Linux Audio

Check our new training course

Loading...
v6.2
  1/* SPDX-License-Identifier: GPL-2.0 */
 
 
  2/*
  3 *    Copyright IBM Corp. 1999,2013
  4 *
  5 *    Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>,
  6 *
  7 * The description below was taken in large parts from the powerpc
  8 * bitops header file:
  9 * Within a word, bits are numbered LSB first.  Lot's of places make
 10 * this assumption by directly testing bits with (val & (1<<nr)).
 11 * This can cause confusion for large (> 1 word) bitmaps on a
 12 * big-endian system because, unlike little endian, the number of each
 13 * bit depends on the word size.
 14 *
 15 * The bitop functions are defined to work on unsigned longs, so the bits
 16 * end up numbered:
 17 *   |63..............0|127............64|191...........128|255...........192|
 18 *
 19 * We also have special functions which work with an MSB0 encoding.
 20 * The bits are numbered:
 21 *   |0..............63|64............127|128...........191|192...........255|
 22 *
 23 * The main difference is that bit 0-63 in the bit number field needs to be
 24 * reversed compared to the LSB0 encoded bit fields. This can be achieved by
 25 * XOR with 0x3f.
 26 *
 27 */
 28
 29#ifndef _S390_BITOPS_H
 30#define _S390_BITOPS_H
 31
 32#ifndef _LINUX_BITOPS_H
 33#error only <linux/bitops.h> can be included directly
 34#endif
 35
 36#include <linux/typecheck.h>
 37#include <linux/compiler.h>
 38#include <linux/types.h>
 39#include <asm/atomic_ops.h>
 40#include <asm/barrier.h>
 41
 42#define __BITOPS_WORDS(bits) (((bits) + BITS_PER_LONG - 1) / BITS_PER_LONG)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 43
 44static inline unsigned long *
 45__bitops_word(unsigned long nr, const volatile unsigned long *ptr)
 
 
 
 
 
 
 46{
 47	unsigned long addr;
 48
 49	addr = (unsigned long)ptr + ((nr ^ (nr & (BITS_PER_LONG - 1))) >> 3);
 50	return (unsigned long *)addr;
 
 
 
 
 
 51}
 52
 53static inline unsigned long __bitops_mask(unsigned long nr)
 
 
 
 54{
 55	return 1UL << (nr & (BITS_PER_LONG - 1));
 
 
 
 
 
 
 
 
 56}
 57
 58static __always_inline void arch_set_bit(unsigned long nr, volatile unsigned long *ptr)
 
 
 
 59{
 60	unsigned long *addr = __bitops_word(nr, ptr);
 61	unsigned long mask = __bitops_mask(nr);
 62
 63	__atomic64_or(mask, (long *)addr);
 
 
 
 
 
 
 64}
 65
 66static __always_inline void arch_clear_bit(unsigned long nr, volatile unsigned long *ptr)
 
 
 
 
 67{
 68	unsigned long *addr = __bitops_word(nr, ptr);
 69	unsigned long mask = __bitops_mask(nr);
 70
 71	__atomic64_and(~mask, (long *)addr);
 
 
 
 
 
 
 
 
 72}
 73
 74static __always_inline void arch_change_bit(unsigned long nr,
 75					    volatile unsigned long *ptr)
 
 
 
 76{
 77	unsigned long *addr = __bitops_word(nr, ptr);
 78	unsigned long mask = __bitops_mask(nr);
 79
 80	__atomic64_xor(mask, (long *)addr);
 
 
 
 
 
 
 
 
 81}
 82
 83static inline bool arch_test_and_set_bit(unsigned long nr,
 84					 volatile unsigned long *ptr)
 
 
 
 85{
 86	unsigned long *addr = __bitops_word(nr, ptr);
 87	unsigned long mask = __bitops_mask(nr);
 88	unsigned long old;
 89
 90	old = __atomic64_or_barrier(mask, (long *)addr);
 91	return old & mask;
 
 
 
 
 
 
 
 92}
 
 93
 94static inline bool arch_test_and_clear_bit(unsigned long nr,
 95					   volatile unsigned long *ptr)
 
 
 96{
 97	unsigned long *addr = __bitops_word(nr, ptr);
 98	unsigned long mask = __bitops_mask(nr);
 99	unsigned long old;
100
101	old = __atomic64_and_barrier(~mask, (long *)addr);
102	return old & mask;
 
 
103}
104
105static inline bool arch_test_and_change_bit(unsigned long nr,
106					    volatile unsigned long *ptr)
107{
108	unsigned long *addr = __bitops_word(nr, ptr);
109	unsigned long mask = __bitops_mask(nr);
110	unsigned long old;
111
112	old = __atomic64_xor_barrier(mask, (long *)addr);
113	return old & mask;
114}
115
116static __always_inline void
117arch___set_bit(unsigned long nr, volatile unsigned long *addr)
 
 
 
 
 
 
 
 
118{
119	unsigned long *p = __bitops_word(nr, addr);
120	unsigned long mask = __bitops_mask(nr);
121
122	*p |= mask;
 
 
 
123}
124
125static __always_inline void
126arch___clear_bit(unsigned long nr, volatile unsigned long *addr)
127{
128	unsigned long *p = __bitops_word(nr, addr);
129	unsigned long mask = __bitops_mask(nr);
130
131	*p &= ~mask;
 
132}
133
134static __always_inline void
135arch___change_bit(unsigned long nr, volatile unsigned long *addr)
 
 
 
 
 
 
 
136{
137	unsigned long *p = __bitops_word(nr, addr);
138	unsigned long mask = __bitops_mask(nr);
139
140	*p ^= mask;
 
 
 
