Linux Audio

Check our new training course

Real-Time Linux with PREEMPT_RT training

Feb 18-20, 2025
Register
Loading...
v6.2
 
   1/*
   2 * Copyright (C) 2011-2012 Red Hat UK.
   3 *
   4 * This file is released under the GPL.
   5 */
   6
   7#include "dm-thin-metadata.h"
   8#include "dm-bio-prison-v1.h"
   9#include "dm.h"
  10
  11#include <linux/device-mapper.h>
  12#include <linux/dm-io.h>
  13#include <linux/dm-kcopyd.h>
  14#include <linux/jiffies.h>
  15#include <linux/log2.h>
  16#include <linux/list.h>
  17#include <linux/rculist.h>
  18#include <linux/init.h>
  19#include <linux/module.h>
  20#include <linux/slab.h>
  21#include <linux/vmalloc.h>
  22#include <linux/sort.h>
  23#include <linux/rbtree.h>
  24
  25#define	DM_MSG_PREFIX	"thin"
  26
  27/*
  28 * Tunable constants
  29 */
  30#define ENDIO_HOOK_POOL_SIZE 1024
  31#define MAPPING_POOL_SIZE 1024
  32#define COMMIT_PERIOD HZ
  33#define NO_SPACE_TIMEOUT_SECS 60
  34
  35static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
  36
  37DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
  38		"A percentage of time allocated for copy on write");
  39
  40/*
  41 * The block size of the device holding pool data must be
  42 * between 64KB and 1GB.
  43 */
  44#define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
  45#define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
  46
  47/*
  48 * Device id is restricted to 24 bits.
  49 */
  50#define MAX_DEV_ID ((1 << 24) - 1)
  51
  52/*
  53 * How do we handle breaking sharing of data blocks?
  54 * =================================================
  55 *
  56 * We use a standard copy-on-write btree to store the mappings for the
  57 * devices (note I'm talking about copy-on-write of the metadata here, not
  58 * the data).  When you take an internal snapshot you clone the root node
  59 * of the origin btree.  After this there is no concept of an origin or a
  60 * snapshot.  They are just two device trees that happen to point to the
  61 * same data blocks.
  62 *
  63 * When we get a write in we decide if it's to a shared data block using
  64 * some timestamp magic.  If it is, we have to break sharing.
  65 *
  66 * Let's say we write to a shared block in what was the origin.  The
  67 * steps are:
  68 *
  69 * i) plug io further to this physical block. (see bio_prison code).
  70 *
  71 * ii) quiesce any read io to that shared data block.  Obviously
  72 * including all devices that share this block.  (see dm_deferred_set code)
  73 *
  74 * iii) copy the data block to a newly allocate block.  This step can be
  75 * missed out if the io covers the block. (schedule_copy).
  76 *
  77 * iv) insert the new mapping into the origin's btree
  78 * (process_prepared_mapping).  This act of inserting breaks some
  79 * sharing of btree nodes between the two devices.  Breaking sharing only
  80 * effects the btree of that specific device.  Btrees for the other
  81 * devices that share the block never change.  The btree for the origin
  82 * device as it was after the last commit is untouched, ie. we're using
  83 * persistent data structures in the functional programming sense.
  84 *
  85 * v) unplug io to this physical block, including the io that triggered
  86 * the breaking of sharing.
  87 *
  88 * Steps (ii) and (iii) occur in parallel.
  89 *
  90 * The metadata _doesn't_ need to be committed before the io continues.  We
  91 * get away with this because the io is always written to a _new_ block.
  92 * If there's a crash, then:
  93 *
  94 * - The origin mapping will point to the old origin block (the shared
  95 * one).  This will contain the data as it was before the io that triggered
  96 * the breaking of sharing came in.
  97 *
  98 * - The snap mapping still points to the old block.  As it would after
  99 * the commit.
 100 *
 101 * The downside of this scheme is the timestamp magic isn't perfect, and
 102 * will continue to think that data block in the snapshot device is shared
 103 * even after the write to the origin has broken sharing.  I suspect data
 104 * blocks will typically be shared by many different devices, so we're
 105 * breaking sharing n + 1 times, rather than n, where n is the number of
 106 * devices that reference this data block.  At the moment I think the
 107 * benefits far, far outweigh the disadvantages.
 108 */
 109
 110/*----------------------------------------------------------------*/
 111
 112/*
 113 * Key building.
 114 */
 115enum lock_space {
 116	VIRTUAL,
 117	PHYSICAL
 118};
 119
 120static void build_key(struct dm_thin_device *td, enum lock_space ls,
 121		      dm_block_t b, dm_block_t e, struct dm_cell_key *key)
 122{
 123	key->virtual = (ls == VIRTUAL);
 124	key->dev = dm_thin_dev_id(td);
 125	key->block_begin = b;
 126	key->block_end = e;
 
 
 127}
 128
 129static void build_data_key(struct dm_thin_device *td, dm_block_t b,
 130			   struct dm_cell_key *key)
 131{
 132	build_key(td, PHYSICAL, b, b + 1llu, key);
 133}
 134
 135static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
 136			      struct dm_cell_key *key)
 137{
 138	build_key(td, VIRTUAL, b, b + 1llu, key);
 139}
 140
 141/*----------------------------------------------------------------*/
 142
 143#define THROTTLE_THRESHOLD (1 * HZ)
 144
 145struct throttle {
 146	struct rw_semaphore lock;
 147	unsigned long threshold;
 148	bool throttle_applied;
 149};
 150
 151static void throttle_init(struct throttle *t)
 152{
 153	init_rwsem(&t->lock);
 154	t->throttle_applied = false;
 155}
 156
 157static void throttle_work_start(struct throttle *t)
 158{
 159	t->threshold = jiffies + THROTTLE_THRESHOLD;
 160}
 161
 162static void throttle_work_update(struct throttle *t)
 163{
 164	if (!t->throttle_applied && time_is_before_jiffies(t->threshold)) {
 165		down_write(&t->lock);
 166		t->throttle_applied = true;
 167	}
 168}
 169
 170static void throttle_work_complete(struct throttle *t)
 171{
 172	if (t->throttle_applied) {
 173		t->throttle_applied = false;
 174		up_write(&t->lock);
 175	}
 176}
 177
 178static void throttle_lock(struct throttle *t)
 179{
 180	down_read(&t->lock);
 181}
 182
 183static void throttle_unlock(struct throttle *t)
 184{
 185	up_read(&t->lock);
 186}
 187
 188/*----------------------------------------------------------------*/
 189
 190/*
 191 * A pool device ties together a metadata device and a data device.  It
 192 * also provides the interface for creating and destroying internal
 193 * devices.
 194 */
 195struct dm_thin_new_mapping;
 196
 197/*
 198 * The pool runs in various modes.  Ordered in degraded order for comparisons.
 199 */
 200enum pool_mode {
 201	PM_WRITE,		/* metadata may be changed */
 202	PM_OUT_OF_DATA_SPACE,	/* metadata may be changed, though data may not be allocated */
 203
 204	/*
 205	 * Like READ_ONLY, except may switch back to WRITE on metadata resize. Reported as READ_ONLY.
 206	 */
 207	PM_OUT_OF_METADATA_SPACE,
 208	PM_READ_ONLY,		/* metadata may not be changed */
 209
 210	PM_FAIL,		/* all I/O fails */
 211};
 212
 213struct pool_features {
 214	enum pool_mode mode;
 215
 216	bool zero_new_blocks:1;
 217	bool discard_enabled:1;
 218	bool discard_passdown:1;
 219	bool error_if_no_space:1;
 220};
 221
 222struct thin_c;
 223typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
 224typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
 225typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
 226
 227#define CELL_SORT_ARRAY_SIZE 8192
 228
 229struct pool {
 230	struct list_head list;
 231	struct dm_target *ti;	/* Only set if a pool target is bound */
 232
 233	struct mapped_device *pool_md;
 234	struct block_device *data_dev;
 235	struct block_device *md_dev;
 236	struct dm_pool_metadata *pmd;
 237
 238	dm_block_t low_water_blocks;
 239	uint32_t sectors_per_block;
 240	int sectors_per_block_shift;
 241
 242	struct pool_features pf;
 243	bool low_water_triggered:1;	/* A dm event has been sent */
 244	bool suspended:1;
 245	bool out_of_data_space:1;
 246
 247	struct dm_bio_prison *prison;
 248	struct dm_kcopyd_client *copier;
 249
 250	struct work_struct worker;
 251	struct workqueue_struct *wq;
 252	struct throttle throttle;
 253	struct delayed_work waker;
 254	struct delayed_work no_space_timeout;
 255
 256	unsigned long last_commit_jiffies;
 257	unsigned ref_count;
 258
 259	spinlock_t lock;
 260	struct bio_list deferred_flush_bios;
 261	struct bio_list deferred_flush_completions;
 262	struct list_head prepared_mappings;
 263	struct list_head prepared_discards;
 264	struct list_head prepared_discards_pt2;
 265	struct list_head active_thins;
 266
 267	struct dm_deferred_set *shared_read_ds;
 268	struct dm_deferred_set *all_io_ds;
 269
 270	struct dm_thin_new_mapping *next_mapping;
 271
 272	process_bio_fn process_bio;
 273	process_bio_fn process_discard;
 274
 275	process_cell_fn process_cell;
 276	process_cell_fn process_discard_cell;
 277
 278	process_mapping_fn process_prepared_mapping;
 279	process_mapping_fn process_prepared_discard;
 280	process_mapping_fn process_prepared_discard_pt2;
 281
 282	struct dm_bio_prison_cell **cell_sort_array;
 283
 284	mempool_t mapping_pool;
 285};
 286
 287static void metadata_operation_failed(struct pool *pool, const char *op, int r);
 288
 289static enum pool_mode get_pool_mode(struct pool *pool)
 290{
 291	return pool->pf.mode;
 292}
 293
 294static void notify_of_pool_mode_change(struct pool *pool)
 295{
 296	const char *descs[] = {
 297		"write",
 298		"out-of-data-space",
 299		"read-only",
 300		"read-only",
 301		"fail"
 302	};
 303	const char *extra_desc = NULL;
 304	enum pool_mode mode = get_pool_mode(pool);
 305
 306	if (mode == PM_OUT_OF_DATA_SPACE) {
 307		if (!pool->pf.error_if_no_space)
 308			extra_desc = " (queue IO)";
 309		else
 310			extra_desc = " (error IO)";
 311	}
 312
 313	dm_table_event(pool->ti->table);
 314	DMINFO("%s: switching pool to %s%s mode",
 315	       dm_device_name(pool->pool_md),
 316	       descs[(int)mode], extra_desc ? : "");
 317}
 318
 319/*
 320 * Target context for a pool.
 321 */
 322struct pool_c {
 323	struct dm_target *ti;
 324	struct pool *pool;
 325	struct dm_dev *data_dev;
 326	struct dm_dev *metadata_dev;
 327
 328	dm_block_t low_water_blocks;
 329	struct pool_features requested_pf; /* Features requested during table load */
 330	struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
 331};
 332
 333/*
 334 * Target context for a thin.
 335 */
 336struct thin_c {
 337	struct list_head list;
 338	struct dm_dev *pool_dev;
 339	struct dm_dev *origin_dev;
 340	sector_t origin_size;
 341	dm_thin_id dev_id;
 342
 343	struct pool *pool;
 344	struct dm_thin_device *td;
 345	struct mapped_device *thin_md;
 346
 347	bool requeue_mode:1;
 348	spinlock_t lock;
 349	struct list_head deferred_cells;
 350	struct bio_list deferred_bio_list;
 351	struct bio_list retry_on_resume_list;
 352	struct rb_root sort_bio_list; /* sorted list of deferred bios */
 353
 354	/*
 355	 * Ensures the thin is not destroyed until the worker has finished
 356	 * iterating the active_thins list.
 357	 */
 358	refcount_t refcount;
 359	struct completion can_destroy;
 360};
 361
 362/*----------------------------------------------------------------*/
 363
 364static bool block_size_is_power_of_two(struct pool *pool)
 365{
 366	return pool->sectors_per_block_shift >= 0;
 367}
 368
 369static sector_t block_to_sectors(struct pool *pool, dm_block_t b)
 370{
 371	return block_size_is_power_of_two(pool) ?
 372		(b << pool->sectors_per_block_shift) :
 373		(b * pool->sectors_per_block);
 374}
 375
 376/*----------------------------------------------------------------*/
 377
 378struct discard_op {
 379	struct thin_c *tc;
 380	struct blk_plug plug;
 381	struct bio *parent_bio;
 382	struct bio *bio;
 383};
 384
 385static void begin_discard(struct discard_op *op, struct thin_c *tc, struct bio *parent)
 386{
 387	BUG_ON(!parent);
 388
 389	op->tc = tc;
 390	blk_start_plug(&op->plug);
 391	op->parent_bio = parent;
 392	op->bio = NULL;
 393}
 394
 395static int issue_discard(struct discard_op *op, dm_block_t data_b, dm_block_t data_e)
 396{
 397	struct thin_c *tc = op->tc;
 398	sector_t s = block_to_sectors(tc->pool, data_b);
 399	sector_t len = block_to_sectors(tc->pool, data_e - data_b);
 400
 401	return __blkdev_issue_discard(tc->pool_dev->bdev, s, len, GFP_NOWAIT,
 402				      &op->bio);
 403}
 404
 405static void end_discard(struct discard_op *op, int r)
 406{
 407	if (op->bio) {
 408		/*
 409		 * Even if one of the calls to issue_discard failed, we
 410		 * need to wait for the chain to complete.
 411		 */
 412		bio_chain(op->bio, op->parent_bio);
 413		op->bio->bi_opf = REQ_OP_DISCARD;
 414		submit_bio(op->bio);
 415	}
 416
 417	blk_finish_plug(&op->plug);
 418
 419	/*
 420	 * Even if r is set, there could be sub discards in flight that we
 421	 * need to wait for.
 422	 */
 423	if (r && !op->parent_bio->bi_status)
 424		op->parent_bio->bi_status = errno_to_blk_status(r);
 425	bio_endio(op->parent_bio);
 426}
 427
 428/*----------------------------------------------------------------*/
 429
 430/*
 431 * wake_worker() is used when new work is queued and when pool_resume is
 432 * ready to continue deferred IO processing.
 433 */
 434static void wake_worker(struct pool *pool)
 435{
 436	queue_work(pool->wq, &pool->worker);
 437}
 438
 439/*----------------------------------------------------------------*/
 440
 441static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
 442		      struct dm_bio_prison_cell **cell_result)
 443{
 444	int r;
 445	struct dm_bio_prison_cell *cell_prealloc;
 446
 447	/*
 448	 * Allocate a cell from the prison's mempool.
 449	 * This might block but it can't fail.
 450	 */
 451	cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
 452
 453	r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
 454	if (r)
 455		/*
 456		 * We reused an old cell; we can get rid of
 457		 * the new one.
 458		 */
 459		dm_bio_prison_free_cell(pool->prison, cell_prealloc);
 
 460
 461	return r;
 462}
 463
 464static void cell_release(struct pool *pool,
 465			 struct dm_bio_prison_cell *cell,
 466			 struct bio_list *bios)
 467{
 468	dm_cell_release(pool->prison, cell, bios);
 469	dm_bio_prison_free_cell(pool->prison, cell);
 470}
 471
 472static void cell_visit_release(struct pool *pool,
 473			       void (*fn)(void *, struct dm_bio_prison_cell *),
 474			       void *context,
 475			       struct dm_bio_prison_cell *cell)
 476{
 477	dm_cell_visit_release(pool->prison, fn, context, cell);
 478	dm_bio_prison_free_cell(pool->prison, cell);
 479}
 480
 481static void cell_release_no_holder(struct pool *pool,
 482				   struct dm_bio_prison_cell *cell,
 483				   struct bio_list *bios)
 484{
 485	dm_cell_release_no_holder(pool->prison, cell, bios);
 486	dm_bio_prison_free_cell(pool->prison, cell);
 487}
 488
 489static void cell_error_with_code(struct pool *pool,
 490		struct dm_bio_prison_cell *cell, blk_status_t error_code)
 491{
 492	dm_cell_error(pool->prison, cell, error_code);
 493	dm_bio_prison_free_cell(pool->prison, cell);
 494}
 495
 496static blk_status_t get_pool_io_error_code(struct pool *pool)
 497{
 498	return pool->out_of_data_space ? BLK_STS_NOSPC : BLK_STS_IOERR;
 499}
 500
 501static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
 502{
 503	cell_error_with_code(pool, cell, get_pool_io_error_code(pool));
 504}
 505
 506static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
 507{
 508	cell_error_with_code(pool, cell, 0);
 509}
 510
 511static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
 512{
 513	cell_error_with_code(pool, cell, BLK_STS_DM_REQUEUE);
 514}
 515
 516/*----------------------------------------------------------------*/
 517
 518/*
 519 * A global list of pools that uses a struct mapped_device as a key.
 520 */
 521static struct dm_thin_pool_table {
 522	struct mutex mutex;
 523	struct list_head pools;
 524} dm_thin_pool_table;
 525
 526static void pool_table_init(void)
 527{
 528	mutex_init(&dm_thin_pool_table.mutex);
 529	INIT_LIST_HEAD(&dm_thin_pool_table.pools);
 530}
 531
 532static void pool_table_exit(void)
 533{
 534	mutex_destroy(&dm_thin_pool_table.mutex);
 535}
 536
 537static void __pool_table_insert(struct pool *pool)
 538{
 539	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 540	list_add(&pool->list, &dm_thin_pool_table.pools);
 541}
 542
 543static void __pool_table_remove(struct pool *pool)
 544{
 545	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 546	list_del(&pool->list);
 547}
 548
 549static struct pool *__pool_table_lookup(struct mapped_device *md)
 550{
 551	struct pool *pool = NULL, *tmp;
 552
 553	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 554
 555	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
 556		if (tmp->pool_md == md) {
 557			pool = tmp;
 558			break;
 559		}
 560	}
 561
 562	return pool;
 563}
 564
 565static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
 566{
 567	struct pool *pool = NULL, *tmp;
 568
 569	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 570
 571	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
 572		if (tmp->md_dev == md_dev) {
 573			pool = tmp;
 574			break;
 575		}
 576	}
 577
 578	return pool;
 579}
 580
 581/*----------------------------------------------------------------*/
 582
 583struct dm_thin_endio_hook {
 584	struct thin_c *tc;
 585	struct dm_deferred_entry *shared_read_entry;
 586	struct dm_deferred_entry *all_io_entry;
 587	struct dm_thin_new_mapping *overwrite_mapping;
 588	struct rb_node rb_node;
 589	struct dm_bio_prison_cell *cell;
 590};
 591
 592static void __merge_bio_list(struct bio_list *bios, struct bio_list *master)
 593{
 594	bio_list_merge(bios, master);
 595	bio_list_init(master);
 596}
 597
 598static void error_bio_list(struct bio_list *bios, blk_status_t error)
 599{
 600	struct bio *bio;
 601
 602	while ((bio = bio_list_pop(bios))) {
 603		bio->bi_status = error;
 604		bio_endio(bio);
 605	}
 606}
 607
 608static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master,
 609		blk_status_t error)
 610{
 611	struct bio_list bios;
 612
 613	bio_list_init(&bios);
 614
 615	spin_lock_irq(&tc->lock);
 616	__merge_bio_list(&bios, master);
 617	spin_unlock_irq(&tc->lock);
 618
 619	error_bio_list(&bios, error);
 620}
 621
 622static void requeue_deferred_cells(struct thin_c *tc)
 623{
 624	struct pool *pool = tc->pool;
 625	struct list_head cells;
 626	struct dm_bio_prison_cell *cell, *tmp;
 627
 628	INIT_LIST_HEAD(&cells);
 629
 630	spin_lock_irq(&tc->lock);
 631	list_splice_init(&tc->deferred_cells, &cells);
 632	spin_unlock_irq(&tc->lock);
 633
 634	list_for_each_entry_safe(cell, tmp, &cells, user_list)
 635		cell_requeue(pool, cell);
 636}
 637
 638static void requeue_io(struct thin_c *tc)
 639{
 640	struct bio_list bios;
 641
 642	bio_list_init(&bios);
 643
 644	spin_lock_irq(&tc->lock);
 645	__merge_bio_list(&bios, &tc->deferred_bio_list);
 646	__merge_bio_list(&bios, &tc->retry_on_resume_list);
 647	spin_unlock_irq(&tc->lock);
 648
 649	error_bio_list(&bios, BLK_STS_DM_REQUEUE);
 650	requeue_deferred_cells(tc);
 651}
 652
 653static void error_retry_list_with_code(struct pool *pool, blk_status_t error)
 654{
 655	struct thin_c *tc;
 656
 657	rcu_read_lock();
 658	list_for_each_entry_rcu(tc, &pool->active_thins, list)
 659		error_thin_bio_list(tc, &tc->retry_on_resume_list, error);
 660	rcu_read_unlock();
 661}
 662
 663static void error_retry_list(struct pool *pool)
 664{
 665	error_retry_list_with_code(pool, get_pool_io_error_code(pool));
 666}
 667
 668/*
 669 * This section of code contains the logic for processing a thin device's IO.
 670 * Much of the code depends on pool object resources (lists, workqueues, etc)
 671 * but most is exclusively called from the thin target rather than the thin-pool
 672 * target.
 673 */
 674
 675static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
 676{
 677	struct pool *pool = tc->pool;
 678	sector_t block_nr = bio->bi_iter.bi_sector;
 679
 680	if (block_size_is_power_of_two(pool))
 681		block_nr >>= pool->sectors_per_block_shift;
 682	else
 683		(void) sector_div(block_nr, pool->sectors_per_block);
 684
 685	return block_nr;
 686}
 687
 688/*
 689 * Returns the _complete_ blocks that this bio covers.
 690 */
 691static void get_bio_block_range(struct thin_c *tc, struct bio *bio,
 692				dm_block_t *begin, dm_block_t *end)
 693{
 694	struct pool *pool = tc->pool;
 695	sector_t b = bio->bi_iter.bi_sector;
 696	sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT);
 697
 698	b += pool->sectors_per_block - 1ull; /* so we round up */
 699
 700	if (block_size_is_power_of_two(pool)) {
 701		b >>= pool->sectors_per_block_shift;
 702		e >>= pool->sectors_per_block_shift;
 703	} else {
 704		(void) sector_div(b, pool->sectors_per_block);
 705		(void) sector_div(e, pool->sectors_per_block);
 706	}
 707
 708	if (e < b)
 709		/* Can happen if the bio is within a single block. */
 710		e = b;
 
 711
 712	*begin = b;
 713	*end = e;
 714}
 715
 716static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
 717{
 718	struct pool *pool = tc->pool;
 719	sector_t bi_sector = bio->bi_iter.bi_sector;
 720
 721	bio_set_dev(bio, tc->pool_dev->bdev);
 722	if (block_size_is_power_of_two(pool))
 723		bio->bi_iter.bi_sector =
 724			(block << pool->sectors_per_block_shift) |
 725			(bi_sector & (pool->sectors_per_block - 1));
 726	else
 727		bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
 728				 sector_div(bi_sector, pool->sectors_per_block);
 
 729}
 730
 731static void remap_to_origin(struct thin_c *tc, struct bio *bio)
 732{
 733	bio_set_dev(bio, tc->origin_dev->bdev);
 734}
 735
 736static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
 737{
 738	return op_is_flush(bio->bi_opf) &&
 739		dm_thin_changed_this_transaction(tc->td);
 740}
 741
 742static void inc_all_io_entry(struct pool *pool, struct bio *bio)
 743{
 744	struct dm_thin_endio_hook *h;
 745
 746	if (bio_op(bio) == REQ_OP_DISCARD)
 747		return;
 748
 749	h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
 750	h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
 751}
 752
 753static void issue(struct thin_c *tc, struct bio *bio)
 754{
 755	struct pool *pool = tc->pool;
 756
 757	if (!bio_triggers_commit(tc, bio)) {
 758		dm_submit_bio_remap(bio, NULL);
 759		return;
 760	}
 761
 762	/*
 763	 * Complete bio with an error if earlier I/O caused changes to
 764	 * the metadata that can't be committed e.g, due to I/O errors
 765	 * on the metadata device.
 766	 */
 767	if (dm_thin_aborted_changes(tc->td)) {
 768		bio_io_error(bio);
 769		return;
 770	}
 771
 772	/*
 773	 * Batch together any bios that trigger commits and then issue a
 774	 * single commit for them in process_deferred_bios().
 775	 */
 776	spin_lock_irq(&pool->lock);
 777	bio_list_add(&pool->deferred_flush_bios, bio);
 778	spin_unlock_irq(&pool->lock);
 779}
 780
 781static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
 782{
 783	remap_to_origin(tc, bio);
 784	issue(tc, bio);
 785}
 786
 787static void remap_and_issue(struct thin_c *tc, struct bio *bio,
 788			    dm_block_t block)
 789{
 790	remap(tc, bio, block);
 791	issue(tc, bio);
 792}
 793
 794/*----------------------------------------------------------------*/
 795
 796/*
 797 * Bio endio functions.
 798 */
 799struct dm_thin_new_mapping {
 800	struct list_head list;
 801
 802	bool pass_discard:1;
 803	bool maybe_shared:1;
 804
 805	/*
 806	 * Track quiescing, copying and zeroing preparation actions.  When this
 807	 * counter hits zero the block is prepared and can be inserted into the
 808	 * btree.
 809	 */
 810	atomic_t prepare_actions;
 811
 812	blk_status_t status;
 813	struct thin_c *tc;
 814	dm_block_t virt_begin, virt_end;
 815	dm_block_t data_block;
 816	struct dm_bio_prison_cell *cell;
 817
 818	/*
 819	 * If the bio covers the whole area of a block then we can avoid
 820	 * zeroing or copying.  Instead this bio is hooked.  The bio will
 821	 * still be in the cell, so care has to be taken to avoid issuing
 822	 * the bio twice.
 823	 */
 824	struct bio *bio;
 825	bio_end_io_t *saved_bi_end_io;
 826};
 827
 828static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
 829{
 830	struct pool *pool = m->tc->pool;
 831
 832	if (atomic_dec_and_test(&m->prepare_actions)) {
 833		list_add_tail(&m->list, &pool->prepared_mappings);
 834		wake_worker(pool);
 835	}
 836}
 837
 838static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
 839{
 840	unsigned long flags;
 841	struct pool *pool = m->tc->pool;
 842
 843	spin_lock_irqsave(&pool->lock, flags);
 844	__complete_mapping_preparation(m);
 845	spin_unlock_irqrestore(&pool->lock, flags);
 846}
 847
 848static void copy_complete(int read_err, unsigned long write_err, void *context)
 849{
 850	struct dm_thin_new_mapping *m = context;
 851
 852	m->status = read_err || write_err ? BLK_STS_IOERR : 0;
 853	complete_mapping_preparation(m);
 854}
 855
 856static void overwrite_endio(struct bio *bio)
 857{
 858	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
 859	struct dm_thin_new_mapping *m = h->overwrite_mapping;
 860
 861	bio->bi_end_io = m->saved_bi_end_io;
 862
 863	m->status = bio->bi_status;
 864	complete_mapping_preparation(m);
 865}
 866
 867/*----------------------------------------------------------------*/
 868
 869/*
 870 * Workqueue.
 871 */
 872
 873/*
 874 * Prepared mapping jobs.
 875 */
 876
 877/*
 878 * This sends the bios in the cell, except the original holder, back
 879 * to the deferred_bios list.
 880 */
 881static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
 882{
 883	struct pool *pool = tc->pool;
 884	unsigned long flags;
 885	int has_work;
 886
 887	spin_lock_irqsave(&tc->lock, flags);
 888	cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
 889	has_work = !bio_list_empty(&tc->deferred_bio_list);
 890	spin_unlock_irqrestore(&tc->lock, flags);
 891
 892	if (has_work)
 
 
 
 893		wake_worker(pool);
 
 894}
 895
 896static void thin_defer_bio(struct thin_c *tc, struct bio *bio);
 897
 898struct remap_info {
 899	struct thin_c *tc;
 900	struct bio_list defer_bios;
 901	struct bio_list issue_bios;
 902};
 903
 904static void __inc_remap_and_issue_cell(void *context,
 905				       struct dm_bio_prison_cell *cell)
 906{
 907	struct remap_info *info = context;
 908	struct bio *bio;
 909
 910	while ((bio = bio_list_pop(&cell->bios))) {
 911		if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD)
 912			bio_list_add(&info->defer_bios, bio);
 913		else {
 914			inc_all_io_entry(info->tc->pool, bio);
 915
 916			/*
 917			 * We can't issue the bios with the bio prison lock
 918			 * held, so we add them to a list to issue on
 919			 * return from this function.
 920			 */
 921			bio_list_add(&info->issue_bios, bio);
 922		}
 923	}
 924}
 925
 926static void inc_remap_and_issue_cell(struct thin_c *tc,
 927				     struct dm_bio_prison_cell *cell,
 928				     dm_block_t block)
 929{
 930	struct bio *bio;
 931	struct remap_info info;
 932
 933	info.tc = tc;
 934	bio_list_init(&info.defer_bios);
 935	bio_list_init(&info.issue_bios);
 936
 937	/*
 938	 * We have to be careful to inc any bios we're about to issue
 939	 * before the cell is released, and avoid a race with new bios
 940	 * being added to the cell.
 941	 */
 942	cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
 943			   &info, cell);
 944
 945	while ((bio = bio_list_pop(&info.defer_bios)))
 946		thin_defer_bio(tc, bio);
 947
 948	while ((bio = bio_list_pop(&info.issue_bios)))
 949		remap_and_issue(info.tc, bio, block);
 950}
 951
 952static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
 953{
 954	cell_error(m->tc->pool, m->cell);
 955	list_del(&m->list);
 956	mempool_free(m, &m->tc->pool->mapping_pool);
 957}
 958
 959static void complete_overwrite_bio(struct thin_c *tc, struct bio *bio)
 960{
 961	struct pool *pool = tc->pool;
 962
 963	/*
 964	 * If the bio has the REQ_FUA flag set we must commit the metadata
 965	 * before signaling its completion.
 966	 */
 967	if (!bio_triggers_commit(tc, bio)) {
 968		bio_endio(bio);
 969		return;
 970	}
 971
 972	/*
 973	 * Complete bio with an error if earlier I/O caused changes to the
 974	 * metadata that can't be committed, e.g, due to I/O errors on the
 975	 * metadata device.
 976	 */
 977	if (dm_thin_aborted_changes(tc->td)) {
 978		bio_io_error(bio);
 979		return;
 980	}
 981
 982	/*
 983	 * Batch together any bios that trigger commits and then issue a
 984	 * single commit for them in process_deferred_bios().
 985	 */
 986	spin_lock_irq(&pool->lock);
 987	bio_list_add(&pool->deferred_flush_completions, bio);
 988	spin_unlock_irq(&pool->lock);
 989}
 990
 991static void process_prepared_mapping(struct dm_thin_new_mapping *m)
 992{
 993	struct thin_c *tc = m->tc;
 994	struct pool *pool = tc->pool;
 995	struct bio *bio = m->bio;
 996	int r;
 997
 998	if (m->status) {
 999		cell_error(pool, m->cell);
1000		goto out;
1001	}
1002
1003	/*
1004	 * Commit the prepared block into the mapping btree.
1005	 * Any I/O for this block arriving after this point will get
1006	 * remapped to it directly.
1007	 */
1008	r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block);
1009	if (r) {
1010		metadata_operation_failed(pool, "dm_thin_insert_block", r);
1011		cell_error(pool, m->cell);
1012		goto out;
1013	}
1014
1015	/*
1016	 * Release any bios held while the block was being provisioned.
1017	 * If we are processing a write bio that completely covers the block,
1018	 * we already processed it so can ignore it now when processing
1019	 * the bios in the cell.
1020	 */
1021	if (bio) {
1022		inc_remap_and_issue_cell(tc, m->cell, m->data_block);
1023		complete_overwrite_bio(tc, bio);
1024	} else {
1025		inc_all_io_entry(tc->pool, m->cell->holder);
1026		remap_and_issue(tc, m->cell->holder, m->data_block);
1027		inc_remap_and_issue_cell(tc, m->cell, m->data_block);
1028	}
1029
1030out:
1031	list_del(&m->list);
1032	mempool_free(m, &pool->mapping_pool);
1033}
1034
1035/*----------------------------------------------------------------*/
1036
1037static void free_discard_mapping(struct dm_thin_new_mapping *m)
1038{
1039	struct thin_c *tc = m->tc;
 
