Linux Audio

Check our new training course

Loading...
   1/*
   2 * Memory Migration functionality - linux/mm/migration.c
   3 *
   4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
   5 *
   6 * Page migration was first developed in the context of the memory hotplug
   7 * project. The main authors of the migration code are:
   8 *
   9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
  10 * Hirokazu Takahashi <taka@valinux.co.jp>
  11 * Dave Hansen <haveblue@us.ibm.com>
  12 * Christoph Lameter
  13 */
  14
  15#include <linux/migrate.h>
  16#include <linux/export.h>
  17#include <linux/swap.h>
  18#include <linux/swapops.h>
  19#include <linux/pagemap.h>
  20#include <linux/buffer_head.h>
  21#include <linux/mm_inline.h>
  22#include <linux/nsproxy.h>
  23#include <linux/pagevec.h>
  24#include <linux/ksm.h>
  25#include <linux/rmap.h>
  26#include <linux/topology.h>
  27#include <linux/cpu.h>
  28#include <linux/cpuset.h>
  29#include <linux/writeback.h>
  30#include <linux/mempolicy.h>
  31#include <linux/vmalloc.h>
  32#include <linux/security.h>
  33#include <linux/memcontrol.h>
  34#include <linux/syscalls.h>
  35#include <linux/hugetlb.h>
  36#include <linux/gfp.h>
  37
  38#include <asm/tlbflush.h>
  39
  40#include "internal.h"
  41
  42/*
  43 * migrate_prep() needs to be called before we start compiling a list of pages
  44 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
  45 * undesirable, use migrate_prep_local()
  46 */
  47int migrate_prep(void)
  48{
  49	/*
  50	 * Clear the LRU lists so pages can be isolated.
  51	 * Note that pages may be moved off the LRU after we have
  52	 * drained them. Those pages will fail to migrate like other
  53	 * pages that may be busy.
  54	 */
  55	lru_add_drain_all();
  56
  57	return 0;
  58}
  59
  60/* Do the necessary work of migrate_prep but not if it involves other CPUs */
  61int migrate_prep_local(void)
  62{
  63	lru_add_drain();
  64
  65	return 0;
  66}
  67
  68/*
  69 * Add isolated pages on the list back to the LRU under page lock
  70 * to avoid leaking evictable pages back onto unevictable list.
  71 */
  72void putback_lru_pages(struct list_head *l)
  73{
  74	struct page *page;
  75	struct page *page2;
  76
  77	list_for_each_entry_safe(page, page2, l, lru) {
  78		list_del(&page->lru);
  79		dec_zone_page_state(page, NR_ISOLATED_ANON +
  80				page_is_file_cache(page));
  81		putback_lru_page(page);
  82	}
  83}
  84
  85/*
  86 * Restore a potential migration pte to a working pte entry
  87 */
  88static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
  89				 unsigned long addr, void *old)
  90{
  91	struct mm_struct *mm = vma->vm_mm;
  92	swp_entry_t entry;
  93 	pgd_t *pgd;
  94 	pud_t *pud;
  95 	pmd_t *pmd;
  96	pte_t *ptep, pte;
  97 	spinlock_t *ptl;
  98
  99	if (unlikely(PageHuge(new))) {
 100		ptep = huge_pte_offset(mm, addr);
 101		if (!ptep)
 102			goto out;
 103		ptl = &mm->page_table_lock;
 104	} else {
 105		pgd = pgd_offset(mm, addr);
 106		if (!pgd_present(*pgd))
 107			goto out;
 108
 109		pud = pud_offset(pgd, addr);
 110		if (!pud_present(*pud))
 111			goto out;
 112
 113		pmd = pmd_offset(pud, addr);
 114		if (pmd_trans_huge(*pmd))
 115			goto out;
 116		if (!pmd_present(*pmd))
 117			goto out;
 118
 119		ptep = pte_offset_map(pmd, addr);
 120
 121		/*
 122		 * Peek to check is_swap_pte() before taking ptlock?  No, we
 123		 * can race mremap's move_ptes(), which skips anon_vma lock.
 124		 */
 125
 126		ptl = pte_lockptr(mm, pmd);
 127	}
 128
 129 	spin_lock(ptl);
 130	pte = *ptep;
 131	if (!is_swap_pte(pte))
 132		goto unlock;
 133
 134	entry = pte_to_swp_entry(pte);
 135
 136	if (!is_migration_entry(entry) ||
 137	    migration_entry_to_page(entry) != old)
 138		goto unlock;
 139
 140	get_page(new);
 141	pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
 142	if (is_write_migration_entry(entry))
 143		pte = pte_mkwrite(pte);
 144#ifdef CONFIG_HUGETLB_PAGE
 145	if (PageHuge(new))
 146		pte = pte_mkhuge(pte);
 147#endif
 148	flush_cache_page(vma, addr, pte_pfn(pte));
 149	set_pte_at(mm, addr, ptep, pte);
 150
 151	if (PageHuge(new)) {
 152		if (PageAnon(new))
 153			hugepage_add_anon_rmap(new, vma, addr);
 154		else
 155			page_dup_rmap(new);
 156	} else if (PageAnon(new))
 157		page_add_anon_rmap(new, vma, addr);
 158	else
 159		page_add_file_rmap(new);
 160
 161	/* No need to invalidate - it was non-present before */
 162	update_mmu_cache(vma, addr, ptep);
 163unlock:
 164	pte_unmap_unlock(ptep, ptl);
 165out:
 166	return SWAP_AGAIN;
 167}
 168
 169/*
 170 * Get rid of all migration entries and replace them by
 171 * references to the indicated page.
