Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 A FORE Systems 200E-series driver for ATM on Linux.
4 Christophe Lizzi (lizzi@cnam.fr), October 1999-March 2003.
5
6 Based on the PCA-200E driver from Uwe Dannowski (Uwe.Dannowski@inf.tu-dresden.de).
7
8 This driver simultaneously supports PCA-200E and SBA-200E adapters
9 on i386, alpha (untested), powerpc, sparc and sparc64 architectures.
10
11*/
12
13
14#include <linux/kernel.h>
15#include <linux/slab.h>
16#include <linux/init.h>
17#include <linux/capability.h>
18#include <linux/interrupt.h>
19#include <linux/bitops.h>
20#include <linux/pci.h>
21#include <linux/module.h>
22#include <linux/atmdev.h>
23#include <linux/sonet.h>
24#include <linux/dma-mapping.h>
25#include <linux/delay.h>
26#include <linux/firmware.h>
27#include <linux/pgtable.h>
28#include <asm/io.h>
29#include <asm/string.h>
30#include <asm/page.h>
31#include <asm/irq.h>
32#include <asm/dma.h>
33#include <asm/byteorder.h>
34#include <linux/uaccess.h>
35#include <linux/atomic.h>
36
37#ifdef CONFIG_SBUS
38#include <linux/of.h>
39#include <linux/of_device.h>
40#include <asm/idprom.h>
41#include <asm/openprom.h>
42#include <asm/oplib.h>
43#endif
44
45#if defined(CONFIG_ATM_FORE200E_USE_TASKLET) /* defer interrupt work to a tasklet */
46#define FORE200E_USE_TASKLET
47#endif
48
49#if 0 /* enable the debugging code of the buffer supply queues */
50#define FORE200E_BSQ_DEBUG
51#endif
52
53#if 1 /* ensure correct handling of 52-byte AAL0 SDUs expected by atmdump-like apps */
54#define FORE200E_52BYTE_AAL0_SDU
55#endif
56
57#include "fore200e.h"
58#include "suni.h"
59
60#define FORE200E_VERSION "0.3e"
61
62#define FORE200E "fore200e: "
63
64#if 0 /* override .config */
65#define CONFIG_ATM_FORE200E_DEBUG 1
66#endif
67#if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0)
68#define DPRINTK(level, format, args...) do { if (CONFIG_ATM_FORE200E_DEBUG >= (level)) \
69 printk(FORE200E format, ##args); } while (0)
70#else
71#define DPRINTK(level, format, args...) do {} while (0)
72#endif
73
74
75#define FORE200E_ALIGN(addr, alignment) \
76 ((((unsigned long)(addr) + (alignment - 1)) & ~(alignment - 1)) - (unsigned long)(addr))
77
78#define FORE200E_DMA_INDEX(dma_addr, type, index) ((dma_addr) + (index) * sizeof(type))
79
80#define FORE200E_INDEX(virt_addr, type, index) (&((type *)(virt_addr))[ index ])
81
82#define FORE200E_NEXT_ENTRY(index, modulo) (index = ((index) + 1) % (modulo))
83
84#if 1
85#define ASSERT(expr) if (!(expr)) { \
86 printk(FORE200E "assertion failed! %s[%d]: %s\n", \
87 __func__, __LINE__, #expr); \
88 panic(FORE200E "%s", __func__); \
89 }
90#else
91#define ASSERT(expr) do {} while (0)
92#endif
93
94
95static const struct atmdev_ops fore200e_ops;
96
97static LIST_HEAD(fore200e_boards);
98
99
100MODULE_AUTHOR("Christophe Lizzi - credits to Uwe Dannowski and Heikki Vatiainen");
101MODULE_DESCRIPTION("FORE Systems 200E-series ATM driver - version " FORE200E_VERSION);
102
103static const int fore200e_rx_buf_nbr[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = {
104 { BUFFER_S1_NBR, BUFFER_L1_NBR },
105 { BUFFER_S2_NBR, BUFFER_L2_NBR }
106};
107
108static const int fore200e_rx_buf_size[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = {
109 { BUFFER_S1_SIZE, BUFFER_L1_SIZE },
110 { BUFFER_S2_SIZE, BUFFER_L2_SIZE }
111};
112
113
114#if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0)
115static const char* fore200e_traffic_class[] = { "NONE", "UBR", "CBR", "VBR", "ABR", "ANY" };
116#endif
117
118
119#if 0 /* currently unused */
120static int
121fore200e_fore2atm_aal(enum fore200e_aal aal)
122{
123 switch(aal) {
124 case FORE200E_AAL0: return ATM_AAL0;
125 case FORE200E_AAL34: return ATM_AAL34;
126 case FORE200E_AAL5: return ATM_AAL5;
127 }
128
129 return -EINVAL;
130}
131#endif
132
133
134static enum fore200e_aal
135fore200e_atm2fore_aal(int aal)
136{
137 switch(aal) {
138 case ATM_AAL0: return FORE200E_AAL0;
139 case ATM_AAL34: return FORE200E_AAL34;
140 case ATM_AAL1:
141 case ATM_AAL2:
142 case ATM_AAL5: return FORE200E_AAL5;
143 }
144
145 return -EINVAL;
146}
147
148
149static char*
150fore200e_irq_itoa(int irq)
151{
152 static char str[8];
153 sprintf(str, "%d", irq);
154 return str;
155}
156
157
158/* allocate and align a chunk of memory intended to hold the data behing exchanged
159 between the driver and the adapter (using streaming DVMA) */
160
161static int
162fore200e_chunk_alloc(struct fore200e* fore200e, struct chunk* chunk, int size, int alignment, int direction)
163{
164 unsigned long offset = 0;
165
166 if (alignment <= sizeof(int))
167 alignment = 0;
168
169 chunk->alloc_size = size + alignment;
170 chunk->direction = direction;
171
172 chunk->alloc_addr = kzalloc(chunk->alloc_size, GFP_KERNEL);
173 if (chunk->alloc_addr == NULL)
174 return -ENOMEM;
175
176 if (alignment > 0)
177 offset = FORE200E_ALIGN(chunk->alloc_addr, alignment);
178
179 chunk->align_addr = chunk->alloc_addr + offset;
180
181 chunk->dma_addr = dma_map_single(fore200e->dev, chunk->align_addr,
182 size, direction);
183 if (dma_mapping_error(fore200e->dev, chunk->dma_addr)) {
184 kfree(chunk->alloc_addr);
185 return -ENOMEM;
186 }
187 return 0;
188}
189
190
191/* free a chunk of memory */
192
193static void
194fore200e_chunk_free(struct fore200e* fore200e, struct chunk* chunk)
195{
196 dma_unmap_single(fore200e->dev, chunk->dma_addr, chunk->dma_size,
197 chunk->direction);
198 kfree(chunk->alloc_addr);
199}
200
201/*
202 * Allocate a DMA consistent chunk of memory intended to act as a communication
203 * mechanism (to hold descriptors, status, queues, etc.) shared by the driver
204 * and the adapter.
205 */
206static int
207fore200e_dma_chunk_alloc(struct fore200e *fore200e, struct chunk *chunk,
208 int size, int nbr, int alignment)
209{
210 /* returned chunks are page-aligned */
211 chunk->alloc_size = size * nbr;
212 chunk->alloc_addr = dma_alloc_coherent(fore200e->dev, chunk->alloc_size,
213 &chunk->dma_addr, GFP_KERNEL);
214 if (!chunk->alloc_addr)
215 return -ENOMEM;
216 chunk->align_addr = chunk->alloc_addr;
217 return 0;
218}
219
220/*
221 * Free a DMA consistent chunk of memory.
222 */
223static void
224fore200e_dma_chunk_free(struct fore200e* fore200e, struct chunk* chunk)
225{
226 dma_free_coherent(fore200e->dev, chunk->alloc_size, chunk->alloc_addr,
227 chunk->dma_addr);
228}
229
230static void
231fore200e_spin(int msecs)
232{
233 unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
234 while (time_before(jiffies, timeout));
235}
236
237
238static int
239fore200e_poll(struct fore200e* fore200e, volatile u32* addr, u32 val, int msecs)
240{
241 unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
242 int ok;
243
244 mb();
245 do {
246 if ((ok = (*addr == val)) || (*addr & STATUS_ERROR))
247 break;
248
249 } while (time_before(jiffies, timeout));
250
251#if 1
252 if (!ok) {
253 printk(FORE200E "cmd polling failed, got status 0x%08x, expected 0x%08x\n",
254 *addr, val);
255 }
256#endif
257
258 return ok;
259}
260
261
262static int
263fore200e_io_poll(struct fore200e* fore200e, volatile u32 __iomem *addr, u32 val, int msecs)
264{
265 unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
266 int ok;
267
268 do {
269 if ((ok = (fore200e->bus->read(addr) == val)))
270 break;
271
272 } while (time_before(jiffies, timeout));
273
274#if 1
275 if (!ok) {
276 printk(FORE200E "I/O polling failed, got status 0x%08x, expected 0x%08x\n",
277 fore200e->bus->read(addr), val);
278 }
279#endif
280
281 return ok;
282}
283
284
285static void
286fore200e_free_rx_buf(struct fore200e* fore200e)
287{
288 int scheme, magn, nbr;
289 struct buffer* buffer;
290
291 for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
292 for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
293
294 if ((buffer = fore200e->host_bsq[ scheme ][ magn ].buffer) != NULL) {
295
296 for (nbr = 0; nbr < fore200e_rx_buf_nbr[ scheme ][ magn ]; nbr++) {
297
298 struct chunk* data = &buffer[ nbr ].data;
299
300 if (data->alloc_addr != NULL)
301 fore200e_chunk_free(fore200e, data);
302 }
303 }
304 }
305 }
306}
307
308
309static void
310fore200e_uninit_bs_queue(struct fore200e* fore200e)
311{
312 int scheme, magn;
313
314 for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
315 for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
316
317 struct chunk* status = &fore200e->host_bsq[ scheme ][ magn ].status;
318 struct chunk* rbd_block = &fore200e->host_bsq[ scheme ][ magn ].rbd_block;
319
320 if (status->alloc_addr)
321 fore200e_dma_chunk_free(fore200e, status);
322
323 if (rbd_block->alloc_addr)
324 fore200e_dma_chunk_free(fore200e, rbd_block);
325 }
326 }
327}
328
329
330static int
331fore200e_reset(struct fore200e* fore200e, int diag)
332{
333 int ok;
334
335 fore200e->cp_monitor = fore200e->virt_base + FORE200E_CP_MONITOR_OFFSET;
336
337 fore200e->bus->write(BSTAT_COLD_START, &fore200e->cp_monitor->bstat);
338
339 fore200e->bus->reset(fore200e);
340
341 if (diag) {
342 ok = fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_SELFTEST_OK, 1000);
343 if (ok == 0) {
344
345 printk(FORE200E "device %s self-test failed\n", fore200e->name);
346 return -ENODEV;
347 }
348
349 printk(FORE200E "device %s self-test passed\n", fore200e->name);
350
351 fore200e->state = FORE200E_STATE_RESET;
352 }
353
354 return 0;
355}
356
357
358static void
359fore200e_shutdown(struct fore200e* fore200e)
360{
361 printk(FORE200E "removing device %s at 0x%lx, IRQ %s\n",
362 fore200e->name, fore200e->phys_base,
363 fore200e_irq_itoa(fore200e->irq));
364
365 if (fore200e->state > FORE200E_STATE_RESET) {
366 /* first, reset the board to prevent further interrupts or data transfers */
367 fore200e_reset(fore200e, 0);
368 }
369
370 /* then, release all allocated resources */
371 switch(fore200e->state) {
372
373 case FORE200E_STATE_COMPLETE:
374 kfree(fore200e->stats);
375
376 fallthrough;
377 case FORE200E_STATE_IRQ:
378 free_irq(fore200e->irq, fore200e->atm_dev);
379
380 fallthrough;
381 case FORE200E_STATE_ALLOC_BUF:
382 fore200e_free_rx_buf(fore200e);
383
384 fallthrough;
385 case FORE200E_STATE_INIT_BSQ:
386 fore200e_uninit_bs_queue(fore200e);
387
388 fallthrough;
389 case FORE200E_STATE_INIT_RXQ:
390 fore200e_dma_chunk_free(fore200e, &fore200e->host_rxq.status);
391 fore200e_dma_chunk_free(fore200e, &fore200e->host_rxq.rpd);
392
393 fallthrough;
394 case FORE200E_STATE_INIT_TXQ:
395 fore200e_dma_chunk_free(fore200e, &fore200e->host_txq.status);
396 fore200e_dma_chunk_free(fore200e, &fore200e->host_txq.tpd);
397
398 fallthrough;
399 case FORE200E_STATE_INIT_CMDQ:
400 fore200e_dma_chunk_free(fore200e, &fore200e->host_cmdq.status);
401
402 fallthrough;
403 case FORE200E_STATE_INITIALIZE:
404 /* nothing to do for that state */
405
406 case FORE200E_STATE_START_FW:
407 /* nothing to do for that state */
408
409 case FORE200E_STATE_RESET:
410 /* nothing to do for that state */
411
412 case FORE200E_STATE_MAP:
413 fore200e->bus->unmap(fore200e);
414
415 fallthrough;
416 case FORE200E_STATE_CONFIGURE:
417 /* nothing to do for that state */
418
419 case FORE200E_STATE_REGISTER:
420 /* XXX shouldn't we *start* by deregistering the device? */
421 atm_dev_deregister(fore200e->atm_dev);
422
423 fallthrough;
424 case FORE200E_STATE_BLANK:
425 /* nothing to do for that state */
426 break;
427 }
428}
429
430
431#ifdef CONFIG_PCI
432
433static u32 fore200e_pca_read(volatile u32 __iomem *addr)
434{
435 /* on big-endian hosts, the board is configured to convert
436 the endianess of slave RAM accesses */
437 return le32_to_cpu(readl(addr));
438}
439
440
441static void fore200e_pca_write(u32 val, volatile u32 __iomem *addr)
442{
443 /* on big-endian hosts, the board is configured to convert
444 the endianess of slave RAM accesses */
445 writel(cpu_to_le32(val), addr);
446}
447
448static int
449fore200e_pca_irq_check(struct fore200e* fore200e)
450{
451 /* this is a 1 bit register */
452 int irq_posted = readl(fore200e->regs.pca.psr);
453
454#if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG == 2)
455 if (irq_posted && (readl(fore200e->regs.pca.hcr) & PCA200E_HCR_OUTFULL)) {
456 DPRINTK(2,"FIFO OUT full, device %d\n", fore200e->atm_dev->number);
457 }
458#endif
459
460 return irq_posted;
461}
462
463
464static void
465fore200e_pca_irq_ack(struct fore200e* fore200e)
466{
467 writel(PCA200E_HCR_CLRINTR, fore200e->regs.pca.hcr);
468}
469
470
471static void
472fore200e_pca_reset(struct fore200e* fore200e)
473{
474 writel(PCA200E_HCR_RESET, fore200e->regs.pca.hcr);
475 fore200e_spin(10);
476 writel(0, fore200e->regs.pca.hcr);
477}
478
479
480static int fore200e_pca_map(struct fore200e* fore200e)
481{
482 DPRINTK(2, "device %s being mapped in memory\n", fore200e->name);
483
484 fore200e->virt_base = ioremap(fore200e->phys_base, PCA200E_IOSPACE_LENGTH);
485
486 if (fore200e->virt_base == NULL) {
487 printk(FORE200E "can't map device %s\n", fore200e->name);
488 return -EFAULT;
489 }
490
491 DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base);
492
493 /* gain access to the PCA specific registers */
494 fore200e->regs.pca.hcr = fore200e->virt_base + PCA200E_HCR_OFFSET;
495 fore200e->regs.pca.imr = fore200e->virt_base + PCA200E_IMR_OFFSET;
496 fore200e->regs.pca.psr = fore200e->virt_base + PCA200E_PSR_OFFSET;
497
498 fore200e->state = FORE200E_STATE_MAP;
499 return 0;
500}
501
502
503static void
504fore200e_pca_unmap(struct fore200e* fore200e)
505{
506 DPRINTK(2, "device %s being unmapped from memory\n", fore200e->name);
507
508 if (fore200e->virt_base != NULL)
509 iounmap(fore200e->virt_base);
510}
511
512
513static int fore200e_pca_configure(struct fore200e *fore200e)
514{
515 struct pci_dev *pci_dev = to_pci_dev(fore200e->dev);
516 u8 master_ctrl, latency;
517
518 DPRINTK(2, "device %s being configured\n", fore200e->name);
519
520 if ((pci_dev->irq == 0) || (pci_dev->irq == 0xFF)) {
521 printk(FORE200E "incorrect IRQ setting - misconfigured PCI-PCI bridge?\n");
522 return -EIO;
523 }
524
525 pci_read_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, &master_ctrl);
526
527 master_ctrl = master_ctrl
528#if defined(__BIG_ENDIAN)
529 /* request the PCA board to convert the endianess of slave RAM accesses */
530 | PCA200E_CTRL_CONVERT_ENDIAN
531#endif
532#if 0
533 | PCA200E_CTRL_DIS_CACHE_RD
534 | PCA200E_CTRL_DIS_WRT_INVAL
535 | PCA200E_CTRL_ENA_CONT_REQ_MODE
536 | PCA200E_CTRL_2_CACHE_WRT_INVAL
537#endif
538 | PCA200E_CTRL_LARGE_PCI_BURSTS;
539
540 pci_write_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, master_ctrl);
541
542 /* raise latency from 32 (default) to 192, as this seems to prevent NIC
543 lockups (under heavy rx loads) due to continuous 'FIFO OUT full' condition.
544 this may impact the performances of other PCI devices on the same bus, though */
545 latency = 192;
546 pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, latency);
547
548 fore200e->state = FORE200E_STATE_CONFIGURE;
549 return 0;
550}
551
552
553static int __init
554fore200e_pca_prom_read(struct fore200e* fore200e, struct prom_data* prom)
555{
556 struct host_cmdq* cmdq = &fore200e->host_cmdq;
557 struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
558 struct prom_opcode opcode;
559 int ok;
560 u32 prom_dma;
561
562 FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
563
564 opcode.opcode = OPCODE_GET_PROM;
565 opcode.pad = 0;
566
567 prom_dma = dma_map_single(fore200e->dev, prom, sizeof(struct prom_data),
568 DMA_FROM_DEVICE);
569 if (dma_mapping_error(fore200e->dev, prom_dma))
570 return -ENOMEM;
571
572 fore200e->bus->write(prom_dma, &entry->cp_entry->cmd.prom_block.prom_haddr);
573
574 *entry->status = STATUS_PENDING;
575
576 fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.prom_block.opcode);
577
578 ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
579
580 *entry->status = STATUS_FREE;
581
582 dma_unmap_single(fore200e->dev, prom_dma, sizeof(struct prom_data), DMA_FROM_DEVICE);
583
584 if (ok == 0) {
585 printk(FORE200E "unable to get PROM data from device %s\n", fore200e->name);
586 return -EIO;
587 }
588
589#if defined(__BIG_ENDIAN)
590
591#define swap_here(addr) (*((u32*)(addr)) = swab32( *((u32*)(addr)) ))
592
593 /* MAC address is stored as little-endian */
594 swap_here(&prom->mac_addr[0]);
595 swap_here(&prom->mac_addr[4]);
596#endif
597
598 return 0;
599}
600
601
602static int
603fore200e_pca_proc_read(struct fore200e* fore200e, char *page)
604{
605 struct pci_dev *pci_dev = to_pci_dev(fore200e->dev);
606
607 return sprintf(page, " PCI bus/slot/function:\t%d/%d/%d\n",
608 pci_dev->bus->number, PCI_SLOT(pci_dev->devfn), PCI_FUNC(pci_dev->devfn));
609}
610
611static const struct fore200e_bus fore200e_pci_ops = {
612 .model_name = "PCA-200E",
613 .proc_name = "pca200e",
614 .descr_alignment = 32,
615 .buffer_alignment = 4,
616 .status_alignment = 32,
617 .read = fore200e_pca_read,
618 .write = fore200e_pca_write,
619 .configure = fore200e_pca_configure,
620 .map = fore200e_pca_map,
621 .reset = fore200e_pca_reset,
622 .prom_read = fore200e_pca_prom_read,
623 .unmap = fore200e_pca_unmap,
624 .irq_check = fore200e_pca_irq_check,
625 .irq_ack = fore200e_pca_irq_ack,
626 .proc_read = fore200e_pca_proc_read,
627};
628#endif /* CONFIG_PCI */
629
630#ifdef CONFIG_SBUS
631
632static u32 fore200e_sba_read(volatile u32 __iomem *addr)
633{
634 return sbus_readl(addr);
635}
636
637static void fore200e_sba_write(u32 val, volatile u32 __iomem *addr)
638{
639 sbus_writel(val, addr);
640}
641
642static void fore200e_sba_irq_enable(struct fore200e *fore200e)
643{
644 u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY;
645 fore200e->bus->write(hcr | SBA200E_HCR_INTR_ENA, fore200e->regs.sba.hcr);
646}
647
648static int fore200e_sba_irq_check(struct fore200e *fore200e)
649{
650 return fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_INTR_REQ;
651}
652
653static void fore200e_sba_irq_ack(struct fore200e *fore200e)
654{
655 u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY;
656 fore200e->bus->write(hcr | SBA200E_HCR_INTR_CLR, fore200e->regs.sba.hcr);
657}
658
659static void fore200e_sba_reset(struct fore200e *fore200e)
660{
661 fore200e->bus->write(SBA200E_HCR_RESET, fore200e->regs.sba.hcr);
662 fore200e_spin(10);
663 fore200e->bus->write(0, fore200e->regs.sba.hcr);
664}
665
666static int __init fore200e_sba_map(struct fore200e *fore200e)
667{
668 struct platform_device *op = to_platform_device(fore200e->dev);
669 unsigned int bursts;
670
671 /* gain access to the SBA specific registers */
672 fore200e->regs.sba.hcr = of_ioremap(&op->resource[0], 0, SBA200E_HCR_LENGTH, "SBA HCR");
673 fore200e->regs.sba.bsr = of_ioremap(&op->resource[1], 0, SBA200E_BSR_LENGTH, "SBA BSR");
674 fore200e->regs.sba.isr = of_ioremap(&op->resource[2], 0, SBA200E_ISR_LENGTH, "SBA ISR");
675 fore200e->virt_base = of_ioremap(&op->resource[3], 0, SBA200E_RAM_LENGTH, "SBA RAM");
676
677 if (!fore200e->virt_base) {
678 printk(FORE200E "unable to map RAM of device %s\n", fore200e->name);
679 return -EFAULT;
680 }
681
682 DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base);
683
684 fore200e->bus->write(0x02, fore200e->regs.sba.isr); /* XXX hardwired interrupt level */
685
686 /* get the supported DVMA burst sizes */
687 bursts = of_getintprop_default(op->dev.of_node->parent, "burst-sizes", 0x00);
688
689 if (sbus_can_dma_64bit())
690 sbus_set_sbus64(&op->dev, bursts);
691
692 fore200e->state = FORE200E_STATE_MAP;
693 return 0;
694}
695
696static void fore200e_sba_unmap(struct fore200e *fore200e)
697{
698 struct platform_device *op = to_platform_device(fore200e->dev);
699
700 of_iounmap(&op->resource[0], fore200e->regs.sba.hcr, SBA200E_HCR_LENGTH);
701 of_iounmap(&op->resource[1], fore200e->regs.sba.bsr, SBA200E_BSR_LENGTH);
702 of_iounmap(&op->resource[2], fore200e->regs.sba.isr, SBA200E_ISR_LENGTH);
703 of_iounmap(&op->resource[3], fore200e->virt_base, SBA200E_RAM_LENGTH);
704}
705
706static int __init fore200e_sba_configure(struct fore200e *fore200e)
707{
708 fore200e->state = FORE200E_STATE_CONFIGURE;
709 return 0;
710}
711
712static int __init fore200e_sba_prom_read(struct fore200e *fore200e, struct prom_data *prom)
713{
714 struct platform_device *op = to_platform_device(fore200e->dev);
715 const u8 *prop;
716 int len;
717
718 prop = of_get_property(op->dev.of_node, "madaddrlo2", &len);
719 if (!prop)
720 return -ENODEV;
721 memcpy(&prom->mac_addr[4], prop, 4);
722
723 prop = of_get_property(op->dev.of_node, "madaddrhi4", &len);
724 if (!prop)
725 return -ENODEV;
726 memcpy(&prom->mac_addr[2], prop, 4);
727
728 prom->serial_number = of_getintprop_default(op->dev.of_node,
729 "serialnumber", 0);
730 prom->hw_revision = of_getintprop_default(op->dev.of_node,
731 "promversion", 0);
732
733 return 0;
734}
735
736static int fore200e_sba_proc_read(struct fore200e *fore200e, char *page)
737{
738 struct platform_device *op = to_platform_device(fore200e->dev);
739 const struct linux_prom_registers *regs;
740
741 regs = of_get_property(op->dev.of_node, "reg", NULL);
742
743 return sprintf(page, " SBUS slot/device:\t\t%d/'%pOFn'\n",
744 (regs ? regs->which_io : 0), op->dev.of_node);
745}
746
747static const struct fore200e_bus fore200e_sbus_ops = {
748 .model_name = "SBA-200E",
749 .proc_name = "sba200e",
750 .descr_alignment = 32,
751 .buffer_alignment = 64,
752 .status_alignment = 32,
753 .read = fore200e_sba_read,
754 .write = fore200e_sba_write,
755 .configure = fore200e_sba_configure,
756 .map = fore200e_sba_map,
757 .reset = fore200e_sba_reset,
758 .prom_read = fore200e_sba_prom_read,
759 .unmap = fore200e_sba_unmap,
760 .irq_enable = fore200e_sba_irq_enable,
761 .irq_check = fore200e_sba_irq_check,
762 .irq_ack = fore200e_sba_irq_ack,
763 .proc_read = fore200e_sba_proc_read,
764};
765#endif /* CONFIG_SBUS */
766
767static void
768fore200e_tx_irq(struct fore200e* fore200e)
769{
770 struct host_txq* txq = &fore200e->host_txq;
771 struct host_txq_entry* entry;
772 struct atm_vcc* vcc;
773 struct fore200e_vc_map* vc_map;
774
775 if (fore200e->host_txq.txing == 0)
776 return;
777
778 for (;;) {
779
780 entry = &txq->host_entry[ txq->tail ];
781
782 if ((*entry->status & STATUS_COMPLETE) == 0) {
783 break;
784 }
785
786 DPRINTK(3, "TX COMPLETED: entry = %p [tail = %d], vc_map = %p, skb = %p\n",
787 entry, txq->tail, entry->vc_map, entry->skb);
788
789 /* free copy of misaligned data */
790 kfree(entry->data);
791
792 /* remove DMA mapping */
793 dma_unmap_single(fore200e->dev, entry->tpd->tsd[ 0 ].buffer, entry->tpd->tsd[ 0 ].length,
794 DMA_TO_DEVICE);
795
796 vc_map = entry->vc_map;
797
798 /* vcc closed since the time the entry was submitted for tx? */
799 if ((vc_map->vcc == NULL) ||
800 (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) {
801
802 DPRINTK(1, "no ready vcc found for PDU sent on device %d\n",
803 fore200e->atm_dev->number);
804
805 dev_kfree_skb_any(entry->skb);
806 }
807 else {
808 ASSERT(vc_map->vcc);
809
810 /* vcc closed then immediately re-opened? */
811 if (vc_map->incarn != entry->incarn) {
812
813 /* when a vcc is closed, some PDUs may be still pending in the tx queue.
814 if the same vcc is immediately re-opened, those pending PDUs must
815 not be popped after the completion of their emission, as they refer
816 to the prior incarnation of that vcc. otherwise, sk_atm(vcc)->sk_wmem_alloc
817 would be decremented by the size of the (unrelated) skb, possibly
818 leading to a negative sk->sk_wmem_alloc count, ultimately freezing the vcc.
819 we thus bind the tx entry to the current incarnation of the vcc
820 when the entry is submitted for tx. When the tx later completes,
821 if the incarnation number of the tx entry does not match the one
822 of the vcc, then this implies that the vcc has been closed then re-opened.
