Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Memory Migration functionality - linux/mm/migrate.c
4 *
5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6 *
7 * Page migration was first developed in the context of the memory hotplug
8 * project. The main authors of the migration code are:
9 *
10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11 * Hirokazu Takahashi <taka@valinux.co.jp>
12 * Dave Hansen <haveblue@us.ibm.com>
13 * Christoph Lameter
14 */
15
16#include <linux/migrate.h>
17#include <linux/export.h>
18#include <linux/swap.h>
19#include <linux/swapops.h>
20#include <linux/pagemap.h>
21#include <linux/buffer_head.h>
22#include <linux/mm_inline.h>
23#include <linux/nsproxy.h>
24#include <linux/pagevec.h>
25#include <linux/ksm.h>
26#include <linux/rmap.h>
27#include <linux/topology.h>
28#include <linux/cpu.h>
29#include <linux/cpuset.h>
30#include <linux/writeback.h>
31#include <linux/mempolicy.h>
32#include <linux/vmalloc.h>
33#include <linux/security.h>
34#include <linux/backing-dev.h>
35#include <linux/compaction.h>
36#include <linux/syscalls.h>
37#include <linux/compat.h>
38#include <linux/hugetlb.h>
39#include <linux/hugetlb_cgroup.h>
40#include <linux/gfp.h>
41#include <linux/pfn_t.h>
42#include <linux/memremap.h>
43#include <linux/userfaultfd_k.h>
44#include <linux/balloon_compaction.h>
45#include <linux/page_idle.h>
46#include <linux/page_owner.h>
47#include <linux/sched/mm.h>
48#include <linux/ptrace.h>
49#include <linux/oom.h>
50#include <linux/memory.h>
51#include <linux/random.h>
52#include <linux/sched/sysctl.h>
53#include <linux/memory-tiers.h>
54
55#include <asm/tlbflush.h>
56
57#include <trace/events/migrate.h>
58
59#include "internal.h"
60
61int isolate_movable_page(struct page *page, isolate_mode_t mode)
62{
63 const struct movable_operations *mops;
64
65 /*
66 * Avoid burning cycles with pages that are yet under __free_pages(),
67 * or just got freed under us.
68 *
69 * In case we 'win' a race for a movable page being freed under us and
70 * raise its refcount preventing __free_pages() from doing its job
71 * the put_page() at the end of this block will take care of
72 * release this page, thus avoiding a nasty leakage.
73 */
74 if (unlikely(!get_page_unless_zero(page)))
75 goto out;
76
77 if (unlikely(PageSlab(page)))
78 goto out_putpage;
79 /* Pairs with smp_wmb() in slab freeing, e.g. SLUB's __free_slab() */
80 smp_rmb();
81 /*
82 * Check movable flag before taking the page lock because
83 * we use non-atomic bitops on newly allocated page flags so
84 * unconditionally grabbing the lock ruins page's owner side.
85 */
86 if (unlikely(!__PageMovable(page)))
87 goto out_putpage;
88 /* Pairs with smp_wmb() in slab allocation, e.g. SLUB's alloc_slab_page() */
89 smp_rmb();
90 if (unlikely(PageSlab(page)))
91 goto out_putpage;
92
93 /*
94 * As movable pages are not isolated from LRU lists, concurrent
95 * compaction threads can race against page migration functions
96 * as well as race against the releasing a page.
97 *
98 * In order to avoid having an already isolated movable page
99 * being (wrongly) re-isolated while it is under migration,
100 * or to avoid attempting to isolate pages being released,
101 * lets be sure we have the page lock
102 * before proceeding with the movable page isolation steps.
103 */
104 if (unlikely(!trylock_page(page)))
105 goto out_putpage;
106
107 if (!PageMovable(page) || PageIsolated(page))
108 goto out_no_isolated;
109
110 mops = page_movable_ops(page);
111 VM_BUG_ON_PAGE(!mops, page);
112
113 if (!mops->isolate_page(page, mode))
114 goto out_no_isolated;
115
116 /* Driver shouldn't use PG_isolated bit of page->flags */
117 WARN_ON_ONCE(PageIsolated(page));
118 SetPageIsolated(page);
119 unlock_page(page);
120
121 return 0;
122
123out_no_isolated:
124 unlock_page(page);
125out_putpage:
126 put_page(page);
127out:
128 return -EBUSY;
129}
130
131static void putback_movable_page(struct page *page)
132{
133 const struct movable_operations *mops = page_movable_ops(page);
134
135 mops->putback_page(page);
136 ClearPageIsolated(page);
137}
138
139/*
140 * Put previously isolated pages back onto the appropriate lists
141 * from where they were once taken off for compaction/migration.
142 *
143 * This function shall be used whenever the isolated pageset has been
144 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
145 * and isolate_hugetlb().
146 */
147void putback_movable_pages(struct list_head *l)
148{
149 struct page *page;
150 struct page *page2;
151
152 list_for_each_entry_safe(page, page2, l, lru) {
153 if (unlikely(PageHuge(page))) {
154 putback_active_hugepage(page);
155 continue;
156 }
157 list_del(&page->lru);
158 /*
159 * We isolated non-lru movable page so here we can use
160 * __PageMovable because LRU page's mapping cannot have
161 * PAGE_MAPPING_MOVABLE.
162 */
163 if (unlikely(__PageMovable(page))) {
164 VM_BUG_ON_PAGE(!PageIsolated(page), page);
165 lock_page(page);
166 if (PageMovable(page))
167 putback_movable_page(page);
168 else
169 ClearPageIsolated(page);
170 unlock_page(page);
171 put_page(page);
172 } else {
173 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
174 page_is_file_lru(page), -thp_nr_pages(page));
175 putback_lru_page(page);
176 }
177 }
178}
179
180/*
181 * Restore a potential migration pte to a working pte entry
182 */
183static bool remove_migration_pte(struct folio *folio,
184 struct vm_area_struct *vma, unsigned long addr, void *old)
185{
186 DEFINE_FOLIO_VMA_WALK(pvmw, old, vma, addr, PVMW_SYNC | PVMW_MIGRATION);
187
188 while (page_vma_mapped_walk(&pvmw)) {
189 rmap_t rmap_flags = RMAP_NONE;
190 pte_t pte;
191 swp_entry_t entry;
192 struct page *new;
193 unsigned long idx = 0;
194
195 /* pgoff is invalid for ksm pages, but they are never large */
196 if (folio_test_large(folio) && !folio_test_hugetlb(folio))
197 idx = linear_page_index(vma, pvmw.address) - pvmw.pgoff;
198 new = folio_page(folio, idx);
199
200#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
201 /* PMD-mapped THP migration entry */
202 if (!pvmw.pte) {
203 VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) ||
204 !folio_test_pmd_mappable(folio), folio);
205 remove_migration_pmd(&pvmw, new);
206 continue;
207 }
208#endif
209
210 folio_get(folio);
211 pte = mk_pte(new, READ_ONCE(vma->vm_page_prot));
212 if (pte_swp_soft_dirty(*pvmw.pte))
213 pte = pte_mksoft_dirty(pte);
214
215 /*
216 * Recheck VMA as permissions can change since migration started
217 */
218 entry = pte_to_swp_entry(*pvmw.pte);
219 if (!is_migration_entry_young(entry))
220 pte = pte_mkold(pte);
221 if (folio_test_dirty(folio) && is_migration_entry_dirty(entry))
222 pte = pte_mkdirty(pte);
223 if (is_writable_migration_entry(entry))
224 pte = maybe_mkwrite(pte, vma);
225 else if (pte_swp_uffd_wp(*pvmw.pte))
226 pte = pte_mkuffd_wp(pte);
227 else
228 pte = pte_wrprotect(pte);
229
230 if (folio_test_anon(folio) && !is_readable_migration_entry(entry))
231 rmap_flags |= RMAP_EXCLUSIVE;
232
233 if (unlikely(is_device_private_page(new))) {
234 if (pte_write(pte))
235 entry = make_writable_device_private_entry(
236 page_to_pfn(new));
237 else
238 entry = make_readable_device_private_entry(
239 page_to_pfn(new));
240 pte = swp_entry_to_pte(entry);
241 if (pte_swp_soft_dirty(*pvmw.pte))
242 pte = pte_swp_mksoft_dirty(pte);
243 if (pte_swp_uffd_wp(*pvmw.pte))
244 pte = pte_swp_mkuffd_wp(pte);
245 }
246
247#ifdef CONFIG_HUGETLB_PAGE
248 if (folio_test_hugetlb(folio)) {
249 unsigned int shift = huge_page_shift(hstate_vma(vma));
250
251 pte = pte_mkhuge(pte);
252 pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
253 if (folio_test_anon(folio))
254 hugepage_add_anon_rmap(new, vma, pvmw.address,
255 rmap_flags);
256 else
257 page_dup_file_rmap(new, true);
258 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
259 } else
260#endif
261 {
262 if (folio_test_anon(folio))
263 page_add_anon_rmap(new, vma, pvmw.address,
264 rmap_flags);
265 else
266 page_add_file_rmap(new, vma, false);
267 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
268 }
269 if (vma->vm_flags & VM_LOCKED)
270 mlock_page_drain_local();
271
272 trace_remove_migration_pte(pvmw.address, pte_val(pte),
273 compound_order(new));
274
275 /* No need to invalidate - it was non-present before */
276 update_mmu_cache(vma, pvmw.address, pvmw.pte);
277 }
278
279 return true;
280}
281
282/*
283 * Get rid of all migration entries and replace them by
284 * references to the indicated page.
285 */
286void remove_migration_ptes(struct folio *src, struct folio *dst, bool locked)
287{
288 struct rmap_walk_control rwc = {
289 .rmap_one = remove_migration_pte,
290 .arg = src,
291 };
292
293 if (locked)
294 rmap_walk_locked(dst, &rwc);
295 else
296 rmap_walk(dst, &rwc);
297}
298
299/*
300 * Something used the pte of a page under migration. We need to
301 * get to the page and wait until migration is finished.
302 * When we return from this function the fault will be retried.
303 */
304void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
305 spinlock_t *ptl)
306{
307 pte_t pte;
308 swp_entry_t entry;
309
310 spin_lock(ptl);
311 pte = *ptep;
312 if (!is_swap_pte(pte))
313 goto out;
314
315 entry = pte_to_swp_entry(pte);
316 if (!is_migration_entry(entry))
317 goto out;
318
319 migration_entry_wait_on_locked(entry, ptep, ptl);
320 return;
321out:
322 pte_unmap_unlock(ptep, ptl);
323}
324
325void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
326 unsigned long address)
327{
328 spinlock_t *ptl = pte_lockptr(mm, pmd);
329 pte_t *ptep = pte_offset_map(pmd, address);
330 __migration_entry_wait(mm, ptep, ptl);
331}
332
333#ifdef CONFIG_HUGETLB_PAGE
334void __migration_entry_wait_huge(pte_t *ptep, spinlock_t *ptl)
335{
336 pte_t pte;
337
338 spin_lock(ptl);
339 pte = huge_ptep_get(ptep);
340
341 if (unlikely(!is_hugetlb_entry_migration(pte)))
342 spin_unlock(ptl);
343 else
344 migration_entry_wait_on_locked(pte_to_swp_entry(pte), NULL, ptl);
345}
346
347void migration_entry_wait_huge(struct vm_area_struct *vma, pte_t *pte)
348{
349 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), vma->vm_mm, pte);
350
351 __migration_entry_wait_huge(pte, ptl);
352}
353#endif
354
355#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
356void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
357{
358 spinlock_t *ptl;
359
360 ptl = pmd_lock(mm, pmd);
361 if (!is_pmd_migration_entry(*pmd))
362 goto unlock;
363 migration_entry_wait_on_locked(pmd_to_swp_entry(*pmd), NULL, ptl);
364 return;
365unlock:
366 spin_unlock(ptl);
367}
368#endif
369
370static int folio_expected_refs(struct address_space *mapping,
371 struct folio *folio)
372{
373 int refs = 1;
374 if (!mapping)
375 return refs;
376
377 refs += folio_nr_pages(folio);
378 if (folio_test_private(folio))
379 refs++;
380
381 return refs;
382}
383
384/*
385 * Replace the page in the mapping.
386 *
387 * The number of remaining references must be:
388 * 1 for anonymous pages without a mapping
389 * 2 for pages with a mapping
390 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
391 */
392int folio_migrate_mapping(struct address_space *mapping,
393 struct folio *newfolio, struct folio *folio, int extra_count)
394{
395 XA_STATE(xas, &mapping->i_pages, folio_index(folio));
396 struct zone *oldzone, *newzone;
397 int dirty;
398 int expected_count = folio_expected_refs(mapping, folio) + extra_count;
399 long nr = folio_nr_pages(folio);
400
401 if (!mapping) {
402 /* Anonymous page without mapping */
403 if (folio_ref_count(folio) != expected_count)
404 return -EAGAIN;
405
406 /* No turning back from here */
407 newfolio->index = folio->index;
408 newfolio->mapping = folio->mapping;
409 if (folio_test_swapbacked(folio))
410 __folio_set_swapbacked(newfolio);
411
412 return MIGRATEPAGE_SUCCESS;
413 }
414
415 oldzone = folio_zone(folio);
416 newzone = folio_zone(newfolio);
417
418 xas_lock_irq(&xas);
419 if (!folio_ref_freeze(folio, expected_count)) {
420 xas_unlock_irq(&xas);
421 return -EAGAIN;
422 }
423
424 /*
425 * Now we know that no one else is looking at the folio:
426 * no turning back from here.
427 */
428 newfolio->index = folio->index;
429 newfolio->mapping = folio->mapping;
430 folio_ref_add(newfolio, nr); /* add cache reference */
431 if (folio_test_swapbacked(folio)) {
432 __folio_set_swapbacked(newfolio);
433 if (folio_test_swapcache(folio)) {
434 folio_set_swapcache(newfolio);
435 newfolio->private = folio_get_private(folio);
436 }
437 } else {
438 VM_BUG_ON_FOLIO(folio_test_swapcache(folio), folio);
439 }
440
441 /* Move dirty while page refs frozen and newpage not yet exposed */
442 dirty = folio_test_dirty(folio);
443 if (dirty) {
444 folio_clear_dirty(folio);
445 folio_set_dirty(newfolio);
446 }
447
448 xas_store(&xas, newfolio);
449
450 /*
451 * Drop cache reference from old page by unfreezing
452 * to one less reference.
453 * We know this isn't the last reference.
454 */
455 folio_ref_unfreeze(folio, expected_count - nr);
456
457 xas_unlock(&xas);
458 /* Leave irq disabled to prevent preemption while updating stats */
459
460 /*
461 * If moved to a different zone then also account
462 * the page for that zone. Other VM counters will be
463 * taken care of when we establish references to the
464 * new page and drop references to the old page.
465 *
466 * Note that anonymous pages are accounted for
467 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
468 * are mapped to swap space.
469 */
470 if (newzone != oldzone) {
471 struct lruvec *old_lruvec, *new_lruvec;
472 struct mem_cgroup *memcg;
473
474 memcg = folio_memcg(folio);
475 old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
476 new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);
477
478 __mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr);
479 __mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr);
480 if (folio_test_swapbacked(folio) && !folio_test_swapcache(folio)) {
481 __mod_lruvec_state(old_lruvec, NR_SHMEM, -nr);
482 __mod_lruvec_state(new_lruvec, NR_SHMEM, nr);
483 }
484#ifdef CONFIG_SWAP
485 if (folio_test_swapcache(folio)) {
486 __mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr);
487 __mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr);
488 }
489#endif
490 if (dirty && mapping_can_writeback(mapping)) {
491 __mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr);
492 __mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr);
493 __mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr);
494 __mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr);
495 }
496 }
497 local_irq_enable();
498
499 return MIGRATEPAGE_SUCCESS;
500}
501EXPORT_SYMBOL(folio_migrate_mapping);
502
503/*
504 * The expected number of remaining references is the same as that
505 * of folio_migrate_mapping().
506 */
507int migrate_huge_page_move_mapping(struct address_space *mapping,
508 struct folio *dst, struct folio *src)
509{
510 XA_STATE(xas, &mapping->i_pages, folio_index(src));
511 int expected_count;
512
513 xas_lock_irq(&xas);
514 expected_count = 2 + folio_has_private(src);
515 if (!folio_ref_freeze(src, expected_count)) {
516 xas_unlock_irq(&xas);
517 return -EAGAIN;
518 }
519
520 dst->index = src->index;
521 dst->mapping = src->mapping;
522
523 folio_get(dst);
524
525 xas_store(&xas, dst);
526
527 folio_ref_unfreeze(src, expected_count - 1);
528
529 xas_unlock_irq(&xas);
530
531 return MIGRATEPAGE_SUCCESS;
532}
533
534/*
535 * Copy the flags and some other ancillary information
536 */
537void folio_migrate_flags(struct folio *newfolio, struct folio *folio)
538{
539 int cpupid;
540
541 if (folio_test_error(folio))
542 folio_set_error(newfolio);
543 if (folio_test_referenced(folio))
544 folio_set_referenced(newfolio);
545 if (folio_test_uptodate(folio))
546 folio_mark_uptodate(newfolio);
547 if (folio_test_clear_active(folio)) {
548 VM_BUG_ON_FOLIO(folio_test_unevictable(folio), folio);
549 folio_set_active(newfolio);
550 } else if (folio_test_clear_unevictable(folio))
551 folio_set_unevictable(newfolio);
552 if (folio_test_workingset(folio))
553 folio_set_workingset(newfolio);
554 if (folio_test_checked(folio))
555 folio_set_checked(newfolio);
556 /*
557 * PG_anon_exclusive (-> PG_mappedtodisk) is always migrated via
558 * migration entries. We can still have PG_anon_exclusive set on an
559 * effectively unmapped and unreferenced first sub-pages of an
560 * anonymous THP: we can simply copy it here via PG_mappedtodisk.
