Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Memory Migration functionality - linux/mm/migrate.c
4 *
5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6 *
7 * Page migration was first developed in the context of the memory hotplug
8 * project. The main authors of the migration code are:
9 *
10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11 * Hirokazu Takahashi <taka@valinux.co.jp>
12 * Dave Hansen <haveblue@us.ibm.com>
13 * Christoph Lameter
14 */
15
16#include <linux/migrate.h>
17#include <linux/export.h>
18#include <linux/swap.h>
19#include <linux/swapops.h>
20#include <linux/pagemap.h>
21#include <linux/buffer_head.h>
22#include <linux/mm_inline.h>
23#include <linux/nsproxy.h>
24#include <linux/pagevec.h>
25#include <linux/ksm.h>
26#include <linux/rmap.h>
27#include <linux/topology.h>
28#include <linux/cpu.h>
29#include <linux/cpuset.h>
30#include <linux/writeback.h>
31#include <linux/mempolicy.h>
32#include <linux/vmalloc.h>
33#include <linux/security.h>
34#include <linux/backing-dev.h>
35#include <linux/compaction.h>
36#include <linux/syscalls.h>
37#include <linux/compat.h>
38#include <linux/hugetlb.h>
39#include <linux/hugetlb_cgroup.h>
40#include <linux/gfp.h>
41#include <linux/pfn_t.h>
42#include <linux/memremap.h>
43#include <linux/userfaultfd_k.h>
44#include <linux/balloon_compaction.h>
45#include <linux/page_idle.h>
46#include <linux/page_owner.h>
47#include <linux/sched/mm.h>
48#include <linux/ptrace.h>
49#include <linux/oom.h>
50#include <linux/memory.h>
51#include <linux/random.h>
52#include <linux/sched/sysctl.h>
53#include <linux/memory-tiers.h>
54
55#include <asm/tlbflush.h>
56
57#include <trace/events/migrate.h>
58
59#include "internal.h"
60
61int isolate_movable_page(struct page *page, isolate_mode_t mode)
62{
63 const struct movable_operations *mops;
64
65 /*
66 * Avoid burning cycles with pages that are yet under __free_pages(),
67 * or just got freed under us.
68 *
69 * In case we 'win' a race for a movable page being freed under us and
70 * raise its refcount preventing __free_pages() from doing its job
71 * the put_page() at the end of this block will take care of
72 * release this page, thus avoiding a nasty leakage.
73 */
74 if (unlikely(!get_page_unless_zero(page)))
75 goto out;
76
77 if (unlikely(PageSlab(page)))
78 goto out_putpage;
79 /* Pairs with smp_wmb() in slab freeing, e.g. SLUB's __free_slab() */
80 smp_rmb();
81 /*
82 * Check movable flag before taking the page lock because
83 * we use non-atomic bitops on newly allocated page flags so
84 * unconditionally grabbing the lock ruins page's owner side.
85 */
86 if (unlikely(!__PageMovable(page)))
87 goto out_putpage;
88 /* Pairs with smp_wmb() in slab allocation, e.g. SLUB's alloc_slab_page() */
89 smp_rmb();
90 if (unlikely(PageSlab(page)))
91 goto out_putpage;
92
93 /*
94 * As movable pages are not isolated from LRU lists, concurrent
95 * compaction threads can race against page migration functions
96 * as well as race against the releasing a page.
97 *
98 * In order to avoid having an already isolated movable page
99 * being (wrongly) re-isolated while it is under migration,
100 * or to avoid attempting to isolate pages being released,
101 * lets be sure we have the page lock
102 * before proceeding with the movable page isolation steps.
103 */
104 if (unlikely(!trylock_page(page)))
105 goto out_putpage;
106
107 if (!PageMovable(page) || PageIsolated(page))
108 goto out_no_isolated;
109
110 mops = page_movable_ops(page);
111 VM_BUG_ON_PAGE(!mops, page);
112
113 if (!mops->isolate_page(page, mode))
114 goto out_no_isolated;
115
116 /* Driver shouldn't use PG_isolated bit of page->flags */
117 WARN_ON_ONCE(PageIsolated(page));
118 SetPageIsolated(page);
119 unlock_page(page);
120
121 return 0;
122
123out_no_isolated:
124 unlock_page(page);
125out_putpage:
126 put_page(page);
127out:
128 return -EBUSY;
129}
130
131static void putback_movable_page(struct page *page)
132{
133 const struct movable_operations *mops = page_movable_ops(page);
134
135 mops->putback_page(page);
136 ClearPageIsolated(page);
137}
138
139/*
140 * Put previously isolated pages back onto the appropriate lists
141 * from where they were once taken off for compaction/migration.
142 *
143 * This function shall be used whenever the isolated pageset has been
144 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
145 * and isolate_hugetlb().
146 */
147void putback_movable_pages(struct list_head *l)
148{
149 struct page *page;
150 struct page *page2;
151
152 list_for_each_entry_safe(page, page2, l, lru) {
153 if (unlikely(PageHuge(page))) {
154 putback_active_hugepage(page);
155 continue;
156 }
157 list_del(&page->lru);
158 /*
159 * We isolated non-lru movable page so here we can use
160 * __PageMovable because LRU page's mapping cannot have
161 * PAGE_MAPPING_MOVABLE.
162 */
163 if (unlikely(__PageMovable(page))) {
164 VM_BUG_ON_PAGE(!PageIsolated(page), page);
165 lock_page(page);
166 if (PageMovable(page))
167 putback_movable_page(page);
168 else
169 ClearPageIsolated(page);
170 unlock_page(page);
171 put_page(page);
172 } else {
173 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
174 page_is_file_lru(page), -thp_nr_pages(page));
175 putback_lru_page(page);
176 }
177 }
178}
179
180/*
181 * Restore a potential migration pte to a working pte entry
182 */
183static bool remove_migration_pte(struct folio *folio,
184 struct vm_area_struct *vma, unsigned long addr, void *old)
185{
186 DEFINE_FOLIO_VMA_WALK(pvmw, old, vma, addr, PVMW_SYNC | PVMW_MIGRATION);
187
188 while (page_vma_mapped_walk(&pvmw)) {
189 rmap_t rmap_flags = RMAP_NONE;
190 pte_t pte;
191 swp_entry_t entry;
192 struct page *new;
193 unsigned long idx = 0;
194
195 /* pgoff is invalid for ksm pages, but they are never large */
196 if (folio_test_large(folio) && !folio_test_hugetlb(folio))
197 idx = linear_page_index(vma, pvmw.address) - pvmw.pgoff;
198 new = folio_page(folio, idx);
199
200#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
201 /* PMD-mapped THP migration entry */
202 if (!pvmw.pte) {
203 VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) ||
204 !folio_test_pmd_mappable(folio), folio);
205 remove_migration_pmd(&pvmw, new);
206 continue;
207 }
208#endif
209
210 folio_get(folio);
211 pte = mk_pte(new, READ_ONCE(vma->vm_page_prot));
212 if (pte_swp_soft_dirty(*pvmw.pte))
213 pte = pte_mksoft_dirty(pte);
214
215 /*
216 * Recheck VMA as permissions can change since migration started
217 */
218 entry = pte_to_swp_entry(*pvmw.pte);
219 if (!is_migration_entry_young(entry))
220 pte = pte_mkold(pte);
221 if (folio_test_dirty(folio) && is_migration_entry_dirty(entry))
222 pte = pte_mkdirty(pte);
223 if (is_writable_migration_entry(entry))
224 pte = maybe_mkwrite(pte, vma);
225 else if (pte_swp_uffd_wp(*pvmw.pte))
226 pte = pte_mkuffd_wp(pte);
227 else
228 pte = pte_wrprotect(pte);
229
230 if (folio_test_anon(folio) && !is_readable_migration_entry(entry))
231 rmap_flags |= RMAP_EXCLUSIVE;
232
233 if (unlikely(is_device_private_page(new))) {
234 if (pte_write(pte))
235 entry = make_writable_device_private_entry(
236 page_to_pfn(new));
237 else
238 entry = make_readable_device_private_entry(
239 page_to_pfn(new));
240 pte = swp_entry_to_pte(entry);
241 if (pte_swp_soft_dirty(*pvmw.pte))
242 pte = pte_swp_mksoft_dirty(pte);
243 if (pte_swp_uffd_wp(*pvmw.pte))
244 pte = pte_swp_mkuffd_wp(pte);
245 }
246
247#ifdef CONFIG_HUGETLB_PAGE
248 if (folio_test_hugetlb(folio)) {
249 unsigned int shift = huge_page_shift(hstate_vma(vma));
250
251 pte = pte_mkhuge(pte);
252 pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
253 if (folio_test_anon(folio))
254 hugepage_add_anon_rmap(new, vma, pvmw.address,
255 rmap_flags);
256 else
257 page_dup_file_rmap(new, true);
258 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
259 } else
260#endif
261 {
262 if (folio_test_anon(folio))
263 page_add_anon_rmap(new, vma, pvmw.address,
264 rmap_flags);
265 else
266 page_add_file_rmap(new, vma, false);
267 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
268 }
269 if (vma->vm_flags & VM_LOCKED)
270 mlock_page_drain_local();
271
272 trace_remove_migration_pte(pvmw.address, pte_val(pte),
273 compound_order(new));
274
275 /* No need to invalidate - it was non-present before */
276 update_mmu_cache(vma, pvmw.address, pvmw.pte);
277 }
278
279 return true;
280}
281
282/*
283 * Get rid of all migration entries and replace them by
284 * references to the indicated page.
285 */
286void remove_migration_ptes(struct folio *src, struct folio *dst, bool locked)
287{
288 struct rmap_walk_control rwc = {
289 .rmap_one = remove_migration_pte,
290 .arg = src,
291 };
292
293 if (locked)
294 rmap_walk_locked(dst, &rwc);
295 else
296 rmap_walk(dst, &rwc);
297}
298
299/*
300 * Something used the pte of a page under migration. We need to
301 * get to the page and wait until migration is finished.
302 * When we return from this function the fault will be retried.
303 */
304void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
305 spinlock_t *ptl)
306{
307 pte_t pte;
308 swp_entry_t entry;
309
310 spin_lock(ptl);
311 pte = *ptep;
312 if (!is_swap_pte(pte))
313 goto out;
314
315 entry = pte_to_swp_entry(pte);
316 if (!is_migration_entry(entry))
317 goto out;
318
319 migration_entry_wait_on_locked(entry, ptep, ptl);
320 return;
321out:
322 pte_unmap_unlock(ptep, ptl);
323}
324
325void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
326 unsigned long address)
327{
328 spinlock_t *ptl = pte_lockptr(mm, pmd);
329 pte_t *ptep = pte_offset_map(pmd, address);
330 __migration_entry_wait(mm, ptep, ptl);
331}
332
333#ifdef CONFIG_HUGETLB_PAGE
334void __migration_entry_wait_huge(pte_t *ptep, spinlock_t *ptl)
335{
336 pte_t pte;
337
338 spin_lock(ptl);
339 pte = huge_ptep_get(ptep);
340
341 if (unlikely(!is_hugetlb_entry_migration(pte)))
342 spin_unlock(ptl);
343 else
344 migration_entry_wait_on_locked(pte_to_swp_entry(pte), NULL, ptl);
345}
346
347void migration_entry_wait_huge(struct vm_area_struct *vma, pte_t *pte)
348{
349 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), vma->vm_mm, pte);
350
351 __migration_entry_wait_huge(pte, ptl);
352}
353#endif
354
355#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
356void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
357{
358 spinlock_t *ptl;
359
360 ptl = pmd_lock(mm, pmd);
361 if (!is_pmd_migration_entry(*pmd))
362 goto unlock;
363 migration_entry_wait_on_locked(pmd_to_swp_entry(*pmd), NULL, ptl);
364 return;
365unlock:
366 spin_unlock(ptl);
367}
368#endif
369
370static int folio_expected_refs(struct address_space *mapping,
371 struct folio *folio)
372{
373 int refs = 1;
374 if (!mapping)
375 return refs;
376
377 refs += folio_nr_pages(folio);
378 if (folio_test_private(folio))
379 refs++;
380
381 return refs;
382}
383
384/*
385 * Replace the page in the mapping.
386 *
387 * The number of remaining references must be:
388 * 1 for anonymous pages without a mapping
389 * 2 for pages with a mapping
390 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
391 */
392int folio_migrate_mapping(struct address_space *mapping,
393 struct folio *newfolio, struct folio *folio, int extra_count)
394{
395 XA_STATE(xas, &mapping->i_pages, folio_index(folio));
396 struct zone *oldzone, *newzone;
397 int dirty;
398 int expected_count = folio_expected_refs(mapping, folio) + extra_count;
399 long nr = folio_nr_pages(folio);
400
401 if (!mapping) {
402 /* Anonymous page without mapping */
403 if (folio_ref_count(folio) != expected_count)
404 return -EAGAIN;
405
406 /* No turning back from here */
407 newfolio->index = folio->index;
408 newfolio->mapping = folio->mapping;
409 if (folio_test_swapbacked(folio))
410 __folio_set_swapbacked(newfolio);
411
412 return MIGRATEPAGE_SUCCESS;
413 }
414
415 oldzone = folio_zone(folio);
416 newzone = folio_zone(newfolio);
417
418 xas_lock_irq(&xas);
419 if (!folio_ref_freeze(folio, expected_count)) {
420 xas_unlock_irq(&xas);
421 return -EAGAIN;
422 }
423
424 /*
425 * Now we know that no one else is looking at the folio:
426 * no turning back from here.
427 */
428 newfolio->index = folio->index;
429 newfolio->mapping = folio->mapping;
430 folio_ref_add(newfolio, nr); /* add cache reference */
431 if (folio_test_swapbacked(folio)) {
432 __folio_set_swapbacked(newfolio);
433 if (folio_test_swapcache(folio)) {
434 folio_set_swapcache(newfolio);
435 newfolio->private = folio_get_private(folio);
436 }
437 } else {
438 VM_BUG_ON_FOLIO(folio_test_swapcache(folio), folio);
439 }
440
441 /* Move dirty while page refs frozen and newpage not yet exposed */
442 dirty = folio_test_dirty(folio);
443 if (dirty) {
444 folio_clear_dirty(folio);
445 folio_set_dirty(newfolio);
446 }
447
448 xas_store(&xas, newfolio);
449
450 /*
451 * Drop cache reference from old page by unfreezing
452 * to one less reference.
