Linux Audio

Check our new training course

Embedded Linux training

Mar 10-20, 2025, special US time zones
Register
Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3  A FORE Systems 200E-series driver for ATM on Linux.
   4  Christophe Lizzi (lizzi@cnam.fr), October 1999-March 2003.
   5
   6  Based on the PCA-200E driver from Uwe Dannowski (Uwe.Dannowski@inf.tu-dresden.de).
   7
   8  This driver simultaneously supports PCA-200E and SBA-200E adapters
   9  on i386, alpha (untested), powerpc, sparc and sparc64 architectures.
  10
 
 
 
 
 
 
 
 
 
 
 
 
 
  11*/
  12
  13
  14#include <linux/kernel.h>
  15#include <linux/slab.h>
  16#include <linux/init.h>
  17#include <linux/capability.h>
  18#include <linux/interrupt.h>
  19#include <linux/bitops.h>
  20#include <linux/pci.h>
  21#include <linux/module.h>
  22#include <linux/atmdev.h>
  23#include <linux/sonet.h>
 
  24#include <linux/dma-mapping.h>
  25#include <linux/delay.h>
  26#include <linux/firmware.h>
  27#include <linux/pgtable.h>
  28#include <asm/io.h>
  29#include <asm/string.h>
  30#include <asm/page.h>
  31#include <asm/irq.h>
  32#include <asm/dma.h>
  33#include <asm/byteorder.h>
  34#include <linux/uaccess.h>
  35#include <linux/atomic.h>
  36
  37#ifdef CONFIG_SBUS
  38#include <linux/of.h>
  39#include <linux/of_device.h>
  40#include <asm/idprom.h>
  41#include <asm/openprom.h>
  42#include <asm/oplib.h>
 
  43#endif
  44
  45#if defined(CONFIG_ATM_FORE200E_USE_TASKLET) /* defer interrupt work to a tasklet */
  46#define FORE200E_USE_TASKLET
  47#endif
  48
  49#if 0 /* enable the debugging code of the buffer supply queues */
  50#define FORE200E_BSQ_DEBUG
  51#endif
  52
  53#if 1 /* ensure correct handling of 52-byte AAL0 SDUs expected by atmdump-like apps */
  54#define FORE200E_52BYTE_AAL0_SDU
  55#endif
  56
  57#include "fore200e.h"
  58#include "suni.h"
  59
  60#define FORE200E_VERSION "0.3e"
  61
  62#define FORE200E         "fore200e: "
  63
  64#if 0 /* override .config */
  65#define CONFIG_ATM_FORE200E_DEBUG 1
  66#endif
  67#if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0)
  68#define DPRINTK(level, format, args...)  do { if (CONFIG_ATM_FORE200E_DEBUG >= (level)) \
  69                                                  printk(FORE200E format, ##args); } while (0)
  70#else
  71#define DPRINTK(level, format, args...)  do {} while (0)
  72#endif
  73
  74
  75#define FORE200E_ALIGN(addr, alignment) \
  76        ((((unsigned long)(addr) + (alignment - 1)) & ~(alignment - 1)) - (unsigned long)(addr))
  77
  78#define FORE200E_DMA_INDEX(dma_addr, type, index)  ((dma_addr) + (index) * sizeof(type))
  79
  80#define FORE200E_INDEX(virt_addr, type, index)     (&((type *)(virt_addr))[ index ])
  81
  82#define FORE200E_NEXT_ENTRY(index, modulo)         (index = ((index) + 1) % (modulo))
  83
  84#if 1
  85#define ASSERT(expr)     if (!(expr)) { \
  86			     printk(FORE200E "assertion failed! %s[%d]: %s\n", \
  87				    __func__, __LINE__, #expr); \
  88			     panic(FORE200E "%s", __func__); \
  89			 }
  90#else
  91#define ASSERT(expr)     do {} while (0)
  92#endif
  93
  94
  95static const struct atmdev_ops   fore200e_ops;
 
  96
  97static LIST_HEAD(fore200e_boards);
  98
  99
 100MODULE_AUTHOR("Christophe Lizzi - credits to Uwe Dannowski and Heikki Vatiainen");
 101MODULE_DESCRIPTION("FORE Systems 200E-series ATM driver - version " FORE200E_VERSION);
 
 
 102
 103static const int fore200e_rx_buf_nbr[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = {
 104    { BUFFER_S1_NBR, BUFFER_L1_NBR },
 105    { BUFFER_S2_NBR, BUFFER_L2_NBR }
 106};
 107
 108static const int fore200e_rx_buf_size[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = {
 109    { BUFFER_S1_SIZE, BUFFER_L1_SIZE },
 110    { BUFFER_S2_SIZE, BUFFER_L2_SIZE }
 111};
 112
 113
 114#if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0)
 115static const char* fore200e_traffic_class[] = { "NONE", "UBR", "CBR", "VBR", "ABR", "ANY" };
 116#endif
 117
 118
 119#if 0 /* currently unused */
 120static int 
 121fore200e_fore2atm_aal(enum fore200e_aal aal)
 122{
 123    switch(aal) {
 124    case FORE200E_AAL0:  return ATM_AAL0;
 125    case FORE200E_AAL34: return ATM_AAL34;
 126    case FORE200E_AAL5:  return ATM_AAL5;
 127    }
 128
 129    return -EINVAL;
 130}
 131#endif
 132
 133
 134static enum fore200e_aal
 135fore200e_atm2fore_aal(int aal)
 136{
 137    switch(aal) {
 138    case ATM_AAL0:  return FORE200E_AAL0;
 139    case ATM_AAL34: return FORE200E_AAL34;
 140    case ATM_AAL1:
 141    case ATM_AAL2:
 142    case ATM_AAL5:  return FORE200E_AAL5;
 143    }
 144
 145    return -EINVAL;
 146}
 147
 148
 149static char*
 150fore200e_irq_itoa(int irq)
 151{
 152    static char str[8];
 153    sprintf(str, "%d", irq);
 154    return str;
 155}
 156
 157
 158/* allocate and align a chunk of memory intended to hold the data behing exchanged
 159   between the driver and the adapter (using streaming DVMA) */
 160
 161static int
 162fore200e_chunk_alloc(struct fore200e* fore200e, struct chunk* chunk, int size, int alignment, int direction)
 163{
 164    unsigned long offset = 0;
 165
 166    if (alignment <= sizeof(int))
 167	alignment = 0;
 168
 169    chunk->alloc_size = size + alignment;
 
 170    chunk->direction  = direction;
 171
 172    chunk->alloc_addr = kzalloc(chunk->alloc_size, GFP_KERNEL);
 173    if (chunk->alloc_addr == NULL)
 174	return -ENOMEM;
 175
 176    if (alignment > 0)
 177	offset = FORE200E_ALIGN(chunk->alloc_addr, alignment); 
 178    
 179    chunk->align_addr = chunk->alloc_addr + offset;
 180
 181    chunk->dma_addr = dma_map_single(fore200e->dev, chunk->align_addr,
 182				     size, direction);
 183    if (dma_mapping_error(fore200e->dev, chunk->dma_addr)) {
 184	kfree(chunk->alloc_addr);
 185	return -ENOMEM;
 186    }
 187    return 0;
 188}
 189
 190
 191/* free a chunk of memory */
 192
 193static void
 194fore200e_chunk_free(struct fore200e* fore200e, struct chunk* chunk)
 195{
 196    dma_unmap_single(fore200e->dev, chunk->dma_addr, chunk->dma_size,
 197		     chunk->direction);
 198    kfree(chunk->alloc_addr);
 199}
 200
 201/*
 202 * Allocate a DMA consistent chunk of memory intended to act as a communication
 203 * mechanism (to hold descriptors, status, queues, etc.) shared by the driver
 204 * and the adapter.
 205 */
 206static int
 207fore200e_dma_chunk_alloc(struct fore200e *fore200e, struct chunk *chunk,
 208		int size, int nbr, int alignment)
 209{
 210	/* returned chunks are page-aligned */
 211	chunk->alloc_size = size * nbr;
 212	chunk->alloc_addr = dma_alloc_coherent(fore200e->dev, chunk->alloc_size,
 213					       &chunk->dma_addr, GFP_KERNEL);
 214	if (!chunk->alloc_addr)
 215		return -ENOMEM;
 216	chunk->align_addr = chunk->alloc_addr;
 217	return 0;
 218}
 219
 220/*
 221 * Free a DMA consistent chunk of memory.
 222 */
 223static void
 224fore200e_dma_chunk_free(struct fore200e* fore200e, struct chunk* chunk)
 225{
 226	dma_free_coherent(fore200e->dev, chunk->alloc_size, chunk->alloc_addr,
 227			  chunk->dma_addr);
 228}
 229
 230static void
 231fore200e_spin(int msecs)
 232{
 233    unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
 234    while (time_before(jiffies, timeout));
 235}
 236
 237
 238static int
 239fore200e_poll(struct fore200e* fore200e, volatile u32* addr, u32 val, int msecs)
 240{
 241    unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
 242    int           ok;
 243
 244    mb();
 245    do {
 246	if ((ok = (*addr == val)) || (*addr & STATUS_ERROR))
 247	    break;
 248
 249    } while (time_before(jiffies, timeout));
 250
 251#if 1
 252    if (!ok) {
 253	printk(FORE200E "cmd polling failed, got status 0x%08x, expected 0x%08x\n",
 254	       *addr, val);
 255    }
 256#endif
 257
 258    return ok;
 259}
 260
 261
 262static int
 263fore200e_io_poll(struct fore200e* fore200e, volatile u32 __iomem *addr, u32 val, int msecs)
 264{
 265    unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
 266    int           ok;
 267
 268    do {
 269	if ((ok = (fore200e->bus->read(addr) == val)))
 270	    break;
 271
 272    } while (time_before(jiffies, timeout));
 273
 274#if 1
 275    if (!ok) {
 276	printk(FORE200E "I/O polling failed, got status 0x%08x, expected 0x%08x\n",
 277	       fore200e->bus->read(addr), val);
 278    }
 279#endif
 280
 281    return ok;
 282}
 283
 284
 285static void
 286fore200e_free_rx_buf(struct fore200e* fore200e)
 287{
 288    int scheme, magn, nbr;
 289    struct buffer* buffer;
 290
 291    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
 292	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
 293
 294	    if ((buffer = fore200e->host_bsq[ scheme ][ magn ].buffer) != NULL) {
 295
 296		for (nbr = 0; nbr < fore200e_rx_buf_nbr[ scheme ][ magn ]; nbr++) {
 297
 298		    struct chunk* data = &buffer[ nbr ].data;
 299
 300		    if (data->alloc_addr != NULL)
 301			fore200e_chunk_free(fore200e, data);
 302		}
 303	    }
 304	}
 305    }
 306}
 307
 308
 309static void
 310fore200e_uninit_bs_queue(struct fore200e* fore200e)
 311{
 312    int scheme, magn;
 313    
 314    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
 315	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
 316
 317	    struct chunk* status    = &fore200e->host_bsq[ scheme ][ magn ].status;
 318	    struct chunk* rbd_block = &fore200e->host_bsq[ scheme ][ magn ].rbd_block;
 319	    
 320	    if (status->alloc_addr)
 321		fore200e_dma_chunk_free(fore200e, status);
 322	    
 323	    if (rbd_block->alloc_addr)
 324		fore200e_dma_chunk_free(fore200e, rbd_block);
 325	}
 326    }
 327}
 328
 329
 330static int
 331fore200e_reset(struct fore200e* fore200e, int diag)
 332{
 333    int ok;
 334
 335    fore200e->cp_monitor = fore200e->virt_base + FORE200E_CP_MONITOR_OFFSET;
 336    
 337    fore200e->bus->write(BSTAT_COLD_START, &fore200e->cp_monitor->bstat);
 338
 339    fore200e->bus->reset(fore200e);
 340
 341    if (diag) {
 342	ok = fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_SELFTEST_OK, 1000);
 343	if (ok == 0) {
 344	    
 345	    printk(FORE200E "device %s self-test failed\n", fore200e->name);
 346	    return -ENODEV;
 347	}
 348
 349	printk(FORE200E "device %s self-test passed\n", fore200e->name);
 350	
 351	fore200e->state = FORE200E_STATE_RESET;
 352    }
 353
 354    return 0;
 355}
 356
 357
 358static void
 359fore200e_shutdown(struct fore200e* fore200e)
 360{
 361    printk(FORE200E "removing device %s at 0x%lx, IRQ %s\n",
 362	   fore200e->name, fore200e->phys_base, 
 363	   fore200e_irq_itoa(fore200e->irq));
 364    
 365    if (fore200e->state > FORE200E_STATE_RESET) {
 366	/* first, reset the board to prevent further interrupts or data transfers */
 367	fore200e_reset(fore200e, 0);
 368    }
 369    
 370    /* then, release all allocated resources */
 371    switch(fore200e->state) {
 372
 373    case FORE200E_STATE_COMPLETE:
 374	kfree(fore200e->stats);
 375
 376	fallthrough;
 377    case FORE200E_STATE_IRQ:
 378	free_irq(fore200e->irq, fore200e->atm_dev);
 379
 380	fallthrough;
 381    case FORE200E_STATE_ALLOC_BUF:
 382	fore200e_free_rx_buf(fore200e);
 383
 384	fallthrough;
 385    case FORE200E_STATE_INIT_BSQ:
 386	fore200e_uninit_bs_queue(fore200e);
 387
 388	fallthrough;
 389    case FORE200E_STATE_INIT_RXQ:
 390	fore200e_dma_chunk_free(fore200e, &fore200e->host_rxq.status);
 391	fore200e_dma_chunk_free(fore200e, &fore200e->host_rxq.rpd);
 392
 393	fallthrough;
 394    case FORE200E_STATE_INIT_TXQ:
 395	fore200e_dma_chunk_free(fore200e, &fore200e->host_txq.status);
 396	fore200e_dma_chunk_free(fore200e, &fore200e->host_txq.tpd);
 397
 398	fallthrough;
 399    case FORE200E_STATE_INIT_CMDQ:
 400	fore200e_dma_chunk_free(fore200e, &fore200e->host_cmdq.status);
 401
 402	fallthrough;
 403    case FORE200E_STATE_INITIALIZE:
 404	/* nothing to do for that state */
 405
 406    case FORE200E_STATE_START_FW:
 407	/* nothing to do for that state */
 408
 409    case FORE200E_STATE_RESET:
 410	/* nothing to do for that state */
 411
 412    case FORE200E_STATE_MAP:
 413	fore200e->bus->unmap(fore200e);
 414
 415	fallthrough;
 416    case FORE200E_STATE_CONFIGURE:
 417	/* nothing to do for that state */
 418
 419    case FORE200E_STATE_REGISTER:
 420	/* XXX shouldn't we *start* by deregistering the device? */
 421	atm_dev_deregister(fore200e->atm_dev);
 422
 423	fallthrough;
 424    case FORE200E_STATE_BLANK:
 425	/* nothing to do for that state */
 426	break;
 427    }
 428}
 429
 430
 431#ifdef CONFIG_PCI
 432
 433static u32 fore200e_pca_read(volatile u32 __iomem *addr)
 434{
 435    /* on big-endian hosts, the board is configured to convert
 436       the endianess of slave RAM accesses  */
 437    return le32_to_cpu(readl(addr));
 438}
 439
 440
 441static void fore200e_pca_write(u32 val, volatile u32 __iomem *addr)
 442{
 443    /* on big-endian hosts, the board is configured to convert
 444       the endianess of slave RAM accesses  */
 445    writel(cpu_to_le32(val), addr);
 446}
 447
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 448static int
 449fore200e_pca_irq_check(struct fore200e* fore200e)
 450{
 451    /* this is a 1 bit register */
 452    int irq_posted = readl(fore200e->regs.pca.psr);
 453
 454#if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG == 2)
 455    if (irq_posted && (readl(fore200e->regs.pca.hcr) & PCA200E_HCR_OUTFULL)) {
 456	DPRINTK(2,"FIFO OUT full, device %d\n", fore200e->atm_dev->number);
 457    }
 458#endif
 459
 460    return irq_posted;
 461}
 462
 463
 464static void
 465fore200e_pca_irq_ack(struct fore200e* fore200e)
 466{
 467    writel(PCA200E_HCR_CLRINTR, fore200e->regs.pca.hcr);
 468}
 469
 470
 471static void
 472fore200e_pca_reset(struct fore200e* fore200e)
 473{
 474    writel(PCA200E_HCR_RESET, fore200e->regs.pca.hcr);
 475    fore200e_spin(10);
 476    writel(0, fore200e->regs.pca.hcr);
 477}
 478
 479
 480static int fore200e_pca_map(struct fore200e* fore200e)
 481{
 482    DPRINTK(2, "device %s being mapped in memory\n", fore200e->name);
 483
 484    fore200e->virt_base = ioremap(fore200e->phys_base, PCA200E_IOSPACE_LENGTH);
 485    
 486    if (fore200e->virt_base == NULL) {
 487	printk(FORE200E "can't map device %s\n", fore200e->name);
 488	return -EFAULT;
 489    }
 490
 491    DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base);
 492
 493    /* gain access to the PCA specific registers  */
 494    fore200e->regs.pca.hcr = fore200e->virt_base + PCA200E_HCR_OFFSET;
 495    fore200e->regs.pca.imr = fore200e->virt_base + PCA200E_IMR_OFFSET;
 496    fore200e->regs.pca.psr = fore200e->virt_base + PCA200E_PSR_OFFSET;
 497
 498    fore200e->state = FORE200E_STATE_MAP;
 499    return 0;
 500}
 501
 502
 503static void
 504fore200e_pca_unmap(struct fore200e* fore200e)
 505{
 506    DPRINTK(2, "device %s being unmapped from memory\n", fore200e->name);
 507
 508    if (fore200e->virt_base != NULL)
 509	iounmap(fore200e->virt_base);
 510}
 511
 512
 513static int fore200e_pca_configure(struct fore200e *fore200e)
 514{
 515    struct pci_dev *pci_dev = to_pci_dev(fore200e->dev);
 516    u8              master_ctrl, latency;
 517
 518    DPRINTK(2, "device %s being configured\n", fore200e->name);
 519
 520    if ((pci_dev->irq == 0) || (pci_dev->irq == 0xFF)) {
 521	printk(FORE200E "incorrect IRQ setting - misconfigured PCI-PCI bridge?\n");
 522	return -EIO;
 523    }
 524
 525    pci_read_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, &master_ctrl);
 526
 527    master_ctrl = master_ctrl
 528#if defined(__BIG_ENDIAN)
 529	/* request the PCA board to convert the endianess of slave RAM accesses */
 530	| PCA200E_CTRL_CONVERT_ENDIAN
 531#endif
 532#if 0
 533        | PCA200E_CTRL_DIS_CACHE_RD
 534        | PCA200E_CTRL_DIS_WRT_INVAL
 535        | PCA200E_CTRL_ENA_CONT_REQ_MODE
 536        | PCA200E_CTRL_2_CACHE_WRT_INVAL
 537#endif
 538	| PCA200E_CTRL_LARGE_PCI_BURSTS;
 539    
 540    pci_write_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, master_ctrl);
 541
 542    /* raise latency from 32 (default) to 192, as this seems to prevent NIC
 543       lockups (under heavy rx loads) due to continuous 'FIFO OUT full' condition.
 544       this may impact the performances of other PCI devices on the same bus, though */
 545    latency = 192;
 546    pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, latency);
 547
 548    fore200e->state = FORE200E_STATE_CONFIGURE;
 549    return 0;
 550}
 551
 552
 553static int __init
 554fore200e_pca_prom_read(struct fore200e* fore200e, struct prom_data* prom)
 555{
 556    struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
 557    struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
 558    struct prom_opcode      opcode;
 559    int                     ok;
 560    u32                     prom_dma;
 561
 562    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
 563
 564    opcode.opcode = OPCODE_GET_PROM;
 565    opcode.pad    = 0;
 566
 567    prom_dma = dma_map_single(fore200e->dev, prom, sizeof(struct prom_data),
 568			      DMA_FROM_DEVICE);
 569    if (dma_mapping_error(fore200e->dev, prom_dma))
 570	return -ENOMEM;
 571
 572    fore200e->bus->write(prom_dma, &entry->cp_entry->cmd.prom_block.prom_haddr);
 573    
 574    *entry->status = STATUS_PENDING;
 575
 576    fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.prom_block.opcode);
 577
 578    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
 579
 580    *entry->status = STATUS_FREE;
 581
 582    dma_unmap_single(fore200e->dev, prom_dma, sizeof(struct prom_data), DMA_FROM_DEVICE);
 583
 584    if (ok == 0) {
 585	printk(FORE200E "unable to get PROM data from device %s\n", fore200e->name);
 586	return -EIO;
 587    }
 588
 589#if defined(__BIG_ENDIAN)
 590    
 591#define swap_here(addr) (*((u32*)(addr)) = swab32( *((u32*)(addr)) ))
 592
 593    /* MAC address is stored as little-endian */
 594    swap_here(&prom->mac_addr[0]);
 595    swap_here(&prom->mac_addr[4]);
 596#endif
 597    
 598    return 0;
 599}
 600
 601
 602static int
 603fore200e_pca_proc_read(struct fore200e* fore200e, char *page)
 604{
 605    struct pci_dev *pci_dev = to_pci_dev(fore200e->dev);
 606
 607    return sprintf(page, "   PCI bus/slot/function:\t%d/%d/%d\n",
 608		   pci_dev->bus->number, PCI_SLOT(pci_dev->devfn), PCI_FUNC(pci_dev->devfn));
 609}
 610
 611static const struct fore200e_bus fore200e_pci_ops = {
 612	.model_name		= "PCA-200E",
 613	.proc_name		= "pca200e",
 614	.descr_alignment	= 32,
 615	.buffer_alignment	= 4,
 616	.status_alignment	= 32,
 617	.read			= fore200e_pca_read,
 618	.write			= fore200e_pca_write,
 619	.configure		= fore200e_pca_configure,
 620	.map			= fore200e_pca_map,
 621	.reset			= fore200e_pca_reset,
 622	.prom_read		= fore200e_pca_prom_read,
 623	.unmap			= fore200e_pca_unmap,
 624	.irq_check		= fore200e_pca_irq_check,
 625	.irq_ack		= fore200e_pca_irq_ack,
 626	.proc_read		= fore200e_pca_proc_read,
 627};
 628#endif /* CONFIG_PCI */
 629
 
 630#ifdef CONFIG_SBUS
 631
 632static u32 fore200e_sba_read(volatile u32 __iomem *addr)
 633{
 634    return sbus_readl(addr);
 635}
 636
 637static void fore200e_sba_write(u32 val, volatile u32 __iomem *addr)
 638{
 639    sbus_writel(val, addr);
 640}
 641
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 642static void fore200e_sba_irq_enable(struct fore200e *fore200e)
 643{
 644	u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY;
 645	fore200e->bus->write(hcr | SBA200E_HCR_INTR_ENA, fore200e->regs.sba.hcr);
 646}
 647
 648static int fore200e_sba_irq_check(struct fore200e *fore200e)
 649{
 650	return fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_INTR_REQ;
 651}
 652
 653static void fore200e_sba_irq_ack(struct fore200e *fore200e)
 654{
 655	u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY;
 656	fore200e->bus->write(hcr | SBA200E_HCR_INTR_CLR, fore200e->regs.sba.hcr);
 657}
 658
 659static void fore200e_sba_reset(struct fore200e *fore200e)
 660{
 661	fore200e->bus->write(SBA200E_HCR_RESET, fore200e->regs.sba.hcr);
 662	fore200e_spin(10);
 663	fore200e->bus->write(0, fore200e->regs.sba.hcr);
 664}
 665
 666static int __init fore200e_sba_map(struct fore200e *fore200e)
 667{
 668	struct platform_device *op = to_platform_device(fore200e->dev);
 669	unsigned int bursts;
 670
 671	/* gain access to the SBA specific registers  */
 672	fore200e->regs.sba.hcr = of_ioremap(&op->resource[0], 0, SBA200E_HCR_LENGTH, "SBA HCR");
 673	fore200e->regs.sba.bsr = of_ioremap(&op->resource[1], 0, SBA200E_BSR_LENGTH, "SBA BSR");
 674	fore200e->regs.sba.isr = of_ioremap(&op->resource[2], 0, SBA200E_ISR_LENGTH, "SBA ISR");
 675	fore200e->virt_base    = of_ioremap(&op->resource[3], 0, SBA200E_RAM_LENGTH, "SBA RAM");
 676
 677	if (!fore200e->virt_base) {
 678		printk(FORE200E "unable to map RAM of device %s\n", fore200e->name);
 679		return -EFAULT;
 680	}
 681
 682	DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base);
 683    
 684	fore200e->bus->write(0x02, fore200e->regs.sba.isr); /* XXX hardwired interrupt level */
 685
 686	/* get the supported DVMA burst sizes */
 687	bursts = of_getintprop_default(op->dev.of_node->parent, "burst-sizes", 0x00);
 688
 689	if (sbus_can_dma_64bit())
 690		sbus_set_sbus64(&op->dev, bursts);
 691
 692	fore200e->state = FORE200E_STATE_MAP;
 693	return 0;
 694}
 695
 696static void fore200e_sba_unmap(struct fore200e *fore200e)
 697{
 698	struct platform_device *op = to_platform_device(fore200e->dev);
 699
 700	of_iounmap(&op->resource[0], fore200e->regs.sba.hcr, SBA200E_HCR_LENGTH);
 701	of_iounmap(&op->resource[1], fore200e->regs.sba.bsr, SBA200E_BSR_LENGTH);
 702	of_iounmap(&op->resource[2], fore200e->regs.sba.isr, SBA200E_ISR_LENGTH);
 703	of_iounmap(&op->resource[3], fore200e->virt_base,    SBA200E_RAM_LENGTH);
 704}
 705
 706static int __init fore200e_sba_configure(struct fore200e *fore200e)
 707{
 708	fore200e->state = FORE200E_STATE_CONFIGURE;
 709	return 0;
 710}
 711
 712static int __init fore200e_sba_prom_read(struct fore200e *fore200e, struct prom_data *prom)
 713{
 714	struct platform_device *op = to_platform_device(fore200e->dev);
 715	const u8 *prop;
 716	int len;
 717
 718	prop = of_get_property(op->dev.of_node, "madaddrlo2", &len);
 719	if (!prop)
 720		return -ENODEV;
 721	memcpy(&prom->mac_addr[4], prop, 4);
 722
 723	prop = of_get_property(op->dev.of_node, "madaddrhi4", &len);
 724	if (!prop)
 725		return -ENODEV;
 726	memcpy(&prom->mac_addr[2], prop, 4);
 727
 728	prom->serial_number = of_getintprop_default(op->dev.of_node,
 729						    "serialnumber", 0);
 730	prom->hw_revision = of_getintprop_default(op->dev.of_node,
 731						  "promversion", 0);
 732    
 733	return 0;
 734}
 735
 736static int fore200e_sba_proc_read(struct fore200e *fore200e, char *page)
 737{
 738	struct platform_device *op = to_platform_device(fore200e->dev);
 739	const struct linux_prom_registers *regs;
 740
 741	regs = of_get_property(op->dev.of_node, "reg", NULL);
 742
 743	return sprintf(page, "   SBUS slot/device:\t\t%d/'%pOFn'\n",
 744		       (regs ? regs->which_io : 0), op->dev.of_node);
 745}
 746
 747static const struct fore200e_bus fore200e_sbus_ops = {
 748	.model_name		= "SBA-200E",
 749	.proc_name		= "sba200e",
 750	.descr_alignment	= 32,
 751	.buffer_alignment	= 64,
 752	.status_alignment	= 32,
 753	.read			= fore200e_sba_read,
 754	.write			= fore200e_sba_write,
 755	.configure		= fore200e_sba_configure,
 756	.map			= fore200e_sba_map,
 757	.reset			= fore200e_sba_reset,
 758	.prom_read		= fore200e_sba_prom_read,
 759	.unmap			= fore200e_sba_unmap,
 760	.irq_enable		= fore200e_sba_irq_enable,
 761	.irq_check		= fore200e_sba_irq_check,
 762	.irq_ack		= fore200e_sba_irq_ack,
 763	.proc_read		= fore200e_sba_proc_read,
 764};
 765#endif /* CONFIG_SBUS */
 766
 
 767static void
 768fore200e_tx_irq(struct fore200e* fore200e)
 769{
 770    struct host_txq*        txq = &fore200e->host_txq;
 771    struct host_txq_entry*  entry;
 772    struct atm_vcc*         vcc;
 773    struct fore200e_vc_map* vc_map;
 774
 775    if (fore200e->host_txq.txing == 0)
 776	return;
 777
 778    for (;;) {
 779	
 780	entry = &txq->host_entry[ txq->tail ];
 781
 782        if ((*entry->status & STATUS_COMPLETE) == 0) {
 783	    break;
 784	}
 785
 786	DPRINTK(3, "TX COMPLETED: entry = %p [tail = %d], vc_map = %p, skb = %p\n", 
 787		entry, txq->tail, entry->vc_map, entry->skb);
 788
 789	/* free copy of misaligned data */
 790	kfree(entry->data);
 791	
 792	/* remove DMA mapping */
 793	dma_unmap_single(fore200e->dev, entry->tpd->tsd[ 0 ].buffer, entry->tpd->tsd[ 0 ].length,
 794				 DMA_TO_DEVICE);
 795
 796	vc_map = entry->vc_map;
 797
 798	/* vcc closed since the time the entry was submitted for tx? */
 799	if ((vc_map->vcc == NULL) ||
 800	    (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) {
 801
 802	    DPRINTK(1, "no ready vcc found for PDU sent on device %d\n",
 803		    fore200e->atm_dev->number);
 804
 805	    dev_kfree_skb_any(entry->skb);
 806	}
 807	else {
 808	    ASSERT(vc_map->vcc);
 809
 810	    /* vcc closed then immediately re-opened? */
 811	    if (vc_map->incarn != entry->incarn) {
 812
 813		/* when a vcc is closed, some PDUs may be still pending in the tx queue.
 814		   if the same vcc is immediately re-opened, those pending PDUs must
 815		   not be popped after the completion of their emission, as they refer
 816		   to the prior incarnation of that vcc. otherwise, sk_atm(vcc)->sk_wmem_alloc
 817		   would be decremented by the size of the (unrelated) skb, possibly
 818		   leading to a negative sk->sk_wmem_alloc count, ultimately freezing the vcc.
 819		   we thus bind the tx entry to the current incarnation of the vcc
 820		   when the entry is submitted for tx. When the tx later completes,
 821		   if the incarnation number of the tx entry does not match the one
 822		   of the vcc, then this implies that the vcc has been closed then re-opened.
 823		   we thus just drop the skb here. */
 824
 825		DPRINTK(1, "vcc closed-then-re-opened; dropping PDU sent on device %d\n",
 826			fore200e->atm_dev->number);
 827
 828		dev_kfree_skb_any(entry->skb);
 829	    }
 830	    else {
 831		vcc = vc_map->vcc;
 832		ASSERT(vcc);
 833
 834		/* notify tx completion */
 835		if (vcc->pop) {
 836		    vcc->pop(vcc, entry->skb);
 837		}
 838		else {
 839		    dev_kfree_skb_any(entry->skb);
 840		}
 841
 
