Loading...
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * Copyright IBM Corp. 1999,2013
4 *
5 * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>,
6 *
7 * The description below was taken in large parts from the powerpc
8 * bitops header file:
9 * Within a word, bits are numbered LSB first. Lot's of places make
10 * this assumption by directly testing bits with (val & (1<<nr)).
11 * This can cause confusion for large (> 1 word) bitmaps on a
12 * big-endian system because, unlike little endian, the number of each
13 * bit depends on the word size.
14 *
15 * The bitop functions are defined to work on unsigned longs, so the bits
16 * end up numbered:
17 * |63..............0|127............64|191...........128|255...........192|
18 *
19 * We also have special functions which work with an MSB0 encoding.
20 * The bits are numbered:
21 * |0..............63|64............127|128...........191|192...........255|
22 *
23 * The main difference is that bit 0-63 in the bit number field needs to be
24 * reversed compared to the LSB0 encoded bit fields. This can be achieved by
25 * XOR with 0x3f.
26 *
27 */
28
29#ifndef _S390_BITOPS_H
30#define _S390_BITOPS_H
31
32#ifndef _LINUX_BITOPS_H
33#error only <linux/bitops.h> can be included directly
34#endif
35
36#include <linux/typecheck.h>
37#include <linux/compiler.h>
38#include <linux/types.h>
39#include <asm/atomic_ops.h>
40#include <asm/barrier.h>
41
42#define __BITOPS_WORDS(bits) (((bits) + BITS_PER_LONG - 1) / BITS_PER_LONG)
43
44static inline unsigned long *
45__bitops_word(unsigned long nr, const volatile unsigned long *ptr)
46{
47 unsigned long addr;
48
49 addr = (unsigned long)ptr + ((nr ^ (nr & (BITS_PER_LONG - 1))) >> 3);
50 return (unsigned long *)addr;
51}
52
53static inline unsigned long __bitops_mask(unsigned long nr)
54{
55 return 1UL << (nr & (BITS_PER_LONG - 1));
56}
57
58static __always_inline void arch_set_bit(unsigned long nr, volatile unsigned long *ptr)
59{
60 unsigned long *addr = __bitops_word(nr, ptr);
61 unsigned long mask = __bitops_mask(nr);
62
63 __atomic64_or(mask, (long *)addr);
64}
65
66static __always_inline void arch_clear_bit(unsigned long nr, volatile unsigned long *ptr)
67{
68 unsigned long *addr = __bitops_word(nr, ptr);
69 unsigned long mask = __bitops_mask(nr);
70
71 __atomic64_and(~mask, (long *)addr);
72}
73
74static __always_inline void arch_change_bit(unsigned long nr,
75 volatile unsigned long *ptr)
76{
77 unsigned long *addr = __bitops_word(nr, ptr);
78 unsigned long mask = __bitops_mask(nr);
79
80 __atomic64_xor(mask, (long *)addr);
81}
82
83static inline bool arch_test_and_set_bit(unsigned long nr,
84 volatile unsigned long *ptr)
85{
86 unsigned long *addr = __bitops_word(nr, ptr);
87 unsigned long mask = __bitops_mask(nr);
88 unsigned long old;
89
90 old = __atomic64_or_barrier(mask, (long *)addr);
91 return old & mask;
92}
93
94static inline bool arch_test_and_clear_bit(unsigned long nr,
