Linux Audio

Check our new training course

Loading...
v6.2
   1/*
   2 * Copyright (C) 2011-2012 Red Hat UK.
   3 *
   4 * This file is released under the GPL.
   5 */
   6
   7#include "dm-thin-metadata.h"
   8#include "dm-bio-prison-v1.h"
   9#include "dm.h"
  10
  11#include <linux/device-mapper.h>
  12#include <linux/dm-io.h>
  13#include <linux/dm-kcopyd.h>
  14#include <linux/jiffies.h>
  15#include <linux/log2.h>
  16#include <linux/list.h>
  17#include <linux/rculist.h>
  18#include <linux/init.h>
  19#include <linux/module.h>
  20#include <linux/slab.h>
  21#include <linux/vmalloc.h>
  22#include <linux/sort.h>
  23#include <linux/rbtree.h>
  24
  25#define	DM_MSG_PREFIX	"thin"
  26
  27/*
  28 * Tunable constants
  29 */
  30#define ENDIO_HOOK_POOL_SIZE 1024
  31#define MAPPING_POOL_SIZE 1024
  32#define COMMIT_PERIOD HZ
  33#define NO_SPACE_TIMEOUT_SECS 60
  34
  35static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
  36
  37DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
  38		"A percentage of time allocated for copy on write");
  39
  40/*
  41 * The block size of the device holding pool data must be
  42 * between 64KB and 1GB.
  43 */
  44#define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
  45#define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
  46
  47/*
  48 * Device id is restricted to 24 bits.
  49 */
  50#define MAX_DEV_ID ((1 << 24) - 1)
  51
  52/*
  53 * How do we handle breaking sharing of data blocks?
  54 * =================================================
  55 *
  56 * We use a standard copy-on-write btree to store the mappings for the
  57 * devices (note I'm talking about copy-on-write of the metadata here, not
  58 * the data).  When you take an internal snapshot you clone the root node
  59 * of the origin btree.  After this there is no concept of an origin or a
  60 * snapshot.  They are just two device trees that happen to point to the
  61 * same data blocks.
  62 *
  63 * When we get a write in we decide if it's to a shared data block using
  64 * some timestamp magic.  If it is, we have to break sharing.
  65 *
  66 * Let's say we write to a shared block in what was the origin.  The
  67 * steps are:
  68 *
  69 * i) plug io further to this physical block. (see bio_prison code).
  70 *
  71 * ii) quiesce any read io to that shared data block.  Obviously
  72 * including all devices that share this block.  (see dm_deferred_set code)
  73 *
  74 * iii) copy the data block to a newly allocate block.  This step can be
  75 * missed out if the io covers the block. (schedule_copy).
  76 *
  77 * iv) insert the new mapping into the origin's btree
  78 * (process_prepared_mapping).  This act of inserting breaks some
  79 * sharing of btree nodes between the two devices.  Breaking sharing only
  80 * effects the btree of that specific device.  Btrees for the other
  81 * devices that share the block never change.  The btree for the origin
  82 * device as it was after the last commit is untouched, ie. we're using
  83 * persistent data structures in the functional programming sense.
  84 *
  85 * v) unplug io to this physical block, including the io that triggered
  86 * the breaking of sharing.
  87 *
  88 * Steps (ii) and (iii) occur in parallel.
  89 *
  90 * The metadata _doesn't_ need to be committed before the io continues.  We
  91 * get away with this because the io is always written to a _new_ block.
  92 * If there's a crash, then:
  93 *
  94 * - The origin mapping will point to the old origin block (the shared
  95 * one).  This will contain the data as it was before the io that triggered
  96 * the breaking of sharing came in.
  97 *
  98 * - The snap mapping still points to the old block.  As it would after
  99 * the commit.
 100 *
 101 * The downside of this scheme is the timestamp magic isn't perfect, and
 102 * will continue to think that data block in the snapshot device is shared
 103 * even after the write to the origin has broken sharing.  I suspect data
 104 * blocks will typically be shared by many different devices, so we're
 105 * breaking sharing n + 1 times, rather than n, where n is the number of
 106 * devices that reference this data block.  At the moment I think the
 107 * benefits far, far outweigh the disadvantages.
 108 */
 109
 110/*----------------------------------------------------------------*/
 111
 112/*
 113 * Key building.
 114 */
 115enum lock_space {
 116	VIRTUAL,
 117	PHYSICAL
 118};
 119
 120static void build_key(struct dm_thin_device *td, enum lock_space ls,
 121		      dm_block_t b, dm_block_t e, struct dm_cell_key *key)
 122{
 123	key->virtual = (ls == VIRTUAL);
 124	key->dev = dm_thin_dev_id(td);
 125	key->block_begin = b;
 126	key->block_end = e;
 127}
 128
 129static void build_data_key(struct dm_thin_device *td, dm_block_t b,
 130			   struct dm_cell_key *key)
 131{
 132	build_key(td, PHYSICAL, b, b + 1llu, key);
 133}
 134
 135static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
 136			      struct dm_cell_key *key)
 137{
 138	build_key(td, VIRTUAL, b, b + 1llu, key);
 139}
 140
 141/*----------------------------------------------------------------*/
 142
 143#define THROTTLE_THRESHOLD (1 * HZ)
 144
 145struct throttle {
 146	struct rw_semaphore lock;
 147	unsigned long threshold;
 148	bool throttle_applied;
 149};
 150
 151static void throttle_init(struct throttle *t)
 152{
 153	init_rwsem(&t->lock);
 154	t->throttle_applied = false;
 155}
 156
 157static void throttle_work_start(struct throttle *t)
 158{
 159	t->threshold = jiffies + THROTTLE_THRESHOLD;
 160}
 161
 162static void throttle_work_update(struct throttle *t)
 163{
 164	if (!t->throttle_applied && time_is_before_jiffies(t->threshold)) {
 165		down_write(&t->lock);
 166		t->throttle_applied = true;
 167	}
 168}
 169
 170static void throttle_work_complete(struct throttle *t)
 171{
 172	if (t->throttle_applied) {
 173		t->throttle_applied = false;
 174		up_write(&t->lock);
 175	}
 176}
 177
 178static void throttle_lock(struct throttle *t)
 179{
 180	down_read(&t->lock);
 181}
 182
 183static void throttle_unlock(struct throttle *t)
 184{
 185	up_read(&t->lock);
 186}
 187
 188/*----------------------------------------------------------------*/
 189
 190/*
 191 * A pool device ties together a metadata device and a data device.  It
 192 * also provides the interface for creating and destroying internal
 193 * devices.
 194 */
 195struct dm_thin_new_mapping;
 196
 197/*
 198 * The pool runs in various modes.  Ordered in degraded order for comparisons.
 199 */
 200enum pool_mode {
 201	PM_WRITE,		/* metadata may be changed */
 202	PM_OUT_OF_DATA_SPACE,	/* metadata may be changed, though data may not be allocated */
 203
 204	/*
 205	 * Like READ_ONLY, except may switch back to WRITE on metadata resize. Reported as READ_ONLY.
 206	 */
 207	PM_OUT_OF_METADATA_SPACE,
 208	PM_READ_ONLY,		/* metadata may not be changed */
 209
 210	PM_FAIL,		/* all I/O fails */
 211};
 212
 213struct pool_features {
 214	enum pool_mode mode;
 215
 216	bool zero_new_blocks:1;
 217	bool discard_enabled:1;
 218	bool discard_passdown:1;
 219	bool error_if_no_space:1;
 220};
 221
 222struct thin_c;
 223typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
 224typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
 225typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
 226
 227#define CELL_SORT_ARRAY_SIZE 8192
 228
 229struct pool {
 230	struct list_head list;
 231	struct dm_target *ti;	/* Only set if a pool target is bound */
 232
 233	struct mapped_device *pool_md;
 234	struct block_device *data_dev;
 235	struct block_device *md_dev;
 236	struct dm_pool_metadata *pmd;
 237
 238	dm_block_t low_water_blocks;
 239	uint32_t sectors_per_block;
 240	int sectors_per_block_shift;
 241
 242	struct pool_features pf;
 243	bool low_water_triggered:1;	/* A dm event has been sent */
 244	bool suspended:1;
 245	bool out_of_data_space:1;
 246
 247	struct dm_bio_prison *prison;
 248	struct dm_kcopyd_client *copier;
 249
 250	struct work_struct worker;
 251	struct workqueue_struct *wq;
 252	struct throttle throttle;
 
 253	struct delayed_work waker;
 254	struct delayed_work no_space_timeout;
 255
 256	unsigned long last_commit_jiffies;
 257	unsigned ref_count;
 258
 259	spinlock_t lock;
 260	struct bio_list deferred_flush_bios;
 261	struct bio_list deferred_flush_completions;
 262	struct list_head prepared_mappings;
 263	struct list_head prepared_discards;
 264	struct list_head prepared_discards_pt2;
 265	struct list_head active_thins;
 266
 267	struct dm_deferred_set *shared_read_ds;
 268	struct dm_deferred_set *all_io_ds;
 269
 270	struct dm_thin_new_mapping *next_mapping;
 
 271
 272	process_bio_fn process_bio;
 273	process_bio_fn process_discard;
 274
 275	process_cell_fn process_cell;
 276	process_cell_fn process_discard_cell;
 277
 278	process_mapping_fn process_prepared_mapping;
 279	process_mapping_fn process_prepared_discard;
 280	process_mapping_fn process_prepared_discard_pt2;
 281
 282	struct dm_bio_prison_cell **cell_sort_array;
 283
 284	mempool_t mapping_pool;
 285};
 286
 
 287static void metadata_operation_failed(struct pool *pool, const char *op, int r);
 288
 289static enum pool_mode get_pool_mode(struct pool *pool)
 290{
 291	return pool->pf.mode;
 292}
 293
 294static void notify_of_pool_mode_change(struct pool *pool)
 295{
 296	const char *descs[] = {
 297		"write",
 298		"out-of-data-space",
 299		"read-only",
 300		"read-only",
 301		"fail"
 302	};
 303	const char *extra_desc = NULL;
 304	enum pool_mode mode = get_pool_mode(pool);
 305
 306	if (mode == PM_OUT_OF_DATA_SPACE) {
 307		if (!pool->pf.error_if_no_space)
 308			extra_desc = " (queue IO)";
 309		else
 310			extra_desc = " (error IO)";
 311	}
 312
 313	dm_table_event(pool->ti->table);
 314	DMINFO("%s: switching pool to %s%s mode",
 315	       dm_device_name(pool->pool_md),
 316	       descs[(int)mode], extra_desc ? : "");
 317}
 318
 319/*
 320 * Target context for a pool.
 321 */
 322struct pool_c {
 323	struct dm_target *ti;
 324	struct pool *pool;
 325	struct dm_dev *data_dev;
 326	struct dm_dev *metadata_dev;
 
 327
 328	dm_block_t low_water_blocks;
 329	struct pool_features requested_pf; /* Features requested during table load */
 330	struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
 331};
 332
 333/*
 334 * Target context for a thin.
 335 */
 336struct thin_c {
 337	struct list_head list;
 338	struct dm_dev *pool_dev;
 339	struct dm_dev *origin_dev;
 340	sector_t origin_size;
 341	dm_thin_id dev_id;
 342
 343	struct pool *pool;
 344	struct dm_thin_device *td;
 345	struct mapped_device *thin_md;
 346
 347	bool requeue_mode:1;
 348	spinlock_t lock;
 349	struct list_head deferred_cells;
 350	struct bio_list deferred_bio_list;
 351	struct bio_list retry_on_resume_list;
 352	struct rb_root sort_bio_list; /* sorted list of deferred bios */
 353
 354	/*
 355	 * Ensures the thin is not destroyed until the worker has finished
 356	 * iterating the active_thins list.
 357	 */
 358	refcount_t refcount;
 359	struct completion can_destroy;
 360};
 361
 362/*----------------------------------------------------------------*/
 363
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 364static bool block_size_is_power_of_two(struct pool *pool)
 365{
 366	return pool->sectors_per_block_shift >= 0;
 367}
 368
 369static sector_t block_to_sectors(struct pool *pool, dm_block_t b)
 370{
 371	return block_size_is_power_of_two(pool) ?
 372		(b << pool->sectors_per_block_shift) :
 373		(b * pool->sectors_per_block);
 374}
 375
 376/*----------------------------------------------------------------*/
 377
 378struct discard_op {
 379	struct thin_c *tc;
 380	struct blk_plug plug;
 381	struct bio *parent_bio;
 382	struct bio *bio;
 383};
 384
 385static void begin_discard(struct discard_op *op, struct thin_c *tc, struct bio *parent)
 386{
 387	BUG_ON(!parent);
 388
 389	op->tc = tc;
 390	blk_start_plug(&op->plug);
 391	op->parent_bio = parent;
 392	op->bio = NULL;
 393}
 394
 395static int issue_discard(struct discard_op *op, dm_block_t data_b, dm_block_t data_e)
 396{
 397	struct thin_c *tc = op->tc;
 398	sector_t s = block_to_sectors(tc->pool, data_b);
 399	sector_t len = block_to_sectors(tc->pool, data_e - data_b);
 400
 401	return __blkdev_issue_discard(tc->pool_dev->bdev, s, len, GFP_NOWAIT,
 402				      &op->bio);
 403}
 404
 405static void end_discard(struct discard_op *op, int r)
 406{
 407	if (op->bio) {
 408		/*
 409		 * Even if one of the calls to issue_discard failed, we
 410		 * need to wait for the chain to complete.
 411		 */
 412		bio_chain(op->bio, op->parent_bio);
 413		op->bio->bi_opf = REQ_OP_DISCARD;
 414		submit_bio(op->bio);
 415	}
 416
 417	blk_finish_plug(&op->plug);
 418
 419	/*
 420	 * Even if r is set, there could be sub discards in flight that we
 421	 * need to wait for.
 422	 */
 423	if (r && !op->parent_bio->bi_status)
 424		op->parent_bio->bi_status = errno_to_blk_status(r);
 425	bio_endio(op->parent_bio);
 426}
 427
 428/*----------------------------------------------------------------*/
 429
 430/*
 431 * wake_worker() is used when new work is queued and when pool_resume is
 432 * ready to continue deferred IO processing.
 433 */
 434static void wake_worker(struct pool *pool)
 435{
 436	queue_work(pool->wq, &pool->worker);
 437}
 438
 439/*----------------------------------------------------------------*/
 440
 441static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
 442		      struct dm_bio_prison_cell **cell_result)
 443{
 444	int r;
 445	struct dm_bio_prison_cell *cell_prealloc;
 446
 447	/*
 448	 * Allocate a cell from the prison's mempool.
 449	 * This might block but it can't fail.
 450	 */
 451	cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
 452
 453	r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
 454	if (r)
 455		/*
 456		 * We reused an old cell; we can get rid of
 457		 * the new one.
 458		 */
 459		dm_bio_prison_free_cell(pool->prison, cell_prealloc);
 460
 461	return r;
 462}
 463
 464static void cell_release(struct pool *pool,
 465			 struct dm_bio_prison_cell *cell,
 466			 struct bio_list *bios)
 467{
 468	dm_cell_release(pool->prison, cell, bios);
 469	dm_bio_prison_free_cell(pool->prison, cell);
 470}
 471
 472static void cell_visit_release(struct pool *pool,
 473			       void (*fn)(void *, struct dm_bio_prison_cell *),
 474			       void *context,
 475			       struct dm_bio_prison_cell *cell)
 476{
 477	dm_cell_visit_release(pool->prison, fn, context, cell);
 478	dm_bio_prison_free_cell(pool->prison, cell);
 479}
 480
 481static void cell_release_no_holder(struct pool *pool,
 482				   struct dm_bio_prison_cell *cell,
 483				   struct bio_list *bios)
 484{
 485	dm_cell_release_no_holder(pool->prison, cell, bios);
 486	dm_bio_prison_free_cell(pool->prison, cell);
 487}
 488
 489static void cell_error_with_code(struct pool *pool,
 490		struct dm_bio_prison_cell *cell, blk_status_t error_code)
 491{
 492	dm_cell_error(pool->prison, cell, error_code);
 493	dm_bio_prison_free_cell(pool->prison, cell);
 494}
 495
 496static blk_status_t get_pool_io_error_code(struct pool *pool)
 497{
 498	return pool->out_of_data_space ? BLK_STS_NOSPC : BLK_STS_IOERR;
 499}
 500
 501static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
 502{
 503	cell_error_with_code(pool, cell, get_pool_io_error_code(pool));
 
 
 504}
 505
 506static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
 507{
 508	cell_error_with_code(pool, cell, 0);
 509}
 510
 511static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
 512{
 513	cell_error_with_code(pool, cell, BLK_STS_DM_REQUEUE);
 514}
 515
 516/*----------------------------------------------------------------*/
 517
 518/*
 519 * A global list of pools that uses a struct mapped_device as a key.
 520 */
 521static struct dm_thin_pool_table {
 522	struct mutex mutex;
 523	struct list_head pools;
 524} dm_thin_pool_table;
 525
 526static void pool_table_init(void)
 527{
 528	mutex_init(&dm_thin_pool_table.mutex);
 529	INIT_LIST_HEAD(&dm_thin_pool_table.pools);
 530}
 531
 532static void pool_table_exit(void)
 533{
 534	mutex_destroy(&dm_thin_pool_table.mutex);
 535}
 536
 537static void __pool_table_insert(struct pool *pool)
 538{
 539	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 540	list_add(&pool->list, &dm_thin_pool_table.pools);
 541}
 542
 543static void __pool_table_remove(struct pool *pool)
 544{
 545	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 546	list_del(&pool->list);
 547}
 548
 549static struct pool *__pool_table_lookup(struct mapped_device *md)
 550{
 551	struct pool *pool = NULL, *tmp;
 552
 553	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 554
 555	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
 556		if (tmp->pool_md == md) {
 557			pool = tmp;
 558			break;
 559		}
 560	}
 561
 562	return pool;
 563}
 564
 565static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
 566{
 567	struct pool *pool = NULL, *tmp;
 568
 569	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 570
 571	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
 572		if (tmp->md_dev == md_dev) {
 573			pool = tmp;
 574			break;
 575		}
 576	}
 577
 578	return pool;
 579}
 580
 581/*----------------------------------------------------------------*/
 582
 583struct dm_thin_endio_hook {
 584	struct thin_c *tc;
 585	struct dm_deferred_entry *shared_read_entry;
 586	struct dm_deferred_entry *all_io_entry;
 587	struct dm_thin_new_mapping *overwrite_mapping;
 588	struct rb_node rb_node;
 589	struct dm_bio_prison_cell *cell;
 590};
 591
 592static void __merge_bio_list(struct bio_list *bios, struct bio_list *master)
 593{
 594	bio_list_merge(bios, master);
 595	bio_list_init(master);
 596}
 597
 598static void error_bio_list(struct bio_list *bios, blk_status_t error)
 599{
 600	struct bio *bio;
 601
 602	while ((bio = bio_list_pop(bios))) {
 603		bio->bi_status = error;
 604		bio_endio(bio);
 605	}
 606}
 607
 608static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master,
 609		blk_status_t error)
 610{
 611	struct bio_list bios;
 
 612
 613	bio_list_init(&bios);
 614
 615	spin_lock_irq(&tc->lock);
 616	__merge_bio_list(&bios, master);
 617	spin_unlock_irq(&tc->lock);
 618
 619	error_bio_list(&bios, error);
 620}
 621
 622static void requeue_deferred_cells(struct thin_c *tc)
 623{
 624	struct pool *pool = tc->pool;
 
 625	struct list_head cells;
 626	struct dm_bio_prison_cell *cell, *tmp;
 627
 628	INIT_LIST_HEAD(&cells);
 629
 630	spin_lock_irq(&tc->lock);
 631	list_splice_init(&tc->deferred_cells, &cells);
 632	spin_unlock_irq(&tc->lock);
 633
 634	list_for_each_entry_safe(cell, tmp, &cells, user_list)
 635		cell_requeue(pool, cell);
 636}
 637
 638static void requeue_io(struct thin_c *tc)
 639{
 640	struct bio_list bios;
 
 641
 642	bio_list_init(&bios);
 643
 644	spin_lock_irq(&tc->lock);
 645	__merge_bio_list(&bios, &tc->deferred_bio_list);
 646	__merge_bio_list(&bios, &tc->retry_on_resume_list);
 647	spin_unlock_irq(&tc->lock);
 648
 649	error_bio_list(&bios, BLK_STS_DM_REQUEUE);
 650	requeue_deferred_cells(tc);
 651}
 652
 653static void error_retry_list_with_code(struct pool *pool, blk_status_t error)
 654{
 655	struct thin_c *tc;
 656
 657	rcu_read_lock();
 658	list_for_each_entry_rcu(tc, &pool->active_thins, list)
 659		error_thin_bio_list(tc, &tc->retry_on_resume_list, error);
 660	rcu_read_unlock();
 661}
 662
 663static void error_retry_list(struct pool *pool)
 664{
 665	error_retry_list_with_code(pool, get_pool_io_error_code(pool));
 
 
 666}
 667
 668/*
 669 * This section of code contains the logic for processing a thin device's IO.
 670 * Much of the code depends on pool object resources (lists, workqueues, etc)
 671 * but most is exclusively called from the thin target rather than the thin-pool
 672 * target.
 673 */
 674
 675static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
 676{
 677	struct pool *pool = tc->pool;
 678	sector_t block_nr = bio->bi_iter.bi_sector;
 679
 680	if (block_size_is_power_of_two(pool))
 681		block_nr >>= pool->sectors_per_block_shift;
 682	else
 683		(void) sector_div(block_nr, pool->sectors_per_block);
 684
 685	return block_nr;
 686}
 687
 688/*
 689 * Returns the _complete_ blocks that this bio covers.
 690 */
 691static void get_bio_block_range(struct thin_c *tc, struct bio *bio,
 692				dm_block_t *begin, dm_block_t *end)
 693{
 694	struct pool *pool = tc->pool;
 695	sector_t b = bio->bi_iter.bi_sector;
 696	sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT);
 697
 698	b += pool->sectors_per_block - 1ull; /* so we round up */
 699
 700	if (block_size_is_power_of_two(pool)) {
 701		b >>= pool->sectors_per_block_shift;
 702		e >>= pool->sectors_per_block_shift;
 703	} else {
 704		(void) sector_div(b, pool->sectors_per_block);
 705		(void) sector_div(e, pool->sectors_per_block);
 706	}
 707
 708	if (e < b)
 709		/* Can happen if the bio is within a single block. */
 710		e = b;
 711
 712	*begin = b;
 713	*end = e;
 714}
 715
 716static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
 717{
 718	struct pool *pool = tc->pool;
 719	sector_t bi_sector = bio->bi_iter.bi_sector;
 720
 721	bio_set_dev(bio, tc->pool_dev->bdev);
 722	if (block_size_is_power_of_two(pool))
 723		bio->bi_iter.bi_sector =
 724			(block << pool->sectors_per_block_shift) |
 725			(bi_sector & (pool->sectors_per_block - 1));
 726	else
 727		bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
 728				 sector_div(bi_sector, pool->sectors_per_block);
 729}
 730
 731static void remap_to_origin(struct thin_c *tc, struct bio *bio)
 732{
 733	bio_set_dev(bio, tc->origin_dev->bdev);
 734}
 735
 736static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
 737{
 738	return op_is_flush(bio->bi_opf) &&
 739		dm_thin_changed_this_transaction(tc->td);
 740}
 741
 742static void inc_all_io_entry(struct pool *pool, struct bio *bio)
 743{
 744	struct dm_thin_endio_hook *h;
 745
 746	if (bio_op(bio) == REQ_OP_DISCARD)
 747		return;
 748
 749	h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
 750	h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
 751}
 752
 753static void issue(struct thin_c *tc, struct bio *bio)
 754{
 755	struct pool *pool = tc->pool;
 
 756
 757	if (!bio_triggers_commit(tc, bio)) {
 758		dm_submit_bio_remap(bio, NULL);
 759		return;
 760	}
 761
 762	/*
 763	 * Complete bio with an error if earlier I/O caused changes to
 764	 * the metadata that can't be committed e.g, due to I/O errors
 765	 * on the metadata device.
 766	 */
 767	if (dm_thin_aborted_changes(tc->td)) {
 768		bio_io_error(bio);
 769		return;
 770	}
 771
 772	/*
 773	 * Batch together any bios that trigger commits and then issue a
 774	 * single commit for them in process_deferred_bios().
 775	 */
 776	spin_lock_irq(&pool->lock);
 777	bio_list_add(&pool->deferred_flush_bios, bio);
 778	spin_unlock_irq(&pool->lock);
 779}
 780
 781static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
 782{
 783	remap_to_origin(tc, bio);
 784	issue(tc, bio);
 785}
 786
 787static void remap_and_issue(struct thin_c *tc, struct bio *bio,
 788			    dm_block_t block)
 789{
 790	remap(tc, bio, block);
 791	issue(tc, bio);
 792}
 793
 794/*----------------------------------------------------------------*/
 795
 796/*
 797 * Bio endio functions.
 798 */
 799struct dm_thin_new_mapping {
 800	struct list_head list;
 801
 802	bool pass_discard:1;
 803	bool maybe_shared:1;
 804
 805	/*
 806	 * Track quiescing, copying and zeroing preparation actions.  When this
 807	 * counter hits zero the block is prepared and can be inserted into the
 808	 * btree.
 809	 */
 810	atomic_t prepare_actions;
 811
 812	blk_status_t status;
 813	struct thin_c *tc;
 814	dm_block_t virt_begin, virt_end;
 815	dm_block_t data_block;
 816	struct dm_bio_prison_cell *cell;
 817
 818	/*
 819	 * If the bio covers the whole area of a block then we can avoid
 820	 * zeroing or copying.  Instead this bio is hooked.  The bio will
 821	 * still be in the cell, so care has to be taken to avoid issuing
 822	 * the bio twice.
 823	 */
 824	struct bio *bio;
 825	bio_end_io_t *saved_bi_end_io;
 826};
 827
 828static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
 829{
 830	struct pool *pool = m->tc->pool;
 831
 832	if (atomic_dec_and_test(&m->prepare_actions)) {
 833		list_add_tail(&m->list, &pool->prepared_mappings);
 834		wake_worker(pool);
 835	}
 836}
 837
 838static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
 839{
 840	unsigned long flags;
 841	struct pool *pool = m->tc->pool;
 842
 843	spin_lock_irqsave(&pool->lock, flags);
 844	__complete_mapping_preparation(m);
 845	spin_unlock_irqrestore(&pool->lock, flags);
 846}
 847
 848static void copy_complete(int read_err, unsigned long write_err, void *context)
 849{
 850	struct dm_thin_new_mapping *m = context;
 851
 852	m->status = read_err || write_err ? BLK_STS_IOERR : 0;
 853	complete_mapping_preparation(m);
 854}
 855
 856static void overwrite_endio(struct bio *bio)
 857{
 858	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
 859	struct dm_thin_new_mapping *m = h->overwrite_mapping;
 860
 861	bio->bi_end_io = m->saved_bi_end_io;
 862
 863	m->status = bio->bi_status;
 864	complete_mapping_preparation(m);
 865}
 866
 867/*----------------------------------------------------------------*/
 868
 869/*
 870 * Workqueue.
 871 */
 872
 873/*
 874 * Prepared mapping jobs.
 875 */
 876
 877/*
 878 * This sends the bios in the cell, except the original holder, back
 879 * to the deferred_bios list.
 880 */
 881static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
 882{
 883	struct pool *pool = tc->pool;
 884	unsigned long flags;
 885	int has_work;
 886
 887	spin_lock_irqsave(&tc->lock, flags);
 888	cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
 889	has_work = !bio_list_empty(&tc->deferred_bio_list);
 890	spin_unlock_irqrestore(&tc->lock, flags);
 891
 892	if (has_work)
 893		wake_worker(pool);
 894}
 895
 896static void thin_defer_bio(struct thin_c *tc, struct bio *bio);
 897
 898struct remap_info {
 899	struct thin_c *tc;
 900	struct bio_list defer_bios;
 901	struct bio_list issue_bios;
 902};
 903
 904static void __inc_remap_and_issue_cell(void *context,
 905				       struct dm_bio_prison_cell *cell)
 906{
 907	struct remap_info *info = context;
 908	struct bio *bio;
 909
 910	while ((bio = bio_list_pop(&cell->bios))) {
 911		if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD)
 912			bio_list_add(&info->defer_bios, bio);
 913		else {
 914			inc_all_io_entry(info->tc->pool, bio);
 915
 916			/*
 917			 * We can't issue the bios with the bio prison lock
 918			 * held, so we add them to a list to issue on
 919			 * return from this function.
 920			 */
 921			bio_list_add(&info->issue_bios, bio);
 922		}
 923	}
 924}
 925
 926static void inc_remap_and_issue_cell(struct thin_c *tc,
 927				     struct dm_bio_prison_cell *cell,
 928				     dm_block_t block)
 929{
 930	struct bio *bio;
 931	struct remap_info info;
 932
 933	info.tc = tc;
 934	bio_list_init(&info.defer_bios);
 935	bio_list_init(&info.issue_bios);
 936
 937	/*
 938	 * We have to be careful to inc any bios we're about to issue
 939	 * before the cell is released, and avoid a race with new bios
 940	 * being added to the cell.
 941	 */
 942	cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
 943			   &info, cell);
 944
 945	while ((bio = bio_list_pop(&info.defer_bios)))
 946		thin_defer_bio(tc, bio);
 947
 948	while ((bio = bio_list_pop(&info.issue_bios)))
 949		remap_and_issue(info.tc, bio, block);
 950}
 951
 952static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
 953{
 954	cell_error(m->tc->pool, m->cell);
 955	list_del(&m->list);
 956	mempool_free(m, &m->tc->pool->mapping_pool);
 957}
 958
 959static void complete_overwrite_bio(struct thin_c *tc, struct bio *bio)
 960{
 961	struct pool *pool = tc->pool;
 962
 963	/*
 964	 * If the bio has the REQ_FUA flag set we must commit the metadata
 965	 * before signaling its completion.
 966	 */
 967	if (!bio_triggers_commit(tc, bio)) {
 968		bio_endio(bio);
 969		return;
 970	}
 971
 972	/*
 973	 * Complete bio with an error if earlier I/O caused changes to the
 974	 * metadata that can't be committed, e.g, due to I/O errors on the
 975	 * metadata device.
 976	 */
 977	if (dm_thin_aborted_changes(tc->td)) {
 978		bio_io_error(bio);
 979		return;
 980	}
 981
 982	/*
 983	 * Batch together any bios that trigger commits and then issue a
 984	 * single commit for them in process_deferred_bios().
 985	 */
 986	spin_lock_irq(&pool->lock);
 987	bio_list_add(&pool->deferred_flush_completions, bio);
 988	spin_unlock_irq(&pool->lock);
 989}
 990
 991static void process_prepared_mapping(struct dm_thin_new_mapping *m)
 992{
 993	struct thin_c *tc = m->tc;
 994	struct pool *pool = tc->pool;
 995	struct bio *bio = m->bio;
 996	int r;
 997
 998	if (m->status) {
 999		cell_error(pool, m->cell);
1000		goto out;
1001	}
1002
1003	/*
1004	 * Commit the prepared block into the mapping btree.
1005	 * Any I/O for this block arriving after this point will get
1006	 * remapped to it directly.
1007	 */
1008	r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block);
1009	if (r) {
1010		metadata_operation_failed(pool, "dm_thin_insert_block", r);
1011		cell_error(pool, m->cell);
1012		goto out;
1013	}
1014
1015	/*
1016	 * Release any bios held while the block was being provisioned.
1017	 * If we are processing a write bio that completely covers the block,
1018	 * we already processed it so can ignore it now when processing
1019	 * the bios in the cell.
1020	 */
1021	if (bio) {
1022		inc_remap_and_issue_cell(tc, m->cell, m->data_block);
1023		complete_overwrite_bio(tc, bio);
1024	} else {
1025		inc_all_io_entry(tc->pool, m->cell->holder);
1026		remap_and_issue(tc, m->cell->holder, m->data_block);
1027		inc_remap_and_issue_cell(tc, m->cell, m->data_block);
1028	}
1029
1030out:
1031	list_del(&m->list);
1032	mempool_free(m, &pool->mapping_pool);
1033}
1034
1035/*----------------------------------------------------------------*/
1036
1037static void free_discard_mapping(struct dm_thin_new_mapping *m)
1038{
1039	struct thin_c *tc = m->tc;
1040	if (m->cell)
1041		cell_defer_no_holder(tc, m->cell);
1042	mempool_free(m, &tc->pool->mapping_pool);
1043}
1044
1045static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
1046{
1047	bio_io_error(m->bio);
1048	free_discard_mapping(m);
1049}
1050
1051static void process_prepared_discard_success(struct dm_thin_new_mapping *m)
1052{
1053	bio_endio(m->bio);
1054	free_discard_mapping(m);
1055}
1056
1057static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m)
1058{
1059	int r;
1060	struct thin_c *tc = m->tc;
1061
1062	r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end);
1063	if (r) {
1064		metadata_operation_failed(tc->pool, "dm_thin_remove_range", r);
1065		bio_io_error(m->bio);
1066	} else
1067		bio_endio(m->bio);
1068
1069	cell_defer_no_holder(tc, m->cell);
1070	mempool_free(m, &tc->pool->mapping_pool);
1071}
1072
1073/*----------------------------------------------------------------*/
1074
1075static void passdown_double_checking_shared_status(struct dm_thin_new_mapping *m,
1076						   struct bio *discard_parent)
1077{
1078	/*
1079	 * We've already unmapped this range of blocks, but before we
1080	 * passdown we have to check that these blocks are now unused.
1081	 */
1082	int r = 0;
1083	bool shared = true;
1084	struct thin_c *tc = m->tc;
1085	struct pool *pool = tc->pool;
1086	dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin;
1087	struct discard_op op;
1088
1089	begin_discard(&op, tc, discard_parent);
1090	while (b != end) {
1091		/* find start of unmapped run */
1092		for (; b < end; b++) {
1093			r = dm_pool_block_is_shared(pool->pmd, b, &shared);
1094			if (r)
1095				goto out;
1096
1097			if (!shared)
1098				break;
1099		}
1100
1101		if (b == end)
1102			break;
1103
1104		/* find end of run */
1105		for (e = b + 1; e != end; e++) {
1106			r = dm_pool_block_is_shared(pool->pmd, e, &shared);
1107			if (r)
1108				goto out;
1109
1110			if (shared)
1111				break;
1112		}
1113
1114		r = issue_discard(&op, b, e);
1115		if (r)
1116			goto out;
1117
1118		b = e;
1119	}
1120out:
1121	end_discard(&op, r);
1122}
1123
1124static void queue_passdown_pt2(struct dm_thin_new_mapping *m)
1125{
1126	unsigned long flags;
1127	struct pool *pool = m->tc->pool;
1128
1129	spin_lock_irqsave(&pool->lock, flags);
1130	list_add_tail(&m->list, &pool->prepared_discards_pt2);
1131	spin_unlock_irqrestore(&pool->lock, flags);
1132	wake_worker(pool);
1133}
1134
1135static void passdown_endio(struct bio *bio)
1136{
1137	/*
1138	 * It doesn't matter if the passdown discard failed, we still want
1139	 * to unmap (we ignore err).
1140	 */
1141	queue_passdown_pt2(bio->bi_private);
1142	bio_put(bio);
1143}
1144
1145static void process_prepared_discard_passdown_pt1(struct dm_thin_new_mapping *m)
1146{
1147	int r;
1148	struct thin_c *tc = m->tc;
1149	struct pool *pool = tc->pool;
1150	struct bio *discard_parent;
1151	dm_block_t data_end = m->data_block + (m->virt_end - m->virt_begin);
1152
1153	/*
1154	 * Only this thread allocates blocks, so we can be sure that the
1155	 * newly unmapped blocks will not be allocated before the end of
1156	 * the function.
1157	 */
1158	r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end);
1159	if (r) {
1160		metadata_operation_failed(pool, "dm_thin_remove_range", r);
1161		bio_io_error(m->bio);
1162		cell_defer_no_holder(tc, m->cell);
1163		mempool_free(m, &pool->mapping_pool);
1164		return;
1165	}
1166
1167	/*
1168	 * Increment the unmapped blocks.  This prevents a race between the
1169	 * passdown io and reallocation of freed blocks.
1170	 */
1171	r = dm_pool_inc_data_range(pool->pmd, m->data_block, data_end);
1172	if (r) {
1173		metadata_operation_failed(pool, "dm_pool_inc_data_range", r);
1174		bio_io_error(m->bio);
1175		cell_defer_no_holder(tc, m->cell);
1176		mempool_free(m, &pool->mapping_pool);
1177		return;
1178	}
1179
1180	discard_parent = bio_alloc(NULL, 1, 0, GFP_NOIO);
1181	discard_parent->bi_end_io = passdown_endio;
1182	discard_parent->bi_private = m;
1183 	if (m->maybe_shared)
1184 		passdown_double_checking_shared_status(m, discard_parent);
1185 	else {
1186		struct discard_op op;
1187
1188		begin_discard(&op, tc, discard_parent);
1189		r = issue_discard(&op, m->data_block, data_end);
1190		end_discard(&op, r);
1191	}
1192}
1193
1194static void process_prepared_discard_passdown_pt2(struct dm_thin_new_mapping *m)
1195{
1196	int r;
1197	struct thin_c *tc = m->tc;
1198	struct pool *pool = tc->pool;
1199
1200	/*
1201	 * The passdown has completed, so now we can decrement all those
1202	 * unmapped blocks.
1203	 */
1204	r = dm_pool_dec_data_range(pool->pmd, m->data_block,
1205				   m->data_block + (m->virt_end - m->virt_begin));
1206	if (r) {
1207		metadata_operation_failed(pool, "dm_pool_dec_data_range", r);
1208		bio_io_error(m->bio);
1209	} else
1210		bio_endio(m->bio);
1211
1212	cell_defer_no_holder(tc, m->cell);
1213	mempool_free(m, &pool->mapping_pool);
1214}
1215
1216static void process_prepared(struct pool *pool, struct list_head *head,
1217			     process_mapping_fn *fn)
1218{
 
