Linux Audio

Check our new training course

Loading...
v6.2
   1/*
   2 * Copyright (C) 2011-2012 Red Hat UK.
   3 *
   4 * This file is released under the GPL.
   5 */
   6
   7#include "dm-thin-metadata.h"
   8#include "dm-bio-prison-v1.h"
   9#include "dm.h"
  10
  11#include <linux/device-mapper.h>
  12#include <linux/dm-io.h>
  13#include <linux/dm-kcopyd.h>
  14#include <linux/jiffies.h>
  15#include <linux/log2.h>
  16#include <linux/list.h>
  17#include <linux/rculist.h>
  18#include <linux/init.h>
  19#include <linux/module.h>
  20#include <linux/slab.h>
  21#include <linux/vmalloc.h>
  22#include <linux/sort.h>
  23#include <linux/rbtree.h>
  24
  25#define	DM_MSG_PREFIX	"thin"
  26
  27/*
  28 * Tunable constants
  29 */
  30#define ENDIO_HOOK_POOL_SIZE 1024
 
  31#define MAPPING_POOL_SIZE 1024
 
  32#define COMMIT_PERIOD HZ
  33#define NO_SPACE_TIMEOUT_SECS 60
  34
  35static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
  36
  37DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
  38		"A percentage of time allocated for copy on write");
  39
  40/*
  41 * The block size of the device holding pool data must be
  42 * between 64KB and 1GB.
  43 */
  44#define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
  45#define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
  46
  47/*
  48 * Device id is restricted to 24 bits.
  49 */
  50#define MAX_DEV_ID ((1 << 24) - 1)
  51
  52/*
  53 * How do we handle breaking sharing of data blocks?
  54 * =================================================
  55 *
  56 * We use a standard copy-on-write btree to store the mappings for the
  57 * devices (note I'm talking about copy-on-write of the metadata here, not
  58 * the data).  When you take an internal snapshot you clone the root node
  59 * of the origin btree.  After this there is no concept of an origin or a
  60 * snapshot.  They are just two device trees that happen to point to the
  61 * same data blocks.
  62 *
  63 * When we get a write in we decide if it's to a shared data block using
  64 * some timestamp magic.  If it is, we have to break sharing.
  65 *
  66 * Let's say we write to a shared block in what was the origin.  The
  67 * steps are:
  68 *
  69 * i) plug io further to this physical block. (see bio_prison code).
  70 *
  71 * ii) quiesce any read io to that shared data block.  Obviously
  72 * including all devices that share this block.  (see dm_deferred_set code)
  73 *
  74 * iii) copy the data block to a newly allocate block.  This step can be
  75 * missed out if the io covers the block. (schedule_copy).
  76 *
  77 * iv) insert the new mapping into the origin's btree
  78 * (process_prepared_mapping).  This act of inserting breaks some
  79 * sharing of btree nodes between the two devices.  Breaking sharing only
  80 * effects the btree of that specific device.  Btrees for the other
  81 * devices that share the block never change.  The btree for the origin
  82 * device as it was after the last commit is untouched, ie. we're using
  83 * persistent data structures in the functional programming sense.
  84 *
  85 * v) unplug io to this physical block, including the io that triggered
  86 * the breaking of sharing.
  87 *
  88 * Steps (ii) and (iii) occur in parallel.
  89 *
  90 * The metadata _doesn't_ need to be committed before the io continues.  We
  91 * get away with this because the io is always written to a _new_ block.
  92 * If there's a crash, then:
  93 *
  94 * - The origin mapping will point to the old origin block (the shared
  95 * one).  This will contain the data as it was before the io that triggered
  96 * the breaking of sharing came in.
  97 *
  98 * - The snap mapping still points to the old block.  As it would after
  99 * the commit.
 100 *
 101 * The downside of this scheme is the timestamp magic isn't perfect, and
 102 * will continue to think that data block in the snapshot device is shared
 103 * even after the write to the origin has broken sharing.  I suspect data
 104 * blocks will typically be shared by many different devices, so we're
 105 * breaking sharing n + 1 times, rather than n, where n is the number of
 106 * devices that reference this data block.  At the moment I think the
 107 * benefits far, far outweigh the disadvantages.
 108 */
 109
 110/*----------------------------------------------------------------*/
 111
 112/*
 113 * Key building.
 114 */
 115enum lock_space {
 116	VIRTUAL,
 117	PHYSICAL
 
 
 
 
 
 
 118};
 119
 120static void build_key(struct dm_thin_device *td, enum lock_space ls,
 121		      dm_block_t b, dm_block_t e, struct dm_cell_key *key)
 122{
 123	key->virtual = (ls == VIRTUAL);
 124	key->dev = dm_thin_dev_id(td);
 125	key->block_begin = b;
 126	key->block_end = e;
 127}
 
 
 
 
 
 
 
 
 128
 129static void build_data_key(struct dm_thin_device *td, dm_block_t b,
 130			   struct dm_cell_key *key)
 131{
 132	build_key(td, PHYSICAL, b, b + 1llu, key);
 
 
 
 
 
 
 
 
 133}
 134
 135static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
 136			      struct dm_cell_key *key)
 
 
 
 
 
 137{
 138	build_key(td, VIRTUAL, b, b + 1llu, key);
 139}
 
 
 
 140
 141/*----------------------------------------------------------------*/
 
 142
 143#define THROTTLE_THRESHOLD (1 * HZ)
 
 
 
 
 
 144
 145struct throttle {
 146	struct rw_semaphore lock;
 147	unsigned long threshold;
 148	bool throttle_applied;
 149};
 150
 151static void throttle_init(struct throttle *t)
 152{
 153	init_rwsem(&t->lock);
 154	t->throttle_applied = false;
 155}
 156
 157static void throttle_work_start(struct throttle *t)
 158{
 159	t->threshold = jiffies + THROTTLE_THRESHOLD;
 
 160}
 161
 162static void throttle_work_update(struct throttle *t)
 163{
 164	if (!t->throttle_applied && time_is_before_jiffies(t->threshold)) {
 165		down_write(&t->lock);
 166		t->throttle_applied = true;
 167	}
 168}
 169
 170static void throttle_work_complete(struct throttle *t)
 171{
 172	if (t->throttle_applied) {
 173		t->throttle_applied = false;
 174		up_write(&t->lock);
 175	}
 176}
 177
 178static void throttle_lock(struct throttle *t)
 179{
 180	down_read(&t->lock);
 
 
 181}
 182
 183static void throttle_unlock(struct throttle *t)
 
 184{
 185	up_read(&t->lock);
 186}
 187
 188/*----------------------------------------------------------------*/
 
 
 189
 190/*
 191 * A pool device ties together a metadata device and a data device.  It
 192 * also provides the interface for creating and destroying internal
 193 * devices.
 194 */
 195struct dm_thin_new_mapping;
 196
 197/*
 198 * The pool runs in various modes.  Ordered in degraded order for comparisons.
 
 
 
 199 */
 200enum pool_mode {
 201	PM_WRITE,		/* metadata may be changed */
 202	PM_OUT_OF_DATA_SPACE,	/* metadata may be changed, though data may not be allocated */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 203
 204	/*
 205	 * Like READ_ONLY, except may switch back to WRITE on metadata resize. Reported as READ_ONLY.
 206	 */
 207	PM_OUT_OF_METADATA_SPACE,
 208	PM_READ_ONLY,		/* metadata may not be changed */
 
 209
 210	PM_FAIL,		/* all I/O fails */
 211};
 212
 213struct pool_features {
 214	enum pool_mode mode;
 
 
 
 
 
 215
 216	bool zero_new_blocks:1;
 217	bool discard_enabled:1;
 218	bool discard_passdown:1;
 219	bool error_if_no_space:1;
 220};
 221
 222struct thin_c;
 223typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
 224typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
 225typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
 
 226
 227#define CELL_SORT_ARRAY_SIZE 8192
 228
 229struct pool {
 230	struct list_head list;
 231	struct dm_target *ti;	/* Only set if a pool target is bound */
 232
 233	struct mapped_device *pool_md;
 234	struct block_device *data_dev;
 235	struct block_device *md_dev;
 236	struct dm_pool_metadata *pmd;
 237
 238	dm_block_t low_water_blocks;
 239	uint32_t sectors_per_block;
 240	int sectors_per_block_shift;
 241
 242	struct pool_features pf;
 243	bool low_water_triggered:1;	/* A dm event has been sent */
 244	bool suspended:1;
 245	bool out_of_data_space:1;
 
 
 246
 247	struct dm_bio_prison *prison;
 248	struct dm_kcopyd_client *copier;
 249
 250	struct work_struct worker;
 251	struct workqueue_struct *wq;
 252	struct throttle throttle;
 253	struct delayed_work waker;
 254	struct delayed_work no_space_timeout;
 255
 256	unsigned long last_commit_jiffies;
 257	unsigned ref_count;
 258
 259	spinlock_t lock;
 260	struct bio_list deferred_flush_bios;
 261	struct bio_list deferred_flush_completions;
 262	struct list_head prepared_mappings;
 263	struct list_head prepared_discards;
 264	struct list_head prepared_discards_pt2;
 265	struct list_head active_thins;
 266
 267	struct dm_deferred_set *shared_read_ds;
 268	struct dm_deferred_set *all_io_ds;
 
 
 269
 270	struct dm_thin_new_mapping *next_mapping;
 
 
 
 
 
 
 
 
 
 271
 272	process_bio_fn process_bio;
 273	process_bio_fn process_discard;
 274
 275	process_cell_fn process_cell;
 276	process_cell_fn process_discard_cell;
 
 
 277
 278	process_mapping_fn process_prepared_mapping;
 279	process_mapping_fn process_prepared_discard;
 280	process_mapping_fn process_prepared_discard_pt2;
 
 281
 282	struct dm_bio_prison_cell **cell_sort_array;
 
 
 
 
 
 
 283
 284	mempool_t mapping_pool;
 285};
 286
 287static void metadata_operation_failed(struct pool *pool, const char *op, int r);
 
 288
 289static enum pool_mode get_pool_mode(struct pool *pool)
 
 290{
 291	return pool->pf.mode;
 
 
 
 
 
 292}
 293
 294static void notify_of_pool_mode_change(struct pool *pool)
 295{
 296	const char *descs[] = {
 297		"write",
 298		"out-of-data-space",
 299		"read-only",
 300		"read-only",
 301		"fail"
 302	};
 303	const char *extra_desc = NULL;
 304	enum pool_mode mode = get_pool_mode(pool);
 305
 306	if (mode == PM_OUT_OF_DATA_SPACE) {
 307		if (!pool->pf.error_if_no_space)
 308			extra_desc = " (queue IO)";
 309		else
 310			extra_desc = " (error IO)";
 311	}
 312
 313	dm_table_event(pool->ti->table);
 314	DMINFO("%s: switching pool to %s%s mode",
 315	       dm_device_name(pool->pool_md),
 316	       descs[(int)mode], extra_desc ? : "");
 317}
 318
 319/*
 320 * Target context for a pool.
 321 */
 322struct pool_c {
 323	struct dm_target *ti;
 324	struct pool *pool;
 325	struct dm_dev *data_dev;
 326	struct dm_dev *metadata_dev;
 327
 328	dm_block_t low_water_blocks;
 329	struct pool_features requested_pf; /* Features requested during table load */
 330	struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
 331};
 332
 333/*
 334 * Target context for a thin.
 
 
 
 335 */
 336struct thin_c {
 337	struct list_head list;
 338	struct dm_dev *pool_dev;
 339	struct dm_dev *origin_dev;
 340	sector_t origin_size;
 341	dm_thin_id dev_id;
 342
 343	struct pool *pool;
 344	struct dm_thin_device *td;
 345	struct mapped_device *thin_md;
 
 
 
 346
 347	bool requeue_mode:1;
 348	spinlock_t lock;
 349	struct list_head deferred_cells;
 350	struct bio_list deferred_bio_list;
 351	struct bio_list retry_on_resume_list;
 352	struct rb_root sort_bio_list; /* sorted list of deferred bios */
 353
 354	/*
 355	 * Ensures the thin is not destroyed until the worker has finished
 356	 * iterating the active_thins list.
 357	 */
 358	refcount_t refcount;
 359	struct completion can_destroy;
 360};
 361
 362/*----------------------------------------------------------------*/
 363
 364static bool block_size_is_power_of_two(struct pool *pool)
 365{
 366	return pool->sectors_per_block_shift >= 0;
 
 
 
 
 
 
 
 
 
 367}
 368
 369static sector_t block_to_sectors(struct pool *pool, dm_block_t b)
 370{
 371	return block_size_is_power_of_two(pool) ?
 372		(b << pool->sectors_per_block_shift) :
 373		(b * pool->sectors_per_block);
 374}
 375
 376/*----------------------------------------------------------------*/
 
 
 
 377
 378struct discard_op {
 379	struct thin_c *tc;
 380	struct blk_plug plug;
 381	struct bio *parent_bio;
 382	struct bio *bio;
 383};
 
 384
 385static void begin_discard(struct discard_op *op, struct thin_c *tc, struct bio *parent)
 386{
 387	BUG_ON(!parent);
 
 
 
 
 388
 389	op->tc = tc;
 390	blk_start_plug(&op->plug);
 391	op->parent_bio = parent;
 392	op->bio = NULL;
 393}
 394
 395static int issue_discard(struct discard_op *op, dm_block_t data_b, dm_block_t data_e)
 396{
 397	struct thin_c *tc = op->tc;
 398	sector_t s = block_to_sectors(tc->pool, data_b);
 399	sector_t len = block_to_sectors(tc->pool, data_e - data_b);
 400
 401	return __blkdev_issue_discard(tc->pool_dev->bdev, s, len, GFP_NOWAIT,
 402				      &op->bio);
 
 
 
 403}
 404
 405static void end_discard(struct discard_op *op, int r)
 
 
 
 406{
 407	if (op->bio) {
 408		/*
 409		 * Even if one of the calls to issue_discard failed, we
 410		 * need to wait for the chain to complete.
 411		 */
 412		bio_chain(op->bio, op->parent_bio);
 413		op->bio->bi_opf = REQ_OP_DISCARD;
 414		submit_bio(op->bio);
 415	}
 416
 417	blk_finish_plug(&op->plug);
 
 
 
 
 
 
 
 
 
 
 418
 419	/*
 420	 * Even if r is set, there could be sub discards in flight that we
 421	 * need to wait for.
 422	 */
 423	if (r && !op->parent_bio->bi_status)
 424		op->parent_bio->bi_status = errno_to_blk_status(r);
 425	bio_endio(op->parent_bio);
 426}
 427
 428/*----------------------------------------------------------------*/
 429
 430/*
 431 * wake_worker() is used when new work is queued and when pool_resume is
 432 * ready to continue deferred IO processing.
 433 */
 434static void wake_worker(struct pool *pool)
 
 435{
 436	queue_work(pool->wq, &pool->worker);
 
 
 
 
 
 
 
 
 
 
 437}
 438
 439/*----------------------------------------------------------------*/
 440
 441static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
 442		      struct dm_bio_prison_cell **cell_result)
 443{
 444	int r;
 445	struct dm_bio_prison_cell *cell_prealloc;
 
 446
 447	/*
 448	 * Allocate a cell from the prison's mempool.
 449	 * This might block but it can't fail.
 450	 */
 451	cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
 452
 453	r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
 454	if (r)
 455		/*
 456		 * We reused an old cell; we can get rid of
 457		 * the new one.
 458		 */
 459		dm_bio_prison_free_cell(pool->prison, cell_prealloc);
 460
 461	return r;
 462}
 
 463
 464static void cell_release(struct pool *pool,
 465			 struct dm_bio_prison_cell *cell,
 466			 struct bio_list *bios)
 467{
 468	dm_cell_release(pool->prison, cell, bios);
 469	dm_bio_prison_free_cell(pool->prison, cell);
 470}
 471
 472static void cell_visit_release(struct pool *pool,
 473			       void (*fn)(void *, struct dm_bio_prison_cell *),
 474			       void *context,
 475			       struct dm_bio_prison_cell *cell)
 476{
 477	dm_cell_visit_release(pool->prison, fn, context, cell);
 478	dm_bio_prison_free_cell(pool->prison, cell);
 479}
 480
 481static void cell_release_no_holder(struct pool *pool,
 482				   struct dm_bio_prison_cell *cell,
 483				   struct bio_list *bios)
 484{
 485	dm_cell_release_no_holder(pool->prison, cell, bios);
 486	dm_bio_prison_free_cell(pool->prison, cell);
 487}
 488
 489static void cell_error_with_code(struct pool *pool,
 490		struct dm_bio_prison_cell *cell, blk_status_t error_code)
 491{
 492	dm_cell_error(pool->prison, cell, error_code);
 493	dm_bio_prison_free_cell(pool->prison, cell);
 494}
 495
 496static blk_status_t get_pool_io_error_code(struct pool *pool)
 497{
 498	return pool->out_of_data_space ? BLK_STS_NOSPC : BLK_STS_IOERR;
 499}
 500
 501static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
 502{
 503	cell_error_with_code(pool, cell, get_pool_io_error_code(pool));
 504}
 
 505
 506static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
 507{
 508	cell_error_with_code(pool, cell, 0);
 509}
 510
 511static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
 512{
 513	cell_error_with_code(pool, cell, BLK_STS_DM_REQUEUE);
 514}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 515
 516/*----------------------------------------------------------------*/
 517
 518/*
 519 * A global list of pools that uses a struct mapped_device as a key.
 520 */
 521static struct dm_thin_pool_table {
 522	struct mutex mutex;
 523	struct list_head pools;
 524} dm_thin_pool_table;
 525
 526static void pool_table_init(void)
 527{
 528	mutex_init(&dm_thin_pool_table.mutex);
 529	INIT_LIST_HEAD(&dm_thin_pool_table.pools);
 530}
 531
 532static void pool_table_exit(void)
 533{
 534	mutex_destroy(&dm_thin_pool_table.mutex);
 535}
 536
 537static void __pool_table_insert(struct pool *pool)
 538{
 539	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 540	list_add(&pool->list, &dm_thin_pool_table.pools);
 541}
 542
 543static void __pool_table_remove(struct pool *pool)
 544{
 545	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 546	list_del(&pool->list);
 547}
 548
 549static struct pool *__pool_table_lookup(struct mapped_device *md)
 550{
 551	struct pool *pool = NULL, *tmp;
 552
 553	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 554
 555	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
 556		if (tmp->pool_md == md) {
 557			pool = tmp;
 558			break;
 559		}
 560	}
 561
 562	return pool;
 563}
 564
 565static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
 566{
 567	struct pool *pool = NULL, *tmp;
 568
 569	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 570
 571	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
 572		if (tmp->md_dev == md_dev) {
 573			pool = tmp;
 574			break;
 575		}
 576	}
 577
 578	return pool;
 579}
 580
 581/*----------------------------------------------------------------*/
 582
 583struct dm_thin_endio_hook {
 584	struct thin_c *tc;
 585	struct dm_deferred_entry *shared_read_entry;
 586	struct dm_deferred_entry *all_io_entry;
 587	struct dm_thin_new_mapping *overwrite_mapping;
 588	struct rb_node rb_node;
 589	struct dm_bio_prison_cell *cell;
 590};
 591
 592static void __merge_bio_list(struct bio_list *bios, struct bio_list *master)
 593{
 594	bio_list_merge(bios, master);
 595	bio_list_init(master);
 596}
 597
 598static void error_bio_list(struct bio_list *bios, blk_status_t error)
 599{
 600	struct bio *bio;
 601
 602	while ((bio = bio_list_pop(bios))) {
 603		bio->bi_status = error;
 604		bio_endio(bio);
 605	}
 606}
 607
 608static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master,
 609		blk_status_t error)
 610{
 611	struct bio_list bios;
 612
 613	bio_list_init(&bios);
 
 
 614
 615	spin_lock_irq(&tc->lock);
 616	__merge_bio_list(&bios, master);
 617	spin_unlock_irq(&tc->lock);
 618
 619	error_bio_list(&bios, error);
 620}
 621
 622static void requeue_deferred_cells(struct thin_c *tc)
 623{
 624	struct pool *pool = tc->pool;
 625	struct list_head cells;
 626	struct dm_bio_prison_cell *cell, *tmp;
 627
 628	INIT_LIST_HEAD(&cells);
 629
 630	spin_lock_irq(&tc->lock);
 631	list_splice_init(&tc->deferred_cells, &cells);
 632	spin_unlock_irq(&tc->lock);
 633
 634	list_for_each_entry_safe(cell, tmp, &cells, user_list)
 635		cell_requeue(pool, cell);
 
 
 
 636}
 637
 638static void requeue_io(struct thin_c *tc)
 639{
 640	struct bio_list bios;
 641
 642	bio_list_init(&bios);
 643
 644	spin_lock_irq(&tc->lock);
 645	__merge_bio_list(&bios, &tc->deferred_bio_list);
 646	__merge_bio_list(&bios, &tc->retry_on_resume_list);
 647	spin_unlock_irq(&tc->lock);
 648
 649	error_bio_list(&bios, BLK_STS_DM_REQUEUE);
 650	requeue_deferred_cells(tc);
 651}
 652
 653static void error_retry_list_with_code(struct pool *pool, blk_status_t error)
 654{
 655	struct thin_c *tc;
 656
 657	rcu_read_lock();
 658	list_for_each_entry_rcu(tc, &pool->active_thins, list)
 659		error_thin_bio_list(tc, &tc->retry_on_resume_list, error);
 660	rcu_read_unlock();
 661}
 662
 663static void error_retry_list(struct pool *pool)
 664{
 665	error_retry_list_with_code(pool, get_pool_io_error_code(pool));
 
 666}
 667
 668/*
 669 * This section of code contains the logic for processing a thin device's IO.
 670 * Much of the code depends on pool object resources (lists, workqueues, etc)
 671 * but most is exclusively called from the thin target rather than the thin-pool
 672 * target.
 673 */
 674
 675static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
 676{
 677	struct pool *pool = tc->pool;
 678	sector_t block_nr = bio->bi_iter.bi_sector;
 679
 680	if (block_size_is_power_of_two(pool))
 681		block_nr >>= pool->sectors_per_block_shift;
 682	else
 683		(void) sector_div(block_nr, pool->sectors_per_block);
 684
 685	return block_nr;
 686}
 687
 688/*
 689 * Returns the _complete_ blocks that this bio covers.
 690 */
 691static void get_bio_block_range(struct thin_c *tc, struct bio *bio,
 692				dm_block_t *begin, dm_block_t *end)
 693{
 694	struct pool *pool = tc->pool;
 695	sector_t b = bio->bi_iter.bi_sector;
 696	sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT);
 697
 698	b += pool->sectors_per_block - 1ull; /* so we round up */
 699
 700	if (block_size_is_power_of_two(pool)) {
 701		b >>= pool->sectors_per_block_shift;
 702		e >>= pool->sectors_per_block_shift;
 703	} else {
 704		(void) sector_div(b, pool->sectors_per_block);
 705		(void) sector_div(e, pool->sectors_per_block);
 706	}
 707
 708	if (e < b)
 709		/* Can happen if the bio is within a single block. */
 710		e = b;
 711
 712	*begin = b;
 713	*end = e;
 714}
 715
 716static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
 717{
 718	struct pool *pool = tc->pool;
 719	sector_t bi_sector = bio->bi_iter.bi_sector;
 720
 721	bio_set_dev(bio, tc->pool_dev->bdev);
 722	if (block_size_is_power_of_two(pool))
 723		bio->bi_iter.bi_sector =
 724			(block << pool->sectors_per_block_shift) |
 725			(bi_sector & (pool->sectors_per_block - 1));
 726	else
 727		bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
 728				 sector_div(bi_sector, pool->sectors_per_block);
 729}
 730
 731static void remap_to_origin(struct thin_c *tc, struct bio *bio)
 732{
 733	bio_set_dev(bio, tc->origin_dev->bdev);
 734}
 735
 736static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
 737{
 738	return op_is_flush(bio->bi_opf) &&
 739		dm_thin_changed_this_transaction(tc->td);
 740}
 741
 742static void inc_all_io_entry(struct pool *pool, struct bio *bio)
 743{
 744	struct dm_thin_endio_hook *h;
 745
 746	if (bio_op(bio) == REQ_OP_DISCARD)
 747		return;
 748
 749	h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
 750	h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
 751}
 752
 753static void issue(struct thin_c *tc, struct bio *bio)
 754{
 755	struct pool *pool = tc->pool;
 756
 757	if (!bio_triggers_commit(tc, bio)) {
 758		dm_submit_bio_remap(bio, NULL);
 759		return;
 760	}
 761
 762	/*
 763	 * Complete bio with an error if earlier I/O caused changes to
 764	 * the metadata that can't be committed e.g, due to I/O errors
 765	 * on the metadata device.
 766	 */
 767	if (dm_thin_aborted_changes(tc->td)) {
 768		bio_io_error(bio);
 769		return;
 770	}
 771
 772	/*
 773	 * Batch together any bios that trigger commits and then issue a
 774	 * single commit for them in process_deferred_bios().
 775	 */
 776	spin_lock_irq(&pool->lock);
 777	bio_list_add(&pool->deferred_flush_bios, bio);
 778	spin_unlock_irq(&pool->lock);
 
 
 
 779}
 780
 781static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
 782{
 783	remap_to_origin(tc, bio);
 784	issue(tc, bio);
 785}
 786
 787static void remap_and_issue(struct thin_c *tc, struct bio *bio,
 788			    dm_block_t block)
 789{
 790	remap(tc, bio, block);
 791	issue(tc, bio);
 792}
 793
 
 
 
 
 
 
 
 
 
 794/*----------------------------------------------------------------*/
 795
 796/*
 797 * Bio endio functions.
 798 */
 799struct dm_thin_new_mapping {
 800	struct list_head list;
 801
 802	bool pass_discard:1;
 803	bool maybe_shared:1;
 804
 805	/*
 806	 * Track quiescing, copying and zeroing preparation actions.  When this
 807	 * counter hits zero the block is prepared and can be inserted into the
 808	 * btree.
 809	 */
 810	atomic_t prepare_actions;
 811
 812	blk_status_t status;
 813	struct thin_c *tc;
 814	dm_block_t virt_begin, virt_end;
 815	dm_block_t data_block;
 816	struct dm_bio_prison_cell *cell;
 
 817
 818	/*
 819	 * If the bio covers the whole area of a block then we can avoid
 820	 * zeroing or copying.  Instead this bio is hooked.  The bio will
 821	 * still be in the cell, so care has to be taken to avoid issuing
 822	 * the bio twice.
 823	 */
 824	struct bio *bio;
 825	bio_end_io_t *saved_bi_end_io;
 826};
 827
 828static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
 829{
 830	struct pool *pool = m->tc->pool;
 831
 832	if (atomic_dec_and_test(&m->prepare_actions)) {
 833		list_add_tail(&m->list, &pool->prepared_mappings);
 834		wake_worker(pool);
 835	}
 836}
 837
 838static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
 839{
 840	unsigned long flags;
 
 841	struct pool *pool = m->tc->pool;
 842
 
 
 843	spin_lock_irqsave(&pool->lock, flags);
 844	__complete_mapping_preparation(m);
 
 845	spin_unlock_irqrestore(&pool->lock, flags);
 846}
 847
 848static void copy_complete(int read_err, unsigned long write_err, void *context)
 849{
 850	struct dm_thin_new_mapping *m = context;
 851
 852	m->status = read_err || write_err ? BLK_STS_IOERR : 0;
 853	complete_mapping_preparation(m);
 854}
 855
 856static void overwrite_endio(struct bio *bio)
 857{
 858	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
 
 859	struct dm_thin_new_mapping *m = h->overwrite_mapping;
 
 860
 861	bio->bi_end_io = m->saved_bi_end_io;
 862
 863	m->status = bio->bi_status;
 864	complete_mapping_preparation(m);
 
 
 865}
 866
 867/*----------------------------------------------------------------*/
 868
 869/*
 870 * Workqueue.
 871 */
 872
 873/*
 874 * Prepared mapping jobs.
 875 */
 876
 877/*
 878 * This sends the bios in the cell, except the original holder, back
 879 * to the deferred_bios list.
 880 */
 881static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
 