95 volatile unsigned long *ptr)
96{
97 unsigned long *addr = __bitops_word(nr, ptr);
98 unsigned long mask = __bitops_mask(nr);
99 unsigned long old;
100
101 old = __atomic64_and_barrier(~mask, (long *)addr);
102 return old & mask;
103}
104
105static inline bool arch_test_and_change_bit(unsigned long nr,
106 volatile unsigned long *ptr)
107{
108 unsigned long *addr = __bitops_word(nr, ptr);
109 unsigned long mask = __bitops_mask(nr);
110 unsigned long old;
111
112 old = __atomic64_xor_barrier(mask, (long *)addr);
113 return old & mask;
114}
115
116static __always_inline void
117arch___set_bit(unsigned long nr, volatile unsigned long *addr)
118{
119 unsigned long *p = __bitops_word(nr, addr);
120 unsigned long mask = __bitops_mask(nr);
121
122 *p |= mask;
123}
124
125static __always_inline void
126arch___clear_bit(unsigned long nr, volatile unsigned long *addr)
127{
128 unsigned long *p = __bitops_word(nr, addr);
129 unsigned long mask = __bitops_mask(nr);
130
131 *p &= ~mask;
132}
133
134static __always_inline void
135arch___change_bit(unsigned long nr, volatile unsigned long *addr)
136{
137 unsigned long *p = __bitops_word(nr, addr);
138 unsigned long mask = __bitops_mask(nr);
139
140 *p ^= mask;
141}
142
143static __always_inline bool
144arch___test_and_set_bit(unsigned long nr, volatile unsigned long *addr)
145{
146 unsigned long *p = __bitops_word(nr, addr);
147 unsigned long mask = __bitops_mask(nr);
148 unsigned long old;
149
150 old = *p;
151 *p |= mask;
152 return old & mask;
153}
154
155static __always_inline bool
156arch___test_and_clear_bit(unsigned long nr, volatile unsigned long *addr)
157{
158 unsigned long *p = __bitops_word(nr, addr);
159 unsigned long mask = __bitops_mask(nr);
160 unsigned long old;
161
162 old = *p;
163 *p &= ~mask;
164 return old & mask;
165}
166
167static __always_inline bool
168arch___test_and_change_bit(unsigned long nr, volatile unsigned long *addr)
169{
170 unsigned long *p = __bitops_word(nr, addr);
171 unsigned long mask = __bitops_mask(nr);
172 unsigned long old;
173
174 old = *p;
175 *p ^= mask;
176 return old & mask;
177}
178
179#define arch_test_bit generic_test_bit
180#define arch_test_bit_acquire generic_test_bit_acquire
181
182static inline bool arch_test_and_set_bit_lock(unsigned long nr,
183 volatile unsigned long *ptr)
184{
185 if (arch_test_bit(nr, ptr))
186 return true;
187 return arch_test_and_set_bit(nr, ptr);
188}
189
190static inline void arch_clear_bit_unlock(unsigned long nr,
191 volatile unsigned long *ptr)
192{
193 smp_mb__before_atomic();
194 arch_clear_bit(nr, ptr);
195}
196
197static inline void arch___clear_bit_unlock(unsigned long nr,
198 volatile unsigned long *ptr)
199{
200 smp_mb();
201 arch___clear_bit(nr, ptr);
202}
203
204#include <asm-generic/bitops/instrumented-atomic.h>
205#include <asm-generic/bitops/instrumented-non-atomic.h>
206#include <asm-generic/bitops/instrumented-lock.h>
207
208/*
209 * Functions which use MSB0 bit numbering.
