Loading...
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * Copyright IBM Corp. 1999,2013
4 *
5 * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>,
6 *
7 * The description below was taken in large parts from the powerpc
8 * bitops header file:
9 * Within a word, bits are numbered LSB first. Lot's of places make
10 * this assumption by directly testing bits with (val & (1<<nr)).
11 * This can cause confusion for large (> 1 word) bitmaps on a
12 * big-endian system because, unlike little endian, the number of each
13 * bit depends on the word size.
14 *
15 * The bitop functions are defined to work on unsigned longs, so the bits
16 * end up numbered:
17 * |63..............0|127............64|191...........128|255...........192|
18 *
19 * We also have special functions which work with an MSB0 encoding.
20 * The bits are numbered:
21 * |0..............63|64............127|128...........191|192...........255|
22 *
23 * The main difference is that bit 0-63 in the bit number field needs to be
24 * reversed compared to the LSB0 encoded bit fields. This can be achieved by
25 * XOR with 0x3f.
26 *
27 */
28
29#ifndef _S390_BITOPS_H
30#define _S390_BITOPS_H
31
32#ifndef _LINUX_BITOPS_H
33#error only <linux/bitops.h> can be included directly
34#endif
35
36#include <linux/typecheck.h>
37#include <linux/compiler.h>
38#include <linux/types.h>
39#include <asm/atomic_ops.h>
40#include <asm/barrier.h>
41
42#define __BITOPS_WORDS(bits) (((bits) + BITS_PER_LONG - 1) / BITS_PER_LONG)
43
44static inline unsigned long *
45__bitops_word(unsigned long nr, const volatile unsigned long *ptr)
46{
47 unsigned long addr;
48
49 addr = (unsigned long)ptr + ((nr ^ (nr & (BITS_PER_LONG - 1))) >> 3);
50 return (unsigned long *)addr;
51}
52
53static inline unsigned long __bitops_mask(unsigned long nr)
54{
55 return 1UL << (nr & (BITS_PER_LONG - 1));
56}
57
58static __always_inline void arch_set_bit(unsigned long nr, volatile unsigned long *ptr)
59{
60 unsigned long *addr = __bitops_word(nr, ptr);
61 unsigned long mask = __bitops_mask(nr);
62
63 __atomic64_or(mask, (long *)addr);
64}
65
66static __always_inline void arch_clear_bit(unsigned long nr, volatile unsigned long *ptr)
67{
68 unsigned long *addr = __bitops_word(nr, ptr);
69 unsigned long mask = __bitops_mask(nr);
70
71 __atomic64_and(~mask, (long *)addr);
72}
73
74static __always_inline void arch_change_bit(unsigned long nr,
75 volatile unsigned long *ptr)
76{
77 unsigned long *addr = __bitops_word(nr, ptr);
78 unsigned long mask = __bitops_mask(nr);
79
80 __atomic64_xor(mask, (long *)addr);
81}
82
83static inline bool arch_test_and_set_bit(unsigned long nr,
84 volatile unsigned long *ptr)
85{
86 unsigned long *addr = __bitops_word(nr, ptr);
87 unsigned long mask = __bitops_mask(nr);
88 unsigned long old;
89
90 old = __atomic64_or_barrier(mask, (long *)addr);
91 return old & mask;
92}
93
94static inline bool arch_test_and_clear_bit(unsigned long nr,
95 volatile unsigned long *ptr)
96{
97 unsigned long *addr = __bitops_word(nr, ptr);
98 unsigned long mask = __bitops_mask(nr);
99 unsigned long old;
100
101 old = __atomic64_and_barrier(~mask, (long *)addr);
102 return old & mask;
103}
104
105static inline bool arch_test_and_change_bit(unsigned long nr,
106 volatile unsigned long *ptr)
107{
108 unsigned long *addr = __bitops_word(nr, ptr);
109 unsigned long mask = __bitops_mask(nr);
110 unsigned long old;
111
112 old = __atomic64_xor_barrier(mask, (long *)addr);
113 return old & mask;
114}
115
116static __always_inline void
117arch___set_bit(unsigned long nr, volatile unsigned long *addr)
118{
119 unsigned long *p = __bitops_word(nr, addr);
120 unsigned long mask = __bitops_mask(nr);
121
122 *p |= mask;
123}
124
125static __always_inline void