823 we thus just drop the skb here. */
824
825 DPRINTK(1, "vcc closed-then-re-opened; dropping PDU sent on device %d\n",
826 fore200e->atm_dev->number);
827
828 dev_kfree_skb_any(entry->skb);
829 }
830 else {
831 vcc = vc_map->vcc;
832 ASSERT(vcc);
833
834 /* notify tx completion */
835 if (vcc->pop) {
836 vcc->pop(vcc, entry->skb);
837 }
838 else {
839 dev_kfree_skb_any(entry->skb);
840 }
841
842 /* check error condition */
843 if (*entry->status & STATUS_ERROR)
844 atomic_inc(&vcc->stats->tx_err);
845 else
846 atomic_inc(&vcc->stats->tx);
847 }
848 }
849
850 *entry->status = STATUS_FREE;
851
852 fore200e->host_txq.txing--;
853
854 FORE200E_NEXT_ENTRY(txq->tail, QUEUE_SIZE_TX);
855 }
856}
857
858
859#ifdef FORE200E_BSQ_DEBUG
860int bsq_audit(int where, struct host_bsq* bsq, int scheme, int magn)
861{
862 struct buffer* buffer;
863 int count = 0;
864
865 buffer = bsq->freebuf;
866 while (buffer) {
867
868 if (buffer->supplied) {
869 printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld supplied but in free list!\n",
870 where, scheme, magn, buffer->index);
871 }
872
873 if (buffer->magn != magn) {
874 printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected magn = %d\n",
875 where, scheme, magn, buffer->index, buffer->magn);
876 }
877
878 if (buffer->scheme != scheme) {
879 printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected scheme = %d\n",
880 where, scheme, magn, buffer->index, buffer->scheme);
881 }
882
883 if ((buffer->index < 0) || (buffer->index >= fore200e_rx_buf_nbr[ scheme ][ magn ])) {
884 printk(FORE200E "bsq_audit(%d): queue %d.%d, out of range buffer index = %ld !\n",
885 where, scheme, magn, buffer->index);
886 }
887
888 count++;
889 buffer = buffer->next;
890 }
891
892 if (count != bsq->freebuf_count) {
893 printk(FORE200E "bsq_audit(%d): queue %d.%d, %d bufs in free list, but freebuf_count = %d\n",
894 where, scheme, magn, count, bsq->freebuf_count);
895 }
896 return 0;
897}
898#endif
899
900
901static void
902fore200e_supply(struct fore200e* fore200e)
903{
904 int scheme, magn, i;
905
906 struct host_bsq* bsq;
907 struct host_bsq_entry* entry;
908 struct buffer* buffer;
909
910 for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
911 for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
912
913 bsq = &fore200e->host_bsq[ scheme ][ magn ];
914
915#ifdef FORE200E_BSQ_DEBUG
916 bsq_audit(1, bsq, scheme, magn);
917#endif
918 while (bsq->freebuf_count >= RBD_BLK_SIZE) {
919
920 DPRINTK(2, "supplying %d rx buffers to queue %d / %d, freebuf_count = %d\n",
921 RBD_BLK_SIZE, scheme, magn, bsq->freebuf_count);
922
923 entry = &bsq->host_entry[ bsq->head ];
924
925 for (i = 0; i < RBD_BLK_SIZE; i++) {
926
927 /* take the first buffer in the free buffer list */
928 buffer = bsq->freebuf;
929 if (!buffer) {
930 printk(FORE200E "no more free bufs in queue %d.%d, but freebuf_count = %d\n",
931 scheme, magn, bsq->freebuf_count);
932 return;
933 }
934 bsq->freebuf = buffer->next;
935
936#ifdef FORE200E_BSQ_DEBUG
937 if (buffer->supplied)
938 printk(FORE200E "queue %d.%d, buffer %lu already supplied\n",
939 scheme, magn, buffer->index);
940 buffer->supplied = 1;
941#endif
942 entry->rbd_block->rbd[ i ].buffer_haddr = buffer->data.dma_addr;
943 entry->rbd_block->rbd[ i ].handle = FORE200E_BUF2HDL(buffer);
944 }
945
946 FORE200E_NEXT_ENTRY(bsq->head, QUEUE_SIZE_BS);
947
948 /* decrease accordingly the number of free rx buffers */
949 bsq->freebuf_count -= RBD_BLK_SIZE;
950
951 *entry->status = STATUS_PENDING;
952 fore200e->bus->write(entry->rbd_block_dma, &entry->cp_entry->rbd_block_haddr);
953 }
954 }
955 }
956}
957
958
959static int
960fore200e_push_rpd(struct fore200e* fore200e, struct atm_vcc* vcc, struct rpd* rpd)
961{
962 struct sk_buff* skb;
963 struct buffer* buffer;
964 struct fore200e_vcc* fore200e_vcc;
965 int i, pdu_len = 0;
966#ifdef FORE200E_52BYTE_AAL0_SDU
967 u32 cell_header = 0;
968#endif
969
970 ASSERT(vcc);
971
972 fore200e_vcc = FORE200E_VCC(vcc);
973 ASSERT(fore200e_vcc);
974
975#ifdef FORE200E_52BYTE_AAL0_SDU
976 if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.rxtp.max_sdu == ATM_AAL0_SDU)) {
977
978 cell_header = (rpd->atm_header.gfc << ATM_HDR_GFC_SHIFT) |
979 (rpd->atm_header.vpi << ATM_HDR_VPI_SHIFT) |
980 (rpd->atm_header.vci << ATM_HDR_VCI_SHIFT) |
981 (rpd->atm_header.plt << ATM_HDR_PTI_SHIFT) |
982 rpd->atm_header.clp;
983 pdu_len = 4;
984 }
985#endif
986
987 /* compute total PDU length */
988 for (i = 0; i < rpd->nseg; i++)
989 pdu_len += rpd->rsd[ i ].length;
990
991 skb = alloc_skb(pdu_len, GFP_ATOMIC);
992 if (skb == NULL) {
993 DPRINTK(2, "unable to alloc new skb, rx PDU length = %d\n", pdu_len);
994
995 atomic_inc(&vcc->stats->rx_drop);
996 return -ENOMEM;
997 }
998
999 __net_timestamp(skb);
1000
1001#ifdef FORE200E_52BYTE_AAL0_SDU
1002 if (cell_header) {
1003 *((u32*)skb_put(skb, 4)) = cell_header;
1004 }
1005#endif
1006
1007 /* reassemble segments */
1008 for (i = 0; i < rpd->nseg; i++) {
1009
1010 /* rebuild rx buffer address from rsd handle */
1011 buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle);
1012
1013 /* Make device DMA transfer visible to CPU. */
1014 dma_sync_single_for_cpu(fore200e->dev, buffer->data.dma_addr,
1015 rpd->rsd[i].length, DMA_FROM_DEVICE);
1016
1017 skb_put_data(skb, buffer->data.align_addr, rpd->rsd[i].length);
1018
1019 /* Now let the device get at it again. */
1020 dma_sync_single_for_device(fore200e->dev, buffer->data.dma_addr,
1021 rpd->rsd[i].length, DMA_FROM_DEVICE);
1022 }
1023
1024 DPRINTK(3, "rx skb: len = %d, truesize = %d\n", skb->len, skb->truesize);
1025
1026 if (pdu_len < fore200e_vcc->rx_min_pdu)
1027 fore200e_vcc->rx_min_pdu = pdu_len;
1028 if (pdu_len > fore200e_vcc->rx_max_pdu)
1029 fore200e_vcc->rx_max_pdu = pdu_len;
1030 fore200e_vcc->rx_pdu++;
1031
1032 /* push PDU */
1033 if (atm_charge(vcc, skb->truesize) == 0) {
1034
1035 DPRINTK(2, "receive buffers saturated for %d.%d.%d - PDU dropped\n",
1036 vcc->itf, vcc->vpi, vcc->vci);
1037
1038 dev_kfree_skb_any(skb);
1039
1040 atomic_inc(&vcc->stats->rx_drop);
1041 return -ENOMEM;
1042 }
1043
1044 vcc->push(vcc, skb);
1045 atomic_inc(&vcc->stats->rx);
1046
1047 return 0;
1048}
1049
1050
1051static void
1052fore200e_collect_rpd(struct fore200e* fore200e, struct rpd* rpd)
1053{
1054 struct host_bsq* bsq;
1055 struct buffer* buffer;
1056 int i;
1057
1058 for (i = 0; i < rpd->nseg; i++) {
1059
1060 /* rebuild rx buffer address from rsd handle */
1061 buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle);
1062
1063 bsq = &fore200e->host_bsq[ buffer->scheme ][ buffer->magn ];
1064
1065#ifdef FORE200E_BSQ_DEBUG
1066 bsq_audit(2, bsq, buffer->scheme, buffer->magn);
1067
1068 if (buffer->supplied == 0)
1069 printk(FORE200E "queue %d.%d, buffer %ld was not supplied\n",
1070 buffer->scheme, buffer->magn, buffer->index);
1071 buffer->supplied = 0;
1072#endif
1073
1074 /* re-insert the buffer into the free buffer list */
1075 buffer->next = bsq->freebuf;
1076 bsq->freebuf = buffer;
1077
1078 /* then increment the number of free rx buffers */
1079 bsq->freebuf_count++;
1080 }
1081}
1082
1083
1084static void
1085fore200e_rx_irq(struct fore200e* fore200e)
1086{
1087 struct host_rxq* rxq = &fore200e->host_rxq;
1088 struct host_rxq_entry* entry;
1089 struct atm_vcc* vcc;
1090 struct fore200e_vc_map* vc_map;
1091
1092 for (;;) {
1093
1094 entry = &rxq->host_entry[ rxq->head ];
1095
1096 /* no more received PDUs */
1097 if ((*entry->status & STATUS_COMPLETE) == 0)
1098 break;
1099
1100 vc_map = FORE200E_VC_MAP(fore200e, entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1101
1102 if ((vc_map->vcc == NULL) ||
1103 (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) {
1104
1105 DPRINTK(1, "no ready VC found for PDU received on %d.%d.%d\n",
1106 fore200e->atm_dev->number,
1107 entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1108 }
1109 else {
1110 vcc = vc_map->vcc;
1111 ASSERT(vcc);
1112
1113 if ((*entry->status & STATUS_ERROR) == 0) {
1114
1115 fore200e_push_rpd(fore200e, vcc, entry->rpd);
1116 }
1117 else {
1118 DPRINTK(2, "damaged PDU on %d.%d.%d\n",
1119 fore200e->atm_dev->number,
1120 entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1121 atomic_inc(&vcc->stats->rx_err);
1122 }
1123 }
1124
1125 FORE200E_NEXT_ENTRY(rxq->head, QUEUE_SIZE_RX);
1126
1127 fore200e_collect_rpd(fore200e, entry->rpd);
1128
1129 /* rewrite the rpd address to ack the received PDU */
1130 fore200e->bus->write(entry->rpd_dma, &entry->cp_entry->rpd_haddr);
1131 *entry->status = STATUS_FREE;
1132
1133 fore200e_supply(fore200e);
1134 }
1135}
1136
1137
1138#ifndef FORE200E_USE_TASKLET
1139static void
1140fore200e_irq(struct fore200e* fore200e)
1141{
1142 unsigned long flags;
1143
1144 spin_lock_irqsave(&fore200e->q_lock, flags);
1145 fore200e_rx_irq(fore200e);
1146 spin_unlock_irqrestore(&fore200e->q_lock, flags);
1147
1148 spin_lock_irqsave(&fore200e->q_lock, flags);
1149 fore200e_tx_irq(fore200e);
1150 spin_unlock_irqrestore(&fore200e->q_lock, flags);
1151}
1152#endif
1153
1154
1155static irqreturn_t
1156fore200e_interrupt(int irq, void* dev)
1157{
1158 struct fore200e* fore200e = FORE200E_DEV((struct atm_dev*)dev);
1159
1160 if (fore200e->bus->irq_check(fore200e) == 0) {
1161
1162 DPRINTK(3, "interrupt NOT triggered by device %d\n", fore200e->atm_dev->number);
1163 return IRQ_NONE;
1164 }
1165 DPRINTK(3, "interrupt triggered by device %d\n", fore200e->atm_dev->number);
1166
1167#ifdef FORE200E_USE_TASKLET
1168 tasklet_schedule(&fore200e->tx_tasklet);
1169 tasklet_schedule(&fore200e->rx_tasklet);
1170#else
1171 fore200e_irq(fore200e);
1172#endif
1173
1174 fore200e->bus->irq_ack(fore200e);
1175 return IRQ_HANDLED;
1176}
1177
1178
1179#ifdef FORE200E_USE_TASKLET
1180static void
1181fore200e_tx_tasklet(unsigned long data)
1182{
1183 struct fore200e* fore200e = (struct fore200e*) data;
1184 unsigned long flags;
1185
1186 DPRINTK(3, "tx tasklet scheduled for device %d\n", fore200e->atm_dev->number);
1187
1188 spin_lock_irqsave(&fore200e->q_lock, flags);
1189 fore200e_tx_irq(fore200e);
1190 spin_unlock_irqrestore(&fore200e->q_lock, flags);
1191}
1192
1193
1194static void
1195fore200e_rx_tasklet(unsigned long data)
1196{
1197 struct fore200e* fore200e = (struct fore200e*) data;
1198 unsigned long flags;
1199
1200 DPRINTK(3, "rx tasklet scheduled for device %d\n", fore200e->atm_dev->number);
1201
1202 spin_lock_irqsave(&fore200e->q_lock, flags);
1203 fore200e_rx_irq((struct fore200e*) data);
1204 spin_unlock_irqrestore(&fore200e->q_lock, flags);
1205}
1206#endif
1207
1208
1209static int
1210fore200e_select_scheme(struct atm_vcc* vcc)
1211{
1212 /* fairly balance the VCs over (identical) buffer schemes */
1213 int scheme = vcc->vci % 2 ? BUFFER_SCHEME_ONE : BUFFER_SCHEME_TWO;
1214
1215 DPRINTK(1, "VC %d.%d.%d uses buffer scheme %d\n",
1216 vcc->itf, vcc->vpi, vcc->vci, scheme);
1217
1218 return scheme;
1219}
1220
1221
1222static int
1223fore200e_activate_vcin(struct fore200e* fore200e, int activate, struct atm_vcc* vcc, int mtu)
1224{
1225 struct host_cmdq* cmdq = &fore200e->host_cmdq;
1226 struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1227 struct activate_opcode activ_opcode;
1228 struct deactivate_opcode deactiv_opcode;
1229 struct vpvc vpvc;
1230 int ok;
1231 enum fore200e_aal aal = fore200e_atm2fore_aal(vcc->qos.aal);
1232
1233 FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1234
1235 if (activate) {
1236 FORE200E_VCC(vcc)->scheme = fore200e_select_scheme(vcc);
1237
1238 activ_opcode.opcode = OPCODE_ACTIVATE_VCIN;
1239 activ_opcode.aal = aal;
1240 activ_opcode.scheme = FORE200E_VCC(vcc)->scheme;
1241 activ_opcode.pad = 0;
1242 }
1243 else {
1244 deactiv_opcode.opcode = OPCODE_DEACTIVATE_VCIN;
1245 deactiv_opcode.pad = 0;
1246 }
1247
1248 vpvc.vci = vcc->vci;
1249 vpvc.vpi = vcc->vpi;
1250
1251 *entry->status = STATUS_PENDING;
1252
1253 if (activate) {
1254
1255#ifdef FORE200E_52BYTE_AAL0_SDU
1256 mtu = 48;
1257#endif
1258 /* the MTU is not used by the cp, except in the case of AAL0 */
1259 fore200e->bus->write(mtu, &entry->cp_entry->cmd.activate_block.mtu);
1260 fore200e->bus->write(*(u32*)&vpvc, (u32 __iomem *)&entry->cp_entry->cmd.activate_block.vpvc);
1261 fore200e->bus->write(*(u32*)&activ_opcode, (u32 __iomem *)&entry->cp_entry->cmd.activate_block.opcode);
1262 }
1263 else {
1264 fore200e->bus->write(*(u32*)&vpvc, (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.vpvc);
1265 fore200e->bus->write(*(u32*)&deactiv_opcode, (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.opcode);
1266 }
1267
1268 ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1269
1270 *entry->status = STATUS_FREE;
1271
1272 if (ok == 0) {
1273 printk(FORE200E "unable to %s VC %d.%d.%d\n",
1274 activate ? "open" : "close", vcc->itf, vcc->vpi, vcc->vci);
1275 return -EIO;
1276 }
1277
1278 DPRINTK(1, "VC %d.%d.%d %sed\n", vcc->itf, vcc->vpi, vcc->vci,
1279 activate ? "open" : "clos");
1280
1281 return 0;
1282}
1283
1284
1285#define FORE200E_MAX_BACK2BACK_CELLS 255 /* XXX depends on CDVT */
1286
1287static void
1288fore200e_rate_ctrl(struct atm_qos* qos, struct tpd_rate* rate)
1289{
1290 if (qos->txtp.max_pcr < ATM_OC3_PCR) {
1291
1292 /* compute the data cells to idle cells ratio from the tx PCR */
1293 rate->data_cells = qos->txtp.max_pcr * FORE200E_MAX_BACK2BACK_CELLS / ATM_OC3_PCR;
1294 rate->idle_cells = FORE200E_MAX_BACK2BACK_CELLS - rate->data_cells;
1295 }
1296 else {
1297 /* disable rate control */
1298 rate->data_cells = rate->idle_cells = 0;
1299 }
1300}
1301
1302
1303static int
1304fore200e_open(struct atm_vcc *vcc)
1305{
1306 struct fore200e* fore200e = FORE200E_DEV(vcc->dev);
1307 struct fore200e_vcc* fore200e_vcc;
1308 struct fore200e_vc_map* vc_map;
1309 unsigned long flags;
1310 int vci = vcc->vci;
1311 short vpi = vcc->vpi;
1312
1313 ASSERT((vpi >= 0) && (vpi < 1<<FORE200E_VPI_BITS));
1314 ASSERT((vci >= 0) && (vci < 1<<FORE200E_VCI_BITS));
1315
1316 spin_lock_irqsave(&fore200e->q_lock, flags);
1317
1318 vc_map = FORE200E_VC_MAP(fore200e, vpi, vci);
1319 if (vc_map->vcc) {
1320
1321 spin_unlock_irqrestore(&fore200e->q_lock, flags);
1322
1323 printk(FORE200E "VC %d.%d.%d already in use\n",
1324 fore200e->atm_dev->number, vpi, vci);
1325
1326 return -EINVAL;
1327 }
1328
1329 vc_map->vcc = vcc;
1330
1331 spin_unlock_irqrestore(&fore200e->q_lock, flags);
1332
1333 fore200e_vcc = kzalloc(sizeof(struct fore200e_vcc), GFP_ATOMIC);
1334 if (fore200e_vcc == NULL) {
1335 vc_map->vcc = NULL;
1336 return -ENOMEM;
1337 }
1338
1339 DPRINTK(2, "opening %d.%d.%d:%d QoS = (tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; "
1340 "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d)\n",
1341 vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1342 fore200e_traffic_class[ vcc->qos.txtp.traffic_class ],
1343 vcc->qos.txtp.min_pcr, vcc->qos.txtp.max_pcr, vcc->qos.txtp.max_cdv, vcc->qos.txtp.max_sdu,
1344 fore200e_traffic_class[ vcc->qos.rxtp.traffic_class ],
1345 vcc->qos.rxtp.min_pcr, vcc->qos.rxtp.max_pcr, vcc->qos.rxtp.max_cdv, vcc->qos.rxtp.max_sdu);
1346
1347 /* pseudo-CBR bandwidth requested? */
1348 if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1349
1350 mutex_lock(&fore200e->rate_mtx);
1351 if (fore200e->available_cell_rate < vcc->qos.txtp.max_pcr) {
1352 mutex_unlock(&fore200e->rate_mtx);
1353
1354 kfree(fore200e_vcc);
1355 vc_map->vcc = NULL;
1356 return -EAGAIN;
1357 }
1358
1359 /* reserve bandwidth */
1360 fore200e->available_cell_rate -= vcc->qos.txtp.max_pcr;
1361 mutex_unlock(&fore200e->rate_mtx);
1362 }
1363
1364 vcc->itf = vcc->dev->number;
1365
1366 set_bit(ATM_VF_PARTIAL,&vcc->flags);
1367 set_bit(ATM_VF_ADDR, &vcc->flags);
1368
1369 vcc->dev_data = fore200e_vcc;
1370
1371 if (fore200e_activate_vcin(fore200e, 1, vcc, vcc->qos.rxtp.max_sdu) < 0) {
1372
1373 vc_map->vcc = NULL;
1374
1375 clear_bit(ATM_VF_ADDR, &vcc->flags);
1376 clear_bit(ATM_VF_PARTIAL,&vcc->flags);
1377
1378 vcc->dev_data = NULL;
1379
1380 fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1381
1382 kfree(fore200e_vcc);
1383 return -EINVAL;
1384 }
1385
1386 /* compute rate control parameters */
1387 if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1388
1389 fore200e_rate_ctrl(&vcc->qos, &fore200e_vcc->rate);
1390 set_bit(ATM_VF_HASQOS, &vcc->flags);
1391
1392 DPRINTK(3, "tx on %d.%d.%d:%d, tx PCR = %d, rx PCR = %d, data_cells = %u, idle_cells = %u\n",
1393 vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1394 vcc->qos.txtp.max_pcr, vcc->qos.rxtp.max_pcr,
1395 fore200e_vcc->rate.data_cells, fore200e_vcc->rate.idle_cells);
1396 }
1397
1398 fore200e_vcc->tx_min_pdu = fore200e_vcc->rx_min_pdu = MAX_PDU_SIZE + 1;
1399 fore200e_vcc->tx_max_pdu = fore200e_vcc->rx_max_pdu = 0;
1400 fore200e_vcc->tx_pdu = fore200e_vcc->rx_pdu = 0;
1401
1402 /* new incarnation of the vcc */
1403 vc_map->incarn = ++fore200e->incarn_count;
1404
1405 /* VC unusable before this flag is set */
1406 set_bit(ATM_VF_READY, &vcc->flags);
1407
1408 return 0;
1409}
1410
1411
1412static void
1413fore200e_close(struct atm_vcc* vcc)
1414{
1415 struct fore200e_vcc* fore200e_vcc;
1416 struct fore200e* fore200e;
1417 struct fore200e_vc_map* vc_map;
1418 unsigned long flags;
1419
1420 ASSERT(vcc);
1421 fore200e = FORE200E_DEV(vcc->dev);
1422
1423 ASSERT((vcc->vpi >= 0) && (vcc->vpi < 1<<FORE200E_VPI_BITS));
1424 ASSERT((vcc->vci >= 0) && (vcc->vci < 1<<FORE200E_VCI_BITS));
1425
1426 DPRINTK(2, "closing %d.%d.%d:%d\n", vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal));
1427
1428 clear_bit(ATM_VF_READY, &vcc->flags);
1429
1430 fore200e_activate_vcin(fore200e, 0, vcc, 0);
1431
1432 spin_lock_irqsave(&fore200e->q_lock, flags);
1433
1434 vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci);
1435
1436 /* the vc is no longer considered as "in use" by fore200e_open() */
1437 vc_map->vcc = NULL;
1438
1439 vcc->itf = vcc->vci = vcc->vpi = 0;
1440
1441 fore200e_vcc = FORE200E_VCC(vcc);
1442 vcc->dev_data = NULL;
1443
1444 spin_unlock_irqrestore(&fore200e->q_lock, flags);
1445
1446 /* release reserved bandwidth, if any */
1447 if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1448
1449 mutex_lock(&fore200e->rate_mtx);
1450 fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1451 mutex_unlock(&fore200e->rate_mtx);
1452
1453 clear_bit(ATM_VF_HASQOS, &vcc->flags);
1454 }
1455
1456 clear_bit(ATM_VF_ADDR, &vcc->flags);
1457 clear_bit(ATM_VF_PARTIAL,&vcc->flags);
1458
1459 ASSERT(fore200e_vcc);
1460 kfree(fore200e_vcc);
1461}
1462
1463
1464static int
1465fore200e_send(struct atm_vcc *vcc, struct sk_buff *skb)
1466{
1467 struct fore200e* fore200e;
1468 struct fore200e_vcc* fore200e_vcc;
1469 struct fore200e_vc_map* vc_map;
1470 struct host_txq* txq;
1471 struct host_txq_entry* entry;
1472 struct tpd* tpd;
1473 struct tpd_haddr tpd_haddr;
1474 int retry = CONFIG_ATM_FORE200E_TX_RETRY;
1475 int tx_copy = 0;
1476 int tx_len = skb->len;
1477 u32* cell_header = NULL;
1478 unsigned char* skb_data;
1479 int skb_len;
1480 unsigned char* data;
1481 unsigned long flags;
1482
1483 if (!vcc)
1484 return -EINVAL;
1485
1486 fore200e = FORE200E_DEV(vcc->dev);
1487 fore200e_vcc = FORE200E_VCC(vcc);
1488
1489 if (!fore200e)
1490 return -EINVAL;
1491
1492 txq = &fore200e->host_txq;
1493 if (!fore200e_vcc)
1494 return -EINVAL;
1495
1496 if (!test_bit(ATM_VF_READY, &vcc->flags)) {
1497 DPRINTK(1, "VC %d.%d.%d not ready for tx\n", vcc->itf, vcc->vpi, vcc->vpi);
1498 dev_kfree_skb_any(skb);
1499 return -EINVAL;
1500 }
1501
1502#ifdef FORE200E_52BYTE_AAL0_SDU
1503 if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.txtp.max_sdu == ATM_AAL0_SDU)) {
1504 cell_header = (u32*) skb->data;
1505 skb_data = skb->data + 4; /* skip 4-byte cell header */
1506 skb_len = tx_len = skb->len - 4;
1507
1508 DPRINTK(3, "user-supplied cell header = 0x%08x\n", *cell_header);
1509 }
1510 else
1511#endif
1512 {
1513 skb_data = skb->data;
1514 skb_len = skb->len;
1515 }
1516
1517 if (((unsigned long)skb_data) & 0x3) {
1518
1519 DPRINTK(2, "misaligned tx PDU on device %s\n", fore200e->name);
1520 tx_copy = 1;
1521 tx_len = skb_len;
1522 }
1523
1524 if ((vcc->qos.aal == ATM_AAL0) && (skb_len % ATM_CELL_PAYLOAD)) {
1525
1526 /* this simply NUKES the PCA board */
1527 DPRINTK(2, "incomplete tx AAL0 PDU on device %s\n", fore200e->name);
1528 tx_copy = 1;
1529 tx_len = ((skb_len / ATM_CELL_PAYLOAD) + 1) * ATM_CELL_PAYLOAD;
1530 }
1531
1532 if (tx_copy) {
1533 data = kmalloc(tx_len, GFP_ATOMIC);
1534 if (data == NULL) {
1535 if (vcc->pop) {
1536 vcc->pop(vcc, skb);
1537 }
1538 else {
1539 dev_kfree_skb_any(skb);
1540 }
1541 return -ENOMEM;
1542 }
1543
1544 memcpy(data, skb_data, skb_len);
1545 if (skb_len < tx_len)
1546 memset(data + skb_len, 0x00, tx_len - skb_len);
1547 }
1548 else {
1549 data = skb_data;
1550 }
1551
1552 vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci);
1553 ASSERT(vc_map->vcc == vcc);
1554
1555 retry_here:
1556
1557 spin_lock_irqsave(&fore200e->q_lock, flags);
1558
1559 entry = &txq->host_entry[ txq->head ];
1560
1561 if ((*entry->status != STATUS_FREE) || (txq->txing >= QUEUE_SIZE_TX - 2)) {
1562
1563 /* try to free completed tx queue entries */
1564 fore200e_tx_irq(fore200e);
1565
1566 if (*entry->status != STATUS_FREE) {
1567
1568 spin_unlock_irqrestore(&fore200e->q_lock, flags);
1569
1570 /* retry once again? */
1571 if (--retry > 0) {
1572 udelay(50);
1573 goto retry_here;
1574 }
1575
1576 atomic_inc(&vcc->stats->tx_err);
1577
1578 fore200e->tx_sat++;
1579 DPRINTK(2, "tx queue of device %s is saturated, PDU dropped - heartbeat is %08x\n",
1580 fore200e->name, fore200e->cp_queues->heartbeat);
1581 if (vcc->pop) {
1582 vcc->pop(vcc, skb);
1583 }
1584 else {
1585 dev_kfree_skb_any(skb);
1586 }
1587
1588 if (tx_copy)
1589 kfree(data);
1590
1591 return -ENOBUFS;
1592 }
1593 }
1594
1595 entry->incarn = vc_map->incarn;
1596 entry->vc_map = vc_map;
1597 entry->skb = skb;
1598 entry->data = tx_copy ? data : NULL;
1599
1600 tpd = entry->tpd;
1601 tpd->tsd[ 0 ].buffer = dma_map_single(fore200e->dev, data, tx_len,
1602 DMA_TO_DEVICE);
1603 if (dma_mapping_error(fore200e->dev, tpd->tsd[0].buffer)) {
1604 if (tx_copy)
1605 kfree(data);
1606 spin_unlock_irqrestore(&fore200e->q_lock, flags);
1607 return -ENOMEM;
1608 }
1609 tpd->tsd[ 0 ].length = tx_len;
1610
1611 FORE200E_NEXT_ENTRY(txq->head, QUEUE_SIZE_TX);
1612 txq->txing++;
1613
1614 /* The dma_map call above implies a dma_sync so the device can use it,
1615 * thus no explicit dma_sync call is necessary here.