141}
142
143static __always_inline bool
144arch___test_and_set_bit(unsigned long nr, volatile unsigned long *addr)
145{
146	unsigned long *p = __bitops_word(nr, addr);
147	unsigned long mask = __bitops_mask(nr);
148	unsigned long old;
149
150	old = *p;
151	*p |= mask;
152	return old & mask;
153}
154
155static __always_inline bool
156arch___test_and_clear_bit(unsigned long nr, volatile unsigned long *addr)
 
 
 
 
 
 
 
 
157{
158	unsigned long *p = __bitops_word(nr, addr);
159	unsigned long mask = __bitops_mask(nr);
160	unsigned long old;
161
162	old = *p;
163	*p &= ~mask;
164	return old & mask;
 
 
 
 
165}
 
166
167static __always_inline bool
168arch___test_and_change_bit(unsigned long nr, volatile unsigned long *addr)
 
 
 
169{
170	unsigned long *p = __bitops_word(nr, addr);
171	unsigned long mask = __bitops_mask(nr);
172	unsigned long old;
173
174	old = *p;
175	*p ^= mask;
176	return old & mask;
 
 
 
 
177}
 
178
179#define arch_test_bit generic_test_bit
180#define arch_test_bit_acquire generic_test_bit_acquire
181
182static inline bool arch_test_and_set_bit_lock(unsigned long nr,
183					      volatile unsigned long *ptr)
184{
185	if (arch_test_bit(nr, ptr))
186		return true;
187	return arch_test_and_set_bit(nr, ptr);
188}
189
190static inline void arch_clear_bit_unlock(unsigned long nr,
191					 volatile unsigned long *ptr)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
192{
193	smp_mb__before_atomic();
194	arch_clear_bit(nr, ptr);
 
 
 
 
195}
196
197static inline void arch___clear_bit_unlock(unsigned long nr,
198					   volatile unsigned long *ptr)
199{
200	smp_mb();
201	arch___clear_bit(nr, ptr);
202}
203
204#include <asm-generic/bitops/instrumented-atomic.h>
205#include <asm-generic/bitops/instrumented-non-atomic.h>
206#include <asm-generic/bitops/instrumented-lock.h>
 
207
208/*
209 * Functions which use MSB0 bit numbering.
210 * The bits are numbered:
211 *   |0..............63|64............127|128...........191|192...........255|
212 */
213unsigned long find_first_bit_inv(const unsigned long *addr, unsigned long size);
214unsigned long find_next_bit_inv(const unsigned long *addr, unsigned long size,
215				unsigned long offset);
216
217#define for_each_set_bit_inv(bit, addr, size)				\
218	for ((bit) = find_first_bit_inv((addr), (size));		\
219	     (bit) < (size);						\
220	     (bit) = find_next_bit_inv((addr), (size), (bit) + 1))
221
222static inline void set_bit_inv(unsigned long nr, volatile unsigned long *ptr)
 
 
 
 
 
 
223{
224	return set_bit(nr ^ (BITS_PER_LONG - 1), ptr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
225}
226
227static inline void clear_bit_inv(unsigned long nr, volatile unsigned long *ptr)
 
 
 
 
 
 
228{
229	return clear_bit(nr ^ (BITS_PER_LONG - 1), ptr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
230}
231
232static inline bool test_and_clear_bit_inv(unsigned long nr,
233					  volatile unsigned long *ptr)
 
 
 
 
234{
235	return test_and_clear_bit(nr ^ (BITS_PER_LONG - 1), ptr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
236}
237
238static inline void __set_bit_inv(unsigned long nr, volatile unsigned long *ptr)
 
 
 
 
 
239{
240	return __set_bit(nr ^ (BITS_PER_LONG - 1), ptr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
241}
242
243static inline void __clear_bit_inv(unsigned long nr, volatile unsigned long *ptr)
 
 
 
 
 
 
 
244{
245	return __clear_bit(nr ^ (BITS_PER_LONG - 1), ptr);
 
246}
247
248static inline bool test_bit_inv(unsigned long nr,
249				const volatile unsigned long *ptr)
 
 
 
 
 
250{
251	return test_bit(nr ^ (BITS_PER_LONG - 1), ptr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
252}
253
254/**
255 * __flogr - find leftmost one
256 * @word - The word to search
 
 
 
 
257 *
258 * Returns the bit number of the most significant bit set,
259 * where the most significant bit has bit number 0.
260 * If no bit is set this function returns 64.
261 */
262static inline unsigned char __flogr(unsigned long word)
263{
264	if (__builtin_constant_p(word)) {
265		unsigned long bit = 0;
266
267		if (!word)
268			return 64;
269		if (!(word & 0xffffffff00000000UL)) {
270			word <<= 32;
271			bit += 32;
272		}
273		if (!(word & 0xffff000000000000UL)) {
274			word <<= 16;
275			bit += 16;
276		}
277		if (!(word & 0xff00000000000000UL)) {
278			word <<= 8;
279			bit += 8;
280		}
281		if (!(word & 0xf000000000000000UL)) {
282			word <<= 4;
283			bit += 4;
284		}
285		if (!(word & 0xc000000000000000UL)) {
286			word <<= 2;
287			bit += 2;
288		}
289		if (!(word & 0x8000000000000000UL)) {
290			word <<= 1;
291			bit += 1;
292		}
293		return bit;
294	} else {
295		union register_pair rp;
296
297		rp.even = word;
298		asm volatile(
299			"       flogr   %[rp],%[rp]\n"
300			: [rp] "+d" (rp.pair) : : "cc");
301		return rp.even;
302	}
303}
304
305/**
306 * __ffs - find first bit in word.
307 * @word: The word to search
308 *
309 * Undefined if no bit exists, so code should check against 0 first.
310 */
311static inline unsigned long __ffs(unsigned long word)
312{
313	return __flogr(-word & word) ^ (BITS_PER_LONG - 1);
314}
315
316/**
317 * ffs - find first bit set
318 * @word: the word to search
319 *
320 * This is defined the same way as the libc and
321 * compiler builtin ffs routines (man ffs).
 