 
 
 
 
 842		/* check error condition */
 843		if (*entry->status & STATUS_ERROR)
 844		    atomic_inc(&vcc->stats->tx_err);
 845		else
 846		    atomic_inc(&vcc->stats->tx);
 847	    }
 848	}
 849
 850	*entry->status = STATUS_FREE;
 851
 852	fore200e->host_txq.txing--;
 853
 854	FORE200E_NEXT_ENTRY(txq->tail, QUEUE_SIZE_TX);
 855    }
 856}
 857
 858
 859#ifdef FORE200E_BSQ_DEBUG
 860int bsq_audit(int where, struct host_bsq* bsq, int scheme, int magn)
 861{
 862    struct buffer* buffer;
 863    int count = 0;
 864
 865    buffer = bsq->freebuf;
 866    while (buffer) {
 867
 868	if (buffer->supplied) {
 869	    printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld supplied but in free list!\n",
 870		   where, scheme, magn, buffer->index);
 871	}
 872
 873	if (buffer->magn != magn) {
 874	    printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected magn = %d\n",
 875		   where, scheme, magn, buffer->index, buffer->magn);
 876	}
 877
 878	if (buffer->scheme != scheme) {
 879	    printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected scheme = %d\n",
 880		   where, scheme, magn, buffer->index, buffer->scheme);
 881	}
 882
 883	if ((buffer->index < 0) || (buffer->index >= fore200e_rx_buf_nbr[ scheme ][ magn ])) {
 884	    printk(FORE200E "bsq_audit(%d): queue %d.%d, out of range buffer index = %ld !\n",
 885		   where, scheme, magn, buffer->index);
 886	}
 887
 888	count++;
 889	buffer = buffer->next;
 890    }
 891
 892    if (count != bsq->freebuf_count) {
 893	printk(FORE200E "bsq_audit(%d): queue %d.%d, %d bufs in free list, but freebuf_count = %d\n",
 894	       where, scheme, magn, count, bsq->freebuf_count);
 895    }
 896    return 0;
 897}
 898#endif
 899
 900
 901static void
 902fore200e_supply(struct fore200e* fore200e)
 903{
 904    int  scheme, magn, i;
 905
 906    struct host_bsq*       bsq;
 907    struct host_bsq_entry* entry;
 908    struct buffer*         buffer;
 909
 910    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
 911	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
 912
 913	    bsq = &fore200e->host_bsq[ scheme ][ magn ];
 914
 915#ifdef FORE200E_BSQ_DEBUG
 916	    bsq_audit(1, bsq, scheme, magn);
 917#endif
 918	    while (bsq->freebuf_count >= RBD_BLK_SIZE) {
 919
 920		DPRINTK(2, "supplying %d rx buffers to queue %d / %d, freebuf_count = %d\n",
 921			RBD_BLK_SIZE, scheme, magn, bsq->freebuf_count);
 922
 923		entry = &bsq->host_entry[ bsq->head ];
 924
 925		for (i = 0; i < RBD_BLK_SIZE; i++) {
 926
 927		    /* take the first buffer in the free buffer list */
 928		    buffer = bsq->freebuf;
 929		    if (!buffer) {
 930			printk(FORE200E "no more free bufs in queue %d.%d, but freebuf_count = %d\n",
 931			       scheme, magn, bsq->freebuf_count);
 932			return;
 933		    }
 934		    bsq->freebuf = buffer->next;
 935		    
 936#ifdef FORE200E_BSQ_DEBUG
 937		    if (buffer->supplied)
 938			printk(FORE200E "queue %d.%d, buffer %lu already supplied\n",
 939			       scheme, magn, buffer->index);
 940		    buffer->supplied = 1;
 941#endif
 942		    entry->rbd_block->rbd[ i ].buffer_haddr = buffer->data.dma_addr;
 943		    entry->rbd_block->rbd[ i ].handle       = FORE200E_BUF2HDL(buffer);
 944		}
 945
 946		FORE200E_NEXT_ENTRY(bsq->head, QUEUE_SIZE_BS);
 947
 948 		/* decrease accordingly the number of free rx buffers */
 949		bsq->freebuf_count -= RBD_BLK_SIZE;
 950
 951		*entry->status = STATUS_PENDING;
 952		fore200e->bus->write(entry->rbd_block_dma, &entry->cp_entry->rbd_block_haddr);
 953	    }
 954	}
 955    }
 956}
 957
 958
 959static int
 960fore200e_push_rpd(struct fore200e* fore200e, struct atm_vcc* vcc, struct rpd* rpd)
 961{
 962    struct sk_buff*      skb;
 963    struct buffer*       buffer;
 964    struct fore200e_vcc* fore200e_vcc;
 965    int                  i, pdu_len = 0;
 966#ifdef FORE200E_52BYTE_AAL0_SDU
 967    u32                  cell_header = 0;
 968#endif
 969
 970    ASSERT(vcc);
 971    
 972    fore200e_vcc = FORE200E_VCC(vcc);
 973    ASSERT(fore200e_vcc);
 974
 975#ifdef FORE200E_52BYTE_AAL0_SDU
 976    if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.rxtp.max_sdu == ATM_AAL0_SDU)) {
 977
 978	cell_header = (rpd->atm_header.gfc << ATM_HDR_GFC_SHIFT) |
 979	              (rpd->atm_header.vpi << ATM_HDR_VPI_SHIFT) |
 980                      (rpd->atm_header.vci << ATM_HDR_VCI_SHIFT) |
 981                      (rpd->atm_header.plt << ATM_HDR_PTI_SHIFT) | 
 982                       rpd->atm_header.clp;
 983	pdu_len = 4;
 984    }
 985#endif
 986    
 987    /* compute total PDU length */
 988    for (i = 0; i < rpd->nseg; i++)
 989	pdu_len += rpd->rsd[ i ].length;
 990    
 991    skb = alloc_skb(pdu_len, GFP_ATOMIC);
 992    if (skb == NULL) {
 993	DPRINTK(2, "unable to alloc new skb, rx PDU length = %d\n", pdu_len);
 994
 995	atomic_inc(&vcc->stats->rx_drop);
 996	return -ENOMEM;
 997    } 
 998
 999    __net_timestamp(skb);
1000    
1001#ifdef FORE200E_52BYTE_AAL0_SDU
1002    if (cell_header) {
1003	*((u32*)skb_put(skb, 4)) = cell_header;
1004    }
1005#endif
1006
1007    /* reassemble segments */
1008    for (i = 0; i < rpd->nseg; i++) {
1009	
1010	/* rebuild rx buffer address from rsd handle */
1011	buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle);
1012	
1013	/* Make device DMA transfer visible to CPU.  */
1014	dma_sync_single_for_cpu(fore200e->dev, buffer->data.dma_addr,
1015				rpd->rsd[i].length, DMA_FROM_DEVICE);
1016	
1017	skb_put_data(skb, buffer->data.align_addr, rpd->rsd[i].length);
1018
1019	/* Now let the device get at it again.  */
1020	dma_sync_single_for_device(fore200e->dev, buffer->data.dma_addr,
1021				   rpd->rsd[i].length, DMA_FROM_DEVICE);
1022    }
1023
1024    DPRINTK(3, "rx skb: len = %d, truesize = %d\n", skb->len, skb->truesize);
1025    
1026    if (pdu_len < fore200e_vcc->rx_min_pdu)
1027	fore200e_vcc->rx_min_pdu = pdu_len;
1028    if (pdu_len > fore200e_vcc->rx_max_pdu)
1029	fore200e_vcc->rx_max_pdu = pdu_len;
1030    fore200e_vcc->rx_pdu++;
1031
1032    /* push PDU */
1033    if (atm_charge(vcc, skb->truesize) == 0) {
1034
1035	DPRINTK(2, "receive buffers saturated for %d.%d.%d - PDU dropped\n",
1036		vcc->itf, vcc->vpi, vcc->vci);
1037
1038	dev_kfree_skb_any(skb);
1039
1040	atomic_inc(&vcc->stats->rx_drop);
1041	return -ENOMEM;
1042    }
1043
 
 
1044    vcc->push(vcc, skb);
1045    atomic_inc(&vcc->stats->rx);
1046
 
 
1047    return 0;
1048}
1049
1050
1051static void
1052fore200e_collect_rpd(struct fore200e* fore200e, struct rpd* rpd)
1053{
1054    struct host_bsq* bsq;
1055    struct buffer*   buffer;
1056    int              i;
1057    
1058    for (i = 0; i < rpd->nseg; i++) {
1059
1060	/* rebuild rx buffer address from rsd handle */
1061	buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle);
1062
1063	bsq = &fore200e->host_bsq[ buffer->scheme ][ buffer->magn ];
1064
1065#ifdef FORE200E_BSQ_DEBUG
1066	bsq_audit(2, bsq, buffer->scheme, buffer->magn);
1067
1068	if (buffer->supplied == 0)
1069	    printk(FORE200E "queue %d.%d, buffer %ld was not supplied\n",
1070		   buffer->scheme, buffer->magn, buffer->index);
1071	buffer->supplied = 0;
1072#endif
1073
1074	/* re-insert the buffer into the free buffer list */
1075	buffer->next = bsq->freebuf;
1076	bsq->freebuf = buffer;
1077
1078	/* then increment the number of free rx buffers */
1079	bsq->freebuf_count++;
1080    }
1081}
1082
1083
1084static void
1085fore200e_rx_irq(struct fore200e* fore200e)
1086{
1087    struct host_rxq*        rxq = &fore200e->host_rxq;
1088    struct host_rxq_entry*  entry;
1089    struct atm_vcc*         vcc;
1090    struct fore200e_vc_map* vc_map;
1091
1092    for (;;) {
1093	
1094	entry = &rxq->host_entry[ rxq->head ];
1095
1096	/* no more received PDUs */
1097	if ((*entry->status & STATUS_COMPLETE) == 0)
1098	    break;
1099
1100	vc_map = FORE200E_VC_MAP(fore200e, entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1101
1102	if ((vc_map->vcc == NULL) ||
1103	    (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) {
1104
1105	    DPRINTK(1, "no ready VC found for PDU received on %d.%d.%d\n",
1106		    fore200e->atm_dev->number,
1107		    entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1108	}
1109	else {
1110	    vcc = vc_map->vcc;
1111	    ASSERT(vcc);
1112
1113	    if ((*entry->status & STATUS_ERROR) == 0) {
1114
1115		fore200e_push_rpd(fore200e, vcc, entry->rpd);
1116	    }
1117	    else {
1118		DPRINTK(2, "damaged PDU on %d.%d.%d\n",
1119			fore200e->atm_dev->number,
1120			entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1121		atomic_inc(&vcc->stats->rx_err);
1122	    }
1123	}
1124
1125	FORE200E_NEXT_ENTRY(rxq->head, QUEUE_SIZE_RX);
1126
1127	fore200e_collect_rpd(fore200e, entry->rpd);
1128
1129	/* rewrite the rpd address to ack the received PDU */
1130	fore200e->bus->write(entry->rpd_dma, &entry->cp_entry->rpd_haddr);
1131	*entry->status = STATUS_FREE;
1132
1133	fore200e_supply(fore200e);
1134    }
1135}
1136
1137
1138#ifndef FORE200E_USE_TASKLET
1139static void
1140fore200e_irq(struct fore200e* fore200e)
1141{
1142    unsigned long flags;
1143
1144    spin_lock_irqsave(&fore200e->q_lock, flags);
1145    fore200e_rx_irq(fore200e);
1146    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1147
1148    spin_lock_irqsave(&fore200e->q_lock, flags);
1149    fore200e_tx_irq(fore200e);
1150    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1151}
1152#endif
1153
1154
1155static irqreturn_t
1156fore200e_interrupt(int irq, void* dev)
1157{
1158    struct fore200e* fore200e = FORE200E_DEV((struct atm_dev*)dev);
1159
1160    if (fore200e->bus->irq_check(fore200e) == 0) {
1161	
1162	DPRINTK(3, "interrupt NOT triggered by device %d\n", fore200e->atm_dev->number);
1163	return IRQ_NONE;
1164    }
1165    DPRINTK(3, "interrupt triggered by device %d\n", fore200e->atm_dev->number);
1166
1167#ifdef FORE200E_USE_TASKLET
1168    tasklet_schedule(&fore200e->tx_tasklet);
1169    tasklet_schedule(&fore200e->rx_tasklet);
1170#else
1171    fore200e_irq(fore200e);
1172#endif
1173    
1174    fore200e->bus->irq_ack(fore200e);
1175    return IRQ_HANDLED;
1176}
1177
1178
1179#ifdef FORE200E_USE_TASKLET
1180static void
1181fore200e_tx_tasklet(unsigned long data)
1182{
1183    struct fore200e* fore200e = (struct fore200e*) data;
1184    unsigned long flags;
1185
1186    DPRINTK(3, "tx tasklet scheduled for device %d\n", fore200e->atm_dev->number);
1187
1188    spin_lock_irqsave(&fore200e->q_lock, flags);
1189    fore200e_tx_irq(fore200e);
1190    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1191}
1192
1193
1194static void
1195fore200e_rx_tasklet(unsigned long data)
1196{
1197    struct fore200e* fore200e = (struct fore200e*) data;
1198    unsigned long    flags;
1199
1200    DPRINTK(3, "rx tasklet scheduled for device %d\n", fore200e->atm_dev->number);
1201
1202    spin_lock_irqsave(&fore200e->q_lock, flags);
1203    fore200e_rx_irq((struct fore200e*) data);
1204    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1205}
1206#endif
1207
1208
1209static int
1210fore200e_select_scheme(struct atm_vcc* vcc)
1211{
1212    /* fairly balance the VCs over (identical) buffer schemes */
1213    int scheme = vcc->vci % 2 ? BUFFER_SCHEME_ONE : BUFFER_SCHEME_TWO;
1214
1215    DPRINTK(1, "VC %d.%d.%d uses buffer scheme %d\n",
1216	    vcc->itf, vcc->vpi, vcc->vci, scheme);
1217
1218    return scheme;
1219}
1220
1221
1222static int 
1223fore200e_activate_vcin(struct fore200e* fore200e, int activate, struct atm_vcc* vcc, int mtu)
1224{
1225    struct host_cmdq*        cmdq  = &fore200e->host_cmdq;
1226    struct host_cmdq_entry*  entry = &cmdq->host_entry[ cmdq->head ];
1227    struct activate_opcode   activ_opcode;
1228    struct deactivate_opcode deactiv_opcode;
1229    struct vpvc              vpvc;
1230    int                      ok;
1231    enum fore200e_aal        aal = fore200e_atm2fore_aal(vcc->qos.aal);
1232
1233    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1234    
1235    if (activate) {
1236	FORE200E_VCC(vcc)->scheme = fore200e_select_scheme(vcc);
1237	
1238	activ_opcode.opcode = OPCODE_ACTIVATE_VCIN;
1239	activ_opcode.aal    = aal;
1240	activ_opcode.scheme = FORE200E_VCC(vcc)->scheme;
1241	activ_opcode.pad    = 0;
1242    }
1243    else {
1244	deactiv_opcode.opcode = OPCODE_DEACTIVATE_VCIN;
1245	deactiv_opcode.pad    = 0;
1246    }
1247
1248    vpvc.vci = vcc->vci;
1249    vpvc.vpi = vcc->vpi;
1250
1251    *entry->status = STATUS_PENDING;
1252
1253    if (activate) {
1254
1255#ifdef FORE200E_52BYTE_AAL0_SDU
1256	mtu = 48;
1257#endif
1258	/* the MTU is not used by the cp, except in the case of AAL0 */
1259	fore200e->bus->write(mtu,                        &entry->cp_entry->cmd.activate_block.mtu);
1260	fore200e->bus->write(*(u32*)&vpvc,         (u32 __iomem *)&entry->cp_entry->cmd.activate_block.vpvc);
1261	fore200e->bus->write(*(u32*)&activ_opcode, (u32 __iomem *)&entry->cp_entry->cmd.activate_block.opcode);
1262    }
1263    else {
1264	fore200e->bus->write(*(u32*)&vpvc,         (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.vpvc);
1265	fore200e->bus->write(*(u32*)&deactiv_opcode, (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.opcode);
1266    }
1267
1268    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1269
1270    *entry->status = STATUS_FREE;
1271
1272    if (ok == 0) {
1273	printk(FORE200E "unable to %s VC %d.%d.%d\n",
1274	       activate ? "open" : "close", vcc->itf, vcc->vpi, vcc->vci);
1275	return -EIO;
1276    }
1277
1278    DPRINTK(1, "VC %d.%d.%d %sed\n", vcc->itf, vcc->vpi, vcc->vci, 
1279	    activate ? "open" : "clos");
1280
1281    return 0;
1282}
1283
1284
1285#define FORE200E_MAX_BACK2BACK_CELLS 255    /* XXX depends on CDVT */
1286
1287static void
1288fore200e_rate_ctrl(struct atm_qos* qos, struct tpd_rate* rate)
1289{
1290    if (qos->txtp.max_pcr < ATM_OC3_PCR) {
1291    
1292	/* compute the data cells to idle cells ratio from the tx PCR */
1293	rate->data_cells = qos->txtp.max_pcr * FORE200E_MAX_BACK2BACK_CELLS / ATM_OC3_PCR;
1294	rate->idle_cells = FORE200E_MAX_BACK2BACK_CELLS - rate->data_cells;
1295    }
1296    else {
1297	/* disable rate control */
1298	rate->data_cells = rate->idle_cells = 0;
1299    }
1300}
1301
1302
1303static int
1304fore200e_open(struct atm_vcc *vcc)
1305{
1306    struct fore200e*        fore200e = FORE200E_DEV(vcc->dev);
1307    struct fore200e_vcc*    fore200e_vcc;
1308    struct fore200e_vc_map* vc_map;
1309    unsigned long	    flags;
1310    int			    vci = vcc->vci;
1311    short		    vpi = vcc->vpi;
1312
1313    ASSERT((vpi >= 0) && (vpi < 1<<FORE200E_VPI_BITS));
1314    ASSERT((vci >= 0) && (vci < 1<<FORE200E_VCI_BITS));
1315
1316    spin_lock_irqsave(&fore200e->q_lock, flags);
1317
1318    vc_map = FORE200E_VC_MAP(fore200e, vpi, vci);
1319    if (vc_map->vcc) {
1320
1321	spin_unlock_irqrestore(&fore200e->q_lock, flags);
1322
1323	printk(FORE200E "VC %d.%d.%d already in use\n",
1324	       fore200e->atm_dev->number, vpi, vci);
1325
1326	return -EINVAL;
1327    }
1328
1329    vc_map->vcc = vcc;
1330
1331    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1332
1333    fore200e_vcc = kzalloc(sizeof(struct fore200e_vcc), GFP_ATOMIC);
1334    if (fore200e_vcc == NULL) {
1335	vc_map->vcc = NULL;
1336	return -ENOMEM;
1337    }
1338
1339    DPRINTK(2, "opening %d.%d.%d:%d QoS = (tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; "
1340	    "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d)\n",
1341	    vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1342	    fore200e_traffic_class[ vcc->qos.txtp.traffic_class ],
1343	    vcc->qos.txtp.min_pcr, vcc->qos.txtp.max_pcr, vcc->qos.txtp.max_cdv, vcc->qos.txtp.max_sdu,
1344	    fore200e_traffic_class[ vcc->qos.rxtp.traffic_class ],
1345	    vcc->qos.rxtp.min_pcr, vcc->qos.rxtp.max_pcr, vcc->qos.rxtp.max_cdv, vcc->qos.rxtp.max_sdu);
1346    
1347    /* pseudo-CBR bandwidth requested? */
1348    if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1349	
1350	mutex_lock(&fore200e->rate_mtx);
1351	if (fore200e->available_cell_rate < vcc->qos.txtp.max_pcr) {
1352	    mutex_unlock(&fore200e->rate_mtx);
1353
1354	    kfree(fore200e_vcc);
1355	    vc_map->vcc = NULL;
1356	    return -EAGAIN;
1357	}
1358
1359	/* reserve bandwidth */
1360	fore200e->available_cell_rate -= vcc->qos.txtp.max_pcr;
1361	mutex_unlock(&fore200e->rate_mtx);
1362    }
1363    
1364    vcc->itf = vcc->dev->number;
1365
1366    set_bit(ATM_VF_PARTIAL,&vcc->flags);
1367    set_bit(ATM_VF_ADDR, &vcc->flags);
1368
1369    vcc->dev_data = fore200e_vcc;
1370    
1371    if (fore200e_activate_vcin(fore200e, 1, vcc, vcc->qos.rxtp.max_sdu) < 0) {
1372
1373	vc_map->vcc = NULL;
1374
1375	clear_bit(ATM_VF_ADDR, &vcc->flags);
1376	clear_bit(ATM_VF_PARTIAL,&vcc->flags);
1377
1378	vcc->dev_data = NULL;
1379
1380	fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1381
1382	kfree(fore200e_vcc);
1383	return -EINVAL;
1384    }
1385    
1386    /* compute rate control parameters */
1387    if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1388	
1389	fore200e_rate_ctrl(&vcc->qos, &fore200e_vcc->rate);
1390	set_bit(ATM_VF_HASQOS, &vcc->flags);
1391
1392	DPRINTK(3, "tx on %d.%d.%d:%d, tx PCR = %d, rx PCR = %d, data_cells = %u, idle_cells = %u\n",
1393		vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1394		vcc->qos.txtp.max_pcr, vcc->qos.rxtp.max_pcr, 
1395		fore200e_vcc->rate.data_cells, fore200e_vcc->rate.idle_cells);
1396    }
1397    
1398    fore200e_vcc->tx_min_pdu = fore200e_vcc->rx_min_pdu = MAX_PDU_SIZE + 1;
1399    fore200e_vcc->tx_max_pdu = fore200e_vcc->rx_max_pdu = 0;
1400    fore200e_vcc->tx_pdu     = fore200e_vcc->rx_pdu     = 0;
1401
1402    /* new incarnation of the vcc */
1403    vc_map->incarn = ++fore200e->incarn_count;
1404
1405    /* VC unusable before this flag is set */
1406    set_bit(ATM_VF_READY, &vcc->flags);
1407
1408    return 0;
1409}
1410
1411
1412static void
1413fore200e_close(struct atm_vcc* vcc)
1414{
 