 172 */
 173static void remove_migration_ptes(struct page *old, struct page *new)
 174{
 175	rmap_walk(new, remove_migration_pte, old);
 176}
 177
 178/*
 179 * Something used the pte of a page under migration. We need to
 180 * get to the page and wait until migration is finished.
 181 * When we return from this function the fault will be retried.
 182 */
 183void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
 184				unsigned long address)
 185{
 186	pte_t *ptep, pte;
 187	spinlock_t *ptl;
 188	swp_entry_t entry;
 189	struct page *page;
 190
 191	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
 192	pte = *ptep;
 193	if (!is_swap_pte(pte))
 194		goto out;
 195
 196	entry = pte_to_swp_entry(pte);
 197	if (!is_migration_entry(entry))
 198		goto out;
 199
 200	page = migration_entry_to_page(entry);
 201
 202	/*
 203	 * Once radix-tree replacement of page migration started, page_count
 204	 * *must* be zero. And, we don't want to call wait_on_page_locked()
 205	 * against a page without get_page().
 206	 * So, we use get_page_unless_zero(), here. Even failed, page fault
 207	 * will occur again.
 208	 */
 209	if (!get_page_unless_zero(page))
 210		goto out;
 211	pte_unmap_unlock(ptep, ptl);
 212	wait_on_page_locked(page);
 213	put_page(page);
 214	return;
 215out:
 216	pte_unmap_unlock(ptep, ptl);
 217}
 218
 219#ifdef CONFIG_BLOCK
 220/* Returns true if all buffers are successfully locked */
 221static bool buffer_migrate_lock_buffers(struct buffer_head *head,
 222							enum migrate_mode mode)
 223{
 224	struct buffer_head *bh = head;
 225
 226	/* Simple case, sync compaction */
 227	if (mode != MIGRATE_ASYNC) {
 228		do {
 229			get_bh(bh);
 230			lock_buffer(bh);
 231			bh = bh->b_this_page;
 232
 233		} while (bh != head);
 234
 235		return true;
 236	}
 237
 238	/* async case, we cannot block on lock_buffer so use trylock_buffer */
 239	do {
 240		get_bh(bh);
 241		if (!trylock_buffer(bh)) {
 242			/*
 243			 * We failed to lock the buffer and cannot stall in
 244			 * async migration. Release the taken locks
 245			 */
 246			struct buffer_head *failed_bh = bh;
 247			put_bh(failed_bh);
 248			bh = head;
 249			while (bh != failed_bh) {
 250				unlock_buffer(bh);
 251				put_bh(bh);
 252				bh = bh->b_this_page;
 253			}
 254			return false;
 255		}
 256
 257		bh = bh->b_this_page;
 258	} while (bh != head);
 259	return true;
 260}
 261#else
 262static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
 263							enum migrate_mode mode)
 264{
 265	return true;
 266}
 267#endif /* CONFIG_BLOCK */
 268
 269/*
 270 * Replace the page in the mapping.
 271 *
 272 * The number of remaining references must be:
 273 * 1 for anonymous pages without a mapping
 274 * 2 for pages with a mapping
 275 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
 276 */
 277static int migrate_page_move_mapping(struct address_space *mapping,
 278		struct page *newpage, struct page *page,
 279		struct buffer_head *head, enum migrate_mode mode)
 280{
 281	int expected_count;
 282	void **pslot;
 283
 284	if (!mapping) {
 285		/* Anonymous page without mapping */
 286		if (page_count(page) != 1)
 287			return -EAGAIN;
 288		return 0;
 289	}
 290
 291	spin_lock_irq(&mapping->tree_lock);
 292
 293	pslot = radix_tree_lookup_slot(&mapping->page_tree,
 294 					page_index(page));
 295
 296	expected_count = 2 + page_has_private(page);
 297	if (page_count(page) != expected_count ||
 298		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
 299		spin_unlock_irq(&mapping->tree_lock);
 300		return -EAGAIN;
 301	}
 302
 303	if (!page_freeze_refs(page, expected_count)) {
 304		spin_unlock_irq(&mapping->tree_lock);
 305		return -EAGAIN;
 306	}
 307
 308	/*
 309	 * In the async migration case of moving a page with buffers, lock the
 310	 * buffers using trylock before the mapping is moved. If the mapping
 311	 * was moved, we later failed to lock the buffers and could not move
 312	 * the mapping back due to an elevated page count, we would have to
 313	 * block waiting on other references to be dropped.
 314	 */
 315	if (mode == MIGRATE_ASYNC && head &&
 316			!buffer_migrate_lock_buffers(head, mode)) {
 317		page_unfreeze_refs(page, expected_count);
 318		spin_unlock_irq(&mapping->tree_lock);
 319		return -EAGAIN;
 320	}
 321
 322	/*
 323	 * Now we know that no one else is looking at the page.
 324	 */
 325	get_page(newpage);	/* add cache reference */
 326	if (PageSwapCache(page)) {
 327		SetPageSwapCache(newpage);
 328		set_page_private(newpage, page_private(page));
 329	}
 330
 331	radix_tree_replace_slot(pslot, newpage);
 332
 333	/*
 334	 * Drop cache reference from old page by unfreezing
 335	 * to one less reference.
 336	 * We know this isn't the last reference.
 337	 */
 338	page_unfreeze_refs(page, expected_count - 1);
 339
 340	/*
 341	 * If moved to a different zone then also account
 342	 * the page for that zone. Other VM counters will be
 343	 * taken care of when we establish references to the
 344	 * new page and drop references to the old page.
 345	 *
 346	 * Note that anonymous pages are accounted for
 347	 * via NR_FILE_PAGES and NR_ANON_PAGES if they
 348	 * are mapped to swap space.
