Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3  A FORE Systems 200E-series driver for ATM on Linux.
   4  Christophe Lizzi (lizzi@cnam.fr), October 1999-March 2003.
   5
   6  Based on the PCA-200E driver from Uwe Dannowski (Uwe.Dannowski@inf.tu-dresden.de).
   7
   8  This driver simultaneously supports PCA-200E and SBA-200E adapters
   9  on i386, alpha (untested), powerpc, sparc and sparc64 architectures.
  10
  11*/
  12
  13
  14#include <linux/kernel.h>
  15#include <linux/slab.h>
  16#include <linux/init.h>
  17#include <linux/capability.h>
  18#include <linux/interrupt.h>
  19#include <linux/bitops.h>
  20#include <linux/pci.h>
  21#include <linux/module.h>
  22#include <linux/atmdev.h>
  23#include <linux/sonet.h>
  24#include <linux/dma-mapping.h>
  25#include <linux/delay.h>
  26#include <linux/firmware.h>
  27#include <linux/pgtable.h>
  28#include <asm/io.h>
  29#include <asm/string.h>
  30#include <asm/page.h>
  31#include <asm/irq.h>
  32#include <asm/dma.h>
  33#include <asm/byteorder.h>
  34#include <linux/uaccess.h>
  35#include <linux/atomic.h>
  36
  37#ifdef CONFIG_SBUS
  38#include <linux/of.h>
  39#include <linux/of_device.h>
  40#include <asm/idprom.h>
  41#include <asm/openprom.h>
  42#include <asm/oplib.h>
  43#endif
  44
  45#if defined(CONFIG_ATM_FORE200E_USE_TASKLET) /* defer interrupt work to a tasklet */
  46#define FORE200E_USE_TASKLET
  47#endif
  48
  49#if 0 /* enable the debugging code of the buffer supply queues */
  50#define FORE200E_BSQ_DEBUG
  51#endif
  52
  53#if 1 /* ensure correct handling of 52-byte AAL0 SDUs expected by atmdump-like apps */
  54#define FORE200E_52BYTE_AAL0_SDU
  55#endif
  56
  57#include "fore200e.h"
  58#include "suni.h"
  59
  60#define FORE200E_VERSION "0.3e"
  61
  62#define FORE200E         "fore200e: "
  63
  64#if 0 /* override .config */
  65#define CONFIG_ATM_FORE200E_DEBUG 1
  66#endif
  67#if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0)
  68#define DPRINTK(level, format, args...)  do { if (CONFIG_ATM_FORE200E_DEBUG >= (level)) \
  69                                                  printk(FORE200E format, ##args); } while (0)
  70#else
  71#define DPRINTK(level, format, args...)  do {} while (0)
  72#endif
  73
  74
  75#define FORE200E_ALIGN(addr, alignment) \
  76        ((((unsigned long)(addr) + (alignment - 1)) & ~(alignment - 1)) - (unsigned long)(addr))
  77
  78#define FORE200E_DMA_INDEX(dma_addr, type, index)  ((dma_addr) + (index) * sizeof(type))
  79
  80#define FORE200E_INDEX(virt_addr, type, index)     (&((type *)(virt_addr))[ index ])
  81
  82#define FORE200E_NEXT_ENTRY(index, modulo)         (index = ((index) + 1) % (modulo))
  83
  84#if 1
  85#define ASSERT(expr)     if (!(expr)) { \
  86			     printk(FORE200E "assertion failed! %s[%d]: %s\n", \
  87				    __func__, __LINE__, #expr); \
  88			     panic(FORE200E "%s", __func__); \
  89			 }
  90#else
  91#define ASSERT(expr)     do {} while (0)
  92#endif
  93
  94
  95static const struct atmdev_ops   fore200e_ops;
  96
  97static LIST_HEAD(fore200e_boards);
  98
  99
 100MODULE_AUTHOR("Christophe Lizzi - credits to Uwe Dannowski and Heikki Vatiainen");
 101MODULE_DESCRIPTION("FORE Systems 200E-series ATM driver - version " FORE200E_VERSION);
 102
 103static const int fore200e_rx_buf_nbr[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = {
 104    { BUFFER_S1_NBR, BUFFER_L1_NBR },
 105    { BUFFER_S2_NBR, BUFFER_L2_NBR }
 106};
 107
 108static const int fore200e_rx_buf_size[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = {
 109    { BUFFER_S1_SIZE, BUFFER_L1_SIZE },
 110    { BUFFER_S2_SIZE, BUFFER_L2_SIZE }
 111};
 112
 113
 114#if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0)
 115static const char* fore200e_traffic_class[] = { "NONE", "UBR", "CBR", "VBR", "ABR", "ANY" };
 116#endif
 117
 118
 119#if 0 /* currently unused */
 120static int 
 121fore200e_fore2atm_aal(enum fore200e_aal aal)
 122{
 123    switch(aal) {
 124    case FORE200E_AAL0:  return ATM_AAL0;
 125    case FORE200E_AAL34: return ATM_AAL34;
 126    case FORE200E_AAL5:  return ATM_AAL5;
 127    }
 128
 129    return -EINVAL;
 130}
 131#endif
 132
 133
 134static enum fore200e_aal
 135fore200e_atm2fore_aal(int aal)
 136{
 137    switch(aal) {
 138    case ATM_AAL0:  return FORE200E_AAL0;
 139    case ATM_AAL34: return FORE200E_AAL34;
 140    case ATM_AAL1:
 141    case ATM_AAL2:
 142    case ATM_AAL5:  return FORE200E_AAL5;
 143    }
 144
 145    return -EINVAL;
 146}
 147
 148
 149static char*
 150fore200e_irq_itoa(int irq)
 151{
 152    static char str[8];
 153    sprintf(str, "%d", irq);
 154    return str;
 155}
 156
 157
 158/* allocate and align a chunk of memory intended to hold the data behing exchanged
 159   between the driver and the adapter (using streaming DVMA) */
 160
 161static int
 162fore200e_chunk_alloc(struct fore200e* fore200e, struct chunk* chunk, int size, int alignment, int direction)
 163{
 164    unsigned long offset = 0;
 165
 166    if (alignment <= sizeof(int))
 167	alignment = 0;
 168
 169    chunk->alloc_size = size + alignment;
 170    chunk->direction  = direction;
 171
 172    chunk->alloc_addr = kzalloc(chunk->alloc_size, GFP_KERNEL);
 173    if (chunk->alloc_addr == NULL)
 174	return -ENOMEM;
 175
 176    if (alignment > 0)
 177	offset = FORE200E_ALIGN(chunk->alloc_addr, alignment); 
 178    
 179    chunk->align_addr = chunk->alloc_addr + offset;
 180
 181    chunk->dma_addr = dma_map_single(fore200e->dev, chunk->align_addr,
 182				     size, direction);
 183    if (dma_mapping_error(fore200e->dev, chunk->dma_addr)) {
 184	kfree(chunk->alloc_addr);
 185	return -ENOMEM;
 186    }
 187    return 0;
 188}
 189
 190
 191/* free a chunk of memory */
 192
 193static void
 194fore200e_chunk_free(struct fore200e* fore200e, struct chunk* chunk)
 195{
 196    dma_unmap_single(fore200e->dev, chunk->dma_addr, chunk->dma_size,
 197		     chunk->direction);
 198    kfree(chunk->alloc_addr);
 199}
 200
 201/*
 202 * Allocate a DMA consistent chunk of memory intended to act as a communication
 203 * mechanism (to hold descriptors, status, queues, etc.) shared by the driver
 204 * and the adapter.
 205 */
 206static int
 207fore200e_dma_chunk_alloc(struct fore200e *fore200e, struct chunk *chunk,
 208		int size, int nbr, int alignment)
 209{
 210	/* returned chunks are page-aligned */
 211	chunk->alloc_size = size * nbr;
 212	chunk->alloc_addr = dma_alloc_coherent(fore200e->dev, chunk->alloc_size,
 213					       &chunk->dma_addr, GFP_KERNEL);
 214	if (!chunk->alloc_addr)
 215		return -ENOMEM;
 216	chunk->align_addr = chunk->alloc_addr;
 217	return 0;
 218}
 219
 220/*
 221 * Free a DMA consistent chunk of memory.
 222 */
 223static void
 224fore200e_dma_chunk_free(struct fore200e* fore200e, struct chunk* chunk)
 225{
 226	dma_free_coherent(fore200e->dev, chunk->alloc_size, chunk->alloc_addr,
 227			  chunk->dma_addr);
 228}
 229
 230static void
 231fore200e_spin(int msecs)
 232{
 233    unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
 234    while (time_before(jiffies, timeout));
 235}
 236
 237
 238static int
 239fore200e_poll(struct fore200e* fore200e, volatile u32* addr, u32 val, int msecs)
 240{
 241    unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
 242    int           ok;
 243
 244    mb();
 245    do {
 246	if ((ok = (*addr == val)) || (*addr & STATUS_ERROR))
 247	    break;
 248
 249    } while (time_before(jiffies, timeout));
 250
 251#if 1
 252    if (!ok) {
 253	printk(FORE200E "cmd polling failed, got status 0x%08x, expected 0x%08x\n",
 254	       *addr, val);
 255    }
 256#endif
 257
 258    return ok;
 259}
 260
 261
 262static int
 263fore200e_io_poll(struct fore200e* fore200e, volatile u32 __iomem *addr, u32 val, int msecs)
 264{
 265    unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
 266    int           ok;
 267
 268    do {
 269	if ((ok = (fore200e->bus->read(addr) == val)))
 270	    break;
 271
 272    } while (time_before(jiffies, timeout));
 273
 274#if 1
 275    if (!ok) {
 276	printk(FORE200E "I/O polling failed, got status 0x%08x, expected 0x%08x\n",
 277	       fore200e->bus->read(addr), val);
 278    }
 279#endif
 280
 281    return ok;
 282}
 283
 284
 285static void
 286fore200e_free_rx_buf(struct fore200e* fore200e)
 287{
 288    int scheme, magn, nbr;
 289    struct buffer* buffer;
 290
 291    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
 292	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
 293
 294	    if ((buffer = fore200e->host_bsq[ scheme ][ magn ].buffer) != NULL) {
 295
 296		for (nbr = 0; nbr < fore200e_rx_buf_nbr[ scheme ][ magn ]; nbr++) {
 297
 298		    struct chunk* data = &buffer[ nbr ].data;
 299
 300		    if (data->alloc_addr != NULL)
 301			fore200e_chunk_free(fore200e, data);
 302		}
 303	    }
 304	}
 305    }
 306}
 307
 308
 309static void
 310fore200e_uninit_bs_queue(struct fore200e* fore200e)
 311{
 312    int scheme, magn;
 313    
 314    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
 315	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
 316
 317	    struct chunk* status    = &fore200e->host_bsq[ scheme ][ magn ].status;
 318	    struct chunk* rbd_block = &fore200e->host_bsq[ scheme ][ magn ].rbd_block;
 319	    
 320	    if (status->alloc_addr)
 321		fore200e_dma_chunk_free(fore200e, status);
 322	    
 323	    if (rbd_block->alloc_addr)
 324		fore200e_dma_chunk_free(fore200e, rbd_block);
 325	}
 326    }
 327}
 328
 329
 330static int
 331fore200e_reset(struct fore200e* fore200e, int diag)
 332{
 333    int ok;
 334
 335    fore200e->cp_monitor = fore200e->virt_base + FORE200E_CP_MONITOR_OFFSET;
 336    
 337    fore200e->bus->write(BSTAT_COLD_START, &fore200e->cp_monitor->bstat);
 338
 339    fore200e->bus->reset(fore200e);
 340
 341    if (diag) {
 342	ok = fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_SELFTEST_OK, 1000);
 343	if (ok == 0) {
 344	    
 345	    printk(FORE200E "device %s self-test failed\n", fore200e->name);
 346	    return -ENODEV;
 347	}
 348
 349	printk(FORE200E "device %s self-test passed\n", fore200e->name);
 350	
 351	fore200e->state = FORE200E_STATE_RESET;
 352    }
 353
 354    return 0;
 355}
 356
 357
 358static void
 359fore200e_shutdown(struct fore200e* fore200e)
 360{
 361    printk(FORE200E "removing device %s at 0x%lx, IRQ %s\n",
 362	   fore200e->name, fore200e->phys_base, 
 363	   fore200e_irq_itoa(fore200e->irq));
 364    
 365    if (fore200e->state > FORE200E_STATE_RESET) {
 366	/* first, reset the board to prevent further interrupts or data transfers */
 367	fore200e_reset(fore200e, 0);
 368    }
 369    
 370    /* then, release all allocated resources */
 371    switch(fore200e->state) {
 372
 373    case FORE200E_STATE_COMPLETE:
 374	kfree(fore200e->stats);
 375
 376	fallthrough;
 377    case FORE200E_STATE_IRQ:
 378	free_irq(fore200e->irq, fore200e->atm_dev);
 379
 380	fallthrough;
 381    case FORE200E_STATE_ALLOC_BUF:
 382	fore200e_free_rx_buf(fore200e);
 383
 384	fallthrough;
 385    case FORE200E_STATE_INIT_BSQ:
 386	fore200e_uninit_bs_queue(fore200e);
 387
 388	fallthrough;
 389    case FORE200E_STATE_INIT_RXQ:
 390	fore200e_dma_chunk_free(fore200e, &fore200e->host_rxq.status);
 391	fore200e_dma_chunk_free(fore200e, &fore200e->host_rxq.rpd);
 392
 393	fallthrough;
 394    case FORE200E_STATE_INIT_TXQ:
 395	fore200e_dma_chunk_free(fore200e, &fore200e->host_txq.status);
 396	fore200e_dma_chunk_free(fore200e, &fore200e->host_txq.tpd);
 397
 398	fallthrough;
 399    case FORE200E_STATE_INIT_CMDQ:
 400	fore200e_dma_chunk_free(fore200e, &fore200e->host_cmdq.status);
 401
 402	fallthrough;
 403    case FORE200E_STATE_INITIALIZE:
 404	/* nothing to do for that state */
 405
 406    case FORE200E_STATE_START_FW:
 407	/* nothing to do for that state */
 408
 409    case FORE200E_STATE_RESET:
 410	/* nothing to do for that state */
 411
 412    case FORE200E_STATE_MAP:
 413	fore200e->bus->unmap(fore200e);
 414
 415	fallthrough;
 416    case FORE200E_STATE_CONFIGURE:
 417	/* nothing to do for that state */
 418
 419    case FORE200E_STATE_REGISTER:
 420	/* XXX shouldn't we *start* by deregistering the device? */
 421	atm_dev_deregister(fore200e->atm_dev);
 422
 423	fallthrough;
 424    case FORE200E_STATE_BLANK:
 425	/* nothing to do for that state */
 426	break;
 427    }
 428}
 429
 430
 431#ifdef CONFIG_PCI
 432
 433static u32 fore200e_pca_read(volatile u32 __iomem *addr)
 434{
 435    /* on big-endian hosts, the board is configured to convert
 436       the endianess of slave RAM accesses  */
 437    return le32_to_cpu(readl(addr));
 438}
 439
 440
 441static void fore200e_pca_write(u32 val, volatile u32 __iomem *addr)
 442{
 443    /* on big-endian hosts, the board is configured to convert
 444       the endianess of slave RAM accesses  */
 445    writel(cpu_to_le32(val), addr);
 446}
 447
 448static int
 449fore200e_pca_irq_check(struct fore200e* fore200e)
 450{
 451    /* this is a 1 bit register */
 452    int irq_posted = readl(fore200e->regs.pca.psr);
 453
 454#if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG == 2)
 455    if (irq_posted && (readl(fore200e->regs.pca.hcr) & PCA200E_HCR_OUTFULL)) {
 456	DPRINTK(2,"FIFO OUT full, device %d\n", fore200e->atm_dev->number);
 457    }
 458#endif
 459
 460    return irq_posted;
 461}
 462
 463
 464static void
 465fore200e_pca_irq_ack(struct fore200e* fore200e)
 466{
 467    writel(PCA200E_HCR_CLRINTR, fore200e->regs.pca.hcr);
 468}
 469
 470
 471static void
 472fore200e_pca_reset(struct fore200e* fore200e)
 473{
 474    writel(PCA200E_HCR_RESET, fore200e->regs.pca.hcr);
 475    fore200e_spin(10);
 476    writel(0, fore200e->regs.pca.hcr);
 477}
 478
 479
 480static int fore200e_pca_map(struct fore200e* fore200e)
 481{
 482    DPRINTK(2, "device %s being mapped in memory\n", fore200e->name);
 483
 484    fore200e->virt_base = ioremap(fore200e->phys_base, PCA200E_IOSPACE_LENGTH);
 485    
 486    if (fore200e->virt_base == NULL) {
 487	printk(FORE200E "can't map device %s\n", fore200e->name);
 488	return -EFAULT;
 489    }
 490
 491    DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base);
 492
 493    /* gain access to the PCA specific registers  */
 494    fore200e->regs.pca.hcr = fore200e->virt_base + PCA200E_HCR_OFFSET;
 495    fore200e->regs.pca.imr = fore200e->virt_base + PCA200E_IMR_OFFSET;
 496    fore200e->regs.pca.psr = fore200e->virt_base + PCA200E_PSR_OFFSET;
 497
 498    fore200e->state = FORE200E_STATE_MAP;
 499    return 0;
 500}
 501
 502
 503static void
 504fore200e_pca_unmap(struct fore200e* fore200e)
 505{
 506    DPRINTK(2, "device %s being unmapped from memory\n", fore200e->name);
 507
 508    if (fore200e->virt_base != NULL)
 509	iounmap(fore200e->virt_base);
 510}
 511
 512
 513static int fore200e_pca_configure(struct fore200e *fore200e)
 514{
 515    struct pci_dev *pci_dev = to_pci_dev(fore200e->dev);
 516    u8              master_ctrl, latency;
 517
 518    DPRINTK(2, "device %s being configured\n", fore200e->name);
 519
 520    if ((pci_dev->irq == 0) || (pci_dev->irq == 0xFF)) {
 521	printk(FORE200E "incorrect IRQ setting - misconfigured PCI-PCI bridge?\n");
 522	return -EIO;
 523    }
 524
 525    pci_read_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, &master_ctrl);
 526
 527    master_ctrl = master_ctrl
 528#if defined(__BIG_ENDIAN)
 529	/* request the PCA board to convert the endianess of slave RAM accesses */
 530	| PCA200E_CTRL_CONVERT_ENDIAN
 531#endif
 532#if 0
 533        | PCA200E_CTRL_DIS_CACHE_RD
 534        | PCA200E_CTRL_DIS_WRT_INVAL
 535        | PCA200E_CTRL_ENA_CONT_REQ_MODE
 536        | PCA200E_CTRL_2_CACHE_WRT_INVAL
 537#endif
 538	| PCA200E_CTRL_LARGE_PCI_BURSTS;
 539    
 540    pci_write_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, master_ctrl);
 541
 542    /* raise latency from 32 (default) to 192, as this seems to prevent NIC
 543       lockups (under heavy rx loads) due to continuous 'FIFO OUT full' condition.
 544       this may impact the performances of other PCI devices on the same bus, though */
 545    latency = 192;
 546    pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, latency);
 547
 548    fore200e->state = FORE200E_STATE_CONFIGURE;
 549    return 0;
 550}
 551
 552
 553static int __init
 554fore200e_pca_prom_read(struct fore200e* fore200e, struct prom_data* prom)
 555{
 556    struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
 557    struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
 558    struct prom_opcode      opcode;
 559    int                     ok;
 560    u32                     prom_dma;
 561
 562    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
 563
 564    opcode.opcode = OPCODE_GET_PROM;
 565    opcode.pad    = 0;
 566
 567    prom_dma = dma_map_single(fore200e->dev, prom, sizeof(struct prom_data),
 568			      DMA_FROM_DEVICE);
 569    if (dma_mapping_error(fore200e->dev, prom_dma))
 570	return -ENOMEM;
 571
 572    fore200e->bus->write(prom_dma, &entry->cp_entry->cmd.prom_block.prom_haddr);
 573    
 574    *entry->status = STATUS_PENDING;
 575
 576    fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.prom_block.opcode);
 577
 578    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
 579
 580    *entry->status = STATUS_FREE;
 581
 582    dma_unmap_single(fore200e->dev, prom_dma, sizeof(struct prom_data), DMA_FROM_DEVICE);
 583
 584    if (ok == 0) {
 585	printk(FORE200E "unable to get PROM data from device %s\n", fore200e->name);
 586	return -EIO;
 587    }
 588
 589#if defined(__BIG_ENDIAN)
 590    
 591#define swap_here(addr) (*((u32*)(addr)) = swab32( *((u32*)(addr)) ))
 592
 593    /* MAC address is stored as little-endian */
 594    swap_here(&prom->mac_addr[0]);
 595    swap_here(&prom->mac_addr[4]);
 596#endif
 597    
 598    return 0;
 599}
 600
 601
 602static int
 603fore200e_pca_proc_read(struct fore200e* fore200e, char *page)
 604{
 605    struct pci_dev *pci_dev = to_pci_dev(fore200e->dev);
 606
 607    return sprintf(page, "   PCI bus/slot/function:\t%d/%d/%d\n",
 608		   pci_dev->bus->number, PCI_SLOT(pci_dev->devfn), PCI_FUNC(pci_dev->devfn));
 609}
 610
 611static const struct fore200e_bus fore200e_pci_ops = {
 612	.model_name		= "PCA-200E",
 613	.proc_name		= "pca200e",
 614	.descr_alignment	= 32,
 615	.buffer_alignment	= 4,
 616	.status_alignment	= 32,
 617	.read			= fore200e_pca_read,
 618	.write			= fore200e_pca_write,
 619	.configure		= fore200e_pca_configure,
 620	.map			= fore200e_pca_map,
 621	.reset			= fore200e_pca_reset,
 622	.prom_read		= fore200e_pca_prom_read,
 623	.unmap			= fore200e_pca_unmap,
 624	.irq_check		= fore200e_pca_irq_check,
 625	.irq_ack		= fore200e_pca_irq_ack,
 626	.proc_read		= fore200e_pca_proc_read,
 627};
 628#endif /* CONFIG_PCI */
 629
 630#ifdef CONFIG_SBUS
 631
 632static u32 fore200e_sba_read(volatile u32 __iomem *addr)
 633{
 634    return sbus_readl(addr);
 635}
 636
 637static void fore200e_sba_write(u32 val, volatile u32 __iomem *addr)
 638{
 639    sbus_writel(val, addr);
 640}
 641
 642static void fore200e_sba_irq_enable(struct fore200e *fore200e)
 643{
 644	u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY;
 645	fore200e->bus->write(hcr | SBA200E_HCR_INTR_ENA, fore200e->regs.sba.hcr);
 646}
 647
 648static int fore200e_sba_irq_check(struct fore200e *fore200e)
 649{
 650	return fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_INTR_REQ;
 651}
 652
 653static void fore200e_sba_irq_ack(struct fore200e *fore200e)
 654{
 655	u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY;
 656	fore200e->bus->write(hcr | SBA200E_HCR_INTR_CLR, fore200e->regs.sba.hcr);
 657}
 658
 659static void fore200e_sba_reset(struct fore200e *fore200e)
 660{
 661	fore200e->bus->write(SBA200E_HCR_RESET, fore200e->regs.sba.hcr);
 662	fore200e_spin(10);
 663	fore200e->bus->write(0, fore200e->regs.sba.hcr);
 664}
 665
 666static int __init fore200e_sba_map(struct fore200e *fore200e)
 667{
 668	struct platform_device *op = to_platform_device(fore200e->dev);
 669	unsigned int bursts;
 670
 671	/* gain access to the SBA specific registers  */
 672	fore200e->regs.sba.hcr = of_ioremap(&op->resource[0], 0, SBA200E_HCR_LENGTH, "SBA HCR");
 673	fore200e->regs.sba.bsr = of_ioremap(&op->resource[1], 0, SBA200E_BSR_LENGTH, "SBA BSR");
 674	fore200e->regs.sba.isr = of_ioremap(&op->resource[2], 0, SBA200E_ISR_LENGTH, "SBA ISR");
 675	fore200e->virt_base    = of_ioremap(&op->resource[3], 0, SBA200E_RAM_LENGTH, "SBA RAM");
 676
 677	if (!fore200e->virt_base) {
 678		printk(FORE200E "unable to map RAM of device %s\n", fore200e->name);
 679		return -EFAULT;
 680	}
 681
 682	DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base);
 683    
 684	fore200e->bus->write(0x02, fore200e->regs.sba.isr); /* XXX hardwired interrupt level */
 685
 686	/* get the supported DVMA burst sizes */
 687	bursts = of_getintprop_default(op->dev.of_node->parent, "burst-sizes", 0x00);
 688
 689	if (sbus_can_dma_64bit())
 690		sbus_set_sbus64(&op->dev, bursts);
 691
 692	fore200e->state = FORE200E_STATE_MAP;
 693	return 0;
 694}
 695
 696static void fore200e_sba_unmap(struct fore200e *fore200e)
 697{
 698	struct platform_device *op = to_platform_device(fore200e->dev);
 699
 700	of_iounmap(&op->resource[0], fore200e->regs.sba.hcr, SBA200E_HCR_LENGTH);
 701	of_iounmap(&op->resource[1], fore200e->regs.sba.bsr, SBA200E_BSR_LENGTH);
 702	of_iounmap(&op->resource[2], fore200e->regs.sba.isr, SBA200E_ISR_LENGTH);
 703	of_iounmap(&op->resource[3], fore200e->virt_base,    SBA200E_RAM_LENGTH);
 704}
 705
 706static int __init fore200e_sba_configure(struct fore200e *fore200e)
 707{
 708	fore200e->state = FORE200E_STATE_CONFIGURE;
 709	return 0;
 710}
 711
 712static int __init fore200e_sba_prom_read(struct fore200e *fore200e, struct prom_data *prom)
 713{
 714	struct platform_device *op = to_platform_device(fore200e->dev);
 715	const u8 *prop;
 716	int len;
 717
 718	prop = of_get_property(op->dev.of_node, "madaddrlo2", &len);
 719	if (!prop)
 720		return -ENODEV;
 721	memcpy(&prom->mac_addr[4], prop, 4);
 722
 723	prop = of_get_property(op->dev.of_node, "madaddrhi4", &len);
 724	if (!prop)
 725		return -ENODEV;
 726	memcpy(&prom->mac_addr[2], prop, 4);
 727
 728	prom->serial_number = of_getintprop_default(op->dev.of_node,
 729						    "serialnumber", 0);
 730	prom->hw_revision = of_getintprop_default(op->dev.of_node,
 731						  "promversion", 0);
 732    
 733	return 0;
 734}
 735
 736static int fore200e_sba_proc_read(struct fore200e *fore200e, char *page)
 737{
 738	struct platform_device *op = to_platform_device(fore200e->dev);
 739	const struct linux_prom_registers *regs;
 740
 741	regs = of_get_property(op->dev.of_node, "reg", NULL);
 742
 743	return sprintf(page, "   SBUS slot/device:\t\t%d/'%pOFn'\n",
 744		       (regs ? regs->which_io : 0), op->dev.of_node);
 745}
 746
 747static const struct fore200e_bus fore200e_sbus_ops = {
 748	.model_name		= "SBA-200E",
 749	.proc_name		= "sba200e",
 750	.descr_alignment	= 32,
 751	.buffer_alignment	= 64,
 752	.status_alignment	= 32,
 753	.read			= fore200e_sba_read,
 754	.write			= fore200e_sba_write,
 755	.configure		= fore200e_sba_configure,
 756	.map			= fore200e_sba_map,
 757	.reset			= fore200e_sba_reset,
 758	.prom_read		= fore200e_sba_prom_read,
 759	.unmap			= fore200e_sba_unmap,
 760	.irq_enable		= fore200e_sba_irq_enable,
 761	.irq_check		= fore200e_sba_irq_check,
 762	.irq_ack		= fore200e_sba_irq_ack,
 763	.proc_read		= fore200e_sba_proc_read,
 764};
 765#endif /* CONFIG_SBUS */
 766
 767static void
 768fore200e_tx_irq(struct fore200e* fore200e)
 769{
 770    struct host_txq*        txq = &fore200e->host_txq;
 771    struct host_txq_entry*  entry;
 772    struct atm_vcc*         vcc;
 773    struct fore200e_vc_map* vc_map;
 774
 775    if (fore200e->host_txq.txing == 0)
 776	return;
 777
 778    for (;;) {
 779	
 780	entry = &txq->host_entry[ txq->tail ];
 781
 782        if ((*entry->status & STATUS_COMPLETE) == 0) {
 783	    break;
 784	}
 785
 786	DPRINTK(3, "TX COMPLETED: entry = %p [tail = %d], vc_map = %p, skb = %p\n", 
 787		entry, txq->tail, entry->vc_map, entry->skb);
 788
 789	/* free copy of misaligned data */
 790	kfree(entry->data);
 791	
 792	/* remove DMA mapping */
 793	dma_unmap_single(fore200e->dev, entry->tpd->tsd[ 0 ].buffer, entry->tpd->tsd[ 0 ].length,
 794				 DMA_TO_DEVICE);
 795
 796	vc_map = entry->vc_map;
 797
 798	/* vcc closed since the time the entry was submitted for tx? */
 799	if ((vc_map->vcc == NULL) ||
 800	    (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) {
 801
 802	    DPRINTK(1, "no ready vcc found for PDU sent on device %d\n",
 803		    fore200e->atm_dev->number);
 804
 805	    dev_kfree_skb_any(entry->skb);
 806	}
 807	else {
 808	    ASSERT(vc_map->vcc);
 809
 810	    /* vcc closed then immediately re-opened? */
 811	    if (vc_map->incarn != entry->incarn) {
 812
 813		/* when a vcc is closed, some PDUs may be still pending in the tx queue.