1415    struct fore200e_vcc*    fore200e_vcc;
1416    struct fore200e*        fore200e;
1417    struct fore200e_vc_map* vc_map;
1418    unsigned long           flags;
1419
1420    ASSERT(vcc);
1421    fore200e = FORE200E_DEV(vcc->dev);
1422
1423    ASSERT((vcc->vpi >= 0) && (vcc->vpi < 1<<FORE200E_VPI_BITS));
1424    ASSERT((vcc->vci >= 0) && (vcc->vci < 1<<FORE200E_VCI_BITS));
1425
1426    DPRINTK(2, "closing %d.%d.%d:%d\n", vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal));
1427
1428    clear_bit(ATM_VF_READY, &vcc->flags);
1429
1430    fore200e_activate_vcin(fore200e, 0, vcc, 0);
1431
1432    spin_lock_irqsave(&fore200e->q_lock, flags);
1433
1434    vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci);
1435
1436    /* the vc is no longer considered as "in use" by fore200e_open() */
1437    vc_map->vcc = NULL;
1438
1439    vcc->itf = vcc->vci = vcc->vpi = 0;
1440
1441    fore200e_vcc = FORE200E_VCC(vcc);
1442    vcc->dev_data = NULL;
1443
1444    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1445
1446    /* release reserved bandwidth, if any */
1447    if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1448
1449	mutex_lock(&fore200e->rate_mtx);
1450	fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1451	mutex_unlock(&fore200e->rate_mtx);
1452
1453	clear_bit(ATM_VF_HASQOS, &vcc->flags);
1454    }
1455
1456    clear_bit(ATM_VF_ADDR, &vcc->flags);
1457    clear_bit(ATM_VF_PARTIAL,&vcc->flags);
1458
1459    ASSERT(fore200e_vcc);
1460    kfree(fore200e_vcc);
1461}
1462
1463
1464static int
1465fore200e_send(struct atm_vcc *vcc, struct sk_buff *skb)
1466{
1467    struct fore200e*        fore200e;
1468    struct fore200e_vcc*    fore200e_vcc;
1469    struct fore200e_vc_map* vc_map;
1470    struct host_txq*        txq;
1471    struct host_txq_entry*  entry;
1472    struct tpd*             tpd;
1473    struct tpd_haddr        tpd_haddr;
1474    int                     retry        = CONFIG_ATM_FORE200E_TX_RETRY;
1475    int                     tx_copy      = 0;
1476    int                     tx_len       = skb->len;
1477    u32*                    cell_header  = NULL;
1478    unsigned char*          skb_data;
1479    int                     skb_len;
1480    unsigned char*          data;
1481    unsigned long           flags;
1482
1483    if (!vcc)
1484        return -EINVAL;
1485
1486    fore200e = FORE200E_DEV(vcc->dev);
1487    fore200e_vcc = FORE200E_VCC(vcc);
1488
1489    if (!fore200e)
1490        return -EINVAL;
1491
1492    txq = &fore200e->host_txq;
1493    if (!fore200e_vcc)
1494        return -EINVAL;
1495
1496    if (!test_bit(ATM_VF_READY, &vcc->flags)) {
1497	DPRINTK(1, "VC %d.%d.%d not ready for tx\n", vcc->itf, vcc->vpi, vcc->vpi);
1498	dev_kfree_skb_any(skb);
1499	return -EINVAL;
1500    }
1501
1502#ifdef FORE200E_52BYTE_AAL0_SDU
1503    if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.txtp.max_sdu == ATM_AAL0_SDU)) {
1504	cell_header = (u32*) skb->data;
1505	skb_data    = skb->data + 4;    /* skip 4-byte cell header */
1506	skb_len     = tx_len = skb->len  - 4;
1507
1508	DPRINTK(3, "user-supplied cell header = 0x%08x\n", *cell_header);
1509    }
1510    else 
1511#endif
1512    {
1513	skb_data = skb->data;
1514	skb_len  = skb->len;
1515    }
1516    
1517    if (((unsigned long)skb_data) & 0x3) {
1518
1519	DPRINTK(2, "misaligned tx PDU on device %s\n", fore200e->name);
1520	tx_copy = 1;
1521	tx_len  = skb_len;
1522    }
1523
1524    if ((vcc->qos.aal == ATM_AAL0) && (skb_len % ATM_CELL_PAYLOAD)) {
1525
1526        /* this simply NUKES the PCA board */
1527	DPRINTK(2, "incomplete tx AAL0 PDU on device %s\n", fore200e->name);
1528	tx_copy = 1;
1529	tx_len  = ((skb_len / ATM_CELL_PAYLOAD) + 1) * ATM_CELL_PAYLOAD;
1530    }
1531    
1532    if (tx_copy) {
1533	data = kmalloc(tx_len, GFP_ATOMIC);
1534	if (data == NULL) {
1535	    if (vcc->pop) {
1536		vcc->pop(vcc, skb);
1537	    }
1538	    else {
1539		dev_kfree_skb_any(skb);
1540	    }
1541	    return -ENOMEM;
1542	}
1543
1544	memcpy(data, skb_data, skb_len);
1545	if (skb_len < tx_len)
1546	    memset(data + skb_len, 0x00, tx_len - skb_len);
1547    }
1548    else {
1549	data = skb_data;
1550    }
1551
1552    vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci);
1553    ASSERT(vc_map->vcc == vcc);
1554
1555  retry_here:
1556
1557    spin_lock_irqsave(&fore200e->q_lock, flags);
1558
1559    entry = &txq->host_entry[ txq->head ];
1560
1561    if ((*entry->status != STATUS_FREE) || (txq->txing >= QUEUE_SIZE_TX - 2)) {
1562
1563	/* try to free completed tx queue entries */
1564	fore200e_tx_irq(fore200e);
1565
1566	if (*entry->status != STATUS_FREE) {
1567
1568	    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1569
1570	    /* retry once again? */
1571	    if (--retry > 0) {
1572		udelay(50);
1573		goto retry_here;
1574	    }
1575
1576	    atomic_inc(&vcc->stats->tx_err);
1577
1578	    fore200e->tx_sat++;
1579	    DPRINTK(2, "tx queue of device %s is saturated, PDU dropped - heartbeat is %08x\n",
1580		    fore200e->name, fore200e->cp_queues->heartbeat);
1581	    if (vcc->pop) {
1582		vcc->pop(vcc, skb);
1583	    }
1584	    else {
1585		dev_kfree_skb_any(skb);
1586	    }
1587
1588	    if (tx_copy)
1589		kfree(data);
1590
1591	    return -ENOBUFS;
1592	}
1593    }
1594
1595    entry->incarn = vc_map->incarn;
1596    entry->vc_map = vc_map;
1597    entry->skb    = skb;
1598    entry->data   = tx_copy ? data : NULL;
1599
1600    tpd = entry->tpd;
1601    tpd->tsd[ 0 ].buffer = dma_map_single(fore200e->dev, data, tx_len,
1602					  DMA_TO_DEVICE);
1603    if (dma_mapping_error(fore200e->dev, tpd->tsd[0].buffer)) {
1604	if (tx_copy)
1605	    kfree(data);
1606	spin_unlock_irqrestore(&fore200e->q_lock, flags);
1607	return -ENOMEM;
1608    }
1609    tpd->tsd[ 0 ].length = tx_len;
1610
1611    FORE200E_NEXT_ENTRY(txq->head, QUEUE_SIZE_TX);
1612    txq->txing++;
1613
1614    /* The dma_map call above implies a dma_sync so the device can use it,
1615     * thus no explicit dma_sync call is necessary here.
1616     */
1617    
1618    DPRINTK(3, "tx on %d.%d.%d:%d, len = %u (%u)\n", 
1619	    vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1620	    tpd->tsd[0].length, skb_len);
1621
1622    if (skb_len < fore200e_vcc->tx_min_pdu)
1623	fore200e_vcc->tx_min_pdu = skb_len;
1624    if (skb_len > fore200e_vcc->tx_max_pdu)
1625	fore200e_vcc->tx_max_pdu = skb_len;
1626    fore200e_vcc->tx_pdu++;
1627
1628    /* set tx rate control information */
1629    tpd->rate.data_cells = fore200e_vcc->rate.data_cells;
1630    tpd->rate.idle_cells = fore200e_vcc->rate.idle_cells;
1631
1632    if (cell_header) {
1633	tpd->atm_header.clp = (*cell_header & ATM_HDR_CLP);
1634	tpd->atm_header.plt = (*cell_header & ATM_HDR_PTI_MASK) >> ATM_HDR_PTI_SHIFT;
1635	tpd->atm_header.vci = (*cell_header & ATM_HDR_VCI_MASK) >> ATM_HDR_VCI_SHIFT;
1636	tpd->atm_header.vpi = (*cell_header & ATM_HDR_VPI_MASK) >> ATM_HDR_VPI_SHIFT;
1637	tpd->atm_header.gfc = (*cell_header & ATM_HDR_GFC_MASK) >> ATM_HDR_GFC_SHIFT;
1638    }
1639    else {
1640	/* set the ATM header, common to all cells conveying the PDU */
1641	tpd->atm_header.clp = 0;
1642	tpd->atm_header.plt = 0;
1643	tpd->atm_header.vci = vcc->vci;
1644	tpd->atm_header.vpi = vcc->vpi;
1645	tpd->atm_header.gfc = 0;
1646    }
1647
1648    tpd->spec.length = tx_len;
1649    tpd->spec.nseg   = 1;
1650    tpd->spec.aal    = fore200e_atm2fore_aal(vcc->qos.aal);
1651    tpd->spec.intr   = 1;
1652
1653    tpd_haddr.size  = sizeof(struct tpd) / (1<<TPD_HADDR_SHIFT);  /* size is expressed in 32 byte blocks */
1654    tpd_haddr.pad   = 0;
1655    tpd_haddr.haddr = entry->tpd_dma >> TPD_HADDR_SHIFT;          /* shift the address, as we are in a bitfield */
1656
1657    *entry->status = STATUS_PENDING;
1658    fore200e->bus->write(*(u32*)&tpd_haddr, (u32 __iomem *)&entry->cp_entry->tpd_haddr);
1659
1660    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1661
1662    return 0;
1663}
1664
1665
1666static int
1667fore200e_getstats(struct fore200e* fore200e)
1668{
1669    struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1670    struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1671    struct stats_opcode     opcode;
1672    int                     ok;
1673    u32                     stats_dma_addr;
1674
1675    if (fore200e->stats == NULL) {
1676	fore200e->stats = kzalloc(sizeof(struct stats), GFP_KERNEL);
1677	if (fore200e->stats == NULL)
1678	    return -ENOMEM;
1679    }
1680    
1681    stats_dma_addr = dma_map_single(fore200e->dev, fore200e->stats,
1682				    sizeof(struct stats), DMA_FROM_DEVICE);
1683    if (dma_mapping_error(fore200e->dev, stats_dma_addr))
1684    	return -ENOMEM;
1685    
1686    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1687
1688    opcode.opcode = OPCODE_GET_STATS;
1689    opcode.pad    = 0;
1690
1691    fore200e->bus->write(stats_dma_addr, &entry->cp_entry->cmd.stats_block.stats_haddr);
1692    
1693    *entry->status = STATUS_PENDING;
1694
1695    fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.stats_block.opcode);
1696
1697    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1698
1699    *entry->status = STATUS_FREE;
1700
1701    dma_unmap_single(fore200e->dev, stats_dma_addr, sizeof(struct stats), DMA_FROM_DEVICE);
1702    
1703    if (ok == 0) {
1704	printk(FORE200E "unable to get statistics from device %s\n", fore200e->name);
1705	return -EIO;
1706    }
1707
1708    return 0;
1709}
1710
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1711#if 0 /* currently unused */
1712static int
1713fore200e_get_oc3(struct fore200e* fore200e, struct oc3_regs* regs)
1714{
1715    struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1716    struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1717    struct oc3_opcode       opcode;
1718    int                     ok;
1719    u32                     oc3_regs_dma_addr;
1720
1721    oc3_regs_dma_addr = fore200e->bus->dma_map(fore200e, regs, sizeof(struct oc3_regs), DMA_FROM_DEVICE);
1722
1723    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1724
1725    opcode.opcode = OPCODE_GET_OC3;
1726    opcode.reg    = 0;
1727    opcode.value  = 0;
1728    opcode.mask   = 0;
1729
1730    fore200e->bus->write(oc3_regs_dma_addr, &entry->cp_entry->cmd.oc3_block.regs_haddr);
1731    
1732    *entry->status = STATUS_PENDING;
1733
1734    fore200e->bus->write(*(u32*)&opcode, (u32*)&entry->cp_entry->cmd.oc3_block.opcode);
1735
1736    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1737
1738    *entry->status = STATUS_FREE;
1739
1740    fore200e->bus->dma_unmap(fore200e, oc3_regs_dma_addr, sizeof(struct oc3_regs), DMA_FROM_DEVICE);
1741    
1742    if (ok == 0) {
1743	printk(FORE200E "unable to get OC-3 regs of device %s\n", fore200e->name);
1744	return -EIO;
1745    }
1746
1747    return 0;
1748}
1749#endif
1750
1751
1752static int
1753fore200e_set_oc3(struct fore200e* fore200e, u32 reg, u32 value, u32 mask)
1754{
1755    struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1756    struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1757    struct oc3_opcode       opcode;
1758    int                     ok;
1759
1760    DPRINTK(2, "set OC-3 reg = 0x%02x, value = 0x%02x, mask = 0x%02x\n", reg, value, mask);
1761
1762    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1763
1764    opcode.opcode = OPCODE_SET_OC3;
1765    opcode.reg    = reg;
1766    opcode.value  = value;
1767    opcode.mask   = mask;
1768
1769    fore200e->bus->write(0, &entry->cp_entry->cmd.oc3_block.regs_haddr);
1770    
1771    *entry->status = STATUS_PENDING;
1772
1773    fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.oc3_block.opcode);
1774
1775    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1776
1777    *entry->status = STATUS_FREE;
1778
1779    if (ok == 0) {
1780	printk(FORE200E "unable to set OC-3 reg 0x%02x of device %s\n", reg, fore200e->name);
1781	return -EIO;
1782    }
1783
1784    return 0;
1785}
1786
1787
1788static int
1789fore200e_setloop(struct fore200e* fore200e, int loop_mode)
1790{
1791    u32 mct_value, mct_mask;
1792    int error;
1793
1794    if (!capable(CAP_NET_ADMIN))
1795	return -EPERM;
1796    
1797    switch (loop_mode) {
1798
1799    case ATM_LM_NONE:
1800	mct_value = 0; 
1801	mct_mask  = SUNI_MCT_DLE | SUNI_MCT_LLE;
1802	break;
1803	
1804    case ATM_LM_LOC_PHY:
1805	mct_value = mct_mask = SUNI_MCT_DLE;
1806	break;
1807
1808    case ATM_LM_RMT_PHY:
1809	mct_value = mct_mask = SUNI_MCT_LLE;
1810	break;
1811
1812    default:
1813	return -EINVAL;
1814    }
1815
1816    error = fore200e_set_oc3(fore200e, SUNI_MCT, mct_value, mct_mask);
1817    if (error == 0)
1818	fore200e->loop_mode = loop_mode;
1819
1820    return error;
1821}
1822
1823
1824static int
1825fore200e_fetch_stats(struct fore200e* fore200e, struct sonet_stats __user *arg)
1826{
1827    struct sonet_stats tmp;
1828
1829    if (fore200e_getstats(fore200e) < 0)
1830	return -EIO;
1831
1832    tmp.section_bip = be32_to_cpu(fore200e->stats->oc3.section_bip8_errors);
1833    tmp.line_bip    = be32_to_cpu(fore200e->stats->oc3.line_bip24_errors);
1834    tmp.path_bip    = be32_to_cpu(fore200e->stats->oc3.path_bip8_errors);
1835    tmp.line_febe   = be32_to_cpu(fore200e->stats->oc3.line_febe_errors);
1836    tmp.path_febe   = be32_to_cpu(fore200e->stats->oc3.path_febe_errors);
1837    tmp.corr_hcs    = be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors);
1838    tmp.uncorr_hcs  = be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors);
1839    tmp.tx_cells    = be32_to_cpu(fore200e->stats->aal0.cells_transmitted)  +
1840	              be32_to_cpu(fore200e->stats->aal34.cells_transmitted) +
1841	              be32_to_cpu(fore200e->stats->aal5.cells_transmitted);
1842    tmp.rx_cells    = be32_to_cpu(fore200e->stats->aal0.cells_received)     +
1843	              be32_to_cpu(fore200e->stats->aal34.cells_received)    +
1844	              be32_to_cpu(fore200e->stats->aal5.cells_received);
1845
1846    if (arg)
1847	return copy_to_user(arg, &tmp, sizeof(struct sonet_stats)) ? -EFAULT : 0;	
1848    
1849    return 0;
1850}
1851
1852
1853static int
1854fore200e_ioctl(struct atm_dev* dev, unsigned int cmd, void __user * arg)
1855{
1856    struct fore200e* fore200e = FORE200E_DEV(dev);
1857    
1858    DPRINTK(2, "ioctl cmd = 0x%x (%u), arg = 0x%p (%lu)\n", cmd, cmd, arg, (unsigned long)arg);
1859
1860    switch (cmd) {
1861
1862    case SONET_GETSTAT:
1863	return fore200e_fetch_stats(fore200e, (struct sonet_stats __user *)arg);
1864
1865    case SONET_GETDIAG:
1866	return put_user(0, (int __user *)arg) ? -EFAULT : 0;
1867
1868    case ATM_SETLOOP:
1869	return fore200e_setloop(fore200e, (int)(unsigned long)arg);
1870
1871    case ATM_GETLOOP:
1872	return put_user(fore200e->loop_mode, (int __user *)arg) ? -EFAULT : 0;
1873
1874    case ATM_QUERYLOOP:
1875	return put_user(ATM_LM_LOC_PHY | ATM_LM_RMT_PHY, (int __user *)arg) ? -EFAULT : 0;
1876    }
1877
1878    return -ENOSYS; /* not implemented */
1879}
1880
1881
1882static int
1883fore200e_change_qos(struct atm_vcc* vcc,struct atm_qos* qos, int flags)
1884{
1885    struct fore200e_vcc* fore200e_vcc = FORE200E_VCC(vcc);
1886    struct fore200e*     fore200e     = FORE200E_DEV(vcc->dev);
1887
1888    if (!test_bit(ATM_VF_READY, &vcc->flags)) {
1889	DPRINTK(1, "VC %d.%d.%d not ready for QoS change\n", vcc->itf, vcc->vpi, vcc->vpi);
1890	return -EINVAL;
1891    }
1892
1893    DPRINTK(2, "change_qos %d.%d.%d, "
1894	    "(tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; "
1895	    "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d), flags = 0x%x\n"
1896	    "available_cell_rate = %u",
1897	    vcc->itf, vcc->vpi, vcc->vci,
1898	    fore200e_traffic_class[ qos->txtp.traffic_class ],
1899	    qos->txtp.min_pcr, qos->txtp.max_pcr, qos->txtp.max_cdv, qos->txtp.max_sdu,
1900	    fore200e_traffic_class[ qos->rxtp.traffic_class ],
1901	    qos->rxtp.min_pcr, qos->rxtp.max_pcr, qos->rxtp.max_cdv, qos->rxtp.max_sdu,
1902	    flags, fore200e->available_cell_rate);
1903
1904    if ((qos->txtp.traffic_class == ATM_CBR) && (qos->txtp.max_pcr > 0)) {
1905
1906	mutex_lock(&fore200e->rate_mtx);
1907	if (fore200e->available_cell_rate + vcc->qos.txtp.max_pcr < qos->txtp.max_pcr) {
1908	    mutex_unlock(&fore200e->rate_mtx);
1909	    return -EAGAIN;
1910	}
1911
1912	fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1913	fore200e->available_cell_rate -= qos->txtp.max_pcr;
1914
1915	mutex_unlock(&fore200e->rate_mtx);
1916	
1917	memcpy(&vcc->qos, qos, sizeof(struct atm_qos));
1918	
1919	/* update rate control parameters */
1920	fore200e_rate_ctrl(qos, &fore200e_vcc->rate);
1921
1922	set_bit(ATM_VF_HASQOS, &vcc->flags);
1923
1924	return 0;
1925    }
1926    
1927    return -EINVAL;
1928}
1929    
1930
1931static int fore200e_irq_request(struct fore200e *fore200e)
1932{
1933    if (request_irq(fore200e->irq, fore200e_interrupt, IRQF_SHARED, fore200e->name, fore200e->atm_dev) < 0) {
1934
1935	printk(FORE200E "unable to reserve IRQ %s for device %s\n",
1936	       fore200e_irq_itoa(fore200e->irq), fore200e->name);
1937	return -EBUSY;
1938    }
1939
1940    printk(FORE200E "IRQ %s reserved for device %s\n",
1941	   fore200e_irq_itoa(fore200e->irq), fore200e->name);
1942
1943#ifdef FORE200E_USE_TASKLET
1944    tasklet_init(&fore200e->tx_tasklet, fore200e_tx_tasklet, (unsigned long)fore200e);
1945    tasklet_init(&fore200e->rx_tasklet, fore200e_rx_tasklet, (unsigned long)fore200e);
1946#endif
1947
1948    fore200e->state = FORE200E_STATE_IRQ;
1949    return 0;
1950}
1951
1952
1953static int fore200e_get_esi(struct fore200e *fore200e)
1954{
1955    struct prom_data* prom = kzalloc(sizeof(struct prom_data), GFP_KERNEL);
1956    int ok, i;
1957
1958    if (!prom)
1959	return -ENOMEM;
1960
1961    ok = fore200e->bus->prom_read(fore200e, prom);
1962    if (ok < 0) {
1963	kfree(prom);
1964	return -EBUSY;
1965    }
1966	
1967    printk(FORE200E "device %s, rev. %c, S/N: %d, ESI: %pM\n",
1968	   fore200e->name, 
1969	   (prom->hw_revision & 0xFF) + '@',    /* probably meaningless with SBA boards */
1970	   prom->serial_number & 0xFFFF, &prom->mac_addr[2]);
1971	
1972    for (i = 0; i < ESI_LEN; i++) {
1973	fore200e->esi[ i ] = fore200e->atm_dev->esi[ i ] = prom->mac_addr[ i + 2 ];
1974    }
1975    
1976    kfree(prom);
1977
1978    return 0;
1979}
1980
1981
1982static int fore200e_alloc_rx_buf(struct fore200e *fore200e)
1983{
1984    int scheme, magn, nbr, size, i;
1985
1986    struct host_bsq* bsq;
1987    struct buffer*   buffer;
1988
1989    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
1990	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
1991
1992	    bsq = &fore200e->host_bsq[ scheme ][ magn ];
1993
1994	    nbr  = fore200e_rx_buf_nbr[ scheme ][ magn ];
1995	    size = fore200e_rx_buf_size[ scheme ][ magn ];
1996
1997	    DPRINTK(2, "rx buffers %d / %d are being allocated\n", scheme, magn);
1998
1999	    /* allocate the array of receive buffers */
2000	    buffer = bsq->buffer = kcalloc(nbr, sizeof(struct buffer),
2001                                           GFP_KERNEL);
2002
2003	    if (buffer == NULL)
2004		return -ENOMEM;
2005
2006	    bsq->freebuf = NULL;
2007
2008	    for (i = 0; i < nbr; i++) {
2009
2010		buffer[ i ].scheme = scheme;
2011		buffer[ i ].magn   = magn;
2012#ifdef FORE200E_BSQ_DEBUG
2013		buffer[ i ].index  = i;
2014		buffer[ i ].supplied = 0;
2015#endif
2016
2017		/* allocate the receive buffer body */
2018		if (fore200e_chunk_alloc(fore200e,
2019					 &buffer[ i ].data, size, fore200e->bus->buffer_alignment,
2020					 DMA_FROM_DEVICE) < 0) {
2021		    
2022		    while (i > 0)
2023			fore200e_chunk_free(fore200e, &buffer[ --i ].data);
2024		    kfree(buffer);
2025		    
2026		    return -ENOMEM;
2027		}
2028
2029		/* insert the buffer into the free buffer list */
2030		buffer[ i ].next = bsq->freebuf;
2031		bsq->freebuf = &buffer[ i ];
2032	    }
2033	    /* all the buffers are free, initially */
2034	    bsq->freebuf_count = nbr;
2035
2036#ifdef FORE200E_BSQ_DEBUG
2037	    bsq_audit(3, bsq, scheme, magn);
2038#endif
2039	}
2040    }
2041
2042    fore200e->state = FORE200E_STATE_ALLOC_BUF;
2043    return 0;
2044}
2045
2046
2047static int fore200e_init_bs_queue(struct fore200e *fore200e)
2048{
2049    int scheme, magn, i;
2050
2051    struct host_bsq*     bsq;
2052    struct cp_bsq_entry __iomem * cp_entry;
2053
2054    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
2055	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
2056
2057	    DPRINTK(2, "buffer supply queue %d / %d is being initialized\n", scheme, magn);
2058
2059	    bsq = &fore200e->host_bsq[ scheme ][ magn ];
2060
2061	    /* allocate and align the array of status words */
2062	    if (fore200e_dma_chunk_alloc(fore200e,
2063					       &bsq->status,
2064					       sizeof(enum status), 
2065					       QUEUE_SIZE_BS,
2066					       fore200e->bus->status_alignment) < 0) {
2067		return -ENOMEM;
2068	    }
2069
2070	    /* allocate and align the array of receive buffer descriptors */
2071	    if (fore200e_dma_chunk_alloc(fore200e,
2072					       &bsq->rbd_block,
2073					       sizeof(struct rbd_block),
2074					       QUEUE_SIZE_BS,
2075					       fore200e->bus->descr_alignment) < 0) {
2076		
2077		fore200e_dma_chunk_free(fore200e, &bsq->status);
2078		return -ENOMEM;
2079	    }
2080	    
2081	    /* get the base address of the cp resident buffer supply queue entries */
2082	    cp_entry = fore200e->virt_base + 
2083		       fore200e->bus->read(&fore200e->cp_queues->cp_bsq[ scheme ][ magn ]);
2084	    
2085	    /* fill the host resident and cp resident buffer supply queue entries */
2086	    for (i = 0; i < QUEUE_SIZE_BS; i++) {
2087		
2088		bsq->host_entry[ i ].status = 
2089		                     FORE200E_INDEX(bsq->status.align_addr, enum status, i);
2090	        bsq->host_entry[ i ].rbd_block =
2091		                     FORE200E_INDEX(bsq->rbd_block.align_addr, struct rbd_block, i);
2092		bsq->host_entry[ i ].rbd_block_dma =
2093		                     FORE200E_DMA_INDEX(bsq->rbd_block.dma_addr, struct rbd_block, i);
2094		bsq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2095		
2096		*bsq->host_entry[ i ].status = STATUS_FREE;
2097		
2098		fore200e->bus->write(FORE200E_DMA_INDEX(bsq->status.dma_addr, enum status, i), 
2099				     &cp_entry[ i ].status_haddr);
2100	    }
2101	}
2102    }
2103
2104    fore200e->state = FORE200E_STATE_INIT_BSQ;
2105    return 0;
2106}
2107
2108
2109static int fore200e_init_rx_queue(struct fore200e *fore200e)
2110{
2111    struct host_rxq*     rxq =  &fore200e->host_rxq;
2112    struct cp_rxq_entry __iomem * cp_entry;
2113    int i;
2114
2115    DPRINTK(2, "receive queue is being initialized\n");
2116
2117    /* allocate and align the array of status words */
2118    if (fore200e_dma_chunk_alloc(fore200e,
2119				       &rxq->status,
2120				       sizeof(enum status), 
2121				       QUEUE_SIZE_RX,
2122				       fore200e->bus->status_alignment) < 0) {
2123	return -ENOMEM;
2124    }
2125
2126    /* allocate and align the array of receive PDU descriptors */
2127    if (fore200e_dma_chunk_alloc(fore200e,
2128				       &rxq->rpd,
2129				       sizeof(struct rpd), 
2130				       QUEUE_SIZE_RX,
2131				       fore200e->bus->descr_alignment) < 0) {
2132	
2133	fore200e_dma_chunk_free(fore200e, &rxq->status);
2134	return -ENOMEM;
2135    }
2136
2137    /* get the base address of the cp resident rx queue entries */
2138    cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_rxq);
2139
2140    /* fill the host resident and cp resident rx entries */
2141    for (i=0; i < QUEUE_SIZE_RX; i++) {
2142	
2143	rxq->host_entry[ i ].status = 
2144	                     FORE200E_INDEX(rxq->status.align_addr, enum status, i);
2145	rxq->host_entry[ i ].rpd = 
2146	                     FORE200E_INDEX(rxq->rpd.align_addr, struct rpd, i);
2147	rxq->host_entry[ i ].rpd_dma = 
2148	                     FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i);
2149	rxq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2150
2151	*rxq->host_entry[ i ].status = STATUS_FREE;
2152
2153	fore200e->bus->write(FORE200E_DMA_INDEX(rxq->status.dma_addr, enum status, i), 
2154			     &cp_entry[ i ].status_haddr);
2155
2156	fore200e->bus->write(FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i),
2157			     &cp_entry[ i ].rpd_haddr);
2158    }
2159
2160    /* set the head entry of the queue */
2161    rxq->head = 0;
2162
2163    fore200e->state = FORE200E_STATE_INIT_RXQ;
2164    return 0;
2165}
2166
2167
2168static int fore200e_init_tx_queue(struct fore200e *fore200e)
2169{
2170    struct host_txq*     txq =  &fore200e->host_txq;
2171    struct cp_txq_entry __iomem * cp_entry;
2172    int i;
2173
2174    DPRINTK(2, "transmit queue is being initialized\n");
2175
2176    /* allocate and align the array of status words */
2177    if (fore200e_dma_chunk_alloc(fore200e,
2178				       &txq->status,
2179				       sizeof(enum status), 
2180				       QUEUE_SIZE_TX,
2181				       fore200e->bus->status_alignment) < 0) {
2182	return -ENOMEM;
2183    }
2184
2185    /* allocate and align the array of transmit PDU descriptors */
2186    if (fore200e_dma_chunk_alloc(fore200e,
2187				       &txq->tpd,
2188				       sizeof(struct tpd), 
2189				       QUEUE_SIZE_TX,
2190				       fore200e->bus->descr_alignment) < 0) {
2191	
2192	fore200e_dma_chunk_free(fore200e, &txq->status);
2193	return -ENOMEM;
2194    }
2195
2196    /* get the base address of the cp resident tx queue entries */
2197    cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_txq);
2198
2199    /* fill the host resident and cp resident tx entries */
2200    for (i=0; i < QUEUE_SIZE_TX; i++) {
2201	
2202	txq->host_entry[ i ].status = 
2203	                     FORE200E_INDEX(txq->status.align_addr, enum status, i);
2204	txq->host_entry[ i ].tpd = 
2205	                     FORE200E_INDEX(txq->tpd.align_addr, struct tpd, i);
2206	txq->host_entry[ i ].tpd_dma  = 
2207                             FORE200E_DMA_INDEX(txq->tpd.dma_addr, struct tpd, i);
2208	txq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2209
2210	*txq->host_entry[ i ].status = STATUS_FREE;
2211	
2212	fore200e->bus->write(FORE200E_DMA_INDEX(txq->status.dma_addr, enum status, i), 
2213			     &cp_entry[ i ].status_haddr);
2214	
2215        /* although there is a one-to-one mapping of tx queue entries and tpds,
2216	   we do not write here the DMA (physical) base address of each tpd into
2217	   the related cp resident entry, because the cp relies on this write
2218	   operation to detect that a new pdu has been submitted for tx */
2219    }
2220
2221    /* set the head and tail entries of the queue */
2222    txq->head = 0;
2223    txq->tail = 0;
2224
2225    fore200e->state = FORE200E_STATE_INIT_TXQ;
2226    return 0;
2227}
2228
2229
2230static int fore200e_init_cmd_queue(struct fore200e *fore200e)
2231{
2232    struct host_cmdq*     cmdq =  &fore200e->host_cmdq;
2233    struct cp_cmdq_entry __iomem * cp_entry;
2234    int i;
2235
2236    DPRINTK(2, "command queue is being initialized\n");
2237
2238    /* allocate and align the array of status words */
2239    if (fore200e_dma_chunk_alloc(fore200e,
2240				       &cmdq->status,
2241				       sizeof(enum status), 
2242				       QUEUE_SIZE_CMD,
2243				       fore200e->bus->status_alignment) < 0) {
2244	return -ENOMEM;
2245    }
2246    
2247    /* get the base address of the cp resident cmd queue entries */
2248    cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_cmdq);
2249
2250    /* fill the host resident and cp resident cmd entries */
2251    for (i=0; i < QUEUE_SIZE_CMD; i++) {
2252	
2253	cmdq->host_entry[ i ].status   = 
2254                              FORE200E_INDEX(cmdq->status.align_addr, enum status, i);
2255	cmdq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2256
2257	*cmdq->host_entry[ i ].status = STATUS_FREE;
2258
2259	fore200e->bus->write(FORE200E_DMA_INDEX(cmdq->status.dma_addr, enum status, i), 
2260                             &cp_entry[ i ].status_haddr);
2261    }
2262
2263    /* set the head entry of the queue */
2264    cmdq->head = 0;
2265
2266    fore200e->state = FORE200E_STATE_INIT_CMDQ;
2267    return 0;
2268}
2269
2270
2271static void fore200e_param_bs_queue(struct fore200e *fore200e,
2272				    enum buffer_scheme scheme,
2273				    enum buffer_magn magn, int queue_length,
2274				    int pool_size, int supply_blksize)
2275{
2276    struct bs_spec __iomem * bs_spec = &fore200e->cp_queues->init.bs_spec[ scheme ][ magn ];
2277
2278    fore200e->bus->write(queue_length,                           &bs_spec->queue_length);
2279    fore200e->bus->write(fore200e_rx_buf_size[ scheme ][ magn ], &bs_spec->buffer_size);
2280    fore200e->bus->write(pool_size,                              &bs_spec->pool_size);
2281    fore200e->bus->write(supply_blksize,                         &bs_spec->supply_blksize);
2282}
2283
2284
2285static int fore200e_initialize(struct fore200e *fore200e)
2286{
2287    struct cp_queues __iomem * cpq;
2288    int               ok, scheme, magn;
2289
2290    DPRINTK(2, "device %s being initialized\n", fore200e->name);
2291
2292    mutex_init(&fore200e->rate_mtx);
2293    spin_lock_init(&fore200e->q_lock);
2294
2295    cpq = fore200e->cp_queues = fore200e->virt_base + FORE200E_CP_QUEUES_OFFSET;
2296
2297    /* enable cp to host interrupts */
2298    fore200e->bus->write(1, &cpq->imask);
2299
2300    if (fore200e->bus->irq_enable)
2301	fore200e->bus->irq_enable(fore200e);
2302    
2303    fore200e->bus->write(NBR_CONNECT, &cpq->init.num_connect);
2304
2305    fore200e->bus->write(QUEUE_SIZE_CMD, &cpq->init.cmd_queue_len);
2306    fore200e->bus->write(QUEUE_SIZE_RX,  &cpq->init.rx_queue_len);
2307    fore200e->bus->write(QUEUE_SIZE_TX,  &cpq->init.tx_queue_len);
2308
2309    fore200e->bus->write(RSD_EXTENSION,  &cpq->init.rsd_extension);
2310    fore200e->bus->write(TSD_EXTENSION,  &cpq->init.tsd_extension);
2311
2312    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++)
2313	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++)
2314	    fore200e_param_bs_queue(fore200e, scheme, magn,
2315				    QUEUE_SIZE_BS, 
2316				    fore200e_rx_buf_nbr[ scheme ][ magn ],
2317				    RBD_BLK_SIZE);
2318
2319    /* issue the initialize command */
2320    fore200e->bus->write(STATUS_PENDING,    &cpq->init.status);
2321    fore200e->bus->write(OPCODE_INITIALIZE, &cpq->init.opcode);
2322
2323    ok = fore200e_io_poll(fore200e, &cpq->init.status, STATUS_COMPLETE, 3000);
2324    if (ok == 0) {
2325	printk(FORE200E "device %s initialization failed\n", fore200e->name);
2326	return -ENODEV;
2327    }
2328
2329    printk(FORE200E "device %s initialized\n", fore200e->name);
2330
2331    fore200e->state = FORE200E_STATE_INITIALIZE;
2332    return 0;
2333}
2334
2335
2336static void fore200e_monitor_putc(struct fore200e *fore200e, char c)
2337{
2338    struct cp_monitor __iomem * monitor = fore200e->cp_monitor;
2339
2340#if 0
2341    printk("%c", c);
2342#endif
2343    fore200e->bus->write(((u32) c) | FORE200E_CP_MONITOR_UART_AVAIL, &monitor->soft_uart.send);
2344}
2345
2346
2347static int fore200e_monitor_getc(struct fore200e *fore200e)
2348{
2349    struct cp_monitor __iomem * monitor = fore200e->cp_monitor;
2350    unsigned long      timeout = jiffies + msecs_to_jiffies(50);
2351    int                c;
2352
2353    while (time_before(jiffies, timeout)) {
2354
2355	c = (int) fore200e->bus->read(&monitor->soft_uart.recv);
2356
2357	if (c & FORE200E_CP_MONITOR_UART_AVAIL) {
2358
2359	    fore200e->bus->write(FORE200E_CP_MONITOR_UART_FREE, &monitor->soft_uart.recv);
2360#if 0
2361	    printk("%c", c & 0xFF);
2362#endif
2363	    return c & 0xFF;
2364	}
2365    }
2366
2367    return -1;
2368}
2369
2370
2371static void fore200e_monitor_puts(struct fore200e *fore200e, char *str)
2372{
2373    while (*str) {
2374
2375	/* the i960 monitor doesn't accept any new character if it has something to say */
2376	while (fore200e_monitor_getc(fore200e) >= 0);
2377	
2378	fore200e_monitor_putc(fore200e, *str++);
2379    }
2380
2381    while (fore200e_monitor_getc(fore200e) >= 0);
2382}
2383
2384#ifdef __LITTLE_ENDIAN
2385#define FW_EXT ".bin"
2386#else
2387#define FW_EXT "_ecd.bin2"
2388#endif
2389
2390static int fore200e_load_and_start_fw(struct fore200e *fore200e)
2391{
2392    const struct firmware *firmware;
2393    const struct fw_header *fw_header;
 
