Linux Audio

Check our new training course

Yocto / OpenEmbedded training

Feb 10-13, 2025
Register
Loading...
v6.2
   1/*
   2 * Copyright (C) 2011-2012 Red Hat UK.
   3 *
   4 * This file is released under the GPL.
   5 */
   6
   7#include "dm-thin-metadata.h"
   8#include "dm-bio-prison-v1.h"
   9#include "dm.h"
  10
  11#include <linux/device-mapper.h>
  12#include <linux/dm-io.h>
  13#include <linux/dm-kcopyd.h>
  14#include <linux/jiffies.h>
  15#include <linux/log2.h>
  16#include <linux/list.h>
  17#include <linux/rculist.h>
  18#include <linux/init.h>
  19#include <linux/module.h>
  20#include <linux/slab.h>
  21#include <linux/vmalloc.h>
  22#include <linux/sort.h>
  23#include <linux/rbtree.h>
  24
  25#define	DM_MSG_PREFIX	"thin"
  26
  27/*
  28 * Tunable constants
  29 */
  30#define ENDIO_HOOK_POOL_SIZE 1024
  31#define MAPPING_POOL_SIZE 1024
  32#define COMMIT_PERIOD HZ
  33#define NO_SPACE_TIMEOUT_SECS 60
  34
  35static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
  36
  37DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
  38		"A percentage of time allocated for copy on write");
  39
  40/*
  41 * The block size of the device holding pool data must be
  42 * between 64KB and 1GB.
  43 */
  44#define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
  45#define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
  46
  47/*
  48 * Device id is restricted to 24 bits.
  49 */
  50#define MAX_DEV_ID ((1 << 24) - 1)
  51
  52/*
  53 * How do we handle breaking sharing of data blocks?
  54 * =================================================
  55 *
  56 * We use a standard copy-on-write btree to store the mappings for the
  57 * devices (note I'm talking about copy-on-write of the metadata here, not
  58 * the data).  When you take an internal snapshot you clone the root node
  59 * of the origin btree.  After this there is no concept of an origin or a
  60 * snapshot.  They are just two device trees that happen to point to the
  61 * same data blocks.
  62 *
  63 * When we get a write in we decide if it's to a shared data block using
  64 * some timestamp magic.  If it is, we have to break sharing.
  65 *
  66 * Let's say we write to a shared block in what was the origin.  The
  67 * steps are:
  68 *
  69 * i) plug io further to this physical block. (see bio_prison code).
  70 *
  71 * ii) quiesce any read io to that shared data block.  Obviously
  72 * including all devices that share this block.  (see dm_deferred_set code)
  73 *
  74 * iii) copy the data block to a newly allocate block.  This step can be
  75 * missed out if the io covers the block. (schedule_copy).
  76 *
  77 * iv) insert the new mapping into the origin's btree
  78 * (process_prepared_mapping).  This act of inserting breaks some
  79 * sharing of btree nodes between the two devices.  Breaking sharing only
  80 * effects the btree of that specific device.  Btrees for the other
  81 * devices that share the block never change.  The btree for the origin
  82 * device as it was after the last commit is untouched, ie. we're using
  83 * persistent data structures in the functional programming sense.
  84 *
  85 * v) unplug io to this physical block, including the io that triggered
  86 * the breaking of sharing.
  87 *
  88 * Steps (ii) and (iii) occur in parallel.
  89 *
  90 * The metadata _doesn't_ need to be committed before the io continues.  We
  91 * get away with this because the io is always written to a _new_ block.
  92 * If there's a crash, then:
  93 *
  94 * - The origin mapping will point to the old origin block (the shared
  95 * one).  This will contain the data as it was before the io that triggered
  96 * the breaking of sharing came in.
  97 *
  98 * - The snap mapping still points to the old block.  As it would after
  99 * the commit.
 100 *
 101 * The downside of this scheme is the timestamp magic isn't perfect, and
 102 * will continue to think that data block in the snapshot device is shared
 103 * even after the write to the origin has broken sharing.  I suspect data
 104 * blocks will typically be shared by many different devices, so we're
 105 * breaking sharing n + 1 times, rather than n, where n is the number of
 106 * devices that reference this data block.  At the moment I think the
 107 * benefits far, far outweigh the disadvantages.
 108 */
 109
 110/*----------------------------------------------------------------*/
 111
 112/*
 113 * Key building.
 114 */
 115enum lock_space {
 116	VIRTUAL,
 117	PHYSICAL
 118};
 119
 120static void build_key(struct dm_thin_device *td, enum lock_space ls,
 121		      dm_block_t b, dm_block_t e, struct dm_cell_key *key)
 122{
 123	key->virtual = (ls == VIRTUAL);
 124	key->dev = dm_thin_dev_id(td);
 125	key->block_begin = b;
 126	key->block_end = e;
 127}
 128
 129static void build_data_key(struct dm_thin_device *td, dm_block_t b,
 130			   struct dm_cell_key *key)
 131{
 132	build_key(td, PHYSICAL, b, b + 1llu, key);
 133}
 134
 135static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
 136			      struct dm_cell_key *key)
 137{
 138	build_key(td, VIRTUAL, b, b + 1llu, key);
 139}
 140
 141/*----------------------------------------------------------------*/
 142
 143#define THROTTLE_THRESHOLD (1 * HZ)
 144
 145struct throttle {
 146	struct rw_semaphore lock;
 147	unsigned long threshold;
 148	bool throttle_applied;
 149};
 150
 151static void throttle_init(struct throttle *t)
 152{
 153	init_rwsem(&t->lock);
 154	t->throttle_applied = false;
 155}
 156
 157static void throttle_work_start(struct throttle *t)
 158{
 159	t->threshold = jiffies + THROTTLE_THRESHOLD;
 160}
 161
 162static void throttle_work_update(struct throttle *t)
 163{
 164	if (!t->throttle_applied && time_is_before_jiffies(t->threshold)) {
 165		down_write(&t->lock);
 166		t->throttle_applied = true;
 167	}
 168}
 169
 170static void throttle_work_complete(struct throttle *t)
 171{
 172	if (t->throttle_applied) {
 173		t->throttle_applied = false;
 174		up_write(&t->lock);
 175	}
 176}
 177
 178static void throttle_lock(struct throttle *t)
 179{
 180	down_read(&t->lock);
 181}
 182
 183static void throttle_unlock(struct throttle *t)
 184{
 185	up_read(&t->lock);
 186}
 187
 188/*----------------------------------------------------------------*/
 189
 190/*
 191 * A pool device ties together a metadata device and a data device.  It
 192 * also provides the interface for creating and destroying internal
 193 * devices.
 194 */
 195struct dm_thin_new_mapping;
 196
 197/*
 198 * The pool runs in various modes.  Ordered in degraded order for comparisons.
 199 */
 200enum pool_mode {
 201	PM_WRITE,		/* metadata may be changed */
 202	PM_OUT_OF_DATA_SPACE,	/* metadata may be changed, though data may not be allocated */
 203
 204	/*
 205	 * Like READ_ONLY, except may switch back to WRITE on metadata resize. Reported as READ_ONLY.
 206	 */
 207	PM_OUT_OF_METADATA_SPACE,
 208	PM_READ_ONLY,		/* metadata may not be changed */
 209
 210	PM_FAIL,		/* all I/O fails */
 211};
 212
 213struct pool_features {
 214	enum pool_mode mode;
 215
 216	bool zero_new_blocks:1;
 217	bool discard_enabled:1;
 218	bool discard_passdown:1;
 219	bool error_if_no_space:1;
 220};
 221
 222struct thin_c;
 223typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
 224typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
 225typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
 226
 227#define CELL_SORT_ARRAY_SIZE 8192
 228
 229struct pool {
 230	struct list_head list;
 231	struct dm_target *ti;	/* Only set if a pool target is bound */
 232
 233	struct mapped_device *pool_md;
 234	struct block_device *data_dev;
 235	struct block_device *md_dev;
 236	struct dm_pool_metadata *pmd;
 237
 238	dm_block_t low_water_blocks;
 239	uint32_t sectors_per_block;
 240	int sectors_per_block_shift;
 241
 242	struct pool_features pf;
 243	bool low_water_triggered:1;	/* A dm event has been sent */
 244	bool suspended:1;
 245	bool out_of_data_space:1;
 246
 247	struct dm_bio_prison *prison;
 248	struct dm_kcopyd_client *copier;
 249
 250	struct work_struct worker;
 251	struct workqueue_struct *wq;
 252	struct throttle throttle;
 
 253	struct delayed_work waker;
 254	struct delayed_work no_space_timeout;
 255
 256	unsigned long last_commit_jiffies;
 257	unsigned ref_count;
 258
 259	spinlock_t lock;
 260	struct bio_list deferred_flush_bios;
 261	struct bio_list deferred_flush_completions;
 262	struct list_head prepared_mappings;
 263	struct list_head prepared_discards;
 264	struct list_head prepared_discards_pt2;
 265	struct list_head active_thins;
 266
 267	struct dm_deferred_set *shared_read_ds;
 268	struct dm_deferred_set *all_io_ds;
 269
 270	struct dm_thin_new_mapping *next_mapping;
 
 271
 272	process_bio_fn process_bio;
 273	process_bio_fn process_discard;
 274
 275	process_cell_fn process_cell;
 276	process_cell_fn process_discard_cell;
 277
 278	process_mapping_fn process_prepared_mapping;
 279	process_mapping_fn process_prepared_discard;
 280	process_mapping_fn process_prepared_discard_pt2;
 281
 282	struct dm_bio_prison_cell **cell_sort_array;
 283
 284	mempool_t mapping_pool;
 285};
 286
 
 287static void metadata_operation_failed(struct pool *pool, const char *op, int r);
 288
 289static enum pool_mode get_pool_mode(struct pool *pool)
 290{
 291	return pool->pf.mode;
 292}
 293
 294static void notify_of_pool_mode_change(struct pool *pool)
 295{
 296	const char *descs[] = {
 297		"write",
 298		"out-of-data-space",
 299		"read-only",
 300		"read-only",
 301		"fail"
 302	};
 303	const char *extra_desc = NULL;
 304	enum pool_mode mode = get_pool_mode(pool);
 305
 306	if (mode == PM_OUT_OF_DATA_SPACE) {
 307		if (!pool->pf.error_if_no_space)
 308			extra_desc = " (queue IO)";
 309		else
 310			extra_desc = " (error IO)";
 311	}
 312
 313	dm_table_event(pool->ti->table);
 314	DMINFO("%s: switching pool to %s%s mode",
 315	       dm_device_name(pool->pool_md),
 316	       descs[(int)mode], extra_desc ? : "");
 317}
 318
 319/*
 320 * Target context for a pool.
 321 */
 322struct pool_c {
 323	struct dm_target *ti;
 324	struct pool *pool;
 325	struct dm_dev *data_dev;
 326	struct dm_dev *metadata_dev;
 
 327
 328	dm_block_t low_water_blocks;
 329	struct pool_features requested_pf; /* Features requested during table load */
 330	struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
 331};
 332
 333/*
 334 * Target context for a thin.
 335 */
 336struct thin_c {
 337	struct list_head list;
 338	struct dm_dev *pool_dev;
 339	struct dm_dev *origin_dev;
 340	sector_t origin_size;
 341	dm_thin_id dev_id;
 342
 343	struct pool *pool;
 344	struct dm_thin_device *td;
 345	struct mapped_device *thin_md;
 346
 347	bool requeue_mode:1;
 348	spinlock_t lock;
 349	struct list_head deferred_cells;
 350	struct bio_list deferred_bio_list;
 351	struct bio_list retry_on_resume_list;
 352	struct rb_root sort_bio_list; /* sorted list of deferred bios */
 353
 354	/*
 355	 * Ensures the thin is not destroyed until the worker has finished
 356	 * iterating the active_thins list.
 357	 */
 358	refcount_t refcount;
 359	struct completion can_destroy;
 360};
 361
 362/*----------------------------------------------------------------*/
 363
 364static bool block_size_is_power_of_two(struct pool *pool)
 365{
 366	return pool->sectors_per_block_shift >= 0;
 367}
 368
 369static sector_t block_to_sectors(struct pool *pool, dm_block_t b)
 370{
 371	return block_size_is_power_of_two(pool) ?
 372		(b << pool->sectors_per_block_shift) :
 373		(b * pool->sectors_per_block);
 374}
 375
 376/*----------------------------------------------------------------*/
 377
 378struct discard_op {
 379	struct thin_c *tc;
 380	struct blk_plug plug;
 381	struct bio *parent_bio;
 382	struct bio *bio;
 383};
 384
 385static void begin_discard(struct discard_op *op, struct thin_c *tc, struct bio *parent)
 386{
 387	BUG_ON(!parent);
 388
 389	op->tc = tc;
 390	blk_start_plug(&op->plug);
 391	op->parent_bio = parent;
 392	op->bio = NULL;
 393}
 394
 395static int issue_discard(struct discard_op *op, dm_block_t data_b, dm_block_t data_e)
 396{
 397	struct thin_c *tc = op->tc;
 398	sector_t s = block_to_sectors(tc->pool, data_b);
 399	sector_t len = block_to_sectors(tc->pool, data_e - data_b);
 400
 401	return __blkdev_issue_discard(tc->pool_dev->bdev, s, len, GFP_NOWAIT,
 402				      &op->bio);
 403}
 404
 405static void end_discard(struct discard_op *op, int r)
 406{
 407	if (op->bio) {
 408		/*
 409		 * Even if one of the calls to issue_discard failed, we
 410		 * need to wait for the chain to complete.
 411		 */
 412		bio_chain(op->bio, op->parent_bio);
 413		op->bio->bi_opf = REQ_OP_DISCARD;
 414		submit_bio(op->bio);
 415	}
 416
 417	blk_finish_plug(&op->plug);
 418
 419	/*
 420	 * Even if r is set, there could be sub discards in flight that we
 421	 * need to wait for.
 422	 */
 423	if (r && !op->parent_bio->bi_status)
 424		op->parent_bio->bi_status = errno_to_blk_status(r);
 425	bio_endio(op->parent_bio);
 426}
 427
 428/*----------------------------------------------------------------*/
 429
 430/*
 431 * wake_worker() is used when new work is queued and when pool_resume is
 432 * ready to continue deferred IO processing.
 433 */
 434static void wake_worker(struct pool *pool)
 435{
 436	queue_work(pool->wq, &pool->worker);
 437}
 438
 439/*----------------------------------------------------------------*/
 440
 441static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
 442		      struct dm_bio_prison_cell **cell_result)
 443{
 444	int r;
 445	struct dm_bio_prison_cell *cell_prealloc;
 446
 447	/*
 448	 * Allocate a cell from the prison's mempool.
 449	 * This might block but it can't fail.
 450	 */
 451	cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
 452
 453	r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
 454	if (r)
 455		/*
 456		 * We reused an old cell; we can get rid of
 457		 * the new one.
 458		 */
 459		dm_bio_prison_free_cell(pool->prison, cell_prealloc);
 460
 461	return r;
 462}
 463
 464static void cell_release(struct pool *pool,
 465			 struct dm_bio_prison_cell *cell,
 466			 struct bio_list *bios)
 467{
 468	dm_cell_release(pool->prison, cell, bios);
 469	dm_bio_prison_free_cell(pool->prison, cell);
 470}
 471
 472static void cell_visit_release(struct pool *pool,
 473			       void (*fn)(void *, struct dm_bio_prison_cell *),
 474			       void *context,
 475			       struct dm_bio_prison_cell *cell)
 476{
 477	dm_cell_visit_release(pool->prison, fn, context, cell);
 478	dm_bio_prison_free_cell(pool->prison, cell);
 479}
 480
 481static void cell_release_no_holder(struct pool *pool,
 482				   struct dm_bio_prison_cell *cell,
 483				   struct bio_list *bios)
 484{
 485	dm_cell_release_no_holder(pool->prison, cell, bios);
 486	dm_bio_prison_free_cell(pool->prison, cell);
 487}
 488
 489static void cell_error_with_code(struct pool *pool,
 490		struct dm_bio_prison_cell *cell, blk_status_t error_code)
 491{
 492	dm_cell_error(pool->prison, cell, error_code);
 493	dm_bio_prison_free_cell(pool->prison, cell);
 494}
 495
 496static blk_status_t get_pool_io_error_code(struct pool *pool)
 497{
 498	return pool->out_of_data_space ? BLK_STS_NOSPC : BLK_STS_IOERR;
 499}
 500
 501static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
 502{
 503	cell_error_with_code(pool, cell, get_pool_io_error_code(pool));
 504}
 505
 506static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
 507{
 508	cell_error_with_code(pool, cell, 0);
 509}
 510
 511static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
 512{
 513	cell_error_with_code(pool, cell, BLK_STS_DM_REQUEUE);
 514}
 515
 516/*----------------------------------------------------------------*/
 517
 518/*
 519 * A global list of pools that uses a struct mapped_device as a key.
 520 */
 521static struct dm_thin_pool_table {
 522	struct mutex mutex;
 523	struct list_head pools;
 524} dm_thin_pool_table;
 525
 526static void pool_table_init(void)
 527{
 528	mutex_init(&dm_thin_pool_table.mutex);
 529	INIT_LIST_HEAD(&dm_thin_pool_table.pools);
 530}
 531
 532static void pool_table_exit(void)
 533{
 534	mutex_destroy(&dm_thin_pool_table.mutex);
 535}
 536
 537static void __pool_table_insert(struct pool *pool)
 538{
 539	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 540	list_add(&pool->list, &dm_thin_pool_table.pools);
 541}
 542
 543static void __pool_table_remove(struct pool *pool)
 544{
 545	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 546	list_del(&pool->list);
 547}
 548
 549static struct pool *__pool_table_lookup(struct mapped_device *md)
 550{
 551	struct pool *pool = NULL, *tmp;
 552
 553	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 554
 555	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
 556		if (tmp->pool_md == md) {
 557			pool = tmp;
 558			break;
 559		}
 560	}
 561
 562	return pool;
 563}
 564
 565static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
 566{
 567	struct pool *pool = NULL, *tmp;
 568
 569	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 570
 571	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
 572		if (tmp->md_dev == md_dev) {
 573			pool = tmp;
 574			break;
 575		}
 576	}
 577
 578	return pool;
 579}
 580
 581/*----------------------------------------------------------------*/
 582
 583struct dm_thin_endio_hook {
 584	struct thin_c *tc;
 585	struct dm_deferred_entry *shared_read_entry;
 586	struct dm_deferred_entry *all_io_entry;
 587	struct dm_thin_new_mapping *overwrite_mapping;
 588	struct rb_node rb_node;
 589	struct dm_bio_prison_cell *cell;
 590};
 591
 592static void __merge_bio_list(struct bio_list *bios, struct bio_list *master)
 593{
 594	bio_list_merge(bios, master);
 595	bio_list_init(master);
 596}
 597
 598static void error_bio_list(struct bio_list *bios, blk_status_t error)
 599{
 600	struct bio *bio;
 601
 602	while ((bio = bio_list_pop(bios))) {
 603		bio->bi_status = error;
 604		bio_endio(bio);
 605	}
 606}
 607
 608static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master,
 609		blk_status_t error)
 610{
 611	struct bio_list bios;
 
 612
 613	bio_list_init(&bios);
 614
 615	spin_lock_irq(&tc->lock);
 616	__merge_bio_list(&bios, master);
 617	spin_unlock_irq(&tc->lock);
 618
 619	error_bio_list(&bios, error);
 620}
 621
 622static void requeue_deferred_cells(struct thin_c *tc)
 623{
 624	struct pool *pool = tc->pool;
 
 625	struct list_head cells;
 626	struct dm_bio_prison_cell *cell, *tmp;
 627
 628	INIT_LIST_HEAD(&cells);
 629
 630	spin_lock_irq(&tc->lock);
 631	list_splice_init(&tc->deferred_cells, &cells);
 632	spin_unlock_irq(&tc->lock);
 633
 634	list_for_each_entry_safe(cell, tmp, &cells, user_list)
 635		cell_requeue(pool, cell);
 636}
 637
 638static void requeue_io(struct thin_c *tc)
 639{
 640	struct bio_list bios;
 
 641
 642	bio_list_init(&bios);
 643
 644	spin_lock_irq(&tc->lock);
 645	__merge_bio_list(&bios, &tc->deferred_bio_list);
 646	__merge_bio_list(&bios, &tc->retry_on_resume_list);
 647	spin_unlock_irq(&tc->lock);
 648
 649	error_bio_list(&bios, BLK_STS_DM_REQUEUE);
 650	requeue_deferred_cells(tc);
 651}
 652
 653static void error_retry_list_with_code(struct pool *pool, blk_status_t error)
 654{
 655	struct thin_c *tc;
 656
 657	rcu_read_lock();
 658	list_for_each_entry_rcu(tc, &pool->active_thins, list)
 659		error_thin_bio_list(tc, &tc->retry_on_resume_list, error);
 660	rcu_read_unlock();
 661}
 662
 663static void error_retry_list(struct pool *pool)
 664{
 665	error_retry_list_with_code(pool, get_pool_io_error_code(pool));
 666}
 667
 668/*
 669 * This section of code contains the logic for processing a thin device's IO.
 670 * Much of the code depends on pool object resources (lists, workqueues, etc)
 671 * but most is exclusively called from the thin target rather than the thin-pool
 672 * target.
 673 */
 674
 675static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
 676{
 677	struct pool *pool = tc->pool;
 678	sector_t block_nr = bio->bi_iter.bi_sector;
 679
 680	if (block_size_is_power_of_two(pool))
 681		block_nr >>= pool->sectors_per_block_shift;
 682	else
 683		(void) sector_div(block_nr, pool->sectors_per_block);
 684
 685	return block_nr;
 686}
 687
 688/*
 689 * Returns the _complete_ blocks that this bio covers.
 690 */
 691static void get_bio_block_range(struct thin_c *tc, struct bio *bio,
 692				dm_block_t *begin, dm_block_t *end)
 693{
 694	struct pool *pool = tc->pool;
 695	sector_t b = bio->bi_iter.bi_sector;
 696	sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT);
 697
 698	b += pool->sectors_per_block - 1ull; /* so we round up */
 699
 700	if (block_size_is_power_of_two(pool)) {
 701		b >>= pool->sectors_per_block_shift;
 702		e >>= pool->sectors_per_block_shift;
 703	} else {
 704		(void) sector_div(b, pool->sectors_per_block);
 705		(void) sector_div(e, pool->sectors_per_block);
 706	}
 707
 708	if (e < b)
 709		/* Can happen if the bio is within a single block. */
 710		e = b;
 711
 712	*begin = b;
 713	*end = e;
 714}
 715
 716static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
 717{
 718	struct pool *pool = tc->pool;
 719	sector_t bi_sector = bio->bi_iter.bi_sector;
 720
 721	bio_set_dev(bio, tc->pool_dev->bdev);
 722	if (block_size_is_power_of_two(pool))
 723		bio->bi_iter.bi_sector =
 724			(block << pool->sectors_per_block_shift) |
 725			(bi_sector & (pool->sectors_per_block - 1));
 726	else
 727		bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
 728				 sector_div(bi_sector, pool->sectors_per_block);
 729}
 730
 731static void remap_to_origin(struct thin_c *tc, struct bio *bio)
 732{
 733	bio_set_dev(bio, tc->origin_dev->bdev);
 734}
 735
 736static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
 737{
 738	return op_is_flush(bio->bi_opf) &&
 739		dm_thin_changed_this_transaction(tc->td);
 740}
 741
 742static void inc_all_io_entry(struct pool *pool, struct bio *bio)
 743{
 744	struct dm_thin_endio_hook *h;
 745
 746	if (bio_op(bio) == REQ_OP_DISCARD)
 747		return;
 748
 749	h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
 750	h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
 751}
 752
 753static void issue(struct thin_c *tc, struct bio *bio)
 754{
 755	struct pool *pool = tc->pool;
 
 756
 757	if (!bio_triggers_commit(tc, bio)) {
 758		dm_submit_bio_remap(bio, NULL);
 759		return;
 760	}
 761
 762	/*
 763	 * Complete bio with an error if earlier I/O caused changes to
 764	 * the metadata that can't be committed e.g, due to I/O errors
 765	 * on the metadata device.
 766	 */
 767	if (dm_thin_aborted_changes(tc->td)) {
 768		bio_io_error(bio);
 769		return;
 770	}
 771
 772	/*
 773	 * Batch together any bios that trigger commits and then issue a
 774	 * single commit for them in process_deferred_bios().
 775	 */
 776	spin_lock_irq(&pool->lock);
 777	bio_list_add(&pool->deferred_flush_bios, bio);
 778	spin_unlock_irq(&pool->lock);
 779}
 780
 781static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
 782{
 783	remap_to_origin(tc, bio);
 784	issue(tc, bio);
 785}
 786
 787static void remap_and_issue(struct thin_c *tc, struct bio *bio,
 788			    dm_block_t block)
 789{
 790	remap(tc, bio, block);
 791	issue(tc, bio);
 792}
 793
 794/*----------------------------------------------------------------*/
 795
 796/*
 797 * Bio endio functions.
 798 */
 799struct dm_thin_new_mapping {
 800	struct list_head list;
 801
 802	bool pass_discard:1;
 803	bool maybe_shared:1;
 804
 805	/*
 806	 * Track quiescing, copying and zeroing preparation actions.  When this
 807	 * counter hits zero the block is prepared and can be inserted into the
 808	 * btree.
 809	 */
 810	atomic_t prepare_actions;
 811
 812	blk_status_t status;
 813	struct thin_c *tc;
 814	dm_block_t virt_begin, virt_end;
 815	dm_block_t data_block;
 816	struct dm_bio_prison_cell *cell;
 817
 818	/*
 819	 * If the bio covers the whole area of a block then we can avoid
 820	 * zeroing or copying.  Instead this bio is hooked.  The bio will
 821	 * still be in the cell, so care has to be taken to avoid issuing
 822	 * the bio twice.
 823	 */
 824	struct bio *bio;
 825	bio_end_io_t *saved_bi_end_io;
 826};
 827
 828static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
 829{
 830	struct pool *pool = m->tc->pool;
 831
 832	if (atomic_dec_and_test(&m->prepare_actions)) {
 833		list_add_tail(&m->list, &pool->prepared_mappings);
 834		wake_worker(pool);
 835	}
 836}
 837
 838static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
 839{
 840	unsigned long flags;
 841	struct pool *pool = m->tc->pool;
 842
 843	spin_lock_irqsave(&pool->lock, flags);
 844	__complete_mapping_preparation(m);
 845	spin_unlock_irqrestore(&pool->lock, flags);
 846}
 847
 848static void copy_complete(int read_err, unsigned long write_err, void *context)
 849{
 850	struct dm_thin_new_mapping *m = context;
 851
 852	m->status = read_err || write_err ? BLK_STS_IOERR : 0;
 853	complete_mapping_preparation(m);
 854}
 855
 856static void overwrite_endio(struct bio *bio)
 857{
 858	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
 859	struct dm_thin_new_mapping *m = h->overwrite_mapping;
 860
 861	bio->bi_end_io = m->saved_bi_end_io;
 862
 863	m->status = bio->bi_status;
 864	complete_mapping_preparation(m);
 865}
 866
 867/*----------------------------------------------------------------*/
 868
 869/*
 870 * Workqueue.
 871 */
 872
 873/*
 874 * Prepared mapping jobs.
 875 */
 876
 877/*
 878 * This sends the bios in the cell, except the original holder, back
 879 * to the deferred_bios list.
 880 */
 881static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
 882{
 883	struct pool *pool = tc->pool;
 884	unsigned long flags;
 885	int has_work;
 886
 887	spin_lock_irqsave(&tc->lock, flags);
 888	cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
 889	has_work = !bio_list_empty(&tc->deferred_bio_list);
 890	spin_unlock_irqrestore(&tc->lock, flags);
 891
 892	if (has_work)
 893		wake_worker(pool);
 894}
 895
 896static void thin_defer_bio(struct thin_c *tc, struct bio *bio);
 897
 898struct remap_info {
 899	struct thin_c *tc;
 900	struct bio_list defer_bios;
 901	struct bio_list issue_bios;
 902};
 903
 904static void __inc_remap_and_issue_cell(void *context,
 905				       struct dm_bio_prison_cell *cell)
 906{
 907	struct remap_info *info = context;
 908	struct bio *bio;
 909
 910	while ((bio = bio_list_pop(&cell->bios))) {
 911		if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD)
 912			bio_list_add(&info->defer_bios, bio);
 913		else {
 914			inc_all_io_entry(info->tc->pool, bio);
 915
 916			/*
 917			 * We can't issue the bios with the bio prison lock
 918			 * held, so we add them to a list to issue on
 919			 * return from this function.
 920			 */
 921			bio_list_add(&info->issue_bios, bio);
 922		}
 923	}
 924}
 925
 926static void inc_remap_and_issue_cell(struct thin_c *tc,
 927				     struct dm_bio_prison_cell *cell,
 928				     dm_block_t block)
 929{
 930	struct bio *bio;
 931	struct remap_info info;
 932
 933	info.tc = tc;
 934	bio_list_init(&info.defer_bios);
 935	bio_list_init(&info.issue_bios);
 936
 937	/*
 938	 * We have to be careful to inc any bios we're about to issue
 939	 * before the cell is released, and avoid a race with new bios
 940	 * being added to the cell.
 941	 */
 942	cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
 943			   &info, cell);
 944
 945	while ((bio = bio_list_pop(&info.defer_bios)))
 946		thin_defer_bio(tc, bio);
 947
 948	while ((bio = bio_list_pop(&info.issue_bios)))
 949		remap_and_issue(info.tc, bio, block);
 950}
 951
 952static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
 953{
 954	cell_error(m->tc->pool, m->cell);
 955	list_del(&m->list);
 956	mempool_free(m, &m->tc->pool->mapping_pool);
 957}
 958
 959static void complete_overwrite_bio(struct thin_c *tc, struct bio *bio)
 960{
 961	struct pool *pool = tc->pool;
 962
 963	/*
 964	 * If the bio has the REQ_FUA flag set we must commit the metadata
 965	 * before signaling its completion.
 966	 */
 967	if (!bio_triggers_commit(tc, bio)) {
 968		bio_endio(bio);
 969		return;
 970	}
 971
 972	/*
 973	 * Complete bio with an error if earlier I/O caused changes to the
 974	 * metadata that can't be committed, e.g, due to I/O errors on the
 975	 * metadata device.
 976	 */
 977	if (dm_thin_aborted_changes(tc->td)) {
 978		bio_io_error(bio);
 979		return;
 980	}
 981
 982	/*
 983	 * Batch together any bios that trigger commits and then issue a
 984	 * single commit for them in process_deferred_bios().
 985	 */
 986	spin_lock_irq(&pool->lock);
 987	bio_list_add(&pool->deferred_flush_completions, bio);
 988	spin_unlock_irq(&pool->lock);
 989}
 990
 991static void process_prepared_mapping(struct dm_thin_new_mapping *m)
 992{
 993	struct thin_c *tc = m->tc;
 994	struct pool *pool = tc->pool;
 995	struct bio *bio = m->bio;
 996	int r;
 997
 998	if (m->status) {
 999		cell_error(pool, m->cell);
1000		goto out;
1001	}
1002
1003	/*
1004	 * Commit the prepared block into the mapping btree.
1005	 * Any I/O for this block arriving after this point will get
1006	 * remapped to it directly.
1007	 */
1008	r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block);
1009	if (r) {
1010		metadata_operation_failed(pool, "dm_thin_insert_block", r);
1011		cell_error(pool, m->cell);
1012		goto out;
1013	}
1014
1015	/*
1016	 * Release any bios held while the block was being provisioned.
1017	 * If we are processing a write bio that completely covers the block,
1018	 * we already processed it so can ignore it now when processing
1019	 * the bios in the cell.
1020	 */
1021	if (bio) {
1022		inc_remap_and_issue_cell(tc, m->cell, m->data_block);
1023		complete_overwrite_bio(tc, bio);
1024	} else {
1025		inc_all_io_entry(tc->pool, m->cell->holder);
1026		remap_and_issue(tc, m->cell->holder, m->data_block);
1027		inc_remap_and_issue_cell(tc, m->cell, m->data_block);
1028	}
1029
1030out:
1031	list_del(&m->list);
1032	mempool_free(m, &pool->mapping_pool);
1033}
1034
1035/*----------------------------------------------------------------*/
1036
1037static void free_discard_mapping(struct dm_thin_new_mapping *m)
1038{
1039	struct thin_c *tc = m->tc;
1040	if (m->cell)
1041		cell_defer_no_holder(tc, m->cell);
1042	mempool_free(m, &tc->pool->mapping_pool);
1043}
1044
1045static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
1046{
1047	bio_io_error(m->bio);
1048	free_discard_mapping(m);
1049}
1050
1051static void process_prepared_discard_success(struct dm_thin_new_mapping *m)
1052{
1053	bio_endio(m->bio);
1054	free_discard_mapping(m);
1055}
1056
1057static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m)
1058{
1059	int r;
1060	struct thin_c *tc = m->tc;
1061
1062	r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end);
1063	if (r) {
1064		metadata_operation_failed(tc->pool, "dm_thin_remove_range", r);
1065		bio_io_error(m->bio);
1066	} else
1067		bio_endio(m->bio);
1068
1069	cell_defer_no_holder(tc, m->cell);
1070	mempool_free(m, &tc->pool->mapping_pool);
1071}
1072
1073/*----------------------------------------------------------------*/
1074
1075static void passdown_double_checking_shared_status(struct dm_thin_new_mapping *m,
1076						   struct bio *discard_parent)
1077{
1078	/*
1079	 * We've already unmapped this range of blocks, but before we
1080	 * passdown we have to check that these blocks are now unused.
1081	 */
1082	int r = 0;
1083	bool shared = true;
1084	struct thin_c *tc = m->tc;
1085	struct pool *pool = tc->pool;
1086	dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin;
1087	struct discard_op op;
1088
1089	begin_discard(&op, tc, discard_parent);
1090	while (b != end) {
1091		/* find start of unmapped run */
1092		for (; b < end; b++) {
1093			r = dm_pool_block_is_shared(pool->pmd, b, &shared);
1094			if (r)
1095				goto out;
1096
1097			if (!shared)
1098				break;
1099		}
1100
1101		if (b == end)
1102			break;
1103
1104		/* find end of run */
1105		for (e = b + 1; e != end; e++) {
1106			r = dm_pool_block_is_shared(pool->pmd, e, &shared);
1107			if (r)
1108				goto out;
1109
1110			if (shared)
1111				break;
1112		}
1113
1114		r = issue_discard(&op, b, e);
1115		if (r)
1116			goto out;
1117
1118		b = e;
1119	}
1120out:
1121	end_discard(&op, r);
1122}
1123
1124static void queue_passdown_pt2(struct dm_thin_new_mapping *m)
1125{
1126	unsigned long flags;
1127	struct pool *pool = m->tc->pool;
1128
1129	spin_lock_irqsave(&pool->lock, flags);
1130	list_add_tail(&m->list, &pool->prepared_discards_pt2);
1131	spin_unlock_irqrestore(&pool->lock, flags);
1132	wake_worker(pool);
1133}
1134
1135static void passdown_endio(struct bio *bio)
1136{
1137	/*
1138	 * It doesn't matter if the passdown discard failed, we still want
1139	 * to unmap (we ignore err).
1140	 */
1141	queue_passdown_pt2(bio->bi_private);
1142	bio_put(bio);
1143}
1144
1145static void process_prepared_discard_passdown_pt1(struct dm_thin_new_mapping *m)
1146{
1147	int r;
1148	struct thin_c *tc = m->tc;
1149	struct pool *pool = tc->pool;
1150	struct bio *discard_parent;
1151	dm_block_t data_end = m->data_block + (m->virt_end - m->virt_begin);
1152
1153	/*
1154	 * Only this thread allocates blocks, so we can be sure that the
1155	 * newly unmapped blocks will not be allocated before the end of
1156	 * the function.
1157	 */
1158	r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end);
1159	if (r) {
1160		metadata_operation_failed(pool, "dm_thin_remove_range", r);
1161		bio_io_error(m->bio);
1162		cell_defer_no_holder(tc, m->cell);
1163		mempool_free(m, &pool->mapping_pool);
1164		return;
1165	}
1166
1167	/*
1168	 * Increment the unmapped blocks.  This prevents a race between the
1169	 * passdown io and reallocation of freed blocks.
1170	 */
1171	r = dm_pool_inc_data_range(pool->pmd, m->data_block, data_end);
1172	if (r) {
1173		metadata_operation_failed(pool, "dm_pool_inc_data_range", r);
1174		bio_io_error(m->bio);
1175		cell_defer_no_holder(tc, m->cell);
1176		mempool_free(m, &pool->mapping_pool);
1177		return;
1178	}
1179
1180	discard_parent = bio_alloc(NULL, 1, 0, GFP_NOIO);
1181	discard_parent->bi_end_io = passdown_endio;
1182	discard_parent->bi_private = m;
1183 	if (m->maybe_shared)
1184 		passdown_double_checking_shared_status(m, discard_parent);
1185 	else {
1186		struct discard_op op;
1187
1188		begin_discard(&op, tc, discard_parent);
1189		r = issue_discard(&op, m->data_block, data_end);
1190		end_discard(&op, r);
 
