Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Memory Migration functionality - linux/mm/migrate.c
   4 *
   5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
   6 *
   7 * Page migration was first developed in the context of the memory hotplug
   8 * project. The main authors of the migration code are:
   9 *
  10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
  11 * Hirokazu Takahashi <taka@valinux.co.jp>
  12 * Dave Hansen <haveblue@us.ibm.com>
  13 * Christoph Lameter
  14 */
  15
  16#include <linux/migrate.h>
  17#include <linux/export.h>
  18#include <linux/swap.h>
  19#include <linux/swapops.h>
  20#include <linux/pagemap.h>
  21#include <linux/buffer_head.h>
  22#include <linux/mm_inline.h>
  23#include <linux/nsproxy.h>
  24#include <linux/pagevec.h>
  25#include <linux/ksm.h>
  26#include <linux/rmap.h>
  27#include <linux/topology.h>
  28#include <linux/cpu.h>
  29#include <linux/cpuset.h>
  30#include <linux/writeback.h>
  31#include <linux/mempolicy.h>
  32#include <linux/vmalloc.h>
  33#include <linux/security.h>
  34#include <linux/backing-dev.h>
  35#include <linux/compaction.h>
  36#include <linux/syscalls.h>
  37#include <linux/compat.h>
  38#include <linux/hugetlb.h>
  39#include <linux/hugetlb_cgroup.h>
  40#include <linux/gfp.h>
 
  41#include <linux/pfn_t.h>
  42#include <linux/memremap.h>
  43#include <linux/userfaultfd_k.h>
  44#include <linux/balloon_compaction.h>
 
  45#include <linux/page_idle.h>
  46#include <linux/page_owner.h>
  47#include <linux/sched/mm.h>
  48#include <linux/ptrace.h>
  49#include <linux/oom.h>
  50#include <linux/memory.h>
  51#include <linux/random.h>
  52#include <linux/sched/sysctl.h>
  53#include <linux/memory-tiers.h>
  54
  55#include <asm/tlbflush.h>
  56
 
  57#include <trace/events/migrate.h>
  58
  59#include "internal.h"
  60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  61int isolate_movable_page(struct page *page, isolate_mode_t mode)
  62{
  63	const struct movable_operations *mops;
  64
  65	/*
  66	 * Avoid burning cycles with pages that are yet under __free_pages(),
  67	 * or just got freed under us.
  68	 *
  69	 * In case we 'win' a race for a movable page being freed under us and
  70	 * raise its refcount preventing __free_pages() from doing its job
  71	 * the put_page() at the end of this block will take care of
  72	 * release this page, thus avoiding a nasty leakage.
  73	 */
  74	if (unlikely(!get_page_unless_zero(page)))
  75		goto out;
  76
  77	if (unlikely(PageSlab(page)))
  78		goto out_putpage;
  79	/* Pairs with smp_wmb() in slab freeing, e.g. SLUB's __free_slab() */
  80	smp_rmb();
  81	/*
  82	 * Check movable flag before taking the page lock because
  83	 * we use non-atomic bitops on newly allocated page flags so
  84	 * unconditionally grabbing the lock ruins page's owner side.
  85	 */
  86	if (unlikely(!__PageMovable(page)))
  87		goto out_putpage;
  88	/* Pairs with smp_wmb() in slab allocation, e.g. SLUB's alloc_slab_page() */
  89	smp_rmb();
  90	if (unlikely(PageSlab(page)))
  91		goto out_putpage;
  92
  93	/*
  94	 * As movable pages are not isolated from LRU lists, concurrent
  95	 * compaction threads can race against page migration functions
  96	 * as well as race against the releasing a page.
  97	 *
  98	 * In order to avoid having an already isolated movable page
  99	 * being (wrongly) re-isolated while it is under migration,
 100	 * or to avoid attempting to isolate pages being released,
 101	 * lets be sure we have the page lock
 102	 * before proceeding with the movable page isolation steps.
 103	 */
 104	if (unlikely(!trylock_page(page)))
 105		goto out_putpage;
 106
 107	if (!PageMovable(page) || PageIsolated(page))
 108		goto out_no_isolated;
 109
 110	mops = page_movable_ops(page);
 111	VM_BUG_ON_PAGE(!mops, page);
 112
 113	if (!mops->isolate_page(page, mode))
 114		goto out_no_isolated;
 115
 116	/* Driver shouldn't use PG_isolated bit of page->flags */
 117	WARN_ON_ONCE(PageIsolated(page));
 118	SetPageIsolated(page);
 119	unlock_page(page);
 120
 121	return 0;
 122
 123out_no_isolated:
 124	unlock_page(page);
 125out_putpage:
 126	put_page(page);
 127out:
 128	return -EBUSY;
 129}
 130
 131static void putback_movable_page(struct page *page)
 
 132{
 133	const struct movable_operations *mops = page_movable_ops(page);
 134
 135	mops->putback_page(page);
 136	ClearPageIsolated(page);
 
 
 
 
 
 137}
 138
 139/*
 140 * Put previously isolated pages back onto the appropriate lists
 141 * from where they were once taken off for compaction/migration.
 142 *
 143 * This function shall be used whenever the isolated pageset has been
 144 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
 145 * and isolate_hugetlb().
 146 */
 147void putback_movable_pages(struct list_head *l)
 148{
 149	struct page *page;
 150	struct page *page2;
 151
 152	list_for_each_entry_safe(page, page2, l, lru) {
 153		if (unlikely(PageHuge(page))) {
 154			putback_active_hugepage(page);
 155			continue;
 156		}
 157		list_del(&page->lru);
 158		/*
 159		 * We isolated non-lru movable page so here we can use
 160		 * __PageMovable because LRU page's mapping cannot have
 161		 * PAGE_MAPPING_MOVABLE.
 162		 */
 163		if (unlikely(__PageMovable(page))) {
 164			VM_BUG_ON_PAGE(!PageIsolated(page), page);
 165			lock_page(page);
 166			if (PageMovable(page))
 167				putback_movable_page(page);
 168			else
 169				ClearPageIsolated(page);
 170			unlock_page(page);
 171			put_page(page);
 172		} else {
 173			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
 174					page_is_file_lru(page), -thp_nr_pages(page));
 175			putback_lru_page(page);
 176		}
 177	}
 178}
 179
 180/*
 181 * Restore a potential migration pte to a working pte entry
 182 */
 183static bool remove_migration_pte(struct folio *folio,
 184		struct vm_area_struct *vma, unsigned long addr, void *old)
 185{
 186	DEFINE_FOLIO_VMA_WALK(pvmw, old, vma, addr, PVMW_SYNC | PVMW_MIGRATION);
 
 
 
 
 
 
 
 
 187
 
 188	while (page_vma_mapped_walk(&pvmw)) {
 189		rmap_t rmap_flags = RMAP_NONE;
 190		pte_t pte;
 191		swp_entry_t entry;
 192		struct page *new;
 193		unsigned long idx = 0;
 194
 195		/* pgoff is invalid for ksm pages, but they are never large */
 196		if (folio_test_large(folio) && !folio_test_hugetlb(folio))
 197			idx = linear_page_index(vma, pvmw.address) - pvmw.pgoff;
 198		new = folio_page(folio, idx);
 199
 200#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
 201		/* PMD-mapped THP migration entry */
 202		if (!pvmw.pte) {
 203			VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) ||
 204					!folio_test_pmd_mappable(folio), folio);
 205			remove_migration_pmd(&pvmw, new);
 206			continue;
 207		}
 208#endif
 209
 210		folio_get(folio);
 211		pte = mk_pte(new, READ_ONCE(vma->vm_page_prot));
 212		if (pte_swp_soft_dirty(*pvmw.pte))
 213			pte = pte_mksoft_dirty(pte);
 214
 215		/*
 216		 * Recheck VMA as permissions can change since migration started
 217		 */
 218		entry = pte_to_swp_entry(*pvmw.pte);
 219		if (!is_migration_entry_young(entry))
 220			pte = pte_mkold(pte);
 221		if (folio_test_dirty(folio) && is_migration_entry_dirty(entry))
 222			pte = pte_mkdirty(pte);
 223		if (is_writable_migration_entry(entry))
 224			pte = maybe_mkwrite(pte, vma);
 225		else if (pte_swp_uffd_wp(*pvmw.pte))
 226			pte = pte_mkuffd_wp(pte);
 227		else
 228			pte = pte_wrprotect(pte);
 229
 230		if (folio_test_anon(folio) && !is_readable_migration_entry(entry))
 231			rmap_flags |= RMAP_EXCLUSIVE;
 232
 233		if (unlikely(is_device_private_page(new))) {
 234			if (pte_write(pte))
 235				entry = make_writable_device_private_entry(
 236							page_to_pfn(new));
 237			else
 238				entry = make_readable_device_private_entry(
 239							page_to_pfn(new));
 240			pte = swp_entry_to_pte(entry);
 241			if (pte_swp_soft_dirty(*pvmw.pte))
 242				pte = pte_swp_mksoft_dirty(pte);
 243			if (pte_swp_uffd_wp(*pvmw.pte))
 244				pte = pte_swp_mkuffd_wp(pte);
 245		}
 246
 247#ifdef CONFIG_HUGETLB_PAGE
 248		if (folio_test_hugetlb(folio)) {
 249			unsigned int shift = huge_page_shift(hstate_vma(vma));
 250
 251			pte = pte_mkhuge(pte);
 252			pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
 253			if (folio_test_anon(folio))
 254				hugepage_add_anon_rmap(new, vma, pvmw.address,
 255						       rmap_flags);
 256			else
 257				page_dup_file_rmap(new, true);
 258			set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
 
 
 
 
 259		} else
 260#endif
 261		{
 262			if (folio_test_anon(folio))
 263				page_add_anon_rmap(new, vma, pvmw.address,
 264						   rmap_flags);
 265			else
 266				page_add_file_rmap(new, vma, false);
 267			set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
 
 
 
 
 
 268		}
 269		if (vma->vm_flags & VM_LOCKED)
 270			mlock_page_drain_local();
 271
 272		trace_remove_migration_pte(pvmw.address, pte_val(pte),
 273					   compound_order(new));
 274
 275		/* No need to invalidate - it was non-present before */
 276		update_mmu_cache(vma, pvmw.address, pvmw.pte);
 277	}
 278
 279	return true;
 280}
 281
 282/*
 283 * Get rid of all migration entries and replace them by
 284 * references to the indicated page.
 285 */
 286void remove_migration_ptes(struct folio *src, struct folio *dst, bool locked)
 287{
 288	struct rmap_walk_control rwc = {
 289		.rmap_one = remove_migration_pte,
 290		.arg = src,
 291	};
 292
 293	if (locked)
 294		rmap_walk_locked(dst, &rwc);
 295	else
 296		rmap_walk(dst, &rwc);
 297}
 298
 299/*
 300 * Something used the pte of a page under migration. We need to
 301 * get to the page and wait until migration is finished.
 302 * When we return from this function the fault will be retried.
 303 */
 304void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
 305				spinlock_t *ptl)
 306{
 307	pte_t pte;
 308	swp_entry_t entry;
 
 309
 310	spin_lock(ptl);
 311	pte = *ptep;
 312	if (!is_swap_pte(pte))
 313		goto out;
 314
 315	entry = pte_to_swp_entry(pte);
 316	if (!is_migration_entry(entry))
 317		goto out;
 318
 319	migration_entry_wait_on_locked(entry, ptep, ptl);
 
 
 
 
 
 
 
 
 
 
 320	return;
 321out:
 322	pte_unmap_unlock(ptep, ptl);
 323}
 324
 325void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
 326				unsigned long address)
 327{
 328	spinlock_t *ptl = pte_lockptr(mm, pmd);
 329	pte_t *ptep = pte_offset_map(pmd, address);
 330	__migration_entry_wait(mm, ptep, ptl);
 331}
 332
 333#ifdef CONFIG_HUGETLB_PAGE
 334void __migration_entry_wait_huge(pte_t *ptep, spinlock_t *ptl)
 335{
 336	pte_t pte;
 337
 338	spin_lock(ptl);
 339	pte = huge_ptep_get(ptep);
 340
 341	if (unlikely(!is_hugetlb_entry_migration(pte)))
 342		spin_unlock(ptl);
 343	else
 344		migration_entry_wait_on_locked(pte_to_swp_entry(pte), NULL, ptl);
 345}
 346
 347void migration_entry_wait_huge(struct vm_area_struct *vma, pte_t *pte)
 348{
 349	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), vma->vm_mm, pte);
 350
 351	__migration_entry_wait_huge(pte, ptl);
 352}
 353#endif
 354
 355#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
 356void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
 357{
 358	spinlock_t *ptl;
 
 359
 360	ptl = pmd_lock(mm, pmd);
 361	if (!is_pmd_migration_entry(*pmd))
 362		goto unlock;
 363	migration_entry_wait_on_locked(pmd_to_swp_entry(*pmd), NULL, ptl);
 
 
 
 
 364	return;
 365unlock:
 366	spin_unlock(ptl);
 367}
 368#endif
 369
 370static int folio_expected_refs(struct address_space *mapping,
 371		struct folio *folio)
 372{
 373	int refs = 1;
 374	if (!mapping)
 375		return refs;
 376
 377	refs += folio_nr_pages(folio);
 378	if (folio_test_private(folio))
 379		refs++;
 
 
 380
 381	return refs;
 382}
 383
 384/*
 385 * Replace the page in the mapping.
 386 *
 387 * The number of remaining references must be:
 388 * 1 for anonymous pages without a mapping
 389 * 2 for pages with a mapping
 390 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
 391 */
 392int folio_migrate_mapping(struct address_space *mapping,
 393		struct folio *newfolio, struct folio *folio, int extra_count)
 394{
 395	XA_STATE(xas, &mapping->i_pages, folio_index(folio));
 396	struct zone *oldzone, *newzone;
 397	int dirty;
 398	int expected_count = folio_expected_refs(mapping, folio) + extra_count;
 399	long nr = folio_nr_pages(folio);
 400
 401	if (!mapping) {
 402		/* Anonymous page without mapping */
 403		if (folio_ref_count(folio) != expected_count)
 404			return -EAGAIN;
 405
 406		/* No turning back from here */
 407		newfolio->index = folio->index;
 408		newfolio->mapping = folio->mapping;
 409		if (folio_test_swapbacked(folio))
 410			__folio_set_swapbacked(newfolio);
 411
 412		return MIGRATEPAGE_SUCCESS;
 413	}
 414
 415	oldzone = folio_zone(folio);
 416	newzone = folio_zone(newfolio);
 417
 418	xas_lock_irq(&xas);
 419	if (!folio_ref_freeze(folio, expected_count)) {
 
 
 
 
 
 420		xas_unlock_irq(&xas);
 421		return -EAGAIN;
 422	}
 423
 424	/*
 425	 * Now we know that no one else is looking at the folio:
 426	 * no turning back from here.
 427	 */
 428	newfolio->index = folio->index;
 429	newfolio->mapping = folio->mapping;
 430	folio_ref_add(newfolio, nr); /* add cache reference */
 431	if (folio_test_swapbacked(folio)) {
 432		__folio_set_swapbacked(newfolio);
 433		if (folio_test_swapcache(folio)) {
 434			folio_set_swapcache(newfolio);
 435			newfolio->private = folio_get_private(folio);
 436		}
 437	} else {
 438		VM_BUG_ON_FOLIO(folio_test_swapcache(folio), folio);
 439	}
 440
 441	/* Move dirty while page refs frozen and newpage not yet exposed */
 442	dirty = folio_test_dirty(folio);
 443	if (dirty) {
 444		folio_clear_dirty(folio);
 445		folio_set_dirty(newfolio);
 446	}
 447
 448	xas_store(&xas, newfolio);
 
 
 
 
 
 
 
 
 449
 450	/*
 451	 * Drop cache reference from old page by unfreezing
 452	 * to one less reference.
 453	 * We know this isn't the last reference.
 454	 */
 455	folio_ref_unfreeze(folio, expected_count - nr);
 456
 457	xas_unlock(&xas);
 458	/* Leave irq disabled to prevent preemption while updating stats */
 459
 460	/*
 461	 * If moved to a different zone then also account
 462	 * the page for that zone. Other VM counters will be
 463	 * taken care of when we establish references to the
 464	 * new page and drop references to the old page.
 465	 *
 466	 * Note that anonymous pages are accounted for
 467	 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
 468	 * are mapped to swap space.
 469	 */
 470	if (newzone != oldzone) {
 471		struct lruvec *old_lruvec, *new_lruvec;
 472		struct mem_cgroup *memcg;
 473
 474		memcg = folio_memcg(folio);
 475		old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
 476		new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);
 477
 478		__mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr);
 479		__mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr);
 480		if (folio_test_swapbacked(folio) && !folio_test_swapcache(folio)) {
 481			__mod_lruvec_state(old_lruvec, NR_SHMEM, -nr);
 482			__mod_lruvec_state(new_lruvec, NR_SHMEM, nr);
 483		}
 484#ifdef CONFIG_SWAP
 485		if (folio_test_swapcache(folio)) {
 486			__mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr);
 487			__mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr);
 488		}
 489#endif
 490		if (dirty && mapping_can_writeback(mapping)) {
 491			__mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr);
 492			__mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr);
 493			__mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr);
 494			__mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr);
 495		}
 496	}
 497	local_irq_enable();
 498
 499	return MIGRATEPAGE_SUCCESS;
 500}
 501EXPORT_SYMBOL(folio_migrate_mapping);
 502
 503/*
 504 * The expected number of remaining references is the same as that
 505 * of folio_migrate_mapping().
 506 */
 507int migrate_huge_page_move_mapping(struct address_space *mapping,
 508				   struct folio *dst, struct folio *src)
 509{
 510	XA_STATE(xas, &mapping->i_pages, folio_index(src));
 511	int expected_count;
 512
 513	xas_lock_irq(&xas);
 514	expected_count = 2 + folio_has_private(src);
 515	if (!folio_ref_freeze(src, expected_count)) {
 
 
 
 
 
 516		xas_unlock_irq(&xas);
 517		return -EAGAIN;
 518	}
 519
 520	dst->index = src->index;
 521	dst->mapping = src->mapping;
 522
 523	folio_get(dst);
 524
 525	xas_store(&xas, dst);
 526
 527	folio_ref_unfreeze(src, expected_count - 1);
 528
 529	xas_unlock_irq(&xas);
 530
 531	return MIGRATEPAGE_SUCCESS;
 532}
 533
 534/*
 535 * Copy the flags and some other ancillary information
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 536 */
 537void folio_migrate_flags(struct folio *newfolio, struct folio *folio)
 538{
 539	int cpupid;
 540
 541	if (folio_test_error(folio))
 542		folio_set_error(newfolio);
 543	if (folio_test_referenced(folio))
 544		folio_set_referenced(newfolio);
 545	if (folio_test_uptodate(folio))
 546		folio_mark_uptodate(newfolio);
 547	if (folio_test_clear_active(folio)) {
 548		VM_BUG_ON_FOLIO(folio_test_unevictable(folio), folio);
 549		folio_set_active(newfolio);
 550	} else if (folio_test_clear_unevictable(folio))
 551		folio_set_unevictable(newfolio);
 552	if (folio_test_workingset(folio))
 553		folio_set_workingset(newfolio);
 554	if (folio_test_checked(folio))
 555		folio_set_checked(newfolio);
 556	/*
 557	 * PG_anon_exclusive (-> PG_mappedtodisk) is always migrated via
 558	 * migration entries. We can still have PG_anon_exclusive set on an
 559	 * effectively unmapped and unreferenced first sub-pages of an
 560	 * anonymous THP: we can simply copy it here via PG_mappedtodisk.
 561	 */
 562	if (folio_test_mappedtodisk(folio))
 563		folio_set_mappedtodisk(newfolio);
 564
 565	/* Move dirty on pages not done by folio_migrate_mapping() */
 566	if (folio_test_dirty(folio))
 567		folio_set_dirty(newfolio);
 568
 569	if (folio_test_young(folio))
 570		folio_set_young(newfolio);
 571	if (folio_test_idle(folio))
 572		folio_set_idle(newfolio);
 573
 574	/*
 575	 * Copy NUMA information to the new page, to prevent over-eager
 576	 * future migrations of this same page.
 577	 */
 578	cpupid = page_cpupid_xchg_last(&folio->page, -1);
 579	/*
 580	 * For memory tiering mode, when migrate between slow and fast
 581	 * memory node, reset cpupid, because that is used to record
 582	 * page access time in slow memory node.
 583	 */
 584	if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) {
 585		bool f_toptier = node_is_toptier(page_to_nid(&folio->page));
 586		bool t_toptier = node_is_toptier(page_to_nid(&newfolio->page));
 587
 588		if (f_toptier != t_toptier)
 589			cpupid = -1;
 590	}
 591	page_cpupid_xchg_last(&newfolio->page, cpupid);
 592
 593	folio_migrate_ksm(newfolio, folio);
 594	/*
 595	 * Please do not reorder this without considering how mm/ksm.c's
 596	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
 597	 */
 598	if (folio_test_swapcache(folio))
 599		folio_clear_swapcache(folio);
 600	folio_clear_private(folio);
 601
 602	/* page->private contains hugetlb specific flags */
 603	if (!folio_test_hugetlb(folio))
 604		folio->private = NULL;
 605
 606	/*
 607	 * If any waiters have accumulated on the new page then
 608	 * wake them up.
 609	 */
 610	if (folio_test_writeback(newfolio))
 611		folio_end_writeback(newfolio);
 612
 613	/*
 614	 * PG_readahead shares the same bit with PG_reclaim.  The above
 615	 * end_page_writeback() may clear PG_readahead mistakenly, so set the
 616	 * bit after that.
 617	 */
 618	if (folio_test_readahead(folio))
 619		folio_set_readahead(newfolio);
 620
 621	folio_copy_owner(newfolio, folio);
 622
 623	if (!folio_test_hugetlb(folio))
 624		mem_cgroup_migrate(folio, newfolio);
 625}
 626EXPORT_SYMBOL(folio_migrate_flags);
 627
 628void folio_migrate_copy(struct folio *newfolio, struct folio *folio)
 629{
 630	folio_copy(newfolio, folio);
 631	folio_migrate_flags(newfolio, folio);
 
 
 