561 */
562 if (folio_test_mappedtodisk(folio))
563 folio_set_mappedtodisk(newfolio);
564
565 /* Move dirty on pages not done by folio_migrate_mapping() */
566 if (folio_test_dirty(folio))
567 folio_set_dirty(newfolio);
568
569 if (folio_test_young(folio))
570 folio_set_young(newfolio);
571 if (folio_test_idle(folio))
572 folio_set_idle(newfolio);
573
574 /*
575 * Copy NUMA information to the new page, to prevent over-eager
576 * future migrations of this same page.
577 */
578 cpupid = page_cpupid_xchg_last(&folio->page, -1);
579 /*
580 * For memory tiering mode, when migrate between slow and fast
581 * memory node, reset cpupid, because that is used to record
582 * page access time in slow memory node.
583 */
584 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) {
585 bool f_toptier = node_is_toptier(page_to_nid(&folio->page));
586 bool t_toptier = node_is_toptier(page_to_nid(&newfolio->page));
587
588 if (f_toptier != t_toptier)
589 cpupid = -1;
590 }
591 page_cpupid_xchg_last(&newfolio->page, cpupid);
592
593 folio_migrate_ksm(newfolio, folio);
594 /*
595 * Please do not reorder this without considering how mm/ksm.c's
596 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
597 */
598 if (folio_test_swapcache(folio))
599 folio_clear_swapcache(folio);
600 folio_clear_private(folio);
601
602 /* page->private contains hugetlb specific flags */
603 if (!folio_test_hugetlb(folio))
604 folio->private = NULL;
605
606 /*
607 * If any waiters have accumulated on the new page then
608 * wake them up.
609 */
610 if (folio_test_writeback(newfolio))
611 folio_end_writeback(newfolio);
612
613 /*
614 * PG_readahead shares the same bit with PG_reclaim. The above
615 * end_page_writeback() may clear PG_readahead mistakenly, so set the
616 * bit after that.
617 */
618 if (folio_test_readahead(folio))
619 folio_set_readahead(newfolio);
620
621 folio_copy_owner(newfolio, folio);
622
623 if (!folio_test_hugetlb(folio))
624 mem_cgroup_migrate(folio, newfolio);
625}
626EXPORT_SYMBOL(folio_migrate_flags);
627
628void folio_migrate_copy(struct folio *newfolio, struct folio *folio)
629{
630 folio_copy(newfolio, folio);
631 folio_migrate_flags(newfolio, folio);
632}
633EXPORT_SYMBOL(folio_migrate_copy);
634
635/************************************************************
636 * Migration functions
637 ***********************************************************/
638
639int migrate_folio_extra(struct address_space *mapping, struct folio *dst,
640 struct folio *src, enum migrate_mode mode, int extra_count)
641{
642 int rc;
643
644 BUG_ON(folio_test_writeback(src)); /* Writeback must be complete */
645
646 rc = folio_migrate_mapping(mapping, dst, src, extra_count);
647
648 if (rc != MIGRATEPAGE_SUCCESS)
649 return rc;
650
651 if (mode != MIGRATE_SYNC_NO_COPY)
652 folio_migrate_copy(dst, src);
653 else
654 folio_migrate_flags(dst, src);
655 return MIGRATEPAGE_SUCCESS;
656}
657
658/**
659 * migrate_folio() - Simple folio migration.
660 * @mapping: The address_space containing the folio.
661 * @dst: The folio to migrate the data to.
662 * @src: The folio containing the current data.
663 * @mode: How to migrate the page.
664 *
665 * Common logic to directly migrate a single LRU folio suitable for
666 * folios that do not use PagePrivate/PagePrivate2.
667 *
668 * Folios are locked upon entry and exit.
669 */
670int migrate_folio(struct address_space *mapping, struct folio *dst,
671 struct folio *src, enum migrate_mode mode)
672{
673 return migrate_folio_extra(mapping, dst, src, mode, 0);
674}
675EXPORT_SYMBOL(migrate_folio);
676
677#ifdef CONFIG_BLOCK
678/* Returns true if all buffers are successfully locked */
679static bool buffer_migrate_lock_buffers(struct buffer_head *head,
680 enum migrate_mode mode)
681{
682 struct buffer_head *bh = head;
683
684 /* Simple case, sync compaction */
685 if (mode != MIGRATE_ASYNC) {
686 do {
687 lock_buffer(bh);
688 bh = bh->b_this_page;
689
690 } while (bh != head);
691
692 return true;
693 }
694
695 /* async case, we cannot block on lock_buffer so use trylock_buffer */
696 do {
697 if (!trylock_buffer(bh)) {
698 /*
699 * We failed to lock the buffer and cannot stall in
700 * async migration. Release the taken locks
701 */
702 struct buffer_head *failed_bh = bh;
703 bh = head;
704 while (bh != failed_bh) {
705 unlock_buffer(bh);
706 bh = bh->b_this_page;
707 }
708 return false;
709 }
710
711 bh = bh->b_this_page;
712 } while (bh != head);
713 return true;
714}
715
716static int __buffer_migrate_folio(struct address_space *mapping,
717 struct folio *dst, struct folio *src, enum migrate_mode mode,
718 bool check_refs)
719{
720 struct buffer_head *bh, *head;
721 int rc;
722 int expected_count;
723
724 head = folio_buffers(src);
725 if (!head)
726 return migrate_folio(mapping, dst, src, mode);
727
728 /* Check whether page does not have extra refs before we do more work */
729 expected_count = folio_expected_refs(mapping, src);
730 if (folio_ref_count(src) != expected_count)
731 return -EAGAIN;
732
733 if (!buffer_migrate_lock_buffers(head, mode))
734 return -EAGAIN;
735
736 if (check_refs) {
737 bool busy;
738 bool invalidated = false;
739
740recheck_buffers:
741 busy = false;
742 spin_lock(&mapping->private_lock);
743 bh = head;
744 do {
745 if (atomic_read(&bh->b_count)) {
746 busy = true;
747 break;
748 }
749 bh = bh->b_this_page;
750 } while (bh != head);
751 if (busy) {
752 if (invalidated) {
753 rc = -EAGAIN;
754 goto unlock_buffers;
755 }
756 spin_unlock(&mapping->private_lock);
757 invalidate_bh_lrus();
758 invalidated = true;
759 goto recheck_buffers;
760 }
761 }
762
763 rc = folio_migrate_mapping(mapping, dst, src, 0);
764 if (rc != MIGRATEPAGE_SUCCESS)
765 goto unlock_buffers;
766
767 folio_attach_private(dst, folio_detach_private(src));
768
769 bh = head;
770 do {
771 set_bh_page(bh, &dst->page, bh_offset(bh));
772 bh = bh->b_this_page;
773 } while (bh != head);
774
775 if (mode != MIGRATE_SYNC_NO_COPY)
776 folio_migrate_copy(dst, src);
777 else
778 folio_migrate_flags(dst, src);
779
780 rc = MIGRATEPAGE_SUCCESS;
781unlock_buffers:
782 if (check_refs)
783 spin_unlock(&mapping->private_lock);
784 bh = head;
785 do {
786 unlock_buffer(bh);
787 bh = bh->b_this_page;
788 } while (bh != head);
789
790 return rc;
791}
792
793/**
794 * buffer_migrate_folio() - Migration function for folios with buffers.
795 * @mapping: The address space containing @src.
796 * @dst: The folio to migrate to.
797 * @src: The folio to migrate from.
798 * @mode: How to migrate the folio.
799 *
800 * This function can only be used if the underlying filesystem guarantees
801 * that no other references to @src exist. For example attached buffer
802 * heads are accessed only under the folio lock. If your filesystem cannot
803 * provide this guarantee, buffer_migrate_folio_norefs() may be more
804 * appropriate.
805 *
806 * Return: 0 on success or a negative errno on failure.
807 */
808int buffer_migrate_folio(struct address_space *mapping,
809 struct folio *dst, struct folio *src, enum migrate_mode mode)
810{
811 return __buffer_migrate_folio(mapping, dst, src, mode, false);
812}
813EXPORT_SYMBOL(buffer_migrate_folio);
814
815/**
816 * buffer_migrate_folio_norefs() - Migration function for folios with buffers.
817 * @mapping: The address space containing @src.
818 * @dst: The folio to migrate to.
819 * @src: The folio to migrate from.
820 * @mode: How to migrate the folio.
821 *
822 * Like buffer_migrate_folio() except that this variant is more careful
823 * and checks that there are also no buffer head references. This function
824 * is the right one for mappings where buffer heads are directly looked
825 * up and referenced (such as block device mappings).
826 *
827 * Return: 0 on success or a negative errno on failure.
828 */
829int buffer_migrate_folio_norefs(struct address_space *mapping,
830 struct folio *dst, struct folio *src, enum migrate_mode mode)
831{
832 return __buffer_migrate_folio(mapping, dst, src, mode, true);
833}
834EXPORT_SYMBOL_GPL(buffer_migrate_folio_norefs);
835#endif
836
837int filemap_migrate_folio(struct address_space *mapping,
838 struct folio *dst, struct folio *src, enum migrate_mode mode)
839{
840 int ret;
841
842 ret = folio_migrate_mapping(mapping, dst, src, 0);
843 if (ret != MIGRATEPAGE_SUCCESS)
844 return ret;
845
846 if (folio_get_private(src))
847 folio_attach_private(dst, folio_detach_private(src));
848
849 if (mode != MIGRATE_SYNC_NO_COPY)
850 folio_migrate_copy(dst, src);
851 else
852 folio_migrate_flags(dst, src);
853 return MIGRATEPAGE_SUCCESS;
854}
855EXPORT_SYMBOL_GPL(filemap_migrate_folio);
856
857/*
858 * Writeback a folio to clean the dirty state
859 */
860static int writeout(struct address_space *mapping, struct folio *folio)
861{
862 struct writeback_control wbc = {
863 .sync_mode = WB_SYNC_NONE,
864 .nr_to_write = 1,
865 .range_start = 0,
866 .range_end = LLONG_MAX,
867 .for_reclaim = 1
868 };
869 int rc;
870
871 if (!mapping->a_ops->writepage)
872 /* No write method for the address space */
873 return -EINVAL;
874
875 if (!folio_clear_dirty_for_io(folio))
876 /* Someone else already triggered a write */
877 return -EAGAIN;
878
879 /*
880 * A dirty folio may imply that the underlying filesystem has
881 * the folio on some queue. So the folio must be clean for
882 * migration. Writeout may mean we lose the lock and the
883 * folio state is no longer what we checked for earlier.
884 * At this point we know that the migration attempt cannot
885 * be successful.
886 */
887 remove_migration_ptes(folio, folio, false);
888
889 rc = mapping->a_ops->writepage(&folio->page, &wbc);
890
891 if (rc != AOP_WRITEPAGE_ACTIVATE)
892 /* unlocked. Relock */
893 folio_lock(folio);
894
895 return (rc < 0) ? -EIO : -EAGAIN;
896}
897
898/*
899 * Default handling if a filesystem does not provide a migration function.
900 */
901static int fallback_migrate_folio(struct address_space *mapping,
902 struct folio *dst, struct folio *src, enum migrate_mode mode)
903{
904 if (folio_test_dirty(src)) {
905 /* Only writeback folios in full synchronous migration */
906 switch (mode) {
907 case MIGRATE_SYNC:
908 case MIGRATE_SYNC_NO_COPY:
909 break;
910 default:
911 return -EBUSY;
912 }
913 return writeout(mapping, src);
914 }
915
916 /*
917 * Buffers may be managed in a filesystem specific way.
918 * We must have no buffers or drop them.
919 */
920 if (folio_test_private(src) &&
921 !filemap_release_folio(src, GFP_KERNEL))
922 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
923
924 return migrate_folio(mapping, dst, src, mode);
925}
926
927/*
928 * Move a page to a newly allocated page
929 * The page is locked and all ptes have been successfully removed.
930 *
931 * The new page will have replaced the old page if this function
932 * is successful.
933 *
934 * Return value:
935 * < 0 - error code
936 * MIGRATEPAGE_SUCCESS - success
937 */
938static int move_to_new_folio(struct folio *dst, struct folio *src,
939 enum migrate_mode mode)
940{
941 int rc = -EAGAIN;
942 bool is_lru = !__PageMovable(&src->page);
943
944 VM_BUG_ON_FOLIO(!folio_test_locked(src), src);
945 VM_BUG_ON_FOLIO(!folio_test_locked(dst), dst);
946
947 if (likely(is_lru)) {
948 struct address_space *mapping = folio_mapping(src);
949
950 if (!mapping)
951 rc = migrate_folio(mapping, dst, src, mode);
952 else if (mapping->a_ops->migrate_folio)
953 /*
954 * Most folios have a mapping and most filesystems
955 * provide a migrate_folio callback. Anonymous folios
956 * are part of swap space which also has its own
957 * migrate_folio callback. This is the most common path
958 * for page migration.
959 */
960 rc = mapping->a_ops->migrate_folio(mapping, dst, src,
961 mode);
962 else
963 rc = fallback_migrate_folio(mapping, dst, src, mode);
964 } else {
965 const struct movable_operations *mops;
966
967 /*
968 * In case of non-lru page, it could be released after
969 * isolation step. In that case, we shouldn't try migration.
970 */
971 VM_BUG_ON_FOLIO(!folio_test_isolated(src), src);
972 if (!folio_test_movable(src)) {
973 rc = MIGRATEPAGE_SUCCESS;
974 folio_clear_isolated(src);
975 goto out;
976 }
977
978 mops = page_movable_ops(&src->page);
979 rc = mops->migrate_page(&dst->page, &src->page, mode);
980 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
981 !folio_test_isolated(src));
982 }
983
984 /*
985 * When successful, old pagecache src->mapping must be cleared before
986 * src is freed; but stats require that PageAnon be left as PageAnon.
987 */
988 if (rc == MIGRATEPAGE_SUCCESS) {
989 if (__PageMovable(&src->page)) {
990 VM_BUG_ON_FOLIO(!folio_test_isolated(src), src);
991
992 /*
993 * We clear PG_movable under page_lock so any compactor
994 * cannot try to migrate this page.
995 */
996 folio_clear_isolated(src);
997 }
998
999 /*
1000 * Anonymous and movable src->mapping will be cleared by
1001 * free_pages_prepare so don't reset it here for keeping
1002 * the type to work PageAnon, for example.
1003 */
1004 if (!folio_mapping_flags(src))
1005 src->mapping = NULL;
1006
1007 if (likely(!folio_is_zone_device(dst)))
1008 flush_dcache_folio(dst);
1009 }
1010out:
1011 return rc;
1012}
1013
1014static int __unmap_and_move(struct folio *src, struct folio *dst,
1015 int force, enum migrate_mode mode)
1016{
1017 int rc = -EAGAIN;
1018 bool page_was_mapped = false;
1019 struct anon_vma *anon_vma = NULL;
1020 bool is_lru = !__PageMovable(&src->page);
1021
1022 if (!folio_trylock(src)) {
1023 if (!force || mode == MIGRATE_ASYNC)
1024 goto out;
1025
1026 /*
1027 * It's not safe for direct compaction to call lock_page.
1028 * For example, during page readahead pages are added locked
1029 * to the LRU. Later, when the IO completes the pages are
1030 * marked uptodate and unlocked. However, the queueing
1031 * could be merging multiple pages for one bio (e.g.
1032 * mpage_readahead). If an allocation happens for the
1033 * second or third page, the process can end up locking
1034 * the same page twice and deadlocking. Rather than
1035 * trying to be clever about what pages can be locked,
1036 * avoid the use of lock_page for direct compaction
1037 * altogether.
