slot);
2430	gen = btrfs_node_ptr_generation(b, slot);
2431	parent_level = btrfs_header_level(b);
2432	btrfs_node_key_to_cpu(b, &first_key, slot);
 
 
 
 
 
2433
 
 
 
 
 
 
 
2434	tmp = find_extent_buffer(fs_info, blocknr);
2435	if (tmp) {
 
 
 
2436		/* first we do an atomic uptodate check */
2437		if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2438			/*
2439			 * Do extra check for first_key, eb can be stale due to
2440			 * being cached, read from scrub, or have multiple
2441			 * parents (shared tree blocks).
2442			 */
2443			if (btrfs_verify_level_key(tmp,
2444					parent_level - 1, &first_key, gen)) {
2445				free_extent_buffer(tmp);
2446				return -EUCLEAN;
2447			}
2448			*eb_ret = tmp;
2449			return 0;
2450		}
2451
2452		/* the pages were up to date, but we failed
2453		 * the generation number check.  Do a full
2454		 * read for the generation number that is correct.
2455		 * We must do this without dropping locks so
2456		 * we can trust our generation number
2457		 */
2458		btrfs_set_path_blocking(p);
2459
2460		/* now we're allowed to do a blocking uptodate check */
2461		ret = btrfs_read_buffer(tmp, gen, parent_level - 1, &first_key);
2462		if (!ret) {
2463			*eb_ret = tmp;
2464			return 0;
 
 
 
 
 
 
2465		}
2466		free_extent_buffer(tmp);
2467		btrfs_release_path(p);
2468		return -EIO;
 
 
 
 
2469	}
2470
2471	/*
2472	 * reduce lock contention at high levels
2473	 * of the btree by dropping locks before
2474	 * we read.  Don't release the lock on the current
2475	 * level because we need to walk this node to figure
2476	 * out which blocks to read.
2477	 */
2478	btrfs_unlock_up_safe(p, level + 1);
2479	btrfs_set_path_blocking(p);
2480
2481	if (p->reada != READA_NONE)
2482		reada_for_search(fs_info, p, level, slot, key->objectid);
2483
2484	ret = -EAGAIN;
2485	tmp = read_tree_block(fs_info, blocknr, gen, parent_level - 1,
2486			      &first_key);
2487	if (!IS_ERR(tmp)) {
2488		/*
2489		 * If the read above didn't mark this buffer up to date,
2490		 * it will never end up being up to date.  Set ret to EIO now
2491		 * and give up so that our caller doesn't loop forever
2492		 * on our EAGAINs.
2493		 */
2494		if (!extent_buffer_uptodate(tmp))
2495			ret = -EIO;
 
 
 
 
 
 
2496		free_extent_buffer(tmp);
2497	} else {
2498		ret = PTR_ERR(tmp);
2499	}
2500
2501	btrfs_release_path(p);
2502	return ret;
2503}
2504
2505/*
2506 * helper function for btrfs_search_slot.  This does all of the checks
2507 * for node-level blocks and does any balancing required based on
2508 * the ins_len.
2509 *
2510 * If no extra work was required, zero is returned.  If we had to
2511 * drop the path, -EAGAIN is returned and btrfs_search_slot must
2512 * start over
2513 */
2514static int
2515setup_nodes_for_search(struct btrfs_trans_handle *trans,
2516		       struct btrfs_root *root, struct btrfs_path *p,
2517		       struct extent_buffer *b, int level, int ins_len,
2518		       int *write_lock_level)
2519{
2520	struct btrfs_fs_info *fs_info = root->fs_info;
2521	int ret;
2522
2523	if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2524	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
2525		int sret;
2526
2527		if (*write_lock_level < level + 1) {
2528			*write_lock_level = level + 1;
2529			btrfs_release_path(p);
2530			goto again;
2531		}
2532
2533		btrfs_set_path_blocking(p);
2534		reada_for_balance(fs_info, p, level);
2535		sret = split_node(trans, root, p, level);
2536
2537		BUG_ON(sret > 0);
2538		if (sret) {
2539			ret = sret;
2540			goto done;
2541		}
2542		b = p->nodes[level];
2543	} else if (ins_len < 0 && btrfs_header_nritems(b) <
2544		   BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
2545		int sret;
2546
2547		if (*write_lock_level < level + 1) {
2548			*write_lock_level = level + 1;
2549			btrfs_release_path(p);
2550			goto again;
2551		}
2552
2553		btrfs_set_path_blocking(p);
2554		reada_for_balance(fs_info, p, level);
2555		sret = balance_level(trans, root, p, level);
 
2556
2557		if (sret) {
2558			ret = sret;
2559			goto done;
2560		}
2561		b = p->nodes[level];
2562		if (!b) {
2563			btrfs_release_path(p);
2564			goto again;
2565		}
2566		BUG_ON(btrfs_header_nritems(b) == 1);
2567	}
2568	return 0;
2569
2570again:
2571	ret = -EAGAIN;
2572done:
2573	return ret;
2574}
2575
2576static int key_search(struct extent_buffer *b, const struct btrfs_key *key,
2577		      int level, int *prev_cmp, int *slot)
2578{
2579	if (*prev_cmp != 0) {
2580		*prev_cmp = btrfs_bin_search(b, key, level, slot);
2581		return *prev_cmp;
2582	}
2583
2584	*slot = 0;
2585
2586	return 0;
2587}
2588
2589int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2590		u64 iobjectid, u64 ioff, u8 key_type,
2591		struct btrfs_key *found_key)
2592{
2593	int ret;
2594	struct btrfs_key key;
2595	struct extent_buffer *eb;
2596
2597	ASSERT(path);
2598	ASSERT(found_key);
2599
2600	key.type = key_type;
2601	key.objectid = iobjectid;
2602	key.offset = ioff;
2603
2604	ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
2605	if (ret < 0)
2606		return ret;
2607
2608	eb = path->nodes[0];
2609	if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
2610		ret = btrfs_next_leaf(fs_root, path);
2611		if (ret)
2612			return ret;
2613		eb = path->nodes[0];
2614	}
2615
2616	btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
2617	if (found_key->type != key.type ||
2618			found_key->objectid != key.objectid)
2619		return 1;
2620
2621	return 0;
2622}
2623
2624static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
2625							struct btrfs_path *p,
2626							int write_lock_level)
2627{
2628	struct btrfs_fs_info *fs_info = root->fs_info;
2629	struct extent_buffer *b;
2630	int root_lock;
2631	int level = 0;
2632
2633	/* We try very hard to do read locks on the root */
2634	root_lock = BTRFS_READ_LOCK;
2635
2636	if (p->search_commit_root) {
2637		/*
2638		 * The commit roots are read only so we always do read locks,
2639		 * and we always must hold the commit_root_sem when doing
2640		 * searches on them, the only exception is send where we don't
2641		 * want to block transaction commits for a long time, so
2642		 * we need to clone the commit root in order to avoid races
2643		 * with transaction commits that create a snapshot of one of
2644		 * the roots used by a send operation.
2645		 */
2646		if (p->need_commit_sem) {
2647			down_read(&fs_info->commit_root_sem);
2648			b = btrfs_clone_extent_buffer(root->commit_root);
2649			up_read(&fs_info->commit_root_sem);
2650			if (!b)
2651				return ERR_PTR(-ENOMEM);
2652
2653		} else {
2654			b = root->commit_root;
2655			extent_buffer_get(b);
2656		}
2657		level = btrfs_header_level(b);
2658		/*
2659		 * Ensure that all callers have set skip_locking when
2660		 * p->search_commit_root = 1.
2661		 */
2662		ASSERT(p->skip_locking == 1);
2663
2664		goto out;
2665	}
2666
2667	if (p->skip_locking) {
2668		b = btrfs_root_node(root);
2669		level = btrfs_header_level(b);
2670		goto out;
2671	}
2672
 
 
 
2673	/*
2674	 * If the level is set to maximum, we can skip trying to get the read
2675	 * lock.
2676	 */
2677	if (write_lock_level < BTRFS_MAX_LEVEL) {
2678		/*
2679		 * We don't know the level of the root node until we actually
2680		 * have it read locked
2681		 */
2682		b = btrfs_read_lock_root_node(root);
 
 
 
 
 
 
2683		level = btrfs_header_level(b);
2684		if (level > write_lock_level)
2685			goto out;
2686
2687		/* Whoops, must trade for write lock */
2688		btrfs_tree_read_unlock(b);
2689		free_extent_buffer(b);
2690	}
2691
2692	b = btrfs_lock_root_node(root);
2693	root_lock = BTRFS_WRITE_LOCK;
2694
2695	/* The level might have changed, check again */
2696	level = btrfs_header_level(b);
2697
2698out:
 
 
 
 
 
 
 
 
 
 
 
2699	p->nodes[level] = b;
2700	if (!p->skip_locking)
2701		p->locks[level] = root_lock;
2702	/*
2703	 * Callers are responsible for dropping b's references.
2704	 */
2705	return b;
2706}
2707
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2708
2709/*
2710 * btrfs_search_slot - look for a key in a tree and perform necessary
2711 * modifications to preserve tree invariants.
2712 *
2713 * @trans:	Handle of transaction, used when modifying the tree
2714 * @p:		Holds all btree nodes along the search path
2715 * @root:	The root node of the tree
2716 * @key:	The key we are looking for
2717 * @ins_len:	Indicates purpose of search, for inserts it is 1, for
2718 *		deletions it's -1. 0 for plain searches
 
 
 
 
 
 
2719 * @cow:	boolean should CoW operations be performed. Must always be 1
2720 *		when modifying the tree.
2721 *
2722 * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
2723 * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
2724 *
2725 * If @key is found, 0 is returned and you can find the item in the leaf level
2726 * of the path (level 0)
2727 *
2728 * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
2729 * points to the slot where it should be inserted
2730 *
2731 * If an error is encountered while searching the tree a negative error number
2732 * is returned
2733 */
2734int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2735		      const struct btrfs_key *key, struct btrfs_path *p,
2736		      int ins_len, int cow)
2737{
 
2738	struct extent_buffer *b;
2739	int slot;
2740	int ret;
2741	int err;
2742	int level;
2743	int lowest_unlock = 1;
2744	/* everything at write_lock_level or lower must be write locked */
2745	int write_lock_level = 0;
2746	u8 lowest_level = 0;
2747	int min_write_lock_level;
2748	int prev_cmp;
2749
 
 
2750	lowest_level = p->lowest_level;
2751	WARN_ON(lowest_level && ins_len > 0);
2752	WARN_ON(p->nodes[0] != NULL);
2753	BUG_ON(!cow && ins_len);
2754
 
 
 
 
 
 
 
2755	if (ins_len < 0) {
2756		lowest_unlock = 2;
2757
2758		/* when we are removing items, we might have to go up to level
2759		 * two as we update tree pointers  Make sure we keep write
2760		 * for those levels as well
2761		 */
2762		write_lock_level = 2;
2763	} else if (ins_len > 0) {
2764		/*
2765		 * for inserting items, make sure we have a write lock on
2766		 * level 1 so we can update keys
2767		 */
2768		write_lock_level = 1;
2769	}
2770
2771	if (!cow)
2772		write_lock_level = -1;
2773
2774	if (cow && (p->keep_locks || p->lowest_level))
2775		write_lock_level = BTRFS_MAX_LEVEL;
2776
2777	min_write_lock_level = write_lock_level;
2778
 
 
 
 
 
 
 
 
 
 
2779again:
2780	prev_cmp = -1;
2781	b = btrfs_search_slot_get_root(root, p, write_lock_level);
2782	if (IS_ERR(b)) {
2783		ret = PTR_ERR(b);
2784		goto done;
2785	}
2786
2787	while (b) {
 
 
2788		level = btrfs_header_level(b);
2789
2790		/*
2791		 * setup the path here so we can release it under lock
2792		 * contention with the cow code
2793		 */
2794		if (cow) {
2795			bool last_level = (level == (BTRFS_MAX_LEVEL - 1));
2796
2797			/*
2798			 * if we don't really need to cow this block
2799			 * then we don't want to set the path blocking,
2800			 * so we test it here
2801			 */
2802			if (!should_cow_block(trans, root, b)) {
2803				trans->dirty = true;
2804				goto cow_done;
2805			}
2806
2807			/*
2808			 * must have write locks on this node and the
2809			 * parent
2810			 */
2811			if (level > write_lock_level ||
2812			    (level + 1 > write_lock_level &&
2813			    level + 1 < BTRFS_MAX_LEVEL &&
2814			    p->nodes[level + 1])) {
2815				write_lock_level = level + 1;
2816				btrfs_release_path(p);
2817				goto again;
2818			}
2819
2820			btrfs_set_path_blocking(p);
2821			if (last_level)
2822				err = btrfs_cow_block(trans, root, b, NULL, 0,
2823						      &b);
 
2824			else
2825				err = btrfs_cow_block(trans, root, b,
2826						      p->nodes[level + 1],
2827						      p->slots[level + 1], &b);
 
