Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 A FORE Systems 200E-series driver for ATM on Linux.
4 Christophe Lizzi (lizzi@cnam.fr), October 1999-March 2003.
5
6 Based on the PCA-200E driver from Uwe Dannowski (Uwe.Dannowski@inf.tu-dresden.de).
7
8 This driver simultaneously supports PCA-200E and SBA-200E adapters
9 on i386, alpha (untested), powerpc, sparc and sparc64 architectures.
10
11*/
12
13
14#include <linux/kernel.h>
15#include <linux/slab.h>
16#include <linux/init.h>
17#include <linux/capability.h>
18#include <linux/interrupt.h>
19#include <linux/bitops.h>
20#include <linux/pci.h>
21#include <linux/module.h>
22#include <linux/atmdev.h>
23#include <linux/sonet.h>
24#include <linux/dma-mapping.h>
25#include <linux/delay.h>
26#include <linux/firmware.h>
27#include <linux/pgtable.h>
28#include <asm/io.h>
29#include <asm/string.h>
30#include <asm/page.h>
31#include <asm/irq.h>
32#include <asm/dma.h>
33#include <asm/byteorder.h>
34#include <linux/uaccess.h>
35#include <linux/atomic.h>
36
37#ifdef CONFIG_SBUS
38#include <linux/of.h>
39#include <linux/of_device.h>
40#include <asm/idprom.h>
41#include <asm/openprom.h>
42#include <asm/oplib.h>
43#endif
44
45#if defined(CONFIG_ATM_FORE200E_USE_TASKLET) /* defer interrupt work to a tasklet */
46#define FORE200E_USE_TASKLET
47#endif
48
49#if 0 /* enable the debugging code of the buffer supply queues */
50#define FORE200E_BSQ_DEBUG
51#endif
52
53#if 1 /* ensure correct handling of 52-byte AAL0 SDUs expected by atmdump-like apps */
54#define FORE200E_52BYTE_AAL0_SDU
55#endif
56
57#include "fore200e.h"
58#include "suni.h"
59
60#define FORE200E_VERSION "0.3e"
61
62#define FORE200E "fore200e: "
63
64#if 0 /* override .config */
65#define CONFIG_ATM_FORE200E_DEBUG 1
66#endif
67#if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0)
68#define DPRINTK(level, format, args...) do { if (CONFIG_ATM_FORE200E_DEBUG >= (level)) \
69 printk(FORE200E format, ##args); } while (0)
70#else
71#define DPRINTK(level, format, args...) do {} while (0)
72#endif
73
74
75#define FORE200E_ALIGN(addr, alignment) \
76 ((((unsigned long)(addr) + (alignment - 1)) & ~(alignment - 1)) - (unsigned long)(addr))
77
78#define FORE200E_DMA_INDEX(dma_addr, type, index) ((dma_addr) + (index) * sizeof(type))
79
80#define FORE200E_INDEX(virt_addr, type, index) (&((type *)(virt_addr))[ index ])
81
82#define FORE200E_NEXT_ENTRY(index, modulo) (index = ((index) + 1) % (modulo))
83
84#if 1
85#define ASSERT(expr) if (!(expr)) { \
86 printk(FORE200E "assertion failed! %s[%d]: %s\n", \
87 __func__, __LINE__, #expr); \
88 panic(FORE200E "%s", __func__); \
89 }
90#else
91#define ASSERT(expr) do {} while (0)
92#endif
93
94
95static const struct atmdev_ops fore200e_ops;
96
97static LIST_HEAD(fore200e_boards);
98
99
100MODULE_AUTHOR("Christophe Lizzi - credits to Uwe Dannowski and Heikki Vatiainen");
101MODULE_DESCRIPTION("FORE Systems 200E-series ATM driver - version " FORE200E_VERSION);
102
103static const int fore200e_rx_buf_nbr[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = {
104 { BUFFER_S1_NBR, BUFFER_L1_NBR },
105 { BUFFER_S2_NBR, BUFFER_L2_NBR }
106};
107
108static const int fore200e_rx_buf_size[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = {
109 { BUFFER_S1_SIZE, BUFFER_L1_SIZE },
110 { BUFFER_S2_SIZE, BUFFER_L2_SIZE }
111};
112
113
114#if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0)
115static const char* fore200e_traffic_class[] = { "NONE", "UBR", "CBR", "VBR", "ABR", "ANY" };
116#endif
117
118
119#if 0 /* currently unused */
120static int
121fore200e_fore2atm_aal(enum fore200e_aal aal)
122{
123 switch(aal) {
124 case FORE200E_AAL0: return ATM_AAL0;
125 case FORE200E_AAL34: return ATM_AAL34;
126 case FORE200E_AAL5: return ATM_AAL5;
127 }
128
129 return -EINVAL;
130}
131#endif
132
133
134static enum fore200e_aal
135fore200e_atm2fore_aal(int aal)
136{
137 switch(aal) {
138 case ATM_AAL0: return FORE200E_AAL0;
139 case ATM_AAL34: return FORE200E_AAL34;
140 case ATM_AAL1:
141 case ATM_AAL2:
142 case ATM_AAL5: return FORE200E_AAL5;
143 }
144
145 return -EINVAL;
146}
147
148
149static char*
150fore200e_irq_itoa(int irq)
151{
152 static char str[8];
153 sprintf(str, "%d", irq);
154 return str;
155}
156
157
158/* allocate and align a chunk of memory intended to hold the data behing exchanged
159 between the driver and the adapter (using streaming DVMA) */
160
161static int
162fore200e_chunk_alloc(struct fore200e* fore200e, struct chunk* chunk, int size, int alignment, int direction)
163{
164 unsigned long offset = 0;
165
166 if (alignment <= sizeof(int))
167 alignment = 0;
168
169 chunk->alloc_size = size + alignment;
170 chunk->direction = direction;
171
172 chunk->alloc_addr = kzalloc(chunk->alloc_size, GFP_KERNEL);
173 if (chunk->alloc_addr == NULL)
174 return -ENOMEM;
175
176 if (alignment > 0)
177 offset = FORE200E_ALIGN(chunk->alloc_addr, alignment);
178
179 chunk->align_addr = chunk->alloc_addr + offset;
180
181 chunk->dma_addr = dma_map_single(fore200e->dev, chunk->align_addr,
182 size, direction);
183 if (dma_mapping_error(fore200e->dev, chunk->dma_addr)) {
184 kfree(chunk->alloc_addr);
185 return -ENOMEM;
186 }
187 return 0;
188}
189
190
191/* free a chunk of memory */
192
193static void
194fore200e_chunk_free(struct fore200e* fore200e, struct chunk* chunk)
195{
196 dma_unmap_single(fore200e->dev, chunk->dma_addr, chunk->dma_size,
197 chunk->direction);
198 kfree(chunk->alloc_addr);
199}
200
201/*
202 * Allocate a DMA consistent chunk of memory intended to act as a communication
203 * mechanism (to hold descriptors, status, queues, etc.) shared by the driver
204 * and the adapter.
205 */
206static int
207fore200e_dma_chunk_alloc(struct fore200e *fore200e, struct chunk *chunk,
208 int size, int nbr, int alignment)
209{
210 /* returned chunks are page-aligned */
211 chunk->alloc_size = size * nbr;
212 chunk->alloc_addr = dma_alloc_coherent(fore200e->dev, chunk->alloc_size,
213 &chunk->dma_addr, GFP_KERNEL);
214 if (!chunk->alloc_addr)
215 return -ENOMEM;
216 chunk->align_addr = chunk->alloc_addr;
217 return 0;
218}
219
220/*
221 * Free a DMA consistent chunk of memory.
222 */
223static void
224fore200e_dma_chunk_free(struct fore200e* fore200e, struct chunk* chunk)
225{
226 dma_free_coherent(fore200e->dev, chunk->alloc_size, chunk->alloc_addr,
227 chunk->dma_addr);
228}
229
230static void
231fore200e_spin(int msecs)
232{
233 unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
234 while (time_before(jiffies, timeout));
235}
236
237
238static int
239fore200e_poll(struct fore200e* fore200e, volatile u32* addr, u32 val, int msecs)
240{
241 unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
242 int ok;
243
244 mb();
245 do {
246 if ((ok = (*addr == val)) || (*addr & STATUS_ERROR))
247 break;
248
249 } while (time_before(jiffies, timeout));
250
251#if 1
252 if (!ok) {
253 printk(FORE200E "cmd polling failed, got status 0x%08x, expected 0x%08x\n",
254 *addr, val);
255 }
256#endif
257
258 return ok;
259}
260
261
262static int
263fore200e_io_poll(struct fore200e* fore200e, volatile u32 __iomem *addr, u32 val, int msecs)
264{
265 unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
266 int ok;
267
268 do {
269 if ((ok = (fore200e->bus->read(addr) == val)))
270 break;
271
272 } while (time_before(jiffies, timeout));
273
274#if 1
275 if (!ok) {
276 printk(FORE200E "I/O polling failed, got status 0x%08x, expected 0x%08x\n",
277 fore200e->bus->read(addr), val);
278 }
279#endif
280
281 return ok;
282}
283
284
285static void
286fore200e_free_rx_buf(struct fore200e* fore200e)
287{
288 int scheme, magn, nbr;
289 struct buffer* buffer;
290
291 for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
292 for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
293
294 if ((buffer = fore200e->host_bsq[ scheme ][ magn ].buffer) != NULL) {
295
296 for (nbr = 0; nbr < fore200e_rx_buf_nbr[ scheme ][ magn ]; nbr++) {
297
298 struct chunk* data = &buffer[ nbr ].data;
299
300 if (data->alloc_addr != NULL)
301 fore200e_chunk_free(fore200e, data);
302 }
303 }
304 }
305 }
306}
307
308
309static void
310fore200e_uninit_bs_queue(struct fore200e* fore200e)
311{
312 int scheme, magn;
313
314 for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
315 for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
316
317 struct chunk* status = &fore200e->host_bsq[ scheme ][ magn ].status;
318 struct chunk* rbd_block = &fore200e->host_bsq[ scheme ][ magn ].rbd_block;
319
320 if (status->alloc_addr)
321 fore200e_dma_chunk_free(fore200e, status);
322
323 if (rbd_block->alloc_addr)
324 fore200e_dma_chunk_free(fore200e, rbd_block);
325 }
326 }
327}
328
329
330static int
331fore200e_reset(struct fore200e* fore200e, int diag)
332{
333 int ok;
334
335 fore200e->cp_monitor = fore200e->virt_base + FORE200E_CP_MONITOR_OFFSET;
336
337 fore200e->bus->write(BSTAT_COLD_START, &fore200e->cp_monitor->bstat);
338
339 fore200e->bus->reset(fore200e);
340
341 if (diag) {
342 ok = fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_SELFTEST_OK, 1000);
343 if (ok == 0) {
344
345 printk(FORE200E "device %s self-test failed\n", fore200e->name);
346 return -ENODEV;
347 }
348
349 printk(FORE200E "device %s self-test passed\n", fore200e->name);
350
351 fore200e->state = FORE200E_STATE_RESET;
352 }
353
354 return 0;
355}
356
357
358static void
359fore200e_shutdown(struct fore200e* fore200e)
360{
361 printk(FORE200E "removing device %s at 0x%lx, IRQ %s\n",
362 fore200e->name, fore200e->phys_base,
363 fore200e_irq_itoa(fore200e->irq));
364
365 if (fore200e->state > FORE200E_STATE_RESET) {
366 /* first, reset the board to prevent further interrupts or data transfers */
367 fore200e_reset(fore200e, 0);
368 }
369
370 /* then, release all allocated resources */
371 switch(fore200e->state) {
372
373 case FORE200E_STATE_COMPLETE:
374 kfree(fore200e->stats);
375
376 fallthrough;
377 case FORE200E_STATE_IRQ:
378 free_irq(fore200e->irq, fore200e->atm_dev);
379
380 fallthrough;
381 case FORE200E_STATE_ALLOC_BUF:
382 fore200e_free_rx_buf(fore200e);
383
384 fallthrough;
385 case FORE200E_STATE_INIT_BSQ:
386 fore200e_uninit_bs_queue(fore200e);
387
388 fallthrough;
389 case FORE200E_STATE_INIT_RXQ:
390 fore200e_dma_chunk_free(fore200e, &fore200e->host_rxq.status);
391 fore200e_dma_chunk_free(fore200e, &fore200e->host_rxq.rpd);
392
393 fallthrough;
394 case FORE200E_STATE_INIT_TXQ:
395 fore200e_dma_chunk_free(fore200e, &fore200e->host_txq.status);
396 fore200e_dma_chunk_free(fore200e, &fore200e->host_txq.tpd);
397
398 fallthrough;
399 case FORE200E_STATE_INIT_CMDQ:
400 fore200e_dma_chunk_free(fore200e, &fore200e->host_cmdq.status);
401
402 fallthrough;
403 case FORE200E_STATE_INITIALIZE:
404 /* nothing to do for that state */
405
406 case FORE200E_STATE_START_FW:
407 /* nothing to do for that state */
408
409 case FORE200E_STATE_RESET:
410 /* nothing to do for that state */
411
412 case FORE200E_STATE_MAP:
413 fore200e->bus->unmap(fore200e);
414
415 fallthrough;
416 case FORE200E_STATE_CONFIGURE:
417 /* nothing to do for that state */
418
419 case FORE200E_STATE_REGISTER:
420 /* XXX shouldn't we *start* by deregistering the device? */
421 atm_dev_deregister(fore200e->atm_dev);
422
423 fallthrough;
424 case FORE200E_STATE_BLANK:
425 /* nothing to do for that state */
426 break;
427 }
428}
429
430
431#ifdef CONFIG_PCI
432
433static u32 fore200e_pca_read(volatile u32 __iomem *addr)
434{
435 /* on big-endian hosts, the board is configured to convert
436 the endianess of slave RAM accesses */
437 return le32_to_cpu(readl(addr));
438}
439
440
441static void fore200e_pca_write(u32 val, volatile u32 __iomem *addr)
442{
443 /* on big-endian hosts, the board is configured to convert
444 the endianess of slave RAM accesses */
445 writel(cpu_to_le32(val), addr);
446}
447
448static int
449fore200e_pca_irq_check(struct fore200e* fore200e)
450{
451 /* this is a 1 bit register */
452 int irq_posted = readl(fore200e->regs.pca.psr);
453
454#if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG == 2)
455 if (irq_posted && (readl(fore200e->regs.pca.hcr) & PCA200E_HCR_OUTFULL)) {
456 DPRINTK(2,"FIFO OUT full, device %d\n", fore200e->atm_dev->number);
457 }
458#endif
459
460 return irq_posted;
461}
462
463
464static void
465fore200e_pca_irq_ack(struct fore200e* fore200e)
466{
467 writel(PCA200E_HCR_CLRINTR, fore200e->regs.pca.hcr);
468}
469
470
471static void
472fore200e_pca_reset(struct fore200e* fore200e)
473{
474 writel(PCA200E_HCR_RESET, fore200e->regs.pca.hcr);
475 fore200e_spin(10);
476 writel(0, fore200e->regs.pca.hcr);
477}
478
479
480static int fore200e_pca_map(struct fore200e* fore200e)
481{
482 DPRINTK(2, "device %s being mapped in memory\n", fore200e->name);
483
484 fore200e->virt_base = ioremap(fore200e->phys_base, PCA200E_IOSPACE_LENGTH);
485
486 if (fore200e->virt_base == NULL) {
487 printk(FORE200E "can't map device %s\n", fore200e->name);
488 return -EFAULT;
489 }
490
491 DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base);
492
493 /* gain access to the PCA specific registers */
494 fore200e->regs.pca.hcr = fore200e->virt_base + PCA200E_HCR_OFFSET;
495 fore200e->regs.pca.imr = fore200e->virt_base + PCA200E_IMR_OFFSET;
496 fore200e->regs.pca.psr = fore200e->virt_base + PCA200E_PSR_OFFSET;
497
498 fore200e->state = FORE200E_STATE_MAP;
499 return 0;
500}
501
502
503static void
504fore200e_pca_unmap(struct fore200e* fore200e)
505{
506 DPRINTK(2, "device %s being unmapped from memory\n", fore200e->name);
507
508 if (fore200e->virt_base != NULL)
509 iounmap(fore200e->virt_base);
510}
511
512
513static int fore200e_pca_configure(struct fore200e *fore200e)
514{
515 struct pci_dev *pci_dev = to_pci_dev(fore200e->dev);
516 u8 master_ctrl, latency;
517
518 DPRINTK(2, "device %s being configured\n", fore200e->name);
519
520 if ((pci_dev->irq == 0) || (pci_dev->irq == 0xFF)) {
521 printk(FORE200E "incorrect IRQ setting - misconfigured PCI-PCI bridge?\n");
522 return -EIO;
523 }
524
525 pci_read_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, &master_ctrl);
526
527 master_ctrl = master_ctrl
528#if defined(__BIG_ENDIAN)
529 /* request the PCA board to convert the endianess of slave RAM accesses */
530 | PCA200E_CTRL_CONVERT_ENDIAN
531#endif
532#if 0
533 | PCA200E_CTRL_DIS_CACHE_RD
534 | PCA200E_CTRL_DIS_WRT_INVAL
535 | PCA200E_CTRL_ENA_CONT_REQ_MODE
536 | PCA200E_CTRL_2_CACHE_WRT_INVAL
537#endif
538 | PCA200E_CTRL_LARGE_PCI_BURSTS;
539
540 pci_write_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, master_ctrl);
541
542 /* raise latency from 32 (default) to 192, as this seems to prevent NIC
543 lockups (under heavy rx loads) due to continuous 'FIFO OUT full' condition.
544 this may impact the performances of other PCI devices on the same bus, though */
545 latency = 192;
546 pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, latency);
547
548 fore200e->state = FORE200E_STATE_CONFIGURE;
549 return 0;
550}
551
552
553static int __init
554fore200e_pca_prom_read(struct fore200e* fore200e, struct prom_data* prom)
555{
556 struct host_cmdq* cmdq = &fore200e->host_cmdq;
557 struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
558 struct prom_opcode opcode;
559 int ok;
560 u32 prom_dma;
561
562 FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
563
564 opcode.opcode = OPCODE_GET_PROM;
565 opcode.pad = 0;
566
567 prom_dma = dma_map_single(fore200e->dev, prom, sizeof(struct prom_data),
568 DMA_FROM_DEVICE);
569 if (dma_mapping_error(fore200e->dev, prom_dma))
570 return -ENOMEM;
571
572 fore200e->bus->write(prom_dma, &entry->cp_entry->cmd.prom_block.prom_haddr);
573
574 *entry->status = STATUS_PENDING;
575
576 fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.prom_block.opcode);
577
578 ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
579
580 *entry->status = STATUS_FREE;
581
582 dma_unmap_single(fore200e->dev, prom_dma, sizeof(struct prom_data), DMA_FROM_DEVICE);
583
584 if (ok == 0) {
585 printk(FORE200E "unable to get PROM data from device %s\n", fore200e->name);
586 return -EIO;
587 }
588
589#if defined(__BIG_ENDIAN)
590
591#define swap_here(addr) (*((u32*)(addr)) = swab32( *((u32*)(addr)) ))
592
593 /* MAC address is stored as little-endian */
594 swap_here(&prom->mac_addr[0]);
595 swap_here(&prom->mac_addr[4]);
596#endif
597
598 return 0;
599}
600
601
602static int
603fore200e_pca_proc_read(struct fore200e* fore200e, char *page)
604{
605 struct pci_dev *pci_dev = to_pci_dev(fore200e->dev);
606
607 return sprintf(page, " PCI bus/slot/function:\t%d/%d/%d\n",
608 pci_dev->bus->number, PCI_SLOT(pci_dev->devfn), PCI_FUNC(pci_dev->devfn));
609}
610
611static const struct fore200e_bus fore200e_pci_ops = {
612 .model_name = "PCA-200E",
613 .proc_name = "pca200e",
614 .descr_alignment = 32,
615 .buffer_alignment = 4,
616 .status_alignment = 32,
617 .read = fore200e_pca_read,
618 .write = fore200e_pca_write,
619 .configure = fore200e_pca_configure,
620 .map = fore200e_pca_map,
621 .reset = fore200e_pca_reset,
622 .prom_read = fore200e_pca_prom_read,
623 .unmap = fore200e_pca_unmap,
624 .irq_check = fore200e_pca_irq_check,
625 .irq_ack = fore200e_pca_irq_ack,
626 .proc_read = fore200e_pca_proc_read,
627};
628#endif /* CONFIG_PCI */
629
630#ifdef CONFIG_SBUS
631
632static u32 fore200e_sba_read(volatile u32 __iomem *addr)
633{
634 return sbus_readl(addr);
635}
636
637static void fore200e_sba_write(u32 val, volatile u32 __iomem *addr)
638{
639 sbus_writel(val, addr);
640}
641
642static void fore200e_sba_irq_enable(struct fore200e *fore200e)
643{
644 u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY;
645 fore200e->bus->write(hcr | SBA200E_HCR_INTR_ENA, fore200e->regs.sba.hcr);
646}
647
648static int fore200e_sba_irq_check(struct fore200e *fore200e)
649{
650 return fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_INTR_REQ;
651}
652
653static void fore200e_sba_irq_ack(struct fore200e *fore200e)
654{
655 u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY;
656 fore200e->bus->write(hcr | SBA200E_HCR_INTR_CLR, fore200e->regs.sba.hcr);
657}
658
659static void fore200e_sba_reset(struct fore200e *fore200e)
660{
661 fore200e->bus->write(SBA200E_HCR_RESET, fore200e->regs.sba.hcr);
662 fore200e_spin(10);
663 fore200e->bus->write(0, fore200e->regs.sba.hcr);
664}
665
666static int __init fore200e_sba_map(struct fore200e *fore200e)
667{
668 struct platform_device *op = to_platform_device(fore200e->dev);
669 unsigned int bursts;
670
671 /* gain access to the SBA specific registers */
672 fore200e->regs.sba.hcr = of_ioremap(&op->resource[0], 0, SBA200E_HCR_LENGTH, "SBA HCR");
673 fore200e->regs.sba.bsr = of_ioremap(&op->resource[1], 0, SBA200E_BSR_LENGTH, "SBA BSR");
674 fore200e->regs.sba.isr = of_ioremap(&op->resource[2], 0, SBA200E_ISR_LENGTH, "SBA ISR");
675 fore200e->virt_base = of_ioremap(&op->resource[3], 0, SBA200E_RAM_LENGTH, "SBA RAM");
676
677 if (!fore200e->virt_base) {
678 printk(FORE200E "unable to map RAM of device %s\n", fore200e->name);
679 return -EFAULT;
680 }
681
682 DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base);
683
684 fore200e->bus->write(0x02, fore200e->regs.sba.isr); /* XXX hardwired interrupt level */
685
686 /* get the supported DVMA burst sizes */
687 bursts = of_getintprop_default(op->dev.of_node->parent, "burst-sizes", 0x00);
688
689 if (sbus_can_dma_64bit())
690 sbus_set_sbus64(&op->dev, bursts);
691
692 fore200e->state = FORE200E_STATE_MAP;
693 return 0;
694}
695
696static void fore200e_sba_unmap(struct fore200e *fore200e)
697{
698 struct platform_device *op = to_platform_device(fore200e->dev);
699
700 of_iounmap(&op->resource[0], fore200e->regs.sba.hcr, SBA200E_HCR_LENGTH);
701 of_iounmap(&op->resource[1], fore200e->regs.sba.bsr, SBA200E_BSR_LENGTH);
702 of_iounmap(&op->resource[2], fore200e->regs.sba.isr, SBA200E_ISR_LENGTH);
703 of_iounmap(&op->resource[3], fore200e->virt_base, SBA200E_RAM_LENGTH);
704}
705
706static int __init fore200e_sba_configure(struct fore200e *fore200e)
707{
708 fore200e->state = FORE200E_STATE_CONFIGURE;
709 return 0;
710}
711
712static int __init fore200e_sba_prom_read(struct fore200e *fore200e, struct prom_data *prom)
713{
714 struct platform_device *op = to_platform_device(fore200e->dev);
715 const u8 *prop;
716 int len;
717
718 prop = of_get_property(op->dev.of_node, "madaddrlo2", &len);
719 if (!prop)
720 return -ENODEV;
721 memcpy(&prom->mac_addr[4], prop, 4);
722
723 prop = of_get_property(op->dev.of_node, "madaddrhi4", &len);
724 if (!prop)
725 return -ENODEV;
726 memcpy(&prom->mac_addr[2], prop, 4);
727
728 prom->serial_number = of_getintprop_default(op->dev.of_node,
729 "serialnumber", 0);
730 prom->hw_revision = of_getintprop_default(op->dev.of_node,
731 "promversion", 0);
732
733 return 0;
734}
735
736static int fore200e_sba_proc_read(struct fore200e *fore200e, char *page)
737{
738 struct platform_device *op = to_platform_device(fore200e->dev);
739 const struct linux_prom_registers *regs;
740
741 regs = of_get_property(op->dev.of_node, "reg", NULL);
742
743 return sprintf(page, " SBUS slot/device:\t\t%d/'%pOFn'\n",
744 (regs ? regs->which_io : 0), op->dev.of_node);
745}
746
747static const struct fore200e_bus fore200e_sbus_ops = {
748 .model_name = "SBA-200E",
749 .proc_name = "sba200e",
750 .descr_alignment = 32,
751 .buffer_alignment = 64,
752 .status_alignment = 32,
753 .read = fore200e_sba_read,
754 .write = fore200e_sba_write,
755 .configure = fore200e_sba_configure,
756 .map = fore200e_sba_map,
757 .reset = fore200e_sba_reset,
758 .prom_read = fore200e_sba_prom_read,
759 .unmap = fore200e_sba_unmap,
760 .irq_enable = fore200e_sba_irq_enable,
761 .irq_check = fore200e_sba_irq_check,
762 .irq_ack = fore200e_sba_irq_ack,
763 .proc_read = fore200e_sba_proc_read,
764};
765#endif /* CONFIG_SBUS */
766
767static void
768fore200e_tx_irq(struct fore200e* fore200e)
769{
770 struct host_txq* txq = &fore200e->host_txq;
771 struct host_txq_entry* entry;
772 struct atm_vcc* vcc;
773 struct fore200e_vc_map* vc_map;
774
775 if (fore200e->host_txq.txing == 0)
776 return;
777
778 for (;;) {
779
780 entry = &txq->host_entry[ txq->tail ];
781
782 if ((*entry->status & STATUS_COMPLETE) == 0) {
783 break;
784 }
785
786 DPRINTK(3, "TX COMPLETED: entry = %p [tail = %d], vc_map = %p, skb = %p\n",
787 entry, txq->tail, entry->vc_map, entry->skb);
788
789 /* free copy of misaligned data */
790 kfree(entry->data);
791
792 /* remove DMA mapping */
793 dma_unmap_single(fore200e->dev, entry->tpd->tsd[ 0 ].buffer, entry->tpd->tsd[ 0 ].length,
794 DMA_TO_DEVICE);
795
796 vc_map = entry->vc_map;
797
798 /* vcc closed since the time the entry was submitted for tx? */
799 if ((vc_map->vcc == NULL) ||
800 (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) {
801
802 DPRINTK(1, "no ready vcc found for PDU sent on device %d\n",
803 fore200e->atm_dev->number);
804
805 dev_kfree_skb_any(entry->skb);
806 }
807 else {
808 ASSERT(vc_map->vcc);
809
810 /* vcc closed then immediately re-opened? */
811 if (vc_map->incarn != entry->incarn) {
812
813 /* when a vcc is closed, some PDUs may be still pending in the tx queue.
814 if the same vcc is immediately re-opened, those pending PDUs must
815 not be popped after the completion of their emission, as they refer
816 to the prior incarnation of that vcc. otherwise, sk_atm(vcc)->sk_wmem_alloc
817 would be decremented by the size of the (unrelated) skb, possibly
818 leading to a negative sk->sk_wmem_alloc count, ultimately freezing the vcc.
819 we thus bind the tx entry to the current incarnation of the vcc
820 when the entry is submitted for tx. When the tx later completes,
821 if the incarnation number of the tx entry does not match the one
822 of the vcc, then this implies that the vcc has been closed then re-opened.