1040	if (m->cell)
1041		cell_defer_no_holder(tc, m->cell);
1042	mempool_free(m, &tc->pool->mapping_pool);
1043}
1044
1045static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
1046{
1047	bio_io_error(m->bio);
1048	free_discard_mapping(m);
1049}
1050
1051static void process_prepared_discard_success(struct dm_thin_new_mapping *m)
1052{
1053	bio_endio(m->bio);
1054	free_discard_mapping(m);
1055}
1056
1057static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m)
1058{
1059	int r;
1060	struct thin_c *tc = m->tc;
1061
1062	r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end);
1063	if (r) {
1064		metadata_operation_failed(tc->pool, "dm_thin_remove_range", r);
1065		bio_io_error(m->bio);
1066	} else
1067		bio_endio(m->bio);
1068
1069	cell_defer_no_holder(tc, m->cell);
1070	mempool_free(m, &tc->pool->mapping_pool);
1071}
1072
1073/*----------------------------------------------------------------*/
1074
1075static void passdown_double_checking_shared_status(struct dm_thin_new_mapping *m,
1076						   struct bio *discard_parent)
1077{
1078	/*
1079	 * We've already unmapped this range of blocks, but before we
1080	 * passdown we have to check that these blocks are now unused.
1081	 */
1082	int r = 0;
1083	bool shared = true;
1084	struct thin_c *tc = m->tc;
1085	struct pool *pool = tc->pool;
1086	dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin;
1087	struct discard_op op;
1088
1089	begin_discard(&op, tc, discard_parent);
1090	while (b != end) {
1091		/* find start of unmapped run */
1092		for (; b < end; b++) {
1093			r = dm_pool_block_is_shared(pool->pmd, b, &shared);
1094			if (r)
1095				goto out;
1096
1097			if (!shared)
1098				break;
1099		}
1100
1101		if (b == end)
1102			break;
1103
1104		/* find end of run */
1105		for (e = b + 1; e != end; e++) {
1106			r = dm_pool_block_is_shared(pool->pmd, e, &shared);
1107			if (r)
1108				goto out;
1109
1110			if (shared)
1111				break;
1112		}
1113
1114		r = issue_discard(&op, b, e);
1115		if (r)
1116			goto out;
1117
1118		b = e;
1119	}
1120out:
1121	end_discard(&op, r);
1122}
1123
1124static void queue_passdown_pt2(struct dm_thin_new_mapping *m)
1125{
1126	unsigned long flags;
1127	struct pool *pool = m->tc->pool;
1128
1129	spin_lock_irqsave(&pool->lock, flags);
1130	list_add_tail(&m->list, &pool->prepared_discards_pt2);
1131	spin_unlock_irqrestore(&pool->lock, flags);
1132	wake_worker(pool);
1133}
1134
1135static void passdown_endio(struct bio *bio)
1136{
1137	/*
1138	 * It doesn't matter if the passdown discard failed, we still want
1139	 * to unmap (we ignore err).
1140	 */
1141	queue_passdown_pt2(bio->bi_private);
1142	bio_put(bio);
1143}
1144
1145static void process_prepared_discard_passdown_pt1(struct dm_thin_new_mapping *m)
1146{
1147	int r;
1148	struct thin_c *tc = m->tc;
1149	struct pool *pool = tc->pool;
1150	struct bio *discard_parent;
1151	dm_block_t data_end = m->data_block + (m->virt_end - m->virt_begin);
1152
1153	/*
1154	 * Only this thread allocates blocks, so we can be sure that the
1155	 * newly unmapped blocks will not be allocated before the end of
1156	 * the function.
1157	 */
1158	r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end);
1159	if (r) {
1160		metadata_operation_failed(pool, "dm_thin_remove_range", r);
1161		bio_io_error(m->bio);
1162		cell_defer_no_holder(tc, m->cell);
1163		mempool_free(m, &pool->mapping_pool);
1164		return;
1165	}
1166
1167	/*
1168	 * Increment the unmapped blocks.  This prevents a race between the
1169	 * passdown io and reallocation of freed blocks.
1170	 */
1171	r = dm_pool_inc_data_range(pool->pmd, m->data_block, data_end);
1172	if (r) {
1173		metadata_operation_failed(pool, "dm_pool_inc_data_range", r);
1174		bio_io_error(m->bio);
1175		cell_defer_no_holder(tc, m->cell);
1176		mempool_free(m, &pool->mapping_pool);
1177		return;
1178	}
1179
1180	discard_parent = bio_alloc(NULL, 1, 0, GFP_NOIO);
1181	discard_parent->bi_end_io = passdown_endio;
1182	discard_parent->bi_private = m;
1183 	if (m->maybe_shared)
1184 		passdown_double_checking_shared_status(m, discard_parent);
1185 	else {
1186		struct discard_op op;
1187
1188		begin_discard(&op, tc, discard_parent);
1189		r = issue_discard(&op, m->data_block, data_end);
1190		end_discard(&op, r);
1191	}
1192}
1193
1194static void process_prepared_discard_passdown_pt2(struct dm_thin_new_mapping *m)
1195{
1196	int r;
1197	struct thin_c *tc = m->tc;
1198	struct pool *pool = tc->pool;
1199
1200	/*
1201	 * The passdown has completed, so now we can decrement all those
1202	 * unmapped blocks.
1203	 */
1204	r = dm_pool_dec_data_range(pool->pmd, m->data_block,
1205				   m->data_block + (m->virt_end - m->virt_begin));
1206	if (r) {
1207		metadata_operation_failed(pool, "dm_pool_dec_data_range", r);
1208		bio_io_error(m->bio);
1209	} else
1210		bio_endio(m->bio);
1211
1212	cell_defer_no_holder(tc, m->cell);
1213	mempool_free(m, &pool->mapping_pool);
1214}
1215
1216static void process_prepared(struct pool *pool, struct list_head *head,
1217			     process_mapping_fn *fn)
1218{
1219	struct list_head maps;
1220	struct dm_thin_new_mapping *m, *tmp;
1221
1222	INIT_LIST_HEAD(&maps);
1223	spin_lock_irq(&pool->lock);
1224	list_splice_init(head, &maps);
1225	spin_unlock_irq(&pool->lock);
1226
1227	list_for_each_entry_safe(m, tmp, &maps, list)
1228		(*fn)(m);
1229}
1230
1231/*
1232 * Deferred bio jobs.
1233 */
1234static int io_overlaps_block(struct pool *pool, struct bio *bio)
1235{
1236	return bio->bi_iter.bi_size ==
1237		(pool->sectors_per_block << SECTOR_SHIFT);
1238}
1239
1240static int io_overwrites_block(struct pool *pool, struct bio *bio)
1241{
1242	return (bio_data_dir(bio) == WRITE) &&
1243		io_overlaps_block(pool, bio);
1244}
1245
1246static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
1247			       bio_end_io_t *fn)
1248{
1249	*save = bio->bi_end_io;
1250	bio->bi_end_io = fn;
1251}
1252
1253static int ensure_next_mapping(struct pool *pool)
1254{
1255	if (pool->next_mapping)
1256		return 0;
1257
1258	pool->next_mapping = mempool_alloc(&pool->mapping_pool, GFP_ATOMIC);
1259
1260	return pool->next_mapping ? 0 : -ENOMEM;
1261}
1262
1263static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
1264{
1265	struct dm_thin_new_mapping *m = pool->next_mapping;
1266
1267	BUG_ON(!pool->next_mapping);
1268
1269	memset(m, 0, sizeof(struct dm_thin_new_mapping));
1270	INIT_LIST_HEAD(&m->list);
1271	m->bio = NULL;
1272
1273	pool->next_mapping = NULL;
1274
1275	return m;
1276}
1277
1278static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
1279		    sector_t begin, sector_t end)
1280{
1281	struct dm_io_region to;
1282
1283	to.bdev = tc->pool_dev->bdev;
1284	to.sector = begin;
1285	to.count = end - begin;
1286
1287	dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
1288}
1289
1290static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
1291				      dm_block_t data_begin,
1292				      struct dm_thin_new_mapping *m)
1293{
1294	struct pool *pool = tc->pool;
1295	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1296
1297	h->overwrite_mapping = m;
1298	m->bio = bio;
1299	save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1300	inc_all_io_entry(pool, bio);
1301	remap_and_issue(tc, bio, data_begin);
1302}
1303
1304/*
1305 * A partial copy also needs to zero the uncopied region.
1306 */
1307static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
1308			  struct dm_dev *origin, dm_block_t data_origin,
1309			  dm_block_t data_dest,
1310			  struct dm_bio_prison_cell *cell, struct bio *bio,
1311			  sector_t len)
1312{
1313	struct pool *pool = tc->pool;
1314	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1315
1316	m->tc = tc;
1317	m->virt_begin = virt_block;
1318	m->virt_end = virt_block + 1u;
1319	m->data_block = data_dest;
1320	m->cell = cell;
1321
1322	/*
1323	 * quiesce action + copy action + an extra reference held for the
1324	 * duration of this function (we may need to inc later for a
1325	 * partial zero).
1326	 */
1327	atomic_set(&m->prepare_actions, 3);
1328
1329	if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
1330		complete_mapping_preparation(m); /* already quiesced */
1331
1332	/*
1333	 * IO to pool_dev remaps to the pool target's data_dev.
1334	 *
1335	 * If the whole block of data is being overwritten, we can issue the
1336	 * bio immediately. Otherwise we use kcopyd to clone the data first.
1337	 */
1338	if (io_overwrites_block(pool, bio))
1339		remap_and_issue_overwrite(tc, bio, data_dest, m);
1340	else {
1341		struct dm_io_region from, to;
1342
1343		from.bdev = origin->bdev;
1344		from.sector = data_origin * pool->sectors_per_block;
1345		from.count = len;
1346
1347		to.bdev = tc->pool_dev->bdev;
1348		to.sector = data_dest * pool->sectors_per_block;
1349		to.count = len;
1350
1351		dm_kcopyd_copy(pool->copier, &from, 1, &to,
1352			       0, copy_complete, m);
1353
1354		/*
1355		 * Do we need to zero a tail region?
1356		 */
1357		if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
1358			atomic_inc(&m->prepare_actions);
1359			ll_zero(tc, m,
1360				data_dest * pool->sectors_per_block + len,
1361				(data_dest + 1) * pool->sectors_per_block);
1362		}
1363	}
1364
1365	complete_mapping_preparation(m); /* drop our ref */
1366}
1367
1368static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1369				   dm_block_t data_origin, dm_block_t data_dest,
1370				   struct dm_bio_prison_cell *cell, struct bio *bio)
1371{
1372	schedule_copy(tc, virt_block, tc->pool_dev,
1373		      data_origin, data_dest, cell, bio,
1374		      tc->pool->sectors_per_block);
1375}
1376
1377static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1378			  dm_block_t data_block, struct dm_bio_prison_cell *cell,
1379			  struct bio *bio)
1380{
1381	struct pool *pool = tc->pool;
1382	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1383
1384	atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
1385	m->tc = tc;
1386	m->virt_begin = virt_block;
1387	m->virt_end = virt_block + 1u;
1388	m->data_block = data_block;
1389	m->cell = cell;
1390
1391	/*
1392	 * If the whole block of data is being overwritten or we are not
1393	 * zeroing pre-existing data, we can issue the bio immediately.
1394	 * Otherwise we use kcopyd to zero the data first.
1395	 */
1396	if (pool->pf.zero_new_blocks) {
1397		if (io_overwrites_block(pool, bio))
1398			remap_and_issue_overwrite(tc, bio, data_block, m);
1399		else
1400			ll_zero(tc, m, data_block * pool->sectors_per_block,
1401				(data_block + 1) * pool->sectors_per_block);
 
1402	} else
1403		process_prepared_mapping(m);
1404}
1405
1406static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1407				   dm_block_t data_dest,
1408				   struct dm_bio_prison_cell *cell, struct bio *bio)
1409{
1410	struct pool *pool = tc->pool;
1411	sector_t virt_block_begin = virt_block * pool->sectors_per_block;
1412	sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
1413
1414	if (virt_block_end <= tc->origin_size)
1415		schedule_copy(tc, virt_block, tc->origin_dev,
1416			      virt_block, data_dest, cell, bio,
1417			      pool->sectors_per_block);
1418
1419	else if (virt_block_begin < tc->origin_size)
1420		schedule_copy(tc, virt_block, tc->origin_dev,
1421			      virt_block, data_dest, cell, bio,
1422			      tc->origin_size - virt_block_begin);
1423
1424	else
1425		schedule_zero(tc, virt_block, data_dest, cell, bio);
1426}
1427
1428static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
1429
1430static void requeue_bios(struct pool *pool);
1431
1432static bool is_read_only_pool_mode(enum pool_mode mode)
1433{
1434	return (mode == PM_OUT_OF_METADATA_SPACE || mode == PM_READ_ONLY);
1435}
1436
1437static bool is_read_only(struct pool *pool)
1438{
1439	return is_read_only_pool_mode(get_pool_mode(pool));
1440}
1441
1442static void check_for_metadata_space(struct pool *pool)
1443{
1444	int r;
1445	const char *ooms_reason = NULL;
1446	dm_block_t nr_free;
1447
1448	r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free);
1449	if (r)
1450		ooms_reason = "Could not get free metadata blocks";
1451	else if (!nr_free)
1452		ooms_reason = "No free metadata blocks";
1453
1454	if (ooms_reason && !is_read_only(pool)) {
1455		DMERR("%s", ooms_reason);
1456		set_pool_mode(pool, PM_OUT_OF_METADATA_SPACE);
1457	}
1458}
1459
1460static void check_for_data_space(struct pool *pool)
1461{
1462	int r;
1463	dm_block_t nr_free;
1464
1465	if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE)
1466		return;
1467
1468	r = dm_pool_get_free_block_count(pool->pmd, &nr_free);
1469	if (r)
1470		return;
1471
1472	if (nr_free) {
1473		set_pool_mode(pool, PM_WRITE);
1474		requeue_bios(pool);
1475	}
1476}
1477
1478/*
1479 * A non-zero return indicates read_only or fail_io mode.
1480 * Many callers don't care about the return value.
1481 */
1482static int commit(struct pool *pool)
1483{
1484	int r;
1485
1486	if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE)
1487		return -EINVAL;
1488
1489	r = dm_pool_commit_metadata(pool->pmd);
1490	if (r)
1491		metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1492	else {
1493		check_for_metadata_space(pool);
1494		check_for_data_space(pool);
1495	}
1496
1497	return r;
1498}
1499
1500static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
1501{
1502	if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1503		DMWARN("%s: reached low water mark for data device: sending event.",
1504		       dm_device_name(pool->pool_md));
1505		spin_lock_irq(&pool->lock);
1506		pool->low_water_triggered = true;
1507		spin_unlock_irq(&pool->lock);
1508		dm_table_event(pool->ti->table);
1509	}
1510}
1511
1512static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1513{
1514	int r;
1515	dm_block_t free_blocks;
1516	struct pool *pool = tc->pool;
1517
1518	if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1519		return -EINVAL;
1520
1521	r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1522	if (r) {
1523		metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1524		return r;
1525	}
1526
1527	check_low_water_mark(pool, free_blocks);
1528
1529	if (!free_blocks) {
1530		/*
1531		 * Try to commit to see if that will free up some
1532		 * more space.
1533		 */
1534		r = commit(pool);
1535		if (r)
1536			return r;
1537
1538		r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1539		if (r) {
1540			metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1541			return r;
1542		}
1543
1544		if (!free_blocks) {
1545			set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1546			return -ENOSPC;
1547		}
1548	}
1549
1550	r = dm_pool_alloc_data_block(pool->pmd, result);
1551	if (r) {
1552		if (r == -ENOSPC)
1553			set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1554		else
1555			metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1556		return r;
1557	}
1558
1559	r = dm_pool_get_free_metadata_block_count(pool->pmd, &free_blocks);
1560	if (r) {
1561		metadata_operation_failed(pool, "dm_pool_get_free_metadata_block_count", r);
1562		return r;
1563	}
1564
1565	if (!free_blocks) {
1566		/* Let's commit before we use up the metadata reserve. */
1567		r = commit(pool);
1568		if (r)
1569			return r;
1570	}
1571
1572	return 0;
1573}
1574
1575/*
1576 * If we have run out of space, queue bios until the device is
1577 * resumed, presumably after having been reloaded with more space.
1578 */
1579static void retry_on_resume(struct bio *bio)
1580{
1581	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1582	struct thin_c *tc = h->tc;
1583
1584	spin_lock_irq(&tc->lock);
1585	bio_list_add(&tc->retry_on_resume_list, bio);
1586	spin_unlock_irq(&tc->lock);
1587}
1588
1589static blk_status_t should_error_unserviceable_bio(struct pool *pool)
1590{
1591	enum pool_mode m = get_pool_mode(pool);
1592
1593	switch (m) {
1594	case PM_WRITE:
1595		/* Shouldn't get here */
1596		DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1597		return BLK_STS_IOERR;
1598
1599	case PM_OUT_OF_DATA_SPACE:
1600		return pool->pf.error_if_no_space ? BLK_STS_NOSPC : 0;
1601
1602	case PM_OUT_OF_METADATA_SPACE:
1603	case PM_READ_ONLY:
1604	case PM_FAIL:
1605		return BLK_STS_IOERR;
1606	default:
1607		/* Shouldn't get here */
1608		DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1609		return BLK_STS_IOERR;
1610	}
1611}
1612
1613static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1614{
1615	blk_status_t error = should_error_unserviceable_bio(pool);
1616
1617	if (error) {
1618		bio->bi_status = error;
1619		bio_endio(bio);
1620	} else
1621		retry_on_resume(bio);
1622}
1623
1624static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1625{
1626	struct bio *bio;
1627	struct bio_list bios;
1628	blk_status_t error;
1629
1630	error = should_error_unserviceable_bio(pool);
1631	if (error) {
1632		cell_error_with_code(pool, cell, error);
1633		return;
1634	}
1635
1636	bio_list_init(&bios);
1637	cell_release(pool, cell, &bios);
1638
1639	while ((bio = bio_list_pop(&bios)))
1640		retry_on_resume(bio);
1641}
1642
1643static void process_discard_cell_no_passdown(struct thin_c *tc,
1644					     struct dm_bio_prison_cell *virt_cell)
1645{
1646	struct pool *pool = tc->pool;
1647	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1648
1649	/*
1650	 * We don't need to lock the data blocks, since there's no
1651	 * passdown.  We only lock data blocks for allocation and breaking sharing.
1652	 */
1653	m->tc = tc;
1654	m->virt_begin = virt_cell->key.block_begin;
1655	m->virt_end = virt_cell->key.block_end;
1656	m->cell = virt_cell;
1657	m->bio = virt_cell->holder;
1658
1659	if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1660		pool->process_prepared_discard(m);
1661}
1662
1663static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end,
1664				 struct bio *bio)
1665{
1666	struct pool *pool = tc->pool;
1667
1668	int r;
1669	bool maybe_shared;
1670	struct dm_cell_key data_key;
1671	struct dm_bio_prison_cell *data_cell;
1672	struct dm_thin_new_mapping *m;
1673	dm_block_t virt_begin, virt_end, data_begin;
 
1674
1675	while (begin != end) {
1676		r = ensure_next_mapping(pool);
1677		if (r)
1678			/* we did our best */
1679			return;
1680
1681		r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end,
1682					      &data_begin, &maybe_shared);
1683		if (r)
1684			/*
1685			 * Silently fail, letting any mappings we've
1686			 * created complete.
1687			 */
1688			break;
1689
1690		build_key(tc->td, PHYSICAL, data_begin, data_begin + (virt_end - virt_begin), &data_key);
1691		if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) {
1692			/* contention, we'll give up with this range */
1693			begin = virt_end;
1694			continue;
1695		}
1696
1697		/*
1698		 * IO may still be going to the destination block.  We must
1699		 * quiesce before we can do the removal.
1700		 */
1701		m = get_next_mapping(pool);
1702		m->tc = tc;
1703		m->maybe_shared = maybe_shared;
1704		m->virt_begin = virt_begin;
1705		m->virt_end = virt_end;
1706		m->data_block = data_begin;
1707		m->cell = data_cell;
1708		m->bio = bio;
1709
1710		/*
1711		 * The parent bio must not complete before sub discard bios are
1712		 * chained to it (see end_discard's bio_chain)!
1713		 *
1714		 * This per-mapping bi_remaining increment is paired with
1715		 * the implicit decrement that occurs via bio_endio() in
1716		 * end_discard().
1717		 */
1718		bio_inc_remaining(bio);
1719		if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1720			pool->process_prepared_discard(m);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1721
1722		begin = virt_end;
1723	}
1724}
1725
1726static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell)
1727{
1728	struct bio *bio = virt_cell->holder;
1729	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1730
1731	/*
1732	 * The virt_cell will only get freed once the origin bio completes.
1733	 * This means it will remain locked while all the individual
1734	 * passdown bios are in flight.
1735	 */
1736	h->cell = virt_cell;
1737	break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio);
1738
1739	/*
1740	 * We complete the bio now, knowing that the bi_remaining field
1741	 * will prevent completion until the sub range discards have
1742	 * completed.
1743	 */
1744	bio_endio(bio);
1745}
1746
1747static void process_discard_bio(struct thin_c *tc, struct bio *bio)
1748{
1749	dm_block_t begin, end;
1750	struct dm_cell_key virt_key;
1751	struct dm_bio_prison_cell *virt_cell;
1752
1753	get_bio_block_range(tc, bio, &begin, &end);
1754	if (begin == end) {
1755		/*
1756		 * The discard covers less than a block.
1757		 */
1758		bio_endio(bio);
1759		return;
1760	}
1761
1762	build_key(tc->td, VIRTUAL, begin, end, &virt_key);
1763	if (bio_detain(tc->pool, &virt_key, bio, &virt_cell))
 
 
 
 
 
1764		/*
1765		 * Potential starvation issue: We're relying on the
1766		 * fs/application being well behaved, and not trying to
1767		 * send IO to a region at the same time as discarding it.
1768		 * If they do this persistently then it's possible this
1769		 * cell will never be granted.
1770		 */
1771		return;
 
1772
1773	tc->pool->process_discard_cell(tc, virt_cell);
1774}
1775
1776static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1777			  struct dm_cell_key *key,
1778			  struct dm_thin_lookup_result *lookup_result,
1779			  struct dm_bio_prison_cell *cell)
1780{
1781	int r;
1782	dm_block_t data_block;
1783	struct pool *pool = tc->pool;
1784
1785	r = alloc_data_block(tc, &data_block);
1786	switch (r) {
1787	case 0:
1788		schedule_internal_copy(tc, block, lookup_result->block,
1789				       data_block, cell, bio);
1790		break;
1791
1792	case -ENOSPC:
1793		retry_bios_on_resume(pool, cell);
1794		break;
1795
1796	default:
1797		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1798			    __func__, r);
1799		cell_error(pool, cell);
1800		break;
1801	}
1802}
1803
1804static void __remap_and_issue_shared_cell(void *context,
1805					  struct dm_bio_prison_cell *cell)
1806{
1807	struct remap_info *info = context;
1808	struct bio *bio;
1809
1810	while ((bio = bio_list_pop(&cell->bios))) {
1811		if (bio_data_dir(bio) == WRITE || op_is_flush(bio->bi_opf) ||
1812		    bio_op(bio) == REQ_OP_DISCARD)
1813			bio_list_add(&info->defer_bios, bio);
1814		else {
1815			struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1816
1817			h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds);
1818			inc_all_io_entry(info->tc->pool, bio);
1819			bio_list_add(&info->issue_bios, bio);
1820		}
1821	}
1822}
1823
1824static void remap_and_issue_shared_cell(struct thin_c *tc,
1825					struct dm_bio_prison_cell *cell,
1826					dm_block_t block)
1827{
1828	struct bio *bio;
1829	struct remap_info info;
1830
1831	info.tc = tc;
1832	bio_list_init(&info.defer_bios);
1833	bio_list_init(&info.issue_bios);
1834
1835	cell_visit_release(tc->pool, __remap_and_issue_shared_cell,
1836			   &info, cell);
1837
1838	while ((bio = bio_list_pop(&info.defer_bios)))
1839		thin_defer_bio(tc, bio);
1840
1841	while ((bio = bio_list_pop(&info.issue_bios)))
1842		remap_and_issue(tc, bio, block);
1843}
1844
1845static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1846			       dm_block_t block,
1847			       struct dm_thin_lookup_result *lookup_result,
1848			       struct dm_bio_prison_cell *virt_cell)
1849{
1850	struct dm_bio_prison_cell *data_cell;
1851	struct pool *pool = tc->pool;
1852	struct dm_cell_key key;
1853
1854	/*
1855	 * If cell is already occupied, then sharing is already in the process
1856	 * of being broken so we have nothing further to do here.
1857	 */
1858	build_data_key(tc->td, lookup_result->block, &key);
1859	if (bio_detain(pool, &key, bio, &data_cell)) {
1860		cell_defer_no_holder(tc, virt_cell);
1861		return;
1862	}
1863
1864	if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) {
1865		break_sharing(tc, bio, block, &key, lookup_result, data_cell);
1866		cell_defer_no_holder(tc, virt_cell);
1867	} else {
1868		struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1869
1870		h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1871		inc_all_io_entry(pool, bio);
1872		remap_and_issue(tc, bio, lookup_result->block);
1873
1874		remap_and_issue_shared_cell(tc, data_cell, lookup_result->block);
1875		remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block);
1876	}
1877}
1878
1879static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1880			    struct dm_bio_prison_cell *cell)
1881{
1882	int r;
1883	dm_block_t data_block;
1884	struct pool *pool = tc->pool;
1885
1886	/*
1887	 * Remap empty bios (flushes) immediately, without provisioning.
1888	 */
1889	if (!bio->bi_iter.bi_size) {
1890		inc_all_io_entry(pool, bio);
1891		cell_defer_no_holder(tc, cell);
1892
1893		remap_and_issue(tc, bio, 0);
1894		return;
1895	}
1896
1897	/*
1898	 * Fill read bios with zeroes and complete them immediately.
1899	 */
1900	if (bio_data_dir(bio) == READ) {
1901		zero_fill_bio(bio);
1902		cell_defer_no_holder(tc, cell);
1903		bio_endio(bio);
1904		return;
1905	}
1906
1907	r = alloc_data_block(tc, &data_block);
1908	switch (r) {
1909	case 0:
1910		if (tc->origin_dev)
1911			schedule_external_copy(tc, block, data_block, cell, bio);
1912		else
1913			schedule_zero(tc, block, data_block, cell, bio);
1914		break;
1915
1916	case -ENOSPC:
1917		retry_bios_on_resume(pool, cell);
1918		break;
1919
1920	default:
1921		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1922			    __func__, r);
1923		cell_error(pool, cell);
1924		break;
1925	}
1926}
1927
1928static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1929{
1930	int r;
1931	struct pool *pool = tc->pool;
1932	struct bio *bio = cell->holder;
1933	dm_block_t block = get_bio_block(tc, bio);
1934	struct dm_thin_lookup_result lookup_result;
1935
1936	if (tc->requeue_mode) {
1937		cell_requeue(pool, cell);
1938		return;
1939	}
1940
1941	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1942	switch (r) {
1943	case 0:
1944		if (lookup_result.shared)
1945			process_shared_bio(tc, bio, block, &lookup_result, cell);
1946		else {
1947			inc_all_io_entry(pool, bio);
1948			remap_and_issue(tc, bio, lookup_result.block);
1949			inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1950		}
1951		break;
1952
1953	case -ENODATA:
1954		if (bio_data_dir(bio) == READ && tc->origin_dev) {
1955			inc_all_io_entry(pool, bio);
1956			cell_defer_no_holder(tc, cell);
1957
1958			if (bio_end_sector(bio) <= tc->origin_size)
1959				remap_to_origin_and_issue(tc, bio);
1960
1961			else if (bio->bi_iter.bi_sector < tc->origin_size) {
1962				zero_fill_bio(bio);
1963				bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
1964				remap_to_origin_and_issue(tc, bio);
1965
1966			} else {
1967				zero_fill_bio(bio);
1968				bio_endio(bio);
1969			}
1970		} else
1971			provision_block(tc, bio, block, cell);
1972		break;
1973
1974	default:
1975		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1976			    __func__, r);
1977		cell_defer_no_holder(tc, cell);
1978		bio_io_error(bio);
1979		break;
1980	}
1981}
1982
1983static void process_bio(struct thin_c *tc, struct bio *bio)
1984{
1985	struct pool *pool = tc->pool;
1986	dm_block_t block = get_bio_block(tc, bio);
1987	struct dm_bio_prison_cell *cell;
1988	struct dm_cell_key key;
1989
1990	/*
1991	 * If cell is already occupied, then the block is already
1992	 * being provisioned so we have nothing further to do here.
1993	 */
1994	build_virtual_key(tc->td, block, &key);
1995	if (bio_detain(pool, &key, bio, &cell))
1996		return;
1997
1998	process_cell(tc, cell);
1999}
2000
2001static void __process_bio_read_only(struct thin_c *tc, struct bio *bio,
2002				    struct dm_bio_prison_cell *cell)
2003{
2004	int r;
2005	int rw = bio_data_dir(bio);
2006	dm_block_t block = get_bio_block(tc, bio);
2007	struct dm_thin_lookup_result lookup_result;
2008
2009	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
2010	switch (r) {
2011	case 0:
2012		if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) {
2013			handle_unserviceable_bio(tc->pool, bio);
2014			if (cell)
2015				cell_defer_no_holder(tc, cell);
2016		} else {
2017			inc_all_io_entry(tc->pool, bio);
2018			remap_and_issue(tc, bio, lookup_result.block);
2019			if (cell)
2020				inc_remap_and_issue_cell(tc, cell, lookup_result.block);
2021		}
2022		break;
2023
2024	case -ENODATA:
2025		if (cell)
2026			cell_defer_no_holder(tc, cell);
2027		if (rw != READ) {
2028			handle_unserviceable_bio(tc->pool, bio);
2029			break;
2030		}
2031
2032		if (tc->origin_dev) {
2033			inc_all_io_entry(tc->pool, bio);
2034			remap_to_origin_and_issue(tc, bio);
2035			break;
2036		}
2037
2038		zero_fill_bio(bio);
2039		bio_endio(bio);
2040		break;
2041
2042	default:
2043		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
2044			    __func__, r);
2045		if (cell)
2046			cell_defer_no_holder(tc, cell);
2047		bio_io_error(bio);
2048		break;
2049	}
2050}
2051
2052static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
2053{
2054	__process_bio_read_only(tc, bio, NULL);
2055}
2056
2057static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2058{
2059	__process_bio_read_only(tc, cell->holder, cell);
2060}
2061
2062static void process_bio_success(struct thin_c *tc, struct bio *bio)
2063{
2064	bio_endio(bio);
2065}
2066
2067static void process_bio_fail(struct thin_c *tc, struct bio *bio)
2068{
2069	bio_io_error(bio);
2070}
2071
2072static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2073{
2074	cell_success(tc->pool, cell);
2075}
2076
2077static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2078{
2079	cell_error(tc->pool, cell);
2080}
2081
2082/*
2083 * FIXME: should we also commit due to size of transaction, measured in
2084 * metadata blocks?
2085 */
2086static int need_commit_due_to_time(struct pool *pool)
2087{
2088	return !time_in_range(jiffies, pool->last_commit_jiffies,
2089			      pool->last_commit_jiffies + COMMIT_PERIOD);
2090}
2091
2092#define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
2093#define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
2094
2095static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
2096{
2097	struct rb_node **rbp, *parent;
2098	struct dm_thin_endio_hook *pbd;
2099	sector_t bi_sector = bio->bi_iter.bi_sector;
2100
2101	rbp = &tc->sort_bio_list.rb_node;
2102	parent = NULL;
2103	while (*rbp) {
2104		parent = *rbp;
2105		pbd = thin_pbd(parent);
2106
2107		if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
2108			rbp = &(*rbp)->rb_left;
2109		else
2110			rbp = &(*rbp)->rb_right;
2111	}
2112
2113	pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2114	rb_link_node(&pbd->rb_node, parent, rbp);
2115	rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
2116}
2117
2118static void __extract_sorted_bios(struct thin_c *tc)
2119{
2120	struct rb_node *node;
2121	struct dm_thin_endio_hook *pbd;
2122	struct bio *bio;
2123
2124	for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
2125		pbd = thin_pbd(node);
2126		bio = thin_bio(pbd);
2127
2128		bio_list_add(&tc->deferred_bio_list, bio);
2129		rb_erase(&pbd->rb_node, &tc->sort_bio_list);
2130	}
2131
2132	WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
2133}
2134
2135static void __sort_thin_deferred_bios(struct thin_c *tc)
2136{
2137	struct bio *bio;
2138	struct bio_list bios;
2139
2140	bio_list_init(&bios);
2141	bio_list_merge(&bios, &tc->deferred_bio_list);
2142	bio_list_init(&tc->deferred_bio_list);
2143
2144	/* Sort deferred_bio_list using rb-tree */
2145	while ((bio = bio_list_pop(&bios)))
2146		__thin_bio_rb_add(tc, bio);
2147
2148	/*
2149	 * Transfer the sorted bios in sort_bio_list back to
2150	 * deferred_bio_list to allow lockless submission of
2151	 * all bios.
2152	 */
2153	__extract_sorted_bios(tc);
2154}
2155
2156static void process_thin_deferred_bios(struct thin_c *tc)
2157{
2158	struct pool *pool = tc->pool;
2159	struct bio *bio;
2160	struct bio_list bios;
2161	struct blk_plug plug;
2162	unsigned count = 0;
2163
2164	if (tc->requeue_mode) {
2165		error_thin_bio_list(tc, &tc->deferred_bio_list,
2166				BLK_STS_DM_REQUEUE);
2167		return;
2168	}
2169
2170	bio_list_init(&bios);
2171
2172	spin_lock_irq(&tc->lock);
2173
2174	if (bio_list_empty(&tc->deferred_bio_list)) {
2175		spin_unlock_irq(&tc->lock);
2176		return;
2177	}
2178
2179	__sort_thin_deferred_bios(tc);
2180
2181	bio_list_merge(&bios, &tc->deferred_bio_list);
2182	bio_list_init(&tc->deferred_bio_list);
2183
2184	spin_unlock_irq(&tc->lock);
2185
2186	blk_start_plug(&plug);
2187	while ((bio = bio_list_pop(&bios))) {
2188		/*
2189		 * If we've got no free new_mapping structs, and processing
2190		 * this bio might require one, we pause until there are some
2191		 * prepared mappings to process.
2192		 */
2193		if (ensure_next_mapping(pool)) {
2194			spin_lock_irq(&tc->lock);
2195			bio_list_add(&tc->deferred_bio_list, bio);
2196			bio_list_merge(&tc->deferred_bio_list, &bios);
2197			spin_unlock_irq(&tc->lock);
2198			break;
2199		}
2200
2201		if (bio_op(bio) == REQ_OP_DISCARD)
2202			pool->process_discard(tc, bio);
2203		else
2204			pool->process_bio(tc, bio);
2205
2206		if ((count++ & 127) == 0) {
2207			throttle_work_update(&pool->throttle);
2208			dm_pool_issue_prefetches(pool->pmd);
2209		}
 
2210	}
2211	blk_finish_plug(&plug);
2212}
2213
2214static int cmp_cells(const void *lhs, const void *rhs)
2215{
2216	struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs);
2217	struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs);
2218
2219	BUG_ON(!lhs_cell->holder);
2220	BUG_ON(!rhs_cell->holder);
2221
2222	if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector)
2223		return -1;
2224
2225	if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector)
2226		return 1;
2227
2228	return 0;
2229}
2230
2231static unsigned sort_cells(struct pool *pool, struct list_head *cells)
2232{
2233	unsigned count = 0;
2234	struct dm_bio_prison_cell *cell, *tmp;
2235
2236	list_for_each_entry_safe(cell, tmp, cells, user_list) {
2237		if (count >= CELL_SORT_ARRAY_SIZE)
2238			break;
2239
2240		pool->cell_sort_array[count++] = cell;
2241		list_del(&cell->user_list);
2242	}
2243
2244	sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL);
2245
2246	return count;
2247}
2248
2249static void process_thin_deferred_cells(struct thin_c *tc)
2250{
2251	struct pool *pool = tc->pool;
2252	struct list_head cells;
2253	struct dm_bio_prison_cell *cell;
2254	unsigned i, j, count;
2255
2256	INIT_LIST_HEAD(&cells);
2257
2258	spin_lock_irq(&tc->lock);
2259	list_splice_init(&tc->deferred_cells, &cells);
2260	spin_unlock_irq(&tc->lock);
2261
2262	if (list_empty(&cells))
2263		return;
2264
2265	do {
2266		count = sort_cells(tc->pool, &cells);
2267
2268		for (i = 0; i < count; i++) {
2269			cell = pool->cell_sort_array[i];
2270			BUG_ON(!cell->holder);
2271
2272			/*
2273			 * If we've got no free new_mapping structs, and processing
2274			 * this bio might require one, we pause until there are some
2275			 * prepared mappings to process.
2276			 */
2277			if (ensure_next_mapping(pool)) {
2278				for (j = i; j < count; j++)
2279					list_add(&pool->cell_sort_array[j]->user_list, &cells);
2280
2281				spin_lock_irq(&tc->lock);
2282				list_splice(&cells, &tc->deferred_cells);
2283				spin_unlock_irq(&tc->lock);
2284				return;
2285			}
2286
2287			if (bio_op(cell->holder) == REQ_OP_DISCARD)
2288				pool->process_discard_cell(tc, cell);
2289			else
2290				pool->process_cell(tc, cell);
2291		}
 