453 * We know this isn't the last reference.
454 */
455 folio_ref_unfreeze(folio, expected_count - nr);
456
457 xas_unlock(&xas);
458 /* Leave irq disabled to prevent preemption while updating stats */
459
460 /*
461 * If moved to a different zone then also account
462 * the page for that zone. Other VM counters will be
463 * taken care of when we establish references to the
464 * new page and drop references to the old page.
465 *
466 * Note that anonymous pages are accounted for
467 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
468 * are mapped to swap space.
469 */
470 if (newzone != oldzone) {
471 struct lruvec *old_lruvec, *new_lruvec;
472 struct mem_cgroup *memcg;
473
474 memcg = folio_memcg(folio);
475 old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
476 new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);
477
478 __mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr);
479 __mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr);
480 if (folio_test_swapbacked(folio) && !folio_test_swapcache(folio)) {
481 __mod_lruvec_state(old_lruvec, NR_SHMEM, -nr);
482 __mod_lruvec_state(new_lruvec, NR_SHMEM, nr);
483 }
484#ifdef CONFIG_SWAP
485 if (folio_test_swapcache(folio)) {
486 __mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr);
487 __mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr);
488 }
489#endif
490 if (dirty && mapping_can_writeback(mapping)) {
491 __mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr);
492 __mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr);
493 __mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr);
494 __mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr);
495 }
496 }
497 local_irq_enable();
498
499 return MIGRATEPAGE_SUCCESS;
500}
501EXPORT_SYMBOL(folio_migrate_mapping);
502
503/*
504 * The expected number of remaining references is the same as that
505 * of folio_migrate_mapping().
506 */
507int migrate_huge_page_move_mapping(struct address_space *mapping,
508 struct folio *dst, struct folio *src)
509{
510 XA_STATE(xas, &mapping->i_pages, folio_index(src));
511 int expected_count;
512
513 xas_lock_irq(&xas);
514 expected_count = 2 + folio_has_private(src);
515 if (!folio_ref_freeze(src, expected_count)) {
516 xas_unlock_irq(&xas);
517 return -EAGAIN;
518 }
519
520 dst->index = src->index;
521 dst->mapping = src->mapping;
522
523 folio_get(dst);
524
525 xas_store(&xas, dst);
526
527 folio_ref_unfreeze(src, expected_count - 1);
528
529 xas_unlock_irq(&xas);
530
531 return MIGRATEPAGE_SUCCESS;
532}
533
534/*
535 * Copy the flags and some other ancillary information
536 */
537void folio_migrate_flags(struct folio *newfolio, struct folio *folio)
538{
539 int cpupid;
540
541 if (folio_test_error(folio))
542 folio_set_error(newfolio);
543 if (folio_test_referenced(folio))
544 folio_set_referenced(newfolio);
545 if (folio_test_uptodate(folio))
546 folio_mark_uptodate(newfolio);
547 if (folio_test_clear_active(folio)) {
548 VM_BUG_ON_FOLIO(folio_test_unevictable(folio), folio);
549 folio_set_active(newfolio);
550 } else if (folio_test_clear_unevictable(folio))
551 folio_set_unevictable(newfolio);
552 if (folio_test_workingset(folio))
553 folio_set_workingset(newfolio);
554 if (folio_test_checked(folio))
555 folio_set_checked(newfolio);
556 /*
557 * PG_anon_exclusive (-> PG_mappedtodisk) is always migrated via
558 * migration entries. We can still have PG_anon_exclusive set on an
559 * effectively unmapped and unreferenced first sub-pages of an
560 * anonymous THP: we can simply copy it here via PG_mappedtodisk.
561 */
562 if (folio_test_mappedtodisk(folio))
563 folio_set_mappedtodisk(newfolio);
564
565 /* Move dirty on pages not done by folio_migrate_mapping() */
566 if (folio_test_dirty(folio))
567 folio_set_dirty(newfolio);
568
569 if (folio_test_young(folio))
570 folio_set_young(newfolio);
571 if (folio_test_idle(folio))
572 folio_set_idle(newfolio);
573
574 /*
575 * Copy NUMA information to the new page, to prevent over-eager
576 * future migrations of this same page.
577 */
578 cpupid = page_cpupid_xchg_last(&folio->page, -1);
579 /*
580 * For memory tiering mode, when migrate between slow and fast
581 * memory node, reset cpupid, because that is used to record
582 * page access time in slow memory node.
583 */
584 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) {
585 bool f_toptier = node_is_toptier(page_to_nid(&folio->page));
586 bool t_toptier = node_is_toptier(page_to_nid(&newfolio->page));
587
588 if (f_toptier != t_toptier)
589 cpupid = -1;
590 }
591 page_cpupid_xchg_last(&newfolio->page, cpupid);
592
593 folio_migrate_ksm(newfolio, folio);
594 /*
595 * Please do not reorder this without considering how mm/ksm.c's
596 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
597 */
598 if (folio_test_swapcache(folio))
599 folio_clear_swapcache(folio);
600 folio_clear_private(folio);
601
602 /* page->private contains hugetlb specific flags */
603 if (!folio_test_hugetlb(folio))
604 folio->private = NULL;
605
606 /*
607 * If any waiters have accumulated on the new page then
608 * wake them up.
609 */
610 if (folio_test_writeback(newfolio))
611 folio_end_writeback(newfolio);
612
613 /*
614 * PG_readahead shares the same bit with PG_reclaim. The above
615 * end_page_writeback() may clear PG_readahead mistakenly, so set the
616 * bit after that.
617 */
618 if (folio_test_readahead(folio))
619 folio_set_readahead(newfolio);
620
621 folio_copy_owner(newfolio, folio);
622
623 if (!folio_test_hugetlb(folio))
624 mem_cgroup_migrate(folio, newfolio);
625}
626EXPORT_SYMBOL(folio_migrate_flags);
627
628void folio_migrate_copy(struct folio *newfolio, struct folio *folio)
629{
630 folio_copy(newfolio, folio);
631 folio_migrate_flags(newfolio, folio);
632}
633EXPORT_SYMBOL(folio_migrate_copy);
634
635/************************************************************
636 * Migration functions
637 ***********************************************************/
638
639int migrate_folio_extra(struct address_space *mapping, struct folio *dst,
640 struct folio *src, enum migrate_mode mode, int extra_count)
641{
642 int rc;
643
644 BUG_ON(folio_test_writeback(src)); /* Writeback must be complete */
645
646 rc = folio_migrate_mapping(mapping, dst, src, extra_count);
647
648 if (rc != MIGRATEPAGE_SUCCESS)
649 return rc;
650
651 if (mode != MIGRATE_SYNC_NO_COPY)
652 folio_migrate_copy(dst, src);
653 else
654 folio_migrate_flags(dst, src);
655 return MIGRATEPAGE_SUCCESS;
656}
657
658/**
659 * migrate_folio() - Simple folio migration.
660 * @mapping: The address_space containing the folio.
661 * @dst: The folio to migrate the data to.
662 * @src: The folio containing the current data.
663 * @mode: How to migrate the page.
664 *
665 * Common logic to directly migrate a single LRU folio suitable for
666 * folios that do not use PagePrivate/PagePrivate2.
667 *
668 * Folios are locked upon entry and exit.
669 */
670int migrate_folio(struct address_space *mapping, struct folio *dst,
671 struct folio *src, enum migrate_mode mode)
672{
673 return migrate_folio_extra(mapping, dst, src, mode, 0);
674}
675EXPORT_SYMBOL(migrate_folio);
676
677#ifdef CONFIG_BLOCK
678/* Returns true if all buffers are successfully locked */
679static bool buffer_migrate_lock_buffers(struct buffer_head *head,
680 enum migrate_mode mode)
681{
682 struct buffer_head *bh = head;
683
684 /* Simple case, sync compaction */
685 if (mode != MIGRATE_ASYNC) {
686 do {
687 lock_buffer(bh);
688 bh = bh->b_this_page;
689
690 } while (bh != head);
691
692 return true;
693 }
694
695 /* async case, we cannot block on lock_buffer so use trylock_buffer */
696 do {
697 if (!trylock_buffer(bh)) {
698 /*
699 * We failed to lock the buffer and cannot stall in
700 * async migration. Release the taken locks
701 */
702 struct buffer_head *failed_bh = bh;
703 bh = head;
704 while (bh != failed_bh) {
705 unlock_buffer(bh);
706 bh = bh->b_this_page;
707 }
708 return false;
709 }
710
711 bh = bh->b_this_page;
712 } while (bh != head);
713 return true;
714}
715
716static int __buffer_migrate_folio(struct address_space *mapping,
717 struct folio *dst, struct folio *src, enum migrate_mode mode,
718 bool check_refs)
719{
720 struct buffer_head *bh, *head;
721 int rc;
722 int expected_count;
723
724 head = folio_buffers(src);
725 if (!head)
726 return migrate_folio(mapping, dst, src, mode);
727
728 /* Check whether page does not have extra refs before we do more work */
729 expected_count = folio_expected_refs(mapping, src);
730 if (folio_ref_count(src) != expected_count)
731 return -EAGAIN;
732
733 if (!buffer_migrate_lock_buffers(head, mode))
734 return -EAGAIN;
735
736 if (check_refs) {
737 bool busy;
738 bool invalidated = false;
739
740recheck_buffers:
741 busy = false;
742 spin_lock(&mapping->private_lock);
743 bh = head;
744 do {
745 if (atomic_read(&bh->b_count)) {
746 busy = true;
747 break;
748 }
749 bh = bh->b_this_page;
750 } while (bh != head);
751 if (busy) {
752 if (invalidated) {
753 rc = -EAGAIN;
754 goto unlock_buffers;
755 }
756 spin_unlock(&mapping->private_lock);
757 invalidate_bh_lrus();
758 invalidated = true;
759 goto recheck_buffers;
760 }
761 }
762
763 rc = folio_migrate_mapping(mapping, dst, src, 0);
764 if (rc != MIGRATEPAGE_SUCCESS)
765 goto unlock_buffers;
766
767 folio_attach_private(dst, folio_detach_private(src));
768
769 bh = head;
770 do {
771 set_bh_page(bh, &dst->page, bh_offset(bh));
772 bh = bh->b_this_page;
773 } while (bh != head);
774
775 if (mode != MIGRATE_SYNC_NO_COPY)
776 folio_migrate_copy(dst, src);
777 else
778 folio_migrate_flags(dst, src);
779
780 rc = MIGRATEPAGE_SUCCESS;
781unlock_buffers:
782 if (check_refs)
783 spin_unlock(&mapping->private_lock);
784 bh = head;
785 do {
786 unlock_buffer(bh);
787 bh = bh->b_this_page;
788 } while (bh != head);
789
790 return rc;
791}
792
793/**
794 * buffer_migrate_folio() - Migration function for folios with buffers.
795 * @mapping: The address space containing @src.
796 * @dst: The folio to migrate to.
797 * @src: The folio to migrate from.
798 * @mode: How to migrate the folio.
799 *
800 * This function can only be used if the underlying filesystem guarantees
801 * that no other references to @src exist. For example attached buffer
802 * heads are accessed only under the folio lock. If your filesystem cannot
803 * provide this guarantee, buffer_migrate_folio_norefs() may be more
804 * appropriate.
805 *
806 * Return: 0 on success or a negative errno on failure.
807 */
808int buffer_migrate_folio(struct address_space *mapping,
809 struct folio *dst, struct folio *src, enum migrate_mode mode)
810{
811 return __buffer_migrate_folio(mapping, dst, src, mode, false);
812}
813EXPORT_SYMBOL(buffer_migrate_folio);
814
815/**
816 * buffer_migrate_folio_norefs() - Migration function for folios with buffers.
817 * @mapping: The address space containing @src.
818 * @dst: The folio to migrate to.
819 * @src: The folio to migrate from.
820 * @mode: How to migrate the folio.
821 *
822 * Like buffer_migrate_folio() except that this variant is more careful
823 * and checks that there are also no buffer head references. This function
824 * is the right one for mappings where buffer heads are directly looked
825 * up and referenced (such as block device mappings).
826 *
827 * Return: 0 on success or a negative errno on failure.
828 */
829int buffer_migrate_folio_norefs(struct address_space *mapping,
830 struct folio *dst, struct folio *src, enum migrate_mode mode)
831{
832 return __buffer_migrate_folio(mapping, dst, src, mode, true);
833}
834EXPORT_SYMBOL_GPL(buffer_migrate_folio_norefs);
835#endif
836
837int filemap_migrate_folio(struct address_space *mapping,
838 struct folio *dst, struct folio *src, enum migrate_mode mode)
839{
840 int ret;
841
842 ret = folio_migrate_mapping(mapping, dst, src, 0);
843 if (ret != MIGRATEPAGE_SUCCESS)
844 return ret;
845
846 if (folio_get_private(src))
847 folio_attach_private(dst, folio_detach_private(src));
848
849 if (mode != MIGRATE_SYNC_NO_COPY)
850 folio_migrate_copy(dst, src);
851 else
852 folio_migrate_flags(dst, src);
853 return MIGRATEPAGE_SUCCESS;
854}
855EXPORT_SYMBOL_GPL(filemap_migrate_folio);
856
857/*
858 * Writeback a folio to clean the dirty state
859 */
860static int writeout(struct address_space *mapping, struct folio *folio)
861{
862 struct writeback_control wbc = {
863 .sync_mode = WB_SYNC_NONE,
864 .nr_to_write = 1,
865 .range_start = 0,
866 .range_end = LLONG_MAX,
867 .for_reclaim = 1
868 };
869 int rc;
870
871 if (!mapping->a_ops->writepage)
872 /* No write method for the address space */
873 return -EINVAL;
874
875 if (!folio_clear_dirty_for_io(folio))
876 /* Someone else already triggered a write */
877 return -EAGAIN;
878
879 /*
880 * A dirty folio may imply that the underlying filesystem has
881 * the folio on some queue. So the folio must be clean for
882 * migration. Writeout may mean we lose the lock and the
883 * folio state is no longer what we checked for earlier.
884 * At this point we know that the migration attempt cannot
885 * be successful.