 
 632}
 633EXPORT_SYMBOL(folio_migrate_copy);
 634
 635/************************************************************
 636 *                    Migration functions
 637 ***********************************************************/
 638
 639int migrate_folio_extra(struct address_space *mapping, struct folio *dst,
 640		struct folio *src, enum migrate_mode mode, int extra_count)
 
 
 
 
 
 
 
 641{
 642	int rc;
 643
 644	BUG_ON(folio_test_writeback(src));	/* Writeback must be complete */
 645
 646	rc = folio_migrate_mapping(mapping, dst, src, extra_count);
 647
 648	if (rc != MIGRATEPAGE_SUCCESS)
 649		return rc;
 650
 651	if (mode != MIGRATE_SYNC_NO_COPY)
 652		folio_migrate_copy(dst, src);
 653	else
 654		folio_migrate_flags(dst, src);
 655	return MIGRATEPAGE_SUCCESS;
 656}
 657
 658/**
 659 * migrate_folio() - Simple folio migration.
 660 * @mapping: The address_space containing the folio.
 661 * @dst: The folio to migrate the data to.
 662 * @src: The folio containing the current data.
 663 * @mode: How to migrate the page.
 664 *
 665 * Common logic to directly migrate a single LRU folio suitable for
 666 * folios that do not use PagePrivate/PagePrivate2.
 667 *
 668 * Folios are locked upon entry and exit.
 669 */
 670int migrate_folio(struct address_space *mapping, struct folio *dst,
 671		struct folio *src, enum migrate_mode mode)
 672{
 673	return migrate_folio_extra(mapping, dst, src, mode, 0);
 674}
 675EXPORT_SYMBOL(migrate_folio);
 676
 677#ifdef CONFIG_BLOCK
 678/* Returns true if all buffers are successfully locked */
 679static bool buffer_migrate_lock_buffers(struct buffer_head *head,
 680							enum migrate_mode mode)
 681{
 682	struct buffer_head *bh = head;
 683
 684	/* Simple case, sync compaction */
 685	if (mode != MIGRATE_ASYNC) {
 686		do {
 687			lock_buffer(bh);
 688			bh = bh->b_this_page;
 689
 690		} while (bh != head);
 691
 692		return true;
 693	}
 694
 695	/* async case, we cannot block on lock_buffer so use trylock_buffer */
 696	do {
 697		if (!trylock_buffer(bh)) {
 698			/*
 699			 * We failed to lock the buffer and cannot stall in
 700			 * async migration. Release the taken locks
 701			 */
 702			struct buffer_head *failed_bh = bh;
 703			bh = head;
 704			while (bh != failed_bh) {
 705				unlock_buffer(bh);
 706				bh = bh->b_this_page;
 707			}
 708			return false;
 709		}
 710
 711		bh = bh->b_this_page;
 712	} while (bh != head);
 713	return true;
 714}
 715
 716static int __buffer_migrate_folio(struct address_space *mapping,
 717		struct folio *dst, struct folio *src, enum migrate_mode mode,
 718		bool check_refs)
 719{
 720	struct buffer_head *bh, *head;
 721	int rc;
 722	int expected_count;
 723
 724	head = folio_buffers(src);
 725	if (!head)
 726		return migrate_folio(mapping, dst, src, mode);
 727
 728	/* Check whether page does not have extra refs before we do more work */
 729	expected_count = folio_expected_refs(mapping, src);
 730	if (folio_ref_count(src) != expected_count)
 731		return -EAGAIN;
 732
 
 733	if (!buffer_migrate_lock_buffers(head, mode))
 734		return -EAGAIN;
 735
 736	if (check_refs) {
 737		bool busy;
 738		bool invalidated = false;
 739
 740recheck_buffers:
 741		busy = false;
 742		spin_lock(&mapping->private_lock);
 743		bh = head;
 744		do {
 745			if (atomic_read(&bh->b_count)) {
 746				busy = true;
 747				break;
 748			}
 749			bh = bh->b_this_page;
 750		} while (bh != head);
 751		if (busy) {
 752			if (invalidated) {
 753				rc = -EAGAIN;
 754				goto unlock_buffers;
 755			}
 756			spin_unlock(&mapping->private_lock);
 757			invalidate_bh_lrus();
 758			invalidated = true;
 759			goto recheck_buffers;
 760		}
 761	}
 762
 763	rc = folio_migrate_mapping(mapping, dst, src, 0);
 764	if (rc != MIGRATEPAGE_SUCCESS)
 765		goto unlock_buffers;
 766
 767	folio_attach_private(dst, folio_detach_private(src));
 768
 769	bh = head;
 770	do {
 771		set_bh_page(bh, &dst->page, bh_offset(bh));
 772		bh = bh->b_this_page;
 
 773	} while (bh != head);
 774
 775	if (mode != MIGRATE_SYNC_NO_COPY)
 776		folio_migrate_copy(dst, src);
 777	else
 778		folio_migrate_flags(dst, src);
 779
 780	rc = MIGRATEPAGE_SUCCESS;
 781unlock_buffers:
 782	if (check_refs)
 783		spin_unlock(&mapping->private_lock);
 784	bh = head;
 785	do {
 786		unlock_buffer(bh);
 787		bh = bh->b_this_page;
 
 788	} while (bh != head);
 789
 790	return rc;
 791}
 792
 793/**
 794 * buffer_migrate_folio() - Migration function for folios with buffers.
 795 * @mapping: The address space containing @src.
 796 * @dst: The folio to migrate to.
 797 * @src: The folio to migrate from.
 798 * @mode: How to migrate the folio.
 799 *
 800 * This function can only be used if the underlying filesystem guarantees
 801 * that no other references to @src exist. For example attached buffer
 802 * heads are accessed only under the folio lock.  If your filesystem cannot
 803 * provide this guarantee, buffer_migrate_folio_norefs() may be more
 804 * appropriate.
 805 *
 806 * Return: 0 on success or a negative errno on failure.
 807 */
 808int buffer_migrate_folio(struct address_space *mapping,
 809		struct folio *dst, struct folio *src, enum migrate_mode mode)
 810{
 811	return __buffer_migrate_folio(mapping, dst, src, mode, false);
 812}
 813EXPORT_SYMBOL(buffer_migrate_folio);
 814
 815/**
 816 * buffer_migrate_folio_norefs() - Migration function for folios with buffers.
 817 * @mapping: The address space containing @src.
 818 * @dst: The folio to migrate to.
 819 * @src: The folio to migrate from.
 820 * @mode: How to migrate the folio.
 821 *
 822 * Like buffer_migrate_folio() except that this variant is more careful
 823 * and checks that there are also no buffer head references. This function
 824 * is the right one for mappings where buffer heads are directly looked
 825 * up and referenced (such as block device mappings).
 826 *
 827 * Return: 0 on success or a negative errno on failure.
 828 */
 829int buffer_migrate_folio_norefs(struct address_space *mapping,
 830		struct folio *dst, struct folio *src, enum migrate_mode mode)
 831{
 832	return __buffer_migrate_folio(mapping, dst, src, mode, true);
 833}
 834EXPORT_SYMBOL_GPL(buffer_migrate_folio_norefs);
 835#endif
 836
 837int filemap_migrate_folio(struct address_space *mapping,
 838		struct folio *dst, struct folio *src, enum migrate_mode mode)
 839{
 840	int ret;
 841
 842	ret = folio_migrate_mapping(mapping, dst, src, 0);
 843	if (ret != MIGRATEPAGE_SUCCESS)
 844		return ret;
 845
 846	if (folio_get_private(src))
 847		folio_attach_private(dst, folio_detach_private(src));
 848
 849	if (mode != MIGRATE_SYNC_NO_COPY)
 850		folio_migrate_copy(dst, src);
 851	else
 852		folio_migrate_flags(dst, src);
 853	return MIGRATEPAGE_SUCCESS;
 854}
 855EXPORT_SYMBOL_GPL(filemap_migrate_folio);
 856
 857/*
 858 * Writeback a folio to clean the dirty state
 859 */
 860static int writeout(struct address_space *mapping, struct folio *folio)
 861{
 862	struct writeback_control wbc = {
 863		.sync_mode = WB_SYNC_NONE,
 864		.nr_to_write = 1,
 865		.range_start = 0,
 866		.range_end = LLONG_MAX,
 867		.for_reclaim = 1
 868	};
 869	int rc;
 870
 871	if (!mapping->a_ops->writepage)
 872		/* No write method for the address space */
 873		return -EINVAL;
 874
 875	if (!folio_clear_dirty_for_io(folio))
 876		/* Someone else already triggered a write */
 877		return -EAGAIN;
 878
 879	/*
 880	 * A dirty folio may imply that the underlying filesystem has
 881	 * the folio on some queue. So the folio must be clean for
 882	 * migration. Writeout may mean we lose the lock and the
 883	 * folio state is no longer what we checked for earlier.
 884	 * At this point we know that the migration attempt cannot
 885	 * be successful.
 886	 */
 887	remove_migration_ptes(folio, folio, false);
 888
 889	rc = mapping->a_ops->writepage(&folio->page, &wbc);
 890
 891	if (rc != AOP_WRITEPAGE_ACTIVATE)
 892		/* unlocked. Relock */
 893		folio_lock(folio);
 894
 895	return (rc < 0) ? -EIO : -EAGAIN;
 896}
 897
 898/*
 899 * Default handling if a filesystem does not provide a migration function.
 900 */
 901static int fallback_migrate_folio(struct address_space *mapping,
 902		struct folio *dst, struct folio *src, enum migrate_mode mode)
 903{
 904	if (folio_test_dirty(src)) {
 905		/* Only writeback folios in full synchronous migration */
 906		switch (mode) {
 907		case MIGRATE_SYNC:
 908		case MIGRATE_SYNC_NO_COPY:
 909			break;
 910		default:
 911			return -EBUSY;
 912		}
 913		return writeout(mapping, src);
 914	}
 915
 916	/*
 917	 * Buffers may be managed in a filesystem specific way.
 918	 * We must have no buffers or drop them.
 919	 */
 920	if (folio_test_private(src) &&
 921	    !filemap_release_folio(src, GFP_KERNEL))
 922		return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
 923
 924	return migrate_folio(mapping, dst, src, mode);
 925}
 926
 927/*
 928 * Move a page to a newly allocated page
 929 * The page is locked and all ptes have been successfully removed.
 930 *
 931 * The new page will have replaced the old page if this function
 932 * is successful.
 933 *
 934 * Return value:
 935 *   < 0 - error code
 936 *  MIGRATEPAGE_SUCCESS - success
 937 */
 938static int move_to_new_folio(struct folio *dst, struct folio *src,
 939				enum migrate_mode mode)
 940{
 
 941	int rc = -EAGAIN;
 942	bool is_lru = !__PageMovable(&src->page);
 943
 944	VM_BUG_ON_FOLIO(!folio_test_locked(src), src);
 945	VM_BUG_ON_FOLIO(!folio_test_locked(dst), dst);
 946
 947	if (likely(is_lru)) {
 948		struct address_space *mapping = folio_mapping(src);
 949
 
 950		if (!mapping)
 951			rc = migrate_folio(mapping, dst, src, mode);
 952		else if (mapping->a_ops->migrate_folio)
 953			/*
 954			 * Most folios have a mapping and most filesystems
 955			 * provide a migrate_folio callback. Anonymous folios
 956			 * are part of swap space which also has its own
 957			 * migrate_folio callback. This is the most common path
 958			 * for page migration.
 959			 */
 960			rc = mapping->a_ops->migrate_folio(mapping, dst, src,
 961								mode);
 962		else
 963			rc = fallback_migrate_folio(mapping, dst, src, mode);
 
 964	} else {
 965		const struct movable_operations *mops;
 966
 967		/*
 968		 * In case of non-lru page, it could be released after
 969		 * isolation step. In that case, we shouldn't try migration.
 970		 */
 971		VM_BUG_ON_FOLIO(!folio_test_isolated(src), src);
 972		if (!folio_test_movable(src)) {
 973			rc = MIGRATEPAGE_SUCCESS;
 974			folio_clear_isolated(src);
 975			goto out;
 976		}
 977
 978		mops = page_movable_ops(&src->page);
 979		rc = mops->migrate_page(&dst->page, &src->page, mode);
 980		WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
 981				!folio_test_isolated(src));
 982	}
 983
 984	/*
 985	 * When successful, old pagecache src->mapping must be cleared before
 986	 * src is freed; but stats require that PageAnon be left as PageAnon.
 987	 */
 988	if (rc == MIGRATEPAGE_SUCCESS) {
 989		if (__PageMovable(&src->page)) {
 990			VM_BUG_ON_FOLIO(!folio_test_isolated(src), src);
 991
 992			/*
 993			 * We clear PG_movable under page_lock so any compactor
 994			 * cannot try to migrate this page.
 995			 */
 996			folio_clear_isolated(src);
 997		}
 998
 999		/*
1000		 * Anonymous and movable src->mapping will be cleared by
1001		 * free_pages_prepare so don't reset it here for keeping
1002		 * the type to work PageAnon, for example.
1003		 */
1004		if (!folio_mapping_flags(src))
1005			src->mapping = NULL;
 
 
 
1006
1007		if (likely(!folio_is_zone_device(dst)))
1008			flush_dcache_folio(dst);
1009	}
1010out:
1011	return rc;
1012}
1013
1014static int __unmap_and_move(struct folio *src, struct folio *dst,
1015				int force, enum migrate_mode mode)
1016{
1017	int rc = -EAGAIN;
1018	bool page_was_mapped = false;
1019	struct anon_vma *anon_vma = NULL;
1020	bool is_lru = !__PageMovable(&src->page);
1021
1022	if (!folio_trylock(src)) {
1023		if (!force || mode == MIGRATE_ASYNC)
1024			goto out;
1025
1026		/*
1027		 * It's not safe for direct compaction to call lock_page.
1028		 * For example, during page readahead pages are added locked
1029		 * to the LRU. Later, when the IO completes the pages are
1030		 * marked uptodate and unlocked. However, the queueing
1031		 * could be merging multiple pages for one bio (e.g.
1032		 * mpage_readahead). If an allocation happens for the
1033		 * second or third page, the process can end up locking
1034		 * the same page twice and deadlocking. Rather than
1035		 * trying to be clever about what pages can be locked,
1036		 * avoid the use of lock_page for direct compaction
1037		 * altogether.
1038		 */
1039		if (current->flags & PF_MEMALLOC)
1040			goto out;
1041
1042		folio_lock(src);
1043	}
1044
1045	if (folio_test_writeback(src)) {
1046		/*
1047		 * Only in the case of a full synchronous migration is it
1048		 * necessary to wait for PageWriteback. In the async case,
1049		 * the retry loop is too short and in the sync-light case,
1050		 * the overhead of stalling is too much
1051		 */
1052		switch (mode) {
1053		case MIGRATE_SYNC:
1054		case MIGRATE_SYNC_NO_COPY:
1055			break;
1056		default:
1057			rc = -EBUSY;
1058			goto out_unlock;
1059		}
1060		if (!force)
1061			goto out_unlock;
1062		folio_wait_writeback(src);
1063	}
1064
1065	/*
1066	 * By try_to_migrate(), src->mapcount goes down to 0 here. In this case,
1067	 * we cannot notice that anon_vma is freed while we migrate a page.
1068	 * This get_anon_vma() delays freeing anon_vma pointer until the end
1069	 * of migration. File cache pages are no problem because of page_lock()
1070	 * File Caches may use write_page() or lock_page() in migration, then,
1071	 * just care Anon page here.
1072	 *
1073	 * Only folio_get_anon_vma() understands the subtleties of
1074	 * getting a hold on an anon_vma from outside one of its mms.
1075	 * But if we cannot get anon_vma, then we won't need it anyway,
1076	 * because that implies that the anon page is no longer mapped
1077	 * (and cannot be remapped so long as we hold the page lock).
1078	 */
1079	if (folio_test_anon(src) && !folio_test_ksm(src))
1080		anon_vma = folio_get_anon_vma(src);
1081
1082	/*
1083	 * Block others from accessing the new page when we get around to
1084	 * establishing additional references. We are usually the only one
1085	 * holding a reference to dst at this point. We used to have a BUG
1086	 * here if folio_trylock(dst) fails, but would like to allow for
1087	 * cases where there might be a race with the previous use of dst.
1088	 * This is much like races on refcount of oldpage: just don't BUG().
1089	 */
1090	if (unlikely(!folio_trylock(dst)))
1091		goto out_unlock;
1092
1093	if (unlikely(!is_lru)) {
1094		rc = move_to_new_folio(dst, src, mode);
1095		goto out_unlock_both;
1096	}
1097
1098	/*
1099	 * Corner case handling:
1100	 * 1. When a new swap-cache page is read into, it is added to the LRU
1101	 * and treated as swapcache but it has no rmap yet.
1102	 * Calling try_to_unmap() against a src->mapping==NULL page will
1103	 * trigger a BUG.  So handle it here.
1104	 * 2. An orphaned page (see truncate_cleanup_page) might have
1105	 * fs-private metadata. The page can be picked up due to memory
1106	 * offlining.  Everywhere else except page reclaim, the page is
1107	 * invisible to the vm, so the page can not be migrated.  So try to
1108	 * free the metadata, so the page can be freed.
1109	 */
1110	if (!src->mapping) {
1111		if (folio_test_private(src)) {
1112			try_to_free_buffers(src);
 
1113			goto out_unlock_both;
1114		}
1115	} else if (folio_mapped(src)) {
1116		/* Establish migration ptes */
1117		VM_BUG_ON_FOLIO(folio_test_anon(src) &&
1118			       !folio_test_ksm(src) && !anon_vma, src);
1119		try_to_migrate(src, 0);
1120		page_was_mapped = true;
 
1121	}
1122
1123	if (!folio_mapped(src))
1124		rc = move_to_new_folio(dst, src, mode);
1125
1126	/*
1127	 * When successful, push dst to LRU immediately: so that if it
1128	 * turns out to be an mlocked page, remove_migration_ptes() will
1129	 * automatically build up the correct dst->mlock_count for it.
1130	 *
1131	 * We would like to do something similar for the old page, when
1132	 * unsuccessful, and other cases when a page has been temporarily
1133	 * isolated from the unevictable LRU: but this case is the easiest.
1134	 */
1135	if (rc == MIGRATEPAGE_SUCCESS) {
1136		folio_add_lru(dst);
1137		if (page_was_mapped)
1138			lru_add_drain();
1139	}
1140
1141	if (page_was_mapped)
1142		remove_migration_ptes(src,
1143			rc == MIGRATEPAGE_SUCCESS ? dst : src, false);
1144
1145out_unlock_both:
1146	folio_unlock(dst);
1147out_unlock:
1148	/* Drop an anon_vma reference if we took one */
1149	if (anon_vma)
1150		put_anon_vma(anon_vma);
1151	folio_unlock(src);
1152out:
1153	/*
1154	 * If migration is successful, decrease refcount of dst,
1155	 * which will not free the page because new page owner increased
1156	 * refcounter.
 
 
 
 
1157	 */
1158	if (rc == MIGRATEPAGE_SUCCESS)
1159		folio_put(dst);
 
 
 
 
1160
1161	return rc;
1162}
1163
1164/*
1165 * Obtain the lock on folio, remove all ptes and migrate the folio
1166 * to the newly allocated folio in dst.
1167 */
1168static int unmap_and_move(new_page_t get_new_page,
1169				   free_page_t put_new_page,
1170				   unsigned long private, struct folio *src,
1171				   int force, enum migrate_mode mode,
1172				   enum migrate_reason reason,
1173				   struct list_head *ret)
1174{
1175	struct folio *dst;
1176	int rc = MIGRATEPAGE_SUCCESS;
1177	struct page *newpage = NULL;
1178
1179	if (!thp_migration_supported() && folio_test_transhuge(src))
1180		return -ENOSYS;
1181
1182	if (folio_ref_count(src) == 1) {
1183		/* Folio was freed from under us. So we are done. */
1184		folio_clear_active(src);
1185		folio_clear_unevictable(src);
1186		/* free_pages_prepare() will clear PG_isolated. */
 
 
 
 
 
1187		goto out;
1188	}
1189
1190	newpage = get_new_page(&src->page, private);
1191	if (!newpage)
1192		return -ENOMEM;
1193	dst = page_folio(newpage);
1194
1195	dst->private = NULL;
1196	rc = __unmap_and_move(src, dst, force, mode);
1197	if (rc == MIGRATEPAGE_SUCCESS)
1198		set_page_owner_migrate_reason(&dst->page, reason);
1199
1200out:
1201	if (rc != -EAGAIN) {
1202		/*
1203		 * A folio that has been migrated has all references
1204		 * removed and will be freed. A folio that has not been
1205		 * migrated will have kept its references and be restored.
1206		 */
1207		list_del(&src->lru);
 
 
 
 
 
 
 
 
 
1208	}
1209
1210	/*
1211	 * If migration is successful, releases reference grabbed during
1212	 * isolation. Otherwise, restore the folio to right list unless
1213	 * we want to retry.
1214	 */
1215	if (rc == MIGRATEPAGE_SUCCESS) {
1216		/*
1217		 * Compaction can migrate also non-LRU folios which are
1218		 * not accounted to NR_ISOLATED_*. They can be recognized
1219		 * as __folio_test_movable
1220		 */
1221		if (likely(!__folio_test_movable(src)))
1222			mod_node_page_state(folio_pgdat(src), NR_ISOLATED_ANON +
1223					folio_is_file_lru(src), -folio_nr_pages(src));
1224
1225		if (reason != MR_MEMORY_FAILURE)
1226			/*
1227			 * We release the folio in page_handle_poison.
 