 349	 */
 350	__dec_zone_page_state(page, NR_FILE_PAGES);
 351	__inc_zone_page_state(newpage, NR_FILE_PAGES);
 352	if (!PageSwapCache(page) && PageSwapBacked(page)) {
 353		__dec_zone_page_state(page, NR_SHMEM);
 354		__inc_zone_page_state(newpage, NR_SHMEM);
 355	}
 356	spin_unlock_irq(&mapping->tree_lock);
 357
 358	return 0;
 359}
 360
 361/*
 362 * The expected number of remaining references is the same as that
 363 * of migrate_page_move_mapping().
 364 */
 365int migrate_huge_page_move_mapping(struct address_space *mapping,
 366				   struct page *newpage, struct page *page)
 367{
 368	int expected_count;
 369	void **pslot;
 370
 371	if (!mapping) {
 372		if (page_count(page) != 1)
 373			return -EAGAIN;
 374		return 0;
 375	}
 376
 377	spin_lock_irq(&mapping->tree_lock);
 378
 379	pslot = radix_tree_lookup_slot(&mapping->page_tree,
 380					page_index(page));
 381
 382	expected_count = 2 + page_has_private(page);
 383	if (page_count(page) != expected_count ||
 384		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
 385		spin_unlock_irq(&mapping->tree_lock);
 386		return -EAGAIN;
 387	}
 388
 389	if (!page_freeze_refs(page, expected_count)) {
 390		spin_unlock_irq(&mapping->tree_lock);
 391		return -EAGAIN;
 392	}
 393
 394	get_page(newpage);
 395
 396	radix_tree_replace_slot(pslot, newpage);
 397
 398	page_unfreeze_refs(page, expected_count - 1);
 399
 400	spin_unlock_irq(&mapping->tree_lock);
 401	return 0;
 402}
 403
 404/*
 405 * Copy the page to its new location
 406 */
 407void migrate_page_copy(struct page *newpage, struct page *page)
 408{
 409	if (PageHuge(page))
 410		copy_huge_page(newpage, page);
 411	else
 412		copy_highpage(newpage, page);
 413
 414	if (PageError(page))
 415		SetPageError(newpage);
 416	if (PageReferenced(page))
 417		SetPageReferenced(newpage);
 418	if (PageUptodate(page))
 419		SetPageUptodate(newpage);
 420	if (TestClearPageActive(page)) {
 421		VM_BUG_ON(PageUnevictable(page));
 422		SetPageActive(newpage);
 423	} else if (TestClearPageUnevictable(page))
 424		SetPageUnevictable(newpage);
 425	if (PageChecked(page))
 426		SetPageChecked(newpage);
 427	if (PageMappedToDisk(page))
 428		SetPageMappedToDisk(newpage);
 429
 430	if (PageDirty(page)) {
 431		clear_page_dirty_for_io(page);
 432		/*
 433		 * Want to mark the page and the radix tree as dirty, and
 434		 * redo the accounting that clear_page_dirty_for_io undid,
 435		 * but we can't use set_page_dirty because that function
 436		 * is actually a signal that all of the page has become dirty.
 437		 * Whereas only part of our page may be dirty.
 438		 */
 439		if (PageSwapBacked(page))
 440			SetPageDirty(newpage);
 441		else
 442			__set_page_dirty_nobuffers(newpage);
 443 	}
 444
 445	mlock_migrate_page(newpage, page);
 446	ksm_migrate_page(newpage, page);
 447
 448	ClearPageSwapCache(page);
 449	ClearPagePrivate(page);
 450	set_page_private(page, 0);
 451
 452	/*
 453	 * If any waiters have accumulated on the new page then
 454	 * wake them up.
 455	 */
 456	if (PageWriteback(newpage))
 457		end_page_writeback(newpage);
 458}
 459
 460/************************************************************
 461 *                    Migration functions
 462 ***********************************************************/
 463
 464/* Always fail migration. Used for mappings that are not movable */
 465int fail_migrate_page(struct address_space *mapping,
 466			struct page *newpage, struct page *page)
 467{
 468	return -EIO;
 469}
 470EXPORT_SYMBOL(fail_migrate_page);
 471
 472/*
 473 * Common logic to directly migrate a single page suitable for
 474 * pages that do not use PagePrivate/PagePrivate2.
 475 *
 476 * Pages are locked upon entry and exit.
 477 */
 478int migrate_page(struct address_space *mapping,
 479		struct page *newpage, struct page *page,
 480		enum migrate_mode mode)
 481{
 482	int rc;
 483
 484	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
 485
 486	rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode);
 487
 488	if (rc)
 489		return rc;
 490
 491	migrate_page_copy(newpage, page);
 492	return 0;
 493}
 494EXPORT_SYMBOL(migrate_page);
 495
 496#ifdef CONFIG_BLOCK
 497/*
 498 * Migration function for pages with buffers. This function can only be used
 499 * if the underlying filesystem guarantees that no other references to "page"
 500 * exist.