322 */
323static inline int ffs(int word)
324{
325	unsigned long mask = 2 * BITS_PER_LONG - 1;
326	unsigned int val = (unsigned int)word;
327
328	return (1 + (__flogr(-val & val) ^ (BITS_PER_LONG - 1))) & mask;
329}
330
331/**
332 * __fls - find last (most-significant) set bit in a long word
333 * @word: the word to search
 
334 *
335 * Undefined if no set bit exists, so code should check against 0 first.
 
336 */
337static inline unsigned long __fls(unsigned long word)
 
338{
339	return __flogr(word) ^ (BITS_PER_LONG - 1);
 
 
 
 
 
 
340}
 
341
342/**
343 * fls64 - find last set bit in a 64-bit word
344 * @word: the word to search
 
345 *
346 * This is defined in a similar way as the libc and compiler builtin
347 * ffsll, but returns the position of the most significant set bit.
348 *
349 * fls64(value) returns 0 if value is 0 or the position of the last
350 * set bit if value is nonzero. The last (most significant) bit is
351 * at position 64.
352 */
353static inline int fls64(unsigned long word)
 
354{
355	unsigned long mask = 2 * BITS_PER_LONG - 1;
356
357	return (1 + (__flogr(word) ^ (BITS_PER_LONG - 1))) & mask;
 
 
 
 
358}
 
359
360/**
361 * fls - find last (most-significant) bit set
362 * @word: the word to search
363 *
364 * This is defined the same way as ffs.
365 * Note fls(0) = 0, fls(1) = 1, fls(0x80000000) = 32.
366 */
367static inline int fls(unsigned int word)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
368{
369	return fls64(word);
370}
371
372#include <asm-generic/bitops/ffz.h>
 
 
 
373#include <asm-generic/bitops/hweight.h>
374#include <asm-generic/bitops/sched.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
375#include <asm-generic/bitops/le.h>
 
376#include <asm-generic/bitops/ext2-atomic-setbit.h>
 
 
 
377
378#endif /* _S390_BITOPS_H */
v3.1
  1#ifndef _S390_BITOPS_H
  2#define _S390_BITOPS_H
  3
  4/*
  5 *  include/asm-s390/bitops.h
 
 
  6 *
  7 *  S390 version
  8 *    Copyright (C) 1999 IBM Deutschland Entwicklung GmbH, IBM Corporation
  9 *    Author(s): Martin Schwidefsky (schwidefsky@de.ibm.com)
 
 
 
 
 10 *
 11 *  Derived from "include/asm-i386/bitops.h"
 12 *    Copyright (C) 1992, Linus Torvalds
 
 
 
 
 
 
 
 
 
 13 *
 14 */
 15
 16#ifdef __KERNEL__
 
 17
 18#ifndef _LINUX_BITOPS_H
 19#error only <linux/bitops.h> can be included directly
 20#endif
 21
 
 22#include <linux/compiler.h>
 
 
 
