Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * xHCI host controller driver
   4 *
   5 * Copyright (C) 2008 Intel Corp.
   6 *
   7 * Author: Sarah Sharp
   8 * Some code borrowed from the Linux EHCI driver.
   9 */
  10
  11#include <linux/pci.h>
  12#include <linux/iopoll.h>
  13#include <linux/irq.h>
  14#include <linux/log2.h>
  15#include <linux/module.h>
  16#include <linux/moduleparam.h>
  17#include <linux/slab.h>
  18#include <linux/dmi.h>
  19#include <linux/dma-mapping.h>
  20
  21#include "xhci.h"
  22#include "xhci-trace.h"
 
  23#include "xhci-debugfs.h"
  24#include "xhci-dbgcap.h"
  25
  26#define DRIVER_AUTHOR "Sarah Sharp"
  27#define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
  28
  29#define	PORT_WAKE_BITS	(PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
  30
  31/* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
  32static int link_quirk;
  33module_param(link_quirk, int, S_IRUGO | S_IWUSR);
  34MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
  35
  36static unsigned long long quirks;
  37module_param(quirks, ullong, S_IRUGO);
  38MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
  39
  40static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
  41{
  42	struct xhci_segment *seg = ring->first_seg;
  43
  44	if (!td || !td->start_seg)
  45		return false;
  46	do {
  47		if (seg == td->start_seg)
  48			return true;
  49		seg = seg->next;
  50	} while (seg && seg != ring->first_seg);
  51
  52	return false;
  53}
  54
  55/*
  56 * xhci_handshake - spin reading hc until handshake completes or fails
  57 * @ptr: address of hc register to be read
  58 * @mask: bits to look at in result of read
  59 * @done: value of those bits when handshake succeeds
  60 * @usec: timeout in microseconds
  61 *
  62 * Returns negative errno, or zero on success
  63 *
  64 * Success happens when the "mask" bits have the specified value (hardware
  65 * handshake done).  There are two failure modes:  "usec" have passed (major
  66 * hardware flakeout), or the register reads as all-ones (hardware removed).
  67 */
  68int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, u64 timeout_us)
  69{
  70	u32	result;
  71	int	ret;
  72
  73	ret = readl_poll_timeout_atomic(ptr, result,
  74					(result & mask) == done ||
  75					result == U32_MAX,
  76					1, timeout_us);
  77	if (result == U32_MAX)		/* card removed */
  78		return -ENODEV;
  79
  80	return ret;
  81}
  82
  83/*
  84 * Disable interrupts and begin the xHCI halting process.
  85 */
  86void xhci_quiesce(struct xhci_hcd *xhci)
  87{
  88	u32 halted;
  89	u32 cmd;
  90	u32 mask;
  91
  92	mask = ~(XHCI_IRQS);
  93	halted = readl(&xhci->op_regs->status) & STS_HALT;
  94	if (!halted)
  95		mask &= ~CMD_RUN;
  96
  97	cmd = readl(&xhci->op_regs->command);
  98	cmd &= mask;
  99	writel(cmd, &xhci->op_regs->command);
 100}
 101
 102/*
 103 * Force HC into halt state.
 104 *
 105 * Disable any IRQs and clear the run/stop bit.
 106 * HC will complete any current and actively pipelined transactions, and
 107 * should halt within 16 ms of the run/stop bit being cleared.
 108 * Read HC Halted bit in the status register to see when the HC is finished.
 109 */
 110int xhci_halt(struct xhci_hcd *xhci)
 111{
 112	int ret;
 113
 114	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
 115	xhci_quiesce(xhci);
 116
 117	ret = xhci_handshake(&xhci->op_regs->status,
 118			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
 119	if (ret) {
 120		xhci_warn(xhci, "Host halt failed, %d\n", ret);
 121		return ret;
 122	}
 123
 124	xhci->xhc_state |= XHCI_STATE_HALTED;
 125	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
 126
 127	return ret;
 128}
 129
 130/*
 131 * Set the run bit and wait for the host to be running.
 132 */
 133int xhci_start(struct xhci_hcd *xhci)
 134{
 135	u32 temp;
 136	int ret;
 137
 138	temp = readl(&xhci->op_regs->command);
 139	temp |= (CMD_RUN);
 140	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
 141			temp);
 142	writel(temp, &xhci->op_regs->command);
 143
 144	/*
 145	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
 146	 * running.
 147	 */
 148	ret = xhci_handshake(&xhci->op_regs->status,
 149			STS_HALT, 0, XHCI_MAX_HALT_USEC);
 150	if (ret == -ETIMEDOUT)
 151		xhci_err(xhci, "Host took too long to start, "
 152				"waited %u microseconds.\n",
 153				XHCI_MAX_HALT_USEC);
 154	if (!ret) {
 155		/* clear state flags. Including dying, halted or removing */
 156		xhci->xhc_state = 0;
 157		xhci->run_graceperiod = jiffies + msecs_to_jiffies(500);
 158	}
 159
 160	return ret;
 161}
 162
 163/*
 164 * Reset a halted HC.
 165 *
 166 * This resets pipelines, timers, counters, state machines, etc.
 167 * Transactions will be terminated immediately, and operational registers
 168 * will be set to their defaults.
 169 */
 170int xhci_reset(struct xhci_hcd *xhci, u64 timeout_us)
 171{
 172	u32 command;
 173	u32 state;
 174	int ret;
 175
 176	state = readl(&xhci->op_regs->status);
 177
 178	if (state == ~(u32)0) {
 179		xhci_warn(xhci, "Host not accessible, reset failed.\n");
 180		return -ENODEV;
 181	}
 182
 183	if ((state & STS_HALT) == 0) {
 184		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
 185		return 0;
 186	}
 187
 188	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
 189	command = readl(&xhci->op_regs->command);
 190	command |= CMD_RESET;
 191	writel(command, &xhci->op_regs->command);
 192
 193	/* Existing Intel xHCI controllers require a delay of 1 mS,
 194	 * after setting the CMD_RESET bit, and before accessing any
 195	 * HC registers. This allows the HC to complete the
 196	 * reset operation and be ready for HC register access.
 197	 * Without this delay, the subsequent HC register access,
 198	 * may result in a system hang very rarely.
 199	 */
 200	if (xhci->quirks & XHCI_INTEL_HOST)
 201		udelay(1000);
 202
 203	ret = xhci_handshake(&xhci->op_regs->command, CMD_RESET, 0, timeout_us);
 
 204	if (ret)
 205		return ret;
 206
 207	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
 208		usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
 209
 210	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 211			 "Wait for controller to be ready for doorbell rings");
 212	/*
 213	 * xHCI cannot write to any doorbells or operational registers other
 214	 * than status until the "Controller Not Ready" flag is cleared.
 215	 */
 216	ret = xhci_handshake(&xhci->op_regs->status, STS_CNR, 0, timeout_us);
 
 217
 218	xhci->usb2_rhub.bus_state.port_c_suspend = 0;
 219	xhci->usb2_rhub.bus_state.suspended_ports = 0;
 220	xhci->usb2_rhub.bus_state.resuming_ports = 0;
 221	xhci->usb3_rhub.bus_state.port_c_suspend = 0;
 222	xhci->usb3_rhub.bus_state.suspended_ports = 0;
 223	xhci->usb3_rhub.bus_state.resuming_ports = 0;
 224
 225	return ret;
 226}
 227
 228static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
 229{
 230	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
 231	int err, i;
 232	u64 val;
 233	u32 intrs;
 234
 235	/*
 236	 * Some Renesas controllers get into a weird state if they are
 237	 * reset while programmed with 64bit addresses (they will preserve
 238	 * the top half of the address in internal, non visible
 239	 * registers). You end up with half the address coming from the
 240	 * kernel, and the other half coming from the firmware. Also,
 241	 * changing the programming leads to extra accesses even if the
 242	 * controller is supposed to be halted. The controller ends up with
 243	 * a fatal fault, and is then ripe for being properly reset.
 244	 *
 245	 * Special care is taken to only apply this if the device is behind
 246	 * an iommu. Doing anything when there is no iommu is definitely
 247	 * unsafe...
 248	 */
 249	if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !device_iommu_mapped(dev))
 250		return;
 251
 252	xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
 253
 254	/* Clear HSEIE so that faults do not get signaled */
 255	val = readl(&xhci->op_regs->command);
 256	val &= ~CMD_HSEIE;
 257	writel(val, &xhci->op_regs->command);
 258
 259	/* Clear HSE (aka FATAL) */
 260	val = readl(&xhci->op_regs->status);
 261	val |= STS_FATAL;
 262	writel(val, &xhci->op_regs->status);
 263
 264	/* Now zero the registers, and brace for impact */
 265	val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
 266	if (upper_32_bits(val))
 267		xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
 268	val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
 269	if (upper_32_bits(val))
 270		xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
 271
 272	intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1),
 273		      ARRAY_SIZE(xhci->run_regs->ir_set));
 274
 275	for (i = 0; i < intrs; i++) {
 276		struct xhci_intr_reg __iomem *ir;
 277
 278		ir = &xhci->run_regs->ir_set[i];
 279		val = xhci_read_64(xhci, &ir->erst_base);
 280		if (upper_32_bits(val))
 281			xhci_write_64(xhci, 0, &ir->erst_base);
 282		val= xhci_read_64(xhci, &ir->erst_dequeue);
 283		if (upper_32_bits(val))
 284			xhci_write_64(xhci, 0, &ir->erst_dequeue);
 285	}
 286
 287	/* Wait for the fault to appear. It will be cleared on reset */
 288	err = xhci_handshake(&xhci->op_regs->status,
 289			     STS_FATAL, STS_FATAL,
 290			     XHCI_MAX_HALT_USEC);
 291	if (!err)
 292		xhci_info(xhci, "Fault detected\n");
 293}
 294
 295#ifdef CONFIG_USB_PCI
 296/*
 297 * Set up MSI
 298 */
 299static int xhci_setup_msi(struct xhci_hcd *xhci)
 300{
 301	int ret;
 302	/*
 303	 * TODO:Check with MSI Soc for sysdev
 304	 */
 305	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
 306
 307	ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
 308	if (ret < 0) {
 309		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 310				"failed to allocate MSI entry");
 311		return ret;
 312	}
 313
 314	ret = request_irq(pdev->irq, xhci_msi_irq,
 315				0, "xhci_hcd", xhci_to_hcd(xhci));
 316	if (ret) {
 317		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 318				"disable MSI interrupt");
 319		pci_free_irq_vectors(pdev);
 320	}
 321
 322	return ret;
 323}
 324
 325/*
 326 * Set up MSI-X
 327 */
 328static int xhci_setup_msix(struct xhci_hcd *xhci)
 329{
 330	int i, ret;
 331	struct usb_hcd *hcd = xhci_to_hcd(xhci);
 332	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
 333
 334	/*
 335	 * calculate number of msi-x vectors supported.
 336	 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
 337	 *   with max number of interrupters based on the xhci HCSPARAMS1.
 338	 * - num_online_cpus: maximum msi-x vectors per CPUs core.
 339	 *   Add additional 1 vector to ensure always available interrupt.
 340	 */
 341	xhci->msix_count = min(num_online_cpus() + 1,
 342				HCS_MAX_INTRS(xhci->hcs_params1));
 343
 344	ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count,
 345			PCI_IRQ_MSIX);
 346	if (ret < 0) {
 347		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 348				"Failed to enable MSI-X");
 349		return ret;
 350	}
 351
 352	for (i = 0; i < xhci->msix_count; i++) {
 353		ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0,
 354				"xhci_hcd", xhci_to_hcd(xhci));
 355		if (ret)
 356			goto disable_msix;
 357	}
 358
 359	hcd->msix_enabled = 1;
 360	return ret;
 361
 362disable_msix:
 363	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
 364	while (--i >= 0)
 365		free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
 366	pci_free_irq_vectors(pdev);
 367	return ret;
 368}
 369
 370/* Free any IRQs and disable MSI-X */
 371static void xhci_cleanup_msix(struct xhci_hcd *xhci)
 372{
 373	struct usb_hcd *hcd = xhci_to_hcd(xhci);
 374	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
 375
 376	if (xhci->quirks & XHCI_PLAT)
 377		return;
 378
 379	/* return if using legacy interrupt */
 380	if (hcd->irq > 0)
 381		return;
 382
 383	if (hcd->msix_enabled) {
 384		int i;
 385
 386		for (i = 0; i < xhci->msix_count; i++)
 387			free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
 388	} else {
 389		free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci));
 390	}
 391
 392	pci_free_irq_vectors(pdev);
 393	hcd->msix_enabled = 0;
 394}
 395
 396static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
 397{
 398	struct usb_hcd *hcd = xhci_to_hcd(xhci);
 399
 400	if (hcd->msix_enabled) {
 401		struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
 402		int i;
 403
 404		for (i = 0; i < xhci->msix_count; i++)
 405			synchronize_irq(pci_irq_vector(pdev, i));
 406	}
 407}
 408
 409static int xhci_try_enable_msi(struct usb_hcd *hcd)
 410{
 411	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 412	struct pci_dev  *pdev;
 413	int ret;
 414
 415	/* The xhci platform device has set up IRQs through usb_add_hcd. */
 416	if (xhci->quirks & XHCI_PLAT)
 417		return 0;
 418
 419	pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
 420	/*
 421	 * Some Fresco Logic host controllers advertise MSI, but fail to
 422	 * generate interrupts.  Don't even try to enable MSI.
 423	 */
 424	if (xhci->quirks & XHCI_BROKEN_MSI)
 425		goto legacy_irq;
 426
 427	/* unregister the legacy interrupt */
 428	if (hcd->irq)
 429		free_irq(hcd->irq, hcd);
 430	hcd->irq = 0;
 431
 432	ret = xhci_setup_msix(xhci);
 433	if (ret)
 434		/* fall back to msi*/
 435		ret = xhci_setup_msi(xhci);
 436
 437	if (!ret) {
 438		hcd->msi_enabled = 1;
 439		return 0;
 440	}
 441
 442	if (!pdev->irq) {
 443		xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
 444		return -EINVAL;
 445	}
 446
 447 legacy_irq:
 448	if (!strlen(hcd->irq_descr))
 449		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
 450			 hcd->driver->description, hcd->self.busnum);
 451
 452	/* fall back to legacy interrupt*/
 453	ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
 454			hcd->irq_descr, hcd);
 455	if (ret) {
 456		xhci_err(xhci, "request interrupt %d failed\n",
 457				pdev->irq);
 458		return ret;
 459	}
 460	hcd->irq = pdev->irq;
 461	return 0;
 462}
 463
 464#else
 465
 466static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
 467{
 468	return 0;
 469}
 470
 471static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
 472{
 473}
 474
 475static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
 476{
 477}
 478
 479#endif
 480
 481static void compliance_mode_recovery(struct timer_list *t)
 482{
 483	struct xhci_hcd *xhci;
 484	struct usb_hcd *hcd;
 485	struct xhci_hub *rhub;
 486	u32 temp;
 487	int i;
 488
 489	xhci = from_timer(xhci, t, comp_mode_recovery_timer);
 490	rhub = &xhci->usb3_rhub;
 491	hcd = rhub->hcd;
 492
 493	if (!hcd)
 494		return;
 495
 496	for (i = 0; i < rhub->num_ports; i++) {
 497		temp = readl(rhub->ports[i]->addr);
 498		if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
 499			/*
 500			 * Compliance Mode Detected. Letting USB Core
 501			 * handle the Warm Reset
 502			 */
 503			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 504					"Compliance mode detected->port %d",
 505					i + 1);
 506			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 507					"Attempting compliance mode recovery");
 
 508
 509			if (hcd->state == HC_STATE_SUSPENDED)
 510				usb_hcd_resume_root_hub(hcd);
 511
 512			usb_hcd_poll_rh_status(hcd);
 513		}
 514	}
 515
 516	if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
 517		mod_timer(&xhci->comp_mode_recovery_timer,
 518			jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
 519}
 520
 521/*
 522 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
 523 * that causes ports behind that hardware to enter compliance mode sometimes.
 524 * The quirk creates a timer that polls every 2 seconds the link state of
 525 * each host controller's port and recovers it by issuing a Warm reset
 526 * if Compliance mode is detected, otherwise the port will become "dead" (no
 527 * device connections or disconnections will be detected anymore). Becasue no
 528 * status event is generated when entering compliance mode (per xhci spec),
 529 * this quirk is needed on systems that have the failing hardware installed.
 530 */
 531static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
 532{
 533	xhci->port_status_u0 = 0;
 534	timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
 535		    0);
 536	xhci->comp_mode_recovery_timer.expires = jiffies +
 537			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
 538
 539	add_timer(&xhci->comp_mode_recovery_timer);
 540	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 541			"Compliance mode recovery timer initialized");
 542}
 543
 544/*
 545 * This function identifies the systems that have installed the SN65LVPE502CP
 546 * USB3.0 re-driver and that need the Compliance Mode Quirk.
 547 * Systems:
 548 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
 549 */
 550static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
 551{
 552	const char *dmi_product_name, *dmi_sys_vendor;
 553
 554	dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
 555	dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
 556	if (!dmi_product_name || !dmi_sys_vendor)
 557		return false;
 558
 559	if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
 560		return false;
 561
 562	if (strstr(dmi_product_name, "Z420") ||
 563			strstr(dmi_product_name, "Z620") ||
 564			strstr(dmi_product_name, "Z820") ||
 565			strstr(dmi_product_name, "Z1 Workstation"))
 566		return true;
 567
 568	return false;
 569}
 570
 571static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
 572{
 573	return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
 574}
 575
 576
 577/*
 578 * Initialize memory for HCD and xHC (one-time init).
 579 *
 580 * Program the PAGESIZE register, initialize the device context array, create
 581 * device contexts (?), set up a command ring segment (or two?), create event
 582 * ring (one for now).
 583 */
 584static int xhci_init(struct usb_hcd *hcd)
 585{
 586	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 587	int retval;
 588
 589	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
 590	spin_lock_init(&xhci->lock);
 591	if (xhci->hci_version == 0x95 && link_quirk) {
 592		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 593				"QUIRK: Not clearing Link TRB chain bits.");
 594		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
 595	} else {
 596		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 597				"xHCI doesn't need link TRB QUIRK");
 598	}
 599	retval = xhci_mem_init(xhci, GFP_KERNEL);
 600	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
 601
 602	/* Initializing Compliance Mode Recovery Data If Needed */
 603	if (xhci_compliance_mode_recovery_timer_quirk_check()) {
 604		xhci->quirks |= XHCI_COMP_MODE_QUIRK;
 605		compliance_mode_recovery_timer_init(xhci);
 606	}
 607
 608	return retval;
 609}
 610
 611/*-------------------------------------------------------------------------*/
 612
 613
 614static int xhci_run_finished(struct xhci_hcd *xhci)
 615{
 616	unsigned long	flags;
 617	u32		temp;
 618
 619	/*
 620	 * Enable interrupts before starting the host (xhci 4.2 and 5.5.2).
 621	 * Protect the short window before host is running with a lock
 622	 */
 623	spin_lock_irqsave(&xhci->lock, flags);
 624
 625	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable interrupts");
 626	temp = readl(&xhci->op_regs->command);
 627	temp |= (CMD_EIE);
 628	writel(temp, &xhci->op_regs->command);
 629
 630	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable primary interrupter");
 631	temp = readl(&xhci->ir_set->irq_pending);
 632	writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
 633
 634	if (xhci_start(xhci)) {
 635		xhci_halt(xhci);
 636		spin_unlock_irqrestore(&xhci->lock, flags);
 637		return -ENODEV;
 638	}
 639
 640	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
 641
 642	if (xhci->quirks & XHCI_NEC_HOST)
 643		xhci_ring_cmd_db(xhci);
 644
 645	spin_unlock_irqrestore(&xhci->lock, flags);
 646
 647	return 0;
 648}
 649
 650/*
 651 * Start the HC after it was halted.
 652 *
 653 * This function is called by the USB core when the HC driver is added.
 654 * Its opposite is xhci_stop().
 655 *
 656 * xhci_init() must be called once before this function can be called.
 657 * Reset the HC, enable device slot contexts, program DCBAAP, and
 658 * set command ring pointer and event ring pointer.
 659 *
 660 * Setup MSI-X vectors and enable interrupts.
 661 */
 662int xhci_run(struct usb_hcd *hcd)
 663{
 664	u32 temp;
 665	u64 temp_64;
 666	int ret;
 667	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 668
 669	/* Start the xHCI host controller running only after the USB 2.0 roothub
 670	 * is setup.
 671	 */
 672
 673	hcd->uses_new_polling = 1;
 674	if (!usb_hcd_is_primary_hcd(hcd))
 675		return xhci_run_finished(xhci);
 676
 677	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
 678
 679	ret = xhci_try_enable_msi(hcd);
 680	if (ret)
 681		return ret;
 682
 683	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
 684	temp_64 &= ~ERST_PTR_MASK;
 685	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 686			"ERST deq = 64'h%0lx", (long unsigned int) temp_64);
 687
 688	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 689			"// Set the interrupt modulation register");
 690	temp = readl(&xhci->ir_set->irq_control);
 691	temp &= ~ER_IRQ_INTERVAL_MASK;
 692	temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
 693	writel(temp, &xhci->ir_set->irq_control);
 694
 
 
 
 
 
 
 
 
 
 
 
 
 
 695	if (xhci->quirks & XHCI_NEC_HOST) {
 696		struct xhci_command *command;
 697
 698		command = xhci_alloc_command(xhci, false, GFP_KERNEL);
 699		if (!command)
 700			return -ENOMEM;
 701
 702		ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
 703				TRB_TYPE(TRB_NEC_GET_FW));
 704		if (ret)
 705			xhci_free_command(xhci, command);
 706	}
 707	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 708			"Finished %s for main hcd", __func__);
 709
 710	xhci_create_dbc_dev(xhci);
 711
 712	xhci_debugfs_init(xhci);
 713
 714	if (xhci_has_one_roothub(xhci))
 715		return xhci_run_finished(xhci);
 716
 717	set_bit(HCD_FLAG_DEFER_RH_REGISTER, &hcd->flags);
 718
 719	return 0;
 720}
 721EXPORT_SYMBOL_GPL(xhci_run);
 722
 723/*
 724 * Stop xHCI driver.
 725 *
 726 * This function is called by the USB core when the HC driver is removed.
 727 * Its opposite is xhci_run().
 728 *
 729 * Disable device contexts, disable IRQs, and quiesce the HC.
 730 * Reset the HC, finish any completed transactions, and cleanup memory.
 731 */
 732static void xhci_stop(struct usb_hcd *hcd)
 733{
 734	u32 temp;
 735	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 736
 737	mutex_lock(&xhci->mutex);
 738
 739	/* Only halt host and free memory after both hcds are removed */
 740	if (!usb_hcd_is_primary_hcd(hcd)) {
 741		mutex_unlock(&xhci->mutex);
 742		return;
 743	}
 744
 745	xhci_remove_dbc_dev(xhci);
 746
 747	spin_lock_irq(&xhci->lock);
 748	xhci->xhc_state |= XHCI_STATE_HALTED;
 749	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
 750	xhci_halt(xhci);
 751	xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
 752	spin_unlock_irq(&xhci->lock);
 753
 754	xhci_cleanup_msix(xhci);
 755
 756	/* Deleting Compliance Mode Recovery Timer */
 757	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
 758			(!(xhci_all_ports_seen_u0(xhci)))) {
 759		del_timer_sync(&xhci->comp_mode_recovery_timer);
 760		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 761				"%s: compliance mode recovery timer deleted",
 762				__func__);
 763	}
 764
 765	if (xhci->quirks & XHCI_AMD_PLL_FIX)
 766		usb_amd_dev_put();
 767
 768	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 769			"// Disabling event ring interrupts");
 770	temp = readl(&xhci->op_regs->status);
 771	writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
 772	temp = readl(&xhci->ir_set->irq_pending);
 773	writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
 774
 775	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
 776	xhci_mem_cleanup(xhci);
 777	xhci_debugfs_exit(xhci);
 778	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 779			"xhci_stop completed - status = %x",
 780			readl(&xhci->op_regs->status));
 781	mutex_unlock(&xhci->mutex);
 782}
 783
 784/*
 785 * Shutdown HC (not bus-specific)
 786 *
 787 * This is called when the machine is rebooting or halting.  We assume that the
 788 * machine will be powered off, and the HC's internal state will be reset.
 789 * Don't bother to free memory.
 790 *
 791 * This will only ever be called with the main usb_hcd (the USB3 roothub).
 792 */
 793void xhci_shutdown(struct usb_hcd *hcd)
 794{
 795	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 796
 797	if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
 798		usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
 799
 800	/* Don't poll the roothubs after shutdown. */
 801	xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
 802			__func__, hcd->self.busnum);
 803	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
 804	del_timer_sync(&hcd->rh_timer);
 805
 806	if (xhci->shared_hcd) {
 807		clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
 808		del_timer_sync(&xhci->shared_hcd->rh_timer);
 809	}
 810
 811	spin_lock_irq(&xhci->lock);
 812	xhci_halt(xhci);
 813
 814	/*
 815	 * Workaround for spurious wakeps at shutdown with HSW, and for boot
 816	 * firmware delay in ADL-P PCH if port are left in U3 at shutdown
 817	 */
 818	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP ||
 819	    xhci->quirks & XHCI_RESET_TO_DEFAULT)
 820		xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
 821
 822	spin_unlock_irq(&xhci->lock);
 823
 824	xhci_cleanup_msix(xhci);
 825
 826	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 827			"xhci_shutdown completed - status = %x",
 828			readl(&xhci->op_regs->status));
 
 
 