 882{
 883	struct pool *pool = tc->pool;
 884	unsigned long flags;
 885	int has_work;
 886
 887	spin_lock_irqsave(&tc->lock, flags);
 888	cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
 889	has_work = !bio_list_empty(&tc->deferred_bio_list);
 890	spin_unlock_irqrestore(&tc->lock, flags);
 891
 892	if (has_work)
 893		wake_worker(pool);
 894}
 895
 896static void thin_defer_bio(struct thin_c *tc, struct bio *bio);
 897
 898struct remap_info {
 899	struct thin_c *tc;
 900	struct bio_list defer_bios;
 901	struct bio_list issue_bios;
 902};
 903
 904static void __inc_remap_and_issue_cell(void *context,
 905				       struct dm_bio_prison_cell *cell)
 906{
 907	struct remap_info *info = context;
 908	struct bio *bio;
 909
 910	while ((bio = bio_list_pop(&cell->bios))) {
 911		if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD)
 912			bio_list_add(&info->defer_bios, bio);
 913		else {
 914			inc_all_io_entry(info->tc->pool, bio);
 915
 916			/*
 917			 * We can't issue the bios with the bio prison lock
 918			 * held, so we add them to a list to issue on
 919			 * return from this function.
 920			 */
 921			bio_list_add(&info->issue_bios, bio);
 922		}
 923	}
 924}
 925
 926static void inc_remap_and_issue_cell(struct thin_c *tc,
 927				     struct dm_bio_prison_cell *cell,
 928				     dm_block_t block)
 929{
 930	struct bio *bio;
 931	struct remap_info info;
 932
 933	info.tc = tc;
 934	bio_list_init(&info.defer_bios);
 935	bio_list_init(&info.issue_bios);
 936
 937	/*
 938	 * We have to be careful to inc any bios we're about to issue
 939	 * before the cell is released, and avoid a race with new bios
 940	 * being added to the cell.
 941	 */
 942	cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
 943			   &info, cell);
 944
 945	while ((bio = bio_list_pop(&info.defer_bios)))
 946		thin_defer_bio(tc, bio);
 947
 948	while ((bio = bio_list_pop(&info.issue_bios)))
 949		remap_and_issue(info.tc, bio, block);
 950}
 951
 952static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
 953{
 954	cell_error(m->tc->pool, m->cell);
 955	list_del(&m->list);
 956	mempool_free(m, &m->tc->pool->mapping_pool);
 957}
 958
 959static void complete_overwrite_bio(struct thin_c *tc, struct bio *bio)
 
 
 
 
 960{
 
 961	struct pool *pool = tc->pool;
 
 962
 963	/*
 964	 * If the bio has the REQ_FUA flag set we must commit the metadata
 965	 * before signaling its completion.
 966	 */
 967	if (!bio_triggers_commit(tc, bio)) {
 968		bio_endio(bio);
 969		return;
 970	}
 971
 972	/*
 973	 * Complete bio with an error if earlier I/O caused changes to the
 974	 * metadata that can't be committed, e.g, due to I/O errors on the
 975	 * metadata device.
 976	 */
 977	if (dm_thin_aborted_changes(tc->td)) {
 978		bio_io_error(bio);
 979		return;
 980	}
 981
 982	/*
 983	 * Batch together any bios that trigger commits and then issue a
 984	 * single commit for them in process_deferred_bios().
 985	 */
 986	spin_lock_irq(&pool->lock);
 987	bio_list_add(&pool->deferred_flush_completions, bio);
 988	spin_unlock_irq(&pool->lock);
 989}
 990
 991static void process_prepared_mapping(struct dm_thin_new_mapping *m)
 992{
 993	struct thin_c *tc = m->tc;
 994	struct pool *pool = tc->pool;
 995	struct bio *bio = m->bio;
 996	int r;
 997
 998	if (m->status) {
 999		cell_error(pool, m->cell);
 
 
 
 
1000		goto out;
1001	}
1002
1003	/*
1004	 * Commit the prepared block into the mapping btree.
1005	 * Any I/O for this block arriving after this point will get
1006	 * remapped to it directly.
1007	 */
1008	r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block);
1009	if (r) {
1010		metadata_operation_failed(pool, "dm_thin_insert_block", r);
1011		cell_error(pool, m->cell);
1012		goto out;
1013	}
1014
1015	/*
1016	 * Release any bios held while the block was being provisioned.
1017	 * If we are processing a write bio that completely covers the block,
1018	 * we already processed it so can ignore it now when processing
1019	 * the bios in the cell.
1020	 */
1021	if (bio) {
1022		inc_remap_and_issue_cell(tc, m->cell, m->data_block);
1023		complete_overwrite_bio(tc, bio);
1024	} else {
1025		inc_all_io_entry(tc->pool, m->cell->holder);
1026		remap_and_issue(tc, m->cell->holder, m->data_block);
1027		inc_remap_and_issue_cell(tc, m->cell, m->data_block);
1028	}
1029
1030out:
1031	list_del(&m->list);
1032	mempool_free(m, &pool->mapping_pool);
1033}
1034
1035/*----------------------------------------------------------------*/
1036
1037static void free_discard_mapping(struct dm_thin_new_mapping *m)
1038{
1039	struct thin_c *tc = m->tc;
1040	if (m->cell)
1041		cell_defer_no_holder(tc, m->cell);
1042	mempool_free(m, &tc->pool->mapping_pool);
1043}
1044
1045static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
1046{
1047	bio_io_error(m->bio);
1048	free_discard_mapping(m);
1049}
1050
1051static void process_prepared_discard_success(struct dm_thin_new_mapping *m)
1052{
1053	bio_endio(m->bio);
1054	free_discard_mapping(m);
1055}
1056
1057static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m)
1058{
1059	int r;
1060	struct thin_c *tc = m->tc;
1061
1062	r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end);
1063	if (r) {
1064		metadata_operation_failed(tc->pool, "dm_thin_remove_range", r);
1065		bio_io_error(m->bio);
1066	} else
1067		bio_endio(m->bio);
1068
1069	cell_defer_no_holder(tc, m->cell);
1070	mempool_free(m, &tc->pool->mapping_pool);
1071}
1072
1073/*----------------------------------------------------------------*/
1074
1075static void passdown_double_checking_shared_status(struct dm_thin_new_mapping *m,
1076						   struct bio *discard_parent)
1077{
1078	/*
1079	 * We've already unmapped this range of blocks, but before we
1080	 * passdown we have to check that these blocks are now unused.
1081	 */
1082	int r = 0;
1083	bool shared = true;
1084	struct thin_c *tc = m->tc;
1085	struct pool *pool = tc->pool;
1086	dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin;
1087	struct discard_op op;
1088
1089	begin_discard(&op, tc, discard_parent);
1090	while (b != end) {
1091		/* find start of unmapped run */
1092		for (; b < end; b++) {
1093			r = dm_pool_block_is_shared(pool->pmd, b, &shared);
1094			if (r)
1095				goto out;
1096
1097			if (!shared)
1098				break;
1099		}
1100
1101		if (b == end)
1102			break;
1103
1104		/* find end of run */
1105		for (e = b + 1; e != end; e++) {
1106			r = dm_pool_block_is_shared(pool->pmd, e, &shared);
1107			if (r)
1108				goto out;
1109
1110			if (shared)
1111				break;
1112		}
1113
1114		r = issue_discard(&op, b, e);
1115		if (r)
1116			goto out;
1117
1118		b = e;
1119	}
1120out:
1121	end_discard(&op, r);
1122}
1123
1124static void queue_passdown_pt2(struct dm_thin_new_mapping *m)
1125{
1126	unsigned long flags;
1127	struct pool *pool = m->tc->pool;
1128
1129	spin_lock_irqsave(&pool->lock, flags);
1130	list_add_tail(&m->list, &pool->prepared_discards_pt2);
1131	spin_unlock_irqrestore(&pool->lock, flags);
1132	wake_worker(pool);
1133}
1134
1135static void passdown_endio(struct bio *bio)
1136{
1137	/*
1138	 * It doesn't matter if the passdown discard failed, we still want
1139	 * to unmap (we ignore err).
1140	 */
1141	queue_passdown_pt2(bio->bi_private);
1142	bio_put(bio);
1143}
1144
1145static void process_prepared_discard_passdown_pt1(struct dm_thin_new_mapping *m)
1146{
1147	int r;
1148	struct thin_c *tc = m->tc;
1149	struct pool *pool = tc->pool;
1150	struct bio *discard_parent;
1151	dm_block_t data_end = m->data_block + (m->virt_end - m->virt_begin);
1152
1153	/*
1154	 * Only this thread allocates blocks, so we can be sure that the
1155	 * newly unmapped blocks will not be allocated before the end of
1156	 * the function.
1157	 */
1158	r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end);
1159	if (r) {
1160		metadata_operation_failed(pool, "dm_thin_remove_range", r);
1161		bio_io_error(m->bio);
1162		cell_defer_no_holder(tc, m->cell);
1163		mempool_free(m, &pool->mapping_pool);
1164		return;
1165	}
1166
1167	/*
1168	 * Increment the unmapped blocks.  This prevents a race between the
1169	 * passdown io and reallocation of freed blocks.
1170	 */
1171	r = dm_pool_inc_data_range(pool->pmd, m->data_block, data_end);
1172	if (r) {
1173		metadata_operation_failed(pool, "dm_pool_inc_data_range", r);
1174		bio_io_error(m->bio);
1175		cell_defer_no_holder(tc, m->cell);
1176		mempool_free(m, &pool->mapping_pool);
1177		return;
1178	}
1179
1180	discard_parent = bio_alloc(NULL, 1, 0, GFP_NOIO);
1181	discard_parent->bi_end_io = passdown_endio;
1182	discard_parent->bi_private = m;
1183 	if (m->maybe_shared)
1184 		passdown_double_checking_shared_status(m, discard_parent);
1185 	else {
1186		struct discard_op op;
1187
1188		begin_discard(&op, tc, discard_parent);
1189		r = issue_discard(&op, m->data_block, data_end);
1190		end_discard(&op, r);
1191	}
1192}
1193
1194static void process_prepared_discard_passdown_pt2(struct dm_thin_new_mapping *m)
1195{
1196	int r;
1197	struct thin_c *tc = m->tc;
1198	struct pool *pool = tc->pool;
1199
1200	/*
1201	 * The passdown has completed, so now we can decrement all those
1202	 * unmapped blocks.
1203	 */
1204	r = dm_pool_dec_data_range(pool->pmd, m->data_block,
1205				   m->data_block + (m->virt_end - m->virt_begin));
1206	if (r) {
1207		metadata_operation_failed(pool, "dm_pool_dec_data_range", r);
1208		bio_io_error(m->bio);
1209	} else
1210		bio_endio(m->bio);
1211
1212	cell_defer_no_holder(tc, m->cell);
1213	mempool_free(m, &pool->mapping_pool);
 
1214}
1215
1216static void process_prepared(struct pool *pool, struct list_head *head,
1217			     process_mapping_fn *fn)
1218{
 
1219	struct list_head maps;
1220	struct dm_thin_new_mapping *m, *tmp;
1221
1222	INIT_LIST_HEAD(&maps);
1223	spin_lock_irq(&pool->lock);
1224	list_splice_init(head, &maps);
1225	spin_unlock_irq(&pool->lock);
1226
1227	list_for_each_entry_safe(m, tmp, &maps, list)
1228		(*fn)(m);
1229}
1230
1231/*
1232 * Deferred bio jobs.
1233 */
1234static int io_overlaps_block(struct pool *pool, struct bio *bio)
1235{
1236	return bio->bi_iter.bi_size ==
1237		(pool->sectors_per_block << SECTOR_SHIFT);
 
1238}
1239
1240static int io_overwrites_block(struct pool *pool, struct bio *bio)
1241{
1242	return (bio_data_dir(bio) == WRITE) &&
1243		io_overlaps_block(pool, bio);
1244}
1245
1246static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
1247			       bio_end_io_t *fn)
1248{
1249	*save = bio->bi_end_io;
1250	bio->bi_end_io = fn;
1251}
1252
1253static int ensure_next_mapping(struct pool *pool)
1254{
1255	if (pool->next_mapping)
1256		return 0;
1257
1258	pool->next_mapping = mempool_alloc(&pool->mapping_pool, GFP_ATOMIC);
1259
1260	return pool->next_mapping ? 0 : -ENOMEM;
1261}
1262
1263static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
1264{
1265	struct dm_thin_new_mapping *m = pool->next_mapping;
1266
1267	BUG_ON(!pool->next_mapping);
1268
1269	memset(m, 0, sizeof(struct dm_thin_new_mapping));
1270	INIT_LIST_HEAD(&m->list);
1271	m->bio = NULL;
1272
1273	pool->next_mapping = NULL;
1274
1275	return m;
1276}
1277
1278static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
1279		    sector_t begin, sector_t end)
1280{
1281	struct dm_io_region to;
1282
1283	to.bdev = tc->pool_dev->bdev;
1284	to.sector = begin;
1285	to.count = end - begin;
1286
1287	dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
1288}
1289
1290static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
1291				      dm_block_t data_begin,
1292				      struct dm_thin_new_mapping *m)
1293{
1294	struct pool *pool = tc->pool;
1295	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1296
1297	h->overwrite_mapping = m;
1298	m->bio = bio;
1299	save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1300	inc_all_io_entry(pool, bio);
1301	remap_and_issue(tc, bio, data_begin);
1302}
1303
1304/*
1305 * A partial copy also needs to zero the uncopied region.
1306 */
1307static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
1308			  struct dm_dev *origin, dm_block_t data_origin,
1309			  dm_block_t data_dest,
1310			  struct dm_bio_prison_cell *cell, struct bio *bio,
1311			  sector_t len)
1312{
 
1313	struct pool *pool = tc->pool;
1314	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1315
 
 
 
1316	m->tc = tc;
1317	m->virt_begin = virt_block;
1318	m->virt_end = virt_block + 1u;
1319	m->data_block = data_dest;
1320	m->cell = cell;
 
 
1321
1322	/*
1323	 * quiesce action + copy action + an extra reference held for the
1324	 * duration of this function (we may need to inc later for a
1325	 * partial zero).
1326	 */
1327	atomic_set(&m->prepare_actions, 3);
1328
1329	if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
1330		complete_mapping_preparation(m); /* already quiesced */
1331
1332	/*
1333	 * IO to pool_dev remaps to the pool target's data_dev.
1334	 *
1335	 * If the whole block of data is being overwritten, we can issue the
1336	 * bio immediately. Otherwise we use kcopyd to clone the data first.
1337	 */
1338	if (io_overwrites_block(pool, bio))
1339		remap_and_issue_overwrite(tc, bio, data_dest, m);
1340	else {
 
 
 
 
 
1341		struct dm_io_region from, to;
1342
1343		from.bdev = origin->bdev;
1344		from.sector = data_origin * pool->sectors_per_block;
1345		from.count = len;
1346
1347		to.bdev = tc->pool_dev->bdev;
1348		to.sector = data_dest * pool->sectors_per_block;
1349		to.count = len;
1350
1351		dm_kcopyd_copy(pool->copier, &from, 1, &to,
1352			       0, copy_complete, m);
1353
1354		/*
1355		 * Do we need to zero a tail region?
1356		 */
1357		if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
1358			atomic_inc(&m->prepare_actions);
1359			ll_zero(tc, m,
1360				data_dest * pool->sectors_per_block + len,
1361				(data_dest + 1) * pool->sectors_per_block);
1362		}
1363	}
1364
1365	complete_mapping_preparation(m); /* drop our ref */
1366}
1367
1368static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1369				   dm_block_t data_origin, dm_block_t data_dest,
1370				   struct dm_bio_prison_cell *cell, struct bio *bio)
1371{
1372	schedule_copy(tc, virt_block, tc->pool_dev,
1373		      data_origin, data_dest, cell, bio,
1374		      tc->pool->sectors_per_block);
 
 
 
 
 
 
 
1375}
1376
1377static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1378			  dm_block_t data_block, struct dm_bio_prison_cell *cell,
1379			  struct bio *bio)
1380{
1381	struct pool *pool = tc->pool;
1382	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1383
1384	atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
 
 
1385	m->tc = tc;
1386	m->virt_begin = virt_block;
1387	m->virt_end = virt_block + 1u;
1388	m->data_block = data_block;
1389	m->cell = cell;
 
 
1390
1391	/*
1392	 * If the whole block of data is being overwritten or we are not
1393	 * zeroing pre-existing data, we can issue the bio immediately.
1394	 * Otherwise we use kcopyd to zero the data first.
1395	 */
1396	if (pool->pf.zero_new_blocks) {
1397		if (io_overwrites_block(pool, bio))
1398			remap_and_issue_overwrite(tc, bio, data_block, m);
1399		else
1400			ll_zero(tc, m, data_block * pool->sectors_per_block,
1401				(data_block + 1) * pool->sectors_per_block);
1402	} else
1403		process_prepared_mapping(m);
1404}
1405
1406static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1407				   dm_block_t data_dest,
1408				   struct dm_bio_prison_cell *cell, struct bio *bio)
1409{
1410	struct pool *pool = tc->pool;
1411	sector_t virt_block_begin = virt_block * pool->sectors_per_block;
1412	sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
1413
1414	if (virt_block_end <= tc->origin_size)
1415		schedule_copy(tc, virt_block, tc->origin_dev,
1416			      virt_block, data_dest, cell, bio,
1417			      pool->sectors_per_block);
1418
1419	else if (virt_block_begin < tc->origin_size)
1420		schedule_copy(tc, virt_block, tc->origin_dev,
1421			      virt_block, data_dest, cell, bio,
1422			      tc->origin_size - virt_block_begin);
1423
1424	else
1425		schedule_zero(tc, virt_block, data_dest, cell, bio);
1426}
1427
1428static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
1429
1430static void requeue_bios(struct pool *pool);
1431
1432static bool is_read_only_pool_mode(enum pool_mode mode)
1433{
1434	return (mode == PM_OUT_OF_METADATA_SPACE || mode == PM_READ_ONLY);
1435}
1436
1437static bool is_read_only(struct pool *pool)
1438{
1439	return is_read_only_pool_mode(get_pool_mode(pool));
1440}
1441
1442static void check_for_metadata_space(struct pool *pool)
1443{
1444	int r;
1445	const char *ooms_reason = NULL;
1446	dm_block_t nr_free;
1447
1448	r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free);
1449	if (r)
1450		ooms_reason = "Could not get free metadata blocks";
1451	else if (!nr_free)
1452		ooms_reason = "No free metadata blocks";
1453
1454	if (ooms_reason && !is_read_only(pool)) {
1455		DMERR("%s", ooms_reason);
1456		set_pool_mode(pool, PM_OUT_OF_METADATA_SPACE);
1457	}
1458}
1459
1460static void check_for_data_space(struct pool *pool)
1461{
1462	int r;
1463	dm_block_t nr_free;
1464
1465	if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE)
1466		return;
1467
1468	r = dm_pool_get_free_block_count(pool->pmd, &nr_free);
1469	if (r)
1470		return;
1471
1472	if (nr_free) {
1473		set_pool_mode(pool, PM_WRITE);
1474		requeue_bios(pool);
1475	}
1476}
1477
1478/*
1479 * A non-zero return indicates read_only or fail_io mode.
1480 * Many callers don't care about the return value.
1481 */
1482static int commit(struct pool *pool)
1483{
1484	int r;
1485
1486	if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE)
1487		return -EINVAL;
1488
1489	r = dm_pool_commit_metadata(pool->pmd);
1490	if (r)
1491		metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1492	else {
1493		check_for_metadata_space(pool);
1494		check_for_data_space(pool);
1495	}
1496
1497	return r;
1498}
 
1499
1500static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
1501{
1502	if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1503		DMWARN("%s: reached low water mark for data device: sending event.",
1504		       dm_device_name(pool->pool_md));
1505		spin_lock_irq(&pool->lock);
1506		pool->low_water_triggered = true;
1507		spin_unlock_irq(&pool->lock);
1508		dm_table_event(pool->ti->table);
1509	}
1510}
1511
1512static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1513{
1514	int r;
1515	dm_block_t free_blocks;
 
1516	struct pool *pool = tc->pool;
1517
1518	if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1519		return -EINVAL;
1520
1521	r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1522	if (r) {
1523		metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1524		return r;
1525	}
1526
1527	check_low_water_mark(pool, free_blocks);
 
 
 
 
 
 
 
1528
1529	if (!free_blocks) {
1530		/*
1531		 * Try to commit to see if that will free up some
1532		 * more space.
1533		 */
1534		r = commit(pool);
1535		if (r)
1536			return r;
 
 
 
 
 
 
1537
1538		r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1539		if (r) {
1540			metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1541			return r;
1542		}
1543
1544		if (!free_blocks) {
1545			set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1546			return -ENOSPC;
 
 
 
 
 
 
 
 
 
1547		}
1548	}
1549
1550	r = dm_pool_alloc_data_block(pool->pmd, result);
1551	if (r) {
1552		if (r == -ENOSPC)
1553			set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1554		else
1555			metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1556		return r;
1557	}
1558
1559	r = dm_pool_get_free_metadata_block_count(pool->pmd, &free_blocks);
1560	if (r) {
1561		metadata_operation_failed(pool, "dm_pool_get_free_metadata_block_count", r);
1562		return r;
1563	}
1564
1565	if (!free_blocks) {
1566		/* Let's commit before we use up the metadata reserve. */
1567		r = commit(pool);
1568		if (r)
1569			return r;
1570	}
1571
1572	return 0;
1573}
1574
1575/*
1576 * If we have run out of space, queue bios until the device is
1577 * resumed, presumably after having been reloaded with more space.
1578 */
1579static void retry_on_resume(struct bio *bio)
1580{
1581	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1582	struct thin_c *tc = h->tc;
 
 
1583
1584	spin_lock_irq(&tc->lock);
1585	bio_list_add(&tc->retry_on_resume_list, bio);
1586	spin_unlock_irq(&tc->lock);
1587}
1588
1589static blk_status_t should_error_unserviceable_bio(struct pool *pool)
1590{
1591	enum pool_mode m = get_pool_mode(pool);
1592
1593	switch (m) {
1594	case PM_WRITE:
1595		/* Shouldn't get here */
1596		DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1597		return BLK_STS_IOERR;
1598
1599	case PM_OUT_OF_DATA_SPACE:
1600		return pool->pf.error_if_no_space ? BLK_STS_NOSPC : 0;
1601
1602	case PM_OUT_OF_METADATA_SPACE:
1603	case PM_READ_ONLY:
1604	case PM_FAIL:
1605		return BLK_STS_IOERR;
1606	default:
1607		/* Shouldn't get here */
1608		DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1609		return BLK_STS_IOERR;
1610	}
1611}
1612
1613static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1614{
1615	blk_status_t error = should_error_unserviceable_bio(pool);
1616
1617	if (error) {
1618		bio->bi_status = error;
1619		bio_endio(bio);
1620	} else
1621		retry_on_resume(bio);
1622}
1623
1624static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1625{
1626	struct bio *bio;
1627	struct bio_list bios;
1628	blk_status_t error;
1629
1630	error = should_error_unserviceable_bio(pool);
1631	if (error) {
1632		cell_error_with_code(pool, cell, error);
1633		return;
1634	}
1635
1636	bio_list_init(&bios);
1637	cell_release(pool, cell, &bios);
1638
1639	while ((bio = bio_list_pop(&bios)))
1640		retry_on_resume(bio);
1641}
1642
1643static void process_discard_cell_no_passdown(struct thin_c *tc,
1644					     struct dm_bio_prison_cell *virt_cell)
1645{
1646	struct pool *pool = tc->pool;
1647	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1648
1649	/*
1650	 * We don't need to lock the data blocks, since there's no
1651	 * passdown.  We only lock data blocks for allocation and breaking sharing.
1652	 */
1653	m->tc = tc;
1654	m->virt_begin = virt_cell->key.block_begin;
1655	m->virt_end = virt_cell->key.block_end;
1656	m->cell = virt_cell;
1657	m->bio = virt_cell->holder;
1658
1659	if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1660		pool->process_prepared_discard(m);
1661}
1662
1663static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end,
1664				 struct bio *bio)
1665{
1666	struct pool *pool = tc->pool;
1667
1668	int r;
1669	bool maybe_shared;
1670	struct dm_cell_key data_key;
1671	struct dm_bio_prison_cell *data_cell;
 
 
 
1672	struct dm_thin_new_mapping *m;
1673	dm_block_t virt_begin, virt_end, data_begin;
1674
1675	while (begin != end) {
1676		r = ensure_next_mapping(pool);
1677		if (r)
1678			/* we did our best */
1679			return;
1680
1681		r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end,
1682					      &data_begin, &maybe_shared);
1683		if (r)
1684			/*
1685			 * Silently fail, letting any mappings we've
1686			 * created complete.
1687			 */
 
 
 
 
1688			break;
1689
1690		build_key(tc->td, PHYSICAL, data_begin, data_begin + (virt_end - virt_begin), &data_key);
1691		if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) {
1692			/* contention, we'll give up with this range */
1693			begin = virt_end;
1694			continue;
1695		}
1696
1697		/*
1698		 * IO may still be going to the destination block.  We must
1699		 * quiesce before we can do the removal.
1700		 */
1701		m = get_next_mapping(pool);
1702		m->tc = tc;
1703		m->maybe_shared = maybe_shared;
1704		m->virt_begin = virt_begin;
1705		m->virt_end = virt_end;
1706		m->data_block = data_begin;
1707		m->cell = data_cell;
1708		m->bio = bio;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1709
 
1710		/*
1711		 * The parent bio must not complete before sub discard bios are
1712		 * chained to it (see end_discard's bio_chain)!
1713		 *
1714		 * This per-mapping bi_remaining increment is paired with
1715		 * the implicit decrement that occurs via bio_endio() in
1716		 * end_discard().
1717		 */
1718		bio_inc_remaining(bio);
1719		if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1720			pool->process_prepared_discard(m);
1721
1722		begin = virt_end;
1723	}
1724}
1725
1726static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell)
1727{
1728	struct bio *bio = virt_cell->holder;
1729	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1730
1731	/*
1732	 * The virt_cell will only get freed once the origin bio completes.
1733	 * This means it will remain locked while all the individual
1734	 * passdown bios are in flight.
1735	 */
1736	h->cell = virt_cell;
1737	break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio);
1738
1739	/*
1740	 * We complete the bio now, knowing that the bi_remaining field
1741	 * will prevent completion until the sub range discards have
1742	 * completed.
1743	 */
1744	bio_endio(bio);
1745}
1746
1747static void process_discard_bio(struct thin_c *tc, struct bio *bio)
1748{
1749	dm_block_t begin, end;
1750	struct dm_cell_key virt_key;
1751	struct dm_bio_prison_cell *virt_cell;
1752
1753	get_bio_block_range(tc, bio, &begin, &end);
1754	if (begin == end) {
1755		/*
1756		 * The discard covers less than a block.
1757		 */
1758		bio_endio(bio);
1759		return;
1760	}
1761
1762	build_key(tc->td, VIRTUAL, begin, end, &virt_key);
1763	if (bio_detain(tc->pool, &virt_key, bio, &virt_cell))
1764		/*
1765		 * Potential starvation issue: We're relying on the
1766		 * fs/application being well behaved, and not trying to
1767		 * send IO to a region at the same time as discarding it.
1768		 * If they do this persistently then it's possible this
1769		 * cell will never be granted.
1770		 */
1771		return;
1772
1773	tc->pool->process_discard_cell(tc, virt_cell);
1774}
1775
1776static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1777			  struct dm_cell_key *key,
1778			  struct dm_thin_lookup_result *lookup_result,
1779			  struct dm_bio_prison_cell *cell)
1780{
1781	int r;
1782	dm_block_t data_block;
1783	struct pool *pool = tc->pool;
1784
1785	r = alloc_data_block(tc, &data_block);
1786	switch (r) {
1787	case 0:
1788		schedule_internal_copy(tc, block, lookup_result->block,
1789				       data_block, cell, bio);
1790		break;
1791
1792	case -ENOSPC:
1793		retry_bios_on_resume(pool, cell);
1794		break;
1795
1796	default:
1797		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1798			    __func__, r);
1799		cell_error(pool, cell);
1800		break;
1801	}
1802}
1803
1804static void __remap_and_issue_shared_cell(void *context,
1805					  struct dm_bio_prison_cell *cell)
1806{
1807	struct remap_info *info = context;
1808	struct bio *bio;
1809
1810	while ((bio = bio_list_pop(&cell->bios))) {
1811		if (bio_data_dir(bio) == WRITE || op_is_flush(bio->bi_opf) ||
1812		    bio_op(bio) == REQ_OP_DISCARD)
1813			bio_list_add(&info->defer_bios, bio);
1814		else {
1815			struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1816
1817			h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds);
1818			inc_all_io_entry(info->tc->pool, bio);
1819			bio_list_add(&info->issue_bios, bio);
1820		}
1821	}
1822}
1823
1824static void remap_and_issue_shared_cell(struct thin_c *tc,
1825					struct dm_bio_prison_cell *cell,
1826					dm_block_t block)
1827{
1828	struct bio *bio;
1829	struct remap_info info;
1830
1831	info.tc = tc;
1832	bio_list_init(&info.defer_bios);
1833	bio_list_init(&info.issue_bios);
1834
1835	cell_visit_release(tc->pool, __remap_and_issue_shared_cell,
1836			   &info, cell);
1837
1838	while ((bio = bio_list_pop(&info.defer_bios)))
1839		thin_defer_bio(tc, bio);
1840
1841	while ((bio = bio_list_pop(&info.issue_bios)))
1842		remap_and_issue(tc, bio, block);
1843}
1844
1845static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1846			       dm_block_t block,
1847			       struct dm_thin_lookup_result *lookup_result,
1848			       struct dm_bio_prison_cell *virt_cell)
1849{
1850	struct dm_bio_prison_cell *data_cell;
1851	struct pool *pool = tc->pool;
1852	struct dm_cell_key key;
1853
1854	/*
1855	 * If cell is already occupied, then sharing is already in the process
1856	 * of being broken so we have nothing further to do here.
1857	 */
1858	build_data_key(tc->td, lookup_result->block, &key);
1859	if (bio_detain(pool, &key, bio, &data_cell)) {
1860		cell_defer_no_holder(tc, virt_cell);
1861		return;
1862	}
1863
1864	if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) {
1865		break_sharing(tc, bio, block, &key, lookup_result, data_cell);
1866		cell_defer_no_holder(tc, virt_cell);
1867	} else {
1868		struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1869
1870		h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1871		inc_all_io_entry(pool, bio);
1872		remap_and_issue(tc, bio, lookup_result->block);
1873
1874		remap_and_issue_shared_cell(tc, data_cell, lookup_result->block);
1875		remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block);
1876	}
1877}
1878
1879static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1880			    struct dm_bio_prison_cell *cell)
1881{
1882	int r;
1883	dm_block_t data_block;
1884	struct pool *pool = tc->pool;
1885
1886	/*
1887	 * Remap empty bios (flushes) immediately, without provisioning.
1888	 */
1889	if (!bio->bi_iter.bi_size) {
1890		inc_all_io_entry(pool, bio);
1891		cell_defer_no_holder(tc, cell);
1892
1893		remap_and_issue(tc, bio, 0);
1894		return;
1895	}
1896
1897	/*
1898	 * Fill read bios with zeroes and complete them immediately.
1899	 */
1900	if (bio_data_dir(bio) == READ) {
1901		zero_fill_bio(bio);
1902		cell_defer_no_holder(tc, cell);
1903		bio_endio(bio);
1904		return;
1905	}
1906
1907	r = alloc_data_block(tc, &data_block);
1908	switch (r) {
1909	case 0:
1910		if (tc->origin_dev)
1911			schedule_external_copy(tc, block, data_block, cell, bio);
1912		else
1913			schedule_zero(tc, block, data_block, cell, bio);
1914		break;
1915
1916	case -ENOSPC:
1917		retry_bios_on_resume(pool, cell);
1918		break;
1919
1920	default:
1921		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1922			    __func__, r);
1923		cell_error(pool, cell);
1924		break;
1925	}
1926}
1927
1928static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1929{
1930	int r;
1931	struct pool *pool = tc->pool;
1932	struct bio *bio = cell->holder;
1933	dm_block_t block = get_bio_block(tc, bio);
1934	struct dm_thin_lookup_result lookup_result;
1935
1936	if (tc->requeue_mode) {
1937		cell_requeue(pool, cell);
1938		return;
1939	}
1940
1941	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1942	switch (r) {
1943	case 0:
1944		if (lookup_result.shared)
1945			process_shared_bio(tc, bio, block, &lookup_result, cell);
1946		else {
1947			inc_all_io_entry(pool, bio);
1948			remap_and_issue(tc, bio, lookup_result.block);
1949			inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1950		}
1951		break;
1952
1953	case -ENODATA:
1954		if (bio_data_dir(bio) == READ && tc->origin_dev) {
1955			inc_all_io_entry(pool, bio);
1956			cell_defer_no_holder(tc, cell);
1957
1958			if (bio_end_sector(bio) <= tc->origin_size)
1959				remap_to_origin_and_issue(tc, bio);
1960
1961			else if (bio->bi_iter.bi_sector < tc->origin_size) {
1962				zero_fill_bio(bio);
1963				bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
1964				remap_to_origin_and_issue(tc, bio);
1965
1966			} else {
1967				zero_fill_bio(bio);
1968				bio_endio(bio);
1969			}
1970		} else
1971			provision_block(tc, bio, block, cell);
1972		break;
1973
1974	default:
1975		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1976			    __func__, r);
1977		cell_defer_no_holder(tc, cell);
1978		bio_io_error(bio);
1979		break;
1980	}
1981}
1982
1983static void process_bio(struct thin_c *tc, struct bio *bio)
1984{
1985	struct pool *pool = tc->pool;
1986	dm_block_t block = get_bio_block(tc, bio);
1987	struct dm_bio_prison_cell *cell;
1988	struct dm_cell_key key;
 