 
1228			 */
1229			folio_put(src);
 
 
1230	} else {
1231		if (rc != -EAGAIN)
1232			list_add_tail(&src->lru, ret);
 
 
 
1233
 
 
 
 
 
 
 
 
 
1234		if (put_new_page)
1235			put_new_page(&dst->page, private);
1236		else
1237			folio_put(dst);
1238	}
1239
1240	return rc;
1241}
1242
1243/*
1244 * Counterpart of unmap_and_move_page() for hugepage migration.
1245 *
1246 * This function doesn't wait the completion of hugepage I/O
1247 * because there is no race between I/O and migration for hugepage.
1248 * Note that currently hugepage I/O occurs only in direct I/O
1249 * where no lock is held and PG_writeback is irrelevant,
1250 * and writeback status of all subpages are counted in the reference
1251 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1252 * under direct I/O, the reference of the head page is 512 and a bit more.)
1253 * This means that when we try to migrate hugepage whose subpages are
1254 * doing direct I/O, some references remain after try_to_unmap() and
1255 * hugepage migration fails without data corruption.
1256 *
1257 * There is also no race when direct I/O is issued on the page under migration,
1258 * because then pte is replaced with migration swap entry and direct I/O code
1259 * will wait in the page fault for migration to complete.
1260 */
1261static int unmap_and_move_huge_page(new_page_t get_new_page,
1262				free_page_t put_new_page, unsigned long private,
1263				struct page *hpage, int force,
1264				enum migrate_mode mode, int reason,
1265				struct list_head *ret)
1266{
1267	struct folio *dst, *src = page_folio(hpage);
1268	int rc = -EAGAIN;
1269	int page_was_mapped = 0;
1270	struct page *new_hpage;
1271	struct anon_vma *anon_vma = NULL;
1272	struct address_space *mapping = NULL;
1273
1274	/*
1275	 * Migratability of hugepages depends on architectures and their size.
1276	 * This check is necessary because some callers of hugepage migration
1277	 * like soft offline and memory hotremove don't walk through page
1278	 * tables or check whether the hugepage is pmd-based or not before
1279	 * kicking migration.
1280	 */
1281	if (!hugepage_migration_supported(page_hstate(hpage)))
1282		return -ENOSYS;
1283
1284	if (folio_ref_count(src) == 1) {
1285		/* page was freed from under us. So we are done. */
1286		putback_active_hugepage(hpage);
1287		return MIGRATEPAGE_SUCCESS;
1288	}
1289
1290	new_hpage = get_new_page(hpage, private);
1291	if (!new_hpage)
1292		return -ENOMEM;
1293	dst = page_folio(new_hpage);
1294
1295	if (!folio_trylock(src)) {
1296		if (!force)
1297			goto out;
1298		switch (mode) {
1299		case MIGRATE_SYNC:
1300		case MIGRATE_SYNC_NO_COPY:
1301			break;
1302		default:
1303			goto out;
1304		}
1305		folio_lock(src);
1306	}
1307
1308	/*
1309	 * Check for pages which are in the process of being freed.  Without
1310	 * folio_mapping() set, hugetlbfs specific move page routine will not
1311	 * be called and we could leak usage counts for subpools.
1312	 */
1313	if (hugetlb_folio_subpool(src) && !folio_mapping(src)) {
1314		rc = -EBUSY;
1315		goto out_unlock;
1316	}
1317
1318	if (folio_test_anon(src))
1319		anon_vma = folio_get_anon_vma(src);
1320
1321	if (unlikely(!folio_trylock(dst)))
1322		goto put_anon;
1323
1324	if (folio_mapped(src)) {
1325		enum ttu_flags ttu = 0;
1326
1327		if (!folio_test_anon(src)) {
1328			/*
1329			 * In shared mappings, try_to_unmap could potentially
1330			 * call huge_pmd_unshare.  Because of this, take
1331			 * semaphore in write mode here and set TTU_RMAP_LOCKED
1332			 * to let lower levels know we have taken the lock.
1333			 */
1334			mapping = hugetlb_page_mapping_lock_write(hpage);
1335			if (unlikely(!mapping))
1336				goto unlock_put_anon;
1337
1338			ttu = TTU_RMAP_LOCKED;
1339		}
1340
1341		try_to_migrate(src, ttu);
1342		page_was_mapped = 1;
1343
1344		if (ttu & TTU_RMAP_LOCKED)
1345			i_mmap_unlock_write(mapping);
 
1346	}
1347
1348	if (!folio_mapped(src))
1349		rc = move_to_new_folio(dst, src, mode);
1350
1351	if (page_was_mapped)
1352		remove_migration_ptes(src,
1353			rc == MIGRATEPAGE_SUCCESS ? dst : src, false);
 
 
1354
1355unlock_put_anon:
1356	folio_unlock(dst);
1357
1358put_anon:
1359	if (anon_vma)
1360		put_anon_vma(anon_vma);
1361
1362	if (rc == MIGRATEPAGE_SUCCESS) {
1363		move_hugetlb_state(src, dst, reason);
1364		put_new_page = NULL;
1365	}
1366
1367out_unlock:
1368	folio_unlock(src);
1369out:
1370	if (rc == MIGRATEPAGE_SUCCESS)
1371		putback_active_hugepage(hpage);
1372	else if (rc != -EAGAIN)
1373		list_move_tail(&src->lru, ret);
1374
1375	/*
1376	 * If migration was not successful and there's a freeing callback, use
1377	 * it.  Otherwise, put_page() will drop the reference grabbed during
1378	 * isolation.
1379	 */
1380	if (put_new_page)
1381		put_new_page(new_hpage, private);
1382	else
1383		putback_active_hugepage(new_hpage);
1384
1385	return rc;
1386}
1387
1388static inline int try_split_folio(struct folio *folio, struct list_head *split_folios)
1389{
1390	int rc;
1391
1392	folio_lock(folio);
1393	rc = split_folio_to_list(folio, split_folios);
1394	folio_unlock(folio);
1395	if (!rc)
1396		list_move_tail(&folio->lru, split_folios);
1397
1398	return rc;
1399}
1400
1401/*
1402 * migrate_pages - migrate the folios specified in a list, to the free folios
1403 *		   supplied as the target for the page migration
1404 *
1405 * @from:		The list of folios to be migrated.
1406 * @get_new_page:	The function used to allocate free folios to be used
1407 *			as the target of the folio migration.
1408 * @put_new_page:	The function used to free target folios if migration
1409 *			fails, or NULL if no special handling is necessary.
1410 * @private:		Private data to be passed on to get_new_page()
1411 * @mode:		The migration mode that specifies the constraints for
1412 *			folio migration, if any.
1413 * @reason:		The reason for folio migration.
1414 * @ret_succeeded:	Set to the number of folios migrated successfully if
1415 *			the caller passes a non-NULL pointer.
1416 *
1417 * The function returns after 10 attempts or if no folios are movable any more
1418 * because the list has become empty or no retryable folios exist any more.
1419 * It is caller's responsibility to call putback_movable_pages() to return folios
1420 * to the LRU or free list only if ret != 0.
1421 *
1422 * Returns the number of {normal folio, large folio, hugetlb} that were not
1423 * migrated, or an error code. The number of large folio splits will be
1424 * considered as the number of non-migrated large folio, no matter how many
1425 * split folios of the large folio are migrated successfully.
1426 */
1427int migrate_pages(struct list_head *from, new_page_t get_new_page,
1428		free_page_t put_new_page, unsigned long private,
1429		enum migrate_mode mode, int reason, unsigned int *ret_succeeded)
1430{
1431	int retry = 1;
1432	int large_retry = 1;
1433	int thp_retry = 1;
1434	int nr_failed = 0;
1435	int nr_failed_pages = 0;
1436	int nr_retry_pages = 0;
1437	int nr_succeeded = 0;
1438	int nr_thp_succeeded = 0;
1439	int nr_large_failed = 0;
1440	int nr_thp_failed = 0;
1441	int nr_thp_split = 0;
1442	int pass = 0;
1443	bool is_large = false;
1444	bool is_thp = false;
1445	struct folio *folio, *folio2;
1446	int rc, nr_pages;
1447	LIST_HEAD(ret_folios);
1448	LIST_HEAD(split_folios);
1449	bool nosplit = (reason == MR_NUMA_MISPLACED);
1450	bool no_split_folio_counting = false;
1451
1452	trace_mm_migrate_pages_start(mode, reason);
 
1453
1454split_folio_migration:
1455	for (pass = 0; pass < 10 && (retry || large_retry); pass++) {
1456		retry = 0;
1457		large_retry = 0;
1458		thp_retry = 0;
1459		nr_retry_pages = 0;
1460
1461		list_for_each_entry_safe(folio, folio2, from, lru) {
 
1462			/*
1463			 * Large folio statistics is based on the source large
1464			 * folio. Capture required information that might get
1465			 * lost during migration.
1466			 */
1467			is_large = folio_test_large(folio) && !folio_test_hugetlb(folio);
1468			is_thp = is_large && folio_test_pmd_mappable(folio);
1469			nr_pages = folio_nr_pages(folio);
1470			cond_resched();
1471
1472			if (folio_test_hugetlb(folio))
1473				rc = unmap_and_move_huge_page(get_new_page,
1474						put_new_page, private,
1475						&folio->page, pass > 2, mode,
1476						reason,
1477						&ret_folios);
1478			else
1479				rc = unmap_and_move(get_new_page, put_new_page,
1480						private, folio, pass > 2, mode,
1481						reason, &ret_folios);
1482			/*
1483			 * The rules are:
1484			 *	Success: non hugetlb folio will be freed, hugetlb
1485			 *		 folio will be put back
1486			 *	-EAGAIN: stay on the from list
1487			 *	-ENOMEM: stay on the from list
1488			 *	-ENOSYS: stay on the from list
1489			 *	Other errno: put on ret_folios list then splice to
1490			 *		     from list
1491			 */
1492			switch(rc) {
1493			/*
1494			 * Large folio migration might be unsupported or
1495			 * the allocation could've failed so we should retry
1496			 * on the same folio with the large folio split
1497			 * to normal folios.
1498			 *
1499			 * Split folios are put in split_folios, and
1500			 * we will migrate them after the rest of the
1501			 * list is processed.
1502			 */
1503			case -ENOSYS:
1504				/* Large folio migration is unsupported */
1505				if (is_large) {
1506					nr_large_failed++;
1507					nr_thp_failed += is_thp;
1508					if (!try_split_folio(folio, &split_folios)) {
1509						nr_thp_split += is_thp;
1510						break;
1511					}
1512				/* Hugetlb migration is unsupported */
1513				} else if (!no_split_folio_counting) {
1514					nr_failed++;
1515				}
1516
1517				nr_failed_pages += nr_pages;
1518				list_move_tail(&folio->lru, &ret_folios);
1519				break;
1520			case -ENOMEM:
1521				/*
1522				 * When memory is low, don't bother to try to migrate
1523				 * other folios, just exit.
 
 
 
 
 
 
 
1524				 */
1525				if (is_large) {
1526					nr_large_failed++;
1527					nr_thp_failed += is_thp;
1528					/* Large folio NUMA faulting doesn't split to retry. */
1529					if (!nosplit) {
1530						int ret = try_split_folio(folio, &split_folios);
1531
1532						if (!ret) {
1533							nr_thp_split += is_thp;
1534							break;
1535						} else if (reason == MR_LONGTERM_PIN &&
1536							   ret == -EAGAIN) {
1537							/*
1538							 * Try again to split large folio to
1539							 * mitigate the failure of longterm pinning.
1540							 */
1541							large_retry++;
1542							thp_retry += is_thp;
1543							nr_retry_pages += nr_pages;
1544							break;
1545						}
1546					}
1547				} else if (!no_split_folio_counting) {
1548					nr_failed++;
1549				}
1550
1551				nr_failed_pages += nr_pages + nr_retry_pages;
1552				/*
1553				 * There might be some split folios of fail-to-migrate large
1554				 * folios left in split_folios list. Move them back to migration
1555				 * list so that they could be put back to the right list by
1556				 * the caller otherwise the folio refcnt will be leaked.
1557				 */
1558				list_splice_init(&split_folios, from);
1559				/* nr_failed isn't updated for not used */
1560				nr_large_failed += large_retry;
1561				nr_thp_failed += thp_retry;
1562				goto out;
1563			case -EAGAIN:
1564				if (is_large) {
1565					large_retry++;
1566					thp_retry += is_thp;
1567				} else if (!no_split_folio_counting) {
1568					retry++;
1569				}
1570				nr_retry_pages += nr_pages;
1571				break;
1572			case MIGRATEPAGE_SUCCESS:
1573				nr_succeeded += nr_pages;
1574				nr_thp_succeeded += is_thp;
 
 
 
 
1575				break;
1576			default:
1577				/*
1578				 * Permanent failure (-EBUSY, etc.):
1579				 * unlike -EAGAIN case, the failed folio is
1580				 * removed from migration folio list and not
1581				 * retried in the next outer loop.
1582				 */
1583				if (is_large) {
1584					nr_large_failed++;
1585					nr_thp_failed += is_thp;
1586				} else if (!no_split_folio_counting) {
1587					nr_failed++;
1588				}
1589
1590				nr_failed_pages += nr_pages;
1591				break;
1592			}
1593		}
1594	}
1595	nr_failed += retry;
1596	nr_large_failed += large_retry;
1597	nr_thp_failed += thp_retry;
1598	nr_failed_pages += nr_retry_pages;
1599	/*
1600	 * Try to migrate split folios of fail-to-migrate large folios, no
1601	 * nr_failed counting in this round, since all split folios of a
1602	 * large folio is counted as 1 failure in the first round.
1603	 */
1604	if (!list_empty(&split_folios)) {
1605		/*
1606		 * Move non-migrated folios (after 10 retries) to ret_folios
1607		 * to avoid migrating them again.
1608		 */
1609		list_splice_init(from, &ret_folios);
1610		list_splice_init(&split_folios, from);
1611		no_split_folio_counting = true;
1612		retry = 1;
1613		goto split_folio_migration;
1614	}
1615
1616	rc = nr_failed + nr_large_failed;
1617out:
1618	/*
1619	 * Put the permanent failure folio back to migration list, they
1620	 * will be put back to the right list by the caller.
1621	 */
1622	list_splice(&ret_folios, from);
1623
1624	/*
1625	 * Return 0 in case all split folios of fail-to-migrate large folios
1626	 * are migrated successfully.
1627	 */
1628	if (list_empty(from))
1629		rc = 0;
1630
1631	count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1632	count_vm_events(PGMIGRATE_FAIL, nr_failed_pages);
1633	count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded);
1634	count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed);
1635	count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split);
1636	trace_mm_migrate_pages(nr_succeeded, nr_failed_pages, nr_thp_succeeded,
1637			       nr_thp_failed, nr_thp_split, mode, reason);
1638
1639	if (ret_succeeded)
1640		*ret_succeeded = nr_succeeded;
1641
1642	return rc;
1643}
1644
1645struct page *alloc_migration_target(struct page *page, unsigned long private)
1646{
1647	struct folio *folio = page_folio(page);
1648	struct migration_target_control *mtc;
1649	gfp_t gfp_mask;
1650	unsigned int order = 0;
1651	struct folio *new_folio = NULL;
1652	int nid;
1653	int zidx;
1654
1655	mtc = (struct migration_target_control *)private;
1656	gfp_mask = mtc->gfp_mask;
1657	nid = mtc->nid;
1658	if (nid == NUMA_NO_NODE)
1659		nid = folio_nid(folio);
1660
1661	if (folio_test_hugetlb(folio)) {
1662		struct hstate *h = folio_hstate(folio);
1663
1664		gfp_mask = htlb_modify_alloc_mask(h, gfp_mask);
1665		return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask);
1666	}
1667
1668	if (folio_test_large(folio)) {
1669		/*
1670		 * clear __GFP_RECLAIM to make the migration callback
1671		 * consistent with regular THP allocations.
1672		 */
1673		gfp_mask &= ~__GFP_RECLAIM;
1674		gfp_mask |= GFP_TRANSHUGE;
1675		order = folio_order(folio);
1676	}
1677	zidx = zone_idx(folio_zone(folio));
1678	if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE)
1679		gfp_mask |= __GFP_HIGHMEM;
1680
1681	new_folio = __folio_alloc(gfp_mask, order, nid, mtc->nmask);
 
 
 
1682
1683	return &new_folio->page;
1684}
1685
1686#ifdef CONFIG_NUMA
1687
1688static int store_status(int __user *status, int start, int value, int nr)
1689{
1690	while (nr-- > 0) {
1691		if (put_user(value, status + start))
1692			return -EFAULT;
1693		start++;
1694	}
1695
1696	return 0;
1697}
1698
1699static int do_move_pages_to_node(struct mm_struct *mm,
1700		struct list_head *pagelist, int node)
1701{
1702	int err;
1703	struct migration_target_control mtc = {
1704		.nid = node,
1705		.gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1706	};
1707
1708	err = migrate_pages(pagelist, alloc_migration_target, NULL,
1709		(unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL);
1710	if (err)
1711		putback_movable_pages(pagelist);
1712	return err;
1713}
1714
1715/*
1716 * Resolves the given address to a struct page, isolates it from the LRU and
1717 * puts it to the given pagelist.
1718 * Returns:
1719 *     errno - if the page cannot be found/isolated
1720 *     0 - when it doesn't have to be migrated because it is already on the
1721 *         target node
1722 *     1 - when it has been queued
1723 */
1724static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1725		int node, struct list_head *pagelist, bool migrate_all)
1726{
1727	struct vm_area_struct *vma;
1728	struct page *page;
 
1729	int err;
1730
1731	mmap_read_lock(mm);
1732	err = -EFAULT;
1733	vma = vma_lookup(mm, addr);
1734	if (!vma || !vma_migratable(vma))
1735		goto out;
1736
1737	/* FOLL_DUMP to ignore special (like zero) pages */
1738	page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
 
1739
1740	err = PTR_ERR(page);
1741	if (IS_ERR(page))
1742		goto out;
1743
1744	err = -ENOENT;
1745	if (!page)
1746		goto out;
1747
1748	if (is_zone_device_page(page))
1749		goto out_putpage;
1750
1751	err = 0;
1752	if (page_to_nid(page) == node)
1753		goto out_putpage;
1754
1755	err = -EACCES;
1756	if (page_mapcount(page) > 1 && !migrate_all)
1757		goto out_putpage;
1758
1759	if (PageHuge(page)) {
1760		if (PageHead(page)) {
1761			err = isolate_hugetlb(page, pagelist);
1762			if (!err)
1763				err = 1;
1764		}
1765	} else {
1766		struct page *head;
1767
1768		head = compound_head(page);
1769		err = isolate_lru_page(head);
1770		if (err)
1771			goto out_putpage;
1772
1773		err = 1;
1774		list_add_tail(&head->lru, pagelist);
1775		mod_node_page_state(page_pgdat(head),
1776			NR_ISOLATED_ANON + page_is_file_lru(head),
1777			thp_nr_pages(head));
1778	}
1779out_putpage:
1780	/*
1781	 * Either remove the duplicate refcount from
1782	 * isolate_lru_page() or drop the page ref if it was
1783	 * not isolated.
1784	 */
1785	put_page(page);
1786out:
1787	mmap_read_unlock(mm);
1788	return err;
1789}
1790
1791static int move_pages_and_store_status(struct mm_struct *mm, int node,
1792		struct list_head *pagelist, int __user *status,
1793		int start, int i, unsigned long nr_pages)
1794{
1795	int err;
1796
1797	if (list_empty(pagelist))
1798		return 0;
1799
1800	err = do_move_pages_to_node(mm, pagelist, node);
1801	if (err) {
1802		/*
1803		 * Positive err means the number of failed
1804		 * pages to migrate.  Since we are going to
1805		 * abort and return the number of non-migrated
1806		 * pages, so need to include the rest of the
1807		 * nr_pages that have not been attempted as
1808		 * well.
1809		 */
1810		if (err > 0)
1811			err += nr_pages - i;
1812		return err;
1813	}
1814	return store_status(status, start, node, i - start);
1815}
1816
1817/*
1818 * Migrate an array of page address onto an array of nodes and fill
1819 * the corresponding array of status.
1820 */
1821static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1822			 unsigned long nr_pages,
1823			 const void __user * __user *pages,
1824			 const int __user *nodes,
1825			 int __user *status, int flags)
1826{
1827	int current_node = NUMA_NO_NODE;
1828	LIST_HEAD(pagelist);
1829	int start, i;
1830	int err = 0, err1;
1831
1832	lru_cache_disable();
1833
1834	for (i = start = 0; i < nr_pages; i++) {
1835		const void __user *p;
1836		unsigned long addr;
1837		int node;
1838
1839		err = -EFAULT;
1840		if (get_user(p, pages + i))
1841			goto out_flush;
1842		if (get_user(node, nodes + i))
1843			goto out_flush;
1844		addr = (unsigned long)untagged_addr(p);
1845
1846		err = -ENODEV;
1847		if (node < 0 || node >= MAX_NUMNODES)
1848			goto out_flush;
1849		if (!node_state(node, N_MEMORY))
1850			goto out_flush;
1851
1852		err = -EACCES;
1853		if (!node_isset(node, task_nodes))
1854			goto out_flush;
1855
1856		if (current_node == NUMA_NO_NODE) {
1857			current_node = node;
1858			start = i;
1859		} else if (node != current_node) {
1860			err = move_pages_and_store_status(mm, current_node,
1861					&pagelist, status, start, i, nr_pages);
1862			if (err)
1863				goto out;
1864			start = i;
1865			current_node = node;
1866		}
1867
1868		/*
1869		 * Errors in the page lookup or isolation are not fatal and we simply
1870		 * report them via status
1871		 */
1872		err = add_page_for_migration(mm, addr, current_node,
1873				&pagelist, flags & MPOL_MF_MOVE_ALL);
1874
1875		if (err > 0) {
1876			/* The page is successfully queued for migration */
1877			continue;
1878		}
1879
1880		/*
1881		 * The move_pages() man page does not have an -EEXIST choice, so
1882		 * use -EFAULT instead.
1883		 */
1884		if (err == -EEXIST)
1885			err = -EFAULT;
1886
1887		/*
1888		 * If the page is already on the target node (!err), store the
1889		 * node, otherwise, store the err.
1890		 */
1891		err = store_status(status, i, err ? : current_node, 1);
1892		if (err)
1893			goto out_flush;
1894
1895		err = move_pages_and_store_status(mm, current_node, &pagelist,
1896				status, start, i, nr_pages);
1897		if (err) {
1898			/* We have accounted for page i */
1899			if (err > 0)
1900				err--;
1901			goto out;
1902		}
1903		current_node = NUMA_NO_NODE;
1904	}
1905out_flush:
1906	/* Make sure we do not overwrite the existing error */
1907	err1 = move_pages_and_store_status(mm, current_node, &pagelist,
1908				status, start, i, nr_pages);
1909	if (err >= 0)
1910		err = err1;
1911out:
1912	lru_cache_enable();
1913	return err;
1914}
1915
1916/*
1917 * Determine the nodes of an array of pages and store it in an array of status.
1918 */
1919static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1920				const void __user **pages, int *status)
1921{
1922	unsigned long i;
1923
1924	mmap_read_lock(mm);
1925
1926	for (i = 0; i < nr_pages; i++) {
1927		unsigned long addr = (unsigned long)(*pages);
1928		struct vm_area_struct *vma;
1929		struct page *page;
1930		int err = -EFAULT;
1931
1932		vma = vma_lookup(mm, addr);
1933		if (!vma)
1934			goto set_status;
1935
1936		/* FOLL_DUMP to ignore special (like zero) pages */
1937		page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
1938
1939		err = PTR_ERR(page);
1940		if (IS_ERR(page))
1941			goto set_status;
1942
1943		err = -ENOENT;
1944		if (!page)
1945			goto set_status;
1946
1947		if (!is_zone_device_page(page))
1948			err = page_to_nid(page);
1949
1950		put_page(page);
1951set_status:
1952		*status = err;
1953
1954		pages++;
1955		status++;
1956	}
1957
1958	mmap_read_unlock(mm);
1959}
1960
1961static int get_compat_pages_array(const void __user *chunk_pages[],
1962				  const void __user * __user *pages,
1963				  unsigned long chunk_nr)
1964{
1965	compat_uptr_t __user *pages32 = (compat_uptr_t __user *)pages;
1966	compat_uptr_t p;
1967	int i;
1968
1969	for (i = 0; i < chunk_nr; i++) {
1970		if (get_user(p, pages32 + i))
1971			return -EFAULT;
1972		chunk_pages[i] = compat_ptr(p);
1973	}
1974
1975	return 0;
1976}
1977
1978/*
1979 * Determine the nodes of a user array of pages and store it in
1980 * a user array of status.
1981 */
1982static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1983			 const void __user * __user *pages,
1984			 int __user *status)
1985{
1986#define DO_PAGES_STAT_CHUNK_NR 16UL
1987	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1988	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1989
1990	while (nr_pages) {
1991		unsigned long chunk_nr = min(nr_pages, DO_PAGES_STAT_CHUNK_NR);
1992
1993		if (in_compat_syscall()) {
1994			if (get_compat_pages_array(chunk_pages, pages,
1995						   chunk_nr))
1996				break;
1997		} else {
1998			if (copy_from_user(chunk_pages, pages,
1999				      chunk_nr * sizeof(*chunk_pages)))
2000				break;
2001		}
2002
2003		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
2004
2005		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
2006			break;
2007
2008		pages += chunk_nr;
2009		status += chunk_nr;
2010		nr_pages -= chunk_nr;
2011	}
2012	return nr_pages ? -EFAULT : 0;
2013}
2014
2015static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes)
 
