Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007,2008 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/sched.h>
   7#include <linux/slab.h>
   8#include <linux/rbtree.h>
   9#include <linux/mm.h>
  10#include <linux/error-injection.h>
  11#include "messages.h"
  12#include "ctree.h"
  13#include "disk-io.h"
  14#include "transaction.h"
  15#include "print-tree.h"
  16#include "locking.h"
  17#include "volumes.h"
  18#include "qgroup.h"
  19#include "tree-mod-log.h"
  20#include "tree-checker.h"
  21#include "fs.h"
  22#include "accessors.h"
  23#include "extent-tree.h"
  24#include "relocation.h"
  25#include "file-item.h"
  26
  27static struct kmem_cache *btrfs_path_cachep;
  28
  29static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
  30		      *root, struct btrfs_path *path, int level);
  31static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  32		      const struct btrfs_key *ins_key, struct btrfs_path *path,
  33		      int data_size, int extend);
  34static int push_node_left(struct btrfs_trans_handle *trans,
 
  35			  struct extent_buffer *dst,
  36			  struct extent_buffer *src, int empty);
  37static int balance_node_right(struct btrfs_trans_handle *trans,
 
  38			      struct extent_buffer *dst_buf,
  39			      struct extent_buffer *src_buf);
  40static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
  41		    int level, int slot);
  42
  43static const struct btrfs_csums {
  44	u16		size;
  45	const char	name[10];
  46	const char	driver[12];
  47} btrfs_csums[] = {
  48	[BTRFS_CSUM_TYPE_CRC32] = { .size = 4, .name = "crc32c" },
  49	[BTRFS_CSUM_TYPE_XXHASH] = { .size = 8, .name = "xxhash64" },
  50	[BTRFS_CSUM_TYPE_SHA256] = { .size = 32, .name = "sha256" },
  51	[BTRFS_CSUM_TYPE_BLAKE2] = { .size = 32, .name = "blake2b",
  52				     .driver = "blake2b-256" },
  53};
  54
  55/*
  56 * The leaf data grows from end-to-front in the node.  this returns the address
  57 * of the start of the last item, which is the stop of the leaf data stack.
  58 */
  59static unsigned int leaf_data_end(const struct extent_buffer *leaf)
  60{
  61	u32 nr = btrfs_header_nritems(leaf);
  62
  63	if (nr == 0)
  64		return BTRFS_LEAF_DATA_SIZE(leaf->fs_info);
  65	return btrfs_item_offset(leaf, nr - 1);
  66}
  67
  68/*
  69 * Move data in a @leaf (using memmove, safe for overlapping ranges).
  70 *
  71 * @leaf:	leaf that we're doing a memmove on
  72 * @dst_offset:	item data offset we're moving to
  73 * @src_offset:	item data offset were' moving from
  74 * @len:	length of the data we're moving
  75 *
  76 * Wrapper around memmove_extent_buffer() that takes into account the header on
  77 * the leaf.  The btrfs_item offset's start directly after the header, so we
  78 * have to adjust any offsets to account for the header in the leaf.  This
  79 * handles that math to simplify the callers.
  80 */
  81static inline void memmove_leaf_data(const struct extent_buffer *leaf,
  82				     unsigned long dst_offset,
  83				     unsigned long src_offset,
  84				     unsigned long len)
  85{
  86	memmove_extent_buffer(leaf, btrfs_item_nr_offset(leaf, 0) + dst_offset,
  87			      btrfs_item_nr_offset(leaf, 0) + src_offset, len);
  88}
  89
  90/*
  91 * Copy item data from @src into @dst at the given @offset.
  92 *
  93 * @dst:	destination leaf that we're copying into
  94 * @src:	source leaf that we're copying from
  95 * @dst_offset:	item data offset we're copying to
  96 * @src_offset:	item data offset were' copying from
  97 * @len:	length of the data we're copying
  98 *
  99 * Wrapper around copy_extent_buffer() that takes into account the header on
 100 * the leaf.  The btrfs_item offset's start directly after the header, so we
 101 * have to adjust any offsets to account for the header in the leaf.  This
 102 * handles that math to simplify the callers.
 103 */
 104static inline void copy_leaf_data(const struct extent_buffer *dst,
 105				  const struct extent_buffer *src,
 106				  unsigned long dst_offset,
 107				  unsigned long src_offset, unsigned long len)
 108{
 109	copy_extent_buffer(dst, src, btrfs_item_nr_offset(dst, 0) + dst_offset,
 110			   btrfs_item_nr_offset(src, 0) + src_offset, len);
 111}
 112
 113/*
 114 * Move items in a @leaf (using memmove).
 115 *
 116 * @dst:	destination leaf for the items
 117 * @dst_item:	the item nr we're copying into
 118 * @src_item:	the item nr we're copying from
 119 * @nr_items:	the number of items to copy
 120 *
 121 * Wrapper around memmove_extent_buffer() that does the math to get the
 122 * appropriate offsets into the leaf from the item numbers.
 123 */
 124static inline void memmove_leaf_items(const struct extent_buffer *leaf,
 125				      int dst_item, int src_item, int nr_items)
 126{
 127	memmove_extent_buffer(leaf, btrfs_item_nr_offset(leaf, dst_item),
 128			      btrfs_item_nr_offset(leaf, src_item),
 129			      nr_items * sizeof(struct btrfs_item));
 
 
 
 
 
 
 
 130}
 131
 132/*
 133 * Copy items from @src into @dst at the given @offset.
 134 *
 135 * @dst:	destination leaf for the items
 136 * @src:	source leaf for the items
 137 * @dst_item:	the item nr we're copying into
 138 * @src_item:	the item nr we're copying from
 139 * @nr_items:	the number of items to copy
 140 *
 141 * Wrapper around copy_extent_buffer() that does the math to get the
 142 * appropriate offsets into the leaf from the item numbers.
 143 */
 144static inline void copy_leaf_items(const struct extent_buffer *dst,
 145				   const struct extent_buffer *src,
 146				   int dst_item, int src_item, int nr_items)
 147{
 148	copy_extent_buffer(dst, src, btrfs_item_nr_offset(dst, dst_item),
 149			      btrfs_item_nr_offset(src, src_item),
 150			      nr_items * sizeof(struct btrfs_item));
 151}
 152
 153int btrfs_super_csum_size(const struct btrfs_super_block *s)
 154{
 155	u16 t = btrfs_super_csum_type(s);
 156	/*
 157	 * csum type is validated at mount time
 158	 */
 159	return btrfs_csums[t].size;
 160}
 161
 162const char *btrfs_super_csum_name(u16 csum_type)
 163{
 164	/* csum type is validated at mount time */
 165	return btrfs_csums[csum_type].name;
 166}
 167
 168/*
 169 * Return driver name if defined, otherwise the name that's also a valid driver
 170 * name
 171 */
 172const char *btrfs_super_csum_driver(u16 csum_type)
 173{
 174	/* csum type is validated at mount time */
 175	return btrfs_csums[csum_type].driver[0] ?
 176		btrfs_csums[csum_type].driver :
 177		btrfs_csums[csum_type].name;
 178}
 179
 180size_t __attribute_const__ btrfs_get_num_csums(void)
 181{
 182	return ARRAY_SIZE(btrfs_csums);
 183}
 184
 185struct btrfs_path *btrfs_alloc_path(void)
 186{
 187	might_sleep();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 188
 189	return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
 
 190}
 191
 192/* this also releases the path */
 193void btrfs_free_path(struct btrfs_path *p)
 194{
 195	if (!p)
 196		return;
 197	btrfs_release_path(p);
 198	kmem_cache_free(btrfs_path_cachep, p);
 199}
 200
 201/*
 202 * path release drops references on the extent buffers in the path
 203 * and it drops any locks held by this path
 204 *
 205 * It is safe to call this on paths that no locks or extent buffers held.
 206 */
 207noinline void btrfs_release_path(struct btrfs_path *p)
 208{
 209	int i;
 210
 211	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
 212		p->slots[i] = 0;
 213		if (!p->nodes[i])
 214			continue;
 215		if (p->locks[i]) {
 216			btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
 217			p->locks[i] = 0;
 218		}
 219		free_extent_buffer(p->nodes[i]);
 220		p->nodes[i] = NULL;
 221	}
 222}
 223
 224/*
 225 * We want the transaction abort to print stack trace only for errors where the
 226 * cause could be a bug, eg. due to ENOSPC, and not for common errors that are
 227 * caused by external factors.
 228 */
 229bool __cold abort_should_print_stack(int errno)
 230{
 231	switch (errno) {
 232	case -EIO:
 233	case -EROFS:
 234	case -ENOMEM:
 235		return false;
 236	}
 237	return true;
 238}
 239
 240/*
 241 * safely gets a reference on the root node of a tree.  A lock
 242 * is not taken, so a concurrent writer may put a different node
 243 * at the root of the tree.  See btrfs_lock_root_node for the
 244 * looping required.
 245 *
 246 * The extent buffer returned by this has a reference taken, so
 247 * it won't disappear.  It may stop being the root of the tree
 248 * at any time because there are no locks held.
 249 */
 250struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
 251{
 252	struct extent_buffer *eb;
 253
 254	while (1) {
 255		rcu_read_lock();
 256		eb = rcu_dereference(root->node);
 257
 258		/*
 259		 * RCU really hurts here, we could free up the root node because
 260		 * it was COWed but we may not get the new root node yet so do
 261		 * the inc_not_zero dance and if it doesn't work then
 262		 * synchronize_rcu and try again.
 263		 */
 264		if (atomic_inc_not_zero(&eb->refs)) {
 265			rcu_read_unlock();
 266			break;
 267		}
 268		rcu_read_unlock();
 269		synchronize_rcu();
 270	}
 271	return eb;
 272}
 273
 274/*
 275 * Cowonly root (not-shareable trees, everything not subvolume or reloc roots),
 276 * just get put onto a simple dirty list.  Transaction walks this list to make
 277 * sure they get properly updated on disk.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 278 */
 279static void add_root_to_dirty_list(struct btrfs_root *root)
 280{
 281	struct btrfs_fs_info *fs_info = root->fs_info;
 282
 283	if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
 284	    !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
 285		return;
 286
 287	spin_lock(&fs_info->trans_lock);
 288	if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
 289		/* Want the extent tree to be the last on the list */
 290		if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID)
 291			list_move_tail(&root->dirty_list,
 292				       &fs_info->dirty_cowonly_roots);
 293		else
 294			list_move(&root->dirty_list,
 295				  &fs_info->dirty_cowonly_roots);
 296	}
 297	spin_unlock(&fs_info->trans_lock);
 298}
 299
 300/*
 301 * used by snapshot creation to make a copy of a root for a tree with
 302 * a given objectid.  The buffer with the new root node is returned in
 303 * cow_ret, and this func returns zero on success or a negative error code.
 304 */
 305int btrfs_copy_root(struct btrfs_trans_handle *trans,
 306		      struct btrfs_root *root,
 307		      struct extent_buffer *buf,
 308		      struct extent_buffer **cow_ret, u64 new_root_objectid)
 309{
 310	struct btrfs_fs_info *fs_info = root->fs_info;
 311	struct extent_buffer *cow;
 312	int ret = 0;
 313	int level;
 314	struct btrfs_disk_key disk_key;
 315
 316	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
 317		trans->transid != fs_info->running_transaction->transid);
 318	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
 319		trans->transid != root->last_trans);
 320
 321	level = btrfs_header_level(buf);
 322	if (level == 0)
 323		btrfs_item_key(buf, &disk_key, 0);
 324	else
 325		btrfs_node_key(buf, &disk_key, 0);
 326
 327	cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
 328				     &disk_key, level, buf->start, 0,
 329				     BTRFS_NESTING_NEW_ROOT);
 330	if (IS_ERR(cow))
 331		return PTR_ERR(cow);
 332
 333	copy_extent_buffer_full(cow, buf);
 334	btrfs_set_header_bytenr(cow, cow->start);
 335	btrfs_set_header_generation(cow, trans->transid);
 336	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
 337	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
 338				     BTRFS_HEADER_FLAG_RELOC);
 339	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
 340		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
 341	else
 342		btrfs_set_header_owner(cow, new_root_objectid);
 343
 344	write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
 345
 346	WARN_ON(btrfs_header_generation(buf) > trans->transid);
 347	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
 348		ret = btrfs_inc_ref(trans, root, cow, 1);
 349	else
 350		ret = btrfs_inc_ref(trans, root, cow, 0);
 351	if (ret) {
 352		btrfs_tree_unlock(cow);
 353		free_extent_buffer(cow);
 354		btrfs_abort_transaction(trans, ret);
 355		return ret;
 356	}
 357
 358	btrfs_mark_buffer_dirty(cow);
 359	*cow_ret = cow;
 360	return 0;
 361}
 362
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 363/*
 364 * check if the tree block can be shared by multiple trees
 365 */
 366int btrfs_block_can_be_shared(struct btrfs_root *root,
 367			      struct extent_buffer *buf)
 368{
 369	/*
 370	 * Tree blocks not in shareable trees and tree roots are never shared.
 371	 * If a block was allocated after the last snapshot and the block was
 372	 * not allocated by tree relocation, we know the block is not shared.
 
 373	 */
 374	if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
 375	    buf != root->node && buf != root->commit_root &&
 376	    (btrfs_header_generation(buf) <=
 377	     btrfs_root_last_snapshot(&root->root_item) ||
 378	     btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
 379		return 1;
 380
 
 
 
 
 381	return 0;
 382}
 383
 384static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
 385				       struct btrfs_root *root,
 386				       struct extent_buffer *buf,
 387				       struct extent_buffer *cow,
 388				       int *last_ref)
 389{
 390	struct btrfs_fs_info *fs_info = root->fs_info;
 391	u64 refs;
 392	u64 owner;
 393	u64 flags;
 394	u64 new_flags = 0;
 395	int ret;
 396
 397	/*
 398	 * Backrefs update rules:
 399	 *
 400	 * Always use full backrefs for extent pointers in tree block
 401	 * allocated by tree relocation.
 402	 *
 403	 * If a shared tree block is no longer referenced by its owner
 404	 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
 405	 * use full backrefs for extent pointers in tree block.
 406	 *
 407	 * If a tree block is been relocating
 408	 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
 409	 * use full backrefs for extent pointers in tree block.
 410	 * The reason for this is some operations (such as drop tree)
 411	 * are only allowed for blocks use full backrefs.
 412	 */
 413
 414	if (btrfs_block_can_be_shared(root, buf)) {
 415		ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
 416					       btrfs_header_level(buf), 1,
 417					       &refs, &flags);
 418		if (ret)
 419			return ret;
 420		if (refs == 0) {
 421			ret = -EROFS;
 422			btrfs_handle_fs_error(fs_info, ret, NULL);
 423			return ret;
 424		}
 425	} else {
 426		refs = 1;
 427		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
 428		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
 429			flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
 430		else
 431			flags = 0;
 432	}
 433
 434	owner = btrfs_header_owner(buf);
 435	BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
 436	       !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
 437
 438	if (refs > 1) {
 439		if ((owner == root->root_key.objectid ||
 440		     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
 441		    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
 442			ret = btrfs_inc_ref(trans, root, buf, 1);
 443			if (ret)
 444				return ret;
 445
 446			if (root->root_key.objectid ==
 447			    BTRFS_TREE_RELOC_OBJECTID) {
 448				ret = btrfs_dec_ref(trans, root, buf, 0);
 449				if (ret)
 450					return ret;
 451				ret = btrfs_inc_ref(trans, root, cow, 1);
 452				if (ret)
 453					return ret;
 454			}
 455			new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
 456		} else {
 457
 458			if (root->root_key.objectid ==
 459			    BTRFS_TREE_RELOC_OBJECTID)
 460				ret = btrfs_inc_ref(trans, root, cow, 1);
 461			else
 462				ret = btrfs_inc_ref(trans, root, cow, 0);
 463			if (ret)
 464				return ret;
 465		}
 466		if (new_flags != 0) {
 467			int level = btrfs_header_level(buf);
 468
 469			ret = btrfs_set_disk_extent_flags(trans, buf,
 470							  new_flags, level);
 
 
 471			if (ret)
 472				return ret;
 473		}
 474	} else {
 475		if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
 476			if (root->root_key.objectid ==
 477			    BTRFS_TREE_RELOC_OBJECTID)
 478				ret = btrfs_inc_ref(trans, root, cow, 1);
 479			else
 480				ret = btrfs_inc_ref(trans, root, cow, 0);
 481			if (ret)
 482				return ret;
 483			ret = btrfs_dec_ref(trans, root, buf, 1);
 484			if (ret)
 485				return ret;
 486		}
 487		btrfs_clean_tree_block(buf);
 488		*last_ref = 1;
 489	}
 490	return 0;
 491}
 492
 493/*
 494 * does the dirty work in cow of a single block.  The parent block (if
 495 * supplied) is updated to point to the new cow copy.  The new buffer is marked
 496 * dirty and returned locked.  If you modify the block it needs to be marked
 497 * dirty again.
 498 *
 499 * search_start -- an allocation hint for the new block
 500 *
 501 * empty_size -- a hint that you plan on doing more cow.  This is the size in
 502 * bytes the allocator should try to find free next to the block it returns.
 503 * This is just a hint and may be ignored by the allocator.
 504 */
 505static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
 506			     struct btrfs_root *root,
 507			     struct extent_buffer *buf,
 508			     struct extent_buffer *parent, int parent_slot,
 509			     struct extent_buffer **cow_ret,
 510			     u64 search_start, u64 empty_size,
 511			     enum btrfs_lock_nesting nest)
 512{
 513	struct btrfs_fs_info *fs_info = root->fs_info;
 514	struct btrfs_disk_key disk_key;
 515	struct extent_buffer *cow;
 516	int level, ret;
 517	int last_ref = 0;
 518	int unlock_orig = 0;
 519	u64 parent_start = 0;
 520
 521	if (*cow_ret == buf)
 522		unlock_orig = 1;
 523
 524	btrfs_assert_tree_write_locked(buf);
 525
 526	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
 527		trans->transid != fs_info->running_transaction->transid);
 528	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
 529		trans->transid != root->last_trans);
 530
 531	level = btrfs_header_level(buf);
 532
 533	if (level == 0)
 534		btrfs_item_key(buf, &disk_key, 0);
 535	else
 536		btrfs_node_key(buf, &disk_key, 0);
 537
 538	if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
 539		parent_start = parent->start;
 540
 541	cow = btrfs_alloc_tree_block(trans, root, parent_start,
 542				     root->root_key.objectid, &disk_key, level,
 543				     search_start, empty_size, nest);
 544	if (IS_ERR(cow))
 545		return PTR_ERR(cow);
 546
 547	/* cow is set to blocking by btrfs_init_new_buffer */
 548
 549	copy_extent_buffer_full(cow, buf);
 550	btrfs_set_header_bytenr(cow, cow->start);
 551	btrfs_set_header_generation(cow, trans->transid);
 552	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
 553	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
 554				     BTRFS_HEADER_FLAG_RELOC);
 555	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
 556		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
 557	else
 558		btrfs_set_header_owner(cow, root->root_key.objectid);
 559
 560	write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
 561
 562	ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
 563	if (ret) {
 564		btrfs_tree_unlock(cow);
 565		free_extent_buffer(cow);
 566		btrfs_abort_transaction(trans, ret);
 567		return ret;
 568	}
 569
 570	if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
 571		ret = btrfs_reloc_cow_block(trans, root, buf, cow);
 572		if (ret) {
 573			btrfs_tree_unlock(cow);
 574			free_extent_buffer(cow);
 575			btrfs_abort_transaction(trans, ret);
 576			return ret;
 577		}
 578	}
 579
 580	if (buf == root->node) {
 581		WARN_ON(parent && parent != buf);
 582		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
 583		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
 584			parent_start = buf->start;
 585
 586		atomic_inc(&cow->refs);
 587		ret = btrfs_tree_mod_log_insert_root(root->node, cow, true);
 588		BUG_ON(ret < 0);
 589		rcu_assign_pointer(root->node, cow);
 590
 591		btrfs_free_tree_block(trans, btrfs_root_id(root), buf,
 592				      parent_start, last_ref);
 593		free_extent_buffer(buf);
 594		add_root_to_dirty_list(root);
 595	} else {
 596		WARN_ON(trans->transid != btrfs_header_generation(parent));
 597		btrfs_tree_mod_log_insert_key(parent, parent_slot,
 598					      BTRFS_MOD_LOG_KEY_REPLACE);
 599		btrfs_set_node_blockptr(parent, parent_slot,
 600					cow->start);
 601		btrfs_set_node_ptr_generation(parent, parent_slot,
 602					      trans->transid);
 603		btrfs_mark_buffer_dirty(parent);
 604		if (last_ref) {
 605			ret = btrfs_tree_mod_log_free_eb(buf);
 606			if (ret) {
 607				btrfs_tree_unlock(cow);
 608				free_extent_buffer(cow);
 609				btrfs_abort_transaction(trans, ret);
 610				return ret;
 611			}
 612		}
 613		btrfs_free_tree_block(trans, btrfs_root_id(root), buf,
 614				      parent_start, last_ref);
 615	}
 616	if (unlock_orig)
 617		btrfs_tree_unlock(buf);
 618	free_extent_buffer_stale(buf);
 619	btrfs_mark_buffer_dirty(cow);
 620	*cow_ret = cow;
 621	return 0;
 622}
 623
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 624static inline int should_cow_block(struct btrfs_trans_handle *trans,
 625				   struct btrfs_root *root,
 626				   struct extent_buffer *buf)
 627{
 628	if (btrfs_is_testing(root->fs_info))
 629		return 0;
 630
 631	/* Ensure we can see the FORCE_COW bit */
 632	smp_mb__before_atomic();
 633
 634	/*
 635	 * We do not need to cow a block if
 636	 * 1) this block is not created or changed in this transaction;
 637	 * 2) this block does not belong to TREE_RELOC tree;
 638	 * 3) the root is not forced COW.
 639	 *
 640	 * What is forced COW:
 641	 *    when we create snapshot during committing the transaction,
 642	 *    after we've finished copying src root, we must COW the shared
 643	 *    block to ensure the metadata consistency.
 644	 */
 645	if (btrfs_header_generation(buf) == trans->transid &&
 646	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
 647	    !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
 648	      btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
 649	    !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
 650		return 0;
 651	return 1;
 652}
 653
 654/*
 655 * cows a single block, see __btrfs_cow_block for the real work.
 656 * This version of it has extra checks so that a block isn't COWed more than
 657 * once per transaction, as long as it hasn't been written yet
 658 */
 659noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
 660		    struct btrfs_root *root, struct extent_buffer *buf,
 661		    struct extent_buffer *parent, int parent_slot,
 662		    struct extent_buffer **cow_ret,
 663		    enum btrfs_lock_nesting nest)
 664{
 665	struct btrfs_fs_info *fs_info = root->fs_info;
 666	u64 search_start;
 667	int ret;
 668
 669	if (test_bit(BTRFS_ROOT_DELETING, &root->state))
 670		btrfs_err(fs_info,
 671			"COW'ing blocks on a fs root that's being dropped");
 672
 673	if (trans->transaction != fs_info->running_transaction)
 674		WARN(1, KERN_CRIT "trans %llu running %llu\n",
 675		       trans->transid,
 676		       fs_info->running_transaction->transid);
 677
 678	if (trans->transid != fs_info->generation)
 679		WARN(1, KERN_CRIT "trans %llu running %llu\n",
 680		       trans->transid, fs_info->generation);
 681
 682	if (!should_cow_block(trans, root, buf)) {
 
 683		*cow_ret = buf;
 684		return 0;
 685	}
 686
 687	search_start = buf->start & ~((u64)SZ_1G - 1);
 688
 689	/*
 690	 * Before CoWing this block for later modification, check if it's
 691	 * the subtree root and do the delayed subtree trace if needed.
 692	 *
 693	 * Also We don't care about the error, as it's handled internally.
 694	 */
 695	btrfs_qgroup_trace_subtree_after_cow(trans, root, buf);
 696	ret = __btrfs_cow_block(trans, root, buf, parent,
 697				 parent_slot, cow_ret, search_start, 0, nest);
 698
 699	trace_btrfs_cow_block(root, buf, *cow_ret);
 700
 701	return ret;
 702}
 703ALLOW_ERROR_INJECTION(btrfs_cow_block, ERRNO);
 704
 705/*
 706 * helper function for defrag to decide if two blocks pointed to by a
 707 * node are actually close by
 708 */
 709static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
 710{
 711	if (blocknr < other && other - (blocknr + blocksize) < 32768)
 712		return 1;
 713	if (blocknr > other && blocknr - (other + blocksize) < 32768)
 714		return 1;
 715	return 0;
 716}
 717
 718#ifdef __LITTLE_ENDIAN
 719
 720/*
 721 * Compare two keys, on little-endian the disk order is same as CPU order and
 722 * we can avoid the conversion.
 723 */
 724static int comp_keys(const struct btrfs_disk_key *disk_key,
 725		     const struct btrfs_key *k2)
 726{
 727	const struct btrfs_key *k1 = (const struct btrfs_key *)disk_key;
 728
 729	return btrfs_comp_cpu_keys(k1, k2);
 730}
 731
 732#else
 733
 734/*
 735 * compare two keys in a memcmp fashion
 736 */
 737static int comp_keys(const struct btrfs_disk_key *disk,
 738		     const struct btrfs_key *k2)
 739{
 740	struct btrfs_key k1;
 741
 742	btrfs_disk_key_to_cpu(&k1, disk);
 743
 744	return btrfs_comp_cpu_keys(&k1, k2);
 745}
 746#endif
 747
 748/*
 749 * same as comp_keys only with two btrfs_key's
 750 */
 751int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
 752{
 753	if (k1->objectid > k2->objectid)
 754		return 1;
 755	if (k1->objectid < k2->objectid)
 756		return -1;
 757	if (k1->type > k2->type)
 758		return 1;
 759	if (k1->type < k2->type)
 760		return -1;
 761	if (k1->offset > k2->offset)
 762		return 1;
 763	if (k1->offset < k2->offset)
 764		return -1;
 765	return 0;
 766}
 767
 768/*
 769 * this is used by the defrag code to go through all the
 770 * leaves pointed to by a node and reallocate them so that
 771 * disk order is close to key order
 772 */
 773int btrfs_realloc_node(struct btrfs_trans_handle *trans,
 774		       struct btrfs_root *root, struct extent_buffer *parent,
 775		       int start_slot, u64 *last_ret,
 776		       struct btrfs_key *progress)
 777{
 778	struct btrfs_fs_info *fs_info = root->fs_info;
 779	struct extent_buffer *cur;
 780	u64 blocknr;
 
 781	u64 search_start = *last_ret;
 782	u64 last_block = 0;
 783	u64 other;
 784	u32 parent_nritems;
 785	int end_slot;
 786	int i;
 787	int err = 0;
 
 
 788	u32 blocksize;
 789	int progress_passed = 0;
 790	struct btrfs_disk_key disk_key;
 791
 
 
 792	WARN_ON(trans->transaction != fs_info->running_transaction);
 793	WARN_ON(trans->transid != fs_info->generation);
 794
 795	parent_nritems = btrfs_header_nritems(parent);
 796	blocksize = fs_info->nodesize;
 797	end_slot = parent_nritems - 1;
 798
 799	if (parent_nritems <= 1)
 800		return 0;
 801
 
 
 802	for (i = start_slot; i <= end_slot; i++) {
 
 803		int close = 1;
 804
 805		btrfs_node_key(parent, &disk_key, i);
 806		if (!progress_passed && comp_keys(&disk_key, progress) < 0)
 807			continue;
 808
 809		progress_passed = 1;
 810		blocknr = btrfs_node_blockptr(parent, i);
 
 
 811		if (last_block == 0)
 812			last_block = blocknr;
 813
 814		if (i > 0) {
 815			other = btrfs_node_blockptr(parent, i - 1);
 816			close = close_blocks(blocknr, other, blocksize);
 817		}
 818		if (!close && i < end_slot) {
 819			other = btrfs_node_blockptr(parent, i + 1);
 820			close = close_blocks(blocknr, other, blocksize);
 821		}
 822		if (close) {
 823			last_block = blocknr;
 824			continue;
 825		}
 826
 827		cur = btrfs_read_node_slot(parent, i);
 828		if (IS_ERR(cur))
 829			return PTR_ERR(cur);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 830		if (search_start == 0)
 831			search_start = last_block;
 832
 833		btrfs_tree_lock(cur);
 
 834		err = __btrfs_cow_block(trans, root, cur, parent, i,
 835					&cur, search_start,
 836					min(16 * blocksize,
 837					    (end_slot - i) * blocksize),
 838					BTRFS_NESTING_COW);
 839		if (err) {
 840			btrfs_tree_unlock(cur);
 841			free_extent_buffer(cur);
 842			break;
 843		}
 844		search_start = cur->start;
 845		last_block = cur->start;
 846		*last_ret = search_start;
 847		btrfs_tree_unlock(cur);
 848		free_extent_buffer(cur);
 849	}
 850	return err;
 851}
 852
 853/*
 854 * Search for a key in the given extent_buffer.
 855 *
 856 * The lower boundary for the search is specified by the slot number @low. Use a
 857 * value of 0 to search over the whole extent buffer.
 858 *
 859 * The slot in the extent buffer is returned via @slot. If the key exists in the
 860 * extent buffer, then @slot will point to the slot where the key is, otherwise
 861 * it points to the slot where you would insert the key.
 862 *
 863 * Slot may point to the total number of items (i.e. one position beyond the last
 864 * key) if the key is bigger than the last key in the extent buffer.
 865 */
 866static noinline int generic_bin_search(struct extent_buffer *eb, int low,
 867				       const struct btrfs_key *key, int *slot)
 
 
 
 
 
 868{
 869	unsigned long p;
 870	int item_size;
 871	int high = btrfs_header_nritems(eb);
 872	int ret;
 873	const int key_size = sizeof(struct btrfs_disk_key);
 
 
 
 
 
 
 874
 875	if (low > high) {
 876		btrfs_err(eb->fs_info,
 877		 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
 878			  __func__, low, high, eb->start,
 879			  btrfs_header_owner(eb), btrfs_header_level(eb));
 880		return -EINVAL;
 881	}
 882
 883	if (btrfs_header_level(eb) == 0) {
 884		p = offsetof(struct btrfs_leaf, items);
 885		item_size = sizeof(struct btrfs_item);
 886	} else {
 887		p = offsetof(struct btrfs_node, ptrs);
 888		item_size = sizeof(struct btrfs_key_ptr);
 889	}
 890
 891	while (low < high) {
 892		unsigned long oip;
 893		unsigned long offset;
 894		struct btrfs_disk_key *tmp;
 895		struct btrfs_disk_key unaligned;
 896		int mid;
 897
 898		mid = (low + high) / 2;
 899		offset = p + mid * item_size;
 900		oip = offset_in_page(offset);
 901
 902		if (oip + key_size <= PAGE_SIZE) {
 903			const unsigned long idx = get_eb_page_index(offset);
 904			char *kaddr = page_address(eb->pages[idx]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 905
 906			oip = get_eb_offset_in_page(eb, offset);
 907			tmp = (struct btrfs_disk_key *)(kaddr + oip);
 908		} else {
 909			read_extent_buffer(eb, &unaligned, offset, key_size);
 910			tmp = &unaligned;
 911		}
 912
 913		ret = comp_keys(tmp, key);
 914
 915		if (ret < 0)
 916			low = mid + 1;
 917		else if (ret > 0)
 918			high = mid;
 919		else {
 920			*slot = mid;
 921			return 0;
 922		}
 923	}
 924	*slot = low;
 925	return 1;
 926}
 927
 928/*
 929 * Simple binary search on an extent buffer. Works for both leaves and nodes, and
 930 * always searches over the whole range of keys (slot 0 to slot 'nritems - 1').
 931 */
 932int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
 933		     int *slot)
 934{
 935	return generic_bin_search(eb, 0, key, slot);
 
 
 
 
 
 
 
 
 
 
 
 936}
 937
 938static void root_add_used(struct btrfs_root *root, u32 size)
 939{
 940	spin_lock(&root->accounting_lock);
 941	btrfs_set_root_used(&root->root_item,
 942			    btrfs_root_used(&root->root_item) + size);
 943	spin_unlock(&root->accounting_lock);
 944}
 945
 946static void root_sub_used(struct btrfs_root *root, u32 size)
 947{
 948	spin_lock(&root->accounting_lock);
 949	btrfs_set_root_used(&root->root_item,
 950			    btrfs_root_used(&root->root_item) - size);
 951	spin_unlock(&root->accounting_lock);
 952}
 953
 954/* given a node and slot number, this reads the blocks it points to.  The
 955 * extent buffer is returned with a reference taken (but unlocked).
 956 */
 957struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
 958					   int slot)
 
 959{
 960	int level = btrfs_header_level(parent);
 961	struct btrfs_tree_parent_check check = { 0 };
 962	struct extent_buffer *eb;
 
 963
 964	if (slot < 0 || slot >= btrfs_header_nritems(parent))
 965		return ERR_PTR(-ENOENT);
 966
 967	BUG_ON(level == 0);
 968
 969	check.level = level - 1;
 970	check.transid = btrfs_node_ptr_generation(parent, slot);
 971	check.owner_root = btrfs_header_owner(parent);
 972	check.has_first_key = true;
 973	btrfs_node_key_to_cpu(parent, &check.first_key, slot);
 974
 975	eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot),
 976			     &check);
 977	if (IS_ERR(eb))
 978		return eb;
 979	if (!extent_buffer_uptodate(eb)) {
 980		free_extent_buffer(eb);
 981		return ERR_PTR(-EIO);
 982	}
 983
 984	return eb;
 985}
 986
 987/*
 988 * node level balancing, used to make sure nodes are in proper order for
 989 * item deletion.  We balance from the top down, so we have to make sure
 990 * that a deletion won't leave an node completely empty later on.
 991 */
 992static noinline int balance_level(struct btrfs_trans_handle *trans,
 993			 struct btrfs_root *root,
 994			 struct btrfs_path *path, int level)
 995{
 996	struct btrfs_fs_info *fs_info = root->fs_info;
 997	struct extent_buffer *right = NULL;
 998	struct extent_buffer *mid;
 999	struct extent_buffer *left = NULL;
1000	struct extent_buffer *parent = NULL;
1001	int ret = 0;
1002	int wret;
1003	int pslot;
1004	int orig_slot = path->slots[level];
1005	u64 orig_ptr;
1006
1007	ASSERT(level > 0);
 
1008
1009	mid = path->nodes[level];
1010
1011	WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK);
 
1012	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1013
1014	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1015
1016	if (level < BTRFS_MAX_LEVEL - 1) {
1017		parent = path->nodes[level + 1];
1018		pslot = path->slots[level + 1];
1019	}
1020
1021	/*
1022	 * deal with the case where there is only one pointer in the root
1023	 * by promoting the node below to a root
1024	 */
1025	if (!parent) {
1026		struct extent_buffer *child;
1027
1028		if (btrfs_header_nritems(mid) != 1)
1029			return 0;
1030
1031		/* promote the child to a root */
1032		child = btrfs_read_node_slot(mid, 0);
1033		if (IS_ERR(child)) {
1034			ret = PTR_ERR(child);
1035			btrfs_handle_fs_error(fs_info, ret, NULL);
1036			goto enospc;
1037		}
1038
1039		btrfs_tree_lock(child);
1040		ret = btrfs_cow_block(trans, root, child, mid, 0, &child,
1041				      BTRFS_NESTING_COW);
1042		if (ret) {
1043			btrfs_tree_unlock(child);
1044			free_extent_buffer(child);
1045			goto enospc;
1046		}
1047
1048		ret = btrfs_tree_mod_log_insert_root(root->node, child, true);
1049		BUG_ON(ret < 0);
1050		rcu_assign_pointer(root->node, child);
1051
1052		add_root_to_dirty_list(root);
1053		btrfs_tree_unlock(child);
1054
1055		path->locks[level] = 0;
1056		path->nodes[level] = NULL;
1057		btrfs_clean_tree_block(mid);
1058		btrfs_tree_unlock(mid);
1059		/* once for the path */
1060		free_extent_buffer(mid);
1061
1062		root_sub_used(root, mid->len);
1063		btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1);
1064		/* once for the root ptr */
1065		free_extent_buffer_stale(mid);
1066		return 0;
1067	}
1068	if (btrfs_header_nritems(mid) >
1069	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
1070		return 0;
1071
1072	left = btrfs_read_node_slot(parent, pslot - 1);
1073	if (IS_ERR(left))
1074		left = NULL;
1075
1076	if (left) {
1077		__btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
 
1078		wret = btrfs_cow_block(trans, root, left,
1079				       parent, pslot - 1, &left,
1080				       BTRFS_NESTING_LEFT_COW);
1081		if (wret) {
1082			ret = wret;
1083			goto enospc;
1084		}
1085	}
1086
1087	right = btrfs_read_node_slot(parent, pslot + 1);
1088	if (IS_ERR(right))
1089		right = NULL;
1090
1091	if (right) {
1092		__btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
 
1093		wret = btrfs_cow_block(trans, root, right,
1094				       parent, pslot + 1, &right,
1095				       BTRFS_NESTING_RIGHT_COW);
1096		if (wret) {
1097			ret = wret;
1098			goto enospc;
1099		}
1100	}
1101
1102	/* first, try to make some room in the middle buffer */
1103	if (left) {
1104		orig_slot += btrfs_header_nritems(left);
1105		wret = push_node_left(trans, left, mid, 1);
1106		if (wret < 0)
1107			ret = wret;
1108	}
1109
1110	/*
1111	 * then try to empty the right most buffer into the middle
1112	 */
1113	if (right) {
1114		wret = push_node_left(trans, mid, right, 1);
1115		if (wret < 0 && wret != -ENOSPC)
1116			ret = wret;
1117		if (btrfs_header_nritems(right) == 0) {
1118			btrfs_clean_tree_block(right);
1119			btrfs_tree_unlock(right);
1120			del_ptr(root, path, level + 1, pslot + 1);
1121			root_sub_used(root, right->len);
1122			btrfs_free_tree_block(trans, btrfs_root_id(root), right,
1123					      0, 1);
1124			free_extent_buffer_stale(right);
1125			right = NULL;
1126		} else {
1127			struct btrfs_disk_key right_key;
1128			btrfs_node_key(right, &right_key, 0);
1129			ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
1130					BTRFS_MOD_LOG_KEY_REPLACE);
1131			BUG_ON(ret < 0);
1132			btrfs_set_node_key(parent, &right_key, pslot + 1);
1133			btrfs_mark_buffer_dirty(parent);
1134		}
1135	}
1136	if (btrfs_header_nritems(mid) == 1) {
1137		/*
1138		 * we're not allowed to leave a node with one item in the
1139		 * tree during a delete.  A deletion from lower in the tree
1140		 * could try to delete the only pointer in this node.
1141		 * So, pull some keys from the left.
1142		 * There has to be a left pointer at this point because
1143		 * otherwise we would have pulled some pointers from the
1144		 * right
1145		 */
1146		if (!left) {
1147			ret = -EROFS;
1148			btrfs_handle_fs_error(fs_info, ret, NULL);
1149			goto enospc;
1150		}
1151		wret = balance_node_right(trans, mid, left);
1152		if (wret < 0) {
1153			ret = wret;
1154			goto enospc;
1155		}
1156		if (wret == 1) {
1157			wret = push_node_left(trans, left, mid, 1);
1158			if (wret < 0)
1159				ret = wret;
1160		}
1161		BUG_ON(wret == 1);
1162	}
1163	if (btrfs_header_nritems(mid) == 0) {
1164		btrfs_clean_tree_block(mid);
1165		btrfs_tree_unlock(mid);
1166		del_ptr(root, path, level + 1, pslot);
1167		root_sub_used(root, mid->len);
1168		btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1);
1169		free_extent_buffer_stale(mid);
1170		mid = NULL;
1171	} else {
1172		/* update the parent key to reflect our changes */
1173		struct btrfs_disk_key mid_key;
1174		btrfs_node_key(mid, &mid_key, 0);
1175		ret = btrfs_tree_mod_log_insert_key(parent, pslot,
1176						    BTRFS_MOD_LOG_KEY_REPLACE);
1177		BUG_ON(ret < 0);
1178		btrfs_set_node_key(parent, &mid_key, pslot);
1179		btrfs_mark_buffer_dirty(parent);
1180	}
1181
1182	/* update the path */
1183	if (left) {
1184		if (btrfs_header_nritems(left) > orig_slot) {
1185			atomic_inc(&left->refs);
1186			/* left was locked after cow */
1187			path->nodes[level] = left;
1188			path->slots[level + 1] -= 1;
1189			path->slots[level] = orig_slot;
1190			if (mid) {
1191				btrfs_tree_unlock(mid);
1192				free_extent_buffer(mid);
1193			}
1194		} else {
1195			orig_slot -= btrfs_header_nritems(left);
1196			path->slots[level] = orig_slot;
1197		}
1198	}
1199	/* double check we haven't messed things up */
1200	if (orig_ptr !=
1201	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1202		BUG();
1203enospc:
1204	if (right) {
1205		btrfs_tree_unlock(right);
1206		free_extent_buffer(right);
1207	}
1208	if (left) {
1209		if (path->nodes[level] != left)
1210			btrfs_tree_unlock(left);
1211		free_extent_buffer(left);
1212	}
1213	return ret;
1214}
1215
1216/* Node balancing for insertion.  Here we only split or push nodes around
1217 * when they are completely full.  This is also done top down, so we
1218 * have to be pessimistic.
1219 */
1220static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1221					  struct btrfs_root *root,
1222					  struct btrfs_path *path, int level)
1223{
1224	struct btrfs_fs_info *fs_info = root->fs_info;
1225	struct extent_buffer *right = NULL;
1226	struct extent_buffer *mid;
1227	struct extent_buffer *left = NULL;
1228	struct extent_buffer *parent = NULL;
1229	int ret = 0;
1230	int wret;
1231	int pslot;
1232	int orig_slot = path->slots[level];
1233
1234	if (level == 0)
1235		return 1;
1236
1237	mid = path->nodes[level];
1238	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1239
1240	if (level < BTRFS_MAX_LEVEL - 1) {
1241		parent = path->nodes[level + 1];
1242		pslot = path->slots[level + 1];
1243	}
1244
1245	if (!parent)
1246		return 1;
1247
1248	left = btrfs_read_node_slot(parent, pslot - 1);
1249	if (IS_ERR(left))
1250		left = NULL;
1251
1252	/* first, try to make some room in the middle buffer */
1253	if (left) {
1254		u32 left_nr;
1255
1256		__btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
 
1257
1258		left_nr = btrfs_header_nritems(left);
1259		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
1260			wret = 1;
1261		} else {
1262			ret = btrfs_cow_block(trans, root, left, parent,
1263					      pslot - 1, &left,
1264					      BTRFS_NESTING_LEFT_COW);
1265			if (ret)
1266				wret = 1;
1267			else {
1268				wret = push_node_left(trans, left, mid, 0);
 
1269			}
1270		}
1271		if (wret < 0)
1272			ret = wret;
1273		if (wret == 0) {
1274			struct btrfs_disk_key disk_key;
1275			orig_slot += left_nr;
1276			btrfs_node_key(mid, &disk_key, 0);
1277			ret = btrfs_tree_mod_log_insert_key(parent, pslot,
1278					BTRFS_MOD_LOG_KEY_REPLACE);
1279			BUG_ON(ret < 0);
1280			btrfs_set_node_key(parent, &disk_key, pslot);
1281			btrfs_mark_buffer_dirty(parent);
1282			if (btrfs_header_nritems(left) > orig_slot) {
1283				path->nodes[level] = left;
1284				path->slots[level + 1] -= 1;
1285				path->slots[level] = orig_slot;
1286				btrfs_tree_unlock(mid);
1287				free_extent_buffer(mid);
1288			} else {
1289				orig_slot -=
1290					btrfs_header_nritems(left);
1291				path->slots[level] = orig_slot;
1292				btrfs_tree_unlock(left);
1293				free_extent_buffer(left);
1294			}
1295			return 0;
1296		}
1297		btrfs_tree_unlock(left);
1298		free_extent_buffer(left);
1299	}
1300	right = btrfs_read_node_slot(parent, pslot + 1);
1301	if (IS_ERR(right))
1302		right = NULL;
1303
1304	/*
1305	 * then try to empty the right most buffer into the middle
1306	 */
1307	if (right) {
1308		u32 right_nr;
1309
1310		__btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
 
1311
1312		right_nr = btrfs_header_nritems(right);
1313		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
1314			wret = 1;
1315		} else {
1316			ret = btrfs_cow_block(trans, root, right,
1317					      parent, pslot + 1,
1318					      &right, BTRFS_NESTING_RIGHT_COW);
1319			if (ret)
1320				wret = 1;
1321			else {
1322				wret = balance_node_right(trans, right, mid);
 