823 we thus just drop the skb here. */
824
825 DPRINTK(1, "vcc closed-then-re-opened; dropping PDU sent on device %d\n",
826 fore200e->atm_dev->number);
827
828 dev_kfree_skb_any(entry->skb);
829 }
830 else {
831 vcc = vc_map->vcc;
832 ASSERT(vcc);
833
834 /* notify tx completion */
835 if (vcc->pop) {
836 vcc->pop(vcc, entry->skb);
837 }
838 else {
839 dev_kfree_skb_any(entry->skb);
840 }
841
842 /* check error condition */
843 if (*entry->status & STATUS_ERROR)
844 atomic_inc(&vcc->stats->tx_err);
845 else
846 atomic_inc(&vcc->stats->tx);
847 }
848 }
849
850 *entry->status = STATUS_FREE;
851
852 fore200e->host_txq.txing--;
853
854 FORE200E_NEXT_ENTRY(txq->tail, QUEUE_SIZE_TX);
855 }
856}
857
858
859#ifdef FORE200E_BSQ_DEBUG
860int bsq_audit(int where, struct host_bsq* bsq, int scheme, int magn)
861{
862 struct buffer* buffer;
863 int count = 0;
864
865 buffer = bsq->freebuf;
866 while (buffer) {
867
868 if (buffer->supplied) {
869 printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld supplied but in free list!\n",
870 where, scheme, magn, buffer->index);
871 }
872
873 if (buffer->magn != magn) {
874 printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected magn = %d\n",
875 where, scheme, magn, buffer->index, buffer->magn);
876 }
877
878 if (buffer->scheme != scheme) {
879 printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected scheme = %d\n",
880 where, scheme, magn, buffer->index, buffer->scheme);
881 }
882
883 if ((buffer->index < 0) || (buffer->index >= fore200e_rx_buf_nbr[ scheme ][ magn ])) {
884 printk(FORE200E "bsq_audit(%d): queue %d.%d, out of range buffer index = %ld !\n",
885 where, scheme, magn, buffer->index);
886 }
887
888 count++;
889 buffer = buffer->next;
890 }
891
892 if (count != bsq->freebuf_count) {
893 printk(FORE200E "bsq_audit(%d): queue %d.%d, %d bufs in free list, but freebuf_count = %d\n",
894 where, scheme, magn, count, bsq->freebuf_count);
895 }
896 return 0;
897}
898#endif
899
900
901static void
902fore200e_supply(struct fore200e* fore200e)
903{
904 int scheme, magn, i;
905
906 struct host_bsq* bsq;
907 struct host_bsq_entry* entry;
908 struct buffer* buffer;
909
910 for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
911 for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
912
913 bsq = &fore200e->host_bsq[ scheme ][ magn ];
914
915#ifdef FORE200E_BSQ_DEBUG
916 bsq_audit(1, bsq, scheme, magn);
917#endif
918 while (bsq->freebuf_count >= RBD_BLK_SIZE) {
919
920 DPRINTK(2, "supplying %d rx buffers to queue %d / %d, freebuf_count = %d\n",
921 RBD_BLK_SIZE, scheme, magn, bsq->freebuf_count);
922
923 entry = &bsq->host_entry[ bsq->head ];
924
925 for (i = 0; i < RBD_BLK_SIZE; i++) {
926
927 /* take the first buffer in the free buffer list */
928 buffer = bsq->freebuf;
929 if (!buffer) {
930 printk(FORE200E "no more free bufs in queue %d.%d, but freebuf_count = %d\n",
931 scheme, magn, bsq->freebuf_count);
932 return;
933 }
934 bsq->freebuf = buffer->next;
935
936#ifdef FORE200E_BSQ_DEBUG
937 if (buffer->supplied)
938 printk(FORE200E "queue %d.%d, buffer %lu already supplied\n",
939 scheme, magn, buffer->index);
940 buffer->supplied = 1;
941#endif
942 entry->rbd_block->rbd[ i ].buffer_haddr = buffer->data.dma_addr;
943 entry->rbd_block->rbd[ i ].handle = FORE200E_BUF2HDL(buffer);
944 }
945
946 FORE200E_NEXT_ENTRY(bsq->head, QUEUE_SIZE_BS);
947
948 /* decrease accordingly the number of free rx buffers */
949 bsq->freebuf_count -= RBD_BLK_SIZE;
950
951 *entry->status = STATUS_PENDING;
952 fore200e->bus->write(entry->rbd_block_dma, &entry->cp_entry->rbd_block_haddr);
953 }
954 }
955 }
956}
957
958
959static int
960fore200e_push_rpd(struct fore200e* fore200e, struct atm_vcc* vcc, struct rpd* rpd)
961{
962 struct sk_buff* skb;
963 struct buffer* buffer;
964 struct fore200e_vcc* fore200e_vcc;
965 int i, pdu_len = 0;
966#ifdef FORE200E_52BYTE_AAL0_SDU
967 u32 cell_header = 0;
968#endif
969
970 ASSERT(vcc);
971
972 fore200e_vcc = FORE200E_VCC(vcc);
973 ASSERT(fore200e_vcc);
974
975#ifdef FORE200E_52BYTE_AAL0_SDU
976 if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.rxtp.max_sdu == ATM_AAL0_SDU)) {
977
978 cell_header = (rpd->atm_header.gfc << ATM_HDR_GFC_SHIFT) |
979 (rpd->atm_header.vpi << ATM_HDR_VPI_SHIFT) |
980 (rpd->atm_header.vci << ATM_HDR_VCI_SHIFT) |
981 (rpd->atm_header.plt << ATM_HDR_PTI_SHIFT) |
982 rpd->atm_header.clp;
983 pdu_len = 4;
984 }
985#endif
986
987 /* compute total PDU length */
988 for (i = 0; i < rpd->nseg; i++)
989 pdu_len += rpd->rsd[ i ].length;
990
991 skb = alloc_skb(pdu_len, GFP_ATOMIC);
992 if (skb == NULL) {
993 DPRINTK(2, "unable to alloc new skb, rx PDU length = %d\n", pdu_len);
994
995 atomic_inc(&vcc->stats->rx_drop);
996 return -ENOMEM;
997 }
998
999 __net_timestamp(skb);
1000
1001#ifdef FORE200E_52BYTE_AAL0_SDU
1002 if (cell_header) {
1003 *((u32*)skb_put(skb, 4)) = cell_header;
1004 }
1005#endif
1006
1007 /* reassemble segments */
1008 for (i = 0; i < rpd->nseg; i++) {
1009
1010 /* rebuild rx buffer address from rsd handle */
1011 buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle);
1012
1013 /* Make device DMA transfer visible to CPU. */
1014 dma_sync_single_for_cpu(fore200e->dev, buffer->data.dma_addr,
1015 rpd->rsd[i].length, DMA_FROM_DEVICE);
1016
1017 skb_put_data(skb, buffer->data.align_addr, rpd->rsd[i].length);
1018
1019 /* Now let the device get at it again. */
1020 dma_sync_single_for_device(fore200e->dev, buffer->data.dma_addr,
1021 rpd->rsd[i].length, DMA_FROM_DEVICE);
1022 }
1023
1024 DPRINTK(3, "rx skb: len = %d, truesize = %d\n", skb->len, skb->truesize);
1025
1026 if (pdu_len < fore200e_vcc->rx_min_pdu)
1027 fore200e_vcc->rx_min_pdu = pdu_len;
1028 if (pdu_len > fore200e_vcc->rx_max_pdu)
1029 fore200e_vcc->rx_max_pdu = pdu_len;
1030 fore200e_vcc->rx_pdu++;
1031
1032 /* push PDU */
1033 if (atm_charge(vcc, skb->truesize) == 0) {
1034
1035 DPRINTK(2, "receive buffers saturated for %d.%d.%d - PDU dropped\n",
1036 vcc->itf, vcc->vpi, vcc->vci);
1037
1038 dev_kfree_skb_any(skb);
1039
1040 atomic_inc(&vcc->stats->rx_drop);
1041 return -ENOMEM;
1042 }
1043
1044 vcc->push(vcc, skb);
1045 atomic_inc(&vcc->stats->rx);
1046
1047 return 0;
1048}
1049
1050
1051static void
1052fore200e_collect_rpd(struct fore200e* fore200e, struct rpd* rpd)
1053{
1054 struct host_bsq* bsq;
1055 struct buffer* buffer;
1056 int i;
1057
1058 for (i = 0; i < rpd->nseg; i++) {
1059
1060 /* rebuild rx buffer address from rsd handle */
1061 buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle);
1062
1063 bsq = &fore200e->host_bsq[ buffer->scheme ][ buffer->magn ];
1064
1065#ifdef FORE200E_BSQ_DEBUG
1066 bsq_audit(2, bsq, buffer->scheme, buffer->magn);
1067
1068 if (buffer->supplied == 0)
1069 printk(FORE200E "queue %d.%d, buffer %ld was not supplied\n",
1070 buffer->scheme, buffer->magn, buffer->index);
1071 buffer->supplied = 0;
1072#endif
1073
1074 /* re-insert the buffer into the free buffer list */
1075 buffer->next = bsq->freebuf;
1076 bsq->freebuf = buffer;
1077
1078 /* then increment the number of free rx buffers */
1079 bsq->freebuf_count++;
1080 }
1081}
1082
1083
1084static void
1085fore200e_rx_irq(struct fore200e* fore200e)
1086{
1087 struct host_rxq* rxq = &fore200e->host_rxq;
1088 struct host_rxq_entry* entry;
1089 struct atm_vcc* vcc;
1090 struct fore200e_vc_map* vc_map;
1091
1092 for (;;) {
1093
1094 entry = &rxq->host_entry[ rxq->head ];
1095
1096 /* no more received PDUs */
1097 if ((*entry->status & STATUS_COMPLETE) == 0)
1098 break;
1099
1100 vc_map = FORE200E_VC_MAP(fore200e, entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1101
1102 if ((vc_map->vcc == NULL) ||
1103 (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) {
1104
1105 DPRINTK(1, "no ready VC found for PDU received on %d.%d.%d\n",
1106 fore200e->atm_dev->number,
1107 entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1108 }
1109 else {
1110 vcc = vc_map->vcc;
1111 ASSERT(vcc);
1112
1113 if ((*entry->status & STATUS_ERROR) == 0) {
1114
1115 fore200e_push_rpd(fore200e, vcc, entry->rpd);
1116 }
1117 else {
1118 DPRINTK(2, "damaged PDU on %d.%d.%d\n",
1119 fore200e->atm_dev->number,
1120 entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1121 atomic_inc(&vcc->stats->rx_err);
1122 }
1123 }
1124
1125 FORE200E_NEXT_ENTRY(rxq->head, QUEUE_SIZE_RX);
1126
1127 fore200e_collect_rpd(fore200e, entry->rpd);
1128
1129 /* rewrite the rpd address to ack the received PDU */
1130 fore200e->bus->write(entry->rpd_dma, &entry->cp_entry->rpd_haddr);
1131 *entry->status = STATUS_FREE;
1132
1133 fore200e_supply(fore200e);
1134 }
1135}
1136
1137
1138#ifndef FORE200E_USE_TASKLET
1139static void
1140fore200e_irq(struct fore200e* fore200e)
1141{
1142 unsigned long flags;
1143
1144 spin_lock_irqsave(&fore200e->q_lock, flags);
1145 fore200e_rx_irq(fore200e);
1146 spin_unlock_irqrestore(&fore200e->q_lock, flags);
1147
1148 spin_lock_irqsave(&fore200e->q_lock, flags);
1149 fore200e_tx_irq(fore200e);
1150 spin_unlock_irqrestore(&fore200e->q_lock, flags);
1151}
1152#endif
1153
1154
1155static irqreturn_t
1156fore200e_interrupt(int irq, void* dev)
1157{
1158 struct fore200e* fore200e = FORE200E_DEV((struct atm_dev*)dev);
1159
1160 if (fore200e->bus->irq_check(fore200e) == 0) {
1161
1162 DPRINTK(3, "interrupt NOT triggered by device %d\n", fore200e->atm_dev->number);
1163 return IRQ_NONE;
1164 }
1165 DPRINTK(3, "interrupt triggered by device %d\n", fore200e->atm_dev->number);
1166
1167#ifdef FORE200E_USE_TASKLET
1168 tasklet_schedule(&fore200e->tx_tasklet);
1169 tasklet_schedule(&fore200e->rx_tasklet);
1170#else
1171 fore200e_irq(fore200e);
1172#endif
1173
1174 fore200e->bus->irq_ack(fore200e);
1175 return IRQ_HANDLED;
1176}
1177
1178
1179#ifdef FORE200E_USE_TASKLET
1180static void
1181fore200e_tx_tasklet(unsigned long data)
1182{
1183 struct fore200e* fore200e = (struct fore200e*) data;
1184 unsigned long flags;
1185
1186 DPRINTK(3, "tx tasklet scheduled for device %d\n", fore200e->atm_dev->number);
1187
1188 spin_lock_irqsave(&fore200e->q_lock, flags);
1189 fore200e_tx_irq(fore200e);
1190 spin_unlock_irqrestore(&fore200e->q_lock, flags);
1191}
1192
1193
1194static void
1195fore200e_rx_tasklet(unsigned long data)
1196{
1197 struct fore200e* fore200e = (struct fore200e*) data;
1198 unsigned long flags;
1199
1200 DPRINTK(3, "rx tasklet scheduled for device %d\n", fore200e->atm_dev->number);
1201
1202 spin_lock_irqsave(&fore200e->q_lock, flags);
1203 fore200e_rx_irq((struct fore200e*) data);
1204 spin_unlock_irqrestore(&fore200e->q_lock, flags);
1205}
1206#endif
1207
1208
1209static int
1210fore200e_select_scheme(struct atm_vcc* vcc)
1211{
1212 /* fairly balance the VCs over (identical) buffer schemes */
1213 int scheme = vcc->vci % 2 ? BUFFER_SCHEME_ONE : BUFFER_SCHEME_TWO;
1214
1215 DPRINTK(1, "VC %d.%d.%d uses buffer scheme %d\n",
1216 vcc->itf, vcc->vpi, vcc->vci, scheme);
1217
1218 return scheme;
1219}
1220
1221
1222static int
1223fore200e_activate_vcin(struct fore200e* fore200e, int activate, struct atm_vcc* vcc, int mtu)
1224{
1225 struct host_cmdq* cmdq = &fore200e->host_cmdq;
1226 struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1227 struct activate_opcode activ_opcode;
1228 struct deactivate_opcode deactiv_opcode;
1229 struct vpvc vpvc;
1230 int ok;
1231 enum fore200e_aal aal = fore200e_atm2fore_aal(vcc->qos.aal);
1232
1233 FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1234
1235 if (activate) {
1236 FORE200E_VCC(vcc)->scheme = fore200e_select_scheme(vcc);
1237
1238 activ_opcode.opcode = OPCODE_ACTIVATE_VCIN;
1239 activ_opcode.aal = aal;
1240 activ_opcode.scheme = FORE200E_VCC(vcc)->scheme;
1241 activ_opcode.pad = 0;
1242 }
1243 else {
1244 deactiv_opcode.opcode = OPCODE_DEACTIVATE_VCIN;
1245 deactiv_opcode.pad = 0;
1246 }
1247
1248 vpvc.vci = vcc->vci;
1249 vpvc.vpi = vcc->vpi;
1250
1251 *entry->status = STATUS_PENDING;
1252
1253 if (activate) {
1254
1255#ifdef FORE200E_52BYTE_AAL0_SDU
1256 mtu = 48;
1257#endif
1258 /* the MTU is not used by the cp, except in the case of AAL0 */
1259 fore200e->bus->write(mtu, &entry->cp_entry->cmd.activate_block.mtu);
1260 fore200e->bus->write(*(u32*)&vpvc, (u32 __iomem *)&entry->cp_entry->cmd.activate_block.vpvc);
1261 fore200e->bus->write(*(u32*)&activ_opcode, (u32 __iomem *)&entry->cp_entry->cmd.activate_block.opcode);
1262 }
1263 else {
1264 fore200e->bus->write(*(u32*)&vpvc, (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.vpvc);
1265 fore200e->bus->write(*(u32*)&deactiv_opcode, (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.opcode);
1266 }
1267
1268 ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1269
1270 *entry->status = STATUS_FREE;
1271
1272 if (ok == 0) {
1273 printk(FORE200E "unable to %s VC %d.%d.%d\n",
1274 activate ? "open" : "close", vcc->itf, vcc->vpi, vcc->vci);
1275 return -EIO;
1276 }
1277
1278 DPRINTK(1, "VC %d.%d.%d %sed\n", vcc->itf, vcc->vpi, vcc->vci,
1279 activate ? "open" : "clos");
1280
1281 return 0;
1282}
1283
1284
1285#define FORE200E_MAX_BACK2BACK_CELLS 255 /* XXX depends on CDVT */
1286
1287static void
1288fore200e_rate_ctrl(struct atm_qos* qos, struct tpd_rate* rate)
1289{
1290 if (qos->txtp.max_pcr < ATM_OC3_PCR) {
1291
1292 /* compute the data cells to idle cells ratio from the tx PCR */
1293 rate->data_cells = qos->txtp.max_pcr * FORE200E_MAX_BACK2BACK_CELLS / ATM_OC3_PCR;
1294 rate->idle_cells = FORE200E_MAX_BACK2BACK_CELLS - rate->data_cells;
1295 }
1296 else {
1297 /* disable rate control */
1298 rate->data_cells = rate->idle_cells = 0;
1299 }
1300}
1301
1302
1303static int
1304fore200e_open(struct atm_vcc *vcc)
1305{
1306 struct fore200e* fore200e = FORE200E_DEV(vcc->dev);
1307 struct fore200e_vcc* fore200e_vcc;
1308 struct fore200e_vc_map* vc_map;
1309 unsigned long flags;
1310 int vci = vcc->vci;
1311 short vpi = vcc->vpi;
1312
1313 ASSERT((vpi >= 0) && (vpi < 1<<FORE200E_VPI_BITS));
1314 ASSERT((vci >= 0) && (vci < 1<<FORE200E_VCI_BITS));
1315
1316 spin_lock_irqsave(&fore200e->q_lock, flags);
1317
1318 vc_map = FORE200E_VC_MAP(fore200e, vpi, vci);
1319 if (vc_map->vcc) {
1320
1321 spin_unlock_irqrestore(&fore200e->q_lock, flags);
1322
1323 printk(FORE200E "VC %d.%d.%d already in use\n",
1324 fore200e->atm_dev->number, vpi, vci);
1325
1326 return -EINVAL;
1327 }
1328
1329 vc_map->vcc = vcc;
1330
1331 spin_unlock_irqrestore(&fore200e->q_lock, flags);
1332
1333 fore200e_vcc = kzalloc(sizeof(struct fore200e_vcc), GFP_ATOMIC);
1334 if (fore200e_vcc == NULL) {
1335 vc_map->vcc = NULL;
1336 return -ENOMEM;
1337 }
1338
1339 DPRINTK(2, "opening %d.%d.%d:%d QoS = (tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; "
1340 "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d)\n",
1341 vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1342 fore200e_traffic_class[ vcc->qos.txtp.traffic_class ],
1343 vcc->qos.txtp.min_pcr, vcc->qos.txtp.max_pcr, vcc->qos.txtp.max_cdv, vcc->qos.txtp.max_sdu,
1344 fore200e_traffic_class[ vcc->qos.rxtp.traffic_class ],
1345 vcc->qos.rxtp.min_pcr, vcc->qos.rxtp.max_pcr, vcc->qos.rxtp.max_cdv, vcc->qos.rxtp.max_sdu);
1346
1347 /* pseudo-CBR bandwidth requested? */
1348 if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1349
1350 mutex_lock(&fore200e->rate_mtx);
1351 if (fore200e->available_cell_rate < vcc->qos.txtp.max_pcr) {
1352 mutex_unlock(&fore200e->rate_mtx);
1353
1354 kfree(fore200e_vcc);
1355 vc_map->vcc = NULL;
1356 return -EAGAIN;
1357 }
1358
1359 /* reserve bandwidth */
1360 fore200e->available_cell_rate -= vcc->qos.txtp.max_pcr;
1361 mutex_unlock(&fore200e->rate_mtx);
1362 }
1363
1364 vcc->itf = vcc->dev->number;
1365
1366 set_bit(ATM_VF_PARTIAL,&vcc->flags);
1367 set_bit(ATM_VF_ADDR, &vcc->flags);
1368
1369 vcc->dev_data = fore200e_vcc;
1370
1371 if (fore200e_activate_vcin(fore200e, 1, vcc, vcc->qos.rxtp.max_sdu) < 0) {
1372
1373 vc_map->vcc = NULL;
1374
1375 clear_bit(ATM_VF_ADDR, &vcc->flags);
1376 clear_bit(ATM_VF_PARTIAL,&vcc->flags);
1377
1378 vcc->dev_data = NULL;
1379
1380 fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1381
1382 kfree(fore200e_vcc);
1383 return -EINVAL;
1384 }
1385
1386 /* compute rate control parameters */
1387 if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1388
1389 fore200e_rate_ctrl(&vcc->qos, &fore200e_vcc->rate);
1390 set_bit(ATM_VF_HASQOS, &vcc->flags);
1391
1392 DPRINTK(3, "tx on %d.%d.%d:%d, tx PCR = %d, rx PCR = %d, data_cells = %u, idle_cells = %u\n",
1393 vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1394 vcc->qos.txtp.max_pcr, vcc->qos.rxtp.max_pcr,
1395 fore200e_vcc->rate.data_cells, fore200e_vcc->rate.idle_cells);
1396 }
1397
1398 fore200e_vcc->tx_min_pdu = fore200e_vcc->rx_min_pdu = MAX_PDU_SIZE + 1;
1399 fore200e_vcc->tx_max_pdu = fore200e_vcc->rx_max_pdu = 0;
1400 fore200e_vcc->tx_pdu = fore200e_vcc->rx_pdu = 0;
1401
1402 /* new incarnation of the vcc */
1403 vc_map->incarn = ++fore200e->incarn_count;
1404
1405 /* VC unusable before this flag is set */
1406 set_bit(ATM_VF_READY, &vcc->flags);
1407
1408 return 0;
1409}
1410
1411
1412static void
1413fore200e_close(struct atm_vcc* vcc)
1414{
1415 struct fore200e_vcc* fore200e_vcc;
1416 struct fore200e* fore200e;
1417 struct fore200e_vc_map* vc_map;
1418 unsigned long flags;
1419
1420 ASSERT(vcc);
1421 fore200e = FORE200E_DEV(vcc->dev);
1422
1423 ASSERT((vcc->vpi >= 0) && (vcc->vpi < 1<<FORE200E_VPI_BITS));
1424 ASSERT((vcc->vci >= 0) && (vcc->vci < 1<<FORE200E_VCI_BITS));
1425
1426 DPRINTK(2, "closing %d.%d.%d:%d\n", vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal));
1427
1428 clear_bit(ATM_VF_READY, &vcc->flags);
1429
1430 fore200e_activate_vcin(fore200e, 0, vcc, 0);
1431
1432 spin_lock_irqsave(&fore200e->q_lock, flags);
1433
1434 vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci);
1435
1436 /* the vc is no longer considered as "in use" by fore200e_open() */
1437 vc_map->vcc = NULL;
1438
1439 vcc->itf = vcc->vci = vcc->vpi = 0;
1440
1441 fore200e_vcc = FORE200E_VCC(vcc);
1442 vcc->dev_data = NULL;
1443
1444 spin_unlock_irqrestore(&fore200e->q_lock, flags);
1445
1446 /* release reserved bandwidth, if any */
1447 if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1448
1449 mutex_lock(&fore200e->rate_mtx);
1450 fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1451 mutex_unlock(&fore200e->rate_mtx);
1452
1453 clear_bit(ATM_VF_HASQOS, &vcc->flags);
1454 }
1455
1456 clear_bit(ATM_VF_ADDR, &vcc->flags);
1457 clear_bit(ATM_VF_PARTIAL,&vcc->flags);
1458
1459 ASSERT(fore200e_vcc);
1460 kfree(fore200e_vcc);
1461}
1462
1463
1464static int
1465fore200e_send(struct atm_vcc *vcc, struct sk_buff *skb)
1466{
1467 struct fore200e* fore200e;
1468 struct fore200e_vcc* fore200e_vcc;
1469 struct fore200e_vc_map* vc_map;
1470 struct host_txq* txq;
1471 struct host_txq_entry* entry;
1472 struct tpd* tpd;
1473 struct tpd_haddr tpd_haddr;
1474 int retry = CONFIG_ATM_FORE200E_TX_RETRY;
1475 int tx_copy = 0;
1476 int tx_len = skb->len;
1477 u32* cell_header = NULL;
1478 unsigned char* skb_data;
1479 int skb_len;
1480 unsigned char* data;
1481 unsigned long flags;
1482
1483 if (!vcc)
1484 return -EINVAL;
1485
1486 fore200e = FORE200E_DEV(vcc->dev);
1487 fore200e_vcc = FORE200E_VCC(vcc);
1488
1489 if (!fore200e)
1490 return -EINVAL;
1491
1492 txq = &fore200e->host_txq;
1493 if (!fore200e_vcc)
1494 return -EINVAL;
1495
1496 if (!test_bit(ATM_VF_READY, &vcc->flags)) {
1497 DPRINTK(1, "VC %d.%d.%d not ready for tx\n", vcc->itf, vcc->vpi, vcc->vpi);
1498 dev_kfree_skb_any(skb);
1499 return -EINVAL;
1500 }
1501
1502#ifdef FORE200E_52BYTE_AAL0_SDU
1503 if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.txtp.max_sdu == ATM_AAL0_SDU)) {
1504 cell_header = (u32*) skb->data;
1505 skb_data = skb->data + 4; /* skip 4-byte cell header */
1506 skb_len = tx_len = skb->len - 4;
1507
1508 DPRINTK(3, "user-supplied cell header = 0x%08x\n", *cell_header);
1509 }
1510 else
1511#endif
1512 {
1513 skb_data = skb->data;
1514 skb_len = skb->len;
1515 }
1516
1517 if (((unsigned long)skb_data) & 0x3) {
1518
1519 DPRINTK(2, "misaligned tx PDU on device %s\n", fore200e->name);
1520 tx_copy = 1;
1521 tx_len = skb_len;
1522 }
1523
1524 if ((vcc->qos.aal == ATM_AAL0) && (skb_len % ATM_CELL_PAYLOAD)) {
1525
1526 /* this simply NUKES the PCA board */
1527 DPRINTK(2, "incomplete tx AAL0 PDU on device %s\n", fore200e->name);
1528 tx_copy = 1;
1529 tx_len = ((skb_len / ATM_CELL_PAYLOAD) + 1) * ATM_CELL_PAYLOAD;
1530 }
1531
1532 if (tx_copy) {
1533 data = kmalloc(tx_len, GFP_ATOMIC);
1534 if (data == NULL) {
1535 if (vcc->pop) {
1536 vcc->pop(vcc, skb);
1537 }
1538 else {
1539 dev_kfree_skb_any(skb);
1540 }
1541 return -ENOMEM;
1542 }
1543
1544 memcpy(data, skb_data, skb_len);
1545 if (skb_len < tx_len)
1546 memset(data + skb_len, 0x00, tx_len - skb_len);
1547 }
1548 else {
1549 data = skb_data;
1550 }
1551
1552 vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci);
1553 ASSERT(vc_map->vcc == vcc);
1554
1555 retry_here:
1556
1557 spin_lock_irqsave(&fore200e->q_lock, flags);
1558
1559 entry = &txq->host_entry[ txq->head ];
1560
1561 if ((*entry->status != STATUS_FREE) || (txq->txing >= QUEUE_SIZE_TX - 2)) {
1562
1563 /* try to free completed tx queue entries */
1564 fore200e_tx_irq(fore200e);
1565
1566 if (*entry->status != STATUS_FREE) {
1567
1568 spin_unlock_irqrestore(&fore200e->q_lock, flags);
1569
1570 /* retry once again? */
1571 if (--retry > 0) {
1572 udelay(50);
1573 goto retry_here;
1574 }
1575
1576 atomic_inc(&vcc->stats->tx_err);
1577
1578 fore200e->tx_sat++;
1579 DPRINTK(2, "tx queue of device %s is saturated, PDU dropped - heartbeat is %08x\n",
1580 fore200e->name, fore200e->cp_queues->heartbeat);
1581 if (vcc->pop) {
1582 vcc->pop(vcc, skb);
1583 }
1584 else {
1585 dev_kfree_skb_any(skb);
1586 }
1587
1588 if (tx_copy)
1589 kfree(data);
1590
1591 return -ENOBUFS;
1592 }
1593 }
1594
1595 entry->incarn = vc_map->incarn;
1596 entry->vc_map = vc_map;
1597 entry->skb = skb;
1598 entry->data = tx_copy ? data : NULL;
1599
1600 tpd = entry->tpd;
1601 tpd->tsd[ 0 ].buffer = dma_map_single(fore200e->dev, data, tx_len,
1602 DMA_TO_DEVICE);
1603 if (dma_mapping_error(fore200e->dev, tpd->tsd[0].buffer)) {
1604 if (tx_copy)
1605 kfree(data);
1606 spin_unlock_irqrestore(&fore200e->q_lock, flags);
1607 return -ENOMEM;
1608 }
1609 tpd->tsd[ 0 ].length = tx_len;
1610
1611 FORE200E_NEXT_ENTRY(txq->head, QUEUE_SIZE_TX);
1612 txq->txing++;
1613
1614 /* The dma_map call above implies a dma_sync so the device can use it,
1615 * thus no explicit dma_sync call is necessary here.