 
 829}
 830EXPORT_SYMBOL_GPL(xhci_shutdown);
 831
 832#ifdef CONFIG_PM
 833static void xhci_save_registers(struct xhci_hcd *xhci)
 834{
 835	xhci->s3.command = readl(&xhci->op_regs->command);
 836	xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
 837	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
 838	xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
 839	xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
 840	xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
 841	xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
 842	xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
 843	xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
 844}
 845
 846static void xhci_restore_registers(struct xhci_hcd *xhci)
 847{
 848	writel(xhci->s3.command, &xhci->op_regs->command);
 849	writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
 850	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
 851	writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
 852	writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
 853	xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
 854	xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
 855	writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
 856	writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
 857}
 858
 859static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
 860{
 861	u64	val_64;
 862
 863	/* step 2: initialize command ring buffer */
 864	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
 865	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
 866		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
 867				      xhci->cmd_ring->dequeue) &
 868		 (u64) ~CMD_RING_RSVD_BITS) |
 869		xhci->cmd_ring->cycle_state;
 870	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 871			"// Setting command ring address to 0x%llx",
 872			(long unsigned long) val_64);
 873	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
 874}
 875
 876/*
 877 * The whole command ring must be cleared to zero when we suspend the host.
 878 *
 879 * The host doesn't save the command ring pointer in the suspend well, so we
 880 * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
 881 * aligned, because of the reserved bits in the command ring dequeue pointer
 882 * register.  Therefore, we can't just set the dequeue pointer back in the
 883 * middle of the ring (TRBs are 16-byte aligned).
 884 */
 885static void xhci_clear_command_ring(struct xhci_hcd *xhci)
 886{
 887	struct xhci_ring *ring;
 888	struct xhci_segment *seg;
 889
 890	ring = xhci->cmd_ring;
 891	seg = ring->deq_seg;
 892	do {
 893		memset(seg->trbs, 0,
 894			sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
 895		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
 896			cpu_to_le32(~TRB_CYCLE);
 897		seg = seg->next;
 898	} while (seg != ring->deq_seg);
 899
 900	/* Reset the software enqueue and dequeue pointers */
 901	ring->deq_seg = ring->first_seg;
 902	ring->dequeue = ring->first_seg->trbs;
 903	ring->enq_seg = ring->deq_seg;
 904	ring->enqueue = ring->dequeue;
 905
 906	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
 907	/*
 908	 * Ring is now zeroed, so the HW should look for change of ownership
 909	 * when the cycle bit is set to 1.
 910	 */
 911	ring->cycle_state = 1;
 912
 913	/*
 914	 * Reset the hardware dequeue pointer.
 915	 * Yes, this will need to be re-written after resume, but we're paranoid
 916	 * and want to make sure the hardware doesn't access bogus memory
 917	 * because, say, the BIOS or an SMI started the host without changing
 918	 * the command ring pointers.
 919	 */
 920	xhci_set_cmd_ring_deq(xhci);
 921}
 922
 923/*
 924 * Disable port wake bits if do_wakeup is not set.
 925 *
 926 * Also clear a possible internal port wake state left hanging for ports that
 927 * detected termination but never successfully enumerated (trained to 0U).
 928 * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done
 929 * at enumeration clears this wake, force one here as well for unconnected ports
 930 */
 931
 932static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci,
 933				       struct xhci_hub *rhub,
 934				       bool do_wakeup)
 935{
 
 
 936	unsigned long flags;
 937	u32 t1, t2, portsc;
 938	int i;
 939
 940	spin_lock_irqsave(&xhci->lock, flags);
 941
 942	for (i = 0; i < rhub->num_ports; i++) {
 943		portsc = readl(rhub->ports[i]->addr);
 944		t1 = xhci_port_state_to_neutral(portsc);
 945		t2 = t1;
 946
 947		/* clear wake bits if do_wake is not set */
 948		if (!do_wakeup)
 949			t2 &= ~PORT_WAKE_BITS;
 950
 951		/* Don't touch csc bit if connected or connect change is set */
 952		if (!(portsc & (PORT_CSC | PORT_CONNECT)))
 953			t2 |= PORT_CSC;
 
 
 
 954
 
 
 
 
 
 
 
 
 955		if (t1 != t2) {
 956			writel(t2, rhub->ports[i]->addr);
 957			xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n",
 958				 rhub->hcd->self.busnum, i + 1, portsc, t2);
 
 959		}
 960	}
 961	spin_unlock_irqrestore(&xhci->lock, flags);
 962}
 963
 964static bool xhci_pending_portevent(struct xhci_hcd *xhci)
 965{
 966	struct xhci_port	**ports;
 967	int			port_index;
 968	u32			status;
 969	u32			portsc;
 970
 971	status = readl(&xhci->op_regs->status);
 972	if (status & STS_EINT)
 973		return true;
 974	/*
 975	 * Checking STS_EINT is not enough as there is a lag between a change
 976	 * bit being set and the Port Status Change Event that it generated
 977	 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
 978	 */
 979
 980	port_index = xhci->usb2_rhub.num_ports;
 981	ports = xhci->usb2_rhub.ports;
 982	while (port_index--) {
 983		portsc = readl(ports[port_index]->addr);
 984		if (portsc & PORT_CHANGE_MASK ||
 985		    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
 986			return true;
 987	}
 988	port_index = xhci->usb3_rhub.num_ports;
 989	ports = xhci->usb3_rhub.ports;
 990	while (port_index--) {
 991		portsc = readl(ports[port_index]->addr);
 992		if (portsc & PORT_CHANGE_MASK ||
 993		    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
 994			return true;
 995	}
 996	return false;
 997}
 998
 999/*
1000 * Stop HC (not bus-specific)
1001 *
1002 * This is called when the machine transition into S3/S4 mode.
1003 *
1004 */
1005int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
1006{
1007	int			rc = 0;
1008	unsigned int		delay = XHCI_MAX_HALT_USEC * 2;
1009	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
1010	u32			command;
1011	u32			res;
1012
1013	if (!hcd->state)
1014		return 0;
1015
1016	if (hcd->state != HC_STATE_SUSPENDED ||
1017	    (xhci->shared_hcd && xhci->shared_hcd->state != HC_STATE_SUSPENDED))
1018		return -EINVAL;
1019
1020	/* Clear root port wake on bits if wakeup not allowed. */
1021	xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup);
1022	xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup);
1023
1024	if (!HCD_HW_ACCESSIBLE(hcd))
1025		return 0;
1026
1027	xhci_dbc_suspend(xhci);
1028
 
 
 
 
1029	/* Don't poll the roothubs on bus suspend. */
1030	xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
1031		 __func__, hcd->self.busnum);
1032	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1033	del_timer_sync(&hcd->rh_timer);
1034	if (xhci->shared_hcd) {
1035		clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1036		del_timer_sync(&xhci->shared_hcd->rh_timer);
1037	}
1038
1039	if (xhci->quirks & XHCI_SUSPEND_DELAY)
1040		usleep_range(1000, 1500);
1041
1042	spin_lock_irq(&xhci->lock);
1043	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1044	if (xhci->shared_hcd)
1045		clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1046	/* step 1: stop endpoint */
1047	/* skipped assuming that port suspend has done */
1048
1049	/* step 2: clear Run/Stop bit */
1050	command = readl(&xhci->op_regs->command);
1051	command &= ~CMD_RUN;
1052	writel(command, &xhci->op_regs->command);
1053
1054	/* Some chips from Fresco Logic need an extraordinary delay */
1055	delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
1056
1057	if (xhci_handshake(&xhci->op_regs->status,
1058		      STS_HALT, STS_HALT, delay)) {
1059		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
1060		spin_unlock_irq(&xhci->lock);
1061		return -ETIMEDOUT;
1062	}
1063	xhci_clear_command_ring(xhci);
1064
1065	/* step 3: save registers */
1066	xhci_save_registers(xhci);
1067
1068	/* step 4: set CSS flag */
1069	command = readl(&xhci->op_regs->command);
1070	command |= CMD_CSS;
1071	writel(command, &xhci->op_regs->command);
1072	xhci->broken_suspend = 0;
1073	if (xhci_handshake(&xhci->op_regs->status,
1074				STS_SAVE, 0, 20 * 1000)) {
1075	/*
1076	 * AMD SNPS xHC 3.0 occasionally does not clear the
1077	 * SSS bit of USBSTS and when driver tries to poll
1078	 * to see if the xHC clears BIT(8) which never happens
1079	 * and driver assumes that controller is not responding
1080	 * and times out. To workaround this, its good to check
1081	 * if SRE and HCE bits are not set (as per xhci
1082	 * Section 5.4.2) and bypass the timeout.
1083	 */
1084		res = readl(&xhci->op_regs->status);
1085		if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
1086		    (((res & STS_SRE) == 0) &&
1087				((res & STS_HCE) == 0))) {
1088			xhci->broken_suspend = 1;
1089		} else {
1090			xhci_warn(xhci, "WARN: xHC save state timeout\n");
1091			spin_unlock_irq(&xhci->lock);
1092			return -ETIMEDOUT;
1093		}
1094	}
1095	spin_unlock_irq(&xhci->lock);
1096
1097	/*
1098	 * Deleting Compliance Mode Recovery Timer because the xHCI Host
1099	 * is about to be suspended.
1100	 */
1101	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1102			(!(xhci_all_ports_seen_u0(xhci)))) {
1103		del_timer_sync(&xhci->comp_mode_recovery_timer);
1104		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1105				"%s: compliance mode recovery timer deleted",
1106				__func__);
1107	}
1108
1109	/* step 5: remove core well power */
1110	/* synchronize irq when using MSI-X */
1111	xhci_msix_sync_irqs(xhci);
1112
1113	return rc;
1114}
1115EXPORT_SYMBOL_GPL(xhci_suspend);
1116
1117/*
1118 * start xHC (not bus-specific)
1119 *
1120 * This is called when the machine transition from S3/S4 mode.
1121 *
1122 */
1123int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
1124{
1125	u32			command, temp = 0;
1126	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
 
1127	int			retval = 0;
1128	bool			comp_timer_running = false;
1129	bool			pending_portevent = false;
1130	bool			reinit_xhc = false;
1131
1132	if (!hcd->state)
1133		return 0;
1134
1135	/* Wait a bit if either of the roothubs need to settle from the
1136	 * transition into bus suspend.
1137	 */
1138
1139	if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) ||
1140	    time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange))
1141		msleep(100);
1142
1143	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1144	if (xhci->shared_hcd)
1145		set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1146
1147	spin_lock_irq(&xhci->lock);
 
 
1148
1149	if (hibernated || xhci->quirks & XHCI_RESET_ON_RESUME || xhci->broken_suspend)
1150		reinit_xhc = true;
1151
1152	if (!reinit_xhc) {
1153		/*
1154		 * Some controllers might lose power during suspend, so wait
1155		 * for controller not ready bit to clear, just as in xHC init.
1156		 */
1157		retval = xhci_handshake(&xhci->op_regs->status,
1158					STS_CNR, 0, 10 * 1000 * 1000);
1159		if (retval) {
1160			xhci_warn(xhci, "Controller not ready at resume %d\n",
1161				  retval);
1162			spin_unlock_irq(&xhci->lock);
1163			return retval;
1164		}
1165		/* step 1: restore register */
1166		xhci_restore_registers(xhci);
1167		/* step 2: initialize command ring buffer */
1168		xhci_set_cmd_ring_deq(xhci);
1169		/* step 3: restore state and start state*/
1170		/* step 3: set CRS flag */
1171		command = readl(&xhci->op_regs->command);
1172		command |= CMD_CRS;
1173		writel(command, &xhci->op_regs->command);
1174		/*
1175		 * Some controllers take up to 55+ ms to complete the controller
1176		 * restore so setting the timeout to 100ms. Xhci specification
1177		 * doesn't mention any timeout value.
1178		 */
1179		if (xhci_handshake(&xhci->op_regs->status,
1180			      STS_RESTORE, 0, 100 * 1000)) {
1181			xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1182			spin_unlock_irq(&xhci->lock);
1183			return -ETIMEDOUT;
1184		}
 
1185	}
1186
1187	temp = readl(&xhci->op_regs->status);
 
1188
1189	/* re-initialize the HC on Restore Error, or Host Controller Error */
1190	if (temp & (STS_SRE | STS_HCE)) {
1191		reinit_xhc = true;
1192		if (!xhci->broken_suspend)
1193			xhci_warn(xhci, "xHC error in resume, USBSTS 0x%x, Reinit\n", temp);
1194	}
1195
1196	if (reinit_xhc) {
1197		if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1198				!(xhci_all_ports_seen_u0(xhci))) {
1199			del_timer_sync(&xhci->comp_mode_recovery_timer);
1200			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1201				"Compliance Mode Recovery Timer deleted!");
1202		}
1203
1204		/* Let the USB core know _both_ roothubs lost power. */
1205		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1206		if (xhci->shared_hcd)
1207			usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1208
1209		xhci_dbg(xhci, "Stop HCD\n");
1210		xhci_halt(xhci);
1211		xhci_zero_64b_regs(xhci);
1212		retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
1213		spin_unlock_irq(&xhci->lock);
1214		if (retval)
1215			return retval;
1216		xhci_cleanup_msix(xhci);
1217
1218		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1219		temp = readl(&xhci->op_regs->status);
1220		writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1221		temp = readl(&xhci->ir_set->irq_pending);
1222		writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1223
1224		xhci_dbg(xhci, "cleaning up memory\n");
1225		xhci_mem_cleanup(xhci);
1226		xhci_debugfs_exit(xhci);
1227		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1228			    readl(&xhci->op_regs->status));
1229
1230		/* USB core calls the PCI reinit and start functions twice:
1231		 * first with the primary HCD, and then with the secondary HCD.
1232		 * If we don't do the same, the host will never be started.
1233		 */
 
 
 
 
 
1234		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1235		retval = xhci_init(hcd);
1236		if (retval)
1237			return retval;
1238		comp_timer_running = true;
1239
1240		xhci_dbg(xhci, "Start the primary HCD\n");
1241		retval = xhci_run(hcd);
1242		if (!retval && xhci->shared_hcd) {
1243			xhci_dbg(xhci, "Start the secondary HCD\n");
1244			retval = xhci_run(xhci->shared_hcd);
1245		}
1246
1247		hcd->state = HC_STATE_SUSPENDED;
1248		if (xhci->shared_hcd)
1249			xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1250		goto done;
1251	}
1252
1253	/* step 4: set Run/Stop bit */
1254	command = readl(&xhci->op_regs->command);
1255	command |= CMD_RUN;
1256	writel(command, &xhci->op_regs->command);
1257	xhci_handshake(&xhci->op_regs->status, STS_HALT,
1258		  0, 250 * 1000);
1259
1260	/* step 5: walk topology and initialize portsc,
1261	 * portpmsc and portli
1262	 */
1263	/* this is done in bus_resume */
1264
1265	/* step 6: restart each of the previously
1266	 * Running endpoints by ringing their doorbells
1267	 */
1268
1269	spin_unlock_irq(&xhci->lock);
1270
1271	xhci_dbc_resume(xhci);
1272
1273 done:
1274	if (retval == 0) {
1275		/*
1276		 * Resume roothubs only if there are pending events.
1277		 * USB 3 devices resend U3 LFPS wake after a 100ms delay if
1278		 * the first wake signalling failed, give it that chance.
1279		 */
1280		pending_portevent = xhci_pending_portevent(xhci);
1281		if (!pending_portevent) {
1282			msleep(120);
1283			pending_portevent = xhci_pending_portevent(xhci);
1284		}
1285
1286		if (pending_portevent) {
1287			if (xhci->shared_hcd)
1288				usb_hcd_resume_root_hub(xhci->shared_hcd);
1289			usb_hcd_resume_root_hub(hcd);
1290		}
1291	}
 
1292	/*
1293	 * If system is subject to the Quirk, Compliance Mode Timer needs to
1294	 * be re-initialized Always after a system resume. Ports are subject
1295	 * to suffer the Compliance Mode issue again. It doesn't matter if
1296	 * ports have entered previously to U0 before system's suspension.
1297	 */
1298	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1299		compliance_mode_recovery_timer_init(xhci);
1300
1301	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1302		usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1303
1304	/* Re-enable port polling. */
1305	xhci_dbg(xhci, "%s: starting usb%d port polling.\n",
1306		 __func__, hcd->self.busnum);
1307	if (xhci->shared_hcd) {
1308		set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1309		usb_hcd_poll_rh_status(xhci->shared_hcd);
1310	}
1311	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1312	usb_hcd_poll_rh_status(hcd);
1313
1314	return retval;
1315}
1316EXPORT_SYMBOL_GPL(xhci_resume);
1317#endif	/* CONFIG_PM */
1318
1319/*-------------------------------------------------------------------------*/
1320
1321static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb)
1322{
1323	void *temp;
1324	int ret = 0;
1325	unsigned int buf_len;
1326	enum dma_data_direction dir;
1327
1328	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1329	buf_len = urb->transfer_buffer_length;
1330
1331	temp = kzalloc_node(buf_len, GFP_ATOMIC,
1332			    dev_to_node(hcd->self.sysdev));
1333
1334	if (usb_urb_dir_out(urb))
1335		sg_pcopy_to_buffer(urb->sg, urb->num_sgs,
1336				   temp, buf_len, 0);
1337
1338	urb->transfer_buffer = temp;
1339	urb->transfer_dma = dma_map_single(hcd->self.sysdev,
1340					   urb->transfer_buffer,
1341					   urb->transfer_buffer_length,
1342					   dir);
1343
1344	if (dma_mapping_error(hcd->self.sysdev,
1345			      urb->transfer_dma)) {
1346		ret = -EAGAIN;
1347		kfree(temp);
1348	} else {
1349		urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1350	}
1351
1352	return ret;
1353}
1354
1355static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd,
1356					  struct urb *urb)
1357{
1358	bool ret = false;
1359	unsigned int i;
1360	unsigned int len = 0;
1361	unsigned int trb_size;
1362	unsigned int max_pkt;
1363	struct scatterlist *sg;
1364	struct scatterlist *tail_sg;
1365
1366	tail_sg = urb->sg;
1367	max_pkt = usb_endpoint_maxp(&urb->ep->desc);
1368
1369	if (!urb->num_sgs)
1370		return ret;
1371
1372	if (urb->dev->speed >= USB_SPEED_SUPER)
1373		trb_size = TRB_CACHE_SIZE_SS;
1374	else
1375		trb_size = TRB_CACHE_SIZE_HS;
1376
1377	if (urb->transfer_buffer_length != 0 &&
1378	    !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1379		for_each_sg(urb->sg, sg, urb->num_sgs, i) {
1380			len = len + sg->length;
1381			if (i > trb_size - 2) {
1382				len = len - tail_sg->length;
1383				if (len < max_pkt) {
1384					ret = true;
1385					break;
1386				}
1387
1388				tail_sg = sg_next(tail_sg);
1389			}
1390		}
1391	}
1392	return ret;
1393}
1394
1395static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb)
1396{
1397	unsigned int len;
1398	unsigned int buf_len;
1399	enum dma_data_direction dir;
1400
1401	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1402
1403	buf_len = urb->transfer_buffer_length;
1404
1405	if (IS_ENABLED(CONFIG_HAS_DMA) &&
1406	    (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1407		dma_unmap_single(hcd->self.sysdev,
1408				 urb->transfer_dma,
1409				 urb->transfer_buffer_length,
1410				 dir);
1411
1412	if (usb_urb_dir_in(urb)) {
1413		len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs,
1414					   urb->transfer_buffer,
1415					   buf_len,
1416					   0);
1417		if (len != buf_len) {
1418			xhci_dbg(hcd_to_xhci(hcd),
1419				 "Copy from tmp buf to urb sg list failed\n");
1420			urb->actual_length = len;
1421		}
1422	}
1423	urb->transfer_flags &= ~URB_DMA_MAP_SINGLE;
1424	kfree(urb->transfer_buffer);
1425	urb->transfer_buffer = NULL;
1426}
1427
1428/*
1429 * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT),
1430 * we'll copy the actual data into the TRB address register. This is limited to
1431 * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize
1432 * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed.
1433 */
1434static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1435				gfp_t mem_flags)
1436{
1437	struct xhci_hcd *xhci;
1438
1439	xhci = hcd_to_xhci(hcd);
1440
1441	if (xhci_urb_suitable_for_idt(urb))
1442		return 0;
1443
1444	if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) {
1445		if (xhci_urb_temp_buffer_required(hcd, urb))
1446			return xhci_map_temp_buffer(hcd, urb);
1447	}
1448	return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1449}
1450
1451static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1452{
1453	struct xhci_hcd *xhci;
1454	bool unmap_temp_buf = false;
1455
1456	xhci = hcd_to_xhci(hcd);
1457
1458	if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1459		unmap_temp_buf = true;
1460
1461	if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf)
1462		xhci_unmap_temp_buf(hcd, urb);
1463	else
1464		usb_hcd_unmap_urb_for_dma(hcd, urb);
1465}
1466
1467/**
1468 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1469 * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1470 * value to right shift 1 for the bitmask.
1471 *
1472 * Index  = (epnum * 2) + direction - 1,
1473 * where direction = 0 for OUT, 1 for IN.
1474 * For control endpoints, the IN index is used (OUT index is unused), so
1475 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1476 */
1477unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1478{
1479	unsigned int index;
1480	if (usb_endpoint_xfer_control(desc))
1481		index = (unsigned int) (usb_endpoint_num(desc)*2);
1482	else
1483		index = (unsigned int) (usb_endpoint_num(desc)*2) +
1484			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1485	return index;
1486}
1487EXPORT_SYMBOL_GPL(xhci_get_endpoint_index);
1488
1489/* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1490 * address from the XHCI endpoint index.
1491 */
1492static unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1493{
1494	unsigned int number = DIV_ROUND_UP(ep_index, 2);
1495	unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1496	return direction | number;
1497}
1498
1499/* Find the flag for this endpoint (for use in the control context).  Use the
1500 * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1501 * bit 1, etc.
1502 */
1503static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1504{
1505	return 1 << (xhci_get_endpoint_index(desc) + 1);
1506}
1507
 
 
 
 
 
 
 
 
 
1508/* Compute the last valid endpoint context index.  Basically, this is the
1509 * endpoint index plus one.  For slot contexts with more than valid endpoint,
1510 * we find the most significant bit set in the added contexts flags.
1511 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1512 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1513 */
1514unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1515{
1516	return fls(added_ctxs) - 1;
1517}
1518
1519/* Returns 1 if the arguments are OK;
1520 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1521 */
1522static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1523		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1524		const char *func) {
1525	struct xhci_hcd	*xhci;
1526	struct xhci_virt_device	*virt_dev;
1527
1528	if (!hcd || (check_ep && !ep) || !udev) {
1529		pr_debug("xHCI %s called with invalid args\n", func);
1530		return -EINVAL;
1531	}
1532	if (!udev->parent) {
1533		pr_debug("xHCI %s called for root hub\n", func);
1534		return 0;
1535	}
1536
1537	xhci = hcd_to_xhci(hcd);
1538	if (check_virt_dev) {
1539		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1540			xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1541					func);
1542			return -EINVAL;
1543		}
1544
1545		virt_dev = xhci->devs[udev->slot_id];
1546		if (virt_dev->udev != udev) {
1547			xhci_dbg(xhci, "xHCI %s called with udev and "
1548					  "virt_dev does not match\n", func);
1549			return -EINVAL;
1550		}
1551	}
1552
1553	if (xhci->xhc_state & XHCI_STATE_HALTED)
1554		return -ENODEV;
1555
1556	return 1;
1557}
1558
1559static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1560		struct usb_device *udev, struct xhci_command *command,
1561		bool ctx_change, bool must_succeed);
1562
1563/*
1564 * Full speed devices may have a max packet size greater than 8 bytes, but the
1565 * USB core doesn't know that until it reads the first 8 bytes of the
1566 * descriptor.  If the usb_device's max packet size changes after that point,
1567 * we need to issue an evaluate context command and wait on it.
1568 */
1569static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1570		unsigned int ep_index, struct urb *urb, gfp_t mem_flags)
1571{
1572	struct xhci_container_ctx *out_ctx;
1573	struct xhci_input_control_ctx *ctrl_ctx;
1574	struct xhci_ep_ctx *ep_ctx;
1575	struct xhci_command *command;
1576	int max_packet_size;
1577	int hw_max_packet_size;
1578	int ret = 0;
1579
1580	out_ctx = xhci->devs[slot_id]->out_ctx;
1581	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1582	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1583	max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1584	if (hw_max_packet_size != max_packet_size) {
1585		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1586				"Max Packet Size for ep 0 changed.");
1587		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1588				"Max packet size in usb_device = %d",
1589				max_packet_size);
1590		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1591				"Max packet size in xHCI HW = %d",
1592				hw_max_packet_size);
1593		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1594				"Issuing evaluate context command.");
1595
1596		/* Set up the input context flags for the command */
1597		/* FIXME: This won't work if a non-default control endpoint
1598		 * changes max packet sizes.
1599		 */
1600
1601		command = xhci_alloc_command(xhci, true, mem_flags);
1602		if (!command)
1603			return -ENOMEM;
1604
1605		command->in_ctx = xhci->devs[slot_id]->in_ctx;
1606		ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1607		if (!ctrl_ctx) {
1608			xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1609					__func__);
1610			ret = -ENOMEM;
1611			goto command_cleanup;
1612		}
1613		/* Set up the modified control endpoint 0 */
1614		xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1615				xhci->devs[slot_id]->out_ctx, ep_index);
1616
1617		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1618		ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */
1619		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1620		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1621
1622		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1623		ctrl_ctx->drop_flags = 0;
1624
1625		ret = xhci_configure_endpoint(xhci, urb->dev, command,
1626				true, false);
1627
1628		/* Clean up the input context for later use by bandwidth
1629		 * functions.
1630		 */
1631		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1632command_cleanup:
1633		kfree(command->completion);
1634		kfree(command);
1635	}
1636	return ret;
1637}
1638
1639/*
1640 * non-error returns are a promise to giveback() the urb later
1641 * we drop ownership so next owner (or urb unlink) can get it
1642 */
1643static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1644{
1645	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1646	unsigned long flags;
1647	int ret = 0;
1648	unsigned int slot_id, ep_index;
1649	unsigned int *ep_state;
1650	struct urb_priv	*urb_priv;
1651	int num_tds;
1652
1653	if (!urb)
 
1654		return -EINVAL;
1655	ret = xhci_check_args(hcd, urb->dev, urb->ep,
1656					true, true, __func__);
1657	if (ret <= 0)
1658		return ret ? ret : -EINVAL;
1659
1660	slot_id = urb->dev->slot_id;
1661	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1662	ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1663
1664	if (!HCD_HW_ACCESSIBLE(hcd))
 
