Loading...
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * Copyright IBM Corp. 1999,2013
4 *
5 * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>,
6 *
7 * The description below was taken in large parts from the powerpc
8 * bitops header file:
9 * Within a word, bits are numbered LSB first. Lot's of places make
10 * this assumption by directly testing bits with (val & (1<<nr)).
11 * This can cause confusion for large (> 1 word) bitmaps on a
12 * big-endian system because, unlike little endian, the number of each
13 * bit depends on the word size.
14 *
15 * The bitop functions are defined to work on unsigned longs, so the bits
16 * end up numbered:
17 * |63..............0|127............64|191...........128|255...........192|
18 *
19 * We also have special functions which work with an MSB0 encoding.
20 * The bits are numbered:
21 * |0..............63|64............127|128...........191|192...........255|
22 *
23 * The main difference is that bit 0-63 in the bit number field needs to be
24 * reversed compared to the LSB0 encoded bit fields. This can be achieved by
25 * XOR with 0x3f.
26 *
27 */
28
29#ifndef _S390_BITOPS_H
30#define _S390_BITOPS_H
31
32#ifndef _LINUX_BITOPS_H
33#error only <linux/bitops.h> can be included directly
34#endif
35
36#include <linux/typecheck.h>
37#include <linux/compiler.h>
38#include <linux/types.h>
39#include <asm/atomic_ops.h>
40#include <asm/barrier.h>
41
42#define __BITOPS_WORDS(bits) (((bits) + BITS_PER_LONG - 1) / BITS_PER_LONG)
43
44static inline unsigned long *
45__bitops_word(unsigned long nr, const volatile unsigned long *ptr)
46{
47 unsigned long addr;
48
49 addr = (unsigned long)ptr + ((nr ^ (nr & (BITS_PER_LONG - 1))) >> 3);
50 return (unsigned long *)addr;
51}
52
53static inline unsigned long __bitops_mask(unsigned long nr)
54{
55 return 1UL << (nr & (BITS_PER_LONG - 1));
56}
57
58static __always_inline void arch_set_bit(unsigned long nr, volatile unsigned long *ptr)
59{
60 unsigned long *addr = __bitops_word(nr, ptr);
61 unsigned long mask = __bitops_mask(nr);
62
63 __atomic64_or(mask, (long *)addr);
64}
65
66static __always_inline void arch_clear_bit(unsigned long nr, volatile unsigned long *ptr)
67{
68 unsigned long *addr = __bitops_word(nr, ptr);
69 unsigned long mask = __bitops_mask(nr);
70
71 __atomic64_and(~mask, (long *)addr);
72}
73
74static __always_inline void arch_change_bit(unsigned long nr,
75 volatile unsigned long *ptr)
76{
77 unsigned long *addr = __bitops_word(nr, ptr);
78 unsigned long mask = __bitops_mask(nr);
79
80 __atomic64_xor(mask, (long *)addr);
81}
82
83static inline bool arch_test_and_set_bit(unsigned long nr,
84 volatile unsigned long *ptr)
85{
86 unsigned long *addr = __bitops_word(nr, ptr);
87 unsigned long mask = __bitops_mask(nr);
88 unsigned long old;
89
90 old = __atomic64_or_barrier(mask, (long *)addr);
91 return old & mask;
92}
93
94static inline bool arch_test_and_clear_bit(unsigned long nr,
95 volatile unsigned long *ptr)
96{
97 unsigned long *addr = __bitops_word(nr, ptr);
98 unsigned long mask = __bitops_mask(nr);
99 unsigned long old;
100
101 old = __atomic64_and_barrier(~mask, (long *)addr);
102 return old & mask;
103}
104
105static inline bool arch_test_and_change_bit(unsigned long nr,
106 volatile unsigned long *ptr)
107{
108 unsigned long *addr = __bitops_word(nr, ptr);
109 unsigned long mask = __bitops_mask(nr);
110 unsigned long old;
111
112 old = __atomic64_xor_barrier(mask, (long *)addr);
113 return old & mask;
114}
115
116static __always_inline void
117arch___set_bit(unsigned long nr, volatile unsigned long *addr)
118{
119 unsigned long *p = __bitops_word(nr, addr);
120 unsigned long mask = __bitops_mask(nr);
121
122 *p |= mask;
123}
124
125static __always_inline void
126arch___clear_bit(unsigned long nr, volatile unsigned long *addr)