1989
1990	/*
1991	 * If cell is already occupied, then the block is already
1992	 * being provisioned so we have nothing further to do here.
1993	 */
1994	build_virtual_key(tc->td, block, &key);
1995	if (bio_detain(pool, &key, bio, &cell))
1996		return;
1997
1998	process_cell(tc, cell);
1999}
2000
2001static void __process_bio_read_only(struct thin_c *tc, struct bio *bio,
2002				    struct dm_bio_prison_cell *cell)
2003{
2004	int r;
2005	int rw = bio_data_dir(bio);
2006	dm_block_t block = get_bio_block(tc, bio);
2007	struct dm_thin_lookup_result lookup_result;
2008
2009	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
2010	switch (r) {
2011	case 0:
2012		if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) {
2013			handle_unserviceable_bio(tc->pool, bio);
2014			if (cell)
2015				cell_defer_no_holder(tc, cell);
2016		} else {
2017			inc_all_io_entry(tc->pool, bio);
 
 
 
 
 
 
 
 
2018			remap_and_issue(tc, bio, lookup_result.block);
2019			if (cell)
2020				inc_remap_and_issue_cell(tc, cell, lookup_result.block);
2021		}
2022		break;
2023
2024	case -ENODATA:
2025		if (cell)
2026			cell_defer_no_holder(tc, cell);
2027		if (rw != READ) {
2028			handle_unserviceable_bio(tc->pool, bio);
2029			break;
2030		}
2031
2032		if (tc->origin_dev) {
2033			inc_all_io_entry(tc->pool, bio);
2034			remap_to_origin_and_issue(tc, bio);
2035			break;
2036		}
2037
2038		zero_fill_bio(bio);
2039		bio_endio(bio);
2040		break;
2041
2042	default:
2043		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
2044			    __func__, r);
2045		if (cell)
2046			cell_defer_no_holder(tc, cell);
2047		bio_io_error(bio);
2048		break;
2049	}
2050}
2051
2052static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
2053{
2054	__process_bio_read_only(tc, bio, NULL);
2055}
2056
2057static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2058{
2059	__process_bio_read_only(tc, cell->holder, cell);
2060}
2061
2062static void process_bio_success(struct thin_c *tc, struct bio *bio)
2063{
2064	bio_endio(bio);
2065}
2066
2067static void process_bio_fail(struct thin_c *tc, struct bio *bio)
2068{
2069	bio_io_error(bio);
2070}
2071
2072static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2073{
2074	cell_success(tc->pool, cell);
2075}
2076
2077static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2078{
2079	cell_error(tc->pool, cell);
2080}
2081
2082/*
2083 * FIXME: should we also commit due to size of transaction, measured in
2084 * metadata blocks?
2085 */
2086static int need_commit_due_to_time(struct pool *pool)
2087{
2088	return !time_in_range(jiffies, pool->last_commit_jiffies,
2089			      pool->last_commit_jiffies + COMMIT_PERIOD);
2090}
2091
2092#define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
2093#define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
2094
2095static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
2096{
2097	struct rb_node **rbp, *parent;
2098	struct dm_thin_endio_hook *pbd;
2099	sector_t bi_sector = bio->bi_iter.bi_sector;
2100
2101	rbp = &tc->sort_bio_list.rb_node;
2102	parent = NULL;
2103	while (*rbp) {
2104		parent = *rbp;
2105		pbd = thin_pbd(parent);
2106
2107		if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
2108			rbp = &(*rbp)->rb_left;
2109		else
2110			rbp = &(*rbp)->rb_right;
2111	}
2112
2113	pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2114	rb_link_node(&pbd->rb_node, parent, rbp);
2115	rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
2116}
2117
2118static void __extract_sorted_bios(struct thin_c *tc)
2119{
2120	struct rb_node *node;
2121	struct dm_thin_endio_hook *pbd;
2122	struct bio *bio;
2123
2124	for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
2125		pbd = thin_pbd(node);
2126		bio = thin_bio(pbd);
2127
2128		bio_list_add(&tc->deferred_bio_list, bio);
2129		rb_erase(&pbd->rb_node, &tc->sort_bio_list);
2130	}
2131
2132	WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
2133}
2134
2135static void __sort_thin_deferred_bios(struct thin_c *tc)
2136{
2137	struct bio *bio;
2138	struct bio_list bios;
2139
2140	bio_list_init(&bios);
2141	bio_list_merge(&bios, &tc->deferred_bio_list);
2142	bio_list_init(&tc->deferred_bio_list);
2143
2144	/* Sort deferred_bio_list using rb-tree */
2145	while ((bio = bio_list_pop(&bios)))
2146		__thin_bio_rb_add(tc, bio);
2147
2148	/*
2149	 * Transfer the sorted bios in sort_bio_list back to
2150	 * deferred_bio_list to allow lockless submission of
2151	 * all bios.
2152	 */
2153	__extract_sorted_bios(tc);
2154}
2155
2156static void process_thin_deferred_bios(struct thin_c *tc)
2157{
2158	struct pool *pool = tc->pool;
2159	struct bio *bio;
2160	struct bio_list bios;
2161	struct blk_plug plug;
2162	unsigned count = 0;
2163
2164	if (tc->requeue_mode) {
2165		error_thin_bio_list(tc, &tc->deferred_bio_list,
2166				BLK_STS_DM_REQUEUE);
2167		return;
2168	}
2169
2170	bio_list_init(&bios);
2171
2172	spin_lock_irq(&tc->lock);
2173
2174	if (bio_list_empty(&tc->deferred_bio_list)) {
2175		spin_unlock_irq(&tc->lock);
2176		return;
2177	}
2178
2179	__sort_thin_deferred_bios(tc);
2180
2181	bio_list_merge(&bios, &tc->deferred_bio_list);
2182	bio_list_init(&tc->deferred_bio_list);
2183
2184	spin_unlock_irq(&tc->lock);
2185
2186	blk_start_plug(&plug);
2187	while ((bio = bio_list_pop(&bios))) {
 
 
 
2188		/*
2189		 * If we've got no free new_mapping structs, and processing
2190		 * this bio might require one, we pause until there are some
2191		 * prepared mappings to process.
2192		 */
2193		if (ensure_next_mapping(pool)) {
2194			spin_lock_irq(&tc->lock);
2195			bio_list_add(&tc->deferred_bio_list, bio);
2196			bio_list_merge(&tc->deferred_bio_list, &bios);
2197			spin_unlock_irq(&tc->lock);
2198			break;
2199		}
2200
2201		if (bio_op(bio) == REQ_OP_DISCARD)
2202			pool->process_discard(tc, bio);
2203		else
2204			pool->process_bio(tc, bio);
2205
2206		if ((count++ & 127) == 0) {
2207			throttle_work_update(&pool->throttle);
2208			dm_pool_issue_prefetches(pool->pmd);
2209		}
2210	}
2211	blk_finish_plug(&plug);
2212}
2213
2214static int cmp_cells(const void *lhs, const void *rhs)
2215{
2216	struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs);
2217	struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs);
2218
2219	BUG_ON(!lhs_cell->holder);
2220	BUG_ON(!rhs_cell->holder);
2221
2222	if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector)
2223		return -1;
2224
2225	if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector)
2226		return 1;
2227
2228	return 0;
2229}
2230
2231static unsigned sort_cells(struct pool *pool, struct list_head *cells)
2232{
2233	unsigned count = 0;
2234	struct dm_bio_prison_cell *cell, *tmp;
2235
2236	list_for_each_entry_safe(cell, tmp, cells, user_list) {
2237		if (count >= CELL_SORT_ARRAY_SIZE)
2238			break;
2239
2240		pool->cell_sort_array[count++] = cell;
2241		list_del(&cell->user_list);
2242	}
2243
2244	sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL);
2245
2246	return count;
2247}
2248
2249static void process_thin_deferred_cells(struct thin_c *tc)
2250{
2251	struct pool *pool = tc->pool;
2252	struct list_head cells;
2253	struct dm_bio_prison_cell *cell;
2254	unsigned i, j, count;
2255
2256	INIT_LIST_HEAD(&cells);
2257
2258	spin_lock_irq(&tc->lock);
2259	list_splice_init(&tc->deferred_cells, &cells);
2260	spin_unlock_irq(&tc->lock);
2261
2262	if (list_empty(&cells))
2263		return;
2264
2265	do {
2266		count = sort_cells(tc->pool, &cells);
2267
2268		for (i = 0; i < count; i++) {
2269			cell = pool->cell_sort_array[i];
2270			BUG_ON(!cell->holder);
2271
2272			/*
2273			 * If we've got no free new_mapping structs, and processing
2274			 * this bio might require one, we pause until there are some
2275			 * prepared mappings to process.
2276			 */
2277			if (ensure_next_mapping(pool)) {
2278				for (j = i; j < count; j++)
2279					list_add(&pool->cell_sort_array[j]->user_list, &cells);
2280
2281				spin_lock_irq(&tc->lock);
2282				list_splice(&cells, &tc->deferred_cells);
2283				spin_unlock_irq(&tc->lock);
2284				return;
2285			}
2286
2287			if (bio_op(cell->holder) == REQ_OP_DISCARD)
2288				pool->process_discard_cell(tc, cell);
2289			else
2290				pool->process_cell(tc, cell);
2291		}
2292	} while (!list_empty(&cells));
2293}
2294
2295static void thin_get(struct thin_c *tc);
2296static void thin_put(struct thin_c *tc);
2297
2298/*
2299 * We can't hold rcu_read_lock() around code that can block.  So we
2300 * find a thin with the rcu lock held; bump a refcount; then drop
2301 * the lock.
2302 */
2303static struct thin_c *get_first_thin(struct pool *pool)
2304{
2305	struct thin_c *tc = NULL;
2306
2307	rcu_read_lock();
2308	if (!list_empty(&pool->active_thins)) {
2309		tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
2310		thin_get(tc);
2311	}
2312	rcu_read_unlock();
2313
2314	return tc;
2315}
2316
2317static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
2318{
2319	struct thin_c *old_tc = tc;
2320
2321	rcu_read_lock();
2322	list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
2323		thin_get(tc);
2324		thin_put(old_tc);
2325		rcu_read_unlock();
2326		return tc;
2327	}
2328	thin_put(old_tc);
2329	rcu_read_unlock();
2330
2331	return NULL;
2332}
2333
2334static void process_deferred_bios(struct pool *pool)
2335{
2336	struct bio *bio;
2337	struct bio_list bios, bio_completions;
2338	struct thin_c *tc;
2339
2340	tc = get_first_thin(pool);
2341	while (tc) {
2342		process_thin_deferred_cells(tc);
2343		process_thin_deferred_bios(tc);
2344		tc = get_next_thin(pool, tc);
2345	}
2346
2347	/*
2348	 * If there are any deferred flush bios, we must commit the metadata
2349	 * before issuing them or signaling their completion.
2350	 */
2351	bio_list_init(&bios);
2352	bio_list_init(&bio_completions);
2353
2354	spin_lock_irq(&pool->lock);
2355	bio_list_merge(&bios, &pool->deferred_flush_bios);
2356	bio_list_init(&pool->deferred_flush_bios);
 
2357
2358	bio_list_merge(&bio_completions, &pool->deferred_flush_completions);
2359	bio_list_init(&pool->deferred_flush_completions);
2360	spin_unlock_irq(&pool->lock);
2361
2362	if (bio_list_empty(&bios) && bio_list_empty(&bio_completions) &&
2363	    !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
2364		return;
2365
2366	if (commit(pool)) {
2367		bio_list_merge(&bios, &bio_completions);
2368
 
2369		while ((bio = bio_list_pop(&bios)))
2370			bio_io_error(bio);
2371		return;
2372	}
2373	pool->last_commit_jiffies = jiffies;
2374
2375	while ((bio = bio_list_pop(&bio_completions)))
2376		bio_endio(bio);
2377
2378	while ((bio = bio_list_pop(&bios))) {
2379		/*
2380		 * The data device was flushed as part of metadata commit,
2381		 * so complete redundant flushes immediately.
2382		 */
2383		if (bio->bi_opf & REQ_PREFLUSH)
2384			bio_endio(bio);
2385		else
2386			dm_submit_bio_remap(bio, NULL);
2387	}
2388}
2389
2390static void do_worker(struct work_struct *ws)
2391{
2392	struct pool *pool = container_of(ws, struct pool, worker);
2393
2394	throttle_work_start(&pool->throttle);
2395	dm_pool_issue_prefetches(pool->pmd);
2396	throttle_work_update(&pool->throttle);
2397	process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
2398	throttle_work_update(&pool->throttle);
2399	process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
2400	throttle_work_update(&pool->throttle);
2401	process_prepared(pool, &pool->prepared_discards_pt2, &pool->process_prepared_discard_pt2);
2402	throttle_work_update(&pool->throttle);
2403	process_deferred_bios(pool);
2404	throttle_work_complete(&pool->throttle);
2405}
2406
2407/*
2408 * We want to commit periodically so that not too much
2409 * unwritten data builds up.
2410 */
2411static void do_waker(struct work_struct *ws)
2412{
2413	struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
2414	wake_worker(pool);
2415	queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
2416}
2417
2418/*
2419 * We're holding onto IO to allow userland time to react.  After the
2420 * timeout either the pool will have been resized (and thus back in
2421 * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space.
2422 */
2423static void do_no_space_timeout(struct work_struct *ws)
2424{
2425	struct pool *pool = container_of(to_delayed_work(ws), struct pool,
2426					 no_space_timeout);
2427
2428	if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) {
2429		pool->pf.error_if_no_space = true;
2430		notify_of_pool_mode_change(pool);
2431		error_retry_list_with_code(pool, BLK_STS_NOSPC);
2432	}
2433}
2434
2435/*----------------------------------------------------------------*/
2436
2437struct pool_work {
2438	struct work_struct worker;
2439	struct completion complete;
2440};
2441
2442static struct pool_work *to_pool_work(struct work_struct *ws)
2443{
2444	return container_of(ws, struct pool_work, worker);
2445}
2446
2447static void pool_work_complete(struct pool_work *pw)
2448{
2449	complete(&pw->complete);
2450}
2451
2452static void pool_work_wait(struct pool_work *pw, struct pool *pool,
2453			   void (*fn)(struct work_struct *))
2454{
2455	INIT_WORK_ONSTACK(&pw->worker, fn);
2456	init_completion(&pw->complete);
2457	queue_work(pool->wq, &pw->worker);
2458	wait_for_completion(&pw->complete);
2459}
2460
2461/*----------------------------------------------------------------*/
2462
2463struct noflush_work {
2464	struct pool_work pw;
2465	struct thin_c *tc;
2466};
2467
2468static struct noflush_work *to_noflush(struct work_struct *ws)
2469{
2470	return container_of(to_pool_work(ws), struct noflush_work, pw);
2471}
2472
2473static void do_noflush_start(struct work_struct *ws)
2474{
2475	struct noflush_work *w = to_noflush(ws);
2476	w->tc->requeue_mode = true;
2477	requeue_io(w->tc);
2478	pool_work_complete(&w->pw);
2479}
2480
2481static void do_noflush_stop(struct work_struct *ws)
2482{
2483	struct noflush_work *w = to_noflush(ws);
2484	w->tc->requeue_mode = false;
2485	pool_work_complete(&w->pw);
2486}
2487
2488static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
2489{
2490	struct noflush_work w;
2491
2492	w.tc = tc;
2493	pool_work_wait(&w.pw, tc->pool, fn);
2494}
2495
2496/*----------------------------------------------------------------*/
2497
2498static bool passdown_enabled(struct pool_c *pt)
2499{
2500	return pt->adjusted_pf.discard_passdown;
2501}
2502
2503static void set_discard_callbacks(struct pool *pool)
2504{
2505	struct pool_c *pt = pool->ti->private;
2506
2507	if (passdown_enabled(pt)) {
2508		pool->process_discard_cell = process_discard_cell_passdown;
2509		pool->process_prepared_discard = process_prepared_discard_passdown_pt1;
2510		pool->process_prepared_discard_pt2 = process_prepared_discard_passdown_pt2;
2511	} else {
2512		pool->process_discard_cell = process_discard_cell_no_passdown;
2513		pool->process_prepared_discard = process_prepared_discard_no_passdown;
2514	}
2515}
2516
2517static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
2518{
2519	struct pool_c *pt = pool->ti->private;
2520	bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
2521	enum pool_mode old_mode = get_pool_mode(pool);
2522	unsigned long no_space_timeout = READ_ONCE(no_space_timeout_secs) * HZ;
2523
2524	/*
2525	 * Never allow the pool to transition to PM_WRITE mode if user
2526	 * intervention is required to verify metadata and data consistency.
2527	 */
2528	if (new_mode == PM_WRITE && needs_check) {
2529		DMERR("%s: unable to switch pool to write mode until repaired.",
2530		      dm_device_name(pool->pool_md));
2531		if (old_mode != new_mode)
2532			new_mode = old_mode;
2533		else
2534			new_mode = PM_READ_ONLY;
2535	}
2536	/*
2537	 * If we were in PM_FAIL mode, rollback of metadata failed.  We're
2538	 * not going to recover without a thin_repair.	So we never let the
2539	 * pool move out of the old mode.
2540	 */
2541	if (old_mode == PM_FAIL)
2542		new_mode = old_mode;
2543
2544	switch (new_mode) {
2545	case PM_FAIL:
2546		dm_pool_metadata_read_only(pool->pmd);
2547		pool->process_bio = process_bio_fail;
2548		pool->process_discard = process_bio_fail;
2549		pool->process_cell = process_cell_fail;
2550		pool->process_discard_cell = process_cell_fail;
2551		pool->process_prepared_mapping = process_prepared_mapping_fail;
2552		pool->process_prepared_discard = process_prepared_discard_fail;
2553
2554		error_retry_list(pool);
2555		break;
2556
2557	case PM_OUT_OF_METADATA_SPACE:
2558	case PM_READ_ONLY:
2559		dm_pool_metadata_read_only(pool->pmd);
2560		pool->process_bio = process_bio_read_only;
2561		pool->process_discard = process_bio_success;
2562		pool->process_cell = process_cell_read_only;
2563		pool->process_discard_cell = process_cell_success;
2564		pool->process_prepared_mapping = process_prepared_mapping_fail;
2565		pool->process_prepared_discard = process_prepared_discard_success;
2566
2567		error_retry_list(pool);
2568		break;
2569
2570	case PM_OUT_OF_DATA_SPACE:
2571		/*
2572		 * Ideally we'd never hit this state; the low water mark
2573		 * would trigger userland to extend the pool before we
2574		 * completely run out of data space.  However, many small
2575		 * IOs to unprovisioned space can consume data space at an
2576		 * alarming rate.  Adjust your low water mark if you're
2577		 * frequently seeing this mode.
2578		 */
2579		pool->out_of_data_space = true;
2580		pool->process_bio = process_bio_read_only;
2581		pool->process_discard = process_discard_bio;
2582		pool->process_cell = process_cell_read_only;
2583		pool->process_prepared_mapping = process_prepared_mapping;
2584		set_discard_callbacks(pool);
2585
2586		if (!pool->pf.error_if_no_space && no_space_timeout)
2587			queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
2588		break;
2589
2590	case PM_WRITE:
2591		if (old_mode == PM_OUT_OF_DATA_SPACE)
2592			cancel_delayed_work_sync(&pool->no_space_timeout);
2593		pool->out_of_data_space = false;
2594		pool->pf.error_if_no_space = pt->requested_pf.error_if_no_space;
2595		dm_pool_metadata_read_write(pool->pmd);
2596		pool->process_bio = process_bio;
2597		pool->process_discard = process_discard_bio;
2598		pool->process_cell = process_cell;
2599		pool->process_prepared_mapping = process_prepared_mapping;
2600		set_discard_callbacks(pool);
2601		break;
2602	}
2603
2604	pool->pf.mode = new_mode;
2605	/*
2606	 * The pool mode may have changed, sync it so bind_control_target()
2607	 * doesn't cause an unexpected mode transition on resume.
2608	 */
2609	pt->adjusted_pf.mode = new_mode;
2610
2611	if (old_mode != new_mode)
2612		notify_of_pool_mode_change(pool);
2613}
2614
2615static void abort_transaction(struct pool *pool)
2616{
2617	const char *dev_name = dm_device_name(pool->pool_md);
2618
2619	DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
2620	if (dm_pool_abort_metadata(pool->pmd)) {
2621		DMERR("%s: failed to abort metadata transaction", dev_name);
2622		set_pool_mode(pool, PM_FAIL);
2623	}
2624
2625	if (dm_pool_metadata_set_needs_check(pool->pmd)) {
2626		DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
2627		set_pool_mode(pool, PM_FAIL);
2628	}
2629}
2630
2631static void metadata_operation_failed(struct pool *pool, const char *op, int r)
2632{
2633	DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2634		    dm_device_name(pool->pool_md), op, r);
2635
2636	abort_transaction(pool);
2637	set_pool_mode(pool, PM_READ_ONLY);
2638}
2639
2640/*----------------------------------------------------------------*/
2641
2642/*
2643 * Mapping functions.
2644 */
2645
2646/*
2647 * Called only while mapping a thin bio to hand it over to the workqueue.
2648 */
2649static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
2650{
 
2651	struct pool *pool = tc->pool;
2652
2653	spin_lock_irq(&tc->lock);
2654	bio_list_add(&tc->deferred_bio_list, bio);
2655	spin_unlock_irq(&tc->lock);
2656
2657	wake_worker(pool);
2658}
2659
2660static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio)
2661{
2662	struct pool *pool = tc->pool;
2663
2664	throttle_lock(&pool->throttle);
2665	thin_defer_bio(tc, bio);
2666	throttle_unlock(&pool->throttle);
2667}
2668
2669static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2670{
2671	struct pool *pool = tc->pool;
2672
2673	throttle_lock(&pool->throttle);
2674	spin_lock_irq(&tc->lock);
2675	list_add_tail(&cell->user_list, &tc->deferred_cells);
2676	spin_unlock_irq(&tc->lock);
2677	throttle_unlock(&pool->throttle);
2678
2679	wake_worker(pool);
2680}
2681
2682static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
2683{
2684	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2685
2686	h->tc = tc;
2687	h->shared_read_entry = NULL;
2688	h->all_io_entry = NULL;
2689	h->overwrite_mapping = NULL;
2690	h->cell = NULL;
 
2691}
2692
2693/*
2694 * Non-blocking function called from the thin target's map function.
2695 */
2696static int thin_bio_map(struct dm_target *ti, struct bio *bio)
 
2697{
2698	int r;
2699	struct thin_c *tc = ti->private;
2700	dm_block_t block = get_bio_block(tc, bio);
2701	struct dm_thin_device *td = tc->td;
2702	struct dm_thin_lookup_result result;
2703	struct dm_bio_prison_cell *virt_cell, *data_cell;
2704	struct dm_cell_key key;
2705
2706	thin_hook_bio(tc, bio);
2707
2708	if (tc->requeue_mode) {
2709		bio->bi_status = BLK_STS_DM_REQUEUE;
2710		bio_endio(bio);
2711		return DM_MAPIO_SUBMITTED;
2712	}
2713
2714	if (get_pool_mode(tc->pool) == PM_FAIL) {
2715		bio_io_error(bio);
2716		return DM_MAPIO_SUBMITTED;
2717	}
2718
2719	if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD) {
2720		thin_defer_bio_with_throttle(tc, bio);
 
2721		return DM_MAPIO_SUBMITTED;
2722	}
2723
2724	/*
2725	 * We must hold the virtual cell before doing the lookup, otherwise
2726	 * there's a race with discard.
2727	 */
2728	build_virtual_key(tc->td, block, &key);
2729	if (bio_detain(tc->pool, &key, bio, &virt_cell))
2730		return DM_MAPIO_SUBMITTED;
2731
2732	r = dm_thin_find_block(td, block, 0, &result);
2733
2734	/*
2735	 * Note that we defer readahead too.
2736	 */
2737	switch (r) {
2738	case 0:
2739		if (unlikely(result.shared)) {
2740			/*
2741			 * We have a race condition here between the
2742			 * result.shared value returned by the lookup and
2743			 * snapshot creation, which may cause new
2744			 * sharing.
2745			 *
2746			 * To avoid this always quiesce the origin before
2747			 * taking the snap.  You want to do this anyway to
2748			 * ensure a consistent application view
2749			 * (i.e. lockfs).
2750			 *
2751			 * More distant ancestors are irrelevant. The
2752			 * shared flag will be set in their case.
2753			 */
2754			thin_defer_cell(tc, virt_cell);
2755			return DM_MAPIO_SUBMITTED;
2756		}
2757
2758		build_data_key(tc->td, result.block, &key);
2759		if (bio_detain(tc->pool, &key, bio, &data_cell)) {
2760			cell_defer_no_holder(tc, virt_cell);
2761			return DM_MAPIO_SUBMITTED;
2762		}
2763
2764		inc_all_io_entry(tc->pool, bio);
2765		cell_defer_no_holder(tc, data_cell);
2766		cell_defer_no_holder(tc, virt_cell);
2767
2768		remap(tc, bio, result.block);
2769		return DM_MAPIO_REMAPPED;
2770
2771	case -ENODATA:
2772	case -EWOULDBLOCK:
2773		thin_defer_cell(tc, virt_cell);
2774		return DM_MAPIO_SUBMITTED;
2775
2776	default:
2777		/*
2778		 * Must always call bio_io_error on failure.
2779		 * dm_thin_find_block can fail with -EINVAL if the
2780		 * pool is switched to fail-io mode.
2781		 */
2782		bio_io_error(bio);
2783		cell_defer_no_holder(tc, virt_cell);
2784		return DM_MAPIO_SUBMITTED;
 
2785	}
 
 
2786}
2787
2788static void requeue_bios(struct pool *pool)
2789{
2790	struct thin_c *tc;
 