2828			if (err) {
2829				ret = err;
2830				goto done;
2831			}
2832		}
2833cow_done:
2834		p->nodes[level] = b;
2835		/*
2836		 * Leave path with blocking locks to avoid massive
2837		 * lock context switch, this is made on purpose.
2838		 */
2839
2840		/*
2841		 * we have a lock on b and as long as we aren't changing
2842		 * the tree, there is no way to for the items in b to change.
2843		 * It is safe to drop the lock on our parent before we
2844		 * go through the expensive btree search on b.
2845		 *
2846		 * If we're inserting or deleting (ins_len != 0), then we might
2847		 * be changing slot zero, which may require changing the parent.
2848		 * So, we can't drop the lock until after we know which slot
2849		 * we're operating on.
2850		 */
2851		if (!ins_len && !p->keep_locks) {
2852			int u = level + 1;
2853
2854			if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2855				btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2856				p->locks[u] = 0;
2857			}
2858		}
2859
2860		ret = key_search(b, key, level, &prev_cmp, &slot);
 
 
 
 
 
 
 
 
 
 
 
2861		if (ret < 0)
2862			goto done;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2863
2864		if (level != 0) {
2865			int dec = 0;
2866			if (ret && slot > 0) {
2867				dec = 1;
2868				slot -= 1;
2869			}
2870			p->slots[level] = slot;
2871			err = setup_nodes_for_search(trans, root, p, b, level,
2872					     ins_len, &write_lock_level);
2873			if (err == -EAGAIN)
2874				goto again;
2875			if (err) {
2876				ret = err;
2877				goto done;
2878			}
2879			b = p->nodes[level];
2880			slot = p->slots[level];
2881
2882			/*
2883			 * slot 0 is special, if we change the key
2884			 * we have to update the parent pointer
2885			 * which means we must have a write lock
2886			 * on the parent
2887			 */
2888			if (slot == 0 && ins_len &&
2889			    write_lock_level < level + 1) {
2890				write_lock_level = level + 1;
2891				btrfs_release_path(p);
2892				goto again;
2893			}
2894
2895			unlock_up(p, level, lowest_unlock,
2896				  min_write_lock_level, &write_lock_level);
 
 
 
 
 
2897
2898			if (level == lowest_level) {
2899				if (dec)
2900					p->slots[level]++;
2901				goto done;
2902			}
2903
2904			err = read_block_for_search(root, p, &b, level,
2905						    slot, key);
2906			if (err == -EAGAIN)
2907				goto again;
2908			if (err) {
2909				ret = err;
2910				goto done;
2911			}
2912
2913			if (!p->skip_locking) {
2914				level = btrfs_header_level(b);
2915				if (level <= write_lock_level) {
2916					if (!btrfs_try_tree_write_lock(b)) {
2917						btrfs_set_path_blocking(p);
2918						btrfs_tree_lock(b);
 
 
 
2919					}
2920					p->locks[level] = BTRFS_WRITE_LOCK;
2921				} else {
2922					if (!btrfs_tree_read_lock_atomic(b)) {
2923						btrfs_set_path_blocking(p);
2924						btrfs_tree_read_lock(b);
2925					}
2926					p->locks[level] = BTRFS_READ_LOCK;
2927				}
2928				p->nodes[level] = b;
2929			}
2930		} else {
2931			p->slots[level] = slot;
2932			if (ins_len > 0 &&
2933			    btrfs_leaf_free_space(b) < ins_len) {
2934				if (write_lock_level < 1) {
2935					write_lock_level = 1;
2936					btrfs_release_path(p);
2937					goto again;
2938				}
2939
2940				btrfs_set_path_blocking(p);
2941				err = split_leaf(trans, root, key,
2942						 p, ins_len, ret == 0);
2943
2944				BUG_ON(err > 0);
2945				if (err) {
2946					ret = err;
2947					goto done;
2948				}
2949			}
2950			if (!p->search_for_split)
2951				unlock_up(p, level, lowest_unlock,
2952					  min_write_lock_level, NULL);
2953			goto done;
2954		}
2955	}
2956	ret = 1;
2957done:
2958	/*
2959	 * we don't really know what they plan on doing with the path
2960	 * from here on, so for now just mark it as blocking
2961	 */
2962	if (!p->leave_spinning)
2963		btrfs_set_path_blocking(p);
2964	if (ret < 0 && !p->skip_release_on_error)
2965		btrfs_release_path(p);
 
 
 
 
 
 
 
 
 
 
2966	return ret;
2967}
 
2968
2969/*
2970 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2971 * current state of the tree together with the operations recorded in the tree
2972 * modification log to search for the key in a previous version of this tree, as
2973 * denoted by the time_seq parameter.
2974 *
2975 * Naturally, there is no support for insert, delete or cow operations.
2976 *
2977 * The resulting path and return value will be set up as if we called
2978 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2979 */
2980int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
2981			  struct btrfs_path *p, u64 time_seq)
2982{
2983	struct btrfs_fs_info *fs_info = root->fs_info;
2984	struct extent_buffer *b;
2985	int slot;
2986	int ret;
2987	int err;
2988	int level;
2989	int lowest_unlock = 1;
2990	u8 lowest_level = 0;
2991	int prev_cmp = -1;
2992
2993	lowest_level = p->lowest_level;
2994	WARN_ON(p->nodes[0] != NULL);
 
2995
2996	if (p->search_commit_root) {
2997		BUG_ON(time_seq);
2998		return btrfs_search_slot(NULL, root, key, p, 0, 0);
2999	}
3000
3001again:
3002	b = get_old_root(root, time_seq);
3003	if (!b) {
3004		ret = -EIO;
3005		goto done;
3006	}
3007	level = btrfs_header_level(b);
3008	p->locks[level] = BTRFS_READ_LOCK;
3009
3010	while (b) {
 
 
3011		level = btrfs_header_level(b);
3012		p->nodes[level] = b;
3013
3014		/*
3015		 * we have a lock on b and as long as we aren't changing
3016		 * the tree, there is no way to for the items in b to change.
3017		 * It is safe to drop the lock on our parent before we
3018		 * go through the expensive btree search on b.
3019		 */
3020		btrfs_unlock_up_safe(p, level + 1);
3021
3022		/*
3023		 * Since we can unwind ebs we want to do a real search every
3024		 * time.
3025		 */
3026		prev_cmp = -1;
3027		ret = key_search(b, key, level, &prev_cmp, &slot);
3028		if (ret < 0)
3029			goto done;
3030
3031		if (level != 0) {
3032			int dec = 0;
3033			if (ret && slot > 0) {
3034				dec = 1;
3035				slot -= 1;
3036			}
3037			p->slots[level] = slot;
3038			unlock_up(p, level, lowest_unlock, 0, NULL);
 
 
 
 
 
 
 
 
 
3039
3040			if (level == lowest_level) {
3041				if (dec)
3042					p->slots[level]++;
3043				goto done;
3044			}
3045
3046			err = read_block_for_search(root, p, &b, level,
3047						    slot, key);
3048			if (err == -EAGAIN)
3049				goto again;
3050			if (err) {
3051				ret = err;
3052				goto done;
3053			}
3054
3055			level = btrfs_header_level(b);
3056			if (!btrfs_tree_read_lock_atomic(b)) {
3057				btrfs_set_path_blocking(p);
3058				btrfs_tree_read_lock(b);
3059			}
3060			b = tree_mod_log_rewind(fs_info, p, b, time_seq);
3061			if (!b) {
3062				ret = -ENOMEM;
3063				goto done;
3064			}
3065			p->locks[level] = BTRFS_READ_LOCK;
3066			p->nodes[level] = b;
3067		} else {
3068			p->slots[level] = slot;
3069			unlock_up(p, level, lowest_unlock, 0, NULL);
3070			goto done;
3071		}
 
 
3072	}
3073	ret = 1;
3074done:
3075	if (!p->leave_spinning)
3076		btrfs_set_path_blocking(p);
3077	if (ret < 0)
3078		btrfs_release_path(p);
3079
3080	return ret;
3081}
3082
3083/*
3084 * helper to use instead of search slot if no exact match is needed but
3085 * instead the next or previous item should be returned.
3086 * When find_higher is true, the next higher item is returned, the next lower
3087 * otherwise.
3088 * When return_any and find_higher are both true, and no higher item is found,
3089 * return the next lower instead.
3090 * When return_any is true and find_higher is false, and no lower item is found,
3091 * return the next higher instead.
3092 * It returns 0 if any item is found, 1 if none is found (tree empty), and
3093 * < 0 on error
3094 */
3095int btrfs_search_slot_for_read(struct btrfs_root *root,
3096			       const struct btrfs_key *key,
3097			       struct btrfs_path *p, int find_higher,
3098			       int return_any)
3099{
3100	int ret;
3101	struct extent_buffer *leaf;
3102
3103again:
3104	ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
3105	if (ret <= 0)
3106		return ret;
3107	/*
3108	 * a return value of 1 means the path is at the position where the
3109	 * item should be inserted. Normally this is the next bigger item,
3110	 * but in case the previous item is the last in a leaf, path points
3111	 * to the first free slot in the previous leaf, i.e. at an invalid
3112	 * item.
3113	 */
3114	leaf = p->nodes[0];
3115
3116	if (find_higher) {
3117		if (p->slots[0] >= btrfs_header_nritems(leaf)) {
3118			ret = btrfs_next_leaf(root, p);
3119			if (ret <= 0)
3120				return ret;
3121			if (!return_any)
3122				return 1;
3123			/*
3124			 * no higher item found, return the next
3125			 * lower instead
3126			 */
3127			return_any = 0;
3128			find_higher = 0;
3129			btrfs_release_path(p);
3130			goto again;
3131		}
3132	} else {
3133		if (p->slots[0] == 0) {
3134			ret = btrfs_prev_leaf(root, p);
3135			if (ret < 0)
3136				return ret;
3137			if (!ret) {
3138				leaf = p->nodes[0];
3139				if (p->slots[0] == btrfs_header_nritems(leaf))
3140					p->slots[0]--;
3141				return 0;
3142			}
3143			if (!return_any)
3144				return 1;
3145			/*
3146			 * no lower item found, return the next
3147			 * higher instead
3148			 */
3149			return_any = 0;
3150			find_higher = 1;
3151			btrfs_release_path(p);
3152			goto again;
3153		} else {
3154			--p->slots[0];
3155		}
3156	}
3157	return 0;
3158}
3159
3160/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3161 * adjust the pointers going up the tree, starting at level
3162 * making sure the right key of each node is points to 'key'.
3163 * This is used after shifting pointers to the left, so it stops
3164 * fixing up pointers when a given leaf/node is not in slot 0 of the
3165 * higher levels
3166 *
3167 */
3168static void fixup_low_keys(struct btrfs_path *path,
3169			   struct btrfs_disk_key *key, int level)
3170{
3171	int i;
3172	struct extent_buffer *t;
3173	int ret;
3174
3175	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
3176		int tslot = path->slots[i];
3177
3178		if (!path->nodes[i])
3179			break;
3180		t = path->nodes[i];
3181		ret = tree_mod_log_insert_key(t, tslot, MOD_LOG_KEY_REPLACE,
3182				GFP_ATOMIC);
3183		BUG_ON(ret < 0);
3184		btrfs_set_node_key(t, key, tslot);
3185		btrfs_mark_buffer_dirty(path->nodes[i]);
3186		if (tslot != 0)
3187			break;
3188	}
3189}
3190
3191/*
3192 * update item key.
3193 *
3194 * This function isn't completely safe. It's the caller's responsibility
3195 * that the new key won't break the order
3196 */
3197void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
3198			     struct btrfs_path *path,
3199			     const struct btrfs_key *new_key)
3200{
3201	struct btrfs_disk_key disk_key;
3202	struct extent_buffer *eb;
3203	int slot;
3204
3205	eb = path->nodes[0];
3206	slot = path->slots[0];
3207	if (slot > 0) {
3208		btrfs_item_key(eb, &disk_key, slot - 1);
3209		if (unlikely(comp_keys(&disk_key, new_key) >= 0)) {
3210			btrfs_crit(fs_info,
3211		"slot %u key (%llu %u %llu) new key (%llu %u %llu)",
3212				   slot, btrfs_disk_key_objectid(&disk_key),
3213				   btrfs_disk_key_type(&disk_key),
3214				   btrfs_disk_key_offset(&disk_key),
3215				   new_key->objectid, new_key->type,
3216				   new_key->offset);
3217			btrfs_print_leaf(eb);
3218			BUG();
3219		}
3220	}
3221	if (slot < btrfs_header_nritems(eb) - 1) {
3222		btrfs_item_key(eb, &disk_key, slot + 1);
3223		if (unlikely(comp_keys(&disk_key, new_key) <= 0)) {
3224			btrfs_crit(fs_info,
3225		"slot %u key (%llu %u %llu) new key (%llu %u %llu)",
3226				   slot, btrfs_disk_key_objectid(&disk_key),
3227				   btrfs_disk_key_type(&disk_key),
3228				   btrfs_disk_key_offset(&disk_key),
3229				   new_key->objectid, new_key->type,
3230				   new_key->offset);
3231			btrfs_print_leaf(eb);
3232			BUG();
3233		}
3234	}
3235
3236	btrfs_cpu_key_to_disk(&disk_key, new_key);
3237	btrfs_set_item_key(eb, &disk_key, slot);
3238	btrfs_mark_buffer_dirty(eb);
3239	if (slot == 0)
3240		fixup_low_keys(path, &disk_key, 1);
3241}
3242
3243/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3244 * try to push data from one node into the next node left in the
3245 * tree.
3246 *
3247 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3248 * error, and > 0 if there was no room in the left hand block.
3249 */
3250static int push_node_left(struct btrfs_trans_handle *trans,
3251			  struct extent_buffer *dst,
3252			  struct extent_buffer *src, int empty)
3253{
3254	struct btrfs_fs_info *fs_info = trans->fs_info;
3255	int push_items = 0;
3256	int src_nritems;
3257	int dst_nritems;
3258	int ret = 0;
3259
3260	src_nritems = btrfs_header_nritems(src);
3261	dst_nritems = btrfs_header_nritems(dst);
3262	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
3263	WARN_ON(btrfs_header_generation(src) != trans->transid);
3264	WARN_ON(btrfs_header_generation(dst) != trans->transid);
3265
3266	if (!empty && src_nritems <= 8)
3267		return 1;
3268
3269	if (push_items <= 0)
3270		return 1;
3271
3272	if (empty) {
3273		push_items = min(src_nritems, push_items);
3274		if (push_items < src_nritems) {
3275			/* leave at least 8 pointers in the node if
3276			 * we aren't going to empty it
3277			 */
3278			if (src_nritems - push_items < 8) {
3279				if (push_items <= 8)
3280					return 1;
3281				push_items -= 8;
3282			}
3283		}
3284	} else
3285		push_items = min(src_nritems - 8, push_items);
3286
3287	ret = tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items);
 