1038 */
1039 if (current->flags & PF_MEMALLOC)
1040 goto out;
1041
1042 folio_lock(src);
1043 }
1044
1045 if (folio_test_writeback(src)) {
1046 /*
1047 * Only in the case of a full synchronous migration is it
1048 * necessary to wait for PageWriteback. In the async case,
1049 * the retry loop is too short and in the sync-light case,
1050 * the overhead of stalling is too much
1051 */
1052 switch (mode) {
1053 case MIGRATE_SYNC:
1054 case MIGRATE_SYNC_NO_COPY:
1055 break;
1056 default:
1057 rc = -EBUSY;
1058 goto out_unlock;
1059 }
1060 if (!force)
1061 goto out_unlock;
1062 folio_wait_writeback(src);
1063 }
1064
1065 /*
1066 * By try_to_migrate(), src->mapcount goes down to 0 here. In this case,
1067 * we cannot notice that anon_vma is freed while we migrate a page.
1068 * This get_anon_vma() delays freeing anon_vma pointer until the end
1069 * of migration. File cache pages are no problem because of page_lock()
1070 * File Caches may use write_page() or lock_page() in migration, then,
1071 * just care Anon page here.
1072 *
1073 * Only folio_get_anon_vma() understands the subtleties of
1074 * getting a hold on an anon_vma from outside one of its mms.
1075 * But if we cannot get anon_vma, then we won't need it anyway,
1076 * because that implies that the anon page is no longer mapped
1077 * (and cannot be remapped so long as we hold the page lock).
1078 */
1079 if (folio_test_anon(src) && !folio_test_ksm(src))
1080 anon_vma = folio_get_anon_vma(src);
1081
1082 /*
1083 * Block others from accessing the new page when we get around to
1084 * establishing additional references. We are usually the only one
1085 * holding a reference to dst at this point. We used to have a BUG
1086 * here if folio_trylock(dst) fails, but would like to allow for
1087 * cases where there might be a race with the previous use of dst.
1088 * This is much like races on refcount of oldpage: just don't BUG().
1089 */
1090 if (unlikely(!folio_trylock(dst)))
1091 goto out_unlock;
1092
1093 if (unlikely(!is_lru)) {
1094 rc = move_to_new_folio(dst, src, mode);
1095 goto out_unlock_both;
1096 }
1097
1098 /*
1099 * Corner case handling:
1100 * 1. When a new swap-cache page is read into, it is added to the LRU
1101 * and treated as swapcache but it has no rmap yet.
1102 * Calling try_to_unmap() against a src->mapping==NULL page will
1103 * trigger a BUG. So handle it here.
1104 * 2. An orphaned page (see truncate_cleanup_page) might have
1105 * fs-private metadata. The page can be picked up due to memory
1106 * offlining. Everywhere else except page reclaim, the page is
1107 * invisible to the vm, so the page can not be migrated. So try to
1108 * free the metadata, so the page can be freed.
1109 */
1110 if (!src->mapping) {
1111 if (folio_test_private(src)) {
1112 try_to_free_buffers(src);
1113 goto out_unlock_both;
1114 }
1115 } else if (folio_mapped(src)) {
1116 /* Establish migration ptes */
1117 VM_BUG_ON_FOLIO(folio_test_anon(src) &&
1118 !folio_test_ksm(src) && !anon_vma, src);
1119 try_to_migrate(src, 0);
1120 page_was_mapped = true;
1121 }
1122
1123 if (!folio_mapped(src))
1124 rc = move_to_new_folio(dst, src, mode);
1125
1126 /*
1127 * When successful, push dst to LRU immediately: so that if it
1128 * turns out to be an mlocked page, remove_migration_ptes() will
1129 * automatically build up the correct dst->mlock_count for it.
1130 *
1131 * We would like to do something similar for the old page, when
1132 * unsuccessful, and other cases when a page has been temporarily
1133 * isolated from the unevictable LRU: but this case is the easiest.
1134 */
1135 if (rc == MIGRATEPAGE_SUCCESS) {
1136 folio_add_lru(dst);
1137 if (page_was_mapped)
1138 lru_add_drain();
1139 }
1140
1141 if (page_was_mapped)
1142 remove_migration_ptes(src,
1143 rc == MIGRATEPAGE_SUCCESS ? dst : src, false);
1144
1145out_unlock_both:
1146 folio_unlock(dst);
1147out_unlock:
1148 /* Drop an anon_vma reference if we took one */
1149 if (anon_vma)
1150 put_anon_vma(anon_vma);
1151 folio_unlock(src);
1152out:
1153 /*
1154 * If migration is successful, decrease refcount of dst,
1155 * which will not free the page because new page owner increased
1156 * refcounter.
1157 */
1158 if (rc == MIGRATEPAGE_SUCCESS)
1159 folio_put(dst);
1160
1161 return rc;
1162}
1163
1164/*
1165 * Obtain the lock on folio, remove all ptes and migrate the folio
1166 * to the newly allocated folio in dst.
1167 */
1168static int unmap_and_move(new_page_t get_new_page,
1169 free_page_t put_new_page,
1170 unsigned long private, struct folio *src,
1171 int force, enum migrate_mode mode,
1172 enum migrate_reason reason,
1173 struct list_head *ret)
1174{
1175 struct folio *dst;
1176 int rc = MIGRATEPAGE_SUCCESS;
1177 struct page *newpage = NULL;
1178
1179 if (!thp_migration_supported() && folio_test_transhuge(src))
1180 return -ENOSYS;
1181
1182 if (folio_ref_count(src) == 1) {
1183 /* Folio was freed from under us. So we are done. */
1184 folio_clear_active(src);
1185 folio_clear_unevictable(src);
1186 /* free_pages_prepare() will clear PG_isolated. */
1187 goto out;
1188 }
1189
1190 newpage = get_new_page(&src->page, private);
1191 if (!newpage)
1192 return -ENOMEM;
1193 dst = page_folio(newpage);
1194
1195 dst->private = NULL;
1196 rc = __unmap_and_move(src, dst, force, mode);
1197 if (rc == MIGRATEPAGE_SUCCESS)
1198 set_page_owner_migrate_reason(&dst->page, reason);
1199
1200out:
1201 if (rc != -EAGAIN) {
1202 /*
1203 * A folio that has been migrated has all references
1204 * removed and will be freed. A folio that has not been
1205 * migrated will have kept its references and be restored.
1206 */
1207 list_del(&src->lru);
1208 }
1209
1210 /*
1211 * If migration is successful, releases reference grabbed during
1212 * isolation. Otherwise, restore the folio to right list unless
1213 * we want to retry.
1214 */
1215 if (rc == MIGRATEPAGE_SUCCESS) {
1216 /*
1217 * Compaction can migrate also non-LRU folios which are
1218 * not accounted to NR_ISOLATED_*. They can be recognized
1219 * as __folio_test_movable
1220 */
1221 if (likely(!__folio_test_movable(src)))
1222 mod_node_page_state(folio_pgdat(src), NR_ISOLATED_ANON +
1223 folio_is_file_lru(src), -folio_nr_pages(src));
1224
1225 if (reason != MR_MEMORY_FAILURE)
1226 /*
1227 * We release the folio in page_handle_poison.
1228 */
1229 folio_put(src);
1230 } else {
1231 if (rc != -EAGAIN)
1232 list_add_tail(&src->lru, ret);
1233
1234 if (put_new_page)
1235 put_new_page(&dst->page, private);
1236 else
1237 folio_put(dst);
1238 }
1239
1240 return rc;
1241}
1242
1243/*
1244 * Counterpart of unmap_and_move_page() for hugepage migration.
1245 *
1246 * This function doesn't wait the completion of hugepage I/O
1247 * because there is no race between I/O and migration for hugepage.
1248 * Note that currently hugepage I/O occurs only in direct I/O
1249 * where no lock is held and PG_writeback is irrelevant,
1250 * and writeback status of all subpages are counted in the reference
1251 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1252 * under direct I/O, the reference of the head page is 512 and a bit more.)
1253 * This means that when we try to migrate hugepage whose subpages are
1254 * doing direct I/O, some references remain after try_to_unmap() and
1255 * hugepage migration fails without data corruption.
1256 *
1257 * There is also no race when direct I/O is issued on the page under migration,
1258 * because then pte is replaced with migration swap entry and direct I/O code
1259 * will wait in the page fault for migration to complete.
1260 */
1261static int unmap_and_move_huge_page(new_page_t get_new_page,
1262 free_page_t put_new_page, unsigned long private,
1263 struct page *hpage, int force,
1264 enum migrate_mode mode, int reason,
1265 struct list_head *ret)
1266{
1267 struct folio *dst, *src = page_folio(hpage);
1268 int rc = -EAGAIN;
1269 int page_was_mapped = 0;
1270 struct page *new_hpage;
1271 struct anon_vma *anon_vma = NULL;
1272 struct address_space *mapping = NULL;
1273
1274 /*
1275 * Migratability of hugepages depends on architectures and their size.
1276 * This check is necessary because some callers of hugepage migration
1277 * like soft offline and memory hotremove don't walk through page
1278 * tables or check whether the hugepage is pmd-based or not before
1279 * kicking migration.
1280 */
1281 if (!hugepage_migration_supported(page_hstate(hpage)))
1282 return -ENOSYS;
1283
1284 if (folio_ref_count(src) == 1) {
1285 /* page was freed from under us. So we are done. */
1286 putback_active_hugepage(hpage);
1287 return MIGRATEPAGE_SUCCESS;
1288 }
1289
1290 new_hpage = get_new_page(hpage, private);
1291 if (!new_hpage)
1292 return -ENOMEM;
1293 dst = page_folio(new_hpage);
1294
1295 if (!folio_trylock(src)) {
1296 if (!force)
1297 goto out;
1298 switch (mode) {
1299 case MIGRATE_SYNC:
1300 case MIGRATE_SYNC_NO_COPY:
1301 break;
1302 default:
1303 goto out;
1304 }
1305 folio_lock(src);
1306 }
1307
1308 /*
1309 * Check for pages which are in the process of being freed. Without
1310 * folio_mapping() set, hugetlbfs specific move page routine will not
1311 * be called and we could leak usage counts for subpools.
1312 */
1313 if (hugetlb_folio_subpool(src) && !folio_mapping(src)) {
1314 rc = -EBUSY;
1315 goto out_unlock;
1316 }
1317
1318 if (folio_test_anon(src))
1319 anon_vma = folio_get_anon_vma(src);
1320
1321 if (unlikely(!folio_trylock(dst)))
1322 goto put_anon;
1323
1324 if (folio_mapped(src)) {
1325 enum ttu_flags ttu = 0;
1326
1327 if (!folio_test_anon(src)) {
1328 /*
1329 * In shared mappings, try_to_unmap could potentially
1330 * call huge_pmd_unshare. Because of this, take
1331 * semaphore in write mode here and set TTU_RMAP_LOCKED
1332 * to let lower levels know we have taken the lock.
1333 */
1334 mapping = hugetlb_page_mapping_lock_write(hpage);
1335 if (unlikely(!mapping))
1336 goto unlock_put_anon;
1337
1338 ttu = TTU_RMAP_LOCKED;
1339 }
1340
1341 try_to_migrate(src, ttu);
1342 page_was_mapped = 1;
1343
1344 if (ttu & TTU_RMAP_LOCKED)
1345 i_mmap_unlock_write(mapping);
1346 }
1347
1348 if (!folio_mapped(src))
1349 rc = move_to_new_folio(dst, src, mode);
1350
1351 if (page_was_mapped)
1352 remove_migration_ptes(src,
1353 rc == MIGRATEPAGE_SUCCESS ? dst : src, false);
1354
1355unlock_put_anon:
1356 folio_unlock(dst);
1357
1358put_anon:
1359 if (anon_vma)
1360 put_anon_vma(anon_vma);
1361
1362 if (rc == MIGRATEPAGE_SUCCESS) {
1363 move_hugetlb_state(src, dst, reason);
1364 put_new_page = NULL;
1365 }
1366
1367out_unlock:
1368 folio_unlock(src);
1369out:
1370 if (rc == MIGRATEPAGE_SUCCESS)
1371 putback_active_hugepage(hpage);
1372 else if (rc != -EAGAIN)
1373 list_move_tail(&src->lru, ret);
1374
1375 /*
1376 * If migration was not successful and there's a freeing callback, use
1377 * it. Otherwise, put_page() will drop the reference grabbed during
1378 * isolation.
1379 */
1380 if (put_new_page)
1381 put_new_page(new_hpage, private);
1382 else
1383 putback_active_hugepage(new_hpage);
1384
1385 return rc;
1386}
1387
1388static inline int try_split_folio(struct folio *folio, struct list_head *split_folios)
1389{
1390 int rc;
1391
1392 folio_lock(folio);
1393 rc = split_folio_to_list(folio, split_folios);
1394 folio_unlock(folio);
1395 if (!rc)
1396 list_move_tail(&folio->lru, split_folios);
1397
1398 return rc;
1399}
1400
1401/*
1402 * migrate_pages - migrate the folios specified in a list, to the free folios
1403 * supplied as the target for the page migration
1404 *
1405 * @from: The list of folios to be migrated.
1406 * @get_new_page: The function used to allocate free folios to be used
1407 * as the target of the folio migration.
1408 * @put_new_page: The function used to free target folios if migration
1409 * fails, or NULL if no special handling is necessary.
1410 * @private: Private data to be passed on to get_new_page()
1411 * @mode: The migration mode that specifies the constraints for
1412 * folio migration, if any.
1413 * @reason: The reason for folio migration.
1414 * @ret_succeeded: Set to the number of folios migrated successfully if
1415 * the caller passes a non-NULL pointer.
1416 *
1417 * The function returns after 10 attempts or if no folios are movable any more
1418 * because the list has become empty or no retryable folios exist any more.
1419 * It is caller's responsibility to call putback_movable_pages() to return folios
1420 * to the LRU or free list only if ret != 0.
1421 *
1422 * Returns the number of {normal folio, large folio, hugetlb} that were not
1423 * migrated, or an error code. The number of large folio splits will be
1424 * considered as the number of non-migrated large folio, no matter how many
1425 * split folios of the large folio are migrated successfully.
1426 */
1427int migrate_pages(struct list_head *from, new_page_t get_new_page,
1428 free_page_t put_new_page, unsigned long private,
1429 enum migrate_mode mode, int reason, unsigned int *ret_succeeded)
1430{
1431 int retry = 1;
1432 int large_retry = 1;
1433 int thp_retry = 1;
1434 int nr_failed = 0;
1435 int nr_failed_pages = 0;
1436 int nr_retry_pages = 0;
1437 int nr_succeeded = 0;
1438 int nr_thp_succeeded = 0;
1439 int nr_large_failed = 0;
1440 int nr_thp_failed = 0;
1441 int nr_thp_split = 0;
1442 int pass = 0;
1443 bool is_large = false;
1444 bool is_thp = false;
1445 struct folio *folio, *folio2;
1446 int rc, nr_pages;
1447 LIST_HEAD(ret_folios);
1448 LIST_HEAD(split_folios);
1449 bool nosplit = (reason == MR_NUMA_MISPLACED);
1450 bool no_split_folio_counting = false;
1451
1452 trace_mm_migrate_pages_start(mode, reason);
1453
1454split_folio_migration:
1455 for (pass = 0; pass < 10 && (retry || large_retry); pass++) {
1456 retry = 0;
1457 large_retry = 0;
1458 thp_retry = 0;
1459 nr_retry_pages = 0;
1460
1461 list_for_each_entry_safe(folio, folio2, from, lru) {
1462 /*
1463 * Large folio statistics is based on the source large
1464 * folio. Capture required information that might get
1465 * lost during migration.
1466 */
1467 is_large = folio_test_large(folio) && !folio_test_hugetlb(folio);
1468 is_thp = is_large && folio_test_pmd_mappable(folio);
1469 nr_pages = folio_nr_pages(folio);
1470 cond_resched();
1471
1472 if (folio_test_hugetlb(folio))
1473 rc = unmap_and_move_huge_page(get_new_page,
1474 put_new_page, private,
1475 &folio->page, pass > 2, mode,
1476 reason,
1477 &ret_folios);
1478 else
1479 rc = unmap_and_move(get_new_page, put_new_page,
1480 private, folio, pass > 2, mode,
1481 reason, &ret_folios);
1482 /*
1483 * The rules are:
1484 * Success: non hugetlb folio will be freed, hugetlb
1485 * folio will be put back
1486 * -EAGAIN: stay on the from list
1487 * -ENOMEM: stay on the from list
1488 * -ENOSYS: stay on the from list
1489 * Other errno: put on ret_folios list then splice to
1490 * from list
1491 */
1492 switch(rc) {
1493 /*
1494 * Large folio migration might be unsupported or
1495 * the allocation could've failed so we should retry
1496 * on the same folio with the large folio split
1497 * to normal folios.
1498 *
1499 * Split folios are put in split_folios, and
1500 * we will migrate them after the rest of the
1501 * list is processed.
1502 */
1503 case -ENOSYS:
1504 /* Large folio migration is unsupported */
1505 if (is_large) {
1506 nr_large_failed++;
1507 nr_thp_failed += is_thp;
1508 if (!try_split_folio(folio, &split_folios)) {
1509 nr_thp_split += is_thp;
1510 break;
1511 }
1512 /* Hugetlb migration is unsupported */
1513 } else if (!no_split_folio_counting) {
1514 nr_failed++;
1515 }
1516
1517 nr_failed_pages += nr_pages;
1518 list_move_tail(&folio->lru, &ret_folios);
1519 break;
1520 case -ENOMEM:
1521 /*
1522 * When memory is low, don't bother to try to migrate
1523 * other folios, just exit.