2394    const __le32 *fw_data;
2395    u32 fw_size;
2396    u32 __iomem *load_addr;
2397    char buf[48];
2398    int err;
 
 
 
 
 
 
 
 
 
2399
2400    sprintf(buf, "%s%s", fore200e->bus->proc_name, FW_EXT);
2401    if ((err = request_firmware(&firmware, buf, fore200e->dev)) < 0) {
2402	printk(FORE200E "problem loading firmware image %s\n", fore200e->bus->model_name);
2403	return err;
2404    }
2405
2406    fw_data = (const __le32 *)firmware->data;
2407    fw_size = firmware->size / sizeof(u32);
2408    fw_header = (const struct fw_header *)firmware->data;
2409    load_addr = fore200e->virt_base + le32_to_cpu(fw_header->load_offset);
2410
2411    DPRINTK(2, "device %s firmware being loaded at 0x%p (%d words)\n",
2412	    fore200e->name, load_addr, fw_size);
2413
2414    if (le32_to_cpu(fw_header->magic) != FW_HEADER_MAGIC) {
2415	printk(FORE200E "corrupted %s firmware image\n", fore200e->bus->model_name);
2416	goto release;
2417    }
2418
2419    for (; fw_size--; fw_data++, load_addr++)
2420	fore200e->bus->write(le32_to_cpu(*fw_data), load_addr);
2421
2422    DPRINTK(2, "device %s firmware being started\n", fore200e->name);
2423
2424#if defined(__sparc_v9__)
2425    /* reported to be required by SBA cards on some sparc64 hosts */
2426    fore200e_spin(100);
2427#endif
2428
2429    sprintf(buf, "\rgo %x\r", le32_to_cpu(fw_header->start_offset));
2430    fore200e_monitor_puts(fore200e, buf);
2431
2432    if (fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_CP_RUNNING, 1000) == 0) {
2433	printk(FORE200E "device %s firmware didn't start\n", fore200e->name);
2434	goto release;
2435    }
2436
2437    printk(FORE200E "device %s firmware started\n", fore200e->name);
2438
2439    fore200e->state = FORE200E_STATE_START_FW;
2440    err = 0;
2441
2442release:
2443    release_firmware(firmware);
2444    return err;
2445}
2446
2447
2448static int fore200e_register(struct fore200e *fore200e, struct device *parent)
2449{
2450    struct atm_dev* atm_dev;
2451
2452    DPRINTK(2, "device %s being registered\n", fore200e->name);
2453
2454    atm_dev = atm_dev_register(fore200e->bus->proc_name, parent, &fore200e_ops,
2455                               -1, NULL);
2456    if (atm_dev == NULL) {
2457	printk(FORE200E "unable to register device %s\n", fore200e->name);
2458	return -ENODEV;
2459    }
2460
2461    atm_dev->dev_data = fore200e;
2462    fore200e->atm_dev = atm_dev;
2463
2464    atm_dev->ci_range.vpi_bits = FORE200E_VPI_BITS;
2465    atm_dev->ci_range.vci_bits = FORE200E_VCI_BITS;
2466
2467    fore200e->available_cell_rate = ATM_OC3_PCR;
2468
2469    fore200e->state = FORE200E_STATE_REGISTER;
2470    return 0;
2471}
2472
2473
2474static int fore200e_init(struct fore200e *fore200e, struct device *parent)
2475{
2476    if (fore200e_register(fore200e, parent) < 0)
2477	return -ENODEV;
2478    
2479    if (fore200e->bus->configure(fore200e) < 0)
2480	return -ENODEV;
2481
2482    if (fore200e->bus->map(fore200e) < 0)
2483	return -ENODEV;
2484
2485    if (fore200e_reset(fore200e, 1) < 0)
2486	return -ENODEV;
2487
2488    if (fore200e_load_and_start_fw(fore200e) < 0)
2489	return -ENODEV;
2490
2491    if (fore200e_initialize(fore200e) < 0)
2492	return -ENODEV;
2493
2494    if (fore200e_init_cmd_queue(fore200e) < 0)
2495	return -ENOMEM;
2496
2497    if (fore200e_init_tx_queue(fore200e) < 0)
2498	return -ENOMEM;
2499
2500    if (fore200e_init_rx_queue(fore200e) < 0)
2501	return -ENOMEM;
2502
2503    if (fore200e_init_bs_queue(fore200e) < 0)
2504	return -ENOMEM;
2505
2506    if (fore200e_alloc_rx_buf(fore200e) < 0)
2507	return -ENOMEM;
2508
2509    if (fore200e_get_esi(fore200e) < 0)
2510	return -EIO;
2511
2512    if (fore200e_irq_request(fore200e) < 0)
2513	return -EBUSY;
2514
2515    fore200e_supply(fore200e);
2516
2517    /* all done, board initialization is now complete */
2518    fore200e->state = FORE200E_STATE_COMPLETE;
2519    return 0;
2520}
2521
2522#ifdef CONFIG_SBUS
2523static const struct of_device_id fore200e_sba_match[];
2524static int fore200e_sba_probe(struct platform_device *op)
2525{
2526	const struct of_device_id *match;
 
2527	struct fore200e *fore200e;
2528	static int index = 0;
2529	int err;
2530
2531	match = of_match_device(fore200e_sba_match, &op->dev);
2532	if (!match)
2533		return -EINVAL;
 
2534
2535	fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL);
2536	if (!fore200e)
2537		return -ENOMEM;
2538
2539	fore200e->bus = &fore200e_sbus_ops;
2540	fore200e->dev = &op->dev;
2541	fore200e->irq = op->archdata.irqs[0];
2542	fore200e->phys_base = op->resource[0].start;
2543
2544	sprintf(fore200e->name, "SBA-200E-%d", index);
2545
2546	err = fore200e_init(fore200e, &op->dev);
2547	if (err < 0) {
2548		fore200e_shutdown(fore200e);
2549		kfree(fore200e);
2550		return err;
2551	}
2552
2553	index++;
2554	dev_set_drvdata(&op->dev, fore200e);
2555
2556	return 0;
2557}
2558
2559static int fore200e_sba_remove(struct platform_device *op)
2560{
2561	struct fore200e *fore200e = dev_get_drvdata(&op->dev);
2562
2563	fore200e_shutdown(fore200e);
2564	kfree(fore200e);
2565
2566	return 0;
2567}
2568
2569static const struct of_device_id fore200e_sba_match[] = {
2570	{
2571		.name = SBA200E_PROM_NAME,
 
2572	},
2573	{},
2574};
2575MODULE_DEVICE_TABLE(of, fore200e_sba_match);
2576
2577static struct platform_driver fore200e_sba_driver = {
2578	.driver = {
2579		.name = "fore_200e",
 
2580		.of_match_table = fore200e_sba_match,
2581	},
2582	.probe		= fore200e_sba_probe,
2583	.remove		= fore200e_sba_remove,
2584};
2585#endif
2586
2587#ifdef CONFIG_PCI
2588static int fore200e_pca_detect(struct pci_dev *pci_dev,
2589			       const struct pci_device_id *pci_ent)
2590{
 
2591    struct fore200e* fore200e;
2592    int err = 0;
2593    static int index = 0;
2594
2595    if (pci_enable_device(pci_dev)) {
2596	err = -EINVAL;
2597	goto out;
2598    }
2599
2600    if (dma_set_mask_and_coherent(&pci_dev->dev, DMA_BIT_MASK(32))) {
2601	err = -EINVAL;
2602	goto out;
2603    }
2604    
2605    fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL);
2606    if (fore200e == NULL) {
2607	err = -ENOMEM;
2608	goto out_disable;
2609    }
2610
2611    fore200e->bus       = &fore200e_pci_ops;
2612    fore200e->dev	= &pci_dev->dev;
2613    fore200e->irq       = pci_dev->irq;
2614    fore200e->phys_base = pci_resource_start(pci_dev, 0);
2615
2616    sprintf(fore200e->name, "PCA-200E-%d", index - 1);
2617
2618    pci_set_master(pci_dev);
2619
2620    printk(FORE200E "device PCA-200E found at 0x%lx, IRQ %s\n",
 
2621	   fore200e->phys_base, fore200e_irq_itoa(fore200e->irq));
2622
2623    sprintf(fore200e->name, "PCA-200E-%d", index);
2624
2625    err = fore200e_init(fore200e, &pci_dev->dev);
2626    if (err < 0) {
2627	fore200e_shutdown(fore200e);
2628	goto out_free;
2629    }
2630
2631    ++index;
2632    pci_set_drvdata(pci_dev, fore200e);
2633
2634out:
2635    return err;
2636
2637out_free:
2638    kfree(fore200e);
2639out_disable:
2640    pci_disable_device(pci_dev);
2641    goto out;
2642}
2643
2644
2645static void fore200e_pca_remove_one(struct pci_dev *pci_dev)
2646{
2647    struct fore200e *fore200e;
2648
2649    fore200e = pci_get_drvdata(pci_dev);
2650
2651    fore200e_shutdown(fore200e);
2652    kfree(fore200e);
2653    pci_disable_device(pci_dev);
2654}
2655
2656
2657static const struct pci_device_id fore200e_pca_tbl[] = {
2658    { PCI_VENDOR_ID_FORE, PCI_DEVICE_ID_FORE_PCA200E, PCI_ANY_ID, PCI_ANY_ID },
 
2659    { 0, }
2660};
2661
2662MODULE_DEVICE_TABLE(pci, fore200e_pca_tbl);
2663
2664static struct pci_driver fore200e_pca_driver = {
2665    .name =     "fore_200e",
2666    .probe =    fore200e_pca_detect,
2667    .remove =   fore200e_pca_remove_one,
2668    .id_table = fore200e_pca_tbl,
2669};
2670#endif
2671
2672static int __init fore200e_module_init(void)
2673{
2674	int err = 0;
2675
2676	printk(FORE200E "FORE Systems 200E-series ATM driver - version " FORE200E_VERSION "\n");
2677
2678#ifdef CONFIG_SBUS
2679	err = platform_driver_register(&fore200e_sba_driver);
2680	if (err)
2681		return err;
2682#endif
2683
2684#ifdef CONFIG_PCI
2685	err = pci_register_driver(&fore200e_pca_driver);
2686#endif
2687
2688#ifdef CONFIG_SBUS
2689	if (err)
2690		platform_driver_unregister(&fore200e_sba_driver);
2691#endif
2692
2693	return err;
2694}
2695
2696static void __exit fore200e_module_cleanup(void)
2697{
2698#ifdef CONFIG_PCI
2699	pci_unregister_driver(&fore200e_pca_driver);
2700#endif
2701#ifdef CONFIG_SBUS
2702	platform_driver_unregister(&fore200e_sba_driver);
2703#endif
2704}
2705
2706static int
2707fore200e_proc_read(struct atm_dev *dev, loff_t* pos, char* page)
2708{
2709    struct fore200e*     fore200e  = FORE200E_DEV(dev);
2710    struct fore200e_vcc* fore200e_vcc;
2711    struct atm_vcc*      vcc;
2712    int                  i, len, left = *pos;
2713    unsigned long        flags;
2714
2715    if (!left--) {
2716
2717	if (fore200e_getstats(fore200e) < 0)
2718	    return -EIO;
2719
2720	len = sprintf(page,"\n"
2721		       " device:\n"
2722		       "   internal name:\t\t%s\n", fore200e->name);
2723
2724	/* print bus-specific information */
2725	if (fore200e->bus->proc_read)
2726	    len += fore200e->bus->proc_read(fore200e, page + len);
2727	
2728	len += sprintf(page + len,
2729		"   interrupt line:\t\t%s\n"
2730		"   physical base address:\t0x%p\n"
2731		"   virtual base address:\t0x%p\n"
2732		"   factory address (ESI):\t%pM\n"
2733		"   board serial number:\t\t%d\n\n",
2734		fore200e_irq_itoa(fore200e->irq),
2735		(void*)fore200e->phys_base,
2736		fore200e->virt_base,
2737		fore200e->esi,
2738		fore200e->esi[4] * 256 + fore200e->esi[5]);
2739
2740	return len;
2741    }
2742
2743    if (!left--)
2744	return sprintf(page,
2745		       "   free small bufs, scheme 1:\t%d\n"
2746		       "   free large bufs, scheme 1:\t%d\n"
2747		       "   free small bufs, scheme 2:\t%d\n"
2748		       "   free large bufs, scheme 2:\t%d\n",
2749		       fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_SMALL ].freebuf_count,
2750		       fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_LARGE ].freebuf_count,
2751		       fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_SMALL ].freebuf_count,
2752		       fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_LARGE ].freebuf_count);
2753
2754    if (!left--) {
2755	u32 hb = fore200e->bus->read(&fore200e->cp_queues->heartbeat);
2756
2757	len = sprintf(page,"\n\n"
2758		      " cell processor:\n"
2759		      "   heartbeat state:\t\t");
2760	
2761	if (hb >> 16 != 0xDEAD)
2762	    len += sprintf(page + len, "0x%08x\n", hb);
2763	else
2764	    len += sprintf(page + len, "*** FATAL ERROR %04x ***\n", hb & 0xFFFF);
2765
2766	return len;
2767    }
2768
2769    if (!left--) {
2770	static const char* media_name[] = {
2771	    "unshielded twisted pair",
2772	    "multimode optical fiber ST",
2773	    "multimode optical fiber SC",
2774	    "single-mode optical fiber ST",
2775	    "single-mode optical fiber SC",
2776	    "unknown"
2777	};
2778
2779	static const char* oc3_mode[] = {
2780	    "normal operation",
2781	    "diagnostic loopback",
2782	    "line loopback",
2783	    "unknown"
2784	};
2785
2786	u32 fw_release     = fore200e->bus->read(&fore200e->cp_queues->fw_release);
2787	u32 mon960_release = fore200e->bus->read(&fore200e->cp_queues->mon960_release);
2788	u32 oc3_revision   = fore200e->bus->read(&fore200e->cp_queues->oc3_revision);
2789	u32 media_index    = FORE200E_MEDIA_INDEX(fore200e->bus->read(&fore200e->cp_queues->media_type));
2790	u32 oc3_index;
2791
2792	if (media_index > 4)
2793		media_index = 5;
2794	
2795	switch (fore200e->loop_mode) {
2796	    case ATM_LM_NONE:    oc3_index = 0;
2797		                 break;
2798	    case ATM_LM_LOC_PHY: oc3_index = 1;
2799		                 break;
2800	    case ATM_LM_RMT_PHY: oc3_index = 2;
2801		                 break;
2802	    default:             oc3_index = 3;
2803	}
2804
2805	return sprintf(page,
2806		       "   firmware release:\t\t%d.%d.%d\n"
2807		       "   monitor release:\t\t%d.%d\n"
2808		       "   media type:\t\t\t%s\n"
2809		       "   OC-3 revision:\t\t0x%x\n"
2810                       "   OC-3 mode:\t\t\t%s",
2811		       fw_release >> 16, fw_release << 16 >> 24,  fw_release << 24 >> 24,
2812		       mon960_release >> 16, mon960_release << 16 >> 16,
2813		       media_name[ media_index ],
2814		       oc3_revision,
2815		       oc3_mode[ oc3_index ]);
2816    }
2817
2818    if (!left--) {
2819	struct cp_monitor __iomem * cp_monitor = fore200e->cp_monitor;
2820
2821	return sprintf(page,
2822		       "\n\n"
2823		       " monitor:\n"
2824		       "   version number:\t\t%d\n"
2825		       "   boot status word:\t\t0x%08x\n",
2826		       fore200e->bus->read(&cp_monitor->mon_version),
2827		       fore200e->bus->read(&cp_monitor->bstat));
2828    }
2829
2830    if (!left--)
2831	return sprintf(page,
2832		       "\n"
2833		       " device statistics:\n"
2834		       "  4b5b:\n"
2835		       "     crc_header_errors:\t\t%10u\n"
2836		       "     framing_errors:\t\t%10u\n",
2837		       be32_to_cpu(fore200e->stats->phy.crc_header_errors),
2838		       be32_to_cpu(fore200e->stats->phy.framing_errors));
2839    
2840    if (!left--)
2841	return sprintf(page, "\n"
2842		       "  OC-3:\n"
2843		       "     section_bip8_errors:\t%10u\n"
2844		       "     path_bip8_errors:\t\t%10u\n"
2845		       "     line_bip24_errors:\t\t%10u\n"
2846		       "     line_febe_errors:\t\t%10u\n"
2847		       "     path_febe_errors:\t\t%10u\n"
2848		       "     corr_hcs_errors:\t\t%10u\n"
2849		       "     ucorr_hcs_errors:\t\t%10u\n",
2850		       be32_to_cpu(fore200e->stats->oc3.section_bip8_errors),
2851		       be32_to_cpu(fore200e->stats->oc3.path_bip8_errors),
2852		       be32_to_cpu(fore200e->stats->oc3.line_bip24_errors),
2853		       be32_to_cpu(fore200e->stats->oc3.line_febe_errors),
2854		       be32_to_cpu(fore200e->stats->oc3.path_febe_errors),
2855		       be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors),
2856		       be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors));
2857
2858    if (!left--)
2859	return sprintf(page,"\n"
2860		       "   ATM:\t\t\t\t     cells\n"
2861		       "     TX:\t\t\t%10u\n"
2862		       "     RX:\t\t\t%10u\n"
2863		       "     vpi out of range:\t\t%10u\n"
2864		       "     vpi no conn:\t\t%10u\n"
2865		       "     vci out of range:\t\t%10u\n"
2866		       "     vci no conn:\t\t%10u\n",
2867		       be32_to_cpu(fore200e->stats->atm.cells_transmitted),
2868		       be32_to_cpu(fore200e->stats->atm.cells_received),
2869		       be32_to_cpu(fore200e->stats->atm.vpi_bad_range),
2870		       be32_to_cpu(fore200e->stats->atm.vpi_no_conn),
2871		       be32_to_cpu(fore200e->stats->atm.vci_bad_range),
2872		       be32_to_cpu(fore200e->stats->atm.vci_no_conn));
2873    
2874    if (!left--)
2875	return sprintf(page,"\n"
2876		       "   AAL0:\t\t\t     cells\n"
2877		       "     TX:\t\t\t%10u\n"
2878		       "     RX:\t\t\t%10u\n"
2879		       "     dropped:\t\t\t%10u\n",
2880		       be32_to_cpu(fore200e->stats->aal0.cells_transmitted),
2881		       be32_to_cpu(fore200e->stats->aal0.cells_received),
2882		       be32_to_cpu(fore200e->stats->aal0.cells_dropped));
2883    
2884    if (!left--)
2885	return sprintf(page,"\n"
2886		       "   AAL3/4:\n"
2887		       "     SAR sublayer:\t\t     cells\n"
2888		       "       TX:\t\t\t%10u\n"
2889		       "       RX:\t\t\t%10u\n"
2890		       "       dropped:\t\t\t%10u\n"
2891		       "       CRC errors:\t\t%10u\n"
2892		       "       protocol errors:\t\t%10u\n\n"
2893		       "     CS  sublayer:\t\t      PDUs\n"
2894		       "       TX:\t\t\t%10u\n"
2895		       "       RX:\t\t\t%10u\n"
2896		       "       dropped:\t\t\t%10u\n"
2897		       "       protocol errors:\t\t%10u\n",
2898		       be32_to_cpu(fore200e->stats->aal34.cells_transmitted),
2899		       be32_to_cpu(fore200e->stats->aal34.cells_received),
2900		       be32_to_cpu(fore200e->stats->aal34.cells_dropped),
2901		       be32_to_cpu(fore200e->stats->aal34.cells_crc_errors),
2902		       be32_to_cpu(fore200e->stats->aal34.cells_protocol_errors),
2903		       be32_to_cpu(fore200e->stats->aal34.cspdus_transmitted),
2904		       be32_to_cpu(fore200e->stats->aal34.cspdus_received),
2905		       be32_to_cpu(fore200e->stats->aal34.cspdus_dropped),
2906		       be32_to_cpu(fore200e->stats->aal34.cspdus_protocol_errors));
2907    
2908    if (!left--)
2909	return sprintf(page,"\n"
2910		       "   AAL5:\n"
2911		       "     SAR sublayer:\t\t     cells\n"
2912		       "       TX:\t\t\t%10u\n"
2913		       "       RX:\t\t\t%10u\n"
2914		       "       dropped:\t\t\t%10u\n"
2915		       "       congestions:\t\t%10u\n\n"
2916		       "     CS  sublayer:\t\t      PDUs\n"
2917		       "       TX:\t\t\t%10u\n"
2918		       "       RX:\t\t\t%10u\n"
2919		       "       dropped:\t\t\t%10u\n"
2920		       "       CRC errors:\t\t%10u\n"
2921		       "       protocol errors:\t\t%10u\n",
2922		       be32_to_cpu(fore200e->stats->aal5.cells_transmitted),
2923		       be32_to_cpu(fore200e->stats->aal5.cells_received),
2924		       be32_to_cpu(fore200e->stats->aal5.cells_dropped),
2925		       be32_to_cpu(fore200e->stats->aal5.congestion_experienced),
2926		       be32_to_cpu(fore200e->stats->aal5.cspdus_transmitted),
2927		       be32_to_cpu(fore200e->stats->aal5.cspdus_received),
2928		       be32_to_cpu(fore200e->stats->aal5.cspdus_dropped),
2929		       be32_to_cpu(fore200e->stats->aal5.cspdus_crc_errors),
2930		       be32_to_cpu(fore200e->stats->aal5.cspdus_protocol_errors));
2931    
2932    if (!left--)
2933	return sprintf(page,"\n"
2934		       "   AUX:\t\t       allocation failures\n"
2935		       "     small b1:\t\t\t%10u\n"
2936		       "     large b1:\t\t\t%10u\n"
2937		       "     small b2:\t\t\t%10u\n"
2938		       "     large b2:\t\t\t%10u\n"
2939		       "     RX PDUs:\t\t\t%10u\n"
2940		       "     TX PDUs:\t\t\t%10lu\n",
2941		       be32_to_cpu(fore200e->stats->aux.small_b1_failed),
2942		       be32_to_cpu(fore200e->stats->aux.large_b1_failed),
2943		       be32_to_cpu(fore200e->stats->aux.small_b2_failed),
2944		       be32_to_cpu(fore200e->stats->aux.large_b2_failed),
2945		       be32_to_cpu(fore200e->stats->aux.rpd_alloc_failed),
2946		       fore200e->tx_sat);
2947    
2948    if (!left--)
2949	return sprintf(page,"\n"
2950		       " receive carrier:\t\t\t%s\n",
2951		       fore200e->stats->aux.receive_carrier ? "ON" : "OFF!");
2952    
2953    if (!left--) {
2954        return sprintf(page,"\n"
2955		       " VCCs:\n  address   VPI VCI   AAL "
2956		       "TX PDUs   TX min/max size  RX PDUs   RX min/max size\n");
2957    }
2958
2959    for (i = 0; i < NBR_CONNECT; i++) {
2960
2961	vcc = fore200e->vc_map[i].vcc;
2962
2963	if (vcc == NULL)
2964	    continue;
2965
2966	spin_lock_irqsave(&fore200e->q_lock, flags);
2967
2968	if (vcc && test_bit(ATM_VF_READY, &vcc->flags) && !left--) {
2969
2970	    fore200e_vcc = FORE200E_VCC(vcc);
2971	    ASSERT(fore200e_vcc);
2972
2973	    len = sprintf(page,
2974			  "  %pK  %03d %05d %1d   %09lu %05d/%05d      %09lu %05d/%05d\n",
2975			  vcc,
2976			  vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
2977			  fore200e_vcc->tx_pdu,
2978			  fore200e_vcc->tx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->tx_min_pdu,
2979			  fore200e_vcc->tx_max_pdu,
2980			  fore200e_vcc->rx_pdu,
2981			  fore200e_vcc->rx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->rx_min_pdu,
2982			  fore200e_vcc->rx_max_pdu);
2983
2984	    spin_unlock_irqrestore(&fore200e->q_lock, flags);
2985	    return len;
2986	}
2987
2988	spin_unlock_irqrestore(&fore200e->q_lock, flags);
2989    }
2990    
2991    return 0;
2992}
2993
2994module_init(fore200e_module_init);
2995module_exit(fore200e_module_cleanup);
2996
2997
2998static const struct atmdev_ops fore200e_ops = {
 
2999	.open       = fore200e_open,
3000	.close      = fore200e_close,
3001	.ioctl      = fore200e_ioctl,
 
 
3002	.send       = fore200e_send,
3003	.change_qos = fore200e_change_qos,
3004	.proc_read  = fore200e_proc_read,
3005	.owner      = THIS_MODULE
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3006};
3007
3008MODULE_LICENSE("GPL");
3009#ifdef CONFIG_PCI
3010#ifdef __LITTLE_ENDIAN__
3011MODULE_FIRMWARE("pca200e.bin");
3012#else
3013MODULE_FIRMWARE("pca200e_ecd.bin2");
3014#endif
3015#endif /* CONFIG_PCI */
3016#ifdef CONFIG_SBUS
3017MODULE_FIRMWARE("sba200e_ecd.bin2");
3018#endif
v3.15
 
   1/*
   2  A FORE Systems 200E-series driver for ATM on Linux.
   3  Christophe Lizzi (lizzi@cnam.fr), October 1999-March 2003.
   4
   5  Based on the PCA-200E driver from Uwe Dannowski (Uwe.Dannowski@inf.tu-dresden.de).
   6
   7  This driver simultaneously supports PCA-200E and SBA-200E adapters
   8  on i386, alpha (untested), powerpc, sparc and sparc64 architectures.
   9
  10  This program is free software; you can redistribute it and/or modify
  11  it under the terms of the GNU General Public License as published by
  12  the Free Software Foundation; either version 2 of the License, or
  13  (at your option) any later version.
  14
  15  This program is distributed in the hope that it will be useful,
  16  but WITHOUT ANY WARRANTY; without even the implied warranty of
  17  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  18  GNU General Public License for more details.
  19
  20  You should have received a copy of the GNU General Public License
  21  along with this program; if not, write to the Free Software
  22  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  23*/
  24
  25
  26#include <linux/kernel.h>
  27#include <linux/slab.h>
  28#include <linux/init.h>
  29#include <linux/capability.h>
  30#include <linux/interrupt.h>
  31#include <linux/bitops.h>
  32#include <linux/pci.h>
  33#include <linux/module.h>
  34#include <linux/atmdev.h>
  35#include <linux/sonet.h>
  36#include <linux/atm_suni.h>
  37#include <linux/dma-mapping.h>
  38#include <linux/delay.h>
  39#include <linux/firmware.h>
 