 
 
 
 
 
 
 
1191	}
1192}
1193
1194static void process_prepared_discard_passdown_pt2(struct dm_thin_new_mapping *m)
1195{
1196	int r;
1197	struct thin_c *tc = m->tc;
1198	struct pool *pool = tc->pool;
1199
1200	/*
1201	 * The passdown has completed, so now we can decrement all those
1202	 * unmapped blocks.
1203	 */
1204	r = dm_pool_dec_data_range(pool->pmd, m->data_block,
1205				   m->data_block + (m->virt_end - m->virt_begin));
1206	if (r) {
1207		metadata_operation_failed(pool, "dm_pool_dec_data_range", r);
1208		bio_io_error(m->bio);
1209	} else
1210		bio_endio(m->bio);
1211
1212	cell_defer_no_holder(tc, m->cell);
1213	mempool_free(m, &pool->mapping_pool);
1214}
1215
1216static void process_prepared(struct pool *pool, struct list_head *head,
1217			     process_mapping_fn *fn)
1218{
 
1219	struct list_head maps;
1220	struct dm_thin_new_mapping *m, *tmp;
1221
1222	INIT_LIST_HEAD(&maps);
1223	spin_lock_irq(&pool->lock);
1224	list_splice_init(head, &maps);
1225	spin_unlock_irq(&pool->lock);
1226
1227	list_for_each_entry_safe(m, tmp, &maps, list)
1228		(*fn)(m);
1229}
1230
1231/*
1232 * Deferred bio jobs.
1233 */
1234static int io_overlaps_block(struct pool *pool, struct bio *bio)
1235{
1236	return bio->bi_iter.bi_size ==
1237		(pool->sectors_per_block << SECTOR_SHIFT);
1238}
1239
1240static int io_overwrites_block(struct pool *pool, struct bio *bio)
1241{
1242	return (bio_data_dir(bio) == WRITE) &&
1243		io_overlaps_block(pool, bio);
1244}
1245
1246static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
1247			       bio_end_io_t *fn)
1248{
1249	*save = bio->bi_end_io;
1250	bio->bi_end_io = fn;
1251}
1252
1253static int ensure_next_mapping(struct pool *pool)
1254{
1255	if (pool->next_mapping)
1256		return 0;
1257
1258	pool->next_mapping = mempool_alloc(&pool->mapping_pool, GFP_ATOMIC);
1259
1260	return pool->next_mapping ? 0 : -ENOMEM;
1261}
1262
1263static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
1264{
1265	struct dm_thin_new_mapping *m = pool->next_mapping;
1266
1267	BUG_ON(!pool->next_mapping);
1268
1269	memset(m, 0, sizeof(struct dm_thin_new_mapping));
1270	INIT_LIST_HEAD(&m->list);
1271	m->bio = NULL;
1272
1273	pool->next_mapping = NULL;
1274
1275	return m;
1276}
1277
1278static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
1279		    sector_t begin, sector_t end)
1280{
 
1281	struct dm_io_region to;
1282
1283	to.bdev = tc->pool_dev->bdev;
1284	to.sector = begin;
1285	to.count = end - begin;
1286
1287	dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
 
 
 
 
1288}
1289
1290static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
1291				      dm_block_t data_begin,
1292				      struct dm_thin_new_mapping *m)
1293{
1294	struct pool *pool = tc->pool;
1295	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1296
1297	h->overwrite_mapping = m;
1298	m->bio = bio;
1299	save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1300	inc_all_io_entry(pool, bio);
1301	remap_and_issue(tc, bio, data_begin);
1302}
1303
1304/*
1305 * A partial copy also needs to zero the uncopied region.
1306 */
1307static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
1308			  struct dm_dev *origin, dm_block_t data_origin,
1309			  dm_block_t data_dest,
1310			  struct dm_bio_prison_cell *cell, struct bio *bio,
1311			  sector_t len)
1312{
 
1313	struct pool *pool = tc->pool;
1314	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1315
1316	m->tc = tc;
1317	m->virt_begin = virt_block;
1318	m->virt_end = virt_block + 1u;
1319	m->data_block = data_dest;
1320	m->cell = cell;
1321
1322	/*
1323	 * quiesce action + copy action + an extra reference held for the
1324	 * duration of this function (we may need to inc later for a
1325	 * partial zero).
1326	 */
1327	atomic_set(&m->prepare_actions, 3);
1328
1329	if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
1330		complete_mapping_preparation(m); /* already quiesced */
1331
1332	/*
1333	 * IO to pool_dev remaps to the pool target's data_dev.
1334	 *
1335	 * If the whole block of data is being overwritten, we can issue the
1336	 * bio immediately. Otherwise we use kcopyd to clone the data first.
1337	 */
1338	if (io_overwrites_block(pool, bio))
1339		remap_and_issue_overwrite(tc, bio, data_dest, m);
1340	else {
1341		struct dm_io_region from, to;
1342
1343		from.bdev = origin->bdev;
1344		from.sector = data_origin * pool->sectors_per_block;
1345		from.count = len;
1346
1347		to.bdev = tc->pool_dev->bdev;
1348		to.sector = data_dest * pool->sectors_per_block;
1349		to.count = len;
1350
1351		dm_kcopyd_copy(pool->copier, &from, 1, &to,
1352			       0, copy_complete, m);
 
 
 
 
 
 
 
 
 
 
 
1353
1354		/*
1355		 * Do we need to zero a tail region?
1356		 */
1357		if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
1358			atomic_inc(&m->prepare_actions);
1359			ll_zero(tc, m,
1360				data_dest * pool->sectors_per_block + len,
1361				(data_dest + 1) * pool->sectors_per_block);
1362		}
1363	}
1364
1365	complete_mapping_preparation(m); /* drop our ref */
1366}
1367
1368static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1369				   dm_block_t data_origin, dm_block_t data_dest,
1370				   struct dm_bio_prison_cell *cell, struct bio *bio)
1371{
1372	schedule_copy(tc, virt_block, tc->pool_dev,
1373		      data_origin, data_dest, cell, bio,
1374		      tc->pool->sectors_per_block);
1375}
1376
1377static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1378			  dm_block_t data_block, struct dm_bio_prison_cell *cell,
1379			  struct bio *bio)
1380{
1381	struct pool *pool = tc->pool;
1382	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1383
1384	atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
1385	m->tc = tc;
1386	m->virt_begin = virt_block;
1387	m->virt_end = virt_block + 1u;
1388	m->data_block = data_block;
1389	m->cell = cell;
1390
1391	/*
1392	 * If the whole block of data is being overwritten or we are not
1393	 * zeroing pre-existing data, we can issue the bio immediately.
1394	 * Otherwise we use kcopyd to zero the data first.
1395	 */
1396	if (pool->pf.zero_new_blocks) {
1397		if (io_overwrites_block(pool, bio))
1398			remap_and_issue_overwrite(tc, bio, data_block, m);
1399		else
1400			ll_zero(tc, m, data_block * pool->sectors_per_block,
1401				(data_block + 1) * pool->sectors_per_block);
1402	} else
1403		process_prepared_mapping(m);
1404}
1405
1406static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1407				   dm_block_t data_dest,
1408				   struct dm_bio_prison_cell *cell, struct bio *bio)
1409{
1410	struct pool *pool = tc->pool;
1411	sector_t virt_block_begin = virt_block * pool->sectors_per_block;
1412	sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
1413
1414	if (virt_block_end <= tc->origin_size)
1415		schedule_copy(tc, virt_block, tc->origin_dev,
1416			      virt_block, data_dest, cell, bio,
1417			      pool->sectors_per_block);
1418
1419	else if (virt_block_begin < tc->origin_size)
1420		schedule_copy(tc, virt_block, tc->origin_dev,
1421			      virt_block, data_dest, cell, bio,
1422			      tc->origin_size - virt_block_begin);
1423
1424	else
1425		schedule_zero(tc, virt_block, data_dest, cell, bio);
1426}
1427
1428static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
1429
1430static void requeue_bios(struct pool *pool);
1431
1432static bool is_read_only_pool_mode(enum pool_mode mode)
1433{
1434	return (mode == PM_OUT_OF_METADATA_SPACE || mode == PM_READ_ONLY);
1435}
1436
1437static bool is_read_only(struct pool *pool)
1438{
1439	return is_read_only_pool_mode(get_pool_mode(pool));
1440}
1441
1442static void check_for_metadata_space(struct pool *pool)
1443{
1444	int r;
1445	const char *ooms_reason = NULL;
1446	dm_block_t nr_free;
1447
1448	r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free);
1449	if (r)
1450		ooms_reason = "Could not get free metadata blocks";
1451	else if (!nr_free)
1452		ooms_reason = "No free metadata blocks";
1453
1454	if (ooms_reason && !is_read_only(pool)) {
1455		DMERR("%s", ooms_reason);
1456		set_pool_mode(pool, PM_OUT_OF_METADATA_SPACE);
1457	}
1458}
1459
1460static void check_for_data_space(struct pool *pool)
1461{
1462	int r;
1463	dm_block_t nr_free;
1464
1465	if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE)
1466		return;
1467
1468	r = dm_pool_get_free_block_count(pool->pmd, &nr_free);
1469	if (r)
1470		return;
1471
1472	if (nr_free) {
1473		set_pool_mode(pool, PM_WRITE);
1474		requeue_bios(pool);
1475	}
1476}
1477
1478/*
1479 * A non-zero return indicates read_only or fail_io mode.
1480 * Many callers don't care about the return value.
1481 */
1482static int commit(struct pool *pool)
1483{
1484	int r;
1485
1486	if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE)
1487		return -EINVAL;
1488
1489	r = dm_pool_commit_metadata(pool->pmd);
1490	if (r)
1491		metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1492	else {
1493		check_for_metadata_space(pool);
1494		check_for_data_space(pool);
1495	}
1496
1497	return r;
1498}
1499
1500static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
1501{
 
 
1502	if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1503		DMWARN("%s: reached low water mark for data device: sending event.",
1504		       dm_device_name(pool->pool_md));
1505		spin_lock_irq(&pool->lock);
1506		pool->low_water_triggered = true;
1507		spin_unlock_irq(&pool->lock);
1508		dm_table_event(pool->ti->table);
1509	}
1510}
1511
1512static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1513{
1514	int r;
1515	dm_block_t free_blocks;
1516	struct pool *pool = tc->pool;
1517
1518	if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1519		return -EINVAL;
1520
1521	r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1522	if (r) {
1523		metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1524		return r;
1525	}
1526
1527	check_low_water_mark(pool, free_blocks);
1528
1529	if (!free_blocks) {
1530		/*
1531		 * Try to commit to see if that will free up some
1532		 * more space.
1533		 */
1534		r = commit(pool);
1535		if (r)
1536			return r;
1537
1538		r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1539		if (r) {
1540			metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1541			return r;
1542		}
1543
1544		if (!free_blocks) {
1545			set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1546			return -ENOSPC;
1547		}
1548	}
1549
1550	r = dm_pool_alloc_data_block(pool->pmd, result);
1551	if (r) {
1552		if (r == -ENOSPC)
1553			set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1554		else
1555			metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1556		return r;
1557	}
1558
1559	r = dm_pool_get_free_metadata_block_count(pool->pmd, &free_blocks);
1560	if (r) {
1561		metadata_operation_failed(pool, "dm_pool_get_free_metadata_block_count", r);
1562		return r;
1563	}
1564
1565	if (!free_blocks) {
1566		/* Let's commit before we use up the metadata reserve. */
1567		r = commit(pool);
1568		if (r)
1569			return r;
1570	}
1571
1572	return 0;
1573}
1574
1575/*
1576 * If we have run out of space, queue bios until the device is
1577 * resumed, presumably after having been reloaded with more space.
1578 */
1579static void retry_on_resume(struct bio *bio)
1580{
1581	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1582	struct thin_c *tc = h->tc;
 
1583
1584	spin_lock_irq(&tc->lock);
1585	bio_list_add(&tc->retry_on_resume_list, bio);
1586	spin_unlock_irq(&tc->lock);
1587}
1588
1589static blk_status_t should_error_unserviceable_bio(struct pool *pool)
1590{
1591	enum pool_mode m = get_pool_mode(pool);
1592
1593	switch (m) {
1594	case PM_WRITE:
1595		/* Shouldn't get here */
1596		DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1597		return BLK_STS_IOERR;
1598
1599	case PM_OUT_OF_DATA_SPACE:
1600		return pool->pf.error_if_no_space ? BLK_STS_NOSPC : 0;
1601
1602	case PM_OUT_OF_METADATA_SPACE:
1603	case PM_READ_ONLY:
1604	case PM_FAIL:
1605		return BLK_STS_IOERR;
1606	default:
1607		/* Shouldn't get here */
1608		DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1609		return BLK_STS_IOERR;
1610	}
1611}
1612
1613static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1614{
1615	blk_status_t error = should_error_unserviceable_bio(pool);
1616
1617	if (error) {
1618		bio->bi_status = error;
1619		bio_endio(bio);
1620	} else
1621		retry_on_resume(bio);
1622}
1623
1624static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1625{
1626	struct bio *bio;
1627	struct bio_list bios;
1628	blk_status_t error;
1629
1630	error = should_error_unserviceable_bio(pool);
1631	if (error) {
1632		cell_error_with_code(pool, cell, error);
1633		return;
1634	}
1635
1636	bio_list_init(&bios);
1637	cell_release(pool, cell, &bios);
1638
1639	while ((bio = bio_list_pop(&bios)))
1640		retry_on_resume(bio);
1641}
1642
1643static void process_discard_cell_no_passdown(struct thin_c *tc,
1644					     struct dm_bio_prison_cell *virt_cell)
1645{
1646	struct pool *pool = tc->pool;
1647	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1648
1649	/*
1650	 * We don't need to lock the data blocks, since there's no
1651	 * passdown.  We only lock data blocks for allocation and breaking sharing.
1652	 */
1653	m->tc = tc;
1654	m->virt_begin = virt_cell->key.block_begin;
1655	m->virt_end = virt_cell->key.block_end;
1656	m->cell = virt_cell;
1657	m->bio = virt_cell->holder;
1658
1659	if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1660		pool->process_prepared_discard(m);
1661}
1662
1663static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end,
1664				 struct bio *bio)
1665{
1666	struct pool *pool = tc->pool;
1667
1668	int r;
1669	bool maybe_shared;
1670	struct dm_cell_key data_key;
1671	struct dm_bio_prison_cell *data_cell;
1672	struct dm_thin_new_mapping *m;
1673	dm_block_t virt_begin, virt_end, data_begin;
1674
1675	while (begin != end) {
1676		r = ensure_next_mapping(pool);
1677		if (r)
1678			/* we did our best */
1679			return;
1680
1681		r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end,
1682					      &data_begin, &maybe_shared);
1683		if (r)
1684			/*
1685			 * Silently fail, letting any mappings we've
1686			 * created complete.
1687			 */
1688			break;
1689
1690		build_key(tc->td, PHYSICAL, data_begin, data_begin + (virt_end - virt_begin), &data_key);
1691		if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) {
1692			/* contention, we'll give up with this range */
1693			begin = virt_end;
1694			continue;
1695		}
1696
1697		/*
1698		 * IO may still be going to the destination block.  We must
1699		 * quiesce before we can do the removal.
1700		 */
1701		m = get_next_mapping(pool);
1702		m->tc = tc;
1703		m->maybe_shared = maybe_shared;
1704		m->virt_begin = virt_begin;
1705		m->virt_end = virt_end;
1706		m->data_block = data_begin;
1707		m->cell = data_cell;
1708		m->bio = bio;
1709
1710		/*
1711		 * The parent bio must not complete before sub discard bios are
1712		 * chained to it (see end_discard's bio_chain)!
1713		 *
1714		 * This per-mapping bi_remaining increment is paired with
1715		 * the implicit decrement that occurs via bio_endio() in
1716		 * end_discard().
1717		 */
1718		bio_inc_remaining(bio);
1719		if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1720			pool->process_prepared_discard(m);
1721
1722		begin = virt_end;
1723	}
1724}
1725
1726static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell)
1727{
1728	struct bio *bio = virt_cell->holder;
1729	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1730
1731	/*
1732	 * The virt_cell will only get freed once the origin bio completes.
1733	 * This means it will remain locked while all the individual
1734	 * passdown bios are in flight.
1735	 */
1736	h->cell = virt_cell;
1737	break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio);
1738
1739	/*
1740	 * We complete the bio now, knowing that the bi_remaining field
1741	 * will prevent completion until the sub range discards have
1742	 * completed.
1743	 */
1744	bio_endio(bio);
1745}
1746
1747static void process_discard_bio(struct thin_c *tc, struct bio *bio)
1748{
1749	dm_block_t begin, end;
1750	struct dm_cell_key virt_key;
1751	struct dm_bio_prison_cell *virt_cell;
1752
1753	get_bio_block_range(tc, bio, &begin, &end);
1754	if (begin == end) {
1755		/*
1756		 * The discard covers less than a block.
1757		 */
1758		bio_endio(bio);
1759		return;
1760	}
1761
1762	build_key(tc->td, VIRTUAL, begin, end, &virt_key);
1763	if (bio_detain(tc->pool, &virt_key, bio, &virt_cell))
1764		/*
1765		 * Potential starvation issue: We're relying on the
1766		 * fs/application being well behaved, and not trying to
1767		 * send IO to a region at the same time as discarding it.
1768		 * If they do this persistently then it's possible this
1769		 * cell will never be granted.
1770		 */
1771		return;
1772
1773	tc->pool->process_discard_cell(tc, virt_cell);
1774}
1775
1776static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1777			  struct dm_cell_key *key,
1778			  struct dm_thin_lookup_result *lookup_result,
1779			  struct dm_bio_prison_cell *cell)
1780{
1781	int r;
1782	dm_block_t data_block;
1783	struct pool *pool = tc->pool;
1784
1785	r = alloc_data_block(tc, &data_block);
1786	switch (r) {
1787	case 0:
1788		schedule_internal_copy(tc, block, lookup_result->block,
1789				       data_block, cell, bio);
1790		break;
1791
1792	case -ENOSPC:
1793		retry_bios_on_resume(pool, cell);
1794		break;
1795
1796	default:
1797		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1798			    __func__, r);
1799		cell_error(pool, cell);
1800		break;
1801	}
1802}
1803
1804static void __remap_and_issue_shared_cell(void *context,
1805					  struct dm_bio_prison_cell *cell)
1806{
1807	struct remap_info *info = context;
1808	struct bio *bio;
1809
1810	while ((bio = bio_list_pop(&cell->bios))) {
1811		if (bio_data_dir(bio) == WRITE || op_is_flush(bio->bi_opf) ||
1812		    bio_op(bio) == REQ_OP_DISCARD)
1813			bio_list_add(&info->defer_bios, bio);
1814		else {
1815			struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1816
1817			h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds);
1818			inc_all_io_entry(info->tc->pool, bio);
1819			bio_list_add(&info->issue_bios, bio);
1820		}
1821	}
1822}
1823
1824static void remap_and_issue_shared_cell(struct thin_c *tc,
1825					struct dm_bio_prison_cell *cell,
1826					dm_block_t block)
1827{
1828	struct bio *bio;
1829	struct remap_info info;
1830
1831	info.tc = tc;
1832	bio_list_init(&info.defer_bios);
1833	bio_list_init(&info.issue_bios);
1834
1835	cell_visit_release(tc->pool, __remap_and_issue_shared_cell,
1836			   &info, cell);
1837
1838	while ((bio = bio_list_pop(&info.defer_bios)))
1839		thin_defer_bio(tc, bio);
1840
1841	while ((bio = bio_list_pop(&info.issue_bios)))
1842		remap_and_issue(tc, bio, block);
1843}
1844
1845static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1846			       dm_block_t block,
1847			       struct dm_thin_lookup_result *lookup_result,
1848			       struct dm_bio_prison_cell *virt_cell)
1849{
1850	struct dm_bio_prison_cell *data_cell;
1851	struct pool *pool = tc->pool;
1852	struct dm_cell_key key;
1853
1854	/*
1855	 * If cell is already occupied, then sharing is already in the process
1856	 * of being broken so we have nothing further to do here.
1857	 */
1858	build_data_key(tc->td, lookup_result->block, &key);
1859	if (bio_detain(pool, &key, bio, &data_cell)) {
1860		cell_defer_no_holder(tc, virt_cell);
1861		return;
1862	}
1863
1864	if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) {
1865		break_sharing(tc, bio, block, &key, lookup_result, data_cell);
1866		cell_defer_no_holder(tc, virt_cell);
1867	} else {
1868		struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1869
1870		h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1871		inc_all_io_entry(pool, bio);
1872		remap_and_issue(tc, bio, lookup_result->block);
1873
1874		remap_and_issue_shared_cell(tc, data_cell, lookup_result->block);
1875		remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block);
1876	}
1877}
1878
1879static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1880			    struct dm_bio_prison_cell *cell)
1881{
1882	int r;
1883	dm_block_t data_block;
1884	struct pool *pool = tc->pool;
1885
1886	/*
1887	 * Remap empty bios (flushes) immediately, without provisioning.
1888	 */
1889	if (!bio->bi_iter.bi_size) {
1890		inc_all_io_entry(pool, bio);
1891		cell_defer_no_holder(tc, cell);
1892
1893		remap_and_issue(tc, bio, 0);
1894		return;
1895	}
1896
1897	/*
1898	 * Fill read bios with zeroes and complete them immediately.
1899	 */
1900	if (bio_data_dir(bio) == READ) {
1901		zero_fill_bio(bio);
1902		cell_defer_no_holder(tc, cell);
1903		bio_endio(bio);
1904		return;
1905	}
1906
1907	r = alloc_data_block(tc, &data_block);
1908	switch (r) {
1909	case 0:
1910		if (tc->origin_dev)
1911			schedule_external_copy(tc, block, data_block, cell, bio);
1912		else
1913			schedule_zero(tc, block, data_block, cell, bio);
1914		break;
1915
1916	case -ENOSPC:
1917		retry_bios_on_resume(pool, cell);
1918		break;
1919
1920	default:
1921		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1922			    __func__, r);
1923		cell_error(pool, cell);
1924		break;
1925	}
1926}
1927
1928static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1929{
1930	int r;
1931	struct pool *pool = tc->pool;
1932	struct bio *bio = cell->holder;
1933	dm_block_t block = get_bio_block(tc, bio);
1934	struct dm_thin_lookup_result lookup_result;
1935
1936	if (tc->requeue_mode) {
1937		cell_requeue(pool, cell);
1938		return;
1939	}
1940
1941	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1942	switch (r) {
1943	case 0:
1944		if (lookup_result.shared)
1945			process_shared_bio(tc, bio, block, &lookup_result, cell);
1946		else {
1947			inc_all_io_entry(pool, bio);
1948			remap_and_issue(tc, bio, lookup_result.block);
1949			inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1950		}
1951		break;
1952
1953	case -ENODATA:
1954		if (bio_data_dir(bio) == READ && tc->origin_dev) {
1955			inc_all_io_entry(pool, bio);
1956			cell_defer_no_holder(tc, cell);
1957
1958			if (bio_end_sector(bio) <= tc->origin_size)
1959				remap_to_origin_and_issue(tc, bio);
1960
1961			else if (bio->bi_iter.bi_sector < tc->origin_size) {
1962				zero_fill_bio(bio);
1963				bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
1964				remap_to_origin_and_issue(tc, bio);
1965
1966			} else {
1967				zero_fill_bio(bio);
1968				bio_endio(bio);
1969			}
1970		} else
1971			provision_block(tc, bio, block, cell);
1972		break;
1973
1974	default:
1975		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1976			    __func__, r);
1977		cell_defer_no_holder(tc, cell);
1978		bio_io_error(bio);
1979		break;
1980	}
1981}
1982
1983static void process_bio(struct thin_c *tc, struct bio *bio)
1984{
1985	struct pool *pool = tc->pool;
1986	dm_block_t block = get_bio_block(tc, bio);
1987	struct dm_bio_prison_cell *cell;
1988	struct dm_cell_key key;
1989
1990	/*
1991	 * If cell is already occupied, then the block is already
1992	 * being provisioned so we have nothing further to do here.
1993	 */
1994	build_virtual_key(tc->td, block, &key);
1995	if (bio_detain(pool, &key, bio, &cell))
1996		return;
1997
1998	process_cell(tc, cell);
1999}
2000
2001static void __process_bio_read_only(struct thin_c *tc, struct bio *bio,
2002				    struct dm_bio_prison_cell *cell)
2003{
2004	int r;
2005	int rw = bio_data_dir(bio);
2006	dm_block_t block = get_bio_block(tc, bio);
2007	struct dm_thin_lookup_result lookup_result;
2008
2009	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
2010	switch (r) {
2011	case 0:
2012		if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) {
2013			handle_unserviceable_bio(tc->pool, bio);
2014			if (cell)
2015				cell_defer_no_holder(tc, cell);
2016		} else {
2017			inc_all_io_entry(tc->pool, bio);
2018			remap_and_issue(tc, bio, lookup_result.block);
2019			if (cell)
2020				inc_remap_and_issue_cell(tc, cell, lookup_result.block);
2021		}
2022		break;
2023
2024	case -ENODATA:
2025		if (cell)
2026			cell_defer_no_holder(tc, cell);
2027		if (rw != READ) {
2028			handle_unserviceable_bio(tc->pool, bio);
2029			break;
2030		}
2031
2032		if (tc->origin_dev) {
2033			inc_all_io_entry(tc->pool, bio);
2034			remap_to_origin_and_issue(tc, bio);
2035			break;
2036		}
2037
2038		zero_fill_bio(bio);
2039		bio_endio(bio);
2040		break;
2041
2042	default:
2043		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
2044			    __func__, r);
2045		if (cell)
2046			cell_defer_no_holder(tc, cell);
2047		bio_io_error(bio);
2048		break;
2049	}
2050}
2051
2052static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
2053{
2054	__process_bio_read_only(tc, bio, NULL);
2055}
2056
2057static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2058{
2059	__process_bio_read_only(tc, cell->holder, cell);
2060}
2061
2062static void process_bio_success(struct thin_c *tc, struct bio *bio)
2063{
2064	bio_endio(bio);
2065}
2066
2067static void process_bio_fail(struct thin_c *tc, struct bio *bio)
2068{
2069	bio_io_error(bio);
2070}
2071
2072static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2073{
2074	cell_success(tc->pool, cell);
2075}
2076
2077static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2078{
2079	cell_error(tc->pool, cell);
2080}
2081
2082/*
2083 * FIXME: should we also commit due to size of transaction, measured in
2084 * metadata blocks?
2085 */
2086static int need_commit_due_to_time(struct pool *pool)
2087{
2088	return !time_in_range(jiffies, pool->last_commit_jiffies,
2089			      pool->last_commit_jiffies + COMMIT_PERIOD);
2090}
2091
2092#define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
2093#define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
2094
2095static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
2096{
2097	struct rb_node **rbp, *parent;
2098	struct dm_thin_endio_hook *pbd;
2099	sector_t bi_sector = bio->bi_iter.bi_sector;
2100
2101	rbp = &tc->sort_bio_list.rb_node;
2102	parent = NULL;
2103	while (*rbp) {
2104		parent = *rbp;
2105		pbd = thin_pbd(parent);
2106
2107		if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
2108			rbp = &(*rbp)->rb_left;
2109		else
2110			rbp = &(*rbp)->rb_right;
2111	}
2112
2113	pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2114	rb_link_node(&pbd->rb_node, parent, rbp);
2115	rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
2116}
2117
2118static void __extract_sorted_bios(struct thin_c *tc)
2119{
2120	struct rb_node *node;
2121	struct dm_thin_endio_hook *pbd;
2122	struct bio *bio;
2123
2124	for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
2125		pbd = thin_pbd(node);
2126		bio = thin_bio(pbd);
2127
2128		bio_list_add(&tc->deferred_bio_list, bio);
2129		rb_erase(&pbd->rb_node, &tc->sort_bio_list);
2130	}
2131
2132	WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
2133}
2134
2135static void __sort_thin_deferred_bios(struct thin_c *tc)
2136{
2137	struct bio *bio;
2138	struct bio_list bios;
2139
2140	bio_list_init(&bios);
2141	bio_list_merge(&bios, &tc->deferred_bio_list);
2142	bio_list_init(&tc->deferred_bio_list);
2143
2144	/* Sort deferred_bio_list using rb-tree */
2145	while ((bio = bio_list_pop(&bios)))
2146		__thin_bio_rb_add(tc, bio);
2147
2148	/*
2149	 * Transfer the sorted bios in sort_bio_list back to
2150	 * deferred_bio_list to allow lockless submission of
2151	 * all bios.
2152	 */
2153	__extract_sorted_bios(tc);
2154}
2155
2156static void process_thin_deferred_bios(struct thin_c *tc)
2157{
2158	struct pool *pool = tc->pool;
 
2159	struct bio *bio;
2160	struct bio_list bios;
2161	struct blk_plug plug;
2162	unsigned count = 0;
2163
2164	if (tc->requeue_mode) {
2165		error_thin_bio_list(tc, &tc->deferred_bio_list,
2166				BLK_STS_DM_REQUEUE);
2167		return;
2168	}
2169
2170	bio_list_init(&bios);
2171
2172	spin_lock_irq(&tc->lock);
2173
2174	if (bio_list_empty(&tc->deferred_bio_list)) {
2175		spin_unlock_irq(&tc->lock);
2176		return;
2177	}
2178
2179	__sort_thin_deferred_bios(tc);
2180
2181	bio_list_merge(&bios, &tc->deferred_bio_list);
2182	bio_list_init(&tc->deferred_bio_list);
2183
2184	spin_unlock_irq(&tc->lock);
2185
2186	blk_start_plug(&plug);
2187	while ((bio = bio_list_pop(&bios))) {
2188		/*
2189		 * If we've got no free new_mapping structs, and processing
2190		 * this bio might require one, we pause until there are some
2191		 * prepared mappings to process.
2192		 */
2193		if (ensure_next_mapping(pool)) {
2194			spin_lock_irq(&tc->lock);
2195			bio_list_add(&tc->deferred_bio_list, bio);
2196			bio_list_merge(&tc->deferred_bio_list, &bios);
2197			spin_unlock_irq(&tc->lock);
2198			break;
2199		}
2200
2201		if (bio_op(bio) == REQ_OP_DISCARD)
2202			pool->process_discard(tc, bio);
2203		else
2204			pool->process_bio(tc, bio);
2205
2206		if ((count++ & 127) == 0) {
2207			throttle_work_update(&pool->throttle);
2208			dm_pool_issue_prefetches(pool->pmd);
2209		}
2210	}
2211	blk_finish_plug(&plug);
2212}
2213
2214static int cmp_cells(const void *lhs, const void *rhs)
2215{
2216	struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs);
2217	struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs);
2218
2219	BUG_ON(!lhs_cell->holder);
2220	BUG_ON(!rhs_cell->holder);
2221
2222	if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector)
2223		return -1;
2224
2225	if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector)
2226		return 1;
2227
2228	return 0;
2229}
2230
2231static unsigned sort_cells(struct pool *pool, struct list_head *cells)
2232{
2233	unsigned count = 0;
2234	struct dm_bio_prison_cell *cell, *tmp;
2235
2236	list_for_each_entry_safe(cell, tmp, cells, user_list) {
2237		if (count >= CELL_SORT_ARRAY_SIZE)
2238			break;
2239
2240		pool->cell_sort_array[count++] = cell;
2241		list_del(&cell->user_list);
2242	}
2243
2244	sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL);
2245
2246	return count;
2247}
2248
2249static void process_thin_deferred_cells(struct thin_c *tc)
2250{
2251	struct pool *pool = tc->pool;
 