 814		   if the same vcc is immediately re-opened, those pending PDUs must
 815		   not be popped after the completion of their emission, as they refer
 816		   to the prior incarnation of that vcc. otherwise, sk_atm(vcc)->sk_wmem_alloc
 817		   would be decremented by the size of the (unrelated) skb, possibly
 818		   leading to a negative sk->sk_wmem_alloc count, ultimately freezing the vcc.
 819		   we thus bind the tx entry to the current incarnation of the vcc
 820		   when the entry is submitted for tx. When the tx later completes,
 821		   if the incarnation number of the tx entry does not match the one
 822		   of the vcc, then this implies that the vcc has been closed then re-opened.
 823		   we thus just drop the skb here. */
 824
 825		DPRINTK(1, "vcc closed-then-re-opened; dropping PDU sent on device %d\n",
 826			fore200e->atm_dev->number);
 827
 828		dev_kfree_skb_any(entry->skb);
 829	    }
 830	    else {
 831		vcc = vc_map->vcc;
 832		ASSERT(vcc);
 833
 834		/* notify tx completion */
 835		if (vcc->pop) {
 836		    vcc->pop(vcc, entry->skb);
 837		}
 838		else {
 839		    dev_kfree_skb_any(entry->skb);
 840		}
 841
 842		/* check error condition */
 843		if (*entry->status & STATUS_ERROR)
 844		    atomic_inc(&vcc->stats->tx_err);
 845		else
 846		    atomic_inc(&vcc->stats->tx);
 847	    }
 848	}
 849
 850	*entry->status = STATUS_FREE;
 851
 852	fore200e->host_txq.txing--;
 853
 854	FORE200E_NEXT_ENTRY(txq->tail, QUEUE_SIZE_TX);
 855    }
 856}
 857
 858
 859#ifdef FORE200E_BSQ_DEBUG
 860int bsq_audit(int where, struct host_bsq* bsq, int scheme, int magn)
 861{
 862    struct buffer* buffer;
 863    int count = 0;
 864
 865    buffer = bsq->freebuf;
 866    while (buffer) {
 867
 868	if (buffer->supplied) {
 869	    printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld supplied but in free list!\n",
 870		   where, scheme, magn, buffer->index);
 871	}
 872
 873	if (buffer->magn != magn) {
 874	    printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected magn = %d\n",
 875		   where, scheme, magn, buffer->index, buffer->magn);
 876	}
 877
 878	if (buffer->scheme != scheme) {
 879	    printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected scheme = %d\n",
 880		   where, scheme, magn, buffer->index, buffer->scheme);
 881	}
 882
 883	if ((buffer->index < 0) || (buffer->index >= fore200e_rx_buf_nbr[ scheme ][ magn ])) {
 884	    printk(FORE200E "bsq_audit(%d): queue %d.%d, out of range buffer index = %ld !\n",
 885		   where, scheme, magn, buffer->index);
 886	}
 887
 888	count++;
 889	buffer = buffer->next;
 890    }
 891
 892    if (count != bsq->freebuf_count) {
 893	printk(FORE200E "bsq_audit(%d): queue %d.%d, %d bufs in free list, but freebuf_count = %d\n",
 894	       where, scheme, magn, count, bsq->freebuf_count);
 895    }
 896    return 0;
 897}
 898#endif
 899
 900
 901static void
 902fore200e_supply(struct fore200e* fore200e)
 903{
 904    int  scheme, magn, i;
 905
 906    struct host_bsq*       bsq;
 907    struct host_bsq_entry* entry;
 908    struct buffer*         buffer;
 909
 910    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
 911	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
 912
 913	    bsq = &fore200e->host_bsq[ scheme ][ magn ];
 914
 915#ifdef FORE200E_BSQ_DEBUG
 916	    bsq_audit(1, bsq, scheme, magn);
 917#endif
 918	    while (bsq->freebuf_count >= RBD_BLK_SIZE) {
 919
 920		DPRINTK(2, "supplying %d rx buffers to queue %d / %d, freebuf_count = %d\n",
 921			RBD_BLK_SIZE, scheme, magn, bsq->freebuf_count);
 922
 923		entry = &bsq->host_entry[ bsq->head ];
 924
 925		for (i = 0; i < RBD_BLK_SIZE; i++) {
 926
 927		    /* take the first buffer in the free buffer list */
 928		    buffer = bsq->freebuf;
 929		    if (!buffer) {
 930			printk(FORE200E "no more free bufs in queue %d.%d, but freebuf_count = %d\n",
 931			       scheme, magn, bsq->freebuf_count);
 932			return;
 933		    }
 934		    bsq->freebuf = buffer->next;
 935		    
 936#ifdef FORE200E_BSQ_DEBUG
 937		    if (buffer->supplied)
 938			printk(FORE200E "queue %d.%d, buffer %lu already supplied\n",
 939			       scheme, magn, buffer->index);
 940		    buffer->supplied = 1;
 941#endif
 942		    entry->rbd_block->rbd[ i ].buffer_haddr = buffer->data.dma_addr;
 943		    entry->rbd_block->rbd[ i ].handle       = FORE200E_BUF2HDL(buffer);
 944		}
 945
 946		FORE200E_NEXT_ENTRY(bsq->head, QUEUE_SIZE_BS);
 947
 948 		/* decrease accordingly the number of free rx buffers */
 949		bsq->freebuf_count -= RBD_BLK_SIZE;
 950
 951		*entry->status = STATUS_PENDING;
 952		fore200e->bus->write(entry->rbd_block_dma, &entry->cp_entry->rbd_block_haddr);
 953	    }
 954	}
 955    }
 956}
 957
 958
 959static int
 960fore200e_push_rpd(struct fore200e* fore200e, struct atm_vcc* vcc, struct rpd* rpd)
 961{
 962    struct sk_buff*      skb;
 963    struct buffer*       buffer;
 964    struct fore200e_vcc* fore200e_vcc;
 965    int                  i, pdu_len = 0;
 966#ifdef FORE200E_52BYTE_AAL0_SDU
 967    u32                  cell_header = 0;
 968#endif
 969
 970    ASSERT(vcc);
 971    
 972    fore200e_vcc = FORE200E_VCC(vcc);
 973    ASSERT(fore200e_vcc);
 974
 975#ifdef FORE200E_52BYTE_AAL0_SDU
 976    if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.rxtp.max_sdu == ATM_AAL0_SDU)) {
 977
 978	cell_header = (rpd->atm_header.gfc << ATM_HDR_GFC_SHIFT) |
 979	              (rpd->atm_header.vpi << ATM_HDR_VPI_SHIFT) |
 980                      (rpd->atm_header.vci << ATM_HDR_VCI_SHIFT) |
 981                      (rpd->atm_header.plt << ATM_HDR_PTI_SHIFT) | 
 982                       rpd->atm_header.clp;
 983	pdu_len = 4;
 984    }
 985#endif
 986    
 987    /* compute total PDU length */
 988    for (i = 0; i < rpd->nseg; i++)
 989	pdu_len += rpd->rsd[ i ].length;
 990    
 991    skb = alloc_skb(pdu_len, GFP_ATOMIC);
 992    if (skb == NULL) {
 993	DPRINTK(2, "unable to alloc new skb, rx PDU length = %d\n", pdu_len);
 994
 995	atomic_inc(&vcc->stats->rx_drop);
 996	return -ENOMEM;
 997    } 
 998
 999    __net_timestamp(skb);
1000    
1001#ifdef FORE200E_52BYTE_AAL0_SDU
1002    if (cell_header) {
1003	*((u32*)skb_put(skb, 4)) = cell_header;
1004    }
1005#endif
1006
1007    /* reassemble segments */
1008    for (i = 0; i < rpd->nseg; i++) {
1009	
1010	/* rebuild rx buffer address from rsd handle */
1011	buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle);
1012	
1013	/* Make device DMA transfer visible to CPU.  */
1014	dma_sync_single_for_cpu(fore200e->dev, buffer->data.dma_addr,
1015				rpd->rsd[i].length, DMA_FROM_DEVICE);
1016	
1017	skb_put_data(skb, buffer->data.align_addr, rpd->rsd[i].length);
1018
1019	/* Now let the device get at it again.  */
1020	dma_sync_single_for_device(fore200e->dev, buffer->data.dma_addr,
1021				   rpd->rsd[i].length, DMA_FROM_DEVICE);
1022    }
1023
1024    DPRINTK(3, "rx skb: len = %d, truesize = %d\n", skb->len, skb->truesize);
1025    
1026    if (pdu_len < fore200e_vcc->rx_min_pdu)
1027	fore200e_vcc->rx_min_pdu = pdu_len;
1028    if (pdu_len > fore200e_vcc->rx_max_pdu)
1029	fore200e_vcc->rx_max_pdu = pdu_len;
1030    fore200e_vcc->rx_pdu++;
1031
1032    /* push PDU */
1033    if (atm_charge(vcc, skb->truesize) == 0) {
1034
1035	DPRINTK(2, "receive buffers saturated for %d.%d.%d - PDU dropped\n",
1036		vcc->itf, vcc->vpi, vcc->vci);
1037
1038	dev_kfree_skb_any(skb);
1039
1040	atomic_inc(&vcc->stats->rx_drop);
1041	return -ENOMEM;
1042    }
1043
1044    vcc->push(vcc, skb);
1045    atomic_inc(&vcc->stats->rx);
1046
1047    return 0;
1048}
1049
1050
1051static void
1052fore200e_collect_rpd(struct fore200e* fore200e, struct rpd* rpd)
1053{
1054    struct host_bsq* bsq;
1055    struct buffer*   buffer;
1056    int              i;
1057    
1058    for (i = 0; i < rpd->nseg; i++) {
1059
1060	/* rebuild rx buffer address from rsd handle */
1061	buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle);
1062
1063	bsq = &fore200e->host_bsq[ buffer->scheme ][ buffer->magn ];
1064
1065#ifdef FORE200E_BSQ_DEBUG
1066	bsq_audit(2, bsq, buffer->scheme, buffer->magn);
1067
1068	if (buffer->supplied == 0)
1069	    printk(FORE200E "queue %d.%d, buffer %ld was not supplied\n",
1070		   buffer->scheme, buffer->magn, buffer->index);
1071	buffer->supplied = 0;
1072#endif
1073
1074	/* re-insert the buffer into the free buffer list */
1075	buffer->next = bsq->freebuf;
1076	bsq->freebuf = buffer;
1077
1078	/* then increment the number of free rx buffers */
1079	bsq->freebuf_count++;
1080    }
1081}
1082
1083
1084static void
1085fore200e_rx_irq(struct fore200e* fore200e)
1086{
1087    struct host_rxq*        rxq = &fore200e->host_rxq;
1088    struct host_rxq_entry*  entry;
1089    struct atm_vcc*         vcc;
1090    struct fore200e_vc_map* vc_map;
1091
1092    for (;;) {
1093	
1094	entry = &rxq->host_entry[ rxq->head ];
1095
1096	/* no more received PDUs */
1097	if ((*entry->status & STATUS_COMPLETE) == 0)
1098	    break;
1099
1100	vc_map = FORE200E_VC_MAP(fore200e, entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1101
1102	if ((vc_map->vcc == NULL) ||
1103	    (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) {
1104
1105	    DPRINTK(1, "no ready VC found for PDU received on %d.%d.%d\n",
1106		    fore200e->atm_dev->number,
1107		    entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1108	}
1109	else {
1110	    vcc = vc_map->vcc;
1111	    ASSERT(vcc);
1112
1113	    if ((*entry->status & STATUS_ERROR) == 0) {
1114
1115		fore200e_push_rpd(fore200e, vcc, entry->rpd);
1116	    }
1117	    else {
1118		DPRINTK(2, "damaged PDU on %d.%d.%d\n",
1119			fore200e->atm_dev->number,
1120			entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1121		atomic_inc(&vcc->stats->rx_err);
1122	    }
1123	}
1124
1125	FORE200E_NEXT_ENTRY(rxq->head, QUEUE_SIZE_RX);
1126
1127	fore200e_collect_rpd(fore200e, entry->rpd);
1128
1129	/* rewrite the rpd address to ack the received PDU */
1130	fore200e->bus->write(entry->rpd_dma, &entry->cp_entry->rpd_haddr);
1131	*entry->status = STATUS_FREE;
1132
1133	fore200e_supply(fore200e);
1134    }
1135}
1136
1137
1138#ifndef FORE200E_USE_TASKLET
1139static void
1140fore200e_irq(struct fore200e* fore200e)
1141{
1142    unsigned long flags;
1143
1144    spin_lock_irqsave(&fore200e->q_lock, flags);
1145    fore200e_rx_irq(fore200e);
1146    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1147
1148    spin_lock_irqsave(&fore200e->q_lock, flags);
1149    fore200e_tx_irq(fore200e);
1150    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1151}
1152#endif
1153
1154
1155static irqreturn_t
1156fore200e_interrupt(int irq, void* dev)
1157{
1158    struct fore200e* fore200e = FORE200E_DEV((struct atm_dev*)dev);
1159
1160    if (fore200e->bus->irq_check(fore200e) == 0) {
1161	
1162	DPRINTK(3, "interrupt NOT triggered by device %d\n", fore200e->atm_dev->number);
1163	return IRQ_NONE;
1164    }
1165    DPRINTK(3, "interrupt triggered by device %d\n", fore200e->atm_dev->number);
1166
1167#ifdef FORE200E_USE_TASKLET
1168    tasklet_schedule(&fore200e->tx_tasklet);
1169    tasklet_schedule(&fore200e->rx_tasklet);
1170#else
1171    fore200e_irq(fore200e);
1172#endif
1173    
1174    fore200e->bus->irq_ack(fore200e);
1175    return IRQ_HANDLED;
1176}
1177
1178
1179#ifdef FORE200E_USE_TASKLET
1180static void
1181fore200e_tx_tasklet(unsigned long data)
1182{
1183    struct fore200e* fore200e = (struct fore200e*) data;
1184    unsigned long flags;
1185
1186    DPRINTK(3, "tx tasklet scheduled for device %d\n", fore200e->atm_dev->number);
1187
1188    spin_lock_irqsave(&fore200e->q_lock, flags);
1189    fore200e_tx_irq(fore200e);
1190    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1191}
1192
1193
1194static void
1195fore200e_rx_tasklet(unsigned long data)
1196{
1197    struct fore200e* fore200e = (struct fore200e*) data;
1198    unsigned long    flags;
1199
1200    DPRINTK(3, "rx tasklet scheduled for device %d\n", fore200e->atm_dev->number);
1201
1202    spin_lock_irqsave(&fore200e->q_lock, flags);
1203    fore200e_rx_irq((struct fore200e*) data);
1204    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1205}
1206#endif
1207
1208
1209static int
1210fore200e_select_scheme(struct atm_vcc* vcc)
1211{
1212    /* fairly balance the VCs over (identical) buffer schemes */
1213    int scheme = vcc->vci % 2 ? BUFFER_SCHEME_ONE : BUFFER_SCHEME_TWO;
1214
1215    DPRINTK(1, "VC %d.%d.%d uses buffer scheme %d\n",
1216	    vcc->itf, vcc->vpi, vcc->vci, scheme);
1217
1218    return scheme;
1219}
1220
1221
1222static int 
1223fore200e_activate_vcin(struct fore200e* fore200e, int activate, struct atm_vcc* vcc, int mtu)
1224{
1225    struct host_cmdq*        cmdq  = &fore200e->host_cmdq;
1226    struct host_cmdq_entry*  entry = &cmdq->host_entry[ cmdq->head ];
1227    struct activate_opcode   activ_opcode;
1228    struct deactivate_opcode deactiv_opcode;
1229    struct vpvc              vpvc;
1230    int                      ok;
1231    enum fore200e_aal        aal = fore200e_atm2fore_aal(vcc->qos.aal);
1232
1233    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1234    
1235    if (activate) {
1236	FORE200E_VCC(vcc)->scheme = fore200e_select_scheme(vcc);
1237	
1238	activ_opcode.opcode = OPCODE_ACTIVATE_VCIN;
1239	activ_opcode.aal    = aal;
1240	activ_opcode.scheme = FORE200E_VCC(vcc)->scheme;
1241	activ_opcode.pad    = 0;
1242    }
1243    else {
1244	deactiv_opcode.opcode = OPCODE_DEACTIVATE_VCIN;
1245	deactiv_opcode.pad    = 0;
1246    }
1247
1248    vpvc.vci = vcc->vci;
1249    vpvc.vpi = vcc->vpi;
1250
1251    *entry->status = STATUS_PENDING;
1252
1253    if (activate) {
1254
1255#ifdef FORE200E_52BYTE_AAL0_SDU
1256	mtu = 48;
1257#endif
1258	/* the MTU is not used by the cp, except in the case of AAL0 */
1259	fore200e->bus->write(mtu,                        &entry->cp_entry->cmd.activate_block.mtu);
1260	fore200e->bus->write(*(u32*)&vpvc,         (u32 __iomem *)&entry->cp_entry->cmd.activate_block.vpvc);
1261	fore200e->bus->write(*(u32*)&activ_opcode, (u32 __iomem *)&entry->cp_entry->cmd.activate_block.opcode);
1262    }
1263    else {
1264	fore200e->bus->write(*(u32*)&vpvc,         (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.vpvc);
1265	fore200e->bus->write(*(u32*)&deactiv_opcode, (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.opcode);
1266    }
1267
1268    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1269
1270    *entry->status = STATUS_FREE;
1271
1272    if (ok == 0) {
1273	printk(FORE200E "unable to %s VC %d.%d.%d\n",
1274	       activate ? "open" : "close", vcc->itf, vcc->vpi, vcc->vci);
1275	return -EIO;
1276    }
1277
1278    DPRINTK(1, "VC %d.%d.%d %sed\n", vcc->itf, vcc->vpi, vcc->vci, 
1279	    activate ? "open" : "clos");
1280
1281    return 0;
1282}
1283
1284
1285#define FORE200E_MAX_BACK2BACK_CELLS 255    /* XXX depends on CDVT */
1286
1287static void
1288fore200e_rate_ctrl(struct atm_qos* qos, struct tpd_rate* rate)
1289{
1290    if (qos->txtp.max_pcr < ATM_OC3_PCR) {
1291    
1292	/* compute the data cells to idle cells ratio from the tx PCR */
1293	rate->data_cells = qos->txtp.max_pcr * FORE200E_MAX_BACK2BACK_CELLS / ATM_OC3_PCR;
1294	rate->idle_cells = FORE200E_MAX_BACK2BACK_CELLS - rate->data_cells;
1295    }
1296    else {
1297	/* disable rate control */
1298	rate->data_cells = rate->idle_cells = 0;
1299    }
1300}
1301
1302
1303static int
1304fore200e_open(struct atm_vcc *vcc)
1305{
1306    struct fore200e*        fore200e = FORE200E_DEV(vcc->dev);
1307    struct fore200e_vcc*    fore200e_vcc;
1308    struct fore200e_vc_map* vc_map;
1309    unsigned long	    flags;
1310    int			    vci = vcc->vci;
1311    short		    vpi = vcc->vpi;
1312
1313    ASSERT((vpi >= 0) && (vpi < 1<<FORE200E_VPI_BITS));
1314    ASSERT((vci >= 0) && (vci < 1<<FORE200E_VCI_BITS));
1315
1316    spin_lock_irqsave(&fore200e->q_lock, flags);
1317
1318    vc_map = FORE200E_VC_MAP(fore200e, vpi, vci);
1319    if (vc_map->vcc) {
1320
1321	spin_unlock_irqrestore(&fore200e->q_lock, flags);
1322
1323	printk(FORE200E "VC %d.%d.%d already in use\n",
1324	       fore200e->atm_dev->number, vpi, vci);
1325
1326	return -EINVAL;
1327    }
1328
1329    vc_map->vcc = vcc;
1330
1331    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1332
1333    fore200e_vcc = kzalloc(sizeof(struct fore200e_vcc), GFP_ATOMIC);
1334    if (fore200e_vcc == NULL) {
1335	vc_map->vcc = NULL;
1336	return -ENOMEM;
1337    }
1338
1339    DPRINTK(2, "opening %d.%d.%d:%d QoS = (tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; "
1340	    "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d)\n",
1341	    vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1342	    fore200e_traffic_class[ vcc->qos.txtp.traffic_class ],
1343	    vcc->qos.txtp.min_pcr, vcc->qos.txtp.max_pcr, vcc->qos.txtp.max_cdv, vcc->qos.txtp.max_sdu,
1344	    fore200e_traffic_class[ vcc->qos.rxtp.traffic_class ],
1345	    vcc->qos.rxtp.min_pcr, vcc->qos.rxtp.max_pcr, vcc->qos.rxtp.max_cdv, vcc->qos.rxtp.max_sdu);
1346    
1347    /* pseudo-CBR bandwidth requested? */
1348    if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1349	
1350	mutex_lock(&fore200e->rate_mtx);
1351	if (fore200e->available_cell_rate < vcc->qos.txtp.max_pcr) {
1352	    mutex_unlock(&fore200e->rate_mtx);
1353
1354	    kfree(fore200e_vcc);
1355	    vc_map->vcc = NULL;
1356	    return -EAGAIN;
1357	}
1358
1359	/* reserve bandwidth */
1360	fore200e->available_cell_rate -= vcc->qos.txtp.max_pcr;
1361	mutex_unlock(&fore200e->rate_mtx);
1362    }
1363    
1364    vcc->itf = vcc->dev->number;
1365
1366    set_bit(ATM_VF_PARTIAL,&vcc->flags);
1367    set_bit(ATM_VF_ADDR, &vcc->flags);
1368
1369    vcc->dev_data = fore200e_vcc;
1370    
1371    if (fore200e_activate_vcin(fore200e, 1, vcc, vcc->qos.rxtp.max_sdu) < 0) {
1372
1373	vc_map->vcc = NULL;
1374
1375	clear_bit(ATM_VF_ADDR, &vcc->flags);
1376	clear_bit(ATM_VF_PARTIAL,&vcc->flags);
1377
1378	vcc->dev_data = NULL;
1379
1380	fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1381
1382	kfree(fore200e_vcc);
1383	return -EINVAL;
1384    }
1385    
1386    /* compute rate control parameters */
1387    if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1388	
1389	fore200e_rate_ctrl(&vcc->qos, &fore200e_vcc->rate);
1390	set_bit(ATM_VF_HASQOS, &vcc->flags);
1391
1392	DPRINTK(3, "tx on %d.%d.%d:%d, tx PCR = %d, rx PCR = %d, data_cells = %u, idle_cells = %u\n",
1393		vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1394		vcc->qos.txtp.max_pcr, vcc->qos.rxtp.max_pcr, 
1395		fore200e_vcc->rate.data_cells, fore200e_vcc->rate.idle_cells);
1396    }
1397    
1398    fore200e_vcc->tx_min_pdu = fore200e_vcc->rx_min_pdu = MAX_PDU_SIZE + 1;
1399    fore200e_vcc->tx_max_pdu = fore200e_vcc->rx_max_pdu = 0;
1400    fore200e_vcc->tx_pdu     = fore200e_vcc->rx_pdu     = 0;
1401
1402    /* new incarnation of the vcc */
1403    vc_map->incarn = ++fore200e->incarn_count;
1404
1405    /* VC unusable before this flag is set */
1406    set_bit(ATM_VF_READY, &vcc->flags);
1407
1408    return 0;
1409}
1410
1411
1412static void
1413fore200e_close(struct atm_vcc* vcc)
1414{
1415    struct fore200e_vcc*    fore200e_vcc;
1416    struct fore200e*        fore200e;
1417    struct fore200e_vc_map* vc_map;
1418    unsigned long           flags;
1419
1420    ASSERT(vcc);
1421    fore200e = FORE200E_DEV(vcc->dev);
1422
1423    ASSERT((vcc->vpi >= 0) && (vcc->vpi < 1<<FORE200E_VPI_BITS));
1424    ASSERT((vcc->vci >= 0) && (vcc->vci < 1<<FORE200E_VCI_BITS));
1425
1426    DPRINTK(2, "closing %d.%d.%d:%d\n", vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal));
1427
1428    clear_bit(ATM_VF_READY, &vcc->flags);
1429
1430    fore200e_activate_vcin(fore200e, 0, vcc, 0);
1431
1432    spin_lock_irqsave(&fore200e->q_lock, flags);
1433
1434    vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci);
1435
1436    /* the vc is no longer considered as "in use" by fore200e_open() */
1437    vc_map->vcc = NULL;
1438
1439    vcc->itf = vcc->vci = vcc->vpi = 0;
1440
1441    fore200e_vcc = FORE200E_VCC(vcc);
1442    vcc->dev_data = NULL;
1443
1444    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1445
1446    /* release reserved bandwidth, if any */
1447    if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1448
1449	mutex_lock(&fore200e->rate_mtx);
1450	fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1451	mutex_unlock(&fore200e->rate_mtx);
1452
1453	clear_bit(ATM_VF_HASQOS, &vcc->flags);
1454    }
1455
1456    clear_bit(ATM_VF_ADDR, &vcc->flags);
1457    clear_bit(ATM_VF_PARTIAL,&vcc->flags);
1458
1459    ASSERT(fore200e_vcc);
1460    kfree(fore200e_vcc);
1461}
1462
1463
1464static int
1465fore200e_send(struct atm_vcc *vcc, struct sk_buff *skb)
1466{
1467    struct fore200e*        fore200e;
1468    struct fore200e_vcc*    fore200e_vcc;
1469    struct fore200e_vc_map* vc_map;
1470    struct host_txq*        txq;
1471    struct host_txq_entry*  entry;
1472    struct tpd*             tpd;
1473    struct tpd_haddr        tpd_haddr;
1474    int                     retry        = CONFIG_ATM_FORE200E_TX_RETRY;
1475    int                     tx_copy      = 0;
1476    int                     tx_len       = skb->len;
1477    u32*                    cell_header  = NULL;
1478    unsigned char*          skb_data;
1479    int                     skb_len;
1480    unsigned char*          data;
1481    unsigned long           flags;
1482
1483    if (!vcc)
1484        return -EINVAL;
1485
1486    fore200e = FORE200E_DEV(vcc->dev);
1487    fore200e_vcc = FORE200E_VCC(vcc);
1488
1489    if (!fore200e)
1490        return -EINVAL;
1491
1492    txq = &fore200e->host_txq;
1493    if (!fore200e_vcc)
1494        return -EINVAL;
1495
1496    if (!test_bit(ATM_VF_READY, &vcc->flags)) {
1497	DPRINTK(1, "VC %d.%d.%d not ready for tx\n", vcc->itf, vcc->vpi, vcc->vpi);
1498	dev_kfree_skb_any(skb);
1499	return -EINVAL;
1500    }
1501
1502#ifdef FORE200E_52BYTE_AAL0_SDU
1503    if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.txtp.max_sdu == ATM_AAL0_SDU)) {
1504	cell_header = (u32*) skb->data;
1505	skb_data    = skb->data + 4;    /* skip 4-byte cell header */
1506	skb_len     = tx_len = skb->len  - 4;
1507
1508	DPRINTK(3, "user-supplied cell header = 0x%08x\n", *cell_header);
1509    }
1510    else 
1511#endif
1512    {
1513	skb_data = skb->data;
1514	skb_len  = skb->len;
1515    }
1516    
1517    if (((unsigned long)skb_data) & 0x3) {
1518
1519	DPRINTK(2, "misaligned tx PDU on device %s\n", fore200e->name);
1520	tx_copy = 1;
1521	tx_len  = skb_len;
1522    }
1523
1524    if ((vcc->qos.aal == ATM_AAL0) && (skb_len % ATM_CELL_PAYLOAD)) {
1525
1526        /* this simply NUKES the PCA board */
1527	DPRINTK(2, "incomplete tx AAL0 PDU on device %s\n", fore200e->name);
1528	tx_copy = 1;
1529	tx_len  = ((skb_len / ATM_CELL_PAYLOAD) + 1) * ATM_CELL_PAYLOAD;
1530    }
1531    
1532    if (tx_copy) {
1533	data = kmalloc(tx_len, GFP_ATOMIC);
1534	if (data == NULL) {
1535	    if (vcc->pop) {
1536		vcc->pop(vcc, skb);
1537	    }
1538	    else {
1539		dev_kfree_skb_any(skb);
1540	    }
1541	    return -ENOMEM;
1542	}
1543
1544	memcpy(data, skb_data, skb_len);
1545	if (skb_len < tx_len)
1546	    memset(data + skb_len, 0x00, tx_len - skb_len);
1547    }
1548    else {
1549	data = skb_data;
1550    }
1551
1552    vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci);
1553    ASSERT(vc_map->vcc == vcc);
1554
1555  retry_here:
1556
1557    spin_lock_irqsave(&fore200e->q_lock, flags);
1558
1559    entry = &txq->host_entry[ txq->head ];
1560
1561    if ((*entry->status != STATUS_FREE) || (txq->txing >= QUEUE_SIZE_TX - 2)) {
1562
1563	/* try to free completed tx queue entries */
1564	fore200e_tx_irq(fore200e);
1565
1566	if (*entry->status != STATUS_FREE) {
1567
1568	    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1569
1570	    /* retry once again? */
1571	    if (--retry > 0) {
1572		udelay(50);
1573		goto retry_here;
1574	    }
1575
1576	    atomic_inc(&vcc->stats->tx_err);
1577
1578	    fore200e->tx_sat++;
1579	    DPRINTK(2, "tx queue of device %s is saturated, PDU dropped - heartbeat is %08x\n",
1580		    fore200e->name, fore200e->cp_queues->heartbeat);
1581	    if (vcc->pop) {
1582		vcc->pop(vcc, skb);
1583	    }
1584	    else {
1585		dev_kfree_skb_any(skb);
1586	    }
1587
1588	    if (tx_copy)
1589		kfree(data);
1590
1591	    return -ENOBUFS;
1592	}
1593    }
1594
1595    entry->incarn = vc_map->incarn;
1596    entry->vc_map = vc_map;
1597    entry->skb    = skb;
1598    entry->data   = tx_copy ? data : NULL;
1599
1600    tpd = entry->tpd;
1601    tpd->tsd[ 0 ].buffer = dma_map_single(fore200e->dev, data, tx_len,
1602					  DMA_TO_DEVICE);
1603    if (dma_mapping_error(fore200e->dev, tpd->tsd[0].buffer)) {
1604	if (tx_copy)
1605	    kfree(data);
1606	spin_unlock_irqrestore(&fore200e->q_lock, flags);
1607	return -ENOMEM;
1608    }
1609    tpd->tsd[ 0 ].length = tx_len;
1610
1611    FORE200E_NEXT_ENTRY(txq->head, QUEUE_SIZE_TX);
1612    txq->txing++;
1613
1614    /* The dma_map call above implies a dma_sync so the device can use it,
1615     * thus no explicit dma_sync call is necessary here.