1616 */
1617
1618 DPRINTK(3, "tx on %d.%d.%d:%d, len = %u (%u)\n",
1619 vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1620 tpd->tsd[0].length, skb_len);
1621
1622 if (skb_len < fore200e_vcc->tx_min_pdu)
1623 fore200e_vcc->tx_min_pdu = skb_len;
1624 if (skb_len > fore200e_vcc->tx_max_pdu)
1625 fore200e_vcc->tx_max_pdu = skb_len;
1626 fore200e_vcc->tx_pdu++;
1627
1628 /* set tx rate control information */
1629 tpd->rate.data_cells = fore200e_vcc->rate.data_cells;
1630 tpd->rate.idle_cells = fore200e_vcc->rate.idle_cells;
1631
1632 if (cell_header) {
1633 tpd->atm_header.clp = (*cell_header & ATM_HDR_CLP);
1634 tpd->atm_header.plt = (*cell_header & ATM_HDR_PTI_MASK) >> ATM_HDR_PTI_SHIFT;
1635 tpd->atm_header.vci = (*cell_header & ATM_HDR_VCI_MASK) >> ATM_HDR_VCI_SHIFT;
1636 tpd->atm_header.vpi = (*cell_header & ATM_HDR_VPI_MASK) >> ATM_HDR_VPI_SHIFT;
1637 tpd->atm_header.gfc = (*cell_header & ATM_HDR_GFC_MASK) >> ATM_HDR_GFC_SHIFT;
1638 }
1639 else {
1640 /* set the ATM header, common to all cells conveying the PDU */
1641 tpd->atm_header.clp = 0;
1642 tpd->atm_header.plt = 0;
1643 tpd->atm_header.vci = vcc->vci;
1644 tpd->atm_header.vpi = vcc->vpi;
1645 tpd->atm_header.gfc = 0;
1646 }
1647
1648 tpd->spec.length = tx_len;
1649 tpd->spec.nseg = 1;
1650 tpd->spec.aal = fore200e_atm2fore_aal(vcc->qos.aal);
1651 tpd->spec.intr = 1;
1652
1653 tpd_haddr.size = sizeof(struct tpd) / (1<<TPD_HADDR_SHIFT); /* size is expressed in 32 byte blocks */
1654 tpd_haddr.pad = 0;
1655 tpd_haddr.haddr = entry->tpd_dma >> TPD_HADDR_SHIFT; /* shift the address, as we are in a bitfield */
1656
1657 *entry->status = STATUS_PENDING;
1658 fore200e->bus->write(*(u32*)&tpd_haddr, (u32 __iomem *)&entry->cp_entry->tpd_haddr);
1659
1660 spin_unlock_irqrestore(&fore200e->q_lock, flags);
1661
1662 return 0;
1663}
1664
1665
1666static int
1667fore200e_getstats(struct fore200e* fore200e)
1668{
1669 struct host_cmdq* cmdq = &fore200e->host_cmdq;
1670 struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1671 struct stats_opcode opcode;
1672 int ok;
1673 u32 stats_dma_addr;
1674
1675 if (fore200e->stats == NULL) {
1676 fore200e->stats = kzalloc(sizeof(struct stats), GFP_KERNEL);
1677 if (fore200e->stats == NULL)
1678 return -ENOMEM;
1679 }
1680
1681 stats_dma_addr = dma_map_single(fore200e->dev, fore200e->stats,
1682 sizeof(struct stats), DMA_FROM_DEVICE);
1683 if (dma_mapping_error(fore200e->dev, stats_dma_addr))
1684 return -ENOMEM;
1685
1686 FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1687
1688 opcode.opcode = OPCODE_GET_STATS;
1689 opcode.pad = 0;
1690
1691 fore200e->bus->write(stats_dma_addr, &entry->cp_entry->cmd.stats_block.stats_haddr);
1692
1693 *entry->status = STATUS_PENDING;
1694
1695 fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.stats_block.opcode);
1696
1697 ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1698
1699 *entry->status = STATUS_FREE;
1700
1701 dma_unmap_single(fore200e->dev, stats_dma_addr, sizeof(struct stats), DMA_FROM_DEVICE);
1702
1703 if (ok == 0) {
1704 printk(FORE200E "unable to get statistics from device %s\n", fore200e->name);
1705 return -EIO;
1706 }
1707
1708 return 0;
1709}
1710
1711#if 0 /* currently unused */
1712static int
1713fore200e_get_oc3(struct fore200e* fore200e, struct oc3_regs* regs)
1714{
1715 struct host_cmdq* cmdq = &fore200e->host_cmdq;
1716 struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1717 struct oc3_opcode opcode;
1718 int ok;
1719 u32 oc3_regs_dma_addr;
1720
1721 oc3_regs_dma_addr = fore200e->bus->dma_map(fore200e, regs, sizeof(struct oc3_regs), DMA_FROM_DEVICE);
1722
1723 FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1724
1725 opcode.opcode = OPCODE_GET_OC3;
1726 opcode.reg = 0;
1727 opcode.value = 0;
1728 opcode.mask = 0;
1729
1730 fore200e->bus->write(oc3_regs_dma_addr, &entry->cp_entry->cmd.oc3_block.regs_haddr);
1731
1732 *entry->status = STATUS_PENDING;
1733
1734 fore200e->bus->write(*(u32*)&opcode, (u32*)&entry->cp_entry->cmd.oc3_block.opcode);
1735
1736 ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1737
1738 *entry->status = STATUS_FREE;
1739
1740 fore200e->bus->dma_unmap(fore200e, oc3_regs_dma_addr, sizeof(struct oc3_regs), DMA_FROM_DEVICE);
1741
1742 if (ok == 0) {
1743 printk(FORE200E "unable to get OC-3 regs of device %s\n", fore200e->name);
1744 return -EIO;
1745 }
1746
1747 return 0;
1748}
1749#endif
1750
1751
1752static int
1753fore200e_set_oc3(struct fore200e* fore200e, u32 reg, u32 value, u32 mask)
1754{
1755 struct host_cmdq* cmdq = &fore200e->host_cmdq;
1756 struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1757 struct oc3_opcode opcode;
1758 int ok;
1759
1760 DPRINTK(2, "set OC-3 reg = 0x%02x, value = 0x%02x, mask = 0x%02x\n", reg, value, mask);
1761
1762 FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1763
1764 opcode.opcode = OPCODE_SET_OC3;
1765 opcode.reg = reg;
1766 opcode.value = value;
1767 opcode.mask = mask;
1768
1769 fore200e->bus->write(0, &entry->cp_entry->cmd.oc3_block.regs_haddr);
1770
1771 *entry->status = STATUS_PENDING;
1772
1773 fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.oc3_block.opcode);
1774
1775 ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1776
1777 *entry->status = STATUS_FREE;
1778
1779 if (ok == 0) {
1780 printk(FORE200E "unable to set OC-3 reg 0x%02x of device %s\n", reg, fore200e->name);
1781 return -EIO;
1782 }
1783
1784 return 0;
1785}
1786
1787
1788static int
1789fore200e_setloop(struct fore200e* fore200e, int loop_mode)
1790{
1791 u32 mct_value, mct_mask;
1792 int error;
1793
1794 if (!capable(CAP_NET_ADMIN))
1795 return -EPERM;
1796
1797 switch (loop_mode) {
1798
1799 case ATM_LM_NONE:
1800 mct_value = 0;
1801 mct_mask = SUNI_MCT_DLE | SUNI_MCT_LLE;
1802 break;
1803
1804 case ATM_LM_LOC_PHY:
1805 mct_value = mct_mask = SUNI_MCT_DLE;
1806 break;
1807
1808 case ATM_LM_RMT_PHY:
1809 mct_value = mct_mask = SUNI_MCT_LLE;
1810 break;
1811
1812 default:
1813 return -EINVAL;
1814 }
1815
1816 error = fore200e_set_oc3(fore200e, SUNI_MCT, mct_value, mct_mask);
1817 if (error == 0)
1818 fore200e->loop_mode = loop_mode;
1819
1820 return error;
1821}
1822
1823
1824static int
1825fore200e_fetch_stats(struct fore200e* fore200e, struct sonet_stats __user *arg)
1826{
1827 struct sonet_stats tmp;
1828
1829 if (fore200e_getstats(fore200e) < 0)
1830 return -EIO;
1831
1832 tmp.section_bip = be32_to_cpu(fore200e->stats->oc3.section_bip8_errors);
1833 tmp.line_bip = be32_to_cpu(fore200e->stats->oc3.line_bip24_errors);
1834 tmp.path_bip = be32_to_cpu(fore200e->stats->oc3.path_bip8_errors);
1835 tmp.line_febe = be32_to_cpu(fore200e->stats->oc3.line_febe_errors);
1836 tmp.path_febe = be32_to_cpu(fore200e->stats->oc3.path_febe_errors);
1837 tmp.corr_hcs = be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors);
1838 tmp.uncorr_hcs = be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors);
1839 tmp.tx_cells = be32_to_cpu(fore200e->stats->aal0.cells_transmitted) +
1840 be32_to_cpu(fore200e->stats->aal34.cells_transmitted) +
1841 be32_to_cpu(fore200e->stats->aal5.cells_transmitted);
1842 tmp.rx_cells = be32_to_cpu(fore200e->stats->aal0.cells_received) +
1843 be32_to_cpu(fore200e->stats->aal34.cells_received) +
1844 be32_to_cpu(fore200e->stats->aal5.cells_received);
1845
1846 if (arg)
1847 return copy_to_user(arg, &tmp, sizeof(struct sonet_stats)) ? -EFAULT : 0;
1848
1849 return 0;
1850}
1851
1852
1853static int
1854fore200e_ioctl(struct atm_dev* dev, unsigned int cmd, void __user * arg)
1855{
1856 struct fore200e* fore200e = FORE200E_DEV(dev);
1857
1858 DPRINTK(2, "ioctl cmd = 0x%x (%u), arg = 0x%p (%lu)\n", cmd, cmd, arg, (unsigned long)arg);
1859
1860 switch (cmd) {
1861
1862 case SONET_GETSTAT:
1863 return fore200e_fetch_stats(fore200e, (struct sonet_stats __user *)arg);
1864
1865 case SONET_GETDIAG:
1866 return put_user(0, (int __user *)arg) ? -EFAULT : 0;
1867
1868 case ATM_SETLOOP:
1869 return fore200e_setloop(fore200e, (int)(unsigned long)arg);
1870
1871 case ATM_GETLOOP:
1872 return put_user(fore200e->loop_mode, (int __user *)arg) ? -EFAULT : 0;
1873
1874 case ATM_QUERYLOOP:
1875 return put_user(ATM_LM_LOC_PHY | ATM_LM_RMT_PHY, (int __user *)arg) ? -EFAULT : 0;
1876 }
1877
1878 return -ENOSYS; /* not implemented */
1879}
1880
1881
1882static int
1883fore200e_change_qos(struct atm_vcc* vcc,struct atm_qos* qos, int flags)
1884{
1885 struct fore200e_vcc* fore200e_vcc = FORE200E_VCC(vcc);
1886 struct fore200e* fore200e = FORE200E_DEV(vcc->dev);
1887
1888 if (!test_bit(ATM_VF_READY, &vcc->flags)) {
1889 DPRINTK(1, "VC %d.%d.%d not ready for QoS change\n", vcc->itf, vcc->vpi, vcc->vpi);
1890 return -EINVAL;
1891 }
1892
1893 DPRINTK(2, "change_qos %d.%d.%d, "
1894 "(tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; "
1895 "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d), flags = 0x%x\n"
1896 "available_cell_rate = %u",
1897 vcc->itf, vcc->vpi, vcc->vci,
1898 fore200e_traffic_class[ qos->txtp.traffic_class ],
1899 qos->txtp.min_pcr, qos->txtp.max_pcr, qos->txtp.max_cdv, qos->txtp.max_sdu,
1900 fore200e_traffic_class[ qos->rxtp.traffic_class ],
1901 qos->rxtp.min_pcr, qos->rxtp.max_pcr, qos->rxtp.max_cdv, qos->rxtp.max_sdu,
1902 flags, fore200e->available_cell_rate);
1903
1904 if ((qos->txtp.traffic_class == ATM_CBR) && (qos->txtp.max_pcr > 0)) {
1905
1906 mutex_lock(&fore200e->rate_mtx);
1907 if (fore200e->available_cell_rate + vcc->qos.txtp.max_pcr < qos->txtp.max_pcr) {
1908 mutex_unlock(&fore200e->rate_mtx);
1909 return -EAGAIN;
1910 }
1911
1912 fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1913 fore200e->available_cell_rate -= qos->txtp.max_pcr;
1914
1915 mutex_unlock(&fore200e->rate_mtx);
1916
1917 memcpy(&vcc->qos, qos, sizeof(struct atm_qos));
1918
1919 /* update rate control parameters */
1920 fore200e_rate_ctrl(qos, &fore200e_vcc->rate);
1921
1922 set_bit(ATM_VF_HASQOS, &vcc->flags);
1923
1924 return 0;
1925 }
1926
1927 return -EINVAL;
1928}
1929
1930
1931static int fore200e_irq_request(struct fore200e *fore200e)
1932{
1933 if (request_irq(fore200e->irq, fore200e_interrupt, IRQF_SHARED, fore200e->name, fore200e->atm_dev) < 0) {
1934
1935 printk(FORE200E "unable to reserve IRQ %s for device %s\n",
1936 fore200e_irq_itoa(fore200e->irq), fore200e->name);
1937 return -EBUSY;
1938 }
1939
1940 printk(FORE200E "IRQ %s reserved for device %s\n",
1941 fore200e_irq_itoa(fore200e->irq), fore200e->name);
1942
1943#ifdef FORE200E_USE_TASKLET
1944 tasklet_init(&fore200e->tx_tasklet, fore200e_tx_tasklet, (unsigned long)fore200e);
1945 tasklet_init(&fore200e->rx_tasklet, fore200e_rx_tasklet, (unsigned long)fore200e);
1946#endif
1947
1948 fore200e->state = FORE200E_STATE_IRQ;
1949 return 0;
1950}
1951
1952
1953static int fore200e_get_esi(struct fore200e *fore200e)
1954{
1955 struct prom_data* prom = kzalloc(sizeof(struct prom_data), GFP_KERNEL);
1956 int ok, i;
1957
1958 if (!prom)
1959 return -ENOMEM;
1960
1961 ok = fore200e->bus->prom_read(fore200e, prom);
1962 if (ok < 0) {
1963 kfree(prom);
1964 return -EBUSY;
1965 }
1966
1967 printk(FORE200E "device %s, rev. %c, S/N: %d, ESI: %pM\n",
1968 fore200e->name,
1969 (prom->hw_revision & 0xFF) + '@', /* probably meaningless with SBA boards */
1970 prom->serial_number & 0xFFFF, &prom->mac_addr[2]);
1971
1972 for (i = 0; i < ESI_LEN; i++) {
1973 fore200e->esi[ i ] = fore200e->atm_dev->esi[ i ] = prom->mac_addr[ i + 2 ];
1974 }
1975
1976 kfree(prom);
1977
1978 return 0;
1979}
1980
1981
1982static int fore200e_alloc_rx_buf(struct fore200e *fore200e)
1983{
1984 int scheme, magn, nbr, size, i;
1985
1986 struct host_bsq* bsq;
1987 struct buffer* buffer;
1988
1989 for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
1990 for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
1991
1992 bsq = &fore200e->host_bsq[ scheme ][ magn ];
1993
1994 nbr = fore200e_rx_buf_nbr[ scheme ][ magn ];
1995 size = fore200e_rx_buf_size[ scheme ][ magn ];
1996
1997 DPRINTK(2, "rx buffers %d / %d are being allocated\n", scheme, magn);
1998
1999 /* allocate the array of receive buffers */
2000 buffer = bsq->buffer = kcalloc(nbr, sizeof(struct buffer),
2001 GFP_KERNEL);
2002
2003 if (buffer == NULL)
2004 return -ENOMEM;
2005
2006 bsq->freebuf = NULL;
2007
2008 for (i = 0; i < nbr; i++) {
2009
2010 buffer[ i ].scheme = scheme;
2011 buffer[ i ].magn = magn;
2012#ifdef FORE200E_BSQ_DEBUG
2013 buffer[ i ].index = i;
2014 buffer[ i ].supplied = 0;
2015#endif
2016
2017 /* allocate the receive buffer body */
2018 if (fore200e_chunk_alloc(fore200e,
2019 &buffer[ i ].data, size, fore200e->bus->buffer_alignment,
2020 DMA_FROM_DEVICE) < 0) {
2021
2022 while (i > 0)
2023 fore200e_chunk_free(fore200e, &buffer[ --i ].data);
2024 kfree(buffer);
2025
2026 return -ENOMEM;
2027 }
2028
2029 /* insert the buffer into the free buffer list */
2030 buffer[ i ].next = bsq->freebuf;
2031 bsq->freebuf = &buffer[ i ];
2032 }
2033 /* all the buffers are free, initially */
2034 bsq->freebuf_count = nbr;
2035
2036#ifdef FORE200E_BSQ_DEBUG
2037 bsq_audit(3, bsq, scheme, magn);
2038#endif
2039 }
2040 }
2041
2042 fore200e->state = FORE200E_STATE_ALLOC_BUF;
2043 return 0;
2044}
2045
2046
2047static int fore200e_init_bs_queue(struct fore200e *fore200e)
2048{
2049 int scheme, magn, i;
2050
2051 struct host_bsq* bsq;
2052 struct cp_bsq_entry __iomem * cp_entry;
2053
2054 for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
2055 for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
2056
2057 DPRINTK(2, "buffer supply queue %d / %d is being initialized\n", scheme, magn);
2058
2059 bsq = &fore200e->host_bsq[ scheme ][ magn ];
2060
2061 /* allocate and align the array of status words */
2062 if (fore200e_dma_chunk_alloc(fore200e,
2063 &bsq->status,
2064 sizeof(enum status),
2065 QUEUE_SIZE_BS,
2066 fore200e->bus->status_alignment) < 0) {
2067 return -ENOMEM;
2068 }
2069
2070 /* allocate and align the array of receive buffer descriptors */
2071 if (fore200e_dma_chunk_alloc(fore200e,
2072 &bsq->rbd_block,
2073 sizeof(struct rbd_block),
2074 QUEUE_SIZE_BS,
2075 fore200e->bus->descr_alignment) < 0) {
2076
2077 fore200e_dma_chunk_free(fore200e, &bsq->status);
2078 return -ENOMEM;
2079 }
2080
2081 /* get the base address of the cp resident buffer supply queue entries */
2082 cp_entry = fore200e->virt_base +
2083 fore200e->bus->read(&fore200e->cp_queues->cp_bsq[ scheme ][ magn ]);
2084
2085 /* fill the host resident and cp resident buffer supply queue entries */
2086 for (i = 0; i < QUEUE_SIZE_BS; i++) {
2087
2088 bsq->host_entry[ i ].status =
2089 FORE200E_INDEX(bsq->status.align_addr, enum status, i);
2090 bsq->host_entry[ i ].rbd_block =
2091 FORE200E_INDEX(bsq->rbd_block.align_addr, struct rbd_block, i);
2092 bsq->host_entry[ i ].rbd_block_dma =
2093 FORE200E_DMA_INDEX(bsq->rbd_block.dma_addr, struct rbd_block, i);
2094 bsq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2095
2096 *bsq->host_entry[ i ].status = STATUS_FREE;
2097
2098 fore200e->bus->write(FORE200E_DMA_INDEX(bsq->status.dma_addr, enum status, i),
2099 &cp_entry[ i ].status_haddr);
2100 }
2101 }
2102 }
2103
2104 fore200e->state = FORE200E_STATE_INIT_BSQ;
2105 return 0;
2106}
2107
2108
2109static int fore200e_init_rx_queue(struct fore200e *fore200e)
2110{
2111 struct host_rxq* rxq = &fore200e->host_rxq;
2112 struct cp_rxq_entry __iomem * cp_entry;
2113 int i;
2114
2115 DPRINTK(2, "receive queue is being initialized\n");
2116
2117 /* allocate and align the array of status words */
2118 if (fore200e_dma_chunk_alloc(fore200e,
2119 &rxq->status,
2120 sizeof(enum status),
2121 QUEUE_SIZE_RX,
2122 fore200e->bus->status_alignment) < 0) {
2123 return -ENOMEM;
2124 }
2125
2126 /* allocate and align the array of receive PDU descriptors */
2127 if (fore200e_dma_chunk_alloc(fore200e,
2128 &rxq->rpd,
2129 sizeof(struct rpd),
2130 QUEUE_SIZE_RX,
2131 fore200e->bus->descr_alignment) < 0) {
2132
2133 fore200e_dma_chunk_free(fore200e, &rxq->status);
2134 return -ENOMEM;
2135 }
2136
2137 /* get the base address of the cp resident rx queue entries */
2138 cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_rxq);
2139
2140 /* fill the host resident and cp resident rx entries */
2141 for (i=0; i < QUEUE_SIZE_RX; i++) {
2142
2143 rxq->host_entry[ i ].status =
2144 FORE200E_INDEX(rxq->status.align_addr, enum status, i);
2145 rxq->host_entry[ i ].rpd =
2146 FORE200E_INDEX(rxq->rpd.align_addr, struct rpd, i);
2147 rxq->host_entry[ i ].rpd_dma =
2148 FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i);
2149 rxq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2150
2151 *rxq->host_entry[ i ].status = STATUS_FREE;
2152
2153 fore200e->bus->write(FORE200E_DMA_INDEX(rxq->status.dma_addr, enum status, i),
2154 &cp_entry[ i ].status_haddr);
2155
2156 fore200e->bus->write(FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i),
2157 &cp_entry[ i ].rpd_haddr);
2158 }
2159
2160 /* set the head entry of the queue */
2161 rxq->head = 0;
2162
2163 fore200e->state = FORE200E_STATE_INIT_RXQ;
2164 return 0;
2165}
2166
2167
2168static int fore200e_init_tx_queue(struct fore200e *fore200e)
2169{
2170 struct host_txq* txq = &fore200e->host_txq;
2171 struct cp_txq_entry __iomem * cp_entry;
2172 int i;
2173
2174 DPRINTK(2, "transmit queue is being initialized\n");
2175
2176 /* allocate and align the array of status words */
2177 if (fore200e_dma_chunk_alloc(fore200e,
2178 &txq->status,
2179 sizeof(enum status),
2180 QUEUE_SIZE_TX,
2181 fore200e->bus->status_alignment) < 0) {
2182 return -ENOMEM;
2183 }
2184
2185 /* allocate and align the array of transmit PDU descriptors */
2186 if (fore200e_dma_chunk_alloc(fore200e,
2187 &txq->tpd,
2188 sizeof(struct tpd),
2189 QUEUE_SIZE_TX,
2190 fore200e->bus->descr_alignment) < 0) {
2191
2192 fore200e_dma_chunk_free(fore200e, &txq->status);
2193 return -ENOMEM;
2194 }
2195
2196 /* get the base address of the cp resident tx queue entries */
2197 cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_txq);
2198
2199 /* fill the host resident and cp resident tx entries */
2200 for (i=0; i < QUEUE_SIZE_TX; i++) {
2201
2202 txq->host_entry[ i ].status =
2203 FORE200E_INDEX(txq->status.align_addr, enum status, i);
2204 txq->host_entry[ i ].tpd =
2205 FORE200E_INDEX(txq->tpd.align_addr, struct tpd, i);
2206 txq->host_entry[ i ].tpd_dma =
2207 FORE200E_DMA_INDEX(txq->tpd.dma_addr, struct tpd, i);
2208 txq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2209
2210 *txq->host_entry[ i ].status = STATUS_FREE;
2211
2212 fore200e->bus->write(FORE200E_DMA_INDEX(txq->status.dma_addr, enum status, i),
2213 &cp_entry[ i ].status_haddr);
2214
2215 /* although there is a one-to-one mapping of tx queue entries and tpds,
2216 we do not write here the DMA (physical) base address of each tpd into
2217 the related cp resident entry, because the cp relies on this write
2218 operation to detect that a new pdu has been submitted for tx */
2219 }
2220
2221 /* set the head and tail entries of the queue */
2222 txq->head = 0;
2223 txq->tail = 0;
2224
2225 fore200e->state = FORE200E_STATE_INIT_TXQ;
2226 return 0;
2227}
2228
2229
2230static int fore200e_init_cmd_queue(struct fore200e *fore200e)
2231{
2232 struct host_cmdq* cmdq = &fore200e->host_cmdq;
2233 struct cp_cmdq_entry __iomem * cp_entry;
2234 int i;
2235
2236 DPRINTK(2, "command queue is being initialized\n");
2237
2238 /* allocate and align the array of status words */
2239 if (fore200e_dma_chunk_alloc(fore200e,
2240 &cmdq->status,
2241 sizeof(enum status),
2242 QUEUE_SIZE_CMD,
2243 fore200e->bus->status_alignment) < 0) {
2244 return -ENOMEM;
2245 }
2246
2247 /* get the base address of the cp resident cmd queue entries */
2248 cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_cmdq);
2249
2250 /* fill the host resident and cp resident cmd entries */
2251 for (i=0; i < QUEUE_SIZE_CMD; i++) {
2252
2253 cmdq->host_entry[ i ].status =
2254 FORE200E_INDEX(cmdq->status.align_addr, enum status, i);
2255 cmdq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2256
2257 *cmdq->host_entry[ i ].status = STATUS_FREE;
2258
2259 fore200e->bus->write(FORE200E_DMA_INDEX(cmdq->status.dma_addr, enum status, i),
2260 &cp_entry[ i ].status_haddr);
2261 }
2262
2263 /* set the head entry of the queue */
2264 cmdq->head = 0;
2265
2266 fore200e->state = FORE200E_STATE_INIT_CMDQ;
2267 return 0;
2268}
2269
2270
2271static void fore200e_param_bs_queue(struct fore200e *fore200e,
2272 enum buffer_scheme scheme,
2273 enum buffer_magn magn, int queue_length,
2274 int pool_size, int supply_blksize)
2275{
2276 struct bs_spec __iomem * bs_spec = &fore200e->cp_queues->init.bs_spec[ scheme ][ magn ];
2277
2278 fore200e->bus->write(queue_length, &bs_spec->queue_length);
2279 fore200e->bus->write(fore200e_rx_buf_size[ scheme ][ magn ], &bs_spec->buffer_size);
2280 fore200e->bus->write(pool_size, &bs_spec->pool_size);
2281 fore200e->bus->write(supply_blksize, &bs_spec->supply_blksize);
2282}
2283
2284
2285static int fore200e_initialize(struct fore200e *fore200e)
2286{
2287 struct cp_queues __iomem * cpq;
2288 int ok, scheme, magn;
2289
2290 DPRINTK(2, "device %s being initialized\n", fore200e->name);
2291
2292 mutex_init(&fore200e->rate_mtx);
2293 spin_lock_init(&fore200e->q_lock);
2294