886 */
887 remove_migration_ptes(folio, folio, false);
888
889 rc = mapping->a_ops->writepage(&folio->page, &wbc);
890
891 if (rc != AOP_WRITEPAGE_ACTIVATE)
892 /* unlocked. Relock */
893 folio_lock(folio);
894
895 return (rc < 0) ? -EIO : -EAGAIN;
896}
897
898/*
899 * Default handling if a filesystem does not provide a migration function.
900 */
901static int fallback_migrate_folio(struct address_space *mapping,
902 struct folio *dst, struct folio *src, enum migrate_mode mode)
903{
904 if (folio_test_dirty(src)) {
905 /* Only writeback folios in full synchronous migration */
906 switch (mode) {
907 case MIGRATE_SYNC:
908 case MIGRATE_SYNC_NO_COPY:
909 break;
910 default:
911 return -EBUSY;
912 }
913 return writeout(mapping, src);
914 }
915
916 /*
917 * Buffers may be managed in a filesystem specific way.
918 * We must have no buffers or drop them.
919 */
920 if (folio_test_private(src) &&
921 !filemap_release_folio(src, GFP_KERNEL))
922 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
923
924 return migrate_folio(mapping, dst, src, mode);
925}
926
927/*
928 * Move a page to a newly allocated page
929 * The page is locked and all ptes have been successfully removed.
930 *
931 * The new page will have replaced the old page if this function
932 * is successful.
933 *
934 * Return value:
935 * < 0 - error code
936 * MIGRATEPAGE_SUCCESS - success
937 */
938static int move_to_new_folio(struct folio *dst, struct folio *src,
939 enum migrate_mode mode)
940{
941 int rc = -EAGAIN;
942 bool is_lru = !__PageMovable(&src->page);
943
944 VM_BUG_ON_FOLIO(!folio_test_locked(src), src);
945 VM_BUG_ON_FOLIO(!folio_test_locked(dst), dst);
946
947 if (likely(is_lru)) {
948 struct address_space *mapping = folio_mapping(src);
949
950 if (!mapping)
951 rc = migrate_folio(mapping, dst, src, mode);
952 else if (mapping->a_ops->migrate_folio)
953 /*
954 * Most folios have a mapping and most filesystems
955 * provide a migrate_folio callback. Anonymous folios
956 * are part of swap space which also has its own
957 * migrate_folio callback. This is the most common path
958 * for page migration.
959 */
960 rc = mapping->a_ops->migrate_folio(mapping, dst, src,
961 mode);
962 else
963 rc = fallback_migrate_folio(mapping, dst, src, mode);
964 } else {
965 const struct movable_operations *mops;
966
967 /*
968 * In case of non-lru page, it could be released after
969 * isolation step. In that case, we shouldn't try migration.
970 */
971 VM_BUG_ON_FOLIO(!folio_test_isolated(src), src);
972 if (!folio_test_movable(src)) {
973 rc = MIGRATEPAGE_SUCCESS;
974 folio_clear_isolated(src);
975 goto out;
976 }
977
978 mops = page_movable_ops(&src->page);
979 rc = mops->migrate_page(&dst->page, &src->page, mode);
980 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
981 !folio_test_isolated(src));
982 }
983
984 /*
985 * When successful, old pagecache src->mapping must be cleared before
986 * src is freed; but stats require that PageAnon be left as PageAnon.
987 */
988 if (rc == MIGRATEPAGE_SUCCESS) {
989 if (__PageMovable(&src->page)) {
990 VM_BUG_ON_FOLIO(!folio_test_isolated(src), src);
991
992 /*
993 * We clear PG_movable under page_lock so any compactor
994 * cannot try to migrate this page.
995 */
996 folio_clear_isolated(src);
997 }
998
999 /*
1000 * Anonymous and movable src->mapping will be cleared by
1001 * free_pages_prepare so don't reset it here for keeping
1002 * the type to work PageAnon, for example.
1003 */
1004 if (!folio_mapping_flags(src))
1005 src->mapping = NULL;
1006
1007 if (likely(!folio_is_zone_device(dst)))
1008 flush_dcache_folio(dst);
1009 }
1010out:
1011 return rc;
1012}
1013
1014static int __unmap_and_move(struct folio *src, struct folio *dst,
1015 int force, enum migrate_mode mode)
1016{
1017 int rc = -EAGAIN;
1018 bool page_was_mapped = false;
1019 struct anon_vma *anon_vma = NULL;
1020 bool is_lru = !__PageMovable(&src->page);
1021
1022 if (!folio_trylock(src)) {
1023 if (!force || mode == MIGRATE_ASYNC)
1024 goto out;
1025
1026 /*
1027 * It's not safe for direct compaction to call lock_page.
1028 * For example, during page readahead pages are added locked
1029 * to the LRU. Later, when the IO completes the pages are
1030 * marked uptodate and unlocked. However, the queueing
1031 * could be merging multiple pages for one bio (e.g.
1032 * mpage_readahead). If an allocation happens for the
1033 * second or third page, the process can end up locking
1034 * the same page twice and deadlocking. Rather than
1035 * trying to be clever about what pages can be locked,
1036 * avoid the use of lock_page for direct compaction
1037 * altogether.
1038 */
1039 if (current->flags & PF_MEMALLOC)
1040 goto out;
1041
1042 folio_lock(src);
1043 }
1044
1045 if (folio_test_writeback(src)) {
1046 /*
1047 * Only in the case of a full synchronous migration is it
1048 * necessary to wait for PageWriteback. In the async case,
1049 * the retry loop is too short and in the sync-light case,
1050 * the overhead of stalling is too much
1051 */
1052 switch (mode) {
1053 case MIGRATE_SYNC:
1054 case MIGRATE_SYNC_NO_COPY:
1055 break;
1056 default:
1057 rc = -EBUSY;
1058 goto out_unlock;
1059 }
1060 if (!force)
1061 goto out_unlock;
1062 folio_wait_writeback(src);
1063 }
1064
1065 /*
1066 * By try_to_migrate(), src->mapcount goes down to 0 here. In this case,
1067 * we cannot notice that anon_vma is freed while we migrate a page.
1068 * This get_anon_vma() delays freeing anon_vma pointer until the end
1069 * of migration. File cache pages are no problem because of page_lock()
1070 * File Caches may use write_page() or lock_page() in migration, then,
1071 * just care Anon page here.
1072 *
1073 * Only folio_get_anon_vma() understands the subtleties of
1074 * getting a hold on an anon_vma from outside one of its mms.
1075 * But if we cannot get anon_vma, then we won't need it anyway,
1076 * because that implies that the anon page is no longer mapped
1077 * (and cannot be remapped so long as we hold the page lock).
1078 */
1079 if (folio_test_anon(src) && !folio_test_ksm(src))
1080 anon_vma = folio_get_anon_vma(src);
1081
1082 /*
1083 * Block others from accessing the new page when we get around to
1084 * establishing additional references. We are usually the only one
1085 * holding a reference to dst at this point. We used to have a BUG
1086 * here if folio_trylock(dst) fails, but would like to allow for
1087 * cases where there might be a race with the previous use of dst.
1088 * This is much like races on refcount of oldpage: just don't BUG().
1089 */
1090 if (unlikely(!folio_trylock(dst)))
1091 goto out_unlock;
1092
1093 if (unlikely(!is_lru)) {
1094 rc = move_to_new_folio(dst, src, mode);
1095 goto out_unlock_both;
1096 }
1097
1098 /*
1099 * Corner case handling:
1100 * 1. When a new swap-cache page is read into, it is added to the LRU
1101 * and treated as swapcache but it has no rmap yet.
1102 * Calling try_to_unmap() against a src->mapping==NULL page will
1103 * trigger a BUG. So handle it here.
1104 * 2. An orphaned page (see truncate_cleanup_page) might have
1105 * fs-private metadata. The page can be picked up due to memory
1106 * offlining. Everywhere else except page reclaim, the page is
1107 * invisible to the vm, so the page can not be migrated. So try to
1108 * free the metadata, so the page can be freed.
1109 */
1110 if (!src->mapping) {
1111 if (folio_test_private(src)) {
1112 try_to_free_buffers(src);
1113 goto out_unlock_both;
1114 }
1115 } else if (folio_mapped(src)) {
1116 /* Establish migration ptes */
1117 VM_BUG_ON_FOLIO(folio_test_anon(src) &&
1118 !folio_test_ksm(src) && !anon_vma, src);
1119 try_to_migrate(src, 0);
1120 page_was_mapped = true;
1121 }
1122
1123 if (!folio_mapped(src))
1124 rc = move_to_new_folio(dst, src, mode);
1125
1126 /*
1127 * When successful, push dst to LRU immediately: so that if it
1128 * turns out to be an mlocked page, remove_migration_ptes() will
1129 * automatically build up the correct dst->mlock_count for it.
1130 *
1131 * We would like to do something similar for the old page, when
1132 * unsuccessful, and other cases when a page has been temporarily
1133 * isolated from the unevictable LRU: but this case is the easiest.
1134 */
1135 if (rc == MIGRATEPAGE_SUCCESS) {
1136 folio_add_lru(dst);
1137 if (page_was_mapped)
1138 lru_add_drain();
1139 }
1140
1141 if (page_was_mapped)
1142 remove_migration_ptes(src,
1143 rc == MIGRATEPAGE_SUCCESS ? dst : src, false);
1144
1145out_unlock_both:
1146 folio_unlock(dst);
1147out_unlock:
1148 /* Drop an anon_vma reference if we took one */
1149 if (anon_vma)
1150 put_anon_vma(anon_vma);
1151 folio_unlock(src);
1152out:
1153 /*
1154 * If migration is successful, decrease refcount of dst,
1155 * which will not free the page because new page owner increased
1156 * refcounter.
1157 */
1158 if (rc == MIGRATEPAGE_SUCCESS)
1159 folio_put(dst);
1160
1161 return rc;
1162}
1163
1164/*
1165 * Obtain the lock on folio, remove all ptes and migrate the folio
1166 * to the newly allocated folio in dst.
1167 */
1168static int unmap_and_move(new_page_t get_new_page,
1169 free_page_t put_new_page,
1170 unsigned long private, struct folio *src,
1171 int force, enum migrate_mode mode,
1172 enum migrate_reason reason,
1173 struct list_head *ret)
1174{
1175 struct folio *dst;
1176 int rc = MIGRATEPAGE_SUCCESS;
1177 struct page *newpage = NULL;
1178
1179 if (!thp_migration_supported() && folio_test_transhuge(src))
1180 return -ENOSYS;
1181
1182 if (folio_ref_count(src) == 1) {
1183 /* Folio was freed from under us. So we are done. */
1184 folio_clear_active(src);
1185 folio_clear_unevictable(src);
1186 /* free_pages_prepare() will clear PG_isolated. */
1187 goto out;
1188 }
1189
1190 newpage = get_new_page(&src->page, private);
1191 if (!newpage)
1192 return -ENOMEM;
1193 dst = page_folio(newpage);
1194
1195 dst->private = NULL;
1196 rc = __unmap_and_move(src, dst, force, mode);
1197 if (rc == MIGRATEPAGE_SUCCESS)
1198 set_page_owner_migrate_reason(&dst->page, reason);
1199
1200out:
1201 if (rc != -EAGAIN) {
1202 /*
1203 * A folio that has been migrated has all references
1204 * removed and will be freed. A folio that has not been
1205 * migrated will have kept its references and be restored.
1206 */
1207 list_del(&src->lru);
1208 }
1209
1210 /*
1211 * If migration is successful, releases reference grabbed during
1212 * isolation. Otherwise, restore the folio to right list unless
1213 * we want to retry.
1214 */
1215 if (rc == MIGRATEPAGE_SUCCESS) {
1216 /*
1217 * Compaction can migrate also non-LRU folios which are
1218 * not accounted to NR_ISOLATED_*. They can be recognized
1219 * as __folio_test_movable
1220 */
1221 if (likely(!__folio_test_movable(src)))
1222 mod_node_page_state(folio_pgdat(src), NR_ISOLATED_ANON +
1223 folio_is_file_lru(src), -folio_nr_pages(src));
1224
1225 if (reason != MR_MEMORY_FAILURE)
1226 /*
1227 * We release the folio in page_handle_poison.
1228 */
1229 folio_put(src);
1230 } else {
1231 if (rc != -EAGAIN)
1232 list_add_tail(&src->lru, ret);
1233
1234 if (put_new_page)
1235 put_new_page(&dst->page, private);
1236 else
1237 folio_put(dst);
1238 }
1239
1240 return rc;
1241}
1242
1243/*
1244 * Counterpart of unmap_and_move_page() for hugepage migration.
1245 *
1246 * This function doesn't wait the completion of hugepage I/O
1247 * because there is no race between I/O and migration for hugepage.
1248 * Note that currently hugepage I/O occurs only in direct I/O
1249 * where no lock is held and PG_writeback is irrelevant,
1250 * and writeback status of all subpages are counted in the reference
1251 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1252 * under direct I/O, the reference of the head page is 512 and a bit more.)
1253 * This means that when we try to migrate hugepage whose subpages are
1254 * doing direct I/O, some references remain after try_to_unmap() and
1255 * hugepage migration fails without data corruption.
1256 *
1257 * There is also no race when direct I/O is issued on the page under migration,
1258 * because then pte is replaced with migration swap entry and direct I/O code
1259 * will wait in the page fault for migration to complete.
1260 */
1261static int unmap_and_move_huge_page(new_page_t get_new_page,
1262 free_page_t put_new_page, unsigned long private,
1263 struct page *hpage, int force,
1264 enum migrate_mode mode, int reason,
1265 struct list_head *ret)
1266{
1267 struct folio *dst, *src = page_folio(hpage);
1268 int rc = -EAGAIN;
1269 int page_was_mapped = 0;
1270 struct page *new_hpage;
1271 struct anon_vma *anon_vma = NULL;
1272 struct address_space *mapping = NULL;
1273
1274 /*
1275 * Migratability of hugepages depends on architectures and their size.
1276 * This check is necessary because some callers of hugepage migration
1277 * like soft offline and memory hotremove don't walk through page
1278 * tables or check whether the hugepage is pmd-based or not before
1279 * kicking migration.