 501 */
 502int buffer_migrate_page(struct address_space *mapping,
 503		struct page *newpage, struct page *page, enum migrate_mode mode)
 504{
 505	struct buffer_head *bh, *head;
 506	int rc;
 507
 508	if (!page_has_buffers(page))
 509		return migrate_page(mapping, newpage, page, mode);
 510
 511	head = page_buffers(page);
 512
 513	rc = migrate_page_move_mapping(mapping, newpage, page, head, mode);
 514
 515	if (rc)
 516		return rc;
 517
 518	/*
 519	 * In the async case, migrate_page_move_mapping locked the buffers
 520	 * with an IRQ-safe spinlock held. In the sync case, the buffers
 521	 * need to be locked now
 522	 */
 523	if (mode != MIGRATE_ASYNC)
 524		BUG_ON(!buffer_migrate_lock_buffers(head, mode));
 525
 526	ClearPagePrivate(page);
 527	set_page_private(newpage, page_private(page));
 528	set_page_private(page, 0);
 529	put_page(page);
 530	get_page(newpage);
 531
 532	bh = head;
 533	do {
 534		set_bh_page(bh, newpage, bh_offset(bh));
 535		bh = bh->b_this_page;
 536
 537	} while (bh != head);
 538
 539	SetPagePrivate(newpage);
 540
 541	migrate_page_copy(newpage, page);
 542
 543	bh = head;
 544	do {
 545		unlock_buffer(bh);
 546 		put_bh(bh);
 547		bh = bh->b_this_page;
 548
 549	} while (bh != head);
 550
 551	return 0;
 552}
 553EXPORT_SYMBOL(buffer_migrate_page);
 554#endif
 555
 556/*
 557 * Writeback a page to clean the dirty state
 558 */
 559static int writeout(struct address_space *mapping, struct page *page)
 560{
 561	struct writeback_control wbc = {
 562		.sync_mode = WB_SYNC_NONE,
 563		.nr_to_write = 1,
 564		.range_start = 0,
 565		.range_end = LLONG_MAX,
 566		.for_reclaim = 1
 567	};
 568	int rc;
 569
 570	if (!mapping->a_ops->writepage)
 571		/* No write method for the address space */
 572		return -EINVAL;
 573
 574	if (!clear_page_dirty_for_io(page))
 575		/* Someone else already triggered a write */
 576		return -EAGAIN;
 577
 578	/*
 579	 * A dirty page may imply that the underlying filesystem has
 580	 * the page on some queue. So the page must be clean for
 581	 * migration. Writeout may mean we loose the lock and the
 582	 * page state is no longer what we checked for earlier.
 583	 * At this point we know that the migration attempt cannot
 584	 * be successful.
 585	 */
 586	remove_migration_ptes(page, page);
 587
 588	rc = mapping->a_ops->writepage(page, &wbc);
 589
 590	if (rc != AOP_WRITEPAGE_ACTIVATE)
 591		/* unlocked. Relock */
 592		lock_page(page);
 593
 594	return (rc < 0) ? -EIO : -EAGAIN;
 595}
 596
 597/*
 598 * Default handling if a filesystem does not provide a migration function.
 599 */
 600static int fallback_migrate_page(struct address_space *mapping,
 601	struct page *newpage, struct page *page, enum migrate_mode mode)
 602{
 603	if (PageDirty(page)) {
 604		/* Only writeback pages in full synchronous migration */
 605		if (mode != MIGRATE_SYNC)
 606			return -EBUSY;
 607		return writeout(mapping, page);
 608	}
 609
 610	/*
 611	 * Buffers may be managed in a filesystem specific way.
 612	 * We must have no buffers or drop them.
 613	 */
 614	if (page_has_private(page) &&
 615	    !try_to_release_page(page, GFP_KERNEL))
 616		return -EAGAIN;
 617
 618	return migrate_page(mapping, newpage, page, mode);
 619}
 620
 621/*
 622 * Move a page to a newly allocated page
 623 * The page is locked and all ptes have been successfully removed.
 624 *
 625 * The new page will have replaced the old page if this function
 626 * is successful.
 627 *
 628 * Return value:
 629 *   < 0 - error code
 630 *  == 0 - success
 631 */
 632static int move_to_new_page(struct page *newpage, struct page *page,
 633				int remap_swapcache, enum migrate_mode mode)
 634{
 635	struct address_space *mapping;
 636	int rc;
 637
 638	/*
 639	 * Block others from accessing the page when we get around to
 640	 * establishing additional references. We are the only one
 641	 * holding a reference to the new page at this point.
 642	 */
 643	if (!trylock_page(newpage))
 644		BUG();
 645
 646	/* Prepare mapping for the new page.*/
 647	newpage->index = page->index;
 648	newpage->mapping = page->mapping;
 649	if (PageSwapBacked(page))
 650		SetPageSwapBacked(newpage);
 651
 652	mapping = page_mapping(page);
 653	if (!mapping)
 654		rc = migrate_page(mapping, newpage, page, mode);
 655	else if (mapping->a_ops->migratepage)
 656		/*
 657		 * Most pages have a mapping and most filesystems provide a
 658		 * migratepage callback. Anonymous pages are part of swap
 659		 * space which also has its own migratepage callback. This
 660		 * is the most common path for page migration.
 661		 */
 662		rc = mapping->a_ops->migratepage(mapping,
 663						newpage, page, mode);
 664	else
 665		rc = fallback_migrate_page(mapping, newpage, page, mode);
 666
 667	if (rc) {
 668		newpage->mapping = NULL;
 669	} else {
 670		if (remap_swapcache)
 671			remove_migration_ptes(page, newpage);
 672		page->mapping = NULL;
 673	}
 674
 675	unlock_page(newpage);
 676
 677	return rc;
 678}
 679
 680static int __unmap_and_move(struct page *page, struct page *newpage,
 681			int force, bool offlining, enum migrate_mode mode)
 682{
 683	int rc = -EAGAIN;
 684	int remap_swapcache = 1;
 685	int charge = 0;
 686	struct mem_cgroup *mem;
 687	struct anon_vma *anon_vma = NULL;
 688
 689	if (!trylock_page(page)) {
 690		if (!force || mode == MIGRATE_ASYNC)
 691			goto out;
 692
 693		/*
 694		 * It's not safe for direct compaction to call lock_page.
 695		 * For example, during page readahead pages are added locked
 696		 * to the LRU. Later, when the IO completes the pages are
 697		 * marked uptodate and unlocked. However, the queueing
 698		 * could be merging multiple pages for one bio (e.g.