2295 cpq = fore200e->cp_queues = fore200e->virt_base + FORE200E_CP_QUEUES_OFFSET;
2296
2297 /* enable cp to host interrupts */
2298 fore200e->bus->write(1, &cpq->imask);
2299
2300 if (fore200e->bus->irq_enable)
2301 fore200e->bus->irq_enable(fore200e);
2302
2303 fore200e->bus->write(NBR_CONNECT, &cpq->init.num_connect);
2304
2305 fore200e->bus->write(QUEUE_SIZE_CMD, &cpq->init.cmd_queue_len);
2306 fore200e->bus->write(QUEUE_SIZE_RX, &cpq->init.rx_queue_len);
2307 fore200e->bus->write(QUEUE_SIZE_TX, &cpq->init.tx_queue_len);
2308
2309 fore200e->bus->write(RSD_EXTENSION, &cpq->init.rsd_extension);
2310 fore200e->bus->write(TSD_EXTENSION, &cpq->init.tsd_extension);
2311
2312 for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++)
2313 for (magn = 0; magn < BUFFER_MAGN_NBR; magn++)
2314 fore200e_param_bs_queue(fore200e, scheme, magn,
2315 QUEUE_SIZE_BS,
2316 fore200e_rx_buf_nbr[ scheme ][ magn ],
2317 RBD_BLK_SIZE);
2318
2319 /* issue the initialize command */
2320 fore200e->bus->write(STATUS_PENDING, &cpq->init.status);
2321 fore200e->bus->write(OPCODE_INITIALIZE, &cpq->init.opcode);
2322
2323 ok = fore200e_io_poll(fore200e, &cpq->init.status, STATUS_COMPLETE, 3000);
2324 if (ok == 0) {
2325 printk(FORE200E "device %s initialization failed\n", fore200e->name);
2326 return -ENODEV;
2327 }
2328
2329 printk(FORE200E "device %s initialized\n", fore200e->name);
2330
2331 fore200e->state = FORE200E_STATE_INITIALIZE;
2332 return 0;
2333}
2334
2335
2336static void fore200e_monitor_putc(struct fore200e *fore200e, char c)
2337{
2338 struct cp_monitor __iomem * monitor = fore200e->cp_monitor;
2339
2340#if 0
2341 printk("%c", c);
2342#endif
2343 fore200e->bus->write(((u32) c) | FORE200E_CP_MONITOR_UART_AVAIL, &monitor->soft_uart.send);
2344}
2345
2346
2347static int fore200e_monitor_getc(struct fore200e *fore200e)
2348{
2349 struct cp_monitor __iomem * monitor = fore200e->cp_monitor;
2350 unsigned long timeout = jiffies + msecs_to_jiffies(50);
2351 int c;
2352
2353 while (time_before(jiffies, timeout)) {
2354
2355 c = (int) fore200e->bus->read(&monitor->soft_uart.recv);
2356
2357 if (c & FORE200E_CP_MONITOR_UART_AVAIL) {
2358
2359 fore200e->bus->write(FORE200E_CP_MONITOR_UART_FREE, &monitor->soft_uart.recv);
2360#if 0
2361 printk("%c", c & 0xFF);
2362#endif
2363 return c & 0xFF;
2364 }
2365 }
2366
2367 return -1;
2368}
2369
2370
2371static void fore200e_monitor_puts(struct fore200e *fore200e, char *str)
2372{
2373 while (*str) {
2374
2375 /* the i960 monitor doesn't accept any new character if it has something to say */
2376 while (fore200e_monitor_getc(fore200e) >= 0);
2377
2378 fore200e_monitor_putc(fore200e, *str++);
2379 }
2380
2381 while (fore200e_monitor_getc(fore200e) >= 0);
2382}
2383
2384#ifdef __LITTLE_ENDIAN
2385#define FW_EXT ".bin"
2386#else
2387#define FW_EXT "_ecd.bin2"
2388#endif
2389
2390static int fore200e_load_and_start_fw(struct fore200e *fore200e)
2391{
2392 const struct firmware *firmware;
2393 const struct fw_header *fw_header;
2394 const __le32 *fw_data;
2395 u32 fw_size;
2396 u32 __iomem *load_addr;
2397 char buf[48];
2398 int err;
2399
2400 sprintf(buf, "%s%s", fore200e->bus->proc_name, FW_EXT);
2401 if ((err = request_firmware(&firmware, buf, fore200e->dev)) < 0) {
2402 printk(FORE200E "problem loading firmware image %s\n", fore200e->bus->model_name);
2403 return err;
2404 }
2405
2406 fw_data = (const __le32 *)firmware->data;
2407 fw_size = firmware->size / sizeof(u32);
2408 fw_header = (const struct fw_header *)firmware->data;
2409 load_addr = fore200e->virt_base + le32_to_cpu(fw_header->load_offset);
2410
2411 DPRINTK(2, "device %s firmware being loaded at 0x%p (%d words)\n",
2412 fore200e->name, load_addr, fw_size);
2413
2414 if (le32_to_cpu(fw_header->magic) != FW_HEADER_MAGIC) {
2415 printk(FORE200E "corrupted %s firmware image\n", fore200e->bus->model_name);
2416 goto release;
2417 }
2418
2419 for (; fw_size--; fw_data++, load_addr++)
2420 fore200e->bus->write(le32_to_cpu(*fw_data), load_addr);
2421
2422 DPRINTK(2, "device %s firmware being started\n", fore200e->name);
2423
2424#if defined(__sparc_v9__)
2425 /* reported to be required by SBA cards on some sparc64 hosts */
2426 fore200e_spin(100);
2427#endif
2428
2429 sprintf(buf, "\rgo %x\r", le32_to_cpu(fw_header->start_offset));
2430 fore200e_monitor_puts(fore200e, buf);
2431
2432 if (fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_CP_RUNNING, 1000) == 0) {
2433 printk(FORE200E "device %s firmware didn't start\n", fore200e->name);
2434 goto release;
2435 }
2436
2437 printk(FORE200E "device %s firmware started\n", fore200e->name);
2438
2439 fore200e->state = FORE200E_STATE_START_FW;
2440 err = 0;
2441
2442release:
2443 release_firmware(firmware);
2444 return err;
2445}
2446
2447
2448static int fore200e_register(struct fore200e *fore200e, struct device *parent)
2449{
2450 struct atm_dev* atm_dev;
2451
2452 DPRINTK(2, "device %s being registered\n", fore200e->name);
2453
2454 atm_dev = atm_dev_register(fore200e->bus->proc_name, parent, &fore200e_ops,
2455 -1, NULL);
2456 if (atm_dev == NULL) {
2457 printk(FORE200E "unable to register device %s\n", fore200e->name);
2458 return -ENODEV;
2459 }
2460
2461 atm_dev->dev_data = fore200e;
2462 fore200e->atm_dev = atm_dev;
2463
2464 atm_dev->ci_range.vpi_bits = FORE200E_VPI_BITS;
2465 atm_dev->ci_range.vci_bits = FORE200E_VCI_BITS;
2466
2467 fore200e->available_cell_rate = ATM_OC3_PCR;
2468
2469 fore200e->state = FORE200E_STATE_REGISTER;
2470 return 0;
2471}
2472
2473
2474static int fore200e_init(struct fore200e *fore200e, struct device *parent)
2475{
2476 if (fore200e_register(fore200e, parent) < 0)
2477 return -ENODEV;
2478
2479 if (fore200e->bus->configure(fore200e) < 0)
2480 return -ENODEV;
2481
2482 if (fore200e->bus->map(fore200e) < 0)
2483 return -ENODEV;
2484
2485 if (fore200e_reset(fore200e, 1) < 0)
2486 return -ENODEV;
2487
2488 if (fore200e_load_and_start_fw(fore200e) < 0)
2489 return -ENODEV;
2490
2491 if (fore200e_initialize(fore200e) < 0)
2492 return -ENODEV;
2493
2494 if (fore200e_init_cmd_queue(fore200e) < 0)
2495 return -ENOMEM;
2496
2497 if (fore200e_init_tx_queue(fore200e) < 0)
2498 return -ENOMEM;
2499
2500 if (fore200e_init_rx_queue(fore200e) < 0)
2501 return -ENOMEM;
2502
2503 if (fore200e_init_bs_queue(fore200e) < 0)
2504 return -ENOMEM;
2505
2506 if (fore200e_alloc_rx_buf(fore200e) < 0)
2507 return -ENOMEM;
2508
2509 if (fore200e_get_esi(fore200e) < 0)
2510 return -EIO;
2511
2512 if (fore200e_irq_request(fore200e) < 0)
2513 return -EBUSY;
2514
2515 fore200e_supply(fore200e);
2516
2517 /* all done, board initialization is now complete */
2518 fore200e->state = FORE200E_STATE_COMPLETE;
2519 return 0;
2520}
2521
2522#ifdef CONFIG_SBUS
2523static const struct of_device_id fore200e_sba_match[];
2524static int fore200e_sba_probe(struct platform_device *op)
2525{
2526 const struct of_device_id *match;
2527 struct fore200e *fore200e;
2528 static int index = 0;
2529 int err;
2530
2531 match = of_match_device(fore200e_sba_match, &op->dev);
2532 if (!match)
2533 return -EINVAL;
2534
2535 fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL);
2536 if (!fore200e)
2537 return -ENOMEM;
2538
2539 fore200e->bus = &fore200e_sbus_ops;
2540 fore200e->dev = &op->dev;
2541 fore200e->irq = op->archdata.irqs[0];
2542 fore200e->phys_base = op->resource[0].start;
2543
2544 sprintf(fore200e->name, "SBA-200E-%d", index);
2545
2546 err = fore200e_init(fore200e, &op->dev);
2547 if (err < 0) {
2548 fore200e_shutdown(fore200e);
2549 kfree(fore200e);
2550 return err;
2551 }
2552
2553 index++;
2554 dev_set_drvdata(&op->dev, fore200e);
2555
2556 return 0;
2557}
2558
2559static int fore200e_sba_remove(struct platform_device *op)
2560{
2561 struct fore200e *fore200e = dev_get_drvdata(&op->dev);
2562
2563 fore200e_shutdown(fore200e);
2564 kfree(fore200e);
2565
2566 return 0;
2567}
2568
2569static const struct of_device_id fore200e_sba_match[] = {
2570 {
2571 .name = SBA200E_PROM_NAME,
2572 },
2573 {},
2574};
2575MODULE_DEVICE_TABLE(of, fore200e_sba_match);
2576
2577static struct platform_driver fore200e_sba_driver = {
2578 .driver = {
2579 .name = "fore_200e",
2580 .of_match_table = fore200e_sba_match,
2581 },
2582 .probe = fore200e_sba_probe,
2583 .remove = fore200e_sba_remove,
2584};
2585#endif
2586
2587#ifdef CONFIG_PCI
2588static int fore200e_pca_detect(struct pci_dev *pci_dev,
2589 const struct pci_device_id *pci_ent)
2590{
2591 struct fore200e* fore200e;
2592 int err = 0;
2593 static int index = 0;
2594
2595 if (pci_enable_device(pci_dev)) {
2596 err = -EINVAL;
2597 goto out;
2598 }
2599
2600 if (dma_set_mask_and_coherent(&pci_dev->dev, DMA_BIT_MASK(32))) {
2601 err = -EINVAL;
2602 goto out;
2603 }
2604
2605 fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL);
2606 if (fore200e == NULL) {
2607 err = -ENOMEM;
2608 goto out_disable;
2609 }
2610
2611 fore200e->bus = &fore200e_pci_ops;
2612 fore200e->dev = &pci_dev->dev;
2613 fore200e->irq = pci_dev->irq;
2614 fore200e->phys_base = pci_resource_start(pci_dev, 0);
2615
2616 sprintf(fore200e->name, "PCA-200E-%d", index - 1);
2617
2618 pci_set_master(pci_dev);
2619
2620 printk(FORE200E "device PCA-200E found at 0x%lx, IRQ %s\n",
2621 fore200e->phys_base, fore200e_irq_itoa(fore200e->irq));
2622
2623 sprintf(fore200e->name, "PCA-200E-%d", index);
2624
2625 err = fore200e_init(fore200e, &pci_dev->dev);
2626 if (err < 0) {
2627 fore200e_shutdown(fore200e);
2628 goto out_free;
2629 }
2630
2631 ++index;
2632 pci_set_drvdata(pci_dev, fore200e);
2633
2634out:
2635 return err;
2636
2637out_free:
2638 kfree(fore200e);
2639out_disable:
2640 pci_disable_device(pci_dev);
2641 goto out;
2642}
2643
2644
2645static void fore200e_pca_remove_one(struct pci_dev *pci_dev)
2646{
2647 struct fore200e *fore200e;
2648
2649 fore200e = pci_get_drvdata(pci_dev);
2650
2651 fore200e_shutdown(fore200e);
2652 kfree(fore200e);
2653 pci_disable_device(pci_dev);
2654}
2655
2656
2657static const struct pci_device_id fore200e_pca_tbl[] = {
2658 { PCI_VENDOR_ID_FORE, PCI_DEVICE_ID_FORE_PCA200E, PCI_ANY_ID, PCI_ANY_ID },
2659 { 0, }
2660};
2661
2662MODULE_DEVICE_TABLE(pci, fore200e_pca_tbl);
2663
2664static struct pci_driver fore200e_pca_driver = {
2665 .name = "fore_200e",
2666 .probe = fore200e_pca_detect,
2667 .remove = fore200e_pca_remove_one,
2668 .id_table = fore200e_pca_tbl,
2669};
2670#endif
2671
2672static int __init fore200e_module_init(void)
2673{
2674 int err = 0;
2675
2676 printk(FORE200E "FORE Systems 200E-series ATM driver - version " FORE200E_VERSION "\n");
2677
2678#ifdef CONFIG_SBUS
2679 err = platform_driver_register(&fore200e_sba_driver);
2680 if (err)
2681 return err;
2682#endif
2683
2684#ifdef CONFIG_PCI
2685 err = pci_register_driver(&fore200e_pca_driver);
2686#endif
2687
2688#ifdef CONFIG_SBUS
2689 if (err)
2690 platform_driver_unregister(&fore200e_sba_driver);
2691#endif
2692
2693 return err;
2694}
2695
2696static void __exit fore200e_module_cleanup(void)
2697{
2698#ifdef CONFIG_PCI
2699 pci_unregister_driver(&fore200e_pca_driver);
2700#endif
2701#ifdef CONFIG_SBUS
2702 platform_driver_unregister(&fore200e_sba_driver);
2703#endif
2704}
2705
2706static int
2707fore200e_proc_read(struct atm_dev *dev, loff_t* pos, char* page)
2708{
2709 struct fore200e* fore200e = FORE200E_DEV(dev);
2710 struct fore200e_vcc* fore200e_vcc;
2711 struct atm_vcc* vcc;
2712 int i, len, left = *pos;
2713 unsigned long flags;
2714
2715 if (!left--) {
2716
2717 if (fore200e_getstats(fore200e) < 0)
2718 return -EIO;
2719
2720 len = sprintf(page,"\n"
2721 " device:\n"
2722 " internal name:\t\t%s\n", fore200e->name);
2723
2724 /* print bus-specific information */
2725 if (fore200e->bus->proc_read)
2726 len += fore200e->bus->proc_read(fore200e, page + len);
2727
2728 len += sprintf(page + len,
2729 " interrupt line:\t\t%s\n"
2730 " physical base address:\t0x%p\n"
2731 " virtual base address:\t0x%p\n"
2732 " factory address (ESI):\t%pM\n"
2733 " board serial number:\t\t%d\n\n",
2734 fore200e_irq_itoa(fore200e->irq),
2735 (void*)fore200e->phys_base,
2736 fore200e->virt_base,
2737 fore200e->esi,
2738 fore200e->esi[4] * 256 + fore200e->esi[5]);
2739
2740 return len;
2741 }
2742
2743 if (!left--)
2744 return sprintf(page,
2745 " free small bufs, scheme 1:\t%d\n"
2746 " free large bufs, scheme 1:\t%d\n"
2747 " free small bufs, scheme 2:\t%d\n"
2748 " free large bufs, scheme 2:\t%d\n",
2749 fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_SMALL ].freebuf_count,
2750 fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_LARGE ].freebuf_count,
2751 fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_SMALL ].freebuf_count,
2752 fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_LARGE ].freebuf_count);
2753
2754 if (!left--) {
2755 u32 hb = fore200e->bus->read(&fore200e->cp_queues->heartbeat);
2756
2757 len = sprintf(page,"\n\n"
2758 " cell processor:\n"
2759 " heartbeat state:\t\t");
2760
2761 if (hb >> 16 != 0xDEAD)
2762 len += sprintf(page + len, "0x%08x\n", hb);
2763 else
2764 len += sprintf(page + len, "*** FATAL ERROR %04x ***\n", hb & 0xFFFF);
2765
2766 return len;
2767 }
2768
2769 if (!left--) {
2770 static const char* media_name[] = {
2771 "unshielded twisted pair",
2772 "multimode optical fiber ST",
2773 "multimode optical fiber SC",
2774 "single-mode optical fiber ST",
2775 "single-mode optical fiber SC",
2776 "unknown"
2777 };
2778
2779 static const char* oc3_mode[] = {
2780 "normal operation",
2781 "diagnostic loopback",
2782 "line loopback",
2783 "unknown"
2784 };
2785
2786 u32 fw_release = fore200e->bus->read(&fore200e->cp_queues->fw_release);
2787 u32 mon960_release = fore200e->bus->read(&fore200e->cp_queues->mon960_release);
2788 u32 oc3_revision = fore200e->bus->read(&fore200e->cp_queues->oc3_revision);
2789 u32 media_index = FORE200E_MEDIA_INDEX(fore200e->bus->read(&fore200e->cp_queues->media_type));
2790 u32 oc3_index;
2791
2792 if (media_index > 4)
2793 media_index = 5;
2794
2795 switch (fore200e->loop_mode) {
2796 case ATM_LM_NONE: oc3_index = 0;
2797 break;
2798 case ATM_LM_LOC_PHY: oc3_index = 1;
2799 break;
2800 case ATM_LM_RMT_PHY: oc3_index = 2;
2801 break;
2802 default: oc3_index = 3;
2803 }
2804
2805 return sprintf(page,
2806 " firmware release:\t\t%d.%d.%d\n"
2807 " monitor release:\t\t%d.%d\n"
2808 " media type:\t\t\t%s\n"
2809 " OC-3 revision:\t\t0x%x\n"
2810 " OC-3 mode:\t\t\t%s",
2811 fw_release >> 16, fw_release << 16 >> 24, fw_release << 24 >> 24,
2812 mon960_release >> 16, mon960_release << 16 >> 16,
2813 media_name[ media_index ],
2814 oc3_revision,
2815 oc3_mode[ oc3_index ]);
2816 }
2817
2818 if (!left--) {
2819 struct cp_monitor __iomem * cp_monitor = fore200e->cp_monitor;
2820
2821 return sprintf(page,
2822 "\n\n"
2823 " monitor:\n"
2824 " version number:\t\t%d\n"
2825 " boot status word:\t\t0x%08x\n",
2826 fore200e->bus->read(&cp_monitor->mon_version),
2827 fore200e->bus->read(&cp_monitor->bstat));
2828 }
2829
2830 if (!left--)
2831 return sprintf(page,
2832 "\n"
2833 " device statistics:\n"
2834 " 4b5b:\n"
2835 " crc_header_errors:\t\t%10u\n"
2836 " framing_errors:\t\t%10u\n",
2837 be32_to_cpu(fore200e->stats->phy.crc_header_errors),
2838 be32_to_cpu(fore200e->stats->phy.framing_errors));
2839
2840 if (!left--)
2841 return sprintf(page, "\n"
2842 " OC-3:\n"
2843 " section_bip8_errors:\t%10u\n"
2844 " path_bip8_errors:\t\t%10u\n"
2845 " line_bip24_errors:\t\t%10u\n"
2846 " line_febe_errors:\t\t%10u\n"
2847 " path_febe_errors:\t\t%10u\n"
2848 " corr_hcs_errors:\t\t%10u\n"
2849 " ucorr_hcs_errors:\t\t%10u\n",
2850 be32_to_cpu(fore200e->stats->oc3.section_bip8_errors),
2851 be32_to_cpu(fore200e->stats->oc3.path_bip8_errors),
2852 be32_to_cpu(fore200e->stats->oc3.line_bip24_errors),
2853 be32_to_cpu(fore200e->stats->oc3.line_febe_errors),
2854 be32_to_cpu(fore200e->stats->oc3.path_febe_errors),
2855 be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors),
2856 be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors));
2857
2858 if (!left--)
2859 return sprintf(page,"\n"
2860 " ATM:\t\t\t\t cells\n"
2861 " TX:\t\t\t%10u\n"
2862 " RX:\t\t\t%10u\n"
2863 " vpi out of range:\t\t%10u\n"
2864 " vpi no conn:\t\t%10u\n"
2865 " vci out of range:\t\t%10u\n"
2866 " vci no conn:\t\t%10u\n",
2867 be32_to_cpu(fore200e->stats->atm.cells_transmitted),
2868 be32_to_cpu(fore200e->stats->atm.cells_received),
2869 be32_to_cpu(fore200e->stats->atm.vpi_bad_range),
2870 be32_to_cpu(fore200e->stats->atm.vpi_no_conn),
2871 be32_to_cpu(fore200e->stats->atm.vci_bad_range),
2872 be32_to_cpu(fore200e->stats->atm.vci_no_conn));
2873
2874 if (!left--)
2875 return sprintf(page,"\n"
2876 " AAL0:\t\t\t cells\n"
2877 " TX:\t\t\t%10u\n"
2878 " RX:\t\t\t%10u\n"
2879 " dropped:\t\t\t%10u\n",
2880 be32_to_cpu(fore200e->stats->aal0.cells_transmitted),
2881 be32_to_cpu(fore200e->stats->aal0.cells_received),
2882 be32_to_cpu(fore200e->stats->aal0.cells_dropped));
2883
2884 if (!left--)
2885 return sprintf(page,"\n"
2886 " AAL3/4:\n"
2887 " SAR sublayer:\t\t cells\n"
2888 " TX:\t\t\t%10u\n"
2889 " RX:\t\t\t%10u\n"
2890 " dropped:\t\t\t%10u\n"
2891 " CRC errors:\t\t%10u\n"
2892 " protocol errors:\t\t%10u\n\n"
2893 " CS sublayer:\t\t PDUs\n"
2894 " TX:\t\t\t%10u\n"
2895 " RX:\t\t\t%10u\n"
2896 " dropped:\t\t\t%10u\n"
2897 " protocol errors:\t\t%10u\n",
2898 be32_to_cpu(fore200e->stats->aal34.cells_transmitted),
2899 be32_to_cpu(fore200e->stats->aal34.cells_received),
2900 be32_to_cpu(fore200e->stats->aal34.cells_dropped),
2901 be32_to_cpu(fore200e->stats->aal34.cells_crc_errors),
2902 be32_to_cpu(fore200e->stats->aal34.cells_protocol_errors),
2903 be32_to_cpu(fore200e->stats->aal34.cspdus_transmitted),
2904 be32_to_cpu(fore200e->stats->aal34.cspdus_received),
2905 be32_to_cpu(fore200e->stats->aal34.cspdus_dropped),
2906 be32_to_cpu(fore200e->stats->aal34.cspdus_protocol_errors));
2907
2908 if (!left--)
2909 return sprintf(page,"\n"
2910 " AAL5:\n"
2911 " SAR sublayer:\t\t cells\n"
2912 " TX:\t\t\t%10u\n"
2913 " RX:\t\t\t%10u\n"
2914 " dropped:\t\t\t%10u\n"
2915 " congestions:\t\t%10u\n\n"
2916 " CS sublayer:\t\t PDUs\n"
2917 " TX:\t\t\t%10u\n"
2918 " RX:\t\t\t%10u\n"
2919 " dropped:\t\t\t%10u\n"
2920 " CRC errors:\t\t%10u\n"
2921 " protocol errors:\t\t%10u\n",
2922 be32_to_cpu(fore200e->stats->aal5.cells_transmitted),
2923 be32_to_cpu(fore200e->stats->aal5.cells_received),
2924 be32_to_cpu(fore200e->stats->aal5.cells_dropped),
2925 be32_to_cpu(fore200e->stats->aal5.congestion_experienced),
2926 be32_to_cpu(fore200e->stats->aal5.cspdus_transmitted),
2927 be32_to_cpu(fore200e->stats->aal5.cspdus_received),
2928 be32_to_cpu(fore200e->stats->aal5.cspdus_dropped),
2929 be32_to_cpu(fore200e->stats->aal5.cspdus_crc_errors),
2930 be32_to_cpu(fore200e->stats->aal5.cspdus_protocol_errors));
2931
2932 if (!left--)
2933 return sprintf(page,"\n"
2934 " AUX:\t\t allocation failures\n"
2935 " small b1:\t\t\t%10u\n"
2936 " large b1:\t\t\t%10u\n"
2937 " small b2:\t\t\t%10u\n"
2938 " large b2:\t\t\t%10u\n"
2939 " RX PDUs:\t\t\t%10u\n"
2940 " TX PDUs:\t\t\t%10lu\n",
2941 be32_to_cpu(fore200e->stats->aux.small_b1_failed),
2942 be32_to_cpu(fore200e->stats->aux.large_b1_failed),
2943 be32_to_cpu(fore200e->stats->aux.small_b2_failed),
2944 be32_to_cpu(fore200e->stats->aux.large_b2_failed),
2945 be32_to_cpu(fore200e->stats->aux.rpd_alloc_failed),
2946 fore200e->tx_sat);
2947
2948 if (!left--)
2949 return sprintf(page,"\n"
2950 " receive carrier:\t\t\t%s\n",
2951 fore200e->stats->aux.receive_carrier ? "ON" : "OFF!");
2952
2953 if (!left--) {
2954 return sprintf(page,"\n"
2955 " VCCs:\n address VPI VCI AAL "
2956 "TX PDUs TX min/max size RX PDUs RX min/max size\n");
2957 }
2958
2959 for (i = 0; i < NBR_CONNECT; i++) {
2960
2961 vcc = fore200e->vc_map[i].vcc;
2962
2963 if (vcc == NULL)
2964 continue;
2965
2966 spin_lock_irqsave(&fore200e->q_lock, flags);
2967
2968 if (vcc && test_bit(ATM_VF_READY, &vcc->flags) && !left--) {
2969
2970 fore200e_vcc = FORE200E_VCC(vcc);
2971 ASSERT(fore200e_vcc);
2972
2973 len = sprintf(page,
2974 " %pK %03d %05d %1d %09lu %05d/%05d %09lu %05d/%05d\n",
2975 vcc,
2976 vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
2977 fore200e_vcc->tx_pdu,
2978 fore200e_vcc->tx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->tx_min_pdu,
2979 fore200e_vcc->tx_max_pdu,
2980 fore200e_vcc->rx_pdu,
2981 fore200e_vcc->rx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->rx_min_pdu,
2982 fore200e_vcc->rx_max_pdu);
2983
2984 spin_unlock_irqrestore(&fore200e->q_lock, flags);
2985 return len;
2986 }
2987
2988 spin_unlock_irqrestore(&fore200e->q_lock, flags);
2989 }
2990
2991 return 0;
2992}
2993
2994module_init(fore200e_module_init);
2995module_exit(fore200e_module_cleanup);
2996
2997
2998static const struct atmdev_ops fore200e_ops = {
2999 .open = fore200e_open,
3000 .close = fore200e_close,
3001 .ioctl = fore200e_ioctl,
3002 .send = fore200e_send,
3003 .change_qos = fore200e_change_qos,
3004 .proc_read = fore200e_proc_read,
3005 .owner = THIS_MODULE
3006};
3007
3008MODULE_LICENSE("GPL");
3009#ifdef CONFIG_PCI
3010#ifdef __LITTLE_ENDIAN__
3011MODULE_FIRMWARE("pca200e.bin");
3012#else
3013MODULE_FIRMWARE("pca200e_ecd.bin2");
3014#endif
3015#endif /* CONFIG_PCI */
3016#ifdef CONFIG_SBUS
3017MODULE_FIRMWARE("sba200e_ecd.bin2");