1280 */
1281 if (!hugepage_migration_supported(page_hstate(hpage)))
1282 return -ENOSYS;
1283
1284 if (folio_ref_count(src) == 1) {
1285 /* page was freed from under us. So we are done. */
1286 putback_active_hugepage(hpage);
1287 return MIGRATEPAGE_SUCCESS;
1288 }
1289
1290 new_hpage = get_new_page(hpage, private);
1291 if (!new_hpage)
1292 return -ENOMEM;
1293 dst = page_folio(new_hpage);
1294
1295 if (!folio_trylock(src)) {
1296 if (!force)
1297 goto out;
1298 switch (mode) {
1299 case MIGRATE_SYNC:
1300 case MIGRATE_SYNC_NO_COPY:
1301 break;
1302 default:
1303 goto out;
1304 }
1305 folio_lock(src);
1306 }
1307
1308 /*
1309 * Check for pages which are in the process of being freed. Without
1310 * folio_mapping() set, hugetlbfs specific move page routine will not
1311 * be called and we could leak usage counts for subpools.
1312 */
1313 if (hugetlb_folio_subpool(src) && !folio_mapping(src)) {
1314 rc = -EBUSY;
1315 goto out_unlock;
1316 }
1317
1318 if (folio_test_anon(src))
1319 anon_vma = folio_get_anon_vma(src);
1320
1321 if (unlikely(!folio_trylock(dst)))
1322 goto put_anon;
1323
1324 if (folio_mapped(src)) {
1325 enum ttu_flags ttu = 0;
1326
1327 if (!folio_test_anon(src)) {
1328 /*
1329 * In shared mappings, try_to_unmap could potentially
1330 * call huge_pmd_unshare. Because of this, take
1331 * semaphore in write mode here and set TTU_RMAP_LOCKED
1332 * to let lower levels know we have taken the lock.
1333 */
1334 mapping = hugetlb_page_mapping_lock_write(hpage);
1335 if (unlikely(!mapping))
1336 goto unlock_put_anon;
1337
1338 ttu = TTU_RMAP_LOCKED;
1339 }
1340
1341 try_to_migrate(src, ttu);
1342 page_was_mapped = 1;
1343
1344 if (ttu & TTU_RMAP_LOCKED)
1345 i_mmap_unlock_write(mapping);
1346 }
1347
1348 if (!folio_mapped(src))
1349 rc = move_to_new_folio(dst, src, mode);
1350
1351 if (page_was_mapped)
1352 remove_migration_ptes(src,
1353 rc == MIGRATEPAGE_SUCCESS ? dst : src, false);
1354
1355unlock_put_anon:
1356 folio_unlock(dst);
1357
1358put_anon:
1359 if (anon_vma)
1360 put_anon_vma(anon_vma);
1361
1362 if (rc == MIGRATEPAGE_SUCCESS) {
1363 move_hugetlb_state(src, dst, reason);
1364 put_new_page = NULL;
1365 }
1366
1367out_unlock:
1368 folio_unlock(src);
1369out:
1370 if (rc == MIGRATEPAGE_SUCCESS)
1371 putback_active_hugepage(hpage);
1372 else if (rc != -EAGAIN)
1373 list_move_tail(&src->lru, ret);
1374
1375 /*
1376 * If migration was not successful and there's a freeing callback, use
1377 * it. Otherwise, put_page() will drop the reference grabbed during
1378 * isolation.
1379 */
1380 if (put_new_page)
1381 put_new_page(new_hpage, private);
1382 else
1383 putback_active_hugepage(new_hpage);
1384
1385 return rc;
1386}
1387
1388static inline int try_split_folio(struct folio *folio, struct list_head *split_folios)
1389{
1390 int rc;
1391
1392 folio_lock(folio);
1393 rc = split_folio_to_list(folio, split_folios);
1394 folio_unlock(folio);
1395 if (!rc)
1396 list_move_tail(&folio->lru, split_folios);
1397
1398 return rc;
1399}
1400
1401/*
1402 * migrate_pages - migrate the folios specified in a list, to the free folios
1403 * supplied as the target for the page migration
1404 *
1405 * @from: The list of folios to be migrated.
1406 * @get_new_page: The function used to allocate free folios to be used
1407 * as the target of the folio migration.
1408 * @put_new_page: The function used to free target folios if migration
1409 * fails, or NULL if no special handling is necessary.
1410 * @private: Private data to be passed on to get_new_page()
1411 * @mode: The migration mode that specifies the constraints for
1412 * folio migration, if any.
1413 * @reason: The reason for folio migration.
1414 * @ret_succeeded: Set to the number of folios migrated successfully if
1415 * the caller passes a non-NULL pointer.
1416 *
1417 * The function returns after 10 attempts or if no folios are movable any more
1418 * because the list has become empty or no retryable folios exist any more.
1419 * It is caller's responsibility to call putback_movable_pages() to return folios
1420 * to the LRU or free list only if ret != 0.
1421 *
1422 * Returns the number of {normal folio, large folio, hugetlb} that were not
1423 * migrated, or an error code. The number of large folio splits will be
1424 * considered as the number of non-migrated large folio, no matter how many
1425 * split folios of the large folio are migrated successfully.
1426 */
1427int migrate_pages(struct list_head *from, new_page_t get_new_page,
1428 free_page_t put_new_page, unsigned long private,
1429 enum migrate_mode mode, int reason, unsigned int *ret_succeeded)
1430{
1431 int retry = 1;
1432 int large_retry = 1;
1433 int thp_retry = 1;
1434 int nr_failed = 0;
1435 int nr_failed_pages = 0;
1436 int nr_retry_pages = 0;
1437 int nr_succeeded = 0;
1438 int nr_thp_succeeded = 0;
1439 int nr_large_failed = 0;
1440 int nr_thp_failed = 0;
1441 int nr_thp_split = 0;
1442 int pass = 0;
1443 bool is_large = false;
1444 bool is_thp = false;
1445 struct folio *folio, *folio2;
1446 int rc, nr_pages;
1447 LIST_HEAD(ret_folios);
1448 LIST_HEAD(split_folios);
1449 bool nosplit = (reason == MR_NUMA_MISPLACED);
1450 bool no_split_folio_counting = false;
1451
1452 trace_mm_migrate_pages_start(mode, reason);
1453
1454split_folio_migration:
1455 for (pass = 0; pass < 10 && (retry || large_retry); pass++) {
1456 retry = 0;
1457 large_retry = 0;
1458 thp_retry = 0;
1459 nr_retry_pages = 0;
1460
1461 list_for_each_entry_safe(folio, folio2, from, lru) {
1462 /*
1463 * Large folio statistics is based on the source large
1464 * folio. Capture required information that might get
1465 * lost during migration.
1466 */
1467 is_large = folio_test_large(folio) && !folio_test_hugetlb(folio);
1468 is_thp = is_large && folio_test_pmd_mappable(folio);
1469 nr_pages = folio_nr_pages(folio);
1470 cond_resched();
1471
1472 if (folio_test_hugetlb(folio))
1473 rc = unmap_and_move_huge_page(get_new_page,
1474 put_new_page, private,
1475 &folio->page, pass > 2, mode,
1476 reason,
1477 &ret_folios);
1478 else
1479 rc = unmap_and_move(get_new_page, put_new_page,
1480 private, folio, pass > 2, mode,
1481 reason, &ret_folios);
1482 /*
1483 * The rules are:
1484 * Success: non hugetlb folio will be freed, hugetlb
1485 * folio will be put back
1486 * -EAGAIN: stay on the from list
1487 * -ENOMEM: stay on the from list
1488 * -ENOSYS: stay on the from list
1489 * Other errno: put on ret_folios list then splice to
1490 * from list
1491 */
1492 switch(rc) {
1493 /*
1494 * Large folio migration might be unsupported or
1495 * the allocation could've failed so we should retry
1496 * on the same folio with the large folio split
1497 * to normal folios.
1498 *
1499 * Split folios are put in split_folios, and
1500 * we will migrate them after the rest of the
1501 * list is processed.
1502 */
1503 case -ENOSYS:
1504 /* Large folio migration is unsupported */
1505 if (is_large) {
1506 nr_large_failed++;
1507 nr_thp_failed += is_thp;
1508 if (!try_split_folio(folio, &split_folios)) {
1509 nr_thp_split += is_thp;
1510 break;
1511 }
1512 /* Hugetlb migration is unsupported */
1513 } else if (!no_split_folio_counting) {
1514 nr_failed++;
1515 }
1516
1517 nr_failed_pages += nr_pages;
1518 list_move_tail(&folio->lru, &ret_folios);
1519 break;
1520 case -ENOMEM:
1521 /*
1522 * When memory is low, don't bother to try to migrate
1523 * other folios, just exit.
1524 */
1525 if (is_large) {
1526 nr_large_failed++;
1527 nr_thp_failed += is_thp;
1528 /* Large folio NUMA faulting doesn't split to retry. */
1529 if (!nosplit) {
1530 int ret = try_split_folio(folio, &split_folios);
1531
1532 if (!ret) {
1533 nr_thp_split += is_thp;
1534 break;
1535 } else if (reason == MR_LONGTERM_PIN &&
1536 ret == -EAGAIN) {
1537 /*
1538 * Try again to split large folio to
1539 * mitigate the failure of longterm pinning.
1540 */
1541 large_retry++;
1542 thp_retry += is_thp;
1543 nr_retry_pages += nr_pages;
1544 break;
1545 }
1546 }
1547 } else if (!no_split_folio_counting) {
1548 nr_failed++;
1549 }
1550
1551 nr_failed_pages += nr_pages + nr_retry_pages;
1552 /*
1553 * There might be some split folios of fail-to-migrate large
1554 * folios left in split_folios list. Move them back to migration
1555 * list so that they could be put back to the right list by
1556 * the caller otherwise the folio refcnt will be leaked.
1557 */
1558 list_splice_init(&split_folios, from);
1559 /* nr_failed isn't updated for not used */
1560 nr_large_failed += large_retry;
1561 nr_thp_failed += thp_retry;
1562 goto out;
1563 case -EAGAIN:
1564 if (is_large) {
1565 large_retry++;
1566 thp_retry += is_thp;
1567 } else if (!no_split_folio_counting) {
1568 retry++;
1569 }
1570 nr_retry_pages += nr_pages;
1571 break;
1572 case MIGRATEPAGE_SUCCESS:
1573 nr_succeeded += nr_pages;
1574 nr_thp_succeeded += is_thp;
1575 break;
1576 default:
1577 /*
1578 * Permanent failure (-EBUSY, etc.):
1579 * unlike -EAGAIN case, the failed folio is
1580 * removed from migration folio list and not
1581 * retried in the next outer loop.
1582 */
1583 if (is_large) {
1584 nr_large_failed++;
1585 nr_thp_failed += is_thp;
1586 } else if (!no_split_folio_counting) {
1587 nr_failed++;
1588 }
1589
1590 nr_failed_pages += nr_pages;
1591 break;
1592 }
1593 }
1594 }
1595 nr_failed += retry;
1596 nr_large_failed += large_retry;
1597 nr_thp_failed += thp_retry;
1598 nr_failed_pages += nr_retry_pages;
1599 /*
1600 * Try to migrate split folios of fail-to-migrate large folios, no
1601 * nr_failed counting in this round, since all split folios of a
1602 * large folio is counted as 1 failure in the first round.
1603 */
1604 if (!list_empty(&split_folios)) {
1605 /*
1606 * Move non-migrated folios (after 10 retries) to ret_folios
1607 * to avoid migrating them again.
1608 */
1609 list_splice_init(from, &ret_folios);
1610 list_splice_init(&split_folios, from);
1611 no_split_folio_counting = true;
1612 retry = 1;
1613 goto split_folio_migration;
1614 }
1615
1616 rc = nr_failed + nr_large_failed;
1617out:
1618 /*
1619 * Put the permanent failure folio back to migration list, they
1620 * will be put back to the right list by the caller.
1621 */
1622 list_splice(&ret_folios, from);
1623
1624 /*
1625 * Return 0 in case all split folios of fail-to-migrate large folios
1626 * are migrated successfully.
1627 */
1628 if (list_empty(from))
1629 rc = 0;
1630
1631 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1632 count_vm_events(PGMIGRATE_FAIL, nr_failed_pages);
1633 count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded);
1634 count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed);
1635 count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split);
1636 trace_mm_migrate_pages(nr_succeeded, nr_failed_pages, nr_thp_succeeded,
1637 nr_thp_failed, nr_thp_split, mode, reason);
1638
1639 if (ret_succeeded)
1640 *ret_succeeded = nr_succeeded;
1641
1642 return rc;
1643}
1644
1645struct page *alloc_migration_target(struct page *page, unsigned long private)
1646{
1647 struct folio *folio = page_folio(page);
1648 struct migration_target_control *mtc;
1649 gfp_t gfp_mask;
1650 unsigned int order = 0;
1651 struct folio *new_folio = NULL;
1652 int nid;
1653 int zidx;
1654
1655 mtc = (struct migration_target_control *)private;
1656 gfp_mask = mtc->gfp_mask;
1657 nid = mtc->nid;
1658 if (nid == NUMA_NO_NODE)
1659 nid = folio_nid(folio);
1660
1661 if (folio_test_hugetlb(folio)) {
1662 struct hstate *h = folio_hstate(folio);
1663
1664 gfp_mask = htlb_modify_alloc_mask(h, gfp_mask);
1665 return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask);
1666 }
1667
1668 if (folio_test_large(folio)) {
1669 /*
1670 * clear __GFP_RECLAIM to make the migration callback
1671 * consistent with regular THP allocations.
1672 */
1673 gfp_mask &= ~__GFP_RECLAIM;
1674 gfp_mask |= GFP_TRANSHUGE;
1675 order = folio_order(folio);
1676 }
1677 zidx = zone_idx(folio_zone(folio));
1678 if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE)
1679 gfp_mask |= __GFP_HIGHMEM;
1680
1681 new_folio = __folio_alloc(gfp_mask, order, nid, mtc->nmask);
1682
1683 return &new_folio->page;
1684}
1685
1686#ifdef CONFIG_NUMA
1687
1688static int store_status(int __user *status, int start, int value, int nr)
1689{
1690 while (nr-- > 0) {
1691 if (put_user(value, status + start))
1692 return -EFAULT;
1693 start++;
1694 }
1695
1696 return 0;
1697}
1698
1699static int do_move_pages_to_node(struct mm_struct *mm,
1700 struct list_head *pagelist, int node)
1701{
1702 int err;
1703 struct migration_target_control mtc = {
1704 .nid = node,
1705 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1706 };
1707
1708 err = migrate_pages(pagelist, alloc_migration_target, NULL,
1709 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL);
1710 if (err)
1711 putback_movable_pages(pagelist);
1712 return err;
1713}
1714
1715/*
1716 * Resolves the given address to a struct page, isolates it from the LRU and
1717 * puts it to the given pagelist.