1219	struct list_head maps;
1220	struct dm_thin_new_mapping *m, *tmp;
1221
1222	INIT_LIST_HEAD(&maps);
1223	spin_lock_irq(&pool->lock);
1224	list_splice_init(head, &maps);
1225	spin_unlock_irq(&pool->lock);
1226
1227	list_for_each_entry_safe(m, tmp, &maps, list)
1228		(*fn)(m);
1229}
1230
1231/*
1232 * Deferred bio jobs.
1233 */
1234static int io_overlaps_block(struct pool *pool, struct bio *bio)
1235{
1236	return bio->bi_iter.bi_size ==
1237		(pool->sectors_per_block << SECTOR_SHIFT);
1238}
1239
1240static int io_overwrites_block(struct pool *pool, struct bio *bio)
1241{
1242	return (bio_data_dir(bio) == WRITE) &&
1243		io_overlaps_block(pool, bio);
1244}
1245
1246static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
1247			       bio_end_io_t *fn)
1248{
1249	*save = bio->bi_end_io;
1250	bio->bi_end_io = fn;
1251}
1252
1253static int ensure_next_mapping(struct pool *pool)
1254{
1255	if (pool->next_mapping)
1256		return 0;
1257
1258	pool->next_mapping = mempool_alloc(&pool->mapping_pool, GFP_ATOMIC);
1259
1260	return pool->next_mapping ? 0 : -ENOMEM;
1261}
1262
1263static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
1264{
1265	struct dm_thin_new_mapping *m = pool->next_mapping;
1266
1267	BUG_ON(!pool->next_mapping);
1268
1269	memset(m, 0, sizeof(struct dm_thin_new_mapping));
1270	INIT_LIST_HEAD(&m->list);
1271	m->bio = NULL;
1272
1273	pool->next_mapping = NULL;
1274
1275	return m;
1276}
1277
1278static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
1279		    sector_t begin, sector_t end)
1280{
 
1281	struct dm_io_region to;
1282
1283	to.bdev = tc->pool_dev->bdev;
1284	to.sector = begin;
1285	to.count = end - begin;
1286
1287	dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
 
 
 
 
1288}
1289
1290static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
1291				      dm_block_t data_begin,
1292				      struct dm_thin_new_mapping *m)
1293{
1294	struct pool *pool = tc->pool;
1295	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1296
1297	h->overwrite_mapping = m;
1298	m->bio = bio;
1299	save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1300	inc_all_io_entry(pool, bio);
1301	remap_and_issue(tc, bio, data_begin);
1302}
1303
1304/*
1305 * A partial copy also needs to zero the uncopied region.
1306 */
1307static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
1308			  struct dm_dev *origin, dm_block_t data_origin,
1309			  dm_block_t data_dest,
1310			  struct dm_bio_prison_cell *cell, struct bio *bio,
1311			  sector_t len)
1312{
 
1313	struct pool *pool = tc->pool;
1314	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1315
1316	m->tc = tc;
1317	m->virt_begin = virt_block;
1318	m->virt_end = virt_block + 1u;
1319	m->data_block = data_dest;
1320	m->cell = cell;
1321
1322	/*
1323	 * quiesce action + copy action + an extra reference held for the
1324	 * duration of this function (we may need to inc later for a
1325	 * partial zero).
1326	 */
1327	atomic_set(&m->prepare_actions, 3);
1328
1329	if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
1330		complete_mapping_preparation(m); /* already quiesced */
1331
1332	/*
1333	 * IO to pool_dev remaps to the pool target's data_dev.
1334	 *
1335	 * If the whole block of data is being overwritten, we can issue the
1336	 * bio immediately. Otherwise we use kcopyd to clone the data first.
1337	 */
1338	if (io_overwrites_block(pool, bio))
1339		remap_and_issue_overwrite(tc, bio, data_dest, m);
1340	else {
1341		struct dm_io_region from, to;
1342
1343		from.bdev = origin->bdev;
1344		from.sector = data_origin * pool->sectors_per_block;
1345		from.count = len;
1346
1347		to.bdev = tc->pool_dev->bdev;
1348		to.sector = data_dest * pool->sectors_per_block;
1349		to.count = len;
1350
1351		dm_kcopyd_copy(pool->copier, &from, 1, &to,
1352			       0, copy_complete, m);
 
 
 
 
 
 
 
 
 
 
 
1353
1354		/*
1355		 * Do we need to zero a tail region?
1356		 */
1357		if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
1358			atomic_inc(&m->prepare_actions);
1359			ll_zero(tc, m,
1360				data_dest * pool->sectors_per_block + len,
1361				(data_dest + 1) * pool->sectors_per_block);
1362		}
1363	}
1364
1365	complete_mapping_preparation(m); /* drop our ref */
1366}
1367
1368static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1369				   dm_block_t data_origin, dm_block_t data_dest,
1370				   struct dm_bio_prison_cell *cell, struct bio *bio)
1371{
1372	schedule_copy(tc, virt_block, tc->pool_dev,
1373		      data_origin, data_dest, cell, bio,
1374		      tc->pool->sectors_per_block);
1375}
1376
1377static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1378			  dm_block_t data_block, struct dm_bio_prison_cell *cell,
1379			  struct bio *bio)
1380{
1381	struct pool *pool = tc->pool;
1382	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1383
1384	atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
1385	m->tc = tc;
1386	m->virt_begin = virt_block;
1387	m->virt_end = virt_block + 1u;
1388	m->data_block = data_block;
1389	m->cell = cell;
1390
1391	/*
1392	 * If the whole block of data is being overwritten or we are not
1393	 * zeroing pre-existing data, we can issue the bio immediately.
1394	 * Otherwise we use kcopyd to zero the data first.
1395	 */
1396	if (pool->pf.zero_new_blocks) {
1397		if (io_overwrites_block(pool, bio))
1398			remap_and_issue_overwrite(tc, bio, data_block, m);
1399		else
1400			ll_zero(tc, m, data_block * pool->sectors_per_block,
1401				(data_block + 1) * pool->sectors_per_block);
1402	} else
1403		process_prepared_mapping(m);
1404}
1405
1406static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1407				   dm_block_t data_dest,
1408				   struct dm_bio_prison_cell *cell, struct bio *bio)
1409{
1410	struct pool *pool = tc->pool;
1411	sector_t virt_block_begin = virt_block * pool->sectors_per_block;
1412	sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
1413
1414	if (virt_block_end <= tc->origin_size)
1415		schedule_copy(tc, virt_block, tc->origin_dev,
1416			      virt_block, data_dest, cell, bio,
1417			      pool->sectors_per_block);
1418
1419	else if (virt_block_begin < tc->origin_size)
1420		schedule_copy(tc, virt_block, tc->origin_dev,
1421			      virt_block, data_dest, cell, bio,
1422			      tc->origin_size - virt_block_begin);
1423
1424	else
1425		schedule_zero(tc, virt_block, data_dest, cell, bio);
1426}
1427
1428static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
1429
1430static void requeue_bios(struct pool *pool);
1431
1432static bool is_read_only_pool_mode(enum pool_mode mode)
1433{
1434	return (mode == PM_OUT_OF_METADATA_SPACE || mode == PM_READ_ONLY);
1435}
1436
1437static bool is_read_only(struct pool *pool)
1438{
1439	return is_read_only_pool_mode(get_pool_mode(pool));
1440}
1441
1442static void check_for_metadata_space(struct pool *pool)
1443{
1444	int r;
1445	const char *ooms_reason = NULL;
1446	dm_block_t nr_free;
1447
1448	r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free);
1449	if (r)
1450		ooms_reason = "Could not get free metadata blocks";
1451	else if (!nr_free)
1452		ooms_reason = "No free metadata blocks";
1453
1454	if (ooms_reason && !is_read_only(pool)) {
1455		DMERR("%s", ooms_reason);
1456		set_pool_mode(pool, PM_OUT_OF_METADATA_SPACE);
1457	}
1458}
1459
1460static void check_for_data_space(struct pool *pool)
1461{
1462	int r;
1463	dm_block_t nr_free;
1464
1465	if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE)
1466		return;
1467
1468	r = dm_pool_get_free_block_count(pool->pmd, &nr_free);
1469	if (r)
1470		return;
1471
1472	if (nr_free) {
1473		set_pool_mode(pool, PM_WRITE);
1474		requeue_bios(pool);
1475	}
1476}
1477
1478/*
1479 * A non-zero return indicates read_only or fail_io mode.
1480 * Many callers don't care about the return value.
1481 */
1482static int commit(struct pool *pool)
1483{
1484	int r;
1485
1486	if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE)
1487		return -EINVAL;
1488
1489	r = dm_pool_commit_metadata(pool->pmd);
1490	if (r)
1491		metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1492	else {
1493		check_for_metadata_space(pool);
1494		check_for_data_space(pool);
1495	}
1496
1497	return r;
1498}
1499
1500static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
1501{
 
 
1502	if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1503		DMWARN("%s: reached low water mark for data device: sending event.",
1504		       dm_device_name(pool->pool_md));
1505		spin_lock_irq(&pool->lock);
1506		pool->low_water_triggered = true;
1507		spin_unlock_irq(&pool->lock);
1508		dm_table_event(pool->ti->table);
1509	}
1510}
1511
1512static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1513{
1514	int r;
1515	dm_block_t free_blocks;
1516	struct pool *pool = tc->pool;
1517
1518	if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1519		return -EINVAL;
1520
1521	r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1522	if (r) {
1523		metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1524		return r;
1525	}
1526
1527	check_low_water_mark(pool, free_blocks);
1528
1529	if (!free_blocks) {
1530		/*
1531		 * Try to commit to see if that will free up some
1532		 * more space.
1533		 */
1534		r = commit(pool);
1535		if (r)
1536			return r;
1537
1538		r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1539		if (r) {
1540			metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1541			return r;
1542		}
1543
1544		if (!free_blocks) {
1545			set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1546			return -ENOSPC;
1547		}
1548	}
1549
1550	r = dm_pool_alloc_data_block(pool->pmd, result);
1551	if (r) {
1552		if (r == -ENOSPC)
1553			set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1554		else
1555			metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1556		return r;
1557	}
1558
1559	r = dm_pool_get_free_metadata_block_count(pool->pmd, &free_blocks);
1560	if (r) {
1561		metadata_operation_failed(pool, "dm_pool_get_free_metadata_block_count", r);
1562		return r;
1563	}
1564
1565	if (!free_blocks) {
1566		/* Let's commit before we use up the metadata reserve. */
1567		r = commit(pool);
1568		if (r)
1569			return r;
1570	}
1571
1572	return 0;
1573}
1574
1575/*
1576 * If we have run out of space, queue bios until the device is
1577 * resumed, presumably after having been reloaded with more space.
1578 */
1579static void retry_on_resume(struct bio *bio)
1580{
1581	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1582	struct thin_c *tc = h->tc;
 
1583
1584	spin_lock_irq(&tc->lock);
1585	bio_list_add(&tc->retry_on_resume_list, bio);
1586	spin_unlock_irq(&tc->lock);
1587}
1588
1589static blk_status_t should_error_unserviceable_bio(struct pool *pool)
1590{
1591	enum pool_mode m = get_pool_mode(pool);
1592
1593	switch (m) {
1594	case PM_WRITE:
1595		/* Shouldn't get here */
1596		DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1597		return BLK_STS_IOERR;
1598
1599	case PM_OUT_OF_DATA_SPACE:
1600		return pool->pf.error_if_no_space ? BLK_STS_NOSPC : 0;
1601
1602	case PM_OUT_OF_METADATA_SPACE:
1603	case PM_READ_ONLY:
1604	case PM_FAIL:
1605		return BLK_STS_IOERR;
1606	default:
1607		/* Shouldn't get here */
1608		DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1609		return BLK_STS_IOERR;
1610	}
1611}
1612
1613static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1614{
1615	blk_status_t error = should_error_unserviceable_bio(pool);
1616
1617	if (error) {
1618		bio->bi_status = error;
1619		bio_endio(bio);
1620	} else
1621		retry_on_resume(bio);
1622}
1623
1624static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1625{
1626	struct bio *bio;
1627	struct bio_list bios;
1628	blk_status_t error;
1629
1630	error = should_error_unserviceable_bio(pool);
1631	if (error) {
1632		cell_error_with_code(pool, cell, error);
1633		return;
1634	}
1635
1636	bio_list_init(&bios);
1637	cell_release(pool, cell, &bios);
1638
1639	while ((bio = bio_list_pop(&bios)))
1640		retry_on_resume(bio);
1641}
1642
1643static void process_discard_cell_no_passdown(struct thin_c *tc,
1644					     struct dm_bio_prison_cell *virt_cell)
1645{
1646	struct pool *pool = tc->pool;
1647	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1648
1649	/*
1650	 * We don't need to lock the data blocks, since there's no
1651	 * passdown.  We only lock data blocks for allocation and breaking sharing.
1652	 */
1653	m->tc = tc;
1654	m->virt_begin = virt_cell->key.block_begin;
1655	m->virt_end = virt_cell->key.block_end;
1656	m->cell = virt_cell;
1657	m->bio = virt_cell->holder;
1658
1659	if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1660		pool->process_prepared_discard(m);
1661}
1662
 
 
 
 
 
 
 
 
 
 
 
1663static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end,
1664				 struct bio *bio)
1665{
1666	struct pool *pool = tc->pool;
1667
1668	int r;
1669	bool maybe_shared;
1670	struct dm_cell_key data_key;
1671	struct dm_bio_prison_cell *data_cell;
1672	struct dm_thin_new_mapping *m;
1673	dm_block_t virt_begin, virt_end, data_begin;
1674
1675	while (begin != end) {
1676		r = ensure_next_mapping(pool);
1677		if (r)
1678			/* we did our best */
1679			return;
1680
1681		r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end,
1682					      &data_begin, &maybe_shared);
1683		if (r)
1684			/*
1685			 * Silently fail, letting any mappings we've
1686			 * created complete.
1687			 */
1688			break;
1689
1690		build_key(tc->td, PHYSICAL, data_begin, data_begin + (virt_end - virt_begin), &data_key);
1691		if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) {
1692			/* contention, we'll give up with this range */
1693			begin = virt_end;
1694			continue;
1695		}
1696
1697		/*
1698		 * IO may still be going to the destination block.  We must
1699		 * quiesce before we can do the removal.
1700		 */
1701		m = get_next_mapping(pool);
1702		m->tc = tc;
1703		m->maybe_shared = maybe_shared;
1704		m->virt_begin = virt_begin;
1705		m->virt_end = virt_end;
1706		m->data_block = data_begin;
1707		m->cell = data_cell;
1708		m->bio = bio;
1709
1710		/*
1711		 * The parent bio must not complete before sub discard bios are
1712		 * chained to it (see end_discard's bio_chain)!
1713		 *
1714		 * This per-mapping bi_remaining increment is paired with
1715		 * the implicit decrement that occurs via bio_endio() in
1716		 * end_discard().
1717		 */
1718		bio_inc_remaining(bio);
1719		if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1720			pool->process_prepared_discard(m);
1721
1722		begin = virt_end;
1723	}
1724}
1725
1726static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell)
1727{
1728	struct bio *bio = virt_cell->holder;
1729	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1730
1731	/*
1732	 * The virt_cell will only get freed once the origin bio completes.
1733	 * This means it will remain locked while all the individual
1734	 * passdown bios are in flight.
1735	 */
1736	h->cell = virt_cell;
1737	break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio);
1738
1739	/*
1740	 * We complete the bio now, knowing that the bi_remaining field
1741	 * will prevent completion until the sub range discards have
1742	 * completed.
1743	 */
1744	bio_endio(bio);
1745}
1746
1747static void process_discard_bio(struct thin_c *tc, struct bio *bio)
1748{
1749	dm_block_t begin, end;
1750	struct dm_cell_key virt_key;
1751	struct dm_bio_prison_cell *virt_cell;
1752
1753	get_bio_block_range(tc, bio, &begin, &end);
1754	if (begin == end) {
1755		/*
1756		 * The discard covers less than a block.
1757		 */
1758		bio_endio(bio);
1759		return;
1760	}
1761
1762	build_key(tc->td, VIRTUAL, begin, end, &virt_key);
1763	if (bio_detain(tc->pool, &virt_key, bio, &virt_cell))
1764		/*
1765		 * Potential starvation issue: We're relying on the
1766		 * fs/application being well behaved, and not trying to
1767		 * send IO to a region at the same time as discarding it.
1768		 * If they do this persistently then it's possible this
1769		 * cell will never be granted.
1770		 */
1771		return;
1772
1773	tc->pool->process_discard_cell(tc, virt_cell);
1774}
1775
1776static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1777			  struct dm_cell_key *key,
1778			  struct dm_thin_lookup_result *lookup_result,
1779			  struct dm_bio_prison_cell *cell)
1780{
1781	int r;
1782	dm_block_t data_block;
1783	struct pool *pool = tc->pool;
1784
1785	r = alloc_data_block(tc, &data_block);
1786	switch (r) {
1787	case 0:
1788		schedule_internal_copy(tc, block, lookup_result->block,
1789				       data_block, cell, bio);
1790		break;
1791
1792	case -ENOSPC:
1793		retry_bios_on_resume(pool, cell);
1794		break;
1795
1796	default:
1797		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1798			    __func__, r);
1799		cell_error(pool, cell);
1800		break;
1801	}
1802}
1803
1804static void __remap_and_issue_shared_cell(void *context,
1805					  struct dm_bio_prison_cell *cell)
1806{
1807	struct remap_info *info = context;
1808	struct bio *bio;
1809
1810	while ((bio = bio_list_pop(&cell->bios))) {
1811		if (bio_data_dir(bio) == WRITE || op_is_flush(bio->bi_opf) ||
1812		    bio_op(bio) == REQ_OP_DISCARD)
1813			bio_list_add(&info->defer_bios, bio);
1814		else {
1815			struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1816
1817			h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds);
1818			inc_all_io_entry(info->tc->pool, bio);
1819			bio_list_add(&info->issue_bios, bio);
1820		}
1821	}
1822}
1823
1824static void remap_and_issue_shared_cell(struct thin_c *tc,
1825					struct dm_bio_prison_cell *cell,
1826					dm_block_t block)
1827{
1828	struct bio *bio;
1829	struct remap_info info;
1830
1831	info.tc = tc;
1832	bio_list_init(&info.defer_bios);
1833	bio_list_init(&info.issue_bios);
1834
1835	cell_visit_release(tc->pool, __remap_and_issue_shared_cell,
1836			   &info, cell);
1837
1838	while ((bio = bio_list_pop(&info.defer_bios)))
1839		thin_defer_bio(tc, bio);
1840
1841	while ((bio = bio_list_pop(&info.issue_bios)))
1842		remap_and_issue(tc, bio, block);
1843}
1844
1845static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1846			       dm_block_t block,
1847			       struct dm_thin_lookup_result *lookup_result,
1848			       struct dm_bio_prison_cell *virt_cell)
1849{
1850	struct dm_bio_prison_cell *data_cell;
1851	struct pool *pool = tc->pool;
1852	struct dm_cell_key key;
1853
1854	/*
1855	 * If cell is already occupied, then sharing is already in the process
1856	 * of being broken so we have nothing further to do here.
1857	 */
1858	build_data_key(tc->td, lookup_result->block, &key);
1859	if (bio_detain(pool, &key, bio, &data_cell)) {
1860		cell_defer_no_holder(tc, virt_cell);
1861		return;
1862	}
1863
1864	if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) {
1865		break_sharing(tc, bio, block, &key, lookup_result, data_cell);
1866		cell_defer_no_holder(tc, virt_cell);
1867	} else {
1868		struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1869
1870		h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1871		inc_all_io_entry(pool, bio);
1872		remap_and_issue(tc, bio, lookup_result->block);
1873
1874		remap_and_issue_shared_cell(tc, data_cell, lookup_result->block);
1875		remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block);
1876	}
1877}
1878
1879static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1880			    struct dm_bio_prison_cell *cell)
1881{
1882	int r;
1883	dm_block_t data_block;
1884	struct pool *pool = tc->pool;
1885
1886	/*
1887	 * Remap empty bios (flushes) immediately, without provisioning.
1888	 */
1889	if (!bio->bi_iter.bi_size) {
1890		inc_all_io_entry(pool, bio);
1891		cell_defer_no_holder(tc, cell);
1892
1893		remap_and_issue(tc, bio, 0);
1894		return;
1895	}
1896
1897	/*
1898	 * Fill read bios with zeroes and complete them immediately.
1899	 */
1900	if (bio_data_dir(bio) == READ) {
1901		zero_fill_bio(bio);
1902		cell_defer_no_holder(tc, cell);
1903		bio_endio(bio);
1904		return;
1905	}
1906
1907	r = alloc_data_block(tc, &data_block);
1908	switch (r) {
1909	case 0:
1910		if (tc->origin_dev)
1911			schedule_external_copy(tc, block, data_block, cell, bio);
1912		else
1913			schedule_zero(tc, block, data_block, cell, bio);
1914		break;
1915
1916	case -ENOSPC:
1917		retry_bios_on_resume(pool, cell);
1918		break;
1919
1920	default:
1921		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1922			    __func__, r);
1923		cell_error(pool, cell);
1924		break;
1925	}
1926}
1927
1928static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1929{
1930	int r;
1931	struct pool *pool = tc->pool;
1932	struct bio *bio = cell->holder;
1933	dm_block_t block = get_bio_block(tc, bio);
1934	struct dm_thin_lookup_result lookup_result;
1935
1936	if (tc->requeue_mode) {
1937		cell_requeue(pool, cell);
1938		return;
1939	}
1940
1941	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1942	switch (r) {
1943	case 0:
1944		if (lookup_result.shared)
1945			process_shared_bio(tc, bio, block, &lookup_result, cell);
1946		else {
1947			inc_all_io_entry(pool, bio);
1948			remap_and_issue(tc, bio, lookup_result.block);
1949			inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1950		}
1951		break;
1952
1953	case -ENODATA:
1954		if (bio_data_dir(bio) == READ && tc->origin_dev) {
1955			inc_all_io_entry(pool, bio);
1956			cell_defer_no_holder(tc, cell);
1957
1958			if (bio_end_sector(bio) <= tc->origin_size)
1959				remap_to_origin_and_issue(tc, bio);
1960
1961			else if (bio->bi_iter.bi_sector < tc->origin_size) {
1962				zero_fill_bio(bio);
1963				bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
1964				remap_to_origin_and_issue(tc, bio);
1965
1966			} else {
1967				zero_fill_bio(bio);
1968				bio_endio(bio);
1969			}
1970		} else
1971			provision_block(tc, bio, block, cell);
1972		break;
1973
1974	default:
1975		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1976			    __func__, r);
1977		cell_defer_no_holder(tc, cell);
1978		bio_io_error(bio);
1979		break;
1980	}
1981}
1982
1983static void process_bio(struct thin_c *tc, struct bio *bio)
1984{
1985	struct pool *pool = tc->pool;
1986	dm_block_t block = get_bio_block(tc, bio);
1987	struct dm_bio_prison_cell *cell;
1988	struct dm_cell_key key;
1989
1990	/*
1991	 * If cell is already occupied, then the block is already
1992	 * being provisioned so we have nothing further to do here.
1993	 */
1994	build_virtual_key(tc->td, block, &key);
1995	if (bio_detain(pool, &key, bio, &cell))
1996		return;
1997
1998	process_cell(tc, cell);
1999}
2000
2001static void __process_bio_read_only(struct thin_c *tc, struct bio *bio,
2002				    struct dm_bio_prison_cell *cell)
2003{
2004	int r;
2005	int rw = bio_data_dir(bio);
2006	dm_block_t block = get_bio_block(tc, bio);
2007	struct dm_thin_lookup_result lookup_result;
2008
2009	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
2010	switch (r) {
2011	case 0:
2012		if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) {
2013			handle_unserviceable_bio(tc->pool, bio);
2014			if (cell)
2015				cell_defer_no_holder(tc, cell);
2016		} else {
2017			inc_all_io_entry(tc->pool, bio);
2018			remap_and_issue(tc, bio, lookup_result.block);
2019			if (cell)
2020				inc_remap_and_issue_cell(tc, cell, lookup_result.block);
2021		}
2022		break;
2023
2024	case -ENODATA:
2025		if (cell)
2026			cell_defer_no_holder(tc, cell);
2027		if (rw != READ) {
2028			handle_unserviceable_bio(tc->pool, bio);
2029			break;
2030		}
2031
2032		if (tc->origin_dev) {
2033			inc_all_io_entry(tc->pool, bio);
2034			remap_to_origin_and_issue(tc, bio);
2035			break;
2036		}
2037
2038		zero_fill_bio(bio);
2039		bio_endio(bio);
2040		break;
2041
2042	default:
2043		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
2044			    __func__, r);
2045		if (cell)
2046			cell_defer_no_holder(tc, cell);
2047		bio_io_error(bio);
2048		break;
2049	}
2050}
2051
2052static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
2053{
2054	__process_bio_read_only(tc, bio, NULL);
2055}
2056
2057static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2058{
2059	__process_bio_read_only(tc, cell->holder, cell);
2060}
2061
2062static void process_bio_success(struct thin_c *tc, struct bio *bio)
2063{
2064	bio_endio(bio);
2065}
2066
2067static void process_bio_fail(struct thin_c *tc, struct bio *bio)
2068{
2069	bio_io_error(bio);
2070}
2071
2072static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2073{
2074	cell_success(tc->pool, cell);
2075}
2076
2077static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2078{
2079	cell_error(tc->pool, cell);
2080}
2081
2082/*
2083 * FIXME: should we also commit due to size of transaction, measured in
2084 * metadata blocks?
2085 */
2086static int need_commit_due_to_time(struct pool *pool)
2087{
2088	return !time_in_range(jiffies, pool->last_commit_jiffies,
2089			      pool->last_commit_jiffies + COMMIT_PERIOD);
2090}
2091
2092#define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
2093#define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
2094
2095static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
2096{
2097	struct rb_node **rbp, *parent;
2098	struct dm_thin_endio_hook *pbd;
2099	sector_t bi_sector = bio->bi_iter.bi_sector;
2100
2101	rbp = &tc->sort_bio_list.rb_node;
2102	parent = NULL;
2103	while (*rbp) {
2104		parent = *rbp;
2105		pbd = thin_pbd(parent);
2106
2107		if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
2108			rbp = &(*rbp)->rb_left;
2109		else
2110			rbp = &(*rbp)->rb_right;
2111	}
2112
2113	pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2114	rb_link_node(&pbd->rb_node, parent, rbp);
2115	rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
2116}
2117
2118static void __extract_sorted_bios(struct thin_c *tc)
2119{
2120	struct rb_node *node;
2121	struct dm_thin_endio_hook *pbd;
2122	struct bio *bio;
2123
2124	for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
2125		pbd = thin_pbd(node);
2126		bio = thin_bio(pbd);
2127
2128		bio_list_add(&tc->deferred_bio_list, bio);
2129		rb_erase(&pbd->rb_node, &tc->sort_bio_list);
2130	}
2131
2132	WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
2133}
2134
2135static void __sort_thin_deferred_bios(struct thin_c *tc)
2136{
2137	struct bio *bio;
2138	struct bio_list bios;
2139
2140	bio_list_init(&bios);
2141	bio_list_merge(&bios, &tc->deferred_bio_list);
2142	bio_list_init(&tc->deferred_bio_list);
2143
2144	/* Sort deferred_bio_list using rb-tree */
2145	while ((bio = bio_list_pop(&bios)))
2146		__thin_bio_rb_add(tc, bio);
2147
2148	/*
2149	 * Transfer the sorted bios in sort_bio_list back to
2150	 * deferred_bio_list to allow lockless submission of
2151	 * all bios.
2152	 */
2153	__extract_sorted_bios(tc);
2154}
2155
2156static void process_thin_deferred_bios(struct thin_c *tc)
2157{
2158	struct pool *pool = tc->pool;
 
2159	struct bio *bio;
2160	struct bio_list bios;
2161	struct blk_plug plug;
2162	unsigned count = 0;
2163
2164	if (tc->requeue_mode) {
2165		error_thin_bio_list(tc, &tc->deferred_bio_list,
2166				BLK_STS_DM_REQUEUE);
2167		return;
2168	}
2169
2170	bio_list_init(&bios);
2171
2172	spin_lock_irq(&tc->lock);
2173
2174	if (bio_list_empty(&tc->deferred_bio_list)) {
2175		spin_unlock_irq(&tc->lock);
2176		return;
2177	}
2178
2179	__sort_thin_deferred_bios(tc);
2180
2181	bio_list_merge(&bios, &tc->deferred_bio_list);
2182	bio_list_init(&tc->deferred_bio_list);
2183
2184	spin_unlock_irq(&tc->lock);
2185
2186	blk_start_plug(&plug);
2187	while ((bio = bio_list_pop(&bios))) {
2188		/*
2189		 * If we've got no free new_mapping structs, and processing
2190		 * this bio might require one, we pause until there are some
2191		 * prepared mappings to process.
2192		 */
2193		if (ensure_next_mapping(pool)) {
2194			spin_lock_irq(&tc->lock);
2195			bio_list_add(&tc->deferred_bio_list, bio);
2196			bio_list_merge(&tc->deferred_bio_list, &bios);
2197			spin_unlock_irq(&tc->lock);
2198			break;
2199		}
2200
2201		if (bio_op(bio) == REQ_OP_DISCARD)
2202			pool->process_discard(tc, bio);
2203		else
2204			pool->process_bio(tc, bio);
2205
2206		if ((count++ & 127) == 0) {
2207			throttle_work_update(&pool->throttle);
2208			dm_pool_issue_prefetches(pool->pmd);
2209		}
2210	}
2211	blk_finish_plug(&plug);
2212}
2213
2214static int cmp_cells(const void *lhs, const void *rhs)
2215{
2216	struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs);
2217	struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs);
2218
2219	BUG_ON(!lhs_cell->holder);
2220	BUG_ON(!rhs_cell->holder);
2221
2222	if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector)
2223		return -1;
2224
2225	if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector)
2226		return 1;
2227
2228	return 0;
2229}
2230
2231static unsigned sort_cells(struct pool *pool, struct list_head *cells)
2232{
2233	unsigned count = 0;
2234	struct dm_bio_prison_cell *cell, *tmp;
2235
2236	list_for_each_entry_safe(cell, tmp, cells, user_list) {
2237		if (count >= CELL_SORT_ARRAY_SIZE)
2238			break;
2239
2240		pool->cell_sort_array[count++] = cell;
2241		list_del(&cell->user_list);
2242	}
2243
2244	sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL);
2245
2246	return count;
2247}
2248
2249static void process_thin_deferred_cells(struct thin_c *tc)
2250{
2251	struct pool *pool = tc->pool;
 