126arch___clear_bit(unsigned long nr, volatile unsigned long *addr)
127{
128 unsigned long *p = __bitops_word(nr, addr);
129 unsigned long mask = __bitops_mask(nr);
130
131 *p &= ~mask;
132}
133
134static __always_inline void
135arch___change_bit(unsigned long nr, volatile unsigned long *addr)
136{
137 unsigned long *p = __bitops_word(nr, addr);
138 unsigned long mask = __bitops_mask(nr);
139
140 *p ^= mask;
141}
142
143static __always_inline bool
144arch___test_and_set_bit(unsigned long nr, volatile unsigned long *addr)
145{
146 unsigned long *p = __bitops_word(nr, addr);
147 unsigned long mask = __bitops_mask(nr);
148 unsigned long old;
149
150 old = *p;
151 *p |= mask;
152 return old & mask;
153}
154
155static __always_inline bool
156arch___test_and_clear_bit(unsigned long nr, volatile unsigned long *addr)
157{
158 unsigned long *p = __bitops_word(nr, addr);
159 unsigned long mask = __bitops_mask(nr);
160 unsigned long old;
161
162 old = *p;
163 *p &= ~mask;
164 return old & mask;
165}
166
167static __always_inline bool
168arch___test_and_change_bit(unsigned long nr, volatile unsigned long *addr)
169{
170 unsigned long *p = __bitops_word(nr, addr);
171 unsigned long mask = __bitops_mask(nr);
172 unsigned long old;
173
174 old = *p;
175 *p ^= mask;
176 return old & mask;
177}
178
179#define arch_test_bit generic_test_bit
180#define arch_test_bit_acquire generic_test_bit_acquire
181
182static inline bool arch_test_and_set_bit_lock(unsigned long nr,
183 volatile unsigned long *ptr)
184{
185 if (arch_test_bit(nr, ptr))
186 return true;
187 return arch_test_and_set_bit(nr, ptr);
188}
189
190static inline void arch_clear_bit_unlock(unsigned long nr,
191 volatile unsigned long *ptr)
192{
193 smp_mb__before_atomic();
194 arch_clear_bit(nr, ptr);
195}
196
197static inline void arch___clear_bit_unlock(unsigned long nr,
198 volatile unsigned long *ptr)
199{
200 smp_mb();
201 arch___clear_bit(nr, ptr);
202}
203
204#include <asm-generic/bitops/instrumented-atomic.h>
205#include <asm-generic/bitops/instrumented-non-atomic.h>
206#include <asm-generic/bitops/instrumented-lock.h>
207
208/*
209 * Functions which use MSB0 bit numbering.
210 * The bits are numbered:
211 * |0..............63|64............127|128...........191|192...........255|
212 */
213unsigned long find_first_bit_inv(const unsigned long *addr, unsigned long size);
214unsigned long find_next_bit_inv(const unsigned long *addr, unsigned long size,
215 unsigned long offset);
216
217#define for_each_set_bit_inv(bit, addr, size) \
218 for ((bit) = find_first_bit_inv((addr), (size)); \
219 (bit) < (size); \
220 (bit) = find_next_bit_inv((addr), (size), (bit) + 1))
221
222static inline void set_bit_inv(unsigned long nr, volatile unsigned long *ptr)
223{
224 return set_bit(nr ^ (BITS_PER_LONG - 1), ptr);
225}
226
227static inline void clear_bit_inv(unsigned long nr, volatile unsigned long *ptr)
228{
229 return clear_bit(nr ^ (BITS_PER_LONG - 1), ptr);
230}
231
232static inline bool test_and_clear_bit_inv(unsigned long nr,
233 volatile unsigned long *ptr)
234{
235 return test_and_clear_bit(nr ^ (BITS_PER_LONG - 1), ptr);
236}
237
238static inline void __set_bit_inv(unsigned long nr, volatile unsigned long *ptr)
239{
240 return __set_bit(nr ^ (BITS_PER_LONG - 1), ptr);
241}
242
243static inline void __clear_bit_inv(unsigned long nr, volatile unsigned long *ptr)
244{
245 return __clear_bit(nr ^ (BITS_PER_LONG - 1), ptr);
246}
247
248static inline bool test_bit_inv(unsigned long nr,
249 const volatile unsigned long *ptr)
250{
251 return test_bit(nr ^ (BITS_PER_LONG - 1), ptr);
252}
253
254/**
255 * __flogr - find leftmost one
256 * @word - The word to search
257 *
258 * Returns the bit number of the most significant bit set,
259 * where the most significant bit has bit number 0.