2292	} while (!list_empty(&cells));
2293}
2294
2295static void thin_get(struct thin_c *tc);
2296static void thin_put(struct thin_c *tc);
2297
2298/*
2299 * We can't hold rcu_read_lock() around code that can block.  So we
2300 * find a thin with the rcu lock held; bump a refcount; then drop
2301 * the lock.
2302 */
2303static struct thin_c *get_first_thin(struct pool *pool)
2304{
2305	struct thin_c *tc = NULL;
2306
2307	rcu_read_lock();
2308	if (!list_empty(&pool->active_thins)) {
2309		tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
2310		thin_get(tc);
2311	}
2312	rcu_read_unlock();
2313
2314	return tc;
2315}
2316
2317static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
2318{
2319	struct thin_c *old_tc = tc;
2320
2321	rcu_read_lock();
2322	list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
2323		thin_get(tc);
2324		thin_put(old_tc);
2325		rcu_read_unlock();
2326		return tc;
2327	}
2328	thin_put(old_tc);
2329	rcu_read_unlock();
2330
2331	return NULL;
2332}
2333
2334static void process_deferred_bios(struct pool *pool)
2335{
2336	struct bio *bio;
2337	struct bio_list bios, bio_completions;
2338	struct thin_c *tc;
2339
2340	tc = get_first_thin(pool);
2341	while (tc) {
2342		process_thin_deferred_cells(tc);
2343		process_thin_deferred_bios(tc);
2344		tc = get_next_thin(pool, tc);
2345	}
2346
2347	/*
2348	 * If there are any deferred flush bios, we must commit the metadata
2349	 * before issuing them or signaling their completion.
2350	 */
2351	bio_list_init(&bios);
2352	bio_list_init(&bio_completions);
2353
2354	spin_lock_irq(&pool->lock);
2355	bio_list_merge(&bios, &pool->deferred_flush_bios);
2356	bio_list_init(&pool->deferred_flush_bios);
2357
2358	bio_list_merge(&bio_completions, &pool->deferred_flush_completions);
2359	bio_list_init(&pool->deferred_flush_completions);
2360	spin_unlock_irq(&pool->lock);
2361
2362	if (bio_list_empty(&bios) && bio_list_empty(&bio_completions) &&
2363	    !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
2364		return;
2365
2366	if (commit(pool)) {
2367		bio_list_merge(&bios, &bio_completions);
2368
2369		while ((bio = bio_list_pop(&bios)))
2370			bio_io_error(bio);
2371		return;
2372	}
2373	pool->last_commit_jiffies = jiffies;
2374
2375	while ((bio = bio_list_pop(&bio_completions)))
2376		bio_endio(bio);
2377
2378	while ((bio = bio_list_pop(&bios))) {
2379		/*
2380		 * The data device was flushed as part of metadata commit,
2381		 * so complete redundant flushes immediately.
2382		 */
2383		if (bio->bi_opf & REQ_PREFLUSH)
2384			bio_endio(bio);
2385		else
2386			dm_submit_bio_remap(bio, NULL);
2387	}
2388}
2389
2390static void do_worker(struct work_struct *ws)
2391{
2392	struct pool *pool = container_of(ws, struct pool, worker);
2393
2394	throttle_work_start(&pool->throttle);
2395	dm_pool_issue_prefetches(pool->pmd);
2396	throttle_work_update(&pool->throttle);
2397	process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
2398	throttle_work_update(&pool->throttle);
2399	process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
2400	throttle_work_update(&pool->throttle);
2401	process_prepared(pool, &pool->prepared_discards_pt2, &pool->process_prepared_discard_pt2);
2402	throttle_work_update(&pool->throttle);
2403	process_deferred_bios(pool);
2404	throttle_work_complete(&pool->throttle);
2405}
2406
2407/*
2408 * We want to commit periodically so that not too much
2409 * unwritten data builds up.
2410 */
2411static void do_waker(struct work_struct *ws)
2412{
2413	struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
 
2414	wake_worker(pool);
2415	queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
2416}
2417
2418/*
2419 * We're holding onto IO to allow userland time to react.  After the
2420 * timeout either the pool will have been resized (and thus back in
2421 * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space.
2422 */
2423static void do_no_space_timeout(struct work_struct *ws)
2424{
2425	struct pool *pool = container_of(to_delayed_work(ws), struct pool,
2426					 no_space_timeout);
2427
2428	if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) {
2429		pool->pf.error_if_no_space = true;
2430		notify_of_pool_mode_change(pool);
2431		error_retry_list_with_code(pool, BLK_STS_NOSPC);
2432	}
2433}
2434
2435/*----------------------------------------------------------------*/
2436
2437struct pool_work {
2438	struct work_struct worker;
2439	struct completion complete;
2440};
2441
2442static struct pool_work *to_pool_work(struct work_struct *ws)
2443{
2444	return container_of(ws, struct pool_work, worker);
2445}
2446
2447static void pool_work_complete(struct pool_work *pw)
2448{
2449	complete(&pw->complete);
2450}
2451
2452static void pool_work_wait(struct pool_work *pw, struct pool *pool,
2453			   void (*fn)(struct work_struct *))
2454{
2455	INIT_WORK_ONSTACK(&pw->worker, fn);
2456	init_completion(&pw->complete);
2457	queue_work(pool->wq, &pw->worker);
2458	wait_for_completion(&pw->complete);
 
2459}
2460
2461/*----------------------------------------------------------------*/
2462
2463struct noflush_work {
2464	struct pool_work pw;
2465	struct thin_c *tc;
2466};
2467
2468static struct noflush_work *to_noflush(struct work_struct *ws)
2469{
2470	return container_of(to_pool_work(ws), struct noflush_work, pw);
2471}
2472
2473static void do_noflush_start(struct work_struct *ws)
2474{
2475	struct noflush_work *w = to_noflush(ws);
 
2476	w->tc->requeue_mode = true;
2477	requeue_io(w->tc);
2478	pool_work_complete(&w->pw);
2479}
2480
2481static void do_noflush_stop(struct work_struct *ws)
2482{
2483	struct noflush_work *w = to_noflush(ws);
 
2484	w->tc->requeue_mode = false;
2485	pool_work_complete(&w->pw);
2486}
2487
2488static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
2489{
2490	struct noflush_work w;
2491
2492	w.tc = tc;
2493	pool_work_wait(&w.pw, tc->pool, fn);
2494}
2495
2496/*----------------------------------------------------------------*/
2497
2498static bool passdown_enabled(struct pool_c *pt)
2499{
2500	return pt->adjusted_pf.discard_passdown;
2501}
2502
2503static void set_discard_callbacks(struct pool *pool)
2504{
2505	struct pool_c *pt = pool->ti->private;
2506
2507	if (passdown_enabled(pt)) {
2508		pool->process_discard_cell = process_discard_cell_passdown;
2509		pool->process_prepared_discard = process_prepared_discard_passdown_pt1;
2510		pool->process_prepared_discard_pt2 = process_prepared_discard_passdown_pt2;
2511	} else {
2512		pool->process_discard_cell = process_discard_cell_no_passdown;
2513		pool->process_prepared_discard = process_prepared_discard_no_passdown;
2514	}
2515}
2516
2517static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
2518{
2519	struct pool_c *pt = pool->ti->private;
2520	bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
2521	enum pool_mode old_mode = get_pool_mode(pool);
2522	unsigned long no_space_timeout = READ_ONCE(no_space_timeout_secs) * HZ;
2523
2524	/*
2525	 * Never allow the pool to transition to PM_WRITE mode if user
2526	 * intervention is required to verify metadata and data consistency.
2527	 */
2528	if (new_mode == PM_WRITE && needs_check) {
2529		DMERR("%s: unable to switch pool to write mode until repaired.",
2530		      dm_device_name(pool->pool_md));
2531		if (old_mode != new_mode)
2532			new_mode = old_mode;
2533		else
2534			new_mode = PM_READ_ONLY;
2535	}
2536	/*
2537	 * If we were in PM_FAIL mode, rollback of metadata failed.  We're
2538	 * not going to recover without a thin_repair.	So we never let the
2539	 * pool move out of the old mode.
2540	 */
2541	if (old_mode == PM_FAIL)
2542		new_mode = old_mode;
2543
2544	switch (new_mode) {
2545	case PM_FAIL:
2546		dm_pool_metadata_read_only(pool->pmd);
2547		pool->process_bio = process_bio_fail;
2548		pool->process_discard = process_bio_fail;
2549		pool->process_cell = process_cell_fail;
2550		pool->process_discard_cell = process_cell_fail;
2551		pool->process_prepared_mapping = process_prepared_mapping_fail;
2552		pool->process_prepared_discard = process_prepared_discard_fail;
2553
2554		error_retry_list(pool);
2555		break;
2556
2557	case PM_OUT_OF_METADATA_SPACE:
2558	case PM_READ_ONLY:
2559		dm_pool_metadata_read_only(pool->pmd);
2560		pool->process_bio = process_bio_read_only;
2561		pool->process_discard = process_bio_success;
2562		pool->process_cell = process_cell_read_only;
2563		pool->process_discard_cell = process_cell_success;
2564		pool->process_prepared_mapping = process_prepared_mapping_fail;
2565		pool->process_prepared_discard = process_prepared_discard_success;
2566
2567		error_retry_list(pool);
2568		break;
2569
2570	case PM_OUT_OF_DATA_SPACE:
2571		/*
2572		 * Ideally we'd never hit this state; the low water mark
2573		 * would trigger userland to extend the pool before we
2574		 * completely run out of data space.  However, many small
2575		 * IOs to unprovisioned space can consume data space at an
2576		 * alarming rate.  Adjust your low water mark if you're
2577		 * frequently seeing this mode.
2578		 */
2579		pool->out_of_data_space = true;
2580		pool->process_bio = process_bio_read_only;
2581		pool->process_discard = process_discard_bio;
2582		pool->process_cell = process_cell_read_only;
2583		pool->process_prepared_mapping = process_prepared_mapping;
2584		set_discard_callbacks(pool);
2585
2586		if (!pool->pf.error_if_no_space && no_space_timeout)
2587			queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
2588		break;
2589
2590	case PM_WRITE:
2591		if (old_mode == PM_OUT_OF_DATA_SPACE)
2592			cancel_delayed_work_sync(&pool->no_space_timeout);
2593		pool->out_of_data_space = false;
2594		pool->pf.error_if_no_space = pt->requested_pf.error_if_no_space;
2595		dm_pool_metadata_read_write(pool->pmd);
2596		pool->process_bio = process_bio;
2597		pool->process_discard = process_discard_bio;
2598		pool->process_cell = process_cell;
2599		pool->process_prepared_mapping = process_prepared_mapping;
2600		set_discard_callbacks(pool);
2601		break;
2602	}
2603
2604	pool->pf.mode = new_mode;
2605	/*
2606	 * The pool mode may have changed, sync it so bind_control_target()
2607	 * doesn't cause an unexpected mode transition on resume.
2608	 */
2609	pt->adjusted_pf.mode = new_mode;
2610
2611	if (old_mode != new_mode)
2612		notify_of_pool_mode_change(pool);
2613}
2614
2615static void abort_transaction(struct pool *pool)
2616{
2617	const char *dev_name = dm_device_name(pool->pool_md);
2618
2619	DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
2620	if (dm_pool_abort_metadata(pool->pmd)) {
2621		DMERR("%s: failed to abort metadata transaction", dev_name);
2622		set_pool_mode(pool, PM_FAIL);
2623	}
2624
2625	if (dm_pool_metadata_set_needs_check(pool->pmd)) {
2626		DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
2627		set_pool_mode(pool, PM_FAIL);
2628	}
2629}
2630
2631static void metadata_operation_failed(struct pool *pool, const char *op, int r)
2632{
2633	DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2634		    dm_device_name(pool->pool_md), op, r);
2635
2636	abort_transaction(pool);
2637	set_pool_mode(pool, PM_READ_ONLY);
2638}
2639
2640/*----------------------------------------------------------------*/
2641
2642/*
2643 * Mapping functions.
2644 */
2645
2646/*
2647 * Called only while mapping a thin bio to hand it over to the workqueue.
2648 */
2649static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
2650{
2651	struct pool *pool = tc->pool;
2652
2653	spin_lock_irq(&tc->lock);
2654	bio_list_add(&tc->deferred_bio_list, bio);
2655	spin_unlock_irq(&tc->lock);
2656
2657	wake_worker(pool);
2658}
2659
2660static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio)
2661{
2662	struct pool *pool = tc->pool;
2663
2664	throttle_lock(&pool->throttle);
2665	thin_defer_bio(tc, bio);
2666	throttle_unlock(&pool->throttle);
2667}
2668
2669static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2670{
2671	struct pool *pool = tc->pool;
2672
2673	throttle_lock(&pool->throttle);
2674	spin_lock_irq(&tc->lock);
2675	list_add_tail(&cell->user_list, &tc->deferred_cells);
2676	spin_unlock_irq(&tc->lock);
2677	throttle_unlock(&pool->throttle);
2678
2679	wake_worker(pool);
2680}
2681
2682static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
2683{
2684	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2685
2686	h->tc = tc;
2687	h->shared_read_entry = NULL;
2688	h->all_io_entry = NULL;
2689	h->overwrite_mapping = NULL;
2690	h->cell = NULL;
2691}
2692
2693/*
2694 * Non-blocking function called from the thin target's map function.
2695 */
2696static int thin_bio_map(struct dm_target *ti, struct bio *bio)
2697{
2698	int r;
2699	struct thin_c *tc = ti->private;
2700	dm_block_t block = get_bio_block(tc, bio);
2701	struct dm_thin_device *td = tc->td;
2702	struct dm_thin_lookup_result result;
2703	struct dm_bio_prison_cell *virt_cell, *data_cell;
2704	struct dm_cell_key key;
2705
2706	thin_hook_bio(tc, bio);
2707
2708	if (tc->requeue_mode) {
2709		bio->bi_status = BLK_STS_DM_REQUEUE;
2710		bio_endio(bio);
2711		return DM_MAPIO_SUBMITTED;
2712	}
2713
2714	if (get_pool_mode(tc->pool) == PM_FAIL) {
2715		bio_io_error(bio);
2716		return DM_MAPIO_SUBMITTED;
2717	}
2718
2719	if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD) {
2720		thin_defer_bio_with_throttle(tc, bio);
2721		return DM_MAPIO_SUBMITTED;
2722	}
2723
2724	/*
2725	 * We must hold the virtual cell before doing the lookup, otherwise
2726	 * there's a race with discard.
2727	 */
2728	build_virtual_key(tc->td, block, &key);
2729	if (bio_detain(tc->pool, &key, bio, &virt_cell))
2730		return DM_MAPIO_SUBMITTED;
2731
2732	r = dm_thin_find_block(td, block, 0, &result);
2733
2734	/*
2735	 * Note that we defer readahead too.
2736	 */
2737	switch (r) {
2738	case 0:
2739		if (unlikely(result.shared)) {
2740			/*
2741			 * We have a race condition here between the
2742			 * result.shared value returned by the lookup and
2743			 * snapshot creation, which may cause new
2744			 * sharing.
2745			 *
2746			 * To avoid this always quiesce the origin before
2747			 * taking the snap.  You want to do this anyway to
2748			 * ensure a consistent application view
2749			 * (i.e. lockfs).
2750			 *
2751			 * More distant ancestors are irrelevant. The
2752			 * shared flag will be set in their case.
2753			 */
2754			thin_defer_cell(tc, virt_cell);
2755			return DM_MAPIO_SUBMITTED;
2756		}
2757
2758		build_data_key(tc->td, result.block, &key);
2759		if (bio_detain(tc->pool, &key, bio, &data_cell)) {
2760			cell_defer_no_holder(tc, virt_cell);
2761			return DM_MAPIO_SUBMITTED;
2762		}
2763
2764		inc_all_io_entry(tc->pool, bio);
2765		cell_defer_no_holder(tc, data_cell);
2766		cell_defer_no_holder(tc, virt_cell);
2767
2768		remap(tc, bio, result.block);
2769		return DM_MAPIO_REMAPPED;
2770
2771	case -ENODATA:
2772	case -EWOULDBLOCK:
2773		thin_defer_cell(tc, virt_cell);
2774		return DM_MAPIO_SUBMITTED;
2775
2776	default:
2777		/*
2778		 * Must always call bio_io_error on failure.
2779		 * dm_thin_find_block can fail with -EINVAL if the
2780		 * pool is switched to fail-io mode.
2781		 */
2782		bio_io_error(bio);
2783		cell_defer_no_holder(tc, virt_cell);
2784		return DM_MAPIO_SUBMITTED;
2785	}
2786}
2787
2788static void requeue_bios(struct pool *pool)
2789{
2790	struct thin_c *tc;
2791
2792	rcu_read_lock();
2793	list_for_each_entry_rcu(tc, &pool->active_thins, list) {
2794		spin_lock_irq(&tc->lock);
2795		bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
2796		bio_list_init(&tc->retry_on_resume_list);
2797		spin_unlock_irq(&tc->lock);
2798	}
2799	rcu_read_unlock();
2800}
2801
2802/*----------------------------------------------------------------
 
2803 * Binding of control targets to a pool object
2804 *--------------------------------------------------------------*/
 
2805static bool is_factor(sector_t block_size, uint32_t n)
2806{
2807	return !sector_div(block_size, n);
2808}
2809
2810/*
2811 * If discard_passdown was enabled verify that the data device
2812 * supports discards.  Disable discard_passdown if not.
2813 */
2814static void disable_passdown_if_not_supported(struct pool_c *pt)
2815{
2816	struct pool *pool = pt->pool;
2817	struct block_device *data_bdev = pt->data_dev->bdev;
2818	struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
2819	const char *reason = NULL;
2820
2821	if (!pt->adjusted_pf.discard_passdown)
2822		return;
2823
2824	if (!bdev_max_discard_sectors(pt->data_dev->bdev))
2825		reason = "discard unsupported";
2826
2827	else if (data_limits->max_discard_sectors < pool->sectors_per_block)
2828		reason = "max discard sectors smaller than a block";
2829
2830	if (reason) {
2831		DMWARN("Data device (%pg) %s: Disabling discard passdown.", data_bdev, reason);
2832		pt->adjusted_pf.discard_passdown = false;
2833	}
2834}
2835
2836static int bind_control_target(struct pool *pool, struct dm_target *ti)
2837{
2838	struct pool_c *pt = ti->private;
2839
2840	/*
2841	 * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2842	 */
2843	enum pool_mode old_mode = get_pool_mode(pool);
2844	enum pool_mode new_mode = pt->adjusted_pf.mode;
2845
2846	/*
2847	 * Don't change the pool's mode until set_pool_mode() below.
2848	 * Otherwise the pool's process_* function pointers may
2849	 * not match the desired pool mode.
2850	 */
2851	pt->adjusted_pf.mode = old_mode;
2852
2853	pool->ti = ti;
2854	pool->pf = pt->adjusted_pf;
2855	pool->low_water_blocks = pt->low_water_blocks;
2856
2857	set_pool_mode(pool, new_mode);
2858
2859	return 0;
2860}
2861
2862static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2863{
2864	if (pool->ti == ti)
2865		pool->ti = NULL;
2866}
2867
2868/*----------------------------------------------------------------
 
2869 * Pool creation
2870 *--------------------------------------------------------------*/
 
2871/* Initialize pool features. */
2872static void pool_features_init(struct pool_features *pf)
2873{
2874	pf->mode = PM_WRITE;
2875	pf->zero_new_blocks = true;
2876	pf->discard_enabled = true;
2877	pf->discard_passdown = true;
2878	pf->error_if_no_space = false;
2879}
2880
2881static void __pool_destroy(struct pool *pool)
2882{
2883	__pool_table_remove(pool);
2884
2885	vfree(pool->cell_sort_array);
2886	if (dm_pool_metadata_close(pool->pmd) < 0)
2887		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2888
2889	dm_bio_prison_destroy(pool->prison);
2890	dm_kcopyd_client_destroy(pool->copier);
2891
2892	cancel_delayed_work_sync(&pool->waker);
2893	cancel_delayed_work_sync(&pool->no_space_timeout);
2894	if (pool->wq)
2895		destroy_workqueue(pool->wq);
2896
2897	if (pool->next_mapping)
2898		mempool_free(pool->next_mapping, &pool->mapping_pool);
2899	mempool_exit(&pool->mapping_pool);
2900	dm_deferred_set_destroy(pool->shared_read_ds);
2901	dm_deferred_set_destroy(pool->all_io_ds);
2902	kfree(pool);
2903}
2904
2905static struct kmem_cache *_new_mapping_cache;
2906
2907static struct pool *pool_create(struct mapped_device *pool_md,
2908				struct block_device *metadata_dev,
2909				struct block_device *data_dev,
2910				unsigned long block_size,
2911				int read_only, char **error)
2912{
2913	int r;
2914	void *err_p;
2915	struct pool *pool;
2916	struct dm_pool_metadata *pmd;
2917	bool format_device = read_only ? false : true;
2918
2919	pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2920	if (IS_ERR(pmd)) {
2921		*error = "Error creating metadata object";
2922		return (struct pool *)pmd;
2923	}
2924
2925	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2926	if (!pool) {
2927		*error = "Error allocating memory for pool";
2928		err_p = ERR_PTR(-ENOMEM);
2929		goto bad_pool;
2930	}
2931
2932	pool->pmd = pmd;
2933	pool->sectors_per_block = block_size;
2934	if (block_size & (block_size - 1))
2935		pool->sectors_per_block_shift = -1;
2936	else
2937		pool->sectors_per_block_shift = __ffs(block_size);
2938	pool->low_water_blocks = 0;
2939	pool_features_init(&pool->pf);
2940	pool->prison = dm_bio_prison_create();
2941	if (!pool->prison) {
2942		*error = "Error creating pool's bio prison";
2943		err_p = ERR_PTR(-ENOMEM);
2944		goto bad_prison;
2945	}
2946
2947	pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2948	if (IS_ERR(pool->copier)) {
2949		r = PTR_ERR(pool->copier);
2950		*error = "Error creating pool's kcopyd client";
2951		err_p = ERR_PTR(r);
2952		goto bad_kcopyd_client;
2953	}
2954
2955	/*
2956	 * Create singlethreaded workqueue that will service all devices
2957	 * that use this metadata.
2958	 */
2959	pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2960	if (!pool->wq) {
2961		*error = "Error creating pool's workqueue";
2962		err_p = ERR_PTR(-ENOMEM);
2963		goto bad_wq;
2964	}
2965
2966	throttle_init(&pool->throttle);
2967	INIT_WORK(&pool->worker, do_worker);
2968	INIT_DELAYED_WORK(&pool->waker, do_waker);
2969	INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
2970	spin_lock_init(&pool->lock);
2971	bio_list_init(&pool->deferred_flush_bios);
2972	bio_list_init(&pool->deferred_flush_completions);
2973	INIT_LIST_HEAD(&pool->prepared_mappings);
2974	INIT_LIST_HEAD(&pool->prepared_discards);
2975	INIT_LIST_HEAD(&pool->prepared_discards_pt2);
2976	INIT_LIST_HEAD(&pool->active_thins);
2977	pool->low_water_triggered = false;
2978	pool->suspended = true;
2979	pool->out_of_data_space = false;
2980
2981	pool->shared_read_ds = dm_deferred_set_create();
2982	if (!pool->shared_read_ds) {
2983		*error = "Error creating pool's shared read deferred set";
2984		err_p = ERR_PTR(-ENOMEM);
2985		goto bad_shared_read_ds;
2986	}
2987
2988	pool->all_io_ds = dm_deferred_set_create();
2989	if (!pool->all_io_ds) {
2990		*error = "Error creating pool's all io deferred set";
2991		err_p = ERR_PTR(-ENOMEM);
2992		goto bad_all_io_ds;
2993	}
2994
2995	pool->next_mapping = NULL;
2996	r = mempool_init_slab_pool(&pool->mapping_pool, MAPPING_POOL_SIZE,
2997				   _new_mapping_cache);
2998	if (r) {
2999		*error = "Error creating pool's mapping mempool";
3000		err_p = ERR_PTR(r);
3001		goto bad_mapping_pool;
3002	}
3003
3004	pool->cell_sort_array =
3005		vmalloc(array_size(CELL_SORT_ARRAY_SIZE,
3006				   sizeof(*pool->cell_sort_array)));
3007	if (!pool->cell_sort_array) {
3008		*error = "Error allocating cell sort array";
3009		err_p = ERR_PTR(-ENOMEM);
3010		goto bad_sort_array;
3011	}
3012
3013	pool->ref_count = 1;
3014	pool->last_commit_jiffies = jiffies;
3015	pool->pool_md = pool_md;
3016	pool->md_dev = metadata_dev;
3017	pool->data_dev = data_dev;
3018	__pool_table_insert(pool);
3019
3020	return pool;
3021
3022bad_sort_array:
3023	mempool_exit(&pool->mapping_pool);
3024bad_mapping_pool:
3025	dm_deferred_set_destroy(pool->all_io_ds);
3026bad_all_io_ds:
3027	dm_deferred_set_destroy(pool->shared_read_ds);
3028bad_shared_read_ds:
3029	destroy_workqueue(pool->wq);
3030bad_wq:
3031	dm_kcopyd_client_destroy(pool->copier);
3032bad_kcopyd_client:
3033	dm_bio_prison_destroy(pool->prison);
3034bad_prison:
3035	kfree(pool);
3036bad_pool:
3037	if (dm_pool_metadata_close(pmd))
3038		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
3039
3040	return err_p;
3041}
3042
3043static void __pool_inc(struct pool *pool)
3044{
3045	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
3046	pool->ref_count++;
3047}
3048
3049static void __pool_dec(struct pool *pool)
3050{
3051	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
3052	BUG_ON(!pool->ref_count);
3053	if (!--pool->ref_count)
3054		__pool_destroy(pool);
3055}
3056
3057static struct pool *__pool_find(struct mapped_device *pool_md,
3058				struct block_device *metadata_dev,
3059				struct block_device *data_dev,
3060				unsigned long block_size, int read_only,
3061				char **error, int *created)
3062{
3063	struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
3064
3065	if (pool) {
3066		if (pool->pool_md != pool_md) {
3067			*error = "metadata device already in use by a pool";
3068			return ERR_PTR(-EBUSY);
3069		}
3070		if (pool->data_dev != data_dev) {
3071			*error = "data device already in use by a pool";
3072			return ERR_PTR(-EBUSY);
3073		}
3074		__pool_inc(pool);
3075
3076	} else {
3077		pool = __pool_table_lookup(pool_md);
3078		if (pool) {
3079			if (pool->md_dev != metadata_dev || pool->data_dev != data_dev) {
3080				*error = "different pool cannot replace a pool";
3081				return ERR_PTR(-EINVAL);
3082			}
3083			__pool_inc(pool);
3084
3085		} else {
3086			pool = pool_create(pool_md, metadata_dev, data_dev, block_size, read_only, error);
3087			*created = 1;
3088		}
3089	}
3090
3091	return pool;
3092}
3093
3094/*----------------------------------------------------------------
 
3095 * Pool target methods
3096 *--------------------------------------------------------------*/
 
3097static void pool_dtr(struct dm_target *ti)
3098{
3099	struct pool_c *pt = ti->private;
3100
3101	mutex_lock(&dm_thin_pool_table.mutex);
3102
3103	unbind_control_target(pt->pool, ti);
3104	__pool_dec(pt->pool);
3105	dm_put_device(ti, pt->metadata_dev);
3106	dm_put_device(ti, pt->data_dev);
3107	kfree(pt);
3108
3109	mutex_unlock(&dm_thin_pool_table.mutex);
3110}
3111
3112static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
3113			       struct dm_target *ti)
3114{
3115	int r;
3116	unsigned argc;
3117	const char *arg_name;
3118
3119	static const struct dm_arg _args[] = {
3120		{0, 4, "Invalid number of pool feature arguments"},
3121	};
3122
3123	/*
3124	 * No feature arguments supplied.
3125	 */
3126	if (!as->argc)
3127		return 0;
3128
3129	r = dm_read_arg_group(_args, as, &argc, &ti->error);
3130	if (r)
3131		return -EINVAL;
3132
3133	while (argc && !r) {
3134		arg_name = dm_shift_arg(as);
3135		argc--;
3136
3137		if (!strcasecmp(arg_name, "skip_block_zeroing"))
3138			pf->zero_new_blocks = false;
3139
3140		else if (!strcasecmp(arg_name, "ignore_discard"))
3141			pf->discard_enabled = false;
3142
3143		else if (!strcasecmp(arg_name, "no_discard_passdown"))
3144			pf->discard_passdown = false;
3145
3146		else if (!strcasecmp(arg_name, "read_only"))
3147			pf->mode = PM_READ_ONLY;
3148
3149		else if (!strcasecmp(arg_name, "error_if_no_space"))
3150			pf->error_if_no_space = true;
3151
3152		else {
3153			ti->error = "Unrecognised pool feature requested";
3154			r = -EINVAL;
3155			break;
3156		}
3157	}
3158
3159	return r;
3160}
3161
3162static void metadata_low_callback(void *context)
3163{
3164	struct pool *pool = context;
3165
3166	DMWARN("%s: reached low water mark for metadata device: sending event.",
3167	       dm_device_name(pool->pool_md));
3168
3169	dm_table_event(pool->ti->table);
3170}
3171
3172/*
3173 * We need to flush the data device **before** committing the metadata.
3174 *
3175 * This ensures that the data blocks of any newly inserted mappings are
3176 * properly written to non-volatile storage and won't be lost in case of a
3177 * crash.
3178 *
3179 * Failure to do so can result in data corruption in the case of internal or
3180 * external snapshots and in the case of newly provisioned blocks, when block
3181 * zeroing is enabled.
3182 */
3183static int metadata_pre_commit_callback(void *context)
3184{
3185	struct pool *pool = context;
3186
3187	return blkdev_issue_flush(pool->data_dev);
3188}
3189
3190static sector_t get_dev_size(struct block_device *bdev)
3191{
3192	return bdev_nr_sectors(bdev);
3193}
3194
3195static void warn_if_metadata_device_too_big(struct block_device *bdev)
3196{
3197	sector_t metadata_dev_size = get_dev_size(bdev);
3198
3199	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
3200		DMWARN("Metadata device %pg is larger than %u sectors: excess space will not be used.",
3201		       bdev, THIN_METADATA_MAX_SECTORS);
3202}
3203
3204static sector_t get_metadata_dev_size(struct block_device *bdev)
3205{
3206	sector_t metadata_dev_size = get_dev_size(bdev);
3207
3208	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
3209		metadata_dev_size = THIN_METADATA_MAX_SECTORS;
3210
3211	return metadata_dev_size;
3212}
3213
3214static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
3215{
3216	sector_t metadata_dev_size = get_metadata_dev_size(bdev);
3217
3218	sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
3219
3220	return metadata_dev_size;
3221}
3222
3223/*
3224 * When a metadata threshold is crossed a dm event is triggered, and
3225 * userland should respond by growing the metadata device.  We could let
3226 * userland set the threshold, like we do with the data threshold, but I'm
3227 * not sure they know enough to do this well.
3228 */
3229static dm_block_t calc_metadata_threshold(struct pool_c *pt)
3230{
3231	/*
3232	 * 4M is ample for all ops with the possible exception of thin
3233	 * device deletion which is harmless if it fails (just retry the
3234	 * delete after you've grown the device).
3235	 */
3236	dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
 
3237	return min((dm_block_t)1024ULL /* 4M */, quarter);
3238}
3239
3240/*
3241 * thin-pool <metadata dev> <data dev>
3242 *	     <data block size (sectors)>
3243 *	     <low water mark (blocks)>
3244 *	     [<#feature args> [<arg>]*]
3245 *
3246 * Optional feature arguments are:
3247 *	     skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
3248 *	     ignore_discard: disable discard
3249 *	     no_discard_passdown: don't pass discards down to the data device
3250 *	     read_only: Don't allow any changes to be made to the pool metadata.
3251 *	     error_if_no_space: error IOs, instead of queueing, if no space.
3252 */
3253static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
3254{
3255	int r, pool_created = 0;
3256	struct pool_c *pt;
3257	struct pool *pool;
3258	struct pool_features pf;
3259	struct dm_arg_set as;
3260	struct dm_dev *data_dev;
3261	unsigned long block_size;
3262	dm_block_t low_water_blocks;
3263	struct dm_dev *metadata_dev;
3264	fmode_t metadata_mode;
3265
3266	/*
3267	 * FIXME Remove validation from scope of lock.
3268	 */
3269	mutex_lock(&dm_thin_pool_table.mutex);
3270
3271	if (argc < 4) {
3272		ti->error = "Invalid argument count";
3273		r = -EINVAL;
3274		goto out_unlock;
3275	}
3276
3277	as.argc = argc;
3278	as.argv = argv;
3279
3280	/* make sure metadata and data are different devices */
3281	if (!strcmp(argv[0], argv[1])) {
3282		ti->error = "Error setting metadata or data device";
3283		r = -EINVAL;
3284		goto out_unlock;
3285	}
3286
3287	/*
3288	 * Set default pool features.
3289	 */
3290	pool_features_init(&pf);
3291
3292	dm_consume_args(&as, 4);
3293	r = parse_pool_features(&as, &pf, ti);
3294	if (r)
3295		goto out_unlock;
3296
3297	metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
 
3298	r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
3299	if (r) {
3300		ti->error = "Error opening metadata block device";
3301		goto out_unlock;
3302	}
3303	warn_if_metadata_device_too_big(metadata_dev->bdev);
3304
3305	r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
3306	if (r) {
3307		ti->error = "Error getting data device";
3308		goto out_metadata;
3309	}
3310
3311	if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
3312	    block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
3313	    block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
3314	    block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
3315		ti->error = "Invalid block size";
3316		r = -EINVAL;
3317		goto out;
3318	}
3319
3320	if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
3321		ti->error = "Invalid low water mark";
3322		r = -EINVAL;
3323		goto out;
3324	}
3325
3326	pt = kzalloc(sizeof(*pt), GFP_KERNEL);
3327	if (!pt) {
3328		r = -ENOMEM;
3329		goto out;
3330	}
3331
3332	pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev, data_dev->bdev,
3333			   block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
3334	if (IS_ERR(pool)) {
3335		r = PTR_ERR(pool);
3336		goto out_free_pt;
3337	}
3338
3339	/*
3340	 * 'pool_created' reflects whether this is the first table load.
3341	 * Top level discard support is not allowed to be changed after
3342	 * initial load.  This would require a pool reload to trigger thin
3343	 * device changes.
3344	 */
3345	if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
3346		ti->error = "Discard support cannot be disabled once enabled";
3347		r = -EINVAL;
3348		goto out_flags_changed;
3349	}
3350
3351	pt->pool = pool;
3352	pt->ti = ti;
3353	pt->metadata_dev = metadata_dev;
3354	pt->data_dev = data_dev;
3355	pt->low_water_blocks = low_water_blocks;
3356	pt->adjusted_pf = pt->requested_pf = pf;
3357	ti->num_flush_bios = 1;
 
3358
3359	/*
3360	 * Only need to enable discards if the pool should pass
3361	 * them down to the data device.  The thin device's discard
3362	 * processing will cause mappings to be removed from the btree.
3363	 */
3364	if (pf.discard_enabled && pf.discard_passdown) {
3365		ti->num_discard_bios = 1;
3366
3367		/*
3368		 * Setting 'discards_supported' circumvents the normal
3369		 * stacking of discard limits (this keeps the pool and
3370		 * thin devices' discard limits consistent).
3371		 */
3372		ti->discards_supported = true;
 