1524 */
1525 if (is_large) {
1526 nr_large_failed++;
1527 nr_thp_failed += is_thp;
1528 /* Large folio NUMA faulting doesn't split to retry. */
1529 if (!nosplit) {
1530 int ret = try_split_folio(folio, &split_folios);
1531
1532 if (!ret) {
1533 nr_thp_split += is_thp;
1534 break;
1535 } else if (reason == MR_LONGTERM_PIN &&
1536 ret == -EAGAIN) {
1537 /*
1538 * Try again to split large folio to
1539 * mitigate the failure of longterm pinning.
1540 */
1541 large_retry++;
1542 thp_retry += is_thp;
1543 nr_retry_pages += nr_pages;
1544 break;
1545 }
1546 }
1547 } else if (!no_split_folio_counting) {
1548 nr_failed++;
1549 }
1550
1551 nr_failed_pages += nr_pages + nr_retry_pages;
1552 /*
1553 * There might be some split folios of fail-to-migrate large
1554 * folios left in split_folios list. Move them back to migration
1555 * list so that they could be put back to the right list by
1556 * the caller otherwise the folio refcnt will be leaked.
1557 */
1558 list_splice_init(&split_folios, from);
1559 /* nr_failed isn't updated for not used */
1560 nr_large_failed += large_retry;
1561 nr_thp_failed += thp_retry;
1562 goto out;
1563 case -EAGAIN:
1564 if (is_large) {
1565 large_retry++;
1566 thp_retry += is_thp;
1567 } else if (!no_split_folio_counting) {
1568 retry++;
1569 }
1570 nr_retry_pages += nr_pages;
1571 break;
1572 case MIGRATEPAGE_SUCCESS:
1573 nr_succeeded += nr_pages;
1574 nr_thp_succeeded += is_thp;
1575 break;
1576 default:
1577 /*
1578 * Permanent failure (-EBUSY, etc.):
1579 * unlike -EAGAIN case, the failed folio is
1580 * removed from migration folio list and not
1581 * retried in the next outer loop.
1582 */
1583 if (is_large) {
1584 nr_large_failed++;
1585 nr_thp_failed += is_thp;
1586 } else if (!no_split_folio_counting) {
1587 nr_failed++;
1588 }
1589
1590 nr_failed_pages += nr_pages;
1591 break;
1592 }
1593 }
1594 }
1595 nr_failed += retry;
1596 nr_large_failed += large_retry;
1597 nr_thp_failed += thp_retry;
1598 nr_failed_pages += nr_retry_pages;
1599 /*
1600 * Try to migrate split folios of fail-to-migrate large folios, no
1601 * nr_failed counting in this round, since all split folios of a
1602 * large folio is counted as 1 failure in the first round.
1603 */
1604 if (!list_empty(&split_folios)) {
1605 /*
1606 * Move non-migrated folios (after 10 retries) to ret_folios
1607 * to avoid migrating them again.
1608 */
1609 list_splice_init(from, &ret_folios);
1610 list_splice_init(&split_folios, from);
1611 no_split_folio_counting = true;
1612 retry = 1;
1613 goto split_folio_migration;
1614 }
1615
1616 rc = nr_failed + nr_large_failed;
1617out:
1618 /*
1619 * Put the permanent failure folio back to migration list, they
1620 * will be put back to the right list by the caller.
1621 */
1622 list_splice(&ret_folios, from);
1623
1624 /*
1625 * Return 0 in case all split folios of fail-to-migrate large folios
1626 * are migrated successfully.
1627 */
1628 if (list_empty(from))
1629 rc = 0;
1630
1631 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1632 count_vm_events(PGMIGRATE_FAIL, nr_failed_pages);
1633 count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded);
1634 count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed);
1635 count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split);
1636 trace_mm_migrate_pages(nr_succeeded, nr_failed_pages, nr_thp_succeeded,
1637 nr_thp_failed, nr_thp_split, mode, reason);
1638
1639 if (ret_succeeded)
1640 *ret_succeeded = nr_succeeded;
1641
1642 return rc;
1643}
1644
1645struct page *alloc_migration_target(struct page *page, unsigned long private)
1646{
1647 struct folio *folio = page_folio(page);
1648 struct migration_target_control *mtc;
1649 gfp_t gfp_mask;
1650 unsigned int order = 0;
1651 struct folio *new_folio = NULL;
1652 int nid;
1653 int zidx;
1654
1655 mtc = (struct migration_target_control *)private;
1656 gfp_mask = mtc->gfp_mask;
1657 nid = mtc->nid;
1658 if (nid == NUMA_NO_NODE)
1659 nid = folio_nid(folio);
1660
1661 if (folio_test_hugetlb(folio)) {
1662 struct hstate *h = folio_hstate(folio);
1663
1664 gfp_mask = htlb_modify_alloc_mask(h, gfp_mask);
1665 return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask);
1666 }
1667
1668 if (folio_test_large(folio)) {
1669 /*
1670 * clear __GFP_RECLAIM to make the migration callback
1671 * consistent with regular THP allocations.
1672 */
1673 gfp_mask &= ~__GFP_RECLAIM;
1674 gfp_mask |= GFP_TRANSHUGE;
1675 order = folio_order(folio);
1676 }
1677 zidx = zone_idx(folio_zone(folio));
1678 if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE)
1679 gfp_mask |= __GFP_HIGHMEM;
1680
1681 new_folio = __folio_alloc(gfp_mask, order, nid, mtc->nmask);
1682
1683 return &new_folio->page;
1684}
1685
1686#ifdef CONFIG_NUMA
1687
1688static int store_status(int __user *status, int start, int value, int nr)
1689{
1690 while (nr-- > 0) {
1691 if (put_user(value, status + start))
1692 return -EFAULT;
1693 start++;
1694 }
1695
1696 return 0;
1697}
1698
1699static int do_move_pages_to_node(struct mm_struct *mm,
1700 struct list_head *pagelist, int node)
1701{
1702 int err;
1703 struct migration_target_control mtc = {
1704 .nid = node,
1705 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1706 };
1707
1708 err = migrate_pages(pagelist, alloc_migration_target, NULL,
1709 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL);
1710 if (err)
1711 putback_movable_pages(pagelist);
1712 return err;
1713}
1714
1715/*
1716 * Resolves the given address to a struct page, isolates it from the LRU and
1717 * puts it to the given pagelist.
1718 * Returns:
1719 * errno - if the page cannot be found/isolated
1720 * 0 - when it doesn't have to be migrated because it is already on the
1721 * target node
1722 * 1 - when it has been queued
1723 */
1724static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1725 int node, struct list_head *pagelist, bool migrate_all)
1726{
1727 struct vm_area_struct *vma;
1728 struct page *page;
1729 int err;
1730
1731 mmap_read_lock(mm);
1732 err = -EFAULT;
1733 vma = vma_lookup(mm, addr);
1734 if (!vma || !vma_migratable(vma))
1735 goto out;
1736
1737 /* FOLL_DUMP to ignore special (like zero) pages */
1738 page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
1739
1740 err = PTR_ERR(page);
1741 if (IS_ERR(page))
1742 goto out;
1743
1744 err = -ENOENT;
1745 if (!page)
1746 goto out;
1747
1748 if (is_zone_device_page(page))
1749 goto out_putpage;
1750
1751 err = 0;
1752 if (page_to_nid(page) == node)
1753 goto out_putpage;
1754
1755 err = -EACCES;
1756 if (page_mapcount(page) > 1 && !migrate_all)
1757 goto out_putpage;
1758
1759 if (PageHuge(page)) {
1760 if (PageHead(page)) {
1761 err = isolate_hugetlb(page, pagelist);
1762 if (!err)
1763 err = 1;
1764 }
1765 } else {
1766 struct page *head;
1767
1768 head = compound_head(page);
1769 err = isolate_lru_page(head);
1770 if (err)
1771 goto out_putpage;
1772
1773 err = 1;
1774 list_add_tail(&head->lru, pagelist);
1775 mod_node_page_state(page_pgdat(head),
1776 NR_ISOLATED_ANON + page_is_file_lru(head),
1777 thp_nr_pages(head));
1778 }
1779out_putpage:
1780 /*
1781 * Either remove the duplicate refcount from
1782 * isolate_lru_page() or drop the page ref if it was
1783 * not isolated.
1784 */
1785 put_page(page);
1786out:
1787 mmap_read_unlock(mm);
1788 return err;
1789}
1790
1791static int move_pages_and_store_status(struct mm_struct *mm, int node,
1792 struct list_head *pagelist, int __user *status,
1793 int start, int i, unsigned long nr_pages)
1794{
1795 int err;
1796
1797 if (list_empty(pagelist))
1798 return 0;
1799
1800 err = do_move_pages_to_node(mm, pagelist, node);
1801 if (err) {
1802 /*
1803 * Positive err means the number of failed
1804 * pages to migrate. Since we are going to
1805 * abort and return the number of non-migrated
1806 * pages, so need to include the rest of the
1807 * nr_pages that have not been attempted as
1808 * well.
1809 */
1810 if (err > 0)
1811 err += nr_pages - i;
1812 return err;
1813 }
1814 return store_status(status, start, node, i - start);
1815}
1816
1817/*
1818 * Migrate an array of page address onto an array of nodes and fill
1819 * the corresponding array of status.
1820 */
1821static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1822 unsigned long nr_pages,
1823 const void __user * __user *pages,
1824 const int __user *nodes,
1825 int __user *status, int flags)
1826{
1827 int current_node = NUMA_NO_NODE;
1828 LIST_HEAD(pagelist);
1829 int start, i;
1830 int err = 0, err1;
1831
1832 lru_cache_disable();
1833
1834 for (i = start = 0; i < nr_pages; i++) {
1835 const void __user *p;
1836 unsigned long addr;
1837 int node;
1838
1839 err = -EFAULT;
1840 if (get_user(p, pages + i))
1841 goto out_flush;
1842 if (get_user(node, nodes + i))
1843 goto out_flush;
1844 addr = (unsigned long)untagged_addr(p);
1845
1846 err = -ENODEV;
1847 if (node < 0 || node >= MAX_NUMNODES)
1848 goto out_flush;
1849 if (!node_state(node, N_MEMORY))
1850 goto out_flush;
1851
1852 err = -EACCES;
1853 if (!node_isset(node, task_nodes))
1854 goto out_flush;
1855
1856 if (current_node == NUMA_NO_NODE) {
1857 current_node = node;
1858 start = i;
1859 } else if (node != current_node) {
1860 err = move_pages_and_store_status(mm, current_node,
1861 &pagelist, status, start, i, nr_pages);
1862 if (err)
1863 goto out;
1864 start = i;
1865 current_node = node;
1866 }
1867
1868 /*
1869 * Errors in the page lookup or isolation are not fatal and we simply
1870 * report them via status
1871 */
1872 err = add_page_for_migration(mm, addr, current_node,
1873 &pagelist, flags & MPOL_MF_MOVE_ALL);
1874
1875 if (err > 0) {
1876 /* The page is successfully queued for migration */
1877 continue;
1878 }
1879
1880 /*
1881 * The move_pages() man page does not have an -EEXIST choice, so
1882 * use -EFAULT instead.
1883 */
1884 if (err == -EEXIST)
1885 err = -EFAULT;
1886
1887 /*
1888 * If the page is already on the target node (!err), store the
1889 * node, otherwise, store the err.
1890 */
1891 err = store_status(status, i, err ? : current_node, 1);
1892 if (err)
1893 goto out_flush;
1894
1895 err = move_pages_and_store_status(mm, current_node, &pagelist,
1896 status, start, i, nr_pages);
1897 if (err) {
1898 /* We have accounted for page i */
1899 if (err > 0)
1900 err--;
1901 goto out;
1902 }
1903 current_node = NUMA_NO_NODE;
1904 }
1905out_flush:
1906 /* Make sure we do not overwrite the existing error */
1907 err1 = move_pages_and_store_status(mm, current_node, &pagelist,
1908 status, start, i, nr_pages);
1909 if (err >= 0)
1910 err = err1;
1911out:
1912 lru_cache_enable();
1913 return err;
1914}
1915
1916/*
1917 * Determine the nodes of an array of pages and store it in an array of status.
1918 */
1919static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1920 const void __user **pages, int *status)
1921{
1922 unsigned long i;
1923
1924 mmap_read_lock(mm);
1925
1926 for (i = 0; i < nr_pages; i++) {
1927 unsigned long addr = (unsigned long)(*pages);
1928 struct vm_area_struct *vma;
1929 struct page *page;
1930 int err = -EFAULT;
1931
1932 vma = vma_lookup(mm, addr);
1933 if (!vma)
1934 goto set_status;
1935
1936 /* FOLL_DUMP to ignore special (like zero) pages */
1937 page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
1938
1939 err = PTR_ERR(page);
1940 if (IS_ERR(page))
1941 goto set_status;
1942
1943 err = -ENOENT;
1944 if (!page)
1945 goto set_status;
1946
1947 if (!is_zone_device_page(page))
1948 err = page_to_nid(page);
1949
1950 put_page(page);
1951set_status:
1952 *status = err;
1953
1954 pages++;
1955 status++;
1956 }
1957
1958 mmap_read_unlock(mm);
1959}
1960
1961static int get_compat_pages_array(const void __user *chunk_pages[],
1962 const void __user * __user *pages,
1963 unsigned long chunk_nr)
1964{
1965 compat_uptr_t __user *pages32 = (compat_uptr_t __user *)pages;
1966 compat_uptr_t p;
1967 int i;
1968
1969 for (i = 0; i < chunk_nr; i++) {
1970 if (get_user(p, pages32 + i))
1971 return -EFAULT;
1972 chunk_pages[i] = compat_ptr(p);
1973 }
1974
1975 return 0;
1976}
1977
1978/*
1979 * Determine the nodes of a user array of pages and store it in
1980 * a user array of status.
1981 */
1982static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1983 const void __user * __user *pages,
1984 int __user *status)
1985{
1986#define DO_PAGES_STAT_CHUNK_NR 16UL
1987 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1988 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1989
1990 while (nr_pages) {
1991 unsigned long chunk_nr = min(nr_pages, DO_PAGES_STAT_CHUNK_NR);
1992
1993 if (in_compat_syscall()) {
1994 if (get_compat_pages_array(chunk_pages, pages,
1995 chunk_nr))
1996 break;
1997 } else {
1998 if (copy_from_user(chunk_pages, pages,
1999 chunk_nr * sizeof(*chunk_pages)))
2000 break;
2001 }
2002
2003 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
2004
2005 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
2006 break;
2007
2008 pages += chunk_nr;
2009 status += chunk_nr;
2010 nr_pages -= chunk_nr;
2011 }
2012 return nr_pages ? -EFAULT : 0;
2013}
2014
2015static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes)
2016{
2017 struct task_struct *task;
2018 struct mm_struct *mm;
2019
2020 /*
2021 * There is no need to check if current process has the right to modify
2022 * the specified process when they are same.
2023 */
2024 if (!pid) {
2025 mmget(current->mm);
2026 *mem_nodes = cpuset_mems_allowed(current);
2027 return current->mm;
2028 }
2029
2030 /* Find the mm_struct */
2031 rcu_read_lock();
2032 task = find_task_by_vpid(pid);
2033 if (!task) {
2034 rcu_read_unlock();
2035 return ERR_PTR(-ESRCH);
2036 }
2037 get_task_struct(task);
2038
2039 /*
2040 * Check if this process has the right to modify the specified
2041 * process. Use the regular "ptrace_may_access()" checks.
2042 */
2043 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
2044 rcu_read_unlock();
2045 mm = ERR_PTR(-EPERM);
2046 goto out;
2047 }
2048 rcu_read_unlock();
2049
2050 mm = ERR_PTR(security_task_movememory(task));
2051 if (IS_ERR(mm))
2052 goto out;
2053 *mem_nodes = cpuset_mems_allowed(task);
2054 mm = get_task_mm(task);
2055out:
2056 put_task_struct(task);
2057 if (!mm)
2058 mm = ERR_PTR(-EINVAL);
2059 return mm;
2060}
2061
2062/*
2063 * Move a list of pages in the address space of the currently executing
2064 * process.