127{
128 unsigned long *p = __bitops_word(nr, addr);
129 unsigned long mask = __bitops_mask(nr);
130
131 *p &= ~mask;
132}
133
134static __always_inline void
135arch___change_bit(unsigned long nr, volatile unsigned long *addr)
136{
137 unsigned long *p = __bitops_word(nr, addr);
138 unsigned long mask = __bitops_mask(nr);
139
140 *p ^= mask;
141}
142
143static __always_inline bool
144arch___test_and_set_bit(unsigned long nr, volatile unsigned long *addr)
145{
146 unsigned long *p = __bitops_word(nr, addr);
147 unsigned long mask = __bitops_mask(nr);
148 unsigned long old;
149
150 old = *p;
151 *p |= mask;
152 return old & mask;
153}
154
155static __always_inline bool
156arch___test_and_clear_bit(unsigned long nr, volatile unsigned long *addr)
157{
158 unsigned long *p = __bitops_word(nr, addr);
159 unsigned long mask = __bitops_mask(nr);
160 unsigned long old;
161
162 old = *p;
163 *p &= ~mask;
164 return old & mask;
165}
166
167static __always_inline bool
168arch___test_and_change_bit(unsigned long nr, volatile unsigned long *addr)
169{
170 unsigned long *p = __bitops_word(nr, addr);
171 unsigned long mask = __bitops_mask(nr);
172 unsigned long old;
173
174 old = *p;
175 *p ^= mask;
176 return old & mask;
177}
178
179#define arch_test_bit generic_test_bit
180#define arch_test_bit_acquire generic_test_bit_acquire
181
182static inline bool arch_test_and_set_bit_lock(unsigned long nr,
183 volatile unsigned long *ptr)
184{
185 if (arch_test_bit(nr, ptr))
186 return true;
187 return arch_test_and_set_bit(nr, ptr);
188}
189
190static inline void arch_clear_bit_unlock(unsigned long nr,
191 volatile unsigned long *ptr)
192{
193 smp_mb__before_atomic();
194 arch_clear_bit(nr, ptr);
195}
196
197static inline void arch___clear_bit_unlock(unsigned long nr,
198 volatile unsigned long *ptr)
199{
200 smp_mb();
201 arch___clear_bit(nr, ptr);
202}
203
204#include <asm-generic/bitops/instrumented-atomic.h>
205#include <asm-generic/bitops/instrumented-non-atomic.h>
206#include <asm-generic/bitops/instrumented-lock.h>
207
208/*
209 * Functions which use MSB0 bit numbering.
210 * The bits are numbered:
211 * |0..............63|64............127|128...........191|192...........255|
212 */
213unsigned long find_first_bit_inv(const unsigned long *addr, unsigned long size);
214unsigned long find_next_bit_inv(const unsigned long *addr, unsigned long size,
215 unsigned long offset);
216
217#define for_each_set_bit_inv(bit, addr, size) \
218 for ((bit) = find_first_bit_inv((addr), (size)); \
219 (bit) < (size); \
220 (bit) = find_next_bit_inv((addr), (size), (bit) + 1))
221
222static inline void set_bit_inv(unsigned long nr, volatile unsigned long *ptr)
223{
224 return set_bit(nr ^ (BITS_PER_LONG - 1), ptr);
225}
226
227static inline void clear_bit_inv(unsigned long nr, volatile unsigned long *ptr)
228{
229 return clear_bit(nr ^ (BITS_PER_LONG - 1), ptr);
230}
231
232static inline bool test_and_clear_bit_inv(unsigned long nr,
233 volatile unsigned long *ptr)
234{
235 return test_and_clear_bit(nr ^ (BITS_PER_LONG - 1), ptr);
236}
237
238static inline void __set_bit_inv(unsigned long nr, volatile unsigned long *ptr)
239{
240 return __set_bit(nr ^ (BITS_PER_LONG - 1), ptr);
241}
242
243static inline void __clear_bit_inv(unsigned long nr, volatile unsigned long *ptr)
244{
245 return __clear_bit(nr ^ (BITS_PER_LONG - 1), ptr);
246}
247
248static inline bool test_bit_inv(unsigned long nr,
249 const volatile unsigned long *ptr)
250{
251 return test_bit(nr ^ (BITS_PER_LONG - 1), ptr);
252}
253
254/**
255 * __flogr - find leftmost one
256 * @word - The word to search
257 *
258 * Returns the bit number of the most significant bit set,
259 * where the most significant bit has bit number 0.
260 * If no bit is set this function returns 64.