 
 
 
 
 
3288	if (ret) {
3289		btrfs_abort_transaction(trans, ret);
3290		return ret;
3291	}
3292	copy_extent_buffer(dst, src,
3293			   btrfs_node_key_ptr_offset(dst_nritems),
3294			   btrfs_node_key_ptr_offset(0),
3295			   push_items * sizeof(struct btrfs_key_ptr));
3296
3297	if (push_items < src_nritems) {
3298		/*
3299		 * Don't call tree_mod_log_insert_move here, key removal was
3300		 * already fully logged by tree_mod_log_eb_copy above.
3301		 */
3302		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3303				      btrfs_node_key_ptr_offset(push_items),
3304				      (src_nritems - push_items) *
3305				      sizeof(struct btrfs_key_ptr));
3306	}
3307	btrfs_set_header_nritems(src, src_nritems - push_items);
3308	btrfs_set_header_nritems(dst, dst_nritems + push_items);
3309	btrfs_mark_buffer_dirty(src);
3310	btrfs_mark_buffer_dirty(dst);
3311
3312	return ret;
3313}
3314
3315/*
3316 * try to push data from one node into the next node right in the
3317 * tree.
3318 *
3319 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3320 * error, and > 0 if there was no room in the right hand block.
3321 *
3322 * this will  only push up to 1/2 the contents of the left node over
3323 */
3324static int balance_node_right(struct btrfs_trans_handle *trans,
3325			      struct extent_buffer *dst,
3326			      struct extent_buffer *src)
3327{
3328	struct btrfs_fs_info *fs_info = trans->fs_info;
3329	int push_items = 0;
3330	int max_push;
3331	int src_nritems;
3332	int dst_nritems;
3333	int ret = 0;
3334
3335	WARN_ON(btrfs_header_generation(src) != trans->transid);
3336	WARN_ON(btrfs_header_generation(dst) != trans->transid);
3337
3338	src_nritems = btrfs_header_nritems(src);
3339	dst_nritems = btrfs_header_nritems(dst);
3340	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
3341	if (push_items <= 0)
3342		return 1;
3343
3344	if (src_nritems < 4)
3345		return 1;
3346
3347	max_push = src_nritems / 2 + 1;
3348	/* don't try to empty the node */
3349	if (max_push >= src_nritems)
3350		return 1;
3351
3352	if (max_push < push_items)
3353		push_items = max_push;
3354
3355	ret = tree_mod_log_insert_move(dst, push_items, 0, dst_nritems);
 
 
 
 
 
 
3356	BUG_ON(ret < 0);
3357	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3358				      btrfs_node_key_ptr_offset(0),
3359				      (dst_nritems) *
3360				      sizeof(struct btrfs_key_ptr));
3361
3362	ret = tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items,
3363				   push_items);
3364	if (ret) {
3365		btrfs_abort_transaction(trans, ret);
3366		return ret;
3367	}
3368	copy_extent_buffer(dst, src,
3369			   btrfs_node_key_ptr_offset(0),
3370			   btrfs_node_key_ptr_offset(src_nritems - push_items),
3371			   push_items * sizeof(struct btrfs_key_ptr));
3372
3373	btrfs_set_header_nritems(src, src_nritems - push_items);
3374	btrfs_set_header_nritems(dst, dst_nritems + push_items);
3375
3376	btrfs_mark_buffer_dirty(src);
3377	btrfs_mark_buffer_dirty(dst);
3378
3379	return ret;
3380}
3381
3382/*
3383 * helper function to insert a new root level in the tree.
3384 * A new node is allocated, and a single item is inserted to
3385 * point to the existing root
3386 *
3387 * returns zero on success or < 0 on failure.
3388 */
3389static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3390			   struct btrfs_root *root,
3391			   struct btrfs_path *path, int level)
3392{
3393	struct btrfs_fs_info *fs_info = root->fs_info;
3394	u64 lower_gen;
3395	struct extent_buffer *lower;
3396	struct extent_buffer *c;
3397	struct extent_buffer *old;
3398	struct btrfs_disk_key lower_key;
3399	int ret;
3400
3401	BUG_ON(path->nodes[level]);
3402	BUG_ON(path->nodes[level-1] != root->node);
3403
3404	lower = path->nodes[level-1];
3405	if (level == 1)
3406		btrfs_item_key(lower, &lower_key, 0);
3407	else
3408		btrfs_node_key(lower, &lower_key, 0);
3409
3410	c = alloc_tree_block_no_bg_flush(trans, root, 0, &lower_key, level,
3411					 root->node->start, 0);
 
3412	if (IS_ERR(c))
3413		return PTR_ERR(c);
3414
3415	root_add_used(root, fs_info->nodesize);
3416
3417	btrfs_set_header_nritems(c, 1);
3418	btrfs_set_node_key(c, &lower_key, 0);
3419	btrfs_set_node_blockptr(c, 0, lower->start);
3420	lower_gen = btrfs_header_generation(lower);
3421	WARN_ON(lower_gen != trans->transid);
3422
3423	btrfs_set_node_ptr_generation(c, 0, lower_gen);
3424
3425	btrfs_mark_buffer_dirty(c);
3426
3427	old = root->node;
3428	ret = tree_mod_log_insert_root(root->node, c, 0);
3429	BUG_ON(ret < 0);
3430	rcu_assign_pointer(root->node, c);
3431
3432	/* the super has an extra ref to root->node */
3433	free_extent_buffer(old);
3434
3435	add_root_to_dirty_list(root);
3436	extent_buffer_get(c);
3437	path->nodes[level] = c;
3438	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
3439	path->slots[level] = 0;
3440	return 0;
3441}
3442
3443/*
3444 * worker function to insert a single pointer in a node.
3445 * the node should have enough room for the pointer already
3446 *
3447 * slot and level indicate where you want the key to go, and
3448 * blocknr is the block the key points to.
3449 */
3450static void insert_ptr(struct btrfs_trans_handle *trans,
3451		       struct btrfs_path *path,
3452		       struct btrfs_disk_key *key, u64 bytenr,
3453		       int slot, int level)
3454{
3455	struct extent_buffer *lower;
3456	int nritems;
3457	int ret;
3458
3459	BUG_ON(!path->nodes[level]);
3460	btrfs_assert_tree_locked(path->nodes[level]);
3461	lower = path->nodes[level];
3462	nritems = btrfs_header_nritems(lower);
3463	BUG_ON(slot > nritems);
3464	BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info));
3465	if (slot != nritems) {
3466		if (level) {
3467			ret = tree_mod_log_insert_move(lower, slot + 1, slot,
3468					nritems - slot);
3469			BUG_ON(ret < 0);
3470		}
3471		memmove_extent_buffer(lower,
3472			      btrfs_node_key_ptr_offset(slot + 1),
3473			      btrfs_node_key_ptr_offset(slot),
3474			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
3475	}
3476	if (level) {
3477		ret = tree_mod_log_insert_key(lower, slot, MOD_LOG_KEY_ADD,
3478				GFP_NOFS);
3479		BUG_ON(ret < 0);
3480	}
3481	btrfs_set_node_key(lower, key, slot);
3482	btrfs_set_node_blockptr(lower, slot, bytenr);
3483	WARN_ON(trans->transid == 0);
3484	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3485	btrfs_set_header_nritems(lower, nritems + 1);
3486	btrfs_mark_buffer_dirty(lower);
3487}
3488
3489/*
3490 * split the node at the specified level in path in two.
3491 * The path is corrected to point to the appropriate node after the split
3492 *
3493 * Before splitting this tries to make some room in the node by pushing
3494 * left and right, if either one works, it returns right away.
3495 *
3496 * returns 0 on success and < 0 on failure
3497 */
3498static noinline int split_node(struct btrfs_trans_handle *trans,
3499			       struct btrfs_root *root,
3500			       struct btrfs_path *path, int level)
3501{
3502	struct btrfs_fs_info *fs_info = root->fs_info;
3503	struct extent_buffer *c;
3504	struct extent_buffer *split;
3505	struct btrfs_disk_key disk_key;
3506	int mid;
3507	int ret;
3508	u32 c_nritems;
3509
3510	c = path->nodes[level];
3511	WARN_ON(btrfs_header_generation(c) != trans->transid);
3512	if (c == root->node) {
3513		/*
3514		 * trying to split the root, lets make a new one
3515		 *
3516		 * tree mod log: We don't log_removal old root in
3517		 * insert_new_root, because that root buffer will be kept as a
3518		 * normal node. We are going to log removal of half of the
3519		 * elements below with tree_mod_log_eb_copy. We're holding a
3520		 * tree lock on the buffer, which is why we cannot race with
3521		 * other tree_mod_log users.
3522		 */
3523		ret = insert_new_root(trans, root, path, level + 1);
3524		if (ret)
3525			return ret;
3526	} else {
3527		ret = push_nodes_for_insert(trans, root, path, level);
3528		c = path->nodes[level];
3529		if (!ret && btrfs_header_nritems(c) <
3530		    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
3531			return 0;
3532		if (ret < 0)
3533			return ret;
3534	}
3535
3536	c_nritems = btrfs_header_nritems(c);
3537	mid = (c_nritems + 1) / 2;
3538	btrfs_node_key(c, &disk_key, mid);
3539
3540	split = alloc_tree_block_no_bg_flush(trans, root, 0, &disk_key, level,
3541					     c->start, 0);
 