  40#include <asm/io.h>
  41#include <asm/string.h>
  42#include <asm/page.h>
  43#include <asm/irq.h>
  44#include <asm/dma.h>
  45#include <asm/byteorder.h>
  46#include <asm/uaccess.h>
  47#include <linux/atomic.h>
  48
  49#ifdef CONFIG_SBUS
  50#include <linux/of.h>
  51#include <linux/of_device.h>
  52#include <asm/idprom.h>
  53#include <asm/openprom.h>
  54#include <asm/oplib.h>
  55#include <asm/pgtable.h>
  56#endif
  57
  58#if defined(CONFIG_ATM_FORE200E_USE_TASKLET) /* defer interrupt work to a tasklet */
  59#define FORE200E_USE_TASKLET
  60#endif
  61
  62#if 0 /* enable the debugging code of the buffer supply queues */
  63#define FORE200E_BSQ_DEBUG
  64#endif
  65
  66#if 1 /* ensure correct handling of 52-byte AAL0 SDUs expected by atmdump-like apps */
  67#define FORE200E_52BYTE_AAL0_SDU
  68#endif
  69
  70#include "fore200e.h"
  71#include "suni.h"
  72
  73#define FORE200E_VERSION "0.3e"
  74
  75#define FORE200E         "fore200e: "
  76
  77#if 0 /* override .config */
  78#define CONFIG_ATM_FORE200E_DEBUG 1
  79#endif
  80#if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0)
  81#define DPRINTK(level, format, args...)  do { if (CONFIG_ATM_FORE200E_DEBUG >= (level)) \
  82                                                  printk(FORE200E format, ##args); } while (0)
  83#else
  84#define DPRINTK(level, format, args...)  do {} while (0)
  85#endif
  86
  87
  88#define FORE200E_ALIGN(addr, alignment) \
  89        ((((unsigned long)(addr) + (alignment - 1)) & ~(alignment - 1)) - (unsigned long)(addr))
  90
  91#define FORE200E_DMA_INDEX(dma_addr, type, index)  ((dma_addr) + (index) * sizeof(type))
  92
  93#define FORE200E_INDEX(virt_addr, type, index)     (&((type *)(virt_addr))[ index ])
  94
  95#define FORE200E_NEXT_ENTRY(index, modulo)         (index = ((index) + 1) % (modulo))
  96
  97#if 1
  98#define ASSERT(expr)     if (!(expr)) { \
  99			     printk(FORE200E "assertion failed! %s[%d]: %s\n", \
 100				    __func__, __LINE__, #expr); \
 101			     panic(FORE200E "%s", __func__); \
 102			 }
 103#else
 104#define ASSERT(expr)     do {} while (0)
 105#endif
 106
 107
 108static const struct atmdev_ops   fore200e_ops;
 109static const struct fore200e_bus fore200e_bus[];
 110
 111static LIST_HEAD(fore200e_boards);
 112
 113
 114MODULE_AUTHOR("Christophe Lizzi - credits to Uwe Dannowski and Heikki Vatiainen");
 115MODULE_DESCRIPTION("FORE Systems 200E-series ATM driver - version " FORE200E_VERSION);
 116MODULE_SUPPORTED_DEVICE("PCA-200E, SBA-200E");
 117
 118
 119static const int fore200e_rx_buf_nbr[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = {
 120    { BUFFER_S1_NBR, BUFFER_L1_NBR },
 121    { BUFFER_S2_NBR, BUFFER_L2_NBR }
 122};
 123
 124static const int fore200e_rx_buf_size[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = {
 125    { BUFFER_S1_SIZE, BUFFER_L1_SIZE },
 126    { BUFFER_S2_SIZE, BUFFER_L2_SIZE }
 127};
 128
 129
 130#if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0)
 131static const char* fore200e_traffic_class[] = { "NONE", "UBR", "CBR", "VBR", "ABR", "ANY" };
 132#endif
 133
 134
 135#if 0 /* currently unused */
 136static int 
 137fore200e_fore2atm_aal(enum fore200e_aal aal)
 138{
 139    switch(aal) {
 140    case FORE200E_AAL0:  return ATM_AAL0;
 141    case FORE200E_AAL34: return ATM_AAL34;
 142    case FORE200E_AAL5:  return ATM_AAL5;
 143    }
 144
 145    return -EINVAL;
 146}
 147#endif
 148
 149
 150static enum fore200e_aal
 151fore200e_atm2fore_aal(int aal)
 152{
 153    switch(aal) {
 154    case ATM_AAL0:  return FORE200E_AAL0;
 155    case ATM_AAL34: return FORE200E_AAL34;
 156    case ATM_AAL1:
 157    case ATM_AAL2:
 158    case ATM_AAL5:  return FORE200E_AAL5;
 159    }
 160
 161    return -EINVAL;
 162}
 163
 164
 165static char*
 166fore200e_irq_itoa(int irq)
 167{
 168    static char str[8];
 169    sprintf(str, "%d", irq);
 170    return str;
 171}
 172
 173
 174/* allocate and align a chunk of memory intended to hold the data behing exchanged
 175   between the driver and the adapter (using streaming DVMA) */
 176
 177static int
 178fore200e_chunk_alloc(struct fore200e* fore200e, struct chunk* chunk, int size, int alignment, int direction)
 179{
 180    unsigned long offset = 0;
 181
 182    if (alignment <= sizeof(int))
 183	alignment = 0;
 184
 185    chunk->alloc_size = size + alignment;
 186    chunk->align_size = size;
 187    chunk->direction  = direction;
 188
 189    chunk->alloc_addr = kzalloc(chunk->alloc_size, GFP_KERNEL | GFP_DMA);
 190    if (chunk->alloc_addr == NULL)
 191	return -ENOMEM;
 192
 193    if (alignment > 0)
 194	offset = FORE200E_ALIGN(chunk->alloc_addr, alignment); 
 195    
 196    chunk->align_addr = chunk->alloc_addr + offset;
 197
 198    chunk->dma_addr = fore200e->bus->dma_map(fore200e, chunk->align_addr, chunk->align_size, direction);
 199    
 
 
 
 
 200    return 0;
 201}
 202
 203
 204/* free a chunk of memory */
 205
 206static void
 207fore200e_chunk_free(struct fore200e* fore200e, struct chunk* chunk)
 208{
 209    fore200e->bus->dma_unmap(fore200e, chunk->dma_addr, chunk->dma_size, chunk->direction);
 
 
 
 210
 211    kfree(chunk->alloc_addr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 212}
 213
 
 
 
 
 
 
 
 
 
 214
 215static void
 216fore200e_spin(int msecs)
 217{
 218    unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
 219    while (time_before(jiffies, timeout));
 220}
 221
 222
 223static int
 224fore200e_poll(struct fore200e* fore200e, volatile u32* addr, u32 val, int msecs)
 225{
 226    unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
 227    int           ok;
 228
 229    mb();
 230    do {
 231	if ((ok = (*addr == val)) || (*addr & STATUS_ERROR))
 232	    break;
 233
 234    } while (time_before(jiffies, timeout));
 235
 236#if 1
 237    if (!ok) {
 238	printk(FORE200E "cmd polling failed, got status 0x%08x, expected 0x%08x\n",
 239	       *addr, val);
 240    }
 241#endif
 242
 243    return ok;
 244}
 245
 246
 247static int
 248fore200e_io_poll(struct fore200e* fore200e, volatile u32 __iomem *addr, u32 val, int msecs)
 249{
 250    unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
 251    int           ok;
 252
 253    do {
 254	if ((ok = (fore200e->bus->read(addr) == val)))
 255	    break;
 256
 257    } while (time_before(jiffies, timeout));
 258
 259#if 1
 260    if (!ok) {
 261	printk(FORE200E "I/O polling failed, got status 0x%08x, expected 0x%08x\n",
 262	       fore200e->bus->read(addr), val);
 263    }
 264#endif
 265
 266    return ok;
 267}
 268
 269
 270static void
 271fore200e_free_rx_buf(struct fore200e* fore200e)
 272{
 273    int scheme, magn, nbr;
 274    struct buffer* buffer;
 275
 276    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
 277	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
 278
 279	    if ((buffer = fore200e->host_bsq[ scheme ][ magn ].buffer) != NULL) {
 280
 281		for (nbr = 0; nbr < fore200e_rx_buf_nbr[ scheme ][ magn ]; nbr++) {
 282
 283		    struct chunk* data = &buffer[ nbr ].data;
 284
 285		    if (data->alloc_addr != NULL)
 286			fore200e_chunk_free(fore200e, data);
 287		}
 288	    }
 289	}
 290    }
 291}
 292
 293
 294static void
 295fore200e_uninit_bs_queue(struct fore200e* fore200e)
 296{
 297    int scheme, magn;
 298    
 299    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
 300	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
 301
 302	    struct chunk* status    = &fore200e->host_bsq[ scheme ][ magn ].status;
 303	    struct chunk* rbd_block = &fore200e->host_bsq[ scheme ][ magn ].rbd_block;
 304	    
 305	    if (status->alloc_addr)
 306		fore200e->bus->dma_chunk_free(fore200e, status);
 307	    
 308	    if (rbd_block->alloc_addr)
 309		fore200e->bus->dma_chunk_free(fore200e, rbd_block);
 310	}
 311    }
 312}
 313
 314
 315static int
 316fore200e_reset(struct fore200e* fore200e, int diag)
 317{
 318    int ok;
 319
 320    fore200e->cp_monitor = fore200e->virt_base + FORE200E_CP_MONITOR_OFFSET;
 321    
 322    fore200e->bus->write(BSTAT_COLD_START, &fore200e->cp_monitor->bstat);
 323
 324    fore200e->bus->reset(fore200e);
 325
 326    if (diag) {
 327	ok = fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_SELFTEST_OK, 1000);
 328	if (ok == 0) {
 329	    
 330	    printk(FORE200E "device %s self-test failed\n", fore200e->name);
 331	    return -ENODEV;
 332	}
 333
 334	printk(FORE200E "device %s self-test passed\n", fore200e->name);
 335	
 336	fore200e->state = FORE200E_STATE_RESET;
 337    }
 338
 339    return 0;
 340}
 341
 342
 343static void
 344fore200e_shutdown(struct fore200e* fore200e)
 345{
 346    printk(FORE200E "removing device %s at 0x%lx, IRQ %s\n",
 347	   fore200e->name, fore200e->phys_base, 
 348	   fore200e_irq_itoa(fore200e->irq));
 349    
 350    if (fore200e->state > FORE200E_STATE_RESET) {
 351	/* first, reset the board to prevent further interrupts or data transfers */
 352	fore200e_reset(fore200e, 0);
 353    }
 354    
 355    /* then, release all allocated resources */
 356    switch(fore200e->state) {
 357
 358    case FORE200E_STATE_COMPLETE:
 359	kfree(fore200e->stats);
 360
 
 361    case FORE200E_STATE_IRQ:
 362	free_irq(fore200e->irq, fore200e->atm_dev);
 363
 
 364    case FORE200E_STATE_ALLOC_BUF:
 365	fore200e_free_rx_buf(fore200e);
 366
 
 367    case FORE200E_STATE_INIT_BSQ:
 368	fore200e_uninit_bs_queue(fore200e);
 369
 
 370    case FORE200E_STATE_INIT_RXQ:
 371	fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_rxq.status);
 372	fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_rxq.rpd);
 373
 
 374    case FORE200E_STATE_INIT_TXQ:
 375	fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_txq.status);
 376	fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_txq.tpd);
 377
 
 378    case FORE200E_STATE_INIT_CMDQ:
 379	fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_cmdq.status);
 380
 
 381    case FORE200E_STATE_INITIALIZE:
 382	/* nothing to do for that state */
 383
 384    case FORE200E_STATE_START_FW:
 385	/* nothing to do for that state */
 386
 387    case FORE200E_STATE_RESET:
 388	/* nothing to do for that state */
 389
 390    case FORE200E_STATE_MAP:
 391	fore200e->bus->unmap(fore200e);
 392
 
 393    case FORE200E_STATE_CONFIGURE:
 394	/* nothing to do for that state */
 395
 396    case FORE200E_STATE_REGISTER:
 397	/* XXX shouldn't we *start* by deregistering the device? */
 398	atm_dev_deregister(fore200e->atm_dev);
 399
 
 400    case FORE200E_STATE_BLANK:
 401	/* nothing to do for that state */
 402	break;
 403    }
 404}
 405
 406
 407#ifdef CONFIG_PCI
 408
 409static u32 fore200e_pca_read(volatile u32 __iomem *addr)
 410{
 411    /* on big-endian hosts, the board is configured to convert
 412       the endianess of slave RAM accesses  */
 413    return le32_to_cpu(readl(addr));
 414}
 415
 416
 417static void fore200e_pca_write(u32 val, volatile u32 __iomem *addr)
 418{
 419    /* on big-endian hosts, the board is configured to convert
 420       the endianess of slave RAM accesses  */
 421    writel(cpu_to_le32(val), addr);
 422}
 423
 424
 425static u32
 426fore200e_pca_dma_map(struct fore200e* fore200e, void* virt_addr, int size, int direction)
 427{
 428    u32 dma_addr = pci_map_single((struct pci_dev*)fore200e->bus_dev, virt_addr, size, direction);
 429
 430    DPRINTK(3, "PCI DVMA mapping: virt_addr = 0x%p, size = %d, direction = %d,  --> dma_addr = 0x%08x\n",
 431	    virt_addr, size, direction, dma_addr);
 432    
 433    return dma_addr;
 434}
 435
 436
 437static void
 438fore200e_pca_dma_unmap(struct fore200e* fore200e, u32 dma_addr, int size, int direction)
 439{
 440    DPRINTK(3, "PCI DVMA unmapping: dma_addr = 0x%08x, size = %d, direction = %d\n",
 441	    dma_addr, size, direction);
 442
 443    pci_unmap_single((struct pci_dev*)fore200e->bus_dev, dma_addr, size, direction);
 444}
 445
 446
 447static void
 448fore200e_pca_dma_sync_for_cpu(struct fore200e* fore200e, u32 dma_addr, int size, int direction)
 449{
 450    DPRINTK(3, "PCI DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction);
 451
 452    pci_dma_sync_single_for_cpu((struct pci_dev*)fore200e->bus_dev, dma_addr, size, direction);
 453}
 454
 455static void
 456fore200e_pca_dma_sync_for_device(struct fore200e* fore200e, u32 dma_addr, int size, int direction)
 457{
 458    DPRINTK(3, "PCI DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction);
 459
 460    pci_dma_sync_single_for_device((struct pci_dev*)fore200e->bus_dev, dma_addr, size, direction);
 461}
 462
 463
 464/* allocate a DMA consistent chunk of memory intended to act as a communication mechanism
 465   (to hold descriptors, status, queues, etc.) shared by the driver and the adapter */
 466
 467static int
 468fore200e_pca_dma_chunk_alloc(struct fore200e* fore200e, struct chunk* chunk,
 469			     int size, int nbr, int alignment)
 470{
 471    /* returned chunks are page-aligned */
 472    chunk->alloc_size = size * nbr;
 473    chunk->alloc_addr = pci_alloc_consistent((struct pci_dev*)fore200e->bus_dev,
 474					     chunk->alloc_size,
 475					     &chunk->dma_addr);
 476    
 477    if ((chunk->alloc_addr == NULL) || (chunk->dma_addr == 0))
 478	return -ENOMEM;
 479
 480    chunk->align_addr = chunk->alloc_addr;
 481    
 482    return 0;
 483}
 484
 485
 486/* free a DMA consistent chunk of memory */
 487
 488static void
 489fore200e_pca_dma_chunk_free(struct fore200e* fore200e, struct chunk* chunk)
 490{
 491    pci_free_consistent((struct pci_dev*)fore200e->bus_dev,
 492			chunk->alloc_size,
 493			chunk->alloc_addr,
 494			chunk->dma_addr);
 495}
 496
 497
 498static int
 499fore200e_pca_irq_check(struct fore200e* fore200e)
 500{
 501    /* this is a 1 bit register */
 502    int irq_posted = readl(fore200e->regs.pca.psr);
 503
 504#if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG == 2)
 505    if (irq_posted && (readl(fore200e->regs.pca.hcr) & PCA200E_HCR_OUTFULL)) {
 506	DPRINTK(2,"FIFO OUT full, device %d\n", fore200e->atm_dev->number);
 507    }
 508#endif
 509
 510    return irq_posted;
 511}
 512
 513
 514static void
 515fore200e_pca_irq_ack(struct fore200e* fore200e)
 516{
 517    writel(PCA200E_HCR_CLRINTR, fore200e->regs.pca.hcr);
 518}
 519
 520
 521static void
 522fore200e_pca_reset(struct fore200e* fore200e)
 523{
 524    writel(PCA200E_HCR_RESET, fore200e->regs.pca.hcr);
 525    fore200e_spin(10);
 526    writel(0, fore200e->regs.pca.hcr);
 527}
 528
 529
 530static int fore200e_pca_map(struct fore200e* fore200e)
 531{
 532    DPRINTK(2, "device %s being mapped in memory\n", fore200e->name);
 533
 534    fore200e->virt_base = ioremap(fore200e->phys_base, PCA200E_IOSPACE_LENGTH);
 535    
 536    if (fore200e->virt_base == NULL) {
 537	printk(FORE200E "can't map device %s\n", fore200e->name);
 538	return -EFAULT;
 539    }
 540
 541    DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base);
 542
 543    /* gain access to the PCA specific registers  */
 544    fore200e->regs.pca.hcr = fore200e->virt_base + PCA200E_HCR_OFFSET;
 545    fore200e->regs.pca.imr = fore200e->virt_base + PCA200E_IMR_OFFSET;
 546    fore200e->regs.pca.psr = fore200e->virt_base + PCA200E_PSR_OFFSET;
 547
 548    fore200e->state = FORE200E_STATE_MAP;
 549    return 0;
 550}
 551
 552
 553static void
 554fore200e_pca_unmap(struct fore200e* fore200e)
 555{
 556    DPRINTK(2, "device %s being unmapped from memory\n", fore200e->name);
 557
 558    if (fore200e->virt_base != NULL)
 559	iounmap(fore200e->virt_base);
 560}
 561
 562
 563static int fore200e_pca_configure(struct fore200e *fore200e)
 564{
 565    struct pci_dev* pci_dev = (struct pci_dev*)fore200e->bus_dev;
 566    u8              master_ctrl, latency;
 567
 568    DPRINTK(2, "device %s being configured\n", fore200e->name);
 569
 570    if ((pci_dev->irq == 0) || (pci_dev->irq == 0xFF)) {
 571	printk(FORE200E "incorrect IRQ setting - misconfigured PCI-PCI bridge?\n");
 572	return -EIO;
 573    }
 574
 575    pci_read_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, &master_ctrl);
 576
 577    master_ctrl = master_ctrl
 578#if defined(__BIG_ENDIAN)
 579	/* request the PCA board to convert the endianess of slave RAM accesses */
 580	| PCA200E_CTRL_CONVERT_ENDIAN
 581#endif
 582#if 0
 583        | PCA200E_CTRL_DIS_CACHE_RD
 584        | PCA200E_CTRL_DIS_WRT_INVAL
 585        | PCA200E_CTRL_ENA_CONT_REQ_MODE
 586        | PCA200E_CTRL_2_CACHE_WRT_INVAL
 587#endif
 588	| PCA200E_CTRL_LARGE_PCI_BURSTS;
 589    
 590    pci_write_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, master_ctrl);
 591
 592    /* raise latency from 32 (default) to 192, as this seems to prevent NIC
 593       lockups (under heavy rx loads) due to continuous 'FIFO OUT full' condition.
 594       this may impact the performances of other PCI devices on the same bus, though */
 595    latency = 192;
 596    pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, latency);
 597
 598    fore200e->state = FORE200E_STATE_CONFIGURE;
 599    return 0;
 600}
 601
 602
 603static int __init
 604fore200e_pca_prom_read(struct fore200e* fore200e, struct prom_data* prom)
 605{
 606    struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
 607    struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
 608    struct prom_opcode      opcode;
 609    int                     ok;
 610    u32                     prom_dma;
 611
 612    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
 613
 614    opcode.opcode = OPCODE_GET_PROM;
 615    opcode.pad    = 0;
 616
 617    prom_dma = fore200e->bus->dma_map(fore200e, prom, sizeof(struct prom_data), DMA_FROM_DEVICE);
 
 
 
 618
 619    fore200e->bus->write(prom_dma, &entry->cp_entry->cmd.prom_block.prom_haddr);
 620    
 621    *entry->status = STATUS_PENDING;
 622
 623    fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.prom_block.opcode);
 624
 625    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
 626
 627    *entry->status = STATUS_FREE;
 628
 629    fore200e->bus->dma_unmap(fore200e, prom_dma, sizeof(struct prom_data), DMA_FROM_DEVICE);
 630
 631    if (ok == 0) {
 632	printk(FORE200E "unable to get PROM data from device %s\n", fore200e->name);
 633	return -EIO;
 634    }
 635
 636#if defined(__BIG_ENDIAN)
 637    
 638#define swap_here(addr) (*((u32*)(addr)) = swab32( *((u32*)(addr)) ))
 639
 640    /* MAC address is stored as little-endian */
 641    swap_here(&prom->mac_addr[0]);
 642    swap_here(&prom->mac_addr[4]);
 643#endif
 644    
 645    return 0;
 646}
 647
 648
 649static int
 650fore200e_pca_proc_read(struct fore200e* fore200e, char *page)
 651{
 652    struct pci_dev* pci_dev = (struct pci_dev*)fore200e->bus_dev;
 653
 654    return sprintf(page, "   PCI bus/slot/function:\t%d/%d/%d\n",
 655		   pci_dev->bus->number, PCI_SLOT(pci_dev->devfn), PCI_FUNC(pci_dev->devfn));
 656}
 657
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 658#endif /* CONFIG_PCI */
 659
 660
 661#ifdef CONFIG_SBUS
 662
 663static u32 fore200e_sba_read(volatile u32 __iomem *addr)
 664{
 665    return sbus_readl(addr);
 666}
 667
 668static void fore200e_sba_write(u32 val, volatile u32 __iomem *addr)
 669{
 670    sbus_writel(val, addr);
 671}
 672
 673static u32 fore200e_sba_dma_map(struct fore200e *fore200e, void* virt_addr, int size, int direction)
 674{
 675	struct platform_device *op = fore200e->bus_dev;
 676	u32 dma_addr;
 677
 678	dma_addr = dma_map_single(&op->dev, virt_addr, size, direction);
 679
 680	DPRINTK(3, "SBUS DVMA mapping: virt_addr = 0x%p, size = %d, direction = %d --> dma_addr = 0x%08x\n",
 681		virt_addr, size, direction, dma_addr);
 682    
 683	return dma_addr;
 684}
 685
 686static void fore200e_sba_dma_unmap(struct fore200e *fore200e, u32 dma_addr, int size, int direction)
 687{
 688	struct platform_device *op = fore200e->bus_dev;
 689
 690	DPRINTK(3, "SBUS DVMA unmapping: dma_addr = 0x%08x, size = %d, direction = %d,\n",
 691		dma_addr, size, direction);
 692
 693	dma_unmap_single(&op->dev, dma_addr, size, direction);
 694}
 695
 696static void fore200e_sba_dma_sync_for_cpu(struct fore200e *fore200e, u32 dma_addr, int size, int direction)
 697{
 698	struct platform_device *op = fore200e->bus_dev;
 699
 700	DPRINTK(3, "SBUS DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction);
 701    
 702	dma_sync_single_for_cpu(&op->dev, dma_addr, size, direction);
 703}
 704
 705static void fore200e_sba_dma_sync_for_device(struct fore200e *fore200e, u32 dma_addr, int size, int direction)
 706{
 707	struct platform_device *op = fore200e->bus_dev;
 708
 709	DPRINTK(3, "SBUS DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction);
 710
 711	dma_sync_single_for_device(&op->dev, dma_addr, size, direction);
 712}
 713
 714/* Allocate a DVMA consistent chunk of memory intended to act as a communication mechanism
 715 * (to hold descriptors, status, queues, etc.) shared by the driver and the adapter.
 716 */
 717static int fore200e_sba_dma_chunk_alloc(struct fore200e *fore200e, struct chunk *chunk,
 718					int size, int nbr, int alignment)
 719{
 720	struct platform_device *op = fore200e->bus_dev;
 721
 722	chunk->alloc_size = chunk->align_size = size * nbr;
 723
 724	/* returned chunks are page-aligned */
 725	chunk->alloc_addr = dma_alloc_coherent(&op->dev, chunk->alloc_size,
 726					       &chunk->dma_addr, GFP_ATOMIC);
 727
 728	if ((chunk->alloc_addr == NULL) || (chunk->dma_addr == 0))
 729		return -ENOMEM;
 730
 731	chunk->align_addr = chunk->alloc_addr;
 732    
 733	return 0;
 734}
 735
 736/* free a DVMA consistent chunk of memory */
 737static void fore200e_sba_dma_chunk_free(struct fore200e *fore200e, struct chunk *chunk)
 738{
 739	struct platform_device *op = fore200e->bus_dev;
 740
 741	dma_free_coherent(&op->dev, chunk->alloc_size,
 742			  chunk->alloc_addr, chunk->dma_addr);
 743}
 744
 745static void fore200e_sba_irq_enable(struct fore200e *fore200e)
 746{
 747	u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY;
 748	fore200e->bus->write(hcr | SBA200E_HCR_INTR_ENA, fore200e->regs.sba.hcr);
 749}
 750
 751static int fore200e_sba_irq_check(struct fore200e *fore200e)
 752{
 753	return fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_INTR_REQ;
 754}
 755
 756static void fore200e_sba_irq_ack(struct fore200e *fore200e)
 757{
 758	u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY;
 759	fore200e->bus->write(hcr | SBA200E_HCR_INTR_CLR, fore200e->regs.sba.hcr);
 760}
 761
 762static void fore200e_sba_reset(struct fore200e *fore200e)
 763{
 764	fore200e->bus->write(SBA200E_HCR_RESET, fore200e->regs.sba.hcr);
 765	fore200e_spin(10);
 766	fore200e->bus->write(0, fore200e->regs.sba.hcr);
 767}
 768
 769static int __init fore200e_sba_map(struct fore200e *fore200e)
 770{
 771	struct platform_device *op = fore200e->bus_dev;
 772	unsigned int bursts;
 773
 774	/* gain access to the SBA specific registers  */
 775	fore200e->regs.sba.hcr = of_ioremap(&op->resource[0], 0, SBA200E_HCR_LENGTH, "SBA HCR");
 776	fore200e->regs.sba.bsr = of_ioremap(&op->resource[1], 0, SBA200E_BSR_LENGTH, "SBA BSR");
 777	fore200e->regs.sba.isr = of_ioremap(&op->resource[2], 0, SBA200E_ISR_LENGTH, "SBA ISR");
 778	fore200e->virt_base    = of_ioremap(&op->resource[3], 0, SBA200E_RAM_LENGTH, "SBA RAM");
 779
 780	if (!fore200e->virt_base) {
 781		printk(FORE200E "unable to map RAM of device %s\n", fore200e->name);
 782		return -EFAULT;
 783	}
 784
 785	DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base);
 786    
 787	fore200e->bus->write(0x02, fore200e->regs.sba.isr); /* XXX hardwired interrupt level */
 788
 789	/* get the supported DVMA burst sizes */
 790	bursts = of_getintprop_default(op->dev.of_node->parent, "burst-sizes", 0x00);
 791
 792	if (sbus_can_dma_64bit())
 793		sbus_set_sbus64(&op->dev, bursts);
 794
 795	fore200e->state = FORE200E_STATE_MAP;
 796	return 0;
 797}
 798
 799static void fore200e_sba_unmap(struct fore200e *fore200e)
 800{
 801	struct platform_device *op = fore200e->bus_dev;
 802
 803	of_iounmap(&op->resource[0], fore200e->regs.sba.hcr, SBA200E_HCR_LENGTH);
 804	of_iounmap(&op->resource[1], fore200e->regs.sba.bsr, SBA200E_BSR_LENGTH);
 805	of_iounmap(&op->resource[2], fore200e->regs.sba.isr, SBA200E_ISR_LENGTH);
 806	of_iounmap(&op->resource[3], fore200e->virt_base,    SBA200E_RAM_LENGTH);
 807}
 808
 809static int __init fore200e_sba_configure(struct fore200e *fore200e)
 810{
 811	fore200e->state = FORE200E_STATE_CONFIGURE;
 812	return 0;
 813}
 814
 815static int __init fore200e_sba_prom_read(struct fore200e *fore200e, struct prom_data *prom)
 816{
 817	struct platform_device *op = fore200e->bus_dev;
 818	const u8 *prop;
 819	int len;
 820
 821	prop = of_get_property(op->dev.of_node, "madaddrlo2", &len);
 822	if (!prop)
 823		return -ENODEV;
 824	memcpy(&prom->mac_addr[4], prop, 4);
 825
 826	prop = of_get_property(op->dev.of_node, "madaddrhi4", &len);
 827	if (!prop)
 828		return -ENODEV;
 829	memcpy(&prom->mac_addr[2], prop, 4);
 830
 831	prom->serial_number = of_getintprop_default(op->dev.of_node,
 832						    "serialnumber", 0);
 833	prom->hw_revision = of_getintprop_default(op->dev.of_node,
 834						  "promversion", 0);
 835    
 836	return 0;
 837}
 838
 839static int fore200e_sba_proc_read(struct fore200e *fore200e, char *page)
 840{
 841	struct platform_device *op = fore200e->bus_dev;
 842	const struct linux_prom_registers *regs;
 843
 844	regs = of_get_property(op->dev.of_node, "reg", NULL);
 845
 846	return sprintf(page, "   SBUS slot/device:\t\t%d/'%s'\n",
 847		       (regs ? regs->which_io : 0), op->dev.of_node->name);
 848}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 849#endif /* CONFIG_SBUS */
 850
 851
 852static void
 853fore200e_tx_irq(struct fore200e* fore200e)
 854{
 855    struct host_txq*        txq = &fore200e->host_txq;
 856    struct host_txq_entry*  entry;
 857    struct atm_vcc*         vcc;
 858    struct fore200e_vc_map* vc_map;
 859
 860    if (fore200e->host_txq.txing == 0)
 861	return;
 862
 863    for (;;) {
 864	
 865	entry = &txq->host_entry[ txq->tail ];
 866
 867        if ((*entry->status & STATUS_COMPLETE) == 0) {
 868	    break;
 869	}
 870
 871	DPRINTK(3, "TX COMPLETED: entry = %p [tail = %d], vc_map = %p, skb = %p\n", 
 872		entry, txq->tail, entry->vc_map, entry->skb);
 873
 874	/* free copy of misaligned data */
 875	kfree(entry->data);
 876	
 877	/* remove DMA mapping */
 878	fore200e->bus->dma_unmap(fore200e, entry->tpd->tsd[ 0 ].buffer, entry->tpd->tsd[ 0 ].length,
 879				 DMA_TO_DEVICE);
 880
 881	vc_map = entry->vc_map;
 882
 883	/* vcc closed since the time the entry was submitted for tx? */
 884	if ((vc_map->vcc == NULL) ||
 885	    (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) {
 886
 887	    DPRINTK(1, "no ready vcc found for PDU sent on device %d\n",
 888		    fore200e->atm_dev->number);
 889
 890	    dev_kfree_skb_any(entry->skb);
 891	}
 892	else {
 893	    ASSERT(vc_map->vcc);
 894
 895	    /* vcc closed then immediately re-opened? */
 896	    if (vc_map->incarn != entry->incarn) {
 897
 898		/* when a vcc is closed, some PDUs may be still pending in the tx queue.
 899		   if the same vcc is immediately re-opened, those pending PDUs must
 900		   not be popped after the completion of their emission, as they refer
 901		   to the prior incarnation of that vcc. otherwise, sk_atm(vcc)->sk_wmem_alloc
 902		   would be decremented by the size of the (unrelated) skb, possibly
 903		   leading to a negative sk->sk_wmem_alloc count, ultimately freezing the vcc.
 904		   we thus bind the tx entry to the current incarnation of the vcc
 905		   when the entry is submitted for tx. When the tx later completes,
 906		   if the incarnation number of the tx entry does not match the one
 907		   of the vcc, then this implies that the vcc has been closed then re-opened.
 908		   we thus just drop the skb here. */
 909
 910		DPRINTK(1, "vcc closed-then-re-opened; dropping PDU sent on device %d\n",
 911			fore200e->atm_dev->number);
 912
 913		dev_kfree_skb_any(entry->skb);
 914	    }
 915	    else {
 916		vcc = vc_map->vcc;
 917		ASSERT(vcc);
 918
 919		/* notify tx completion */
 920		if (vcc->pop) {
 921		    vcc->pop(vcc, entry->skb);
 922		}
 923		else {
 924		    dev_kfree_skb_any(entry->skb);
 925		}
 926#if 1
 927		/* race fixed by the above incarnation mechanism, but... */
 928		if (atomic_read(&sk_atm(vcc)->sk_wmem_alloc) < 0) {
 929		    atomic_set(&sk_atm(vcc)->sk_wmem_alloc, 0);
 930		}
 931#endif
 932		/* check error condition */
 933		if (*entry->status & STATUS_ERROR)
 934		    atomic_inc(&vcc->stats->tx_err);
 935		else
 936		    atomic_inc(&vcc->stats->tx);
 937	    }
 938	}
 939
 940	*entry->status = STATUS_FREE;
 941
 942	fore200e->host_txq.txing--;
 943
 944	FORE200E_NEXT_ENTRY(txq->tail, QUEUE_SIZE_TX);
 945    }
 946}
 947
 948
 949#ifdef FORE200E_BSQ_DEBUG
 950int bsq_audit(int where, struct host_bsq* bsq, int scheme, int magn)
 951{
 952    struct buffer* buffer;
 953    int count = 0;
 954
 955    buffer = bsq->freebuf;
 956    while (buffer) {
 957
 958	if (buffer->supplied) {
 959	    printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld supplied but in free list!\n",
 960		   where, scheme, magn, buffer->index);
 961	}
 962
 963	if (buffer->magn != magn) {
 964	    printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected magn = %d\n",
 965		   where, scheme, magn, buffer->index, buffer->magn);
 966	}
 967
 968	if (buffer->scheme != scheme) {
 969	    printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected scheme = %d\n",
 970		   where, scheme, magn, buffer->index, buffer->scheme);
 971	}
 972
 973	if ((buffer->index < 0) || (buffer->index >= fore200e_rx_buf_nbr[ scheme ][ magn ])) {
 974	    printk(FORE200E "bsq_audit(%d): queue %d.%d, out of range buffer index = %ld !\n",
 975		   where, scheme, magn, buffer->index);
 976	}
 977
 978	count++;
 979	buffer = buffer->next;
 980    }
 981
 982    if (count != bsq->freebuf_count) {
 983	printk(FORE200E "bsq_audit(%d): queue %d.%d, %d bufs in free list, but freebuf_count = %d\n",
 984	       where, scheme, magn, count, bsq->freebuf_count);
 985    }
 986    return 0;
 987}
 988#endif
 989
 990
 991static void
 992fore200e_supply(struct fore200e* fore200e)
 993{
 994    int  scheme, magn, i;
 995
 996    struct host_bsq*       bsq;
 997    struct host_bsq_entry* entry;
 998    struct buffer*         buffer;
 999
1000    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
1001	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
1002
1003	    bsq = &fore200e->host_bsq[ scheme ][ magn ];
1004
1005#ifdef FORE200E_BSQ_DEBUG
1006	    bsq_audit(1, bsq, scheme, magn);
1007#endif
1008	    while (bsq->freebuf_count >= RBD_BLK_SIZE) {
1009
1010		DPRINTK(2, "supplying %d rx buffers to queue %d / %d, freebuf_count = %d\n",
1011			RBD_BLK_SIZE, scheme, magn, bsq->freebuf_count);
1012
1013		entry = &bsq->host_entry[ bsq->head ];
1014
1015		for (i = 0; i < RBD_BLK_SIZE; i++) {
1016
1017		    /* take the first buffer in the free buffer list */
1018		    buffer = bsq->freebuf;
1019		    if (!buffer) {
1020			printk(FORE200E "no more free bufs in queue %d.%d, but freebuf_count = %d\n",
1021			       scheme, magn, bsq->freebuf_count);
1022			return;
1023		    }
1024		    bsq->freebuf = buffer->next;
1025		    
1026#ifdef FORE200E_BSQ_DEBUG
1027		    if (buffer->supplied)
1028			printk(FORE200E "queue %d.%d, buffer %lu already supplied\n",
1029			       scheme, magn, buffer->index);
1030		    buffer->supplied = 1;
1031#endif
1032		    entry->rbd_block->rbd[ i ].buffer_haddr = buffer->data.dma_addr;
1033		    entry->rbd_block->rbd[ i ].handle       = FORE200E_BUF2HDL(buffer);
1034		}
1035
1036		FORE200E_NEXT_ENTRY(bsq->head, QUEUE_SIZE_BS);
1037
1038 		/* decrease accordingly the number of free rx buffers */
1039		bsq->freebuf_count -= RBD_BLK_SIZE;
1040
1041		*entry->status = STATUS_PENDING;
1042		fore200e->bus->write(entry->rbd_block_dma, &entry->cp_entry->rbd_block_haddr);
1043	    }
1044	}
1045    }
1046}
1047
1048
1049static int
1050fore200e_push_rpd(struct fore200e* fore200e, struct atm_vcc* vcc, struct rpd* rpd)
1051{
1052    struct sk_buff*      skb;
1053    struct buffer*       buffer;
1054    struct fore200e_vcc* fore200e_vcc;
1055    int                  i, pdu_len = 0;
1056#ifdef FORE200E_52BYTE_AAL0_SDU
1057    u32                  cell_header = 0;
1058#endif
1059
1060    ASSERT(vcc);
1061    
1062    fore200e_vcc = FORE200E_VCC(vcc);
1063    ASSERT(fore200e_vcc);
1064
1065#ifdef FORE200E_52BYTE_AAL0_SDU
1066    if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.rxtp.max_sdu == ATM_AAL0_SDU)) {
1067
1068	cell_header = (rpd->atm_header.gfc << ATM_HDR_GFC_SHIFT) |
1069	              (rpd->atm_header.vpi << ATM_HDR_VPI_SHIFT) |
1070                      (rpd->atm_header.vci << ATM_HDR_VCI_SHIFT) |
1071                      (rpd->atm_header.plt << ATM_HDR_PTI_SHIFT) | 
1072                       rpd->atm_header.clp;
1073	pdu_len = 4;
1074    }
1075#endif
1076    
1077    /* compute total PDU length */
1078    for (i = 0; i < rpd->nseg; i++)
1079	pdu_len += rpd->rsd[ i ].length;
1080    
1081    skb = alloc_skb(pdu_len, GFP_ATOMIC);
1082    if (skb == NULL) {
1083	DPRINTK(2, "unable to alloc new skb, rx PDU length = %d\n", pdu_len);
1084
1085	atomic_inc(&vcc->stats->rx_drop);
1086	return -ENOMEM;
1087    } 
1088
1089    __net_timestamp(skb);
1090    
1091#ifdef FORE200E_52BYTE_AAL0_SDU
1092    if (cell_header) {
1093	*((u32*)skb_put(skb, 4)) = cell_header;
1094    }
1095#endif
1096
1097    /* reassemble segments */
1098    for (i = 0; i < rpd->nseg; i++) {
1099	
1100	/* rebuild rx buffer address from rsd handle */
1101	buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle);
1102	
1103	/* Make device DMA transfer visible to CPU.  */
1104	fore200e->bus->dma_sync_for_cpu(fore200e, buffer->data.dma_addr, rpd->rsd[ i ].length, DMA_FROM_DEVICE);
 