2252	struct list_head cells;
2253	struct dm_bio_prison_cell *cell;
2254	unsigned i, j, count;
2255
2256	INIT_LIST_HEAD(&cells);
2257
2258	spin_lock_irq(&tc->lock);
2259	list_splice_init(&tc->deferred_cells, &cells);
2260	spin_unlock_irq(&tc->lock);
2261
2262	if (list_empty(&cells))
2263		return;
2264
2265	do {
2266		count = sort_cells(tc->pool, &cells);
2267
2268		for (i = 0; i < count; i++) {
2269			cell = pool->cell_sort_array[i];
2270			BUG_ON(!cell->holder);
2271
2272			/*
2273			 * If we've got no free new_mapping structs, and processing
2274			 * this bio might require one, we pause until there are some
2275			 * prepared mappings to process.
2276			 */
2277			if (ensure_next_mapping(pool)) {
2278				for (j = i; j < count; j++)
2279					list_add(&pool->cell_sort_array[j]->user_list, &cells);
2280
2281				spin_lock_irq(&tc->lock);
2282				list_splice(&cells, &tc->deferred_cells);
2283				spin_unlock_irq(&tc->lock);
2284				return;
2285			}
2286
2287			if (bio_op(cell->holder) == REQ_OP_DISCARD)
2288				pool->process_discard_cell(tc, cell);
2289			else
2290				pool->process_cell(tc, cell);
2291		}
2292	} while (!list_empty(&cells));
2293}
2294
2295static void thin_get(struct thin_c *tc);
2296static void thin_put(struct thin_c *tc);
2297
2298/*
2299 * We can't hold rcu_read_lock() around code that can block.  So we
2300 * find a thin with the rcu lock held; bump a refcount; then drop
2301 * the lock.
2302 */
2303static struct thin_c *get_first_thin(struct pool *pool)
2304{
2305	struct thin_c *tc = NULL;
2306
2307	rcu_read_lock();
2308	if (!list_empty(&pool->active_thins)) {
2309		tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
2310		thin_get(tc);
2311	}
2312	rcu_read_unlock();
2313
2314	return tc;
2315}
2316
2317static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
2318{
2319	struct thin_c *old_tc = tc;
2320
2321	rcu_read_lock();
2322	list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
2323		thin_get(tc);
2324		thin_put(old_tc);
2325		rcu_read_unlock();
2326		return tc;
2327	}
2328	thin_put(old_tc);
2329	rcu_read_unlock();
2330
2331	return NULL;
2332}
2333
2334static void process_deferred_bios(struct pool *pool)
2335{
 
2336	struct bio *bio;
2337	struct bio_list bios, bio_completions;
2338	struct thin_c *tc;
2339
2340	tc = get_first_thin(pool);
2341	while (tc) {
2342		process_thin_deferred_cells(tc);
2343		process_thin_deferred_bios(tc);
2344		tc = get_next_thin(pool, tc);
2345	}
2346
2347	/*
2348	 * If there are any deferred flush bios, we must commit the metadata
2349	 * before issuing them or signaling their completion.
2350	 */
2351	bio_list_init(&bios);
2352	bio_list_init(&bio_completions);
2353
2354	spin_lock_irq(&pool->lock);
2355	bio_list_merge(&bios, &pool->deferred_flush_bios);
2356	bio_list_init(&pool->deferred_flush_bios);
 
2357
2358	bio_list_merge(&bio_completions, &pool->deferred_flush_completions);
2359	bio_list_init(&pool->deferred_flush_completions);
2360	spin_unlock_irq(&pool->lock);
2361
2362	if (bio_list_empty(&bios) && bio_list_empty(&bio_completions) &&
2363	    !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
2364		return;
2365
2366	if (commit(pool)) {
2367		bio_list_merge(&bios, &bio_completions);
2368
2369		while ((bio = bio_list_pop(&bios)))
2370			bio_io_error(bio);
2371		return;
2372	}
2373	pool->last_commit_jiffies = jiffies;
2374
2375	while ((bio = bio_list_pop(&bio_completions)))
2376		bio_endio(bio);
2377
2378	while ((bio = bio_list_pop(&bios))) {
2379		/*
2380		 * The data device was flushed as part of metadata commit,
2381		 * so complete redundant flushes immediately.
2382		 */
2383		if (bio->bi_opf & REQ_PREFLUSH)
2384			bio_endio(bio);
2385		else
2386			dm_submit_bio_remap(bio, NULL);
2387	}
2388}
2389
2390static void do_worker(struct work_struct *ws)
2391{
2392	struct pool *pool = container_of(ws, struct pool, worker);
2393
2394	throttle_work_start(&pool->throttle);
2395	dm_pool_issue_prefetches(pool->pmd);
2396	throttle_work_update(&pool->throttle);
2397	process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
2398	throttle_work_update(&pool->throttle);
2399	process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
2400	throttle_work_update(&pool->throttle);
2401	process_prepared(pool, &pool->prepared_discards_pt2, &pool->process_prepared_discard_pt2);
2402	throttle_work_update(&pool->throttle);
2403	process_deferred_bios(pool);
2404	throttle_work_complete(&pool->throttle);
2405}
2406
2407/*
2408 * We want to commit periodically so that not too much
2409 * unwritten data builds up.
2410 */
2411static void do_waker(struct work_struct *ws)
2412{
2413	struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
2414	wake_worker(pool);
2415	queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
2416}
2417
 
 
2418/*
2419 * We're holding onto IO to allow userland time to react.  After the
2420 * timeout either the pool will have been resized (and thus back in
2421 * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space.
2422 */
2423static void do_no_space_timeout(struct work_struct *ws)
2424{
2425	struct pool *pool = container_of(to_delayed_work(ws), struct pool,
2426					 no_space_timeout);
2427
2428	if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) {
2429		pool->pf.error_if_no_space = true;
2430		notify_of_pool_mode_change(pool);
2431		error_retry_list_with_code(pool, BLK_STS_NOSPC);
2432	}
2433}
2434
2435/*----------------------------------------------------------------*/
2436
2437struct pool_work {
2438	struct work_struct worker;
2439	struct completion complete;
2440};
2441
2442static struct pool_work *to_pool_work(struct work_struct *ws)
2443{
2444	return container_of(ws, struct pool_work, worker);
2445}
2446
2447static void pool_work_complete(struct pool_work *pw)
2448{
2449	complete(&pw->complete);
2450}
2451
2452static void pool_work_wait(struct pool_work *pw, struct pool *pool,
2453			   void (*fn)(struct work_struct *))
2454{
2455	INIT_WORK_ONSTACK(&pw->worker, fn);
2456	init_completion(&pw->complete);
2457	queue_work(pool->wq, &pw->worker);
2458	wait_for_completion(&pw->complete);
2459}
2460
2461/*----------------------------------------------------------------*/
2462
2463struct noflush_work {
2464	struct pool_work pw;
2465	struct thin_c *tc;
2466};
2467
2468static struct noflush_work *to_noflush(struct work_struct *ws)
2469{
2470	return container_of(to_pool_work(ws), struct noflush_work, pw);
2471}
2472
2473static void do_noflush_start(struct work_struct *ws)
2474{
2475	struct noflush_work *w = to_noflush(ws);
2476	w->tc->requeue_mode = true;
2477	requeue_io(w->tc);
2478	pool_work_complete(&w->pw);
2479}
2480
2481static void do_noflush_stop(struct work_struct *ws)
2482{
2483	struct noflush_work *w = to_noflush(ws);
2484	w->tc->requeue_mode = false;
2485	pool_work_complete(&w->pw);
2486}
2487
2488static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
2489{
2490	struct noflush_work w;
2491
2492	w.tc = tc;
2493	pool_work_wait(&w.pw, tc->pool, fn);
2494}
2495
2496/*----------------------------------------------------------------*/
2497
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2498static bool passdown_enabled(struct pool_c *pt)
2499{
2500	return pt->adjusted_pf.discard_passdown;
2501}
2502
2503static void set_discard_callbacks(struct pool *pool)
2504{
2505	struct pool_c *pt = pool->ti->private;
2506
2507	if (passdown_enabled(pt)) {
2508		pool->process_discard_cell = process_discard_cell_passdown;
2509		pool->process_prepared_discard = process_prepared_discard_passdown_pt1;
2510		pool->process_prepared_discard_pt2 = process_prepared_discard_passdown_pt2;
2511	} else {
2512		pool->process_discard_cell = process_discard_cell_no_passdown;
2513		pool->process_prepared_discard = process_prepared_discard_no_passdown;
2514	}
2515}
2516
2517static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
2518{
2519	struct pool_c *pt = pool->ti->private;
2520	bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
2521	enum pool_mode old_mode = get_pool_mode(pool);
2522	unsigned long no_space_timeout = READ_ONCE(no_space_timeout_secs) * HZ;
2523
2524	/*
2525	 * Never allow the pool to transition to PM_WRITE mode if user
2526	 * intervention is required to verify metadata and data consistency.
2527	 */
2528	if (new_mode == PM_WRITE && needs_check) {
2529		DMERR("%s: unable to switch pool to write mode until repaired.",
2530		      dm_device_name(pool->pool_md));
2531		if (old_mode != new_mode)
2532			new_mode = old_mode;
2533		else
2534			new_mode = PM_READ_ONLY;
2535	}
2536	/*
2537	 * If we were in PM_FAIL mode, rollback of metadata failed.  We're
2538	 * not going to recover without a thin_repair.	So we never let the
2539	 * pool move out of the old mode.
2540	 */
2541	if (old_mode == PM_FAIL)
2542		new_mode = old_mode;
2543
2544	switch (new_mode) {
2545	case PM_FAIL:
 
 
2546		dm_pool_metadata_read_only(pool->pmd);
2547		pool->process_bio = process_bio_fail;
2548		pool->process_discard = process_bio_fail;
2549		pool->process_cell = process_cell_fail;
2550		pool->process_discard_cell = process_cell_fail;
2551		pool->process_prepared_mapping = process_prepared_mapping_fail;
2552		pool->process_prepared_discard = process_prepared_discard_fail;
2553
2554		error_retry_list(pool);
2555		break;
2556
2557	case PM_OUT_OF_METADATA_SPACE:
2558	case PM_READ_ONLY:
 
 
2559		dm_pool_metadata_read_only(pool->pmd);
2560		pool->process_bio = process_bio_read_only;
2561		pool->process_discard = process_bio_success;
2562		pool->process_cell = process_cell_read_only;
2563		pool->process_discard_cell = process_cell_success;
2564		pool->process_prepared_mapping = process_prepared_mapping_fail;
2565		pool->process_prepared_discard = process_prepared_discard_success;
2566
2567		error_retry_list(pool);
2568		break;
2569
2570	case PM_OUT_OF_DATA_SPACE:
2571		/*
2572		 * Ideally we'd never hit this state; the low water mark
2573		 * would trigger userland to extend the pool before we
2574		 * completely run out of data space.  However, many small
2575		 * IOs to unprovisioned space can consume data space at an
2576		 * alarming rate.  Adjust your low water mark if you're
2577		 * frequently seeing this mode.
2578		 */
 
 
2579		pool->out_of_data_space = true;
2580		pool->process_bio = process_bio_read_only;
2581		pool->process_discard = process_discard_bio;
2582		pool->process_cell = process_cell_read_only;
2583		pool->process_prepared_mapping = process_prepared_mapping;
2584		set_discard_callbacks(pool);
2585
2586		if (!pool->pf.error_if_no_space && no_space_timeout)
2587			queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
2588		break;
2589
2590	case PM_WRITE:
2591		if (old_mode == PM_OUT_OF_DATA_SPACE)
2592			cancel_delayed_work_sync(&pool->no_space_timeout);
2593		pool->out_of_data_space = false;
2594		pool->pf.error_if_no_space = pt->requested_pf.error_if_no_space;
2595		dm_pool_metadata_read_write(pool->pmd);
2596		pool->process_bio = process_bio;
2597		pool->process_discard = process_discard_bio;
2598		pool->process_cell = process_cell;
2599		pool->process_prepared_mapping = process_prepared_mapping;
2600		set_discard_callbacks(pool);
2601		break;
2602	}
2603
2604	pool->pf.mode = new_mode;
2605	/*
2606	 * The pool mode may have changed, sync it so bind_control_target()
2607	 * doesn't cause an unexpected mode transition on resume.
2608	 */
2609	pt->adjusted_pf.mode = new_mode;
2610
2611	if (old_mode != new_mode)
2612		notify_of_pool_mode_change(pool);
2613}
2614
2615static void abort_transaction(struct pool *pool)
2616{
2617	const char *dev_name = dm_device_name(pool->pool_md);
2618
2619	DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
2620	if (dm_pool_abort_metadata(pool->pmd)) {
2621		DMERR("%s: failed to abort metadata transaction", dev_name);
2622		set_pool_mode(pool, PM_FAIL);
2623	}
2624
2625	if (dm_pool_metadata_set_needs_check(pool->pmd)) {
2626		DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
2627		set_pool_mode(pool, PM_FAIL);
2628	}
2629}
2630
2631static void metadata_operation_failed(struct pool *pool, const char *op, int r)
2632{
2633	DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2634		    dm_device_name(pool->pool_md), op, r);
2635
2636	abort_transaction(pool);
2637	set_pool_mode(pool, PM_READ_ONLY);
2638}
2639
2640/*----------------------------------------------------------------*/
2641
2642/*
2643 * Mapping functions.
2644 */
2645
2646/*
2647 * Called only while mapping a thin bio to hand it over to the workqueue.
2648 */
2649static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
2650{
 
2651	struct pool *pool = tc->pool;
2652
2653	spin_lock_irq(&tc->lock);
2654	bio_list_add(&tc->deferred_bio_list, bio);
2655	spin_unlock_irq(&tc->lock);
2656
2657	wake_worker(pool);
2658}
2659
2660static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio)
2661{
2662	struct pool *pool = tc->pool;
2663
2664	throttle_lock(&pool->throttle);
2665	thin_defer_bio(tc, bio);
2666	throttle_unlock(&pool->throttle);
2667}
2668
2669static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2670{
 
2671	struct pool *pool = tc->pool;
2672
2673	throttle_lock(&pool->throttle);
2674	spin_lock_irq(&tc->lock);
2675	list_add_tail(&cell->user_list, &tc->deferred_cells);
2676	spin_unlock_irq(&tc->lock);
2677	throttle_unlock(&pool->throttle);
2678
2679	wake_worker(pool);
2680}
2681
2682static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
2683{
2684	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2685
2686	h->tc = tc;
2687	h->shared_read_entry = NULL;
2688	h->all_io_entry = NULL;
2689	h->overwrite_mapping = NULL;
2690	h->cell = NULL;
2691}
2692
2693/*
2694 * Non-blocking function called from the thin target's map function.
2695 */
2696static int thin_bio_map(struct dm_target *ti, struct bio *bio)
2697{
2698	int r;
2699	struct thin_c *tc = ti->private;
2700	dm_block_t block = get_bio_block(tc, bio);
2701	struct dm_thin_device *td = tc->td;
2702	struct dm_thin_lookup_result result;
2703	struct dm_bio_prison_cell *virt_cell, *data_cell;
2704	struct dm_cell_key key;
2705
2706	thin_hook_bio(tc, bio);
2707
2708	if (tc->requeue_mode) {
2709		bio->bi_status = BLK_STS_DM_REQUEUE;
2710		bio_endio(bio);
2711		return DM_MAPIO_SUBMITTED;
2712	}
2713
2714	if (get_pool_mode(tc->pool) == PM_FAIL) {
2715		bio_io_error(bio);
2716		return DM_MAPIO_SUBMITTED;
2717	}
2718
2719	if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD) {
2720		thin_defer_bio_with_throttle(tc, bio);
2721		return DM_MAPIO_SUBMITTED;
2722	}
2723
2724	/*
2725	 * We must hold the virtual cell before doing the lookup, otherwise
2726	 * there's a race with discard.
2727	 */
2728	build_virtual_key(tc->td, block, &key);
2729	if (bio_detain(tc->pool, &key, bio, &virt_cell))
2730		return DM_MAPIO_SUBMITTED;
2731
2732	r = dm_thin_find_block(td, block, 0, &result);
2733
2734	/*
2735	 * Note that we defer readahead too.
2736	 */
2737	switch (r) {
2738	case 0:
2739		if (unlikely(result.shared)) {
2740			/*
2741			 * We have a race condition here between the
2742			 * result.shared value returned by the lookup and
2743			 * snapshot creation, which may cause new
2744			 * sharing.
2745			 *
2746			 * To avoid this always quiesce the origin before
2747			 * taking the snap.  You want to do this anyway to
2748			 * ensure a consistent application view
2749			 * (i.e. lockfs).
2750			 *
2751			 * More distant ancestors are irrelevant. The
2752			 * shared flag will be set in their case.
2753			 */
2754			thin_defer_cell(tc, virt_cell);
2755			return DM_MAPIO_SUBMITTED;
2756		}
2757
2758		build_data_key(tc->td, result.block, &key);
2759		if (bio_detain(tc->pool, &key, bio, &data_cell)) {
2760			cell_defer_no_holder(tc, virt_cell);
2761			return DM_MAPIO_SUBMITTED;
2762		}
2763
2764		inc_all_io_entry(tc->pool, bio);
2765		cell_defer_no_holder(tc, data_cell);
2766		cell_defer_no_holder(tc, virt_cell);
2767
2768		remap(tc, bio, result.block);
2769		return DM_MAPIO_REMAPPED;
2770
2771	case -ENODATA:
2772	case -EWOULDBLOCK:
2773		thin_defer_cell(tc, virt_cell);
2774		return DM_MAPIO_SUBMITTED;
2775
2776	default:
2777		/*
2778		 * Must always call bio_io_error on failure.
2779		 * dm_thin_find_block can fail with -EINVAL if the
2780		 * pool is switched to fail-io mode.
2781		 */
2782		bio_io_error(bio);
2783		cell_defer_no_holder(tc, virt_cell);
2784		return DM_MAPIO_SUBMITTED;
2785	}
2786}
2787
 
 
 
 
 
 
 
 
 
 
 
 
2788static void requeue_bios(struct pool *pool)
2789{
 
2790	struct thin_c *tc;
2791
2792	rcu_read_lock();
2793	list_for_each_entry_rcu(tc, &pool->active_thins, list) {
2794		spin_lock_irq(&tc->lock);
2795		bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
2796		bio_list_init(&tc->retry_on_resume_list);
2797		spin_unlock_irq(&tc->lock);
2798	}
2799	rcu_read_unlock();
2800}
2801
2802/*----------------------------------------------------------------
2803 * Binding of control targets to a pool object
2804 *--------------------------------------------------------------*/
 
 
 
 
 
 
 
2805static bool is_factor(sector_t block_size, uint32_t n)
2806{
2807	return !sector_div(block_size, n);
2808}
2809
2810/*
2811 * If discard_passdown was enabled verify that the data device
2812 * supports discards.  Disable discard_passdown if not.
2813 */
2814static void disable_passdown_if_not_supported(struct pool_c *pt)
2815{
2816	struct pool *pool = pt->pool;
2817	struct block_device *data_bdev = pt->data_dev->bdev;
2818	struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
2819	const char *reason = NULL;
 
2820
2821	if (!pt->adjusted_pf.discard_passdown)
2822		return;
2823
2824	if (!bdev_max_discard_sectors(pt->data_dev->bdev))
2825		reason = "discard unsupported";
2826
2827	else if (data_limits->max_discard_sectors < pool->sectors_per_block)
2828		reason = "max discard sectors smaller than a block";
2829
2830	if (reason) {
2831		DMWARN("Data device (%pg) %s: Disabling discard passdown.", data_bdev, reason);
2832		pt->adjusted_pf.discard_passdown = false;
2833	}
2834}
2835
2836static int bind_control_target(struct pool *pool, struct dm_target *ti)
2837{
2838	struct pool_c *pt = ti->private;
2839
2840	/*
2841	 * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2842	 */
2843	enum pool_mode old_mode = get_pool_mode(pool);
2844	enum pool_mode new_mode = pt->adjusted_pf.mode;
2845
2846	/*
2847	 * Don't change the pool's mode until set_pool_mode() below.
2848	 * Otherwise the pool's process_* function pointers may
2849	 * not match the desired pool mode.
2850	 */
2851	pt->adjusted_pf.mode = old_mode;
2852
2853	pool->ti = ti;
2854	pool->pf = pt->adjusted_pf;
2855	pool->low_water_blocks = pt->low_water_blocks;
2856
2857	set_pool_mode(pool, new_mode);
2858
2859	return 0;
2860}
2861
2862static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2863{
2864	if (pool->ti == ti)
2865		pool->ti = NULL;
2866}
2867
2868/*----------------------------------------------------------------
2869 * Pool creation
2870 *--------------------------------------------------------------*/
2871/* Initialize pool features. */
2872static void pool_features_init(struct pool_features *pf)
2873{
2874	pf->mode = PM_WRITE;
2875	pf->zero_new_blocks = true;
2876	pf->discard_enabled = true;
2877	pf->discard_passdown = true;
2878	pf->error_if_no_space = false;
2879}
2880
2881static void __pool_destroy(struct pool *pool)
2882{
2883	__pool_table_remove(pool);
2884
2885	vfree(pool->cell_sort_array);
2886	if (dm_pool_metadata_close(pool->pmd) < 0)
2887		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2888
2889	dm_bio_prison_destroy(pool->prison);
2890	dm_kcopyd_client_destroy(pool->copier);
2891
2892	cancel_delayed_work_sync(&pool->waker);
2893	cancel_delayed_work_sync(&pool->no_space_timeout);
2894	if (pool->wq)
2895		destroy_workqueue(pool->wq);
2896
2897	if (pool->next_mapping)
2898		mempool_free(pool->next_mapping, &pool->mapping_pool);
2899	mempool_exit(&pool->mapping_pool);
2900	dm_deferred_set_destroy(pool->shared_read_ds);
2901	dm_deferred_set_destroy(pool->all_io_ds);
2902	kfree(pool);
2903}
2904
2905static struct kmem_cache *_new_mapping_cache;
2906
2907static struct pool *pool_create(struct mapped_device *pool_md,
2908				struct block_device *metadata_dev,
2909				struct block_device *data_dev,
2910				unsigned long block_size,
2911				int read_only, char **error)
2912{
2913	int r;
2914	void *err_p;
2915	struct pool *pool;
2916	struct dm_pool_metadata *pmd;
2917	bool format_device = read_only ? false : true;
2918
2919	pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2920	if (IS_ERR(pmd)) {
2921		*error = "Error creating metadata object";
2922		return (struct pool *)pmd;
2923	}
2924
2925	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2926	if (!pool) {
2927		*error = "Error allocating memory for pool";
2928		err_p = ERR_PTR(-ENOMEM);
2929		goto bad_pool;
2930	}
2931
2932	pool->pmd = pmd;
2933	pool->sectors_per_block = block_size;
2934	if (block_size & (block_size - 1))
2935		pool->sectors_per_block_shift = -1;
2936	else
2937		pool->sectors_per_block_shift = __ffs(block_size);
2938	pool->low_water_blocks = 0;
2939	pool_features_init(&pool->pf);
2940	pool->prison = dm_bio_prison_create();
2941	if (!pool->prison) {
2942		*error = "Error creating pool's bio prison";
2943		err_p = ERR_PTR(-ENOMEM);
2944		goto bad_prison;
2945	}
2946
2947	pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2948	if (IS_ERR(pool->copier)) {
2949		r = PTR_ERR(pool->copier);
2950		*error = "Error creating pool's kcopyd client";
2951		err_p = ERR_PTR(r);
2952		goto bad_kcopyd_client;
2953	}
2954
2955	/*
2956	 * Create singlethreaded workqueue that will service all devices
2957	 * that use this metadata.
2958	 */
2959	pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2960	if (!pool->wq) {
2961		*error = "Error creating pool's workqueue";
2962		err_p = ERR_PTR(-ENOMEM);
2963		goto bad_wq;
2964	}
2965
2966	throttle_init(&pool->throttle);
2967	INIT_WORK(&pool->worker, do_worker);
2968	INIT_DELAYED_WORK(&pool->waker, do_waker);
2969	INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
2970	spin_lock_init(&pool->lock);
2971	bio_list_init(&pool->deferred_flush_bios);
2972	bio_list_init(&pool->deferred_flush_completions);
2973	INIT_LIST_HEAD(&pool->prepared_mappings);
2974	INIT_LIST_HEAD(&pool->prepared_discards);
2975	INIT_LIST_HEAD(&pool->prepared_discards_pt2);
2976	INIT_LIST_HEAD(&pool->active_thins);
2977	pool->low_water_triggered = false;
2978	pool->suspended = true;
2979	pool->out_of_data_space = false;
2980
2981	pool->shared_read_ds = dm_deferred_set_create();
2982	if (!pool->shared_read_ds) {
2983		*error = "Error creating pool's shared read deferred set";
2984		err_p = ERR_PTR(-ENOMEM);
2985		goto bad_shared_read_ds;
2986	}
2987
2988	pool->all_io_ds = dm_deferred_set_create();
2989	if (!pool->all_io_ds) {
2990		*error = "Error creating pool's all io deferred set";
2991		err_p = ERR_PTR(-ENOMEM);
2992		goto bad_all_io_ds;
2993	}
2994
2995	pool->next_mapping = NULL;
2996	r = mempool_init_slab_pool(&pool->mapping_pool, MAPPING_POOL_SIZE,
2997				   _new_mapping_cache);
2998	if (r) {
2999		*error = "Error creating pool's mapping mempool";
3000		err_p = ERR_PTR(r);
3001		goto bad_mapping_pool;
3002	}
3003
3004	pool->cell_sort_array =
3005		vmalloc(array_size(CELL_SORT_ARRAY_SIZE,
3006				   sizeof(*pool->cell_sort_array)));
3007	if (!pool->cell_sort_array) {
3008		*error = "Error allocating cell sort array";
3009		err_p = ERR_PTR(-ENOMEM);
3010		goto bad_sort_array;
3011	}
3012
3013	pool->ref_count = 1;
3014	pool->last_commit_jiffies = jiffies;
3015	pool->pool_md = pool_md;
3016	pool->md_dev = metadata_dev;
3017	pool->data_dev = data_dev;
3018	__pool_table_insert(pool);
3019
3020	return pool;
3021
3022bad_sort_array:
3023	mempool_exit(&pool->mapping_pool);
3024bad_mapping_pool:
3025	dm_deferred_set_destroy(pool->all_io_ds);
3026bad_all_io_ds:
3027	dm_deferred_set_destroy(pool->shared_read_ds);
3028bad_shared_read_ds:
3029	destroy_workqueue(pool->wq);
3030bad_wq:
3031	dm_kcopyd_client_destroy(pool->copier);
3032bad_kcopyd_client:
3033	dm_bio_prison_destroy(pool->prison);
3034bad_prison:
3035	kfree(pool);
3036bad_pool:
3037	if (dm_pool_metadata_close(pmd))
3038		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
3039
3040	return err_p;
3041}
3042
3043static void __pool_inc(struct pool *pool)
3044{
3045	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
3046	pool->ref_count++;
3047}
3048
3049static void __pool_dec(struct pool *pool)
3050{
3051	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
3052	BUG_ON(!pool->ref_count);
3053	if (!--pool->ref_count)
3054		__pool_destroy(pool);
3055}
3056
3057static struct pool *__pool_find(struct mapped_device *pool_md,
3058				struct block_device *metadata_dev,
3059				struct block_device *data_dev,
3060				unsigned long block_size, int read_only,
3061				char **error, int *created)
3062{
3063	struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
3064
3065	if (pool) {
3066		if (pool->pool_md != pool_md) {
3067			*error = "metadata device already in use by a pool";
3068			return ERR_PTR(-EBUSY);
3069		}
3070		if (pool->data_dev != data_dev) {
3071			*error = "data device already in use by a pool";
3072			return ERR_PTR(-EBUSY);
3073		}
3074		__pool_inc(pool);
3075
3076	} else {
3077		pool = __pool_table_lookup(pool_md);
3078		if (pool) {
3079			if (pool->md_dev != metadata_dev || pool->data_dev != data_dev) {
3080				*error = "different pool cannot replace a pool";
3081				return ERR_PTR(-EINVAL);
3082			}
3083			__pool_inc(pool);
3084
3085		} else {
3086			pool = pool_create(pool_md, metadata_dev, data_dev, block_size, read_only, error);
3087			*created = 1;
3088		}
3089	}
3090
3091	return pool;
3092}
3093
3094/*----------------------------------------------------------------
3095 * Pool target methods
3096 *--------------------------------------------------------------*/
3097static void pool_dtr(struct dm_target *ti)
3098{
3099	struct pool_c *pt = ti->private;
3100
3101	mutex_lock(&dm_thin_pool_table.mutex);
3102
3103	unbind_control_target(pt->pool, ti);
3104	__pool_dec(pt->pool);
3105	dm_put_device(ti, pt->metadata_dev);
3106	dm_put_device(ti, pt->data_dev);
3107	kfree(pt);
3108
3109	mutex_unlock(&dm_thin_pool_table.mutex);
3110}
3111
3112static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
3113			       struct dm_target *ti)
3114{
3115	int r;
3116	unsigned argc;
3117	const char *arg_name;
3118
3119	static const struct dm_arg _args[] = {
3120		{0, 4, "Invalid number of pool feature arguments"},
3121	};
3122
3123	/*
3124	 * No feature arguments supplied.
3125	 */
3126	if (!as->argc)
3127		return 0;
3128
3129	r = dm_read_arg_group(_args, as, &argc, &ti->error);
3130	if (r)
3131		return -EINVAL;
3132
3133	while (argc && !r) {
3134		arg_name = dm_shift_arg(as);
3135		argc--;
3136
3137		if (!strcasecmp(arg_name, "skip_block_zeroing"))
3138			pf->zero_new_blocks = false;
3139
3140		else if (!strcasecmp(arg_name, "ignore_discard"))
3141			pf->discard_enabled = false;
3142
3143		else if (!strcasecmp(arg_name, "no_discard_passdown"))
3144			pf->discard_passdown = false;
3145
3146		else if (!strcasecmp(arg_name, "read_only"))
3147			pf->mode = PM_READ_ONLY;
3148
3149		else if (!strcasecmp(arg_name, "error_if_no_space"))
3150			pf->error_if_no_space = true;
3151
3152		else {
3153			ti->error = "Unrecognised pool feature requested";
3154			r = -EINVAL;
3155			break;
3156		}
3157	}
3158
3159	return r;
3160}
3161
3162static void metadata_low_callback(void *context)
3163{
3164	struct pool *pool = context;
3165
3166	DMWARN("%s: reached low water mark for metadata device: sending event.",
3167	       dm_device_name(pool->pool_md));
3168
3169	dm_table_event(pool->ti->table);
3170}
3171
3172/*
3173 * We need to flush the data device **before** committing the metadata.
3174 *
3175 * This ensures that the data blocks of any newly inserted mappings are
3176 * properly written to non-volatile storage and won't be lost in case of a
3177 * crash.
3178 *
3179 * Failure to do so can result in data corruption in the case of internal or
3180 * external snapshots and in the case of newly provisioned blocks, when block
3181 * zeroing is enabled.
3182 */
3183static int metadata_pre_commit_callback(void *context)
3184{
3185	struct pool *pool = context;
3186
3187	return blkdev_issue_flush(pool->data_dev);
3188}
3189
3190static sector_t get_dev_size(struct block_device *bdev)
3191{
3192	return bdev_nr_sectors(bdev);
3193}
3194
3195static void warn_if_metadata_device_too_big(struct block_device *bdev)
3196{
3197	sector_t metadata_dev_size = get_dev_size(bdev);
 