 
1665		return -ESHUTDOWN;
1666
1667	if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) {
1668		xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n");
1669		return -ENODEV;
1670	}
1671
1672	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1673		num_tds = urb->number_of_packets;
1674	else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1675	    urb->transfer_buffer_length > 0 &&
1676	    urb->transfer_flags & URB_ZERO_PACKET &&
1677	    !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1678		num_tds = 2;
1679	else
1680		num_tds = 1;
1681
1682	urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags);
1683	if (!urb_priv)
1684		return -ENOMEM;
1685
1686	urb_priv->num_tds = num_tds;
1687	urb_priv->num_tds_done = 0;
1688	urb->hcpriv = urb_priv;
1689
1690	trace_xhci_urb_enqueue(urb);
1691
1692	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1693		/* Check to see if the max packet size for the default control
1694		 * endpoint changed during FS device enumeration
1695		 */
1696		if (urb->dev->speed == USB_SPEED_FULL) {
1697			ret = xhci_check_maxpacket(xhci, slot_id,
1698					ep_index, urb, mem_flags);
1699			if (ret < 0) {
1700				xhci_urb_free_priv(urb_priv);
1701				urb->hcpriv = NULL;
1702				return ret;
1703			}
1704		}
1705	}
1706
1707	spin_lock_irqsave(&xhci->lock, flags);
1708
1709	if (xhci->xhc_state & XHCI_STATE_DYING) {
1710		xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1711			 urb->ep->desc.bEndpointAddress, urb);
1712		ret = -ESHUTDOWN;
1713		goto free_priv;
1714	}
1715	if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1716		xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1717			  *ep_state);
1718		ret = -EINVAL;
1719		goto free_priv;
1720	}
1721	if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1722		xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1723		ret = -EINVAL;
1724		goto free_priv;
1725	}
1726
1727	switch (usb_endpoint_type(&urb->ep->desc)) {
1728
1729	case USB_ENDPOINT_XFER_CONTROL:
1730		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1731					 slot_id, ep_index);
1732		break;
1733	case USB_ENDPOINT_XFER_BULK:
1734		ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1735					 slot_id, ep_index);
1736		break;
1737	case USB_ENDPOINT_XFER_INT:
1738		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1739				slot_id, ep_index);
1740		break;
1741	case USB_ENDPOINT_XFER_ISOC:
1742		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1743				slot_id, ep_index);
1744	}
1745
1746	if (ret) {
1747free_priv:
1748		xhci_urb_free_priv(urb_priv);
1749		urb->hcpriv = NULL;
1750	}
1751	spin_unlock_irqrestore(&xhci->lock, flags);
1752	return ret;
1753}
1754
1755/*
1756 * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1757 * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1758 * should pick up where it left off in the TD, unless a Set Transfer Ring
1759 * Dequeue Pointer is issued.
1760 *
1761 * The TRBs that make up the buffers for the canceled URB will be "removed" from
1762 * the ring.  Since the ring is a contiguous structure, they can't be physically
1763 * removed.  Instead, there are two options:
1764 *
1765 *  1) If the HC is in the middle of processing the URB to be canceled, we
1766 *     simply move the ring's dequeue pointer past those TRBs using the Set
1767 *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1768 *     when drivers timeout on the last submitted URB and attempt to cancel.
1769 *
1770 *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1771 *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1772 *     HC will need to invalidate the any TRBs it has cached after the stop
1773 *     endpoint command, as noted in the xHCI 0.95 errata.
1774 *
1775 *  3) The TD may have completed by the time the Stop Endpoint Command
1776 *     completes, so software needs to handle that case too.
1777 *
1778 * This function should protect against the TD enqueueing code ringing the
1779 * doorbell while this code is waiting for a Stop Endpoint command to complete.
1780 * It also needs to account for multiple cancellations on happening at the same
1781 * time for the same endpoint.
1782 *
1783 * Note that this function can be called in any context, or so says
1784 * usb_hcd_unlink_urb()
1785 */
1786static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1787{
1788	unsigned long flags;
1789	int ret, i;
1790	u32 temp;
1791	struct xhci_hcd *xhci;
1792	struct urb_priv	*urb_priv;
1793	struct xhci_td *td;
1794	unsigned int ep_index;
1795	struct xhci_ring *ep_ring;
1796	struct xhci_virt_ep *ep;
1797	struct xhci_command *command;
1798	struct xhci_virt_device *vdev;
1799
1800	xhci = hcd_to_xhci(hcd);
1801	spin_lock_irqsave(&xhci->lock, flags);
1802
1803	trace_xhci_urb_dequeue(urb);
1804
1805	/* Make sure the URB hasn't completed or been unlinked already */
1806	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1807	if (ret)
1808		goto done;
1809
1810	/* give back URB now if we can't queue it for cancel */
1811	vdev = xhci->devs[urb->dev->slot_id];
1812	urb_priv = urb->hcpriv;
1813	if (!vdev || !urb_priv)
1814		goto err_giveback;
1815
1816	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1817	ep = &vdev->eps[ep_index];
1818	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1819	if (!ep || !ep_ring)
1820		goto err_giveback;
1821
1822	/* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1823	temp = readl(&xhci->op_regs->status);
1824	if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1825		xhci_hc_died(xhci);
1826		goto done;
1827	}
1828
1829	/*
1830	 * check ring is not re-allocated since URB was enqueued. If it is, then
1831	 * make sure none of the ring related pointers in this URB private data
1832	 * are touched, such as td_list, otherwise we overwrite freed data
1833	 */
1834	if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1835		xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1836		for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1837			td = &urb_priv->td[i];
1838			if (!list_empty(&td->cancelled_td_list))
1839				list_del_init(&td->cancelled_td_list);
1840		}
1841		goto err_giveback;
1842	}
1843
1844	if (xhci->xhc_state & XHCI_STATE_HALTED) {
1845		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1846				"HC halted, freeing TD manually.");
1847		for (i = urb_priv->num_tds_done;
1848		     i < urb_priv->num_tds;
1849		     i++) {
1850			td = &urb_priv->td[i];
1851			if (!list_empty(&td->td_list))
1852				list_del_init(&td->td_list);
1853			if (!list_empty(&td->cancelled_td_list))
1854				list_del_init(&td->cancelled_td_list);
1855		}
1856		goto err_giveback;
1857	}
1858
1859	i = urb_priv->num_tds_done;
1860	if (i < urb_priv->num_tds)
1861		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1862				"Cancel URB %p, dev %s, ep 0x%x, "
1863				"starting at offset 0x%llx",
1864				urb, urb->dev->devpath,
1865				urb->ep->desc.bEndpointAddress,
1866				(unsigned long long) xhci_trb_virt_to_dma(
1867					urb_priv->td[i].start_seg,
1868					urb_priv->td[i].first_trb));
1869
1870	for (; i < urb_priv->num_tds; i++) {
1871		td = &urb_priv->td[i];
1872		/* TD can already be on cancelled list if ep halted on it */
1873		if (list_empty(&td->cancelled_td_list)) {
1874			td->cancel_status = TD_DIRTY;
1875			list_add_tail(&td->cancelled_td_list,
1876				      &ep->cancelled_td_list);
1877		}
1878	}
1879
1880	/* Queue a stop endpoint command, but only if this is
1881	 * the first cancellation to be handled.
1882	 */
1883	if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1884		command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1885		if (!command) {
1886			ret = -ENOMEM;
1887			goto done;
1888		}
1889		ep->ep_state |= EP_STOP_CMD_PENDING;
 
 
 
1890		xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1891					 ep_index, 0);
1892		xhci_ring_cmd_db(xhci);
1893	}
1894done:
1895	spin_unlock_irqrestore(&xhci->lock, flags);
1896	return ret;
1897
1898err_giveback:
1899	if (urb_priv)
1900		xhci_urb_free_priv(urb_priv);
1901	usb_hcd_unlink_urb_from_ep(hcd, urb);
1902	spin_unlock_irqrestore(&xhci->lock, flags);
1903	usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1904	return ret;
1905}
1906
1907/* Drop an endpoint from a new bandwidth configuration for this device.
1908 * Only one call to this function is allowed per endpoint before
1909 * check_bandwidth() or reset_bandwidth() must be called.
1910 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1911 * add the endpoint to the schedule with possibly new parameters denoted by a
1912 * different endpoint descriptor in usb_host_endpoint.
1913 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1914 * not allowed.
1915 *
1916 * The USB core will not allow URBs to be queued to an endpoint that is being
1917 * disabled, so there's no need for mutual exclusion to protect
1918 * the xhci->devs[slot_id] structure.
1919 */
1920int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1921		       struct usb_host_endpoint *ep)
1922{
1923	struct xhci_hcd *xhci;
1924	struct xhci_container_ctx *in_ctx, *out_ctx;
1925	struct xhci_input_control_ctx *ctrl_ctx;
1926	unsigned int ep_index;
1927	struct xhci_ep_ctx *ep_ctx;
1928	u32 drop_flag;
1929	u32 new_add_flags, new_drop_flags;
1930	int ret;
1931
1932	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1933	if (ret <= 0)
1934		return ret;
1935	xhci = hcd_to_xhci(hcd);
1936	if (xhci->xhc_state & XHCI_STATE_DYING)
1937		return -ENODEV;
1938
1939	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1940	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1941	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1942		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1943				__func__, drop_flag);
1944		return 0;
1945	}
1946
1947	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1948	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1949	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1950	if (!ctrl_ctx) {
1951		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1952				__func__);
1953		return 0;
1954	}
1955
1956	ep_index = xhci_get_endpoint_index(&ep->desc);
1957	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1958	/* If the HC already knows the endpoint is disabled,
1959	 * or the HCD has noted it is disabled, ignore this request
1960	 */
1961	if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1962	    le32_to_cpu(ctrl_ctx->drop_flags) &
1963	    xhci_get_endpoint_flag(&ep->desc)) {
1964		/* Do not warn when called after a usb_device_reset */
1965		if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1966			xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1967				  __func__, ep);
1968		return 0;
1969	}
1970
1971	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1972	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1973
1974	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1975	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1976
1977	xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1978
1979	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1980
 
 
 
1981	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1982			(unsigned int) ep->desc.bEndpointAddress,
1983			udev->slot_id,
1984			(unsigned int) new_drop_flags,
1985			(unsigned int) new_add_flags);
1986	return 0;
1987}
1988EXPORT_SYMBOL_GPL(xhci_drop_endpoint);
1989
1990/* Add an endpoint to a new possible bandwidth configuration for this device.
1991 * Only one call to this function is allowed per endpoint before
1992 * check_bandwidth() or reset_bandwidth() must be called.
1993 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1994 * add the endpoint to the schedule with possibly new parameters denoted by a
1995 * different endpoint descriptor in usb_host_endpoint.
1996 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1997 * not allowed.
1998 *
1999 * The USB core will not allow URBs to be queued to an endpoint until the
2000 * configuration or alt setting is installed in the device, so there's no need
2001 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
2002 */
2003int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
2004		      struct usb_host_endpoint *ep)
2005{
2006	struct xhci_hcd *xhci;
2007	struct xhci_container_ctx *in_ctx;
2008	unsigned int ep_index;
2009	struct xhci_input_control_ctx *ctrl_ctx;
2010	struct xhci_ep_ctx *ep_ctx;
2011	u32 added_ctxs;
2012	u32 new_add_flags, new_drop_flags;
2013	struct xhci_virt_device *virt_dev;
2014	int ret = 0;
2015
2016	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
2017	if (ret <= 0) {
2018		/* So we won't queue a reset ep command for a root hub */
2019		ep->hcpriv = NULL;
2020		return ret;
2021	}
2022	xhci = hcd_to_xhci(hcd);
2023	if (xhci->xhc_state & XHCI_STATE_DYING)
2024		return -ENODEV;
2025
2026	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
2027	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
2028		/* FIXME when we have to issue an evaluate endpoint command to
2029		 * deal with ep0 max packet size changing once we get the
2030		 * descriptors
2031		 */
2032		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
2033				__func__, added_ctxs);
2034		return 0;
2035	}
2036
2037	virt_dev = xhci->devs[udev->slot_id];
2038	in_ctx = virt_dev->in_ctx;
2039	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2040	if (!ctrl_ctx) {
2041		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2042				__func__);
2043		return 0;
2044	}
2045
2046	ep_index = xhci_get_endpoint_index(&ep->desc);
2047	/* If this endpoint is already in use, and the upper layers are trying
2048	 * to add it again without dropping it, reject the addition.
2049	 */
2050	if (virt_dev->eps[ep_index].ring &&
2051			!(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
2052		xhci_warn(xhci, "Trying to add endpoint 0x%x "
2053				"without dropping it.\n",
2054				(unsigned int) ep->desc.bEndpointAddress);
2055		return -EINVAL;
2056	}
2057
2058	/* If the HCD has already noted the endpoint is enabled,
2059	 * ignore this request.
2060	 */
2061	if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
2062		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
2063				__func__, ep);
2064		return 0;
2065	}
2066
2067	/*
2068	 * Configuration and alternate setting changes must be done in
2069	 * process context, not interrupt context (or so documenation
2070	 * for usb_set_interface() and usb_set_configuration() claim).
2071	 */
2072	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
2073		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
2074				__func__, ep->desc.bEndpointAddress);
2075		return -ENOMEM;
2076	}
2077
 
 
 
 
 
 
 
 
 
2078	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
2079	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
2080
2081	/* If xhci_endpoint_disable() was called for this endpoint, but the
2082	 * xHC hasn't been notified yet through the check_bandwidth() call,
2083	 * this re-adds a new state for the endpoint from the new endpoint
2084	 * descriptors.  We must drop and re-add this endpoint, so we leave the
2085	 * drop flags alone.
2086	 */
2087	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
2088
2089	/* Store the usb_device pointer for later use */
2090	ep->hcpriv = udev;
2091
2092	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
2093	trace_xhci_add_endpoint(ep_ctx);
2094
 