 
 
 
 
 
 
2016{
2017	struct task_struct *task;
2018	struct mm_struct *mm;
 
 
2019
2020	/*
2021	 * There is no need to check if current process has the right to modify
2022	 * the specified process when they are same.
2023	 */
2024	if (!pid) {
2025		mmget(current->mm);
2026		*mem_nodes = cpuset_mems_allowed(current);
2027		return current->mm;
2028	}
2029
2030	/* Find the mm_struct */
2031	rcu_read_lock();
2032	task = find_task_by_vpid(pid);
2033	if (!task) {
2034		rcu_read_unlock();
2035		return ERR_PTR(-ESRCH);
2036	}
2037	get_task_struct(task);
2038
2039	/*
2040	 * Check if this process has the right to modify the specified
2041	 * process. Use the regular "ptrace_may_access()" checks.
2042	 */
2043	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
2044		rcu_read_unlock();
2045		mm = ERR_PTR(-EPERM);
2046		goto out;
2047	}
2048	rcu_read_unlock();
2049
2050	mm = ERR_PTR(security_task_movememory(task));
2051	if (IS_ERR(mm))
2052		goto out;
2053	*mem_nodes = cpuset_mems_allowed(task);
 
2054	mm = get_task_mm(task);
2055out:
2056	put_task_struct(task);
2057	if (!mm)
2058		mm = ERR_PTR(-EINVAL);
2059	return mm;
2060}
2061
2062/*
2063 * Move a list of pages in the address space of the currently executing
2064 * process.
2065 */
2066static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
2067			     const void __user * __user *pages,
2068			     const int __user *nodes,
2069			     int __user *status, int flags)
2070{
2071	struct mm_struct *mm;
2072	int err;
2073	nodemask_t task_nodes;
2074
2075	/* Check flags */
2076	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
2077		return -EINVAL;
2078
2079	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
2080		return -EPERM;
2081
2082	mm = find_mm_struct(pid, &task_nodes);
2083	if (IS_ERR(mm))
2084		return PTR_ERR(mm);
2085
2086	if (nodes)
2087		err = do_pages_move(mm, task_nodes, nr_pages, pages,
2088				    nodes, status, flags);
2089	else
2090		err = do_pages_stat(mm, nr_pages, pages, status);
2091
2092	mmput(mm);
2093	return err;
 
 
 
 
2094}
2095
2096SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
2097		const void __user * __user *, pages,
2098		const int __user *, nodes,
2099		int __user *, status, int, flags)
2100{
2101	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
2102}
2103
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2104#ifdef CONFIG_NUMA_BALANCING
2105/*
2106 * Returns true if this is a safe migration target node for misplaced NUMA
2107 * pages. Currently it only checks the watermarks which is crude.
2108 */
2109static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
2110				   unsigned long nr_migrate_pages)
2111{
2112	int z;
2113
2114	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
2115		struct zone *zone = pgdat->node_zones + z;
2116
2117		if (!managed_zone(zone))
2118			continue;
2119
2120		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
2121		if (!zone_watermark_ok(zone, 0,
2122				       high_wmark_pages(zone) +
2123				       nr_migrate_pages,
2124				       ZONE_MOVABLE, 0))
2125			continue;
2126		return true;
2127	}
2128	return false;
2129}
2130
2131static struct page *alloc_misplaced_dst_page(struct page *page,
2132					   unsigned long data)
2133{
2134	int nid = (int) data;
2135	int order = compound_order(page);
2136	gfp_t gfp = __GFP_THISNODE;
2137	struct folio *new;
2138
2139	if (order > 0)
2140		gfp |= GFP_TRANSHUGE_LIGHT;
2141	else {
2142		gfp |= GFP_HIGHUSER_MOVABLE | __GFP_NOMEMALLOC | __GFP_NORETRY |
2143			__GFP_NOWARN;
2144		gfp &= ~__GFP_RECLAIM;
2145	}
2146	new = __folio_alloc_node(gfp, order, nid);
2147
2148	return &new->page;
 
 
 
 
 
 
2149}
2150
2151static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
2152{
2153	int nr_pages = thp_nr_pages(page);
2154	int order = compound_order(page);
2155
2156	VM_BUG_ON_PAGE(order && !PageTransHuge(page), page);
2157
2158	/* Do not migrate THP mapped by multiple processes */
2159	if (PageTransHuge(page) && total_mapcount(page) > 1)
2160		return 0;
2161
2162	/* Avoid migrating to a node that is nearly full */
2163	if (!migrate_balanced_pgdat(pgdat, nr_pages)) {
2164		int z;
2165
2166		if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING))
2167			return 0;
2168		for (z = pgdat->nr_zones - 1; z >= 0; z--) {
2169			if (managed_zone(pgdat->node_zones + z))
2170				break;
2171		}
2172		wakeup_kswapd(pgdat->node_zones + z, 0, order, ZONE_MOVABLE);
2173		return 0;
2174	}
2175
2176	if (isolate_lru_page(page))
2177		return 0;
2178
2179	mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_is_file_lru(page),
2180			    nr_pages);
 
 
 
 
 
 
 
 
 
 
 
 
 
2181
2182	/*
2183	 * Isolating the page has taken another reference, so the
2184	 * caller's reference can be safely dropped without the page
2185	 * disappearing underneath us during migration.
2186	 */
2187	put_page(page);
2188	return 1;
2189}
2190
 
 
 
 
 
 
2191/*
2192 * Attempt to migrate a misplaced page to the specified destination
2193 * node. Caller is expected to have an elevated reference count on
2194 * the page that will be dropped by this function before returning.
2195 */
2196int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
2197			   int node)
2198{
2199	pg_data_t *pgdat = NODE_DATA(node);
2200	int isolated;
2201	int nr_remaining;
2202	unsigned int nr_succeeded;
2203	LIST_HEAD(migratepages);
2204	int nr_pages = thp_nr_pages(page);
2205
2206	/*
2207	 * Don't migrate file pages that are mapped in multiple processes
2208	 * with execute permissions as they are probably shared libraries.
2209	 */
2210	if (page_mapcount(page) != 1 && page_is_file_lru(page) &&
2211	    (vma->vm_flags & VM_EXEC))
2212		goto out;
2213
2214	/*
2215	 * Also do not migrate dirty pages as not all filesystems can move
2216	 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
2217	 */
2218	if (page_is_file_lru(page) && PageDirty(page))
2219		goto out;
2220
2221	isolated = numamigrate_isolate_page(pgdat, page);
2222	if (!isolated)
2223		goto out;
2224
2225	list_add(&page->lru, &migratepages);
2226	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
2227				     NULL, node, MIGRATE_ASYNC,
2228				     MR_NUMA_MISPLACED, &nr_succeeded);
2229	if (nr_remaining) {
2230		if (!list_empty(&migratepages)) {
2231			list_del(&page->lru);
2232			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
2233					page_is_file_lru(page), -nr_pages);
2234			putback_lru_page(page);
2235		}
2236		isolated = 0;
2237	}
2238	if (nr_succeeded) {
2239		count_vm_numa_events(NUMA_PAGE_MIGRATE, nr_succeeded);
2240		if (!node_is_toptier(page_to_nid(page)) && node_is_toptier(node))
2241			mod_node_page_state(pgdat, PGPROMOTE_SUCCESS,
2242					    nr_succeeded);
2243	}
2244	BUG_ON(!list_empty(&migratepages));
2245	return isolated;
2246
2247out:
2248	put_page(page);
2249	return 0;
2250}
2251#endif /* CONFIG_NUMA_BALANCING */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2252#endif /* CONFIG_NUMA */
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Memory Migration functionality - linux/mm/migrate.c
   4 *
   5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
   6 *
   7 * Page migration was first developed in the context of the memory hotplug
   8 * project. The main authors of the migration code are:
   9 *
  10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
  11 * Hirokazu Takahashi <taka@valinux.co.jp>
  12 * Dave Hansen <haveblue@us.ibm.com>
  13 * Christoph Lameter
  14 */
  15
  16#include <linux/migrate.h>
  17#include <linux/export.h>
  18#include <linux/swap.h>
  19#include <linux/swapops.h>
  20#include <linux/pagemap.h>
  21#include <linux/buffer_head.h>
  22#include <linux/mm_inline.h>
  23#include <linux/nsproxy.h>
  24#include <linux/pagevec.h>
  25#include <linux/ksm.h>
  26#include <linux/rmap.h>
  27#include <linux/topology.h>
  28#include <linux/cpu.h>
  29#include <linux/cpuset.h>
  30#include <linux/writeback.h>
  31#include <linux/mempolicy.h>
  32#include <linux/vmalloc.h>
  33#include <linux/security.h>
  34#include <linux/backing-dev.h>
  35#include <linux/compaction.h>
  36#include <linux/syscalls.h>
  37#include <linux/compat.h>
  38#include <linux/hugetlb.h>
  39#include <linux/hugetlb_cgroup.h>
  40#include <linux/gfp.h>
  41#include <linux/pagewalk.h>
  42#include <linux/pfn_t.h>
  43#include <linux/memremap.h>
  44#include <linux/userfaultfd_k.h>
  45#include <linux/balloon_compaction.h>
  46#include <linux/mmu_notifier.h>
  47#include <linux/page_idle.h>
  48#include <linux/page_owner.h>
  49#include <linux/sched/mm.h>
  50#include <linux/ptrace.h>
  51#include <linux/oom.h>
 
 
 
 
  52
  53#include <asm/tlbflush.h>
  54
  55#define CREATE_TRACE_POINTS
  56#include <trace/events/migrate.h>
  57
  58#include "internal.h"
  59
  60/*
  61 * migrate_prep() needs to be called before we start compiling a list of pages
  62 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
  63 * undesirable, use migrate_prep_local()
  64 */
  65int migrate_prep(void)
  66{
  67	/*
  68	 * Clear the LRU lists so pages can be isolated.
  69	 * Note that pages may be moved off the LRU after we have
  70	 * drained them. Those pages will fail to migrate like other
  71	 * pages that may be busy.
  72	 */
  73	lru_add_drain_all();
  74
  75	return 0;
  76}
  77
  78/* Do the necessary work of migrate_prep but not if it involves other CPUs */
  79int migrate_prep_local(void)
  80{
  81	lru_add_drain();
  82
  83	return 0;
  84}
  85
  86int isolate_movable_page(struct page *page, isolate_mode_t mode)
  87{
  88	struct address_space *mapping;
  89
  90	/*
  91	 * Avoid burning cycles with pages that are yet under __free_pages(),
  92	 * or just got freed under us.
  93	 *
  94	 * In case we 'win' a race for a movable page being freed under us and
  95	 * raise its refcount preventing __free_pages() from doing its job
  96	 * the put_page() at the end of this block will take care of
  97	 * release this page, thus avoiding a nasty leakage.
  98	 */
  99	if (unlikely(!get_page_unless_zero(page)))
 100		goto out;
 101
 
 
 
 
 102	/*
 103	 * Check PageMovable before holding a PG_lock because page's owner
 104	 * assumes anybody doesn't touch PG_lock of newly allocated page
 105	 * so unconditionally grabbing the lock ruins page's owner side.
 106	 */
 107	if (unlikely(!__PageMovable(page)))
 108		goto out_putpage;
 
 
 
 
 
 109	/*
 110	 * As movable pages are not isolated from LRU lists, concurrent
 111	 * compaction threads can race against page migration functions
 112	 * as well as race against the releasing a page.
 113	 *
 114	 * In order to avoid having an already isolated movable page
 115	 * being (wrongly) re-isolated while it is under migration,
 116	 * or to avoid attempting to isolate pages being released,
 117	 * lets be sure we have the page lock
 118	 * before proceeding with the movable page isolation steps.
 119	 */
 120	if (unlikely(!trylock_page(page)))
 121		goto out_putpage;
 122
 123	if (!PageMovable(page) || PageIsolated(page))
 124		goto out_no_isolated;
 125
 126	mapping = page_mapping(page);
 127	VM_BUG_ON_PAGE(!mapping, page);
 128
 129	if (!mapping->a_ops->isolate_page(page, mode))
 130		goto out_no_isolated;
 131
 132	/* Driver shouldn't use PG_isolated bit of page->flags */
 133	WARN_ON_ONCE(PageIsolated(page));
 134	__SetPageIsolated(page);
 135	unlock_page(page);
 136
 137	return 0;
 138
 139out_no_isolated:
 140	unlock_page(page);
 141out_putpage:
 142	put_page(page);
 143out:
 144	return -EBUSY;
 145}
 146
 147/* It should be called on page which is PG_movable */
 148void putback_movable_page(struct page *page)
 149{
 150	struct address_space *mapping;
 151
 152	VM_BUG_ON_PAGE(!PageLocked(page), page);
 153	VM_BUG_ON_PAGE(!PageMovable(page), page);
 154	VM_BUG_ON_PAGE(!PageIsolated(page), page);
 155
 156	mapping = page_mapping(page);
 157	mapping->a_ops->putback_page(page);
 158	__ClearPageIsolated(page);
 159}
 160
 161/*
 162 * Put previously isolated pages back onto the appropriate lists
 163 * from where they were once taken off for compaction/migration.
 164 *
 165 * This function shall be used whenever the isolated pageset has been
 166 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
 167 * and isolate_huge_page().
 168 */
 169void putback_movable_pages(struct list_head *l)
 170{
 171	struct page *page;
 172	struct page *page2;
 173
 174	list_for_each_entry_safe(page, page2, l, lru) {
 175		if (unlikely(PageHuge(page))) {
 176			putback_active_hugepage(page);
 177			continue;
 178		}
 179		list_del(&page->lru);
 180		/*
 181		 * We isolated non-lru movable page so here we can use
 182		 * __PageMovable because LRU page's mapping cannot have
 183		 * PAGE_MAPPING_MOVABLE.
 184		 */
 185		if (unlikely(__PageMovable(page))) {
 186			VM_BUG_ON_PAGE(!PageIsolated(page), page);
 187			lock_page(page);
 188			if (PageMovable(page))
 189				putback_movable_page(page);
 190			else
 191				__ClearPageIsolated(page);
 192			unlock_page(page);
 193			put_page(page);
 194		} else {
 195			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
 196					page_is_file_lru(page), -thp_nr_pages(page));
 197			putback_lru_page(page);
 198		}
 199	}
 200}
 201
 202/*
 203 * Restore a potential migration pte to a working pte entry
 204 */
 205static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
 206				 unsigned long addr, void *old)
 207{
 208	struct page_vma_mapped_walk pvmw = {
 209		.page = old,
 210		.vma = vma,
 211		.address = addr,
 212		.flags = PVMW_SYNC | PVMW_MIGRATION,
 213	};
 214	struct page *new;
 215	pte_t pte;
 216	swp_entry_t entry;
 217
 218	VM_BUG_ON_PAGE(PageTail(page), page);
 219	while (page_vma_mapped_walk(&pvmw)) {
 220		if (PageKsm(page))
 221			new = page;
 222		else
 223			new = page - pvmw.page->index +
 224				linear_page_index(vma, pvmw.address);
 
 
 
 
 
 225
 226#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
 227		/* PMD-mapped THP migration entry */
 228		if (!pvmw.pte) {
 229			VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
 
 230			remove_migration_pmd(&pvmw, new);
 231			continue;
 232		}
 233#endif
 234
 235		get_page(new);
 236		pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
 237		if (pte_swp_soft_dirty(*pvmw.pte))
 238			pte = pte_mksoft_dirty(pte);
 239
 240		/*
 241		 * Recheck VMA as permissions can change since migration started
 242		 */
 243		entry = pte_to_swp_entry(*pvmw.pte);
 244		if (is_write_migration_entry(entry))
 
 
 
 
 245			pte = maybe_mkwrite(pte, vma);
 246		else if (pte_swp_uffd_wp(*pvmw.pte))
 247			pte = pte_mkuffd_wp(pte);
 
 
 
 
 
 248
 249		if (unlikely(is_device_private_page(new))) {
 250			entry = make_device_private_entry(new, pte_write(pte));
 
 
 
 
 
 251			pte = swp_entry_to_pte(entry);
 252			if (pte_swp_soft_dirty(*pvmw.pte))
 253				pte = pte_swp_mksoft_dirty(pte);
 254			if (pte_swp_uffd_wp(*pvmw.pte))
 255				pte = pte_swp_mkuffd_wp(pte);
 256		}
 257
 258#ifdef CONFIG_HUGETLB_PAGE
 259		if (PageHuge(new)) {
 
 
 260			pte = pte_mkhuge(pte);
 261			pte = arch_make_huge_pte(pte, vma, new, 0);
 
 
 
 
 
 262			set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
 263			if (PageAnon(new))
 264				hugepage_add_anon_rmap(new, vma, pvmw.address);
 265			else
 266				page_dup_rmap(new, true);
 267		} else
 268#endif
 269		{
 
 
 
 
 
 270			set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
 271
 272			if (PageAnon(new))
 273				page_add_anon_rmap(new, vma, pvmw.address, false);
 274			else
 275				page_add_file_rmap(new, false);
 276		}
 277		if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
 278			mlock_vma_page(new);
 279
 280		if (PageTransHuge(page) && PageMlocked(page))
 281			clear_page_mlock(page);
 282
 283		/* No need to invalidate - it was non-present before */
 284		update_mmu_cache(vma, pvmw.address, pvmw.pte);
 285	}
 286
 287	return true;
 288}
 289
 290/*
 291 * Get rid of all migration entries and replace them by
 292 * references to the indicated page.
 293 */
 294void remove_migration_ptes(struct page *old, struct page *new, bool locked)
 295{
 296	struct rmap_walk_control rwc = {
 297		.rmap_one = remove_migration_pte,
 298		.arg = old,
 299	};
 300
 301	if (locked)
 302		rmap_walk_locked(new, &rwc);
 303	else
 304		rmap_walk(new, &rwc);
 305}
 306
 307/*
 308 * Something used the pte of a page under migration. We need to
 309 * get to the page and wait until migration is finished.
 310 * When we return from this function the fault will be retried.
 311 */
 312void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
 313				spinlock_t *ptl)
 314{
 315	pte_t pte;
 316	swp_entry_t entry;
 317	struct page *page;
 318
 319	spin_lock(ptl);
 320	pte = *ptep;
 321	if (!is_swap_pte(pte))
 322		goto out;
 323
 324	entry = pte_to_swp_entry(pte);
 325	if (!is_migration_entry(entry))
 326		goto out;
 327
 328	page = migration_entry_to_page(entry);
 329
 330	/*
 331	 * Once page cache replacement of page migration started, page_count
 332	 * is zero; but we must not call put_and_wait_on_page_locked() without
 333	 * a ref. Use get_page_unless_zero(), and just fault again if it fails.
 334	 */
 335	if (!get_page_unless_zero(page))
 336		goto out;
 337	pte_unmap_unlock(ptep, ptl);
 338	put_and_wait_on_page_locked(page);
 339	return;
 340out:
 341	pte_unmap_unlock(ptep, ptl);
 342}
 343
 344void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
 345				unsigned long address)
 346{
 347	spinlock_t *ptl = pte_lockptr(mm, pmd);
 348	pte_t *ptep = pte_offset_map(pmd, address);
 349	__migration_entry_wait(mm, ptep, ptl);
 350}
 351
 352void migration_entry_wait_huge(struct vm_area_struct *vma,
 353		struct mm_struct *mm, pte_t *pte)
 
 
 
 
 
 
 
 
 
 
 
 
 
 354{
 355	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
 356	__migration_entry_wait(mm, pte, ptl);
 