1616 */
1617
1618 DPRINTK(3, "tx on %d.%d.%d:%d, len = %u (%u)\n",
1619 vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1620 tpd->tsd[0].length, skb_len);
1621
1622 if (skb_len < fore200e_vcc->tx_min_pdu)
1623 fore200e_vcc->tx_min_pdu = skb_len;
1624 if (skb_len > fore200e_vcc->tx_max_pdu)
1625 fore200e_vcc->tx_max_pdu = skb_len;
1626 fore200e_vcc->tx_pdu++;
1627
1628 /* set tx rate control information */
1629 tpd->rate.data_cells = fore200e_vcc->rate.data_cells;
1630 tpd->rate.idle_cells = fore200e_vcc->rate.idle_cells;
1631
1632 if (cell_header) {
1633 tpd->atm_header.clp = (*cell_header & ATM_HDR_CLP);
1634 tpd->atm_header.plt = (*cell_header & ATM_HDR_PTI_MASK) >> ATM_HDR_PTI_SHIFT;
1635 tpd->atm_header.vci = (*cell_header & ATM_HDR_VCI_MASK) >> ATM_HDR_VCI_SHIFT;
1636 tpd->atm_header.vpi = (*cell_header & ATM_HDR_VPI_MASK) >> ATM_HDR_VPI_SHIFT;
1637 tpd->atm_header.gfc = (*cell_header & ATM_HDR_GFC_MASK) >> ATM_HDR_GFC_SHIFT;
1638 }
1639 else {
1640 /* set the ATM header, common to all cells conveying the PDU */
1641 tpd->atm_header.clp = 0;
1642 tpd->atm_header.plt = 0;
1643 tpd->atm_header.vci = vcc->vci;
1644 tpd->atm_header.vpi = vcc->vpi;
1645 tpd->atm_header.gfc = 0;
1646 }
1647
1648 tpd->spec.length = tx_len;
1649 tpd->spec.nseg = 1;
1650 tpd->spec.aal = fore200e_atm2fore_aal(vcc->qos.aal);
1651 tpd->spec.intr = 1;
1652
1653 tpd_haddr.size = sizeof(struct tpd) / (1<<TPD_HADDR_SHIFT); /* size is expressed in 32 byte blocks */
1654 tpd_haddr.pad = 0;
1655 tpd_haddr.haddr = entry->tpd_dma >> TPD_HADDR_SHIFT; /* shift the address, as we are in a bitfield */
1656
1657 *entry->status = STATUS_PENDING;
1658 fore200e->bus->write(*(u32*)&tpd_haddr, (u32 __iomem *)&entry->cp_entry->tpd_haddr);
1659
1660 spin_unlock_irqrestore(&fore200e->q_lock, flags);
1661
1662 return 0;
1663}
1664
1665
1666static int
1667fore200e_getstats(struct fore200e* fore200e)
1668{
1669 struct host_cmdq* cmdq = &fore200e->host_cmdq;
1670 struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1671 struct stats_opcode opcode;
1672 int ok;
1673 u32 stats_dma_addr;
1674
1675 if (fore200e->stats == NULL) {
1676 fore200e->stats = kzalloc(sizeof(struct stats), GFP_KERNEL);
1677 if (fore200e->stats == NULL)
1678 return -ENOMEM;
1679 }
1680
1681 stats_dma_addr = dma_map_single(fore200e->dev, fore200e->stats,
1682 sizeof(struct stats), DMA_FROM_DEVICE);
1683 if (dma_mapping_error(fore200e->dev, stats_dma_addr))
1684 return -ENOMEM;
1685
1686 FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1687
1688 opcode.opcode = OPCODE_GET_STATS;
1689 opcode.pad = 0;
1690
1691 fore200e->bus->write(stats_dma_addr, &entry->cp_entry->cmd.stats_block.stats_haddr);
1692
1693 *entry->status = STATUS_PENDING;
1694
1695 fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.stats_block.opcode);
1696
1697 ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1698
1699 *entry->status = STATUS_FREE;
1700
1701 dma_unmap_single(fore200e->dev, stats_dma_addr, sizeof(struct stats), DMA_FROM_DEVICE);
1702
1703 if (ok == 0) {
1704 printk(FORE200E "unable to get statistics from device %s\n", fore200e->name);
1705 return -EIO;
1706 }
1707
1708 return 0;
1709}
1710
1711#if 0 /* currently unused */
1712static int
1713fore200e_get_oc3(struct fore200e* fore200e, struct oc3_regs* regs)
1714{
1715 struct host_cmdq* cmdq = &fore200e->host_cmdq;
1716 struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1717 struct oc3_opcode opcode;
1718 int ok;
1719 u32 oc3_regs_dma_addr;
1720
1721 oc3_regs_dma_addr = fore200e->bus->dma_map(fore200e, regs, sizeof(struct oc3_regs), DMA_FROM_DEVICE);
1722
1723 FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1724
1725 opcode.opcode = OPCODE_GET_OC3;
1726 opcode.reg = 0;
1727 opcode.value = 0;
1728 opcode.mask = 0;
1729
1730 fore200e->bus->write(oc3_regs_dma_addr, &entry->cp_entry->cmd.oc3_block.regs_haddr);
1731
1732 *entry->status = STATUS_PENDING;
1733
1734 fore200e->bus->write(*(u32*)&opcode, (u32*)&entry->cp_entry->cmd.oc3_block.opcode);
1735
1736 ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1737
1738 *entry->status = STATUS_FREE;
1739
1740 fore200e->bus->dma_unmap(fore200e, oc3_regs_dma_addr, sizeof(struct oc3_regs), DMA_FROM_DEVICE);
1741
1742 if (ok == 0) {
1743 printk(FORE200E "unable to get OC-3 regs of device %s\n", fore200e->name);
1744 return -EIO;
1745 }
1746
1747 return 0;
1748}
1749#endif
1750
1751
1752static int
1753fore200e_set_oc3(struct fore200e* fore200e, u32 reg, u32 value, u32 mask)
1754{
1755 struct host_cmdq* cmdq = &fore200e->host_cmdq;
1756 struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1757 struct oc3_opcode opcode;
1758 int ok;
1759
1760 DPRINTK(2, "set OC-3 reg = 0x%02x, value = 0x%02x, mask = 0x%02x\n", reg, value, mask);
1761
1762 FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1763
1764 opcode.opcode = OPCODE_SET_OC3;
1765 opcode.reg = reg;
1766 opcode.value = value;
1767 opcode.mask = mask;
1768
1769 fore200e->bus->write(0, &entry->cp_entry->cmd.oc3_block.regs_haddr);
1770
1771 *entry->status = STATUS_PENDING;
1772
1773 fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.oc3_block.opcode);
1774
1775 ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1776
1777 *entry->status = STATUS_FREE;
1778
1779 if (ok == 0) {
1780 printk(FORE200E "unable to set OC-3 reg 0x%02x of device %s\n", reg, fore200e->name);
1781 return -EIO;
1782 }
1783
1784 return 0;
1785}
1786
1787
1788static int
1789fore200e_setloop(struct fore200e* fore200e, int loop_mode)
1790{
1791 u32 mct_value, mct_mask;
1792 int error;
1793
1794 if (!capable(CAP_NET_ADMIN))
1795 return -EPERM;
1796
1797 switch (loop_mode) {
1798
1799 case ATM_LM_NONE:
1800 mct_value = 0;
1801 mct_mask = SUNI_MCT_DLE | SUNI_MCT_LLE;
1802 break;
1803
1804 case ATM_LM_LOC_PHY:
1805 mct_value = mct_mask = SUNI_MCT_DLE;
1806 break;
1807
1808 case ATM_LM_RMT_PHY:
1809 mct_value = mct_mask = SUNI_MCT_LLE;
1810 break;
1811
1812 default:
1813 return -EINVAL;
1814 }
1815
1816 error = fore200e_set_oc3(fore200e, SUNI_MCT, mct_value, mct_mask);
1817 if (error == 0)
1818 fore200e->loop_mode = loop_mode;
1819
1820 return error;
1821}
1822
1823
1824static int
1825fore200e_fetch_stats(struct fore200e* fore200e, struct sonet_stats __user *arg)
1826{
1827 struct sonet_stats tmp;
1828
1829 if (fore200e_getstats(fore200e) < 0)
1830 return -EIO;
1831
1832 tmp.section_bip = be32_to_cpu(fore200e->stats->oc3.section_bip8_errors);
1833 tmp.line_bip = be32_to_cpu(fore200e->stats->oc3.line_bip24_errors);
1834 tmp.path_bip = be32_to_cpu(fore200e->stats->oc3.path_bip8_errors);
1835 tmp.line_febe = be32_to_cpu(fore200e->stats->oc3.line_febe_errors);
1836 tmp.path_febe = be32_to_cpu(fore200e->stats->oc3.path_febe_errors);
1837 tmp.corr_hcs = be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors);
1838 tmp.uncorr_hcs = be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors);
1839 tmp.tx_cells = be32_to_cpu(fore200e->stats->aal0.cells_transmitted) +
1840 be32_to_cpu(fore200e->stats->aal34.cells_transmitted) +
1841 be32_to_cpu(fore200e->stats->aal5.cells_transmitted);
1842 tmp.rx_cells = be32_to_cpu(fore200e->stats->aal0.cells_received) +
1843 be32_to_cpu(fore200e->stats->aal34.cells_received) +
1844 be32_to_cpu(fore200e->stats->aal5.cells_received);
1845
1846 if (arg)
1847 return copy_to_user(arg, &tmp, sizeof(struct sonet_stats)) ? -EFAULT : 0;
1848
1849 return 0;
1850}
1851
1852
1853static int
1854fore200e_ioctl(struct atm_dev* dev, unsigned int cmd, void __user * arg)
1855{
1856 struct fore200e* fore200e = FORE200E_DEV(dev);
1857
1858 DPRINTK(2, "ioctl cmd = 0x%x (%u), arg = 0x%p (%lu)\n", cmd, cmd, arg, (unsigned long)arg);
1859
1860 switch (cmd) {
1861
1862 case SONET_GETSTAT:
1863 return fore200e_fetch_stats(fore200e, (struct sonet_stats __user *)arg);
1864
1865 case SONET_GETDIAG:
1866 return put_user(0, (int __user *)arg) ? -EFAULT : 0;
1867
1868 case ATM_SETLOOP:
1869 return fore200e_setloop(fore200e, (int)(unsigned long)arg);
1870
1871 case ATM_GETLOOP:
1872 return put_user(fore200e->loop_mode, (int __user *)arg) ? -EFAULT : 0;
1873
1874 case ATM_QUERYLOOP:
1875 return put_user(ATM_LM_LOC_PHY | ATM_LM_RMT_PHY, (int __user *)arg) ? -EFAULT : 0;
1876 }
1877
1878 return -ENOSYS; /* not implemented */
1879}
1880
1881
1882static int
1883fore200e_change_qos(struct atm_vcc* vcc,struct atm_qos* qos, int flags)
1884{
1885 struct fore200e_vcc* fore200e_vcc = FORE200E_VCC(vcc);
1886 struct fore200e* fore200e = FORE200E_DEV(vcc->dev);
1887
1888 if (!test_bit(ATM_VF_READY, &vcc->flags)) {
1889 DPRINTK(1, "VC %d.%d.%d not ready for QoS change\n", vcc->itf, vcc->vpi, vcc->vpi);
1890 return -EINVAL;
1891 }
1892
1893 DPRINTK(2, "change_qos %d.%d.%d, "
1894 "(tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; "
1895 "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d), flags = 0x%x\n"
1896 "available_cell_rate = %u",
1897 vcc->itf, vcc->vpi, vcc->vci,
1898 fore200e_traffic_class[ qos->txtp.traffic_class ],
1899 qos->txtp.min_pcr, qos->txtp.max_pcr, qos->txtp.max_cdv, qos->txtp.max_sdu,
1900 fore200e_traffic_class[ qos->rxtp.traffic_class ],
1901 qos->rxtp.min_pcr, qos->rxtp.max_pcr, qos->rxtp.max_cdv, qos->rxtp.max_sdu,
1902 flags, fore200e->available_cell_rate);
1903
1904 if ((qos->txtp.traffic_class == ATM_CBR) && (qos->txtp.max_pcr > 0)) {
1905
1906 mutex_lock(&fore200e->rate_mtx);
1907 if (fore200e->available_cell_rate + vcc->qos.txtp.max_pcr < qos->txtp.max_pcr) {
1908 mutex_unlock(&fore200e->rate_mtx);
1909 return -EAGAIN;
1910 }
1911
1912 fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1913 fore200e->available_cell_rate -= qos->txtp.max_pcr;
1914
1915 mutex_unlock(&fore200e->rate_mtx);
1916
1917 memcpy(&vcc->qos, qos, sizeof(struct atm_qos));
1918
1919 /* update rate control parameters */
1920 fore200e_rate_ctrl(qos, &fore200e_vcc->rate);
1921
1922 set_bit(ATM_VF_HASQOS, &vcc->flags);
1923
1924 return 0;
1925 }
1926
1927 return -EINVAL;
1928}
1929
1930
1931static int fore200e_irq_request(struct fore200e *fore200e)
1932{
1933 if (request_irq(fore200e->irq, fore200e_interrupt, IRQF_SHARED, fore200e->name, fore200e->atm_dev) < 0) {
1934
1935 printk(FORE200E "unable to reserve IRQ %s for device %s\n",
1936 fore200e_irq_itoa(fore200e->irq), fore200e->name);
1937 return -EBUSY;
1938 }
1939
1940 printk(FORE200E "IRQ %s reserved for device %s\n",
1941 fore200e_irq_itoa(fore200e->irq), fore200e->name);
1942
1943#ifdef FORE200E_USE_TASKLET
1944 tasklet_init(&fore200e->tx_tasklet, fore200e_tx_tasklet, (unsigned long)fore200e);
1945 tasklet_init(&fore200e->rx_tasklet, fore200e_rx_tasklet, (unsigned long)fore200e);
1946#endif
1947
1948 fore200e->state = FORE200E_STATE_IRQ;
1949 return 0;
1950}
1951
1952
1953static int fore200e_get_esi(struct fore200e *fore200e)
1954{
1955 struct prom_data* prom = kzalloc(sizeof(struct prom_data), GFP_KERNEL);
1956 int ok, i;
1957
1958 if (!prom)
1959 return -ENOMEM;
1960
1961 ok = fore200e->bus->prom_read(fore200e, prom);
1962 if (ok < 0) {
1963 kfree(prom);
1964 return -EBUSY;
1965 }
1966
1967 printk(FORE200E "device %s, rev. %c, S/N: %d, ESI: %pM\n",
1968 fore200e->name,
1969 (prom->hw_revision & 0xFF) + '@', /* probably meaningless with SBA boards */
1970 prom->serial_number & 0xFFFF, &prom->mac_addr[2]);
1971
1972 for (i = 0; i < ESI_LEN; i++) {
1973 fore200e->esi[ i ] = fore200e->atm_dev->esi[ i ] = prom->mac_addr[ i + 2 ];
1974 }
1975
1976 kfree(prom);
1977
1978 return 0;
1979}
1980
1981
1982static int fore200e_alloc_rx_buf(struct fore200e *fore200e)
1983{
1984 int scheme, magn, nbr, size, i;
1985
1986 struct host_bsq* bsq;
1987 struct buffer* buffer;
1988
1989 for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
1990 for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
1991
1992 bsq = &fore200e->host_bsq[ scheme ][ magn ];
1993
1994 nbr = fore200e_rx_buf_nbr[ scheme ][ magn ];
1995 size = fore200e_rx_buf_size[ scheme ][ magn ];
1996
1997 DPRINTK(2, "rx buffers %d / %d are being allocated\n", scheme, magn);
1998
1999 /* allocate the array of receive buffers */
2000 buffer = bsq->buffer = kcalloc(nbr, sizeof(struct buffer),
2001 GFP_KERNEL);
2002
2003 if (buffer == NULL)
2004 return -ENOMEM;
2005
2006 bsq->freebuf = NULL;
2007
2008 for (i = 0; i < nbr; i++) {
2009
2010 buffer[ i ].scheme = scheme;
2011 buffer[ i ].magn = magn;
2012#ifdef FORE200E_BSQ_DEBUG
2013 buffer[ i ].index = i;
2014 buffer[ i ].supplied = 0;
2015#endif
2016
2017 /* allocate the receive buffer body */
2018 if (fore200e_chunk_alloc(fore200e,
2019 &buffer[ i ].data, size, fore200e->bus->buffer_alignment,
2020 DMA_FROM_DEVICE) < 0) {
2021
2022 while (i > 0)
2023 fore200e_chunk_free(fore200e, &buffer[ --i ].data);
2024 kfree(buffer);
2025
2026 return -ENOMEM;
2027 }
2028
2029 /* insert the buffer into the free buffer list */
2030 buffer[ i ].next = bsq->freebuf;
2031 bsq->freebuf = &buffer[ i ];
2032 }
2033 /* all the buffers are free, initially */
2034 bsq->freebuf_count = nbr;
2035
2036#ifdef FORE200E_BSQ_DEBUG
2037 bsq_audit(3, bsq, scheme, magn);
2038#endif
2039 }
2040 }
2041
2042 fore200e->state = FORE200E_STATE_ALLOC_BUF;
2043 return 0;
2044}
2045
2046
2047static int fore200e_init_bs_queue(struct fore200e *fore200e)
2048{
2049 int scheme, magn, i;
2050
2051 struct host_bsq* bsq;
2052 struct cp_bsq_entry __iomem * cp_entry;
2053
2054 for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
2055 for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
2056
2057 DPRINTK(2, "buffer supply queue %d / %d is being initialized\n", scheme, magn);
2058
2059 bsq = &fore200e->host_bsq[ scheme ][ magn ];
2060
2061 /* allocate and align the array of status words */
2062 if (fore200e_dma_chunk_alloc(fore200e,
2063 &bsq->status,
2064 sizeof(enum status),
2065 QUEUE_SIZE_BS,
2066 fore200e->bus->status_alignment) < 0) {
2067 return -ENOMEM;
2068 }
2069
2070 /* allocate and align the array of receive buffer descriptors */
2071 if (fore200e_dma_chunk_alloc(fore200e,
2072 &bsq->rbd_block,
2073 sizeof(struct rbd_block),
2074 QUEUE_SIZE_BS,
2075 fore200e->bus->descr_alignment) < 0) {
2076
2077 fore200e_dma_chunk_free(fore200e, &bsq->status);
2078 return -ENOMEM;
2079 }
2080
2081 /* get the base address of the cp resident buffer supply queue entries */
2082 cp_entry = fore200e->virt_base +
2083 fore200e->bus->read(&fore200e->cp_queues->cp_bsq[ scheme ][ magn ]);
2084
2085 /* fill the host resident and cp resident buffer supply queue entries */
2086 for (i = 0; i < QUEUE_SIZE_BS; i++) {
2087
2088 bsq->host_entry[ i ].status =
2089 FORE200E_INDEX(bsq->status.align_addr, enum status, i);
2090 bsq->host_entry[ i ].rbd_block =
2091 FORE200E_INDEX(bsq->rbd_block.align_addr, struct rbd_block, i);
2092 bsq->host_entry[ i ].rbd_block_dma =
2093 FORE200E_DMA_INDEX(bsq->rbd_block.dma_addr, struct rbd_block, i);
2094 bsq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2095
2096 *bsq->host_entry[ i ].status = STATUS_FREE;
2097
2098 fore200e->bus->write(FORE200E_DMA_INDEX(bsq->status.dma_addr, enum status, i),
2099 &cp_entry[ i ].status_haddr);
2100 }
2101 }
2102 }
2103
2104 fore200e->state = FORE200E_STATE_INIT_BSQ;
2105 return 0;
2106}
2107
2108
2109static int fore200e_init_rx_queue(struct fore200e *fore200e)
2110{
2111 struct host_rxq* rxq = &fore200e->host_rxq;
2112 struct cp_rxq_entry __iomem * cp_entry;
2113 int i;
2114
2115 DPRINTK(2, "receive queue is being initialized\n");
2116
2117 /* allocate and align the array of status words */
2118 if (fore200e_dma_chunk_alloc(fore200e,
2119 &rxq->status,
2120 sizeof(enum status),
2121 QUEUE_SIZE_RX,
2122 fore200e->bus->status_alignment) < 0) {
2123 return -ENOMEM;
2124 }
2125
2126 /* allocate and align the array of receive PDU descriptors */
2127 if (fore200e_dma_chunk_alloc(fore200e,
2128 &rxq->rpd,
2129 sizeof(struct rpd),
2130 QUEUE_SIZE_RX,
2131 fore200e->bus->descr_alignment) < 0) {
2132
2133 fore200e_dma_chunk_free(fore200e, &rxq->status);
2134 return -ENOMEM;
2135 }
2136
2137 /* get the base address of the cp resident rx queue entries */
2138 cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_rxq);
2139
2140 /* fill the host resident and cp resident rx entries */
2141 for (i=0; i < QUEUE_SIZE_RX; i++) {
2142
2143 rxq->host_entry[ i ].status =
2144 FORE200E_INDEX(rxq->status.align_addr, enum status, i);
2145 rxq->host_entry[ i ].rpd =
2146 FORE200E_INDEX(rxq->rpd.align_addr, struct rpd, i);
2147 rxq->host_entry[ i ].rpd_dma =
2148 FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i);
2149 rxq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2150
2151 *rxq->host_entry[ i ].status = STATUS_FREE;
2152
2153 fore200e->bus->write(FORE200E_DMA_INDEX(rxq->status.dma_addr, enum status, i),
2154 &cp_entry[ i ].status_haddr);
2155
2156 fore200e->bus->write(FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i),
2157 &cp_entry[ i ].rpd_haddr);
2158 }
2159
2160 /* set the head entry of the queue */
2161 rxq->head = 0;
2162
2163 fore200e->state = FORE200E_STATE_INIT_RXQ;
2164 return 0;
2165}
2166
2167
2168static int fore200e_init_tx_queue(struct fore200e *fore200e)
2169{
2170 struct host_txq* txq = &fore200e->host_txq;
2171 struct cp_txq_entry __iomem * cp_entry;
2172 int i;
2173
2174 DPRINTK(2, "transmit queue is being initialized\n");
2175
2176 /* allocate and align the array of status words */
2177 if (fore200e_dma_chunk_alloc(fore200e,
2178 &txq->status,
2179 sizeof(enum status),
2180 QUEUE_SIZE_TX,
2181 fore200e->bus->status_alignment) < 0) {
2182 return -ENOMEM;
2183 }
2184
2185 /* allocate and align the array of transmit PDU descriptors */
2186 if (fore200e_dma_chunk_alloc(fore200e,
2187 &txq->tpd,
2188 sizeof(struct tpd),
2189 QUEUE_SIZE_TX,
2190 fore200e->bus->descr_alignment) < 0) {
2191
2192 fore200e_dma_chunk_free(fore200e, &txq->status);
2193 return -ENOMEM;
2194 }
2195
2196 /* get the base address of the cp resident tx queue entries */
2197 cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_txq);
2198
2199 /* fill the host resident and cp resident tx entries */
2200 for (i=0; i < QUEUE_SIZE_TX; i++) {
2201
2202 txq->host_entry[ i ].status =
2203 FORE200E_INDEX(txq->status.align_addr, enum status, i);
2204 txq->host_entry[ i ].tpd =
2205 FORE200E_INDEX(txq->tpd.align_addr, struct tpd, i);
2206 txq->host_entry[ i ].tpd_dma =
2207 FORE200E_DMA_INDEX(txq->tpd.dma_addr, struct tpd, i);
2208 txq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2209
2210 *txq->host_entry[ i ].status = STATUS_FREE;
2211
2212 fore200e->bus->write(FORE200E_DMA_INDEX(txq->status.dma_addr, enum status, i),
2213 &cp_entry[ i ].status_haddr);
2214
2215 /* although there is a one-to-one mapping of tx queue entries and tpds,
2216 we do not write here the DMA (physical) base address of each tpd into
2217 the related cp resident entry, because the cp relies on this write
2218 operation to detect that a new pdu has been submitted for tx */
2219 }
2220
2221 /* set the head and tail entries of the queue */
2222 txq->head = 0;
2223 txq->tail = 0;
2224
2225 fore200e->state = FORE200E_STATE_INIT_TXQ;
2226 return 0;
2227}
2228
2229
2230static int fore200e_init_cmd_queue(struct fore200e *fore200e)
2231{
2232 struct host_cmdq* cmdq = &fore200e->host_cmdq;
2233 struct cp_cmdq_entry __iomem * cp_entry;
2234 int i;
2235
2236 DPRINTK(2, "command queue is being initialized\n");
2237
2238 /* allocate and align the array of status words */
2239 if (fore200e_dma_chunk_alloc(fore200e,
2240 &cmdq->status,
2241 sizeof(enum status),
2242 QUEUE_SIZE_CMD,
2243 fore200e->bus->status_alignment) < 0) {
2244 return -ENOMEM;
2245 }
2246
2247 /* get the base address of the cp resident cmd queue entries */
2248 cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_cmdq);
2249
2250 /* fill the host resident and cp resident cmd entries */
2251 for (i=0; i < QUEUE_SIZE_CMD; i++) {
2252
2253 cmdq->host_entry[ i ].status =
2254 FORE200E_INDEX(cmdq->status.align_addr, enum status, i);
2255 cmdq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2256
2257 *cmdq->host_entry[ i ].status = STATUS_FREE;
2258
2259 fore200e->bus->write(FORE200E_DMA_INDEX(cmdq->status.dma_addr, enum status, i),
2260 &cp_entry[ i ].status_haddr);
2261 }
2262
2263 /* set the head entry of the queue */
2264 cmdq->head = 0;
2265
2266 fore200e->state = FORE200E_STATE_INIT_CMDQ;
2267 return 0;
2268}
2269
2270
2271static void fore200e_param_bs_queue(struct fore200e *fore200e,
2272 enum buffer_scheme scheme,
2273 enum buffer_magn magn, int queue_length,
2274 int pool_size, int supply_blksize)
2275{
2276 struct bs_spec __iomem * bs_spec = &fore200e->cp_queues->init.bs_spec[ scheme ][ magn ];
2277
2278 fore200e->bus->write(queue_length, &bs_spec->queue_length);
2279 fore200e->bus->write(fore200e_rx_buf_size[ scheme ][ magn ], &bs_spec->buffer_size);
2280 fore200e->bus->write(pool_size, &bs_spec->pool_size);
2281 fore200e->bus->write(supply_blksize, &bs_spec->supply_blksize);
2282}
2283
2284
2285static int fore200e_initialize(struct fore200e *fore200e)
2286{
2287 struct cp_queues __iomem * cpq;
2288 int ok, scheme, magn;
2289
2290 DPRINTK(2, "device %s being initialized\n", fore200e->name);
2291
2292 mutex_init(&fore200e->rate_mtx);
2293 spin_lock_init(&fore200e->q_lock);
2294
2295 cpq = fore200e->cp_queues = fore200e->virt_base + FORE200E_CP_QUEUES_OFFSET;
2296