1323			}
1324		}
1325		if (wret < 0)
1326			ret = wret;
1327		if (wret == 0) {
1328			struct btrfs_disk_key disk_key;
1329
1330			btrfs_node_key(right, &disk_key, 0);
1331			ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
1332					BTRFS_MOD_LOG_KEY_REPLACE);
1333			BUG_ON(ret < 0);
1334			btrfs_set_node_key(parent, &disk_key, pslot + 1);
1335			btrfs_mark_buffer_dirty(parent);
1336
1337			if (btrfs_header_nritems(mid) <= orig_slot) {
1338				path->nodes[level] = right;
1339				path->slots[level + 1] += 1;
1340				path->slots[level] = orig_slot -
1341					btrfs_header_nritems(mid);
1342				btrfs_tree_unlock(mid);
1343				free_extent_buffer(mid);
1344			} else {
1345				btrfs_tree_unlock(right);
1346				free_extent_buffer(right);
1347			}
1348			return 0;
1349		}
1350		btrfs_tree_unlock(right);
1351		free_extent_buffer(right);
1352	}
1353	return 1;
1354}
1355
1356/*
1357 * readahead one full node of leaves, finding things that are close
1358 * to the block in 'slot', and triggering ra on them.
1359 */
1360static void reada_for_search(struct btrfs_fs_info *fs_info,
1361			     struct btrfs_path *path,
1362			     int level, int slot, u64 objectid)
1363{
1364	struct extent_buffer *node;
1365	struct btrfs_disk_key disk_key;
1366	u32 nritems;
1367	u64 search;
1368	u64 target;
1369	u64 nread = 0;
1370	u64 nread_max;
1371	u32 nr;
1372	u32 blocksize;
1373	u32 nscan = 0;
1374
1375	if (level != 1 && path->reada != READA_FORWARD_ALWAYS)
1376		return;
1377
1378	if (!path->nodes[level])
1379		return;
1380
1381	node = path->nodes[level];
1382
1383	/*
1384	 * Since the time between visiting leaves is much shorter than the time
1385	 * between visiting nodes, limit read ahead of nodes to 1, to avoid too
1386	 * much IO at once (possibly random).
1387	 */
1388	if (path->reada == READA_FORWARD_ALWAYS) {
1389		if (level > 1)
1390			nread_max = node->fs_info->nodesize;
1391		else
1392			nread_max = SZ_128K;
1393	} else {
1394		nread_max = SZ_64K;
1395	}
1396
1397	search = btrfs_node_blockptr(node, slot);
1398	blocksize = fs_info->nodesize;
1399	if (path->reada != READA_FORWARD_ALWAYS) {
1400		struct extent_buffer *eb;
1401
1402		eb = find_extent_buffer(fs_info, search);
1403		if (eb) {
1404			free_extent_buffer(eb);
1405			return;
1406		}
1407	}
1408
1409	target = search;
1410
1411	nritems = btrfs_header_nritems(node);
1412	nr = slot;
1413
1414	while (1) {
1415		if (path->reada == READA_BACK) {
1416			if (nr == 0)
1417				break;
1418			nr--;
1419		} else if (path->reada == READA_FORWARD ||
1420			   path->reada == READA_FORWARD_ALWAYS) {
1421			nr++;
1422			if (nr >= nritems)
1423				break;
1424		}
1425		if (path->reada == READA_BACK && objectid) {
1426			btrfs_node_key(node, &disk_key, nr);
1427			if (btrfs_disk_key_objectid(&disk_key) != objectid)
1428				break;
1429		}
1430		search = btrfs_node_blockptr(node, nr);
1431		if (path->reada == READA_FORWARD_ALWAYS ||
1432		    (search <= target && target - search <= 65536) ||
1433		    (search > target && search - target <= 65536)) {
1434			btrfs_readahead_node_child(node, nr);
1435			nread += blocksize;
1436		}
1437		nscan++;
1438		if (nread > nread_max || nscan > 32)
1439			break;
1440	}
1441}
1442
1443static noinline void reada_for_balance(struct btrfs_path *path, int level)
 
1444{
1445	struct extent_buffer *parent;
1446	int slot;
1447	int nritems;
 
 
 
 
 
1448
1449	parent = path->nodes[level + 1];
1450	if (!parent)
1451		return;
1452
1453	nritems = btrfs_header_nritems(parent);
1454	slot = path->slots[level + 1];
1455
1456	if (slot > 0)
1457		btrfs_readahead_node_child(parent, slot - 1);
1458	if (slot + 1 < nritems)
1459		btrfs_readahead_node_child(parent, slot + 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1460}
1461
1462
1463/*
1464 * when we walk down the tree, it is usually safe to unlock the higher layers
1465 * in the tree.  The exceptions are when our path goes through slot 0, because
1466 * operations on the tree might require changing key pointers higher up in the
1467 * tree.
1468 *
1469 * callers might also have set path->keep_locks, which tells this code to keep
1470 * the lock if the path points to the last slot in the block.  This is part of
1471 * walking through the tree, and selecting the next slot in the higher block.
1472 *
1473 * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
1474 * if lowest_unlock is 1, level 0 won't be unlocked
1475 */
1476static noinline void unlock_up(struct btrfs_path *path, int level,
1477			       int lowest_unlock, int min_write_lock_level,
1478			       int *write_lock_level)
1479{
1480	int i;
1481	int skip_level = level;
1482	bool check_skip = true;
 
1483
1484	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1485		if (!path->nodes[i])
1486			break;
1487		if (!path->locks[i])
1488			break;
1489
1490		if (check_skip) {
1491			if (path->slots[i] == 0) {
 
 
 
 
 
 
1492				skip_level = i + 1;
1493				continue;
1494			}
1495
1496			if (path->keep_locks) {
1497				u32 nritems;
1498
1499				nritems = btrfs_header_nritems(path->nodes[i]);
1500				if (nritems < 1 || path->slots[i] >= nritems - 1) {
1501					skip_level = i + 1;
1502					continue;
1503				}
1504			}
1505		}
 
 
1506
1507		if (i >= lowest_unlock && i > skip_level) {
1508			check_skip = false;
1509			btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
1510			path->locks[i] = 0;
1511			if (write_lock_level &&
1512			    i > min_write_lock_level &&
1513			    i <= *write_lock_level) {
1514				*write_lock_level = i - 1;
1515			}
1516		}
1517	}
1518}
1519
1520/*
1521 * Helper function for btrfs_search_slot() and other functions that do a search
1522 * on a btree. The goal is to find a tree block in the cache (the radix tree at
1523 * fs_info->buffer_radix), but if we can't find it, or it's not up to date, read
1524 * its pages from disk.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1525 *
1526 * Returns -EAGAIN, with the path unlocked, if the caller needs to repeat the
1527 * whole btree search, starting again from the current root node.
1528 */
1529static int
1530read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
1531		      struct extent_buffer **eb_ret, int level, int slot,
1532		      const struct btrfs_key *key)
1533{
1534	struct btrfs_fs_info *fs_info = root->fs_info;
1535	struct btrfs_tree_parent_check check = { 0 };
1536	u64 blocknr;
1537	u64 gen;
 
1538	struct extent_buffer *tmp;
 
1539	int ret;
1540	int parent_level;
1541	bool unlock_up;
1542
1543	unlock_up = ((level + 1 < BTRFS_MAX_LEVEL) && p->locks[level + 1]);
1544	blocknr = btrfs_node_blockptr(*eb_ret, slot);
1545	gen = btrfs_node_ptr_generation(*eb_ret, slot);
1546	parent_level = btrfs_header_level(*eb_ret);
1547	btrfs_node_key_to_cpu(*eb_ret, &check.first_key, slot);
1548	check.has_first_key = true;
1549	check.level = parent_level - 1;
1550	check.transid = gen;
1551	check.owner_root = root->root_key.objectid;
1552
1553	/*
1554	 * If we need to read an extent buffer from disk and we are holding locks
1555	 * on upper level nodes, we unlock all the upper nodes before reading the
1556	 * extent buffer, and then return -EAGAIN to the caller as it needs to
1557	 * restart the search. We don't release the lock on the current level
1558	 * because we need to walk this node to figure out which blocks to read.
1559	 */
1560	tmp = find_extent_buffer(fs_info, blocknr);
1561	if (tmp) {
1562		if (p->reada == READA_FORWARD_ALWAYS)
1563			reada_for_search(fs_info, p, level, slot, key->objectid);
1564
1565		/* first we do an atomic uptodate check */
1566		if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
1567			/*
1568			 * Do extra check for first_key, eb can be stale due to
1569			 * being cached, read from scrub, or have multiple
1570			 * parents (shared tree blocks).
1571			 */
1572			if (btrfs_verify_level_key(tmp,
1573					parent_level - 1, &check.first_key, gen)) {
1574				free_extent_buffer(tmp);
1575				return -EUCLEAN;
1576			}
1577			*eb_ret = tmp;
1578			return 0;
1579		}
1580
1581		if (p->nowait) {
1582			free_extent_buffer(tmp);
1583			return -EAGAIN;
1584		}
1585
1586		if (unlock_up)
1587			btrfs_unlock_up_safe(p, level + 1);
1588
1589		/* now we're allowed to do a blocking uptodate check */
1590		ret = btrfs_read_extent_buffer(tmp, &check);
1591		if (ret) {
1592			free_extent_buffer(tmp);
1593			btrfs_release_path(p);
1594			return -EIO;
1595		}
1596		if (btrfs_check_eb_owner(tmp, root->root_key.objectid)) {
1597			free_extent_buffer(tmp);
1598			btrfs_release_path(p);
1599			return -EUCLEAN;
1600		}
1601
1602		if (unlock_up)
1603			ret = -EAGAIN;
1604
1605		goto out;
1606	} else if (p->nowait) {
1607		return -EAGAIN;
1608	}
1609
1610	if (unlock_up) {
1611		btrfs_unlock_up_safe(p, level + 1);
1612		ret = -EAGAIN;
1613	} else {
1614		ret = 0;
1615	}
 
 
 
1616
 
1617	if (p->reada != READA_NONE)
1618		reada_for_search(fs_info, p, level, slot, key->objectid);
1619
1620	tmp = read_tree_block(fs_info, blocknr, &check);
1621	if (IS_ERR(tmp)) {
1622		btrfs_release_path(p);
1623		return PTR_ERR(tmp);
1624	}
1625	/*
1626	 * If the read above didn't mark this buffer up to date,
1627	 * it will never end up being up to date.  Set ret to EIO now
1628	 * and give up so that our caller doesn't loop forever
1629	 * on our EAGAINs.
1630	 */
1631	if (!extent_buffer_uptodate(tmp))
1632		ret = -EIO;
1633
1634out:
1635	if (ret == 0) {
1636		*eb_ret = tmp;
1637	} else {
1638		free_extent_buffer(tmp);
1639		btrfs_release_path(p);
 
1640	}
1641
 
1642	return ret;
1643}
1644
1645/*
1646 * helper function for btrfs_search_slot.  This does all of the checks
1647 * for node-level blocks and does any balancing required based on
1648 * the ins_len.
1649 *
1650 * If no extra work was required, zero is returned.  If we had to
1651 * drop the path, -EAGAIN is returned and btrfs_search_slot must
1652 * start over
1653 */
1654static int
1655setup_nodes_for_search(struct btrfs_trans_handle *trans,
1656		       struct btrfs_root *root, struct btrfs_path *p,
1657		       struct extent_buffer *b, int level, int ins_len,
1658		       int *write_lock_level)
1659{
1660	struct btrfs_fs_info *fs_info = root->fs_info;
1661	int ret = 0;
1662
1663	if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
1664	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
 
1665
1666		if (*write_lock_level < level + 1) {
1667			*write_lock_level = level + 1;
1668			btrfs_release_path(p);
1669			return -EAGAIN;
1670		}
1671
1672		reada_for_balance(p, level);
1673		ret = split_node(trans, root, p, level);
 
 
1674
 
 
 
 
 
1675		b = p->nodes[level];
1676	} else if (ins_len < 0 && btrfs_header_nritems(b) <
1677		   BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
 
1678
1679		if (*write_lock_level < level + 1) {
1680			*write_lock_level = level + 1;
1681			btrfs_release_path(p);
1682			return -EAGAIN;
1683		}
1684
1685		reada_for_balance(p, level);
1686		ret = balance_level(trans, root, p, level);
1687		if (ret)
1688			return ret;
1689
 
 
 
 
1690		b = p->nodes[level];
1691		if (!b) {
1692			btrfs_release_path(p);
1693			return -EAGAIN;
1694		}
1695		BUG_ON(btrfs_header_nritems(b) == 1);
1696	}
 
 
 
 
 
1697	return ret;
1698}
1699
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1700int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
1701		u64 iobjectid, u64 ioff, u8 key_type,
1702		struct btrfs_key *found_key)
1703{
1704	int ret;
1705	struct btrfs_key key;
1706	struct extent_buffer *eb;
1707
1708	ASSERT(path);
1709	ASSERT(found_key);
1710
1711	key.type = key_type;
1712	key.objectid = iobjectid;
1713	key.offset = ioff;
1714
1715	ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1716	if (ret < 0)
1717		return ret;
1718
1719	eb = path->nodes[0];
1720	if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
1721		ret = btrfs_next_leaf(fs_root, path);
1722		if (ret)
1723			return ret;
1724		eb = path->nodes[0];
1725	}
1726
1727	btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
1728	if (found_key->type != key.type ||
1729			found_key->objectid != key.objectid)
1730		return 1;
1731
1732	return 0;
1733}
1734
1735static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
1736							struct btrfs_path *p,
1737							int write_lock_level)
1738{
1739	struct extent_buffer *b;
1740	int root_lock = 0;
1741	int level = 0;
1742
1743	if (p->search_commit_root) {
1744		b = root->commit_root;
1745		atomic_inc(&b->refs);
1746		level = btrfs_header_level(b);
1747		/*
1748		 * Ensure that all callers have set skip_locking when
1749		 * p->search_commit_root = 1.
1750		 */
1751		ASSERT(p->skip_locking == 1);
1752
1753		goto out;
1754	}
1755
1756	if (p->skip_locking) {
1757		b = btrfs_root_node(root);
1758		level = btrfs_header_level(b);
1759		goto out;
1760	}
1761
1762	/* We try very hard to do read locks on the root */
1763	root_lock = BTRFS_READ_LOCK;
1764
1765	/*
1766	 * If the level is set to maximum, we can skip trying to get the read
1767	 * lock.
1768	 */
1769	if (write_lock_level < BTRFS_MAX_LEVEL) {
1770		/*
1771		 * We don't know the level of the root node until we actually
1772		 * have it read locked
1773		 */
1774		if (p->nowait) {
1775			b = btrfs_try_read_lock_root_node(root);
1776			if (IS_ERR(b))
1777				return b;
1778		} else {
1779			b = btrfs_read_lock_root_node(root);
1780		}
1781		level = btrfs_header_level(b);
1782		if (level > write_lock_level)
1783			goto out;
1784
1785		/* Whoops, must trade for write lock */
1786		btrfs_tree_read_unlock(b);
1787		free_extent_buffer(b);
1788	}
1789
1790	b = btrfs_lock_root_node(root);
1791	root_lock = BTRFS_WRITE_LOCK;
1792
1793	/* The level might have changed, check again */
1794	level = btrfs_header_level(b);
1795
1796out:
1797	/*
1798	 * The root may have failed to write out at some point, and thus is no
1799	 * longer valid, return an error in this case.
1800	 */
1801	if (!extent_buffer_uptodate(b)) {
1802		if (root_lock)
1803			btrfs_tree_unlock_rw(b, root_lock);
1804		free_extent_buffer(b);
1805		return ERR_PTR(-EIO);
1806	}
1807
1808	p->nodes[level] = b;
1809	if (!p->skip_locking)
1810		p->locks[level] = root_lock;
1811	/*
1812	 * Callers are responsible for dropping b's references.
1813	 */
1814	return b;
1815}
1816
1817/*
1818 * Replace the extent buffer at the lowest level of the path with a cloned
1819 * version. The purpose is to be able to use it safely, after releasing the
1820 * commit root semaphore, even if relocation is happening in parallel, the
1821 * transaction used for relocation is committed and the extent buffer is
1822 * reallocated in the next transaction.
1823 *
1824 * This is used in a context where the caller does not prevent transaction
1825 * commits from happening, either by holding a transaction handle or holding
1826 * some lock, while it's doing searches through a commit root.
1827 * At the moment it's only used for send operations.
1828 */
1829static int finish_need_commit_sem_search(struct btrfs_path *path)
1830{
1831	const int i = path->lowest_level;
1832	const int slot = path->slots[i];
1833	struct extent_buffer *lowest = path->nodes[i];
1834	struct extent_buffer *clone;
1835
1836	ASSERT(path->need_commit_sem);
1837
1838	if (!lowest)
1839		return 0;
1840
1841	lockdep_assert_held_read(&lowest->fs_info->commit_root_sem);
1842
1843	clone = btrfs_clone_extent_buffer(lowest);
1844	if (!clone)
1845		return -ENOMEM;
1846
1847	btrfs_release_path(path);
1848	path->nodes[i] = clone;
1849	path->slots[i] = slot;
1850
1851	return 0;
1852}
1853
1854static inline int search_for_key_slot(struct extent_buffer *eb,
1855				      int search_low_slot,
1856				      const struct btrfs_key *key,
1857				      int prev_cmp,
1858				      int *slot)
1859{
1860	/*
1861	 * If a previous call to btrfs_bin_search() on a parent node returned an
1862	 * exact match (prev_cmp == 0), we can safely assume the target key will
1863	 * always be at slot 0 on lower levels, since each key pointer
1864	 * (struct btrfs_key_ptr) refers to the lowest key accessible from the
1865	 * subtree it points to. Thus we can skip searching lower levels.
1866	 */
1867	if (prev_cmp == 0) {
1868		*slot = 0;
1869		return 0;
1870	}
1871
1872	return generic_bin_search(eb, search_low_slot, key, slot);
1873}
1874
1875static int search_leaf(struct btrfs_trans_handle *trans,
1876		       struct btrfs_root *root,
1877		       const struct btrfs_key *key,
1878		       struct btrfs_path *path,
1879		       int ins_len,
1880		       int prev_cmp)
1881{
1882	struct extent_buffer *leaf = path->nodes[0];
1883	int leaf_free_space = -1;
1884	int search_low_slot = 0;
1885	int ret;
1886	bool do_bin_search = true;
1887
1888	/*
1889	 * If we are doing an insertion, the leaf has enough free space and the
1890	 * destination slot for the key is not slot 0, then we can unlock our
1891	 * write lock on the parent, and any other upper nodes, before doing the
1892	 * binary search on the leaf (with search_for_key_slot()), allowing other
1893	 * tasks to lock the parent and any other upper nodes.
1894	 */
1895	if (ins_len > 0) {
1896		/*
1897		 * Cache the leaf free space, since we will need it later and it
1898		 * will not change until then.
1899		 */
1900		leaf_free_space = btrfs_leaf_free_space(leaf);
1901
1902		/*
1903		 * !path->locks[1] means we have a single node tree, the leaf is
1904		 * the root of the tree.
1905		 */
1906		if (path->locks[1] && leaf_free_space >= ins_len) {
1907			struct btrfs_disk_key first_key;
1908
1909			ASSERT(btrfs_header_nritems(leaf) > 0);
1910			btrfs_item_key(leaf, &first_key, 0);
1911
1912			/*
1913			 * Doing the extra comparison with the first key is cheap,
1914			 * taking into account that the first key is very likely
1915			 * already in a cache line because it immediately follows
1916			 * the extent buffer's header and we have recently accessed
1917			 * the header's level field.
1918			 */
1919			ret = comp_keys(&first_key, key);
1920			if (ret < 0) {
1921				/*
1922				 * The first key is smaller than the key we want
1923				 * to insert, so we are safe to unlock all upper
1924				 * nodes and we have to do the binary search.
1925				 *
1926				 * We do use btrfs_unlock_up_safe() and not
1927				 * unlock_up() because the later does not unlock
1928				 * nodes with a slot of 0 - we can safely unlock
1929				 * any node even if its slot is 0 since in this
1930				 * case the key does not end up at slot 0 of the
1931				 * leaf and there's no need to split the leaf.
1932				 */
1933				btrfs_unlock_up_safe(path, 1);
1934				search_low_slot = 1;
1935			} else {
1936				/*
1937				 * The first key is >= then the key we want to
1938				 * insert, so we can skip the binary search as
1939				 * the target key will be at slot 0.
1940				 *
1941				 * We can not unlock upper nodes when the key is
1942				 * less than the first key, because we will need
1943				 * to update the key at slot 0 of the parent node
1944				 * and possibly of other upper nodes too.
1945				 * If the key matches the first key, then we can
1946				 * unlock all the upper nodes, using
1947				 * btrfs_unlock_up_safe() instead of unlock_up()
1948				 * as stated above.
1949				 */
1950				if (ret == 0)
1951					btrfs_unlock_up_safe(path, 1);
1952				/*
1953				 * ret is already 0 or 1, matching the result of
1954				 * a btrfs_bin_search() call, so there is no need
1955				 * to adjust it.
1956				 */
1957				do_bin_search = false;
1958				path->slots[0] = 0;
1959			}
1960		}
1961	}
1962
1963	if (do_bin_search) {
1964		ret = search_for_key_slot(leaf, search_low_slot, key,
1965					  prev_cmp, &path->slots[0]);
1966		if (ret < 0)
1967			return ret;
1968	}
1969
1970	if (ins_len > 0) {
1971		/*
1972		 * Item key already exists. In this case, if we are allowed to
1973		 * insert the item (for example, in dir_item case, item key
1974		 * collision is allowed), it will be merged with the original
1975		 * item. Only the item size grows, no new btrfs item will be
1976		 * added. If search_for_extension is not set, ins_len already
1977		 * accounts the size btrfs_item, deduct it here so leaf space
1978		 * check will be correct.
1979		 */
1980		if (ret == 0 && !path->search_for_extension) {
1981			ASSERT(ins_len >= sizeof(struct btrfs_item));
1982			ins_len -= sizeof(struct btrfs_item);
1983		}
1984
1985		ASSERT(leaf_free_space >= 0);
1986
1987		if (leaf_free_space < ins_len) {
1988			int err;
1989
1990			err = split_leaf(trans, root, key, path, ins_len,
1991					 (ret == 0));
1992			ASSERT(err <= 0);
1993			if (WARN_ON(err > 0))
1994				err = -EUCLEAN;
1995			if (err)
1996				ret = err;
1997		}
1998	}
1999
2000	return ret;
2001}
2002
2003/*
2004 * btrfs_search_slot - look for a key in a tree and perform necessary
2005 * modifications to preserve tree invariants.
2006 *
2007 * @trans:	Handle of transaction, used when modifying the tree
2008 * @p:		Holds all btree nodes along the search path
2009 * @root:	The root node of the tree
2010 * @key:	The key we are looking for
2011 * @ins_len:	Indicates purpose of search:
2012 *              >0  for inserts it's size of item inserted (*)
2013 *              <0  for deletions
2014 *               0  for plain searches, not modifying the tree
2015 *
2016 *              (*) If size of item inserted doesn't include
2017 *              sizeof(struct btrfs_item), then p->search_for_extension must
2018 *              be set.
2019 * @cow:	boolean should CoW operations be performed. Must always be 1
2020 *		when modifying the tree.
2021 *
2022 * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
2023 * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
2024 *
2025 * If @key is found, 0 is returned and you can find the item in the leaf level
2026 * of the path (level 0)
2027 *
2028 * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
2029 * points to the slot where it should be inserted
2030 *
2031 * If an error is encountered while searching the tree a negative error number
2032 * is returned
2033 */
2034int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2035		      const struct btrfs_key *key, struct btrfs_path *p,
2036		      int ins_len, int cow)
2037{
2038	struct btrfs_fs_info *fs_info = root->fs_info;
2039	struct extent_buffer *b;
2040	int slot;
2041	int ret;
2042	int err;
2043	int level;
2044	int lowest_unlock = 1;
 
2045	/* everything at write_lock_level or lower must be write locked */
2046	int write_lock_level = 0;
2047	u8 lowest_level = 0;
2048	int min_write_lock_level;
2049	int prev_cmp;
2050
2051	might_sleep();
2052
2053	lowest_level = p->lowest_level;
2054	WARN_ON(lowest_level && ins_len > 0);
2055	WARN_ON(p->nodes[0] != NULL);
2056	BUG_ON(!cow && ins_len);
2057
2058	/*
2059	 * For now only allow nowait for read only operations.  There's no
2060	 * strict reason why we can't, we just only need it for reads so it's
2061	 * only implemented for reads.
2062	 */
2063	ASSERT(!p->nowait || !cow);
2064
2065	if (ins_len < 0) {
2066		lowest_unlock = 2;
2067
2068		/* when we are removing items, we might have to go up to level
2069		 * two as we update tree pointers  Make sure we keep write
2070		 * for those levels as well
2071		 */
2072		write_lock_level = 2;
2073	} else if (ins_len > 0) {
2074		/*
2075		 * for inserting items, make sure we have a write lock on
2076		 * level 1 so we can update keys
2077		 */
2078		write_lock_level = 1;
2079	}
2080
2081	if (!cow)
2082		write_lock_level = -1;
2083
2084	if (cow && (p->keep_locks || p->lowest_level))
2085		write_lock_level = BTRFS_MAX_LEVEL;
2086
2087	min_write_lock_level = write_lock_level;
2088
2089	if (p->need_commit_sem) {
2090		ASSERT(p->search_commit_root);
2091		if (p->nowait) {
2092			if (!down_read_trylock(&fs_info->commit_root_sem))
2093				return -EAGAIN;
2094		} else {
2095			down_read(&fs_info->commit_root_sem);
2096		}
2097	}
2098
2099again:
2100	prev_cmp = -1;
2101	b = btrfs_search_slot_get_root(root, p, write_lock_level);
2102	if (IS_ERR(b)) {
2103		ret = PTR_ERR(b);
2104		goto done;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2105	}
 
 
 
2106
2107	while (b) {
2108		int dec = 0;
2109
2110		level = btrfs_header_level(b);
2111
 
 
 
 
2112		if (cow) {
2113			bool last_level = (level == (BTRFS_MAX_LEVEL - 1));
2114
2115			/*
2116			 * if we don't really need to cow this block
2117			 * then we don't want to set the path blocking,
2118			 * so we test it here
2119			 */
2120			if (!should_cow_block(trans, root, b))
 
2121				goto cow_done;
 
2122
2123			/*
2124			 * must have write locks on this node and the
2125			 * parent
2126			 */
2127			if (level > write_lock_level ||
2128			    (level + 1 > write_lock_level &&
2129			    level + 1 < BTRFS_MAX_LEVEL &&
2130			    p->nodes[level + 1])) {
2131				write_lock_level = level + 1;
2132				btrfs_release_path(p);
2133				goto again;
2134			}
2135
 
2136			if (last_level)
2137				err = btrfs_cow_block(trans, root, b, NULL, 0,
2138						      &b,
2139						      BTRFS_NESTING_COW);
2140			else
2141				err = btrfs_cow_block(trans, root, b,
2142						      p->nodes[level + 1],
2143						      p->slots[level + 1], &b,
2144						      BTRFS_NESTING_COW);
2145			if (err) {
2146				ret = err;
2147				goto done;
2148			}
2149		}
2150cow_done:
2151		p->nodes[level] = b;
 
2152
2153		/*
2154		 * we have a lock on b and as long as we aren't changing
2155		 * the tree, there is no way to for the items in b to change.
2156		 * It is safe to drop the lock on our parent before we
2157		 * go through the expensive btree search on b.
2158		 *
2159		 * If we're inserting or deleting (ins_len != 0), then we might
2160		 * be changing slot zero, which may require changing the parent.
2161		 * So, we can't drop the lock until after we know which slot
2162		 * we're operating on.
2163		 */
2164		if (!ins_len && !p->keep_locks) {
2165			int u = level + 1;
2166
2167			if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2168				btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2169				p->locks[u] = 0;
2170			}
2171		}
2172
2173		if (level == 0) {
2174			if (ins_len > 0)
2175				ASSERT(write_lock_level >= 1);
2176
2177			ret = search_leaf(trans, root, key, p, ins_len, prev_cmp);
2178			if (!p->search_for_split)
2179				unlock_up(p, level, lowest_unlock,
2180					  min_write_lock_level, NULL);
2181			goto done;
2182		}
2183
2184		ret = search_for_key_slot(b, 0, key, prev_cmp, &slot);
2185		if (ret < 0)
2186			goto done;
2187		prev_cmp = ret;
2188
2189		if (ret && slot > 0) {
2190			dec = 1;
2191			slot--;
2192		}
2193		p->slots[level] = slot;
2194		err = setup_nodes_for_search(trans, root, p, b, level, ins_len,
2195					     &write_lock_level);
2196		if (err == -EAGAIN)
2197			goto again;
2198		if (err) {
2199			ret = err;
2200			goto done;
2201		}
2202		b = p->nodes[level];
2203		slot = p->slots[level];
2204
2205		/*
2206		 * Slot 0 is special, if we change the key we have to update
2207		 * the parent pointer which means we must have a write lock on
2208		 * the parent
2209		 */
2210		if (slot == 0 && ins_len && write_lock_level < level + 1) {
2211			write_lock_level = level + 1;
2212			btrfs_release_path(p);
2213			goto again;
2214		}
2215
2216		unlock_up(p, level, lowest_unlock, min_write_lock_level,
2217			  &write_lock_level);
 
 
 
 
2218
2219		if (level == lowest_level) {
2220			if (dec)
2221				p->slots[level]++;
2222			goto done;
2223		}
 
 
 
 
 
 
 
2224
2225		err = read_block_for_search(root, p, &b, level, slot, key);
2226		if (err == -EAGAIN)
2227			goto again;
2228		if (err) {
2229			ret = err;
2230			goto done;
2231		}
2232
2233		if (!p->skip_locking) {
2234			level = btrfs_header_level(b);
 
 
 
2235
2236			btrfs_maybe_reset_lockdep_class(root, b);
 
 
 
 
 
 
 
2237
2238			if (level <= write_lock_level) {
2239				btrfs_tree_lock(b);
2240				p->locks[level] = BTRFS_WRITE_LOCK;
2241			} else {
2242				if (p->nowait) {
2243					if (!btrfs_try_tree_read_lock(b)) {
2244						free_extent_buffer(b);
2245						ret = -EAGAIN;
2246						goto done;
2247					}
 
2248				} else {
2249					btrfs_tree_read_lock(b);
 
 
 
 
 
 
 
2250				}
2251				p->locks[level] = BTRFS_READ_LOCK;
2252			}
2253			p->nodes[level] = b;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2254		}
2255	}
2256	ret = 1;
2257done:
 
 
 
 
 
 
2258	if (ret < 0 && !p->skip_release_on_error)
2259		btrfs_release_path(p);
2260
2261	if (p->need_commit_sem) {
2262		int ret2;
2263
2264		ret2 = finish_need_commit_sem_search(p);
2265		up_read(&fs_info->commit_root_sem);
2266		if (ret2)
2267			ret = ret2;
2268	}
2269
2270	return ret;
2271}
2272ALLOW_ERROR_INJECTION(btrfs_search_slot, ERRNO);
2273
2274/*
2275 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2276 * current state of the tree together with the operations recorded in the tree
2277 * modification log to search for the key in a previous version of this tree, as
2278 * denoted by the time_seq parameter.
2279 *
2280 * Naturally, there is no support for insert, delete or cow operations.
2281 *
2282 * The resulting path and return value will be set up as if we called
2283 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2284 */
2285int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
2286			  struct btrfs_path *p, u64 time_seq)
2287{
2288	struct btrfs_fs_info *fs_info = root->fs_info;
2289	struct extent_buffer *b;
2290	int slot;
2291	int ret;
2292	int err;
2293	int level;
2294	int lowest_unlock = 1;
2295	u8 lowest_level = 0;
 
2296
2297	lowest_level = p->lowest_level;
2298	WARN_ON(p->nodes[0] != NULL);
2299	ASSERT(!p->nowait);
2300
2301	if (p->search_commit_root) {
2302		BUG_ON(time_seq);
2303		return btrfs_search_slot(NULL, root, key, p, 0, 0);
2304	}
2305
2306again:
2307	b = btrfs_get_old_root(root, time_seq);
2308	if (!b) {
2309		ret = -EIO;
2310		goto done;
2311	}
2312	level = btrfs_header_level(b);
2313	p->locks[level] = BTRFS_READ_LOCK;
2314
2315	while (b) {
2316		int dec = 0;
2317
2318		level = btrfs_header_level(b);
2319		p->nodes[level] = b;
 
2320
2321		/*
2322		 * we have a lock on b and as long as we aren't changing
2323		 * the tree, there is no way to for the items in b to change.
2324		 * It is safe to drop the lock on our parent before we
2325		 * go through the expensive btree search on b.
2326		 */
2327		btrfs_unlock_up_safe(p, level + 1);
2328
2329		ret = btrfs_bin_search(b, key, &slot);
2330		if (ret < 0)
2331			goto done;
 
 
 
2332
2333		if (level == 0) {
 
 
 
 
 
2334			p->slots[level] = slot;
2335			unlock_up(p, level, lowest_unlock, 0, NULL);
2336			goto done;
2337		}
2338
2339		if (ret && slot > 0) {
2340			dec = 1;
2341			slot--;
2342		}
2343		p->slots[level] = slot;
2344		unlock_up(p, level, lowest_unlock, 0, NULL);
2345
2346		if (level == lowest_level) {
2347			if (dec)
2348				p->slots[level]++;
2349			goto done;
2350		}
2351
2352		err = read_block_for_search(root, p, &b, level, slot, key);
2353		if (err == -EAGAIN)
2354			goto again;
2355		if (err) {
2356			ret = err;
2357			goto done;
2358		}
 
2359
2360		level = btrfs_header_level(b);
2361		btrfs_tree_read_lock(b);
2362		b = btrfs_tree_mod_log_rewind(fs_info, p, b, time_seq);
2363		if (!b) {
2364			ret = -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
2365			goto done;
2366		}
2367		p->locks[level] = BTRFS_READ_LOCK;
2368		p->nodes[level] = b;
2369	}
2370	ret = 1;
2371done:
 
 
2372	if (ret < 0)
2373		btrfs_release_path(p);
2374
2375	return ret;
2376}
2377
2378/*
2379 * helper to use instead of search slot if no exact match is needed but
2380 * instead the next or previous item should be returned.
2381 * When find_higher is true, the next higher item is returned, the next lower
2382 * otherwise.
2383 * When return_any and find_higher are both true, and no higher item is found,
2384 * return the next lower instead.
2385 * When return_any is true and find_higher is false, and no lower item is found,
2386 * return the next higher instead.
2387 * It returns 0 if any item is found, 1 if none is found (tree empty), and
2388 * < 0 on error
2389 */
2390int btrfs_search_slot_for_read(struct btrfs_root *root,
2391			       const struct btrfs_key *key,
2392			       struct btrfs_path *p, int find_higher,
2393			       int return_any)
2394{
2395	int ret;
2396	struct extent_buffer *leaf;
2397
2398again:
2399	ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
2400	if (ret <= 0)
2401		return ret;
2402	/*
2403	 * a return value of 1 means the path is at the position where the
2404	 * item should be inserted. Normally this is the next bigger item,
2405	 * but in case the previous item is the last in a leaf, path points
2406	 * to the first free slot in the previous leaf, i.e. at an invalid
2407	 * item.
2408	 */
2409	leaf = p->nodes[0];
2410
2411	if (find_higher) {
2412		if (p->slots[0] >= btrfs_header_nritems(leaf)) {
2413			ret = btrfs_next_leaf(root, p);
2414			if (ret <= 0)
2415				return ret;
2416			if (!return_any)
2417				return 1;
2418			/*
2419			 * no higher item found, return the next
2420			 * lower instead
2421			 */
2422			return_any = 0;
2423			find_higher = 0;
2424			btrfs_release_path(p);
2425			goto again;
2426		}
2427	} else {
2428		if (p->slots[0] == 0) {
2429			ret = btrfs_prev_leaf(root, p);
2430			if (ret < 0)
2431				return ret;
2432			if (!ret) {
2433				leaf = p->nodes[0];
2434				if (p->slots[0] == btrfs_header_nritems(leaf))
2435					p->slots[0]--;
2436				return 0;
2437			}
2438			if (!return_any)
2439				return 1;
2440			/*
2441			 * no lower item found, return the next
2442			 * higher instead
2443			 */
2444			return_any = 0;
2445			find_higher = 1;
2446			btrfs_release_path(p);
2447			goto again;
2448		} else {
2449			--p->slots[0];
2450		}
2451	}
2452	return 0;
2453}
2454
2455/*
2456 * Execute search and call btrfs_previous_item to traverse backwards if the item
2457 * was not found.
2458 *
2459 * Return 0 if found, 1 if not found and < 0 if error.
2460 */
2461int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key,
2462			   struct btrfs_path *path)
2463{
2464	int ret;
2465
2466	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
2467	if (ret > 0)
2468		ret = btrfs_previous_item(root, path, key->objectid, key->type);
2469
2470	if (ret == 0)
2471		btrfs_item_key_to_cpu(path->nodes[0], key, path->slots[0]);
2472
2473	return ret;
2474}
2475
2476/*
2477 * Search for a valid slot for the given path.
2478 *
2479 * @root:	The root node of the tree.
2480 * @key:	Will contain a valid item if found.
2481 * @path:	The starting point to validate the slot.
2482 *
2483 * Return: 0  if the item is valid
2484 *         1  if not found
2485 *         <0 if error.
2486 */
2487int btrfs_get_next_valid_item(struct btrfs_root *root, struct btrfs_key *key,
2488			      struct btrfs_path *path)
2489{
2490	while (1) {
2491		int ret;
2492		const int slot = path->slots[0];
2493		const struct extent_buffer *leaf = path->nodes[0];
2494
2495		/* This is where we start walking the path. */
2496		if (slot >= btrfs_header_nritems(leaf)) {
2497			/*
2498			 * If we've reached the last slot in this leaf we need
2499			 * to go to the next leaf and reset the path.
2500			 */
2501			ret = btrfs_next_leaf(root, path);
2502			if (ret)
2503				return ret;
2504			continue;
2505		}
2506		/* Store the found, valid item in @key. */
2507		btrfs_item_key_to_cpu(leaf, key, slot);
2508		break;
2509	}
2510	return 0;
2511}
2512
2513/*
2514 * adjust the pointers going up the tree, starting at level
2515 * making sure the right key of each node is points to 'key'.
2516 * This is used after shifting pointers to the left, so it stops
2517 * fixing up pointers when a given leaf/node is not in slot 0 of the
2518 * higher levels
2519 *
2520 */
2521static void fixup_low_keys(struct btrfs_path *path,
 
2522			   struct btrfs_disk_key *key, int level)
2523{
2524	int i;
2525	struct extent_buffer *t;
2526	int ret;
2527
2528	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2529		int tslot = path->slots[i];
2530
2531		if (!path->nodes[i])
2532			break;
2533		t = path->nodes[i];
2534		ret = btrfs_tree_mod_log_insert_key(t, tslot,
2535						    BTRFS_MOD_LOG_KEY_REPLACE);
2536		BUG_ON(ret < 0);
2537		btrfs_set_node_key(t, key, tslot);
2538		btrfs_mark_buffer_dirty(path->nodes[i]);
2539		if (tslot != 0)
2540			break;
2541	}
2542}
2543
2544/*
2545 * update item key.
2546 *
2547 * This function isn't completely safe. It's the caller's responsibility
2548 * that the new key won't break the order
2549 */
2550void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
2551			     struct btrfs_path *path,
2552			     const struct btrfs_key *new_key)
2553{
2554	struct btrfs_disk_key disk_key;
2555	struct extent_buffer *eb;
2556	int slot;
2557
2558	eb = path->nodes[0];
2559	slot = path->slots[0];
2560	if (slot > 0) {
2561		btrfs_item_key(eb, &disk_key, slot - 1);
2562		if (unlikely(comp_keys(&disk_key, new_key) >= 0)) {
2563			btrfs_crit(fs_info,
2564		"slot %u key (%llu %u %llu) new key (%llu %u %llu)",
2565				   slot, btrfs_disk_key_objectid(&disk_key),
2566				   btrfs_disk_key_type(&disk_key),
2567				   btrfs_disk_key_offset(&disk_key),
2568				   new_key->objectid, new_key->type,
2569				   new_key->offset);
2570			btrfs_print_leaf(eb);
2571			BUG();
2572		}
2573	}
2574	if (slot < btrfs_header_nritems(eb) - 1) {
2575		btrfs_item_key(eb, &disk_key, slot + 1);
2576		if (unlikely(comp_keys(&disk_key, new_key) <= 0)) {
2577			btrfs_crit(fs_info,
2578		"slot %u key (%llu %u %llu) new key (%llu %u %llu)",
2579				   slot, btrfs_disk_key_objectid(&disk_key),
2580				   btrfs_disk_key_type(&disk_key),
2581				   btrfs_disk_key_offset(&disk_key),
2582				   new_key->objectid, new_key->type,
2583				   new_key->offset);
2584			btrfs_print_leaf(eb);
2585			BUG();
2586		}
2587	}
2588
2589	btrfs_cpu_key_to_disk(&disk_key, new_key);
2590	btrfs_set_item_key(eb, &disk_key, slot);
2591	btrfs_mark_buffer_dirty(eb);
2592	if (slot == 0)
2593		fixup_low_keys(path, &disk_key, 1);
2594}
2595
2596/*
2597 * Check key order of two sibling extent buffers.
2598 *
2599 * Return true if something is wrong.
2600 * Return false if everything is fine.
2601 *
2602 * Tree-checker only works inside one tree block, thus the following
2603 * corruption can not be detected by tree-checker:
2604 *
2605 * Leaf @left			| Leaf @right
2606 * --------------------------------------------------------------
2607 * | 1 | 2 | 3 | 4 | 5 | f6 |   | 7 | 8 |
2608 *
2609 * Key f6 in leaf @left itself is valid, but not valid when the next
2610 * key in leaf @right is 7.
2611 * This can only be checked at tree block merge time.
2612 * And since tree checker has ensured all key order in each tree block
2613 * is correct, we only need to bother the last key of @left and the first
2614 * key of @right.
2615 */
2616static bool check_sibling_keys(struct extent_buffer *left,
2617			       struct extent_buffer *right)
2618{
2619	struct btrfs_key left_last;
2620	struct btrfs_key right_first;
2621	int level = btrfs_header_level(left);
2622	int nr_left = btrfs_header_nritems(left);
2623	int nr_right = btrfs_header_nritems(right);
2624
2625	/* No key to check in one of the tree blocks */
2626	if (!nr_left || !nr_right)
2627		return false;
2628
2629	if (level) {
2630		btrfs_node_key_to_cpu(left, &left_last, nr_left - 1);
2631		btrfs_node_key_to_cpu(right, &right_first, 0);
2632	} else {
2633		btrfs_item_key_to_cpu(left, &left_last, nr_left - 1);
2634		btrfs_item_key_to_cpu(right, &right_first, 0);
2635	}
2636
2637	if (btrfs_comp_cpu_keys(&left_last, &right_first) >= 0) {
2638		btrfs_crit(left->fs_info,
2639"bad key order, sibling blocks, left last (%llu %u %llu) right first (%llu %u %llu)",
2640			   left_last.objectid, left_last.type,
2641			   left_last.offset, right_first.objectid,
2642			   right_first.type, right_first.offset);
2643		return true;
2644	}
2645	return false;
2646}
2647
2648/*
2649 * try to push data from one node into the next node left in the
2650 * tree.
2651 *
2652 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
2653 * error, and > 0 if there was no room in the left hand block.
2654 */
2655static int push_node_left(struct btrfs_trans_handle *trans,
 
2656			  struct extent_buffer *dst,
2657			  struct extent_buffer *src, int empty)
2658{
2659	struct btrfs_fs_info *fs_info = trans->fs_info;
2660	int push_items = 0;
2661	int src_nritems;
2662	int dst_nritems;
2663	int ret = 0;
2664
2665	src_nritems = btrfs_header_nritems(src);
2666	dst_nritems = btrfs_header_nritems(dst);
2667	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
2668	WARN_ON(btrfs_header_generation(src) != trans->transid);
2669	WARN_ON(btrfs_header_generation(dst) != trans->transid);
2670
2671	if (!empty && src_nritems <= 8)
2672		return 1;
2673
2674	if (push_items <= 0)
2675		return 1;
2676
2677	if (empty) {
2678		push_items = min(src_nritems, push_items);
2679		if (push_items < src_nritems) {
2680			/* leave at least 8 pointers in the node if
2681			 * we aren't going to empty it
2682			 */
2683			if (src_nritems - push_items < 8) {
2684				if (push_items <= 8)
2685					return 1;
2686				push_items -= 8;
2687			}
2688		}
2689	} else
2690		push_items = min(src_nritems - 8, push_items);
2691
2692	/* dst is the left eb, src is the middle eb */
2693	if (check_sibling_keys(dst, src)) {
2694		ret = -EUCLEAN;
2695		btrfs_abort_transaction(trans, ret);
2696		return ret;
2697	}
2698	ret = btrfs_tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items);
2699	if (ret) {
2700		btrfs_abort_transaction(trans, ret);
2701		return ret;
2702	}
2703	copy_extent_buffer(dst, src,
2704			   btrfs_node_key_ptr_offset(dst, dst_nritems),
2705			   btrfs_node_key_ptr_offset(src, 0),
2706			   push_items * sizeof(struct btrfs_key_ptr));
2707
2708	if (push_items < src_nritems) {
2709		/*
2710		 * Don't call btrfs_tree_mod_log_insert_move() here, key removal
2711		 * was already fully logged by btrfs_tree_mod_log_eb_copy() above.
2712		 */
2713		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(src, 0),
2714				      btrfs_node_key_ptr_offset(src, push_items),
2715				      (src_nritems - push_items) *
2716				      sizeof(struct btrfs_key_ptr));
2717	}
2718	btrfs_set_header_nritems(src, src_nritems - push_items);
2719	btrfs_set_header_nritems(dst, dst_nritems + push_items);
2720	btrfs_mark_buffer_dirty(src);
2721	btrfs_mark_buffer_dirty(dst);
2722
2723	return ret;
2724}
2725
2726/*
2727 * try to push data from one node into the next node right in the
2728 * tree.
2729 *
2730 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
2731 * error, and > 0 if there was no room in the right hand block.
2732 *
2733 * this will  only push up to 1/2 the contents of the left node over
2734 */
2735static int balance_node_right(struct btrfs_trans_handle *trans,
 