 
2791
2792	rcu_read_lock();
2793	list_for_each_entry_rcu(tc, &pool->active_thins, list) {
2794		spin_lock_irq(&tc->lock);
2795		bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
2796		bio_list_init(&tc->retry_on_resume_list);
2797		spin_unlock_irq(&tc->lock);
 
2798	}
2799	rcu_read_unlock();
2800}
2801
2802/*----------------------------------------------------------------
2803 * Binding of control targets to a pool object
2804 *--------------------------------------------------------------*/
2805static bool is_factor(sector_t block_size, uint32_t n)
2806{
2807	return !sector_div(block_size, n);
2808}
2809
2810/*
2811 * If discard_passdown was enabled verify that the data device
2812 * supports discards.  Disable discard_passdown if not.
2813 */
2814static void disable_passdown_if_not_supported(struct pool_c *pt)
2815{
2816	struct pool *pool = pt->pool;
2817	struct block_device *data_bdev = pt->data_dev->bdev;
2818	struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
2819	const char *reason = NULL;
2820
2821	if (!pt->adjusted_pf.discard_passdown)
2822		return;
2823
2824	if (!bdev_max_discard_sectors(pt->data_dev->bdev))
2825		reason = "discard unsupported";
2826
2827	else if (data_limits->max_discard_sectors < pool->sectors_per_block)
2828		reason = "max discard sectors smaller than a block";
2829
2830	if (reason) {
2831		DMWARN("Data device (%pg) %s: Disabling discard passdown.", data_bdev, reason);
2832		pt->adjusted_pf.discard_passdown = false;
2833	}
2834}
2835
 
 
 
2836static int bind_control_target(struct pool *pool, struct dm_target *ti)
2837{
2838	struct pool_c *pt = ti->private;
2839
2840	/*
2841	 * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2842	 */
2843	enum pool_mode old_mode = get_pool_mode(pool);
2844	enum pool_mode new_mode = pt->adjusted_pf.mode;
2845
2846	/*
2847	 * Don't change the pool's mode until set_pool_mode() below.
2848	 * Otherwise the pool's process_* function pointers may
2849	 * not match the desired pool mode.
2850	 */
2851	pt->adjusted_pf.mode = old_mode;
2852
2853	pool->ti = ti;
2854	pool->pf = pt->adjusted_pf;
2855	pool->low_water_blocks = pt->low_water_blocks;
 
2856
2857	set_pool_mode(pool, new_mode);
 
 
 
 
 
 
 
 
 
 
 
 
 
2858
2859	return 0;
2860}
2861
2862static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2863{
2864	if (pool->ti == ti)
2865		pool->ti = NULL;
2866}
2867
2868/*----------------------------------------------------------------
2869 * Pool creation
2870 *--------------------------------------------------------------*/
2871/* Initialize pool features. */
2872static void pool_features_init(struct pool_features *pf)
2873{
2874	pf->mode = PM_WRITE;
2875	pf->zero_new_blocks = true;
2876	pf->discard_enabled = true;
2877	pf->discard_passdown = true;
2878	pf->error_if_no_space = false;
2879}
2880
2881static void __pool_destroy(struct pool *pool)
2882{
2883	__pool_table_remove(pool);
2884
2885	vfree(pool->cell_sort_array);
2886	if (dm_pool_metadata_close(pool->pmd) < 0)
2887		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2888
2889	dm_bio_prison_destroy(pool->prison);
2890	dm_kcopyd_client_destroy(pool->copier);
2891
2892	cancel_delayed_work_sync(&pool->waker);
2893	cancel_delayed_work_sync(&pool->no_space_timeout);
2894	if (pool->wq)
2895		destroy_workqueue(pool->wq);
2896
2897	if (pool->next_mapping)
2898		mempool_free(pool->next_mapping, &pool->mapping_pool);
2899	mempool_exit(&pool->mapping_pool);
2900	dm_deferred_set_destroy(pool->shared_read_ds);
2901	dm_deferred_set_destroy(pool->all_io_ds);
2902	kfree(pool);
2903}
2904
2905static struct kmem_cache *_new_mapping_cache;
 
2906
2907static struct pool *pool_create(struct mapped_device *pool_md,
2908				struct block_device *metadata_dev,
2909				struct block_device *data_dev,
2910				unsigned long block_size,
2911				int read_only, char **error)
2912{
2913	int r;
2914	void *err_p;
2915	struct pool *pool;
2916	struct dm_pool_metadata *pmd;
2917	bool format_device = read_only ? false : true;
2918
2919	pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2920	if (IS_ERR(pmd)) {
2921		*error = "Error creating metadata object";
2922		return (struct pool *)pmd;
2923	}
2924
2925	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2926	if (!pool) {
2927		*error = "Error allocating memory for pool";
2928		err_p = ERR_PTR(-ENOMEM);
2929		goto bad_pool;
2930	}
2931
2932	pool->pmd = pmd;
2933	pool->sectors_per_block = block_size;
2934	if (block_size & (block_size - 1))
2935		pool->sectors_per_block_shift = -1;
2936	else
2937		pool->sectors_per_block_shift = __ffs(block_size);
2938	pool->low_water_blocks = 0;
2939	pool_features_init(&pool->pf);
2940	pool->prison = dm_bio_prison_create();
2941	if (!pool->prison) {
2942		*error = "Error creating pool's bio prison";
2943		err_p = ERR_PTR(-ENOMEM);
2944		goto bad_prison;
2945	}
2946
2947	pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2948	if (IS_ERR(pool->copier)) {
2949		r = PTR_ERR(pool->copier);
2950		*error = "Error creating pool's kcopyd client";
2951		err_p = ERR_PTR(r);
2952		goto bad_kcopyd_client;
2953	}
2954
2955	/*
2956	 * Create singlethreaded workqueue that will service all devices
2957	 * that use this metadata.
2958	 */
2959	pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2960	if (!pool->wq) {
2961		*error = "Error creating pool's workqueue";
2962		err_p = ERR_PTR(-ENOMEM);
2963		goto bad_wq;
2964	}
2965
2966	throttle_init(&pool->throttle);
2967	INIT_WORK(&pool->worker, do_worker);
2968	INIT_DELAYED_WORK(&pool->waker, do_waker);
2969	INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
2970	spin_lock_init(&pool->lock);
 
2971	bio_list_init(&pool->deferred_flush_bios);
2972	bio_list_init(&pool->deferred_flush_completions);
2973	INIT_LIST_HEAD(&pool->prepared_mappings);
2974	INIT_LIST_HEAD(&pool->prepared_discards);
2975	INIT_LIST_HEAD(&pool->prepared_discards_pt2);
2976	INIT_LIST_HEAD(&pool->active_thins);
2977	pool->low_water_triggered = false;
2978	pool->suspended = true;
2979	pool->out_of_data_space = false;
2980
2981	pool->shared_read_ds = dm_deferred_set_create();
2982	if (!pool->shared_read_ds) {
2983		*error = "Error creating pool's shared read deferred set";
2984		err_p = ERR_PTR(-ENOMEM);
2985		goto bad_shared_read_ds;
2986	}
2987
2988	pool->all_io_ds = dm_deferred_set_create();
2989	if (!pool->all_io_ds) {
2990		*error = "Error creating pool's all io deferred set";
2991		err_p = ERR_PTR(-ENOMEM);
2992		goto bad_all_io_ds;
2993	}
2994
2995	pool->next_mapping = NULL;
2996	r = mempool_init_slab_pool(&pool->mapping_pool, MAPPING_POOL_SIZE,
2997				   _new_mapping_cache);
2998	if (r) {
2999		*error = "Error creating pool's mapping mempool";
3000		err_p = ERR_PTR(r);
3001		goto bad_mapping_pool;
3002	}
3003
3004	pool->cell_sort_array =
3005		vmalloc(array_size(CELL_SORT_ARRAY_SIZE,
3006				   sizeof(*pool->cell_sort_array)));
3007	if (!pool->cell_sort_array) {
3008		*error = "Error allocating cell sort array";
3009		err_p = ERR_PTR(-ENOMEM);
3010		goto bad_sort_array;
3011	}
3012
3013	pool->ref_count = 1;
3014	pool->last_commit_jiffies = jiffies;
3015	pool->pool_md = pool_md;
3016	pool->md_dev = metadata_dev;
3017	pool->data_dev = data_dev;
3018	__pool_table_insert(pool);
3019
3020	return pool;
3021
3022bad_sort_array:
3023	mempool_exit(&pool->mapping_pool);
3024bad_mapping_pool:
3025	dm_deferred_set_destroy(pool->all_io_ds);
3026bad_all_io_ds:
3027	dm_deferred_set_destroy(pool->shared_read_ds);
3028bad_shared_read_ds:
3029	destroy_workqueue(pool->wq);
3030bad_wq:
3031	dm_kcopyd_client_destroy(pool->copier);
3032bad_kcopyd_client:
3033	dm_bio_prison_destroy(pool->prison);
3034bad_prison:
3035	kfree(pool);
3036bad_pool:
3037	if (dm_pool_metadata_close(pmd))
3038		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
3039
3040	return err_p;
3041}
3042
3043static void __pool_inc(struct pool *pool)
3044{
3045	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
3046	pool->ref_count++;
3047}
3048
3049static void __pool_dec(struct pool *pool)
3050{
3051	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
3052	BUG_ON(!pool->ref_count);
3053	if (!--pool->ref_count)
3054		__pool_destroy(pool);
3055}
3056
3057static struct pool *__pool_find(struct mapped_device *pool_md,
3058				struct block_device *metadata_dev,
3059				struct block_device *data_dev,
3060				unsigned long block_size, int read_only,
3061				char **error, int *created)
3062{
3063	struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
3064
3065	if (pool) {
3066		if (pool->pool_md != pool_md) {
3067			*error = "metadata device already in use by a pool";
3068			return ERR_PTR(-EBUSY);
3069		}
3070		if (pool->data_dev != data_dev) {
3071			*error = "data device already in use by a pool";
3072			return ERR_PTR(-EBUSY);
3073		}
3074		__pool_inc(pool);
3075
3076	} else {
3077		pool = __pool_table_lookup(pool_md);
3078		if (pool) {
3079			if (pool->md_dev != metadata_dev || pool->data_dev != data_dev) {
3080				*error = "different pool cannot replace a pool";
3081				return ERR_PTR(-EINVAL);
3082			}
3083			__pool_inc(pool);
3084
3085		} else {
3086			pool = pool_create(pool_md, metadata_dev, data_dev, block_size, read_only, error);
3087			*created = 1;
3088		}
3089	}
3090
3091	return pool;
3092}
3093
3094/*----------------------------------------------------------------
3095 * Pool target methods
3096 *--------------------------------------------------------------*/
3097static void pool_dtr(struct dm_target *ti)
3098{
3099	struct pool_c *pt = ti->private;
3100
3101	mutex_lock(&dm_thin_pool_table.mutex);
3102
3103	unbind_control_target(pt->pool, ti);
3104	__pool_dec(pt->pool);
3105	dm_put_device(ti, pt->metadata_dev);
3106	dm_put_device(ti, pt->data_dev);
3107	kfree(pt);
3108
3109	mutex_unlock(&dm_thin_pool_table.mutex);
3110}
3111
3112static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
3113			       struct dm_target *ti)
3114{
3115	int r;
3116	unsigned argc;
3117	const char *arg_name;
3118
3119	static const struct dm_arg _args[] = {
3120		{0, 4, "Invalid number of pool feature arguments"},
3121	};
3122
3123	/*
3124	 * No feature arguments supplied.
3125	 */
3126	if (!as->argc)
3127		return 0;
3128
3129	r = dm_read_arg_group(_args, as, &argc, &ti->error);
3130	if (r)
3131		return -EINVAL;
3132
3133	while (argc && !r) {
3134		arg_name = dm_shift_arg(as);
3135		argc--;
3136
3137		if (!strcasecmp(arg_name, "skip_block_zeroing"))
3138			pf->zero_new_blocks = false;
3139
3140		else if (!strcasecmp(arg_name, "ignore_discard"))
3141			pf->discard_enabled = false;
3142
3143		else if (!strcasecmp(arg_name, "no_discard_passdown"))
3144			pf->discard_passdown = false;
3145
3146		else if (!strcasecmp(arg_name, "read_only"))
3147			pf->mode = PM_READ_ONLY;
3148
3149		else if (!strcasecmp(arg_name, "error_if_no_space"))
3150			pf->error_if_no_space = true;
3151
3152		else {
3153			ti->error = "Unrecognised pool feature requested";
3154			r = -EINVAL;
3155			break;
3156		}
 
 
 
3157	}
3158
3159	return r;
3160}
3161
3162static void metadata_low_callback(void *context)
3163{
3164	struct pool *pool = context;
3165
3166	DMWARN("%s: reached low water mark for metadata device: sending event.",
3167	       dm_device_name(pool->pool_md));
3168
3169	dm_table_event(pool->ti->table);
3170}
3171
3172/*
3173 * We need to flush the data device **before** committing the metadata.
3174 *
3175 * This ensures that the data blocks of any newly inserted mappings are
3176 * properly written to non-volatile storage and won't be lost in case of a
3177 * crash.
3178 *
3179 * Failure to do so can result in data corruption in the case of internal or
3180 * external snapshots and in the case of newly provisioned blocks, when block
3181 * zeroing is enabled.
3182 */
3183static int metadata_pre_commit_callback(void *context)
3184{
3185	struct pool *pool = context;
3186
3187	return blkdev_issue_flush(pool->data_dev);
3188}
3189
3190static sector_t get_dev_size(struct block_device *bdev)
3191{
3192	return bdev_nr_sectors(bdev);
3193}
3194
3195static void warn_if_metadata_device_too_big(struct block_device *bdev)
3196{
3197	sector_t metadata_dev_size = get_dev_size(bdev);
3198
3199	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
3200		DMWARN("Metadata device %pg is larger than %u sectors: excess space will not be used.",
3201		       bdev, THIN_METADATA_MAX_SECTORS);
3202}
3203
3204static sector_t get_metadata_dev_size(struct block_device *bdev)
3205{
3206	sector_t metadata_dev_size = get_dev_size(bdev);
3207
3208	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
3209		metadata_dev_size = THIN_METADATA_MAX_SECTORS;
3210
3211	return metadata_dev_size;
3212}
3213
3214static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
3215{
3216	sector_t metadata_dev_size = get_metadata_dev_size(bdev);
3217
3218	sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
3219
3220	return metadata_dev_size;
3221}
3222
3223/*
3224 * When a metadata threshold is crossed a dm event is triggered, and
3225 * userland should respond by growing the metadata device.  We could let
3226 * userland set the threshold, like we do with the data threshold, but I'm
3227 * not sure they know enough to do this well.
3228 */
3229static dm_block_t calc_metadata_threshold(struct pool_c *pt)
3230{
3231	/*
3232	 * 4M is ample for all ops with the possible exception of thin
3233	 * device deletion which is harmless if it fails (just retry the
3234	 * delete after you've grown the device).
3235	 */
3236	dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
3237	return min((dm_block_t)1024ULL /* 4M */, quarter);
3238}
3239
3240/*
3241 * thin-pool <metadata dev> <data dev>
3242 *	     <data block size (sectors)>
3243 *	     <low water mark (blocks)>
3244 *	     [<#feature args> [<arg>]*]
3245 *
3246 * Optional feature arguments are:
3247 *	     skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
3248 *	     ignore_discard: disable discard
3249 *	     no_discard_passdown: don't pass discards down to the data device
3250 *	     read_only: Don't allow any changes to be made to the pool metadata.
3251 *	     error_if_no_space: error IOs, instead of queueing, if no space.
3252 */
3253static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
3254{
3255	int r, pool_created = 0;
3256	struct pool_c *pt;
3257	struct pool *pool;
3258	struct pool_features pf;
3259	struct dm_arg_set as;
3260	struct dm_dev *data_dev;
3261	unsigned long block_size;
3262	dm_block_t low_water_blocks;
3263	struct dm_dev *metadata_dev;
3264	fmode_t metadata_mode;
 
3265
3266	/*
3267	 * FIXME Remove validation from scope of lock.
3268	 */
3269	mutex_lock(&dm_thin_pool_table.mutex);
3270
3271	if (argc < 4) {
3272		ti->error = "Invalid argument count";
3273		r = -EINVAL;
3274		goto out_unlock;
3275	}
3276
3277	as.argc = argc;
3278	as.argv = argv;
3279
3280	/* make sure metadata and data are different devices */
3281	if (!strcmp(argv[0], argv[1])) {
3282		ti->error = "Error setting metadata or data device";
3283		r = -EINVAL;
3284		goto out_unlock;
3285	}
3286
3287	/*
3288	 * Set default pool features.
3289	 */
3290	pool_features_init(&pf);
3291
3292	dm_consume_args(&as, 4);
3293	r = parse_pool_features(&as, &pf, ti);
3294	if (r)
3295		goto out_unlock;
3296
3297	metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
3298	r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
3299	if (r) {
3300		ti->error = "Error opening metadata block device";
3301		goto out_unlock;
3302	}
3303	warn_if_metadata_device_too_big(metadata_dev->bdev);
 
 
 
 
3304
3305	r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
3306	if (r) {
3307		ti->error = "Error getting data device";
3308		goto out_metadata;
3309	}
3310
3311	if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
3312	    block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
3313	    block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
3314	    block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
3315		ti->error = "Invalid block size";
3316		r = -EINVAL;
3317		goto out;
3318	}
3319
3320	if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
3321		ti->error = "Invalid low water mark";
3322		r = -EINVAL;
3323		goto out;
3324	}
3325
 
 
 
 
 
 
 
 
 
 
3326	pt = kzalloc(sizeof(*pt), GFP_KERNEL);
3327	if (!pt) {
3328		r = -ENOMEM;
3329		goto out;
3330	}
3331
3332	pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev, data_dev->bdev,
3333			   block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
3334	if (IS_ERR(pool)) {
3335		r = PTR_ERR(pool);
3336		goto out_free_pt;
3337	}
3338
3339	/*
3340	 * 'pool_created' reflects whether this is the first table load.
3341	 * Top level discard support is not allowed to be changed after
3342	 * initial load.  This would require a pool reload to trigger thin
3343	 * device changes.
3344	 */
3345	if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
3346		ti->error = "Discard support cannot be disabled once enabled";
3347		r = -EINVAL;
3348		goto out_flags_changed;
3349	}
3350
3351	pt->pool = pool;
3352	pt->ti = ti;
3353	pt->metadata_dev = metadata_dev;
3354	pt->data_dev = data_dev;
3355	pt->low_water_blocks = low_water_blocks;
3356	pt->adjusted_pf = pt->requested_pf = pf;
3357	ti->num_flush_bios = 1;
3358
3359	/*
3360	 * Only need to enable discards if the pool should pass
3361	 * them down to the data device.  The thin device's discard
3362	 * processing will cause mappings to be removed from the btree.
3363	 */
3364	if (pf.discard_enabled && pf.discard_passdown) {
3365		ti->num_discard_bios = 1;
3366
3367		/*
3368		 * Setting 'discards_supported' circumvents the normal
3369		 * stacking of discard limits (this keeps the pool and
3370		 * thin devices' discard limits consistent).
3371		 */
3372		ti->discards_supported = true;
3373	}
3374	ti->private = pt;
3375
3376	r = dm_pool_register_metadata_threshold(pt->pool->pmd,
3377						calc_metadata_threshold(pt),
3378						metadata_low_callback,
3379						pool);
3380	if (r) {
3381		ti->error = "Error registering metadata threshold";
3382		goto out_flags_changed;
3383	}
3384
3385	dm_pool_register_pre_commit_callback(pool->pmd,
3386					     metadata_pre_commit_callback, pool);
3387
3388	mutex_unlock(&dm_thin_pool_table.mutex);
3389
3390	return 0;
3391
3392out_flags_changed:
3393	__pool_dec(pool);
3394out_free_pt:
3395	kfree(pt);
3396out:
3397	dm_put_device(ti, data_dev);
3398out_metadata:
3399	dm_put_device(ti, metadata_dev);
3400out_unlock:
3401	mutex_unlock(&dm_thin_pool_table.mutex);
3402
3403	return r;
3404}
3405
3406static int pool_map(struct dm_target *ti, struct bio *bio)
 
3407{
3408	int r;
3409	struct pool_c *pt = ti->private;
3410	struct pool *pool = pt->pool;
 
3411
3412	/*
3413	 * As this is a singleton target, ti->begin is always zero.
3414	 */
3415	spin_lock_irq(&pool->lock);
3416	bio_set_dev(bio, pt->data_dev->bdev);
3417	r = DM_MAPIO_REMAPPED;
3418	spin_unlock_irq(&pool->lock);
3419
3420	return r;
3421}
3422
3423static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
3424{
3425	int r;
3426	struct pool_c *pt = ti->private;
3427	struct pool *pool = pt->pool;
3428	sector_t data_size = ti->len;
3429	dm_block_t sb_data_size;
3430
3431	*need_commit = false;
3432
3433	(void) sector_div(data_size, pool->sectors_per_block);
3434
3435	r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
3436	if (r) {
3437		DMERR("%s: failed to retrieve data device size",
3438		      dm_device_name(pool->pool_md));
3439		return r;
3440	}
3441
3442	if (data_size < sb_data_size) {
3443		DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3444		      dm_device_name(pool->pool_md),
3445		      (unsigned long long)data_size, sb_data_size);
3446		return -EINVAL;
3447
3448	} else if (data_size > sb_data_size) {
3449		if (dm_pool_metadata_needs_check(pool->pmd)) {
3450			DMERR("%s: unable to grow the data device until repaired.",
3451			      dm_device_name(pool->pool_md));
3452			return 0;
3453		}
3454
3455		if (sb_data_size)
3456			DMINFO("%s: growing the data device from %llu to %llu blocks",
3457			       dm_device_name(pool->pool_md),
3458			       sb_data_size, (unsigned long long)data_size);
3459		r = dm_pool_resize_data_dev(pool->pmd, data_size);
3460		if (r) {
3461			metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
3462			return r;
3463		}
3464
3465		*need_commit = true;
3466	}
3467
3468	return 0;
3469}
3470
3471static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
3472{
3473	int r;
3474	struct pool_c *pt = ti->private;
3475	struct pool *pool = pt->pool;
3476	dm_block_t metadata_dev_size, sb_metadata_dev_size;
3477
3478	*need_commit = false;
3479
3480	metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
3481
3482	r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
3483	if (r) {
3484		DMERR("%s: failed to retrieve metadata device size",
3485		      dm_device_name(pool->pool_md));
3486		return r;
3487	}
3488
3489	if (metadata_dev_size < sb_metadata_dev_size) {
3490		DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3491		      dm_device_name(pool->pool_md),
3492		      metadata_dev_size, sb_metadata_dev_size);
3493		return -EINVAL;
3494
3495	} else if (metadata_dev_size > sb_metadata_dev_size) {
3496		if (dm_pool_metadata_needs_check(pool->pmd)) {
3497			DMERR("%s: unable to grow the metadata device until repaired.",
3498			      dm_device_name(pool->pool_md));
3499			return 0;
3500		}
3501
3502		warn_if_metadata_device_too_big(pool->md_dev);
3503		DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3504		       dm_device_name(pool->pool_md),
3505		       sb_metadata_dev_size, metadata_dev_size);
3506
3507		if (get_pool_mode(pool) == PM_OUT_OF_METADATA_SPACE)
3508			set_pool_mode(pool, PM_WRITE);
3509
3510		r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
3511		if (r) {
3512			metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
3513			return r;
3514		}
3515
3516		*need_commit = true;
3517	}
3518
3519	return 0;
3520}
3521
3522/*
3523 * Retrieves the number of blocks of the data device from
3524 * the superblock and compares it to the actual device size,
3525 * thus resizing the data device in case it has grown.
3526 *
3527 * This both copes with opening preallocated data devices in the ctr
3528 * being followed by a resume
3529 * -and-
3530 * calling the resume method individually after userspace has
3531 * grown the data device in reaction to a table event.
3532 */
3533static int pool_preresume(struct dm_target *ti)
3534{
3535	int r;
3536	bool need_commit1, need_commit2;
3537	struct pool_c *pt = ti->private;
3538	struct pool *pool = pt->pool;
 
3539
3540	/*
3541	 * Take control of the pool object.
3542	 */
3543	r = bind_control_target(pool, ti);
3544	if (r)
3545		goto out;
3546
3547	r = maybe_resize_data_dev(ti, &need_commit1);
3548	if (r)
3549		goto out;
3550
3551	r = maybe_resize_metadata_dev(ti, &need_commit2);
3552	if (r)
3553		goto out;
3554
3555	if (need_commit1 || need_commit2)
3556		(void) commit(pool);
3557out:
3558	/*
3559	 * When a thin-pool is PM_FAIL, it cannot be rebuilt if
3560	 * bio is in deferred list. Therefore need to return 0
3561	 * to allow pool_resume() to flush IO.
3562	 */
3563	if (r && get_pool_mode(pool) == PM_FAIL)
3564		r = 0;
3565
3566	return r;
3567}
 
 
3568
3569static void pool_suspend_active_thins(struct pool *pool)
3570{
3571	struct thin_c *tc;
 
 
 
3572
3573	/* Suspend all active thin devices */
3574	tc = get_first_thin(pool);
3575	while (tc) {
3576		dm_internal_suspend_noflush(tc->thin_md);
3577		tc = get_next_thin(pool, tc);
 
3578	}
3579}
3580
3581static void pool_resume_active_thins(struct pool *pool)
3582{
3583	struct thin_c *tc;
3584
3585	/* Resume all active thin devices */
3586	tc = get_first_thin(pool);
3587	while (tc) {
3588		dm_internal_resume(tc->thin_md);
3589		tc = get_next_thin(pool, tc);
3590	}
3591}
3592
3593static void pool_resume(struct dm_target *ti)
3594{
3595	struct pool_c *pt = ti->private;
3596	struct pool *pool = pt->pool;
 
3597
3598	/*
3599	 * Must requeue active_thins' bios and then resume
3600	 * active_thins _before_ clearing 'suspend' flag.
3601	 */
3602	requeue_bios(pool);
3603	pool_resume_active_thins(pool);
3604
3605	spin_lock_irq(&pool->lock);
3606	pool->low_water_triggered = false;
3607	pool->suspended = false;
3608	spin_unlock_irq(&pool->lock);
3609
3610	do_waker(&pool->waker.work);
3611}
3612
3613static void pool_presuspend(struct dm_target *ti)
3614{
3615	struct pool_c *pt = ti->private;
3616	struct pool *pool = pt->pool;
3617
3618	spin_lock_irq(&pool->lock);
3619	pool->suspended = true;
3620	spin_unlock_irq(&pool->lock);
3621
3622	pool_suspend_active_thins(pool);
3623}
3624
3625static void pool_presuspend_undo(struct dm_target *ti)
3626{
3627	struct pool_c *pt = ti->private;
3628	struct pool *pool = pt->pool;
3629
3630	pool_resume_active_thins(pool);
3631
3632	spin_lock_irq(&pool->lock);
3633	pool->suspended = false;
3634	spin_unlock_irq(&pool->lock);
3635}
3636
3637static void pool_postsuspend(struct dm_target *ti)
3638{
 
3639	struct pool_c *pt = ti->private;
3640	struct pool *pool = pt->pool;
3641
3642	cancel_delayed_work_sync(&pool->waker);
3643	cancel_delayed_work_sync(&pool->no_space_timeout);
3644	flush_workqueue(pool->wq);
3645	(void) commit(pool);
 
 
 
 
 
 
3646}
3647
3648static int check_arg_count(unsigned argc, unsigned args_required)
3649{
3650	if (argc != args_required) {
3651		DMWARN("Message received with %u arguments instead of %u.",
3652		       argc, args_required);
3653		return -EINVAL;
3654	}
3655
3656	return 0;
3657}
3658
3659static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
3660{
3661	if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
3662	    *dev_id <= MAX_DEV_ID)
3663		return 0;
3664
3665	if (warning)
3666		DMWARN("Message received with invalid device id: %s", arg);
3667
3668	return -EINVAL;
3669}
3670
3671static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
3672{
3673	dm_thin_id dev_id;
3674	int r;
3675
3676	r = check_arg_count(argc, 2);
3677	if (r)
3678		return r;
3679
3680	r = read_dev_id(argv[1], &dev_id, 1);
3681	if (r)
3682		return r;
3683
3684	r = dm_pool_create_thin(pool->pmd, dev_id);
3685	if (r) {
3686		DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3687		       argv[1]);
3688		return r;
3689	}
3690
3691	return 0;
3692}
3693
3694static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3695{
3696	dm_thin_id dev_id;
3697	dm_thin_id origin_dev_id;
3698	int r;
3699
3700	r = check_arg_count(argc, 3);
3701	if (r)
3702		return r;
3703
3704	r = read_dev_id(argv[1], &dev_id, 1);
3705	if (r)
3706		return r;
3707
3708	r = read_dev_id(argv[2], &origin_dev_id, 1);
3709	if (r)
3710		return r;
3711
3712	r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
3713	if (r) {
3714		DMWARN("Creation of new snapshot %s of device %s failed.",
3715		       argv[1], argv[2]);
3716		return r;
3717	}
3718
3719	return 0;
3720}
3721
3722static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
3723{
3724	dm_thin_id dev_id;
3725	int r;
3726
3727	r = check_arg_count(argc, 2);
3728	if (r)
3729		return r;
3730
3731	r = read_dev_id(argv[1], &dev_id, 1);
3732	if (r)
3733		return r;
3734
3735	r = dm_pool_delete_thin_device(pool->pmd, dev_id);
3736	if (r)
3737		DMWARN("Deletion of thin device %s failed.", argv[1]);
3738
3739	return r;
3740}
3741
3742static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
3743{
3744	dm_thin_id old_id, new_id;
3745	int r;
3746
3747	r = check_arg_count(argc, 3);
3748	if (r)
3749		return r;
3750
3751	if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
3752		DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
3753		return -EINVAL;
3754	}
3755
3756	if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
3757		DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
3758		return -EINVAL;
3759	}
3760
3761	r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
3762	if (r) {
3763		DMWARN("Failed to change transaction id from %s to %s.",
3764		       argv[1], argv[2]);
3765		return r;
3766	}
3767
3768	return 0;
3769}
3770
3771static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3772{
3773	int r;
3774
3775	r = check_arg_count(argc, 1);
3776	if (r)
3777		return r;
3778
3779	(void) commit(pool);
 