2252	struct list_head cells;
2253	struct dm_bio_prison_cell *cell;
2254	unsigned i, j, count;
2255
2256	INIT_LIST_HEAD(&cells);
2257
2258	spin_lock_irq(&tc->lock);
2259	list_splice_init(&tc->deferred_cells, &cells);
2260	spin_unlock_irq(&tc->lock);
2261
2262	if (list_empty(&cells))
2263		return;
2264
2265	do {
2266		count = sort_cells(tc->pool, &cells);
2267
2268		for (i = 0; i < count; i++) {
2269			cell = pool->cell_sort_array[i];
2270			BUG_ON(!cell->holder);
2271
2272			/*
2273			 * If we've got no free new_mapping structs, and processing
2274			 * this bio might require one, we pause until there are some
2275			 * prepared mappings to process.
2276			 */
2277			if (ensure_next_mapping(pool)) {
2278				for (j = i; j < count; j++)
2279					list_add(&pool->cell_sort_array[j]->user_list, &cells);
2280
2281				spin_lock_irq(&tc->lock);
2282				list_splice(&cells, &tc->deferred_cells);
2283				spin_unlock_irq(&tc->lock);
2284				return;
2285			}
2286
2287			if (bio_op(cell->holder) == REQ_OP_DISCARD)
2288				pool->process_discard_cell(tc, cell);
2289			else
2290				pool->process_cell(tc, cell);
2291		}
2292	} while (!list_empty(&cells));
2293}
2294
2295static void thin_get(struct thin_c *tc);
2296static void thin_put(struct thin_c *tc);
2297
2298/*
2299 * We can't hold rcu_read_lock() around code that can block.  So we
2300 * find a thin with the rcu lock held; bump a refcount; then drop
2301 * the lock.
2302 */
2303static struct thin_c *get_first_thin(struct pool *pool)
2304{
2305	struct thin_c *tc = NULL;
2306
2307	rcu_read_lock();
2308	if (!list_empty(&pool->active_thins)) {
2309		tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
2310		thin_get(tc);
2311	}
2312	rcu_read_unlock();
2313
2314	return tc;
2315}
2316
2317static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
2318{
2319	struct thin_c *old_tc = tc;
2320
2321	rcu_read_lock();
2322	list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
2323		thin_get(tc);
2324		thin_put(old_tc);
2325		rcu_read_unlock();
2326		return tc;
2327	}
2328	thin_put(old_tc);
2329	rcu_read_unlock();
2330
2331	return NULL;
2332}
2333
2334static void process_deferred_bios(struct pool *pool)
2335{
 
2336	struct bio *bio;
2337	struct bio_list bios, bio_completions;
2338	struct thin_c *tc;
2339
2340	tc = get_first_thin(pool);
2341	while (tc) {
2342		process_thin_deferred_cells(tc);
2343		process_thin_deferred_bios(tc);
2344		tc = get_next_thin(pool, tc);
2345	}
2346
2347	/*
2348	 * If there are any deferred flush bios, we must commit the metadata
2349	 * before issuing them or signaling their completion.
2350	 */
2351	bio_list_init(&bios);
2352	bio_list_init(&bio_completions);
2353
2354	spin_lock_irq(&pool->lock);
2355	bio_list_merge(&bios, &pool->deferred_flush_bios);
2356	bio_list_init(&pool->deferred_flush_bios);
 
2357
2358	bio_list_merge(&bio_completions, &pool->deferred_flush_completions);
2359	bio_list_init(&pool->deferred_flush_completions);
2360	spin_unlock_irq(&pool->lock);
2361
2362	if (bio_list_empty(&bios) && bio_list_empty(&bio_completions) &&
2363	    !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
2364		return;
2365
2366	if (commit(pool)) {
2367		bio_list_merge(&bios, &bio_completions);
2368
2369		while ((bio = bio_list_pop(&bios)))
2370			bio_io_error(bio);
2371		return;
2372	}
2373	pool->last_commit_jiffies = jiffies;
2374
2375	while ((bio = bio_list_pop(&bio_completions)))
2376		bio_endio(bio);
2377
2378	while ((bio = bio_list_pop(&bios))) {
2379		/*
2380		 * The data device was flushed as part of metadata commit,
2381		 * so complete redundant flushes immediately.
2382		 */
2383		if (bio->bi_opf & REQ_PREFLUSH)
2384			bio_endio(bio);
2385		else
2386			dm_submit_bio_remap(bio, NULL);
2387	}
2388}
2389
2390static void do_worker(struct work_struct *ws)
2391{
2392	struct pool *pool = container_of(ws, struct pool, worker);
2393
2394	throttle_work_start(&pool->throttle);
2395	dm_pool_issue_prefetches(pool->pmd);
2396	throttle_work_update(&pool->throttle);
2397	process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
2398	throttle_work_update(&pool->throttle);
2399	process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
2400	throttle_work_update(&pool->throttle);
2401	process_prepared(pool, &pool->prepared_discards_pt2, &pool->process_prepared_discard_pt2);
2402	throttle_work_update(&pool->throttle);
2403	process_deferred_bios(pool);
2404	throttle_work_complete(&pool->throttle);
2405}
2406
2407/*
2408 * We want to commit periodically so that not too much
2409 * unwritten data builds up.
2410 */
2411static void do_waker(struct work_struct *ws)
2412{
2413	struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
2414	wake_worker(pool);
2415	queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
2416}
2417
 
 
2418/*
2419 * We're holding onto IO to allow userland time to react.  After the
2420 * timeout either the pool will have been resized (and thus back in
2421 * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space.
2422 */
2423static void do_no_space_timeout(struct work_struct *ws)
2424{
2425	struct pool *pool = container_of(to_delayed_work(ws), struct pool,
2426					 no_space_timeout);
2427
2428	if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) {
2429		pool->pf.error_if_no_space = true;
2430		notify_of_pool_mode_change(pool);
2431		error_retry_list_with_code(pool, BLK_STS_NOSPC);
2432	}
2433}
2434
2435/*----------------------------------------------------------------*/
2436
2437struct pool_work {
2438	struct work_struct worker;
2439	struct completion complete;
2440};
2441
2442static struct pool_work *to_pool_work(struct work_struct *ws)
2443{
2444	return container_of(ws, struct pool_work, worker);
2445}
2446
2447static void pool_work_complete(struct pool_work *pw)
2448{
2449	complete(&pw->complete);
2450}
2451
2452static void pool_work_wait(struct pool_work *pw, struct pool *pool,
2453			   void (*fn)(struct work_struct *))
2454{
2455	INIT_WORK_ONSTACK(&pw->worker, fn);
2456	init_completion(&pw->complete);
2457	queue_work(pool->wq, &pw->worker);
2458	wait_for_completion(&pw->complete);
2459}
2460
2461/*----------------------------------------------------------------*/
2462
2463struct noflush_work {
2464	struct pool_work pw;
2465	struct thin_c *tc;
2466};
2467
2468static struct noflush_work *to_noflush(struct work_struct *ws)
2469{
2470	return container_of(to_pool_work(ws), struct noflush_work, pw);
2471}
2472
2473static void do_noflush_start(struct work_struct *ws)
2474{
2475	struct noflush_work *w = to_noflush(ws);
2476	w->tc->requeue_mode = true;
2477	requeue_io(w->tc);
2478	pool_work_complete(&w->pw);
2479}
2480
2481static void do_noflush_stop(struct work_struct *ws)
2482{
2483	struct noflush_work *w = to_noflush(ws);
2484	w->tc->requeue_mode = false;
2485	pool_work_complete(&w->pw);
2486}
2487
2488static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
2489{
2490	struct noflush_work w;
2491
2492	w.tc = tc;
2493	pool_work_wait(&w.pw, tc->pool, fn);
2494}
2495
2496/*----------------------------------------------------------------*/
2497
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2498static bool passdown_enabled(struct pool_c *pt)
2499{
2500	return pt->adjusted_pf.discard_passdown;
2501}
2502
2503static void set_discard_callbacks(struct pool *pool)
2504{
2505	struct pool_c *pt = pool->ti->private;
2506
2507	if (passdown_enabled(pt)) {
2508		pool->process_discard_cell = process_discard_cell_passdown;
2509		pool->process_prepared_discard = process_prepared_discard_passdown_pt1;
2510		pool->process_prepared_discard_pt2 = process_prepared_discard_passdown_pt2;
2511	} else {
2512		pool->process_discard_cell = process_discard_cell_no_passdown;
2513		pool->process_prepared_discard = process_prepared_discard_no_passdown;
2514	}
2515}
2516
2517static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
2518{
2519	struct pool_c *pt = pool->ti->private;
2520	bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
2521	enum pool_mode old_mode = get_pool_mode(pool);
2522	unsigned long no_space_timeout = READ_ONCE(no_space_timeout_secs) * HZ;
2523
2524	/*
2525	 * Never allow the pool to transition to PM_WRITE mode if user
2526	 * intervention is required to verify metadata and data consistency.
2527	 */
2528	if (new_mode == PM_WRITE && needs_check) {
2529		DMERR("%s: unable to switch pool to write mode until repaired.",
2530		      dm_device_name(pool->pool_md));
2531		if (old_mode != new_mode)
2532			new_mode = old_mode;
2533		else
2534			new_mode = PM_READ_ONLY;
2535	}
2536	/*
2537	 * If we were in PM_FAIL mode, rollback of metadata failed.  We're
2538	 * not going to recover without a thin_repair.	So we never let the
2539	 * pool move out of the old mode.
2540	 */
2541	if (old_mode == PM_FAIL)
2542		new_mode = old_mode;
2543
2544	switch (new_mode) {
2545	case PM_FAIL:
 
 
2546		dm_pool_metadata_read_only(pool->pmd);
2547		pool->process_bio = process_bio_fail;
2548		pool->process_discard = process_bio_fail;
2549		pool->process_cell = process_cell_fail;
2550		pool->process_discard_cell = process_cell_fail;
2551		pool->process_prepared_mapping = process_prepared_mapping_fail;
2552		pool->process_prepared_discard = process_prepared_discard_fail;
2553
2554		error_retry_list(pool);
2555		break;
2556
2557	case PM_OUT_OF_METADATA_SPACE:
2558	case PM_READ_ONLY:
 
 
2559		dm_pool_metadata_read_only(pool->pmd);
2560		pool->process_bio = process_bio_read_only;
2561		pool->process_discard = process_bio_success;
2562		pool->process_cell = process_cell_read_only;
2563		pool->process_discard_cell = process_cell_success;
2564		pool->process_prepared_mapping = process_prepared_mapping_fail;
2565		pool->process_prepared_discard = process_prepared_discard_success;
2566
2567		error_retry_list(pool);
2568		break;
2569
2570	case PM_OUT_OF_DATA_SPACE:
2571		/*
2572		 * Ideally we'd never hit this state; the low water mark
2573		 * would trigger userland to extend the pool before we
2574		 * completely run out of data space.  However, many small
2575		 * IOs to unprovisioned space can consume data space at an
2576		 * alarming rate.  Adjust your low water mark if you're
2577		 * frequently seeing this mode.
2578		 */
 
 
2579		pool->out_of_data_space = true;
2580		pool->process_bio = process_bio_read_only;
2581		pool->process_discard = process_discard_bio;
2582		pool->process_cell = process_cell_read_only;
2583		pool->process_prepared_mapping = process_prepared_mapping;
2584		set_discard_callbacks(pool);
2585
2586		if (!pool->pf.error_if_no_space && no_space_timeout)
2587			queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
2588		break;
2589
2590	case PM_WRITE:
2591		if (old_mode == PM_OUT_OF_DATA_SPACE)
2592			cancel_delayed_work_sync(&pool->no_space_timeout);
2593		pool->out_of_data_space = false;
2594		pool->pf.error_if_no_space = pt->requested_pf.error_if_no_space;
2595		dm_pool_metadata_read_write(pool->pmd);
2596		pool->process_bio = process_bio;
2597		pool->process_discard = process_discard_bio;
2598		pool->process_cell = process_cell;
2599		pool->process_prepared_mapping = process_prepared_mapping;
2600		set_discard_callbacks(pool);
2601		break;
2602	}
2603
2604	pool->pf.mode = new_mode;
2605	/*
2606	 * The pool mode may have changed, sync it so bind_control_target()
2607	 * doesn't cause an unexpected mode transition on resume.
2608	 */
2609	pt->adjusted_pf.mode = new_mode;
2610
2611	if (old_mode != new_mode)
2612		notify_of_pool_mode_change(pool);
2613}
2614
2615static void abort_transaction(struct pool *pool)
2616{
2617	const char *dev_name = dm_device_name(pool->pool_md);
2618
2619	DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
2620	if (dm_pool_abort_metadata(pool->pmd)) {
2621		DMERR("%s: failed to abort metadata transaction", dev_name);
2622		set_pool_mode(pool, PM_FAIL);
2623	}
2624
2625	if (dm_pool_metadata_set_needs_check(pool->pmd)) {
2626		DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
2627		set_pool_mode(pool, PM_FAIL);
2628	}
2629}
2630
2631static void metadata_operation_failed(struct pool *pool, const char *op, int r)
2632{
2633	DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2634		    dm_device_name(pool->pool_md), op, r);
2635
2636	abort_transaction(pool);
2637	set_pool_mode(pool, PM_READ_ONLY);
2638}
2639
2640/*----------------------------------------------------------------*/
2641
2642/*
2643 * Mapping functions.
2644 */
2645
2646/*
2647 * Called only while mapping a thin bio to hand it over to the workqueue.
2648 */
2649static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
2650{
 
2651	struct pool *pool = tc->pool;
2652
2653	spin_lock_irq(&tc->lock);
2654	bio_list_add(&tc->deferred_bio_list, bio);
2655	spin_unlock_irq(&tc->lock);
2656
2657	wake_worker(pool);
2658}
2659
2660static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio)
2661{
2662	struct pool *pool = tc->pool;
2663
2664	throttle_lock(&pool->throttle);
2665	thin_defer_bio(tc, bio);
2666	throttle_unlock(&pool->throttle);
2667}
2668
2669static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2670{
 
2671	struct pool *pool = tc->pool;
2672
2673	throttle_lock(&pool->throttle);
2674	spin_lock_irq(&tc->lock);
2675	list_add_tail(&cell->user_list, &tc->deferred_cells);
2676	spin_unlock_irq(&tc->lock);
2677	throttle_unlock(&pool->throttle);
2678
2679	wake_worker(pool);
2680}
2681
2682static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
2683{
2684	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2685
2686	h->tc = tc;
2687	h->shared_read_entry = NULL;
2688	h->all_io_entry = NULL;
2689	h->overwrite_mapping = NULL;
2690	h->cell = NULL;
2691}
2692
2693/*
2694 * Non-blocking function called from the thin target's map function.
2695 */
2696static int thin_bio_map(struct dm_target *ti, struct bio *bio)
2697{
2698	int r;
2699	struct thin_c *tc = ti->private;
2700	dm_block_t block = get_bio_block(tc, bio);
2701	struct dm_thin_device *td = tc->td;
2702	struct dm_thin_lookup_result result;
2703	struct dm_bio_prison_cell *virt_cell, *data_cell;
2704	struct dm_cell_key key;
2705
2706	thin_hook_bio(tc, bio);
2707
2708	if (tc->requeue_mode) {
2709		bio->bi_status = BLK_STS_DM_REQUEUE;
2710		bio_endio(bio);
2711		return DM_MAPIO_SUBMITTED;
2712	}
2713
2714	if (get_pool_mode(tc->pool) == PM_FAIL) {
2715		bio_io_error(bio);
2716		return DM_MAPIO_SUBMITTED;
2717	}
2718
2719	if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD) {
2720		thin_defer_bio_with_throttle(tc, bio);
2721		return DM_MAPIO_SUBMITTED;
2722	}
2723
2724	/*
2725	 * We must hold the virtual cell before doing the lookup, otherwise
2726	 * there's a race with discard.
2727	 */
2728	build_virtual_key(tc->td, block, &key);
2729	if (bio_detain(tc->pool, &key, bio, &virt_cell))
2730		return DM_MAPIO_SUBMITTED;
2731
2732	r = dm_thin_find_block(td, block, 0, &result);
2733
2734	/*
2735	 * Note that we defer readahead too.
2736	 */
2737	switch (r) {
2738	case 0:
2739		if (unlikely(result.shared)) {
2740			/*
2741			 * We have a race condition here between the
2742			 * result.shared value returned by the lookup and
2743			 * snapshot creation, which may cause new
2744			 * sharing.
2745			 *
2746			 * To avoid this always quiesce the origin before
2747			 * taking the snap.  You want to do this anyway to
2748			 * ensure a consistent application view
2749			 * (i.e. lockfs).
2750			 *
2751			 * More distant ancestors are irrelevant. The
2752			 * shared flag will be set in their case.
2753			 */
2754			thin_defer_cell(tc, virt_cell);
2755			return DM_MAPIO_SUBMITTED;
2756		}
2757
2758		build_data_key(tc->td, result.block, &key);
2759		if (bio_detain(tc->pool, &key, bio, &data_cell)) {
2760			cell_defer_no_holder(tc, virt_cell);
2761			return DM_MAPIO_SUBMITTED;
2762		}
2763
2764		inc_all_io_entry(tc->pool, bio);
2765		cell_defer_no_holder(tc, data_cell);
2766		cell_defer_no_holder(tc, virt_cell);
2767
2768		remap(tc, bio, result.block);
2769		return DM_MAPIO_REMAPPED;
2770
2771	case -ENODATA:
2772	case -EWOULDBLOCK:
2773		thin_defer_cell(tc, virt_cell);
2774		return DM_MAPIO_SUBMITTED;
2775
2776	default:
2777		/*
2778		 * Must always call bio_io_error on failure.
2779		 * dm_thin_find_block can fail with -EINVAL if the
2780		 * pool is switched to fail-io mode.
2781		 */
2782		bio_io_error(bio);
2783		cell_defer_no_holder(tc, virt_cell);
2784		return DM_MAPIO_SUBMITTED;
2785	}
2786}
2787
 
 
 
 
 
 
 
 
 
 
 
 
2788static void requeue_bios(struct pool *pool)
2789{
 
2790	struct thin_c *tc;
2791
2792	rcu_read_lock();
2793	list_for_each_entry_rcu(tc, &pool->active_thins, list) {
2794		spin_lock_irq(&tc->lock);
2795		bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
2796		bio_list_init(&tc->retry_on_resume_list);
2797		spin_unlock_irq(&tc->lock);
2798	}
2799	rcu_read_unlock();
2800}
2801
2802/*----------------------------------------------------------------
2803 * Binding of control targets to a pool object
2804 *--------------------------------------------------------------*/
 
 
 
 
 
 
 
2805static bool is_factor(sector_t block_size, uint32_t n)
2806{
2807	return !sector_div(block_size, n);
2808}
2809
2810/*
2811 * If discard_passdown was enabled verify that the data device
2812 * supports discards.  Disable discard_passdown if not.
2813 */
2814static void disable_passdown_if_not_supported(struct pool_c *pt)
2815{
2816	struct pool *pool = pt->pool;
2817	struct block_device *data_bdev = pt->data_dev->bdev;
2818	struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
2819	const char *reason = NULL;
 
2820
2821	if (!pt->adjusted_pf.discard_passdown)
2822		return;
2823
2824	if (!bdev_max_discard_sectors(pt->data_dev->bdev))
2825		reason = "discard unsupported";
2826
2827	else if (data_limits->max_discard_sectors < pool->sectors_per_block)
2828		reason = "max discard sectors smaller than a block";
2829
2830	if (reason) {
2831		DMWARN("Data device (%pg) %s: Disabling discard passdown.", data_bdev, reason);
2832		pt->adjusted_pf.discard_passdown = false;
2833	}
2834}
2835
2836static int bind_control_target(struct pool *pool, struct dm_target *ti)
2837{
2838	struct pool_c *pt = ti->private;
2839
2840	/*
2841	 * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2842	 */
2843	enum pool_mode old_mode = get_pool_mode(pool);
2844	enum pool_mode new_mode = pt->adjusted_pf.mode;
2845
2846	/*
2847	 * Don't change the pool's mode until set_pool_mode() below.
2848	 * Otherwise the pool's process_* function pointers may
2849	 * not match the desired pool mode.
2850	 */
2851	pt->adjusted_pf.mode = old_mode;
2852
2853	pool->ti = ti;
2854	pool->pf = pt->adjusted_pf;
2855	pool->low_water_blocks = pt->low_water_blocks;
2856
2857	set_pool_mode(pool, new_mode);
2858
2859	return 0;
2860}
2861
2862static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2863{
2864	if (pool->ti == ti)
2865		pool->ti = NULL;
2866}
2867
2868/*----------------------------------------------------------------
2869 * Pool creation
2870 *--------------------------------------------------------------*/
2871/* Initialize pool features. */
2872static void pool_features_init(struct pool_features *pf)
2873{
2874	pf->mode = PM_WRITE;
2875	pf->zero_new_blocks = true;
2876	pf->discard_enabled = true;
2877	pf->discard_passdown = true;
2878	pf->error_if_no_space = false;
2879}
2880
2881static void __pool_destroy(struct pool *pool)
2882{
2883	__pool_table_remove(pool);
2884
2885	vfree(pool->cell_sort_array);
2886	if (dm_pool_metadata_close(pool->pmd) < 0)
2887		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2888
2889	dm_bio_prison_destroy(pool->prison);
2890	dm_kcopyd_client_destroy(pool->copier);
2891
2892	cancel_delayed_work_sync(&pool->waker);
2893	cancel_delayed_work_sync(&pool->no_space_timeout);
2894	if (pool->wq)
2895		destroy_workqueue(pool->wq);
2896
2897	if (pool->next_mapping)
2898		mempool_free(pool->next_mapping, &pool->mapping_pool);
2899	mempool_exit(&pool->mapping_pool);
2900	dm_deferred_set_destroy(pool->shared_read_ds);
2901	dm_deferred_set_destroy(pool->all_io_ds);
2902	kfree(pool);
2903}
2904
2905static struct kmem_cache *_new_mapping_cache;
2906
2907static struct pool *pool_create(struct mapped_device *pool_md,
2908				struct block_device *metadata_dev,
2909				struct block_device *data_dev,
2910				unsigned long block_size,
2911				int read_only, char **error)
2912{
2913	int r;
2914	void *err_p;
2915	struct pool *pool;
2916	struct dm_pool_metadata *pmd;
2917	bool format_device = read_only ? false : true;
2918
2919	pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2920	if (IS_ERR(pmd)) {
2921		*error = "Error creating metadata object";
2922		return (struct pool *)pmd;
2923	}
2924
2925	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2926	if (!pool) {
2927		*error = "Error allocating memory for pool";
2928		err_p = ERR_PTR(-ENOMEM);
2929		goto bad_pool;
2930	}
2931
2932	pool->pmd = pmd;
2933	pool->sectors_per_block = block_size;
2934	if (block_size & (block_size - 1))
2935		pool->sectors_per_block_shift = -1;
2936	else
2937		pool->sectors_per_block_shift = __ffs(block_size);
2938	pool->low_water_blocks = 0;
2939	pool_features_init(&pool->pf);
2940	pool->prison = dm_bio_prison_create();
2941	if (!pool->prison) {
2942		*error = "Error creating pool's bio prison";
2943		err_p = ERR_PTR(-ENOMEM);
2944		goto bad_prison;
2945	}
2946
2947	pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2948	if (IS_ERR(pool->copier)) {
2949		r = PTR_ERR(pool->copier);
2950		*error = "Error creating pool's kcopyd client";
2951		err_p = ERR_PTR(r);
2952		goto bad_kcopyd_client;
2953	}
2954
2955	/*
2956	 * Create singlethreaded workqueue that will service all devices
2957	 * that use this metadata.
2958	 */
2959	pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2960	if (!pool->wq) {
2961		*error = "Error creating pool's workqueue";
2962		err_p = ERR_PTR(-ENOMEM);
2963		goto bad_wq;
2964	}
2965
2966	throttle_init(&pool->throttle);
2967	INIT_WORK(&pool->worker, do_worker);
2968	INIT_DELAYED_WORK(&pool->waker, do_waker);
2969	INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
2970	spin_lock_init(&pool->lock);
2971	bio_list_init(&pool->deferred_flush_bios);
2972	bio_list_init(&pool->deferred_flush_completions);
2973	INIT_LIST_HEAD(&pool->prepared_mappings);
2974	INIT_LIST_HEAD(&pool->prepared_discards);
2975	INIT_LIST_HEAD(&pool->prepared_discards_pt2);
2976	INIT_LIST_HEAD(&pool->active_thins);
2977	pool->low_water_triggered = false;
2978	pool->suspended = true;
2979	pool->out_of_data_space = false;
2980
2981	pool->shared_read_ds = dm_deferred_set_create();
2982	if (!pool->shared_read_ds) {
2983		*error = "Error creating pool's shared read deferred set";
2984		err_p = ERR_PTR(-ENOMEM);
2985		goto bad_shared_read_ds;
2986	}
2987
2988	pool->all_io_ds = dm_deferred_set_create();
2989	if (!pool->all_io_ds) {
2990		*error = "Error creating pool's all io deferred set";
2991		err_p = ERR_PTR(-ENOMEM);
2992		goto bad_all_io_ds;
2993	}
2994
2995	pool->next_mapping = NULL;
2996	r = mempool_init_slab_pool(&pool->mapping_pool, MAPPING_POOL_SIZE,
2997				   _new_mapping_cache);
2998	if (r) {
2999		*error = "Error creating pool's mapping mempool";
3000		err_p = ERR_PTR(r);
3001		goto bad_mapping_pool;
3002	}
3003
3004	pool->cell_sort_array =
3005		vmalloc(array_size(CELL_SORT_ARRAY_SIZE,
3006				   sizeof(*pool->cell_sort_array)));
3007	if (!pool->cell_sort_array) {
3008		*error = "Error allocating cell sort array";
3009		err_p = ERR_PTR(-ENOMEM);
3010		goto bad_sort_array;
3011	}
3012
3013	pool->ref_count = 1;
3014	pool->last_commit_jiffies = jiffies;
3015	pool->pool_md = pool_md;
3016	pool->md_dev = metadata_dev;
3017	pool->data_dev = data_dev;
3018	__pool_table_insert(pool);
3019
3020	return pool;
3021
3022bad_sort_array:
3023	mempool_exit(&pool->mapping_pool);
3024bad_mapping_pool:
3025	dm_deferred_set_destroy(pool->all_io_ds);
3026bad_all_io_ds:
3027	dm_deferred_set_destroy(pool->shared_read_ds);
3028bad_shared_read_ds:
3029	destroy_workqueue(pool->wq);
3030bad_wq:
3031	dm_kcopyd_client_destroy(pool->copier);
3032bad_kcopyd_client:
3033	dm_bio_prison_destroy(pool->prison);
3034bad_prison:
3035	kfree(pool);
3036bad_pool:
3037	if (dm_pool_metadata_close(pmd))
3038		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
3039
3040	return err_p;
3041}
3042
3043static void __pool_inc(struct pool *pool)
3044{
3045	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
3046	pool->ref_count++;
3047}
3048
3049static void __pool_dec(struct pool *pool)
3050{
3051	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
3052	BUG_ON(!pool->ref_count);
3053	if (!--pool->ref_count)
3054		__pool_destroy(pool);
3055}
3056
3057static struct pool *__pool_find(struct mapped_device *pool_md,
3058				struct block_device *metadata_dev,
3059				struct block_device *data_dev,
3060				unsigned long block_size, int read_only,
3061				char **error, int *created)
3062{
3063	struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
3064
3065	if (pool) {
3066		if (pool->pool_md != pool_md) {
3067			*error = "metadata device already in use by a pool";
3068			return ERR_PTR(-EBUSY);
3069		}
3070		if (pool->data_dev != data_dev) {
3071			*error = "data device already in use by a pool";
3072			return ERR_PTR(-EBUSY);
3073		}
3074		__pool_inc(pool);
3075
3076	} else {
3077		pool = __pool_table_lookup(pool_md);
3078		if (pool) {
3079			if (pool->md_dev != metadata_dev || pool->data_dev != data_dev) {
3080				*error = "different pool cannot replace a pool";
3081				return ERR_PTR(-EINVAL);
3082			}
3083			__pool_inc(pool);
3084
3085		} else {
3086			pool = pool_create(pool_md, metadata_dev, data_dev, block_size, read_only, error);
3087			*created = 1;
3088		}
3089	}
3090
3091	return pool;
3092}
3093
3094/*----------------------------------------------------------------
3095 * Pool target methods
3096 *--------------------------------------------------------------*/
3097static void pool_dtr(struct dm_target *ti)
3098{
3099	struct pool_c *pt = ti->private;
3100
3101	mutex_lock(&dm_thin_pool_table.mutex);
3102
3103	unbind_control_target(pt->pool, ti);
3104	__pool_dec(pt->pool);
3105	dm_put_device(ti, pt->metadata_dev);
3106	dm_put_device(ti, pt->data_dev);
3107	kfree(pt);
3108
3109	mutex_unlock(&dm_thin_pool_table.mutex);
3110}
3111
3112static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
3113			       struct dm_target *ti)
3114{
3115	int r;
3116	unsigned argc;
3117	const char *arg_name;
3118
3119	static const struct dm_arg _args[] = {
3120		{0, 4, "Invalid number of pool feature arguments"},
3121	};
3122
3123	/*
3124	 * No feature arguments supplied.
3125	 */
3126	if (!as->argc)
3127		return 0;
3128
3129	r = dm_read_arg_group(_args, as, &argc, &ti->error);
3130	if (r)
3131		return -EINVAL;
3132
3133	while (argc && !r) {
3134		arg_name = dm_shift_arg(as);
3135		argc--;
3136
3137		if (!strcasecmp(arg_name, "skip_block_zeroing"))
3138			pf->zero_new_blocks = false;
3139
3140		else if (!strcasecmp(arg_name, "ignore_discard"))
3141			pf->discard_enabled = false;
3142
3143		else if (!strcasecmp(arg_name, "no_discard_passdown"))
3144			pf->discard_passdown = false;
3145
3146		else if (!strcasecmp(arg_name, "read_only"))
3147			pf->mode = PM_READ_ONLY;
3148
3149		else if (!strcasecmp(arg_name, "error_if_no_space"))
3150			pf->error_if_no_space = true;
3151
3152		else {
3153			ti->error = "Unrecognised pool feature requested";
3154			r = -EINVAL;
3155			break;
3156		}
3157	}
3158
3159	return r;
3160}
3161
3162static void metadata_low_callback(void *context)
3163{
3164	struct pool *pool = context;
3165
3166	DMWARN("%s: reached low water mark for metadata device: sending event.",
3167	       dm_device_name(pool->pool_md));
3168
3169	dm_table_event(pool->ti->table);
3170}
3171
3172/*
3173 * We need to flush the data device **before** committing the metadata.
3174 *
3175 * This ensures that the data blocks of any newly inserted mappings are
3176 * properly written to non-volatile storage and won't be lost in case of a
3177 * crash.
3178 *
3179 * Failure to do so can result in data corruption in the case of internal or
3180 * external snapshots and in the case of newly provisioned blocks, when block
3181 * zeroing is enabled.
3182 */
3183static int metadata_pre_commit_callback(void *context)
3184{
3185	struct pool *pool = context;
3186
3187	return blkdev_issue_flush(pool->data_dev);
3188}
3189
3190static sector_t get_dev_size(struct block_device *bdev)
3191{
3192	return bdev_nr_sectors(bdev);
3193}
3194
3195static void warn_if_metadata_device_too_big(struct block_device *bdev)
3196{
3197	sector_t metadata_dev_size = get_dev_size(bdev);
 