1105	
1106	memcpy(skb_put(skb, rpd->rsd[ i ].length), buffer->data.align_addr, rpd->rsd[ i ].length);
1107
1108	/* Now let the device get at it again.  */
1109	fore200e->bus->dma_sync_for_device(fore200e, buffer->data.dma_addr, rpd->rsd[ i ].length, DMA_FROM_DEVICE);
 
1110    }
1111
1112    DPRINTK(3, "rx skb: len = %d, truesize = %d\n", skb->len, skb->truesize);
1113    
1114    if (pdu_len < fore200e_vcc->rx_min_pdu)
1115	fore200e_vcc->rx_min_pdu = pdu_len;
1116    if (pdu_len > fore200e_vcc->rx_max_pdu)
1117	fore200e_vcc->rx_max_pdu = pdu_len;
1118    fore200e_vcc->rx_pdu++;
1119
1120    /* push PDU */
1121    if (atm_charge(vcc, skb->truesize) == 0) {
1122
1123	DPRINTK(2, "receive buffers saturated for %d.%d.%d - PDU dropped\n",
1124		vcc->itf, vcc->vpi, vcc->vci);
1125
1126	dev_kfree_skb_any(skb);
1127
1128	atomic_inc(&vcc->stats->rx_drop);
1129	return -ENOMEM;
1130    }
1131
1132    ASSERT(atomic_read(&sk_atm(vcc)->sk_wmem_alloc) >= 0);
1133
1134    vcc->push(vcc, skb);
1135    atomic_inc(&vcc->stats->rx);
1136
1137    ASSERT(atomic_read(&sk_atm(vcc)->sk_wmem_alloc) >= 0);
1138
1139    return 0;
1140}
1141
1142
1143static void
1144fore200e_collect_rpd(struct fore200e* fore200e, struct rpd* rpd)
1145{
1146    struct host_bsq* bsq;
1147    struct buffer*   buffer;
1148    int              i;
1149    
1150    for (i = 0; i < rpd->nseg; i++) {
1151
1152	/* rebuild rx buffer address from rsd handle */
1153	buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle);
1154
1155	bsq = &fore200e->host_bsq[ buffer->scheme ][ buffer->magn ];
1156
1157#ifdef FORE200E_BSQ_DEBUG
1158	bsq_audit(2, bsq, buffer->scheme, buffer->magn);
1159
1160	if (buffer->supplied == 0)
1161	    printk(FORE200E "queue %d.%d, buffer %ld was not supplied\n",
1162		   buffer->scheme, buffer->magn, buffer->index);
1163	buffer->supplied = 0;
1164#endif
1165
1166	/* re-insert the buffer into the free buffer list */
1167	buffer->next = bsq->freebuf;
1168	bsq->freebuf = buffer;
1169
1170	/* then increment the number of free rx buffers */
1171	bsq->freebuf_count++;
1172    }
1173}
1174
1175
1176static void
1177fore200e_rx_irq(struct fore200e* fore200e)
1178{
1179    struct host_rxq*        rxq = &fore200e->host_rxq;
1180    struct host_rxq_entry*  entry;
1181    struct atm_vcc*         vcc;
1182    struct fore200e_vc_map* vc_map;
1183
1184    for (;;) {
1185	
1186	entry = &rxq->host_entry[ rxq->head ];
1187
1188	/* no more received PDUs */
1189	if ((*entry->status & STATUS_COMPLETE) == 0)
1190	    break;
1191
1192	vc_map = FORE200E_VC_MAP(fore200e, entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1193
1194	if ((vc_map->vcc == NULL) ||
1195	    (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) {
1196
1197	    DPRINTK(1, "no ready VC found for PDU received on %d.%d.%d\n",
1198		    fore200e->atm_dev->number,
1199		    entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1200	}
1201	else {
1202	    vcc = vc_map->vcc;
1203	    ASSERT(vcc);
1204
1205	    if ((*entry->status & STATUS_ERROR) == 0) {
1206
1207		fore200e_push_rpd(fore200e, vcc, entry->rpd);
1208	    }
1209	    else {
1210		DPRINTK(2, "damaged PDU on %d.%d.%d\n",
1211			fore200e->atm_dev->number,
1212			entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1213		atomic_inc(&vcc->stats->rx_err);
1214	    }
1215	}
1216
1217	FORE200E_NEXT_ENTRY(rxq->head, QUEUE_SIZE_RX);
1218
1219	fore200e_collect_rpd(fore200e, entry->rpd);
1220
1221	/* rewrite the rpd address to ack the received PDU */
1222	fore200e->bus->write(entry->rpd_dma, &entry->cp_entry->rpd_haddr);
1223	*entry->status = STATUS_FREE;
1224
1225	fore200e_supply(fore200e);
1226    }
1227}
1228
1229
1230#ifndef FORE200E_USE_TASKLET
1231static void
1232fore200e_irq(struct fore200e* fore200e)
1233{
1234    unsigned long flags;
1235
1236    spin_lock_irqsave(&fore200e->q_lock, flags);
1237    fore200e_rx_irq(fore200e);
1238    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1239
1240    spin_lock_irqsave(&fore200e->q_lock, flags);
1241    fore200e_tx_irq(fore200e);
1242    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1243}
1244#endif
1245
1246
1247static irqreturn_t
1248fore200e_interrupt(int irq, void* dev)
1249{
1250    struct fore200e* fore200e = FORE200E_DEV((struct atm_dev*)dev);
1251
1252    if (fore200e->bus->irq_check(fore200e) == 0) {
1253	
1254	DPRINTK(3, "interrupt NOT triggered by device %d\n", fore200e->atm_dev->number);
1255	return IRQ_NONE;
1256    }
1257    DPRINTK(3, "interrupt triggered by device %d\n", fore200e->atm_dev->number);
1258
1259#ifdef FORE200E_USE_TASKLET
1260    tasklet_schedule(&fore200e->tx_tasklet);
1261    tasklet_schedule(&fore200e->rx_tasklet);
1262#else
1263    fore200e_irq(fore200e);
1264#endif
1265    
1266    fore200e->bus->irq_ack(fore200e);
1267    return IRQ_HANDLED;
1268}
1269
1270
1271#ifdef FORE200E_USE_TASKLET
1272static void
1273fore200e_tx_tasklet(unsigned long data)
1274{
1275    struct fore200e* fore200e = (struct fore200e*) data;
1276    unsigned long flags;
1277
1278    DPRINTK(3, "tx tasklet scheduled for device %d\n", fore200e->atm_dev->number);
1279
1280    spin_lock_irqsave(&fore200e->q_lock, flags);
1281    fore200e_tx_irq(fore200e);
1282    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1283}
1284
1285
1286static void
1287fore200e_rx_tasklet(unsigned long data)
1288{
1289    struct fore200e* fore200e = (struct fore200e*) data;
1290    unsigned long    flags;
1291
1292    DPRINTK(3, "rx tasklet scheduled for device %d\n", fore200e->atm_dev->number);
1293
1294    spin_lock_irqsave(&fore200e->q_lock, flags);
1295    fore200e_rx_irq((struct fore200e*) data);
1296    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1297}
1298#endif
1299
1300
1301static int
1302fore200e_select_scheme(struct atm_vcc* vcc)
1303{
1304    /* fairly balance the VCs over (identical) buffer schemes */
1305    int scheme = vcc->vci % 2 ? BUFFER_SCHEME_ONE : BUFFER_SCHEME_TWO;
1306
1307    DPRINTK(1, "VC %d.%d.%d uses buffer scheme %d\n",
1308	    vcc->itf, vcc->vpi, vcc->vci, scheme);
1309
1310    return scheme;
1311}
1312
1313
1314static int 
1315fore200e_activate_vcin(struct fore200e* fore200e, int activate, struct atm_vcc* vcc, int mtu)
1316{
1317    struct host_cmdq*        cmdq  = &fore200e->host_cmdq;
1318    struct host_cmdq_entry*  entry = &cmdq->host_entry[ cmdq->head ];
1319    struct activate_opcode   activ_opcode;
1320    struct deactivate_opcode deactiv_opcode;
1321    struct vpvc              vpvc;
1322    int                      ok;
1323    enum fore200e_aal        aal = fore200e_atm2fore_aal(vcc->qos.aal);
1324
1325    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1326    
1327    if (activate) {
1328	FORE200E_VCC(vcc)->scheme = fore200e_select_scheme(vcc);
1329	
1330	activ_opcode.opcode = OPCODE_ACTIVATE_VCIN;
1331	activ_opcode.aal    = aal;
1332	activ_opcode.scheme = FORE200E_VCC(vcc)->scheme;
1333	activ_opcode.pad    = 0;
1334    }
1335    else {
1336	deactiv_opcode.opcode = OPCODE_DEACTIVATE_VCIN;
1337	deactiv_opcode.pad    = 0;
1338    }
1339
1340    vpvc.vci = vcc->vci;
1341    vpvc.vpi = vcc->vpi;
1342
1343    *entry->status = STATUS_PENDING;
1344
1345    if (activate) {
1346
1347#ifdef FORE200E_52BYTE_AAL0_SDU
1348	mtu = 48;
1349#endif
1350	/* the MTU is not used by the cp, except in the case of AAL0 */
1351	fore200e->bus->write(mtu,                        &entry->cp_entry->cmd.activate_block.mtu);
1352	fore200e->bus->write(*(u32*)&vpvc,         (u32 __iomem *)&entry->cp_entry->cmd.activate_block.vpvc);
1353	fore200e->bus->write(*(u32*)&activ_opcode, (u32 __iomem *)&entry->cp_entry->cmd.activate_block.opcode);
1354    }
1355    else {
1356	fore200e->bus->write(*(u32*)&vpvc,         (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.vpvc);
1357	fore200e->bus->write(*(u32*)&deactiv_opcode, (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.opcode);
1358    }
1359
1360    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1361
1362    *entry->status = STATUS_FREE;
1363
1364    if (ok == 0) {
1365	printk(FORE200E "unable to %s VC %d.%d.%d\n",
1366	       activate ? "open" : "close", vcc->itf, vcc->vpi, vcc->vci);
1367	return -EIO;
1368    }
1369
1370    DPRINTK(1, "VC %d.%d.%d %sed\n", vcc->itf, vcc->vpi, vcc->vci, 
1371	    activate ? "open" : "clos");
1372
1373    return 0;
1374}
1375
1376
1377#define FORE200E_MAX_BACK2BACK_CELLS 255    /* XXX depends on CDVT */
1378
1379static void
1380fore200e_rate_ctrl(struct atm_qos* qos, struct tpd_rate* rate)
1381{
1382    if (qos->txtp.max_pcr < ATM_OC3_PCR) {
1383    
1384	/* compute the data cells to idle cells ratio from the tx PCR */
1385	rate->data_cells = qos->txtp.max_pcr * FORE200E_MAX_BACK2BACK_CELLS / ATM_OC3_PCR;
1386	rate->idle_cells = FORE200E_MAX_BACK2BACK_CELLS - rate->data_cells;
1387    }
1388    else {
1389	/* disable rate control */
1390	rate->data_cells = rate->idle_cells = 0;
1391    }
1392}
1393
1394
1395static int
1396fore200e_open(struct atm_vcc *vcc)
1397{
1398    struct fore200e*        fore200e = FORE200E_DEV(vcc->dev);
1399    struct fore200e_vcc*    fore200e_vcc;
1400    struct fore200e_vc_map* vc_map;
1401    unsigned long	    flags;
1402    int			    vci = vcc->vci;
1403    short		    vpi = vcc->vpi;
1404
1405    ASSERT((vpi >= 0) && (vpi < 1<<FORE200E_VPI_BITS));
1406    ASSERT((vci >= 0) && (vci < 1<<FORE200E_VCI_BITS));
1407
1408    spin_lock_irqsave(&fore200e->q_lock, flags);
1409
1410    vc_map = FORE200E_VC_MAP(fore200e, vpi, vci);
1411    if (vc_map->vcc) {
1412
1413	spin_unlock_irqrestore(&fore200e->q_lock, flags);
1414
1415	printk(FORE200E "VC %d.%d.%d already in use\n",
1416	       fore200e->atm_dev->number, vpi, vci);
1417
1418	return -EINVAL;
1419    }
1420
1421    vc_map->vcc = vcc;
1422
1423    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1424
1425    fore200e_vcc = kzalloc(sizeof(struct fore200e_vcc), GFP_ATOMIC);
1426    if (fore200e_vcc == NULL) {
1427	vc_map->vcc = NULL;
1428	return -ENOMEM;
1429    }
1430
1431    DPRINTK(2, "opening %d.%d.%d:%d QoS = (tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; "
1432	    "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d)\n",
1433	    vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1434	    fore200e_traffic_class[ vcc->qos.txtp.traffic_class ],
1435	    vcc->qos.txtp.min_pcr, vcc->qos.txtp.max_pcr, vcc->qos.txtp.max_cdv, vcc->qos.txtp.max_sdu,
1436	    fore200e_traffic_class[ vcc->qos.rxtp.traffic_class ],
1437	    vcc->qos.rxtp.min_pcr, vcc->qos.rxtp.max_pcr, vcc->qos.rxtp.max_cdv, vcc->qos.rxtp.max_sdu);
1438    
1439    /* pseudo-CBR bandwidth requested? */
1440    if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1441	
1442	mutex_lock(&fore200e->rate_mtx);
1443	if (fore200e->available_cell_rate < vcc->qos.txtp.max_pcr) {
1444	    mutex_unlock(&fore200e->rate_mtx);
1445
1446	    kfree(fore200e_vcc);
1447	    vc_map->vcc = NULL;
1448	    return -EAGAIN;
1449	}
1450
1451	/* reserve bandwidth */
1452	fore200e->available_cell_rate -= vcc->qos.txtp.max_pcr;
1453	mutex_unlock(&fore200e->rate_mtx);
1454    }
1455    
1456    vcc->itf = vcc->dev->number;
1457
1458    set_bit(ATM_VF_PARTIAL,&vcc->flags);
1459    set_bit(ATM_VF_ADDR, &vcc->flags);
1460
1461    vcc->dev_data = fore200e_vcc;
1462    
1463    if (fore200e_activate_vcin(fore200e, 1, vcc, vcc->qos.rxtp.max_sdu) < 0) {
1464
1465	vc_map->vcc = NULL;
1466
1467	clear_bit(ATM_VF_ADDR, &vcc->flags);
1468	clear_bit(ATM_VF_PARTIAL,&vcc->flags);
1469
1470	vcc->dev_data = NULL;
1471
1472	fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1473
1474	kfree(fore200e_vcc);
1475	return -EINVAL;
1476    }
1477    
1478    /* compute rate control parameters */
1479    if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1480	
1481	fore200e_rate_ctrl(&vcc->qos, &fore200e_vcc->rate);
1482	set_bit(ATM_VF_HASQOS, &vcc->flags);
1483
1484	DPRINTK(3, "tx on %d.%d.%d:%d, tx PCR = %d, rx PCR = %d, data_cells = %u, idle_cells = %u\n",
1485		vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1486		vcc->qos.txtp.max_pcr, vcc->qos.rxtp.max_pcr, 
1487		fore200e_vcc->rate.data_cells, fore200e_vcc->rate.idle_cells);
1488    }
1489    
1490    fore200e_vcc->tx_min_pdu = fore200e_vcc->rx_min_pdu = MAX_PDU_SIZE + 1;
1491    fore200e_vcc->tx_max_pdu = fore200e_vcc->rx_max_pdu = 0;
1492    fore200e_vcc->tx_pdu     = fore200e_vcc->rx_pdu     = 0;
1493
1494    /* new incarnation of the vcc */
1495    vc_map->incarn = ++fore200e->incarn_count;
1496
1497    /* VC unusable before this flag is set */
1498    set_bit(ATM_VF_READY, &vcc->flags);
1499
1500    return 0;
1501}
1502
1503
1504static void
1505fore200e_close(struct atm_vcc* vcc)
1506{
1507    struct fore200e*        fore200e = FORE200E_DEV(vcc->dev);
1508    struct fore200e_vcc*    fore200e_vcc;
 
1509    struct fore200e_vc_map* vc_map;
1510    unsigned long           flags;
1511
1512    ASSERT(vcc);
 
 
1513    ASSERT((vcc->vpi >= 0) && (vcc->vpi < 1<<FORE200E_VPI_BITS));
1514    ASSERT((vcc->vci >= 0) && (vcc->vci < 1<<FORE200E_VCI_BITS));
1515
1516    DPRINTK(2, "closing %d.%d.%d:%d\n", vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal));
1517
1518    clear_bit(ATM_VF_READY, &vcc->flags);
1519
1520    fore200e_activate_vcin(fore200e, 0, vcc, 0);
1521
1522    spin_lock_irqsave(&fore200e->q_lock, flags);
1523
1524    vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci);
1525
1526    /* the vc is no longer considered as "in use" by fore200e_open() */
1527    vc_map->vcc = NULL;
1528
1529    vcc->itf = vcc->vci = vcc->vpi = 0;
1530
1531    fore200e_vcc = FORE200E_VCC(vcc);
1532    vcc->dev_data = NULL;
1533
1534    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1535
1536    /* release reserved bandwidth, if any */
1537    if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1538
1539	mutex_lock(&fore200e->rate_mtx);
1540	fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1541	mutex_unlock(&fore200e->rate_mtx);
1542
1543	clear_bit(ATM_VF_HASQOS, &vcc->flags);
1544    }
1545
1546    clear_bit(ATM_VF_ADDR, &vcc->flags);
1547    clear_bit(ATM_VF_PARTIAL,&vcc->flags);
1548
1549    ASSERT(fore200e_vcc);
1550    kfree(fore200e_vcc);
1551}
1552
1553
1554static int
1555fore200e_send(struct atm_vcc *vcc, struct sk_buff *skb)
1556{
1557    struct fore200e*        fore200e     = FORE200E_DEV(vcc->dev);
1558    struct fore200e_vcc*    fore200e_vcc = FORE200E_VCC(vcc);
1559    struct fore200e_vc_map* vc_map;
1560    struct host_txq*        txq          = &fore200e->host_txq;
1561    struct host_txq_entry*  entry;
1562    struct tpd*             tpd;
1563    struct tpd_haddr        tpd_haddr;
1564    int                     retry        = CONFIG_ATM_FORE200E_TX_RETRY;
1565    int                     tx_copy      = 0;
1566    int                     tx_len       = skb->len;
1567    u32*                    cell_header  = NULL;
1568    unsigned char*          skb_data;
1569    int                     skb_len;
1570    unsigned char*          data;
1571    unsigned long           flags;
1572
1573    ASSERT(vcc);
1574    ASSERT(atomic_read(&sk_atm(vcc)->sk_wmem_alloc) >= 0);
1575    ASSERT(fore200e);
1576    ASSERT(fore200e_vcc);
 
 
 
 
 
 
 
 
1577
1578    if (!test_bit(ATM_VF_READY, &vcc->flags)) {
1579	DPRINTK(1, "VC %d.%d.%d not ready for tx\n", vcc->itf, vcc->vpi, vcc->vpi);
1580	dev_kfree_skb_any(skb);
1581	return -EINVAL;
1582    }
1583
1584#ifdef FORE200E_52BYTE_AAL0_SDU
1585    if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.txtp.max_sdu == ATM_AAL0_SDU)) {
1586	cell_header = (u32*) skb->data;
1587	skb_data    = skb->data + 4;    /* skip 4-byte cell header */
1588	skb_len     = tx_len = skb->len  - 4;
1589
1590	DPRINTK(3, "user-supplied cell header = 0x%08x\n", *cell_header);
1591    }
1592    else 
1593#endif
1594    {
1595	skb_data = skb->data;
1596	skb_len  = skb->len;
1597    }
1598    
1599    if (((unsigned long)skb_data) & 0x3) {
1600
1601	DPRINTK(2, "misaligned tx PDU on device %s\n", fore200e->name);
1602	tx_copy = 1;
1603	tx_len  = skb_len;
1604    }
1605
1606    if ((vcc->qos.aal == ATM_AAL0) && (skb_len % ATM_CELL_PAYLOAD)) {
1607
1608        /* this simply NUKES the PCA board */
1609	DPRINTK(2, "incomplete tx AAL0 PDU on device %s\n", fore200e->name);
1610	tx_copy = 1;
1611	tx_len  = ((skb_len / ATM_CELL_PAYLOAD) + 1) * ATM_CELL_PAYLOAD;
1612    }
1613    
1614    if (tx_copy) {
1615	data = kmalloc(tx_len, GFP_ATOMIC | GFP_DMA);
1616	if (data == NULL) {
1617	    if (vcc->pop) {
1618		vcc->pop(vcc, skb);
1619	    }
1620	    else {
1621		dev_kfree_skb_any(skb);
1622	    }
1623	    return -ENOMEM;
1624	}
1625
1626	memcpy(data, skb_data, skb_len);
1627	if (skb_len < tx_len)
1628	    memset(data + skb_len, 0x00, tx_len - skb_len);
1629    }
1630    else {
1631	data = skb_data;
1632    }
1633
1634    vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci);
1635    ASSERT(vc_map->vcc == vcc);
1636
1637  retry_here:
1638
1639    spin_lock_irqsave(&fore200e->q_lock, flags);
1640
1641    entry = &txq->host_entry[ txq->head ];
1642
1643    if ((*entry->status != STATUS_FREE) || (txq->txing >= QUEUE_SIZE_TX - 2)) {
1644
1645	/* try to free completed tx queue entries */
1646	fore200e_tx_irq(fore200e);
1647
1648	if (*entry->status != STATUS_FREE) {
1649
1650	    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1651
1652	    /* retry once again? */
1653	    if (--retry > 0) {
1654		udelay(50);
1655		goto retry_here;
1656	    }
1657
1658	    atomic_inc(&vcc->stats->tx_err);
1659
1660	    fore200e->tx_sat++;
1661	    DPRINTK(2, "tx queue of device %s is saturated, PDU dropped - heartbeat is %08x\n",
1662		    fore200e->name, fore200e->cp_queues->heartbeat);
1663	    if (vcc->pop) {
1664		vcc->pop(vcc, skb);
1665	    }
1666	    else {
1667		dev_kfree_skb_any(skb);
1668	    }
1669
1670	    if (tx_copy)
1671		kfree(data);
1672
1673	    return -ENOBUFS;
1674	}
1675    }
1676
1677    entry->incarn = vc_map->incarn;
1678    entry->vc_map = vc_map;
1679    entry->skb    = skb;
1680    entry->data   = tx_copy ? data : NULL;
1681
1682    tpd = entry->tpd;
1683    tpd->tsd[ 0 ].buffer = fore200e->bus->dma_map(fore200e, data, tx_len, DMA_TO_DEVICE);
 