210 * The bits are numbered:
211 * |0..............63|64............127|128...........191|192...........255|
212 */
213unsigned long find_first_bit_inv(const unsigned long *addr, unsigned long size);
214unsigned long find_next_bit_inv(const unsigned long *addr, unsigned long size,
215 unsigned long offset);
216
217#define for_each_set_bit_inv(bit, addr, size) \
218 for ((bit) = find_first_bit_inv((addr), (size)); \
219 (bit) < (size); \
220 (bit) = find_next_bit_inv((addr), (size), (bit) + 1))
221
222static inline void set_bit_inv(unsigned long nr, volatile unsigned long *ptr)
223{
224 return set_bit(nr ^ (BITS_PER_LONG - 1), ptr);
225}
226
227static inline void clear_bit_inv(unsigned long nr, volatile unsigned long *ptr)
228{
229 return clear_bit(nr ^ (BITS_PER_LONG - 1), ptr);
230}
231
232static inline bool test_and_clear_bit_inv(unsigned long nr,
233 volatile unsigned long *ptr)
234{
235 return test_and_clear_bit(nr ^ (BITS_PER_LONG - 1), ptr);
236}
237
238static inline void __set_bit_inv(unsigned long nr, volatile unsigned long *ptr)
239{
240 return __set_bit(nr ^ (BITS_PER_LONG - 1), ptr);
241}
242
243static inline void __clear_bit_inv(unsigned long nr, volatile unsigned long *ptr)
244{
245 return __clear_bit(nr ^ (BITS_PER_LONG - 1), ptr);
246}
247
248static inline bool test_bit_inv(unsigned long nr,
249 const volatile unsigned long *ptr)
250{
251 return test_bit(nr ^ (BITS_PER_LONG - 1), ptr);
252}
253
254/**
255 * __flogr - find leftmost one
256 * @word - The word to search
257 *
258 * Returns the bit number of the most significant bit set,
259 * where the most significant bit has bit number 0.
260 * If no bit is set this function returns 64.
261 */
262static inline unsigned char __flogr(unsigned long word)
263{
264 if (__builtin_constant_p(word)) {
265 unsigned long bit = 0;
266
267 if (!word)
268 return 64;
269 if (!(word & 0xffffffff00000000UL)) {
270 word <<= 32;
271 bit += 32;
272 }
273 if (!(word & 0xffff000000000000UL)) {
274 word <<= 16;
275 bit += 16;
276 }
277 if (!(word & 0xff00000000000000UL)) {
278 word <<= 8;
279 bit += 8;
280 }
281 if (!(word & 0xf000000000000000UL)) {
282 word <<= 4;
283 bit += 4;
284 }
285 if (!(word & 0xc000000000000000UL)) {
286 word <<= 2;
287 bit += 2;
288 }
289 if (!(word & 0x8000000000000000UL)) {
290 word <<= 1;
291 bit += 1;
292 }
293 return bit;
294 } else {
295 union register_pair rp;
296
297 rp.even = word;
298 asm volatile(
299 " flogr %[rp],%[rp]\n"
300 : [rp] "+d" (rp.pair) : : "cc");
301 return rp.even;
302 }
303}
304
305/**
306 * __ffs - find first bit in word.
307 * @word: The word to search
308 *
309 * Undefined if no bit exists, so code should check against 0 first.
310 */
311static inline unsigned long __ffs(unsigned long word)
312{
313 return __flogr(-word & word) ^ (BITS_PER_LONG - 1);
314}
315
316/**
317 * ffs - find first bit set
318 * @word: the word to search
319 *
320 * This is defined the same way as the libc and
321 * compiler builtin ffs routines (man ffs).
322 */
323static inline int ffs(int word)
324{
325 unsigned long mask = 2 * BITS_PER_LONG - 1;
326 unsigned int val = (unsigned int)word;
327
328 return (1 + (__flogr(-val & val) ^ (BITS_PER_LONG - 1))) & mask;
329}
330
331/**
332 * __fls - find last (most-significant) set bit in a long word
333 * @word: the word to search
334 *
335 * Undefined if no set bit exists, so code should check against 0 first.
336 */
337static inline unsigned long __fls(unsigned long word)
338{
339 return __flogr(word) ^ (BITS_PER_LONG - 1);
340}
341
342/**
343 * fls64 - find last set bit in a 64-bit word
344 * @word: the word to search
345 *
346 * This is defined in a similar way as the libc and compiler builtin
347 * ffsll, but returns the position of the most significant set bit.
348 *
349 * fls64(value) returns 0 if value is 0 or the position of the last
350 * set bit if value is nonzero. The last (most significant) bit is
351 * at position 64.