 357}
 
 358
 359#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
 360void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
 361{
 362	spinlock_t *ptl;
 363	struct page *page;
 364
 365	ptl = pmd_lock(mm, pmd);
 366	if (!is_pmd_migration_entry(*pmd))
 367		goto unlock;
 368	page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
 369	if (!get_page_unless_zero(page))
 370		goto unlock;
 371	spin_unlock(ptl);
 372	put_and_wait_on_page_locked(page);
 373	return;
 374unlock:
 375	spin_unlock(ptl);
 376}
 377#endif
 378
 379static int expected_page_refs(struct address_space *mapping, struct page *page)
 
 380{
 381	int expected_count = 1;
 382
 383	/*
 384	 * Device public or private pages have an extra refcount as they are
 385	 * ZONE_DEVICE pages.
 386	 */
 387	expected_count += is_device_private_page(page);
 388	if (mapping)
 389		expected_count += thp_nr_pages(page) + page_has_private(page);
 390
 391	return expected_count;
 392}
 393
 394/*
 395 * Replace the page in the mapping.
 396 *
 397 * The number of remaining references must be:
 398 * 1 for anonymous pages without a mapping
 399 * 2 for pages with a mapping
 400 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
 401 */
 402int migrate_page_move_mapping(struct address_space *mapping,
 403		struct page *newpage, struct page *page, int extra_count)
 404{
 405	XA_STATE(xas, &mapping->i_pages, page_index(page));
 406	struct zone *oldzone, *newzone;
 407	int dirty;
 408	int expected_count = expected_page_refs(mapping, page) + extra_count;
 
 409
 410	if (!mapping) {
 411		/* Anonymous page without mapping */
 412		if (page_count(page) != expected_count)
 413			return -EAGAIN;
 414
 415		/* No turning back from here */
 416		newpage->index = page->index;
 417		newpage->mapping = page->mapping;
 418		if (PageSwapBacked(page))
 419			__SetPageSwapBacked(newpage);
 420
 421		return MIGRATEPAGE_SUCCESS;
 422	}
 423
 424	oldzone = page_zone(page);
 425	newzone = page_zone(newpage);
 426
 427	xas_lock_irq(&xas);
 428	if (page_count(page) != expected_count || xas_load(&xas) != page) {
 429		xas_unlock_irq(&xas);
 430		return -EAGAIN;
 431	}
 432
 433	if (!page_ref_freeze(page, expected_count)) {
 434		xas_unlock_irq(&xas);
 435		return -EAGAIN;
 436	}
 437
 438	/*
 439	 * Now we know that no one else is looking at the page:
 440	 * no turning back from here.
 441	 */
 442	newpage->index = page->index;
 443	newpage->mapping = page->mapping;
 444	page_ref_add(newpage, thp_nr_pages(page)); /* add cache reference */
 445	if (PageSwapBacked(page)) {
 446		__SetPageSwapBacked(newpage);
 447		if (PageSwapCache(page)) {
 448			SetPageSwapCache(newpage);
 449			set_page_private(newpage, page_private(page));
 450		}
 451	} else {
 452		VM_BUG_ON_PAGE(PageSwapCache(page), page);
 453	}
 454
 455	/* Move dirty while page refs frozen and newpage not yet exposed */
 456	dirty = PageDirty(page);
 457	if (dirty) {
 458		ClearPageDirty(page);
 459		SetPageDirty(newpage);
 460	}
 461
 462	xas_store(&xas, newpage);
 463	if (PageTransHuge(page)) {
 464		int i;
 465
 466		for (i = 1; i < HPAGE_PMD_NR; i++) {
 467			xas_next(&xas);
 468			xas_store(&xas, newpage);
 469		}
 470	}
 471
 472	/*
 473	 * Drop cache reference from old page by unfreezing
 474	 * to one less reference.
 475	 * We know this isn't the last reference.
 476	 */
 477	page_ref_unfreeze(page, expected_count - thp_nr_pages(page));
 478
 479	xas_unlock(&xas);
 480	/* Leave irq disabled to prevent preemption while updating stats */
 481
 482	/*
 483	 * If moved to a different zone then also account
 484	 * the page for that zone. Other VM counters will be
 485	 * taken care of when we establish references to the
 486	 * new page and drop references to the old page.
 487	 *
 488	 * Note that anonymous pages are accounted for
 489	 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
 490	 * are mapped to swap space.
 491	 */
 492	if (newzone != oldzone) {
 493		struct lruvec *old_lruvec, *new_lruvec;
 494		struct mem_cgroup *memcg;
 495
 496		memcg = page_memcg(page);
 497		old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
 498		new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);
 499
 500		__dec_lruvec_state(old_lruvec, NR_FILE_PAGES);
 501		__inc_lruvec_state(new_lruvec, NR_FILE_PAGES);
 502		if (PageSwapBacked(page) && !PageSwapCache(page)) {
 503			__dec_lruvec_state(old_lruvec, NR_SHMEM);
 504			__inc_lruvec_state(new_lruvec, NR_SHMEM);
 505		}
 506		if (dirty && mapping_cap_account_dirty(mapping)) {
 507			__dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
 508			__dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
 509			__inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
 510			__inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
 
 
 
 
 
 
 511		}
 512	}
 513	local_irq_enable();
 514
 515	return MIGRATEPAGE_SUCCESS;
 516}
 517EXPORT_SYMBOL(migrate_page_move_mapping);
 518
 519/*
 520 * The expected number of remaining references is the same as that
 521 * of migrate_page_move_mapping().
 522 */
 523int migrate_huge_page_move_mapping(struct address_space *mapping,
 524				   struct page *newpage, struct page *page)
 525{
 526	XA_STATE(xas, &mapping->i_pages, page_index(page));
 527	int expected_count;
 528
 529	xas_lock_irq(&xas);
 530	expected_count = 2 + page_has_private(page);
 531	if (page_count(page) != expected_count || xas_load(&xas) != page) {
 532		xas_unlock_irq(&xas);
 533		return -EAGAIN;
 534	}
 535
 536	if (!page_ref_freeze(page, expected_count)) {
 537		xas_unlock_irq(&xas);
 538		return -EAGAIN;
 539	}
 540
 541	newpage->index = page->index;
 542	newpage->mapping = page->mapping;
 543
 544	get_page(newpage);
 545
 546	xas_store(&xas, newpage);
 547
 548	page_ref_unfreeze(page, expected_count - 1);
 549
 550	xas_unlock_irq(&xas);
 551
 552	return MIGRATEPAGE_SUCCESS;
 553}
 554
 555/*
 556 * Gigantic pages are so large that we do not guarantee that page++ pointer
 557 * arithmetic will work across the entire page.  We need something more
 558 * specialized.
 559 */
 560static void __copy_gigantic_page(struct page *dst, struct page *src,
 561				int nr_pages)
 562{
 563	int i;
 564	struct page *dst_base = dst;
 565	struct page *src_base = src;
 566
 567	for (i = 0; i < nr_pages; ) {
 568		cond_resched();
 569		copy_highpage(dst, src);
 570
 571		i++;
 572		dst = mem_map_next(dst, dst_base, i);
 573		src = mem_map_next(src, src_base, i);
 574	}
 575}
 576
 577static void copy_huge_page(struct page *dst, struct page *src)
 578{
 579	int i;
 580	int nr_pages;
 581
 582	if (PageHuge(src)) {
 583		/* hugetlbfs page */
 584		struct hstate *h = page_hstate(src);
 585		nr_pages = pages_per_huge_page(h);
 586
 587		if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
 588			__copy_gigantic_page(dst, src, nr_pages);
 589			return;
 590		}
 591	} else {
 592		/* thp page */
 593		BUG_ON(!PageTransHuge(src));
 594		nr_pages = thp_nr_pages(src);
 595	}
 596
 597	for (i = 0; i < nr_pages; i++) {
 598		cond_resched();
 599		copy_highpage(dst + i, src + i);
 600	}
 601}
 602
 603/*
 604 * Copy the page to its new location
 605 */
 606void migrate_page_states(struct page *newpage, struct page *page)
 607{
 608	int cpupid;
 609
 610	if (PageError(page))
 611		SetPageError(newpage);
 612	if (PageReferenced(page))
 613		SetPageReferenced(newpage);
 614	if (PageUptodate(page))
 615		SetPageUptodate(newpage);
 616	if (TestClearPageActive(page)) {
 617		VM_BUG_ON_PAGE(PageUnevictable(page), page);
 618		SetPageActive(newpage);
 619	} else if (TestClearPageUnevictable(page))
 620		SetPageUnevictable(newpage);
 621	if (PageWorkingset(page))
 622		SetPageWorkingset(newpage);
 623	if (PageChecked(page))
 624		SetPageChecked(newpage);
 625	if (PageMappedToDisk(page))
 626		SetPageMappedToDisk(newpage);
 627
 628	/* Move dirty on pages not done by migrate_page_move_mapping() */
 629	if (PageDirty(page))
 630		SetPageDirty(newpage);
 631
 632	if (page_is_young(page))
 633		set_page_young(newpage);
 634	if (page_is_idle(page))
 635		set_page_idle(newpage);
 
 
 
 
 
 
 636
 637	/*
 638	 * Copy NUMA information to the new page, to prevent over-eager
 639	 * future migrations of this same page.
 640	 */
 641	cpupid = page_cpupid_xchg_last(page, -1);
 642	page_cpupid_xchg_last(newpage, cpupid);
 
 
 
 
 
 
 
 643
 644	ksm_migrate_page(newpage, page);
 
 
 
 
 
 645	/*
 646	 * Please do not reorder this without considering how mm/ksm.c's
 647	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
 648	 */
 649	if (PageSwapCache(page))
 650		ClearPageSwapCache(page);
 651	ClearPagePrivate(page);
 652	set_page_private(page, 0);
 
 
 
 653
 654	/*
 655	 * If any waiters have accumulated on the new page then
 656	 * wake them up.
 657	 */
 658	if (PageWriteback(newpage))
 659		end_page_writeback(newpage);
 660
 661	/*
 662	 * PG_readahead shares the same bit with PG_reclaim.  The above
 663	 * end_page_writeback() may clear PG_readahead mistakenly, so set the
 664	 * bit after that.
 665	 */
 666	if (PageReadahead(page))
 667		SetPageReadahead(newpage);
 668
 669	copy_page_owner(page, newpage);
 670
 671	if (!PageHuge(page))
 672		mem_cgroup_migrate(page, newpage);
 673}
 674EXPORT_SYMBOL(migrate_page_states);
 675
 676void migrate_page_copy(struct page *newpage, struct page *page)
 677{
 678	if (PageHuge(page) || PageTransHuge(page))
 679		copy_huge_page(newpage, page);
 680	else
 681		copy_highpage(newpage, page);
 682
 683	migrate_page_states(newpage, page);
 684}
 685EXPORT_SYMBOL(migrate_page_copy);
 686
 687/************************************************************
 688 *                    Migration functions
 689 ***********************************************************/
 690
 691/*
 692 * Common logic to directly migrate a single LRU page suitable for
 693 * pages that do not use PagePrivate/PagePrivate2.
 694 *
 695 * Pages are locked upon entry and exit.
 696 */
 697int migrate_page(struct address_space *mapping,
 698		struct page *newpage, struct page *page,
 699		enum migrate_mode mode)
 700{
 701	int rc;
 702
 703	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
 704
 705	rc = migrate_page_move_mapping(mapping, newpage, page, 0);
 706
 707	if (rc != MIGRATEPAGE_SUCCESS)
 708		return rc;
 709
 710	if (mode != MIGRATE_SYNC_NO_COPY)
 711		migrate_page_copy(newpage, page);
 712	else
 713		migrate_page_states(newpage, page);
 714	return MIGRATEPAGE_SUCCESS;
 715}
 716EXPORT_SYMBOL(migrate_page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 717
 718#ifdef CONFIG_BLOCK
 719/* Returns true if all buffers are successfully locked */
 720static bool buffer_migrate_lock_buffers(struct buffer_head *head,
 721							enum migrate_mode mode)
 722{
 723	struct buffer_head *bh = head;
 724
 725	/* Simple case, sync compaction */
 726	if (mode != MIGRATE_ASYNC) {
 727		do {
 728			lock_buffer(bh);
 729			bh = bh->b_this_page;
 730
 731		} while (bh != head);
 732
 733		return true;
 734	}
 735
 736	/* async case, we cannot block on lock_buffer so use trylock_buffer */
 737	do {
 738		if (!trylock_buffer(bh)) {
 739			/*
 740			 * We failed to lock the buffer and cannot stall in
 741			 * async migration. Release the taken locks
 742			 */
 743			struct buffer_head *failed_bh = bh;
 744			bh = head;
 745			while (bh != failed_bh) {
 746				unlock_buffer(bh);
 747				bh = bh->b_this_page;
 748			}
 749			return false;
 750		}
 751
 752		bh = bh->b_this_page;
 753	} while (bh != head);
 754	return true;
 755}
 756
 757static int __buffer_migrate_page(struct address_space *mapping,
 758		struct page *newpage, struct page *page, enum migrate_mode mode,
 759		bool check_refs)
 760{
 761	struct buffer_head *bh, *head;
 762	int rc;
 763	int expected_count;
 764
 765	if (!page_has_buffers(page))
 766		return migrate_page(mapping, newpage, page, mode);
 
 767
 768	/* Check whether page does not have extra refs before we do more work */
 769	expected_count = expected_page_refs(mapping, page);
 770	if (page_count(page) != expected_count)
 771		return -EAGAIN;
 772
 773	head = page_buffers(page);
 774	if (!buffer_migrate_lock_buffers(head, mode))
 775		return -EAGAIN;
 776
 777	if (check_refs) {
 778		bool busy;
 779		bool invalidated = false;
 780
 781recheck_buffers:
 782		busy = false;
 783		spin_lock(&mapping->private_lock);
 784		bh = head;
 785		do {
 786			if (atomic_read(&bh->b_count)) {
 787				busy = true;
 788				break;
 789			}
 790			bh = bh->b_this_page;
 791		} while (bh != head);
 792		if (busy) {
 793			if (invalidated) {
 794				rc = -EAGAIN;
 795				goto unlock_buffers;
 796			}
 797			spin_unlock(&mapping->private_lock);
 798			invalidate_bh_lrus();
 799			invalidated = true;
 800			goto recheck_buffers;
 801		}
 802	}
 803
 804	rc = migrate_page_move_mapping(mapping, newpage, page, 0);
 805	if (rc != MIGRATEPAGE_SUCCESS)
 806		goto unlock_buffers;
 807
 808	attach_page_private(newpage, detach_page_private(page));
 809
 810	bh = head;
 811	do {
 812		set_bh_page(bh, newpage, bh_offset(bh));
 813		bh = bh->b_this_page;
 814
 815	} while (bh != head);
 816
 817	if (mode != MIGRATE_SYNC_NO_COPY)
 818		migrate_page_copy(newpage, page);
 819	else
 820		migrate_page_states(newpage, page);
 821
 822	rc = MIGRATEPAGE_SUCCESS;
 823unlock_buffers:
 824	if (check_refs)
 825		spin_unlock(&mapping->private_lock);
 826	bh = head;
 827	do {
 828		unlock_buffer(bh);
 829		bh = bh->b_this_page;
 830
 831	} while (bh != head);
 832
 833	return rc;
 834}
 835
 836/*
 837 * Migration function for pages with buffers. This function can only be used
 838 * if the underlying filesystem guarantees that no other references to "page"
 839 * exist. For example attached buffer heads are accessed only under page lock.
 
 
 
 
 
 
 
 
 
 
 840 */
 841int buffer_migrate_page(struct address_space *mapping,
 842		struct page *newpage, struct page *page, enum migrate_mode mode)
 843{
 844	return __buffer_migrate_page(mapping, newpage, page, mode, false);
 845}
 846EXPORT_SYMBOL(buffer_migrate_page);
 847
 848/*
 849 * Same as above except that this variant is more careful and checks that there
 850 * are also no buffer head references. This function is the right one for
 851 * mappings where buffer heads are directly looked up and referenced (such as
 852 * block device mappings).
 
 
 
 
 
 
 
 
 853 */
 854int buffer_migrate_page_norefs(struct address_space *mapping,
 855		struct page *newpage, struct page *page, enum migrate_mode mode)
 856{
 857	return __buffer_migrate_page(mapping, newpage, page, mode, true);
 858}
 
 859#endif
 860
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 861/*
 862 * Writeback a page to clean the dirty state
 863 */
 864static int writeout(struct address_space *mapping, struct page *page)
 865{
 866	struct writeback_control wbc = {
 867		.sync_mode = WB_SYNC_NONE,
 868		.nr_to_write = 1,
 869		.range_start = 0,
 870		.range_end = LLONG_MAX,
 871		.for_reclaim = 1
 872	};
 873	int rc;
 874
 875	if (!mapping->a_ops->writepage)
 876		/* No write method for the address space */
 877		return -EINVAL;
 878
 879	if (!clear_page_dirty_for_io(page))
 880		/* Someone else already triggered a write */
 881		return -EAGAIN;
 882
 883	/*
 884	 * A dirty page may imply that the underlying filesystem has
 885	 * the page on some queue. So the page must be clean for
 886	 * migration. Writeout may mean we loose the lock and the
 887	 * page state is no longer what we checked for earlier.
 888	 * At this point we know that the migration attempt cannot
 889	 * be successful.
 890	 */
 891	remove_migration_ptes(page, page, false);
 892
 893	rc = mapping->a_ops->writepage(page, &wbc);
 894
 895	if (rc != AOP_WRITEPAGE_ACTIVATE)
 896		/* unlocked. Relock */
 897		lock_page(page);
 898
 899	return (rc < 0) ? -EIO : -EAGAIN;
 900}
 901
 902/*
 903 * Default handling if a filesystem does not provide a migration function.
 904 */
 905static int fallback_migrate_page(struct address_space *mapping,
 906	struct page *newpage, struct page *page, enum migrate_mode mode)
 907{
 908	if (PageDirty(page)) {
 909		/* Only writeback pages in full synchronous migration */
 910		switch (mode) {
 911		case MIGRATE_SYNC:
 912		case MIGRATE_SYNC_NO_COPY:
 913			break;
 914		default:
 915			return -EBUSY;
 916		}
 917		return writeout(mapping, page);
 918	}
 919
 920	/*
 921	 * Buffers may be managed in a filesystem specific way.
 922	 * We must have no buffers or drop them.
 923	 */
 924	if (page_has_private(page) &&
 925	    !try_to_release_page(page, GFP_KERNEL))
 926		return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
 927
 928	return migrate_page(mapping, newpage, page, mode);
 929}
 930
 931/*
 932 * Move a page to a newly allocated page
 933 * The page is locked and all ptes have been successfully removed.
 934 *
 935 * The new page will have replaced the old page if this function
 936 * is successful.
 937 *
 938 * Return value:
 939 *   < 0 - error code
 940 *  MIGRATEPAGE_SUCCESS - success
 941 */
 942static int move_to_new_page(struct page *newpage, struct page *page,
 943				enum migrate_mode mode)
 944{
 945	struct address_space *mapping;
 946	int rc = -EAGAIN;
 947	bool is_lru = !__PageMovable(page);
 948
 949	VM_BUG_ON_PAGE(!PageLocked(page), page);
 950	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
 951
 952	mapping = page_mapping(page);
 
 953
 954	if (likely(is_lru)) {
 955		if (!mapping)
 956			rc = migrate_page(mapping, newpage, page, mode);
 957		else if (mapping->a_ops->migratepage)
 958			/*
 959			 * Most pages have a mapping and most filesystems
 960			 * provide a migratepage callback. Anonymous pages
 961			 * are part of swap space which also has its own
 962			 * migratepage callback. This is the most common path
 963			 * for page migration.
 964			 */
 965			rc = mapping->a_ops->migratepage(mapping, newpage,
 966							page, mode);
 967		else
 968			rc = fallback_migrate_page(mapping, newpage,
 969							page, mode);
 970	} else {
 
 
 971		/*
 972		 * In case of non-lru page, it could be released after
 973		 * isolation step. In that case, we shouldn't try migration.
 974		 */
 975		VM_BUG_ON_PAGE(!PageIsolated(page), page);
 976		if (!PageMovable(page)) {
 977			rc = MIGRATEPAGE_SUCCESS;
 978			__ClearPageIsolated(page);
 979			goto out;
 980		}
 981
 982		rc = mapping->a_ops->migratepage(mapping, newpage,
 983						page, mode);
 984		WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
 985			!PageIsolated(page));
 986	}
 987
 988	/*
 989	 * When successful, old pagecache page->mapping must be cleared before
 990	 * page is freed; but stats require that PageAnon be left as PageAnon.
 991	 */
 992	if (rc == MIGRATEPAGE_SUCCESS) {
 993		if (__PageMovable(page)) {
 994			VM_BUG_ON_PAGE(!PageIsolated(page), page);
 995
 996			/*
 997			 * We clear PG_movable under page_lock so any compactor
 998			 * cannot try to migrate this page.
 999			 */
1000			__ClearPageIsolated(page);
1001		}
1002
1003		/*
1004		 * Anonymous and movable page->mapping will be cleared by
1005		 * free_pages_prepare so don't reset it here for keeping
1006		 * the type to work PageAnon, for example.
1007		 */
1008		if (!PageMappingFlags(page))
1009			page->mapping = NULL;
1010
1011		if (likely(!is_zone_device_page(newpage)))
1012			flush_dcache_page(newpage);
1013
 