 23
 24/*
 25 * 32 bit bitops format:
 26 * bit 0 is the LSB of *addr; bit 31 is the MSB of *addr;
 27 * bit 32 is the LSB of *(addr+4). That combined with the
 28 * big endian byte order on S390 give the following bit
 29 * order in memory:
 30 *    1f 1e 1d 1c 1b 1a 19 18 17 16 15 14 13 12 11 10 \
 31 *    0f 0e 0d 0c 0b 0a 09 08 07 06 05 04 03 02 01 00
 32 * after that follows the next long with bit numbers
 33 *    3f 3e 3d 3c 3b 3a 39 38 37 36 35 34 33 32 31 30
 34 *    2f 2e 2d 2c 2b 2a 29 28 27 26 25 24 23 22 21 20
 35 * The reason for this bit ordering is the fact that
 36 * in the architecture independent code bits operations
 37 * of the form "flags |= (1 << bitnr)" are used INTERMIXED
 38 * with operation of the form "set_bit(bitnr, flags)".
 39 *
 40 * 64 bit bitops format:
 41 * bit 0 is the LSB of *addr; bit 63 is the MSB of *addr;
 42 * bit 64 is the LSB of *(addr+8). That combined with the
 43 * big endian byte order on S390 give the following bit
 44 * order in memory:
 45 *    3f 3e 3d 3c 3b 3a 39 38 37 36 35 34 33 32 31 30
 46 *    2f 2e 2d 2c 2b 2a 29 28 27 26 25 24 23 22 21 20
 47 *    1f 1e 1d 1c 1b 1a 19 18 17 16 15 14 13 12 11 10
 48 *    0f 0e 0d 0c 0b 0a 09 08 07 06 05 04 03 02 01 00
 49 * after that follows the next long with bit numbers
 50 *    7f 7e 7d 7c 7b 7a 79 78 77 76 75 74 73 72 71 70
 51 *    6f 6e 6d 6c 6b 6a 69 68 67 66 65 64 63 62 61 60
 52 *    5f 5e 5d 5c 5b 5a 59 58 57 56 55 54 53 52 51 50
 53 *    4f 4e 4d 4c 4b 4a 49 48 47 46 45 44 43 42 41 40
 54 * The reason for this bit ordering is the fact that
 55 * in the architecture independent code bits operations
 56 * of the form "flags |= (1 << bitnr)" are used INTERMIXED
 57 * with operation of the form "set_bit(bitnr, flags)".
 58 */
 59
 60/* bitmap tables from arch/s390/kernel/bitmap.c */
 61extern const char _oi_bitmap[];
 62extern const char _ni_bitmap[];
 63extern const char _zb_findmap[];
 64extern const char _sb_findmap[];
 65
 66#ifndef __s390x__
 67
 68#define __BITOPS_ALIGN		3
 69#define __BITOPS_WORDSIZE	32
 70#define __BITOPS_OR		"or"
 71#define __BITOPS_AND		"nr"
 72#define __BITOPS_XOR		"xr"
 73
 74#define __BITOPS_LOOP(__old, __new, __addr, __val, __op_string)	\
 75	asm volatile(						\
 76		"	l	%0,%2\n"			\
 77		"0:	lr	%1,%0\n"			\
 78		__op_string "	%1,%3\n"			\
 79		"	cs	%0,%1,%2\n"			\
 80		"	jl	0b"				\
 81		: "=&d" (__old), "=&d" (__new),			\
 82		  "=Q" (*(unsigned long *) __addr)		\
 83		: "d" (__val), "Q" (*(unsigned long *) __addr)	\
 84		: "cc");
 85
 86#else /* __s390x__ */
 87
 88#define __BITOPS_ALIGN		7
 89#define __BITOPS_WORDSIZE	64
 90#define __BITOPS_OR		"ogr"
 91#define __BITOPS_AND		"ngr"
 92#define __BITOPS_XOR		"xgr"
 93
 94#define __BITOPS_LOOP(__old, __new, __addr, __val, __op_string)	\
 95	asm volatile(						\
 96		"	lg	%0,%2\n"			\
 97		"0:	lgr	%1,%0\n"			\
 98		__op_string "	%1,%3\n"			\
 99		"	csg	%0,%1,%2\n"			\
100		"	jl	0b"				\
101		: "=&d" (__old), "=&d" (__new),			\
102		  "=Q" (*(unsigned long *) __addr)		\
103		: "d" (__val), "Q" (*(unsigned long *) __addr)	\
104		: "cc");
105
106#endif /* __s390x__ */
107
108#define __BITOPS_WORDS(bits) (((bits)+__BITOPS_WORDSIZE-1)/__BITOPS_WORDSIZE)
109#define __BITOPS_BARRIER() asm volatile("" : : : "memory")
110
111#ifdef CONFIG_SMP
112/*
113 * SMP safe set_bit routine based on compare and swap (CS)
114 */
115static inline void set_bit_cs(unsigned long nr, volatile unsigned long *ptr)
116{
117        unsigned long addr, old, new, mask;
118
119	addr = (unsigned long) ptr;
120	/* calculate address for CS */
121	addr += (nr ^ (nr & (__BITOPS_WORDSIZE - 1))) >> 3;
122	/* make OR mask */
123	mask = 1UL << (nr & (__BITOPS_WORDSIZE - 1));
124	/* Do the atomic update. */
125	__BITOPS_LOOP(old, new, addr, mask, __BITOPS_OR);
126}
127
128/*
129 * SMP safe clear_bit routine based on compare and swap (CS)
130 */
131static inline void clear_bit_cs(unsigned long nr, volatile unsigned long *ptr)
132{
133        unsigned long addr, old, new, mask;
134
135	addr = (unsigned long) ptr;
136	/* calculate address for CS */
137	addr += (nr ^ (nr & (__BITOPS_WORDSIZE - 1))) >> 3;
138	/* make AND mask */
139	mask = ~(1UL << (nr & (__BITOPS_WORDSIZE - 1)));
140	/* Do the atomic update. */
141	__BITOPS_LOOP(old, new, addr, mask, __BITOPS_AND);
142}
143
144/*
145 * SMP safe change_bit routine based on compare and swap (CS)
146 */
147static inline void change_bit_cs(unsigned long nr, volatile unsigned long *ptr)
148{
149        unsigned long addr, old, new, mask;
 
150
151	addr = (unsigned long) ptr;
152	/* calculate address for CS */
153	addr += (nr ^ (nr & (__BITOPS_WORDSIZE - 1))) >> 3;
154	/* make XOR mask */
155	mask = 1UL << (nr & (__BITOPS_WORDSIZE - 1));
156	/* Do the atomic update. */
157	__BITOPS_LOOP(old, new, addr, mask, __BITOPS_XOR);
158}
159
160/*
161 * SMP safe test_and_set_bit routine based on compare and swap (CS)
162 */
163static inline int
164test_and_set_bit_cs(unsigned long nr, volatile unsigned long *ptr)
165{
166        unsigned long addr, old, new, mask;
 
167
168	addr = (unsigned long) ptr;
169	/* calculate address for CS */
170	addr += (nr ^ (nr & (__BITOPS_WORDSIZE - 1))) >> 3;
171	/* make OR/test mask */
172	mask = 1UL << (nr & (__BITOPS_WORDSIZE - 1));
173	/* Do the atomic update. */
174	__BITOPS_LOOP(old, new, addr, mask, __BITOPS_OR);
175	__BITOPS_BARRIER();
176	return (old & mask) != 0;
177}
178
179/*
180 * SMP safe test_and_clear_bit routine based on compare and swap (CS)
181 */
182static inline int
183test_and_clear_bit_cs(unsigned long nr, volatile unsigned long *ptr)
184{
185        unsigned long addr, old, new, mask;
 