3373	}
3374	ti->private = pt;
3375
3376	r = dm_pool_register_metadata_threshold(pt->pool->pmd,
3377						calc_metadata_threshold(pt),
3378						metadata_low_callback,
3379						pool);
3380	if (r) {
3381		ti->error = "Error registering metadata threshold";
3382		goto out_flags_changed;
3383	}
3384
3385	dm_pool_register_pre_commit_callback(pool->pmd,
3386					     metadata_pre_commit_callback, pool);
3387
3388	mutex_unlock(&dm_thin_pool_table.mutex);
3389
3390	return 0;
3391
3392out_flags_changed:
3393	__pool_dec(pool);
3394out_free_pt:
3395	kfree(pt);
3396out:
3397	dm_put_device(ti, data_dev);
3398out_metadata:
3399	dm_put_device(ti, metadata_dev);
3400out_unlock:
3401	mutex_unlock(&dm_thin_pool_table.mutex);
3402
3403	return r;
3404}
3405
3406static int pool_map(struct dm_target *ti, struct bio *bio)
3407{
3408	int r;
3409	struct pool_c *pt = ti->private;
3410	struct pool *pool = pt->pool;
3411
3412	/*
3413	 * As this is a singleton target, ti->begin is always zero.
3414	 */
3415	spin_lock_irq(&pool->lock);
3416	bio_set_dev(bio, pt->data_dev->bdev);
3417	r = DM_MAPIO_REMAPPED;
3418	spin_unlock_irq(&pool->lock);
3419
3420	return r;
3421}
3422
3423static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
3424{
3425	int r;
3426	struct pool_c *pt = ti->private;
3427	struct pool *pool = pt->pool;
3428	sector_t data_size = ti->len;
3429	dm_block_t sb_data_size;
3430
3431	*need_commit = false;
3432
3433	(void) sector_div(data_size, pool->sectors_per_block);
3434
3435	r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
3436	if (r) {
3437		DMERR("%s: failed to retrieve data device size",
3438		      dm_device_name(pool->pool_md));
3439		return r;
3440	}
3441
3442	if (data_size < sb_data_size) {
3443		DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3444		      dm_device_name(pool->pool_md),
3445		      (unsigned long long)data_size, sb_data_size);
3446		return -EINVAL;
3447
3448	} else if (data_size > sb_data_size) {
3449		if (dm_pool_metadata_needs_check(pool->pmd)) {
3450			DMERR("%s: unable to grow the data device until repaired.",
3451			      dm_device_name(pool->pool_md));
3452			return 0;
3453		}
3454
3455		if (sb_data_size)
3456			DMINFO("%s: growing the data device from %llu to %llu blocks",
3457			       dm_device_name(pool->pool_md),
3458			       sb_data_size, (unsigned long long)data_size);
3459		r = dm_pool_resize_data_dev(pool->pmd, data_size);
3460		if (r) {
3461			metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
3462			return r;
3463		}
3464
3465		*need_commit = true;
3466	}
3467
3468	return 0;
3469}
3470
3471static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
3472{
3473	int r;
3474	struct pool_c *pt = ti->private;
3475	struct pool *pool = pt->pool;
3476	dm_block_t metadata_dev_size, sb_metadata_dev_size;
3477
3478	*need_commit = false;
3479
3480	metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
3481
3482	r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
3483	if (r) {
3484		DMERR("%s: failed to retrieve metadata device size",
3485		      dm_device_name(pool->pool_md));
3486		return r;
3487	}
3488
3489	if (metadata_dev_size < sb_metadata_dev_size) {
3490		DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3491		      dm_device_name(pool->pool_md),
3492		      metadata_dev_size, sb_metadata_dev_size);
3493		return -EINVAL;
3494
3495	} else if (metadata_dev_size > sb_metadata_dev_size) {
3496		if (dm_pool_metadata_needs_check(pool->pmd)) {
3497			DMERR("%s: unable to grow the metadata device until repaired.",
3498			      dm_device_name(pool->pool_md));
3499			return 0;
3500		}
3501
3502		warn_if_metadata_device_too_big(pool->md_dev);
3503		DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3504		       dm_device_name(pool->pool_md),
3505		       sb_metadata_dev_size, metadata_dev_size);
3506
3507		if (get_pool_mode(pool) == PM_OUT_OF_METADATA_SPACE)
3508			set_pool_mode(pool, PM_WRITE);
3509
3510		r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
3511		if (r) {
3512			metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
3513			return r;
3514		}
3515
3516		*need_commit = true;
3517	}
3518
3519	return 0;
3520}
3521
3522/*
3523 * Retrieves the number of blocks of the data device from
3524 * the superblock and compares it to the actual device size,
3525 * thus resizing the data device in case it has grown.
3526 *
3527 * This both copes with opening preallocated data devices in the ctr
3528 * being followed by a resume
3529 * -and-
3530 * calling the resume method individually after userspace has
3531 * grown the data device in reaction to a table event.
3532 */
3533static int pool_preresume(struct dm_target *ti)
3534{
3535	int r;
3536	bool need_commit1, need_commit2;
3537	struct pool_c *pt = ti->private;
3538	struct pool *pool = pt->pool;
3539
3540	/*
3541	 * Take control of the pool object.
3542	 */
3543	r = bind_control_target(pool, ti);
3544	if (r)
3545		goto out;
3546
3547	r = maybe_resize_data_dev(ti, &need_commit1);
3548	if (r)
3549		goto out;
3550
3551	r = maybe_resize_metadata_dev(ti, &need_commit2);
3552	if (r)
3553		goto out;
3554
3555	if (need_commit1 || need_commit2)
3556		(void) commit(pool);
3557out:
3558	/*
3559	 * When a thin-pool is PM_FAIL, it cannot be rebuilt if
3560	 * bio is in deferred list. Therefore need to return 0
3561	 * to allow pool_resume() to flush IO.
3562	 */
3563	if (r && get_pool_mode(pool) == PM_FAIL)
3564		r = 0;
3565
3566	return r;
3567}
3568
3569static void pool_suspend_active_thins(struct pool *pool)
3570{
3571	struct thin_c *tc;
3572
3573	/* Suspend all active thin devices */
3574	tc = get_first_thin(pool);
3575	while (tc) {
3576		dm_internal_suspend_noflush(tc->thin_md);
3577		tc = get_next_thin(pool, tc);
3578	}
3579}
3580
3581static void pool_resume_active_thins(struct pool *pool)
3582{
3583	struct thin_c *tc;
3584
3585	/* Resume all active thin devices */
3586	tc = get_first_thin(pool);
3587	while (tc) {
3588		dm_internal_resume(tc->thin_md);
3589		tc = get_next_thin(pool, tc);
3590	}
3591}
3592
3593static void pool_resume(struct dm_target *ti)
3594{
3595	struct pool_c *pt = ti->private;
3596	struct pool *pool = pt->pool;
3597
3598	/*
3599	 * Must requeue active_thins' bios and then resume
3600	 * active_thins _before_ clearing 'suspend' flag.
3601	 */
3602	requeue_bios(pool);
3603	pool_resume_active_thins(pool);
3604
3605	spin_lock_irq(&pool->lock);
3606	pool->low_water_triggered = false;
3607	pool->suspended = false;
3608	spin_unlock_irq(&pool->lock);
3609
3610	do_waker(&pool->waker.work);
3611}
3612
3613static void pool_presuspend(struct dm_target *ti)
3614{
3615	struct pool_c *pt = ti->private;
3616	struct pool *pool = pt->pool;
3617
3618	spin_lock_irq(&pool->lock);
3619	pool->suspended = true;
3620	spin_unlock_irq(&pool->lock);
3621
3622	pool_suspend_active_thins(pool);
3623}
3624
3625static void pool_presuspend_undo(struct dm_target *ti)
3626{
3627	struct pool_c *pt = ti->private;
3628	struct pool *pool = pt->pool;
3629
3630	pool_resume_active_thins(pool);
3631
3632	spin_lock_irq(&pool->lock);
3633	pool->suspended = false;
3634	spin_unlock_irq(&pool->lock);
3635}
3636
3637static void pool_postsuspend(struct dm_target *ti)
3638{
3639	struct pool_c *pt = ti->private;
3640	struct pool *pool = pt->pool;
3641
3642	cancel_delayed_work_sync(&pool->waker);
3643	cancel_delayed_work_sync(&pool->no_space_timeout);
3644	flush_workqueue(pool->wq);
3645	(void) commit(pool);
3646}
3647
3648static int check_arg_count(unsigned argc, unsigned args_required)
3649{
3650	if (argc != args_required) {
3651		DMWARN("Message received with %u arguments instead of %u.",
3652		       argc, args_required);
3653		return -EINVAL;
3654	}
3655
3656	return 0;
3657}
3658
3659static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
3660{
3661	if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
3662	    *dev_id <= MAX_DEV_ID)
3663		return 0;
3664
3665	if (warning)
3666		DMWARN("Message received with invalid device id: %s", arg);
3667
3668	return -EINVAL;
3669}
3670
3671static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
3672{
3673	dm_thin_id dev_id;
3674	int r;
3675
3676	r = check_arg_count(argc, 2);
3677	if (r)
3678		return r;
3679
3680	r = read_dev_id(argv[1], &dev_id, 1);
3681	if (r)
3682		return r;
3683
3684	r = dm_pool_create_thin(pool->pmd, dev_id);
3685	if (r) {
3686		DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3687		       argv[1]);
3688		return r;
3689	}
3690
3691	return 0;
3692}
3693
3694static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3695{
3696	dm_thin_id dev_id;
3697	dm_thin_id origin_dev_id;
3698	int r;
3699
3700	r = check_arg_count(argc, 3);
3701	if (r)
3702		return r;
3703
3704	r = read_dev_id(argv[1], &dev_id, 1);
3705	if (r)
3706		return r;
3707
3708	r = read_dev_id(argv[2], &origin_dev_id, 1);
3709	if (r)
3710		return r;
3711
3712	r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
3713	if (r) {
3714		DMWARN("Creation of new snapshot %s of device %s failed.",
3715		       argv[1], argv[2]);
3716		return r;
3717	}
3718
3719	return 0;
3720}
3721
3722static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
3723{
3724	dm_thin_id dev_id;
3725	int r;
3726
3727	r = check_arg_count(argc, 2);
3728	if (r)
3729		return r;
3730
3731	r = read_dev_id(argv[1], &dev_id, 1);
3732	if (r)
3733		return r;
3734
3735	r = dm_pool_delete_thin_device(pool->pmd, dev_id);
3736	if (r)
3737		DMWARN("Deletion of thin device %s failed.", argv[1]);
3738
3739	return r;
3740}
3741
3742static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
3743{
3744	dm_thin_id old_id, new_id;
3745	int r;
3746
3747	r = check_arg_count(argc, 3);
3748	if (r)
3749		return r;
3750
3751	if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
3752		DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
3753		return -EINVAL;
3754	}
3755
3756	if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
3757		DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
3758		return -EINVAL;
3759	}
3760
3761	r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
3762	if (r) {
3763		DMWARN("Failed to change transaction id from %s to %s.",
3764		       argv[1], argv[2]);
3765		return r;
3766	}
3767
3768	return 0;
3769}
3770
3771static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3772{
3773	int r;
3774
3775	r = check_arg_count(argc, 1);
3776	if (r)
3777		return r;
3778
3779	(void) commit(pool);
3780
3781	r = dm_pool_reserve_metadata_snap(pool->pmd);
3782	if (r)
3783		DMWARN("reserve_metadata_snap message failed.");
3784
3785	return r;
3786}
3787
3788static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3789{
3790	int r;
3791
3792	r = check_arg_count(argc, 1);
3793	if (r)
3794		return r;
3795
3796	r = dm_pool_release_metadata_snap(pool->pmd);
3797	if (r)
3798		DMWARN("release_metadata_snap message failed.");
3799
3800	return r;
3801}
3802
3803/*
3804 * Messages supported:
3805 *   create_thin	<dev_id>
3806 *   create_snap	<dev_id> <origin_id>
3807 *   delete		<dev_id>
3808 *   set_transaction_id <current_trans_id> <new_trans_id>
3809 *   reserve_metadata_snap
3810 *   release_metadata_snap
3811 */
3812static int pool_message(struct dm_target *ti, unsigned argc, char **argv,
3813			char *result, unsigned maxlen)
3814{
3815	int r = -EINVAL;
3816	struct pool_c *pt = ti->private;
3817	struct pool *pool = pt->pool;
3818
3819	if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE) {
3820		DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
3821		      dm_device_name(pool->pool_md));
3822		return -EOPNOTSUPP;
3823	}
3824
3825	if (!strcasecmp(argv[0], "create_thin"))
3826		r = process_create_thin_mesg(argc, argv, pool);
3827
3828	else if (!strcasecmp(argv[0], "create_snap"))
3829		r = process_create_snap_mesg(argc, argv, pool);
3830
3831	else if (!strcasecmp(argv[0], "delete"))
3832		r = process_delete_mesg(argc, argv, pool);
3833
3834	else if (!strcasecmp(argv[0], "set_transaction_id"))
3835		r = process_set_transaction_id_mesg(argc, argv, pool);
3836
3837	else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
3838		r = process_reserve_metadata_snap_mesg(argc, argv, pool);
3839
3840	else if (!strcasecmp(argv[0], "release_metadata_snap"))
3841		r = process_release_metadata_snap_mesg(argc, argv, pool);
3842
3843	else
3844		DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
3845
3846	if (!r)
3847		(void) commit(pool);
3848
3849	return r;
3850}
3851
3852static void emit_flags(struct pool_features *pf, char *result,
3853		       unsigned sz, unsigned maxlen)
3854{
3855	unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
3856		!pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
3857		pf->error_if_no_space;
3858	DMEMIT("%u ", count);
3859
3860	if (!pf->zero_new_blocks)
3861		DMEMIT("skip_block_zeroing ");
3862
3863	if (!pf->discard_enabled)
3864		DMEMIT("ignore_discard ");
3865
3866	if (!pf->discard_passdown)
3867		DMEMIT("no_discard_passdown ");
3868
3869	if (pf->mode == PM_READ_ONLY)
3870		DMEMIT("read_only ");
3871
3872	if (pf->error_if_no_space)
3873		DMEMIT("error_if_no_space ");
3874}
3875
3876/*
3877 * Status line is:
3878 *    <transaction id> <used metadata sectors>/<total metadata sectors>
3879 *    <used data sectors>/<total data sectors> <held metadata root>
3880 *    <pool mode> <discard config> <no space config> <needs_check>
3881 */
3882static void pool_status(struct dm_target *ti, status_type_t type,
3883			unsigned status_flags, char *result, unsigned maxlen)
3884{
3885	int r;
3886	unsigned sz = 0;
3887	uint64_t transaction_id;
3888	dm_block_t nr_free_blocks_data;
3889	dm_block_t nr_free_blocks_metadata;
3890	dm_block_t nr_blocks_data;
3891	dm_block_t nr_blocks_metadata;
3892	dm_block_t held_root;
3893	enum pool_mode mode;
3894	char buf[BDEVNAME_SIZE];
3895	char buf2[BDEVNAME_SIZE];
3896	struct pool_c *pt = ti->private;
3897	struct pool *pool = pt->pool;
3898
3899	switch (type) {
3900	case STATUSTYPE_INFO:
3901		if (get_pool_mode(pool) == PM_FAIL) {
3902			DMEMIT("Fail");
3903			break;
3904		}
3905
3906		/* Commit to ensure statistics aren't out-of-date */
3907		if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3908			(void) commit(pool);
3909
3910		r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
3911		if (r) {
3912			DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3913			      dm_device_name(pool->pool_md), r);
3914			goto err;
3915		}
3916
3917		r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
3918		if (r) {
3919			DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3920			      dm_device_name(pool->pool_md), r);
3921			goto err;
3922		}
3923
3924		r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
3925		if (r) {
3926			DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3927			      dm_device_name(pool->pool_md), r);
3928			goto err;
3929		}
3930
3931		r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
3932		if (r) {
3933			DMERR("%s: dm_pool_get_free_block_count returned %d",
3934			      dm_device_name(pool->pool_md), r);
3935			goto err;
3936		}
3937
3938		r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
3939		if (r) {
3940			DMERR("%s: dm_pool_get_data_dev_size returned %d",
3941			      dm_device_name(pool->pool_md), r);
3942			goto err;
3943		}
3944
3945		r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
3946		if (r) {
3947			DMERR("%s: dm_pool_get_metadata_snap returned %d",
3948			      dm_device_name(pool->pool_md), r);
3949			goto err;
3950		}
3951
3952		DMEMIT("%llu %llu/%llu %llu/%llu ",
3953		       (unsigned long long)transaction_id,
3954		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3955		       (unsigned long long)nr_blocks_metadata,
3956		       (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
3957		       (unsigned long long)nr_blocks_data);
3958
3959		if (held_root)
3960			DMEMIT("%llu ", held_root);
3961		else
3962			DMEMIT("- ");
3963
3964		mode = get_pool_mode(pool);
3965		if (mode == PM_OUT_OF_DATA_SPACE)
3966			DMEMIT("out_of_data_space ");
3967		else if (is_read_only_pool_mode(mode))
3968			DMEMIT("ro ");
3969		else
3970			DMEMIT("rw ");
3971
3972		if (!pool->pf.discard_enabled)
3973			DMEMIT("ignore_discard ");
3974		else if (pool->pf.discard_passdown)
3975			DMEMIT("discard_passdown ");
3976		else
3977			DMEMIT("no_discard_passdown ");
3978
3979		if (pool->pf.error_if_no_space)
3980			DMEMIT("error_if_no_space ");
3981		else
3982			DMEMIT("queue_if_no_space ");
3983
3984		if (dm_pool_metadata_needs_check(pool->pmd))
3985			DMEMIT("needs_check ");
3986		else
3987			DMEMIT("- ");
3988
3989		DMEMIT("%llu ", (unsigned long long)calc_metadata_threshold(pt));
3990
3991		break;
3992
3993	case STATUSTYPE_TABLE:
3994		DMEMIT("%s %s %lu %llu ",
3995		       format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
3996		       format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
3997		       (unsigned long)pool->sectors_per_block,
3998		       (unsigned long long)pt->low_water_blocks);
3999		emit_flags(&pt->requested_pf, result, sz, maxlen);
4000		break;
4001
4002	case STATUSTYPE_IMA:
4003		*result = '\0';
4004		break;
4005	}
4006	return;
4007
4008err:
4009	DMEMIT("Error");
4010}
4011
4012static int pool_iterate_devices(struct dm_target *ti,
4013				iterate_devices_callout_fn fn, void *data)
4014{
4015	struct pool_c *pt = ti->private;
4016
4017	return fn(ti, pt->data_dev, 0, ti->len, data);
4018}
4019
4020static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
4021{
4022	struct pool_c *pt = ti->private;
4023	struct pool *pool = pt->pool;
4024	sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
4025
4026	/*
4027	 * If max_sectors is smaller than pool->sectors_per_block adjust it
4028	 * to the highest possible power-of-2 factor of pool->sectors_per_block.
4029	 * This is especially beneficial when the pool's data device is a RAID
4030	 * device that has a full stripe width that matches pool->sectors_per_block
4031	 * -- because even though partial RAID stripe-sized IOs will be issued to a
4032	 *    single RAID stripe; when aggregated they will end on a full RAID stripe
4033	 *    boundary.. which avoids additional partial RAID stripe writes cascading
4034	 */
4035	if (limits->max_sectors < pool->sectors_per_block) {
4036		while (!is_factor(pool->sectors_per_block, limits->max_sectors)) {
4037			if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
4038				limits->max_sectors--;
4039			limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
4040		}
4041	}
4042
4043	/*
4044	 * If the system-determined stacked limits are compatible with the
4045	 * pool's blocksize (io_opt is a factor) do not override them.
4046	 */
4047	if (io_opt_sectors < pool->sectors_per_block ||
4048	    !is_factor(io_opt_sectors, pool->sectors_per_block)) {
4049		if (is_factor(pool->sectors_per_block, limits->max_sectors))
4050			blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT);
4051		else
4052			blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT);
4053		blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
4054	}
4055
4056	/*
4057	 * pt->adjusted_pf is a staging area for the actual features to use.
4058	 * They get transferred to the live pool in bind_control_target()
4059	 * called from pool_preresume().
4060	 */
4061	if (!pt->adjusted_pf.discard_enabled) {
 
 
 
 
 
 
 
 
 
4062		/*
4063		 * Must explicitly disallow stacking discard limits otherwise the
4064		 * block layer will stack them if pool's data device has support.
4065		 */
4066		limits->discard_granularity = 0;
4067		return;
4068	}
4069
4070	disable_passdown_if_not_supported(pt);
4071
4072	/*
4073	 * The pool uses the same discard limits as the underlying data
4074	 * device.  DM core has already set this up.
4075	 */
4076}
4077
4078static struct target_type pool_target = {
4079	.name = "thin-pool",
4080	.features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
4081		    DM_TARGET_IMMUTABLE,
4082	.version = {1, 22, 0},
4083	.module = THIS_MODULE,
4084	.ctr = pool_ctr,
4085	.dtr = pool_dtr,
4086	.map = pool_map,
4087	.presuspend = pool_presuspend,
4088	.presuspend_undo = pool_presuspend_undo,
4089	.postsuspend = pool_postsuspend,
4090	.preresume = pool_preresume,
4091	.resume = pool_resume,
4092	.message = pool_message,
4093	.status = pool_status,
4094	.iterate_devices = pool_iterate_devices,
4095	.io_hints = pool_io_hints,
4096};
4097
4098/*----------------------------------------------------------------
 
4099 * Thin target methods
4100 *--------------------------------------------------------------*/
 
4101static void thin_get(struct thin_c *tc)
4102{
4103	refcount_inc(&tc->refcount);
4104}
4105
4106static void thin_put(struct thin_c *tc)
4107{
4108	if (refcount_dec_and_test(&tc->refcount))
4109		complete(&tc->can_destroy);
4110}
4111
4112static void thin_dtr(struct dm_target *ti)
4113{
4114	struct thin_c *tc = ti->private;
4115
4116	spin_lock_irq(&tc->pool->lock);
4117	list_del_rcu(&tc->list);
4118	spin_unlock_irq(&tc->pool->lock);
4119	synchronize_rcu();
4120
4121	thin_put(tc);
4122	wait_for_completion(&tc->can_destroy);
4123
4124	mutex_lock(&dm_thin_pool_table.mutex);
4125
4126	__pool_dec(tc->pool);
4127	dm_pool_close_thin_device(tc->td);
4128	dm_put_device(ti, tc->pool_dev);
4129	if (tc->origin_dev)
4130		dm_put_device(ti, tc->origin_dev);
4131	kfree(tc);
4132
4133	mutex_unlock(&dm_thin_pool_table.mutex);
4134}
4135
4136/*
4137 * Thin target parameters:
4138 *
4139 * <pool_dev> <dev_id> [origin_dev]
4140 *
4141 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
4142 * dev_id: the internal device identifier
4143 * origin_dev: a device external to the pool that should act as the origin
4144 *
4145 * If the pool device has discards disabled, they get disabled for the thin
4146 * device as well.
4147 */
4148static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
4149{
4150	int r;
4151	struct thin_c *tc;
4152	struct dm_dev *pool_dev, *origin_dev;
4153	struct mapped_device *pool_md;
4154
4155	mutex_lock(&dm_thin_pool_table.mutex);
4156
4157	if (argc != 2 && argc != 3) {
4158		ti->error = "Invalid argument count";
4159		r = -EINVAL;
4160		goto out_unlock;
4161	}
4162
4163	tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
4164	if (!tc) {
4165		ti->error = "Out of memory";
4166		r = -ENOMEM;
4167		goto out_unlock;
4168	}
4169	tc->thin_md = dm_table_get_md(ti->table);
4170	spin_lock_init(&tc->lock);
4171	INIT_LIST_HEAD(&tc->deferred_cells);
4172	bio_list_init(&tc->deferred_bio_list);
4173	bio_list_init(&tc->retry_on_resume_list);
4174	tc->sort_bio_list = RB_ROOT;
4175
4176	if (argc == 3) {
4177		if (!strcmp(argv[0], argv[2])) {
4178			ti->error = "Error setting origin device";
4179			r = -EINVAL;
4180			goto bad_origin_dev;
4181		}
4182
4183		r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
4184		if (r) {
4185			ti->error = "Error opening origin device";
4186			goto bad_origin_dev;
4187		}
4188		tc->origin_dev = origin_dev;
4189	}
4190
4191	r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
4192	if (r) {
4193		ti->error = "Error opening pool device";
4194		goto bad_pool_dev;
4195	}
4196	tc->pool_dev = pool_dev;
4197
4198	if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
4199		ti->error = "Invalid device id";
4200		r = -EINVAL;
4201		goto bad_common;
4202	}
4203
4204	pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
4205	if (!pool_md) {
4206		ti->error = "Couldn't get pool mapped device";
4207		r = -EINVAL;
4208		goto bad_common;
4209	}
4210
4211	tc->pool = __pool_table_lookup(pool_md);
4212	if (!tc->pool) {
4213		ti->error = "Couldn't find pool object";
4214		r = -EINVAL;
4215		goto bad_pool_lookup;
4216	}
4217	__pool_inc(tc->pool);
4218
4219	if (get_pool_mode(tc->pool) == PM_FAIL) {
4220		ti->error = "Couldn't open thin device, Pool is in fail mode";
4221		r = -EINVAL;
4222		goto bad_pool;
4223	}
4224
4225	r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
4226	if (r) {
4227		ti->error = "Couldn't open thin internal device";
4228		goto bad_pool;
4229	}
4230
4231	r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
4232	if (r)
4233		goto bad;
4234
4235	ti->num_flush_bios = 1;
 
4236	ti->flush_supported = true;
4237	ti->accounts_remapped_io = true;
4238	ti->per_io_data_size = sizeof(struct dm_thin_endio_hook);
4239
4240	/* In case the pool supports discards, pass them on. */
4241	if (tc->pool->pf.discard_enabled) {
4242		ti->discards_supported = true;
4243		ti->num_discard_bios = 1;
 