1616     */
1617    
1618    DPRINTK(3, "tx on %d.%d.%d:%d, len = %u (%u)\n", 
1619	    vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1620	    tpd->tsd[0].length, skb_len);
1621
1622    if (skb_len < fore200e_vcc->tx_min_pdu)
1623	fore200e_vcc->tx_min_pdu = skb_len;
1624    if (skb_len > fore200e_vcc->tx_max_pdu)
1625	fore200e_vcc->tx_max_pdu = skb_len;
1626    fore200e_vcc->tx_pdu++;
1627
1628    /* set tx rate control information */
1629    tpd->rate.data_cells = fore200e_vcc->rate.data_cells;
1630    tpd->rate.idle_cells = fore200e_vcc->rate.idle_cells;
1631
1632    if (cell_header) {
1633	tpd->atm_header.clp = (*cell_header & ATM_HDR_CLP);
1634	tpd->atm_header.plt = (*cell_header & ATM_HDR_PTI_MASK) >> ATM_HDR_PTI_SHIFT;
1635	tpd->atm_header.vci = (*cell_header & ATM_HDR_VCI_MASK) >> ATM_HDR_VCI_SHIFT;
1636	tpd->atm_header.vpi = (*cell_header & ATM_HDR_VPI_MASK) >> ATM_HDR_VPI_SHIFT;
1637	tpd->atm_header.gfc = (*cell_header & ATM_HDR_GFC_MASK) >> ATM_HDR_GFC_SHIFT;
1638    }
1639    else {
1640	/* set the ATM header, common to all cells conveying the PDU */
1641	tpd->atm_header.clp = 0;
1642	tpd->atm_header.plt = 0;
1643	tpd->atm_header.vci = vcc->vci;
1644	tpd->atm_header.vpi = vcc->vpi;
1645	tpd->atm_header.gfc = 0;
1646    }
1647
1648    tpd->spec.length = tx_len;
1649    tpd->spec.nseg   = 1;
1650    tpd->spec.aal    = fore200e_atm2fore_aal(vcc->qos.aal);
1651    tpd->spec.intr   = 1;
1652
1653    tpd_haddr.size  = sizeof(struct tpd) / (1<<TPD_HADDR_SHIFT);  /* size is expressed in 32 byte blocks */
1654    tpd_haddr.pad   = 0;
1655    tpd_haddr.haddr = entry->tpd_dma >> TPD_HADDR_SHIFT;          /* shift the address, as we are in a bitfield */
1656
1657    *entry->status = STATUS_PENDING;
1658    fore200e->bus->write(*(u32*)&tpd_haddr, (u32 __iomem *)&entry->cp_entry->tpd_haddr);
1659
1660    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1661
1662    return 0;
1663}
1664
1665
1666static int
1667fore200e_getstats(struct fore200e* fore200e)
1668{
1669    struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1670    struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1671    struct stats_opcode     opcode;
1672    int                     ok;
1673    u32                     stats_dma_addr;
1674
1675    if (fore200e->stats == NULL) {
1676	fore200e->stats = kzalloc(sizeof(struct stats), GFP_KERNEL);
1677	if (fore200e->stats == NULL)
1678	    return -ENOMEM;
1679    }
1680    
1681    stats_dma_addr = dma_map_single(fore200e->dev, fore200e->stats,
1682				    sizeof(struct stats), DMA_FROM_DEVICE);
1683    if (dma_mapping_error(fore200e->dev, stats_dma_addr))
1684    	return -ENOMEM;
1685    
1686    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1687
1688    opcode.opcode = OPCODE_GET_STATS;
1689    opcode.pad    = 0;
1690
1691    fore200e->bus->write(stats_dma_addr, &entry->cp_entry->cmd.stats_block.stats_haddr);
1692    
1693    *entry->status = STATUS_PENDING;
1694
1695    fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.stats_block.opcode);
1696
1697    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1698
1699    *entry->status = STATUS_FREE;
1700
1701    dma_unmap_single(fore200e->dev, stats_dma_addr, sizeof(struct stats), DMA_FROM_DEVICE);
1702    
1703    if (ok == 0) {
1704	printk(FORE200E "unable to get statistics from device %s\n", fore200e->name);
1705	return -EIO;
1706    }
1707
1708    return 0;
1709}
1710
1711#if 0 /* currently unused */
1712static int
1713fore200e_get_oc3(struct fore200e* fore200e, struct oc3_regs* regs)
1714{
1715    struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1716    struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1717    struct oc3_opcode       opcode;
1718    int                     ok;
1719    u32                     oc3_regs_dma_addr;
1720
1721    oc3_regs_dma_addr = fore200e->bus->dma_map(fore200e, regs, sizeof(struct oc3_regs), DMA_FROM_DEVICE);
1722
1723    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1724
1725    opcode.opcode = OPCODE_GET_OC3;
1726    opcode.reg    = 0;
1727    opcode.value  = 0;
1728    opcode.mask   = 0;
1729
1730    fore200e->bus->write(oc3_regs_dma_addr, &entry->cp_entry->cmd.oc3_block.regs_haddr);
1731    
1732    *entry->status = STATUS_PENDING;
1733
1734    fore200e->bus->write(*(u32*)&opcode, (u32*)&entry->cp_entry->cmd.oc3_block.opcode);
1735
1736    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1737
1738    *entry->status = STATUS_FREE;
1739
1740    fore200e->bus->dma_unmap(fore200e, oc3_regs_dma_addr, sizeof(struct oc3_regs), DMA_FROM_DEVICE);
1741    
1742    if (ok == 0) {
1743	printk(FORE200E "unable to get OC-3 regs of device %s\n", fore200e->name);
1744	return -EIO;
1745    }
1746
1747    return 0;
1748}
1749#endif
1750
1751
1752static int
1753fore200e_set_oc3(struct fore200e* fore200e, u32 reg, u32 value, u32 mask)
1754{
1755    struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1756    struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1757    struct oc3_opcode       opcode;
1758    int                     ok;
1759
1760    DPRINTK(2, "set OC-3 reg = 0x%02x, value = 0x%02x, mask = 0x%02x\n", reg, value, mask);
1761
1762    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1763
1764    opcode.opcode = OPCODE_SET_OC3;
1765    opcode.reg    = reg;
1766    opcode.value  = value;
1767    opcode.mask   = mask;
1768
1769    fore200e->bus->write(0, &entry->cp_entry->cmd.oc3_block.regs_haddr);
1770    
1771    *entry->status = STATUS_PENDING;
1772
1773    fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.oc3_block.opcode);
1774
1775    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1776
1777    *entry->status = STATUS_FREE;
1778
1779    if (ok == 0) {
1780	printk(FORE200E "unable to set OC-3 reg 0x%02x of device %s\n", reg, fore200e->name);
1781	return -EIO;
1782    }
1783
1784    return 0;
1785}
1786
1787
1788static int
1789fore200e_setloop(struct fore200e* fore200e, int loop_mode)
1790{
1791    u32 mct_value, mct_mask;
1792    int error;
1793
1794    if (!capable(CAP_NET_ADMIN))
1795	return -EPERM;
1796    
1797    switch (loop_mode) {
1798
1799    case ATM_LM_NONE:
1800	mct_value = 0; 
1801	mct_mask  = SUNI_MCT_DLE | SUNI_MCT_LLE;
1802	break;
1803	
1804    case ATM_LM_LOC_PHY:
1805	mct_value = mct_mask = SUNI_MCT_DLE;
1806	break;
1807
1808    case ATM_LM_RMT_PHY:
1809	mct_value = mct_mask = SUNI_MCT_LLE;
1810	break;
1811
1812    default:
1813	return -EINVAL;
1814    }
1815
1816    error = fore200e_set_oc3(fore200e, SUNI_MCT, mct_value, mct_mask);
1817    if (error == 0)
1818	fore200e->loop_mode = loop_mode;
1819
1820    return error;
1821}
1822
1823
1824static int
1825fore200e_fetch_stats(struct fore200e* fore200e, struct sonet_stats __user *arg)
1826{
1827    struct sonet_stats tmp;
1828
1829    if (fore200e_getstats(fore200e) < 0)
1830	return -EIO;
1831
1832    tmp.section_bip = be32_to_cpu(fore200e->stats->oc3.section_bip8_errors);
1833    tmp.line_bip    = be32_to_cpu(fore200e->stats->oc3.line_bip24_errors);
1834    tmp.path_bip    = be32_to_cpu(fore200e->stats->oc3.path_bip8_errors);
1835    tmp.line_febe   = be32_to_cpu(fore200e->stats->oc3.line_febe_errors);
1836    tmp.path_febe   = be32_to_cpu(fore200e->stats->oc3.path_febe_errors);
1837    tmp.corr_hcs    = be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors);
1838    tmp.uncorr_hcs  = be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors);
1839    tmp.tx_cells    = be32_to_cpu(fore200e->stats->aal0.cells_transmitted)  +
1840	              be32_to_cpu(fore200e->stats->aal34.cells_transmitted) +
1841	              be32_to_cpu(fore200e->stats->aal5.cells_transmitted);
1842    tmp.rx_cells    = be32_to_cpu(fore200e->stats->aal0.cells_received)     +
1843	              be32_to_cpu(fore200e->stats->aal34.cells_received)    +
1844	              be32_to_cpu(fore200e->stats->aal5.cells_received);
1845
1846    if (arg)
1847	return copy_to_user(arg, &tmp, sizeof(struct sonet_stats)) ? -EFAULT : 0;	
1848    
1849    return 0;
1850}
1851
1852
1853static int
1854fore200e_ioctl(struct atm_dev* dev, unsigned int cmd, void __user * arg)
1855{
1856    struct fore200e* fore200e = FORE200E_DEV(dev);
1857    
1858    DPRINTK(2, "ioctl cmd = 0x%x (%u), arg = 0x%p (%lu)\n", cmd, cmd, arg, (unsigned long)arg);
1859
1860    switch (cmd) {
1861
1862    case SONET_GETSTAT:
1863	return fore200e_fetch_stats(fore200e, (struct sonet_stats __user *)arg);
1864
1865    case SONET_GETDIAG:
1866	return put_user(0, (int __user *)arg) ? -EFAULT : 0;
1867
1868    case ATM_SETLOOP:
1869	return fore200e_setloop(fore200e, (int)(unsigned long)arg);
1870
1871    case ATM_GETLOOP:
1872	return put_user(fore200e->loop_mode, (int __user *)arg) ? -EFAULT : 0;
1873
1874    case ATM_QUERYLOOP:
1875	return put_user(ATM_LM_LOC_PHY | ATM_LM_RMT_PHY, (int __user *)arg) ? -EFAULT : 0;
1876    }
1877
1878    return -ENOSYS; /* not implemented */
1879}
1880
1881
1882static int
1883fore200e_change_qos(struct atm_vcc* vcc,struct atm_qos* qos, int flags)
1884{
1885    struct fore200e_vcc* fore200e_vcc = FORE200E_VCC(vcc);
1886    struct fore200e*     fore200e     = FORE200E_DEV(vcc->dev);
1887
1888    if (!test_bit(ATM_VF_READY, &vcc->flags)) {
1889	DPRINTK(1, "VC %d.%d.%d not ready for QoS change\n", vcc->itf, vcc->vpi, vcc->vpi);
1890	return -EINVAL;
1891    }
1892
1893    DPRINTK(2, "change_qos %d.%d.%d, "
1894	    "(tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; "
1895	    "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d), flags = 0x%x\n"
1896	    "available_cell_rate = %u",
1897	    vcc->itf, vcc->vpi, vcc->vci,
1898	    fore200e_traffic_class[ qos->txtp.traffic_class ],
1899	    qos->txtp.min_pcr, qos->txtp.max_pcr, qos->txtp.max_cdv, qos->txtp.max_sdu,
1900	    fore200e_traffic_class[ qos->rxtp.traffic_class ],
1901	    qos->rxtp.min_pcr, qos->rxtp.max_pcr, qos->rxtp.max_cdv, qos->rxtp.max_sdu,
1902	    flags, fore200e->available_cell_rate);
1903
1904    if ((qos->txtp.traffic_class == ATM_CBR) && (qos->txtp.max_pcr > 0)) {
1905
1906	mutex_lock(&fore200e->rate_mtx);
1907	if (fore200e->available_cell_rate + vcc->qos.txtp.max_pcr < qos->txtp.max_pcr) {
1908	    mutex_unlock(&fore200e->rate_mtx);
1909	    return -EAGAIN;
1910	}
1911
1912	fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1913	fore200e->available_cell_rate -= qos->txtp.max_pcr;
1914
1915	mutex_unlock(&fore200e->rate_mtx);
1916	
1917	memcpy(&vcc->qos, qos, sizeof(struct atm_qos));
1918	
1919	/* update rate control parameters */
1920	fore200e_rate_ctrl(qos, &fore200e_vcc->rate);
1921
1922	set_bit(ATM_VF_HASQOS, &vcc->flags);
1923
1924	return 0;
1925    }
1926    
1927    return -EINVAL;
1928}
1929    
1930
1931static int fore200e_irq_request(struct fore200e *fore200e)
1932{
1933    if (request_irq(fore200e->irq, fore200e_interrupt, IRQF_SHARED, fore200e->name, fore200e->atm_dev) < 0) {
1934
1935	printk(FORE200E "unable to reserve IRQ %s for device %s\n",
1936	       fore200e_irq_itoa(fore200e->irq), fore200e->name);
1937	return -EBUSY;
1938    }
1939
1940    printk(FORE200E "IRQ %s reserved for device %s\n",
1941	   fore200e_irq_itoa(fore200e->irq), fore200e->name);
1942
1943#ifdef FORE200E_USE_TASKLET
1944    tasklet_init(&fore200e->tx_tasklet, fore200e_tx_tasklet, (unsigned long)fore200e);
1945    tasklet_init(&fore200e->rx_tasklet, fore200e_rx_tasklet, (unsigned long)fore200e);
1946#endif
1947
1948    fore200e->state = FORE200E_STATE_IRQ;
1949    return 0;
1950}
1951
1952
1953static int fore200e_get_esi(struct fore200e *fore200e)
1954{
1955    struct prom_data* prom = kzalloc(sizeof(struct prom_data), GFP_KERNEL);
1956    int ok, i;
1957
1958    if (!prom)
1959	return -ENOMEM;
1960
1961    ok = fore200e->bus->prom_read(fore200e, prom);
1962    if (ok < 0) {
1963	kfree(prom);
1964	return -EBUSY;
1965    }
1966	
1967    printk(FORE200E "device %s, rev. %c, S/N: %d, ESI: %pM\n",
1968	   fore200e->name, 
1969	   (prom->hw_revision & 0xFF) + '@',    /* probably meaningless with SBA boards */
1970	   prom->serial_number & 0xFFFF, &prom->mac_addr[2]);
1971	
1972    for (i = 0; i < ESI_LEN; i++) {
1973	fore200e->esi[ i ] = fore200e->atm_dev->esi[ i ] = prom->mac_addr[ i + 2 ];
1974    }
1975    
1976    kfree(prom);
1977
1978    return 0;
1979}
1980
1981
1982static int fore200e_alloc_rx_buf(struct fore200e *fore200e)
1983{
1984    int scheme, magn, nbr, size, i;
1985
1986    struct host_bsq* bsq;
1987    struct buffer*   buffer;
1988
1989    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
1990	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
1991
1992	    bsq = &fore200e->host_bsq[ scheme ][ magn ];
1993
1994	    nbr  = fore200e_rx_buf_nbr[ scheme ][ magn ];
1995	    size = fore200e_rx_buf_size[ scheme ][ magn ];
1996
1997	    DPRINTK(2, "rx buffers %d / %d are being allocated\n", scheme, magn);
1998
1999	    /* allocate the array of receive buffers */
2000	    buffer = bsq->buffer = kcalloc(nbr, sizeof(struct buffer),
2001                                           GFP_KERNEL);
2002
2003	    if (buffer == NULL)
2004		return -ENOMEM;
2005
2006	    bsq->freebuf = NULL;
2007
2008	    for (i = 0; i < nbr; i++) {
2009
2010		buffer[ i ].scheme = scheme;
2011		buffer[ i ].magn   = magn;
2012#ifdef FORE200E_BSQ_DEBUG
2013		buffer[ i ].index  = i;
2014		buffer[ i ].supplied = 0;
2015#endif
2016
2017		/* allocate the receive buffer body */
2018		if (fore200e_chunk_alloc(fore200e,
2019					 &buffer[ i ].data, size, fore200e->bus->buffer_alignment,
2020					 DMA_FROM_DEVICE) < 0) {
2021		    
2022		    while (i > 0)
2023			fore200e_chunk_free(fore200e, &buffer[ --i ].data);
2024		    kfree(buffer);
2025		    
2026		    return -ENOMEM;
2027		}
2028
2029		/* insert the buffer into the free buffer list */
2030		buffer[ i ].next = bsq->freebuf;
2031		bsq->freebuf = &buffer[ i ];
2032	    }
2033	    /* all the buffers are free, initially */
2034	    bsq->freebuf_count = nbr;
2035
2036#ifdef FORE200E_BSQ_DEBUG
2037	    bsq_audit(3, bsq, scheme, magn);
2038#endif
2039	}
2040    }
2041
2042    fore200e->state = FORE200E_STATE_ALLOC_BUF;
2043    return 0;
2044}
2045
2046
2047static int fore200e_init_bs_queue(struct fore200e *fore200e)
2048{
2049    int scheme, magn, i;
2050
2051    struct host_bsq*     bsq;
2052    struct cp_bsq_entry __iomem * cp_entry;
2053
2054    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
2055	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
2056
2057	    DPRINTK(2, "buffer supply queue %d / %d is being initialized\n", scheme, magn);
2058
2059	    bsq = &fore200e->host_bsq[ scheme ][ magn ];
2060
2061	    /* allocate and align the array of status words */
2062	    if (fore200e_dma_chunk_alloc(fore200e,
2063					       &bsq->status,
2064					       sizeof(enum status), 
2065					       QUEUE_SIZE_BS,
2066					       fore200e->bus->status_alignment) < 0) {
2067		return -ENOMEM;
2068	    }
2069
2070	    /* allocate and align the array of receive buffer descriptors */
2071	    if (fore200e_dma_chunk_alloc(fore200e,
2072					       &bsq->rbd_block,
2073					       sizeof(struct rbd_block),
2074					       QUEUE_SIZE_BS,
2075					       fore200e->bus->descr_alignment) < 0) {
2076		
2077		fore200e_dma_chunk_free(fore200e, &bsq->status);
2078		return -ENOMEM;
2079	    }
2080	    
2081	    /* get the base address of the cp resident buffer supply queue entries */
2082	    cp_entry = fore200e->virt_base + 
2083		       fore200e->bus->read(&fore200e->cp_queues->cp_bsq[ scheme ][ magn ]);
2084	    
2085	    /* fill the host resident and cp resident buffer supply queue entries */
2086	    for (i = 0; i < QUEUE_SIZE_BS; i++) {
2087		
2088		bsq->host_entry[ i ].status = 
2089		                     FORE200E_INDEX(bsq->status.align_addr, enum status, i);
2090	        bsq->host_entry[ i ].rbd_block =
2091		                     FORE200E_INDEX(bsq->rbd_block.align_addr, struct rbd_block, i);
2092		bsq->host_entry[ i ].rbd_block_dma =
2093		                     FORE200E_DMA_INDEX(bsq->rbd_block.dma_addr, struct rbd_block, i);
2094		bsq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2095		
2096		*bsq->host_entry[ i ].status = STATUS_FREE;
2097		
2098		fore200e->bus->write(FORE200E_DMA_INDEX(bsq->status.dma_addr, enum status, i), 
2099				     &cp_entry[ i ].status_haddr);
2100	    }
2101	}
2102    }
2103
2104    fore200e->state = FORE200E_STATE_INIT_BSQ;
2105    return 0;
2106}
2107
2108
2109static int fore200e_init_rx_queue(struct fore200e *fore200e)
2110{
2111    struct host_rxq*     rxq =  &fore200e->host_rxq;
2112    struct cp_rxq_entry __iomem * cp_entry;
2113    int i;
2114
2115    DPRINTK(2, "receive queue is being initialized\n");
2116
2117    /* allocate and align the array of status words */
2118    if (fore200e_dma_chunk_alloc(fore200e,
2119				       &rxq->status,
2120				       sizeof(enum status), 
2121				       QUEUE_SIZE_RX,
2122				       fore200e->bus->status_alignment) < 0) {
2123	return -ENOMEM;
2124    }
2125
2126    /* allocate and align the array of receive PDU descriptors */
2127    if (fore200e_dma_chunk_alloc(fore200e,
2128				       &rxq->rpd,
2129				       sizeof(struct rpd), 
2130				       QUEUE_SIZE_RX,
2131				       fore200e->bus->descr_alignment) < 0) {
2132	
2133	fore200e_dma_chunk_free(fore200e, &rxq->status);
2134	return -ENOMEM;
2135    }
2136
2137    /* get the base address of the cp resident rx queue entries */
2138    cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_rxq);
2139
2140    /* fill the host resident and cp resident rx entries */
2141    for (i=0; i < QUEUE_SIZE_RX; i++) {
2142	
2143	rxq->host_entry[ i ].status = 
2144	                     FORE200E_INDEX(rxq->status.align_addr, enum status, i);
2145	rxq->host_entry[ i ].rpd = 
2146	                     FORE200E_INDEX(rxq->rpd.align_addr, struct rpd, i);
2147	rxq->host_entry[ i ].rpd_dma = 
2148	                     FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i);
2149	rxq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2150
2151	*rxq->host_entry[ i ].status = STATUS_FREE;
2152
2153	fore200e->bus->write(FORE200E_DMA_INDEX(rxq->status.dma_addr, enum status, i), 
2154			     &cp_entry[ i ].status_haddr);
2155
2156	fore200e->bus->write(FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i),
2157			     &cp_entry[ i ].rpd_haddr);
2158    }
2159
2160    /* set the head entry of the queue */
2161    rxq->head = 0;
2162
2163    fore200e->state = FORE200E_STATE_INIT_RXQ;
2164    return 0;
2165}
2166
2167
2168static int fore200e_init_tx_queue(struct fore200e *fore200e)
2169{
2170    struct host_txq*     txq =  &fore200e->host_txq;
2171    struct cp_txq_entry __iomem * cp_entry;
2172    int i;
2173
2174    DPRINTK(2, "transmit queue is being initialized\n");
2175
2176    /* allocate and align the array of status words */
2177    if (fore200e_dma_chunk_alloc(fore200e,
2178				       &txq->status,
2179				       sizeof(enum status), 
2180				       QUEUE_SIZE_TX,
2181				       fore200e->bus->status_alignment) < 0) {
2182	return -ENOMEM;
2183    }
2184
2185    /* allocate and align the array of transmit PDU descriptors */
2186    if (fore200e_dma_chunk_alloc(fore200e,
2187				       &txq->tpd,
2188				       sizeof(struct tpd), 
2189				       QUEUE_SIZE_TX,
2190				       fore200e->bus->descr_alignment) < 0) {
2191	
2192	fore200e_dma_chunk_free(fore200e, &txq->status);
2193	return -ENOMEM;
2194    }
2195
2196    /* get the base address of the cp resident tx queue entries */
2197    cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_txq);
2198
2199    /* fill the host resident and cp resident tx entries */
2200    for (i=0; i < QUEUE_SIZE_TX; i++) {
2201	
2202	txq->host_entry[ i ].status = 
2203	                     FORE200E_INDEX(txq->status.align_addr, enum status, i);
2204	txq->host_entry[ i ].tpd = 
2205	                     FORE200E_INDEX(txq->tpd.align_addr, struct tpd, i);
2206	txq->host_entry[ i ].tpd_dma  = 
2207                             FORE200E_DMA_INDEX(txq->tpd.dma_addr, struct tpd, i);
2208	txq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2209
2210	*txq->host_entry[ i ].status = STATUS_FREE;
2211	
2212	fore200e->bus->write(FORE200E_DMA_INDEX(txq->status.dma_addr, enum status, i), 
2213			     &cp_entry[ i ].status_haddr);
2214	
2215        /* although there is a one-to-one mapping of tx queue entries and tpds,
2216	   we do not write here the DMA (physical) base address of each tpd into
2217	   the related cp resident entry, because the cp relies on this write
2218	   operation to detect that a new pdu has been submitted for tx */
2219    }
2220
2221    /* set the head and tail entries of the queue */
2222    txq->head = 0;
2223    txq->tail = 0;
2224
2225    fore200e->state = FORE200E_STATE_INIT_TXQ;
2226    return 0;
2227}
2228
2229
2230static int fore200e_init_cmd_queue(struct fore200e *fore200e)
2231{
2232    struct host_cmdq*     cmdq =  &fore200e->host_cmdq;
2233    struct cp_cmdq_entry __iomem * cp_entry;
2234    int i;
2235
2236    DPRINTK(2, "command queue is being initialized\n");
2237
2238    /* allocate and align the array of status words */
2239    if (fore200e_dma_chunk_alloc(fore200e,
2240				       &cmdq->status,
2241				       sizeof(enum status), 
2242				       QUEUE_SIZE_CMD,
2243				       fore200e->bus->status_alignment) < 0) {
2244	return -ENOMEM;
2245    }
2246    
2247    /* get the base address of the cp resident cmd queue entries */
2248    cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_cmdq);
2249
2250    /* fill the host resident and cp resident cmd entries */
2251    for (i=0; i < QUEUE_SIZE_CMD; i++) {
2252	
2253	cmdq->host_entry[ i ].status   = 
2254                              FORE200E_INDEX(cmdq->status.align_addr, enum status, i);
2255	cmdq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2256
2257	*cmdq->host_entry[ i ].status = STATUS_FREE;
2258
2259	fore200e->bus->write(FORE200E_DMA_INDEX(cmdq->status.dma_addr, enum status, i), 
2260                             &cp_entry[ i ].status_haddr);
2261    }
2262
2263    /* set the head entry of the queue */
2264    cmdq->head = 0;
2265
2266    fore200e->state = FORE200E_STATE_INIT_CMDQ;
2267    return 0;
2268}
2269
2270
2271static void fore200e_param_bs_queue(struct fore200e *fore200e,
2272				    enum buffer_scheme scheme,
2273				    enum buffer_magn magn, int queue_length,
2274				    int pool_size, int supply_blksize)
2275{
2276    struct bs_spec __iomem * bs_spec = &fore200e->cp_queues->init.bs_spec[ scheme ][ magn ];
2277
2278    fore200e->bus->write(queue_length,                           &bs_spec->queue_length);
2279    fore200e->bus->write(fore200e_rx_buf_size[ scheme ][ magn ], &bs_spec->buffer_size);
2280    fore200e->bus->write(pool_size,                              &bs_spec->pool_size);
2281    fore200e->bus->write(supply_blksize,                         &bs_spec->supply_blksize);
2282}
2283
2284
2285static int fore200e_initialize(struct fore200e *fore200e)
2286{
2287    struct cp_queues __iomem * cpq;
2288    int               ok, scheme, magn;
2289
2290    DPRINTK(2, "device %s being initialized\n", fore200e->name);
2291
2292    mutex_init(&fore200e->rate_mtx);
2293    spin_lock_init(&fore200e->q_lock);
2294
2295    cpq = fore200e->cp_queues = fore200e->virt_base + FORE200E_CP_QUEUES_OFFSET;
2296
2297    /* enable cp to host interrupts */
2298    fore200e->bus->write(1, &cpq->imask);
2299
2300    if (fore200e->bus->irq_enable)