352 */
353static inline int fls64(unsigned long word)
354{
355 unsigned long mask = 2 * BITS_PER_LONG - 1;
356
357 return (1 + (__flogr(word) ^ (BITS_PER_LONG - 1))) & mask;
358}
359
360/**
361 * fls - find last (most-significant) bit set
362 * @word: the word to search
363 *
364 * This is defined the same way as ffs.
365 * Note fls(0) = 0, fls(1) = 1, fls(0x80000000) = 32.
366 */
367static inline int fls(unsigned int word)
368{
369 return fls64(word);
370}
371
372#include <asm-generic/bitops/ffz.h>
373#include <asm-generic/bitops/hweight.h>
374#include <asm-generic/bitops/sched.h>
375#include <asm-generic/bitops/le.h>
376#include <asm-generic/bitops/ext2-atomic-setbit.h>
377
378#endif /* _S390_BITOPS_H */
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * Copyright IBM Corp. 1999,2013
4 *
5 * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>,
6 *
7 * The description below was taken in large parts from the powerpc
8 * bitops header file:
9 * Within a word, bits are numbered LSB first. Lot's of places make
10 * this assumption by directly testing bits with (val & (1<<nr)).
11 * This can cause confusion for large (> 1 word) bitmaps on a
12 * big-endian system because, unlike little endian, the number of each
13 * bit depends on the word size.
14 *
15 * The bitop functions are defined to work on unsigned longs, so the bits
16 * end up numbered:
17 * |63..............0|127............64|191...........128|255...........192|
18 *
19 * We also have special functions which work with an MSB0 encoding.
20 * The bits are numbered:
21 * |0..............63|64............127|128...........191|192...........255|
22 *
23 * The main difference is that bit 0-63 in the bit number field needs to be
24 * reversed compared to the LSB0 encoded bit fields. This can be achieved by
25 * XOR with 0x3f.
26 *
27 */
28
29#ifndef _S390_BITOPS_H
30#define _S390_BITOPS_H
31
32#ifndef _LINUX_BITOPS_H
33#error only <linux/bitops.h> can be included directly
34#endif
35
36#include <linux/typecheck.h>
37#include <linux/compiler.h>
38#include <linux/types.h>
39#include <asm/atomic_ops.h>
40#include <asm/barrier.h>
41
42#define __BITOPS_WORDS(bits) (((bits) + BITS_PER_LONG - 1) / BITS_PER_LONG)
43
44static inline unsigned long *
45__bitops_word(unsigned long nr, volatile unsigned long *ptr)
46{
47 unsigned long addr;
48
49 addr = (unsigned long)ptr + ((nr ^ (nr & (BITS_PER_LONG - 1))) >> 3);
50 return (unsigned long *)addr;
51}
52
53static inline unsigned char *
54__bitops_byte(unsigned long nr, volatile unsigned long *ptr)
55{
56 return ((unsigned char *)ptr) + ((nr ^ (BITS_PER_LONG - 8)) >> 3);
57}
58
59static __always_inline void arch_set_bit(unsigned long nr, volatile unsigned long *ptr)
60{
61 unsigned long *addr = __bitops_word(nr, ptr);
62 unsigned long mask;
63
64#ifdef CONFIG_HAVE_MARCH_ZEC12_FEATURES
65 if (__builtin_constant_p(nr)) {
66 unsigned char *caddr = __bitops_byte(nr, ptr);
67
68 asm volatile(
69 "oi %0,%b1\n"
70 : "+Q" (*caddr)
71 : "i" (1 << (nr & 7))
72 : "cc", "memory");
73 return;
74 }
75#endif
76 mask = 1UL << (nr & (BITS_PER_LONG - 1));