3198
3199	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
3200		DMWARN("Metadata device %pg is larger than %u sectors: excess space will not be used.",
3201		       bdev, THIN_METADATA_MAX_SECTORS);
3202}
3203
3204static sector_t get_metadata_dev_size(struct block_device *bdev)
3205{
3206	sector_t metadata_dev_size = get_dev_size(bdev);
3207
3208	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
3209		metadata_dev_size = THIN_METADATA_MAX_SECTORS;
3210
3211	return metadata_dev_size;
3212}
3213
3214static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
3215{
3216	sector_t metadata_dev_size = get_metadata_dev_size(bdev);
3217
3218	sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
3219
3220	return metadata_dev_size;
3221}
3222
3223/*
3224 * When a metadata threshold is crossed a dm event is triggered, and
3225 * userland should respond by growing the metadata device.  We could let
3226 * userland set the threshold, like we do with the data threshold, but I'm
3227 * not sure they know enough to do this well.
3228 */
3229static dm_block_t calc_metadata_threshold(struct pool_c *pt)
3230{
3231	/*
3232	 * 4M is ample for all ops with the possible exception of thin
3233	 * device deletion which is harmless if it fails (just retry the
3234	 * delete after you've grown the device).
3235	 */
3236	dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
3237	return min((dm_block_t)1024ULL /* 4M */, quarter);
3238}
3239
3240/*
3241 * thin-pool <metadata dev> <data dev>
3242 *	     <data block size (sectors)>
3243 *	     <low water mark (blocks)>
3244 *	     [<#feature args> [<arg>]*]
3245 *
3246 * Optional feature arguments are:
3247 *	     skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
3248 *	     ignore_discard: disable discard
3249 *	     no_discard_passdown: don't pass discards down to the data device
3250 *	     read_only: Don't allow any changes to be made to the pool metadata.
3251 *	     error_if_no_space: error IOs, instead of queueing, if no space.
3252 */
3253static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
3254{
3255	int r, pool_created = 0;
3256	struct pool_c *pt;
3257	struct pool *pool;
3258	struct pool_features pf;
3259	struct dm_arg_set as;
3260	struct dm_dev *data_dev;
3261	unsigned long block_size;
3262	dm_block_t low_water_blocks;
3263	struct dm_dev *metadata_dev;
3264	fmode_t metadata_mode;
3265
3266	/*
3267	 * FIXME Remove validation from scope of lock.
3268	 */
3269	mutex_lock(&dm_thin_pool_table.mutex);
3270
3271	if (argc < 4) {
3272		ti->error = "Invalid argument count";
3273		r = -EINVAL;
3274		goto out_unlock;
3275	}
3276
3277	as.argc = argc;
3278	as.argv = argv;
3279
3280	/* make sure metadata and data are different devices */
3281	if (!strcmp(argv[0], argv[1])) {
3282		ti->error = "Error setting metadata or data device";
3283		r = -EINVAL;
3284		goto out_unlock;
3285	}
3286
3287	/*
3288	 * Set default pool features.
3289	 */
3290	pool_features_init(&pf);
3291
3292	dm_consume_args(&as, 4);
3293	r = parse_pool_features(&as, &pf, ti);
3294	if (r)
3295		goto out_unlock;
3296
3297	metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
3298	r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
3299	if (r) {
3300		ti->error = "Error opening metadata block device";
3301		goto out_unlock;
3302	}
3303	warn_if_metadata_device_too_big(metadata_dev->bdev);
3304
3305	r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
3306	if (r) {
3307		ti->error = "Error getting data device";
3308		goto out_metadata;
3309	}
3310
3311	if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
3312	    block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
3313	    block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
3314	    block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
3315		ti->error = "Invalid block size";
3316		r = -EINVAL;
3317		goto out;
3318	}
3319
3320	if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
3321		ti->error = "Invalid low water mark";
3322		r = -EINVAL;
3323		goto out;
3324	}
3325
3326	pt = kzalloc(sizeof(*pt), GFP_KERNEL);
3327	if (!pt) {
3328		r = -ENOMEM;
3329		goto out;
3330	}
3331
3332	pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev, data_dev->bdev,
3333			   block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
3334	if (IS_ERR(pool)) {
3335		r = PTR_ERR(pool);
3336		goto out_free_pt;
3337	}
3338
3339	/*
3340	 * 'pool_created' reflects whether this is the first table load.
3341	 * Top level discard support is not allowed to be changed after
3342	 * initial load.  This would require a pool reload to trigger thin
3343	 * device changes.
3344	 */
3345	if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
3346		ti->error = "Discard support cannot be disabled once enabled";
3347		r = -EINVAL;
3348		goto out_flags_changed;
3349	}
3350
3351	pt->pool = pool;
3352	pt->ti = ti;
3353	pt->metadata_dev = metadata_dev;
3354	pt->data_dev = data_dev;
3355	pt->low_water_blocks = low_water_blocks;
3356	pt->adjusted_pf = pt->requested_pf = pf;
3357	ti->num_flush_bios = 1;
3358
3359	/*
3360	 * Only need to enable discards if the pool should pass
3361	 * them down to the data device.  The thin device's discard
3362	 * processing will cause mappings to be removed from the btree.
3363	 */
3364	if (pf.discard_enabled && pf.discard_passdown) {
3365		ti->num_discard_bios = 1;
3366
3367		/*
3368		 * Setting 'discards_supported' circumvents the normal
3369		 * stacking of discard limits (this keeps the pool and
3370		 * thin devices' discard limits consistent).
3371		 */
3372		ti->discards_supported = true;
3373	}
3374	ti->private = pt;
3375
3376	r = dm_pool_register_metadata_threshold(pt->pool->pmd,
3377						calc_metadata_threshold(pt),
3378						metadata_low_callback,
3379						pool);
3380	if (r) {
3381		ti->error = "Error registering metadata threshold";
3382		goto out_flags_changed;
3383	}
3384
3385	dm_pool_register_pre_commit_callback(pool->pmd,
3386					     metadata_pre_commit_callback, pool);
3387
3388	mutex_unlock(&dm_thin_pool_table.mutex);
3389
3390	return 0;
3391
3392out_flags_changed:
3393	__pool_dec(pool);
3394out_free_pt:
3395	kfree(pt);
3396out:
3397	dm_put_device(ti, data_dev);
3398out_metadata:
3399	dm_put_device(ti, metadata_dev);
3400out_unlock:
3401	mutex_unlock(&dm_thin_pool_table.mutex);
3402
3403	return r;
3404}
3405
3406static int pool_map(struct dm_target *ti, struct bio *bio)
3407{
3408	int r;
3409	struct pool_c *pt = ti->private;
3410	struct pool *pool = pt->pool;
 
3411
3412	/*
3413	 * As this is a singleton target, ti->begin is always zero.
3414	 */
3415	spin_lock_irq(&pool->lock);
3416	bio_set_dev(bio, pt->data_dev->bdev);
3417	r = DM_MAPIO_REMAPPED;
3418	spin_unlock_irq(&pool->lock);
3419
3420	return r;
3421}
3422
3423static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
3424{
3425	int r;
3426	struct pool_c *pt = ti->private;
3427	struct pool *pool = pt->pool;
3428	sector_t data_size = ti->len;
3429	dm_block_t sb_data_size;
3430
3431	*need_commit = false;
3432
3433	(void) sector_div(data_size, pool->sectors_per_block);
3434
3435	r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
3436	if (r) {
3437		DMERR("%s: failed to retrieve data device size",
3438		      dm_device_name(pool->pool_md));
3439		return r;
3440	}
3441
3442	if (data_size < sb_data_size) {
3443		DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3444		      dm_device_name(pool->pool_md),
3445		      (unsigned long long)data_size, sb_data_size);
3446		return -EINVAL;
3447
3448	} else if (data_size > sb_data_size) {
3449		if (dm_pool_metadata_needs_check(pool->pmd)) {
3450			DMERR("%s: unable to grow the data device until repaired.",
3451			      dm_device_name(pool->pool_md));
3452			return 0;
3453		}
3454
3455		if (sb_data_size)
3456			DMINFO("%s: growing the data device from %llu to %llu blocks",
3457			       dm_device_name(pool->pool_md),
3458			       sb_data_size, (unsigned long long)data_size);
3459		r = dm_pool_resize_data_dev(pool->pmd, data_size);
3460		if (r) {
3461			metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
3462			return r;
3463		}
3464
3465		*need_commit = true;
3466	}
3467
3468	return 0;
3469}
3470
3471static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
3472{
3473	int r;
3474	struct pool_c *pt = ti->private;
3475	struct pool *pool = pt->pool;
3476	dm_block_t metadata_dev_size, sb_metadata_dev_size;
3477
3478	*need_commit = false;
3479
3480	metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
3481
3482	r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
3483	if (r) {
3484		DMERR("%s: failed to retrieve metadata device size",
3485		      dm_device_name(pool->pool_md));
3486		return r;
3487	}
3488
3489	if (metadata_dev_size < sb_metadata_dev_size) {
3490		DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3491		      dm_device_name(pool->pool_md),
3492		      metadata_dev_size, sb_metadata_dev_size);
3493		return -EINVAL;
3494
3495	} else if (metadata_dev_size > sb_metadata_dev_size) {
3496		if (dm_pool_metadata_needs_check(pool->pmd)) {
3497			DMERR("%s: unable to grow the metadata device until repaired.",
3498			      dm_device_name(pool->pool_md));
3499			return 0;
3500		}
3501
3502		warn_if_metadata_device_too_big(pool->md_dev);
3503		DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3504		       dm_device_name(pool->pool_md),
3505		       sb_metadata_dev_size, metadata_dev_size);
3506
3507		if (get_pool_mode(pool) == PM_OUT_OF_METADATA_SPACE)
3508			set_pool_mode(pool, PM_WRITE);
3509
3510		r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
3511		if (r) {
3512			metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
3513			return r;
3514		}
3515
3516		*need_commit = true;
3517	}
3518
3519	return 0;
3520}
3521
3522/*
3523 * Retrieves the number of blocks of the data device from
3524 * the superblock and compares it to the actual device size,
3525 * thus resizing the data device in case it has grown.
3526 *
3527 * This both copes with opening preallocated data devices in the ctr
3528 * being followed by a resume
3529 * -and-
3530 * calling the resume method individually after userspace has
3531 * grown the data device in reaction to a table event.
3532 */
3533static int pool_preresume(struct dm_target *ti)
3534{
3535	int r;
3536	bool need_commit1, need_commit2;
3537	struct pool_c *pt = ti->private;
3538	struct pool *pool = pt->pool;
3539
3540	/*
3541	 * Take control of the pool object.
3542	 */
3543	r = bind_control_target(pool, ti);
3544	if (r)
3545		goto out;
3546
3547	r = maybe_resize_data_dev(ti, &need_commit1);
3548	if (r)
3549		goto out;
3550
3551	r = maybe_resize_metadata_dev(ti, &need_commit2);
3552	if (r)
3553		goto out;
3554
3555	if (need_commit1 || need_commit2)
3556		(void) commit(pool);
3557out:
3558	/*
3559	 * When a thin-pool is PM_FAIL, it cannot be rebuilt if
3560	 * bio is in deferred list. Therefore need to return 0
3561	 * to allow pool_resume() to flush IO.
3562	 */
3563	if (r && get_pool_mode(pool) == PM_FAIL)
3564		r = 0;
3565
3566	return r;
3567}
3568
3569static void pool_suspend_active_thins(struct pool *pool)
3570{
3571	struct thin_c *tc;
3572
3573	/* Suspend all active thin devices */
3574	tc = get_first_thin(pool);
3575	while (tc) {
3576		dm_internal_suspend_noflush(tc->thin_md);
3577		tc = get_next_thin(pool, tc);
3578	}
3579}
3580
3581static void pool_resume_active_thins(struct pool *pool)
3582{
3583	struct thin_c *tc;
3584
3585	/* Resume all active thin devices */
3586	tc = get_first_thin(pool);
3587	while (tc) {
3588		dm_internal_resume(tc->thin_md);
3589		tc = get_next_thin(pool, tc);
3590	}
3591}
3592
3593static void pool_resume(struct dm_target *ti)
3594{
3595	struct pool_c *pt = ti->private;
3596	struct pool *pool = pt->pool;
 
3597
3598	/*
3599	 * Must requeue active_thins' bios and then resume
3600	 * active_thins _before_ clearing 'suspend' flag.
3601	 */
3602	requeue_bios(pool);
3603	pool_resume_active_thins(pool);
3604
3605	spin_lock_irq(&pool->lock);
3606	pool->low_water_triggered = false;
3607	pool->suspended = false;
3608	spin_unlock_irq(&pool->lock);
3609
3610	do_waker(&pool->waker.work);
3611}
3612
3613static void pool_presuspend(struct dm_target *ti)
3614{
3615	struct pool_c *pt = ti->private;
3616	struct pool *pool = pt->pool;
 
3617
3618	spin_lock_irq(&pool->lock);
3619	pool->suspended = true;
3620	spin_unlock_irq(&pool->lock);
3621
3622	pool_suspend_active_thins(pool);
3623}
3624
3625static void pool_presuspend_undo(struct dm_target *ti)
3626{
3627	struct pool_c *pt = ti->private;
3628	struct pool *pool = pt->pool;
 
3629
3630	pool_resume_active_thins(pool);
3631
3632	spin_lock_irq(&pool->lock);
3633	pool->suspended = false;
3634	spin_unlock_irq(&pool->lock);
3635}
3636
3637static void pool_postsuspend(struct dm_target *ti)
3638{
3639	struct pool_c *pt = ti->private;
3640	struct pool *pool = pt->pool;
3641
3642	cancel_delayed_work_sync(&pool->waker);
3643	cancel_delayed_work_sync(&pool->no_space_timeout);
3644	flush_workqueue(pool->wq);
3645	(void) commit(pool);
3646}
3647
3648static int check_arg_count(unsigned argc, unsigned args_required)
3649{
3650	if (argc != args_required) {
3651		DMWARN("Message received with %u arguments instead of %u.",
3652		       argc, args_required);
3653		return -EINVAL;
3654	}
3655
3656	return 0;
3657}
3658
3659static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
3660{
3661	if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
3662	    *dev_id <= MAX_DEV_ID)
3663		return 0;
3664
3665	if (warning)
3666		DMWARN("Message received with invalid device id: %s", arg);
3667
3668	return -EINVAL;
3669}
3670
3671static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
3672{
3673	dm_thin_id dev_id;
3674	int r;
3675
3676	r = check_arg_count(argc, 2);
3677	if (r)
3678		return r;
3679
3680	r = read_dev_id(argv[1], &dev_id, 1);
3681	if (r)
3682		return r;
3683
3684	r = dm_pool_create_thin(pool->pmd, dev_id);
3685	if (r) {
3686		DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3687		       argv[1]);
3688		return r;
3689	}
3690
3691	return 0;
3692}
3693
3694static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3695{
3696	dm_thin_id dev_id;
3697	dm_thin_id origin_dev_id;
3698	int r;
3699
3700	r = check_arg_count(argc, 3);
3701	if (r)
3702		return r;
3703
3704	r = read_dev_id(argv[1], &dev_id, 1);
3705	if (r)
3706		return r;
3707
3708	r = read_dev_id(argv[2], &origin_dev_id, 1);
3709	if (r)
3710		return r;
3711
3712	r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
3713	if (r) {
3714		DMWARN("Creation of new snapshot %s of device %s failed.",
3715		       argv[1], argv[2]);
3716		return r;
3717	}
3718
3719	return 0;
3720}
3721
3722static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
3723{
3724	dm_thin_id dev_id;
3725	int r;
3726
3727	r = check_arg_count(argc, 2);
3728	if (r)
3729		return r;
3730
3731	r = read_dev_id(argv[1], &dev_id, 1);
3732	if (r)
3733		return r;
3734
3735	r = dm_pool_delete_thin_device(pool->pmd, dev_id);
3736	if (r)
3737		DMWARN("Deletion of thin device %s failed.", argv[1]);
3738
3739	return r;
3740}
3741
3742static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
3743{
3744	dm_thin_id old_id, new_id;
3745	int r;
3746
3747	r = check_arg_count(argc, 3);
3748	if (r)
3749		return r;
3750
3751	if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
3752		DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
3753		return -EINVAL;
3754	}
3755
3756	if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
3757		DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
3758		return -EINVAL;
3759	}
3760
3761	r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
3762	if (r) {
3763		DMWARN("Failed to change transaction id from %s to %s.",
3764		       argv[1], argv[2]);
3765		return r;
3766	}
3767
3768	return 0;
3769}
3770
3771static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3772{
3773	int r;
3774
3775	r = check_arg_count(argc, 1);
3776	if (r)
3777		return r;
3778
3779	(void) commit(pool);
3780
3781	r = dm_pool_reserve_metadata_snap(pool->pmd);
3782	if (r)
3783		DMWARN("reserve_metadata_snap message failed.");
3784
3785	return r;
3786}
3787
3788static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3789{
3790	int r;
3791
3792	r = check_arg_count(argc, 1);
3793	if (r)
3794		return r;
3795
3796	r = dm_pool_release_metadata_snap(pool->pmd);
3797	if (r)
3798		DMWARN("release_metadata_snap message failed.");
3799
3800	return r;
3801}
3802
3803/*
3804 * Messages supported:
3805 *   create_thin	<dev_id>
3806 *   create_snap	<dev_id> <origin_id>
3807 *   delete		<dev_id>
3808 *   set_transaction_id <current_trans_id> <new_trans_id>
3809 *   reserve_metadata_snap
3810 *   release_metadata_snap
3811 */
3812static int pool_message(struct dm_target *ti, unsigned argc, char **argv,
3813			char *result, unsigned maxlen)
3814{
3815	int r = -EINVAL;
3816	struct pool_c *pt = ti->private;
3817	struct pool *pool = pt->pool;
3818
3819	if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE) {
3820		DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
3821		      dm_device_name(pool->pool_md));
3822		return -EOPNOTSUPP;
3823	}
3824
3825	if (!strcasecmp(argv[0], "create_thin"))
3826		r = process_create_thin_mesg(argc, argv, pool);
3827
3828	else if (!strcasecmp(argv[0], "create_snap"))
3829		r = process_create_snap_mesg(argc, argv, pool);
3830
3831	else if (!strcasecmp(argv[0], "delete"))
3832		r = process_delete_mesg(argc, argv, pool);
3833
3834	else if (!strcasecmp(argv[0], "set_transaction_id"))
3835		r = process_set_transaction_id_mesg(argc, argv, pool);
3836
3837	else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
3838		r = process_reserve_metadata_snap_mesg(argc, argv, pool);
3839
3840	else if (!strcasecmp(argv[0], "release_metadata_snap"))
3841		r = process_release_metadata_snap_mesg(argc, argv, pool);
3842
3843	else
3844		DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
3845
3846	if (!r)
3847		(void) commit(pool);
3848
3849	return r;
3850}
3851
3852static void emit_flags(struct pool_features *pf, char *result,
3853		       unsigned sz, unsigned maxlen)
3854{
3855	unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
3856		!pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
3857		pf->error_if_no_space;
3858	DMEMIT("%u ", count);
3859
3860	if (!pf->zero_new_blocks)
3861		DMEMIT("skip_block_zeroing ");
3862
3863	if (!pf->discard_enabled)
3864		DMEMIT("ignore_discard ");
3865
3866	if (!pf->discard_passdown)
3867		DMEMIT("no_discard_passdown ");
3868
3869	if (pf->mode == PM_READ_ONLY)
3870		DMEMIT("read_only ");
3871
3872	if (pf->error_if_no_space)
3873		DMEMIT("error_if_no_space ");
3874}
3875
3876/*
3877 * Status line is:
3878 *    <transaction id> <used metadata sectors>/<total metadata sectors>
3879 *    <used data sectors>/<total data sectors> <held metadata root>
3880 *    <pool mode> <discard config> <no space config> <needs_check>
3881 */
3882static void pool_status(struct dm_target *ti, status_type_t type,
3883			unsigned status_flags, char *result, unsigned maxlen)
3884{
3885	int r;
3886	unsigned sz = 0;
3887	uint64_t transaction_id;
3888	dm_block_t nr_free_blocks_data;
3889	dm_block_t nr_free_blocks_metadata;
3890	dm_block_t nr_blocks_data;
3891	dm_block_t nr_blocks_metadata;
3892	dm_block_t held_root;
3893	enum pool_mode mode;
3894	char buf[BDEVNAME_SIZE];
3895	char buf2[BDEVNAME_SIZE];
3896	struct pool_c *pt = ti->private;
3897	struct pool *pool = pt->pool;
3898
3899	switch (type) {
3900	case STATUSTYPE_INFO:
3901		if (get_pool_mode(pool) == PM_FAIL) {
3902			DMEMIT("Fail");
3903			break;
3904		}
3905
3906		/* Commit to ensure statistics aren't out-of-date */
3907		if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3908			(void) commit(pool);
3909
3910		r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
3911		if (r) {
3912			DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3913			      dm_device_name(pool->pool_md), r);
3914			goto err;
3915		}
3916
3917		r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
3918		if (r) {
3919			DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3920			      dm_device_name(pool->pool_md), r);
3921			goto err;
3922		}
3923
3924		r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
3925		if (r) {
3926			DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3927			      dm_device_name(pool->pool_md), r);
3928			goto err;
3929		}
3930
3931		r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
3932		if (r) {
3933			DMERR("%s: dm_pool_get_free_block_count returned %d",
3934			      dm_device_name(pool->pool_md), r);
3935			goto err;
3936		}
3937
3938		r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
3939		if (r) {
3940			DMERR("%s: dm_pool_get_data_dev_size returned %d",
3941			      dm_device_name(pool->pool_md), r);
3942			goto err;
3943		}
3944
3945		r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
3946		if (r) {
3947			DMERR("%s: dm_pool_get_metadata_snap returned %d",
3948			      dm_device_name(pool->pool_md), r);
3949			goto err;
3950		}
3951
3952		DMEMIT("%llu %llu/%llu %llu/%llu ",
3953		       (unsigned long long)transaction_id,
3954		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3955		       (unsigned long long)nr_blocks_metadata,
3956		       (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
3957		       (unsigned long long)nr_blocks_data);
3958
3959		if (held_root)
3960			DMEMIT("%llu ", held_root);
3961		else
3962			DMEMIT("- ");
3963
3964		mode = get_pool_mode(pool);
3965		if (mode == PM_OUT_OF_DATA_SPACE)
3966			DMEMIT("out_of_data_space ");
3967		else if (is_read_only_pool_mode(mode))
3968			DMEMIT("ro ");
3969		else
3970			DMEMIT("rw ");
3971
3972		if (!pool->pf.discard_enabled)
3973			DMEMIT("ignore_discard ");
3974		else if (pool->pf.discard_passdown)
3975			DMEMIT("discard_passdown ");
3976		else
3977			DMEMIT("no_discard_passdown ");
3978
3979		if (pool->pf.error_if_no_space)
3980			DMEMIT("error_if_no_space ");
3981		else
3982			DMEMIT("queue_if_no_space ");
3983
3984		if (dm_pool_metadata_needs_check(pool->pmd))
3985			DMEMIT("needs_check ");
3986		else
3987			DMEMIT("- ");
3988
3989		DMEMIT("%llu ", (unsigned long long)calc_metadata_threshold(pt));
3990
3991		break;
3992
3993	case STATUSTYPE_TABLE:
3994		DMEMIT("%s %s %lu %llu ",
3995		       format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
3996		       format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
3997		       (unsigned long)pool->sectors_per_block,
3998		       (unsigned long long)pt->low_water_blocks);
3999		emit_flags(&pt->requested_pf, result, sz, maxlen);
4000		break;
4001
4002	case STATUSTYPE_IMA:
4003		*result = '\0';
4004		break;
4005	}
4006	return;
4007
4008err:
4009	DMEMIT("Error");
4010}
4011
4012static int pool_iterate_devices(struct dm_target *ti,
4013				iterate_devices_callout_fn fn, void *data)
4014{
4015	struct pool_c *pt = ti->private;
4016
4017	return fn(ti, pt->data_dev, 0, ti->len, data);
4018}
4019
4020static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
4021{
4022	struct pool_c *pt = ti->private;
4023	struct pool *pool = pt->pool;
4024	sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
4025
4026	/*
4027	 * If max_sectors is smaller than pool->sectors_per_block adjust it
4028	 * to the highest possible power-of-2 factor of pool->sectors_per_block.
4029	 * This is especially beneficial when the pool's data device is a RAID
4030	 * device that has a full stripe width that matches pool->sectors_per_block
4031	 * -- because even though partial RAID stripe-sized IOs will be issued to a
4032	 *    single RAID stripe; when aggregated they will end on a full RAID stripe
4033	 *    boundary.. which avoids additional partial RAID stripe writes cascading
4034	 */
4035	if (limits->max_sectors < pool->sectors_per_block) {
4036		while (!is_factor(pool->sectors_per_block, limits->max_sectors)) {
4037			if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
4038				limits->max_sectors--;
4039			limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
4040		}
4041	}
4042
4043	/*
4044	 * If the system-determined stacked limits are compatible with the
4045	 * pool's blocksize (io_opt is a factor) do not override them.
4046	 */
4047	if (io_opt_sectors < pool->sectors_per_block ||
4048	    !is_factor(io_opt_sectors, pool->sectors_per_block)) {
4049		if (is_factor(pool->sectors_per_block, limits->max_sectors))
4050			blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT);
4051		else
4052			blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT);
4053		blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
4054	}
4055
4056	/*
4057	 * pt->adjusted_pf is a staging area for the actual features to use.
4058	 * They get transferred to the live pool in bind_control_target()
4059	 * called from pool_preresume().
4060	 */
4061	if (!pt->adjusted_pf.discard_enabled) {
4062		/*
4063		 * Must explicitly disallow stacking discard limits otherwise the
4064		 * block layer will stack them if pool's data device has support.
 
 
4065		 */
4066		limits->discard_granularity = 0;
4067		return;
4068	}
4069
4070	disable_passdown_if_not_supported(pt);
4071
4072	/*
4073	 * The pool uses the same discard limits as the underlying data
4074	 * device.  DM core has already set this up.
4075	 */
4076}
4077
4078static struct target_type pool_target = {
4079	.name = "thin-pool",
4080	.features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
4081		    DM_TARGET_IMMUTABLE,
4082	.version = {1, 22, 0},
4083	.module = THIS_MODULE,
4084	.ctr = pool_ctr,
4085	.dtr = pool_dtr,
4086	.map = pool_map,
4087	.presuspend = pool_presuspend,
4088	.presuspend_undo = pool_presuspend_undo,
4089	.postsuspend = pool_postsuspend,
4090	.preresume = pool_preresume,
4091	.resume = pool_resume,
4092	.message = pool_message,
4093	.status = pool_status,
4094	.iterate_devices = pool_iterate_devices,
4095	.io_hints = pool_io_hints,
4096};
4097
4098/*----------------------------------------------------------------
4099 * Thin target methods
4100 *--------------------------------------------------------------*/
4101static void thin_get(struct thin_c *tc)
4102{
4103	refcount_inc(&tc->refcount);
4104}
4105
4106static void thin_put(struct thin_c *tc)
4107{
4108	if (refcount_dec_and_test(&tc->refcount))
4109		complete(&tc->can_destroy);
4110}
4111
4112static void thin_dtr(struct dm_target *ti)
4113{
4114	struct thin_c *tc = ti->private;
 
4115
4116	spin_lock_irq(&tc->pool->lock);
4117	list_del_rcu(&tc->list);
4118	spin_unlock_irq(&tc->pool->lock);
4119	synchronize_rcu();
4120
4121	thin_put(tc);
4122	wait_for_completion(&tc->can_destroy);
4123
4124	mutex_lock(&dm_thin_pool_table.mutex);
4125
4126	__pool_dec(tc->pool);
4127	dm_pool_close_thin_device(tc->td);
4128	dm_put_device(ti, tc->pool_dev);
4129	if (tc->origin_dev)
4130		dm_put_device(ti, tc->origin_dev);
4131	kfree(tc);
4132
4133	mutex_unlock(&dm_thin_pool_table.mutex);
4134}
4135
4136/*
4137 * Thin target parameters:
4138 *
4139 * <pool_dev> <dev_id> [origin_dev]
4140 *
4141 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
4142 * dev_id: the internal device identifier
4143 * origin_dev: a device external to the pool that should act as the origin
4144 *
4145 * If the pool device has discards disabled, they get disabled for the thin
4146 * device as well.
4147 */
4148static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
4149{
4150	int r;
4151	struct thin_c *tc;
4152	struct dm_dev *pool_dev, *origin_dev;
4153	struct mapped_device *pool_md;
 
4154
4155	mutex_lock(&dm_thin_pool_table.mutex);
4156
4157	if (argc != 2 && argc != 3) {
4158		ti->error = "Invalid argument count";
4159		r = -EINVAL;
4160		goto out_unlock;
4161	}
4162
4163	tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
4164	if (!tc) {
4165		ti->error = "Out of memory";
4166		r = -ENOMEM;
4167		goto out_unlock;
4168	}
4169	tc->thin_md = dm_table_get_md(ti->table);
4170	spin_lock_init(&tc->lock);
4171	INIT_LIST_HEAD(&tc->deferred_cells);
4172	bio_list_init(&tc->deferred_bio_list);
4173	bio_list_init(&tc->retry_on_resume_list);
4174	tc->sort_bio_list = RB_ROOT;
4175
4176	if (argc == 3) {
4177		if (!strcmp(argv[0], argv[2])) {
4178			ti->error = "Error setting origin device";
4179			r = -EINVAL;
4180			goto bad_origin_dev;
4181		}
4182
4183		r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
4184		if (r) {
4185			ti->error = "Error opening origin device";
4186			goto bad_origin_dev;
4187		}
4188		tc->origin_dev = origin_dev;
4189	}
4190
4191	r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
4192	if (r) {
4193		ti->error = "Error opening pool device";
4194		goto bad_pool_dev;
4195	}
4196	tc->pool_dev = pool_dev;
4197
4198	if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
4199		ti->error = "Invalid device id";
4200		r = -EINVAL;
4201		goto bad_common;
4202	}
4203
4204	pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
4205	if (!pool_md) {
4206		ti->error = "Couldn't get pool mapped device";
4207		r = -EINVAL;
4208		goto bad_common;
4209	}
4210
4211	tc->pool = __pool_table_lookup(pool_md);
4212	if (!tc->pool) {
4213		ti->error = "Couldn't find pool object";
4214		r = -EINVAL;
4215		goto bad_pool_lookup;
4216	}
4217	__pool_inc(tc->pool);
4218
4219	if (get_pool_mode(tc->pool) == PM_FAIL) {
4220		ti->error = "Couldn't open thin device, Pool is in fail mode";
4221		r = -EINVAL;
4222		goto bad_pool;
4223	}
4224
4225	r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
4226	if (r) {
4227		ti->error = "Couldn't open thin internal device";
4228		goto bad_pool;
4229	}
4230
4231	r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
4232	if (r)
4233		goto bad;
4234
4235	ti->num_flush_bios = 1;
4236	ti->flush_supported = true;
4237	ti->accounts_remapped_io = true;
4238	ti->per_io_data_size = sizeof(struct dm_thin_endio_hook);
4239
4240	/* In case the pool supports discards, pass them on. */
4241	if (tc->pool->pf.discard_enabled) {
4242		ti->discards_supported = true;
4243		ti->num_discard_bios = 1;
 