2065 */
2066static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
2067 const void __user * __user *pages,
2068 const int __user *nodes,
2069 int __user *status, int flags)
2070{
2071 struct mm_struct *mm;
2072 int err;
2073 nodemask_t task_nodes;
2074
2075 /* Check flags */
2076 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
2077 return -EINVAL;
2078
2079 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
2080 return -EPERM;
2081
2082 mm = find_mm_struct(pid, &task_nodes);
2083 if (IS_ERR(mm))
2084 return PTR_ERR(mm);
2085
2086 if (nodes)
2087 err = do_pages_move(mm, task_nodes, nr_pages, pages,
2088 nodes, status, flags);
2089 else
2090 err = do_pages_stat(mm, nr_pages, pages, status);
2091
2092 mmput(mm);
2093 return err;
2094}
2095
2096SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
2097 const void __user * __user *, pages,
2098 const int __user *, nodes,
2099 int __user *, status, int, flags)
2100{
2101 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
2102}
2103
2104#ifdef CONFIG_NUMA_BALANCING
2105/*
2106 * Returns true if this is a safe migration target node for misplaced NUMA
2107 * pages. Currently it only checks the watermarks which is crude.
2108 */
2109static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
2110 unsigned long nr_migrate_pages)
2111{
2112 int z;
2113
2114 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
2115 struct zone *zone = pgdat->node_zones + z;
2116
2117 if (!managed_zone(zone))
2118 continue;
2119
2120 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
2121 if (!zone_watermark_ok(zone, 0,
2122 high_wmark_pages(zone) +
2123 nr_migrate_pages,
2124 ZONE_MOVABLE, 0))
2125 continue;
2126 return true;
2127 }
2128 return false;
2129}
2130
2131static struct page *alloc_misplaced_dst_page(struct page *page,
2132 unsigned long data)
2133{
2134 int nid = (int) data;
2135 int order = compound_order(page);
2136 gfp_t gfp = __GFP_THISNODE;
2137 struct folio *new;
2138
2139 if (order > 0)
2140 gfp |= GFP_TRANSHUGE_LIGHT;
2141 else {
2142 gfp |= GFP_HIGHUSER_MOVABLE | __GFP_NOMEMALLOC | __GFP_NORETRY |
2143 __GFP_NOWARN;
2144 gfp &= ~__GFP_RECLAIM;
2145 }
2146 new = __folio_alloc_node(gfp, order, nid);
2147
2148 return &new->page;
2149}
2150
2151static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
2152{
2153 int nr_pages = thp_nr_pages(page);
2154 int order = compound_order(page);
2155
2156 VM_BUG_ON_PAGE(order && !PageTransHuge(page), page);
2157
2158 /* Do not migrate THP mapped by multiple processes */
2159 if (PageTransHuge(page) && total_mapcount(page) > 1)
2160 return 0;
2161
2162 /* Avoid migrating to a node that is nearly full */
2163 if (!migrate_balanced_pgdat(pgdat, nr_pages)) {
2164 int z;
2165
2166 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING))
2167 return 0;
2168 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
2169 if (managed_zone(pgdat->node_zones + z))
2170 break;
2171 }
2172 wakeup_kswapd(pgdat->node_zones + z, 0, order, ZONE_MOVABLE);
2173 return 0;
2174 }
2175
2176 if (isolate_lru_page(page))
2177 return 0;
2178
2179 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_is_file_lru(page),
2180 nr_pages);
2181
2182 /*
2183 * Isolating the page has taken another reference, so the
2184 * caller's reference can be safely dropped without the page
2185 * disappearing underneath us during migration.
2186 */
2187 put_page(page);
2188 return 1;
2189}
2190
2191/*
2192 * Attempt to migrate a misplaced page to the specified destination
2193 * node. Caller is expected to have an elevated reference count on
2194 * the page that will be dropped by this function before returning.
2195 */
2196int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
2197 int node)
2198{
2199 pg_data_t *pgdat = NODE_DATA(node);
2200 int isolated;
2201 int nr_remaining;
2202 unsigned int nr_succeeded;
2203 LIST_HEAD(migratepages);
2204 int nr_pages = thp_nr_pages(page);
2205
2206 /*
2207 * Don't migrate file pages that are mapped in multiple processes
2208 * with execute permissions as they are probably shared libraries.
2209 */
2210 if (page_mapcount(page) != 1 && page_is_file_lru(page) &&
2211 (vma->vm_flags & VM_EXEC))
2212 goto out;
2213
2214 /*
2215 * Also do not migrate dirty pages as not all filesystems can move
2216 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
2217 */
2218 if (page_is_file_lru(page) && PageDirty(page))
2219 goto out;
2220
2221 isolated = numamigrate_isolate_page(pgdat, page);
2222 if (!isolated)
2223 goto out;
2224
2225 list_add(&page->lru, &migratepages);
2226 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
2227 NULL, node, MIGRATE_ASYNC,
2228 MR_NUMA_MISPLACED, &nr_succeeded);
2229 if (nr_remaining) {
2230 if (!list_empty(&migratepages)) {
2231 list_del(&page->lru);
2232 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
2233 page_is_file_lru(page), -nr_pages);
2234 putback_lru_page(page);
2235 }
2236 isolated = 0;
2237 }
2238 if (nr_succeeded) {
2239 count_vm_numa_events(NUMA_PAGE_MIGRATE, nr_succeeded);
2240 if (!node_is_toptier(page_to_nid(page)) && node_is_toptier(node))
2241 mod_node_page_state(pgdat, PGPROMOTE_SUCCESS,
2242 nr_succeeded);
2243 }
2244 BUG_ON(!list_empty(&migratepages));
2245 return isolated;
2246
2247out:
2248 put_page(page);
2249 return 0;
2250}
2251#endif /* CONFIG_NUMA_BALANCING */
2252#endif /* CONFIG_NUMA */
1/*
2 * Memory Migration functionality - linux/mm/migrate.c
3 *
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5 *
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
8 *
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
12 * Christoph Lameter
13 */
14
15#include <linux/migrate.h>
16#include <linux/export.h>
17#include <linux/swap.h>
18#include <linux/swapops.h>
19#include <linux/pagemap.h>
20#include <linux/buffer_head.h>
21#include <linux/mm_inline.h>
22#include <linux/nsproxy.h>
23#include <linux/pagevec.h>
24#include <linux/ksm.h>
25#include <linux/rmap.h>
26#include <linux/topology.h>
27#include <linux/cpu.h>
28#include <linux/cpuset.h>
29#include <linux/writeback.h>
30#include <linux/mempolicy.h>
31#include <linux/vmalloc.h>
32#include <linux/security.h>
33#include <linux/backing-dev.h>
34#include <linux/compaction.h>
35#include <linux/syscalls.h>
36#include <linux/hugetlb.h>
37#include <linux/hugetlb_cgroup.h>
38#include <linux/gfp.h>
39#include <linux/balloon_compaction.h>
40#include <linux/mmu_notifier.h>
41#include <linux/page_idle.h>
42#include <linux/page_owner.h>
43
44#include <asm/tlbflush.h>
45
46#define CREATE_TRACE_POINTS
47#include <trace/events/migrate.h>
48
49#include "internal.h"
50
51/*
52 * migrate_prep() needs to be called before we start compiling a list of pages
53 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
54 * undesirable, use migrate_prep_local()
55 */
56int migrate_prep(void)
57{
58 /*
59 * Clear the LRU lists so pages can be isolated.
60 * Note that pages may be moved off the LRU after we have
61 * drained them. Those pages will fail to migrate like other
62 * pages that may be busy.
63 */
64 lru_add_drain_all();
65
66 return 0;
67}
68
69/* Do the necessary work of migrate_prep but not if it involves other CPUs */
70int migrate_prep_local(void)
71{
72 lru_add_drain();
73
74 return 0;
75}
76
77bool isolate_movable_page(struct page *page, isolate_mode_t mode)
78{
79 struct address_space *mapping;
80
81 /*
82 * Avoid burning cycles with pages that are yet under __free_pages(),
83 * or just got freed under us.
84 *
85 * In case we 'win' a race for a movable page being freed under us and
86 * raise its refcount preventing __free_pages() from doing its job
87 * the put_page() at the end of this block will take care of
88 * release this page, thus avoiding a nasty leakage.
89 */
90 if (unlikely(!get_page_unless_zero(page)))
91 goto out;
92
93 /*
94 * Check PageMovable before holding a PG_lock because page's owner
95 * assumes anybody doesn't touch PG_lock of newly allocated page
96 * so unconditionally grapping the lock ruins page's owner side.
97 */
98 if (unlikely(!__PageMovable(page)))
99 goto out_putpage;
100 /*
101 * As movable pages are not isolated from LRU lists, concurrent
102 * compaction threads can race against page migration functions
103 * as well as race against the releasing a page.
104 *
105 * In order to avoid having an already isolated movable page
106 * being (wrongly) re-isolated while it is under migration,
107 * or to avoid attempting to isolate pages being released,
108 * lets be sure we have the page lock
109 * before proceeding with the movable page isolation steps.
110 */
111 if (unlikely(!trylock_page(page)))
112 goto out_putpage;
113
114 if (!PageMovable(page) || PageIsolated(page))
115 goto out_no_isolated;
116
117 mapping = page_mapping(page);
118 VM_BUG_ON_PAGE(!mapping, page);
119
120 if (!mapping->a_ops->isolate_page(page, mode))
121 goto out_no_isolated;
122
123 /* Driver shouldn't use PG_isolated bit of page->flags */
124 WARN_ON_ONCE(PageIsolated(page));
125 __SetPageIsolated(page);
126 unlock_page(page);
127
128 return true;
129
130out_no_isolated:
131 unlock_page(page);
132out_putpage:
133 put_page(page);
134out:
135 return false;
136}
137
138/* It should be called on page which is PG_movable */
139void putback_movable_page(struct page *page)
140{
141 struct address_space *mapping;
142
143 VM_BUG_ON_PAGE(!PageLocked(page), page);
144 VM_BUG_ON_PAGE(!PageMovable(page), page);
145 VM_BUG_ON_PAGE(!PageIsolated(page), page);
146
147 mapping = page_mapping(page);
148 mapping->a_ops->putback_page(page);
149 __ClearPageIsolated(page);
150}
151
152/*
153 * Put previously isolated pages back onto the appropriate lists
154 * from where they were once taken off for compaction/migration.
155 *
156 * This function shall be used whenever the isolated pageset has been
157 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
158 * and isolate_huge_page().
159 */
160void putback_movable_pages(struct list_head *l)
161{
162 struct page *page;
163 struct page *page2;
164
165 list_for_each_entry_safe(page, page2, l, lru) {
166 if (unlikely(PageHuge(page))) {
167 putback_active_hugepage(page);
168 continue;
169 }
170 list_del(&page->lru);
171 /*
172 * We isolated non-lru movable page so here we can use
173 * __PageMovable because LRU page's mapping cannot have
174 * PAGE_MAPPING_MOVABLE.
175 */
176 if (unlikely(__PageMovable(page))) {
177 VM_BUG_ON_PAGE(!PageIsolated(page), page);
178 lock_page(page);
179 if (PageMovable(page))
180 putback_movable_page(page);
181 else
182 __ClearPageIsolated(page);
183 unlock_page(page);
184 put_page(page);
185 } else {
186 putback_lru_page(page);
187 dec_node_page_state(page, NR_ISOLATED_ANON +
188 page_is_file_cache(page));
189 }
190 }
191}
192
193/*
194 * Restore a potential migration pte to a working pte entry
195 */
196static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
197 unsigned long addr, void *old)
198{
199 struct mm_struct *mm = vma->vm_mm;
200 swp_entry_t entry;
201 pmd_t *pmd;
202 pte_t *ptep, pte;
203 spinlock_t *ptl;
204
205 if (unlikely(PageHuge(new))) {
206 ptep = huge_pte_offset(mm, addr);
207 if (!ptep)
208 goto out;
209 ptl = huge_pte_lockptr(hstate_vma(vma), mm, ptep);
210 } else {
211 pmd = mm_find_pmd(mm, addr);
212 if (!pmd)
213 goto out;
214
215 ptep = pte_offset_map(pmd, addr);
216
217 /*
218 * Peek to check is_swap_pte() before taking ptlock? No, we
219 * can race mremap's move_ptes(), which skips anon_vma lock.
220 */
221
222 ptl = pte_lockptr(mm, pmd);
223 }
224
225 spin_lock(ptl);
226 pte = *ptep;
227 if (!is_swap_pte(pte))
228 goto unlock;
229
230 entry = pte_to_swp_entry(pte);
231
232 if (!is_migration_entry(entry) ||
233 migration_entry_to_page(entry) != old)
234 goto unlock;
235
236 get_page(new);
237 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
238 if (pte_swp_soft_dirty(*ptep))
239 pte = pte_mksoft_dirty(pte);
240
241 /* Recheck VMA as permissions can change since migration started */
242 if (is_write_migration_entry(entry))
243 pte = maybe_mkwrite(pte, vma);
244
245#ifdef CONFIG_HUGETLB_PAGE
246 if (PageHuge(new)) {
247 pte = pte_mkhuge(pte);
248 pte = arch_make_huge_pte(pte, vma, new, 0);
249 }
250#endif
251 flush_dcache_page(new);
252 set_pte_at(mm, addr, ptep, pte);
253
254 if (PageHuge(new)) {
255 if (PageAnon(new))
256 hugepage_add_anon_rmap(new, vma, addr);
257 else
258 page_dup_rmap(new, true);
259 } else if (PageAnon(new))
260 page_add_anon_rmap(new, vma, addr, false);
261 else
262 page_add_file_rmap(new, false);
263
264 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
265 mlock_vma_page(new);
266
267 /* No need to invalidate - it was non-present before */
268 update_mmu_cache(vma, addr, ptep);
269unlock:
270 pte_unmap_unlock(ptep, ptl);
271out:
272 return SWAP_AGAIN;
273}
274
275/*
276 * Get rid of all migration entries and replace them by
277 * references to the indicated page.
278 */
279void remove_migration_ptes(struct page *old, struct page *new, bool locked)
280{
281 struct rmap_walk_control rwc = {
282 .rmap_one = remove_migration_pte,
283 .arg = old,
284 };
285
286 if (locked)
287 rmap_walk_locked(new, &rwc);
288 else
289 rmap_walk(new, &rwc);
290}
291
292/*
293 * Something used the pte of a page under migration. We need to
294 * get to the page and wait until migration is finished.
295 * When we return from this function the fault will be retried.
296 */
297void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
298 spinlock_t *ptl)
299{
300 pte_t pte;
301 swp_entry_t entry;
302 struct page *page;
303
304 spin_lock(ptl);
305 pte = *ptep;
306 if (!is_swap_pte(pte))
307 goto out;
308
309 entry = pte_to_swp_entry(pte);
310 if (!is_migration_entry(entry))
311 goto out;
312
313 page = migration_entry_to_page(entry);
314
315 /*
316 * Once radix-tree replacement of page migration started, page_count
317 * *must* be zero. And, we don't want to call wait_on_page_locked()
318 * against a page without get_page().
319 * So, we use get_page_unless_zero(), here. Even failed, page fault
320 * will occur again.
321 */
322 if (!get_page_unless_zero(page))
323 goto out;
324 pte_unmap_unlock(ptep, ptl);
325 wait_on_page_locked(page);
326 put_page(page);
327 return;
328out:
329 pte_unmap_unlock(ptep, ptl);
330}
331
332void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
333 unsigned long address)
334{
335 spinlock_t *ptl = pte_lockptr(mm, pmd);
336 pte_t *ptep = pte_offset_map(pmd, address);
337 __migration_entry_wait(mm, ptep, ptl);
338}
339
340void migration_entry_wait_huge(struct vm_area_struct *vma,
341 struct mm_struct *mm, pte_t *pte)
342{
343 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
344 __migration_entry_wait(mm, pte, ptl);
345}
346
347#ifdef CONFIG_BLOCK
348/* Returns true if all buffers are successfully locked */
349static bool buffer_migrate_lock_buffers(struct buffer_head *head,
350 enum migrate_mode mode)
351{
352 struct buffer_head *bh = head;
353
354 /* Simple case, sync compaction */
355 if (mode != MIGRATE_ASYNC) {
356 do {
357 get_bh(bh);
358 lock_buffer(bh);
359 bh = bh->b_this_page;
360
361 } while (bh != head);
362
363 return true;
364 }
365
366 /* async case, we cannot block on lock_buffer so use trylock_buffer */
367 do {
368 get_bh(bh);
369 if (!trylock_buffer(bh)) {
370 /*
371 * We failed to lock the buffer and cannot stall in
372 * async migration. Release the taken locks
373 */
374 struct buffer_head *failed_bh = bh;
375 put_bh(failed_bh);
376 bh = head;
377 while (bh != failed_bh) {
378 unlock_buffer(bh);
379 put_bh(bh);
380 bh = bh->b_this_page;
381 }
382 return false;
383 }
384
385 bh = bh->b_this_page;
386 } while (bh != head);
387 return true;
388}
389#else
390static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
391 enum migrate_mode mode)
392{
393 return true;
394}
395#endif /* CONFIG_BLOCK */
396
397/*
398 * Replace the page in the mapping.