186
187	addr = (unsigned long) ptr;
188	/* calculate address for CS */
189	addr += (nr ^ (nr & (__BITOPS_WORDSIZE - 1))) >> 3;
190	/* make AND/test mask */
191	mask = ~(1UL << (nr & (__BITOPS_WORDSIZE - 1)));
192	/* Do the atomic update. */
193	__BITOPS_LOOP(old, new, addr, mask, __BITOPS_AND);
194	__BITOPS_BARRIER();
195	return (old ^ new) != 0;
196}
197
198/*
199 * SMP safe test_and_change_bit routine based on compare and swap (CS) 
200 */
201static inline int
202test_and_change_bit_cs(unsigned long nr, volatile unsigned long *ptr)
203{
204        unsigned long addr, old, new, mask;
 
 
205
206	addr = (unsigned long) ptr;
207	/* calculate address for CS */
208	addr += (nr ^ (nr & (__BITOPS_WORDSIZE - 1))) >> 3;
209	/* make XOR/test mask */
210	mask = 1UL << (nr & (__BITOPS_WORDSIZE - 1));
211	/* Do the atomic update. */
212	__BITOPS_LOOP(old, new, addr, mask, __BITOPS_XOR);
213	__BITOPS_BARRIER();
214	return (old & mask) != 0;
215}
216#endif /* CONFIG_SMP */
217
218/*
219 * fast, non-SMP set_bit routine
220 */
221static inline void __set_bit(unsigned long nr, volatile unsigned long *ptr)
222{
223	unsigned long addr;
 
 
224
225	addr = (unsigned long) ptr + ((nr ^ (__BITOPS_WORDSIZE - 8)) >> 3);
226	asm volatile(
227		"	oc	%O0(1,%R0),%1"
228		: "=Q" (*(char *) addr) : "Q" (_oi_bitmap[nr & 7]) : "cc" );
229}
230
231static inline void 
232__constant_set_bit(const unsigned long nr, volatile unsigned long *ptr)
233{
234	unsigned long addr;
 
 
235
236	addr = ((unsigned long) ptr) + ((nr ^ (__BITOPS_WORDSIZE - 8)) >> 3);
237	*(unsigned char *) addr |= 1 << (nr & 7);
238}
239
240#define set_bit_simple(nr,addr) \
241(__builtin_constant_p((nr)) ? \
242 __constant_set_bit((nr),(addr)) : \
243 __set_bit((nr),(addr)) )
244
245/*
246 * fast, non-SMP clear_bit routine
247 */
248static inline void 
249__clear_bit(unsigned long nr, volatile unsigned long *ptr)
250{
251	unsigned long addr;
 
252
253	addr = (unsigned long) ptr + ((nr ^ (__BITOPS_WORDSIZE - 8)) >> 3);
254	asm volatile(
255		"	nc	%O0(1,%R0),%1"
256		: "=Q" (*(char *) addr) : "Q" (_ni_bitmap[nr & 7]) : "cc" );
257}
258
259static inline void 
260__constant_clear_bit(const unsigned long nr, volatile unsigned long *ptr)
261{
262	unsigned long addr;
 
263
264	addr = ((unsigned long) ptr) + ((nr ^ (__BITOPS_WORDSIZE - 8)) >> 3);
265	*(unsigned char *) addr &= ~(1 << (nr & 7));
266}
267
268#define clear_bit_simple(nr,addr) \
269(__builtin_constant_p((nr)) ? \
270 __constant_clear_bit((nr),(addr)) : \
271 __clear_bit((nr),(addr)) )
272
273/* 
274 * fast, non-SMP change_bit routine 
275 */
276static inline void __change_bit(unsigned long nr, volatile unsigned long *ptr)
277{
278	unsigned long addr;
 
279
280	addr = (unsigned long) ptr + ((nr ^ (__BITOPS_WORDSIZE - 8)) >> 3);
281	asm volatile(
282		"	xc	%O0(1,%R0),%1"
283		: "=Q" (*(char *) addr) : "Q" (_oi_bitmap[nr & 7]) : "cc" );
284}
285
286static inline void 
287__constant_change_bit(const unsigned long nr, volatile unsigned long *ptr) 
288{
289	unsigned long addr;
 
 
290
291	addr = ((unsigned long) ptr) + ((nr ^ (__BITOPS_WORDSIZE - 8)) >> 3);
292	*(unsigned char *) addr ^= 1 << (nr & 7);
 
293}
294
295#define change_bit_simple(nr,addr) \
296(__builtin_constant_p((nr)) ? \
297 __constant_change_bit((nr),(addr)) : \
298 __change_bit((nr),(addr)) )
299
300/*
301 * fast, non-SMP test_and_set_bit routine
302 */
303static inline int
304test_and_set_bit_simple(unsigned long nr, volatile unsigned long *ptr)
305{
306	unsigned long addr;
307	unsigned char ch;
 
308
309	addr = (unsigned long) ptr + ((nr ^ (__BITOPS_WORDSIZE - 8)) >> 3);
310	ch = *(unsigned char *) addr;
311	asm volatile(
312		"	oc	%O0(1,%R0),%1"
313		: "=Q" (*(char *) addr)	: "Q" (_oi_bitmap[nr & 7])
314		: "cc", "memory");
315	return (ch >> (nr & 7)) & 1;
316}
317#define __test_and_set_bit(X,Y)		test_and_set_bit_simple(X,Y)
318
319/*
320 * fast, non-SMP test_and_clear_bit routine
321 */
322static inline int
323test_and_clear_bit_simple(unsigned long nr, volatile unsigned long *ptr)
324{
325	unsigned long addr;
326	unsigned char ch;
 