3542	if (IS_ERR(split))
3543		return PTR_ERR(split);
3544
3545	root_add_used(root, fs_info->nodesize);
3546	ASSERT(btrfs_header_level(c) == level);
3547
3548	ret = tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid);
3549	if (ret) {
3550		btrfs_abort_transaction(trans, ret);
3551		return ret;
3552	}
3553	copy_extent_buffer(split, c,
3554			   btrfs_node_key_ptr_offset(0),
3555			   btrfs_node_key_ptr_offset(mid),
3556			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3557	btrfs_set_header_nritems(split, c_nritems - mid);
3558	btrfs_set_header_nritems(c, mid);
3559	ret = 0;
3560
3561	btrfs_mark_buffer_dirty(c);
3562	btrfs_mark_buffer_dirty(split);
3563
3564	insert_ptr(trans, path, &disk_key, split->start,
3565		   path->slots[level + 1] + 1, level + 1);
3566
3567	if (path->slots[level] >= mid) {
3568		path->slots[level] -= mid;
3569		btrfs_tree_unlock(c);
3570		free_extent_buffer(c);
3571		path->nodes[level] = split;
3572		path->slots[level + 1] += 1;
3573	} else {
3574		btrfs_tree_unlock(split);
3575		free_extent_buffer(split);
3576	}
3577	return ret;
3578}
3579
3580/*
3581 * how many bytes are required to store the items in a leaf.  start
3582 * and nr indicate which items in the leaf to check.  This totals up the
3583 * space used both by the item structs and the item data
3584 */
3585static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3586{
3587	struct btrfs_item *start_item;
3588	struct btrfs_item *end_item;
3589	struct btrfs_map_token token;
3590	int data_len;
3591	int nritems = btrfs_header_nritems(l);
3592	int end = min(nritems, start + nr) - 1;
3593
3594	if (!nr)
3595		return 0;
3596	btrfs_init_map_token(&token, l);
3597	start_item = btrfs_item_nr(start);
3598	end_item = btrfs_item_nr(end);
3599	data_len = btrfs_token_item_offset(l, start_item, &token) +
3600		btrfs_token_item_size(l, start_item, &token);
3601	data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
3602	data_len += sizeof(struct btrfs_item) * nr;
3603	WARN_ON(data_len < 0);
3604	return data_len;
3605}
3606
3607/*
3608 * The space between the end of the leaf items and
3609 * the start of the leaf data.  IOW, how much room
3610 * the leaf has left for both items and data
3611 */
3612noinline int btrfs_leaf_free_space(struct extent_buffer *leaf)
3613{
3614	struct btrfs_fs_info *fs_info = leaf->fs_info;
3615	int nritems = btrfs_header_nritems(leaf);
3616	int ret;
3617
3618	ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
3619	if (ret < 0) {
3620		btrfs_crit(fs_info,
3621			   "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3622			   ret,
3623			   (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
3624			   leaf_space_used(leaf, 0, nritems), nritems);
3625	}
3626	return ret;
3627}
3628
3629/*
3630 * min slot controls the lowest index we're willing to push to the
3631 * right.  We'll push up to and including min_slot, but no lower
3632 */
3633static noinline int __push_leaf_right(struct btrfs_path *path,
3634				      int data_size, int empty,
3635				      struct extent_buffer *right,
3636				      int free_space, u32 left_nritems,
3637				      u32 min_slot)
3638{
3639	struct btrfs_fs_info *fs_info = right->fs_info;
3640	struct extent_buffer *left = path->nodes[0];
3641	struct extent_buffer *upper = path->nodes[1];
3642	struct btrfs_map_token token;
3643	struct btrfs_disk_key disk_key;
3644	int slot;
3645	u32 i;
3646	int push_space = 0;
3647	int push_items = 0;
3648	struct btrfs_item *item;
3649	u32 nr;
3650	u32 right_nritems;
3651	u32 data_end;
3652	u32 this_item_size;
3653
3654	if (empty)
3655		nr = 0;
3656	else
3657		nr = max_t(u32, 1, min_slot);
3658
3659	if (path->slots[0] >= left_nritems)
3660		push_space += data_size;
3661
3662	slot = path->slots[1];
3663	i = left_nritems - 1;
3664	while (i >= nr) {
3665		item = btrfs_item_nr(i);
3666
3667		if (!empty && push_items > 0) {
3668			if (path->slots[0] > i)
3669				break;
3670			if (path->slots[0] == i) {
3671				int space = btrfs_leaf_free_space(left);
3672
3673				if (space + push_space * 2 > free_space)
3674					break;
3675			}
3676		}
3677
3678		if (path->slots[0] == i)
3679			push_space += data_size;
3680
3681		this_item_size = btrfs_item_size(left, item);
3682		if (this_item_size + sizeof(*item) + push_space > free_space)
 
3683			break;
3684
3685		push_items++;
3686		push_space += this_item_size + sizeof(*item);
3687		if (i == 0)
3688			break;
3689		i--;
3690	}
3691
3692	if (push_items == 0)
3693		goto out_unlock;
3694
3695	WARN_ON(!empty && push_items == left_nritems);
3696
3697	/* push left to right */
3698	right_nritems = btrfs_header_nritems(right);
3699
3700	push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3701	push_space -= leaf_data_end(left);
3702
3703	/* make room in the right data area */
3704	data_end = leaf_data_end(right);
3705	memmove_extent_buffer(right,
3706			      BTRFS_LEAF_DATA_OFFSET + data_end - push_space,
3707			      BTRFS_LEAF_DATA_OFFSET + data_end,
3708			      BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
3709
3710	/* copy from the left data area */
3711	copy_extent_buffer(right, left, BTRFS_LEAF_DATA_OFFSET +
3712		     BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3713		     BTRFS_LEAF_DATA_OFFSET + leaf_data_end(left),
3714		     push_space);
3715
3716	memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3717			      btrfs_item_nr_offset(0),
3718			      right_nritems * sizeof(struct btrfs_item));
3719
3720	/* copy the items from left to right */
3721	copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3722		   btrfs_item_nr_offset(left_nritems - push_items),
3723		   push_items * sizeof(struct btrfs_item));
3724
3725	/* update the item pointers */
3726	btrfs_init_map_token(&token, right);
3727	right_nritems += push_items;
3728	btrfs_set_header_nritems(right, right_nritems);
3729	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3730	for (i = 0; i < right_nritems; i++) {
3731		item = btrfs_item_nr(i);
3732		push_space -= btrfs_token_item_size(right, item, &token);
3733		btrfs_set_token_item_offset(right, item, push_space, &token);
3734	}
3735
3736	left_nritems -= push_items;
3737	btrfs_set_header_nritems(left, left_nritems);
3738
3739	if (left_nritems)
3740		btrfs_mark_buffer_dirty(left);
3741	else
3742		btrfs_clean_tree_block(left);
3743
3744	btrfs_mark_buffer_dirty(right);
3745
3746	btrfs_item_key(right, &disk_key, 0);
3747	btrfs_set_node_key(upper, &disk_key, slot + 1);
3748	btrfs_mark_buffer_dirty(upper);
3749
3750	/* then fixup the leaf pointer in the path */
3751	if (path->slots[0] >= left_nritems) {
3752		path->slots[0] -= left_nritems;
3753		if (btrfs_header_nritems(path->nodes[0]) == 0)
3754			btrfs_clean_tree_block(path->nodes[0]);
3755		btrfs_tree_unlock(path->nodes[0]);
3756		free_extent_buffer(path->nodes[0]);
3757		path->nodes[0] = right;
3758		path->slots[1] += 1;
3759	} else {
3760		btrfs_tree_unlock(right);
3761		free_extent_buffer(right);
3762	}
3763	return 0;
3764
3765out_unlock:
3766	btrfs_tree_unlock(right);
3767	free_extent_buffer(right);
3768	return 1;
3769}
3770
3771/*
3772 * push some data in the path leaf to the right, trying to free up at
3773 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3774 *
3775 * returns 1 if the push failed because the other node didn't have enough
3776 * room, 0 if everything worked out and < 0 if there were major errors.
3777 *
3778 * this will push starting from min_slot to the end of the leaf.  It won't
3779 * push any slot lower than min_slot
3780 */
3781static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3782			   *root, struct btrfs_path *path,
3783			   int min_data_size, int data_size,
3784			   int empty, u32 min_slot)
3785{
3786	struct extent_buffer *left = path->nodes[0];
3787	struct extent_buffer *right;
3788	struct extent_buffer *upper;
3789	int slot;
3790	int free_space;
3791	u32 left_nritems;
3792	int ret;
3793
3794	if (!path->nodes[1])
3795		return 1;
3796
3797	slot = path->slots[1];
3798	upper = path->nodes[1];
3799	if (slot >= btrfs_header_nritems(upper) - 1)
3800		return 1;
3801
3802	btrfs_assert_tree_locked(path->nodes[1]);
3803
3804	right = btrfs_read_node_slot(upper, slot + 1);
3805	/*
3806	 * slot + 1 is not valid or we fail to read the right node,
3807	 * no big deal, just return.
3808	 */
3809	if (IS_ERR(right))
3810		return 1;
3811
3812	btrfs_tree_lock(right);
3813	btrfs_set_lock_blocking_write(right);
3814
3815	free_space = btrfs_leaf_free_space(right);
3816	if (free_space < data_size)
3817		goto out_unlock;
3818
3819	/* cow and double check */
3820	ret = btrfs_cow_block(trans, root, right, upper,
3821			      slot + 1, &right);
3822	if (ret)
3823		goto out_unlock;
3824
3825	free_space = btrfs_leaf_free_space(right);
3826	if (free_space < data_size)
3827		goto out_unlock;
3828
3829	left_nritems = btrfs_header_nritems(left);
3830	if (left_nritems == 0)
3831		goto out_unlock;
3832
 
 
 
 
 
 
3833	if (path->slots[0] == left_nritems && !empty) {
3834		/* Key greater than all keys in the leaf, right neighbor has
3835		 * enough room for it and we're not emptying our leaf to delete
3836		 * it, therefore use right neighbor to insert the new item and
3837		 * no need to touch/dirty our left leaf. */
3838		btrfs_tree_unlock(left);
3839		free_extent_buffer(left);
3840		path->nodes[0] = right;
3841		path->slots[0] = 0;
3842		path->slots[1]++;
3843		return 0;
3844	}
3845
3846	return __push_leaf_right(path, min_data_size, empty,
3847				right, free_space, left_nritems, min_slot);
3848out_unlock:
3849	btrfs_tree_unlock(right);
3850	free_extent_buffer(right);
3851	return 1;
3852}
3853
3854/*
3855 * push some data in the path leaf to the left, trying to free up at
3856 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3857 *
3858 * max_slot can put a limit on how far into the leaf we'll push items.  The
3859 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3860 * items
3861 */
3862static noinline int __push_leaf_left(struct btrfs_path *path, int data_size,
3863				     int empty, struct extent_buffer *left,
3864				     int free_space, u32 right_nritems,
3865				     u32 max_slot)
3866{
3867	struct btrfs_fs_info *fs_info = left->fs_info;
3868	struct btrfs_disk_key disk_key;
3869	struct extent_buffer *right = path->nodes[0];
3870	int i;
3871	int push_space = 0;
3872	int push_items = 0;
3873	struct btrfs_item *item;
3874	u32 old_left_nritems;
3875	u32 nr;
3876	int ret = 0;
3877	u32 this_item_size;
3878	u32 old_left_item_size;
3879	struct btrfs_map_token token;
3880
3881	if (empty)
3882		nr = min(right_nritems, max_slot);
3883	else
3884		nr = min(right_nritems - 1, max_slot);
3885
3886	for (i = 0; i < nr; i++) {
3887		item = btrfs_item_nr(i);
3888
3889		if (!empty && push_items > 0) {
3890			if (path->slots[0] < i)
3891				break;
3892			if (path->slots[0] == i) {
3893				int space = btrfs_leaf_free_space(right);
3894
3895				if (space + push_space * 2 > free_space)
3896					break;
3897			}
3898		}
3899
3900		if (path->slots[0] == i)
3901			push_space += data_size;
3902
3903		this_item_size = btrfs_item_size(right, item);
3904		if (this_item_size + sizeof(*item) + push_space > free_space)
 
3905			break;
3906
3907		push_items++;
3908		push_space += this_item_size + sizeof(*item);
3909	}
3910
3911	if (push_items == 0) {
3912		ret = 1;
3913		goto out;
3914	}
3915	WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3916
3917	/* push data from right to left */
3918	copy_extent_buffer(left, right,
3919			   btrfs_item_nr_offset(btrfs_header_nritems(left)),
3920			   btrfs_item_nr_offset(0),
3921			   push_items * sizeof(struct btrfs_item));
3922
3923	push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
3924		     btrfs_item_offset_nr(right, push_items - 1);
3925
3926	copy_extent_buffer(left, right, BTRFS_LEAF_DATA_OFFSET +
3927		     leaf_data_end(left) - push_space,
3928		     BTRFS_LEAF_DATA_OFFSET +
3929		     btrfs_item_offset_nr(right, push_items - 1),
3930		     push_space);
3931	old_left_nritems = btrfs_header_nritems(left);
3932	BUG_ON(old_left_nritems <= 0);
3933
3934	btrfs_init_map_token(&token, left);
3935	old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3936	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3937		u32 ioff;
3938
3939		item = btrfs_item_nr(i);
3940
3941		ioff = btrfs_token_item_offset(left, item, &token);
3942		btrfs_set_token_item_offset(left, item,
3943		      ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size),
3944		      &token);
3945	}
3946	btrfs_set_header_nritems(left, old_left_nritems + push_items);
3947
3948	/* fixup right node */
3949	if (push_items > right_nritems)
3950		WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3951		       right_nritems);
3952
3953	if (push_items < right_nritems) {
3954		push_space = btrfs_item_offset_nr(right, push_items - 1) -
3955						  leaf_data_end(right);
3956		memmove_extent_buffer(right, BTRFS_LEAF_DATA_OFFSET +
3957				      BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3958				      BTRFS_LEAF_DATA_OFFSET +
3959				      leaf_data_end(right), push_space);
3960
3961		memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3962			      btrfs_item_nr_offset(push_items),
3963			     (btrfs_header_nritems(right) - push_items) *
3964			     sizeof(struct btrfs_item));
3965	}
3966
3967	btrfs_init_map_token(&token, right);
3968	right_nritems -= push_items;
3969	btrfs_set_header_nritems(right, right_nritems);
3970	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3971	for (i = 0; i < right_nritems; i++) {
3972		item = btrfs_item_nr(i);
3973
3974		push_space = push_space - btrfs_token_item_size(right,
3975								item, &token);
3976		btrfs_set_token_item_offset(right, item, push_space, &token);
3977	}
3978
3979	btrfs_mark_buffer_dirty(left);
3980	if (right_nritems)
3981		btrfs_mark_buffer_dirty(right);
3982	else
3983		btrfs_clean_tree_block(right);
3984
3985	btrfs_item_key(right, &disk_key, 0);
3986	fixup_low_keys(path, &disk_key, 1);
3987
3988	/* then fixup the leaf pointer in the path */
3989	if (path->slots[0] < push_items) {
3990		path->slots[0] += old_left_nritems;
3991		btrfs_tree_unlock(path->nodes[0]);
3992		free_extent_buffer(path->nodes[0]);
3993		path->nodes[0] = left;
3994		path->slots[1] -= 1;
3995	} else {
3996		btrfs_tree_unlock(left);
3997		free_extent_buffer(left);
3998		path->slots[0] -= push_items;
3999	}
4000	BUG_ON(path->slots[0] < 0);
4001	return ret;
4002out:
4003	btrfs_tree_unlock(left);
4004	free_extent_buffer(left);
4005	return ret;
4006}
4007
4008/*
4009 * push some data in the path leaf to the left, trying to free up at
4010 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
4011 *
4012 * max_slot can put a limit on how far into the leaf we'll push items.  The
4013 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
4014 * items
4015 */
4016static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
4017			  *root, struct btrfs_path *path, int min_data_size,
4018			  int data_size, int empty, u32 max_slot)
4019{
4020	struct extent_buffer *right = path->nodes[0];
4021	struct extent_buffer *left;
4022	int slot;
4023	int free_space;
4024	u32 right_nritems;
4025	int ret = 0;
4026
4027	slot = path->slots[1];
4028	if (slot == 0)
4029		return 1;
4030	if (!path->nodes[1])
4031		return 1;
4032
4033	right_nritems = btrfs_header_nritems(right);
4034	if (right_nritems == 0)
4035		return 1;
4036
4037	btrfs_assert_tree_locked(path->nodes[1]);
4038
4039	left = btrfs_read_node_slot(path->nodes[1], slot - 1);
4040	/*
4041	 * slot - 1 is not valid or we fail to read the left node,
4042	 * no big deal, just return.
4043	 */
4044	if (IS_ERR(left))
4045		return 1;
4046
4047	btrfs_tree_lock(left);
4048	btrfs_set_lock_blocking_write(left);
4049
4050	free_space = btrfs_leaf_free_space(left);
4051	if (free_space < data_size) {
4052		ret = 1;
4053		goto out;
4054	}
4055
4056	/* cow and double check */
4057	ret = btrfs_cow_block(trans, root, left,
4058			      path->nodes[1], slot - 1, &left);
 