3018#endif
1/*
2 A FORE Systems 200E-series driver for ATM on Linux.
3 Christophe Lizzi (lizzi@cnam.fr), October 1999-March 2003.
4
5 Based on the PCA-200E driver from Uwe Dannowski (Uwe.Dannowski@inf.tu-dresden.de).
6
7 This driver simultaneously supports PCA-200E and SBA-200E adapters
8 on i386, alpha (untested), powerpc, sparc and sparc64 architectures.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23*/
24
25
26#include <linux/kernel.h>
27#include <linux/slab.h>
28#include <linux/init.h>
29#include <linux/capability.h>
30#include <linux/interrupt.h>
31#include <linux/bitops.h>
32#include <linux/pci.h>
33#include <linux/module.h>
34#include <linux/atmdev.h>
35#include <linux/sonet.h>
36#include <linux/atm_suni.h>
37#include <linux/dma-mapping.h>
38#include <linux/delay.h>
39#include <linux/firmware.h>
40#include <asm/io.h>
41#include <asm/string.h>
42#include <asm/page.h>
43#include <asm/irq.h>
44#include <asm/dma.h>
45#include <asm/byteorder.h>
46#include <linux/uaccess.h>
47#include <linux/atomic.h>
48
49#ifdef CONFIG_SBUS
50#include <linux/of.h>
51#include <linux/of_device.h>
52#include <asm/idprom.h>
53#include <asm/openprom.h>
54#include <asm/oplib.h>
55#include <asm/pgtable.h>
56#endif
57
58#if defined(CONFIG_ATM_FORE200E_USE_TASKLET) /* defer interrupt work to a tasklet */
59#define FORE200E_USE_TASKLET
60#endif
61
62#if 0 /* enable the debugging code of the buffer supply queues */
63#define FORE200E_BSQ_DEBUG
64#endif
65
66#if 1 /* ensure correct handling of 52-byte AAL0 SDUs expected by atmdump-like apps */
67#define FORE200E_52BYTE_AAL0_SDU
68#endif
69
70#include "fore200e.h"
71#include "suni.h"
72
73#define FORE200E_VERSION "0.3e"
74
75#define FORE200E "fore200e: "
76
77#if 0 /* override .config */
78#define CONFIG_ATM_FORE200E_DEBUG 1
79#endif
80#if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0)
81#define DPRINTK(level, format, args...) do { if (CONFIG_ATM_FORE200E_DEBUG >= (level)) \
82 printk(FORE200E format, ##args); } while (0)
83#else
84#define DPRINTK(level, format, args...) do {} while (0)
85#endif
86
87
88#define FORE200E_ALIGN(addr, alignment) \
89 ((((unsigned long)(addr) + (alignment - 1)) & ~(alignment - 1)) - (unsigned long)(addr))
90
91#define FORE200E_DMA_INDEX(dma_addr, type, index) ((dma_addr) + (index) * sizeof(type))
92
93#define FORE200E_INDEX(virt_addr, type, index) (&((type *)(virt_addr))[ index ])
94
95#define FORE200E_NEXT_ENTRY(index, modulo) (index = ((index) + 1) % (modulo))
96
97#if 1
98#define ASSERT(expr) if (!(expr)) { \
99 printk(FORE200E "assertion failed! %s[%d]: %s\n", \
100 __func__, __LINE__, #expr); \
101 panic(FORE200E "%s", __func__); \
102 }
103#else
104#define ASSERT(expr) do {} while (0)
105#endif
106
107
108static const struct atmdev_ops fore200e_ops;
109static const struct fore200e_bus fore200e_bus[];
110
111static LIST_HEAD(fore200e_boards);
112
113
114MODULE_AUTHOR("Christophe Lizzi - credits to Uwe Dannowski and Heikki Vatiainen");
115MODULE_DESCRIPTION("FORE Systems 200E-series ATM driver - version " FORE200E_VERSION);
116MODULE_SUPPORTED_DEVICE("PCA-200E, SBA-200E");
117
118
119static const int fore200e_rx_buf_nbr[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = {
120 { BUFFER_S1_NBR, BUFFER_L1_NBR },
121 { BUFFER_S2_NBR, BUFFER_L2_NBR }
122};
123
124static const int fore200e_rx_buf_size[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = {
125 { BUFFER_S1_SIZE, BUFFER_L1_SIZE },
126 { BUFFER_S2_SIZE, BUFFER_L2_SIZE }
127};
128
129
130#if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0)
131static const char* fore200e_traffic_class[] = { "NONE", "UBR", "CBR", "VBR", "ABR", "ANY" };
132#endif
133
134
135#if 0 /* currently unused */
136static int
137fore200e_fore2atm_aal(enum fore200e_aal aal)
138{
139 switch(aal) {
140 case FORE200E_AAL0: return ATM_AAL0;
141 case FORE200E_AAL34: return ATM_AAL34;
142 case FORE200E_AAL5: return ATM_AAL5;
143 }
144
145 return -EINVAL;
146}
147#endif
148
149
150static enum fore200e_aal
151fore200e_atm2fore_aal(int aal)
152{
153 switch(aal) {
154 case ATM_AAL0: return FORE200E_AAL0;
155 case ATM_AAL34: return FORE200E_AAL34;
156 case ATM_AAL1:
157 case ATM_AAL2:
158 case ATM_AAL5: return FORE200E_AAL5;
159 }
160
161 return -EINVAL;
162}
163
164
165static char*
166fore200e_irq_itoa(int irq)
167{
168 static char str[8];
169 sprintf(str, "%d", irq);
170 return str;
171}
172
173
174/* allocate and align a chunk of memory intended to hold the data behing exchanged
175 between the driver and the adapter (using streaming DVMA) */
176
177static int
178fore200e_chunk_alloc(struct fore200e* fore200e, struct chunk* chunk, int size, int alignment, int direction)
179{
180 unsigned long offset = 0;
181
182 if (alignment <= sizeof(int))
183 alignment = 0;
184
185 chunk->alloc_size = size + alignment;
186 chunk->align_size = size;
187 chunk->direction = direction;
188
189 chunk->alloc_addr = kzalloc(chunk->alloc_size, GFP_KERNEL | GFP_DMA);
190 if (chunk->alloc_addr == NULL)
191 return -ENOMEM;
192
193 if (alignment > 0)
194 offset = FORE200E_ALIGN(chunk->alloc_addr, alignment);
195
196 chunk->align_addr = chunk->alloc_addr + offset;
197
198 chunk->dma_addr = fore200e->bus->dma_map(fore200e, chunk->align_addr, chunk->align_size, direction);
199
200 return 0;
201}
202
203
204/* free a chunk of memory */
205
206static void
207fore200e_chunk_free(struct fore200e* fore200e, struct chunk* chunk)
208{
209 fore200e->bus->dma_unmap(fore200e, chunk->dma_addr, chunk->dma_size, chunk->direction);
210
211 kfree(chunk->alloc_addr);
212}
213
214
215static void
216fore200e_spin(int msecs)
217{
218 unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
219 while (time_before(jiffies, timeout));
220}
221
222
223static int
224fore200e_poll(struct fore200e* fore200e, volatile u32* addr, u32 val, int msecs)
225{
226 unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
227 int ok;
228
229 mb();
230 do {
231 if ((ok = (*addr == val)) || (*addr & STATUS_ERROR))
232 break;
233
234 } while (time_before(jiffies, timeout));
235
236#if 1
237 if (!ok) {
238 printk(FORE200E "cmd polling failed, got status 0x%08x, expected 0x%08x\n",
239 *addr, val);
240 }
241#endif
242
243 return ok;
244}
245
246
247static int
248fore200e_io_poll(struct fore200e* fore200e, volatile u32 __iomem *addr, u32 val, int msecs)
249{
250 unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
251 int ok;
252
253 do {
254 if ((ok = (fore200e->bus->read(addr) == val)))
255 break;
256
257 } while (time_before(jiffies, timeout));
258
259#if 1
260 if (!ok) {
261 printk(FORE200E "I/O polling failed, got status 0x%08x, expected 0x%08x\n",
262 fore200e->bus->read(addr), val);
263 }
264#endif
265
266 return ok;
267}
268
269
270static void
271fore200e_free_rx_buf(struct fore200e* fore200e)
272{
273 int scheme, magn, nbr;
274 struct buffer* buffer;
275
276 for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
277 for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
278
279 if ((buffer = fore200e->host_bsq[ scheme ][ magn ].buffer) != NULL) {
280
281 for (nbr = 0; nbr < fore200e_rx_buf_nbr[ scheme ][ magn ]; nbr++) {
282
283 struct chunk* data = &buffer[ nbr ].data;
284
285 if (data->alloc_addr != NULL)
286 fore200e_chunk_free(fore200e, data);
287 }
288 }
289 }
290 }
291}
292
293
294static void
295fore200e_uninit_bs_queue(struct fore200e* fore200e)
296{
297 int scheme, magn;
298
299 for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
300 for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
301
302 struct chunk* status = &fore200e->host_bsq[ scheme ][ magn ].status;
303 struct chunk* rbd_block = &fore200e->host_bsq[ scheme ][ magn ].rbd_block;
304
305 if (status->alloc_addr)
306 fore200e->bus->dma_chunk_free(fore200e, status);
307
308 if (rbd_block->alloc_addr)
309 fore200e->bus->dma_chunk_free(fore200e, rbd_block);
310 }
311 }
312}
313
314
315static int
316fore200e_reset(struct fore200e* fore200e, int diag)
317{
318 int ok;
319
320 fore200e->cp_monitor = fore200e->virt_base + FORE200E_CP_MONITOR_OFFSET;
321
322 fore200e->bus->write(BSTAT_COLD_START, &fore200e->cp_monitor->bstat);
323
324 fore200e->bus->reset(fore200e);
325
326 if (diag) {
327 ok = fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_SELFTEST_OK, 1000);
328 if (ok == 0) {
329
330 printk(FORE200E "device %s self-test failed\n", fore200e->name);
331 return -ENODEV;
332 }
333
334 printk(FORE200E "device %s self-test passed\n", fore200e->name);
335
336 fore200e->state = FORE200E_STATE_RESET;
337 }
338
339 return 0;
340}
341
342
343static void
344fore200e_shutdown(struct fore200e* fore200e)
345{
346 printk(FORE200E "removing device %s at 0x%lx, IRQ %s\n",
347 fore200e->name, fore200e->phys_base,
348 fore200e_irq_itoa(fore200e->irq));
349
350 if (fore200e->state > FORE200E_STATE_RESET) {
351 /* first, reset the board to prevent further interrupts or data transfers */
352 fore200e_reset(fore200e, 0);
353 }
354
355 /* then, release all allocated resources */
356 switch(fore200e->state) {
357
358 case FORE200E_STATE_COMPLETE:
359 kfree(fore200e->stats);
360
361 /* fall through */
362 case FORE200E_STATE_IRQ:
363 free_irq(fore200e->irq, fore200e->atm_dev);
364
365 /* fall through */
366 case FORE200E_STATE_ALLOC_BUF:
367 fore200e_free_rx_buf(fore200e);
368
369 /* fall through */
370 case FORE200E_STATE_INIT_BSQ:
371 fore200e_uninit_bs_queue(fore200e);
372
373 /* fall through */
374 case FORE200E_STATE_INIT_RXQ:
375 fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_rxq.status);
376 fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_rxq.rpd);
377
378 /* fall through */
379 case FORE200E_STATE_INIT_TXQ:
380 fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_txq.status);
381 fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_txq.tpd);
382
383 /* fall through */
384 case FORE200E_STATE_INIT_CMDQ:
385 fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_cmdq.status);
386
387 /* fall through */
388 case FORE200E_STATE_INITIALIZE:
389 /* nothing to do for that state */
390
391 case FORE200E_STATE_START_FW:
392 /* nothing to do for that state */
393
394 case FORE200E_STATE_RESET:
395 /* nothing to do for that state */
396
397 case FORE200E_STATE_MAP:
398 fore200e->bus->unmap(fore200e);
399
400 /* fall through */
401 case FORE200E_STATE_CONFIGURE:
402 /* nothing to do for that state */
403
404 case FORE200E_STATE_REGISTER:
405 /* XXX shouldn't we *start* by deregistering the device? */
406 atm_dev_deregister(fore200e->atm_dev);
407
408 case FORE200E_STATE_BLANK:
409 /* nothing to do for that state */
410 break;
411 }
412}
413
414
415#ifdef CONFIG_PCI
416
417static u32 fore200e_pca_read(volatile u32 __iomem *addr)
418{
419 /* on big-endian hosts, the board is configured to convert
420 the endianess of slave RAM accesses */
421 return le32_to_cpu(readl(addr));
422}
423
424
425static void fore200e_pca_write(u32 val, volatile u32 __iomem *addr)
426{
427 /* on big-endian hosts, the board is configured to convert
428 the endianess of slave RAM accesses */
429 writel(cpu_to_le32(val), addr);
430}
431
432
433static u32
434fore200e_pca_dma_map(struct fore200e* fore200e, void* virt_addr, int size, int direction)
435{
436 u32 dma_addr = dma_map_single(&((struct pci_dev *) fore200e->bus_dev)->dev, virt_addr, size, direction);
437
438 DPRINTK(3, "PCI DVMA mapping: virt_addr = 0x%p, size = %d, direction = %d, --> dma_addr = 0x%08x\n",
439 virt_addr, size, direction, dma_addr);
440
441 return dma_addr;
442}
443
444
445static void
446fore200e_pca_dma_unmap(struct fore200e* fore200e, u32 dma_addr, int size, int direction)
447{
448 DPRINTK(3, "PCI DVMA unmapping: dma_addr = 0x%08x, size = %d, direction = %d\n",
449 dma_addr, size, direction);
450
451 dma_unmap_single(&((struct pci_dev *) fore200e->bus_dev)->dev, dma_addr, size, direction);
452}
453
454
455static void
456fore200e_pca_dma_sync_for_cpu(struct fore200e* fore200e, u32 dma_addr, int size, int direction)
457{
458 DPRINTK(3, "PCI DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction);
459
460 dma_sync_single_for_cpu(&((struct pci_dev *) fore200e->bus_dev)->dev, dma_addr, size, direction);
461}
462
463static void
464fore200e_pca_dma_sync_for_device(struct fore200e* fore200e, u32 dma_addr, int size, int direction)
465{
466 DPRINTK(3, "PCI DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction);
467
468 dma_sync_single_for_device(&((struct pci_dev *) fore200e->bus_dev)->dev, dma_addr, size, direction);
469}
470
471
472/* allocate a DMA consistent chunk of memory intended to act as a communication mechanism
473 (to hold descriptors, status, queues, etc.) shared by the driver and the adapter */
474
475static int
476fore200e_pca_dma_chunk_alloc(struct fore200e* fore200e, struct chunk* chunk,
477 int size, int nbr, int alignment)
478{
479 /* returned chunks are page-aligned */
480 chunk->alloc_size = size * nbr;
481 chunk->alloc_addr = dma_alloc_coherent(&((struct pci_dev *) fore200e->bus_dev)->dev,
482 chunk->alloc_size,
483 &chunk->dma_addr,
484 GFP_KERNEL);
485
486 if ((chunk->alloc_addr == NULL) || (chunk->dma_addr == 0))
487 return -ENOMEM;
488
489 chunk->align_addr = chunk->alloc_addr;
490
491 return 0;
492}
493
494
495/* free a DMA consistent chunk of memory */
496
497static void
498fore200e_pca_dma_chunk_free(struct fore200e* fore200e, struct chunk* chunk)
499{
500 dma_free_coherent(&((struct pci_dev *) fore200e->bus_dev)->dev,
501 chunk->alloc_size,
502 chunk->alloc_addr,
503 chunk->dma_addr);
504}
505
506
507static int
508fore200e_pca_irq_check(struct fore200e* fore200e)
509{
510 /* this is a 1 bit register */
511 int irq_posted = readl(fore200e->regs.pca.psr);
512
513#if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG == 2)
514 if (irq_posted && (readl(fore200e->regs.pca.hcr) & PCA200E_HCR_OUTFULL)) {
515 DPRINTK(2,"FIFO OUT full, device %d\n", fore200e->atm_dev->number);
516 }
517#endif
518
519 return irq_posted;
520}
521
522
523static void
524fore200e_pca_irq_ack(struct fore200e* fore200e)
525{
526 writel(PCA200E_HCR_CLRINTR, fore200e->regs.pca.hcr);
527}
528
529
530static void
531fore200e_pca_reset(struct fore200e* fore200e)
532{
533 writel(PCA200E_HCR_RESET, fore200e->regs.pca.hcr);
534 fore200e_spin(10);
535 writel(0, fore200e->regs.pca.hcr);
536}
537
538
539static int fore200e_pca_map(struct fore200e* fore200e)
540{
541 DPRINTK(2, "device %s being mapped in memory\n", fore200e->name);
542
543 fore200e->virt_base = ioremap(fore200e->phys_base, PCA200E_IOSPACE_LENGTH);
544
545 if (fore200e->virt_base == NULL) {
546 printk(FORE200E "can't map device %s\n", fore200e->name);
547 return -EFAULT;
548 }
549
550 DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base);
551
552 /* gain access to the PCA specific registers */
553 fore200e->regs.pca.hcr = fore200e->virt_base + PCA200E_HCR_OFFSET;
554 fore200e->regs.pca.imr = fore200e->virt_base + PCA200E_IMR_OFFSET;
555 fore200e->regs.pca.psr = fore200e->virt_base + PCA200E_PSR_OFFSET;
556
557 fore200e->state = FORE200E_STATE_MAP;
558 return 0;
559}
560
561
562static void
563fore200e_pca_unmap(struct fore200e* fore200e)
564{
565 DPRINTK(2, "device %s being unmapped from memory\n", fore200e->name);
566
567 if (fore200e->virt_base != NULL)
568 iounmap(fore200e->virt_base);
569}
570
571
572static int fore200e_pca_configure(struct fore200e *fore200e)
573{
574 struct pci_dev* pci_dev = (struct pci_dev*)fore200e->bus_dev;
575 u8 master_ctrl, latency;
576
577 DPRINTK(2, "device %s being configured\n", fore200e->name);
578
579 if ((pci_dev->irq == 0) || (pci_dev->irq == 0xFF)) {
580 printk(FORE200E "incorrect IRQ setting - misconfigured PCI-PCI bridge?\n");
581 return -EIO;
582 }
583
584 pci_read_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, &master_ctrl);
585
586 master_ctrl = master_ctrl
587#if defined(__BIG_ENDIAN)
588 /* request the PCA board to convert the endianess of slave RAM accesses */
589 | PCA200E_CTRL_CONVERT_ENDIAN
590#endif
591#if 0
592 | PCA200E_CTRL_DIS_CACHE_RD
593 | PCA200E_CTRL_DIS_WRT_INVAL
594 | PCA200E_CTRL_ENA_CONT_REQ_MODE
595 | PCA200E_CTRL_2_CACHE_WRT_INVAL
596#endif
597 | PCA200E_CTRL_LARGE_PCI_BURSTS;
598
599 pci_write_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, master_ctrl);
600
601 /* raise latency from 32 (default) to 192, as this seems to prevent NIC
602 lockups (under heavy rx loads) due to continuous 'FIFO OUT full' condition.
603 this may impact the performances of other PCI devices on the same bus, though */
604 latency = 192;
605 pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, latency);
606
607 fore200e->state = FORE200E_STATE_CONFIGURE;
608 return 0;
609}
610
611
612static int __init
613fore200e_pca_prom_read(struct fore200e* fore200e, struct prom_data* prom)
614{
615 struct host_cmdq* cmdq = &fore200e->host_cmdq;
616 struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
617 struct prom_opcode opcode;
618 int ok;
619 u32 prom_dma;
620
621 FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
622
623 opcode.opcode = OPCODE_GET_PROM;
624 opcode.pad = 0;
625
626 prom_dma = fore200e->bus->dma_map(fore200e, prom, sizeof(struct prom_data), DMA_FROM_DEVICE);
627
628 fore200e->bus->write(prom_dma, &entry->cp_entry->cmd.prom_block.prom_haddr);
629
630 *entry->status = STATUS_PENDING;
631
632 fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.prom_block.opcode);
633
634 ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
635
636 *entry->status = STATUS_FREE;
637
638 fore200e->bus->dma_unmap(fore200e, prom_dma, sizeof(struct prom_data), DMA_FROM_DEVICE);
639
640 if (ok == 0) {
641 printk(FORE200E "unable to get PROM data from device %s\n", fore200e->name);
642 return -EIO;
643 }
644
645#if defined(__BIG_ENDIAN)
646
647#define swap_here(addr) (*((u32*)(addr)) = swab32( *((u32*)(addr)) ))
648
649 /* MAC address is stored as little-endian */
650 swap_here(&prom->mac_addr[0]);
651 swap_here(&prom->mac_addr[4]);
652#endif
653
654 return 0;
655}
656
657
658static int
659fore200e_pca_proc_read(struct fore200e* fore200e, char *page)
660{
661 struct pci_dev* pci_dev = (struct pci_dev*)fore200e->bus_dev;
662
663 return sprintf(page, " PCI bus/slot/function:\t%d/%d/%d\n",
664 pci_dev->bus->number, PCI_SLOT(pci_dev->devfn), PCI_FUNC(pci_dev->devfn));
665}
666
667#endif /* CONFIG_PCI */
668
669
670#ifdef CONFIG_SBUS
671
672static u32 fore200e_sba_read(volatile u32 __iomem *addr)
673{
674 return sbus_readl(addr);
675}
676
677static void fore200e_sba_write(u32 val, volatile u32 __iomem *addr)
678{
679 sbus_writel(val, addr);
680}
681
682static u32 fore200e_sba_dma_map(struct fore200e *fore200e, void* virt_addr, int size, int direction)
683{
684 struct platform_device *op = fore200e->bus_dev;
685 u32 dma_addr;
686
687 dma_addr = dma_map_single(&op->dev, virt_addr, size, direction);
688
689 DPRINTK(3, "SBUS DVMA mapping: virt_addr = 0x%p, size = %d, direction = %d --> dma_addr = 0x%08x\n",
690 virt_addr, size, direction, dma_addr);
691
692 return dma_addr;
693}
694
695static void fore200e_sba_dma_unmap(struct fore200e *fore200e, u32 dma_addr, int size, int direction)
696{
697 struct platform_device *op = fore200e->bus_dev;
698
699 DPRINTK(3, "SBUS DVMA unmapping: dma_addr = 0x%08x, size = %d, direction = %d,\n",
700 dma_addr, size, direction);
701
702 dma_unmap_single(&op->dev, dma_addr, size, direction);
703}
704
705static void fore200e_sba_dma_sync_for_cpu(struct fore200e *fore200e, u32 dma_addr, int size, int direction)
706{
707 struct platform_device *op = fore200e->bus_dev;
708
709 DPRINTK(3, "SBUS DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction);
710
711 dma_sync_single_for_cpu(&op->dev, dma_addr, size, direction);
712}
713
714static void fore200e_sba_dma_sync_for_device(struct fore200e *fore200e, u32 dma_addr, int size, int direction)
715{
716 struct platform_device *op = fore200e->bus_dev;
717
718 DPRINTK(3, "SBUS DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction);
719
720 dma_sync_single_for_device(&op->dev, dma_addr, size, direction);
721}
722
723/* Allocate a DVMA consistent chunk of memory intended to act as a communication mechanism
724 * (to hold descriptors, status, queues, etc.) shared by the driver and the adapter.
725 */
726static int fore200e_sba_dma_chunk_alloc(struct fore200e *fore200e, struct chunk *chunk,
727 int size, int nbr, int alignment)
728{
729 struct platform_device *op = fore200e->bus_dev;
730
731 chunk->alloc_size = chunk->align_size = size * nbr;
732
733 /* returned chunks are page-aligned */
734 chunk->alloc_addr = dma_alloc_coherent(&op->dev, chunk->alloc_size,
735 &chunk->dma_addr, GFP_ATOMIC);
736
737 if ((chunk->alloc_addr == NULL) || (chunk->dma_addr == 0))
738 return -ENOMEM;
739
740 chunk->align_addr = chunk->alloc_addr;
741
742 return 0;
743}
744
745/* free a DVMA consistent chunk of memory */
746static void fore200e_sba_dma_chunk_free(struct fore200e *fore200e, struct chunk *chunk)
747{
748 struct platform_device *op = fore200e->bus_dev;
749
750 dma_free_coherent(&op->dev, chunk->alloc_size,
751 chunk->alloc_addr, chunk->dma_addr);
752}
753
754static void fore200e_sba_irq_enable(struct fore200e *fore200e)
755{
756 u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY;
757 fore200e->bus->write(hcr | SBA200E_HCR_INTR_ENA, fore200e->regs.sba.hcr);
758}
759
760static int fore200e_sba_irq_check(struct fore200e *fore200e)
761{
762 return fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_INTR_REQ;
763}
764
765static void fore200e_sba_irq_ack(struct fore200e *fore200e)
766{
767 u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY;
768 fore200e->bus->write(hcr | SBA200E_HCR_INTR_CLR, fore200e->regs.sba.hcr);
769}
770
771static void fore200e_sba_reset(struct fore200e *fore200e)
772{
773 fore200e->bus->write(SBA200E_HCR_RESET, fore200e->regs.sba.hcr);
774 fore200e_spin(10);
775 fore200e->bus->write(0, fore200e->regs.sba.hcr);
776}
777
778static int __init fore200e_sba_map(struct fore200e *fore200e)
779{
780 struct platform_device *op = fore200e->bus_dev;
781 unsigned int bursts;
782
783 /* gain access to the SBA specific registers */
784 fore200e->regs.sba.hcr = of_ioremap(&op->resource[0], 0, SBA200E_HCR_LENGTH, "SBA HCR");
785 fore200e->regs.sba.bsr = of_ioremap(&op->resource[1], 0, SBA200E_BSR_LENGTH, "SBA BSR");
786 fore200e->regs.sba.isr = of_ioremap(&op->resource[2], 0, SBA200E_ISR_LENGTH, "SBA ISR");
787 fore200e->virt_base = of_ioremap(&op->resource[3], 0, SBA200E_RAM_LENGTH, "SBA RAM");
788
789 if (!fore200e->virt_base) {
790 printk(FORE200E "unable to map RAM of device %s\n", fore200e->name);
791 return -EFAULT;
792 }
793
794 DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base);
795
796 fore200e->bus->write(0x02, fore200e->regs.sba.isr); /* XXX hardwired interrupt level */
797
798 /* get the supported DVMA burst sizes */
799 bursts = of_getintprop_default(op->dev.of_node->parent, "burst-sizes", 0x00);
800
801 if (sbus_can_dma_64bit())
802 sbus_set_sbus64(&op->dev, bursts);
803
804 fore200e->state = FORE200E_STATE_MAP;
805 return 0;
806}
807
808static void fore200e_sba_unmap(struct fore200e *fore200e)
809{
810 struct platform_device *op = fore200e->bus_dev;
811
812 of_iounmap(&op->resource[0], fore200e->regs.sba.hcr, SBA200E_HCR_LENGTH);
813 of_iounmap(&op->resource[1], fore200e->regs.sba.bsr, SBA200E_BSR_LENGTH);
814 of_iounmap(&op->resource[2], fore200e->regs.sba.isr, SBA200E_ISR_LENGTH);
815 of_iounmap(&op->resource[3], fore200e->virt_base, SBA200E_RAM_LENGTH);
816}
817
818static int __init fore200e_sba_configure(struct fore200e *fore200e)
819{
820 fore200e->state = FORE200E_STATE_CONFIGURE;
821 return 0;
822}
823
824static int __init fore200e_sba_prom_read(struct fore200e *fore200e, struct prom_data *prom)
825{
826 struct platform_device *op = fore200e->bus_dev;
827 const u8 *prop;
828 int len;
829
830 prop = of_get_property(op->dev.of_node, "madaddrlo2", &len);
831 if (!prop)
832 return -ENODEV;
833 memcpy(&prom->mac_addr[4], prop, 4);
834
835 prop = of_get_property(op->dev.of_node, "madaddrhi4", &len);
836 if (!prop)
837 return -ENODEV;
838 memcpy(&prom->mac_addr[2], prop, 4);
839
840 prom->serial_number = of_getintprop_default(op->dev.of_node,
841 "serialnumber", 0);
842 prom->hw_revision = of_getintprop_default(op->dev.of_node,
843 "promversion", 0);
844
845 return 0;
846}
847
848static int fore200e_sba_proc_read(struct fore200e *fore200e, char *page)
849{
850 struct platform_device *op = fore200e->bus_dev;
851 const struct linux_prom_registers *regs;
852
853 regs = of_get_property(op->dev.of_node, "reg", NULL);
854
855 return sprintf(page, " SBUS slot/device:\t\t%d/'%s'\n",
856 (regs ? regs->which_io : 0), op->dev.of_node->name);
857}
858#endif /* CONFIG_SBUS */
859
860
861static void
862fore200e_tx_irq(struct fore200e* fore200e)
863{
864 struct host_txq* txq = &fore200e->host_txq;
865 struct host_txq_entry* entry;
866 struct atm_vcc* vcc;
867 struct fore200e_vc_map* vc_map;
868
869 if (fore200e->host_txq.txing == 0)
870 return;
871
872 for (;;) {
873
874 entry = &txq->host_entry[ txq->tail ];
875
876 if ((*entry->status & STATUS_COMPLETE) == 0) {
877 break;
878 }
879
880 DPRINTK(3, "TX COMPLETED: entry = %p [tail = %d], vc_map = %p, skb = %p\n",
881 entry, txq->tail, entry->vc_map, entry->skb);
882
883 /* free copy of misaligned data */
884 kfree(entry->data);
885
886 /* remove DMA mapping */
887 fore200e->bus->dma_unmap(fore200e, entry->tpd->tsd[ 0 ].buffer, entry->tpd->tsd[ 0 ].length,
888 DMA_TO_DEVICE);
889
890 vc_map = entry->vc_map;
891
892 /* vcc closed since the time the entry was submitted for tx? */
893 if ((vc_map->vcc == NULL) ||
894 (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) {
895
896 DPRINTK(1, "no ready vcc found for PDU sent on device %d\n",
897 fore200e->atm_dev->number);
898
899 dev_kfree_skb_any(entry->skb);
900 }
901 else {
902 ASSERT(vc_map->vcc);
903
904 /* vcc closed then immediately re-opened? */
905 if (vc_map->incarn != entry->incarn) {
906
907 /* when a vcc is closed, some PDUs may be still pending in the tx queue.
908 if the same vcc is immediately re-opened, those pending PDUs must
909 not be popped after the completion of their emission, as they refer
910 to the prior incarnation of that vcc. otherwise, sk_atm(vcc)->sk_wmem_alloc
911 would be decremented by the size of the (unrelated) skb, possibly
912 leading to a negative sk->sk_wmem_alloc count, ultimately freezing the vcc.
913 we thus bind the tx entry to the current incarnation of the vcc
914 when the entry is submitted for tx. When the tx later completes,
915 if the incarnation number of the tx entry does not match the one
916 of the vcc, then this implies that the vcc has been closed then re-opened.