1718 * Returns:
1719 * errno - if the page cannot be found/isolated
1720 * 0 - when it doesn't have to be migrated because it is already on the
1721 * target node
1722 * 1 - when it has been queued
1723 */
1724static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1725 int node, struct list_head *pagelist, bool migrate_all)
1726{
1727 struct vm_area_struct *vma;
1728 struct page *page;
1729 int err;
1730
1731 mmap_read_lock(mm);
1732 err = -EFAULT;
1733 vma = vma_lookup(mm, addr);
1734 if (!vma || !vma_migratable(vma))
1735 goto out;
1736
1737 /* FOLL_DUMP to ignore special (like zero) pages */
1738 page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
1739
1740 err = PTR_ERR(page);
1741 if (IS_ERR(page))
1742 goto out;
1743
1744 err = -ENOENT;
1745 if (!page)
1746 goto out;
1747
1748 if (is_zone_device_page(page))
1749 goto out_putpage;
1750
1751 err = 0;
1752 if (page_to_nid(page) == node)
1753 goto out_putpage;
1754
1755 err = -EACCES;
1756 if (page_mapcount(page) > 1 && !migrate_all)
1757 goto out_putpage;
1758
1759 if (PageHuge(page)) {
1760 if (PageHead(page)) {
1761 err = isolate_hugetlb(page, pagelist);
1762 if (!err)
1763 err = 1;
1764 }
1765 } else {
1766 struct page *head;
1767
1768 head = compound_head(page);
1769 err = isolate_lru_page(head);
1770 if (err)
1771 goto out_putpage;
1772
1773 err = 1;
1774 list_add_tail(&head->lru, pagelist);
1775 mod_node_page_state(page_pgdat(head),
1776 NR_ISOLATED_ANON + page_is_file_lru(head),
1777 thp_nr_pages(head));
1778 }
1779out_putpage:
1780 /*
1781 * Either remove the duplicate refcount from
1782 * isolate_lru_page() or drop the page ref if it was
1783 * not isolated.
1784 */
1785 put_page(page);
1786out:
1787 mmap_read_unlock(mm);
1788 return err;
1789}
1790
1791static int move_pages_and_store_status(struct mm_struct *mm, int node,
1792 struct list_head *pagelist, int __user *status,
1793 int start, int i, unsigned long nr_pages)
1794{
1795 int err;
1796
1797 if (list_empty(pagelist))
1798 return 0;
1799
1800 err = do_move_pages_to_node(mm, pagelist, node);
1801 if (err) {
1802 /*
1803 * Positive err means the number of failed
1804 * pages to migrate. Since we are going to
1805 * abort and return the number of non-migrated
1806 * pages, so need to include the rest of the
1807 * nr_pages that have not been attempted as
1808 * well.
1809 */
1810 if (err > 0)
1811 err += nr_pages - i;
1812 return err;
1813 }
1814 return store_status(status, start, node, i - start);
1815}
1816
1817/*
1818 * Migrate an array of page address onto an array of nodes and fill
1819 * the corresponding array of status.
1820 */
1821static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1822 unsigned long nr_pages,
1823 const void __user * __user *pages,
1824 const int __user *nodes,
1825 int __user *status, int flags)
1826{
1827 int current_node = NUMA_NO_NODE;
1828 LIST_HEAD(pagelist);
1829 int start, i;
1830 int err = 0, err1;
1831
1832 lru_cache_disable();
1833
1834 for (i = start = 0; i < nr_pages; i++) {
1835 const void __user *p;
1836 unsigned long addr;
1837 int node;
1838
1839 err = -EFAULT;
1840 if (get_user(p, pages + i))
1841 goto out_flush;
1842 if (get_user(node, nodes + i))
1843 goto out_flush;
1844 addr = (unsigned long)untagged_addr(p);
1845
1846 err = -ENODEV;
1847 if (node < 0 || node >= MAX_NUMNODES)
1848 goto out_flush;
1849 if (!node_state(node, N_MEMORY))
1850 goto out_flush;
1851
1852 err = -EACCES;
1853 if (!node_isset(node, task_nodes))
1854 goto out_flush;
1855
1856 if (current_node == NUMA_NO_NODE) {
1857 current_node = node;
1858 start = i;
1859 } else if (node != current_node) {
1860 err = move_pages_and_store_status(mm, current_node,
1861 &pagelist, status, start, i, nr_pages);
1862 if (err)
1863 goto out;
1864 start = i;
1865 current_node = node;
1866 }
1867
1868 /*
1869 * Errors in the page lookup or isolation are not fatal and we simply
1870 * report them via status
1871 */
1872 err = add_page_for_migration(mm, addr, current_node,
1873 &pagelist, flags & MPOL_MF_MOVE_ALL);
1874
1875 if (err > 0) {
1876 /* The page is successfully queued for migration */
1877 continue;
1878 }
1879
1880 /*
1881 * The move_pages() man page does not have an -EEXIST choice, so
1882 * use -EFAULT instead.
1883 */
1884 if (err == -EEXIST)
1885 err = -EFAULT;
1886
1887 /*
1888 * If the page is already on the target node (!err), store the
1889 * node, otherwise, store the err.
1890 */
1891 err = store_status(status, i, err ? : current_node, 1);
1892 if (err)
1893 goto out_flush;
1894
1895 err = move_pages_and_store_status(mm, current_node, &pagelist,
1896 status, start, i, nr_pages);
1897 if (err) {
1898 /* We have accounted for page i */
1899 if (err > 0)
1900 err--;
1901 goto out;
1902 }
1903 current_node = NUMA_NO_NODE;
1904 }
1905out_flush:
1906 /* Make sure we do not overwrite the existing error */
1907 err1 = move_pages_and_store_status(mm, current_node, &pagelist,
1908 status, start, i, nr_pages);
1909 if (err >= 0)
1910 err = err1;
1911out:
1912 lru_cache_enable();
1913 return err;
1914}
1915
1916/*
1917 * Determine the nodes of an array of pages and store it in an array of status.
1918 */
1919static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1920 const void __user **pages, int *status)
1921{
1922 unsigned long i;
1923
1924 mmap_read_lock(mm);
1925
1926 for (i = 0; i < nr_pages; i++) {
1927 unsigned long addr = (unsigned long)(*pages);
1928 struct vm_area_struct *vma;
1929 struct page *page;
1930 int err = -EFAULT;
1931
1932 vma = vma_lookup(mm, addr);
1933 if (!vma)
1934 goto set_status;
1935
1936 /* FOLL_DUMP to ignore special (like zero) pages */
1937 page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
1938
1939 err = PTR_ERR(page);
1940 if (IS_ERR(page))
1941 goto set_status;
1942
1943 err = -ENOENT;
1944 if (!page)
1945 goto set_status;
1946
1947 if (!is_zone_device_page(page))
1948 err = page_to_nid(page);
1949
1950 put_page(page);
1951set_status:
1952 *status = err;
1953
1954 pages++;
1955 status++;
1956 }
1957
1958 mmap_read_unlock(mm);
1959}
1960
1961static int get_compat_pages_array(const void __user *chunk_pages[],
1962 const void __user * __user *pages,
1963 unsigned long chunk_nr)
1964{
1965 compat_uptr_t __user *pages32 = (compat_uptr_t __user *)pages;
1966 compat_uptr_t p;
1967 int i;
1968
1969 for (i = 0; i < chunk_nr; i++) {
1970 if (get_user(p, pages32 + i))
1971 return -EFAULT;
1972 chunk_pages[i] = compat_ptr(p);
1973 }
1974
1975 return 0;
1976}
1977
1978/*
1979 * Determine the nodes of a user array of pages and store it in
1980 * a user array of status.
1981 */
1982static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1983 const void __user * __user *pages,
1984 int __user *status)
1985{
1986#define DO_PAGES_STAT_CHUNK_NR 16UL
1987 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1988 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1989
1990 while (nr_pages) {
1991 unsigned long chunk_nr = min(nr_pages, DO_PAGES_STAT_CHUNK_NR);
1992
1993 if (in_compat_syscall()) {
1994 if (get_compat_pages_array(chunk_pages, pages,
1995 chunk_nr))
1996 break;
1997 } else {
1998 if (copy_from_user(chunk_pages, pages,
1999 chunk_nr * sizeof(*chunk_pages)))
2000 break;
2001 }
2002
2003 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
2004
2005 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
2006 break;
2007
2008 pages += chunk_nr;
2009 status += chunk_nr;
2010 nr_pages -= chunk_nr;
2011 }
2012 return nr_pages ? -EFAULT : 0;
2013}
2014
2015static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes)
2016{
2017 struct task_struct *task;
2018 struct mm_struct *mm;
2019
2020 /*
2021 * There is no need to check if current process has the right to modify
2022 * the specified process when they are same.
2023 */
2024 if (!pid) {
2025 mmget(current->mm);
2026 *mem_nodes = cpuset_mems_allowed(current);
2027 return current->mm;
2028 }
2029
2030 /* Find the mm_struct */
2031 rcu_read_lock();
2032 task = find_task_by_vpid(pid);
2033 if (!task) {
2034 rcu_read_unlock();
2035 return ERR_PTR(-ESRCH);
2036 }
2037 get_task_struct(task);
2038
2039 /*
2040 * Check if this process has the right to modify the specified
2041 * process. Use the regular "ptrace_may_access()" checks.
2042 */
2043 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
2044 rcu_read_unlock();
2045 mm = ERR_PTR(-EPERM);
2046 goto out;
2047 }
2048 rcu_read_unlock();
2049
2050 mm = ERR_PTR(security_task_movememory(task));
2051 if (IS_ERR(mm))
2052 goto out;
2053 *mem_nodes = cpuset_mems_allowed(task);
2054 mm = get_task_mm(task);
2055out:
2056 put_task_struct(task);
2057 if (!mm)
2058 mm = ERR_PTR(-EINVAL);
2059 return mm;
2060}
2061
2062/*
2063 * Move a list of pages in the address space of the currently executing
2064 * process.
2065 */
2066static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
2067 const void __user * __user *pages,
2068 const int __user *nodes,
2069 int __user *status, int flags)
2070{
2071 struct mm_struct *mm;
2072 int err;
2073 nodemask_t task_nodes;
2074
2075 /* Check flags */
2076 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
2077 return -EINVAL;
2078
2079 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
2080 return -EPERM;
2081
2082 mm = find_mm_struct(pid, &task_nodes);
2083 if (IS_ERR(mm))
2084 return PTR_ERR(mm);
2085
2086 if (nodes)
2087 err = do_pages_move(mm, task_nodes, nr_pages, pages,
2088 nodes, status, flags);
2089 else
2090 err = do_pages_stat(mm, nr_pages, pages, status);
2091
2092 mmput(mm);
2093 return err;
2094}
2095
2096SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
2097 const void __user * __user *, pages,
2098 const int __user *, nodes,
2099 int __user *, status, int, flags)
2100{
2101 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
2102}
2103
2104#ifdef CONFIG_NUMA_BALANCING
2105/*
2106 * Returns true if this is a safe migration target node for misplaced NUMA
2107 * pages. Currently it only checks the watermarks which is crude.
2108 */
2109static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
2110 unsigned long nr_migrate_pages)
2111{
2112 int z;
2113
2114 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
2115 struct zone *zone = pgdat->node_zones + z;
2116
2117 if (!managed_zone(zone))
2118 continue;
2119
2120 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
2121 if (!zone_watermark_ok(zone, 0,
2122 high_wmark_pages(zone) +
2123 nr_migrate_pages,
2124 ZONE_MOVABLE, 0))
2125 continue;
2126 return true;
2127 }
2128 return false;
2129}
2130
2131static struct page *alloc_misplaced_dst_page(struct page *page,
2132 unsigned long data)
2133{
2134 int nid = (int) data;
2135 int order = compound_order(page);
2136 gfp_t gfp = __GFP_THISNODE;
2137 struct folio *new;
2138
2139 if (order > 0)
2140 gfp |= GFP_TRANSHUGE_LIGHT;
2141 else {
2142 gfp |= GFP_HIGHUSER_MOVABLE | __GFP_NOMEMALLOC | __GFP_NORETRY |
2143 __GFP_NOWARN;
2144 gfp &= ~__GFP_RECLAIM;
2145 }
2146 new = __folio_alloc_node(gfp, order, nid);
2147
2148 return &new->page;
2149}
2150
2151static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
2152{
2153 int nr_pages = thp_nr_pages(page);
2154 int order = compound_order(page);
2155
2156 VM_BUG_ON_PAGE(order && !PageTransHuge(page), page);
2157
2158 /* Do not migrate THP mapped by multiple processes */
2159 if (PageTransHuge(page) && total_mapcount(page) > 1)
2160 return 0;
2161
2162 /* Avoid migrating to a node that is nearly full */
2163 if (!migrate_balanced_pgdat(pgdat, nr_pages)) {
2164 int z;
2165
2166 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING))
2167 return 0;
2168 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
2169 if (managed_zone(pgdat->node_zones + z))
2170 break;
2171 }
2172 wakeup_kswapd(pgdat->node_zones + z, 0, order, ZONE_MOVABLE);
2173 return 0;
2174 }
2175
2176 if (isolate_lru_page(page))
2177 return 0;
2178
2179 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_is_file_lru(page),
2180 nr_pages);
2181
2182 /*
2183 * Isolating the page has taken another reference, so the
2184 * caller's reference can be safely dropped without the page
2185 * disappearing underneath us during migration.
2186 */
2187 put_page(page);
2188 return 1;
2189}
2190
2191/*
2192 * Attempt to migrate a misplaced page to the specified destination
2193 * node. Caller is expected to have an elevated reference count on
2194 * the page that will be dropped by this function before returning.
2195 */
2196int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
2197 int node)
2198{
2199 pg_data_t *pgdat = NODE_DATA(node);
2200 int isolated;
2201 int nr_remaining;
2202 unsigned int nr_succeeded;
2203 LIST_HEAD(migratepages);
2204 int nr_pages = thp_nr_pages(page);
2205
2206 /*
2207 * Don't migrate file pages that are mapped in multiple processes
2208 * with execute permissions as they are probably shared libraries.