327
328	addr = (unsigned long) ptr + ((nr ^ (__BITOPS_WORDSIZE - 8)) >> 3);
329	ch = *(unsigned char *) addr;
330	asm volatile(
331		"	nc	%O0(1,%R0),%1"
332		: "=Q" (*(char *) addr)	: "Q" (_ni_bitmap[nr & 7])
333		: "cc", "memory");
334	return (ch >> (nr & 7)) & 1;
335}
336#define __test_and_clear_bit(X,Y)	test_and_clear_bit_simple(X,Y)
337
338/*
339 * fast, non-SMP test_and_change_bit routine
340 */
341static inline int
342test_and_change_bit_simple(unsigned long nr, volatile unsigned long *ptr)
343{
344	unsigned long addr;
345	unsigned char ch;
 
 
346
347	addr = (unsigned long) ptr + ((nr ^ (__BITOPS_WORDSIZE - 8)) >> 3);
348	ch = *(unsigned char *) addr;
349	asm volatile(
350		"	xc	%O0(1,%R0),%1"
351		: "=Q" (*(char *) addr)	: "Q" (_oi_bitmap[nr & 7])
352		: "cc", "memory");
353	return (ch >> (nr & 7)) & 1;
354}
355#define __test_and_change_bit(X,Y)	test_and_change_bit_simple(X,Y)
356
357#ifdef CONFIG_SMP
358#define set_bit             set_bit_cs
359#define clear_bit           clear_bit_cs
360#define change_bit          change_bit_cs
361#define test_and_set_bit    test_and_set_bit_cs
362#define test_and_clear_bit  test_and_clear_bit_cs
363#define test_and_change_bit test_and_change_bit_cs
364#else
365#define set_bit             set_bit_simple
366#define clear_bit           clear_bit_simple
367#define change_bit          change_bit_simple
368#define test_and_set_bit    test_and_set_bit_simple
369#define test_and_clear_bit  test_and_clear_bit_simple
370#define test_and_change_bit test_and_change_bit_simple
371#endif
372
373
374/*
375 * This routine doesn't need to be atomic.
376 */
377
378static inline int __test_bit(unsigned long nr, const volatile unsigned long *ptr)
379{
380	unsigned long addr;
381	unsigned char ch;
382
383	addr = (unsigned long) ptr + ((nr ^ (__BITOPS_WORDSIZE - 8)) >> 3);
384	ch = *(volatile unsigned char *) addr;
385	return (ch >> (nr & 7)) & 1;
386}
387
388static inline int 
389__constant_test_bit(unsigned long nr, const volatile unsigned long *addr) {
390    return (((volatile char *) addr)
391	    [(nr^(__BITOPS_WORDSIZE-8))>>3] & (1<<(nr&7))) != 0;
 
392}
393
394#define test_bit(nr,addr) \
395(__builtin_constant_p((nr)) ? \
396 __constant_test_bit((nr),(addr)) : \
397 __test_bit((nr),(addr)) )
398
399/*
400 * Optimized find bit helper functions.
 
 
401 */
 
 
 
 
 
 
 