4244	}
4245
4246	mutex_unlock(&dm_thin_pool_table.mutex);
4247
4248	spin_lock_irq(&tc->pool->lock);
4249	if (tc->pool->suspended) {
4250		spin_unlock_irq(&tc->pool->lock);
4251		mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */
4252		ti->error = "Unable to activate thin device while pool is suspended";
4253		r = -EINVAL;
4254		goto bad;
4255	}
4256	refcount_set(&tc->refcount, 1);
4257	init_completion(&tc->can_destroy);
4258	list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
4259	spin_unlock_irq(&tc->pool->lock);
4260	/*
4261	 * This synchronize_rcu() call is needed here otherwise we risk a
4262	 * wake_worker() call finding no bios to process (because the newly
4263	 * added tc isn't yet visible).  So this reduces latency since we
4264	 * aren't then dependent on the periodic commit to wake_worker().
4265	 */
4266	synchronize_rcu();
4267
4268	dm_put(pool_md);
4269
4270	return 0;
4271
4272bad:
4273	dm_pool_close_thin_device(tc->td);
4274bad_pool:
4275	__pool_dec(tc->pool);
4276bad_pool_lookup:
4277	dm_put(pool_md);
4278bad_common:
4279	dm_put_device(ti, tc->pool_dev);
4280bad_pool_dev:
4281	if (tc->origin_dev)
4282		dm_put_device(ti, tc->origin_dev);
4283bad_origin_dev:
4284	kfree(tc);
4285out_unlock:
4286	mutex_unlock(&dm_thin_pool_table.mutex);
4287
4288	return r;
4289}
4290
4291static int thin_map(struct dm_target *ti, struct bio *bio)
4292{
4293	bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
4294
4295	return thin_bio_map(ti, bio);
4296}
4297
4298static int thin_endio(struct dm_target *ti, struct bio *bio,
4299		blk_status_t *err)
4300{
4301	unsigned long flags;
4302	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
4303	struct list_head work;
4304	struct dm_thin_new_mapping *m, *tmp;
4305	struct pool *pool = h->tc->pool;
4306
4307	if (h->shared_read_entry) {
4308		INIT_LIST_HEAD(&work);
4309		dm_deferred_entry_dec(h->shared_read_entry, &work);
4310
4311		spin_lock_irqsave(&pool->lock, flags);
4312		list_for_each_entry_safe(m, tmp, &work, list) {
4313			list_del(&m->list);
4314			__complete_mapping_preparation(m);
4315		}
4316		spin_unlock_irqrestore(&pool->lock, flags);
4317	}
4318
4319	if (h->all_io_entry) {
4320		INIT_LIST_HEAD(&work);
4321		dm_deferred_entry_dec(h->all_io_entry, &work);
4322		if (!list_empty(&work)) {
4323			spin_lock_irqsave(&pool->lock, flags);
4324			list_for_each_entry_safe(m, tmp, &work, list)
4325				list_add_tail(&m->list, &pool->prepared_discards);
4326			spin_unlock_irqrestore(&pool->lock, flags);
4327			wake_worker(pool);
4328		}
4329	}
4330
4331	if (h->cell)
4332		cell_defer_no_holder(h->tc, h->cell);
4333
4334	return DM_ENDIO_DONE;
4335}
4336
4337static void thin_presuspend(struct dm_target *ti)
4338{
4339	struct thin_c *tc = ti->private;
4340
4341	if (dm_noflush_suspending(ti))
4342		noflush_work(tc, do_noflush_start);
4343}
4344
4345static void thin_postsuspend(struct dm_target *ti)
4346{
4347	struct thin_c *tc = ti->private;
4348
4349	/*
4350	 * The dm_noflush_suspending flag has been cleared by now, so
4351	 * unfortunately we must always run this.
4352	 */
4353	noflush_work(tc, do_noflush_stop);
4354}
4355
4356static int thin_preresume(struct dm_target *ti)
4357{
4358	struct thin_c *tc = ti->private;
4359
4360	if (tc->origin_dev)
4361		tc->origin_size = get_dev_size(tc->origin_dev->bdev);
4362
4363	return 0;
4364}
4365
4366/*
4367 * <nr mapped sectors> <highest mapped sector>
4368 */
4369static void thin_status(struct dm_target *ti, status_type_t type,
4370			unsigned status_flags, char *result, unsigned maxlen)
4371{
4372	int r;
4373	ssize_t sz = 0;
4374	dm_block_t mapped, highest;
4375	char buf[BDEVNAME_SIZE];
4376	struct thin_c *tc = ti->private;
4377
4378	if (get_pool_mode(tc->pool) == PM_FAIL) {
4379		DMEMIT("Fail");
4380		return;
4381	}
4382
4383	if (!tc->td)
4384		DMEMIT("-");
4385	else {
4386		switch (type) {
4387		case STATUSTYPE_INFO:
4388			r = dm_thin_get_mapped_count(tc->td, &mapped);
4389			if (r) {
4390				DMERR("dm_thin_get_mapped_count returned %d", r);
4391				goto err;
4392			}
4393
4394			r = dm_thin_get_highest_mapped_block(tc->td, &highest);
4395			if (r < 0) {
4396				DMERR("dm_thin_get_highest_mapped_block returned %d", r);
4397				goto err;
4398			}
4399
4400			DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
4401			if (r)
4402				DMEMIT("%llu", ((highest + 1) *
4403						tc->pool->sectors_per_block) - 1);
4404			else
4405				DMEMIT("-");
4406			break;
4407
4408		case STATUSTYPE_TABLE:
4409			DMEMIT("%s %lu",
4410			       format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
4411			       (unsigned long) tc->dev_id);
4412			if (tc->origin_dev)
4413				DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
4414			break;
4415
4416		case STATUSTYPE_IMA:
4417			*result = '\0';
4418			break;
4419		}
4420	}
4421
4422	return;
4423
4424err:
4425	DMEMIT("Error");
4426}
4427
4428static int thin_iterate_devices(struct dm_target *ti,
4429				iterate_devices_callout_fn fn, void *data)
4430{
4431	sector_t blocks;
4432	struct thin_c *tc = ti->private;
4433	struct pool *pool = tc->pool;
4434
4435	/*
4436	 * We can't call dm_pool_get_data_dev_size() since that blocks.  So
4437	 * we follow a more convoluted path through to the pool's target.
4438	 */
4439	if (!pool->ti)
4440		return 0;	/* nothing is bound */
4441
4442	blocks = pool->ti->len;
4443	(void) sector_div(blocks, pool->sectors_per_block);
4444	if (blocks)
4445		return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
4446
4447	return 0;
4448}
4449
4450static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
4451{
4452	struct thin_c *tc = ti->private;
4453	struct pool *pool = tc->pool;
4454
4455	if (!pool->pf.discard_enabled)
4456		return;
4457
4458	limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
4459	limits->max_discard_sectors = 2048 * 1024 * 16; /* 16G */
4460}
4461
4462static struct target_type thin_target = {
4463	.name = "thin",
4464	.version = {1, 22, 0},
4465	.module	= THIS_MODULE,
4466	.ctr = thin_ctr,
4467	.dtr = thin_dtr,
4468	.map = thin_map,
4469	.end_io = thin_endio,
4470	.preresume = thin_preresume,
4471	.presuspend = thin_presuspend,
4472	.postsuspend = thin_postsuspend,
4473	.status = thin_status,
4474	.iterate_devices = thin_iterate_devices,
4475	.io_hints = thin_io_hints,
4476};
4477
4478/*----------------------------------------------------------------*/
4479
4480static int __init dm_thin_init(void)
4481{
4482	int r = -ENOMEM;
4483
4484	pool_table_init();
4485
4486	_new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
4487	if (!_new_mapping_cache)
4488		return r;
4489
4490	r = dm_register_target(&thin_target);
4491	if (r)
4492		goto bad_new_mapping_cache;
4493
4494	r = dm_register_target(&pool_target);
4495	if (r)
4496		goto bad_thin_target;
4497
4498	return 0;
4499
4500bad_thin_target:
4501	dm_unregister_target(&thin_target);
4502bad_new_mapping_cache:
4503	kmem_cache_destroy(_new_mapping_cache);
4504
4505	return r;
4506}
4507
4508static void dm_thin_exit(void)
4509{
4510	dm_unregister_target(&thin_target);
4511	dm_unregister_target(&pool_target);
4512
4513	kmem_cache_destroy(_new_mapping_cache);
4514
4515	pool_table_exit();
4516}
4517
4518module_init(dm_thin_init);
4519module_exit(dm_thin_exit);
4520
4521module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR);
4522MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
4523
4524MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
4525MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
4526MODULE_LICENSE("GPL");
v4.17
   1/*
   2 * Copyright (C) 2011-2012 Red Hat UK.
   3 *
   4 * This file is released under the GPL.
   5 */
   6
   7#include "dm-thin-metadata.h"
   8#include "dm-bio-prison-v1.h"
   9#include "dm.h"
  10
  11#include <linux/device-mapper.h>
  12#include <linux/dm-io.h>
  13#include <linux/dm-kcopyd.h>
  14#include <linux/jiffies.h>
  15#include <linux/log2.h>
  16#include <linux/list.h>
  17#include <linux/rculist.h>
  18#include <linux/init.h>
  19#include <linux/module.h>
  20#include <linux/slab.h>
  21#include <linux/vmalloc.h>
  22#include <linux/sort.h>
  23#include <linux/rbtree.h>
  24
  25#define	DM_MSG_PREFIX	"thin"
  26
  27/*
  28 * Tunable constants
  29 */
  30#define ENDIO_HOOK_POOL_SIZE 1024
  31#define MAPPING_POOL_SIZE 1024
  32#define COMMIT_PERIOD HZ
  33#define NO_SPACE_TIMEOUT_SECS 60
  34
  35static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
  36
  37DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
  38		"A percentage of time allocated for copy on write");
  39
  40/*
  41 * The block size of the device holding pool data must be
  42 * between 64KB and 1GB.
  43 */
  44#define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
  45#define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
  46
  47/*
  48 * Device id is restricted to 24 bits.
  49 */
  50#define MAX_DEV_ID ((1 << 24) - 1)
  51
  52/*
  53 * How do we handle breaking sharing of data blocks?
  54 * =================================================
  55 *
  56 * We use a standard copy-on-write btree to store the mappings for the
  57 * devices (note I'm talking about copy-on-write of the metadata here, not
  58 * the data).  When you take an internal snapshot you clone the root node
  59 * of the origin btree.  After this there is no concept of an origin or a
  60 * snapshot.  They are just two device trees that happen to point to the
  61 * same data blocks.
  62 *
  63 * When we get a write in we decide if it's to a shared data block using
  64 * some timestamp magic.  If it is, we have to break sharing.
  65 *
  66 * Let's say we write to a shared block in what was the origin.  The
  67 * steps are:
  68 *
  69 * i) plug io further to this physical block. (see bio_prison code).
  70 *
  71 * ii) quiesce any read io to that shared data block.  Obviously
  72 * including all devices that share this block.  (see dm_deferred_set code)
  73 *
  74 * iii) copy the data block to a newly allocate block.  This step can be
  75 * missed out if the io covers the block. (schedule_copy).
  76 *
  77 * iv) insert the new mapping into the origin's btree
  78 * (process_prepared_mapping).  This act of inserting breaks some
  79 * sharing of btree nodes between the two devices.  Breaking sharing only
  80 * effects the btree of that specific device.  Btrees for the other
  81 * devices that share the block never change.  The btree for the origin
  82 * device as it was after the last commit is untouched, ie. we're using
  83 * persistent data structures in the functional programming sense.
  84 *
  85 * v) unplug io to this physical block, including the io that triggered
  86 * the breaking of sharing.
  87 *
  88 * Steps (ii) and (iii) occur in parallel.
  89 *
  90 * The metadata _doesn't_ need to be committed before the io continues.  We
  91 * get away with this because the io is always written to a _new_ block.
  92 * If there's a crash, then:
  93 *
  94 * - The origin mapping will point to the old origin block (the shared
  95 * one).  This will contain the data as it was before the io that triggered
  96 * the breaking of sharing came in.
  97 *
  98 * - The snap mapping still points to the old block.  As it would after
  99 * the commit.
 100 *
 101 * The downside of this scheme is the timestamp magic isn't perfect, and
 102 * will continue to think that data block in the snapshot device is shared
 103 * even after the write to the origin has broken sharing.  I suspect data
 104 * blocks will typically be shared by many different devices, so we're
 105 * breaking sharing n + 1 times, rather than n, where n is the number of
 106 * devices that reference this data block.  At the moment I think the
 107 * benefits far, far outweigh the disadvantages.
 108 */
 109
 110/*----------------------------------------------------------------*/
 111
 112/*
 113 * Key building.
 114 */
 115enum lock_space {
 116	VIRTUAL,
 117	PHYSICAL
 118};
 119
 120static void build_key(struct dm_thin_device *td, enum lock_space ls,
 121		      dm_block_t b, dm_block_t e, struct dm_cell_key *key)
 122{
 123	key->virtual = (ls == VIRTUAL);
 124	key->dev = dm_thin_dev_id(td);
 125	key->block_begin = b;
 126	key->block_end = e;
 127}
 128
 129static void build_data_key(struct dm_thin_device *td, dm_block_t b,
 130			   struct dm_cell_key *key)
 131{
 132	build_key(td, PHYSICAL, b, b + 1llu, key);
 133}
 134
 135static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
 136			      struct dm_cell_key *key)
 137{
 138	build_key(td, VIRTUAL, b, b + 1llu, key);
 139}
 140
 141/*----------------------------------------------------------------*/
 142
 143#define THROTTLE_THRESHOLD (1 * HZ)
 144
 145struct throttle {
 146	struct rw_semaphore lock;
 147	unsigned long threshold;
 148	bool throttle_applied;
 149};
 150
 151static void throttle_init(struct throttle *t)
 152{
 153	init_rwsem(&t->lock);
 154	t->throttle_applied = false;
 155}
 156
 157static void throttle_work_start(struct throttle *t)
 158{
 159	t->threshold = jiffies + THROTTLE_THRESHOLD;
 160}
 161
 162static void throttle_work_update(struct throttle *t)
 163{
 164	if (!t->throttle_applied && jiffies > t->threshold) {
 165		down_write(&t->lock);
 166		t->throttle_applied = true;
 167	}
 168}
 169
 170static void throttle_work_complete(struct throttle *t)
 171{
 172	if (t->throttle_applied) {
 173		t->throttle_applied = false;
 174		up_write(&t->lock);
 175	}
 176}
 177
 178static void throttle_lock(struct throttle *t)
 179{
 180	down_read(&t->lock);
 181}
 182
 183static void throttle_unlock(struct throttle *t)
 184{
 185	up_read(&t->lock);
 186}
 187
 188/*----------------------------------------------------------------*/
 189
 190/*
 191 * A pool device ties together a metadata device and a data device.  It
 192 * also provides the interface for creating and destroying internal
 193 * devices.
 194 */
 195struct dm_thin_new_mapping;
 196
 197/*
 198 * The pool runs in 4 modes.  Ordered in degraded order for comparisons.
 199 */
 200enum pool_mode {
 201	PM_WRITE,		/* metadata may be changed */
 202	PM_OUT_OF_DATA_SPACE,	/* metadata may be changed, though data may not be allocated */
 
 
 
 
 
 203	PM_READ_ONLY,		/* metadata may not be changed */
 
 204	PM_FAIL,		/* all I/O fails */
 205};
 206
 207struct pool_features {
 208	enum pool_mode mode;
 209
 210	bool zero_new_blocks:1;
 211	bool discard_enabled:1;
 212	bool discard_passdown:1;
 213	bool error_if_no_space:1;
 214};
 215
 216struct thin_c;
 217typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
 218typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
 219typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
 220
 221#define CELL_SORT_ARRAY_SIZE 8192
 222
 223struct pool {
 224	struct list_head list;
 225	struct dm_target *ti;	/* Only set if a pool target is bound */
 226
 227	struct mapped_device *pool_md;
 
 228	struct block_device *md_dev;
 229	struct dm_pool_metadata *pmd;
 230
 231	dm_block_t low_water_blocks;
 232	uint32_t sectors_per_block;
 233	int sectors_per_block_shift;
 234
 235	struct pool_features pf;
 236	bool low_water_triggered:1;	/* A dm event has been sent */
 237	bool suspended:1;
 238	bool out_of_data_space:1;
 239
 240	struct dm_bio_prison *prison;
 241	struct dm_kcopyd_client *copier;
 242
 
 243	struct workqueue_struct *wq;
 244	struct throttle throttle;
 245	struct work_struct worker;
 246	struct delayed_work waker;
 247	struct delayed_work no_space_timeout;
 248
 249	unsigned long last_commit_jiffies;
 250	unsigned ref_count;
 251
 252	spinlock_t lock;
 253	struct bio_list deferred_flush_bios;
 
 254	struct list_head prepared_mappings;
 255	struct list_head prepared_discards;
 256	struct list_head prepared_discards_pt2;
 257	struct list_head active_thins;
 258
 259	struct dm_deferred_set *shared_read_ds;
 260	struct dm_deferred_set *all_io_ds;
 261
 262	struct dm_thin_new_mapping *next_mapping;
 263	mempool_t *mapping_pool;
 264
 265	process_bio_fn process_bio;
 266	process_bio_fn process_discard;
 267
 268	process_cell_fn process_cell;
 269	process_cell_fn process_discard_cell;
 270
 271	process_mapping_fn process_prepared_mapping;
 272	process_mapping_fn process_prepared_discard;
 273	process_mapping_fn process_prepared_discard_pt2;
 274
 275	struct dm_bio_prison_cell **cell_sort_array;
 
 
 276};
 277
 278static enum pool_mode get_pool_mode(struct pool *pool);
 279static void metadata_operation_failed(struct pool *pool, const char *op, int r);
 280
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 281/*
 282 * Target context for a pool.
 283 */
 284struct pool_c {
 285	struct dm_target *ti;
 286	struct pool *pool;
 287	struct dm_dev *data_dev;
 288	struct dm_dev *metadata_dev;
 289	struct dm_target_callbacks callbacks;
 290
 291	dm_block_t low_water_blocks;
 292	struct pool_features requested_pf; /* Features requested during table load */
 293	struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
 294};
 295
 296/*
 297 * Target context for a thin.
 298 */
 299struct thin_c {
 300	struct list_head list;
 301	struct dm_dev *pool_dev;
 302	struct dm_dev *origin_dev;
 303	sector_t origin_size;
 304	dm_thin_id dev_id;
 305
 306	struct pool *pool;
 307	struct dm_thin_device *td;
 308	struct mapped_device *thin_md;
 309
 310	bool requeue_mode:1;
 311	spinlock_t lock;
 312	struct list_head deferred_cells;
 313	struct bio_list deferred_bio_list;
 314	struct bio_list retry_on_resume_list;
 315	struct rb_root sort_bio_list; /* sorted list of deferred bios */
 316
 317	/*
 318	 * Ensures the thin is not destroyed until the worker has finished
 319	 * iterating the active_thins list.
 320	 */
 321	atomic_t refcount;
 322	struct completion can_destroy;
 323};
 324
 325/*----------------------------------------------------------------*/
 326
 327static bool block_size_is_power_of_two(struct pool *pool)
 328{
 329	return pool->sectors_per_block_shift >= 0;
 330}
 331
 332static sector_t block_to_sectors(struct pool *pool, dm_block_t b)
 333{
 334	return block_size_is_power_of_two(pool) ?
 335		(b << pool->sectors_per_block_shift) :
 336		(b * pool->sectors_per_block);
 337}
 338
 339/*----------------------------------------------------------------*/
 340
 341struct discard_op {
 342	struct thin_c *tc;
 343	struct blk_plug plug;
 344	struct bio *parent_bio;
 345	struct bio *bio;
 346};
 347
 348static void begin_discard(struct discard_op *op, struct thin_c *tc, struct bio *parent)
 349{
 350	BUG_ON(!parent);
 351
 352	op->tc = tc;
 353	blk_start_plug(&op->plug);
 354	op->parent_bio = parent;
 355	op->bio = NULL;
 356}
 357
 358static int issue_discard(struct discard_op *op, dm_block_t data_b, dm_block_t data_e)
 359{
 360	struct thin_c *tc = op->tc;
 361	sector_t s = block_to_sectors(tc->pool, data_b);
 362	sector_t len = block_to_sectors(tc->pool, data_e - data_b);
 363
 364	return __blkdev_issue_discard(tc->pool_dev->bdev, s, len,
 365				      GFP_NOWAIT, 0, &op->bio);
 366}
 367
 368static void end_discard(struct discard_op *op, int r)
 369{
 370	if (op->bio) {
 371		/*
 372		 * Even if one of the calls to issue_discard failed, we
 373		 * need to wait for the chain to complete.
 374		 */
 375		bio_chain(op->bio, op->parent_bio);
 376		bio_set_op_attrs(op->bio, REQ_OP_DISCARD, 0);
 377		submit_bio(op->bio);
 378	}
 379
 380	blk_finish_plug(&op->plug);
 381
 382	/*
 383	 * Even if r is set, there could be sub discards in flight that we
 384	 * need to wait for.
 385	 */
 386	if (r && !op->parent_bio->bi_status)
 387		op->parent_bio->bi_status = errno_to_blk_status(r);
 388	bio_endio(op->parent_bio);
 389}
 390
 391/*----------------------------------------------------------------*/
 392
 393/*
 394 * wake_worker() is used when new work is queued and when pool_resume is
 395 * ready to continue deferred IO processing.
 396 */
 397static void wake_worker(struct pool *pool)
 398{
 399	queue_work(pool->wq, &pool->worker);
 400}
 401
 402/*----------------------------------------------------------------*/
 403
 404static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
 405		      struct dm_bio_prison_cell **cell_result)
 406{
 407	int r;
 408	struct dm_bio_prison_cell *cell_prealloc;
 409
 410	/*
 411	 * Allocate a cell from the prison's mempool.
 412	 * This might block but it can't fail.
 413	 */
 414	cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
 415
 416	r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
 417	if (r)
 418		/*
 419		 * We reused an old cell; we can get rid of
 420		 * the new one.
 421		 */
 422		dm_bio_prison_free_cell(pool->prison, cell_prealloc);
 423
 424	return r;
 425}
 426
 427static void cell_release(struct pool *pool,
 428			 struct dm_bio_prison_cell *cell,
 429			 struct bio_list *bios)
 430{
 431	dm_cell_release(pool->prison, cell, bios);
 432	dm_bio_prison_free_cell(pool->prison, cell);
 433}
 434
 435static void cell_visit_release(struct pool *pool,
 436			       void (*fn)(void *, struct dm_bio_prison_cell *),
 437			       void *context,
 438			       struct dm_bio_prison_cell *cell)
 439{
 440	dm_cell_visit_release(pool->prison, fn, context, cell);
 441	dm_bio_prison_free_cell(pool->prison, cell);
 442}
 443
 444static void cell_release_no_holder(struct pool *pool,
 445				   struct dm_bio_prison_cell *cell,
 446				   struct bio_list *bios)
 447{
 448	dm_cell_release_no_holder(pool->prison, cell, bios);
 449	dm_bio_prison_free_cell(pool->prison, cell);
 450}
 451
 452static void cell_error_with_code(struct pool *pool,
 453		struct dm_bio_prison_cell *cell, blk_status_t error_code)
 454{
 455	dm_cell_error(pool->prison, cell, error_code);
 456	dm_bio_prison_free_cell(pool->prison, cell);
 457}
 458
 459static blk_status_t get_pool_io_error_code(struct pool *pool)
 460{
 461	return pool->out_of_data_space ? BLK_STS_NOSPC : BLK_STS_IOERR;
 462}
 463
 464static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
 465{
 466	cell_error_with_code(pool, cell, get_pool_io_error_code(pool));
 467}
 468
 469static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
 470{
 471	cell_error_with_code(pool, cell, 0);
 472}
 473
 474static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
 475{
 476	cell_error_with_code(pool, cell, BLK_STS_DM_REQUEUE);
 477}
 478
 479/*----------------------------------------------------------------*/
 480
 481/*
 482 * A global list of pools that uses a struct mapped_device as a key.
 483 */
 484static struct dm_thin_pool_table {
 485	struct mutex mutex;
 486	struct list_head pools;
 487} dm_thin_pool_table;
 488
 489static void pool_table_init(void)
 490{
 491	mutex_init(&dm_thin_pool_table.mutex);
 492	INIT_LIST_HEAD(&dm_thin_pool_table.pools);
 493}
 494
 495static void pool_table_exit(void)
 496{
 497	mutex_destroy(&dm_thin_pool_table.mutex);
 498}
 499
 500static void __pool_table_insert(struct pool *pool)
 501{
 502	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 503	list_add(&pool->list, &dm_thin_pool_table.pools);
 504}
 505
 506static void __pool_table_remove(struct pool *pool)
 507{
 508	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 509	list_del(&pool->list);
 510}
 511
 512static struct pool *__pool_table_lookup(struct mapped_device *md)
 513{
 514	struct pool *pool = NULL, *tmp;
 515
 516	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 517
 518	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
 519		if (tmp->pool_md == md) {
 520			pool = tmp;
 521			break;
 522		}
 523	}
 524
 525	return pool;
 526}
 527
 528static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
 529{
 530	struct pool *pool = NULL, *tmp;
 531
 532	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 533
 534	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
 535		if (tmp->md_dev == md_dev) {
 536			pool = tmp;
 537			break;
 538		}
 539	}
 540
 541	return pool;
 542}
 543
 544/*----------------------------------------------------------------*/
 545
 546struct dm_thin_endio_hook {
 547	struct thin_c *tc;
 548	struct dm_deferred_entry *shared_read_entry;
 549	struct dm_deferred_entry *all_io_entry;
 550	struct dm_thin_new_mapping *overwrite_mapping;
 551	struct rb_node rb_node;
 552	struct dm_bio_prison_cell *cell;
 553};
 554
 555static void __merge_bio_list(struct bio_list *bios, struct bio_list *master)
 556{
 557	bio_list_merge(bios, master);
 558	bio_list_init(master);
 559}
 560
 561static void error_bio_list(struct bio_list *bios, blk_status_t error)
 562{
 563	struct bio *bio;
 564
 565	while ((bio = bio_list_pop(bios))) {
 566		bio->bi_status = error;
 567		bio_endio(bio);
 568	}
 569}
 570
 571static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master,
 572		blk_status_t error)
 573{
 574	struct bio_list bios;
 575	unsigned long flags;
 576
 577	bio_list_init(&bios);
 578
 579	spin_lock_irqsave(&tc->lock, flags);
 580	__merge_bio_list(&bios, master);
 581	spin_unlock_irqrestore(&tc->lock, flags);
 582
 583	error_bio_list(&bios, error);
 584}
 585
 586static void requeue_deferred_cells(struct thin_c *tc)
 587{
 588	struct pool *pool = tc->pool;
 589	unsigned long flags;
 590	struct list_head cells;
 591	struct dm_bio_prison_cell *cell, *tmp;
 592
 593	INIT_LIST_HEAD(&cells);
 594
 595	spin_lock_irqsave(&tc->lock, flags);
 596	list_splice_init(&tc->deferred_cells, &cells);
 597	spin_unlock_irqrestore(&tc->lock, flags);
 598
 599	list_for_each_entry_safe(cell, tmp, &cells, user_list)
 600		cell_requeue(pool, cell);
 601}
 602
 603static void requeue_io(struct thin_c *tc)
 604{
 605	struct bio_list bios;
 606	unsigned long flags;
 607
 608	bio_list_init(&bios);
 609
 610	spin_lock_irqsave(&tc->lock, flags);
 611	__merge_bio_list(&bios, &tc->deferred_bio_list);
 612	__merge_bio_list(&bios, &tc->retry_on_resume_list);
 613	spin_unlock_irqrestore(&tc->lock, flags);
 614
 615	error_bio_list(&bios, BLK_STS_DM_REQUEUE);
 616	requeue_deferred_cells(tc);
 617}
 618
 619static void error_retry_list_with_code(struct pool *pool, blk_status_t error)
 620{
 621	struct thin_c *tc;
 622
 623	rcu_read_lock();
 624	list_for_each_entry_rcu(tc, &pool->active_thins, list)
 625		error_thin_bio_list(tc, &tc->retry_on_resume_list, error);
 626	rcu_read_unlock();
 627}
 628
 629static void error_retry_list(struct pool *pool)
 630{
 631	error_retry_list_with_code(pool, get_pool_io_error_code(pool));
 632}
 633
 634/*
 635 * This section of code contains the logic for processing a thin device's IO.
 636 * Much of the code depends on pool object resources (lists, workqueues, etc)
 637 * but most is exclusively called from the thin target rather than the thin-pool
 638 * target.
 639 */
 640
 641static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
 642{
 643	struct pool *pool = tc->pool;
 644	sector_t block_nr = bio->bi_iter.bi_sector;
 645
 646	if (block_size_is_power_of_two(pool))
 647		block_nr >>= pool->sectors_per_block_shift;
 648	else
 649		(void) sector_div(block_nr, pool->sectors_per_block);
 650
 651	return block_nr;
 652}
 653
 654/*
 655 * Returns the _complete_ blocks that this bio covers.
 656 */
 657static void get_bio_block_range(struct thin_c *tc, struct bio *bio,
 658				dm_block_t *begin, dm_block_t *end)
 659{
 660	struct pool *pool = tc->pool;
 661	sector_t b = bio->bi_iter.bi_sector;
 662	sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT);
 663
 664	b += pool->sectors_per_block - 1ull; /* so we round up */
 665
 666	if (block_size_is_power_of_two(pool)) {
 667		b >>= pool->sectors_per_block_shift;
 668		e >>= pool->sectors_per_block_shift;
 669	} else {
 670		(void) sector_div(b, pool->sectors_per_block);
 671		(void) sector_div(e, pool->sectors_per_block);
 672	}
 673
 674	if (e < b)
 675		/* Can happen if the bio is within a single block. */
 676		e = b;
 677
 678	*begin = b;
 679	*end = e;
 680}
 681
 682static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
 683{
 684	struct pool *pool = tc->pool;
 685	sector_t bi_sector = bio->bi_iter.bi_sector;
 686
 687	bio_set_dev(bio, tc->pool_dev->bdev);
 688	if (block_size_is_power_of_two(pool))
 689		bio->bi_iter.bi_sector =
 690			(block << pool->sectors_per_block_shift) |
 691			(bi_sector & (pool->sectors_per_block - 1));
 692	else
 693		bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
 694				 sector_div(bi_sector, pool->sectors_per_block);
 695}
 696
 697static void remap_to_origin(struct thin_c *tc, struct bio *bio)
 698{
 699	bio_set_dev(bio, tc->origin_dev->bdev);
 700}
 701
 702static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
 703{
 704	return op_is_flush(bio->bi_opf) &&
 705		dm_thin_changed_this_transaction(tc->td);
 706}
 707
 708static void inc_all_io_entry(struct pool *pool, struct bio *bio)
 709{
 710	struct dm_thin_endio_hook *h;
 711
 712	if (bio_op(bio) == REQ_OP_DISCARD)
 713		return;
 714
 715	h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
 716	h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
 717}
 718
 719static void issue(struct thin_c *tc, struct bio *bio)
 720{
 721	struct pool *pool = tc->pool;
 722	unsigned long flags;
 723
 724	if (!bio_triggers_commit(tc, bio)) {
 725		generic_make_request(bio);
 726		return;
 727	}
 728
 729	/*
 730	 * Complete bio with an error if earlier I/O caused changes to
 731	 * the metadata that can't be committed e.g, due to I/O errors
 732	 * on the metadata device.
 733	 */
 734	if (dm_thin_aborted_changes(tc->td)) {
 735		bio_io_error(bio);
 736		return;
 737	}
 738
 739	/*
 740	 * Batch together any bios that trigger commits and then issue a
 741	 * single commit for them in process_deferred_bios().
 742	 */
 743	spin_lock_irqsave(&pool->lock, flags);
 744	bio_list_add(&pool->deferred_flush_bios, bio);
 745	spin_unlock_irqrestore(&pool->lock, flags);
 746}
 747
 748static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
 749{
 750	remap_to_origin(tc, bio);
 751	issue(tc, bio);
 752}
 753
 754static void remap_and_issue(struct thin_c *tc, struct bio *bio,
 755			    dm_block_t block)
 756{
 757	remap(tc, bio, block);
 758	issue(tc, bio);
 759}
 760
 761/*----------------------------------------------------------------*/
 762
 763/*
 764 * Bio endio functions.
 765 */
 766struct dm_thin_new_mapping {
 767	struct list_head list;
 768
 769	bool pass_discard:1;
 770	bool maybe_shared:1;
 771
 772	/*
 773	 * Track quiescing, copying and zeroing preparation actions.  When this
 774	 * counter hits zero the block is prepared and can be inserted into the
 775	 * btree.
 776	 */
 777	atomic_t prepare_actions;
 778
 779	blk_status_t status;
 780	struct thin_c *tc;
 781	dm_block_t virt_begin, virt_end;
 782	dm_block_t data_block;
 783	struct dm_bio_prison_cell *cell;
 784
 785	/*
 786	 * If the bio covers the whole area of a block then we can avoid
 787	 * zeroing or copying.  Instead this bio is hooked.  The bio will
 788	 * still be in the cell, so care has to be taken to avoid issuing
 789	 * the bio twice.
 790	 */
 791	struct bio *bio;
 792	bio_end_io_t *saved_bi_end_io;
 793};
 794
 795static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
 796{
 797	struct pool *pool = m->tc->pool;
 798
 799	if (atomic_dec_and_test(&m->prepare_actions)) {
 800		list_add_tail(&m->list, &pool->prepared_mappings);
 801		wake_worker(pool);
 802	}
 803}
 804
 805static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
 806{
 807	unsigned long flags;
 808	struct pool *pool = m->tc->pool;
 809
 810	spin_lock_irqsave(&pool->lock, flags);
 811	__complete_mapping_preparation(m);
 812	spin_unlock_irqrestore(&pool->lock, flags);
 813}
 814
 815static void copy_complete(int read_err, unsigned long write_err, void *context)
 816{
 817	struct dm_thin_new_mapping *m = context;
 818
 819	m->status = read_err || write_err ? BLK_STS_IOERR : 0;
 820	complete_mapping_preparation(m);
 821}
 822
 823static void overwrite_endio(struct bio *bio)
 824{
 825	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
 826	struct dm_thin_new_mapping *m = h->overwrite_mapping;
 827
 828	bio->bi_end_io = m->saved_bi_end_io;
 829
 830	m->status = bio->bi_status;
 831	complete_mapping_preparation(m);
 832}
 833
 834/*----------------------------------------------------------------*/
 835
 836/*
 837 * Workqueue.
 838 */
 839
 840/*
 841 * Prepared mapping jobs.
 842 */
 843
 844/*
 845 * This sends the bios in the cell, except the original holder, back
 846 * to the deferred_bios list.
 847 */
 848static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
 849{
 850	struct pool *pool = tc->pool;
 851	unsigned long flags;
 
 852
 853	spin_lock_irqsave(&tc->lock, flags);
 854	cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
 
 855	spin_unlock_irqrestore(&tc->lock, flags);
 856
 857	wake_worker(pool);
 