 
1014	}
1015out:
1016	return rc;
1017}
1018
1019static int __unmap_and_move(struct page *page, struct page *newpage,
1020				int force, enum migrate_mode mode)
1021{
1022	int rc = -EAGAIN;
1023	int page_was_mapped = 0;
1024	struct anon_vma *anon_vma = NULL;
1025	bool is_lru = !__PageMovable(page);
1026
1027	if (!trylock_page(page)) {
1028		if (!force || mode == MIGRATE_ASYNC)
1029			goto out;
1030
1031		/*
1032		 * It's not safe for direct compaction to call lock_page.
1033		 * For example, during page readahead pages are added locked
1034		 * to the LRU. Later, when the IO completes the pages are
1035		 * marked uptodate and unlocked. However, the queueing
1036		 * could be merging multiple pages for one bio (e.g.
1037		 * mpage_readahead). If an allocation happens for the
1038		 * second or third page, the process can end up locking
1039		 * the same page twice and deadlocking. Rather than
1040		 * trying to be clever about what pages can be locked,
1041		 * avoid the use of lock_page for direct compaction
1042		 * altogether.
1043		 */
1044		if (current->flags & PF_MEMALLOC)
1045			goto out;
1046
1047		lock_page(page);
1048	}
1049
1050	if (PageWriteback(page)) {
1051		/*
1052		 * Only in the case of a full synchronous migration is it
1053		 * necessary to wait for PageWriteback. In the async case,
1054		 * the retry loop is too short and in the sync-light case,
1055		 * the overhead of stalling is too much
1056		 */
1057		switch (mode) {
1058		case MIGRATE_SYNC:
1059		case MIGRATE_SYNC_NO_COPY:
1060			break;
1061		default:
1062			rc = -EBUSY;
1063			goto out_unlock;
1064		}
1065		if (!force)
1066			goto out_unlock;
1067		wait_on_page_writeback(page);
1068	}
1069
1070	/*
1071	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1072	 * we cannot notice that anon_vma is freed while we migrates a page.
1073	 * This get_anon_vma() delays freeing anon_vma pointer until the end
1074	 * of migration. File cache pages are no problem because of page_lock()
1075	 * File Caches may use write_page() or lock_page() in migration, then,
1076	 * just care Anon page here.
1077	 *
1078	 * Only page_get_anon_vma() understands the subtleties of
1079	 * getting a hold on an anon_vma from outside one of its mms.
1080	 * But if we cannot get anon_vma, then we won't need it anyway,
1081	 * because that implies that the anon page is no longer mapped
1082	 * (and cannot be remapped so long as we hold the page lock).
1083	 */
1084	if (PageAnon(page) && !PageKsm(page))
1085		anon_vma = page_get_anon_vma(page);
1086
1087	/*
1088	 * Block others from accessing the new page when we get around to
1089	 * establishing additional references. We are usually the only one
1090	 * holding a reference to newpage at this point. We used to have a BUG
1091	 * here if trylock_page(newpage) fails, but would like to allow for
1092	 * cases where there might be a race with the previous use of newpage.
1093	 * This is much like races on refcount of oldpage: just don't BUG().
1094	 */
1095	if (unlikely(!trylock_page(newpage)))
1096		goto out_unlock;
1097
1098	if (unlikely(!is_lru)) {
1099		rc = move_to_new_page(newpage, page, mode);
1100		goto out_unlock_both;
1101	}
1102
1103	/*
1104	 * Corner case handling:
1105	 * 1. When a new swap-cache page is read into, it is added to the LRU
1106	 * and treated as swapcache but it has no rmap yet.
1107	 * Calling try_to_unmap() against a page->mapping==NULL page will
1108	 * trigger a BUG.  So handle it here.
1109	 * 2. An orphaned page (see truncate_complete_page) might have
1110	 * fs-private metadata. The page can be picked up due to memory
1111	 * offlining.  Everywhere else except page reclaim, the page is
1112	 * invisible to the vm, so the page can not be migrated.  So try to
1113	 * free the metadata, so the page can be freed.
1114	 */
1115	if (!page->mapping) {
1116		VM_BUG_ON_PAGE(PageAnon(page), page);
1117		if (page_has_private(page)) {
1118			try_to_free_buffers(page);
1119			goto out_unlock_both;
1120		}
1121	} else if (page_mapped(page)) {
1122		/* Establish migration ptes */
1123		VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1124				page);
1125		try_to_unmap(page,
1126			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1127		page_was_mapped = 1;
1128	}
1129
1130	if (!page_mapped(page))
1131		rc = move_to_new_page(newpage, page, mode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1132
1133	if (page_was_mapped)
1134		remove_migration_ptes(page,
1135			rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1136
1137out_unlock_both:
1138	unlock_page(newpage);
1139out_unlock:
1140	/* Drop an anon_vma reference if we took one */
1141	if (anon_vma)
1142		put_anon_vma(anon_vma);
1143	unlock_page(page);
1144out:
1145	/*
1146	 * If migration is successful, decrease refcount of the newpage
1147	 * which will not free the page because new page owner increased
1148	 * refcounter. As well, if it is LRU page, add the page to LRU
1149	 * list in here. Use the old state of the isolated source page to
1150	 * determine if we migrated a LRU page. newpage was already unlocked
1151	 * and possibly modified by its owner - don't rely on the page
1152	 * state.
1153	 */
1154	if (rc == MIGRATEPAGE_SUCCESS) {
1155		if (unlikely(!is_lru))
1156			put_page(newpage);
1157		else
1158			putback_lru_page(newpage);
1159	}
1160
1161	return rc;
1162}
1163
1164/*
1165 * Obtain the lock on page, remove all ptes and migrate the page
1166 * to the newly allocated page in newpage.
1167 */
1168static int unmap_and_move(new_page_t get_new_page,
1169				   free_page_t put_new_page,
1170				   unsigned long private, struct page *page,
1171				   int force, enum migrate_mode mode,
1172				   enum migrate_reason reason)
 
1173{
 
1174	int rc = MIGRATEPAGE_SUCCESS;
1175	struct page *newpage = NULL;
1176
1177	if (!thp_migration_supported() && PageTransHuge(page))
1178		return -ENOMEM;
1179
1180	if (page_count(page) == 1) {
1181		/* page was freed from under us. So we are done. */
1182		ClearPageActive(page);
1183		ClearPageUnevictable(page);
1184		if (unlikely(__PageMovable(page))) {
1185			lock_page(page);
1186			if (!PageMovable(page))
1187				__ClearPageIsolated(page);
1188			unlock_page(page);
1189		}
1190		goto out;
1191	}
1192
1193	newpage = get_new_page(page, private);
1194	if (!newpage)
1195		return -ENOMEM;
 
1196
1197	rc = __unmap_and_move(page, newpage, force, mode);
 
1198	if (rc == MIGRATEPAGE_SUCCESS)
1199		set_page_owner_migrate_reason(newpage, reason);
1200
1201out:
1202	if (rc != -EAGAIN) {
1203		/*
1204		 * A page that has been migrated has all references
1205		 * removed and will be freed. A page that has not been
1206		 * migrated will have kept its references and be restored.
1207		 */
1208		list_del(&page->lru);
1209
1210		/*
1211		 * Compaction can migrate also non-LRU pages which are
1212		 * not accounted to NR_ISOLATED_*. They can be recognized
1213		 * as __PageMovable
1214		 */
1215		if (likely(!__PageMovable(page)))
1216			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1217					page_is_file_lru(page), -thp_nr_pages(page));
1218	}
1219
1220	/*
1221	 * If migration is successful, releases reference grabbed during
1222	 * isolation. Otherwise, restore the page to right list unless
1223	 * we want to retry.
1224	 */
1225	if (rc == MIGRATEPAGE_SUCCESS) {
1226		put_page(page);
1227		if (reason == MR_MEMORY_FAILURE) {
 
 
 
 
 
 
 
 
1228			/*
1229			 * Set PG_HWPoison on just freed page
1230			 * intentionally. Although it's rather weird,
1231			 * it's how HWPoison flag works at the moment.
1232			 */
1233			if (set_hwpoison_free_buddy_page(page))
1234				num_poisoned_pages_inc();
1235		}
1236	} else {
1237		if (rc != -EAGAIN) {
1238			if (likely(!__PageMovable(page))) {
1239				putback_lru_page(page);
1240				goto put_new;
1241			}
1242
1243			lock_page(page);
1244			if (PageMovable(page))
1245				putback_movable_page(page);
1246			else
1247				__ClearPageIsolated(page);
1248			unlock_page(page);
1249			put_page(page);
1250		}
1251put_new:
1252		if (put_new_page)
1253			put_new_page(newpage, private);
1254		else
1255			put_page(newpage);
1256	}
1257
1258	return rc;
1259}
1260
1261/*
1262 * Counterpart of unmap_and_move_page() for hugepage migration.
1263 *
1264 * This function doesn't wait the completion of hugepage I/O
1265 * because there is no race between I/O and migration for hugepage.
1266 * Note that currently hugepage I/O occurs only in direct I/O
1267 * where no lock is held and PG_writeback is irrelevant,
1268 * and writeback status of all subpages are counted in the reference
1269 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1270 * under direct I/O, the reference of the head page is 512 and a bit more.)
1271 * This means that when we try to migrate hugepage whose subpages are
1272 * doing direct I/O, some references remain after try_to_unmap() and
1273 * hugepage migration fails without data corruption.
1274 *
1275 * There is also no race when direct I/O is issued on the page under migration,
1276 * because then pte is replaced with migration swap entry and direct I/O code
1277 * will wait in the page fault for migration to complete.
1278 */
1279static int unmap_and_move_huge_page(new_page_t get_new_page,
1280				free_page_t put_new_page, unsigned long private,
1281				struct page *hpage, int force,
1282				enum migrate_mode mode, int reason)
 
1283{
 
1284	int rc = -EAGAIN;
1285	int page_was_mapped = 0;
1286	struct page *new_hpage;
1287	struct anon_vma *anon_vma = NULL;
1288	struct address_space *mapping = NULL;
1289
1290	/*
1291	 * Migratability of hugepages depends on architectures and their size.
1292	 * This check is necessary because some callers of hugepage migration
1293	 * like soft offline and memory hotremove don't walk through page
1294	 * tables or check whether the hugepage is pmd-based or not before
1295	 * kicking migration.
1296	 */
1297	if (!hugepage_migration_supported(page_hstate(hpage))) {
 
 
 
 
1298		putback_active_hugepage(hpage);
1299		return -ENOSYS;
1300	}
1301
1302	new_hpage = get_new_page(hpage, private);
1303	if (!new_hpage)
1304		return -ENOMEM;
 
1305
1306	if (!trylock_page(hpage)) {
1307		if (!force)
1308			goto out;
1309		switch (mode) {
1310		case MIGRATE_SYNC:
1311		case MIGRATE_SYNC_NO_COPY:
1312			break;
1313		default:
1314			goto out;
1315		}
1316		lock_page(hpage);
1317	}
1318
1319	/*
1320	 * Check for pages which are in the process of being freed.  Without
1321	 * page_mapping() set, hugetlbfs specific move page routine will not
1322	 * be called and we could leak usage counts for subpools.
1323	 */
1324	if (page_private(hpage) && !page_mapping(hpage)) {
1325		rc = -EBUSY;
1326		goto out_unlock;
1327	}
1328
1329	if (PageAnon(hpage))
1330		anon_vma = page_get_anon_vma(hpage);
1331
1332	if (unlikely(!trylock_page(new_hpage)))
1333		goto put_anon;
1334
1335	if (page_mapped(hpage)) {
1336		/*
1337		 * try_to_unmap could potentially call huge_pmd_unshare.
1338		 * Because of this, take semaphore in write mode here and
1339		 * set TTU_RMAP_LOCKED to let lower levels know we have
1340		 * taken the lock.
1341		 */
1342		mapping = hugetlb_page_mapping_lock_write(hpage);
1343		if (unlikely(!mapping))
1344			goto unlock_put_anon;
1345
1346		try_to_unmap(hpage,
1347			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS|
1348			TTU_RMAP_LOCKED);
 
 
 
 
1349		page_was_mapped = 1;
1350		/*
1351		 * Leave mapping locked until after subsequent call to
1352		 * remove_migration_ptes()
1353		 */
1354	}
1355
1356	if (!page_mapped(hpage))
1357		rc = move_to_new_page(new_hpage, hpage, mode);
1358
1359	if (page_was_mapped) {
1360		remove_migration_ptes(hpage,
1361			rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, true);
1362		i_mmap_unlock_write(mapping);
1363	}
1364
1365unlock_put_anon:
1366	unlock_page(new_hpage);
1367
1368put_anon:
1369	if (anon_vma)
1370		put_anon_vma(anon_vma);
1371
1372	if (rc == MIGRATEPAGE_SUCCESS) {
1373		move_hugetlb_state(hpage, new_hpage, reason);
1374		put_new_page = NULL;
1375	}
1376
1377out_unlock:
1378	unlock_page(hpage);
1379out:
1380	if (rc != -EAGAIN)
1381		putback_active_hugepage(hpage);
 
 
1382
1383	/*
1384	 * If migration was not successful and there's a freeing callback, use
1385	 * it.  Otherwise, put_page() will drop the reference grabbed during
1386	 * isolation.
1387	 */
1388	if (put_new_page)
1389		put_new_page(new_hpage, private);
1390	else
1391		putback_active_hugepage(new_hpage);
1392
1393	return rc;
1394}
1395
 
 
 
 
 
 
 
 
 
 
 
 
 
1396/*
1397 * migrate_pages - migrate the pages specified in a list, to the free pages
1398 *		   supplied as the target for the page migration
1399 *
1400 * @from:		The list of pages to be migrated.
1401 * @get_new_page:	The function used to allocate free pages to be used
1402 *			as the target of the page migration.
1403 * @put_new_page:	The function used to free target pages if migration
1404 *			fails, or NULL if no special handling is necessary.
1405 * @private:		Private data to be passed on to get_new_page()
1406 * @mode:		The migration mode that specifies the constraints for
1407 *			page migration, if any.
1408 * @reason:		The reason for page migration.
1409 *
1410 * The function returns after 10 attempts or if no pages are movable any more
1411 * because the list has become empty or no retryable pages exist any more.
1412 * The caller should call putback_movable_pages() to return pages to the LRU
1413 * or free list only if ret != 0.
1414 *
1415 * Returns the number of pages that were not migrated, or an error code.
 
 
 
 
 
1416 */
1417int migrate_pages(struct list_head *from, new_page_t get_new_page,
1418		free_page_t put_new_page, unsigned long private,
1419		enum migrate_mode mode, int reason)
1420{
1421	int retry = 1;
 
1422	int thp_retry = 1;
1423	int nr_failed = 0;
 
 
1424	int nr_succeeded = 0;
1425	int nr_thp_succeeded = 0;
 
1426	int nr_thp_failed = 0;
1427	int nr_thp_split = 0;
1428	int pass = 0;
 
1429	bool is_thp = false;
1430	struct page *page;
1431	struct page *page2;
1432	int swapwrite = current->flags & PF_SWAPWRITE;
1433	int rc, nr_subpages;
 
 
1434
1435	if (!swapwrite)
1436		current->flags |= PF_SWAPWRITE;
1437
1438	for (pass = 0; pass < 10 && (retry || thp_retry); pass++) {
 
1439		retry = 0;
 
1440		thp_retry = 0;
 
1441
1442		list_for_each_entry_safe(page, page2, from, lru) {
1443retry:
1444			/*
1445			 * THP statistics is based on the source huge page.
1446			 * Capture required information that might get lost
1447			 * during migration.
1448			 */
1449			is_thp = PageTransHuge(page) && !PageHuge(page);
1450			nr_subpages = thp_nr_pages(page);
 
1451			cond_resched();
1452
1453			if (PageHuge(page))
1454				rc = unmap_and_move_huge_page(get_new_page,
1455						put_new_page, private, page,
1456						pass > 2, mode, reason);
 
 
1457			else
1458				rc = unmap_and_move(get_new_page, put_new_page,
1459						private, page, pass > 2, mode,
1460						reason);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1461
1462			switch(rc) {
 
 
1463			case -ENOMEM:
1464				/*
1465				 * THP migration might be unsupported or the
1466				 * allocation could've failed so we should
1467				 * retry on the same page with the THP split
1468				 * to base pages.
1469				 *
1470				 * Head page is retried immediately and tail
1471				 * pages are added to the tail of the list so
1472				 * we encounter them after the rest of the list
1473				 * is processed.
1474				 */
1475				if (is_thp) {
1476					lock_page(page);
1477					rc = split_huge_page_to_list(page, from);
1478					unlock_page(page);
1479					if (!rc) {
1480						list_safe_reset_next(page, page2, lru);
1481						nr_thp_split++;
1482						goto retry;
 
 
 
 
 
 
 
 
 
 
 
 
 
1483					}
 
 
 
1484
1485					nr_thp_failed++;
1486					nr_failed += nr_subpages;
1487					goto out;
1488				}
1489				nr_failed++;
 
 
 
 
 
 
1490				goto out;
1491			case -EAGAIN:
1492				if (is_thp) {
1493					thp_retry++;
1494					break;
 
 
1495				}
1496				retry++;
1497				break;
1498			case MIGRATEPAGE_SUCCESS:
1499				if (is_thp) {
1500					nr_thp_succeeded++;
1501					nr_succeeded += nr_subpages;
1502					break;
1503				}
1504				nr_succeeded++;
1505				break;
1506			default:
1507				/*
1508				 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1509				 * unlike -EAGAIN case, the failed page is
1510				 * removed from migration page list and not
1511				 * retried in the next outer loop.
1512				 */
1513				if (is_thp) {
1514					nr_thp_failed++;
1515					nr_failed += nr_subpages;
1516					break;
 
1517				}
1518				nr_failed++;
 
1519				break;
1520			}
1521		}
1522	}
1523	nr_failed += retry + thp_retry;
 
1524	nr_thp_failed += thp_retry;
1525	rc = nr_failed;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1526out:
 
 
 
 
 
 
 
 
 
 
 
 
 
1527	count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1528	count_vm_events(PGMIGRATE_FAIL, nr_failed);
1529	count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded);
1530	count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed);
1531	count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split);
1532	trace_mm_migrate_pages(nr_succeeded, nr_failed, nr_thp_succeeded,
1533			       nr_thp_failed, nr_thp_split, mode, reason);
1534
1535	if (!swapwrite)
1536		current->flags &= ~PF_SWAPWRITE;
1537
1538	return rc;
1539}
1540
1541struct page *alloc_migration_target(struct page *page, unsigned long private)
1542{
 
1543	struct migration_target_control *mtc;
1544	gfp_t gfp_mask;
1545	unsigned int order = 0;
1546	struct page *new_page = NULL;
1547	int nid;
1548	int zidx;
1549
1550	mtc = (struct migration_target_control *)private;
1551	gfp_mask = mtc->gfp_mask;
1552	nid = mtc->nid;
1553	if (nid == NUMA_NO_NODE)
1554		nid = page_to_nid(page);
1555
1556	if (PageHuge(page)) {
1557		struct hstate *h = page_hstate(compound_head(page));
1558
1559		gfp_mask = htlb_modify_alloc_mask(h, gfp_mask);
1560		return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask);
1561	}
1562
1563	if (PageTransHuge(page)) {
1564		/*
1565		 * clear __GFP_RECLAIM to make the migration callback
1566		 * consistent with regular THP allocations.
1567		 */
1568		gfp_mask &= ~__GFP_RECLAIM;
1569		gfp_mask |= GFP_TRANSHUGE;
1570		order = HPAGE_PMD_ORDER;
1571	}
1572	zidx = zone_idx(page_zone(page));
1573	if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE)
1574		gfp_mask |= __GFP_HIGHMEM;
1575
1576	new_page = __alloc_pages_nodemask(gfp_mask, order, nid, mtc->nmask);
1577
1578	if (new_page && PageTransHuge(new_page))
1579		prep_transhuge_page(new_page);
1580
1581	return new_page;
1582}
1583
1584#ifdef CONFIG_NUMA
1585
1586static int store_status(int __user *status, int start, int value, int nr)
1587{
1588	while (nr-- > 0) {
1589		if (put_user(value, status + start))
1590			return -EFAULT;
1591		start++;
1592	}
1593
1594	return 0;
1595}
1596
1597static int do_move_pages_to_node(struct mm_struct *mm,
1598		struct list_head *pagelist, int node)
1599{
1600	int err;
1601	struct migration_target_control mtc = {
1602		.nid = node,
1603		.gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1604	};
1605
1606	err = migrate_pages(pagelist, alloc_migration_target, NULL,
1607			(unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL);
1608	if (err)
1609		putback_movable_pages(pagelist);
1610	return err;
1611}
1612
1613/*
1614 * Resolves the given address to a struct page, isolates it from the LRU and
1615 * puts it to the given pagelist.
1616 * Returns:
1617 *     errno - if the page cannot be found/isolated
1618 *     0 - when it doesn't have to be migrated because it is already on the
1619 *         target node
1620 *     1 - when it has been queued
1621 */
1622static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1623		int node, struct list_head *pagelist, bool migrate_all)
1624{
1625	struct vm_area_struct *vma;
1626	struct page *page;
1627	unsigned int follflags;
1628	int err;
1629
1630	mmap_read_lock(mm);
1631	err = -EFAULT;
1632	vma = find_vma(mm, addr);
1633	if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1634		goto out;
1635
1636	/* FOLL_DUMP to ignore special (like zero) pages */
1637	follflags = FOLL_GET | FOLL_DUMP;
1638	page = follow_page(vma, addr, follflags);
1639
1640	err = PTR_ERR(page);
1641	if (IS_ERR(page))
1642		goto out;
1643
1644	err = -ENOENT;
1645	if (!page)
1646		goto out;
1647
 
 
 
1648	err = 0;
1649	if (page_to_nid(page) == node)
1650		goto out_putpage;
1651
1652	err = -EACCES;
1653	if (page_mapcount(page) > 1 && !migrate_all)
1654		goto out_putpage;
1655
1656	if (PageHuge(page)) {
1657		if (PageHead(page)) {
1658			isolate_huge_page(page, pagelist);
1659			err = 1;
 