4059	if (ret) {
4060		/* we hit -ENOSPC, but it isn't fatal here */
4061		if (ret == -ENOSPC)
4062			ret = 1;
4063		goto out;
4064	}
4065
4066	free_space = btrfs_leaf_free_space(left);
4067	if (free_space < data_size) {
4068		ret = 1;
4069		goto out;
4070	}
4071
4072	return __push_leaf_left(path, min_data_size,
4073			       empty, left, free_space, right_nritems,
4074			       max_slot);
4075out:
4076	btrfs_tree_unlock(left);
4077	free_extent_buffer(left);
4078	return ret;
4079}
4080
4081/*
4082 * split the path's leaf in two, making sure there is at least data_size
4083 * available for the resulting leaf level of the path.
4084 */
4085static noinline void copy_for_split(struct btrfs_trans_handle *trans,
4086				    struct btrfs_path *path,
4087				    struct extent_buffer *l,
4088				    struct extent_buffer *right,
4089				    int slot, int mid, int nritems)
4090{
4091	struct btrfs_fs_info *fs_info = trans->fs_info;
4092	int data_copy_size;
4093	int rt_data_off;
4094	int i;
4095	struct btrfs_disk_key disk_key;
4096	struct btrfs_map_token token;
4097
4098	nritems = nritems - mid;
4099	btrfs_set_header_nritems(right, nritems);
4100	data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(l);
 
 
4101
4102	copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
4103			   btrfs_item_nr_offset(mid),
4104			   nritems * sizeof(struct btrfs_item));
4105
4106	copy_extent_buffer(right, l,
4107		     BTRFS_LEAF_DATA_OFFSET + BTRFS_LEAF_DATA_SIZE(fs_info) -
4108		     data_copy_size, BTRFS_LEAF_DATA_OFFSET +
4109		     leaf_data_end(l), data_copy_size);
4110
4111	rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_end_nr(l, mid);
4112
4113	btrfs_init_map_token(&token, right);
4114	for (i = 0; i < nritems; i++) {
4115		struct btrfs_item *item = btrfs_item_nr(i);
4116		u32 ioff;
4117
4118		ioff = btrfs_token_item_offset(right, item, &token);
4119		btrfs_set_token_item_offset(right, item,
4120					    ioff + rt_data_off, &token);
4121	}
4122
4123	btrfs_set_header_nritems(l, mid);
4124	btrfs_item_key(right, &disk_key, 0);
4125	insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1);
4126
4127	btrfs_mark_buffer_dirty(right);
4128	btrfs_mark_buffer_dirty(l);
4129	BUG_ON(path->slots[0] != slot);
4130
4131	if (mid <= slot) {
4132		btrfs_tree_unlock(path->nodes[0]);
4133		free_extent_buffer(path->nodes[0]);
4134		path->nodes[0] = right;
4135		path->slots[0] -= mid;
4136		path->slots[1] += 1;
4137	} else {
4138		btrfs_tree_unlock(right);
4139		free_extent_buffer(right);
4140	}
4141
4142	BUG_ON(path->slots[0] < 0);
4143}
4144
4145/*
4146 * double splits happen when we need to insert a big item in the middle
4147 * of a leaf.  A double split can leave us with 3 mostly empty leaves:
4148 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
4149 *          A                 B                 C
4150 *
4151 * We avoid this by trying to push the items on either side of our target
4152 * into the adjacent leaves.  If all goes well we can avoid the double split
4153 * completely.
4154 */
4155static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
4156					  struct btrfs_root *root,
4157					  struct btrfs_path *path,
4158					  int data_size)
4159{
4160	int ret;
4161	int progress = 0;
4162	int slot;
4163	u32 nritems;
4164	int space_needed = data_size;
4165
4166	slot = path->slots[0];
4167	if (slot < btrfs_header_nritems(path->nodes[0]))
4168		space_needed -= btrfs_leaf_free_space(path->nodes[0]);
4169
4170	/*
4171	 * try to push all the items after our slot into the
4172	 * right leaf
4173	 */
4174	ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
4175	if (ret < 0)
4176		return ret;
4177
4178	if (ret == 0)
4179		progress++;
4180
4181	nritems = btrfs_header_nritems(path->nodes[0]);
4182	/*
4183	 * our goal is to get our slot at the start or end of a leaf.  If
4184	 * we've done so we're done
4185	 */
4186	if (path->slots[0] == 0 || path->slots[0] == nritems)
4187		return 0;
4188
4189	if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
4190		return 0;
4191
4192	/* try to push all the items before our slot into the next leaf */
4193	slot = path->slots[0];
4194	space_needed = data_size;
4195	if (slot > 0)
4196		space_needed -= btrfs_leaf_free_space(path->nodes[0]);
4197	ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
4198	if (ret < 0)
4199		return ret;
4200
4201	if (ret == 0)
4202		progress++;
4203
4204	if (progress)
4205		return 0;
4206	return 1;
4207}
4208
4209/*
4210 * split the path's leaf in two, making sure there is at least data_size
4211 * available for the resulting leaf level of the path.
4212 *
4213 * returns 0 if all went well and < 0 on failure.
4214 */
4215static noinline int split_leaf(struct btrfs_trans_handle *trans,
4216			       struct btrfs_root *root,
4217			       const struct btrfs_key *ins_key,
4218			       struct btrfs_path *path, int data_size,
4219			       int extend)
4220{
4221	struct btrfs_disk_key disk_key;
4222	struct extent_buffer *l;
4223	u32 nritems;
4224	int mid;
4225	int slot;
4226	struct extent_buffer *right;
4227	struct btrfs_fs_info *fs_info = root->fs_info;
4228	int ret = 0;
4229	int wret;
4230	int split;
4231	int num_doubles = 0;
4232	int tried_avoid_double = 0;
4233
4234	l = path->nodes[0];
4235	slot = path->slots[0];
4236	if (extend && data_size + btrfs_item_size_nr(l, slot) +
4237	    sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
4238		return -EOVERFLOW;
4239
4240	/* first try to make some room by pushing left and right */
4241	if (data_size && path->nodes[1]) {
4242		int space_needed = data_size;
4243
4244		if (slot < btrfs_header_nritems(l))
4245			space_needed -= btrfs_leaf_free_space(l);
4246
4247		wret = push_leaf_right(trans, root, path, space_needed,
4248				       space_needed, 0, 0);
4249		if (wret < 0)
4250			return wret;
4251		if (wret) {
4252			space_needed = data_size;
4253			if (slot > 0)
4254				space_needed -= btrfs_leaf_free_space(l);
4255			wret = push_leaf_left(trans, root, path, space_needed,
4256					      space_needed, 0, (u32)-1);
4257			if (wret < 0)
4258				return wret;
4259		}
4260		l = path->nodes[0];
4261
4262		/* did the pushes work? */
4263		if (btrfs_leaf_free_space(l) >= data_size)
4264			return 0;
4265	}
4266
4267	if (!path->nodes[1]) {
4268		ret = insert_new_root(trans, root, path, 1);
4269		if (ret)
4270			return ret;
4271	}
4272again:
4273	split = 1;
4274	l = path->nodes[0];
4275	slot = path->slots[0];
4276	nritems = btrfs_header_nritems(l);
4277	mid = (nritems + 1) / 2;
4278
4279	if (mid <= slot) {
4280		if (nritems == 1 ||
4281		    leaf_space_used(l, mid, nritems - mid) + data_size >
4282			BTRFS_LEAF_DATA_SIZE(fs_info)) {
4283			if (slot >= nritems) {
4284				split = 0;
4285			} else {
4286				mid = slot;
4287				if (mid != nritems &&
4288				    leaf_space_used(l, mid, nritems - mid) +
4289				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4290					if (data_size && !tried_avoid_double)
4291						goto push_for_double;
4292					split = 2;
4293				}
4294			}
4295		}
4296	} else {
4297		if (leaf_space_used(l, 0, mid) + data_size >
4298			BTRFS_LEAF_DATA_SIZE(fs_info)) {
4299			if (!extend && data_size && slot == 0) {
4300				split = 0;
4301			} else if ((extend || !data_size) && slot == 0) {
4302				mid = 1;
4303			} else {
4304				mid = slot;
4305				if (mid != nritems &&
4306				    leaf_space_used(l, mid, nritems - mid) +
4307				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4308					if (data_size && !tried_avoid_double)
4309						goto push_for_double;
4310					split = 2;
4311				}
4312			}
4313		}
4314	}
4315
4316	if (split == 0)
4317		btrfs_cpu_key_to_disk(&disk_key, ins_key);
4318	else
4319		btrfs_item_key(l, &disk_key, mid);
4320
4321	right = alloc_tree_block_no_bg_flush(trans, root, 0, &disk_key, 0,
4322					     l->start, 0);
 
 
 
 
 
 
 
 
 