 858}
 859
 860static void thin_defer_bio(struct thin_c *tc, struct bio *bio);
 861
 862struct remap_info {
 863	struct thin_c *tc;
 864	struct bio_list defer_bios;
 865	struct bio_list issue_bios;
 866};
 867
 868static void __inc_remap_and_issue_cell(void *context,
 869				       struct dm_bio_prison_cell *cell)
 870{
 871	struct remap_info *info = context;
 872	struct bio *bio;
 873
 874	while ((bio = bio_list_pop(&cell->bios))) {
 875		if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD)
 876			bio_list_add(&info->defer_bios, bio);
 877		else {
 878			inc_all_io_entry(info->tc->pool, bio);
 879
 880			/*
 881			 * We can't issue the bios with the bio prison lock
 882			 * held, so we add them to a list to issue on
 883			 * return from this function.
 884			 */
 885			bio_list_add(&info->issue_bios, bio);
 886		}
 887	}
 888}
 889
 890static void inc_remap_and_issue_cell(struct thin_c *tc,
 891				     struct dm_bio_prison_cell *cell,
 892				     dm_block_t block)
 893{
 894	struct bio *bio;
 895	struct remap_info info;
 896
 897	info.tc = tc;
 898	bio_list_init(&info.defer_bios);
 899	bio_list_init(&info.issue_bios);
 900
 901	/*
 902	 * We have to be careful to inc any bios we're about to issue
 903	 * before the cell is released, and avoid a race with new bios
 904	 * being added to the cell.
 905	 */
 906	cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
 907			   &info, cell);
 908
 909	while ((bio = bio_list_pop(&info.defer_bios)))
 910		thin_defer_bio(tc, bio);
 911
 912	while ((bio = bio_list_pop(&info.issue_bios)))
 913		remap_and_issue(info.tc, bio, block);
 914}
 915
 916static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
 917{
 918	cell_error(m->tc->pool, m->cell);
 919	list_del(&m->list);
 920	mempool_free(m, m->tc->pool->mapping_pool);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 921}
 922
 923static void process_prepared_mapping(struct dm_thin_new_mapping *m)
 924{
 925	struct thin_c *tc = m->tc;
 926	struct pool *pool = tc->pool;
 927	struct bio *bio = m->bio;
 928	int r;
 929
 930	if (m->status) {
 931		cell_error(pool, m->cell);
 932		goto out;
 933	}
 934
 935	/*
 936	 * Commit the prepared block into the mapping btree.
 937	 * Any I/O for this block arriving after this point will get
 938	 * remapped to it directly.
 939	 */
 940	r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block);
 941	if (r) {
 942		metadata_operation_failed(pool, "dm_thin_insert_block", r);
 943		cell_error(pool, m->cell);
 944		goto out;
 945	}
 946
 947	/*
 948	 * Release any bios held while the block was being provisioned.
 949	 * If we are processing a write bio that completely covers the block,
 950	 * we already processed it so can ignore it now when processing
 951	 * the bios in the cell.
 952	 */
 953	if (bio) {
 954		inc_remap_and_issue_cell(tc, m->cell, m->data_block);
 955		bio_endio(bio);
 956	} else {
 957		inc_all_io_entry(tc->pool, m->cell->holder);
 958		remap_and_issue(tc, m->cell->holder, m->data_block);
 959		inc_remap_and_issue_cell(tc, m->cell, m->data_block);
 960	}
 961
 962out:
 963	list_del(&m->list);
 964	mempool_free(m, pool->mapping_pool);
 965}
 966
 967/*----------------------------------------------------------------*/
 968
 969static void free_discard_mapping(struct dm_thin_new_mapping *m)
 970{
 971	struct thin_c *tc = m->tc;
 972	if (m->cell)
 973		cell_defer_no_holder(tc, m->cell);
 974	mempool_free(m, tc->pool->mapping_pool);
 975}
 976
 977static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
 978{
 979	bio_io_error(m->bio);
 980	free_discard_mapping(m);
 981}
 982
 983static void process_prepared_discard_success(struct dm_thin_new_mapping *m)
 984{
 985	bio_endio(m->bio);
 986	free_discard_mapping(m);
 987}
 988
 989static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m)
 990{
 991	int r;
 992	struct thin_c *tc = m->tc;
 993
 994	r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end);
 995	if (r) {
 996		metadata_operation_failed(tc->pool, "dm_thin_remove_range", r);
 997		bio_io_error(m->bio);
 998	} else
 999		bio_endio(m->bio);
1000
1001	cell_defer_no_holder(tc, m->cell);
1002	mempool_free(m, tc->pool->mapping_pool);
1003}
1004
1005/*----------------------------------------------------------------*/
1006
1007static void passdown_double_checking_shared_status(struct dm_thin_new_mapping *m,
1008						   struct bio *discard_parent)
1009{
1010	/*
1011	 * We've already unmapped this range of blocks, but before we
1012	 * passdown we have to check that these blocks are now unused.
1013	 */
1014	int r = 0;
1015	bool used = true;
1016	struct thin_c *tc = m->tc;
1017	struct pool *pool = tc->pool;
1018	dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin;
1019	struct discard_op op;
1020
1021	begin_discard(&op, tc, discard_parent);
1022	while (b != end) {
1023		/* find start of unmapped run */
1024		for (; b < end; b++) {
1025			r = dm_pool_block_is_used(pool->pmd, b, &used);
1026			if (r)
1027				goto out;
1028
1029			if (!used)
1030				break;
1031		}
1032
1033		if (b == end)
1034			break;
1035
1036		/* find end of run */
1037		for (e = b + 1; e != end; e++) {
1038			r = dm_pool_block_is_used(pool->pmd, e, &used);
1039			if (r)
1040				goto out;
1041
1042			if (used)
1043				break;
1044		}
1045
1046		r = issue_discard(&op, b, e);
1047		if (r)
1048			goto out;
1049
1050		b = e;
1051	}
1052out:
1053	end_discard(&op, r);
1054}
1055
1056static void queue_passdown_pt2(struct dm_thin_new_mapping *m)
1057{
1058	unsigned long flags;
1059	struct pool *pool = m->tc->pool;
1060
1061	spin_lock_irqsave(&pool->lock, flags);
1062	list_add_tail(&m->list, &pool->prepared_discards_pt2);
1063	spin_unlock_irqrestore(&pool->lock, flags);
1064	wake_worker(pool);
1065}
1066
1067static void passdown_endio(struct bio *bio)
1068{
1069	/*
1070	 * It doesn't matter if the passdown discard failed, we still want
1071	 * to unmap (we ignore err).
1072	 */
1073	queue_passdown_pt2(bio->bi_private);
1074	bio_put(bio);
1075}
1076
1077static void process_prepared_discard_passdown_pt1(struct dm_thin_new_mapping *m)
1078{
1079	int r;
1080	struct thin_c *tc = m->tc;
1081	struct pool *pool = tc->pool;
1082	struct bio *discard_parent;
1083	dm_block_t data_end = m->data_block + (m->virt_end - m->virt_begin);
1084
1085	/*
1086	 * Only this thread allocates blocks, so we can be sure that the
1087	 * newly unmapped blocks will not be allocated before the end of
1088	 * the function.
1089	 */
1090	r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end);
1091	if (r) {
1092		metadata_operation_failed(pool, "dm_thin_remove_range", r);
1093		bio_io_error(m->bio);
1094		cell_defer_no_holder(tc, m->cell);
1095		mempool_free(m, pool->mapping_pool);
1096		return;
1097	}
1098
1099	/*
1100	 * Increment the unmapped blocks.  This prevents a race between the
1101	 * passdown io and reallocation of freed blocks.
1102	 */
1103	r = dm_pool_inc_data_range(pool->pmd, m->data_block, data_end);
1104	if (r) {
1105		metadata_operation_failed(pool, "dm_pool_inc_data_range", r);
1106		bio_io_error(m->bio);
1107		cell_defer_no_holder(tc, m->cell);
1108		mempool_free(m, pool->mapping_pool);
1109		return;
1110	}
1111
1112	discard_parent = bio_alloc(GFP_NOIO, 1);
1113	if (!discard_parent) {
1114		DMWARN("%s: unable to allocate top level discard bio for passdown. Skipping passdown.",
1115		       dm_device_name(tc->pool->pool_md));
1116		queue_passdown_pt2(m);
1117
1118	} else {
1119		discard_parent->bi_end_io = passdown_endio;
1120		discard_parent->bi_private = m;
1121
1122		if (m->maybe_shared)
1123			passdown_double_checking_shared_status(m, discard_parent);
1124		else {
1125			struct discard_op op;
1126
1127			begin_discard(&op, tc, discard_parent);
1128			r = issue_discard(&op, m->data_block, data_end);
1129			end_discard(&op, r);
1130		}
1131	}
1132}
1133
1134static void process_prepared_discard_passdown_pt2(struct dm_thin_new_mapping *m)
1135{
1136	int r;
1137	struct thin_c *tc = m->tc;
1138	struct pool *pool = tc->pool;
1139
1140	/*
1141	 * The passdown has completed, so now we can decrement all those
1142	 * unmapped blocks.
1143	 */
1144	r = dm_pool_dec_data_range(pool->pmd, m->data_block,
1145				   m->data_block + (m->virt_end - m->virt_begin));
1146	if (r) {
1147		metadata_operation_failed(pool, "dm_pool_dec_data_range", r);
1148		bio_io_error(m->bio);
1149	} else
1150		bio_endio(m->bio);
1151
1152	cell_defer_no_holder(tc, m->cell);
1153	mempool_free(m, pool->mapping_pool);
1154}
1155
1156static void process_prepared(struct pool *pool, struct list_head *head,
1157			     process_mapping_fn *fn)
1158{
1159	unsigned long flags;
1160	struct list_head maps;
1161	struct dm_thin_new_mapping *m, *tmp;
1162
1163	INIT_LIST_HEAD(&maps);
1164	spin_lock_irqsave(&pool->lock, flags);
1165	list_splice_init(head, &maps);
1166	spin_unlock_irqrestore(&pool->lock, flags);
1167
1168	list_for_each_entry_safe(m, tmp, &maps, list)
1169		(*fn)(m);
1170}
1171
1172/*
1173 * Deferred bio jobs.
1174 */
1175static int io_overlaps_block(struct pool *pool, struct bio *bio)
1176{
1177	return bio->bi_iter.bi_size ==
1178		(pool->sectors_per_block << SECTOR_SHIFT);
1179}
1180
1181static int io_overwrites_block(struct pool *pool, struct bio *bio)
1182{
1183	return (bio_data_dir(bio) == WRITE) &&
1184		io_overlaps_block(pool, bio);
1185}
1186
1187static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
1188			       bio_end_io_t *fn)
1189{
1190	*save = bio->bi_end_io;
1191	bio->bi_end_io = fn;
1192}
1193
1194static int ensure_next_mapping(struct pool *pool)
1195{
1196	if (pool->next_mapping)
1197		return 0;
1198
1199	pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
1200
1201	return pool->next_mapping ? 0 : -ENOMEM;
1202}
1203
1204static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
1205{
1206	struct dm_thin_new_mapping *m = pool->next_mapping;
1207
1208	BUG_ON(!pool->next_mapping);
1209
1210	memset(m, 0, sizeof(struct dm_thin_new_mapping));
1211	INIT_LIST_HEAD(&m->list);
1212	m->bio = NULL;
1213
1214	pool->next_mapping = NULL;
1215
1216	return m;
1217}
1218
1219static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
1220		    sector_t begin, sector_t end)
1221{
1222	int r;
1223	struct dm_io_region to;
1224
1225	to.bdev = tc->pool_dev->bdev;
1226	to.sector = begin;
1227	to.count = end - begin;
1228
1229	r = dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
1230	if (r < 0) {
1231		DMERR_LIMIT("dm_kcopyd_zero() failed");
1232		copy_complete(1, 1, m);
1233	}
1234}
1235
1236static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
1237				      dm_block_t data_begin,
1238				      struct dm_thin_new_mapping *m)
1239{
1240	struct pool *pool = tc->pool;
1241	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1242
1243	h->overwrite_mapping = m;
1244	m->bio = bio;
1245	save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1246	inc_all_io_entry(pool, bio);
1247	remap_and_issue(tc, bio, data_begin);
1248}
1249
1250/*
1251 * A partial copy also needs to zero the uncopied region.
1252 */
1253static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
1254			  struct dm_dev *origin, dm_block_t data_origin,
1255			  dm_block_t data_dest,
1256			  struct dm_bio_prison_cell *cell, struct bio *bio,
1257			  sector_t len)
1258{
1259	int r;
1260	struct pool *pool = tc->pool;
1261	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1262
1263	m->tc = tc;
1264	m->virt_begin = virt_block;
1265	m->virt_end = virt_block + 1u;
1266	m->data_block = data_dest;
1267	m->cell = cell;
1268
1269	/*
1270	 * quiesce action + copy action + an extra reference held for the
1271	 * duration of this function (we may need to inc later for a
1272	 * partial zero).
1273	 */
1274	atomic_set(&m->prepare_actions, 3);
1275
1276	if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
1277		complete_mapping_preparation(m); /* already quiesced */
1278
1279	/*
1280	 * IO to pool_dev remaps to the pool target's data_dev.
1281	 *
1282	 * If the whole block of data is being overwritten, we can issue the
1283	 * bio immediately. Otherwise we use kcopyd to clone the data first.
1284	 */
1285	if (io_overwrites_block(pool, bio))
1286		remap_and_issue_overwrite(tc, bio, data_dest, m);
1287	else {
1288		struct dm_io_region from, to;
1289
1290		from.bdev = origin->bdev;
1291		from.sector = data_origin * pool->sectors_per_block;
1292		from.count = len;
1293
1294		to.bdev = tc->pool_dev->bdev;
1295		to.sector = data_dest * pool->sectors_per_block;
1296		to.count = len;
1297
1298		r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
1299				   0, copy_complete, m);
1300		if (r < 0) {
1301			DMERR_LIMIT("dm_kcopyd_copy() failed");
1302			copy_complete(1, 1, m);
1303
1304			/*
1305			 * We allow the zero to be issued, to simplify the
1306			 * error path.  Otherwise we'd need to start
1307			 * worrying about decrementing the prepare_actions
1308			 * counter.
1309			 */
1310		}
1311
1312		/*
1313		 * Do we need to zero a tail region?
1314		 */
1315		if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
1316			atomic_inc(&m->prepare_actions);
1317			ll_zero(tc, m,
1318				data_dest * pool->sectors_per_block + len,
1319				(data_dest + 1) * pool->sectors_per_block);
1320		}
1321	}
1322
1323	complete_mapping_preparation(m); /* drop our ref */
1324}
1325
1326static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1327				   dm_block_t data_origin, dm_block_t data_dest,
1328				   struct dm_bio_prison_cell *cell, struct bio *bio)
1329{
1330	schedule_copy(tc, virt_block, tc->pool_dev,
1331		      data_origin, data_dest, cell, bio,
1332		      tc->pool->sectors_per_block);
1333}
1334
1335static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1336			  dm_block_t data_block, struct dm_bio_prison_cell *cell,
1337			  struct bio *bio)
1338{
1339	struct pool *pool = tc->pool;
1340	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1341
1342	atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
1343	m->tc = tc;
1344	m->virt_begin = virt_block;
1345	m->virt_end = virt_block + 1u;
1346	m->data_block = data_block;
1347	m->cell = cell;
1348
1349	/*
1350	 * If the whole block of data is being overwritten or we are not
1351	 * zeroing pre-existing data, we can issue the bio immediately.
1352	 * Otherwise we use kcopyd to zero the data first.
1353	 */
1354	if (pool->pf.zero_new_blocks) {
1355		if (io_overwrites_block(pool, bio))
1356			remap_and_issue_overwrite(tc, bio, data_block, m);
1357		else
1358			ll_zero(tc, m, data_block * pool->sectors_per_block,
1359				(data_block + 1) * pool->sectors_per_block);
1360	} else
1361		process_prepared_mapping(m);
1362}
1363
1364static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1365				   dm_block_t data_dest,
1366				   struct dm_bio_prison_cell *cell, struct bio *bio)
1367{
1368	struct pool *pool = tc->pool;
1369	sector_t virt_block_begin = virt_block * pool->sectors_per_block;
1370	sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
1371
1372	if (virt_block_end <= tc->origin_size)
1373		schedule_copy(tc, virt_block, tc->origin_dev,
1374			      virt_block, data_dest, cell, bio,
1375			      pool->sectors_per_block);
1376
1377	else if (virt_block_begin < tc->origin_size)
1378		schedule_copy(tc, virt_block, tc->origin_dev,
1379			      virt_block, data_dest, cell, bio,
1380			      tc->origin_size - virt_block_begin);
1381
1382	else
1383		schedule_zero(tc, virt_block, data_dest, cell, bio);
1384}
1385
1386static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
1387
1388static void check_for_space(struct pool *pool)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1389{
1390	int r;
1391	dm_block_t nr_free;
1392
1393	if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE)
1394		return;
1395
1396	r = dm_pool_get_free_block_count(pool->pmd, &nr_free);
1397	if (r)
1398		return;
1399
1400	if (nr_free)
1401		set_pool_mode(pool, PM_WRITE);
 
 
1402}
1403
1404/*
1405 * A non-zero return indicates read_only or fail_io mode.
1406 * Many callers don't care about the return value.
1407 */
1408static int commit(struct pool *pool)
1409{
1410	int r;
1411
1412	if (get_pool_mode(pool) >= PM_READ_ONLY)
1413		return -EINVAL;
1414
1415	r = dm_pool_commit_metadata(pool->pmd);
1416	if (r)
1417		metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1418	else
1419		check_for_space(pool);
 
 
1420
1421	return r;
1422}
1423
1424static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
1425{
1426	unsigned long flags;
1427
1428	if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1429		DMWARN("%s: reached low water mark for data device: sending event.",
1430		       dm_device_name(pool->pool_md));
1431		spin_lock_irqsave(&pool->lock, flags);
1432		pool->low_water_triggered = true;
1433		spin_unlock_irqrestore(&pool->lock, flags);
1434		dm_table_event(pool->ti->table);
1435	}
1436}
1437
1438static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1439{
1440	int r;
1441	dm_block_t free_blocks;
1442	struct pool *pool = tc->pool;
1443
1444	if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1445		return -EINVAL;
1446
1447	r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1448	if (r) {
1449		metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1450		return r;
1451	}
1452
1453	check_low_water_mark(pool, free_blocks);
1454
1455	if (!free_blocks) {
1456		/*
1457		 * Try to commit to see if that will free up some
1458		 * more space.
1459		 */
1460		r = commit(pool);
1461		if (r)
1462			return r;
1463
1464		r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1465		if (r) {
1466			metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1467			return r;
1468		}
1469
1470		if (!free_blocks) {
1471			set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1472			return -ENOSPC;
1473		}
1474	}
1475
1476	r = dm_pool_alloc_data_block(pool->pmd, result);
1477	if (r) {
1478		metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
 
 
 
1479		return r;
1480	}
1481
 
 
 
 
 
 
 
 
 
 
 
 
 
1482	return 0;
1483}
1484
1485/*
1486 * If we have run out of space, queue bios until the device is
1487 * resumed, presumably after having been reloaded with more space.
1488 */
1489static void retry_on_resume(struct bio *bio)
1490{
1491	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1492	struct thin_c *tc = h->tc;
1493	unsigned long flags;
1494
1495	spin_lock_irqsave(&tc->lock, flags);
1496	bio_list_add(&tc->retry_on_resume_list, bio);
1497	spin_unlock_irqrestore(&tc->lock, flags);
1498}
1499
1500static blk_status_t should_error_unserviceable_bio(struct pool *pool)
1501{
1502	enum pool_mode m = get_pool_mode(pool);
1503
1504	switch (m) {
1505	case PM_WRITE:
1506		/* Shouldn't get here */
1507		DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1508		return BLK_STS_IOERR;
1509
1510	case PM_OUT_OF_DATA_SPACE:
1511		return pool->pf.error_if_no_space ? BLK_STS_NOSPC : 0;
1512
 
1513	case PM_READ_ONLY:
1514	case PM_FAIL:
1515		return BLK_STS_IOERR;
1516	default:
1517		/* Shouldn't get here */
1518		DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1519		return BLK_STS_IOERR;
1520	}
1521}
1522
1523static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1524{
1525	blk_status_t error = should_error_unserviceable_bio(pool);
1526
1527	if (error) {
1528		bio->bi_status = error;
1529		bio_endio(bio);
1530	} else
1531		retry_on_resume(bio);
1532}
1533
1534static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1535{
1536	struct bio *bio;
1537	struct bio_list bios;
1538	blk_status_t error;
1539
1540	error = should_error_unserviceable_bio(pool);
1541	if (error) {
1542		cell_error_with_code(pool, cell, error);
1543		return;
1544	}
1545
1546	bio_list_init(&bios);
1547	cell_release(pool, cell, &bios);
1548
1549	while ((bio = bio_list_pop(&bios)))
1550		retry_on_resume(bio);
1551}
1552
1553static void process_discard_cell_no_passdown(struct thin_c *tc,
1554					     struct dm_bio_prison_cell *virt_cell)
1555{
1556	struct pool *pool = tc->pool;
1557	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1558
1559	/*
1560	 * We don't need to lock the data blocks, since there's no
1561	 * passdown.  We only lock data blocks for allocation and breaking sharing.
1562	 */
1563	m->tc = tc;
1564	m->virt_begin = virt_cell->key.block_begin;
1565	m->virt_end = virt_cell->key.block_end;
1566	m->cell = virt_cell;
1567	m->bio = virt_cell->holder;
1568
1569	if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1570		pool->process_prepared_discard(m);
1571}
1572
1573static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end,
1574				 struct bio *bio)
1575{
1576	struct pool *pool = tc->pool;
1577
1578	int r;
1579	bool maybe_shared;
1580	struct dm_cell_key data_key;
1581	struct dm_bio_prison_cell *data_cell;
1582	struct dm_thin_new_mapping *m;
1583	dm_block_t virt_begin, virt_end, data_begin;
1584
1585	while (begin != end) {
1586		r = ensure_next_mapping(pool);
1587		if (r)
1588			/* we did our best */
1589			return;
1590
1591		r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end,
1592					      &data_begin, &maybe_shared);
1593		if (r)
1594			/*
1595			 * Silently fail, letting any mappings we've
1596			 * created complete.
1597			 */
1598			break;
1599
1600		build_key(tc->td, PHYSICAL, data_begin, data_begin + (virt_end - virt_begin), &data_key);
1601		if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) {
1602			/* contention, we'll give up with this range */
1603			begin = virt_end;
1604			continue;
1605		}
1606
1607		/*
1608		 * IO may still be going to the destination block.  We must
1609		 * quiesce before we can do the removal.
1610		 */
1611		m = get_next_mapping(pool);
1612		m->tc = tc;
1613		m->maybe_shared = maybe_shared;
1614		m->virt_begin = virt_begin;
1615		m->virt_end = virt_end;
1616		m->data_block = data_begin;
1617		m->cell = data_cell;
1618		m->bio = bio;
1619
1620		/*
1621		 * The parent bio must not complete before sub discard bios are
1622		 * chained to it (see end_discard's bio_chain)!
1623		 *
1624		 * This per-mapping bi_remaining increment is paired with
1625		 * the implicit decrement that occurs via bio_endio() in
1626		 * end_discard().
1627		 */
1628		bio_inc_remaining(bio);
1629		if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1630			pool->process_prepared_discard(m);
1631
1632		begin = virt_end;
1633	}
1634}
1635
1636static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell)
1637{
1638	struct bio *bio = virt_cell->holder;
1639	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1640
1641	/*
1642	 * The virt_cell will only get freed once the origin bio completes.
1643	 * This means it will remain locked while all the individual
1644	 * passdown bios are in flight.
1645	 */
1646	h->cell = virt_cell;
1647	break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio);
1648
1649	/*
1650	 * We complete the bio now, knowing that the bi_remaining field
1651	 * will prevent completion until the sub range discards have
1652	 * completed.
1653	 */
1654	bio_endio(bio);
1655}
1656
1657static void process_discard_bio(struct thin_c *tc, struct bio *bio)
1658{
1659	dm_block_t begin, end;
1660	struct dm_cell_key virt_key;
1661	struct dm_bio_prison_cell *virt_cell;
1662
1663	get_bio_block_range(tc, bio, &begin, &end);
1664	if (begin == end) {
1665		/*
1666		 * The discard covers less than a block.
1667		 */
1668		bio_endio(bio);
1669		return;
1670	}
1671
1672	build_key(tc->td, VIRTUAL, begin, end, &virt_key);
1673	if (bio_detain(tc->pool, &virt_key, bio, &virt_cell))
1674		/*
1675		 * Potential starvation issue: We're relying on the
1676		 * fs/application being well behaved, and not trying to
1677		 * send IO to a region at the same time as discarding it.
1678		 * If they do this persistently then it's possible this
1679		 * cell will never be granted.
1680		 */
1681		return;
1682
1683	tc->pool->process_discard_cell(tc, virt_cell);
1684}
1685
1686static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1687			  struct dm_cell_key *key,
1688			  struct dm_thin_lookup_result *lookup_result,
1689			  struct dm_bio_prison_cell *cell)
1690{
1691	int r;
1692	dm_block_t data_block;
1693	struct pool *pool = tc->pool;
1694
1695	r = alloc_data_block(tc, &data_block);
1696	switch (r) {
1697	case 0:
1698		schedule_internal_copy(tc, block, lookup_result->block,
1699				       data_block, cell, bio);
1700		break;
1701
1702	case -ENOSPC:
1703		retry_bios_on_resume(pool, cell);
1704		break;
1705
1706	default:
1707		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1708			    __func__, r);
1709		cell_error(pool, cell);
1710		break;
1711	}
1712}
1713
1714static void __remap_and_issue_shared_cell(void *context,
1715					  struct dm_bio_prison_cell *cell)
1716{
1717	struct remap_info *info = context;
1718	struct bio *bio;
1719
1720	while ((bio = bio_list_pop(&cell->bios))) {
1721		if (bio_data_dir(bio) == WRITE || op_is_flush(bio->bi_opf) ||
1722		    bio_op(bio) == REQ_OP_DISCARD)
1723			bio_list_add(&info->defer_bios, bio);
1724		else {
1725			struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1726
1727			h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds);
1728			inc_all_io_entry(info->tc->pool, bio);
1729			bio_list_add(&info->issue_bios, bio);
1730		}
1731	}
1732}
1733
1734static void remap_and_issue_shared_cell(struct thin_c *tc,
1735					struct dm_bio_prison_cell *cell,
1736					dm_block_t block)
1737{
1738	struct bio *bio;
1739	struct remap_info info;
1740
1741	info.tc = tc;
1742	bio_list_init(&info.defer_bios);
1743	bio_list_init(&info.issue_bios);
1744
1745	cell_visit_release(tc->pool, __remap_and_issue_shared_cell,
1746			   &info, cell);
1747
1748	while ((bio = bio_list_pop(&info.defer_bios)))
1749		thin_defer_bio(tc, bio);
1750
1751	while ((bio = bio_list_pop(&info.issue_bios)))
1752		remap_and_issue(tc, bio, block);
1753}
1754
1755static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1756			       dm_block_t block,
1757			       struct dm_thin_lookup_result *lookup_result,
1758			       struct dm_bio_prison_cell *virt_cell)
1759{
1760	struct dm_bio_prison_cell *data_cell;
1761	struct pool *pool = tc->pool;
1762	struct dm_cell_key key;
1763
1764	/*
1765	 * If cell is already occupied, then sharing is already in the process
1766	 * of being broken so we have nothing further to do here.
1767	 */
1768	build_data_key(tc->td, lookup_result->block, &key);
1769	if (bio_detain(pool, &key, bio, &data_cell)) {
1770		cell_defer_no_holder(tc, virt_cell);
1771		return;
1772	}
1773
1774	if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) {
1775		break_sharing(tc, bio, block, &key, lookup_result, data_cell);
1776		cell_defer_no_holder(tc, virt_cell);
1777	} else {
1778		struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1779
1780		h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1781		inc_all_io_entry(pool, bio);
1782		remap_and_issue(tc, bio, lookup_result->block);
1783
1784		remap_and_issue_shared_cell(tc, data_cell, lookup_result->block);
1785		remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block);
1786	}
1787}
1788
1789static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1790			    struct dm_bio_prison_cell *cell)
1791{
1792	int r;
1793	dm_block_t data_block;
1794	struct pool *pool = tc->pool;
1795
1796	/*
1797	 * Remap empty bios (flushes) immediately, without provisioning.
1798	 */
1799	if (!bio->bi_iter.bi_size) {
1800		inc_all_io_entry(pool, bio);
1801		cell_defer_no_holder(tc, cell);
1802
1803		remap_and_issue(tc, bio, 0);
1804		return;
1805	}
1806
1807	/*
1808	 * Fill read bios with zeroes and complete them immediately.
1809	 */
1810	if (bio_data_dir(bio) == READ) {
1811		zero_fill_bio(bio);
1812		cell_defer_no_holder(tc, cell);
1813		bio_endio(bio);
1814		return;
1815	}
1816
1817	r = alloc_data_block(tc, &data_block);
1818	switch (r) {
1819	case 0:
1820		if (tc->origin_dev)
1821			schedule_external_copy(tc, block, data_block, cell, bio);
1822		else
1823			schedule_zero(tc, block, data_block, cell, bio);
1824		break;
1825
1826	case -ENOSPC:
1827		retry_bios_on_resume(pool, cell);
1828		break;
1829
1830	default:
1831		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1832			    __func__, r);
1833		cell_error(pool, cell);
1834		break;
1835	}
1836}
1837
1838static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1839{
1840	int r;
1841	struct pool *pool = tc->pool;
1842	struct bio *bio = cell->holder;
1843	dm_block_t block = get_bio_block(tc, bio);
1844	struct dm_thin_lookup_result lookup_result;
1845
1846	if (tc->requeue_mode) {
1847		cell_requeue(pool, cell);
1848		return;
1849	}
1850
1851	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1852	switch (r) {
1853	case 0:
1854		if (lookup_result.shared)
1855			process_shared_bio(tc, bio, block, &lookup_result, cell);
1856		else {
1857			inc_all_io_entry(pool, bio);
1858			remap_and_issue(tc, bio, lookup_result.block);
1859			inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1860		}
1861		break;
1862
1863	case -ENODATA:
1864		if (bio_data_dir(bio) == READ && tc->origin_dev) {
1865			inc_all_io_entry(pool, bio);
1866			cell_defer_no_holder(tc, cell);
1867
1868			if (bio_end_sector(bio) <= tc->origin_size)
1869				remap_to_origin_and_issue(tc, bio);
1870
1871			else if (bio->bi_iter.bi_sector < tc->origin_size) {
1872				zero_fill_bio(bio);
1873				bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
1874				remap_to_origin_and_issue(tc, bio);
1875
1876			} else {
1877				zero_fill_bio(bio);
1878				bio_endio(bio);
1879			}
1880		} else
1881			provision_block(tc, bio, block, cell);
1882		break;
1883
1884	default:
1885		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1886			    __func__, r);
1887		cell_defer_no_holder(tc, cell);
1888		bio_io_error(bio);
1889		break;
1890	}
1891}
1892
1893static void process_bio(struct thin_c *tc, struct bio *bio)
1894{
1895	struct pool *pool = tc->pool;
1896	dm_block_t block = get_bio_block(tc, bio);
1897	struct dm_bio_prison_cell *cell;
1898	struct dm_cell_key key;
1899
1900	/*
1901	 * If cell is already occupied, then the block is already
1902	 * being provisioned so we have nothing further to do here.
1903	 */
1904	build_virtual_key(tc->td, block, &key);
1905	if (bio_detain(pool, &key, bio, &cell))
1906		return;
1907
1908	process_cell(tc, cell);
1909}
1910
1911static void __process_bio_read_only(struct thin_c *tc, struct bio *bio,
1912				    struct dm_bio_prison_cell *cell)
1913{
1914	int r;
1915	int rw = bio_data_dir(bio);
1916	dm_block_t block = get_bio_block(tc, bio);
1917	struct dm_thin_lookup_result lookup_result;
1918
1919	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1920	switch (r) {
1921	case 0:
1922		if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) {
1923			handle_unserviceable_bio(tc->pool, bio);
1924			if (cell)
1925				cell_defer_no_holder(tc, cell);
1926		} else {
1927			inc_all_io_entry(tc->pool, bio);
1928			remap_and_issue(tc, bio, lookup_result.block);
1929			if (cell)
1930				inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1931		}
1932		break;
1933
1934	case -ENODATA:
1935		if (cell)
1936			cell_defer_no_holder(tc, cell);
1937		if (rw != READ) {
1938			handle_unserviceable_bio(tc->pool, bio);
1939			break;
1940		}
1941
1942		if (tc->origin_dev) {
1943			inc_all_io_entry(tc->pool, bio);
1944			remap_to_origin_and_issue(tc, bio);
1945			break;
1946		}
1947
1948		zero_fill_bio(bio);
1949		bio_endio(bio);
1950		break;
1951
1952	default:
1953		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1954			    __func__, r);
1955		if (cell)
1956			cell_defer_no_holder(tc, cell);
1957		bio_io_error(bio);
1958		break;
1959	}
1960}
1961
1962static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1963{
1964	__process_bio_read_only(tc, bio, NULL);
1965}
1966
1967static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1968{
1969	__process_bio_read_only(tc, cell->holder, cell);
1970}
1971
1972static void process_bio_success(struct thin_c *tc, struct bio *bio)
1973{
1974	bio_endio(bio);
1975}
1976
1977static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1978{
1979	bio_io_error(bio);
1980}
1981
1982static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1983{
1984	cell_success(tc->pool, cell);
1985}
1986
1987static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1988{
1989	cell_error(tc->pool, cell);
1990}
1991
1992/*
1993 * FIXME: should we also commit due to size of transaction, measured in
1994 * metadata blocks?
1995 */
1996static int need_commit_due_to_time(struct pool *pool)
1997{
1998	return !time_in_range(jiffies, pool->last_commit_jiffies,
1999			      pool->last_commit_jiffies + COMMIT_PERIOD);
2000}
2001
2002#define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
2003#define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
2004
2005static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
2006{
2007	struct rb_node **rbp, *parent;
2008	struct dm_thin_endio_hook *pbd;
2009	sector_t bi_sector = bio->bi_iter.bi_sector;
2010
2011	rbp = &tc->sort_bio_list.rb_node;
2012	parent = NULL;
2013	while (*rbp) {
2014		parent = *rbp;
2015		pbd = thin_pbd(parent);
2016
2017		if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
2018			rbp = &(*rbp)->rb_left;
2019		else
2020			rbp = &(*rbp)->rb_right;
2021	}
2022
2023	pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2024	rb_link_node(&pbd->rb_node, parent, rbp);
2025	rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
2026}
2027
2028static void __extract_sorted_bios(struct thin_c *tc)
2029{
2030	struct rb_node *node;
2031	struct dm_thin_endio_hook *pbd;
2032	struct bio *bio;
2033
2034	for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
2035		pbd = thin_pbd(node);
2036		bio = thin_bio(pbd);
2037
2038		bio_list_add(&tc->deferred_bio_list, bio);
2039		rb_erase(&pbd->rb_node, &tc->sort_bio_list);
2040	}
2041
2042	WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
2043}
2044
2045static void __sort_thin_deferred_bios(struct thin_c *tc)
2046{
2047	struct bio *bio;
2048	struct bio_list bios;
2049
2050	bio_list_init(&bios);
2051	bio_list_merge(&bios, &tc->deferred_bio_list);
2052	bio_list_init(&tc->deferred_bio_list);
2053
2054	/* Sort deferred_bio_list using rb-tree */
2055	while ((bio = bio_list_pop(&bios)))
2056		__thin_bio_rb_add(tc, bio);
2057
2058	/*
2059	 * Transfer the sorted bios in sort_bio_list back to
2060	 * deferred_bio_list to allow lockless submission of
2061	 * all bios.
2062	 */
2063	__extract_sorted_bios(tc);
2064}
2065
2066static void process_thin_deferred_bios(struct thin_c *tc)
2067{
2068	struct pool *pool = tc->pool;
2069	unsigned long flags;
2070	struct bio *bio;
2071	struct bio_list bios;
2072	struct blk_plug plug;
2073	unsigned count = 0;
2074
2075	if (tc->requeue_mode) {
2076		error_thin_bio_list(tc, &tc->deferred_bio_list,
2077				BLK_STS_DM_REQUEUE);
2078		return;
2079	}
2080
2081	bio_list_init(&bios);
2082
2083	spin_lock_irqsave(&tc->lock, flags);
2084
2085	if (bio_list_empty(&tc->deferred_bio_list)) {
2086		spin_unlock_irqrestore(&tc->lock, flags);
2087		return;
2088	}
2089
2090	__sort_thin_deferred_bios(tc);
2091
2092	bio_list_merge(&bios, &tc->deferred_bio_list);
2093	bio_list_init(&tc->deferred_bio_list);
2094
2095	spin_unlock_irqrestore(&tc->lock, flags);
2096
2097	blk_start_plug(&plug);
2098	while ((bio = bio_list_pop(&bios))) {
2099		/*
2100		 * If we've got no free new_mapping structs, and processing
2101		 * this bio might require one, we pause until there are some
2102		 * prepared mappings to process.
2103		 */
2104		if (ensure_next_mapping(pool)) {
2105			spin_lock_irqsave(&tc->lock, flags);
2106			bio_list_add(&tc->deferred_bio_list, bio);
2107			bio_list_merge(&tc->deferred_bio_list, &bios);
2108			spin_unlock_irqrestore(&tc->lock, flags);
2109			break;
2110		}
2111
2112		if (bio_op(bio) == REQ_OP_DISCARD)
2113			pool->process_discard(tc, bio);
2114		else
2115			pool->process_bio(tc, bio);
2116
2117		if ((count++ & 127) == 0) {
2118			throttle_work_update(&pool->throttle);
2119			dm_pool_issue_prefetches(pool->pmd);
2120		}
2121	}
2122	blk_finish_plug(&plug);
2123}
2124
2125static int cmp_cells(const void *lhs, const void *rhs)
2126{
2127	struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs);
2128	struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs);
2129
2130	BUG_ON(!lhs_cell->holder);
2131	BUG_ON(!rhs_cell->holder);
2132
2133	if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector)
2134		return -1;
2135
2136	if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector)
2137		return 1;
2138
2139	return 0;
2140}
2141
2142static unsigned sort_cells(struct pool *pool, struct list_head *cells)
2143{
2144	unsigned count = 0;
2145	struct dm_bio_prison_cell *cell, *tmp;
2146
2147	list_for_each_entry_safe(cell, tmp, cells, user_list) {
2148		if (count >= CELL_SORT_ARRAY_SIZE)
2149			break;
2150
2151		pool->cell_sort_array[count++] = cell;
2152		list_del(&cell->user_list);
2153	}
2154
2155	sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL);
2156
2157	return count;
2158}
2159
2160static void process_thin_deferred_cells(struct thin_c *tc)
2161{
2162	struct pool *pool = tc->pool;
2163	unsigned long flags;
2164	struct list_head cells;
2165	struct dm_bio_prison_cell *cell;
2166	unsigned i, j, count;
2167
2168	INIT_LIST_HEAD(&cells);
2169
2170	spin_lock_irqsave(&tc->lock, flags);
2171	list_splice_init(&tc->deferred_cells, &cells);
2172	spin_unlock_irqrestore(&tc->lock, flags);
2173
2174	if (list_empty(&cells))
2175		return;
2176
2177	do {
2178		count = sort_cells(tc->pool, &cells);
2179
2180		for (i = 0; i < count; i++) {
2181			cell = pool->cell_sort_array[i];
2182			BUG_ON(!cell->holder);
2183
2184			/*
2185			 * If we've got no free new_mapping structs, and processing
2186			 * this bio might require one, we pause until there are some
2187			 * prepared mappings to process.
2188			 */
2189			if (ensure_next_mapping(pool)) {
2190				for (j = i; j < count; j++)
2191					list_add(&pool->cell_sort_array[j]->user_list, &cells);
2192
2193				spin_lock_irqsave(&tc->lock, flags);
2194				list_splice(&cells, &tc->deferred_cells);
2195				spin_unlock_irqrestore(&tc->lock, flags);
2196				return;
2197			}
2198
2199			if (bio_op(cell->holder) == REQ_OP_DISCARD)
2200				pool->process_discard_cell(tc, cell);
2201			else
2202				pool->process_cell(tc, cell);
2203		}
2204	} while (!list_empty(&cells));
2205}
2206
2207static void thin_get(struct thin_c *tc);
2208static void thin_put(struct thin_c *tc);
2209
2210/*
2211 * We can't hold rcu_read_lock() around code that can block.  So we
2212 * find a thin with the rcu lock held; bump a refcount; then drop
2213 * the lock.
2214 */
2215static struct thin_c *get_first_thin(struct pool *pool)
2216{
2217	struct thin_c *tc = NULL;
2218
2219	rcu_read_lock();
2220	if (!list_empty(&pool->active_thins)) {
2221		tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
2222		thin_get(tc);
2223	}
2224	rcu_read_unlock();
2225
2226	return tc;
2227}
2228
2229static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
2230{
2231	struct thin_c *old_tc = tc;
2232
2233	rcu_read_lock();
2234	list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
2235		thin_get(tc);
2236		thin_put(old_tc);
2237		rcu_read_unlock();
2238		return tc;
2239	}
2240	thin_put(old_tc);
2241	rcu_read_unlock();
2242
2243	return NULL;
2244}
2245
2246static void process_deferred_bios(struct pool *pool)
2247{
2248	unsigned long flags;
2249	struct bio *bio;
2250	struct bio_list bios;
2251	struct thin_c *tc;
2252
2253	tc = get_first_thin(pool);
2254	while (tc) {
2255		process_thin_deferred_cells(tc);
2256		process_thin_deferred_bios(tc);
2257		tc = get_next_thin(pool, tc);
2258	}
2259
2260	/*
2261	 * If there are any deferred flush bios, we must commit
2262	 * the metadata before issuing them.
2263	 */
2264	bio_list_init(&bios);
2265	spin_lock_irqsave(&pool->lock, flags);
 