2209 */
2210 if (page_mapcount(page) != 1 && page_is_file_lru(page) &&
2211 (vma->vm_flags & VM_EXEC))
2212 goto out;
2213
2214 /*
2215 * Also do not migrate dirty pages as not all filesystems can move
2216 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
2217 */
2218 if (page_is_file_lru(page) && PageDirty(page))
2219 goto out;
2220
2221 isolated = numamigrate_isolate_page(pgdat, page);
2222 if (!isolated)
2223 goto out;
2224
2225 list_add(&page->lru, &migratepages);
2226 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
2227 NULL, node, MIGRATE_ASYNC,
2228 MR_NUMA_MISPLACED, &nr_succeeded);
2229 if (nr_remaining) {
2230 if (!list_empty(&migratepages)) {
2231 list_del(&page->lru);
2232 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
2233 page_is_file_lru(page), -nr_pages);
2234 putback_lru_page(page);
2235 }
2236 isolated = 0;
2237 }
2238 if (nr_succeeded) {
2239 count_vm_numa_events(NUMA_PAGE_MIGRATE, nr_succeeded);
2240 if (!node_is_toptier(page_to_nid(page)) && node_is_toptier(node))
2241 mod_node_page_state(pgdat, PGPROMOTE_SUCCESS,
2242 nr_succeeded);
2243 }
2244 BUG_ON(!list_empty(&migratepages));
2245 return isolated;
2246
2247out:
2248 put_page(page);
2249 return 0;
2250}
2251#endif /* CONFIG_NUMA_BALANCING */
2252#endif /* CONFIG_NUMA */
1/*
2 * Memory Migration functionality - linux/mm/migration.c
3 *
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5 *
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
8 *
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
12 * Christoph Lameter
13 */
14
15#include <linux/migrate.h>
16#include <linux/export.h>
17#include <linux/swap.h>
18#include <linux/swapops.h>
19#include <linux/pagemap.h>
20#include <linux/buffer_head.h>
21#include <linux/mm_inline.h>
22#include <linux/nsproxy.h>
23#include <linux/pagevec.h>
24#include <linux/ksm.h>
25#include <linux/rmap.h>
26#include <linux/topology.h>
27#include <linux/cpu.h>
28#include <linux/cpuset.h>
29#include <linux/writeback.h>
30#include <linux/mempolicy.h>
31#include <linux/vmalloc.h>
32#include <linux/security.h>
33#include <linux/memcontrol.h>
34#include <linux/syscalls.h>
35#include <linux/hugetlb.h>
36#include <linux/gfp.h>
37
38#include <asm/tlbflush.h>
39
40#include "internal.h"
41
42/*
43 * migrate_prep() needs to be called before we start compiling a list of pages
44 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
45 * undesirable, use migrate_prep_local()
46 */
47int migrate_prep(void)
48{
49 /*
50 * Clear the LRU lists so pages can be isolated.
51 * Note that pages may be moved off the LRU after we have
52 * drained them. Those pages will fail to migrate like other
53 * pages that may be busy.
54 */
55 lru_add_drain_all();
56
57 return 0;
58}
59
60/* Do the necessary work of migrate_prep but not if it involves other CPUs */
61int migrate_prep_local(void)
62{
63 lru_add_drain();
64
65 return 0;
66}
67
68/*
69 * Add isolated pages on the list back to the LRU under page lock
70 * to avoid leaking evictable pages back onto unevictable list.
71 */
72void putback_lru_pages(struct list_head *l)
73{
74 struct page *page;
75 struct page *page2;
76
77 list_for_each_entry_safe(page, page2, l, lru) {
78 list_del(&page->lru);
79 dec_zone_page_state(page, NR_ISOLATED_ANON +
80 page_is_file_cache(page));
81 putback_lru_page(page);
82 }
83}
84
85/*
86 * Restore a potential migration pte to a working pte entry
87 */
88static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
89 unsigned long addr, void *old)
90{
91 struct mm_struct *mm = vma->vm_mm;
92 swp_entry_t entry;
93 pgd_t *pgd;
94 pud_t *pud;
95 pmd_t *pmd;
96 pte_t *ptep, pte;
97 spinlock_t *ptl;
98
99 if (unlikely(PageHuge(new))) {
100 ptep = huge_pte_offset(mm, addr);
101 if (!ptep)
102 goto out;
103 ptl = &mm->page_table_lock;
104 } else {
105 pgd = pgd_offset(mm, addr);
106 if (!pgd_present(*pgd))
107 goto out;
108
109 pud = pud_offset(pgd, addr);
110 if (!pud_present(*pud))
111 goto out;
112
113 pmd = pmd_offset(pud, addr);
114 if (pmd_trans_huge(*pmd))
115 goto out;
116 if (!pmd_present(*pmd))
117 goto out;
118
119 ptep = pte_offset_map(pmd, addr);
120
121 /*
122 * Peek to check is_swap_pte() before taking ptlock? No, we
123 * can race mremap's move_ptes(), which skips anon_vma lock.
124 */
125
126 ptl = pte_lockptr(mm, pmd);
127 }
128
129 spin_lock(ptl);
130 pte = *ptep;
131 if (!is_swap_pte(pte))
132 goto unlock;
133
134 entry = pte_to_swp_entry(pte);
135
136 if (!is_migration_entry(entry) ||
137 migration_entry_to_page(entry) != old)
138 goto unlock;
139
140 get_page(new);
141 pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
142 if (is_write_migration_entry(entry))
143 pte = pte_mkwrite(pte);
144#ifdef CONFIG_HUGETLB_PAGE
145 if (PageHuge(new))
146 pte = pte_mkhuge(pte);
147#endif
148 flush_cache_page(vma, addr, pte_pfn(pte));
149 set_pte_at(mm, addr, ptep, pte);
150
151 if (PageHuge(new)) {
152 if (PageAnon(new))
153 hugepage_add_anon_rmap(new, vma, addr);
154 else
155 page_dup_rmap(new);
156 } else if (PageAnon(new))
157 page_add_anon_rmap(new, vma, addr);
158 else
159 page_add_file_rmap(new);
160
161 /* No need to invalidate - it was non-present before */
162 update_mmu_cache(vma, addr, ptep);
163unlock:
164 pte_unmap_unlock(ptep, ptl);
165out:
166 return SWAP_AGAIN;
167}
168
169/*
170 * Get rid of all migration entries and replace them by
171 * references to the indicated page.
172 */
173static void remove_migration_ptes(struct page *old, struct page *new)
174{
175 rmap_walk(new, remove_migration_pte, old);
176}
177
178/*
179 * Something used the pte of a page under migration. We need to
180 * get to the page and wait until migration is finished.
181 * When we return from this function the fault will be retried.
182 */
183void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
184 unsigned long address)
185{
186 pte_t *ptep, pte;
187 spinlock_t *ptl;
188 swp_entry_t entry;
189 struct page *page;
190
191 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
192 pte = *ptep;
193 if (!is_swap_pte(pte))
194 goto out;
195
196 entry = pte_to_swp_entry(pte);
197 if (!is_migration_entry(entry))
198 goto out;
199
200 page = migration_entry_to_page(entry);
201
202 /*
203 * Once radix-tree replacement of page migration started, page_count
204 * *must* be zero. And, we don't want to call wait_on_page_locked()
205 * against a page without get_page().
206 * So, we use get_page_unless_zero(), here. Even failed, page fault
207 * will occur again.
208 */
209 if (!get_page_unless_zero(page))
210 goto out;
211 pte_unmap_unlock(ptep, ptl);
212 wait_on_page_locked(page);
213 put_page(page);
214 return;
215out:
216 pte_unmap_unlock(ptep, ptl);
217}
218
219#ifdef CONFIG_BLOCK
220/* Returns true if all buffers are successfully locked */
221static bool buffer_migrate_lock_buffers(struct buffer_head *head,
222 enum migrate_mode mode)
223{
224 struct buffer_head *bh = head;
225
226 /* Simple case, sync compaction */
227 if (mode != MIGRATE_ASYNC) {
228 do {
229 get_bh(bh);
230 lock_buffer(bh);
231 bh = bh->b_this_page;
232
233 } while (bh != head);
234
235 return true;
236 }
237
238 /* async case, we cannot block on lock_buffer so use trylock_buffer */
239 do {
240 get_bh(bh);
241 if (!trylock_buffer(bh)) {
242 /*
243 * We failed to lock the buffer and cannot stall in
244 * async migration. Release the taken locks
245 */
246 struct buffer_head *failed_bh = bh;
247 put_bh(failed_bh);
248 bh = head;
249 while (bh != failed_bh) {
250 unlock_buffer(bh);
251 put_bh(bh);
252 bh = bh->b_this_page;
253 }
254 return false;
255 }
256
257 bh = bh->b_this_page;
258 } while (bh != head);
259 return true;
260}
261#else
262static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
263 enum migrate_mode mode)
264{
265 return true;
266}
267#endif /* CONFIG_BLOCK */
268
269/*
270 * Replace the page in the mapping.
271 *
272 * The number of remaining references must be:
273 * 1 for anonymous pages without a mapping
274 * 2 for pages with a mapping
275 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
276 */
277static int migrate_page_move_mapping(struct address_space *mapping,
278 struct page *newpage, struct page *page,
279 struct buffer_head *head, enum migrate_mode mode)
280{
281 int expected_count;
282 void **pslot;
283
284 if (!mapping) {
285 /* Anonymous page without mapping */
286 if (page_count(page) != 1)
287 return -EAGAIN;
288 return 0;
289 }
290
291 spin_lock_irq(&mapping->tree_lock);
292
293 pslot = radix_tree_lookup_slot(&mapping->page_tree,
294 page_index(page));
295
296 expected_count = 2 + page_has_private(page);
297 if (page_count(page) != expected_count ||
298 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
299 spin_unlock_irq(&mapping->tree_lock);
300 return -EAGAIN;
301 }
302
303 if (!page_freeze_refs(page, expected_count)) {
304 spin_unlock_irq(&mapping->tree_lock);
305 return -EAGAIN;
306 }
307
308 /*
309 * In the async migration case of moving a page with buffers, lock the
310 * buffers using trylock before the mapping is moved. If the mapping
311 * was moved, we later failed to lock the buffers and could not move
312 * the mapping back due to an elevated page count, we would have to
313 * block waiting on other references to be dropped.
314 */
315 if (mode == MIGRATE_ASYNC && head &&
316 !buffer_migrate_lock_buffers(head, mode)) {
317 page_unfreeze_refs(page, expected_count);
318 spin_unlock_irq(&mapping->tree_lock);
319 return -EAGAIN;
320 }
321
322 /*
323 * Now we know that no one else is looking at the page.
324 */
325 get_page(newpage); /* add cache reference */
326 if (PageSwapCache(page)) {
327 SetPageSwapCache(newpage);
328 set_page_private(newpage, page_private(page));
329 }
330
331 radix_tree_replace_slot(pslot, newpage);
332
333 /*
334 * Drop cache reference from old page by unfreezing
335 * to one less reference.
336 * We know this isn't the last reference.
337 */
338 page_unfreeze_refs(page, expected_count - 1);
339
340 /*
341 * If moved to a different zone then also account
342 * the page for that zone. Other VM counters will be
343 * taken care of when we establish references to the
344 * new page and drop references to the old page.
345 *
346 * Note that anonymous pages are accounted for
347 * via NR_FILE_PAGES and NR_ANON_PAGES if they
348 * are mapped to swap space.
349 */
350 __dec_zone_page_state(page, NR_FILE_PAGES);
351 __inc_zone_page_state(newpage, NR_FILE_PAGES);
352 if (!PageSwapCache(page) && PageSwapBacked(page)) {
353 __dec_zone_page_state(page, NR_SHMEM);
354 __inc_zone_page_state(newpage, NR_SHMEM);
355 }
356 spin_unlock_irq(&mapping->tree_lock);
357
358 return 0;
359}
360
361/*
362 * The expected number of remaining references is the same as that
363 * of migrate_page_move_mapping().
364 */
365int migrate_huge_page_move_mapping(struct address_space *mapping,
366 struct page *newpage, struct page *page)
367{
368 int expected_count;
369 void **pslot;
370
371 if (!mapping) {
372 if (page_count(page) != 1)
373 return -EAGAIN;
374 return 0;
375 }
376
377 spin_lock_irq(&mapping->tree_lock);
378
379 pslot = radix_tree_lookup_slot(&mapping->page_tree,
380 page_index(page));
381
382 expected_count = 2 + page_has_private(page);
383 if (page_count(page) != expected_count ||
384 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
385 spin_unlock_irq(&mapping->tree_lock);
386 return -EAGAIN;
387 }
388
389 if (!page_freeze_refs(page, expected_count)) {
390 spin_unlock_irq(&mapping->tree_lock);
391 return -EAGAIN;
392 }
393
394 get_page(newpage);
395
396 radix_tree_replace_slot(pslot, newpage);
397
398 page_unfreeze_refs(page, expected_count - 1);
399
400 spin_unlock_irq(&mapping->tree_lock);
401 return 0;
402}
403
404/*
405 * Copy the page to its new location
406 */
407void migrate_page_copy(struct page *newpage, struct page *page)
408{
409 if (PageHuge(page))
410 copy_huge_page(newpage, page);
411 else
412 copy_highpage(newpage, page);
413
414 if (PageError(page))
415 SetPageError(newpage);
416 if (PageReferenced(page))
417 SetPageReferenced(newpage);
418 if (PageUptodate(page))
419 SetPageUptodate(newpage);
420 if (TestClearPageActive(page)) {
421 VM_BUG_ON(PageUnevictable(page));
422 SetPageActive(newpage);
423 } else if (TestClearPageUnevictable(page))
424 SetPageUnevictable(newpage);
425 if (PageChecked(page))
426 SetPageChecked(newpage);
427 if (PageMappedToDisk(page))
428 SetPageMappedToDisk(newpage);
429
430 if (PageDirty(page)) {
431 clear_page_dirty_for_io(page);
432 /*
433 * Want to mark the page and the radix tree as dirty, and
434 * redo the accounting that clear_page_dirty_for_io undid,
435 * but we can't use set_page_dirty because that function
436 * is actually a signal that all of the page has become dirty.