917 we thus just drop the skb here. */
918
919 DPRINTK(1, "vcc closed-then-re-opened; dropping PDU sent on device %d\n",
920 fore200e->atm_dev->number);
921
922 dev_kfree_skb_any(entry->skb);
923 }
924 else {
925 vcc = vc_map->vcc;
926 ASSERT(vcc);
927
928 /* notify tx completion */
929 if (vcc->pop) {
930 vcc->pop(vcc, entry->skb);
931 }
932 else {
933 dev_kfree_skb_any(entry->skb);
934 }
935
936 /* check error condition */
937 if (*entry->status & STATUS_ERROR)
938 atomic_inc(&vcc->stats->tx_err);
939 else
940 atomic_inc(&vcc->stats->tx);
941 }
942 }
943
944 *entry->status = STATUS_FREE;
945
946 fore200e->host_txq.txing--;
947
948 FORE200E_NEXT_ENTRY(txq->tail, QUEUE_SIZE_TX);
949 }
950}
951
952
953#ifdef FORE200E_BSQ_DEBUG
954int bsq_audit(int where, struct host_bsq* bsq, int scheme, int magn)
955{
956 struct buffer* buffer;
957 int count = 0;
958
959 buffer = bsq->freebuf;
960 while (buffer) {
961
962 if (buffer->supplied) {
963 printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld supplied but in free list!\n",
964 where, scheme, magn, buffer->index);
965 }
966
967 if (buffer->magn != magn) {
968 printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected magn = %d\n",
969 where, scheme, magn, buffer->index, buffer->magn);
970 }
971
972 if (buffer->scheme != scheme) {
973 printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected scheme = %d\n",
974 where, scheme, magn, buffer->index, buffer->scheme);
975 }
976
977 if ((buffer->index < 0) || (buffer->index >= fore200e_rx_buf_nbr[ scheme ][ magn ])) {
978 printk(FORE200E "bsq_audit(%d): queue %d.%d, out of range buffer index = %ld !\n",
979 where, scheme, magn, buffer->index);
980 }
981
982 count++;
983 buffer = buffer->next;
984 }
985
986 if (count != bsq->freebuf_count) {
987 printk(FORE200E "bsq_audit(%d): queue %d.%d, %d bufs in free list, but freebuf_count = %d\n",
988 where, scheme, magn, count, bsq->freebuf_count);
989 }
990 return 0;
991}
992#endif
993
994
995static void
996fore200e_supply(struct fore200e* fore200e)
997{
998 int scheme, magn, i;
999
1000 struct host_bsq* bsq;
1001 struct host_bsq_entry* entry;
1002 struct buffer* buffer;
1003
1004 for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
1005 for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
1006
1007 bsq = &fore200e->host_bsq[ scheme ][ magn ];
1008
1009#ifdef FORE200E_BSQ_DEBUG
1010 bsq_audit(1, bsq, scheme, magn);
1011#endif
1012 while (bsq->freebuf_count >= RBD_BLK_SIZE) {
1013
1014 DPRINTK(2, "supplying %d rx buffers to queue %d / %d, freebuf_count = %d\n",
1015 RBD_BLK_SIZE, scheme, magn, bsq->freebuf_count);
1016
1017 entry = &bsq->host_entry[ bsq->head ];
1018
1019 for (i = 0; i < RBD_BLK_SIZE; i++) {
1020
1021 /* take the first buffer in the free buffer list */
1022 buffer = bsq->freebuf;
1023 if (!buffer) {
1024 printk(FORE200E "no more free bufs in queue %d.%d, but freebuf_count = %d\n",
1025 scheme, magn, bsq->freebuf_count);
1026 return;
1027 }
1028 bsq->freebuf = buffer->next;
1029
1030#ifdef FORE200E_BSQ_DEBUG
1031 if (buffer->supplied)
1032 printk(FORE200E "queue %d.%d, buffer %lu already supplied\n",
1033 scheme, magn, buffer->index);
1034 buffer->supplied = 1;
1035#endif
1036 entry->rbd_block->rbd[ i ].buffer_haddr = buffer->data.dma_addr;
1037 entry->rbd_block->rbd[ i ].handle = FORE200E_BUF2HDL(buffer);
1038 }
1039
1040 FORE200E_NEXT_ENTRY(bsq->head, QUEUE_SIZE_BS);
1041
1042 /* decrease accordingly the number of free rx buffers */
1043 bsq->freebuf_count -= RBD_BLK_SIZE;
1044
1045 *entry->status = STATUS_PENDING;
1046 fore200e->bus->write(entry->rbd_block_dma, &entry->cp_entry->rbd_block_haddr);
1047 }
1048 }
1049 }
1050}
1051
1052
1053static int
1054fore200e_push_rpd(struct fore200e* fore200e, struct atm_vcc* vcc, struct rpd* rpd)
1055{
1056 struct sk_buff* skb;
1057 struct buffer* buffer;
1058 struct fore200e_vcc* fore200e_vcc;
1059 int i, pdu_len = 0;
1060#ifdef FORE200E_52BYTE_AAL0_SDU
1061 u32 cell_header = 0;
1062#endif
1063
1064 ASSERT(vcc);
1065
1066 fore200e_vcc = FORE200E_VCC(vcc);
1067 ASSERT(fore200e_vcc);
1068
1069#ifdef FORE200E_52BYTE_AAL0_SDU
1070 if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.rxtp.max_sdu == ATM_AAL0_SDU)) {
1071
1072 cell_header = (rpd->atm_header.gfc << ATM_HDR_GFC_SHIFT) |
1073 (rpd->atm_header.vpi << ATM_HDR_VPI_SHIFT) |
1074 (rpd->atm_header.vci << ATM_HDR_VCI_SHIFT) |
1075 (rpd->atm_header.plt << ATM_HDR_PTI_SHIFT) |
1076 rpd->atm_header.clp;
1077 pdu_len = 4;
1078 }
1079#endif
1080
1081 /* compute total PDU length */
1082 for (i = 0; i < rpd->nseg; i++)
1083 pdu_len += rpd->rsd[ i ].length;
1084
1085 skb = alloc_skb(pdu_len, GFP_ATOMIC);
1086 if (skb == NULL) {
1087 DPRINTK(2, "unable to alloc new skb, rx PDU length = %d\n", pdu_len);
1088
1089 atomic_inc(&vcc->stats->rx_drop);
1090 return -ENOMEM;
1091 }
1092
1093 __net_timestamp(skb);
1094
1095#ifdef FORE200E_52BYTE_AAL0_SDU
1096 if (cell_header) {
1097 *((u32*)skb_put(skb, 4)) = cell_header;
1098 }
1099#endif
1100
1101 /* reassemble segments */
1102 for (i = 0; i < rpd->nseg; i++) {
1103
1104 /* rebuild rx buffer address from rsd handle */
1105 buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle);
1106
1107 /* Make device DMA transfer visible to CPU. */
1108 fore200e->bus->dma_sync_for_cpu(fore200e, buffer->data.dma_addr, rpd->rsd[ i ].length, DMA_FROM_DEVICE);
1109
1110 skb_put_data(skb, buffer->data.align_addr, rpd->rsd[i].length);
1111
1112 /* Now let the device get at it again. */
1113 fore200e->bus->dma_sync_for_device(fore200e, buffer->data.dma_addr, rpd->rsd[ i ].length, DMA_FROM_DEVICE);
1114 }
1115
1116 DPRINTK(3, "rx skb: len = %d, truesize = %d\n", skb->len, skb->truesize);
1117
1118 if (pdu_len < fore200e_vcc->rx_min_pdu)
1119 fore200e_vcc->rx_min_pdu = pdu_len;
1120 if (pdu_len > fore200e_vcc->rx_max_pdu)
1121 fore200e_vcc->rx_max_pdu = pdu_len;
1122 fore200e_vcc->rx_pdu++;
1123
1124 /* push PDU */
1125 if (atm_charge(vcc, skb->truesize) == 0) {
1126
1127 DPRINTK(2, "receive buffers saturated for %d.%d.%d - PDU dropped\n",
1128 vcc->itf, vcc->vpi, vcc->vci);
1129
1130 dev_kfree_skb_any(skb);
1131
1132 atomic_inc(&vcc->stats->rx_drop);
1133 return -ENOMEM;
1134 }
1135
1136 vcc->push(vcc, skb);
1137 atomic_inc(&vcc->stats->rx);
1138
1139 return 0;
1140}
1141
1142
1143static void
1144fore200e_collect_rpd(struct fore200e* fore200e, struct rpd* rpd)
1145{
1146 struct host_bsq* bsq;
1147 struct buffer* buffer;
1148 int i;
1149
1150 for (i = 0; i < rpd->nseg; i++) {
1151
1152 /* rebuild rx buffer address from rsd handle */
1153 buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle);
1154
1155 bsq = &fore200e->host_bsq[ buffer->scheme ][ buffer->magn ];
1156
1157#ifdef FORE200E_BSQ_DEBUG
1158 bsq_audit(2, bsq, buffer->scheme, buffer->magn);
1159
1160 if (buffer->supplied == 0)
1161 printk(FORE200E "queue %d.%d, buffer %ld was not supplied\n",
1162 buffer->scheme, buffer->magn, buffer->index);
1163 buffer->supplied = 0;
1164#endif
1165
1166 /* re-insert the buffer into the free buffer list */
1167 buffer->next = bsq->freebuf;
1168 bsq->freebuf = buffer;
1169
1170 /* then increment the number of free rx buffers */
1171 bsq->freebuf_count++;
1172 }
1173}
1174
1175
1176static void
1177fore200e_rx_irq(struct fore200e* fore200e)
1178{
1179 struct host_rxq* rxq = &fore200e->host_rxq;
1180 struct host_rxq_entry* entry;
1181 struct atm_vcc* vcc;
1182 struct fore200e_vc_map* vc_map;
1183
1184 for (;;) {
1185
1186 entry = &rxq->host_entry[ rxq->head ];
1187
1188 /* no more received PDUs */
1189 if ((*entry->status & STATUS_COMPLETE) == 0)
1190 break;
1191
1192 vc_map = FORE200E_VC_MAP(fore200e, entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1193
1194 if ((vc_map->vcc == NULL) ||
1195 (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) {
1196
1197 DPRINTK(1, "no ready VC found for PDU received on %d.%d.%d\n",
1198 fore200e->atm_dev->number,
1199 entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1200 }
1201 else {
1202 vcc = vc_map->vcc;
1203 ASSERT(vcc);
1204
1205 if ((*entry->status & STATUS_ERROR) == 0) {
1206
1207 fore200e_push_rpd(fore200e, vcc, entry->rpd);
1208 }
1209 else {
1210 DPRINTK(2, "damaged PDU on %d.%d.%d\n",
1211 fore200e->atm_dev->number,
1212 entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1213 atomic_inc(&vcc->stats->rx_err);
1214 }
1215 }
1216
1217 FORE200E_NEXT_ENTRY(rxq->head, QUEUE_SIZE_RX);
1218
1219 fore200e_collect_rpd(fore200e, entry->rpd);
1220
1221 /* rewrite the rpd address to ack the received PDU */
1222 fore200e->bus->write(entry->rpd_dma, &entry->cp_entry->rpd_haddr);
1223 *entry->status = STATUS_FREE;
1224
1225 fore200e_supply(fore200e);
1226 }
1227}
1228
1229
1230#ifndef FORE200E_USE_TASKLET
1231static void
1232fore200e_irq(struct fore200e* fore200e)
1233{
1234 unsigned long flags;
1235
1236 spin_lock_irqsave(&fore200e->q_lock, flags);
1237 fore200e_rx_irq(fore200e);
1238 spin_unlock_irqrestore(&fore200e->q_lock, flags);
1239
1240 spin_lock_irqsave(&fore200e->q_lock, flags);
1241 fore200e_tx_irq(fore200e);
1242 spin_unlock_irqrestore(&fore200e->q_lock, flags);
1243}
1244#endif
1245
1246
1247static irqreturn_t
1248fore200e_interrupt(int irq, void* dev)
1249{
1250 struct fore200e* fore200e = FORE200E_DEV((struct atm_dev*)dev);
1251
1252 if (fore200e->bus->irq_check(fore200e) == 0) {
1253
1254 DPRINTK(3, "interrupt NOT triggered by device %d\n", fore200e->atm_dev->number);
1255 return IRQ_NONE;
1256 }
1257 DPRINTK(3, "interrupt triggered by device %d\n", fore200e->atm_dev->number);
1258
1259#ifdef FORE200E_USE_TASKLET
1260 tasklet_schedule(&fore200e->tx_tasklet);
1261 tasklet_schedule(&fore200e->rx_tasklet);
1262#else
1263 fore200e_irq(fore200e);
1264#endif
1265
1266 fore200e->bus->irq_ack(fore200e);
1267 return IRQ_HANDLED;
1268}
1269
1270
1271#ifdef FORE200E_USE_TASKLET
1272static void
1273fore200e_tx_tasklet(unsigned long data)
1274{
1275 struct fore200e* fore200e = (struct fore200e*) data;
1276 unsigned long flags;
1277
1278 DPRINTK(3, "tx tasklet scheduled for device %d\n", fore200e->atm_dev->number);
1279
1280 spin_lock_irqsave(&fore200e->q_lock, flags);
1281 fore200e_tx_irq(fore200e);
1282 spin_unlock_irqrestore(&fore200e->q_lock, flags);
1283}
1284
1285
1286static void
1287fore200e_rx_tasklet(unsigned long data)
1288{
1289 struct fore200e* fore200e = (struct fore200e*) data;
1290 unsigned long flags;
1291
1292 DPRINTK(3, "rx tasklet scheduled for device %d\n", fore200e->atm_dev->number);
1293
1294 spin_lock_irqsave(&fore200e->q_lock, flags);
1295 fore200e_rx_irq((struct fore200e*) data);
1296 spin_unlock_irqrestore(&fore200e->q_lock, flags);
1297}
1298#endif
1299
1300
1301static int
1302fore200e_select_scheme(struct atm_vcc* vcc)
1303{
1304 /* fairly balance the VCs over (identical) buffer schemes */
1305 int scheme = vcc->vci % 2 ? BUFFER_SCHEME_ONE : BUFFER_SCHEME_TWO;
1306
1307 DPRINTK(1, "VC %d.%d.%d uses buffer scheme %d\n",
1308 vcc->itf, vcc->vpi, vcc->vci, scheme);
1309
1310 return scheme;
1311}
1312
1313
1314static int
1315fore200e_activate_vcin(struct fore200e* fore200e, int activate, struct atm_vcc* vcc, int mtu)
1316{
1317 struct host_cmdq* cmdq = &fore200e->host_cmdq;
1318 struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1319 struct activate_opcode activ_opcode;
1320 struct deactivate_opcode deactiv_opcode;
1321 struct vpvc vpvc;
1322 int ok;
1323 enum fore200e_aal aal = fore200e_atm2fore_aal(vcc->qos.aal);
1324
1325 FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1326
1327 if (activate) {
1328 FORE200E_VCC(vcc)->scheme = fore200e_select_scheme(vcc);
1329
1330 activ_opcode.opcode = OPCODE_ACTIVATE_VCIN;
1331 activ_opcode.aal = aal;
1332 activ_opcode.scheme = FORE200E_VCC(vcc)->scheme;
1333 activ_opcode.pad = 0;
1334 }
1335 else {
1336 deactiv_opcode.opcode = OPCODE_DEACTIVATE_VCIN;
1337 deactiv_opcode.pad = 0;
1338 }
1339
1340 vpvc.vci = vcc->vci;
1341 vpvc.vpi = vcc->vpi;
1342
1343 *entry->status = STATUS_PENDING;
1344
1345 if (activate) {
1346
1347#ifdef FORE200E_52BYTE_AAL0_SDU
1348 mtu = 48;
1349#endif
1350 /* the MTU is not used by the cp, except in the case of AAL0 */
1351 fore200e->bus->write(mtu, &entry->cp_entry->cmd.activate_block.mtu);
1352 fore200e->bus->write(*(u32*)&vpvc, (u32 __iomem *)&entry->cp_entry->cmd.activate_block.vpvc);
1353 fore200e->bus->write(*(u32*)&activ_opcode, (u32 __iomem *)&entry->cp_entry->cmd.activate_block.opcode);
1354 }
1355 else {
1356 fore200e->bus->write(*(u32*)&vpvc, (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.vpvc);
1357 fore200e->bus->write(*(u32*)&deactiv_opcode, (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.opcode);
1358 }
1359
1360 ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1361
1362 *entry->status = STATUS_FREE;
1363
1364 if (ok == 0) {
1365 printk(FORE200E "unable to %s VC %d.%d.%d\n",
1366 activate ? "open" : "close", vcc->itf, vcc->vpi, vcc->vci);
1367 return -EIO;
1368 }
1369
1370 DPRINTK(1, "VC %d.%d.%d %sed\n", vcc->itf, vcc->vpi, vcc->vci,
1371 activate ? "open" : "clos");
1372
1373 return 0;
1374}
1375
1376
1377#define FORE200E_MAX_BACK2BACK_CELLS 255 /* XXX depends on CDVT */
1378
1379static void
1380fore200e_rate_ctrl(struct atm_qos* qos, struct tpd_rate* rate)
1381{
1382 if (qos->txtp.max_pcr < ATM_OC3_PCR) {
1383
1384 /* compute the data cells to idle cells ratio from the tx PCR */
1385 rate->data_cells = qos->txtp.max_pcr * FORE200E_MAX_BACK2BACK_CELLS / ATM_OC3_PCR;
1386 rate->idle_cells = FORE200E_MAX_BACK2BACK_CELLS - rate->data_cells;
1387 }
1388 else {
1389 /* disable rate control */
1390 rate->data_cells = rate->idle_cells = 0;
1391 }
1392}
1393
1394
1395static int
1396fore200e_open(struct atm_vcc *vcc)
1397{
1398 struct fore200e* fore200e = FORE200E_DEV(vcc->dev);
1399 struct fore200e_vcc* fore200e_vcc;
1400 struct fore200e_vc_map* vc_map;
1401 unsigned long flags;
1402 int vci = vcc->vci;
1403 short vpi = vcc->vpi;
1404
1405 ASSERT((vpi >= 0) && (vpi < 1<<FORE200E_VPI_BITS));
1406 ASSERT((vci >= 0) && (vci < 1<<FORE200E_VCI_BITS));
1407
1408 spin_lock_irqsave(&fore200e->q_lock, flags);
1409
1410 vc_map = FORE200E_VC_MAP(fore200e, vpi, vci);
1411 if (vc_map->vcc) {
1412
1413 spin_unlock_irqrestore(&fore200e->q_lock, flags);
1414
1415 printk(FORE200E "VC %d.%d.%d already in use\n",
1416 fore200e->atm_dev->number, vpi, vci);
1417
1418 return -EINVAL;
1419 }
1420
1421 vc_map->vcc = vcc;
1422
1423 spin_unlock_irqrestore(&fore200e->q_lock, flags);
1424
1425 fore200e_vcc = kzalloc(sizeof(struct fore200e_vcc), GFP_ATOMIC);
1426 if (fore200e_vcc == NULL) {
1427 vc_map->vcc = NULL;
1428 return -ENOMEM;
1429 }
1430
1431 DPRINTK(2, "opening %d.%d.%d:%d QoS = (tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; "
1432 "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d)\n",
1433 vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1434 fore200e_traffic_class[ vcc->qos.txtp.traffic_class ],
1435 vcc->qos.txtp.min_pcr, vcc->qos.txtp.max_pcr, vcc->qos.txtp.max_cdv, vcc->qos.txtp.max_sdu,
1436 fore200e_traffic_class[ vcc->qos.rxtp.traffic_class ],
1437 vcc->qos.rxtp.min_pcr, vcc->qos.rxtp.max_pcr, vcc->qos.rxtp.max_cdv, vcc->qos.rxtp.max_sdu);
1438
1439 /* pseudo-CBR bandwidth requested? */
1440 if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1441
1442 mutex_lock(&fore200e->rate_mtx);
1443 if (fore200e->available_cell_rate < vcc->qos.txtp.max_pcr) {
1444 mutex_unlock(&fore200e->rate_mtx);
1445
1446 kfree(fore200e_vcc);
1447 vc_map->vcc = NULL;
1448 return -EAGAIN;
1449 }
1450
1451 /* reserve bandwidth */
1452 fore200e->available_cell_rate -= vcc->qos.txtp.max_pcr;
1453 mutex_unlock(&fore200e->rate_mtx);
1454 }
1455
1456 vcc->itf = vcc->dev->number;
1457
1458 set_bit(ATM_VF_PARTIAL,&vcc->flags);
1459 set_bit(ATM_VF_ADDR, &vcc->flags);
1460
1461 vcc->dev_data = fore200e_vcc;
1462
1463 if (fore200e_activate_vcin(fore200e, 1, vcc, vcc->qos.rxtp.max_sdu) < 0) {
1464
1465 vc_map->vcc = NULL;
1466
1467 clear_bit(ATM_VF_ADDR, &vcc->flags);
1468 clear_bit(ATM_VF_PARTIAL,&vcc->flags);
1469
1470 vcc->dev_data = NULL;
1471
1472 fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1473
1474 kfree(fore200e_vcc);
1475 return -EINVAL;
1476 }
1477
1478 /* compute rate control parameters */
1479 if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1480
1481 fore200e_rate_ctrl(&vcc->qos, &fore200e_vcc->rate);
1482 set_bit(ATM_VF_HASQOS, &vcc->flags);
1483
1484 DPRINTK(3, "tx on %d.%d.%d:%d, tx PCR = %d, rx PCR = %d, data_cells = %u, idle_cells = %u\n",
1485 vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1486 vcc->qos.txtp.max_pcr, vcc->qos.rxtp.max_pcr,
1487 fore200e_vcc->rate.data_cells, fore200e_vcc->rate.idle_cells);
1488 }
1489
1490 fore200e_vcc->tx_min_pdu = fore200e_vcc->rx_min_pdu = MAX_PDU_SIZE + 1;
1491 fore200e_vcc->tx_max_pdu = fore200e_vcc->rx_max_pdu = 0;
1492 fore200e_vcc->tx_pdu = fore200e_vcc->rx_pdu = 0;
1493
1494 /* new incarnation of the vcc */
1495 vc_map->incarn = ++fore200e->incarn_count;
1496
1497 /* VC unusable before this flag is set */
1498 set_bit(ATM_VF_READY, &vcc->flags);
1499
1500 return 0;
1501}
1502
1503
1504static void
1505fore200e_close(struct atm_vcc* vcc)
1506{
1507 struct fore200e* fore200e = FORE200E_DEV(vcc->dev);
1508 struct fore200e_vcc* fore200e_vcc;
1509 struct fore200e_vc_map* vc_map;
1510 unsigned long flags;
1511
1512 ASSERT(vcc);
1513 ASSERT((vcc->vpi >= 0) && (vcc->vpi < 1<<FORE200E_VPI_BITS));
1514 ASSERT((vcc->vci >= 0) && (vcc->vci < 1<<FORE200E_VCI_BITS));
1515
1516 DPRINTK(2, "closing %d.%d.%d:%d\n", vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal));
1517
1518 clear_bit(ATM_VF_READY, &vcc->flags);
1519
1520 fore200e_activate_vcin(fore200e, 0, vcc, 0);
1521
1522 spin_lock_irqsave(&fore200e->q_lock, flags);
1523
1524 vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci);
1525
1526 /* the vc is no longer considered as "in use" by fore200e_open() */
1527 vc_map->vcc = NULL;
1528
1529 vcc->itf = vcc->vci = vcc->vpi = 0;
1530
1531 fore200e_vcc = FORE200E_VCC(vcc);
1532 vcc->dev_data = NULL;
1533
1534 spin_unlock_irqrestore(&fore200e->q_lock, flags);
1535
1536 /* release reserved bandwidth, if any */
1537 if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1538
1539 mutex_lock(&fore200e->rate_mtx);
1540 fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1541 mutex_unlock(&fore200e->rate_mtx);
1542
1543 clear_bit(ATM_VF_HASQOS, &vcc->flags);
1544 }
1545
1546 clear_bit(ATM_VF_ADDR, &vcc->flags);
1547 clear_bit(ATM_VF_PARTIAL,&vcc->flags);
1548
1549 ASSERT(fore200e_vcc);
1550 kfree(fore200e_vcc);
1551}
1552
1553
1554static int
1555fore200e_send(struct atm_vcc *vcc, struct sk_buff *skb)
1556{
1557 struct fore200e* fore200e = FORE200E_DEV(vcc->dev);
1558 struct fore200e_vcc* fore200e_vcc = FORE200E_VCC(vcc);
1559 struct fore200e_vc_map* vc_map;
1560 struct host_txq* txq = &fore200e->host_txq;
1561 struct host_txq_entry* entry;
1562 struct tpd* tpd;
1563 struct tpd_haddr tpd_haddr;
1564 int retry = CONFIG_ATM_FORE200E_TX_RETRY;
1565 int tx_copy = 0;
1566 int tx_len = skb->len;
1567 u32* cell_header = NULL;
1568 unsigned char* skb_data;
1569 int skb_len;
1570 unsigned char* data;
1571 unsigned long flags;
1572
1573 ASSERT(vcc);
1574 ASSERT(fore200e);
1575 ASSERT(fore200e_vcc);
1576
1577 if (!test_bit(ATM_VF_READY, &vcc->flags)) {
1578 DPRINTK(1, "VC %d.%d.%d not ready for tx\n", vcc->itf, vcc->vpi, vcc->vpi);
1579 dev_kfree_skb_any(skb);
1580 return -EINVAL;
1581 }
1582
1583#ifdef FORE200E_52BYTE_AAL0_SDU
1584 if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.txtp.max_sdu == ATM_AAL0_SDU)) {
1585 cell_header = (u32*) skb->data;
1586 skb_data = skb->data + 4; /* skip 4-byte cell header */
1587 skb_len = tx_len = skb->len - 4;
1588
1589 DPRINTK(3, "user-supplied cell header = 0x%08x\n", *cell_header);
1590 }
1591 else
1592#endif
1593 {
1594 skb_data = skb->data;
1595 skb_len = skb->len;
1596 }
1597
1598 if (((unsigned long)skb_data) & 0x3) {
1599
1600 DPRINTK(2, "misaligned tx PDU on device %s\n", fore200e->name);
1601 tx_copy = 1;
1602 tx_len = skb_len;
1603 }
1604
1605 if ((vcc->qos.aal == ATM_AAL0) && (skb_len % ATM_CELL_PAYLOAD)) {
1606
1607 /* this simply NUKES the PCA board */
1608 DPRINTK(2, "incomplete tx AAL0 PDU on device %s\n", fore200e->name);
1609 tx_copy = 1;
1610 tx_len = ((skb_len / ATM_CELL_PAYLOAD) + 1) * ATM_CELL_PAYLOAD;
1611 }
1612
1613 if (tx_copy) {
1614 data = kmalloc(tx_len, GFP_ATOMIC | GFP_DMA);
1615 if (data == NULL) {
1616 if (vcc->pop) {
1617 vcc->pop(vcc, skb);
1618 }
1619 else {
1620 dev_kfree_skb_any(skb);
1621 }
1622 return -ENOMEM;
1623 }
1624
1625 memcpy(data, skb_data, skb_len);
1626 if (skb_len < tx_len)
1627 memset(data + skb_len, 0x00, tx_len - skb_len);
1628 }
1629 else {
1630 data = skb_data;
1631 }
1632
1633 vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci);
1634 ASSERT(vc_map->vcc == vcc);
1635
1636 retry_here:
1637
1638 spin_lock_irqsave(&fore200e->q_lock, flags);
1639
1640 entry = &txq->host_entry[ txq->head ];
1641
1642 if ((*entry->status != STATUS_FREE) || (txq->txing >= QUEUE_SIZE_TX - 2)) {
1643
1644 /* try to free completed tx queue entries */
1645 fore200e_tx_irq(fore200e);
1646
1647 if (*entry->status != STATUS_FREE) {
1648
1649 spin_unlock_irqrestore(&fore200e->q_lock, flags);
1650
1651 /* retry once again? */
1652 if (--retry > 0) {
1653 udelay(50);
1654 goto retry_here;
1655 }
1656
1657 atomic_inc(&vcc->stats->tx_err);
1658
1659 fore200e->tx_sat++;
1660 DPRINTK(2, "tx queue of device %s is saturated, PDU dropped - heartbeat is %08x\n",
1661 fore200e->name, fore200e->cp_queues->heartbeat);
1662 if (vcc->pop) {
1663 vcc->pop(vcc, skb);
1664 }
1665 else {
1666 dev_kfree_skb_any(skb);
1667 }
1668
1669 if (tx_copy)
1670 kfree(data);
1671
1672 return -ENOBUFS;
1673 }
1674 }
1675
1676 entry->incarn = vc_map->incarn;
1677 entry->vc_map = vc_map;
1678 entry->skb = skb;
1679 entry->data = tx_copy ? data : NULL;
1680
1681 tpd = entry->tpd;
1682 tpd->tsd[ 0 ].buffer = fore200e->bus->dma_map(fore200e, data, tx_len, DMA_TO_DEVICE);
1683 tpd->tsd[ 0 ].length = tx_len;
1684
1685 FORE200E_NEXT_ENTRY(txq->head, QUEUE_SIZE_TX);
1686 txq->txing++;
1687
1688 /* The dma_map call above implies a dma_sync so the device can use it,
1689 * thus no explicit dma_sync call is necessary here.