2736			      struct extent_buffer *dst,
2737			      struct extent_buffer *src)
2738{
2739	struct btrfs_fs_info *fs_info = trans->fs_info;
2740	int push_items = 0;
2741	int max_push;
2742	int src_nritems;
2743	int dst_nritems;
2744	int ret = 0;
2745
2746	WARN_ON(btrfs_header_generation(src) != trans->transid);
2747	WARN_ON(btrfs_header_generation(dst) != trans->transid);
2748
2749	src_nritems = btrfs_header_nritems(src);
2750	dst_nritems = btrfs_header_nritems(dst);
2751	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
2752	if (push_items <= 0)
2753		return 1;
2754
2755	if (src_nritems < 4)
2756		return 1;
2757
2758	max_push = src_nritems / 2 + 1;
2759	/* don't try to empty the node */
2760	if (max_push >= src_nritems)
2761		return 1;
2762
2763	if (max_push < push_items)
2764		push_items = max_push;
2765
2766	/* dst is the right eb, src is the middle eb */
2767	if (check_sibling_keys(src, dst)) {
2768		ret = -EUCLEAN;
2769		btrfs_abort_transaction(trans, ret);
2770		return ret;
2771	}
2772	ret = btrfs_tree_mod_log_insert_move(dst, push_items, 0, dst_nritems);
2773	BUG_ON(ret < 0);
2774	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(dst, push_items),
2775				      btrfs_node_key_ptr_offset(dst, 0),
2776				      (dst_nritems) *
2777				      sizeof(struct btrfs_key_ptr));
2778
2779	ret = btrfs_tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items,
2780					 push_items);
2781	if (ret) {
2782		btrfs_abort_transaction(trans, ret);
2783		return ret;
2784	}
2785	copy_extent_buffer(dst, src,
2786			   btrfs_node_key_ptr_offset(dst, 0),
2787			   btrfs_node_key_ptr_offset(src, src_nritems - push_items),
2788			   push_items * sizeof(struct btrfs_key_ptr));
2789
2790	btrfs_set_header_nritems(src, src_nritems - push_items);
2791	btrfs_set_header_nritems(dst, dst_nritems + push_items);
2792
2793	btrfs_mark_buffer_dirty(src);
2794	btrfs_mark_buffer_dirty(dst);
2795
2796	return ret;
2797}
2798
2799/*
2800 * helper function to insert a new root level in the tree.
2801 * A new node is allocated, and a single item is inserted to
2802 * point to the existing root
2803 *
2804 * returns zero on success or < 0 on failure.
2805 */
2806static noinline int insert_new_root(struct btrfs_trans_handle *trans,
2807			   struct btrfs_root *root,
2808			   struct btrfs_path *path, int level)
2809{
2810	struct btrfs_fs_info *fs_info = root->fs_info;
2811	u64 lower_gen;
2812	struct extent_buffer *lower;
2813	struct extent_buffer *c;
2814	struct extent_buffer *old;
2815	struct btrfs_disk_key lower_key;
2816	int ret;
2817
2818	BUG_ON(path->nodes[level]);
2819	BUG_ON(path->nodes[level-1] != root->node);
2820
2821	lower = path->nodes[level-1];
2822	if (level == 1)
2823		btrfs_item_key(lower, &lower_key, 0);
2824	else
2825		btrfs_node_key(lower, &lower_key, 0);
2826
2827	c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
2828				   &lower_key, level, root->node->start, 0,
2829				   BTRFS_NESTING_NEW_ROOT);
2830	if (IS_ERR(c))
2831		return PTR_ERR(c);
2832
2833	root_add_used(root, fs_info->nodesize);
2834
 
2835	btrfs_set_header_nritems(c, 1);
 
 
 
 
 
 
 
 
 
2836	btrfs_set_node_key(c, &lower_key, 0);
2837	btrfs_set_node_blockptr(c, 0, lower->start);
2838	lower_gen = btrfs_header_generation(lower);
2839	WARN_ON(lower_gen != trans->transid);
2840
2841	btrfs_set_node_ptr_generation(c, 0, lower_gen);
2842
2843	btrfs_mark_buffer_dirty(c);
2844
2845	old = root->node;
2846	ret = btrfs_tree_mod_log_insert_root(root->node, c, false);
2847	BUG_ON(ret < 0);
2848	rcu_assign_pointer(root->node, c);
2849
2850	/* the super has an extra ref to root->node */
2851	free_extent_buffer(old);
2852
2853	add_root_to_dirty_list(root);
2854	atomic_inc(&c->refs);
2855	path->nodes[level] = c;
2856	path->locks[level] = BTRFS_WRITE_LOCK;
2857	path->slots[level] = 0;
2858	return 0;
2859}
2860
2861/*
2862 * worker function to insert a single pointer in a node.
2863 * the node should have enough room for the pointer already
2864 *
2865 * slot and level indicate where you want the key to go, and
2866 * blocknr is the block the key points to.
2867 */
2868static void insert_ptr(struct btrfs_trans_handle *trans,
2869		       struct btrfs_path *path,
2870		       struct btrfs_disk_key *key, u64 bytenr,
2871		       int slot, int level)
2872{
2873	struct extent_buffer *lower;
2874	int nritems;
2875	int ret;
2876
2877	BUG_ON(!path->nodes[level]);
2878	btrfs_assert_tree_write_locked(path->nodes[level]);
2879	lower = path->nodes[level];
2880	nritems = btrfs_header_nritems(lower);
2881	BUG_ON(slot > nritems);
2882	BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info));
2883	if (slot != nritems) {
2884		if (level) {
2885			ret = btrfs_tree_mod_log_insert_move(lower, slot + 1,
2886					slot, nritems - slot);
2887			BUG_ON(ret < 0);
2888		}
2889		memmove_extent_buffer(lower,
2890			      btrfs_node_key_ptr_offset(lower, slot + 1),
2891			      btrfs_node_key_ptr_offset(lower, slot),
2892			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
2893	}
2894	if (level) {
2895		ret = btrfs_tree_mod_log_insert_key(lower, slot,
2896						    BTRFS_MOD_LOG_KEY_ADD);
2897		BUG_ON(ret < 0);
2898	}
2899	btrfs_set_node_key(lower, key, slot);
2900	btrfs_set_node_blockptr(lower, slot, bytenr);
2901	WARN_ON(trans->transid == 0);
2902	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
2903	btrfs_set_header_nritems(lower, nritems + 1);
2904	btrfs_mark_buffer_dirty(lower);
2905}
2906
2907/*
2908 * split the node at the specified level in path in two.
2909 * The path is corrected to point to the appropriate node after the split
2910 *
2911 * Before splitting this tries to make some room in the node by pushing
2912 * left and right, if either one works, it returns right away.
2913 *
2914 * returns 0 on success and < 0 on failure
2915 */
2916static noinline int split_node(struct btrfs_trans_handle *trans,
2917			       struct btrfs_root *root,
2918			       struct btrfs_path *path, int level)
2919{
2920	struct btrfs_fs_info *fs_info = root->fs_info;
2921	struct extent_buffer *c;
2922	struct extent_buffer *split;
2923	struct btrfs_disk_key disk_key;
2924	int mid;
2925	int ret;
2926	u32 c_nritems;
2927
2928	c = path->nodes[level];
2929	WARN_ON(btrfs_header_generation(c) != trans->transid);
2930	if (c == root->node) {
2931		/*
2932		 * trying to split the root, lets make a new one
2933		 *
2934		 * tree mod log: We don't log_removal old root in
2935		 * insert_new_root, because that root buffer will be kept as a
2936		 * normal node. We are going to log removal of half of the
2937		 * elements below with btrfs_tree_mod_log_eb_copy(). We're
2938		 * holding a tree lock on the buffer, which is why we cannot
2939		 * race with other tree_mod_log users.
2940		 */
2941		ret = insert_new_root(trans, root, path, level + 1);
2942		if (ret)
2943			return ret;
2944	} else {
2945		ret = push_nodes_for_insert(trans, root, path, level);
2946		c = path->nodes[level];
2947		if (!ret && btrfs_header_nritems(c) <
2948		    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
2949			return 0;
2950		if (ret < 0)
2951			return ret;
2952	}
2953
2954	c_nritems = btrfs_header_nritems(c);
2955	mid = (c_nritems + 1) / 2;
2956	btrfs_node_key(c, &disk_key, mid);
2957
2958	split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
2959				       &disk_key, level, c->start, 0,
2960				       BTRFS_NESTING_SPLIT);
2961	if (IS_ERR(split))
2962		return PTR_ERR(split);
2963
2964	root_add_used(root, fs_info->nodesize);
2965	ASSERT(btrfs_header_level(c) == level);
2966
2967	ret = btrfs_tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid);
 
 
 
 
 
 
 
 
 
2968	if (ret) {
2969		btrfs_abort_transaction(trans, ret);
2970		return ret;
2971	}
2972	copy_extent_buffer(split, c,
2973			   btrfs_node_key_ptr_offset(split, 0),
2974			   btrfs_node_key_ptr_offset(c, mid),
2975			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
2976	btrfs_set_header_nritems(split, c_nritems - mid);
2977	btrfs_set_header_nritems(c, mid);
 
2978
2979	btrfs_mark_buffer_dirty(c);
2980	btrfs_mark_buffer_dirty(split);
2981
2982	insert_ptr(trans, path, &disk_key, split->start,
2983		   path->slots[level + 1] + 1, level + 1);
2984
2985	if (path->slots[level] >= mid) {
2986		path->slots[level] -= mid;
2987		btrfs_tree_unlock(c);
2988		free_extent_buffer(c);
2989		path->nodes[level] = split;
2990		path->slots[level + 1] += 1;
2991	} else {
2992		btrfs_tree_unlock(split);
2993		free_extent_buffer(split);
2994	}
2995	return 0;
2996}
2997
2998/*
2999 * how many bytes are required to store the items in a leaf.  start
3000 * and nr indicate which items in the leaf to check.  This totals up the
3001 * space used both by the item structs and the item data
3002 */
3003static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3004{
 
 
 
3005	int data_len;
3006	int nritems = btrfs_header_nritems(l);
3007	int end = min(nritems, start + nr) - 1;
3008
3009	if (!nr)
3010		return 0;
3011	data_len = btrfs_item_offset(l, start) + btrfs_item_size(l, start);
3012	data_len = data_len - btrfs_item_offset(l, end);
 
 
 
 
3013	data_len += sizeof(struct btrfs_item) * nr;
3014	WARN_ON(data_len < 0);
3015	return data_len;
3016}
3017
3018/*
3019 * The space between the end of the leaf items and
3020 * the start of the leaf data.  IOW, how much room
3021 * the leaf has left for both items and data
3022 */
3023noinline int btrfs_leaf_free_space(struct extent_buffer *leaf)
 
3024{
3025	struct btrfs_fs_info *fs_info = leaf->fs_info;
3026	int nritems = btrfs_header_nritems(leaf);
3027	int ret;
3028
3029	ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
3030	if (ret < 0) {
3031		btrfs_crit(fs_info,
3032			   "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3033			   ret,
3034			   (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
3035			   leaf_space_used(leaf, 0, nritems), nritems);
3036	}
3037	return ret;
3038}
3039
3040/*
3041 * min slot controls the lowest index we're willing to push to the
3042 * right.  We'll push up to and including min_slot, but no lower
3043 */
3044static noinline int __push_leaf_right(struct btrfs_path *path,
 
3045				      int data_size, int empty,
3046				      struct extent_buffer *right,
3047				      int free_space, u32 left_nritems,
3048				      u32 min_slot)
3049{
3050	struct btrfs_fs_info *fs_info = right->fs_info;
3051	struct extent_buffer *left = path->nodes[0];
3052	struct extent_buffer *upper = path->nodes[1];
3053	struct btrfs_map_token token;
3054	struct btrfs_disk_key disk_key;
3055	int slot;
3056	u32 i;
3057	int push_space = 0;
3058	int push_items = 0;
 
3059	u32 nr;
3060	u32 right_nritems;
3061	u32 data_end;
3062	u32 this_item_size;
3063
 
 
3064	if (empty)
3065		nr = 0;
3066	else
3067		nr = max_t(u32, 1, min_slot);
3068
3069	if (path->slots[0] >= left_nritems)
3070		push_space += data_size;
3071
3072	slot = path->slots[1];
3073	i = left_nritems - 1;
3074	while (i >= nr) {
 
 
3075		if (!empty && push_items > 0) {
3076			if (path->slots[0] > i)
3077				break;
3078			if (path->slots[0] == i) {
3079				int space = btrfs_leaf_free_space(left);
3080
3081				if (space + push_space * 2 > free_space)
3082					break;
3083			}
3084		}
3085
3086		if (path->slots[0] == i)
3087			push_space += data_size;
3088
3089		this_item_size = btrfs_item_size(left, i);
3090		if (this_item_size + sizeof(struct btrfs_item) +
3091		    push_space > free_space)
3092			break;
3093
3094		push_items++;
3095		push_space += this_item_size + sizeof(struct btrfs_item);
3096		if (i == 0)
3097			break;
3098		i--;
3099	}
3100
3101	if (push_items == 0)
3102		goto out_unlock;
3103
3104	WARN_ON(!empty && push_items == left_nritems);
3105
3106	/* push left to right */
3107	right_nritems = btrfs_header_nritems(right);
3108
3109	push_space = btrfs_item_data_end(left, left_nritems - push_items);
3110	push_space -= leaf_data_end(left);
3111
3112	/* make room in the right data area */
3113	data_end = leaf_data_end(right);
3114	memmove_leaf_data(right, data_end - push_space, data_end,
3115			  BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
 
 
3116
3117	/* copy from the left data area */
3118	copy_leaf_data(right, left, BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3119		       leaf_data_end(left), push_space);
3120
3121	memmove_leaf_items(right, push_items, 0, right_nritems);
 
 
 
 
3122
3123	/* copy the items from left to right */
3124	copy_leaf_items(right, left, 0, left_nritems - push_items, push_items);
 
 
3125
3126	/* update the item pointers */
3127	btrfs_init_map_token(&token, right);
3128	right_nritems += push_items;
3129	btrfs_set_header_nritems(right, right_nritems);
3130	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3131	for (i = 0; i < right_nritems; i++) {
3132		push_space -= btrfs_token_item_size(&token, i);
3133		btrfs_set_token_item_offset(&token, i, push_space);
 
3134	}
3135
3136	left_nritems -= push_items;
3137	btrfs_set_header_nritems(left, left_nritems);
3138
3139	if (left_nritems)
3140		btrfs_mark_buffer_dirty(left);
3141	else
3142		btrfs_clean_tree_block(left);
3143
3144	btrfs_mark_buffer_dirty(right);
3145
3146	btrfs_item_key(right, &disk_key, 0);
3147	btrfs_set_node_key(upper, &disk_key, slot + 1);
3148	btrfs_mark_buffer_dirty(upper);
3149
3150	/* then fixup the leaf pointer in the path */
3151	if (path->slots[0] >= left_nritems) {
3152		path->slots[0] -= left_nritems;
3153		if (btrfs_header_nritems(path->nodes[0]) == 0)
3154			btrfs_clean_tree_block(path->nodes[0]);
3155		btrfs_tree_unlock(path->nodes[0]);
3156		free_extent_buffer(path->nodes[0]);
3157		path->nodes[0] = right;
3158		path->slots[1] += 1;
3159	} else {
3160		btrfs_tree_unlock(right);
3161		free_extent_buffer(right);
3162	}
3163	return 0;
3164
3165out_unlock:
3166	btrfs_tree_unlock(right);
3167	free_extent_buffer(right);
3168	return 1;
3169}
3170
3171/*
3172 * push some data in the path leaf to the right, trying to free up at
3173 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3174 *
3175 * returns 1 if the push failed because the other node didn't have enough
3176 * room, 0 if everything worked out and < 0 if there were major errors.
3177 *
3178 * this will push starting from min_slot to the end of the leaf.  It won't
3179 * push any slot lower than min_slot
3180 */
3181static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3182			   *root, struct btrfs_path *path,
3183			   int min_data_size, int data_size,
3184			   int empty, u32 min_slot)
3185{
 
3186	struct extent_buffer *left = path->nodes[0];
3187	struct extent_buffer *right;
3188	struct extent_buffer *upper;
3189	int slot;
3190	int free_space;
3191	u32 left_nritems;
3192	int ret;
3193
3194	if (!path->nodes[1])
3195		return 1;
3196
3197	slot = path->slots[1];
3198	upper = path->nodes[1];
3199	if (slot >= btrfs_header_nritems(upper) - 1)
3200		return 1;
3201
3202	btrfs_assert_tree_write_locked(path->nodes[1]);
3203
3204	right = btrfs_read_node_slot(upper, slot + 1);
3205	/*
3206	 * slot + 1 is not valid or we fail to read the right node,
3207	 * no big deal, just return.
3208	 */
3209	if (IS_ERR(right))
3210		return 1;
3211
3212	__btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
 
3213
3214	free_space = btrfs_leaf_free_space(right);
3215	if (free_space < data_size)
3216		goto out_unlock;
3217
 
3218	ret = btrfs_cow_block(trans, root, right, upper,
3219			      slot + 1, &right, BTRFS_NESTING_RIGHT_COW);
3220	if (ret)
3221		goto out_unlock;
3222
 
 
 
 
3223	left_nritems = btrfs_header_nritems(left);
3224	if (left_nritems == 0)
3225		goto out_unlock;
3226
3227	if (check_sibling_keys(left, right)) {
3228		ret = -EUCLEAN;
3229		btrfs_tree_unlock(right);
3230		free_extent_buffer(right);
3231		return ret;
3232	}
3233	if (path->slots[0] == left_nritems && !empty) {
3234		/* Key greater than all keys in the leaf, right neighbor has
3235		 * enough room for it and we're not emptying our leaf to delete
3236		 * it, therefore use right neighbor to insert the new item and
3237		 * no need to touch/dirty our left leaf. */
3238		btrfs_tree_unlock(left);
3239		free_extent_buffer(left);
3240		path->nodes[0] = right;
3241		path->slots[0] = 0;
3242		path->slots[1]++;
3243		return 0;
3244	}
3245
3246	return __push_leaf_right(path, min_data_size, empty,
3247				right, free_space, left_nritems, min_slot);
3248out_unlock:
3249	btrfs_tree_unlock(right);
3250	free_extent_buffer(right);
3251	return 1;
3252}
3253
3254/*
3255 * push some data in the path leaf to the left, trying to free up at
3256 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3257 *
3258 * max_slot can put a limit on how far into the leaf we'll push items.  The
3259 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3260 * items
3261 */
3262static noinline int __push_leaf_left(struct btrfs_path *path, int data_size,
 
3263				     int empty, struct extent_buffer *left,
3264				     int free_space, u32 right_nritems,
3265				     u32 max_slot)
3266{
3267	struct btrfs_fs_info *fs_info = left->fs_info;
3268	struct btrfs_disk_key disk_key;
3269	struct extent_buffer *right = path->nodes[0];
3270	int i;
3271	int push_space = 0;
3272	int push_items = 0;
 
3273	u32 old_left_nritems;
3274	u32 nr;
3275	int ret = 0;
3276	u32 this_item_size;
3277	u32 old_left_item_size;
3278	struct btrfs_map_token token;
3279
 
 
3280	if (empty)
3281		nr = min(right_nritems, max_slot);
3282	else
3283		nr = min(right_nritems - 1, max_slot);
3284
3285	for (i = 0; i < nr; i++) {
 
 
3286		if (!empty && push_items > 0) {
3287			if (path->slots[0] < i)
3288				break;
3289			if (path->slots[0] == i) {
3290				int space = btrfs_leaf_free_space(right);
3291
3292				if (space + push_space * 2 > free_space)
3293					break;
3294			}
3295		}
3296
3297		if (path->slots[0] == i)
3298			push_space += data_size;
3299
3300		this_item_size = btrfs_item_size(right, i);
3301		if (this_item_size + sizeof(struct btrfs_item) + push_space >
3302		    free_space)
3303			break;
3304
3305		push_items++;
3306		push_space += this_item_size + sizeof(struct btrfs_item);
3307	}
3308
3309	if (push_items == 0) {
3310		ret = 1;
3311		goto out;
3312	}
3313	WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3314
3315	/* push data from right to left */
3316	copy_leaf_items(left, right, btrfs_header_nritems(left), 0, push_items);
 
 
 
3317
3318	push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
3319		     btrfs_item_offset(right, push_items - 1);
3320
3321	copy_leaf_data(left, right, leaf_data_end(left) - push_space,
3322		       btrfs_item_offset(right, push_items - 1), push_space);
 
 
 
3323	old_left_nritems = btrfs_header_nritems(left);
3324	BUG_ON(old_left_nritems <= 0);
3325
3326	btrfs_init_map_token(&token, left);
3327	old_left_item_size = btrfs_item_offset(left, old_left_nritems - 1);
3328	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3329		u32 ioff;
3330
3331		ioff = btrfs_token_item_offset(&token, i);
3332		btrfs_set_token_item_offset(&token, i,
3333		      ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size));
 
 
 
3334	}
3335	btrfs_set_header_nritems(left, old_left_nritems + push_items);
3336
3337	/* fixup right node */
3338	if (push_items > right_nritems)
3339		WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3340		       right_nritems);
3341
3342	if (push_items < right_nritems) {
3343		push_space = btrfs_item_offset(right, push_items - 1) -
3344						  leaf_data_end(right);
3345		memmove_leaf_data(right,
3346				  BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3347				  leaf_data_end(right), push_space);
3348
3349		memmove_leaf_items(right, 0, push_items,
3350				   btrfs_header_nritems(right) - push_items);
 
 
 
3351	}
3352
3353	btrfs_init_map_token(&token, right);
3354	right_nritems -= push_items;
3355	btrfs_set_header_nritems(right, right_nritems);
3356	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3357	for (i = 0; i < right_nritems; i++) {
3358		push_space = push_space - btrfs_token_item_size(&token, i);
3359		btrfs_set_token_item_offset(&token, i, push_space);
 
 
 
3360	}
3361
3362	btrfs_mark_buffer_dirty(left);
3363	if (right_nritems)
3364		btrfs_mark_buffer_dirty(right);
3365	else
3366		btrfs_clean_tree_block(right);
3367
3368	btrfs_item_key(right, &disk_key, 0);
3369	fixup_low_keys(path, &disk_key, 1);
3370
3371	/* then fixup the leaf pointer in the path */
3372	if (path->slots[0] < push_items) {
3373		path->slots[0] += old_left_nritems;
3374		btrfs_tree_unlock(path->nodes[0]);
3375		free_extent_buffer(path->nodes[0]);
3376		path->nodes[0] = left;
3377		path->slots[1] -= 1;
3378	} else {
3379		btrfs_tree_unlock(left);
3380		free_extent_buffer(left);
3381		path->slots[0] -= push_items;
3382	}
3383	BUG_ON(path->slots[0] < 0);
3384	return ret;
3385out:
3386	btrfs_tree_unlock(left);
3387	free_extent_buffer(left);
3388	return ret;
3389}
3390
3391/*
3392 * push some data in the path leaf to the left, trying to free up at
3393 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3394 *
3395 * max_slot can put a limit on how far into the leaf we'll push items.  The
3396 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3397 * items
3398 */
3399static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3400			  *root, struct btrfs_path *path, int min_data_size,
3401			  int data_size, int empty, u32 max_slot)
3402{
 
3403	struct extent_buffer *right = path->nodes[0];
3404	struct extent_buffer *left;
3405	int slot;
3406	int free_space;
3407	u32 right_nritems;
3408	int ret = 0;
3409
3410	slot = path->slots[1];
3411	if (slot == 0)
3412		return 1;
3413	if (!path->nodes[1])
3414		return 1;
3415
3416	right_nritems = btrfs_header_nritems(right);
3417	if (right_nritems == 0)
3418		return 1;
3419
3420	btrfs_assert_tree_write_locked(path->nodes[1]);
3421
3422	left = btrfs_read_node_slot(path->nodes[1], slot - 1);
3423	/*
3424	 * slot - 1 is not valid or we fail to read the left node,
3425	 * no big deal, just return.
3426	 */
3427	if (IS_ERR(left))
3428		return 1;
3429
3430	__btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
 
3431
3432	free_space = btrfs_leaf_free_space(left);
3433	if (free_space < data_size) {
3434		ret = 1;
3435		goto out;
3436	}
3437
 
3438	ret = btrfs_cow_block(trans, root, left,
3439			      path->nodes[1], slot - 1, &left,
3440			      BTRFS_NESTING_LEFT_COW);
3441	if (ret) {
3442		/* we hit -ENOSPC, but it isn't fatal here */
3443		if (ret == -ENOSPC)
3444			ret = 1;
3445		goto out;
3446	}
3447
3448	if (check_sibling_keys(left, right)) {
3449		ret = -EUCLEAN;
 
3450		goto out;
3451	}
3452	return __push_leaf_left(path, min_data_size,
 
3453			       empty, left, free_space, right_nritems,
3454			       max_slot);
3455out:
3456	btrfs_tree_unlock(left);
3457	free_extent_buffer(left);
3458	return ret;
3459}
3460
3461/*
3462 * split the path's leaf in two, making sure there is at least data_size
3463 * available for the resulting leaf level of the path.
3464 */
3465static noinline void copy_for_split(struct btrfs_trans_handle *trans,
 
3466				    struct btrfs_path *path,
3467				    struct extent_buffer *l,
3468				    struct extent_buffer *right,
3469				    int slot, int mid, int nritems)
3470{
3471	struct btrfs_fs_info *fs_info = trans->fs_info;
3472	int data_copy_size;
3473	int rt_data_off;
3474	int i;
3475	struct btrfs_disk_key disk_key;
3476	struct btrfs_map_token token;
3477
 
 
3478	nritems = nritems - mid;
3479	btrfs_set_header_nritems(right, nritems);
3480	data_copy_size = btrfs_item_data_end(l, mid) - leaf_data_end(l);
3481
3482	copy_leaf_items(right, l, 0, mid, nritems);
3483
3484	copy_leaf_data(right, l, BTRFS_LEAF_DATA_SIZE(fs_info) - data_copy_size,
3485		       leaf_data_end(l), data_copy_size);
 
 
 
 
 
 
3486
3487	rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_data_end(l, mid);
3488
3489	btrfs_init_map_token(&token, right);
3490	for (i = 0; i < nritems; i++) {
 
3491		u32 ioff;
3492
3493		ioff = btrfs_token_item_offset(&token, i);
3494		btrfs_set_token_item_offset(&token, i, ioff + rt_data_off);
 
3495	}
3496
3497	btrfs_set_header_nritems(l, mid);
3498	btrfs_item_key(right, &disk_key, 0);
3499	insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1);
 
3500
3501	btrfs_mark_buffer_dirty(right);
3502	btrfs_mark_buffer_dirty(l);
3503	BUG_ON(path->slots[0] != slot);
3504
3505	if (mid <= slot) {
3506		btrfs_tree_unlock(path->nodes[0]);
3507		free_extent_buffer(path->nodes[0]);
3508		path->nodes[0] = right;
3509		path->slots[0] -= mid;
3510		path->slots[1] += 1;
3511	} else {
3512		btrfs_tree_unlock(right);
3513		free_extent_buffer(right);
3514	}
3515
3516	BUG_ON(path->slots[0] < 0);
3517}
3518
3519/*
3520 * double splits happen when we need to insert a big item in the middle
3521 * of a leaf.  A double split can leave us with 3 mostly empty leaves:
3522 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
3523 *          A                 B                 C
3524 *
3525 * We avoid this by trying to push the items on either side of our target
3526 * into the adjacent leaves.  If all goes well we can avoid the double split
3527 * completely.
3528 */
3529static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
3530					  struct btrfs_root *root,
3531					  struct btrfs_path *path,
3532					  int data_size)
3533{
 
3534	int ret;
3535	int progress = 0;
3536	int slot;
3537	u32 nritems;
3538	int space_needed = data_size;
3539
3540	slot = path->slots[0];
3541	if (slot < btrfs_header_nritems(path->nodes[0]))
3542		space_needed -= btrfs_leaf_free_space(path->nodes[0]);
3543
3544	/*
3545	 * try to push all the items after our slot into the
3546	 * right leaf
3547	 */
3548	ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
3549	if (ret < 0)
3550		return ret;
3551
3552	if (ret == 0)
3553		progress++;
3554
3555	nritems = btrfs_header_nritems(path->nodes[0]);
3556	/*
3557	 * our goal is to get our slot at the start or end of a leaf.  If
3558	 * we've done so we're done
3559	 */
3560	if (path->slots[0] == 0 || path->slots[0] == nritems)
3561		return 0;
3562
3563	if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
3564		return 0;
3565
3566	/* try to push all the items before our slot into the next leaf */
3567	slot = path->slots[0];
3568	space_needed = data_size;
3569	if (slot > 0)
3570		space_needed -= btrfs_leaf_free_space(path->nodes[0]);
3571	ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
3572	if (ret < 0)
3573		return ret;
3574
3575	if (ret == 0)
3576		progress++;
3577
3578	if (progress)
3579		return 0;
3580	return 1;
3581}
3582
3583/*
3584 * split the path's leaf in two, making sure there is at least data_size
3585 * available for the resulting leaf level of the path.
3586 *
3587 * returns 0 if all went well and < 0 on failure.
3588 */
3589static noinline int split_leaf(struct btrfs_trans_handle *trans,
3590			       struct btrfs_root *root,
3591			       const struct btrfs_key *ins_key,
3592			       struct btrfs_path *path, int data_size,
3593			       int extend)
3594{
3595	struct btrfs_disk_key disk_key;
3596	struct extent_buffer *l;
3597	u32 nritems;
3598	int mid;
3599	int slot;
3600	struct extent_buffer *right;
3601	struct btrfs_fs_info *fs_info = root->fs_info;
3602	int ret = 0;
3603	int wret;
3604	int split;
3605	int num_doubles = 0;
3606	int tried_avoid_double = 0;
3607
3608	l = path->nodes[0];
3609	slot = path->slots[0];
3610	if (extend && data_size + btrfs_item_size(l, slot) +
3611	    sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
3612		return -EOVERFLOW;
3613
3614	/* first try to make some room by pushing left and right */
3615	if (data_size && path->nodes[1]) {
3616		int space_needed = data_size;
3617
3618		if (slot < btrfs_header_nritems(l))
3619			space_needed -= btrfs_leaf_free_space(l);
3620
3621		wret = push_leaf_right(trans, root, path, space_needed,
3622				       space_needed, 0, 0);
3623		if (wret < 0)
3624			return wret;
3625		if (wret) {
3626			space_needed = data_size;
3627			if (slot > 0)
3628				space_needed -= btrfs_leaf_free_space(l);
 
3629			wret = push_leaf_left(trans, root, path, space_needed,
3630					      space_needed, 0, (u32)-1);
3631			if (wret < 0)
3632				return wret;
3633		}
3634		l = path->nodes[0];
3635
3636		/* did the pushes work? */
3637		if (btrfs_leaf_free_space(l) >= data_size)
3638			return 0;
3639	}
3640
3641	if (!path->nodes[1]) {
3642		ret = insert_new_root(trans, root, path, 1);
3643		if (ret)
3644			return ret;
3645	}
3646again:
3647	split = 1;
3648	l = path->nodes[0];
3649	slot = path->slots[0];
3650	nritems = btrfs_header_nritems(l);
3651	mid = (nritems + 1) / 2;
3652
3653	if (mid <= slot) {
3654		if (nritems == 1 ||
3655		    leaf_space_used(l, mid, nritems - mid) + data_size >
3656			BTRFS_LEAF_DATA_SIZE(fs_info)) {
3657			if (slot >= nritems) {
3658				split = 0;
3659			} else {
3660				mid = slot;
3661				if (mid != nritems &&
3662				    leaf_space_used(l, mid, nritems - mid) +
3663				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
3664					if (data_size && !tried_avoid_double)
3665						goto push_for_double;
3666					split = 2;
3667				}
3668			}
3669		}
3670	} else {
3671		if (leaf_space_used(l, 0, mid) + data_size >
3672			BTRFS_LEAF_DATA_SIZE(fs_info)) {
3673			if (!extend && data_size && slot == 0) {
3674				split = 0;
3675			} else if ((extend || !data_size) && slot == 0) {
3676				mid = 1;
3677			} else {
3678				mid = slot;
3679				if (mid != nritems &&
3680				    leaf_space_used(l, mid, nritems - mid) +
3681				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
3682					if (data_size && !tried_avoid_double)
3683						goto push_for_double;
3684					split = 2;
3685				}
3686			}
3687		}
3688	}
3689
3690	if (split == 0)
3691		btrfs_cpu_key_to_disk(&disk_key, ins_key);
3692	else
3693		btrfs_item_key(l, &disk_key, mid);
3694
3695	/*
3696	 * We have to about BTRFS_NESTING_NEW_ROOT here if we've done a double
3697	 * split, because we're only allowed to have MAX_LOCKDEP_SUBCLASSES
3698	 * subclasses, which is 8 at the time of this patch, and we've maxed it
3699	 * out.  In the future we could add a
3700	 * BTRFS_NESTING_SPLIT_THE_SPLITTENING if we need to, but for now just
3701	 * use BTRFS_NESTING_NEW_ROOT.
3702	 */
3703	right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3704				       &disk_key, 0, l->start, 0,
3705				       num_doubles ? BTRFS_NESTING_NEW_ROOT :
3706				       BTRFS_NESTING_SPLIT);
3707	if (IS_ERR(right))
3708		return PTR_ERR(right);
3709
3710	root_add_used(root, fs_info->nodesize);
3711
 
 
 
 
 
 
 
 
 
3712	if (split == 0) {
3713		if (mid <= slot) {
3714			btrfs_set_header_nritems(right, 0);
3715			insert_ptr(trans, path, &disk_key,
3716				   right->start, path->slots[1] + 1, 1);
3717			btrfs_tree_unlock(path->nodes[0]);
3718			free_extent_buffer(path->nodes[0]);
3719			path->nodes[0] = right;
3720			path->slots[0] = 0;
3721			path->slots[1] += 1;
3722		} else {
3723			btrfs_set_header_nritems(right, 0);
3724			insert_ptr(trans, path, &disk_key,
3725				   right->start, path->slots[1], 1);
3726			btrfs_tree_unlock(path->nodes[0]);
3727			free_extent_buffer(path->nodes[0]);
3728			path->nodes[0] = right;
3729			path->slots[0] = 0;
3730			if (path->slots[1] == 0)
3731				fixup_low_keys(path, &disk_key, 1);
3732		}
3733		/*
3734		 * We create a new leaf 'right' for the required ins_len and
3735		 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
3736		 * the content of ins_len to 'right'.
3737		 */
3738		return ret;
3739	}
3740
3741	copy_for_split(trans, path, l, right, slot, mid, nritems);
3742
3743	if (split == 2) {
3744		BUG_ON(num_doubles != 0);
3745		num_doubles++;
3746		goto again;
3747	}
3748
3749	return 0;
3750
3751push_for_double:
3752	push_for_double_split(trans, root, path, data_size);
3753	tried_avoid_double = 1;
3754	if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
3755		return 0;
3756	goto again;
3757}
3758
3759static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
3760					 struct btrfs_root *root,
3761					 struct btrfs_path *path, int ins_len)
3762{
 
3763	struct btrfs_key key;
3764	struct extent_buffer *leaf;
3765	struct btrfs_file_extent_item *fi;
3766	u64 extent_len = 0;
3767	u32 item_size;
3768	int ret;
3769
3770	leaf = path->nodes[0];
3771	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3772
3773	BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
3774	       key.type != BTRFS_EXTENT_CSUM_KEY);
3775
3776	if (btrfs_leaf_free_space(leaf) >= ins_len)
3777		return 0;
3778
3779	item_size = btrfs_item_size(leaf, path->slots[0]);
3780	if (key.type == BTRFS_EXTENT_DATA_KEY) {
3781		fi = btrfs_item_ptr(leaf, path->slots[0],
3782				    struct btrfs_file_extent_item);
3783		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
3784	}
3785	btrfs_release_path(path);
3786
3787	path->keep_locks = 1;
3788	path->search_for_split = 1;
3789	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
3790	path->search_for_split = 0;
3791	if (ret > 0)
3792		ret = -EAGAIN;
3793	if (ret < 0)
3794		goto err;
3795
3796	ret = -EAGAIN;
3797	leaf = path->nodes[0];
3798	/* if our item isn't there, return now */
3799	if (item_size != btrfs_item_size(leaf, path->slots[0]))
3800		goto err;
3801
3802	/* the leaf has  changed, it now has room.  return now */
3803	if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len)
3804		goto err;
3805
3806	if (key.type == BTRFS_EXTENT_DATA_KEY) {
3807		fi = btrfs_item_ptr(leaf, path->slots[0],
3808				    struct btrfs_file_extent_item);
3809		if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
3810			goto err;
3811	}
3812
 
3813	ret = split_leaf(trans, root, &key, path, ins_len, 1);
3814	if (ret)
3815		goto err;
3816
3817	path->keep_locks = 0;
3818	btrfs_unlock_up_safe(path, 1);
3819	return 0;
3820err:
3821	path->keep_locks = 0;
3822	return ret;
3823}
3824
3825static noinline int split_item(struct btrfs_path *path,
 
3826			       const struct btrfs_key *new_key,
3827			       unsigned long split_offset)
3828{
3829	struct extent_buffer *leaf;
3830	int orig_slot, slot;
 
 
3831	char *buf;
3832	u32 nritems;
3833	u32 item_size;
3834	u32 orig_offset;
3835	struct btrfs_disk_key disk_key;
3836
3837	leaf = path->nodes[0];
3838	BUG_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item));
3839
3840	orig_slot = path->slots[0];
3841	orig_offset = btrfs_item_offset(leaf, path->slots[0]);
3842	item_size = btrfs_item_size(leaf, path->slots[0]);
 
 
3843
3844	buf = kmalloc(item_size, GFP_NOFS);
3845	if (!buf)
3846		return -ENOMEM;
3847
3848	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
3849			    path->slots[0]), item_size);
3850
3851	slot = path->slots[0] + 1;
3852	nritems = btrfs_header_nritems(leaf);
3853	if (slot != nritems) {
3854		/* shift the items */
3855		memmove_leaf_items(leaf, slot + 1, slot, nritems - slot);
 
 
3856	}
3857
3858	btrfs_cpu_key_to_disk(&disk_key, new_key);
3859	btrfs_set_item_key(leaf, &disk_key, slot);
3860
3861	btrfs_set_item_offset(leaf, slot, orig_offset);
3862	btrfs_set_item_size(leaf, slot, item_size - split_offset);
 
 
3863
3864	btrfs_set_item_offset(leaf, orig_slot,
3865				 orig_offset + item_size - split_offset);
3866	btrfs_set_item_size(leaf, orig_slot, split_offset);
3867
3868	btrfs_set_header_nritems(leaf, nritems + 1);
3869
3870	/* write the data for the start of the original item */
3871	write_extent_buffer(leaf, buf,
3872			    btrfs_item_ptr_offset(leaf, path->slots[0]),
3873			    split_offset);
3874
3875	/* write the data for the new item */
3876	write_extent_buffer(leaf, buf + split_offset,
3877			    btrfs_item_ptr_offset(leaf, slot),
3878			    item_size - split_offset);
3879	btrfs_mark_buffer_dirty(leaf);
3880
3881	BUG_ON(btrfs_leaf_free_space(leaf) < 0);
3882	kfree(buf);
3883	return 0;
3884}
3885
3886/*
3887 * This function splits a single item into two items,
3888 * giving 'new_key' to the new item and splitting the
3889 * old one at split_offset (from the start of the item).
3890 *
3891 * The path may be released by this operation.  After
3892 * the split, the path is pointing to the old item.  The
3893 * new item is going to be in the same node as the old one.
3894 *
3895 * Note, the item being split must be smaller enough to live alone on
3896 * a tree block with room for one extra struct btrfs_item
3897 *
3898 * This allows us to split the item in place, keeping a lock on the
3899 * leaf the entire time.
3900 */
3901int btrfs_split_item(struct btrfs_trans_handle *trans,
3902		     struct btrfs_root *root,
3903		     struct btrfs_path *path,
3904		     const struct btrfs_key *new_key,
3905		     unsigned long split_offset)
3906{
3907	int ret;
3908	ret = setup_leaf_for_split(trans, root, path,
3909				   sizeof(struct btrfs_item));
3910	if (ret)
3911		return ret;
3912
3913	ret = split_item(path, new_key, split_offset);
3914	return ret;
3915}
3916
3917/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3918 * make the item pointed to by the path smaller.  new_size indicates
3919 * how small to make it, and from_end tells us if we just chop bytes
3920 * off the end of the item or if we shift the item to chop bytes off
3921 * the front.
3922 */
3923void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end)
 
3924{
3925	int slot;
3926	struct extent_buffer *leaf;
 
3927	u32 nritems;
3928	unsigned int data_end;
3929	unsigned int old_data_start;
3930	unsigned int old_size;
3931	unsigned int size_diff;
3932	int i;
3933	struct btrfs_map_token token;
3934
 
 
3935	leaf = path->nodes[0];
3936	slot = path->slots[0];
3937
3938	old_size = btrfs_item_size(leaf, slot);
3939	if (old_size == new_size)
3940		return;
3941
3942	nritems = btrfs_header_nritems(leaf);
3943	data_end = leaf_data_end(leaf);
3944
3945	old_data_start = btrfs_item_offset(leaf, slot);
3946
3947	size_diff = old_size - new_size;
3948
3949	BUG_ON(slot < 0);
3950	BUG_ON(slot >= nritems);
3951
3952	/*
3953	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3954	 */
3955	/* first correct the data pointers */
3956	btrfs_init_map_token(&token, leaf);
3957	for (i = slot; i < nritems; i++) {
3958		u32 ioff;
 
3959
3960		ioff = btrfs_token_item_offset(&token, i);
3961		btrfs_set_token_item_offset(&token, i, ioff + size_diff);
 
3962	}
3963
3964	/* shift the data */
3965	if (from_end) {
3966		memmove_leaf_data(leaf, data_end + size_diff, data_end,
3967				  old_data_start + new_size - data_end);
 
3968	} else {
3969		struct btrfs_disk_key disk_key;
3970		u64 offset;
3971
3972		btrfs_item_key(leaf, &disk_key, slot);
3973
3974		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
3975			unsigned long ptr;
3976			struct btrfs_file_extent_item *fi;
3977
3978			fi = btrfs_item_ptr(leaf, slot,
3979					    struct btrfs_file_extent_item);
3980			fi = (struct btrfs_file_extent_item *)(
3981			     (unsigned long)fi - size_diff);
3982
3983			if (btrfs_file_extent_type(leaf, fi) ==
3984			    BTRFS_FILE_EXTENT_INLINE) {
3985				ptr = btrfs_item_ptr_offset(leaf, slot);
3986				memmove_extent_buffer(leaf, ptr,
3987				      (unsigned long)fi,
3988				      BTRFS_FILE_EXTENT_INLINE_DATA_START);
3989			}
3990		}
3991
3992		memmove_leaf_data(leaf, data_end + size_diff, data_end,
3993				  old_data_start - data_end);
 
3994
3995		offset = btrfs_disk_key_offset(&disk_key);
3996		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
3997		btrfs_set_item_key(leaf, &disk_key, slot);
3998		if (slot == 0)
3999			fixup_low_keys(path, &disk_key, 1);
4000	}
4001
4002	btrfs_set_item_size(leaf, slot, new_size);
 
4003	btrfs_mark_buffer_dirty(leaf);
4004
4005	if (btrfs_leaf_free_space(leaf) < 0) {
4006		btrfs_print_leaf(leaf);
4007		BUG();
4008	}
4009}
4010
4011/*
4012 * make the item pointed to by the path bigger, data_size is the added size.
4013 */
4014void btrfs_extend_item(struct btrfs_path *path, u32 data_size)
 
4015{
4016	int slot;
4017	struct extent_buffer *leaf;
 
4018	u32 nritems;
4019	unsigned int data_end;
4020	unsigned int old_data;
4021	unsigned int old_size;
4022	int i;
4023	struct btrfs_map_token token;
4024
 
 
4025	leaf = path->nodes[0];
4026
4027	nritems = btrfs_header_nritems(leaf);
4028	data_end = leaf_data_end(leaf);
4029
4030	if (btrfs_leaf_free_space(leaf) < data_size) {
4031		btrfs_print_leaf(leaf);
4032		BUG();
4033	}
4034	slot = path->slots[0];
4035	old_data = btrfs_item_data_end(leaf, slot);
4036
4037	BUG_ON(slot < 0);
4038	if (slot >= nritems) {
4039		btrfs_print_leaf(leaf);
4040		btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d",
4041			   slot, nritems);
4042		BUG();
4043	}
4044
4045	/*
4046	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4047	 */
4048	/* first correct the data pointers */
4049	btrfs_init_map_token(&token, leaf);
4050	for (i = slot; i < nritems; i++) {
4051		u32 ioff;
 
4052
4053		ioff = btrfs_token_item_offset(&token, i);
4054		btrfs_set_token_item_offset(&token, i, ioff - data_size);
 
4055	}
4056
4057	/* shift the data */
4058	memmove_leaf_data(leaf, data_end - data_size, data_end,
4059			  old_data - data_end);
 