2297 /* enable cp to host interrupts */
2298 fore200e->bus->write(1, &cpq->imask);
2299
2300 if (fore200e->bus->irq_enable)
2301 fore200e->bus->irq_enable(fore200e);
2302
2303 fore200e->bus->write(NBR_CONNECT, &cpq->init.num_connect);
2304
2305 fore200e->bus->write(QUEUE_SIZE_CMD, &cpq->init.cmd_queue_len);
2306 fore200e->bus->write(QUEUE_SIZE_RX, &cpq->init.rx_queue_len);
2307 fore200e->bus->write(QUEUE_SIZE_TX, &cpq->init.tx_queue_len);
2308
2309 fore200e->bus->write(RSD_EXTENSION, &cpq->init.rsd_extension);
2310 fore200e->bus->write(TSD_EXTENSION, &cpq->init.tsd_extension);
2311
2312 for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++)
2313 for (magn = 0; magn < BUFFER_MAGN_NBR; magn++)
2314 fore200e_param_bs_queue(fore200e, scheme, magn,
2315 QUEUE_SIZE_BS,
2316 fore200e_rx_buf_nbr[ scheme ][ magn ],
2317 RBD_BLK_SIZE);
2318
2319 /* issue the initialize command */
2320 fore200e->bus->write(STATUS_PENDING, &cpq->init.status);
2321 fore200e->bus->write(OPCODE_INITIALIZE, &cpq->init.opcode);
2322
2323 ok = fore200e_io_poll(fore200e, &cpq->init.status, STATUS_COMPLETE, 3000);
2324 if (ok == 0) {
2325 printk(FORE200E "device %s initialization failed\n", fore200e->name);
2326 return -ENODEV;
2327 }
2328
2329 printk(FORE200E "device %s initialized\n", fore200e->name);
2330
2331 fore200e->state = FORE200E_STATE_INITIALIZE;
2332 return 0;
2333}
2334
2335
2336static void fore200e_monitor_putc(struct fore200e *fore200e, char c)
2337{
2338 struct cp_monitor __iomem * monitor = fore200e->cp_monitor;
2339
2340#if 0
2341 printk("%c", c);
2342#endif
2343 fore200e->bus->write(((u32) c) | FORE200E_CP_MONITOR_UART_AVAIL, &monitor->soft_uart.send);
2344}
2345
2346
2347static int fore200e_monitor_getc(struct fore200e *fore200e)
2348{
2349 struct cp_monitor __iomem * monitor = fore200e->cp_monitor;
2350 unsigned long timeout = jiffies + msecs_to_jiffies(50);
2351 int c;
2352
2353 while (time_before(jiffies, timeout)) {
2354
2355 c = (int) fore200e->bus->read(&monitor->soft_uart.recv);
2356
2357 if (c & FORE200E_CP_MONITOR_UART_AVAIL) {
2358
2359 fore200e->bus->write(FORE200E_CP_MONITOR_UART_FREE, &monitor->soft_uart.recv);
2360#if 0
2361 printk("%c", c & 0xFF);
2362#endif
2363 return c & 0xFF;
2364 }
2365 }
2366
2367 return -1;
2368}
2369
2370
2371static void fore200e_monitor_puts(struct fore200e *fore200e, char *str)
2372{
2373 while (*str) {
2374
2375 /* the i960 monitor doesn't accept any new character if it has something to say */
2376 while (fore200e_monitor_getc(fore200e) >= 0);
2377
2378 fore200e_monitor_putc(fore200e, *str++);
2379 }
2380
2381 while (fore200e_monitor_getc(fore200e) >= 0);
2382}
2383
2384#ifdef __LITTLE_ENDIAN
2385#define FW_EXT ".bin"
2386#else
2387#define FW_EXT "_ecd.bin2"
2388#endif
2389
2390static int fore200e_load_and_start_fw(struct fore200e *fore200e)
2391{
2392 const struct firmware *firmware;
2393 const struct fw_header *fw_header;
2394 const __le32 *fw_data;
2395 u32 fw_size;
2396 u32 __iomem *load_addr;
2397 char buf[48];
2398 int err;
2399
2400 sprintf(buf, "%s%s", fore200e->bus->proc_name, FW_EXT);
2401 if ((err = request_firmware(&firmware, buf, fore200e->dev)) < 0) {
2402 printk(FORE200E "problem loading firmware image %s\n", fore200e->bus->model_name);
2403 return err;
2404 }
2405
2406 fw_data = (const __le32 *)firmware->data;
2407 fw_size = firmware->size / sizeof(u32);
2408 fw_header = (const struct fw_header *)firmware->data;
2409 load_addr = fore200e->virt_base + le32_to_cpu(fw_header->load_offset);
2410
2411 DPRINTK(2, "device %s firmware being loaded at 0x%p (%d words)\n",
2412 fore200e->name, load_addr, fw_size);
2413
2414 if (le32_to_cpu(fw_header->magic) != FW_HEADER_MAGIC) {
2415 printk(FORE200E "corrupted %s firmware image\n", fore200e->bus->model_name);
2416 goto release;
2417 }
2418
2419 for (; fw_size--; fw_data++, load_addr++)
2420 fore200e->bus->write(le32_to_cpu(*fw_data), load_addr);
2421
2422 DPRINTK(2, "device %s firmware being started\n", fore200e->name);
2423
2424#if defined(__sparc_v9__)
2425 /* reported to be required by SBA cards on some sparc64 hosts */
2426 fore200e_spin(100);
2427#endif
2428
2429 sprintf(buf, "\rgo %x\r", le32_to_cpu(fw_header->start_offset));
2430 fore200e_monitor_puts(fore200e, buf);
2431
2432 if (fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_CP_RUNNING, 1000) == 0) {
2433 printk(FORE200E "device %s firmware didn't start\n", fore200e->name);
2434 goto release;
2435 }
2436
2437 printk(FORE200E "device %s firmware started\n", fore200e->name);
2438
2439 fore200e->state = FORE200E_STATE_START_FW;
2440 err = 0;
2441
2442release:
2443 release_firmware(firmware);
2444 return err;
2445}
2446
2447
2448static int fore200e_register(struct fore200e *fore200e, struct device *parent)
2449{
2450 struct atm_dev* atm_dev;
2451
2452 DPRINTK(2, "device %s being registered\n", fore200e->name);
2453
2454 atm_dev = atm_dev_register(fore200e->bus->proc_name, parent, &fore200e_ops,
2455 -1, NULL);
2456 if (atm_dev == NULL) {
2457 printk(FORE200E "unable to register device %s\n", fore200e->name);
2458 return -ENODEV;
2459 }
2460
2461 atm_dev->dev_data = fore200e;
2462 fore200e->atm_dev = atm_dev;
2463
2464 atm_dev->ci_range.vpi_bits = FORE200E_VPI_BITS;
2465 atm_dev->ci_range.vci_bits = FORE200E_VCI_BITS;
2466
2467 fore200e->available_cell_rate = ATM_OC3_PCR;
2468
2469 fore200e->state = FORE200E_STATE_REGISTER;
2470 return 0;
2471}
2472
2473
2474static int fore200e_init(struct fore200e *fore200e, struct device *parent)
2475{
2476 if (fore200e_register(fore200e, parent) < 0)
2477 return -ENODEV;
2478
2479 if (fore200e->bus->configure(fore200e) < 0)
2480 return -ENODEV;
2481
2482 if (fore200e->bus->map(fore200e) < 0)
2483 return -ENODEV;
2484
2485 if (fore200e_reset(fore200e, 1) < 0)
2486 return -ENODEV;
2487
2488 if (fore200e_load_and_start_fw(fore200e) < 0)
2489 return -ENODEV;
2490
2491 if (fore200e_initialize(fore200e) < 0)
2492 return -ENODEV;
2493
2494 if (fore200e_init_cmd_queue(fore200e) < 0)
2495 return -ENOMEM;
2496
2497 if (fore200e_init_tx_queue(fore200e) < 0)
2498 return -ENOMEM;
2499
2500 if (fore200e_init_rx_queue(fore200e) < 0)
2501 return -ENOMEM;
2502
2503 if (fore200e_init_bs_queue(fore200e) < 0)
2504 return -ENOMEM;
2505
2506 if (fore200e_alloc_rx_buf(fore200e) < 0)
2507 return -ENOMEM;
2508
2509 if (fore200e_get_esi(fore200e) < 0)
2510 return -EIO;
2511
2512 if (fore200e_irq_request(fore200e) < 0)
2513 return -EBUSY;
2514
2515 fore200e_supply(fore200e);
2516
2517 /* all done, board initialization is now complete */
2518 fore200e->state = FORE200E_STATE_COMPLETE;
2519 return 0;
2520}
2521
2522#ifdef CONFIG_SBUS
2523static const struct of_device_id fore200e_sba_match[];
2524static int fore200e_sba_probe(struct platform_device *op)
2525{
2526 const struct of_device_id *match;
2527 struct fore200e *fore200e;
2528 static int index = 0;
2529 int err;
2530
2531 match = of_match_device(fore200e_sba_match, &op->dev);
2532 if (!match)
2533 return -EINVAL;
2534
2535 fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL);
2536 if (!fore200e)
2537 return -ENOMEM;
2538
2539 fore200e->bus = &fore200e_sbus_ops;
2540 fore200e->dev = &op->dev;
2541 fore200e->irq = op->archdata.irqs[0];
2542 fore200e->phys_base = op->resource[0].start;
2543
2544 sprintf(fore200e->name, "SBA-200E-%d", index);
2545
2546 err = fore200e_init(fore200e, &op->dev);
2547 if (err < 0) {
2548 fore200e_shutdown(fore200e);
2549 kfree(fore200e);
2550 return err;
2551 }
2552
2553 index++;
2554 dev_set_drvdata(&op->dev, fore200e);
2555
2556 return 0;
2557}
2558
2559static int fore200e_sba_remove(struct platform_device *op)
2560{
2561 struct fore200e *fore200e = dev_get_drvdata(&op->dev);
2562
2563 fore200e_shutdown(fore200e);
2564 kfree(fore200e);
2565
2566 return 0;
2567}
2568
2569static const struct of_device_id fore200e_sba_match[] = {
2570 {
2571 .name = SBA200E_PROM_NAME,
2572 },
2573 {},
2574};
2575MODULE_DEVICE_TABLE(of, fore200e_sba_match);
2576
2577static struct platform_driver fore200e_sba_driver = {
2578 .driver = {
2579 .name = "fore_200e",
2580 .of_match_table = fore200e_sba_match,
2581 },
2582 .probe = fore200e_sba_probe,
2583 .remove = fore200e_sba_remove,
2584};
2585#endif
2586
2587#ifdef CONFIG_PCI
2588static int fore200e_pca_detect(struct pci_dev *pci_dev,
2589 const struct pci_device_id *pci_ent)
2590{
2591 struct fore200e* fore200e;
2592 int err = 0;
2593 static int index = 0;
2594
2595 if (pci_enable_device(pci_dev)) {
2596 err = -EINVAL;
2597 goto out;
2598 }
2599
2600 if (dma_set_mask_and_coherent(&pci_dev->dev, DMA_BIT_MASK(32))) {
2601 err = -EINVAL;
2602 goto out;
2603 }
2604
2605 fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL);
2606 if (fore200e == NULL) {
2607 err = -ENOMEM;
2608 goto out_disable;
2609 }
2610
2611 fore200e->bus = &fore200e_pci_ops;
2612 fore200e->dev = &pci_dev->dev;
2613 fore200e->irq = pci_dev->irq;
2614 fore200e->phys_base = pci_resource_start(pci_dev, 0);
2615
2616 sprintf(fore200e->name, "PCA-200E-%d", index - 1);
2617
2618 pci_set_master(pci_dev);
2619
2620 printk(FORE200E "device PCA-200E found at 0x%lx, IRQ %s\n",
2621 fore200e->phys_base, fore200e_irq_itoa(fore200e->irq));
2622
2623 sprintf(fore200e->name, "PCA-200E-%d", index);
2624
2625 err = fore200e_init(fore200e, &pci_dev->dev);
2626 if (err < 0) {
2627 fore200e_shutdown(fore200e);
2628 goto out_free;
2629 }
2630
2631 ++index;
2632 pci_set_drvdata(pci_dev, fore200e);
2633
2634out:
2635 return err;
2636
2637out_free:
2638 kfree(fore200e);
2639out_disable:
2640 pci_disable_device(pci_dev);
2641 goto out;
2642}
2643
2644
2645static void fore200e_pca_remove_one(struct pci_dev *pci_dev)
2646{
2647 struct fore200e *fore200e;
2648
2649 fore200e = pci_get_drvdata(pci_dev);
2650
2651 fore200e_shutdown(fore200e);
2652 kfree(fore200e);
2653 pci_disable_device(pci_dev);
2654}
2655
2656
2657static const struct pci_device_id fore200e_pca_tbl[] = {
2658 { PCI_VENDOR_ID_FORE, PCI_DEVICE_ID_FORE_PCA200E, PCI_ANY_ID, PCI_ANY_ID },
2659 { 0, }
2660};
2661
2662MODULE_DEVICE_TABLE(pci, fore200e_pca_tbl);
2663
2664static struct pci_driver fore200e_pca_driver = {
2665 .name = "fore_200e",
2666 .probe = fore200e_pca_detect,
2667 .remove = fore200e_pca_remove_one,
2668 .id_table = fore200e_pca_tbl,
2669};
2670#endif
2671
2672static int __init fore200e_module_init(void)
2673{
2674 int err = 0;
2675
2676 printk(FORE200E "FORE Systems 200E-series ATM driver - version " FORE200E_VERSION "\n");
2677
2678#ifdef CONFIG_SBUS
2679 err = platform_driver_register(&fore200e_sba_driver);
2680 if (err)
2681 return err;
2682#endif
2683
2684#ifdef CONFIG_PCI
2685 err = pci_register_driver(&fore200e_pca_driver);
2686#endif
2687
2688#ifdef CONFIG_SBUS
2689 if (err)
2690 platform_driver_unregister(&fore200e_sba_driver);
2691#endif
2692
2693 return err;
2694}
2695
2696static void __exit fore200e_module_cleanup(void)
2697{
2698#ifdef CONFIG_PCI
2699 pci_unregister_driver(&fore200e_pca_driver);
2700#endif
2701#ifdef CONFIG_SBUS
2702 platform_driver_unregister(&fore200e_sba_driver);
2703#endif
2704}
2705
2706static int
2707fore200e_proc_read(struct atm_dev *dev, loff_t* pos, char* page)
2708{
2709 struct fore200e* fore200e = FORE200E_DEV(dev);
2710 struct fore200e_vcc* fore200e_vcc;
2711 struct atm_vcc* vcc;
2712 int i, len, left = *pos;
2713 unsigned long flags;
2714
2715 if (!left--) {
2716
2717 if (fore200e_getstats(fore200e) < 0)
2718 return -EIO;
2719
2720 len = sprintf(page,"\n"
2721 " device:\n"
2722 " internal name:\t\t%s\n", fore200e->name);
2723
2724 /* print bus-specific information */
2725 if (fore200e->bus->proc_read)
2726 len += fore200e->bus->proc_read(fore200e, page + len);
2727
2728 len += sprintf(page + len,
2729 " interrupt line:\t\t%s\n"
2730 " physical base address:\t0x%p\n"
2731 " virtual base address:\t0x%p\n"
2732 " factory address (ESI):\t%pM\n"
2733 " board serial number:\t\t%d\n\n",
2734 fore200e_irq_itoa(fore200e->irq),
2735 (void*)fore200e->phys_base,
2736 fore200e->virt_base,
2737 fore200e->esi,
2738 fore200e->esi[4] * 256 + fore200e->esi[5]);
2739
2740 return len;
2741 }
2742
2743 if (!left--)
2744 return sprintf(page,
2745 " free small bufs, scheme 1:\t%d\n"
2746 " free large bufs, scheme 1:\t%d\n"
2747 " free small bufs, scheme 2:\t%d\n"
2748 " free large bufs, scheme 2:\t%d\n",
2749 fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_SMALL ].freebuf_count,
2750 fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_LARGE ].freebuf_count,
2751 fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_SMALL ].freebuf_count,
2752 fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_LARGE ].freebuf_count);
2753
2754 if (!left--) {
2755 u32 hb = fore200e->bus->read(&fore200e->cp_queues->heartbeat);
2756
2757 len = sprintf(page,"\n\n"
2758 " cell processor:\n"
2759 " heartbeat state:\t\t");
2760
2761 if (hb >> 16 != 0xDEAD)
2762 len += sprintf(page + len, "0x%08x\n", hb);
2763 else
2764 len += sprintf(page + len, "*** FATAL ERROR %04x ***\n", hb & 0xFFFF);
2765
2766 return len;
2767 }
2768
2769 if (!left--) {
2770 static const char* media_name[] = {
2771 "unshielded twisted pair",
2772 "multimode optical fiber ST",
2773 "multimode optical fiber SC",
2774 "single-mode optical fiber ST",
2775 "single-mode optical fiber SC",
2776 "unknown"
2777 };
2778
2779 static const char* oc3_mode[] = {
2780 "normal operation",
2781 "diagnostic loopback",
2782 "line loopback",
2783 "unknown"
2784 };
2785
2786 u32 fw_release = fore200e->bus->read(&fore200e->cp_queues->fw_release);
2787 u32 mon960_release = fore200e->bus->read(&fore200e->cp_queues->mon960_release);
2788 u32 oc3_revision = fore200e->bus->read(&fore200e->cp_queues->oc3_revision);
2789 u32 media_index = FORE200E_MEDIA_INDEX(fore200e->bus->read(&fore200e->cp_queues->media_type));
2790 u32 oc3_index;
2791
2792 if (media_index > 4)
2793 media_index = 5;
2794
2795 switch (fore200e->loop_mode) {
2796 case ATM_LM_NONE: oc3_index = 0;
2797 break;
2798 case ATM_LM_LOC_PHY: oc3_index = 1;
2799 break;
2800 case ATM_LM_RMT_PHY: oc3_index = 2;
2801 break;
2802 default: oc3_index = 3;
2803 }
2804
2805 return sprintf(page,
2806 " firmware release:\t\t%d.%d.%d\n"
2807 " monitor release:\t\t%d.%d\n"
2808 " media type:\t\t\t%s\n"
2809 " OC-3 revision:\t\t0x%x\n"
2810 " OC-3 mode:\t\t\t%s",
2811 fw_release >> 16, fw_release << 16 >> 24, fw_release << 24 >> 24,
2812 mon960_release >> 16, mon960_release << 16 >> 16,
2813 media_name[ media_index ],
2814 oc3_revision,
2815 oc3_mode[ oc3_index ]);
2816 }
2817
2818 if (!left--) {
2819 struct cp_monitor __iomem * cp_monitor = fore200e->cp_monitor;
2820
2821 return sprintf(page,
2822 "\n\n"
2823 " monitor:\n"
2824 " version number:\t\t%d\n"
2825 " boot status word:\t\t0x%08x\n",
2826 fore200e->bus->read(&cp_monitor->mon_version),
2827 fore200e->bus->read(&cp_monitor->bstat));
2828 }
2829
2830 if (!left--)
2831 return sprintf(page,
2832 "\n"
2833 " device statistics:\n"
2834 " 4b5b:\n"
2835 " crc_header_errors:\t\t%10u\n"
2836 " framing_errors:\t\t%10u\n",
2837 be32_to_cpu(fore200e->stats->phy.crc_header_errors),
2838 be32_to_cpu(fore200e->stats->phy.framing_errors));
2839
2840 if (!left--)
2841 return sprintf(page, "\n"
2842 " OC-3:\n"
2843 " section_bip8_errors:\t%10u\n"
2844 " path_bip8_errors:\t\t%10u\n"
2845 " line_bip24_errors:\t\t%10u\n"
2846 " line_febe_errors:\t\t%10u\n"
2847 " path_febe_errors:\t\t%10u\n"
2848 " corr_hcs_errors:\t\t%10u\n"
2849 " ucorr_hcs_errors:\t\t%10u\n",
2850 be32_to_cpu(fore200e->stats->oc3.section_bip8_errors),
2851 be32_to_cpu(fore200e->stats->oc3.path_bip8_errors),
2852 be32_to_cpu(fore200e->stats->oc3.line_bip24_errors),
2853 be32_to_cpu(fore200e->stats->oc3.line_febe_errors),
2854 be32_to_cpu(fore200e->stats->oc3.path_febe_errors),
2855 be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors),
2856 be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors));
2857
2858 if (!left--)
2859 return sprintf(page,"\n"
2860 " ATM:\t\t\t\t cells\n"
2861 " TX:\t\t\t%10u\n"
2862 " RX:\t\t\t%10u\n"
2863 " vpi out of range:\t\t%10u\n"
2864 " vpi no conn:\t\t%10u\n"
2865 " vci out of range:\t\t%10u\n"
2866 " vci no conn:\t\t%10u\n",
2867 be32_to_cpu(fore200e->stats->atm.cells_transmitted),
2868 be32_to_cpu(fore200e->stats->atm.cells_received),
2869 be32_to_cpu(fore200e->stats->atm.vpi_bad_range),
2870 be32_to_cpu(fore200e->stats->atm.vpi_no_conn),
2871 be32_to_cpu(fore200e->stats->atm.vci_bad_range),
2872 be32_to_cpu(fore200e->stats->atm.vci_no_conn));
2873
2874 if (!left--)
2875 return sprintf(page,"\n"
2876 " AAL0:\t\t\t cells\n"
2877 " TX:\t\t\t%10u\n"
2878 " RX:\t\t\t%10u\n"
2879 " dropped:\t\t\t%10u\n",
2880 be32_to_cpu(fore200e->stats->aal0.cells_transmitted),
2881 be32_to_cpu(fore200e->stats->aal0.cells_received),
2882 be32_to_cpu(fore200e->stats->aal0.cells_dropped));
2883
2884 if (!left--)
2885 return sprintf(page,"\n"
2886 " AAL3/4:\n"
2887 " SAR sublayer:\t\t cells\n"
2888 " TX:\t\t\t%10u\n"
2889 " RX:\t\t\t%10u\n"
2890 " dropped:\t\t\t%10u\n"
2891 " CRC errors:\t\t%10u\n"
2892 " protocol errors:\t\t%10u\n\n"
2893 " CS sublayer:\t\t PDUs\n"
2894 " TX:\t\t\t%10u\n"
2895 " RX:\t\t\t%10u\n"
2896 " dropped:\t\t\t%10u\n"
2897 " protocol errors:\t\t%10u\n",
2898 be32_to_cpu(fore200e->stats->aal34.cells_transmitted),
2899 be32_to_cpu(fore200e->stats->aal34.cells_received),
2900 be32_to_cpu(fore200e->stats->aal34.cells_dropped),
2901 be32_to_cpu(fore200e->stats->aal34.cells_crc_errors),
2902 be32_to_cpu(fore200e->stats->aal34.cells_protocol_errors),
2903 be32_to_cpu(fore200e->stats->aal34.cspdus_transmitted),
2904 be32_to_cpu(fore200e->stats->aal34.cspdus_received),
2905 be32_to_cpu(fore200e->stats->aal34.cspdus_dropped),
2906 be32_to_cpu(fore200e->stats->aal34.cspdus_protocol_errors));
2907
2908 if (!left--)
2909 return sprintf(page,"\n"
2910 " AAL5:\n"
2911 " SAR sublayer:\t\t cells\n"
2912 " TX:\t\t\t%10u\n"
2913 " RX:\t\t\t%10u\n"
2914 " dropped:\t\t\t%10u\n"
2915 " congestions:\t\t%10u\n\n"
2916 " CS sublayer:\t\t PDUs\n"
2917 " TX:\t\t\t%10u\n"
2918 " RX:\t\t\t%10u\n"
2919 " dropped:\t\t\t%10u\n"
2920 " CRC errors:\t\t%10u\n"
2921 " protocol errors:\t\t%10u\n",
2922 be32_to_cpu(fore200e->stats->aal5.cells_transmitted),
2923 be32_to_cpu(fore200e->stats->aal5.cells_received),
2924 be32_to_cpu(fore200e->stats->aal5.cells_dropped),
2925 be32_to_cpu(fore200e->stats->aal5.congestion_experienced),
2926 be32_to_cpu(fore200e->stats->aal5.cspdus_transmitted),
2927 be32_to_cpu(fore200e->stats->aal5.cspdus_received),
2928 be32_to_cpu(fore200e->stats->aal5.cspdus_dropped),
2929 be32_to_cpu(fore200e->stats->aal5.cspdus_crc_errors),
2930 be32_to_cpu(fore200e->stats->aal5.cspdus_protocol_errors));
2931
2932 if (!left--)
2933 return sprintf(page,"\n"
2934 " AUX:\t\t allocation failures\n"
2935 " small b1:\t\t\t%10u\n"
2936 " large b1:\t\t\t%10u\n"
2937 " small b2:\t\t\t%10u\n"
2938 " large b2:\t\t\t%10u\n"
2939 " RX PDUs:\t\t\t%10u\n"
2940 " TX PDUs:\t\t\t%10lu\n",
2941 be32_to_cpu(fore200e->stats->aux.small_b1_failed),
2942 be32_to_cpu(fore200e->stats->aux.large_b1_failed),
2943 be32_to_cpu(fore200e->stats->aux.small_b2_failed),
2944 be32_to_cpu(fore200e->stats->aux.large_b2_failed),
2945 be32_to_cpu(fore200e->stats->aux.rpd_alloc_failed),
2946 fore200e->tx_sat);
2947
2948 if (!left--)
2949 return sprintf(page,"\n"
2950 " receive carrier:\t\t\t%s\n",
2951 fore200e->stats->aux.receive_carrier ? "ON" : "OFF!");
2952
2953 if (!left--) {
2954 return sprintf(page,"\n"
2955 " VCCs:\n address VPI VCI AAL "
2956 "TX PDUs TX min/max size RX PDUs RX min/max size\n");
2957 }
2958
2959 for (i = 0; i < NBR_CONNECT; i++) {
2960
2961 vcc = fore200e->vc_map[i].vcc;
2962
2963 if (vcc == NULL)
2964 continue;
2965
2966 spin_lock_irqsave(&fore200e->q_lock, flags);
2967
2968 if (vcc && test_bit(ATM_VF_READY, &vcc->flags) && !left--) {
2969
2970 fore200e_vcc = FORE200E_VCC(vcc);
2971 ASSERT(fore200e_vcc);
2972
2973 len = sprintf(page,
2974 " %pK %03d %05d %1d %09lu %05d/%05d %09lu %05d/%05d\n",
2975 vcc,
2976 vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
2977 fore200e_vcc->tx_pdu,
2978 fore200e_vcc->tx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->tx_min_pdu,
2979 fore200e_vcc->tx_max_pdu,
2980 fore200e_vcc->rx_pdu,
2981 fore200e_vcc->rx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->rx_min_pdu,
2982 fore200e_vcc->rx_max_pdu);
2983
2984 spin_unlock_irqrestore(&fore200e->q_lock, flags);
2985 return len;
2986 }
2987
2988 spin_unlock_irqrestore(&fore200e->q_lock, flags);
2989 }
2990
2991 return 0;
2992}
2993
2994module_init(fore200e_module_init);
2995module_exit(fore200e_module_cleanup);
2996
2997
2998static const struct atmdev_ops fore200e_ops = {
2999 .open = fore200e_open,
3000 .close = fore200e_close,
3001 .ioctl = fore200e_ioctl,
3002 .send = fore200e_send,
3003 .change_qos = fore200e_change_qos,
3004 .proc_read = fore200e_proc_read,
3005 .owner = THIS_MODULE
3006};
3007
3008MODULE_LICENSE("GPL");
3009#ifdef CONFIG_PCI
3010#ifdef __LITTLE_ENDIAN__
3011MODULE_FIRMWARE("pca200e.bin");
3012#else
3013MODULE_FIRMWARE("pca200e_ecd.bin2");
3014#endif
3015#endif /* CONFIG_PCI */
3016#ifdef CONFIG_SBUS
3017MODULE_FIRMWARE("sba200e_ecd.bin2");
3018#endif
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 A FORE Systems 200E-series driver for ATM on Linux.