1660		}
1661	} else {
1662		struct page *head;
1663
1664		head = compound_head(page);
1665		err = isolate_lru_page(head);
1666		if (err)
1667			goto out_putpage;
1668
1669		err = 1;
1670		list_add_tail(&head->lru, pagelist);
1671		mod_node_page_state(page_pgdat(head),
1672			NR_ISOLATED_ANON + page_is_file_lru(head),
1673			thp_nr_pages(head));
1674	}
1675out_putpage:
1676	/*
1677	 * Either remove the duplicate refcount from
1678	 * isolate_lru_page() or drop the page ref if it was
1679	 * not isolated.
1680	 */
1681	put_page(page);
1682out:
1683	mmap_read_unlock(mm);
1684	return err;
1685}
1686
1687static int move_pages_and_store_status(struct mm_struct *mm, int node,
1688		struct list_head *pagelist, int __user *status,
1689		int start, int i, unsigned long nr_pages)
1690{
1691	int err;
1692
1693	if (list_empty(pagelist))
1694		return 0;
1695
1696	err = do_move_pages_to_node(mm, pagelist, node);
1697	if (err) {
1698		/*
1699		 * Positive err means the number of failed
1700		 * pages to migrate.  Since we are going to
1701		 * abort and return the number of non-migrated
1702		 * pages, so need to incude the rest of the
1703		 * nr_pages that have not been attempted as
1704		 * well.
1705		 */
1706		if (err > 0)
1707			err += nr_pages - i - 1;
1708		return err;
1709	}
1710	return store_status(status, start, node, i - start);
1711}
1712
1713/*
1714 * Migrate an array of page address onto an array of nodes and fill
1715 * the corresponding array of status.
1716 */
1717static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1718			 unsigned long nr_pages,
1719			 const void __user * __user *pages,
1720			 const int __user *nodes,
1721			 int __user *status, int flags)
1722{
1723	int current_node = NUMA_NO_NODE;
1724	LIST_HEAD(pagelist);
1725	int start, i;
1726	int err = 0, err1;
1727
1728	migrate_prep();
1729
1730	for (i = start = 0; i < nr_pages; i++) {
1731		const void __user *p;
1732		unsigned long addr;
1733		int node;
1734
1735		err = -EFAULT;
1736		if (get_user(p, pages + i))
1737			goto out_flush;
1738		if (get_user(node, nodes + i))
1739			goto out_flush;
1740		addr = (unsigned long)untagged_addr(p);
1741
1742		err = -ENODEV;
1743		if (node < 0 || node >= MAX_NUMNODES)
1744			goto out_flush;
1745		if (!node_state(node, N_MEMORY))
1746			goto out_flush;
1747
1748		err = -EACCES;
1749		if (!node_isset(node, task_nodes))
1750			goto out_flush;
1751
1752		if (current_node == NUMA_NO_NODE) {
1753			current_node = node;
1754			start = i;
1755		} else if (node != current_node) {
1756			err = move_pages_and_store_status(mm, current_node,
1757					&pagelist, status, start, i, nr_pages);
1758			if (err)
1759				goto out;
1760			start = i;
1761			current_node = node;
1762		}
1763
1764		/*
1765		 * Errors in the page lookup or isolation are not fatal and we simply
1766		 * report them via status
1767		 */
1768		err = add_page_for_migration(mm, addr, current_node,
1769				&pagelist, flags & MPOL_MF_MOVE_ALL);
1770
1771		if (err > 0) {
1772			/* The page is successfully queued for migration */
1773			continue;
1774		}
1775
1776		/*
 
 
 
 
 
 
 
1777		 * If the page is already on the target node (!err), store the
1778		 * node, otherwise, store the err.
1779		 */
1780		err = store_status(status, i, err ? : current_node, 1);
1781		if (err)
1782			goto out_flush;
1783
1784		err = move_pages_and_store_status(mm, current_node, &pagelist,
1785				status, start, i, nr_pages);
1786		if (err)
 
 
 
1787			goto out;
 
1788		current_node = NUMA_NO_NODE;
1789	}
1790out_flush:
1791	/* Make sure we do not overwrite the existing error */
1792	err1 = move_pages_and_store_status(mm, current_node, &pagelist,
1793				status, start, i, nr_pages);
1794	if (err >= 0)
1795		err = err1;
1796out:
 
1797	return err;
1798}
1799
1800/*
1801 * Determine the nodes of an array of pages and store it in an array of status.
1802 */
1803static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1804				const void __user **pages, int *status)
1805{
1806	unsigned long i;
1807
1808	mmap_read_lock(mm);
1809
1810	for (i = 0; i < nr_pages; i++) {
1811		unsigned long addr = (unsigned long)(*pages);
1812		struct vm_area_struct *vma;
1813		struct page *page;
1814		int err = -EFAULT;
1815
1816		vma = find_vma(mm, addr);
1817		if (!vma || addr < vma->vm_start)
1818			goto set_status;
1819
1820		/* FOLL_DUMP to ignore special (like zero) pages */
1821		page = follow_page(vma, addr, FOLL_DUMP);
1822
1823		err = PTR_ERR(page);
1824		if (IS_ERR(page))
1825			goto set_status;
1826
1827		err = page ? page_to_nid(page) : -ENOENT;
 
 
 
 
 
 
 
1828set_status:
1829		*status = err;
1830
1831		pages++;
1832		status++;
1833	}
1834
1835	mmap_read_unlock(mm);
1836}
1837
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1838/*
1839 * Determine the nodes of a user array of pages and store it in
1840 * a user array of status.
1841 */
1842static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1843			 const void __user * __user *pages,
1844			 int __user *status)
1845{
1846#define DO_PAGES_STAT_CHUNK_NR 16
1847	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1848	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1849
1850	while (nr_pages) {
1851		unsigned long chunk_nr;
1852
1853		chunk_nr = nr_pages;
1854		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1855			chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1856
1857		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1858			break;
 
 
 
1859
1860		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1861
1862		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1863			break;
1864
1865		pages += chunk_nr;
1866		status += chunk_nr;
1867		nr_pages -= chunk_nr;
1868	}
1869	return nr_pages ? -EFAULT : 0;
1870}
1871
1872/*
1873 * Move a list of pages in the address space of the currently executing
1874 * process.
1875 */
1876static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1877			     const void __user * __user *pages,
1878			     const int __user *nodes,
1879			     int __user *status, int flags)
1880{
1881	struct task_struct *task;
1882	struct mm_struct *mm;
1883	int err;
1884	nodemask_t task_nodes;
1885
1886	/* Check flags */
1887	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1888		return -EINVAL;
1889
1890	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1891		return -EPERM;
 
 
 
1892
1893	/* Find the mm_struct */
1894	rcu_read_lock();
1895	task = pid ? find_task_by_vpid(pid) : current;
1896	if (!task) {
1897		rcu_read_unlock();
1898		return -ESRCH;
1899	}
1900	get_task_struct(task);
1901
1902	/*
1903	 * Check if this process has the right to modify the specified
1904	 * process. Use the regular "ptrace_may_access()" checks.
1905	 */
1906	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1907		rcu_read_unlock();
1908		err = -EPERM;
1909		goto out;
1910	}
1911	rcu_read_unlock();
1912
1913 	err = security_task_movememory(task);
1914 	if (err)
1915		goto out;
1916
1917	task_nodes = cpuset_mems_allowed(task);
1918	mm = get_task_mm(task);
 
1919	put_task_struct(task);
 
 
 
 
1920
1921	if (!mm)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1922		return -EINVAL;
1923
 
 
 
 
 
 
 
1924	if (nodes)
1925		err = do_pages_move(mm, task_nodes, nr_pages, pages,
1926				    nodes, status, flags);
1927	else
1928		err = do_pages_stat(mm, nr_pages, pages, status);
1929
1930	mmput(mm);
1931	return err;
1932
1933out:
1934	put_task_struct(task);
1935	return err;
1936}
1937
1938SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1939		const void __user * __user *, pages,
1940		const int __user *, nodes,
1941		int __user *, status, int, flags)
1942{
1943	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1944}
1945
1946#ifdef CONFIG_COMPAT
1947COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1948		       compat_uptr_t __user *, pages32,
1949		       const int __user *, nodes,
1950		       int __user *, status,
1951		       int, flags)
1952{
1953	const void __user * __user *pages;
1954	int i;
1955
1956	pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1957	for (i = 0; i < nr_pages; i++) {
1958		compat_uptr_t p;
1959
1960		if (get_user(p, pages32 + i) ||
1961			put_user(compat_ptr(p), pages + i))
1962			return -EFAULT;
1963	}
1964	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1965}
1966#endif /* CONFIG_COMPAT */
1967
1968#ifdef CONFIG_NUMA_BALANCING
1969/*
1970 * Returns true if this is a safe migration target node for misplaced NUMA
1971 * pages. Currently it only checks the watermarks which crude
1972 */
1973static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1974				   unsigned long nr_migrate_pages)
1975{
1976	int z;
1977
1978	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1979		struct zone *zone = pgdat->node_zones + z;
1980
1981		if (!populated_zone(zone))
1982			continue;
1983
1984		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
1985		if (!zone_watermark_ok(zone, 0,
1986				       high_wmark_pages(zone) +
1987				       nr_migrate_pages,
1988				       ZONE_MOVABLE, 0))
1989			continue;
1990		return true;
1991	}
1992	return false;
1993}
1994
1995static struct page *alloc_misplaced_dst_page(struct page *page,
1996					   unsigned long data)
1997{
1998	int nid = (int) data;
1999	struct page *newpage;
 
 
 
 
 
 
 
 
 
 
 
2000
2001	newpage = __alloc_pages_node(nid,
2002					 (GFP_HIGHUSER_MOVABLE |
2003					  __GFP_THISNODE | __GFP_NOMEMALLOC |
2004					  __GFP_NORETRY | __GFP_NOWARN) &
2005					 ~__GFP_RECLAIM, 0);
2006
2007	return newpage;
2008}
2009
2010static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
2011{
2012	int page_lru;
 
 
 
2013
2014	VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
 
 
2015
2016	/* Avoid migrating to a node that is nearly full */
2017	if (!migrate_balanced_pgdat(pgdat, compound_nr(page)))
 
 
 
 
 
 
 
 
 
2018		return 0;
 
2019
2020	if (isolate_lru_page(page))
2021		return 0;
2022
2023	/*
2024	 * migrate_misplaced_transhuge_page() skips page migration's usual
2025	 * check on page_count(), so we must do it here, now that the page
2026	 * has been isolated: a GUP pin, or any other pin, prevents migration.
2027	 * The expected page count is 3: 1 for page's mapcount and 1 for the
2028	 * caller's pin and 1 for the reference taken by isolate_lru_page().
2029	 */
2030	if (PageTransHuge(page) && page_count(page) != 3) {
2031		putback_lru_page(page);
2032		return 0;
2033	}
2034
2035	page_lru = page_is_file_lru(page);
2036	mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
2037				thp_nr_pages(page));
2038
2039	/*
2040	 * Isolating the page has taken another reference, so the
2041	 * caller's reference can be safely dropped without the page
2042	 * disappearing underneath us during migration.
2043	 */
2044	put_page(page);
2045	return 1;
2046}
2047
2048bool pmd_trans_migrating(pmd_t pmd)
2049{
2050	struct page *page = pmd_page(pmd);
2051	return PageLocked(page);
2052}
2053
2054/*
2055 * Attempt to migrate a misplaced page to the specified destination
2056 * node. Caller is expected to have an elevated reference count on
2057 * the page that will be dropped by this function before returning.
2058 */
2059int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
2060			   int node)
2061{
2062	pg_data_t *pgdat = NODE_DATA(node);
2063	int isolated;
2064	int nr_remaining;
 
2065	LIST_HEAD(migratepages);
 
2066
2067	/*
2068	 * Don't migrate file pages that are mapped in multiple processes
2069	 * with execute permissions as they are probably shared libraries.
2070	 */
2071	if (page_mapcount(page) != 1 && page_is_file_lru(page) &&
2072	    (vma->vm_flags & VM_EXEC))
2073		goto out;
2074
2075	/*
2076	 * Also do not migrate dirty pages as not all filesystems can move
2077	 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
2078	 */
2079	if (page_is_file_lru(page) && PageDirty(page))
2080		goto out;
2081
2082	isolated = numamigrate_isolate_page(pgdat, page);
2083	if (!isolated)
2084		goto out;
2085
2086	list_add(&page->lru, &migratepages);
2087	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
2088				     NULL, node, MIGRATE_ASYNC,
2089				     MR_NUMA_MISPLACED);
2090	if (nr_remaining) {
2091		if (!list_empty(&migratepages)) {
2092			list_del(&page->lru);
2093			dec_node_page_state(page, NR_ISOLATED_ANON +
2094					page_is_file_lru(page));
2095			putback_lru_page(page);
2096		}
2097		isolated = 0;
2098	} else
2099		count_vm_numa_event(NUMA_PAGE_MIGRATE);
 
 
 
 
 