399 *
400 * The number of remaining references must be:
401 * 1 for anonymous pages without a mapping
402 * 2 for pages with a mapping
403 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
404 */
405int migrate_page_move_mapping(struct address_space *mapping,
406 struct page *newpage, struct page *page,
407 struct buffer_head *head, enum migrate_mode mode,
408 int extra_count)
409{
410 struct zone *oldzone, *newzone;
411 int dirty;
412 int expected_count = 1 + extra_count;
413 void **pslot;
414
415 if (!mapping) {
416 /* Anonymous page without mapping */
417 if (page_count(page) != expected_count)
418 return -EAGAIN;
419
420 /* No turning back from here */
421 newpage->index = page->index;
422 newpage->mapping = page->mapping;
423 if (PageSwapBacked(page))
424 __SetPageSwapBacked(newpage);
425
426 return MIGRATEPAGE_SUCCESS;
427 }
428
429 oldzone = page_zone(page);
430 newzone = page_zone(newpage);
431
432 spin_lock_irq(&mapping->tree_lock);
433
434 pslot = radix_tree_lookup_slot(&mapping->page_tree,
435 page_index(page));
436
437 expected_count += 1 + page_has_private(page);
438 if (page_count(page) != expected_count ||
439 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
440 spin_unlock_irq(&mapping->tree_lock);
441 return -EAGAIN;
442 }
443
444 if (!page_ref_freeze(page, expected_count)) {
445 spin_unlock_irq(&mapping->tree_lock);
446 return -EAGAIN;
447 }
448
449 /*
450 * In the async migration case of moving a page with buffers, lock the
451 * buffers using trylock before the mapping is moved. If the mapping
452 * was moved, we later failed to lock the buffers and could not move
453 * the mapping back due to an elevated page count, we would have to
454 * block waiting on other references to be dropped.
455 */
456 if (mode == MIGRATE_ASYNC && head &&
457 !buffer_migrate_lock_buffers(head, mode)) {
458 page_ref_unfreeze(page, expected_count);
459 spin_unlock_irq(&mapping->tree_lock);
460 return -EAGAIN;
461 }
462
463 /*
464 * Now we know that no one else is looking at the page:
465 * no turning back from here.
466 */
467 newpage->index = page->index;
468 newpage->mapping = page->mapping;
469 get_page(newpage); /* add cache reference */
470 if (PageSwapBacked(page)) {
471 __SetPageSwapBacked(newpage);
472 if (PageSwapCache(page)) {
473 SetPageSwapCache(newpage);
474 set_page_private(newpage, page_private(page));
475 }
476 } else {
477 VM_BUG_ON_PAGE(PageSwapCache(page), page);
478 }
479
480 /* Move dirty while page refs frozen and newpage not yet exposed */
481 dirty = PageDirty(page);
482 if (dirty) {
483 ClearPageDirty(page);
484 SetPageDirty(newpage);
485 }
486
487 radix_tree_replace_slot(&mapping->page_tree, pslot, newpage);
488
489 /*
490 * Drop cache reference from old page by unfreezing
491 * to one less reference.
492 * We know this isn't the last reference.
493 */
494 page_ref_unfreeze(page, expected_count - 1);
495
496 spin_unlock(&mapping->tree_lock);
497 /* Leave irq disabled to prevent preemption while updating stats */
498
499 /*
500 * If moved to a different zone then also account
501 * the page for that zone. Other VM counters will be
502 * taken care of when we establish references to the
503 * new page and drop references to the old page.
504 *
505 * Note that anonymous pages are accounted for
506 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
507 * are mapped to swap space.
508 */
509 if (newzone != oldzone) {
510 __dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
511 __inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
512 if (PageSwapBacked(page) && !PageSwapCache(page)) {
513 __dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
514 __inc_node_state(newzone->zone_pgdat, NR_SHMEM);
515 }
516 if (dirty && mapping_cap_account_dirty(mapping)) {
517 __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
518 __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
519 __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
520 __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
521 }
522 }
523 local_irq_enable();
524
525 return MIGRATEPAGE_SUCCESS;
526}
527EXPORT_SYMBOL(migrate_page_move_mapping);
528
529/*
530 * The expected number of remaining references is the same as that
531 * of migrate_page_move_mapping().
532 */
533int migrate_huge_page_move_mapping(struct address_space *mapping,
534 struct page *newpage, struct page *page)
535{
536 int expected_count;
537 void **pslot;
538
539 spin_lock_irq(&mapping->tree_lock);
540
541 pslot = radix_tree_lookup_slot(&mapping->page_tree,
542 page_index(page));
543
544 expected_count = 2 + page_has_private(page);
545 if (page_count(page) != expected_count ||
546 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
547 spin_unlock_irq(&mapping->tree_lock);
548 return -EAGAIN;
549 }
550
551 if (!page_ref_freeze(page, expected_count)) {
552 spin_unlock_irq(&mapping->tree_lock);
553 return -EAGAIN;
554 }
555
556 newpage->index = page->index;
557 newpage->mapping = page->mapping;
558
559 get_page(newpage);
560
561 radix_tree_replace_slot(&mapping->page_tree, pslot, newpage);
562
563 page_ref_unfreeze(page, expected_count - 1);
564
565 spin_unlock_irq(&mapping->tree_lock);
566
567 return MIGRATEPAGE_SUCCESS;
568}
569
570/*
571 * Gigantic pages are so large that we do not guarantee that page++ pointer
572 * arithmetic will work across the entire page. We need something more
573 * specialized.
574 */
575static void __copy_gigantic_page(struct page *dst, struct page *src,
576 int nr_pages)
577{
578 int i;
579 struct page *dst_base = dst;
580 struct page *src_base = src;
581
582 for (i = 0; i < nr_pages; ) {
583 cond_resched();
584 copy_highpage(dst, src);
585
586 i++;
587 dst = mem_map_next(dst, dst_base, i);
588 src = mem_map_next(src, src_base, i);
589 }
590}
591
592static void copy_huge_page(struct page *dst, struct page *src)
593{
594 int i;
595 int nr_pages;
596
597 if (PageHuge(src)) {
598 /* hugetlbfs page */
599 struct hstate *h = page_hstate(src);
600 nr_pages = pages_per_huge_page(h);
601
602 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
603 __copy_gigantic_page(dst, src, nr_pages);
604 return;
605 }
606 } else {
607 /* thp page */
608 BUG_ON(!PageTransHuge(src));
609 nr_pages = hpage_nr_pages(src);
610 }
611
612 for (i = 0; i < nr_pages; i++) {
613 cond_resched();
614 copy_highpage(dst + i, src + i);
615 }
616}
617
618/*
619 * Copy the page to its new location
620 */
621void migrate_page_copy(struct page *newpage, struct page *page)
622{
623 int cpupid;
624
625 if (PageHuge(page) || PageTransHuge(page))
626 copy_huge_page(newpage, page);
627 else
628 copy_highpage(newpage, page);
629
630 if (PageError(page))
631 SetPageError(newpage);
632 if (PageReferenced(page))
633 SetPageReferenced(newpage);
634 if (PageUptodate(page))
635 SetPageUptodate(newpage);
636 if (TestClearPageActive(page)) {
637 VM_BUG_ON_PAGE(PageUnevictable(page), page);
638 SetPageActive(newpage);
639 } else if (TestClearPageUnevictable(page))
640 SetPageUnevictable(newpage);
641 if (PageChecked(page))
642 SetPageChecked(newpage);
643 if (PageMappedToDisk(page))
644 SetPageMappedToDisk(newpage);
645
646 /* Move dirty on pages not done by migrate_page_move_mapping() */
647 if (PageDirty(page))
648 SetPageDirty(newpage);
649
650 if (page_is_young(page))
651 set_page_young(newpage);
652 if (page_is_idle(page))
653 set_page_idle(newpage);
654
655 /*
656 * Copy NUMA information to the new page, to prevent over-eager
657 * future migrations of this same page.
658 */
659 cpupid = page_cpupid_xchg_last(page, -1);
660 page_cpupid_xchg_last(newpage, cpupid);
661
662 ksm_migrate_page(newpage, page);
663 /*
664 * Please do not reorder this without considering how mm/ksm.c's
665 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
666 */
667 if (PageSwapCache(page))
668 ClearPageSwapCache(page);
669 ClearPagePrivate(page);
670 set_page_private(page, 0);
671
672 /*
673 * If any waiters have accumulated on the new page then
674 * wake them up.
675 */
676 if (PageWriteback(newpage))
677 end_page_writeback(newpage);
678
679 copy_page_owner(page, newpage);
680
681 mem_cgroup_migrate(page, newpage);
682}
683EXPORT_SYMBOL(migrate_page_copy);
684
685/************************************************************
686 * Migration functions
687 ***********************************************************/
688
689/*
690 * Common logic to directly migrate a single LRU page suitable for
691 * pages that do not use PagePrivate/PagePrivate2.
692 *
693 * Pages are locked upon entry and exit.
694 */
695int migrate_page(struct address_space *mapping,
696 struct page *newpage, struct page *page,
697 enum migrate_mode mode)
698{
699 int rc;
700
701 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
702
703 rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
704
705 if (rc != MIGRATEPAGE_SUCCESS)
706 return rc;
707
708 migrate_page_copy(newpage, page);
709 return MIGRATEPAGE_SUCCESS;
710}
711EXPORT_SYMBOL(migrate_page);
712
713#ifdef CONFIG_BLOCK
714/*
715 * Migration function for pages with buffers. This function can only be used
716 * if the underlying filesystem guarantees that no other references to "page"
717 * exist.
718 */
719int buffer_migrate_page(struct address_space *mapping,
720 struct page *newpage, struct page *page, enum migrate_mode mode)
721{
722 struct buffer_head *bh, *head;
723 int rc;
724
725 if (!page_has_buffers(page))
726 return migrate_page(mapping, newpage, page, mode);
727
728 head = page_buffers(page);
729
730 rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
731
732 if (rc != MIGRATEPAGE_SUCCESS)
733 return rc;
734
735 /*
736 * In the async case, migrate_page_move_mapping locked the buffers
737 * with an IRQ-safe spinlock held. In the sync case, the buffers
738 * need to be locked now
739 */
740 if (mode != MIGRATE_ASYNC)
741 BUG_ON(!buffer_migrate_lock_buffers(head, mode));
742
743 ClearPagePrivate(page);
744 set_page_private(newpage, page_private(page));
745 set_page_private(page, 0);
746 put_page(page);
747 get_page(newpage);
748
749 bh = head;
750 do {
751 set_bh_page(bh, newpage, bh_offset(bh));
752 bh = bh->b_this_page;
753
754 } while (bh != head);
755
756 SetPagePrivate(newpage);
757
758 migrate_page_copy(newpage, page);
759
760 bh = head;
761 do {
762 unlock_buffer(bh);
763 put_bh(bh);
764 bh = bh->b_this_page;
765
766 } while (bh != head);
767
768 return MIGRATEPAGE_SUCCESS;
769}
770EXPORT_SYMBOL(buffer_migrate_page);
771#endif
772
773/*
774 * Writeback a page to clean the dirty state
775 */
776static int writeout(struct address_space *mapping, struct page *page)
777{
778 struct writeback_control wbc = {
779 .sync_mode = WB_SYNC_NONE,
780 .nr_to_write = 1,
781 .range_start = 0,
782 .range_end = LLONG_MAX,
783 .for_reclaim = 1
784 };
785 int rc;
786
787 if (!mapping->a_ops->writepage)
788 /* No write method for the address space */
789 return -EINVAL;
790
791 if (!clear_page_dirty_for_io(page))
792 /* Someone else already triggered a write */
793 return -EAGAIN;
794
795 /*
796 * A dirty page may imply that the underlying filesystem has
797 * the page on some queue. So the page must be clean for
798 * migration. Writeout may mean we loose the lock and the
799 * page state is no longer what we checked for earlier.
800 * At this point we know that the migration attempt cannot
801 * be successful.
802 */
803 remove_migration_ptes(page, page, false);
804
805 rc = mapping->a_ops->writepage(page, &wbc);
806
807 if (rc != AOP_WRITEPAGE_ACTIVATE)
808 /* unlocked. Relock */
809 lock_page(page);
810
811 return (rc < 0) ? -EIO : -EAGAIN;
812}
813
814/*
815 * Default handling if a filesystem does not provide a migration function.
816 */
817static int fallback_migrate_page(struct address_space *mapping,
818 struct page *newpage, struct page *page, enum migrate_mode mode)
819{
820 if (PageDirty(page)) {
821 /* Only writeback pages in full synchronous migration */
822 if (mode != MIGRATE_SYNC)
823 return -EBUSY;
824 return writeout(mapping, page);
825 }
826
827 /*
828 * Buffers may be managed in a filesystem specific way.
829 * We must have no buffers or drop them.
830 */
831 if (page_has_private(page) &&
832 !try_to_release_page(page, GFP_KERNEL))
833 return -EAGAIN;
834
835 return migrate_page(mapping, newpage, page, mode);
836}
837
838/*
839 * Move a page to a newly allocated page
840 * The page is locked and all ptes have been successfully removed.
841 *
842 * The new page will have replaced the old page if this function
843 * is successful.
844 *
845 * Return value:
846 * < 0 - error code
847 * MIGRATEPAGE_SUCCESS - success
848 */
849static int move_to_new_page(struct page *newpage, struct page *page,
850 enum migrate_mode mode)
851{
852 struct address_space *mapping;
853 int rc = -EAGAIN;
854 bool is_lru = !__PageMovable(page);
855
856 VM_BUG_ON_PAGE(!PageLocked(page), page);
857 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
858
859 mapping = page_mapping(page);
860
861 if (likely(is_lru)) {
862 if (!mapping)
863 rc = migrate_page(mapping, newpage, page, mode);
864 else if (mapping->a_ops->migratepage)
865 /*
866 * Most pages have a mapping and most filesystems
867 * provide a migratepage callback. Anonymous pages
868 * are part of swap space which also has its own
869 * migratepage callback. This is the most common path
870 * for page migration.
871 */
872 rc = mapping->a_ops->migratepage(mapping, newpage,
873 page, mode);
874 else
875 rc = fallback_migrate_page(mapping, newpage,
876 page, mode);
877 } else {
878 /*
879 * In case of non-lru page, it could be released after
880 * isolation step. In that case, we shouldn't try migration.
881 */
882 VM_BUG_ON_PAGE(!PageIsolated(page), page);
883 if (!PageMovable(page)) {
884 rc = MIGRATEPAGE_SUCCESS;
885 __ClearPageIsolated(page);
886 goto out;
887 }
888
889 rc = mapping->a_ops->migratepage(mapping, newpage,
890 page, mode);
891 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
892 !PageIsolated(page));
893 }
894
895 /*
896 * When successful, old pagecache page->mapping must be cleared before
897 * page is freed; but stats require that PageAnon be left as PageAnon.
898 */
899 if (rc == MIGRATEPAGE_SUCCESS) {
900 if (__PageMovable(page)) {
901 VM_BUG_ON_PAGE(!PageIsolated(page), page);
902
903 /*
904 * We clear PG_movable under page_lock so any compactor
905 * cannot try to migrate this page.
906 */
907 __ClearPageIsolated(page);
908 }
909
910 /*
911 * Anonymous and movable page->mapping will be cleard by
912 * free_pages_prepare so don't reset it here for keeping
913 * the type to work PageAnon, for example.
914 */
915 if (!PageMappingFlags(page))
916 page->mapping = NULL;
917 }
918out:
919 return rc;
920}
921
922static int __unmap_and_move(struct page *page, struct page *newpage,
923 int force, enum migrate_mode mode)
924{
925 int rc = -EAGAIN;
926 int page_was_mapped = 0;
927 struct anon_vma *anon_vma = NULL;
928 bool is_lru = !__PageMovable(page);
929
930 if (!trylock_page(page)) {
931 if (!force || mode == MIGRATE_ASYNC)
932 goto out;
933
934 /*
935 * It's not safe for direct compaction to call lock_page.
936 * For example, during page readahead pages are added locked
937 * to the LRU. Later, when the IO completes the pages are
938 * marked uptodate and unlocked. However, the queueing
939 * could be merging multiple pages for one bio (e.g.
940 * mpage_readpages). If an allocation happens for the
941 * second or third page, the process can end up locking
942 * the same page twice and deadlocking. Rather than
943 * trying to be clever about what pages can be locked,
944 * avoid the use of lock_page for direct compaction
945 * altogether.
946 */
947 if (current->flags & PF_MEMALLOC)
948 goto out;
949
950 lock_page(page);
951 }
952
953 if (PageWriteback(page)) {
954 /*
955 * Only in the case of a full synchronous migration is it
956 * necessary to wait for PageWriteback. In the async case,
957 * the retry loop is too short and in the sync-light case,
958 * the overhead of stalling is too much
959 */
960 if (mode != MIGRATE_SYNC) {
961 rc = -EBUSY;
962 goto out_unlock;
963 }
964 if (!force)
965 goto out_unlock;
966 wait_on_page_writeback(page);
967 }
968
969 /*
970 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
971 * we cannot notice that anon_vma is freed while we migrates a page.
972 * This get_anon_vma() delays freeing anon_vma pointer until the end
973 * of migration. File cache pages are no problem because of page_lock()
974 * File Caches may use write_page() or lock_page() in migration, then,
975 * just care Anon page here.