4244	}
4245
4246	mutex_unlock(&dm_thin_pool_table.mutex);
4247
4248	spin_lock_irq(&tc->pool->lock);
4249	if (tc->pool->suspended) {
4250		spin_unlock_irq(&tc->pool->lock);
4251		mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */
4252		ti->error = "Unable to activate thin device while pool is suspended";
4253		r = -EINVAL;
4254		goto bad;
4255	}
4256	refcount_set(&tc->refcount, 1);
4257	init_completion(&tc->can_destroy);
4258	list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
4259	spin_unlock_irq(&tc->pool->lock);
4260	/*
4261	 * This synchronize_rcu() call is needed here otherwise we risk a
4262	 * wake_worker() call finding no bios to process (because the newly
4263	 * added tc isn't yet visible).  So this reduces latency since we
4264	 * aren't then dependent on the periodic commit to wake_worker().
4265	 */
4266	synchronize_rcu();
4267
4268	dm_put(pool_md);
4269
4270	return 0;
4271
4272bad:
4273	dm_pool_close_thin_device(tc->td);
4274bad_pool:
4275	__pool_dec(tc->pool);
4276bad_pool_lookup:
4277	dm_put(pool_md);
4278bad_common:
4279	dm_put_device(ti, tc->pool_dev);
4280bad_pool_dev:
4281	if (tc->origin_dev)
4282		dm_put_device(ti, tc->origin_dev);
4283bad_origin_dev:
4284	kfree(tc);
4285out_unlock:
4286	mutex_unlock(&dm_thin_pool_table.mutex);
4287
4288	return r;
4289}
4290
4291static int thin_map(struct dm_target *ti, struct bio *bio)
4292{
4293	bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
4294
4295	return thin_bio_map(ti, bio);
4296}
4297
4298static int thin_endio(struct dm_target *ti, struct bio *bio,
4299		blk_status_t *err)
4300{
4301	unsigned long flags;
4302	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
4303	struct list_head work;
4304	struct dm_thin_new_mapping *m, *tmp;
4305	struct pool *pool = h->tc->pool;
4306
4307	if (h->shared_read_entry) {
4308		INIT_LIST_HEAD(&work);
4309		dm_deferred_entry_dec(h->shared_read_entry, &work);
4310
4311		spin_lock_irqsave(&pool->lock, flags);
4312		list_for_each_entry_safe(m, tmp, &work, list) {
4313			list_del(&m->list);
4314			__complete_mapping_preparation(m);
4315		}
4316		spin_unlock_irqrestore(&pool->lock, flags);
4317	}
4318
4319	if (h->all_io_entry) {
4320		INIT_LIST_HEAD(&work);
4321		dm_deferred_entry_dec(h->all_io_entry, &work);
4322		if (!list_empty(&work)) {
4323			spin_lock_irqsave(&pool->lock, flags);
4324			list_for_each_entry_safe(m, tmp, &work, list)
4325				list_add_tail(&m->list, &pool->prepared_discards);
4326			spin_unlock_irqrestore(&pool->lock, flags);
4327			wake_worker(pool);
4328		}
4329	}
4330
4331	if (h->cell)
4332		cell_defer_no_holder(h->tc, h->cell);
4333
4334	return DM_ENDIO_DONE;
4335}
4336
4337static void thin_presuspend(struct dm_target *ti)
4338{
4339	struct thin_c *tc = ti->private;
4340
4341	if (dm_noflush_suspending(ti))
4342		noflush_work(tc, do_noflush_start);
4343}
4344
4345static void thin_postsuspend(struct dm_target *ti)
4346{
4347	struct thin_c *tc = ti->private;
4348
4349	/*
4350	 * The dm_noflush_suspending flag has been cleared by now, so
4351	 * unfortunately we must always run this.
4352	 */
4353	noflush_work(tc, do_noflush_stop);
4354}
4355
4356static int thin_preresume(struct dm_target *ti)
4357{
4358	struct thin_c *tc = ti->private;
4359
4360	if (tc->origin_dev)
4361		tc->origin_size = get_dev_size(tc->origin_dev->bdev);
4362
4363	return 0;
4364}
4365
4366/*
4367 * <nr mapped sectors> <highest mapped sector>
4368 */
4369static void thin_status(struct dm_target *ti, status_type_t type,
4370			unsigned status_flags, char *result, unsigned maxlen)
4371{
4372	int r;
4373	ssize_t sz = 0;
4374	dm_block_t mapped, highest;
4375	char buf[BDEVNAME_SIZE];
4376	struct thin_c *tc = ti->private;
4377
4378	if (get_pool_mode(tc->pool) == PM_FAIL) {
4379		DMEMIT("Fail");
4380		return;
4381	}
4382
4383	if (!tc->td)
4384		DMEMIT("-");
4385	else {
4386		switch (type) {
4387		case STATUSTYPE_INFO:
4388			r = dm_thin_get_mapped_count(tc->td, &mapped);
4389			if (r) {
4390				DMERR("dm_thin_get_mapped_count returned %d", r);
4391				goto err;
4392			}
4393
4394			r = dm_thin_get_highest_mapped_block(tc->td, &highest);
4395			if (r < 0) {
4396				DMERR("dm_thin_get_highest_mapped_block returned %d", r);
4397				goto err;
4398			}
4399
4400			DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
4401			if (r)
4402				DMEMIT("%llu", ((highest + 1) *
4403						tc->pool->sectors_per_block) - 1);
4404			else
4405				DMEMIT("-");
4406			break;
4407
4408		case STATUSTYPE_TABLE:
4409			DMEMIT("%s %lu",
4410			       format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
4411			       (unsigned long) tc->dev_id);
4412			if (tc->origin_dev)
4413				DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
4414			break;
4415
4416		case STATUSTYPE_IMA:
4417			*result = '\0';
4418			break;
4419		}
4420	}
4421
4422	return;
4423
4424err:
4425	DMEMIT("Error");
4426}
4427
4428static int thin_iterate_devices(struct dm_target *ti,
4429				iterate_devices_callout_fn fn, void *data)
4430{
4431	sector_t blocks;
4432	struct thin_c *tc = ti->private;
4433	struct pool *pool = tc->pool;
4434
4435	/*
4436	 * We can't call dm_pool_get_data_dev_size() since that blocks.  So
4437	 * we follow a more convoluted path through to the pool's target.
4438	 */
4439	if (!pool->ti)
4440		return 0;	/* nothing is bound */
4441
4442	blocks = pool->ti->len;
4443	(void) sector_div(blocks, pool->sectors_per_block);
4444	if (blocks)
4445		return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
4446
4447	return 0;
4448}
4449
4450static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
4451{
4452	struct thin_c *tc = ti->private;
4453	struct pool *pool = tc->pool;
4454
4455	if (!pool->pf.discard_enabled)
4456		return;
4457
4458	limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
4459	limits->max_discard_sectors = 2048 * 1024 * 16; /* 16G */
4460}
4461
4462static struct target_type thin_target = {
4463	.name = "thin",
4464	.version = {1, 22, 0},
4465	.module	= THIS_MODULE,
4466	.ctr = thin_ctr,
4467	.dtr = thin_dtr,
4468	.map = thin_map,
4469	.end_io = thin_endio,
4470	.preresume = thin_preresume,
4471	.presuspend = thin_presuspend,
4472	.postsuspend = thin_postsuspend,
4473	.status = thin_status,
4474	.iterate_devices = thin_iterate_devices,
4475	.io_hints = thin_io_hints,
4476};
4477
4478/*----------------------------------------------------------------*/
4479
4480static int __init dm_thin_init(void)
4481{
4482	int r = -ENOMEM;
4483
4484	pool_table_init();
4485
4486	_new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
4487	if (!_new_mapping_cache)
4488		return r;
4489
4490	r = dm_register_target(&thin_target);
4491	if (r)
4492		goto bad_new_mapping_cache;
4493
4494	r = dm_register_target(&pool_target);
4495	if (r)
4496		goto bad_thin_target;
4497
4498	return 0;
4499
4500bad_thin_target:
4501	dm_unregister_target(&thin_target);
4502bad_new_mapping_cache:
4503	kmem_cache_destroy(_new_mapping_cache);
4504
4505	return r;
4506}
4507
4508static void dm_thin_exit(void)
4509{
4510	dm_unregister_target(&thin_target);
4511	dm_unregister_target(&pool_target);
4512
4513	kmem_cache_destroy(_new_mapping_cache);
4514
4515	pool_table_exit();
4516}
4517
4518module_init(dm_thin_init);
4519module_exit(dm_thin_exit);
4520
4521module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR);
4522MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
4523
4524MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
4525MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
4526MODULE_LICENSE("GPL");
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2011-2012 Red Hat UK.
   4 *
   5 * This file is released under the GPL.
   6 */
   7
   8#include "dm-thin-metadata.h"
   9#include "dm-bio-prison-v1.h"
  10#include "dm.h"
  11
  12#include <linux/device-mapper.h>
  13#include <linux/dm-io.h>
  14#include <linux/dm-kcopyd.h>
  15#include <linux/jiffies.h>
  16#include <linux/log2.h>
  17#include <linux/list.h>
  18#include <linux/rculist.h>
  19#include <linux/init.h>
  20#include <linux/module.h>
  21#include <linux/slab.h>
  22#include <linux/vmalloc.h>
  23#include <linux/sort.h>
  24#include <linux/rbtree.h>
  25
  26#define	DM_MSG_PREFIX	"thin"
  27
  28/*
  29 * Tunable constants
  30 */
  31#define ENDIO_HOOK_POOL_SIZE 1024
  32#define MAPPING_POOL_SIZE 1024
  33#define COMMIT_PERIOD HZ
  34#define NO_SPACE_TIMEOUT_SECS 60
  35
  36static unsigned int no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
  37
  38DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
  39		"A percentage of time allocated for copy on write");
  40
  41/*
  42 * The block size of the device holding pool data must be
  43 * between 64KB and 1GB.
  44 */
  45#define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
  46#define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
  47
  48/*
  49 * Device id is restricted to 24 bits.
  50 */
  51#define MAX_DEV_ID ((1 << 24) - 1)
  52
  53/*
  54 * How do we handle breaking sharing of data blocks?
  55 * =================================================
  56 *
  57 * We use a standard copy-on-write btree to store the mappings for the
  58 * devices (note I'm talking about copy-on-write of the metadata here, not
  59 * the data).  When you take an internal snapshot you clone the root node
  60 * of the origin btree.  After this there is no concept of an origin or a
  61 * snapshot.  They are just two device trees that happen to point to the
  62 * same data blocks.
  63 *
  64 * When we get a write in we decide if it's to a shared data block using
  65 * some timestamp magic.  If it is, we have to break sharing.
  66 *
  67 * Let's say we write to a shared block in what was the origin.  The
  68 * steps are:
  69 *
  70 * i) plug io further to this physical block. (see bio_prison code).
  71 *
  72 * ii) quiesce any read io to that shared data block.  Obviously
  73 * including all devices that share this block.  (see dm_deferred_set code)
  74 *
  75 * iii) copy the data block to a newly allocate block.  This step can be
  76 * missed out if the io covers the block. (schedule_copy).
  77 *
  78 * iv) insert the new mapping into the origin's btree
  79 * (process_prepared_mapping).  This act of inserting breaks some
  80 * sharing of btree nodes between the two devices.  Breaking sharing only
  81 * effects the btree of that specific device.  Btrees for the other
  82 * devices that share the block never change.  The btree for the origin
  83 * device as it was after the last commit is untouched, ie. we're using
  84 * persistent data structures in the functional programming sense.
  85 *
  86 * v) unplug io to this physical block, including the io that triggered
  87 * the breaking of sharing.
  88 *
  89 * Steps (ii) and (iii) occur in parallel.
  90 *
  91 * The metadata _doesn't_ need to be committed before the io continues.  We
  92 * get away with this because the io is always written to a _new_ block.
  93 * If there's a crash, then:
  94 *
  95 * - The origin mapping will point to the old origin block (the shared
  96 * one).  This will contain the data as it was before the io that triggered
  97 * the breaking of sharing came in.
  98 *
  99 * - The snap mapping still points to the old block.  As it would after
 100 * the commit.
 101 *
 102 * The downside of this scheme is the timestamp magic isn't perfect, and
 103 * will continue to think that data block in the snapshot device is shared
 104 * even after the write to the origin has broken sharing.  I suspect data
 105 * blocks will typically be shared by many different devices, so we're
 106 * breaking sharing n + 1 times, rather than n, where n is the number of
 107 * devices that reference this data block.  At the moment I think the
 108 * benefits far, far outweigh the disadvantages.
 109 */
 110
 111/*----------------------------------------------------------------*/
 112
 113/*
 114 * Key building.
 115 */
 116enum lock_space {
 117	VIRTUAL,
 118	PHYSICAL
 119};
 120
 121static bool build_key(struct dm_thin_device *td, enum lock_space ls,
 122		      dm_block_t b, dm_block_t e, struct dm_cell_key *key)
 123{
 124	key->virtual = (ls == VIRTUAL);
 125	key->dev = dm_thin_dev_id(td);
 126	key->block_begin = b;
 127	key->block_end = e;
 128
 129	return dm_cell_key_has_valid_range(key);
 130}
 131
 132static void build_data_key(struct dm_thin_device *td, dm_block_t b,
 133			   struct dm_cell_key *key)
 134{
 135	(void) build_key(td, PHYSICAL, b, b + 1llu, key);
 136}
 137
 138static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
 139			      struct dm_cell_key *key)
 140{
 141	(void) build_key(td, VIRTUAL, b, b + 1llu, key);
 142}
 143
 144/*----------------------------------------------------------------*/
 145
 146#define THROTTLE_THRESHOLD (1 * HZ)
 147
 148struct throttle {
 149	struct rw_semaphore lock;
 150	unsigned long threshold;
 151	bool throttle_applied;
 152};
 153
 154static void throttle_init(struct throttle *t)
 155{
 156	init_rwsem(&t->lock);
 157	t->throttle_applied = false;
 158}
 159
 160static void throttle_work_start(struct throttle *t)
 161{
 162	t->threshold = jiffies + THROTTLE_THRESHOLD;
 163}
 164
 165static void throttle_work_update(struct throttle *t)
 166{
 167	if (!t->throttle_applied && time_is_before_jiffies(t->threshold)) {
 168		down_write(&t->lock);
 169		t->throttle_applied = true;
 170	}
 171}
 172
 173static void throttle_work_complete(struct throttle *t)
 174{
 175	if (t->throttle_applied) {
 176		t->throttle_applied = false;
 177		up_write(&t->lock);
 178	}
 179}
 180
 181static void throttle_lock(struct throttle *t)
 182{
 183	down_read(&t->lock);
 184}
 185
 186static void throttle_unlock(struct throttle *t)
 187{
 188	up_read(&t->lock);
 189}
 190
 191/*----------------------------------------------------------------*/
 192
 193/*
 194 * A pool device ties together a metadata device and a data device.  It
 195 * also provides the interface for creating and destroying internal
 196 * devices.
 197 */
 198struct dm_thin_new_mapping;
 199
 200/*
 201 * The pool runs in various modes.  Ordered in degraded order for comparisons.
 202 */
 203enum pool_mode {
 204	PM_WRITE,		/* metadata may be changed */
 205	PM_OUT_OF_DATA_SPACE,	/* metadata may be changed, though data may not be allocated */
 206
 207	/*
 208	 * Like READ_ONLY, except may switch back to WRITE on metadata resize. Reported as READ_ONLY.
 209	 */
 210	PM_OUT_OF_METADATA_SPACE,
 211	PM_READ_ONLY,		/* metadata may not be changed */
 212
 213	PM_FAIL,		/* all I/O fails */
 214};
 215
 216struct pool_features {
 217	enum pool_mode mode;
 218
 219	bool zero_new_blocks:1;
 220	bool discard_enabled:1;
 221	bool discard_passdown:1;
 222	bool error_if_no_space:1;
 223};
 224
 225struct thin_c;
 226typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
 227typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
 228typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
 229
 230#define CELL_SORT_ARRAY_SIZE 8192
 231
 232struct pool {
 233	struct list_head list;
 234	struct dm_target *ti;	/* Only set if a pool target is bound */
 235
 236	struct mapped_device *pool_md;
 237	struct block_device *data_dev;
 238	struct block_device *md_dev;
 239	struct dm_pool_metadata *pmd;
 240
 241	dm_block_t low_water_blocks;
 242	uint32_t sectors_per_block;
 243	int sectors_per_block_shift;
 244
 245	struct pool_features pf;
 246	bool low_water_triggered:1;	/* A dm event has been sent */
 247	bool suspended:1;
 248	bool out_of_data_space:1;
 249
 250	struct dm_bio_prison *prison;
 251	struct dm_kcopyd_client *copier;
 252
 253	struct work_struct worker;
 254	struct workqueue_struct *wq;
 255	struct throttle throttle;
 256	struct delayed_work waker;
 257	struct delayed_work no_space_timeout;
 258
 259	unsigned long last_commit_jiffies;
 260	unsigned int ref_count;
 261
 262	spinlock_t lock;
 263	struct bio_list deferred_flush_bios;
 264	struct bio_list deferred_flush_completions;
 265	struct list_head prepared_mappings;
 266	struct list_head prepared_discards;
 267	struct list_head prepared_discards_pt2;
 268	struct list_head active_thins;
 269
 270	struct dm_deferred_set *shared_read_ds;
 271	struct dm_deferred_set *all_io_ds;
 272
 273	struct dm_thin_new_mapping *next_mapping;
 274
 275	process_bio_fn process_bio;
 276	process_bio_fn process_discard;
 277
 278	process_cell_fn process_cell;
 279	process_cell_fn process_discard_cell;
 280
 281	process_mapping_fn process_prepared_mapping;
 282	process_mapping_fn process_prepared_discard;
 283	process_mapping_fn process_prepared_discard_pt2;
 284
 285	struct dm_bio_prison_cell **cell_sort_array;
 286
 287	mempool_t mapping_pool;
 288};
 289
 290static void metadata_operation_failed(struct pool *pool, const char *op, int r);
 291
 292static enum pool_mode get_pool_mode(struct pool *pool)
 293{
 294	return pool->pf.mode;
 295}
 296
 297static void notify_of_pool_mode_change(struct pool *pool)
 298{
 299	static const char *descs[] = {
 300		"write",
 301		"out-of-data-space",
 302		"read-only",
 303		"read-only",
 304		"fail"
 305	};
 306	const char *extra_desc = NULL;
 307	enum pool_mode mode = get_pool_mode(pool);
 308
 309	if (mode == PM_OUT_OF_DATA_SPACE) {
 310		if (!pool->pf.error_if_no_space)
 311			extra_desc = " (queue IO)";
 312		else
 313			extra_desc = " (error IO)";
 314	}
 315
 316	dm_table_event(pool->ti->table);
 317	DMINFO("%s: switching pool to %s%s mode",
 318	       dm_device_name(pool->pool_md),
 319	       descs[(int)mode], extra_desc ? : "");
 320}
 321
 322/*
 323 * Target context for a pool.
 324 */
 325struct pool_c {
 326	struct dm_target *ti;
 327	struct pool *pool;
 328	struct dm_dev *data_dev;
 329	struct dm_dev *metadata_dev;
 330
 331	dm_block_t low_water_blocks;
 332	struct pool_features requested_pf; /* Features requested during table load */
 333	struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
 334};
 335
 336/*
 337 * Target context for a thin.
 338 */
 339struct thin_c {
 340	struct list_head list;
 341	struct dm_dev *pool_dev;
 342	struct dm_dev *origin_dev;
 343	sector_t origin_size;
 344	dm_thin_id dev_id;
 345
 346	struct pool *pool;
 347	struct dm_thin_device *td;
 348	struct mapped_device *thin_md;
 349
 350	bool requeue_mode:1;
 351	spinlock_t lock;
 352	struct list_head deferred_cells;
 353	struct bio_list deferred_bio_list;
 354	struct bio_list retry_on_resume_list;
 355	struct rb_root sort_bio_list; /* sorted list of deferred bios */
 356
 357	/*
 358	 * Ensures the thin is not destroyed until the worker has finished
 359	 * iterating the active_thins list.
 360	 */
 361	refcount_t refcount;
 362	struct completion can_destroy;
 363};
 364
 365/*----------------------------------------------------------------*/
 366
 367static bool block_size_is_power_of_two(struct pool *pool)
 368{
 369	return pool->sectors_per_block_shift >= 0;
 370}
 371
 372static sector_t block_to_sectors(struct pool *pool, dm_block_t b)
 373{
 374	return block_size_is_power_of_two(pool) ?
 375		(b << pool->sectors_per_block_shift) :
 376		(b * pool->sectors_per_block);
 377}
 378
 379/*----------------------------------------------------------------*/
 380
 381struct discard_op {
 382	struct thin_c *tc;
 383	struct blk_plug plug;
 384	struct bio *parent_bio;
 385	struct bio *bio;
 386};
 387
 388static void begin_discard(struct discard_op *op, struct thin_c *tc, struct bio *parent)
 389{
 390	BUG_ON(!parent);
 391
 392	op->tc = tc;
 393	blk_start_plug(&op->plug);
 394	op->parent_bio = parent;
 395	op->bio = NULL;
 396}
 397
 398static int issue_discard(struct discard_op *op, dm_block_t data_b, dm_block_t data_e)
 399{
 400	struct thin_c *tc = op->tc;
 401	sector_t s = block_to_sectors(tc->pool, data_b);
 402	sector_t len = block_to_sectors(tc->pool, data_e - data_b);
 403
 404	return __blkdev_issue_discard(tc->pool_dev->bdev, s, len, GFP_NOIO, &op->bio);
 
 405}
 406
 407static void end_discard(struct discard_op *op, int r)
 408{
 409	if (op->bio) {
 410		/*
 411		 * Even if one of the calls to issue_discard failed, we
 412		 * need to wait for the chain to complete.
 413		 */
 414		bio_chain(op->bio, op->parent_bio);
 415		op->bio->bi_opf = REQ_OP_DISCARD;
 416		submit_bio(op->bio);
 417	}
 418
 419	blk_finish_plug(&op->plug);
 420
 421	/*
 422	 * Even if r is set, there could be sub discards in flight that we
 423	 * need to wait for.
 424	 */
 425	if (r && !op->parent_bio->bi_status)
 426		op->parent_bio->bi_status = errno_to_blk_status(r);
 427	bio_endio(op->parent_bio);
 428}
 429
 430/*----------------------------------------------------------------*/
 431
 432/*
 433 * wake_worker() is used when new work is queued and when pool_resume is
 434 * ready to continue deferred IO processing.
 435 */
 436static void wake_worker(struct pool *pool)
 437{
 438	queue_work(pool->wq, &pool->worker);
 439}
 440
 441/*----------------------------------------------------------------*/
 442
 443static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
 444		      struct dm_bio_prison_cell **cell_result)
 445{
 446	int r;
 447	struct dm_bio_prison_cell *cell_prealloc;
 448
 449	/*
 450	 * Allocate a cell from the prison's mempool.
 451	 * This might block but it can't fail.
 452	 */
 453	cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
 454
 455	r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
 456	if (r) {
 457		/*
 458		 * We reused an old cell; we can get rid of
 459		 * the new one.
 460		 */
 461		dm_bio_prison_free_cell(pool->prison, cell_prealloc);
 462	}
 463
 464	return r;
 465}
 466
 467static void cell_release(struct pool *pool,
 468			 struct dm_bio_prison_cell *cell,
 469			 struct bio_list *bios)
 470{
 471	dm_cell_release(pool->prison, cell, bios);
 472	dm_bio_prison_free_cell(pool->prison, cell);
 473}
 474
 475static void cell_visit_release(struct pool *pool,
 476			       void (*fn)(void *, struct dm_bio_prison_cell *),
 477			       void *context,
 478			       struct dm_bio_prison_cell *cell)
 479{
 480	dm_cell_visit_release(pool->prison, fn, context, cell);
 481	dm_bio_prison_free_cell(pool->prison, cell);
 482}
 483
 484static void cell_release_no_holder(struct pool *pool,
 485				   struct dm_bio_prison_cell *cell,
 486				   struct bio_list *bios)
 487{
 488	dm_cell_release_no_holder(pool->prison, cell, bios);
 489	dm_bio_prison_free_cell(pool->prison, cell);
 490}
 491
 492static void cell_error_with_code(struct pool *pool,
 493		struct dm_bio_prison_cell *cell, blk_status_t error_code)
 494{
 495	dm_cell_error(pool->prison, cell, error_code);
 496	dm_bio_prison_free_cell(pool->prison, cell);
 497}
 498
 499static blk_status_t get_pool_io_error_code(struct pool *pool)
 500{
 501	return pool->out_of_data_space ? BLK_STS_NOSPC : BLK_STS_IOERR;
 502}
 503
 504static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
 505{
 506	cell_error_with_code(pool, cell, get_pool_io_error_code(pool));
 507}
 508
 509static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
 510{
 511	cell_error_with_code(pool, cell, 0);
 512}
 513
 514static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
 515{
 516	cell_error_with_code(pool, cell, BLK_STS_DM_REQUEUE);
 517}
 518
 519/*----------------------------------------------------------------*/
 520
 521/*
 522 * A global list of pools that uses a struct mapped_device as a key.
 523 */
 524static struct dm_thin_pool_table {
 525	struct mutex mutex;
 526	struct list_head pools;
 527} dm_thin_pool_table;
 528
 529static void pool_table_init(void)
 530{
 531	mutex_init(&dm_thin_pool_table.mutex);
 532	INIT_LIST_HEAD(&dm_thin_pool_table.pools);
 533}
 534
 535static void pool_table_exit(void)
 536{
 537	mutex_destroy(&dm_thin_pool_table.mutex);
 538}
 539
 540static void __pool_table_insert(struct pool *pool)
 541{
 542	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 543	list_add(&pool->list, &dm_thin_pool_table.pools);
 544}
 545
 546static void __pool_table_remove(struct pool *pool)
 547{
 548	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 549	list_del(&pool->list);
 550}
 551
 552static struct pool *__pool_table_lookup(struct mapped_device *md)
 553{
 554	struct pool *pool = NULL, *tmp;
 555
 556	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 557
 558	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
 559		if (tmp->pool_md == md) {
 560			pool = tmp;
 561			break;
 562		}
 563	}
 564
 565	return pool;
 566}
 567
 568static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
 569{
 570	struct pool *pool = NULL, *tmp;
 571
 572	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 573
 574	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
 575		if (tmp->md_dev == md_dev) {
 576			pool = tmp;
 577			break;
 578		}
 579	}
 580
 581	return pool;
 582}
 583
 584/*----------------------------------------------------------------*/
 585
 586struct dm_thin_endio_hook {
 587	struct thin_c *tc;
 588	struct dm_deferred_entry *shared_read_entry;
 589	struct dm_deferred_entry *all_io_entry;
 590	struct dm_thin_new_mapping *overwrite_mapping;
 591	struct rb_node rb_node;
 592	struct dm_bio_prison_cell *cell;
 593};
 594
 
 
 
 
 
 
 595static void error_bio_list(struct bio_list *bios, blk_status_t error)
 596{
 597	struct bio *bio;
 598
 599	while ((bio = bio_list_pop(bios))) {
 600		bio->bi_status = error;
 601		bio_endio(bio);
 602	}
 603}
 604
 605static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master,
 606		blk_status_t error)
 607{
 608	struct bio_list bios;
 609
 610	bio_list_init(&bios);
 611
 612	spin_lock_irq(&tc->lock);
 613	bio_list_merge_init(&bios, master);
 614	spin_unlock_irq(&tc->lock);
 615
 616	error_bio_list(&bios, error);
 617}
 618
 619static void requeue_deferred_cells(struct thin_c *tc)
 620{
 621	struct pool *pool = tc->pool;
 622	struct list_head cells;
 623	struct dm_bio_prison_cell *cell, *tmp;
 624
 625	INIT_LIST_HEAD(&cells);
 626
 627	spin_lock_irq(&tc->lock);
 628	list_splice_init(&tc->deferred_cells, &cells);
 629	spin_unlock_irq(&tc->lock);
 630
 631	list_for_each_entry_safe(cell, tmp, &cells, user_list)
 632		cell_requeue(pool, cell);
 633}
 634
 635static void requeue_io(struct thin_c *tc)
 636{
 637	struct bio_list bios;
 638
 639	bio_list_init(&bios);
 640
 641	spin_lock_irq(&tc->lock);
 642	bio_list_merge_init(&bios, &tc->deferred_bio_list);
 643	bio_list_merge_init(&bios, &tc->retry_on_resume_list);
 644	spin_unlock_irq(&tc->lock);
 645
 646	error_bio_list(&bios, BLK_STS_DM_REQUEUE);
 647	requeue_deferred_cells(tc);
 648}
 649
 650static void error_retry_list_with_code(struct pool *pool, blk_status_t error)
 651{
 652	struct thin_c *tc;
 653
 654	rcu_read_lock();
 655	list_for_each_entry_rcu(tc, &pool->active_thins, list)
 656		error_thin_bio_list(tc, &tc->retry_on_resume_list, error);
 657	rcu_read_unlock();
 658}
 659
 660static void error_retry_list(struct pool *pool)
 661{
 662	error_retry_list_with_code(pool, get_pool_io_error_code(pool));
 663}
 664
 665/*
 666 * This section of code contains the logic for processing a thin device's IO.
 667 * Much of the code depends on pool object resources (lists, workqueues, etc)
 668 * but most is exclusively called from the thin target rather than the thin-pool
 669 * target.
 670 */
 671
 672static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
 673{
 674	struct pool *pool = tc->pool;
 675	sector_t block_nr = bio->bi_iter.bi_sector;
 676
 677	if (block_size_is_power_of_two(pool))
 678		block_nr >>= pool->sectors_per_block_shift;
 679	else
 680		(void) sector_div(block_nr, pool->sectors_per_block);
 681
 682	return block_nr;
 683}
 684
 685/*
 686 * Returns the _complete_ blocks that this bio covers.
 687 */
 688static void get_bio_block_range(struct thin_c *tc, struct bio *bio,
 689				dm_block_t *begin, dm_block_t *end)
 690{
 691	struct pool *pool = tc->pool;
 692	sector_t b = bio->bi_iter.bi_sector;
 693	sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT);
 694
 695	b += pool->sectors_per_block - 1ull; /* so we round up */
 696
 697	if (block_size_is_power_of_two(pool)) {
 698		b >>= pool->sectors_per_block_shift;
 699		e >>= pool->sectors_per_block_shift;
 700	} else {
 701		(void) sector_div(b, pool->sectors_per_block);
 702		(void) sector_div(e, pool->sectors_per_block);
 703	}
 704
 705	if (e < b) {
 706		/* Can happen if the bio is within a single block. */
 707		e = b;
 708	}
 709
 710	*begin = b;
 711	*end = e;
 712}
 713
 714static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
 715{
 716	struct pool *pool = tc->pool;
 717	sector_t bi_sector = bio->bi_iter.bi_sector;
 718
 719	bio_set_dev(bio, tc->pool_dev->bdev);
 720	if (block_size_is_power_of_two(pool)) {
 721		bio->bi_iter.bi_sector =
 722			(block << pool->sectors_per_block_shift) |
 723			(bi_sector & (pool->sectors_per_block - 1));
 724	} else {
 725		bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
 726				 sector_div(bi_sector, pool->sectors_per_block);
 727	}
 728}
 729
 730static void remap_to_origin(struct thin_c *tc, struct bio *bio)
 731{
 732	bio_set_dev(bio, tc->origin_dev->bdev);
 733}
 734
 735static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
 736{
 737	return op_is_flush(bio->bi_opf) &&
 738		dm_thin_changed_this_transaction(tc->td);
 739}
 740
 741static void inc_all_io_entry(struct pool *pool, struct bio *bio)
 742{
 743	struct dm_thin_endio_hook *h;
 744
 745	if (bio_op(bio) == REQ_OP_DISCARD)
 746		return;
 747
 748	h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
 749	h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
 750}
 751
 752static void issue(struct thin_c *tc, struct bio *bio)
 753{
 754	struct pool *pool = tc->pool;
 755
 756	if (!bio_triggers_commit(tc, bio)) {
 757		dm_submit_bio_remap(bio, NULL);
 758		return;
 759	}
 760
 761	/*
 762	 * Complete bio with an error if earlier I/O caused changes to
 763	 * the metadata that can't be committed e.g, due to I/O errors
 764	 * on the metadata device.
 765	 */
 766	if (dm_thin_aborted_changes(tc->td)) {
 767		bio_io_error(bio);
 768		return;
 769	}
 770
 771	/*
 772	 * Batch together any bios that trigger commits and then issue a
 773	 * single commit for them in process_deferred_bios().
 774	 */
 775	spin_lock_irq(&pool->lock);
 776	bio_list_add(&pool->deferred_flush_bios, bio);
 777	spin_unlock_irq(&pool->lock);
 778}
 779
 780static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
 781{
 782	remap_to_origin(tc, bio);
 783	issue(tc, bio);
 784}
 785
 786static void remap_and_issue(struct thin_c *tc, struct bio *bio,
 787			    dm_block_t block)
 788{
 789	remap(tc, bio, block);
 790	issue(tc, bio);
 791}
 792
 793/*----------------------------------------------------------------*/
 794
 795/*
 796 * Bio endio functions.
 797 */
 798struct dm_thin_new_mapping {
 799	struct list_head list;
 800
 801	bool pass_discard:1;
 802	bool maybe_shared:1;
 803
 804	/*
 805	 * Track quiescing, copying and zeroing preparation actions.  When this
 806	 * counter hits zero the block is prepared and can be inserted into the
 807	 * btree.
 808	 */
 809	atomic_t prepare_actions;
 810
 811	blk_status_t status;
 812	struct thin_c *tc;
 813	dm_block_t virt_begin, virt_end;
 814	dm_block_t data_block;
 815	struct dm_bio_prison_cell *cell;
 816
 817	/*
 818	 * If the bio covers the whole area of a block then we can avoid
 819	 * zeroing or copying.  Instead this bio is hooked.  The bio will
 820	 * still be in the cell, so care has to be taken to avoid issuing
 821	 * the bio twice.
 822	 */
 823	struct bio *bio;
 824	bio_end_io_t *saved_bi_end_io;
 825};
 826
 827static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
 828{
 829	struct pool *pool = m->tc->pool;
 830
 831	if (atomic_dec_and_test(&m->prepare_actions)) {
 832		list_add_tail(&m->list, &pool->prepared_mappings);
 833		wake_worker(pool);
 834	}
 835}
 836
 837static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
 838{
 839	unsigned long flags;
 840	struct pool *pool = m->tc->pool;
 841
 842	spin_lock_irqsave(&pool->lock, flags);
 843	__complete_mapping_preparation(m);
 844	spin_unlock_irqrestore(&pool->lock, flags);
 845}
 846
 847static void copy_complete(int read_err, unsigned long write_err, void *context)
 848{
 849	struct dm_thin_new_mapping *m = context;
 850
 851	m->status = read_err || write_err ? BLK_STS_IOERR : 0;
 852	complete_mapping_preparation(m);
 853}
 854
 855static void overwrite_endio(struct bio *bio)
 856{
 857	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
 858	struct dm_thin_new_mapping *m = h->overwrite_mapping;
 859
 860	bio->bi_end_io = m->saved_bi_end_io;
 861
 862	m->status = bio->bi_status;
 863	complete_mapping_preparation(m);
 864}
 865
 866/*----------------------------------------------------------------*/
 867
 868/*
 869 * Workqueue.
 870 */
 871
 872/*
 873 * Prepared mapping jobs.
 874 */
 875
 876/*
 877 * This sends the bios in the cell, except the original holder, back
 878 * to the deferred_bios list.
 879 */
 880static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
 881{
 882	struct pool *pool = tc->pool;
 883	unsigned long flags;
 884	struct bio_list bios;
 885
 886	bio_list_init(&bios);
 887	cell_release_no_holder(pool, cell, &bios);
 