 699		 * mpage_readpages). If an allocation happens for the
 700		 * second or third page, the process can end up locking
 701		 * the same page twice and deadlocking. Rather than
 702		 * trying to be clever about what pages can be locked,
 703		 * avoid the use of lock_page for direct compaction
 704		 * altogether.
 705		 */
 706		if (current->flags & PF_MEMALLOC)
 707			goto out;
 708
 709		lock_page(page);
 710	}
 711
 712	/*
 713	 * Only memory hotplug's offline_pages() caller has locked out KSM,
 714	 * and can safely migrate a KSM page.  The other cases have skipped
 715	 * PageKsm along with PageReserved - but it is only now when we have
 716	 * the page lock that we can be certain it will not go KSM beneath us
 717	 * (KSM will not upgrade a page from PageAnon to PageKsm when it sees
 718	 * its pagecount raised, but only here do we take the page lock which
 719	 * serializes that).
 720	 */
 721	if (PageKsm(page) && !offlining) {
 722		rc = -EBUSY;
 723		goto unlock;
 724	}
 725
 726	/* charge against new page */
 727	charge = mem_cgroup_prepare_migration(page, newpage, &mem, GFP_KERNEL);
 728	if (charge == -ENOMEM) {
 729		rc = -ENOMEM;
 730		goto unlock;
 731	}
 732	BUG_ON(charge);
 733
 734	if (PageWriteback(page)) {
 735		/*
 736		 * Only in the case of a full syncronous migration is it
 737		 * necessary to wait for PageWriteback. In the async case,
 738		 * the retry loop is too short and in the sync-light case,
 739		 * the overhead of stalling is too much
 740		 */
 741		if (mode != MIGRATE_SYNC) {
 742			rc = -EBUSY;
 743			goto uncharge;
 744		}
 745		if (!force)
 746			goto uncharge;
 747		wait_on_page_writeback(page);
 748	}
 749	/*
 750	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
 751	 * we cannot notice that anon_vma is freed while we migrates a page.
 752	 * This get_anon_vma() delays freeing anon_vma pointer until the end
 753	 * of migration. File cache pages are no problem because of page_lock()
 754	 * File Caches may use write_page() or lock_page() in migration, then,
 755	 * just care Anon page here.
 756	 */
 757	if (PageAnon(page)) {
 758		/*
 759		 * Only page_lock_anon_vma() understands the subtleties of
 760		 * getting a hold on an anon_vma from outside one of its mms.
 761		 */
 762		anon_vma = page_get_anon_vma(page);
 763		if (anon_vma) {
 764			/*
 765			 * Anon page
 766			 */
 767		} else if (PageSwapCache(page)) {
 768			/*
 769			 * We cannot be sure that the anon_vma of an unmapped
 770			 * swapcache page is safe to use because we don't
 771			 * know in advance if the VMA that this page belonged
 772			 * to still exists. If the VMA and others sharing the
 773			 * data have been freed, then the anon_vma could
 774			 * already be invalid.
 775			 *
 776			 * To avoid this possibility, swapcache pages get
 777			 * migrated but are not remapped when migration
 778			 * completes
 779			 */
 780			remap_swapcache = 0;
 781		} else {
 782			goto uncharge;
 783		}
 784	}
 785
 786	/*
 787	 * Corner case handling:
 788	 * 1. When a new swap-cache page is read into, it is added to the LRU
 789	 * and treated as swapcache but it has no rmap yet.
 790	 * Calling try_to_unmap() against a page->mapping==NULL page will
 791	 * trigger a BUG.  So handle it here.
 792	 * 2. An orphaned page (see truncate_complete_page) might have
 793	 * fs-private metadata. The page can be picked up due to memory
 794	 * offlining.  Everywhere else except page reclaim, the page is
 795	 * invisible to the vm, so the page can not be migrated.  So try to
 796	 * free the metadata, so the page can be freed.
 797	 */
 798	if (!page->mapping) {
 799		VM_BUG_ON(PageAnon(page));
 800		if (page_has_private(page)) {
 801			try_to_free_buffers(page);
 802			goto uncharge;
 803		}
 804		goto skip_unmap;
 805	}
 806
 807	/* Establish migration ptes or remove ptes */
 808	try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
 809
 810skip_unmap:
 811	if (!page_mapped(page))
 812		rc = move_to_new_page(newpage, page, remap_swapcache, mode);
 813
 814	if (rc && remap_swapcache)
 815		remove_migration_ptes(page, page);
 816
 817	/* Drop an anon_vma reference if we took one */
 818	if (anon_vma)
 819		put_anon_vma(anon_vma);
 820
 821uncharge:
 822	if (!charge)
 823		mem_cgroup_end_migration(mem, page, newpage, rc == 0);
 824unlock:
 825	unlock_page(page);
 826out:
 827	return rc;
 828}
 829
 830/*
 831 * Obtain the lock on page, remove all ptes and migrate the page
 832 * to the newly allocated page in newpage.
 833 */
 834static int unmap_and_move(new_page_t get_new_page, unsigned long private,
 835			struct page *page, int force, bool offlining,
 836			enum migrate_mode mode)
 837{
 838	int rc = 0;
 839	int *result = NULL;
 840	struct page *newpage = get_new_page(page, private, &result);
 841
 842	if (!newpage)
 843		return -ENOMEM;
 844
 845	if (page_count(page) == 1) {
 846		/* page was freed from under us. So we are done. */
 847		goto out;
 848	}
 849
 850	if (unlikely(PageTransHuge(page)))
 851		if (unlikely(split_huge_page(page)))
 852			goto out;
 853
 854	rc = __unmap_and_move(page, newpage, force, offlining, mode);
 855out:
 856	if (rc != -EAGAIN) {
 857		/*
 858		 * A page that has been migrated has all references
 859		 * removed and will be freed. A page that has not been
 860		 * migrated will have kepts its references and be
 861		 * restored.