260 * If no bit is set this function returns 64.
261 */
262static inline unsigned char __flogr(unsigned long word)
263{
264 if (__builtin_constant_p(word)) {
265 unsigned long bit = 0;
266
267 if (!word)
268 return 64;
269 if (!(word & 0xffffffff00000000UL)) {
270 word <<= 32;
271 bit += 32;
272 }
273 if (!(word & 0xffff000000000000UL)) {
274 word <<= 16;
275 bit += 16;
276 }
277 if (!(word & 0xff00000000000000UL)) {
278 word <<= 8;
279 bit += 8;
280 }
281 if (!(word & 0xf000000000000000UL)) {
282 word <<= 4;
283 bit += 4;
284 }
285 if (!(word & 0xc000000000000000UL)) {
286 word <<= 2;
287 bit += 2;
288 }
289 if (!(word & 0x8000000000000000UL)) {
290 word <<= 1;
291 bit += 1;
292 }
293 return bit;
294 } else {
295 union register_pair rp;
296
297 rp.even = word;
298 asm volatile(
299 " flogr %[rp],%[rp]\n"
300 : [rp] "+d" (rp.pair) : : "cc");
301 return rp.even;
302 }
303}
304
305/**
306 * __ffs - find first bit in word.
307 * @word: The word to search
308 *
309 * Undefined if no bit exists, so code should check against 0 first.
310 */
311static inline unsigned long __ffs(unsigned long word)
312{
313 return __flogr(-word & word) ^ (BITS_PER_LONG - 1);
314}
315
316/**
317 * ffs - find first bit set
318 * @word: the word to search
319 *
320 * This is defined the same way as the libc and
321 * compiler builtin ffs routines (man ffs).
322 */
323static inline int ffs(int word)
324{
325 unsigned long mask = 2 * BITS_PER_LONG - 1;
326 unsigned int val = (unsigned int)word;
327
328 return (1 + (__flogr(-val & val) ^ (BITS_PER_LONG - 1))) & mask;
329}
330
331/**
332 * __fls - find last (most-significant) set bit in a long word
333 * @word: the word to search
334 *
335 * Undefined if no set bit exists, so code should check against 0 first.
336 */
337static inline unsigned long __fls(unsigned long word)
338{
339 return __flogr(word) ^ (BITS_PER_LONG - 1);
340}
341
342/**
343 * fls64 - find last set bit in a 64-bit word
344 * @word: the word to search
345 *
346 * This is defined in a similar way as the libc and compiler builtin
347 * ffsll, but returns the position of the most significant set bit.
348 *
349 * fls64(value) returns 0 if value is 0 or the position of the last
350 * set bit if value is nonzero. The last (most significant) bit is
351 * at position 64.
352 */
353static inline int fls64(unsigned long word)
354{
355 unsigned long mask = 2 * BITS_PER_LONG - 1;
356
357 return (1 + (__flogr(word) ^ (BITS_PER_LONG - 1))) & mask;
358}
359
360/**
361 * fls - find last (most-significant) bit set
362 * @word: the word to search
363 *
364 * This is defined the same way as ffs.
365 * Note fls(0) = 0, fls(1) = 1, fls(0x80000000) = 32.