 
2095	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
2096			(unsigned int) ep->desc.bEndpointAddress,
2097			udev->slot_id,
2098			(unsigned int) new_drop_flags,
2099			(unsigned int) new_add_flags);
2100	return 0;
2101}
2102EXPORT_SYMBOL_GPL(xhci_add_endpoint);
2103
2104static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
2105{
2106	struct xhci_input_control_ctx *ctrl_ctx;
2107	struct xhci_ep_ctx *ep_ctx;
2108	struct xhci_slot_ctx *slot_ctx;
2109	int i;
2110
2111	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
2112	if (!ctrl_ctx) {
2113		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2114				__func__);
2115		return;
2116	}
2117
2118	/* When a device's add flag and drop flag are zero, any subsequent
2119	 * configure endpoint command will leave that endpoint's state
2120	 * untouched.  Make sure we don't leave any old state in the input
2121	 * endpoint contexts.
2122	 */
2123	ctrl_ctx->drop_flags = 0;
2124	ctrl_ctx->add_flags = 0;
2125	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2126	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2127	/* Endpoint 0 is always valid */
2128	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
2129	for (i = 1; i < 31; i++) {
2130		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
2131		ep_ctx->ep_info = 0;
2132		ep_ctx->ep_info2 = 0;
2133		ep_ctx->deq = 0;
2134		ep_ctx->tx_info = 0;
2135	}
2136}
2137
2138static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
2139		struct usb_device *udev, u32 *cmd_status)
2140{
2141	int ret;
2142
2143	switch (*cmd_status) {
2144	case COMP_COMMAND_ABORTED:
2145	case COMP_COMMAND_RING_STOPPED:
2146		xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
2147		ret = -ETIME;
2148		break;
2149	case COMP_RESOURCE_ERROR:
2150		dev_warn(&udev->dev,
2151			 "Not enough host controller resources for new device state.\n");
2152		ret = -ENOMEM;
2153		/* FIXME: can we allocate more resources for the HC? */
2154		break;
2155	case COMP_BANDWIDTH_ERROR:
2156	case COMP_SECONDARY_BANDWIDTH_ERROR:
2157		dev_warn(&udev->dev,
2158			 "Not enough bandwidth for new device state.\n");
2159		ret = -ENOSPC;
2160		/* FIXME: can we go back to the old state? */
2161		break;
2162	case COMP_TRB_ERROR:
2163		/* the HCD set up something wrong */
2164		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
2165				"add flag = 1, "
2166				"and endpoint is not disabled.\n");
2167		ret = -EINVAL;
2168		break;
2169	case COMP_INCOMPATIBLE_DEVICE_ERROR:
2170		dev_warn(&udev->dev,
2171			 "ERROR: Incompatible device for endpoint configure command.\n");
2172		ret = -ENODEV;
2173		break;
2174	case COMP_SUCCESS:
2175		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2176				"Successful Endpoint Configure command");
2177		ret = 0;
2178		break;
2179	default:
2180		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2181				*cmd_status);
2182		ret = -EINVAL;
2183		break;
2184	}
2185	return ret;
2186}
2187
2188static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
2189		struct usb_device *udev, u32 *cmd_status)
2190{
2191	int ret;
2192
2193	switch (*cmd_status) {
2194	case COMP_COMMAND_ABORTED:
2195	case COMP_COMMAND_RING_STOPPED:
2196		xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
2197		ret = -ETIME;
2198		break;
2199	case COMP_PARAMETER_ERROR:
2200		dev_warn(&udev->dev,
2201			 "WARN: xHCI driver setup invalid evaluate context command.\n");
2202		ret = -EINVAL;
2203		break;
2204	case COMP_SLOT_NOT_ENABLED_ERROR:
2205		dev_warn(&udev->dev,
2206			"WARN: slot not enabled for evaluate context command.\n");
2207		ret = -EINVAL;
2208		break;
2209	case COMP_CONTEXT_STATE_ERROR:
2210		dev_warn(&udev->dev,
2211			"WARN: invalid context state for evaluate context command.\n");
2212		ret = -EINVAL;
2213		break;
2214	case COMP_INCOMPATIBLE_DEVICE_ERROR:
2215		dev_warn(&udev->dev,
2216			"ERROR: Incompatible device for evaluate context command.\n");
2217		ret = -ENODEV;
2218		break;
2219	case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2220		/* Max Exit Latency too large error */
2221		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2222		ret = -EINVAL;
2223		break;
2224	case COMP_SUCCESS:
2225		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2226				"Successful evaluate context command");
2227		ret = 0;
2228		break;
2229	default:
2230		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2231			*cmd_status);
2232		ret = -EINVAL;
2233		break;
2234	}
2235	return ret;
2236}
2237
2238static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2239		struct xhci_input_control_ctx *ctrl_ctx)
2240{
2241	u32 valid_add_flags;
2242	u32 valid_drop_flags;
2243
2244	/* Ignore the slot flag (bit 0), and the default control endpoint flag
2245	 * (bit 1).  The default control endpoint is added during the Address
2246	 * Device command and is never removed until the slot is disabled.
2247	 */
2248	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2249	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2250
2251	/* Use hweight32 to count the number of ones in the add flags, or
2252	 * number of endpoints added.  Don't count endpoints that are changed
2253	 * (both added and dropped).
2254	 */
2255	return hweight32(valid_add_flags) -
2256		hweight32(valid_add_flags & valid_drop_flags);
2257}
2258
2259static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2260		struct xhci_input_control_ctx *ctrl_ctx)
2261{
2262	u32 valid_add_flags;
2263	u32 valid_drop_flags;
2264
2265	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2266	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2267
2268	return hweight32(valid_drop_flags) -
2269		hweight32(valid_add_flags & valid_drop_flags);
2270}
2271
2272/*
2273 * We need to reserve the new number of endpoints before the configure endpoint
2274 * command completes.  We can't subtract the dropped endpoints from the number
2275 * of active endpoints until the command completes because we can oversubscribe
2276 * the host in this case:
2277 *
2278 *  - the first configure endpoint command drops more endpoints than it adds
2279 *  - a second configure endpoint command that adds more endpoints is queued
2280 *  - the first configure endpoint command fails, so the config is unchanged
2281 *  - the second command may succeed, even though there isn't enough resources
2282 *
2283 * Must be called with xhci->lock held.
2284 */
2285static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2286		struct xhci_input_control_ctx *ctrl_ctx)
2287{
2288	u32 added_eps;
2289
2290	added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2291	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2292		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2293				"Not enough ep ctxs: "
2294				"%u active, need to add %u, limit is %u.",
2295				xhci->num_active_eps, added_eps,
2296				xhci->limit_active_eps);
2297		return -ENOMEM;
2298	}
2299	xhci->num_active_eps += added_eps;
2300	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2301			"Adding %u ep ctxs, %u now active.", added_eps,
2302			xhci->num_active_eps);
2303	return 0;
2304}
2305
2306/*
2307 * The configure endpoint was failed by the xHC for some other reason, so we
2308 * need to revert the resources that failed configuration would have used.
2309 *
2310 * Must be called with xhci->lock held.
2311 */
2312static void xhci_free_host_resources(struct xhci_hcd *xhci,
2313		struct xhci_input_control_ctx *ctrl_ctx)
2314{
2315	u32 num_failed_eps;
2316
2317	num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2318	xhci->num_active_eps -= num_failed_eps;
2319	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2320			"Removing %u failed ep ctxs, %u now active.",
2321			num_failed_eps,
2322			xhci->num_active_eps);
2323}
2324
2325/*
2326 * Now that the command has completed, clean up the active endpoint count by
2327 * subtracting out the endpoints that were dropped (but not changed).
2328 *
2329 * Must be called with xhci->lock held.
2330 */
2331static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2332		struct xhci_input_control_ctx *ctrl_ctx)
2333{
2334	u32 num_dropped_eps;
2335
2336	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2337	xhci->num_active_eps -= num_dropped_eps;
2338	if (num_dropped_eps)
2339		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2340				"Removing %u dropped ep ctxs, %u now active.",
2341				num_dropped_eps,
2342				xhci->num_active_eps);
2343}
2344
2345static unsigned int xhci_get_block_size(struct usb_device *udev)
2346{
2347	switch (udev->speed) {
2348	case USB_SPEED_LOW:
2349	case USB_SPEED_FULL:
2350		return FS_BLOCK;
2351	case USB_SPEED_HIGH:
2352		return HS_BLOCK;
2353	case USB_SPEED_SUPER:
2354	case USB_SPEED_SUPER_PLUS:
2355		return SS_BLOCK;
2356	case USB_SPEED_UNKNOWN:
2357	case USB_SPEED_WIRELESS:
2358	default:
2359		/* Should never happen */
2360		return 1;
2361	}
2362}
2363
2364static unsigned int
2365xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2366{
2367	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2368		return LS_OVERHEAD;
2369	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2370		return FS_OVERHEAD;
2371	return HS_OVERHEAD;
2372}
2373
2374/* If we are changing a LS/FS device under a HS hub,
2375 * make sure (if we are activating a new TT) that the HS bus has enough
2376 * bandwidth for this new TT.
2377 */
2378static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2379		struct xhci_virt_device *virt_dev,
2380		int old_active_eps)
2381{
2382	struct xhci_interval_bw_table *bw_table;
2383	struct xhci_tt_bw_info *tt_info;
2384
2385	/* Find the bandwidth table for the root port this TT is attached to. */
2386	bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2387	tt_info = virt_dev->tt_info;
2388	/* If this TT already had active endpoints, the bandwidth for this TT
2389	 * has already been added.  Removing all periodic endpoints (and thus
2390	 * making the TT enactive) will only decrease the bandwidth used.
2391	 */
2392	if (old_active_eps)
2393		return 0;
2394	if (old_active_eps == 0 && tt_info->active_eps != 0) {
2395		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2396			return -ENOMEM;
2397		return 0;
2398	}
2399	/* Not sure why we would have no new active endpoints...
2400	 *
2401	 * Maybe because of an Evaluate Context change for a hub update or a
2402	 * control endpoint 0 max packet size change?
2403	 * FIXME: skip the bandwidth calculation in that case.
2404	 */
2405	return 0;
2406}
2407
2408static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2409		struct xhci_virt_device *virt_dev)
2410{
2411	unsigned int bw_reserved;
2412
2413	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2414	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2415		return -ENOMEM;
2416
2417	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2418	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2419		return -ENOMEM;
2420
2421	return 0;
2422}
2423
2424/*
2425 * This algorithm is a very conservative estimate of the worst-case scheduling
2426 * scenario for any one interval.  The hardware dynamically schedules the
2427 * packets, so we can't tell which microframe could be the limiting factor in
2428 * the bandwidth scheduling.  This only takes into account periodic endpoints.
2429 *
2430 * Obviously, we can't solve an NP complete problem to find the minimum worst
2431 * case scenario.  Instead, we come up with an estimate that is no less than
2432 * the worst case bandwidth used for any one microframe, but may be an
2433 * over-estimate.
2434 *
2435 * We walk the requirements for each endpoint by interval, starting with the
2436 * smallest interval, and place packets in the schedule where there is only one
2437 * possible way to schedule packets for that interval.  In order to simplify
2438 * this algorithm, we record the largest max packet size for each interval, and
2439 * assume all packets will be that size.
2440 *
2441 * For interval 0, we obviously must schedule all packets for each interval.
2442 * The bandwidth for interval 0 is just the amount of data to be transmitted
2443 * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2444 * the number of packets).
2445 *
2446 * For interval 1, we have two possible microframes to schedule those packets
2447 * in.  For this algorithm, if we can schedule the same number of packets for
2448 * each possible scheduling opportunity (each microframe), we will do so.  The
2449 * remaining number of packets will be saved to be transmitted in the gaps in
2450 * the next interval's scheduling sequence.
2451 *
2452 * As we move those remaining packets to be scheduled with interval 2 packets,
2453 * we have to double the number of remaining packets to transmit.  This is
2454 * because the intervals are actually powers of 2, and we would be transmitting
2455 * the previous interval's packets twice in this interval.  We also have to be
2456 * sure that when we look at the largest max packet size for this interval, we
2457 * also look at the largest max packet size for the remaining packets and take
2458 * the greater of the two.
2459 *
2460 * The algorithm continues to evenly distribute packets in each scheduling
2461 * opportunity, and push the remaining packets out, until we get to the last
2462 * interval.  Then those packets and their associated overhead are just added
2463 * to the bandwidth used.
2464 */
2465static int xhci_check_bw_table(struct xhci_hcd *xhci,
2466		struct xhci_virt_device *virt_dev,
2467		int old_active_eps)
2468{
2469	unsigned int bw_reserved;
2470	unsigned int max_bandwidth;
2471	unsigned int bw_used;
2472	unsigned int block_size;
2473	struct xhci_interval_bw_table *bw_table;
2474	unsigned int packet_size = 0;
2475	unsigned int overhead = 0;
2476	unsigned int packets_transmitted = 0;
2477	unsigned int packets_remaining = 0;
2478	unsigned int i;
2479
2480	if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2481		return xhci_check_ss_bw(xhci, virt_dev);
2482
2483	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2484		max_bandwidth = HS_BW_LIMIT;
2485		/* Convert percent of bus BW reserved to blocks reserved */
2486		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2487	} else {
2488		max_bandwidth = FS_BW_LIMIT;
2489		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2490	}
2491
2492	bw_table = virt_dev->bw_table;
2493	/* We need to translate the max packet size and max ESIT payloads into
2494	 * the units the hardware uses.
2495	 */
2496	block_size = xhci_get_block_size(virt_dev->udev);
2497
2498	/* If we are manipulating a LS/FS device under a HS hub, double check
2499	 * that the HS bus has enough bandwidth if we are activing a new TT.
2500	 */
2501	if (virt_dev->tt_info) {
2502		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2503				"Recalculating BW for rootport %u",
2504				virt_dev->real_port);
2505		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2506			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2507					"newly activated TT.\n");
2508			return -ENOMEM;
2509		}
2510		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2511				"Recalculating BW for TT slot %u port %u",
2512				virt_dev->tt_info->slot_id,
2513				virt_dev->tt_info->ttport);
2514	} else {
2515		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2516				"Recalculating BW for rootport %u",
2517				virt_dev->real_port);
2518	}
2519
2520	/* Add in how much bandwidth will be used for interval zero, or the
2521	 * rounded max ESIT payload + number of packets * largest overhead.
2522	 */
2523	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2524		bw_table->interval_bw[0].num_packets *
2525		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2526
2527	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2528		unsigned int bw_added;
2529		unsigned int largest_mps;
2530		unsigned int interval_overhead;
2531
2532		/*
2533		 * How many packets could we transmit in this interval?
2534		 * If packets didn't fit in the previous interval, we will need
2535		 * to transmit that many packets twice within this interval.
2536		 */
2537		packets_remaining = 2 * packets_remaining +
2538			bw_table->interval_bw[i].num_packets;
2539
2540		/* Find the largest max packet size of this or the previous
2541		 * interval.
2542		 */
2543		if (list_empty(&bw_table->interval_bw[i].endpoints))
2544			largest_mps = 0;
2545		else {
2546			struct xhci_virt_ep *virt_ep;
2547			struct list_head *ep_entry;
2548
2549			ep_entry = bw_table->interval_bw[i].endpoints.next;
2550			virt_ep = list_entry(ep_entry,
2551					struct xhci_virt_ep, bw_endpoint_list);
2552			/* Convert to blocks, rounding up */
2553			largest_mps = DIV_ROUND_UP(
2554					virt_ep->bw_info.max_packet_size,
2555					block_size);
2556		}
2557		if (largest_mps > packet_size)
2558			packet_size = largest_mps;
2559
2560		/* Use the larger overhead of this or the previous interval. */
2561		interval_overhead = xhci_get_largest_overhead(
2562				&bw_table->interval_bw[i]);
2563		if (interval_overhead > overhead)
2564			overhead = interval_overhead;
2565
2566		/* How many packets can we evenly distribute across
2567		 * (1 << (i + 1)) possible scheduling opportunities?
2568		 */
2569		packets_transmitted = packets_remaining >> (i + 1);
2570
2571		/* Add in the bandwidth used for those scheduled packets */
2572		bw_added = packets_transmitted * (overhead + packet_size);
2573
2574		/* How many packets do we have remaining to transmit? */
2575		packets_remaining = packets_remaining % (1 << (i + 1));
2576
2577		/* What largest max packet size should those packets have? */
2578		/* If we've transmitted all packets, don't carry over the
2579		 * largest packet size.
2580		 */
2581		if (packets_remaining == 0) {
2582			packet_size = 0;
2583			overhead = 0;
2584		} else if (packets_transmitted > 0) {
2585			/* Otherwise if we do have remaining packets, and we've
2586			 * scheduled some packets in this interval, take the
2587			 * largest max packet size from endpoints with this
2588			 * interval.
2589			 */
2590			packet_size = largest_mps;
2591			overhead = interval_overhead;
2592		}
2593		/* Otherwise carry over packet_size and overhead from the last
2594		 * time we had a remainder.
2595		 */
2596		bw_used += bw_added;
2597		if (bw_used > max_bandwidth) {
2598			xhci_warn(xhci, "Not enough bandwidth. "
2599					"Proposed: %u, Max: %u\n",
2600				bw_used, max_bandwidth);
2601			return -ENOMEM;
2602		}
2603	}
2604	/*
2605	 * Ok, we know we have some packets left over after even-handedly
2606	 * scheduling interval 15.  We don't know which microframes they will
2607	 * fit into, so we over-schedule and say they will be scheduled every
2608	 * microframe.
2609	 */
2610	if (packets_remaining > 0)
2611		bw_used += overhead + packet_size;
2612
2613	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2614		unsigned int port_index = virt_dev->real_port - 1;
2615
2616		/* OK, we're manipulating a HS device attached to a
2617		 * root port bandwidth domain.  Include the number of active TTs
2618		 * in the bandwidth used.
2619		 */
2620		bw_used += TT_HS_OVERHEAD *
2621			xhci->rh_bw[port_index].num_active_tts;
2622	}
2623
2624	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2625		"Final bandwidth: %u, Limit: %u, Reserved: %u, "
2626		"Available: %u " "percent",
2627		bw_used, max_bandwidth, bw_reserved,
2628		(max_bandwidth - bw_used - bw_reserved) * 100 /
2629		max_bandwidth);
2630
2631	bw_used += bw_reserved;
2632	if (bw_used > max_bandwidth) {
2633		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2634				bw_used, max_bandwidth);
2635		return -ENOMEM;
2636	}
2637
2638	bw_table->bw_used = bw_used;
2639	return 0;
2640}
2641
2642static bool xhci_is_async_ep(unsigned int ep_type)
2643{
2644	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2645					ep_type != ISOC_IN_EP &&
2646					ep_type != INT_IN_EP);
2647}
2648
2649static bool xhci_is_sync_in_ep(unsigned int ep_type)
2650{
2651	return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2652}
2653
2654static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2655{
2656	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2657
2658	if (ep_bw->ep_interval == 0)
2659		return SS_OVERHEAD_BURST +
2660			(ep_bw->mult * ep_bw->num_packets *
2661					(SS_OVERHEAD + mps));
2662	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2663				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2664				1 << ep_bw->ep_interval);
2665
2666}
2667
2668static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2669		struct xhci_bw_info *ep_bw,
2670		struct xhci_interval_bw_table *bw_table,
2671		struct usb_device *udev,
2672		struct xhci_virt_ep *virt_ep,
2673		struct xhci_tt_bw_info *tt_info)
2674{
2675	struct xhci_interval_bw	*interval_bw;
2676	int normalized_interval;
2677
2678	if (xhci_is_async_ep(ep_bw->type))
2679		return;
2680
2681	if (udev->speed >= USB_SPEED_SUPER) {
2682		if (xhci_is_sync_in_ep(ep_bw->type))
2683			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2684				xhci_get_ss_bw_consumed(ep_bw);
2685		else
2686			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2687				xhci_get_ss_bw_consumed(ep_bw);
2688		return;
2689	}
2690
2691	/* SuperSpeed endpoints never get added to intervals in the table, so
2692	 * this check is only valid for HS/FS/LS devices.
2693	 */
2694	if (list_empty(&virt_ep->bw_endpoint_list))
2695		return;
2696	/* For LS/FS devices, we need to translate the interval expressed in
2697	 * microframes to frames.
2698	 */
2699	if (udev->speed == USB_SPEED_HIGH)
2700		normalized_interval = ep_bw->ep_interval;
2701	else
2702		normalized_interval = ep_bw->ep_interval - 3;
2703
2704	if (normalized_interval == 0)
2705		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2706	interval_bw = &bw_table->interval_bw[normalized_interval];
2707	interval_bw->num_packets -= ep_bw->num_packets;
2708	switch (udev->speed) {
2709	case USB_SPEED_LOW:
2710		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2711		break;
2712	case USB_SPEED_FULL:
2713		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2714		break;
2715	case USB_SPEED_HIGH:
2716		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2717		break;
2718	case USB_SPEED_SUPER:
2719	case USB_SPEED_SUPER_PLUS:
2720	case USB_SPEED_UNKNOWN:
2721	case USB_SPEED_WIRELESS:
2722		/* Should never happen because only LS/FS/HS endpoints will get
2723		 * added to the endpoint list.
2724		 */
2725		return;
2726	}
2727	if (tt_info)
2728		tt_info->active_eps -= 1;
2729	list_del_init(&virt_ep->bw_endpoint_list);
2730}
2731
2732static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2733		struct xhci_bw_info *ep_bw,
2734		struct xhci_interval_bw_table *bw_table,
2735		struct usb_device *udev,
2736		struct xhci_virt_ep *virt_ep,
2737		struct xhci_tt_bw_info *tt_info)
2738{
2739	struct xhci_interval_bw	*interval_bw;
2740	struct xhci_virt_ep *smaller_ep;
2741	int normalized_interval;
2742
2743	if (xhci_is_async_ep(ep_bw->type))
2744		return;
2745
2746	if (udev->speed == USB_SPEED_SUPER) {
2747		if (xhci_is_sync_in_ep(ep_bw->type))
2748			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2749				xhci_get_ss_bw_consumed(ep_bw);
2750		else
2751			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2752				xhci_get_ss_bw_consumed(ep_bw);
2753		return;
2754	}
2755
2756	/* For LS/FS devices, we need to translate the interval expressed in
2757	 * microframes to frames.
2758	 */
2759	if (udev->speed == USB_SPEED_HIGH)
2760		normalized_interval = ep_bw->ep_interval;
2761	else
2762		normalized_interval = ep_bw->ep_interval - 3;
2763
2764	if (normalized_interval == 0)
2765		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2766	interval_bw = &bw_table->interval_bw[normalized_interval];
2767	interval_bw->num_packets += ep_bw->num_packets;
2768	switch (udev->speed) {
2769	case USB_SPEED_LOW:
2770		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2771		break;
2772	case USB_SPEED_FULL:
2773		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2774		break;
2775	case USB_SPEED_HIGH:
2776		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2777		break;
2778	case USB_SPEED_SUPER:
2779	case USB_SPEED_SUPER_PLUS:
2780	case USB_SPEED_UNKNOWN:
2781	case USB_SPEED_WIRELESS:
2782		/* Should never happen because only LS/FS/HS endpoints will get
2783		 * added to the endpoint list.
2784		 */
2785		return;
2786	}
2787
2788	if (tt_info)
2789		tt_info->active_eps += 1;
2790	/* Insert the endpoint into the list, largest max packet size first. */
2791	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2792			bw_endpoint_list) {
2793		if (ep_bw->max_packet_size >=
2794				smaller_ep->bw_info.max_packet_size) {
2795			/* Add the new ep before the smaller endpoint */
2796			list_add_tail(&virt_ep->bw_endpoint_list,
2797					&smaller_ep->bw_endpoint_list);
2798			return;
2799		}
2800	}
2801	/* Add the new endpoint at the end of the list. */
2802	list_add_tail(&virt_ep->bw_endpoint_list,
2803			&interval_bw->endpoints);
2804}
2805
2806void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2807		struct xhci_virt_device *virt_dev,
2808		int old_active_eps)
2809{
2810	struct xhci_root_port_bw_info *rh_bw_info;
2811	if (!virt_dev->tt_info)
2812		return;
2813
2814	rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2815	if (old_active_eps == 0 &&
2816				virt_dev->tt_info->active_eps != 0) {
2817		rh_bw_info->num_active_tts += 1;
2818		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2819	} else if (old_active_eps != 0 &&
2820				virt_dev->tt_info->active_eps == 0) {
2821		rh_bw_info->num_active_tts -= 1;
2822		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2823	}
2824}
2825
2826static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2827		struct xhci_virt_device *virt_dev,
2828		struct xhci_container_ctx *in_ctx)
2829{
2830	struct xhci_bw_info ep_bw_info[31];
2831	int i;
2832	struct xhci_input_control_ctx *ctrl_ctx;
2833	int old_active_eps = 0;
2834
2835	if (virt_dev->tt_info)
2836		old_active_eps = virt_dev->tt_info->active_eps;
2837
2838	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2839	if (!ctrl_ctx) {
2840		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2841				__func__);
2842		return -ENOMEM;
2843	}
2844
2845	for (i = 0; i < 31; i++) {
2846		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2847			continue;
2848
2849		/* Make a copy of the BW info in case we need to revert this */
2850		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2851				sizeof(ep_bw_info[i]));
2852		/* Drop the endpoint from the interval table if the endpoint is
2853		 * being dropped or changed.
2854		 */
2855		if (EP_IS_DROPPED(ctrl_ctx, i))
2856			xhci_drop_ep_from_interval_table(xhci,
2857					&virt_dev->eps[i].bw_info,
2858					virt_dev->bw_table,
2859					virt_dev->udev,
2860					&virt_dev->eps[i],
2861					virt_dev->tt_info);
2862	}
2863	/* Overwrite the information stored in the endpoints' bw_info */
2864	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2865	for (i = 0; i < 31; i++) {
2866		/* Add any changed or added endpoints to the interval table */
2867		if (EP_IS_ADDED(ctrl_ctx, i))
2868			xhci_add_ep_to_interval_table(xhci,
2869					&virt_dev->eps[i].bw_info,
2870					virt_dev->bw_table,
2871					virt_dev->udev,
2872					&virt_dev->eps[i],
2873					virt_dev->tt_info);
2874	}
2875
2876	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2877		/* Ok, this fits in the bandwidth we have.
2878		 * Update the number of active TTs.
2879		 */
2880		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2881		return 0;
2882	}
2883
2884	/* We don't have enough bandwidth for this, revert the stored info. */
2885	for (i = 0; i < 31; i++) {
2886		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2887			continue;
2888
2889		/* Drop the new copies of any added or changed endpoints from
2890		 * the interval table.
2891		 */
2892		if (EP_IS_ADDED(ctrl_ctx, i)) {
2893			xhci_drop_ep_from_interval_table(xhci,
2894					&virt_dev->eps[i].bw_info,
2895					virt_dev->bw_table,
2896					virt_dev->udev,
2897					&virt_dev->eps[i],
2898					virt_dev->tt_info);
2899		}
2900		/* Revert the endpoint back to its old information */
2901		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2902				sizeof(ep_bw_info[i]));
2903		/* Add any changed or dropped endpoints back into the table */
2904		if (EP_IS_DROPPED(ctrl_ctx, i))
2905			xhci_add_ep_to_interval_table(xhci,
2906					&virt_dev->eps[i].bw_info,
2907					virt_dev->bw_table,
2908					virt_dev->udev,
2909					&virt_dev->eps[i],
2910					virt_dev->tt_info);
2911	}
2912	return -ENOMEM;
2913}
2914
2915
2916/* Issue a configure endpoint command or evaluate context command
2917 * and wait for it to finish.
2918 */
2919static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2920		struct usb_device *udev,
2921		struct xhci_command *command,
2922		bool ctx_change, bool must_succeed)
2923{
2924	int ret;
2925	unsigned long flags;
2926	struct xhci_input_control_ctx *ctrl_ctx;
2927	struct xhci_virt_device *virt_dev;
2928	struct xhci_slot_ctx *slot_ctx;
2929
2930	if (!command)
2931		return -EINVAL;
2932
2933	spin_lock_irqsave(&xhci->lock, flags);
2934
2935	if (xhci->xhc_state & XHCI_STATE_DYING) {
2936		spin_unlock_irqrestore(&xhci->lock, flags);
2937		return -ESHUTDOWN;
2938	}
2939
2940	virt_dev = xhci->devs[udev->slot_id];
2941
2942	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2943	if (!ctrl_ctx) {
2944		spin_unlock_irqrestore(&xhci->lock, flags);
2945		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2946				__func__);
2947		return -ENOMEM;
2948	}
2949
2950	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2951			xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2952		spin_unlock_irqrestore(&xhci->lock, flags);
2953		xhci_warn(xhci, "Not enough host resources, "
2954				"active endpoint contexts = %u\n",
2955				xhci->num_active_eps);
2956		return -ENOMEM;
2957	}
2958	if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2959	    xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2960		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2961			xhci_free_host_resources(xhci, ctrl_ctx);
2962		spin_unlock_irqrestore(&xhci->lock, flags);
2963		xhci_warn(xhci, "Not enough bandwidth\n");
2964		return -ENOMEM;
2965	}
2966
2967	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2968
2969	trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx);
2970	trace_xhci_configure_endpoint(slot_ctx);
2971
2972	if (!ctx_change)
2973		ret = xhci_queue_configure_endpoint(xhci, command,
2974				command->in_ctx->dma,
2975				udev->slot_id, must_succeed);
2976	else
2977		ret = xhci_queue_evaluate_context(xhci, command,
2978				command->in_ctx->dma,
2979				udev->slot_id, must_succeed);
2980	if (ret < 0) {
2981		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2982			xhci_free_host_resources(xhci, ctrl_ctx);
2983		spin_unlock_irqrestore(&xhci->lock, flags);
2984		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2985				"FIXME allocate a new ring segment");
2986		return -ENOMEM;
2987	}
2988	xhci_ring_cmd_db(xhci);
2989	spin_unlock_irqrestore(&xhci->lock, flags);
2990
2991	/* Wait for the configure endpoint command to complete */
2992	wait_for_completion(command->completion);
2993
2994	if (!ctx_change)
2995		ret = xhci_configure_endpoint_result(xhci, udev,
2996						     &command->status);
2997	else
2998		ret = xhci_evaluate_context_result(xhci, udev,
2999						   &command->status);
3000
3001	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3002		spin_lock_irqsave(&xhci->lock, flags);
3003		/* If the command failed, remove the reserved resources.
3004		 * Otherwise, clean up the estimate to include dropped eps.
3005		 */
3006		if (ret)
3007			xhci_free_host_resources(xhci, ctrl_ctx);
3008		else
3009			xhci_finish_resource_reservation(xhci, ctrl_ctx);
3010		spin_unlock_irqrestore(&xhci->lock, flags);
3011	}
3012	return ret;
3013}
3014
3015static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
3016	struct xhci_virt_device *vdev, int i)
3017{
3018	struct xhci_virt_ep *ep = &vdev->eps[i];
3019
3020	if (ep->ep_state & EP_HAS_STREAMS) {
3021		xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
3022				xhci_get_endpoint_address(i));
3023		xhci_free_stream_info(xhci, ep->stream_info);
3024		ep->stream_info = NULL;
3025		ep->ep_state &= ~EP_HAS_STREAMS;
3026	}
3027}
3028
3029/* Called after one or more calls to xhci_add_endpoint() or
3030 * xhci_drop_endpoint().  If this call fails, the USB core is expected
3031 * to call xhci_reset_bandwidth().
3032 *
3033 * Since we are in the middle of changing either configuration or
3034 * installing a new alt setting, the USB core won't allow URBs to be
3035 * enqueued for any endpoint on the old config or interface.  Nothing
3036 * else should be touching the xhci->devs[slot_id] structure, so we
3037 * don't need to take the xhci->lock for manipulating that.
3038 */
3039int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
3040{
3041	int i;
3042	int ret = 0;
3043	struct xhci_hcd *xhci;
3044	struct xhci_virt_device	*virt_dev;
3045	struct xhci_input_control_ctx *ctrl_ctx;
3046	struct xhci_slot_ctx *slot_ctx;
3047	struct xhci_command *command;
3048
3049	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3050	if (ret <= 0)
3051		return ret;
3052	xhci = hcd_to_xhci(hcd);
3053	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
3054		(xhci->xhc_state & XHCI_STATE_REMOVING))
3055		return -ENODEV;
3056
3057	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3058	virt_dev = xhci->devs[udev->slot_id];
3059
3060	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3061	if (!command)
3062		return -ENOMEM;
3063
3064	command->in_ctx = virt_dev->in_ctx;
3065
3066	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
3067	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3068	if (!ctrl_ctx) {
3069		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3070				__func__);
3071		ret = -ENOMEM;
3072		goto command_cleanup;
3073	}
3074	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3075	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
3076	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
3077
3078	/* Don't issue the command if there's no endpoints to update. */
3079	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
3080	    ctrl_ctx->drop_flags == 0) {
3081		ret = 0;
3082		goto command_cleanup;
3083	}
3084	/* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
3085	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3086	for (i = 31; i >= 1; i--) {
3087		__le32 le32 = cpu_to_le32(BIT(i));
3088
3089		if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
3090		    || (ctrl_ctx->add_flags & le32) || i == 1) {
3091			slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
3092			slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
3093			break;
3094		}
3095	}
3096
3097	ret = xhci_configure_endpoint(xhci, udev, command,
3098			false, false);
3099	if (ret)
3100		/* Callee should call reset_bandwidth() */
3101		goto command_cleanup;
3102
3103	/* Free any rings that were dropped, but not changed. */
3104	for (i = 1; i < 31; i++) {
3105		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
3106		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
3107			xhci_free_endpoint_ring(xhci, virt_dev, i);
3108			xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3109		}
3110	}
3111	xhci_zero_in_ctx(xhci, virt_dev);
3112	/*
3113	 * Install any rings for completely new endpoints or changed endpoints,
3114	 * and free any old rings from changed endpoints.
3115	 */
3116	for (i = 1; i < 31; i++) {
3117		if (!virt_dev->eps[i].new_ring)
3118			continue;
3119		/* Only free the old ring if it exists.
3120		 * It may not if this is the first add of an endpoint.
3121		 */
3122		if (virt_dev->eps[i].ring) {
3123			xhci_free_endpoint_ring(xhci, virt_dev, i);
3124		}
3125		xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3126		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
3127		virt_dev->eps[i].new_ring = NULL;
3128		xhci_debugfs_create_endpoint(xhci, virt_dev, i);
3129	}
3130command_cleanup:
3131	kfree(command->completion);
3132	kfree(command);
3133
3134	return ret;
3135}
3136EXPORT_SYMBOL_GPL(xhci_check_bandwidth);
3137
3138void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
3139{
3140	struct xhci_hcd *xhci;
3141	struct xhci_virt_device	*virt_dev;
3142	int i, ret;
3143
3144	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3145	if (ret <= 0)
3146		return;
3147	xhci = hcd_to_xhci(hcd);
3148
3149	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3150	virt_dev = xhci->devs[udev->slot_id];
3151	/* Free any rings allocated for added endpoints */
3152	for (i = 0; i < 31; i++) {
3153		if (virt_dev->eps[i].new_ring) {
3154			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3155			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
3156			virt_dev->eps[i].new_ring = NULL;
3157		}
3158	}
3159	xhci_zero_in_ctx(xhci, virt_dev);
3160}
3161EXPORT_SYMBOL_GPL(xhci_reset_bandwidth);
3162
3163static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
3164		struct xhci_container_ctx *in_ctx,
3165		struct xhci_container_ctx *out_ctx,
3166		struct xhci_input_control_ctx *ctrl_ctx,
3167		u32 add_flags, u32 drop_flags)
3168{
3169	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
3170	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
3171	xhci_slot_copy(xhci, in_ctx, out_ctx);
3172	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3173}
3174
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3175static void xhci_endpoint_disable(struct usb_hcd *hcd,
3176				  struct usb_host_endpoint *host_ep)
3177{
3178	struct xhci_hcd		*xhci;
3179	struct xhci_virt_device	*vdev;
3180	struct xhci_virt_ep	*ep;
3181	struct usb_device	*udev;
3182	unsigned long		flags;
3183	unsigned int		ep_index;
3184
3185	xhci = hcd_to_xhci(hcd);
3186rescan:
3187	spin_lock_irqsave(&xhci->lock, flags);
3188
3189	udev = (struct usb_device *)host_ep->hcpriv;
3190	if (!udev || !udev->slot_id)
3191		goto done;
3192
3193	vdev = xhci->devs[udev->slot_id];
3194	if (!vdev)
3195		goto done;
3196
3197	ep_index = xhci_get_endpoint_index(&host_ep->desc);
3198	ep = &vdev->eps[ep_index];
 
 
3199
3200	/* wait for hub_tt_work to finish clearing hub TT */
3201	if (ep->ep_state & EP_CLEARING_TT) {
3202		spin_unlock_irqrestore(&xhci->lock, flags);
3203		schedule_timeout_uninterruptible(1);
3204		goto rescan;
3205	}
3206
3207	if (ep->ep_state)
3208		xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n",
3209			 ep->ep_state);
3210done:
3211	host_ep->hcpriv = NULL;
3212	spin_unlock_irqrestore(&xhci->lock, flags);
3213}
3214
3215/*
3216 * Called after usb core issues a clear halt control message.
3217 * The host side of the halt should already be cleared by a reset endpoint
3218 * command issued when the STALL event was received.
3219 *
3220 * The reset endpoint command may only be issued to endpoints in the halted
3221 * state. For software that wishes to reset the data toggle or sequence number
3222 * of an endpoint that isn't in the halted state this function will issue a
3223 * configure endpoint command with the Drop and Add bits set for the target
3224 * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3225 */
3226
3227static void xhci_endpoint_reset(struct usb_hcd *hcd,
3228		struct usb_host_endpoint *host_ep)
3229{
3230	struct xhci_hcd *xhci;
3231	struct usb_device *udev;
3232	struct xhci_virt_device *vdev;
3233	struct xhci_virt_ep *ep;
3234	struct xhci_input_control_ctx *ctrl_ctx;
3235	struct xhci_command *stop_cmd, *cfg_cmd;
3236	unsigned int ep_index;
3237	unsigned long flags;
3238	u32 ep_flag;
3239	int err;
3240
3241	xhci = hcd_to_xhci(hcd);
3242	if (!host_ep->hcpriv)
3243		return;
3244	udev = (struct usb_device *) host_ep->hcpriv;
3245	vdev = xhci->devs[udev->slot_id];
3246
3247	/*
3248	 * vdev may be lost due to xHC restore error and re-initialization
3249	 * during S3/S4 resume. A new vdev will be allocated later by
3250	 * xhci_discover_or_reset_device()
3251	 */
3252	if (!udev->slot_id || !vdev)
3253		return;
3254	ep_index = xhci_get_endpoint_index(&host_ep->desc);
3255	ep = &vdev->eps[ep_index];
 
 
3256
3257	/* Bail out if toggle is already being cleared by a endpoint reset */
3258	spin_lock_irqsave(&xhci->lock, flags);
3259	if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3260		ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3261		spin_unlock_irqrestore(&xhci->lock, flags);
3262		return;
3263	}
3264	spin_unlock_irqrestore(&xhci->lock, flags);
3265	/* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3266	if (usb_endpoint_xfer_control(&host_ep->desc) ||
3267	    usb_endpoint_xfer_isoc(&host_ep->desc))
3268		return;
3269
3270	ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3271
3272	if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3273		return;
3274
3275	stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3276	if (!stop_cmd)
3277		return;
3278
3279	cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3280	if (!cfg_cmd)
3281		goto cleanup;
3282
3283	spin_lock_irqsave(&xhci->lock, flags);
3284
3285	/* block queuing new trbs and ringing ep doorbell */
3286	ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3287
3288	/*
3289	 * Make sure endpoint ring is empty before resetting the toggle/seq.
3290	 * Driver is required to synchronously cancel all transfer request.
3291	 * Stop the endpoint to force xHC to update the output context
3292	 */
3293
3294	if (!list_empty(&ep->ring->td_list)) {
3295		dev_err(&udev->dev, "EP not empty, refuse reset\n");
3296		spin_unlock_irqrestore(&xhci->lock, flags);
3297		xhci_free_command(xhci, cfg_cmd);
3298		goto cleanup;
3299	}
3300
3301	err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id,
3302					ep_index, 0);
3303	if (err < 0) {
3304		spin_unlock_irqrestore(&xhci->lock, flags);
3305		xhci_free_command(xhci, cfg_cmd);
3306		xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ",
3307				__func__, err);
3308		goto cleanup;
3309	}
3310
3311	xhci_ring_cmd_db(xhci);
3312	spin_unlock_irqrestore(&xhci->lock, flags);
3313
3314	wait_for_completion(stop_cmd->completion);
3315
3316	spin_lock_irqsave(&xhci->lock, flags);
3317
3318	/* config ep command clears toggle if add and drop ep flags are set */
3319	ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3320	if (!ctrl_ctx) {
3321		spin_unlock_irqrestore(&xhci->lock, flags);
3322		xhci_free_command(xhci, cfg_cmd);
3323		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3324				__func__);
3325		goto cleanup;
3326	}
3327
3328	xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3329					   ctrl_ctx, ep_flag, ep_flag);
3330	xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3331
3332	err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3333				      udev->slot_id, false);
3334	if (err < 0) {
3335		spin_unlock_irqrestore(&xhci->lock, flags);
3336		xhci_free_command(xhci, cfg_cmd);
3337		xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ",
3338				__func__, err);
3339		goto cleanup;
3340	}
3341
3342	xhci_ring_cmd_db(xhci);
3343	spin_unlock_irqrestore(&xhci->lock, flags);
3344
3345	wait_for_completion(cfg_cmd->completion);
3346
 