2301	fore200e->bus->irq_enable(fore200e);
2302    
2303    fore200e->bus->write(NBR_CONNECT, &cpq->init.num_connect);
2304
2305    fore200e->bus->write(QUEUE_SIZE_CMD, &cpq->init.cmd_queue_len);
2306    fore200e->bus->write(QUEUE_SIZE_RX,  &cpq->init.rx_queue_len);
2307    fore200e->bus->write(QUEUE_SIZE_TX,  &cpq->init.tx_queue_len);
2308
2309    fore200e->bus->write(RSD_EXTENSION,  &cpq->init.rsd_extension);
2310    fore200e->bus->write(TSD_EXTENSION,  &cpq->init.tsd_extension);
2311
2312    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++)
2313	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++)
2314	    fore200e_param_bs_queue(fore200e, scheme, magn,
2315				    QUEUE_SIZE_BS, 
2316				    fore200e_rx_buf_nbr[ scheme ][ magn ],
2317				    RBD_BLK_SIZE);
2318
2319    /* issue the initialize command */
2320    fore200e->bus->write(STATUS_PENDING,    &cpq->init.status);
2321    fore200e->bus->write(OPCODE_INITIALIZE, &cpq->init.opcode);
2322
2323    ok = fore200e_io_poll(fore200e, &cpq->init.status, STATUS_COMPLETE, 3000);
2324    if (ok == 0) {
2325	printk(FORE200E "device %s initialization failed\n", fore200e->name);
2326	return -ENODEV;
2327    }
2328
2329    printk(FORE200E "device %s initialized\n", fore200e->name);
2330
2331    fore200e->state = FORE200E_STATE_INITIALIZE;
2332    return 0;
2333}
2334
2335
2336static void fore200e_monitor_putc(struct fore200e *fore200e, char c)
2337{
2338    struct cp_monitor __iomem * monitor = fore200e->cp_monitor;
2339
2340#if 0
2341    printk("%c", c);
2342#endif
2343    fore200e->bus->write(((u32) c) | FORE200E_CP_MONITOR_UART_AVAIL, &monitor->soft_uart.send);
2344}
2345
2346
2347static int fore200e_monitor_getc(struct fore200e *fore200e)
2348{
2349    struct cp_monitor __iomem * monitor = fore200e->cp_monitor;
2350    unsigned long      timeout = jiffies + msecs_to_jiffies(50);
2351    int                c;
2352
2353    while (time_before(jiffies, timeout)) {
2354
2355	c = (int) fore200e->bus->read(&monitor->soft_uart.recv);
2356
2357	if (c & FORE200E_CP_MONITOR_UART_AVAIL) {
2358
2359	    fore200e->bus->write(FORE200E_CP_MONITOR_UART_FREE, &monitor->soft_uart.recv);
2360#if 0
2361	    printk("%c", c & 0xFF);
2362#endif
2363	    return c & 0xFF;
2364	}
2365    }
2366
2367    return -1;
2368}
2369
2370
2371static void fore200e_monitor_puts(struct fore200e *fore200e, char *str)
2372{
2373    while (*str) {
2374
2375	/* the i960 monitor doesn't accept any new character if it has something to say */
2376	while (fore200e_monitor_getc(fore200e) >= 0);
2377	
2378	fore200e_monitor_putc(fore200e, *str++);
2379    }
2380
2381    while (fore200e_monitor_getc(fore200e) >= 0);
2382}
2383
2384#ifdef __LITTLE_ENDIAN
2385#define FW_EXT ".bin"
2386#else
2387#define FW_EXT "_ecd.bin2"
2388#endif
2389
2390static int fore200e_load_and_start_fw(struct fore200e *fore200e)
2391{
2392    const struct firmware *firmware;
2393    const struct fw_header *fw_header;
2394    const __le32 *fw_data;
2395    u32 fw_size;
2396    u32 __iomem *load_addr;
2397    char buf[48];
2398    int err;
2399
2400    sprintf(buf, "%s%s", fore200e->bus->proc_name, FW_EXT);
2401    if ((err = request_firmware(&firmware, buf, fore200e->dev)) < 0) {
2402	printk(FORE200E "problem loading firmware image %s\n", fore200e->bus->model_name);
2403	return err;
2404    }
2405
2406    fw_data = (const __le32 *)firmware->data;
2407    fw_size = firmware->size / sizeof(u32);
2408    fw_header = (const struct fw_header *)firmware->data;
2409    load_addr = fore200e->virt_base + le32_to_cpu(fw_header->load_offset);
2410
2411    DPRINTK(2, "device %s firmware being loaded at 0x%p (%d words)\n",
2412	    fore200e->name, load_addr, fw_size);
2413
2414    if (le32_to_cpu(fw_header->magic) != FW_HEADER_MAGIC) {
2415	printk(FORE200E "corrupted %s firmware image\n", fore200e->bus->model_name);
2416	goto release;
2417    }
2418
2419    for (; fw_size--; fw_data++, load_addr++)
2420	fore200e->bus->write(le32_to_cpu(*fw_data), load_addr);
2421
2422    DPRINTK(2, "device %s firmware being started\n", fore200e->name);
2423
2424#if defined(__sparc_v9__)
2425    /* reported to be required by SBA cards on some sparc64 hosts */
2426    fore200e_spin(100);
2427#endif
2428
2429    sprintf(buf, "\rgo %x\r", le32_to_cpu(fw_header->start_offset));
2430    fore200e_monitor_puts(fore200e, buf);
2431
2432    if (fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_CP_RUNNING, 1000) == 0) {
2433	printk(FORE200E "device %s firmware didn't start\n", fore200e->name);
2434	goto release;
2435    }
2436
2437    printk(FORE200E "device %s firmware started\n", fore200e->name);
2438
2439    fore200e->state = FORE200E_STATE_START_FW;
2440    err = 0;
2441
2442release:
2443    release_firmware(firmware);
2444    return err;
2445}
2446
2447
2448static int fore200e_register(struct fore200e *fore200e, struct device *parent)
2449{
2450    struct atm_dev* atm_dev;
2451
2452    DPRINTK(2, "device %s being registered\n", fore200e->name);
2453
2454    atm_dev = atm_dev_register(fore200e->bus->proc_name, parent, &fore200e_ops,
2455                               -1, NULL);
2456    if (atm_dev == NULL) {
2457	printk(FORE200E "unable to register device %s\n", fore200e->name);
2458	return -ENODEV;
2459    }
2460
2461    atm_dev->dev_data = fore200e;
2462    fore200e->atm_dev = atm_dev;
2463
2464    atm_dev->ci_range.vpi_bits = FORE200E_VPI_BITS;
2465    atm_dev->ci_range.vci_bits = FORE200E_VCI_BITS;
2466
2467    fore200e->available_cell_rate = ATM_OC3_PCR;
2468
2469    fore200e->state = FORE200E_STATE_REGISTER;
2470    return 0;
2471}
2472
2473
2474static int fore200e_init(struct fore200e *fore200e, struct device *parent)
2475{
2476    if (fore200e_register(fore200e, parent) < 0)
2477	return -ENODEV;
2478    
2479    if (fore200e->bus->configure(fore200e) < 0)
2480	return -ENODEV;
2481
2482    if (fore200e->bus->map(fore200e) < 0)
2483	return -ENODEV;
2484
2485    if (fore200e_reset(fore200e, 1) < 0)
2486	return -ENODEV;
2487
2488    if (fore200e_load_and_start_fw(fore200e) < 0)
2489	return -ENODEV;
2490
2491    if (fore200e_initialize(fore200e) < 0)
2492	return -ENODEV;
2493
2494    if (fore200e_init_cmd_queue(fore200e) < 0)
2495	return -ENOMEM;
2496
2497    if (fore200e_init_tx_queue(fore200e) < 0)
2498	return -ENOMEM;
2499
2500    if (fore200e_init_rx_queue(fore200e) < 0)
2501	return -ENOMEM;
2502
2503    if (fore200e_init_bs_queue(fore200e) < 0)
2504	return -ENOMEM;
2505
2506    if (fore200e_alloc_rx_buf(fore200e) < 0)
2507	return -ENOMEM;
2508
2509    if (fore200e_get_esi(fore200e) < 0)
2510	return -EIO;
2511
2512    if (fore200e_irq_request(fore200e) < 0)
2513	return -EBUSY;
2514
2515    fore200e_supply(fore200e);
2516
2517    /* all done, board initialization is now complete */
2518    fore200e->state = FORE200E_STATE_COMPLETE;
2519    return 0;
2520}
2521
2522#ifdef CONFIG_SBUS
2523static const struct of_device_id fore200e_sba_match[];
2524static int fore200e_sba_probe(struct platform_device *op)
2525{
2526	const struct of_device_id *match;
2527	struct fore200e *fore200e;
2528	static int index = 0;
2529	int err;
2530
2531	match = of_match_device(fore200e_sba_match, &op->dev);
2532	if (!match)
2533		return -EINVAL;
2534
2535	fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL);
2536	if (!fore200e)
2537		return -ENOMEM;
2538
2539	fore200e->bus = &fore200e_sbus_ops;
2540	fore200e->dev = &op->dev;
2541	fore200e->irq = op->archdata.irqs[0];
2542	fore200e->phys_base = op->resource[0].start;
2543
2544	sprintf(fore200e->name, "SBA-200E-%d", index);
2545
2546	err = fore200e_init(fore200e, &op->dev);
2547	if (err < 0) {
2548		fore200e_shutdown(fore200e);
2549		kfree(fore200e);
2550		return err;
2551	}
2552
2553	index++;
2554	dev_set_drvdata(&op->dev, fore200e);
2555
2556	return 0;
2557}
2558
2559static int fore200e_sba_remove(struct platform_device *op)
2560{
2561	struct fore200e *fore200e = dev_get_drvdata(&op->dev);
2562
2563	fore200e_shutdown(fore200e);
2564	kfree(fore200e);
2565
2566	return 0;
2567}
2568
2569static const struct of_device_id fore200e_sba_match[] = {
2570	{
2571		.name = SBA200E_PROM_NAME,
2572	},
2573	{},
2574};
2575MODULE_DEVICE_TABLE(of, fore200e_sba_match);
2576
2577static struct platform_driver fore200e_sba_driver = {
2578	.driver = {
2579		.name = "fore_200e",
2580		.of_match_table = fore200e_sba_match,
2581	},
2582	.probe		= fore200e_sba_probe,
2583	.remove		= fore200e_sba_remove,
2584};
2585#endif
2586
2587#ifdef CONFIG_PCI
2588static int fore200e_pca_detect(struct pci_dev *pci_dev,
2589			       const struct pci_device_id *pci_ent)
2590{
2591    struct fore200e* fore200e;
2592    int err = 0;
2593    static int index = 0;
2594
2595    if (pci_enable_device(pci_dev)) {
2596	err = -EINVAL;
2597	goto out;
2598    }
2599
2600    if (dma_set_mask_and_coherent(&pci_dev->dev, DMA_BIT_MASK(32))) {
2601	err = -EINVAL;
2602	goto out;
2603    }
2604    
2605    fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL);
2606    if (fore200e == NULL) {
2607	err = -ENOMEM;
2608	goto out_disable;
2609    }
2610
2611    fore200e->bus       = &fore200e_pci_ops;
2612    fore200e->dev	= &pci_dev->dev;
2613    fore200e->irq       = pci_dev->irq;
2614    fore200e->phys_base = pci_resource_start(pci_dev, 0);
2615
2616    sprintf(fore200e->name, "PCA-200E-%d", index - 1);
2617
2618    pci_set_master(pci_dev);
2619
2620    printk(FORE200E "device PCA-200E found at 0x%lx, IRQ %s\n",
2621	   fore200e->phys_base, fore200e_irq_itoa(fore200e->irq));
2622
2623    sprintf(fore200e->name, "PCA-200E-%d", index);
2624
2625    err = fore200e_init(fore200e, &pci_dev->dev);
2626    if (err < 0) {
2627	fore200e_shutdown(fore200e);
2628	goto out_free;
2629    }
2630
2631    ++index;
2632    pci_set_drvdata(pci_dev, fore200e);
2633
2634out:
2635    return err;
2636
2637out_free:
2638    kfree(fore200e);
2639out_disable:
2640    pci_disable_device(pci_dev);
2641    goto out;
2642}
2643
2644
2645static void fore200e_pca_remove_one(struct pci_dev *pci_dev)
2646{
2647    struct fore200e *fore200e;
2648
2649    fore200e = pci_get_drvdata(pci_dev);
2650
2651    fore200e_shutdown(fore200e);
2652    kfree(fore200e);
2653    pci_disable_device(pci_dev);
2654}
2655
2656
2657static const struct pci_device_id fore200e_pca_tbl[] = {
2658    { PCI_VENDOR_ID_FORE, PCI_DEVICE_ID_FORE_PCA200E, PCI_ANY_ID, PCI_ANY_ID },
2659    { 0, }
2660};
2661
2662MODULE_DEVICE_TABLE(pci, fore200e_pca_tbl);
2663
2664static struct pci_driver fore200e_pca_driver = {
2665    .name =     "fore_200e",
2666    .probe =    fore200e_pca_detect,
2667    .remove =   fore200e_pca_remove_one,
2668    .id_table = fore200e_pca_tbl,
2669};
2670#endif
2671
2672static int __init fore200e_module_init(void)
2673{
2674	int err = 0;
2675
2676	printk(FORE200E "FORE Systems 200E-series ATM driver - version " FORE200E_VERSION "\n");
2677
2678#ifdef CONFIG_SBUS
2679	err = platform_driver_register(&fore200e_sba_driver);
2680	if (err)
2681		return err;
2682#endif
2683
2684#ifdef CONFIG_PCI
2685	err = pci_register_driver(&fore200e_pca_driver);
2686#endif
2687
2688#ifdef CONFIG_SBUS
2689	if (err)
2690		platform_driver_unregister(&fore200e_sba_driver);
2691#endif
2692
2693	return err;
2694}
2695
2696static void __exit fore200e_module_cleanup(void)
2697{
2698#ifdef CONFIG_PCI
2699	pci_unregister_driver(&fore200e_pca_driver);
2700#endif
2701#ifdef CONFIG_SBUS
2702	platform_driver_unregister(&fore200e_sba_driver);
2703#endif
2704}
2705
2706static int
2707fore200e_proc_read(struct atm_dev *dev, loff_t* pos, char* page)
2708{
2709    struct fore200e*     fore200e  = FORE200E_DEV(dev);
2710    struct fore200e_vcc* fore200e_vcc;
2711    struct atm_vcc*      vcc;
2712    int                  i, len, left = *pos;
2713    unsigned long        flags;
2714
2715    if (!left--) {
2716
2717	if (fore200e_getstats(fore200e) < 0)
2718	    return -EIO;
2719
2720	len = sprintf(page,"\n"
2721		       " device:\n"
2722		       "   internal name:\t\t%s\n", fore200e->name);
2723
2724	/* print bus-specific information */
2725	if (fore200e->bus->proc_read)
2726	    len += fore200e->bus->proc_read(fore200e, page + len);
2727	
2728	len += sprintf(page + len,
2729		"   interrupt line:\t\t%s\n"
2730		"   physical base address:\t0x%p\n"
2731		"   virtual base address:\t0x%p\n"
2732		"   factory address (ESI):\t%pM\n"
2733		"   board serial number:\t\t%d\n\n",
2734		fore200e_irq_itoa(fore200e->irq),
2735		(void*)fore200e->phys_base,
2736		fore200e->virt_base,
2737		fore200e->esi,
2738		fore200e->esi[4] * 256 + fore200e->esi[5]);
2739
2740	return len;
2741    }
2742
2743    if (!left--)
2744	return sprintf(page,
2745		       "   free small bufs, scheme 1:\t%d\n"
2746		       "   free large bufs, scheme 1:\t%d\n"
2747		       "   free small bufs, scheme 2:\t%d\n"
2748		       "   free large bufs, scheme 2:\t%d\n",
2749		       fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_SMALL ].freebuf_count,
2750		       fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_LARGE ].freebuf_count,
2751		       fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_SMALL ].freebuf_count,
2752		       fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_LARGE ].freebuf_count);
2753
2754    if (!left--) {
2755	u32 hb = fore200e->bus->read(&fore200e->cp_queues->heartbeat);
2756
2757	len = sprintf(page,"\n\n"
2758		      " cell processor:\n"
2759		      "   heartbeat state:\t\t");
2760	
2761	if (hb >> 16 != 0xDEAD)
2762	    len += sprintf(page + len, "0x%08x\n", hb);
2763	else
2764	    len += sprintf(page + len, "*** FATAL ERROR %04x ***\n", hb & 0xFFFF);
2765
2766	return len;
2767    }
2768
2769    if (!left--) {
2770	static const char* media_name[] = {
2771	    "unshielded twisted pair",
2772	    "multimode optical fiber ST",
2773	    "multimode optical fiber SC",
2774	    "single-mode optical fiber ST",
2775	    "single-mode optical fiber SC",
2776	    "unknown"
2777	};
2778
2779	static const char* oc3_mode[] = {
2780	    "normal operation",
2781	    "diagnostic loopback",
2782	    "line loopback",
2783	    "unknown"
2784	};
2785
2786	u32 fw_release     = fore200e->bus->read(&fore200e->cp_queues->fw_release);
2787	u32 mon960_release = fore200e->bus->read(&fore200e->cp_queues->mon960_release);
2788	u32 oc3_revision   = fore200e->bus->read(&fore200e->cp_queues->oc3_revision);
2789	u32 media_index    = FORE200E_MEDIA_INDEX(fore200e->bus->read(&fore200e->cp_queues->media_type));
2790	u32 oc3_index;
2791
2792	if (media_index > 4)
2793		media_index = 5;
2794	
2795	switch (fore200e->loop_mode) {
2796	    case ATM_LM_NONE:    oc3_index = 0;
2797		                 break;
2798	    case ATM_LM_LOC_PHY: oc3_index = 1;
2799		                 break;
2800	    case ATM_LM_RMT_PHY: oc3_index = 2;
2801		                 break;
2802	    default:             oc3_index = 3;
2803	}
2804
2805	return sprintf(page,
2806		       "   firmware release:\t\t%d.%d.%d\n"
2807		       "   monitor release:\t\t%d.%d\n"
2808		       "   media type:\t\t\t%s\n"
2809		       "   OC-3 revision:\t\t0x%x\n"
2810                       "   OC-3 mode:\t\t\t%s",
2811		       fw_release >> 16, fw_release << 16 >> 24,  fw_release << 24 >> 24,
2812		       mon960_release >> 16, mon960_release << 16 >> 16,
2813		       media_name[ media_index ],
2814		       oc3_revision,
2815		       oc3_mode[ oc3_index ]);
2816    }
2817
2818    if (!left--) {
2819	struct cp_monitor __iomem * cp_monitor = fore200e->cp_monitor;
2820
2821	return sprintf(page,
2822		       "\n\n"
2823		       " monitor:\n"
2824		       "   version number:\t\t%d\n"
2825		       "   boot status word:\t\t0x%08x\n",
2826		       fore200e->bus->read(&cp_monitor->mon_version),
2827		       fore200e->bus->read(&cp_monitor->bstat));
2828    }
2829
2830    if (!left--)
2831	return sprintf(page,
2832		       "\n"
2833		       " device statistics:\n"
2834		       "  4b5b:\n"
2835		       "     crc_header_errors:\t\t%10u\n"
2836		       "     framing_errors:\t\t%10u\n",
2837		       be32_to_cpu(fore200e->stats->phy.crc_header_errors),
2838		       be32_to_cpu(fore200e->stats->phy.framing_errors));
2839    
2840    if (!left--)
2841	return sprintf(page, "\n"
2842		       "  OC-3:\n"
2843		       "     section_bip8_errors:\t%10u\n"
2844		       "     path_bip8_errors:\t\t%10u\n"
2845		       "     line_bip24_errors:\t\t%10u\n"
2846		       "     line_febe_errors:\t\t%10u\n"
2847		       "     path_febe_errors:\t\t%10u\n"
2848		       "     corr_hcs_errors:\t\t%10u\n"
2849		       "     ucorr_hcs_errors:\t\t%10u\n",
2850		       be32_to_cpu(fore200e->stats->oc3.section_bip8_errors),
2851		       be32_to_cpu(fore200e->stats->oc3.path_bip8_errors),
2852		       be32_to_cpu(fore200e->stats->oc3.line_bip24_errors),
2853		       be32_to_cpu(fore200e->stats->oc3.line_febe_errors),
2854		       be32_to_cpu(fore200e->stats->oc3.path_febe_errors),
2855		       be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors),
2856		       be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors));
2857
2858    if (!left--)
2859	return sprintf(page,"\n"
2860		       "   ATM:\t\t\t\t     cells\n"
2861		       "     TX:\t\t\t%10u\n"
2862		       "     RX:\t\t\t%10u\n"
2863		       "     vpi out of range:\t\t%10u\n"
2864		       "     vpi no conn:\t\t%10u\n"
2865		       "     vci out of range:\t\t%10u\n"
2866		       "     vci no conn:\t\t%10u\n",
2867		       be32_to_cpu(fore200e->stats->atm.cells_transmitted),
2868		       be32_to_cpu(fore200e->stats->atm.cells_received),
2869		       be32_to_cpu(fore200e->stats->atm.vpi_bad_range),
2870		       be32_to_cpu(fore200e->stats->atm.vpi_no_conn),
2871		       be32_to_cpu(fore200e->stats->atm.vci_bad_range),
2872		       be32_to_cpu(fore200e->stats->atm.vci_no_conn));
2873    
2874    if (!left--)
2875	return sprintf(page,"\n"
2876		       "   AAL0:\t\t\t     cells\n"
2877		       "     TX:\t\t\t%10u\n"
2878		       "     RX:\t\t\t%10u\n"
2879		       "     dropped:\t\t\t%10u\n",
2880		       be32_to_cpu(fore200e->stats->aal0.cells_transmitted),
2881		       be32_to_cpu(fore200e->stats->aal0.cells_received),
2882		       be32_to_cpu(fore200e->stats->aal0.cells_dropped));
2883    
2884    if (!left--)
2885	return sprintf(page,"\n"
2886		       "   AAL3/4:\n"
2887		       "     SAR sublayer:\t\t     cells\n"
2888		       "       TX:\t\t\t%10u\n"
2889		       "       RX:\t\t\t%10u\n"
2890		       "       dropped:\t\t\t%10u\n"
2891		       "       CRC errors:\t\t%10u\n"
2892		       "       protocol errors:\t\t%10u\n\n"
2893		       "     CS  sublayer:\t\t      PDUs\n"
2894		       "       TX:\t\t\t%10u\n"
2895		       "       RX:\t\t\t%10u\n"
2896		       "       dropped:\t\t\t%10u\n"
2897		       "       protocol errors:\t\t%10u\n",
2898		       be32_to_cpu(fore200e->stats->aal34.cells_transmitted),
2899		       be32_to_cpu(fore200e->stats->aal34.cells_received),
2900		       be32_to_cpu(fore200e->stats->aal34.cells_dropped),
2901		       be32_to_cpu(fore200e->stats->aal34.cells_crc_errors),
2902		       be32_to_cpu(fore200e->stats->aal34.cells_protocol_errors),
2903		       be32_to_cpu(fore200e->stats->aal34.cspdus_transmitted),
2904		       be32_to_cpu(fore200e->stats->aal34.cspdus_received),
2905		       be32_to_cpu(fore200e->stats->aal34.cspdus_dropped),
2906		       be32_to_cpu(fore200e->stats->aal34.cspdus_protocol_errors));
2907    
2908    if (!left--)
2909	return sprintf(page,"\n"
2910		       "   AAL5:\n"
2911		       "     SAR sublayer:\t\t     cells\n"
2912		       "       TX:\t\t\t%10u\n"
2913		       "       RX:\t\t\t%10u\n"
2914		       "       dropped:\t\t\t%10u\n"
2915		       "       congestions:\t\t%10u\n\n"
2916		       "     CS  sublayer:\t\t      PDUs\n"
2917		       "       TX:\t\t\t%10u\n"
2918		       "       RX:\t\t\t%10u\n"
2919		       "       dropped:\t\t\t%10u\n"
2920		       "       CRC errors:\t\t%10u\n"
2921		       "       protocol errors:\t\t%10u\n",
2922		       be32_to_cpu(fore200e->stats->aal5.cells_transmitted),
2923		       be32_to_cpu(fore200e->stats->aal5.cells_received),
2924		       be32_to_cpu(fore200e->stats->aal5.cells_dropped),
2925		       be32_to_cpu(fore200e->stats->aal5.congestion_experienced),
2926		       be32_to_cpu(fore200e->stats->aal5.cspdus_transmitted),
2927		       be32_to_cpu(fore200e->stats->aal5.cspdus_received),
2928		       be32_to_cpu(fore200e->stats->aal5.cspdus_dropped),
2929		       be32_to_cpu(fore200e->stats->aal5.cspdus_crc_errors),
2930		       be32_to_cpu(fore200e->stats->aal5.cspdus_protocol_errors));
2931    
2932    if (!left--)
2933	return sprintf(page,"\n"
2934		       "   AUX:\t\t       allocation failures\n"
2935		       "     small b1:\t\t\t%10u\n"
2936		       "     large b1:\t\t\t%10u\n"
2937		       "     small b2:\t\t\t%10u\n"
2938		       "     large b2:\t\t\t%10u\n"
2939		       "     RX PDUs:\t\t\t%10u\n"
2940		       "     TX PDUs:\t\t\t%10lu\n",
2941		       be32_to_cpu(fore200e->stats->aux.small_b1_failed),
2942		       be32_to_cpu(fore200e->stats->aux.large_b1_failed),
2943		       be32_to_cpu(fore200e->stats->aux.small_b2_failed),
2944		       be32_to_cpu(fore200e->stats->aux.large_b2_failed),
2945		       be32_to_cpu(fore200e->stats->aux.rpd_alloc_failed),
2946		       fore200e->tx_sat);
2947    
2948    if (!left--)
2949	return sprintf(page,"\n"
2950		       " receive carrier:\t\t\t%s\n",
2951		       fore200e->stats->aux.receive_carrier ? "ON" : "OFF!");
2952    
2953    if (!left--) {
2954        return sprintf(page,"\n"
2955		       " VCCs:\n  address   VPI VCI   AAL "
2956		       "TX PDUs   TX min/max size  RX PDUs   RX min/max size\n");
2957    }
2958
2959    for (i = 0; i < NBR_CONNECT; i++) {
2960
2961	vcc = fore200e->vc_map[i].vcc;
2962
2963	if (vcc == NULL)
2964	    continue;
2965
2966	spin_lock_irqsave(&fore200e->q_lock, flags);
2967
2968	if (vcc && test_bit(ATM_VF_READY, &vcc->flags) && !left--) {
2969
2970	    fore200e_vcc = FORE200E_VCC(vcc);
2971	    ASSERT(fore200e_vcc);
2972
2973	    len = sprintf(page,
2974			  "  %pK  %03d %05d %1d   %09lu %05d/%05d      %09lu %05d/%05d\n",
2975			  vcc,
2976			  vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
2977			  fore200e_vcc->tx_pdu,
2978			  fore200e_vcc->tx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->tx_min_pdu,
2979			  fore200e_vcc->tx_max_pdu,
2980			  fore200e_vcc->rx_pdu,
2981			  fore200e_vcc->rx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->rx_min_pdu,
2982			  fore200e_vcc->rx_max_pdu);
2983
2984	    spin_unlock_irqrestore(&fore200e->q_lock, flags);
2985	    return len;
2986	}
2987
2988	spin_unlock_irqrestore(&fore200e->q_lock, flags);
2989    }
2990    
2991    return 0;
2992}
2993
2994module_init(fore200e_module_init);
2995module_exit(fore200e_module_cleanup);
2996
2997
2998static const struct atmdev_ops fore200e_ops = {
2999	.open       = fore200e_open,
3000	.close      = fore200e_close,
3001	.ioctl      = fore200e_ioctl,
3002	.send       = fore200e_send,
3003	.change_qos = fore200e_change_qos,
3004	.proc_read  = fore200e_proc_read,
3005	.owner      = THIS_MODULE
3006};
3007
3008MODULE_LICENSE("GPL");
3009#ifdef CONFIG_PCI
3010#ifdef __LITTLE_ENDIAN__
3011MODULE_FIRMWARE("pca200e.bin");
3012#else
3013MODULE_FIRMWARE("pca200e_ecd.bin2");
3014#endif
3015#endif /* CONFIG_PCI */
3016#ifdef CONFIG_SBUS
3017MODULE_FIRMWARE("sba200e_ecd.bin2");
3018#endif
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3  A FORE Systems 200E-series driver for ATM on Linux.