1690 */
1691
1692 DPRINTK(3, "tx on %d.%d.%d:%d, len = %u (%u)\n",
1693 vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1694 tpd->tsd[0].length, skb_len);
1695
1696 if (skb_len < fore200e_vcc->tx_min_pdu)
1697 fore200e_vcc->tx_min_pdu = skb_len;
1698 if (skb_len > fore200e_vcc->tx_max_pdu)
1699 fore200e_vcc->tx_max_pdu = skb_len;
1700 fore200e_vcc->tx_pdu++;
1701
1702 /* set tx rate control information */
1703 tpd->rate.data_cells = fore200e_vcc->rate.data_cells;
1704 tpd->rate.idle_cells = fore200e_vcc->rate.idle_cells;
1705
1706 if (cell_header) {
1707 tpd->atm_header.clp = (*cell_header & ATM_HDR_CLP);
1708 tpd->atm_header.plt = (*cell_header & ATM_HDR_PTI_MASK) >> ATM_HDR_PTI_SHIFT;
1709 tpd->atm_header.vci = (*cell_header & ATM_HDR_VCI_MASK) >> ATM_HDR_VCI_SHIFT;
1710 tpd->atm_header.vpi = (*cell_header & ATM_HDR_VPI_MASK) >> ATM_HDR_VPI_SHIFT;
1711 tpd->atm_header.gfc = (*cell_header & ATM_HDR_GFC_MASK) >> ATM_HDR_GFC_SHIFT;
1712 }
1713 else {
1714 /* set the ATM header, common to all cells conveying the PDU */
1715 tpd->atm_header.clp = 0;
1716 tpd->atm_header.plt = 0;
1717 tpd->atm_header.vci = vcc->vci;
1718 tpd->atm_header.vpi = vcc->vpi;
1719 tpd->atm_header.gfc = 0;
1720 }
1721
1722 tpd->spec.length = tx_len;
1723 tpd->spec.nseg = 1;
1724 tpd->spec.aal = fore200e_atm2fore_aal(vcc->qos.aal);
1725 tpd->spec.intr = 1;
1726
1727 tpd_haddr.size = sizeof(struct tpd) / (1<<TPD_HADDR_SHIFT); /* size is expressed in 32 byte blocks */
1728 tpd_haddr.pad = 0;
1729 tpd_haddr.haddr = entry->tpd_dma >> TPD_HADDR_SHIFT; /* shift the address, as we are in a bitfield */
1730
1731 *entry->status = STATUS_PENDING;
1732 fore200e->bus->write(*(u32*)&tpd_haddr, (u32 __iomem *)&entry->cp_entry->tpd_haddr);
1733
1734 spin_unlock_irqrestore(&fore200e->q_lock, flags);
1735
1736 return 0;
1737}
1738
1739
1740static int
1741fore200e_getstats(struct fore200e* fore200e)
1742{
1743 struct host_cmdq* cmdq = &fore200e->host_cmdq;
1744 struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1745 struct stats_opcode opcode;
1746 int ok;
1747 u32 stats_dma_addr;
1748
1749 if (fore200e->stats == NULL) {
1750 fore200e->stats = kzalloc(sizeof(struct stats), GFP_KERNEL | GFP_DMA);
1751 if (fore200e->stats == NULL)
1752 return -ENOMEM;
1753 }
1754
1755 stats_dma_addr = fore200e->bus->dma_map(fore200e, fore200e->stats,
1756 sizeof(struct stats), DMA_FROM_DEVICE);
1757
1758 FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1759
1760 opcode.opcode = OPCODE_GET_STATS;
1761 opcode.pad = 0;
1762
1763 fore200e->bus->write(stats_dma_addr, &entry->cp_entry->cmd.stats_block.stats_haddr);
1764
1765 *entry->status = STATUS_PENDING;
1766
1767 fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.stats_block.opcode);
1768
1769 ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1770
1771 *entry->status = STATUS_FREE;
1772
1773 fore200e->bus->dma_unmap(fore200e, stats_dma_addr, sizeof(struct stats), DMA_FROM_DEVICE);
1774
1775 if (ok == 0) {
1776 printk(FORE200E "unable to get statistics from device %s\n", fore200e->name);
1777 return -EIO;
1778 }
1779
1780 return 0;
1781}
1782
1783
1784static int
1785fore200e_getsockopt(struct atm_vcc* vcc, int level, int optname, void __user *optval, int optlen)
1786{
1787 /* struct fore200e* fore200e = FORE200E_DEV(vcc->dev); */
1788
1789 DPRINTK(2, "getsockopt %d.%d.%d, level = %d, optname = 0x%x, optval = 0x%p, optlen = %d\n",
1790 vcc->itf, vcc->vpi, vcc->vci, level, optname, optval, optlen);
1791
1792 return -EINVAL;
1793}
1794
1795
1796static int
1797fore200e_setsockopt(struct atm_vcc* vcc, int level, int optname, void __user *optval, unsigned int optlen)
1798{
1799 /* struct fore200e* fore200e = FORE200E_DEV(vcc->dev); */
1800
1801 DPRINTK(2, "setsockopt %d.%d.%d, level = %d, optname = 0x%x, optval = 0x%p, optlen = %d\n",
1802 vcc->itf, vcc->vpi, vcc->vci, level, optname, optval, optlen);
1803
1804 return -EINVAL;
1805}
1806
1807
1808#if 0 /* currently unused */
1809static int
1810fore200e_get_oc3(struct fore200e* fore200e, struct oc3_regs* regs)
1811{
1812 struct host_cmdq* cmdq = &fore200e->host_cmdq;
1813 struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1814 struct oc3_opcode opcode;
1815 int ok;
1816 u32 oc3_regs_dma_addr;
1817
1818 oc3_regs_dma_addr = fore200e->bus->dma_map(fore200e, regs, sizeof(struct oc3_regs), DMA_FROM_DEVICE);
1819
1820 FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1821
1822 opcode.opcode = OPCODE_GET_OC3;
1823 opcode.reg = 0;
1824 opcode.value = 0;
1825 opcode.mask = 0;
1826
1827 fore200e->bus->write(oc3_regs_dma_addr, &entry->cp_entry->cmd.oc3_block.regs_haddr);
1828
1829 *entry->status = STATUS_PENDING;
1830
1831 fore200e->bus->write(*(u32*)&opcode, (u32*)&entry->cp_entry->cmd.oc3_block.opcode);
1832
1833 ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1834
1835 *entry->status = STATUS_FREE;
1836
1837 fore200e->bus->dma_unmap(fore200e, oc3_regs_dma_addr, sizeof(struct oc3_regs), DMA_FROM_DEVICE);
1838
1839 if (ok == 0) {
1840 printk(FORE200E "unable to get OC-3 regs of device %s\n", fore200e->name);
1841 return -EIO;
1842 }
1843
1844 return 0;
1845}
1846#endif
1847
1848
1849static int
1850fore200e_set_oc3(struct fore200e* fore200e, u32 reg, u32 value, u32 mask)
1851{
1852 struct host_cmdq* cmdq = &fore200e->host_cmdq;
1853 struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1854 struct oc3_opcode opcode;
1855 int ok;
1856
1857 DPRINTK(2, "set OC-3 reg = 0x%02x, value = 0x%02x, mask = 0x%02x\n", reg, value, mask);
1858
1859 FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1860
1861 opcode.opcode = OPCODE_SET_OC3;
1862 opcode.reg = reg;
1863 opcode.value = value;
1864 opcode.mask = mask;
1865
1866 fore200e->bus->write(0, &entry->cp_entry->cmd.oc3_block.regs_haddr);
1867
1868 *entry->status = STATUS_PENDING;
1869
1870 fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.oc3_block.opcode);
1871
1872 ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1873
1874 *entry->status = STATUS_FREE;
1875
1876 if (ok == 0) {
1877 printk(FORE200E "unable to set OC-3 reg 0x%02x of device %s\n", reg, fore200e->name);
1878 return -EIO;
1879 }
1880
1881 return 0;
1882}
1883
1884
1885static int
1886fore200e_setloop(struct fore200e* fore200e, int loop_mode)
1887{
1888 u32 mct_value, mct_mask;
1889 int error;
1890
1891 if (!capable(CAP_NET_ADMIN))
1892 return -EPERM;
1893
1894 switch (loop_mode) {
1895
1896 case ATM_LM_NONE:
1897 mct_value = 0;
1898 mct_mask = SUNI_MCT_DLE | SUNI_MCT_LLE;
1899 break;
1900
1901 case ATM_LM_LOC_PHY:
1902 mct_value = mct_mask = SUNI_MCT_DLE;
1903 break;
1904
1905 case ATM_LM_RMT_PHY:
1906 mct_value = mct_mask = SUNI_MCT_LLE;
1907 break;
1908
1909 default:
1910 return -EINVAL;
1911 }
1912
1913 error = fore200e_set_oc3(fore200e, SUNI_MCT, mct_value, mct_mask);
1914 if (error == 0)
1915 fore200e->loop_mode = loop_mode;
1916
1917 return error;
1918}
1919
1920
1921static int
1922fore200e_fetch_stats(struct fore200e* fore200e, struct sonet_stats __user *arg)
1923{
1924 struct sonet_stats tmp;
1925
1926 if (fore200e_getstats(fore200e) < 0)
1927 return -EIO;
1928
1929 tmp.section_bip = be32_to_cpu(fore200e->stats->oc3.section_bip8_errors);
1930 tmp.line_bip = be32_to_cpu(fore200e->stats->oc3.line_bip24_errors);
1931 tmp.path_bip = be32_to_cpu(fore200e->stats->oc3.path_bip8_errors);
1932 tmp.line_febe = be32_to_cpu(fore200e->stats->oc3.line_febe_errors);
1933 tmp.path_febe = be32_to_cpu(fore200e->stats->oc3.path_febe_errors);
1934 tmp.corr_hcs = be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors);
1935 tmp.uncorr_hcs = be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors);
1936 tmp.tx_cells = be32_to_cpu(fore200e->stats->aal0.cells_transmitted) +
1937 be32_to_cpu(fore200e->stats->aal34.cells_transmitted) +
1938 be32_to_cpu(fore200e->stats->aal5.cells_transmitted);
1939 tmp.rx_cells = be32_to_cpu(fore200e->stats->aal0.cells_received) +
1940 be32_to_cpu(fore200e->stats->aal34.cells_received) +
1941 be32_to_cpu(fore200e->stats->aal5.cells_received);
1942
1943 if (arg)
1944 return copy_to_user(arg, &tmp, sizeof(struct sonet_stats)) ? -EFAULT : 0;
1945
1946 return 0;
1947}
1948
1949
1950static int
1951fore200e_ioctl(struct atm_dev* dev, unsigned int cmd, void __user * arg)
1952{
1953 struct fore200e* fore200e = FORE200E_DEV(dev);
1954
1955 DPRINTK(2, "ioctl cmd = 0x%x (%u), arg = 0x%p (%lu)\n", cmd, cmd, arg, (unsigned long)arg);
1956
1957 switch (cmd) {
1958
1959 case SONET_GETSTAT:
1960 return fore200e_fetch_stats(fore200e, (struct sonet_stats __user *)arg);
1961
1962 case SONET_GETDIAG:
1963 return put_user(0, (int __user *)arg) ? -EFAULT : 0;
1964
1965 case ATM_SETLOOP:
1966 return fore200e_setloop(fore200e, (int)(unsigned long)arg);
1967
1968 case ATM_GETLOOP:
1969 return put_user(fore200e->loop_mode, (int __user *)arg) ? -EFAULT : 0;
1970
1971 case ATM_QUERYLOOP:
1972 return put_user(ATM_LM_LOC_PHY | ATM_LM_RMT_PHY, (int __user *)arg) ? -EFAULT : 0;
1973 }
1974
1975 return -ENOSYS; /* not implemented */
1976}
1977
1978
1979static int
1980fore200e_change_qos(struct atm_vcc* vcc,struct atm_qos* qos, int flags)
1981{
1982 struct fore200e_vcc* fore200e_vcc = FORE200E_VCC(vcc);
1983 struct fore200e* fore200e = FORE200E_DEV(vcc->dev);
1984
1985 if (!test_bit(ATM_VF_READY, &vcc->flags)) {
1986 DPRINTK(1, "VC %d.%d.%d not ready for QoS change\n", vcc->itf, vcc->vpi, vcc->vpi);
1987 return -EINVAL;
1988 }
1989
1990 DPRINTK(2, "change_qos %d.%d.%d, "
1991 "(tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; "
1992 "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d), flags = 0x%x\n"
1993 "available_cell_rate = %u",
1994 vcc->itf, vcc->vpi, vcc->vci,
1995 fore200e_traffic_class[ qos->txtp.traffic_class ],
1996 qos->txtp.min_pcr, qos->txtp.max_pcr, qos->txtp.max_cdv, qos->txtp.max_sdu,
1997 fore200e_traffic_class[ qos->rxtp.traffic_class ],
1998 qos->rxtp.min_pcr, qos->rxtp.max_pcr, qos->rxtp.max_cdv, qos->rxtp.max_sdu,
1999 flags, fore200e->available_cell_rate);
2000
2001 if ((qos->txtp.traffic_class == ATM_CBR) && (qos->txtp.max_pcr > 0)) {
2002
2003 mutex_lock(&fore200e->rate_mtx);
2004 if (fore200e->available_cell_rate + vcc->qos.txtp.max_pcr < qos->txtp.max_pcr) {
2005 mutex_unlock(&fore200e->rate_mtx);
2006 return -EAGAIN;
2007 }
2008
2009 fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
2010 fore200e->available_cell_rate -= qos->txtp.max_pcr;
2011
2012 mutex_unlock(&fore200e->rate_mtx);
2013
2014 memcpy(&vcc->qos, qos, sizeof(struct atm_qos));
2015
2016 /* update rate control parameters */
2017 fore200e_rate_ctrl(qos, &fore200e_vcc->rate);
2018
2019 set_bit(ATM_VF_HASQOS, &vcc->flags);
2020
2021 return 0;
2022 }
2023
2024 return -EINVAL;
2025}
2026
2027
2028static int fore200e_irq_request(struct fore200e *fore200e)
2029{
2030 if (request_irq(fore200e->irq, fore200e_interrupt, IRQF_SHARED, fore200e->name, fore200e->atm_dev) < 0) {
2031
2032 printk(FORE200E "unable to reserve IRQ %s for device %s\n",
2033 fore200e_irq_itoa(fore200e->irq), fore200e->name);
2034 return -EBUSY;
2035 }
2036
2037 printk(FORE200E "IRQ %s reserved for device %s\n",
2038 fore200e_irq_itoa(fore200e->irq), fore200e->name);
2039
2040#ifdef FORE200E_USE_TASKLET
2041 tasklet_init(&fore200e->tx_tasklet, fore200e_tx_tasklet, (unsigned long)fore200e);
2042 tasklet_init(&fore200e->rx_tasklet, fore200e_rx_tasklet, (unsigned long)fore200e);
2043#endif
2044
2045 fore200e->state = FORE200E_STATE_IRQ;
2046 return 0;
2047}
2048
2049
2050static int fore200e_get_esi(struct fore200e *fore200e)
2051{
2052 struct prom_data* prom = kzalloc(sizeof(struct prom_data), GFP_KERNEL | GFP_DMA);
2053 int ok, i;
2054
2055 if (!prom)
2056 return -ENOMEM;
2057
2058 ok = fore200e->bus->prom_read(fore200e, prom);
2059 if (ok < 0) {
2060 kfree(prom);
2061 return -EBUSY;
2062 }
2063
2064 printk(FORE200E "device %s, rev. %c, S/N: %d, ESI: %pM\n",
2065 fore200e->name,
2066 (prom->hw_revision & 0xFF) + '@', /* probably meaningless with SBA boards */
2067 prom->serial_number & 0xFFFF, &prom->mac_addr[2]);
2068
2069 for (i = 0; i < ESI_LEN; i++) {
2070 fore200e->esi[ i ] = fore200e->atm_dev->esi[ i ] = prom->mac_addr[ i + 2 ];
2071 }
2072
2073 kfree(prom);
2074
2075 return 0;
2076}
2077
2078
2079static int fore200e_alloc_rx_buf(struct fore200e *fore200e)
2080{
2081 int scheme, magn, nbr, size, i;
2082
2083 struct host_bsq* bsq;
2084 struct buffer* buffer;
2085
2086 for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
2087 for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
2088
2089 bsq = &fore200e->host_bsq[ scheme ][ magn ];
2090
2091 nbr = fore200e_rx_buf_nbr[ scheme ][ magn ];
2092 size = fore200e_rx_buf_size[ scheme ][ magn ];
2093
2094 DPRINTK(2, "rx buffers %d / %d are being allocated\n", scheme, magn);
2095
2096 /* allocate the array of receive buffers */
2097 buffer = bsq->buffer = kzalloc(nbr * sizeof(struct buffer), GFP_KERNEL);
2098
2099 if (buffer == NULL)
2100 return -ENOMEM;
2101
2102 bsq->freebuf = NULL;
2103
2104 for (i = 0; i < nbr; i++) {
2105
2106 buffer[ i ].scheme = scheme;
2107 buffer[ i ].magn = magn;
2108#ifdef FORE200E_BSQ_DEBUG
2109 buffer[ i ].index = i;
2110 buffer[ i ].supplied = 0;
2111#endif
2112
2113 /* allocate the receive buffer body */
2114 if (fore200e_chunk_alloc(fore200e,
2115 &buffer[ i ].data, size, fore200e->bus->buffer_alignment,
2116 DMA_FROM_DEVICE) < 0) {
2117
2118 while (i > 0)
2119 fore200e_chunk_free(fore200e, &buffer[ --i ].data);
2120 kfree(buffer);
2121
2122 return -ENOMEM;
2123 }
2124
2125 /* insert the buffer into the free buffer list */
2126 buffer[ i ].next = bsq->freebuf;
2127 bsq->freebuf = &buffer[ i ];
2128 }
2129 /* all the buffers are free, initially */
2130 bsq->freebuf_count = nbr;
2131
2132#ifdef FORE200E_BSQ_DEBUG
2133 bsq_audit(3, bsq, scheme, magn);
2134#endif
2135 }
2136 }
2137
2138 fore200e->state = FORE200E_STATE_ALLOC_BUF;
2139 return 0;
2140}
2141
2142
2143static int fore200e_init_bs_queue(struct fore200e *fore200e)
2144{
2145 int scheme, magn, i;
2146
2147 struct host_bsq* bsq;
2148 struct cp_bsq_entry __iomem * cp_entry;
2149
2150 for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
2151 for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
2152
2153 DPRINTK(2, "buffer supply queue %d / %d is being initialized\n", scheme, magn);
2154
2155 bsq = &fore200e->host_bsq[ scheme ][ magn ];
2156
2157 /* allocate and align the array of status words */
2158 if (fore200e->bus->dma_chunk_alloc(fore200e,
2159 &bsq->status,
2160 sizeof(enum status),
2161 QUEUE_SIZE_BS,
2162 fore200e->bus->status_alignment) < 0) {
2163 return -ENOMEM;
2164 }
2165
2166 /* allocate and align the array of receive buffer descriptors */
2167 if (fore200e->bus->dma_chunk_alloc(fore200e,
2168 &bsq->rbd_block,
2169 sizeof(struct rbd_block),
2170 QUEUE_SIZE_BS,
2171 fore200e->bus->descr_alignment) < 0) {
2172
2173 fore200e->bus->dma_chunk_free(fore200e, &bsq->status);
2174 return -ENOMEM;
2175 }
2176
2177 /* get the base address of the cp resident buffer supply queue entries */
2178 cp_entry = fore200e->virt_base +
2179 fore200e->bus->read(&fore200e->cp_queues->cp_bsq[ scheme ][ magn ]);
2180
2181 /* fill the host resident and cp resident buffer supply queue entries */
2182 for (i = 0; i < QUEUE_SIZE_BS; i++) {
2183
2184 bsq->host_entry[ i ].status =
2185 FORE200E_INDEX(bsq->status.align_addr, enum status, i);
2186 bsq->host_entry[ i ].rbd_block =
2187 FORE200E_INDEX(bsq->rbd_block.align_addr, struct rbd_block, i);
2188 bsq->host_entry[ i ].rbd_block_dma =
2189 FORE200E_DMA_INDEX(bsq->rbd_block.dma_addr, struct rbd_block, i);
2190 bsq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2191
2192 *bsq->host_entry[ i ].status = STATUS_FREE;
2193
2194 fore200e->bus->write(FORE200E_DMA_INDEX(bsq->status.dma_addr, enum status, i),
2195 &cp_entry[ i ].status_haddr);
2196 }
2197 }
2198 }
2199
2200 fore200e->state = FORE200E_STATE_INIT_BSQ;
2201 return 0;
2202}
2203
2204
2205static int fore200e_init_rx_queue(struct fore200e *fore200e)
2206{
2207 struct host_rxq* rxq = &fore200e->host_rxq;
2208 struct cp_rxq_entry __iomem * cp_entry;
2209 int i;
2210
2211 DPRINTK(2, "receive queue is being initialized\n");
2212
2213 /* allocate and align the array of status words */
2214 if (fore200e->bus->dma_chunk_alloc(fore200e,
2215 &rxq->status,
2216 sizeof(enum status),
2217 QUEUE_SIZE_RX,
2218 fore200e->bus->status_alignment) < 0) {
2219 return -ENOMEM;
2220 }
2221
2222 /* allocate and align the array of receive PDU descriptors */
2223 if (fore200e->bus->dma_chunk_alloc(fore200e,
2224 &rxq->rpd,
2225 sizeof(struct rpd),
2226 QUEUE_SIZE_RX,
2227 fore200e->bus->descr_alignment) < 0) {
2228
2229 fore200e->bus->dma_chunk_free(fore200e, &rxq->status);
2230 return -ENOMEM;
2231 }
2232
2233 /* get the base address of the cp resident rx queue entries */
2234 cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_rxq);
2235
2236 /* fill the host resident and cp resident rx entries */
2237 for (i=0; i < QUEUE_SIZE_RX; i++) {
2238
2239 rxq->host_entry[ i ].status =
2240 FORE200E_INDEX(rxq->status.align_addr, enum status, i);
2241 rxq->host_entry[ i ].rpd =
2242 FORE200E_INDEX(rxq->rpd.align_addr, struct rpd, i);
2243 rxq->host_entry[ i ].rpd_dma =
2244 FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i);
2245 rxq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2246
2247 *rxq->host_entry[ i ].status = STATUS_FREE;
2248
2249 fore200e->bus->write(FORE200E_DMA_INDEX(rxq->status.dma_addr, enum status, i),
2250 &cp_entry[ i ].status_haddr);
2251
2252 fore200e->bus->write(FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i),
2253 &cp_entry[ i ].rpd_haddr);
2254 }
2255
2256 /* set the head entry of the queue */
2257 rxq->head = 0;
2258
2259 fore200e->state = FORE200E_STATE_INIT_RXQ;
2260 return 0;
2261}
2262
2263
2264static int fore200e_init_tx_queue(struct fore200e *fore200e)
2265{
2266 struct host_txq* txq = &fore200e->host_txq;
2267 struct cp_txq_entry __iomem * cp_entry;
2268 int i;
2269
2270 DPRINTK(2, "transmit queue is being initialized\n");
2271
2272 /* allocate and align the array of status words */
2273 if (fore200e->bus->dma_chunk_alloc(fore200e,
2274 &txq->status,
2275 sizeof(enum status),
2276 QUEUE_SIZE_TX,
2277 fore200e->bus->status_alignment) < 0) {
2278 return -ENOMEM;
2279 }
2280
2281 /* allocate and align the array of transmit PDU descriptors */
2282 if (fore200e->bus->dma_chunk_alloc(fore200e,
2283 &txq->tpd,
2284 sizeof(struct tpd),
2285 QUEUE_SIZE_TX,
2286 fore200e->bus->descr_alignment) < 0) {
2287
2288 fore200e->bus->dma_chunk_free(fore200e, &txq->status);
2289 return -ENOMEM;
2290 }
2291
2292 /* get the base address of the cp resident tx queue entries */
2293 cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_txq);
2294
2295 /* fill the host resident and cp resident tx entries */
2296 for (i=0; i < QUEUE_SIZE_TX; i++) {
2297
2298 txq->host_entry[ i ].status =
2299 FORE200E_INDEX(txq->status.align_addr, enum status, i);
2300 txq->host_entry[ i ].tpd =
2301 FORE200E_INDEX(txq->tpd.align_addr, struct tpd, i);
2302 txq->host_entry[ i ].tpd_dma =
2303 FORE200E_DMA_INDEX(txq->tpd.dma_addr, struct tpd, i);
2304 txq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2305
2306 *txq->host_entry[ i ].status = STATUS_FREE;
2307
2308 fore200e->bus->write(FORE200E_DMA_INDEX(txq->status.dma_addr, enum status, i),
2309 &cp_entry[ i ].status_haddr);
2310
2311 /* although there is a one-to-one mapping of tx queue entries and tpds,
2312 we do not write here the DMA (physical) base address of each tpd into
2313 the related cp resident entry, because the cp relies on this write
2314 operation to detect that a new pdu has been submitted for tx */
2315 }
2316
2317 /* set the head and tail entries of the queue */
2318 txq->head = 0;
2319 txq->tail = 0;
2320
2321 fore200e->state = FORE200E_STATE_INIT_TXQ;
2322 return 0;
2323}
2324
2325
2326static int fore200e_init_cmd_queue(struct fore200e *fore200e)
2327{
2328 struct host_cmdq* cmdq = &fore200e->host_cmdq;
2329 struct cp_cmdq_entry __iomem * cp_entry;
2330 int i;
2331
2332 DPRINTK(2, "command queue is being initialized\n");
2333
2334 /* allocate and align the array of status words */
2335 if (fore200e->bus->dma_chunk_alloc(fore200e,
2336 &cmdq->status,
2337 sizeof(enum status),
2338 QUEUE_SIZE_CMD,
2339 fore200e->bus->status_alignment) < 0) {
2340 return -ENOMEM;
2341 }
2342
2343 /* get the base address of the cp resident cmd queue entries */
2344 cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_cmdq);
2345
2346 /* fill the host resident and cp resident cmd entries */
2347 for (i=0; i < QUEUE_SIZE_CMD; i++) {
2348
2349 cmdq->host_entry[ i ].status =
2350 FORE200E_INDEX(cmdq->status.align_addr, enum status, i);
2351 cmdq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2352
2353 *cmdq->host_entry[ i ].status = STATUS_FREE;
2354
2355 fore200e->bus->write(FORE200E_DMA_INDEX(cmdq->status.dma_addr, enum status, i),
2356 &cp_entry[ i ].status_haddr);
2357 }
2358
2359 /* set the head entry of the queue */
2360 cmdq->head = 0;
2361
2362 fore200e->state = FORE200E_STATE_INIT_CMDQ;
2363 return 0;
2364}
2365
2366
2367static void fore200e_param_bs_queue(struct fore200e *fore200e,
2368 enum buffer_scheme scheme,
2369 enum buffer_magn magn, int queue_length,
2370 int pool_size, int supply_blksize)
2371{
2372 struct bs_spec __iomem * bs_spec = &fore200e->cp_queues->init.bs_spec[ scheme ][ magn ];
2373
2374 fore200e->bus->write(queue_length, &bs_spec->queue_length);
2375 fore200e->bus->write(fore200e_rx_buf_size[ scheme ][ magn ], &bs_spec->buffer_size);
2376 fore200e->bus->write(pool_size, &bs_spec->pool_size);
2377 fore200e->bus->write(supply_blksize, &bs_spec->supply_blksize);
2378}
2379
2380
2381static int fore200e_initialize(struct fore200e *fore200e)
2382{
2383 struct cp_queues __iomem * cpq;
2384 int ok, scheme, magn;
2385
2386 DPRINTK(2, "device %s being initialized\n", fore200e->name);
2387
2388 mutex_init(&fore200e->rate_mtx);
2389 spin_lock_init(&fore200e->q_lock);
2390
2391 cpq = fore200e->cp_queues = fore200e->virt_base + FORE200E_CP_QUEUES_OFFSET;
2392
2393 /* enable cp to host interrupts */
2394 fore200e->bus->write(1, &cpq->imask);
2395
2396 if (fore200e->bus->irq_enable)
2397 fore200e->bus->irq_enable(fore200e);
2398
2399 fore200e->bus->write(NBR_CONNECT, &cpq->init.num_connect);
2400
2401 fore200e->bus->write(QUEUE_SIZE_CMD, &cpq->init.cmd_queue_len);
2402 fore200e->bus->write(QUEUE_SIZE_RX, &cpq->init.rx_queue_len);
2403 fore200e->bus->write(QUEUE_SIZE_TX, &cpq->init.tx_queue_len);
2404
2405 fore200e->bus->write(RSD_EXTENSION, &cpq->init.rsd_extension);