4060
4061	data_end = old_data;
4062	old_size = btrfs_item_size(leaf, slot);
4063	btrfs_set_item_size(leaf, slot, old_size + data_size);
 
4064	btrfs_mark_buffer_dirty(leaf);
4065
4066	if (btrfs_leaf_free_space(leaf) < 0) {
4067		btrfs_print_leaf(leaf);
4068		BUG();
4069	}
4070}
4071
4072/*
4073 * Make space in the node before inserting one or more items.
4074 *
4075 * @root:	root we are inserting items to
4076 * @path:	points to the leaf/slot where we are going to insert new items
4077 * @batch:      information about the batch of items to insert
4078 *
4079 * Main purpose is to save stack depth by doing the bulk of the work in a
4080 * function that doesn't call btrfs_search_slot
4081 */
4082static void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4083				   const struct btrfs_item_batch *batch)
4084{
4085	struct btrfs_fs_info *fs_info = root->fs_info;
 
4086	int i;
4087	u32 nritems;
4088	unsigned int data_end;
4089	struct btrfs_disk_key disk_key;
4090	struct extent_buffer *leaf;
4091	int slot;
4092	struct btrfs_map_token token;
4093	u32 total_size;
4094
4095	/*
4096	 * Before anything else, update keys in the parent and other ancestors
4097	 * if needed, then release the write locks on them, so that other tasks
4098	 * can use them while we modify the leaf.
4099	 */
4100	if (path->slots[0] == 0) {
4101		btrfs_cpu_key_to_disk(&disk_key, &batch->keys[0]);
4102		fixup_low_keys(path, &disk_key, 1);
4103	}
4104	btrfs_unlock_up_safe(path, 1);
4105
 
 
4106	leaf = path->nodes[0];
4107	slot = path->slots[0];
4108
4109	nritems = btrfs_header_nritems(leaf);
4110	data_end = leaf_data_end(leaf);
4111	total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item));
4112
4113	if (btrfs_leaf_free_space(leaf) < total_size) {
4114		btrfs_print_leaf(leaf);
4115		btrfs_crit(fs_info, "not enough freespace need %u have %d",
4116			   total_size, btrfs_leaf_free_space(leaf));
4117		BUG();
4118	}
4119
4120	btrfs_init_map_token(&token, leaf);
4121	if (slot != nritems) {
4122		unsigned int old_data = btrfs_item_data_end(leaf, slot);
4123
4124		if (old_data < data_end) {
4125			btrfs_print_leaf(leaf);
4126			btrfs_crit(fs_info,
4127		"item at slot %d with data offset %u beyond data end of leaf %u",
4128				   slot, old_data, data_end);
4129			BUG();
4130		}
4131		/*
4132		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4133		 */
4134		/* first correct the data pointers */
4135		for (i = slot; i < nritems; i++) {
4136			u32 ioff;
4137
4138			ioff = btrfs_token_item_offset(&token, i);
4139			btrfs_set_token_item_offset(&token, i,
4140						       ioff - batch->total_data_size);
 
4141		}
4142		/* shift the items */
4143		memmove_leaf_items(leaf, slot + batch->nr, slot, nritems - slot);
 
 
4144
4145		/* shift the data */
4146		memmove_leaf_data(leaf, data_end - batch->total_data_size,
4147				  data_end, old_data - data_end);
 
4148		data_end = old_data;
4149	}
4150
4151	/* setup the item for the new data */
4152	for (i = 0; i < batch->nr; i++) {
4153		btrfs_cpu_key_to_disk(&disk_key, &batch->keys[i]);
4154		btrfs_set_item_key(leaf, &disk_key, slot + i);
4155		data_end -= batch->data_sizes[i];
4156		btrfs_set_token_item_offset(&token, slot + i, data_end);
4157		btrfs_set_token_item_size(&token, slot + i, batch->data_sizes[i]);
 
 
4158	}
4159
4160	btrfs_set_header_nritems(leaf, nritems + batch->nr);
4161	btrfs_mark_buffer_dirty(leaf);
4162
4163	if (btrfs_leaf_free_space(leaf) < 0) {
4164		btrfs_print_leaf(leaf);
4165		BUG();
4166	}
4167}
4168
4169/*
4170 * Insert a new item into a leaf.
4171 *
4172 * @root:      The root of the btree.
4173 * @path:      A path pointing to the target leaf and slot.
4174 * @key:       The key of the new item.
4175 * @data_size: The size of the data associated with the new key.
4176 */
4177void btrfs_setup_item_for_insert(struct btrfs_root *root,
4178				 struct btrfs_path *path,
4179				 const struct btrfs_key *key,
4180				 u32 data_size)
4181{
4182	struct btrfs_item_batch batch;
4183
4184	batch.keys = key;
4185	batch.data_sizes = &data_size;
4186	batch.total_data_size = data_size;
4187	batch.nr = 1;
4188
4189	setup_items_for_insert(root, path, &batch);
4190}
4191
4192/*
4193 * Given a key and some data, insert items into the tree.
4194 * This does all the path init required, making room in the tree if needed.
4195 */
4196int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4197			    struct btrfs_root *root,
4198			    struct btrfs_path *path,
4199			    const struct btrfs_item_batch *batch)
 
4200{
4201	int ret = 0;
4202	int slot;
4203	u32 total_size;
 
 
 
 
 
4204
4205	total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item));
4206	ret = btrfs_search_slot(trans, root, &batch->keys[0], path, total_size, 1);
4207	if (ret == 0)
4208		return -EEXIST;
4209	if (ret < 0)
4210		return ret;
4211
4212	slot = path->slots[0];
4213	BUG_ON(slot < 0);
4214
4215	setup_items_for_insert(root, path, batch);
 
4216	return 0;
4217}
4218
4219/*
4220 * Given a key and some data, insert an item into the tree.
4221 * This does all the path init required, making room in the tree if needed.
4222 */
4223int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4224		      const struct btrfs_key *cpu_key, void *data,
4225		      u32 data_size)
4226{
4227	int ret = 0;
4228	struct btrfs_path *path;
4229	struct extent_buffer *leaf;
4230	unsigned long ptr;
4231
4232	path = btrfs_alloc_path();
4233	if (!path)
4234		return -ENOMEM;
4235	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4236	if (!ret) {
4237		leaf = path->nodes[0];
4238		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4239		write_extent_buffer(leaf, data, ptr, data_size);
4240		btrfs_mark_buffer_dirty(leaf);
4241	}
4242	btrfs_free_path(path);
4243	return ret;
4244}
4245
4246/*
4247 * This function duplicates an item, giving 'new_key' to the new item.
4248 * It guarantees both items live in the same tree leaf and the new item is
4249 * contiguous with the original item.
4250 *
4251 * This allows us to split a file extent in place, keeping a lock on the leaf
4252 * the entire time.
4253 */
4254int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4255			 struct btrfs_root *root,
4256			 struct btrfs_path *path,
4257			 const struct btrfs_key *new_key)
4258{
4259	struct extent_buffer *leaf;
4260	int ret;
4261	u32 item_size;
4262
4263	leaf = path->nodes[0];
4264	item_size = btrfs_item_size(leaf, path->slots[0]);
4265	ret = setup_leaf_for_split(trans, root, path,
4266				   item_size + sizeof(struct btrfs_item));
4267	if (ret)
4268		return ret;
4269
4270	path->slots[0]++;
4271	btrfs_setup_item_for_insert(root, path, new_key, item_size);
4272	leaf = path->nodes[0];
4273	memcpy_extent_buffer(leaf,
4274			     btrfs_item_ptr_offset(leaf, path->slots[0]),
4275			     btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4276			     item_size);
4277	return 0;
4278}
4279
4280/*
4281 * delete the pointer from a given node.
4282 *
4283 * the tree should have been previously balanced so the deletion does not
4284 * empty a node.
4285 */
4286static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4287		    int level, int slot)
4288{
 
4289	struct extent_buffer *parent = path->nodes[level];
4290	u32 nritems;
4291	int ret;
4292
4293	nritems = btrfs_header_nritems(parent);
4294	if (slot != nritems - 1) {
4295		if (level) {
4296			ret = btrfs_tree_mod_log_insert_move(parent, slot,
4297					slot + 1, nritems - slot - 1);
4298			BUG_ON(ret < 0);
4299		}
4300		memmove_extent_buffer(parent,
4301			      btrfs_node_key_ptr_offset(parent, slot),
4302			      btrfs_node_key_ptr_offset(parent, slot + 1),
4303			      sizeof(struct btrfs_key_ptr) *
4304			      (nritems - slot - 1));
4305	} else if (level) {
4306		ret = btrfs_tree_mod_log_insert_key(parent, slot,
4307						    BTRFS_MOD_LOG_KEY_REMOVE);
4308		BUG_ON(ret < 0);
4309	}
4310
4311	nritems--;
4312	btrfs_set_header_nritems(parent, nritems);
4313	if (nritems == 0 && parent == root->node) {
4314		BUG_ON(btrfs_header_level(root->node) != 1);
4315		/* just turn the root into a leaf and break */
4316		btrfs_set_header_level(root->node, 0);
4317	} else if (slot == 0) {
4318		struct btrfs_disk_key disk_key;
4319
4320		btrfs_node_key(parent, &disk_key, 0);
4321		fixup_low_keys(path, &disk_key, level + 1);
4322	}
4323	btrfs_mark_buffer_dirty(parent);
4324}
4325
4326/*
4327 * a helper function to delete the leaf pointed to by path->slots[1] and
4328 * path->nodes[1].
4329 *
4330 * This deletes the pointer in path->nodes[1] and frees the leaf
4331 * block extent.  zero is returned if it all worked out, < 0 otherwise.
4332 *
4333 * The path must have already been setup for deleting the leaf, including
4334 * all the proper balancing.  path->nodes[1] must be locked.
4335 */
4336static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4337				    struct btrfs_root *root,
4338				    struct btrfs_path *path,
4339				    struct extent_buffer *leaf)
4340{
4341	WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4342	del_ptr(root, path, 1, path->slots[1]);
4343
4344	/*
4345	 * btrfs_free_extent is expensive, we want to make sure we
4346	 * aren't holding any locks when we call it
4347	 */
4348	btrfs_unlock_up_safe(path, 0);
4349
4350	root_sub_used(root, leaf->len);
4351
4352	atomic_inc(&leaf->refs);
4353	btrfs_free_tree_block(trans, btrfs_root_id(root), leaf, 0, 1);
4354	free_extent_buffer_stale(leaf);
4355}
4356/*
4357 * delete the item at the leaf level in path.  If that empties
4358 * the leaf, remove it from the tree
4359 */
4360int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4361		    struct btrfs_path *path, int slot, int nr)
4362{
4363	struct btrfs_fs_info *fs_info = root->fs_info;
4364	struct extent_buffer *leaf;
 
 
 
4365	int ret = 0;
4366	int wret;
 
4367	u32 nritems;
 
 
 
4368
4369	leaf = path->nodes[0];
 
 
 
 
 
4370	nritems = btrfs_header_nritems(leaf);
4371
4372	if (slot + nr != nritems) {
4373		const u32 last_off = btrfs_item_offset(leaf, slot + nr - 1);
4374		const int data_end = leaf_data_end(leaf);
4375		struct btrfs_map_token token;
4376		u32 dsize = 0;
4377		int i;
4378
4379		for (i = 0; i < nr; i++)
4380			dsize += btrfs_item_size(leaf, slot + i);
4381
4382		memmove_leaf_data(leaf, data_end + dsize, data_end,
4383				  last_off - data_end);
 
 
4384
4385		btrfs_init_map_token(&token, leaf);
4386		for (i = slot + nr; i < nritems; i++) {
4387			u32 ioff;
4388
4389			ioff = btrfs_token_item_offset(&token, i);
4390			btrfs_set_token_item_offset(&token, i, ioff + dsize);
 
 
4391		}
4392
4393		memmove_leaf_items(leaf, slot, slot + nr, nritems - slot - nr);
 
 
 
4394	}
4395	btrfs_set_header_nritems(leaf, nritems - nr);
4396	nritems -= nr;
4397
4398	/* delete the leaf if we've emptied it */
4399	if (nritems == 0) {
4400		if (leaf == root->node) {
4401			btrfs_set_header_level(leaf, 0);
4402		} else {
4403			btrfs_clean_tree_block(leaf);
 
4404			btrfs_del_leaf(trans, root, path, leaf);
4405		}
4406	} else {
4407		int used = leaf_space_used(leaf, 0, nritems);
4408		if (slot == 0) {
4409			struct btrfs_disk_key disk_key;
4410
4411			btrfs_item_key(leaf, &disk_key, 0);
4412			fixup_low_keys(path, &disk_key, 1);
4413		}
4414
4415		/*
4416		 * Try to delete the leaf if it is mostly empty. We do this by
4417		 * trying to move all its items into its left and right neighbours.
4418		 * If we can't move all the items, then we don't delete it - it's
4419		 * not ideal, but future insertions might fill the leaf with more
4420		 * items, or items from other leaves might be moved later into our
4421		 * leaf due to deletions on those leaves.
4422		 */
4423		if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
4424			u32 min_push_space;
4425
4426			/* push_leaf_left fixes the path.
4427			 * make sure the path still points to our leaf
4428			 * for possible call to del_ptr below
4429			 */
4430			slot = path->slots[1];
4431			atomic_inc(&leaf->refs);
4432			/*
4433			 * We want to be able to at least push one item to the
4434			 * left neighbour leaf, and that's the first item.
4435			 */
4436			min_push_space = sizeof(struct btrfs_item) +
4437				btrfs_item_size(leaf, 0);
4438			wret = push_leaf_left(trans, root, path, 0,
4439					      min_push_space, 1, (u32)-1);
4440			if (wret < 0 && wret != -ENOSPC)
4441				ret = wret;
4442
4443			if (path->nodes[0] == leaf &&
4444			    btrfs_header_nritems(leaf)) {
4445				/*
4446				 * If we were not able to push all items from our
4447				 * leaf to its left neighbour, then attempt to
4448				 * either push all the remaining items to the
4449				 * right neighbour or none. There's no advantage
4450				 * in pushing only some items, instead of all, as
4451				 * it's pointless to end up with a leaf having
4452				 * too few items while the neighbours can be full
4453				 * or nearly full.
4454				 */
4455				nritems = btrfs_header_nritems(leaf);
4456				min_push_space = leaf_space_used(leaf, 0, nritems);
4457				wret = push_leaf_right(trans, root, path, 0,
4458						       min_push_space, 1, 0);
4459				if (wret < 0 && wret != -ENOSPC)
4460					ret = wret;
4461			}
4462
4463			if (btrfs_header_nritems(leaf) == 0) {
4464				path->slots[1] = slot;
4465				btrfs_del_leaf(trans, root, path, leaf);
4466				free_extent_buffer(leaf);
4467				ret = 0;
4468			} else {
4469				/* if we're still in the path, make sure
4470				 * we're dirty.  Otherwise, one of the
4471				 * push_leaf functions must have already
4472				 * dirtied this buffer
4473				 */
4474				if (path->nodes[0] == leaf)
4475					btrfs_mark_buffer_dirty(leaf);
4476				free_extent_buffer(leaf);
4477			}
4478		} else {
4479			btrfs_mark_buffer_dirty(leaf);
4480		}
4481	}
4482	return ret;
4483}
4484
4485/*
4486 * search the tree again to find a leaf with lesser keys
4487 * returns 0 if it found something or 1 if there are no lesser leaves.
4488 * returns < 0 on io errors.
4489 *
4490 * This may release the path, and so you may lose any locks held at the
4491 * time you call it.
4492 */
4493int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
4494{
4495	struct btrfs_key key;
4496	struct btrfs_disk_key found_key;
4497	int ret;
4498
4499	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
4500
4501	if (key.offset > 0) {
4502		key.offset--;
4503	} else if (key.type > 0) {
4504		key.type--;
4505		key.offset = (u64)-1;
4506	} else if (key.objectid > 0) {
4507		key.objectid--;
4508		key.type = (u8)-1;
4509		key.offset = (u64)-1;
4510	} else {
4511		return 1;
4512	}
4513
4514	btrfs_release_path(path);
4515	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4516	if (ret < 0)
4517		return ret;
4518	btrfs_item_key(path->nodes[0], &found_key, 0);
4519	ret = comp_keys(&found_key, &key);
4520	/*
4521	 * We might have had an item with the previous key in the tree right
4522	 * before we released our path. And after we released our path, that
4523	 * item might have been pushed to the first slot (0) of the leaf we
4524	 * were holding due to a tree balance. Alternatively, an item with the
4525	 * previous key can exist as the only element of a leaf (big fat item).
4526	 * Therefore account for these 2 cases, so that our callers (like
4527	 * btrfs_previous_item) don't miss an existing item with a key matching
4528	 * the previous key we computed above.
4529	 */
4530	if (ret <= 0)
4531		return 0;
4532	return 1;
4533}
4534
4535/*
4536 * A helper function to walk down the tree starting at min_key, and looking
4537 * for nodes or leaves that are have a minimum transaction id.
4538 * This is used by the btree defrag code, and tree logging
4539 *
4540 * This does not cow, but it does stuff the starting key it finds back
4541 * into min_key, so you can call btrfs_search_slot with cow=1 on the
4542 * key and get a writable path.
4543 *
4544 * This honors path->lowest_level to prevent descent past a given level
4545 * of the tree.
4546 *
4547 * min_trans indicates the oldest transaction that you are interested
4548 * in walking through.  Any nodes or leaves older than min_trans are
4549 * skipped over (without reading them).
4550 *
4551 * returns zero if something useful was found, < 0 on error and 1 if there
4552 * was nothing in the tree that matched the search criteria.
4553 */
4554int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
4555			 struct btrfs_path *path,
4556			 u64 min_trans)
4557{
 
4558	struct extent_buffer *cur;
4559	struct btrfs_key found_key;
4560	int slot;
4561	int sret;
4562	u32 nritems;
4563	int level;
4564	int ret = 1;
4565	int keep_locks = path->keep_locks;
4566
4567	ASSERT(!path->nowait);
4568	path->keep_locks = 1;
4569again:
4570	cur = btrfs_read_lock_root_node(root);
4571	level = btrfs_header_level(cur);
4572	WARN_ON(path->nodes[level]);
4573	path->nodes[level] = cur;
4574	path->locks[level] = BTRFS_READ_LOCK;
4575
4576	if (btrfs_header_generation(cur) < min_trans) {
4577		ret = 1;
4578		goto out;
4579	}
4580	while (1) {
4581		nritems = btrfs_header_nritems(cur);
4582		level = btrfs_header_level(cur);
4583		sret = btrfs_bin_search(cur, min_key, &slot);
4584		if (sret < 0) {
4585			ret = sret;
4586			goto out;
4587		}
4588
4589		/* at the lowest level, we're done, setup the path and exit */
4590		if (level == path->lowest_level) {
4591			if (slot >= nritems)
4592				goto find_next_key;
4593			ret = 0;
4594			path->slots[level] = slot;
4595			btrfs_item_key_to_cpu(cur, &found_key, slot);
4596			goto out;
4597		}
4598		if (sret && slot > 0)
4599			slot--;
4600		/*
4601		 * check this node pointer against the min_trans parameters.
4602		 * If it is too old, skip to the next one.
4603		 */
4604		while (slot < nritems) {
4605			u64 gen;
4606
4607			gen = btrfs_node_ptr_generation(cur, slot);
4608			if (gen < min_trans) {
4609				slot++;
4610				continue;
4611			}
4612			break;
4613		}
4614find_next_key:
4615		/*
4616		 * we didn't find a candidate key in this node, walk forward
4617		 * and find another one
4618		 */
4619		if (slot >= nritems) {
4620			path->slots[level] = slot;
 
4621			sret = btrfs_find_next_key(root, path, min_key, level,
4622						  min_trans);
4623			if (sret == 0) {
4624				btrfs_release_path(path);
4625				goto again;
4626			} else {
4627				goto out;
4628			}
4629		}
4630		/* save our key for returning back */
4631		btrfs_node_key_to_cpu(cur, &found_key, slot);
4632		path->slots[level] = slot;
4633		if (level == path->lowest_level) {
4634			ret = 0;
4635			goto out;
4636		}
4637		cur = btrfs_read_node_slot(cur, slot);
 
4638		if (IS_ERR(cur)) {
4639			ret = PTR_ERR(cur);
4640			goto out;
4641		}
4642
4643		btrfs_tree_read_lock(cur);
4644
4645		path->locks[level - 1] = BTRFS_READ_LOCK;
4646		path->nodes[level - 1] = cur;
4647		unlock_up(path, level, 1, 0, NULL);
 
4648	}
4649out:
4650	path->keep_locks = keep_locks;
4651	if (ret == 0) {
4652		btrfs_unlock_up_safe(path, path->lowest_level + 1);
 
4653		memcpy(min_key, &found_key, sizeof(found_key));
4654	}
4655	return ret;
4656}
4657
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4658/*
4659 * this is similar to btrfs_next_leaf, but does not try to preserve
4660 * and fixup the path.  It looks for and returns the next key in the
4661 * tree based on the current path and the min_trans parameters.
4662 *
4663 * 0 is returned if another key is found, < 0 if there are any errors
4664 * and 1 is returned if there are no higher keys in the tree
4665 *
4666 * path->keep_locks should be set to 1 on the search made before
4667 * calling this function.
4668 */
4669int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
4670			struct btrfs_key *key, int level, u64 min_trans)
4671{
4672	int slot;
4673	struct extent_buffer *c;
4674
4675	WARN_ON(!path->keep_locks && !path->skip_locking);
4676	while (level < BTRFS_MAX_LEVEL) {
4677		if (!path->nodes[level])
4678			return 1;
4679
4680		slot = path->slots[level] + 1;
4681		c = path->nodes[level];
4682next:
4683		if (slot >= btrfs_header_nritems(c)) {
4684			int ret;
4685			int orig_lowest;
4686			struct btrfs_key cur_key;
4687			if (level + 1 >= BTRFS_MAX_LEVEL ||
4688			    !path->nodes[level + 1])
4689				return 1;
4690
4691			if (path->locks[level + 1] || path->skip_locking) {
4692				level++;
4693				continue;
4694			}
4695
4696			slot = btrfs_header_nritems(c) - 1;
4697			if (level == 0)
4698				btrfs_item_key_to_cpu(c, &cur_key, slot);
4699			else
4700				btrfs_node_key_to_cpu(c, &cur_key, slot);
4701
4702			orig_lowest = path->lowest_level;
4703			btrfs_release_path(path);
4704			path->lowest_level = level;
4705			ret = btrfs_search_slot(NULL, root, &cur_key, path,
4706						0, 0);
4707			path->lowest_level = orig_lowest;
4708			if (ret < 0)
4709				return ret;
4710
4711			c = path->nodes[level];
4712			slot = path->slots[level];
4713			if (ret == 0)
4714				slot++;
4715			goto next;
4716		}
4717
4718		if (level == 0)
4719			btrfs_item_key_to_cpu(c, key, slot);
4720		else {
4721			u64 gen = btrfs_node_ptr_generation(c, slot);
4722
4723			if (gen < min_trans) {
4724				slot++;
4725				goto next;
4726			}
4727			btrfs_node_key_to_cpu(c, key, slot);
4728		}
4729		return 0;
4730	}
4731	return 1;
4732}
4733
 
 
 
 
 
 
 
 
 
 
4734int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
4735			u64 time_seq)
4736{
4737	int slot;
4738	int level;
4739	struct extent_buffer *c;
4740	struct extent_buffer *next;
4741	struct btrfs_fs_info *fs_info = root->fs_info;
4742	struct btrfs_key key;
4743	bool need_commit_sem = false;
4744	u32 nritems;
4745	int ret;
4746	int i;
4747
4748	/*
4749	 * The nowait semantics are used only for write paths, where we don't
4750	 * use the tree mod log and sequence numbers.
4751	 */
4752	if (time_seq)
4753		ASSERT(!path->nowait);
4754
4755	nritems = btrfs_header_nritems(path->nodes[0]);
4756	if (nritems == 0)
4757		return 1;
4758
4759	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
4760again:
4761	level = 1;
4762	next = NULL;
 
4763	btrfs_release_path(path);
4764
4765	path->keep_locks = 1;
 
4766
4767	if (time_seq) {
4768		ret = btrfs_search_old_slot(root, &key, path, time_seq);
4769	} else {
4770		if (path->need_commit_sem) {
4771			path->need_commit_sem = 0;
4772			need_commit_sem = true;
4773			if (path->nowait) {
4774				if (!down_read_trylock(&fs_info->commit_root_sem)) {
4775					ret = -EAGAIN;
4776					goto done;
4777				}
4778			} else {
4779				down_read(&fs_info->commit_root_sem);
4780			}
4781		}
4782		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4783	}
4784	path->keep_locks = 0;
4785
4786	if (ret < 0)
4787		goto done;
4788
4789	nritems = btrfs_header_nritems(path->nodes[0]);
4790	/*
4791	 * by releasing the path above we dropped all our locks.  A balance
4792	 * could have added more items next to the key that used to be
4793	 * at the very end of the block.  So, check again here and
4794	 * advance the path if there are now more items available.
4795	 */
4796	if (nritems > 0 && path->slots[0] < nritems - 1) {
4797		if (ret == 0)
4798			path->slots[0]++;
4799		ret = 0;
4800		goto done;
4801	}
4802	/*
4803	 * So the above check misses one case:
4804	 * - after releasing the path above, someone has removed the item that
4805	 *   used to be at the very end of the block, and balance between leafs
4806	 *   gets another one with bigger key.offset to replace it.
4807	 *
4808	 * This one should be returned as well, or we can get leaf corruption
4809	 * later(esp. in __btrfs_drop_extents()).
4810	 *
4811	 * And a bit more explanation about this check,
4812	 * with ret > 0, the key isn't found, the path points to the slot
4813	 * where it should be inserted, so the path->slots[0] item must be the
4814	 * bigger one.
4815	 */
4816	if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
4817		ret = 0;
4818		goto done;
4819	}
4820
4821	while (level < BTRFS_MAX_LEVEL) {
4822		if (!path->nodes[level]) {
4823			ret = 1;
4824			goto done;
4825		}
4826
4827		slot = path->slots[level] + 1;
4828		c = path->nodes[level];
4829		if (slot >= btrfs_header_nritems(c)) {
4830			level++;
4831			if (level == BTRFS_MAX_LEVEL) {
4832				ret = 1;
4833				goto done;
4834			}
4835			continue;
4836		}
4837
4838
4839		/*
4840		 * Our current level is where we're going to start from, and to
4841		 * make sure lockdep doesn't complain we need to drop our locks
4842		 * and nodes from 0 to our current level.
4843		 */
4844		for (i = 0; i < level; i++) {
4845			if (path->locks[level]) {
4846				btrfs_tree_read_unlock(path->nodes[i]);
4847				path->locks[i] = 0;
4848			}
4849			free_extent_buffer(path->nodes[i]);
4850			path->nodes[i] = NULL;
4851		}
4852
4853		next = c;
 
4854		ret = read_block_for_search(root, path, &next, level,
4855					    slot, &key);
4856		if (ret == -EAGAIN && !path->nowait)
4857			goto again;
4858
4859		if (ret < 0) {
4860			btrfs_release_path(path);
4861			goto done;
4862		}
4863
4864		if (!path->skip_locking) {
4865			ret = btrfs_try_tree_read_lock(next);
4866			if (!ret && path->nowait) {
4867				ret = -EAGAIN;
4868				goto done;
4869			}
4870			if (!ret && time_seq) {
4871				/*
4872				 * If we don't get the lock, we may be racing
4873				 * with push_leaf_left, holding that lock while
4874				 * itself waiting for the leaf we've currently
4875				 * locked. To solve this situation, we give up
4876				 * on our lock and cycle.
4877				 */
4878				free_extent_buffer(next);
4879				btrfs_release_path(path);
4880				cond_resched();
4881				goto again;
4882			}
4883			if (!ret)
 
4884				btrfs_tree_read_lock(next);
 
 
 
 
4885		}
4886		break;
4887	}
4888	path->slots[level] = slot;
4889	while (1) {
4890		level--;
 
 
 
 
 
4891		path->nodes[level] = next;
4892		path->slots[level] = 0;
4893		if (!path->skip_locking)
4894			path->locks[level] = BTRFS_READ_LOCK;
4895		if (!level)
4896			break;
4897
4898		ret = read_block_for_search(root, path, &next, level,
4899					    0, &key);
4900		if (ret == -EAGAIN && !path->nowait)
4901			goto again;
4902
4903		if (ret < 0) {
4904			btrfs_release_path(path);
4905			goto done;
4906		}
4907
4908		if (!path->skip_locking) {
4909			if (path->nowait) {
4910				if (!btrfs_try_tree_read_lock(next)) {
4911					ret = -EAGAIN;
4912					goto done;
4913				}
4914			} else {
4915				btrfs_tree_read_lock(next);
 
 
4916			}
 
4917		}
4918	}
4919	ret = 0;
4920done:
4921	unlock_up(path, 0, 1, 0, NULL);
4922	if (need_commit_sem) {
4923		int ret2;
4924
4925		path->need_commit_sem = 1;
4926		ret2 = finish_need_commit_sem_search(path);
4927		up_read(&fs_info->commit_root_sem);
4928		if (ret2)
4929			ret = ret2;
4930	}
4931
4932	return ret;
4933}
4934
4935int btrfs_next_old_item(struct btrfs_root *root, struct btrfs_path *path, u64 time_seq)
4936{
4937	path->slots[0]++;
4938	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0]))
4939		return btrfs_next_old_leaf(root, path, time_seq);
4940	return 0;
4941}
4942
4943/*
4944 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
4945 * searching until it gets past min_objectid or finds an item of 'type'
4946 *
4947 * returns 0 if something is found, 1 if nothing was found and < 0 on error
4948 */
4949int btrfs_previous_item(struct btrfs_root *root,
4950			struct btrfs_path *path, u64 min_objectid,
4951			int type)
4952{
4953	struct btrfs_key found_key;
4954	struct extent_buffer *leaf;
4955	u32 nritems;
4956	int ret;
4957
4958	while (1) {
4959		if (path->slots[0] == 0) {
 
4960			ret = btrfs_prev_leaf(root, path);
4961			if (ret != 0)
4962				return ret;
4963		} else {
4964			path->slots[0]--;
4965		}
4966		leaf = path->nodes[0];
4967		nritems = btrfs_header_nritems(leaf);
4968		if (nritems == 0)
4969			return 1;
4970		if (path->slots[0] == nritems)
4971			path->slots[0]--;
4972
4973		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4974		if (found_key.objectid < min_objectid)
4975			break;
4976		if (found_key.type == type)
4977			return 0;
4978		if (found_key.objectid == min_objectid &&
4979		    found_key.type < type)
4980			break;
4981	}
4982	return 1;
4983}
4984
4985/*
4986 * search in extent tree to find a previous Metadata/Data extent item with
4987 * min objecitd.
4988 *
4989 * returns 0 if something is found, 1 if nothing was found and < 0 on error
4990 */
4991int btrfs_previous_extent_item(struct btrfs_root *root,
4992			struct btrfs_path *path, u64 min_objectid)
4993{
4994	struct btrfs_key found_key;
4995	struct extent_buffer *leaf;
4996	u32 nritems;
4997	int ret;
4998
4999	while (1) {
5000		if (path->slots[0] == 0) {
 
5001			ret = btrfs_prev_leaf(root, path);
5002			if (ret != 0)
5003				return ret;
5004		} else {
5005			path->slots[0]--;
5006		}
5007		leaf = path->nodes[0];
5008		nritems = btrfs_header_nritems(leaf);
5009		if (nritems == 0)
5010			return 1;
5011		if (path->slots[0] == nritems)
5012			path->slots[0]--;
5013
5014		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5015		if (found_key.objectid < min_objectid)
5016			break;
5017		if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5018		    found_key.type == BTRFS_METADATA_ITEM_KEY)
5019			return 0;
5020		if (found_key.objectid == min_objectid &&
5021		    found_key.type < BTRFS_EXTENT_ITEM_KEY)
5022			break;
5023	}
5024	return 1;
5025}
5026
5027int __init btrfs_ctree_init(void)
5028{
5029	btrfs_path_cachep = kmem_cache_create("btrfs_path",
5030			sizeof(struct btrfs_path), 0,
5031			SLAB_MEM_SPREAD, NULL);
5032	if (!btrfs_path_cachep)
5033		return -ENOMEM;
5034	return 0;
5035}
5036
5037void __cold btrfs_ctree_exit(void)
5038{
5039	kmem_cache_destroy(btrfs_path_cachep);
5040}
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007,2008 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/sched.h>
   7#include <linux/slab.h>
   8#include <linux/rbtree.h>
   9#include <linux/mm.h>
 
 
  10#include "ctree.h"
  11#include "disk-io.h"
  12#include "transaction.h"
  13#include "print-tree.h"
  14#include "locking.h"
 
 
 
 
 
 
 
 
 
 
 
  15
  16static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
  17		      *root, struct btrfs_path *path, int level);
  18static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  19		      const struct btrfs_key *ins_key, struct btrfs_path *path,
  20		      int data_size, int extend);
  21static int push_node_left(struct btrfs_trans_handle *trans,
  22			  struct btrfs_fs_info *fs_info,
  23			  struct extent_buffer *dst,
  24			  struct extent_buffer *src, int empty);
  25static int balance_node_right(struct btrfs_trans_handle *trans,
  26			      struct btrfs_fs_info *fs_info,
  27			      struct extent_buffer *dst_buf,
  28			      struct extent_buffer *src_buf);
  29static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
  30		    int level, int slot);
  31
  32struct btrfs_path *btrfs_alloc_path(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  33{
  34	return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
 
  35}
  36
  37/*
  38 * set all locked nodes in the path to blocking locks.  This should
  39 * be done before scheduling
 
 
 
 
 
 
 
  40 */
  41noinline void btrfs_set_path_blocking(struct btrfs_path *p)
 
  42{
  43	int i;
  44	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
  45		if (!p->nodes[i] || !p->locks[i])
  46			continue;
  47		btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
  48		if (p->locks[i] == BTRFS_READ_LOCK)
  49			p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
  50		else if (p->locks[i] == BTRFS_WRITE_LOCK)
  51			p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
  52	}
  53}
  54
  55/*
  56 * reset all the locked nodes in the patch to spinning locks.
  57 *
  58 * held is used to keep lockdep happy, when lockdep is enabled
  59 * we set held to a blocking lock before we go around and
  60 * retake all the spinlocks in the path.  You can safely use NULL
  61 * for held
 
 
 
 
  62 */
  63noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
  64					struct extent_buffer *held, int held_rw)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  65{
  66	int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  67
  68	if (held) {
  69		btrfs_set_lock_blocking_rw(held, held_rw);
  70		if (held_rw == BTRFS_WRITE_LOCK)
  71			held_rw = BTRFS_WRITE_LOCK_BLOCKING;
  72		else if (held_rw == BTRFS_READ_LOCK)
  73			held_rw = BTRFS_READ_LOCK_BLOCKING;
  74	}
  75	btrfs_set_path_blocking(p);
  76
  77	for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
  78		if (p->nodes[i] && p->locks[i]) {
  79			btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
  80			if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
  81				p->locks[i] = BTRFS_WRITE_LOCK;
  82			else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
  83				p->locks[i] = BTRFS_READ_LOCK;
  84		}
  85	}
  86
  87	if (held)
  88		btrfs_clear_lock_blocking_rw(held, held_rw);
  89}
  90
  91/* this also releases the path */
  92void btrfs_free_path(struct btrfs_path *p)
  93{
  94	if (!p)
  95		return;
  96	btrfs_release_path(p);
  97	kmem_cache_free(btrfs_path_cachep, p);
  98}
  99
 100/*
 101 * path release drops references on the extent buffers in the path
 102 * and it drops any locks held by this path
 103 *
 104 * It is safe to call this on paths that no locks or extent buffers held.
 105 */
 106noinline void btrfs_release_path(struct btrfs_path *p)
 107{
 108	int i;
 109
 110	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
 111		p->slots[i] = 0;
 112		if (!p->nodes[i])
 113			continue;
 114		if (p->locks[i]) {
 115			btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
 116			p->locks[i] = 0;
 117		}
 118		free_extent_buffer(p->nodes[i]);
 119		p->nodes[i] = NULL;
 120	}
 121}
 122
 123/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 124 * safely gets a reference on the root node of a tree.  A lock
 125 * is not taken, so a concurrent writer may put a different node
 126 * at the root of the tree.  See btrfs_lock_root_node for the
 127 * looping required.
 128 *
 129 * The extent buffer returned by this has a reference taken, so
 130 * it won't disappear.  It may stop being the root of the tree
 131 * at any time because there are no locks held.
 132 */
 133struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
 134{
 135	struct extent_buffer *eb;
 136
 137	while (1) {
 138		rcu_read_lock();
 139		eb = rcu_dereference(root->node);
 140
 141		/*
 142		 * RCU really hurts here, we could free up the root node because
 143		 * it was COWed but we may not get the new root node yet so do
 144		 * the inc_not_zero dance and if it doesn't work then
 145		 * synchronize_rcu and try again.
 146		 */
 147		if (atomic_inc_not_zero(&eb->refs)) {
 148			rcu_read_unlock();
 149			break;
 150		}
 151		rcu_read_unlock();
 152		synchronize_rcu();
 153	}
 154	return eb;
 155}
 156
 157/* loop around taking references on and locking the root node of the
 158 * tree until you end up with a lock on the root.  A locked buffer
 159 * is returned, with a reference held.
 160 */
 161struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
 162{
 163	struct extent_buffer *eb;
 164
 165	while (1) {
 166		eb = btrfs_root_node(root);
 167		btrfs_tree_lock(eb);
 168		if (eb == root->node)
 169			break;
 170		btrfs_tree_unlock(eb);
 171		free_extent_buffer(eb);
 172	}
 173	return eb;
 174}
 175
 176/* loop around taking references on and locking the root node of the
 177 * tree until you end up with a lock on the root.  A locked buffer
 178 * is returned, with a reference held.
 179 */
 180struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
 181{
 182	struct extent_buffer *eb;
 183
 184	while (1) {
 185		eb = btrfs_root_node(root);
 186		btrfs_tree_read_lock(eb);
 187		if (eb == root->node)
 188			break;
 189		btrfs_tree_read_unlock(eb);
 190		free_extent_buffer(eb);
 191	}
 192	return eb;
 193}
 194
 195/* cowonly root (everything not a reference counted cow subvolume), just get
 196 * put onto a simple dirty list.  transaction.c walks this to make sure they
 197 * get properly updated on disk.
 198 */
 199static void add_root_to_dirty_list(struct btrfs_root *root)
 200{
 201	struct btrfs_fs_info *fs_info = root->fs_info;
 202
 203	if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
 204	    !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
 205		return;
 206
 207	spin_lock(&fs_info->trans_lock);
 208	if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
 209		/* Want the extent tree to be the last on the list */
 210		if (root->objectid == BTRFS_EXTENT_TREE_OBJECTID)
 211			list_move_tail(&root->dirty_list,
 212				       &fs_info->dirty_cowonly_roots);
 213		else
 214			list_move(&root->dirty_list,
 215				  &fs_info->dirty_cowonly_roots);
 216	}
 217	spin_unlock(&fs_info->trans_lock);
 218}
 219
 220/*
 221 * used by snapshot creation to make a copy of a root for a tree with
 222 * a given objectid.  The buffer with the new root node is returned in
 223 * cow_ret, and this func returns zero on success or a negative error code.
 224 */
 225int btrfs_copy_root(struct btrfs_trans_handle *trans,
 226		      struct btrfs_root *root,
 227		      struct extent_buffer *buf,
 228		      struct extent_buffer **cow_ret, u64 new_root_objectid)
 229{
 230	struct btrfs_fs_info *fs_info = root->fs_info;
 231	struct extent_buffer *cow;
 232	int ret = 0;
 233	int level;
 234	struct btrfs_disk_key disk_key;
 235
 236	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
 237		trans->transid != fs_info->running_transaction->transid);
 238	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
 239		trans->transid != root->last_trans);
 240
 241	level = btrfs_header_level(buf);
 242	if (level == 0)
 243		btrfs_item_key(buf, &disk_key, 0);
 244	else
 245		btrfs_node_key(buf, &disk_key, 0);
 246
 247	cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
 248			&disk_key, level, buf->start, 0);
 
 249	if (IS_ERR(cow))
 250		return PTR_ERR(cow);
 251
 252	copy_extent_buffer_full(cow, buf);
 253	btrfs_set_header_bytenr(cow, cow->start);
 254	btrfs_set_header_generation(cow, trans->transid);
 255	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
 256	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
 257				     BTRFS_HEADER_FLAG_RELOC);
 258	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
 259		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
 260	else
 261		btrfs_set_header_owner(cow, new_root_objectid);
 262
 263	write_extent_buffer_fsid(cow, fs_info->fsid);
 264
 265	WARN_ON(btrfs_header_generation(buf) > trans->transid);
 266	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
 267		ret = btrfs_inc_ref(trans, root, cow, 1);
 268	else
 269		ret = btrfs_inc_ref(trans, root, cow, 0);
 270
 271	if (ret)
 
 
 272		return ret;
 