   4  Christophe Lizzi (lizzi@cnam.fr), October 1999-March 2003.
   5
   6  Based on the PCA-200E driver from Uwe Dannowski (Uwe.Dannowski@inf.tu-dresden.de).
   7
   8  This driver simultaneously supports PCA-200E and SBA-200E adapters
   9  on i386, alpha (untested), powerpc, sparc and sparc64 architectures.
  10
  11*/
  12
  13
  14#include <linux/kernel.h>
  15#include <linux/slab.h>
  16#include <linux/init.h>
  17#include <linux/capability.h>
  18#include <linux/interrupt.h>
  19#include <linux/bitops.h>
  20#include <linux/pci.h>
  21#include <linux/module.h>
  22#include <linux/atmdev.h>
  23#include <linux/sonet.h>
  24#include <linux/dma-mapping.h>
  25#include <linux/delay.h>
  26#include <linux/firmware.h>
  27#include <linux/pgtable.h>
  28#include <asm/io.h>
  29#include <asm/string.h>
  30#include <asm/page.h>
  31#include <asm/irq.h>
  32#include <asm/dma.h>
  33#include <asm/byteorder.h>
  34#include <linux/uaccess.h>
  35#include <linux/atomic.h>
  36
  37#ifdef CONFIG_SBUS
  38#include <linux/of.h>
  39#include <linux/platform_device.h>
  40#include <asm/idprom.h>
  41#include <asm/openprom.h>
  42#include <asm/oplib.h>
  43#endif
  44
  45#if defined(CONFIG_ATM_FORE200E_USE_TASKLET) /* defer interrupt work to a tasklet */
  46#define FORE200E_USE_TASKLET
  47#endif
  48
  49#if 0 /* enable the debugging code of the buffer supply queues */
  50#define FORE200E_BSQ_DEBUG
  51#endif
  52
  53#if 1 /* ensure correct handling of 52-byte AAL0 SDUs expected by atmdump-like apps */
  54#define FORE200E_52BYTE_AAL0_SDU
  55#endif
  56
  57#include "fore200e.h"
  58#include "suni.h"
  59
  60#define FORE200E_VERSION "0.3e"
  61
  62#define FORE200E         "fore200e: "
  63
  64#if 0 /* override .config */
  65#define CONFIG_ATM_FORE200E_DEBUG 1
  66#endif
  67#if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0)
  68#define DPRINTK(level, format, args...)  do { if (CONFIG_ATM_FORE200E_DEBUG >= (level)) \
  69                                                  printk(FORE200E format, ##args); } while (0)
  70#else
  71#define DPRINTK(level, format, args...)  do {} while (0)
  72#endif
  73
  74
  75#define FORE200E_ALIGN(addr, alignment) \
  76        ((((unsigned long)(addr) + (alignment - 1)) & ~(alignment - 1)) - (unsigned long)(addr))
  77
  78#define FORE200E_DMA_INDEX(dma_addr, type, index)  ((dma_addr) + (index) * sizeof(type))
  79
  80#define FORE200E_INDEX(virt_addr, type, index)     (&((type *)(virt_addr))[ index ])
  81
  82#define FORE200E_NEXT_ENTRY(index, modulo)         (index = ((index) + 1) % (modulo))
  83
  84#if 1
  85#define ASSERT(expr)     if (!(expr)) { \
  86			     printk(FORE200E "assertion failed! %s[%d]: %s\n", \
  87				    __func__, __LINE__, #expr); \
  88			     panic(FORE200E "%s", __func__); \
  89			 }
  90#else
  91#define ASSERT(expr)     do {} while (0)
  92#endif
  93
  94
  95static const struct atmdev_ops   fore200e_ops;
  96
 
 
 
  97MODULE_AUTHOR("Christophe Lizzi - credits to Uwe Dannowski and Heikki Vatiainen");
  98MODULE_DESCRIPTION("FORE Systems 200E-series ATM driver - version " FORE200E_VERSION);
  99
 100static const int fore200e_rx_buf_nbr[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = {
 101    { BUFFER_S1_NBR, BUFFER_L1_NBR },
 102    { BUFFER_S2_NBR, BUFFER_L2_NBR }
 103};
 104
 105static const int fore200e_rx_buf_size[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = {
 106    { BUFFER_S1_SIZE, BUFFER_L1_SIZE },
 107    { BUFFER_S2_SIZE, BUFFER_L2_SIZE }
 108};
 109
 110
 111#if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0)
 112static const char* fore200e_traffic_class[] = { "NONE", "UBR", "CBR", "VBR", "ABR", "ANY" };
 113#endif
 114
 115
 116#if 0 /* currently unused */
 117static int 
 118fore200e_fore2atm_aal(enum fore200e_aal aal)
 119{
 120    switch(aal) {
 121    case FORE200E_AAL0:  return ATM_AAL0;
 122    case FORE200E_AAL34: return ATM_AAL34;
 123    case FORE200E_AAL5:  return ATM_AAL5;
 124    }
 125
 126    return -EINVAL;
 127}
 128#endif
 129
 130
 131static enum fore200e_aal
 132fore200e_atm2fore_aal(int aal)
 133{
 134    switch(aal) {
 135    case ATM_AAL0:  return FORE200E_AAL0;
 136    case ATM_AAL34: return FORE200E_AAL34;
 137    case ATM_AAL1:
 138    case ATM_AAL2:
 139    case ATM_AAL5:  return FORE200E_AAL5;
 140    }
 141
 142    return -EINVAL;
 143}
 144
 145
 146static char*
 147fore200e_irq_itoa(int irq)
 148{
 149    static char str[8];
 150    sprintf(str, "%d", irq);
 151    return str;
 152}
 153
 154
 155/* allocate and align a chunk of memory intended to hold the data behing exchanged
 156   between the driver and the adapter (using streaming DVMA) */
 157
 158static int
 159fore200e_chunk_alloc(struct fore200e* fore200e, struct chunk* chunk, int size, int alignment, int direction)
 160{
 161    unsigned long offset = 0;
 162
 163    if (alignment <= sizeof(int))
 164	alignment = 0;
 165
 166    chunk->alloc_size = size + alignment;
 167    chunk->direction  = direction;
 168
 169    chunk->alloc_addr = kzalloc(chunk->alloc_size, GFP_KERNEL);
 170    if (chunk->alloc_addr == NULL)
 171	return -ENOMEM;
 172
 173    if (alignment > 0)
 174	offset = FORE200E_ALIGN(chunk->alloc_addr, alignment); 
 175    
 176    chunk->align_addr = chunk->alloc_addr + offset;
 177
 178    chunk->dma_addr = dma_map_single(fore200e->dev, chunk->align_addr,
 179				     size, direction);
 180    if (dma_mapping_error(fore200e->dev, chunk->dma_addr)) {
 181	kfree(chunk->alloc_addr);
 182	return -ENOMEM;
 183    }
 184    return 0;
 185}
 186
 187
 188/* free a chunk of memory */
 189
 190static void
 191fore200e_chunk_free(struct fore200e* fore200e, struct chunk* chunk)
 192{
 193    dma_unmap_single(fore200e->dev, chunk->dma_addr, chunk->dma_size,
 194		     chunk->direction);
 195    kfree(chunk->alloc_addr);
 196}
 197
 198/*
 199 * Allocate a DMA consistent chunk of memory intended to act as a communication
 200 * mechanism (to hold descriptors, status, queues, etc.) shared by the driver
 201 * and the adapter.
 202 */
 203static int
 204fore200e_dma_chunk_alloc(struct fore200e *fore200e, struct chunk *chunk,
 205		int size, int nbr, int alignment)
 206{
 207	/* returned chunks are page-aligned */
 208	chunk->alloc_size = size * nbr;
 209	chunk->alloc_addr = dma_alloc_coherent(fore200e->dev, chunk->alloc_size,
 210					       &chunk->dma_addr, GFP_KERNEL);
 211	if (!chunk->alloc_addr)
 212		return -ENOMEM;
 213	chunk->align_addr = chunk->alloc_addr;
 214	return 0;
 215}
 216
 217/*
 218 * Free a DMA consistent chunk of memory.
 219 */
 220static void
 221fore200e_dma_chunk_free(struct fore200e* fore200e, struct chunk* chunk)
 222{
 223	dma_free_coherent(fore200e->dev, chunk->alloc_size, chunk->alloc_addr,
 224			  chunk->dma_addr);
 225}
 226
 227static void
 228fore200e_spin(int msecs)
 229{
 230    unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
 231    while (time_before(jiffies, timeout));
 232}
 233
 234
 235static int
 236fore200e_poll(struct fore200e* fore200e, volatile u32* addr, u32 val, int msecs)
 237{
 238    unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
 239    int           ok;
 240
 241    mb();
 242    do {
 243	if ((ok = (*addr == val)) || (*addr & STATUS_ERROR))
 244	    break;
 245
 246    } while (time_before(jiffies, timeout));
 247
 248#if 1
 249    if (!ok) {
 250	printk(FORE200E "cmd polling failed, got status 0x%08x, expected 0x%08x\n",
 251	       *addr, val);
 252    }
 253#endif
 254
 255    return ok;
 256}
 257
 258
 259static int
 260fore200e_io_poll(struct fore200e* fore200e, volatile u32 __iomem *addr, u32 val, int msecs)
 261{
 262    unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
 263    int           ok;
 264
 265    do {
 266	if ((ok = (fore200e->bus->read(addr) == val)))
 267	    break;
 268
 269    } while (time_before(jiffies, timeout));
 270
 271#if 1
 272    if (!ok) {
 273	printk(FORE200E "I/O polling failed, got status 0x%08x, expected 0x%08x\n",
 274	       fore200e->bus->read(addr), val);
 275    }
 276#endif
 277
 278    return ok;
 279}
 280
 281
 282static void
 283fore200e_free_rx_buf(struct fore200e* fore200e)
 284{
 285    int scheme, magn, nbr;
 286    struct buffer* buffer;
 287
 288    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
 289	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
 290
 291	    if ((buffer = fore200e->host_bsq[ scheme ][ magn ].buffer) != NULL) {
 292
 293		for (nbr = 0; nbr < fore200e_rx_buf_nbr[ scheme ][ magn ]; nbr++) {
 294
 295		    struct chunk* data = &buffer[ nbr ].data;
 296
 297		    if (data->alloc_addr != NULL)
 298			fore200e_chunk_free(fore200e, data);
 299		}
 300	    }
 301	}
 302    }
 303}
 304
 305
 306static void
 307fore200e_uninit_bs_queue(struct fore200e* fore200e)
 308{
 309    int scheme, magn;
 310    
 311    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
 312	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
 313
 314	    struct chunk* status    = &fore200e->host_bsq[ scheme ][ magn ].status;
 315	    struct chunk* rbd_block = &fore200e->host_bsq[ scheme ][ magn ].rbd_block;
 316	    
 317	    if (status->alloc_addr)
 318		fore200e_dma_chunk_free(fore200e, status);
 319	    
 320	    if (rbd_block->alloc_addr)
 321		fore200e_dma_chunk_free(fore200e, rbd_block);
 322	}
 323    }
 324}
 325
 326
 327static int
 328fore200e_reset(struct fore200e* fore200e, int diag)
 329{
 330    int ok;
 331
 332    fore200e->cp_monitor = fore200e->virt_base + FORE200E_CP_MONITOR_OFFSET;
 333    
 334    fore200e->bus->write(BSTAT_COLD_START, &fore200e->cp_monitor->bstat);
 335
 336    fore200e->bus->reset(fore200e);
 337
 338    if (diag) {
 339	ok = fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_SELFTEST_OK, 1000);
 340	if (ok == 0) {
 341	    
 342	    printk(FORE200E "device %s self-test failed\n", fore200e->name);
 343	    return -ENODEV;
 344	}
 345
 346	printk(FORE200E "device %s self-test passed\n", fore200e->name);
 347	
 348	fore200e->state = FORE200E_STATE_RESET;
 349    }
 350
 351    return 0;
 352}
 353
 354
 355static void
 356fore200e_shutdown(struct fore200e* fore200e)
 357{
 358    printk(FORE200E "removing device %s at 0x%lx, IRQ %s\n",
 359	   fore200e->name, fore200e->phys_base, 
 360	   fore200e_irq_itoa(fore200e->irq));
 361    
 362    if (fore200e->state > FORE200E_STATE_RESET) {
 363	/* first, reset the board to prevent further interrupts or data transfers */
 364	fore200e_reset(fore200e, 0);
 365    }
 366    
 367    /* then, release all allocated resources */
 368    switch(fore200e->state) {
 369
 370    case FORE200E_STATE_COMPLETE:
 371	kfree(fore200e->stats);
 372
 373	fallthrough;
 374    case FORE200E_STATE_IRQ:
 375	free_irq(fore200e->irq, fore200e->atm_dev);
 376
 377	fallthrough;
 378    case FORE200E_STATE_ALLOC_BUF:
 379	fore200e_free_rx_buf(fore200e);
 380
 381	fallthrough;
 382    case FORE200E_STATE_INIT_BSQ:
 383	fore200e_uninit_bs_queue(fore200e);
 384
 385	fallthrough;
 386    case FORE200E_STATE_INIT_RXQ:
 387	fore200e_dma_chunk_free(fore200e, &fore200e->host_rxq.status);
 388	fore200e_dma_chunk_free(fore200e, &fore200e->host_rxq.rpd);
 389
 390	fallthrough;
 391    case FORE200E_STATE_INIT_TXQ:
 392	fore200e_dma_chunk_free(fore200e, &fore200e->host_txq.status);
 393	fore200e_dma_chunk_free(fore200e, &fore200e->host_txq.tpd);
 394
 395	fallthrough;
 396    case FORE200E_STATE_INIT_CMDQ:
 397	fore200e_dma_chunk_free(fore200e, &fore200e->host_cmdq.status);
 398
 399	fallthrough;
 400    case FORE200E_STATE_INITIALIZE:
 401	/* nothing to do for that state */
 402
 403    case FORE200E_STATE_START_FW:
 404	/* nothing to do for that state */
 405
 406    case FORE200E_STATE_RESET:
 407	/* nothing to do for that state */
 408
 409    case FORE200E_STATE_MAP:
 410	fore200e->bus->unmap(fore200e);
 411
 412	fallthrough;
 413    case FORE200E_STATE_CONFIGURE:
 414	/* nothing to do for that state */
 415
 416    case FORE200E_STATE_REGISTER:
 417	/* XXX shouldn't we *start* by deregistering the device? */
 418	atm_dev_deregister(fore200e->atm_dev);
 419
 420	fallthrough;
 421    case FORE200E_STATE_BLANK:
 422	/* nothing to do for that state */
 423	break;
 424    }
 425}
 426
 427
 428#ifdef CONFIG_PCI
 429
 430static u32 fore200e_pca_read(volatile u32 __iomem *addr)
 431{
 432    /* on big-endian hosts, the board is configured to convert
 433       the endianess of slave RAM accesses  */
 434    return le32_to_cpu(readl(addr));
 435}
 436
 437
 438static void fore200e_pca_write(u32 val, volatile u32 __iomem *addr)
 439{
 440    /* on big-endian hosts, the board is configured to convert
 441       the endianess of slave RAM accesses  */
 442    writel(cpu_to_le32(val), addr);
 443}
 444
 445static int
 446fore200e_pca_irq_check(struct fore200e* fore200e)
 447{
 448    /* this is a 1 bit register */
 449    int irq_posted = readl(fore200e->regs.pca.psr);
 450
 451#if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG == 2)
 452    if (irq_posted && (readl(fore200e->regs.pca.hcr) & PCA200E_HCR_OUTFULL)) {
 453	DPRINTK(2,"FIFO OUT full, device %d\n", fore200e->atm_dev->number);
 454    }
 455#endif
 456
 457    return irq_posted;
 458}
 459
 460
 461static void
 462fore200e_pca_irq_ack(struct fore200e* fore200e)
 463{
 464    writel(PCA200E_HCR_CLRINTR, fore200e->regs.pca.hcr);
 465}
 466
 467
 468static void
 469fore200e_pca_reset(struct fore200e* fore200e)
 470{
 471    writel(PCA200E_HCR_RESET, fore200e->regs.pca.hcr);
 472    fore200e_spin(10);
 473    writel(0, fore200e->regs.pca.hcr);
 474}
 475
 476
 477static int fore200e_pca_map(struct fore200e* fore200e)
 478{
 479    DPRINTK(2, "device %s being mapped in memory\n", fore200e->name);
 480
 481    fore200e->virt_base = ioremap(fore200e->phys_base, PCA200E_IOSPACE_LENGTH);
 482    
 483    if (fore200e->virt_base == NULL) {
 484	printk(FORE200E "can't map device %s\n", fore200e->name);
 485	return -EFAULT;
 486    }
 487
 488    DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base);
 489
 490    /* gain access to the PCA specific registers  */
 491    fore200e->regs.pca.hcr = fore200e->virt_base + PCA200E_HCR_OFFSET;
 492    fore200e->regs.pca.imr = fore200e->virt_base + PCA200E_IMR_OFFSET;
 493    fore200e->regs.pca.psr = fore200e->virt_base + PCA200E_PSR_OFFSET;
 494
 495    fore200e->state = FORE200E_STATE_MAP;
 496    return 0;
 497}
 498
 499
 500static void
 501fore200e_pca_unmap(struct fore200e* fore200e)
 502{
 503    DPRINTK(2, "device %s being unmapped from memory\n", fore200e->name);
 504
 505    if (fore200e->virt_base != NULL)
 506	iounmap(fore200e->virt_base);
 507}
 508
 509
 510static int fore200e_pca_configure(struct fore200e *fore200e)
 511{
 512    struct pci_dev *pci_dev = to_pci_dev(fore200e->dev);
 513    u8              master_ctrl, latency;
 514
 515    DPRINTK(2, "device %s being configured\n", fore200e->name);
 516
 517    if ((pci_dev->irq == 0) || (pci_dev->irq == 0xFF)) {
 518	printk(FORE200E "incorrect IRQ setting - misconfigured PCI-PCI bridge?\n");
 519	return -EIO;
 520    }
 521
 522    pci_read_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, &master_ctrl);
 523
 524    master_ctrl = master_ctrl
 525#if defined(__BIG_ENDIAN)
 526	/* request the PCA board to convert the endianess of slave RAM accesses */
 527	| PCA200E_CTRL_CONVERT_ENDIAN
 528#endif
 529#if 0
 530        | PCA200E_CTRL_DIS_CACHE_RD
 531        | PCA200E_CTRL_DIS_WRT_INVAL
 532        | PCA200E_CTRL_ENA_CONT_REQ_MODE
 533        | PCA200E_CTRL_2_CACHE_WRT_INVAL
 534#endif
 535	| PCA200E_CTRL_LARGE_PCI_BURSTS;
 536    
 537    pci_write_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, master_ctrl);
 538
 539    /* raise latency from 32 (default) to 192, as this seems to prevent NIC
 540       lockups (under heavy rx loads) due to continuous 'FIFO OUT full' condition.
 541       this may impact the performances of other PCI devices on the same bus, though */
 542    latency = 192;
 543    pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, latency);
 544
 545    fore200e->state = FORE200E_STATE_CONFIGURE;
 546    return 0;
 547}
 548
 549
 550static int __init
 551fore200e_pca_prom_read(struct fore200e* fore200e, struct prom_data* prom)
 552{
 553    struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
 554    struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
 555    struct prom_opcode      opcode;
 556    int                     ok;
 557    u32                     prom_dma;
 558
 559    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
 560
 561    opcode.opcode = OPCODE_GET_PROM;
 562    opcode.pad    = 0;
 563
 564    prom_dma = dma_map_single(fore200e->dev, prom, sizeof(struct prom_data),
 565			      DMA_FROM_DEVICE);
 566    if (dma_mapping_error(fore200e->dev, prom_dma))
 567	return -ENOMEM;
 568
 569    fore200e->bus->write(prom_dma, &entry->cp_entry->cmd.prom_block.prom_haddr);
 570    
 571    *entry->status = STATUS_PENDING;
 572
 573    fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.prom_block.opcode);
 574
 575    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
 576
 577    *entry->status = STATUS_FREE;
 578
 579    dma_unmap_single(fore200e->dev, prom_dma, sizeof(struct prom_data), DMA_FROM_DEVICE);
 580
 581    if (ok == 0) {
 582	printk(FORE200E "unable to get PROM data from device %s\n", fore200e->name);
 583	return -EIO;
 584    }
 585
 586#if defined(__BIG_ENDIAN)
 587    
 588#define swap_here(addr) (*((u32*)(addr)) = swab32( *((u32*)(addr)) ))
 589
 590    /* MAC address is stored as little-endian */
 591    swap_here(&prom->mac_addr[0]);
 592    swap_here(&prom->mac_addr[4]);
 593#endif
 594    
 595    return 0;
 596}
 597
 598
 599static int
 600fore200e_pca_proc_read(struct fore200e* fore200e, char *page)
 601{
 602    struct pci_dev *pci_dev = to_pci_dev(fore200e->dev);
 603
 604    return sprintf(page, "   PCI bus/slot/function:\t%d/%d/%d\n",
 605		   pci_dev->bus->number, PCI_SLOT(pci_dev->devfn), PCI_FUNC(pci_dev->devfn));
 606}
 607
 608static const struct fore200e_bus fore200e_pci_ops = {
 609	.model_name		= "PCA-200E",
 610	.proc_name		= "pca200e",
 611	.descr_alignment	= 32,
 612	.buffer_alignment	= 4,
 613	.status_alignment	= 32,
 614	.read			= fore200e_pca_read,
 615	.write			= fore200e_pca_write,
 616	.configure		= fore200e_pca_configure,
 617	.map			= fore200e_pca_map,
 618	.reset			= fore200e_pca_reset,
 619	.prom_read		= fore200e_pca_prom_read,
 620	.unmap			= fore200e_pca_unmap,
 621	.irq_check		= fore200e_pca_irq_check,
 622	.irq_ack		= fore200e_pca_irq_ack,
 623	.proc_read		= fore200e_pca_proc_read,
 624};
 625#endif /* CONFIG_PCI */
 626
 627#ifdef CONFIG_SBUS
 628
 629static u32 fore200e_sba_read(volatile u32 __iomem *addr)
 630{
 631    return sbus_readl(addr);
 632}
 633
 634static void fore200e_sba_write(u32 val, volatile u32 __iomem *addr)
 635{
 636    sbus_writel(val, addr);
 637}
 638
 639static void fore200e_sba_irq_enable(struct fore200e *fore200e)
 640{
 641	u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY;
 642	fore200e->bus->write(hcr | SBA200E_HCR_INTR_ENA, fore200e->regs.sba.hcr);
 643}
 644
 645static int fore200e_sba_irq_check(struct fore200e *fore200e)
 646{
 647	return fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_INTR_REQ;
 648}
 649
 650static void fore200e_sba_irq_ack(struct fore200e *fore200e)
 651{
 652	u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY;
 653	fore200e->bus->write(hcr | SBA200E_HCR_INTR_CLR, fore200e->regs.sba.hcr);
 654}
 655
 656static void fore200e_sba_reset(struct fore200e *fore200e)
 657{
 658	fore200e->bus->write(SBA200E_HCR_RESET, fore200e->regs.sba.hcr);
 659	fore200e_spin(10);
 660	fore200e->bus->write(0, fore200e->regs.sba.hcr);
 661}
 662
 663static int __init fore200e_sba_map(struct fore200e *fore200e)
 664{
 665	struct platform_device *op = to_platform_device(fore200e->dev);
 666	unsigned int bursts;
 667
 668	/* gain access to the SBA specific registers  */
 669	fore200e->regs.sba.hcr = of_ioremap(&op->resource[0], 0, SBA200E_HCR_LENGTH, "SBA HCR");
 670	fore200e->regs.sba.bsr = of_ioremap(&op->resource[1], 0, SBA200E_BSR_LENGTH, "SBA BSR");
 671	fore200e->regs.sba.isr = of_ioremap(&op->resource[2], 0, SBA200E_ISR_LENGTH, "SBA ISR");
 672	fore200e->virt_base    = of_ioremap(&op->resource[3], 0, SBA200E_RAM_LENGTH, "SBA RAM");
 673
 674	if (!fore200e->virt_base) {
 675		printk(FORE200E "unable to map RAM of device %s\n", fore200e->name);
 676		return -EFAULT;
 677	}
 678
 679	DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base);
 680    
 681	fore200e->bus->write(0x02, fore200e->regs.sba.isr); /* XXX hardwired interrupt level */
 682
 683	/* get the supported DVMA burst sizes */
 684	bursts = of_getintprop_default(op->dev.of_node->parent, "burst-sizes", 0x00);
 685
 686	if (sbus_can_dma_64bit())
 687		sbus_set_sbus64(&op->dev, bursts);
 688
 689	fore200e->state = FORE200E_STATE_MAP;
 690	return 0;
 691}
 692
 693static void fore200e_sba_unmap(struct fore200e *fore200e)
 694{
 695	struct platform_device *op = to_platform_device(fore200e->dev);
 696
 697	of_iounmap(&op->resource[0], fore200e->regs.sba.hcr, SBA200E_HCR_LENGTH);
 698	of_iounmap(&op->resource[1], fore200e->regs.sba.bsr, SBA200E_BSR_LENGTH);
 699	of_iounmap(&op->resource[2], fore200e->regs.sba.isr, SBA200E_ISR_LENGTH);
 700	of_iounmap(&op->resource[3], fore200e->virt_base,    SBA200E_RAM_LENGTH);
 701}
 702
 703static int __init fore200e_sba_configure(struct fore200e *fore200e)
 704{
 705	fore200e->state = FORE200E_STATE_CONFIGURE;
 706	return 0;
 707}
 708
 709static int __init fore200e_sba_prom_read(struct fore200e *fore200e, struct prom_data *prom)
 710{
 711	struct platform_device *op = to_platform_device(fore200e->dev);
 712	const u8 *prop;
 713	int len;
 714
 715	prop = of_get_property(op->dev.of_node, "madaddrlo2", &len);
 716	if (!prop)
 717		return -ENODEV;
 718	memcpy(&prom->mac_addr[4], prop, 4);
 719
 720	prop = of_get_property(op->dev.of_node, "madaddrhi4", &len);
 721	if (!prop)
 722		return -ENODEV;
 723	memcpy(&prom->mac_addr[2], prop, 4);
 724
 725	prom->serial_number = of_getintprop_default(op->dev.of_node,
 726						    "serialnumber", 0);
 727	prom->hw_revision = of_getintprop_default(op->dev.of_node,
 728						  "promversion", 0);
 729    
 730	return 0;
 731}
 732
 733static int fore200e_sba_proc_read(struct fore200e *fore200e, char *page)
 734{
 735	struct platform_device *op = to_platform_device(fore200e->dev);
 736	const struct linux_prom_registers *regs;
 737
 738	regs = of_get_property(op->dev.of_node, "reg", NULL);
 739
 740	return sprintf(page, "   SBUS slot/device:\t\t%d/'%pOFn'\n",
 741		       (regs ? regs->which_io : 0), op->dev.of_node);
 742}
 743
 744static const struct fore200e_bus fore200e_sbus_ops = {
 745	.model_name		= "SBA-200E",
 746	.proc_name		= "sba200e",
 747	.descr_alignment	= 32,
 748	.buffer_alignment	= 64,
 749	.status_alignment	= 32,
 750	.read			= fore200e_sba_read,
 751	.write			= fore200e_sba_write,
 752	.configure		= fore200e_sba_configure,
 753	.map			= fore200e_sba_map,
 754	.reset			= fore200e_sba_reset,
 755	.prom_read		= fore200e_sba_prom_read,
 756	.unmap			= fore200e_sba_unmap,
 757	.irq_enable		= fore200e_sba_irq_enable,
 758	.irq_check		= fore200e_sba_irq_check,
 759	.irq_ack		= fore200e_sba_irq_ack,
 760	.proc_read		= fore200e_sba_proc_read,
 761};
 762#endif /* CONFIG_SBUS */
 763
 764static void
 765fore200e_tx_irq(struct fore200e* fore200e)
 766{
 767    struct host_txq*        txq = &fore200e->host_txq;
 768    struct host_txq_entry*  entry;
 769    struct atm_vcc*         vcc;
 770    struct fore200e_vc_map* vc_map;
 771
 772    if (fore200e->host_txq.txing == 0)
 773	return;
 774
 775    for (;;) {
 776	
 777	entry = &txq->host_entry[ txq->tail ];
 778
 779        if ((*entry->status & STATUS_COMPLETE) == 0) {
 780	    break;
 781	}
 782
 783	DPRINTK(3, "TX COMPLETED: entry = %p [tail = %d], vc_map = %p, skb = %p\n", 
 784		entry, txq->tail, entry->vc_map, entry->skb);
 785
 786	/* free copy of misaligned data */
 787	kfree(entry->data);
 788	
 789	/* remove DMA mapping */
 790	dma_unmap_single(fore200e->dev, entry->tpd->tsd[ 0 ].buffer, entry->tpd->tsd[ 0 ].length,
 791				 DMA_TO_DEVICE);
 792
 793	vc_map = entry->vc_map;
 794
 795	/* vcc closed since the time the entry was submitted for tx? */
 796	if ((vc_map->vcc == NULL) ||
 797	    (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) {
 798
 799	    DPRINTK(1, "no ready vcc found for PDU sent on device %d\n",
 800		    fore200e->atm_dev->number);
 801
 802	    dev_kfree_skb_any(entry->skb);
 803	}
 804	else {
 805	    ASSERT(vc_map->vcc);
 806
 807	    /* vcc closed then immediately re-opened? */
 808	    if (vc_map->incarn != entry->incarn) {
 809
 810		/* when a vcc is closed, some PDUs may be still pending in the tx queue.