3347	xhci_free_command(xhci, cfg_cmd);
3348cleanup:
3349	xhci_free_command(xhci, stop_cmd);
3350	spin_lock_irqsave(&xhci->lock, flags);
3351	if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE)
3352		ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3353	spin_unlock_irqrestore(&xhci->lock, flags);
3354}
3355
3356static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3357		struct usb_device *udev, struct usb_host_endpoint *ep,
3358		unsigned int slot_id)
3359{
3360	int ret;
3361	unsigned int ep_index;
3362	unsigned int ep_state;
3363
3364	if (!ep)
3365		return -EINVAL;
3366	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3367	if (ret <= 0)
3368		return ret ? ret : -EINVAL;
3369	if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3370		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3371				" descriptor for ep 0x%x does not support streams\n",
3372				ep->desc.bEndpointAddress);
3373		return -EINVAL;
3374	}
3375
3376	ep_index = xhci_get_endpoint_index(&ep->desc);
3377	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3378	if (ep_state & EP_HAS_STREAMS ||
3379			ep_state & EP_GETTING_STREAMS) {
3380		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3381				"already has streams set up.\n",
3382				ep->desc.bEndpointAddress);
3383		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3384				"dynamic stream context array reallocation.\n");
3385		return -EINVAL;
3386	}
3387	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3388		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3389				"endpoint 0x%x; URBs are pending.\n",
3390				ep->desc.bEndpointAddress);
3391		return -EINVAL;
3392	}
3393	return 0;
3394}
3395
3396static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3397		unsigned int *num_streams, unsigned int *num_stream_ctxs)
3398{
3399	unsigned int max_streams;
3400
3401	/* The stream context array size must be a power of two */
3402	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
3403	/*
3404	 * Find out how many primary stream array entries the host controller
3405	 * supports.  Later we may use secondary stream arrays (similar to 2nd
3406	 * level page entries), but that's an optional feature for xHCI host
3407	 * controllers. xHCs must support at least 4 stream IDs.
3408	 */
3409	max_streams = HCC_MAX_PSA(xhci->hcc_params);
3410	if (*num_stream_ctxs > max_streams) {
3411		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3412				max_streams);
3413		*num_stream_ctxs = max_streams;
3414		*num_streams = max_streams;
3415	}
3416}
3417
3418/* Returns an error code if one of the endpoint already has streams.
3419 * This does not change any data structures, it only checks and gathers
3420 * information.
3421 */
3422static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3423		struct usb_device *udev,
3424		struct usb_host_endpoint **eps, unsigned int num_eps,
3425		unsigned int *num_streams, u32 *changed_ep_bitmask)
3426{
3427	unsigned int max_streams;
3428	unsigned int endpoint_flag;
3429	int i;
3430	int ret;
3431
3432	for (i = 0; i < num_eps; i++) {
3433		ret = xhci_check_streams_endpoint(xhci, udev,
3434				eps[i], udev->slot_id);
3435		if (ret < 0)
3436			return ret;
3437
3438		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3439		if (max_streams < (*num_streams - 1)) {
3440			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3441					eps[i]->desc.bEndpointAddress,
3442					max_streams);
3443			*num_streams = max_streams+1;
3444		}
3445
3446		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3447		if (*changed_ep_bitmask & endpoint_flag)
3448			return -EINVAL;
3449		*changed_ep_bitmask |= endpoint_flag;
3450	}
3451	return 0;
3452}
3453
3454static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3455		struct usb_device *udev,
3456		struct usb_host_endpoint **eps, unsigned int num_eps)
3457{
3458	u32 changed_ep_bitmask = 0;
3459	unsigned int slot_id;
3460	unsigned int ep_index;
3461	unsigned int ep_state;
3462	int i;
3463
3464	slot_id = udev->slot_id;
3465	if (!xhci->devs[slot_id])
3466		return 0;
3467
3468	for (i = 0; i < num_eps; i++) {
3469		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3470		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3471		/* Are streams already being freed for the endpoint? */
3472		if (ep_state & EP_GETTING_NO_STREAMS) {
3473			xhci_warn(xhci, "WARN Can't disable streams for "
3474					"endpoint 0x%x, "
3475					"streams are being disabled already\n",
3476					eps[i]->desc.bEndpointAddress);
3477			return 0;
3478		}
3479		/* Are there actually any streams to free? */
3480		if (!(ep_state & EP_HAS_STREAMS) &&
3481				!(ep_state & EP_GETTING_STREAMS)) {
3482			xhci_warn(xhci, "WARN Can't disable streams for "
3483					"endpoint 0x%x, "
3484					"streams are already disabled!\n",
3485					eps[i]->desc.bEndpointAddress);
3486			xhci_warn(xhci, "WARN xhci_free_streams() called "
3487					"with non-streams endpoint\n");
3488			return 0;
3489		}
3490		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3491	}
3492	return changed_ep_bitmask;
3493}
3494
3495/*
3496 * The USB device drivers use this function (through the HCD interface in USB
3497 * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3498 * coordinate mass storage command queueing across multiple endpoints (basically
3499 * a stream ID == a task ID).
3500 *
3501 * Setting up streams involves allocating the same size stream context array
3502 * for each endpoint and issuing a configure endpoint command for all endpoints.
3503 *
3504 * Don't allow the call to succeed if one endpoint only supports one stream
3505 * (which means it doesn't support streams at all).
3506 *
3507 * Drivers may get less stream IDs than they asked for, if the host controller
3508 * hardware or endpoints claim they can't support the number of requested
3509 * stream IDs.
3510 */
3511static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3512		struct usb_host_endpoint **eps, unsigned int num_eps,
3513		unsigned int num_streams, gfp_t mem_flags)
3514{
3515	int i, ret;
3516	struct xhci_hcd *xhci;
3517	struct xhci_virt_device *vdev;
3518	struct xhci_command *config_cmd;
3519	struct xhci_input_control_ctx *ctrl_ctx;
3520	unsigned int ep_index;
3521	unsigned int num_stream_ctxs;
3522	unsigned int max_packet;
3523	unsigned long flags;
3524	u32 changed_ep_bitmask = 0;
3525
3526	if (!eps)
3527		return -EINVAL;
3528
3529	/* Add one to the number of streams requested to account for
3530	 * stream 0 that is reserved for xHCI usage.
3531	 */
3532	num_streams += 1;
3533	xhci = hcd_to_xhci(hcd);
3534	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3535			num_streams);
3536
3537	/* MaxPSASize value 0 (2 streams) means streams are not supported */
3538	if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3539			HCC_MAX_PSA(xhci->hcc_params) < 4) {
3540		xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3541		return -ENOSYS;
3542	}
3543
3544	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3545	if (!config_cmd)
3546		return -ENOMEM;
3547
3548	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3549	if (!ctrl_ctx) {
3550		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3551				__func__);
3552		xhci_free_command(xhci, config_cmd);
3553		return -ENOMEM;
3554	}
3555
3556	/* Check to make sure all endpoints are not already configured for
3557	 * streams.  While we're at it, find the maximum number of streams that
3558	 * all the endpoints will support and check for duplicate endpoints.
3559	 */
3560	spin_lock_irqsave(&xhci->lock, flags);
3561	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3562			num_eps, &num_streams, &changed_ep_bitmask);
3563	if (ret < 0) {
3564		xhci_free_command(xhci, config_cmd);
3565		spin_unlock_irqrestore(&xhci->lock, flags);
3566		return ret;
3567	}
3568	if (num_streams <= 1) {
3569		xhci_warn(xhci, "WARN: endpoints can't handle "
3570				"more than one stream.\n");
3571		xhci_free_command(xhci, config_cmd);
3572		spin_unlock_irqrestore(&xhci->lock, flags);
3573		return -EINVAL;
3574	}
3575	vdev = xhci->devs[udev->slot_id];
3576	/* Mark each endpoint as being in transition, so
3577	 * xhci_urb_enqueue() will reject all URBs.
3578	 */
3579	for (i = 0; i < num_eps; i++) {
3580		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3581		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3582	}
3583	spin_unlock_irqrestore(&xhci->lock, flags);
3584
3585	/* Setup internal data structures and allocate HW data structures for
3586	 * streams (but don't install the HW structures in the input context
3587	 * until we're sure all memory allocation succeeded).
3588	 */
3589	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3590	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3591			num_stream_ctxs, num_streams);
3592
3593	for (i = 0; i < num_eps; i++) {
3594		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3595		max_packet = usb_endpoint_maxp(&eps[i]->desc);
3596		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3597				num_stream_ctxs,
3598				num_streams,
3599				max_packet, mem_flags);
3600		if (!vdev->eps[ep_index].stream_info)
3601			goto cleanup;
3602		/* Set maxPstreams in endpoint context and update deq ptr to
3603		 * point to stream context array. FIXME
3604		 */
3605	}
3606
3607	/* Set up the input context for a configure endpoint command. */
3608	for (i = 0; i < num_eps; i++) {
3609		struct xhci_ep_ctx *ep_ctx;
3610
3611		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3612		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3613
3614		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3615				vdev->out_ctx, ep_index);
3616		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3617				vdev->eps[ep_index].stream_info);
3618	}
3619	/* Tell the HW to drop its old copy of the endpoint context info
3620	 * and add the updated copy from the input context.
3621	 */
3622	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3623			vdev->out_ctx, ctrl_ctx,
3624			changed_ep_bitmask, changed_ep_bitmask);
3625
3626	/* Issue and wait for the configure endpoint command */
3627	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3628			false, false);
3629
3630	/* xHC rejected the configure endpoint command for some reason, so we
3631	 * leave the old ring intact and free our internal streams data
3632	 * structure.
3633	 */
3634	if (ret < 0)
3635		goto cleanup;
3636
3637	spin_lock_irqsave(&xhci->lock, flags);
3638	for (i = 0; i < num_eps; i++) {
3639		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3640		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3641		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3642			 udev->slot_id, ep_index);
3643		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3644	}
3645	xhci_free_command(xhci, config_cmd);
3646	spin_unlock_irqrestore(&xhci->lock, flags);
3647
3648	for (i = 0; i < num_eps; i++) {
3649		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3650		xhci_debugfs_create_stream_files(xhci, vdev, ep_index);
3651	}
3652	/* Subtract 1 for stream 0, which drivers can't use */
3653	return num_streams - 1;
3654
3655cleanup:
3656	/* If it didn't work, free the streams! */
3657	for (i = 0; i < num_eps; i++) {
3658		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3659		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3660		vdev->eps[ep_index].stream_info = NULL;
3661		/* FIXME Unset maxPstreams in endpoint context and
3662		 * update deq ptr to point to normal string ring.
3663		 */
3664		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3665		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3666		xhci_endpoint_zero(xhci, vdev, eps[i]);
3667	}
3668	xhci_free_command(xhci, config_cmd);
3669	return -ENOMEM;
3670}
3671
3672/* Transition the endpoint from using streams to being a "normal" endpoint
3673 * without streams.
3674 *
3675 * Modify the endpoint context state, submit a configure endpoint command,
3676 * and free all endpoint rings for streams if that completes successfully.
3677 */
3678static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3679		struct usb_host_endpoint **eps, unsigned int num_eps,
3680		gfp_t mem_flags)
3681{
3682	int i, ret;
3683	struct xhci_hcd *xhci;
3684	struct xhci_virt_device *vdev;
3685	struct xhci_command *command;
3686	struct xhci_input_control_ctx *ctrl_ctx;
3687	unsigned int ep_index;
3688	unsigned long flags;
3689	u32 changed_ep_bitmask;
3690
3691	xhci = hcd_to_xhci(hcd);
3692	vdev = xhci->devs[udev->slot_id];
3693
3694	/* Set up a configure endpoint command to remove the streams rings */
3695	spin_lock_irqsave(&xhci->lock, flags);
3696	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3697			udev, eps, num_eps);
3698	if (changed_ep_bitmask == 0) {
3699		spin_unlock_irqrestore(&xhci->lock, flags);
3700		return -EINVAL;
3701	}
3702
3703	/* Use the xhci_command structure from the first endpoint.  We may have
3704	 * allocated too many, but the driver may call xhci_free_streams() for
3705	 * each endpoint it grouped into one call to xhci_alloc_streams().
3706	 */
3707	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3708	command = vdev->eps[ep_index].stream_info->free_streams_command;
3709	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3710	if (!ctrl_ctx) {
3711		spin_unlock_irqrestore(&xhci->lock, flags);
3712		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3713				__func__);
3714		return -EINVAL;
3715	}
3716
3717	for (i = 0; i < num_eps; i++) {
3718		struct xhci_ep_ctx *ep_ctx;
3719
3720		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3721		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3722		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3723			EP_GETTING_NO_STREAMS;
3724
3725		xhci_endpoint_copy(xhci, command->in_ctx,
3726				vdev->out_ctx, ep_index);
3727		xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3728				&vdev->eps[ep_index]);
3729	}
3730	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3731			vdev->out_ctx, ctrl_ctx,
3732			changed_ep_bitmask, changed_ep_bitmask);
3733	spin_unlock_irqrestore(&xhci->lock, flags);
3734
3735	/* Issue and wait for the configure endpoint command,
3736	 * which must succeed.
3737	 */
3738	ret = xhci_configure_endpoint(xhci, udev, command,
3739			false, true);
3740
3741	/* xHC rejected the configure endpoint command for some reason, so we
3742	 * leave the streams rings intact.
3743	 */
3744	if (ret < 0)
3745		return ret;
3746
3747	spin_lock_irqsave(&xhci->lock, flags);
3748	for (i = 0; i < num_eps; i++) {
3749		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3750		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3751		vdev->eps[ep_index].stream_info = NULL;
3752		/* FIXME Unset maxPstreams in endpoint context and
3753		 * update deq ptr to point to normal string ring.
3754		 */
3755		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3756		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3757	}
3758	spin_unlock_irqrestore(&xhci->lock, flags);
3759
3760	return 0;
3761}
3762
3763/*
3764 * Deletes endpoint resources for endpoints that were active before a Reset
3765 * Device command, or a Disable Slot command.  The Reset Device command leaves
3766 * the control endpoint intact, whereas the Disable Slot command deletes it.
3767 *
3768 * Must be called with xhci->lock held.
3769 */
3770void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3771	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3772{
3773	int i;
3774	unsigned int num_dropped_eps = 0;
3775	unsigned int drop_flags = 0;
3776
3777	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3778		if (virt_dev->eps[i].ring) {
3779			drop_flags |= 1 << i;
3780			num_dropped_eps++;
3781		}
3782	}
3783	xhci->num_active_eps -= num_dropped_eps;
3784	if (num_dropped_eps)
3785		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3786				"Dropped %u ep ctxs, flags = 0x%x, "
3787				"%u now active.",
3788				num_dropped_eps, drop_flags,
3789				xhci->num_active_eps);
3790}
3791
3792/*
3793 * This submits a Reset Device Command, which will set the device state to 0,
3794 * set the device address to 0, and disable all the endpoints except the default
3795 * control endpoint.  The USB core should come back and call
3796 * xhci_address_device(), and then re-set up the configuration.  If this is
3797 * called because of a usb_reset_and_verify_device(), then the old alternate
3798 * settings will be re-installed through the normal bandwidth allocation
3799 * functions.
3800 *
3801 * Wait for the Reset Device command to finish.  Remove all structures
3802 * associated with the endpoints that were disabled.  Clear the input device
3803 * structure? Reset the control endpoint 0 max packet size?
3804 *
3805 * If the virt_dev to be reset does not exist or does not match the udev,
3806 * it means the device is lost, possibly due to the xHC restore error and
3807 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3808 * re-allocate the device.
3809 */
3810static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3811		struct usb_device *udev)
3812{
3813	int ret, i;
3814	unsigned long flags;
3815	struct xhci_hcd *xhci;
3816	unsigned int slot_id;
3817	struct xhci_virt_device *virt_dev;
3818	struct xhci_command *reset_device_cmd;
3819	struct xhci_slot_ctx *slot_ctx;
3820	int old_active_eps = 0;
3821
3822	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3823	if (ret <= 0)
3824		return ret;
3825	xhci = hcd_to_xhci(hcd);
3826	slot_id = udev->slot_id;
3827	virt_dev = xhci->devs[slot_id];
3828	if (!virt_dev) {
3829		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3830				"not exist. Re-allocate the device\n", slot_id);
3831		ret = xhci_alloc_dev(hcd, udev);
3832		if (ret == 1)
3833			return 0;
3834		else
3835			return -EINVAL;
3836	}
3837
3838	if (virt_dev->tt_info)
3839		old_active_eps = virt_dev->tt_info->active_eps;
3840
3841	if (virt_dev->udev != udev) {
3842		/* If the virt_dev and the udev does not match, this virt_dev
3843		 * may belong to another udev.
3844		 * Re-allocate the device.
3845		 */
3846		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3847				"not match the udev. Re-allocate the device\n",
3848				slot_id);
3849		ret = xhci_alloc_dev(hcd, udev);
3850		if (ret == 1)
3851			return 0;
3852		else
3853			return -EINVAL;
3854	}
3855
3856	/* If device is not setup, there is no point in resetting it */
3857	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3858	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3859						SLOT_STATE_DISABLED)
3860		return 0;
3861
3862	trace_xhci_discover_or_reset_device(slot_ctx);
3863
3864	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3865	/* Allocate the command structure that holds the struct completion.
3866	 * Assume we're in process context, since the normal device reset
3867	 * process has to wait for the device anyway.  Storage devices are
3868	 * reset as part of error handling, so use GFP_NOIO instead of
3869	 * GFP_KERNEL.
3870	 */
3871	reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3872	if (!reset_device_cmd) {
3873		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3874		return -ENOMEM;
3875	}
3876
3877	/* Attempt to submit the Reset Device command to the command ring */
3878	spin_lock_irqsave(&xhci->lock, flags);
3879
3880	ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3881	if (ret) {
3882		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3883		spin_unlock_irqrestore(&xhci->lock, flags);
3884		goto command_cleanup;
3885	}
3886	xhci_ring_cmd_db(xhci);
3887	spin_unlock_irqrestore(&xhci->lock, flags);
3888
3889	/* Wait for the Reset Device command to finish */
3890	wait_for_completion(reset_device_cmd->completion);
3891
3892	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3893	 * unless we tried to reset a slot ID that wasn't enabled,
3894	 * or the device wasn't in the addressed or configured state.
3895	 */
3896	ret = reset_device_cmd->status;
3897	switch (ret) {
3898	case COMP_COMMAND_ABORTED:
3899	case COMP_COMMAND_RING_STOPPED:
3900		xhci_warn(xhci, "Timeout waiting for reset device command\n");
3901		ret = -ETIME;
3902		goto command_cleanup;
3903	case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3904	case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3905		xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3906				slot_id,
3907				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3908		xhci_dbg(xhci, "Not freeing device rings.\n");
3909		/* Don't treat this as an error.  May change my mind later. */
3910		ret = 0;
3911		goto command_cleanup;
3912	case COMP_SUCCESS:
3913		xhci_dbg(xhci, "Successful reset device command.\n");
3914		break;
3915	default:
3916		if (xhci_is_vendor_info_code(xhci, ret))
3917			break;
3918		xhci_warn(xhci, "Unknown completion code %u for "
3919				"reset device command.\n", ret);
3920		ret = -EINVAL;
3921		goto command_cleanup;
3922	}
3923
3924	/* Free up host controller endpoint resources */
3925	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3926		spin_lock_irqsave(&xhci->lock, flags);
3927		/* Don't delete the default control endpoint resources */
3928		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3929		spin_unlock_irqrestore(&xhci->lock, flags);
3930	}
3931
3932	/* Everything but endpoint 0 is disabled, so free the rings. */
3933	for (i = 1; i < 31; i++) {
3934		struct xhci_virt_ep *ep = &virt_dev->eps[i];
3935
3936		if (ep->ep_state & EP_HAS_STREAMS) {
3937			xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3938					xhci_get_endpoint_address(i));
3939			xhci_free_stream_info(xhci, ep->stream_info);
3940			ep->stream_info = NULL;
3941			ep->ep_state &= ~EP_HAS_STREAMS;
3942		}
3943
3944		if (ep->ring) {
3945			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3946			xhci_free_endpoint_ring(xhci, virt_dev, i);
3947		}
3948		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3949			xhci_drop_ep_from_interval_table(xhci,
3950					&virt_dev->eps[i].bw_info,
3951					virt_dev->bw_table,
3952					udev,
3953					&virt_dev->eps[i],
3954					virt_dev->tt_info);
3955		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3956	}
3957	/* If necessary, update the number of active TTs on this root port */
3958	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3959	virt_dev->flags = 0;
3960	ret = 0;
3961
3962command_cleanup:
3963	xhci_free_command(xhci, reset_device_cmd);
3964	return ret;
3965}
3966
3967/*
3968 * At this point, the struct usb_device is about to go away, the device has
3969 * disconnected, and all traffic has been stopped and the endpoints have been
3970 * disabled.  Free any HC data structures associated with that device.
3971 */
3972static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3973{
3974	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3975	struct xhci_virt_device *virt_dev;
3976	struct xhci_slot_ctx *slot_ctx;
3977	unsigned long flags;
3978	int i, ret;
3979
 
3980	/*
3981	 * We called pm_runtime_get_noresume when the device was attached.
3982	 * Decrement the counter here to allow controller to runtime suspend
3983	 * if no devices remain.
3984	 */
3985	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3986		pm_runtime_put_noidle(hcd->self.controller);
 
3987
3988	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3989	/* If the host is halted due to driver unload, we still need to free the
3990	 * device.
3991	 */
3992	if (ret <= 0 && ret != -ENODEV)
3993		return;
3994
3995	virt_dev = xhci->devs[udev->slot_id];
3996	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3997	trace_xhci_free_dev(slot_ctx);
3998
3999	/* Stop any wayward timer functions (which may grab the lock) */
4000	for (i = 0; i < 31; i++)
4001		virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
 
 
4002	virt_dev->udev = NULL;
4003	xhci_disable_slot(xhci, udev->slot_id);
4004
4005	spin_lock_irqsave(&xhci->lock, flags);
4006	xhci_free_virt_device(xhci, udev->slot_id);
4007	spin_unlock_irqrestore(&xhci->lock, flags);
4008
4009}
4010
4011int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
4012{
4013	struct xhci_command *command;
4014	unsigned long flags;
4015	u32 state;
4016	int ret;
4017
4018	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4019	if (!command)
4020		return -ENOMEM;
4021
4022	xhci_debugfs_remove_slot(xhci, slot_id);
4023
4024	spin_lock_irqsave(&xhci->lock, flags);
4025	/* Don't disable the slot if the host controller is dead. */
4026	state = readl(&xhci->op_regs->status);
4027	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
4028			(xhci->xhc_state & XHCI_STATE_HALTED)) {
4029		spin_unlock_irqrestore(&xhci->lock, flags);
4030		kfree(command);
4031		return -ENODEV;
4032	}
4033
4034	ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
4035				slot_id);
4036	if (ret) {
4037		spin_unlock_irqrestore(&xhci->lock, flags);
4038		kfree(command);
4039		return ret;
4040	}
4041	xhci_ring_cmd_db(xhci);
4042	spin_unlock_irqrestore(&xhci->lock, flags);
4043
4044	wait_for_completion(command->completion);
4045
4046	if (command->status != COMP_SUCCESS)
4047		xhci_warn(xhci, "Unsuccessful disable slot %u command, status %d\n",
4048			  slot_id, command->status);
4049
4050	xhci_free_command(xhci, command);
4051
4052	return 0;
4053}
4054
4055/*
4056 * Checks if we have enough host controller resources for the default control
4057 * endpoint.
4058 *
4059 * Must be called with xhci->lock held.
4060 */
4061static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
4062{
4063	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
4064		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4065				"Not enough ep ctxs: "
4066				"%u active, need to add 1, limit is %u.",
4067				xhci->num_active_eps, xhci->limit_active_eps);
4068		return -ENOMEM;
4069	}
4070	xhci->num_active_eps += 1;
4071	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4072			"Adding 1 ep ctx, %u now active.",
4073			xhci->num_active_eps);
4074	return 0;
4075}
4076
4077
4078/*
4079 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
4080 * timed out, or allocating memory failed.  Returns 1 on success.
4081 */
4082int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
4083{
4084	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4085	struct xhci_virt_device *vdev;
4086	struct xhci_slot_ctx *slot_ctx;
4087	unsigned long flags;
4088	int ret, slot_id;
4089	struct xhci_command *command;
4090
4091	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4092	if (!command)
4093		return 0;
4094
4095	spin_lock_irqsave(&xhci->lock, flags);
4096	ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
4097	if (ret) {
4098		spin_unlock_irqrestore(&xhci->lock, flags);
4099		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
4100		xhci_free_command(xhci, command);
4101		return 0;
4102	}
4103	xhci_ring_cmd_db(xhci);
4104	spin_unlock_irqrestore(&xhci->lock, flags);
4105
4106	wait_for_completion(command->completion);
4107	slot_id = command->slot_id;
4108
4109	if (!slot_id || command->status != COMP_SUCCESS) {
4110		xhci_err(xhci, "Error while assigning device slot ID: %s\n",
4111			 xhci_trb_comp_code_string(command->status));
4112		xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
4113				HCS_MAX_SLOTS(
4114					readl(&xhci->cap_regs->hcs_params1)));
4115		xhci_free_command(xhci, command);
4116		return 0;
4117	}
4118
4119	xhci_free_command(xhci, command);
4120
4121	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
4122		spin_lock_irqsave(&xhci->lock, flags);
4123		ret = xhci_reserve_host_control_ep_resources(xhci);
4124		if (ret) {
4125			spin_unlock_irqrestore(&xhci->lock, flags);
4126			xhci_warn(xhci, "Not enough host resources, "
4127					"active endpoint contexts = %u\n",
4128					xhci->num_active_eps);
4129			goto disable_slot;
4130		}
4131		spin_unlock_irqrestore(&xhci->lock, flags);
4132	}
4133	/* Use GFP_NOIO, since this function can be called from
4134	 * xhci_discover_or_reset_device(), which may be called as part of
4135	 * mass storage driver error handling.
4136	 */
4137	if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
4138		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
4139		goto disable_slot;
4140	}
4141	vdev = xhci->devs[slot_id];
4142	slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
4143	trace_xhci_alloc_dev(slot_ctx);
4144
4145	udev->slot_id = slot_id;
4146
4147	xhci_debugfs_create_slot(xhci, slot_id);
4148
 
4149	/*
4150	 * If resetting upon resume, we can't put the controller into runtime
4151	 * suspend if there is a device attached.
4152	 */
4153	if (xhci->quirks & XHCI_RESET_ON_RESUME)
4154		pm_runtime_get_noresume(hcd->self.controller);
 
4155
4156	/* Is this a LS or FS device under a HS hub? */
4157	/* Hub or peripherial? */
4158	return 1;
4159
4160disable_slot:
4161	xhci_disable_slot(xhci, udev->slot_id);
4162	xhci_free_virt_device(xhci, udev->slot_id);
 