366 */
367static inline int fls(unsigned int word)
368{
369 return fls64(word);
370}
371
372#include <asm-generic/bitops/ffz.h>
373#include <asm-generic/bitops/hweight.h>
374#include <asm-generic/bitops/sched.h>
375#include <asm-generic/bitops/le.h>
376#include <asm-generic/bitops/ext2-atomic-setbit.h>
377
378#endif /* _S390_BITOPS_H */
1/*
2 * Copyright IBM Corp. 1999,2013
3 *
4 * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>,
5 *
6 * The description below was taken in large parts from the powerpc
7 * bitops header file:
8 * Within a word, bits are numbered LSB first. Lot's of places make
9 * this assumption by directly testing bits with (val & (1<<nr)).
10 * This can cause confusion for large (> 1 word) bitmaps on a
11 * big-endian system because, unlike little endian, the number of each
12 * bit depends on the word size.
13 *
14 * The bitop functions are defined to work on unsigned longs, so the bits
15 * end up numbered:
16 * |63..............0|127............64|191...........128|255...........192|
17 *
18 * There are a few little-endian macros used mostly for filesystem
19 * bitmaps, these work on similar bit array layouts, but byte-oriented:
20 * |7...0|15...8|23...16|31...24|39...32|47...40|55...48|63...56|
21 *
22 * The main difference is that bit 3-5 in the bit number field needs to be
23 * reversed compared to the big-endian bit fields. This can be achieved by
24 * XOR with 0x38.
25 *
26 * We also have special functions which work with an MSB0 encoding.
27 * The bits are numbered:
28 * |0..............63|64............127|128...........191|192...........255|
29 *
30 * The main difference is that bit 0-63 in the bit number field needs to be
31 * reversed compared to the LSB0 encoded bit fields. This can be achieved by
32 * XOR with 0x3f.
33 *
34 */
35
36#ifndef _S390_BITOPS_H
37#define _S390_BITOPS_H
38
39#ifndef _LINUX_BITOPS_H
40#error only <linux/bitops.h> can be included directly
41#endif
42
43#include <linux/typecheck.h>
44#include <linux/compiler.h>
45#include <asm/barrier.h>
46
47#define __BITOPS_NO_BARRIER "\n"
48
49#ifdef CONFIG_HAVE_MARCH_Z196_FEATURES
50
51#define __BITOPS_OR "laog"
52#define __BITOPS_AND "lang"
53#define __BITOPS_XOR "laxg"
54#define __BITOPS_BARRIER "bcr 14,0\n"
55
56#define __BITOPS_LOOP(__addr, __val, __op_string, __barrier) \
57({ \
58 unsigned long __old; \
59 \
60 typecheck(unsigned long *, (__addr)); \
61 asm volatile( \
62 __op_string " %0,%2,%1\n" \
63 __barrier \
64 : "=d" (__old), "+Q" (*(__addr)) \
65 : "d" (__val) \
66 : "cc", "memory"); \
67 __old; \
68})
69
70#else /* CONFIG_HAVE_MARCH_Z196_FEATURES */
71
72#define __BITOPS_OR "ogr"
73#define __BITOPS_AND "ngr"
74#define __BITOPS_XOR "xgr"
75#define __BITOPS_BARRIER "\n"
76
77#define __BITOPS_LOOP(__addr, __val, __op_string, __barrier) \
78({ \
79 unsigned long __old, __new; \
80 \
81 typecheck(unsigned long *, (__addr)); \
82 asm volatile( \
83 " lg %0,%2\n" \
84 "0: lgr %1,%0\n" \
85 __op_string " %1,%3\n" \
86 " csg %0,%1,%2\n" \
87 " jl 0b" \
88 : "=&d" (__old), "=&d" (__new), "+Q" (*(__addr))\
89 : "d" (__val) \
90 : "cc", "memory"); \
91 __old; \
92})
93
94#endif /* CONFIG_HAVE_MARCH_Z196_FEATURES */
95
96#define __BITOPS_WORDS(bits) (((bits) + BITS_PER_LONG - 1) / BITS_PER_LONG)
97