437 * Whereas only part of our page may be dirty.
438 */
439 if (PageSwapBacked(page))
440 SetPageDirty(newpage);
441 else
442 __set_page_dirty_nobuffers(newpage);
443 }
444
445 mlock_migrate_page(newpage, page);
446 ksm_migrate_page(newpage, page);
447
448 ClearPageSwapCache(page);
449 ClearPagePrivate(page);
450 set_page_private(page, 0);
451
452 /*
453 * If any waiters have accumulated on the new page then
454 * wake them up.
455 */
456 if (PageWriteback(newpage))
457 end_page_writeback(newpage);
458}
459
460/************************************************************
461 * Migration functions
462 ***********************************************************/
463
464/* Always fail migration. Used for mappings that are not movable */
465int fail_migrate_page(struct address_space *mapping,
466 struct page *newpage, struct page *page)
467{
468 return -EIO;
469}
470EXPORT_SYMBOL(fail_migrate_page);
471
472/*
473 * Common logic to directly migrate a single page suitable for
474 * pages that do not use PagePrivate/PagePrivate2.
475 *
476 * Pages are locked upon entry and exit.
477 */
478int migrate_page(struct address_space *mapping,
479 struct page *newpage, struct page *page,
480 enum migrate_mode mode)
481{
482 int rc;
483
484 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
485
486 rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode);
487
488 if (rc)
489 return rc;
490
491 migrate_page_copy(newpage, page);
492 return 0;
493}
494EXPORT_SYMBOL(migrate_page);
495
496#ifdef CONFIG_BLOCK
497/*
498 * Migration function for pages with buffers. This function can only be used
499 * if the underlying filesystem guarantees that no other references to "page"
500 * exist.
501 */
502int buffer_migrate_page(struct address_space *mapping,
503 struct page *newpage, struct page *page, enum migrate_mode mode)
504{
505 struct buffer_head *bh, *head;
506 int rc;
507
508 if (!page_has_buffers(page))
509 return migrate_page(mapping, newpage, page, mode);
510
511 head = page_buffers(page);
512
513 rc = migrate_page_move_mapping(mapping, newpage, page, head, mode);
514
515 if (rc)
516 return rc;
517
518 /*
519 * In the async case, migrate_page_move_mapping locked the buffers
520 * with an IRQ-safe spinlock held. In the sync case, the buffers
521 * need to be locked now
522 */
523 if (mode != MIGRATE_ASYNC)
524 BUG_ON(!buffer_migrate_lock_buffers(head, mode));
525
526 ClearPagePrivate(page);
527 set_page_private(newpage, page_private(page));
528 set_page_private(page, 0);
529 put_page(page);
530 get_page(newpage);
531
532 bh = head;
533 do {
534 set_bh_page(bh, newpage, bh_offset(bh));
535 bh = bh->b_this_page;
536
537 } while (bh != head);
538
539 SetPagePrivate(newpage);
540
541 migrate_page_copy(newpage, page);
542
543 bh = head;
544 do {
545 unlock_buffer(bh);
546 put_bh(bh);
547 bh = bh->b_this_page;
548
549 } while (bh != head);
550
551 return 0;
552}
553EXPORT_SYMBOL(buffer_migrate_page);
554#endif
555
556/*
557 * Writeback a page to clean the dirty state
558 */
559static int writeout(struct address_space *mapping, struct page *page)
560{
561 struct writeback_control wbc = {
562 .sync_mode = WB_SYNC_NONE,
563 .nr_to_write = 1,
564 .range_start = 0,
565 .range_end = LLONG_MAX,
566 .for_reclaim = 1
567 };
568 int rc;
569
570 if (!mapping->a_ops->writepage)
571 /* No write method for the address space */
572 return -EINVAL;
573
574 if (!clear_page_dirty_for_io(page))
575 /* Someone else already triggered a write */
576 return -EAGAIN;
577
578 /*
579 * A dirty page may imply that the underlying filesystem has
580 * the page on some queue. So the page must be clean for
581 * migration. Writeout may mean we loose the lock and the
582 * page state is no longer what we checked for earlier.
583 * At this point we know that the migration attempt cannot
584 * be successful.
585 */
586 remove_migration_ptes(page, page);
587
588 rc = mapping->a_ops->writepage(page, &wbc);
589
590 if (rc != AOP_WRITEPAGE_ACTIVATE)
591 /* unlocked. Relock */
592 lock_page(page);
593
594 return (rc < 0) ? -EIO : -EAGAIN;
595}
596
597/*
598 * Default handling if a filesystem does not provide a migration function.
599 */
600static int fallback_migrate_page(struct address_space *mapping,
601 struct page *newpage, struct page *page, enum migrate_mode mode)
602{
603 if (PageDirty(page)) {
604 /* Only writeback pages in full synchronous migration */
605 if (mode != MIGRATE_SYNC)
606 return -EBUSY;
607 return writeout(mapping, page);
608 }
609
610 /*
611 * Buffers may be managed in a filesystem specific way.
612 * We must have no buffers or drop them.
613 */
614 if (page_has_private(page) &&
615 !try_to_release_page(page, GFP_KERNEL))
616 return -EAGAIN;
617
618 return migrate_page(mapping, newpage, page, mode);
619}
620
621/*
622 * Move a page to a newly allocated page
623 * The page is locked and all ptes have been successfully removed.
624 *
625 * The new page will have replaced the old page if this function
626 * is successful.
627 *
628 * Return value:
629 * < 0 - error code
630 * == 0 - success
631 */
632static int move_to_new_page(struct page *newpage, struct page *page,
633 int remap_swapcache, enum migrate_mode mode)
634{
635 struct address_space *mapping;
636 int rc;
637
638 /*
639 * Block others from accessing the page when we get around to
640 * establishing additional references. We are the only one
641 * holding a reference to the new page at this point.
642 */
643 if (!trylock_page(newpage))
644 BUG();
645
646 /* Prepare mapping for the new page.*/
647 newpage->index = page->index;
648 newpage->mapping = page->mapping;
649 if (PageSwapBacked(page))
650 SetPageSwapBacked(newpage);
651
652 mapping = page_mapping(page);
653 if (!mapping)
654 rc = migrate_page(mapping, newpage, page, mode);
655 else if (mapping->a_ops->migratepage)
656 /*
657 * Most pages have a mapping and most filesystems provide a
658 * migratepage callback. Anonymous pages are part of swap
659 * space which also has its own migratepage callback. This
660 * is the most common path for page migration.
661 */
662 rc = mapping->a_ops->migratepage(mapping,
663 newpage, page, mode);
664 else
665 rc = fallback_migrate_page(mapping, newpage, page, mode);
666
667 if (rc) {
668 newpage->mapping = NULL;
669 } else {
670 if (remap_swapcache)
671 remove_migration_ptes(page, newpage);
672 page->mapping = NULL;
673 }
674
675 unlock_page(newpage);
676
677 return rc;
678}
679
680static int __unmap_and_move(struct page *page, struct page *newpage,
681 int force, bool offlining, enum migrate_mode mode)
682{
683 int rc = -EAGAIN;
684 int remap_swapcache = 1;
685 int charge = 0;
686 struct mem_cgroup *mem;
687 struct anon_vma *anon_vma = NULL;
688
689 if (!trylock_page(page)) {
690 if (!force || mode == MIGRATE_ASYNC)
691 goto out;
692
693 /*
694 * It's not safe for direct compaction to call lock_page.
695 * For example, during page readahead pages are added locked
696 * to the LRU. Later, when the IO completes the pages are
697 * marked uptodate and unlocked. However, the queueing
698 * could be merging multiple pages for one bio (e.g.
699 * mpage_readpages). If an allocation happens for the
700 * second or third page, the process can end up locking
701 * the same page twice and deadlocking. Rather than
702 * trying to be clever about what pages can be locked,
703 * avoid the use of lock_page for direct compaction
704 * altogether.
705 */
706 if (current->flags & PF_MEMALLOC)
707 goto out;
708
709 lock_page(page);
710 }
711
712 /*
713 * Only memory hotplug's offline_pages() caller has locked out KSM,
714 * and can safely migrate a KSM page. The other cases have skipped
715 * PageKsm along with PageReserved - but it is only now when we have
716 * the page lock that we can be certain it will not go KSM beneath us
717 * (KSM will not upgrade a page from PageAnon to PageKsm when it sees
718 * its pagecount raised, but only here do we take the page lock which
719 * serializes that).
720 */
721 if (PageKsm(page) && !offlining) {
722 rc = -EBUSY;
723 goto unlock;
724 }
725
726 /* charge against new page */
727 charge = mem_cgroup_prepare_migration(page, newpage, &mem, GFP_KERNEL);
728 if (charge == -ENOMEM) {
729 rc = -ENOMEM;
730 goto unlock;
731 }
732 BUG_ON(charge);
733
734 if (PageWriteback(page)) {
735 /*
736 * Only in the case of a full syncronous migration is it
737 * necessary to wait for PageWriteback. In the async case,
738 * the retry loop is too short and in the sync-light case,
739 * the overhead of stalling is too much
740 */
741 if (mode != MIGRATE_SYNC) {
742 rc = -EBUSY;
743 goto uncharge;
744 }
745 if (!force)
746 goto uncharge;
747 wait_on_page_writeback(page);
748 }
749 /*
750 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
751 * we cannot notice that anon_vma is freed while we migrates a page.
752 * This get_anon_vma() delays freeing anon_vma pointer until the end
753 * of migration. File cache pages are no problem because of page_lock()
754 * File Caches may use write_page() or lock_page() in migration, then,
755 * just care Anon page here.
756 */
757 if (PageAnon(page)) {
758 /*
759 * Only page_lock_anon_vma() understands the subtleties of
760 * getting a hold on an anon_vma from outside one of its mms.
761 */
762 anon_vma = page_get_anon_vma(page);
763 if (anon_vma) {
764 /*
765 * Anon page
766 */
767 } else if (PageSwapCache(page)) {
768 /*
769 * We cannot be sure that the anon_vma of an unmapped
770 * swapcache page is safe to use because we don't
771 * know in advance if the VMA that this page belonged
772 * to still exists. If the VMA and others sharing the
773 * data have been freed, then the anon_vma could
774 * already be invalid.
775 *
776 * To avoid this possibility, swapcache pages get
777 * migrated but are not remapped when migration
778 * completes
779 */
780 remap_swapcache = 0;
781 } else {
782 goto uncharge;
783 }
784 }
785
786 /*
787 * Corner case handling:
788 * 1. When a new swap-cache page is read into, it is added to the LRU
789 * and treated as swapcache but it has no rmap yet.
790 * Calling try_to_unmap() against a page->mapping==NULL page will
791 * trigger a BUG. So handle it here.
792 * 2. An orphaned page (see truncate_complete_page) might have
793 * fs-private metadata. The page can be picked up due to memory
794 * offlining. Everywhere else except page reclaim, the page is
795 * invisible to the vm, so the page can not be migrated. So try to
796 * free the metadata, so the page can be freed.
797 */
798 if (!page->mapping) {
799 VM_BUG_ON(PageAnon(page));
800 if (page_has_private(page)) {
801 try_to_free_buffers(page);
802 goto uncharge;
803 }
804 goto skip_unmap;
805 }
806
807 /* Establish migration ptes or remove ptes */
808 try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
809
810skip_unmap:
811 if (!page_mapped(page))
812 rc = move_to_new_page(newpage, page, remap_swapcache, mode);
813
814 if (rc && remap_swapcache)
815 remove_migration_ptes(page, page);
816
817 /* Drop an anon_vma reference if we took one */
818 if (anon_vma)
819 put_anon_vma(anon_vma);
820
821uncharge:
822 if (!charge)
823 mem_cgroup_end_migration(mem, page, newpage, rc == 0);
824unlock:
825 unlock_page(page);
826out:
827 return rc;
828}
829
830/*
831 * Obtain the lock on page, remove all ptes and migrate the page
832 * to the newly allocated page in newpage.
833 */
834static int unmap_and_move(new_page_t get_new_page, unsigned long private,
835 struct page *page, int force, bool offlining,
836 enum migrate_mode mode)
837{
838 int rc = 0;
839 int *result = NULL;
840 struct page *newpage = get_new_page(page, private, &result);
841
842 if (!newpage)
843 return -ENOMEM;
844
845 if (page_count(page) == 1) {
846 /* page was freed from under us. So we are done. */
847 goto out;
848 }
849
850 if (unlikely(PageTransHuge(page)))
851 if (unlikely(split_huge_page(page)))
852 goto out;
853
854 rc = __unmap_and_move(page, newpage, force, offlining, mode);
855out:
856 if (rc != -EAGAIN) {
857 /*
858 * A page that has been migrated has all references
859 * removed and will be freed. A page that has not been
860 * migrated will have kepts its references and be
861 * restored.
862 */
863 list_del(&page->lru);
864 dec_zone_page_state(page, NR_ISOLATED_ANON +
865 page_is_file_cache(page));
866 putback_lru_page(page);
867 }
868 /*
869 * Move the new page to the LRU. If migration was not successful
870 * then this will free the page.
871 */
872 putback_lru_page(newpage);
873 if (result) {
874 if (rc)
875 *result = rc;
876 else
877 *result = page_to_nid(newpage);
878 }
879 return rc;
880}
881
882/*
883 * Counterpart of unmap_and_move_page() for hugepage migration.
884 *
885 * This function doesn't wait the completion of hugepage I/O
886 * because there is no race between I/O and migration for hugepage.
887 * Note that currently hugepage I/O occurs only in direct I/O
888 * where no lock is held and PG_writeback is irrelevant,
889 * and writeback status of all subpages are counted in the reference
890 * count of the head page (i.e. if all subpages of a 2MB hugepage are
891 * under direct I/O, the reference of the head page is 512 and a bit more.)
892 * This means that when we try to migrate hugepage whose subpages are
893 * doing direct I/O, some references remain after try_to_unmap() and
894 * hugepage migration fails without data corruption.
895 *
896 * There is also no race when direct I/O is issued on the page under migration,
897 * because then pte is replaced with migration swap entry and direct I/O code
898 * will wait in the page fault for migration to complete.