 862		 */
 863		list_del(&page->lru);
 864		dec_zone_page_state(page, NR_ISOLATED_ANON +
 865				page_is_file_cache(page));
 866		putback_lru_page(page);
 867	}
 868	/*
 869	 * Move the new page to the LRU. If migration was not successful
 870	 * then this will free the page.
 871	 */
 872	putback_lru_page(newpage);
 873	if (result) {
 874		if (rc)
 875			*result = rc;
 876		else
 877			*result = page_to_nid(newpage);
 878	}
 879	return rc;
 880}
 881
 882/*
 883 * Counterpart of unmap_and_move_page() for hugepage migration.
 884 *
 885 * This function doesn't wait the completion of hugepage I/O
 886 * because there is no race between I/O and migration for hugepage.
 887 * Note that currently hugepage I/O occurs only in direct I/O
 888 * where no lock is held and PG_writeback is irrelevant,
 889 * and writeback status of all subpages are counted in the reference
 890 * count of the head page (i.e. if all subpages of a 2MB hugepage are
 891 * under direct I/O, the reference of the head page is 512 and a bit more.)
 892 * This means that when we try to migrate hugepage whose subpages are
 893 * doing direct I/O, some references remain after try_to_unmap() and
 894 * hugepage migration fails without data corruption.
 895 *
 896 * There is also no race when direct I/O is issued on the page under migration,
 897 * because then pte is replaced with migration swap entry and direct I/O code
 898 * will wait in the page fault for migration to complete.
 899 */
 900static int unmap_and_move_huge_page(new_page_t get_new_page,
 901				unsigned long private, struct page *hpage,
 902				int force, bool offlining,
 903				enum migrate_mode mode)
 904{
 905	int rc = 0;
 906	int *result = NULL;
 907	struct page *new_hpage = get_new_page(hpage, private, &result);
 908	struct anon_vma *anon_vma = NULL;
 909
 910	if (!new_hpage)
 911		return -ENOMEM;
 912
 913	rc = -EAGAIN;
 914
 915	if (!trylock_page(hpage)) {
 916		if (!force || mode != MIGRATE_SYNC)
 917			goto out;
 918		lock_page(hpage);
 919	}
 920
 921	if (PageAnon(hpage))
 922		anon_vma = page_get_anon_vma(hpage);
 923
 924	try_to_unmap(hpage, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
 925
 926	if (!page_mapped(hpage))
 927		rc = move_to_new_page(new_hpage, hpage, 1, mode);
 928
 929	if (rc)
 930		remove_migration_ptes(hpage, hpage);
 931
 932	if (anon_vma)
 933		put_anon_vma(anon_vma);
 934	unlock_page(hpage);
 935
 936out:
 937	if (rc != -EAGAIN) {
 938		list_del(&hpage->lru);
 939		put_page(hpage);
 940	}
 941
 942	put_page(new_hpage);
 943
 944	if (result) {
 945		if (rc)
 946			*result = rc;
 947		else
 948			*result = page_to_nid(new_hpage);
 949	}
 950	return rc;
 951}
 952
 953/*
 954 * migrate_pages
 955 *
 956 * The function takes one list of pages to migrate and a function
 957 * that determines from the page to be migrated and the private data
 958 * the target of the move and allocates the page.
 959 *
 960 * The function returns after 10 attempts or if no pages
 961 * are movable anymore because to has become empty
 962 * or no retryable pages exist anymore.
 963 * Caller should call putback_lru_pages to return pages to the LRU
 964 * or free list only if ret != 0.
 965 *
 966 * Return: Number of pages not migrated or error code.
 967 */
 968int migrate_pages(struct list_head *from,
 969		new_page_t get_new_page, unsigned long private, bool offlining,
 970		enum migrate_mode mode)
 971{
 972	int retry = 1;
 973	int nr_failed = 0;
 974	int pass = 0;
 975	struct page *page;
 976	struct page *page2;
 977	int swapwrite = current->flags & PF_SWAPWRITE;
 978	int rc;
 979
 980	if (!swapwrite)
 981		current->flags |= PF_SWAPWRITE;
 982
 983	for(pass = 0; pass < 10 && retry; pass++) {
 984		retry = 0;
 985
 986		list_for_each_entry_safe(page, page2, from, lru) {
 987			cond_resched();
 988
 989			rc = unmap_and_move(get_new_page, private,
 990						page, pass > 2, offlining,
 991						mode);
 992
 993			switch(rc) {
 994			case -ENOMEM:
 995				goto out;
 996			case -EAGAIN:
 997				retry++;
 998				break;
 999			case 0:
1000				break;
1001			default:
1002				/* Permanent failure */
1003				nr_failed++;
1004				break;
1005			}
1006		}
1007	}
1008	rc = 0;
1009out:
1010	if (!swapwrite)
1011		current->flags &= ~PF_SWAPWRITE;
1012
1013	if (rc)
1014		return rc;
1015
1016	return nr_failed + retry;
1017}
1018
1019int migrate_huge_pages(struct list_head *from,
1020		new_page_t get_new_page, unsigned long private, bool offlining,
1021		enum migrate_mode mode)
1022{
1023	int retry = 1;
1024	int nr_failed = 0;
1025	int pass = 0;
1026	struct page *page;
1027	struct page *page2;
1028	int rc;
1029
1030	for (pass = 0; pass < 10 && retry; pass++) {
1031		retry = 0;
1032
1033		list_for_each_entry_safe(page, page2, from, lru) {
1034			cond_resched();
1035
1036			rc = unmap_and_move_huge_page(get_new_page,
1037					private, page, pass > 2, offlining,
1038					mode);
1039
1040			switch(rc) {
1041			case -ENOMEM:
1042				goto out;
1043			case -EAGAIN:
1044				retry++;
1045				break;
1046			case 0:
1047				break;
1048			default:
1049				/* Permanent failure */
1050				nr_failed++;
1051				break;
1052			}
1053		}
1054	}
1055	rc = 0;
1056out:
1057	if (rc)
1058		return rc;
1059
1060	return nr_failed + retry;
1061}
1062
1063#ifdef CONFIG_NUMA
1064/*
1065 * Move a list of individual pages
1066 */
1067struct page_to_node {
1068	unsigned long addr;
1069	struct page *page;
1070	int node;
1071	int status;
1072};
1073
1074static struct page *new_page_node(struct page *p, unsigned long private,
1075		int **result)
1076{
1077	struct page_to_node *pm = (struct page_to_node *)private;
1078
1079	while (pm->node != MAX_NUMNODES && pm->page != p)
1080		pm++;
1081
1082	if (pm->node == MAX_NUMNODES)
1083		return NULL;
1084
1085	*result = &pm->status;
1086
1087	return alloc_pages_exact_node(pm->node,
1088				GFP_HIGHUSER_MOVABLE | GFP_THISNODE, 0);
1089}
1090
1091/*
1092 * Move a set of pages as indicated in the pm array. The addr
1093 * field must be set to the virtual address of the page to be moved
1094 * and the node number must contain a valid target node.