 273
 274	btrfs_mark_buffer_dirty(cow);
 275	*cow_ret = cow;
 276	return 0;
 277}
 278
 279enum mod_log_op {
 280	MOD_LOG_KEY_REPLACE,
 281	MOD_LOG_KEY_ADD,
 282	MOD_LOG_KEY_REMOVE,
 283	MOD_LOG_KEY_REMOVE_WHILE_FREEING,
 284	MOD_LOG_KEY_REMOVE_WHILE_MOVING,
 285	MOD_LOG_MOVE_KEYS,
 286	MOD_LOG_ROOT_REPLACE,
 287};
 288
 289struct tree_mod_root {
 290	u64 logical;
 291	u8 level;
 292};
 293
 294struct tree_mod_elem {
 295	struct rb_node node;
 296	u64 logical;
 297	u64 seq;
 298	enum mod_log_op op;
 299
 300	/* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
 301	int slot;
 302
 303	/* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
 304	u64 generation;
 305
 306	/* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
 307	struct btrfs_disk_key key;
 308	u64 blockptr;
 309
 310	/* this is used for op == MOD_LOG_MOVE_KEYS */
 311	struct {
 312		int dst_slot;
 313		int nr_items;
 314	} move;
 315
 316	/* this is used for op == MOD_LOG_ROOT_REPLACE */
 317	struct tree_mod_root old_root;
 318};
 319
 320/*
 321 * Pull a new tree mod seq number for our operation.
 322 */
 323static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
 324{
 325	return atomic64_inc_return(&fs_info->tree_mod_seq);
 326}
 327
 328/*
 329 * This adds a new blocker to the tree mod log's blocker list if the @elem
 330 * passed does not already have a sequence number set. So when a caller expects
 331 * to record tree modifications, it should ensure to set elem->seq to zero
 332 * before calling btrfs_get_tree_mod_seq.
 333 * Returns a fresh, unused tree log modification sequence number, even if no new
 334 * blocker was added.
 335 */
 336u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
 337			   struct seq_list *elem)
 338{
 339	write_lock(&fs_info->tree_mod_log_lock);
 340	spin_lock(&fs_info->tree_mod_seq_lock);
 341	if (!elem->seq) {
 342		elem->seq = btrfs_inc_tree_mod_seq(fs_info);
 343		list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
 344	}
 345	spin_unlock(&fs_info->tree_mod_seq_lock);
 346	write_unlock(&fs_info->tree_mod_log_lock);
 347
 348	return elem->seq;
 349}
 350
 351void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
 352			    struct seq_list *elem)
 353{
 354	struct rb_root *tm_root;
 355	struct rb_node *node;
 356	struct rb_node *next;
 357	struct seq_list *cur_elem;
 358	struct tree_mod_elem *tm;
 359	u64 min_seq = (u64)-1;
 360	u64 seq_putting = elem->seq;
 361
 362	if (!seq_putting)
 363		return;
 364
 365	spin_lock(&fs_info->tree_mod_seq_lock);
 366	list_del(&elem->list);
 367	elem->seq = 0;
 368
 369	list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
 370		if (cur_elem->seq < min_seq) {
 371			if (seq_putting > cur_elem->seq) {
 372				/*
 373				 * blocker with lower sequence number exists, we
 374				 * cannot remove anything from the log
 375				 */
 376				spin_unlock(&fs_info->tree_mod_seq_lock);
 377				return;
 378			}
 379			min_seq = cur_elem->seq;
 380		}
 381	}
 382	spin_unlock(&fs_info->tree_mod_seq_lock);
 383
 384	/*
 385	 * anything that's lower than the lowest existing (read: blocked)
 386	 * sequence number can be removed from the tree.
 387	 */
 388	write_lock(&fs_info->tree_mod_log_lock);
 389	tm_root = &fs_info->tree_mod_log;
 390	for (node = rb_first(tm_root); node; node = next) {
 391		next = rb_next(node);
 392		tm = rb_entry(node, struct tree_mod_elem, node);
 393		if (tm->seq > min_seq)
 394			continue;
 395		rb_erase(node, tm_root);
 396		kfree(tm);
 397	}
 398	write_unlock(&fs_info->tree_mod_log_lock);
 399}
 400
 401/*
 402 * key order of the log:
 403 *       node/leaf start address -> sequence
 404 *
 405 * The 'start address' is the logical address of the *new* root node
 406 * for root replace operations, or the logical address of the affected
 407 * block for all other operations.
 408 *
 409 * Note: must be called with write lock for fs_info::tree_mod_log_lock.
 410 */
 411static noinline int
 412__tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
 413{
 414	struct rb_root *tm_root;
 415	struct rb_node **new;
 416	struct rb_node *parent = NULL;
 417	struct tree_mod_elem *cur;
 418
 419	tm->seq = btrfs_inc_tree_mod_seq(fs_info);
 420
 421	tm_root = &fs_info->tree_mod_log;
 422	new = &tm_root->rb_node;
 423	while (*new) {
 424		cur = rb_entry(*new, struct tree_mod_elem, node);
 425		parent = *new;
 426		if (cur->logical < tm->logical)
 427			new = &((*new)->rb_left);
 428		else if (cur->logical > tm->logical)
 429			new = &((*new)->rb_right);
 430		else if (cur->seq < tm->seq)
 431			new = &((*new)->rb_left);
 432		else if (cur->seq > tm->seq)
 433			new = &((*new)->rb_right);
 434		else
 435			return -EEXIST;
 436	}
 437
 438	rb_link_node(&tm->node, parent, new);
 439	rb_insert_color(&tm->node, tm_root);
 440	return 0;
 441}
 442
 443/*
 444 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
 445 * returns zero with the tree_mod_log_lock acquired. The caller must hold
 446 * this until all tree mod log insertions are recorded in the rb tree and then
 447 * write unlock fs_info::tree_mod_log_lock.
 448 */
 449static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
 450				    struct extent_buffer *eb) {
 451	smp_mb();
 452	if (list_empty(&(fs_info)->tree_mod_seq_list))
 453		return 1;
 454	if (eb && btrfs_header_level(eb) == 0)
 455		return 1;
 456
 457	write_lock(&fs_info->tree_mod_log_lock);
 458	if (list_empty(&(fs_info)->tree_mod_seq_list)) {
 459		write_unlock(&fs_info->tree_mod_log_lock);
 460		return 1;
 461	}
 462
 463	return 0;
 464}
 465
 466/* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
 467static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
 468				    struct extent_buffer *eb)
 469{
 470	smp_mb();
 471	if (list_empty(&(fs_info)->tree_mod_seq_list))
 472		return 0;
 473	if (eb && btrfs_header_level(eb) == 0)
 474		return 0;
 475
 476	return 1;
 477}
 478
 479static struct tree_mod_elem *
 480alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
 481		    enum mod_log_op op, gfp_t flags)
 482{
 483	struct tree_mod_elem *tm;
 484
 485	tm = kzalloc(sizeof(*tm), flags);
 486	if (!tm)
 487		return NULL;
 488
 489	tm->logical = eb->start;
 490	if (op != MOD_LOG_KEY_ADD) {
 491		btrfs_node_key(eb, &tm->key, slot);
 492		tm->blockptr = btrfs_node_blockptr(eb, slot);
 493	}
 494	tm->op = op;
 495	tm->slot = slot;
 496	tm->generation = btrfs_node_ptr_generation(eb, slot);
 497	RB_CLEAR_NODE(&tm->node);
 498
 499	return tm;
 500}
 501
 502static noinline int tree_mod_log_insert_key(struct extent_buffer *eb, int slot,
 503		enum mod_log_op op, gfp_t flags)
 504{
 505	struct tree_mod_elem *tm;
 506	int ret;
 507
 508	if (!tree_mod_need_log(eb->fs_info, eb))
 509		return 0;
 510
 511	tm = alloc_tree_mod_elem(eb, slot, op, flags);
 512	if (!tm)
 513		return -ENOMEM;
 514
 515	if (tree_mod_dont_log(eb->fs_info, eb)) {
 516		kfree(tm);
 517		return 0;
 518	}
 519
 520	ret = __tree_mod_log_insert(eb->fs_info, tm);
 521	write_unlock(&eb->fs_info->tree_mod_log_lock);
 522	if (ret)
 523		kfree(tm);
 524
 525	return ret;
 526}
 527
 528static noinline int tree_mod_log_insert_move(struct extent_buffer *eb,
 529		int dst_slot, int src_slot, int nr_items)
 530{
 531	struct tree_mod_elem *tm = NULL;
 532	struct tree_mod_elem **tm_list = NULL;
 533	int ret = 0;
 534	int i;
 535	int locked = 0;
 536
 537	if (!tree_mod_need_log(eb->fs_info, eb))
 538		return 0;
 539
 540	tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), GFP_NOFS);
 541	if (!tm_list)
 542		return -ENOMEM;
 543
 544	tm = kzalloc(sizeof(*tm), GFP_NOFS);
 545	if (!tm) {
 546		ret = -ENOMEM;
 547		goto free_tms;
 548	}
 549
 550	tm->logical = eb->start;
 551	tm->slot = src_slot;
 552	tm->move.dst_slot = dst_slot;
 553	tm->move.nr_items = nr_items;
 554	tm->op = MOD_LOG_MOVE_KEYS;
 555
 556	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
 557		tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
 558		    MOD_LOG_KEY_REMOVE_WHILE_MOVING, GFP_NOFS);
 559		if (!tm_list[i]) {
 560			ret = -ENOMEM;
 561			goto free_tms;
 562		}
 563	}
 564
 565	if (tree_mod_dont_log(eb->fs_info, eb))
 566		goto free_tms;
 567	locked = 1;
 568
 569	/*
 570	 * When we override something during the move, we log these removals.
 571	 * This can only happen when we move towards the beginning of the
 572	 * buffer, i.e. dst_slot < src_slot.
 573	 */
 574	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
 575		ret = __tree_mod_log_insert(eb->fs_info, tm_list[i]);
 576		if (ret)
 577			goto free_tms;
 578	}
 579
 580	ret = __tree_mod_log_insert(eb->fs_info, tm);
 581	if (ret)
 582		goto free_tms;
 583	write_unlock(&eb->fs_info->tree_mod_log_lock);
 584	kfree(tm_list);
 585
 586	return 0;
 587free_tms:
 588	for (i = 0; i < nr_items; i++) {
 589		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
 590			rb_erase(&tm_list[i]->node, &eb->fs_info->tree_mod_log);
 591		kfree(tm_list[i]);
 592	}
 593	if (locked)
 594		write_unlock(&eb->fs_info->tree_mod_log_lock);
 595	kfree(tm_list);
 596	kfree(tm);
 597
 598	return ret;
 599}
 600
 601static inline int
 602__tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
 603		       struct tree_mod_elem **tm_list,
 604		       int nritems)
 605{
 606	int i, j;
 607	int ret;
 608
 609	for (i = nritems - 1; i >= 0; i--) {
 610		ret = __tree_mod_log_insert(fs_info, tm_list[i]);
 611		if (ret) {
 612			for (j = nritems - 1; j > i; j--)
 613				rb_erase(&tm_list[j]->node,
 614					 &fs_info->tree_mod_log);
 615			return ret;
 616		}
 617	}
 618
 619	return 0;
 620}
 621
 622static noinline int tree_mod_log_insert_root(struct extent_buffer *old_root,
 623			 struct extent_buffer *new_root, int log_removal)
 624{
 625	struct btrfs_fs_info *fs_info = old_root->fs_info;
 626	struct tree_mod_elem *tm = NULL;
 627	struct tree_mod_elem **tm_list = NULL;
 628	int nritems = 0;
 629	int ret = 0;
 630	int i;
 631
 632	if (!tree_mod_need_log(fs_info, NULL))
 633		return 0;
 634
 635	if (log_removal && btrfs_header_level(old_root) > 0) {
 636		nritems = btrfs_header_nritems(old_root);
 637		tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
 638				  GFP_NOFS);
 639		if (!tm_list) {
 640			ret = -ENOMEM;
 641			goto free_tms;
 642		}
 643		for (i = 0; i < nritems; i++) {
 644			tm_list[i] = alloc_tree_mod_elem(old_root, i,
 645			    MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
 646			if (!tm_list[i]) {
 647				ret = -ENOMEM;
 648				goto free_tms;
 649			}
 650		}
 651	}
 652
 653	tm = kzalloc(sizeof(*tm), GFP_NOFS);
 654	if (!tm) {
 655		ret = -ENOMEM;
 656		goto free_tms;
 657	}
 658
 659	tm->logical = new_root->start;
 660	tm->old_root.logical = old_root->start;
 661	tm->old_root.level = btrfs_header_level(old_root);
 662	tm->generation = btrfs_header_generation(old_root);
 663	tm->op = MOD_LOG_ROOT_REPLACE;
 664
 665	if (tree_mod_dont_log(fs_info, NULL))
 666		goto free_tms;
 667
 668	if (tm_list)
 669		ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
 670	if (!ret)
 671		ret = __tree_mod_log_insert(fs_info, tm);
 672
 673	write_unlock(&fs_info->tree_mod_log_lock);
 674	if (ret)
 675		goto free_tms;
 676	kfree(tm_list);
 677
 678	return ret;
 679
 680free_tms:
 681	if (tm_list) {
 682		for (i = 0; i < nritems; i++)
 683			kfree(tm_list[i]);
 684		kfree(tm_list);
 685	}
 686	kfree(tm);
 687
 688	return ret;
 689}
 690
 691static struct tree_mod_elem *
 692__tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
 693		      int smallest)
 694{
 695	struct rb_root *tm_root;
 696	struct rb_node *node;
 697	struct tree_mod_elem *cur = NULL;
 698	struct tree_mod_elem *found = NULL;
 699
 700	read_lock(&fs_info->tree_mod_log_lock);
 701	tm_root = &fs_info->tree_mod_log;
 702	node = tm_root->rb_node;
 703	while (node) {
 704		cur = rb_entry(node, struct tree_mod_elem, node);
 705		if (cur->logical < start) {
 706			node = node->rb_left;
 707		} else if (cur->logical > start) {
 708			node = node->rb_right;
 709		} else if (cur->seq < min_seq) {
 710			node = node->rb_left;
 711		} else if (!smallest) {
 712			/* we want the node with the highest seq */
 713			if (found)
 714				BUG_ON(found->seq > cur->seq);
 715			found = cur;
 716			node = node->rb_left;
 717		} else if (cur->seq > min_seq) {
 718			/* we want the node with the smallest seq */
 719			if (found)
 720				BUG_ON(found->seq < cur->seq);
 721			found = cur;
 722			node = node->rb_right;
 723		} else {
 724			found = cur;
 725			break;
 726		}
 727	}
 728	read_unlock(&fs_info->tree_mod_log_lock);
 729
 730	return found;
 731}
 732
 733/*
 734 * this returns the element from the log with the smallest time sequence
 735 * value that's in the log (the oldest log item). any element with a time
 736 * sequence lower than min_seq will be ignored.
 737 */
 738static struct tree_mod_elem *
 739tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
 740			   u64 min_seq)
 741{
 742	return __tree_mod_log_search(fs_info, start, min_seq, 1);
 743}
 744
 745/*
 746 * this returns the element from the log with the largest time sequence
 747 * value that's in the log (the most recent log item). any element with
 748 * a time sequence lower than min_seq will be ignored.
 749 */
 750static struct tree_mod_elem *
 751tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
 752{
 753	return __tree_mod_log_search(fs_info, start, min_seq, 0);
 754}
 755
 756static noinline int
 757tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
 758		     struct extent_buffer *src, unsigned long dst_offset,
 759		     unsigned long src_offset, int nr_items)
 760{
 761	int ret = 0;
 762	struct tree_mod_elem **tm_list = NULL;
 763	struct tree_mod_elem **tm_list_add, **tm_list_rem;
 764	int i;
 765	int locked = 0;
 766
 767	if (!tree_mod_need_log(fs_info, NULL))
 768		return 0;
 769
 770	if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
 771		return 0;
 772
 773	tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
 774			  GFP_NOFS);
 775	if (!tm_list)
 776		return -ENOMEM;
 777
 778	tm_list_add = tm_list;
 779	tm_list_rem = tm_list + nr_items;
 780	for (i = 0; i < nr_items; i++) {
 781		tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
 782		    MOD_LOG_KEY_REMOVE, GFP_NOFS);
 783		if (!tm_list_rem[i]) {
 784			ret = -ENOMEM;
 785			goto free_tms;
 786		}
 787
 788		tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
 789		    MOD_LOG_KEY_ADD, GFP_NOFS);
 790		if (!tm_list_add[i]) {
 791			ret = -ENOMEM;
 792			goto free_tms;
 793		}
 794	}
 795
 796	if (tree_mod_dont_log(fs_info, NULL))
 797		goto free_tms;
 798	locked = 1;
 799
 800	for (i = 0; i < nr_items; i++) {
 801		ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
 802		if (ret)
 803			goto free_tms;
 804		ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
 805		if (ret)
 806			goto free_tms;
 807	}
 808
 809	write_unlock(&fs_info->tree_mod_log_lock);
 810	kfree(tm_list);
 811
 812	return 0;
 813
 814free_tms:
 815	for (i = 0; i < nr_items * 2; i++) {
 816		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
 817			rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
 818		kfree(tm_list[i]);
 819	}
 820	if (locked)
 821		write_unlock(&fs_info->tree_mod_log_lock);
 822	kfree(tm_list);
 823
 824	return ret;
 825}
 826
 827static noinline int tree_mod_log_free_eb(struct extent_buffer *eb)
 828{
 829	struct tree_mod_elem **tm_list = NULL;
 830	int nritems = 0;
 831	int i;
 832	int ret = 0;
 833
 834	if (btrfs_header_level(eb) == 0)
 835		return 0;
 836
 837	if (!tree_mod_need_log(eb->fs_info, NULL))
 838		return 0;
 839
 840	nritems = btrfs_header_nritems(eb);
 841	tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
 842	if (!tm_list)
 843		return -ENOMEM;
 844
 845	for (i = 0; i < nritems; i++) {
 846		tm_list[i] = alloc_tree_mod_elem(eb, i,
 847		    MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
 848		if (!tm_list[i]) {
 849			ret = -ENOMEM;
 850			goto free_tms;
 851		}
 852	}
 853
 854	if (tree_mod_dont_log(eb->fs_info, eb))
 855		goto free_tms;
 856
 857	ret = __tree_mod_log_free_eb(eb->fs_info, tm_list, nritems);
 858	write_unlock(&eb->fs_info->tree_mod_log_lock);
 859	if (ret)
 860		goto free_tms;
 861	kfree(tm_list);
 862
 863	return 0;
 864
 865free_tms:
 866	for (i = 0; i < nritems; i++)
 867		kfree(tm_list[i]);
 868	kfree(tm_list);
 869
 870	return ret;
 871}
 872
 873/*
 874 * check if the tree block can be shared by multiple trees
 875 */
 876int btrfs_block_can_be_shared(struct btrfs_root *root,
 877			      struct extent_buffer *buf)
 878{
 879	/*
 880	 * Tree blocks not in reference counted trees and tree roots
 881	 * are never shared. If a block was allocated after the last
 882	 * snapshot and the block was not allocated by tree relocation,
 883	 * we know the block is not shared.
 884	 */
 885	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
 886	    buf != root->node && buf != root->commit_root &&
 887	    (btrfs_header_generation(buf) <=
 888	     btrfs_root_last_snapshot(&root->root_item) ||
 889	     btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
 890		return 1;
 891#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 892	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
 893	    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
 894		return 1;
 895#endif
 896	return 0;
 897}
 898
 899static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
 900				       struct btrfs_root *root,
 901				       struct extent_buffer *buf,
 902				       struct extent_buffer *cow,
 903				       int *last_ref)
 904{
 905	struct btrfs_fs_info *fs_info = root->fs_info;
 906	u64 refs;
 907	u64 owner;
 908	u64 flags;
 909	u64 new_flags = 0;
 910	int ret;
 911
 912	/*
 913	 * Backrefs update rules:
 914	 *
 915	 * Always use full backrefs for extent pointers in tree block
 916	 * allocated by tree relocation.
 917	 *
 918	 * If a shared tree block is no longer referenced by its owner
 919	 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
 920	 * use full backrefs for extent pointers in tree block.
 921	 *
 922	 * If a tree block is been relocating
 923	 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
 924	 * use full backrefs for extent pointers in tree block.
 925	 * The reason for this is some operations (such as drop tree)
 926	 * are only allowed for blocks use full backrefs.
 927	 */
 928
 929	if (btrfs_block_can_be_shared(root, buf)) {
 930		ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
 931					       btrfs_header_level(buf), 1,
 932					       &refs, &flags);
 933		if (ret)
 934			return ret;
 935		if (refs == 0) {
 936			ret = -EROFS;
 937			btrfs_handle_fs_error(fs_info, ret, NULL);
 938			return ret;
 939		}
 940	} else {
 941		refs = 1;
 942		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
 943		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
 944			flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
 945		else
 946			flags = 0;
 947	}
 948
 949	owner = btrfs_header_owner(buf);
 950	BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
 951	       !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
 952
 953	if (refs > 1) {
 954		if ((owner == root->root_key.objectid ||
 955		     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
 956		    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
 957			ret = btrfs_inc_ref(trans, root, buf, 1);
 958			if (ret)
 959				return ret;
 960
 961			if (root->root_key.objectid ==
 962			    BTRFS_TREE_RELOC_OBJECTID) {
 963				ret = btrfs_dec_ref(trans, root, buf, 0);
 964				if (ret)
 965					return ret;
 966				ret = btrfs_inc_ref(trans, root, cow, 1);
 967				if (ret)
 968					return ret;
 969			}
 970			new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
 971		} else {
 972
 973			if (root->root_key.objectid ==
 974			    BTRFS_TREE_RELOC_OBJECTID)
 975				ret = btrfs_inc_ref(trans, root, cow, 1);
 976			else
 977				ret = btrfs_inc_ref(trans, root, cow, 0);
 978			if (ret)
 979				return ret;
 980		}
 981		if (new_flags != 0) {
 982			int level = btrfs_header_level(buf);
 983
 984			ret = btrfs_set_disk_extent_flags(trans, fs_info,
 985							  buf->start,
 986							  buf->len,
 987							  new_flags, level, 0);
 988			if (ret)
 989				return ret;
 990		}
 991	} else {
 992		if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
 993			if (root->root_key.objectid ==
 994			    BTRFS_TREE_RELOC_OBJECTID)
 995				ret = btrfs_inc_ref(trans, root, cow, 1);
 996			else
 997				ret = btrfs_inc_ref(trans, root, cow, 0);
 998			if (ret)
 999				return ret;
1000			ret = btrfs_dec_ref(trans, root, buf, 1);
1001			if (ret)
1002				return ret;
1003		}
1004		clean_tree_block(fs_info, buf);
1005		*last_ref = 1;
1006	}
1007	return 0;
1008}
1009
1010/*
1011 * does the dirty work in cow of a single block.  The parent block (if
1012 * supplied) is updated to point to the new cow copy.  The new buffer is marked
1013 * dirty and returned locked.  If you modify the block it needs to be marked
1014 * dirty again.
1015 *
1016 * search_start -- an allocation hint for the new block
1017 *
1018 * empty_size -- a hint that you plan on doing more cow.  This is the size in
1019 * bytes the allocator should try to find free next to the block it returns.
1020 * This is just a hint and may be ignored by the allocator.
1021 */
1022static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
1023			     struct btrfs_root *root,
1024			     struct extent_buffer *buf,
1025			     struct extent_buffer *parent, int parent_slot,
1026			     struct extent_buffer **cow_ret,
1027			     u64 search_start, u64 empty_size)
 
1028{
1029	struct btrfs_fs_info *fs_info = root->fs_info;
1030	struct btrfs_disk_key disk_key;
1031	struct extent_buffer *cow;
1032	int level, ret;
1033	int last_ref = 0;
1034	int unlock_orig = 0;
1035	u64 parent_start = 0;
1036
1037	if (*cow_ret == buf)
1038		unlock_orig = 1;
1039
1040	btrfs_assert_tree_locked(buf);
1041
1042	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1043		trans->transid != fs_info->running_transaction->transid);
1044	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1045		trans->transid != root->last_trans);
1046
1047	level = btrfs_header_level(buf);
1048
1049	if (level == 0)
1050		btrfs_item_key(buf, &disk_key, 0);
1051	else
1052		btrfs_node_key(buf, &disk_key, 0);
1053
1054	if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
1055		parent_start = parent->start;
1056
1057	cow = btrfs_alloc_tree_block(trans, root, parent_start,
1058			root->root_key.objectid, &disk_key, level,
1059			search_start, empty_size);
1060	if (IS_ERR(cow))
1061		return PTR_ERR(cow);
1062
1063	/* cow is set to blocking by btrfs_init_new_buffer */
1064
1065	copy_extent_buffer_full(cow, buf);
1066	btrfs_set_header_bytenr(cow, cow->start);
1067	btrfs_set_header_generation(cow, trans->transid);
1068	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1069	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1070				     BTRFS_HEADER_FLAG_RELOC);
1071	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1072		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1073	else
1074		btrfs_set_header_owner(cow, root->root_key.objectid);
1075
1076	write_extent_buffer_fsid(cow, fs_info->fsid);
1077
1078	ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1079	if (ret) {
 
 
1080		btrfs_abort_transaction(trans, ret);
1081		return ret;
1082	}
1083
1084	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
1085		ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1086		if (ret) {
 
 
1087			btrfs_abort_transaction(trans, ret);
1088			return ret;
1089		}
1090	}
1091
1092	if (buf == root->node) {
1093		WARN_ON(parent && parent != buf);
1094		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1095		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1096			parent_start = buf->start;
1097
1098		extent_buffer_get(cow);
1099		ret = tree_mod_log_insert_root(root->node, cow, 1);
1100		BUG_ON(ret < 0);
1101		rcu_assign_pointer(root->node, cow);
1102
1103		btrfs_free_tree_block(trans, root, buf, parent_start,
1104				      last_ref);
1105		free_extent_buffer(buf);
1106		add_root_to_dirty_list(root);
1107	} else {
1108		WARN_ON(trans->transid != btrfs_header_generation(parent));
1109		tree_mod_log_insert_key(parent, parent_slot,
1110					MOD_LOG_KEY_REPLACE, GFP_NOFS);
1111		btrfs_set_node_blockptr(parent, parent_slot,
1112					cow->start);
1113		btrfs_set_node_ptr_generation(parent, parent_slot,
1114					      trans->transid);
1115		btrfs_mark_buffer_dirty(parent);
1116		if (last_ref) {
1117			ret = tree_mod_log_free_eb(buf);
1118			if (ret) {
 
 
1119				btrfs_abort_transaction(trans, ret);
1120				return ret;
1121			}
1122		}
1123		btrfs_free_tree_block(trans, root, buf, parent_start,
1124				      last_ref);
1125	}
1126	if (unlock_orig)
1127		btrfs_tree_unlock(buf);
1128	free_extent_buffer_stale(buf);
1129	btrfs_mark_buffer_dirty(cow);
1130	*cow_ret = cow;
1131	return 0;
1132}
1133
1134/*
1135 * returns the logical address of the oldest predecessor of the given root.
1136 * entries older than time_seq are ignored.
1137 */
1138static struct tree_mod_elem *__tree_mod_log_oldest_root(
1139		struct extent_buffer *eb_root, u64 time_seq)
1140{
1141	struct tree_mod_elem *tm;
1142	struct tree_mod_elem *found = NULL;
1143	u64 root_logical = eb_root->start;
1144	int looped = 0;
1145
1146	if (!time_seq)
1147		return NULL;
1148
1149	/*
1150	 * the very last operation that's logged for a root is the
1151	 * replacement operation (if it is replaced at all). this has
1152	 * the logical address of the *new* root, making it the very
1153	 * first operation that's logged for this root.
1154	 */
1155	while (1) {
1156		tm = tree_mod_log_search_oldest(eb_root->fs_info, root_logical,
1157						time_seq);
1158		if (!looped && !tm)
1159			return NULL;
1160		/*
1161		 * if there are no tree operation for the oldest root, we simply
1162		 * return it. this should only happen if that (old) root is at
1163		 * level 0.
1164		 */
1165		if (!tm)
1166			break;
1167
1168		/*
1169		 * if there's an operation that's not a root replacement, we
1170		 * found the oldest version of our root. normally, we'll find a
1171		 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1172		 */
1173		if (tm->op != MOD_LOG_ROOT_REPLACE)
1174			break;
1175
1176		found = tm;
1177		root_logical = tm->old_root.logical;
1178		looped = 1;
1179	}
1180
1181	/* if there's no old root to return, return what we found instead */
1182	if (!found)
1183		found = tm;
1184
1185	return found;
1186}
1187
1188/*
1189 * tm is a pointer to the first operation to rewind within eb. then, all
1190 * previous operations will be rewound (until we reach something older than
1191 * time_seq).
1192 */
1193static void
1194__tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1195		      u64 time_seq, struct tree_mod_elem *first_tm)
1196{
1197	u32 n;
1198	struct rb_node *next;
1199	struct tree_mod_elem *tm = first_tm;
1200	unsigned long o_dst;
1201	unsigned long o_src;
1202	unsigned long p_size = sizeof(struct btrfs_key_ptr);
1203
1204	n = btrfs_header_nritems(eb);
1205	read_lock(&fs_info->tree_mod_log_lock);
1206	while (tm && tm->seq >= time_seq) {
1207		/*
1208		 * all the operations are recorded with the operator used for
1209		 * the modification. as we're going backwards, we do the
1210		 * opposite of each operation here.
1211		 */
1212		switch (tm->op) {
1213		case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1214			BUG_ON(tm->slot < n);
1215			/* Fallthrough */
1216		case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1217		case MOD_LOG_KEY_REMOVE:
1218			btrfs_set_node_key(eb, &tm->key, tm->slot);
1219			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1220			btrfs_set_node_ptr_generation(eb, tm->slot,
1221						      tm->generation);
1222			n++;
1223			break;
1224		case MOD_LOG_KEY_REPLACE:
1225			BUG_ON(tm->slot >= n);
1226			btrfs_set_node_key(eb, &tm->key, tm->slot);
1227			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1228			btrfs_set_node_ptr_generation(eb, tm->slot,
1229						      tm->generation);
1230			break;
1231		case MOD_LOG_KEY_ADD:
1232			/* if a move operation is needed it's in the log */
1233			n--;
1234			break;
1235		case MOD_LOG_MOVE_KEYS:
1236			o_dst = btrfs_node_key_ptr_offset(tm->slot);
1237			o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1238			memmove_extent_buffer(eb, o_dst, o_src,
1239					      tm->move.nr_items * p_size);
1240			break;
1241		case MOD_LOG_ROOT_REPLACE:
1242			/*
1243			 * this operation is special. for roots, this must be
1244			 * handled explicitly before rewinding.
1245			 * for non-roots, this operation may exist if the node
1246			 * was a root: root A -> child B; then A gets empty and
1247			 * B is promoted to the new root. in the mod log, we'll
1248			 * have a root-replace operation for B, a tree block
1249			 * that is no root. we simply ignore that operation.
1250			 */
1251			break;
1252		}
1253		next = rb_next(&tm->node);
1254		if (!next)
1255			break;
1256		tm = rb_entry(next, struct tree_mod_elem, node);
1257		if (tm->logical != first_tm->logical)
1258			break;
1259	}
1260	read_unlock(&fs_info->tree_mod_log_lock);
1261	btrfs_set_header_nritems(eb, n);
1262}
1263
1264/*
1265 * Called with eb read locked. If the buffer cannot be rewound, the same buffer
1266 * is returned. If rewind operations happen, a fresh buffer is returned. The
1267 * returned buffer is always read-locked. If the returned buffer is not the
1268 * input buffer, the lock on the input buffer is released and the input buffer
1269 * is freed (its refcount is decremented).
1270 */
1271static struct extent_buffer *
1272tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
1273		    struct extent_buffer *eb, u64 time_seq)
1274{
1275	struct extent_buffer *eb_rewin;
1276	struct tree_mod_elem *tm;
1277
1278	if (!time_seq)
1279		return eb;
1280
1281	if (btrfs_header_level(eb) == 0)
1282		return eb;
1283
1284	tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1285	if (!tm)
1286		return eb;
1287
1288	btrfs_set_path_blocking(path);
1289	btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1290
1291	if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1292		BUG_ON(tm->slot != 0);
1293		eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start);
1294		if (!eb_rewin) {
1295			btrfs_tree_read_unlock_blocking(eb);
1296			free_extent_buffer(eb);
1297			return NULL;
1298		}
1299		btrfs_set_header_bytenr(eb_rewin, eb->start);
1300		btrfs_set_header_backref_rev(eb_rewin,
1301					     btrfs_header_backref_rev(eb));
1302		btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1303		btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1304	} else {
1305		eb_rewin = btrfs_clone_extent_buffer(eb);
1306		if (!eb_rewin) {
1307			btrfs_tree_read_unlock_blocking(eb);
1308			free_extent_buffer(eb);
1309			return NULL;
1310		}
1311	}
1312
1313	btrfs_clear_path_blocking(path, NULL, BTRFS_READ_LOCK);
1314	btrfs_tree_read_unlock_blocking(eb);
1315	free_extent_buffer(eb);
1316
1317	extent_buffer_get(eb_rewin);
1318	btrfs_tree_read_lock(eb_rewin);
1319	__tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1320	WARN_ON(btrfs_header_nritems(eb_rewin) >
1321		BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1322
1323	return eb_rewin;
1324}
1325
1326/*
1327 * get_old_root() rewinds the state of @root's root node to the given @time_seq
1328 * value. If there are no changes, the current root->root_node is returned. If
1329 * anything changed in between, there's a fresh buffer allocated on which the
1330 * rewind operations are done. In any case, the returned buffer is read locked.
1331 * Returns NULL on error (with no locks held).
1332 */
1333static inline struct extent_buffer *
1334get_old_root(struct btrfs_root *root, u64 time_seq)
1335{
1336	struct btrfs_fs_info *fs_info = root->fs_info;
1337	struct tree_mod_elem *tm;
1338	struct extent_buffer *eb = NULL;
1339	struct extent_buffer *eb_root;
1340	struct extent_buffer *old;
1341	struct tree_mod_root *old_root = NULL;
1342	u64 old_generation = 0;
1343	u64 logical;
1344	int level;
1345
1346	eb_root = btrfs_read_lock_root_node(root);
1347	tm = __tree_mod_log_oldest_root(eb_root, time_seq);
1348	if (!tm)
1349		return eb_root;
1350
1351	if (tm->op == MOD_LOG_ROOT_REPLACE) {
1352		old_root = &tm->old_root;
1353		old_generation = tm->generation;
1354		logical = old_root->logical;
1355		level = old_root->level;
1356	} else {
1357		logical = eb_root->start;
1358		level = btrfs_header_level(eb_root);
1359	}
1360
1361	tm = tree_mod_log_search(fs_info, logical, time_seq);
1362	if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1363		btrfs_tree_read_unlock(eb_root);
1364		free_extent_buffer(eb_root);
1365		old = read_tree_block(fs_info, logical, 0, level, NULL);
1366		if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
1367			if (!IS_ERR(old))
1368				free_extent_buffer(old);
1369			btrfs_warn(fs_info,
1370				   "failed to read tree block %llu from get_old_root",
1371				   logical);
1372		} else {
1373			eb = btrfs_clone_extent_buffer(old);
1374			free_extent_buffer(old);
1375		}
1376	} else if (old_root) {
1377		btrfs_tree_read_unlock(eb_root);
1378		free_extent_buffer(eb_root);
1379		eb = alloc_dummy_extent_buffer(fs_info, logical);
1380	} else {
1381		btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK);
1382		eb = btrfs_clone_extent_buffer(eb_root);
1383		btrfs_tree_read_unlock_blocking(eb_root);
1384		free_extent_buffer(eb_root);
1385	}
1386
1387	if (!eb)
1388		return NULL;
1389	extent_buffer_get(eb);
1390	btrfs_tree_read_lock(eb);
1391	if (old_root) {
1392		btrfs_set_header_bytenr(eb, eb->start);
1393		btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1394		btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
1395		btrfs_set_header_level(eb, old_root->level);
1396		btrfs_set_header_generation(eb, old_generation);
1397	}
1398	if (tm)
1399		__tree_mod_log_rewind(fs_info, eb, time_seq, tm);
1400	else
1401		WARN_ON(btrfs_header_level(eb) != 0);
1402	WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1403
1404	return eb;
1405}
1406
1407int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1408{
1409	struct tree_mod_elem *tm;
1410	int level;
1411	struct extent_buffer *eb_root = btrfs_root_node(root);
1412
1413	tm = __tree_mod_log_oldest_root(eb_root, time_seq);
1414	if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1415		level = tm->old_root.level;
1416	} else {
1417		level = btrfs_header_level(eb_root);
1418	}
1419	free_extent_buffer(eb_root);
1420
1421	return level;
1422}
1423
1424static inline int should_cow_block(struct btrfs_trans_handle *trans,
1425				   struct btrfs_root *root,
1426				   struct extent_buffer *buf)
1427{
1428	if (btrfs_is_testing(root->fs_info))
1429		return 0;
1430
1431	/* Ensure we can see the FORCE_COW bit */
1432	smp_mb__before_atomic();
1433
1434	/*
1435	 * We do not need to cow a block if
1436	 * 1) this block is not created or changed in this transaction;
1437	 * 2) this block does not belong to TREE_RELOC tree;
1438	 * 3) the root is not forced COW.
1439	 *
1440	 * What is forced COW:
1441	 *    when we create snapshot during committing the transaction,
1442	 *    after we've finished coping src root, we must COW the shared
1443	 *    block to ensure the metadata consistency.
1444	 */
1445	if (btrfs_header_generation(buf) == trans->transid &&
1446	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1447	    !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1448	      btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1449	    !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
1450		return 0;
1451	return 1;
1452}
1453
1454/*
1455 * cows a single block, see __btrfs_cow_block for the real work.
1456 * This version of it has extra checks so that a block isn't COWed more than
1457 * once per transaction, as long as it hasn't been written yet
1458 */
1459noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1460		    struct btrfs_root *root, struct extent_buffer *buf,
1461		    struct extent_buffer *parent, int parent_slot,
1462		    struct extent_buffer **cow_ret)
 
1463{
1464	struct btrfs_fs_info *fs_info = root->fs_info;
1465	u64 search_start;
1466	int ret;
1467
 
 
 
 
1468	if (trans->transaction != fs_info->running_transaction)
1469		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1470		       trans->transid,
1471		       fs_info->running_transaction->transid);
1472
1473	if (trans->transid != fs_info->generation)
1474		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1475		       trans->transid, fs_info->generation);
1476
1477	if (!should_cow_block(trans, root, buf)) {
1478		trans->dirty = true;
1479		*cow_ret = buf;
1480		return 0;
1481	}
1482
1483	search_start = buf->start & ~((u64)SZ_1G - 1);
1484
1485	if (parent)
1486		btrfs_set_lock_blocking(parent);
1487	btrfs_set_lock_blocking(buf);
1488
 
 
 
1489	ret = __btrfs_cow_block(trans, root, buf, parent,
1490				 parent_slot, cow_ret, search_start, 0);
1491
1492	trace_btrfs_cow_block(root, buf, *cow_ret);
1493
1494	return ret;
1495}
 
1496
1497/*
1498 * helper function for defrag to decide if two blocks pointed to by a
1499 * node are actually close by
1500 */
1501static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1502{
1503	if (blocknr < other && other - (blocknr + blocksize) < 32768)
1504		return 1;
1505	if (blocknr > other && blocknr - (other + blocksize) < 32768)
1506		return 1;
1507	return 0;
1508}
1509
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1510/*
1511 * compare two keys in a memcmp fashion
1512 */
1513static int comp_keys(const struct btrfs_disk_key *disk,
1514		     const struct btrfs_key *k2)
1515{
1516	struct btrfs_key k1;
1517
1518	btrfs_disk_key_to_cpu(&k1, disk);
1519
1520	return btrfs_comp_cpu_keys(&k1, k2);
1521}
 
1522
1523/*
1524 * same as comp_keys only with two btrfs_key's
1525 */
1526int btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
1527{
1528	if (k1->objectid > k2->objectid)
1529		return 1;
1530	if (k1->objectid < k2->objectid)
1531		return -1;
1532	if (k1->type > k2->type)
1533		return 1;
1534	if (k1->type < k2->type)
1535		return -1;
1536	if (k1->offset > k2->offset)
1537		return 1;
1538	if (k1->offset < k2->offset)
1539		return -1;
1540	return 0;
1541}
1542
1543/*
1544 * this is used by the defrag code to go through all the
1545 * leaves pointed to by a node and reallocate them so that
1546 * disk order is close to key order
1547 */
1548int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1549		       struct btrfs_root *root, struct extent_buffer *parent,
1550		       int start_slot, u64 *last_ret,
1551		       struct btrfs_key *progress)
1552{
1553	struct btrfs_fs_info *fs_info = root->fs_info;
1554	struct extent_buffer *cur;
1555	u64 blocknr;
1556	u64 gen;
1557	u64 search_start = *last_ret;
1558	u64 last_block = 0;
1559	u64 other;
1560	u32 parent_nritems;
1561	int end_slot;
1562	int i;
1563	int err = 0;
1564	int parent_level;
1565	int uptodate;
1566	u32 blocksize;
1567	int progress_passed = 0;
1568	struct btrfs_disk_key disk_key;
1569
1570	parent_level = btrfs_header_level(parent);
1571
1572	WARN_ON(trans->transaction != fs_info->running_transaction);
1573	WARN_ON(trans->transid != fs_info->generation);
1574
1575	parent_nritems = btrfs_header_nritems(parent);
1576	blocksize = fs_info->nodesize;
1577	end_slot = parent_nritems - 1;
1578
1579	if (parent_nritems <= 1)
1580		return 0;
1581
1582	btrfs_set_lock_blocking(parent);
1583
1584	for (i = start_slot; i <= end_slot; i++) {
1585		struct btrfs_key first_key;
1586		int close = 1;
1587
1588		btrfs_node_key(parent, &disk_key, i);
1589		if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1590			continue;
1591
1592		progress_passed = 1;
1593		blocknr = btrfs_node_blockptr(parent, i);
1594		gen = btrfs_node_ptr_generation(parent, i);
1595		btrfs_node_key_to_cpu(parent, &first_key, i);
1596		if (last_block == 0)
1597			last_block = blocknr;
1598
1599		if (i > 0) {
1600			other = btrfs_node_blockptr(parent, i - 1);
1601			close = close_blocks(blocknr, other, blocksize);
1602		}
1603		if (!close && i < end_slot) {
1604			other = btrfs_node_blockptr(parent, i + 1);
1605			close = close_blocks(blocknr, other, blocksize);
1606		}
1607		if (close) {
1608			last_block = blocknr;
1609			continue;
1610		}
1611
1612		cur = find_extent_buffer(fs_info, blocknr);
1613		if (cur)
1614			uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1615		else
1616			uptodate = 0;
1617		if (!cur || !uptodate) {
1618			if (!cur) {
1619				cur = read_tree_block(fs_info, blocknr, gen,
1620						      parent_level - 1,
1621						      &first_key);
1622				if (IS_ERR(cur)) {
1623					return PTR_ERR(cur);
1624				} else if (!extent_buffer_uptodate(cur)) {
1625					free_extent_buffer(cur);
1626					return -EIO;
1627				}
1628			} else if (!uptodate) {
1629				err = btrfs_read_buffer(cur, gen,
1630						parent_level - 1,&first_key);
1631				if (err) {
1632					free_extent_buffer(cur);
1633					return err;
1634				}
1635			}
1636		}
1637		if (search_start == 0)
1638			search_start = last_block;
1639
1640		btrfs_tree_lock(cur);
1641		btrfs_set_lock_blocking(cur);
1642		err = __btrfs_cow_block(trans, root, cur, parent, i,
1643					&cur, search_start,
1644					min(16 * blocksize,
1645					    (end_slot - i) * blocksize));
 
1646		if (err) {
1647			btrfs_tree_unlock(cur);
1648			free_extent_buffer(cur);
1649			break;
1650		}
1651		search_start = cur->start;
1652		last_block = cur->start;
1653		*last_ret = search_start;
1654		btrfs_tree_unlock(cur);
1655		free_extent_buffer(cur);
1656	}
1657	return err;
1658}
1659
1660/*
1661 * search for key in the extent_buffer.  The items start at offset p,
1662 * and they are item_size apart.  There are 'max' items in p.
 