 
 888
 889	if (!bio_list_empty(&bios)) {
 890		spin_lock_irqsave(&tc->lock, flags);
 891		bio_list_merge(&tc->deferred_bio_list, &bios);
 892		spin_unlock_irqrestore(&tc->lock, flags);
 893		wake_worker(pool);
 894	}
 895}
 896
 897static void thin_defer_bio(struct thin_c *tc, struct bio *bio);
 898
 899struct remap_info {
 900	struct thin_c *tc;
 901	struct bio_list defer_bios;
 902	struct bio_list issue_bios;
 903};
 904
 905static void __inc_remap_and_issue_cell(void *context,
 906				       struct dm_bio_prison_cell *cell)
 907{
 908	struct remap_info *info = context;
 909	struct bio *bio;
 910
 911	while ((bio = bio_list_pop(&cell->bios))) {
 912		if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD)
 913			bio_list_add(&info->defer_bios, bio);
 914		else {
 915			inc_all_io_entry(info->tc->pool, bio);
 916
 917			/*
 918			 * We can't issue the bios with the bio prison lock
 919			 * held, so we add them to a list to issue on
 920			 * return from this function.
 921			 */
 922			bio_list_add(&info->issue_bios, bio);
 923		}
 924	}
 925}
 926
 927static void inc_remap_and_issue_cell(struct thin_c *tc,
 928				     struct dm_bio_prison_cell *cell,
 929				     dm_block_t block)
 930{
 931	struct bio *bio;
 932	struct remap_info info;
 933
 934	info.tc = tc;
 935	bio_list_init(&info.defer_bios);
 936	bio_list_init(&info.issue_bios);
 937
 938	/*
 939	 * We have to be careful to inc any bios we're about to issue
 940	 * before the cell is released, and avoid a race with new bios
 941	 * being added to the cell.
 942	 */
 943	cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
 944			   &info, cell);
 945
 946	while ((bio = bio_list_pop(&info.defer_bios)))
 947		thin_defer_bio(tc, bio);
 948
 949	while ((bio = bio_list_pop(&info.issue_bios)))
 950		remap_and_issue(info.tc, bio, block);
 951}
 952
 953static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
 954{
 955	cell_error(m->tc->pool, m->cell);
 956	list_del(&m->list);
 957	mempool_free(m, &m->tc->pool->mapping_pool);
 958}
 959
 960static void complete_overwrite_bio(struct thin_c *tc, struct bio *bio)
 961{
 962	struct pool *pool = tc->pool;
 963
 964	/*
 965	 * If the bio has the REQ_FUA flag set we must commit the metadata
 966	 * before signaling its completion.
 967	 */
 968	if (!bio_triggers_commit(tc, bio)) {
 969		bio_endio(bio);
 970		return;
 971	}
 972
 973	/*
 974	 * Complete bio with an error if earlier I/O caused changes to the
 975	 * metadata that can't be committed, e.g, due to I/O errors on the
 976	 * metadata device.
 977	 */
 978	if (dm_thin_aborted_changes(tc->td)) {
 979		bio_io_error(bio);
 980		return;
 981	}
 982
 983	/*
 984	 * Batch together any bios that trigger commits and then issue a
 985	 * single commit for them in process_deferred_bios().
 986	 */
 987	spin_lock_irq(&pool->lock);
 988	bio_list_add(&pool->deferred_flush_completions, bio);
 989	spin_unlock_irq(&pool->lock);
 990}
 991
 992static void process_prepared_mapping(struct dm_thin_new_mapping *m)
 993{
 994	struct thin_c *tc = m->tc;
 995	struct pool *pool = tc->pool;
 996	struct bio *bio = m->bio;
 997	int r;
 998
 999	if (m->status) {
1000		cell_error(pool, m->cell);
1001		goto out;
1002	}
1003
1004	/*
1005	 * Commit the prepared block into the mapping btree.
1006	 * Any I/O for this block arriving after this point will get
1007	 * remapped to it directly.
1008	 */
1009	r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block);
1010	if (r) {
1011		metadata_operation_failed(pool, "dm_thin_insert_block", r);
1012		cell_error(pool, m->cell);
1013		goto out;
1014	}
1015
1016	/*
1017	 * Release any bios held while the block was being provisioned.
1018	 * If we are processing a write bio that completely covers the block,
1019	 * we already processed it so can ignore it now when processing
1020	 * the bios in the cell.
1021	 */
1022	if (bio) {
1023		inc_remap_and_issue_cell(tc, m->cell, m->data_block);
1024		complete_overwrite_bio(tc, bio);
1025	} else {
1026		inc_all_io_entry(tc->pool, m->cell->holder);
1027		remap_and_issue(tc, m->cell->holder, m->data_block);
1028		inc_remap_and_issue_cell(tc, m->cell, m->data_block);
1029	}
1030
1031out:
1032	list_del(&m->list);
1033	mempool_free(m, &pool->mapping_pool);
1034}
1035
1036/*----------------------------------------------------------------*/
1037
1038static void free_discard_mapping(struct dm_thin_new_mapping *m)
1039{
1040	struct thin_c *tc = m->tc;
1041
1042	if (m->cell)
1043		cell_defer_no_holder(tc, m->cell);
1044	mempool_free(m, &tc->pool->mapping_pool);
1045}
1046
1047static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
1048{
1049	bio_io_error(m->bio);
1050	free_discard_mapping(m);
1051}
1052
1053static void process_prepared_discard_success(struct dm_thin_new_mapping *m)
1054{
1055	bio_endio(m->bio);
1056	free_discard_mapping(m);
1057}
1058
1059static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m)
1060{
1061	int r;
1062	struct thin_c *tc = m->tc;
1063
1064	r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end);
1065	if (r) {
1066		metadata_operation_failed(tc->pool, "dm_thin_remove_range", r);
1067		bio_io_error(m->bio);
1068	} else
1069		bio_endio(m->bio);
1070
1071	cell_defer_no_holder(tc, m->cell);
1072	mempool_free(m, &tc->pool->mapping_pool);
1073}
1074
1075/*----------------------------------------------------------------*/
1076
1077static void passdown_double_checking_shared_status(struct dm_thin_new_mapping *m,
1078						   struct bio *discard_parent)
1079{
1080	/*
1081	 * We've already unmapped this range of blocks, but before we
1082	 * passdown we have to check that these blocks are now unused.
1083	 */
1084	int r = 0;
1085	bool shared = true;
1086	struct thin_c *tc = m->tc;
1087	struct pool *pool = tc->pool;
1088	dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin;
1089	struct discard_op op;
1090
1091	begin_discard(&op, tc, discard_parent);
1092	while (b != end) {
1093		/* find start of unmapped run */
1094		for (; b < end; b++) {
1095			r = dm_pool_block_is_shared(pool->pmd, b, &shared);
1096			if (r)
1097				goto out;
1098
1099			if (!shared)
1100				break;
1101		}
1102
1103		if (b == end)
1104			break;
1105
1106		/* find end of run */
1107		for (e = b + 1; e != end; e++) {
1108			r = dm_pool_block_is_shared(pool->pmd, e, &shared);
1109			if (r)
1110				goto out;
1111
1112			if (shared)
1113				break;
1114		}
1115
1116		r = issue_discard(&op, b, e);
1117		if (r)
1118			goto out;
1119
1120		b = e;
1121	}
1122out:
1123	end_discard(&op, r);
1124}
1125
1126static void queue_passdown_pt2(struct dm_thin_new_mapping *m)
1127{
1128	unsigned long flags;
1129	struct pool *pool = m->tc->pool;
1130
1131	spin_lock_irqsave(&pool->lock, flags);
1132	list_add_tail(&m->list, &pool->prepared_discards_pt2);
1133	spin_unlock_irqrestore(&pool->lock, flags);
1134	wake_worker(pool);
1135}
1136
1137static void passdown_endio(struct bio *bio)
1138{
1139	/*
1140	 * It doesn't matter if the passdown discard failed, we still want
1141	 * to unmap (we ignore err).
1142	 */
1143	queue_passdown_pt2(bio->bi_private);
1144	bio_put(bio);
1145}
1146
1147static void process_prepared_discard_passdown_pt1(struct dm_thin_new_mapping *m)
1148{
1149	int r;
1150	struct thin_c *tc = m->tc;
1151	struct pool *pool = tc->pool;
1152	struct bio *discard_parent;
1153	dm_block_t data_end = m->data_block + (m->virt_end - m->virt_begin);
1154
1155	/*
1156	 * Only this thread allocates blocks, so we can be sure that the
1157	 * newly unmapped blocks will not be allocated before the end of
1158	 * the function.
1159	 */
1160	r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end);
1161	if (r) {
1162		metadata_operation_failed(pool, "dm_thin_remove_range", r);
1163		bio_io_error(m->bio);
1164		cell_defer_no_holder(tc, m->cell);
1165		mempool_free(m, &pool->mapping_pool);
1166		return;
1167	}
1168
1169	/*
1170	 * Increment the unmapped blocks.  This prevents a race between the
1171	 * passdown io and reallocation of freed blocks.
1172	 */
1173	r = dm_pool_inc_data_range(pool->pmd, m->data_block, data_end);
1174	if (r) {
1175		metadata_operation_failed(pool, "dm_pool_inc_data_range", r);
1176		bio_io_error(m->bio);
1177		cell_defer_no_holder(tc, m->cell);
1178		mempool_free(m, &pool->mapping_pool);
1179		return;
1180	}
1181
1182	discard_parent = bio_alloc(NULL, 1, 0, GFP_NOIO);
1183	discard_parent->bi_end_io = passdown_endio;
1184	discard_parent->bi_private = m;
1185	if (m->maybe_shared)
1186		passdown_double_checking_shared_status(m, discard_parent);
1187	else {
1188		struct discard_op op;
1189
1190		begin_discard(&op, tc, discard_parent);
1191		r = issue_discard(&op, m->data_block, data_end);
1192		end_discard(&op, r);
1193	}
1194}
1195
1196static void process_prepared_discard_passdown_pt2(struct dm_thin_new_mapping *m)
1197{
1198	int r;
1199	struct thin_c *tc = m->tc;
1200	struct pool *pool = tc->pool;
1201
1202	/*
1203	 * The passdown has completed, so now we can decrement all those
1204	 * unmapped blocks.
1205	 */
1206	r = dm_pool_dec_data_range(pool->pmd, m->data_block,
1207				   m->data_block + (m->virt_end - m->virt_begin));
1208	if (r) {
1209		metadata_operation_failed(pool, "dm_pool_dec_data_range", r);
1210		bio_io_error(m->bio);
1211	} else
1212		bio_endio(m->bio);
1213
1214	cell_defer_no_holder(tc, m->cell);
1215	mempool_free(m, &pool->mapping_pool);
1216}
1217
1218static void process_prepared(struct pool *pool, struct list_head *head,
1219			     process_mapping_fn *fn)
1220{
1221	struct list_head maps;
1222	struct dm_thin_new_mapping *m, *tmp;
1223
1224	INIT_LIST_HEAD(&maps);
1225	spin_lock_irq(&pool->lock);
1226	list_splice_init(head, &maps);
1227	spin_unlock_irq(&pool->lock);
1228
1229	list_for_each_entry_safe(m, tmp, &maps, list)
1230		(*fn)(m);
1231}
1232
1233/*
1234 * Deferred bio jobs.
1235 */
1236static int io_overlaps_block(struct pool *pool, struct bio *bio)
1237{
1238	return bio->bi_iter.bi_size ==
1239		(pool->sectors_per_block << SECTOR_SHIFT);
1240}
1241
1242static int io_overwrites_block(struct pool *pool, struct bio *bio)
1243{
1244	return (bio_data_dir(bio) == WRITE) &&
1245		io_overlaps_block(pool, bio);
1246}
1247
1248static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
1249			       bio_end_io_t *fn)
1250{
1251	*save = bio->bi_end_io;
1252	bio->bi_end_io = fn;
1253}
1254
1255static int ensure_next_mapping(struct pool *pool)
1256{
1257	if (pool->next_mapping)
1258		return 0;
1259
1260	pool->next_mapping = mempool_alloc(&pool->mapping_pool, GFP_ATOMIC);
1261
1262	return pool->next_mapping ? 0 : -ENOMEM;
1263}
1264
1265static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
1266{
1267	struct dm_thin_new_mapping *m = pool->next_mapping;
1268
1269	BUG_ON(!pool->next_mapping);
1270
1271	memset(m, 0, sizeof(struct dm_thin_new_mapping));
1272	INIT_LIST_HEAD(&m->list);
1273	m->bio = NULL;
1274
1275	pool->next_mapping = NULL;
1276
1277	return m;
1278}
1279
1280static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
1281		    sector_t begin, sector_t end)
1282{
1283	struct dm_io_region to;
1284
1285	to.bdev = tc->pool_dev->bdev;
1286	to.sector = begin;
1287	to.count = end - begin;
1288
1289	dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
1290}
1291
1292static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
1293				      dm_block_t data_begin,
1294				      struct dm_thin_new_mapping *m)
1295{
1296	struct pool *pool = tc->pool;
1297	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1298
1299	h->overwrite_mapping = m;
1300	m->bio = bio;
1301	save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1302	inc_all_io_entry(pool, bio);
1303	remap_and_issue(tc, bio, data_begin);
1304}
1305
1306/*
1307 * A partial copy also needs to zero the uncopied region.
1308 */
1309static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
1310			  struct dm_dev *origin, dm_block_t data_origin,
1311			  dm_block_t data_dest,
1312			  struct dm_bio_prison_cell *cell, struct bio *bio,
1313			  sector_t len)
1314{
1315	struct pool *pool = tc->pool;
1316	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1317
1318	m->tc = tc;
1319	m->virt_begin = virt_block;
1320	m->virt_end = virt_block + 1u;
1321	m->data_block = data_dest;
1322	m->cell = cell;
1323
1324	/*
1325	 * quiesce action + copy action + an extra reference held for the
1326	 * duration of this function (we may need to inc later for a
1327	 * partial zero).
1328	 */
1329	atomic_set(&m->prepare_actions, 3);
1330
1331	if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
1332		complete_mapping_preparation(m); /* already quiesced */
1333
1334	/*
1335	 * IO to pool_dev remaps to the pool target's data_dev.
1336	 *
1337	 * If the whole block of data is being overwritten, we can issue the
1338	 * bio immediately. Otherwise we use kcopyd to clone the data first.
1339	 */
1340	if (io_overwrites_block(pool, bio))
1341		remap_and_issue_overwrite(tc, bio, data_dest, m);
1342	else {
1343		struct dm_io_region from, to;
1344
1345		from.bdev = origin->bdev;
1346		from.sector = data_origin * pool->sectors_per_block;
1347		from.count = len;
1348
1349		to.bdev = tc->pool_dev->bdev;
1350		to.sector = data_dest * pool->sectors_per_block;
1351		to.count = len;
1352
1353		dm_kcopyd_copy(pool->copier, &from, 1, &to,
1354			       0, copy_complete, m);
1355
1356		/*
1357		 * Do we need to zero a tail region?
1358		 */
1359		if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
1360			atomic_inc(&m->prepare_actions);
1361			ll_zero(tc, m,
1362				data_dest * pool->sectors_per_block + len,
1363				(data_dest + 1) * pool->sectors_per_block);
1364		}
1365	}
1366
1367	complete_mapping_preparation(m); /* drop our ref */
1368}
1369
1370static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1371				   dm_block_t data_origin, dm_block_t data_dest,
1372				   struct dm_bio_prison_cell *cell, struct bio *bio)
1373{
1374	schedule_copy(tc, virt_block, tc->pool_dev,
1375		      data_origin, data_dest, cell, bio,
1376		      tc->pool->sectors_per_block);
1377}
1378
1379static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1380			  dm_block_t data_block, struct dm_bio_prison_cell *cell,
1381			  struct bio *bio)
1382{
1383	struct pool *pool = tc->pool;
1384	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1385
1386	atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
1387	m->tc = tc;
1388	m->virt_begin = virt_block;
1389	m->virt_end = virt_block + 1u;
1390	m->data_block = data_block;
1391	m->cell = cell;
1392
1393	/*
1394	 * If the whole block of data is being overwritten or we are not
1395	 * zeroing pre-existing data, we can issue the bio immediately.
1396	 * Otherwise we use kcopyd to zero the data first.
1397	 */
1398	if (pool->pf.zero_new_blocks) {
1399		if (io_overwrites_block(pool, bio))
1400			remap_and_issue_overwrite(tc, bio, data_block, m);
1401		else {
1402			ll_zero(tc, m, data_block * pool->sectors_per_block,
1403				(data_block + 1) * pool->sectors_per_block);
1404		}
1405	} else
1406		process_prepared_mapping(m);
1407}
1408
1409static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1410				   dm_block_t data_dest,
1411				   struct dm_bio_prison_cell *cell, struct bio *bio)
1412{
1413	struct pool *pool = tc->pool;
1414	sector_t virt_block_begin = virt_block * pool->sectors_per_block;
1415	sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
1416
1417	if (virt_block_end <= tc->origin_size) {
1418		schedule_copy(tc, virt_block, tc->origin_dev,
1419			      virt_block, data_dest, cell, bio,
1420			      pool->sectors_per_block);
1421
1422	} else if (virt_block_begin < tc->origin_size) {
1423		schedule_copy(tc, virt_block, tc->origin_dev,
1424			      virt_block, data_dest, cell, bio,
1425			      tc->origin_size - virt_block_begin);
1426
1427	} else
1428		schedule_zero(tc, virt_block, data_dest, cell, bio);
1429}
1430
1431static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
1432
1433static void requeue_bios(struct pool *pool);
1434
1435static bool is_read_only_pool_mode(enum pool_mode mode)
1436{
1437	return (mode == PM_OUT_OF_METADATA_SPACE || mode == PM_READ_ONLY);
1438}
1439
1440static bool is_read_only(struct pool *pool)
1441{
1442	return is_read_only_pool_mode(get_pool_mode(pool));
1443}
1444
1445static void check_for_metadata_space(struct pool *pool)
1446{
1447	int r;
1448	const char *ooms_reason = NULL;
1449	dm_block_t nr_free;
1450
1451	r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free);
1452	if (r)
1453		ooms_reason = "Could not get free metadata blocks";
1454	else if (!nr_free)
1455		ooms_reason = "No free metadata blocks";
1456
1457	if (ooms_reason && !is_read_only(pool)) {
1458		DMERR("%s", ooms_reason);
1459		set_pool_mode(pool, PM_OUT_OF_METADATA_SPACE);
1460	}
1461}
1462
1463static void check_for_data_space(struct pool *pool)
1464{
1465	int r;
1466	dm_block_t nr_free;
1467
1468	if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE)
1469		return;
1470
1471	r = dm_pool_get_free_block_count(pool->pmd, &nr_free);
1472	if (r)
1473		return;
1474
1475	if (nr_free) {
1476		set_pool_mode(pool, PM_WRITE);
1477		requeue_bios(pool);
1478	}
1479}
1480
1481/*
1482 * A non-zero return indicates read_only or fail_io mode.
1483 * Many callers don't care about the return value.
1484 */
1485static int commit(struct pool *pool)
1486{
1487	int r;
1488
1489	if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE)
1490		return -EINVAL;
1491
1492	r = dm_pool_commit_metadata(pool->pmd);
1493	if (r)
1494		metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1495	else {
1496		check_for_metadata_space(pool);
1497		check_for_data_space(pool);
1498	}
1499
1500	return r;
1501}
1502
1503static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
1504{
1505	if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1506		DMWARN("%s: reached low water mark for data device: sending event.",
1507		       dm_device_name(pool->pool_md));
1508		spin_lock_irq(&pool->lock);
1509		pool->low_water_triggered = true;
1510		spin_unlock_irq(&pool->lock);
1511		dm_table_event(pool->ti->table);
1512	}
1513}
1514
1515static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1516{
1517	int r;
1518	dm_block_t free_blocks;
1519	struct pool *pool = tc->pool;
1520
1521	if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1522		return -EINVAL;
1523
1524	r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1525	if (r) {
1526		metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1527		return r;
1528	}
1529
1530	check_low_water_mark(pool, free_blocks);
1531
1532	if (!free_blocks) {
1533		/*
1534		 * Try to commit to see if that will free up some
1535		 * more space.
1536		 */
1537		r = commit(pool);
1538		if (r)
1539			return r;
1540
1541		r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1542		if (r) {
1543			metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1544			return r;
1545		}
1546
1547		if (!free_blocks) {
1548			set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1549			return -ENOSPC;
1550		}
1551	}
1552
1553	r = dm_pool_alloc_data_block(pool->pmd, result);
1554	if (r) {
1555		if (r == -ENOSPC)
1556			set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1557		else
1558			metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1559		return r;
1560	}
1561
1562	r = dm_pool_get_free_metadata_block_count(pool->pmd, &free_blocks);
1563	if (r) {
1564		metadata_operation_failed(pool, "dm_pool_get_free_metadata_block_count", r);
1565		return r;
1566	}
1567
1568	if (!free_blocks) {
1569		/* Let's commit before we use up the metadata reserve. */
1570		r = commit(pool);
1571		if (r)
1572			return r;
1573	}
1574
1575	return 0;
1576}
1577
1578/*
1579 * If we have run out of space, queue bios until the device is
1580 * resumed, presumably after having been reloaded with more space.
1581 */
1582static void retry_on_resume(struct bio *bio)
1583{
1584	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1585	struct thin_c *tc = h->tc;
1586
1587	spin_lock_irq(&tc->lock);
1588	bio_list_add(&tc->retry_on_resume_list, bio);
1589	spin_unlock_irq(&tc->lock);
1590}
1591
1592static blk_status_t should_error_unserviceable_bio(struct pool *pool)
1593{
1594	enum pool_mode m = get_pool_mode(pool);
1595
1596	switch (m) {
1597	case PM_WRITE:
1598		/* Shouldn't get here */
1599		DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1600		return BLK_STS_IOERR;
1601
1602	case PM_OUT_OF_DATA_SPACE:
1603		return pool->pf.error_if_no_space ? BLK_STS_NOSPC : 0;
1604
1605	case PM_OUT_OF_METADATA_SPACE:
1606	case PM_READ_ONLY:
1607	case PM_FAIL:
1608		return BLK_STS_IOERR;
1609	default:
1610		/* Shouldn't get here */
1611		DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1612		return BLK_STS_IOERR;
1613	}
1614}
1615
1616static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1617{
1618	blk_status_t error = should_error_unserviceable_bio(pool);
1619
1620	if (error) {
1621		bio->bi_status = error;
1622		bio_endio(bio);
1623	} else
1624		retry_on_resume(bio);
1625}
1626
1627static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1628{
1629	struct bio *bio;
1630	struct bio_list bios;
1631	blk_status_t error;
1632
1633	error = should_error_unserviceable_bio(pool);
1634	if (error) {
1635		cell_error_with_code(pool, cell, error);
1636		return;
1637	}
1638
1639	bio_list_init(&bios);
1640	cell_release(pool, cell, &bios);
1641
1642	while ((bio = bio_list_pop(&bios)))
1643		retry_on_resume(bio);
1644}
1645
1646static void process_discard_cell_no_passdown(struct thin_c *tc,
1647					     struct dm_bio_prison_cell *virt_cell)
1648{
1649	struct pool *pool = tc->pool;
1650	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1651
1652	/*
1653	 * We don't need to lock the data blocks, since there's no
1654	 * passdown.  We only lock data blocks for allocation and breaking sharing.
1655	 */
1656	m->tc = tc;
1657	m->virt_begin = virt_cell->key.block_begin;
1658	m->virt_end = virt_cell->key.block_end;
1659	m->cell = virt_cell;
1660	m->bio = virt_cell->holder;
1661
1662	if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1663		pool->process_prepared_discard(m);
1664}
1665
1666static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end,
1667				 struct bio *bio)
1668{
1669	struct pool *pool = tc->pool;
1670
1671	int r;
1672	bool maybe_shared;
1673	struct dm_cell_key data_key;
1674	struct dm_bio_prison_cell *data_cell;
1675	struct dm_thin_new_mapping *m;
1676	dm_block_t virt_begin, virt_end, data_begin, data_end;
1677	dm_block_t len, next_boundary;
1678
1679	while (begin != end) {
 
 
 
 
 
1680		r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end,
1681					      &data_begin, &maybe_shared);
1682		if (r) {
1683			/*
1684			 * Silently fail, letting any mappings we've
1685			 * created complete.
1686			 */
1687			break;
 
 
 
 
 
 
1688		}
1689
1690		data_end = data_begin + (virt_end - virt_begin);
 
 
 
 
 
 
 
 
 
 
 
1691
1692		/*
1693		 * Make sure the data region obeys the bio prison restrictions.
 
 
 
 
 
1694		 */
1695		while (data_begin < data_end) {
1696			r = ensure_next_mapping(pool);
1697			if (r)
1698				return; /* we did our best */
1699
1700			next_boundary = ((data_begin >> BIO_PRISON_MAX_RANGE_SHIFT) + 1)
1701				<< BIO_PRISON_MAX_RANGE_SHIFT;
1702			len = min_t(sector_t, data_end - data_begin, next_boundary - data_begin);
1703
1704			/* This key is certainly within range given the above splitting */
1705			(void) build_key(tc->td, PHYSICAL, data_begin, data_begin + len, &data_key);
1706			if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) {
1707				/* contention, we'll give up with this range */
1708				data_begin += len;
1709				continue;
1710			}
1711
1712			/*
1713			 * IO may still be going to the destination block.  We must
1714			 * quiesce before we can do the removal.
1715			 */
1716			m = get_next_mapping(pool);
1717			m->tc = tc;
1718			m->maybe_shared = maybe_shared;
1719			m->virt_begin = virt_begin;
1720			m->virt_end = virt_begin + len;
1721			m->data_block = data_begin;
1722			m->cell = data_cell;
1723			m->bio = bio;
1724
1725			/*
1726			 * The parent bio must not complete before sub discard bios are
1727			 * chained to it (see end_discard's bio_chain)!
1728			 *
1729			 * This per-mapping bi_remaining increment is paired with
1730			 * the implicit decrement that occurs via bio_endio() in
1731			 * end_discard().
1732			 */
1733			bio_inc_remaining(bio);
1734			if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1735				pool->process_prepared_discard(m);
1736
1737			virt_begin += len;
1738			data_begin += len;
1739		}
1740
1741		begin = virt_end;
1742	}
1743}
1744
1745static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell)
1746{
1747	struct bio *bio = virt_cell->holder;
1748	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1749
1750	/*
1751	 * The virt_cell will only get freed once the origin bio completes.
1752	 * This means it will remain locked while all the individual
1753	 * passdown bios are in flight.
1754	 */
1755	h->cell = virt_cell;
1756	break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio);
1757
1758	/*
1759	 * We complete the bio now, knowing that the bi_remaining field
1760	 * will prevent completion until the sub range discards have
1761	 * completed.
1762	 */
1763	bio_endio(bio);
1764}
1765
1766static void process_discard_bio(struct thin_c *tc, struct bio *bio)
1767{
1768	dm_block_t begin, end;
1769	struct dm_cell_key virt_key;
1770	struct dm_bio_prison_cell *virt_cell;
1771
1772	get_bio_block_range(tc, bio, &begin, &end);
1773	if (begin == end) {
1774		/*
1775		 * The discard covers less than a block.
1776		 */
1777		bio_endio(bio);
1778		return;
1779	}
1780
1781	if (unlikely(!build_key(tc->td, VIRTUAL, begin, end, &virt_key))) {
1782		DMERR_LIMIT("Discard doesn't respect bio prison limits");
1783		bio_endio(bio);
1784		return;
1785	}
1786
1787	if (bio_detain(tc->pool, &virt_key, bio, &virt_cell)) {
1788		/*
1789		 * Potential starvation issue: We're relying on the
1790		 * fs/application being well behaved, and not trying to
1791		 * send IO to a region at the same time as discarding it.
1792		 * If they do this persistently then it's possible this
1793		 * cell will never be granted.
1794		 */
1795		return;
1796	}
1797
1798	tc->pool->process_discard_cell(tc, virt_cell);
1799}
1800
1801static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1802			  struct dm_cell_key *key,
1803			  struct dm_thin_lookup_result *lookup_result,
1804			  struct dm_bio_prison_cell *cell)
1805{
1806	int r;
1807	dm_block_t data_block;
1808	struct pool *pool = tc->pool;
1809
1810	r = alloc_data_block(tc, &data_block);
1811	switch (r) {
1812	case 0:
1813		schedule_internal_copy(tc, block, lookup_result->block,
1814				       data_block, cell, bio);
1815		break;
1816
1817	case -ENOSPC:
1818		retry_bios_on_resume(pool, cell);
1819		break;
1820
1821	default:
1822		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1823			    __func__, r);
1824		cell_error(pool, cell);
1825		break;
1826	}
1827}
1828
1829static void __remap_and_issue_shared_cell(void *context,
1830					  struct dm_bio_prison_cell *cell)
1831{
1832	struct remap_info *info = context;
1833	struct bio *bio;
1834
1835	while ((bio = bio_list_pop(&cell->bios))) {
1836		if (bio_data_dir(bio) == WRITE || op_is_flush(bio->bi_opf) ||
1837		    bio_op(bio) == REQ_OP_DISCARD)
1838			bio_list_add(&info->defer_bios, bio);
1839		else {
1840			struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1841
1842			h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds);
1843			inc_all_io_entry(info->tc->pool, bio);
1844			bio_list_add(&info->issue_bios, bio);
1845		}
1846	}
1847}
1848
1849static void remap_and_issue_shared_cell(struct thin_c *tc,
1850					struct dm_bio_prison_cell *cell,
1851					dm_block_t block)
1852{
1853	struct bio *bio;
1854	struct remap_info info;
1855
1856	info.tc = tc;
1857	bio_list_init(&info.defer_bios);
1858	bio_list_init(&info.issue_bios);
1859
1860	cell_visit_release(tc->pool, __remap_and_issue_shared_cell,
1861			   &info, cell);
1862
1863	while ((bio = bio_list_pop(&info.defer_bios)))
1864		thin_defer_bio(tc, bio);
1865
1866	while ((bio = bio_list_pop(&info.issue_bios)))
1867		remap_and_issue(tc, bio, block);
1868}
1869
1870static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1871			       dm_block_t block,
1872			       struct dm_thin_lookup_result *lookup_result,
1873			       struct dm_bio_prison_cell *virt_cell)
1874{
1875	struct dm_bio_prison_cell *data_cell;
1876	struct pool *pool = tc->pool;
1877	struct dm_cell_key key;
1878
1879	/*
1880	 * If cell is already occupied, then sharing is already in the process
1881	 * of being broken so we have nothing further to do here.
1882	 */
1883	build_data_key(tc->td, lookup_result->block, &key);
1884	if (bio_detain(pool, &key, bio, &data_cell)) {
1885		cell_defer_no_holder(tc, virt_cell);
1886		return;
1887	}
1888
1889	if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) {
1890		break_sharing(tc, bio, block, &key, lookup_result, data_cell);
1891		cell_defer_no_holder(tc, virt_cell);
1892	} else {
1893		struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1894
1895		h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1896		inc_all_io_entry(pool, bio);
1897		remap_and_issue(tc, bio, lookup_result->block);
1898
1899		remap_and_issue_shared_cell(tc, data_cell, lookup_result->block);
1900		remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block);
1901	}
1902}
1903
1904static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1905			    struct dm_bio_prison_cell *cell)
1906{
1907	int r;
1908	dm_block_t data_block;
1909	struct pool *pool = tc->pool;
1910
1911	/*
1912	 * Remap empty bios (flushes) immediately, without provisioning.
1913	 */
1914	if (!bio->bi_iter.bi_size) {
1915		inc_all_io_entry(pool, bio);
1916		cell_defer_no_holder(tc, cell);
1917
1918		remap_and_issue(tc, bio, 0);
1919		return;
1920	}
1921
1922	/*
1923	 * Fill read bios with zeroes and complete them immediately.
1924	 */
1925	if (bio_data_dir(bio) == READ) {
1926		zero_fill_bio(bio);
1927		cell_defer_no_holder(tc, cell);
1928		bio_endio(bio);
1929		return;
1930	}
1931
1932	r = alloc_data_block(tc, &data_block);
1933	switch (r) {
1934	case 0:
1935		if (tc->origin_dev)
1936			schedule_external_copy(tc, block, data_block, cell, bio);
1937		else
1938			schedule_zero(tc, block, data_block, cell, bio);
1939		break;
1940
1941	case -ENOSPC:
1942		retry_bios_on_resume(pool, cell);
1943		break;
1944
1945	default:
1946		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1947			    __func__, r);
1948		cell_error(pool, cell);
1949		break;
1950	}
1951}
1952
1953static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1954{
1955	int r;
1956	struct pool *pool = tc->pool;
1957	struct bio *bio = cell->holder;
1958	dm_block_t block = get_bio_block(tc, bio);
1959	struct dm_thin_lookup_result lookup_result;
1960
1961	if (tc->requeue_mode) {
1962		cell_requeue(pool, cell);
1963		return;
1964	}
1965
1966	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1967	switch (r) {
1968	case 0:
1969		if (lookup_result.shared)
1970			process_shared_bio(tc, bio, block, &lookup_result, cell);
1971		else {
1972			inc_all_io_entry(pool, bio);
1973			remap_and_issue(tc, bio, lookup_result.block);
1974			inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1975		}
1976		break;
1977
1978	case -ENODATA:
1979		if (bio_data_dir(bio) == READ && tc->origin_dev) {
1980			inc_all_io_entry(pool, bio);
1981			cell_defer_no_holder(tc, cell);
1982
1983			if (bio_end_sector(bio) <= tc->origin_size)
1984				remap_to_origin_and_issue(tc, bio);
1985
1986			else if (bio->bi_iter.bi_sector < tc->origin_size) {
1987				zero_fill_bio(bio);
1988				bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
1989				remap_to_origin_and_issue(tc, bio);
1990
1991			} else {
1992				zero_fill_bio(bio);
1993				bio_endio(bio);
1994			}
1995		} else
1996			provision_block(tc, bio, block, cell);
1997		break;
1998
1999	default:
2000		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
2001			    __func__, r);
2002		cell_defer_no_holder(tc, cell);
2003		bio_io_error(bio);
2004		break;
2005	}
2006}
2007
2008static void process_bio(struct thin_c *tc, struct bio *bio)
2009{
2010	struct pool *pool = tc->pool;
2011	dm_block_t block = get_bio_block(tc, bio);
2012	struct dm_bio_prison_cell *cell;
2013	struct dm_cell_key key;
2014
2015	/*
2016	 * If cell is already occupied, then the block is already
2017	 * being provisioned so we have nothing further to do here.
2018	 */
2019	build_virtual_key(tc->td, block, &key);
2020	if (bio_detain(pool, &key, bio, &cell))
2021		return;
2022
2023	process_cell(tc, cell);
2024}
2025
2026static void __process_bio_read_only(struct thin_c *tc, struct bio *bio,
2027				    struct dm_bio_prison_cell *cell)
2028{
2029	int r;
2030	int rw = bio_data_dir(bio);
2031	dm_block_t block = get_bio_block(tc, bio);
2032	struct dm_thin_lookup_result lookup_result;
2033
2034	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
2035	switch (r) {
2036	case 0:
2037		if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) {
2038			handle_unserviceable_bio(tc->pool, bio);
2039			if (cell)
2040				cell_defer_no_holder(tc, cell);
2041		} else {
2042			inc_all_io_entry(tc->pool, bio);
2043			remap_and_issue(tc, bio, lookup_result.block);
2044			if (cell)
2045				inc_remap_and_issue_cell(tc, cell, lookup_result.block);
2046		}
2047		break;
2048
2049	case -ENODATA:
2050		if (cell)
2051			cell_defer_no_holder(tc, cell);
2052		if (rw != READ) {
2053			handle_unserviceable_bio(tc->pool, bio);
2054			break;
2055		}
2056
2057		if (tc->origin_dev) {
2058			inc_all_io_entry(tc->pool, bio);
2059			remap_to_origin_and_issue(tc, bio);
2060			break;
2061		}
2062
2063		zero_fill_bio(bio);
2064		bio_endio(bio);
2065		break;
2066
2067	default:
2068		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
2069			    __func__, r);
2070		if (cell)
2071			cell_defer_no_holder(tc, cell);
2072		bio_io_error(bio);
2073		break;
2074	}
2075}
2076
2077static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
2078{
2079	__process_bio_read_only(tc, bio, NULL);
2080}
2081
2082static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2083{
2084	__process_bio_read_only(tc, cell->holder, cell);
2085}
2086
2087static void process_bio_success(struct thin_c *tc, struct bio *bio)
2088{
2089	bio_endio(bio);
2090}
2091
2092static void process_bio_fail(struct thin_c *tc, struct bio *bio)
2093{
2094	bio_io_error(bio);
2095}
2096
2097static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2098{
2099	cell_success(tc->pool, cell);
2100}
2101
2102static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2103{
2104	cell_error(tc->pool, cell);
2105}
2106
2107/*
2108 * FIXME: should we also commit due to size of transaction, measured in
2109 * metadata blocks?
2110 */
2111static int need_commit_due_to_time(struct pool *pool)
2112{
2113	return !time_in_range(jiffies, pool->last_commit_jiffies,
2114			      pool->last_commit_jiffies + COMMIT_PERIOD);
2115}
2116
2117#define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
2118#define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
2119
2120static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
2121{
2122	struct rb_node **rbp, *parent;
2123	struct dm_thin_endio_hook *pbd;
2124	sector_t bi_sector = bio->bi_iter.bi_sector;
2125
2126	rbp = &tc->sort_bio_list.rb_node;
2127	parent = NULL;
2128	while (*rbp) {
2129		parent = *rbp;
2130		pbd = thin_pbd(parent);
2131
2132		if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
2133			rbp = &(*rbp)->rb_left;
2134		else
2135			rbp = &(*rbp)->rb_right;
2136	}
2137
2138	pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2139	rb_link_node(&pbd->rb_node, parent, rbp);
2140	rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
2141}
2142
2143static void __extract_sorted_bios(struct thin_c *tc)
2144{
2145	struct rb_node *node;
2146	struct dm_thin_endio_hook *pbd;
2147	struct bio *bio;
2148
2149	for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
2150		pbd = thin_pbd(node);
2151		bio = thin_bio(pbd);
2152
2153		bio_list_add(&tc->deferred_bio_list, bio);
2154		rb_erase(&pbd->rb_node, &tc->sort_bio_list);
2155	}
2156
2157	WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
2158}
2159
2160static void __sort_thin_deferred_bios(struct thin_c *tc)
2161{
2162	struct bio *bio;
2163	struct bio_list bios;
2164
2165	bio_list_init(&bios);
2166	bio_list_merge(&bios, &tc->deferred_bio_list);
2167	bio_list_init(&tc->deferred_bio_list);
2168
2169	/* Sort deferred_bio_list using rb-tree */
2170	while ((bio = bio_list_pop(&bios)))
2171		__thin_bio_rb_add(tc, bio);
2172
2173	/*
2174	 * Transfer the sorted bios in sort_bio_list back to
2175	 * deferred_bio_list to allow lockless submission of
2176	 * all bios.
2177	 */
2178	__extract_sorted_bios(tc);
2179}
2180
2181static void process_thin_deferred_bios(struct thin_c *tc)
2182{
2183	struct pool *pool = tc->pool;
2184	struct bio *bio;
2185	struct bio_list bios;
2186	struct blk_plug plug;
2187	unsigned int count = 0;
2188
2189	if (tc->requeue_mode) {
2190		error_thin_bio_list(tc, &tc->deferred_bio_list,
2191				BLK_STS_DM_REQUEUE);
2192		return;
2193	}
2194
2195	bio_list_init(&bios);
2196
2197	spin_lock_irq(&tc->lock);
2198
2199	if (bio_list_empty(&tc->deferred_bio_list)) {
2200		spin_unlock_irq(&tc->lock);
2201		return;
2202	}
2203
2204	__sort_thin_deferred_bios(tc);
2205
2206	bio_list_merge(&bios, &tc->deferred_bio_list);
2207	bio_list_init(&tc->deferred_bio_list);
2208
2209	spin_unlock_irq(&tc->lock);
2210
2211	blk_start_plug(&plug);
2212	while ((bio = bio_list_pop(&bios))) {
2213		/*
2214		 * If we've got no free new_mapping structs, and processing
2215		 * this bio might require one, we pause until there are some
2216		 * prepared mappings to process.
2217		 */
2218		if (ensure_next_mapping(pool)) {
2219			spin_lock_irq(&tc->lock);
2220			bio_list_add(&tc->deferred_bio_list, bio);
2221			bio_list_merge(&tc->deferred_bio_list, &bios);
2222			spin_unlock_irq(&tc->lock);
2223			break;
2224		}
2225
2226		if (bio_op(bio) == REQ_OP_DISCARD)
2227			pool->process_discard(tc, bio);
2228		else
2229			pool->process_bio(tc, bio);
2230
2231		if ((count++ & 127) == 0) {
2232			throttle_work_update(&pool->throttle);
2233			dm_pool_issue_prefetches(pool->pmd);
2234		}
2235		cond_resched();
2236	}
2237	blk_finish_plug(&plug);
2238}
2239
2240static int cmp_cells(const void *lhs, const void *rhs)
2241{
2242	struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs);
2243	struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs);
2244
2245	BUG_ON(!lhs_cell->holder);
2246	BUG_ON(!rhs_cell->holder);
2247
2248	if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector)
2249		return -1;
2250
2251	if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector)
2252		return 1;
2253
2254	return 0;
2255}
2256
2257static unsigned int sort_cells(struct pool *pool, struct list_head *cells)
2258{
2259	unsigned int count = 0;
2260	struct dm_bio_prison_cell *cell, *tmp;
2261
2262	list_for_each_entry_safe(cell, tmp, cells, user_list) {
2263		if (count >= CELL_SORT_ARRAY_SIZE)
2264			break;
2265
2266		pool->cell_sort_array[count++] = cell;
2267		list_del(&cell->user_list);
2268	}
2269
2270	sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL);
2271
2272	return count;
2273}
2274
2275static void process_thin_deferred_cells(struct thin_c *tc)
2276{
2277	struct pool *pool = tc->pool;
2278	struct list_head cells;
2279	struct dm_bio_prison_cell *cell;
2280	unsigned int i, j, count;
2281
2282	INIT_LIST_HEAD(&cells);
2283
2284	spin_lock_irq(&tc->lock);
2285	list_splice_init(&tc->deferred_cells, &cells);
2286	spin_unlock_irq(&tc->lock);
2287
2288	if (list_empty(&cells))
2289		return;
2290
2291	do {
2292		count = sort_cells(tc->pool, &cells);
2293
2294		for (i = 0; i < count; i++) {
2295			cell = pool->cell_sort_array[i];
2296			BUG_ON(!cell->holder);
2297
2298			/*
2299			 * If we've got no free new_mapping structs, and processing
2300			 * this bio might require one, we pause until there are some
2301			 * prepared mappings to process.
2302			 */
2303			if (ensure_next_mapping(pool)) {
2304				for (j = i; j < count; j++)
2305					list_add(&pool->cell_sort_array[j]->user_list, &cells);
2306
2307				spin_lock_irq(&tc->lock);
2308				list_splice(&cells, &tc->deferred_cells);
2309				spin_unlock_irq(&tc->lock);
2310				return;
2311			}
2312
2313			if (bio_op(cell->holder) == REQ_OP_DISCARD)
2314				pool->process_discard_cell(tc, cell);
2315			else
2316				pool->process_cell(tc, cell);
2317		}
2318		cond_resched();
2319	} while (!list_empty(&cells));
2320}
2321
2322static void thin_get(struct thin_c *tc);
2323static void thin_put(struct thin_c *tc);
2324
2325/*
2326 * We can't hold rcu_read_lock() around code that can block.  So we
2327 * find a thin with the rcu lock held; bump a refcount; then drop
2328 * the lock.
2329 */
2330static struct thin_c *get_first_thin(struct pool *pool)
2331{
2332	struct thin_c *tc = NULL;
2333
2334	rcu_read_lock();
2335	tc = list_first_or_null_rcu(&pool->active_thins, struct thin_c, list);
2336	if (tc)
2337		thin_get(tc);
 