4 Christophe Lizzi (lizzi@cnam.fr), October 1999-March 2003.
5
6 Based on the PCA-200E driver from Uwe Dannowski (Uwe.Dannowski@inf.tu-dresden.de).
7
8 This driver simultaneously supports PCA-200E and SBA-200E adapters
9 on i386, alpha (untested), powerpc, sparc and sparc64 architectures.
10
11*/
12
13
14#include <linux/kernel.h>
15#include <linux/slab.h>
16#include <linux/init.h>
17#include <linux/capability.h>
18#include <linux/interrupt.h>
19#include <linux/bitops.h>
20#include <linux/pci.h>
21#include <linux/module.h>
22#include <linux/atmdev.h>
23#include <linux/sonet.h>
24#include <linux/atm_suni.h>
25#include <linux/dma-mapping.h>
26#include <linux/delay.h>
27#include <linux/firmware.h>
28#include <linux/pgtable.h>
29#include <asm/io.h>
30#include <asm/string.h>
31#include <asm/page.h>
32#include <asm/irq.h>
33#include <asm/dma.h>
34#include <asm/byteorder.h>
35#include <linux/uaccess.h>
36#include <linux/atomic.h>
37
38#ifdef CONFIG_SBUS
39#include <linux/of.h>
40#include <linux/of_device.h>
41#include <asm/idprom.h>
42#include <asm/openprom.h>
43#include <asm/oplib.h>
44#endif
45
46#if defined(CONFIG_ATM_FORE200E_USE_TASKLET) /* defer interrupt work to a tasklet */
47#define FORE200E_USE_TASKLET
48#endif
49
50#if 0 /* enable the debugging code of the buffer supply queues */
51#define FORE200E_BSQ_DEBUG
52#endif
53
54#if 1 /* ensure correct handling of 52-byte AAL0 SDUs expected by atmdump-like apps */
55#define FORE200E_52BYTE_AAL0_SDU
56#endif
57
58#include "fore200e.h"
59#include "suni.h"
60
61#define FORE200E_VERSION "0.3e"
62
63#define FORE200E "fore200e: "
64
65#if 0 /* override .config */
66#define CONFIG_ATM_FORE200E_DEBUG 1
67#endif
68#if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0)
69#define DPRINTK(level, format, args...) do { if (CONFIG_ATM_FORE200E_DEBUG >= (level)) \
70 printk(FORE200E format, ##args); } while (0)
71#else
72#define DPRINTK(level, format, args...) do {} while (0)
73#endif
74
75
76#define FORE200E_ALIGN(addr, alignment) \
77 ((((unsigned long)(addr) + (alignment - 1)) & ~(alignment - 1)) - (unsigned long)(addr))
78
79#define FORE200E_DMA_INDEX(dma_addr, type, index) ((dma_addr) + (index) * sizeof(type))
80
81#define FORE200E_INDEX(virt_addr, type, index) (&((type *)(virt_addr))[ index ])
82
83#define FORE200E_NEXT_ENTRY(index, modulo) (index = ((index) + 1) % (modulo))
84
85#if 1
86#define ASSERT(expr) if (!(expr)) { \
87 printk(FORE200E "assertion failed! %s[%d]: %s\n", \
88 __func__, __LINE__, #expr); \
89 panic(FORE200E "%s", __func__); \
90 }
91#else
92#define ASSERT(expr) do {} while (0)
93#endif
94
95
96static const struct atmdev_ops fore200e_ops;
97
98static LIST_HEAD(fore200e_boards);
99
100
101MODULE_AUTHOR("Christophe Lizzi - credits to Uwe Dannowski and Heikki Vatiainen");
102MODULE_DESCRIPTION("FORE Systems 200E-series ATM driver - version " FORE200E_VERSION);
103MODULE_SUPPORTED_DEVICE("PCA-200E, SBA-200E");
104
105
106static const int fore200e_rx_buf_nbr[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = {
107 { BUFFER_S1_NBR, BUFFER_L1_NBR },
108 { BUFFER_S2_NBR, BUFFER_L2_NBR }
109};
110
111static const int fore200e_rx_buf_size[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = {
112 { BUFFER_S1_SIZE, BUFFER_L1_SIZE },
113 { BUFFER_S2_SIZE, BUFFER_L2_SIZE }
114};
115
116
117#if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0)
118static const char* fore200e_traffic_class[] = { "NONE", "UBR", "CBR", "VBR", "ABR", "ANY" };
119#endif
120
121
122#if 0 /* currently unused */
123static int
124fore200e_fore2atm_aal(enum fore200e_aal aal)
125{
126 switch(aal) {
127 case FORE200E_AAL0: return ATM_AAL0;
128 case FORE200E_AAL34: return ATM_AAL34;
129 case FORE200E_AAL5: return ATM_AAL5;
130 }
131
132 return -EINVAL;
133}
134#endif
135
136
137static enum fore200e_aal
138fore200e_atm2fore_aal(int aal)
139{
140 switch(aal) {
141 case ATM_AAL0: return FORE200E_AAL0;
142 case ATM_AAL34: return FORE200E_AAL34;
143 case ATM_AAL1:
144 case ATM_AAL2:
145 case ATM_AAL5: return FORE200E_AAL5;
146 }
147
148 return -EINVAL;
149}
150
151
152static char*
153fore200e_irq_itoa(int irq)
154{
155 static char str[8];
156 sprintf(str, "%d", irq);
157 return str;
158}
159
160
161/* allocate and align a chunk of memory intended to hold the data behing exchanged
162 between the driver and the adapter (using streaming DVMA) */
163
164static int
165fore200e_chunk_alloc(struct fore200e* fore200e, struct chunk* chunk, int size, int alignment, int direction)
166{
167 unsigned long offset = 0;
168
169 if (alignment <= sizeof(int))
170 alignment = 0;
171
172 chunk->alloc_size = size + alignment;
173 chunk->direction = direction;
174
175 chunk->alloc_addr = kzalloc(chunk->alloc_size, GFP_KERNEL);
176 if (chunk->alloc_addr == NULL)
177 return -ENOMEM;
178
179 if (alignment > 0)
180 offset = FORE200E_ALIGN(chunk->alloc_addr, alignment);
181
182 chunk->align_addr = chunk->alloc_addr + offset;
183
184 chunk->dma_addr = dma_map_single(fore200e->dev, chunk->align_addr,
185 size, direction);
186 if (dma_mapping_error(fore200e->dev, chunk->dma_addr)) {
187 kfree(chunk->alloc_addr);
188 return -ENOMEM;
189 }
190 return 0;
191}
192
193
194/* free a chunk of memory */
195
196static void
197fore200e_chunk_free(struct fore200e* fore200e, struct chunk* chunk)
198{
199 dma_unmap_single(fore200e->dev, chunk->dma_addr, chunk->dma_size,
200 chunk->direction);
201 kfree(chunk->alloc_addr);
202}
203
204/*
205 * Allocate a DMA consistent chunk of memory intended to act as a communication
206 * mechanism (to hold descriptors, status, queues, etc.) shared by the driver
207 * and the adapter.
208 */
209static int
210fore200e_dma_chunk_alloc(struct fore200e *fore200e, struct chunk *chunk,
211 int size, int nbr, int alignment)
212{
213 /* returned chunks are page-aligned */
214 chunk->alloc_size = size * nbr;
215 chunk->alloc_addr = dma_alloc_coherent(fore200e->dev, chunk->alloc_size,
216 &chunk->dma_addr, GFP_KERNEL);
217 if (!chunk->alloc_addr)
218 return -ENOMEM;
219 chunk->align_addr = chunk->alloc_addr;
220 return 0;
221}
222
223/*
224 * Free a DMA consistent chunk of memory.
225 */
226static void
227fore200e_dma_chunk_free(struct fore200e* fore200e, struct chunk* chunk)
228{
229 dma_free_coherent(fore200e->dev, chunk->alloc_size, chunk->alloc_addr,
230 chunk->dma_addr);
231}
232
233static void
234fore200e_spin(int msecs)
235{
236 unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
237 while (time_before(jiffies, timeout));
238}
239
240
241static int
242fore200e_poll(struct fore200e* fore200e, volatile u32* addr, u32 val, int msecs)
243{
244 unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
245 int ok;
246
247 mb();
248 do {
249 if ((ok = (*addr == val)) || (*addr & STATUS_ERROR))
250 break;
251
252 } while (time_before(jiffies, timeout));
253
254#if 1
255 if (!ok) {
256 printk(FORE200E "cmd polling failed, got status 0x%08x, expected 0x%08x\n",
257 *addr, val);
258 }
259#endif
260
261 return ok;
262}
263
264
265static int
266fore200e_io_poll(struct fore200e* fore200e, volatile u32 __iomem *addr, u32 val, int msecs)
267{
268 unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
269 int ok;
270
271 do {
272 if ((ok = (fore200e->bus->read(addr) == val)))
273 break;
274
275 } while (time_before(jiffies, timeout));
276
277#if 1
278 if (!ok) {
279 printk(FORE200E "I/O polling failed, got status 0x%08x, expected 0x%08x\n",
280 fore200e->bus->read(addr), val);
281 }
282#endif
283
284 return ok;
285}
286
287
288static void
289fore200e_free_rx_buf(struct fore200e* fore200e)
290{
291 int scheme, magn, nbr;
292 struct buffer* buffer;
293
294 for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
295 for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
296
297 if ((buffer = fore200e->host_bsq[ scheme ][ magn ].buffer) != NULL) {
298
299 for (nbr = 0; nbr < fore200e_rx_buf_nbr[ scheme ][ magn ]; nbr++) {
300
301 struct chunk* data = &buffer[ nbr ].data;
302
303 if (data->alloc_addr != NULL)
304 fore200e_chunk_free(fore200e, data);
305 }
306 }
307 }
308 }
309}
310
311
312static void
313fore200e_uninit_bs_queue(struct fore200e* fore200e)
314{
315 int scheme, magn;
316
317 for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
318 for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
319
320 struct chunk* status = &fore200e->host_bsq[ scheme ][ magn ].status;
321 struct chunk* rbd_block = &fore200e->host_bsq[ scheme ][ magn ].rbd_block;
322
323 if (status->alloc_addr)
324 fore200e_dma_chunk_free(fore200e, status);
325
326 if (rbd_block->alloc_addr)
327 fore200e_dma_chunk_free(fore200e, rbd_block);
328 }
329 }
330}
331
332
333static int
334fore200e_reset(struct fore200e* fore200e, int diag)
335{
336 int ok;
337
338 fore200e->cp_monitor = fore200e->virt_base + FORE200E_CP_MONITOR_OFFSET;
339
340 fore200e->bus->write(BSTAT_COLD_START, &fore200e->cp_monitor->bstat);
341
342 fore200e->bus->reset(fore200e);
343
344 if (diag) {
345 ok = fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_SELFTEST_OK, 1000);
346 if (ok == 0) {
347
348 printk(FORE200E "device %s self-test failed\n", fore200e->name);
349 return -ENODEV;
350 }
351
352 printk(FORE200E "device %s self-test passed\n", fore200e->name);
353
354 fore200e->state = FORE200E_STATE_RESET;
355 }
356
357 return 0;
358}
359
360
361static void
362fore200e_shutdown(struct fore200e* fore200e)
363{
364 printk(FORE200E "removing device %s at 0x%lx, IRQ %s\n",
365 fore200e->name, fore200e->phys_base,
366 fore200e_irq_itoa(fore200e->irq));
367
368 if (fore200e->state > FORE200E_STATE_RESET) {
369 /* first, reset the board to prevent further interrupts or data transfers */
370 fore200e_reset(fore200e, 0);
371 }
372
373 /* then, release all allocated resources */
374 switch(fore200e->state) {
375
376 case FORE200E_STATE_COMPLETE:
377 kfree(fore200e->stats);
378
379 fallthrough;
380 case FORE200E_STATE_IRQ:
381 free_irq(fore200e->irq, fore200e->atm_dev);
382
383 fallthrough;
384 case FORE200E_STATE_ALLOC_BUF:
385 fore200e_free_rx_buf(fore200e);
386
387 fallthrough;
388 case FORE200E_STATE_INIT_BSQ:
389 fore200e_uninit_bs_queue(fore200e);
390
391 fallthrough;
392 case FORE200E_STATE_INIT_RXQ:
393 fore200e_dma_chunk_free(fore200e, &fore200e->host_rxq.status);
394 fore200e_dma_chunk_free(fore200e, &fore200e->host_rxq.rpd);
395
396 fallthrough;
397 case FORE200E_STATE_INIT_TXQ:
398 fore200e_dma_chunk_free(fore200e, &fore200e->host_txq.status);
399 fore200e_dma_chunk_free(fore200e, &fore200e->host_txq.tpd);
400
401 fallthrough;
402 case FORE200E_STATE_INIT_CMDQ:
403 fore200e_dma_chunk_free(fore200e, &fore200e->host_cmdq.status);
404
405 fallthrough;
406 case FORE200E_STATE_INITIALIZE:
407 /* nothing to do for that state */
408
409 case FORE200E_STATE_START_FW:
410 /* nothing to do for that state */
411
412 case FORE200E_STATE_RESET:
413 /* nothing to do for that state */
414
415 case FORE200E_STATE_MAP:
416 fore200e->bus->unmap(fore200e);
417
418 fallthrough;
419 case FORE200E_STATE_CONFIGURE:
420 /* nothing to do for that state */
421
422 case FORE200E_STATE_REGISTER:
423 /* XXX shouldn't we *start* by deregistering the device? */
424 atm_dev_deregister(fore200e->atm_dev);
425
426 case FORE200E_STATE_BLANK:
427 /* nothing to do for that state */
428 break;
429 }
430}
431
432
433#ifdef CONFIG_PCI
434
435static u32 fore200e_pca_read(volatile u32 __iomem *addr)
436{
437 /* on big-endian hosts, the board is configured to convert
438 the endianess of slave RAM accesses */
439 return le32_to_cpu(readl(addr));
440}
441
442
443static void fore200e_pca_write(u32 val, volatile u32 __iomem *addr)
444{
445 /* on big-endian hosts, the board is configured to convert
446 the endianess of slave RAM accesses */
447 writel(cpu_to_le32(val), addr);
448}
449
450static int
451fore200e_pca_irq_check(struct fore200e* fore200e)
452{
453 /* this is a 1 bit register */
454 int irq_posted = readl(fore200e->regs.pca.psr);
455
456#if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG == 2)
457 if (irq_posted && (readl(fore200e->regs.pca.hcr) & PCA200E_HCR_OUTFULL)) {
458 DPRINTK(2,"FIFO OUT full, device %d\n", fore200e->atm_dev->number);
459 }
460#endif
461
462 return irq_posted;
463}
464
465
466static void
467fore200e_pca_irq_ack(struct fore200e* fore200e)
468{
469 writel(PCA200E_HCR_CLRINTR, fore200e->regs.pca.hcr);
470}
471
472
473static void
474fore200e_pca_reset(struct fore200e* fore200e)
475{
476 writel(PCA200E_HCR_RESET, fore200e->regs.pca.hcr);
477 fore200e_spin(10);
478 writel(0, fore200e->regs.pca.hcr);
479}
480
481
482static int fore200e_pca_map(struct fore200e* fore200e)
483{
484 DPRINTK(2, "device %s being mapped in memory\n", fore200e->name);
485
486 fore200e->virt_base = ioremap(fore200e->phys_base, PCA200E_IOSPACE_LENGTH);
487
488 if (fore200e->virt_base == NULL) {
489 printk(FORE200E "can't map device %s\n", fore200e->name);
490 return -EFAULT;
491 }
492
493 DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base);
494
495 /* gain access to the PCA specific registers */
496 fore200e->regs.pca.hcr = fore200e->virt_base + PCA200E_HCR_OFFSET;
497 fore200e->regs.pca.imr = fore200e->virt_base + PCA200E_IMR_OFFSET;
498 fore200e->regs.pca.psr = fore200e->virt_base + PCA200E_PSR_OFFSET;
499
500 fore200e->state = FORE200E_STATE_MAP;
501 return 0;
502}
503
504
505static void
506fore200e_pca_unmap(struct fore200e* fore200e)
507{
508 DPRINTK(2, "device %s being unmapped from memory\n", fore200e->name);
509
510 if (fore200e->virt_base != NULL)
511 iounmap(fore200e->virt_base);
512}
513
514
515static int fore200e_pca_configure(struct fore200e *fore200e)
516{
517 struct pci_dev *pci_dev = to_pci_dev(fore200e->dev);
518 u8 master_ctrl, latency;
519
520 DPRINTK(2, "device %s being configured\n", fore200e->name);
521
522 if ((pci_dev->irq == 0) || (pci_dev->irq == 0xFF)) {
523 printk(FORE200E "incorrect IRQ setting - misconfigured PCI-PCI bridge?\n");
524 return -EIO;
525 }
526
527 pci_read_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, &master_ctrl);
528
529 master_ctrl = master_ctrl
530#if defined(__BIG_ENDIAN)
531 /* request the PCA board to convert the endianess of slave RAM accesses */
532 | PCA200E_CTRL_CONVERT_ENDIAN
533#endif
534#if 0
535 | PCA200E_CTRL_DIS_CACHE_RD
536 | PCA200E_CTRL_DIS_WRT_INVAL
537 | PCA200E_CTRL_ENA_CONT_REQ_MODE
538 | PCA200E_CTRL_2_CACHE_WRT_INVAL
539#endif
540 | PCA200E_CTRL_LARGE_PCI_BURSTS;
541
542 pci_write_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, master_ctrl);
543
544 /* raise latency from 32 (default) to 192, as this seems to prevent NIC
545 lockups (under heavy rx loads) due to continuous 'FIFO OUT full' condition.
546 this may impact the performances of other PCI devices on the same bus, though */
547 latency = 192;
548 pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, latency);
549
550 fore200e->state = FORE200E_STATE_CONFIGURE;
551 return 0;
552}
553
554
555static int __init
556fore200e_pca_prom_read(struct fore200e* fore200e, struct prom_data* prom)
557{
558 struct host_cmdq* cmdq = &fore200e->host_cmdq;
559 struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
560 struct prom_opcode opcode;
561 int ok;
562 u32 prom_dma;
563
564 FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
565
566 opcode.opcode = OPCODE_GET_PROM;
567 opcode.pad = 0;
568
569 prom_dma = dma_map_single(fore200e->dev, prom, sizeof(struct prom_data),
570 DMA_FROM_DEVICE);
571 if (dma_mapping_error(fore200e->dev, prom_dma))
572 return -ENOMEM;
573
574 fore200e->bus->write(prom_dma, &entry->cp_entry->cmd.prom_block.prom_haddr);
575
576 *entry->status = STATUS_PENDING;
577
578 fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.prom_block.opcode);
579
580 ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
581
582 *entry->status = STATUS_FREE;
583
584 dma_unmap_single(fore200e->dev, prom_dma, sizeof(struct prom_data), DMA_FROM_DEVICE);
585
586 if (ok == 0) {
587 printk(FORE200E "unable to get PROM data from device %s\n", fore200e->name);
588 return -EIO;
589 }
590
591#if defined(__BIG_ENDIAN)
592
593#define swap_here(addr) (*((u32*)(addr)) = swab32( *((u32*)(addr)) ))
594
595 /* MAC address is stored as little-endian */
596 swap_here(&prom->mac_addr[0]);
597 swap_here(&prom->mac_addr[4]);
598#endif
599
600 return 0;
601}
602
603
604static int
605fore200e_pca_proc_read(struct fore200e* fore200e, char *page)
606{
607 struct pci_dev *pci_dev = to_pci_dev(fore200e->dev);
608
609 return sprintf(page, " PCI bus/slot/function:\t%d/%d/%d\n",
610 pci_dev->bus->number, PCI_SLOT(pci_dev->devfn), PCI_FUNC(pci_dev->devfn));
611}
612
613static const struct fore200e_bus fore200e_pci_ops = {
614 .model_name = "PCA-200E",
615 .proc_name = "pca200e",
616 .descr_alignment = 32,
617 .buffer_alignment = 4,
618 .status_alignment = 32,
619 .read = fore200e_pca_read,
620 .write = fore200e_pca_write,
621 .configure = fore200e_pca_configure,
622 .map = fore200e_pca_map,
623 .reset = fore200e_pca_reset,
624 .prom_read = fore200e_pca_prom_read,
625 .unmap = fore200e_pca_unmap,
626 .irq_check = fore200e_pca_irq_check,
627 .irq_ack = fore200e_pca_irq_ack,
628 .proc_read = fore200e_pca_proc_read,
629};
630#endif /* CONFIG_PCI */
631
632#ifdef CONFIG_SBUS
633
634static u32 fore200e_sba_read(volatile u32 __iomem *addr)
635{
636 return sbus_readl(addr);
637}
638
639static void fore200e_sba_write(u32 val, volatile u32 __iomem *addr)
640{
641 sbus_writel(val, addr);
642}
643
644static void fore200e_sba_irq_enable(struct fore200e *fore200e)
645{
646 u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY;
647 fore200e->bus->write(hcr | SBA200E_HCR_INTR_ENA, fore200e->regs.sba.hcr);
648}
649
650static int fore200e_sba_irq_check(struct fore200e *fore200e)
651{
652 return fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_INTR_REQ;
653}
654
655static void fore200e_sba_irq_ack(struct fore200e *fore200e)
656{
657 u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY;
658 fore200e->bus->write(hcr | SBA200E_HCR_INTR_CLR, fore200e->regs.sba.hcr);
659}
660
661static void fore200e_sba_reset(struct fore200e *fore200e)
662{
663 fore200e->bus->write(SBA200E_HCR_RESET, fore200e->regs.sba.hcr);
664 fore200e_spin(10);
665 fore200e->bus->write(0, fore200e->regs.sba.hcr);
666}
667
668static int __init fore200e_sba_map(struct fore200e *fore200e)
669{
670 struct platform_device *op = to_platform_device(fore200e->dev);
671 unsigned int bursts;
672
673 /* gain access to the SBA specific registers */
674 fore200e->regs.sba.hcr = of_ioremap(&op->resource[0], 0, SBA200E_HCR_LENGTH, "SBA HCR");
675 fore200e->regs.sba.bsr = of_ioremap(&op->resource[1], 0, SBA200E_BSR_LENGTH, "SBA BSR");
676 fore200e->regs.sba.isr = of_ioremap(&op->resource[2], 0, SBA200E_ISR_LENGTH, "SBA ISR");
677 fore200e->virt_base = of_ioremap(&op->resource[3], 0, SBA200E_RAM_LENGTH, "SBA RAM");
678
679 if (!fore200e->virt_base) {
680 printk(FORE200E "unable to map RAM of device %s\n", fore200e->name);
681 return -EFAULT;
682 }
683
684 DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base);
685
686 fore200e->bus->write(0x02, fore200e->regs.sba.isr); /* XXX hardwired interrupt level */
687
688 /* get the supported DVMA burst sizes */
689 bursts = of_getintprop_default(op->dev.of_node->parent, "burst-sizes", 0x00);
690
691 if (sbus_can_dma_64bit())
692 sbus_set_sbus64(&op->dev, bursts);
693
694 fore200e->state = FORE200E_STATE_MAP;
695 return 0;
696}
697
698static void fore200e_sba_unmap(struct fore200e *fore200e)
699{
700 struct platform_device *op = to_platform_device(fore200e->dev);
701
702 of_iounmap(&op->resource[0], fore200e->regs.sba.hcr, SBA200E_HCR_LENGTH);
703 of_iounmap(&op->resource[1], fore200e->regs.sba.bsr, SBA200E_BSR_LENGTH);
704 of_iounmap(&op->resource[2], fore200e->regs.sba.isr, SBA200E_ISR_LENGTH);
705 of_iounmap(&op->resource[3], fore200e->virt_base, SBA200E_RAM_LENGTH);
706}
707
708static int __init fore200e_sba_configure(struct fore200e *fore200e)
709{
710 fore200e->state = FORE200E_STATE_CONFIGURE;
711 return 0;
712}
713
714static int __init fore200e_sba_prom_read(struct fore200e *fore200e, struct prom_data *prom)
715{
716 struct platform_device *op = to_platform_device(fore200e->dev);
717 const u8 *prop;
718 int len;
719
720 prop = of_get_property(op->dev.of_node, "madaddrlo2", &len);
721 if (!prop)
722 return -ENODEV;
723 memcpy(&prom->mac_addr[4], prop, 4);
724
725 prop = of_get_property(op->dev.of_node, "madaddrhi4", &len);
726 if (!prop)
727 return -ENODEV;
728 memcpy(&prom->mac_addr[2], prop, 4);
729
730 prom->serial_number = of_getintprop_default(op->dev.of_node,
731 "serialnumber", 0);
732 prom->hw_revision = of_getintprop_default(op->dev.of_node,
733 "promversion", 0);
734
735 return 0;
736}
737
738static int fore200e_sba_proc_read(struct fore200e *fore200e, char *page)
739{
740 struct platform_device *op = to_platform_device(fore200e->dev);
741 const struct linux_prom_registers *regs;
742
743 regs = of_get_property(op->dev.of_node, "reg", NULL);
744
745 return sprintf(page, " SBUS slot/device:\t\t%d/'%pOFn'\n",
746 (regs ? regs->which_io : 0), op->dev.of_node);
747}
748
749static const struct fore200e_bus fore200e_sbus_ops = {
750 .model_name = "SBA-200E",
751 .proc_name = "sba200e",
752 .descr_alignment = 32,
753 .buffer_alignment = 64,
754 .status_alignment = 32,
755 .read = fore200e_sba_read,
756 .write = fore200e_sba_write,
757 .configure = fore200e_sba_configure,
758 .map = fore200e_sba_map,
759 .reset = fore200e_sba_reset,
760 .prom_read = fore200e_sba_prom_read,
761 .unmap = fore200e_sba_unmap,
762 .irq_enable = fore200e_sba_irq_enable,
763 .irq_check = fore200e_sba_irq_check,
764 .irq_ack = fore200e_sba_irq_ack,
765 .proc_read = fore200e_sba_proc_read,
766};
767#endif /* CONFIG_SBUS */
768
769static void
770fore200e_tx_irq(struct fore200e* fore200e)
771{
772 struct host_txq* txq = &fore200e->host_txq;
773 struct host_txq_entry* entry;
774 struct atm_vcc* vcc;
775 struct fore200e_vc_map* vc_map;
776
777 if (fore200e->host_txq.txing == 0)
778 return;
779
780 for (;;) {
781
782 entry = &txq->host_entry[ txq->tail ];
783
784 if ((*entry->status & STATUS_COMPLETE) == 0) {
785 break;
786 }
787
788 DPRINTK(3, "TX COMPLETED: entry = %p [tail = %d], vc_map = %p, skb = %p\n",
789 entry, txq->tail, entry->vc_map, entry->skb);
790
791 /* free copy of misaligned data */
792 kfree(entry->data);
793
794 /* remove DMA mapping */
795 dma_unmap_single(fore200e->dev, entry->tpd->tsd[ 0 ].buffer, entry->tpd->tsd[ 0 ].length,
796 DMA_TO_DEVICE);
797
798 vc_map = entry->vc_map;
799
800 /* vcc closed since the time the entry was submitted for tx? */
801 if ((vc_map->vcc == NULL) ||
802 (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) {
803
804 DPRINTK(1, "no ready vcc found for PDU sent on device %d\n",
805 fore200e->atm_dev->number);
806
807 dev_kfree_skb_any(entry->skb);
808 }
809 else {
810 ASSERT(vc_map->vcc);
811
812 /* vcc closed then immediately re-opened? */
813 if (vc_map->incarn != entry->incarn) {
814
815 /* when a vcc is closed, some PDUs may be still pending in the tx queue.
816 if the same vcc is immediately re-opened, those pending PDUs must
817 not be popped after the completion of their emission, as they refer
818 to the prior incarnation of that vcc. otherwise, sk_atm(vcc)->sk_wmem_alloc
819 would be decremented by the size of the (unrelated) skb, possibly
820 leading to a negative sk->sk_wmem_alloc count, ultimately freezing the vcc.
821 we thus bind the tx entry to the current incarnation of the vcc
822 when the entry is submitted for tx. When the tx later completes,
823 if the incarnation number of the tx entry does not match the one
824 of the vcc, then this implies that the vcc has been closed then re-opened.