98static inline unsigned long *
99__bitops_word(unsigned long nr, volatile unsigned long *ptr)
100{
101 unsigned long addr;
102
103 addr = (unsigned long)ptr + ((nr ^ (nr & (BITS_PER_LONG - 1))) >> 3);
104 return (unsigned long *)addr;
105}
106
107static inline unsigned char *
108__bitops_byte(unsigned long nr, volatile unsigned long *ptr)
109{
110 return ((unsigned char *)ptr) + ((nr ^ (BITS_PER_LONG - 8)) >> 3);
111}
112
113static inline void set_bit(unsigned long nr, volatile unsigned long *ptr)
114{
115 unsigned long *addr = __bitops_word(nr, ptr);
116 unsigned long mask;
117
118#ifdef CONFIG_HAVE_MARCH_ZEC12_FEATURES
119 if (__builtin_constant_p(nr)) {
120 unsigned char *caddr = __bitops_byte(nr, ptr);
121
122 asm volatile(
123 "oi %0,%b1\n"
124 : "+Q" (*caddr)
125 : "i" (1 << (nr & 7))
126 : "cc", "memory");
127 return;
128 }
129#endif
130 mask = 1UL << (nr & (BITS_PER_LONG - 1));
131 __BITOPS_LOOP(addr, mask, __BITOPS_OR, __BITOPS_NO_BARRIER);
132}
133
134static inline void clear_bit(unsigned long nr, volatile unsigned long *ptr)
135{
136 unsigned long *addr = __bitops_word(nr, ptr);
137 unsigned long mask;
138
139#ifdef CONFIG_HAVE_MARCH_ZEC12_FEATURES
140 if (__builtin_constant_p(nr)) {
141 unsigned char *caddr = __bitops_byte(nr, ptr);
142
143 asm volatile(
144 "ni %0,%b1\n"
145 : "+Q" (*caddr)
146 : "i" (~(1 << (nr & 7)))
147 : "cc", "memory");
148 return;
149 }
150#endif
151 mask = ~(1UL << (nr & (BITS_PER_LONG - 1)));
152 __BITOPS_LOOP(addr, mask, __BITOPS_AND, __BITOPS_NO_BARRIER);
153}
154
155static inline void change_bit(unsigned long nr, volatile unsigned long *ptr)
156{
157 unsigned long *addr = __bitops_word(nr, ptr);
158 unsigned long mask;
159
160#ifdef CONFIG_HAVE_MARCH_ZEC12_FEATURES
161 if (__builtin_constant_p(nr)) {
162 unsigned char *caddr = __bitops_byte(nr, ptr);
163
164 asm volatile(
165 "xi %0,%b1\n"
166 : "+Q" (*caddr)
167 : "i" (1 << (nr & 7))
168 : "cc", "memory");
169 return;
170 }
171#endif
172 mask = 1UL << (nr & (BITS_PER_LONG - 1));
173 __BITOPS_LOOP(addr, mask, __BITOPS_XOR, __BITOPS_NO_BARRIER);
174}
175
176static inline int
177test_and_set_bit(unsigned long nr, volatile unsigned long *ptr)
178{
179 unsigned long *addr = __bitops_word(nr, ptr);
180 unsigned long old, mask;
181
182 mask = 1UL << (nr & (BITS_PER_LONG - 1));
183 old = __BITOPS_LOOP(addr, mask, __BITOPS_OR, __BITOPS_BARRIER);
184 return (old & mask) != 0;
185}
186
187static inline int
188test_and_clear_bit(unsigned long nr, volatile unsigned long *ptr)
189{
190 unsigned long *addr = __bitops_word(nr, ptr);
191 unsigned long old, mask;
192
193 mask = ~(1UL << (nr & (BITS_PER_LONG - 1)));
194 old = __BITOPS_LOOP(addr, mask, __BITOPS_AND, __BITOPS_BARRIER);
195 return (old & ~mask) != 0;
196}
197
198static inline int
199test_and_change_bit(unsigned long nr, volatile unsigned long *ptr)
200{
201 unsigned long *addr = __bitops_word(nr, ptr);
202 unsigned long old, mask;
203
204 mask = 1UL << (nr & (BITS_PER_LONG - 1));
205 old = __BITOPS_LOOP(addr, mask, __BITOPS_XOR, __BITOPS_BARRIER);
206 return (old & mask) != 0;
207}
208
209static inline void __set_bit(unsigned long nr, volatile unsigned long *ptr)
210{
211 unsigned char *addr = __bitops_byte(nr, ptr);
212
213 *addr |= 1 << (nr & 7);
214}
215