 
402
403/**
404 * __ffz_word_loop - find byte offset of first long != -1UL
405 * @addr: pointer to array of unsigned long
406 * @size: size of the array in bits
407 */
408static inline unsigned long __ffz_word_loop(const unsigned long *addr,
409					    unsigned long size)
410{
411	typedef struct { long _[__BITOPS_WORDS(size)]; } addrtype;
412	unsigned long bytes = 0;
413
414	asm volatile(
415#ifndef __s390x__
416		"	ahi	%1,-1\n"
417		"	sra	%1,5\n"
418		"	jz	1f\n"
419		"0:	c	%2,0(%0,%3)\n"
420		"	jne	1f\n"
421		"	la	%0,4(%0)\n"
422		"	brct	%1,0b\n"
423		"1:\n"
424#else
425		"	aghi	%1,-1\n"
426		"	srag	%1,%1,6\n"
427		"	jz	1f\n"
428		"0:	cg	%2,0(%0,%3)\n"
429		"	jne	1f\n"
430		"	la	%0,8(%0)\n"
431		"	brct	%1,0b\n"
432		"1:\n"
433#endif
434		: "+&a" (bytes), "+&d" (size)
435		: "d" (-1UL), "a" (addr), "m" (*(addrtype *) addr)
436		: "cc" );
437	return bytes;
438}
439
440/**
441 * __ffs_word_loop - find byte offset of first long != 0UL
442 * @addr: pointer to array of unsigned long
443 * @size: size of the array in bits
444 */
445static inline unsigned long __ffs_word_loop(const unsigned long *addr,
446					    unsigned long size)
447{
448	typedef struct { long _[__BITOPS_WORDS(size)]; } addrtype;
449	unsigned long bytes = 0;
450
451	asm volatile(
452#ifndef __s390x__
453		"	ahi	%1,-1\n"
454		"	sra	%1,5\n"
455		"	jz	1f\n"
456		"0:	c	%2,0(%0,%3)\n"
457		"	jne	1f\n"
458		"	la	%0,4(%0)\n"
459		"	brct	%1,0b\n"
460		"1:\n"
461#else
462		"	aghi	%1,-1\n"
463		"	srag	%1,%1,6\n"
464		"	jz	1f\n"
465		"0:	cg	%2,0(%0,%3)\n"
466		"	jne	1f\n"
467		"	la	%0,8(%0)\n"
468		"	brct	%1,0b\n"
469		"1:\n"
470#endif
471		: "+&a" (bytes), "+&a" (size)
472		: "d" (0UL), "a" (addr), "m" (*(addrtype *) addr)
473		: "cc" );
474	return bytes;
475}
476
477/**
478 * __ffz_word - add number of the first unset bit
479 * @nr: base value the bit number is added to
480 * @word: the word that is searched for unset bits
481 */
482static inline unsigned long __ffz_word(unsigned long nr, unsigned long word)
483{
484#ifdef __s390x__
485	if ((word & 0xffffffff) == 0xffffffff) {
486		word >>= 32;
487		nr += 32;
488	}
489#endif
490	if ((word & 0xffff) == 0xffff) {
491		word >>= 16;
492		nr += 16;
493	}
494	if ((word & 0xff) == 0xff) {
495		word >>= 8;
496		nr += 8;
497	}
498	return nr + _zb_findmap[(unsigned char) word];
499}
500
501/**
502 * __ffs_word - add number of the first set bit
503 * @nr: base value the bit number is added to
504 * @word: the word that is searched for set bits
505 */
506static inline unsigned long __ffs_word(unsigned long nr, unsigned long word)
507{
508#ifdef __s390x__
509	if ((word & 0xffffffff) == 0) {
510		word >>= 32;
511		nr += 32;
512	}
513#endif
514	if ((word & 0xffff) == 0) {
515		word >>= 16;
516		nr += 16;
517	}
518	if ((word & 0xff) == 0) {
519		word >>= 8;
520		nr += 8;
521	}
522	return nr + _sb_findmap[(unsigned char) word];
523}
524
525
526/**
527 * __load_ulong_be - load big endian unsigned long
528 * @p: pointer to array of unsigned long
529 * @offset: byte offset of source value in the array
530 */
531static inline unsigned long __load_ulong_be(const unsigned long *p,
532					    unsigned long offset)
533{
534	p = (unsigned long *)((unsigned long) p + offset);
535	return *p;
536}
537
538/**
539 * __load_ulong_le - load little endian unsigned long
540 * @p: pointer to array of unsigned long
541 * @offset: byte offset of source value in the array
542 */
543static inline unsigned long __load_ulong_le(const unsigned long *p,
544					    unsigned long offset)
545{
546	unsigned long word;
547
548	p = (unsigned long *)((unsigned long) p + offset);
549#ifndef __s390x__
550	asm volatile(
551		"	ic	%0,%O1(%R1)\n"
552		"	icm	%0,2,%O1+1(%R1)\n"
553		"	icm	%0,4,%O1+2(%R1)\n"
554		"	icm	%0,8,%O1+3(%R1)"
555		: "=&d" (word) : "Q" (*p) : "cc");
556#else
557	asm volatile(
558		"	lrvg	%0,%1"
559		: "=d" (word) : "m" (*p) );
560#endif
561	return word;
562}
563
564/*
565 * The various find bit functions.
566 */
567
568/*
569 * ffz - find first zero in word.
570 * @word: The word to search
571 *
572 * Undefined if no zero exists, so code should check against ~0UL first.
573 */
574static inline unsigned long ffz(unsigned long word)
575{
576	return __ffz_word(0, word);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
577}
578
579/**
580 * __ffs - find first bit in word.
581 * @word: The word to search
582 *
583 * Undefined if no bit exists, so code should check against 0 first.
584 */
585static inline unsigned long __ffs (unsigned long word)
586{
587	return __ffs_word(0, word);
588}
589
590/**
591 * ffs - find first bit set
592 * @x: the word to search
593 *
594 * This is defined the same way as
595 * the libc and compiler builtin ffs routines, therefore
596 * differs in spirit from the above ffz (man ffs).
597 */
598static inline int ffs(int x)
599{
600	if (!x)
601		return 0;
602	return __ffs_word(1, x);
 
603}
604
605/**
606 * find_first_zero_bit - find the first zero bit in a memory region
607 * @addr: The address to start the search at
608 * @size: The maximum size to search
609 *
610 * Returns the bit-number of the first zero bit, not the number of the byte
611 * containing a bit.
612 */
613static inline unsigned long find_first_zero_bit(const unsigned long *addr,
614						unsigned long size)
615{
616	unsigned long bytes, bits;
617
618        if (!size)
619                return 0;
620	bytes = __ffz_word_loop(addr, size);
621	bits = __ffz_word(bytes*8, __load_ulong_be(addr, bytes));
622	return (bits < size) ? bits : size;
623}
624#define find_first_zero_bit find_first_zero_bit
625
626/**
627 * find_first_bit - find the first set bit in a memory region
628 * @addr: The address to start the search at
629 * @size: The maximum size to search
630 *
631 * Returns the bit-number of the first set bit, not the number of the byte
632 * containing a bit.
 
 
 
 
633 */
634static inline unsigned long find_first_bit(const unsigned long * addr,
635					   unsigned long size)
636{
637	unsigned long bytes, bits;
638
639        if (!size)
640                return 0;
641	bytes = __ffs_word_loop(addr, size);
642	bits = __ffs_word(bytes*8, __load_ulong_be(addr, bytes));
643	return (bits < size) ? bits : size;
644}
645#define find_first_bit find_first_bit
646
647/**
648 * find_next_zero_bit - find the first zero bit in a memory region
649 * @addr: The address to base the search on
650 * @offset: The bitnumber to start searching at
651 * @size: The maximum size to search
 