1095 * The pm array ends with node = MAX_NUMNODES.
1096 */
1097static int do_move_page_to_node_array(struct mm_struct *mm,
1098				      struct page_to_node *pm,
1099				      int migrate_all)
1100{
1101	int err;
1102	struct page_to_node *pp;
1103	LIST_HEAD(pagelist);
1104
1105	down_read(&mm->mmap_sem);
1106
1107	/*
1108	 * Build a list of pages to migrate
1109	 */
1110	for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1111		struct vm_area_struct *vma;
1112		struct page *page;
1113
1114		err = -EFAULT;
1115		vma = find_vma(mm, pp->addr);
1116		if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1117			goto set_status;
1118
1119		page = follow_page(vma, pp->addr, FOLL_GET|FOLL_SPLIT);
1120
1121		err = PTR_ERR(page);
1122		if (IS_ERR(page))
1123			goto set_status;
1124
1125		err = -ENOENT;
1126		if (!page)
1127			goto set_status;
1128
1129		/* Use PageReserved to check for zero page */
1130		if (PageReserved(page) || PageKsm(page))
1131			goto put_and_set;
1132
1133		pp->page = page;
1134		err = page_to_nid(page);
1135
1136		if (err == pp->node)
1137			/*
1138			 * Node already in the right place
1139			 */
1140			goto put_and_set;
1141
1142		err = -EACCES;
1143		if (page_mapcount(page) > 1 &&
1144				!migrate_all)
1145			goto put_and_set;
1146
1147		err = isolate_lru_page(page);
1148		if (!err) {
1149			list_add_tail(&page->lru, &pagelist);
1150			inc_zone_page_state(page, NR_ISOLATED_ANON +
1151					    page_is_file_cache(page));
1152		}
1153put_and_set:
1154		/*
1155		 * Either remove the duplicate refcount from
1156		 * isolate_lru_page() or drop the page ref if it was
1157		 * not isolated.
1158		 */
1159		put_page(page);
1160set_status:
1161		pp->status = err;
1162	}
1163
1164	err = 0;
1165	if (!list_empty(&pagelist)) {
1166		err = migrate_pages(&pagelist, new_page_node,
1167				(unsigned long)pm, 0, MIGRATE_SYNC);
1168		if (err)
1169			putback_lru_pages(&pagelist);
1170	}
1171
1172	up_read(&mm->mmap_sem);
1173	return err;
1174}
1175
1176/*
1177 * Migrate an array of page address onto an array of nodes and fill
1178 * the corresponding array of status.
1179 */
1180static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1181			 unsigned long nr_pages,
1182			 const void __user * __user *pages,
1183			 const int __user *nodes,
1184			 int __user *status, int flags)
1185{
1186	struct page_to_node *pm;
1187	unsigned long chunk_nr_pages;
1188	unsigned long chunk_start;
1189	int err;
1190
1191	err = -ENOMEM;
1192	pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1193	if (!pm)
1194		goto out;
1195
1196	migrate_prep();
1197
1198	/*
1199	 * Store a chunk of page_to_node array in a page,
1200	 * but keep the last one as a marker
1201	 */
1202	chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1203
1204	for (chunk_start = 0;
1205	     chunk_start < nr_pages;
1206	     chunk_start += chunk_nr_pages) {
1207		int j;
1208
1209		if (chunk_start + chunk_nr_pages > nr_pages)
1210			chunk_nr_pages = nr_pages - chunk_start;
1211
1212		/* fill the chunk pm with addrs and nodes from user-space */
1213		for (j = 0; j < chunk_nr_pages; j++) {
1214			const void __user *p;
1215			int node;
1216
1217			err = -EFAULT;
1218			if (get_user(p, pages + j + chunk_start))
1219				goto out_pm;
1220			pm[j].addr = (unsigned long) p;
1221
1222			if (get_user(node, nodes + j + chunk_start))
1223				goto out_pm;
1224
1225			err = -ENODEV;
1226			if (node < 0 || node >= MAX_NUMNODES)
1227				goto out_pm;
1228
1229			if (!node_state(node, N_HIGH_MEMORY))
1230				goto out_pm;
1231
1232			err = -EACCES;
1233			if (!node_isset(node, task_nodes))
1234				goto out_pm;
1235
1236			pm[j].node = node;
1237		}
1238
1239		/* End marker for this chunk */
1240		pm[chunk_nr_pages].node = MAX_NUMNODES;
1241
1242		/* Migrate this chunk */
1243		err = do_move_page_to_node_array(mm, pm,
1244						 flags & MPOL_MF_MOVE_ALL);
1245		if (err < 0)
1246			goto out_pm;
1247
1248		/* Return status information */
1249		for (j = 0; j < chunk_nr_pages; j++)
1250			if (put_user(pm[j].status, status + j + chunk_start)) {
1251				err = -EFAULT;
1252				goto out_pm;
1253			}
1254	}
1255	err = 0;
1256
1257out_pm:
1258	free_page((unsigned long)pm);
1259out:
1260	return err;
1261}
1262
1263/*
1264 * Determine the nodes of an array of pages and store it in an array of status.