 811		   if the same vcc is immediately re-opened, those pending PDUs must
 812		   not be popped after the completion of their emission, as they refer
 813		   to the prior incarnation of that vcc. otherwise, sk_atm(vcc)->sk_wmem_alloc
 814		   would be decremented by the size of the (unrelated) skb, possibly
 815		   leading to a negative sk->sk_wmem_alloc count, ultimately freezing the vcc.
 816		   we thus bind the tx entry to the current incarnation of the vcc
 817		   when the entry is submitted for tx. When the tx later completes,
 818		   if the incarnation number of the tx entry does not match the one
 819		   of the vcc, then this implies that the vcc has been closed then re-opened.
 820		   we thus just drop the skb here. */
 821
 822		DPRINTK(1, "vcc closed-then-re-opened; dropping PDU sent on device %d\n",
 823			fore200e->atm_dev->number);
 824
 825		dev_kfree_skb_any(entry->skb);
 826	    }
 827	    else {
 828		vcc = vc_map->vcc;
 829		ASSERT(vcc);
 830
 831		/* notify tx completion */
 832		if (vcc->pop) {
 833		    vcc->pop(vcc, entry->skb);
 834		}
 835		else {
 836		    dev_kfree_skb_any(entry->skb);
 837		}
 838
 839		/* check error condition */
 840		if (*entry->status & STATUS_ERROR)
 841		    atomic_inc(&vcc->stats->tx_err);
 842		else
 843		    atomic_inc(&vcc->stats->tx);
 844	    }
 845	}
 846
 847	*entry->status = STATUS_FREE;
 848
 849	fore200e->host_txq.txing--;
 850
 851	FORE200E_NEXT_ENTRY(txq->tail, QUEUE_SIZE_TX);
 852    }
 853}
 854
 855
 856#ifdef FORE200E_BSQ_DEBUG
 857int bsq_audit(int where, struct host_bsq* bsq, int scheme, int magn)
 858{
 859    struct buffer* buffer;
 860    int count = 0;
 861
 862    buffer = bsq->freebuf;
 863    while (buffer) {
 864
 865	if (buffer->supplied) {
 866	    printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld supplied but in free list!\n",
 867		   where, scheme, magn, buffer->index);
 868	}
 869
 870	if (buffer->magn != magn) {
 871	    printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected magn = %d\n",
 872		   where, scheme, magn, buffer->index, buffer->magn);
 873	}
 874
 875	if (buffer->scheme != scheme) {
 876	    printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected scheme = %d\n",
 877		   where, scheme, magn, buffer->index, buffer->scheme);
 878	}
 879
 880	if ((buffer->index < 0) || (buffer->index >= fore200e_rx_buf_nbr[ scheme ][ magn ])) {
 881	    printk(FORE200E "bsq_audit(%d): queue %d.%d, out of range buffer index = %ld !\n",
 882		   where, scheme, magn, buffer->index);
 883	}
 884
 885	count++;
 886	buffer = buffer->next;
 887    }
 888
 889    if (count != bsq->freebuf_count) {
 890	printk(FORE200E "bsq_audit(%d): queue %d.%d, %d bufs in free list, but freebuf_count = %d\n",
 891	       where, scheme, magn, count, bsq->freebuf_count);
 892    }
 893    return 0;
 894}
 895#endif
 896
 897
 898static void
 899fore200e_supply(struct fore200e* fore200e)
 900{
 901    int  scheme, magn, i;
 902
 903    struct host_bsq*       bsq;
 904    struct host_bsq_entry* entry;
 905    struct buffer*         buffer;
 906
 907    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
 908	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
 909
 910	    bsq = &fore200e->host_bsq[ scheme ][ magn ];
 911
 912#ifdef FORE200E_BSQ_DEBUG
 913	    bsq_audit(1, bsq, scheme, magn);
 914#endif
 915	    while (bsq->freebuf_count >= RBD_BLK_SIZE) {
 916
 917		DPRINTK(2, "supplying %d rx buffers to queue %d / %d, freebuf_count = %d\n",
 918			RBD_BLK_SIZE, scheme, magn, bsq->freebuf_count);
 919
 920		entry = &bsq->host_entry[ bsq->head ];
 921
 922		for (i = 0; i < RBD_BLK_SIZE; i++) {
 923
 924		    /* take the first buffer in the free buffer list */
 925		    buffer = bsq->freebuf;
 926		    if (!buffer) {
 927			printk(FORE200E "no more free bufs in queue %d.%d, but freebuf_count = %d\n",
 928			       scheme, magn, bsq->freebuf_count);
 929			return;
 930		    }
 931		    bsq->freebuf = buffer->next;
 932		    
 933#ifdef FORE200E_BSQ_DEBUG
 934		    if (buffer->supplied)
 935			printk(FORE200E "queue %d.%d, buffer %lu already supplied\n",
 936			       scheme, magn, buffer->index);
 937		    buffer->supplied = 1;
 938#endif
 939		    entry->rbd_block->rbd[ i ].buffer_haddr = buffer->data.dma_addr;
 940		    entry->rbd_block->rbd[ i ].handle       = FORE200E_BUF2HDL(buffer);
 941		}
 942
 943		FORE200E_NEXT_ENTRY(bsq->head, QUEUE_SIZE_BS);
 944
 945 		/* decrease accordingly the number of free rx buffers */
 946		bsq->freebuf_count -= RBD_BLK_SIZE;
 947
 948		*entry->status = STATUS_PENDING;
 949		fore200e->bus->write(entry->rbd_block_dma, &entry->cp_entry->rbd_block_haddr);
 950	    }
 951	}
 952    }
 953}
 954
 955
 956static int
 957fore200e_push_rpd(struct fore200e* fore200e, struct atm_vcc* vcc, struct rpd* rpd)
 958{
 959    struct sk_buff*      skb;
 960    struct buffer*       buffer;
 961    struct fore200e_vcc* fore200e_vcc;
 962    int                  i, pdu_len = 0;
 963#ifdef FORE200E_52BYTE_AAL0_SDU
 964    u32                  cell_header = 0;
 965#endif
 966
 967    ASSERT(vcc);
 968    
 969    fore200e_vcc = FORE200E_VCC(vcc);
 970    ASSERT(fore200e_vcc);
 971
 972#ifdef FORE200E_52BYTE_AAL0_SDU
 973    if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.rxtp.max_sdu == ATM_AAL0_SDU)) {
 974
 975	cell_header = (rpd->atm_header.gfc << ATM_HDR_GFC_SHIFT) |
 976	              (rpd->atm_header.vpi << ATM_HDR_VPI_SHIFT) |
 977                      (rpd->atm_header.vci << ATM_HDR_VCI_SHIFT) |
 978                      (rpd->atm_header.plt << ATM_HDR_PTI_SHIFT) | 
 979                       rpd->atm_header.clp;
 980	pdu_len = 4;
 981    }
 982#endif
 983    
 984    /* compute total PDU length */
 985    for (i = 0; i < rpd->nseg; i++)
 986	pdu_len += rpd->rsd[ i ].length;
 987    
 988    skb = alloc_skb(pdu_len, GFP_ATOMIC);
 989    if (skb == NULL) {
 990	DPRINTK(2, "unable to alloc new skb, rx PDU length = %d\n", pdu_len);
 991
 992	atomic_inc(&vcc->stats->rx_drop);
 993	return -ENOMEM;
 994    } 
 995
 996    __net_timestamp(skb);
 997    
 998#ifdef FORE200E_52BYTE_AAL0_SDU
 999    if (cell_header) {
1000	*((u32*)skb_put(skb, 4)) = cell_header;
1001    }
1002#endif
1003
1004    /* reassemble segments */
1005    for (i = 0; i < rpd->nseg; i++) {
1006	
1007	/* rebuild rx buffer address from rsd handle */
1008	buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle);
1009	
1010	/* Make device DMA transfer visible to CPU.  */
1011	dma_sync_single_for_cpu(fore200e->dev, buffer->data.dma_addr,
1012				rpd->rsd[i].length, DMA_FROM_DEVICE);
1013	
1014	skb_put_data(skb, buffer->data.align_addr, rpd->rsd[i].length);
1015
1016	/* Now let the device get at it again.  */
1017	dma_sync_single_for_device(fore200e->dev, buffer->data.dma_addr,
1018				   rpd->rsd[i].length, DMA_FROM_DEVICE);
1019    }
1020
1021    DPRINTK(3, "rx skb: len = %d, truesize = %d\n", skb->len, skb->truesize);
1022    
1023    if (pdu_len < fore200e_vcc->rx_min_pdu)
1024	fore200e_vcc->rx_min_pdu = pdu_len;
1025    if (pdu_len > fore200e_vcc->rx_max_pdu)
1026	fore200e_vcc->rx_max_pdu = pdu_len;
1027    fore200e_vcc->rx_pdu++;
1028
1029    /* push PDU */
1030    if (atm_charge(vcc, skb->truesize) == 0) {
1031
1032	DPRINTK(2, "receive buffers saturated for %d.%d.%d - PDU dropped\n",
1033		vcc->itf, vcc->vpi, vcc->vci);
1034
1035	dev_kfree_skb_any(skb);
1036
1037	atomic_inc(&vcc->stats->rx_drop);
1038	return -ENOMEM;
1039    }
1040
1041    vcc->push(vcc, skb);
1042    atomic_inc(&vcc->stats->rx);
1043
1044    return 0;
1045}
1046
1047
1048static void
1049fore200e_collect_rpd(struct fore200e* fore200e, struct rpd* rpd)
1050{
1051    struct host_bsq* bsq;
1052    struct buffer*   buffer;
1053    int              i;
1054    
1055    for (i = 0; i < rpd->nseg; i++) {
1056
1057	/* rebuild rx buffer address from rsd handle */
1058	buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle);
1059
1060	bsq = &fore200e->host_bsq[ buffer->scheme ][ buffer->magn ];
1061
1062#ifdef FORE200E_BSQ_DEBUG
1063	bsq_audit(2, bsq, buffer->scheme, buffer->magn);
1064
1065	if (buffer->supplied == 0)
1066	    printk(FORE200E "queue %d.%d, buffer %ld was not supplied\n",
1067		   buffer->scheme, buffer->magn, buffer->index);
1068	buffer->supplied = 0;
1069#endif
1070
1071	/* re-insert the buffer into the free buffer list */
1072	buffer->next = bsq->freebuf;
1073	bsq->freebuf = buffer;
1074
1075	/* then increment the number of free rx buffers */
1076	bsq->freebuf_count++;
1077    }
1078}
1079
1080
1081static void
1082fore200e_rx_irq(struct fore200e* fore200e)
1083{
1084    struct host_rxq*        rxq = &fore200e->host_rxq;
1085    struct host_rxq_entry*  entry;
1086    struct atm_vcc*         vcc;
1087    struct fore200e_vc_map* vc_map;
1088
1089    for (;;) {
1090	
1091	entry = &rxq->host_entry[ rxq->head ];
1092
1093	/* no more received PDUs */
1094	if ((*entry->status & STATUS_COMPLETE) == 0)
1095	    break;
1096
1097	vc_map = FORE200E_VC_MAP(fore200e, entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1098
1099	if ((vc_map->vcc == NULL) ||
1100	    (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) {
1101
1102	    DPRINTK(1, "no ready VC found for PDU received on %d.%d.%d\n",
1103		    fore200e->atm_dev->number,
1104		    entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1105	}
1106	else {
1107	    vcc = vc_map->vcc;
1108	    ASSERT(vcc);
1109
1110	    if ((*entry->status & STATUS_ERROR) == 0) {
1111
1112		fore200e_push_rpd(fore200e, vcc, entry->rpd);
1113	    }
1114	    else {
1115		DPRINTK(2, "damaged PDU on %d.%d.%d\n",
1116			fore200e->atm_dev->number,
1117			entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1118		atomic_inc(&vcc->stats->rx_err);
1119	    }
1120	}
1121
1122	FORE200E_NEXT_ENTRY(rxq->head, QUEUE_SIZE_RX);
1123
1124	fore200e_collect_rpd(fore200e, entry->rpd);
1125
1126	/* rewrite the rpd address to ack the received PDU */
1127	fore200e->bus->write(entry->rpd_dma, &entry->cp_entry->rpd_haddr);
1128	*entry->status = STATUS_FREE;
1129
1130	fore200e_supply(fore200e);
1131    }
1132}
1133
1134
1135#ifndef FORE200E_USE_TASKLET
1136static void
1137fore200e_irq(struct fore200e* fore200e)
1138{
1139    unsigned long flags;
1140
1141    spin_lock_irqsave(&fore200e->q_lock, flags);
1142    fore200e_rx_irq(fore200e);
1143    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1144
1145    spin_lock_irqsave(&fore200e->q_lock, flags);
1146    fore200e_tx_irq(fore200e);
1147    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1148}
1149#endif
1150
1151
1152static irqreturn_t
1153fore200e_interrupt(int irq, void* dev)
1154{
1155    struct fore200e* fore200e = FORE200E_DEV((struct atm_dev*)dev);
1156
1157    if (fore200e->bus->irq_check(fore200e) == 0) {
1158	
1159	DPRINTK(3, "interrupt NOT triggered by device %d\n", fore200e->atm_dev->number);
1160	return IRQ_NONE;
1161    }
1162    DPRINTK(3, "interrupt triggered by device %d\n", fore200e->atm_dev->number);
1163
1164#ifdef FORE200E_USE_TASKLET
1165    tasklet_schedule(&fore200e->tx_tasklet);
1166    tasklet_schedule(&fore200e->rx_tasklet);
1167#else
1168    fore200e_irq(fore200e);
1169#endif
1170    
1171    fore200e->bus->irq_ack(fore200e);
1172    return IRQ_HANDLED;
1173}
1174
1175
1176#ifdef FORE200E_USE_TASKLET
1177static void
1178fore200e_tx_tasklet(unsigned long data)
1179{
1180    struct fore200e* fore200e = (struct fore200e*) data;
1181    unsigned long flags;
1182
1183    DPRINTK(3, "tx tasklet scheduled for device %d\n", fore200e->atm_dev->number);
1184
1185    spin_lock_irqsave(&fore200e->q_lock, flags);
1186    fore200e_tx_irq(fore200e);
1187    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1188}
1189
1190
1191static void
1192fore200e_rx_tasklet(unsigned long data)
1193{
1194    struct fore200e* fore200e = (struct fore200e*) data;
1195    unsigned long    flags;
1196
1197    DPRINTK(3, "rx tasklet scheduled for device %d\n", fore200e->atm_dev->number);
1198
1199    spin_lock_irqsave(&fore200e->q_lock, flags);
1200    fore200e_rx_irq((struct fore200e*) data);
1201    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1202}
1203#endif
1204
1205
1206static int
1207fore200e_select_scheme(struct atm_vcc* vcc)
1208{
1209    /* fairly balance the VCs over (identical) buffer schemes */
1210    int scheme = vcc->vci % 2 ? BUFFER_SCHEME_ONE : BUFFER_SCHEME_TWO;
1211
1212    DPRINTK(1, "VC %d.%d.%d uses buffer scheme %d\n",
1213	    vcc->itf, vcc->vpi, vcc->vci, scheme);
1214
1215    return scheme;
1216}
1217
1218
1219static int 
1220fore200e_activate_vcin(struct fore200e* fore200e, int activate, struct atm_vcc* vcc, int mtu)
1221{
1222    struct host_cmdq*        cmdq  = &fore200e->host_cmdq;
1223    struct host_cmdq_entry*  entry = &cmdq->host_entry[ cmdq->head ];
1224    struct activate_opcode   activ_opcode;
1225    struct deactivate_opcode deactiv_opcode;
1226    struct vpvc              vpvc;
1227    int                      ok;
1228    enum fore200e_aal        aal = fore200e_atm2fore_aal(vcc->qos.aal);
1229
1230    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1231    
1232    if (activate) {
1233	FORE200E_VCC(vcc)->scheme = fore200e_select_scheme(vcc);
1234	
1235	activ_opcode.opcode = OPCODE_ACTIVATE_VCIN;
1236	activ_opcode.aal    = aal;
1237	activ_opcode.scheme = FORE200E_VCC(vcc)->scheme;
1238	activ_opcode.pad    = 0;
1239    }
1240    else {
1241	deactiv_opcode.opcode = OPCODE_DEACTIVATE_VCIN;
1242	deactiv_opcode.pad    = 0;
1243    }
1244
1245    vpvc.vci = vcc->vci;
1246    vpvc.vpi = vcc->vpi;
1247
1248    *entry->status = STATUS_PENDING;
1249
1250    if (activate) {
1251
1252#ifdef FORE200E_52BYTE_AAL0_SDU
1253	mtu = 48;
1254#endif
1255	/* the MTU is not used by the cp, except in the case of AAL0 */
1256	fore200e->bus->write(mtu,                        &entry->cp_entry->cmd.activate_block.mtu);
1257	fore200e->bus->write(*(u32*)&vpvc,         (u32 __iomem *)&entry->cp_entry->cmd.activate_block.vpvc);
1258	fore200e->bus->write(*(u32*)&activ_opcode, (u32 __iomem *)&entry->cp_entry->cmd.activate_block.opcode);
1259    }
1260    else {
1261	fore200e->bus->write(*(u32*)&vpvc,         (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.vpvc);
1262	fore200e->bus->write(*(u32*)&deactiv_opcode, (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.opcode);
1263    }
1264
1265    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1266
1267    *entry->status = STATUS_FREE;
1268
1269    if (ok == 0) {
1270	printk(FORE200E "unable to %s VC %d.%d.%d\n",
1271	       activate ? "open" : "close", vcc->itf, vcc->vpi, vcc->vci);
1272	return -EIO;
1273    }
1274
1275    DPRINTK(1, "VC %d.%d.%d %sed\n", vcc->itf, vcc->vpi, vcc->vci, 
1276	    activate ? "open" : "clos");
1277
1278    return 0;
1279}
1280
1281
1282#define FORE200E_MAX_BACK2BACK_CELLS 255    /* XXX depends on CDVT */
1283
1284static void
1285fore200e_rate_ctrl(struct atm_qos* qos, struct tpd_rate* rate)
1286{
1287    if (qos->txtp.max_pcr < ATM_OC3_PCR) {
1288    
1289	/* compute the data cells to idle cells ratio from the tx PCR */
1290	rate->data_cells = qos->txtp.max_pcr * FORE200E_MAX_BACK2BACK_CELLS / ATM_OC3_PCR;
1291	rate->idle_cells = FORE200E_MAX_BACK2BACK_CELLS - rate->data_cells;
1292    }
1293    else {
1294	/* disable rate control */
1295	rate->data_cells = rate->idle_cells = 0;
1296    }
1297}
1298
1299
1300static int
1301fore200e_open(struct atm_vcc *vcc)
1302{
1303    struct fore200e*        fore200e = FORE200E_DEV(vcc->dev);
1304    struct fore200e_vcc*    fore200e_vcc;
1305    struct fore200e_vc_map* vc_map;
1306    unsigned long	    flags;
1307    int			    vci = vcc->vci;
1308    short		    vpi = vcc->vpi;
1309
1310    ASSERT((vpi >= 0) && (vpi < 1<<FORE200E_VPI_BITS));
1311    ASSERT((vci >= 0) && (vci < 1<<FORE200E_VCI_BITS));
1312
1313    spin_lock_irqsave(&fore200e->q_lock, flags);
1314
1315    vc_map = FORE200E_VC_MAP(fore200e, vpi, vci);
1316    if (vc_map->vcc) {
1317
1318	spin_unlock_irqrestore(&fore200e->q_lock, flags);
1319
1320	printk(FORE200E "VC %d.%d.%d already in use\n",
1321	       fore200e->atm_dev->number, vpi, vci);
1322
1323	return -EINVAL;
1324    }
1325
1326    vc_map->vcc = vcc;
1327
1328    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1329
1330    fore200e_vcc = kzalloc(sizeof(struct fore200e_vcc), GFP_ATOMIC);
1331    if (fore200e_vcc == NULL) {
1332	vc_map->vcc = NULL;
1333	return -ENOMEM;
1334    }
1335
1336    DPRINTK(2, "opening %d.%d.%d:%d QoS = (tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; "
1337	    "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d)\n",
1338	    vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1339	    fore200e_traffic_class[ vcc->qos.txtp.traffic_class ],
1340	    vcc->qos.txtp.min_pcr, vcc->qos.txtp.max_pcr, vcc->qos.txtp.max_cdv, vcc->qos.txtp.max_sdu,
1341	    fore200e_traffic_class[ vcc->qos.rxtp.traffic_class ],
1342	    vcc->qos.rxtp.min_pcr, vcc->qos.rxtp.max_pcr, vcc->qos.rxtp.max_cdv, vcc->qos.rxtp.max_sdu);
1343    
1344    /* pseudo-CBR bandwidth requested? */
1345    if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1346	
1347	mutex_lock(&fore200e->rate_mtx);
1348	if (fore200e->available_cell_rate < vcc->qos.txtp.max_pcr) {
1349	    mutex_unlock(&fore200e->rate_mtx);
1350
1351	    kfree(fore200e_vcc);
1352	    vc_map->vcc = NULL;
1353	    return -EAGAIN;
1354	}
1355
1356	/* reserve bandwidth */
1357	fore200e->available_cell_rate -= vcc->qos.txtp.max_pcr;
1358	mutex_unlock(&fore200e->rate_mtx);
1359    }
1360    
1361    vcc->itf = vcc->dev->number;
1362
1363    set_bit(ATM_VF_PARTIAL,&vcc->flags);
1364    set_bit(ATM_VF_ADDR, &vcc->flags);
1365
1366    vcc->dev_data = fore200e_vcc;
1367    
1368    if (fore200e_activate_vcin(fore200e, 1, vcc, vcc->qos.rxtp.max_sdu) < 0) {
1369
1370	vc_map->vcc = NULL;
1371
1372	clear_bit(ATM_VF_ADDR, &vcc->flags);
1373	clear_bit(ATM_VF_PARTIAL,&vcc->flags);
1374
1375	vcc->dev_data = NULL;
1376
1377	fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1378
1379	kfree(fore200e_vcc);
1380	return -EINVAL;
1381    }
1382    
1383    /* compute rate control parameters */
1384    if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1385	
1386	fore200e_rate_ctrl(&vcc->qos, &fore200e_vcc->rate);
1387	set_bit(ATM_VF_HASQOS, &vcc->flags);
1388
1389	DPRINTK(3, "tx on %d.%d.%d:%d, tx PCR = %d, rx PCR = %d, data_cells = %u, idle_cells = %u\n",
1390		vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1391		vcc->qos.txtp.max_pcr, vcc->qos.rxtp.max_pcr, 
1392		fore200e_vcc->rate.data_cells, fore200e_vcc->rate.idle_cells);
1393    }
1394    
1395    fore200e_vcc->tx_min_pdu = fore200e_vcc->rx_min_pdu = MAX_PDU_SIZE + 1;
1396    fore200e_vcc->tx_max_pdu = fore200e_vcc->rx_max_pdu = 0;
1397    fore200e_vcc->tx_pdu     = fore200e_vcc->rx_pdu     = 0;
1398
1399    /* new incarnation of the vcc */
1400    vc_map->incarn = ++fore200e->incarn_count;
1401
1402    /* VC unusable before this flag is set */
1403    set_bit(ATM_VF_READY, &vcc->flags);
1404
1405    return 0;
1406}
1407
1408
1409static void
1410fore200e_close(struct atm_vcc* vcc)
1411{
1412    struct fore200e_vcc*    fore200e_vcc;
1413    struct fore200e*        fore200e;
1414    struct fore200e_vc_map* vc_map;
1415    unsigned long           flags;
1416
1417    ASSERT(vcc);
1418    fore200e = FORE200E_DEV(vcc->dev);
1419
1420    ASSERT((vcc->vpi >= 0) && (vcc->vpi < 1<<FORE200E_VPI_BITS));
1421    ASSERT((vcc->vci >= 0) && (vcc->vci < 1<<FORE200E_VCI_BITS));
1422
1423    DPRINTK(2, "closing %d.%d.%d:%d\n", vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal));
1424
1425    clear_bit(ATM_VF_READY, &vcc->flags);
1426
1427    fore200e_activate_vcin(fore200e, 0, vcc, 0);
1428
1429    spin_lock_irqsave(&fore200e->q_lock, flags);
1430
1431    vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci);
1432
1433    /* the vc is no longer considered as "in use" by fore200e_open() */
1434    vc_map->vcc = NULL;
1435
1436    vcc->itf = vcc->vci = vcc->vpi = 0;
1437
1438    fore200e_vcc = FORE200E_VCC(vcc);
1439    vcc->dev_data = NULL;
1440
1441    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1442
1443    /* release reserved bandwidth, if any */
1444    if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1445
1446	mutex_lock(&fore200e->rate_mtx);
1447	fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1448	mutex_unlock(&fore200e->rate_mtx);
1449
1450	clear_bit(ATM_VF_HASQOS, &vcc->flags);
1451    }
1452
1453    clear_bit(ATM_VF_ADDR, &vcc->flags);
1454    clear_bit(ATM_VF_PARTIAL,&vcc->flags);
1455
1456    ASSERT(fore200e_vcc);
1457    kfree(fore200e_vcc);
1458}
1459
1460
1461static int
1462fore200e_send(struct atm_vcc *vcc, struct sk_buff *skb)
1463{
1464    struct fore200e*        fore200e;
1465    struct fore200e_vcc*    fore200e_vcc;
1466    struct fore200e_vc_map* vc_map;
1467    struct host_txq*        txq;
1468    struct host_txq_entry*  entry;
1469    struct tpd*             tpd;
1470    struct tpd_haddr        tpd_haddr;
1471    int                     retry        = CONFIG_ATM_FORE200E_TX_RETRY;
1472    int                     tx_copy      = 0;
1473    int                     tx_len       = skb->len;
1474    u32*                    cell_header  = NULL;
1475    unsigned char*          skb_data;
1476    int                     skb_len;
1477    unsigned char*          data;
1478    unsigned long           flags;
1479
1480    if (!vcc)
1481        return -EINVAL;
1482
1483    fore200e = FORE200E_DEV(vcc->dev);
1484    fore200e_vcc = FORE200E_VCC(vcc);
1485
1486    if (!fore200e)
1487        return -EINVAL;
1488
1489    txq = &fore200e->host_txq;
1490    if (!fore200e_vcc)
1491        return -EINVAL;
1492
1493    if (!test_bit(ATM_VF_READY, &vcc->flags)) {
1494	DPRINTK(1, "VC %d.%d.%d not ready for tx\n", vcc->itf, vcc->vpi, vcc->vpi);
1495	dev_kfree_skb_any(skb);
1496	return -EINVAL;
1497    }
1498
1499#ifdef FORE200E_52BYTE_AAL0_SDU
1500    if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.txtp.max_sdu == ATM_AAL0_SDU)) {
1501	cell_header = (u32*) skb->data;
1502	skb_data    = skb->data + 4;    /* skip 4-byte cell header */
1503	skb_len     = tx_len = skb->len  - 4;
1504
1505	DPRINTK(3, "user-supplied cell header = 0x%08x\n", *cell_header);
1506    }
1507    else 
1508#endif
1509    {
1510	skb_data = skb->data;
1511	skb_len  = skb->len;
1512    }
1513    
1514    if (((unsigned long)skb_data) & 0x3) {
1515
1516	DPRINTK(2, "misaligned tx PDU on device %s\n", fore200e->name);
1517	tx_copy = 1;
1518	tx_len  = skb_len;
1519    }
1520
1521    if ((vcc->qos.aal == ATM_AAL0) && (skb_len % ATM_CELL_PAYLOAD)) {
1522
1523        /* this simply NUKES the PCA board */
1524	DPRINTK(2, "incomplete tx AAL0 PDU on device %s\n", fore200e->name);
1525	tx_copy = 1;
1526	tx_len  = ((skb_len / ATM_CELL_PAYLOAD) + 1) * ATM_CELL_PAYLOAD;
1527    }
1528    
1529    if (tx_copy) {
1530	data = kmalloc(tx_len, GFP_ATOMIC);
1531	if (data == NULL) {
1532	    if (vcc->pop) {
1533		vcc->pop(vcc, skb);
1534	    }
1535	    else {
1536		dev_kfree_skb_any(skb);
1537	    }
1538	    return -ENOMEM;
1539	}
1540
1541	memcpy(data, skb_data, skb_len);
1542	if (skb_len < tx_len)
1543	    memset(data + skb_len, 0x00, tx_len - skb_len);
1544    }
1545    else {
1546	data = skb_data;
1547    }
1548
1549    vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci);
1550    ASSERT(vc_map->vcc == vcc);
1551
1552  retry_here:
1553
1554    spin_lock_irqsave(&fore200e->q_lock, flags);
1555
1556    entry = &txq->host_entry[ txq->head ];
1557
1558    if ((*entry->status != STATUS_FREE) || (txq->txing >= QUEUE_SIZE_TX - 2)) {
1559
1560	/* try to free completed tx queue entries */
1561	fore200e_tx_irq(fore200e);
1562
1563	if (*entry->status != STATUS_FREE) {
1564
1565	    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1566
1567	    /* retry once again? */
1568	    if (--retry > 0) {
1569		udelay(50);
1570		goto retry_here;
1571	    }
1572
1573	    atomic_inc(&vcc->stats->tx_err);
1574
1575	    fore200e->tx_sat++;
1576	    DPRINTK(2, "tx queue of device %s is saturated, PDU dropped - heartbeat is %08x\n",
1577		    fore200e->name, fore200e->cp_queues->heartbeat);
1578	    if (vcc->pop) {
1579		vcc->pop(vcc, skb);
1580	    }
1581	    else {
1582		dev_kfree_skb_any(skb);
1583	    }
1584
1585	    if (tx_copy)
1586		kfree(data);
1587
1588	    return -ENOBUFS;
1589	}
1590    }
1591
1592    entry->incarn = vc_map->incarn;
1593    entry->vc_map = vc_map;
1594    entry->skb    = skb;
1595    entry->data   = tx_copy ? data : NULL;
1596
1597    tpd = entry->tpd;
1598    tpd->tsd[ 0 ].buffer = dma_map_single(fore200e->dev, data, tx_len,
1599					  DMA_TO_DEVICE);
1600    if (dma_mapping_error(fore200e->dev, tpd->tsd[0].buffer)) {
1601	if (tx_copy)
1602	    kfree(data);
1603	spin_unlock_irqrestore(&fore200e->q_lock, flags);
1604	return -ENOMEM;
1605    }
1606    tpd->tsd[ 0 ].length = tx_len;
1607
1608    FORE200E_NEXT_ENTRY(txq->head, QUEUE_SIZE_TX);
1609    txq->txing++;
1610
1611    /* The dma_map call above implies a dma_sync so the device can use it,
1612     * thus no explicit dma_sync call is necessary here.