3198
3199	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
3200		DMWARN("Metadata device %pg is larger than %u sectors: excess space will not be used.",
3201		       bdev, THIN_METADATA_MAX_SECTORS);
3202}
3203
3204static sector_t get_metadata_dev_size(struct block_device *bdev)
3205{
3206	sector_t metadata_dev_size = get_dev_size(bdev);
3207
3208	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
3209		metadata_dev_size = THIN_METADATA_MAX_SECTORS;
3210
3211	return metadata_dev_size;
3212}
3213
3214static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
3215{
3216	sector_t metadata_dev_size = get_metadata_dev_size(bdev);
3217
3218	sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
3219
3220	return metadata_dev_size;
3221}
3222
3223/*
3224 * When a metadata threshold is crossed a dm event is triggered, and
3225 * userland should respond by growing the metadata device.  We could let
3226 * userland set the threshold, like we do with the data threshold, but I'm
3227 * not sure they know enough to do this well.
3228 */
3229static dm_block_t calc_metadata_threshold(struct pool_c *pt)
3230{
3231	/*
3232	 * 4M is ample for all ops with the possible exception of thin
3233	 * device deletion which is harmless if it fails (just retry the
3234	 * delete after you've grown the device).
3235	 */
3236	dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
3237	return min((dm_block_t)1024ULL /* 4M */, quarter);
3238}
3239
3240/*
3241 * thin-pool <metadata dev> <data dev>
3242 *	     <data block size (sectors)>
3243 *	     <low water mark (blocks)>
3244 *	     [<#feature args> [<arg>]*]
3245 *
3246 * Optional feature arguments are:
3247 *	     skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
3248 *	     ignore_discard: disable discard
3249 *	     no_discard_passdown: don't pass discards down to the data device
3250 *	     read_only: Don't allow any changes to be made to the pool metadata.
3251 *	     error_if_no_space: error IOs, instead of queueing, if no space.
3252 */
3253static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
3254{
3255	int r, pool_created = 0;
3256	struct pool_c *pt;
3257	struct pool *pool;
3258	struct pool_features pf;
3259	struct dm_arg_set as;
3260	struct dm_dev *data_dev;
3261	unsigned long block_size;
3262	dm_block_t low_water_blocks;
3263	struct dm_dev *metadata_dev;
3264	fmode_t metadata_mode;
3265
3266	/*
3267	 * FIXME Remove validation from scope of lock.
3268	 */
3269	mutex_lock(&dm_thin_pool_table.mutex);
3270
3271	if (argc < 4) {
3272		ti->error = "Invalid argument count";
3273		r = -EINVAL;
3274		goto out_unlock;
3275	}
3276
3277	as.argc = argc;
3278	as.argv = argv;
3279
3280	/* make sure metadata and data are different devices */
3281	if (!strcmp(argv[0], argv[1])) {
3282		ti->error = "Error setting metadata or data device";
3283		r = -EINVAL;
3284		goto out_unlock;
3285	}
3286
3287	/*
3288	 * Set default pool features.
3289	 */
3290	pool_features_init(&pf);
3291
3292	dm_consume_args(&as, 4);
3293	r = parse_pool_features(&as, &pf, ti);
3294	if (r)
3295		goto out_unlock;
3296
3297	metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
3298	r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
3299	if (r) {
3300		ti->error = "Error opening metadata block device";
3301		goto out_unlock;
3302	}
3303	warn_if_metadata_device_too_big(metadata_dev->bdev);
3304
3305	r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
3306	if (r) {
3307		ti->error = "Error getting data device";
3308		goto out_metadata;
3309	}
3310
3311	if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
3312	    block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
3313	    block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
3314	    block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
3315		ti->error = "Invalid block size";
3316		r = -EINVAL;
3317		goto out;
3318	}
3319
3320	if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
3321		ti->error = "Invalid low water mark";
3322		r = -EINVAL;
3323		goto out;
3324	}
3325
3326	pt = kzalloc(sizeof(*pt), GFP_KERNEL);
3327	if (!pt) {
3328		r = -ENOMEM;
3329		goto out;
3330	}
3331
3332	pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev, data_dev->bdev,
3333			   block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
3334	if (IS_ERR(pool)) {
3335		r = PTR_ERR(pool);
3336		goto out_free_pt;
3337	}
3338
3339	/*
3340	 * 'pool_created' reflects whether this is the first table load.
3341	 * Top level discard support is not allowed to be changed after
3342	 * initial load.  This would require a pool reload to trigger thin
3343	 * device changes.
3344	 */
3345	if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
3346		ti->error = "Discard support cannot be disabled once enabled";
3347		r = -EINVAL;
3348		goto out_flags_changed;
3349	}
3350
3351	pt->pool = pool;
3352	pt->ti = ti;
3353	pt->metadata_dev = metadata_dev;
3354	pt->data_dev = data_dev;
3355	pt->low_water_blocks = low_water_blocks;
3356	pt->adjusted_pf = pt->requested_pf = pf;
3357	ti->num_flush_bios = 1;
3358
3359	/*
3360	 * Only need to enable discards if the pool should pass
3361	 * them down to the data device.  The thin device's discard
3362	 * processing will cause mappings to be removed from the btree.
3363	 */
 
3364	if (pf.discard_enabled && pf.discard_passdown) {
3365		ti->num_discard_bios = 1;
3366
3367		/*
3368		 * Setting 'discards_supported' circumvents the normal
3369		 * stacking of discard limits (this keeps the pool and
3370		 * thin devices' discard limits consistent).
3371		 */
3372		ti->discards_supported = true;
3373	}
3374	ti->private = pt;
3375
3376	r = dm_pool_register_metadata_threshold(pt->pool->pmd,
3377						calc_metadata_threshold(pt),
3378						metadata_low_callback,
3379						pool);
3380	if (r) {
3381		ti->error = "Error registering metadata threshold";
3382		goto out_flags_changed;
3383	}
3384
3385	dm_pool_register_pre_commit_callback(pool->pmd,
3386					     metadata_pre_commit_callback, pool);
3387
3388	mutex_unlock(&dm_thin_pool_table.mutex);
3389
3390	return 0;
3391
3392out_flags_changed:
3393	__pool_dec(pool);
3394out_free_pt:
3395	kfree(pt);
3396out:
3397	dm_put_device(ti, data_dev);
3398out_metadata:
3399	dm_put_device(ti, metadata_dev);
3400out_unlock:
3401	mutex_unlock(&dm_thin_pool_table.mutex);
3402
3403	return r;
3404}
3405
3406static int pool_map(struct dm_target *ti, struct bio *bio)
3407{
3408	int r;
3409	struct pool_c *pt = ti->private;
3410	struct pool *pool = pt->pool;
 
3411
3412	/*
3413	 * As this is a singleton target, ti->begin is always zero.
3414	 */
3415	spin_lock_irq(&pool->lock);
3416	bio_set_dev(bio, pt->data_dev->bdev);
3417	r = DM_MAPIO_REMAPPED;
3418	spin_unlock_irq(&pool->lock);
3419
3420	return r;
3421}
3422
3423static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
3424{
3425	int r;
3426	struct pool_c *pt = ti->private;
3427	struct pool *pool = pt->pool;
3428	sector_t data_size = ti->len;
3429	dm_block_t sb_data_size;
3430
3431	*need_commit = false;
3432
3433	(void) sector_div(data_size, pool->sectors_per_block);
3434
3435	r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
3436	if (r) {
3437		DMERR("%s: failed to retrieve data device size",
3438		      dm_device_name(pool->pool_md));
3439		return r;
3440	}
3441
3442	if (data_size < sb_data_size) {
3443		DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3444		      dm_device_name(pool->pool_md),
3445		      (unsigned long long)data_size, sb_data_size);
3446		return -EINVAL;
3447
3448	} else if (data_size > sb_data_size) {
3449		if (dm_pool_metadata_needs_check(pool->pmd)) {
3450			DMERR("%s: unable to grow the data device until repaired.",
3451			      dm_device_name(pool->pool_md));
3452			return 0;
3453		}
3454
3455		if (sb_data_size)
3456			DMINFO("%s: growing the data device from %llu to %llu blocks",
3457			       dm_device_name(pool->pool_md),
3458			       sb_data_size, (unsigned long long)data_size);
3459		r = dm_pool_resize_data_dev(pool->pmd, data_size);
3460		if (r) {
3461			metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
3462			return r;
3463		}
3464
3465		*need_commit = true;
3466	}
3467
3468	return 0;
3469}
3470
3471static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
3472{
3473	int r;
3474	struct pool_c *pt = ti->private;
3475	struct pool *pool = pt->pool;
3476	dm_block_t metadata_dev_size, sb_metadata_dev_size;
3477
3478	*need_commit = false;
3479
3480	metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
3481
3482	r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
3483	if (r) {
3484		DMERR("%s: failed to retrieve metadata device size",
3485		      dm_device_name(pool->pool_md));
3486		return r;
3487	}
3488
3489	if (metadata_dev_size < sb_metadata_dev_size) {
3490		DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3491		      dm_device_name(pool->pool_md),
3492		      metadata_dev_size, sb_metadata_dev_size);
3493		return -EINVAL;
3494
3495	} else if (metadata_dev_size > sb_metadata_dev_size) {
3496		if (dm_pool_metadata_needs_check(pool->pmd)) {
3497			DMERR("%s: unable to grow the metadata device until repaired.",
3498			      dm_device_name(pool->pool_md));
3499			return 0;
3500		}
3501
3502		warn_if_metadata_device_too_big(pool->md_dev);
3503		DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3504		       dm_device_name(pool->pool_md),
3505		       sb_metadata_dev_size, metadata_dev_size);
3506
3507		if (get_pool_mode(pool) == PM_OUT_OF_METADATA_SPACE)
3508			set_pool_mode(pool, PM_WRITE);
3509
3510		r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
3511		if (r) {
3512			metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
3513			return r;
3514		}
3515
3516		*need_commit = true;
3517	}
3518
3519	return 0;
3520}
3521
3522/*
3523 * Retrieves the number of blocks of the data device from
3524 * the superblock and compares it to the actual device size,
3525 * thus resizing the data device in case it has grown.
3526 *
3527 * This both copes with opening preallocated data devices in the ctr
3528 * being followed by a resume
3529 * -and-
3530 * calling the resume method individually after userspace has
3531 * grown the data device in reaction to a table event.
3532 */
3533static int pool_preresume(struct dm_target *ti)
3534{
3535	int r;
3536	bool need_commit1, need_commit2;
3537	struct pool_c *pt = ti->private;
3538	struct pool *pool = pt->pool;
3539
3540	/*
3541	 * Take control of the pool object.
3542	 */
3543	r = bind_control_target(pool, ti);
3544	if (r)
3545		goto out;
3546
3547	r = maybe_resize_data_dev(ti, &need_commit1);
3548	if (r)
3549		goto out;
3550
3551	r = maybe_resize_metadata_dev(ti, &need_commit2);
3552	if (r)
3553		goto out;
3554
3555	if (need_commit1 || need_commit2)
3556		(void) commit(pool);
3557out:
3558	/*
3559	 * When a thin-pool is PM_FAIL, it cannot be rebuilt if
3560	 * bio is in deferred list. Therefore need to return 0
3561	 * to allow pool_resume() to flush IO.
3562	 */
3563	if (r && get_pool_mode(pool) == PM_FAIL)
3564		r = 0;
3565
3566	return r;
3567}
3568
3569static void pool_suspend_active_thins(struct pool *pool)
3570{
3571	struct thin_c *tc;
3572
3573	/* Suspend all active thin devices */
3574	tc = get_first_thin(pool);
3575	while (tc) {
3576		dm_internal_suspend_noflush(tc->thin_md);
3577		tc = get_next_thin(pool, tc);
3578	}
3579}
3580
3581static void pool_resume_active_thins(struct pool *pool)
3582{
3583	struct thin_c *tc;
3584
3585	/* Resume all active thin devices */
3586	tc = get_first_thin(pool);
3587	while (tc) {
3588		dm_internal_resume(tc->thin_md);
3589		tc = get_next_thin(pool, tc);
3590	}
3591}
3592
3593static void pool_resume(struct dm_target *ti)
3594{
3595	struct pool_c *pt = ti->private;
3596	struct pool *pool = pt->pool;
 
3597
3598	/*
3599	 * Must requeue active_thins' bios and then resume
3600	 * active_thins _before_ clearing 'suspend' flag.
3601	 */
3602	requeue_bios(pool);
3603	pool_resume_active_thins(pool);
3604
3605	spin_lock_irq(&pool->lock);
3606	pool->low_water_triggered = false;
3607	pool->suspended = false;
3608	spin_unlock_irq(&pool->lock);
3609
3610	do_waker(&pool->waker.work);
3611}
3612
3613static void pool_presuspend(struct dm_target *ti)
3614{
3615	struct pool_c *pt = ti->private;
3616	struct pool *pool = pt->pool;
 
3617
3618	spin_lock_irq(&pool->lock);
3619	pool->suspended = true;
3620	spin_unlock_irq(&pool->lock);
3621
3622	pool_suspend_active_thins(pool);
3623}
3624
3625static void pool_presuspend_undo(struct dm_target *ti)
3626{
3627	struct pool_c *pt = ti->private;
3628	struct pool *pool = pt->pool;
 
3629
3630	pool_resume_active_thins(pool);
3631
3632	spin_lock_irq(&pool->lock);
3633	pool->suspended = false;
3634	spin_unlock_irq(&pool->lock);
3635}
3636
3637static void pool_postsuspend(struct dm_target *ti)
3638{
3639	struct pool_c *pt = ti->private;
3640	struct pool *pool = pt->pool;
3641
3642	cancel_delayed_work_sync(&pool->waker);
3643	cancel_delayed_work_sync(&pool->no_space_timeout);
3644	flush_workqueue(pool->wq);
3645	(void) commit(pool);
3646}
3647
3648static int check_arg_count(unsigned argc, unsigned args_required)
3649{
3650	if (argc != args_required) {
3651		DMWARN("Message received with %u arguments instead of %u.",
3652		       argc, args_required);
3653		return -EINVAL;
3654	}
3655
3656	return 0;
3657}
3658
3659static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
3660{
3661	if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
3662	    *dev_id <= MAX_DEV_ID)
3663		return 0;
3664
3665	if (warning)
3666		DMWARN("Message received with invalid device id: %s", arg);
3667
3668	return -EINVAL;
3669}
3670
3671static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
3672{
3673	dm_thin_id dev_id;
3674	int r;
3675
3676	r = check_arg_count(argc, 2);
3677	if (r)
3678		return r;
3679
3680	r = read_dev_id(argv[1], &dev_id, 1);
3681	if (r)
3682		return r;
3683
3684	r = dm_pool_create_thin(pool->pmd, dev_id);
3685	if (r) {
3686		DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3687		       argv[1]);
3688		return r;
3689	}
3690
3691	return 0;
3692}
3693
3694static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3695{
3696	dm_thin_id dev_id;
3697	dm_thin_id origin_dev_id;
3698	int r;
3699
3700	r = check_arg_count(argc, 3);
3701	if (r)
3702		return r;
3703
3704	r = read_dev_id(argv[1], &dev_id, 1);
3705	if (r)
3706		return r;
3707
3708	r = read_dev_id(argv[2], &origin_dev_id, 1);
3709	if (r)
3710		return r;
3711
3712	r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
3713	if (r) {
3714		DMWARN("Creation of new snapshot %s of device %s failed.",
3715		       argv[1], argv[2]);
3716		return r;
3717	}
3718
3719	return 0;
3720}
3721
3722static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
3723{
3724	dm_thin_id dev_id;
3725	int r;
3726
3727	r = check_arg_count(argc, 2);
3728	if (r)
3729		return r;
3730
3731	r = read_dev_id(argv[1], &dev_id, 1);
3732	if (r)
3733		return r;
3734
3735	r = dm_pool_delete_thin_device(pool->pmd, dev_id);
3736	if (r)
3737		DMWARN("Deletion of thin device %s failed.", argv[1]);
3738
3739	return r;
3740}
3741
3742static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
3743{
3744	dm_thin_id old_id, new_id;
3745	int r;
3746
3747	r = check_arg_count(argc, 3);
3748	if (r)
3749		return r;
3750
3751	if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
3752		DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
3753		return -EINVAL;
3754	}
3755
3756	if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
3757		DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
3758		return -EINVAL;
3759	}
3760
3761	r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
3762	if (r) {
3763		DMWARN("Failed to change transaction id from %s to %s.",
3764		       argv[1], argv[2]);
3765		return r;
3766	}
3767
3768	return 0;
3769}
3770
3771static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3772{
3773	int r;
3774
3775	r = check_arg_count(argc, 1);
3776	if (r)
3777		return r;
3778
3779	(void) commit(pool);
3780
3781	r = dm_pool_reserve_metadata_snap(pool->pmd);
3782	if (r)
3783		DMWARN("reserve_metadata_snap message failed.");
3784
3785	return r;
3786}
3787
3788static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3789{
3790	int r;
3791
3792	r = check_arg_count(argc, 1);
3793	if (r)
3794		return r;
3795
3796	r = dm_pool_release_metadata_snap(pool->pmd);
3797	if (r)
3798		DMWARN("release_metadata_snap message failed.");
3799
3800	return r;
3801}
3802
3803/*
3804 * Messages supported:
3805 *   create_thin	<dev_id>
3806 *   create_snap	<dev_id> <origin_id>
3807 *   delete		<dev_id>
3808 *   set_transaction_id <current_trans_id> <new_trans_id>
3809 *   reserve_metadata_snap
3810 *   release_metadata_snap
3811 */
3812static int pool_message(struct dm_target *ti, unsigned argc, char **argv,
3813			char *result, unsigned maxlen)
3814{
3815	int r = -EINVAL;
3816	struct pool_c *pt = ti->private;
3817	struct pool *pool = pt->pool;
3818
3819	if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE) {
3820		DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
3821		      dm_device_name(pool->pool_md));
3822		return -EOPNOTSUPP;
3823	}
3824
3825	if (!strcasecmp(argv[0], "create_thin"))
3826		r = process_create_thin_mesg(argc, argv, pool);
3827
3828	else if (!strcasecmp(argv[0], "create_snap"))
3829		r = process_create_snap_mesg(argc, argv, pool);
3830
3831	else if (!strcasecmp(argv[0], "delete"))
3832		r = process_delete_mesg(argc, argv, pool);
3833
3834	else if (!strcasecmp(argv[0], "set_transaction_id"))
3835		r = process_set_transaction_id_mesg(argc, argv, pool);
3836
3837	else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
3838		r = process_reserve_metadata_snap_mesg(argc, argv, pool);
3839
3840	else if (!strcasecmp(argv[0], "release_metadata_snap"))
3841		r = process_release_metadata_snap_mesg(argc, argv, pool);
3842
3843	else
3844		DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
3845
3846	if (!r)
3847		(void) commit(pool);
3848
3849	return r;
3850}
3851
3852static void emit_flags(struct pool_features *pf, char *result,
3853		       unsigned sz, unsigned maxlen)
3854{
3855	unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
3856		!pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
3857		pf->error_if_no_space;
3858	DMEMIT("%u ", count);
3859
3860	if (!pf->zero_new_blocks)
3861		DMEMIT("skip_block_zeroing ");
3862
3863	if (!pf->discard_enabled)
3864		DMEMIT("ignore_discard ");
3865
3866	if (!pf->discard_passdown)
3867		DMEMIT("no_discard_passdown ");
3868
3869	if (pf->mode == PM_READ_ONLY)
3870		DMEMIT("read_only ");
3871
3872	if (pf->error_if_no_space)
3873		DMEMIT("error_if_no_space ");
3874}
3875
3876/*
3877 * Status line is:
3878 *    <transaction id> <used metadata sectors>/<total metadata sectors>
3879 *    <used data sectors>/<total data sectors> <held metadata root>
3880 *    <pool mode> <discard config> <no space config> <needs_check>
3881 */
3882static void pool_status(struct dm_target *ti, status_type_t type,
3883			unsigned status_flags, char *result, unsigned maxlen)
3884{
3885	int r;
3886	unsigned sz = 0;
3887	uint64_t transaction_id;
3888	dm_block_t nr_free_blocks_data;
3889	dm_block_t nr_free_blocks_metadata;
3890	dm_block_t nr_blocks_data;
3891	dm_block_t nr_blocks_metadata;
3892	dm_block_t held_root;
3893	enum pool_mode mode;
3894	char buf[BDEVNAME_SIZE];
3895	char buf2[BDEVNAME_SIZE];
3896	struct pool_c *pt = ti->private;
3897	struct pool *pool = pt->pool;
3898
3899	switch (type) {
3900	case STATUSTYPE_INFO:
3901		if (get_pool_mode(pool) == PM_FAIL) {
3902			DMEMIT("Fail");
3903			break;
3904		}
3905
3906		/* Commit to ensure statistics aren't out-of-date */
3907		if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3908			(void) commit(pool);
3909
3910		r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
3911		if (r) {
3912			DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3913			      dm_device_name(pool->pool_md), r);
3914			goto err;
3915		}
3916
3917		r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
3918		if (r) {
3919			DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3920			      dm_device_name(pool->pool_md), r);
3921			goto err;
3922		}
3923
3924		r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
3925		if (r) {
3926			DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3927			      dm_device_name(pool->pool_md), r);
3928			goto err;
3929		}
3930
3931		r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
3932		if (r) {
3933			DMERR("%s: dm_pool_get_free_block_count returned %d",
3934			      dm_device_name(pool->pool_md), r);
3935			goto err;
3936		}
3937
3938		r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
3939		if (r) {
3940			DMERR("%s: dm_pool_get_data_dev_size returned %d",
3941			      dm_device_name(pool->pool_md), r);
3942			goto err;
3943		}
3944
3945		r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
3946		if (r) {
3947			DMERR("%s: dm_pool_get_metadata_snap returned %d",
3948			      dm_device_name(pool->pool_md), r);
3949			goto err;
3950		}
3951
3952		DMEMIT("%llu %llu/%llu %llu/%llu ",
3953		       (unsigned long long)transaction_id,
3954		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3955		       (unsigned long long)nr_blocks_metadata,
3956		       (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
3957		       (unsigned long long)nr_blocks_data);
3958
3959		if (held_root)
3960			DMEMIT("%llu ", held_root);
3961		else
3962			DMEMIT("- ");
3963
3964		mode = get_pool_mode(pool);
3965		if (mode == PM_OUT_OF_DATA_SPACE)
3966			DMEMIT("out_of_data_space ");
3967		else if (is_read_only_pool_mode(mode))
3968			DMEMIT("ro ");
3969		else
3970			DMEMIT("rw ");
3971
3972		if (!pool->pf.discard_enabled)
3973			DMEMIT("ignore_discard ");
3974		else if (pool->pf.discard_passdown)
3975			DMEMIT("discard_passdown ");
3976		else
3977			DMEMIT("no_discard_passdown ");
3978
3979		if (pool->pf.error_if_no_space)
3980			DMEMIT("error_if_no_space ");
3981		else
3982			DMEMIT("queue_if_no_space ");
3983
3984		if (dm_pool_metadata_needs_check(pool->pmd))
3985			DMEMIT("needs_check ");
3986		else
3987			DMEMIT("- ");
3988
3989		DMEMIT("%llu ", (unsigned long long)calc_metadata_threshold(pt));
3990
3991		break;
3992
3993	case STATUSTYPE_TABLE:
3994		DMEMIT("%s %s %lu %llu ",
3995		       format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
3996		       format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
3997		       (unsigned long)pool->sectors_per_block,
3998		       (unsigned long long)pt->low_water_blocks);
3999		emit_flags(&pt->requested_pf, result, sz, maxlen);
4000		break;
4001
4002	case STATUSTYPE_IMA:
4003		*result = '\0';
4004		break;
4005	}
4006	return;
4007
4008err:
4009	DMEMIT("Error");
4010}
4011
4012static int pool_iterate_devices(struct dm_target *ti,
4013				iterate_devices_callout_fn fn, void *data)
4014{
4015	struct pool_c *pt = ti->private;
4016
4017	return fn(ti, pt->data_dev, 0, ti->len, data);
4018}
4019
4020static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
4021{
4022	struct pool_c *pt = ti->private;
4023	struct pool *pool = pt->pool;
4024	sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
4025
4026	/*
4027	 * If max_sectors is smaller than pool->sectors_per_block adjust it
4028	 * to the highest possible power-of-2 factor of pool->sectors_per_block.
4029	 * This is especially beneficial when the pool's data device is a RAID
4030	 * device that has a full stripe width that matches pool->sectors_per_block
4031	 * -- because even though partial RAID stripe-sized IOs will be issued to a
4032	 *    single RAID stripe; when aggregated they will end on a full RAID stripe
4033	 *    boundary.. which avoids additional partial RAID stripe writes cascading
4034	 */
4035	if (limits->max_sectors < pool->sectors_per_block) {
4036		while (!is_factor(pool->sectors_per_block, limits->max_sectors)) {
4037			if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
4038				limits->max_sectors--;
4039			limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
4040		}
4041	}
4042
4043	/*
4044	 * If the system-determined stacked limits are compatible with the
4045	 * pool's blocksize (io_opt is a factor) do not override them.
4046	 */
4047	if (io_opt_sectors < pool->sectors_per_block ||
4048	    !is_factor(io_opt_sectors, pool->sectors_per_block)) {
4049		if (is_factor(pool->sectors_per_block, limits->max_sectors))
4050			blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT);
4051		else
4052			blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT);
4053		blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
4054	}
4055
4056	/*
4057	 * pt->adjusted_pf is a staging area for the actual features to use.
4058	 * They get transferred to the live pool in bind_control_target()
4059	 * called from pool_preresume().
4060	 */
4061	if (!pt->adjusted_pf.discard_enabled) {
4062		/*
4063		 * Must explicitly disallow stacking discard limits otherwise the
4064		 * block layer will stack them if pool's data device has support.
 
 
4065		 */
4066		limits->discard_granularity = 0;
4067		return;
4068	}
4069
4070	disable_passdown_if_not_supported(pt);
4071
4072	/*
4073	 * The pool uses the same discard limits as the underlying data
4074	 * device.  DM core has already set this up.
4075	 */
4076}
4077
4078static struct target_type pool_target = {
4079	.name = "thin-pool",
4080	.features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
4081		    DM_TARGET_IMMUTABLE,
4082	.version = {1, 22, 0},
4083	.module = THIS_MODULE,
4084	.ctr = pool_ctr,
4085	.dtr = pool_dtr,
4086	.map = pool_map,
4087	.presuspend = pool_presuspend,
4088	.presuspend_undo = pool_presuspend_undo,
4089	.postsuspend = pool_postsuspend,
4090	.preresume = pool_preresume,
4091	.resume = pool_resume,
4092	.message = pool_message,
4093	.status = pool_status,
4094	.iterate_devices = pool_iterate_devices,
4095	.io_hints = pool_io_hints,
4096};
4097
4098/*----------------------------------------------------------------
4099 * Thin target methods
4100 *--------------------------------------------------------------*/
4101static void thin_get(struct thin_c *tc)
4102{
4103	refcount_inc(&tc->refcount);
4104}
4105
4106static void thin_put(struct thin_c *tc)
4107{
4108	if (refcount_dec_and_test(&tc->refcount))
4109		complete(&tc->can_destroy);
4110}
4111
4112static void thin_dtr(struct dm_target *ti)
4113{
4114	struct thin_c *tc = ti->private;
 
4115
4116	spin_lock_irq(&tc->pool->lock);
4117	list_del_rcu(&tc->list);
4118	spin_unlock_irq(&tc->pool->lock);
4119	synchronize_rcu();
4120
4121	thin_put(tc);
4122	wait_for_completion(&tc->can_destroy);
4123
4124	mutex_lock(&dm_thin_pool_table.mutex);
4125
4126	__pool_dec(tc->pool);
4127	dm_pool_close_thin_device(tc->td);
4128	dm_put_device(ti, tc->pool_dev);
4129	if (tc->origin_dev)
4130		dm_put_device(ti, tc->origin_dev);
4131	kfree(tc);
4132
4133	mutex_unlock(&dm_thin_pool_table.mutex);
4134}
4135
4136/*
4137 * Thin target parameters:
4138 *
4139 * <pool_dev> <dev_id> [origin_dev]
4140 *
4141 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
4142 * dev_id: the internal device identifier
4143 * origin_dev: a device external to the pool that should act as the origin
4144 *
4145 * If the pool device has discards disabled, they get disabled for the thin
4146 * device as well.
4147 */
4148static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
4149{
4150	int r;
4151	struct thin_c *tc;
4152	struct dm_dev *pool_dev, *origin_dev;
4153	struct mapped_device *pool_md;
 
4154
4155	mutex_lock(&dm_thin_pool_table.mutex);
4156
4157	if (argc != 2 && argc != 3) {
4158		ti->error = "Invalid argument count";
4159		r = -EINVAL;
4160		goto out_unlock;
4161	}
4162
4163	tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
4164	if (!tc) {
4165		ti->error = "Out of memory";
4166		r = -ENOMEM;
4167		goto out_unlock;
4168	}
4169	tc->thin_md = dm_table_get_md(ti->table);
4170	spin_lock_init(&tc->lock);
4171	INIT_LIST_HEAD(&tc->deferred_cells);
4172	bio_list_init(&tc->deferred_bio_list);
4173	bio_list_init(&tc->retry_on_resume_list);
4174	tc->sort_bio_list = RB_ROOT;
4175
4176	if (argc == 3) {
4177		if (!strcmp(argv[0], argv[2])) {
4178			ti->error = "Error setting origin device";
4179			r = -EINVAL;
4180			goto bad_origin_dev;
4181		}
4182
4183		r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
4184		if (r) {
4185			ti->error = "Error opening origin device";
4186			goto bad_origin_dev;
4187		}
4188		tc->origin_dev = origin_dev;
4189	}
4190
4191	r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
4192	if (r) {
4193		ti->error = "Error opening pool device";
4194		goto bad_pool_dev;
4195	}
4196	tc->pool_dev = pool_dev;
4197
4198	if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
4199		ti->error = "Invalid device id";
4200		r = -EINVAL;
4201		goto bad_common;
4202	}
4203
4204	pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
4205	if (!pool_md) {
4206		ti->error = "Couldn't get pool mapped device";
4207		r = -EINVAL;
4208		goto bad_common;
4209	}
4210
4211	tc->pool = __pool_table_lookup(pool_md);
4212	if (!tc->pool) {
4213		ti->error = "Couldn't find pool object";
4214		r = -EINVAL;
4215		goto bad_pool_lookup;
4216	}
4217	__pool_inc(tc->pool);
4218
4219	if (get_pool_mode(tc->pool) == PM_FAIL) {
4220		ti->error = "Couldn't open thin device, Pool is in fail mode";
4221		r = -EINVAL;
4222		goto bad_pool;
4223	}
4224
4225	r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
4226	if (r) {
4227		ti->error = "Couldn't open thin internal device";
4228		goto bad_pool;
4229	}
4230
4231	r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
4232	if (r)
4233		goto bad;
4234
4235	ti->num_flush_bios = 1;
4236	ti->flush_supported = true;
4237	ti->accounts_remapped_io = true;
4238	ti->per_io_data_size = sizeof(struct dm_thin_endio_hook);
4239
4240	/* In case the pool supports discards, pass them on. */
 
4241	if (tc->pool->pf.discard_enabled) {
4242		ti->discards_supported = true;
4243		ti->num_discard_bios = 1;
 
4244	}
4245
4246	mutex_unlock(&dm_thin_pool_table.mutex);
4247
4248	spin_lock_irq(&tc->pool->lock);
4249	if (tc->pool->suspended) {
4250		spin_unlock_irq(&tc->pool->lock);
4251		mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */
4252		ti->error = "Unable to activate thin device while pool is suspended";
4253		r = -EINVAL;
4254		goto bad;
4255	}
4256	refcount_set(&tc->refcount, 1);
4257	init_completion(&tc->can_destroy);
4258	list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
4259	spin_unlock_irq(&tc->pool->lock);
4260	/*
4261	 * This synchronize_rcu() call is needed here otherwise we risk a
4262	 * wake_worker() call finding no bios to process (because the newly
4263	 * added tc isn't yet visible).  So this reduces latency since we
4264	 * aren't then dependent on the periodic commit to wake_worker().
4265	 */
4266	synchronize_rcu();
4267
4268	dm_put(pool_md);
4269
4270	return 0;
4271
4272bad:
4273	dm_pool_close_thin_device(tc->td);
4274bad_pool:
4275	__pool_dec(tc->pool);
4276bad_pool_lookup:
4277	dm_put(pool_md);
4278bad_common:
4279	dm_put_device(ti, tc->pool_dev);
4280bad_pool_dev:
4281	if (tc->origin_dev)
4282		dm_put_device(ti, tc->origin_dev);
4283bad_origin_dev:
4284	kfree(tc);
4285out_unlock:
4286	mutex_unlock(&dm_thin_pool_table.mutex);
4287
4288	return r;
4289}
4290
4291static int thin_map(struct dm_target *ti, struct bio *bio)
4292{
4293	bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
4294
4295	return thin_bio_map(ti, bio);
4296}
4297
4298static int thin_endio(struct dm_target *ti, struct bio *bio,
4299		blk_status_t *err)
4300{
4301	unsigned long flags;
4302	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
4303	struct list_head work;
4304	struct dm_thin_new_mapping *m, *tmp;
4305	struct pool *pool = h->tc->pool;
4306
4307	if (h->shared_read_entry) {
4308		INIT_LIST_HEAD(&work);
4309		dm_deferred_entry_dec(h->shared_read_entry, &work);
4310
4311		spin_lock_irqsave(&pool->lock, flags);
4312		list_for_each_entry_safe(m, tmp, &work, list) {
4313			list_del(&m->list);
4314			__complete_mapping_preparation(m);
4315		}
4316		spin_unlock_irqrestore(&pool->lock, flags);
4317	}
4318
4319	if (h->all_io_entry) {
4320		INIT_LIST_HEAD(&work);
4321		dm_deferred_entry_dec(h->all_io_entry, &work);
4322		if (!list_empty(&work)) {
4323			spin_lock_irqsave(&pool->lock, flags);
4324			list_for_each_entry_safe(m, tmp, &work, list)
4325				list_add_tail(&m->list, &pool->prepared_discards);
4326			spin_unlock_irqrestore(&pool->lock, flags);
4327			wake_worker(pool);
4328		}
4329	}
4330
4331	if (h->cell)
4332		cell_defer_no_holder(h->tc, h->cell);
4333
4334	return DM_ENDIO_DONE;
4335}
4336
4337static void thin_presuspend(struct dm_target *ti)
4338{
4339	struct thin_c *tc = ti->private;
4340
4341	if (dm_noflush_suspending(ti))
4342		noflush_work(tc, do_noflush_start);
4343}
4344
4345static void thin_postsuspend(struct dm_target *ti)
4346{
4347	struct thin_c *tc = ti->private;
4348
4349	/*
4350	 * The dm_noflush_suspending flag has been cleared by now, so
4351	 * unfortunately we must always run this.
4352	 */
4353	noflush_work(tc, do_noflush_stop);
4354}
4355
4356static int thin_preresume(struct dm_target *ti)
4357{
4358	struct thin_c *tc = ti->private;
4359
4360	if (tc->origin_dev)
4361		tc->origin_size = get_dev_size(tc->origin_dev->bdev);
4362
4363	return 0;
4364}
4365
4366/*
4367 * <nr mapped sectors> <highest mapped sector>
4368 */
4369static void thin_status(struct dm_target *ti, status_type_t type,
4370			unsigned status_flags, char *result, unsigned maxlen)
4371{
4372	int r;
4373	ssize_t sz = 0;
4374	dm_block_t mapped, highest;
4375	char buf[BDEVNAME_SIZE];
4376	struct thin_c *tc = ti->private;
4377
4378	if (get_pool_mode(tc->pool) == PM_FAIL) {
4379		DMEMIT("Fail");
4380		return;
4381	}
4382
4383	if (!tc->td)
4384		DMEMIT("-");
4385	else {
4386		switch (type) {
4387		case STATUSTYPE_INFO:
4388			r = dm_thin_get_mapped_count(tc->td, &mapped);
4389			if (r) {
4390				DMERR("dm_thin_get_mapped_count returned %d", r);
4391				goto err;
4392			}
4393
4394			r = dm_thin_get_highest_mapped_block(tc->td, &highest);
4395			if (r < 0) {
4396				DMERR("dm_thin_get_highest_mapped_block returned %d", r);
4397				goto err;
4398			}
4399
4400			DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
4401			if (r)
4402				DMEMIT("%llu", ((highest + 1) *
4403						tc->pool->sectors_per_block) - 1);
4404			else
4405				DMEMIT("-");
4406			break;
4407
4408		case STATUSTYPE_TABLE:
4409			DMEMIT("%s %lu",
4410			       format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
4411			       (unsigned long) tc->dev_id);
4412			if (tc->origin_dev)
4413				DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
4414			break;
4415
4416		case STATUSTYPE_IMA:
4417			*result = '\0';
4418			break;
4419		}
4420	}
4421
4422	return;
4423
4424err:
4425	DMEMIT("Error");
4426}
4427
4428static int thin_iterate_devices(struct dm_target *ti,
4429				iterate_devices_callout_fn fn, void *data)
4430{
4431	sector_t blocks;
4432	struct thin_c *tc = ti->private;
4433	struct pool *pool = tc->pool;
4434
4435	/*
4436	 * We can't call dm_pool_get_data_dev_size() since that blocks.  So
4437	 * we follow a more convoluted path through to the pool's target.
4438	 */
4439	if (!pool->ti)
4440		return 0;	/* nothing is bound */
4441
4442	blocks = pool->ti->len;
4443	(void) sector_div(blocks, pool->sectors_per_block);
4444	if (blocks)
4445		return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
4446
4447	return 0;
4448}
4449
4450static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
4451{
4452	struct thin_c *tc = ti->private;
4453	struct pool *pool = tc->pool;
4454
4455	if (!pool->pf.discard_enabled)
4456		return;
4457
4458	limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
4459	limits->max_discard_sectors = 2048 * 1024 * 16; /* 16G */
4460}
4461
4462static struct target_type thin_target = {
4463	.name = "thin",
4464	.version = {1, 22, 0},
4465	.module	= THIS_MODULE,
4466	.ctr = thin_ctr,
4467	.dtr = thin_dtr,
4468	.map = thin_map,
4469	.end_io = thin_endio,
4470	.preresume = thin_preresume,
4471	.presuspend = thin_presuspend,
4472	.postsuspend = thin_postsuspend,
4473	.status = thin_status,
4474	.iterate_devices = thin_iterate_devices,
4475	.io_hints = thin_io_hints,
4476};
4477
4478/*----------------------------------------------------------------*/
4479
4480static int __init dm_thin_init(void)
4481{
4482	int r = -ENOMEM;
4483
4484	pool_table_init();
4485
4486	_new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
4487	if (!_new_mapping_cache)
4488		return r;
4489
4490	r = dm_register_target(&thin_target);
4491	if (r)
4492		goto bad_new_mapping_cache;
4493
4494	r = dm_register_target(&pool_target);
4495	if (r)
4496		goto bad_thin_target;
 