1265 */
1266static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1267				const void __user **pages, int *status)
1268{
1269	unsigned long i;
1270
1271	down_read(&mm->mmap_sem);
1272
1273	for (i = 0; i < nr_pages; i++) {
1274		unsigned long addr = (unsigned long)(*pages);
1275		struct vm_area_struct *vma;
1276		struct page *page;
1277		int err = -EFAULT;
1278
1279		vma = find_vma(mm, addr);
1280		if (!vma || addr < vma->vm_start)
1281			goto set_status;
1282
1283		page = follow_page(vma, addr, 0);
1284
1285		err = PTR_ERR(page);
1286		if (IS_ERR(page))
1287			goto set_status;
1288
1289		err = -ENOENT;
1290		/* Use PageReserved to check for zero page */
1291		if (!page || PageReserved(page) || PageKsm(page))
1292			goto set_status;
1293
1294		err = page_to_nid(page);
1295set_status:
1296		*status = err;
1297
1298		pages++;
1299		status++;
1300	}
1301
1302	up_read(&mm->mmap_sem);
1303}
1304
1305/*
1306 * Determine the nodes of a user array of pages and store it in
1307 * a user array of status.
1308 */
1309static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1310			 const void __user * __user *pages,
1311			 int __user *status)
1312{
1313#define DO_PAGES_STAT_CHUNK_NR 16
1314	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1315	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1316
1317	while (nr_pages) {
1318		unsigned long chunk_nr;
1319
1320		chunk_nr = nr_pages;
1321		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1322			chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1323
1324		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1325			break;
1326
1327		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1328
1329		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1330			break;
1331
1332		pages += chunk_nr;
1333		status += chunk_nr;
1334		nr_pages -= chunk_nr;
1335	}
1336	return nr_pages ? -EFAULT : 0;
1337}
1338
1339/*
1340 * Move a list of pages in the address space of the currently executing
1341 * process.
1342 */
1343SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1344		const void __user * __user *, pages,
1345		const int __user *, nodes,
1346		int __user *, status, int, flags)
1347{
1348	const struct cred *cred = current_cred(), *tcred;
1349	struct task_struct *task;
1350	struct mm_struct *mm;
1351	int err;
1352	nodemask_t task_nodes;
1353
1354	/* Check flags */
1355	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1356		return -EINVAL;
1357
1358	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1359		return -EPERM;
1360
1361	/* Find the mm_struct */
1362	rcu_read_lock();
1363	task = pid ? find_task_by_vpid(pid) : current;
1364	if (!task) {
1365		rcu_read_unlock();
1366		return -ESRCH;
1367	}
1368	get_task_struct(task);
1369
1370	/*
1371	 * Check if this process has the right to modify the specified
1372	 * process. The right exists if the process has administrative
1373	 * capabilities, superuser privileges or the same
1374	 * userid as the target process.
1375	 */
1376	tcred = __task_cred(task);
1377	if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1378	    !uid_eq(cred->uid,  tcred->suid) && !uid_eq(cred->uid,  tcred->uid) &&
1379	    !capable(CAP_SYS_NICE)) {
1380		rcu_read_unlock();
1381		err = -EPERM;
1382		goto out;
1383	}
1384	rcu_read_unlock();
1385
1386 	err = security_task_movememory(task);
1387 	if (err)
1388		goto out;
1389
1390	task_nodes = cpuset_mems_allowed(task);
1391	mm = get_task_mm(task);
1392	put_task_struct(task);
1393
1394	if (!mm)
1395		return -EINVAL;
1396
1397	if (nodes)
1398		err = do_pages_move(mm, task_nodes, nr_pages, pages,
1399				    nodes, status, flags);
1400	else
1401		err = do_pages_stat(mm, nr_pages, pages, status);
1402
1403	mmput(mm);
1404	return err;
1405
1406out:
1407	put_task_struct(task);
1408	return err;
1409}
1410
1411/*
1412 * Call migration functions in the vma_ops that may prepare
1413 * memory in a vm for migration. migration functions may perform
1414 * the migration for vmas that do not have an underlying page struct.
1415 */
1416int migrate_vmas(struct mm_struct *mm, const nodemask_t *to,
1417	const nodemask_t *from, unsigned long flags)
1418{
1419 	struct vm_area_struct *vma;
1420 	int err = 0;
1421
1422	for (vma = mm->mmap; vma && !err; vma = vma->vm_next) {
1423 		if (vma->vm_ops && vma->vm_ops->migrate) {
1424 			err = vma->vm_ops->migrate(vma, to, from, flags);
1425 			if (err)
1426 				break;
1427 		}
1428 	}
1429 	return err;
1430}
1431#endif