 
4323	if (IS_ERR(right))
4324		return PTR_ERR(right);
4325
4326	root_add_used(root, fs_info->nodesize);
4327
4328	if (split == 0) {
4329		if (mid <= slot) {
4330			btrfs_set_header_nritems(right, 0);
4331			insert_ptr(trans, path, &disk_key,
4332				   right->start, path->slots[1] + 1, 1);
4333			btrfs_tree_unlock(path->nodes[0]);
4334			free_extent_buffer(path->nodes[0]);
4335			path->nodes[0] = right;
4336			path->slots[0] = 0;
4337			path->slots[1] += 1;
4338		} else {
4339			btrfs_set_header_nritems(right, 0);
4340			insert_ptr(trans, path, &disk_key,
4341				   right->start, path->slots[1], 1);
4342			btrfs_tree_unlock(path->nodes[0]);
4343			free_extent_buffer(path->nodes[0]);
4344			path->nodes[0] = right;
4345			path->slots[0] = 0;
4346			if (path->slots[1] == 0)
4347				fixup_low_keys(path, &disk_key, 1);
4348		}
4349		/*
4350		 * We create a new leaf 'right' for the required ins_len and
4351		 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
4352		 * the content of ins_len to 'right'.
4353		 */
4354		return ret;
4355	}
4356
4357	copy_for_split(trans, path, l, right, slot, mid, nritems);
4358
4359	if (split == 2) {
4360		BUG_ON(num_doubles != 0);
4361		num_doubles++;
4362		goto again;
4363	}
4364
4365	return 0;
4366
4367push_for_double:
4368	push_for_double_split(trans, root, path, data_size);
4369	tried_avoid_double = 1;
4370	if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
4371		return 0;
4372	goto again;
4373}
4374
4375static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4376					 struct btrfs_root *root,
4377					 struct btrfs_path *path, int ins_len)
4378{
4379	struct btrfs_key key;
4380	struct extent_buffer *leaf;
4381	struct btrfs_file_extent_item *fi;
4382	u64 extent_len = 0;
4383	u32 item_size;
4384	int ret;
4385
4386	leaf = path->nodes[0];
4387	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4388
4389	BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4390	       key.type != BTRFS_EXTENT_CSUM_KEY);
4391
4392	if (btrfs_leaf_free_space(leaf) >= ins_len)
4393		return 0;
4394
4395	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4396	if (key.type == BTRFS_EXTENT_DATA_KEY) {
4397		fi = btrfs_item_ptr(leaf, path->slots[0],
4398				    struct btrfs_file_extent_item);
4399		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4400	}
4401	btrfs_release_path(path);
4402
4403	path->keep_locks = 1;
4404	path->search_for_split = 1;
4405	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4406	path->search_for_split = 0;
4407	if (ret > 0)
4408		ret = -EAGAIN;
4409	if (ret < 0)
4410		goto err;
4411
4412	ret = -EAGAIN;
4413	leaf = path->nodes[0];
4414	/* if our item isn't there, return now */
4415	if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4416		goto err;
4417
4418	/* the leaf has  changed, it now has room.  return now */
4419	if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len)
4420		goto err;
4421
4422	if (key.type == BTRFS_EXTENT_DATA_KEY) {
4423		fi = btrfs_item_ptr(leaf, path->slots[0],
4424				    struct btrfs_file_extent_item);
4425		if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4426			goto err;
4427	}
4428
4429	btrfs_set_path_blocking(path);
4430	ret = split_leaf(trans, root, &key, path, ins_len, 1);
4431	if (ret)
4432		goto err;
4433
4434	path->keep_locks = 0;
4435	btrfs_unlock_up_safe(path, 1);
4436	return 0;
4437err:
4438	path->keep_locks = 0;
4439	return ret;
4440}
4441
4442static noinline int split_item(struct btrfs_path *path,
4443			       const struct btrfs_key *new_key,
4444			       unsigned long split_offset)
4445{
4446	struct extent_buffer *leaf;
4447	struct btrfs_item *item;
4448	struct btrfs_item *new_item;
4449	int slot;
4450	char *buf;
4451	u32 nritems;
4452	u32 item_size;
4453	u32 orig_offset;
4454	struct btrfs_disk_key disk_key;
4455
4456	leaf = path->nodes[0];
4457	BUG_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item));
4458
4459	btrfs_set_path_blocking(path);
4460
4461	item = btrfs_item_nr(path->slots[0]);
4462	orig_offset = btrfs_item_offset(leaf, item);
4463	item_size = btrfs_item_size(leaf, item);
4464
4465	buf = kmalloc(item_size, GFP_NOFS);
4466	if (!buf)
4467		return -ENOMEM;
4468
4469	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4470			    path->slots[0]), item_size);
4471
4472	slot = path->slots[0] + 1;
4473	nritems = btrfs_header_nritems(leaf);
4474	if (slot != nritems) {
4475		/* shift the items */
4476		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4477				btrfs_item_nr_offset(slot),
4478				(nritems - slot) * sizeof(struct btrfs_item));
4479	}
4480
4481	btrfs_cpu_key_to_disk(&disk_key, new_key);
4482	btrfs_set_item_key(leaf, &disk_key, slot);
4483
4484	new_item = btrfs_item_nr(slot);
4485
4486	btrfs_set_item_offset(leaf, new_item, orig_offset);
4487	btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4488
4489	btrfs_set_item_offset(leaf, item,
4490			      orig_offset + item_size - split_offset);
4491	btrfs_set_item_size(leaf, item, split_offset);
4492
4493	btrfs_set_header_nritems(leaf, nritems + 1);
4494
4495	/* write the data for the start of the original item */
4496	write_extent_buffer(leaf, buf,
4497			    btrfs_item_ptr_offset(leaf, path->slots[0]),
4498			    split_offset);
4499
4500	/* write the data for the new item */
4501	write_extent_buffer(leaf, buf + split_offset,
4502			    btrfs_item_ptr_offset(leaf, slot),
4503			    item_size - split_offset);
4504	btrfs_mark_buffer_dirty(leaf);
4505
4506	BUG_ON(btrfs_leaf_free_space(leaf) < 0);
4507	kfree(buf);
4508	return 0;
4509}
4510
4511/*
4512 * This function splits a single item into two items,
4513 * giving 'new_key' to the new item and splitting the
4514 * old one at split_offset (from the start of the item).
4515 *
4516 * The path may be released by this operation.  After
4517 * the split, the path is pointing to the old item.  The
4518 * new item is going to be in the same node as the old one.
4519 *
4520 * Note, the item being split must be smaller enough to live alone on
4521 * a tree block with room for one extra struct btrfs_item
4522 *
4523 * This allows us to split the item in place, keeping a lock on the
4524 * leaf the entire time.
4525 */
4526int btrfs_split_item(struct btrfs_trans_handle *trans,
4527		     struct btrfs_root *root,
4528		     struct btrfs_path *path,
4529		     const struct btrfs_key *new_key,
4530		     unsigned long split_offset)
4531{
4532	int ret;
4533	ret = setup_leaf_for_split(trans, root, path,
4534				   sizeof(struct btrfs_item));
4535	if (ret)
4536		return ret;
4537
4538	ret = split_item(path, new_key, split_offset);
4539	return ret;
4540}
4541
4542/*
4543 * This function duplicate a item, giving 'new_key' to the new item.
4544 * It guarantees both items live in the same tree leaf and the new item
4545 * is contiguous with the original item.
4546 *
4547 * This allows us to split file extent in place, keeping a lock on the
4548 * leaf the entire time.
4549 */
4550int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4551			 struct btrfs_root *root,
4552			 struct btrfs_path *path,
4553			 const struct btrfs_key *new_key)
4554{
4555	struct extent_buffer *leaf;
4556	int ret;
4557	u32 item_size;
4558
4559	leaf = path->nodes[0];
4560	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4561	ret = setup_leaf_for_split(trans, root, path,
4562				   item_size + sizeof(struct btrfs_item));
4563	if (ret)
4564		return ret;
4565
4566	path->slots[0]++;
4567	setup_items_for_insert(root, path, new_key, &item_size,
4568			       item_size, item_size +
4569			       sizeof(struct btrfs_item), 1);
4570	leaf = path->nodes[0];
4571	memcpy_extent_buffer(leaf,
4572			     btrfs_item_ptr_offset(leaf, path->slots[0]),
4573			     btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4574			     item_size);
4575	return 0;
4576}
4577
4578/*
4579 * make the item pointed to by the path smaller.  new_size indicates
4580 * how small to make it, and from_end tells us if we just chop bytes
4581 * off the end of the item or if we shift the item to chop bytes off
4582 * the front.
4583 */
4584void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end)
4585{
4586	int slot;
4587	struct extent_buffer *leaf;
4588	struct btrfs_item *item;
4589	u32 nritems;
4590	unsigned int data_end;
4591	unsigned int old_data_start;
4592	unsigned int old_size;
4593	unsigned int size_diff;
4594	int i;
4595	struct btrfs_map_token token;
4596
4597	leaf = path->nodes[0];
4598	slot = path->slots[0];
4599
4600	old_size = btrfs_item_size_nr(leaf, slot);
4601	if (old_size == new_size)
4602		return;
4603
4604	nritems = btrfs_header_nritems(leaf);
4605	data_end = leaf_data_end(leaf);
4606
4607	old_data_start = btrfs_item_offset_nr(leaf, slot);
4608
4609	size_diff = old_size - new_size;
4610
4611	BUG_ON(slot < 0);
4612	BUG_ON(slot >= nritems);
4613
4614	/*
4615	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4616	 */
4617	/* first correct the data pointers */
4618	btrfs_init_map_token(&token, leaf);
4619	for (i = slot; i < nritems; i++) {
4620		u32 ioff;
4621		item = btrfs_item_nr(i);
4622
4623		ioff = btrfs_token_item_offset(leaf, item, &token);
4624		btrfs_set_token_item_offset(leaf, item,
4625					    ioff + size_diff, &token);
4626	}
4627
4628	/* shift the data */
4629	if (from_end) {
4630		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4631			      data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
4632			      data_end, old_data_start + new_size - data_end);
4633	} else {
4634		struct btrfs_disk_key disk_key;
4635		u64 offset;
4636
4637		btrfs_item_key(leaf, &disk_key, slot);
4638
4639		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4640			unsigned long ptr;
4641			struct btrfs_file_extent_item *fi;
4642
4643			fi = btrfs_item_ptr(leaf, slot,
4644					    struct btrfs_file_extent_item);
4645			fi = (struct btrfs_file_extent_item *)(
4646			     (unsigned long)fi - size_diff);
4647
4648			if (btrfs_file_extent_type(leaf, fi) ==
4649			    BTRFS_FILE_EXTENT_INLINE) {
4650				ptr = btrfs_item_ptr_offset(leaf, slot);
4651				memmove_extent_buffer(leaf, ptr,
4652				      (unsigned long)fi,
4653				      BTRFS_FILE_EXTENT_INLINE_DATA_START);
4654			}
4655		}
4656
4657		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4658			      data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
4659			      data_end, old_data_start - data_end);
4660
4661		offset = btrfs_disk_key_offset(&disk_key);
4662		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4663		btrfs_set_item_key(leaf, &disk_key, slot);
4664		if (slot == 0)
4665			fixup_low_keys(path, &disk_key, 1);
4666	}
4667
4668	item = btrfs_item_nr(slot);
4669	btrfs_set_item_size(leaf, item, new_size);
4670	btrfs_mark_buffer_dirty(leaf);
4671
4672	if (btrfs_leaf_free_space(leaf) < 0) {
4673		btrfs_print_leaf(leaf);
4674		BUG();
4675	}
4676}
4677
4678/*
4679 * make the item pointed to by the path bigger, data_size is the added size.
4680 */
4681void btrfs_extend_item(struct btrfs_path *path, u32 data_size)
4682{
4683	int slot;
4684	struct extent_buffer *leaf;
4685	struct btrfs_item *item;
4686	u32 nritems;
4687	unsigned int data_end;
4688	unsigned int old_data;
4689	unsigned int old_size;
4690	int i;
4691	struct btrfs_map_token token;
4692
4693	leaf = path->nodes[0];
4694
4695	nritems = btrfs_header_nritems(leaf);
4696	data_end = leaf_data_end(leaf);
4697
4698	if (btrfs_leaf_free_space(leaf) < data_size) {
4699		btrfs_print_leaf(leaf);
4700		BUG();
4701	}
4702	slot = path->slots[0];
4703	old_data = btrfs_item_end_nr(leaf, slot);
4704
4705	BUG_ON(slot < 0);
4706	if (slot >= nritems) {
4707		btrfs_print_leaf(leaf);
4708		btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d",
4709			   slot, nritems);
4710		BUG();
4711	}
4712
4713	/*
4714	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4715	 */
4716	/* first correct the data pointers */
4717	btrfs_init_map_token(&token, leaf);
4718	for (i = slot; i < nritems; i++) {
4719		u32 ioff;
4720		item = btrfs_item_nr(i);
4721
4722		ioff = btrfs_token_item_offset(leaf, item, &token);
4723		btrfs_set_token_item_offset(leaf, item,
4724					    ioff - data_size, &token);
4725	}
4726
4727	/* shift the data */
4728	memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4729		      data_end - data_size, BTRFS_LEAF_DATA_OFFSET +
4730		      data_end, old_data - data_end);
4731
4732	data_end = old_data;
4733	old_size = btrfs_item_size_nr(leaf, slot);
4734	item = btrfs_item_nr(slot);
4735	btrfs_set_item_size(leaf, item, old_size + data_size);
4736	btrfs_mark_buffer_dirty(leaf);
4737
4738	if (btrfs_leaf_free_space(leaf) < 0) {
4739		btrfs_print_leaf(leaf);
4740		BUG();
4741	}
4742}
4743
4744/*
4745 * this is a helper for btrfs_insert_empty_items, the main goal here is
4746 * to save stack depth by doing the bulk of the work in a function
4747 * that doesn't call btrfs_search_slot
4748 */
4749void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4750			    const struct btrfs_key *cpu_key, u32 *data_size,
4751			    u32 total_data, u32 total_size, int nr)
 
 
 
 
4752{
4753	struct btrfs_fs_info *fs_info = root->fs_info;
4754	struct btrfs_item *item;
4755	int i;
4756	u32 nritems;
4757	unsigned int data_end;
4758	struct btrfs_disk_key disk_key;
4759	struct extent_buffer *leaf;
4760	int slot;
4761	struct btrfs_map_token token;
 
4762
 
 
 
 
 
4763	if (path->slots[0] == 0) {
4764		btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4765		fixup_low_keys(path, &disk_key, 1);
4766	}
4767	btrfs_unlock_up_safe(path, 1);
4768
4769	leaf = path->nodes[0];
4770	slot = path->slots[0];
4771
4772	nritems = btrfs_header_nritems(leaf);
4773	data_end = leaf_data_end(leaf);
 
4774
4775	if (btrfs_leaf_free_space(leaf) < total_size) {
4776		btrfs_print_leaf(leaf);
4777		btrfs_crit(fs_info, "not enough freespace need %u have %d",
4778			   total_size, btrfs_leaf_free_space(leaf));
4779		BUG();
4780	}
4781
4782	btrfs_init_map_token(&token, leaf);
4783	if (slot != nritems) {
4784		unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4785
4786		if (old_data < data_end) {
4787			btrfs_print_leaf(leaf);
4788			btrfs_crit(fs_info, "slot %d old_data %d data_end %d",
 