 
 
 
 
 
1663 *
1664 * the slot in the array is returned via slot, and it points to
1665 * the place where you would insert key if it is not found in
1666 * the array.
1667 *
1668 * slot may point to max if the key is bigger than all of the keys
1669 */
1670static noinline int generic_bin_search(struct extent_buffer *eb,
1671				       unsigned long p, int item_size,
1672				       const struct btrfs_key *key,
1673				       int max, int *slot)
1674{
1675	int low = 0;
1676	int high = max;
1677	int mid;
1678	int ret;
1679	struct btrfs_disk_key *tmp = NULL;
1680	struct btrfs_disk_key unaligned;
1681	unsigned long offset;
1682	char *kaddr = NULL;
1683	unsigned long map_start = 0;
1684	unsigned long map_len = 0;
1685	int err;
1686
1687	if (low > high) {
1688		btrfs_err(eb->fs_info,
1689		 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
1690			  __func__, low, high, eb->start,
1691			  btrfs_header_owner(eb), btrfs_header_level(eb));
1692		return -EINVAL;
1693	}
1694
 
 
 
 
 
 
 
 
1695	while (low < high) {
 
 
 
 
 
 
1696		mid = (low + high) / 2;
1697		offset = p + mid * item_size;
 
1698
1699		if (!kaddr || offset < map_start ||
1700		    (offset + sizeof(struct btrfs_disk_key)) >
1701		    map_start + map_len) {
1702
1703			err = map_private_extent_buffer(eb, offset,
1704						sizeof(struct btrfs_disk_key),
1705						&kaddr, &map_start, &map_len);
1706
1707			if (!err) {
1708				tmp = (struct btrfs_disk_key *)(kaddr + offset -
1709							map_start);
1710			} else if (err == 1) {
1711				read_extent_buffer(eb, &unaligned,
1712						   offset, sizeof(unaligned));
1713				tmp = &unaligned;
1714			} else {
1715				return err;
1716			}
1717
 
 
1718		} else {
1719			tmp = (struct btrfs_disk_key *)(kaddr + offset -
1720							map_start);
1721		}
 
1722		ret = comp_keys(tmp, key);
1723
1724		if (ret < 0)
1725			low = mid + 1;
1726		else if (ret > 0)
1727			high = mid;
1728		else {
1729			*slot = mid;
1730			return 0;
1731		}
1732	}
1733	*slot = low;
1734	return 1;
1735}
1736
1737/*
1738 * simple bin_search frontend that does the right thing for
1739 * leaves vs nodes
1740 */
1741int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
1742		     int level, int *slot)
1743{
1744	if (level == 0)
1745		return generic_bin_search(eb,
1746					  offsetof(struct btrfs_leaf, items),
1747					  sizeof(struct btrfs_item),
1748					  key, btrfs_header_nritems(eb),
1749					  slot);
1750	else
1751		return generic_bin_search(eb,
1752					  offsetof(struct btrfs_node, ptrs),
1753					  sizeof(struct btrfs_key_ptr),
1754					  key, btrfs_header_nritems(eb),
1755					  slot);
1756}
1757
1758static void root_add_used(struct btrfs_root *root, u32 size)
1759{
1760	spin_lock(&root->accounting_lock);
1761	btrfs_set_root_used(&root->root_item,
1762			    btrfs_root_used(&root->root_item) + size);
1763	spin_unlock(&root->accounting_lock);
1764}
1765
1766static void root_sub_used(struct btrfs_root *root, u32 size)
1767{
1768	spin_lock(&root->accounting_lock);
1769	btrfs_set_root_used(&root->root_item,
1770			    btrfs_root_used(&root->root_item) - size);
1771	spin_unlock(&root->accounting_lock);
1772}
1773
1774/* given a node and slot number, this reads the blocks it points to.  The
1775 * extent buffer is returned with a reference taken (but unlocked).
1776 */
1777static noinline struct extent_buffer *
1778read_node_slot(struct btrfs_fs_info *fs_info, struct extent_buffer *parent,
1779	       int slot)
1780{
1781	int level = btrfs_header_level(parent);
 
1782	struct extent_buffer *eb;
1783	struct btrfs_key first_key;
1784
1785	if (slot < 0 || slot >= btrfs_header_nritems(parent))
1786		return ERR_PTR(-ENOENT);
1787
1788	BUG_ON(level == 0);
1789
1790	btrfs_node_key_to_cpu(parent, &first_key, slot);
1791	eb = read_tree_block(fs_info, btrfs_node_blockptr(parent, slot),
1792			     btrfs_node_ptr_generation(parent, slot),
1793			     level - 1, &first_key);
1794	if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) {
 
 
 
 
 
 
1795		free_extent_buffer(eb);
1796		eb = ERR_PTR(-EIO);
1797	}
1798
1799	return eb;
1800}
1801
1802/*
1803 * node level balancing, used to make sure nodes are in proper order for
1804 * item deletion.  We balance from the top down, so we have to make sure
1805 * that a deletion won't leave an node completely empty later on.
1806 */
1807static noinline int balance_level(struct btrfs_trans_handle *trans,
1808			 struct btrfs_root *root,
1809			 struct btrfs_path *path, int level)
1810{
1811	struct btrfs_fs_info *fs_info = root->fs_info;
1812	struct extent_buffer *right = NULL;
1813	struct extent_buffer *mid;
1814	struct extent_buffer *left = NULL;
1815	struct extent_buffer *parent = NULL;
1816	int ret = 0;
1817	int wret;
1818	int pslot;
1819	int orig_slot = path->slots[level];
1820	u64 orig_ptr;
1821
1822	if (level == 0)
1823		return 0;
1824
1825	mid = path->nodes[level];
1826
1827	WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1828		path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1829	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1830
1831	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1832
1833	if (level < BTRFS_MAX_LEVEL - 1) {
1834		parent = path->nodes[level + 1];
1835		pslot = path->slots[level + 1];
1836	}
1837
1838	/*
1839	 * deal with the case where there is only one pointer in the root
1840	 * by promoting the node below to a root
1841	 */
1842	if (!parent) {
1843		struct extent_buffer *child;
1844
1845		if (btrfs_header_nritems(mid) != 1)
1846			return 0;
1847
1848		/* promote the child to a root */
1849		child = read_node_slot(fs_info, mid, 0);
1850		if (IS_ERR(child)) {
1851			ret = PTR_ERR(child);
1852			btrfs_handle_fs_error(fs_info, ret, NULL);
1853			goto enospc;
1854		}
1855
1856		btrfs_tree_lock(child);
1857		btrfs_set_lock_blocking(child);
1858		ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1859		if (ret) {
1860			btrfs_tree_unlock(child);
1861			free_extent_buffer(child);
1862			goto enospc;
1863		}
1864
1865		ret = tree_mod_log_insert_root(root->node, child, 1);
1866		BUG_ON(ret < 0);
1867		rcu_assign_pointer(root->node, child);
1868
1869		add_root_to_dirty_list(root);
1870		btrfs_tree_unlock(child);
1871
1872		path->locks[level] = 0;
1873		path->nodes[level] = NULL;
1874		clean_tree_block(fs_info, mid);
1875		btrfs_tree_unlock(mid);
1876		/* once for the path */
1877		free_extent_buffer(mid);
1878
1879		root_sub_used(root, mid->len);
1880		btrfs_free_tree_block(trans, root, mid, 0, 1);
1881		/* once for the root ptr */
1882		free_extent_buffer_stale(mid);
1883		return 0;
1884	}
1885	if (btrfs_header_nritems(mid) >
1886	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
1887		return 0;
1888
1889	left = read_node_slot(fs_info, parent, pslot - 1);
1890	if (IS_ERR(left))
1891		left = NULL;
1892
1893	if (left) {
1894		btrfs_tree_lock(left);
1895		btrfs_set_lock_blocking(left);
1896		wret = btrfs_cow_block(trans, root, left,
1897				       parent, pslot - 1, &left);
 
1898		if (wret) {
1899			ret = wret;
1900			goto enospc;
1901		}
1902	}
1903
1904	right = read_node_slot(fs_info, parent, pslot + 1);
1905	if (IS_ERR(right))
1906		right = NULL;
1907
1908	if (right) {
1909		btrfs_tree_lock(right);
1910		btrfs_set_lock_blocking(right);
1911		wret = btrfs_cow_block(trans, root, right,
1912				       parent, pslot + 1, &right);
 
1913		if (wret) {
1914			ret = wret;
1915			goto enospc;
1916		}
1917	}
1918
1919	/* first, try to make some room in the middle buffer */
1920	if (left) {
1921		orig_slot += btrfs_header_nritems(left);
1922		wret = push_node_left(trans, fs_info, left, mid, 1);
1923		if (wret < 0)
1924			ret = wret;
1925	}
1926
1927	/*
1928	 * then try to empty the right most buffer into the middle
1929	 */
1930	if (right) {
1931		wret = push_node_left(trans, fs_info, mid, right, 1);
1932		if (wret < 0 && wret != -ENOSPC)
1933			ret = wret;
1934		if (btrfs_header_nritems(right) == 0) {
1935			clean_tree_block(fs_info, right);
1936			btrfs_tree_unlock(right);
1937			del_ptr(root, path, level + 1, pslot + 1);
1938			root_sub_used(root, right->len);
1939			btrfs_free_tree_block(trans, root, right, 0, 1);
 
1940			free_extent_buffer_stale(right);
1941			right = NULL;
1942		} else {
1943			struct btrfs_disk_key right_key;
1944			btrfs_node_key(right, &right_key, 0);
1945			ret = tree_mod_log_insert_key(parent, pslot + 1,
1946					MOD_LOG_KEY_REPLACE, GFP_NOFS);
1947			BUG_ON(ret < 0);
1948			btrfs_set_node_key(parent, &right_key, pslot + 1);
1949			btrfs_mark_buffer_dirty(parent);
1950		}
1951	}
1952	if (btrfs_header_nritems(mid) == 1) {
1953		/*
1954		 * we're not allowed to leave a node with one item in the
1955		 * tree during a delete.  A deletion from lower in the tree
1956		 * could try to delete the only pointer in this node.
1957		 * So, pull some keys from the left.
1958		 * There has to be a left pointer at this point because
1959		 * otherwise we would have pulled some pointers from the
1960		 * right
1961		 */
1962		if (!left) {
1963			ret = -EROFS;
1964			btrfs_handle_fs_error(fs_info, ret, NULL);
1965			goto enospc;
1966		}
1967		wret = balance_node_right(trans, fs_info, mid, left);
1968		if (wret < 0) {
1969			ret = wret;
1970			goto enospc;
1971		}
1972		if (wret == 1) {
1973			wret = push_node_left(trans, fs_info, left, mid, 1);
1974			if (wret < 0)
1975				ret = wret;
1976		}
1977		BUG_ON(wret == 1);
1978	}
1979	if (btrfs_header_nritems(mid) == 0) {
1980		clean_tree_block(fs_info, mid);
1981		btrfs_tree_unlock(mid);
1982		del_ptr(root, path, level + 1, pslot);
1983		root_sub_used(root, mid->len);
1984		btrfs_free_tree_block(trans, root, mid, 0, 1);
1985		free_extent_buffer_stale(mid);
1986		mid = NULL;
1987	} else {
1988		/* update the parent key to reflect our changes */
1989		struct btrfs_disk_key mid_key;
1990		btrfs_node_key(mid, &mid_key, 0);
1991		ret = tree_mod_log_insert_key(parent, pslot,
1992				MOD_LOG_KEY_REPLACE, GFP_NOFS);
1993		BUG_ON(ret < 0);
1994		btrfs_set_node_key(parent, &mid_key, pslot);
1995		btrfs_mark_buffer_dirty(parent);
1996	}
1997
1998	/* update the path */
1999	if (left) {
2000		if (btrfs_header_nritems(left) > orig_slot) {
2001			extent_buffer_get(left);
2002			/* left was locked after cow */
2003			path->nodes[level] = left;
2004			path->slots[level + 1] -= 1;
2005			path->slots[level] = orig_slot;
2006			if (mid) {
2007				btrfs_tree_unlock(mid);
2008				free_extent_buffer(mid);
2009			}
2010		} else {
2011			orig_slot -= btrfs_header_nritems(left);
2012			path->slots[level] = orig_slot;
2013		}
2014	}
2015	/* double check we haven't messed things up */
2016	if (orig_ptr !=
2017	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
2018		BUG();
2019enospc:
2020	if (right) {
2021		btrfs_tree_unlock(right);
2022		free_extent_buffer(right);
2023	}
2024	if (left) {
2025		if (path->nodes[level] != left)
2026			btrfs_tree_unlock(left);
2027		free_extent_buffer(left);
2028	}
2029	return ret;
2030}
2031
2032/* Node balancing for insertion.  Here we only split or push nodes around
2033 * when they are completely full.  This is also done top down, so we
2034 * have to be pessimistic.
2035 */
2036static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
2037					  struct btrfs_root *root,
2038					  struct btrfs_path *path, int level)
2039{
2040	struct btrfs_fs_info *fs_info = root->fs_info;
2041	struct extent_buffer *right = NULL;
2042	struct extent_buffer *mid;
2043	struct extent_buffer *left = NULL;
2044	struct extent_buffer *parent = NULL;
2045	int ret = 0;
2046	int wret;
2047	int pslot;
2048	int orig_slot = path->slots[level];
2049
2050	if (level == 0)
2051		return 1;
2052
2053	mid = path->nodes[level];
2054	WARN_ON(btrfs_header_generation(mid) != trans->transid);
2055
2056	if (level < BTRFS_MAX_LEVEL - 1) {
2057		parent = path->nodes[level + 1];
2058		pslot = path->slots[level + 1];
2059	}
2060
2061	if (!parent)
2062		return 1;
2063
2064	left = read_node_slot(fs_info, parent, pslot - 1);
2065	if (IS_ERR(left))
2066		left = NULL;
2067
2068	/* first, try to make some room in the middle buffer */
2069	if (left) {
2070		u32 left_nr;
2071
2072		btrfs_tree_lock(left);
2073		btrfs_set_lock_blocking(left);
2074
2075		left_nr = btrfs_header_nritems(left);
2076		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
2077			wret = 1;
2078		} else {
2079			ret = btrfs_cow_block(trans, root, left, parent,
2080					      pslot - 1, &left);
 
2081			if (ret)
2082				wret = 1;
2083			else {
2084				wret = push_node_left(trans, fs_info,
2085						      left, mid, 0);
2086			}
2087		}
2088		if (wret < 0)
2089			ret = wret;
2090		if (wret == 0) {
2091			struct btrfs_disk_key disk_key;
2092			orig_slot += left_nr;
2093			btrfs_node_key(mid, &disk_key, 0);
2094			ret = tree_mod_log_insert_key(parent, pslot,
2095					MOD_LOG_KEY_REPLACE, GFP_NOFS);
2096			BUG_ON(ret < 0);
2097			btrfs_set_node_key(parent, &disk_key, pslot);
2098			btrfs_mark_buffer_dirty(parent);
2099			if (btrfs_header_nritems(left) > orig_slot) {
2100				path->nodes[level] = left;
2101				path->slots[level + 1] -= 1;
2102				path->slots[level] = orig_slot;
2103				btrfs_tree_unlock(mid);
2104				free_extent_buffer(mid);
2105			} else {
2106				orig_slot -=
2107					btrfs_header_nritems(left);
2108				path->slots[level] = orig_slot;
2109				btrfs_tree_unlock(left);
2110				free_extent_buffer(left);
2111			}
2112			return 0;
2113		}
2114		btrfs_tree_unlock(left);
2115		free_extent_buffer(left);
2116	}
2117	right = read_node_slot(fs_info, parent, pslot + 1);
2118	if (IS_ERR(right))
2119		right = NULL;
2120
2121	/*
2122	 * then try to empty the right most buffer into the middle
2123	 */
2124	if (right) {
2125		u32 right_nr;
2126
2127		btrfs_tree_lock(right);
2128		btrfs_set_lock_blocking(right);
2129
2130		right_nr = btrfs_header_nritems(right);
2131		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
2132			wret = 1;
2133		} else {
2134			ret = btrfs_cow_block(trans, root, right,
2135					      parent, pslot + 1,
2136					      &right);
2137			if (ret)
2138				wret = 1;
2139			else {
2140				wret = balance_node_right(trans, fs_info,
2141							  right, mid);
2142			}
2143		}
2144		if (wret < 0)
2145			ret = wret;
2146		if (wret == 0) {
2147			struct btrfs_disk_key disk_key;
2148
2149			btrfs_node_key(right, &disk_key, 0);
2150			ret = tree_mod_log_insert_key(parent, pslot + 1,
2151					MOD_LOG_KEY_REPLACE, GFP_NOFS);
2152			BUG_ON(ret < 0);
2153			btrfs_set_node_key(parent, &disk_key, pslot + 1);
2154			btrfs_mark_buffer_dirty(parent);
2155
2156			if (btrfs_header_nritems(mid) <= orig_slot) {
2157				path->nodes[level] = right;
2158				path->slots[level + 1] += 1;
2159				path->slots[level] = orig_slot -
2160					btrfs_header_nritems(mid);
2161				btrfs_tree_unlock(mid);
2162				free_extent_buffer(mid);
2163			} else {
2164				btrfs_tree_unlock(right);
2165				free_extent_buffer(right);
2166			}
2167			return 0;
2168		}
2169		btrfs_tree_unlock(right);
2170		free_extent_buffer(right);
2171	}
2172	return 1;
2173}
2174
2175/*
2176 * readahead one full node of leaves, finding things that are close
2177 * to the block in 'slot', and triggering ra on them.
2178 */
2179static void reada_for_search(struct btrfs_fs_info *fs_info,
2180			     struct btrfs_path *path,
2181			     int level, int slot, u64 objectid)
2182{
2183	struct extent_buffer *node;
2184	struct btrfs_disk_key disk_key;
2185	u32 nritems;
2186	u64 search;
2187	u64 target;
2188	u64 nread = 0;
2189	struct extent_buffer *eb;
2190	u32 nr;
2191	u32 blocksize;
2192	u32 nscan = 0;
2193
2194	if (level != 1)
2195		return;
2196
2197	if (!path->nodes[level])
2198		return;
2199
2200	node = path->nodes[level];
2201
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2202	search = btrfs_node_blockptr(node, slot);
2203	blocksize = fs_info->nodesize;
2204	eb = find_extent_buffer(fs_info, search);
2205	if (eb) {
2206		free_extent_buffer(eb);
2207		return;
 
 
 
 
2208	}
2209
2210	target = search;
2211
2212	nritems = btrfs_header_nritems(node);
2213	nr = slot;
2214
2215	while (1) {
2216		if (path->reada == READA_BACK) {
2217			if (nr == 0)
2218				break;
2219			nr--;
2220		} else if (path->reada == READA_FORWARD) {
 
2221			nr++;
2222			if (nr >= nritems)
2223				break;
2224		}
2225		if (path->reada == READA_BACK && objectid) {
2226			btrfs_node_key(node, &disk_key, nr);
2227			if (btrfs_disk_key_objectid(&disk_key) != objectid)
2228				break;
2229		}
2230		search = btrfs_node_blockptr(node, nr);
2231		if ((search <= target && target - search <= 65536) ||
 
2232		    (search > target && search - target <= 65536)) {
2233			readahead_tree_block(fs_info, search);
2234			nread += blocksize;
2235		}
2236		nscan++;
2237		if ((nread > 65536 || nscan > 32))
2238			break;
2239	}
2240}
2241
2242static noinline void reada_for_balance(struct btrfs_fs_info *fs_info,
2243				       struct btrfs_path *path, int level)
2244{
 
2245	int slot;
2246	int nritems;
2247	struct extent_buffer *parent;
2248	struct extent_buffer *eb;
2249	u64 gen;
2250	u64 block1 = 0;
2251	u64 block2 = 0;
2252
2253	parent = path->nodes[level + 1];
2254	if (!parent)
2255		return;
2256
2257	nritems = btrfs_header_nritems(parent);
2258	slot = path->slots[level + 1];
2259
2260	if (slot > 0) {
2261		block1 = btrfs_node_blockptr(parent, slot - 1);
2262		gen = btrfs_node_ptr_generation(parent, slot - 1);
2263		eb = find_extent_buffer(fs_info, block1);
2264		/*
2265		 * if we get -eagain from btrfs_buffer_uptodate, we
2266		 * don't want to return eagain here.  That will loop
2267		 * forever
2268		 */
2269		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2270			block1 = 0;
2271		free_extent_buffer(eb);
2272	}
2273	if (slot + 1 < nritems) {
2274		block2 = btrfs_node_blockptr(parent, slot + 1);
2275		gen = btrfs_node_ptr_generation(parent, slot + 1);
2276		eb = find_extent_buffer(fs_info, block2);
2277		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2278			block2 = 0;
2279		free_extent_buffer(eb);
2280	}
2281
2282	if (block1)
2283		readahead_tree_block(fs_info, block1);
2284	if (block2)
2285		readahead_tree_block(fs_info, block2);
2286}
2287
2288
2289/*
2290 * when we walk down the tree, it is usually safe to unlock the higher layers
2291 * in the tree.  The exceptions are when our path goes through slot 0, because
2292 * operations on the tree might require changing key pointers higher up in the
2293 * tree.
2294 *
2295 * callers might also have set path->keep_locks, which tells this code to keep
2296 * the lock if the path points to the last slot in the block.  This is part of
2297 * walking through the tree, and selecting the next slot in the higher block.
2298 *
2299 * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
2300 * if lowest_unlock is 1, level 0 won't be unlocked
2301 */
2302static noinline void unlock_up(struct btrfs_path *path, int level,
2303			       int lowest_unlock, int min_write_lock_level,
2304			       int *write_lock_level)
2305{
2306	int i;
2307	int skip_level = level;
2308	int no_skips = 0;
2309	struct extent_buffer *t;
2310
2311	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2312		if (!path->nodes[i])
2313			break;
2314		if (!path->locks[i])
2315			break;
2316		if (!no_skips && path->slots[i] == 0) {
2317			skip_level = i + 1;
2318			continue;
2319		}
2320		if (!no_skips && path->keep_locks) {
2321			u32 nritems;
2322			t = path->nodes[i];
2323			nritems = btrfs_header_nritems(t);
2324			if (nritems < 1 || path->slots[i] >= nritems - 1) {
2325				skip_level = i + 1;
2326				continue;
2327			}
 
 
 
 
 
 
 
 
 
 
2328		}
2329		if (skip_level < i && i >= lowest_unlock)
2330			no_skips = 1;
2331
2332		t = path->nodes[i];
2333		if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
2334			btrfs_tree_unlock_rw(t, path->locks[i]);
2335			path->locks[i] = 0;
2336			if (write_lock_level &&
2337			    i > min_write_lock_level &&
2338			    i <= *write_lock_level) {
2339				*write_lock_level = i - 1;
2340			}
2341		}
2342	}
2343}
2344
2345/*
2346 * This releases any locks held in the path starting at level and
2347 * going all the way up to the root.
2348 *
2349 * btrfs_search_slot will keep the lock held on higher nodes in a few
2350 * corner cases, such as COW of the block at slot zero in the node.  This
2351 * ignores those rules, and it should only be called when there are no
2352 * more updates to be done higher up in the tree.
2353 */
2354noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2355{
2356	int i;
2357
2358	if (path->keep_locks)
2359		return;
2360
2361	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2362		if (!path->nodes[i])
2363			continue;
2364		if (!path->locks[i])
2365			continue;
2366		btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2367		path->locks[i] = 0;
2368	}
2369}
2370
2371/*
2372 * helper function for btrfs_search_slot.  The goal is to find a block
2373 * in cache without setting the path to blocking.  If we find the block
2374 * we return zero and the path is unchanged.
2375 *
2376 * If we can't find the block, we set the path blocking and do some
2377 * reada.  -EAGAIN is returned and the search must be repeated.
2378 */
2379static int
2380read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
2381		      struct extent_buffer **eb_ret, int level, int slot,
2382		      const struct btrfs_key *key)
2383{
2384	struct btrfs_fs_info *fs_info = root->fs_info;
 
2385	u64 blocknr;
2386	u64 gen;
2387	struct extent_buffer *b = *eb_ret;
2388	struct extent_buffer *tmp;
2389	struct btrfs_key first_key;
2390	int ret;
2391	int parent_level;
 
2392
2393	blocknr = btrfs_node_blockptr(b, slot);
2394	gen = btrfs_node_ptr_generation(b, slot);
2395	parent_level = btrfs_header_level(b);
2396	btrfs_node_key_to_cpu(b, &first_key, slot);
 
 
 
 
 
2397
 
 
 
 
 
 
 
2398	tmp = find_extent_buffer(fs_info, blocknr);
2399	if (tmp) {
 
 
 
2400		/* first we do an atomic uptodate check */
2401		if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
 
 
 
 
 
 
 
 
 
 
2402			*eb_ret = tmp;
2403			return 0;
2404		}
2405
2406		/* the pages were up to date, but we failed
2407		 * the generation number check.  Do a full
2408		 * read for the generation number that is correct.
2409		 * We must do this without dropping locks so
2410		 * we can trust our generation number
2411		 */
2412		btrfs_set_path_blocking(p);
2413
2414		/* now we're allowed to do a blocking uptodate check */
2415		ret = btrfs_read_buffer(tmp, gen, parent_level - 1, &first_key);
2416		if (!ret) {
2417			*eb_ret = tmp;
2418			return 0;
 
 
 
 
 
 
2419		}
2420		free_extent_buffer(tmp);
2421		btrfs_release_path(p);
2422		return -EIO;
 
 
 
 
2423	}
2424
2425	/*
2426	 * reduce lock contention at high levels
2427	 * of the btree by dropping locks before
2428	 * we read.  Don't release the lock on the current
2429	 * level because we need to walk this node to figure
2430	 * out which blocks to read.
2431	 */
2432	btrfs_unlock_up_safe(p, level + 1);
2433	btrfs_set_path_blocking(p);
2434
2435	free_extent_buffer(tmp);
2436	if (p->reada != READA_NONE)
2437		reada_for_search(fs_info, p, level, slot, key->objectid);
2438
2439	ret = -EAGAIN;
2440	tmp = read_tree_block(fs_info, blocknr, gen, parent_level - 1,
2441			      &first_key);
2442	if (!IS_ERR(tmp)) {
2443		/*
2444		 * If the read above didn't mark this buffer up to date,
2445		 * it will never end up being up to date.  Set ret to EIO now
2446		 * and give up so that our caller doesn't loop forever
2447		 * on our EAGAINs.
2448		 */
2449		if (!btrfs_buffer_uptodate(tmp, 0, 0))
2450			ret = -EIO;
 
 
 
 
 
 
2451		free_extent_buffer(tmp);
2452	} else {
2453		ret = PTR_ERR(tmp);
2454	}
2455
2456	btrfs_release_path(p);
2457	return ret;
2458}
2459
2460/*
2461 * helper function for btrfs_search_slot.  This does all of the checks
2462 * for node-level blocks and does any balancing required based on
2463 * the ins_len.
2464 *
2465 * If no extra work was required, zero is returned.  If we had to
2466 * drop the path, -EAGAIN is returned and btrfs_search_slot must
2467 * start over
2468 */
2469static int
2470setup_nodes_for_search(struct btrfs_trans_handle *trans,
2471		       struct btrfs_root *root, struct btrfs_path *p,
2472		       struct extent_buffer *b, int level, int ins_len,
2473		       int *write_lock_level)
2474{
2475	struct btrfs_fs_info *fs_info = root->fs_info;
2476	int ret;
2477
2478	if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2479	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
2480		int sret;
2481
2482		if (*write_lock_level < level + 1) {
2483			*write_lock_level = level + 1;
2484			btrfs_release_path(p);
2485			goto again;
2486		}
2487
2488		btrfs_set_path_blocking(p);
2489		reada_for_balance(fs_info, p, level);
2490		sret = split_node(trans, root, p, level);
2491		btrfs_clear_path_blocking(p, NULL, 0);
2492
2493		BUG_ON(sret > 0);
2494		if (sret) {
2495			ret = sret;
2496			goto done;
2497		}
2498		b = p->nodes[level];
2499	} else if (ins_len < 0 && btrfs_header_nritems(b) <
2500		   BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
2501		int sret;
2502
2503		if (*write_lock_level < level + 1) {
2504			*write_lock_level = level + 1;
2505			btrfs_release_path(p);
2506			goto again;
2507		}
2508
2509		btrfs_set_path_blocking(p);
2510		reada_for_balance(fs_info, p, level);
2511		sret = balance_level(trans, root, p, level);
2512		btrfs_clear_path_blocking(p, NULL, 0);
2513
2514		if (sret) {
2515			ret = sret;
2516			goto done;
2517		}
2518		b = p->nodes[level];
2519		if (!b) {
2520			btrfs_release_path(p);
2521			goto again;
2522		}
2523		BUG_ON(btrfs_header_nritems(b) == 1);
2524	}
2525	return 0;
2526
2527again:
2528	ret = -EAGAIN;
2529done:
2530	return ret;
2531}
2532
2533static void key_search_validate(struct extent_buffer *b,
2534				const struct btrfs_key *key,
2535				int level)
2536{
2537#ifdef CONFIG_BTRFS_ASSERT
2538	struct btrfs_disk_key disk_key;
2539
2540	btrfs_cpu_key_to_disk(&disk_key, key);
2541
2542	if (level == 0)
2543		ASSERT(!memcmp_extent_buffer(b, &disk_key,
2544		    offsetof(struct btrfs_leaf, items[0].key),
2545		    sizeof(disk_key)));
2546	else
2547		ASSERT(!memcmp_extent_buffer(b, &disk_key,
2548		    offsetof(struct btrfs_node, ptrs[0].key),
2549		    sizeof(disk_key)));
2550#endif
2551}
2552
2553static int key_search(struct extent_buffer *b, const struct btrfs_key *key,
2554		      int level, int *prev_cmp, int *slot)
2555{
2556	if (*prev_cmp != 0) {
2557		*prev_cmp = btrfs_bin_search(b, key, level, slot);
2558		return *prev_cmp;
2559	}
2560
2561	key_search_validate(b, key, level);
2562	*slot = 0;
2563
2564	return 0;
2565}
2566
2567int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2568		u64 iobjectid, u64 ioff, u8 key_type,
2569		struct btrfs_key *found_key)
2570{
2571	int ret;
2572	struct btrfs_key key;
2573	struct extent_buffer *eb;
2574
2575	ASSERT(path);
2576	ASSERT(found_key);
2577
2578	key.type = key_type;
2579	key.objectid = iobjectid;
2580	key.offset = ioff;
2581
2582	ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
2583	if (ret < 0)
2584		return ret;
2585
2586	eb = path->nodes[0];
2587	if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
2588		ret = btrfs_next_leaf(fs_root, path);
2589		if (ret)
2590			return ret;
2591		eb = path->nodes[0];
2592	}
2593
2594	btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
2595	if (found_key->type != key.type ||
2596			found_key->objectid != key.objectid)
2597		return 1;
2598
2599	return 0;
2600}
2601
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2602/*
2603 * btrfs_search_slot - look for a key in a tree and perform necessary
2604 * modifications to preserve tree invariants.
2605 *
2606 * @trans:	Handle of transaction, used when modifying the tree
2607 * @p:		Holds all btree nodes along the search path
2608 * @root:	The root node of the tree
2609 * @key:	The key we are looking for
2610 * @ins_len:	Indicates purpose of search, for inserts it is 1, for
2611 *		deletions it's -1. 0 for plain searches
 
 
 
 
 
 
2612 * @cow:	boolean should CoW operations be performed. Must always be 1
2613 *		when modifying the tree.
2614 *
2615 * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
2616 * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
2617 *
2618 * If @key is found, 0 is returned and you can find the item in the leaf level
2619 * of the path (level 0)
2620 *
2621 * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
2622 * points to the slot where it should be inserted
2623 *
2624 * If an error is encountered while searching the tree a negative error number
2625 * is returned
2626 */
2627int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2628		      const struct btrfs_key *key, struct btrfs_path *p,
2629		      int ins_len, int cow)
2630{
2631	struct btrfs_fs_info *fs_info = root->fs_info;
2632	struct extent_buffer *b;
2633	int slot;
2634	int ret;
2635	int err;
2636	int level;
2637	int lowest_unlock = 1;
2638	int root_lock;
2639	/* everything at write_lock_level or lower must be write locked */
2640	int write_lock_level = 0;
2641	u8 lowest_level = 0;
2642	int min_write_lock_level;
2643	int prev_cmp;
2644
 
 
2645	lowest_level = p->lowest_level;
2646	WARN_ON(lowest_level && ins_len > 0);
2647	WARN_ON(p->nodes[0] != NULL);
2648	BUG_ON(!cow && ins_len);
2649
 
 
 
 
 
 
 
2650	if (ins_len < 0) {
2651		lowest_unlock = 2;
2652
2653		/* when we are removing items, we might have to go up to level
2654		 * two as we update tree pointers  Make sure we keep write
2655		 * for those levels as well
2656		 */
2657		write_lock_level = 2;
2658	} else if (ins_len > 0) {
2659		/*
2660		 * for inserting items, make sure we have a write lock on
2661		 * level 1 so we can update keys
2662		 */
2663		write_lock_level = 1;
2664	}
2665
2666	if (!cow)
2667		write_lock_level = -1;
2668
2669	if (cow && (p->keep_locks || p->lowest_level))
2670		write_lock_level = BTRFS_MAX_LEVEL;
2671
2672	min_write_lock_level = write_lock_level;
2673
 
 
 
 
 
 
 
 
 
 
2674again:
2675	prev_cmp = -1;
2676	/*
2677	 * we try very hard to do read locks on the root
2678	 */
2679	root_lock = BTRFS_READ_LOCK;
2680	level = 0;
2681	if (p->search_commit_root) {
2682		/*
2683		 * the commit roots are read only
2684		 * so we always do read locks
2685		 */
2686		if (p->need_commit_sem)
2687			down_read(&fs_info->commit_root_sem);
2688		b = root->commit_root;
2689		extent_buffer_get(b);
2690		level = btrfs_header_level(b);
2691		if (p->need_commit_sem)
2692			up_read(&fs_info->commit_root_sem);
2693		if (!p->skip_locking)
2694			btrfs_tree_read_lock(b);
2695	} else {
2696		if (p->skip_locking) {
2697			b = btrfs_root_node(root);
2698			level = btrfs_header_level(b);
2699		} else {
2700			/* we don't know the level of the root node
2701			 * until we actually have it read locked
2702			 */
2703			b = btrfs_read_lock_root_node(root);
2704			level = btrfs_header_level(b);
2705			if (level <= write_lock_level) {
2706				/* whoops, must trade for write lock */
2707				btrfs_tree_read_unlock(b);
2708				free_extent_buffer(b);
2709				b = btrfs_lock_root_node(root);
2710				root_lock = BTRFS_WRITE_LOCK;
2711
2712				/* the level might have changed, check again */
2713				level = btrfs_header_level(b);
2714			}
2715		}
2716	}
2717	p->nodes[level] = b;
2718	if (!p->skip_locking)
2719		p->locks[level] = root_lock;
2720
2721	while (b) {
 
 
2722		level = btrfs_header_level(b);
2723
2724		/*
2725		 * setup the path here so we can release it under lock
2726		 * contention with the cow code
2727		 */
2728		if (cow) {
2729			bool last_level = (level == (BTRFS_MAX_LEVEL - 1));
2730
2731			/*
2732			 * if we don't really need to cow this block
2733			 * then we don't want to set the path blocking,
2734			 * so we test it here
2735			 */
2736			if (!should_cow_block(trans, root, b)) {
2737				trans->dirty = true;
2738				goto cow_done;
2739			}
2740
2741			/*
2742			 * must have write locks on this node and the
2743			 * parent
2744			 */
2745			if (level > write_lock_level ||
2746			    (level + 1 > write_lock_level &&
2747			    level + 1 < BTRFS_MAX_LEVEL &&
2748			    p->nodes[level + 1])) {
2749				write_lock_level = level + 1;
2750				btrfs_release_path(p);
2751				goto again;
2752			}
2753
2754			btrfs_set_path_blocking(p);
2755			if (last_level)
2756				err = btrfs_cow_block(trans, root, b, NULL, 0,
2757						      &b);
 
2758			else
2759				err = btrfs_cow_block(trans, root, b,
2760						      p->nodes[level + 1],
2761						      p->slots[level + 1], &b);
 
2762			if (err) {
2763				ret = err;
2764				goto done;
2765			}
2766		}
2767cow_done:
2768		p->nodes[level] = b;
2769		btrfs_clear_path_blocking(p, NULL, 0);
2770
2771		/*
2772		 * we have a lock on b and as long as we aren't changing
2773		 * the tree, there is no way to for the items in b to change.
2774		 * It is safe to drop the lock on our parent before we
2775		 * go through the expensive btree search on b.
2776		 *
2777		 * If we're inserting or deleting (ins_len != 0), then we might
2778		 * be changing slot zero, which may require changing the parent.
2779		 * So, we can't drop the lock until after we know which slot
2780		 * we're operating on.
2781		 */
2782		if (!ins_len && !p->keep_locks) {
2783			int u = level + 1;
2784
2785			if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2786				btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2787				p->locks[u] = 0;
2788			}
2789		}
2790
2791		ret = key_search(b, key, level, &prev_cmp, &slot);
 
 
 
 
 
 
 
 
 
 
 
2792		if (ret < 0)
2793			goto done;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2794
2795		if (level != 0) {
2796			int dec = 0;
2797			if (ret && slot > 0) {
2798				dec = 1;
2799				slot -= 1;
2800			}
2801			p->slots[level] = slot;
2802			err = setup_nodes_for_search(trans, root, p, b, level,
2803					     ins_len, &write_lock_level);
2804			if (err == -EAGAIN)
2805				goto again;
2806			if (err) {
2807				ret = err;
2808				goto done;
2809			}
2810			b = p->nodes[level];
2811			slot = p->slots[level];
2812
2813			/*
2814			 * slot 0 is special, if we change the key
2815			 * we have to update the parent pointer
2816			 * which means we must have a write lock
2817			 * on the parent
2818			 */
2819			if (slot == 0 && ins_len &&
2820			    write_lock_level < level + 1) {
2821				write_lock_level = level + 1;
2822				btrfs_release_path(p);
2823				goto again;
2824			}
2825
2826			unlock_up(p, level, lowest_unlock,
2827				  min_write_lock_level, &write_lock_level);
 
 
 
 
 
2828
2829			if (level == lowest_level) {
2830				if (dec)
2831					p->slots[level]++;
2832				goto done;
2833			}
2834
2835			err = read_block_for_search(root, p, &b, level,
2836						    slot, key);
2837			if (err == -EAGAIN)
2838				goto again;
2839			if (err) {
2840				ret = err;
2841				goto done;
2842			}
2843
2844			if (!p->skip_locking) {
2845				level = btrfs_header_level(b);
2846				if (level <= write_lock_level) {
2847					err = btrfs_try_tree_write_lock(b);
2848					if (!err) {
2849						btrfs_set_path_blocking(p);
2850						btrfs_tree_lock(b);
2851						btrfs_clear_path_blocking(p, b,
2852								  BTRFS_WRITE_LOCK);
2853					}
2854					p->locks[level] = BTRFS_WRITE_LOCK;
2855				} else {
2856					err = btrfs_tree_read_lock_atomic(b);
2857					if (!err) {
2858						btrfs_set_path_blocking(p);
2859						btrfs_tree_read_lock(b);
2860						btrfs_clear_path_blocking(p, b,
2861								  BTRFS_READ_LOCK);
2862					}
2863					p->locks[level] = BTRFS_READ_LOCK;
2864				}
2865				p->nodes[level] = b;
2866			}
2867		} else {
2868			p->slots[level] = slot;
2869			if (ins_len > 0 &&
2870			    btrfs_leaf_free_space(fs_info, b) < ins_len) {
2871				if (write_lock_level < 1) {
2872					write_lock_level = 1;
2873					btrfs_release_path(p);
2874					goto again;
2875				}
2876
2877				btrfs_set_path_blocking(p);
2878				err = split_leaf(trans, root, key,
2879						 p, ins_len, ret == 0);
2880				btrfs_clear_path_blocking(p, NULL, 0);
2881
2882				BUG_ON(err > 0);
2883				if (err) {
2884					ret = err;
2885					goto done;
2886				}
2887			}
2888			if (!p->search_for_split)
2889				unlock_up(p, level, lowest_unlock,
2890					  min_write_lock_level, &write_lock_level);
2891			goto done;
2892		}
2893	}
2894	ret = 1;
2895done:
2896	/*
2897	 * we don't really know what they plan on doing with the path
2898	 * from here on, so for now just mark it as blocking
2899	 */
2900	if (!p->leave_spinning)
2901		btrfs_set_path_blocking(p);
2902	if (ret < 0 && !p->skip_release_on_error)
2903		btrfs_release_path(p);
 
 
 
 
 
 
 
 
 
 
2904	return ret;
2905}
 
2906
2907/*
2908 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2909 * current state of the tree together with the operations recorded in the tree
2910 * modification log to search for the key in a previous version of this tree, as
2911 * denoted by the time_seq parameter.
2912 *
2913 * Naturally, there is no support for insert, delete or cow operations.
2914 *
2915 * The resulting path and return value will be set up as if we called
2916 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2917 */
2918int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
2919			  struct btrfs_path *p, u64 time_seq)
2920{
2921	struct btrfs_fs_info *fs_info = root->fs_info;
2922	struct extent_buffer *b;
2923	int slot;
2924	int ret;
2925	int err;
2926	int level;
2927	int lowest_unlock = 1;
2928	u8 lowest_level = 0;
2929	int prev_cmp = -1;
2930
2931	lowest_level = p->lowest_level;
2932	WARN_ON(p->nodes[0] != NULL);
 
2933
2934	if (p->search_commit_root) {
2935		BUG_ON(time_seq);
2936		return btrfs_search_slot(NULL, root, key, p, 0, 0);
2937	}
2938
2939again:
2940	b = get_old_root(root, time_seq);
 
 
 
 
2941	level = btrfs_header_level(b);
2942	p->locks[level] = BTRFS_READ_LOCK;
2943
2944	while (b) {
 
 
2945		level = btrfs_header_level(b);
2946		p->nodes[level] = b;
2947		btrfs_clear_path_blocking(p, NULL, 0);
2948
2949		/*
2950		 * we have a lock on b and as long as we aren't changing
2951		 * the tree, there is no way to for the items in b to change.
2952		 * It is safe to drop the lock on our parent before we
2953		 * go through the expensive btree search on b.
2954		 */
2955		btrfs_unlock_up_safe(p, level + 1);
2956
2957		/*
2958		 * Since we can unwind ebs we want to do a real search every
2959		 * time.
2960		 */
2961		prev_cmp = -1;
2962		ret = key_search(b, key, level, &prev_cmp, &slot);
2963
2964		if (level != 0) {
2965			int dec = 0;
2966			if (ret && slot > 0) {
2967				dec = 1;
2968				slot -= 1;
2969			}
2970			p->slots[level] = slot;
2971			unlock_up(p, level, lowest_unlock, 0, NULL);
 
 
 
 
 
 
 
 
 
2972
2973			if (level == lowest_level) {
2974				if (dec)
2975					p->slots[level]++;
2976				goto done;
2977			}
2978
2979			err = read_block_for_search(root, p, &b, level,
2980						    slot, key);
2981			if (err == -EAGAIN)
2982				goto again;
2983			if (err) {
2984				ret = err;
2985				goto done;
2986			}
2987
2988			level = btrfs_header_level(b);
2989			err = btrfs_tree_read_lock_atomic(b);
2990			if (!err) {
2991				btrfs_set_path_blocking(p);
2992				btrfs_tree_read_lock(b);
2993				btrfs_clear_path_blocking(p, b,
2994							  BTRFS_READ_LOCK);
2995			}
2996			b = tree_mod_log_rewind(fs_info, p, b, time_seq);
2997			if (!b) {
2998				ret = -ENOMEM;
2999				goto done;
3000			}
3001			p->locks[level] = BTRFS_READ_LOCK;
3002			p->nodes[level] = b;
3003		} else {
3004			p->slots[level] = slot;
3005			unlock_up(p, level, lowest_unlock, 0, NULL);
3006			goto done;
3007		}
 
 
3008	}
3009	ret = 1;
3010done:
3011	if (!p->leave_spinning)
3012		btrfs_set_path_blocking(p);
3013	if (ret < 0)
3014		btrfs_release_path(p);
3015
3016	return ret;
3017}
3018
3019/*
3020 * helper to use instead of search slot if no exact match is needed but
3021 * instead the next or previous item should be returned.
3022 * When find_higher is true, the next higher item is returned, the next lower
3023 * otherwise.
3024 * When return_any and find_higher are both true, and no higher item is found,
3025 * return the next lower instead.
3026 * When return_any is true and find_higher is false, and no lower item is found,
3027 * return the next higher instead.
3028 * It returns 0 if any item is found, 1 if none is found (tree empty), and
3029 * < 0 on error
3030 */
3031int btrfs_search_slot_for_read(struct btrfs_root *root,
3032			       const struct btrfs_key *key,
3033			       struct btrfs_path *p, int find_higher,
3034			       int return_any)
3035{
3036	int ret;
3037	struct extent_buffer *leaf;
3038
3039again:
3040	ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
3041	if (ret <= 0)
3042		return ret;
3043	/*
3044	 * a return value of 1 means the path is at the position where the
3045	 * item should be inserted. Normally this is the next bigger item,
3046	 * but in case the previous item is the last in a leaf, path points
3047	 * to the first free slot in the previous leaf, i.e. at an invalid
3048	 * item.
3049	 */
3050	leaf = p->nodes[0];
3051
3052	if (find_higher) {
3053		if (p->slots[0] >= btrfs_header_nritems(leaf)) {
3054			ret = btrfs_next_leaf(root, p);
3055			if (ret <= 0)
3056				return ret;
3057			if (!return_any)
3058				return 1;
3059			/*
3060			 * no higher item found, return the next
3061			 * lower instead
3062			 */
3063			return_any = 0;
3064			find_higher = 0;
3065			btrfs_release_path(p);
3066			goto again;
3067		}
3068	} else {
3069		if (p->slots[0] == 0) {
3070			ret = btrfs_prev_leaf(root, p);
3071			if (ret < 0)
3072				return ret;
3073			if (!ret) {
3074				leaf = p->nodes[0];
3075				if (p->slots[0] == btrfs_header_nritems(leaf))
3076					p->slots[0]--;
3077				return 0;
3078			}
3079			if (!return_any)
3080				return 1;
3081			/*
3082			 * no lower item found, return the next
3083			 * higher instead
3084			 */
3085			return_any = 0;
3086			find_higher = 1;
3087			btrfs_release_path(p);
3088			goto again;
3089		} else {
3090			--p->slots[0];
3091		}
3092	}
3093	return 0;
3094}
3095
3096/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3097 * adjust the pointers going up the tree, starting at level
3098 * making sure the right key of each node is points to 'key'.
3099 * This is used after shifting pointers to the left, so it stops
3100 * fixing up pointers when a given leaf/node is not in slot 0 of the
3101 * higher levels
3102 *
3103 */
3104static void fixup_low_keys(struct btrfs_fs_info *fs_info,
3105			   struct btrfs_path *path,
3106			   struct btrfs_disk_key *key, int level)
3107{
3108	int i;
3109	struct extent_buffer *t;
3110	int ret;
3111
3112	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
3113		int tslot = path->slots[i];
3114
3115		if (!path->nodes[i])
3116			break;
3117		t = path->nodes[i];
3118		ret = tree_mod_log_insert_key(t, tslot, MOD_LOG_KEY_REPLACE,
3119				GFP_ATOMIC);
3120		BUG_ON(ret < 0);
3121		btrfs_set_node_key(t, key, tslot);
3122		btrfs_mark_buffer_dirty(path->nodes[i]);
3123		if (tslot != 0)
3124			break;
3125	}
3126}
3127
3128/*
3129 * update item key.
3130 *
3131 * This function isn't completely safe. It's the caller's responsibility
3132 * that the new key won't break the order
3133 */
3134void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
3135			     struct btrfs_path *path,
3136			     const struct btrfs_key *new_key)
3137{
3138	struct btrfs_disk_key disk_key;
3139	struct extent_buffer *eb;
3140	int slot;
3141
3142	eb = path->nodes[0];
3143	slot = path->slots[0];
3144	if (slot > 0) {
3145		btrfs_item_key(eb, &disk_key, slot - 1);
3146		BUG_ON(comp_keys(&disk_key, new_key) >= 0);
 
 
 
 
 
 
 
 
 
 
3147	}
3148	if (slot < btrfs_header_nritems(eb) - 1) {
3149		btrfs_item_key(eb, &disk_key, slot + 1);
3150		BUG_ON(comp_keys(&disk_key, new_key) <= 0);
 
 
 
 
 
 
 
 
 
 
3151	}
3152
3153	btrfs_cpu_key_to_disk(&disk_key, new_key);
3154	btrfs_set_item_key(eb, &disk_key, slot);
3155	btrfs_mark_buffer_dirty(eb);
3156	if (slot == 0)
3157		fixup_low_keys(fs_info, path, &disk_key, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3158}
3159
3160/*
3161 * try to push data from one node into the next node left in the
3162 * tree.
3163 *
3164 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3165 * error, and > 0 if there was no room in the left hand block.
3166 */
3167static int push_node_left(struct btrfs_trans_handle *trans,
3168			  struct btrfs_fs_info *fs_info,
3169			  struct extent_buffer *dst,
3170			  struct extent_buffer *src, int empty)
3171{
 
3172	int push_items = 0;
3173	int src_nritems;
3174	int dst_nritems;
3175	int ret = 0;
3176
3177	src_nritems = btrfs_header_nritems(src);
3178	dst_nritems = btrfs_header_nritems(dst);
3179	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
3180	WARN_ON(btrfs_header_generation(src) != trans->transid);
3181	WARN_ON(btrfs_header_generation(dst) != trans->transid);
3182
3183	if (!empty && src_nritems <= 8)
3184		return 1;
3185
3186	if (push_items <= 0)
3187		return 1;
3188
3189	if (empty) {
3190		push_items = min(src_nritems, push_items);
3191		if (push_items < src_nritems) {
3192			/* leave at least 8 pointers in the node if
3193			 * we aren't going to empty it
3194			 */
3195			if (src_nritems - push_items < 8) {
3196				if (push_items <= 8)
3197					return 1;
3198				push_items -= 8;
3199			}
3200		}
3201	} else
3202		push_items = min(src_nritems - 8, push_items);
3203
3204	ret = tree_mod_log_eb_copy(fs_info, dst, src, dst_nritems, 0,
3205				   push_items);
 
 
 
 
 