77 __atomic64_or(mask, (long *)addr);
78}
79
80static __always_inline void arch_clear_bit(unsigned long nr, volatile unsigned long *ptr)
81{
82 unsigned long *addr = __bitops_word(nr, ptr);
83 unsigned long mask;
84
85#ifdef CONFIG_HAVE_MARCH_ZEC12_FEATURES
86 if (__builtin_constant_p(nr)) {
87 unsigned char *caddr = __bitops_byte(nr, ptr);
88
89 asm volatile(
90 "ni %0,%b1\n"
91 : "+Q" (*caddr)
92 : "i" (~(1 << (nr & 7)))
93 : "cc", "memory");
94 return;
95 }
96#endif
97 mask = ~(1UL << (nr & (BITS_PER_LONG - 1)));
98 __atomic64_and(mask, (long *)addr);
99}
100
101static __always_inline void arch_change_bit(unsigned long nr,
102 volatile unsigned long *ptr)
103{
104 unsigned long *addr = __bitops_word(nr, ptr);
105 unsigned long mask;
106
107#ifdef CONFIG_HAVE_MARCH_ZEC12_FEATURES
108 if (__builtin_constant_p(nr)) {
109 unsigned char *caddr = __bitops_byte(nr, ptr);
110
111 asm volatile(
112 "xi %0,%b1\n"
113 : "+Q" (*caddr)
114 : "i" (1 << (nr & 7))
115 : "cc", "memory");
116 return;
117 }
118#endif
119 mask = 1UL << (nr & (BITS_PER_LONG - 1));
120 __atomic64_xor(mask, (long *)addr);
121}
122
123static inline bool arch_test_and_set_bit(unsigned long nr,
124 volatile unsigned long *ptr)
125{
126 unsigned long *addr = __bitops_word(nr, ptr);
127 unsigned long old, mask;
128
129 mask = 1UL << (nr & (BITS_PER_LONG - 1));
130 old = __atomic64_or_barrier(mask, (long *)addr);
131 return (old & mask) != 0;
132}
133
134static inline bool arch_test_and_clear_bit(unsigned long nr,
135 volatile unsigned long *ptr)
136{
137 unsigned long *addr = __bitops_word(nr, ptr);
138 unsigned long old, mask;
139
140 mask = ~(1UL << (nr & (BITS_PER_LONG - 1)));
141 old = __atomic64_and_barrier(mask, (long *)addr);
142 return (old & ~mask) != 0;
143}
144
145static inline bool arch_test_and_change_bit(unsigned long nr,
146 volatile unsigned long *ptr)
147{
148 unsigned long *addr = __bitops_word(nr, ptr);
149 unsigned long old, mask;
150
151 mask = 1UL << (nr & (BITS_PER_LONG - 1));
152 old = __atomic64_xor_barrier(mask, (long *)addr);
153 return (old & mask) != 0;
154}
155
156static inline void arch___set_bit(unsigned long nr, volatile unsigned long *ptr)
157{
158 unsigned char *addr = __bitops_byte(nr, ptr);
159
160 *addr |= 1 << (nr & 7);
161}
162
163static inline void arch___clear_bit(unsigned long nr,
164 volatile unsigned long *ptr)
165{
166 unsigned char *addr = __bitops_byte(nr, ptr);
167
168 *addr &= ~(1 << (nr & 7));
169}
170
171static inline void arch___change_bit(unsigned long nr,
172 volatile unsigned long *ptr)
173{
174 unsigned char *addr = __bitops_byte(nr, ptr);
175
176 *addr ^= 1 << (nr & 7);
177}
178
179static inline bool arch___test_and_set_bit(unsigned long nr,
180 volatile unsigned long *ptr)
181{
182 unsigned char *addr = __bitops_byte(nr, ptr);
183 unsigned char ch;
184
185 ch = *addr;
186 *addr |= 1 << (nr & 7);
187 return (ch >> (nr & 7)) & 1;
188}
189
190static inline bool arch___test_and_clear_bit(unsigned long nr,
191 volatile unsigned long *ptr)
192{
193 unsigned char *addr = __bitops_byte(nr, ptr);
194 unsigned char ch;
195
196 ch = *addr;