2338	rcu_read_unlock();
2339
2340	return tc;
2341}
2342
2343static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
2344{
2345	struct thin_c *old_tc = tc;
2346
2347	rcu_read_lock();
2348	list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
2349		thin_get(tc);
2350		thin_put(old_tc);
2351		rcu_read_unlock();
2352		return tc;
2353	}
2354	thin_put(old_tc);
2355	rcu_read_unlock();
2356
2357	return NULL;
2358}
2359
2360static void process_deferred_bios(struct pool *pool)
2361{
2362	struct bio *bio;
2363	struct bio_list bios, bio_completions;
2364	struct thin_c *tc;
2365
2366	tc = get_first_thin(pool);
2367	while (tc) {
2368		process_thin_deferred_cells(tc);
2369		process_thin_deferred_bios(tc);
2370		tc = get_next_thin(pool, tc);
2371	}
2372
2373	/*
2374	 * If there are any deferred flush bios, we must commit the metadata
2375	 * before issuing them or signaling their completion.
2376	 */
2377	bio_list_init(&bios);
2378	bio_list_init(&bio_completions);
2379
2380	spin_lock_irq(&pool->lock);
2381	bio_list_merge(&bios, &pool->deferred_flush_bios);
2382	bio_list_init(&pool->deferred_flush_bios);
2383
2384	bio_list_merge(&bio_completions, &pool->deferred_flush_completions);
2385	bio_list_init(&pool->deferred_flush_completions);
2386	spin_unlock_irq(&pool->lock);
2387
2388	if (bio_list_empty(&bios) && bio_list_empty(&bio_completions) &&
2389	    !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
2390		return;
2391
2392	if (commit(pool)) {
2393		bio_list_merge(&bios, &bio_completions);
2394
2395		while ((bio = bio_list_pop(&bios)))
2396			bio_io_error(bio);
2397		return;
2398	}
2399	pool->last_commit_jiffies = jiffies;
2400
2401	while ((bio = bio_list_pop(&bio_completions)))
2402		bio_endio(bio);
2403
2404	while ((bio = bio_list_pop(&bios))) {
2405		/*
2406		 * The data device was flushed as part of metadata commit,
2407		 * so complete redundant flushes immediately.
2408		 */
2409		if (bio->bi_opf & REQ_PREFLUSH)
2410			bio_endio(bio);
2411		else
2412			dm_submit_bio_remap(bio, NULL);
2413	}
2414}
2415
2416static void do_worker(struct work_struct *ws)
2417{
2418	struct pool *pool = container_of(ws, struct pool, worker);
2419
2420	throttle_work_start(&pool->throttle);
2421	dm_pool_issue_prefetches(pool->pmd);
2422	throttle_work_update(&pool->throttle);
2423	process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
2424	throttle_work_update(&pool->throttle);
2425	process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
2426	throttle_work_update(&pool->throttle);
2427	process_prepared(pool, &pool->prepared_discards_pt2, &pool->process_prepared_discard_pt2);
2428	throttle_work_update(&pool->throttle);
2429	process_deferred_bios(pool);
2430	throttle_work_complete(&pool->throttle);
2431}
2432
2433/*
2434 * We want to commit periodically so that not too much
2435 * unwritten data builds up.
2436 */
2437static void do_waker(struct work_struct *ws)
2438{
2439	struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
2440
2441	wake_worker(pool);
2442	queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
2443}
2444
2445/*
2446 * We're holding onto IO to allow userland time to react.  After the
2447 * timeout either the pool will have been resized (and thus back in
2448 * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space.
2449 */
2450static void do_no_space_timeout(struct work_struct *ws)
2451{
2452	struct pool *pool = container_of(to_delayed_work(ws), struct pool,
2453					 no_space_timeout);
2454
2455	if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) {
2456		pool->pf.error_if_no_space = true;
2457		notify_of_pool_mode_change(pool);
2458		error_retry_list_with_code(pool, BLK_STS_NOSPC);
2459	}
2460}
2461
2462/*----------------------------------------------------------------*/
2463
2464struct pool_work {
2465	struct work_struct worker;
2466	struct completion complete;
2467};
2468
2469static struct pool_work *to_pool_work(struct work_struct *ws)
2470{
2471	return container_of(ws, struct pool_work, worker);
2472}
2473
2474static void pool_work_complete(struct pool_work *pw)
2475{
2476	complete(&pw->complete);
2477}
2478
2479static void pool_work_wait(struct pool_work *pw, struct pool *pool,
2480			   void (*fn)(struct work_struct *))
2481{
2482	INIT_WORK_ONSTACK(&pw->worker, fn);
2483	init_completion(&pw->complete);
2484	queue_work(pool->wq, &pw->worker);
2485	wait_for_completion(&pw->complete);
2486	destroy_work_on_stack(&pw->worker);
2487}
2488
2489/*----------------------------------------------------------------*/
2490
2491struct noflush_work {
2492	struct pool_work pw;
2493	struct thin_c *tc;
2494};
2495
2496static struct noflush_work *to_noflush(struct work_struct *ws)
2497{
2498	return container_of(to_pool_work(ws), struct noflush_work, pw);
2499}
2500
2501static void do_noflush_start(struct work_struct *ws)
2502{
2503	struct noflush_work *w = to_noflush(ws);
2504
2505	w->tc->requeue_mode = true;
2506	requeue_io(w->tc);
2507	pool_work_complete(&w->pw);
2508}
2509
2510static void do_noflush_stop(struct work_struct *ws)
2511{
2512	struct noflush_work *w = to_noflush(ws);
2513
2514	w->tc->requeue_mode = false;
2515	pool_work_complete(&w->pw);
2516}
2517
2518static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
2519{
2520	struct noflush_work w;
2521
2522	w.tc = tc;
2523	pool_work_wait(&w.pw, tc->pool, fn);
2524}
2525
2526/*----------------------------------------------------------------*/
2527
 
 
 
 
 
2528static void set_discard_callbacks(struct pool *pool)
2529{
2530	struct pool_c *pt = pool->ti->private;
2531
2532	if (pt->adjusted_pf.discard_passdown) {
2533		pool->process_discard_cell = process_discard_cell_passdown;
2534		pool->process_prepared_discard = process_prepared_discard_passdown_pt1;
2535		pool->process_prepared_discard_pt2 = process_prepared_discard_passdown_pt2;
2536	} else {
2537		pool->process_discard_cell = process_discard_cell_no_passdown;
2538		pool->process_prepared_discard = process_prepared_discard_no_passdown;
2539	}
2540}
2541
2542static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
2543{
2544	struct pool_c *pt = pool->ti->private;
2545	bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
2546	enum pool_mode old_mode = get_pool_mode(pool);
2547	unsigned long no_space_timeout = READ_ONCE(no_space_timeout_secs) * HZ;
2548
2549	/*
2550	 * Never allow the pool to transition to PM_WRITE mode if user
2551	 * intervention is required to verify metadata and data consistency.
2552	 */
2553	if (new_mode == PM_WRITE && needs_check) {
2554		DMERR("%s: unable to switch pool to write mode until repaired.",
2555		      dm_device_name(pool->pool_md));
2556		if (old_mode != new_mode)
2557			new_mode = old_mode;
2558		else
2559			new_mode = PM_READ_ONLY;
2560	}
2561	/*
2562	 * If we were in PM_FAIL mode, rollback of metadata failed.  We're
2563	 * not going to recover without a thin_repair.	So we never let the
2564	 * pool move out of the old mode.
2565	 */
2566	if (old_mode == PM_FAIL)
2567		new_mode = old_mode;
2568
2569	switch (new_mode) {
2570	case PM_FAIL:
2571		dm_pool_metadata_read_only(pool->pmd);
2572		pool->process_bio = process_bio_fail;
2573		pool->process_discard = process_bio_fail;
2574		pool->process_cell = process_cell_fail;
2575		pool->process_discard_cell = process_cell_fail;
2576		pool->process_prepared_mapping = process_prepared_mapping_fail;
2577		pool->process_prepared_discard = process_prepared_discard_fail;
2578
2579		error_retry_list(pool);
2580		break;
2581
2582	case PM_OUT_OF_METADATA_SPACE:
2583	case PM_READ_ONLY:
2584		dm_pool_metadata_read_only(pool->pmd);
2585		pool->process_bio = process_bio_read_only;
2586		pool->process_discard = process_bio_success;
2587		pool->process_cell = process_cell_read_only;
2588		pool->process_discard_cell = process_cell_success;
2589		pool->process_prepared_mapping = process_prepared_mapping_fail;
2590		pool->process_prepared_discard = process_prepared_discard_success;
2591
2592		error_retry_list(pool);
2593		break;
2594
2595	case PM_OUT_OF_DATA_SPACE:
2596		/*
2597		 * Ideally we'd never hit this state; the low water mark
2598		 * would trigger userland to extend the pool before we
2599		 * completely run out of data space.  However, many small
2600		 * IOs to unprovisioned space can consume data space at an
2601		 * alarming rate.  Adjust your low water mark if you're
2602		 * frequently seeing this mode.
2603		 */
2604		pool->out_of_data_space = true;
2605		pool->process_bio = process_bio_read_only;
2606		pool->process_discard = process_discard_bio;
2607		pool->process_cell = process_cell_read_only;
2608		pool->process_prepared_mapping = process_prepared_mapping;
2609		set_discard_callbacks(pool);
2610
2611		if (!pool->pf.error_if_no_space && no_space_timeout)
2612			queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
2613		break;
2614
2615	case PM_WRITE:
2616		if (old_mode == PM_OUT_OF_DATA_SPACE)
2617			cancel_delayed_work_sync(&pool->no_space_timeout);
2618		pool->out_of_data_space = false;
2619		pool->pf.error_if_no_space = pt->requested_pf.error_if_no_space;
2620		dm_pool_metadata_read_write(pool->pmd);
2621		pool->process_bio = process_bio;
2622		pool->process_discard = process_discard_bio;
2623		pool->process_cell = process_cell;
2624		pool->process_prepared_mapping = process_prepared_mapping;
2625		set_discard_callbacks(pool);
2626		break;
2627	}
2628
2629	pool->pf.mode = new_mode;
2630	/*
2631	 * The pool mode may have changed, sync it so bind_control_target()
2632	 * doesn't cause an unexpected mode transition on resume.
2633	 */
2634	pt->adjusted_pf.mode = new_mode;
2635
2636	if (old_mode != new_mode)
2637		notify_of_pool_mode_change(pool);
2638}
2639
2640static void abort_transaction(struct pool *pool)
2641{
2642	const char *dev_name = dm_device_name(pool->pool_md);
2643
2644	DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
2645	if (dm_pool_abort_metadata(pool->pmd)) {
2646		DMERR("%s: failed to abort metadata transaction", dev_name);
2647		set_pool_mode(pool, PM_FAIL);
2648	}
2649
2650	if (dm_pool_metadata_set_needs_check(pool->pmd)) {
2651		DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
2652		set_pool_mode(pool, PM_FAIL);
2653	}
2654}
2655
2656static void metadata_operation_failed(struct pool *pool, const char *op, int r)
2657{
2658	DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2659		    dm_device_name(pool->pool_md), op, r);
2660
2661	abort_transaction(pool);
2662	set_pool_mode(pool, PM_READ_ONLY);
2663}
2664
2665/*----------------------------------------------------------------*/
2666
2667/*
2668 * Mapping functions.
2669 */
2670
2671/*
2672 * Called only while mapping a thin bio to hand it over to the workqueue.
2673 */
2674static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
2675{
2676	struct pool *pool = tc->pool;
2677
2678	spin_lock_irq(&tc->lock);
2679	bio_list_add(&tc->deferred_bio_list, bio);
2680	spin_unlock_irq(&tc->lock);
2681
2682	wake_worker(pool);
2683}
2684
2685static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio)
2686{
2687	struct pool *pool = tc->pool;
2688
2689	throttle_lock(&pool->throttle);
2690	thin_defer_bio(tc, bio);
2691	throttle_unlock(&pool->throttle);
2692}
2693
2694static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2695{
2696	struct pool *pool = tc->pool;
2697
2698	throttle_lock(&pool->throttle);
2699	spin_lock_irq(&tc->lock);
2700	list_add_tail(&cell->user_list, &tc->deferred_cells);
2701	spin_unlock_irq(&tc->lock);
2702	throttle_unlock(&pool->throttle);
2703
2704	wake_worker(pool);
2705}
2706
2707static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
2708{
2709	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2710
2711	h->tc = tc;
2712	h->shared_read_entry = NULL;
2713	h->all_io_entry = NULL;
2714	h->overwrite_mapping = NULL;
2715	h->cell = NULL;
2716}
2717
2718/*
2719 * Non-blocking function called from the thin target's map function.
2720 */
2721static int thin_bio_map(struct dm_target *ti, struct bio *bio)
2722{
2723	int r;
2724	struct thin_c *tc = ti->private;
2725	dm_block_t block = get_bio_block(tc, bio);
2726	struct dm_thin_device *td = tc->td;
2727	struct dm_thin_lookup_result result;
2728	struct dm_bio_prison_cell *virt_cell, *data_cell;
2729	struct dm_cell_key key;
2730
2731	thin_hook_bio(tc, bio);
2732
2733	if (tc->requeue_mode) {
2734		bio->bi_status = BLK_STS_DM_REQUEUE;
2735		bio_endio(bio);
2736		return DM_MAPIO_SUBMITTED;
2737	}
2738
2739	if (get_pool_mode(tc->pool) == PM_FAIL) {
2740		bio_io_error(bio);
2741		return DM_MAPIO_SUBMITTED;
2742	}
2743
2744	if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD) {
2745		thin_defer_bio_with_throttle(tc, bio);
2746		return DM_MAPIO_SUBMITTED;
2747	}
2748
2749	/*
2750	 * We must hold the virtual cell before doing the lookup, otherwise
2751	 * there's a race with discard.
2752	 */
2753	build_virtual_key(tc->td, block, &key);
2754	if (bio_detain(tc->pool, &key, bio, &virt_cell))
2755		return DM_MAPIO_SUBMITTED;
2756
2757	r = dm_thin_find_block(td, block, 0, &result);
2758
2759	/*
2760	 * Note that we defer readahead too.
2761	 */
2762	switch (r) {
2763	case 0:
2764		if (unlikely(result.shared)) {
2765			/*
2766			 * We have a race condition here between the
2767			 * result.shared value returned by the lookup and
2768			 * snapshot creation, which may cause new
2769			 * sharing.
2770			 *
2771			 * To avoid this always quiesce the origin before
2772			 * taking the snap.  You want to do this anyway to
2773			 * ensure a consistent application view
2774			 * (i.e. lockfs).
2775			 *
2776			 * More distant ancestors are irrelevant. The
2777			 * shared flag will be set in their case.
2778			 */
2779			thin_defer_cell(tc, virt_cell);
2780			return DM_MAPIO_SUBMITTED;
2781		}
2782
2783		build_data_key(tc->td, result.block, &key);
2784		if (bio_detain(tc->pool, &key, bio, &data_cell)) {
2785			cell_defer_no_holder(tc, virt_cell);
2786			return DM_MAPIO_SUBMITTED;
2787		}
2788
2789		inc_all_io_entry(tc->pool, bio);
2790		cell_defer_no_holder(tc, data_cell);
2791		cell_defer_no_holder(tc, virt_cell);
2792
2793		remap(tc, bio, result.block);
2794		return DM_MAPIO_REMAPPED;
2795
2796	case -ENODATA:
2797	case -EWOULDBLOCK:
2798		thin_defer_cell(tc, virt_cell);
2799		return DM_MAPIO_SUBMITTED;
2800
2801	default:
2802		/*
2803		 * Must always call bio_io_error on failure.
2804		 * dm_thin_find_block can fail with -EINVAL if the
2805		 * pool is switched to fail-io mode.
2806		 */
2807		bio_io_error(bio);
2808		cell_defer_no_holder(tc, virt_cell);
2809		return DM_MAPIO_SUBMITTED;
2810	}
2811}
2812
2813static void requeue_bios(struct pool *pool)
2814{
2815	struct thin_c *tc;
2816
2817	rcu_read_lock();
2818	list_for_each_entry_rcu(tc, &pool->active_thins, list) {
2819		spin_lock_irq(&tc->lock);
2820		bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
2821		bio_list_init(&tc->retry_on_resume_list);
2822		spin_unlock_irq(&tc->lock);
2823	}
2824	rcu_read_unlock();
2825}
2826
2827/*
2828 *--------------------------------------------------------------
2829 * Binding of control targets to a pool object
2830 *--------------------------------------------------------------
2831 */
2832static bool is_factor(sector_t block_size, uint32_t n)
2833{
2834	return !sector_div(block_size, n);
2835}
2836
2837/*
2838 * If discard_passdown was enabled verify that the data device
2839 * supports discards.  Disable discard_passdown if not.
2840 */
2841static void disable_discard_passdown_if_not_supported(struct pool_c *pt)
2842{
2843	struct pool *pool = pt->pool;
2844	struct block_device *data_bdev = pt->data_dev->bdev;
2845	struct queue_limits *data_limits = bdev_limits(data_bdev);
2846	const char *reason = NULL;
2847
2848	if (!pt->adjusted_pf.discard_passdown)
2849		return;
2850
2851	if (!bdev_max_discard_sectors(pt->data_dev->bdev))
2852		reason = "discard unsupported";
2853
2854	else if (data_limits->max_discard_sectors < pool->sectors_per_block)
2855		reason = "max discard sectors smaller than a block";
2856
2857	if (reason) {
2858		DMWARN("Data device (%pg) %s: Disabling discard passdown.", data_bdev, reason);
2859		pt->adjusted_pf.discard_passdown = false;
2860	}
2861}
2862
2863static int bind_control_target(struct pool *pool, struct dm_target *ti)
2864{
2865	struct pool_c *pt = ti->private;
2866
2867	/*
2868	 * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2869	 */
2870	enum pool_mode old_mode = get_pool_mode(pool);
2871	enum pool_mode new_mode = pt->adjusted_pf.mode;
2872
2873	/*
2874	 * Don't change the pool's mode until set_pool_mode() below.
2875	 * Otherwise the pool's process_* function pointers may
2876	 * not match the desired pool mode.
2877	 */
2878	pt->adjusted_pf.mode = old_mode;
2879
2880	pool->ti = ti;
2881	pool->pf = pt->adjusted_pf;
2882	pool->low_water_blocks = pt->low_water_blocks;
2883
2884	set_pool_mode(pool, new_mode);
2885
2886	return 0;
2887}
2888
2889static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2890{
2891	if (pool->ti == ti)
2892		pool->ti = NULL;
2893}
2894
2895/*
2896 *--------------------------------------------------------------
2897 * Pool creation
2898 *--------------------------------------------------------------
2899 */
2900/* Initialize pool features. */
2901static void pool_features_init(struct pool_features *pf)
2902{
2903	pf->mode = PM_WRITE;
2904	pf->zero_new_blocks = true;
2905	pf->discard_enabled = true;
2906	pf->discard_passdown = true;
2907	pf->error_if_no_space = false;
2908}
2909
2910static void __pool_destroy(struct pool *pool)
2911{
2912	__pool_table_remove(pool);
2913
2914	vfree(pool->cell_sort_array);
2915	if (dm_pool_metadata_close(pool->pmd) < 0)
2916		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2917
2918	dm_bio_prison_destroy(pool->prison);
2919	dm_kcopyd_client_destroy(pool->copier);
2920
2921	cancel_delayed_work_sync(&pool->waker);
2922	cancel_delayed_work_sync(&pool->no_space_timeout);
2923	if (pool->wq)
2924		destroy_workqueue(pool->wq);
2925
2926	if (pool->next_mapping)
2927		mempool_free(pool->next_mapping, &pool->mapping_pool);
2928	mempool_exit(&pool->mapping_pool);
2929	dm_deferred_set_destroy(pool->shared_read_ds);
2930	dm_deferred_set_destroy(pool->all_io_ds);
2931	kfree(pool);
2932}
2933
2934static struct kmem_cache *_new_mapping_cache;
2935
2936static struct pool *pool_create(struct mapped_device *pool_md,
2937				struct block_device *metadata_dev,
2938				struct block_device *data_dev,
2939				unsigned long block_size,
2940				int read_only, char **error)
2941{
2942	int r;
2943	void *err_p;
2944	struct pool *pool;
2945	struct dm_pool_metadata *pmd;
2946	bool format_device = read_only ? false : true;
2947
2948	pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2949	if (IS_ERR(pmd)) {
2950		*error = "Error creating metadata object";
2951		return ERR_CAST(pmd);
2952	}
2953
2954	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2955	if (!pool) {
2956		*error = "Error allocating memory for pool";
2957		err_p = ERR_PTR(-ENOMEM);
2958		goto bad_pool;
2959	}
2960
2961	pool->pmd = pmd;
2962	pool->sectors_per_block = block_size;
2963	if (block_size & (block_size - 1))
2964		pool->sectors_per_block_shift = -1;
2965	else
2966		pool->sectors_per_block_shift = __ffs(block_size);
2967	pool->low_water_blocks = 0;
2968	pool_features_init(&pool->pf);
2969	pool->prison = dm_bio_prison_create();
2970	if (!pool->prison) {
2971		*error = "Error creating pool's bio prison";
2972		err_p = ERR_PTR(-ENOMEM);
2973		goto bad_prison;
2974	}
2975
2976	pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2977	if (IS_ERR(pool->copier)) {
2978		r = PTR_ERR(pool->copier);
2979		*error = "Error creating pool's kcopyd client";
2980		err_p = ERR_PTR(r);
2981		goto bad_kcopyd_client;
2982	}
2983
2984	/*
2985	 * Create singlethreaded workqueue that will service all devices
2986	 * that use this metadata.
2987	 */
2988	pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2989	if (!pool->wq) {
2990		*error = "Error creating pool's workqueue";
2991		err_p = ERR_PTR(-ENOMEM);
2992		goto bad_wq;
2993	}
2994
2995	throttle_init(&pool->throttle);
2996	INIT_WORK(&pool->worker, do_worker);
2997	INIT_DELAYED_WORK(&pool->waker, do_waker);
2998	INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
2999	spin_lock_init(&pool->lock);
3000	bio_list_init(&pool->deferred_flush_bios);
3001	bio_list_init(&pool->deferred_flush_completions);
3002	INIT_LIST_HEAD(&pool->prepared_mappings);
3003	INIT_LIST_HEAD(&pool->prepared_discards);
3004	INIT_LIST_HEAD(&pool->prepared_discards_pt2);
3005	INIT_LIST_HEAD(&pool->active_thins);
3006	pool->low_water_triggered = false;
3007	pool->suspended = true;
3008	pool->out_of_data_space = false;
3009
3010	pool->shared_read_ds = dm_deferred_set_create();
3011	if (!pool->shared_read_ds) {
3012		*error = "Error creating pool's shared read deferred set";
3013		err_p = ERR_PTR(-ENOMEM);
3014		goto bad_shared_read_ds;
3015	}
3016
3017	pool->all_io_ds = dm_deferred_set_create();
3018	if (!pool->all_io_ds) {
3019		*error = "Error creating pool's all io deferred set";
3020		err_p = ERR_PTR(-ENOMEM);
3021		goto bad_all_io_ds;
3022	}
3023
3024	pool->next_mapping = NULL;
3025	r = mempool_init_slab_pool(&pool->mapping_pool, MAPPING_POOL_SIZE,
3026				   _new_mapping_cache);
3027	if (r) {
3028		*error = "Error creating pool's mapping mempool";
3029		err_p = ERR_PTR(r);
3030		goto bad_mapping_pool;
3031	}
3032
3033	pool->cell_sort_array =
3034		vmalloc(array_size(CELL_SORT_ARRAY_SIZE,
3035				   sizeof(*pool->cell_sort_array)));
3036	if (!pool->cell_sort_array) {
3037		*error = "Error allocating cell sort array";
3038		err_p = ERR_PTR(-ENOMEM);
3039		goto bad_sort_array;
3040	}
3041
3042	pool->ref_count = 1;
3043	pool->last_commit_jiffies = jiffies;
3044	pool->pool_md = pool_md;
3045	pool->md_dev = metadata_dev;
3046	pool->data_dev = data_dev;
3047	__pool_table_insert(pool);
3048
3049	return pool;
3050
3051bad_sort_array:
3052	mempool_exit(&pool->mapping_pool);
3053bad_mapping_pool:
3054	dm_deferred_set_destroy(pool->all_io_ds);
3055bad_all_io_ds:
3056	dm_deferred_set_destroy(pool->shared_read_ds);
3057bad_shared_read_ds:
3058	destroy_workqueue(pool->wq);
3059bad_wq:
3060	dm_kcopyd_client_destroy(pool->copier);
3061bad_kcopyd_client:
3062	dm_bio_prison_destroy(pool->prison);
3063bad_prison:
3064	kfree(pool);
3065bad_pool:
3066	if (dm_pool_metadata_close(pmd))
3067		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
3068
3069	return err_p;
3070}
3071
3072static void __pool_inc(struct pool *pool)
3073{
3074	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
3075	pool->ref_count++;
3076}
3077
3078static void __pool_dec(struct pool *pool)
3079{
3080	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
3081	BUG_ON(!pool->ref_count);
3082	if (!--pool->ref_count)
3083		__pool_destroy(pool);
3084}
3085
3086static struct pool *__pool_find(struct mapped_device *pool_md,
3087				struct block_device *metadata_dev,
3088				struct block_device *data_dev,
3089				unsigned long block_size, int read_only,
3090				char **error, int *created)
3091{
3092	struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
3093
3094	if (pool) {
3095		if (pool->pool_md != pool_md) {
3096			*error = "metadata device already in use by a pool";
3097			return ERR_PTR(-EBUSY);
3098		}
3099		if (pool->data_dev != data_dev) {
3100			*error = "data device already in use by a pool";
3101			return ERR_PTR(-EBUSY);
3102		}
3103		__pool_inc(pool);
3104
3105	} else {
3106		pool = __pool_table_lookup(pool_md);
3107		if (pool) {
3108			if (pool->md_dev != metadata_dev || pool->data_dev != data_dev) {
3109				*error = "different pool cannot replace a pool";
3110				return ERR_PTR(-EINVAL);
3111			}
3112			__pool_inc(pool);
3113
3114		} else {
3115			pool = pool_create(pool_md, metadata_dev, data_dev, block_size, read_only, error);
3116			*created = 1;
3117		}
3118	}
3119
3120	return pool;
3121}
3122
3123/*
3124 *--------------------------------------------------------------
3125 * Pool target methods
3126 *--------------------------------------------------------------
3127 */
3128static void pool_dtr(struct dm_target *ti)
3129{
3130	struct pool_c *pt = ti->private;
3131
3132	mutex_lock(&dm_thin_pool_table.mutex);
3133
3134	unbind_control_target(pt->pool, ti);
3135	__pool_dec(pt->pool);
3136	dm_put_device(ti, pt->metadata_dev);
3137	dm_put_device(ti, pt->data_dev);
3138	kfree(pt);
3139
3140	mutex_unlock(&dm_thin_pool_table.mutex);
3141}
3142
3143static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
3144			       struct dm_target *ti)
3145{
3146	int r;
3147	unsigned int argc;
3148	const char *arg_name;
3149
3150	static const struct dm_arg _args[] = {
3151		{0, 4, "Invalid number of pool feature arguments"},
3152	};
3153
3154	/*
3155	 * No feature arguments supplied.
3156	 */
3157	if (!as->argc)
3158		return 0;
3159
3160	r = dm_read_arg_group(_args, as, &argc, &ti->error);
3161	if (r)
3162		return -EINVAL;
3163
3164	while (argc && !r) {
3165		arg_name = dm_shift_arg(as);
3166		argc--;
3167
3168		if (!strcasecmp(arg_name, "skip_block_zeroing"))
3169			pf->zero_new_blocks = false;
3170
3171		else if (!strcasecmp(arg_name, "ignore_discard"))
3172			pf->discard_enabled = false;
3173
3174		else if (!strcasecmp(arg_name, "no_discard_passdown"))
3175			pf->discard_passdown = false;
3176
3177		else if (!strcasecmp(arg_name, "read_only"))
3178			pf->mode = PM_READ_ONLY;
3179
3180		else if (!strcasecmp(arg_name, "error_if_no_space"))
3181			pf->error_if_no_space = true;
3182
3183		else {
3184			ti->error = "Unrecognised pool feature requested";
3185			r = -EINVAL;
3186			break;
3187		}
3188	}
3189
3190	return r;
3191}
3192
3193static void metadata_low_callback(void *context)
3194{
3195	struct pool *pool = context;
3196
3197	DMWARN("%s: reached low water mark for metadata device: sending event.",
3198	       dm_device_name(pool->pool_md));
3199
3200	dm_table_event(pool->ti->table);
3201}
3202
3203/*
3204 * We need to flush the data device **before** committing the metadata.
3205 *
3206 * This ensures that the data blocks of any newly inserted mappings are
3207 * properly written to non-volatile storage and won't be lost in case of a
3208 * crash.
3209 *
3210 * Failure to do so can result in data corruption in the case of internal or
3211 * external snapshots and in the case of newly provisioned blocks, when block
3212 * zeroing is enabled.
3213 */
3214static int metadata_pre_commit_callback(void *context)
3215{
3216	struct pool *pool = context;
3217
3218	return blkdev_issue_flush(pool->data_dev);
3219}
3220
3221static sector_t get_dev_size(struct block_device *bdev)
3222{
3223	return bdev_nr_sectors(bdev);
3224}
3225
3226static void warn_if_metadata_device_too_big(struct block_device *bdev)
3227{
3228	sector_t metadata_dev_size = get_dev_size(bdev);
3229
3230	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
3231		DMWARN("Metadata device %pg is larger than %u sectors: excess space will not be used.",
3232		       bdev, THIN_METADATA_MAX_SECTORS);
3233}
3234
3235static sector_t get_metadata_dev_size(struct block_device *bdev)
3236{
3237	sector_t metadata_dev_size = get_dev_size(bdev);
3238
3239	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
3240		metadata_dev_size = THIN_METADATA_MAX_SECTORS;
3241
3242	return metadata_dev_size;
3243}
3244
3245static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
3246{
3247	sector_t metadata_dev_size = get_metadata_dev_size(bdev);
3248
3249	sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
3250
3251	return metadata_dev_size;
3252}
3253
3254/*
3255 * When a metadata threshold is crossed a dm event is triggered, and
3256 * userland should respond by growing the metadata device.  We could let
3257 * userland set the threshold, like we do with the data threshold, but I'm
3258 * not sure they know enough to do this well.
3259 */
3260static dm_block_t calc_metadata_threshold(struct pool_c *pt)
3261{
3262	/*
3263	 * 4M is ample for all ops with the possible exception of thin
3264	 * device deletion which is harmless if it fails (just retry the
3265	 * delete after you've grown the device).
3266	 */
3267	dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
3268
3269	return min((dm_block_t)1024ULL /* 4M */, quarter);
3270}
3271
3272/*
3273 * thin-pool <metadata dev> <data dev>
3274 *	     <data block size (sectors)>
3275 *	     <low water mark (blocks)>
3276 *	     [<#feature args> [<arg>]*]
3277 *
3278 * Optional feature arguments are:
3279 *	     skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
3280 *	     ignore_discard: disable discard
3281 *	     no_discard_passdown: don't pass discards down to the data device
3282 *	     read_only: Don't allow any changes to be made to the pool metadata.
3283 *	     error_if_no_space: error IOs, instead of queueing, if no space.
3284 */
3285static int pool_ctr(struct dm_target *ti, unsigned int argc, char **argv)
3286{
3287	int r, pool_created = 0;
3288	struct pool_c *pt;
3289	struct pool *pool;
3290	struct pool_features pf;
3291	struct dm_arg_set as;
3292	struct dm_dev *data_dev;
3293	unsigned long block_size;
3294	dm_block_t low_water_blocks;
3295	struct dm_dev *metadata_dev;
3296	blk_mode_t metadata_mode;
3297
3298	/*
3299	 * FIXME Remove validation from scope of lock.
3300	 */
3301	mutex_lock(&dm_thin_pool_table.mutex);
3302
3303	if (argc < 4) {
3304		ti->error = "Invalid argument count";
3305		r = -EINVAL;
3306		goto out_unlock;
3307	}
3308
3309	as.argc = argc;
3310	as.argv = argv;
3311
3312	/* make sure metadata and data are different devices */
3313	if (!strcmp(argv[0], argv[1])) {
3314		ti->error = "Error setting metadata or data device";
3315		r = -EINVAL;
3316		goto out_unlock;
3317	}
3318
3319	/*
3320	 * Set default pool features.
3321	 */
3322	pool_features_init(&pf);
3323
3324	dm_consume_args(&as, 4);
3325	r = parse_pool_features(&as, &pf, ti);
3326	if (r)
3327		goto out_unlock;
3328
3329	metadata_mode = BLK_OPEN_READ |
3330		((pf.mode == PM_READ_ONLY) ? 0 : BLK_OPEN_WRITE);
3331	r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
3332	if (r) {
3333		ti->error = "Error opening metadata block device";
3334		goto out_unlock;
3335	}
3336	warn_if_metadata_device_too_big(metadata_dev->bdev);
3337
3338	r = dm_get_device(ti, argv[1], BLK_OPEN_READ | BLK_OPEN_WRITE, &data_dev);
3339	if (r) {
3340		ti->error = "Error getting data device";
3341		goto out_metadata;
3342	}
3343
3344	if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
3345	    block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
3346	    block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
3347	    block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
3348		ti->error = "Invalid block size";
3349		r = -EINVAL;
3350		goto out;
3351	}
3352
3353	if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
3354		ti->error = "Invalid low water mark";
3355		r = -EINVAL;
3356		goto out;
3357	}
3358
3359	pt = kzalloc(sizeof(*pt), GFP_KERNEL);
3360	if (!pt) {
3361		r = -ENOMEM;
3362		goto out;
3363	}
3364
3365	pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev, data_dev->bdev,
3366			   block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
3367	if (IS_ERR(pool)) {
3368		r = PTR_ERR(pool);
3369		goto out_free_pt;
3370	}
3371
3372	/*
3373	 * 'pool_created' reflects whether this is the first table load.
3374	 * Top level discard support is not allowed to be changed after
3375	 * initial load.  This would require a pool reload to trigger thin
3376	 * device changes.
3377	 */
3378	if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
3379		ti->error = "Discard support cannot be disabled once enabled";
3380		r = -EINVAL;
3381		goto out_flags_changed;
3382	}
3383
3384	pt->pool = pool;
3385	pt->ti = ti;
3386	pt->metadata_dev = metadata_dev;
3387	pt->data_dev = data_dev;
3388	pt->low_water_blocks = low_water_blocks;
3389	pt->adjusted_pf = pt->requested_pf = pf;
3390	ti->num_flush_bios = 1;
3391	ti->limit_swap_bios = true;
3392
3393	/*
3394	 * Only need to enable discards if the pool should pass
3395	 * them down to the data device.  The thin device's discard
3396	 * processing will cause mappings to be removed from the btree.
3397	 */
3398	if (pf.discard_enabled && pf.discard_passdown) {
3399		ti->num_discard_bios = 1;
 
3400		/*
3401		 * Setting 'discards_supported' circumvents the normal
3402		 * stacking of discard limits (this keeps the pool and
3403		 * thin devices' discard limits consistent).
3404		 */
3405		ti->discards_supported = true;
3406		ti->max_discard_granularity = true;
3407	}
3408	ti->private = pt;
3409
3410	r = dm_pool_register_metadata_threshold(pt->pool->pmd,
3411						calc_metadata_threshold(pt),
3412						metadata_low_callback,
3413						pool);
3414	if (r) {
3415		ti->error = "Error registering metadata threshold";
3416		goto out_flags_changed;
3417	}
3418
3419	dm_pool_register_pre_commit_callback(pool->pmd,
3420					     metadata_pre_commit_callback, pool);
3421
3422	mutex_unlock(&dm_thin_pool_table.mutex);
3423
3424	return 0;
3425
3426out_flags_changed:
3427	__pool_dec(pool);
3428out_free_pt:
3429	kfree(pt);
3430out:
3431	dm_put_device(ti, data_dev);
3432out_metadata:
3433	dm_put_device(ti, metadata_dev);
3434out_unlock:
3435	mutex_unlock(&dm_thin_pool_table.mutex);
3436
3437	return r;
3438}
3439
3440static int pool_map(struct dm_target *ti, struct bio *bio)
3441{
 