3206	if (ret) {
3207		btrfs_abort_transaction(trans, ret);
3208		return ret;
3209	}
3210	copy_extent_buffer(dst, src,
3211			   btrfs_node_key_ptr_offset(dst_nritems),
3212			   btrfs_node_key_ptr_offset(0),
3213			   push_items * sizeof(struct btrfs_key_ptr));
3214
3215	if (push_items < src_nritems) {
3216		/*
3217		 * Don't call tree_mod_log_insert_move here, key removal was
3218		 * already fully logged by tree_mod_log_eb_copy above.
3219		 */
3220		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3221				      btrfs_node_key_ptr_offset(push_items),
3222				      (src_nritems - push_items) *
3223				      sizeof(struct btrfs_key_ptr));
3224	}
3225	btrfs_set_header_nritems(src, src_nritems - push_items);
3226	btrfs_set_header_nritems(dst, dst_nritems + push_items);
3227	btrfs_mark_buffer_dirty(src);
3228	btrfs_mark_buffer_dirty(dst);
3229
3230	return ret;
3231}
3232
3233/*
3234 * try to push data from one node into the next node right in the
3235 * tree.
3236 *
3237 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3238 * error, and > 0 if there was no room in the right hand block.
3239 *
3240 * this will  only push up to 1/2 the contents of the left node over
3241 */
3242static int balance_node_right(struct btrfs_trans_handle *trans,
3243			      struct btrfs_fs_info *fs_info,
3244			      struct extent_buffer *dst,
3245			      struct extent_buffer *src)
3246{
 
3247	int push_items = 0;
3248	int max_push;
3249	int src_nritems;
3250	int dst_nritems;
3251	int ret = 0;
3252
3253	WARN_ON(btrfs_header_generation(src) != trans->transid);
3254	WARN_ON(btrfs_header_generation(dst) != trans->transid);
3255
3256	src_nritems = btrfs_header_nritems(src);
3257	dst_nritems = btrfs_header_nritems(dst);
3258	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
3259	if (push_items <= 0)
3260		return 1;
3261
3262	if (src_nritems < 4)
3263		return 1;
3264
3265	max_push = src_nritems / 2 + 1;
3266	/* don't try to empty the node */
3267	if (max_push >= src_nritems)
3268		return 1;
3269
3270	if (max_push < push_items)
3271		push_items = max_push;
3272
3273	ret = tree_mod_log_insert_move(dst, push_items, 0, dst_nritems);
 
 
 
 
 
 
3274	BUG_ON(ret < 0);
3275	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3276				      btrfs_node_key_ptr_offset(0),
3277				      (dst_nritems) *
3278				      sizeof(struct btrfs_key_ptr));
3279
3280	ret = tree_mod_log_eb_copy(fs_info, dst, src, 0,
3281				   src_nritems - push_items, push_items);
3282	if (ret) {
3283		btrfs_abort_transaction(trans, ret);
3284		return ret;
3285	}
3286	copy_extent_buffer(dst, src,
3287			   btrfs_node_key_ptr_offset(0),
3288			   btrfs_node_key_ptr_offset(src_nritems - push_items),
3289			   push_items * sizeof(struct btrfs_key_ptr));
3290
3291	btrfs_set_header_nritems(src, src_nritems - push_items);
3292	btrfs_set_header_nritems(dst, dst_nritems + push_items);
3293
3294	btrfs_mark_buffer_dirty(src);
3295	btrfs_mark_buffer_dirty(dst);
3296
3297	return ret;
3298}
3299
3300/*
3301 * helper function to insert a new root level in the tree.
3302 * A new node is allocated, and a single item is inserted to
3303 * point to the existing root
3304 *
3305 * returns zero on success or < 0 on failure.
3306 */
3307static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3308			   struct btrfs_root *root,
3309			   struct btrfs_path *path, int level)
3310{
3311	struct btrfs_fs_info *fs_info = root->fs_info;
3312	u64 lower_gen;
3313	struct extent_buffer *lower;
3314	struct extent_buffer *c;
3315	struct extent_buffer *old;
3316	struct btrfs_disk_key lower_key;
3317	int ret;
3318
3319	BUG_ON(path->nodes[level]);
3320	BUG_ON(path->nodes[level-1] != root->node);
3321
3322	lower = path->nodes[level-1];
3323	if (level == 1)
3324		btrfs_item_key(lower, &lower_key, 0);
3325	else
3326		btrfs_node_key(lower, &lower_key, 0);
3327
3328	c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3329				   &lower_key, level, root->node->start, 0);
 
3330	if (IS_ERR(c))
3331		return PTR_ERR(c);
3332
3333	root_add_used(root, fs_info->nodesize);
3334
3335	memzero_extent_buffer(c, 0, sizeof(struct btrfs_header));
3336	btrfs_set_header_nritems(c, 1);
3337	btrfs_set_header_level(c, level);
3338	btrfs_set_header_bytenr(c, c->start);
3339	btrfs_set_header_generation(c, trans->transid);
3340	btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
3341	btrfs_set_header_owner(c, root->root_key.objectid);
3342
3343	write_extent_buffer_fsid(c, fs_info->fsid);
3344	write_extent_buffer_chunk_tree_uuid(c, fs_info->chunk_tree_uuid);
3345
3346	btrfs_set_node_key(c, &lower_key, 0);
3347	btrfs_set_node_blockptr(c, 0, lower->start);
3348	lower_gen = btrfs_header_generation(lower);
3349	WARN_ON(lower_gen != trans->transid);
3350
3351	btrfs_set_node_ptr_generation(c, 0, lower_gen);
3352
3353	btrfs_mark_buffer_dirty(c);
3354
3355	old = root->node;
3356	ret = tree_mod_log_insert_root(root->node, c, 0);
3357	BUG_ON(ret < 0);
3358	rcu_assign_pointer(root->node, c);
3359
3360	/* the super has an extra ref to root->node */
3361	free_extent_buffer(old);
3362
3363	add_root_to_dirty_list(root);
3364	extent_buffer_get(c);
3365	path->nodes[level] = c;
3366	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
3367	path->slots[level] = 0;
3368	return 0;
3369}
3370
3371/*
3372 * worker function to insert a single pointer in a node.
3373 * the node should have enough room for the pointer already
3374 *
3375 * slot and level indicate where you want the key to go, and
3376 * blocknr is the block the key points to.
3377 */
3378static void insert_ptr(struct btrfs_trans_handle *trans,
3379		       struct btrfs_fs_info *fs_info, struct btrfs_path *path,
3380		       struct btrfs_disk_key *key, u64 bytenr,
3381		       int slot, int level)
3382{
3383	struct extent_buffer *lower;
3384	int nritems;
3385	int ret;
3386
3387	BUG_ON(!path->nodes[level]);
3388	btrfs_assert_tree_locked(path->nodes[level]);
3389	lower = path->nodes[level];
3390	nritems = btrfs_header_nritems(lower);
3391	BUG_ON(slot > nritems);
3392	BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(fs_info));
3393	if (slot != nritems) {
3394		if (level) {
3395			ret = tree_mod_log_insert_move(lower, slot + 1, slot,
3396					nritems - slot);
3397			BUG_ON(ret < 0);
3398		}
3399		memmove_extent_buffer(lower,
3400			      btrfs_node_key_ptr_offset(slot + 1),
3401			      btrfs_node_key_ptr_offset(slot),
3402			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
3403	}
3404	if (level) {
3405		ret = tree_mod_log_insert_key(lower, slot, MOD_LOG_KEY_ADD,
3406				GFP_NOFS);
3407		BUG_ON(ret < 0);
3408	}
3409	btrfs_set_node_key(lower, key, slot);
3410	btrfs_set_node_blockptr(lower, slot, bytenr);
3411	WARN_ON(trans->transid == 0);
3412	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3413	btrfs_set_header_nritems(lower, nritems + 1);
3414	btrfs_mark_buffer_dirty(lower);
3415}
3416
3417/*
3418 * split the node at the specified level in path in two.
3419 * The path is corrected to point to the appropriate node after the split
3420 *
3421 * Before splitting this tries to make some room in the node by pushing
3422 * left and right, if either one works, it returns right away.
3423 *
3424 * returns 0 on success and < 0 on failure
3425 */
3426static noinline int split_node(struct btrfs_trans_handle *trans,
3427			       struct btrfs_root *root,
3428			       struct btrfs_path *path, int level)
3429{
3430	struct btrfs_fs_info *fs_info = root->fs_info;
3431	struct extent_buffer *c;
3432	struct extent_buffer *split;
3433	struct btrfs_disk_key disk_key;
3434	int mid;
3435	int ret;
3436	u32 c_nritems;
3437
3438	c = path->nodes[level];
3439	WARN_ON(btrfs_header_generation(c) != trans->transid);
3440	if (c == root->node) {
3441		/*
3442		 * trying to split the root, lets make a new one
3443		 *
3444		 * tree mod log: We don't log_removal old root in
3445		 * insert_new_root, because that root buffer will be kept as a
3446		 * normal node. We are going to log removal of half of the
3447		 * elements below with tree_mod_log_eb_copy. We're holding a
3448		 * tree lock on the buffer, which is why we cannot race with
3449		 * other tree_mod_log users.
3450		 */
3451		ret = insert_new_root(trans, root, path, level + 1);
3452		if (ret)
3453			return ret;
3454	} else {
3455		ret = push_nodes_for_insert(trans, root, path, level);
3456		c = path->nodes[level];
3457		if (!ret && btrfs_header_nritems(c) <
3458		    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
3459			return 0;
3460		if (ret < 0)
3461			return ret;
3462	}
3463
3464	c_nritems = btrfs_header_nritems(c);
3465	mid = (c_nritems + 1) / 2;
3466	btrfs_node_key(c, &disk_key, mid);
3467
3468	split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3469			&disk_key, level, c->start, 0);
 
3470	if (IS_ERR(split))
3471		return PTR_ERR(split);
3472
3473	root_add_used(root, fs_info->nodesize);
 
3474
3475	memzero_extent_buffer(split, 0, sizeof(struct btrfs_header));
3476	btrfs_set_header_level(split, btrfs_header_level(c));
3477	btrfs_set_header_bytenr(split, split->start);
3478	btrfs_set_header_generation(split, trans->transid);
3479	btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
3480	btrfs_set_header_owner(split, root->root_key.objectid);
3481	write_extent_buffer_fsid(split, fs_info->fsid);
3482	write_extent_buffer_chunk_tree_uuid(split, fs_info->chunk_tree_uuid);
3483
3484	ret = tree_mod_log_eb_copy(fs_info, split, c, 0, mid, c_nritems - mid);
3485	if (ret) {
3486		btrfs_abort_transaction(trans, ret);
3487		return ret;
3488	}
3489	copy_extent_buffer(split, c,
3490			   btrfs_node_key_ptr_offset(0),
3491			   btrfs_node_key_ptr_offset(mid),
3492			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3493	btrfs_set_header_nritems(split, c_nritems - mid);
3494	btrfs_set_header_nritems(c, mid);
3495	ret = 0;
3496
3497	btrfs_mark_buffer_dirty(c);
3498	btrfs_mark_buffer_dirty(split);
3499
3500	insert_ptr(trans, fs_info, path, &disk_key, split->start,
3501		   path->slots[level + 1] + 1, level + 1);
3502
3503	if (path->slots[level] >= mid) {
3504		path->slots[level] -= mid;
3505		btrfs_tree_unlock(c);
3506		free_extent_buffer(c);
3507		path->nodes[level] = split;
3508		path->slots[level + 1] += 1;
3509	} else {
3510		btrfs_tree_unlock(split);
3511		free_extent_buffer(split);
3512	}
3513	return ret;
3514}
3515
3516/*
3517 * how many bytes are required to store the items in a leaf.  start
3518 * and nr indicate which items in the leaf to check.  This totals up the
3519 * space used both by the item structs and the item data
3520 */
3521static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3522{
3523	struct btrfs_item *start_item;
3524	struct btrfs_item *end_item;
3525	struct btrfs_map_token token;
3526	int data_len;
3527	int nritems = btrfs_header_nritems(l);
3528	int end = min(nritems, start + nr) - 1;
3529
3530	if (!nr)
3531		return 0;
3532	btrfs_init_map_token(&token);
3533	start_item = btrfs_item_nr(start);
3534	end_item = btrfs_item_nr(end);
3535	data_len = btrfs_token_item_offset(l, start_item, &token) +
3536		btrfs_token_item_size(l, start_item, &token);
3537	data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
3538	data_len += sizeof(struct btrfs_item) * nr;
3539	WARN_ON(data_len < 0);
3540	return data_len;
3541}
3542
3543/*
3544 * The space between the end of the leaf items and
3545 * the start of the leaf data.  IOW, how much room
3546 * the leaf has left for both items and data
3547 */
3548noinline int btrfs_leaf_free_space(struct btrfs_fs_info *fs_info,
3549				   struct extent_buffer *leaf)
3550{
 
3551	int nritems = btrfs_header_nritems(leaf);
3552	int ret;
3553
3554	ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
3555	if (ret < 0) {
3556		btrfs_crit(fs_info,
3557			   "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3558			   ret,
3559			   (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
3560			   leaf_space_used(leaf, 0, nritems), nritems);
3561	}
3562	return ret;
3563}
3564
3565/*
3566 * min slot controls the lowest index we're willing to push to the
3567 * right.  We'll push up to and including min_slot, but no lower
3568 */
3569static noinline int __push_leaf_right(struct btrfs_fs_info *fs_info,
3570				      struct btrfs_path *path,
3571				      int data_size, int empty,
3572				      struct extent_buffer *right,
3573				      int free_space, u32 left_nritems,
3574				      u32 min_slot)
3575{
 
3576	struct extent_buffer *left = path->nodes[0];
3577	struct extent_buffer *upper = path->nodes[1];
3578	struct btrfs_map_token token;
3579	struct btrfs_disk_key disk_key;
3580	int slot;
3581	u32 i;
3582	int push_space = 0;
3583	int push_items = 0;
3584	struct btrfs_item *item;
3585	u32 nr;
3586	u32 right_nritems;
3587	u32 data_end;
3588	u32 this_item_size;
3589
3590	btrfs_init_map_token(&token);
3591
3592	if (empty)
3593		nr = 0;
3594	else
3595		nr = max_t(u32, 1, min_slot);
3596
3597	if (path->slots[0] >= left_nritems)
3598		push_space += data_size;
3599
3600	slot = path->slots[1];
3601	i = left_nritems - 1;
3602	while (i >= nr) {
3603		item = btrfs_item_nr(i);
3604
3605		if (!empty && push_items > 0) {
3606			if (path->slots[0] > i)
3607				break;
3608			if (path->slots[0] == i) {
3609				int space = btrfs_leaf_free_space(fs_info, left);
 
3610				if (space + push_space * 2 > free_space)
3611					break;
3612			}
3613		}
3614
3615		if (path->slots[0] == i)
3616			push_space += data_size;
3617
3618		this_item_size = btrfs_item_size(left, item);
3619		if (this_item_size + sizeof(*item) + push_space > free_space)
 
3620			break;
3621
3622		push_items++;
3623		push_space += this_item_size + sizeof(*item);
3624		if (i == 0)
3625			break;
3626		i--;
3627	}
3628
3629	if (push_items == 0)
3630		goto out_unlock;
3631
3632	WARN_ON(!empty && push_items == left_nritems);
3633
3634	/* push left to right */
3635	right_nritems = btrfs_header_nritems(right);
3636
3637	push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3638	push_space -= leaf_data_end(fs_info, left);
3639
3640	/* make room in the right data area */
3641	data_end = leaf_data_end(fs_info, right);
3642	memmove_extent_buffer(right,
3643			      BTRFS_LEAF_DATA_OFFSET + data_end - push_space,
3644			      BTRFS_LEAF_DATA_OFFSET + data_end,
3645			      BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
3646
3647	/* copy from the left data area */
3648	copy_extent_buffer(right, left, BTRFS_LEAF_DATA_OFFSET +
3649		     BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3650		     BTRFS_LEAF_DATA_OFFSET + leaf_data_end(fs_info, left),
3651		     push_space);
3652
3653	memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3654			      btrfs_item_nr_offset(0),
3655			      right_nritems * sizeof(struct btrfs_item));
3656
3657	/* copy the items from left to right */
3658	copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3659		   btrfs_item_nr_offset(left_nritems - push_items),
3660		   push_items * sizeof(struct btrfs_item));
3661
3662	/* update the item pointers */
 
3663	right_nritems += push_items;
3664	btrfs_set_header_nritems(right, right_nritems);
3665	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3666	for (i = 0; i < right_nritems; i++) {
3667		item = btrfs_item_nr(i);
3668		push_space -= btrfs_token_item_size(right, item, &token);
3669		btrfs_set_token_item_offset(right, item, push_space, &token);
3670	}
3671
3672	left_nritems -= push_items;
3673	btrfs_set_header_nritems(left, left_nritems);
3674
3675	if (left_nritems)
3676		btrfs_mark_buffer_dirty(left);
3677	else
3678		clean_tree_block(fs_info, left);
3679
3680	btrfs_mark_buffer_dirty(right);
3681
3682	btrfs_item_key(right, &disk_key, 0);
3683	btrfs_set_node_key(upper, &disk_key, slot + 1);
3684	btrfs_mark_buffer_dirty(upper);
3685
3686	/* then fixup the leaf pointer in the path */
3687	if (path->slots[0] >= left_nritems) {
3688		path->slots[0] -= left_nritems;
3689		if (btrfs_header_nritems(path->nodes[0]) == 0)
3690			clean_tree_block(fs_info, path->nodes[0]);
3691		btrfs_tree_unlock(path->nodes[0]);
3692		free_extent_buffer(path->nodes[0]);
3693		path->nodes[0] = right;
3694		path->slots[1] += 1;
3695	} else {
3696		btrfs_tree_unlock(right);
3697		free_extent_buffer(right);
3698	}
3699	return 0;
3700
3701out_unlock:
3702	btrfs_tree_unlock(right);
3703	free_extent_buffer(right);
3704	return 1;
3705}
3706
3707/*
3708 * push some data in the path leaf to the right, trying to free up at
3709 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3710 *
3711 * returns 1 if the push failed because the other node didn't have enough
3712 * room, 0 if everything worked out and < 0 if there were major errors.
3713 *
3714 * this will push starting from min_slot to the end of the leaf.  It won't
3715 * push any slot lower than min_slot
3716 */
3717static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3718			   *root, struct btrfs_path *path,
3719			   int min_data_size, int data_size,
3720			   int empty, u32 min_slot)
3721{
3722	struct btrfs_fs_info *fs_info = root->fs_info;
3723	struct extent_buffer *left = path->nodes[0];
3724	struct extent_buffer *right;
3725	struct extent_buffer *upper;
3726	int slot;
3727	int free_space;
3728	u32 left_nritems;
3729	int ret;
3730
3731	if (!path->nodes[1])
3732		return 1;
3733
3734	slot = path->slots[1];
3735	upper = path->nodes[1];
3736	if (slot >= btrfs_header_nritems(upper) - 1)
3737		return 1;
3738
3739	btrfs_assert_tree_locked(path->nodes[1]);
3740
3741	right = read_node_slot(fs_info, upper, slot + 1);
3742	/*
3743	 * slot + 1 is not valid or we fail to read the right node,
3744	 * no big deal, just return.
3745	 */
3746	if (IS_ERR(right))
3747		return 1;
3748
3749	btrfs_tree_lock(right);
3750	btrfs_set_lock_blocking(right);
3751
3752	free_space = btrfs_leaf_free_space(fs_info, right);
3753	if (free_space < data_size)
3754		goto out_unlock;
3755
3756	/* cow and double check */
3757	ret = btrfs_cow_block(trans, root, right, upper,
3758			      slot + 1, &right);
3759	if (ret)
3760		goto out_unlock;
3761
3762	free_space = btrfs_leaf_free_space(fs_info, right);
3763	if (free_space < data_size)
3764		goto out_unlock;
3765
3766	left_nritems = btrfs_header_nritems(left);
3767	if (left_nritems == 0)
3768		goto out_unlock;
3769
 
 
 
 
 
 
3770	if (path->slots[0] == left_nritems && !empty) {
3771		/* Key greater than all keys in the leaf, right neighbor has
3772		 * enough room for it and we're not emptying our leaf to delete
3773		 * it, therefore use right neighbor to insert the new item and
3774		 * no need to touch/dirty our left leaft. */
3775		btrfs_tree_unlock(left);
3776		free_extent_buffer(left);
3777		path->nodes[0] = right;
3778		path->slots[0] = 0;
3779		path->slots[1]++;
3780		return 0;
3781	}
3782
3783	return __push_leaf_right(fs_info, path, min_data_size, empty,
3784				right, free_space, left_nritems, min_slot);
3785out_unlock:
3786	btrfs_tree_unlock(right);
3787	free_extent_buffer(right);
3788	return 1;
3789}
3790
3791/*
3792 * push some data in the path leaf to the left, trying to free up at
3793 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3794 *
3795 * max_slot can put a limit on how far into the leaf we'll push items.  The
3796 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3797 * items
3798 */
3799static noinline int __push_leaf_left(struct btrfs_fs_info *fs_info,
3800				     struct btrfs_path *path, int data_size,
3801				     int empty, struct extent_buffer *left,
3802				     int free_space, u32 right_nritems,
3803				     u32 max_slot)
3804{
 
3805	struct btrfs_disk_key disk_key;
3806	struct extent_buffer *right = path->nodes[0];
3807	int i;
3808	int push_space = 0;
3809	int push_items = 0;
3810	struct btrfs_item *item;
3811	u32 old_left_nritems;
3812	u32 nr;
3813	int ret = 0;
3814	u32 this_item_size;
3815	u32 old_left_item_size;
3816	struct btrfs_map_token token;
3817
3818	btrfs_init_map_token(&token);
3819
3820	if (empty)
3821		nr = min(right_nritems, max_slot);
3822	else
3823		nr = min(right_nritems - 1, max_slot);
3824
3825	for (i = 0; i < nr; i++) {
3826		item = btrfs_item_nr(i);
3827
3828		if (!empty && push_items > 0) {
3829			if (path->slots[0] < i)
3830				break;
3831			if (path->slots[0] == i) {
3832				int space = btrfs_leaf_free_space(fs_info, right);
 
3833				if (space + push_space * 2 > free_space)
3834					break;
3835			}
3836		}
3837
3838		if (path->slots[0] == i)
3839			push_space += data_size;
3840
3841		this_item_size = btrfs_item_size(right, item);
3842		if (this_item_size + sizeof(*item) + push_space > free_space)
 
3843			break;
3844
3845		push_items++;
3846		push_space += this_item_size + sizeof(*item);
3847	}
3848
3849	if (push_items == 0) {
3850		ret = 1;
3851		goto out;
3852	}
3853	WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3854
3855	/* push data from right to left */
3856	copy_extent_buffer(left, right,
3857			   btrfs_item_nr_offset(btrfs_header_nritems(left)),
3858			   btrfs_item_nr_offset(0),
3859			   push_items * sizeof(struct btrfs_item));
3860
3861	push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
3862		     btrfs_item_offset_nr(right, push_items - 1);
3863
3864	copy_extent_buffer(left, right, BTRFS_LEAF_DATA_OFFSET +
3865		     leaf_data_end(fs_info, left) - push_space,
3866		     BTRFS_LEAF_DATA_OFFSET +
3867		     btrfs_item_offset_nr(right, push_items - 1),
3868		     push_space);
3869	old_left_nritems = btrfs_header_nritems(left);
3870	BUG_ON(old_left_nritems <= 0);
3871
3872	old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
 
3873	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3874		u32 ioff;
3875
3876		item = btrfs_item_nr(i);
3877
3878		ioff = btrfs_token_item_offset(left, item, &token);
3879		btrfs_set_token_item_offset(left, item,
3880		      ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size),
3881		      &token);
3882	}
3883	btrfs_set_header_nritems(left, old_left_nritems + push_items);
3884
3885	/* fixup right node */
3886	if (push_items > right_nritems)
3887		WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3888		       right_nritems);
3889
3890	if (push_items < right_nritems) {
3891		push_space = btrfs_item_offset_nr(right, push_items - 1) -
3892						  leaf_data_end(fs_info, right);
3893		memmove_extent_buffer(right, BTRFS_LEAF_DATA_OFFSET +
3894				      BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3895				      BTRFS_LEAF_DATA_OFFSET +
3896				      leaf_data_end(fs_info, right), push_space);
3897
3898		memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3899			      btrfs_item_nr_offset(push_items),
3900			     (btrfs_header_nritems(right) - push_items) *
3901			     sizeof(struct btrfs_item));
3902	}
 
 
3903	right_nritems -= push_items;
3904	btrfs_set_header_nritems(right, right_nritems);
3905	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3906	for (i = 0; i < right_nritems; i++) {
3907		item = btrfs_item_nr(i);
3908
3909		push_space = push_space - btrfs_token_item_size(right,
3910								item, &token);
3911		btrfs_set_token_item_offset(right, item, push_space, &token);
3912	}
3913
3914	btrfs_mark_buffer_dirty(left);
3915	if (right_nritems)
3916		btrfs_mark_buffer_dirty(right);
3917	else
3918		clean_tree_block(fs_info, right);
3919
3920	btrfs_item_key(right, &disk_key, 0);
3921	fixup_low_keys(fs_info, path, &disk_key, 1);
3922
3923	/* then fixup the leaf pointer in the path */
3924	if (path->slots[0] < push_items) {
3925		path->slots[0] += old_left_nritems;
3926		btrfs_tree_unlock(path->nodes[0]);
3927		free_extent_buffer(path->nodes[0]);
3928		path->nodes[0] = left;
3929		path->slots[1] -= 1;
3930	} else {
3931		btrfs_tree_unlock(left);
3932		free_extent_buffer(left);
3933		path->slots[0] -= push_items;
3934	}
3935	BUG_ON(path->slots[0] < 0);
3936	return ret;
3937out:
3938	btrfs_tree_unlock(left);
3939	free_extent_buffer(left);
3940	return ret;
3941}
3942
3943/*
3944 * push some data in the path leaf to the left, trying to free up at
3945 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3946 *
3947 * max_slot can put a limit on how far into the leaf we'll push items.  The
3948 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3949 * items
3950 */
3951static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3952			  *root, struct btrfs_path *path, int min_data_size,
3953			  int data_size, int empty, u32 max_slot)
3954{
3955	struct btrfs_fs_info *fs_info = root->fs_info;
3956	struct extent_buffer *right = path->nodes[0];
3957	struct extent_buffer *left;
3958	int slot;
3959	int free_space;
3960	u32 right_nritems;
3961	int ret = 0;
3962
3963	slot = path->slots[1];
3964	if (slot == 0)
3965		return 1;
3966	if (!path->nodes[1])
3967		return 1;
3968
3969	right_nritems = btrfs_header_nritems(right);
3970	if (right_nritems == 0)
3971		return 1;
3972
3973	btrfs_assert_tree_locked(path->nodes[1]);
3974
3975	left = read_node_slot(fs_info, path->nodes[1], slot - 1);
3976	/*
3977	 * slot - 1 is not valid or we fail to read the left node,
3978	 * no big deal, just return.
3979	 */
3980	if (IS_ERR(left))
3981		return 1;
3982
3983	btrfs_tree_lock(left);
3984	btrfs_set_lock_blocking(left);
3985
3986	free_space = btrfs_leaf_free_space(fs_info, left);
3987	if (free_space < data_size) {
3988		ret = 1;
3989		goto out;
3990	}
3991
3992	/* cow and double check */
3993	ret = btrfs_cow_block(trans, root, left,
3994			      path->nodes[1], slot - 1, &left);
 
3995	if (ret) {
3996		/* we hit -ENOSPC, but it isn't fatal here */
3997		if (ret == -ENOSPC)
3998			ret = 1;
3999		goto out;
4000	}
4001
4002	free_space = btrfs_leaf_free_space(fs_info, left);
4003	if (free_space < data_size) {
4004		ret = 1;
4005		goto out;
4006	}
4007
4008	return __push_leaf_left(fs_info, path, min_data_size,
4009			       empty, left, free_space, right_nritems,
4010			       max_slot);
4011out:
4012	btrfs_tree_unlock(left);
4013	free_extent_buffer(left);
4014	return ret;
4015}
4016
4017/*
4018 * split the path's leaf in two, making sure there is at least data_size
4019 * available for the resulting leaf level of the path.
4020 */
4021static noinline void copy_for_split(struct btrfs_trans_handle *trans,
4022				    struct btrfs_fs_info *fs_info,
4023				    struct btrfs_path *path,
4024				    struct extent_buffer *l,
4025				    struct extent_buffer *right,
4026				    int slot, int mid, int nritems)
4027{
 
4028	int data_copy_size;
4029	int rt_data_off;
4030	int i;
4031	struct btrfs_disk_key disk_key;
4032	struct btrfs_map_token token;
4033
4034	btrfs_init_map_token(&token);
4035
4036	nritems = nritems - mid;
4037	btrfs_set_header_nritems(right, nritems);
4038	data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(fs_info, l);
 
 
4039
4040	copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
4041			   btrfs_item_nr_offset(mid),
4042			   nritems * sizeof(struct btrfs_item));
4043
4044	copy_extent_buffer(right, l,
4045		     BTRFS_LEAF_DATA_OFFSET + BTRFS_LEAF_DATA_SIZE(fs_info) -
4046		     data_copy_size, BTRFS_LEAF_DATA_OFFSET +
4047		     leaf_data_end(fs_info, l), data_copy_size);
4048
4049	rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_end_nr(l, mid);
4050
 
4051	for (i = 0; i < nritems; i++) {
4052		struct btrfs_item *item = btrfs_item_nr(i);
4053		u32 ioff;
4054
4055		ioff = btrfs_token_item_offset(right, item, &token);
4056		btrfs_set_token_item_offset(right, item,
4057					    ioff + rt_data_off, &token);
4058	}
4059
4060	btrfs_set_header_nritems(l, mid);
4061	btrfs_item_key(right, &disk_key, 0);
4062	insert_ptr(trans, fs_info, path, &disk_key, right->start,
4063		   path->slots[1] + 1, 1);
4064
4065	btrfs_mark_buffer_dirty(right);
4066	btrfs_mark_buffer_dirty(l);
4067	BUG_ON(path->slots[0] != slot);
4068
4069	if (mid <= slot) {
4070		btrfs_tree_unlock(path->nodes[0]);
4071		free_extent_buffer(path->nodes[0]);
4072		path->nodes[0] = right;
4073		path->slots[0] -= mid;
4074		path->slots[1] += 1;
4075	} else {
4076		btrfs_tree_unlock(right);
4077		free_extent_buffer(right);
4078	}
4079
4080	BUG_ON(path->slots[0] < 0);
4081}
4082
4083/*
4084 * double splits happen when we need to insert a big item in the middle
4085 * of a leaf.  A double split can leave us with 3 mostly empty leaves:
4086 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
4087 *          A                 B                 C
4088 *
4089 * We avoid this by trying to push the items on either side of our target
4090 * into the adjacent leaves.  If all goes well we can avoid the double split
4091 * completely.
4092 */
4093static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
4094					  struct btrfs_root *root,
4095					  struct btrfs_path *path,
4096					  int data_size)
4097{
4098	struct btrfs_fs_info *fs_info = root->fs_info;
4099	int ret;
4100	int progress = 0;
4101	int slot;
4102	u32 nritems;
4103	int space_needed = data_size;
4104
4105	slot = path->slots[0];
4106	if (slot < btrfs_header_nritems(path->nodes[0]))
4107		space_needed -= btrfs_leaf_free_space(fs_info, path->nodes[0]);
4108
4109	/*
4110	 * try to push all the items after our slot into the
4111	 * right leaf
4112	 */
4113	ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
4114	if (ret < 0)
4115		return ret;
4116
4117	if (ret == 0)
4118		progress++;
4119
4120	nritems = btrfs_header_nritems(path->nodes[0]);
4121	/*
4122	 * our goal is to get our slot at the start or end of a leaf.  If
4123	 * we've done so we're done
4124	 */
4125	if (path->slots[0] == 0 || path->slots[0] == nritems)
4126		return 0;
4127
4128	if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= data_size)
4129		return 0;
4130
4131	/* try to push all the items before our slot into the next leaf */
4132	slot = path->slots[0];
4133	space_needed = data_size;
4134	if (slot > 0)
4135		space_needed -= btrfs_leaf_free_space(fs_info, path->nodes[0]);
4136	ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
4137	if (ret < 0)
4138		return ret;
4139
4140	if (ret == 0)
4141		progress++;
4142
4143	if (progress)
4144		return 0;
4145	return 1;
4146}
4147
4148/*
4149 * split the path's leaf in two, making sure there is at least data_size
4150 * available for the resulting leaf level of the path.
4151 *
4152 * returns 0 if all went well and < 0 on failure.
4153 */
4154static noinline int split_leaf(struct btrfs_trans_handle *trans,
4155			       struct btrfs_root *root,
4156			       const struct btrfs_key *ins_key,
4157			       struct btrfs_path *path, int data_size,
4158			       int extend)
4159{
4160	struct btrfs_disk_key disk_key;
4161	struct extent_buffer *l;
4162	u32 nritems;
4163	int mid;
4164	int slot;
4165	struct extent_buffer *right;
4166	struct btrfs_fs_info *fs_info = root->fs_info;
4167	int ret = 0;
4168	int wret;
4169	int split;
4170	int num_doubles = 0;
4171	int tried_avoid_double = 0;
4172
4173	l = path->nodes[0];
4174	slot = path->slots[0];
4175	if (extend && data_size + btrfs_item_size_nr(l, slot) +
4176	    sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
4177		return -EOVERFLOW;
4178
4179	/* first try to make some room by pushing left and right */
4180	if (data_size && path->nodes[1]) {
4181		int space_needed = data_size;
4182
4183		if (slot < btrfs_header_nritems(l))
4184			space_needed -= btrfs_leaf_free_space(fs_info, l);
4185
4186		wret = push_leaf_right(trans, root, path, space_needed,
4187				       space_needed, 0, 0);
4188		if (wret < 0)
4189			return wret;
4190		if (wret) {
4191			space_needed = data_size;
4192			if (slot > 0)
4193				space_needed -= btrfs_leaf_free_space(fs_info,
4194								      l);
4195			wret = push_leaf_left(trans, root, path, space_needed,
4196					      space_needed, 0, (u32)-1);
4197			if (wret < 0)
4198				return wret;
4199		}
4200		l = path->nodes[0];
4201
4202		/* did the pushes work? */
4203		if (btrfs_leaf_free_space(fs_info, l) >= data_size)
4204			return 0;
4205	}
4206
4207	if (!path->nodes[1]) {
4208		ret = insert_new_root(trans, root, path, 1);
4209		if (ret)
4210			return ret;
4211	}
4212again:
4213	split = 1;
4214	l = path->nodes[0];
4215	slot = path->slots[0];
4216	nritems = btrfs_header_nritems(l);
4217	mid = (nritems + 1) / 2;
4218
4219	if (mid <= slot) {
4220		if (nritems == 1 ||
4221		    leaf_space_used(l, mid, nritems - mid) + data_size >
4222			BTRFS_LEAF_DATA_SIZE(fs_info)) {
4223			if (slot >= nritems) {
4224				split = 0;
4225			} else {
4226				mid = slot;
4227				if (mid != nritems &&
4228				    leaf_space_used(l, mid, nritems - mid) +
4229				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4230					if (data_size && !tried_avoid_double)
4231						goto push_for_double;
4232					split = 2;
4233				}
4234			}
4235		}
4236	} else {
4237		if (leaf_space_used(l, 0, mid) + data_size >
4238			BTRFS_LEAF_DATA_SIZE(fs_info)) {
4239			if (!extend && data_size && slot == 0) {
4240				split = 0;
4241			} else if ((extend || !data_size) && slot == 0) {
4242				mid = 1;
4243			} else {
4244				mid = slot;
4245				if (mid != nritems &&
4246				    leaf_space_used(l, mid, nritems - mid) +
4247				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4248					if (data_size && !tried_avoid_double)
4249						goto push_for_double;
4250					split = 2;
4251				}
4252			}
4253		}
4254	}
4255
4256	if (split == 0)
4257		btrfs_cpu_key_to_disk(&disk_key, ins_key);
4258	else
4259		btrfs_item_key(l, &disk_key, mid);
4260
 
 
 
 
 
 
 
 
4261	right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
4262			&disk_key, 0, l->start, 0);
 
 
4263	if (IS_ERR(right))
4264		return PTR_ERR(right);
4265
4266	root_add_used(root, fs_info->nodesize);
4267
4268	memzero_extent_buffer(right, 0, sizeof(struct btrfs_header));
4269	btrfs_set_header_bytenr(right, right->start);
4270	btrfs_set_header_generation(right, trans->transid);
4271	btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
4272	btrfs_set_header_owner(right, root->root_key.objectid);
4273	btrfs_set_header_level(right, 0);
4274	write_extent_buffer_fsid(right, fs_info->fsid);
4275	write_extent_buffer_chunk_tree_uuid(right, fs_info->chunk_tree_uuid);
4276
4277	if (split == 0) {
4278		if (mid <= slot) {
4279			btrfs_set_header_nritems(right, 0);
4280			insert_ptr(trans, fs_info, path, &disk_key,
4281				   right->start, path->slots[1] + 1, 1);
4282			btrfs_tree_unlock(path->nodes[0]);
4283			free_extent_buffer(path->nodes[0]);
4284			path->nodes[0] = right;
4285			path->slots[0] = 0;
4286			path->slots[1] += 1;
4287		} else {
4288			btrfs_set_header_nritems(right, 0);
4289			insert_ptr(trans, fs_info, path, &disk_key,
4290				   right->start, path->slots[1], 1);
4291			btrfs_tree_unlock(path->nodes[0]);
4292			free_extent_buffer(path->nodes[0]);
4293			path->nodes[0] = right;
4294			path->slots[0] = 0;
4295			if (path->slots[1] == 0)
4296				fixup_low_keys(fs_info, path, &disk_key, 1);
4297		}
4298		/*
4299		 * We create a new leaf 'right' for the required ins_len and
4300		 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
4301		 * the content of ins_len to 'right'.
4302		 */
4303		return ret;
4304	}
4305
4306	copy_for_split(trans, fs_info, path, l, right, slot, mid, nritems);
4307
4308	if (split == 2) {
4309		BUG_ON(num_doubles != 0);
4310		num_doubles++;
4311		goto again;
4312	}
4313
4314	return 0;
4315
4316push_for_double:
4317	push_for_double_split(trans, root, path, data_size);
4318	tried_avoid_double = 1;
4319	if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= data_size)
4320		return 0;
4321	goto again;
4322}
4323
4324static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4325					 struct btrfs_root *root,
4326					 struct btrfs_path *path, int ins_len)
4327{
4328	struct btrfs_fs_info *fs_info = root->fs_info;
4329	struct btrfs_key key;
4330	struct extent_buffer *leaf;
4331	struct btrfs_file_extent_item *fi;
4332	u64 extent_len = 0;
4333	u32 item_size;
4334	int ret;
4335
4336	leaf = path->nodes[0];
4337	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4338
4339	BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4340	       key.type != BTRFS_EXTENT_CSUM_KEY);
4341
4342	if (btrfs_leaf_free_space(fs_info, leaf) >= ins_len)
4343		return 0;
4344
4345	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4346	if (key.type == BTRFS_EXTENT_DATA_KEY) {
4347		fi = btrfs_item_ptr(leaf, path->slots[0],
4348				    struct btrfs_file_extent_item);
4349		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4350	}
4351	btrfs_release_path(path);
4352
4353	path->keep_locks = 1;
4354	path->search_for_split = 1;
4355	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4356	path->search_for_split = 0;
4357	if (ret > 0)
4358		ret = -EAGAIN;
4359	if (ret < 0)
4360		goto err;
4361
4362	ret = -EAGAIN;
4363	leaf = path->nodes[0];
4364	/* if our item isn't there, return now */
4365	if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4366		goto err;
4367
4368	/* the leaf has  changed, it now has room.  return now */
4369	if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= ins_len)
4370		goto err;
4371
4372	if (key.type == BTRFS_EXTENT_DATA_KEY) {
4373		fi = btrfs_item_ptr(leaf, path->slots[0],
4374				    struct btrfs_file_extent_item);
4375		if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4376			goto err;
4377	}
4378
4379	btrfs_set_path_blocking(path);
4380	ret = split_leaf(trans, root, &key, path, ins_len, 1);
4381	if (ret)
4382		goto err;
4383
4384	path->keep_locks = 0;
4385	btrfs_unlock_up_safe(path, 1);
4386	return 0;
4387err:
4388	path->keep_locks = 0;
4389	return ret;
4390}
4391
4392static noinline int split_item(struct btrfs_fs_info *fs_info,
4393			       struct btrfs_path *path,
4394			       const struct btrfs_key *new_key,
4395			       unsigned long split_offset)
4396{
4397	struct extent_buffer *leaf;
4398	struct btrfs_item *item;
4399	struct btrfs_item *new_item;
4400	int slot;
4401	char *buf;
4402	u32 nritems;
4403	u32 item_size;
4404	u32 orig_offset;
4405	struct btrfs_disk_key disk_key;
4406
4407	leaf = path->nodes[0];
4408	BUG_ON(btrfs_leaf_free_space(fs_info, leaf) < sizeof(struct btrfs_item));
4409
4410	btrfs_set_path_blocking(path);
4411
4412	item = btrfs_item_nr(path->slots[0]);
4413	orig_offset = btrfs_item_offset(leaf, item);
4414	item_size = btrfs_item_size(leaf, item);
4415
4416	buf = kmalloc(item_size, GFP_NOFS);
4417	if (!buf)
4418		return -ENOMEM;
4419
4420	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4421			    path->slots[0]), item_size);
4422
4423	slot = path->slots[0] + 1;
4424	nritems = btrfs_header_nritems(leaf);
4425	if (slot != nritems) {
4426		/* shift the items */
4427		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4428				btrfs_item_nr_offset(slot),
4429				(nritems - slot) * sizeof(struct btrfs_item));
4430	}
4431
4432	btrfs_cpu_key_to_disk(&disk_key, new_key);
4433	btrfs_set_item_key(leaf, &disk_key, slot);
4434
4435	new_item = btrfs_item_nr(slot);
4436
4437	btrfs_set_item_offset(leaf, new_item, orig_offset);
4438	btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4439
4440	btrfs_set_item_offset(leaf, item,
4441			      orig_offset + item_size - split_offset);
4442	btrfs_set_item_size(leaf, item, split_offset);
4443
4444	btrfs_set_header_nritems(leaf, nritems + 1);
4445
4446	/* write the data for the start of the original item */
4447	write_extent_buffer(leaf, buf,
4448			    btrfs_item_ptr_offset(leaf, path->slots[0]),
4449			    split_offset);
4450
4451	/* write the data for the new item */
4452	write_extent_buffer(leaf, buf + split_offset,
4453			    btrfs_item_ptr_offset(leaf, slot),
4454			    item_size - split_offset);
4455	btrfs_mark_buffer_dirty(leaf);
4456
4457	BUG_ON(btrfs_leaf_free_space(fs_info, leaf) < 0);
4458	kfree(buf);
4459	return 0;
4460}
4461
4462/*
4463 * This function splits a single item into two items,
4464 * giving 'new_key' to the new item and splitting the
4465 * old one at split_offset (from the start of the item).
4466 *
4467 * The path may be released by this operation.  After
4468 * the split, the path is pointing to the old item.  The
4469 * new item is going to be in the same node as the old one.
4470 *
4471 * Note, the item being split must be smaller enough to live alone on
4472 * a tree block with room for one extra struct btrfs_item
4473 *
4474 * This allows us to split the item in place, keeping a lock on the
4475 * leaf the entire time.
4476 */
4477int btrfs_split_item(struct btrfs_trans_handle *trans,
4478		     struct btrfs_root *root,
4479		     struct btrfs_path *path,
4480		     const struct btrfs_key *new_key,
4481		     unsigned long split_offset)
4482{
4483	int ret;
4484	ret = setup_leaf_for_split(trans, root, path,
4485				   sizeof(struct btrfs_item));
4486	if (ret)
4487		return ret;
4488
4489	ret = split_item(root->fs_info, path, new_key, split_offset);
4490	return ret;
4491}
4492
4493/*
4494 * This function duplicate a item, giving 'new_key' to the new item.
4495 * It guarantees both items live in the same tree leaf and the new item
4496 * is contiguous with the original item.
4497 *
4498 * This allows us to split file extent in place, keeping a lock on the
4499 * leaf the entire time.
4500 */
4501int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4502			 struct btrfs_root *root,
4503			 struct btrfs_path *path,
4504			 const struct btrfs_key *new_key)
4505{
4506	struct extent_buffer *leaf;
4507	int ret;
4508	u32 item_size;
4509
4510	leaf = path->nodes[0];
4511	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4512	ret = setup_leaf_for_split(trans, root, path,
4513				   item_size + sizeof(struct btrfs_item));
4514	if (ret)
4515		return ret;
4516
4517	path->slots[0]++;
4518	setup_items_for_insert(root, path, new_key, &item_size,
4519			       item_size, item_size +
4520			       sizeof(struct btrfs_item), 1);
4521	leaf = path->nodes[0];
4522	memcpy_extent_buffer(leaf,
4523			     btrfs_item_ptr_offset(leaf, path->slots[0]),
4524			     btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4525			     item_size);
4526	return 0;
4527}
4528
4529/*
4530 * make the item pointed to by the path smaller.  new_size indicates
4531 * how small to make it, and from_end tells us if we just chop bytes
4532 * off the end of the item or if we shift the item to chop bytes off
4533 * the front.
4534 */
4535void btrfs_truncate_item(struct btrfs_fs_info *fs_info,
4536			 struct btrfs_path *path, u32 new_size, int from_end)
4537{
4538	int slot;
4539	struct extent_buffer *leaf;
4540	struct btrfs_item *item;
4541	u32 nritems;
4542	unsigned int data_end;
4543	unsigned int old_data_start;
4544	unsigned int old_size;
4545	unsigned int size_diff;
4546	int i;
4547	struct btrfs_map_token token;
4548
4549	btrfs_init_map_token(&token);
4550
4551	leaf = path->nodes[0];
4552	slot = path->slots[0];
4553
4554	old_size = btrfs_item_size_nr(leaf, slot);
4555	if (old_size == new_size)
4556		return;
4557
4558	nritems = btrfs_header_nritems(leaf);
4559	data_end = leaf_data_end(fs_info, leaf);
4560
4561	old_data_start = btrfs_item_offset_nr(leaf, slot);
4562
4563	size_diff = old_size - new_size;
4564
4565	BUG_ON(slot < 0);
4566	BUG_ON(slot >= nritems);
4567
4568	/*
4569	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4570	 */
4571	/* first correct the data pointers */
 