4789				   slot, old_data, data_end);
4790			BUG();
4791		}
4792		/*
4793		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4794		 */
4795		/* first correct the data pointers */
4796		for (i = slot; i < nritems; i++) {
4797			u32 ioff;
4798
4799			item = btrfs_item_nr(i);
4800			ioff = btrfs_token_item_offset(leaf, item, &token);
4801			btrfs_set_token_item_offset(leaf, item,
4802						    ioff - total_data, &token);
4803		}
4804		/* shift the items */
4805		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4806			      btrfs_item_nr_offset(slot),
4807			      (nritems - slot) * sizeof(struct btrfs_item));
4808
4809		/* shift the data */
4810		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4811			      data_end - total_data, BTRFS_LEAF_DATA_OFFSET +
4812			      data_end, old_data - data_end);
4813		data_end = old_data;
4814	}
4815
4816	/* setup the item for the new data */
4817	for (i = 0; i < nr; i++) {
4818		btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4819		btrfs_set_item_key(leaf, &disk_key, slot + i);
4820		item = btrfs_item_nr(slot + i);
4821		btrfs_set_token_item_offset(leaf, item,
4822					    data_end - data_size[i], &token);
4823		data_end -= data_size[i];
4824		btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4825	}
4826
4827	btrfs_set_header_nritems(leaf, nritems + nr);
4828	btrfs_mark_buffer_dirty(leaf);
4829
4830	if (btrfs_leaf_free_space(leaf) < 0) {
4831		btrfs_print_leaf(leaf);
4832		BUG();
4833	}
4834}
4835
4836/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4837 * Given a key and some data, insert items into the tree.
4838 * This does all the path init required, making room in the tree if needed.
4839 */
4840int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4841			    struct btrfs_root *root,
4842			    struct btrfs_path *path,
4843			    const struct btrfs_key *cpu_key, u32 *data_size,
4844			    int nr)
4845{
4846	int ret = 0;
4847	int slot;
4848	int i;
4849	u32 total_size = 0;
4850	u32 total_data = 0;
4851
4852	for (i = 0; i < nr; i++)
4853		total_data += data_size[i];
4854
4855	total_size = total_data + (nr * sizeof(struct btrfs_item));
4856	ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4857	if (ret == 0)
4858		return -EEXIST;
4859	if (ret < 0)
4860		return ret;
4861
4862	slot = path->slots[0];
4863	BUG_ON(slot < 0);
4864
4865	setup_items_for_insert(root, path, cpu_key, data_size,
4866			       total_data, total_size, nr);
4867	return 0;
4868}
4869
4870/*
4871 * Given a key and some data, insert an item into the tree.
4872 * This does all the path init required, making room in the tree if needed.
4873 */
4874int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4875		      const struct btrfs_key *cpu_key, void *data,
4876		      u32 data_size)
4877{
4878	int ret = 0;
4879	struct btrfs_path *path;
4880	struct extent_buffer *leaf;
4881	unsigned long ptr;
4882
4883	path = btrfs_alloc_path();
4884	if (!path)
4885		return -ENOMEM;
4886	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4887	if (!ret) {
4888		leaf = path->nodes[0];
4889		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4890		write_extent_buffer(leaf, data, ptr, data_size);
4891		btrfs_mark_buffer_dirty(leaf);
4892	}
4893	btrfs_free_path(path);
4894	return ret;
4895}
4896
4897/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4898 * delete the pointer from a given node.
4899 *
4900 * the tree should have been previously balanced so the deletion does not
4901 * empty a node.
4902 */
4903static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4904		    int level, int slot)
4905{
4906	struct extent_buffer *parent = path->nodes[level];
4907	u32 nritems;
4908	int ret;
4909
4910	nritems = btrfs_header_nritems(parent);
4911	if (slot != nritems - 1) {
4912		if (level) {
4913			ret = tree_mod_log_insert_move(parent, slot, slot + 1,
4914					nritems - slot - 1);
4915			BUG_ON(ret < 0);
4916		}
4917		memmove_extent_buffer(parent,
4918			      btrfs_node_key_ptr_offset(slot),
4919			      btrfs_node_key_ptr_offset(slot + 1),
4920			      sizeof(struct btrfs_key_ptr) *
4921			      (nritems - slot - 1));
4922	} else if (level) {
4923		ret = tree_mod_log_insert_key(parent, slot, MOD_LOG_KEY_REMOVE,
4924				GFP_NOFS);
4925		BUG_ON(ret < 0);
4926	}
4927
4928	nritems--;
4929	btrfs_set_header_nritems(parent, nritems);
4930	if (nritems == 0 && parent == root->node) {
4931		BUG_ON(btrfs_header_level(root->node) != 1);
4932		/* just turn the root into a leaf and break */
4933		btrfs_set_header_level(root->node, 0);
4934	} else if (slot == 0) {
4935		struct btrfs_disk_key disk_key;
4936
4937		btrfs_node_key(parent, &disk_key, 0);
4938		fixup_low_keys(path, &disk_key, level + 1);
4939	}
4940	btrfs_mark_buffer_dirty(parent);
4941}
4942
4943/*
4944 * a helper function to delete the leaf pointed to by path->slots[1] and
4945 * path->nodes[1].
4946 *
4947 * This deletes the pointer in path->nodes[1] and frees the leaf
4948 * block extent.  zero is returned if it all worked out, < 0 otherwise.
4949 *
4950 * The path must have already been setup for deleting the leaf, including
4951 * all the proper balancing.  path->nodes[1] must be locked.
4952 */
4953static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4954				    struct btrfs_root *root,
4955				    struct btrfs_path *path,
4956				    struct extent_buffer *leaf)
4957{
4958	WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4959	del_ptr(root, path, 1, path->slots[1]);
4960
4961	/*
4962	 * btrfs_free_extent is expensive, we want to make sure we
4963	 * aren't holding any locks when we call it
4964	 */
4965	btrfs_unlock_up_safe(path, 0);
4966
4967	root_sub_used(root, leaf->len);
4968
4969	extent_buffer_get(leaf);
4970	btrfs_free_tree_block(trans, root, leaf, 0, 1);
4971	free_extent_buffer_stale(leaf);
4972}
4973/*
4974 * delete the item at the leaf level in path.  If that empties
4975 * the leaf, remove it from the tree
4976 */
4977int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4978		    struct btrfs_path *path, int slot, int nr)
4979{
4980	struct btrfs_fs_info *fs_info = root->fs_info;
4981	struct extent_buffer *leaf;
4982	struct btrfs_item *item;
4983	u32 last_off;
4984	u32 dsize = 0;
4985	int ret = 0;
4986	int wret;
4987	int i;
4988	u32 nritems;
4989
4990	leaf = path->nodes[0];
4991	last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4992
4993	for (i = 0; i < nr; i++)
4994		dsize += btrfs_item_size_nr(leaf, slot + i);
4995
4996	nritems = btrfs_header_nritems(leaf);
4997
4998	if (slot + nr != nritems) {
4999		int data_end = leaf_data_end(leaf);
 
5000		struct btrfs_map_token token;
 
 
5001
5002		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
5003			      data_end + dsize,
5004			      BTRFS_LEAF_DATA_OFFSET + data_end,
5005			      last_off - data_end);
 
5006
5007		btrfs_init_map_token(&token, leaf);
5008		for (i = slot + nr; i < nritems; i++) {
5009			u32 ioff;
5010
5011			item = btrfs_item_nr(i);
5012			ioff = btrfs_token_item_offset(leaf, item, &token);
5013			btrfs_set_token_item_offset(leaf, item,
5014						    ioff + dsize, &token);
5015		}
5016
5017		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
5018			      btrfs_item_nr_offset(slot + nr),
5019			      sizeof(struct btrfs_item) *
5020			      (nritems - slot - nr));
5021	}
5022	btrfs_set_header_nritems(leaf, nritems - nr);
5023	nritems -= nr;
5024
5025	/* delete the leaf if we've emptied it */
5026	if (nritems == 0) {
5027		if (leaf == root->node) {
5028			btrfs_set_header_level(leaf, 0);
5029		} else {
5030			btrfs_set_path_blocking(path);
5031			btrfs_clean_tree_block(leaf);
5032			btrfs_del_leaf(trans, root, path, leaf);
5033		}
5034	} else {
5035		int used = leaf_space_used(leaf, 0, nritems);
5036		if (slot == 0) {
5037			struct btrfs_disk_key disk_key;
5038
5039			btrfs_item_key(leaf, &disk_key, 0);
5040			fixup_low_keys(path, &disk_key, 1);
5041		}
5042
5043		/* delete the leaf if it is mostly empty */
 
 
 
 
 
 
 
5044		if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
 
 
5045			/* push_leaf_left fixes the path.
5046			 * make sure the path still points to our leaf
5047			 * for possible call to del_ptr below
5048			 */
5049			slot = path->slots[1];
5050			extent_buffer_get(leaf);
5051
5052			btrfs_set_path_blocking(path);
5053			wret = push_leaf_left(trans, root, path, 1, 1,
5054					      1, (u32)-1);
 
 
 
 
5055			if (wret < 0 && wret != -ENOSPC)
5056				ret = wret;
5057
5058			if (path->nodes[0] == leaf &&
5059			    btrfs_header_nritems(leaf)) {
5060				wret = push_leaf_right(trans, root, path, 1,
5061						       1, 1, 0);
 
 
 
 
 
 
 
 
 
 
 
 
5062				if (wret < 0 && wret != -ENOSPC)
5063					ret = wret;
5064			}
5065
5066			if (btrfs_header_nritems(leaf) == 0) {
5067				path->slots[1] = slot;
5068				btrfs_del_leaf(trans, root, path, leaf);
5069				free_extent_buffer(leaf);
5070				ret = 0;
5071			} else {
5072				/* if we're still in the path, make sure
5073				 * we're dirty.  Otherwise, one of the
5074				 * push_leaf functions must have already
5075				 * dirtied this buffer
5076				 */
5077				if (path->nodes[0] == leaf)
5078					btrfs_mark_buffer_dirty(leaf);
5079				free_extent_buffer(leaf);
5080			}
5081		} else {
5082			btrfs_mark_buffer_dirty(leaf);
5083		}
5084	}
5085	return ret;
5086}
5087
5088/*
5089 * search the tree again to find a leaf with lesser keys
5090 * returns 0 if it found something or 1 if there are no lesser leaves.
5091 * returns < 0 on io errors.
5092 *
5093 * This may release the path, and so you may lose any locks held at the
5094 * time you call it.
5095 */
5096int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
5097{
5098	struct btrfs_key key;
5099	struct btrfs_disk_key found_key;
5100	int ret;
5101
5102	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
5103
5104	if (key.offset > 0) {
5105		key.offset--;
5106	} else if (key.type > 0) {
5107		key.type--;
5108		key.offset = (u64)-1;
5109	} else if (key.objectid > 0) {
5110		key.objectid--;
5111		key.type = (u8)-1;
5112		key.offset = (u64)-1;
5113	} else {
5114		return 1;
5115	}
5116
5117	btrfs_release_path(path);
5118	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5119	if (ret < 0)
5120		return ret;
5121	btrfs_item_key(path->nodes[0], &found_key, 0);
5122	ret = comp_keys(&found_key, &key);
5123	/*
5124	 * We might have had an item with the previous key in the tree right
5125	 * before we released our path. And after we released our path, that
5126	 * item might have been pushed to the first slot (0) of the leaf we
5127	 * were holding due to a tree balance. Alternatively, an item with the
5128	 * previous key can exist as the only element of a leaf (big fat item).
5129	 * Therefore account for these 2 cases, so that our callers (like
5130	 * btrfs_previous_item) don't miss an existing item with a key matching
5131	 * the previous key we computed above.
5132	 */
5133	if (ret <= 0)
5134		return 0;
5135	return 1;
5136}
5137
5138/*
5139 * A helper function to walk down the tree starting at min_key, and looking
5140 * for nodes or leaves that are have a minimum transaction id.
5141 * This is used by the btree defrag code, and tree logging
5142 *
5143 * This does not cow, but it does stuff the starting key it finds back
5144 * into min_key, so you can call btrfs_search_slot with cow=1 on the
5145 * key and get a writable path.
5146 *
5147 * This honors path->lowest_level to prevent descent past a given level
5148 * of the tree.
5149 *
5150 * min_trans indicates the oldest transaction that you are interested
5151 * in walking through.  Any nodes or leaves older than min_trans are
5152 * skipped over (without reading them).
5153 *
5154 * returns zero if something useful was found, < 0 on error and 1 if there
5155 * was nothing in the tree that matched the search criteria.
5156 */
5157int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
5158			 struct btrfs_path *path,
5159			 u64 min_trans)
5160{
5161	struct extent_buffer *cur;
5162	struct btrfs_key found_key;
5163	int slot;
5164	int sret;
5165	u32 nritems;
5166	int level;
5167	int ret = 1;
5168	int keep_locks = path->keep_locks;
5169
 