2100	BUG_ON(!list_empty(&migratepages));
2101	return isolated;
2102
2103out:
2104	put_page(page);
2105	return 0;
2106}
2107#endif /* CONFIG_NUMA_BALANCING */
2108
2109#if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2110/*
2111 * Migrates a THP to a given target node. page must be locked and is unlocked
2112 * before returning.
2113 */
2114int migrate_misplaced_transhuge_page(struct mm_struct *mm,
2115				struct vm_area_struct *vma,
2116				pmd_t *pmd, pmd_t entry,
2117				unsigned long address,
2118				struct page *page, int node)
2119{
2120	spinlock_t *ptl;
2121	pg_data_t *pgdat = NODE_DATA(node);
2122	int isolated = 0;
2123	struct page *new_page = NULL;
2124	int page_lru = page_is_file_lru(page);
2125	unsigned long start = address & HPAGE_PMD_MASK;
2126
2127	new_page = alloc_pages_node(node,
2128		(GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2129		HPAGE_PMD_ORDER);
2130	if (!new_page)
2131		goto out_fail;
2132	prep_transhuge_page(new_page);
2133
2134	isolated = numamigrate_isolate_page(pgdat, page);
2135	if (!isolated) {
2136		put_page(new_page);
2137		goto out_fail;
2138	}
2139
2140	/* Prepare a page as a migration target */
2141	__SetPageLocked(new_page);
2142	if (PageSwapBacked(page))
2143		__SetPageSwapBacked(new_page);
2144
2145	/* anon mapping, we can simply copy page->mapping to the new page: */
2146	new_page->mapping = page->mapping;
2147	new_page->index = page->index;
2148	/* flush the cache before copying using the kernel virtual address */
2149	flush_cache_range(vma, start, start + HPAGE_PMD_SIZE);
2150	migrate_page_copy(new_page, page);
2151	WARN_ON(PageLRU(new_page));
2152
2153	/* Recheck the target PMD */
2154	ptl = pmd_lock(mm, pmd);
2155	if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2156		spin_unlock(ptl);
2157
2158		/* Reverse changes made by migrate_page_copy() */
2159		if (TestClearPageActive(new_page))
2160			SetPageActive(page);
2161		if (TestClearPageUnevictable(new_page))
2162			SetPageUnevictable(page);
2163
2164		unlock_page(new_page);
2165		put_page(new_page);		/* Free it */
2166
2167		/* Retake the callers reference and putback on LRU */
2168		get_page(page);
2169		putback_lru_page(page);
2170		mod_node_page_state(page_pgdat(page),
2171			 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2172
2173		goto out_unlock;
2174	}
2175
2176	entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2177	entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2178
2179	/*
2180	 * Overwrite the old entry under pagetable lock and establish
2181	 * the new PTE. Any parallel GUP will either observe the old
2182	 * page blocking on the page lock, block on the page table
2183	 * lock or observe the new page. The SetPageUptodate on the
2184	 * new page and page_add_new_anon_rmap guarantee the copy is
2185	 * visible before the pagetable update.
2186	 */
2187	page_add_anon_rmap(new_page, vma, start, true);
2188	/*
2189	 * At this point the pmd is numa/protnone (i.e. non present) and the TLB
2190	 * has already been flushed globally.  So no TLB can be currently
2191	 * caching this non present pmd mapping.  There's no need to clear the
2192	 * pmd before doing set_pmd_at(), nor to flush the TLB after
2193	 * set_pmd_at().  Clearing the pmd here would introduce a race
2194	 * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the
2195	 * mmap_lock for reading.  If the pmd is set to NULL at any given time,
2196	 * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this
2197	 * pmd.
2198	 */
2199	set_pmd_at(mm, start, pmd, entry);
2200	update_mmu_cache_pmd(vma, address, &entry);
2201
2202	page_ref_unfreeze(page, 2);
2203	mlock_migrate_page(new_page, page);
2204	page_remove_rmap(page, true);
2205	set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2206
2207	spin_unlock(ptl);
2208
2209	/* Take an "isolate" reference and put new page on the LRU. */
2210	get_page(new_page);
2211	putback_lru_page(new_page);
2212
2213	unlock_page(new_page);
2214	unlock_page(page);
2215	put_page(page);			/* Drop the rmap reference */
2216	put_page(page);			/* Drop the LRU isolation reference */
2217
2218	count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2219	count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2220
2221	mod_node_page_state(page_pgdat(page),
2222			NR_ISOLATED_ANON + page_lru,
2223			-HPAGE_PMD_NR);
2224	return isolated;
2225
2226out_fail:
2227	count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2228	ptl = pmd_lock(mm, pmd);
2229	if (pmd_same(*pmd, entry)) {
2230		entry = pmd_modify(entry, vma->vm_page_prot);
2231		set_pmd_at(mm, start, pmd, entry);
2232		update_mmu_cache_pmd(vma, address, &entry);
2233	}
2234	spin_unlock(ptl);
2235
2236out_unlock:
2237	unlock_page(page);
2238	put_page(page);
2239	return 0;
2240}
2241#endif /* CONFIG_NUMA_BALANCING */
2242
2243#endif /* CONFIG_NUMA */
2244
2245#ifdef CONFIG_DEVICE_PRIVATE
2246static int migrate_vma_collect_hole(unsigned long start,
2247				    unsigned long end,
2248				    __always_unused int depth,
2249				    struct mm_walk *walk)
2250{
2251	struct migrate_vma *migrate = walk->private;
2252	unsigned long addr;
2253
2254	/* Only allow populating anonymous memory. */
2255	if (!vma_is_anonymous(walk->vma)) {
2256		for (addr = start; addr < end; addr += PAGE_SIZE) {
2257			migrate->src[migrate->npages] = 0;
2258			migrate->dst[migrate->npages] = 0;
2259			migrate->npages++;
2260		}
2261		return 0;
2262	}
2263
2264	for (addr = start; addr < end; addr += PAGE_SIZE) {
2265		migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2266		migrate->dst[migrate->npages] = 0;
2267		migrate->npages++;
2268		migrate->cpages++;
2269	}
2270
2271	return 0;
2272}
2273
2274static int migrate_vma_collect_skip(unsigned long start,
2275				    unsigned long end,
2276				    struct mm_walk *walk)
2277{
2278	struct migrate_vma *migrate = walk->private;
2279	unsigned long addr;
2280
2281	for (addr = start; addr < end; addr += PAGE_SIZE) {
2282		migrate->dst[migrate->npages] = 0;
2283		migrate->src[migrate->npages++] = 0;
2284	}
2285
2286	return 0;
2287}
2288
2289static int migrate_vma_collect_pmd(pmd_t *pmdp,
2290				   unsigned long start,
2291				   unsigned long end,
2292				   struct mm_walk *walk)
2293{
2294	struct migrate_vma *migrate = walk->private;
2295	struct vm_area_struct *vma = walk->vma;
2296	struct mm_struct *mm = vma->vm_mm;
2297	unsigned long addr = start, unmapped = 0;
2298	spinlock_t *ptl;
2299	pte_t *ptep;
2300
2301again:
2302	if (pmd_none(*pmdp))
2303		return migrate_vma_collect_hole(start, end, -1, walk);
2304
2305	if (pmd_trans_huge(*pmdp)) {
2306		struct page *page;
2307
2308		ptl = pmd_lock(mm, pmdp);
2309		if (unlikely(!pmd_trans_huge(*pmdp))) {
2310			spin_unlock(ptl);
2311			goto again;
2312		}
2313
2314		page = pmd_page(*pmdp);
2315		if (is_huge_zero_page(page)) {
2316			spin_unlock(ptl);
2317			split_huge_pmd(vma, pmdp, addr);
2318			if (pmd_trans_unstable(pmdp))
2319				return migrate_vma_collect_skip(start, end,
2320								walk);
2321		} else {
2322			int ret;
2323
2324			get_page(page);
2325			spin_unlock(ptl);
2326			if (unlikely(!trylock_page(page)))
2327				return migrate_vma_collect_skip(start, end,
2328								walk);
2329			ret = split_huge_page(page);
2330			unlock_page(page);
2331			put_page(page);
2332			if (ret)
2333				return migrate_vma_collect_skip(start, end,
2334								walk);
2335			if (pmd_none(*pmdp))
2336				return migrate_vma_collect_hole(start, end, -1,
2337								walk);
2338		}
2339	}
2340
2341	if (unlikely(pmd_bad(*pmdp)))
2342		return migrate_vma_collect_skip(start, end, walk);
2343
2344	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2345	arch_enter_lazy_mmu_mode();
2346
2347	for (; addr < end; addr += PAGE_SIZE, ptep++) {
2348		unsigned long mpfn = 0, pfn;
2349		struct page *page;
2350		swp_entry_t entry;
2351		pte_t pte;
2352
2353		pte = *ptep;
2354
2355		if (pte_none(pte)) {
2356			if (vma_is_anonymous(vma)) {
2357				mpfn = MIGRATE_PFN_MIGRATE;
2358				migrate->cpages++;
2359			}
2360			goto next;
2361		}
2362
2363		if (!pte_present(pte)) {
2364			/*
2365			 * Only care about unaddressable device page special
2366			 * page table entry. Other special swap entries are not
2367			 * migratable, and we ignore regular swapped page.
2368			 */
2369			entry = pte_to_swp_entry(pte);
2370			if (!is_device_private_entry(entry))
2371				goto next;
2372
2373			page = device_private_entry_to_page(entry);
2374			if (!(migrate->flags &
2375				MIGRATE_VMA_SELECT_DEVICE_PRIVATE) ||
2376			    page->pgmap->owner != migrate->pgmap_owner)
2377				goto next;
2378
2379			mpfn = migrate_pfn(page_to_pfn(page)) |
2380					MIGRATE_PFN_MIGRATE;
2381			if (is_write_device_private_entry(entry))
2382				mpfn |= MIGRATE_PFN_WRITE;
2383		} else {
2384			if (!(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM))
2385				goto next;
2386			pfn = pte_pfn(pte);
2387			if (is_zero_pfn(pfn)) {
2388				mpfn = MIGRATE_PFN_MIGRATE;
2389				migrate->cpages++;
2390				goto next;
2391			}
2392			page = vm_normal_page(migrate->vma, addr, pte);
2393			mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2394			mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2395		}
2396
2397		/* FIXME support THP */
2398		if (!page || !page->mapping || PageTransCompound(page)) {
2399			mpfn = 0;
2400			goto next;
2401		}
2402
2403		/*
2404		 * By getting a reference on the page we pin it and that blocks
2405		 * any kind of migration. Side effect is that it "freezes" the
2406		 * pte.
2407		 *
2408		 * We drop this reference after isolating the page from the lru
2409		 * for non device page (device page are not on the lru and thus
2410		 * can't be dropped from it).
2411		 */
2412		get_page(page);
2413		migrate->cpages++;
2414
2415		/*
2416		 * Optimize for the common case where page is only mapped once
2417		 * in one process. If we can lock the page, then we can safely
2418		 * set up a special migration page table entry now.
2419		 */
2420		if (trylock_page(page)) {
2421			pte_t swp_pte;
2422
2423			mpfn |= MIGRATE_PFN_LOCKED;
2424			ptep_get_and_clear(mm, addr, ptep);
2425
2426			/* Setup special migration page table entry */
2427			entry = make_migration_entry(page, mpfn &
2428						     MIGRATE_PFN_WRITE);
2429			swp_pte = swp_entry_to_pte(entry);
2430			if (pte_present(pte)) {
2431				if (pte_soft_dirty(pte))
2432					swp_pte = pte_swp_mksoft_dirty(swp_pte);
2433				if (pte_uffd_wp(pte))
2434					swp_pte = pte_swp_mkuffd_wp(swp_pte);
2435			} else {
2436				if (pte_swp_soft_dirty(pte))
2437					swp_pte = pte_swp_mksoft_dirty(swp_pte);
2438				if (pte_swp_uffd_wp(pte))
2439					swp_pte = pte_swp_mkuffd_wp(swp_pte);
2440			}
2441			set_pte_at(mm, addr, ptep, swp_pte);
2442
2443			/*
2444			 * This is like regular unmap: we remove the rmap and
2445			 * drop page refcount. Page won't be freed, as we took
2446			 * a reference just above.
2447			 */
2448			page_remove_rmap(page, false);
2449			put_page(page);
2450
2451			if (pte_present(pte))
2452				unmapped++;
2453		}
2454
2455next:
2456		migrate->dst[migrate->npages] = 0;
2457		migrate->src[migrate->npages++] = mpfn;
2458	}
2459	arch_leave_lazy_mmu_mode();
2460	pte_unmap_unlock(ptep - 1, ptl);
2461
2462	/* Only flush the TLB if we actually modified any entries */
2463	if (unmapped)
2464		flush_tlb_range(walk->vma, start, end);
2465
2466	return 0;
2467}
2468
2469static const struct mm_walk_ops migrate_vma_walk_ops = {
2470	.pmd_entry		= migrate_vma_collect_pmd,
2471	.pte_hole		= migrate_vma_collect_hole,
2472};
2473
2474/*
2475 * migrate_vma_collect() - collect pages over a range of virtual addresses
2476 * @migrate: migrate struct containing all migration information
2477 *
2478 * This will walk the CPU page table. For each virtual address backed by a
2479 * valid page, it updates the src array and takes a reference on the page, in
2480 * order to pin the page until we lock it and unmap it.
2481 */
2482static void migrate_vma_collect(struct migrate_vma *migrate)
2483{
2484	struct mmu_notifier_range range;
2485
2486	/*
2487	 * Note that the pgmap_owner is passed to the mmu notifier callback so
2488	 * that the registered device driver can skip invalidating device
2489	 * private page mappings that won't be migrated.
2490	 */
2491	mmu_notifier_range_init_migrate(&range, 0, migrate->vma,
2492		migrate->vma->vm_mm, migrate->start, migrate->end,
2493		migrate->pgmap_owner);
2494	mmu_notifier_invalidate_range_start(&range);
2495
2496	walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
2497			&migrate_vma_walk_ops, migrate);
2498
2499	mmu_notifier_invalidate_range_end(&range);
2500	migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2501}
2502
2503/*
2504 * migrate_vma_check_page() - check if page is pinned or not
2505 * @page: struct page to check
2506 *
2507 * Pinned pages cannot be migrated. This is the same test as in
2508 * migrate_page_move_mapping(), except that here we allow migration of a
2509 * ZONE_DEVICE page.
2510 */
2511static bool migrate_vma_check_page(struct page *page)
2512{
2513	/*
2514	 * One extra ref because caller holds an extra reference, either from
2515	 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2516	 * a device page.
2517	 */
2518	int extra = 1;
2519
2520	/*
2521	 * FIXME support THP (transparent huge page), it is bit more complex to
2522	 * check them than regular pages, because they can be mapped with a pmd
2523	 * or with a pte (split pte mapping).
2524	 */
2525	if (PageCompound(page))
2526		return false;
2527
2528	/* Page from ZONE_DEVICE have one extra reference */
2529	if (is_zone_device_page(page)) {
2530		/*
2531		 * Private page can never be pin as they have no valid pte and
2532		 * GUP will fail for those. Yet if there is a pending migration
2533		 * a thread might try to wait on the pte migration entry and
2534		 * will bump the page reference count. Sadly there is no way to
2535		 * differentiate a regular pin from migration wait. Hence to
2536		 * avoid 2 racing thread trying to migrate back to CPU to enter
2537		 * infinite loop (one stoping migration because the other is
2538		 * waiting on pte migration entry). We always return true here.
2539		 *
2540		 * FIXME proper solution is to rework migration_entry_wait() so
2541		 * it does not need to take a reference on page.
2542		 */
2543		return is_device_private_page(page);
2544	}
2545
2546	/* For file back page */
2547	if (page_mapping(page))
2548		extra += 1 + page_has_private(page);
2549
2550	if ((page_count(page) - extra) > page_mapcount(page))
2551		return false;
2552
2553	return true;
2554}
2555
2556/*
2557 * migrate_vma_prepare() - lock pages and isolate them from the lru
2558 * @migrate: migrate struct containing all migration information
2559 *
2560 * This locks pages that have been collected by migrate_vma_collect(). Once each
2561 * page is locked it is isolated from the lru (for non-device pages). Finally,
2562 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2563 * migrated by concurrent kernel threads.
2564 */
2565static void migrate_vma_prepare(struct migrate_vma *migrate)
2566{
2567	const unsigned long npages = migrate->npages;
2568	const unsigned long start = migrate->start;
2569	unsigned long addr, i, restore = 0;
2570	bool allow_drain = true;
2571
2572	lru_add_drain();
2573
2574	for (i = 0; (i < npages) && migrate->cpages; i++) {
2575		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2576		bool remap = true;
2577
2578		if (!page)
2579			continue;
2580
2581		if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2582			/*
2583			 * Because we are migrating several pages there can be
2584			 * a deadlock between 2 concurrent migration where each
2585			 * are waiting on each other page lock.
2586			 *
2587			 * Make migrate_vma() a best effort thing and backoff
2588			 * for any page we can not lock right away.
2589			 */
2590			if (!trylock_page(page)) {
2591				migrate->src[i] = 0;
2592				migrate->cpages--;
2593				put_page(page);
2594				continue;
2595			}
2596			remap = false;
2597			migrate->src[i] |= MIGRATE_PFN_LOCKED;
2598		}
2599
2600		/* ZONE_DEVICE pages are not on LRU */
2601		if (!is_zone_device_page(page)) {
2602			if (!PageLRU(page) && allow_drain) {
2603				/* Drain CPU's pagevec */
2604				lru_add_drain_all();
2605				allow_drain = false;
2606			}
2607
2608			if (isolate_lru_page(page)) {
2609				if (remap) {
2610					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2611					migrate->cpages--;
2612					restore++;
2613				} else {
2614					migrate->src[i] = 0;
2615					unlock_page(page);
2616					migrate->cpages--;
2617					put_page(page);
2618				}
2619				continue;
2620			}
2621
2622			/* Drop the reference we took in collect */
2623			put_page(page);
2624		}
2625
2626		if (!migrate_vma_check_page(page)) {
2627			if (remap) {
2628				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2629				migrate->cpages--;
2630				restore++;
2631
2632				if (!is_zone_device_page(page)) {
2633					get_page(page);
2634					putback_lru_page(page);
2635				}
2636			} else {
2637				migrate->src[i] = 0;
2638				unlock_page(page);
2639				migrate->cpages--;
2640
2641				if (!is_zone_device_page(page))
2642					putback_lru_page(page);
2643				else
2644					put_page(page);
2645			}
2646		}
2647	}
2648
2649	for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2650		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2651
2652		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2653			continue;
2654
2655		remove_migration_pte(page, migrate->vma, addr, page);
2656
2657		migrate->src[i] = 0;
2658		unlock_page(page);
2659		put_page(page);
2660		restore--;
2661	}
2662}
2663
2664/*
2665 * migrate_vma_unmap() - replace page mapping with special migration pte entry
2666 * @migrate: migrate struct containing all migration information
2667 *
2668 * Replace page mapping (CPU page table pte) with a special migration pte entry
2669 * and check again if it has been pinned. Pinned pages are restored because we
2670 * cannot migrate them.
2671 *
2672 * This is the last step before we call the device driver callback to allocate
2673 * destination memory and copy contents of original page over to new page.
2674 */
2675static void migrate_vma_unmap(struct migrate_vma *migrate)
2676{
2677	int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
2678	const unsigned long npages = migrate->npages;
2679	const unsigned long start = migrate->start;
2680	unsigned long addr, i, restore = 0;
2681
2682	for (i = 0; i < npages; i++) {
2683		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2684
2685		if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2686			continue;
2687
2688		if (page_mapped(page)) {
2689			try_to_unmap(page, flags);
2690			if (page_mapped(page))
2691				goto restore;
2692		}
2693
2694		if (migrate_vma_check_page(page))
2695			continue;
2696
2697restore:
2698		migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2699		migrate->cpages--;
2700		restore++;
2701	}
2702
2703	for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2704		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2705
2706		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2707			continue;
2708
2709		remove_migration_ptes(page, page, false);
2710
2711		migrate->src[i] = 0;
2712		unlock_page(page);
2713		restore--;
2714
2715		if (is_zone_device_page(page))
2716			put_page(page);
2717		else
2718			putback_lru_page(page);
2719	}
2720}
2721
2722/**
2723 * migrate_vma_setup() - prepare to migrate a range of memory
2724 * @args: contains the vma, start, and pfns arrays for the migration
2725 *
2726 * Returns: negative errno on failures, 0 when 0 or more pages were migrated
2727 * without an error.
2728 *
2729 * Prepare to migrate a range of memory virtual address range by collecting all
2730 * the pages backing each virtual address in the range, saving them inside the
2731 * src array.  Then lock those pages and unmap them. Once the pages are locked
2732 * and unmapped, check whether each page is pinned or not.  Pages that aren't
2733 * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
2734 * corresponding src array entry.  Then restores any pages that are pinned, by
2735 * remapping and unlocking those pages.
2736 *
2737 * The caller should then allocate destination memory and copy source memory to
2738 * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
2739 * flag set).  Once these are allocated and copied, the caller must update each
2740 * corresponding entry in the dst array with the pfn value of the destination
2741 * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set
2742 * (destination pages must have their struct pages locked, via lock_page()).
2743 *
2744 * Note that the caller does not have to migrate all the pages that are marked
2745 * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
2746 * device memory to system memory.  If the caller cannot migrate a device page
2747 * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
2748 * consequences for the userspace process, so it must be avoided if at all
2749 * possible.
2750 *
2751 * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
2752 * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
2753 * allowing the caller to allocate device memory for those unback virtual
2754 * address.  For this the caller simply has to allocate device memory and
2755 * properly set the destination entry like for regular migration.  Note that
2756 * this can still fails and thus inside the device driver must check if the
2757 * migration was successful for those entries after calling migrate_vma_pages()
2758 * just like for regular migration.
2759 *
2760 * After that, the callers must call migrate_vma_pages() to go over each entry
2761 * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2762 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2763 * then migrate_vma_pages() to migrate struct page information from the source
2764 * struct page to the destination struct page.  If it fails to migrate the
2765 * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
2766 * src array.
2767 *
2768 * At this point all successfully migrated pages have an entry in the src
2769 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2770 * array entry with MIGRATE_PFN_VALID flag set.
2771 *
2772 * Once migrate_vma_pages() returns the caller may inspect which pages were
2773 * successfully migrated, and which were not.  Successfully migrated pages will
2774 * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
2775 *
2776 * It is safe to update device page table after migrate_vma_pages() because
2777 * both destination and source page are still locked, and the mmap_lock is held
2778 * in read mode (hence no one can unmap the range being migrated).
2779 *
2780 * Once the caller is done cleaning up things and updating its page table (if it
2781 * chose to do so, this is not an obligation) it finally calls
2782 * migrate_vma_finalize() to update the CPU page table to point to new pages
2783 * for successfully migrated pages or otherwise restore the CPU page table to
2784 * point to the original source pages.
2785 */
2786int migrate_vma_setup(struct migrate_vma *args)
2787{
2788	long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
2789
2790	args->start &= PAGE_MASK;
2791	args->end &= PAGE_MASK;
2792	if (!args->vma || is_vm_hugetlb_page(args->vma) ||
2793	    (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
2794		return -EINVAL;
2795	if (nr_pages <= 0)
2796		return -EINVAL;
2797	if (args->start < args->vma->vm_start ||
2798	    args->start >= args->vma->vm_end)
2799		return -EINVAL;
2800	if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
2801		return -EINVAL;
2802	if (!args->src || !args->dst)
2803		return -EINVAL;
2804
2805	memset(args->src, 0, sizeof(*args->src) * nr_pages);
2806	args->cpages = 0;
2807	args->npages = 0;
2808
2809	migrate_vma_collect(args);
2810
2811	if (args->cpages)
2812		migrate_vma_prepare(args);
2813	if (args->cpages)
2814		migrate_vma_unmap(args);
2815
2816	/*
2817	 * At this point pages are locked and unmapped, and thus they have
2818	 * stable content and can safely be copied to destination memory that
2819	 * is allocated by the drivers.
2820	 */
2821	return 0;
2822
2823}
2824EXPORT_SYMBOL(migrate_vma_setup);
2825
2826/*
2827 * This code closely matches the code in:
2828 *   __handle_mm_fault()
2829 *     handle_pte_fault()
2830 *       do_anonymous_page()
2831 * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
2832 * private page.
2833 */
2834static void migrate_vma_insert_page(struct migrate_vma *migrate,
2835				    unsigned long addr,
2836				    struct page *page,
2837				    unsigned long *src,
2838				    unsigned long *dst)
2839{
2840	struct vm_area_struct *vma = migrate->vma;
2841	struct mm_struct *mm = vma->vm_mm;
2842	bool flush = false;
2843	spinlock_t *ptl;
2844	pte_t entry;
2845	pgd_t *pgdp;
2846	p4d_t *p4dp;
2847	pud_t *pudp;
2848	pmd_t *pmdp;
2849	pte_t *ptep;
2850
2851	/* Only allow populating anonymous memory */
2852	if (!vma_is_anonymous(vma))
2853		goto abort;
2854
2855	pgdp = pgd_offset(mm, addr);
2856	p4dp = p4d_alloc(mm, pgdp, addr);
2857	if (!p4dp)
2858		goto abort;
2859	pudp = pud_alloc(mm, p4dp, addr);
2860	if (!pudp)
2861		goto abort;
2862	pmdp = pmd_alloc(mm, pudp, addr);
2863	if (!pmdp)
2864		goto abort;
2865
2866	if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2867		goto abort;
2868
2869	/*
2870	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
2871	 * pte_offset_map() on pmds where a huge pmd might be created
2872	 * from a different thread.
2873	 *
2874	 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
2875	 * parallel threads are excluded by other means.
2876	 *
2877	 * Here we only have mmap_read_lock(mm).
2878	 */
2879	if (pte_alloc(mm, pmdp))
2880		goto abort;
2881
2882	/* See the comment in pte_alloc_one_map() */
2883	if (unlikely(pmd_trans_unstable(pmdp)))
2884		goto abort;
2885
2886	if (unlikely(anon_vma_prepare(vma)))
2887		goto abort;
2888	if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
2889		goto abort;
2890
2891	/*
2892	 * The memory barrier inside __SetPageUptodate makes sure that
2893	 * preceding stores to the page contents become visible before
2894	 * the set_pte_at() write.
2895	 */
2896	__SetPageUptodate(page);
2897
2898	if (is_zone_device_page(page)) {
2899		if (is_device_private_page(page)) {
2900			swp_entry_t swp_entry;
2901
2902			swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2903			entry = swp_entry_to_pte(swp_entry);
2904		}
2905	} else {
2906		entry = mk_pte(page, vma->vm_page_prot);
2907		if (vma->vm_flags & VM_WRITE)
2908			entry = pte_mkwrite(pte_mkdirty(entry));
2909	}
2910
2911	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2912
2913	if (check_stable_address_space(mm))
2914		goto unlock_abort;
2915
2916	if (pte_present(*ptep)) {
2917		unsigned long pfn = pte_pfn(*ptep);
2918
2919		if (!is_zero_pfn(pfn))
2920			goto unlock_abort;
2921		flush = true;
2922	} else if (!pte_none(*ptep))
2923		goto unlock_abort;
2924
2925	/*
2926	 * Check for userfaultfd but do not deliver the fault. Instead,
2927	 * just back off.
2928	 */
2929	if (userfaultfd_missing(vma))
2930		goto unlock_abort;
2931
2932	inc_mm_counter(mm, MM_ANONPAGES);
2933	page_add_new_anon_rmap(page, vma, addr, false);
2934	if (!is_zone_device_page(page))
2935		lru_cache_add_inactive_or_unevictable(page, vma);
2936	get_page(page);
2937
2938	if (flush) {
2939		flush_cache_page(vma, addr, pte_pfn(*ptep));
2940		ptep_clear_flush_notify(vma, addr, ptep);
2941		set_pte_at_notify(mm, addr, ptep, entry);
2942		update_mmu_cache(vma, addr, ptep);
2943	} else {
2944		/* No need to invalidate - it was non-present before */
2945		set_pte_at(mm, addr, ptep, entry);
2946		update_mmu_cache(vma, addr, ptep);
2947	}
2948
2949	pte_unmap_unlock(ptep, ptl);
2950	*src = MIGRATE_PFN_MIGRATE;
2951	return;
2952
2953unlock_abort:
2954	pte_unmap_unlock(ptep, ptl);
2955abort:
2956	*src &= ~MIGRATE_PFN_MIGRATE;
2957}
2958
2959/**
2960 * migrate_vma_pages() - migrate meta-data from src page to dst page
2961 * @migrate: migrate struct containing all migration information
2962 *
2963 * This migrates struct page meta-data from source struct page to destination
2964 * struct page. This effectively finishes the migration from source page to the
2965 * destination page.
2966 */
2967void migrate_vma_pages(struct migrate_vma *migrate)
2968{
2969	const unsigned long npages = migrate->npages;
2970	const unsigned long start = migrate->start;
2971	struct mmu_notifier_range range;
2972	unsigned long addr, i;
2973	bool notified = false;
2974
2975	for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2976		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2977		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2978		struct address_space *mapping;
2979		int r;
2980
2981		if (!newpage) {
2982			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2983			continue;
2984		}
2985
2986		if (!page) {
2987			if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2988				continue;
2989			if (!notified) {
2990				notified = true;
2991
2992				mmu_notifier_range_init(&range,
2993							MMU_NOTIFY_CLEAR, 0,
2994							NULL,
2995							migrate->vma->vm_mm,
2996							addr, migrate->end);
2997				mmu_notifier_invalidate_range_start(&range);
2998			}
2999			migrate_vma_insert_page(migrate, addr, newpage,
3000						&migrate->src[i],
3001						&migrate->dst[i]);
3002			continue;
3003		}
3004
3005		mapping = page_mapping(page);
3006
3007		if (is_zone_device_page(newpage)) {
3008			if (is_device_private_page(newpage)) {
3009				/*
3010				 * For now only support private anonymous when
3011				 * migrating to un-addressable device memory.
3012				 */
3013				if (mapping) {
3014					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3015					continue;
3016				}
3017			} else {
3018				/*
3019				 * Other types of ZONE_DEVICE page are not
3020				 * supported.
3021				 */
3022				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3023				continue;
3024			}
3025		}
3026
3027		r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
3028		if (r != MIGRATEPAGE_SUCCESS)
3029			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3030	}
3031
3032	/*
3033	 * No need to double call mmu_notifier->invalidate_range() callback as
3034	 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
3035	 * did already call it.
3036	 */
3037	if (notified)
3038		mmu_notifier_invalidate_range_only_end(&range);
3039}
3040EXPORT_SYMBOL(migrate_vma_pages);
3041
3042/**
3043 * migrate_vma_finalize() - restore CPU page table entry
3044 * @migrate: migrate struct containing all migration information
3045 *
3046 * This replaces the special migration pte entry with either a mapping to the
3047 * new page if migration was successful for that page, or to the original page
3048 * otherwise.
3049 *
3050 * This also unlocks the pages and puts them back on the lru, or drops the extra
3051 * refcount, for device pages.
3052 */
3053void migrate_vma_finalize(struct migrate_vma *migrate)
3054{
3055	const unsigned long npages = migrate->npages;
3056	unsigned long i;
3057
3058	for (i = 0; i < npages; i++) {
3059		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
3060		struct page *page = migrate_pfn_to_page(migrate->src[i]);
3061
3062		if (!page) {
3063			if (newpage) {
3064				unlock_page(newpage);
3065				put_page(newpage);
3066			}
3067			continue;
3068		}
3069
3070		if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
3071			if (newpage) {
3072				unlock_page(newpage);
3073				put_page(newpage);
3074			}
3075			newpage = page;
3076		}
3077
3078		remove_migration_ptes(page, newpage, false);
3079		unlock_page(page);
3080		migrate->cpages--;
3081
3082		if (is_zone_device_page(page))
3083			put_page(page);
3084		else
3085			putback_lru_page(page);
3086
3087		if (newpage != page) {
3088			unlock_page(newpage);
3089			if (is_zone_device_page(newpage))
3090				put_page(newpage);
3091			else
3092				putback_lru_page(newpage);
3093		}
3094	}
3095}
3096EXPORT_SYMBOL(migrate_vma_finalize);
3097#endif /* CONFIG_DEVICE_PRIVATE */