 
 
 
 
 
 
1684    tpd->tsd[ 0 ].length = tx_len;
1685
1686    FORE200E_NEXT_ENTRY(txq->head, QUEUE_SIZE_TX);
1687    txq->txing++;
1688
1689    /* The dma_map call above implies a dma_sync so the device can use it,
1690     * thus no explicit dma_sync call is necessary here.
1691     */
1692    
1693    DPRINTK(3, "tx on %d.%d.%d:%d, len = %u (%u)\n", 
1694	    vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1695	    tpd->tsd[0].length, skb_len);
1696
1697    if (skb_len < fore200e_vcc->tx_min_pdu)
1698	fore200e_vcc->tx_min_pdu = skb_len;
1699    if (skb_len > fore200e_vcc->tx_max_pdu)
1700	fore200e_vcc->tx_max_pdu = skb_len;
1701    fore200e_vcc->tx_pdu++;
1702
1703    /* set tx rate control information */
1704    tpd->rate.data_cells = fore200e_vcc->rate.data_cells;
1705    tpd->rate.idle_cells = fore200e_vcc->rate.idle_cells;
1706
1707    if (cell_header) {
1708	tpd->atm_header.clp = (*cell_header & ATM_HDR_CLP);
1709	tpd->atm_header.plt = (*cell_header & ATM_HDR_PTI_MASK) >> ATM_HDR_PTI_SHIFT;
1710	tpd->atm_header.vci = (*cell_header & ATM_HDR_VCI_MASK) >> ATM_HDR_VCI_SHIFT;
1711	tpd->atm_header.vpi = (*cell_header & ATM_HDR_VPI_MASK) >> ATM_HDR_VPI_SHIFT;
1712	tpd->atm_header.gfc = (*cell_header & ATM_HDR_GFC_MASK) >> ATM_HDR_GFC_SHIFT;
1713    }
1714    else {
1715	/* set the ATM header, common to all cells conveying the PDU */
1716	tpd->atm_header.clp = 0;
1717	tpd->atm_header.plt = 0;
1718	tpd->atm_header.vci = vcc->vci;
1719	tpd->atm_header.vpi = vcc->vpi;
1720	tpd->atm_header.gfc = 0;
1721    }
1722
1723    tpd->spec.length = tx_len;
1724    tpd->spec.nseg   = 1;
1725    tpd->spec.aal    = fore200e_atm2fore_aal(vcc->qos.aal);
1726    tpd->spec.intr   = 1;
1727
1728    tpd_haddr.size  = sizeof(struct tpd) / (1<<TPD_HADDR_SHIFT);  /* size is expressed in 32 byte blocks */
1729    tpd_haddr.pad   = 0;
1730    tpd_haddr.haddr = entry->tpd_dma >> TPD_HADDR_SHIFT;          /* shift the address, as we are in a bitfield */
1731
1732    *entry->status = STATUS_PENDING;
1733    fore200e->bus->write(*(u32*)&tpd_haddr, (u32 __iomem *)&entry->cp_entry->tpd_haddr);
1734
1735    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1736
1737    return 0;
1738}
1739
1740
1741static int
1742fore200e_getstats(struct fore200e* fore200e)
1743{
1744    struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1745    struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1746    struct stats_opcode     opcode;
1747    int                     ok;
1748    u32                     stats_dma_addr;
1749
1750    if (fore200e->stats == NULL) {
1751	fore200e->stats = kzalloc(sizeof(struct stats), GFP_KERNEL | GFP_DMA);
1752	if (fore200e->stats == NULL)
1753	    return -ENOMEM;
1754    }
1755    
1756    stats_dma_addr = fore200e->bus->dma_map(fore200e, fore200e->stats,
1757					    sizeof(struct stats), DMA_FROM_DEVICE);
 
 
1758    
1759    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1760
1761    opcode.opcode = OPCODE_GET_STATS;
1762    opcode.pad    = 0;
1763
1764    fore200e->bus->write(stats_dma_addr, &entry->cp_entry->cmd.stats_block.stats_haddr);
1765    
1766    *entry->status = STATUS_PENDING;
1767
1768    fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.stats_block.opcode);
1769
1770    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1771
1772    *entry->status = STATUS_FREE;
1773
1774    fore200e->bus->dma_unmap(fore200e, stats_dma_addr, sizeof(struct stats), DMA_FROM_DEVICE);
1775    
1776    if (ok == 0) {
1777	printk(FORE200E "unable to get statistics from device %s\n", fore200e->name);
1778	return -EIO;
1779    }
1780
1781    return 0;
1782}
1783
1784
1785static int
1786fore200e_getsockopt(struct atm_vcc* vcc, int level, int optname, void __user *optval, int optlen)
1787{
1788    /* struct fore200e* fore200e = FORE200E_DEV(vcc->dev); */
1789
1790    DPRINTK(2, "getsockopt %d.%d.%d, level = %d, optname = 0x%x, optval = 0x%p, optlen = %d\n",
1791	    vcc->itf, vcc->vpi, vcc->vci, level, optname, optval, optlen);
1792
1793    return -EINVAL;
1794}
1795
1796
1797static int
1798fore200e_setsockopt(struct atm_vcc* vcc, int level, int optname, void __user *optval, unsigned int optlen)
1799{
1800    /* struct fore200e* fore200e = FORE200E_DEV(vcc->dev); */
1801    
1802    DPRINTK(2, "setsockopt %d.%d.%d, level = %d, optname = 0x%x, optval = 0x%p, optlen = %d\n",
1803	    vcc->itf, vcc->vpi, vcc->vci, level, optname, optval, optlen);
1804    
1805    return -EINVAL;
1806}
1807
1808
1809#if 0 /* currently unused */
1810static int
1811fore200e_get_oc3(struct fore200e* fore200e, struct oc3_regs* regs)
1812{
1813    struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1814    struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1815    struct oc3_opcode       opcode;
1816    int                     ok;
1817    u32                     oc3_regs_dma_addr;
1818
1819    oc3_regs_dma_addr = fore200e->bus->dma_map(fore200e, regs, sizeof(struct oc3_regs), DMA_FROM_DEVICE);
1820
1821    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1822
1823    opcode.opcode = OPCODE_GET_OC3;
1824    opcode.reg    = 0;
1825    opcode.value  = 0;
1826    opcode.mask   = 0;
1827
1828    fore200e->bus->write(oc3_regs_dma_addr, &entry->cp_entry->cmd.oc3_block.regs_haddr);
1829    
1830    *entry->status = STATUS_PENDING;
1831
1832    fore200e->bus->write(*(u32*)&opcode, (u32*)&entry->cp_entry->cmd.oc3_block.opcode);
1833
1834    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1835
1836    *entry->status = STATUS_FREE;
1837
1838    fore200e->bus->dma_unmap(fore200e, oc3_regs_dma_addr, sizeof(struct oc3_regs), DMA_FROM_DEVICE);
1839    
1840    if (ok == 0) {
1841	printk(FORE200E "unable to get OC-3 regs of device %s\n", fore200e->name);
1842	return -EIO;
1843    }
1844
1845    return 0;
1846}
1847#endif
1848
1849
1850static int
1851fore200e_set_oc3(struct fore200e* fore200e, u32 reg, u32 value, u32 mask)
1852{
1853    struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1854    struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1855    struct oc3_opcode       opcode;
1856    int                     ok;
1857
1858    DPRINTK(2, "set OC-3 reg = 0x%02x, value = 0x%02x, mask = 0x%02x\n", reg, value, mask);
1859
1860    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1861
1862    opcode.opcode = OPCODE_SET_OC3;
1863    opcode.reg    = reg;
1864    opcode.value  = value;
1865    opcode.mask   = mask;
1866
1867    fore200e->bus->write(0, &entry->cp_entry->cmd.oc3_block.regs_haddr);
1868    
1869    *entry->status = STATUS_PENDING;
1870
1871    fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.oc3_block.opcode);
1872
1873    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1874
1875    *entry->status = STATUS_FREE;
1876
1877    if (ok == 0) {
1878	printk(FORE200E "unable to set OC-3 reg 0x%02x of device %s\n", reg, fore200e->name);
1879	return -EIO;
1880    }
1881
1882    return 0;
1883}
1884
1885
1886static int
1887fore200e_setloop(struct fore200e* fore200e, int loop_mode)
1888{
1889    u32 mct_value, mct_mask;
1890    int error;
1891
1892    if (!capable(CAP_NET_ADMIN))
1893	return -EPERM;
1894    
1895    switch (loop_mode) {
1896
1897    case ATM_LM_NONE:
1898	mct_value = 0; 
1899	mct_mask  = SUNI_MCT_DLE | SUNI_MCT_LLE;
1900	break;
1901	
1902    case ATM_LM_LOC_PHY:
1903	mct_value = mct_mask = SUNI_MCT_DLE;
1904	break;
1905
1906    case ATM_LM_RMT_PHY:
1907	mct_value = mct_mask = SUNI_MCT_LLE;
1908	break;
1909
1910    default:
1911	return -EINVAL;
1912    }
1913
1914    error = fore200e_set_oc3(fore200e, SUNI_MCT, mct_value, mct_mask);
1915    if (error == 0)
1916	fore200e->loop_mode = loop_mode;
1917
1918    return error;
1919}
1920
1921
1922static int
1923fore200e_fetch_stats(struct fore200e* fore200e, struct sonet_stats __user *arg)
1924{
1925    struct sonet_stats tmp;
1926
1927    if (fore200e_getstats(fore200e) < 0)
1928	return -EIO;
1929
1930    tmp.section_bip = be32_to_cpu(fore200e->stats->oc3.section_bip8_errors);
1931    tmp.line_bip    = be32_to_cpu(fore200e->stats->oc3.line_bip24_errors);
1932    tmp.path_bip    = be32_to_cpu(fore200e->stats->oc3.path_bip8_errors);
1933    tmp.line_febe   = be32_to_cpu(fore200e->stats->oc3.line_febe_errors);
1934    tmp.path_febe   = be32_to_cpu(fore200e->stats->oc3.path_febe_errors);
1935    tmp.corr_hcs    = be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors);
1936    tmp.uncorr_hcs  = be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors);
1937    tmp.tx_cells    = be32_to_cpu(fore200e->stats->aal0.cells_transmitted)  +
1938	              be32_to_cpu(fore200e->stats->aal34.cells_transmitted) +
1939	              be32_to_cpu(fore200e->stats->aal5.cells_transmitted);
1940    tmp.rx_cells    = be32_to_cpu(fore200e->stats->aal0.cells_received)     +
1941	              be32_to_cpu(fore200e->stats->aal34.cells_received)    +
1942	              be32_to_cpu(fore200e->stats->aal5.cells_received);
1943
1944    if (arg)
1945	return copy_to_user(arg, &tmp, sizeof(struct sonet_stats)) ? -EFAULT : 0;	
1946    
1947    return 0;
1948}
1949
1950
1951static int
1952fore200e_ioctl(struct atm_dev* dev, unsigned int cmd, void __user * arg)
1953{
1954    struct fore200e* fore200e = FORE200E_DEV(dev);
1955    
1956    DPRINTK(2, "ioctl cmd = 0x%x (%u), arg = 0x%p (%lu)\n", cmd, cmd, arg, (unsigned long)arg);
1957
1958    switch (cmd) {
1959
1960    case SONET_GETSTAT:
1961	return fore200e_fetch_stats(fore200e, (struct sonet_stats __user *)arg);
1962
1963    case SONET_GETDIAG:
1964	return put_user(0, (int __user *)arg) ? -EFAULT : 0;
1965
1966    case ATM_SETLOOP:
1967	return fore200e_setloop(fore200e, (int)(unsigned long)arg);
1968
1969    case ATM_GETLOOP:
1970	return put_user(fore200e->loop_mode, (int __user *)arg) ? -EFAULT : 0;
1971
1972    case ATM_QUERYLOOP:
1973	return put_user(ATM_LM_LOC_PHY | ATM_LM_RMT_PHY, (int __user *)arg) ? -EFAULT : 0;
1974    }
1975
1976    return -ENOSYS; /* not implemented */
1977}
1978
1979
1980static int
1981fore200e_change_qos(struct atm_vcc* vcc,struct atm_qos* qos, int flags)
1982{
1983    struct fore200e_vcc* fore200e_vcc = FORE200E_VCC(vcc);
1984    struct fore200e*     fore200e     = FORE200E_DEV(vcc->dev);
1985
1986    if (!test_bit(ATM_VF_READY, &vcc->flags)) {
1987	DPRINTK(1, "VC %d.%d.%d not ready for QoS change\n", vcc->itf, vcc->vpi, vcc->vpi);
1988	return -EINVAL;
1989    }
1990
1991    DPRINTK(2, "change_qos %d.%d.%d, "
1992	    "(tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; "
1993	    "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d), flags = 0x%x\n"
1994	    "available_cell_rate = %u",
1995	    vcc->itf, vcc->vpi, vcc->vci,
1996	    fore200e_traffic_class[ qos->txtp.traffic_class ],
1997	    qos->txtp.min_pcr, qos->txtp.max_pcr, qos->txtp.max_cdv, qos->txtp.max_sdu,
1998	    fore200e_traffic_class[ qos->rxtp.traffic_class ],
1999	    qos->rxtp.min_pcr, qos->rxtp.max_pcr, qos->rxtp.max_cdv, qos->rxtp.max_sdu,
2000	    flags, fore200e->available_cell_rate);
2001
2002    if ((qos->txtp.traffic_class == ATM_CBR) && (qos->txtp.max_pcr > 0)) {
2003
2004	mutex_lock(&fore200e->rate_mtx);
2005	if (fore200e->available_cell_rate + vcc->qos.txtp.max_pcr < qos->txtp.max_pcr) {
2006	    mutex_unlock(&fore200e->rate_mtx);
2007	    return -EAGAIN;
2008	}
2009
2010	fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
2011	fore200e->available_cell_rate -= qos->txtp.max_pcr;
2012
2013	mutex_unlock(&fore200e->rate_mtx);
2014	
2015	memcpy(&vcc->qos, qos, sizeof(struct atm_qos));
2016	
2017	/* update rate control parameters */
2018	fore200e_rate_ctrl(qos, &fore200e_vcc->rate);
2019
2020	set_bit(ATM_VF_HASQOS, &vcc->flags);
2021
2022	return 0;
2023    }
2024    
2025    return -EINVAL;
2026}
2027    
2028
2029static int fore200e_irq_request(struct fore200e *fore200e)
2030{
2031    if (request_irq(fore200e->irq, fore200e_interrupt, IRQF_SHARED, fore200e->name, fore200e->atm_dev) < 0) {
2032
2033	printk(FORE200E "unable to reserve IRQ %s for device %s\n",
2034	       fore200e_irq_itoa(fore200e->irq), fore200e->name);
2035	return -EBUSY;
2036    }
2037
2038    printk(FORE200E "IRQ %s reserved for device %s\n",
2039	   fore200e_irq_itoa(fore200e->irq), fore200e->name);
2040
2041#ifdef FORE200E_USE_TASKLET
2042    tasklet_init(&fore200e->tx_tasklet, fore200e_tx_tasklet, (unsigned long)fore200e);
2043    tasklet_init(&fore200e->rx_tasklet, fore200e_rx_tasklet, (unsigned long)fore200e);
2044#endif
2045
2046    fore200e->state = FORE200E_STATE_IRQ;
2047    return 0;
2048}
2049
2050
2051static int fore200e_get_esi(struct fore200e *fore200e)
2052{
2053    struct prom_data* prom = kzalloc(sizeof(struct prom_data), GFP_KERNEL | GFP_DMA);
2054    int ok, i;
2055
2056    if (!prom)
2057	return -ENOMEM;
2058
2059    ok = fore200e->bus->prom_read(fore200e, prom);
2060    if (ok < 0) {
2061	kfree(prom);
2062	return -EBUSY;
2063    }
2064	
2065    printk(FORE200E "device %s, rev. %c, S/N: %d, ESI: %pM\n",
2066	   fore200e->name, 
2067	   (prom->hw_revision & 0xFF) + '@',    /* probably meaningless with SBA boards */
2068	   prom->serial_number & 0xFFFF, &prom->mac_addr[2]);
2069	
2070    for (i = 0; i < ESI_LEN; i++) {
2071	fore200e->esi[ i ] = fore200e->atm_dev->esi[ i ] = prom->mac_addr[ i + 2 ];
2072    }
2073    
2074    kfree(prom);
2075
2076    return 0;
2077}
2078
2079
2080static int fore200e_alloc_rx_buf(struct fore200e *fore200e)
2081{
2082    int scheme, magn, nbr, size, i;
2083
2084    struct host_bsq* bsq;
2085    struct buffer*   buffer;
2086
2087    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
2088	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
2089
2090	    bsq = &fore200e->host_bsq[ scheme ][ magn ];
2091
2092	    nbr  = fore200e_rx_buf_nbr[ scheme ][ magn ];
2093	    size = fore200e_rx_buf_size[ scheme ][ magn ];
2094
2095	    DPRINTK(2, "rx buffers %d / %d are being allocated\n", scheme, magn);
2096
2097	    /* allocate the array of receive buffers */
2098	    buffer = bsq->buffer = kzalloc(nbr * sizeof(struct buffer), GFP_KERNEL);
 
2099
2100	    if (buffer == NULL)
2101		return -ENOMEM;
2102
2103	    bsq->freebuf = NULL;
2104
2105	    for (i = 0; i < nbr; i++) {
2106
2107		buffer[ i ].scheme = scheme;
2108		buffer[ i ].magn   = magn;
2109#ifdef FORE200E_BSQ_DEBUG
2110		buffer[ i ].index  = i;
2111		buffer[ i ].supplied = 0;
2112#endif
2113
2114		/* allocate the receive buffer body */
2115		if (fore200e_chunk_alloc(fore200e,
2116					 &buffer[ i ].data, size, fore200e->bus->buffer_alignment,
2117					 DMA_FROM_DEVICE) < 0) {
2118		    
2119		    while (i > 0)
2120			fore200e_chunk_free(fore200e, &buffer[ --i ].data);
2121		    kfree(buffer);
2122		    
2123		    return -ENOMEM;
2124		}
2125
2126		/* insert the buffer into the free buffer list */
2127		buffer[ i ].next = bsq->freebuf;
2128		bsq->freebuf = &buffer[ i ];
2129	    }
2130	    /* all the buffers are free, initially */
2131	    bsq->freebuf_count = nbr;
2132
2133#ifdef FORE200E_BSQ_DEBUG
2134	    bsq_audit(3, bsq, scheme, magn);
2135#endif
2136	}
2137    }
2138
2139    fore200e->state = FORE200E_STATE_ALLOC_BUF;
2140    return 0;
2141}
2142
2143
2144static int fore200e_init_bs_queue(struct fore200e *fore200e)
2145{
2146    int scheme, magn, i;
2147
2148    struct host_bsq*     bsq;
2149    struct cp_bsq_entry __iomem * cp_entry;
2150
2151    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
2152	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
2153
2154	    DPRINTK(2, "buffer supply queue %d / %d is being initialized\n", scheme, magn);
2155
2156	    bsq = &fore200e->host_bsq[ scheme ][ magn ];
2157
2158	    /* allocate and align the array of status words */
2159	    if (fore200e->bus->dma_chunk_alloc(fore200e,
2160					       &bsq->status,
2161					       sizeof(enum status), 
2162					       QUEUE_SIZE_BS,
2163					       fore200e->bus->status_alignment) < 0) {
2164		return -ENOMEM;
2165	    }
2166
2167	    /* allocate and align the array of receive buffer descriptors */
2168	    if (fore200e->bus->dma_chunk_alloc(fore200e,
2169					       &bsq->rbd_block,
2170					       sizeof(struct rbd_block),
2171					       QUEUE_SIZE_BS,
2172					       fore200e->bus->descr_alignment) < 0) {
2173		
2174		fore200e->bus->dma_chunk_free(fore200e, &bsq->status);
2175		return -ENOMEM;
2176	    }
2177	    
2178	    /* get the base address of the cp resident buffer supply queue entries */
2179	    cp_entry = fore200e->virt_base + 
2180		       fore200e->bus->read(&fore200e->cp_queues->cp_bsq[ scheme ][ magn ]);
2181	    
2182	    /* fill the host resident and cp resident buffer supply queue entries */
2183	    for (i = 0; i < QUEUE_SIZE_BS; i++) {
2184		
2185		bsq->host_entry[ i ].status = 
2186		                     FORE200E_INDEX(bsq->status.align_addr, enum status, i);
2187	        bsq->host_entry[ i ].rbd_block =
2188		                     FORE200E_INDEX(bsq->rbd_block.align_addr, struct rbd_block, i);
2189		bsq->host_entry[ i ].rbd_block_dma =
2190		                     FORE200E_DMA_INDEX(bsq->rbd_block.dma_addr, struct rbd_block, i);
2191		bsq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2192		
2193		*bsq->host_entry[ i ].status = STATUS_FREE;
2194		
2195		fore200e->bus->write(FORE200E_DMA_INDEX(bsq->status.dma_addr, enum status, i), 
2196				     &cp_entry[ i ].status_haddr);
2197	    }
2198	}
2199    }
2200
2201    fore200e->state = FORE200E_STATE_INIT_BSQ;
2202    return 0;
2203}
2204
2205
2206static int fore200e_init_rx_queue(struct fore200e *fore200e)
2207{
2208    struct host_rxq*     rxq =  &fore200e->host_rxq;
2209    struct cp_rxq_entry __iomem * cp_entry;
2210    int i;
2211
2212    DPRINTK(2, "receive queue is being initialized\n");
2213
2214    /* allocate and align the array of status words */
2215    if (fore200e->bus->dma_chunk_alloc(fore200e,
2216				       &rxq->status,
2217				       sizeof(enum status), 
2218				       QUEUE_SIZE_RX,
2219				       fore200e->bus->status_alignment) < 0) {
2220	return -ENOMEM;
2221    }
2222
2223    /* allocate and align the array of receive PDU descriptors */
2224    if (fore200e->bus->dma_chunk_alloc(fore200e,
2225				       &rxq->rpd,
2226				       sizeof(struct rpd), 
2227				       QUEUE_SIZE_RX,
2228				       fore200e->bus->descr_alignment) < 0) {
2229	
2230	fore200e->bus->dma_chunk_free(fore200e, &rxq->status);
2231	return -ENOMEM;
2232    }
2233
2234    /* get the base address of the cp resident rx queue entries */
2235    cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_rxq);
2236
2237    /* fill the host resident and cp resident rx entries */
2238    for (i=0; i < QUEUE_SIZE_RX; i++) {
2239	
2240	rxq->host_entry[ i ].status = 
2241	                     FORE200E_INDEX(rxq->status.align_addr, enum status, i);
2242	rxq->host_entry[ i ].rpd = 
2243	                     FORE200E_INDEX(rxq->rpd.align_addr, struct rpd, i);
2244	rxq->host_entry[ i ].rpd_dma = 
2245	                     FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i);
2246	rxq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2247
2248	*rxq->host_entry[ i ].status = STATUS_FREE;
2249
2250	fore200e->bus->write(FORE200E_DMA_INDEX(rxq->status.dma_addr, enum status, i), 
2251			     &cp_entry[ i ].status_haddr);
2252
2253	fore200e->bus->write(FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i),
2254			     &cp_entry[ i ].rpd_haddr);
2255    }
2256
2257    /* set the head entry of the queue */
2258    rxq->head = 0;
2259
2260    fore200e->state = FORE200E_STATE_INIT_RXQ;
2261    return 0;
2262}
2263
2264
2265static int fore200e_init_tx_queue(struct fore200e *fore200e)
2266{
2267    struct host_txq*     txq =  &fore200e->host_txq;
2268    struct cp_txq_entry __iomem * cp_entry;
2269    int i;
2270
2271    DPRINTK(2, "transmit queue is being initialized\n");
2272
2273    /* allocate and align the array of status words */
2274    if (fore200e->bus->dma_chunk_alloc(fore200e,
2275				       &txq->status,
2276				       sizeof(enum status), 
2277				       QUEUE_SIZE_TX,
2278				       fore200e->bus->status_alignment) < 0) {
2279	return -ENOMEM;
2280    }
2281
2282    /* allocate and align the array of transmit PDU descriptors */
2283    if (fore200e->bus->dma_chunk_alloc(fore200e,
2284				       &txq->tpd,
2285				       sizeof(struct tpd), 
2286				       QUEUE_SIZE_TX,
2287				       fore200e->bus->descr_alignment) < 0) {
2288	
2289	fore200e->bus->dma_chunk_free(fore200e, &txq->status);
2290	return -ENOMEM;
2291    }
2292
2293    /* get the base address of the cp resident tx queue entries */
2294    cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_txq);
2295
2296    /* fill the host resident and cp resident tx entries */
2297    for (i=0; i < QUEUE_SIZE_TX; i++) {
2298	
2299	txq->host_entry[ i ].status = 
2300	                     FORE200E_INDEX(txq->status.align_addr, enum status, i);
2301	txq->host_entry[ i ].tpd = 
2302	                     FORE200E_INDEX(txq->tpd.align_addr, struct tpd, i);
2303	txq->host_entry[ i ].tpd_dma  = 
2304                             FORE200E_DMA_INDEX(txq->tpd.dma_addr, struct tpd, i);
2305	txq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2306
2307	*txq->host_entry[ i ].status = STATUS_FREE;
2308	
2309	fore200e->bus->write(FORE200E_DMA_INDEX(txq->status.dma_addr, enum status, i), 
2310			     &cp_entry[ i ].status_haddr);
2311	
2312        /* although there is a one-to-one mapping of tx queue entries and tpds,
2313	   we do not write here the DMA (physical) base address of each tpd into
2314	   the related cp resident entry, because the cp relies on this write
2315	   operation to detect that a new pdu has been submitted for tx */
2316    }
2317
2318    /* set the head and tail entries of the queue */
2319    txq->head = 0;
2320    txq->tail = 0;
2321
2322    fore200e->state = FORE200E_STATE_INIT_TXQ;
2323    return 0;
2324}
2325
2326
2327static int fore200e_init_cmd_queue(struct fore200e *fore200e)
2328{
2329    struct host_cmdq*     cmdq =  &fore200e->host_cmdq;
2330    struct cp_cmdq_entry __iomem * cp_entry;
2331    int i;
2332
2333    DPRINTK(2, "command queue is being initialized\n");
2334
2335    /* allocate and align the array of status words */
2336    if (fore200e->bus->dma_chunk_alloc(fore200e,
2337				       &cmdq->status,
2338				       sizeof(enum status), 
2339				       QUEUE_SIZE_CMD,
2340				       fore200e->bus->status_alignment) < 0) {
2341	return -ENOMEM;
2342    }
2343    
2344    /* get the base address of the cp resident cmd queue entries */
2345    cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_cmdq);
2346
2347    /* fill the host resident and cp resident cmd entries */
2348    for (i=0; i < QUEUE_SIZE_CMD; i++) {
2349	
2350	cmdq->host_entry[ i ].status   = 
2351                              FORE200E_INDEX(cmdq->status.align_addr, enum status, i);
2352	cmdq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2353
2354	*cmdq->host_entry[ i ].status = STATUS_FREE;
2355
2356	fore200e->bus->write(FORE200E_DMA_INDEX(cmdq->status.dma_addr, enum status, i), 
2357                             &cp_entry[ i ].status_haddr);
2358    }
2359
2360    /* set the head entry of the queue */
2361    cmdq->head = 0;
2362
2363    fore200e->state = FORE200E_STATE_INIT_CMDQ;
2364    return 0;
2365}
2366
2367
2368static void fore200e_param_bs_queue(struct fore200e *fore200e,
2369				    enum buffer_scheme scheme,
2370				    enum buffer_magn magn, int queue_length,
2371				    int pool_size, int supply_blksize)
2372{
2373    struct bs_spec __iomem * bs_spec = &fore200e->cp_queues->init.bs_spec[ scheme ][ magn ];
2374
2375    fore200e->bus->write(queue_length,                           &bs_spec->queue_length);
2376    fore200e->bus->write(fore200e_rx_buf_size[ scheme ][ magn ], &bs_spec->buffer_size);
2377    fore200e->bus->write(pool_size,                              &bs_spec->pool_size);
2378    fore200e->bus->write(supply_blksize,                         &bs_spec->supply_blksize);
2379}
2380
2381
2382static int fore200e_initialize(struct fore200e *fore200e)
2383{
2384    struct cp_queues __iomem * cpq;
2385    int               ok, scheme, magn;
2386
2387    DPRINTK(2, "device %s being initialized\n", fore200e->name);
2388
2389    mutex_init(&fore200e->rate_mtx);
2390    spin_lock_init(&fore200e->q_lock);
2391
2392    cpq = fore200e->cp_queues = fore200e->virt_base + FORE200E_CP_QUEUES_OFFSET;
2393
2394    /* enable cp to host interrupts */
2395    fore200e->bus->write(1, &cpq->imask);
2396
2397    if (fore200e->bus->irq_enable)
2398	fore200e->bus->irq_enable(fore200e);
2399    
2400    fore200e->bus->write(NBR_CONNECT, &cpq->init.num_connect);
2401
2402    fore200e->bus->write(QUEUE_SIZE_CMD, &cpq->init.cmd_queue_len);
2403    fore200e->bus->write(QUEUE_SIZE_RX,  &cpq->init.rx_queue_len);
2404    fore200e->bus->write(QUEUE_SIZE_TX,  &cpq->init.tx_queue_len);
2405
2406    fore200e->bus->write(RSD_EXTENSION,  &cpq->init.rsd_extension);
2407    fore200e->bus->write(TSD_EXTENSION,  &cpq->init.tsd_extension);
2408
2409    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++)
2410	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++)
2411	    fore200e_param_bs_queue(fore200e, scheme, magn,
2412				    QUEUE_SIZE_BS, 
2413				    fore200e_rx_buf_nbr[ scheme ][ magn ],
2414				    RBD_BLK_SIZE);
2415
2416    /* issue the initialize command */
2417    fore200e->bus->write(STATUS_PENDING,    &cpq->init.status);
2418    fore200e->bus->write(OPCODE_INITIALIZE, &cpq->init.opcode);
2419
2420    ok = fore200e_io_poll(fore200e, &cpq->init.status, STATUS_COMPLETE, 3000);
2421    if (ok == 0) {
2422	printk(FORE200E "device %s initialization failed\n", fore200e->name);
2423	return -ENODEV;
2424    }
2425
2426    printk(FORE200E "device %s initialized\n", fore200e->name);
2427
2428    fore200e->state = FORE200E_STATE_INITIALIZE;
2429    return 0;
2430}
2431
2432
2433static void fore200e_monitor_putc(struct fore200e *fore200e, char c)
2434{
2435    struct cp_monitor __iomem * monitor = fore200e->cp_monitor;
2436
2437#if 0
2438    printk("%c", c);
2439#endif
2440    fore200e->bus->write(((u32) c) | FORE200E_CP_MONITOR_UART_AVAIL, &monitor->soft_uart.send);
2441}
2442
2443
2444static int fore200e_monitor_getc(struct fore200e *fore200e)
2445{
2446    struct cp_monitor __iomem * monitor = fore200e->cp_monitor;
2447    unsigned long      timeout = jiffies + msecs_to_jiffies(50);
2448    int                c;
2449
2450    while (time_before(jiffies, timeout)) {
2451
2452	c = (int) fore200e->bus->read(&monitor->soft_uart.recv);
2453
2454	if (c & FORE200E_CP_MONITOR_UART_AVAIL) {
2455
2456	    fore200e->bus->write(FORE200E_CP_MONITOR_UART_FREE, &monitor->soft_uart.recv);
2457#if 0
2458	    printk("%c", c & 0xFF);
2459#endif
2460	    return c & 0xFF;
2461	}
2462    }
2463
2464    return -1;
2465}
2466
2467
2468static void fore200e_monitor_puts(struct fore200e *fore200e, char *str)
2469{
2470    while (*str) {
2471
2472	/* the i960 monitor doesn't accept any new character if it has something to say */
2473	while (fore200e_monitor_getc(fore200e) >= 0);
2474	
2475	fore200e_monitor_putc(fore200e, *str++);
2476    }
2477
2478    while (fore200e_monitor_getc(fore200e) >= 0);
2479}
2480
2481#ifdef __LITTLE_ENDIAN
2482#define FW_EXT ".bin"
2483#else
2484#define FW_EXT "_ecd.bin2"
2485#endif
2486
2487static int fore200e_load_and_start_fw(struct fore200e *fore200e)
2488{
2489    const struct firmware *firmware;
2490    struct device *device;
2491    struct fw_header *fw_header;
2492    const __le32 *fw_data;
2493    u32 fw_size;
2494    u32 __iomem *load_addr;
2495    char buf[48];
2496    int err = -ENODEV;
2497
2498    if (strcmp(fore200e->bus->model_name, "PCA-200E") == 0)
2499	device = &((struct pci_dev *) fore200e->bus_dev)->dev;
2500#ifdef CONFIG_SBUS
2501    else if (strcmp(fore200e->bus->model_name, "SBA-200E") == 0)
2502	device = &((struct platform_device *) fore200e->bus_dev)->dev;
2503#endif
2504    else
2505	return err;
2506
2507    sprintf(buf, "%s%s", fore200e->bus->proc_name, FW_EXT);
2508    if ((err = request_firmware(&firmware, buf, device)) < 0) {
2509	printk(FORE200E "problem loading firmware image %s\n", fore200e->bus->model_name);
2510	return err;
2511    }
2512
2513    fw_data = (__le32 *) firmware->data;
2514    fw_size = firmware->size / sizeof(u32);
2515    fw_header = (struct fw_header *) firmware->data;
2516    load_addr = fore200e->virt_base + le32_to_cpu(fw_header->load_offset);
2517
2518    DPRINTK(2, "device %s firmware being loaded at 0x%p (%d words)\n",
2519	    fore200e->name, load_addr, fw_size);
2520
2521    if (le32_to_cpu(fw_header->magic) != FW_HEADER_MAGIC) {
2522	printk(FORE200E "corrupted %s firmware image\n", fore200e->bus->model_name);
2523	goto release;
2524    }
2525
2526    for (; fw_size--; fw_data++, load_addr++)
2527	fore200e->bus->write(le32_to_cpu(*fw_data), load_addr);
2528
2529    DPRINTK(2, "device %s firmware being started\n", fore200e->name);
2530
2531#if defined(__sparc_v9__)
2532    /* reported to be required by SBA cards on some sparc64 hosts */
2533    fore200e_spin(100);
2534#endif
2535
2536    sprintf(buf, "\rgo %x\r", le32_to_cpu(fw_header->start_offset));
2537    fore200e_monitor_puts(fore200e, buf);
2538
2539    if (fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_CP_RUNNING, 1000) == 0) {
2540	printk(FORE200E "device %s firmware didn't start\n", fore200e->name);
2541	goto release;
2542    }
2543
2544    printk(FORE200E "device %s firmware started\n", fore200e->name);
2545
2546    fore200e->state = FORE200E_STATE_START_FW;
2547    err = 0;
2548
2549release:
2550    release_firmware(firmware);
2551    return err;
2552}
2553
2554
2555static int fore200e_register(struct fore200e *fore200e, struct device *parent)
2556{
2557    struct atm_dev* atm_dev;
2558
2559    DPRINTK(2, "device %s being registered\n", fore200e->name);
2560
2561    atm_dev = atm_dev_register(fore200e->bus->proc_name, parent, &fore200e_ops,
2562                               -1, NULL);
2563    if (atm_dev == NULL) {
2564	printk(FORE200E "unable to register device %s\n", fore200e->name);
2565	return -ENODEV;
2566    }
2567
2568    atm_dev->dev_data = fore200e;
2569    fore200e->atm_dev = atm_dev;
2570
2571    atm_dev->ci_range.vpi_bits = FORE200E_VPI_BITS;
2572    atm_dev->ci_range.vci_bits = FORE200E_VCI_BITS;
2573
2574    fore200e->available_cell_rate = ATM_OC3_PCR;
2575
2576    fore200e->state = FORE200E_STATE_REGISTER;
2577    return 0;
2578}
2579
2580
2581static int fore200e_init(struct fore200e *fore200e, struct device *parent)
2582{
2583    if (fore200e_register(fore200e, parent) < 0)
2584	return -ENODEV;
2585    
2586    if (fore200e->bus->configure(fore200e) < 0)
2587	return -ENODEV;
2588
2589    if (fore200e->bus->map(fore200e) < 0)
2590	return -ENODEV;
2591
2592    if (fore200e_reset(fore200e, 1) < 0)
2593	return -ENODEV;
2594
2595    if (fore200e_load_and_start_fw(fore200e) < 0)
2596	return -ENODEV;
2597
2598    if (fore200e_initialize(fore200e) < 0)
2599	return -ENODEV;
2600
2601    if (fore200e_init_cmd_queue(fore200e) < 0)
2602	return -ENOMEM;
2603
2604    if (fore200e_init_tx_queue(fore200e) < 0)
2605	return -ENOMEM;
2606
2607    if (fore200e_init_rx_queue(fore200e) < 0)
2608	return -ENOMEM;
2609
2610    if (fore200e_init_bs_queue(fore200e) < 0)
2611	return -ENOMEM;
2612
2613    if (fore200e_alloc_rx_buf(fore200e) < 0)
2614	return -ENOMEM;
2615
2616    if (fore200e_get_esi(fore200e) < 0)
2617	return -EIO;
2618
2619    if (fore200e_irq_request(fore200e) < 0)
2620	return -EBUSY;
2621
2622    fore200e_supply(fore200e);
2623
2624    /* all done, board initialization is now complete */
2625    fore200e->state = FORE200E_STATE_COMPLETE;
2626    return 0;
2627}
2628
2629#ifdef CONFIG_SBUS
2630static const struct of_device_id fore200e_sba_match[];
2631static int fore200e_sba_probe(struct platform_device *op)
2632{
2633	const struct of_device_id *match;
2634	const struct fore200e_bus *bus;
2635	struct fore200e *fore200e;
2636	static int index = 0;
2637	int err;
2638
2639	match = of_match_device(fore200e_sba_match, &op->dev);
2640	if (!match)
2641		return -EINVAL;
2642	bus = match->data;
2643
2644	fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL);
2645	if (!fore200e)
2646		return -ENOMEM;
2647
2648	fore200e->bus = bus;
2649	fore200e->bus_dev = op;
2650	fore200e->irq = op->archdata.irqs[0];
2651	fore200e->phys_base = op->resource[0].start;
2652
2653	sprintf(fore200e->name, "%s-%d", bus->model_name, index);
2654
2655	err = fore200e_init(fore200e, &op->dev);
2656	if (err < 0) {
2657		fore200e_shutdown(fore200e);
2658		kfree(fore200e);
2659		return err;
2660	}
2661
2662	index++;
2663	dev_set_drvdata(&op->dev, fore200e);
2664
2665	return 0;
2666}
2667
2668static int fore200e_sba_remove(struct platform_device *op)
2669{
2670	struct fore200e *fore200e = dev_get_drvdata(&op->dev);
2671
2672	fore200e_shutdown(fore200e);
2673	kfree(fore200e);
2674
2675	return 0;
2676}
2677
2678static const struct of_device_id fore200e_sba_match[] = {
2679	{
2680		.name = SBA200E_PROM_NAME,
2681		.data = (void *) &fore200e_bus[1],
2682	},
2683	{},
2684};
2685MODULE_DEVICE_TABLE(of, fore200e_sba_match);
2686
2687static struct platform_driver fore200e_sba_driver = {
2688	.driver = {
2689		.name = "fore_200e",
2690		.owner = THIS_MODULE,
2691		.of_match_table = fore200e_sba_match,
2692	},
2693	.probe		= fore200e_sba_probe,
2694	.remove		= fore200e_sba_remove,
2695};
2696#endif
2697
2698#ifdef CONFIG_PCI
2699static int fore200e_pca_detect(struct pci_dev *pci_dev,
2700			       const struct pci_device_id *pci_ent)
2701{
2702    const struct fore200e_bus* bus = (struct fore200e_bus*) pci_ent->driver_data;
2703    struct fore200e* fore200e;
2704    int err = 0;
2705    static int index = 0;
2706
2707    if (pci_enable_device(pci_dev)) {
2708	err = -EINVAL;
2709	goto out;
2710    }
 