261 */
262static inline unsigned char __flogr(unsigned long word)
263{
264 if (__builtin_constant_p(word)) {
265 unsigned long bit = 0;
266
267 if (!word)
268 return 64;
269 if (!(word & 0xffffffff00000000UL)) {
270 word <<= 32;
271 bit += 32;
272 }
273 if (!(word & 0xffff000000000000UL)) {
274 word <<= 16;
275 bit += 16;
276 }
277 if (!(word & 0xff00000000000000UL)) {
278 word <<= 8;
279 bit += 8;
280 }
281 if (!(word & 0xf000000000000000UL)) {
282 word <<= 4;
283 bit += 4;
284 }
285 if (!(word & 0xc000000000000000UL)) {
286 word <<= 2;
287 bit += 2;
288 }
289 if (!(word & 0x8000000000000000UL)) {
290 word <<= 1;
291 bit += 1;
292 }
293 return bit;
294 } else {
295 union register_pair rp;
296
297 rp.even = word;
298 asm volatile(
299 " flogr %[rp],%[rp]\n"
300 : [rp] "+d" (rp.pair) : : "cc");
301 return rp.even;
302 }
303}
304
305/**
306 * __ffs - find first bit in word.
307 * @word: The word to search
308 *
309 * Undefined if no bit exists, so code should check against 0 first.
310 */
311static inline unsigned long __ffs(unsigned long word)
312{
313 return __flogr(-word & word) ^ (BITS_PER_LONG - 1);
314}
315
316/**
317 * ffs - find first bit set
318 * @word: the word to search
319 *
320 * This is defined the same way as the libc and
321 * compiler builtin ffs routines (man ffs).
322 */
323static inline int ffs(int word)
324{
325 unsigned long mask = 2 * BITS_PER_LONG - 1;
326 unsigned int val = (unsigned int)word;
327
328 return (1 + (__flogr(-val & val) ^ (BITS_PER_LONG - 1))) & mask;
329}
330
331/**
332 * __fls - find last (most-significant) set bit in a long word
333 * @word: the word to search
334 *
335 * Undefined if no set bit exists, so code should check against 0 first.
336 */
337static inline unsigned long __fls(unsigned long word)
338{
339 return __flogr(word) ^ (BITS_PER_LONG - 1);
340}
341
342/**
343 * fls64 - find last set bit in a 64-bit word
344 * @word: the word to search
345 *
346 * This is defined in a similar way as the libc and compiler builtin
347 * ffsll, but returns the position of the most significant set bit.
348 *
349 * fls64(value) returns 0 if value is 0 or the position of the last
350 * set bit if value is nonzero. The last (most significant) bit is
351 * at position 64.
352 */
353static inline int fls64(unsigned long word)
354{
355 unsigned long mask = 2 * BITS_PER_LONG - 1;
356
357 return (1 + (__flogr(word) ^ (BITS_PER_LONG - 1))) & mask;
358}
359
360/**
361 * fls - find last (most-significant) bit set
362 * @word: the word to search
363 *
364 * This is defined the same way as ffs.
365 * Note fls(0) = 0, fls(1) = 1, fls(0x80000000) = 32.
366 */
367static inline int fls(unsigned int word)
368{
369 return fls64(word);
370}
371
372#include <asm-generic/bitops/ffz.h>
373#include <asm-generic/bitops/hweight.h>
374#include <asm-generic/bitops/sched.h>
375#include <asm-generic/bitops/le.h>
376#include <asm-generic/bitops/ext2-atomic-setbit.h>
377
378#endif /* _S390_BITOPS_H */
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * Copyright IBM Corp. 1999,2013
4 *
5 * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>,
6 *
7 * The description below was taken in large parts from the powerpc
8 * bitops header file:
9 * Within a word, bits are numbered LSB first. Lot's of places make
10 * this assumption by directly testing bits with (val & (1<<nr)).
11 * This can cause confusion for large (> 1 word) bitmaps on a
12 * big-endian system because, unlike little endian, the number of each
13 * bit depends on the word size.
14 *
15 * The bitop functions are defined to work on unsigned longs, so the bits
16 * end up numbered:
17 * |63..............0|127............64|191...........128|255...........192|
18 *
19 * We also have special functions which work with an MSB0 encoding.
20 * The bits are numbered:
21 * |0..............63|64............127|128...........191|192...........255|
22 *
23 * The main difference is that bit 0-63 in the bit number field needs to be
24 * reversed compared to the LSB0 encoded bit fields. This can be achieved by
25 * XOR with 0x3f.