976 *
977 * Only page_get_anon_vma() understands the subtleties of
978 * getting a hold on an anon_vma from outside one of its mms.
979 * But if we cannot get anon_vma, then we won't need it anyway,
980 * because that implies that the anon page is no longer mapped
981 * (and cannot be remapped so long as we hold the page lock).
982 */
983 if (PageAnon(page) && !PageKsm(page))
984 anon_vma = page_get_anon_vma(page);
985
986 /*
987 * Block others from accessing the new page when we get around to
988 * establishing additional references. We are usually the only one
989 * holding a reference to newpage at this point. We used to have a BUG
990 * here if trylock_page(newpage) fails, but would like to allow for
991 * cases where there might be a race with the previous use of newpage.
992 * This is much like races on refcount of oldpage: just don't BUG().
993 */
994 if (unlikely(!trylock_page(newpage)))
995 goto out_unlock;
996
997 if (unlikely(!is_lru)) {
998 rc = move_to_new_page(newpage, page, mode);
999 goto out_unlock_both;
1000 }
1001
1002 /*
1003 * Corner case handling:
1004 * 1. When a new swap-cache page is read into, it is added to the LRU
1005 * and treated as swapcache but it has no rmap yet.
1006 * Calling try_to_unmap() against a page->mapping==NULL page will
1007 * trigger a BUG. So handle it here.
1008 * 2. An orphaned page (see truncate_complete_page) might have
1009 * fs-private metadata. The page can be picked up due to memory
1010 * offlining. Everywhere else except page reclaim, the page is
1011 * invisible to the vm, so the page can not be migrated. So try to
1012 * free the metadata, so the page can be freed.
1013 */
1014 if (!page->mapping) {
1015 VM_BUG_ON_PAGE(PageAnon(page), page);
1016 if (page_has_private(page)) {
1017 try_to_free_buffers(page);
1018 goto out_unlock_both;
1019 }
1020 } else if (page_mapped(page)) {
1021 /* Establish migration ptes */
1022 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1023 page);
1024 try_to_unmap(page,
1025 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1026 page_was_mapped = 1;
1027 }
1028
1029 if (!page_mapped(page))
1030 rc = move_to_new_page(newpage, page, mode);
1031
1032 if (page_was_mapped)
1033 remove_migration_ptes(page,
1034 rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1035
1036out_unlock_both:
1037 unlock_page(newpage);
1038out_unlock:
1039 /* Drop an anon_vma reference if we took one */
1040 if (anon_vma)
1041 put_anon_vma(anon_vma);
1042 unlock_page(page);
1043out:
1044 /*
1045 * If migration is successful, decrease refcount of the newpage
1046 * which will not free the page because new page owner increased
1047 * refcounter. As well, if it is LRU page, add the page to LRU
1048 * list in here.
1049 */
1050 if (rc == MIGRATEPAGE_SUCCESS) {
1051 if (unlikely(__PageMovable(newpage)))
1052 put_page(newpage);
1053 else
1054 putback_lru_page(newpage);
1055 }
1056
1057 return rc;
1058}
1059
1060/*
1061 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move(). Work
1062 * around it.
1063 */
1064#if (GCC_VERSION >= 40700 && GCC_VERSION < 40900) && defined(CONFIG_ARM)
1065#define ICE_noinline noinline
1066#else
1067#define ICE_noinline
1068#endif
1069
1070/*
1071 * Obtain the lock on page, remove all ptes and migrate the page
1072 * to the newly allocated page in newpage.
1073 */
1074static ICE_noinline int unmap_and_move(new_page_t get_new_page,
1075 free_page_t put_new_page,
1076 unsigned long private, struct page *page,
1077 int force, enum migrate_mode mode,
1078 enum migrate_reason reason)
1079{
1080 int rc = MIGRATEPAGE_SUCCESS;
1081 int *result = NULL;
1082 struct page *newpage;
1083
1084 newpage = get_new_page(page, private, &result);
1085 if (!newpage)
1086 return -ENOMEM;
1087
1088 if (page_count(page) == 1) {
1089 /* page was freed from under us. So we are done. */
1090 ClearPageActive(page);
1091 ClearPageUnevictable(page);
1092 if (unlikely(__PageMovable(page))) {
1093 lock_page(page);
1094 if (!PageMovable(page))
1095 __ClearPageIsolated(page);
1096 unlock_page(page);
1097 }
1098 if (put_new_page)
1099 put_new_page(newpage, private);
1100 else
1101 put_page(newpage);
1102 goto out;
1103 }
1104
1105 if (unlikely(PageTransHuge(page))) {
1106 lock_page(page);
1107 rc = split_huge_page(page);
1108 unlock_page(page);
1109 if (rc)
1110 goto out;
1111 }
1112
1113 rc = __unmap_and_move(page, newpage, force, mode);
1114 if (rc == MIGRATEPAGE_SUCCESS)
1115 set_page_owner_migrate_reason(newpage, reason);
1116
1117out:
1118 if (rc != -EAGAIN) {
1119 /*
1120 * A page that has been migrated has all references
1121 * removed and will be freed. A page that has not been
1122 * migrated will have kepts its references and be
1123 * restored.
1124 */
1125 list_del(&page->lru);
1126
1127 /*
1128 * Compaction can migrate also non-LRU pages which are
1129 * not accounted to NR_ISOLATED_*. They can be recognized
1130 * as __PageMovable
1131 */
1132 if (likely(!__PageMovable(page)))
1133 dec_node_page_state(page, NR_ISOLATED_ANON +
1134 page_is_file_cache(page));
1135 }
1136
1137 /*
1138 * If migration is successful, releases reference grabbed during
1139 * isolation. Otherwise, restore the page to right list unless
1140 * we want to retry.
1141 */
1142 if (rc == MIGRATEPAGE_SUCCESS) {
1143 put_page(page);
1144 if (reason == MR_MEMORY_FAILURE) {
1145 /*
1146 * Set PG_HWPoison on just freed page
1147 * intentionally. Although it's rather weird,
1148 * it's how HWPoison flag works at the moment.
1149 */
1150 if (!test_set_page_hwpoison(page))
1151 num_poisoned_pages_inc();
1152 }
1153 } else {
1154 if (rc != -EAGAIN) {
1155 if (likely(!__PageMovable(page))) {
1156 putback_lru_page(page);
1157 goto put_new;
1158 }
1159
1160 lock_page(page);
1161 if (PageMovable(page))
1162 putback_movable_page(page);
1163 else
1164 __ClearPageIsolated(page);
1165 unlock_page(page);
1166 put_page(page);
1167 }
1168put_new:
1169 if (put_new_page)
1170 put_new_page(newpage, private);
1171 else
1172 put_page(newpage);
1173 }
1174
1175 if (result) {
1176 if (rc)
1177 *result = rc;
1178 else
1179 *result = page_to_nid(newpage);
1180 }
1181 return rc;
1182}
1183
1184/*
1185 * Counterpart of unmap_and_move_page() for hugepage migration.
1186 *
1187 * This function doesn't wait the completion of hugepage I/O
1188 * because there is no race between I/O and migration for hugepage.
1189 * Note that currently hugepage I/O occurs only in direct I/O
1190 * where no lock is held and PG_writeback is irrelevant,
1191 * and writeback status of all subpages are counted in the reference
1192 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1193 * under direct I/O, the reference of the head page is 512 and a bit more.)
1194 * This means that when we try to migrate hugepage whose subpages are
1195 * doing direct I/O, some references remain after try_to_unmap() and
1196 * hugepage migration fails without data corruption.
1197 *
1198 * There is also no race when direct I/O is issued on the page under migration,
1199 * because then pte is replaced with migration swap entry and direct I/O code
1200 * will wait in the page fault for migration to complete.
1201 */
1202static int unmap_and_move_huge_page(new_page_t get_new_page,
1203 free_page_t put_new_page, unsigned long private,
1204 struct page *hpage, int force,
1205 enum migrate_mode mode, int reason)
1206{
1207 int rc = -EAGAIN;
1208 int *result = NULL;
1209 int page_was_mapped = 0;
1210 struct page *new_hpage;
1211 struct anon_vma *anon_vma = NULL;
1212
1213 /*
1214 * Movability of hugepages depends on architectures and hugepage size.
1215 * This check is necessary because some callers of hugepage migration
1216 * like soft offline and memory hotremove don't walk through page
1217 * tables or check whether the hugepage is pmd-based or not before
1218 * kicking migration.
1219 */
1220 if (!hugepage_migration_supported(page_hstate(hpage))) {
1221 putback_active_hugepage(hpage);
1222 return -ENOSYS;
1223 }
1224
1225 new_hpage = get_new_page(hpage, private, &result);
1226 if (!new_hpage)
1227 return -ENOMEM;
1228
1229 if (!trylock_page(hpage)) {
1230 if (!force || mode != MIGRATE_SYNC)
1231 goto out;
1232 lock_page(hpage);
1233 }
1234
1235 if (PageAnon(hpage))
1236 anon_vma = page_get_anon_vma(hpage);
1237
1238 if (unlikely(!trylock_page(new_hpage)))
1239 goto put_anon;
1240
1241 if (page_mapped(hpage)) {
1242 try_to_unmap(hpage,
1243 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1244 page_was_mapped = 1;
1245 }
1246
1247 if (!page_mapped(hpage))
1248 rc = move_to_new_page(new_hpage, hpage, mode);
1249
1250 if (page_was_mapped)
1251 remove_migration_ptes(hpage,
1252 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1253
1254 unlock_page(new_hpage);
1255
1256put_anon:
1257 if (anon_vma)
1258 put_anon_vma(anon_vma);
1259
1260 if (rc == MIGRATEPAGE_SUCCESS) {
1261 hugetlb_cgroup_migrate(hpage, new_hpage);
1262 put_new_page = NULL;
1263 set_page_owner_migrate_reason(new_hpage, reason);
1264 }
1265
1266 unlock_page(hpage);
1267out:
1268 if (rc != -EAGAIN)
1269 putback_active_hugepage(hpage);
1270
1271 /*
1272 * If migration was not successful and there's a freeing callback, use
1273 * it. Otherwise, put_page() will drop the reference grabbed during
1274 * isolation.
1275 */
1276 if (put_new_page)
1277 put_new_page(new_hpage, private);
1278 else
1279 putback_active_hugepage(new_hpage);
1280
1281 if (result) {
1282 if (rc)
1283 *result = rc;
1284 else
1285 *result = page_to_nid(new_hpage);
1286 }
1287 return rc;
1288}
1289
1290/*
1291 * migrate_pages - migrate the pages specified in a list, to the free pages
1292 * supplied as the target for the page migration
1293 *
1294 * @from: The list of pages to be migrated.
1295 * @get_new_page: The function used to allocate free pages to be used
1296 * as the target of the page migration.
1297 * @put_new_page: The function used to free target pages if migration
1298 * fails, or NULL if no special handling is necessary.
1299 * @private: Private data to be passed on to get_new_page()
1300 * @mode: The migration mode that specifies the constraints for
1301 * page migration, if any.
1302 * @reason: The reason for page migration.
1303 *
1304 * The function returns after 10 attempts or if no pages are movable any more
1305 * because the list has become empty or no retryable pages exist any more.
1306 * The caller should call putback_movable_pages() to return pages to the LRU
1307 * or free list only if ret != 0.
1308 *
1309 * Returns the number of pages that were not migrated, or an error code.
1310 */
1311int migrate_pages(struct list_head *from, new_page_t get_new_page,
1312 free_page_t put_new_page, unsigned long private,
1313 enum migrate_mode mode, int reason)
1314{
1315 int retry = 1;
1316 int nr_failed = 0;
1317 int nr_succeeded = 0;
1318 int pass = 0;
1319 struct page *page;
1320 struct page *page2;
1321 int swapwrite = current->flags & PF_SWAPWRITE;
1322 int rc;
1323
1324 if (!swapwrite)
1325 current->flags |= PF_SWAPWRITE;
1326
1327 for(pass = 0; pass < 10 && retry; pass++) {
1328 retry = 0;
1329
1330 list_for_each_entry_safe(page, page2, from, lru) {
1331 cond_resched();
1332
1333 if (PageHuge(page))
1334 rc = unmap_and_move_huge_page(get_new_page,
1335 put_new_page, private, page,
1336 pass > 2, mode, reason);
1337 else
1338 rc = unmap_and_move(get_new_page, put_new_page,
1339 private, page, pass > 2, mode,
1340 reason);
1341
1342 switch(rc) {
1343 case -ENOMEM:
1344 nr_failed++;
1345 goto out;
1346 case -EAGAIN:
1347 retry++;
1348 break;
1349 case MIGRATEPAGE_SUCCESS:
1350 nr_succeeded++;
1351 break;
1352 default:
1353 /*
1354 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1355 * unlike -EAGAIN case, the failed page is
1356 * removed from migration page list and not
1357 * retried in the next outer loop.
1358 */
1359 nr_failed++;
1360 break;
1361 }
1362 }
1363 }
1364 nr_failed += retry;
1365 rc = nr_failed;
1366out:
1367 if (nr_succeeded)
1368 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1369 if (nr_failed)
1370 count_vm_events(PGMIGRATE_FAIL, nr_failed);
1371 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1372
1373 if (!swapwrite)
1374 current->flags &= ~PF_SWAPWRITE;
1375
1376 return rc;
1377}
1378
1379#ifdef CONFIG_NUMA
1380/*
1381 * Move a list of individual pages
1382 */
1383struct page_to_node {
1384 unsigned long addr;
1385 struct page *page;
1386 int node;
1387 int status;
1388};
1389
1390static struct page *new_page_node(struct page *p, unsigned long private,
1391 int **result)
1392{
1393 struct page_to_node *pm = (struct page_to_node *)private;
1394
1395 while (pm->node != MAX_NUMNODES && pm->page != p)
1396 pm++;
1397
1398 if (pm->node == MAX_NUMNODES)
1399 return NULL;
1400
1401 *result = &pm->status;
1402
1403 if (PageHuge(p))
1404 return alloc_huge_page_node(page_hstate(compound_head(p)),
1405 pm->node);
1406 else
1407 return __alloc_pages_node(pm->node,
1408 GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0);
1409}
1410
1411/*
1412 * Move a set of pages as indicated in the pm array. The addr
1413 * field must be set to the virtual address of the page to be moved
1414 * and the node number must contain a valid target node.
1415 * The pm array ends with node = MAX_NUMNODES.
1416 */
1417static int do_move_page_to_node_array(struct mm_struct *mm,
1418 struct page_to_node *pm,
1419 int migrate_all)
1420{
1421 int err;
1422 struct page_to_node *pp;
1423 LIST_HEAD(pagelist);
1424
1425 down_read(&mm->mmap_sem);
1426
1427 /*
1428 * Build a list of pages to migrate
1429 */
1430 for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1431 struct vm_area_struct *vma;
1432 struct page *page;
1433
1434 err = -EFAULT;
1435 vma = find_vma(mm, pp->addr);
1436 if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1437 goto set_status;
1438
1439 /* FOLL_DUMP to ignore special (like zero) pages */
1440 page = follow_page(vma, pp->addr,
1441 FOLL_GET | FOLL_SPLIT | FOLL_DUMP);
1442
1443 err = PTR_ERR(page);
1444 if (IS_ERR(page))
1445 goto set_status;
1446
1447 err = -ENOENT;
1448 if (!page)
1449 goto set_status;
1450
1451 pp->page = page;
1452 err = page_to_nid(page);
1453
1454 if (err == pp->node)
1455 /*
1456 * Node already in the right place
1457 */
1458 goto put_and_set;
1459
1460 err = -EACCES;
1461 if (page_mapcount(page) > 1 &&
1462 !migrate_all)
1463 goto put_and_set;
1464
1465 if (PageHuge(page)) {
1466 if (PageHead(page))
1467 isolate_huge_page(page, &pagelist);
1468 goto put_and_set;
1469 }
1470
1471 err = isolate_lru_page(page);
1472 if (!err) {
1473 list_add_tail(&page->lru, &pagelist);
1474 inc_node_page_state(page, NR_ISOLATED_ANON +
1475 page_is_file_cache(page));
1476 }
1477put_and_set:
1478 /*
1479 * Either remove the duplicate refcount from
1480 * isolate_lru_page() or drop the page ref if it was
1481 * not isolated.
1482 */
1483 put_page(page);
1484set_status:
1485 pp->status = err;
1486 }
1487
1488 err = 0;
1489 if (!list_empty(&pagelist)) {
1490 err = migrate_pages(&pagelist, new_page_node, NULL,
1491 (unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
1492 if (err)
1493 putback_movable_pages(&pagelist);
1494 }
1495
1496 up_read(&mm->mmap_sem);
1497 return err;
1498}
1499
1500/*
1501 * Migrate an array of page address onto an array of nodes and fill
1502 * the corresponding array of status.