 
 
 
 
 
4497
4498	return 0;
4499
4500bad_thin_target:
4501	dm_unregister_target(&thin_target);
4502bad_new_mapping_cache:
4503	kmem_cache_destroy(_new_mapping_cache);
 
 
4504
4505	return r;
4506}
4507
4508static void dm_thin_exit(void)
4509{
4510	dm_unregister_target(&thin_target);
4511	dm_unregister_target(&pool_target);
4512
4513	kmem_cache_destroy(_new_mapping_cache);
4514
4515	pool_table_exit();
4516}
4517
4518module_init(dm_thin_init);
4519module_exit(dm_thin_exit);
4520
4521module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR);
4522MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
4523
4524MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
4525MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
4526MODULE_LICENSE("GPL");
v4.6
   1/*
   2 * Copyright (C) 2011-2012 Red Hat UK.
   3 *
   4 * This file is released under the GPL.
   5 */
   6
   7#include "dm-thin-metadata.h"
   8#include "dm-bio-prison.h"
   9#include "dm.h"
  10
  11#include <linux/device-mapper.h>
  12#include <linux/dm-io.h>
  13#include <linux/dm-kcopyd.h>
  14#include <linux/jiffies.h>
  15#include <linux/log2.h>
  16#include <linux/list.h>
  17#include <linux/rculist.h>
  18#include <linux/init.h>
  19#include <linux/module.h>
  20#include <linux/slab.h>
  21#include <linux/vmalloc.h>
  22#include <linux/sort.h>
  23#include <linux/rbtree.h>
  24
  25#define	DM_MSG_PREFIX	"thin"
  26
  27/*
  28 * Tunable constants
  29 */
  30#define ENDIO_HOOK_POOL_SIZE 1024
  31#define MAPPING_POOL_SIZE 1024
  32#define COMMIT_PERIOD HZ
  33#define NO_SPACE_TIMEOUT_SECS 60
  34
  35static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
  36
  37DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
  38		"A percentage of time allocated for copy on write");
  39
  40/*
  41 * The block size of the device holding pool data must be
  42 * between 64KB and 1GB.
  43 */
  44#define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
  45#define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
  46
  47/*
  48 * Device id is restricted to 24 bits.
  49 */
  50#define MAX_DEV_ID ((1 << 24) - 1)
  51
  52/*
  53 * How do we handle breaking sharing of data blocks?
  54 * =================================================
  55 *
  56 * We use a standard copy-on-write btree to store the mappings for the
  57 * devices (note I'm talking about copy-on-write of the metadata here, not
  58 * the data).  When you take an internal snapshot you clone the root node
  59 * of the origin btree.  After this there is no concept of an origin or a
  60 * snapshot.  They are just two device trees that happen to point to the
  61 * same data blocks.
  62 *
  63 * When we get a write in we decide if it's to a shared data block using
  64 * some timestamp magic.  If it is, we have to break sharing.
  65 *
  66 * Let's say we write to a shared block in what was the origin.  The
  67 * steps are:
  68 *
  69 * i) plug io further to this physical block. (see bio_prison code).
  70 *
  71 * ii) quiesce any read io to that shared data block.  Obviously
  72 * including all devices that share this block.  (see dm_deferred_set code)
  73 *
  74 * iii) copy the data block to a newly allocate block.  This step can be
  75 * missed out if the io covers the block. (schedule_copy).
  76 *
  77 * iv) insert the new mapping into the origin's btree
  78 * (process_prepared_mapping).  This act of inserting breaks some
  79 * sharing of btree nodes between the two devices.  Breaking sharing only
  80 * effects the btree of that specific device.  Btrees for the other
  81 * devices that share the block never change.  The btree for the origin
  82 * device as it was after the last commit is untouched, ie. we're using
  83 * persistent data structures in the functional programming sense.
  84 *
  85 * v) unplug io to this physical block, including the io that triggered
  86 * the breaking of sharing.
  87 *
  88 * Steps (ii) and (iii) occur in parallel.
  89 *
  90 * The metadata _doesn't_ need to be committed before the io continues.  We
  91 * get away with this because the io is always written to a _new_ block.
  92 * If there's a crash, then:
  93 *
  94 * - The origin mapping will point to the old origin block (the shared
  95 * one).  This will contain the data as it was before the io that triggered
  96 * the breaking of sharing came in.
  97 *
  98 * - The snap mapping still points to the old block.  As it would after
  99 * the commit.
 100 *
 101 * The downside of this scheme is the timestamp magic isn't perfect, and
 102 * will continue to think that data block in the snapshot device is shared
 103 * even after the write to the origin has broken sharing.  I suspect data
 104 * blocks will typically be shared by many different devices, so we're
 105 * breaking sharing n + 1 times, rather than n, where n is the number of
 106 * devices that reference this data block.  At the moment I think the
 107 * benefits far, far outweigh the disadvantages.
 108 */
 109
 110/*----------------------------------------------------------------*/
 111
 112/*
 113 * Key building.
 114 */
 115enum lock_space {
 116	VIRTUAL,
 117	PHYSICAL
 118};
 119
 120static void build_key(struct dm_thin_device *td, enum lock_space ls,
 121		      dm_block_t b, dm_block_t e, struct dm_cell_key *key)
 122{
 123	key->virtual = (ls == VIRTUAL);
 124	key->dev = dm_thin_dev_id(td);
 125	key->block_begin = b;
 126	key->block_end = e;
 127}
 128
 129static void build_data_key(struct dm_thin_device *td, dm_block_t b,
 130			   struct dm_cell_key *key)
 131{
 132	build_key(td, PHYSICAL, b, b + 1llu, key);
 133}
 134
 135static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
 136			      struct dm_cell_key *key)
 137{
 138	build_key(td, VIRTUAL, b, b + 1llu, key);
 139}
 140
 141/*----------------------------------------------------------------*/
 142
 143#define THROTTLE_THRESHOLD (1 * HZ)
 144
 145struct throttle {
 146	struct rw_semaphore lock;
 147	unsigned long threshold;
 148	bool throttle_applied;
 149};
 150
 151static void throttle_init(struct throttle *t)
 152{
 153	init_rwsem(&t->lock);
 154	t->throttle_applied = false;
 155}
 156
 157static void throttle_work_start(struct throttle *t)
 158{
 159	t->threshold = jiffies + THROTTLE_THRESHOLD;
 160}
 161
 162static void throttle_work_update(struct throttle *t)
 163{
 164	if (!t->throttle_applied && jiffies > t->threshold) {
 165		down_write(&t->lock);
 166		t->throttle_applied = true;
 167	}
 168}
 169
 170static void throttle_work_complete(struct throttle *t)
 171{
 172	if (t->throttle_applied) {
 173		t->throttle_applied = false;
 174		up_write(&t->lock);
 175	}
 176}
 177
 178static void throttle_lock(struct throttle *t)
 179{
 180	down_read(&t->lock);
 181}
 182
 183static void throttle_unlock(struct throttle *t)
 184{
 185	up_read(&t->lock);
 186}
 187
 188/*----------------------------------------------------------------*/
 189
 190/*
 191 * A pool device ties together a metadata device and a data device.  It
 192 * also provides the interface for creating and destroying internal
 193 * devices.
 194 */
 195struct dm_thin_new_mapping;
 196
 197/*
 198 * The pool runs in 4 modes.  Ordered in degraded order for comparisons.
 199 */
 200enum pool_mode {
 201	PM_WRITE,		/* metadata may be changed */
 202	PM_OUT_OF_DATA_SPACE,	/* metadata may be changed, though data may not be allocated */
 
 
 
 
 
 203	PM_READ_ONLY,		/* metadata may not be changed */
 
 204	PM_FAIL,		/* all I/O fails */
 205};
 206
 207struct pool_features {
 208	enum pool_mode mode;
 209
 210	bool zero_new_blocks:1;
 211	bool discard_enabled:1;
 212	bool discard_passdown:1;
 213	bool error_if_no_space:1;
 214};
 215
 216struct thin_c;
 217typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
 218typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
 219typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
 220
 221#define CELL_SORT_ARRAY_SIZE 8192
 222
 223struct pool {
 224	struct list_head list;
 225	struct dm_target *ti;	/* Only set if a pool target is bound */
 226
 227	struct mapped_device *pool_md;
 
 228	struct block_device *md_dev;
 229	struct dm_pool_metadata *pmd;
 230
 231	dm_block_t low_water_blocks;
 232	uint32_t sectors_per_block;
 233	int sectors_per_block_shift;
 234
 235	struct pool_features pf;
 236	bool low_water_triggered:1;	/* A dm event has been sent */
 237	bool suspended:1;
 238	bool out_of_data_space:1;
 239
 240	struct dm_bio_prison *prison;
 241	struct dm_kcopyd_client *copier;
 242
 
 243	struct workqueue_struct *wq;
 244	struct throttle throttle;
 245	struct work_struct worker;
 246	struct delayed_work waker;
 247	struct delayed_work no_space_timeout;
 248
 249	unsigned long last_commit_jiffies;
 250	unsigned ref_count;
 251
 252	spinlock_t lock;
 253	struct bio_list deferred_flush_bios;
 
 254	struct list_head prepared_mappings;
 255	struct list_head prepared_discards;
 
 256	struct list_head active_thins;
 257
 258	struct dm_deferred_set *shared_read_ds;
 259	struct dm_deferred_set *all_io_ds;
 260
 261	struct dm_thin_new_mapping *next_mapping;
 262	mempool_t *mapping_pool;
 263
 264	process_bio_fn process_bio;
 265	process_bio_fn process_discard;
 266
 267	process_cell_fn process_cell;
 268	process_cell_fn process_discard_cell;
 269
 270	process_mapping_fn process_prepared_mapping;
 271	process_mapping_fn process_prepared_discard;
 
 272
 273	struct dm_bio_prison_cell **cell_sort_array;
 
 
 274};
 275
 276static enum pool_mode get_pool_mode(struct pool *pool);
 277static void metadata_operation_failed(struct pool *pool, const char *op, int r);
 278
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 279/*
 280 * Target context for a pool.
 281 */
 282struct pool_c {
 283	struct dm_target *ti;
 284	struct pool *pool;
 285	struct dm_dev *data_dev;
 286	struct dm_dev *metadata_dev;
 287	struct dm_target_callbacks callbacks;
 288
 289	dm_block_t low_water_blocks;
 290	struct pool_features requested_pf; /* Features requested during table load */
 291	struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
 292};
 293
 294/*
 295 * Target context for a thin.
 296 */
 297struct thin_c {
 298	struct list_head list;
 299	struct dm_dev *pool_dev;
 300	struct dm_dev *origin_dev;
 301	sector_t origin_size;
 302	dm_thin_id dev_id;
 303
 304	struct pool *pool;
 305	struct dm_thin_device *td;
 306	struct mapped_device *thin_md;
 307
 308	bool requeue_mode:1;
 309	spinlock_t lock;
 310	struct list_head deferred_cells;
 311	struct bio_list deferred_bio_list;
 312	struct bio_list retry_on_resume_list;
 313	struct rb_root sort_bio_list; /* sorted list of deferred bios */
 314
 315	/*
 316	 * Ensures the thin is not destroyed until the worker has finished
 317	 * iterating the active_thins list.
 318	 */
 319	atomic_t refcount;
 320	struct completion can_destroy;
 321};
 322
 323/*----------------------------------------------------------------*/
 324
 325/**
 326 * __blkdev_issue_discard_async - queue a discard with async completion
 327 * @bdev:	blockdev to issue discard for
 328 * @sector:	start sector
 329 * @nr_sects:	number of sectors to discard
 330 * @gfp_mask:	memory allocation flags (for bio_alloc)
 331 * @flags:	BLKDEV_IFL_* flags to control behaviour
 332 * @parent_bio: parent discard bio that all sub discards get chained to
 333 *
 334 * Description:
 335 *    Asynchronously issue a discard request for the sectors in question.
 336 */
 337static int __blkdev_issue_discard_async(struct block_device *bdev, sector_t sector,
 338					sector_t nr_sects, gfp_t gfp_mask, unsigned long flags,
 339					struct bio *parent_bio)
 340{
 341	struct request_queue *q = bdev_get_queue(bdev);
 342	int type = REQ_WRITE | REQ_DISCARD;
 343	struct bio *bio;
 344
 345	if (!q || !nr_sects)
 346		return -ENXIO;
 347
 348	if (!blk_queue_discard(q))
 349		return -EOPNOTSUPP;
 350
 351	if (flags & BLKDEV_DISCARD_SECURE) {
 352		if (!blk_queue_secdiscard(q))
 353			return -EOPNOTSUPP;
 354		type |= REQ_SECURE;
 355	}
 356
 357	/*
 358	 * Required bio_put occurs in bio_endio thanks to bio_chain below
 359	 */
 360	bio = bio_alloc(gfp_mask, 1);
 361	if (!bio)
 362		return -ENOMEM;
 363
 364	bio_chain(bio, parent_bio);
 365
 366	bio->bi_iter.bi_sector = sector;
 367	bio->bi_bdev = bdev;
 368	bio->bi_iter.bi_size = nr_sects << 9;
 369
 370	submit_bio(type, bio);
 371
 372	return 0;
 373}
 374
 375static bool block_size_is_power_of_two(struct pool *pool)
 376{
 377	return pool->sectors_per_block_shift >= 0;
 378}
 379
 380static sector_t block_to_sectors(struct pool *pool, dm_block_t b)
 381{
 382	return block_size_is_power_of_two(pool) ?
 383		(b << pool->sectors_per_block_shift) :
 384		(b * pool->sectors_per_block);
 385}
 386
 387static int issue_discard(struct thin_c *tc, dm_block_t data_b, dm_block_t data_e,
 388			 struct bio *parent_bio)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 389{
 
 390	sector_t s = block_to_sectors(tc->pool, data_b);
 391	sector_t len = block_to_sectors(tc->pool, data_e - data_b);
 392
 393	return __blkdev_issue_discard_async(tc->pool_dev->bdev, s, len,
 394					    GFP_NOWAIT, 0, parent_bio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 395}
 396
 397/*----------------------------------------------------------------*/
 398
 399/*
 400 * wake_worker() is used when new work is queued and when pool_resume is
 401 * ready to continue deferred IO processing.
 402 */
 403static void wake_worker(struct pool *pool)
 404{
 405	queue_work(pool->wq, &pool->worker);
 406}
 407
 408/*----------------------------------------------------------------*/
 409
 410static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
 411		      struct dm_bio_prison_cell **cell_result)
 412{
 413	int r;
 414	struct dm_bio_prison_cell *cell_prealloc;
 415
 416	/*
 417	 * Allocate a cell from the prison's mempool.
 418	 * This might block but it can't fail.
 419	 */
 420	cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
 421
 422	r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
 423	if (r)
 424		/*
 425		 * We reused an old cell; we can get rid of
 426		 * the new one.
 427		 */
 428		dm_bio_prison_free_cell(pool->prison, cell_prealloc);
 429
 430	return r;
 431}
 432
 433static void cell_release(struct pool *pool,
 434			 struct dm_bio_prison_cell *cell,
 435			 struct bio_list *bios)
 436{
 437	dm_cell_release(pool->prison, cell, bios);
 438	dm_bio_prison_free_cell(pool->prison, cell);
 439}
 440
 441static void cell_visit_release(struct pool *pool,
 442			       void (*fn)(void *, struct dm_bio_prison_cell *),
 443			       void *context,
 444			       struct dm_bio_prison_cell *cell)
 445{
 446	dm_cell_visit_release(pool->prison, fn, context, cell);
 447	dm_bio_prison_free_cell(pool->prison, cell);
 448}
 449
 450static void cell_release_no_holder(struct pool *pool,
 451				   struct dm_bio_prison_cell *cell,
 452				   struct bio_list *bios)
 453{
 454	dm_cell_release_no_holder(pool->prison, cell, bios);
 455	dm_bio_prison_free_cell(pool->prison, cell);
 456}
 457
 458static void cell_error_with_code(struct pool *pool,
 459				 struct dm_bio_prison_cell *cell, int error_code)
 460{
 461	dm_cell_error(pool->prison, cell, error_code);
 462	dm_bio_prison_free_cell(pool->prison, cell);
 463}
 464
 465static int get_pool_io_error_code(struct pool *pool)
 466{
 467	return pool->out_of_data_space ? -ENOSPC : -EIO;
 468}
 469
 470static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
 471{
 472	int error = get_pool_io_error_code(pool);
 473
 474	cell_error_with_code(pool, cell, error);
 475}
 476
 477static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
 478{
 479	cell_error_with_code(pool, cell, 0);
 480}
 481
 482static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
 483{
 484	cell_error_with_code(pool, cell, DM_ENDIO_REQUEUE);
 485}
 486
 487/*----------------------------------------------------------------*/
 488
 489/*
 490 * A global list of pools that uses a struct mapped_device as a key.
 491 */
 492static struct dm_thin_pool_table {
 493	struct mutex mutex;
 494	struct list_head pools;
 495} dm_thin_pool_table;
 496
 497static void pool_table_init(void)
 498{
 499	mutex_init(&dm_thin_pool_table.mutex);
 500	INIT_LIST_HEAD(&dm_thin_pool_table.pools);
 501}
 502
 
 
 
 
 
 503static void __pool_table_insert(struct pool *pool)
 504{
 505	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 506	list_add(&pool->list, &dm_thin_pool_table.pools);
 507}
 508
 509static void __pool_table_remove(struct pool *pool)
 510{
 511	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 512	list_del(&pool->list);
 513}
 514
 515static struct pool *__pool_table_lookup(struct mapped_device *md)
 516{
 517	struct pool *pool = NULL, *tmp;
 518
 519	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 520
 521	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
 522		if (tmp->pool_md == md) {
 523			pool = tmp;
 524			break;
 525		}
 526	}
 527
 528	return pool;
 529}
 530
 531static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
 532{
 533	struct pool *pool = NULL, *tmp;
 534
 535	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 536
 537	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
 538		if (tmp->md_dev == md_dev) {
 539			pool = tmp;
 540			break;
 541		}
 542	}
 543
 544	return pool;
 545}
 546
 547/*----------------------------------------------------------------*/
 548
 549struct dm_thin_endio_hook {
 550	struct thin_c *tc;
 551	struct dm_deferred_entry *shared_read_entry;
 552	struct dm_deferred_entry *all_io_entry;
 553	struct dm_thin_new_mapping *overwrite_mapping;
 554	struct rb_node rb_node;
 555	struct dm_bio_prison_cell *cell;
 556};
 557
 558static void __merge_bio_list(struct bio_list *bios, struct bio_list *master)
 559{
 560	bio_list_merge(bios, master);
 561	bio_list_init(master);
 562}
 563
 564static void error_bio_list(struct bio_list *bios, int error)
 565{
 566	struct bio *bio;
 567
 568	while ((bio = bio_list_pop(bios))) {
 569		bio->bi_error = error;
 570		bio_endio(bio);
 571	}
 572}
 573
 574static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master, int error)
 
 575{
 576	struct bio_list bios;
 577	unsigned long flags;
 578
 579	bio_list_init(&bios);
 580
 581	spin_lock_irqsave(&tc->lock, flags);
 582	__merge_bio_list(&bios, master);
 583	spin_unlock_irqrestore(&tc->lock, flags);
 584
 585	error_bio_list(&bios, error);
 586}
 587
 588static void requeue_deferred_cells(struct thin_c *tc)
 589{
 590	struct pool *pool = tc->pool;
 591	unsigned long flags;
 592	struct list_head cells;
 593	struct dm_bio_prison_cell *cell, *tmp;
 594
 595	INIT_LIST_HEAD(&cells);
 596
 597	spin_lock_irqsave(&tc->lock, flags);
 598	list_splice_init(&tc->deferred_cells, &cells);
 599	spin_unlock_irqrestore(&tc->lock, flags);
 600
 601	list_for_each_entry_safe(cell, tmp, &cells, user_list)
 602		cell_requeue(pool, cell);
 603}
 604
 605static void requeue_io(struct thin_c *tc)
 606{
 607	struct bio_list bios;
 608	unsigned long flags;
 609
 610	bio_list_init(&bios);
 611
 612	spin_lock_irqsave(&tc->lock, flags);
 613	__merge_bio_list(&bios, &tc->deferred_bio_list);
 614	__merge_bio_list(&bios, &tc->retry_on_resume_list);
 615	spin_unlock_irqrestore(&tc->lock, flags);
 616
 617	error_bio_list(&bios, DM_ENDIO_REQUEUE);
 618	requeue_deferred_cells(tc);
 619}
 620
 621static void error_retry_list_with_code(struct pool *pool, int error)
 622{
 623	struct thin_c *tc;
 624
 625	rcu_read_lock();
 626	list_for_each_entry_rcu(tc, &pool->active_thins, list)
 627		error_thin_bio_list(tc, &tc->retry_on_resume_list, error);
 628	rcu_read_unlock();
 629}
 630
 631static void error_retry_list(struct pool *pool)
 632{
 633	int error = get_pool_io_error_code(pool);
 634
 635	return error_retry_list_with_code(pool, error);
 636}
 637
 638/*
 639 * This section of code contains the logic for processing a thin device's IO.
 640 * Much of the code depends on pool object resources (lists, workqueues, etc)
 641 * but most is exclusively called from the thin target rather than the thin-pool
 642 * target.
 643 */
 644
 645static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
 646{
 647	struct pool *pool = tc->pool;
 648	sector_t block_nr = bio->bi_iter.bi_sector;
 649
 650	if (block_size_is_power_of_two(pool))
 651		block_nr >>= pool->sectors_per_block_shift;
 652	else
 653		(void) sector_div(block_nr, pool->sectors_per_block);
 654
 655	return block_nr;
 656}
 657
 658/*
 659 * Returns the _complete_ blocks that this bio covers.
 660 */
 661static void get_bio_block_range(struct thin_c *tc, struct bio *bio,
 662				dm_block_t *begin, dm_block_t *end)
 663{
 664	struct pool *pool = tc->pool;
 665	sector_t b = bio->bi_iter.bi_sector;
 666	sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT);
 667
 668	b += pool->sectors_per_block - 1ull; /* so we round up */
 669
 670	if (block_size_is_power_of_two(pool)) {
 671		b >>= pool->sectors_per_block_shift;
 672		e >>= pool->sectors_per_block_shift;
 673	} else {
 674		(void) sector_div(b, pool->sectors_per_block);
 675		(void) sector_div(e, pool->sectors_per_block);
 676	}
 677
 678	if (e < b)
 679		/* Can happen if the bio is within a single block. */
 680		e = b;
 681
 682	*begin = b;
 683	*end = e;
 684}
 685
 686static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
 687{
 688	struct pool *pool = tc->pool;
 689	sector_t bi_sector = bio->bi_iter.bi_sector;
 690
 691	bio->bi_bdev = tc->pool_dev->bdev;
 692	if (block_size_is_power_of_two(pool))
 693		bio->bi_iter.bi_sector =
 694			(block << pool->sectors_per_block_shift) |
 695			(bi_sector & (pool->sectors_per_block - 1));
 696	else
 697		bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
 698				 sector_div(bi_sector, pool->sectors_per_block);
 699}
 700
 701static void remap_to_origin(struct thin_c *tc, struct bio *bio)
 702{
 703	bio->bi_bdev = tc->origin_dev->bdev;
 704}
 705
 706static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
 707{
 708	return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
 709		dm_thin_changed_this_transaction(tc->td);
 710}
 711
 712static void inc_all_io_entry(struct pool *pool, struct bio *bio)
 713{
 714	struct dm_thin_endio_hook *h;
 715
 716	if (bio->bi_rw & REQ_DISCARD)
 717		return;
 718
 719	h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
 720	h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
 721}
 722
 723static void issue(struct thin_c *tc, struct bio *bio)
 724{
 725	struct pool *pool = tc->pool;
 726	unsigned long flags;
 727
 728	if (!bio_triggers_commit(tc, bio)) {
 729		generic_make_request(bio);
 730		return;
 731	}
 732
 733	/*
 734	 * Complete bio with an error if earlier I/O caused changes to
 735	 * the metadata that can't be committed e.g, due to I/O errors
 736	 * on the metadata device.
 737	 */
 738	if (dm_thin_aborted_changes(tc->td)) {
 739		bio_io_error(bio);
 740		return;
 741	}
 742
 743	/*
 744	 * Batch together any bios that trigger commits and then issue a
 745	 * single commit for them in process_deferred_bios().
 746	 */
 747	spin_lock_irqsave(&pool->lock, flags);
 748	bio_list_add(&pool->deferred_flush_bios, bio);
 749	spin_unlock_irqrestore(&pool->lock, flags);
 750}
 751
 752static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
 753{
 754	remap_to_origin(tc, bio);
 755	issue(tc, bio);
 756}
 757
 758static void remap_and_issue(struct thin_c *tc, struct bio *bio,
 759			    dm_block_t block)
 760{
 761	remap(tc, bio, block);
 762	issue(tc, bio);
 763}
 764
 765/*----------------------------------------------------------------*/
 766
 767/*
 768 * Bio endio functions.
 769 */
 770struct dm_thin_new_mapping {
 771	struct list_head list;
 772
 773	bool pass_discard:1;
 774	bool maybe_shared:1;
 775
 776	/*
 777	 * Track quiescing, copying and zeroing preparation actions.  When this
 778	 * counter hits zero the block is prepared and can be inserted into the
 779	 * btree.
 780	 */
 781	atomic_t prepare_actions;
 782
 783	int err;
 784	struct thin_c *tc;
 785	dm_block_t virt_begin, virt_end;
 786	dm_block_t data_block;
 787	struct dm_bio_prison_cell *cell;
 788
 789	/*
 790	 * If the bio covers the whole area of a block then we can avoid
 791	 * zeroing or copying.  Instead this bio is hooked.  The bio will
 792	 * still be in the cell, so care has to be taken to avoid issuing
 793	 * the bio twice.
 794	 */
 795	struct bio *bio;
 796	bio_end_io_t *saved_bi_end_io;
 797};
 798
 799static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
 800{
 801	struct pool *pool = m->tc->pool;
 802
 803	if (atomic_dec_and_test(&m->prepare_actions)) {
 804		list_add_tail(&m->list, &pool->prepared_mappings);
 805		wake_worker(pool);
 806	}
 807}
 808
 809static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
 810{
 811	unsigned long flags;
 812	struct pool *pool = m->tc->pool;
 813
 814	spin_lock_irqsave(&pool->lock, flags);
 815	__complete_mapping_preparation(m);
 816	spin_unlock_irqrestore(&pool->lock, flags);
 817}
 818
 819static void copy_complete(int read_err, unsigned long write_err, void *context)
 820{
 821	struct dm_thin_new_mapping *m = context;
 822
 823	m->err = read_err || write_err ? -EIO : 0;
 824	complete_mapping_preparation(m);
 825}
 826
 827static void overwrite_endio(struct bio *bio)
 828{
 829	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
 830	struct dm_thin_new_mapping *m = h->overwrite_mapping;
 831
 832	bio->bi_end_io = m->saved_bi_end_io;
 833
 834	m->err = bio->bi_error;
 835	complete_mapping_preparation(m);
 836}
 837
 838/*----------------------------------------------------------------*/
 839
 840/*
 841 * Workqueue.
 842 */
 843
 844/*
 845 * Prepared mapping jobs.
 846 */
 847
 848/*
 849 * This sends the bios in the cell, except the original holder, back
 850 * to the deferred_bios list.
 851 */
 852static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
 853{
 854	struct pool *pool = tc->pool;
 855	unsigned long flags;
 
 856
 857	spin_lock_irqsave(&tc->lock, flags);
 858	cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
 
 859	spin_unlock_irqrestore(&tc->lock, flags);
 860
 861	wake_worker(pool);
 
 862}
 863
 864static void thin_defer_bio(struct thin_c *tc, struct bio *bio);
 865
 866struct remap_info {
 867	struct thin_c *tc;
 868	struct bio_list defer_bios;
 869	struct bio_list issue_bios;
 870};
 871
 872static void __inc_remap_and_issue_cell(void *context,
 873				       struct dm_bio_prison_cell *cell)
 874{
 875	struct remap_info *info = context;
 876	struct bio *bio;
 877
 878	while ((bio = bio_list_pop(&cell->bios))) {
 879		if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA))
 880			bio_list_add(&info->defer_bios, bio);
 881		else {
 882			inc_all_io_entry(info->tc->pool, bio);
 883
 884			/*
 885			 * We can't issue the bios with the bio prison lock
 886			 * held, so we add them to a list to issue on
 887			 * return from this function.
 888			 */
 889			bio_list_add(&info->issue_bios, bio);
 890		}
 891	}
 892}
 893
 894static void inc_remap_and_issue_cell(struct thin_c *tc,
 895				     struct dm_bio_prison_cell *cell,
 896				     dm_block_t block)
 897{
 898	struct bio *bio;
 899	struct remap_info info;
 900
 901	info.tc = tc;
 902	bio_list_init(&info.defer_bios);
 903	bio_list_init(&info.issue_bios);
 904
 905	/*
 906	 * We have to be careful to inc any bios we're about to issue
 907	 * before the cell is released, and avoid a race with new bios
 908	 * being added to the cell.
 909	 */
 910	cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
 911			   &info, cell);
 912
 913	while ((bio = bio_list_pop(&info.defer_bios)))
 914		thin_defer_bio(tc, bio);
 915
 916	while ((bio = bio_list_pop(&info.issue_bios)))
 917		remap_and_issue(info.tc, bio, block);
 918}
 919
 920static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
 921{
 922	cell_error(m->tc->pool, m->cell);
 923	list_del(&m->list);
 924	mempool_free(m, m->tc->pool->mapping_pool);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 925}
 926
 927static void process_prepared_mapping(struct dm_thin_new_mapping *m)
 928{
 929	struct thin_c *tc = m->tc;
 930	struct pool *pool = tc->pool;
 931	struct bio *bio = m->bio;
 932	int r;
 933
 934	if (m->err) {
 935		cell_error(pool, m->cell);
 936		goto out;
 937	}
 938
 939	/*
 940	 * Commit the prepared block into the mapping btree.
 941	 * Any I/O for this block arriving after this point will get
 942	 * remapped to it directly.
 943	 */
 944	r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block);
 945	if (r) {
 946		metadata_operation_failed(pool, "dm_thin_insert_block", r);
 947		cell_error(pool, m->cell);
 948		goto out;
 949	}
 950
 951	/*
 952	 * Release any bios held while the block was being provisioned.
 953	 * If we are processing a write bio that completely covers the block,
 954	 * we already processed it so can ignore it now when processing
 955	 * the bios in the cell.
 956	 */
 957	if (bio) {
 958		inc_remap_and_issue_cell(tc, m->cell, m->data_block);
 959		bio_endio(bio);
 960	} else {
 961		inc_all_io_entry(tc->pool, m->cell->holder);
 962		remap_and_issue(tc, m->cell->holder, m->data_block);
 963		inc_remap_and_issue_cell(tc, m->cell, m->data_block);
 964	}
 965
 966out:
 967	list_del(&m->list);
 968	mempool_free(m, pool->mapping_pool);
 969}
 970
 971/*----------------------------------------------------------------*/
 972
 973static void free_discard_mapping(struct dm_thin_new_mapping *m)
 974{
 975	struct thin_c *tc = m->tc;
 976	if (m->cell)
 977		cell_defer_no_holder(tc, m->cell);
 978	mempool_free(m, tc->pool->mapping_pool);
 979}
 980
 981static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
 982{
 983	bio_io_error(m->bio);
 984	free_discard_mapping(m);
 985}
 986
 987static void process_prepared_discard_success(struct dm_thin_new_mapping *m)
 988{
 989	bio_endio(m->bio);
 990	free_discard_mapping(m);
 991}
 992
 993static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m)
 994{
 995	int r;
 996	struct thin_c *tc = m->tc;
 997
 998	r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end);
 999	if (r) {
1000		metadata_operation_failed(tc->pool, "dm_thin_remove_range", r);
1001		bio_io_error(m->bio);
1002	} else
1003		bio_endio(m->bio);
1004
1005	cell_defer_no_holder(tc, m->cell);
1006	mempool_free(m, tc->pool->mapping_pool);
1007}
1008
1009static int passdown_double_checking_shared_status(struct dm_thin_new_mapping *m)
 