4163
4164	return 0;
4165}
4166
4167/*
4168 * Issue an Address Device command and optionally send a corresponding
4169 * SetAddress request to the device.
4170 */
4171static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
4172			     enum xhci_setup_dev setup)
4173{
4174	const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
4175	unsigned long flags;
4176	struct xhci_virt_device *virt_dev;
4177	int ret = 0;
4178	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4179	struct xhci_slot_ctx *slot_ctx;
4180	struct xhci_input_control_ctx *ctrl_ctx;
4181	u64 temp_64;
4182	struct xhci_command *command = NULL;
4183
4184	mutex_lock(&xhci->mutex);
4185
4186	if (xhci->xhc_state) {	/* dying, removing or halted */
4187		ret = -ESHUTDOWN;
4188		goto out;
4189	}
4190
4191	if (!udev->slot_id) {
4192		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4193				"Bad Slot ID %d", udev->slot_id);
4194		ret = -EINVAL;
4195		goto out;
4196	}
4197
4198	virt_dev = xhci->devs[udev->slot_id];
4199
4200	if (WARN_ON(!virt_dev)) {
4201		/*
4202		 * In plug/unplug torture test with an NEC controller,
4203		 * a zero-dereference was observed once due to virt_dev = 0.
4204		 * Print useful debug rather than crash if it is observed again!
4205		 */
4206		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
4207			udev->slot_id);
4208		ret = -EINVAL;
4209		goto out;
4210	}
4211	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4212	trace_xhci_setup_device_slot(slot_ctx);
4213
4214	if (setup == SETUP_CONTEXT_ONLY) {
4215		if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
4216		    SLOT_STATE_DEFAULT) {
4217			xhci_dbg(xhci, "Slot already in default state\n");
4218			goto out;
4219		}
4220	}
4221
4222	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4223	if (!command) {
4224		ret = -ENOMEM;
4225		goto out;
4226	}
4227
4228	command->in_ctx = virt_dev->in_ctx;
4229
4230	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
4231	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
4232	if (!ctrl_ctx) {
4233		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4234				__func__);
4235		ret = -EINVAL;
4236		goto out;
4237	}
4238	/*
4239	 * If this is the first Set Address since device plug-in or
4240	 * virt_device realloaction after a resume with an xHCI power loss,
4241	 * then set up the slot context.
4242	 */
4243	if (!slot_ctx->dev_info)
4244		xhci_setup_addressable_virt_dev(xhci, udev);
4245	/* Otherwise, update the control endpoint ring enqueue pointer. */
4246	else
4247		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
4248	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4249	ctrl_ctx->drop_flags = 0;
4250
4251	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4252				le32_to_cpu(slot_ctx->dev_info) >> 27);
4253
4254	trace_xhci_address_ctrl_ctx(ctrl_ctx);
4255	spin_lock_irqsave(&xhci->lock, flags);
4256	trace_xhci_setup_device(virt_dev);
4257	ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4258					udev->slot_id, setup);
4259	if (ret) {
4260		spin_unlock_irqrestore(&xhci->lock, flags);
4261		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4262				"FIXME: allocate a command ring segment");
4263		goto out;
4264	}
4265	xhci_ring_cmd_db(xhci);
4266	spin_unlock_irqrestore(&xhci->lock, flags);
4267
4268	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4269	wait_for_completion(command->completion);
4270
4271	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
4272	 * the SetAddress() "recovery interval" required by USB and aborting the
4273	 * command on a timeout.
4274	 */
4275	switch (command->status) {
4276	case COMP_COMMAND_ABORTED:
4277	case COMP_COMMAND_RING_STOPPED:
4278		xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4279		ret = -ETIME;
4280		break;
4281	case COMP_CONTEXT_STATE_ERROR:
4282	case COMP_SLOT_NOT_ENABLED_ERROR:
4283		xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4284			 act, udev->slot_id);
4285		ret = -EINVAL;
4286		break;
4287	case COMP_USB_TRANSACTION_ERROR:
4288		dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4289
4290		mutex_unlock(&xhci->mutex);
4291		ret = xhci_disable_slot(xhci, udev->slot_id);
4292		xhci_free_virt_device(xhci, udev->slot_id);
4293		if (!ret)
4294			xhci_alloc_dev(hcd, udev);
4295		kfree(command->completion);
4296		kfree(command);
4297		return -EPROTO;
4298	case COMP_INCOMPATIBLE_DEVICE_ERROR:
4299		dev_warn(&udev->dev,
4300			 "ERROR: Incompatible device for setup %s command\n", act);
4301		ret = -ENODEV;
4302		break;
4303	case COMP_SUCCESS:
4304		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4305			       "Successful setup %s command", act);
4306		break;
4307	default:
4308		xhci_err(xhci,
4309			 "ERROR: unexpected setup %s command completion code 0x%x.\n",
4310			 act, command->status);
4311		trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4312		ret = -EINVAL;
4313		break;
4314	}
4315	if (ret)
4316		goto out;
4317	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4318	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4319			"Op regs DCBAA ptr = %#016llx", temp_64);
4320	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4321		"Slot ID %d dcbaa entry @%p = %#016llx",
4322		udev->slot_id,
4323		&xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4324		(unsigned long long)
4325		le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4326	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4327			"Output Context DMA address = %#08llx",
4328			(unsigned long long)virt_dev->out_ctx->dma);
4329	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4330				le32_to_cpu(slot_ctx->dev_info) >> 27);
4331	/*
4332	 * USB core uses address 1 for the roothubs, so we add one to the
4333	 * address given back to us by the HC.
4334	 */
4335	trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4336				le32_to_cpu(slot_ctx->dev_info) >> 27);
4337	/* Zero the input context control for later use */
4338	ctrl_ctx->add_flags = 0;
4339	ctrl_ctx->drop_flags = 0;
4340	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4341	udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4342
4343	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4344		       "Internal device address = %d",
4345		       le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4346out:
4347	mutex_unlock(&xhci->mutex);
4348	if (command) {
4349		kfree(command->completion);
4350		kfree(command);
4351	}
4352	return ret;
4353}
4354
4355static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
4356{
4357	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
4358}
4359
4360static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4361{
4362	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
4363}
4364
4365/*
4366 * Transfer the port index into real index in the HW port status
4367 * registers. Caculate offset between the port's PORTSC register
4368 * and port status base. Divide the number of per port register
4369 * to get the real index. The raw port number bases 1.
4370 */
4371int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4372{
4373	struct xhci_hub *rhub;
4374
4375	rhub = xhci_get_rhub(hcd);
4376	return rhub->ports[port1 - 1]->hw_portnum + 1;
4377}
4378
4379/*
4380 * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4381 * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4382 */
4383static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4384			struct usb_device *udev, u16 max_exit_latency)
4385{
4386	struct xhci_virt_device *virt_dev;
4387	struct xhci_command *command;
4388	struct xhci_input_control_ctx *ctrl_ctx;
4389	struct xhci_slot_ctx *slot_ctx;
4390	unsigned long flags;
4391	int ret;
4392
4393	command = xhci_alloc_command_with_ctx(xhci, true, GFP_KERNEL);
4394	if (!command)
4395		return -ENOMEM;
4396
4397	spin_lock_irqsave(&xhci->lock, flags);
4398
4399	virt_dev = xhci->devs[udev->slot_id];
4400
4401	/*
4402	 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4403	 * xHC was re-initialized. Exit latency will be set later after
4404	 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4405	 */
4406
4407	if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4408		spin_unlock_irqrestore(&xhci->lock, flags);
4409		return 0;
4410	}
4411
4412	/* Attempt to issue an Evaluate Context command to change the MEL. */
 
4413	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4414	if (!ctrl_ctx) {
4415		spin_unlock_irqrestore(&xhci->lock, flags);
4416		xhci_free_command(xhci, command);
4417		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4418				__func__);
4419		return -ENOMEM;
4420	}
4421
4422	xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4423	spin_unlock_irqrestore(&xhci->lock, flags);
4424
4425	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4426	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4427	slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4428	slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4429	slot_ctx->dev_state = 0;
4430
4431	xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4432			"Set up evaluate context for LPM MEL change.");
4433
4434	/* Issue and wait for the evaluate context command. */
4435	ret = xhci_configure_endpoint(xhci, udev, command,
4436			true, true);
4437
4438	if (!ret) {
4439		spin_lock_irqsave(&xhci->lock, flags);
4440		virt_dev->current_mel = max_exit_latency;
4441		spin_unlock_irqrestore(&xhci->lock, flags);
4442	}
4443
4444	xhci_free_command(xhci, command);
4445
4446	return ret;
4447}
4448
4449#ifdef CONFIG_PM
4450
4451/* BESL to HIRD Encoding array for USB2 LPM */
4452static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4453	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4454
4455/* Calculate HIRD/BESL for USB2 PORTPMSC*/
4456static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4457					struct usb_device *udev)
4458{
4459	int u2del, besl, besl_host;
4460	int besl_device = 0;
4461	u32 field;
4462
4463	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4464	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4465
4466	if (field & USB_BESL_SUPPORT) {
4467		for (besl_host = 0; besl_host < 16; besl_host++) {
4468			if (xhci_besl_encoding[besl_host] >= u2del)
4469				break;
4470		}
4471		/* Use baseline BESL value as default */
4472		if (field & USB_BESL_BASELINE_VALID)
4473			besl_device = USB_GET_BESL_BASELINE(field);
4474		else if (field & USB_BESL_DEEP_VALID)
4475			besl_device = USB_GET_BESL_DEEP(field);
4476	} else {
4477		if (u2del <= 50)
4478			besl_host = 0;
4479		else
4480			besl_host = (u2del - 51) / 75 + 1;
4481	}
4482
4483	besl = besl_host + besl_device;
4484	if (besl > 15)
4485		besl = 15;
4486
4487	return besl;
4488}
4489
4490/* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4491static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4492{
4493	u32 field;
4494	int l1;
4495	int besld = 0;
4496	int hirdm = 0;
4497
4498	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4499
4500	/* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4501	l1 = udev->l1_params.timeout / 256;
4502
4503	/* device has preferred BESLD */
4504	if (field & USB_BESL_DEEP_VALID) {
4505		besld = USB_GET_BESL_DEEP(field);
4506		hirdm = 1;
4507	}
4508
4509	return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4510}
4511
4512static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4513			struct usb_device *udev, int enable)
4514{
4515	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4516	struct xhci_port **ports;
4517	__le32 __iomem	*pm_addr, *hlpm_addr;
4518	u32		pm_val, hlpm_val, field;
4519	unsigned int	port_num;
4520	unsigned long	flags;
4521	int		hird, exit_latency;
4522	int		ret;
4523
4524	if (xhci->quirks & XHCI_HW_LPM_DISABLE)
4525		return -EPERM;
4526
4527	if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4528			!udev->lpm_capable)
4529		return -EPERM;
4530
4531	if (!udev->parent || udev->parent->parent ||
4532			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4533		return -EPERM;
4534
4535	if (udev->usb2_hw_lpm_capable != 1)
4536		return -EPERM;
4537
4538	spin_lock_irqsave(&xhci->lock, flags);
4539
4540	ports = xhci->usb2_rhub.ports;
4541	port_num = udev->portnum - 1;
4542	pm_addr = ports[port_num]->addr + PORTPMSC;
4543	pm_val = readl(pm_addr);
4544	hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4545
4546	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4547			enable ? "enable" : "disable", port_num + 1);
4548
4549	if (enable) {
4550		/* Host supports BESL timeout instead of HIRD */
4551		if (udev->usb2_hw_lpm_besl_capable) {
4552			/* if device doesn't have a preferred BESL value use a
4553			 * default one which works with mixed HIRD and BESL
4554			 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4555			 */
4556			field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4557			if ((field & USB_BESL_SUPPORT) &&
4558			    (field & USB_BESL_BASELINE_VALID))
4559				hird = USB_GET_BESL_BASELINE(field);
4560			else
4561				hird = udev->l1_params.besl;
4562
4563			exit_latency = xhci_besl_encoding[hird];
4564			spin_unlock_irqrestore(&xhci->lock, flags);
4565
 
 
 
 
 
 
 
 
4566			ret = xhci_change_max_exit_latency(xhci, udev,
4567							   exit_latency);
 
 
4568			if (ret < 0)
4569				return ret;
4570			spin_lock_irqsave(&xhci->lock, flags);
4571
4572			hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4573			writel(hlpm_val, hlpm_addr);
4574			/* flush write */
4575			readl(hlpm_addr);
4576		} else {
4577			hird = xhci_calculate_hird_besl(xhci, udev);
4578		}
4579
4580		pm_val &= ~PORT_HIRD_MASK;
4581		pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4582		writel(pm_val, pm_addr);
4583		pm_val = readl(pm_addr);
4584		pm_val |= PORT_HLE;
4585		writel(pm_val, pm_addr);
4586		/* flush write */
4587		readl(pm_addr);
4588	} else {
4589		pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4590		writel(pm_val, pm_addr);
4591		/* flush write */
4592		readl(pm_addr);
4593		if (udev->usb2_hw_lpm_besl_capable) {
4594			spin_unlock_irqrestore(&xhci->lock, flags);
 
4595			xhci_change_max_exit_latency(xhci, udev, 0);
4596			readl_poll_timeout(ports[port_num]->addr, pm_val,
4597					   (pm_val & PORT_PLS_MASK) == XDEV_U0,
4598					   100, 10000);
4599			return 0;
4600		}
4601	}
4602
4603	spin_unlock_irqrestore(&xhci->lock, flags);
4604	return 0;
4605}
4606
4607/* check if a usb2 port supports a given extened capability protocol
4608 * only USB2 ports extended protocol capability values are cached.
4609 * Return 1 if capability is supported
4610 */
4611static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4612					   unsigned capability)
4613{
4614	u32 port_offset, port_count;
4615	int i;
4616
4617	for (i = 0; i < xhci->num_ext_caps; i++) {
4618		if (xhci->ext_caps[i] & capability) {
4619			/* port offsets starts at 1 */
4620			port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4621			port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4622			if (port >= port_offset &&
4623			    port < port_offset + port_count)
4624				return 1;
4625		}
4626	}
4627	return 0;
4628}
4629
4630static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4631{
4632	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4633	int		portnum = udev->portnum - 1;
4634
4635	if (hcd->speed >= HCD_USB3 || !udev->lpm_capable)
4636		return 0;
4637
4638	/* we only support lpm for non-hub device connected to root hub yet */
4639	if (!udev->parent || udev->parent->parent ||
4640			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4641		return 0;
4642
4643	if (xhci->hw_lpm_support == 1 &&
4644			xhci_check_usb2_port_capability(
4645				xhci, portnum, XHCI_HLC)) {
4646		udev->usb2_hw_lpm_capable = 1;
4647		udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4648		udev->l1_params.besl = XHCI_DEFAULT_BESL;
4649		if (xhci_check_usb2_port_capability(xhci, portnum,
4650					XHCI_BLC))
4651			udev->usb2_hw_lpm_besl_capable = 1;
4652	}
4653
4654	return 0;
4655}
4656
4657/*---------------------- USB 3.0 Link PM functions ------------------------*/
4658
4659/* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4660static unsigned long long xhci_service_interval_to_ns(
4661		struct usb_endpoint_descriptor *desc)
4662{
4663	return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4664}
4665
4666static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4667		enum usb3_link_state state)
4668{
4669	unsigned long long sel;
4670	unsigned long long pel;
4671	unsigned int max_sel_pel;
4672	char *state_name;
4673
4674	switch (state) {
4675	case USB3_LPM_U1:
4676		/* Convert SEL and PEL stored in nanoseconds to microseconds */
4677		sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4678		pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4679		max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4680		state_name = "U1";
4681		break;
4682	case USB3_LPM_U2:
4683		sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4684		pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4685		max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4686		state_name = "U2";
4687		break;
4688	default:
4689		dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4690				__func__);
4691		return USB3_LPM_DISABLED;
4692	}
4693
4694	if (sel <= max_sel_pel && pel <= max_sel_pel)
4695		return USB3_LPM_DEVICE_INITIATED;
4696
4697	if (sel > max_sel_pel)
4698		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4699				"due to long SEL %llu ms\n",
4700				state_name, sel);
4701	else
4702		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4703				"due to long PEL %llu ms\n",
4704				state_name, pel);
4705	return USB3_LPM_DISABLED;
4706}
4707
4708/* The U1 timeout should be the maximum of the following values:
4709 *  - For control endpoints, U1 system exit latency (SEL) * 3
4710 *  - For bulk endpoints, U1 SEL * 5
4711 *  - For interrupt endpoints:
4712 *    - Notification EPs, U1 SEL * 3
4713 *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4714 *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4715 */
4716static unsigned long long xhci_calculate_intel_u1_timeout(
4717		struct usb_device *udev,
4718		struct usb_endpoint_descriptor *desc)
4719{
4720	unsigned long long timeout_ns;
4721	int ep_type;
4722	int intr_type;
4723
4724	ep_type = usb_endpoint_type(desc);
4725	switch (ep_type) {
4726	case USB_ENDPOINT_XFER_CONTROL:
4727		timeout_ns = udev->u1_params.sel * 3;
4728		break;
4729	case USB_ENDPOINT_XFER_BULK:
4730		timeout_ns = udev->u1_params.sel * 5;
4731		break;
4732	case USB_ENDPOINT_XFER_INT:
4733		intr_type = usb_endpoint_interrupt_type(desc);
4734		if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4735			timeout_ns = udev->u1_params.sel * 3;
4736			break;
4737		}
4738		/* Otherwise the calculation is the same as isoc eps */
4739		fallthrough;
4740	case USB_ENDPOINT_XFER_ISOC:
4741		timeout_ns = xhci_service_interval_to_ns(desc);
4742		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4743		if (timeout_ns < udev->u1_params.sel * 2)
4744			timeout_ns = udev->u1_params.sel * 2;
4745		break;
4746	default:
4747		return 0;
4748	}
4749
4750	return timeout_ns;
4751}
4752
4753/* Returns the hub-encoded U1 timeout value. */
4754static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4755		struct usb_device *udev,
4756		struct usb_endpoint_descriptor *desc)
4757{
4758	unsigned long long timeout_ns;
4759
4760	/* Prevent U1 if service interval is shorter than U1 exit latency */
4761	if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4762		if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) {
4763			dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4764			return USB3_LPM_DISABLED;
4765		}
4766	}
4767
4768	if (xhci->quirks & XHCI_INTEL_HOST)
4769		timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4770	else
4771		timeout_ns = udev->u1_params.sel;
4772
4773	/* The U1 timeout is encoded in 1us intervals.
4774	 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4775	 */
4776	if (timeout_ns == USB3_LPM_DISABLED)
4777		timeout_ns = 1;
4778	else
4779		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4780
4781	/* If the necessary timeout value is bigger than what we can set in the
4782	 * USB 3.0 hub, we have to disable hub-initiated U1.
4783	 */
4784	if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4785		return timeout_ns;
4786	dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4787			"due to long timeout %llu ms\n", timeout_ns);
4788	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4789}
4790
4791/* The U2 timeout should be the maximum of:
4792 *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4793 *  - largest bInterval of any active periodic endpoint (to avoid going
4794 *    into lower power link states between intervals).
4795 *  - the U2 Exit Latency of the device
4796 */
4797static unsigned long long xhci_calculate_intel_u2_timeout(
4798		struct usb_device *udev,
4799		struct usb_endpoint_descriptor *desc)
4800{
4801	unsigned long long timeout_ns;
4802	unsigned long long u2_del_ns;
4803
4804	timeout_ns = 10 * 1000 * 1000;
4805
4806	if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4807			(xhci_service_interval_to_ns(desc) > timeout_ns))
4808		timeout_ns = xhci_service_interval_to_ns(desc);
4809
4810	u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4811	if (u2_del_ns > timeout_ns)
4812		timeout_ns = u2_del_ns;
4813
4814	return timeout_ns;
4815}
4816
4817/* Returns the hub-encoded U2 timeout value. */
4818static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4819		struct usb_device *udev,
4820		struct usb_endpoint_descriptor *desc)
4821{
4822	unsigned long long timeout_ns;
4823
4824	/* Prevent U2 if service interval is shorter than U2 exit latency */
4825	if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4826		if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) {
4827			dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4828			return USB3_LPM_DISABLED;
4829		}
4830	}
4831
4832	if (xhci->quirks & XHCI_INTEL_HOST)
4833		timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4834	else
4835		timeout_ns = udev->u2_params.sel;
4836
4837	/* The U2 timeout is encoded in 256us intervals */
4838	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4839	/* If the necessary timeout value is bigger than what we can set in the
4840	 * USB 3.0 hub, we have to disable hub-initiated U2.
4841	 */
4842	if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4843		return timeout_ns;
4844	dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4845			"due to long timeout %llu ms\n", timeout_ns);
4846	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4847}
4848
4849static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4850		struct usb_device *udev,
4851		struct usb_endpoint_descriptor *desc,
4852		enum usb3_link_state state,
4853		u16 *timeout)
4854{
4855	if (state == USB3_LPM_U1)
4856		return xhci_calculate_u1_timeout(xhci, udev, desc);
4857	else if (state == USB3_LPM_U2)
4858		return xhci_calculate_u2_timeout(xhci, udev, desc);
4859
4860	return USB3_LPM_DISABLED;
4861}
4862
4863static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4864		struct usb_device *udev,
4865		struct usb_endpoint_descriptor *desc,
4866		enum usb3_link_state state,
4867		u16 *timeout)
4868{
4869	u16 alt_timeout;
4870
4871	alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4872		desc, state, timeout);
4873
4874	/* If we found we can't enable hub-initiated LPM, and
4875	 * the U1 or U2 exit latency was too high to allow
4876	 * device-initiated LPM as well, then we will disable LPM
4877	 * for this device, so stop searching any further.
4878	 */
4879	if (alt_timeout == USB3_LPM_DISABLED) {
4880		*timeout = alt_timeout;
4881		return -E2BIG;
4882	}
4883	if (alt_timeout > *timeout)
4884		*timeout = alt_timeout;
4885	return 0;
4886}
4887
4888static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4889		struct usb_device *udev,
4890		struct usb_host_interface *alt,
4891		enum usb3_link_state state,
4892		u16 *timeout)
4893{
4894	int j;
4895
4896	for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4897		if (xhci_update_timeout_for_endpoint(xhci, udev,
4898					&alt->endpoint[j].desc, state, timeout))
4899			return -E2BIG;
 
4900	}
4901	return 0;
4902}
4903
4904static int xhci_check_intel_tier_policy(struct usb_device *udev,
4905		enum usb3_link_state state)
4906{
4907	struct usb_device *parent;
4908	unsigned int num_hubs;
4909
 
 
 
4910	/* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4911	for (parent = udev->parent, num_hubs = 0; parent->parent;
4912			parent = parent->parent)
4913		num_hubs++;
4914
4915	if (num_hubs < 2)
4916		return 0;
4917
4918	dev_dbg(&udev->dev, "Disabling U1/U2 link state for device"
4919			" below second-tier hub.\n");
4920	dev_dbg(&udev->dev, "Plug device into first-tier hub "
4921			"to decrease power consumption.\n");
4922	return -E2BIG;
4923}
4924
4925static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4926		struct usb_device *udev,
4927		enum usb3_link_state state)
4928{
4929	if (xhci->quirks & XHCI_INTEL_HOST)
4930		return xhci_check_intel_tier_policy(udev, state);
4931	else
4932		return 0;
4933}
4934
4935/* Returns the U1 or U2 timeout that should be enabled.
4936 * If the tier check or timeout setting functions return with a non-zero exit
4937 * code, that means the timeout value has been finalized and we shouldn't look
4938 * at any more endpoints.
4939 */
4940static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4941			struct usb_device *udev, enum usb3_link_state state)
4942{
4943	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4944	struct usb_host_config *config;
4945	char *state_name;
4946	int i;
4947	u16 timeout = USB3_LPM_DISABLED;
4948
4949	if (state == USB3_LPM_U1)
4950		state_name = "U1";
4951	else if (state == USB3_LPM_U2)
4952		state_name = "U2";
4953	else {
4954		dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4955				state);
4956		return timeout;
4957	}
4958
 
 
 
4959	/* Gather some information about the currently installed configuration
4960	 * and alternate interface settings.
4961	 */
4962	if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4963			state, &timeout))
4964		return timeout;
4965
4966	config = udev->actconfig;
4967	if (!config)
4968		return timeout;
4969
4970	for (i = 0; i < config->desc.bNumInterfaces; i++) {
4971		struct usb_driver *driver;
4972		struct usb_interface *intf = config->interface[i];
4973
4974		if (!intf)
4975			continue;
4976
4977		/* Check if any currently bound drivers want hub-initiated LPM
4978		 * disabled.
4979		 */
4980		if (intf->dev.driver) {
4981			driver = to_usb_driver(intf->dev.driver);
4982			if (driver && driver->disable_hub_initiated_lpm) {
4983				dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n",
4984					state_name, driver->name);
4985				timeout = xhci_get_timeout_no_hub_lpm(udev,
4986								      state);
4987				if (timeout == USB3_LPM_DISABLED)
4988					return timeout;
4989			}
4990		}
4991
4992		/* Not sure how this could happen... */
4993		if (!intf->cur_altsetting)
4994			continue;
4995
4996		if (xhci_update_timeout_for_interface(xhci, udev,
4997					intf->cur_altsetting,
4998					state, &timeout))
4999			return timeout;
5000	}
5001	return timeout;
5002}
5003
5004static int calculate_max_exit_latency(struct usb_device *udev,
5005		enum usb3_link_state state_changed,
5006		u16 hub_encoded_timeout)
5007{
5008	unsigned long long u1_mel_us = 0;
5009	unsigned long long u2_mel_us = 0;
5010	unsigned long long mel_us = 0;
5011	bool disabling_u1;
5012	bool disabling_u2;
5013	bool enabling_u1;
5014	bool enabling_u2;
5015
5016	disabling_u1 = (state_changed == USB3_LPM_U1 &&
5017			hub_encoded_timeout == USB3_LPM_DISABLED);
5018	disabling_u2 = (state_changed == USB3_LPM_U2 &&
5019			hub_encoded_timeout == USB3_LPM_DISABLED);
5020
5021	enabling_u1 = (state_changed == USB3_LPM_U1 &&
5022			hub_encoded_timeout != USB3_LPM_DISABLED);
5023	enabling_u2 = (state_changed == USB3_LPM_U2 &&
5024			hub_encoded_timeout != USB3_LPM_DISABLED);
5025
5026	/* If U1 was already enabled and we're not disabling it,
5027	 * or we're going to enable U1, account for the U1 max exit latency.
5028	 */
5029	if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
5030			enabling_u1)
5031		u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
5032	if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
5033			enabling_u2)
5034		u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
5035
5036	mel_us = max(u1_mel_us, u2_mel_us);
5037
 