197 *addr &= ~(1 << (nr & 7));
198 return (ch >> (nr & 7)) & 1;
199}
200
201static inline bool arch___test_and_change_bit(unsigned long nr,
202 volatile unsigned long *ptr)
203{
204 unsigned char *addr = __bitops_byte(nr, ptr);
205 unsigned char ch;
206
207 ch = *addr;
208 *addr ^= 1 << (nr & 7);
209 return (ch >> (nr & 7)) & 1;
210}
211
212static inline bool arch_test_bit(unsigned long nr,
213 const volatile unsigned long *ptr)
214{
215 const volatile unsigned char *addr;
216
217 addr = ((const volatile unsigned char *)ptr);
218 addr += (nr ^ (BITS_PER_LONG - 8)) >> 3;
219 return (*addr >> (nr & 7)) & 1;
220}
221
222static inline bool arch_test_and_set_bit_lock(unsigned long nr,
223 volatile unsigned long *ptr)
224{
225 if (arch_test_bit(nr, ptr))
226 return 1;
227 return arch_test_and_set_bit(nr, ptr);
228}
229
230static inline void arch_clear_bit_unlock(unsigned long nr,
231 volatile unsigned long *ptr)
232{
233 smp_mb__before_atomic();
234 arch_clear_bit(nr, ptr);
235}
236
237static inline void arch___clear_bit_unlock(unsigned long nr,
238 volatile unsigned long *ptr)
239{
240 smp_mb();
241 arch___clear_bit(nr, ptr);
242}
243
244#include <asm-generic/bitops/instrumented-atomic.h>
245#include <asm-generic/bitops/instrumented-non-atomic.h>
246#include <asm-generic/bitops/instrumented-lock.h>
247
248/*
249 * Functions which use MSB0 bit numbering.
250 * The bits are numbered:
251 * |0..............63|64............127|128...........191|192...........255|
252 */
253unsigned long find_first_bit_inv(const unsigned long *addr, unsigned long size);
254unsigned long find_next_bit_inv(const unsigned long *addr, unsigned long size,
255 unsigned long offset);
256
257#define for_each_set_bit_inv(bit, addr, size) \
258 for ((bit) = find_first_bit_inv((addr), (size)); \
259 (bit) < (size); \
260 (bit) = find_next_bit_inv((addr), (size), (bit) + 1))
261
262static inline void set_bit_inv(unsigned long nr, volatile unsigned long *ptr)
263{
264 return set_bit(nr ^ (BITS_PER_LONG - 1), ptr);
265}
266
267static inline void clear_bit_inv(unsigned long nr, volatile unsigned long *ptr)
268{
269 return clear_bit(nr ^ (BITS_PER_LONG - 1), ptr);
270}
271
272static inline bool test_and_clear_bit_inv(unsigned long nr,
273 volatile unsigned long *ptr)
274{
275 return test_and_clear_bit(nr ^ (BITS_PER_LONG - 1), ptr);
276}
277
278static inline void __set_bit_inv(unsigned long nr, volatile unsigned long *ptr)
279{
280 return __set_bit(nr ^ (BITS_PER_LONG - 1), ptr);
281}
282
283static inline void __clear_bit_inv(unsigned long nr, volatile unsigned long *ptr)
284{
285 return __clear_bit(nr ^ (BITS_PER_LONG - 1), ptr);
286}
287
288static inline bool test_bit_inv(unsigned long nr,
289 const volatile unsigned long *ptr)
290{
291 return test_bit(nr ^ (BITS_PER_LONG - 1), ptr);
292}
293
294#ifdef CONFIG_HAVE_MARCH_Z9_109_FEATURES
295
296/**
297 * __flogr - find leftmost one
298 * @word - The word to search
299 *
300 * Returns the bit number of the most significant bit set,
301 * where the most significant bit has bit number 0.
302 * If no bit is set this function returns 64.