 
 
1010{
1011	/*
1012	 * We've already unmapped this range of blocks, but before we
1013	 * passdown we have to check that these blocks are now unused.
1014	 */
1015	int r;
1016	bool used = true;
1017	struct thin_c *tc = m->tc;
1018	struct pool *pool = tc->pool;
1019	dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin;
 
1020
 
1021	while (b != end) {
1022		/* find start of unmapped run */
1023		for (; b < end; b++) {
1024			r = dm_pool_block_is_used(pool->pmd, b, &used);
1025			if (r)
1026				return r;
1027
1028			if (!used)
1029				break;
1030		}
1031
1032		if (b == end)
1033			break;
1034
1035		/* find end of run */
1036		for (e = b + 1; e != end; e++) {
1037			r = dm_pool_block_is_used(pool->pmd, e, &used);
1038			if (r)
1039				return r;
1040
1041			if (used)
1042				break;
1043		}
1044
1045		r = issue_discard(tc, b, e, m->bio);
1046		if (r)
1047			return r;
1048
1049		b = e;
1050	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1051
1052	return 0;
 
 
 
 
 
 
 
1053}
1054
1055static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m)
1056{
1057	int r;
1058	struct thin_c *tc = m->tc;
1059	struct pool *pool = tc->pool;
 
 
1060
 
 
 
 
 
1061	r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end);
1062	if (r)
1063		metadata_operation_failed(pool, "dm_thin_remove_range", r);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1064
1065	else if (m->maybe_shared)
1066		r = passdown_double_checking_shared_status(m);
1067	else
1068		r = issue_discard(tc, m->data_block, m->data_block + (m->virt_end - m->virt_begin), m->bio);
 
1069
1070	/*
1071	 * Even if r is set, there could be sub discards in flight that we
1072	 * need to wait for.
1073	 */
1074	m->bio->bi_error = r;
1075	bio_endio(m->bio);
 
 
 
 
 
 
1076	cell_defer_no_holder(tc, m->cell);
1077	mempool_free(m, pool->mapping_pool);
1078}
1079
1080static void process_prepared(struct pool *pool, struct list_head *head,
1081			     process_mapping_fn *fn)
1082{
1083	unsigned long flags;
1084	struct list_head maps;
1085	struct dm_thin_new_mapping *m, *tmp;
1086
1087	INIT_LIST_HEAD(&maps);
1088	spin_lock_irqsave(&pool->lock, flags);
1089	list_splice_init(head, &maps);
1090	spin_unlock_irqrestore(&pool->lock, flags);
1091
1092	list_for_each_entry_safe(m, tmp, &maps, list)
1093		(*fn)(m);
1094}
1095
1096/*
1097 * Deferred bio jobs.
1098 */
1099static int io_overlaps_block(struct pool *pool, struct bio *bio)
1100{
1101	return bio->bi_iter.bi_size ==
1102		(pool->sectors_per_block << SECTOR_SHIFT);
1103}
1104
1105static int io_overwrites_block(struct pool *pool, struct bio *bio)
1106{
1107	return (bio_data_dir(bio) == WRITE) &&
1108		io_overlaps_block(pool, bio);
1109}
1110
1111static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
1112			       bio_end_io_t *fn)
1113{
1114	*save = bio->bi_end_io;
1115	bio->bi_end_io = fn;
1116}
1117
1118static int ensure_next_mapping(struct pool *pool)
1119{
1120	if (pool->next_mapping)
1121		return 0;
1122
1123	pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
1124
1125	return pool->next_mapping ? 0 : -ENOMEM;
1126}
1127
1128static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
1129{
1130	struct dm_thin_new_mapping *m = pool->next_mapping;
1131
1132	BUG_ON(!pool->next_mapping);
1133
1134	memset(m, 0, sizeof(struct dm_thin_new_mapping));
1135	INIT_LIST_HEAD(&m->list);
1136	m->bio = NULL;
1137
1138	pool->next_mapping = NULL;
1139
1140	return m;
1141}
1142
1143static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
1144		    sector_t begin, sector_t end)
1145{
1146	int r;
1147	struct dm_io_region to;
1148
1149	to.bdev = tc->pool_dev->bdev;
1150	to.sector = begin;
1151	to.count = end - begin;
1152
1153	r = dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
1154	if (r < 0) {
1155		DMERR_LIMIT("dm_kcopyd_zero() failed");
1156		copy_complete(1, 1, m);
1157	}
1158}
1159
1160static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
1161				      dm_block_t data_begin,
1162				      struct dm_thin_new_mapping *m)
1163{
1164	struct pool *pool = tc->pool;
1165	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1166
1167	h->overwrite_mapping = m;
1168	m->bio = bio;
1169	save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1170	inc_all_io_entry(pool, bio);
1171	remap_and_issue(tc, bio, data_begin);
1172}
1173
1174/*
1175 * A partial copy also needs to zero the uncopied region.
1176 */
1177static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
1178			  struct dm_dev *origin, dm_block_t data_origin,
1179			  dm_block_t data_dest,
1180			  struct dm_bio_prison_cell *cell, struct bio *bio,
1181			  sector_t len)
1182{
1183	int r;
1184	struct pool *pool = tc->pool;
1185	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1186
1187	m->tc = tc;
1188	m->virt_begin = virt_block;
1189	m->virt_end = virt_block + 1u;
1190	m->data_block = data_dest;
1191	m->cell = cell;
1192
1193	/*
1194	 * quiesce action + copy action + an extra reference held for the
1195	 * duration of this function (we may need to inc later for a
1196	 * partial zero).
1197	 */
1198	atomic_set(&m->prepare_actions, 3);
1199
1200	if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
1201		complete_mapping_preparation(m); /* already quiesced */
1202
1203	/*
1204	 * IO to pool_dev remaps to the pool target's data_dev.
1205	 *
1206	 * If the whole block of data is being overwritten, we can issue the
1207	 * bio immediately. Otherwise we use kcopyd to clone the data first.
1208	 */
1209	if (io_overwrites_block(pool, bio))
1210		remap_and_issue_overwrite(tc, bio, data_dest, m);
1211	else {
1212		struct dm_io_region from, to;
1213
1214		from.bdev = origin->bdev;
1215		from.sector = data_origin * pool->sectors_per_block;
1216		from.count = len;
1217
1218		to.bdev = tc->pool_dev->bdev;
1219		to.sector = data_dest * pool->sectors_per_block;
1220		to.count = len;
1221
1222		r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
1223				   0, copy_complete, m);
1224		if (r < 0) {
1225			DMERR_LIMIT("dm_kcopyd_copy() failed");
1226			copy_complete(1, 1, m);
1227
1228			/*
1229			 * We allow the zero to be issued, to simplify the
1230			 * error path.  Otherwise we'd need to start
1231			 * worrying about decrementing the prepare_actions
1232			 * counter.
1233			 */
1234		}
1235
1236		/*
1237		 * Do we need to zero a tail region?
1238		 */
1239		if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
1240			atomic_inc(&m->prepare_actions);
1241			ll_zero(tc, m,
1242				data_dest * pool->sectors_per_block + len,
1243				(data_dest + 1) * pool->sectors_per_block);
1244		}
1245	}
1246
1247	complete_mapping_preparation(m); /* drop our ref */
1248}
1249
1250static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1251				   dm_block_t data_origin, dm_block_t data_dest,
1252				   struct dm_bio_prison_cell *cell, struct bio *bio)
1253{
1254	schedule_copy(tc, virt_block, tc->pool_dev,
1255		      data_origin, data_dest, cell, bio,
1256		      tc->pool->sectors_per_block);
1257}
1258
1259static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1260			  dm_block_t data_block, struct dm_bio_prison_cell *cell,
1261			  struct bio *bio)
1262{
1263	struct pool *pool = tc->pool;
1264	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1265
1266	atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
1267	m->tc = tc;
1268	m->virt_begin = virt_block;
1269	m->virt_end = virt_block + 1u;
1270	m->data_block = data_block;
1271	m->cell = cell;
1272
1273	/*
1274	 * If the whole block of data is being overwritten or we are not
1275	 * zeroing pre-existing data, we can issue the bio immediately.
1276	 * Otherwise we use kcopyd to zero the data first.
1277	 */
1278	if (pool->pf.zero_new_blocks) {
1279		if (io_overwrites_block(pool, bio))
1280			remap_and_issue_overwrite(tc, bio, data_block, m);
1281		else
1282			ll_zero(tc, m, data_block * pool->sectors_per_block,
1283				(data_block + 1) * pool->sectors_per_block);
1284	} else
1285		process_prepared_mapping(m);
1286}
1287
1288static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1289				   dm_block_t data_dest,
1290				   struct dm_bio_prison_cell *cell, struct bio *bio)
1291{
1292	struct pool *pool = tc->pool;
1293	sector_t virt_block_begin = virt_block * pool->sectors_per_block;
1294	sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
1295
1296	if (virt_block_end <= tc->origin_size)
1297		schedule_copy(tc, virt_block, tc->origin_dev,
1298			      virt_block, data_dest, cell, bio,
1299			      pool->sectors_per_block);
1300
1301	else if (virt_block_begin < tc->origin_size)
1302		schedule_copy(tc, virt_block, tc->origin_dev,
1303			      virt_block, data_dest, cell, bio,
1304			      tc->origin_size - virt_block_begin);
1305
1306	else
1307		schedule_zero(tc, virt_block, data_dest, cell, bio);
1308}
1309
1310static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
1311
1312static void check_for_space(struct pool *pool)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1313{
1314	int r;
1315	dm_block_t nr_free;
1316
1317	if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE)
1318		return;
1319
1320	r = dm_pool_get_free_block_count(pool->pmd, &nr_free);
1321	if (r)
1322		return;
1323
1324	if (nr_free)
1325		set_pool_mode(pool, PM_WRITE);
 
 
1326}
1327
1328/*
1329 * A non-zero return indicates read_only or fail_io mode.
1330 * Many callers don't care about the return value.
1331 */
1332static int commit(struct pool *pool)
1333{
1334	int r;
1335
1336	if (get_pool_mode(pool) >= PM_READ_ONLY)
1337		return -EINVAL;
1338
1339	r = dm_pool_commit_metadata(pool->pmd);
1340	if (r)
1341		metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1342	else
1343		check_for_space(pool);
 
 
1344
1345	return r;
1346}
1347
1348static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
1349{
1350	unsigned long flags;
1351
1352	if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1353		DMWARN("%s: reached low water mark for data device: sending event.",
1354		       dm_device_name(pool->pool_md));
1355		spin_lock_irqsave(&pool->lock, flags);
1356		pool->low_water_triggered = true;
1357		spin_unlock_irqrestore(&pool->lock, flags);
1358		dm_table_event(pool->ti->table);
1359	}
1360}
1361
1362static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1363{
1364	int r;
1365	dm_block_t free_blocks;
1366	struct pool *pool = tc->pool;
1367
1368	if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1369		return -EINVAL;
1370
1371	r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1372	if (r) {
1373		metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1374		return r;
1375	}
1376
1377	check_low_water_mark(pool, free_blocks);
1378
1379	if (!free_blocks) {
1380		/*
1381		 * Try to commit to see if that will free up some
1382		 * more space.
1383		 */
1384		r = commit(pool);
1385		if (r)
1386			return r;
1387
1388		r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1389		if (r) {
1390			metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1391			return r;
1392		}
1393
1394		if (!free_blocks) {
1395			set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1396			return -ENOSPC;
1397		}
1398	}
1399
1400	r = dm_pool_alloc_data_block(pool->pmd, result);
1401	if (r) {
1402		metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
 
 
 
 
 
 
 
 
 
1403		return r;
1404	}
1405
 
 
 
 
 
 
 
1406	return 0;
1407}
1408
1409/*
1410 * If we have run out of space, queue bios until the device is
1411 * resumed, presumably after having been reloaded with more space.
1412 */
1413static void retry_on_resume(struct bio *bio)
1414{
1415	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1416	struct thin_c *tc = h->tc;
1417	unsigned long flags;
1418
1419	spin_lock_irqsave(&tc->lock, flags);
1420	bio_list_add(&tc->retry_on_resume_list, bio);
1421	spin_unlock_irqrestore(&tc->lock, flags);
1422}
1423
1424static int should_error_unserviceable_bio(struct pool *pool)
1425{
1426	enum pool_mode m = get_pool_mode(pool);
1427
1428	switch (m) {
1429	case PM_WRITE:
1430		/* Shouldn't get here */
1431		DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1432		return -EIO;
1433
1434	case PM_OUT_OF_DATA_SPACE:
1435		return pool->pf.error_if_no_space ? -ENOSPC : 0;
1436
 
1437	case PM_READ_ONLY:
1438	case PM_FAIL:
1439		return -EIO;
1440	default:
1441		/* Shouldn't get here */
1442		DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1443		return -EIO;
1444	}
1445}
1446
1447static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1448{
1449	int error = should_error_unserviceable_bio(pool);
1450
1451	if (error) {
1452		bio->bi_error = error;
1453		bio_endio(bio);
1454	} else
1455		retry_on_resume(bio);
1456}
1457
1458static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1459{
1460	struct bio *bio;
1461	struct bio_list bios;
1462	int error;
1463
1464	error = should_error_unserviceable_bio(pool);
1465	if (error) {
1466		cell_error_with_code(pool, cell, error);
1467		return;
1468	}
1469
1470	bio_list_init(&bios);
1471	cell_release(pool, cell, &bios);
1472
1473	while ((bio = bio_list_pop(&bios)))
1474		retry_on_resume(bio);
1475}
1476
1477static void process_discard_cell_no_passdown(struct thin_c *tc,
1478					     struct dm_bio_prison_cell *virt_cell)
1479{
1480	struct pool *pool = tc->pool;
1481	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1482
1483	/*
1484	 * We don't need to lock the data blocks, since there's no
1485	 * passdown.  We only lock data blocks for allocation and breaking sharing.
1486	 */
1487	m->tc = tc;
1488	m->virt_begin = virt_cell->key.block_begin;
1489	m->virt_end = virt_cell->key.block_end;
1490	m->cell = virt_cell;
1491	m->bio = virt_cell->holder;
1492
1493	if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1494		pool->process_prepared_discard(m);
1495}
1496
1497/*
1498 * __bio_inc_remaining() is used to defer parent bios's end_io until
1499 * we _know_ all chained sub range discard bios have completed.
1500 */
1501static inline void __bio_inc_remaining(struct bio *bio)
1502{
1503	bio->bi_flags |= (1 << BIO_CHAIN);
1504	smp_mb__before_atomic();
1505	atomic_inc(&bio->__bi_remaining);
1506}
1507
1508static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end,
1509				 struct bio *bio)
1510{
1511	struct pool *pool = tc->pool;
1512
1513	int r;
1514	bool maybe_shared;
1515	struct dm_cell_key data_key;
1516	struct dm_bio_prison_cell *data_cell;
1517	struct dm_thin_new_mapping *m;
1518	dm_block_t virt_begin, virt_end, data_begin;
1519
1520	while (begin != end) {
1521		r = ensure_next_mapping(pool);
1522		if (r)
1523			/* we did our best */
1524			return;
1525
1526		r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end,
1527					      &data_begin, &maybe_shared);
1528		if (r)
1529			/*
1530			 * Silently fail, letting any mappings we've
1531			 * created complete.
1532			 */
1533			break;
1534
1535		build_key(tc->td, PHYSICAL, data_begin, data_begin + (virt_end - virt_begin), &data_key);
1536		if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) {
1537			/* contention, we'll give up with this range */
1538			begin = virt_end;
1539			continue;
1540		}
1541
1542		/*
1543		 * IO may still be going to the destination block.  We must
1544		 * quiesce before we can do the removal.
1545		 */
1546		m = get_next_mapping(pool);
1547		m->tc = tc;
1548		m->maybe_shared = maybe_shared;
1549		m->virt_begin = virt_begin;
1550		m->virt_end = virt_end;
1551		m->data_block = data_begin;
1552		m->cell = data_cell;
1553		m->bio = bio;
1554
1555		/*
1556		 * The parent bio must not complete before sub discard bios are
1557		 * chained to it (see __blkdev_issue_discard_async's bio_chain)!
1558		 *
1559		 * This per-mapping bi_remaining increment is paired with
1560		 * the implicit decrement that occurs via bio_endio() in
1561		 * process_prepared_discard_{passdown,no_passdown}.
1562		 */
1563		__bio_inc_remaining(bio);
1564		if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1565			pool->process_prepared_discard(m);
1566
1567		begin = virt_end;
1568	}
1569}
1570
1571static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell)
1572{
1573	struct bio *bio = virt_cell->holder;
1574	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1575
1576	/*
1577	 * The virt_cell will only get freed once the origin bio completes.
1578	 * This means it will remain locked while all the individual
1579	 * passdown bios are in flight.
1580	 */
1581	h->cell = virt_cell;
1582	break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio);
1583
1584	/*
1585	 * We complete the bio now, knowing that the bi_remaining field
1586	 * will prevent completion until the sub range discards have
1587	 * completed.
1588	 */
1589	bio_endio(bio);
1590}
1591
1592static void process_discard_bio(struct thin_c *tc, struct bio *bio)
1593{
1594	dm_block_t begin, end;
1595	struct dm_cell_key virt_key;
1596	struct dm_bio_prison_cell *virt_cell;
1597
1598	get_bio_block_range(tc, bio, &begin, &end);
1599	if (begin == end) {
1600		/*
1601		 * The discard covers less than a block.
1602		 */
1603		bio_endio(bio);
1604		return;
1605	}
1606
1607	build_key(tc->td, VIRTUAL, begin, end, &virt_key);
1608	if (bio_detain(tc->pool, &virt_key, bio, &virt_cell))
1609		/*
1610		 * Potential starvation issue: We're relying on the
1611		 * fs/application being well behaved, and not trying to
1612		 * send IO to a region at the same time as discarding it.
1613		 * If they do this persistently then it's possible this
1614		 * cell will never be granted.
1615		 */
1616		return;
1617
1618	tc->pool->process_discard_cell(tc, virt_cell);
1619}
1620
1621static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1622			  struct dm_cell_key *key,
1623			  struct dm_thin_lookup_result *lookup_result,
1624			  struct dm_bio_prison_cell *cell)
1625{
1626	int r;
1627	dm_block_t data_block;
1628	struct pool *pool = tc->pool;
1629
1630	r = alloc_data_block(tc, &data_block);
1631	switch (r) {
1632	case 0:
1633		schedule_internal_copy(tc, block, lookup_result->block,
1634				       data_block, cell, bio);
1635		break;
1636
1637	case -ENOSPC:
1638		retry_bios_on_resume(pool, cell);
1639		break;
1640
1641	default:
1642		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1643			    __func__, r);
1644		cell_error(pool, cell);
1645		break;
1646	}
1647}
1648
1649static void __remap_and_issue_shared_cell(void *context,
1650					  struct dm_bio_prison_cell *cell)
1651{
1652	struct remap_info *info = context;
1653	struct bio *bio;
1654
1655	while ((bio = bio_list_pop(&cell->bios))) {
1656		if ((bio_data_dir(bio) == WRITE) ||
1657		    (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)))
1658			bio_list_add(&info->defer_bios, bio);
1659		else {
1660			struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));;
1661
1662			h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds);
1663			inc_all_io_entry(info->tc->pool, bio);
1664			bio_list_add(&info->issue_bios, bio);
1665		}
1666	}
1667}
1668
1669static void remap_and_issue_shared_cell(struct thin_c *tc,
1670					struct dm_bio_prison_cell *cell,
1671					dm_block_t block)
1672{
1673	struct bio *bio;
1674	struct remap_info info;
1675
1676	info.tc = tc;
1677	bio_list_init(&info.defer_bios);
1678	bio_list_init(&info.issue_bios);
1679
1680	cell_visit_release(tc->pool, __remap_and_issue_shared_cell,
1681			   &info, cell);
1682
1683	while ((bio = bio_list_pop(&info.defer_bios)))
1684		thin_defer_bio(tc, bio);
1685
1686	while ((bio = bio_list_pop(&info.issue_bios)))
1687		remap_and_issue(tc, bio, block);
1688}
1689
1690static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1691			       dm_block_t block,
1692			       struct dm_thin_lookup_result *lookup_result,
1693			       struct dm_bio_prison_cell *virt_cell)
1694{
1695	struct dm_bio_prison_cell *data_cell;
1696	struct pool *pool = tc->pool;
1697	struct dm_cell_key key;
1698
1699	/*
1700	 * If cell is already occupied, then sharing is already in the process
1701	 * of being broken so we have nothing further to do here.
1702	 */
1703	build_data_key(tc->td, lookup_result->block, &key);
1704	if (bio_detain(pool, &key, bio, &data_cell)) {
1705		cell_defer_no_holder(tc, virt_cell);
1706		return;
1707	}
1708
1709	if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) {
1710		break_sharing(tc, bio, block, &key, lookup_result, data_cell);
1711		cell_defer_no_holder(tc, virt_cell);
1712	} else {
1713		struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1714
1715		h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1716		inc_all_io_entry(pool, bio);
1717		remap_and_issue(tc, bio, lookup_result->block);
1718
1719		remap_and_issue_shared_cell(tc, data_cell, lookup_result->block);
1720		remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block);
1721	}
1722}
1723
1724static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1725			    struct dm_bio_prison_cell *cell)
1726{
1727	int r;
1728	dm_block_t data_block;
1729	struct pool *pool = tc->pool;
1730
1731	/*
1732	 * Remap empty bios (flushes) immediately, without provisioning.
1733	 */
1734	if (!bio->bi_iter.bi_size) {
1735		inc_all_io_entry(pool, bio);
1736		cell_defer_no_holder(tc, cell);
1737
1738		remap_and_issue(tc, bio, 0);
1739		return;
1740	}
1741
1742	/*
1743	 * Fill read bios with zeroes and complete them immediately.
1744	 */
1745	if (bio_data_dir(bio) == READ) {
1746		zero_fill_bio(bio);
1747		cell_defer_no_holder(tc, cell);
1748		bio_endio(bio);
1749		return;
1750	}
1751
1752	r = alloc_data_block(tc, &data_block);
1753	switch (r) {
1754	case 0:
1755		if (tc->origin_dev)
1756			schedule_external_copy(tc, block, data_block, cell, bio);
1757		else
1758			schedule_zero(tc, block, data_block, cell, bio);
1759		break;
1760
1761	case -ENOSPC:
1762		retry_bios_on_resume(pool, cell);
1763		break;
1764
1765	default:
1766		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1767			    __func__, r);
1768		cell_error(pool, cell);
1769		break;
1770	}
1771}
1772
1773static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1774{
1775	int r;
1776	struct pool *pool = tc->pool;
1777	struct bio *bio = cell->holder;
1778	dm_block_t block = get_bio_block(tc, bio);
1779	struct dm_thin_lookup_result lookup_result;
1780
1781	if (tc->requeue_mode) {
1782		cell_requeue(pool, cell);
1783		return;
1784	}
1785
1786	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1787	switch (r) {
1788	case 0:
1789		if (lookup_result.shared)
1790			process_shared_bio(tc, bio, block, &lookup_result, cell);
1791		else {
1792			inc_all_io_entry(pool, bio);
1793			remap_and_issue(tc, bio, lookup_result.block);
1794			inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1795		}
1796		break;
1797
1798	case -ENODATA:
1799		if (bio_data_dir(bio) == READ && tc->origin_dev) {
1800			inc_all_io_entry(pool, bio);
1801			cell_defer_no_holder(tc, cell);
1802
1803			if (bio_end_sector(bio) <= tc->origin_size)
1804				remap_to_origin_and_issue(tc, bio);
1805
1806			else if (bio->bi_iter.bi_sector < tc->origin_size) {
1807				zero_fill_bio(bio);
1808				bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
1809				remap_to_origin_and_issue(tc, bio);
1810
1811			} else {
1812				zero_fill_bio(bio);
1813				bio_endio(bio);
1814			}
1815		} else
1816			provision_block(tc, bio, block, cell);
1817		break;
1818
1819	default:
1820		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1821			    __func__, r);
1822		cell_defer_no_holder(tc, cell);
1823		bio_io_error(bio);
1824		break;
1825	}
1826}
1827
1828static void process_bio(struct thin_c *tc, struct bio *bio)
1829{
1830	struct pool *pool = tc->pool;
1831	dm_block_t block = get_bio_block(tc, bio);
1832	struct dm_bio_prison_cell *cell;
1833	struct dm_cell_key key;
1834
1835	/*
1836	 * If cell is already occupied, then the block is already
1837	 * being provisioned so we have nothing further to do here.
1838	 */
1839	build_virtual_key(tc->td, block, &key);
1840	if (bio_detain(pool, &key, bio, &cell))
1841		return;
1842
1843	process_cell(tc, cell);
1844}
1845
1846static void __process_bio_read_only(struct thin_c *tc, struct bio *bio,
1847				    struct dm_bio_prison_cell *cell)
1848{
1849	int r;
1850	int rw = bio_data_dir(bio);
1851	dm_block_t block = get_bio_block(tc, bio);
1852	struct dm_thin_lookup_result lookup_result;
1853
1854	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1855	switch (r) {
1856	case 0:
1857		if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) {
1858			handle_unserviceable_bio(tc->pool, bio);
1859			if (cell)
1860				cell_defer_no_holder(tc, cell);
1861		} else {
1862			inc_all_io_entry(tc->pool, bio);
1863			remap_and_issue(tc, bio, lookup_result.block);
1864			if (cell)
1865				inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1866		}
1867		break;
1868
1869	case -ENODATA:
1870		if (cell)
1871			cell_defer_no_holder(tc, cell);
1872		if (rw != READ) {
1873			handle_unserviceable_bio(tc->pool, bio);
1874			break;
1875		}
1876
1877		if (tc->origin_dev) {
1878			inc_all_io_entry(tc->pool, bio);
1879			remap_to_origin_and_issue(tc, bio);
1880			break;
1881		}
1882
1883		zero_fill_bio(bio);
1884		bio_endio(bio);
1885		break;
1886
1887	default:
1888		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1889			    __func__, r);
1890		if (cell)
1891			cell_defer_no_holder(tc, cell);
1892		bio_io_error(bio);
1893		break;
1894	}
1895}
1896
1897static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1898{
1899	__process_bio_read_only(tc, bio, NULL);
1900}
1901
1902static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1903{
1904	__process_bio_read_only(tc, cell->holder, cell);
1905}
1906
1907static void process_bio_success(struct thin_c *tc, struct bio *bio)
1908{
1909	bio_endio(bio);
1910}
1911
1912static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1913{
1914	bio_io_error(bio);
1915}
1916
1917static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1918{
1919	cell_success(tc->pool, cell);
1920}
1921
1922static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1923{
1924	cell_error(tc->pool, cell);
1925}
1926
1927/*
1928 * FIXME: should we also commit due to size of transaction, measured in
1929 * metadata blocks?
1930 */
1931static int need_commit_due_to_time(struct pool *pool)
1932{
1933	return !time_in_range(jiffies, pool->last_commit_jiffies,
1934			      pool->last_commit_jiffies + COMMIT_PERIOD);
1935}
1936
1937#define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
1938#define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
1939
1940static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
1941{
1942	struct rb_node **rbp, *parent;
1943	struct dm_thin_endio_hook *pbd;
1944	sector_t bi_sector = bio->bi_iter.bi_sector;
1945
1946	rbp = &tc->sort_bio_list.rb_node;
1947	parent = NULL;
1948	while (*rbp) {
1949		parent = *rbp;
1950		pbd = thin_pbd(parent);
1951
1952		if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
1953			rbp = &(*rbp)->rb_left;
1954		else
1955			rbp = &(*rbp)->rb_right;
1956	}
1957
1958	pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1959	rb_link_node(&pbd->rb_node, parent, rbp);
1960	rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
1961}
1962
1963static void __extract_sorted_bios(struct thin_c *tc)
1964{
1965	struct rb_node *node;
1966	struct dm_thin_endio_hook *pbd;
1967	struct bio *bio;
1968
1969	for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
1970		pbd = thin_pbd(node);
1971		bio = thin_bio(pbd);
1972
1973		bio_list_add(&tc->deferred_bio_list, bio);
1974		rb_erase(&pbd->rb_node, &tc->sort_bio_list);
1975	}
1976
1977	WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
1978}
1979
1980static void __sort_thin_deferred_bios(struct thin_c *tc)
1981{
1982	struct bio *bio;
1983	struct bio_list bios;
1984
1985	bio_list_init(&bios);
1986	bio_list_merge(&bios, &tc->deferred_bio_list);
1987	bio_list_init(&tc->deferred_bio_list);
1988
1989	/* Sort deferred_bio_list using rb-tree */
1990	while ((bio = bio_list_pop(&bios)))
1991		__thin_bio_rb_add(tc, bio);
1992
1993	/*
1994	 * Transfer the sorted bios in sort_bio_list back to
1995	 * deferred_bio_list to allow lockless submission of
1996	 * all bios.
1997	 */
1998	__extract_sorted_bios(tc);
1999}
2000
2001static void process_thin_deferred_bios(struct thin_c *tc)
2002{
2003	struct pool *pool = tc->pool;
2004	unsigned long flags;
2005	struct bio *bio;
2006	struct bio_list bios;
2007	struct blk_plug plug;
2008	unsigned count = 0;
2009
2010	if (tc->requeue_mode) {
2011		error_thin_bio_list(tc, &tc->deferred_bio_list, DM_ENDIO_REQUEUE);
 
2012		return;
2013	}
2014
2015	bio_list_init(&bios);
2016
2017	spin_lock_irqsave(&tc->lock, flags);
2018
2019	if (bio_list_empty(&tc->deferred_bio_list)) {
2020		spin_unlock_irqrestore(&tc->lock, flags);
2021		return;
2022	}
2023
2024	__sort_thin_deferred_bios(tc);
2025
2026	bio_list_merge(&bios, &tc->deferred_bio_list);
2027	bio_list_init(&tc->deferred_bio_list);
2028
2029	spin_unlock_irqrestore(&tc->lock, flags);
2030
2031	blk_start_plug(&plug);
2032	while ((bio = bio_list_pop(&bios))) {
2033		/*
2034		 * If we've got no free new_mapping structs, and processing
2035		 * this bio might require one, we pause until there are some
2036		 * prepared mappings to process.
2037		 */
2038		if (ensure_next_mapping(pool)) {
2039			spin_lock_irqsave(&tc->lock, flags);
2040			bio_list_add(&tc->deferred_bio_list, bio);
2041			bio_list_merge(&tc->deferred_bio_list, &bios);
2042			spin_unlock_irqrestore(&tc->lock, flags);
2043			break;
2044		}
2045
2046		if (bio->bi_rw & REQ_DISCARD)
2047			pool->process_discard(tc, bio);
2048		else
2049			pool->process_bio(tc, bio);
2050
2051		if ((count++ & 127) == 0) {
2052			throttle_work_update(&pool->throttle);
2053			dm_pool_issue_prefetches(pool->pmd);
2054		}
2055	}
2056	blk_finish_plug(&plug);
2057}
2058
2059static int cmp_cells(const void *lhs, const void *rhs)
2060{
2061	struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs);
2062	struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs);
2063
2064	BUG_ON(!lhs_cell->holder);
2065	BUG_ON(!rhs_cell->holder);
2066
2067	if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector)
2068		return -1;
2069
2070	if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector)
2071		return 1;
2072
2073	return 0;
2074}
2075
2076static unsigned sort_cells(struct pool *pool, struct list_head *cells)
2077{
2078	unsigned count = 0;
2079	struct dm_bio_prison_cell *cell, *tmp;
2080
2081	list_for_each_entry_safe(cell, tmp, cells, user_list) {
2082		if (count >= CELL_SORT_ARRAY_SIZE)
2083			break;
2084
2085		pool->cell_sort_array[count++] = cell;
2086		list_del(&cell->user_list);
2087	}
2088
2089	sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL);
2090
2091	return count;
2092}
2093
2094static void process_thin_deferred_cells(struct thin_c *tc)
2095{
2096	struct pool *pool = tc->pool;
2097	unsigned long flags;
2098	struct list_head cells;
2099	struct dm_bio_prison_cell *cell;
2100	unsigned i, j, count;
2101
2102	INIT_LIST_HEAD(&cells);
2103
2104	spin_lock_irqsave(&tc->lock, flags);
2105	list_splice_init(&tc->deferred_cells, &cells);
2106	spin_unlock_irqrestore(&tc->lock, flags);
2107
2108	if (list_empty(&cells))
2109		return;
2110
2111	do {
2112		count = sort_cells(tc->pool, &cells);
2113
2114		for (i = 0; i < count; i++) {
2115			cell = pool->cell_sort_array[i];
2116			BUG_ON(!cell->holder);
2117
2118			/*
2119			 * If we've got no free new_mapping structs, and processing
2120			 * this bio might require one, we pause until there are some
2121			 * prepared mappings to process.
2122			 */
2123			if (ensure_next_mapping(pool)) {
2124				for (j = i; j < count; j++)
2125					list_add(&pool->cell_sort_array[j]->user_list, &cells);
2126
2127				spin_lock_irqsave(&tc->lock, flags);
2128				list_splice(&cells, &tc->deferred_cells);
2129				spin_unlock_irqrestore(&tc->lock, flags);
2130				return;
2131			}
2132
2133			if (cell->holder->bi_rw & REQ_DISCARD)
2134				pool->process_discard_cell(tc, cell);
2135			else
2136				pool->process_cell(tc, cell);
2137		}
2138	} while (!list_empty(&cells));
2139}
2140
2141static void thin_get(struct thin_c *tc);
2142static void thin_put(struct thin_c *tc);
2143
2144/*
2145 * We can't hold rcu_read_lock() around code that can block.  So we
2146 * find a thin with the rcu lock held; bump a refcount; then drop
2147 * the lock.
2148 */
2149static struct thin_c *get_first_thin(struct pool *pool)
2150{
2151	struct thin_c *tc = NULL;
2152
2153	rcu_read_lock();
2154	if (!list_empty(&pool->active_thins)) {
2155		tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
2156		thin_get(tc);
2157	}
2158	rcu_read_unlock();
2159
2160	return tc;
2161}
2162
2163static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
2164{
2165	struct thin_c *old_tc = tc;
2166
2167	rcu_read_lock();
2168	list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
2169		thin_get(tc);
2170		thin_put(old_tc);
2171		rcu_read_unlock();
2172		return tc;
2173	}
2174	thin_put(old_tc);
2175	rcu_read_unlock();
2176
2177	return NULL;
2178}
2179
2180static void process_deferred_bios(struct pool *pool)
2181{
2182	unsigned long flags;
2183	struct bio *bio;
2184	struct bio_list bios;
2185	struct thin_c *tc;
2186
2187	tc = get_first_thin(pool);
2188	while (tc) {
2189		process_thin_deferred_cells(tc);
2190		process_thin_deferred_bios(tc);
2191		tc = get_next_thin(pool, tc);
2192	}
2193
2194	/*
2195	 * If there are any deferred flush bios, we must commit
2196	 * the metadata before issuing them.
2197	 */
2198	bio_list_init(&bios);
2199	spin_lock_irqsave(&pool->lock, flags);
 