 
5038	/* xHCI host controller max exit latency field is only 16 bits wide. */
5039	if (mel_us > MAX_EXIT) {
5040		dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
5041				"is too big.\n", mel_us);
5042		return -E2BIG;
5043	}
5044	return mel_us;
5045}
5046
5047/* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
5048static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5049			struct usb_device *udev, enum usb3_link_state state)
5050{
5051	struct xhci_hcd	*xhci;
5052	struct xhci_port *port;
5053	u16 hub_encoded_timeout;
5054	int mel;
5055	int ret;
5056
5057	xhci = hcd_to_xhci(hcd);
5058	/* The LPM timeout values are pretty host-controller specific, so don't
5059	 * enable hub-initiated timeouts unless the vendor has provided
5060	 * information about their timeout algorithm.
5061	 */
5062	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5063			!xhci->devs[udev->slot_id])
5064		return USB3_LPM_DISABLED;
5065
5066	if (xhci_check_tier_policy(xhci, udev, state) < 0)
5067		return USB3_LPM_DISABLED;
5068
5069	/* If connected to root port then check port can handle lpm */
5070	if (udev->parent && !udev->parent->parent) {
5071		port = xhci->usb3_rhub.ports[udev->portnum - 1];
5072		if (port->lpm_incapable)
5073			return USB3_LPM_DISABLED;
5074	}
5075
5076	hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
5077	mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
5078	if (mel < 0) {
5079		/* Max Exit Latency is too big, disable LPM. */
5080		hub_encoded_timeout = USB3_LPM_DISABLED;
5081		mel = 0;
5082	}
5083
5084	ret = xhci_change_max_exit_latency(xhci, udev, mel);
5085	if (ret)
5086		return ret;
5087	return hub_encoded_timeout;
5088}
5089
5090static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5091			struct usb_device *udev, enum usb3_link_state state)
5092{
5093	struct xhci_hcd	*xhci;
5094	u16 mel;
5095
5096	xhci = hcd_to_xhci(hcd);
5097	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5098			!xhci->devs[udev->slot_id])
5099		return 0;
5100
5101	mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
5102	return xhci_change_max_exit_latency(xhci, udev, mel);
5103}
5104#else /* CONFIG_PM */
5105
5106static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
5107				struct usb_device *udev, int enable)
5108{
5109	return 0;
5110}
5111
5112static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
5113{
5114	return 0;
5115}
5116
5117static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5118			struct usb_device *udev, enum usb3_link_state state)
5119{
5120	return USB3_LPM_DISABLED;
5121}
5122
5123static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5124			struct usb_device *udev, enum usb3_link_state state)
5125{
5126	return 0;
5127}
5128#endif	/* CONFIG_PM */
5129
5130/*-------------------------------------------------------------------------*/
5131
5132/* Once a hub descriptor is fetched for a device, we need to update the xHC's
5133 * internal data structures for the device.
5134 */
5135int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
5136			struct usb_tt *tt, gfp_t mem_flags)
5137{
5138	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5139	struct xhci_virt_device *vdev;
5140	struct xhci_command *config_cmd;
5141	struct xhci_input_control_ctx *ctrl_ctx;
5142	struct xhci_slot_ctx *slot_ctx;
5143	unsigned long flags;
5144	unsigned think_time;
5145	int ret;
5146
5147	/* Ignore root hubs */
5148	if (!hdev->parent)
5149		return 0;
5150
5151	vdev = xhci->devs[hdev->slot_id];
5152	if (!vdev) {
5153		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
5154		return -EINVAL;
5155	}
5156
5157	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
5158	if (!config_cmd)
5159		return -ENOMEM;
5160
5161	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
5162	if (!ctrl_ctx) {
5163		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
5164				__func__);
5165		xhci_free_command(xhci, config_cmd);
5166		return -ENOMEM;
5167	}
5168
5169	spin_lock_irqsave(&xhci->lock, flags);
5170	if (hdev->speed == USB_SPEED_HIGH &&
5171			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
5172		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
5173		xhci_free_command(xhci, config_cmd);
5174		spin_unlock_irqrestore(&xhci->lock, flags);
5175		return -ENOMEM;
5176	}
5177
5178	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
5179	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
5180	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
5181	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
5182	/*
5183	 * refer to section 6.2.2: MTT should be 0 for full speed hub,
5184	 * but it may be already set to 1 when setup an xHCI virtual
5185	 * device, so clear it anyway.
5186	 */
5187	if (tt->multi)
5188		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
5189	else if (hdev->speed == USB_SPEED_FULL)
5190		slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
5191
5192	if (xhci->hci_version > 0x95) {
5193		xhci_dbg(xhci, "xHCI version %x needs hub "
5194				"TT think time and number of ports\n",
5195				(unsigned int) xhci->hci_version);
5196		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
5197		/* Set TT think time - convert from ns to FS bit times.
5198		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
5199		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
5200		 *
5201		 * xHCI 1.0: this field shall be 0 if the device is not a
5202		 * High-spped hub.
5203		 */
5204		think_time = tt->think_time;
5205		if (think_time != 0)
5206			think_time = (think_time / 666) - 1;
5207		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
5208			slot_ctx->tt_info |=
5209				cpu_to_le32(TT_THINK_TIME(think_time));
5210	} else {
5211		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
5212				"TT think time or number of ports\n",
5213				(unsigned int) xhci->hci_version);
5214	}
5215	slot_ctx->dev_state = 0;
5216	spin_unlock_irqrestore(&xhci->lock, flags);
5217
5218	xhci_dbg(xhci, "Set up %s for hub device.\n",
5219			(xhci->hci_version > 0x95) ?
5220			"configure endpoint" : "evaluate context");
5221
5222	/* Issue and wait for the configure endpoint or
5223	 * evaluate context command.
5224	 */
5225	if (xhci->hci_version > 0x95)
5226		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5227				false, false);
5228	else
5229		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5230				true, false);
5231
5232	xhci_free_command(xhci, config_cmd);
5233	return ret;
5234}
5235EXPORT_SYMBOL_GPL(xhci_update_hub_device);
5236
5237static int xhci_get_frame(struct usb_hcd *hcd)
5238{
5239	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5240	/* EHCI mods by the periodic size.  Why? */
5241	return readl(&xhci->run_regs->microframe_index) >> 3;
5242}
5243
5244static void xhci_hcd_init_usb2_data(struct xhci_hcd *xhci, struct usb_hcd *hcd)
5245{
5246	xhci->usb2_rhub.hcd = hcd;
5247	hcd->speed = HCD_USB2;
5248	hcd->self.root_hub->speed = USB_SPEED_HIGH;
5249	/*
5250	 * USB 2.0 roothub under xHCI has an integrated TT,
5251	 * (rate matching hub) as opposed to having an OHCI/UHCI
5252	 * companion controller.
5253	 */
5254	hcd->has_tt = 1;
5255}
5256
5257static void xhci_hcd_init_usb3_data(struct xhci_hcd *xhci, struct usb_hcd *hcd)
5258{
5259	unsigned int minor_rev;
5260
5261	/*
5262	 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts
5263	 * should return 0x31 for sbrn, or that the minor revision
5264	 * is a two digit BCD containig minor and sub-minor numbers.
5265	 * This was later clarified in xHCI 1.2.
5266	 *
5267	 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and
5268	 * minor revision set to 0x1 instead of 0x10.
5269	 */
5270	if (xhci->usb3_rhub.min_rev == 0x1)
5271		minor_rev = 1;
5272	else
5273		minor_rev = xhci->usb3_rhub.min_rev / 0x10;
5274
5275	switch (minor_rev) {
5276	case 2:
5277		hcd->speed = HCD_USB32;
5278		hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5279		hcd->self.root_hub->rx_lanes = 2;
5280		hcd->self.root_hub->tx_lanes = 2;
5281		hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x2;
5282		break;
5283	case 1:
5284		hcd->speed = HCD_USB31;
5285		hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5286		hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x1;
5287		break;
5288	}
5289	xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n",
5290		  minor_rev, minor_rev ? "Enhanced " : "");
5291
5292	xhci->usb3_rhub.hcd = hcd;
5293}
5294
5295int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
5296{
5297	struct xhci_hcd		*xhci;
5298	/*
5299	 * TODO: Check with DWC3 clients for sysdev according to
5300	 * quirks
5301	 */
5302	struct device		*dev = hcd->self.sysdev;
 
5303	int			retval;
5304
5305	/* Accept arbitrarily long scatter-gather lists */
5306	hcd->self.sg_tablesize = ~0;
5307
5308	/* support to build packet from discontinuous buffers */
5309	hcd->self.no_sg_constraint = 1;
5310
5311	/* XHCI controllers don't stop the ep queue on short packets :| */
5312	hcd->self.no_stop_on_short = 1;
5313
5314	xhci = hcd_to_xhci(hcd);
5315
5316	if (!usb_hcd_is_primary_hcd(hcd)) {
5317		xhci_hcd_init_usb3_data(xhci, hcd);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5318		return 0;
5319	}
5320
5321	mutex_init(&xhci->mutex);
5322	xhci->main_hcd = hcd;
5323	xhci->cap_regs = hcd->regs;
5324	xhci->op_regs = hcd->regs +
5325		HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5326	xhci->run_regs = hcd->regs +
5327		(readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5328	/* Cache read-only capability registers */
5329	xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5330	xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5331	xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5332	xhci->hci_version = HC_VERSION(readl(&xhci->cap_regs->hc_capbase));
 
5333	xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5334	if (xhci->hci_version > 0x100)
5335		xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5336
5337	xhci->quirks |= quirks;
5338
5339	get_quirks(dev, xhci);
5340
5341	/* In xhci controllers which follow xhci 1.0 spec gives a spurious
5342	 * success event after a short transfer. This quirk will ignore such
5343	 * spurious event.
5344	 */
5345	if (xhci->hci_version > 0x96)
5346		xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5347
5348	/* Make sure the HC is halted. */
5349	retval = xhci_halt(xhci);
5350	if (retval)
5351		return retval;
5352
5353	xhci_zero_64b_regs(xhci);
5354
5355	xhci_dbg(xhci, "Resetting HCD\n");
5356	/* Reset the internal HC memory state and registers. */
5357	retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
5358	if (retval)
5359		return retval;
5360	xhci_dbg(xhci, "Reset complete\n");
5361
5362	/*
5363	 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5364	 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5365	 * address memory pointers actually. So, this driver clears the AC64
5366	 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5367	 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5368	 */
5369	if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5370		xhci->hcc_params &= ~BIT(0);
5371
5372	/* Set dma_mask and coherent_dma_mask to 64-bits,
5373	 * if xHC supports 64-bit addressing */
5374	if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5375			!dma_set_mask(dev, DMA_BIT_MASK(64))) {
5376		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5377		dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5378	} else {
5379		/*
5380		 * This is to avoid error in cases where a 32-bit USB
5381		 * controller is used on a 64-bit capable system.
5382		 */
5383		retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5384		if (retval)
5385			return retval;
5386		xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5387		dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5388	}
5389
5390	xhci_dbg(xhci, "Calling HCD init\n");
5391	/* Initialize HCD and host controller data structures. */
5392	retval = xhci_init(hcd);
5393	if (retval)
5394		return retval;
5395	xhci_dbg(xhci, "Called HCD init\n");
5396
5397	if (xhci_hcd_is_usb3(hcd))
5398		xhci_hcd_init_usb3_data(xhci, hcd);
5399	else
5400		xhci_hcd_init_usb2_data(xhci, hcd);
5401
5402	xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5403		  xhci->hcc_params, xhci->hci_version, xhci->quirks);
5404
5405	return 0;
5406}
5407EXPORT_SYMBOL_GPL(xhci_gen_setup);
5408
5409static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd,
5410		struct usb_host_endpoint *ep)
5411{
5412	struct xhci_hcd *xhci;
5413	struct usb_device *udev;
5414	unsigned int slot_id;
5415	unsigned int ep_index;
5416	unsigned long flags;
5417
5418	xhci = hcd_to_xhci(hcd);
5419
5420	spin_lock_irqsave(&xhci->lock, flags);
5421	udev = (struct usb_device *)ep->hcpriv;
5422	slot_id = udev->slot_id;
5423	ep_index = xhci_get_endpoint_index(&ep->desc);
5424
5425	xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT;
5426	xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
5427	spin_unlock_irqrestore(&xhci->lock, flags);
5428}
5429
5430static const struct hc_driver xhci_hc_driver = {
5431	.description =		"xhci-hcd",
5432	.product_desc =		"xHCI Host Controller",
5433	.hcd_priv_size =	sizeof(struct xhci_hcd),
5434
5435	/*
5436	 * generic hardware linkage
5437	 */
5438	.irq =			xhci_irq,
5439	.flags =		HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED |
5440				HCD_BH,
5441
5442	/*
5443	 * basic lifecycle operations
5444	 */
5445	.reset =		NULL, /* set in xhci_init_driver() */
5446	.start =		xhci_run,
5447	.stop =			xhci_stop,
5448	.shutdown =		xhci_shutdown,
5449
5450	/*
5451	 * managing i/o requests and associated device resources
5452	 */
5453	.map_urb_for_dma =      xhci_map_urb_for_dma,
5454	.unmap_urb_for_dma =    xhci_unmap_urb_for_dma,
5455	.urb_enqueue =		xhci_urb_enqueue,
5456	.urb_dequeue =		xhci_urb_dequeue,
5457	.alloc_dev =		xhci_alloc_dev,
5458	.free_dev =		xhci_free_dev,
5459	.alloc_streams =	xhci_alloc_streams,
5460	.free_streams =		xhci_free_streams,
5461	.add_endpoint =		xhci_add_endpoint,
5462	.drop_endpoint =	xhci_drop_endpoint,
5463	.endpoint_disable =	xhci_endpoint_disable,
5464	.endpoint_reset =	xhci_endpoint_reset,
5465	.check_bandwidth =	xhci_check_bandwidth,
5466	.reset_bandwidth =	xhci_reset_bandwidth,
5467	.address_device =	xhci_address_device,
5468	.enable_device =	xhci_enable_device,
5469	.update_hub_device =	xhci_update_hub_device,
5470	.reset_device =		xhci_discover_or_reset_device,
5471
5472	/*
5473	 * scheduling support
5474	 */
5475	.get_frame_number =	xhci_get_frame,
5476
5477	/*
5478	 * root hub support
5479	 */
5480	.hub_control =		xhci_hub_control,
5481	.hub_status_data =	xhci_hub_status_data,
5482	.bus_suspend =		xhci_bus_suspend,
5483	.bus_resume =		xhci_bus_resume,
5484	.get_resuming_ports =	xhci_get_resuming_ports,
5485
5486	/*
5487	 * call back when device connected and addressed
5488	 */
5489	.update_device =        xhci_update_device,
5490	.set_usb2_hw_lpm =	xhci_set_usb2_hardware_lpm,
5491	.enable_usb3_lpm_timeout =	xhci_enable_usb3_lpm_timeout,
5492	.disable_usb3_lpm_timeout =	xhci_disable_usb3_lpm_timeout,
5493	.find_raw_port_number =	xhci_find_raw_port_number,
5494	.clear_tt_buffer_complete = xhci_clear_tt_buffer_complete,
5495};
5496
5497void xhci_init_driver(struct hc_driver *drv,
5498		      const struct xhci_driver_overrides *over)
5499{
5500	BUG_ON(!over);
5501
5502	/* Copy the generic table to drv then apply the overrides */
5503	*drv = xhci_hc_driver;
5504
5505	if (over) {
5506		drv->hcd_priv_size += over->extra_priv_size;
5507		if (over->reset)
5508			drv->reset = over->reset;
5509		if (over->start)
5510			drv->start = over->start;
5511		if (over->add_endpoint)
5512			drv->add_endpoint = over->add_endpoint;
5513		if (over->drop_endpoint)
5514			drv->drop_endpoint = over->drop_endpoint;
5515		if (over->check_bandwidth)
5516			drv->check_bandwidth = over->check_bandwidth;
5517		if (over->reset_bandwidth)
5518			drv->reset_bandwidth = over->reset_bandwidth;
5519		if (over->update_hub_device)
5520			drv->update_hub_device = over->update_hub_device;
5521	}
5522}
5523EXPORT_SYMBOL_GPL(xhci_init_driver);
5524
5525MODULE_DESCRIPTION(DRIVER_DESC);
5526MODULE_AUTHOR(DRIVER_AUTHOR);
5527MODULE_LICENSE("GPL");
5528
5529static int __init xhci_hcd_init(void)
5530{
5531	/*
5532	 * Check the compiler generated sizes of structures that must be laid
5533	 * out in specific ways for hardware access.
5534	 */
5535	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5536	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5537	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5538	/* xhci_device_control has eight fields, and also
5539	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5540	 */
5541	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5542	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5543	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5544	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5545	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5546	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5547	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5548
5549	if (usb_disabled())
5550		return -ENODEV;
5551
5552	xhci_debugfs_create_root();
5553	xhci_dbc_init();
5554
5555	return 0;
5556}
5557
5558/*
5559 * If an init function is provided, an exit function must also be provided
5560 * to allow module unload.
5561 */
5562static void __exit xhci_hcd_fini(void)
5563{
5564	xhci_debugfs_remove_root();
5565	xhci_dbc_exit();
5566}
5567
5568module_init(xhci_hcd_init);
5569module_exit(xhci_hcd_fini);
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * xHCI host controller driver
   4 *
   5 * Copyright (C) 2008 Intel Corp.
   6 *
   7 * Author: Sarah Sharp
   8 * Some code borrowed from the Linux EHCI driver.
   9 */
  10
  11#include <linux/pci.h>
  12#include <linux/iopoll.h>
  13#include <linux/irq.h>
  14#include <linux/log2.h>
  15#include <linux/module.h>
  16#include <linux/moduleparam.h>
  17#include <linux/slab.h>
  18#include <linux/dmi.h>
  19#include <linux/dma-mapping.h>
  20
  21#include "xhci.h"
  22#include "xhci-trace.h"
  23#include "xhci-mtk.h"
  24#include "xhci-debugfs.h"
  25#include "xhci-dbgcap.h"
  26
  27#define DRIVER_AUTHOR "Sarah Sharp"
  28#define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
  29
  30#define	PORT_WAKE_BITS	(PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
  31
  32/* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
  33static int link_quirk;
  34module_param(link_quirk, int, S_IRUGO | S_IWUSR);
  35MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
  36
  37static unsigned long long quirks;
  38module_param(quirks, ullong, S_IRUGO);
  39MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
  40
  41static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
  42{
  43	struct xhci_segment *seg = ring->first_seg;
  44
  45	if (!td || !td->start_seg)
  46		return false;
  47	do {
  48		if (seg == td->start_seg)
  49			return true;
  50		seg = seg->next;
  51	} while (seg && seg != ring->first_seg);
  52
  53	return false;
  54}
  55
  56/*
  57 * xhci_handshake - spin reading hc until handshake completes or fails
  58 * @ptr: address of hc register to be read
  59 * @mask: bits to look at in result of read
  60 * @done: value of those bits when handshake succeeds
  61 * @usec: timeout in microseconds
  62 *
  63 * Returns negative errno, or zero on success
  64 *
  65 * Success happens when the "mask" bits have the specified value (hardware
  66 * handshake done).  There are two failure modes:  "usec" have passed (major
  67 * hardware flakeout), or the register reads as all-ones (hardware removed).
  68 */
  69int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
  70{
  71	u32	result;
  72	int	ret;
  73
  74	ret = readl_poll_timeout_atomic(ptr, result,
  75					(result & mask) == done ||
  76					result == U32_MAX,
  77					1, usec);
  78	if (result == U32_MAX)		/* card removed */
  79		return -ENODEV;
  80
  81	return ret;
  82}
  83
  84/*
  85 * Disable interrupts and begin the xHCI halting process.
  86 */
  87void xhci_quiesce(struct xhci_hcd *xhci)
  88{
  89	u32 halted;
  90	u32 cmd;
  91	u32 mask;
  92
  93	mask = ~(XHCI_IRQS);
  94	halted = readl(&xhci->op_regs->status) & STS_HALT;
  95	if (!halted)
  96		mask &= ~CMD_RUN;
  97
  98	cmd = readl(&xhci->op_regs->command);
  99	cmd &= mask;
 100	writel(cmd, &xhci->op_regs->command);
 101}
 102
 103/*
 104 * Force HC into halt state.
 105 *
 106 * Disable any IRQs and clear the run/stop bit.
 107 * HC will complete any current and actively pipelined transactions, and
 108 * should halt within 16 ms of the run/stop bit being cleared.
 109 * Read HC Halted bit in the status register to see when the HC is finished.
 110 */
 111int xhci_halt(struct xhci_hcd *xhci)
 112{
 113	int ret;
 
 114	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
 115	xhci_quiesce(xhci);
 116
 117	ret = xhci_handshake(&xhci->op_regs->status,
 118			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
 119	if (ret) {
 120		xhci_warn(xhci, "Host halt failed, %d\n", ret);
 121		return ret;
 122	}
 
 123	xhci->xhc_state |= XHCI_STATE_HALTED;
 124	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
 
 125	return ret;
 126}
 127
 128/*
 129 * Set the run bit and wait for the host to be running.
 130 */
 131int xhci_start(struct xhci_hcd *xhci)
 132{
 133	u32 temp;
 134	int ret;
 135
 136	temp = readl(&xhci->op_regs->command);
 137	temp |= (CMD_RUN);
 138	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
 139			temp);
 140	writel(temp, &xhci->op_regs->command);
 141
 142	/*
 143	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
 144	 * running.
 145	 */
 146	ret = xhci_handshake(&xhci->op_regs->status,
 147			STS_HALT, 0, XHCI_MAX_HALT_USEC);
 148	if (ret == -ETIMEDOUT)
 149		xhci_err(xhci, "Host took too long to start, "
 150				"waited %u microseconds.\n",
 151				XHCI_MAX_HALT_USEC);
 152	if (!ret)
 153		/* clear state flags. Including dying, halted or removing */
 154		xhci->xhc_state = 0;
 
 
 155
 156	return ret;
 157}
 158
 159/*
 160 * Reset a halted HC.
 161 *
 162 * This resets pipelines, timers, counters, state machines, etc.
 163 * Transactions will be terminated immediately, and operational registers
 164 * will be set to their defaults.
 165 */
 166int xhci_reset(struct xhci_hcd *xhci)
 167{
 168	u32 command;
 169	u32 state;
 170	int ret;
 171
 172	state = readl(&xhci->op_regs->status);
 173
 174	if (state == ~(u32)0) {
 175		xhci_warn(xhci, "Host not accessible, reset failed.\n");
 176		return -ENODEV;
 177	}
 178
 179	if ((state & STS_HALT) == 0) {
 180		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
 181		return 0;
 182	}
 183
 184	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
 185	command = readl(&xhci->op_regs->command);
 186	command |= CMD_RESET;
 187	writel(command, &xhci->op_regs->command);
 188
 189	/* Existing Intel xHCI controllers require a delay of 1 mS,
 190	 * after setting the CMD_RESET bit, and before accessing any
 191	 * HC registers. This allows the HC to complete the
 192	 * reset operation and be ready for HC register access.
 193	 * Without this delay, the subsequent HC register access,
 194	 * may result in a system hang very rarely.
 195	 */
 196	if (xhci->quirks & XHCI_INTEL_HOST)
 197		udelay(1000);
 198
 199	ret = xhci_handshake(&xhci->op_regs->command,
 200			CMD_RESET, 0, 10 * 1000 * 1000);
 201	if (ret)
 202		return ret;
 203
 204	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
 205		usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
 206
 207	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 208			 "Wait for controller to be ready for doorbell rings");
 209	/*
 210	 * xHCI cannot write to any doorbells or operational registers other
 211	 * than status until the "Controller Not Ready" flag is cleared.
 212	 */
 213	ret = xhci_handshake(&xhci->op_regs->status,
 214			STS_CNR, 0, 10 * 1000 * 1000);
 215
 216	xhci->usb2_rhub.bus_state.port_c_suspend = 0;
 217	xhci->usb2_rhub.bus_state.suspended_ports = 0;
 218	xhci->usb2_rhub.bus_state.resuming_ports = 0;
 219	xhci->usb3_rhub.bus_state.port_c_suspend = 0;
 220	xhci->usb3_rhub.bus_state.suspended_ports = 0;
 221	xhci->usb3_rhub.bus_state.resuming_ports = 0;
 222
 223	return ret;
 224}
 225
 226static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
 227{
 228	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
 229	int err, i;
 230	u64 val;
 
 231
 232	/*
 233	 * Some Renesas controllers get into a weird state if they are
 234	 * reset while programmed with 64bit addresses (they will preserve
 235	 * the top half of the address in internal, non visible
 236	 * registers). You end up with half the address coming from the
 237	 * kernel, and the other half coming from the firmware. Also,
 238	 * changing the programming leads to extra accesses even if the
 239	 * controller is supposed to be halted. The controller ends up with
 240	 * a fatal fault, and is then ripe for being properly reset.
 241	 *
 242	 * Special care is taken to only apply this if the device is behind
 243	 * an iommu. Doing anything when there is no iommu is definitely
 244	 * unsafe...
 245	 */
 246	if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !device_iommu_mapped(dev))
 247		return;
 248
 249	xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
 250
 251	/* Clear HSEIE so that faults do not get signaled */
 252	val = readl(&xhci->op_regs->command);
 253	val &= ~CMD_HSEIE;
 254	writel(val, &xhci->op_regs->command);
 255
 256	/* Clear HSE (aka FATAL) */
 257	val = readl(&xhci->op_regs->status);
 258	val |= STS_FATAL;
 259	writel(val, &xhci->op_regs->status);
 260
 261	/* Now zero the registers, and brace for impact */
 262	val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
 263	if (upper_32_bits(val))
 264		xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
 265	val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
 266	if (upper_32_bits(val))
 267		xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
 268
 269	for (i = 0; i < HCS_MAX_INTRS(xhci->hcs_params1); i++) {
 
 
 