 
 
 
 
2711    
2712    fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL);
2713    if (fore200e == NULL) {
2714	err = -ENOMEM;
2715	goto out_disable;
2716    }
2717
2718    fore200e->bus       = bus;
2719    fore200e->bus_dev   = pci_dev;    
2720    fore200e->irq       = pci_dev->irq;
2721    fore200e->phys_base = pci_resource_start(pci_dev, 0);
2722
2723    sprintf(fore200e->name, "%s-%d", bus->model_name, index - 1);
2724
2725    pci_set_master(pci_dev);
2726
2727    printk(FORE200E "device %s found at 0x%lx, IRQ %s\n",
2728	   fore200e->bus->model_name, 
2729	   fore200e->phys_base, fore200e_irq_itoa(fore200e->irq));
2730
2731    sprintf(fore200e->name, "%s-%d", bus->model_name, index);
2732
2733    err = fore200e_init(fore200e, &pci_dev->dev);
2734    if (err < 0) {
2735	fore200e_shutdown(fore200e);
2736	goto out_free;
2737    }
2738
2739    ++index;
2740    pci_set_drvdata(pci_dev, fore200e);
2741
2742out:
2743    return err;
2744
2745out_free:
2746    kfree(fore200e);
2747out_disable:
2748    pci_disable_device(pci_dev);
2749    goto out;
2750}
2751
2752
2753static void fore200e_pca_remove_one(struct pci_dev *pci_dev)
2754{
2755    struct fore200e *fore200e;
2756
2757    fore200e = pci_get_drvdata(pci_dev);
2758
2759    fore200e_shutdown(fore200e);
2760    kfree(fore200e);
2761    pci_disable_device(pci_dev);
2762}
2763
2764
2765static struct pci_device_id fore200e_pca_tbl[] = {
2766    { PCI_VENDOR_ID_FORE, PCI_DEVICE_ID_FORE_PCA200E, PCI_ANY_ID, PCI_ANY_ID,
2767      0, 0, (unsigned long) &fore200e_bus[0] },
2768    { 0, }
2769};
2770
2771MODULE_DEVICE_TABLE(pci, fore200e_pca_tbl);
2772
2773static struct pci_driver fore200e_pca_driver = {
2774    .name =     "fore_200e",
2775    .probe =    fore200e_pca_detect,
2776    .remove =   fore200e_pca_remove_one,
2777    .id_table = fore200e_pca_tbl,
2778};
2779#endif
2780
2781static int __init fore200e_module_init(void)
2782{
2783	int err;
2784
2785	printk(FORE200E "FORE Systems 200E-series ATM driver - version " FORE200E_VERSION "\n");
2786
2787#ifdef CONFIG_SBUS
2788	err = platform_driver_register(&fore200e_sba_driver);
2789	if (err)
2790		return err;
2791#endif
2792
2793#ifdef CONFIG_PCI
2794	err = pci_register_driver(&fore200e_pca_driver);
2795#endif
2796
2797#ifdef CONFIG_SBUS
2798	if (err)
2799		platform_driver_unregister(&fore200e_sba_driver);
2800#endif
2801
2802	return err;
2803}
2804
2805static void __exit fore200e_module_cleanup(void)
2806{
2807#ifdef CONFIG_PCI
2808	pci_unregister_driver(&fore200e_pca_driver);
2809#endif
2810#ifdef CONFIG_SBUS
2811	platform_driver_unregister(&fore200e_sba_driver);
2812#endif
2813}
2814
2815static int
2816fore200e_proc_read(struct atm_dev *dev, loff_t* pos, char* page)
2817{
2818    struct fore200e*     fore200e  = FORE200E_DEV(dev);
2819    struct fore200e_vcc* fore200e_vcc;
2820    struct atm_vcc*      vcc;
2821    int                  i, len, left = *pos;
2822    unsigned long        flags;
2823
2824    if (!left--) {
2825
2826	if (fore200e_getstats(fore200e) < 0)
2827	    return -EIO;
2828
2829	len = sprintf(page,"\n"
2830		       " device:\n"
2831		       "   internal name:\t\t%s\n", fore200e->name);
2832
2833	/* print bus-specific information */
2834	if (fore200e->bus->proc_read)
2835	    len += fore200e->bus->proc_read(fore200e, page + len);
2836	
2837	len += sprintf(page + len,
2838		"   interrupt line:\t\t%s\n"
2839		"   physical base address:\t0x%p\n"
2840		"   virtual base address:\t0x%p\n"
2841		"   factory address (ESI):\t%pM\n"
2842		"   board serial number:\t\t%d\n\n",
2843		fore200e_irq_itoa(fore200e->irq),
2844		(void*)fore200e->phys_base,
2845		fore200e->virt_base,
2846		fore200e->esi,
2847		fore200e->esi[4] * 256 + fore200e->esi[5]);
2848
2849	return len;
2850    }
2851
2852    if (!left--)
2853	return sprintf(page,
2854		       "   free small bufs, scheme 1:\t%d\n"
2855		       "   free large bufs, scheme 1:\t%d\n"
2856		       "   free small bufs, scheme 2:\t%d\n"
2857		       "   free large bufs, scheme 2:\t%d\n",
2858		       fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_SMALL ].freebuf_count,
2859		       fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_LARGE ].freebuf_count,
2860		       fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_SMALL ].freebuf_count,
2861		       fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_LARGE ].freebuf_count);
2862
2863    if (!left--) {
2864	u32 hb = fore200e->bus->read(&fore200e->cp_queues->heartbeat);
2865
2866	len = sprintf(page,"\n\n"
2867		      " cell processor:\n"
2868		      "   heartbeat state:\t\t");
2869	
2870	if (hb >> 16 != 0xDEAD)
2871	    len += sprintf(page + len, "0x%08x\n", hb);
2872	else
2873	    len += sprintf(page + len, "*** FATAL ERROR %04x ***\n", hb & 0xFFFF);
2874
2875	return len;
2876    }
2877
2878    if (!left--) {
2879	static const char* media_name[] = {
2880	    "unshielded twisted pair",
2881	    "multimode optical fiber ST",
2882	    "multimode optical fiber SC",
2883	    "single-mode optical fiber ST",
2884	    "single-mode optical fiber SC",
2885	    "unknown"
2886	};
2887
2888	static const char* oc3_mode[] = {
2889	    "normal operation",
2890	    "diagnostic loopback",
2891	    "line loopback",
2892	    "unknown"
2893	};
2894
2895	u32 fw_release     = fore200e->bus->read(&fore200e->cp_queues->fw_release);
2896	u32 mon960_release = fore200e->bus->read(&fore200e->cp_queues->mon960_release);
2897	u32 oc3_revision   = fore200e->bus->read(&fore200e->cp_queues->oc3_revision);
2898	u32 media_index    = FORE200E_MEDIA_INDEX(fore200e->bus->read(&fore200e->cp_queues->media_type));
2899	u32 oc3_index;
2900
2901	if (media_index > 4)
2902		media_index = 5;
2903	
2904	switch (fore200e->loop_mode) {
2905	    case ATM_LM_NONE:    oc3_index = 0;
2906		                 break;
2907	    case ATM_LM_LOC_PHY: oc3_index = 1;
2908		                 break;
2909	    case ATM_LM_RMT_PHY: oc3_index = 2;
2910		                 break;
2911	    default:             oc3_index = 3;
2912	}
2913
2914	return sprintf(page,
2915		       "   firmware release:\t\t%d.%d.%d\n"
2916		       "   monitor release:\t\t%d.%d\n"
2917		       "   media type:\t\t\t%s\n"
2918		       "   OC-3 revision:\t\t0x%x\n"
2919                       "   OC-3 mode:\t\t\t%s",
2920		       fw_release >> 16, fw_release << 16 >> 24,  fw_release << 24 >> 24,
2921		       mon960_release >> 16, mon960_release << 16 >> 16,
2922		       media_name[ media_index ],
2923		       oc3_revision,
2924		       oc3_mode[ oc3_index ]);
2925    }
2926
2927    if (!left--) {
2928	struct cp_monitor __iomem * cp_monitor = fore200e->cp_monitor;
2929
2930	return sprintf(page,
2931		       "\n\n"
2932		       " monitor:\n"
2933		       "   version number:\t\t%d\n"
2934		       "   boot status word:\t\t0x%08x\n",
2935		       fore200e->bus->read(&cp_monitor->mon_version),
2936		       fore200e->bus->read(&cp_monitor->bstat));
2937    }
2938
2939    if (!left--)
2940	return sprintf(page,
2941		       "\n"
2942		       " device statistics:\n"
2943		       "  4b5b:\n"
2944		       "     crc_header_errors:\t\t%10u\n"
2945		       "     framing_errors:\t\t%10u\n",
2946		       be32_to_cpu(fore200e->stats->phy.crc_header_errors),
2947		       be32_to_cpu(fore200e->stats->phy.framing_errors));
2948    
2949    if (!left--)
2950	return sprintf(page, "\n"
2951		       "  OC-3:\n"
2952		       "     section_bip8_errors:\t%10u\n"
2953		       "     path_bip8_errors:\t\t%10u\n"
2954		       "     line_bip24_errors:\t\t%10u\n"
2955		       "     line_febe_errors:\t\t%10u\n"
2956		       "     path_febe_errors:\t\t%10u\n"
2957		       "     corr_hcs_errors:\t\t%10u\n"
2958		       "     ucorr_hcs_errors:\t\t%10u\n",
2959		       be32_to_cpu(fore200e->stats->oc3.section_bip8_errors),
2960		       be32_to_cpu(fore200e->stats->oc3.path_bip8_errors),
2961		       be32_to_cpu(fore200e->stats->oc3.line_bip24_errors),
2962		       be32_to_cpu(fore200e->stats->oc3.line_febe_errors),
2963		       be32_to_cpu(fore200e->stats->oc3.path_febe_errors),
2964		       be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors),
2965		       be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors));
2966
2967    if (!left--)
2968	return sprintf(page,"\n"
2969		       "   ATM:\t\t\t\t     cells\n"
2970		       "     TX:\t\t\t%10u\n"
2971		       "     RX:\t\t\t%10u\n"
2972		       "     vpi out of range:\t\t%10u\n"
2973		       "     vpi no conn:\t\t%10u\n"
2974		       "     vci out of range:\t\t%10u\n"
2975		       "     vci no conn:\t\t%10u\n",
2976		       be32_to_cpu(fore200e->stats->atm.cells_transmitted),
2977		       be32_to_cpu(fore200e->stats->atm.cells_received),
2978		       be32_to_cpu(fore200e->stats->atm.vpi_bad_range),
2979		       be32_to_cpu(fore200e->stats->atm.vpi_no_conn),
2980		       be32_to_cpu(fore200e->stats->atm.vci_bad_range),
2981		       be32_to_cpu(fore200e->stats->atm.vci_no_conn));
2982    
2983    if (!left--)
2984	return sprintf(page,"\n"
2985		       "   AAL0:\t\t\t     cells\n"
2986		       "     TX:\t\t\t%10u\n"
2987		       "     RX:\t\t\t%10u\n"
2988		       "     dropped:\t\t\t%10u\n",
2989		       be32_to_cpu(fore200e->stats->aal0.cells_transmitted),
2990		       be32_to_cpu(fore200e->stats->aal0.cells_received),
2991		       be32_to_cpu(fore200e->stats->aal0.cells_dropped));
2992    
2993    if (!left--)
2994	return sprintf(page,"\n"
2995		       "   AAL3/4:\n"
2996		       "     SAR sublayer:\t\t     cells\n"
2997		       "       TX:\t\t\t%10u\n"
2998		       "       RX:\t\t\t%10u\n"
2999		       "       dropped:\t\t\t%10u\n"
3000		       "       CRC errors:\t\t%10u\n"
3001		       "       protocol errors:\t\t%10u\n\n"
3002		       "     CS  sublayer:\t\t      PDUs\n"
3003		       "       TX:\t\t\t%10u\n"
3004		       "       RX:\t\t\t%10u\n"
3005		       "       dropped:\t\t\t%10u\n"
3006		       "       protocol errors:\t\t%10u\n",
3007		       be32_to_cpu(fore200e->stats->aal34.cells_transmitted),
3008		       be32_to_cpu(fore200e->stats->aal34.cells_received),
3009		       be32_to_cpu(fore200e->stats->aal34.cells_dropped),
3010		       be32_to_cpu(fore200e->stats->aal34.cells_crc_errors),
3011		       be32_to_cpu(fore200e->stats->aal34.cells_protocol_errors),
3012		       be32_to_cpu(fore200e->stats->aal34.cspdus_transmitted),
3013		       be32_to_cpu(fore200e->stats->aal34.cspdus_received),
3014		       be32_to_cpu(fore200e->stats->aal34.cspdus_dropped),
3015		       be32_to_cpu(fore200e->stats->aal34.cspdus_protocol_errors));
3016    
3017    if (!left--)
3018	return sprintf(page,"\n"
3019		       "   AAL5:\n"
3020		       "     SAR sublayer:\t\t     cells\n"
3021		       "       TX:\t\t\t%10u\n"
3022		       "       RX:\t\t\t%10u\n"
3023		       "       dropped:\t\t\t%10u\n"
3024		       "       congestions:\t\t%10u\n\n"
3025		       "     CS  sublayer:\t\t      PDUs\n"
3026		       "       TX:\t\t\t%10u\n"
3027		       "       RX:\t\t\t%10u\n"
3028		       "       dropped:\t\t\t%10u\n"
3029		       "       CRC errors:\t\t%10u\n"
3030		       "       protocol errors:\t\t%10u\n",
3031		       be32_to_cpu(fore200e->stats->aal5.cells_transmitted),
3032		       be32_to_cpu(fore200e->stats->aal5.cells_received),
3033		       be32_to_cpu(fore200e->stats->aal5.cells_dropped),
3034		       be32_to_cpu(fore200e->stats->aal5.congestion_experienced),
3035		       be32_to_cpu(fore200e->stats->aal5.cspdus_transmitted),
3036		       be32_to_cpu(fore200e->stats->aal5.cspdus_received),
3037		       be32_to_cpu(fore200e->stats->aal5.cspdus_dropped),
3038		       be32_to_cpu(fore200e->stats->aal5.cspdus_crc_errors),
3039		       be32_to_cpu(fore200e->stats->aal5.cspdus_protocol_errors));
3040    
3041    if (!left--)
3042	return sprintf(page,"\n"
3043		       "   AUX:\t\t       allocation failures\n"
3044		       "     small b1:\t\t\t%10u\n"
3045		       "     large b1:\t\t\t%10u\n"
3046		       "     small b2:\t\t\t%10u\n"
3047		       "     large b2:\t\t\t%10u\n"
3048		       "     RX PDUs:\t\t\t%10u\n"
3049		       "     TX PDUs:\t\t\t%10lu\n",
3050		       be32_to_cpu(fore200e->stats->aux.small_b1_failed),
3051		       be32_to_cpu(fore200e->stats->aux.large_b1_failed),
3052		       be32_to_cpu(fore200e->stats->aux.small_b2_failed),
3053		       be32_to_cpu(fore200e->stats->aux.large_b2_failed),
3054		       be32_to_cpu(fore200e->stats->aux.rpd_alloc_failed),
3055		       fore200e->tx_sat);
3056    
3057    if (!left--)
3058	return sprintf(page,"\n"
3059		       " receive carrier:\t\t\t%s\n",
3060		       fore200e->stats->aux.receive_carrier ? "ON" : "OFF!");
3061    
3062    if (!left--) {
3063        return sprintf(page,"\n"
3064		       " VCCs:\n  address   VPI VCI   AAL "
3065		       "TX PDUs   TX min/max size  RX PDUs   RX min/max size\n");
3066    }
3067
3068    for (i = 0; i < NBR_CONNECT; i++) {
3069
3070	vcc = fore200e->vc_map[i].vcc;
3071
3072	if (vcc == NULL)
3073	    continue;
3074
3075	spin_lock_irqsave(&fore200e->q_lock, flags);
3076
3077	if (vcc && test_bit(ATM_VF_READY, &vcc->flags) && !left--) {
3078
3079	    fore200e_vcc = FORE200E_VCC(vcc);
3080	    ASSERT(fore200e_vcc);
3081
3082	    len = sprintf(page,
3083			  "  %08x  %03d %05d %1d   %09lu %05d/%05d      %09lu %05d/%05d\n",
3084			  (u32)(unsigned long)vcc,
3085			  vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
3086			  fore200e_vcc->tx_pdu,
3087			  fore200e_vcc->tx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->tx_min_pdu,
3088			  fore200e_vcc->tx_max_pdu,
3089			  fore200e_vcc->rx_pdu,
3090			  fore200e_vcc->rx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->rx_min_pdu,
3091			  fore200e_vcc->rx_max_pdu);
3092
3093	    spin_unlock_irqrestore(&fore200e->q_lock, flags);
3094	    return len;
3095	}
3096
3097	spin_unlock_irqrestore(&fore200e->q_lock, flags);
3098    }
3099    
3100    return 0;
3101}
3102
3103module_init(fore200e_module_init);
3104module_exit(fore200e_module_cleanup);
3105
3106
3107static const struct atmdev_ops fore200e_ops =
3108{
3109	.open       = fore200e_open,
3110	.close      = fore200e_close,
3111	.ioctl      = fore200e_ioctl,
3112	.getsockopt = fore200e_getsockopt,
3113	.setsockopt = fore200e_setsockopt,
3114	.send       = fore200e_send,
3115	.change_qos = fore200e_change_qos,
3116	.proc_read  = fore200e_proc_read,
3117	.owner      = THIS_MODULE
3118};
3119
3120
3121static const struct fore200e_bus fore200e_bus[] = {
3122#ifdef CONFIG_PCI
3123    { "PCA-200E", "pca200e", 32, 4, 32, 
3124      fore200e_pca_read,
3125      fore200e_pca_write,
3126      fore200e_pca_dma_map,
3127      fore200e_pca_dma_unmap,
3128      fore200e_pca_dma_sync_for_cpu,
3129      fore200e_pca_dma_sync_for_device,
3130      fore200e_pca_dma_chunk_alloc,
3131      fore200e_pca_dma_chunk_free,
3132      fore200e_pca_configure,
3133      fore200e_pca_map,
3134      fore200e_pca_reset,
3135      fore200e_pca_prom_read,
3136      fore200e_pca_unmap,
3137      NULL,
3138      fore200e_pca_irq_check,
3139      fore200e_pca_irq_ack,
3140      fore200e_pca_proc_read,
3141    },
3142#endif
3143#ifdef CONFIG_SBUS
3144    { "SBA-200E", "sba200e", 32, 64, 32,
3145      fore200e_sba_read,
3146      fore200e_sba_write,
3147      fore200e_sba_dma_map,
3148      fore200e_sba_dma_unmap,
3149      fore200e_sba_dma_sync_for_cpu,
3150      fore200e_sba_dma_sync_for_device,
3151      fore200e_sba_dma_chunk_alloc,
3152      fore200e_sba_dma_chunk_free,
3153      fore200e_sba_configure,
3154      fore200e_sba_map,
3155      fore200e_sba_reset,
3156      fore200e_sba_prom_read,
3157      fore200e_sba_unmap,
3158      fore200e_sba_irq_enable,
3159      fore200e_sba_irq_check,
3160      fore200e_sba_irq_ack,
3161      fore200e_sba_proc_read,
3162    },
3163#endif
3164    {}
3165};
3166
3167MODULE_LICENSE("GPL");
3168#ifdef CONFIG_PCI
3169#ifdef __LITTLE_ENDIAN__
3170MODULE_FIRMWARE("pca200e.bin");
3171#else
3172MODULE_FIRMWARE("pca200e_ecd.bin2");
3173#endif
3174#endif /* CONFIG_PCI */
3175#ifdef CONFIG_SBUS
3176MODULE_FIRMWARE("sba200e_ecd.bin2");
3177#endif