 
2200	bio_list_merge(&bios, &pool->deferred_flush_bios);
2201	bio_list_init(&pool->deferred_flush_bios);
2202	spin_unlock_irqrestore(&pool->lock, flags);
2203
2204	if (bio_list_empty(&bios) &&
 
 
 
 
2205	    !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
2206		return;
2207
2208	if (commit(pool)) {
 
 
2209		while ((bio = bio_list_pop(&bios)))
2210			bio_io_error(bio);
2211		return;
2212	}
2213	pool->last_commit_jiffies = jiffies;
2214
2215	while ((bio = bio_list_pop(&bios)))
2216		generic_make_request(bio);
 
 
 
 
 
 
 
 
 
 
 
2217}
2218
2219static void do_worker(struct work_struct *ws)
2220{
2221	struct pool *pool = container_of(ws, struct pool, worker);
2222
2223	throttle_work_start(&pool->throttle);
2224	dm_pool_issue_prefetches(pool->pmd);
2225	throttle_work_update(&pool->throttle);
2226	process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
2227	throttle_work_update(&pool->throttle);
2228	process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
2229	throttle_work_update(&pool->throttle);
 
 
2230	process_deferred_bios(pool);
2231	throttle_work_complete(&pool->throttle);
2232}
2233
2234/*
2235 * We want to commit periodically so that not too much
2236 * unwritten data builds up.
2237 */
2238static void do_waker(struct work_struct *ws)
2239{
2240	struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
2241	wake_worker(pool);
2242	queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
2243}
2244
2245static void notify_of_pool_mode_change_to_oods(struct pool *pool);
2246
2247/*
2248 * We're holding onto IO to allow userland time to react.  After the
2249 * timeout either the pool will have been resized (and thus back in
2250 * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space.
2251 */
2252static void do_no_space_timeout(struct work_struct *ws)
2253{
2254	struct pool *pool = container_of(to_delayed_work(ws), struct pool,
2255					 no_space_timeout);
2256
2257	if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) {
2258		pool->pf.error_if_no_space = true;
2259		notify_of_pool_mode_change_to_oods(pool);
2260		error_retry_list_with_code(pool, -ENOSPC);
2261	}
2262}
2263
2264/*----------------------------------------------------------------*/
2265
2266struct pool_work {
2267	struct work_struct worker;
2268	struct completion complete;
2269};
2270
2271static struct pool_work *to_pool_work(struct work_struct *ws)
2272{
2273	return container_of(ws, struct pool_work, worker);
2274}
2275
2276static void pool_work_complete(struct pool_work *pw)
2277{
2278	complete(&pw->complete);
2279}
2280
2281static void pool_work_wait(struct pool_work *pw, struct pool *pool,
2282			   void (*fn)(struct work_struct *))
2283{
2284	INIT_WORK_ONSTACK(&pw->worker, fn);
2285	init_completion(&pw->complete);
2286	queue_work(pool->wq, &pw->worker);
2287	wait_for_completion(&pw->complete);
2288}
2289
2290/*----------------------------------------------------------------*/
2291
2292struct noflush_work {
2293	struct pool_work pw;
2294	struct thin_c *tc;
2295};
2296
2297static struct noflush_work *to_noflush(struct work_struct *ws)
2298{
2299	return container_of(to_pool_work(ws), struct noflush_work, pw);
2300}
2301
2302static void do_noflush_start(struct work_struct *ws)
2303{
2304	struct noflush_work *w = to_noflush(ws);
2305	w->tc->requeue_mode = true;
2306	requeue_io(w->tc);
2307	pool_work_complete(&w->pw);
2308}
2309
2310static void do_noflush_stop(struct work_struct *ws)
2311{
2312	struct noflush_work *w = to_noflush(ws);
2313	w->tc->requeue_mode = false;
2314	pool_work_complete(&w->pw);
2315}
2316
2317static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
2318{
2319	struct noflush_work w;
2320
2321	w.tc = tc;
2322	pool_work_wait(&w.pw, tc->pool, fn);
2323}
2324
2325/*----------------------------------------------------------------*/
2326
2327static enum pool_mode get_pool_mode(struct pool *pool)
2328{
2329	return pool->pf.mode;
2330}
2331
2332static void notify_of_pool_mode_change(struct pool *pool, const char *new_mode)
2333{
2334	dm_table_event(pool->ti->table);
2335	DMINFO("%s: switching pool to %s mode",
2336	       dm_device_name(pool->pool_md), new_mode);
2337}
2338
2339static void notify_of_pool_mode_change_to_oods(struct pool *pool)
2340{
2341	if (!pool->pf.error_if_no_space)
2342		notify_of_pool_mode_change(pool, "out-of-data-space (queue IO)");
2343	else
2344		notify_of_pool_mode_change(pool, "out-of-data-space (error IO)");
2345}
2346
2347static bool passdown_enabled(struct pool_c *pt)
2348{
2349	return pt->adjusted_pf.discard_passdown;
2350}
2351
2352static void set_discard_callbacks(struct pool *pool)
2353{
2354	struct pool_c *pt = pool->ti->private;
2355
2356	if (passdown_enabled(pt)) {
2357		pool->process_discard_cell = process_discard_cell_passdown;
2358		pool->process_prepared_discard = process_prepared_discard_passdown;
 
2359	} else {
2360		pool->process_discard_cell = process_discard_cell_no_passdown;
2361		pool->process_prepared_discard = process_prepared_discard_no_passdown;
2362	}
2363}
2364
2365static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
2366{
2367	struct pool_c *pt = pool->ti->private;
2368	bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
2369	enum pool_mode old_mode = get_pool_mode(pool);
2370	unsigned long no_space_timeout = ACCESS_ONCE(no_space_timeout_secs) * HZ;
2371
2372	/*
2373	 * Never allow the pool to transition to PM_WRITE mode if user
2374	 * intervention is required to verify metadata and data consistency.
2375	 */
2376	if (new_mode == PM_WRITE && needs_check) {
2377		DMERR("%s: unable to switch pool to write mode until repaired.",
2378		      dm_device_name(pool->pool_md));
2379		if (old_mode != new_mode)
2380			new_mode = old_mode;
2381		else
2382			new_mode = PM_READ_ONLY;
2383	}
2384	/*
2385	 * If we were in PM_FAIL mode, rollback of metadata failed.  We're
2386	 * not going to recover without a thin_repair.	So we never let the
2387	 * pool move out of the old mode.
2388	 */
2389	if (old_mode == PM_FAIL)
2390		new_mode = old_mode;
2391
2392	switch (new_mode) {
2393	case PM_FAIL:
2394		if (old_mode != new_mode)
2395			notify_of_pool_mode_change(pool, "failure");
2396		dm_pool_metadata_read_only(pool->pmd);
2397		pool->process_bio = process_bio_fail;
2398		pool->process_discard = process_bio_fail;
2399		pool->process_cell = process_cell_fail;
2400		pool->process_discard_cell = process_cell_fail;
2401		pool->process_prepared_mapping = process_prepared_mapping_fail;
2402		pool->process_prepared_discard = process_prepared_discard_fail;
2403
2404		error_retry_list(pool);
2405		break;
2406
 
2407	case PM_READ_ONLY:
2408		if (old_mode != new_mode)
2409			notify_of_pool_mode_change(pool, "read-only");
2410		dm_pool_metadata_read_only(pool->pmd);
2411		pool->process_bio = process_bio_read_only;
2412		pool->process_discard = process_bio_success;
2413		pool->process_cell = process_cell_read_only;
2414		pool->process_discard_cell = process_cell_success;
2415		pool->process_prepared_mapping = process_prepared_mapping_fail;
2416		pool->process_prepared_discard = process_prepared_discard_success;
2417
2418		error_retry_list(pool);
2419		break;
2420
2421	case PM_OUT_OF_DATA_SPACE:
2422		/*
2423		 * Ideally we'd never hit this state; the low water mark
2424		 * would trigger userland to extend the pool before we
2425		 * completely run out of data space.  However, many small
2426		 * IOs to unprovisioned space can consume data space at an
2427		 * alarming rate.  Adjust your low water mark if you're
2428		 * frequently seeing this mode.
2429		 */
2430		if (old_mode != new_mode)
2431			notify_of_pool_mode_change_to_oods(pool);
2432		pool->out_of_data_space = true;
2433		pool->process_bio = process_bio_read_only;
2434		pool->process_discard = process_discard_bio;
2435		pool->process_cell = process_cell_read_only;
2436		pool->process_prepared_mapping = process_prepared_mapping;
2437		set_discard_callbacks(pool);
2438
2439		if (!pool->pf.error_if_no_space && no_space_timeout)
2440			queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
2441		break;
2442
2443	case PM_WRITE:
2444		if (old_mode != new_mode)
2445			notify_of_pool_mode_change(pool, "write");
2446		pool->out_of_data_space = false;
2447		pool->pf.error_if_no_space = pt->requested_pf.error_if_no_space;
2448		dm_pool_metadata_read_write(pool->pmd);
2449		pool->process_bio = process_bio;
2450		pool->process_discard = process_discard_bio;
2451		pool->process_cell = process_cell;
2452		pool->process_prepared_mapping = process_prepared_mapping;
2453		set_discard_callbacks(pool);
2454		break;
2455	}
2456
2457	pool->pf.mode = new_mode;
2458	/*
2459	 * The pool mode may have changed, sync it so bind_control_target()
2460	 * doesn't cause an unexpected mode transition on resume.
2461	 */
2462	pt->adjusted_pf.mode = new_mode;
 
 
 
2463}
2464
2465static void abort_transaction(struct pool *pool)
2466{
2467	const char *dev_name = dm_device_name(pool->pool_md);
2468
2469	DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
2470	if (dm_pool_abort_metadata(pool->pmd)) {
2471		DMERR("%s: failed to abort metadata transaction", dev_name);
2472		set_pool_mode(pool, PM_FAIL);
2473	}
2474
2475	if (dm_pool_metadata_set_needs_check(pool->pmd)) {
2476		DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
2477		set_pool_mode(pool, PM_FAIL);
2478	}
2479}
2480
2481static void metadata_operation_failed(struct pool *pool, const char *op, int r)
2482{
2483	DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2484		    dm_device_name(pool->pool_md), op, r);
2485
2486	abort_transaction(pool);
2487	set_pool_mode(pool, PM_READ_ONLY);
2488}
2489
2490/*----------------------------------------------------------------*/
2491
2492/*
2493 * Mapping functions.
2494 */
2495
2496/*
2497 * Called only while mapping a thin bio to hand it over to the workqueue.
2498 */
2499static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
2500{
2501	unsigned long flags;
2502	struct pool *pool = tc->pool;
2503
2504	spin_lock_irqsave(&tc->lock, flags);
2505	bio_list_add(&tc->deferred_bio_list, bio);
2506	spin_unlock_irqrestore(&tc->lock, flags);
2507
2508	wake_worker(pool);
2509}
2510
2511static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio)
2512{
2513	struct pool *pool = tc->pool;
2514
2515	throttle_lock(&pool->throttle);
2516	thin_defer_bio(tc, bio);
2517	throttle_unlock(&pool->throttle);
2518}
2519
2520static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2521{
2522	unsigned long flags;
2523	struct pool *pool = tc->pool;
2524
2525	throttle_lock(&pool->throttle);
2526	spin_lock_irqsave(&tc->lock, flags);
2527	list_add_tail(&cell->user_list, &tc->deferred_cells);
2528	spin_unlock_irqrestore(&tc->lock, flags);
2529	throttle_unlock(&pool->throttle);
2530
2531	wake_worker(pool);
2532}
2533
2534static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
2535{
2536	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2537
2538	h->tc = tc;
2539	h->shared_read_entry = NULL;
2540	h->all_io_entry = NULL;
2541	h->overwrite_mapping = NULL;
2542	h->cell = NULL;
2543}
2544
2545/*
2546 * Non-blocking function called from the thin target's map function.
2547 */
2548static int thin_bio_map(struct dm_target *ti, struct bio *bio)
2549{
2550	int r;
2551	struct thin_c *tc = ti->private;
2552	dm_block_t block = get_bio_block(tc, bio);
2553	struct dm_thin_device *td = tc->td;
2554	struct dm_thin_lookup_result result;
2555	struct dm_bio_prison_cell *virt_cell, *data_cell;
2556	struct dm_cell_key key;
2557
2558	thin_hook_bio(tc, bio);
2559
2560	if (tc->requeue_mode) {
2561		bio->bi_error = DM_ENDIO_REQUEUE;
2562		bio_endio(bio);
2563		return DM_MAPIO_SUBMITTED;
2564	}
2565
2566	if (get_pool_mode(tc->pool) == PM_FAIL) {
2567		bio_io_error(bio);
2568		return DM_MAPIO_SUBMITTED;
2569	}
2570
2571	if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
2572		thin_defer_bio_with_throttle(tc, bio);
2573		return DM_MAPIO_SUBMITTED;
2574	}
2575
2576	/*
2577	 * We must hold the virtual cell before doing the lookup, otherwise
2578	 * there's a race with discard.
2579	 */
2580	build_virtual_key(tc->td, block, &key);
2581	if (bio_detain(tc->pool, &key, bio, &virt_cell))
2582		return DM_MAPIO_SUBMITTED;
2583
2584	r = dm_thin_find_block(td, block, 0, &result);
2585
2586	/*
2587	 * Note that we defer readahead too.
2588	 */
2589	switch (r) {
2590	case 0:
2591		if (unlikely(result.shared)) {
2592			/*
2593			 * We have a race condition here between the
2594			 * result.shared value returned by the lookup and
2595			 * snapshot creation, which may cause new
2596			 * sharing.
2597			 *
2598			 * To avoid this always quiesce the origin before
2599			 * taking the snap.  You want to do this anyway to
2600			 * ensure a consistent application view
2601			 * (i.e. lockfs).
2602			 *
2603			 * More distant ancestors are irrelevant. The
2604			 * shared flag will be set in their case.
2605			 */
2606			thin_defer_cell(tc, virt_cell);
2607			return DM_MAPIO_SUBMITTED;
2608		}
2609
2610		build_data_key(tc->td, result.block, &key);
2611		if (bio_detain(tc->pool, &key, bio, &data_cell)) {
2612			cell_defer_no_holder(tc, virt_cell);
2613			return DM_MAPIO_SUBMITTED;
2614		}
2615
2616		inc_all_io_entry(tc->pool, bio);
2617		cell_defer_no_holder(tc, data_cell);
2618		cell_defer_no_holder(tc, virt_cell);
2619
2620		remap(tc, bio, result.block);
2621		return DM_MAPIO_REMAPPED;
2622
2623	case -ENODATA:
2624	case -EWOULDBLOCK:
2625		thin_defer_cell(tc, virt_cell);
2626		return DM_MAPIO_SUBMITTED;
2627
2628	default:
2629		/*
2630		 * Must always call bio_io_error on failure.
2631		 * dm_thin_find_block can fail with -EINVAL if the
2632		 * pool is switched to fail-io mode.
2633		 */
2634		bio_io_error(bio);
2635		cell_defer_no_holder(tc, virt_cell);
2636		return DM_MAPIO_SUBMITTED;
2637	}
2638}
2639
2640static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2641{
2642	struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
2643	struct request_queue *q;
2644
2645	if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE)
2646		return 1;
2647
2648	q = bdev_get_queue(pt->data_dev->bdev);
2649	return bdi_congested(&q->backing_dev_info, bdi_bits);
2650}
2651
2652static void requeue_bios(struct pool *pool)
2653{
2654	unsigned long flags;
2655	struct thin_c *tc;
2656
2657	rcu_read_lock();
2658	list_for_each_entry_rcu(tc, &pool->active_thins, list) {
2659		spin_lock_irqsave(&tc->lock, flags);
2660		bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
2661		bio_list_init(&tc->retry_on_resume_list);
2662		spin_unlock_irqrestore(&tc->lock, flags);
2663	}
2664	rcu_read_unlock();
2665}
2666
2667/*----------------------------------------------------------------
2668 * Binding of control targets to a pool object
2669 *--------------------------------------------------------------*/
2670static bool data_dev_supports_discard(struct pool_c *pt)
2671{
2672	struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2673
2674	return q && blk_queue_discard(q);
2675}
2676
2677static bool is_factor(sector_t block_size, uint32_t n)
2678{
2679	return !sector_div(block_size, n);
2680}
2681
2682/*
2683 * If discard_passdown was enabled verify that the data device
2684 * supports discards.  Disable discard_passdown if not.
2685 */
2686static void disable_passdown_if_not_supported(struct pool_c *pt)
2687{
2688	struct pool *pool = pt->pool;
2689	struct block_device *data_bdev = pt->data_dev->bdev;
2690	struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
2691	const char *reason = NULL;
2692	char buf[BDEVNAME_SIZE];
2693
2694	if (!pt->adjusted_pf.discard_passdown)
2695		return;
2696
2697	if (!data_dev_supports_discard(pt))
2698		reason = "discard unsupported";
2699
2700	else if (data_limits->max_discard_sectors < pool->sectors_per_block)
2701		reason = "max discard sectors smaller than a block";
2702
2703	if (reason) {
2704		DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
2705		pt->adjusted_pf.discard_passdown = false;
2706	}
2707}
2708
2709static int bind_control_target(struct pool *pool, struct dm_target *ti)
2710{
2711	struct pool_c *pt = ti->private;
2712
2713	/*
2714	 * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2715	 */
2716	enum pool_mode old_mode = get_pool_mode(pool);
2717	enum pool_mode new_mode = pt->adjusted_pf.mode;
2718
2719	/*
2720	 * Don't change the pool's mode until set_pool_mode() below.
2721	 * Otherwise the pool's process_* function pointers may
2722	 * not match the desired pool mode.
2723	 */
2724	pt->adjusted_pf.mode = old_mode;
2725
2726	pool->ti = ti;
2727	pool->pf = pt->adjusted_pf;
2728	pool->low_water_blocks = pt->low_water_blocks;
2729
2730	set_pool_mode(pool, new_mode);
2731
2732	return 0;
2733}
2734
2735static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2736{
2737	if (pool->ti == ti)
2738		pool->ti = NULL;
2739}
2740
2741/*----------------------------------------------------------------
2742 * Pool creation
2743 *--------------------------------------------------------------*/
2744/* Initialize pool features. */
2745static void pool_features_init(struct pool_features *pf)
2746{
2747	pf->mode = PM_WRITE;
2748	pf->zero_new_blocks = true;
2749	pf->discard_enabled = true;
2750	pf->discard_passdown = true;
2751	pf->error_if_no_space = false;
2752}
2753
2754static void __pool_destroy(struct pool *pool)
2755{
2756	__pool_table_remove(pool);
2757
2758	vfree(pool->cell_sort_array);
2759	if (dm_pool_metadata_close(pool->pmd) < 0)
2760		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2761
2762	dm_bio_prison_destroy(pool->prison);
2763	dm_kcopyd_client_destroy(pool->copier);
2764
 
 
2765	if (pool->wq)
2766		destroy_workqueue(pool->wq);
2767
2768	if (pool->next_mapping)
2769		mempool_free(pool->next_mapping, pool->mapping_pool);
2770	mempool_destroy(pool->mapping_pool);
2771	dm_deferred_set_destroy(pool->shared_read_ds);
2772	dm_deferred_set_destroy(pool->all_io_ds);
2773	kfree(pool);
2774}
2775
2776static struct kmem_cache *_new_mapping_cache;
2777
2778static struct pool *pool_create(struct mapped_device *pool_md,
2779				struct block_device *metadata_dev,
 
2780				unsigned long block_size,
2781				int read_only, char **error)
2782{
2783	int r;
2784	void *err_p;
2785	struct pool *pool;
2786	struct dm_pool_metadata *pmd;
2787	bool format_device = read_only ? false : true;
2788
2789	pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2790	if (IS_ERR(pmd)) {
2791		*error = "Error creating metadata object";
2792		return (struct pool *)pmd;
2793	}
2794
2795	pool = kmalloc(sizeof(*pool), GFP_KERNEL);
2796	if (!pool) {
2797		*error = "Error allocating memory for pool";
2798		err_p = ERR_PTR(-ENOMEM);
2799		goto bad_pool;
2800	}
2801
2802	pool->pmd = pmd;
2803	pool->sectors_per_block = block_size;
2804	if (block_size & (block_size - 1))
2805		pool->sectors_per_block_shift = -1;
2806	else
2807		pool->sectors_per_block_shift = __ffs(block_size);
2808	pool->low_water_blocks = 0;
2809	pool_features_init(&pool->pf);
2810	pool->prison = dm_bio_prison_create();
2811	if (!pool->prison) {
2812		*error = "Error creating pool's bio prison";
2813		err_p = ERR_PTR(-ENOMEM);
2814		goto bad_prison;
2815	}
2816
2817	pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2818	if (IS_ERR(pool->copier)) {
2819		r = PTR_ERR(pool->copier);
2820		*error = "Error creating pool's kcopyd client";
2821		err_p = ERR_PTR(r);
2822		goto bad_kcopyd_client;
2823	}
2824
2825	/*
2826	 * Create singlethreaded workqueue that will service all devices
2827	 * that use this metadata.
2828	 */
2829	pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2830	if (!pool->wq) {
2831		*error = "Error creating pool's workqueue";
2832		err_p = ERR_PTR(-ENOMEM);
2833		goto bad_wq;
2834	}
2835
2836	throttle_init(&pool->throttle);
2837	INIT_WORK(&pool->worker, do_worker);
2838	INIT_DELAYED_WORK(&pool->waker, do_waker);
2839	INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
2840	spin_lock_init(&pool->lock);
2841	bio_list_init(&pool->deferred_flush_bios);
 
2842	INIT_LIST_HEAD(&pool->prepared_mappings);
2843	INIT_LIST_HEAD(&pool->prepared_discards);
 
2844	INIT_LIST_HEAD(&pool->active_thins);
2845	pool->low_water_triggered = false;
2846	pool->suspended = true;
2847	pool->out_of_data_space = false;
2848
2849	pool->shared_read_ds = dm_deferred_set_create();
2850	if (!pool->shared_read_ds) {
2851		*error = "Error creating pool's shared read deferred set";
2852		err_p = ERR_PTR(-ENOMEM);
2853		goto bad_shared_read_ds;
2854	}
2855
2856	pool->all_io_ds = dm_deferred_set_create();
2857	if (!pool->all_io_ds) {
2858		*error = "Error creating pool's all io deferred set";
2859		err_p = ERR_PTR(-ENOMEM);
2860		goto bad_all_io_ds;
2861	}
2862
2863	pool->next_mapping = NULL;
2864	pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
2865						      _new_mapping_cache);
2866	if (!pool->mapping_pool) {
2867		*error = "Error creating pool's mapping mempool";
2868		err_p = ERR_PTR(-ENOMEM);
2869		goto bad_mapping_pool;
2870	}
2871
2872	pool->cell_sort_array = vmalloc(sizeof(*pool->cell_sort_array) * CELL_SORT_ARRAY_SIZE);
 
 
2873	if (!pool->cell_sort_array) {
2874		*error = "Error allocating cell sort array";
2875		err_p = ERR_PTR(-ENOMEM);
2876		goto bad_sort_array;
2877	}
2878
2879	pool->ref_count = 1;
2880	pool->last_commit_jiffies = jiffies;
2881	pool->pool_md = pool_md;
2882	pool->md_dev = metadata_dev;
 
2883	__pool_table_insert(pool);
2884
2885	return pool;
2886
2887bad_sort_array:
2888	mempool_destroy(pool->mapping_pool);
2889bad_mapping_pool:
2890	dm_deferred_set_destroy(pool->all_io_ds);
2891bad_all_io_ds:
2892	dm_deferred_set_destroy(pool->shared_read_ds);
2893bad_shared_read_ds:
2894	destroy_workqueue(pool->wq);
2895bad_wq:
2896	dm_kcopyd_client_destroy(pool->copier);
2897bad_kcopyd_client:
2898	dm_bio_prison_destroy(pool->prison);
2899bad_prison:
2900	kfree(pool);
2901bad_pool:
2902	if (dm_pool_metadata_close(pmd))
2903		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2904
2905	return err_p;
2906}
2907
2908static void __pool_inc(struct pool *pool)
2909{
2910	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2911	pool->ref_count++;
2912}
2913
2914static void __pool_dec(struct pool *pool)
2915{
2916	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2917	BUG_ON(!pool->ref_count);
2918	if (!--pool->ref_count)
2919		__pool_destroy(pool);
2920}
2921
2922static struct pool *__pool_find(struct mapped_device *pool_md,
2923				struct block_device *metadata_dev,
 
2924				unsigned long block_size, int read_only,
2925				char **error, int *created)
2926{
2927	struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
2928
2929	if (pool) {
2930		if (pool->pool_md != pool_md) {
2931			*error = "metadata device already in use by a pool";
2932			return ERR_PTR(-EBUSY);
2933		}
 
 
 
 
2934		__pool_inc(pool);
2935
2936	} else {
2937		pool = __pool_table_lookup(pool_md);
2938		if (pool) {
2939			if (pool->md_dev != metadata_dev) {
2940				*error = "different pool cannot replace a pool";
2941				return ERR_PTR(-EINVAL);
2942			}
2943			__pool_inc(pool);
2944
2945		} else {
2946			pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
2947			*created = 1;
2948		}
2949	}
2950
2951	return pool;
2952}
2953
2954/*----------------------------------------------------------------
2955 * Pool target methods
2956 *--------------------------------------------------------------*/
2957static void pool_dtr(struct dm_target *ti)
2958{
2959	struct pool_c *pt = ti->private;
2960
2961	mutex_lock(&dm_thin_pool_table.mutex);
2962
2963	unbind_control_target(pt->pool, ti);
2964	__pool_dec(pt->pool);
2965	dm_put_device(ti, pt->metadata_dev);
2966	dm_put_device(ti, pt->data_dev);
2967	kfree(pt);
2968
2969	mutex_unlock(&dm_thin_pool_table.mutex);
2970}
2971
2972static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
2973			       struct dm_target *ti)
2974{
2975	int r;
2976	unsigned argc;
2977	const char *arg_name;
2978
2979	static struct dm_arg _args[] = {
2980		{0, 4, "Invalid number of pool feature arguments"},
2981	};
2982
2983	/*
2984	 * No feature arguments supplied.
2985	 */
2986	if (!as->argc)
2987		return 0;
2988
2989	r = dm_read_arg_group(_args, as, &argc, &ti->error);
2990	if (r)
2991		return -EINVAL;
2992
2993	while (argc && !r) {
2994		arg_name = dm_shift_arg(as);
2995		argc--;
2996
2997		if (!strcasecmp(arg_name, "skip_block_zeroing"))
2998			pf->zero_new_blocks = false;
2999
3000		else if (!strcasecmp(arg_name, "ignore_discard"))
3001			pf->discard_enabled = false;
3002
3003		else if (!strcasecmp(arg_name, "no_discard_passdown"))
3004			pf->discard_passdown = false;
3005
3006		else if (!strcasecmp(arg_name, "read_only"))
3007			pf->mode = PM_READ_ONLY;
3008
3009		else if (!strcasecmp(arg_name, "error_if_no_space"))
3010			pf->error_if_no_space = true;
3011
3012		else {
3013			ti->error = "Unrecognised pool feature requested";
3014			r = -EINVAL;
3015			break;
3016		}
3017	}
3018
3019	return r;
3020}
3021
3022static void metadata_low_callback(void *context)
3023{
3024	struct pool *pool = context;
3025
3026	DMWARN("%s: reached low water mark for metadata device: sending event.",
3027	       dm_device_name(pool->pool_md));
3028
3029	dm_table_event(pool->ti->table);
3030}
3031
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3032static sector_t get_dev_size(struct block_device *bdev)
3033{
3034	return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
3035}
3036
3037static void warn_if_metadata_device_too_big(struct block_device *bdev)
3038{
3039	sector_t metadata_dev_size = get_dev_size(bdev);
3040	char buffer[BDEVNAME_SIZE];
3041
3042	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
3043		DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
3044		       bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
3045}
3046
3047static sector_t get_metadata_dev_size(struct block_device *bdev)
3048{
3049	sector_t metadata_dev_size = get_dev_size(bdev);
3050
3051	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
3052		metadata_dev_size = THIN_METADATA_MAX_SECTORS;
3053
3054	return metadata_dev_size;
3055}
3056
3057static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
3058{
3059	sector_t metadata_dev_size = get_metadata_dev_size(bdev);
3060
3061	sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
3062
3063	return metadata_dev_size;
3064}
3065
3066/*
3067 * When a metadata threshold is crossed a dm event is triggered, and
3068 * userland should respond by growing the metadata device.  We could let
3069 * userland set the threshold, like we do with the data threshold, but I'm
3070 * not sure they know enough to do this well.
3071 */
3072static dm_block_t calc_metadata_threshold(struct pool_c *pt)
3073{
3074	/*
3075	 * 4M is ample for all ops with the possible exception of thin
3076	 * device deletion which is harmless if it fails (just retry the
3077	 * delete after you've grown the device).
3078	 */
3079	dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
3080	return min((dm_block_t)1024ULL /* 4M */, quarter);
3081}
3082
3083/*
3084 * thin-pool <metadata dev> <data dev>
3085 *	     <data block size (sectors)>
3086 *	     <low water mark (blocks)>
3087 *	     [<#feature args> [<arg>]*]
3088 *
3089 * Optional feature arguments are:
3090 *	     skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
3091 *	     ignore_discard: disable discard
3092 *	     no_discard_passdown: don't pass discards down to the data device
3093 *	     read_only: Don't allow any changes to be made to the pool metadata.
3094 *	     error_if_no_space: error IOs, instead of queueing, if no space.
3095 */
3096static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
3097{
3098	int r, pool_created = 0;
3099	struct pool_c *pt;
3100	struct pool *pool;
3101	struct pool_features pf;
3102	struct dm_arg_set as;
3103	struct dm_dev *data_dev;
3104	unsigned long block_size;
3105	dm_block_t low_water_blocks;
3106	struct dm_dev *metadata_dev;
3107	fmode_t metadata_mode;
3108
3109	/*
3110	 * FIXME Remove validation from scope of lock.
3111	 */
3112	mutex_lock(&dm_thin_pool_table.mutex);
3113
3114	if (argc < 4) {
3115		ti->error = "Invalid argument count";
3116		r = -EINVAL;
3117		goto out_unlock;
3118	}
3119
3120	as.argc = argc;
3121	as.argv = argv;
3122
 
 
 
 
 
 
 
3123	/*
3124	 * Set default pool features.
3125	 */
3126	pool_features_init(&pf);
3127
3128	dm_consume_args(&as, 4);
3129	r = parse_pool_features(&as, &pf, ti);
3130	if (r)
3131		goto out_unlock;
3132
3133	metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
3134	r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
3135	if (r) {
3136		ti->error = "Error opening metadata block device";
3137		goto out_unlock;
3138	}
3139	warn_if_metadata_device_too_big(metadata_dev->bdev);
3140
3141	r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
3142	if (r) {
3143		ti->error = "Error getting data device";
3144		goto out_metadata;
3145	}
3146
3147	if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
3148	    block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
3149	    block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
3150	    block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
3151		ti->error = "Invalid block size";
3152		r = -EINVAL;
3153		goto out;
3154	}
3155
3156	if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
3157		ti->error = "Invalid low water mark";
3158		r = -EINVAL;
3159		goto out;
3160	}
3161
3162	pt = kzalloc(sizeof(*pt), GFP_KERNEL);
3163	if (!pt) {
3164		r = -ENOMEM;
3165		goto out;
3166	}
3167
3168	pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
3169			   block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
3170	if (IS_ERR(pool)) {
3171		r = PTR_ERR(pool);
3172		goto out_free_pt;
3173	}
3174
3175	/*
3176	 * 'pool_created' reflects whether this is the first table load.
3177	 * Top level discard support is not allowed to be changed after
3178	 * initial load.  This would require a pool reload to trigger thin
3179	 * device changes.
3180	 */
3181	if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
3182		ti->error = "Discard support cannot be disabled once enabled";
3183		r = -EINVAL;
3184		goto out_flags_changed;
3185	}
3186
3187	pt->pool = pool;
3188	pt->ti = ti;
3189	pt->metadata_dev = metadata_dev;
3190	pt->data_dev = data_dev;
3191	pt->low_water_blocks = low_water_blocks;
3192	pt->adjusted_pf = pt->requested_pf = pf;
3193	ti->num_flush_bios = 1;
3194
3195	/*
3196	 * Only need to enable discards if the pool should pass
3197	 * them down to the data device.  The thin device's discard
3198	 * processing will cause mappings to be removed from the btree.
3199	 */
3200	ti->discard_zeroes_data_unsupported = true;
3201	if (pf.discard_enabled && pf.discard_passdown) {
3202		ti->num_discard_bios = 1;
3203
3204		/*
3205		 * Setting 'discards_supported' circumvents the normal
3206		 * stacking of discard limits (this keeps the pool and
3207		 * thin devices' discard limits consistent).
3208		 */
3209		ti->discards_supported = true;
3210	}
3211	ti->private = pt;
3212
3213	r = dm_pool_register_metadata_threshold(pt->pool->pmd,
3214						calc_metadata_threshold(pt),
3215						metadata_low_callback,
3216						pool);
3217	if (r)
 