1613     */
1614    
1615    DPRINTK(3, "tx on %d.%d.%d:%d, len = %u (%u)\n", 
1616	    vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1617	    tpd->tsd[0].length, skb_len);
1618
1619    if (skb_len < fore200e_vcc->tx_min_pdu)
1620	fore200e_vcc->tx_min_pdu = skb_len;
1621    if (skb_len > fore200e_vcc->tx_max_pdu)
1622	fore200e_vcc->tx_max_pdu = skb_len;
1623    fore200e_vcc->tx_pdu++;
1624
1625    /* set tx rate control information */
1626    tpd->rate.data_cells = fore200e_vcc->rate.data_cells;
1627    tpd->rate.idle_cells = fore200e_vcc->rate.idle_cells;
1628
1629    if (cell_header) {
1630	tpd->atm_header.clp = (*cell_header & ATM_HDR_CLP);
1631	tpd->atm_header.plt = (*cell_header & ATM_HDR_PTI_MASK) >> ATM_HDR_PTI_SHIFT;
1632	tpd->atm_header.vci = (*cell_header & ATM_HDR_VCI_MASK) >> ATM_HDR_VCI_SHIFT;
1633	tpd->atm_header.vpi = (*cell_header & ATM_HDR_VPI_MASK) >> ATM_HDR_VPI_SHIFT;
1634	tpd->atm_header.gfc = (*cell_header & ATM_HDR_GFC_MASK) >> ATM_HDR_GFC_SHIFT;
1635    }
1636    else {
1637	/* set the ATM header, common to all cells conveying the PDU */
1638	tpd->atm_header.clp = 0;
1639	tpd->atm_header.plt = 0;
1640	tpd->atm_header.vci = vcc->vci;
1641	tpd->atm_header.vpi = vcc->vpi;
1642	tpd->atm_header.gfc = 0;
1643    }
1644
1645    tpd->spec.length = tx_len;
1646    tpd->spec.nseg   = 1;
1647    tpd->spec.aal    = fore200e_atm2fore_aal(vcc->qos.aal);
1648    tpd->spec.intr   = 1;
1649
1650    tpd_haddr.size  = sizeof(struct tpd) / (1<<TPD_HADDR_SHIFT);  /* size is expressed in 32 byte blocks */
1651    tpd_haddr.pad   = 0;
1652    tpd_haddr.haddr = entry->tpd_dma >> TPD_HADDR_SHIFT;          /* shift the address, as we are in a bitfield */
1653
1654    *entry->status = STATUS_PENDING;
1655    fore200e->bus->write(*(u32*)&tpd_haddr, (u32 __iomem *)&entry->cp_entry->tpd_haddr);
1656
1657    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1658
1659    return 0;
1660}
1661
1662
1663static int
1664fore200e_getstats(struct fore200e* fore200e)
1665{
1666    struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1667    struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1668    struct stats_opcode     opcode;
1669    int                     ok;
1670    u32                     stats_dma_addr;
1671
1672    if (fore200e->stats == NULL) {
1673	fore200e->stats = kzalloc(sizeof(struct stats), GFP_KERNEL);
1674	if (fore200e->stats == NULL)
1675	    return -ENOMEM;
1676    }
1677    
1678    stats_dma_addr = dma_map_single(fore200e->dev, fore200e->stats,
1679				    sizeof(struct stats), DMA_FROM_DEVICE);
1680    if (dma_mapping_error(fore200e->dev, stats_dma_addr))
1681    	return -ENOMEM;
1682    
1683    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1684
1685    opcode.opcode = OPCODE_GET_STATS;
1686    opcode.pad    = 0;
1687
1688    fore200e->bus->write(stats_dma_addr, &entry->cp_entry->cmd.stats_block.stats_haddr);
1689    
1690    *entry->status = STATUS_PENDING;
1691
1692    fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.stats_block.opcode);
1693
1694    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1695
1696    *entry->status = STATUS_FREE;
1697
1698    dma_unmap_single(fore200e->dev, stats_dma_addr, sizeof(struct stats), DMA_FROM_DEVICE);
1699    
1700    if (ok == 0) {
1701	printk(FORE200E "unable to get statistics from device %s\n", fore200e->name);
1702	return -EIO;
1703    }
1704
1705    return 0;
1706}
1707
1708#if 0 /* currently unused */
1709static int
1710fore200e_get_oc3(struct fore200e* fore200e, struct oc3_regs* regs)
1711{
1712    struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1713    struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1714    struct oc3_opcode       opcode;
1715    int                     ok;
1716    u32                     oc3_regs_dma_addr;
1717
1718    oc3_regs_dma_addr = fore200e->bus->dma_map(fore200e, regs, sizeof(struct oc3_regs), DMA_FROM_DEVICE);
1719
1720    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1721
1722    opcode.opcode = OPCODE_GET_OC3;
1723    opcode.reg    = 0;
1724    opcode.value  = 0;
1725    opcode.mask   = 0;
1726
1727    fore200e->bus->write(oc3_regs_dma_addr, &entry->cp_entry->cmd.oc3_block.regs_haddr);
1728    
1729    *entry->status = STATUS_PENDING;
1730
1731    fore200e->bus->write(*(u32*)&opcode, (u32*)&entry->cp_entry->cmd.oc3_block.opcode);
1732
1733    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1734
1735    *entry->status = STATUS_FREE;
1736
1737    fore200e->bus->dma_unmap(fore200e, oc3_regs_dma_addr, sizeof(struct oc3_regs), DMA_FROM_DEVICE);
1738    
1739    if (ok == 0) {
1740	printk(FORE200E "unable to get OC-3 regs of device %s\n", fore200e->name);
1741	return -EIO;
1742    }
1743
1744    return 0;
1745}
1746#endif
1747
1748
1749static int
1750fore200e_set_oc3(struct fore200e* fore200e, u32 reg, u32 value, u32 mask)
1751{
1752    struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1753    struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1754    struct oc3_opcode       opcode;
1755    int                     ok;
1756
1757    DPRINTK(2, "set OC-3 reg = 0x%02x, value = 0x%02x, mask = 0x%02x\n", reg, value, mask);
1758
1759    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1760
1761    opcode.opcode = OPCODE_SET_OC3;
1762    opcode.reg    = reg;
1763    opcode.value  = value;
1764    opcode.mask   = mask;
1765
1766    fore200e->bus->write(0, &entry->cp_entry->cmd.oc3_block.regs_haddr);
1767    
1768    *entry->status = STATUS_PENDING;
1769
1770    fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.oc3_block.opcode);
1771
1772    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1773
1774    *entry->status = STATUS_FREE;
1775
1776    if (ok == 0) {
1777	printk(FORE200E "unable to set OC-3 reg 0x%02x of device %s\n", reg, fore200e->name);
1778	return -EIO;
1779    }
1780
1781    return 0;
1782}
1783
1784
1785static int
1786fore200e_setloop(struct fore200e* fore200e, int loop_mode)
1787{
1788    u32 mct_value, mct_mask;
1789    int error;
1790
1791    if (!capable(CAP_NET_ADMIN))
1792	return -EPERM;
1793    
1794    switch (loop_mode) {
1795
1796    case ATM_LM_NONE:
1797	mct_value = 0; 
1798	mct_mask  = SUNI_MCT_DLE | SUNI_MCT_LLE;
1799	break;
1800	
1801    case ATM_LM_LOC_PHY:
1802	mct_value = mct_mask = SUNI_MCT_DLE;
1803	break;
1804
1805    case ATM_LM_RMT_PHY:
1806	mct_value = mct_mask = SUNI_MCT_LLE;
1807	break;
1808
1809    default:
1810	return -EINVAL;
1811    }
1812
1813    error = fore200e_set_oc3(fore200e, SUNI_MCT, mct_value, mct_mask);
1814    if (error == 0)
1815	fore200e->loop_mode = loop_mode;
1816
1817    return error;
1818}
1819
1820
1821static int
1822fore200e_fetch_stats(struct fore200e* fore200e, struct sonet_stats __user *arg)
1823{
1824    struct sonet_stats tmp;
1825
1826    if (fore200e_getstats(fore200e) < 0)
1827	return -EIO;
1828
1829    tmp.section_bip = be32_to_cpu(fore200e->stats->oc3.section_bip8_errors);
1830    tmp.line_bip    = be32_to_cpu(fore200e->stats->oc3.line_bip24_errors);
1831    tmp.path_bip    = be32_to_cpu(fore200e->stats->oc3.path_bip8_errors);
1832    tmp.line_febe   = be32_to_cpu(fore200e->stats->oc3.line_febe_errors);
1833    tmp.path_febe   = be32_to_cpu(fore200e->stats->oc3.path_febe_errors);
1834    tmp.corr_hcs    = be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors);
1835    tmp.uncorr_hcs  = be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors);
1836    tmp.tx_cells    = be32_to_cpu(fore200e->stats->aal0.cells_transmitted)  +
1837	              be32_to_cpu(fore200e->stats->aal34.cells_transmitted) +
1838	              be32_to_cpu(fore200e->stats->aal5.cells_transmitted);
1839    tmp.rx_cells    = be32_to_cpu(fore200e->stats->aal0.cells_received)     +
1840	              be32_to_cpu(fore200e->stats->aal34.cells_received)    +
1841	              be32_to_cpu(fore200e->stats->aal5.cells_received);
1842
1843    if (arg)
1844	return copy_to_user(arg, &tmp, sizeof(struct sonet_stats)) ? -EFAULT : 0;	
1845    
1846    return 0;
1847}
1848
1849
1850static int
1851fore200e_ioctl(struct atm_dev* dev, unsigned int cmd, void __user * arg)
1852{
1853    struct fore200e* fore200e = FORE200E_DEV(dev);
1854    
1855    DPRINTK(2, "ioctl cmd = 0x%x (%u), arg = 0x%p (%lu)\n", cmd, cmd, arg, (unsigned long)arg);
1856
1857    switch (cmd) {
1858
1859    case SONET_GETSTAT:
1860	return fore200e_fetch_stats(fore200e, (struct sonet_stats __user *)arg);
1861
1862    case SONET_GETDIAG:
1863	return put_user(0, (int __user *)arg) ? -EFAULT : 0;
1864
1865    case ATM_SETLOOP:
1866	return fore200e_setloop(fore200e, (int)(unsigned long)arg);
1867
1868    case ATM_GETLOOP:
1869	return put_user(fore200e->loop_mode, (int __user *)arg) ? -EFAULT : 0;
1870
1871    case ATM_QUERYLOOP:
1872	return put_user(ATM_LM_LOC_PHY | ATM_LM_RMT_PHY, (int __user *)arg) ? -EFAULT : 0;
1873    }
1874
1875    return -ENOSYS; /* not implemented */
1876}
1877
1878
1879static int
1880fore200e_change_qos(struct atm_vcc* vcc,struct atm_qos* qos, int flags)
1881{
1882    struct fore200e_vcc* fore200e_vcc = FORE200E_VCC(vcc);
1883    struct fore200e*     fore200e     = FORE200E_DEV(vcc->dev);
1884
1885    if (!test_bit(ATM_VF_READY, &vcc->flags)) {
1886	DPRINTK(1, "VC %d.%d.%d not ready for QoS change\n", vcc->itf, vcc->vpi, vcc->vpi);
1887	return -EINVAL;
1888    }
1889
1890    DPRINTK(2, "change_qos %d.%d.%d, "
1891	    "(tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; "
1892	    "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d), flags = 0x%x\n"
1893	    "available_cell_rate = %u",
1894	    vcc->itf, vcc->vpi, vcc->vci,
1895	    fore200e_traffic_class[ qos->txtp.traffic_class ],
1896	    qos->txtp.min_pcr, qos->txtp.max_pcr, qos->txtp.max_cdv, qos->txtp.max_sdu,
1897	    fore200e_traffic_class[ qos->rxtp.traffic_class ],
1898	    qos->rxtp.min_pcr, qos->rxtp.max_pcr, qos->rxtp.max_cdv, qos->rxtp.max_sdu,
1899	    flags, fore200e->available_cell_rate);
1900
1901    if ((qos->txtp.traffic_class == ATM_CBR) && (qos->txtp.max_pcr > 0)) {
1902
1903	mutex_lock(&fore200e->rate_mtx);
1904	if (fore200e->available_cell_rate + vcc->qos.txtp.max_pcr < qos->txtp.max_pcr) {
1905	    mutex_unlock(&fore200e->rate_mtx);
1906	    return -EAGAIN;
1907	}
1908
1909	fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1910	fore200e->available_cell_rate -= qos->txtp.max_pcr;
1911
1912	mutex_unlock(&fore200e->rate_mtx);
1913	
1914	memcpy(&vcc->qos, qos, sizeof(struct atm_qos));
1915	
1916	/* update rate control parameters */
1917	fore200e_rate_ctrl(qos, &fore200e_vcc->rate);
1918
1919	set_bit(ATM_VF_HASQOS, &vcc->flags);
1920
1921	return 0;
1922    }
1923    
1924    return -EINVAL;
1925}
1926    
1927
1928static int fore200e_irq_request(struct fore200e *fore200e)
1929{
1930    if (request_irq(fore200e->irq, fore200e_interrupt, IRQF_SHARED, fore200e->name, fore200e->atm_dev) < 0) {
1931
1932	printk(FORE200E "unable to reserve IRQ %s for device %s\n",
1933	       fore200e_irq_itoa(fore200e->irq), fore200e->name);
1934	return -EBUSY;
1935    }
1936
1937    printk(FORE200E "IRQ %s reserved for device %s\n",
1938	   fore200e_irq_itoa(fore200e->irq), fore200e->name);
1939
1940#ifdef FORE200E_USE_TASKLET
1941    tasklet_init(&fore200e->tx_tasklet, fore200e_tx_tasklet, (unsigned long)fore200e);
1942    tasklet_init(&fore200e->rx_tasklet, fore200e_rx_tasklet, (unsigned long)fore200e);
1943#endif
1944
1945    fore200e->state = FORE200E_STATE_IRQ;
1946    return 0;
1947}
1948
1949
1950static int fore200e_get_esi(struct fore200e *fore200e)
1951{
1952    struct prom_data* prom = kzalloc(sizeof(struct prom_data), GFP_KERNEL);
1953    int ok, i;
1954
1955    if (!prom)
1956	return -ENOMEM;
1957
1958    ok = fore200e->bus->prom_read(fore200e, prom);
1959    if (ok < 0) {
1960	kfree(prom);
1961	return -EBUSY;
1962    }
1963	
1964    printk(FORE200E "device %s, rev. %c, S/N: %d, ESI: %pM\n",
1965	   fore200e->name, 
1966	   (prom->hw_revision & 0xFF) + '@',    /* probably meaningless with SBA boards */
1967	   prom->serial_number & 0xFFFF, &prom->mac_addr[2]);
1968	
1969    for (i = 0; i < ESI_LEN; i++) {
1970	fore200e->esi[ i ] = fore200e->atm_dev->esi[ i ] = prom->mac_addr[ i + 2 ];
1971    }
1972    
1973    kfree(prom);
1974
1975    return 0;
1976}
1977
1978
1979static int fore200e_alloc_rx_buf(struct fore200e *fore200e)
1980{
1981    int scheme, magn, nbr, size, i;
1982
1983    struct host_bsq* bsq;
1984    struct buffer*   buffer;
1985
1986    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
1987	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
1988
1989	    bsq = &fore200e->host_bsq[ scheme ][ magn ];
1990
1991	    nbr  = fore200e_rx_buf_nbr[ scheme ][ magn ];
1992	    size = fore200e_rx_buf_size[ scheme ][ magn ];
1993
1994	    DPRINTK(2, "rx buffers %d / %d are being allocated\n", scheme, magn);
1995
1996	    /* allocate the array of receive buffers */
1997	    buffer = bsq->buffer = kcalloc(nbr, sizeof(struct buffer),
1998                                           GFP_KERNEL);
1999
2000	    if (buffer == NULL)
2001		return -ENOMEM;
2002
2003	    bsq->freebuf = NULL;
2004
2005	    for (i = 0; i < nbr; i++) {
2006
2007		buffer[ i ].scheme = scheme;
2008		buffer[ i ].magn   = magn;
2009#ifdef FORE200E_BSQ_DEBUG
2010		buffer[ i ].index  = i;
2011		buffer[ i ].supplied = 0;
2012#endif
2013
2014		/* allocate the receive buffer body */
2015		if (fore200e_chunk_alloc(fore200e,
2016					 &buffer[ i ].data, size, fore200e->bus->buffer_alignment,
2017					 DMA_FROM_DEVICE) < 0) {
2018		    
2019		    while (i > 0)
2020			fore200e_chunk_free(fore200e, &buffer[ --i ].data);
2021		    kfree(buffer);
2022		    
2023		    return -ENOMEM;
2024		}
2025
2026		/* insert the buffer into the free buffer list */
2027		buffer[ i ].next = bsq->freebuf;
2028		bsq->freebuf = &buffer[ i ];
2029	    }
2030	    /* all the buffers are free, initially */
2031	    bsq->freebuf_count = nbr;
2032
2033#ifdef FORE200E_BSQ_DEBUG
2034	    bsq_audit(3, bsq, scheme, magn);
2035#endif
2036	}
2037    }
2038
2039    fore200e->state = FORE200E_STATE_ALLOC_BUF;
2040    return 0;
2041}
2042
2043
2044static int fore200e_init_bs_queue(struct fore200e *fore200e)
2045{
2046    int scheme, magn, i;
2047
2048    struct host_bsq*     bsq;
2049    struct cp_bsq_entry __iomem * cp_entry;
2050
2051    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
2052	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
2053
2054	    DPRINTK(2, "buffer supply queue %d / %d is being initialized\n", scheme, magn);
2055
2056	    bsq = &fore200e->host_bsq[ scheme ][ magn ];
2057
2058	    /* allocate and align the array of status words */
2059	    if (fore200e_dma_chunk_alloc(fore200e,
2060					       &bsq->status,
2061					       sizeof(enum status), 
2062					       QUEUE_SIZE_BS,
2063					       fore200e->bus->status_alignment) < 0) {
2064		return -ENOMEM;
2065	    }
2066
2067	    /* allocate and align the array of receive buffer descriptors */
2068	    if (fore200e_dma_chunk_alloc(fore200e,
2069					       &bsq->rbd_block,
2070					       sizeof(struct rbd_block),
2071					       QUEUE_SIZE_BS,
2072					       fore200e->bus->descr_alignment) < 0) {
2073		
2074		fore200e_dma_chunk_free(fore200e, &bsq->status);
2075		return -ENOMEM;
2076	    }
2077	    
2078	    /* get the base address of the cp resident buffer supply queue entries */
2079	    cp_entry = fore200e->virt_base + 
2080		       fore200e->bus->read(&fore200e->cp_queues->cp_bsq[ scheme ][ magn ]);
2081	    
2082	    /* fill the host resident and cp resident buffer supply queue entries */
2083	    for (i = 0; i < QUEUE_SIZE_BS; i++) {
2084		
2085		bsq->host_entry[ i ].status = 
2086		                     FORE200E_INDEX(bsq->status.align_addr, enum status, i);
2087	        bsq->host_entry[ i ].rbd_block =
2088		                     FORE200E_INDEX(bsq->rbd_block.align_addr, struct rbd_block, i);
2089		bsq->host_entry[ i ].rbd_block_dma =
2090		                     FORE200E_DMA_INDEX(bsq->rbd_block.dma_addr, struct rbd_block, i);
2091		bsq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2092		
2093		*bsq->host_entry[ i ].status = STATUS_FREE;
2094		
2095		fore200e->bus->write(FORE200E_DMA_INDEX(bsq->status.dma_addr, enum status, i), 
2096				     &cp_entry[ i ].status_haddr);
2097	    }
2098	}
2099    }
2100
2101    fore200e->state = FORE200E_STATE_INIT_BSQ;
2102    return 0;
2103}
2104
2105
2106static int fore200e_init_rx_queue(struct fore200e *fore200e)
2107{
2108    struct host_rxq*     rxq =  &fore200e->host_rxq;
2109    struct cp_rxq_entry __iomem * cp_entry;
2110    int i;
2111
2112    DPRINTK(2, "receive queue is being initialized\n");
2113
2114    /* allocate and align the array of status words */
2115    if (fore200e_dma_chunk_alloc(fore200e,
2116				       &rxq->status,
2117				       sizeof(enum status), 
2118				       QUEUE_SIZE_RX,
2119				       fore200e->bus->status_alignment) < 0) {
2120	return -ENOMEM;
2121    }
2122
2123    /* allocate and align the array of receive PDU descriptors */
2124    if (fore200e_dma_chunk_alloc(fore200e,
2125				       &rxq->rpd,
2126				       sizeof(struct rpd), 
2127				       QUEUE_SIZE_RX,
2128				       fore200e->bus->descr_alignment) < 0) {
2129	
2130	fore200e_dma_chunk_free(fore200e, &rxq->status);
2131	return -ENOMEM;
2132    }
2133
2134    /* get the base address of the cp resident rx queue entries */
2135    cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_rxq);
2136
2137    /* fill the host resident and cp resident rx entries */
2138    for (i=0; i < QUEUE_SIZE_RX; i++) {
2139	
2140	rxq->host_entry[ i ].status = 
2141	                     FORE200E_INDEX(rxq->status.align_addr, enum status, i);
2142	rxq->host_entry[ i ].rpd = 
2143	                     FORE200E_INDEX(rxq->rpd.align_addr, struct rpd, i);
2144	rxq->host_entry[ i ].rpd_dma = 
2145	                     FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i);
2146	rxq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2147
2148	*rxq->host_entry[ i ].status = STATUS_FREE;
2149
2150	fore200e->bus->write(FORE200E_DMA_INDEX(rxq->status.dma_addr, enum status, i), 
2151			     &cp_entry[ i ].status_haddr);
2152
2153	fore200e->bus->write(FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i),
2154			     &cp_entry[ i ].rpd_haddr);
2155    }
2156
2157    /* set the head entry of the queue */
2158    rxq->head = 0;
2159
2160    fore200e->state = FORE200E_STATE_INIT_RXQ;
2161    return 0;
2162}
2163
2164
2165static int fore200e_init_tx_queue(struct fore200e *fore200e)
2166{
2167    struct host_txq*     txq =  &fore200e->host_txq;
2168    struct cp_txq_entry __iomem * cp_entry;
2169    int i;
2170
2171    DPRINTK(2, "transmit queue is being initialized\n");
2172
2173    /* allocate and align the array of status words */
2174    if (fore200e_dma_chunk_alloc(fore200e,
2175				       &txq->status,
2176				       sizeof(enum status), 
2177				       QUEUE_SIZE_TX,
2178				       fore200e->bus->status_alignment) < 0) {
2179	return -ENOMEM;
2180    }
2181
2182    /* allocate and align the array of transmit PDU descriptors */
2183    if (fore200e_dma_chunk_alloc(fore200e,
2184				       &txq->tpd,
2185				       sizeof(struct tpd), 
2186				       QUEUE_SIZE_TX,
2187				       fore200e->bus->descr_alignment) < 0) {
2188	
2189	fore200e_dma_chunk_free(fore200e, &txq->status);
2190	return -ENOMEM;
2191    }
2192
2193    /* get the base address of the cp resident tx queue entries */
2194    cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_txq);
2195
2196    /* fill the host resident and cp resident tx entries */
2197    for (i=0; i < QUEUE_SIZE_TX; i++) {
2198	
2199	txq->host_entry[ i ].status = 
2200	                     FORE200E_INDEX(txq->status.align_addr, enum status, i);
2201	txq->host_entry[ i ].tpd = 
2202	                     FORE200E_INDEX(txq->tpd.align_addr, struct tpd, i);
2203	txq->host_entry[ i ].tpd_dma  = 
2204                             FORE200E_DMA_INDEX(txq->tpd.dma_addr, struct tpd, i);
2205	txq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2206
2207	*txq->host_entry[ i ].status = STATUS_FREE;
2208	
2209	fore200e->bus->write(FORE200E_DMA_INDEX(txq->status.dma_addr, enum status, i), 
2210			     &cp_entry[ i ].status_haddr);
2211	
2212        /* although there is a one-to-one mapping of tx queue entries and tpds,
2213	   we do not write here the DMA (physical) base address of each tpd into
2214	   the related cp resident entry, because the cp relies on this write
2215	   operation to detect that a new pdu has been submitted for tx */
2216    }
2217
2218    /* set the head and tail entries of the queue */
2219    txq->head = 0;
2220    txq->tail = 0;
2221
2222    fore200e->state = FORE200E_STATE_INIT_TXQ;
2223    return 0;
2224}
2225
2226
2227static int fore200e_init_cmd_queue(struct fore200e *fore200e)
2228{
2229    struct host_cmdq*     cmdq =  &fore200e->host_cmdq;
2230    struct cp_cmdq_entry __iomem * cp_entry;
2231    int i;
2232
2233    DPRINTK(2, "command queue is being initialized\n");
2234
2235    /* allocate and align the array of status words */
2236    if (fore200e_dma_chunk_alloc(fore200e,
2237				       &cmdq->status,
2238				       sizeof(enum status), 
2239				       QUEUE_SIZE_CMD,
2240				       fore200e->bus->status_alignment) < 0) {
2241	return -ENOMEM;
2242    }
2243    
2244    /* get the base address of the cp resident cmd queue entries */
2245    cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_cmdq);
2246
2247    /* fill the host resident and cp resident cmd entries */
2248    for (i=0; i < QUEUE_SIZE_CMD; i++) {
2249	
2250	cmdq->host_entry[ i ].status   = 
2251                              FORE200E_INDEX(cmdq->status.align_addr, enum status, i);
2252	cmdq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2253
2254	*cmdq->host_entry[ i ].status = STATUS_FREE;
2255
2256	fore200e->bus->write(FORE200E_DMA_INDEX(cmdq->status.dma_addr, enum status, i), 
2257                             &cp_entry[ i ].status_haddr);
2258    }
2259
2260    /* set the head entry of the queue */
2261    cmdq->head = 0;
2262
2263    fore200e->state = FORE200E_STATE_INIT_CMDQ;
2264    return 0;
2265}
2266
2267
2268static void fore200e_param_bs_queue(struct fore200e *fore200e,
2269				    enum buffer_scheme scheme,
2270				    enum buffer_magn magn, int queue_length,
2271				    int pool_size, int supply_blksize)
2272{
2273    struct bs_spec __iomem * bs_spec = &fore200e->cp_queues->init.bs_spec[ scheme ][ magn ];
2274
2275    fore200e->bus->write(queue_length,                           &bs_spec->queue_length);
2276    fore200e->bus->write(fore200e_rx_buf_size[ scheme ][ magn ], &bs_spec->buffer_size);
2277    fore200e->bus->write(pool_size,                              &bs_spec->pool_size);
2278    fore200e->bus->write(supply_blksize,                         &bs_spec->supply_blksize);
2279}
2280
2281
2282static int fore200e_initialize(struct fore200e *fore200e)
2283{
2284    struct cp_queues __iomem * cpq;
2285    int               ok, scheme, magn;
2286
2287    DPRINTK(2, "device %s being initialized\n", fore200e->name);
2288
2289    mutex_init(&fore200e->rate_mtx);
2290    spin_lock_init(&fore200e->q_lock);
2291
2292    cpq = fore200e->cp_queues = fore200e->virt_base + FORE200E_CP_QUEUES_OFFSET;