26 *
27 */
28
29#ifndef _S390_BITOPS_H
30#define _S390_BITOPS_H
31
32#ifndef _LINUX_BITOPS_H
33#error only <linux/bitops.h> can be included directly
34#endif
35
36#include <linux/typecheck.h>
37#include <linux/compiler.h>
38#include <asm/atomic_ops.h>
39#include <asm/barrier.h>
40
41#define __BITOPS_WORDS(bits) (((bits) + BITS_PER_LONG - 1) / BITS_PER_LONG)
42
43static inline unsigned long *
44__bitops_word(unsigned long nr, volatile unsigned long *ptr)
45{
46 unsigned long addr;
47
48 addr = (unsigned long)ptr + ((nr ^ (nr & (BITS_PER_LONG - 1))) >> 3);
49 return (unsigned long *)addr;
50}
51
52static inline unsigned char *
53__bitops_byte(unsigned long nr, volatile unsigned long *ptr)
54{
55 return ((unsigned char *)ptr) + ((nr ^ (BITS_PER_LONG - 8)) >> 3);
56}
57
58static inline void set_bit(unsigned long nr, volatile unsigned long *ptr)
59{
60 unsigned long *addr = __bitops_word(nr, ptr);
61 unsigned long mask;
62
63#ifdef CONFIG_HAVE_MARCH_ZEC12_FEATURES
64 if (__builtin_constant_p(nr)) {
65 unsigned char *caddr = __bitops_byte(nr, ptr);
66
67 asm volatile(
68 "oi %0,%b1\n"
69 : "+Q" (*caddr)
70 : "i" (1 << (nr & 7))
71 : "cc", "memory");
72 return;
73 }
74#endif
75 mask = 1UL << (nr & (BITS_PER_LONG - 1));
76 __atomic64_or(mask, addr);
77}
78
79static inline void clear_bit(unsigned long nr, volatile unsigned long *ptr)
80{
81 unsigned long *addr = __bitops_word(nr, ptr);
82 unsigned long mask;
83
84#ifdef CONFIG_HAVE_MARCH_ZEC12_FEATURES
85 if (__builtin_constant_p(nr)) {
86 unsigned char *caddr = __bitops_byte(nr, ptr);
87
88 asm volatile(
89 "ni %0,%b1\n"
90 : "+Q" (*caddr)
91 : "i" (~(1 << (nr & 7)))
92 : "cc", "memory");
93 return;
94 }
95#endif
96 mask = ~(1UL << (nr & (BITS_PER_LONG - 1)));
97 __atomic64_and(mask, addr);
98}
99
100static inline void change_bit(unsigned long nr, volatile unsigned long *ptr)
101{
102 unsigned long *addr = __bitops_word(nr, ptr);
103 unsigned long mask;
104
105#ifdef CONFIG_HAVE_MARCH_ZEC12_FEATURES
106 if (__builtin_constant_p(nr)) {
107 unsigned char *caddr = __bitops_byte(nr, ptr);
108
109 asm volatile(
110 "xi %0,%b1\n"
111 : "+Q" (*caddr)
112 : "i" (1 << (nr & 7))
113 : "cc", "memory");
114 return;
115 }
116#endif
117 mask = 1UL << (nr & (BITS_PER_LONG - 1));
118 __atomic64_xor(mask, addr);
119}
120
121static inline int
122test_and_set_bit(unsigned long nr, volatile unsigned long *ptr)
123{
124 unsigned long *addr = __bitops_word(nr, ptr);
125 unsigned long old, mask;
126
127 mask = 1UL << (nr & (BITS_PER_LONG - 1));
128 old = __atomic64_or_barrier(mask, addr);
129 return (old & mask) != 0;
130}
131
132static inline int
133test_and_clear_bit(unsigned long nr, volatile unsigned long *ptr)
134{
135 unsigned long *addr = __bitops_word(nr, ptr);
136 unsigned long old, mask;
137
138 mask = ~(1UL << (nr & (BITS_PER_LONG - 1)));
139 old = __atomic64_and_barrier(mask, addr);
140 return (old & ~mask) != 0;
141}
142
143static inline int
144test_and_change_bit(unsigned long nr, volatile unsigned long *ptr)
145{
146 unsigned long *addr = __bitops_word(nr, ptr);
147 unsigned long old, mask;
148
149 mask = 1UL << (nr & (BITS_PER_LONG - 1));
150 old = __atomic64_xor_barrier(mask, addr);
151 return (old & mask) != 0;
152}
153
154static inline void __set_bit(unsigned long nr, volatile unsigned long *ptr)
155{
156 unsigned char *addr = __bitops_byte(nr, ptr);
157
158 *addr |= 1 << (nr & 7);
159}
160
161static inline void
162__clear_bit(unsigned long nr, volatile unsigned long *ptr)
163{
164 unsigned char *addr = __bitops_byte(nr, ptr);