 
 
 
 
3780
3781	r = dm_pool_reserve_metadata_snap(pool->pmd);
3782	if (r)
3783		DMWARN("reserve_metadata_snap message failed.");
3784
3785	return r;
3786}
3787
3788static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3789{
3790	int r;
3791
3792	r = check_arg_count(argc, 1);
3793	if (r)
3794		return r;
3795
3796	r = dm_pool_release_metadata_snap(pool->pmd);
3797	if (r)
3798		DMWARN("release_metadata_snap message failed.");
3799
3800	return r;
3801}
3802
3803/*
3804 * Messages supported:
3805 *   create_thin	<dev_id>
3806 *   create_snap	<dev_id> <origin_id>
3807 *   delete		<dev_id>
 
3808 *   set_transaction_id <current_trans_id> <new_trans_id>
3809 *   reserve_metadata_snap
3810 *   release_metadata_snap
3811 */
3812static int pool_message(struct dm_target *ti, unsigned argc, char **argv,
3813			char *result, unsigned maxlen)
3814{
3815	int r = -EINVAL;
3816	struct pool_c *pt = ti->private;
3817	struct pool *pool = pt->pool;
3818
3819	if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE) {
3820		DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
3821		      dm_device_name(pool->pool_md));
3822		return -EOPNOTSUPP;
3823	}
3824
3825	if (!strcasecmp(argv[0], "create_thin"))
3826		r = process_create_thin_mesg(argc, argv, pool);
3827
3828	else if (!strcasecmp(argv[0], "create_snap"))
3829		r = process_create_snap_mesg(argc, argv, pool);
3830
3831	else if (!strcasecmp(argv[0], "delete"))
3832		r = process_delete_mesg(argc, argv, pool);
3833
3834	else if (!strcasecmp(argv[0], "set_transaction_id"))
3835		r = process_set_transaction_id_mesg(argc, argv, pool);
3836
3837	else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
3838		r = process_reserve_metadata_snap_mesg(argc, argv, pool);
3839
3840	else if (!strcasecmp(argv[0], "release_metadata_snap"))
3841		r = process_release_metadata_snap_mesg(argc, argv, pool);
3842
3843	else
3844		DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
3845
3846	if (!r)
3847		(void) commit(pool);
 
 
 
 
3848
3849	return r;
3850}
3851
3852static void emit_flags(struct pool_features *pf, char *result,
3853		       unsigned sz, unsigned maxlen)
3854{
3855	unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
3856		!pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
3857		pf->error_if_no_space;
3858	DMEMIT("%u ", count);
3859
3860	if (!pf->zero_new_blocks)
3861		DMEMIT("skip_block_zeroing ");
3862
3863	if (!pf->discard_enabled)
3864		DMEMIT("ignore_discard ");
3865
3866	if (!pf->discard_passdown)
3867		DMEMIT("no_discard_passdown ");
3868
3869	if (pf->mode == PM_READ_ONLY)
3870		DMEMIT("read_only ");
3871
3872	if (pf->error_if_no_space)
3873		DMEMIT("error_if_no_space ");
3874}
3875
3876/*
3877 * Status line is:
3878 *    <transaction id> <used metadata sectors>/<total metadata sectors>
3879 *    <used data sectors>/<total data sectors> <held metadata root>
3880 *    <pool mode> <discard config> <no space config> <needs_check>
3881 */
3882static void pool_status(struct dm_target *ti, status_type_t type,
3883			unsigned status_flags, char *result, unsigned maxlen)
3884{
3885	int r;
3886	unsigned sz = 0;
3887	uint64_t transaction_id;
3888	dm_block_t nr_free_blocks_data;
3889	dm_block_t nr_free_blocks_metadata;
3890	dm_block_t nr_blocks_data;
3891	dm_block_t nr_blocks_metadata;
3892	dm_block_t held_root;
3893	enum pool_mode mode;
3894	char buf[BDEVNAME_SIZE];
3895	char buf2[BDEVNAME_SIZE];
3896	struct pool_c *pt = ti->private;
3897	struct pool *pool = pt->pool;
3898
3899	switch (type) {
3900	case STATUSTYPE_INFO:
3901		if (get_pool_mode(pool) == PM_FAIL) {
3902			DMEMIT("Fail");
3903			break;
3904		}
3905
3906		/* Commit to ensure statistics aren't out-of-date */
3907		if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3908			(void) commit(pool);
3909
3910		r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
3911		if (r) {
3912			DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3913			      dm_device_name(pool->pool_md), r);
3914			goto err;
3915		}
3916
3917		r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
3918		if (r) {
3919			DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3920			      dm_device_name(pool->pool_md), r);
3921			goto err;
3922		}
3923
3924		r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
3925		if (r) {
3926			DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3927			      dm_device_name(pool->pool_md), r);
3928			goto err;
3929		}
3930
3931		r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
3932		if (r) {
3933			DMERR("%s: dm_pool_get_free_block_count returned %d",
3934			      dm_device_name(pool->pool_md), r);
3935			goto err;
3936		}
3937
3938		r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
3939		if (r) {
3940			DMERR("%s: dm_pool_get_data_dev_size returned %d",
3941			      dm_device_name(pool->pool_md), r);
3942			goto err;
3943		}
3944
3945		r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
3946		if (r) {
3947			DMERR("%s: dm_pool_get_metadata_snap returned %d",
3948			      dm_device_name(pool->pool_md), r);
3949			goto err;
3950		}
3951
3952		DMEMIT("%llu %llu/%llu %llu/%llu ",
3953		       (unsigned long long)transaction_id,
3954		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3955		       (unsigned long long)nr_blocks_metadata,
3956		       (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
3957		       (unsigned long long)nr_blocks_data);
3958
3959		if (held_root)
3960			DMEMIT("%llu ", held_root);
3961		else
3962			DMEMIT("- ");
3963
3964		mode = get_pool_mode(pool);
3965		if (mode == PM_OUT_OF_DATA_SPACE)
3966			DMEMIT("out_of_data_space ");
3967		else if (is_read_only_pool_mode(mode))
3968			DMEMIT("ro ");
3969		else
3970			DMEMIT("rw ");
3971
3972		if (!pool->pf.discard_enabled)
3973			DMEMIT("ignore_discard ");
3974		else if (pool->pf.discard_passdown)
3975			DMEMIT("discard_passdown ");
3976		else
3977			DMEMIT("no_discard_passdown ");
3978
3979		if (pool->pf.error_if_no_space)
3980			DMEMIT("error_if_no_space ");
3981		else
3982			DMEMIT("queue_if_no_space ");
3983
3984		if (dm_pool_metadata_needs_check(pool->pmd))
3985			DMEMIT("needs_check ");
3986		else
3987			DMEMIT("- ");
3988
3989		DMEMIT("%llu ", (unsigned long long)calc_metadata_threshold(pt));
3990
3991		break;
3992
3993	case STATUSTYPE_TABLE:
3994		DMEMIT("%s %s %lu %llu ",
3995		       format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
3996		       format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
3997		       (unsigned long)pool->sectors_per_block,
3998		       (unsigned long long)pt->low_water_blocks);
3999		emit_flags(&pt->requested_pf, result, sz, maxlen);
4000		break;
4001
4002	case STATUSTYPE_IMA:
4003		*result = '\0';
 
 
 
 
 
 
 
 
 
 
 
4004		break;
4005	}
4006	return;
4007
4008err:
4009	DMEMIT("Error");
4010}
4011
4012static int pool_iterate_devices(struct dm_target *ti,
4013				iterate_devices_callout_fn fn, void *data)
4014{
4015	struct pool_c *pt = ti->private;
4016
4017	return fn(ti, pt->data_dev, 0, ti->len, data);
4018}
4019
4020static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
 
4021{
4022	struct pool_c *pt = ti->private;
4023	struct pool *pool = pt->pool;
4024	sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
4025
4026	/*
4027	 * If max_sectors is smaller than pool->sectors_per_block adjust it
4028	 * to the highest possible power-of-2 factor of pool->sectors_per_block.
4029	 * This is especially beneficial when the pool's data device is a RAID
4030	 * device that has a full stripe width that matches pool->sectors_per_block
4031	 * -- because even though partial RAID stripe-sized IOs will be issued to a
4032	 *    single RAID stripe; when aggregated they will end on a full RAID stripe
4033	 *    boundary.. which avoids additional partial RAID stripe writes cascading
4034	 */
4035	if (limits->max_sectors < pool->sectors_per_block) {
4036		while (!is_factor(pool->sectors_per_block, limits->max_sectors)) {
4037			if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
4038				limits->max_sectors--;
4039			limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
4040		}
4041	}
4042
 
 
 
 
 
4043	/*
4044	 * If the system-determined stacked limits are compatible with the
4045	 * pool's blocksize (io_opt is a factor) do not override them.
4046	 */
4047	if (io_opt_sectors < pool->sectors_per_block ||
4048	    !is_factor(io_opt_sectors, pool->sectors_per_block)) {
4049		if (is_factor(pool->sectors_per_block, limits->max_sectors))
4050			blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT);
4051		else
4052			blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT);
4053		blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
4054	}
4055
4056	/*
4057	 * pt->adjusted_pf is a staging area for the actual features to use.
4058	 * They get transferred to the live pool in bind_control_target()
4059	 * called from pool_preresume().
4060	 */
4061	if (!pt->adjusted_pf.discard_enabled) {
4062		/*
4063		 * Must explicitly disallow stacking discard limits otherwise the
4064		 * block layer will stack them if pool's data device has support.
4065		 */
4066		limits->discard_granularity = 0;
4067		return;
4068	}
4069
4070	disable_passdown_if_not_supported(pt);
 
 
 
4071
4072	/*
4073	 * The pool uses the same discard limits as the underlying data
4074	 * device.  DM core has already set this up.
4075	 */
4076}
4077
4078static struct target_type pool_target = {
4079	.name = "thin-pool",
4080	.features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
4081		    DM_TARGET_IMMUTABLE,
4082	.version = {1, 22, 0},
4083	.module = THIS_MODULE,
4084	.ctr = pool_ctr,
4085	.dtr = pool_dtr,
4086	.map = pool_map,
4087	.presuspend = pool_presuspend,
4088	.presuspend_undo = pool_presuspend_undo,
4089	.postsuspend = pool_postsuspend,
4090	.preresume = pool_preresume,
4091	.resume = pool_resume,
4092	.message = pool_message,
4093	.status = pool_status,
 
4094	.iterate_devices = pool_iterate_devices,
4095	.io_hints = pool_io_hints,
4096};
4097
4098/*----------------------------------------------------------------
4099 * Thin target methods
4100 *--------------------------------------------------------------*/
4101static void thin_get(struct thin_c *tc)
4102{
4103	refcount_inc(&tc->refcount);
4104}
4105
4106static void thin_put(struct thin_c *tc)
4107{
4108	if (refcount_dec_and_test(&tc->refcount))
4109		complete(&tc->can_destroy);
4110}
4111
4112static void thin_dtr(struct dm_target *ti)
4113{
4114	struct thin_c *tc = ti->private;
4115
4116	spin_lock_irq(&tc->pool->lock);
4117	list_del_rcu(&tc->list);
4118	spin_unlock_irq(&tc->pool->lock);
4119	synchronize_rcu();
4120
4121	thin_put(tc);
4122	wait_for_completion(&tc->can_destroy);
4123
4124	mutex_lock(&dm_thin_pool_table.mutex);
4125
4126	__pool_dec(tc->pool);
4127	dm_pool_close_thin_device(tc->td);
4128	dm_put_device(ti, tc->pool_dev);
4129	if (tc->origin_dev)
4130		dm_put_device(ti, tc->origin_dev);
4131	kfree(tc);
4132
4133	mutex_unlock(&dm_thin_pool_table.mutex);
4134}
4135
4136/*
4137 * Thin target parameters:
4138 *
4139 * <pool_dev> <dev_id> [origin_dev]
4140 *
4141 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
4142 * dev_id: the internal device identifier
4143 * origin_dev: a device external to the pool that should act as the origin
4144 *
4145 * If the pool device has discards disabled, they get disabled for the thin
4146 * device as well.
4147 */
4148static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
4149{
4150	int r;
4151	struct thin_c *tc;
4152	struct dm_dev *pool_dev, *origin_dev;
4153	struct mapped_device *pool_md;
4154
4155	mutex_lock(&dm_thin_pool_table.mutex);
4156
4157	if (argc != 2 && argc != 3) {
4158		ti->error = "Invalid argument count";
4159		r = -EINVAL;
4160		goto out_unlock;
4161	}
4162
4163	tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
4164	if (!tc) {
4165		ti->error = "Out of memory";
4166		r = -ENOMEM;
4167		goto out_unlock;
4168	}
4169	tc->thin_md = dm_table_get_md(ti->table);
4170	spin_lock_init(&tc->lock);
4171	INIT_LIST_HEAD(&tc->deferred_cells);
4172	bio_list_init(&tc->deferred_bio_list);
4173	bio_list_init(&tc->retry_on_resume_list);
4174	tc->sort_bio_list = RB_ROOT;
4175
4176	if (argc == 3) {
4177		if (!strcmp(argv[0], argv[2])) {
4178			ti->error = "Error setting origin device";
4179			r = -EINVAL;
4180			goto bad_origin_dev;
4181		}
4182
4183		r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
4184		if (r) {
4185			ti->error = "Error opening origin device";
4186			goto bad_origin_dev;
4187		}
4188		tc->origin_dev = origin_dev;
4189	}
4190
4191	r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
4192	if (r) {
4193		ti->error = "Error opening pool device";
4194		goto bad_pool_dev;
4195	}
4196	tc->pool_dev = pool_dev;
4197
4198	if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
4199		ti->error = "Invalid device id";
4200		r = -EINVAL;
4201		goto bad_common;
4202	}
4203
4204	pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
4205	if (!pool_md) {
4206		ti->error = "Couldn't get pool mapped device";
4207		r = -EINVAL;
4208		goto bad_common;
4209	}
4210
4211	tc->pool = __pool_table_lookup(pool_md);
4212	if (!tc->pool) {
4213		ti->error = "Couldn't find pool object";
4214		r = -EINVAL;
4215		goto bad_pool_lookup;
4216	}
4217	__pool_inc(tc->pool);
4218
4219	if (get_pool_mode(tc->pool) == PM_FAIL) {
4220		ti->error = "Couldn't open thin device, Pool is in fail mode";
4221		r = -EINVAL;
4222		goto bad_pool;
4223	}
4224
4225	r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
4226	if (r) {
4227		ti->error = "Couldn't open thin internal device";
4228		goto bad_pool;
4229	}
4230
4231	r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
4232	if (r)
4233		goto bad;
4234
4235	ti->num_flush_bios = 1;
4236	ti->flush_supported = true;
4237	ti->accounts_remapped_io = true;
4238	ti->per_io_data_size = sizeof(struct dm_thin_endio_hook);
4239
4240	/* In case the pool supports discards, pass them on. */
4241	if (tc->pool->pf.discard_enabled) {
4242		ti->discards_supported = true;
4243		ti->num_discard_bios = 1;
4244	}
4245
4246	mutex_unlock(&dm_thin_pool_table.mutex);
4247
4248	spin_lock_irq(&tc->pool->lock);
4249	if (tc->pool->suspended) {
4250		spin_unlock_irq(&tc->pool->lock);
4251		mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */
4252		ti->error = "Unable to activate thin device while pool is suspended";
4253		r = -EINVAL;
4254		goto bad;
4255	}
4256	refcount_set(&tc->refcount, 1);
4257	init_completion(&tc->can_destroy);
4258	list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
4259	spin_unlock_irq(&tc->pool->lock);
4260	/*
4261	 * This synchronize_rcu() call is needed here otherwise we risk a
4262	 * wake_worker() call finding no bios to process (because the newly
4263	 * added tc isn't yet visible).  So this reduces latency since we
4264	 * aren't then dependent on the periodic commit to wake_worker().
4265	 */
4266	synchronize_rcu();
4267
4268	dm_put(pool_md);
4269
 
 
4270	return 0;
4271
4272bad:
4273	dm_pool_close_thin_device(tc->td);
4274bad_pool:
4275	__pool_dec(tc->pool);
4276bad_pool_lookup:
4277	dm_put(pool_md);
4278bad_common:
4279	dm_put_device(ti, tc->pool_dev);
4280bad_pool_dev:
4281	if (tc->origin_dev)
4282		dm_put_device(ti, tc->origin_dev);
4283bad_origin_dev:
4284	kfree(tc);
4285out_unlock:
4286	mutex_unlock(&dm_thin_pool_table.mutex);
4287
4288	return r;
4289}
4290
4291static int thin_map(struct dm_target *ti, struct bio *bio)
 
4292{
4293	bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
4294
4295	return thin_bio_map(ti, bio);
4296}
4297
4298static int thin_endio(struct dm_target *ti, struct bio *bio,
4299		blk_status_t *err)
 
4300{
4301	unsigned long flags;
4302	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
4303	struct list_head work;
4304	struct dm_thin_new_mapping *m, *tmp;
4305	struct pool *pool = h->tc->pool;
4306
4307	if (h->shared_read_entry) {
4308		INIT_LIST_HEAD(&work);
4309		dm_deferred_entry_dec(h->shared_read_entry, &work);
4310
4311		spin_lock_irqsave(&pool->lock, flags);
4312		list_for_each_entry_safe(m, tmp, &work, list) {
4313			list_del(&m->list);
4314			__complete_mapping_preparation(m);
 
4315		}
4316		spin_unlock_irqrestore(&pool->lock, flags);
4317	}
4318
4319	if (h->all_io_entry) {
4320		INIT_LIST_HEAD(&work);
4321		dm_deferred_entry_dec(h->all_io_entry, &work);
4322		if (!list_empty(&work)) {
4323			spin_lock_irqsave(&pool->lock, flags);
4324			list_for_each_entry_safe(m, tmp, &work, list)
4325				list_add_tail(&m->list, &pool->prepared_discards);
4326			spin_unlock_irqrestore(&pool->lock, flags);
4327			wake_worker(pool);
4328		}
4329	}
4330
4331	if (h->cell)
4332		cell_defer_no_holder(h->tc, h->cell);
4333
4334	return DM_ENDIO_DONE;
4335}
4336
4337static void thin_presuspend(struct dm_target *ti)
4338{
4339	struct thin_c *tc = ti->private;
4340
4341	if (dm_noflush_suspending(ti))
4342		noflush_work(tc, do_noflush_start);
4343}
4344
4345static void thin_postsuspend(struct dm_target *ti)
4346{
4347	struct thin_c *tc = ti->private;
4348
4349	/*
4350	 * The dm_noflush_suspending flag has been cleared by now, so
4351	 * unfortunately we must always run this.
4352	 */
4353	noflush_work(tc, do_noflush_stop);
4354}
4355
4356static int thin_preresume(struct dm_target *ti)
4357{
4358	struct thin_c *tc = ti->private;
4359
4360	if (tc->origin_dev)
4361		tc->origin_size = get_dev_size(tc->origin_dev->bdev);
4362
4363	return 0;
4364}
4365
4366/*
4367 * <nr mapped sectors> <highest mapped sector>
4368 */
4369static void thin_status(struct dm_target *ti, status_type_t type,
4370			unsigned status_flags, char *result, unsigned maxlen)
4371{
4372	int r;
4373	ssize_t sz = 0;
4374	dm_block_t mapped, highest;
4375	char buf[BDEVNAME_SIZE];
4376	struct thin_c *tc = ti->private;
4377
4378	if (get_pool_mode(tc->pool) == PM_FAIL) {
4379		DMEMIT("Fail");
4380		return;
4381	}
4382
4383	if (!tc->td)
4384		DMEMIT("-");
4385	else {
4386		switch (type) {
4387		case STATUSTYPE_INFO:
4388			r = dm_thin_get_mapped_count(tc->td, &mapped);
4389			if (r) {
4390				DMERR("dm_thin_get_mapped_count returned %d", r);
4391				goto err;
4392			}
4393
4394			r = dm_thin_get_highest_mapped_block(tc->td, &highest);
4395			if (r < 0) {
4396				DMERR("dm_thin_get_highest_mapped_block returned %d", r);
4397				goto err;
4398			}
4399
4400			DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
4401			if (r)
4402				DMEMIT("%llu", ((highest + 1) *
4403						tc->pool->sectors_per_block) - 1);
4404			else
4405				DMEMIT("-");
4406			break;
4407
4408		case STATUSTYPE_TABLE:
4409			DMEMIT("%s %lu",
4410			       format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
4411			       (unsigned long) tc->dev_id);
4412			if (tc->origin_dev)
4413				DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
4414			break;
4415
4416		case STATUSTYPE_IMA:
4417			*result = '\0';
4418			break;
4419		}
4420	}
4421
4422	return;
4423
4424err:
4425	DMEMIT("Error");
4426}
4427
4428static int thin_iterate_devices(struct dm_target *ti,
4429				iterate_devices_callout_fn fn, void *data)
4430{
4431	sector_t blocks;
4432	struct thin_c *tc = ti->private;
4433	struct pool *pool = tc->pool;
4434
4435	/*
4436	 * We can't call dm_pool_get_data_dev_size() since that blocks.  So
4437	 * we follow a more convoluted path through to the pool's target.
4438	 */
4439	if (!pool->ti)
4440		return 0;	/* nothing is bound */
4441
4442	blocks = pool->ti->len;
4443	(void) sector_div(blocks, pool->sectors_per_block);
4444	if (blocks)
4445		return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
4446
4447	return 0;
4448}
4449
4450static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
4451{
4452	struct thin_c *tc = ti->private;
4453	struct pool *pool = tc->pool;
4454
4455	if (!pool->pf.discard_enabled)
4456		return;
4457
4458	limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
4459	limits->max_discard_sectors = 2048 * 1024 * 16; /* 16G */
4460}
4461
4462static struct target_type thin_target = {
4463	.name = "thin",
4464	.version = {1, 22, 0},
4465	.module	= THIS_MODULE,
4466	.ctr = thin_ctr,
4467	.dtr = thin_dtr,
4468	.map = thin_map,
4469	.end_io = thin_endio,
4470	.preresume = thin_preresume,
4471	.presuspend = thin_presuspend,
4472	.postsuspend = thin_postsuspend,
4473	.status = thin_status,
4474	.iterate_devices = thin_iterate_devices,
4475	.io_hints = thin_io_hints,
4476};
4477
4478/*----------------------------------------------------------------*/
4479
4480static int __init dm_thin_init(void)
4481{
4482	int r = -ENOMEM;
4483
4484	pool_table_init();
4485
4486	_new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
4487	if (!_new_mapping_cache)
4488		return r;
4489
4490	r = dm_register_target(&thin_target);
4491	if (r)
4492		goto bad_new_mapping_cache;
4493
4494	r = dm_register_target(&pool_target);
4495	if (r)
4496		goto bad_thin_target;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4497
4498	return 0;
4499
4500bad_thin_target:
4501	dm_unregister_target(&thin_target);
4502bad_new_mapping_cache:
4503	kmem_cache_destroy(_new_mapping_cache);
 
 
 
 
 
 
4504
4505	return r;
4506}
4507
4508static void dm_thin_exit(void)
4509{
4510	dm_unregister_target(&thin_target);
4511	dm_unregister_target(&pool_target);
4512
 
4513	kmem_cache_destroy(_new_mapping_cache);
4514
4515	pool_table_exit();
4516}
4517
4518module_init(dm_thin_init);
4519module_exit(dm_thin_exit);
4520
4521module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR);
4522MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
4523
4524MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
4525MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
4526MODULE_LICENSE("GPL");
v3.5.6
   1/*
   2 * Copyright (C) 2011 Red Hat UK.
   3 *
   4 * This file is released under the GPL.
   5 */
   6
   7#include "dm-thin-metadata.h"
 
 
   8
   9#include <linux/device-mapper.h>
  10#include <linux/dm-io.h>
  11#include <linux/dm-kcopyd.h>
 
 
  12#include <linux/list.h>
 
  13#include <linux/init.h>
  14#include <linux/module.h>
  15#include <linux/slab.h>
 
 
 
  16
  17#define	DM_MSG_PREFIX	"thin"
  18
  19/*
  20 * Tunable constants
  21 */
  22#define ENDIO_HOOK_POOL_SIZE 1024
  23#define DEFERRED_SET_SIZE 64
  24#define MAPPING_POOL_SIZE 1024
  25#define PRISON_CELLS 1024
  26#define COMMIT_PERIOD HZ
 
 
 
 
 
 
  27
  28/*
  29 * The block size of the device holding pool data must be
  30 * between 64KB and 1GB.
  31 */
  32#define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
  33#define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
  34
  35/*
  36 * Device id is restricted to 24 bits.
  37 */
  38#define MAX_DEV_ID ((1 << 24) - 1)
  39
  40/*
  41 * How do we handle breaking sharing of data blocks?
  42 * =================================================
  43 *
  44 * We use a standard copy-on-write btree to store the mappings for the
  45 * devices (note I'm talking about copy-on-write of the metadata here, not
  46 * the data).  When you take an internal snapshot you clone the root node
  47 * of the origin btree.  After this there is no concept of an origin or a
  48 * snapshot.  They are just two device trees that happen to point to the
  49 * same data blocks.
  50 *
  51 * When we get a write in we decide if it's to a shared data block using
  52 * some timestamp magic.  If it is, we have to break sharing.
  53 *
  54 * Let's say we write to a shared block in what was the origin.  The
  55 * steps are:
  56 *
  57 * i) plug io further to this physical block. (see bio_prison code).
  58 *
  59 * ii) quiesce any read io to that shared data block.  Obviously
  60 * including all devices that share this block.  (see deferred_set code)
  61 *
  62 * iii) copy the data block to a newly allocate block.  This step can be
  63 * missed out if the io covers the block. (schedule_copy).
  64 *
  65 * iv) insert the new mapping into the origin's btree
  66 * (process_prepared_mapping).  This act of inserting breaks some
  67 * sharing of btree nodes between the two devices.  Breaking sharing only
  68 * effects the btree of that specific device.  Btrees for the other
  69 * devices that share the block never change.  The btree for the origin
  70 * device as it was after the last commit is untouched, ie. we're using
  71 * persistent data structures in the functional programming sense.
  72 *
  73 * v) unplug io to this physical block, including the io that triggered
  74 * the breaking of sharing.
  75 *
  76 * Steps (ii) and (iii) occur in parallel.
  77 *
  78 * The metadata _doesn't_ need to be committed before the io continues.  We
  79 * get away with this because the io is always written to a _new_ block.
  80 * If there's a crash, then:
  81 *
  82 * - The origin mapping will point to the old origin block (the shared
  83 * one).  This will contain the data as it was before the io that triggered
  84 * the breaking of sharing came in.
  85 *
  86 * - The snap mapping still points to the old block.  As it would after
  87 * the commit.
  88 *
  89 * The downside of this scheme is the timestamp magic isn't perfect, and
  90 * will continue to think that data block in the snapshot device is shared
  91 * even after the write to the origin has broken sharing.  I suspect data
  92 * blocks will typically be shared by many different devices, so we're
  93 * breaking sharing n + 1 times, rather than n, where n is the number of
  94 * devices that reference this data block.  At the moment I think the
  95 * benefits far, far outweigh the disadvantages.
  96 */
  97
  98/*----------------------------------------------------------------*/
  99
 100/*
 101 * Sometimes we can't deal with a bio straight away.  We put them in prison
 102 * where they can't cause any mischief.  Bios are put in a cell identified
 103 * by a key, multiple bios can be in the same cell.  When the cell is
 104 * subsequently unlocked the bios become available.
 105 */
 106struct bio_prison;
 107
 108struct cell_key {
 109	int virtual;
 110	dm_thin_id dev;
 111	dm_block_t block;
 112};
 113
 114struct dm_bio_prison_cell {
 115	struct hlist_node list;
 116	struct bio_prison *prison;
 117	struct cell_key key;
 118	struct bio *holder;
 119	struct bio_list bios;
 120};
 121
 122struct bio_prison {
 123	spinlock_t lock;
 124	mempool_t *cell_pool;
 125
 126	unsigned nr_buckets;
 127	unsigned hash_mask;
 128	struct hlist_head *cells;
 129};
 130
 131static uint32_t calc_nr_buckets(unsigned nr_cells)
 