2293
2294    /* enable cp to host interrupts */
2295    fore200e->bus->write(1, &cpq->imask);
2296
2297    if (fore200e->bus->irq_enable)
2298	fore200e->bus->irq_enable(fore200e);
2299    
2300    fore200e->bus->write(NBR_CONNECT, &cpq->init.num_connect);
2301
2302    fore200e->bus->write(QUEUE_SIZE_CMD, &cpq->init.cmd_queue_len);
2303    fore200e->bus->write(QUEUE_SIZE_RX,  &cpq->init.rx_queue_len);
2304    fore200e->bus->write(QUEUE_SIZE_TX,  &cpq->init.tx_queue_len);
2305
2306    fore200e->bus->write(RSD_EXTENSION,  &cpq->init.rsd_extension);
2307    fore200e->bus->write(TSD_EXTENSION,  &cpq->init.tsd_extension);
2308
2309    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++)
2310	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++)
2311	    fore200e_param_bs_queue(fore200e, scheme, magn,
2312				    QUEUE_SIZE_BS, 
2313				    fore200e_rx_buf_nbr[ scheme ][ magn ],
2314				    RBD_BLK_SIZE);
2315
2316    /* issue the initialize command */
2317    fore200e->bus->write(STATUS_PENDING,    &cpq->init.status);
2318    fore200e->bus->write(OPCODE_INITIALIZE, &cpq->init.opcode);
2319
2320    ok = fore200e_io_poll(fore200e, &cpq->init.status, STATUS_COMPLETE, 3000);
2321    if (ok == 0) {
2322	printk(FORE200E "device %s initialization failed\n", fore200e->name);
2323	return -ENODEV;
2324    }
2325
2326    printk(FORE200E "device %s initialized\n", fore200e->name);
2327
2328    fore200e->state = FORE200E_STATE_INITIALIZE;
2329    return 0;
2330}
2331
2332
2333static void fore200e_monitor_putc(struct fore200e *fore200e, char c)
2334{
2335    struct cp_monitor __iomem * monitor = fore200e->cp_monitor;
2336
2337#if 0
2338    printk("%c", c);
2339#endif
2340    fore200e->bus->write(((u32) c) | FORE200E_CP_MONITOR_UART_AVAIL, &monitor->soft_uart.send);
2341}
2342
2343
2344static int fore200e_monitor_getc(struct fore200e *fore200e)
2345{
2346    struct cp_monitor __iomem * monitor = fore200e->cp_monitor;
2347    unsigned long      timeout = jiffies + msecs_to_jiffies(50);
2348    int                c;
2349
2350    while (time_before(jiffies, timeout)) {
2351
2352	c = (int) fore200e->bus->read(&monitor->soft_uart.recv);
2353
2354	if (c & FORE200E_CP_MONITOR_UART_AVAIL) {
2355
2356	    fore200e->bus->write(FORE200E_CP_MONITOR_UART_FREE, &monitor->soft_uart.recv);
2357#if 0
2358	    printk("%c", c & 0xFF);
2359#endif
2360	    return c & 0xFF;
2361	}
2362    }
2363
2364    return -1;
2365}
2366
2367
2368static void fore200e_monitor_puts(struct fore200e *fore200e, char *str)
2369{
2370    while (*str) {
2371
2372	/* the i960 monitor doesn't accept any new character if it has something to say */
2373	while (fore200e_monitor_getc(fore200e) >= 0);
2374	
2375	fore200e_monitor_putc(fore200e, *str++);
2376    }
2377
2378    while (fore200e_monitor_getc(fore200e) >= 0);
2379}
2380
2381#ifdef __LITTLE_ENDIAN
2382#define FW_EXT ".bin"
2383#else
2384#define FW_EXT "_ecd.bin2"
2385#endif
2386
2387static int fore200e_load_and_start_fw(struct fore200e *fore200e)
2388{
2389    const struct firmware *firmware;
2390    const struct fw_header *fw_header;
2391    const __le32 *fw_data;
2392    u32 fw_size;
2393    u32 __iomem *load_addr;
2394    char buf[48];
2395    int err;
2396
2397    sprintf(buf, "%s%s", fore200e->bus->proc_name, FW_EXT);
2398    if ((err = request_firmware(&firmware, buf, fore200e->dev)) < 0) {
2399	printk(FORE200E "problem loading firmware image %s\n", fore200e->bus->model_name);
2400	return err;
2401    }
2402
2403    fw_data = (const __le32 *)firmware->data;
2404    fw_size = firmware->size / sizeof(u32);
2405    fw_header = (const struct fw_header *)firmware->data;
2406    load_addr = fore200e->virt_base + le32_to_cpu(fw_header->load_offset);
2407
2408    DPRINTK(2, "device %s firmware being loaded at 0x%p (%d words)\n",
2409	    fore200e->name, load_addr, fw_size);
2410
2411    if (le32_to_cpu(fw_header->magic) != FW_HEADER_MAGIC) {
2412	printk(FORE200E "corrupted %s firmware image\n", fore200e->bus->model_name);
2413	goto release;
2414    }
2415
2416    for (; fw_size--; fw_data++, load_addr++)
2417	fore200e->bus->write(le32_to_cpu(*fw_data), load_addr);
2418
2419    DPRINTK(2, "device %s firmware being started\n", fore200e->name);
2420
2421#if defined(__sparc_v9__)
2422    /* reported to be required by SBA cards on some sparc64 hosts */
2423    fore200e_spin(100);
2424#endif
2425
2426    sprintf(buf, "\rgo %x\r", le32_to_cpu(fw_header->start_offset));
2427    fore200e_monitor_puts(fore200e, buf);
2428
2429    if (fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_CP_RUNNING, 1000) == 0) {
2430	printk(FORE200E "device %s firmware didn't start\n", fore200e->name);
2431	goto release;
2432    }
2433
2434    printk(FORE200E "device %s firmware started\n", fore200e->name);
2435
2436    fore200e->state = FORE200E_STATE_START_FW;
2437    err = 0;
2438
2439release:
2440    release_firmware(firmware);
2441    return err;
2442}
2443
2444
2445static int fore200e_register(struct fore200e *fore200e, struct device *parent)
2446{
2447    struct atm_dev* atm_dev;
2448
2449    DPRINTK(2, "device %s being registered\n", fore200e->name);
2450
2451    atm_dev = atm_dev_register(fore200e->bus->proc_name, parent, &fore200e_ops,
2452                               -1, NULL);
2453    if (atm_dev == NULL) {
2454	printk(FORE200E "unable to register device %s\n", fore200e->name);
2455	return -ENODEV;
2456    }
2457
2458    atm_dev->dev_data = fore200e;
2459    fore200e->atm_dev = atm_dev;
2460
2461    atm_dev->ci_range.vpi_bits = FORE200E_VPI_BITS;
2462    atm_dev->ci_range.vci_bits = FORE200E_VCI_BITS;
2463
2464    fore200e->available_cell_rate = ATM_OC3_PCR;
2465
2466    fore200e->state = FORE200E_STATE_REGISTER;
2467    return 0;
2468}
2469
2470
2471static int fore200e_init(struct fore200e *fore200e, struct device *parent)
2472{
2473    if (fore200e_register(fore200e, parent) < 0)
2474	return -ENODEV;
2475    
2476    if (fore200e->bus->configure(fore200e) < 0)
2477	return -ENODEV;
2478
2479    if (fore200e->bus->map(fore200e) < 0)
2480	return -ENODEV;
2481
2482    if (fore200e_reset(fore200e, 1) < 0)
2483	return -ENODEV;
2484
2485    if (fore200e_load_and_start_fw(fore200e) < 0)
2486	return -ENODEV;
2487
2488    if (fore200e_initialize(fore200e) < 0)
2489	return -ENODEV;
2490
2491    if (fore200e_init_cmd_queue(fore200e) < 0)
2492	return -ENOMEM;
2493
2494    if (fore200e_init_tx_queue(fore200e) < 0)
2495	return -ENOMEM;
2496
2497    if (fore200e_init_rx_queue(fore200e) < 0)
2498	return -ENOMEM;
2499
2500    if (fore200e_init_bs_queue(fore200e) < 0)
2501	return -ENOMEM;
2502
2503    if (fore200e_alloc_rx_buf(fore200e) < 0)
2504	return -ENOMEM;
2505
2506    if (fore200e_get_esi(fore200e) < 0)
2507	return -EIO;
2508
2509    if (fore200e_irq_request(fore200e) < 0)
2510	return -EBUSY;
2511
2512    fore200e_supply(fore200e);
2513
2514    /* all done, board initialization is now complete */
2515    fore200e->state = FORE200E_STATE_COMPLETE;
2516    return 0;
2517}
2518
2519#ifdef CONFIG_SBUS
 
2520static int fore200e_sba_probe(struct platform_device *op)
2521{
 
2522	struct fore200e *fore200e;
2523	static int index = 0;
2524	int err;
2525
 
 
 
 
2526	fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL);
2527	if (!fore200e)
2528		return -ENOMEM;
2529
2530	fore200e->bus = &fore200e_sbus_ops;
2531	fore200e->dev = &op->dev;
2532	fore200e->irq = op->archdata.irqs[0];
2533	fore200e->phys_base = op->resource[0].start;
2534
2535	sprintf(fore200e->name, "SBA-200E-%d", index);
2536
2537	err = fore200e_init(fore200e, &op->dev);
2538	if (err < 0) {
2539		fore200e_shutdown(fore200e);
2540		kfree(fore200e);
2541		return err;
2542	}
2543
2544	index++;
2545	dev_set_drvdata(&op->dev, fore200e);
2546
2547	return 0;
2548}
2549
2550static void fore200e_sba_remove(struct platform_device *op)
2551{
2552	struct fore200e *fore200e = dev_get_drvdata(&op->dev);
2553
2554	fore200e_shutdown(fore200e);
2555	kfree(fore200e);
 
 
2556}
2557
2558static const struct of_device_id fore200e_sba_match[] = {
2559	{
2560		.name = SBA200E_PROM_NAME,
2561	},
2562	{},
2563};
2564MODULE_DEVICE_TABLE(of, fore200e_sba_match);
2565
2566static struct platform_driver fore200e_sba_driver = {
2567	.driver = {
2568		.name = "fore_200e",
2569		.of_match_table = fore200e_sba_match,
2570	},
2571	.probe		= fore200e_sba_probe,
2572	.remove		= fore200e_sba_remove,
2573};
2574#endif
2575
2576#ifdef CONFIG_PCI
2577static int fore200e_pca_detect(struct pci_dev *pci_dev,
2578			       const struct pci_device_id *pci_ent)
2579{
2580    struct fore200e* fore200e;
2581    int err = 0;
2582    static int index = 0;
2583
2584    if (pci_enable_device(pci_dev)) {
2585	err = -EINVAL;
2586	goto out;
2587    }
2588
2589    if (dma_set_mask_and_coherent(&pci_dev->dev, DMA_BIT_MASK(32))) {
2590	err = -EINVAL;
2591	goto out;
2592    }
2593    
2594    fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL);
2595    if (fore200e == NULL) {
2596	err = -ENOMEM;
2597	goto out_disable;
2598    }
2599
2600    fore200e->bus       = &fore200e_pci_ops;
2601    fore200e->dev	= &pci_dev->dev;
2602    fore200e->irq       = pci_dev->irq;
2603    fore200e->phys_base = pci_resource_start(pci_dev, 0);
2604
2605    sprintf(fore200e->name, "PCA-200E-%d", index - 1);
2606
2607    pci_set_master(pci_dev);
2608
2609    printk(FORE200E "device PCA-200E found at 0x%lx, IRQ %s\n",
2610	   fore200e->phys_base, fore200e_irq_itoa(fore200e->irq));
2611
2612    sprintf(fore200e->name, "PCA-200E-%d", index);
2613
2614    err = fore200e_init(fore200e, &pci_dev->dev);
2615    if (err < 0) {
2616	fore200e_shutdown(fore200e);
2617	goto out_free;
2618    }
2619
2620    ++index;
2621    pci_set_drvdata(pci_dev, fore200e);
2622
2623out:
2624    return err;
2625
2626out_free:
2627    kfree(fore200e);
2628out_disable:
2629    pci_disable_device(pci_dev);
2630    goto out;
2631}
2632
2633
2634static void fore200e_pca_remove_one(struct pci_dev *pci_dev)
2635{
2636    struct fore200e *fore200e;
2637
2638    fore200e = pci_get_drvdata(pci_dev);
2639
2640    fore200e_shutdown(fore200e);
2641    kfree(fore200e);
2642    pci_disable_device(pci_dev);
2643}
2644
2645
2646static const struct pci_device_id fore200e_pca_tbl[] = {
2647    { PCI_VENDOR_ID_FORE, PCI_DEVICE_ID_FORE_PCA200E, PCI_ANY_ID, PCI_ANY_ID },
2648    { 0, }
2649};
2650
2651MODULE_DEVICE_TABLE(pci, fore200e_pca_tbl);
2652
2653static struct pci_driver fore200e_pca_driver = {
2654    .name =     "fore_200e",
2655    .probe =    fore200e_pca_detect,
2656    .remove =   fore200e_pca_remove_one,
2657    .id_table = fore200e_pca_tbl,
2658};
2659#endif
2660
2661static int __init fore200e_module_init(void)
2662{
2663	int err = 0;
2664
2665	printk(FORE200E "FORE Systems 200E-series ATM driver - version " FORE200E_VERSION "\n");
2666
2667#ifdef CONFIG_SBUS
2668	err = platform_driver_register(&fore200e_sba_driver);
2669	if (err)
2670		return err;
2671#endif
2672
2673#ifdef CONFIG_PCI
2674	err = pci_register_driver(&fore200e_pca_driver);
2675#endif
2676
2677#ifdef CONFIG_SBUS
2678	if (err)
2679		platform_driver_unregister(&fore200e_sba_driver);
2680#endif
2681
2682	return err;
2683}
2684
2685static void __exit fore200e_module_cleanup(void)
2686{
2687#ifdef CONFIG_PCI
2688	pci_unregister_driver(&fore200e_pca_driver);
2689#endif
2690#ifdef CONFIG_SBUS
2691	platform_driver_unregister(&fore200e_sba_driver);
2692#endif
2693}
2694
2695static int
2696fore200e_proc_read(struct atm_dev *dev, loff_t* pos, char* page)
2697{
2698    struct fore200e*     fore200e  = FORE200E_DEV(dev);
2699    struct fore200e_vcc* fore200e_vcc;
2700    struct atm_vcc*      vcc;
2701    int                  i, len, left = *pos;
2702    unsigned long        flags;
2703
2704    if (!left--) {
2705
2706	if (fore200e_getstats(fore200e) < 0)
2707	    return -EIO;
2708
2709	len = sprintf(page,"\n"
2710		       " device:\n"
2711		       "   internal name:\t\t%s\n", fore200e->name);
2712
2713	/* print bus-specific information */
2714	if (fore200e->bus->proc_read)
2715	    len += fore200e->bus->proc_read(fore200e, page + len);
2716	
2717	len += sprintf(page + len,
2718		"   interrupt line:\t\t%s\n"
2719		"   physical base address:\t0x%p\n"
2720		"   virtual base address:\t0x%p\n"
2721		"   factory address (ESI):\t%pM\n"
2722		"   board serial number:\t\t%d\n\n",
2723		fore200e_irq_itoa(fore200e->irq),
2724		(void*)fore200e->phys_base,
2725		fore200e->virt_base,
2726		fore200e->esi,
2727		fore200e->esi[4] * 256 + fore200e->esi[5]);
2728
2729	return len;
2730    }
2731
2732    if (!left--)
2733	return sprintf(page,
2734		       "   free small bufs, scheme 1:\t%d\n"
2735		       "   free large bufs, scheme 1:\t%d\n"
2736		       "   free small bufs, scheme 2:\t%d\n"
2737		       "   free large bufs, scheme 2:\t%d\n",
2738		       fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_SMALL ].freebuf_count,
2739		       fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_LARGE ].freebuf_count,
2740		       fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_SMALL ].freebuf_count,
2741		       fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_LARGE ].freebuf_count);
2742
2743    if (!left--) {
2744	u32 hb = fore200e->bus->read(&fore200e->cp_queues->heartbeat);
2745
2746	len = sprintf(page,"\n\n"
2747		      " cell processor:\n"
2748		      "   heartbeat state:\t\t");
2749	
2750	if (hb >> 16 != 0xDEAD)
2751	    len += sprintf(page + len, "0x%08x\n", hb);
2752	else
2753	    len += sprintf(page + len, "*** FATAL ERROR %04x ***\n", hb & 0xFFFF);
2754
2755	return len;
2756    }
2757
2758    if (!left--) {
2759	static const char* media_name[] = {
2760	    "unshielded twisted pair",
2761	    "multimode optical fiber ST",
2762	    "multimode optical fiber SC",
2763	    "single-mode optical fiber ST",
2764	    "single-mode optical fiber SC",
2765	    "unknown"
2766	};
2767
2768	static const char* oc3_mode[] = {
2769	    "normal operation",
2770	    "diagnostic loopback",
2771	    "line loopback",
2772	    "unknown"
2773	};
2774
2775	u32 fw_release     = fore200e->bus->read(&fore200e->cp_queues->fw_release);
2776	u32 mon960_release = fore200e->bus->read(&fore200e->cp_queues->mon960_release);
2777	u32 oc3_revision   = fore200e->bus->read(&fore200e->cp_queues->oc3_revision);
2778	u32 media_index    = FORE200E_MEDIA_INDEX(fore200e->bus->read(&fore200e->cp_queues->media_type));
2779	u32 oc3_index;
2780
2781	if (media_index > 4)
2782		media_index = 5;
2783	
2784	switch (fore200e->loop_mode) {
2785	    case ATM_LM_NONE:    oc3_index = 0;
2786		                 break;
2787	    case ATM_LM_LOC_PHY: oc3_index = 1;
2788		                 break;
2789	    case ATM_LM_RMT_PHY: oc3_index = 2;
2790		                 break;
2791	    default:             oc3_index = 3;
2792	}
2793
2794	return sprintf(page,
2795		       "   firmware release:\t\t%d.%d.%d\n"
2796		       "   monitor release:\t\t%d.%d\n"
2797		       "   media type:\t\t\t%s\n"
2798		       "   OC-3 revision:\t\t0x%x\n"
2799                       "   OC-3 mode:\t\t\t%s",
2800		       fw_release >> 16, fw_release << 16 >> 24,  fw_release << 24 >> 24,
2801		       mon960_release >> 16, mon960_release << 16 >> 16,
2802		       media_name[ media_index ],
2803		       oc3_revision,
2804		       oc3_mode[ oc3_index ]);
2805    }
2806
2807    if (!left--) {
2808	struct cp_monitor __iomem * cp_monitor = fore200e->cp_monitor;
2809
2810	return sprintf(page,
2811		       "\n\n"
2812		       " monitor:\n"
2813		       "   version number:\t\t%d\n"
2814		       "   boot status word:\t\t0x%08x\n",
2815		       fore200e->bus->read(&cp_monitor->mon_version),
2816		       fore200e->bus->read(&cp_monitor->bstat));
2817    }
2818
2819    if (!left--)
2820	return sprintf(page,
2821		       "\n"
2822		       " device statistics:\n"
2823		       "  4b5b:\n"
2824		       "     crc_header_errors:\t\t%10u\n"
2825		       "     framing_errors:\t\t%10u\n",
2826		       be32_to_cpu(fore200e->stats->phy.crc_header_errors),
2827		       be32_to_cpu(fore200e->stats->phy.framing_errors));
2828    
2829    if (!left--)
2830	return sprintf(page, "\n"
2831		       "  OC-3:\n"
2832		       "     section_bip8_errors:\t%10u\n"
2833		       "     path_bip8_errors:\t\t%10u\n"
2834		       "     line_bip24_errors:\t\t%10u\n"
2835		       "     line_febe_errors:\t\t%10u\n"
2836		       "     path_febe_errors:\t\t%10u\n"
2837		       "     corr_hcs_errors:\t\t%10u\n"
2838		       "     ucorr_hcs_errors:\t\t%10u\n",
2839		       be32_to_cpu(fore200e->stats->oc3.section_bip8_errors),
2840		       be32_to_cpu(fore200e->stats->oc3.path_bip8_errors),
2841		       be32_to_cpu(fore200e->stats->oc3.line_bip24_errors),
2842		       be32_to_cpu(fore200e->stats->oc3.line_febe_errors),
2843		       be32_to_cpu(fore200e->stats->oc3.path_febe_errors),
2844		       be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors),
2845		       be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors));
2846
2847    if (!left--)
2848	return sprintf(page,"\n"
2849		       "   ATM:\t\t\t\t     cells\n"
2850		       "     TX:\t\t\t%10u\n"
2851		       "     RX:\t\t\t%10u\n"
2852		       "     vpi out of range:\t\t%10u\n"
2853		       "     vpi no conn:\t\t%10u\n"
2854		       "     vci out of range:\t\t%10u\n"
2855		       "     vci no conn:\t\t%10u\n",
2856		       be32_to_cpu(fore200e->stats->atm.cells_transmitted),
2857		       be32_to_cpu(fore200e->stats->atm.cells_received),
2858		       be32_to_cpu(fore200e->stats->atm.vpi_bad_range),
2859		       be32_to_cpu(fore200e->stats->atm.vpi_no_conn),
2860		       be32_to_cpu(fore200e->stats->atm.vci_bad_range),
2861		       be32_to_cpu(fore200e->stats->atm.vci_no_conn));
2862    
2863    if (!left--)
2864	return sprintf(page,"\n"
2865		       "   AAL0:\t\t\t     cells\n"
2866		       "     TX:\t\t\t%10u\n"
2867		       "     RX:\t\t\t%10u\n"
2868		       "     dropped:\t\t\t%10u\n",
2869		       be32_to_cpu(fore200e->stats->aal0.cells_transmitted),
2870		       be32_to_cpu(fore200e->stats->aal0.cells_received),
2871		       be32_to_cpu(fore200e->stats->aal0.cells_dropped));
2872    
2873    if (!left--)
2874	return sprintf(page,"\n"
2875		       "   AAL3/4:\n"
2876		       "     SAR sublayer:\t\t     cells\n"
2877		       "       TX:\t\t\t%10u\n"
2878		       "       RX:\t\t\t%10u\n"
2879		       "       dropped:\t\t\t%10u\n"
2880		       "       CRC errors:\t\t%10u\n"
2881		       "       protocol errors:\t\t%10u\n\n"
2882		       "     CS  sublayer:\t\t      PDUs\n"
2883		       "       TX:\t\t\t%10u\n"
2884		       "       RX:\t\t\t%10u\n"
2885		       "       dropped:\t\t\t%10u\n"
2886		       "       protocol errors:\t\t%10u\n",
2887		       be32_to_cpu(fore200e->stats->aal34.cells_transmitted),
2888		       be32_to_cpu(fore200e->stats->aal34.cells_received),
2889		       be32_to_cpu(fore200e->stats->aal34.cells_dropped),
2890		       be32_to_cpu(fore200e->stats->aal34.cells_crc_errors),
2891		       be32_to_cpu(fore200e->stats->aal34.cells_protocol_errors),
2892		       be32_to_cpu(fore200e->stats->aal34.cspdus_transmitted),
2893		       be32_to_cpu(fore200e->stats->aal34.cspdus_received),
2894		       be32_to_cpu(fore200e->stats->aal34.cspdus_dropped),
2895		       be32_to_cpu(fore200e->stats->aal34.cspdus_protocol_errors));
2896    
2897    if (!left--)
2898	return sprintf(page,"\n"
2899		       "   AAL5:\n"
2900		       "     SAR sublayer:\t\t     cells\n"
2901		       "       TX:\t\t\t%10u\n"
2902		       "       RX:\t\t\t%10u\n"
2903		       "       dropped:\t\t\t%10u\n"
2904		       "       congestions:\t\t%10u\n\n"
2905		       "     CS  sublayer:\t\t      PDUs\n"
2906		       "       TX:\t\t\t%10u\n"
2907		       "       RX:\t\t\t%10u\n"
2908		       "       dropped:\t\t\t%10u\n"
2909		       "       CRC errors:\t\t%10u\n"
2910		       "       protocol errors:\t\t%10u\n",
2911		       be32_to_cpu(fore200e->stats->aal5.cells_transmitted),
2912		       be32_to_cpu(fore200e->stats->aal5.cells_received),
2913		       be32_to_cpu(fore200e->stats->aal5.cells_dropped),
2914		       be32_to_cpu(fore200e->stats->aal5.congestion_experienced),
2915		       be32_to_cpu(fore200e->stats->aal5.cspdus_transmitted),
2916		       be32_to_cpu(fore200e->stats->aal5.cspdus_received),
2917		       be32_to_cpu(fore200e->stats->aal5.cspdus_dropped),
2918		       be32_to_cpu(fore200e->stats->aal5.cspdus_crc_errors),
2919		       be32_to_cpu(fore200e->stats->aal5.cspdus_protocol_errors));
2920    
2921    if (!left--)
2922	return sprintf(page,"\n"
2923		       "   AUX:\t\t       allocation failures\n"
2924		       "     small b1:\t\t\t%10u\n"
2925		       "     large b1:\t\t\t%10u\n"
2926		       "     small b2:\t\t\t%10u\n"
2927		       "     large b2:\t\t\t%10u\n"
2928		       "     RX PDUs:\t\t\t%10u\n"
2929		       "     TX PDUs:\t\t\t%10lu\n",
2930		       be32_to_cpu(fore200e->stats->aux.small_b1_failed),
2931		       be32_to_cpu(fore200e->stats->aux.large_b1_failed),
2932		       be32_to_cpu(fore200e->stats->aux.small_b2_failed),
2933		       be32_to_cpu(fore200e->stats->aux.large_b2_failed),
2934		       be32_to_cpu(fore200e->stats->aux.rpd_alloc_failed),
2935		       fore200e->tx_sat);
2936    
2937    if (!left--)
2938	return sprintf(page,"\n"
2939		       " receive carrier:\t\t\t%s\n",
2940		       fore200e->stats->aux.receive_carrier ? "ON" : "OFF!");
2941    
2942    if (!left--) {
2943        return sprintf(page,"\n"
2944		       " VCCs:\n  address   VPI VCI   AAL "
2945		       "TX PDUs   TX min/max size  RX PDUs   RX min/max size\n");
2946    }
2947
2948    for (i = 0; i < NBR_CONNECT; i++) {
2949
2950	vcc = fore200e->vc_map[i].vcc;
2951
2952	if (vcc == NULL)
2953	    continue;
2954
2955	spin_lock_irqsave(&fore200e->q_lock, flags);
2956
2957	if (vcc && test_bit(ATM_VF_READY, &vcc->flags) && !left--) {
2958
2959	    fore200e_vcc = FORE200E_VCC(vcc);
2960	    ASSERT(fore200e_vcc);
2961
2962	    len = sprintf(page,
2963			  "  %pK  %03d %05d %1d   %09lu %05d/%05d      %09lu %05d/%05d\n",
2964			  vcc,
2965			  vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
2966			  fore200e_vcc->tx_pdu,
2967			  fore200e_vcc->tx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->tx_min_pdu,
2968			  fore200e_vcc->tx_max_pdu,
2969			  fore200e_vcc->rx_pdu,
2970			  fore200e_vcc->rx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->rx_min_pdu,
2971			  fore200e_vcc->rx_max_pdu);
2972
2973	    spin_unlock_irqrestore(&fore200e->q_lock, flags);
2974	    return len;
2975	}
2976
2977	spin_unlock_irqrestore(&fore200e->q_lock, flags);
2978    }
2979    
2980    return 0;
2981}
2982
2983module_init(fore200e_module_init);
2984module_exit(fore200e_module_cleanup);
2985
2986
2987static const struct atmdev_ops fore200e_ops = {
2988	.open       = fore200e_open,
2989	.close      = fore200e_close,
2990	.ioctl      = fore200e_ioctl,
2991	.send       = fore200e_send,
2992	.change_qos = fore200e_change_qos,
2993	.proc_read  = fore200e_proc_read,
2994	.owner      = THIS_MODULE
2995};
2996
2997MODULE_LICENSE("GPL");
2998#ifdef CONFIG_PCI
2999#ifdef __LITTLE_ENDIAN__
3000MODULE_FIRMWARE("pca200e.bin");
3001#else
3002MODULE_FIRMWARE("pca200e_ecd.bin2");
3003#endif
3004#endif /* CONFIG_PCI */
3005#ifdef CONFIG_SBUS
3006MODULE_FIRMWARE("sba200e_ecd.bin2");
3007#endif