165
166 *addr &= ~(1 << (nr & 7));
167}
168
169static inline void __change_bit(unsigned long nr, volatile unsigned long *ptr)
170{
171 unsigned char *addr = __bitops_byte(nr, ptr);
172
173 *addr ^= 1 << (nr & 7);
174}
175
176static inline int
177__test_and_set_bit(unsigned long nr, volatile unsigned long *ptr)
178{
179 unsigned char *addr = __bitops_byte(nr, ptr);
180 unsigned char ch;
181
182 ch = *addr;
183 *addr |= 1 << (nr & 7);
184 return (ch >> (nr & 7)) & 1;
185}
186
187static inline int
188__test_and_clear_bit(unsigned long nr, volatile unsigned long *ptr)
189{
190 unsigned char *addr = __bitops_byte(nr, ptr);
191 unsigned char ch;
192
193 ch = *addr;
194 *addr &= ~(1 << (nr & 7));
195 return (ch >> (nr & 7)) & 1;
196}
197
198static inline int
199__test_and_change_bit(unsigned long nr, volatile unsigned long *ptr)
200{
201 unsigned char *addr = __bitops_byte(nr, ptr);
202 unsigned char ch;
203
204 ch = *addr;
205 *addr ^= 1 << (nr & 7);
206 return (ch >> (nr & 7)) & 1;
207}
208
209static inline int test_bit(unsigned long nr, const volatile unsigned long *ptr)
210{
211 const volatile unsigned char *addr;
212
213 addr = ((const volatile unsigned char *)ptr);
214 addr += (nr ^ (BITS_PER_LONG - 8)) >> 3;
215 return (*addr >> (nr & 7)) & 1;
216}
217
218static inline int test_and_set_bit_lock(unsigned long nr,
219 volatile unsigned long *ptr)
220{
221 if (test_bit(nr, ptr))
222 return 1;
223 return test_and_set_bit(nr, ptr);
224}
225
226static inline void clear_bit_unlock(unsigned long nr,
227 volatile unsigned long *ptr)
228{
229 smp_mb__before_atomic();
230 clear_bit(nr, ptr);
231}
232
233static inline void __clear_bit_unlock(unsigned long nr,
234 volatile unsigned long *ptr)
235{
236 smp_mb();
237 __clear_bit(nr, ptr);
238}
239
240/*
241 * Functions which use MSB0 bit numbering.
242 * The bits are numbered:
243 * |0..............63|64............127|128...........191|192...........255|
244 */
245unsigned long find_first_bit_inv(const unsigned long *addr, unsigned long size);
246unsigned long find_next_bit_inv(const unsigned long *addr, unsigned long size,
247 unsigned long offset);
248
249#define for_each_set_bit_inv(bit, addr, size) \
250 for ((bit) = find_first_bit_inv((addr), (size)); \
251 (bit) < (size); \
252 (bit) = find_next_bit_inv((addr), (size), (bit) + 1))
253
254static inline void set_bit_inv(unsigned long nr, volatile unsigned long *ptr)
255{
256 return set_bit(nr ^ (BITS_PER_LONG - 1), ptr);
257}
258
259static inline void clear_bit_inv(unsigned long nr, volatile unsigned long *ptr)
260{
261 return clear_bit(nr ^ (BITS_PER_LONG - 1), ptr);
262}
263
264static inline int test_and_clear_bit_inv(unsigned long nr, volatile unsigned long *ptr)
265{
266 return test_and_clear_bit(nr ^ (BITS_PER_LONG - 1), ptr);
267}
268
269static inline void __set_bit_inv(unsigned long nr, volatile unsigned long *ptr)
270{
271 return __set_bit(nr ^ (BITS_PER_LONG - 1), ptr);
272}
273
274static inline void __clear_bit_inv(unsigned long nr, volatile unsigned long *ptr)
275{
276 return __clear_bit(nr ^ (BITS_PER_LONG - 1), ptr);
277}
278
279static inline int test_bit_inv(unsigned long nr,
280 const volatile unsigned long *ptr)
281{
282 return test_bit(nr ^ (BITS_PER_LONG - 1), ptr);
283}
284
285#ifdef CONFIG_HAVE_MARCH_Z9_109_FEATURES
286
287/**
288 * __flogr - find leftmost one
289 * @word - The word to search
290 *
291 * Returns the bit number of the most significant bit set,
292 * where the most significant bit has bit number 0.