216static inline void
217__clear_bit(unsigned long nr, volatile unsigned long *ptr)
218{
219 unsigned char *addr = __bitops_byte(nr, ptr);
220
221 *addr &= ~(1 << (nr & 7));
222}
223
224static inline void __change_bit(unsigned long nr, volatile unsigned long *ptr)
225{
226 unsigned char *addr = __bitops_byte(nr, ptr);
227
228 *addr ^= 1 << (nr & 7);
229}
230
231static inline int
232__test_and_set_bit(unsigned long nr, volatile unsigned long *ptr)
233{
234 unsigned char *addr = __bitops_byte(nr, ptr);
235 unsigned char ch;
236
237 ch = *addr;
238 *addr |= 1 << (nr & 7);
239 return (ch >> (nr & 7)) & 1;
240}
241
242static inline int
243__test_and_clear_bit(unsigned long nr, volatile unsigned long *ptr)
244{
245 unsigned char *addr = __bitops_byte(nr, ptr);
246 unsigned char ch;
247
248 ch = *addr;
249 *addr &= ~(1 << (nr & 7));
250 return (ch >> (nr & 7)) & 1;
251}
252
253static inline int
254__test_and_change_bit(unsigned long nr, volatile unsigned long *ptr)
255{
256 unsigned char *addr = __bitops_byte(nr, ptr);
257 unsigned char ch;
258
259 ch = *addr;
260 *addr ^= 1 << (nr & 7);
261 return (ch >> (nr & 7)) & 1;
262}
263
264static inline int test_bit(unsigned long nr, const volatile unsigned long *ptr)
265{
266 const volatile unsigned char *addr;
267
268 addr = ((const volatile unsigned char *)ptr);
269 addr += (nr ^ (BITS_PER_LONG - 8)) >> 3;
270 return (*addr >> (nr & 7)) & 1;
271}
272
273static inline int test_and_set_bit_lock(unsigned long nr,
274 volatile unsigned long *ptr)
275{
276 if (test_bit(nr, ptr))
277 return 1;
278 return test_and_set_bit(nr, ptr);
279}
280
281static inline void clear_bit_unlock(unsigned long nr,
282 volatile unsigned long *ptr)
283{
284 smp_mb__before_atomic();
285 clear_bit(nr, ptr);
286}
287
288static inline void __clear_bit_unlock(unsigned long nr,
289 volatile unsigned long *ptr)
290{
291 smp_mb();
292 __clear_bit(nr, ptr);
293}
294
295/*
296 * Functions which use MSB0 bit numbering.
297 * The bits are numbered:
298 * |0..............63|64............127|128...........191|192...........255|
299 */
300unsigned long find_first_bit_inv(const unsigned long *addr, unsigned long size);
301unsigned long find_next_bit_inv(const unsigned long *addr, unsigned long size,
302 unsigned long offset);
303
304static inline void set_bit_inv(unsigned long nr, volatile unsigned long *ptr)
305{
306 return set_bit(nr ^ (BITS_PER_LONG - 1), ptr);
307}
308
309static inline void clear_bit_inv(unsigned long nr, volatile unsigned long *ptr)
310{
311 return clear_bit(nr ^ (BITS_PER_LONG - 1), ptr);
312}
313
314static inline void __set_bit_inv(unsigned long nr, volatile unsigned long *ptr)
315{
316 return __set_bit(nr ^ (BITS_PER_LONG - 1), ptr);
317}
318
319static inline void __clear_bit_inv(unsigned long nr, volatile unsigned long *ptr)
320{
321 return __clear_bit(nr ^ (BITS_PER_LONG - 1), ptr);
322}
323
324static inline int test_bit_inv(unsigned long nr,
325 const volatile unsigned long *ptr)
326{
327 return test_bit(nr ^ (BITS_PER_LONG - 1), ptr);
328}
329
330#ifdef CONFIG_HAVE_MARCH_Z9_109_FEATURES
331
332/**
333 * __flogr - find leftmost one
334 * @word - The word to search
335 *
336 * Returns the bit number of the most significant bit set,
337 * where the most significant bit has bit number 0.