825 we thus just drop the skb here. */
826
827 DPRINTK(1, "vcc closed-then-re-opened; dropping PDU sent on device %d\n",
828 fore200e->atm_dev->number);
829
830 dev_kfree_skb_any(entry->skb);
831 }
832 else {
833 vcc = vc_map->vcc;
834 ASSERT(vcc);
835
836 /* notify tx completion */
837 if (vcc->pop) {
838 vcc->pop(vcc, entry->skb);
839 }
840 else {
841 dev_kfree_skb_any(entry->skb);
842 }
843
844 /* check error condition */
845 if (*entry->status & STATUS_ERROR)
846 atomic_inc(&vcc->stats->tx_err);
847 else
848 atomic_inc(&vcc->stats->tx);
849 }
850 }
851
852 *entry->status = STATUS_FREE;
853
854 fore200e->host_txq.txing--;
855
856 FORE200E_NEXT_ENTRY(txq->tail, QUEUE_SIZE_TX);
857 }
858}
859
860
861#ifdef FORE200E_BSQ_DEBUG
862int bsq_audit(int where, struct host_bsq* bsq, int scheme, int magn)
863{
864 struct buffer* buffer;
865 int count = 0;
866
867 buffer = bsq->freebuf;
868 while (buffer) {
869
870 if (buffer->supplied) {
871 printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld supplied but in free list!\n",
872 where, scheme, magn, buffer->index);
873 }
874
875 if (buffer->magn != magn) {
876 printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected magn = %d\n",
877 where, scheme, magn, buffer->index, buffer->magn);
878 }
879
880 if (buffer->scheme != scheme) {
881 printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected scheme = %d\n",
882 where, scheme, magn, buffer->index, buffer->scheme);
883 }
884
885 if ((buffer->index < 0) || (buffer->index >= fore200e_rx_buf_nbr[ scheme ][ magn ])) {
886 printk(FORE200E "bsq_audit(%d): queue %d.%d, out of range buffer index = %ld !\n",
887 where, scheme, magn, buffer->index);
888 }
889
890 count++;
891 buffer = buffer->next;
892 }
893
894 if (count != bsq->freebuf_count) {
895 printk(FORE200E "bsq_audit(%d): queue %d.%d, %d bufs in free list, but freebuf_count = %d\n",
896 where, scheme, magn, count, bsq->freebuf_count);
897 }
898 return 0;
899}
900#endif
901
902
903static void
904fore200e_supply(struct fore200e* fore200e)
905{
906 int scheme, magn, i;
907
908 struct host_bsq* bsq;
909 struct host_bsq_entry* entry;
910 struct buffer* buffer;
911
912 for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
913 for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
914
915 bsq = &fore200e->host_bsq[ scheme ][ magn ];
916
917#ifdef FORE200E_BSQ_DEBUG
918 bsq_audit(1, bsq, scheme, magn);
919#endif
920 while (bsq->freebuf_count >= RBD_BLK_SIZE) {
921
922 DPRINTK(2, "supplying %d rx buffers to queue %d / %d, freebuf_count = %d\n",
923 RBD_BLK_SIZE, scheme, magn, bsq->freebuf_count);
924
925 entry = &bsq->host_entry[ bsq->head ];
926
927 for (i = 0; i < RBD_BLK_SIZE; i++) {
928
929 /* take the first buffer in the free buffer list */
930 buffer = bsq->freebuf;
931 if (!buffer) {
932 printk(FORE200E "no more free bufs in queue %d.%d, but freebuf_count = %d\n",
933 scheme, magn, bsq->freebuf_count);
934 return;
935 }
936 bsq->freebuf = buffer->next;
937
938#ifdef FORE200E_BSQ_DEBUG
939 if (buffer->supplied)
940 printk(FORE200E "queue %d.%d, buffer %lu already supplied\n",
941 scheme, magn, buffer->index);
942 buffer->supplied = 1;
943#endif
944 entry->rbd_block->rbd[ i ].buffer_haddr = buffer->data.dma_addr;
945 entry->rbd_block->rbd[ i ].handle = FORE200E_BUF2HDL(buffer);
946 }
947
948 FORE200E_NEXT_ENTRY(bsq->head, QUEUE_SIZE_BS);
949
950 /* decrease accordingly the number of free rx buffers */
951 bsq->freebuf_count -= RBD_BLK_SIZE;
952
953 *entry->status = STATUS_PENDING;
954 fore200e->bus->write(entry->rbd_block_dma, &entry->cp_entry->rbd_block_haddr);
955 }
956 }
957 }
958}
959
960
961static int
962fore200e_push_rpd(struct fore200e* fore200e, struct atm_vcc* vcc, struct rpd* rpd)
963{
964 struct sk_buff* skb;
965 struct buffer* buffer;
966 struct fore200e_vcc* fore200e_vcc;
967 int i, pdu_len = 0;
968#ifdef FORE200E_52BYTE_AAL0_SDU
969 u32 cell_header = 0;
970#endif
971
972 ASSERT(vcc);
973
974 fore200e_vcc = FORE200E_VCC(vcc);
975 ASSERT(fore200e_vcc);
976
977#ifdef FORE200E_52BYTE_AAL0_SDU
978 if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.rxtp.max_sdu == ATM_AAL0_SDU)) {
979
980 cell_header = (rpd->atm_header.gfc << ATM_HDR_GFC_SHIFT) |
981 (rpd->atm_header.vpi << ATM_HDR_VPI_SHIFT) |
982 (rpd->atm_header.vci << ATM_HDR_VCI_SHIFT) |
983 (rpd->atm_header.plt << ATM_HDR_PTI_SHIFT) |
984 rpd->atm_header.clp;
985 pdu_len = 4;
986 }
987#endif
988
989 /* compute total PDU length */
990 for (i = 0; i < rpd->nseg; i++)
991 pdu_len += rpd->rsd[ i ].length;
992
993 skb = alloc_skb(pdu_len, GFP_ATOMIC);
994 if (skb == NULL) {
995 DPRINTK(2, "unable to alloc new skb, rx PDU length = %d\n", pdu_len);
996
997 atomic_inc(&vcc->stats->rx_drop);
998 return -ENOMEM;
999 }
1000
1001 __net_timestamp(skb);
1002
1003#ifdef FORE200E_52BYTE_AAL0_SDU
1004 if (cell_header) {
1005 *((u32*)skb_put(skb, 4)) = cell_header;
1006 }
1007#endif
1008
1009 /* reassemble segments */
1010 for (i = 0; i < rpd->nseg; i++) {
1011
1012 /* rebuild rx buffer address from rsd handle */
1013 buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle);
1014
1015 /* Make device DMA transfer visible to CPU. */
1016 dma_sync_single_for_cpu(fore200e->dev, buffer->data.dma_addr,
1017 rpd->rsd[i].length, DMA_FROM_DEVICE);
1018
1019 skb_put_data(skb, buffer->data.align_addr, rpd->rsd[i].length);
1020
1021 /* Now let the device get at it again. */
1022 dma_sync_single_for_device(fore200e->dev, buffer->data.dma_addr,
1023 rpd->rsd[i].length, DMA_FROM_DEVICE);
1024 }
1025
1026 DPRINTK(3, "rx skb: len = %d, truesize = %d\n", skb->len, skb->truesize);
1027
1028 if (pdu_len < fore200e_vcc->rx_min_pdu)
1029 fore200e_vcc->rx_min_pdu = pdu_len;
1030 if (pdu_len > fore200e_vcc->rx_max_pdu)
1031 fore200e_vcc->rx_max_pdu = pdu_len;
1032 fore200e_vcc->rx_pdu++;
1033
1034 /* push PDU */
1035 if (atm_charge(vcc, skb->truesize) == 0) {
1036
1037 DPRINTK(2, "receive buffers saturated for %d.%d.%d - PDU dropped\n",
1038 vcc->itf, vcc->vpi, vcc->vci);
1039
1040 dev_kfree_skb_any(skb);
1041
1042 atomic_inc(&vcc->stats->rx_drop);
1043 return -ENOMEM;
1044 }
1045
1046 vcc->push(vcc, skb);
1047 atomic_inc(&vcc->stats->rx);
1048
1049 return 0;
1050}
1051
1052
1053static void
1054fore200e_collect_rpd(struct fore200e* fore200e, struct rpd* rpd)
1055{
1056 struct host_bsq* bsq;
1057 struct buffer* buffer;
1058 int i;
1059
1060 for (i = 0; i < rpd->nseg; i++) {
1061
1062 /* rebuild rx buffer address from rsd handle */
1063 buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle);
1064
1065 bsq = &fore200e->host_bsq[ buffer->scheme ][ buffer->magn ];
1066
1067#ifdef FORE200E_BSQ_DEBUG
1068 bsq_audit(2, bsq, buffer->scheme, buffer->magn);
1069
1070 if (buffer->supplied == 0)
1071 printk(FORE200E "queue %d.%d, buffer %ld was not supplied\n",
1072 buffer->scheme, buffer->magn, buffer->index);
1073 buffer->supplied = 0;
1074#endif
1075
1076 /* re-insert the buffer into the free buffer list */
1077 buffer->next = bsq->freebuf;
1078 bsq->freebuf = buffer;
1079
1080 /* then increment the number of free rx buffers */
1081 bsq->freebuf_count++;
1082 }
1083}
1084
1085
1086static void
1087fore200e_rx_irq(struct fore200e* fore200e)
1088{
1089 struct host_rxq* rxq = &fore200e->host_rxq;
1090 struct host_rxq_entry* entry;
1091 struct atm_vcc* vcc;
1092 struct fore200e_vc_map* vc_map;
1093
1094 for (;;) {
1095
1096 entry = &rxq->host_entry[ rxq->head ];
1097
1098 /* no more received PDUs */
1099 if ((*entry->status & STATUS_COMPLETE) == 0)
1100 break;
1101
1102 vc_map = FORE200E_VC_MAP(fore200e, entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1103
1104 if ((vc_map->vcc == NULL) ||
1105 (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) {
1106
1107 DPRINTK(1, "no ready VC found for PDU received on %d.%d.%d\n",
1108 fore200e->atm_dev->number,
1109 entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1110 }
1111 else {
1112 vcc = vc_map->vcc;
1113 ASSERT(vcc);
1114
1115 if ((*entry->status & STATUS_ERROR) == 0) {
1116
1117 fore200e_push_rpd(fore200e, vcc, entry->rpd);
1118 }
1119 else {
1120 DPRINTK(2, "damaged PDU on %d.%d.%d\n",
1121 fore200e->atm_dev->number,
1122 entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1123 atomic_inc(&vcc->stats->rx_err);
1124 }
1125 }
1126
1127 FORE200E_NEXT_ENTRY(rxq->head, QUEUE_SIZE_RX);
1128
1129 fore200e_collect_rpd(fore200e, entry->rpd);
1130
1131 /* rewrite the rpd address to ack the received PDU */
1132 fore200e->bus->write(entry->rpd_dma, &entry->cp_entry->rpd_haddr);
1133 *entry->status = STATUS_FREE;
1134
1135 fore200e_supply(fore200e);
1136 }
1137}
1138
1139
1140#ifndef FORE200E_USE_TASKLET
1141static void
1142fore200e_irq(struct fore200e* fore200e)
1143{
1144 unsigned long flags;
1145
1146 spin_lock_irqsave(&fore200e->q_lock, flags);
1147 fore200e_rx_irq(fore200e);
1148 spin_unlock_irqrestore(&fore200e->q_lock, flags);
1149
1150 spin_lock_irqsave(&fore200e->q_lock, flags);
1151 fore200e_tx_irq(fore200e);
1152 spin_unlock_irqrestore(&fore200e->q_lock, flags);
1153}
1154#endif
1155
1156
1157static irqreturn_t
1158fore200e_interrupt(int irq, void* dev)
1159{
1160 struct fore200e* fore200e = FORE200E_DEV((struct atm_dev*)dev);
1161
1162 if (fore200e->bus->irq_check(fore200e) == 0) {
1163
1164 DPRINTK(3, "interrupt NOT triggered by device %d\n", fore200e->atm_dev->number);
1165 return IRQ_NONE;
1166 }
1167 DPRINTK(3, "interrupt triggered by device %d\n", fore200e->atm_dev->number);
1168
1169#ifdef FORE200E_USE_TASKLET
1170 tasklet_schedule(&fore200e->tx_tasklet);
1171 tasklet_schedule(&fore200e->rx_tasklet);
1172#else
1173 fore200e_irq(fore200e);
1174#endif
1175
1176 fore200e->bus->irq_ack(fore200e);
1177 return IRQ_HANDLED;
1178}
1179
1180
1181#ifdef FORE200E_USE_TASKLET
1182static void
1183fore200e_tx_tasklet(unsigned long data)
1184{
1185 struct fore200e* fore200e = (struct fore200e*) data;
1186 unsigned long flags;
1187
1188 DPRINTK(3, "tx tasklet scheduled for device %d\n", fore200e->atm_dev->number);
1189
1190 spin_lock_irqsave(&fore200e->q_lock, flags);
1191 fore200e_tx_irq(fore200e);
1192 spin_unlock_irqrestore(&fore200e->q_lock, flags);
1193}
1194
1195
1196static void
1197fore200e_rx_tasklet(unsigned long data)
1198{
1199 struct fore200e* fore200e = (struct fore200e*) data;
1200 unsigned long flags;
1201
1202 DPRINTK(3, "rx tasklet scheduled for device %d\n", fore200e->atm_dev->number);
1203
1204 spin_lock_irqsave(&fore200e->q_lock, flags);
1205 fore200e_rx_irq((struct fore200e*) data);
1206 spin_unlock_irqrestore(&fore200e->q_lock, flags);
1207}
1208#endif
1209
1210
1211static int
1212fore200e_select_scheme(struct atm_vcc* vcc)
1213{
1214 /* fairly balance the VCs over (identical) buffer schemes */
1215 int scheme = vcc->vci % 2 ? BUFFER_SCHEME_ONE : BUFFER_SCHEME_TWO;
1216
1217 DPRINTK(1, "VC %d.%d.%d uses buffer scheme %d\n",
1218 vcc->itf, vcc->vpi, vcc->vci, scheme);
1219
1220 return scheme;
1221}
1222
1223
1224static int
1225fore200e_activate_vcin(struct fore200e* fore200e, int activate, struct atm_vcc* vcc, int mtu)
1226{
1227 struct host_cmdq* cmdq = &fore200e->host_cmdq;
1228 struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1229 struct activate_opcode activ_opcode;
1230 struct deactivate_opcode deactiv_opcode;
1231 struct vpvc vpvc;
1232 int ok;
1233 enum fore200e_aal aal = fore200e_atm2fore_aal(vcc->qos.aal);
1234
1235 FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1236
1237 if (activate) {
1238 FORE200E_VCC(vcc)->scheme = fore200e_select_scheme(vcc);
1239
1240 activ_opcode.opcode = OPCODE_ACTIVATE_VCIN;
1241 activ_opcode.aal = aal;
1242 activ_opcode.scheme = FORE200E_VCC(vcc)->scheme;
1243 activ_opcode.pad = 0;
1244 }
1245 else {
1246 deactiv_opcode.opcode = OPCODE_DEACTIVATE_VCIN;
1247 deactiv_opcode.pad = 0;
1248 }
1249
1250 vpvc.vci = vcc->vci;
1251 vpvc.vpi = vcc->vpi;
1252
1253 *entry->status = STATUS_PENDING;
1254
1255 if (activate) {
1256
1257#ifdef FORE200E_52BYTE_AAL0_SDU
1258 mtu = 48;
1259#endif
1260 /* the MTU is not used by the cp, except in the case of AAL0 */
1261 fore200e->bus->write(mtu, &entry->cp_entry->cmd.activate_block.mtu);
1262 fore200e->bus->write(*(u32*)&vpvc, (u32 __iomem *)&entry->cp_entry->cmd.activate_block.vpvc);
1263 fore200e->bus->write(*(u32*)&activ_opcode, (u32 __iomem *)&entry->cp_entry->cmd.activate_block.opcode);
1264 }
1265 else {
1266 fore200e->bus->write(*(u32*)&vpvc, (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.vpvc);
1267 fore200e->bus->write(*(u32*)&deactiv_opcode, (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.opcode);
1268 }
1269
1270 ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1271
1272 *entry->status = STATUS_FREE;
1273
1274 if (ok == 0) {
1275 printk(FORE200E "unable to %s VC %d.%d.%d\n",
1276 activate ? "open" : "close", vcc->itf, vcc->vpi, vcc->vci);
1277 return -EIO;
1278 }
1279
1280 DPRINTK(1, "VC %d.%d.%d %sed\n", vcc->itf, vcc->vpi, vcc->vci,
1281 activate ? "open" : "clos");
1282
1283 return 0;
1284}
1285
1286
1287#define FORE200E_MAX_BACK2BACK_CELLS 255 /* XXX depends on CDVT */
1288
1289static void
1290fore200e_rate_ctrl(struct atm_qos* qos, struct tpd_rate* rate)
1291{
1292 if (qos->txtp.max_pcr < ATM_OC3_PCR) {
1293
1294 /* compute the data cells to idle cells ratio from the tx PCR */
1295 rate->data_cells = qos->txtp.max_pcr * FORE200E_MAX_BACK2BACK_CELLS / ATM_OC3_PCR;
1296 rate->idle_cells = FORE200E_MAX_BACK2BACK_CELLS - rate->data_cells;
1297 }
1298 else {
1299 /* disable rate control */
1300 rate->data_cells = rate->idle_cells = 0;
1301 }
1302}
1303
1304
1305static int
1306fore200e_open(struct atm_vcc *vcc)
1307{
1308 struct fore200e* fore200e = FORE200E_DEV(vcc->dev);
1309 struct fore200e_vcc* fore200e_vcc;
1310 struct fore200e_vc_map* vc_map;
1311 unsigned long flags;
1312 int vci = vcc->vci;
1313 short vpi = vcc->vpi;
1314
1315 ASSERT((vpi >= 0) && (vpi < 1<<FORE200E_VPI_BITS));
1316 ASSERT((vci >= 0) && (vci < 1<<FORE200E_VCI_BITS));
1317
1318 spin_lock_irqsave(&fore200e->q_lock, flags);
1319
1320 vc_map = FORE200E_VC_MAP(fore200e, vpi, vci);
1321 if (vc_map->vcc) {
1322
1323 spin_unlock_irqrestore(&fore200e->q_lock, flags);
1324
1325 printk(FORE200E "VC %d.%d.%d already in use\n",
1326 fore200e->atm_dev->number, vpi, vci);
1327
1328 return -EINVAL;
1329 }
1330
1331 vc_map->vcc = vcc;
1332
1333 spin_unlock_irqrestore(&fore200e->q_lock, flags);
1334
1335 fore200e_vcc = kzalloc(sizeof(struct fore200e_vcc), GFP_ATOMIC);
1336 if (fore200e_vcc == NULL) {
1337 vc_map->vcc = NULL;
1338 return -ENOMEM;
1339 }
1340
1341 DPRINTK(2, "opening %d.%d.%d:%d QoS = (tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; "
1342 "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d)\n",
1343 vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1344 fore200e_traffic_class[ vcc->qos.txtp.traffic_class ],
1345 vcc->qos.txtp.min_pcr, vcc->qos.txtp.max_pcr, vcc->qos.txtp.max_cdv, vcc->qos.txtp.max_sdu,
1346 fore200e_traffic_class[ vcc->qos.rxtp.traffic_class ],
1347 vcc->qos.rxtp.min_pcr, vcc->qos.rxtp.max_pcr, vcc->qos.rxtp.max_cdv, vcc->qos.rxtp.max_sdu);
1348
1349 /* pseudo-CBR bandwidth requested? */
1350 if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1351
1352 mutex_lock(&fore200e->rate_mtx);
1353 if (fore200e->available_cell_rate < vcc->qos.txtp.max_pcr) {
1354 mutex_unlock(&fore200e->rate_mtx);
1355
1356 kfree(fore200e_vcc);
1357 vc_map->vcc = NULL;
1358 return -EAGAIN;
1359 }
1360
1361 /* reserve bandwidth */
1362 fore200e->available_cell_rate -= vcc->qos.txtp.max_pcr;
1363 mutex_unlock(&fore200e->rate_mtx);
1364 }
1365
1366 vcc->itf = vcc->dev->number;
1367
1368 set_bit(ATM_VF_PARTIAL,&vcc->flags);
1369 set_bit(ATM_VF_ADDR, &vcc->flags);
1370
1371 vcc->dev_data = fore200e_vcc;
1372
1373 if (fore200e_activate_vcin(fore200e, 1, vcc, vcc->qos.rxtp.max_sdu) < 0) {
1374
1375 vc_map->vcc = NULL;
1376
1377 clear_bit(ATM_VF_ADDR, &vcc->flags);
1378 clear_bit(ATM_VF_PARTIAL,&vcc->flags);
1379
1380 vcc->dev_data = NULL;
1381
1382 fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1383
1384 kfree(fore200e_vcc);
1385 return -EINVAL;
1386 }
1387
1388 /* compute rate control parameters */
1389 if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1390
1391 fore200e_rate_ctrl(&vcc->qos, &fore200e_vcc->rate);
1392 set_bit(ATM_VF_HASQOS, &vcc->flags);
1393
1394 DPRINTK(3, "tx on %d.%d.%d:%d, tx PCR = %d, rx PCR = %d, data_cells = %u, idle_cells = %u\n",
1395 vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1396 vcc->qos.txtp.max_pcr, vcc->qos.rxtp.max_pcr,
1397 fore200e_vcc->rate.data_cells, fore200e_vcc->rate.idle_cells);
1398 }
1399
1400 fore200e_vcc->tx_min_pdu = fore200e_vcc->rx_min_pdu = MAX_PDU_SIZE + 1;
1401 fore200e_vcc->tx_max_pdu = fore200e_vcc->rx_max_pdu = 0;
1402 fore200e_vcc->tx_pdu = fore200e_vcc->rx_pdu = 0;
1403
1404 /* new incarnation of the vcc */
1405 vc_map->incarn = ++fore200e->incarn_count;
1406
1407 /* VC unusable before this flag is set */
1408 set_bit(ATM_VF_READY, &vcc->flags);
1409
1410 return 0;
1411}
1412
1413
1414static void
1415fore200e_close(struct atm_vcc* vcc)
1416{
1417 struct fore200e_vcc* fore200e_vcc;
1418 struct fore200e* fore200e;
1419 struct fore200e_vc_map* vc_map;
1420 unsigned long flags;
1421
1422 ASSERT(vcc);
1423 fore200e = FORE200E_DEV(vcc->dev);
1424
1425 ASSERT((vcc->vpi >= 0) && (vcc->vpi < 1<<FORE200E_VPI_BITS));
1426 ASSERT((vcc->vci >= 0) && (vcc->vci < 1<<FORE200E_VCI_BITS));
1427
1428 DPRINTK(2, "closing %d.%d.%d:%d\n", vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal));
1429
1430 clear_bit(ATM_VF_READY, &vcc->flags);
1431
1432 fore200e_activate_vcin(fore200e, 0, vcc, 0);
1433
1434 spin_lock_irqsave(&fore200e->q_lock, flags);
1435
1436 vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci);
1437
1438 /* the vc is no longer considered as "in use" by fore200e_open() */
1439 vc_map->vcc = NULL;
1440
1441 vcc->itf = vcc->vci = vcc->vpi = 0;
1442
1443 fore200e_vcc = FORE200E_VCC(vcc);
1444 vcc->dev_data = NULL;
1445
1446 spin_unlock_irqrestore(&fore200e->q_lock, flags);
1447
1448 /* release reserved bandwidth, if any */
1449 if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1450
1451 mutex_lock(&fore200e->rate_mtx);
1452 fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1453 mutex_unlock(&fore200e->rate_mtx);
1454
1455 clear_bit(ATM_VF_HASQOS, &vcc->flags);
1456 }
1457
1458 clear_bit(ATM_VF_ADDR, &vcc->flags);
1459 clear_bit(ATM_VF_PARTIAL,&vcc->flags);
1460
1461 ASSERT(fore200e_vcc);
1462 kfree(fore200e_vcc);
1463}
1464
1465
1466static int
1467fore200e_send(struct atm_vcc *vcc, struct sk_buff *skb)
1468{
1469 struct fore200e* fore200e;
1470 struct fore200e_vcc* fore200e_vcc;
1471 struct fore200e_vc_map* vc_map;
1472 struct host_txq* txq;
1473 struct host_txq_entry* entry;
1474 struct tpd* tpd;
1475 struct tpd_haddr tpd_haddr;
1476 int retry = CONFIG_ATM_FORE200E_TX_RETRY;
1477 int tx_copy = 0;
1478 int tx_len = skb->len;
1479 u32* cell_header = NULL;
1480 unsigned char* skb_data;
1481 int skb_len;
1482 unsigned char* data;
1483 unsigned long flags;
1484
1485 if (!vcc)
1486 return -EINVAL;
1487
1488 fore200e = FORE200E_DEV(vcc->dev);
1489 fore200e_vcc = FORE200E_VCC(vcc);
1490
1491 if (!fore200e)
1492 return -EINVAL;
1493
1494 txq = &fore200e->host_txq;
1495 if (!fore200e_vcc)
1496 return -EINVAL;
1497
1498 if (!test_bit(ATM_VF_READY, &vcc->flags)) {
1499 DPRINTK(1, "VC %d.%d.%d not ready for tx\n", vcc->itf, vcc->vpi, vcc->vpi);
1500 dev_kfree_skb_any(skb);
1501 return -EINVAL;
1502 }
1503
1504#ifdef FORE200E_52BYTE_AAL0_SDU
1505 if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.txtp.max_sdu == ATM_AAL0_SDU)) {
1506 cell_header = (u32*) skb->data;
1507 skb_data = skb->data + 4; /* skip 4-byte cell header */
1508 skb_len = tx_len = skb->len - 4;
1509
1510 DPRINTK(3, "user-supplied cell header = 0x%08x\n", *cell_header);
1511 }
1512 else
1513#endif
1514 {
1515 skb_data = skb->data;
1516 skb_len = skb->len;
1517 }
1518
1519 if (((unsigned long)skb_data) & 0x3) {
1520
1521 DPRINTK(2, "misaligned tx PDU on device %s\n", fore200e->name);
1522 tx_copy = 1;
1523 tx_len = skb_len;
1524 }
1525
1526 if ((vcc->qos.aal == ATM_AAL0) && (skb_len % ATM_CELL_PAYLOAD)) {
1527
1528 /* this simply NUKES the PCA board */
1529 DPRINTK(2, "incomplete tx AAL0 PDU on device %s\n", fore200e->name);
1530 tx_copy = 1;
1531 tx_len = ((skb_len / ATM_CELL_PAYLOAD) + 1) * ATM_CELL_PAYLOAD;
1532 }
1533
1534 if (tx_copy) {
1535 data = kmalloc(tx_len, GFP_ATOMIC);
1536 if (data == NULL) {
1537 if (vcc->pop) {
1538 vcc->pop(vcc, skb);
1539 }
1540 else {
1541 dev_kfree_skb_any(skb);
1542 }
1543 return -ENOMEM;
1544 }
1545
1546 memcpy(data, skb_data, skb_len);
1547 if (skb_len < tx_len)
1548 memset(data + skb_len, 0x00, tx_len - skb_len);
1549 }
1550 else {
1551 data = skb_data;
1552 }
1553
1554 vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci);
1555 ASSERT(vc_map->vcc == vcc);
1556
1557 retry_here:
1558
1559 spin_lock_irqsave(&fore200e->q_lock, flags);
1560
1561 entry = &txq->host_entry[ txq->head ];
1562
1563 if ((*entry->status != STATUS_FREE) || (txq->txing >= QUEUE_SIZE_TX - 2)) {
1564
1565 /* try to free completed tx queue entries */
1566 fore200e_tx_irq(fore200e);
1567
1568 if (*entry->status != STATUS_FREE) {
1569
1570 spin_unlock_irqrestore(&fore200e->q_lock, flags);
1571
1572 /* retry once again? */
1573 if (--retry > 0) {
1574 udelay(50);
1575 goto retry_here;
1576 }
1577
1578 atomic_inc(&vcc->stats->tx_err);
1579
1580 fore200e->tx_sat++;
1581 DPRINTK(2, "tx queue of device %s is saturated, PDU dropped - heartbeat is %08x\n",
1582 fore200e->name, fore200e->cp_queues->heartbeat);
1583 if (vcc->pop) {
1584 vcc->pop(vcc, skb);
1585 }
1586 else {
1587 dev_kfree_skb_any(skb);
1588 }
1589
1590 if (tx_copy)
1591 kfree(data);
1592
1593 return -ENOBUFS;
1594 }
1595 }
1596
1597 entry->incarn = vc_map->incarn;
1598 entry->vc_map = vc_map;
1599 entry->skb = skb;
1600 entry->data = tx_copy ? data : NULL;
1601
1602 tpd = entry->tpd;
1603 tpd->tsd[ 0 ].buffer = dma_map_single(fore200e->dev, data, tx_len,
1604 DMA_TO_DEVICE);
1605 if (dma_mapping_error(fore200e->dev, tpd->tsd[0].buffer)) {
1606 if (tx_copy)
1607 kfree(data);
1608 spin_unlock_irqrestore(&fore200e->q_lock, flags);
1609 return -ENOMEM;
1610 }
1611 tpd->tsd[ 0 ].length = tx_len;
1612
1613 FORE200E_NEXT_ENTRY(txq->head, QUEUE_SIZE_TX);
1614 txq->txing++;
1615
1616 /* The dma_map call above implies a dma_sync so the device can use it,
1617 * thus no explicit dma_sync call is necessary here.