5170	path->keep_locks = 1;
5171again:
5172	cur = btrfs_read_lock_root_node(root);
5173	level = btrfs_header_level(cur);
5174	WARN_ON(path->nodes[level]);
5175	path->nodes[level] = cur;
5176	path->locks[level] = BTRFS_READ_LOCK;
5177
5178	if (btrfs_header_generation(cur) < min_trans) {
5179		ret = 1;
5180		goto out;
5181	}
5182	while (1) {
5183		nritems = btrfs_header_nritems(cur);
5184		level = btrfs_header_level(cur);
5185		sret = btrfs_bin_search(cur, min_key, level, &slot);
5186		if (sret < 0) {
5187			ret = sret;
5188			goto out;
5189		}
5190
5191		/* at the lowest level, we're done, setup the path and exit */
5192		if (level == path->lowest_level) {
5193			if (slot >= nritems)
5194				goto find_next_key;
5195			ret = 0;
5196			path->slots[level] = slot;
5197			btrfs_item_key_to_cpu(cur, &found_key, slot);
5198			goto out;
5199		}
5200		if (sret && slot > 0)
5201			slot--;
5202		/*
5203		 * check this node pointer against the min_trans parameters.
5204		 * If it is too old, old, skip to the next one.
5205		 */
5206		while (slot < nritems) {
5207			u64 gen;
5208
5209			gen = btrfs_node_ptr_generation(cur, slot);
5210			if (gen < min_trans) {
5211				slot++;
5212				continue;
5213			}
5214			break;
5215		}
5216find_next_key:
5217		/*
5218		 * we didn't find a candidate key in this node, walk forward
5219		 * and find another one
5220		 */
5221		if (slot >= nritems) {
5222			path->slots[level] = slot;
5223			btrfs_set_path_blocking(path);
5224			sret = btrfs_find_next_key(root, path, min_key, level,
5225						  min_trans);
5226			if (sret == 0) {
5227				btrfs_release_path(path);
5228				goto again;
5229			} else {
5230				goto out;
5231			}
5232		}
5233		/* save our key for returning back */
5234		btrfs_node_key_to_cpu(cur, &found_key, slot);
5235		path->slots[level] = slot;
5236		if (level == path->lowest_level) {
5237			ret = 0;
5238			goto out;
5239		}
5240		btrfs_set_path_blocking(path);
5241		cur = btrfs_read_node_slot(cur, slot);
5242		if (IS_ERR(cur)) {
5243			ret = PTR_ERR(cur);
5244			goto out;
5245		}
5246
5247		btrfs_tree_read_lock(cur);
5248
5249		path->locks[level - 1] = BTRFS_READ_LOCK;
5250		path->nodes[level - 1] = cur;
5251		unlock_up(path, level, 1, 0, NULL);
5252	}
5253out:
5254	path->keep_locks = keep_locks;
5255	if (ret == 0) {
5256		btrfs_unlock_up_safe(path, path->lowest_level + 1);
5257		btrfs_set_path_blocking(path);
5258		memcpy(min_key, &found_key, sizeof(found_key));
5259	}
5260	return ret;
5261}
5262
5263/*
5264 * this is similar to btrfs_next_leaf, but does not try to preserve
5265 * and fixup the path.  It looks for and returns the next key in the
5266 * tree based on the current path and the min_trans parameters.
5267 *
5268 * 0 is returned if another key is found, < 0 if there are any errors
5269 * and 1 is returned if there are no higher keys in the tree
5270 *
5271 * path->keep_locks should be set to 1 on the search made before
5272 * calling this function.
5273 */
5274int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5275			struct btrfs_key *key, int level, u64 min_trans)
5276{
5277	int slot;
5278	struct extent_buffer *c;
5279
5280	WARN_ON(!path->keep_locks && !path->skip_locking);
5281	while (level < BTRFS_MAX_LEVEL) {
5282		if (!path->nodes[level])
5283			return 1;
5284
5285		slot = path->slots[level] + 1;
5286		c = path->nodes[level];
5287next:
5288		if (slot >= btrfs_header_nritems(c)) {
5289			int ret;
5290			int orig_lowest;
5291			struct btrfs_key cur_key;
5292			if (level + 1 >= BTRFS_MAX_LEVEL ||
5293			    !path->nodes[level + 1])
5294				return 1;
5295
5296			if (path->locks[level + 1] || path->skip_locking) {
5297				level++;
5298				continue;
5299			}
5300
5301			slot = btrfs_header_nritems(c) - 1;
5302			if (level == 0)
5303				btrfs_item_key_to_cpu(c, &cur_key, slot);
5304			else
5305				btrfs_node_key_to_cpu(c, &cur_key, slot);
5306
5307			orig_lowest = path->lowest_level;
5308			btrfs_release_path(path);
5309			path->lowest_level = level;
5310			ret = btrfs_search_slot(NULL, root, &cur_key, path,
5311						0, 0);
5312			path->lowest_level = orig_lowest;
5313			if (ret < 0)
5314				return ret;
5315
5316			c = path->nodes[level];
5317			slot = path->slots[level];
5318			if (ret == 0)
5319				slot++;
5320			goto next;
5321		}
5322
5323		if (level == 0)
5324			btrfs_item_key_to_cpu(c, key, slot);
5325		else {
5326			u64 gen = btrfs_node_ptr_generation(c, slot);
5327
5328			if (gen < min_trans) {
5329				slot++;
5330				goto next;
5331			}
5332			btrfs_node_key_to_cpu(c, key, slot);
5333		}
5334		return 0;
5335	}
5336	return 1;
5337}
5338
5339/*
5340 * search the tree again to find a leaf with greater keys
5341 * returns 0 if it found something or 1 if there are no greater leaves.
5342 * returns < 0 on io errors.
5343 */
5344int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5345{
5346	return btrfs_next_old_leaf(root, path, 0);
5347}
5348
5349int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5350			u64 time_seq)
5351{
5352	int slot;
5353	int level;
5354	struct extent_buffer *c;
5355	struct extent_buffer *next;
 
5356	struct btrfs_key key;
 
5357	u32 nritems;
5358	int ret;
5359	int old_spinning = path->leave_spinning;
5360	int next_rw_lock = 0;
 
 
 
 
 
 
5361
5362	nritems = btrfs_header_nritems(path->nodes[0]);
5363	if (nritems == 0)
5364		return 1;
5365
5366	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5367again:
5368	level = 1;
5369	next = NULL;
5370	next_rw_lock = 0;
5371	btrfs_release_path(path);
5372
5373	path->keep_locks = 1;
5374	path->leave_spinning = 1;
5375
5376	if (time_seq)
5377		ret = btrfs_search_old_slot(root, &key, path, time_seq);
5378	else
 
 
 
 
 
 
 
 
 
 
 
 
5379		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 
5380	path->keep_locks = 0;
5381
5382	if (ret < 0)
5383		return ret;
5384
5385	nritems = btrfs_header_nritems(path->nodes[0]);
5386	/*
5387	 * by releasing the path above we dropped all our locks.  A balance
5388	 * could have added more items next to the key that used to be
5389	 * at the very end of the block.  So, check again here and
5390	 * advance the path if there are now more items available.
5391	 */
5392	if (nritems > 0 && path->slots[0] < nritems - 1) {
5393		if (ret == 0)
5394			path->slots[0]++;
5395		ret = 0;
5396		goto done;
5397	}
5398	/*
5399	 * So the above check misses one case:
5400	 * - after releasing the path above, someone has removed the item that
5401	 *   used to be at the very end of the block, and balance between leafs
5402	 *   gets another one with bigger key.offset to replace it.
5403	 *
5404	 * This one should be returned as well, or we can get leaf corruption
5405	 * later(esp. in __btrfs_drop_extents()).
5406	 *
5407	 * And a bit more explanation about this check,
5408	 * with ret > 0, the key isn't found, the path points to the slot
5409	 * where it should be inserted, so the path->slots[0] item must be the
5410	 * bigger one.
5411	 */
5412	if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
5413		ret = 0;
5414		goto done;
5415	}
5416
5417	while (level < BTRFS_MAX_LEVEL) {
5418		if (!path->nodes[level]) {
5419			ret = 1;
5420			goto done;
5421		}
5422
5423		slot = path->slots[level] + 1;
5424		c = path->nodes[level];
5425		if (slot >= btrfs_header_nritems(c)) {
5426			level++;
5427			if (level == BTRFS_MAX_LEVEL) {
5428				ret = 1;
5429				goto done;
5430			}
5431			continue;
5432		}
5433
5434		if (next) {
5435			btrfs_tree_unlock_rw(next, next_rw_lock);
5436			free_extent_buffer(next);
 
 
 
 
 
 
 
 
 
 
5437		}
5438
5439		next = c;
5440		next_rw_lock = path->locks[level];
5441		ret = read_block_for_search(root, path, &next, level,
5442					    slot, &key);
5443		if (ret == -EAGAIN)
5444			goto again;
5445
5446		if (ret < 0) {
5447			btrfs_release_path(path);
5448			goto done;
5449		}
5450
5451		if (!path->skip_locking) {
5452			ret = btrfs_try_tree_read_lock(next);
 
 
 
 
5453			if (!ret && time_seq) {
5454				/*
5455				 * If we don't get the lock, we may be racing
5456				 * with push_leaf_left, holding that lock while
5457				 * itself waiting for the leaf we've currently
5458				 * locked. To solve this situation, we give up
5459				 * on our lock and cycle.
5460				 */
5461				free_extent_buffer(next);
5462				btrfs_release_path(path);
5463				cond_resched();
5464				goto again;
5465			}
5466			if (!ret) {
5467				btrfs_set_path_blocking(path);
5468				btrfs_tree_read_lock(next);
5469			}
5470			next_rw_lock = BTRFS_READ_LOCK;
5471		}
5472		break;
5473	}
5474	path->slots[level] = slot;
5475	while (1) {
5476		level--;
5477		c = path->nodes[level];
5478		if (path->locks[level])
5479			btrfs_tree_unlock_rw(c, path->locks[level]);
5480
5481		free_extent_buffer(c);
5482		path->nodes[level] = next;
5483		path->slots[level] = 0;
5484		if (!path->skip_locking)
5485			path->locks[level] = next_rw_lock;
5486		if (!level)
5487			break;
5488
5489		ret = read_block_for_search(root, path, &next, level,
5490					    0, &key);
5491		if (ret == -EAGAIN)
5492			goto again;
5493
5494		if (ret < 0) {
5495			btrfs_release_path(path);
5496			goto done;
5497		}
5498
5499		if (!path->skip_locking) {
5500			ret = btrfs_try_tree_read_lock(next);
5501			if (!ret) {
5502				btrfs_set_path_blocking(path);
 
 
 
5503				btrfs_tree_read_lock(next);
5504			}
5505			next_rw_lock = BTRFS_READ_LOCK;
5506		}
5507	}
5508	ret = 0;
5509done:
5510	unlock_up(path, 0, 1, 0, NULL);
5511	path->leave_spinning = old_spinning;
5512	if (!old_spinning)
5513		btrfs_set_path_blocking(path);
 
 
 
 
 
 
5514
5515	return ret;
5516}
5517
 
 
 
 
 
 
 
 
5518/*
5519 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5520 * searching until it gets past min_objectid or finds an item of 'type'
5521 *
5522 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5523 */
5524int btrfs_previous_item(struct btrfs_root *root,
5525			struct btrfs_path *path, u64 min_objectid,
5526			int type)
5527{
5528	struct btrfs_key found_key;
5529	struct extent_buffer *leaf;
5530	u32 nritems;
5531	int ret;
5532
5533	while (1) {
5534		if (path->slots[0] == 0) {
5535			btrfs_set_path_blocking(path);
5536			ret = btrfs_prev_leaf(root, path);
5537			if (ret != 0)
5538				return ret;
5539		} else {
5540			path->slots[0]--;
5541		}
5542		leaf = path->nodes[0];
5543		nritems = btrfs_header_nritems(leaf);
5544		if (nritems == 0)
5545			return 1;
5546		if (path->slots[0] == nritems)
5547			path->slots[0]--;
5548
5549		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5550		if (found_key.objectid < min_objectid)
5551			break;
5552		if (found_key.type == type)
5553			return 0;
5554		if (found_key.objectid == min_objectid &&
5555		    found_key.type < type)
5556			break;
5557	}
5558	return 1;
5559}
5560
5561/*
5562 * search in extent tree to find a previous Metadata/Data extent item with
5563 * min objecitd.
5564 *
5565 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5566 */
5567int btrfs_previous_extent_item(struct btrfs_root *root,
5568			struct btrfs_path *path, u64 min_objectid)
5569{
5570	struct btrfs_key found_key;
5571	struct extent_buffer *leaf;
5572	u32 nritems;
5573	int ret;
5574
5575	while (1) {
5576		if (path->slots[0] == 0) {
5577			btrfs_set_path_blocking(path);
5578			ret = btrfs_prev_leaf(root, path);
5579			if (ret != 0)
5580				return ret;
5581		} else {
5582			path->slots[0]--;
5583		}
5584		leaf = path->nodes[0];
5585		nritems = btrfs_header_nritems(leaf);
5586		if (nritems == 0)
5587			return 1;
5588		if (path->slots[0] == nritems)
5589			path->slots[0]--;
5590
5591		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5592		if (found_key.objectid < min_objectid)
5593			break;
5594		if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5595		    found_key.type == BTRFS_METADATA_ITEM_KEY)
5596			return 0;
5597		if (found_key.objectid == min_objectid &&
5598		    found_key.type < BTRFS_EXTENT_ITEM_KEY)
5599			break;
5600	}
5601	return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5602}