3218		goto out_flags_changed;
 
3219
3220	pt->callbacks.congested_fn = pool_is_congested;
3221	dm_table_add_target_callbacks(ti->table, &pt->callbacks);
3222
3223	mutex_unlock(&dm_thin_pool_table.mutex);
3224
3225	return 0;
3226
3227out_flags_changed:
3228	__pool_dec(pool);
3229out_free_pt:
3230	kfree(pt);
3231out:
3232	dm_put_device(ti, data_dev);
3233out_metadata:
3234	dm_put_device(ti, metadata_dev);
3235out_unlock:
3236	mutex_unlock(&dm_thin_pool_table.mutex);
3237
3238	return r;
3239}
3240
3241static int pool_map(struct dm_target *ti, struct bio *bio)
3242{
3243	int r;
3244	struct pool_c *pt = ti->private;
3245	struct pool *pool = pt->pool;
3246	unsigned long flags;
3247
3248	/*
3249	 * As this is a singleton target, ti->begin is always zero.
3250	 */
3251	spin_lock_irqsave(&pool->lock, flags);
3252	bio->bi_bdev = pt->data_dev->bdev;
3253	r = DM_MAPIO_REMAPPED;
3254	spin_unlock_irqrestore(&pool->lock, flags);
3255
3256	return r;
3257}
3258
3259static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
3260{
3261	int r;
3262	struct pool_c *pt = ti->private;
3263	struct pool *pool = pt->pool;
3264	sector_t data_size = ti->len;
3265	dm_block_t sb_data_size;
3266
3267	*need_commit = false;
3268
3269	(void) sector_div(data_size, pool->sectors_per_block);
3270
3271	r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
3272	if (r) {
3273		DMERR("%s: failed to retrieve data device size",
3274		      dm_device_name(pool->pool_md));
3275		return r;
3276	}
3277
3278	if (data_size < sb_data_size) {
3279		DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3280		      dm_device_name(pool->pool_md),
3281		      (unsigned long long)data_size, sb_data_size);
3282		return -EINVAL;
3283
3284	} else if (data_size > sb_data_size) {
3285		if (dm_pool_metadata_needs_check(pool->pmd)) {
3286			DMERR("%s: unable to grow the data device until repaired.",
3287			      dm_device_name(pool->pool_md));
3288			return 0;
3289		}
3290
3291		if (sb_data_size)
3292			DMINFO("%s: growing the data device from %llu to %llu blocks",
3293			       dm_device_name(pool->pool_md),
3294			       sb_data_size, (unsigned long long)data_size);
3295		r = dm_pool_resize_data_dev(pool->pmd, data_size);
3296		if (r) {
3297			metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
3298			return r;
3299		}
3300
3301		*need_commit = true;
3302	}
3303
3304	return 0;
3305}
3306
3307static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
3308{
3309	int r;
3310	struct pool_c *pt = ti->private;
3311	struct pool *pool = pt->pool;
3312	dm_block_t metadata_dev_size, sb_metadata_dev_size;
3313
3314	*need_commit = false;
3315
3316	metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
3317
3318	r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
3319	if (r) {
3320		DMERR("%s: failed to retrieve metadata device size",
3321		      dm_device_name(pool->pool_md));
3322		return r;
3323	}
3324
3325	if (metadata_dev_size < sb_metadata_dev_size) {
3326		DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3327		      dm_device_name(pool->pool_md),
3328		      metadata_dev_size, sb_metadata_dev_size);
3329		return -EINVAL;
3330
3331	} else if (metadata_dev_size > sb_metadata_dev_size) {
3332		if (dm_pool_metadata_needs_check(pool->pmd)) {
3333			DMERR("%s: unable to grow the metadata device until repaired.",
3334			      dm_device_name(pool->pool_md));
3335			return 0;
3336		}
3337
3338		warn_if_metadata_device_too_big(pool->md_dev);
3339		DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3340		       dm_device_name(pool->pool_md),
3341		       sb_metadata_dev_size, metadata_dev_size);
 
 
 
 
3342		r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
3343		if (r) {
3344			metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
3345			return r;
3346		}
3347
3348		*need_commit = true;
3349	}
3350
3351	return 0;
3352}
3353
3354/*
3355 * Retrieves the number of blocks of the data device from
3356 * the superblock and compares it to the actual device size,
3357 * thus resizing the data device in case it has grown.
3358 *
3359 * This both copes with opening preallocated data devices in the ctr
3360 * being followed by a resume
3361 * -and-
3362 * calling the resume method individually after userspace has
3363 * grown the data device in reaction to a table event.
3364 */
3365static int pool_preresume(struct dm_target *ti)
3366{
3367	int r;
3368	bool need_commit1, need_commit2;
3369	struct pool_c *pt = ti->private;
3370	struct pool *pool = pt->pool;
3371
3372	/*
3373	 * Take control of the pool object.
3374	 */
3375	r = bind_control_target(pool, ti);
3376	if (r)
3377		return r;
3378
3379	r = maybe_resize_data_dev(ti, &need_commit1);
3380	if (r)
3381		return r;
3382
3383	r = maybe_resize_metadata_dev(ti, &need_commit2);
3384	if (r)
3385		return r;
3386
3387	if (need_commit1 || need_commit2)
3388		(void) commit(pool);
 
 
 
 
 
 
 
 
3389
3390	return 0;
3391}
3392
3393static void pool_suspend_active_thins(struct pool *pool)
3394{
3395	struct thin_c *tc;
3396
3397	/* Suspend all active thin devices */
3398	tc = get_first_thin(pool);
3399	while (tc) {
3400		dm_internal_suspend_noflush(tc->thin_md);
3401		tc = get_next_thin(pool, tc);
3402	}
3403}
3404
3405static void pool_resume_active_thins(struct pool *pool)
3406{
3407	struct thin_c *tc;
3408
3409	/* Resume all active thin devices */
3410	tc = get_first_thin(pool);
3411	while (tc) {
3412		dm_internal_resume(tc->thin_md);
3413		tc = get_next_thin(pool, tc);
3414	}
3415}
3416
3417static void pool_resume(struct dm_target *ti)
3418{
3419	struct pool_c *pt = ti->private;
3420	struct pool *pool = pt->pool;
3421	unsigned long flags;
3422
3423	/*
3424	 * Must requeue active_thins' bios and then resume
3425	 * active_thins _before_ clearing 'suspend' flag.
3426	 */
3427	requeue_bios(pool);
3428	pool_resume_active_thins(pool);
3429
3430	spin_lock_irqsave(&pool->lock, flags);
3431	pool->low_water_triggered = false;
3432	pool->suspended = false;
3433	spin_unlock_irqrestore(&pool->lock, flags);
3434
3435	do_waker(&pool->waker.work);
3436}
3437
3438static void pool_presuspend(struct dm_target *ti)
3439{
3440	struct pool_c *pt = ti->private;
3441	struct pool *pool = pt->pool;
3442	unsigned long flags;
3443
3444	spin_lock_irqsave(&pool->lock, flags);
3445	pool->suspended = true;
3446	spin_unlock_irqrestore(&pool->lock, flags);
3447
3448	pool_suspend_active_thins(pool);
3449}
3450
3451static void pool_presuspend_undo(struct dm_target *ti)
3452{
3453	struct pool_c *pt = ti->private;
3454	struct pool *pool = pt->pool;
3455	unsigned long flags;
3456
3457	pool_resume_active_thins(pool);
3458
3459	spin_lock_irqsave(&pool->lock, flags);
3460	pool->suspended = false;
3461	spin_unlock_irqrestore(&pool->lock, flags);
3462}
3463
3464static void pool_postsuspend(struct dm_target *ti)
3465{
3466	struct pool_c *pt = ti->private;
3467	struct pool *pool = pt->pool;
3468
3469	cancel_delayed_work_sync(&pool->waker);
3470	cancel_delayed_work_sync(&pool->no_space_timeout);
3471	flush_workqueue(pool->wq);
3472	(void) commit(pool);
3473}
3474
3475static int check_arg_count(unsigned argc, unsigned args_required)
3476{
3477	if (argc != args_required) {
3478		DMWARN("Message received with %u arguments instead of %u.",
3479		       argc, args_required);
3480		return -EINVAL;
3481	}
3482
3483	return 0;
3484}
3485
3486static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
3487{
3488	if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
3489	    *dev_id <= MAX_DEV_ID)
3490		return 0;
3491
3492	if (warning)
3493		DMWARN("Message received with invalid device id: %s", arg);
3494
3495	return -EINVAL;
3496}
3497
3498static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
3499{
3500	dm_thin_id dev_id;
3501	int r;
3502
3503	r = check_arg_count(argc, 2);
3504	if (r)
3505		return r;
3506
3507	r = read_dev_id(argv[1], &dev_id, 1);
3508	if (r)
3509		return r;
3510
3511	r = dm_pool_create_thin(pool->pmd, dev_id);
3512	if (r) {
3513		DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3514		       argv[1]);
3515		return r;
3516	}
3517
3518	return 0;
3519}
3520
3521static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3522{
3523	dm_thin_id dev_id;
3524	dm_thin_id origin_dev_id;
3525	int r;
3526
3527	r = check_arg_count(argc, 3);
3528	if (r)
3529		return r;
3530
3531	r = read_dev_id(argv[1], &dev_id, 1);
3532	if (r)
3533		return r;
3534
3535	r = read_dev_id(argv[2], &origin_dev_id, 1);
3536	if (r)
3537		return r;
3538
3539	r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
3540	if (r) {
3541		DMWARN("Creation of new snapshot %s of device %s failed.",
3542		       argv[1], argv[2]);
3543		return r;
3544	}
3545
3546	return 0;
3547}
3548
3549static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
3550{
3551	dm_thin_id dev_id;
3552	int r;
3553
3554	r = check_arg_count(argc, 2);
3555	if (r)
3556		return r;
3557
3558	r = read_dev_id(argv[1], &dev_id, 1);
3559	if (r)
3560		return r;
3561
3562	r = dm_pool_delete_thin_device(pool->pmd, dev_id);
3563	if (r)
3564		DMWARN("Deletion of thin device %s failed.", argv[1]);
3565
3566	return r;
3567}
3568
3569static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
3570{
3571	dm_thin_id old_id, new_id;
3572	int r;
3573
3574	r = check_arg_count(argc, 3);
3575	if (r)
3576		return r;
3577
3578	if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
3579		DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
3580		return -EINVAL;
3581	}
3582
3583	if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
3584		DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
3585		return -EINVAL;
3586	}
3587
3588	r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
3589	if (r) {
3590		DMWARN("Failed to change transaction id from %s to %s.",
3591		       argv[1], argv[2]);
3592		return r;
3593	}
3594
3595	return 0;
3596}
3597
3598static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3599{
3600	int r;
3601
3602	r = check_arg_count(argc, 1);
3603	if (r)
3604		return r;
3605
3606	(void) commit(pool);
3607
3608	r = dm_pool_reserve_metadata_snap(pool->pmd);
3609	if (r)
3610		DMWARN("reserve_metadata_snap message failed.");
3611
3612	return r;
3613}
3614
3615static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3616{
3617	int r;
3618
3619	r = check_arg_count(argc, 1);
3620	if (r)
3621		return r;
3622
3623	r = dm_pool_release_metadata_snap(pool->pmd);
3624	if (r)
3625		DMWARN("release_metadata_snap message failed.");
3626
3627	return r;
3628}
3629
3630/*
3631 * Messages supported:
3632 *   create_thin	<dev_id>
3633 *   create_snap	<dev_id> <origin_id>
3634 *   delete		<dev_id>
3635 *   set_transaction_id <current_trans_id> <new_trans_id>
3636 *   reserve_metadata_snap
3637 *   release_metadata_snap
3638 */
3639static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
 
3640{
3641	int r = -EINVAL;
3642	struct pool_c *pt = ti->private;
3643	struct pool *pool = pt->pool;
3644
3645	if (get_pool_mode(pool) >= PM_READ_ONLY) {
3646		DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
3647		      dm_device_name(pool->pool_md));
3648		return -EOPNOTSUPP;
3649	}
3650
3651	if (!strcasecmp(argv[0], "create_thin"))
3652		r = process_create_thin_mesg(argc, argv, pool);
3653
3654	else if (!strcasecmp(argv[0], "create_snap"))
3655		r = process_create_snap_mesg(argc, argv, pool);
3656
3657	else if (!strcasecmp(argv[0], "delete"))
3658		r = process_delete_mesg(argc, argv, pool);
3659
3660	else if (!strcasecmp(argv[0], "set_transaction_id"))
3661		r = process_set_transaction_id_mesg(argc, argv, pool);
3662
3663	else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
3664		r = process_reserve_metadata_snap_mesg(argc, argv, pool);
3665
3666	else if (!strcasecmp(argv[0], "release_metadata_snap"))
3667		r = process_release_metadata_snap_mesg(argc, argv, pool);
3668
3669	else
3670		DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
3671
3672	if (!r)
3673		(void) commit(pool);
3674
3675	return r;
3676}
3677
3678static void emit_flags(struct pool_features *pf, char *result,
3679		       unsigned sz, unsigned maxlen)
3680{
3681	unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
3682		!pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
3683		pf->error_if_no_space;
3684	DMEMIT("%u ", count);
3685
3686	if (!pf->zero_new_blocks)
3687		DMEMIT("skip_block_zeroing ");
3688
3689	if (!pf->discard_enabled)
3690		DMEMIT("ignore_discard ");
3691
3692	if (!pf->discard_passdown)
3693		DMEMIT("no_discard_passdown ");
3694
3695	if (pf->mode == PM_READ_ONLY)
3696		DMEMIT("read_only ");
3697
3698	if (pf->error_if_no_space)
3699		DMEMIT("error_if_no_space ");
3700}
3701
3702/*
3703 * Status line is:
3704 *    <transaction id> <used metadata sectors>/<total metadata sectors>
3705 *    <used data sectors>/<total data sectors> <held metadata root>
3706 *    <pool mode> <discard config> <no space config> <needs_check>
3707 */
3708static void pool_status(struct dm_target *ti, status_type_t type,
3709			unsigned status_flags, char *result, unsigned maxlen)
3710{
3711	int r;
3712	unsigned sz = 0;
3713	uint64_t transaction_id;
3714	dm_block_t nr_free_blocks_data;
3715	dm_block_t nr_free_blocks_metadata;
3716	dm_block_t nr_blocks_data;
3717	dm_block_t nr_blocks_metadata;
3718	dm_block_t held_root;
 
3719	char buf[BDEVNAME_SIZE];
3720	char buf2[BDEVNAME_SIZE];
3721	struct pool_c *pt = ti->private;
3722	struct pool *pool = pt->pool;
3723
3724	switch (type) {
3725	case STATUSTYPE_INFO:
3726		if (get_pool_mode(pool) == PM_FAIL) {
3727			DMEMIT("Fail");
3728			break;
3729		}
3730
3731		/* Commit to ensure statistics aren't out-of-date */
3732		if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3733			(void) commit(pool);
3734
3735		r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
3736		if (r) {
3737			DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3738			      dm_device_name(pool->pool_md), r);
3739			goto err;
3740		}
3741
3742		r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
3743		if (r) {
3744			DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3745			      dm_device_name(pool->pool_md), r);
3746			goto err;
3747		}
3748
3749		r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
3750		if (r) {
3751			DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3752			      dm_device_name(pool->pool_md), r);
3753			goto err;
3754		}
3755
3756		r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
3757		if (r) {
3758			DMERR("%s: dm_pool_get_free_block_count returned %d",
3759			      dm_device_name(pool->pool_md), r);
3760			goto err;
3761		}
3762
3763		r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
3764		if (r) {
3765			DMERR("%s: dm_pool_get_data_dev_size returned %d",
3766			      dm_device_name(pool->pool_md), r);
3767			goto err;
3768		}
3769
3770		r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
3771		if (r) {
3772			DMERR("%s: dm_pool_get_metadata_snap returned %d",
3773			      dm_device_name(pool->pool_md), r);
3774			goto err;
3775		}
3776
3777		DMEMIT("%llu %llu/%llu %llu/%llu ",
3778		       (unsigned long long)transaction_id,
3779		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3780		       (unsigned long long)nr_blocks_metadata,
3781		       (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
3782		       (unsigned long long)nr_blocks_data);
3783
3784		if (held_root)
3785			DMEMIT("%llu ", held_root);
3786		else
3787			DMEMIT("- ");
3788
3789		if (pool->pf.mode == PM_OUT_OF_DATA_SPACE)
 
3790			DMEMIT("out_of_data_space ");
3791		else if (pool->pf.mode == PM_READ_ONLY)
3792			DMEMIT("ro ");
3793		else
3794			DMEMIT("rw ");
3795
3796		if (!pool->pf.discard_enabled)
3797			DMEMIT("ignore_discard ");
3798		else if (pool->pf.discard_passdown)
3799			DMEMIT("discard_passdown ");
3800		else
3801			DMEMIT("no_discard_passdown ");
3802
3803		if (pool->pf.error_if_no_space)
3804			DMEMIT("error_if_no_space ");
3805		else
3806			DMEMIT("queue_if_no_space ");
3807
3808		if (dm_pool_metadata_needs_check(pool->pmd))
3809			DMEMIT("needs_check ");
3810		else
3811			DMEMIT("- ");
3812
 
 
3813		break;
3814
3815	case STATUSTYPE_TABLE:
3816		DMEMIT("%s %s %lu %llu ",
3817		       format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
3818		       format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
3819		       (unsigned long)pool->sectors_per_block,
3820		       (unsigned long long)pt->low_water_blocks);
3821		emit_flags(&pt->requested_pf, result, sz, maxlen);
3822		break;
 
 
 
 
3823	}
3824	return;
3825
3826err:
3827	DMEMIT("Error");
3828}
3829
3830static int pool_iterate_devices(struct dm_target *ti,
3831				iterate_devices_callout_fn fn, void *data)
3832{
3833	struct pool_c *pt = ti->private;
3834
3835	return fn(ti, pt->data_dev, 0, ti->len, data);
3836}
3837
3838static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
3839{
3840	struct pool_c *pt = ti->private;
3841	struct pool *pool = pt->pool;
3842	sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3843
3844	/*
3845	 * If max_sectors is smaller than pool->sectors_per_block adjust it
3846	 * to the highest possible power-of-2 factor of pool->sectors_per_block.
3847	 * This is especially beneficial when the pool's data device is a RAID
3848	 * device that has a full stripe width that matches pool->sectors_per_block
3849	 * -- because even though partial RAID stripe-sized IOs will be issued to a
3850	 *    single RAID stripe; when aggregated they will end on a full RAID stripe
3851	 *    boundary.. which avoids additional partial RAID stripe writes cascading
3852	 */
3853	if (limits->max_sectors < pool->sectors_per_block) {
3854		while (!is_factor(pool->sectors_per_block, limits->max_sectors)) {
3855			if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
3856				limits->max_sectors--;
3857			limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
3858		}
3859	}
3860
3861	/*
3862	 * If the system-determined stacked limits are compatible with the
3863	 * pool's blocksize (io_opt is a factor) do not override them.
3864	 */
3865	if (io_opt_sectors < pool->sectors_per_block ||
3866	    !is_factor(io_opt_sectors, pool->sectors_per_block)) {
3867		if (is_factor(pool->sectors_per_block, limits->max_sectors))
3868			blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT);
3869		else
3870			blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT);
3871		blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
3872	}
3873
3874	/*
3875	 * pt->adjusted_pf is a staging area for the actual features to use.
3876	 * They get transferred to the live pool in bind_control_target()
3877	 * called from pool_preresume().
3878	 */
3879	if (!pt->adjusted_pf.discard_enabled) {
3880		/*
3881		 * Must explicitly disallow stacking discard limits otherwise the
3882		 * block layer will stack them if pool's data device has support.
3883		 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
3884		 * user to see that, so make sure to set all discard limits to 0.
3885		 */
3886		limits->discard_granularity = 0;
3887		return;
3888	}
3889
3890	disable_passdown_if_not_supported(pt);
3891
3892	/*
3893	 * The pool uses the same discard limits as the underlying data
3894	 * device.  DM core has already set this up.
3895	 */
3896}
3897
3898static struct target_type pool_target = {
3899	.name = "thin-pool",
3900	.features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
3901		    DM_TARGET_IMMUTABLE,
3902	.version = {1, 18, 0},
3903	.module = THIS_MODULE,
3904	.ctr = pool_ctr,
3905	.dtr = pool_dtr,
3906	.map = pool_map,
3907	.presuspend = pool_presuspend,
3908	.presuspend_undo = pool_presuspend_undo,
3909	.postsuspend = pool_postsuspend,
3910	.preresume = pool_preresume,
3911	.resume = pool_resume,
3912	.message = pool_message,
3913	.status = pool_status,
3914	.iterate_devices = pool_iterate_devices,
3915	.io_hints = pool_io_hints,
3916};
3917
3918/*----------------------------------------------------------------
3919 * Thin target methods
3920 *--------------------------------------------------------------*/
3921static void thin_get(struct thin_c *tc)
3922{
3923	atomic_inc(&tc->refcount);
3924}
3925
3926static void thin_put(struct thin_c *tc)
3927{
3928	if (atomic_dec_and_test(&tc->refcount))
3929		complete(&tc->can_destroy);
3930}
3931
3932static void thin_dtr(struct dm_target *ti)
3933{
3934	struct thin_c *tc = ti->private;
3935	unsigned long flags;
3936
3937	spin_lock_irqsave(&tc->pool->lock, flags);
3938	list_del_rcu(&tc->list);
3939	spin_unlock_irqrestore(&tc->pool->lock, flags);
3940	synchronize_rcu();
3941
3942	thin_put(tc);
3943	wait_for_completion(&tc->can_destroy);
3944
3945	mutex_lock(&dm_thin_pool_table.mutex);
3946
3947	__pool_dec(tc->pool);
3948	dm_pool_close_thin_device(tc->td);
3949	dm_put_device(ti, tc->pool_dev);
3950	if (tc->origin_dev)
3951		dm_put_device(ti, tc->origin_dev);
3952	kfree(tc);
3953
3954	mutex_unlock(&dm_thin_pool_table.mutex);
3955}
3956
3957/*
3958 * Thin target parameters:
3959 *
3960 * <pool_dev> <dev_id> [origin_dev]
3961 *
3962 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
3963 * dev_id: the internal device identifier
3964 * origin_dev: a device external to the pool that should act as the origin
3965 *
3966 * If the pool device has discards disabled, they get disabled for the thin
3967 * device as well.
3968 */
3969static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
3970{
3971	int r;
3972	struct thin_c *tc;
3973	struct dm_dev *pool_dev, *origin_dev;
3974	struct mapped_device *pool_md;
3975	unsigned long flags;
3976
3977	mutex_lock(&dm_thin_pool_table.mutex);
3978
3979	if (argc != 2 && argc != 3) {
3980		ti->error = "Invalid argument count";
3981		r = -EINVAL;
3982		goto out_unlock;
3983	}
3984
3985	tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
3986	if (!tc) {
3987		ti->error = "Out of memory";
3988		r = -ENOMEM;
3989		goto out_unlock;
3990	}
3991	tc->thin_md = dm_table_get_md(ti->table);
3992	spin_lock_init(&tc->lock);
3993	INIT_LIST_HEAD(&tc->deferred_cells);
3994	bio_list_init(&tc->deferred_bio_list);
3995	bio_list_init(&tc->retry_on_resume_list);
3996	tc->sort_bio_list = RB_ROOT;
3997
3998	if (argc == 3) {
 
 
 
 
 
 
3999		r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
4000		if (r) {
4001			ti->error = "Error opening origin device";
4002			goto bad_origin_dev;
4003		}
4004		tc->origin_dev = origin_dev;
4005	}
4006
4007	r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
4008	if (r) {
4009		ti->error = "Error opening pool device";
4010		goto bad_pool_dev;
4011	}
4012	tc->pool_dev = pool_dev;
4013
4014	if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
4015		ti->error = "Invalid device id";
4016		r = -EINVAL;
4017		goto bad_common;
4018	}
4019
4020	pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
4021	if (!pool_md) {
4022		ti->error = "Couldn't get pool mapped device";
4023		r = -EINVAL;
4024		goto bad_common;
4025	}
4026
4027	tc->pool = __pool_table_lookup(pool_md);
4028	if (!tc->pool) {
4029		ti->error = "Couldn't find pool object";
4030		r = -EINVAL;
4031		goto bad_pool_lookup;
4032	}
4033	__pool_inc(tc->pool);
4034
4035	if (get_pool_mode(tc->pool) == PM_FAIL) {
4036		ti->error = "Couldn't open thin device, Pool is in fail mode";
4037		r = -EINVAL;
4038		goto bad_pool;
4039	}
4040
4041	r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
4042	if (r) {
4043		ti->error = "Couldn't open thin internal device";
4044		goto bad_pool;
4045	}
4046
4047	r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
4048	if (r)
4049		goto bad;
4050
4051	ti->num_flush_bios = 1;
4052	ti->flush_supported = true;
 
4053	ti->per_io_data_size = sizeof(struct dm_thin_endio_hook);
4054
4055	/* In case the pool supports discards, pass them on. */
4056	ti->discard_zeroes_data_unsupported = true;
4057	if (tc->pool->pf.discard_enabled) {
4058		ti->discards_supported = true;
4059		ti->num_discard_bios = 1;
4060		ti->split_discard_bios = false;
4061	}
4062
4063	mutex_unlock(&dm_thin_pool_table.mutex);
4064
4065	spin_lock_irqsave(&tc->pool->lock, flags);
4066	if (tc->pool->suspended) {
4067		spin_unlock_irqrestore(&tc->pool->lock, flags);
4068		mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */
4069		ti->error = "Unable to activate thin device while pool is suspended";
4070		r = -EINVAL;
4071		goto bad;
4072	}
4073	atomic_set(&tc->refcount, 1);
4074	init_completion(&tc->can_destroy);
4075	list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
4076	spin_unlock_irqrestore(&tc->pool->lock, flags);
4077	/*
4078	 * This synchronize_rcu() call is needed here otherwise we risk a
4079	 * wake_worker() call finding no bios to process (because the newly
4080	 * added tc isn't yet visible).  So this reduces latency since we
4081	 * aren't then dependent on the periodic commit to wake_worker().
4082	 */
4083	synchronize_rcu();
4084
4085	dm_put(pool_md);
4086
4087	return 0;
4088
4089bad:
4090	dm_pool_close_thin_device(tc->td);
4091bad_pool:
4092	__pool_dec(tc->pool);
4093bad_pool_lookup:
4094	dm_put(pool_md);
4095bad_common:
4096	dm_put_device(ti, tc->pool_dev);
4097bad_pool_dev:
4098	if (tc->origin_dev)
4099		dm_put_device(ti, tc->origin_dev);
4100bad_origin_dev:
4101	kfree(tc);
4102out_unlock:
4103	mutex_unlock(&dm_thin_pool_table.mutex);
4104
4105	return r;
4106}
4107
4108static int thin_map(struct dm_target *ti, struct bio *bio)
4109{
4110	bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
4111
4112	return thin_bio_map(ti, bio);
4113}
4114
4115static int thin_endio(struct dm_target *ti, struct bio *bio, int err)
 
4116{
4117	unsigned long flags;
4118	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
4119	struct list_head work;
4120	struct dm_thin_new_mapping *m, *tmp;
4121	struct pool *pool = h->tc->pool;
4122
4123	if (h->shared_read_entry) {
4124		INIT_LIST_HEAD(&work);
4125		dm_deferred_entry_dec(h->shared_read_entry, &work);
4126
4127		spin_lock_irqsave(&pool->lock, flags);
4128		list_for_each_entry_safe(m, tmp, &work, list) {
4129			list_del(&m->list);
4130			__complete_mapping_preparation(m);
4131		}
4132		spin_unlock_irqrestore(&pool->lock, flags);
4133	}
4134
4135	if (h->all_io_entry) {
4136		INIT_LIST_HEAD(&work);
4137		dm_deferred_entry_dec(h->all_io_entry, &work);
4138		if (!list_empty(&work)) {
4139			spin_lock_irqsave(&pool->lock, flags);
4140			list_for_each_entry_safe(m, tmp, &work, list)
4141				list_add_tail(&m->list, &pool->prepared_discards);
4142			spin_unlock_irqrestore(&pool->lock, flags);
4143			wake_worker(pool);
4144		}
4145	}
4146
4147	if (h->cell)
4148		cell_defer_no_holder(h->tc, h->cell);
4149
4150	return 0;
4151}
4152
4153static void thin_presuspend(struct dm_target *ti)
4154{
4155	struct thin_c *tc = ti->private;
4156
4157	if (dm_noflush_suspending(ti))
4158		noflush_work(tc, do_noflush_start);
4159}
4160
4161static void thin_postsuspend(struct dm_target *ti)
4162{
4163	struct thin_c *tc = ti->private;
4164
4165	/*
4166	 * The dm_noflush_suspending flag has been cleared by now, so
4167	 * unfortunately we must always run this.
4168	 */
4169	noflush_work(tc, do_noflush_stop);
4170}
4171
4172static int thin_preresume(struct dm_target *ti)
4173{
4174	struct thin_c *tc = ti->private;
4175
4176	if (tc->origin_dev)
4177		tc->origin_size = get_dev_size(tc->origin_dev->bdev);
4178
4179	return 0;
4180}
4181
4182/*
4183 * <nr mapped sectors> <highest mapped sector>
4184 */
4185static void thin_status(struct dm_target *ti, status_type_t type,
4186			unsigned status_flags, char *result, unsigned maxlen)
4187{
4188	int r;
4189	ssize_t sz = 0;
4190	dm_block_t mapped, highest;
4191	char buf[BDEVNAME_SIZE];
4192	struct thin_c *tc = ti->private;
4193
4194	if (get_pool_mode(tc->pool) == PM_FAIL) {
4195		DMEMIT("Fail");
4196		return;
4197	}
4198
4199	if (!tc->td)
4200		DMEMIT("-");
4201	else {
4202		switch (type) {
4203		case STATUSTYPE_INFO:
4204			r = dm_thin_get_mapped_count(tc->td, &mapped);
4205			if (r) {
4206				DMERR("dm_thin_get_mapped_count returned %d", r);
4207				goto err;
4208			}
4209
4210			r = dm_thin_get_highest_mapped_block(tc->td, &highest);
4211			if (r < 0) {
4212				DMERR("dm_thin_get_highest_mapped_block returned %d", r);
4213				goto err;
4214			}
4215
4216			DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
4217			if (r)
4218				DMEMIT("%llu", ((highest + 1) *
4219						tc->pool->sectors_per_block) - 1);
4220			else
4221				DMEMIT("-");
4222			break;
4223
4224		case STATUSTYPE_TABLE:
4225			DMEMIT("%s %lu",
4226			       format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
4227			       (unsigned long) tc->dev_id);
4228			if (tc->origin_dev)
4229				DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
4230			break;
 
 
 
 
4231		}
4232	}
4233
4234	return;
4235
4236err:
4237	DMEMIT("Error");
4238}
4239
4240static int thin_iterate_devices(struct dm_target *ti,
4241				iterate_devices_callout_fn fn, void *data)
4242{
4243	sector_t blocks;
4244	struct thin_c *tc = ti->private;
4245	struct pool *pool = tc->pool;
4246
4247	/*
4248	 * We can't call dm_pool_get_data_dev_size() since that blocks.  So
4249	 * we follow a more convoluted path through to the pool's target.
4250	 */
4251	if (!pool->ti)
4252		return 0;	/* nothing is bound */
4253
4254	blocks = pool->ti->len;
4255	(void) sector_div(blocks, pool->sectors_per_block);
4256	if (blocks)
4257		return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
4258
4259	return 0;
4260}
4261
4262static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
4263{
4264	struct thin_c *tc = ti->private;
4265	struct pool *pool = tc->pool;
4266
4267	if (!pool->pf.discard_enabled)
4268		return;
4269
4270	limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
4271	limits->max_discard_sectors = 2048 * 1024 * 16; /* 16G */
4272}
4273
4274static struct target_type thin_target = {
4275	.name = "thin",
4276	.version = {1, 18, 0},
4277	.module	= THIS_MODULE,
4278	.ctr = thin_ctr,
4279	.dtr = thin_dtr,
4280	.map = thin_map,
4281	.end_io = thin_endio,
4282	.preresume = thin_preresume,
4283	.presuspend = thin_presuspend,
4284	.postsuspend = thin_postsuspend,
4285	.status = thin_status,
4286	.iterate_devices = thin_iterate_devices,
4287	.io_hints = thin_io_hints,
4288};
4289
4290/*----------------------------------------------------------------*/
4291
4292static int __init dm_thin_init(void)
4293{
4294	int r;
4295
4296	pool_table_init();
4297
 
 
 
 
4298	r = dm_register_target(&thin_target);
4299	if (r)
4300		return r;
4301
4302	r = dm_register_target(&pool_target);
4303	if (r)
4304		goto bad_pool_target;
4305
4306	r = -ENOMEM;
4307
4308	_new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
4309	if (!_new_mapping_cache)
4310		goto bad_new_mapping_cache;
4311
4312	return 0;
4313
 
 
4314bad_new_mapping_cache:
4315	dm_unregister_target(&pool_target);
4316bad_pool_target:
4317	dm_unregister_target(&thin_target);
4318
4319	return r;
4320}
4321
4322static void dm_thin_exit(void)
4323{
4324	dm_unregister_target(&thin_target);
4325	dm_unregister_target(&pool_target);
4326
4327	kmem_cache_destroy(_new_mapping_cache);
 
 
4328}
4329
4330module_init(dm_thin_init);
4331module_exit(dm_thin_exit);
4332
4333module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR);
4334MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
4335
4336MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
4337MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
4338MODULE_LICENSE("GPL");