 132{
 133	uint32_t n = 128;
 134
 135	nr_cells /= 4;
 136	nr_cells = min(nr_cells, 8192u);
 137
 138	while (n < nr_cells)
 139		n <<= 1;
 140
 141	return n;
 142}
 143
 144static struct kmem_cache *_cell_cache;
 145
 146/*
 147 * @nr_cells should be the number of cells you want in use _concurrently_.
 148 * Don't confuse it with the number of distinct keys.
 149 */
 150static struct bio_prison *prison_create(unsigned nr_cells)
 151{
 152	unsigned i;
 153	uint32_t nr_buckets = calc_nr_buckets(nr_cells);
 154	size_t len = sizeof(struct bio_prison) +
 155		(sizeof(struct hlist_head) * nr_buckets);
 156	struct bio_prison *prison = kmalloc(len, GFP_KERNEL);
 157
 158	if (!prison)
 159		return NULL;
 160
 161	spin_lock_init(&prison->lock);
 162	prison->cell_pool = mempool_create_slab_pool(nr_cells, _cell_cache);
 163	if (!prison->cell_pool) {
 164		kfree(prison);
 165		return NULL;
 166	}
 167
 168	prison->nr_buckets = nr_buckets;
 169	prison->hash_mask = nr_buckets - 1;
 170	prison->cells = (struct hlist_head *) (prison + 1);
 171	for (i = 0; i < nr_buckets; i++)
 172		INIT_HLIST_HEAD(prison->cells + i);
 173
 174	return prison;
 
 
 
 175}
 176
 177static void prison_destroy(struct bio_prison *prison)
 178{
 179	mempool_destroy(prison->cell_pool);
 180	kfree(prison);
 181}
 182
 183static uint32_t hash_key(struct bio_prison *prison, struct cell_key *key)
 184{
 185	const unsigned long BIG_PRIME = 4294967291UL;
 186	uint64_t hash = key->block * BIG_PRIME;
 
 
 
 187
 188	return (uint32_t) (hash & prison->hash_mask);
 
 
 
 
 
 189}
 190
 191static int keys_equal(struct cell_key *lhs, struct cell_key *rhs)
 192{
 193	       return (lhs->virtual == rhs->virtual) &&
 194		       (lhs->dev == rhs->dev) &&
 195		       (lhs->block == rhs->block);
 196}
 197
 198static struct dm_bio_prison_cell *__search_bucket(struct hlist_head *bucket,
 199						  struct cell_key *key)
 200{
 201	struct dm_bio_prison_cell *cell;
 202	struct hlist_node *tmp;
 203
 204	hlist_for_each_entry(cell, tmp, bucket, list)
 205		if (keys_equal(&cell->key, key))
 206			return cell;
 207
 208	return NULL;
 209}
 
 
 
 
 210
 211/*
 212 * This may block if a new cell needs allocating.  You must ensure that
 213 * cells will be unlocked even if the calling thread is blocked.
 214 *
 215 * Returns 1 if the cell was already held, 0 if @inmate is the new holder.
 216 */
 217static int bio_detain(struct bio_prison *prison, struct cell_key *key,
 218		      struct bio *inmate, struct dm_bio_prison_cell **ref)
 219{
 220	int r = 1;
 221	unsigned long flags;
 222	uint32_t hash = hash_key(prison, key);
 223	struct dm_bio_prison_cell *cell, *cell2;
 224
 225	BUG_ON(hash > prison->nr_buckets);
 226
 227	spin_lock_irqsave(&prison->lock, flags);
 228
 229	cell = __search_bucket(prison->cells + hash, key);
 230	if (cell) {
 231		bio_list_add(&cell->bios, inmate);
 232		goto out;
 233	}
 234
 235	/*
 236	 * Allocate a new cell
 237	 */
 238	spin_unlock_irqrestore(&prison->lock, flags);
 239	cell2 = mempool_alloc(prison->cell_pool, GFP_NOIO);
 240	spin_lock_irqsave(&prison->lock, flags);
 241
 242	/*
 243	 * We've been unlocked, so we have to double check that
 244	 * nobody else has inserted this cell in the meantime.
 245	 */
 246	cell = __search_bucket(prison->cells + hash, key);
 247	if (cell) {
 248		mempool_free(cell2, prison->cell_pool);
 249		bio_list_add(&cell->bios, inmate);
 250		goto out;
 251	}
 252
 253	/*
 254	 * Use new cell.
 255	 */
 256	cell = cell2;
 
 257
 258	cell->prison = prison;
 259	memcpy(&cell->key, key, sizeof(cell->key));
 260	cell->holder = inmate;
 261	bio_list_init(&cell->bios);
 262	hlist_add_head(&cell->list, prison->cells + hash);
 263
 264	r = 0;
 265
 266out:
 267	spin_unlock_irqrestore(&prison->lock, flags);
 
 268
 269	*ref = cell;
 
 
 
 270
 271	return r;
 272}
 
 273
 274/*
 275 * @inmates must have been initialised prior to this call
 276 */
 277static void __cell_release(struct dm_bio_prison_cell *cell, struct bio_list *inmates)
 278{
 279	struct bio_prison *prison = cell->prison;
 280
 281	hlist_del(&cell->list);
 
 282
 283	if (inmates) {
 284		bio_list_add(inmates, cell->holder);
 285		bio_list_merge(inmates, &cell->bios);
 286	}
 
 287
 288	mempool_free(cell, prison->cell_pool);
 289}
 290
 291static void cell_release(struct dm_bio_prison_cell *cell, struct bio_list *bios)
 292{
 293	unsigned long flags;
 294	struct bio_prison *prison = cell->prison;
 
 
 
 295
 296	spin_lock_irqsave(&prison->lock, flags);
 297	__cell_release(cell, bios);
 298	spin_unlock_irqrestore(&prison->lock, flags);
 299}
 300
 301/*
 302 * There are a couple of places where we put a bio into a cell briefly
 303 * before taking it out again.  In these situations we know that no other
 304 * bio may be in the cell.  This function releases the cell, and also does
 305 * a sanity check.
 306 */
 307static void __cell_release_singleton(struct dm_bio_prison_cell *cell, struct bio *bio)
 308{
 309	BUG_ON(cell->holder != bio);
 310	BUG_ON(!bio_list_empty(&cell->bios));
 311
 312	__cell_release(cell, NULL);
 313}
 314
 315static void cell_release_singleton(struct dm_bio_prison_cell *cell, struct bio *bio)
 316{
 317	unsigned long flags;
 318	struct bio_prison *prison = cell->prison;
 319
 320	spin_lock_irqsave(&prison->lock, flags);
 321	__cell_release_singleton(cell, bio);
 322	spin_unlock_irqrestore(&prison->lock, flags);
 323}
 324
 325/*
 326 * Sometimes we don't want the holder, just the additional bios.
 327 */
 328static void __cell_release_no_holder(struct dm_bio_prison_cell *cell,
 329				     struct bio_list *inmates)
 330{
 331	struct bio_prison *prison = cell->prison;
 332
 333	hlist_del(&cell->list);
 334	bio_list_merge(inmates, &cell->bios);
 335
 336	mempool_free(cell, prison->cell_pool);
 337}
 338
 339static void cell_release_no_holder(struct dm_bio_prison_cell *cell,
 340				   struct bio_list *inmates)
 341{
 342	unsigned long flags;
 343	struct bio_prison *prison = cell->prison;
 344
 345	spin_lock_irqsave(&prison->lock, flags);
 346	__cell_release_no_holder(cell, inmates);
 347	spin_unlock_irqrestore(&prison->lock, flags);
 348}
 349
 350static void cell_error(struct dm_bio_prison_cell *cell)
 351{
 352	struct bio_prison *prison = cell->prison;
 353	struct bio_list bios;
 354	struct bio *bio;
 355	unsigned long flags;
 
 
 
 
 
 356
 357	bio_list_init(&bios);
 
 
 
 
 
 358
 359	spin_lock_irqsave(&prison->lock, flags);
 360	__cell_release(cell, &bios);
 361	spin_unlock_irqrestore(&prison->lock, flags);
 
 
 362
 363	while ((bio = bio_list_pop(&bios)))
 364		bio_io_error(bio);
 365}
 
 
 
 
 
 366
 367/*----------------------------------------------------------------*/
 
 
 
 368
 369/*
 370 * We use the deferred set to keep track of pending reads to shared blocks.
 371 * We do this to ensure the new mapping caused by a write isn't performed
 372 * until these prior reads have completed.  Otherwise the insertion of the
 373 * new mapping could free the old block that the read bios are mapped to.
 374 */
 
 
 
 
 
 
 375
 376struct deferred_set;
 377struct deferred_entry {
 378	struct deferred_set *ds;
 379	unsigned count;
 380	struct list_head work_items;
 381};
 382
 383struct deferred_set {
 384	spinlock_t lock;
 385	unsigned current_entry;
 386	unsigned sweeper;
 387	struct deferred_entry entries[DEFERRED_SET_SIZE];
 
 
 
 
 
 
 
 
 388};
 389
 390static void ds_init(struct deferred_set *ds)
 
 
 391{
 392	int i;
 393
 394	spin_lock_init(&ds->lock);
 395	ds->current_entry = 0;
 396	ds->sweeper = 0;
 397	for (i = 0; i < DEFERRED_SET_SIZE; i++) {
 398		ds->entries[i].ds = ds;
 399		ds->entries[i].count = 0;
 400		INIT_LIST_HEAD(&ds->entries[i].work_items);
 401	}
 402}
 403
 404static struct deferred_entry *ds_inc(struct deferred_set *ds)
 405{
 406	unsigned long flags;
 407	struct deferred_entry *entry;
 
 
 408
 409	spin_lock_irqsave(&ds->lock, flags);
 410	entry = ds->entries + ds->current_entry;
 411	entry->count++;
 412	spin_unlock_irqrestore(&ds->lock, flags);
 413
 414	return entry;
 415}
 416
 417static unsigned ds_next(unsigned index)
 418{
 419	return (index + 1) % DEFERRED_SET_SIZE;
 420}
 421
 422static void __sweep(struct deferred_set *ds, struct list_head *head)
 423{
 424	while ((ds->sweeper != ds->current_entry) &&
 425	       !ds->entries[ds->sweeper].count) {
 426		list_splice_init(&ds->entries[ds->sweeper].work_items, head);
 427		ds->sweeper = ds_next(ds->sweeper);
 428	}
 429
 430	if ((ds->sweeper == ds->current_entry) && !ds->entries[ds->sweeper].count)
 431		list_splice_init(&ds->entries[ds->sweeper].work_items, head);
 
 
 432}
 433
 434static void ds_dec(struct deferred_entry *entry, struct list_head *head)
 435{
 436	unsigned long flags;
 
 
 437
 438	spin_lock_irqsave(&entry->ds->lock, flags);
 439	BUG_ON(!entry->count);
 440	--entry->count;
 441	__sweep(entry->ds, head);
 442	spin_unlock_irqrestore(&entry->ds->lock, flags);
 443}
 444
 445/*
 446 * Returns 1 if deferred or 0 if no pending items to delay job.
 447 */
 448static int ds_add_work(struct deferred_set *ds, struct list_head *work)
 449{
 450	int r = 1;
 451	unsigned long flags;
 452	unsigned next_entry;
 
 
 
 
 
 
 453
 454	spin_lock_irqsave(&ds->lock, flags);
 455	if ((ds->sweeper == ds->current_entry) &&
 456	    !ds->entries[ds->current_entry].count)
 457		r = 0;
 458	else {
 459		list_add(work, &ds->entries[ds->current_entry].work_items);
 460		next_entry = ds_next(ds->current_entry);
 461		if (!ds->entries[next_entry].count)
 462			ds->current_entry = next_entry;
 463	}
 464	spin_unlock_irqrestore(&ds->lock, flags);
 465
 466	return r;
 
 
 
 
 
 
 467}
 468
 469/*----------------------------------------------------------------*/
 470
 471/*
 472 * Key building.
 
 473 */
 474static void build_data_key(struct dm_thin_device *td,
 475			   dm_block_t b, struct cell_key *key)
 476{
 477	key->virtual = 0;
 478	key->dev = dm_thin_dev_id(td);
 479	key->block = b;
 480}
 481
 482static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
 483			      struct cell_key *key)
 484{
 485	key->virtual = 1;
 486	key->dev = dm_thin_dev_id(td);
 487	key->block = b;
 488}
 489
 490/*----------------------------------------------------------------*/
 491
 492/*
 493 * A pool device ties together a metadata device and a data device.  It
 494 * also provides the interface for creating and destroying internal
 495 * devices.
 496 */
 497struct dm_thin_new_mapping;
 498
 499struct pool_features {
 500	unsigned zero_new_blocks:1;
 501	unsigned discard_enabled:1;
 502	unsigned discard_passdown:1;
 503};
 504
 505struct pool {
 506	struct list_head list;
 507	struct dm_target *ti;	/* Only set if a pool target is bound */
 
 
 
 
 508
 509	struct mapped_device *pool_md;
 510	struct block_device *md_dev;
 511	struct dm_pool_metadata *pmd;
 512
 513	uint32_t sectors_per_block;
 514	unsigned block_shift;
 515	dm_block_t offset_mask;
 516	dm_block_t low_water_blocks;
 
 
 
 517
 518	struct pool_features pf;
 519	unsigned low_water_triggered:1;	/* A dm event has been sent */
 520	unsigned no_free_space:1;	/* A -ENOSPC warning has been issued */
 
 
 
 
 
 521
 522	struct bio_prison *prison;
 523	struct dm_kcopyd_client *copier;
 
 
 
 
 
 524
 525	struct workqueue_struct *wq;
 526	struct work_struct worker;
 527	struct delayed_work waker;
 
 
 
 528
 529	unsigned ref_count;
 530	unsigned long last_commit_jiffies;
 
 
 531
 532	spinlock_t lock;
 533	struct bio_list deferred_bios;
 534	struct bio_list deferred_flush_bios;
 535	struct list_head prepared_mappings;
 536	struct list_head prepared_discards;
 537
 538	struct bio_list retry_on_resume_list;
 
 
 
 539
 540	struct deferred_set shared_read_ds;
 541	struct deferred_set all_io_ds;
 542
 543	struct dm_thin_new_mapping *next_mapping;
 544	mempool_t *mapping_pool;
 545	mempool_t *endio_hook_pool;
 546};
 547
 548/*
 549 * Target context for a pool.
 550 */
 551struct pool_c {
 552	struct dm_target *ti;
 553	struct pool *pool;
 554	struct dm_dev *data_dev;
 555	struct dm_dev *metadata_dev;
 556	struct dm_target_callbacks callbacks;
 557
 558	dm_block_t low_water_blocks;
 559	struct pool_features pf;
 560};
 561
 562/*
 563 * Target context for a thin.
 564 */
 565struct thin_c {
 566	struct dm_dev *pool_dev;
 567	struct dm_dev *origin_dev;
 568	dm_thin_id dev_id;
 569
 570	struct pool *pool;
 571	struct dm_thin_device *td;
 572};
 573
 574/*----------------------------------------------------------------*/
 575
 576/*
 577 * A global list of pools that uses a struct mapped_device as a key.
 578 */
 579static struct dm_thin_pool_table {
 580	struct mutex mutex;
 581	struct list_head pools;
 582} dm_thin_pool_table;
 583
 584static void pool_table_init(void)
 585{
 586	mutex_init(&dm_thin_pool_table.mutex);
 587	INIT_LIST_HEAD(&dm_thin_pool_table.pools);
 588}
 589
 
 
 
 
 
 590static void __pool_table_insert(struct pool *pool)
 591{
 592	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 593	list_add(&pool->list, &dm_thin_pool_table.pools);
 594}
 595
 596static void __pool_table_remove(struct pool *pool)
 597{
 598	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 599	list_del(&pool->list);
 600}
 601
 602static struct pool *__pool_table_lookup(struct mapped_device *md)
 603{
 604	struct pool *pool = NULL, *tmp;
 605
 606	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 607
 608	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
 609		if (tmp->pool_md == md) {
 610			pool = tmp;
 611			break;
 612		}
 613	}
 614
 615	return pool;
 616}
 617
 618static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
 619{
 620	struct pool *pool = NULL, *tmp;
 621
 622	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 623
 624	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
 625		if (tmp->md_dev == md_dev) {
 626			pool = tmp;
 627			break;
 628		}
 629	}
 630
 631	return pool;
 632}
 633
 634/*----------------------------------------------------------------*/
 635
 636struct dm_thin_endio_hook {
 637	struct thin_c *tc;
 638	struct deferred_entry *shared_read_entry;
 639	struct deferred_entry *all_io_entry;
 640	struct dm_thin_new_mapping *overwrite_mapping;
 
 
 641};
 642
 643static void __requeue_bio_list(struct thin_c *tc, struct bio_list *master)
 
 
 
 
 
 
 644{
 645	struct bio *bio;
 
 
 
 
 
 
 
 
 
 
 646	struct bio_list bios;
 647
 648	bio_list_init(&bios);
 649	bio_list_merge(&bios, master);
 650	bio_list_init(master);
 651
 652	while ((bio = bio_list_pop(&bios))) {
 653		struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 654
 655		if (h->tc == tc)
 656			bio_endio(bio, DM_ENDIO_REQUEUE);
 657		else
 658			bio_list_add(master, bio);
 659	}
 660}
 661
 662static void requeue_io(struct thin_c *tc)
 663{
 664	struct pool *pool = tc->pool;
 665	unsigned long flags;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 666
 667	spin_lock_irqsave(&pool->lock, flags);
 668	__requeue_bio_list(tc, &pool->deferred_bios);
 669	__requeue_bio_list(tc, &pool->retry_on_resume_list);
 670	spin_unlock_irqrestore(&pool->lock, flags);
 671}
 672
 673/*
 674 * This section of code contains the logic for processing a thin device's IO.
 675 * Much of the code depends on pool object resources (lists, workqueues, etc)
 676 * but most is exclusively called from the thin target rather than the thin-pool
 677 * target.
 678 */
 679
 680static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
 681{
 682	return bio->bi_sector >> tc->pool->block_shift;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 683}
 684
 685static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
 686{
 687	struct pool *pool = tc->pool;
 
 688
 689	bio->bi_bdev = tc->pool_dev->bdev;
 690	bio->bi_sector = (block << pool->block_shift) +
 691		(bio->bi_sector & pool->offset_mask);
 
 
 
 
 
 692}
 693
 694static void remap_to_origin(struct thin_c *tc, struct bio *bio)
 695{
 696	bio->bi_bdev = tc->origin_dev->bdev;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 697}
 698
 699static void issue(struct thin_c *tc, struct bio *bio)
 700{
 701	struct pool *pool = tc->pool;
 702	unsigned long flags;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 703
 704	/*
 705	 * Batch together any FUA/FLUSH bios we find and then issue
 706	 * a single commit for them in process_deferred_bios().
 707	 */
 708	if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
 709		spin_lock_irqsave(&pool->lock, flags);
 710		bio_list_add(&pool->deferred_flush_bios, bio);
 711		spin_unlock_irqrestore(&pool->lock, flags);
 712	} else
 713		generic_make_request(bio);
 714}
 715
 716static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
 717{
 718	remap_to_origin(tc, bio);
 719	issue(tc, bio);
 720}
 721
 722static void remap_and_issue(struct thin_c *tc, struct bio *bio,
 723			    dm_block_t block)
 724{
 725	remap(tc, bio, block);
 726	issue(tc, bio);
 727}
 728
 729/*
 730 * wake_worker() is used when new work is queued and when pool_resume is
 731 * ready to continue deferred IO processing.
 732 */
 733static void wake_worker(struct pool *pool)
 734{
 735	queue_work(pool->wq, &pool->worker);
 736}
 737
 738/*----------------------------------------------------------------*/
 739
 740/*
 741 * Bio endio functions.
 742 */
 743struct dm_thin_new_mapping {
 744	struct list_head list;
 745
 746	unsigned quiesced:1;
 747	unsigned prepared:1;
 748	unsigned pass_discard:1;
 
 
 
 
 
 
 749
 
 750	struct thin_c *tc;
 751	dm_block_t virt_block;
 752	dm_block_t data_block;
 753	struct dm_bio_prison_cell *cell, *cell2;
 754	int err;
 755
 756	/*
 757	 * If the bio covers the whole area of a block then we can avoid
 758	 * zeroing or copying.  Instead this bio is hooked.  The bio will
 759	 * still be in the cell, so care has to be taken to avoid issuing
 760	 * the bio twice.
 761	 */
 762	struct bio *bio;
 763	bio_end_io_t *saved_bi_end_io;
 764};
 765
 766static void __maybe_add_mapping(struct dm_thin_new_mapping *m)
 767{
 768	struct pool *pool = m->tc->pool;
 769
 770	if (m->quiesced && m->prepared) {
 771		list_add(&m->list, &pool->prepared_mappings);
 772		wake_worker(pool);
 773	}
 774}
 775
 776static void copy_complete(int read_err, unsigned long write_err, void *context)
 777{
 778	unsigned long flags;
 779	struct dm_thin_new_mapping *m = context;
 780	struct pool *pool = m->tc->pool;
 781
 782	m->err = read_err || write_err ? -EIO : 0;
 783
 784	spin_lock_irqsave(&pool->lock, flags);
 785	m->prepared = 1;
 786	__maybe_add_mapping(m);
 787	spin_unlock_irqrestore(&pool->lock, flags);
 788}
 789
 790static void overwrite_endio(struct bio *bio, int err)
 
 
 
 
 
 
 
 
 791{
 792	unsigned long flags;
 793	struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
 794	struct dm_thin_new_mapping *m = h->overwrite_mapping;
 795	struct pool *pool = m->tc->pool;
 796
 797	m->err = err;
 798
 799	spin_lock_irqsave(&pool->lock, flags);
 800	m->prepared = 1;
 801	__maybe_add_mapping(m);
 802	spin_unlock_irqrestore(&pool->lock, flags);
 803}
 804
 805/*----------------------------------------------------------------*/
 806
 807/*
 808 * Workqueue.
 809 */
 810
 811/*
 812 * Prepared mapping jobs.
 813 */
 814
 815/*
 816 * This sends the bios in the cell back to the deferred_bios list.
 
 817 */
 818static void cell_defer(struct thin_c *tc, struct dm_bio_prison_cell *cell,
 819		       dm_block_t data_block)
 820{
 821	struct pool *pool = tc->pool;
 822	unsigned long flags;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 823
 824	spin_lock_irqsave(&pool->lock, flags);
 825	cell_release(cell, &pool->deferred_bios);
 826	spin_unlock_irqrestore(&tc->pool->lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 827
 828	wake_worker(pool);
 
 
 
 
 829}
 830
 831/*
 832 * Same as cell_defer above, except it omits one particular detainee,
 833 * a write bio that covers the block and has already been processed.
 834 */
 835static void cell_defer_except(struct thin_c *tc, struct dm_bio_prison_cell *cell)
 836{
 837	struct bio_list bios;
 838	struct pool *pool = tc->pool;
 839	unsigned long flags;
 840
 841	bio_list_init(&bios);
 
 
 
 
 
 
 
 842
 843	spin_lock_irqsave(&pool->lock, flags);
 844	cell_release_no_holder(cell, &pool->deferred_bios);
 845	spin_unlock_irqrestore(&pool->lock, flags);
 
 
 
 
 
 
 846
 847	wake_worker(pool);
 
 
 
 
 
 
 848}
 849
 850static void process_prepared_mapping(struct dm_thin_new_mapping *m)
 851{
 852	struct thin_c *tc = m->tc;
 853	struct bio *bio;
 
 854	int r;
 855
 856	bio = m->bio;
 857	if (bio)
 858		bio->bi_end_io = m->saved_bi_end_io;
 859
 860	if (m->err) {
 861		cell_error(m->cell);
 862		goto out;
 863	}
 864
 865	/*
 866	 * Commit the prepared block into the mapping btree.
 867	 * Any I/O for this block arriving after this point will get
 868	 * remapped to it directly.
 869	 */
 870	r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
 871	if (r) {
 872		DMERR("dm_thin_insert_block() failed");
 873		cell_error(m->cell);
 874		goto out;
 875	}
 876
 877	/*
 878	 * Release any bios held while the block was being provisioned.
 879	 * If we are processing a write bio that completely covers the block,
 880	 * we already processed it so can ignore it now when processing
 881	 * the bios in the cell.
 882	 */
 883	if (bio) {
 884		cell_defer_except(tc, m->cell);
 885		bio_endio(bio, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 886	} else
 887		cell_defer(tc, m->cell, m->data_block);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 888
 
 
 889out:
 890	list_del(&m->list);
 891	mempool_free(m, tc->pool->mapping_pool);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 892}
 893
 894static void process_prepared_discard(struct dm_thin_new_mapping *m)
 895{
 896	int r;
 897	struct thin_c *tc = m->tc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 898
 899	r = dm_thin_remove_block(tc->td, m->virt_block);
 900	if (r)
 901		DMERR("dm_thin_remove_block() failed");
 
 
 902
 903	/*
 904	 * Pass the discard down to the underlying device?
 