1503 */
1504static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1505 unsigned long nr_pages,
1506 const void __user * __user *pages,
1507 const int __user *nodes,
1508 int __user *status, int flags)
1509{
1510 struct page_to_node *pm;
1511 unsigned long chunk_nr_pages;
1512 unsigned long chunk_start;
1513 int err;
1514
1515 err = -ENOMEM;
1516 pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1517 if (!pm)
1518 goto out;
1519
1520 migrate_prep();
1521
1522 /*
1523 * Store a chunk of page_to_node array in a page,
1524 * but keep the last one as a marker
1525 */
1526 chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1527
1528 for (chunk_start = 0;
1529 chunk_start < nr_pages;
1530 chunk_start += chunk_nr_pages) {
1531 int j;
1532
1533 if (chunk_start + chunk_nr_pages > nr_pages)
1534 chunk_nr_pages = nr_pages - chunk_start;
1535
1536 /* fill the chunk pm with addrs and nodes from user-space */
1537 for (j = 0; j < chunk_nr_pages; j++) {
1538 const void __user *p;
1539 int node;
1540
1541 err = -EFAULT;
1542 if (get_user(p, pages + j + chunk_start))
1543 goto out_pm;
1544 pm[j].addr = (unsigned long) p;
1545
1546 if (get_user(node, nodes + j + chunk_start))
1547 goto out_pm;
1548
1549 err = -ENODEV;
1550 if (node < 0 || node >= MAX_NUMNODES)
1551 goto out_pm;
1552
1553 if (!node_state(node, N_MEMORY))
1554 goto out_pm;
1555
1556 err = -EACCES;
1557 if (!node_isset(node, task_nodes))
1558 goto out_pm;
1559
1560 pm[j].node = node;
1561 }
1562
1563 /* End marker for this chunk */
1564 pm[chunk_nr_pages].node = MAX_NUMNODES;
1565
1566 /* Migrate this chunk */
1567 err = do_move_page_to_node_array(mm, pm,
1568 flags & MPOL_MF_MOVE_ALL);
1569 if (err < 0)
1570 goto out_pm;
1571
1572 /* Return status information */
1573 for (j = 0; j < chunk_nr_pages; j++)
1574 if (put_user(pm[j].status, status + j + chunk_start)) {
1575 err = -EFAULT;
1576 goto out_pm;
1577 }
1578 }
1579 err = 0;
1580
1581out_pm:
1582 free_page((unsigned long)pm);
1583out:
1584 return err;
1585}
1586
1587/*
1588 * Determine the nodes of an array of pages and store it in an array of status.
1589 */
1590static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1591 const void __user **pages, int *status)
1592{
1593 unsigned long i;
1594
1595 down_read(&mm->mmap_sem);
1596
1597 for (i = 0; i < nr_pages; i++) {
1598 unsigned long addr = (unsigned long)(*pages);
1599 struct vm_area_struct *vma;
1600 struct page *page;
1601 int err = -EFAULT;
1602
1603 vma = find_vma(mm, addr);
1604 if (!vma || addr < vma->vm_start)
1605 goto set_status;
1606
1607 /* FOLL_DUMP to ignore special (like zero) pages */
1608 page = follow_page(vma, addr, FOLL_DUMP);
1609
1610 err = PTR_ERR(page);
1611 if (IS_ERR(page))
1612 goto set_status;
1613
1614 err = page ? page_to_nid(page) : -ENOENT;
1615set_status:
1616 *status = err;
1617
1618 pages++;
1619 status++;
1620 }
1621
1622 up_read(&mm->mmap_sem);
1623}
1624
1625/*
1626 * Determine the nodes of a user array of pages and store it in
1627 * a user array of status.
1628 */
1629static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1630 const void __user * __user *pages,
1631 int __user *status)
1632{
1633#define DO_PAGES_STAT_CHUNK_NR 16
1634 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1635 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1636
1637 while (nr_pages) {
1638 unsigned long chunk_nr;
1639
1640 chunk_nr = nr_pages;
1641 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1642 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1643
1644 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1645 break;
1646
1647 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1648
1649 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1650 break;
1651
1652 pages += chunk_nr;
1653 status += chunk_nr;
1654 nr_pages -= chunk_nr;
1655 }
1656 return nr_pages ? -EFAULT : 0;
1657}
1658
1659/*
1660 * Move a list of pages in the address space of the currently executing
1661 * process.
1662 */
1663SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1664 const void __user * __user *, pages,
1665 const int __user *, nodes,
1666 int __user *, status, int, flags)
1667{
1668 const struct cred *cred = current_cred(), *tcred;
1669 struct task_struct *task;
1670 struct mm_struct *mm;
1671 int err;
1672 nodemask_t task_nodes;
1673
1674 /* Check flags */
1675 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1676 return -EINVAL;
1677
1678 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1679 return -EPERM;
1680
1681 /* Find the mm_struct */
1682 rcu_read_lock();
1683 task = pid ? find_task_by_vpid(pid) : current;
1684 if (!task) {
1685 rcu_read_unlock();
1686 return -ESRCH;
1687 }
1688 get_task_struct(task);
1689
1690 /*
1691 * Check if this process has the right to modify the specified
1692 * process. The right exists if the process has administrative
1693 * capabilities, superuser privileges or the same
1694 * userid as the target process.
1695 */
1696 tcred = __task_cred(task);
1697 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1698 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) &&
1699 !capable(CAP_SYS_NICE)) {
1700 rcu_read_unlock();
1701 err = -EPERM;
1702 goto out;
1703 }
1704 rcu_read_unlock();
1705
1706 err = security_task_movememory(task);
1707 if (err)
1708 goto out;
1709
1710 task_nodes = cpuset_mems_allowed(task);
1711 mm = get_task_mm(task);
1712 put_task_struct(task);
1713
1714 if (!mm)
1715 return -EINVAL;
1716
1717 if (nodes)
1718 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1719 nodes, status, flags);
1720 else
1721 err = do_pages_stat(mm, nr_pages, pages, status);
1722
1723 mmput(mm);
1724 return err;
1725
1726out:
1727 put_task_struct(task);
1728 return err;
1729}
1730
1731#ifdef CONFIG_NUMA_BALANCING
1732/*
1733 * Returns true if this is a safe migration target node for misplaced NUMA
1734 * pages. Currently it only checks the watermarks which crude
1735 */
1736static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1737 unsigned long nr_migrate_pages)
1738{
1739 int z;
1740
1741 if (!pgdat_reclaimable(pgdat))
1742 return false;
1743
1744 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1745 struct zone *zone = pgdat->node_zones + z;
1746
1747 if (!populated_zone(zone))
1748 continue;
1749
1750 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1751 if (!zone_watermark_ok(zone, 0,
1752 high_wmark_pages(zone) +
1753 nr_migrate_pages,
1754 0, 0))
1755 continue;
1756 return true;
1757 }
1758 return false;
1759}
1760
1761static struct page *alloc_misplaced_dst_page(struct page *page,
1762 unsigned long data,
1763 int **result)
1764{
1765 int nid = (int) data;
1766 struct page *newpage;
1767
1768 newpage = __alloc_pages_node(nid,
1769 (GFP_HIGHUSER_MOVABLE |
1770 __GFP_THISNODE | __GFP_NOMEMALLOC |
1771 __GFP_NORETRY | __GFP_NOWARN) &
1772 ~__GFP_RECLAIM, 0);
1773
1774 return newpage;
1775}
1776
1777/*
1778 * page migration rate limiting control.
1779 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1780 * window of time. Default here says do not migrate more than 1280M per second.
1781 */
1782static unsigned int migrate_interval_millisecs __read_mostly = 100;
1783static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1784
1785/* Returns true if the node is migrate rate-limited after the update */
1786static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
1787 unsigned long nr_pages)
1788{
1789 /*
1790 * Rate-limit the amount of data that is being migrated to a node.
1791 * Optimal placement is no good if the memory bus is saturated and
1792 * all the time is being spent migrating!
1793 */
1794 if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1795 spin_lock(&pgdat->numabalancing_migrate_lock);
1796 pgdat->numabalancing_migrate_nr_pages = 0;
1797 pgdat->numabalancing_migrate_next_window = jiffies +
1798 msecs_to_jiffies(migrate_interval_millisecs);
1799 spin_unlock(&pgdat->numabalancing_migrate_lock);
1800 }
1801 if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
1802 trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
1803 nr_pages);
1804 return true;
1805 }
1806
1807 /*
1808 * This is an unlocked non-atomic update so errors are possible.
1809 * The consequences are failing to migrate when we potentiall should
1810 * have which is not severe enough to warrant locking. If it is ever
1811 * a problem, it can be converted to a per-cpu counter.
1812 */
1813 pgdat->numabalancing_migrate_nr_pages += nr_pages;
1814 return false;
1815}
1816
1817static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1818{
1819 int page_lru;
1820
1821 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1822
1823 /* Avoid migrating to a node that is nearly full */
1824 if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1825 return 0;
1826
1827 if (isolate_lru_page(page))
1828 return 0;
1829
1830 /*
1831 * migrate_misplaced_transhuge_page() skips page migration's usual
1832 * check on page_count(), so we must do it here, now that the page
1833 * has been isolated: a GUP pin, or any other pin, prevents migration.
1834 * The expected page count is 3: 1 for page's mapcount and 1 for the
1835 * caller's pin and 1 for the reference taken by isolate_lru_page().
1836 */
1837 if (PageTransHuge(page) && page_count(page) != 3) {
1838 putback_lru_page(page);
1839 return 0;
1840 }
1841
1842 page_lru = page_is_file_cache(page);
1843 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
1844 hpage_nr_pages(page));
1845
1846 /*
1847 * Isolating the page has taken another reference, so the
1848 * caller's reference can be safely dropped without the page
1849 * disappearing underneath us during migration.
1850 */
1851 put_page(page);
1852 return 1;
1853}
1854
1855bool pmd_trans_migrating(pmd_t pmd)
1856{
1857 struct page *page = pmd_page(pmd);
1858 return PageLocked(page);
1859}
1860
1861/*
1862 * Attempt to migrate a misplaced page to the specified destination
1863 * node. Caller is expected to have an elevated reference count on
1864 * the page that will be dropped by this function before returning.
1865 */
1866int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1867 int node)
1868{
1869 pg_data_t *pgdat = NODE_DATA(node);
1870 int isolated;
1871 int nr_remaining;
1872 LIST_HEAD(migratepages);
1873
1874 /*
1875 * Don't migrate file pages that are mapped in multiple processes
1876 * with execute permissions as they are probably shared libraries.
1877 */
1878 if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1879 (vma->vm_flags & VM_EXEC))
1880 goto out;
1881
1882 /*
1883 * Rate-limit the amount of data that is being migrated to a node.
1884 * Optimal placement is no good if the memory bus is saturated and
1885 * all the time is being spent migrating!
1886 */
1887 if (numamigrate_update_ratelimit(pgdat, 1))
1888 goto out;
1889
1890 isolated = numamigrate_isolate_page(pgdat, page);
1891 if (!isolated)
1892 goto out;
1893
1894 list_add(&page->lru, &migratepages);
1895 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1896 NULL, node, MIGRATE_ASYNC,
1897 MR_NUMA_MISPLACED);
1898 if (nr_remaining) {
1899 if (!list_empty(&migratepages)) {
1900 list_del(&page->lru);
1901 dec_node_page_state(page, NR_ISOLATED_ANON +
1902 page_is_file_cache(page));
1903 putback_lru_page(page);
1904 }
1905 isolated = 0;
1906 } else
1907 count_vm_numa_event(NUMA_PAGE_MIGRATE);
1908 BUG_ON(!list_empty(&migratepages));
1909 return isolated;
1910
1911out:
1912 put_page(page);
1913 return 0;
1914}
1915#endif /* CONFIG_NUMA_BALANCING */
1916
1917#if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1918/*
1919 * Migrates a THP to a given target node. page must be locked and is unlocked
1920 * before returning.
1921 */
1922int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1923 struct vm_area_struct *vma,
1924 pmd_t *pmd, pmd_t entry,
1925 unsigned long address,
1926 struct page *page, int node)
1927{
1928 spinlock_t *ptl;
1929 pg_data_t *pgdat = NODE_DATA(node);
1930 int isolated = 0;
1931 struct page *new_page = NULL;
1932 int page_lru = page_is_file_cache(page);
1933 unsigned long mmun_start = address & HPAGE_PMD_MASK;
1934 unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
1935 pmd_t orig_entry;
1936
1937 /*
1938 * Rate-limit the amount of data that is being migrated to a node.
1939 * Optimal placement is no good if the memory bus is saturated and
1940 * all the time is being spent migrating!
1941 */
1942 if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
1943 goto out_dropref;
1944
1945 new_page = alloc_pages_node(node,
1946 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
1947 HPAGE_PMD_ORDER);
1948 if (!new_page)
1949 goto out_fail;
1950 prep_transhuge_page(new_page);
1951
1952 isolated = numamigrate_isolate_page(pgdat, page);
1953 if (!isolated) {
1954 put_page(new_page);
1955 goto out_fail;
1956 }
1957 /*
1958 * We are not sure a pending tlb flush here is for a huge page
1959 * mapping or not. Hence use the tlb range variant
1960 */
1961 if (mm_tlb_flush_pending(mm))
1962 flush_tlb_range(vma, mmun_start, mmun_end);
1963
1964 /* Prepare a page as a migration target */
1965 __SetPageLocked(new_page);
1966 __SetPageSwapBacked(new_page);
1967
1968 /* anon mapping, we can simply copy page->mapping to the new page: */
1969 new_page->mapping = page->mapping;
1970 new_page->index = page->index;
1971 migrate_page_copy(new_page, page);
1972 WARN_ON(PageLRU(new_page));
1973
1974 /* Recheck the target PMD */
1975 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1976 ptl = pmd_lock(mm, pmd);
1977 if (unlikely(!pmd_same(*pmd, entry) || page_count(page) != 2)) {
1978fail_putback:
1979 spin_unlock(ptl);
1980 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1981
1982 /* Reverse changes made by migrate_page_copy() */
1983 if (TestClearPageActive(new_page))
1984 SetPageActive(page);
1985 if (TestClearPageUnevictable(new_page))
1986 SetPageUnevictable(page);
1987
1988 unlock_page(new_page);
1989 put_page(new_page); /* Free it */
1990
1991 /* Retake the callers reference and putback on LRU */
1992 get_page(page);
1993 putback_lru_page(page);
1994 mod_node_page_state(page_pgdat(page),
1995 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
1996
1997 goto out_unlock;
1998 }
1999
2000 orig_entry = *pmd;
2001 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2002 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2003
2004 /*
2005 * Clear the old entry under pagetable lock and establish the new PTE.
2006 * Any parallel GUP will either observe the old page blocking on the
2007 * page lock, block on the page table lock or observe the new page.
2008 * The SetPageUptodate on the new page and page_add_new_anon_rmap
2009 * guarantee the copy is visible before the pagetable update.
2010 */
2011 flush_cache_range(vma, mmun_start, mmun_end);
2012 page_add_anon_rmap(new_page, vma, mmun_start, true);
2013 pmdp_huge_clear_flush_notify(vma, mmun_start, pmd);
2014 set_pmd_at(mm, mmun_start, pmd, entry);
2015 update_mmu_cache_pmd(vma, address, &entry);
2016
2017 if (page_count(page) != 2) {
2018 set_pmd_at(mm, mmun_start, pmd, orig_entry);
2019 flush_pmd_tlb_range(vma, mmun_start, mmun_end);
2020 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
2021 update_mmu_cache_pmd(vma, address, &entry);
2022 page_remove_rmap(new_page, true);
2023 goto fail_putback;
2024 }
2025
2026 mlock_migrate_page(new_page, page);
2027 page_remove_rmap(page, true);
2028 set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2029
2030 spin_unlock(ptl);
2031 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2032
2033 /* Take an "isolate" reference and put new page on the LRU. */
2034 get_page(new_page);
2035 putback_lru_page(new_page);
2036
2037 unlock_page(new_page);
2038 unlock_page(page);
2039 put_page(page); /* Drop the rmap reference */
2040 put_page(page); /* Drop the LRU isolation reference */
2041
2042 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2043 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2044
2045 mod_node_page_state(page_pgdat(page),
2046 NR_ISOLATED_ANON + page_lru,
2047 -HPAGE_PMD_NR);
2048 return isolated;
2049
2050out_fail:
2051 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2052out_dropref:
2053 ptl = pmd_lock(mm, pmd);
2054 if (pmd_same(*pmd, entry)) {
2055 entry = pmd_modify(entry, vma->vm_page_prot);
2056 set_pmd_at(mm, mmun_start, pmd, entry);
2057 update_mmu_cache_pmd(vma, address, &entry);
2058 }
2059 spin_unlock(ptl);
2060
2061out_unlock:
2062 unlock_page(page);
2063 put_page(page);
2064 return 0;
2065}
2066#endif /* CONFIG_NUMA_BALANCING */
2067
2068#endif /* CONFIG_NUMA */