293 * If no bit is set this function returns 64.
294 */
295static inline unsigned char __flogr(unsigned long word)
296{
297 if (__builtin_constant_p(word)) {
298 unsigned long bit = 0;
299
300 if (!word)
301 return 64;
302 if (!(word & 0xffffffff00000000UL)) {
303 word <<= 32;
304 bit += 32;
305 }
306 if (!(word & 0xffff000000000000UL)) {
307 word <<= 16;
308 bit += 16;
309 }
310 if (!(word & 0xff00000000000000UL)) {
311 word <<= 8;
312 bit += 8;
313 }
314 if (!(word & 0xf000000000000000UL)) {
315 word <<= 4;
316 bit += 4;
317 }
318 if (!(word & 0xc000000000000000UL)) {
319 word <<= 2;
320 bit += 2;
321 }
322 if (!(word & 0x8000000000000000UL)) {
323 word <<= 1;
324 bit += 1;
325 }
326 return bit;
327 } else {
328 register unsigned long bit asm("4") = word;
329 register unsigned long out asm("5");
330
331 asm volatile(
332 " flogr %[bit],%[bit]\n"
333 : [bit] "+d" (bit), [out] "=d" (out) : : "cc");
334 return bit;
335 }
336}
337
338/**
339 * __ffs - find first bit in word.
340 * @word: The word to search
341 *
342 * Undefined if no bit exists, so code should check against 0 first.
343 */
344static inline unsigned long __ffs(unsigned long word)
345{
346 return __flogr(-word & word) ^ (BITS_PER_LONG - 1);
347}
348
349/**
350 * ffs - find first bit set
351 * @word: the word to search
352 *
353 * This is defined the same way as the libc and
354 * compiler builtin ffs routines (man ffs).
355 */
356static inline int ffs(int word)
357{
358 unsigned long mask = 2 * BITS_PER_LONG - 1;
359 unsigned int val = (unsigned int)word;
360
361 return (1 + (__flogr(-val & val) ^ (BITS_PER_LONG - 1))) & mask;
362}
363
364/**
365 * __fls - find last (most-significant) set bit in a long word
366 * @word: the word to search
367 *
368 * Undefined if no set bit exists, so code should check against 0 first.
369 */
370static inline unsigned long __fls(unsigned long word)
371{
372 return __flogr(word) ^ (BITS_PER_LONG - 1);
373}
374
375/**
376 * fls64 - find last set bit in a 64-bit word
377 * @word: the word to search
378 *
379 * This is defined in a similar way as the libc and compiler builtin
380 * ffsll, but returns the position of the most significant set bit.
381 *
382 * fls64(value) returns 0 if value is 0 or the position of the last
383 * set bit if value is nonzero. The last (most significant) bit is
384 * at position 64.
385 */
386static inline int fls64(unsigned long word)
387{
388 unsigned long mask = 2 * BITS_PER_LONG - 1;
389
390 return (1 + (__flogr(word) ^ (BITS_PER_LONG - 1))) & mask;
391}
392
393/**
394 * fls - find last (most-significant) bit set
395 * @word: the word to search
396 *
397 * This is defined the same way as ffs.
398 * Note fls(0) = 0, fls(1) = 1, fls(0x80000000) = 32.
399 */
400static inline int fls(int word)
401{
402 return fls64((unsigned int)word);
403}
404
405#else /* CONFIG_HAVE_MARCH_Z9_109_FEATURES */
406
407#include <asm-generic/bitops/__ffs.h>
408#include <asm-generic/bitops/ffs.h>
409#include <asm-generic/bitops/__fls.h>
410#include <asm-generic/bitops/fls.h>
411#include <asm-generic/bitops/fls64.h>
412
413#endif /* CONFIG_HAVE_MARCH_Z9_109_FEATURES */
414
415#include <asm-generic/bitops/ffz.h>
416#include <asm-generic/bitops/find.h>
417#include <asm-generic/bitops/hweight.h>
418#include <asm-generic/bitops/sched.h>
419#include <asm-generic/bitops/le.h>
420#include <asm-generic/bitops/ext2-atomic-setbit.h>
421
422#endif /* _S390_BITOPS_H */