303 */
304static inline unsigned char __flogr(unsigned long word)
305{
306 if (__builtin_constant_p(word)) {
307 unsigned long bit = 0;
308
309 if (!word)
310 return 64;
311 if (!(word & 0xffffffff00000000UL)) {
312 word <<= 32;
313 bit += 32;
314 }
315 if (!(word & 0xffff000000000000UL)) {
316 word <<= 16;
317 bit += 16;
318 }
319 if (!(word & 0xff00000000000000UL)) {
320 word <<= 8;
321 bit += 8;
322 }
323 if (!(word & 0xf000000000000000UL)) {
324 word <<= 4;
325 bit += 4;
326 }
327 if (!(word & 0xc000000000000000UL)) {
328 word <<= 2;
329 bit += 2;
330 }
331 if (!(word & 0x8000000000000000UL)) {
332 word <<= 1;
333 bit += 1;
334 }
335 return bit;
336 } else {
337 register unsigned long bit asm("4") = word;
338 register unsigned long out asm("5");
339
340 asm volatile(
341 " flogr %[bit],%[bit]\n"
342 : [bit] "+d" (bit), [out] "=d" (out) : : "cc");
343 return bit;
344 }
345}
346
347/**
348 * __ffs - find first bit in word.
349 * @word: The word to search
350 *
351 * Undefined if no bit exists, so code should check against 0 first.
352 */
353static inline unsigned long __ffs(unsigned long word)
354{
355 return __flogr(-word & word) ^ (BITS_PER_LONG - 1);
356}
357
358/**
359 * ffs - find first bit set
360 * @word: the word to search
361 *
362 * This is defined the same way as the libc and
363 * compiler builtin ffs routines (man ffs).
364 */
365static inline int ffs(int word)
366{
367 unsigned long mask = 2 * BITS_PER_LONG - 1;
368 unsigned int val = (unsigned int)word;
369
370 return (1 + (__flogr(-val & val) ^ (BITS_PER_LONG - 1))) & mask;
371}
372
373/**
374 * __fls - find last (most-significant) set bit in a long word
375 * @word: the word to search
376 *
377 * Undefined if no set bit exists, so code should check against 0 first.
378 */
379static inline unsigned long __fls(unsigned long word)
380{
381 return __flogr(word) ^ (BITS_PER_LONG - 1);
382}
383
384/**
385 * fls64 - find last set bit in a 64-bit word
386 * @word: the word to search
387 *
388 * This is defined in a similar way as the libc and compiler builtin
389 * ffsll, but returns the position of the most significant set bit.
390 *
391 * fls64(value) returns 0 if value is 0 or the position of the last
392 * set bit if value is nonzero. The last (most significant) bit is
393 * at position 64.
394 */
395static inline int fls64(unsigned long word)
396{
397 unsigned long mask = 2 * BITS_PER_LONG - 1;
398
399 return (1 + (__flogr(word) ^ (BITS_PER_LONG - 1))) & mask;
400}
401
402/**
403 * fls - find last (most-significant) bit set
404 * @word: the word to search
405 *
406 * This is defined the same way as ffs.
407 * Note fls(0) = 0, fls(1) = 1, fls(0x80000000) = 32.
408 */
409static inline int fls(unsigned int word)
410{
411 return fls64(word);
412}
413
414#else /* CONFIG_HAVE_MARCH_Z9_109_FEATURES */
415
416#include <asm-generic/bitops/__ffs.h>
417#include <asm-generic/bitops/ffs.h>
418#include <asm-generic/bitops/__fls.h>
419#include <asm-generic/bitops/fls.h>
420#include <asm-generic/bitops/fls64.h>
421
422#endif /* CONFIG_HAVE_MARCH_Z9_109_FEATURES */
423
424#include <asm-generic/bitops/ffz.h>
425#include <asm-generic/bitops/find.h>
426#include <asm-generic/bitops/hweight.h>
427#include <asm-generic/bitops/sched.h>
428#include <asm-generic/bitops/le.h>
429#include <asm-generic/bitops/ext2-atomic-setbit.h>
430
431#endif /* _S390_BITOPS_H */