2406 fore200e->bus->write(TSD_EXTENSION, &cpq->init.tsd_extension);
2407
2408 for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++)
2409 for (magn = 0; magn < BUFFER_MAGN_NBR; magn++)
2410 fore200e_param_bs_queue(fore200e, scheme, magn,
2411 QUEUE_SIZE_BS,
2412 fore200e_rx_buf_nbr[ scheme ][ magn ],
2413 RBD_BLK_SIZE);
2414
2415 /* issue the initialize command */
2416 fore200e->bus->write(STATUS_PENDING, &cpq->init.status);
2417 fore200e->bus->write(OPCODE_INITIALIZE, &cpq->init.opcode);
2418
2419 ok = fore200e_io_poll(fore200e, &cpq->init.status, STATUS_COMPLETE, 3000);
2420 if (ok == 0) {
2421 printk(FORE200E "device %s initialization failed\n", fore200e->name);
2422 return -ENODEV;
2423 }
2424
2425 printk(FORE200E "device %s initialized\n", fore200e->name);
2426
2427 fore200e->state = FORE200E_STATE_INITIALIZE;
2428 return 0;
2429}
2430
2431
2432static void fore200e_monitor_putc(struct fore200e *fore200e, char c)
2433{
2434 struct cp_monitor __iomem * monitor = fore200e->cp_monitor;
2435
2436#if 0
2437 printk("%c", c);
2438#endif
2439 fore200e->bus->write(((u32) c) | FORE200E_CP_MONITOR_UART_AVAIL, &monitor->soft_uart.send);
2440}
2441
2442
2443static int fore200e_monitor_getc(struct fore200e *fore200e)
2444{
2445 struct cp_monitor __iomem * monitor = fore200e->cp_monitor;
2446 unsigned long timeout = jiffies + msecs_to_jiffies(50);
2447 int c;
2448
2449 while (time_before(jiffies, timeout)) {
2450
2451 c = (int) fore200e->bus->read(&monitor->soft_uart.recv);
2452
2453 if (c & FORE200E_CP_MONITOR_UART_AVAIL) {
2454
2455 fore200e->bus->write(FORE200E_CP_MONITOR_UART_FREE, &monitor->soft_uart.recv);
2456#if 0
2457 printk("%c", c & 0xFF);
2458#endif
2459 return c & 0xFF;
2460 }
2461 }
2462
2463 return -1;
2464}
2465
2466
2467static void fore200e_monitor_puts(struct fore200e *fore200e, char *str)
2468{
2469 while (*str) {
2470
2471 /* the i960 monitor doesn't accept any new character if it has something to say */
2472 while (fore200e_monitor_getc(fore200e) >= 0);
2473
2474 fore200e_monitor_putc(fore200e, *str++);
2475 }
2476
2477 while (fore200e_monitor_getc(fore200e) >= 0);
2478}
2479
2480#ifdef __LITTLE_ENDIAN
2481#define FW_EXT ".bin"
2482#else
2483#define FW_EXT "_ecd.bin2"
2484#endif
2485
2486static int fore200e_load_and_start_fw(struct fore200e *fore200e)
2487{
2488 const struct firmware *firmware;
2489 struct device *device;
2490 const struct fw_header *fw_header;
2491 const __le32 *fw_data;
2492 u32 fw_size;
2493 u32 __iomem *load_addr;
2494 char buf[48];
2495 int err = -ENODEV;
2496
2497 if (strcmp(fore200e->bus->model_name, "PCA-200E") == 0)
2498 device = &((struct pci_dev *) fore200e->bus_dev)->dev;
2499#ifdef CONFIG_SBUS
2500 else if (strcmp(fore200e->bus->model_name, "SBA-200E") == 0)
2501 device = &((struct platform_device *) fore200e->bus_dev)->dev;
2502#endif
2503 else
2504 return err;
2505
2506 sprintf(buf, "%s%s", fore200e->bus->proc_name, FW_EXT);
2507 if ((err = request_firmware(&firmware, buf, device)) < 0) {
2508 printk(FORE200E "problem loading firmware image %s\n", fore200e->bus->model_name);
2509 return err;
2510 }
2511
2512 fw_data = (const __le32 *)firmware->data;
2513 fw_size = firmware->size / sizeof(u32);
2514 fw_header = (const struct fw_header *)firmware->data;
2515 load_addr = fore200e->virt_base + le32_to_cpu(fw_header->load_offset);
2516
2517 DPRINTK(2, "device %s firmware being loaded at 0x%p (%d words)\n",
2518 fore200e->name, load_addr, fw_size);
2519
2520 if (le32_to_cpu(fw_header->magic) != FW_HEADER_MAGIC) {
2521 printk(FORE200E "corrupted %s firmware image\n", fore200e->bus->model_name);
2522 goto release;
2523 }
2524
2525 for (; fw_size--; fw_data++, load_addr++)
2526 fore200e->bus->write(le32_to_cpu(*fw_data), load_addr);
2527
2528 DPRINTK(2, "device %s firmware being started\n", fore200e->name);
2529
2530#if defined(__sparc_v9__)
2531 /* reported to be required by SBA cards on some sparc64 hosts */
2532 fore200e_spin(100);
2533#endif
2534
2535 sprintf(buf, "\rgo %x\r", le32_to_cpu(fw_header->start_offset));
2536 fore200e_monitor_puts(fore200e, buf);
2537
2538 if (fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_CP_RUNNING, 1000) == 0) {
2539 printk(FORE200E "device %s firmware didn't start\n", fore200e->name);
2540 goto release;
2541 }
2542
2543 printk(FORE200E "device %s firmware started\n", fore200e->name);
2544
2545 fore200e->state = FORE200E_STATE_START_FW;
2546 err = 0;
2547
2548release:
2549 release_firmware(firmware);
2550 return err;
2551}
2552
2553
2554static int fore200e_register(struct fore200e *fore200e, struct device *parent)
2555{
2556 struct atm_dev* atm_dev;
2557
2558 DPRINTK(2, "device %s being registered\n", fore200e->name);
2559
2560 atm_dev = atm_dev_register(fore200e->bus->proc_name, parent, &fore200e_ops,
2561 -1, NULL);
2562 if (atm_dev == NULL) {
2563 printk(FORE200E "unable to register device %s\n", fore200e->name);
2564 return -ENODEV;
2565 }
2566
2567 atm_dev->dev_data = fore200e;
2568 fore200e->atm_dev = atm_dev;
2569
2570 atm_dev->ci_range.vpi_bits = FORE200E_VPI_BITS;
2571 atm_dev->ci_range.vci_bits = FORE200E_VCI_BITS;
2572
2573 fore200e->available_cell_rate = ATM_OC3_PCR;
2574
2575 fore200e->state = FORE200E_STATE_REGISTER;
2576 return 0;
2577}
2578
2579
2580static int fore200e_init(struct fore200e *fore200e, struct device *parent)
2581{
2582 if (fore200e_register(fore200e, parent) < 0)
2583 return -ENODEV;
2584
2585 if (fore200e->bus->configure(fore200e) < 0)
2586 return -ENODEV;
2587
2588 if (fore200e->bus->map(fore200e) < 0)
2589 return -ENODEV;
2590
2591 if (fore200e_reset(fore200e, 1) < 0)
2592 return -ENODEV;
2593
2594 if (fore200e_load_and_start_fw(fore200e) < 0)
2595 return -ENODEV;
2596
2597 if (fore200e_initialize(fore200e) < 0)
2598 return -ENODEV;
2599
2600 if (fore200e_init_cmd_queue(fore200e) < 0)
2601 return -ENOMEM;
2602
2603 if (fore200e_init_tx_queue(fore200e) < 0)
2604 return -ENOMEM;
2605
2606 if (fore200e_init_rx_queue(fore200e) < 0)
2607 return -ENOMEM;
2608
2609 if (fore200e_init_bs_queue(fore200e) < 0)
2610 return -ENOMEM;
2611
2612 if (fore200e_alloc_rx_buf(fore200e) < 0)
2613 return -ENOMEM;
2614
2615 if (fore200e_get_esi(fore200e) < 0)
2616 return -EIO;
2617
2618 if (fore200e_irq_request(fore200e) < 0)
2619 return -EBUSY;
2620
2621 fore200e_supply(fore200e);
2622
2623 /* all done, board initialization is now complete */
2624 fore200e->state = FORE200E_STATE_COMPLETE;
2625 return 0;
2626}
2627
2628#ifdef CONFIG_SBUS
2629static const struct of_device_id fore200e_sba_match[];
2630static int fore200e_sba_probe(struct platform_device *op)
2631{
2632 const struct of_device_id *match;
2633 const struct fore200e_bus *bus;
2634 struct fore200e *fore200e;
2635 static int index = 0;
2636 int err;
2637
2638 match = of_match_device(fore200e_sba_match, &op->dev);
2639 if (!match)
2640 return -EINVAL;
2641 bus = match->data;
2642
2643 fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL);
2644 if (!fore200e)
2645 return -ENOMEM;
2646
2647 fore200e->bus = bus;
2648 fore200e->bus_dev = op;
2649 fore200e->irq = op->archdata.irqs[0];
2650 fore200e->phys_base = op->resource[0].start;
2651
2652 sprintf(fore200e->name, "%s-%d", bus->model_name, index);
2653
2654 err = fore200e_init(fore200e, &op->dev);
2655 if (err < 0) {
2656 fore200e_shutdown(fore200e);
2657 kfree(fore200e);
2658 return err;
2659 }
2660
2661 index++;
2662 dev_set_drvdata(&op->dev, fore200e);
2663
2664 return 0;
2665}
2666
2667static int fore200e_sba_remove(struct platform_device *op)
2668{
2669 struct fore200e *fore200e = dev_get_drvdata(&op->dev);
2670
2671 fore200e_shutdown(fore200e);
2672 kfree(fore200e);
2673
2674 return 0;
2675}
2676
2677static const struct of_device_id fore200e_sba_match[] = {
2678 {
2679 .name = SBA200E_PROM_NAME,
2680 .data = (void *) &fore200e_bus[1],
2681 },
2682 {},
2683};
2684MODULE_DEVICE_TABLE(of, fore200e_sba_match);
2685
2686static struct platform_driver fore200e_sba_driver = {
2687 .driver = {
2688 .name = "fore_200e",
2689 .of_match_table = fore200e_sba_match,
2690 },
2691 .probe = fore200e_sba_probe,
2692 .remove = fore200e_sba_remove,
2693};
2694#endif
2695
2696#ifdef CONFIG_PCI
2697static int fore200e_pca_detect(struct pci_dev *pci_dev,
2698 const struct pci_device_id *pci_ent)
2699{
2700 const struct fore200e_bus* bus = (struct fore200e_bus*) pci_ent->driver_data;
2701 struct fore200e* fore200e;
2702 int err = 0;
2703 static int index = 0;
2704
2705 if (pci_enable_device(pci_dev)) {
2706 err = -EINVAL;
2707 goto out;
2708 }
2709
2710 if (dma_set_mask_and_coherent(&pci_dev->dev, DMA_BIT_MASK(32))) {
2711 err = -EINVAL;
2712 goto out;
2713 }
2714
2715 fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL);
2716 if (fore200e == NULL) {
2717 err = -ENOMEM;
2718 goto out_disable;
2719 }
2720
2721 fore200e->bus = bus;
2722 fore200e->bus_dev = pci_dev;
2723 fore200e->irq = pci_dev->irq;
2724 fore200e->phys_base = pci_resource_start(pci_dev, 0);
2725
2726 sprintf(fore200e->name, "%s-%d", bus->model_name, index - 1);
2727
2728 pci_set_master(pci_dev);
2729
2730 printk(FORE200E "device %s found at 0x%lx, IRQ %s\n",
2731 fore200e->bus->model_name,
2732 fore200e->phys_base, fore200e_irq_itoa(fore200e->irq));
2733
2734 sprintf(fore200e->name, "%s-%d", bus->model_name, index);
2735
2736 err = fore200e_init(fore200e, &pci_dev->dev);
2737 if (err < 0) {
2738 fore200e_shutdown(fore200e);
2739 goto out_free;
2740 }
2741
2742 ++index;
2743 pci_set_drvdata(pci_dev, fore200e);
2744
2745out:
2746 return err;
2747
2748out_free:
2749 kfree(fore200e);
2750out_disable:
2751 pci_disable_device(pci_dev);
2752 goto out;
2753}
2754
2755
2756static void fore200e_pca_remove_one(struct pci_dev *pci_dev)
2757{
2758 struct fore200e *fore200e;
2759
2760 fore200e = pci_get_drvdata(pci_dev);
2761
2762 fore200e_shutdown(fore200e);
2763 kfree(fore200e);
2764 pci_disable_device(pci_dev);
2765}
2766
2767
2768static const struct pci_device_id fore200e_pca_tbl[] = {
2769 { PCI_VENDOR_ID_FORE, PCI_DEVICE_ID_FORE_PCA200E, PCI_ANY_ID, PCI_ANY_ID,
2770 0, 0, (unsigned long) &fore200e_bus[0] },
2771 { 0, }
2772};
2773
2774MODULE_DEVICE_TABLE(pci, fore200e_pca_tbl);
2775
2776static struct pci_driver fore200e_pca_driver = {
2777 .name = "fore_200e",
2778 .probe = fore200e_pca_detect,
2779 .remove = fore200e_pca_remove_one,
2780 .id_table = fore200e_pca_tbl,
2781};
2782#endif
2783
2784static int __init fore200e_module_init(void)
2785{
2786 int err = 0;
2787
2788 printk(FORE200E "FORE Systems 200E-series ATM driver - version " FORE200E_VERSION "\n");
2789
2790#ifdef CONFIG_SBUS
2791 err = platform_driver_register(&fore200e_sba_driver);
2792 if (err)
2793 return err;
2794#endif
2795
2796#ifdef CONFIG_PCI
2797 err = pci_register_driver(&fore200e_pca_driver);
2798#endif
2799
2800#ifdef CONFIG_SBUS
2801 if (err)
2802 platform_driver_unregister(&fore200e_sba_driver);
2803#endif
2804
2805 return err;
2806}
2807
2808static void __exit fore200e_module_cleanup(void)
2809{
2810#ifdef CONFIG_PCI
2811 pci_unregister_driver(&fore200e_pca_driver);
2812#endif
2813#ifdef CONFIG_SBUS
2814 platform_driver_unregister(&fore200e_sba_driver);
2815#endif
2816}
2817
2818static int
2819fore200e_proc_read(struct atm_dev *dev, loff_t* pos, char* page)
2820{
2821 struct fore200e* fore200e = FORE200E_DEV(dev);
2822 struct fore200e_vcc* fore200e_vcc;
2823 struct atm_vcc* vcc;
2824 int i, len, left = *pos;
2825 unsigned long flags;
2826
2827 if (!left--) {
2828
2829 if (fore200e_getstats(fore200e) < 0)
2830 return -EIO;
2831
2832 len = sprintf(page,"\n"
2833 " device:\n"
2834 " internal name:\t\t%s\n", fore200e->name);
2835
2836 /* print bus-specific information */
2837 if (fore200e->bus->proc_read)
2838 len += fore200e->bus->proc_read(fore200e, page + len);
2839
2840 len += sprintf(page + len,
2841 " interrupt line:\t\t%s\n"
2842 " physical base address:\t0x%p\n"
2843 " virtual base address:\t0x%p\n"
2844 " factory address (ESI):\t%pM\n"
2845 " board serial number:\t\t%d\n\n",
2846 fore200e_irq_itoa(fore200e->irq),
2847 (void*)fore200e->phys_base,
2848 fore200e->virt_base,
2849 fore200e->esi,
2850 fore200e->esi[4] * 256 + fore200e->esi[5]);
2851
2852 return len;
2853 }
2854
2855 if (!left--)
2856 return sprintf(page,
2857 " free small bufs, scheme 1:\t%d\n"
2858 " free large bufs, scheme 1:\t%d\n"
2859 " free small bufs, scheme 2:\t%d\n"
2860 " free large bufs, scheme 2:\t%d\n",
2861 fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_SMALL ].freebuf_count,
2862 fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_LARGE ].freebuf_count,
2863 fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_SMALL ].freebuf_count,
2864 fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_LARGE ].freebuf_count);
2865
2866 if (!left--) {
2867 u32 hb = fore200e->bus->read(&fore200e->cp_queues->heartbeat);
2868
2869 len = sprintf(page,"\n\n"
2870 " cell processor:\n"
2871 " heartbeat state:\t\t");
2872
2873 if (hb >> 16 != 0xDEAD)
2874 len += sprintf(page + len, "0x%08x\n", hb);
2875 else
2876 len += sprintf(page + len, "*** FATAL ERROR %04x ***\n", hb & 0xFFFF);
2877
2878 return len;
2879 }
2880
2881 if (!left--) {
2882 static const char* media_name[] = {
2883 "unshielded twisted pair",
2884 "multimode optical fiber ST",
2885 "multimode optical fiber SC",
2886 "single-mode optical fiber ST",
2887 "single-mode optical fiber SC",
2888 "unknown"
2889 };
2890
2891 static const char* oc3_mode[] = {
2892 "normal operation",
2893 "diagnostic loopback",
2894 "line loopback",
2895 "unknown"
2896 };
2897
2898 u32 fw_release = fore200e->bus->read(&fore200e->cp_queues->fw_release);
2899 u32 mon960_release = fore200e->bus->read(&fore200e->cp_queues->mon960_release);
2900 u32 oc3_revision = fore200e->bus->read(&fore200e->cp_queues->oc3_revision);
2901 u32 media_index = FORE200E_MEDIA_INDEX(fore200e->bus->read(&fore200e->cp_queues->media_type));
2902 u32 oc3_index;
2903
2904 if (media_index > 4)
2905 media_index = 5;
2906
2907 switch (fore200e->loop_mode) {
2908 case ATM_LM_NONE: oc3_index = 0;
2909 break;
2910 case ATM_LM_LOC_PHY: oc3_index = 1;
2911 break;
2912 case ATM_LM_RMT_PHY: oc3_index = 2;
2913 break;
2914 default: oc3_index = 3;
2915 }
2916
2917 return sprintf(page,
2918 " firmware release:\t\t%d.%d.%d\n"
2919 " monitor release:\t\t%d.%d\n"
2920 " media type:\t\t\t%s\n"
2921 " OC-3 revision:\t\t0x%x\n"
2922 " OC-3 mode:\t\t\t%s",
2923 fw_release >> 16, fw_release << 16 >> 24, fw_release << 24 >> 24,
2924 mon960_release >> 16, mon960_release << 16 >> 16,
2925 media_name[ media_index ],
2926 oc3_revision,
2927 oc3_mode[ oc3_index ]);
2928 }
2929
2930 if (!left--) {
2931 struct cp_monitor __iomem * cp_monitor = fore200e->cp_monitor;
2932
2933 return sprintf(page,
2934 "\n\n"
2935 " monitor:\n"
2936 " version number:\t\t%d\n"
2937 " boot status word:\t\t0x%08x\n",
2938 fore200e->bus->read(&cp_monitor->mon_version),
2939 fore200e->bus->read(&cp_monitor->bstat));
2940 }
2941
2942 if (!left--)
2943 return sprintf(page,
2944 "\n"
2945 " device statistics:\n"
2946 " 4b5b:\n"
2947 " crc_header_errors:\t\t%10u\n"
2948 " framing_errors:\t\t%10u\n",
2949 be32_to_cpu(fore200e->stats->phy.crc_header_errors),
2950 be32_to_cpu(fore200e->stats->phy.framing_errors));
2951
2952 if (!left--)
2953 return sprintf(page, "\n"
2954 " OC-3:\n"
2955 " section_bip8_errors:\t%10u\n"
2956 " path_bip8_errors:\t\t%10u\n"
2957 " line_bip24_errors:\t\t%10u\n"
2958 " line_febe_errors:\t\t%10u\n"
2959 " path_febe_errors:\t\t%10u\n"
2960 " corr_hcs_errors:\t\t%10u\n"
2961 " ucorr_hcs_errors:\t\t%10u\n",
2962 be32_to_cpu(fore200e->stats->oc3.section_bip8_errors),
2963 be32_to_cpu(fore200e->stats->oc3.path_bip8_errors),
2964 be32_to_cpu(fore200e->stats->oc3.line_bip24_errors),
2965 be32_to_cpu(fore200e->stats->oc3.line_febe_errors),
2966 be32_to_cpu(fore200e->stats->oc3.path_febe_errors),
2967 be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors),
2968 be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors));
2969
2970 if (!left--)
2971 return sprintf(page,"\n"
2972 " ATM:\t\t\t\t cells\n"
2973 " TX:\t\t\t%10u\n"
2974 " RX:\t\t\t%10u\n"
2975 " vpi out of range:\t\t%10u\n"
2976 " vpi no conn:\t\t%10u\n"
2977 " vci out of range:\t\t%10u\n"
2978 " vci no conn:\t\t%10u\n",
2979 be32_to_cpu(fore200e->stats->atm.cells_transmitted),
2980 be32_to_cpu(fore200e->stats->atm.cells_received),
2981 be32_to_cpu(fore200e->stats->atm.vpi_bad_range),
2982 be32_to_cpu(fore200e->stats->atm.vpi_no_conn),
2983 be32_to_cpu(fore200e->stats->atm.vci_bad_range),
2984 be32_to_cpu(fore200e->stats->atm.vci_no_conn));
2985
2986 if (!left--)
2987 return sprintf(page,"\n"
2988 " AAL0:\t\t\t cells\n"
2989 " TX:\t\t\t%10u\n"
2990 " RX:\t\t\t%10u\n"
2991 " dropped:\t\t\t%10u\n",
2992 be32_to_cpu(fore200e->stats->aal0.cells_transmitted),
2993 be32_to_cpu(fore200e->stats->aal0.cells_received),
2994 be32_to_cpu(fore200e->stats->aal0.cells_dropped));
2995
2996 if (!left--)
2997 return sprintf(page,"\n"
2998 " AAL3/4:\n"
2999 " SAR sublayer:\t\t cells\n"
3000 " TX:\t\t\t%10u\n"
3001 " RX:\t\t\t%10u\n"
3002 " dropped:\t\t\t%10u\n"
3003 " CRC errors:\t\t%10u\n"
3004 " protocol errors:\t\t%10u\n\n"
3005 " CS sublayer:\t\t PDUs\n"
3006 " TX:\t\t\t%10u\n"
3007 " RX:\t\t\t%10u\n"
3008 " dropped:\t\t\t%10u\n"
3009 " protocol errors:\t\t%10u\n",
3010 be32_to_cpu(fore200e->stats->aal34.cells_transmitted),
3011 be32_to_cpu(fore200e->stats->aal34.cells_received),
3012 be32_to_cpu(fore200e->stats->aal34.cells_dropped),
3013 be32_to_cpu(fore200e->stats->aal34.cells_crc_errors),
3014 be32_to_cpu(fore200e->stats->aal34.cells_protocol_errors),
3015 be32_to_cpu(fore200e->stats->aal34.cspdus_transmitted),
3016 be32_to_cpu(fore200e->stats->aal34.cspdus_received),
3017 be32_to_cpu(fore200e->stats->aal34.cspdus_dropped),
3018 be32_to_cpu(fore200e->stats->aal34.cspdus_protocol_errors));
3019
3020 if (!left--)
3021 return sprintf(page,"\n"
3022 " AAL5:\n"
3023 " SAR sublayer:\t\t cells\n"
3024 " TX:\t\t\t%10u\n"
3025 " RX:\t\t\t%10u\n"
3026 " dropped:\t\t\t%10u\n"
3027 " congestions:\t\t%10u\n\n"
3028 " CS sublayer:\t\t PDUs\n"
3029 " TX:\t\t\t%10u\n"
3030 " RX:\t\t\t%10u\n"
3031 " dropped:\t\t\t%10u\n"
3032 " CRC errors:\t\t%10u\n"
3033 " protocol errors:\t\t%10u\n",
3034 be32_to_cpu(fore200e->stats->aal5.cells_transmitted),
3035 be32_to_cpu(fore200e->stats->aal5.cells_received),
3036 be32_to_cpu(fore200e->stats->aal5.cells_dropped),
3037 be32_to_cpu(fore200e->stats->aal5.congestion_experienced),
3038 be32_to_cpu(fore200e->stats->aal5.cspdus_transmitted),
3039 be32_to_cpu(fore200e->stats->aal5.cspdus_received),
3040 be32_to_cpu(fore200e->stats->aal5.cspdus_dropped),
3041 be32_to_cpu(fore200e->stats->aal5.cspdus_crc_errors),
3042 be32_to_cpu(fore200e->stats->aal5.cspdus_protocol_errors));
3043
3044 if (!left--)
3045 return sprintf(page,"\n"
3046 " AUX:\t\t allocation failures\n"
3047 " small b1:\t\t\t%10u\n"
3048 " large b1:\t\t\t%10u\n"
3049 " small b2:\t\t\t%10u\n"
3050 " large b2:\t\t\t%10u\n"
3051 " RX PDUs:\t\t\t%10u\n"
3052 " TX PDUs:\t\t\t%10lu\n",
3053 be32_to_cpu(fore200e->stats->aux.small_b1_failed),
3054 be32_to_cpu(fore200e->stats->aux.large_b1_failed),
3055 be32_to_cpu(fore200e->stats->aux.small_b2_failed),
3056 be32_to_cpu(fore200e->stats->aux.large_b2_failed),
3057 be32_to_cpu(fore200e->stats->aux.rpd_alloc_failed),
3058 fore200e->tx_sat);
3059
3060 if (!left--)
3061 return sprintf(page,"\n"
3062 " receive carrier:\t\t\t%s\n",
3063 fore200e->stats->aux.receive_carrier ? "ON" : "OFF!");
3064
3065 if (!left--) {
3066 return sprintf(page,"\n"
3067 " VCCs:\n address VPI VCI AAL "
3068 "TX PDUs TX min/max size RX PDUs RX min/max size\n");
3069 }
3070
3071 for (i = 0; i < NBR_CONNECT; i++) {
3072
3073 vcc = fore200e->vc_map[i].vcc;
3074
3075 if (vcc == NULL)
3076 continue;
3077
3078 spin_lock_irqsave(&fore200e->q_lock, flags);
3079
3080 if (vcc && test_bit(ATM_VF_READY, &vcc->flags) && !left--) {
3081
3082 fore200e_vcc = FORE200E_VCC(vcc);
3083 ASSERT(fore200e_vcc);
3084
3085 len = sprintf(page,
3086 " %pK %03d %05d %1d %09lu %05d/%05d %09lu %05d/%05d\n",
3087 vcc,
3088 vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
3089 fore200e_vcc->tx_pdu,
3090 fore200e_vcc->tx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->tx_min_pdu,
3091 fore200e_vcc->tx_max_pdu,
3092 fore200e_vcc->rx_pdu,
3093 fore200e_vcc->rx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->rx_min_pdu,
3094 fore200e_vcc->rx_max_pdu);
3095
3096 spin_unlock_irqrestore(&fore200e->q_lock, flags);
3097 return len;
3098 }
3099
3100 spin_unlock_irqrestore(&fore200e->q_lock, flags);
3101 }
3102
3103 return 0;
3104}
3105
3106module_init(fore200e_module_init);
3107module_exit(fore200e_module_cleanup);
3108
3109
3110static const struct atmdev_ops fore200e_ops =
3111{
3112 .open = fore200e_open,
3113 .close = fore200e_close,
3114 .ioctl = fore200e_ioctl,
3115 .getsockopt = fore200e_getsockopt,
3116 .setsockopt = fore200e_setsockopt,
3117 .send = fore200e_send,
3118 .change_qos = fore200e_change_qos,
3119 .proc_read = fore200e_proc_read,
3120 .owner = THIS_MODULE
3121};
3122
3123
3124static const struct fore200e_bus fore200e_bus[] = {
3125#ifdef CONFIG_PCI
3126 { "PCA-200E", "pca200e", 32, 4, 32,
3127 fore200e_pca_read,
3128 fore200e_pca_write,
3129 fore200e_pca_dma_map,
3130 fore200e_pca_dma_unmap,
3131 fore200e_pca_dma_sync_for_cpu,
3132 fore200e_pca_dma_sync_for_device,
3133 fore200e_pca_dma_chunk_alloc,
3134 fore200e_pca_dma_chunk_free,
3135 fore200e_pca_configure,
3136 fore200e_pca_map,
3137 fore200e_pca_reset,
3138 fore200e_pca_prom_read,
3139 fore200e_pca_unmap,
3140 NULL,
3141 fore200e_pca_irq_check,
3142 fore200e_pca_irq_ack,
3143 fore200e_pca_proc_read,
3144 },
3145#endif
3146#ifdef CONFIG_SBUS
3147 { "SBA-200E", "sba200e", 32, 64, 32,
3148 fore200e_sba_read,
3149 fore200e_sba_write,
3150 fore200e_sba_dma_map,
3151 fore200e_sba_dma_unmap,
3152 fore200e_sba_dma_sync_for_cpu,
3153 fore200e_sba_dma_sync_for_device,
3154 fore200e_sba_dma_chunk_alloc,
3155 fore200e_sba_dma_chunk_free,
3156 fore200e_sba_configure,
3157 fore200e_sba_map,
3158 fore200e_sba_reset,
3159 fore200e_sba_prom_read,
3160 fore200e_sba_unmap,
3161 fore200e_sba_irq_enable,
3162 fore200e_sba_irq_check,
3163 fore200e_sba_irq_ack,
3164 fore200e_sba_proc_read,
3165 },
3166#endif
3167 {}
3168};
3169
3170MODULE_LICENSE("GPL");
3171#ifdef CONFIG_PCI
3172#ifdef __LITTLE_ENDIAN__
3173MODULE_FIRMWARE("pca200e.bin");
3174#else
3175MODULE_FIRMWARE("pca200e_ecd.bin2");
3176#endif
3177#endif /* CONFIG_PCI */
3178#ifdef CONFIG_SBUS
3179MODULE_FIRMWARE("sba200e_ecd.bin2");
3180#endif