1618 */
1619
1620 DPRINTK(3, "tx on %d.%d.%d:%d, len = %u (%u)\n",
1621 vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1622 tpd->tsd[0].length, skb_len);
1623
1624 if (skb_len < fore200e_vcc->tx_min_pdu)
1625 fore200e_vcc->tx_min_pdu = skb_len;
1626 if (skb_len > fore200e_vcc->tx_max_pdu)
1627 fore200e_vcc->tx_max_pdu = skb_len;
1628 fore200e_vcc->tx_pdu++;
1629
1630 /* set tx rate control information */
1631 tpd->rate.data_cells = fore200e_vcc->rate.data_cells;
1632 tpd->rate.idle_cells = fore200e_vcc->rate.idle_cells;
1633
1634 if (cell_header) {
1635 tpd->atm_header.clp = (*cell_header & ATM_HDR_CLP);
1636 tpd->atm_header.plt = (*cell_header & ATM_HDR_PTI_MASK) >> ATM_HDR_PTI_SHIFT;
1637 tpd->atm_header.vci = (*cell_header & ATM_HDR_VCI_MASK) >> ATM_HDR_VCI_SHIFT;
1638 tpd->atm_header.vpi = (*cell_header & ATM_HDR_VPI_MASK) >> ATM_HDR_VPI_SHIFT;
1639 tpd->atm_header.gfc = (*cell_header & ATM_HDR_GFC_MASK) >> ATM_HDR_GFC_SHIFT;
1640 }
1641 else {
1642 /* set the ATM header, common to all cells conveying the PDU */
1643 tpd->atm_header.clp = 0;
1644 tpd->atm_header.plt = 0;
1645 tpd->atm_header.vci = vcc->vci;
1646 tpd->atm_header.vpi = vcc->vpi;
1647 tpd->atm_header.gfc = 0;
1648 }
1649
1650 tpd->spec.length = tx_len;
1651 tpd->spec.nseg = 1;
1652 tpd->spec.aal = fore200e_atm2fore_aal(vcc->qos.aal);
1653 tpd->spec.intr = 1;
1654
1655 tpd_haddr.size = sizeof(struct tpd) / (1<<TPD_HADDR_SHIFT); /* size is expressed in 32 byte blocks */
1656 tpd_haddr.pad = 0;
1657 tpd_haddr.haddr = entry->tpd_dma >> TPD_HADDR_SHIFT; /* shift the address, as we are in a bitfield */
1658
1659 *entry->status = STATUS_PENDING;
1660 fore200e->bus->write(*(u32*)&tpd_haddr, (u32 __iomem *)&entry->cp_entry->tpd_haddr);
1661
1662 spin_unlock_irqrestore(&fore200e->q_lock, flags);
1663
1664 return 0;
1665}
1666
1667
1668static int
1669fore200e_getstats(struct fore200e* fore200e)
1670{
1671 struct host_cmdq* cmdq = &fore200e->host_cmdq;
1672 struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1673 struct stats_opcode opcode;
1674 int ok;
1675 u32 stats_dma_addr;
1676
1677 if (fore200e->stats == NULL) {
1678 fore200e->stats = kzalloc(sizeof(struct stats), GFP_KERNEL);
1679 if (fore200e->stats == NULL)
1680 return -ENOMEM;
1681 }
1682
1683 stats_dma_addr = dma_map_single(fore200e->dev, fore200e->stats,
1684 sizeof(struct stats), DMA_FROM_DEVICE);
1685 if (dma_mapping_error(fore200e->dev, stats_dma_addr))
1686 return -ENOMEM;
1687
1688 FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1689
1690 opcode.opcode = OPCODE_GET_STATS;
1691 opcode.pad = 0;
1692
1693 fore200e->bus->write(stats_dma_addr, &entry->cp_entry->cmd.stats_block.stats_haddr);
1694
1695 *entry->status = STATUS_PENDING;
1696
1697 fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.stats_block.opcode);
1698
1699 ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1700
1701 *entry->status = STATUS_FREE;
1702
1703 dma_unmap_single(fore200e->dev, stats_dma_addr, sizeof(struct stats), DMA_FROM_DEVICE);
1704
1705 if (ok == 0) {
1706 printk(FORE200E "unable to get statistics from device %s\n", fore200e->name);
1707 return -EIO;
1708 }
1709
1710 return 0;
1711}
1712
1713#if 0 /* currently unused */
1714static int
1715fore200e_get_oc3(struct fore200e* fore200e, struct oc3_regs* regs)
1716{
1717 struct host_cmdq* cmdq = &fore200e->host_cmdq;
1718 struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1719 struct oc3_opcode opcode;
1720 int ok;
1721 u32 oc3_regs_dma_addr;
1722
1723 oc3_regs_dma_addr = fore200e->bus->dma_map(fore200e, regs, sizeof(struct oc3_regs), DMA_FROM_DEVICE);
1724
1725 FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1726
1727 opcode.opcode = OPCODE_GET_OC3;
1728 opcode.reg = 0;
1729 opcode.value = 0;
1730 opcode.mask = 0;
1731
1732 fore200e->bus->write(oc3_regs_dma_addr, &entry->cp_entry->cmd.oc3_block.regs_haddr);
1733
1734 *entry->status = STATUS_PENDING;
1735
1736 fore200e->bus->write(*(u32*)&opcode, (u32*)&entry->cp_entry->cmd.oc3_block.opcode);
1737
1738 ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1739
1740 *entry->status = STATUS_FREE;
1741
1742 fore200e->bus->dma_unmap(fore200e, oc3_regs_dma_addr, sizeof(struct oc3_regs), DMA_FROM_DEVICE);
1743
1744 if (ok == 0) {
1745 printk(FORE200E "unable to get OC-3 regs of device %s\n", fore200e->name);
1746 return -EIO;
1747 }
1748
1749 return 0;
1750}
1751#endif
1752
1753
1754static int
1755fore200e_set_oc3(struct fore200e* fore200e, u32 reg, u32 value, u32 mask)
1756{
1757 struct host_cmdq* cmdq = &fore200e->host_cmdq;
1758 struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1759 struct oc3_opcode opcode;
1760 int ok;
1761
1762 DPRINTK(2, "set OC-3 reg = 0x%02x, value = 0x%02x, mask = 0x%02x\n", reg, value, mask);
1763
1764 FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1765
1766 opcode.opcode = OPCODE_SET_OC3;
1767 opcode.reg = reg;
1768 opcode.value = value;
1769 opcode.mask = mask;
1770
1771 fore200e->bus->write(0, &entry->cp_entry->cmd.oc3_block.regs_haddr);
1772
1773 *entry->status = STATUS_PENDING;
1774
1775 fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.oc3_block.opcode);
1776
1777 ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1778
1779 *entry->status = STATUS_FREE;
1780
1781 if (ok == 0) {
1782 printk(FORE200E "unable to set OC-3 reg 0x%02x of device %s\n", reg, fore200e->name);
1783 return -EIO;
1784 }
1785
1786 return 0;
1787}
1788
1789
1790static int
1791fore200e_setloop(struct fore200e* fore200e, int loop_mode)
1792{
1793 u32 mct_value, mct_mask;
1794 int error;
1795
1796 if (!capable(CAP_NET_ADMIN))
1797 return -EPERM;
1798
1799 switch (loop_mode) {
1800
1801 case ATM_LM_NONE:
1802 mct_value = 0;
1803 mct_mask = SUNI_MCT_DLE | SUNI_MCT_LLE;
1804 break;
1805
1806 case ATM_LM_LOC_PHY:
1807 mct_value = mct_mask = SUNI_MCT_DLE;
1808 break;
1809
1810 case ATM_LM_RMT_PHY:
1811 mct_value = mct_mask = SUNI_MCT_LLE;
1812 break;
1813
1814 default:
1815 return -EINVAL;
1816 }
1817
1818 error = fore200e_set_oc3(fore200e, SUNI_MCT, mct_value, mct_mask);
1819 if (error == 0)
1820 fore200e->loop_mode = loop_mode;
1821
1822 return error;
1823}
1824
1825
1826static int
1827fore200e_fetch_stats(struct fore200e* fore200e, struct sonet_stats __user *arg)
1828{
1829 struct sonet_stats tmp;
1830
1831 if (fore200e_getstats(fore200e) < 0)
1832 return -EIO;
1833
1834 tmp.section_bip = be32_to_cpu(fore200e->stats->oc3.section_bip8_errors);
1835 tmp.line_bip = be32_to_cpu(fore200e->stats->oc3.line_bip24_errors);
1836 tmp.path_bip = be32_to_cpu(fore200e->stats->oc3.path_bip8_errors);
1837 tmp.line_febe = be32_to_cpu(fore200e->stats->oc3.line_febe_errors);
1838 tmp.path_febe = be32_to_cpu(fore200e->stats->oc3.path_febe_errors);
1839 tmp.corr_hcs = be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors);
1840 tmp.uncorr_hcs = be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors);
1841 tmp.tx_cells = be32_to_cpu(fore200e->stats->aal0.cells_transmitted) +
1842 be32_to_cpu(fore200e->stats->aal34.cells_transmitted) +
1843 be32_to_cpu(fore200e->stats->aal5.cells_transmitted);
1844 tmp.rx_cells = be32_to_cpu(fore200e->stats->aal0.cells_received) +
1845 be32_to_cpu(fore200e->stats->aal34.cells_received) +
1846 be32_to_cpu(fore200e->stats->aal5.cells_received);
1847
1848 if (arg)
1849 return copy_to_user(arg, &tmp, sizeof(struct sonet_stats)) ? -EFAULT : 0;
1850
1851 return 0;
1852}
1853
1854
1855static int
1856fore200e_ioctl(struct atm_dev* dev, unsigned int cmd, void __user * arg)
1857{
1858 struct fore200e* fore200e = FORE200E_DEV(dev);
1859
1860 DPRINTK(2, "ioctl cmd = 0x%x (%u), arg = 0x%p (%lu)\n", cmd, cmd, arg, (unsigned long)arg);
1861
1862 switch (cmd) {
1863
1864 case SONET_GETSTAT:
1865 return fore200e_fetch_stats(fore200e, (struct sonet_stats __user *)arg);
1866
1867 case SONET_GETDIAG:
1868 return put_user(0, (int __user *)arg) ? -EFAULT : 0;
1869
1870 case ATM_SETLOOP:
1871 return fore200e_setloop(fore200e, (int)(unsigned long)arg);
1872
1873 case ATM_GETLOOP:
1874 return put_user(fore200e->loop_mode, (int __user *)arg) ? -EFAULT : 0;
1875
1876 case ATM_QUERYLOOP:
1877 return put_user(ATM_LM_LOC_PHY | ATM_LM_RMT_PHY, (int __user *)arg) ? -EFAULT : 0;
1878 }
1879
1880 return -ENOSYS; /* not implemented */
1881}
1882
1883
1884static int
1885fore200e_change_qos(struct atm_vcc* vcc,struct atm_qos* qos, int flags)
1886{
1887 struct fore200e_vcc* fore200e_vcc = FORE200E_VCC(vcc);
1888 struct fore200e* fore200e = FORE200E_DEV(vcc->dev);
1889
1890 if (!test_bit(ATM_VF_READY, &vcc->flags)) {
1891 DPRINTK(1, "VC %d.%d.%d not ready for QoS change\n", vcc->itf, vcc->vpi, vcc->vpi);
1892 return -EINVAL;
1893 }
1894
1895 DPRINTK(2, "change_qos %d.%d.%d, "
1896 "(tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; "
1897 "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d), flags = 0x%x\n"
1898 "available_cell_rate = %u",
1899 vcc->itf, vcc->vpi, vcc->vci,
1900 fore200e_traffic_class[ qos->txtp.traffic_class ],
1901 qos->txtp.min_pcr, qos->txtp.max_pcr, qos->txtp.max_cdv, qos->txtp.max_sdu,
1902 fore200e_traffic_class[ qos->rxtp.traffic_class ],
1903 qos->rxtp.min_pcr, qos->rxtp.max_pcr, qos->rxtp.max_cdv, qos->rxtp.max_sdu,
1904 flags, fore200e->available_cell_rate);
1905
1906 if ((qos->txtp.traffic_class == ATM_CBR) && (qos->txtp.max_pcr > 0)) {
1907
1908 mutex_lock(&fore200e->rate_mtx);
1909 if (fore200e->available_cell_rate + vcc->qos.txtp.max_pcr < qos->txtp.max_pcr) {
1910 mutex_unlock(&fore200e->rate_mtx);
1911 return -EAGAIN;
1912 }
1913
1914 fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1915 fore200e->available_cell_rate -= qos->txtp.max_pcr;
1916
1917 mutex_unlock(&fore200e->rate_mtx);
1918
1919 memcpy(&vcc->qos, qos, sizeof(struct atm_qos));
1920
1921 /* update rate control parameters */
1922 fore200e_rate_ctrl(qos, &fore200e_vcc->rate);
1923
1924 set_bit(ATM_VF_HASQOS, &vcc->flags);
1925
1926 return 0;
1927 }
1928
1929 return -EINVAL;
1930}
1931
1932
1933static int fore200e_irq_request(struct fore200e *fore200e)
1934{
1935 if (request_irq(fore200e->irq, fore200e_interrupt, IRQF_SHARED, fore200e->name, fore200e->atm_dev) < 0) {
1936
1937 printk(FORE200E "unable to reserve IRQ %s for device %s\n",
1938 fore200e_irq_itoa(fore200e->irq), fore200e->name);
1939 return -EBUSY;
1940 }
1941
1942 printk(FORE200E "IRQ %s reserved for device %s\n",
1943 fore200e_irq_itoa(fore200e->irq), fore200e->name);
1944
1945#ifdef FORE200E_USE_TASKLET
1946 tasklet_init(&fore200e->tx_tasklet, fore200e_tx_tasklet, (unsigned long)fore200e);
1947 tasklet_init(&fore200e->rx_tasklet, fore200e_rx_tasklet, (unsigned long)fore200e);
1948#endif
1949
1950 fore200e->state = FORE200E_STATE_IRQ;
1951 return 0;
1952}
1953
1954
1955static int fore200e_get_esi(struct fore200e *fore200e)
1956{
1957 struct prom_data* prom = kzalloc(sizeof(struct prom_data), GFP_KERNEL);
1958 int ok, i;
1959
1960 if (!prom)
1961 return -ENOMEM;
1962
1963 ok = fore200e->bus->prom_read(fore200e, prom);
1964 if (ok < 0) {
1965 kfree(prom);
1966 return -EBUSY;
1967 }
1968
1969 printk(FORE200E "device %s, rev. %c, S/N: %d, ESI: %pM\n",
1970 fore200e->name,
1971 (prom->hw_revision & 0xFF) + '@', /* probably meaningless with SBA boards */
1972 prom->serial_number & 0xFFFF, &prom->mac_addr[2]);
1973
1974 for (i = 0; i < ESI_LEN; i++) {
1975 fore200e->esi[ i ] = fore200e->atm_dev->esi[ i ] = prom->mac_addr[ i + 2 ];
1976 }
1977
1978 kfree(prom);
1979
1980 return 0;
1981}
1982
1983
1984static int fore200e_alloc_rx_buf(struct fore200e *fore200e)
1985{
1986 int scheme, magn, nbr, size, i;
1987
1988 struct host_bsq* bsq;
1989 struct buffer* buffer;
1990
1991 for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
1992 for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
1993
1994 bsq = &fore200e->host_bsq[ scheme ][ magn ];
1995
1996 nbr = fore200e_rx_buf_nbr[ scheme ][ magn ];
1997 size = fore200e_rx_buf_size[ scheme ][ magn ];
1998
1999 DPRINTK(2, "rx buffers %d / %d are being allocated\n", scheme, magn);
2000
2001 /* allocate the array of receive buffers */
2002 buffer = bsq->buffer = kcalloc(nbr, sizeof(struct buffer),
2003 GFP_KERNEL);
2004
2005 if (buffer == NULL)
2006 return -ENOMEM;
2007
2008 bsq->freebuf = NULL;
2009
2010 for (i = 0; i < nbr; i++) {
2011
2012 buffer[ i ].scheme = scheme;
2013 buffer[ i ].magn = magn;
2014#ifdef FORE200E_BSQ_DEBUG
2015 buffer[ i ].index = i;
2016 buffer[ i ].supplied = 0;
2017#endif
2018
2019 /* allocate the receive buffer body */
2020 if (fore200e_chunk_alloc(fore200e,
2021 &buffer[ i ].data, size, fore200e->bus->buffer_alignment,
2022 DMA_FROM_DEVICE) < 0) {
2023
2024 while (i > 0)
2025 fore200e_chunk_free(fore200e, &buffer[ --i ].data);
2026 kfree(buffer);
2027
2028 return -ENOMEM;
2029 }
2030
2031 /* insert the buffer into the free buffer list */
2032 buffer[ i ].next = bsq->freebuf;
2033 bsq->freebuf = &buffer[ i ];
2034 }
2035 /* all the buffers are free, initially */
2036 bsq->freebuf_count = nbr;
2037
2038#ifdef FORE200E_BSQ_DEBUG
2039 bsq_audit(3, bsq, scheme, magn);
2040#endif
2041 }
2042 }
2043
2044 fore200e->state = FORE200E_STATE_ALLOC_BUF;
2045 return 0;
2046}
2047
2048
2049static int fore200e_init_bs_queue(struct fore200e *fore200e)
2050{
2051 int scheme, magn, i;
2052
2053 struct host_bsq* bsq;
2054 struct cp_bsq_entry __iomem * cp_entry;
2055
2056 for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
2057 for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
2058
2059 DPRINTK(2, "buffer supply queue %d / %d is being initialized\n", scheme, magn);
2060
2061 bsq = &fore200e->host_bsq[ scheme ][ magn ];
2062
2063 /* allocate and align the array of status words */
2064 if (fore200e_dma_chunk_alloc(fore200e,
2065 &bsq->status,
2066 sizeof(enum status),
2067 QUEUE_SIZE_BS,
2068 fore200e->bus->status_alignment) < 0) {
2069 return -ENOMEM;
2070 }
2071
2072 /* allocate and align the array of receive buffer descriptors */
2073 if (fore200e_dma_chunk_alloc(fore200e,
2074 &bsq->rbd_block,
2075 sizeof(struct rbd_block),
2076 QUEUE_SIZE_BS,
2077 fore200e->bus->descr_alignment) < 0) {
2078
2079 fore200e_dma_chunk_free(fore200e, &bsq->status);
2080 return -ENOMEM;
2081 }
2082
2083 /* get the base address of the cp resident buffer supply queue entries */
2084 cp_entry = fore200e->virt_base +
2085 fore200e->bus->read(&fore200e->cp_queues->cp_bsq[ scheme ][ magn ]);
2086
2087 /* fill the host resident and cp resident buffer supply queue entries */
2088 for (i = 0; i < QUEUE_SIZE_BS; i++) {
2089
2090 bsq->host_entry[ i ].status =
2091 FORE200E_INDEX(bsq->status.align_addr, enum status, i);
2092 bsq->host_entry[ i ].rbd_block =
2093 FORE200E_INDEX(bsq->rbd_block.align_addr, struct rbd_block, i);
2094 bsq->host_entry[ i ].rbd_block_dma =
2095 FORE200E_DMA_INDEX(bsq->rbd_block.dma_addr, struct rbd_block, i);
2096 bsq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2097
2098 *bsq->host_entry[ i ].status = STATUS_FREE;
2099
2100 fore200e->bus->write(FORE200E_DMA_INDEX(bsq->status.dma_addr, enum status, i),
2101 &cp_entry[ i ].status_haddr);
2102 }
2103 }
2104 }
2105
2106 fore200e->state = FORE200E_STATE_INIT_BSQ;
2107 return 0;
2108}
2109
2110
2111static int fore200e_init_rx_queue(struct fore200e *fore200e)
2112{
2113 struct host_rxq* rxq = &fore200e->host_rxq;
2114 struct cp_rxq_entry __iomem * cp_entry;
2115 int i;
2116
2117 DPRINTK(2, "receive queue is being initialized\n");
2118
2119 /* allocate and align the array of status words */
2120 if (fore200e_dma_chunk_alloc(fore200e,
2121 &rxq->status,
2122 sizeof(enum status),
2123 QUEUE_SIZE_RX,
2124 fore200e->bus->status_alignment) < 0) {
2125 return -ENOMEM;
2126 }
2127
2128 /* allocate and align the array of receive PDU descriptors */
2129 if (fore200e_dma_chunk_alloc(fore200e,
2130 &rxq->rpd,
2131 sizeof(struct rpd),
2132 QUEUE_SIZE_RX,
2133 fore200e->bus->descr_alignment) < 0) {
2134
2135 fore200e_dma_chunk_free(fore200e, &rxq->status);
2136 return -ENOMEM;
2137 }
2138
2139 /* get the base address of the cp resident rx queue entries */
2140 cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_rxq);
2141
2142 /* fill the host resident and cp resident rx entries */
2143 for (i=0; i < QUEUE_SIZE_RX; i++) {
2144
2145 rxq->host_entry[ i ].status =
2146 FORE200E_INDEX(rxq->status.align_addr, enum status, i);
2147 rxq->host_entry[ i ].rpd =
2148 FORE200E_INDEX(rxq->rpd.align_addr, struct rpd, i);
2149 rxq->host_entry[ i ].rpd_dma =
2150 FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i);
2151 rxq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2152
2153 *rxq->host_entry[ i ].status = STATUS_FREE;
2154
2155 fore200e->bus->write(FORE200E_DMA_INDEX(rxq->status.dma_addr, enum status, i),
2156 &cp_entry[ i ].status_haddr);
2157
2158 fore200e->bus->write(FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i),
2159 &cp_entry[ i ].rpd_haddr);
2160 }
2161
2162 /* set the head entry of the queue */
2163 rxq->head = 0;
2164
2165 fore200e->state = FORE200E_STATE_INIT_RXQ;
2166 return 0;
2167}
2168
2169
2170static int fore200e_init_tx_queue(struct fore200e *fore200e)
2171{
2172 struct host_txq* txq = &fore200e->host_txq;
2173 struct cp_txq_entry __iomem * cp_entry;
2174 int i;
2175
2176 DPRINTK(2, "transmit queue is being initialized\n");
2177
2178 /* allocate and align the array of status words */
2179 if (fore200e_dma_chunk_alloc(fore200e,
2180 &txq->status,
2181 sizeof(enum status),
2182 QUEUE_SIZE_TX,
2183 fore200e->bus->status_alignment) < 0) {
2184 return -ENOMEM;
2185 }
2186
2187 /* allocate and align the array of transmit PDU descriptors */
2188 if (fore200e_dma_chunk_alloc(fore200e,
2189 &txq->tpd,
2190 sizeof(struct tpd),
2191 QUEUE_SIZE_TX,
2192 fore200e->bus->descr_alignment) < 0) {
2193
2194 fore200e_dma_chunk_free(fore200e, &txq->status);
2195 return -ENOMEM;
2196 }
2197
2198 /* get the base address of the cp resident tx queue entries */
2199 cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_txq);
2200
2201 /* fill the host resident and cp resident tx entries */
2202 for (i=0; i < QUEUE_SIZE_TX; i++) {
2203
2204 txq->host_entry[ i ].status =
2205 FORE200E_INDEX(txq->status.align_addr, enum status, i);
2206 txq->host_entry[ i ].tpd =
2207 FORE200E_INDEX(txq->tpd.align_addr, struct tpd, i);
2208 txq->host_entry[ i ].tpd_dma =
2209 FORE200E_DMA_INDEX(txq->tpd.dma_addr, struct tpd, i);
2210 txq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2211
2212 *txq->host_entry[ i ].status = STATUS_FREE;
2213
2214 fore200e->bus->write(FORE200E_DMA_INDEX(txq->status.dma_addr, enum status, i),
2215 &cp_entry[ i ].status_haddr);
2216
2217 /* although there is a one-to-one mapping of tx queue entries and tpds,
2218 we do not write here the DMA (physical) base address of each tpd into
2219 the related cp resident entry, because the cp relies on this write
2220 operation to detect that a new pdu has been submitted for tx */
2221 }
2222
2223 /* set the head and tail entries of the queue */
2224 txq->head = 0;
2225 txq->tail = 0;
2226
2227 fore200e->state = FORE200E_STATE_INIT_TXQ;
2228 return 0;
2229}
2230
2231
2232static int fore200e_init_cmd_queue(struct fore200e *fore200e)
2233{
2234 struct host_cmdq* cmdq = &fore200e->host_cmdq;
2235 struct cp_cmdq_entry __iomem * cp_entry;
2236 int i;
2237
2238 DPRINTK(2, "command queue is being initialized\n");
2239
2240 /* allocate and align the array of status words */
2241 if (fore200e_dma_chunk_alloc(fore200e,
2242 &cmdq->status,
2243 sizeof(enum status),
2244 QUEUE_SIZE_CMD,
2245 fore200e->bus->status_alignment) < 0) {
2246 return -ENOMEM;
2247 }
2248
2249 /* get the base address of the cp resident cmd queue entries */
2250 cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_cmdq);
2251
2252 /* fill the host resident and cp resident cmd entries */
2253 for (i=0; i < QUEUE_SIZE_CMD; i++) {
2254
2255 cmdq->host_entry[ i ].status =
2256 FORE200E_INDEX(cmdq->status.align_addr, enum status, i);
2257 cmdq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2258
2259 *cmdq->host_entry[ i ].status = STATUS_FREE;
2260
2261 fore200e->bus->write(FORE200E_DMA_INDEX(cmdq->status.dma_addr, enum status, i),
2262 &cp_entry[ i ].status_haddr);
2263 }
2264
2265 /* set the head entry of the queue */
2266 cmdq->head = 0;
2267
2268 fore200e->state = FORE200E_STATE_INIT_CMDQ;
2269 return 0;
2270}
2271
2272
2273static void fore200e_param_bs_queue(struct fore200e *fore200e,
2274 enum buffer_scheme scheme,
2275 enum buffer_magn magn, int queue_length,
2276 int pool_size, int supply_blksize)
2277{
2278 struct bs_spec __iomem * bs_spec = &fore200e->cp_queues->init.bs_spec[ scheme ][ magn ];
2279
2280 fore200e->bus->write(queue_length, &bs_spec->queue_length);
2281 fore200e->bus->write(fore200e_rx_buf_size[ scheme ][ magn ], &bs_spec->buffer_size);
2282 fore200e->bus->write(pool_size, &bs_spec->pool_size);
2283 fore200e->bus->write(supply_blksize, &bs_spec->supply_blksize);
2284}
2285
2286
2287static int fore200e_initialize(struct fore200e *fore200e)
2288{
2289 struct cp_queues __iomem * cpq;
2290 int ok, scheme, magn;
2291
2292 DPRINTK(2, "device %s being initialized\n", fore200e->name);
2293
2294 mutex_init(&fore200e->rate_mtx);
2295 spin_lock_init(&fore200e->q_lock);
2296