 905	 */
 906	if (m->pass_discard)
 907		remap_and_issue(tc, m->bio, m->data_block);
 908	else
 909		bio_endio(m->bio, 0);
 
 
 
 910
 911	cell_defer_except(tc, m->cell);
 912	cell_defer_except(tc, m->cell2);
 913	mempool_free(m, tc->pool->mapping_pool);
 914}
 915
 916static void process_prepared(struct pool *pool, struct list_head *head,
 917			     void (*fn)(struct dm_thin_new_mapping *))
 918{
 919	unsigned long flags;
 920	struct list_head maps;
 921	struct dm_thin_new_mapping *m, *tmp;
 922
 923	INIT_LIST_HEAD(&maps);
 924	spin_lock_irqsave(&pool->lock, flags);
 925	list_splice_init(head, &maps);
 926	spin_unlock_irqrestore(&pool->lock, flags);
 927
 928	list_for_each_entry_safe(m, tmp, &maps, list)
 929		fn(m);
 930}
 931
 932/*
 933 * Deferred bio jobs.
 934 */
 935static int io_overlaps_block(struct pool *pool, struct bio *bio)
 936{
 937	return !(bio->bi_sector & pool->offset_mask) &&
 938		(bio->bi_size == (pool->sectors_per_block << SECTOR_SHIFT));
 939
 940}
 941
 942static int io_overwrites_block(struct pool *pool, struct bio *bio)
 943{
 944	return (bio_data_dir(bio) == WRITE) &&
 945		io_overlaps_block(pool, bio);
 946}
 947
 948static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
 949			       bio_end_io_t *fn)
 950{
 951	*save = bio->bi_end_io;
 952	bio->bi_end_io = fn;
 953}
 954
 955static int ensure_next_mapping(struct pool *pool)
 956{
 957	if (pool->next_mapping)
 958		return 0;
 959
 960	pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
 961
 962	return pool->next_mapping ? 0 : -ENOMEM;
 963}
 964
 965static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
 966{
 967	struct dm_thin_new_mapping *r = pool->next_mapping;
 968
 969	BUG_ON(!pool->next_mapping);
 970
 
 
 
 
 971	pool->next_mapping = NULL;
 972
 973	return r;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 974}
 975
 
 
 
 976static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
 977			  struct dm_dev *origin, dm_block_t data_origin,
 978			  dm_block_t data_dest,
 979			  struct dm_bio_prison_cell *cell, struct bio *bio)
 
 980{
 981	int r;
 982	struct pool *pool = tc->pool;
 983	struct dm_thin_new_mapping *m = get_next_mapping(pool);
 984
 985	INIT_LIST_HEAD(&m->list);
 986	m->quiesced = 0;
 987	m->prepared = 0;
 988	m->tc = tc;
 989	m->virt_block = virt_block;
 
 990	m->data_block = data_dest;
 991	m->cell = cell;
 992	m->err = 0;
 993	m->bio = NULL;
 994
 995	if (!ds_add_work(&pool->shared_read_ds, &m->list))
 996		m->quiesced = 1;
 
 
 
 
 
 
 
 997
 998	/*
 999	 * IO to pool_dev remaps to the pool target's data_dev.
1000	 *
1001	 * If the whole block of data is being overwritten, we can issue the
1002	 * bio immediately. Otherwise we use kcopyd to clone the data first.
1003	 */
1004	if (io_overwrites_block(pool, bio)) {
1005		struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
1006
1007		h->overwrite_mapping = m;
1008		m->bio = bio;
1009		save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1010		remap_and_issue(tc, bio, data_dest);
1011	} else {
1012		struct dm_io_region from, to;
1013
1014		from.bdev = origin->bdev;
1015		from.sector = data_origin * pool->sectors_per_block;
1016		from.count = pool->sectors_per_block;
1017
1018		to.bdev = tc->pool_dev->bdev;
1019		to.sector = data_dest * pool->sectors_per_block;
1020		to.count = pool->sectors_per_block;
 
 
 
1021
1022		r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
1023				   0, copy_complete, m);
1024		if (r < 0) {
1025			mempool_free(m, pool->mapping_pool);
1026			DMERR("dm_kcopyd_copy() failed");
1027			cell_error(cell);
 
 
1028		}
1029	}
 
 
1030}
1031
1032static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1033				   dm_block_t data_origin, dm_block_t data_dest,
1034				   struct dm_bio_prison_cell *cell, struct bio *bio)
1035{
1036	schedule_copy(tc, virt_block, tc->pool_dev,
1037		      data_origin, data_dest, cell, bio);
1038}
1039
1040static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1041				   dm_block_t data_dest,
1042				   struct dm_bio_prison_cell *cell, struct bio *bio)
1043{
1044	schedule_copy(tc, virt_block, tc->origin_dev,
1045		      virt_block, data_dest, cell, bio);
1046}
1047
1048static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1049			  dm_block_t data_block, struct dm_bio_prison_cell *cell,
1050			  struct bio *bio)
1051{
1052	struct pool *pool = tc->pool;
1053	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1054
1055	INIT_LIST_HEAD(&m->list);
1056	m->quiesced = 1;
1057	m->prepared = 0;
1058	m->tc = tc;
1059	m->virt_block = virt_block;
 
1060	m->data_block = data_block;
1061	m->cell = cell;
1062	m->err = 0;
1063	m->bio = NULL;
1064
1065	/*
1066	 * If the whole block of data is being overwritten or we are not
1067	 * zeroing pre-existing data, we can issue the bio immediately.
1068	 * Otherwise we use kcopyd to zero the data first.
1069	 */
1070	if (!pool->pf.zero_new_blocks)
 
 
 
 
 
 
1071		process_prepared_mapping(m);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1072
1073	else if (io_overwrites_block(pool, bio)) {
1074		struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
1075
1076		h->overwrite_mapping = m;
1077		m->bio = bio;
1078		save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1079		remap_and_issue(tc, bio, data_block);
1080	} else {
1081		int r;
1082		struct dm_io_region to;
1083
1084		to.bdev = tc->pool_dev->bdev;
1085		to.sector = data_block * pool->sectors_per_block;
1086		to.count = pool->sectors_per_block;
1087
1088		r = dm_kcopyd_zero(pool->copier, 1, &to, 0, copy_complete, m);
1089		if (r < 0) {
1090			mempool_free(m, pool->mapping_pool);
1091			DMERR("dm_kcopyd_zero() failed");
1092			cell_error(cell);
1093		}
 
 
 
1094	}
1095}
1096
1097static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1098{
1099	int r;
1100	dm_block_t free_blocks;
1101	unsigned long flags;
1102	struct pool *pool = tc->pool;
1103
 
 
 
1104	r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1105	if (r)
 
1106		return r;
 
1107
1108	if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1109		DMWARN("%s: reached low water mark, sending event.",
1110		       dm_device_name(pool->pool_md));
1111		spin_lock_irqsave(&pool->lock, flags);
1112		pool->low_water_triggered = 1;
1113		spin_unlock_irqrestore(&pool->lock, flags);
1114		dm_table_event(pool->ti->table);
1115	}
1116
1117	if (!free_blocks) {
1118		if (pool->no_free_space)
1119			return -ENOSPC;
1120		else {
1121			/*
1122			 * Try to commit to see if that will free up some
1123			 * more space.
1124			 */
1125			r = dm_pool_commit_metadata(pool->pmd);
1126			if (r) {
1127				DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
1128				      __func__, r);
1129				return r;
1130			}
1131
1132			r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1133			if (r)
1134				return r;
 
 
1135
1136			/*
1137			 * If we still have no space we set a flag to avoid
1138			 * doing all this checking and return -ENOSPC.
1139			 */
1140			if (!free_blocks) {
1141				DMWARN("%s: no free space available.",
1142				       dm_device_name(pool->pool_md));
1143				spin_lock_irqsave(&pool->lock, flags);
1144				pool->no_free_space = 1;
1145				spin_unlock_irqrestore(&pool->lock, flags);
1146				return -ENOSPC;
1147			}
1148		}
1149	}
1150
1151	r = dm_pool_alloc_data_block(pool->pmd, result);
1152	if (r)
 
 
 
 
 
 
 
 
 
 
1153		return r;
 
 
 
 
 
 
 
 
1154
1155	return 0;
1156}
1157
1158/*
1159 * If we have run out of space, queue bios until the device is
1160 * resumed, presumably after having been reloaded with more space.
1161 */
1162static void retry_on_resume(struct bio *bio)
1163{
1164	struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
1165	struct thin_c *tc = h->tc;
1166	struct pool *pool = tc->pool;
1167	unsigned long flags;
1168
1169	spin_lock_irqsave(&pool->lock, flags);
1170	bio_list_add(&pool->retry_on_resume_list, bio);
1171	spin_unlock_irqrestore(&pool->lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1172}
1173
1174static void no_space(struct dm_bio_prison_cell *cell)
1175{
1176	struct bio *bio;
1177	struct bio_list bios;
 
 
 
 
 
 
 
1178
1179	bio_list_init(&bios);
1180	cell_release(cell, &bios);
1181
1182	while ((bio = bio_list_pop(&bios)))
1183		retry_on_resume(bio);
1184}
1185
1186static void process_discard(struct thin_c *tc, struct bio *bio)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1187{
 
 
1188	int r;
1189	unsigned long flags;
1190	struct pool *pool = tc->pool;
1191	struct dm_bio_prison_cell *cell, *cell2;
1192	struct cell_key key, key2;
1193	dm_block_t block = get_bio_block(tc, bio);
1194	struct dm_thin_lookup_result lookup_result;
1195	struct dm_thin_new_mapping *m;
 
1196
1197	build_virtual_key(tc->td, block, &key);
1198	if (bio_detain(tc->pool->prison, &key, bio, &cell))
1199		return;
 
 
1200
1201	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1202	switch (r) {
1203	case 0:
1204		/*
1205		 * Check nobody is fiddling with this pool block.  This can
1206		 * happen if someone's in the process of breaking sharing
1207		 * on this block.
1208		 */
1209		build_data_key(tc->td, lookup_result.block, &key2);
1210		if (bio_detain(tc->pool->prison, &key2, bio, &cell2)) {
1211			cell_release_singleton(cell, bio);
1212			break;
 
 
 
 
 
 
1213		}
1214
1215		if (io_overlaps_block(pool, bio)) {
1216			/*
1217			 * IO may still be going to the destination block.  We must
1218			 * quiesce before we can do the removal.
1219			 */
1220			m = get_next_mapping(pool);
1221			m->tc = tc;
1222			m->pass_discard = (!lookup_result.shared) & pool->pf.discard_passdown;
1223			m->virt_block = block;
1224			m->data_block = lookup_result.block;
1225			m->cell = cell;
1226			m->cell2 = cell2;
1227			m->err = 0;
1228			m->bio = bio;
1229
1230			if (!ds_add_work(&pool->all_io_ds, &m->list)) {
1231				spin_lock_irqsave(&pool->lock, flags);
1232				list_add(&m->list, &pool->prepared_discards);
1233				spin_unlock_irqrestore(&pool->lock, flags);
1234				wake_worker(pool);
1235			}
1236		} else {
1237			/*
1238			 * This path is hit if people are ignoring
1239			 * limits->discard_granularity.  It ignores any
1240			 * part of the discard that is in a subsequent
1241			 * block.
1242			 */
1243			sector_t offset = bio->bi_sector - (block << pool->block_shift);
1244			unsigned remaining = (pool->sectors_per_block - offset) << 9;
1245			bio->bi_size = min(bio->bi_size, remaining);
1246
1247			cell_release_singleton(cell, bio);
1248			cell_release_singleton(cell2, bio);
1249			if ((!lookup_result.shared) && pool->pf.discard_passdown)
1250				remap_and_issue(tc, bio, lookup_result.block);
1251			else
1252				bio_endio(bio, 0);
1253		}
1254		break;
1255
1256	case -ENODATA:
1257		/*
1258		 * It isn't provisioned, just forget it.
 
 
 
 
 
1259		 */
1260		cell_release_singleton(cell, bio);
1261		bio_endio(bio, 0);
1262		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1263
1264	default:
1265		DMERR("discard: find block unexpectedly returned %d", r);
1266		cell_release_singleton(cell, bio);
1267		bio_io_error(bio);
1268		break;
 
 
1269	}
 
 
 
 
 
 
 
 
 
 
 
 
 
1270}
1271
1272static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1273			  struct cell_key *key,
1274			  struct dm_thin_lookup_result *lookup_result,
1275			  struct dm_bio_prison_cell *cell)
1276{
1277	int r;
1278	dm_block_t data_block;
 
1279
1280	r = alloc_data_block(tc, &data_block);
1281	switch (r) {
1282	case 0:
1283		schedule_internal_copy(tc, block, lookup_result->block,
1284				       data_block, cell, bio);
1285		break;
1286
1287	case -ENOSPC:
1288		no_space(cell);
1289		break;
1290
1291	default:
1292		DMERR("%s: alloc_data_block() failed, error = %d", __func__, r);
1293		cell_error(cell);
 
1294		break;
1295	}
1296}
1297
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1298static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1299			       dm_block_t block,
1300			       struct dm_thin_lookup_result *lookup_result)
 
1301{
1302	struct dm_bio_prison_cell *cell;
1303	struct pool *pool = tc->pool;
1304	struct cell_key key;
1305
1306	/*
1307	 * If cell is already occupied, then sharing is already in the process
1308	 * of being broken so we have nothing further to do here.
1309	 */
1310	build_data_key(tc->td, lookup_result->block, &key);
1311	if (bio_detain(pool->prison, &key, bio, &cell))
 
1312		return;
 
1313
1314	if (bio_data_dir(bio) == WRITE)
1315		break_sharing(tc, bio, block, &key, lookup_result, cell);
1316	else {
1317		struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
 
1318
1319		h->shared_read_entry = ds_inc(&pool->shared_read_ds);
 
 
1320
1321		cell_release_singleton(cell, bio);
1322		remap_and_issue(tc, bio, lookup_result->block);
1323	}
1324}
1325
1326static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1327			    struct dm_bio_prison_cell *cell)
1328{
1329	int r;
1330	dm_block_t data_block;
 
1331
1332	/*
1333	 * Remap empty bios (flushes) immediately, without provisioning.
1334	 */
1335	if (!bio->bi_size) {
1336		cell_release_singleton(cell, bio);
 
 
1337		remap_and_issue(tc, bio, 0);
1338		return;
1339	}
1340
1341	/*
1342	 * Fill read bios with zeroes and complete them immediately.
1343	 */
1344	if (bio_data_dir(bio) == READ) {
1345		zero_fill_bio(bio);
1346		cell_release_singleton(cell, bio);
1347		bio_endio(bio, 0);
1348		return;
1349	}
1350
1351	r = alloc_data_block(tc, &data_block);
1352	switch (r) {
1353	case 0:
1354		if (tc->origin_dev)
1355			schedule_external_copy(tc, block, data_block, cell, bio);
1356		else
1357			schedule_zero(tc, block, data_block, cell, bio);
1358		break;
1359
1360	case -ENOSPC:
1361		no_space(cell);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1362		break;
1363
1364	default:
1365		DMERR("%s: alloc_data_block() failed, error = %d", __func__, r);
1366		cell_error(cell);
 
 
1367		break;
1368	}
1369}
1370
1371static void process_bio(struct thin_c *tc, struct bio *bio)
1372{
1373	int r;
1374	dm_block_t block = get_bio_block(tc, bio);
1375	struct dm_bio_prison_cell *cell;
1376	struct cell_key key;
1377	struct dm_thin_lookup_result lookup_result;
1378
1379	/*
1380	 * If cell is already occupied, then the block is already
1381	 * being provisioned so we have nothing further to do here.
1382	 */
1383	build_virtual_key(tc->td, block, &key);
1384	if (bio_detain(tc->pool->prison, &key, bio, &cell))
1385		return;
1386
 
 
 
 
 
 
 
 
 
 
 
1387	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1388	switch (r) {
1389	case 0:
1390		/*
1391		 * We can release this cell now.  This thread is the only
1392		 * one that puts bios into a cell, and we know there were
1393		 * no preceding bios.
1394		 */
1395		/*
1396		 * TODO: this will probably have to change when discard goes
1397		 * back in.
1398		 */
1399		cell_release_singleton(cell, bio);
1400
1401		if (lookup_result.shared)
1402			process_shared_bio(tc, bio, block, &lookup_result);
1403		else
1404			remap_and_issue(tc, bio, lookup_result.block);
 
 
 
1405		break;
1406
1407	case -ENODATA:
1408		if (bio_data_dir(bio) == READ && tc->origin_dev) {
1409			cell_release_singleton(cell, bio);
 
 
 
 
 
 
 
1410			remap_to_origin_and_issue(tc, bio);
1411		} else
1412			provision_block(tc, bio, block, cell);
 
 
 
1413		break;
1414
1415	default:
1416		DMERR("dm_thin_find_block() failed, error = %d", r);
1417		cell_release_singleton(cell, bio);
 
 
1418		bio_io_error(bio);
1419		break;
1420	}
1421}
1422
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1423static int need_commit_due_to_time(struct pool *pool)
1424{
1425	return jiffies < pool->last_commit_jiffies ||
1426	       jiffies > pool->last_commit_jiffies + COMMIT_PERIOD;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1427}
1428
1429static void process_deferred_bios(struct pool *pool)
1430{
1431	unsigned long flags;
1432	struct bio *bio;
1433	struct bio_list bios;
1434	int r;
 
 
 
 
 
 
 
1435
1436	bio_list_init(&bios);
1437
1438	spin_lock_irqsave(&pool->lock, flags);
1439	bio_list_merge(&bios, &pool->deferred_bios);
1440	bio_list_init(&pool->deferred_bios);
1441	spin_unlock_irqrestore(&pool->lock, flags);
 
 
 
 
 
 
 
 
 
1442
 
1443	while ((bio = bio_list_pop(&bios))) {
1444		struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
1445		struct thin_c *tc = h->tc;
1446
1447		/*
1448		 * If we've got no free new_mapping structs, and processing
1449		 * this bio might require one, we pause until there are some
1450		 * prepared mappings to process.
1451		 */
1452		if (ensure_next_mapping(pool)) {
1453			spin_lock_irqsave(&pool->lock, flags);
1454			bio_list_merge(&pool->deferred_bios, &bios);
1455			spin_unlock_irqrestore(&pool->lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1456
 
 
1457			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1458		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1459
1460		if (bio->bi_rw & REQ_DISCARD)
1461			process_discard(tc, bio);
1462		else
1463			process_bio(tc, bio);
 
 
 
 
 
 
 
1464	}
1465
1466	/*
1467	 * If there are any deferred flush bios, we must commit
1468	 * the metadata before issuing them.
1469	 */
1470	bio_list_init(&bios);
1471	spin_lock_irqsave(&pool->lock, flags);
 
 
1472	bio_list_merge(&bios, &pool->deferred_flush_bios);
1473	bio_list_init(&pool->deferred_flush_bios);
1474	spin_unlock_irqrestore(&pool->lock, flags);
1475
1476	if (bio_list_empty(&bios) && !need_commit_due_to_time(pool))
 
 
 
 
 
1477		return;
1478
1479	r = dm_pool_commit_metadata(pool->pmd);
1480	if (r) {
1481		DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
1482		      __func__, r);
1483		while ((bio = bio_list_pop(&bios)))
1484			bio_io_error(bio);
1485		return;
1486	}
1487	pool->last_commit_jiffies = jiffies;
1488
1489	while ((bio = bio_list_pop(&bios)))
1490		generic_make_request(bio);
 
 
 
 
 
 
 
 
 
 
 
1491}
1492
1493static void do_worker(struct work_struct *ws)
1494{
1495	struct pool *pool = container_of(ws, struct pool, worker);
1496
1497	process_prepared(pool, &pool->prepared_mappings, process_prepared_mapping);
1498	process_prepared(pool, &pool->prepared_discards, process_prepared_discard);
 
 
 
 
 
 
 
1499	process_deferred_bios(pool);
 
1500}
1501
1502/*
1503 * We want to commit periodically so that not too much
1504 * unwritten data builds up.
1505 */
1506static void do_waker(struct work_struct *ws)
1507{
1508	struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
1509	wake_worker(pool);
1510	queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
1511}
1512
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1513/*----------------------------------------------------------------*/
1514
1515/*
1516 * Mapping functions.
1517 */
1518
1519/*
1520 * Called only while mapping a thin bio to hand it over to the workqueue.
1521 */
1522static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
1523{
1524	unsigned long flags;
1525	struct pool *pool = tc->pool;
1526
1527	spin_lock_irqsave(&pool->lock, flags);
1528	bio_list_add(&pool->deferred_bios, bio);
1529	spin_unlock_irqrestore(&pool->lock, flags);
1530
1531	wake_worker(pool);
1532}
1533
1534static struct dm_thin_endio_hook *thin_hook_bio(struct thin_c *tc, struct bio *bio)
 
 
 
 
 
 
 
 
 
1535{
1536	struct pool *pool = tc->pool;
1537	struct dm_thin_endio_hook *h = mempool_alloc(pool->endio_hook_pool, GFP_NOIO);
 
 
 
 
 
 
 
 
 
 
 
 
1538
1539	h->tc = tc;
1540	h->shared_read_entry = NULL;
1541	h->all_io_entry = bio->bi_rw & REQ_DISCARD ? NULL : ds_inc(&pool->all_io_ds);
1542	h->overwrite_mapping = NULL;
1543
1544	return h;
1545}
1546
1547/*
1548 * Non-blocking function called from the thin target's map function.
1549 */
1550static int thin_bio_map(struct dm_target *ti, struct bio *bio,
1551			union map_info *map_context)
1552{
1553	int r;
1554	struct thin_c *tc = ti->private;
1555	dm_block_t block = get_bio_block(tc, bio);
1556	struct dm_thin_device *td = tc->td;
1557	struct dm_thin_lookup_result result;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1558
1559	map_context->ptr = thin_hook_bio(tc, bio);
1560	if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
1561		thin_defer_bio(tc, bio);
1562		return DM_MAPIO_SUBMITTED;
1563	}
1564
 
 
 
 
 
 
 
 
1565	r = dm_thin_find_block(td, block, 0, &result);
1566
1567	/*
1568	 * Note that we defer readahead too.
1569	 */
1570	switch (r) {
1571	case 0:
1572		if (unlikely(result.shared)) {
1573			/*
1574			 * We have a race condition here between the
1575			 * result.shared value returned by the lookup and
1576			 * snapshot creation, which may cause new
1577			 * sharing.
1578			 *
1579			 * To avoid this always quiesce the origin before
1580			 * taking the snap.  You want to do this anyway to
1581			 * ensure a consistent application view
1582			 * (i.e. lockfs).
1583			 *
1584			 * More distant ancestors are irrelevant. The
1585			 * shared flag will be set in their case.
1586			 */
1587			thin_defer_bio(tc, bio);
1588			r = DM_MAPIO_SUBMITTED;
1589		} else {
1590			remap(tc, bio, result.block);
1591			r = DM_MAPIO_REMAPPED;
 
 
 
1592		}
1593		break;
 
 
 
 
 
 
1594
1595	case -ENODATA:
 
 
 
 
 
1596		/*
1597		 * In future, the failed dm_thin_find_block above could
1598		 * provide the hint to load the metadata into cache.
 
1599		 */
1600	case -EWOULDBLOCK:
1601		thin_defer_bio(tc, bio);
1602		r = DM_MAPIO_SUBMITTED;
1603		break;
1604	}
1605
1606	return r;
1607}
1608
1609static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
1610{
1611	int r;
1612	unsigned long flags;
1613	struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
1614
1615	spin_lock_irqsave(&pt->pool->lock, flags);
1616	r = !bio_list_empty(&pt->pool->retry_on_resume_list);
1617	spin_unlock_irqrestore(&pt->pool->lock, flags);
1618
1619	if (!r) {
1620		struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1621		r = bdi_congested(&q->backing_dev_info, bdi_bits);
1622	}
 
 
1623
1624	return r;
 
 
 
 
 
1625}
1626
1627static void __requeue_bios(struct pool *pool)
 
 
 
 
1628{
1629	bio_list_merge(&pool->deferred_bios, &pool->retry_on_resume_list);
1630	bio_list_init(&pool->retry_on_resume_list);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1631}
1632
1633/*----------------------------------------------------------------
1634 * Binding of control targets to a pool object
1635 *--------------------------------------------------------------*/
1636static int bind_control_target(struct pool *pool, struct dm_target *ti)
1637{
1638	struct pool_c *pt = ti->private;
1639
 
 
 
 
 
 
 
 
 
 
 
 
 
1640	pool->ti = ti;
 
1641	pool->low_water_blocks = pt->low_water_blocks;
1642	pool->pf = pt->pf;
1643
1644	/*
1645	 * If discard_passdown was enabled verify that the data device
1646	 * supports discards.  Disable discard_passdown if not; otherwise
1647	 * -EOPNOTSUPP will be returned.
1648	 */
1649	if (pt->pf.discard_passdown) {
1650		struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1651		if (!q || !blk_queue_discard(q)) {
1652			char buf[BDEVNAME_SIZE];
1653			DMWARN("Discard unsupported by data device (%s): Disabling discard passdown.",
1654			       bdevname(pt->data_dev->bdev, buf));
1655			pool->pf.discard_passdown = 0;
1656		}
1657	}
1658
1659	return 0;
1660}
1661
1662static void unbind_control_target(struct pool *pool, struct dm_target *ti)
1663{
1664	if (pool->ti == ti)
1665		pool->ti = NULL;
1666}
1667
1668/*----------------------------------------------------------------
1669 * Pool creation
1670 *--------------------------------------------------------------*/
1671/* Initialize pool features. */
1672static void pool_features_init(struct pool_features *pf)
1673{
1674	pf->zero_new_blocks = 1;
1675	pf->discard_enabled = 1;
1676	pf->discard_passdown = 1;
 
 
1677}
1678
1679static void __pool_destroy(struct pool *pool)
1680{
1681	__pool_table_remove(pool);
1682
 
1683	if (dm_pool_metadata_close(pool->pmd) < 0)
1684		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1685
1686	prison_destroy(pool->prison);
1687	dm_kcopyd_client_destroy(pool->copier);
1688
 
 
1689	if (pool->wq)
1690		destroy_workqueue(pool->wq);
1691
1692	if (pool->next_mapping)
1693		mempool_free(pool->next_mapping, pool->mapping_pool);
1694	mempool_destroy(pool->mapping_pool);
1695	mempool_destroy(pool->endio_hook_pool);
 
1696	kfree(pool);
1697}
1698
1699static struct kmem_cache *_new_mapping_cache;
1700static struct kmem_cache *_endio_hook_cache;
1701
1702static struct pool *pool_create(struct mapped_device *pool_md,
1703				struct block_device *metadata_dev,
1704				unsigned long block_size, char **error)
 
 
1705{
1706	int r;
1707	void *err_p;
1708	struct pool *pool;
1709	struct dm_pool_metadata *pmd;
 
1710
1711	pmd = dm_pool_metadata_open(metadata_dev, block_size);
1712	if (IS_ERR(pmd)) {
1713		*error = "Error creating metadata object";
1714		return (struct pool *)pmd;
1715	}
1716
1717	pool = kmalloc(sizeof(*pool), GFP_KERNEL);
1718	if (!pool) {
1719		*error = "Error allocating memory for pool";
1720		err_p = ERR_PTR(-ENOMEM);
1721		goto bad_pool;
1722	}
1723
1724	pool->pmd = pmd;
1725	pool->sectors_per_block = block_size;
1726	pool->block_shift = ffs(block_size) - 1;
1727	pool->offset_mask = block_size - 1;
 
 
1728	pool->low_water_blocks = 0;
1729	pool_features_init(&pool->pf);
1730	pool->prison = prison_create(PRISON_CELLS);
1731	if (!pool->prison) {
1732		*error = "Error creating pool's bio prison";
1733		err_p = ERR_PTR(-ENOMEM);
1734		goto bad_prison;
1735	}
1736
1737	pool->copier = dm_kcopyd_client_create();
1738	if (IS_ERR(pool->copier)) {
1739		r = PTR_ERR(pool->copier);
1740		*error = "Error creating pool's kcopyd client";
1741		err_p = ERR_PTR(r);
1742		goto bad_kcopyd_client;
1743	}
1744
1745	/*
1746	 * Create singlethreaded workqueue that will service all devices
1747	 * that use this metadata.
1748	 */
1749	pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
1750	if (!pool->wq) {
1751		*error = "Error creating pool's workqueue";
1752		err_p = ERR_PTR(-ENOMEM);
1753		goto bad_wq;
1754	}
1755
 
1756	INIT_WORK(&pool->worker, do_worker);
1757	INIT_DELAYED_WORK(&pool->waker, do_waker);
 
1758	spin_lock_init(&pool->lock);
1759	bio_list_init(&pool->deferred_bios);
1760	bio_list_init(&pool->deferred_flush_bios);
 
1761	INIT_LIST_HEAD(&pool->prepared_mappings);
1762	INIT_LIST_HEAD(&pool->prepared_discards);
1763	pool->low_water_triggered = 0;
1764	pool->no_free_space = 0;
1765	bio_list_init(&pool->retry_on_resume_list);
1766	ds_init(&pool->shared_read_ds);
1767	ds_init(&pool->all_io_ds);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1768
1769	pool->next_mapping = NULL;
1770	pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
1771						      _new_mapping_cache);
1772	if (!pool->mapping_pool) {
1773		*error = "Error creating pool's mapping mempool";
1774		err_p = ERR_PTR(-ENOMEM);
1775		goto bad_mapping_pool;
1776	}
1777
1778	pool->endio_hook_pool = mempool_create_slab_pool(ENDIO_HOOK_POOL_SIZE,
1779							 _endio_hook_cache);
1780	if (!pool->endio_hook_pool) {
1781		*error = "Error creating pool's endio_hook mempool";
 
1782		err_p = ERR_PTR(-ENOMEM);
1783		goto bad_endio_hook_pool;
1784	}
 
1785	pool->ref_count = 1;
1786	pool->last_commit_jiffies = jiffies;
1787	pool->pool_md = pool_md;
1788	pool->md_dev = metadata_dev;
 
1789	__pool_table_insert(pool);
1790
1791	return pool;
1792
1793bad_endio_hook_pool:
1794	mempool_destroy(pool->mapping_pool);
1795bad_mapping_pool:
 
 
 
 
1796	destroy_workqueue(pool->wq);
1797bad_wq:
1798	dm_kcopyd_client_destroy(pool->copier);
1799bad_kcopyd_client:
1800	prison_destroy(pool->prison);
1801bad_prison:
1802	kfree(pool);
1803bad_pool:
1804	if (dm_pool_metadata_close(pmd))
1805		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1806
1807	return err_p;
1808}
1809
1810static void __pool_inc(struct pool *pool)
1811{
1812	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
1813	pool->ref_count++;
1814}
1815
1816static void __pool_dec(struct pool *pool)
1817{
1818	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
1819	BUG_ON(!pool->ref_count);
1820	if (!--pool->ref_count)
1821		__pool_destroy(pool);
1822}
1823
1824static struct pool *__pool_find(struct mapped_device *pool_md,
1825				struct block_device *metadata_dev,
1826				unsigned long block_size, char **error,
1827				int *created)
 
1828{
1829	struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
1830
1831	if (pool) {
1832		if (pool->pool_md != pool_md)
 
 
 
 
 
1833			return ERR_PTR(-EBUSY);
 
1834		__pool_inc(pool);
1835
1836	} else {
1837		pool = __pool_table_lookup(pool_md);
1838		if (pool) {
1839			if (pool->md_dev != metadata_dev)
 
1840				return ERR_PTR(-EINVAL);
 
1841			__pool_inc(pool);
1842
1843		} else {
1844			pool = pool_create(pool_md, metadata_dev, block_size, error);
1845			*created = 1;
1846		}
1847	}
1848
1849	return pool;
1850}
1851
1852/*----------------------------------------------------------------
1853 * Pool target methods
1854 *--------------------------------------------------------------*/
1855static void pool_dtr(struct dm_target *ti)
1856{
1857	struct pool_c *pt = ti->private;
1858
1859	mutex_lock(&dm_thin_pool_table.mutex);
1860
1861	unbind_control_target(pt->pool, ti);
1862	__pool_dec(pt->pool);
1863	dm_put_device(ti, pt->metadata_dev);
1864	dm_put_device(ti, pt->data_dev);
1865	kfree(pt);
1866
1867	mutex_unlock(&dm_thin_pool_table.mutex);
1868}
1869
1870static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
1871			       struct dm_target *ti)
1872{
1873	int r;
1874	unsigned argc;
1875	const char *arg_name;
1876
1877	static struct dm_arg _args[] = {
1878		{0, 3, "Invalid number of pool feature arguments"},
1879	};
1880
1881	/*
1882	 * No feature arguments supplied.
1883	 */
1884	if (!as->argc)
1885		return 0;
1886
1887	r = dm_read_arg_group(_args, as, &argc, &ti->error);
1888	if (r)
1889		return -EINVAL;
1890
1891	while (argc && !r) {
1892		arg_name = dm_shift_arg(as);
1893		argc--;
1894
1895		if (!strcasecmp(arg_name, "skip_block_zeroing")) {
1896			pf->zero_new_blocks = 0;
1897			continue;
1898		} else if (!strcasecmp(arg_name, "ignore_discard")) {
1899			pf->discard_enabled = 0;
1900			continue;
1901		} else if (!strcasecmp(arg_name, "no_discard_passdown")) {
1902			pf->discard_passdown = 0;
1903			continue;
 
 
 