899 */
900static int unmap_and_move_huge_page(new_page_t get_new_page,
901 unsigned long private, struct page *hpage,
902 int force, bool offlining,
903 enum migrate_mode mode)
904{
905 int rc = 0;
906 int *result = NULL;
907 struct page *new_hpage = get_new_page(hpage, private, &result);
908 struct anon_vma *anon_vma = NULL;
909
910 if (!new_hpage)
911 return -ENOMEM;
912
913 rc = -EAGAIN;
914
915 if (!trylock_page(hpage)) {
916 if (!force || mode != MIGRATE_SYNC)
917 goto out;
918 lock_page(hpage);
919 }
920
921 if (PageAnon(hpage))
922 anon_vma = page_get_anon_vma(hpage);
923
924 try_to_unmap(hpage, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
925
926 if (!page_mapped(hpage))
927 rc = move_to_new_page(new_hpage, hpage, 1, mode);
928
929 if (rc)
930 remove_migration_ptes(hpage, hpage);
931
932 if (anon_vma)
933 put_anon_vma(anon_vma);
934 unlock_page(hpage);
935
936out:
937 if (rc != -EAGAIN) {
938 list_del(&hpage->lru);
939 put_page(hpage);
940 }
941
942 put_page(new_hpage);
943
944 if (result) {
945 if (rc)
946 *result = rc;
947 else
948 *result = page_to_nid(new_hpage);
949 }
950 return rc;
951}
952
953/*
954 * migrate_pages
955 *
956 * The function takes one list of pages to migrate and a function
957 * that determines from the page to be migrated and the private data
958 * the target of the move and allocates the page.
959 *
960 * The function returns after 10 attempts or if no pages
961 * are movable anymore because to has become empty
962 * or no retryable pages exist anymore.
963 * Caller should call putback_lru_pages to return pages to the LRU
964 * or free list only if ret != 0.
965 *
966 * Return: Number of pages not migrated or error code.
967 */
968int migrate_pages(struct list_head *from,
969 new_page_t get_new_page, unsigned long private, bool offlining,
970 enum migrate_mode mode)
971{
972 int retry = 1;
973 int nr_failed = 0;
974 int pass = 0;
975 struct page *page;
976 struct page *page2;
977 int swapwrite = current->flags & PF_SWAPWRITE;
978 int rc;
979
980 if (!swapwrite)
981 current->flags |= PF_SWAPWRITE;
982
983 for(pass = 0; pass < 10 && retry; pass++) {
984 retry = 0;
985
986 list_for_each_entry_safe(page, page2, from, lru) {
987 cond_resched();
988
989 rc = unmap_and_move(get_new_page, private,
990 page, pass > 2, offlining,
991 mode);
992
993 switch(rc) {
994 case -ENOMEM:
995 goto out;
996 case -EAGAIN:
997 retry++;
998 break;
999 case 0:
1000 break;
1001 default:
1002 /* Permanent failure */
1003 nr_failed++;
1004 break;
1005 }
1006 }
1007 }
1008 rc = 0;
1009out:
1010 if (!swapwrite)
1011 current->flags &= ~PF_SWAPWRITE;
1012
1013 if (rc)
1014 return rc;
1015
1016 return nr_failed + retry;
1017}
1018
1019int migrate_huge_pages(struct list_head *from,
1020 new_page_t get_new_page, unsigned long private, bool offlining,
1021 enum migrate_mode mode)
1022{
1023 int retry = 1;
1024 int nr_failed = 0;
1025 int pass = 0;
1026 struct page *page;
1027 struct page *page2;
1028 int rc;
1029
1030 for (pass = 0; pass < 10 && retry; pass++) {
1031 retry = 0;
1032
1033 list_for_each_entry_safe(page, page2, from, lru) {
1034 cond_resched();
1035
1036 rc = unmap_and_move_huge_page(get_new_page,
1037 private, page, pass > 2, offlining,
1038 mode);
1039
1040 switch(rc) {
1041 case -ENOMEM:
1042 goto out;
1043 case -EAGAIN:
1044 retry++;
1045 break;
1046 case 0:
1047 break;
1048 default:
1049 /* Permanent failure */
1050 nr_failed++;
1051 break;
1052 }
1053 }
1054 }
1055 rc = 0;
1056out:
1057 if (rc)
1058 return rc;
1059
1060 return nr_failed + retry;
1061}
1062
1063#ifdef CONFIG_NUMA
1064/*
1065 * Move a list of individual pages
1066 */
1067struct page_to_node {
1068 unsigned long addr;
1069 struct page *page;
1070 int node;
1071 int status;
1072};
1073
1074static struct page *new_page_node(struct page *p, unsigned long private,
1075 int **result)
1076{
1077 struct page_to_node *pm = (struct page_to_node *)private;
1078
1079 while (pm->node != MAX_NUMNODES && pm->page != p)
1080 pm++;
1081
1082 if (pm->node == MAX_NUMNODES)
1083 return NULL;
1084
1085 *result = &pm->status;
1086
1087 return alloc_pages_exact_node(pm->node,
1088 GFP_HIGHUSER_MOVABLE | GFP_THISNODE, 0);
1089}
1090
1091/*
1092 * Move a set of pages as indicated in the pm array. The addr
1093 * field must be set to the virtual address of the page to be moved
1094 * and the node number must contain a valid target node.
1095 * The pm array ends with node = MAX_NUMNODES.
1096 */
1097static int do_move_page_to_node_array(struct mm_struct *mm,
1098 struct page_to_node *pm,
1099 int migrate_all)
1100{
1101 int err;
1102 struct page_to_node *pp;
1103 LIST_HEAD(pagelist);
1104
1105 down_read(&mm->mmap_sem);
1106
1107 /*
1108 * Build a list of pages to migrate
1109 */
1110 for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1111 struct vm_area_struct *vma;
1112 struct page *page;
1113
1114 err = -EFAULT;
1115 vma = find_vma(mm, pp->addr);
1116 if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1117 goto set_status;
1118
1119 page = follow_page(vma, pp->addr, FOLL_GET|FOLL_SPLIT);
1120
1121 err = PTR_ERR(page);
1122 if (IS_ERR(page))
1123 goto set_status;
1124
1125 err = -ENOENT;
1126 if (!page)
1127 goto set_status;
1128
1129 /* Use PageReserved to check for zero page */
1130 if (PageReserved(page) || PageKsm(page))
1131 goto put_and_set;
1132
1133 pp->page = page;
1134 err = page_to_nid(page);
1135
1136 if (err == pp->node)
1137 /*
1138 * Node already in the right place
1139 */
1140 goto put_and_set;
1141
1142 err = -EACCES;
1143 if (page_mapcount(page) > 1 &&
1144 !migrate_all)
1145 goto put_and_set;
1146
1147 err = isolate_lru_page(page);
1148 if (!err) {
1149 list_add_tail(&page->lru, &pagelist);
1150 inc_zone_page_state(page, NR_ISOLATED_ANON +
1151 page_is_file_cache(page));
1152 }
1153put_and_set:
1154 /*
1155 * Either remove the duplicate refcount from
1156 * isolate_lru_page() or drop the page ref if it was
1157 * not isolated.
1158 */
1159 put_page(page);
1160set_status:
1161 pp->status = err;
1162 }
1163
1164 err = 0;
1165 if (!list_empty(&pagelist)) {
1166 err = migrate_pages(&pagelist, new_page_node,
1167 (unsigned long)pm, 0, MIGRATE_SYNC);
1168 if (err)
1169 putback_lru_pages(&pagelist);
1170 }
1171
1172 up_read(&mm->mmap_sem);
1173 return err;
1174}
1175
1176/*
1177 * Migrate an array of page address onto an array of nodes and fill
1178 * the corresponding array of status.
1179 */
1180static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1181 unsigned long nr_pages,
1182 const void __user * __user *pages,
1183 const int __user *nodes,
1184 int __user *status, int flags)
1185{
1186 struct page_to_node *pm;
1187 unsigned long chunk_nr_pages;
1188 unsigned long chunk_start;
1189 int err;
1190
1191 err = -ENOMEM;
1192 pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1193 if (!pm)
1194 goto out;
1195
1196 migrate_prep();
1197
1198 /*
1199 * Store a chunk of page_to_node array in a page,
1200 * but keep the last one as a marker
1201 */
1202 chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1203
1204 for (chunk_start = 0;
1205 chunk_start < nr_pages;
1206 chunk_start += chunk_nr_pages) {
1207 int j;
1208
1209 if (chunk_start + chunk_nr_pages > nr_pages)
1210 chunk_nr_pages = nr_pages - chunk_start;
1211
1212 /* fill the chunk pm with addrs and nodes from user-space */
1213 for (j = 0; j < chunk_nr_pages; j++) {
1214 const void __user *p;
1215 int node;
1216
1217 err = -EFAULT;
1218 if (get_user(p, pages + j + chunk_start))
1219 goto out_pm;
1220 pm[j].addr = (unsigned long) p;
1221
1222 if (get_user(node, nodes + j + chunk_start))
1223 goto out_pm;
1224
1225 err = -ENODEV;
1226 if (node < 0 || node >= MAX_NUMNODES)
1227 goto out_pm;
1228
1229 if (!node_state(node, N_HIGH_MEMORY))
1230 goto out_pm;
1231
1232 err = -EACCES;
1233 if (!node_isset(node, task_nodes))
1234 goto out_pm;
1235
1236 pm[j].node = node;
1237 }
1238
1239 /* End marker for this chunk */
1240 pm[chunk_nr_pages].node = MAX_NUMNODES;
1241
1242 /* Migrate this chunk */
1243 err = do_move_page_to_node_array(mm, pm,
1244 flags & MPOL_MF_MOVE_ALL);
1245 if (err < 0)
1246 goto out_pm;
1247
1248 /* Return status information */
1249 for (j = 0; j < chunk_nr_pages; j++)
1250 if (put_user(pm[j].status, status + j + chunk_start)) {
1251 err = -EFAULT;
1252 goto out_pm;
1253 }
1254 }
1255 err = 0;
1256
1257out_pm:
1258 free_page((unsigned long)pm);
1259out:
1260 return err;
1261}
1262
1263/*
1264 * Determine the nodes of an array of pages and store it in an array of status.
1265 */
1266static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1267 const void __user **pages, int *status)
1268{
1269 unsigned long i;
1270
1271 down_read(&mm->mmap_sem);
1272
1273 for (i = 0; i < nr_pages; i++) {
1274 unsigned long addr = (unsigned long)(*pages);
1275 struct vm_area_struct *vma;
1276 struct page *page;
1277 int err = -EFAULT;
1278
1279 vma = find_vma(mm, addr);
1280 if (!vma || addr < vma->vm_start)
1281 goto set_status;
1282
1283 page = follow_page(vma, addr, 0);
1284
1285 err = PTR_ERR(page);
1286 if (IS_ERR(page))
1287 goto set_status;
1288
1289 err = -ENOENT;
1290 /* Use PageReserved to check for zero page */
1291 if (!page || PageReserved(page) || PageKsm(page))
1292 goto set_status;
1293
1294 err = page_to_nid(page);
1295set_status:
1296 *status = err;
1297
1298 pages++;
1299 status++;
1300 }
1301
1302 up_read(&mm->mmap_sem);
1303}
1304
1305/*
1306 * Determine the nodes of a user array of pages and store it in
1307 * a user array of status.
1308 */
1309static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1310 const void __user * __user *pages,
1311 int __user *status)
1312{
1313#define DO_PAGES_STAT_CHUNK_NR 16
1314 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1315 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1316
1317 while (nr_pages) {
1318 unsigned long chunk_nr;
1319
1320 chunk_nr = nr_pages;
1321 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1322 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1323
1324 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1325 break;
1326
1327 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1328
1329 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1330 break;
1331
1332 pages += chunk_nr;
1333 status += chunk_nr;
1334 nr_pages -= chunk_nr;
1335 }
1336 return nr_pages ? -EFAULT : 0;
1337}
1338
1339/*
1340 * Move a list of pages in the address space of the currently executing
1341 * process.
1342 */
1343SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1344 const void __user * __user *, pages,
1345 const int __user *, nodes,
1346 int __user *, status, int, flags)
1347{
1348 const struct cred *cred = current_cred(), *tcred;
1349 struct task_struct *task;
1350 struct mm_struct *mm;
1351 int err;
1352 nodemask_t task_nodes;
1353
1354 /* Check flags */
1355 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1356 return -EINVAL;
1357
1358 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1359 return -EPERM;
1360
1361 /* Find the mm_struct */
1362 rcu_read_lock();
1363 task = pid ? find_task_by_vpid(pid) : current;
1364 if (!task) {
1365 rcu_read_unlock();
1366 return -ESRCH;
1367 }
1368 get_task_struct(task);
1369
1370 /*
1371 * Check if this process has the right to modify the specified
1372 * process. The right exists if the process has administrative
1373 * capabilities, superuser privileges or the same
1374 * userid as the target process.
1375 */
1376 tcred = __task_cred(task);
1377 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1378 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) &&
1379 !capable(CAP_SYS_NICE)) {
1380 rcu_read_unlock();
1381 err = -EPERM;
1382 goto out;
1383 }
1384 rcu_read_unlock();
1385
1386 err = security_task_movememory(task);
1387 if (err)
1388 goto out;
1389
1390 task_nodes = cpuset_mems_allowed(task);
1391 mm = get_task_mm(task);
1392 put_task_struct(task);
1393
1394 if (!mm)
1395 return -EINVAL;
1396
1397 if (nodes)
1398 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1399 nodes, status, flags);
1400 else
1401 err = do_pages_stat(mm, nr_pages, pages, status);
1402
1403 mmput(mm);
1404 return err;
1405
1406out:
1407 put_task_struct(task);
1408 return err;
1409}
1410
1411/*
1412 * Call migration functions in the vma_ops that may prepare
1413 * memory in a vm for migration. migration functions may perform
1414 * the migration for vmas that do not have an underlying page struct.
1415 */
1416int migrate_vmas(struct mm_struct *mm, const nodemask_t *to,
1417 const nodemask_t *from, unsigned long flags)
1418{
1419 struct vm_area_struct *vma;
1420 int err = 0;
1421
1422 for (vma = mm->mmap; vma && !err; vma = vma->vm_next) {
1423 if (vma->vm_ops && vma->vm_ops->migrate) {
1424 err = vma->vm_ops->migrate(vma, to, from, flags);
1425 if (err)
1426 break;
1427 }
1428 }
1429 return err;
1430}
1431#endif