2297 cpq = fore200e->cp_queues = fore200e->virt_base + FORE200E_CP_QUEUES_OFFSET;
2298
2299 /* enable cp to host interrupts */
2300 fore200e->bus->write(1, &cpq->imask);
2301
2302 if (fore200e->bus->irq_enable)
2303 fore200e->bus->irq_enable(fore200e);
2304
2305 fore200e->bus->write(NBR_CONNECT, &cpq->init.num_connect);
2306
2307 fore200e->bus->write(QUEUE_SIZE_CMD, &cpq->init.cmd_queue_len);
2308 fore200e->bus->write(QUEUE_SIZE_RX, &cpq->init.rx_queue_len);
2309 fore200e->bus->write(QUEUE_SIZE_TX, &cpq->init.tx_queue_len);
2310
2311 fore200e->bus->write(RSD_EXTENSION, &cpq->init.rsd_extension);
2312 fore200e->bus->write(TSD_EXTENSION, &cpq->init.tsd_extension);
2313
2314 for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++)
2315 for (magn = 0; magn < BUFFER_MAGN_NBR; magn++)
2316 fore200e_param_bs_queue(fore200e, scheme, magn,
2317 QUEUE_SIZE_BS,
2318 fore200e_rx_buf_nbr[ scheme ][ magn ],
2319 RBD_BLK_SIZE);
2320
2321 /* issue the initialize command */
2322 fore200e->bus->write(STATUS_PENDING, &cpq->init.status);
2323 fore200e->bus->write(OPCODE_INITIALIZE, &cpq->init.opcode);
2324
2325 ok = fore200e_io_poll(fore200e, &cpq->init.status, STATUS_COMPLETE, 3000);
2326 if (ok == 0) {
2327 printk(FORE200E "device %s initialization failed\n", fore200e->name);
2328 return -ENODEV;
2329 }
2330
2331 printk(FORE200E "device %s initialized\n", fore200e->name);
2332
2333 fore200e->state = FORE200E_STATE_INITIALIZE;
2334 return 0;
2335}
2336
2337
2338static void fore200e_monitor_putc(struct fore200e *fore200e, char c)
2339{
2340 struct cp_monitor __iomem * monitor = fore200e->cp_monitor;
2341
2342#if 0
2343 printk("%c", c);
2344#endif
2345 fore200e->bus->write(((u32) c) | FORE200E_CP_MONITOR_UART_AVAIL, &monitor->soft_uart.send);
2346}
2347
2348
2349static int fore200e_monitor_getc(struct fore200e *fore200e)
2350{
2351 struct cp_monitor __iomem * monitor = fore200e->cp_monitor;
2352 unsigned long timeout = jiffies + msecs_to_jiffies(50);
2353 int c;
2354
2355 while (time_before(jiffies, timeout)) {
2356
2357 c = (int) fore200e->bus->read(&monitor->soft_uart.recv);
2358
2359 if (c & FORE200E_CP_MONITOR_UART_AVAIL) {
2360
2361 fore200e->bus->write(FORE200E_CP_MONITOR_UART_FREE, &monitor->soft_uart.recv);
2362#if 0
2363 printk("%c", c & 0xFF);
2364#endif
2365 return c & 0xFF;
2366 }
2367 }
2368
2369 return -1;
2370}
2371
2372
2373static void fore200e_monitor_puts(struct fore200e *fore200e, char *str)
2374{
2375 while (*str) {
2376
2377 /* the i960 monitor doesn't accept any new character if it has something to say */
2378 while (fore200e_monitor_getc(fore200e) >= 0);
2379
2380 fore200e_monitor_putc(fore200e, *str++);
2381 }
2382
2383 while (fore200e_monitor_getc(fore200e) >= 0);
2384}
2385
2386#ifdef __LITTLE_ENDIAN
2387#define FW_EXT ".bin"
2388#else
2389#define FW_EXT "_ecd.bin2"
2390#endif
2391
2392static int fore200e_load_and_start_fw(struct fore200e *fore200e)
2393{
2394 const struct firmware *firmware;
2395 const struct fw_header *fw_header;
2396 const __le32 *fw_data;
2397 u32 fw_size;
2398 u32 __iomem *load_addr;
2399 char buf[48];
2400 int err;
2401
2402 sprintf(buf, "%s%s", fore200e->bus->proc_name, FW_EXT);
2403 if ((err = request_firmware(&firmware, buf, fore200e->dev)) < 0) {
2404 printk(FORE200E "problem loading firmware image %s\n", fore200e->bus->model_name);
2405 return err;
2406 }
2407
2408 fw_data = (const __le32 *)firmware->data;
2409 fw_size = firmware->size / sizeof(u32);
2410 fw_header = (const struct fw_header *)firmware->data;
2411 load_addr = fore200e->virt_base + le32_to_cpu(fw_header->load_offset);
2412
2413 DPRINTK(2, "device %s firmware being loaded at 0x%p (%d words)\n",
2414 fore200e->name, load_addr, fw_size);
2415
2416 if (le32_to_cpu(fw_header->magic) != FW_HEADER_MAGIC) {
2417 printk(FORE200E "corrupted %s firmware image\n", fore200e->bus->model_name);
2418 goto release;
2419 }
2420
2421 for (; fw_size--; fw_data++, load_addr++)
2422 fore200e->bus->write(le32_to_cpu(*fw_data), load_addr);
2423
2424 DPRINTK(2, "device %s firmware being started\n", fore200e->name);
2425
2426#if defined(__sparc_v9__)
2427 /* reported to be required by SBA cards on some sparc64 hosts */
2428 fore200e_spin(100);
2429#endif
2430
2431 sprintf(buf, "\rgo %x\r", le32_to_cpu(fw_header->start_offset));
2432 fore200e_monitor_puts(fore200e, buf);
2433
2434 if (fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_CP_RUNNING, 1000) == 0) {
2435 printk(FORE200E "device %s firmware didn't start\n", fore200e->name);
2436 goto release;
2437 }
2438
2439 printk(FORE200E "device %s firmware started\n", fore200e->name);
2440
2441 fore200e->state = FORE200E_STATE_START_FW;
2442 err = 0;
2443
2444release:
2445 release_firmware(firmware);
2446 return err;
2447}
2448
2449
2450static int fore200e_register(struct fore200e *fore200e, struct device *parent)
2451{
2452 struct atm_dev* atm_dev;
2453
2454 DPRINTK(2, "device %s being registered\n", fore200e->name);
2455
2456 atm_dev = atm_dev_register(fore200e->bus->proc_name, parent, &fore200e_ops,
2457 -1, NULL);
2458 if (atm_dev == NULL) {
2459 printk(FORE200E "unable to register device %s\n", fore200e->name);
2460 return -ENODEV;
2461 }
2462
2463 atm_dev->dev_data = fore200e;
2464 fore200e->atm_dev = atm_dev;
2465
2466 atm_dev->ci_range.vpi_bits = FORE200E_VPI_BITS;
2467 atm_dev->ci_range.vci_bits = FORE200E_VCI_BITS;
2468
2469 fore200e->available_cell_rate = ATM_OC3_PCR;
2470
2471 fore200e->state = FORE200E_STATE_REGISTER;
2472 return 0;
2473}
2474
2475
2476static int fore200e_init(struct fore200e *fore200e, struct device *parent)
2477{
2478 if (fore200e_register(fore200e, parent) < 0)
2479 return -ENODEV;
2480
2481 if (fore200e->bus->configure(fore200e) < 0)
2482 return -ENODEV;
2483
2484 if (fore200e->bus->map(fore200e) < 0)
2485 return -ENODEV;
2486
2487 if (fore200e_reset(fore200e, 1) < 0)
2488 return -ENODEV;
2489
2490 if (fore200e_load_and_start_fw(fore200e) < 0)
2491 return -ENODEV;
2492
2493 if (fore200e_initialize(fore200e) < 0)
2494 return -ENODEV;
2495
2496 if (fore200e_init_cmd_queue(fore200e) < 0)
2497 return -ENOMEM;
2498
2499 if (fore200e_init_tx_queue(fore200e) < 0)
2500 return -ENOMEM;
2501
2502 if (fore200e_init_rx_queue(fore200e) < 0)
2503 return -ENOMEM;
2504
2505 if (fore200e_init_bs_queue(fore200e) < 0)
2506 return -ENOMEM;
2507
2508 if (fore200e_alloc_rx_buf(fore200e) < 0)
2509 return -ENOMEM;
2510
2511 if (fore200e_get_esi(fore200e) < 0)
2512 return -EIO;
2513
2514 if (fore200e_irq_request(fore200e) < 0)
2515 return -EBUSY;
2516
2517 fore200e_supply(fore200e);
2518
2519 /* all done, board initialization is now complete */
2520 fore200e->state = FORE200E_STATE_COMPLETE;
2521 return 0;
2522}
2523
2524#ifdef CONFIG_SBUS
2525static const struct of_device_id fore200e_sba_match[];
2526static int fore200e_sba_probe(struct platform_device *op)
2527{
2528 const struct of_device_id *match;
2529 struct fore200e *fore200e;
2530 static int index = 0;
2531 int err;
2532
2533 match = of_match_device(fore200e_sba_match, &op->dev);
2534 if (!match)
2535 return -EINVAL;
2536
2537 fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL);
2538 if (!fore200e)
2539 return -ENOMEM;
2540
2541 fore200e->bus = &fore200e_sbus_ops;
2542 fore200e->dev = &op->dev;
2543 fore200e->irq = op->archdata.irqs[0];
2544 fore200e->phys_base = op->resource[0].start;
2545
2546 sprintf(fore200e->name, "SBA-200E-%d", index);
2547
2548 err = fore200e_init(fore200e, &op->dev);
2549 if (err < 0) {
2550 fore200e_shutdown(fore200e);
2551 kfree(fore200e);
2552 return err;
2553 }
2554
2555 index++;
2556 dev_set_drvdata(&op->dev, fore200e);
2557
2558 return 0;
2559}
2560
2561static int fore200e_sba_remove(struct platform_device *op)
2562{
2563 struct fore200e *fore200e = dev_get_drvdata(&op->dev);
2564
2565 fore200e_shutdown(fore200e);
2566 kfree(fore200e);
2567
2568 return 0;
2569}
2570
2571static const struct of_device_id fore200e_sba_match[] = {
2572 {
2573 .name = SBA200E_PROM_NAME,
2574 },
2575 {},
2576};
2577MODULE_DEVICE_TABLE(of, fore200e_sba_match);
2578
2579static struct platform_driver fore200e_sba_driver = {
2580 .driver = {
2581 .name = "fore_200e",
2582 .of_match_table = fore200e_sba_match,
2583 },
2584 .probe = fore200e_sba_probe,
2585 .remove = fore200e_sba_remove,
2586};
2587#endif
2588
2589#ifdef CONFIG_PCI
2590static int fore200e_pca_detect(struct pci_dev *pci_dev,
2591 const struct pci_device_id *pci_ent)
2592{
2593 struct fore200e* fore200e;
2594 int err = 0;
2595 static int index = 0;
2596
2597 if (pci_enable_device(pci_dev)) {
2598 err = -EINVAL;
2599 goto out;
2600 }
2601
2602 if (dma_set_mask_and_coherent(&pci_dev->dev, DMA_BIT_MASK(32))) {
2603 err = -EINVAL;
2604 goto out;
2605 }
2606
2607 fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL);
2608 if (fore200e == NULL) {
2609 err = -ENOMEM;
2610 goto out_disable;
2611 }
2612
2613 fore200e->bus = &fore200e_pci_ops;
2614 fore200e->dev = &pci_dev->dev;
2615 fore200e->irq = pci_dev->irq;
2616 fore200e->phys_base = pci_resource_start(pci_dev, 0);
2617
2618 sprintf(fore200e->name, "PCA-200E-%d", index - 1);
2619
2620 pci_set_master(pci_dev);
2621
2622 printk(FORE200E "device PCA-200E found at 0x%lx, IRQ %s\n",
2623 fore200e->phys_base, fore200e_irq_itoa(fore200e->irq));
2624
2625 sprintf(fore200e->name, "PCA-200E-%d", index);
2626
2627 err = fore200e_init(fore200e, &pci_dev->dev);
2628 if (err < 0) {
2629 fore200e_shutdown(fore200e);
2630 goto out_free;
2631 }
2632
2633 ++index;
2634 pci_set_drvdata(pci_dev, fore200e);
2635
2636out:
2637 return err;
2638
2639out_free:
2640 kfree(fore200e);
2641out_disable:
2642 pci_disable_device(pci_dev);
2643 goto out;
2644}
2645
2646
2647static void fore200e_pca_remove_one(struct pci_dev *pci_dev)
2648{
2649 struct fore200e *fore200e;
2650
2651 fore200e = pci_get_drvdata(pci_dev);
2652
2653 fore200e_shutdown(fore200e);
2654 kfree(fore200e);
2655 pci_disable_device(pci_dev);
2656}
2657
2658
2659static const struct pci_device_id fore200e_pca_tbl[] = {
2660 { PCI_VENDOR_ID_FORE, PCI_DEVICE_ID_FORE_PCA200E, PCI_ANY_ID, PCI_ANY_ID },
2661 { 0, }
2662};
2663
2664MODULE_DEVICE_TABLE(pci, fore200e_pca_tbl);
2665
2666static struct pci_driver fore200e_pca_driver = {
2667 .name = "fore_200e",
2668 .probe = fore200e_pca_detect,
2669 .remove = fore200e_pca_remove_one,
2670 .id_table = fore200e_pca_tbl,
2671};
2672#endif
2673
2674static int __init fore200e_module_init(void)
2675{
2676 int err = 0;
2677
2678 printk(FORE200E "FORE Systems 200E-series ATM driver - version " FORE200E_VERSION "\n");
2679
2680#ifdef CONFIG_SBUS
2681 err = platform_driver_register(&fore200e_sba_driver);
2682 if (err)
2683 return err;
2684#endif
2685
2686#ifdef CONFIG_PCI
2687 err = pci_register_driver(&fore200e_pca_driver);
2688#endif
2689
2690#ifdef CONFIG_SBUS
2691 if (err)
2692 platform_driver_unregister(&fore200e_sba_driver);
2693#endif
2694
2695 return err;
2696}
2697
2698static void __exit fore200e_module_cleanup(void)
2699{
2700#ifdef CONFIG_PCI
2701 pci_unregister_driver(&fore200e_pca_driver);
2702#endif
2703#ifdef CONFIG_SBUS
2704 platform_driver_unregister(&fore200e_sba_driver);
2705#endif
2706}
2707
2708static int
2709fore200e_proc_read(struct atm_dev *dev, loff_t* pos, char* page)
2710{
2711 struct fore200e* fore200e = FORE200E_DEV(dev);
2712 struct fore200e_vcc* fore200e_vcc;
2713 struct atm_vcc* vcc;
2714 int i, len, left = *pos;
2715 unsigned long flags;
2716
2717 if (!left--) {
2718
2719 if (fore200e_getstats(fore200e) < 0)
2720 return -EIO;
2721
2722 len = sprintf(page,"\n"
2723 " device:\n"
2724 " internal name:\t\t%s\n", fore200e->name);
2725
2726 /* print bus-specific information */
2727 if (fore200e->bus->proc_read)
2728 len += fore200e->bus->proc_read(fore200e, page + len);
2729
2730 len += sprintf(page + len,
2731 " interrupt line:\t\t%s\n"
2732 " physical base address:\t0x%p\n"
2733 " virtual base address:\t0x%p\n"
2734 " factory address (ESI):\t%pM\n"
2735 " board serial number:\t\t%d\n\n",
2736 fore200e_irq_itoa(fore200e->irq),
2737 (void*)fore200e->phys_base,
2738 fore200e->virt_base,
2739 fore200e->esi,
2740 fore200e->esi[4] * 256 + fore200e->esi[5]);
2741
2742 return len;
2743 }
2744
2745 if (!left--)
2746 return sprintf(page,
2747 " free small bufs, scheme 1:\t%d\n"
2748 " free large bufs, scheme 1:\t%d\n"
2749 " free small bufs, scheme 2:\t%d\n"
2750 " free large bufs, scheme 2:\t%d\n",
2751 fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_SMALL ].freebuf_count,
2752 fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_LARGE ].freebuf_count,
2753 fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_SMALL ].freebuf_count,
2754 fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_LARGE ].freebuf_count);
2755
2756 if (!left--) {
2757 u32 hb = fore200e->bus->read(&fore200e->cp_queues->heartbeat);
2758
2759 len = sprintf(page,"\n\n"
2760 " cell processor:\n"
2761 " heartbeat state:\t\t");
2762
2763 if (hb >> 16 != 0xDEAD)
2764 len += sprintf(page + len, "0x%08x\n", hb);
2765 else
2766 len += sprintf(page + len, "*** FATAL ERROR %04x ***\n", hb & 0xFFFF);
2767
2768 return len;
2769 }
2770
2771 if (!left--) {
2772 static const char* media_name[] = {
2773 "unshielded twisted pair",
2774 "multimode optical fiber ST",
2775 "multimode optical fiber SC",
2776 "single-mode optical fiber ST",
2777 "single-mode optical fiber SC",
2778 "unknown"
2779 };
2780
2781 static const char* oc3_mode[] = {
2782 "normal operation",
2783 "diagnostic loopback",
2784 "line loopback",
2785 "unknown"
2786 };
2787
2788 u32 fw_release = fore200e->bus->read(&fore200e->cp_queues->fw_release);
2789 u32 mon960_release = fore200e->bus->read(&fore200e->cp_queues->mon960_release);
2790 u32 oc3_revision = fore200e->bus->read(&fore200e->cp_queues->oc3_revision);
2791 u32 media_index = FORE200E_MEDIA_INDEX(fore200e->bus->read(&fore200e->cp_queues->media_type));
2792 u32 oc3_index;
2793
2794 if (media_index > 4)
2795 media_index = 5;
2796
2797 switch (fore200e->loop_mode) {
2798 case ATM_LM_NONE: oc3_index = 0;
2799 break;
2800 case ATM_LM_LOC_PHY: oc3_index = 1;
2801 break;
2802 case ATM_LM_RMT_PHY: oc3_index = 2;
2803 break;
2804 default: oc3_index = 3;
2805 }
2806
2807 return sprintf(page,
2808 " firmware release:\t\t%d.%d.%d\n"
2809 " monitor release:\t\t%d.%d\n"
2810 " media type:\t\t\t%s\n"
2811 " OC-3 revision:\t\t0x%x\n"
2812 " OC-3 mode:\t\t\t%s",
2813 fw_release >> 16, fw_release << 16 >> 24, fw_release << 24 >> 24,
2814 mon960_release >> 16, mon960_release << 16 >> 16,
2815 media_name[ media_index ],
2816 oc3_revision,
2817 oc3_mode[ oc3_index ]);
2818 }
2819
2820 if (!left--) {
2821 struct cp_monitor __iomem * cp_monitor = fore200e->cp_monitor;
2822
2823 return sprintf(page,
2824 "\n\n"
2825 " monitor:\n"
2826 " version number:\t\t%d\n"
2827 " boot status word:\t\t0x%08x\n",
2828 fore200e->bus->read(&cp_monitor->mon_version),
2829 fore200e->bus->read(&cp_monitor->bstat));
2830 }
2831
2832 if (!left--)
2833 return sprintf(page,
2834 "\n"
2835 " device statistics:\n"
2836 " 4b5b:\n"
2837 " crc_header_errors:\t\t%10u\n"
2838 " framing_errors:\t\t%10u\n",
2839 be32_to_cpu(fore200e->stats->phy.crc_header_errors),
2840 be32_to_cpu(fore200e->stats->phy.framing_errors));
2841
2842 if (!left--)
2843 return sprintf(page, "\n"
2844 " OC-3:\n"
2845 " section_bip8_errors:\t%10u\n"
2846 " path_bip8_errors:\t\t%10u\n"
2847 " line_bip24_errors:\t\t%10u\n"
2848 " line_febe_errors:\t\t%10u\n"
2849 " path_febe_errors:\t\t%10u\n"
2850 " corr_hcs_errors:\t\t%10u\n"
2851 " ucorr_hcs_errors:\t\t%10u\n",
2852 be32_to_cpu(fore200e->stats->oc3.section_bip8_errors),
2853 be32_to_cpu(fore200e->stats->oc3.path_bip8_errors),
2854 be32_to_cpu(fore200e->stats->oc3.line_bip24_errors),
2855 be32_to_cpu(fore200e->stats->oc3.line_febe_errors),
2856 be32_to_cpu(fore200e->stats->oc3.path_febe_errors),
2857 be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors),
2858 be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors));
2859
2860 if (!left--)
2861 return sprintf(page,"\n"
2862 " ATM:\t\t\t\t cells\n"
2863 " TX:\t\t\t%10u\n"
2864 " RX:\t\t\t%10u\n"
2865 " vpi out of range:\t\t%10u\n"
2866 " vpi no conn:\t\t%10u\n"
2867 " vci out of range:\t\t%10u\n"
2868 " vci no conn:\t\t%10u\n",
2869 be32_to_cpu(fore200e->stats->atm.cells_transmitted),
2870 be32_to_cpu(fore200e->stats->atm.cells_received),
2871 be32_to_cpu(fore200e->stats->atm.vpi_bad_range),
2872 be32_to_cpu(fore200e->stats->atm.vpi_no_conn),
2873 be32_to_cpu(fore200e->stats->atm.vci_bad_range),
2874 be32_to_cpu(fore200e->stats->atm.vci_no_conn));
2875
2876 if (!left--)
2877 return sprintf(page,"\n"
2878 " AAL0:\t\t\t cells\n"
2879 " TX:\t\t\t%10u\n"
2880 " RX:\t\t\t%10u\n"
2881 " dropped:\t\t\t%10u\n",
2882 be32_to_cpu(fore200e->stats->aal0.cells_transmitted),
2883 be32_to_cpu(fore200e->stats->aal0.cells_received),
2884 be32_to_cpu(fore200e->stats->aal0.cells_dropped));
2885
2886 if (!left--)
2887 return sprintf(page,"\n"
2888 " AAL3/4:\n"
2889 " SAR sublayer:\t\t cells\n"
2890 " TX:\t\t\t%10u\n"
2891 " RX:\t\t\t%10u\n"
2892 " dropped:\t\t\t%10u\n"
2893 " CRC errors:\t\t%10u\n"
2894 " protocol errors:\t\t%10u\n\n"
2895 " CS sublayer:\t\t PDUs\n"
2896 " TX:\t\t\t%10u\n"
2897 " RX:\t\t\t%10u\n"
2898 " dropped:\t\t\t%10u\n"
2899 " protocol errors:\t\t%10u\n",
2900 be32_to_cpu(fore200e->stats->aal34.cells_transmitted),
2901 be32_to_cpu(fore200e->stats->aal34.cells_received),
2902 be32_to_cpu(fore200e->stats->aal34.cells_dropped),
2903 be32_to_cpu(fore200e->stats->aal34.cells_crc_errors),
2904 be32_to_cpu(fore200e->stats->aal34.cells_protocol_errors),
2905 be32_to_cpu(fore200e->stats->aal34.cspdus_transmitted),
2906 be32_to_cpu(fore200e->stats->aal34.cspdus_received),
2907 be32_to_cpu(fore200e->stats->aal34.cspdus_dropped),
2908 be32_to_cpu(fore200e->stats->aal34.cspdus_protocol_errors));
2909
2910 if (!left--)
2911 return sprintf(page,"\n"
2912 " AAL5:\n"
2913 " SAR sublayer:\t\t cells\n"
2914 " TX:\t\t\t%10u\n"
2915 " RX:\t\t\t%10u\n"
2916 " dropped:\t\t\t%10u\n"
2917 " congestions:\t\t%10u\n\n"
2918 " CS sublayer:\t\t PDUs\n"
2919 " TX:\t\t\t%10u\n"
2920 " RX:\t\t\t%10u\n"
2921 " dropped:\t\t\t%10u\n"
2922 " CRC errors:\t\t%10u\n"
2923 " protocol errors:\t\t%10u\n",
2924 be32_to_cpu(fore200e->stats->aal5.cells_transmitted),
2925 be32_to_cpu(fore200e->stats->aal5.cells_received),
2926 be32_to_cpu(fore200e->stats->aal5.cells_dropped),
2927 be32_to_cpu(fore200e->stats->aal5.congestion_experienced),
2928 be32_to_cpu(fore200e->stats->aal5.cspdus_transmitted),
2929 be32_to_cpu(fore200e->stats->aal5.cspdus_received),
2930 be32_to_cpu(fore200e->stats->aal5.cspdus_dropped),
2931 be32_to_cpu(fore200e->stats->aal5.cspdus_crc_errors),
2932 be32_to_cpu(fore200e->stats->aal5.cspdus_protocol_errors));
2933
2934 if (!left--)
2935 return sprintf(page,"\n"
2936 " AUX:\t\t allocation failures\n"
2937 " small b1:\t\t\t%10u\n"
2938 " large b1:\t\t\t%10u\n"
2939 " small b2:\t\t\t%10u\n"
2940 " large b2:\t\t\t%10u\n"
2941 " RX PDUs:\t\t\t%10u\n"
2942 " TX PDUs:\t\t\t%10lu\n",
2943 be32_to_cpu(fore200e->stats->aux.small_b1_failed),
2944 be32_to_cpu(fore200e->stats->aux.large_b1_failed),
2945 be32_to_cpu(fore200e->stats->aux.small_b2_failed),
2946 be32_to_cpu(fore200e->stats->aux.large_b2_failed),
2947 be32_to_cpu(fore200e->stats->aux.rpd_alloc_failed),
2948 fore200e->tx_sat);
2949
2950 if (!left--)
2951 return sprintf(page,"\n"
2952 " receive carrier:\t\t\t%s\n",
2953 fore200e->stats->aux.receive_carrier ? "ON" : "OFF!");
2954
2955 if (!left--) {
2956 return sprintf(page,"\n"
2957 " VCCs:\n address VPI VCI AAL "
2958 "TX PDUs TX min/max size RX PDUs RX min/max size\n");
2959 }
2960
2961 for (i = 0; i < NBR_CONNECT; i++) {
2962
2963 vcc = fore200e->vc_map[i].vcc;
2964
2965 if (vcc == NULL)
2966 continue;
2967
2968 spin_lock_irqsave(&fore200e->q_lock, flags);
2969
2970 if (vcc && test_bit(ATM_VF_READY, &vcc->flags) && !left--) {
2971
2972 fore200e_vcc = FORE200E_VCC(vcc);
2973 ASSERT(fore200e_vcc);
2974
2975 len = sprintf(page,
2976 " %pK %03d %05d %1d %09lu %05d/%05d %09lu %05d/%05d\n",
2977 vcc,
2978 vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
2979 fore200e_vcc->tx_pdu,
2980 fore200e_vcc->tx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->tx_min_pdu,
2981 fore200e_vcc->tx_max_pdu,
2982 fore200e_vcc->rx_pdu,
2983 fore200e_vcc->rx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->rx_min_pdu,
2984 fore200e_vcc->rx_max_pdu);
2985
2986 spin_unlock_irqrestore(&fore200e->q_lock, flags);
2987 return len;
2988 }
2989
2990 spin_unlock_irqrestore(&fore200e->q_lock, flags);
2991 }
2992
2993 return 0;
2994}
2995
2996module_init(fore200e_module_init);
2997module_exit(fore200e_module_cleanup);
2998
2999
3000static const struct atmdev_ops fore200e_ops = {
3001 .open = fore200e_open,
3002 .close = fore200e_close,
3003 .ioctl = fore200e_ioctl,
3004 .send = fore200e_send,
3005 .change_qos = fore200e_change_qos,
3006 .proc_read = fore200e_proc_read,
3007 .owner = THIS_MODULE
3008};
3009
3010MODULE_LICENSE("GPL");
3011#ifdef CONFIG_PCI
3012#ifdef __LITTLE_ENDIAN__
3013MODULE_FIRMWARE("pca200e.bin");
3014#else
3015MODULE_FIRMWARE("pca200e_ecd.bin2");
3016#endif
3017#endif /* CONFIG_PCI */
3018#ifdef CONFIG_SBUS
3019MODULE_FIRMWARE("sba200e_ecd.bin2");
3020#endif