 
 
 
 
 
 
 
1904		}
1905
1906		ti->error = "Unrecognised pool feature requested";
1907		r = -EINVAL;
1908	}
1909
1910	return r;
1911}
1912
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1913/*
1914 * thin-pool <metadata dev> <data dev>
1915 *	     <data block size (sectors)>
1916 *	     <low water mark (blocks)>
1917 *	     [<#feature args> [<arg>]*]
1918 *
1919 * Optional feature arguments are:
1920 *	     skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
1921 *	     ignore_discard: disable discard
1922 *	     no_discard_passdown: don't pass discards down to the data device
 
 
1923 */
1924static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
1925{
1926	int r, pool_created = 0;
1927	struct pool_c *pt;
1928	struct pool *pool;
1929	struct pool_features pf;
1930	struct dm_arg_set as;
1931	struct dm_dev *data_dev;
1932	unsigned long block_size;
1933	dm_block_t low_water_blocks;
1934	struct dm_dev *metadata_dev;
1935	sector_t metadata_dev_size;
1936	char b[BDEVNAME_SIZE];
1937
1938	/*
1939	 * FIXME Remove validation from scope of lock.
1940	 */
1941	mutex_lock(&dm_thin_pool_table.mutex);
1942
1943	if (argc < 4) {
1944		ti->error = "Invalid argument count";
1945		r = -EINVAL;
1946		goto out_unlock;
1947	}
 
1948	as.argc = argc;
1949	as.argv = argv;
1950
1951	r = dm_get_device(ti, argv[0], FMODE_READ | FMODE_WRITE, &metadata_dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1952	if (r) {
1953		ti->error = "Error opening metadata block device";
1954		goto out_unlock;
1955	}
1956
1957	metadata_dev_size = i_size_read(metadata_dev->bdev->bd_inode) >> SECTOR_SHIFT;
1958	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
1959		DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
1960		       bdevname(metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
1961
1962	r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
1963	if (r) {
1964		ti->error = "Error getting data device";
1965		goto out_metadata;
1966	}
1967
1968	if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
1969	    block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
1970	    block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
1971	    !is_power_of_2(block_size)) {
1972		ti->error = "Invalid block size";
1973		r = -EINVAL;
1974		goto out;
1975	}
1976
1977	if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
1978		ti->error = "Invalid low water mark";
1979		r = -EINVAL;
1980		goto out;
1981	}
1982
1983	/*
1984	 * Set default pool features.
1985	 */
1986	pool_features_init(&pf);
1987
1988	dm_consume_args(&as, 4);
1989	r = parse_pool_features(&as, &pf, ti);
1990	if (r)
1991		goto out;
1992
1993	pt = kzalloc(sizeof(*pt), GFP_KERNEL);
1994	if (!pt) {
1995		r = -ENOMEM;
1996		goto out;
1997	}
1998
1999	pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
2000			   block_size, &ti->error, &pool_created);
2001	if (IS_ERR(pool)) {
2002		r = PTR_ERR(pool);
2003		goto out_free_pt;
2004	}
2005
2006	/*
2007	 * 'pool_created' reflects whether this is the first table load.
2008	 * Top level discard support is not allowed to be changed after
2009	 * initial load.  This would require a pool reload to trigger thin
2010	 * device changes.
2011	 */
2012	if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
2013		ti->error = "Discard support cannot be disabled once enabled";
2014		r = -EINVAL;
2015		goto out_flags_changed;
2016	}
2017
2018	pt->pool = pool;
2019	pt->ti = ti;
2020	pt->metadata_dev = metadata_dev;
2021	pt->data_dev = data_dev;
2022	pt->low_water_blocks = low_water_blocks;
2023	pt->pf = pf;
2024	ti->num_flush_requests = 1;
 
2025	/*
2026	 * Only need to enable discards if the pool should pass
2027	 * them down to the data device.  The thin device's discard
2028	 * processing will cause mappings to be removed from the btree.
2029	 */
2030	if (pf.discard_enabled && pf.discard_passdown) {
2031		ti->num_discard_requests = 1;
 
2032		/*
2033		 * Setting 'discards_supported' circumvents the normal
2034		 * stacking of discard limits (this keeps the pool and
2035		 * thin devices' discard limits consistent).
2036		 */
2037		ti->discards_supported = 1;
2038	}
2039	ti->private = pt;
2040
2041	pt->callbacks.congested_fn = pool_is_congested;
2042	dm_table_add_target_callbacks(ti->table, &pt->callbacks);
 
 
 
 
 
 
 
 
 
2043
2044	mutex_unlock(&dm_thin_pool_table.mutex);
2045
2046	return 0;
2047
2048out_flags_changed:
2049	__pool_dec(pool);
2050out_free_pt:
2051	kfree(pt);
2052out:
2053	dm_put_device(ti, data_dev);
2054out_metadata:
2055	dm_put_device(ti, metadata_dev);
2056out_unlock:
2057	mutex_unlock(&dm_thin_pool_table.mutex);
2058
2059	return r;
2060}
2061
2062static int pool_map(struct dm_target *ti, struct bio *bio,
2063		    union map_info *map_context)
2064{
2065	int r;
2066	struct pool_c *pt = ti->private;
2067	struct pool *pool = pt->pool;
2068	unsigned long flags;
2069
2070	/*
2071	 * As this is a singleton target, ti->begin is always zero.
2072	 */
2073	spin_lock_irqsave(&pool->lock, flags);
2074	bio->bi_bdev = pt->data_dev->bdev;
2075	r = DM_MAPIO_REMAPPED;
2076	spin_unlock_irqrestore(&pool->lock, flags);
2077
2078	return r;
2079}
2080
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2081/*
2082 * Retrieves the number of blocks of the data device from
2083 * the superblock and compares it to the actual device size,
2084 * thus resizing the data device in case it has grown.
2085 *
2086 * This both copes with opening preallocated data devices in the ctr
2087 * being followed by a resume
2088 * -and-
2089 * calling the resume method individually after userspace has
2090 * grown the data device in reaction to a table event.
2091 */
2092static int pool_preresume(struct dm_target *ti)
2093{
2094	int r;
 
2095	struct pool_c *pt = ti->private;
2096	struct pool *pool = pt->pool;
2097	dm_block_t data_size, sb_data_size;
2098
2099	/*
2100	 * Take control of the pool object.
2101	 */
2102	r = bind_control_target(pool, ti);
2103	if (r)
2104		return r;
 
 
 
 
 
 
 
 
2105
2106	data_size = ti->len >> pool->block_shift;
2107	r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
2108	if (r) {
2109		DMERR("failed to retrieve data device size");
2110		return r;
2111	}
 
 
 
 
2112
2113	if (data_size < sb_data_size) {
2114		DMERR("pool target too small, is %llu blocks (expected %llu)",
2115		      data_size, sb_data_size);
2116		return -EINVAL;
2117
2118	} else if (data_size > sb_data_size) {
2119		r = dm_pool_resize_data_dev(pool->pmd, data_size);
2120		if (r) {
2121			DMERR("failed to resize data device");
2122			return r;
2123		}
2124
2125		r = dm_pool_commit_metadata(pool->pmd);
2126		if (r) {
2127			DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
2128			      __func__, r);
2129			return r;
2130		}
2131	}
 
 
 
 
 
2132
2133	return 0;
 
 
 
 
 
2134}
2135
2136static void pool_resume(struct dm_target *ti)
2137{
2138	struct pool_c *pt = ti->private;
2139	struct pool *pool = pt->pool;
2140	unsigned long flags;
2141
2142	spin_lock_irqsave(&pool->lock, flags);
2143	pool->low_water_triggered = 0;
2144	pool->no_free_space = 0;
2145	__requeue_bios(pool);
2146	spin_unlock_irqrestore(&pool->lock, flags);
 
 
 
 
 
 
2147
2148	do_waker(&pool->waker.work);
2149}
2150
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2151static void pool_postsuspend(struct dm_target *ti)
2152{
2153	int r;
2154	struct pool_c *pt = ti->private;
2155	struct pool *pool = pt->pool;
2156
2157	cancel_delayed_work(&pool->waker);
 
2158	flush_workqueue(pool->wq);
2159
2160	r = dm_pool_commit_metadata(pool->pmd);
2161	if (r < 0) {
2162		DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
2163		      __func__, r);
2164		/* FIXME: invalidate device? error the next FUA or FLUSH bio ?*/
2165	}
2166}
2167
2168static int check_arg_count(unsigned argc, unsigned args_required)
2169{
2170	if (argc != args_required) {
2171		DMWARN("Message received with %u arguments instead of %u.",
2172		       argc, args_required);
2173		return -EINVAL;
2174	}
2175
2176	return 0;
2177}
2178
2179static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
2180{
2181	if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
2182	    *dev_id <= MAX_DEV_ID)
2183		return 0;
2184
2185	if (warning)
2186		DMWARN("Message received with invalid device id: %s", arg);
2187
2188	return -EINVAL;
2189}
2190
2191static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
2192{
2193	dm_thin_id dev_id;
2194	int r;
2195
2196	r = check_arg_count(argc, 2);
2197	if (r)
2198		return r;
2199
2200	r = read_dev_id(argv[1], &dev_id, 1);
2201	if (r)
2202		return r;
2203
2204	r = dm_pool_create_thin(pool->pmd, dev_id);
2205	if (r) {
2206		DMWARN("Creation of new thinly-provisioned device with id %s failed.",
2207		       argv[1]);
2208		return r;
2209	}
2210
2211	return 0;
2212}
2213
2214static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2215{
2216	dm_thin_id dev_id;
2217	dm_thin_id origin_dev_id;
2218	int r;
2219
2220	r = check_arg_count(argc, 3);
2221	if (r)
2222		return r;
2223
2224	r = read_dev_id(argv[1], &dev_id, 1);
2225	if (r)
2226		return r;
2227
2228	r = read_dev_id(argv[2], &origin_dev_id, 1);
2229	if (r)
2230		return r;
2231
2232	r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
2233	if (r) {
2234		DMWARN("Creation of new snapshot %s of device %s failed.",
2235		       argv[1], argv[2]);
2236		return r;
2237	}
2238
2239	return 0;
2240}
2241
2242static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
2243{
2244	dm_thin_id dev_id;
2245	int r;
2246
2247	r = check_arg_count(argc, 2);
2248	if (r)
2249		return r;
2250
2251	r = read_dev_id(argv[1], &dev_id, 1);
2252	if (r)
2253		return r;
2254
2255	r = dm_pool_delete_thin_device(pool->pmd, dev_id);
2256	if (r)
2257		DMWARN("Deletion of thin device %s failed.", argv[1]);
2258
2259	return r;
2260}
2261
2262static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
2263{
2264	dm_thin_id old_id, new_id;
2265	int r;
2266
2267	r = check_arg_count(argc, 3);
2268	if (r)
2269		return r;
2270
2271	if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
2272		DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
2273		return -EINVAL;
2274	}
2275
2276	if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
2277		DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
2278		return -EINVAL;
2279	}
2280
2281	r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
2282	if (r) {
2283		DMWARN("Failed to change transaction id from %s to %s.",
2284		       argv[1], argv[2]);
2285		return r;
2286	}
2287
2288	return 0;
2289}
2290
2291static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2292{
2293	int r;
2294
2295	r = check_arg_count(argc, 1);
2296	if (r)
2297		return r;
2298
2299	r = dm_pool_commit_metadata(pool->pmd);
2300	if (r) {
2301		DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
2302		      __func__, r);
2303		return r;
2304	}
2305
2306	r = dm_pool_reserve_metadata_snap(pool->pmd);
2307	if (r)
2308		DMWARN("reserve_metadata_snap message failed.");
2309
2310	return r;
2311}
2312
2313static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2314{
2315	int r;
2316
2317	r = check_arg_count(argc, 1);
2318	if (r)
2319		return r;
2320
2321	r = dm_pool_release_metadata_snap(pool->pmd);
2322	if (r)
2323		DMWARN("release_metadata_snap message failed.");
2324
2325	return r;
2326}
2327
2328/*
2329 * Messages supported:
2330 *   create_thin	<dev_id>
2331 *   create_snap	<dev_id> <origin_id>
2332 *   delete		<dev_id>
2333 *   trim		<dev_id> <new_size_in_sectors>
2334 *   set_transaction_id <current_trans_id> <new_trans_id>
2335 *   reserve_metadata_snap
2336 *   release_metadata_snap
2337 */
2338static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
 
2339{
2340	int r = -EINVAL;
2341	struct pool_c *pt = ti->private;
2342	struct pool *pool = pt->pool;
2343
 
 
 
 
 
 
2344	if (!strcasecmp(argv[0], "create_thin"))
2345		r = process_create_thin_mesg(argc, argv, pool);
2346
2347	else if (!strcasecmp(argv[0], "create_snap"))
2348		r = process_create_snap_mesg(argc, argv, pool);
2349
2350	else if (!strcasecmp(argv[0], "delete"))
2351		r = process_delete_mesg(argc, argv, pool);
2352
2353	else if (!strcasecmp(argv[0], "set_transaction_id"))
2354		r = process_set_transaction_id_mesg(argc, argv, pool);
2355
2356	else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
2357		r = process_reserve_metadata_snap_mesg(argc, argv, pool);
2358
2359	else if (!strcasecmp(argv[0], "release_metadata_snap"))
2360		r = process_release_metadata_snap_mesg(argc, argv, pool);
2361
2362	else
2363		DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
2364
2365	if (!r) {
2366		r = dm_pool_commit_metadata(pool->pmd);
2367		if (r)
2368			DMERR("%s message: dm_pool_commit_metadata() failed, error = %d",
2369			      argv[0], r);
2370	}
2371
2372	return r;
2373}
2374
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2375/*
2376 * Status line is:
2377 *    <transaction id> <used metadata sectors>/<total metadata sectors>
2378 *    <used data sectors>/<total data sectors> <held metadata root>
 
2379 */
2380static int pool_status(struct dm_target *ti, status_type_t type,
2381		       char *result, unsigned maxlen)
2382{
2383	int r, count;
2384	unsigned sz = 0;
2385	uint64_t transaction_id;
2386	dm_block_t nr_free_blocks_data;
2387	dm_block_t nr_free_blocks_metadata;
2388	dm_block_t nr_blocks_data;
2389	dm_block_t nr_blocks_metadata;
2390	dm_block_t held_root;
 
2391	char buf[BDEVNAME_SIZE];
2392	char buf2[BDEVNAME_SIZE];
2393	struct pool_c *pt = ti->private;
2394	struct pool *pool = pt->pool;
2395
2396	switch (type) {
2397	case STATUSTYPE_INFO:
2398		r = dm_pool_get_metadata_transaction_id(pool->pmd,
2399							&transaction_id);
2400		if (r)
2401			return r;
 
 
 
 
 
 
 
 
 
 
 
2402
2403		r = dm_pool_get_free_metadata_block_count(pool->pmd,
2404							  &nr_free_blocks_metadata);
2405		if (r)
2406			return r;
 
 
2407
2408		r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
2409		if (r)
2410			return r;
 
 
 
2411
2412		r = dm_pool_get_free_block_count(pool->pmd,
2413						 &nr_free_blocks_data);
2414		if (r)
2415			return r;
 
 
2416
2417		r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
2418		if (r)
2419			return r;
 
 
 
2420
2421		r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
2422		if (r)
2423			return r;
 
 
 
2424
2425		DMEMIT("%llu %llu/%llu %llu/%llu ",
2426		       (unsigned long long)transaction_id,
2427		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
2428		       (unsigned long long)nr_blocks_metadata,
2429		       (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
2430		       (unsigned long long)nr_blocks_data);
2431
2432		if (held_root)
2433			DMEMIT("%llu", held_root);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2434		else
2435			DMEMIT("-");
 
 
2436
2437		break;
2438
2439	case STATUSTYPE_TABLE:
2440		DMEMIT("%s %s %lu %llu ",
2441		       format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
2442		       format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
2443		       (unsigned long)pool->sectors_per_block,
2444		       (unsigned long long)pt->low_water_blocks);
 
 
2445
2446		count = !pool->pf.zero_new_blocks + !pool->pf.discard_enabled +
2447			!pt->pf.discard_passdown;
2448		DMEMIT("%u ", count);
2449
2450		if (!pool->pf.zero_new_blocks)
2451			DMEMIT("skip_block_zeroing ");
2452
2453		if (!pool->pf.discard_enabled)
2454			DMEMIT("ignore_discard ");
2455
2456		if (!pt->pf.discard_passdown)
2457			DMEMIT("no_discard_passdown ");
2458
2459		break;
2460	}
 
2461
2462	return 0;
 
2463}
2464
2465static int pool_iterate_devices(struct dm_target *ti,
2466				iterate_devices_callout_fn fn, void *data)
2467{
2468	struct pool_c *pt = ti->private;
2469
2470	return fn(ti, pt->data_dev, 0, ti->len, data);
2471}
2472
2473static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
2474		      struct bio_vec *biovec, int max_size)
2475{
2476	struct pool_c *pt = ti->private;
2477	struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
 
2478
2479	if (!q->merge_bvec_fn)
2480		return max_size;
2481
2482	bvm->bi_bdev = pt->data_dev->bdev;
 
 
 
 
 
 
 
 
 
 
 
 
2483
2484	return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
2485}
2486
2487static void set_discard_limits(struct pool *pool, struct queue_limits *limits)
2488{
2489	/*
2490	 * FIXME: these limits may be incompatible with the pool's data device
 
2491	 */
2492	limits->max_discard_sectors = pool->sectors_per_block;
 
 
 
 
 
 
 
2493
2494	/*
2495	 * This is just a hint, and not enforced.  We have to cope with
2496	 * bios that overlap 2 blocks.
 
2497	 */
2498	limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
2499	limits->discard_zeroes_data = pool->pf.zero_new_blocks;
2500}
 
 
 
 
 
2501
2502static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
2503{
2504	struct pool_c *pt = ti->private;
2505	struct pool *pool = pt->pool;
2506
2507	blk_limits_io_min(limits, 0);
2508	blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
2509	if (pool->pf.discard_enabled)
2510		set_discard_limits(pool, limits);
2511}
2512
2513static struct target_type pool_target = {
2514	.name = "thin-pool",
2515	.features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
2516		    DM_TARGET_IMMUTABLE,
2517	.version = {1, 2, 0},
2518	.module = THIS_MODULE,
2519	.ctr = pool_ctr,
2520	.dtr = pool_dtr,
2521	.map = pool_map,
 
 
2522	.postsuspend = pool_postsuspend,
2523	.preresume = pool_preresume,
2524	.resume = pool_resume,
2525	.message = pool_message,
2526	.status = pool_status,
2527	.merge = pool_merge,
2528	.iterate_devices = pool_iterate_devices,
2529	.io_hints = pool_io_hints,
2530};
2531
2532/*----------------------------------------------------------------
2533 * Thin target methods
2534 *--------------------------------------------------------------*/
 
 
 
 
 
 
 
 
 
 
 
2535static void thin_dtr(struct dm_target *ti)
2536{
2537	struct thin_c *tc = ti->private;
2538
 
 
 
 
 
 
 
 
2539	mutex_lock(&dm_thin_pool_table.mutex);
2540
2541	__pool_dec(tc->pool);
2542	dm_pool_close_thin_device(tc->td);
2543	dm_put_device(ti, tc->pool_dev);
2544	if (tc->origin_dev)
2545		dm_put_device(ti, tc->origin_dev);
2546	kfree(tc);
2547
2548	mutex_unlock(&dm_thin_pool_table.mutex);
2549}
2550
2551/*
2552 * Thin target parameters:
2553 *
2554 * <pool_dev> <dev_id> [origin_dev]
2555 *
2556 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
2557 * dev_id: the internal device identifier
2558 * origin_dev: a device external to the pool that should act as the origin
2559 *
2560 * If the pool device has discards disabled, they get disabled for the thin
2561 * device as well.
2562 */
2563static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
2564{
2565	int r;
2566	struct thin_c *tc;
2567	struct dm_dev *pool_dev, *origin_dev;
2568	struct mapped_device *pool_md;
2569
2570	mutex_lock(&dm_thin_pool_table.mutex);
2571
2572	if (argc != 2 && argc != 3) {
2573		ti->error = "Invalid argument count";
2574		r = -EINVAL;
2575		goto out_unlock;
2576	}
2577
2578	tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
2579	if (!tc) {
2580		ti->error = "Out of memory";
2581		r = -ENOMEM;
2582		goto out_unlock;
2583	}
 
 
 
 
 
 
2584
2585	if (argc == 3) {
 
 
 
 
 
 
2586		r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
2587		if (r) {
2588			ti->error = "Error opening origin device";
2589			goto bad_origin_dev;
2590		}
2591		tc->origin_dev = origin_dev;
2592	}
2593
2594	r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
2595	if (r) {
2596		ti->error = "Error opening pool device";
2597		goto bad_pool_dev;
2598	}
2599	tc->pool_dev = pool_dev;
2600
2601	if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
2602		ti->error = "Invalid device id";
2603		r = -EINVAL;
2604		goto bad_common;
2605	}
2606
2607	pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
2608	if (!pool_md) {
2609		ti->error = "Couldn't get pool mapped device";
2610		r = -EINVAL;
2611		goto bad_common;
2612	}
2613
2614	tc->pool = __pool_table_lookup(pool_md);
2615	if (!tc->pool) {
2616		ti->error = "Couldn't find pool object";
2617		r = -EINVAL;
2618		goto bad_pool_lookup;
2619	}
2620	__pool_inc(tc->pool);
2621
 
 
 
 
 
 
2622	r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
2623	if (r) {
2624		ti->error = "Couldn't open thin internal device";
2625		goto bad_thin_open;
2626	}
2627
2628	ti->split_io = tc->pool->sectors_per_block;
2629	ti->num_flush_requests = 1;
 
 
 
 
 
 
2630
2631	/* In case the pool supports discards, pass them on. */
2632	if (tc->pool->pf.discard_enabled) {
2633		ti->discards_supported = 1;
2634		ti->num_discard_requests = 1;
2635		ti->discard_zeroes_data_unsupported = 1;
 
 
 
 
 
 
 
 
 
 
2636	}
 
 
 
 
 
 
 
 
 
 
 
2637
2638	dm_put(pool_md);
2639
2640	mutex_unlock(&dm_thin_pool_table.mutex);
2641
2642	return 0;
2643
2644bad_thin_open:
 
 
2645	__pool_dec(tc->pool);
2646bad_pool_lookup:
2647	dm_put(pool_md);
2648bad_common:
2649	dm_put_device(ti, tc->pool_dev);
2650bad_pool_dev:
2651	if (tc->origin_dev)
2652		dm_put_device(ti, tc->origin_dev);
2653bad_origin_dev:
2654	kfree(tc);
2655out_unlock:
2656	mutex_unlock(&dm_thin_pool_table.mutex);
2657
2658	return r;
2659}
2660
2661static int thin_map(struct dm_target *ti, struct bio *bio,
2662		    union map_info *map_context)
2663{
2664	bio->bi_sector = dm_target_offset(ti, bio->bi_sector);
2665
2666	return thin_bio_map(ti, bio, map_context);
2667}
2668
2669static int thin_endio(struct dm_target *ti,
2670		      struct bio *bio, int err,
2671		      union map_info *map_context)
2672{
2673	unsigned long flags;
2674	struct dm_thin_endio_hook *h = map_context->ptr;
2675	struct list_head work;
2676	struct dm_thin_new_mapping *m, *tmp;
2677	struct pool *pool = h->tc->pool;
2678
2679	if (h->shared_read_entry) {
2680		INIT_LIST_HEAD(&work);
2681		ds_dec(h->shared_read_entry, &work);
2682
2683		spin_lock_irqsave(&pool->lock, flags);
2684		list_for_each_entry_safe(m, tmp, &work, list) {
2685			list_del(&m->list);
2686			m->quiesced = 1;
2687			__maybe_add_mapping(m);
2688		}
2689		spin_unlock_irqrestore(&pool->lock, flags);
2690	}
2691
2692	if (h->all_io_entry) {
2693		INIT_LIST_HEAD(&work);
2694		ds_dec(h->all_io_entry, &work);
2695		spin_lock_irqsave(&pool->lock, flags);
2696		list_for_each_entry_safe(m, tmp, &work, list)
2697			list_add(&m->list, &pool->prepared_discards);
2698		spin_unlock_irqrestore(&pool->lock, flags);
 
 
 
2699	}
2700
2701	mempool_free(h, pool->endio_hook_pool);
 
 
 
 
 
 
 
 
2702
2703	return 0;
 
2704}
2705
2706static void thin_postsuspend(struct dm_target *ti)
2707{
2708	if (dm_noflush_suspending(ti))
2709		requeue_io((struct thin_c *)ti->private);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2710}
2711
2712/*
2713 * <nr mapped sectors> <highest mapped sector>
2714 */
2715static int thin_status(struct dm_target *ti, status_type_t type,
2716		       char *result, unsigned maxlen)
2717{
2718	int r;
2719	ssize_t sz = 0;
2720	dm_block_t mapped, highest;
2721	char buf[BDEVNAME_SIZE];
2722	struct thin_c *tc = ti->private;
2723
 
 
 
 
 
2724	if (!tc->td)
2725		DMEMIT("-");
2726	else {
2727		switch (type) {
2728		case STATUSTYPE_INFO:
2729			r = dm_thin_get_mapped_count(tc->td, &mapped);
2730			if (r)
2731				return r;
 
 
2732
2733			r = dm_thin_get_highest_mapped_block(tc->td, &highest);
2734			if (r < 0)
2735				return r;
 
 
2736
2737			DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
2738			if (r)
2739				DMEMIT("%llu", ((highest + 1) *
2740						tc->pool->sectors_per_block) - 1);
2741			else
2742				DMEMIT("-");
2743			break;
2744
2745		case STATUSTYPE_TABLE:
2746			DMEMIT("%s %lu",
2747			       format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
2748			       (unsigned long) tc->dev_id);
2749			if (tc->origin_dev)
2750				DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
2751			break;
 
 
 
 
2752		}
2753	}
2754
2755	return 0;
 
 
 
2756}
2757
2758static int thin_iterate_devices(struct dm_target *ti,
2759				iterate_devices_callout_fn fn, void *data)
2760{
2761	dm_block_t blocks;
2762	struct thin_c *tc = ti->private;
 
2763
2764	/*
2765	 * We can't call dm_pool_get_data_dev_size() since that blocks.  So
2766	 * we follow a more convoluted path through to the pool's target.
2767	 */
2768	if (!tc->pool->ti)
2769		return 0;	/* nothing is bound */
2770
2771	blocks = tc->pool->ti->len >> tc->pool->block_shift;
 
2772	if (blocks)
2773		return fn(ti, tc->pool_dev, 0, tc->pool->sectors_per_block * blocks, data);
2774
2775	return 0;
2776}
2777
2778static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
2779{
2780	struct thin_c *tc = ti->private;
2781	struct pool *pool = tc->pool;
2782
2783	blk_limits_io_min(limits, 0);
2784	blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
2785	set_discard_limits(pool, limits);
 
 
2786}
2787
2788static struct target_type thin_target = {
2789	.name = "thin",
2790	.version = {1, 1, 0},
2791	.module	= THIS_MODULE,
2792	.ctr = thin_ctr,
2793	.dtr = thin_dtr,
2794	.map = thin_map,
2795	.end_io = thin_endio,
 
 
2796	.postsuspend = thin_postsuspend,
2797	.status = thin_status,
2798	.iterate_devices = thin_iterate_devices,
2799	.io_hints = thin_io_hints,
2800};
2801
2802/*----------------------------------------------------------------*/
2803
2804static int __init dm_thin_init(void)
2805{
2806	int r;
2807
2808	pool_table_init();
2809
 
 
 
 
2810	r = dm_register_target(&thin_target);
2811	if (r)
2812		return r;
2813
2814	r = dm_register_target(&pool_target);
2815	if (r)
2816		goto bad_pool_target;
2817
2818	r = -ENOMEM;
2819
2820	_cell_cache = KMEM_CACHE(dm_bio_prison_cell, 0);
2821	if (!_cell_cache)
2822		goto bad_cell_cache;
2823
2824	_new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
2825	if (!_new_mapping_cache)
2826		goto bad_new_mapping_cache;
2827
2828	_endio_hook_cache = KMEM_CACHE(dm_thin_endio_hook, 0);
2829	if (!_endio_hook_cache)
2830		goto bad_endio_hook_cache;
2831
2832	return 0;
2833
2834bad_endio_hook_cache:
 
 
2835	kmem_cache_destroy(_new_mapping_cache);
2836bad_new_mapping_cache:
2837	kmem_cache_destroy(_cell_cache);
2838bad_cell_cache:
2839	dm_unregister_target(&pool_target);
2840bad_pool_target:
2841	dm_unregister_target(&thin_target);
2842
2843	return r;
2844}
2845
2846static void dm_thin_exit(void)
2847{
2848	dm_unregister_target(&thin_target);
2849	dm_unregister_target(&pool_target);
2850
2851	kmem_cache_destroy(_cell_cache);
2852	kmem_cache_destroy(_new_mapping_cache);
2853	kmem_cache_destroy(_endio_hook_cache);
 
2854}
2855
2856module_init(dm_thin_init);
2857module_exit(dm_thin_exit);
 
 
 
2858
2859MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
2860MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2861MODULE_LICENSE("GPL");