 
2266	bio_list_merge(&bios, &pool->deferred_flush_bios);
2267	bio_list_init(&pool->deferred_flush_bios);
2268	spin_unlock_irqrestore(&pool->lock, flags);
2269
2270	if (bio_list_empty(&bios) &&
 
 
 
 
2271	    !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
2272		return;
2273
2274	if (commit(pool)) {
 
 
2275		while ((bio = bio_list_pop(&bios)))
2276			bio_io_error(bio);
2277		return;
2278	}
2279	pool->last_commit_jiffies = jiffies;
2280
2281	while ((bio = bio_list_pop(&bios)))
2282		generic_make_request(bio);
 
 
 
 
 
 
 
 
 
 
 
2283}
2284
2285static void do_worker(struct work_struct *ws)
2286{
2287	struct pool *pool = container_of(ws, struct pool, worker);
2288
2289	throttle_work_start(&pool->throttle);
2290	dm_pool_issue_prefetches(pool->pmd);
2291	throttle_work_update(&pool->throttle);
2292	process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
2293	throttle_work_update(&pool->throttle);
2294	process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
2295	throttle_work_update(&pool->throttle);
2296	process_prepared(pool, &pool->prepared_discards_pt2, &pool->process_prepared_discard_pt2);
2297	throttle_work_update(&pool->throttle);
2298	process_deferred_bios(pool);
2299	throttle_work_complete(&pool->throttle);
2300}
2301
2302/*
2303 * We want to commit periodically so that not too much
2304 * unwritten data builds up.
2305 */
2306static void do_waker(struct work_struct *ws)
2307{
2308	struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
2309	wake_worker(pool);
2310	queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
2311}
2312
2313static void notify_of_pool_mode_change_to_oods(struct pool *pool);
2314
2315/*
2316 * We're holding onto IO to allow userland time to react.  After the
2317 * timeout either the pool will have been resized (and thus back in
2318 * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space.
2319 */
2320static void do_no_space_timeout(struct work_struct *ws)
2321{
2322	struct pool *pool = container_of(to_delayed_work(ws), struct pool,
2323					 no_space_timeout);
2324
2325	if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) {
2326		pool->pf.error_if_no_space = true;
2327		notify_of_pool_mode_change_to_oods(pool);
2328		error_retry_list_with_code(pool, BLK_STS_NOSPC);
2329	}
2330}
2331
2332/*----------------------------------------------------------------*/
2333
2334struct pool_work {
2335	struct work_struct worker;
2336	struct completion complete;
2337};
2338
2339static struct pool_work *to_pool_work(struct work_struct *ws)
2340{
2341	return container_of(ws, struct pool_work, worker);
2342}
2343
2344static void pool_work_complete(struct pool_work *pw)
2345{
2346	complete(&pw->complete);
2347}
2348
2349static void pool_work_wait(struct pool_work *pw, struct pool *pool,
2350			   void (*fn)(struct work_struct *))
2351{
2352	INIT_WORK_ONSTACK(&pw->worker, fn);
2353	init_completion(&pw->complete);
2354	queue_work(pool->wq, &pw->worker);
2355	wait_for_completion(&pw->complete);
2356}
2357
2358/*----------------------------------------------------------------*/
2359
2360struct noflush_work {
2361	struct pool_work pw;
2362	struct thin_c *tc;
2363};
2364
2365static struct noflush_work *to_noflush(struct work_struct *ws)
2366{
2367	return container_of(to_pool_work(ws), struct noflush_work, pw);
2368}
2369
2370static void do_noflush_start(struct work_struct *ws)
2371{
2372	struct noflush_work *w = to_noflush(ws);
2373	w->tc->requeue_mode = true;
2374	requeue_io(w->tc);
2375	pool_work_complete(&w->pw);
2376}
2377
2378static void do_noflush_stop(struct work_struct *ws)
2379{
2380	struct noflush_work *w = to_noflush(ws);
2381	w->tc->requeue_mode = false;
2382	pool_work_complete(&w->pw);
2383}
2384
2385static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
2386{
2387	struct noflush_work w;
2388
2389	w.tc = tc;
2390	pool_work_wait(&w.pw, tc->pool, fn);
2391}
2392
2393/*----------------------------------------------------------------*/
2394
2395static enum pool_mode get_pool_mode(struct pool *pool)
2396{
2397	return pool->pf.mode;
2398}
2399
2400static void notify_of_pool_mode_change(struct pool *pool, const char *new_mode)
2401{
2402	dm_table_event(pool->ti->table);
2403	DMINFO("%s: switching pool to %s mode",
2404	       dm_device_name(pool->pool_md), new_mode);
2405}
2406
2407static void notify_of_pool_mode_change_to_oods(struct pool *pool)
2408{
2409	if (!pool->pf.error_if_no_space)
2410		notify_of_pool_mode_change(pool, "out-of-data-space (queue IO)");
2411	else
2412		notify_of_pool_mode_change(pool, "out-of-data-space (error IO)");
2413}
2414
2415static bool passdown_enabled(struct pool_c *pt)
2416{
2417	return pt->adjusted_pf.discard_passdown;
2418}
2419
2420static void set_discard_callbacks(struct pool *pool)
2421{
2422	struct pool_c *pt = pool->ti->private;
2423
2424	if (passdown_enabled(pt)) {
2425		pool->process_discard_cell = process_discard_cell_passdown;
2426		pool->process_prepared_discard = process_prepared_discard_passdown_pt1;
2427		pool->process_prepared_discard_pt2 = process_prepared_discard_passdown_pt2;
2428	} else {
2429		pool->process_discard_cell = process_discard_cell_no_passdown;
2430		pool->process_prepared_discard = process_prepared_discard_no_passdown;
2431	}
2432}
2433
2434static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
2435{
2436	struct pool_c *pt = pool->ti->private;
2437	bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
2438	enum pool_mode old_mode = get_pool_mode(pool);
2439	unsigned long no_space_timeout = READ_ONCE(no_space_timeout_secs) * HZ;
2440
2441	/*
2442	 * Never allow the pool to transition to PM_WRITE mode if user
2443	 * intervention is required to verify metadata and data consistency.
2444	 */
2445	if (new_mode == PM_WRITE && needs_check) {
2446		DMERR("%s: unable to switch pool to write mode until repaired.",
2447		      dm_device_name(pool->pool_md));
2448		if (old_mode != new_mode)
2449			new_mode = old_mode;
2450		else
2451			new_mode = PM_READ_ONLY;
2452	}
2453	/*
2454	 * If we were in PM_FAIL mode, rollback of metadata failed.  We're
2455	 * not going to recover without a thin_repair.	So we never let the
2456	 * pool move out of the old mode.
2457	 */
2458	if (old_mode == PM_FAIL)
2459		new_mode = old_mode;
2460
2461	switch (new_mode) {
2462	case PM_FAIL:
2463		if (old_mode != new_mode)
2464			notify_of_pool_mode_change(pool, "failure");
2465		dm_pool_metadata_read_only(pool->pmd);
2466		pool->process_bio = process_bio_fail;
2467		pool->process_discard = process_bio_fail;
2468		pool->process_cell = process_cell_fail;
2469		pool->process_discard_cell = process_cell_fail;
2470		pool->process_prepared_mapping = process_prepared_mapping_fail;
2471		pool->process_prepared_discard = process_prepared_discard_fail;
2472
2473		error_retry_list(pool);
2474		break;
2475
 
2476	case PM_READ_ONLY:
2477		if (old_mode != new_mode)
2478			notify_of_pool_mode_change(pool, "read-only");
2479		dm_pool_metadata_read_only(pool->pmd);
2480		pool->process_bio = process_bio_read_only;
2481		pool->process_discard = process_bio_success;
2482		pool->process_cell = process_cell_read_only;
2483		pool->process_discard_cell = process_cell_success;
2484		pool->process_prepared_mapping = process_prepared_mapping_fail;
2485		pool->process_prepared_discard = process_prepared_discard_success;
2486
2487		error_retry_list(pool);
2488		break;
2489
2490	case PM_OUT_OF_DATA_SPACE:
2491		/*
2492		 * Ideally we'd never hit this state; the low water mark
2493		 * would trigger userland to extend the pool before we
2494		 * completely run out of data space.  However, many small
2495		 * IOs to unprovisioned space can consume data space at an
2496		 * alarming rate.  Adjust your low water mark if you're
2497		 * frequently seeing this mode.
2498		 */
2499		if (old_mode != new_mode)
2500			notify_of_pool_mode_change_to_oods(pool);
2501		pool->out_of_data_space = true;
2502		pool->process_bio = process_bio_read_only;
2503		pool->process_discard = process_discard_bio;
2504		pool->process_cell = process_cell_read_only;
2505		pool->process_prepared_mapping = process_prepared_mapping;
2506		set_discard_callbacks(pool);
2507
2508		if (!pool->pf.error_if_no_space && no_space_timeout)
2509			queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
2510		break;
2511
2512	case PM_WRITE:
2513		if (old_mode != new_mode)
2514			notify_of_pool_mode_change(pool, "write");
2515		pool->out_of_data_space = false;
2516		pool->pf.error_if_no_space = pt->requested_pf.error_if_no_space;
2517		dm_pool_metadata_read_write(pool->pmd);
2518		pool->process_bio = process_bio;
2519		pool->process_discard = process_discard_bio;
2520		pool->process_cell = process_cell;
2521		pool->process_prepared_mapping = process_prepared_mapping;
2522		set_discard_callbacks(pool);
2523		break;
2524	}
2525
2526	pool->pf.mode = new_mode;
2527	/*
2528	 * The pool mode may have changed, sync it so bind_control_target()
2529	 * doesn't cause an unexpected mode transition on resume.
2530	 */
2531	pt->adjusted_pf.mode = new_mode;
 
 
 
2532}
2533
2534static void abort_transaction(struct pool *pool)
2535{
2536	const char *dev_name = dm_device_name(pool->pool_md);
2537
2538	DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
2539	if (dm_pool_abort_metadata(pool->pmd)) {
2540		DMERR("%s: failed to abort metadata transaction", dev_name);
2541		set_pool_mode(pool, PM_FAIL);
2542	}
2543
2544	if (dm_pool_metadata_set_needs_check(pool->pmd)) {
2545		DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
2546		set_pool_mode(pool, PM_FAIL);
2547	}
2548}
2549
2550static void metadata_operation_failed(struct pool *pool, const char *op, int r)
2551{
2552	DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2553		    dm_device_name(pool->pool_md), op, r);
2554
2555	abort_transaction(pool);
2556	set_pool_mode(pool, PM_READ_ONLY);
2557}
2558
2559/*----------------------------------------------------------------*/
2560
2561/*
2562 * Mapping functions.
2563 */
2564
2565/*
2566 * Called only while mapping a thin bio to hand it over to the workqueue.
2567 */
2568static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
2569{
2570	unsigned long flags;
2571	struct pool *pool = tc->pool;
2572
2573	spin_lock_irqsave(&tc->lock, flags);
2574	bio_list_add(&tc->deferred_bio_list, bio);
2575	spin_unlock_irqrestore(&tc->lock, flags);
2576
2577	wake_worker(pool);
2578}
2579
2580static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio)
2581{
2582	struct pool *pool = tc->pool;
2583
2584	throttle_lock(&pool->throttle);
2585	thin_defer_bio(tc, bio);
2586	throttle_unlock(&pool->throttle);
2587}
2588
2589static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2590{
2591	unsigned long flags;
2592	struct pool *pool = tc->pool;
2593
2594	throttle_lock(&pool->throttle);
2595	spin_lock_irqsave(&tc->lock, flags);
2596	list_add_tail(&cell->user_list, &tc->deferred_cells);
2597	spin_unlock_irqrestore(&tc->lock, flags);
2598	throttle_unlock(&pool->throttle);
2599
2600	wake_worker(pool);
2601}
2602
2603static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
2604{
2605	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2606
2607	h->tc = tc;
2608	h->shared_read_entry = NULL;
2609	h->all_io_entry = NULL;
2610	h->overwrite_mapping = NULL;
2611	h->cell = NULL;
2612}
2613
2614/*
2615 * Non-blocking function called from the thin target's map function.
2616 */
2617static int thin_bio_map(struct dm_target *ti, struct bio *bio)
2618{
2619	int r;
2620	struct thin_c *tc = ti->private;
2621	dm_block_t block = get_bio_block(tc, bio);
2622	struct dm_thin_device *td = tc->td;
2623	struct dm_thin_lookup_result result;
2624	struct dm_bio_prison_cell *virt_cell, *data_cell;
2625	struct dm_cell_key key;
2626
2627	thin_hook_bio(tc, bio);
2628
2629	if (tc->requeue_mode) {
2630		bio->bi_status = BLK_STS_DM_REQUEUE;
2631		bio_endio(bio);
2632		return DM_MAPIO_SUBMITTED;
2633	}
2634
2635	if (get_pool_mode(tc->pool) == PM_FAIL) {
2636		bio_io_error(bio);
2637		return DM_MAPIO_SUBMITTED;
2638	}
2639
2640	if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD) {
2641		thin_defer_bio_with_throttle(tc, bio);
2642		return DM_MAPIO_SUBMITTED;
2643	}
2644
2645	/*
2646	 * We must hold the virtual cell before doing the lookup, otherwise
2647	 * there's a race with discard.
2648	 */
2649	build_virtual_key(tc->td, block, &key);
2650	if (bio_detain(tc->pool, &key, bio, &virt_cell))
2651		return DM_MAPIO_SUBMITTED;
2652
2653	r = dm_thin_find_block(td, block, 0, &result);
2654
2655	/*
2656	 * Note that we defer readahead too.
2657	 */
2658	switch (r) {
2659	case 0:
2660		if (unlikely(result.shared)) {
2661			/*
2662			 * We have a race condition here between the
2663			 * result.shared value returned by the lookup and
2664			 * snapshot creation, which may cause new
2665			 * sharing.
2666			 *
2667			 * To avoid this always quiesce the origin before
2668			 * taking the snap.  You want to do this anyway to
2669			 * ensure a consistent application view
2670			 * (i.e. lockfs).
2671			 *
2672			 * More distant ancestors are irrelevant. The
2673			 * shared flag will be set in their case.
2674			 */
2675			thin_defer_cell(tc, virt_cell);
2676			return DM_MAPIO_SUBMITTED;
2677		}
2678
2679		build_data_key(tc->td, result.block, &key);
2680		if (bio_detain(tc->pool, &key, bio, &data_cell)) {
2681			cell_defer_no_holder(tc, virt_cell);
2682			return DM_MAPIO_SUBMITTED;
2683		}
2684
2685		inc_all_io_entry(tc->pool, bio);
2686		cell_defer_no_holder(tc, data_cell);
2687		cell_defer_no_holder(tc, virt_cell);
2688
2689		remap(tc, bio, result.block);
2690		return DM_MAPIO_REMAPPED;
2691
2692	case -ENODATA:
2693	case -EWOULDBLOCK:
2694		thin_defer_cell(tc, virt_cell);
2695		return DM_MAPIO_SUBMITTED;
2696
2697	default:
2698		/*
2699		 * Must always call bio_io_error on failure.
2700		 * dm_thin_find_block can fail with -EINVAL if the
2701		 * pool is switched to fail-io mode.
2702		 */
2703		bio_io_error(bio);
2704		cell_defer_no_holder(tc, virt_cell);
2705		return DM_MAPIO_SUBMITTED;
2706	}
2707}
2708
2709static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2710{
2711	struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
2712	struct request_queue *q;
2713
2714	if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE)
2715		return 1;
2716
2717	q = bdev_get_queue(pt->data_dev->bdev);
2718	return bdi_congested(q->backing_dev_info, bdi_bits);
2719}
2720
2721static void requeue_bios(struct pool *pool)
2722{
2723	unsigned long flags;
2724	struct thin_c *tc;
2725
2726	rcu_read_lock();
2727	list_for_each_entry_rcu(tc, &pool->active_thins, list) {
2728		spin_lock_irqsave(&tc->lock, flags);
2729		bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
2730		bio_list_init(&tc->retry_on_resume_list);
2731		spin_unlock_irqrestore(&tc->lock, flags);
2732	}
2733	rcu_read_unlock();
2734}
2735
2736/*----------------------------------------------------------------
2737 * Binding of control targets to a pool object
2738 *--------------------------------------------------------------*/
2739static bool data_dev_supports_discard(struct pool_c *pt)
2740{
2741	struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2742
2743	return q && blk_queue_discard(q);
2744}
2745
2746static bool is_factor(sector_t block_size, uint32_t n)
2747{
2748	return !sector_div(block_size, n);
2749}
2750
2751/*
2752 * If discard_passdown was enabled verify that the data device
2753 * supports discards.  Disable discard_passdown if not.
2754 */
2755static void disable_passdown_if_not_supported(struct pool_c *pt)
2756{
2757	struct pool *pool = pt->pool;
2758	struct block_device *data_bdev = pt->data_dev->bdev;
2759	struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
2760	const char *reason = NULL;
2761	char buf[BDEVNAME_SIZE];
2762
2763	if (!pt->adjusted_pf.discard_passdown)
2764		return;
2765
2766	if (!data_dev_supports_discard(pt))
2767		reason = "discard unsupported";
2768
2769	else if (data_limits->max_discard_sectors < pool->sectors_per_block)
2770		reason = "max discard sectors smaller than a block";
2771
2772	if (reason) {
2773		DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
2774		pt->adjusted_pf.discard_passdown = false;
2775	}
2776}
2777
2778static int bind_control_target(struct pool *pool, struct dm_target *ti)
2779{
2780	struct pool_c *pt = ti->private;
2781
2782	/*
2783	 * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2784	 */
2785	enum pool_mode old_mode = get_pool_mode(pool);
2786	enum pool_mode new_mode = pt->adjusted_pf.mode;
2787
2788	/*
2789	 * Don't change the pool's mode until set_pool_mode() below.
2790	 * Otherwise the pool's process_* function pointers may
2791	 * not match the desired pool mode.
2792	 */
2793	pt->adjusted_pf.mode = old_mode;
2794
2795	pool->ti = ti;
2796	pool->pf = pt->adjusted_pf;
2797	pool->low_water_blocks = pt->low_water_blocks;
2798
2799	set_pool_mode(pool, new_mode);
2800
2801	return 0;
2802}
2803
2804static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2805{
2806	if (pool->ti == ti)
2807		pool->ti = NULL;
2808}
2809
2810/*----------------------------------------------------------------
2811 * Pool creation
2812 *--------------------------------------------------------------*/
2813/* Initialize pool features. */
2814static void pool_features_init(struct pool_features *pf)
2815{
2816	pf->mode = PM_WRITE;
2817	pf->zero_new_blocks = true;
2818	pf->discard_enabled = true;
2819	pf->discard_passdown = true;
2820	pf->error_if_no_space = false;
2821}
2822
2823static void __pool_destroy(struct pool *pool)
2824{
2825	__pool_table_remove(pool);
2826
2827	vfree(pool->cell_sort_array);
2828	if (dm_pool_metadata_close(pool->pmd) < 0)
2829		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2830
2831	dm_bio_prison_destroy(pool->prison);
2832	dm_kcopyd_client_destroy(pool->copier);
2833
 
 
2834	if (pool->wq)
2835		destroy_workqueue(pool->wq);
2836
2837	if (pool->next_mapping)
2838		mempool_free(pool->next_mapping, pool->mapping_pool);
2839	mempool_destroy(pool->mapping_pool);
2840	dm_deferred_set_destroy(pool->shared_read_ds);
2841	dm_deferred_set_destroy(pool->all_io_ds);
2842	kfree(pool);
2843}
2844
2845static struct kmem_cache *_new_mapping_cache;
2846
2847static struct pool *pool_create(struct mapped_device *pool_md,
2848				struct block_device *metadata_dev,
 
2849				unsigned long block_size,
2850				int read_only, char **error)
2851{
2852	int r;
2853	void *err_p;
2854	struct pool *pool;
2855	struct dm_pool_metadata *pmd;
2856	bool format_device = read_only ? false : true;
2857
2858	pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2859	if (IS_ERR(pmd)) {
2860		*error = "Error creating metadata object";
2861		return (struct pool *)pmd;
2862	}
2863
2864	pool = kmalloc(sizeof(*pool), GFP_KERNEL);
2865	if (!pool) {
2866		*error = "Error allocating memory for pool";
2867		err_p = ERR_PTR(-ENOMEM);
2868		goto bad_pool;
2869	}
2870
2871	pool->pmd = pmd;
2872	pool->sectors_per_block = block_size;
2873	if (block_size & (block_size - 1))
2874		pool->sectors_per_block_shift = -1;
2875	else
2876		pool->sectors_per_block_shift = __ffs(block_size);
2877	pool->low_water_blocks = 0;
2878	pool_features_init(&pool->pf);
2879	pool->prison = dm_bio_prison_create();
2880	if (!pool->prison) {
2881		*error = "Error creating pool's bio prison";
2882		err_p = ERR_PTR(-ENOMEM);
2883		goto bad_prison;
2884	}
2885
2886	pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2887	if (IS_ERR(pool->copier)) {
2888		r = PTR_ERR(pool->copier);
2889		*error = "Error creating pool's kcopyd client";
2890		err_p = ERR_PTR(r);
2891		goto bad_kcopyd_client;
2892	}
2893
2894	/*
2895	 * Create singlethreaded workqueue that will service all devices
2896	 * that use this metadata.
2897	 */
2898	pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2899	if (!pool->wq) {
2900		*error = "Error creating pool's workqueue";
2901		err_p = ERR_PTR(-ENOMEM);
2902		goto bad_wq;
2903	}
2904
2905	throttle_init(&pool->throttle);
2906	INIT_WORK(&pool->worker, do_worker);
2907	INIT_DELAYED_WORK(&pool->waker, do_waker);
2908	INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
2909	spin_lock_init(&pool->lock);
2910	bio_list_init(&pool->deferred_flush_bios);
 
2911	INIT_LIST_HEAD(&pool->prepared_mappings);
2912	INIT_LIST_HEAD(&pool->prepared_discards);
2913	INIT_LIST_HEAD(&pool->prepared_discards_pt2);
2914	INIT_LIST_HEAD(&pool->active_thins);
2915	pool->low_water_triggered = false;
2916	pool->suspended = true;
2917	pool->out_of_data_space = false;
2918
2919	pool->shared_read_ds = dm_deferred_set_create();
2920	if (!pool->shared_read_ds) {
2921		*error = "Error creating pool's shared read deferred set";
2922		err_p = ERR_PTR(-ENOMEM);
2923		goto bad_shared_read_ds;
2924	}
2925
2926	pool->all_io_ds = dm_deferred_set_create();
2927	if (!pool->all_io_ds) {
2928		*error = "Error creating pool's all io deferred set";
2929		err_p = ERR_PTR(-ENOMEM);
2930		goto bad_all_io_ds;
2931	}
2932
2933	pool->next_mapping = NULL;
2934	pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
2935						      _new_mapping_cache);
2936	if (!pool->mapping_pool) {
2937		*error = "Error creating pool's mapping mempool";
2938		err_p = ERR_PTR(-ENOMEM);
2939		goto bad_mapping_pool;
2940	}
2941
2942	pool->cell_sort_array = vmalloc(sizeof(*pool->cell_sort_array) * CELL_SORT_ARRAY_SIZE);
 
 
2943	if (!pool->cell_sort_array) {
2944		*error = "Error allocating cell sort array";
2945		err_p = ERR_PTR(-ENOMEM);
2946		goto bad_sort_array;
2947	}
2948
2949	pool->ref_count = 1;
2950	pool->last_commit_jiffies = jiffies;
2951	pool->pool_md = pool_md;
2952	pool->md_dev = metadata_dev;
 
2953	__pool_table_insert(pool);
2954
2955	return pool;
2956
2957bad_sort_array:
2958	mempool_destroy(pool->mapping_pool);
2959bad_mapping_pool:
2960	dm_deferred_set_destroy(pool->all_io_ds);
2961bad_all_io_ds:
2962	dm_deferred_set_destroy(pool->shared_read_ds);
2963bad_shared_read_ds:
2964	destroy_workqueue(pool->wq);
2965bad_wq:
2966	dm_kcopyd_client_destroy(pool->copier);
2967bad_kcopyd_client:
2968	dm_bio_prison_destroy(pool->prison);
2969bad_prison:
2970	kfree(pool);
2971bad_pool:
2972	if (dm_pool_metadata_close(pmd))
2973		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2974
2975	return err_p;
2976}
2977
2978static void __pool_inc(struct pool *pool)
2979{
2980	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2981	pool->ref_count++;
2982}
2983
2984static void __pool_dec(struct pool *pool)
2985{
2986	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2987	BUG_ON(!pool->ref_count);
2988	if (!--pool->ref_count)
2989		__pool_destroy(pool);
2990}
2991
2992static struct pool *__pool_find(struct mapped_device *pool_md,
2993				struct block_device *metadata_dev,
 
2994				unsigned long block_size, int read_only,
2995				char **error, int *created)
2996{
2997	struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
2998
2999	if (pool) {
3000		if (pool->pool_md != pool_md) {
3001			*error = "metadata device already in use by a pool";
3002			return ERR_PTR(-EBUSY);
3003		}
 
 
 
 
3004		__pool_inc(pool);
3005
3006	} else {
3007		pool = __pool_table_lookup(pool_md);
3008		if (pool) {
3009			if (pool->md_dev != metadata_dev) {
3010				*error = "different pool cannot replace a pool";
3011				return ERR_PTR(-EINVAL);
3012			}
3013			__pool_inc(pool);
3014
3015		} else {
3016			pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
3017			*created = 1;
3018		}
3019	}
3020
3021	return pool;
3022}
3023
3024/*----------------------------------------------------------------
3025 * Pool target methods
3026 *--------------------------------------------------------------*/
3027static void pool_dtr(struct dm_target *ti)
3028{
3029	struct pool_c *pt = ti->private;
3030
3031	mutex_lock(&dm_thin_pool_table.mutex);
3032
3033	unbind_control_target(pt->pool, ti);
3034	__pool_dec(pt->pool);
3035	dm_put_device(ti, pt->metadata_dev);
3036	dm_put_device(ti, pt->data_dev);
3037	kfree(pt);
3038
3039	mutex_unlock(&dm_thin_pool_table.mutex);
3040}
3041
3042static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
3043			       struct dm_target *ti)
3044{
3045	int r;
3046	unsigned argc;
3047	const char *arg_name;
3048
3049	static const struct dm_arg _args[] = {
3050		{0, 4, "Invalid number of pool feature arguments"},
3051	};
3052
3053	/*
3054	 * No feature arguments supplied.
3055	 */
3056	if (!as->argc)
3057		return 0;
3058
3059	r = dm_read_arg_group(_args, as, &argc, &ti->error);
3060	if (r)
3061		return -EINVAL;
3062
3063	while (argc && !r) {
3064		arg_name = dm_shift_arg(as);
3065		argc--;
3066
3067		if (!strcasecmp(arg_name, "skip_block_zeroing"))
3068			pf->zero_new_blocks = false;
3069
3070		else if (!strcasecmp(arg_name, "ignore_discard"))
3071			pf->discard_enabled = false;
3072
3073		else if (!strcasecmp(arg_name, "no_discard_passdown"))
3074			pf->discard_passdown = false;
3075
3076		else if (!strcasecmp(arg_name, "read_only"))
3077			pf->mode = PM_READ_ONLY;
3078
3079		else if (!strcasecmp(arg_name, "error_if_no_space"))
3080			pf->error_if_no_space = true;
3081
3082		else {
3083			ti->error = "Unrecognised pool feature requested";
3084			r = -EINVAL;
3085			break;
3086		}
3087	}
3088
3089	return r;
3090}
3091
3092static void metadata_low_callback(void *context)
3093{
3094	struct pool *pool = context;
3095
3096	DMWARN("%s: reached low water mark for metadata device: sending event.",
3097	       dm_device_name(pool->pool_md));
3098
3099	dm_table_event(pool->ti->table);
3100}
3101
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3102static sector_t get_dev_size(struct block_device *bdev)
3103{
3104	return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
3105}
3106
3107static void warn_if_metadata_device_too_big(struct block_device *bdev)
3108{
3109	sector_t metadata_dev_size = get_dev_size(bdev);
3110	char buffer[BDEVNAME_SIZE];
3111
3112	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
3113		DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
3114		       bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
3115}
3116
3117static sector_t get_metadata_dev_size(struct block_device *bdev)
3118{
3119	sector_t metadata_dev_size = get_dev_size(bdev);
3120
3121	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
3122		metadata_dev_size = THIN_METADATA_MAX_SECTORS;
3123
3124	return metadata_dev_size;
3125}
3126
3127static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
3128{
3129	sector_t metadata_dev_size = get_metadata_dev_size(bdev);
3130
3131	sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
3132
3133	return metadata_dev_size;
3134}
3135
3136/*
3137 * When a metadata threshold is crossed a dm event is triggered, and
3138 * userland should respond by growing the metadata device.  We could let
3139 * userland set the threshold, like we do with the data threshold, but I'm
3140 * not sure they know enough to do this well.
3141 */
3142static dm_block_t calc_metadata_threshold(struct pool_c *pt)
3143{
3144	/*
3145	 * 4M is ample for all ops with the possible exception of thin
3146	 * device deletion which is harmless if it fails (just retry the
3147	 * delete after you've grown the device).
3148	 */
3149	dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
3150	return min((dm_block_t)1024ULL /* 4M */, quarter);
3151}
3152
3153/*
3154 * thin-pool <metadata dev> <data dev>
3155 *	     <data block size (sectors)>
3156 *	     <low water mark (blocks)>
3157 *	     [<#feature args> [<arg>]*]
3158 *
3159 * Optional feature arguments are:
3160 *	     skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
3161 *	     ignore_discard: disable discard
3162 *	     no_discard_passdown: don't pass discards down to the data device
3163 *	     read_only: Don't allow any changes to be made to the pool metadata.
3164 *	     error_if_no_space: error IOs, instead of queueing, if no space.
3165 */
3166static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
3167{
3168	int r, pool_created = 0;
3169	struct pool_c *pt;
3170	struct pool *pool;
3171	struct pool_features pf;
3172	struct dm_arg_set as;
3173	struct dm_dev *data_dev;
3174	unsigned long block_size;
3175	dm_block_t low_water_blocks;
3176	struct dm_dev *metadata_dev;
3177	fmode_t metadata_mode;
3178
3179	/*
3180	 * FIXME Remove validation from scope of lock.
3181	 */
3182	mutex_lock(&dm_thin_pool_table.mutex);
3183
3184	if (argc < 4) {
3185		ti->error = "Invalid argument count";
3186		r = -EINVAL;
3187		goto out_unlock;
3188	}
3189
3190	as.argc = argc;
3191	as.argv = argv;
3192
 
 
 
 
 
 
 
3193	/*
3194	 * Set default pool features.
3195	 */
3196	pool_features_init(&pf);
3197
3198	dm_consume_args(&as, 4);
3199	r = parse_pool_features(&as, &pf, ti);
3200	if (r)
3201		goto out_unlock;
3202
3203	metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
3204	r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
3205	if (r) {
3206		ti->error = "Error opening metadata block device";
3207		goto out_unlock;
3208	}
3209	warn_if_metadata_device_too_big(metadata_dev->bdev);
3210
3211	r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
3212	if (r) {
3213		ti->error = "Error getting data device";
3214		goto out_metadata;
3215	}
3216
3217	if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
3218	    block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
3219	    block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
3220	    block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
3221		ti->error = "Invalid block size";
3222		r = -EINVAL;
3223		goto out;
3224	}
3225
3226	if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
3227		ti->error = "Invalid low water mark";
3228		r = -EINVAL;
3229		goto out;
3230	}
3231
3232	pt = kzalloc(sizeof(*pt), GFP_KERNEL);
3233	if (!pt) {
3234		r = -ENOMEM;
3235		goto out;
3236	}
3237
3238	pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
3239			   block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
3240	if (IS_ERR(pool)) {
3241		r = PTR_ERR(pool);
3242		goto out_free_pt;
3243	}
3244
3245	/*
3246	 * 'pool_created' reflects whether this is the first table load.
3247	 * Top level discard support is not allowed to be changed after
3248	 * initial load.  This would require a pool reload to trigger thin
3249	 * device changes.
3250	 */
3251	if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
3252		ti->error = "Discard support cannot be disabled once enabled";
3253		r = -EINVAL;
3254		goto out_flags_changed;
3255	}
3256
3257	pt->pool = pool;
3258	pt->ti = ti;
3259	pt->metadata_dev = metadata_dev;
3260	pt->data_dev = data_dev;
3261	pt->low_water_blocks = low_water_blocks;
3262	pt->adjusted_pf = pt->requested_pf = pf;
3263	ti->num_flush_bios = 1;
3264
3265	/*
3266	 * Only need to enable discards if the pool should pass
3267	 * them down to the data device.  The thin device's discard
3268	 * processing will cause mappings to be removed from the btree.
3269	 */
3270	if (pf.discard_enabled && pf.discard_passdown) {
3271		ti->num_discard_bios = 1;
3272
3273		/*
3274		 * Setting 'discards_supported' circumvents the normal
3275		 * stacking of discard limits (this keeps the pool and
3276		 * thin devices' discard limits consistent).
3277		 */
3278		ti->discards_supported = true;
3279	}
3280	ti->private = pt;
3281
3282	r = dm_pool_register_metadata_threshold(pt->pool->pmd,
3283						calc_metadata_threshold(pt),
3284						metadata_low_callback,
3285						pool);
3286	if (r)
 