3442	struct pool_c *pt = ti->private;
3443	struct pool *pool = pt->pool;
3444
3445	/*
3446	 * As this is a singleton target, ti->begin is always zero.
3447	 */
3448	spin_lock_irq(&pool->lock);
3449	bio_set_dev(bio, pt->data_dev->bdev);
 
3450	spin_unlock_irq(&pool->lock);
3451
3452	return DM_MAPIO_REMAPPED;
3453}
3454
3455static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
3456{
3457	int r;
3458	struct pool_c *pt = ti->private;
3459	struct pool *pool = pt->pool;
3460	sector_t data_size = ti->len;
3461	dm_block_t sb_data_size;
3462
3463	*need_commit = false;
3464
3465	(void) sector_div(data_size, pool->sectors_per_block);
3466
3467	r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
3468	if (r) {
3469		DMERR("%s: failed to retrieve data device size",
3470		      dm_device_name(pool->pool_md));
3471		return r;
3472	}
3473
3474	if (data_size < sb_data_size) {
3475		DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3476		      dm_device_name(pool->pool_md),
3477		      (unsigned long long)data_size, sb_data_size);
3478		return -EINVAL;
3479
3480	} else if (data_size > sb_data_size) {
3481		if (dm_pool_metadata_needs_check(pool->pmd)) {
3482			DMERR("%s: unable to grow the data device until repaired.",
3483			      dm_device_name(pool->pool_md));
3484			return 0;
3485		}
3486
3487		if (sb_data_size)
3488			DMINFO("%s: growing the data device from %llu to %llu blocks",
3489			       dm_device_name(pool->pool_md),
3490			       sb_data_size, (unsigned long long)data_size);
3491		r = dm_pool_resize_data_dev(pool->pmd, data_size);
3492		if (r) {
3493			metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
3494			return r;
3495		}
3496
3497		*need_commit = true;
3498	}
3499
3500	return 0;
3501}
3502
3503static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
3504{
3505	int r;
3506	struct pool_c *pt = ti->private;
3507	struct pool *pool = pt->pool;
3508	dm_block_t metadata_dev_size, sb_metadata_dev_size;
3509
3510	*need_commit = false;
3511
3512	metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
3513
3514	r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
3515	if (r) {
3516		DMERR("%s: failed to retrieve metadata device size",
3517		      dm_device_name(pool->pool_md));
3518		return r;
3519	}
3520
3521	if (metadata_dev_size < sb_metadata_dev_size) {
3522		DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3523		      dm_device_name(pool->pool_md),
3524		      metadata_dev_size, sb_metadata_dev_size);
3525		return -EINVAL;
3526
3527	} else if (metadata_dev_size > sb_metadata_dev_size) {
3528		if (dm_pool_metadata_needs_check(pool->pmd)) {
3529			DMERR("%s: unable to grow the metadata device until repaired.",
3530			      dm_device_name(pool->pool_md));
3531			return 0;
3532		}
3533
3534		warn_if_metadata_device_too_big(pool->md_dev);
3535		DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3536		       dm_device_name(pool->pool_md),
3537		       sb_metadata_dev_size, metadata_dev_size);
3538
3539		if (get_pool_mode(pool) == PM_OUT_OF_METADATA_SPACE)
3540			set_pool_mode(pool, PM_WRITE);
3541
3542		r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
3543		if (r) {
3544			metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
3545			return r;
3546		}
3547
3548		*need_commit = true;
3549	}
3550
3551	return 0;
3552}
3553
3554/*
3555 * Retrieves the number of blocks of the data device from
3556 * the superblock and compares it to the actual device size,
3557 * thus resizing the data device in case it has grown.
3558 *
3559 * This both copes with opening preallocated data devices in the ctr
3560 * being followed by a resume
3561 * -and-
3562 * calling the resume method individually after userspace has
3563 * grown the data device in reaction to a table event.
3564 */
3565static int pool_preresume(struct dm_target *ti)
3566{
3567	int r;
3568	bool need_commit1, need_commit2;
3569	struct pool_c *pt = ti->private;
3570	struct pool *pool = pt->pool;
3571
3572	/*
3573	 * Take control of the pool object.
3574	 */
3575	r = bind_control_target(pool, ti);
3576	if (r)
3577		goto out;
3578
3579	r = maybe_resize_data_dev(ti, &need_commit1);
3580	if (r)
3581		goto out;
3582
3583	r = maybe_resize_metadata_dev(ti, &need_commit2);
3584	if (r)
3585		goto out;
3586
3587	if (need_commit1 || need_commit2)
3588		(void) commit(pool);
3589out:
3590	/*
3591	 * When a thin-pool is PM_FAIL, it cannot be rebuilt if
3592	 * bio is in deferred list. Therefore need to return 0
3593	 * to allow pool_resume() to flush IO.
3594	 */
3595	if (r && get_pool_mode(pool) == PM_FAIL)
3596		r = 0;
3597
3598	return r;
3599}
3600
3601static void pool_suspend_active_thins(struct pool *pool)
3602{
3603	struct thin_c *tc;
3604
3605	/* Suspend all active thin devices */
3606	tc = get_first_thin(pool);
3607	while (tc) {
3608		dm_internal_suspend_noflush(tc->thin_md);
3609		tc = get_next_thin(pool, tc);
3610	}
3611}
3612
3613static void pool_resume_active_thins(struct pool *pool)
3614{
3615	struct thin_c *tc;
3616
3617	/* Resume all active thin devices */
3618	tc = get_first_thin(pool);
3619	while (tc) {
3620		dm_internal_resume(tc->thin_md);
3621		tc = get_next_thin(pool, tc);
3622	}
3623}
3624
3625static void pool_resume(struct dm_target *ti)
3626{
3627	struct pool_c *pt = ti->private;
3628	struct pool *pool = pt->pool;
3629
3630	/*
3631	 * Must requeue active_thins' bios and then resume
3632	 * active_thins _before_ clearing 'suspend' flag.
3633	 */
3634	requeue_bios(pool);
3635	pool_resume_active_thins(pool);
3636
3637	spin_lock_irq(&pool->lock);
3638	pool->low_water_triggered = false;
3639	pool->suspended = false;
3640	spin_unlock_irq(&pool->lock);
3641
3642	do_waker(&pool->waker.work);
3643}
3644
3645static void pool_presuspend(struct dm_target *ti)
3646{
3647	struct pool_c *pt = ti->private;
3648	struct pool *pool = pt->pool;
3649
3650	spin_lock_irq(&pool->lock);
3651	pool->suspended = true;
3652	spin_unlock_irq(&pool->lock);
3653
3654	pool_suspend_active_thins(pool);
3655}
3656
3657static void pool_presuspend_undo(struct dm_target *ti)
3658{
3659	struct pool_c *pt = ti->private;
3660	struct pool *pool = pt->pool;
3661
3662	pool_resume_active_thins(pool);
3663
3664	spin_lock_irq(&pool->lock);
3665	pool->suspended = false;
3666	spin_unlock_irq(&pool->lock);
3667}
3668
3669static void pool_postsuspend(struct dm_target *ti)
3670{
3671	struct pool_c *pt = ti->private;
3672	struct pool *pool = pt->pool;
3673
3674	cancel_delayed_work_sync(&pool->waker);
3675	cancel_delayed_work_sync(&pool->no_space_timeout);
3676	flush_workqueue(pool->wq);
3677	(void) commit(pool);
3678}
3679
3680static int check_arg_count(unsigned int argc, unsigned int args_required)
3681{
3682	if (argc != args_required) {
3683		DMWARN("Message received with %u arguments instead of %u.",
3684		       argc, args_required);
3685		return -EINVAL;
3686	}
3687
3688	return 0;
3689}
3690
3691static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
3692{
3693	if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
3694	    *dev_id <= MAX_DEV_ID)
3695		return 0;
3696
3697	if (warning)
3698		DMWARN("Message received with invalid device id: %s", arg);
3699
3700	return -EINVAL;
3701}
3702
3703static int process_create_thin_mesg(unsigned int argc, char **argv, struct pool *pool)
3704{
3705	dm_thin_id dev_id;
3706	int r;
3707
3708	r = check_arg_count(argc, 2);
3709	if (r)
3710		return r;
3711
3712	r = read_dev_id(argv[1], &dev_id, 1);
3713	if (r)
3714		return r;
3715
3716	r = dm_pool_create_thin(pool->pmd, dev_id);
3717	if (r) {
3718		DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3719		       argv[1]);
3720		return r;
3721	}
3722
3723	return 0;
3724}
3725
3726static int process_create_snap_mesg(unsigned int argc, char **argv, struct pool *pool)
3727{
3728	dm_thin_id dev_id;
3729	dm_thin_id origin_dev_id;
3730	int r;
3731
3732	r = check_arg_count(argc, 3);
3733	if (r)
3734		return r;
3735
3736	r = read_dev_id(argv[1], &dev_id, 1);
3737	if (r)
3738		return r;
3739
3740	r = read_dev_id(argv[2], &origin_dev_id, 1);
3741	if (r)
3742		return r;
3743
3744	r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
3745	if (r) {
3746		DMWARN("Creation of new snapshot %s of device %s failed.",
3747		       argv[1], argv[2]);
3748		return r;
3749	}
3750
3751	return 0;
3752}
3753
3754static int process_delete_mesg(unsigned int argc, char **argv, struct pool *pool)
3755{
3756	dm_thin_id dev_id;
3757	int r;
3758
3759	r = check_arg_count(argc, 2);
3760	if (r)
3761		return r;
3762
3763	r = read_dev_id(argv[1], &dev_id, 1);
3764	if (r)
3765		return r;
3766
3767	r = dm_pool_delete_thin_device(pool->pmd, dev_id);
3768	if (r)
3769		DMWARN("Deletion of thin device %s failed.", argv[1]);
3770
3771	return r;
3772}
3773
3774static int process_set_transaction_id_mesg(unsigned int argc, char **argv, struct pool *pool)
3775{
3776	dm_thin_id old_id, new_id;
3777	int r;
3778
3779	r = check_arg_count(argc, 3);
3780	if (r)
3781		return r;
3782
3783	if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
3784		DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
3785		return -EINVAL;
3786	}
3787
3788	if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
3789		DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
3790		return -EINVAL;
3791	}
3792
3793	r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
3794	if (r) {
3795		DMWARN("Failed to change transaction id from %s to %s.",
3796		       argv[1], argv[2]);
3797		return r;
3798	}
3799
3800	return 0;
3801}
3802
3803static int process_reserve_metadata_snap_mesg(unsigned int argc, char **argv, struct pool *pool)
3804{
3805	int r;
3806
3807	r = check_arg_count(argc, 1);
3808	if (r)
3809		return r;
3810
3811	(void) commit(pool);
3812
3813	r = dm_pool_reserve_metadata_snap(pool->pmd);
3814	if (r)
3815		DMWARN("reserve_metadata_snap message failed.");
3816
3817	return r;
3818}
3819
3820static int process_release_metadata_snap_mesg(unsigned int argc, char **argv, struct pool *pool)
3821{
3822	int r;
3823
3824	r = check_arg_count(argc, 1);
3825	if (r)
3826		return r;
3827
3828	r = dm_pool_release_metadata_snap(pool->pmd);
3829	if (r)
3830		DMWARN("release_metadata_snap message failed.");
3831
3832	return r;
3833}
3834
3835/*
3836 * Messages supported:
3837 *   create_thin	<dev_id>
3838 *   create_snap	<dev_id> <origin_id>
3839 *   delete		<dev_id>
3840 *   set_transaction_id <current_trans_id> <new_trans_id>
3841 *   reserve_metadata_snap
3842 *   release_metadata_snap
3843 */
3844static int pool_message(struct dm_target *ti, unsigned int argc, char **argv,
3845			char *result, unsigned int maxlen)
3846{
3847	int r = -EINVAL;
3848	struct pool_c *pt = ti->private;
3849	struct pool *pool = pt->pool;
3850
3851	if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE) {
3852		DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
3853		      dm_device_name(pool->pool_md));
3854		return -EOPNOTSUPP;
3855	}
3856
3857	if (!strcasecmp(argv[0], "create_thin"))
3858		r = process_create_thin_mesg(argc, argv, pool);
3859
3860	else if (!strcasecmp(argv[0], "create_snap"))
3861		r = process_create_snap_mesg(argc, argv, pool);
3862
3863	else if (!strcasecmp(argv[0], "delete"))
3864		r = process_delete_mesg(argc, argv, pool);
3865
3866	else if (!strcasecmp(argv[0], "set_transaction_id"))
3867		r = process_set_transaction_id_mesg(argc, argv, pool);
3868
3869	else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
3870		r = process_reserve_metadata_snap_mesg(argc, argv, pool);
3871
3872	else if (!strcasecmp(argv[0], "release_metadata_snap"))
3873		r = process_release_metadata_snap_mesg(argc, argv, pool);
3874
3875	else
3876		DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
3877
3878	if (!r)
3879		(void) commit(pool);
3880
3881	return r;
3882}
3883
3884static void emit_flags(struct pool_features *pf, char *result,
3885		       unsigned int sz, unsigned int maxlen)
3886{
3887	unsigned int count = !pf->zero_new_blocks + !pf->discard_enabled +
3888		!pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
3889		pf->error_if_no_space;
3890	DMEMIT("%u ", count);
3891
3892	if (!pf->zero_new_blocks)
3893		DMEMIT("skip_block_zeroing ");
3894
3895	if (!pf->discard_enabled)
3896		DMEMIT("ignore_discard ");
3897
3898	if (!pf->discard_passdown)
3899		DMEMIT("no_discard_passdown ");
3900
3901	if (pf->mode == PM_READ_ONLY)
3902		DMEMIT("read_only ");
3903
3904	if (pf->error_if_no_space)
3905		DMEMIT("error_if_no_space ");
3906}
3907
3908/*
3909 * Status line is:
3910 *    <transaction id> <used metadata sectors>/<total metadata sectors>
3911 *    <used data sectors>/<total data sectors> <held metadata root>
3912 *    <pool mode> <discard config> <no space config> <needs_check>
3913 */
3914static void pool_status(struct dm_target *ti, status_type_t type,
3915			unsigned int status_flags, char *result, unsigned int maxlen)
3916{
3917	int r;
3918	unsigned int sz = 0;
3919	uint64_t transaction_id;
3920	dm_block_t nr_free_blocks_data;
3921	dm_block_t nr_free_blocks_metadata;
3922	dm_block_t nr_blocks_data;
3923	dm_block_t nr_blocks_metadata;
3924	dm_block_t held_root;
3925	enum pool_mode mode;
3926	char buf[BDEVNAME_SIZE];
3927	char buf2[BDEVNAME_SIZE];
3928	struct pool_c *pt = ti->private;
3929	struct pool *pool = pt->pool;
3930
3931	switch (type) {
3932	case STATUSTYPE_INFO:
3933		if (get_pool_mode(pool) == PM_FAIL) {
3934			DMEMIT("Fail");
3935			break;
3936		}
3937
3938		/* Commit to ensure statistics aren't out-of-date */
3939		if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3940			(void) commit(pool);
3941
3942		r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
3943		if (r) {
3944			DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3945			      dm_device_name(pool->pool_md), r);
3946			goto err;
3947		}
3948
3949		r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
3950		if (r) {
3951			DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3952			      dm_device_name(pool->pool_md), r);
3953			goto err;
3954		}
3955
3956		r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
3957		if (r) {
3958			DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3959			      dm_device_name(pool->pool_md), r);
3960			goto err;
3961		}
3962
3963		r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
3964		if (r) {
3965			DMERR("%s: dm_pool_get_free_block_count returned %d",
3966			      dm_device_name(pool->pool_md), r);
3967			goto err;
3968		}
3969
3970		r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
3971		if (r) {
3972			DMERR("%s: dm_pool_get_data_dev_size returned %d",
3973			      dm_device_name(pool->pool_md), r);
3974			goto err;
3975		}
3976
3977		r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
3978		if (r) {
3979			DMERR("%s: dm_pool_get_metadata_snap returned %d",
3980			      dm_device_name(pool->pool_md), r);
3981			goto err;
3982		}
3983
3984		DMEMIT("%llu %llu/%llu %llu/%llu ",
3985		       (unsigned long long)transaction_id,
3986		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3987		       (unsigned long long)nr_blocks_metadata,
3988		       (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
3989		       (unsigned long long)nr_blocks_data);
3990
3991		if (held_root)
3992			DMEMIT("%llu ", held_root);
3993		else
3994			DMEMIT("- ");
3995
3996		mode = get_pool_mode(pool);
3997		if (mode == PM_OUT_OF_DATA_SPACE)
3998			DMEMIT("out_of_data_space ");
3999		else if (is_read_only_pool_mode(mode))
4000			DMEMIT("ro ");
4001		else
4002			DMEMIT("rw ");
4003
4004		if (!pool->pf.discard_enabled)
4005			DMEMIT("ignore_discard ");
4006		else if (pool->pf.discard_passdown)
4007			DMEMIT("discard_passdown ");
4008		else
4009			DMEMIT("no_discard_passdown ");
4010
4011		if (pool->pf.error_if_no_space)
4012			DMEMIT("error_if_no_space ");
4013		else
4014			DMEMIT("queue_if_no_space ");
4015
4016		if (dm_pool_metadata_needs_check(pool->pmd))
4017			DMEMIT("needs_check ");
4018		else
4019			DMEMIT("- ");
4020
4021		DMEMIT("%llu ", (unsigned long long)calc_metadata_threshold(pt));
4022
4023		break;
4024
4025	case STATUSTYPE_TABLE:
4026		DMEMIT("%s %s %lu %llu ",
4027		       format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
4028		       format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
4029		       (unsigned long)pool->sectors_per_block,
4030		       (unsigned long long)pt->low_water_blocks);
4031		emit_flags(&pt->requested_pf, result, sz, maxlen);
4032		break;
4033
4034	case STATUSTYPE_IMA:
4035		*result = '\0';
4036		break;
4037	}
4038	return;
4039
4040err:
4041	DMEMIT("Error");
4042}
4043
4044static int pool_iterate_devices(struct dm_target *ti,
4045				iterate_devices_callout_fn fn, void *data)
4046{
4047	struct pool_c *pt = ti->private;
4048
4049	return fn(ti, pt->data_dev, 0, ti->len, data);
4050}
4051
4052static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
4053{
4054	struct pool_c *pt = ti->private;
4055	struct pool *pool = pt->pool;
4056	sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
4057
4058	/*
4059	 * If max_sectors is smaller than pool->sectors_per_block adjust it
4060	 * to the highest possible power-of-2 factor of pool->sectors_per_block.
4061	 * This is especially beneficial when the pool's data device is a RAID
4062	 * device that has a full stripe width that matches pool->sectors_per_block
4063	 * -- because even though partial RAID stripe-sized IOs will be issued to a
4064	 *    single RAID stripe; when aggregated they will end on a full RAID stripe
4065	 *    boundary.. which avoids additional partial RAID stripe writes cascading
4066	 */
4067	if (limits->max_sectors < pool->sectors_per_block) {
4068		while (!is_factor(pool->sectors_per_block, limits->max_sectors)) {
4069			if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
4070				limits->max_sectors--;
4071			limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
4072		}
4073	}
4074
4075	/*
4076	 * If the system-determined stacked limits are compatible with the
4077	 * pool's blocksize (io_opt is a factor) do not override them.
4078	 */
4079	if (io_opt_sectors < pool->sectors_per_block ||
4080	    !is_factor(io_opt_sectors, pool->sectors_per_block)) {
4081		if (is_factor(pool->sectors_per_block, limits->max_sectors))
4082			limits->io_min = limits->max_sectors << SECTOR_SHIFT;
4083		else
4084			limits->io_min = pool->sectors_per_block << SECTOR_SHIFT;
4085		limits->io_opt = pool->sectors_per_block << SECTOR_SHIFT;
4086	}
4087
4088	/*
4089	 * pt->adjusted_pf is a staging area for the actual features to use.
4090	 * They get transferred to the live pool in bind_control_target()
4091	 * called from pool_preresume().
4092	 */
4093
4094	if (pt->adjusted_pf.discard_enabled) {
4095		disable_discard_passdown_if_not_supported(pt);
4096		if (!pt->adjusted_pf.discard_passdown)
4097			limits->max_hw_discard_sectors = 0;
4098		/*
4099		 * The pool uses the same discard limits as the underlying data
4100		 * device.  DM core has already set this up.
4101		 */
4102	} else {
4103		/*
4104		 * Must explicitly disallow stacking discard limits otherwise the
4105		 * block layer will stack them if pool's data device has support.
4106		 */
4107		limits->discard_granularity = 0;
 
4108	}
 
 
 
 
 
 
 
4109}
4110
4111static struct target_type pool_target = {
4112	.name = "thin-pool",
4113	.features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
4114		    DM_TARGET_IMMUTABLE,
4115	.version = {1, 23, 0},
4116	.module = THIS_MODULE,
4117	.ctr = pool_ctr,
4118	.dtr = pool_dtr,
4119	.map = pool_map,
4120	.presuspend = pool_presuspend,
4121	.presuspend_undo = pool_presuspend_undo,
4122	.postsuspend = pool_postsuspend,
4123	.preresume = pool_preresume,
4124	.resume = pool_resume,
4125	.message = pool_message,
4126	.status = pool_status,
4127	.iterate_devices = pool_iterate_devices,
4128	.io_hints = pool_io_hints,
4129};
4130
4131/*
4132 *--------------------------------------------------------------
4133 * Thin target methods
4134 *--------------------------------------------------------------
4135 */
4136static void thin_get(struct thin_c *tc)
4137{
4138	refcount_inc(&tc->refcount);
4139}
4140
4141static void thin_put(struct thin_c *tc)
4142{
4143	if (refcount_dec_and_test(&tc->refcount))
4144		complete(&tc->can_destroy);
4145}
4146
4147static void thin_dtr(struct dm_target *ti)
4148{
4149	struct thin_c *tc = ti->private;
4150
4151	spin_lock_irq(&tc->pool->lock);
4152	list_del_rcu(&tc->list);
4153	spin_unlock_irq(&tc->pool->lock);
4154	synchronize_rcu();
4155
4156	thin_put(tc);
4157	wait_for_completion(&tc->can_destroy);
4158
4159	mutex_lock(&dm_thin_pool_table.mutex);
4160
4161	__pool_dec(tc->pool);
4162	dm_pool_close_thin_device(tc->td);
4163	dm_put_device(ti, tc->pool_dev);
4164	if (tc->origin_dev)
4165		dm_put_device(ti, tc->origin_dev);
4166	kfree(tc);
4167
4168	mutex_unlock(&dm_thin_pool_table.mutex);
4169}
4170
4171/*
4172 * Thin target parameters:
4173 *
4174 * <pool_dev> <dev_id> [origin_dev]
4175 *
4176 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
4177 * dev_id: the internal device identifier
4178 * origin_dev: a device external to the pool that should act as the origin
4179 *
4180 * If the pool device has discards disabled, they get disabled for the thin
4181 * device as well.
4182 */
4183static int thin_ctr(struct dm_target *ti, unsigned int argc, char **argv)
4184{
4185	int r;
4186	struct thin_c *tc;
4187	struct dm_dev *pool_dev, *origin_dev;
4188	struct mapped_device *pool_md;
4189
4190	mutex_lock(&dm_thin_pool_table.mutex);
4191
4192	if (argc != 2 && argc != 3) {
4193		ti->error = "Invalid argument count";
4194		r = -EINVAL;
4195		goto out_unlock;
4196	}
4197
4198	tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
4199	if (!tc) {
4200		ti->error = "Out of memory";
4201		r = -ENOMEM;
4202		goto out_unlock;
4203	}
4204	tc->thin_md = dm_table_get_md(ti->table);
4205	spin_lock_init(&tc->lock);
4206	INIT_LIST_HEAD(&tc->deferred_cells);
4207	bio_list_init(&tc->deferred_bio_list);
4208	bio_list_init(&tc->retry_on_resume_list);
4209	tc->sort_bio_list = RB_ROOT;
4210
4211	if (argc == 3) {
4212		if (!strcmp(argv[0], argv[2])) {
4213			ti->error = "Error setting origin device";
4214			r = -EINVAL;
4215			goto bad_origin_dev;
4216		}
4217
4218		r = dm_get_device(ti, argv[2], BLK_OPEN_READ, &origin_dev);
4219		if (r) {
4220			ti->error = "Error opening origin device";
4221			goto bad_origin_dev;
4222		}
4223		tc->origin_dev = origin_dev;
4224	}
4225
4226	r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
4227	if (r) {
4228		ti->error = "Error opening pool device";
4229		goto bad_pool_dev;
4230	}
4231	tc->pool_dev = pool_dev;
4232
4233	if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
4234		ti->error = "Invalid device id";
4235		r = -EINVAL;
4236		goto bad_common;
4237	}
4238
4239	pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
4240	if (!pool_md) {
4241		ti->error = "Couldn't get pool mapped device";
4242		r = -EINVAL;
4243		goto bad_common;
4244	}
4245
4246	tc->pool = __pool_table_lookup(pool_md);
4247	if (!tc->pool) {
4248		ti->error = "Couldn't find pool object";
4249		r = -EINVAL;
4250		goto bad_pool_lookup;
4251	}
4252	__pool_inc(tc->pool);
4253
4254	if (get_pool_mode(tc->pool) == PM_FAIL) {
4255		ti->error = "Couldn't open thin device, Pool is in fail mode";
4256		r = -EINVAL;
4257		goto bad_pool;
4258	}
4259
4260	r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
4261	if (r) {
4262		ti->error = "Couldn't open thin internal device";
4263		goto bad_pool;
4264	}
4265
4266	r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
4267	if (r)
4268		goto bad;
4269
4270	ti->num_flush_bios = 1;
4271	ti->limit_swap_bios = true;
4272	ti->flush_supported = true;
4273	ti->accounts_remapped_io = true;
4274	ti->per_io_data_size = sizeof(struct dm_thin_endio_hook);
4275
4276	/* In case the pool supports discards, pass them on. */
4277	if (tc->pool->pf.discard_enabled) {
4278		ti->discards_supported = true;
4279		ti->num_discard_bios = 1;
4280		ti->max_discard_granularity = true;
4281	}
4282
4283	mutex_unlock(&dm_thin_pool_table.mutex);
4284
4285	spin_lock_irq(&tc->pool->lock);
4286	if (tc->pool->suspended) {
4287		spin_unlock_irq(&tc->pool->lock);
4288		mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */
4289		ti->error = "Unable to activate thin device while pool is suspended";
4290		r = -EINVAL;
4291		goto bad;
4292	}
4293	refcount_set(&tc->refcount, 1);
4294	init_completion(&tc->can_destroy);
4295	list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
4296	spin_unlock_irq(&tc->pool->lock);
4297	/*
4298	 * This synchronize_rcu() call is needed here otherwise we risk a
4299	 * wake_worker() call finding no bios to process (because the newly
4300	 * added tc isn't yet visible).  So this reduces latency since we
4301	 * aren't then dependent on the periodic commit to wake_worker().
4302	 */
4303	synchronize_rcu();
4304
4305	dm_put(pool_md);
4306
4307	return 0;
4308
4309bad:
4310	dm_pool_close_thin_device(tc->td);
4311bad_pool:
4312	__pool_dec(tc->pool);
4313bad_pool_lookup:
4314	dm_put(pool_md);
4315bad_common:
4316	dm_put_device(ti, tc->pool_dev);
4317bad_pool_dev:
4318	if (tc->origin_dev)
4319		dm_put_device(ti, tc->origin_dev);
4320bad_origin_dev:
4321	kfree(tc);
4322out_unlock:
4323	mutex_unlock(&dm_thin_pool_table.mutex);
4324
4325	return r;
4326}
4327
4328static int thin_map(struct dm_target *ti, struct bio *bio)
4329{
4330	bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
4331
4332	return thin_bio_map(ti, bio);
4333}
4334
4335static int thin_endio(struct dm_target *ti, struct bio *bio,
4336		blk_status_t *err)
4337{
4338	unsigned long flags;
4339	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
4340	struct list_head work;
4341	struct dm_thin_new_mapping *m, *tmp;
4342	struct pool *pool = h->tc->pool;
4343
4344	if (h->shared_read_entry) {
4345		INIT_LIST_HEAD(&work);
4346		dm_deferred_entry_dec(h->shared_read_entry, &work);
4347
4348		spin_lock_irqsave(&pool->lock, flags);
4349		list_for_each_entry_safe(m, tmp, &work, list) {
4350			list_del(&m->list);
4351			__complete_mapping_preparation(m);
4352		}
4353		spin_unlock_irqrestore(&pool->lock, flags);
4354	}
4355
4356	if (h->all_io_entry) {
4357		INIT_LIST_HEAD(&work);
4358		dm_deferred_entry_dec(h->all_io_entry, &work);
4359		if (!list_empty(&work)) {
4360			spin_lock_irqsave(&pool->lock, flags);
4361			list_for_each_entry_safe(m, tmp, &work, list)
4362				list_add_tail(&m->list, &pool->prepared_discards);
4363			spin_unlock_irqrestore(&pool->lock, flags);
4364			wake_worker(pool);
4365		}
4366	}
4367
4368	if (h->cell)
4369		cell_defer_no_holder(h->tc, h->cell);
4370
4371	return DM_ENDIO_DONE;
4372}
4373
4374static void thin_presuspend(struct dm_target *ti)
4375{
4376	struct thin_c *tc = ti->private;
4377
4378	if (dm_noflush_suspending(ti))
4379		noflush_work(tc, do_noflush_start);
4380}
4381
4382static void thin_postsuspend(struct dm_target *ti)
4383{
4384	struct thin_c *tc = ti->private;
4385
4386	/*
4387	 * The dm_noflush_suspending flag has been cleared by now, so
4388	 * unfortunately we must always run this.
4389	 */
4390	noflush_work(tc, do_noflush_stop);
4391}
4392
4393static int thin_preresume(struct dm_target *ti)
4394{
4395	struct thin_c *tc = ti->private;
4396
4397	if (tc->origin_dev)
4398		tc->origin_size = get_dev_size(tc->origin_dev->bdev);
4399
4400	return 0;
4401}
4402
4403/*
4404 * <nr mapped sectors> <highest mapped sector>
4405 */
4406static void thin_status(struct dm_target *ti, status_type_t type,
4407			unsigned int status_flags, char *result, unsigned int maxlen)
4408{
4409	int r;
4410	ssize_t sz = 0;
4411	dm_block_t mapped, highest;
4412	char buf[BDEVNAME_SIZE];
4413	struct thin_c *tc = ti->private;
4414
4415	if (get_pool_mode(tc->pool) == PM_FAIL) {
4416		DMEMIT("Fail");
4417		return;
4418	}
4419
4420	if (!tc->td)
4421		DMEMIT("-");
4422	else {
4423		switch (type) {
4424		case STATUSTYPE_INFO:
4425			r = dm_thin_get_mapped_count(tc->td, &mapped);
4426			if (r) {
4427				DMERR("dm_thin_get_mapped_count returned %d", r);
4428				goto err;
4429			}
4430
4431			r = dm_thin_get_highest_mapped_block(tc->td, &highest);
4432			if (r < 0) {
4433				DMERR("dm_thin_get_highest_mapped_block returned %d", r);
4434				goto err;
4435			}
4436
4437			DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
4438			if (r)
4439				DMEMIT("%llu", ((highest + 1) *
4440						tc->pool->sectors_per_block) - 1);
4441			else
4442				DMEMIT("-");
4443			break;
4444
4445		case STATUSTYPE_TABLE:
4446			DMEMIT("%s %lu",
4447			       format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
4448			       (unsigned long) tc->dev_id);
4449			if (tc->origin_dev)
4450				DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
4451			break;
4452
4453		case STATUSTYPE_IMA:
4454			*result = '\0';
4455			break;
4456		}
4457	}
4458
4459	return;
4460
4461err:
4462	DMEMIT("Error");
4463}
4464
4465static int thin_iterate_devices(struct dm_target *ti,
4466				iterate_devices_callout_fn fn, void *data)
4467{
4468	sector_t blocks;
4469	struct thin_c *tc = ti->private;
4470	struct pool *pool = tc->pool;
4471
4472	/*
4473	 * We can't call dm_pool_get_data_dev_size() since that blocks.  So
4474	 * we follow a more convoluted path through to the pool's target.
4475	 */
4476	if (!pool->ti)
4477		return 0;	/* nothing is bound */
4478
4479	blocks = pool->ti->len;
4480	(void) sector_div(blocks, pool->sectors_per_block);
4481	if (blocks)
4482		return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
4483
4484	return 0;
4485}
4486
4487static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
4488{
4489	struct thin_c *tc = ti->private;
4490	struct pool *pool = tc->pool;
4491
4492	if (pool->pf.discard_enabled) {
4493		limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
4494		limits->max_hw_discard_sectors = pool->sectors_per_block * BIO_PRISON_MAX_RANGE;
4495	}
 
4496}
4497
4498static struct target_type thin_target = {
4499	.name = "thin",
4500	.version = {1, 23, 0},
4501	.module	= THIS_MODULE,
4502	.ctr = thin_ctr,
4503	.dtr = thin_dtr,
4504	.map = thin_map,
4505	.end_io = thin_endio,
4506	.preresume = thin_preresume,
4507	.presuspend = thin_presuspend,
4508	.postsuspend = thin_postsuspend,
4509	.status = thin_status,
4510	.iterate_devices = thin_iterate_devices,
4511	.io_hints = thin_io_hints,
4512};
4513
4514/*----------------------------------------------------------------*/
4515
4516static int __init dm_thin_init(void)
4517{
4518	int r = -ENOMEM;
4519
4520	pool_table_init();
4521
4522	_new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
4523	if (!_new_mapping_cache)
4524		return r;
4525
4526	r = dm_register_target(&thin_target);
4527	if (r)
4528		goto bad_new_mapping_cache;
4529
4530	r = dm_register_target(&pool_target);
4531	if (r)
4532		goto bad_thin_target;
4533
4534	return 0;
4535
4536bad_thin_target:
4537	dm_unregister_target(&thin_target);
4538bad_new_mapping_cache:
4539	kmem_cache_destroy(_new_mapping_cache);
4540
4541	return r;
4542}
4543
4544static void dm_thin_exit(void)
4545{
4546	dm_unregister_target(&thin_target);
4547	dm_unregister_target(&pool_target);
4548
4549	kmem_cache_destroy(_new_mapping_cache);
4550
4551	pool_table_exit();
4552}
4553
4554module_init(dm_thin_init);
4555module_exit(dm_thin_exit);
4556
4557module_param_named(no_space_timeout, no_space_timeout_secs, uint, 0644);
4558MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
4559
4560MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
4561MODULE_AUTHOR("Joe Thornber <dm-devel@lists.linux.dev>");
4562MODULE_LICENSE("GPL");