338 * If no bit is set this function returns 64.
339 */
340static inline unsigned char __flogr(unsigned long word)
341{
342 if (__builtin_constant_p(word)) {
343 unsigned long bit = 0;
344
345 if (!word)
346 return 64;
347 if (!(word & 0xffffffff00000000UL)) {
348 word <<= 32;
349 bit += 32;
350 }
351 if (!(word & 0xffff000000000000UL)) {
352 word <<= 16;
353 bit += 16;
354 }
355 if (!(word & 0xff00000000000000UL)) {
356 word <<= 8;
357 bit += 8;
358 }
359 if (!(word & 0xf000000000000000UL)) {
360 word <<= 4;
361 bit += 4;
362 }
363 if (!(word & 0xc000000000000000UL)) {
364 word <<= 2;
365 bit += 2;
366 }
367 if (!(word & 0x8000000000000000UL)) {
368 word <<= 1;
369 bit += 1;
370 }
371 return bit;
372 } else {
373 register unsigned long bit asm("4") = word;
374 register unsigned long out asm("5");
375
376 asm volatile(
377 " flogr %[bit],%[bit]\n"
378 : [bit] "+d" (bit), [out] "=d" (out) : : "cc");
379 return bit;
380 }
381}
382
383/**
384 * __ffs - find first bit in word.
385 * @word: The word to search
386 *
387 * Undefined if no bit exists, so code should check against 0 first.
388 */
389static inline unsigned long __ffs(unsigned long word)
390{
391 return __flogr(-word & word) ^ (BITS_PER_LONG - 1);
392}
393
394/**
395 * ffs - find first bit set
396 * @word: the word to search
397 *
398 * This is defined the same way as the libc and
399 * compiler builtin ffs routines (man ffs).
400 */
401static inline int ffs(int word)
402{
403 unsigned long mask = 2 * BITS_PER_LONG - 1;
404 unsigned int val = (unsigned int)word;
405
406 return (1 + (__flogr(-val & val) ^ (BITS_PER_LONG - 1))) & mask;
407}
408
409/**
410 * __fls - find last (most-significant) set bit in a long word
411 * @word: the word to search
412 *
413 * Undefined if no set bit exists, so code should check against 0 first.
414 */
415static inline unsigned long __fls(unsigned long word)
416{
417 return __flogr(word) ^ (BITS_PER_LONG - 1);
418}
419
420/**
421 * fls64 - find last set bit in a 64-bit word
422 * @word: the word to search
423 *
424 * This is defined in a similar way as the libc and compiler builtin
425 * ffsll, but returns the position of the most significant set bit.
426 *
427 * fls64(value) returns 0 if value is 0 or the position of the last
428 * set bit if value is nonzero. The last (most significant) bit is
429 * at position 64.
430 */
431static inline int fls64(unsigned long word)
432{
433 unsigned long mask = 2 * BITS_PER_LONG - 1;
434
435 return (1 + (__flogr(word) ^ (BITS_PER_LONG - 1))) & mask;
436}
437
438/**
439 * fls - find last (most-significant) bit set
440 * @word: the word to search
441 *
442 * This is defined the same way as ffs.
443 * Note fls(0) = 0, fls(1) = 1, fls(0x80000000) = 32.
444 */
445static inline int fls(int word)
446{
447 return fls64((unsigned int)word);
448}
449
450#else /* CONFIG_HAVE_MARCH_Z9_109_FEATURES */
451
452#include <asm-generic/bitops/__ffs.h>
453#include <asm-generic/bitops/ffs.h>
454#include <asm-generic/bitops/__fls.h>
455#include <asm-generic/bitops/fls.h>
456#include <asm-generic/bitops/fls64.h>
457
458#endif /* CONFIG_HAVE_MARCH_Z9_109_FEATURES */
459
460#include <asm-generic/bitops/ffz.h>
461#include <asm-generic/bitops/find.h>
462#include <asm-generic/bitops/hweight.h>
463#include <asm-generic/bitops/sched.h>
464#include <asm-generic/bitops/le.h>
465#include <asm-generic/bitops/ext2-atomic-setbit.h>
466
467#endif /* _S390_BITOPS_H */