4572	for (i = slot; i < nritems; i++) {
4573		u32 ioff;
4574		item = btrfs_item_nr(i);
4575
4576		ioff = btrfs_token_item_offset(leaf, item, &token);
4577		btrfs_set_token_item_offset(leaf, item,
4578					    ioff + size_diff, &token);
4579	}
4580
4581	/* shift the data */
4582	if (from_end) {
4583		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4584			      data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
4585			      data_end, old_data_start + new_size - data_end);
4586	} else {
4587		struct btrfs_disk_key disk_key;
4588		u64 offset;
4589
4590		btrfs_item_key(leaf, &disk_key, slot);
4591
4592		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4593			unsigned long ptr;
4594			struct btrfs_file_extent_item *fi;
4595
4596			fi = btrfs_item_ptr(leaf, slot,
4597					    struct btrfs_file_extent_item);
4598			fi = (struct btrfs_file_extent_item *)(
4599			     (unsigned long)fi - size_diff);
4600
4601			if (btrfs_file_extent_type(leaf, fi) ==
4602			    BTRFS_FILE_EXTENT_INLINE) {
4603				ptr = btrfs_item_ptr_offset(leaf, slot);
4604				memmove_extent_buffer(leaf, ptr,
4605				      (unsigned long)fi,
4606				      BTRFS_FILE_EXTENT_INLINE_DATA_START);
4607			}
4608		}
4609
4610		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4611			      data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
4612			      data_end, old_data_start - data_end);
4613
4614		offset = btrfs_disk_key_offset(&disk_key);
4615		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4616		btrfs_set_item_key(leaf, &disk_key, slot);
4617		if (slot == 0)
4618			fixup_low_keys(fs_info, path, &disk_key, 1);
4619	}
4620
4621	item = btrfs_item_nr(slot);
4622	btrfs_set_item_size(leaf, item, new_size);
4623	btrfs_mark_buffer_dirty(leaf);
4624
4625	if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
4626		btrfs_print_leaf(leaf);
4627		BUG();
4628	}
4629}
4630
4631/*
4632 * make the item pointed to by the path bigger, data_size is the added size.
4633 */
4634void btrfs_extend_item(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
4635		       u32 data_size)
4636{
4637	int slot;
4638	struct extent_buffer *leaf;
4639	struct btrfs_item *item;
4640	u32 nritems;
4641	unsigned int data_end;
4642	unsigned int old_data;
4643	unsigned int old_size;
4644	int i;
4645	struct btrfs_map_token token;
4646
4647	btrfs_init_map_token(&token);
4648
4649	leaf = path->nodes[0];
4650
4651	nritems = btrfs_header_nritems(leaf);
4652	data_end = leaf_data_end(fs_info, leaf);
4653
4654	if (btrfs_leaf_free_space(fs_info, leaf) < data_size) {
4655		btrfs_print_leaf(leaf);
4656		BUG();
4657	}
4658	slot = path->slots[0];
4659	old_data = btrfs_item_end_nr(leaf, slot);
4660
4661	BUG_ON(slot < 0);
4662	if (slot >= nritems) {
4663		btrfs_print_leaf(leaf);
4664		btrfs_crit(fs_info, "slot %d too large, nritems %d",
4665			   slot, nritems);
4666		BUG_ON(1);
4667	}
4668
4669	/*
4670	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4671	 */
4672	/* first correct the data pointers */
 
4673	for (i = slot; i < nritems; i++) {
4674		u32 ioff;
4675		item = btrfs_item_nr(i);
4676
4677		ioff = btrfs_token_item_offset(leaf, item, &token);
4678		btrfs_set_token_item_offset(leaf, item,
4679					    ioff - data_size, &token);
4680	}
4681
4682	/* shift the data */
4683	memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4684		      data_end - data_size, BTRFS_LEAF_DATA_OFFSET +
4685		      data_end, old_data - data_end);
4686
4687	data_end = old_data;
4688	old_size = btrfs_item_size_nr(leaf, slot);
4689	item = btrfs_item_nr(slot);
4690	btrfs_set_item_size(leaf, item, old_size + data_size);
4691	btrfs_mark_buffer_dirty(leaf);
4692
4693	if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
4694		btrfs_print_leaf(leaf);
4695		BUG();
4696	}
4697}
4698
4699/*
4700 * this is a helper for btrfs_insert_empty_items, the main goal here is
4701 * to save stack depth by doing the bulk of the work in a function
4702 * that doesn't call btrfs_search_slot
4703 */
4704void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4705			    const struct btrfs_key *cpu_key, u32 *data_size,
4706			    u32 total_data, u32 total_size, int nr)
 
 
 
 
4707{
4708	struct btrfs_fs_info *fs_info = root->fs_info;
4709	struct btrfs_item *item;
4710	int i;
4711	u32 nritems;
4712	unsigned int data_end;
4713	struct btrfs_disk_key disk_key;
4714	struct extent_buffer *leaf;
4715	int slot;
4716	struct btrfs_map_token token;
 
4717
 
 
 
 
 
4718	if (path->slots[0] == 0) {
4719		btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4720		fixup_low_keys(fs_info, path, &disk_key, 1);
4721	}
4722	btrfs_unlock_up_safe(path, 1);
4723
4724	btrfs_init_map_token(&token);
4725
4726	leaf = path->nodes[0];
4727	slot = path->slots[0];
4728
4729	nritems = btrfs_header_nritems(leaf);
4730	data_end = leaf_data_end(fs_info, leaf);
 
4731
4732	if (btrfs_leaf_free_space(fs_info, leaf) < total_size) {
4733		btrfs_print_leaf(leaf);
4734		btrfs_crit(fs_info, "not enough freespace need %u have %d",
4735			   total_size, btrfs_leaf_free_space(fs_info, leaf));
4736		BUG();
4737	}
4738
 
4739	if (slot != nritems) {
4740		unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4741
4742		if (old_data < data_end) {
4743			btrfs_print_leaf(leaf);
4744			btrfs_crit(fs_info, "slot %d old_data %d data_end %d",
 
4745				   slot, old_data, data_end);
4746			BUG_ON(1);
4747		}
4748		/*
4749		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4750		 */
4751		/* first correct the data pointers */
4752		for (i = slot; i < nritems; i++) {
4753			u32 ioff;
4754
4755			item = btrfs_item_nr(i);
4756			ioff = btrfs_token_item_offset(leaf, item, &token);
4757			btrfs_set_token_item_offset(leaf, item,
4758						    ioff - total_data, &token);
4759		}
4760		/* shift the items */
4761		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4762			      btrfs_item_nr_offset(slot),
4763			      (nritems - slot) * sizeof(struct btrfs_item));
4764
4765		/* shift the data */
4766		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4767			      data_end - total_data, BTRFS_LEAF_DATA_OFFSET +
4768			      data_end, old_data - data_end);
4769		data_end = old_data;
4770	}
4771
4772	/* setup the item for the new data */
4773	for (i = 0; i < nr; i++) {
4774		btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4775		btrfs_set_item_key(leaf, &disk_key, slot + i);
4776		item = btrfs_item_nr(slot + i);
4777		btrfs_set_token_item_offset(leaf, item,
4778					    data_end - data_size[i], &token);
4779		data_end -= data_size[i];
4780		btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4781	}
4782
4783	btrfs_set_header_nritems(leaf, nritems + nr);
4784	btrfs_mark_buffer_dirty(leaf);
4785
4786	if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
4787		btrfs_print_leaf(leaf);
4788		BUG();
4789	}
4790}
4791
4792/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4793 * Given a key and some data, insert items into the tree.
4794 * This does all the path init required, making room in the tree if needed.
4795 */
4796int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4797			    struct btrfs_root *root,
4798			    struct btrfs_path *path,
4799			    const struct btrfs_key *cpu_key, u32 *data_size,
4800			    int nr)
4801{
4802	int ret = 0;
4803	int slot;
4804	int i;
4805	u32 total_size = 0;
4806	u32 total_data = 0;
4807
4808	for (i = 0; i < nr; i++)
4809		total_data += data_size[i];
4810
4811	total_size = total_data + (nr * sizeof(struct btrfs_item));
4812	ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4813	if (ret == 0)
4814		return -EEXIST;
4815	if (ret < 0)
4816		return ret;
4817
4818	slot = path->slots[0];
4819	BUG_ON(slot < 0);
4820
4821	setup_items_for_insert(root, path, cpu_key, data_size,
4822			       total_data, total_size, nr);
4823	return 0;
4824}
4825
4826/*
4827 * Given a key and some data, insert an item into the tree.
4828 * This does all the path init required, making room in the tree if needed.
4829 */
4830int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4831		      const struct btrfs_key *cpu_key, void *data,
4832		      u32 data_size)
4833{
4834	int ret = 0;
4835	struct btrfs_path *path;
4836	struct extent_buffer *leaf;
4837	unsigned long ptr;
4838
4839	path = btrfs_alloc_path();
4840	if (!path)
4841		return -ENOMEM;
4842	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4843	if (!ret) {
4844		leaf = path->nodes[0];
4845		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4846		write_extent_buffer(leaf, data, ptr, data_size);
4847		btrfs_mark_buffer_dirty(leaf);
4848	}
4849	btrfs_free_path(path);
4850	return ret;
4851}
4852
4853/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4854 * delete the pointer from a given node.
4855 *
4856 * the tree should have been previously balanced so the deletion does not
4857 * empty a node.
4858 */
4859static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4860		    int level, int slot)
4861{
4862	struct btrfs_fs_info *fs_info = root->fs_info;
4863	struct extent_buffer *parent = path->nodes[level];
4864	u32 nritems;
4865	int ret;
4866
4867	nritems = btrfs_header_nritems(parent);
4868	if (slot != nritems - 1) {
4869		if (level) {
4870			ret = tree_mod_log_insert_move(parent, slot, slot + 1,
4871					nritems - slot - 1);
4872			BUG_ON(ret < 0);
4873		}
4874		memmove_extent_buffer(parent,
4875			      btrfs_node_key_ptr_offset(slot),
4876			      btrfs_node_key_ptr_offset(slot + 1),
4877			      sizeof(struct btrfs_key_ptr) *
4878			      (nritems - slot - 1));
4879	} else if (level) {
4880		ret = tree_mod_log_insert_key(parent, slot, MOD_LOG_KEY_REMOVE,
4881				GFP_NOFS);
4882		BUG_ON(ret < 0);
4883	}
4884
4885	nritems--;
4886	btrfs_set_header_nritems(parent, nritems);
4887	if (nritems == 0 && parent == root->node) {
4888		BUG_ON(btrfs_header_level(root->node) != 1);
4889		/* just turn the root into a leaf and break */
4890		btrfs_set_header_level(root->node, 0);
4891	} else if (slot == 0) {
4892		struct btrfs_disk_key disk_key;
4893
4894		btrfs_node_key(parent, &disk_key, 0);
4895		fixup_low_keys(fs_info, path, &disk_key, level + 1);
4896	}
4897	btrfs_mark_buffer_dirty(parent);
4898}
4899
4900/*
4901 * a helper function to delete the leaf pointed to by path->slots[1] and
4902 * path->nodes[1].
4903 *
4904 * This deletes the pointer in path->nodes[1] and frees the leaf
4905 * block extent.  zero is returned if it all worked out, < 0 otherwise.
4906 *
4907 * The path must have already been setup for deleting the leaf, including
4908 * all the proper balancing.  path->nodes[1] must be locked.
4909 */
4910static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4911				    struct btrfs_root *root,
4912				    struct btrfs_path *path,
4913				    struct extent_buffer *leaf)
4914{
4915	WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4916	del_ptr(root, path, 1, path->slots[1]);
4917
4918	/*
4919	 * btrfs_free_extent is expensive, we want to make sure we
4920	 * aren't holding any locks when we call it
4921	 */
4922	btrfs_unlock_up_safe(path, 0);
4923
4924	root_sub_used(root, leaf->len);
4925
4926	extent_buffer_get(leaf);
4927	btrfs_free_tree_block(trans, root, leaf, 0, 1);
4928	free_extent_buffer_stale(leaf);
4929}
4930/*
4931 * delete the item at the leaf level in path.  If that empties
4932 * the leaf, remove it from the tree
4933 */
4934int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4935		    struct btrfs_path *path, int slot, int nr)
4936{
4937	struct btrfs_fs_info *fs_info = root->fs_info;
4938	struct extent_buffer *leaf;
4939	struct btrfs_item *item;
4940	u32 last_off;
4941	u32 dsize = 0;
4942	int ret = 0;
4943	int wret;
4944	int i;
4945	u32 nritems;
4946	struct btrfs_map_token token;
4947
4948	btrfs_init_map_token(&token);
4949
4950	leaf = path->nodes[0];
4951	last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4952
4953	for (i = 0; i < nr; i++)
4954		dsize += btrfs_item_size_nr(leaf, slot + i);
4955
4956	nritems = btrfs_header_nritems(leaf);
4957
4958	if (slot + nr != nritems) {
4959		int data_end = leaf_data_end(fs_info, leaf);
 
 
 
 
 
 
 
4960
4961		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4962			      data_end + dsize,
4963			      BTRFS_LEAF_DATA_OFFSET + data_end,
4964			      last_off - data_end);
4965
 
4966		for (i = slot + nr; i < nritems; i++) {
4967			u32 ioff;
4968
4969			item = btrfs_item_nr(i);
4970			ioff = btrfs_token_item_offset(leaf, item, &token);
4971			btrfs_set_token_item_offset(leaf, item,
4972						    ioff + dsize, &token);
4973		}
4974
4975		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4976			      btrfs_item_nr_offset(slot + nr),
4977			      sizeof(struct btrfs_item) *
4978			      (nritems - slot - nr));
4979	}
4980	btrfs_set_header_nritems(leaf, nritems - nr);
4981	nritems -= nr;
4982
4983	/* delete the leaf if we've emptied it */
4984	if (nritems == 0) {
4985		if (leaf == root->node) {
4986			btrfs_set_header_level(leaf, 0);
4987		} else {
4988			btrfs_set_path_blocking(path);
4989			clean_tree_block(fs_info, leaf);
4990			btrfs_del_leaf(trans, root, path, leaf);
4991		}
4992	} else {
4993		int used = leaf_space_used(leaf, 0, nritems);
4994		if (slot == 0) {
4995			struct btrfs_disk_key disk_key;
4996
4997			btrfs_item_key(leaf, &disk_key, 0);
4998			fixup_low_keys(fs_info, path, &disk_key, 1);
4999		}
5000
5001		/* delete the leaf if it is mostly empty */
 
 
 
 
 
 
 
5002		if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
 
 
5003			/* push_leaf_left fixes the path.
5004			 * make sure the path still points to our leaf
5005			 * for possible call to del_ptr below
5006			 */
5007			slot = path->slots[1];
5008			extent_buffer_get(leaf);
5009
5010			btrfs_set_path_blocking(path);
5011			wret = push_leaf_left(trans, root, path, 1, 1,
5012					      1, (u32)-1);
 
 
 
 
5013			if (wret < 0 && wret != -ENOSPC)
5014				ret = wret;
5015
5016			if (path->nodes[0] == leaf &&
5017			    btrfs_header_nritems(leaf)) {
5018				wret = push_leaf_right(trans, root, path, 1,
5019						       1, 1, 0);
 
 
 
 
 
 
 
 
 
 
 
 
5020				if (wret < 0 && wret != -ENOSPC)
5021					ret = wret;
5022			}
5023
5024			if (btrfs_header_nritems(leaf) == 0) {
5025				path->slots[1] = slot;
5026				btrfs_del_leaf(trans, root, path, leaf);
5027				free_extent_buffer(leaf);
5028				ret = 0;
5029			} else {
5030				/* if we're still in the path, make sure
5031				 * we're dirty.  Otherwise, one of the
5032				 * push_leaf functions must have already
5033				 * dirtied this buffer
5034				 */
5035				if (path->nodes[0] == leaf)
5036					btrfs_mark_buffer_dirty(leaf);
5037				free_extent_buffer(leaf);
5038			}
5039		} else {
5040			btrfs_mark_buffer_dirty(leaf);
5041		}
5042	}
5043	return ret;
5044}
5045
5046/*
5047 * search the tree again to find a leaf with lesser keys
5048 * returns 0 if it found something or 1 if there are no lesser leaves.
5049 * returns < 0 on io errors.
5050 *
5051 * This may release the path, and so you may lose any locks held at the
5052 * time you call it.
5053 */
5054int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
5055{
5056	struct btrfs_key key;
5057	struct btrfs_disk_key found_key;
5058	int ret;
5059
5060	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
5061
5062	if (key.offset > 0) {
5063		key.offset--;
5064	} else if (key.type > 0) {
5065		key.type--;
5066		key.offset = (u64)-1;
5067	} else if (key.objectid > 0) {
5068		key.objectid--;
5069		key.type = (u8)-1;
5070		key.offset = (u64)-1;
5071	} else {
5072		return 1;
5073	}
5074
5075	btrfs_release_path(path);
5076	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5077	if (ret < 0)
5078		return ret;
5079	btrfs_item_key(path->nodes[0], &found_key, 0);
5080	ret = comp_keys(&found_key, &key);
5081	/*
5082	 * We might have had an item with the previous key in the tree right
5083	 * before we released our path. And after we released our path, that
5084	 * item might have been pushed to the first slot (0) of the leaf we
5085	 * were holding due to a tree balance. Alternatively, an item with the
5086	 * previous key can exist as the only element of a leaf (big fat item).
5087	 * Therefore account for these 2 cases, so that our callers (like
5088	 * btrfs_previous_item) don't miss an existing item with a key matching
5089	 * the previous key we computed above.
5090	 */
5091	if (ret <= 0)
5092		return 0;
5093	return 1;
5094}
5095
5096/*
5097 * A helper function to walk down the tree starting at min_key, and looking
5098 * for nodes or leaves that are have a minimum transaction id.
5099 * This is used by the btree defrag code, and tree logging
5100 *
5101 * This does not cow, but it does stuff the starting key it finds back
5102 * into min_key, so you can call btrfs_search_slot with cow=1 on the
5103 * key and get a writable path.
5104 *
5105 * This honors path->lowest_level to prevent descent past a given level
5106 * of the tree.
5107 *
5108 * min_trans indicates the oldest transaction that you are interested
5109 * in walking through.  Any nodes or leaves older than min_trans are
5110 * skipped over (without reading them).
5111 *
5112 * returns zero if something useful was found, < 0 on error and 1 if there
5113 * was nothing in the tree that matched the search criteria.
5114 */
5115int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
5116			 struct btrfs_path *path,
5117			 u64 min_trans)
5118{
5119	struct btrfs_fs_info *fs_info = root->fs_info;
5120	struct extent_buffer *cur;
5121	struct btrfs_key found_key;
5122	int slot;
5123	int sret;
5124	u32 nritems;
5125	int level;
5126	int ret = 1;
5127	int keep_locks = path->keep_locks;
5128
 
5129	path->keep_locks = 1;
5130again:
5131	cur = btrfs_read_lock_root_node(root);
5132	level = btrfs_header_level(cur);
5133	WARN_ON(path->nodes[level]);
5134	path->nodes[level] = cur;
5135	path->locks[level] = BTRFS_READ_LOCK;
5136
5137	if (btrfs_header_generation(cur) < min_trans) {
5138		ret = 1;
5139		goto out;
5140	}
5141	while (1) {
5142		nritems = btrfs_header_nritems(cur);
5143		level = btrfs_header_level(cur);
5144		sret = btrfs_bin_search(cur, min_key, level, &slot);
 
 
 
 
5145
5146		/* at the lowest level, we're done, setup the path and exit */
5147		if (level == path->lowest_level) {
5148			if (slot >= nritems)
5149				goto find_next_key;
5150			ret = 0;
5151			path->slots[level] = slot;
5152			btrfs_item_key_to_cpu(cur, &found_key, slot);
5153			goto out;
5154		}
5155		if (sret && slot > 0)
5156			slot--;
5157		/*
5158		 * check this node pointer against the min_trans parameters.
5159		 * If it is too old, old, skip to the next one.
5160		 */
5161		while (slot < nritems) {
5162			u64 gen;
5163
5164			gen = btrfs_node_ptr_generation(cur, slot);
5165			if (gen < min_trans) {
5166				slot++;
5167				continue;
5168			}
5169			break;
5170		}
5171find_next_key:
5172		/*
5173		 * we didn't find a candidate key in this node, walk forward
5174		 * and find another one
5175		 */
5176		if (slot >= nritems) {
5177			path->slots[level] = slot;
5178			btrfs_set_path_blocking(path);
5179			sret = btrfs_find_next_key(root, path, min_key, level,
5180						  min_trans);
5181			if (sret == 0) {
5182				btrfs_release_path(path);
5183				goto again;
5184			} else {
5185				goto out;
5186			}
5187		}
5188		/* save our key for returning back */
5189		btrfs_node_key_to_cpu(cur, &found_key, slot);
5190		path->slots[level] = slot;
5191		if (level == path->lowest_level) {
5192			ret = 0;
5193			goto out;
5194		}
5195		btrfs_set_path_blocking(path);
5196		cur = read_node_slot(fs_info, cur, slot);
5197		if (IS_ERR(cur)) {
5198			ret = PTR_ERR(cur);
5199			goto out;
5200		}
5201
5202		btrfs_tree_read_lock(cur);
5203
5204		path->locks[level - 1] = BTRFS_READ_LOCK;
5205		path->nodes[level - 1] = cur;
5206		unlock_up(path, level, 1, 0, NULL);
5207		btrfs_clear_path_blocking(path, NULL, 0);
5208	}
5209out:
5210	path->keep_locks = keep_locks;
5211	if (ret == 0) {
5212		btrfs_unlock_up_safe(path, path->lowest_level + 1);
5213		btrfs_set_path_blocking(path);
5214		memcpy(min_key, &found_key, sizeof(found_key));
5215	}
5216	return ret;
5217}
5218
5219static int tree_move_down(struct btrfs_fs_info *fs_info,
5220			   struct btrfs_path *path,
5221			   int *level)
5222{
5223	struct extent_buffer *eb;
5224
5225	BUG_ON(*level == 0);
5226	eb = read_node_slot(fs_info, path->nodes[*level], path->slots[*level]);
5227	if (IS_ERR(eb))
5228		return PTR_ERR(eb);
5229
5230	path->nodes[*level - 1] = eb;
5231	path->slots[*level - 1] = 0;
5232	(*level)--;
5233	return 0;
5234}
5235
5236static int tree_move_next_or_upnext(struct btrfs_path *path,
5237				    int *level, int root_level)
5238{
5239	int ret = 0;
5240	int nritems;
5241	nritems = btrfs_header_nritems(path->nodes[*level]);
5242
5243	path->slots[*level]++;
5244
5245	while (path->slots[*level] >= nritems) {
5246		if (*level == root_level)
5247			return -1;
5248
5249		/* move upnext */
5250		path->slots[*level] = 0;
5251		free_extent_buffer(path->nodes[*level]);
5252		path->nodes[*level] = NULL;
5253		(*level)++;
5254		path->slots[*level]++;
5255
5256		nritems = btrfs_header_nritems(path->nodes[*level]);
5257		ret = 1;
5258	}
5259	return ret;
5260}
5261
5262/*
5263 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5264 * or down.
5265 */
5266static int tree_advance(struct btrfs_fs_info *fs_info,
5267			struct btrfs_path *path,
5268			int *level, int root_level,
5269			int allow_down,
5270			struct btrfs_key *key)
5271{
5272	int ret;
5273
5274	if (*level == 0 || !allow_down) {
5275		ret = tree_move_next_or_upnext(path, level, root_level);
5276	} else {
5277		ret = tree_move_down(fs_info, path, level);
5278	}
5279	if (ret >= 0) {
5280		if (*level == 0)
5281			btrfs_item_key_to_cpu(path->nodes[*level], key,
5282					path->slots[*level]);
5283		else
5284			btrfs_node_key_to_cpu(path->nodes[*level], key,
5285					path->slots[*level]);
5286	}
5287	return ret;
5288}
5289
5290static int tree_compare_item(struct btrfs_path *left_path,
5291			     struct btrfs_path *right_path,
5292			     char *tmp_buf)
5293{
5294	int cmp;
5295	int len1, len2;
5296	unsigned long off1, off2;
5297
5298	len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5299	len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5300	if (len1 != len2)
5301		return 1;
5302
5303	off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5304	off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5305				right_path->slots[0]);
5306
5307	read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5308
5309	cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5310	if (cmp)
5311		return 1;
5312	return 0;
5313}
5314
5315#define ADVANCE 1
5316#define ADVANCE_ONLY_NEXT -1
5317
5318/*
5319 * This function compares two trees and calls the provided callback for
5320 * every changed/new/deleted item it finds.
5321 * If shared tree blocks are encountered, whole subtrees are skipped, making
5322 * the compare pretty fast on snapshotted subvolumes.
5323 *
5324 * This currently works on commit roots only. As commit roots are read only,
5325 * we don't do any locking. The commit roots are protected with transactions.
5326 * Transactions are ended and rejoined when a commit is tried in between.
5327 *
5328 * This function checks for modifications done to the trees while comparing.
5329 * If it detects a change, it aborts immediately.
5330 */
5331int btrfs_compare_trees(struct btrfs_root *left_root,
5332			struct btrfs_root *right_root,
5333			btrfs_changed_cb_t changed_cb, void *ctx)
5334{
5335	struct btrfs_fs_info *fs_info = left_root->fs_info;
5336	int ret;
5337	int cmp;
5338	struct btrfs_path *left_path = NULL;
5339	struct btrfs_path *right_path = NULL;
5340	struct btrfs_key left_key;
5341	struct btrfs_key right_key;
5342	char *tmp_buf = NULL;
5343	int left_root_level;
5344	int right_root_level;
5345	int left_level;
5346	int right_level;
5347	int left_end_reached;
5348	int right_end_reached;
5349	int advance_left;
5350	int advance_right;
5351	u64 left_blockptr;
5352	u64 right_blockptr;
5353	u64 left_gen;
5354	u64 right_gen;
5355
5356	left_path = btrfs_alloc_path();
5357	if (!left_path) {
5358		ret = -ENOMEM;
5359		goto out;
5360	}
5361	right_path = btrfs_alloc_path();
5362	if (!right_path) {
5363		ret = -ENOMEM;
5364		goto out;
5365	}
5366
5367	tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
5368	if (!tmp_buf) {
5369		ret = -ENOMEM;
5370		goto out;
5371	}
5372
5373	left_path->search_commit_root = 1;
5374	left_path->skip_locking = 1;
5375	right_path->search_commit_root = 1;
5376	right_path->skip_locking = 1;
5377
5378	/*
5379	 * Strategy: Go to the first items of both trees. Then do
5380	 *
5381	 * If both trees are at level 0
5382	 *   Compare keys of current items
5383	 *     If left < right treat left item as new, advance left tree
5384	 *       and repeat
5385	 *     If left > right treat right item as deleted, advance right tree
5386	 *       and repeat
5387	 *     If left == right do deep compare of items, treat as changed if
5388	 *       needed, advance both trees and repeat
5389	 * If both trees are at the same level but not at level 0
5390	 *   Compare keys of current nodes/leafs
5391	 *     If left < right advance left tree and repeat
5392	 *     If left > right advance right tree and repeat
5393	 *     If left == right compare blockptrs of the next nodes/leafs
5394	 *       If they match advance both trees but stay at the same level
5395	 *         and repeat
5396	 *       If they don't match advance both trees while allowing to go
5397	 *         deeper and repeat
5398	 * If tree levels are different
5399	 *   Advance the tree that needs it and repeat
5400	 *
5401	 * Advancing a tree means:
5402	 *   If we are at level 0, try to go to the next slot. If that's not
5403	 *   possible, go one level up and repeat. Stop when we found a level
5404	 *   where we could go to the next slot. We may at this point be on a
5405	 *   node or a leaf.
5406	 *
5407	 *   If we are not at level 0 and not on shared tree blocks, go one
5408	 *   level deeper.
5409	 *
5410	 *   If we are not at level 0 and on shared tree blocks, go one slot to
5411	 *   the right if possible or go up and right.
5412	 */
5413
5414	down_read(&fs_info->commit_root_sem);
5415	left_level = btrfs_header_level(left_root->commit_root);
5416	left_root_level = left_level;
5417	left_path->nodes[left_level] =
5418			btrfs_clone_extent_buffer(left_root->commit_root);
5419	if (!left_path->nodes[left_level]) {
5420		up_read(&fs_info->commit_root_sem);
5421		ret = -ENOMEM;
5422		goto out;
5423	}
5424	extent_buffer_get(left_path->nodes[left_level]);
5425
5426	right_level = btrfs_header_level(right_root->commit_root);
5427	right_root_level = right_level;
5428	right_path->nodes[right_level] =
5429			btrfs_clone_extent_buffer(right_root->commit_root);
5430	if (!right_path->nodes[right_level]) {
5431		up_read(&fs_info->commit_root_sem);
5432		ret = -ENOMEM;
5433		goto out;
5434	}
5435	extent_buffer_get(right_path->nodes[right_level]);
5436	up_read(&fs_info->commit_root_sem);
5437
5438	if (left_level == 0)
5439		btrfs_item_key_to_cpu(left_path->nodes[left_level],
5440				&left_key, left_path->slots[left_level]);
5441	else
5442		btrfs_node_key_to_cpu(left_path->nodes[left_level],
5443				&left_key, left_path->slots[left_level]);
5444	if (right_level == 0)
5445		btrfs_item_key_to_cpu(right_path->nodes[right_level],
5446				&right_key, right_path->slots[right_level]);
5447	else
5448		btrfs_node_key_to_cpu(right_path->nodes[right_level],
5449				&right_key, right_path->slots[right_level]);
5450
5451	left_end_reached = right_end_reached = 0;
5452	advance_left = advance_right = 0;
5453
5454	while (1) {
5455		if (advance_left && !left_end_reached) {
5456			ret = tree_advance(fs_info, left_path, &left_level,
5457					left_root_level,
5458					advance_left != ADVANCE_ONLY_NEXT,
5459					&left_key);
5460			if (ret == -1)
5461				left_end_reached = ADVANCE;
5462			else if (ret < 0)
5463				goto out;
5464			advance_left = 0;
5465		}
5466		if (advance_right && !right_end_reached) {
5467			ret = tree_advance(fs_info, right_path, &right_level,
5468					right_root_level,
5469					advance_right != ADVANCE_ONLY_NEXT,
5470					&right_key);
5471			if (ret == -1)
5472				right_end_reached = ADVANCE;
5473			else if (ret < 0)
5474				goto out;
5475			advance_right = 0;
5476		}
5477
5478		if (left_end_reached && right_end_reached) {
5479			ret = 0;
5480			goto out;
5481		} else if (left_end_reached) {
5482			if (right_level == 0) {
5483				ret = changed_cb(left_path, right_path,
5484						&right_key,
5485						BTRFS_COMPARE_TREE_DELETED,
5486						ctx);
5487				if (ret < 0)
5488					goto out;
5489			}
5490			advance_right = ADVANCE;
5491			continue;
5492		} else if (right_end_reached) {
5493			if (left_level == 0) {
5494				ret = changed_cb(left_path, right_path,
5495						&left_key,
5496						BTRFS_COMPARE_TREE_NEW,
5497						ctx);
5498				if (ret < 0)
5499					goto out;
5500			}
5501			advance_left = ADVANCE;
5502			continue;
5503		}
5504
5505		if (left_level == 0 && right_level == 0) {
5506			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5507			if (cmp < 0) {
5508				ret = changed_cb(left_path, right_path,
5509						&left_key,
5510						BTRFS_COMPARE_TREE_NEW,
5511						ctx);
5512				if (ret < 0)
5513					goto out;
5514				advance_left = ADVANCE;
5515			} else if (cmp > 0) {
5516				ret = changed_cb(left_path, right_path,
5517						&right_key,
5518						BTRFS_COMPARE_TREE_DELETED,
5519						ctx);
5520				if (ret < 0)
5521					goto out;
5522				advance_right = ADVANCE;
5523			} else {
5524				enum btrfs_compare_tree_result result;
5525
5526				WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5527				ret = tree_compare_item(left_path, right_path,
5528							tmp_buf);
5529				if (ret)
5530					result = BTRFS_COMPARE_TREE_CHANGED;
5531				else
5532					result = BTRFS_COMPARE_TREE_SAME;
5533				ret = changed_cb(left_path, right_path,
5534						 &left_key, result, ctx);
5535				if (ret < 0)
5536					goto out;
5537				advance_left = ADVANCE;
5538				advance_right = ADVANCE;
5539			}
5540		} else if (left_level == right_level) {
5541			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5542			if (cmp < 0) {
5543				advance_left = ADVANCE;
5544			} else if (cmp > 0) {
5545				advance_right = ADVANCE;
5546			} else {
5547				left_blockptr = btrfs_node_blockptr(
5548						left_path->nodes[left_level],
5549						left_path->slots[left_level]);
5550				right_blockptr = btrfs_node_blockptr(
5551						right_path->nodes[right_level],
5552						right_path->slots[right_level]);
5553				left_gen = btrfs_node_ptr_generation(
5554						left_path->nodes[left_level],
5555						left_path->slots[left_level]);
5556				right_gen = btrfs_node_ptr_generation(
5557						right_path->nodes[right_level],
5558						right_path->slots[right_level]);
5559				if (left_blockptr == right_blockptr &&
5560				    left_gen == right_gen) {
5561					/*
5562					 * As we're on a shared block, don't
5563					 * allow to go deeper.
5564					 */
5565					advance_left = ADVANCE_ONLY_NEXT;
5566					advance_right = ADVANCE_ONLY_NEXT;
5567				} else {
5568					advance_left = ADVANCE;
5569					advance_right = ADVANCE;
5570				}
5571			}
5572		} else if (left_level < right_level) {
5573			advance_right = ADVANCE;
5574		} else {
5575			advance_left = ADVANCE;
5576		}
5577	}
5578
5579out:
5580	btrfs_free_path(left_path);
5581	btrfs_free_path(right_path);
5582	kvfree(tmp_buf);
5583	return ret;
5584}
5585
5586/*
5587 * this is similar to btrfs_next_leaf, but does not try to preserve
5588 * and fixup the path.  It looks for and returns the next key in the
5589 * tree based on the current path and the min_trans parameters.
5590 *
5591 * 0 is returned if another key is found, < 0 if there are any errors
5592 * and 1 is returned if there are no higher keys in the tree
5593 *
5594 * path->keep_locks should be set to 1 on the search made before
5595 * calling this function.
5596 */
5597int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5598			struct btrfs_key *key, int level, u64 min_trans)
5599{
5600	int slot;
5601	struct extent_buffer *c;
5602
5603	WARN_ON(!path->keep_locks);
5604	while (level < BTRFS_MAX_LEVEL) {
5605		if (!path->nodes[level])
5606			return 1;
5607
5608		slot = path->slots[level] + 1;
5609		c = path->nodes[level];
5610next:
5611		if (slot >= btrfs_header_nritems(c)) {
5612			int ret;
5613			int orig_lowest;
5614			struct btrfs_key cur_key;
5615			if (level + 1 >= BTRFS_MAX_LEVEL ||
5616			    !path->nodes[level + 1])
5617				return 1;
5618
5619			if (path->locks[level + 1]) {
5620				level++;
5621				continue;
5622			}
5623
5624			slot = btrfs_header_nritems(c) - 1;
5625			if (level == 0)
5626				btrfs_item_key_to_cpu(c, &cur_key, slot);
5627			else
5628				btrfs_node_key_to_cpu(c, &cur_key, slot);
5629
5630			orig_lowest = path->lowest_level;
5631			btrfs_release_path(path);
5632			path->lowest_level = level;
5633			ret = btrfs_search_slot(NULL, root, &cur_key, path,
5634						0, 0);
5635			path->lowest_level = orig_lowest;
5636			if (ret < 0)
5637				return ret;
5638
5639			c = path->nodes[level];
5640			slot = path->slots[level];
5641			if (ret == 0)
5642				slot++;
5643			goto next;
5644		}
5645
5646		if (level == 0)
5647			btrfs_item_key_to_cpu(c, key, slot);
5648		else {
5649			u64 gen = btrfs_node_ptr_generation(c, slot);
5650
5651			if (gen < min_trans) {
5652				slot++;
5653				goto next;
5654			}
5655			btrfs_node_key_to_cpu(c, key, slot);
5656		}
5657		return 0;
5658	}
5659	return 1;
5660}
5661
5662/*
5663 * search the tree again to find a leaf with greater keys
5664 * returns 0 if it found something or 1 if there are no greater leaves.
5665 * returns < 0 on io errors.
5666 */
5667int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5668{
5669	return btrfs_next_old_leaf(root, path, 0);
5670}
5671
5672int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5673			u64 time_seq)
5674{
5675	int slot;
5676	int level;
5677	struct extent_buffer *c;
5678	struct extent_buffer *next;
 
5679	struct btrfs_key key;
 
5680	u32 nritems;
5681	int ret;
5682	int old_spinning = path->leave_spinning;
5683	int next_rw_lock = 0;
 
 
 
 
 
 
5684
5685	nritems = btrfs_header_nritems(path->nodes[0]);
5686	if (nritems == 0)
5687		return 1;
5688
5689	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5690again:
5691	level = 1;
5692	next = NULL;
5693	next_rw_lock = 0;
5694	btrfs_release_path(path);
5695
5696	path->keep_locks = 1;
5697	path->leave_spinning = 1;
5698
5699	if (time_seq)
5700		ret = btrfs_search_old_slot(root, &key, path, time_seq);
5701	else
 
 
 
 
 
 
 
 
 
 
 
 
5702		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 
5703	path->keep_locks = 0;
5704
5705	if (ret < 0)
5706		return ret;
5707
5708	nritems = btrfs_header_nritems(path->nodes[0]);
5709	/*
5710	 * by releasing the path above we dropped all our locks.  A balance
5711	 * could have added more items next to the key that used to be
5712	 * at the very end of the block.  So, check again here and
5713	 * advance the path if there are now more items available.
5714	 */
5715	if (nritems > 0 && path->slots[0] < nritems - 1) {
5716		if (ret == 0)
5717			path->slots[0]++;
5718		ret = 0;
5719		goto done;
5720	}
5721	/*
5722	 * So the above check misses one case:
5723	 * - after releasing the path above, someone has removed the item that
5724	 *   used to be at the very end of the block, and balance between leafs
5725	 *   gets another one with bigger key.offset to replace it.
5726	 *
5727	 * This one should be returned as well, or we can get leaf corruption
5728	 * later(esp. in __btrfs_drop_extents()).
5729	 *
5730	 * And a bit more explanation about this check,
5731	 * with ret > 0, the key isn't found, the path points to the slot
5732	 * where it should be inserted, so the path->slots[0] item must be the
5733	 * bigger one.
5734	 */
5735	if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
5736		ret = 0;
5737		goto done;
5738	}
5739
5740	while (level < BTRFS_MAX_LEVEL) {
5741		if (!path->nodes[level]) {
5742			ret = 1;
5743			goto done;
5744		}
5745
5746		slot = path->slots[level] + 1;
5747		c = path->nodes[level];
5748		if (slot >= btrfs_header_nritems(c)) {
5749			level++;
5750			if (level == BTRFS_MAX_LEVEL) {
5751				ret = 1;
5752				goto done;
5753			}
5754			continue;
5755		}
5756
5757		if (next) {
5758			btrfs_tree_unlock_rw(next, next_rw_lock);
5759			free_extent_buffer(next);
 
 
 
 
 
 
 
 
 
 
5760		}
5761
5762		next = c;
5763		next_rw_lock = path->locks[level];
5764		ret = read_block_for_search(root, path, &next, level,
5765					    slot, &key);
5766		if (ret == -EAGAIN)
5767			goto again;
5768
5769		if (ret < 0) {
5770			btrfs_release_path(path);
5771			goto done;
5772		}
5773
5774		if (!path->skip_locking) {
5775			ret = btrfs_try_tree_read_lock(next);
 
 
 
 
5776			if (!ret && time_seq) {
5777				/*
5778				 * If we don't get the lock, we may be racing
5779				 * with push_leaf_left, holding that lock while
5780				 * itself waiting for the leaf we've currently
5781				 * locked. To solve this situation, we give up
5782				 * on our lock and cycle.
5783				 */
5784				free_extent_buffer(next);
5785				btrfs_release_path(path);
5786				cond_resched();
5787				goto again;
5788			}
5789			if (!ret) {
5790				btrfs_set_path_blocking(path);
5791				btrfs_tree_read_lock(next);
5792				btrfs_clear_path_blocking(path, next,
5793							  BTRFS_READ_LOCK);
5794			}
5795			next_rw_lock = BTRFS_READ_LOCK;
5796		}
5797		break;
5798	}
5799	path->slots[level] = slot;
5800	while (1) {
5801		level--;
5802		c = path->nodes[level];
5803		if (path->locks[level])
5804			btrfs_tree_unlock_rw(c, path->locks[level]);
5805
5806		free_extent_buffer(c);
5807		path->nodes[level] = next;
5808		path->slots[level] = 0;
5809		if (!path->skip_locking)
5810			path->locks[level] = next_rw_lock;
5811		if (!level)
5812			break;
5813
5814		ret = read_block_for_search(root, path, &next, level,
5815					    0, &key);
5816		if (ret == -EAGAIN)
5817			goto again;
5818
5819		if (ret < 0) {
5820			btrfs_release_path(path);
5821			goto done;
5822		}
5823
5824		if (!path->skip_locking) {
5825			ret = btrfs_try_tree_read_lock(next);
5826			if (!ret) {
5827				btrfs_set_path_blocking(path);
 
 
 
5828				btrfs_tree_read_lock(next);
5829				btrfs_clear_path_blocking(path, next,
5830							  BTRFS_READ_LOCK);
5831			}
5832			next_rw_lock = BTRFS_READ_LOCK;
5833		}
5834	}
5835	ret = 0;
5836done:
5837	unlock_up(path, 0, 1, 0, NULL);
5838	path->leave_spinning = old_spinning;
5839	if (!old_spinning)
5840		btrfs_set_path_blocking(path);
 
 
 
 
 
 
5841
5842	return ret;
5843}
5844
 
 
 
 
 
 
 
 
5845/*
5846 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5847 * searching until it gets past min_objectid or finds an item of 'type'
5848 *
5849 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5850 */
5851int btrfs_previous_item(struct btrfs_root *root,
5852			struct btrfs_path *path, u64 min_objectid,
5853			int type)
5854{
5855	struct btrfs_key found_key;
5856	struct extent_buffer *leaf;
5857	u32 nritems;
5858	int ret;
5859
5860	while (1) {
5861		if (path->slots[0] == 0) {
5862			btrfs_set_path_blocking(path);
5863			ret = btrfs_prev_leaf(root, path);
5864			if (ret != 0)
5865				return ret;
5866		} else {
5867			path->slots[0]--;
5868		}
5869		leaf = path->nodes[0];
5870		nritems = btrfs_header_nritems(leaf);
5871		if (nritems == 0)
5872			return 1;
5873		if (path->slots[0] == nritems)
5874			path->slots[0]--;
5875
5876		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5877		if (found_key.objectid < min_objectid)
5878			break;
5879		if (found_key.type == type)
5880			return 0;
5881		if (found_key.objectid == min_objectid &&
5882		    found_key.type < type)
5883			break;
5884	}
5885	return 1;
5886}
5887
5888/*
5889 * search in extent tree to find a previous Metadata/Data extent item with
5890 * min objecitd.
5891 *
5892 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5893 */
5894int btrfs_previous_extent_item(struct btrfs_root *root,
5895			struct btrfs_path *path, u64 min_objectid)
5896{
5897	struct btrfs_key found_key;
5898	struct extent_buffer *leaf;
5899	u32 nritems;
5900	int ret;
5901
5902	while (1) {
5903		if (path->slots[0] == 0) {
5904			btrfs_set_path_blocking(path);
5905			ret = btrfs_prev_leaf(root, path);
5906			if (ret != 0)
5907				return ret;
5908		} else {
5909			path->slots[0]--;
5910		}
5911		leaf = path->nodes[0];
5912		nritems = btrfs_header_nritems(leaf);
5913		if (nritems == 0)
5914			return 1;
5915		if (path->slots[0] == nritems)
5916			path->slots[0]--;
5917
5918		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5919		if (found_key.objectid < min_objectid)
5920			break;
5921		if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5922		    found_key.type == BTRFS_METADATA_ITEM_KEY)
5923			return 0;
5924		if (found_key.objectid == min_objectid &&
5925		    found_key.type < BTRFS_EXTENT_ITEM_KEY)
5926			break;
5927	}
5928	return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5929}