652 */
653static inline int find_next_zero_bit (const unsigned long * addr,
654				      unsigned long size,
655				      unsigned long offset)
656{
657        const unsigned long *p;
658	unsigned long bit, set;
659
660	if (offset >= size)
661		return size;
662	bit = offset & (__BITOPS_WORDSIZE - 1);
663	offset -= bit;
664	size -= offset;
665	p = addr + offset / __BITOPS_WORDSIZE;
666	if (bit) {
667		/*
668		 * __ffz_word returns __BITOPS_WORDSIZE
669		 * if no zero bit is present in the word.
670		 */
671		set = __ffz_word(bit, *p >> bit);
672		if (set >= size)
673			return size + offset;
674		if (set < __BITOPS_WORDSIZE)
675			return set + offset;
676		offset += __BITOPS_WORDSIZE;
677		size -= __BITOPS_WORDSIZE;
678		p++;
679	}
680	return offset + find_first_zero_bit(p, size);
681}
682#define find_next_zero_bit find_next_zero_bit
683
684/**
685 * find_next_bit - find the first set bit in a memory region
686 * @addr: The address to base the search on
687 * @offset: The bitnumber to start searching at
688 * @size: The maximum size to search
689 */
690static inline int find_next_bit (const unsigned long * addr,
691				 unsigned long size,
692				 unsigned long offset)
693{
694        const unsigned long *p;
695	unsigned long bit, set;
696
697	if (offset >= size)
698		return size;
699	bit = offset & (__BITOPS_WORDSIZE - 1);
700	offset -= bit;
701	size -= offset;
702	p = addr + offset / __BITOPS_WORDSIZE;
703	if (bit) {
704		/*
705		 * __ffs_word returns __BITOPS_WORDSIZE
706		 * if no one bit is present in the word.
707		 */
708		set = __ffs_word(0, *p & (~0UL << bit));
709		if (set >= size)
710			return size + offset;
711		if (set < __BITOPS_WORDSIZE)
712			return set + offset;
713		offset += __BITOPS_WORDSIZE;
714		size -= __BITOPS_WORDSIZE;
715		p++;
716	}
717	return offset + find_first_bit(p, size);
718}
719#define find_next_bit find_next_bit
720
721/*
722 * Every architecture must define this function. It's the fastest
723 * way of searching a 140-bit bitmap where the first 100 bits are
724 * unlikely to be set. It's guaranteed that at least one of the 140
725 * bits is cleared.
726 */
727static inline int sched_find_first_bit(unsigned long *b)
728{
729	return find_first_bit(b, 140);
730}
731
732#include <asm-generic/bitops/fls.h>
733#include <asm-generic/bitops/__fls.h>
734#include <asm-generic/bitops/fls64.h>
735
736#include <asm-generic/bitops/hweight.h>
737#include <asm-generic/bitops/lock.h>
738
739/*
740 * ATTENTION: intel byte ordering convention for ext2 and minix !!
741 * bit 0 is the LSB of addr; bit 31 is the MSB of addr;
742 * bit 32 is the LSB of (addr+4).
743 * That combined with the little endian byte order of Intel gives the
744 * following bit order in memory:
745 *    07 06 05 04 03 02 01 00 15 14 13 12 11 10 09 08 \
746 *    23 22 21 20 19 18 17 16 31 30 29 28 27 26 25 24
747 */
748
749static inline int find_first_zero_bit_le(void *vaddr, unsigned int size)
750{
751	unsigned long bytes, bits;
752
753        if (!size)
754                return 0;
755	bytes = __ffz_word_loop(vaddr, size);
756	bits = __ffz_word(bytes*8, __load_ulong_le(vaddr, bytes));
757	return (bits < size) ? bits : size;
758}
759#define find_first_zero_bit_le find_first_zero_bit_le
760
761static inline int find_next_zero_bit_le(void *vaddr, unsigned long size,
762					  unsigned long offset)
763{
764        unsigned long *addr = vaddr, *p;
765	unsigned long bit, set;
766
767        if (offset >= size)
768                return size;
769	bit = offset & (__BITOPS_WORDSIZE - 1);
770	offset -= bit;
771	size -= offset;
772	p = addr + offset / __BITOPS_WORDSIZE;
773        if (bit) {
774		/*
775		 * s390 version of ffz returns __BITOPS_WORDSIZE
776		 * if no zero bit is present in the word.
777		 */
778		set = __ffz_word(bit, __load_ulong_le(p, 0) >> bit);
779		if (set >= size)
780			return size + offset;
781		if (set < __BITOPS_WORDSIZE)
782			return set + offset;
783		offset += __BITOPS_WORDSIZE;
784		size -= __BITOPS_WORDSIZE;
785		p++;
786        }
787	return offset + find_first_zero_bit_le(p, size);
788}
789#define find_next_zero_bit_le find_next_zero_bit_le
790
791static inline unsigned long find_first_bit_le(void *vaddr, unsigned long size)
792{
793	unsigned long bytes, bits;
794
795	if (!size)
796		return 0;
797	bytes = __ffs_word_loop(vaddr, size);
798	bits = __ffs_word(bytes*8, __load_ulong_le(vaddr, bytes));
799	return (bits < size) ? bits : size;
800}
801#define find_first_bit_le find_first_bit_le
802
803static inline int find_next_bit_le(void *vaddr, unsigned long size,
804				     unsigned long offset)
805{
806	unsigned long *addr = vaddr, *p;
807	unsigned long bit, set;
808
809	if (offset >= size)
810		return size;
811	bit = offset & (__BITOPS_WORDSIZE - 1);
812	offset -= bit;
813	size -= offset;
814	p = addr + offset / __BITOPS_WORDSIZE;
815	if (bit) {
816		/*
817		 * s390 version of ffz returns __BITOPS_WORDSIZE
818		 * if no zero bit is present in the word.
819		 */
820		set = __ffs_word(0, __load_ulong_le(p, 0) & (~0UL << bit));
821		if (set >= size)
822			return size + offset;
823		if (set < __BITOPS_WORDSIZE)
824			return set + offset;
825		offset += __BITOPS_WORDSIZE;
826		size -= __BITOPS_WORDSIZE;
827		p++;
828	}
829	return offset + find_first_bit_le(p, size);
830}
831#define find_next_bit_le find_next_bit_le
832
833#include <asm-generic/bitops/le.h>
834
835#include <asm-generic/bitops/ext2-atomic-setbit.h>
836
837
838#endif /* __KERNEL__ */
839
840#endif /* _S390_BITOPS_H */