3287		goto out_flags_changed;
 
3288
3289	pt->callbacks.congested_fn = pool_is_congested;
3290	dm_table_add_target_callbacks(ti->table, &pt->callbacks);
3291
3292	mutex_unlock(&dm_thin_pool_table.mutex);
3293
3294	return 0;
3295
3296out_flags_changed:
3297	__pool_dec(pool);
3298out_free_pt:
3299	kfree(pt);
3300out:
3301	dm_put_device(ti, data_dev);
3302out_metadata:
3303	dm_put_device(ti, metadata_dev);
3304out_unlock:
3305	mutex_unlock(&dm_thin_pool_table.mutex);
3306
3307	return r;
3308}
3309
3310static int pool_map(struct dm_target *ti, struct bio *bio)
3311{
3312	int r;
3313	struct pool_c *pt = ti->private;
3314	struct pool *pool = pt->pool;
3315	unsigned long flags;
3316
3317	/*
3318	 * As this is a singleton target, ti->begin is always zero.
3319	 */
3320	spin_lock_irqsave(&pool->lock, flags);
3321	bio_set_dev(bio, pt->data_dev->bdev);
3322	r = DM_MAPIO_REMAPPED;
3323	spin_unlock_irqrestore(&pool->lock, flags);
3324
3325	return r;
3326}
3327
3328static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
3329{
3330	int r;
3331	struct pool_c *pt = ti->private;
3332	struct pool *pool = pt->pool;
3333	sector_t data_size = ti->len;
3334	dm_block_t sb_data_size;
3335
3336	*need_commit = false;
3337
3338	(void) sector_div(data_size, pool->sectors_per_block);
3339
3340	r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
3341	if (r) {
3342		DMERR("%s: failed to retrieve data device size",
3343		      dm_device_name(pool->pool_md));
3344		return r;
3345	}
3346
3347	if (data_size < sb_data_size) {
3348		DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3349		      dm_device_name(pool->pool_md),
3350		      (unsigned long long)data_size, sb_data_size);
3351		return -EINVAL;
3352
3353	} else if (data_size > sb_data_size) {
3354		if (dm_pool_metadata_needs_check(pool->pmd)) {
3355			DMERR("%s: unable to grow the data device until repaired.",
3356			      dm_device_name(pool->pool_md));
3357			return 0;
3358		}
3359
3360		if (sb_data_size)
3361			DMINFO("%s: growing the data device from %llu to %llu blocks",
3362			       dm_device_name(pool->pool_md),
3363			       sb_data_size, (unsigned long long)data_size);
3364		r = dm_pool_resize_data_dev(pool->pmd, data_size);
3365		if (r) {
3366			metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
3367			return r;
3368		}
3369
3370		*need_commit = true;
3371	}
3372
3373	return 0;
3374}
3375
3376static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
3377{
3378	int r;
3379	struct pool_c *pt = ti->private;
3380	struct pool *pool = pt->pool;
3381	dm_block_t metadata_dev_size, sb_metadata_dev_size;
3382
3383	*need_commit = false;
3384
3385	metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
3386
3387	r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
3388	if (r) {
3389		DMERR("%s: failed to retrieve metadata device size",
3390		      dm_device_name(pool->pool_md));
3391		return r;
3392	}
3393
3394	if (metadata_dev_size < sb_metadata_dev_size) {
3395		DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3396		      dm_device_name(pool->pool_md),
3397		      metadata_dev_size, sb_metadata_dev_size);
3398		return -EINVAL;
3399
3400	} else if (metadata_dev_size > sb_metadata_dev_size) {
3401		if (dm_pool_metadata_needs_check(pool->pmd)) {
3402			DMERR("%s: unable to grow the metadata device until repaired.",
3403			      dm_device_name(pool->pool_md));
3404			return 0;
3405		}
3406
3407		warn_if_metadata_device_too_big(pool->md_dev);
3408		DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3409		       dm_device_name(pool->pool_md),
3410		       sb_metadata_dev_size, metadata_dev_size);
 
 
 
 
3411		r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
3412		if (r) {
3413			metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
3414			return r;
3415		}
3416
3417		*need_commit = true;
3418	}
3419
3420	return 0;
3421}
3422
3423/*
3424 * Retrieves the number of blocks of the data device from
3425 * the superblock and compares it to the actual device size,
3426 * thus resizing the data device in case it has grown.
3427 *
3428 * This both copes with opening preallocated data devices in the ctr
3429 * being followed by a resume
3430 * -and-
3431 * calling the resume method individually after userspace has
3432 * grown the data device in reaction to a table event.
3433 */
3434static int pool_preresume(struct dm_target *ti)
3435{
3436	int r;
3437	bool need_commit1, need_commit2;
3438	struct pool_c *pt = ti->private;
3439	struct pool *pool = pt->pool;
3440
3441	/*
3442	 * Take control of the pool object.
3443	 */
3444	r = bind_control_target(pool, ti);
3445	if (r)
3446		return r;
3447
3448	r = maybe_resize_data_dev(ti, &need_commit1);
3449	if (r)
3450		return r;
3451
3452	r = maybe_resize_metadata_dev(ti, &need_commit2);
3453	if (r)
3454		return r;
3455
3456	if (need_commit1 || need_commit2)
3457		(void) commit(pool);
 
 
 
 
 
 
 
 
3458
3459	return 0;
3460}
3461
3462static void pool_suspend_active_thins(struct pool *pool)
3463{
3464	struct thin_c *tc;
3465
3466	/* Suspend all active thin devices */
3467	tc = get_first_thin(pool);
3468	while (tc) {
3469		dm_internal_suspend_noflush(tc->thin_md);
3470		tc = get_next_thin(pool, tc);
3471	}
3472}
3473
3474static void pool_resume_active_thins(struct pool *pool)
3475{
3476	struct thin_c *tc;
3477
3478	/* Resume all active thin devices */
3479	tc = get_first_thin(pool);
3480	while (tc) {
3481		dm_internal_resume(tc->thin_md);
3482		tc = get_next_thin(pool, tc);
3483	}
3484}
3485
3486static void pool_resume(struct dm_target *ti)
3487{
3488	struct pool_c *pt = ti->private;
3489	struct pool *pool = pt->pool;
3490	unsigned long flags;
3491
3492	/*
3493	 * Must requeue active_thins' bios and then resume
3494	 * active_thins _before_ clearing 'suspend' flag.
3495	 */
3496	requeue_bios(pool);
3497	pool_resume_active_thins(pool);
3498
3499	spin_lock_irqsave(&pool->lock, flags);
3500	pool->low_water_triggered = false;
3501	pool->suspended = false;
3502	spin_unlock_irqrestore(&pool->lock, flags);
3503
3504	do_waker(&pool->waker.work);
3505}
3506
3507static void pool_presuspend(struct dm_target *ti)
3508{
3509	struct pool_c *pt = ti->private;
3510	struct pool *pool = pt->pool;
3511	unsigned long flags;
3512
3513	spin_lock_irqsave(&pool->lock, flags);
3514	pool->suspended = true;
3515	spin_unlock_irqrestore(&pool->lock, flags);
3516
3517	pool_suspend_active_thins(pool);
3518}
3519
3520static void pool_presuspend_undo(struct dm_target *ti)
3521{
3522	struct pool_c *pt = ti->private;
3523	struct pool *pool = pt->pool;
3524	unsigned long flags;
3525
3526	pool_resume_active_thins(pool);
3527
3528	spin_lock_irqsave(&pool->lock, flags);
3529	pool->suspended = false;
3530	spin_unlock_irqrestore(&pool->lock, flags);
3531}
3532
3533static void pool_postsuspend(struct dm_target *ti)
3534{
3535	struct pool_c *pt = ti->private;
3536	struct pool *pool = pt->pool;
3537
3538	cancel_delayed_work_sync(&pool->waker);
3539	cancel_delayed_work_sync(&pool->no_space_timeout);
3540	flush_workqueue(pool->wq);
3541	(void) commit(pool);
3542}
3543
3544static int check_arg_count(unsigned argc, unsigned args_required)
3545{
3546	if (argc != args_required) {
3547		DMWARN("Message received with %u arguments instead of %u.",
3548		       argc, args_required);
3549		return -EINVAL;
3550	}
3551
3552	return 0;
3553}
3554
3555static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
3556{
3557	if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
3558	    *dev_id <= MAX_DEV_ID)
3559		return 0;
3560
3561	if (warning)
3562		DMWARN("Message received with invalid device id: %s", arg);
3563
3564	return -EINVAL;
3565}
3566
3567static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
3568{
3569	dm_thin_id dev_id;
3570	int r;
3571
3572	r = check_arg_count(argc, 2);
3573	if (r)
3574		return r;
3575
3576	r = read_dev_id(argv[1], &dev_id, 1);
3577	if (r)
3578		return r;
3579
3580	r = dm_pool_create_thin(pool->pmd, dev_id);
3581	if (r) {
3582		DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3583		       argv[1]);
3584		return r;
3585	}
3586
3587	return 0;
3588}
3589
3590static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3591{
3592	dm_thin_id dev_id;
3593	dm_thin_id origin_dev_id;
3594	int r;
3595
3596	r = check_arg_count(argc, 3);
3597	if (r)
3598		return r;
3599
3600	r = read_dev_id(argv[1], &dev_id, 1);
3601	if (r)
3602		return r;
3603
3604	r = read_dev_id(argv[2], &origin_dev_id, 1);
3605	if (r)
3606		return r;
3607
3608	r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
3609	if (r) {
3610		DMWARN("Creation of new snapshot %s of device %s failed.",
3611		       argv[1], argv[2]);
3612		return r;
3613	}
3614
3615	return 0;
3616}
3617
3618static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
3619{
3620	dm_thin_id dev_id;
3621	int r;
3622
3623	r = check_arg_count(argc, 2);
3624	if (r)
3625		return r;
3626
3627	r = read_dev_id(argv[1], &dev_id, 1);
3628	if (r)
3629		return r;
3630
3631	r = dm_pool_delete_thin_device(pool->pmd, dev_id);
3632	if (r)
3633		DMWARN("Deletion of thin device %s failed.", argv[1]);
3634
3635	return r;
3636}
3637
3638static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
3639{
3640	dm_thin_id old_id, new_id;
3641	int r;
3642
3643	r = check_arg_count(argc, 3);
3644	if (r)
3645		return r;
3646
3647	if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
3648		DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
3649		return -EINVAL;
3650	}
3651
3652	if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
3653		DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
3654		return -EINVAL;
3655	}
3656
3657	r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
3658	if (r) {
3659		DMWARN("Failed to change transaction id from %s to %s.",
3660		       argv[1], argv[2]);
3661		return r;
3662	}
3663
3664	return 0;
3665}
3666
3667static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3668{
3669	int r;
3670
3671	r = check_arg_count(argc, 1);
3672	if (r)
3673		return r;
3674
3675	(void) commit(pool);
3676
3677	r = dm_pool_reserve_metadata_snap(pool->pmd);
3678	if (r)
3679		DMWARN("reserve_metadata_snap message failed.");
3680
3681	return r;
3682}
3683
3684static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3685{
3686	int r;
3687
3688	r = check_arg_count(argc, 1);
3689	if (r)
3690		return r;
3691
3692	r = dm_pool_release_metadata_snap(pool->pmd);
3693	if (r)
3694		DMWARN("release_metadata_snap message failed.");
3695
3696	return r;
3697}
3698
3699/*
3700 * Messages supported:
3701 *   create_thin	<dev_id>
3702 *   create_snap	<dev_id> <origin_id>
3703 *   delete		<dev_id>
3704 *   set_transaction_id <current_trans_id> <new_trans_id>
3705 *   reserve_metadata_snap
3706 *   release_metadata_snap
3707 */
3708static int pool_message(struct dm_target *ti, unsigned argc, char **argv,
3709			char *result, unsigned maxlen)
3710{
3711	int r = -EINVAL;
3712	struct pool_c *pt = ti->private;
3713	struct pool *pool = pt->pool;
3714
3715	if (get_pool_mode(pool) >= PM_READ_ONLY) {
3716		DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
3717		      dm_device_name(pool->pool_md));
3718		return -EOPNOTSUPP;
3719	}
3720
3721	if (!strcasecmp(argv[0], "create_thin"))
3722		r = process_create_thin_mesg(argc, argv, pool);
3723
3724	else if (!strcasecmp(argv[0], "create_snap"))
3725		r = process_create_snap_mesg(argc, argv, pool);
3726
3727	else if (!strcasecmp(argv[0], "delete"))
3728		r = process_delete_mesg(argc, argv, pool);
3729
3730	else if (!strcasecmp(argv[0], "set_transaction_id"))
3731		r = process_set_transaction_id_mesg(argc, argv, pool);
3732
3733	else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
3734		r = process_reserve_metadata_snap_mesg(argc, argv, pool);
3735
3736	else if (!strcasecmp(argv[0], "release_metadata_snap"))
3737		r = process_release_metadata_snap_mesg(argc, argv, pool);
3738
3739	else
3740		DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
3741
3742	if (!r)
3743		(void) commit(pool);
3744
3745	return r;
3746}
3747
3748static void emit_flags(struct pool_features *pf, char *result,
3749		       unsigned sz, unsigned maxlen)
3750{
3751	unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
3752		!pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
3753		pf->error_if_no_space;
3754	DMEMIT("%u ", count);
3755
3756	if (!pf->zero_new_blocks)
3757		DMEMIT("skip_block_zeroing ");
3758
3759	if (!pf->discard_enabled)
3760		DMEMIT("ignore_discard ");
3761
3762	if (!pf->discard_passdown)
3763		DMEMIT("no_discard_passdown ");
3764
3765	if (pf->mode == PM_READ_ONLY)
3766		DMEMIT("read_only ");
3767
3768	if (pf->error_if_no_space)
3769		DMEMIT("error_if_no_space ");
3770}
3771
3772/*
3773 * Status line is:
3774 *    <transaction id> <used metadata sectors>/<total metadata sectors>
3775 *    <used data sectors>/<total data sectors> <held metadata root>
3776 *    <pool mode> <discard config> <no space config> <needs_check>
3777 */
3778static void pool_status(struct dm_target *ti, status_type_t type,
3779			unsigned status_flags, char *result, unsigned maxlen)
3780{
3781	int r;
3782	unsigned sz = 0;
3783	uint64_t transaction_id;
3784	dm_block_t nr_free_blocks_data;
3785	dm_block_t nr_free_blocks_metadata;
3786	dm_block_t nr_blocks_data;
3787	dm_block_t nr_blocks_metadata;
3788	dm_block_t held_root;
 
3789	char buf[BDEVNAME_SIZE];
3790	char buf2[BDEVNAME_SIZE];
3791	struct pool_c *pt = ti->private;
3792	struct pool *pool = pt->pool;
3793
3794	switch (type) {
3795	case STATUSTYPE_INFO:
3796		if (get_pool_mode(pool) == PM_FAIL) {
3797			DMEMIT("Fail");
3798			break;
3799		}
3800
3801		/* Commit to ensure statistics aren't out-of-date */
3802		if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3803			(void) commit(pool);
3804
3805		r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
3806		if (r) {
3807			DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3808			      dm_device_name(pool->pool_md), r);
3809			goto err;
3810		}
3811
3812		r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
3813		if (r) {
3814			DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3815			      dm_device_name(pool->pool_md), r);
3816			goto err;
3817		}
3818
3819		r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
3820		if (r) {
3821			DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3822			      dm_device_name(pool->pool_md), r);
3823			goto err;
3824		}
3825
3826		r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
3827		if (r) {
3828			DMERR("%s: dm_pool_get_free_block_count returned %d",
3829			      dm_device_name(pool->pool_md), r);
3830			goto err;
3831		}
3832
3833		r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
3834		if (r) {
3835			DMERR("%s: dm_pool_get_data_dev_size returned %d",
3836			      dm_device_name(pool->pool_md), r);
3837			goto err;
3838		}
3839
3840		r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
3841		if (r) {
3842			DMERR("%s: dm_pool_get_metadata_snap returned %d",
3843			      dm_device_name(pool->pool_md), r);
3844			goto err;
3845		}
3846
3847		DMEMIT("%llu %llu/%llu %llu/%llu ",
3848		       (unsigned long long)transaction_id,
3849		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3850		       (unsigned long long)nr_blocks_metadata,
3851		       (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
3852		       (unsigned long long)nr_blocks_data);
3853
3854		if (held_root)
3855			DMEMIT("%llu ", held_root);
3856		else
3857			DMEMIT("- ");
3858
3859		if (pool->pf.mode == PM_OUT_OF_DATA_SPACE)
 
3860			DMEMIT("out_of_data_space ");
3861		else if (pool->pf.mode == PM_READ_ONLY)
3862			DMEMIT("ro ");
3863		else
3864			DMEMIT("rw ");
3865
3866		if (!pool->pf.discard_enabled)
3867			DMEMIT("ignore_discard ");
3868		else if (pool->pf.discard_passdown)
3869			DMEMIT("discard_passdown ");
3870		else
3871			DMEMIT("no_discard_passdown ");
3872
3873		if (pool->pf.error_if_no_space)
3874			DMEMIT("error_if_no_space ");
3875		else
3876			DMEMIT("queue_if_no_space ");
3877
3878		if (dm_pool_metadata_needs_check(pool->pmd))
3879			DMEMIT("needs_check ");
3880		else
3881			DMEMIT("- ");
3882
 
 
3883		break;
3884
3885	case STATUSTYPE_TABLE:
3886		DMEMIT("%s %s %lu %llu ",
3887		       format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
3888		       format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
3889		       (unsigned long)pool->sectors_per_block,
3890		       (unsigned long long)pt->low_water_blocks);
3891		emit_flags(&pt->requested_pf, result, sz, maxlen);
3892		break;
 
 
 
 
3893	}
3894	return;
3895
3896err:
3897	DMEMIT("Error");
3898}
3899
3900static int pool_iterate_devices(struct dm_target *ti,
3901				iterate_devices_callout_fn fn, void *data)
3902{
3903	struct pool_c *pt = ti->private;
3904
3905	return fn(ti, pt->data_dev, 0, ti->len, data);
3906}
3907
3908static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
3909{
3910	struct pool_c *pt = ti->private;
3911	struct pool *pool = pt->pool;
3912	sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3913
3914	/*
3915	 * If max_sectors is smaller than pool->sectors_per_block adjust it
3916	 * to the highest possible power-of-2 factor of pool->sectors_per_block.
3917	 * This is especially beneficial when the pool's data device is a RAID
3918	 * device that has a full stripe width that matches pool->sectors_per_block
3919	 * -- because even though partial RAID stripe-sized IOs will be issued to a
3920	 *    single RAID stripe; when aggregated they will end on a full RAID stripe
3921	 *    boundary.. which avoids additional partial RAID stripe writes cascading
3922	 */
3923	if (limits->max_sectors < pool->sectors_per_block) {
3924		while (!is_factor(pool->sectors_per_block, limits->max_sectors)) {
3925			if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
3926				limits->max_sectors--;
3927			limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
3928		}
3929	}
3930
3931	/*
3932	 * If the system-determined stacked limits are compatible with the
3933	 * pool's blocksize (io_opt is a factor) do not override them.
3934	 */
3935	if (io_opt_sectors < pool->sectors_per_block ||
3936	    !is_factor(io_opt_sectors, pool->sectors_per_block)) {
3937		if (is_factor(pool->sectors_per_block, limits->max_sectors))
3938			blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT);
3939		else
3940			blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT);
3941		blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
3942	}
3943
3944	/*
3945	 * pt->adjusted_pf is a staging area for the actual features to use.
3946	 * They get transferred to the live pool in bind_control_target()
3947	 * called from pool_preresume().
3948	 */
3949	if (!pt->adjusted_pf.discard_enabled) {
3950		/*
3951		 * Must explicitly disallow stacking discard limits otherwise the
3952		 * block layer will stack them if pool's data device has support.
3953		 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
3954		 * user to see that, so make sure to set all discard limits to 0.
3955		 */
3956		limits->discard_granularity = 0;
3957		return;
3958	}
3959
3960	disable_passdown_if_not_supported(pt);
3961
3962	/*
3963	 * The pool uses the same discard limits as the underlying data
3964	 * device.  DM core has already set this up.
3965	 */
3966}
3967
3968static struct target_type pool_target = {
3969	.name = "thin-pool",
3970	.features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
3971		    DM_TARGET_IMMUTABLE,
3972	.version = {1, 19, 0},
3973	.module = THIS_MODULE,
3974	.ctr = pool_ctr,
3975	.dtr = pool_dtr,
3976	.map = pool_map,
3977	.presuspend = pool_presuspend,
3978	.presuspend_undo = pool_presuspend_undo,
3979	.postsuspend = pool_postsuspend,
3980	.preresume = pool_preresume,
3981	.resume = pool_resume,
3982	.message = pool_message,
3983	.status = pool_status,
3984	.iterate_devices = pool_iterate_devices,
3985	.io_hints = pool_io_hints,
3986};
3987
3988/*----------------------------------------------------------------
3989 * Thin target methods
3990 *--------------------------------------------------------------*/
3991static void thin_get(struct thin_c *tc)
3992{
3993	atomic_inc(&tc->refcount);
3994}
3995
3996static void thin_put(struct thin_c *tc)
3997{
3998	if (atomic_dec_and_test(&tc->refcount))
3999		complete(&tc->can_destroy);
4000}
4001
4002static void thin_dtr(struct dm_target *ti)
4003{
4004	struct thin_c *tc = ti->private;
4005	unsigned long flags;
4006
4007	spin_lock_irqsave(&tc->pool->lock, flags);
4008	list_del_rcu(&tc->list);
4009	spin_unlock_irqrestore(&tc->pool->lock, flags);
4010	synchronize_rcu();
4011
4012	thin_put(tc);
4013	wait_for_completion(&tc->can_destroy);
4014
4015	mutex_lock(&dm_thin_pool_table.mutex);
4016
4017	__pool_dec(tc->pool);
4018	dm_pool_close_thin_device(tc->td);
4019	dm_put_device(ti, tc->pool_dev);
4020	if (tc->origin_dev)
4021		dm_put_device(ti, tc->origin_dev);
4022	kfree(tc);
4023
4024	mutex_unlock(&dm_thin_pool_table.mutex);
4025}
4026
4027/*
4028 * Thin target parameters:
4029 *
4030 * <pool_dev> <dev_id> [origin_dev]
4031 *
4032 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
4033 * dev_id: the internal device identifier
4034 * origin_dev: a device external to the pool that should act as the origin
4035 *
4036 * If the pool device has discards disabled, they get disabled for the thin
4037 * device as well.
4038 */
4039static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
4040{
4041	int r;
4042	struct thin_c *tc;
4043	struct dm_dev *pool_dev, *origin_dev;
4044	struct mapped_device *pool_md;
4045	unsigned long flags;
4046
4047	mutex_lock(&dm_thin_pool_table.mutex);
4048
4049	if (argc != 2 && argc != 3) {
4050		ti->error = "Invalid argument count";
4051		r = -EINVAL;
4052		goto out_unlock;
4053	}
4054
4055	tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
4056	if (!tc) {
4057		ti->error = "Out of memory";
4058		r = -ENOMEM;
4059		goto out_unlock;
4060	}
4061	tc->thin_md = dm_table_get_md(ti->table);
4062	spin_lock_init(&tc->lock);
4063	INIT_LIST_HEAD(&tc->deferred_cells);
4064	bio_list_init(&tc->deferred_bio_list);
4065	bio_list_init(&tc->retry_on_resume_list);
4066	tc->sort_bio_list = RB_ROOT;
4067
4068	if (argc == 3) {
 
 
 
 
 
 
4069		r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
4070		if (r) {
4071			ti->error = "Error opening origin device";
4072			goto bad_origin_dev;
4073		}
4074		tc->origin_dev = origin_dev;
4075	}
4076
4077	r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
4078	if (r) {
4079		ti->error = "Error opening pool device";
4080		goto bad_pool_dev;
4081	}
4082	tc->pool_dev = pool_dev;
4083
4084	if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
4085		ti->error = "Invalid device id";
4086		r = -EINVAL;
4087		goto bad_common;
4088	}
4089
4090	pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
4091	if (!pool_md) {
4092		ti->error = "Couldn't get pool mapped device";
4093		r = -EINVAL;
4094		goto bad_common;
4095	}
4096
4097	tc->pool = __pool_table_lookup(pool_md);
4098	if (!tc->pool) {
4099		ti->error = "Couldn't find pool object";
4100		r = -EINVAL;
4101		goto bad_pool_lookup;
4102	}
4103	__pool_inc(tc->pool);
4104
4105	if (get_pool_mode(tc->pool) == PM_FAIL) {
4106		ti->error = "Couldn't open thin device, Pool is in fail mode";
4107		r = -EINVAL;
4108		goto bad_pool;
4109	}
4110
4111	r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
4112	if (r) {
4113		ti->error = "Couldn't open thin internal device";
4114		goto bad_pool;
4115	}
4116
4117	r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
4118	if (r)
4119		goto bad;
4120
4121	ti->num_flush_bios = 1;
4122	ti->flush_supported = true;
 
4123	ti->per_io_data_size = sizeof(struct dm_thin_endio_hook);
4124
4125	/* In case the pool supports discards, pass them on. */
4126	if (tc->pool->pf.discard_enabled) {
4127		ti->discards_supported = true;
4128		ti->num_discard_bios = 1;
4129		ti->split_discard_bios = false;
4130	}
4131
4132	mutex_unlock(&dm_thin_pool_table.mutex);
4133
4134	spin_lock_irqsave(&tc->pool->lock, flags);
4135	if (tc->pool->suspended) {
4136		spin_unlock_irqrestore(&tc->pool->lock, flags);
4137		mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */
4138		ti->error = "Unable to activate thin device while pool is suspended";
4139		r = -EINVAL;
4140		goto bad;
4141	}
4142	atomic_set(&tc->refcount, 1);
4143	init_completion(&tc->can_destroy);
4144	list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
4145	spin_unlock_irqrestore(&tc->pool->lock, flags);
4146	/*
4147	 * This synchronize_rcu() call is needed here otherwise we risk a
4148	 * wake_worker() call finding no bios to process (because the newly
4149	 * added tc isn't yet visible).  So this reduces latency since we
4150	 * aren't then dependent on the periodic commit to wake_worker().
4151	 */
4152	synchronize_rcu();
4153
4154	dm_put(pool_md);
4155
4156	return 0;
4157
4158bad:
4159	dm_pool_close_thin_device(tc->td);
4160bad_pool:
4161	__pool_dec(tc->pool);
4162bad_pool_lookup:
4163	dm_put(pool_md);
4164bad_common:
4165	dm_put_device(ti, tc->pool_dev);
4166bad_pool_dev:
4167	if (tc->origin_dev)
4168		dm_put_device(ti, tc->origin_dev);
4169bad_origin_dev:
4170	kfree(tc);
4171out_unlock:
4172	mutex_unlock(&dm_thin_pool_table.mutex);
4173
4174	return r;
4175}
4176
4177static int thin_map(struct dm_target *ti, struct bio *bio)
4178{
4179	bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
4180
4181	return thin_bio_map(ti, bio);
4182}
4183
4184static int thin_endio(struct dm_target *ti, struct bio *bio,
4185		blk_status_t *err)
4186{
4187	unsigned long flags;
4188	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
4189	struct list_head work;
4190	struct dm_thin_new_mapping *m, *tmp;
4191	struct pool *pool = h->tc->pool;
4192
4193	if (h->shared_read_entry) {
4194		INIT_LIST_HEAD(&work);
4195		dm_deferred_entry_dec(h->shared_read_entry, &work);
4196
4197		spin_lock_irqsave(&pool->lock, flags);
4198		list_for_each_entry_safe(m, tmp, &work, list) {
4199			list_del(&m->list);
4200			__complete_mapping_preparation(m);
4201		}
4202		spin_unlock_irqrestore(&pool->lock, flags);
4203	}
4204
4205	if (h->all_io_entry) {
4206		INIT_LIST_HEAD(&work);
4207		dm_deferred_entry_dec(h->all_io_entry, &work);
4208		if (!list_empty(&work)) {
4209			spin_lock_irqsave(&pool->lock, flags);
4210			list_for_each_entry_safe(m, tmp, &work, list)
4211				list_add_tail(&m->list, &pool->prepared_discards);
4212			spin_unlock_irqrestore(&pool->lock, flags);
4213			wake_worker(pool);
4214		}
4215	}
4216
4217	if (h->cell)
4218		cell_defer_no_holder(h->tc, h->cell);
4219
4220	return DM_ENDIO_DONE;
4221}
4222
4223static void thin_presuspend(struct dm_target *ti)
4224{
4225	struct thin_c *tc = ti->private;
4226
4227	if (dm_noflush_suspending(ti))
4228		noflush_work(tc, do_noflush_start);
4229}
4230
4231static void thin_postsuspend(struct dm_target *ti)
4232{
4233	struct thin_c *tc = ti->private;
4234
4235	/*
4236	 * The dm_noflush_suspending flag has been cleared by now, so
4237	 * unfortunately we must always run this.
4238	 */
4239	noflush_work(tc, do_noflush_stop);
4240}
4241
4242static int thin_preresume(struct dm_target *ti)
4243{
4244	struct thin_c *tc = ti->private;
4245
4246	if (tc->origin_dev)
4247		tc->origin_size = get_dev_size(tc->origin_dev->bdev);
4248
4249	return 0;
4250}
4251
4252/*
4253 * <nr mapped sectors> <highest mapped sector>
4254 */
4255static void thin_status(struct dm_target *ti, status_type_t type,
4256			unsigned status_flags, char *result, unsigned maxlen)
4257{
4258	int r;
4259	ssize_t sz = 0;
4260	dm_block_t mapped, highest;
4261	char buf[BDEVNAME_SIZE];
4262	struct thin_c *tc = ti->private;
4263
4264	if (get_pool_mode(tc->pool) == PM_FAIL) {
4265		DMEMIT("Fail");
4266		return;
4267	}
4268
4269	if (!tc->td)
4270		DMEMIT("-");
4271	else {
4272		switch (type) {
4273		case STATUSTYPE_INFO:
4274			r = dm_thin_get_mapped_count(tc->td, &mapped);
4275			if (r) {
4276				DMERR("dm_thin_get_mapped_count returned %d", r);
4277				goto err;
4278			}
4279
4280			r = dm_thin_get_highest_mapped_block(tc->td, &highest);
4281			if (r < 0) {
4282				DMERR("dm_thin_get_highest_mapped_block returned %d", r);
4283				goto err;
4284			}
4285
4286			DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
4287			if (r)
4288				DMEMIT("%llu", ((highest + 1) *
4289						tc->pool->sectors_per_block) - 1);
4290			else
4291				DMEMIT("-");
4292			break;
4293
4294		case STATUSTYPE_TABLE:
4295			DMEMIT("%s %lu",
4296			       format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
4297			       (unsigned long) tc->dev_id);
4298			if (tc->origin_dev)
4299				DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
4300			break;
 
 
 
 
4301		}
4302	}
4303
4304	return;
4305
4306err:
4307	DMEMIT("Error");
4308}
4309
4310static int thin_iterate_devices(struct dm_target *ti,
4311				iterate_devices_callout_fn fn, void *data)
4312{
4313	sector_t blocks;
4314	struct thin_c *tc = ti->private;
4315	struct pool *pool = tc->pool;
4316
4317	/*
4318	 * We can't call dm_pool_get_data_dev_size() since that blocks.  So
4319	 * we follow a more convoluted path through to the pool's target.
4320	 */
4321	if (!pool->ti)
4322		return 0;	/* nothing is bound */
4323
4324	blocks = pool->ti->len;
4325	(void) sector_div(blocks, pool->sectors_per_block);
4326	if (blocks)
4327		return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
4328
4329	return 0;
4330}
4331
4332static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
4333{
4334	struct thin_c *tc = ti->private;
4335	struct pool *pool = tc->pool;
4336
4337	if (!pool->pf.discard_enabled)
4338		return;
4339
4340	limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
4341	limits->max_discard_sectors = 2048 * 1024 * 16; /* 16G */
4342}
4343
4344static struct target_type thin_target = {
4345	.name = "thin",
4346	.version = {1, 19, 0},
4347	.module	= THIS_MODULE,
4348	.ctr = thin_ctr,
4349	.dtr = thin_dtr,
4350	.map = thin_map,
4351	.end_io = thin_endio,
4352	.preresume = thin_preresume,
4353	.presuspend = thin_presuspend,
4354	.postsuspend = thin_postsuspend,
4355	.status = thin_status,
4356	.iterate_devices = thin_iterate_devices,
4357	.io_hints = thin_io_hints,
4358};
4359
4360/*----------------------------------------------------------------*/
4361
4362static int __init dm_thin_init(void)
4363{
4364	int r = -ENOMEM;
4365
4366	pool_table_init();
4367
4368	_new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
4369	if (!_new_mapping_cache)
4370		return r;
4371
4372	r = dm_register_target(&thin_target);
4373	if (r)
4374		goto bad_new_mapping_cache;
4375
4376	r = dm_register_target(&pool_target);
4377	if (r)
4378		goto bad_thin_target;
4379
4380	return 0;
4381
4382bad_thin_target:
4383	dm_unregister_target(&thin_target);
4384bad_new_mapping_cache:
4385	kmem_cache_destroy(_new_mapping_cache);
4386
4387	return r;
4388}
4389
4390static void dm_thin_exit(void)
4391{
4392	dm_unregister_target(&thin_target);
4393	dm_unregister_target(&pool_target);
4394
4395	kmem_cache_destroy(_new_mapping_cache);
4396
4397	pool_table_exit();
4398}
4399
4400module_init(dm_thin_init);
4401module_exit(dm_thin_exit);
4402
4403module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR);
4404MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
4405
4406MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
4407MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
4408MODULE_LICENSE("GPL");