 270		struct xhci_intr_reg __iomem *ir;
 271
 272		ir = &xhci->run_regs->ir_set[i];
 273		val = xhci_read_64(xhci, &ir->erst_base);
 274		if (upper_32_bits(val))
 275			xhci_write_64(xhci, 0, &ir->erst_base);
 276		val= xhci_read_64(xhci, &ir->erst_dequeue);
 277		if (upper_32_bits(val))
 278			xhci_write_64(xhci, 0, &ir->erst_dequeue);
 279	}
 280
 281	/* Wait for the fault to appear. It will be cleared on reset */
 282	err = xhci_handshake(&xhci->op_regs->status,
 283			     STS_FATAL, STS_FATAL,
 284			     XHCI_MAX_HALT_USEC);
 285	if (!err)
 286		xhci_info(xhci, "Fault detected\n");
 287}
 288
 289#ifdef CONFIG_USB_PCI
 290/*
 291 * Set up MSI
 292 */
 293static int xhci_setup_msi(struct xhci_hcd *xhci)
 294{
 295	int ret;
 296	/*
 297	 * TODO:Check with MSI Soc for sysdev
 298	 */
 299	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
 300
 301	ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
 302	if (ret < 0) {
 303		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 304				"failed to allocate MSI entry");
 305		return ret;
 306	}
 307
 308	ret = request_irq(pdev->irq, xhci_msi_irq,
 309				0, "xhci_hcd", xhci_to_hcd(xhci));
 310	if (ret) {
 311		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 312				"disable MSI interrupt");
 313		pci_free_irq_vectors(pdev);
 314	}
 315
 316	return ret;
 317}
 318
 319/*
 320 * Set up MSI-X
 321 */
 322static int xhci_setup_msix(struct xhci_hcd *xhci)
 323{
 324	int i, ret = 0;
 325	struct usb_hcd *hcd = xhci_to_hcd(xhci);
 326	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
 327
 328	/*
 329	 * calculate number of msi-x vectors supported.
 330	 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
 331	 *   with max number of interrupters based on the xhci HCSPARAMS1.
 332	 * - num_online_cpus: maximum msi-x vectors per CPUs core.
 333	 *   Add additional 1 vector to ensure always available interrupt.
 334	 */
 335	xhci->msix_count = min(num_online_cpus() + 1,
 336				HCS_MAX_INTRS(xhci->hcs_params1));
 337
 338	ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count,
 339			PCI_IRQ_MSIX);
 340	if (ret < 0) {
 341		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 342				"Failed to enable MSI-X");
 343		return ret;
 344	}
 345
 346	for (i = 0; i < xhci->msix_count; i++) {
 347		ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0,
 348				"xhci_hcd", xhci_to_hcd(xhci));
 349		if (ret)
 350			goto disable_msix;
 351	}
 352
 353	hcd->msix_enabled = 1;
 354	return ret;
 355
 356disable_msix:
 357	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
 358	while (--i >= 0)
 359		free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
 360	pci_free_irq_vectors(pdev);
 361	return ret;
 362}
 363
 364/* Free any IRQs and disable MSI-X */
 365static void xhci_cleanup_msix(struct xhci_hcd *xhci)
 366{
 367	struct usb_hcd *hcd = xhci_to_hcd(xhci);
 368	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
 369
 370	if (xhci->quirks & XHCI_PLAT)
 371		return;
 372
 373	/* return if using legacy interrupt */
 374	if (hcd->irq > 0)
 375		return;
 376
 377	if (hcd->msix_enabled) {
 378		int i;
 379
 380		for (i = 0; i < xhci->msix_count; i++)
 381			free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
 382	} else {
 383		free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci));
 384	}
 385
 386	pci_free_irq_vectors(pdev);
 387	hcd->msix_enabled = 0;
 388}
 389
 390static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
 391{
 392	struct usb_hcd *hcd = xhci_to_hcd(xhci);
 393
 394	if (hcd->msix_enabled) {
 395		struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
 396		int i;
 397
 398		for (i = 0; i < xhci->msix_count; i++)
 399			synchronize_irq(pci_irq_vector(pdev, i));
 400	}
 401}
 402
 403static int xhci_try_enable_msi(struct usb_hcd *hcd)
 404{
 405	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 406	struct pci_dev  *pdev;
 407	int ret;
 408
 409	/* The xhci platform device has set up IRQs through usb_add_hcd. */
 410	if (xhci->quirks & XHCI_PLAT)
 411		return 0;
 412
 413	pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
 414	/*
 415	 * Some Fresco Logic host controllers advertise MSI, but fail to
 416	 * generate interrupts.  Don't even try to enable MSI.
 417	 */
 418	if (xhci->quirks & XHCI_BROKEN_MSI)
 419		goto legacy_irq;
 420
 421	/* unregister the legacy interrupt */
 422	if (hcd->irq)
 423		free_irq(hcd->irq, hcd);
 424	hcd->irq = 0;
 425
 426	ret = xhci_setup_msix(xhci);
 427	if (ret)
 428		/* fall back to msi*/
 429		ret = xhci_setup_msi(xhci);
 430
 431	if (!ret) {
 432		hcd->msi_enabled = 1;
 433		return 0;
 434	}
 435
 436	if (!pdev->irq) {
 437		xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
 438		return -EINVAL;
 439	}
 440
 441 legacy_irq:
 442	if (!strlen(hcd->irq_descr))
 443		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
 444			 hcd->driver->description, hcd->self.busnum);
 445
 446	/* fall back to legacy interrupt*/
 447	ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
 448			hcd->irq_descr, hcd);
 449	if (ret) {
 450		xhci_err(xhci, "request interrupt %d failed\n",
 451				pdev->irq);
 452		return ret;
 453	}
 454	hcd->irq = pdev->irq;
 455	return 0;
 456}
 457
 458#else
 459
 460static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
 461{
 462	return 0;
 463}
 464
 465static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
 466{
 467}
 468
 469static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
 470{
 471}
 472
 473#endif
 474
 475static void compliance_mode_recovery(struct timer_list *t)
 476{
 477	struct xhci_hcd *xhci;
 478	struct usb_hcd *hcd;
 479	struct xhci_hub *rhub;
 480	u32 temp;
 481	int i;
 482
 483	xhci = from_timer(xhci, t, comp_mode_recovery_timer);
 484	rhub = &xhci->usb3_rhub;
 
 
 
 
 485
 486	for (i = 0; i < rhub->num_ports; i++) {
 487		temp = readl(rhub->ports[i]->addr);
 488		if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
 489			/*
 490			 * Compliance Mode Detected. Letting USB Core
 491			 * handle the Warm Reset
 492			 */
 493			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 494					"Compliance mode detected->port %d",
 495					i + 1);
 496			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 497					"Attempting compliance mode recovery");
 498			hcd = xhci->shared_hcd;
 499
 500			if (hcd->state == HC_STATE_SUSPENDED)
 501				usb_hcd_resume_root_hub(hcd);
 502
 503			usb_hcd_poll_rh_status(hcd);
 504		}
 505	}
 506
 507	if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
 508		mod_timer(&xhci->comp_mode_recovery_timer,
 509			jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
 510}
 511
 512/*
 513 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
 514 * that causes ports behind that hardware to enter compliance mode sometimes.
 515 * The quirk creates a timer that polls every 2 seconds the link state of
 516 * each host controller's port and recovers it by issuing a Warm reset
 517 * if Compliance mode is detected, otherwise the port will become "dead" (no
 518 * device connections or disconnections will be detected anymore). Becasue no
 519 * status event is generated when entering compliance mode (per xhci spec),
 520 * this quirk is needed on systems that have the failing hardware installed.
 521 */
 522static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
 523{
 524	xhci->port_status_u0 = 0;
 525	timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
 526		    0);
 527	xhci->comp_mode_recovery_timer.expires = jiffies +
 528			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
 529
 530	add_timer(&xhci->comp_mode_recovery_timer);
 531	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 532			"Compliance mode recovery timer initialized");
 533}
 534
 535/*
 536 * This function identifies the systems that have installed the SN65LVPE502CP
 537 * USB3.0 re-driver and that need the Compliance Mode Quirk.
 538 * Systems:
 539 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
 540 */
 541static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
 542{
 543	const char *dmi_product_name, *dmi_sys_vendor;
 544
 545	dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
 546	dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
 547	if (!dmi_product_name || !dmi_sys_vendor)
 548		return false;
 549
 550	if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
 551		return false;
 552
 553	if (strstr(dmi_product_name, "Z420") ||
 554			strstr(dmi_product_name, "Z620") ||
 555			strstr(dmi_product_name, "Z820") ||
 556			strstr(dmi_product_name, "Z1 Workstation"))
 557		return true;
 558
 559	return false;
 560}
 561
 562static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
 563{
 564	return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
 565}
 566
 567
 568/*
 569 * Initialize memory for HCD and xHC (one-time init).
 570 *
 571 * Program the PAGESIZE register, initialize the device context array, create
 572 * device contexts (?), set up a command ring segment (or two?), create event
 573 * ring (one for now).
 574 */
 575static int xhci_init(struct usb_hcd *hcd)
 576{
 577	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 578	int retval = 0;
 579
 580	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
 581	spin_lock_init(&xhci->lock);
 582	if (xhci->hci_version == 0x95 && link_quirk) {
 583		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 584				"QUIRK: Not clearing Link TRB chain bits.");
 585		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
 586	} else {
 587		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 588				"xHCI doesn't need link TRB QUIRK");
 589	}
 590	retval = xhci_mem_init(xhci, GFP_KERNEL);
 591	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
 592
 593	/* Initializing Compliance Mode Recovery Data If Needed */
 594	if (xhci_compliance_mode_recovery_timer_quirk_check()) {
 595		xhci->quirks |= XHCI_COMP_MODE_QUIRK;
 596		compliance_mode_recovery_timer_init(xhci);
 597	}
 598
 599	return retval;
 600}
 601
 602/*-------------------------------------------------------------------------*/
 603
 604
 605static int xhci_run_finished(struct xhci_hcd *xhci)
 606{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 607	if (xhci_start(xhci)) {
 608		xhci_halt(xhci);
 
 609		return -ENODEV;
 610	}
 611	xhci->shared_hcd->state = HC_STATE_RUNNING;
 612	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
 613
 614	if (xhci->quirks & XHCI_NEC_HOST)
 615		xhci_ring_cmd_db(xhci);
 616
 617	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 618			"Finished xhci_run for USB3 roothub");
 619	return 0;
 620}
 621
 622/*
 623 * Start the HC after it was halted.
 624 *
 625 * This function is called by the USB core when the HC driver is added.
 626 * Its opposite is xhci_stop().
 627 *
 628 * xhci_init() must be called once before this function can be called.
 629 * Reset the HC, enable device slot contexts, program DCBAAP, and
 630 * set command ring pointer and event ring pointer.
 631 *
 632 * Setup MSI-X vectors and enable interrupts.
 633 */
 634int xhci_run(struct usb_hcd *hcd)
 635{
 636	u32 temp;
 637	u64 temp_64;
 638	int ret;
 639	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 640
 641	/* Start the xHCI host controller running only after the USB 2.0 roothub
 642	 * is setup.
 643	 */
 644
 645	hcd->uses_new_polling = 1;
 646	if (!usb_hcd_is_primary_hcd(hcd))
 647		return xhci_run_finished(xhci);
 648
 649	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
 650
 651	ret = xhci_try_enable_msi(hcd);
 652	if (ret)
 653		return ret;
 654
 655	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
 656	temp_64 &= ~ERST_PTR_MASK;
 657	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 658			"ERST deq = 64'h%0lx", (long unsigned int) temp_64);
 659
 660	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 661			"// Set the interrupt modulation register");
 662	temp = readl(&xhci->ir_set->irq_control);
 663	temp &= ~ER_IRQ_INTERVAL_MASK;
 664	temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
 665	writel(temp, &xhci->ir_set->irq_control);
 666
 667	/* Set the HCD state before we enable the irqs */
 668	temp = readl(&xhci->op_regs->command);
 669	temp |= (CMD_EIE);
 670	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 671			"// Enable interrupts, cmd = 0x%x.", temp);
 672	writel(temp, &xhci->op_regs->command);
 673
 674	temp = readl(&xhci->ir_set->irq_pending);
 675	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 676			"// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
 677			xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
 678	writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
 679
 680	if (xhci->quirks & XHCI_NEC_HOST) {
 681		struct xhci_command *command;
 682
 683		command = xhci_alloc_command(xhci, false, GFP_KERNEL);
 684		if (!command)
 685			return -ENOMEM;
 686
 687		ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
 688				TRB_TYPE(TRB_NEC_GET_FW));
 689		if (ret)
 690			xhci_free_command(xhci, command);
 691	}
 692	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 693			"Finished xhci_run for USB2 roothub");
 694
 695	xhci_dbc_init(xhci);
 696
 697	xhci_debugfs_init(xhci);
 698
 
 
 
 
 
 699	return 0;
 700}
 701EXPORT_SYMBOL_GPL(xhci_run);
 702
 703/*
 704 * Stop xHCI driver.
 705 *
 706 * This function is called by the USB core when the HC driver is removed.
 707 * Its opposite is xhci_run().
 708 *
 709 * Disable device contexts, disable IRQs, and quiesce the HC.
 710 * Reset the HC, finish any completed transactions, and cleanup memory.
 711 */
 712static void xhci_stop(struct usb_hcd *hcd)
 713{
 714	u32 temp;
 715	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 716
 717	mutex_lock(&xhci->mutex);
 718
 719	/* Only halt host and free memory after both hcds are removed */
 720	if (!usb_hcd_is_primary_hcd(hcd)) {
 721		mutex_unlock(&xhci->mutex);
 722		return;
 723	}
 724
 725	xhci_dbc_exit(xhci);
 726
 727	spin_lock_irq(&xhci->lock);
 728	xhci->xhc_state |= XHCI_STATE_HALTED;
 729	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
 730	xhci_halt(xhci);
 731	xhci_reset(xhci);
 732	spin_unlock_irq(&xhci->lock);
 733
 734	xhci_cleanup_msix(xhci);
 735
 736	/* Deleting Compliance Mode Recovery Timer */
 737	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
 738			(!(xhci_all_ports_seen_u0(xhci)))) {
 739		del_timer_sync(&xhci->comp_mode_recovery_timer);
 740		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 741				"%s: compliance mode recovery timer deleted",
 742				__func__);
 743	}
 744
 745	if (xhci->quirks & XHCI_AMD_PLL_FIX)
 746		usb_amd_dev_put();
 747
 748	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 749			"// Disabling event ring interrupts");
 750	temp = readl(&xhci->op_regs->status);
 751	writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
 752	temp = readl(&xhci->ir_set->irq_pending);
 753	writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
 754
 755	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
 756	xhci_mem_cleanup(xhci);
 757	xhci_debugfs_exit(xhci);
 758	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 759			"xhci_stop completed - status = %x",
 760			readl(&xhci->op_regs->status));
 761	mutex_unlock(&xhci->mutex);
 762}
 763
 764/*
 765 * Shutdown HC (not bus-specific)
 766 *
 767 * This is called when the machine is rebooting or halting.  We assume that the
 768 * machine will be powered off, and the HC's internal state will be reset.
 769 * Don't bother to free memory.
 770 *
 771 * This will only ever be called with the main usb_hcd (the USB3 roothub).
 772 */
 773static void xhci_shutdown(struct usb_hcd *hcd)
 774{
 775	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 776
 777	if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
 778		usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
 779
 
 
 
 
 
 
 
 
 
 
 
 780	spin_lock_irq(&xhci->lock);
 781	xhci_halt(xhci);
 782	/* Workaround for spurious wakeups at shutdown with HSW */
 783	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
 784		xhci_reset(xhci);
 
 
 
 
 
 
 785	spin_unlock_irq(&xhci->lock);
 786
 787	xhci_cleanup_msix(xhci);
 788
 789	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 790			"xhci_shutdown completed - status = %x",
 791			readl(&xhci->op_regs->status));
 792
 793	/* Yet another workaround for spurious wakeups at shutdown with HSW */
 794	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
 795		pci_set_power_state(to_pci_dev(hcd->self.sysdev), PCI_D3hot);
 796}
 
 797
 798#ifdef CONFIG_PM
 799static void xhci_save_registers(struct xhci_hcd *xhci)
 800{
 801	xhci->s3.command = readl(&xhci->op_regs->command);
 802	xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
 803	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
 804	xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
 805	xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
 806	xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
 807	xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
 808	xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
 809	xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
 810}
 811
 812static void xhci_restore_registers(struct xhci_hcd *xhci)
 813{
 814	writel(xhci->s3.command, &xhci->op_regs->command);
 815	writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
 816	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
 817	writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
 818	writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
 819	xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
 820	xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
 821	writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
 822	writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
 823}
 824
 825static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
 826{
 827	u64	val_64;
 828
 829	/* step 2: initialize command ring buffer */
 830	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
 831	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
 832		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
 833				      xhci->cmd_ring->dequeue) &
 834		 (u64) ~CMD_RING_RSVD_BITS) |
 835		xhci->cmd_ring->cycle_state;
 836	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 837			"// Setting command ring address to 0x%llx",
 838			(long unsigned long) val_64);
 839	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
 840}
 841
 842/*
 843 * The whole command ring must be cleared to zero when we suspend the host.
 844 *
 845 * The host doesn't save the command ring pointer in the suspend well, so we
 846 * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
 847 * aligned, because of the reserved bits in the command ring dequeue pointer
 848 * register.  Therefore, we can't just set the dequeue pointer back in the
 849 * middle of the ring (TRBs are 16-byte aligned).
 850 */
 851static void xhci_clear_command_ring(struct xhci_hcd *xhci)
 852{
 853	struct xhci_ring *ring;
 854	struct xhci_segment *seg;
 855
 856	ring = xhci->cmd_ring;
 857	seg = ring->deq_seg;
 858	do {
 859		memset(seg->trbs, 0,
 860			sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
 861		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
 862			cpu_to_le32(~TRB_CYCLE);
 863		seg = seg->next;
 864	} while (seg != ring->deq_seg);
 865
 866	/* Reset the software enqueue and dequeue pointers */
 867	ring->deq_seg = ring->first_seg;
 868	ring->dequeue = ring->first_seg->trbs;
 869	ring->enq_seg = ring->deq_seg;
 870	ring->enqueue = ring->dequeue;
 871
 872	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
 873	/*
 874	 * Ring is now zeroed, so the HW should look for change of ownership
 875	 * when the cycle bit is set to 1.
 876	 */
 877	ring->cycle_state = 1;
 878
 879	/*
 880	 * Reset the hardware dequeue pointer.
 881	 * Yes, this will need to be re-written after resume, but we're paranoid
 882	 * and want to make sure the hardware doesn't access bogus memory
 883	 * because, say, the BIOS or an SMI started the host without changing
 884	 * the command ring pointers.
 885	 */
 886	xhci_set_cmd_ring_deq(xhci);
 887}
 888
 889static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
 
 
 
 
 
 
 
 
 
 
 
 890{
 891	struct xhci_port **ports;
 892	int port_index;
 893	unsigned long flags;
 894	u32 t1, t2, portsc;
 
 895
 896	spin_lock_irqsave(&xhci->lock, flags);
 897
 898	/* disable usb3 ports Wake bits */
 899	port_index = xhci->usb3_rhub.num_ports;
 900	ports = xhci->usb3_rhub.ports;
 901	while (port_index--) {
 902		t1 = readl(ports[port_index]->addr);
 903		portsc = t1;
 904		t1 = xhci_port_state_to_neutral(t1);
 905		t2 = t1 & ~PORT_WAKE_BITS;
 906		if (t1 != t2) {
 907			writel(t2, ports[port_index]->addr);
 908			xhci_dbg(xhci, "disable wake bits port %d-%d, portsc: 0x%x, write: 0x%x\n",
 909				 xhci->usb3_rhub.hcd->self.busnum,
 910				 port_index + 1, portsc, t2);
 911		}
 912	}
 913
 914	/* disable usb2 ports Wake bits */
 915	port_index = xhci->usb2_rhub.num_ports;
 916	ports = xhci->usb2_rhub.ports;
 917	while (port_index--) {
 918		t1 = readl(ports[port_index]->addr);
 919		portsc = t1;
 920		t1 = xhci_port_state_to_neutral(t1);
 921		t2 = t1 & ~PORT_WAKE_BITS;
 922		if (t1 != t2) {
 923			writel(t2, ports[port_index]->addr);
 924			xhci_dbg(xhci, "disable wake bits port %d-%d, portsc: 0x%x, write: 0x%x\n",
 925				 xhci->usb2_rhub.hcd->self.busnum,
 926				 port_index + 1, portsc, t2);
 927		}
 928	}
 929	spin_unlock_irqrestore(&xhci->lock, flags);
 930}
 931
 932static bool xhci_pending_portevent(struct xhci_hcd *xhci)
 933{
 934	struct xhci_port	**ports;
 935	int			port_index;
 936	u32			status;
 937	u32			portsc;
 938
 939	status = readl(&xhci->op_regs->status);
 940	if (status & STS_EINT)
 941		return true;
 942	/*
 943	 * Checking STS_EINT is not enough as there is a lag between a change
 944	 * bit being set and the Port Status Change Event that it generated
 945	 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
 946	 */
 947
 948	port_index = xhci->usb2_rhub.num_ports;
 949	ports = xhci->usb2_rhub.ports;
 950	while (port_index--) {
 951		portsc = readl(ports[port_index]->addr);
 952		if (portsc & PORT_CHANGE_MASK ||
 953		    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
 954			return true;
 955	}
 956	port_index = xhci->usb3_rhub.num_ports;
 957	ports = xhci->usb3_rhub.ports;
 958	while (port_index--) {
 959		portsc = readl(ports[port_index]->addr);
 960		if (portsc & PORT_CHANGE_MASK ||
 961		    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
 962			return true;
 963	}
 964	return false;
 965}
 966
 967/*
 968 * Stop HC (not bus-specific)
 969 *
 970 * This is called when the machine transition into S3/S4 mode.
 971 *
 972 */
 973int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
 974{
 975	int			rc = 0;
 976	unsigned int		delay = XHCI_MAX_HALT_USEC;
 977	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
 978	u32			command;
 979	u32			res;
 980
 981	if (!hcd->state)
 982		return 0;
 983
 984	if (hcd->state != HC_STATE_SUSPENDED ||
 985			xhci->shared_hcd->state != HC_STATE_SUSPENDED)
 986		return -EINVAL;
 987
 
 
 
 
 
 
 
 988	xhci_dbc_suspend(xhci);
 989
 990	/* Clear root port wake on bits if wakeup not allowed. */
 991	if (!do_wakeup)
 992		xhci_disable_port_wake_on_bits(xhci);
 993
 994	/* Don't poll the roothubs on bus suspend. */
 995	xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
 
 996	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
 997	del_timer_sync(&hcd->rh_timer);
 998	clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
 999	del_timer_sync(&xhci->shared_hcd->rh_timer);
 
 
1000
1001	if (xhci->quirks & XHCI_SUSPEND_DELAY)
1002		usleep_range(1000, 1500);
1003
1004	spin_lock_irq(&xhci->lock);
1005	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1006	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
 
1007	/* step 1: stop endpoint */
1008	/* skipped assuming that port suspend has done */
1009
1010	/* step 2: clear Run/Stop bit */
1011	command = readl(&xhci->op_regs->command);
1012	command &= ~CMD_RUN;
1013	writel(command, &xhci->op_regs->command);
1014
1015	/* Some chips from Fresco Logic need an extraordinary delay */
1016	delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
1017
1018	if (xhci_handshake(&xhci->op_regs->status,
1019		      STS_HALT, STS_HALT, delay)) {
1020		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
1021		spin_unlock_irq(&xhci->lock);
1022		return -ETIMEDOUT;
1023	}
1024	xhci_clear_command_ring(xhci);
1025
1026	/* step 3: save registers */
1027	xhci_save_registers(xhci);
1028
1029	/* step 4: set CSS flag */
1030	command = readl(&xhci->op_regs->command);
1031	command |= CMD_CSS;
1032	writel(command, &xhci->op_regs->command);
1033	xhci->broken_suspend = 0;
1034	if (xhci_handshake(&xhci->op_regs->status,
1035				STS_SAVE, 0, 20 * 1000)) {
1036	/*
1037	 * AMD SNPS xHC 3.0 occasionally does not clear the
1038	 * SSS bit of USBSTS and when driver tries to poll
1039	 * to see if the xHC clears BIT(8) which never happens
1040	 * and driver assumes that controller is not responding
1041	 * and times out. To workaround this, its good to check
1042	 * if SRE and HCE bits are not set (as per xhci
1043	 * Section 5.4.2) and bypass the timeout.
1044	 */
1045		res = readl(&xhci->op_regs->status);
1046		if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
1047		    (((res & STS_SRE) == 0) &&
1048				((res & STS_HCE) == 0))) {
1049			xhci->broken_suspend = 1;
1050		} else {
1051			xhci_warn(xhci, "WARN: xHC save state timeout\n");
1052			spin_unlock_irq(&xhci->lock);
1053			return -ETIMEDOUT;
1054		}
1055	}
1056	spin_unlock_irq(&xhci->lock);
1057
1058	/*
1059	 * Deleting Compliance Mode Recovery Timer because the xHCI Host
1060	 * is about to be suspended.
1061	 */
1062	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1063			(!(xhci_all_ports_seen_u0(xhci)))) {
1064		del_timer_sync(&xhci->comp_mode_recovery_timer);
1065		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1066				"%s: compliance mode recovery timer deleted",
1067				__func__);
1068	}
1069
1070	/* step 5: remove core well power */
1071	/* synchronize irq when using MSI-X */
1072	xhci_msix_sync_irqs(xhci);
1073
1074	return rc;
1075}
1076EXPORT_SYMBOL_GPL(xhci_suspend);
1077
1078/*
1079 * start xHC (not bus-specific)
1080 *
1081 * This is called when the machine transition from S3/S4 mode.
1082 *
1083 */
1084int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
1085{
1086	u32			command, temp = 0;
1087	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
1088	struct usb_hcd		*secondary_hcd;
1089	int			retval = 0;
1090	bool			comp_timer_running = false;
 
 
1091
1092	if (!hcd->state)
1093		return 0;
1094
1095	/* Wait a bit if either of the roothubs need to settle from the
1096	 * transition into bus suspend.
1097	 */
1098
1099	if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) ||
1100	    time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange))
1101		msleep(100);
1102
1103	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1104	set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
 
1105
1106	spin_lock_irq(&xhci->lock);
1107	if ((xhci->quirks & XHCI_RESET_ON_RESUME) || xhci->broken_suspend)
1108		hibernated = true;
1109
1110	if (!hibernated) {
 
 
 
1111		/*
1112		 * Some controllers might lose power during suspend, so wait
1113		 * for controller not ready bit to clear, just as in xHC init.
1114		 */
1115		retval = xhci_handshake(&xhci->op_regs->status,
1116					STS_CNR, 0, 10 * 1000 * 1000);
1117		if (retval) {
1118			xhci_warn(xhci, "Controller not ready at resume %d\n",
1119				  retval);
1120			spin_unlock_irq(&xhci->lock);
1121			return retval;
1122		}
1123		/* step 1: restore register */
1124		xhci_restore_registers(xhci);
1125		/* step 2: initialize command ring buffer */
1126		xhci_set_cmd_ring_deq(xhci);
1127		/* step 3: restore state and start state*/
1128		/* step 3: set CRS flag */
1129		command = readl(&xhci->op_regs->command);
1130		command |= CMD_CRS;
1131		writel(command, &xhci->op_regs->command);
1132		/*
1133		 * Some controllers take up to 55+ ms to complete the controller
1134		 * restore so setting the timeout to 100ms. Xhci specification
1135		 * doesn't mention any timeout value.
1136		 */
1137		if (xhci_handshake(&xhci->op_regs->status,
1138			      STS_RESTORE, 0, 100 * 1000)) {
1139			xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1140			spin_unlock_irq(&xhci->lock);
1141			return -ETIMEDOUT;
1142		}
1143		temp = readl(&xhci->op_regs->status);
1144	}
1145
1146	/* If restore operation fails, re-initialize the HC during resume */
1147	if ((temp & STS_SRE) || hibernated) {
1148
 
 
 
 
 
 
 
 
1149		if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1150				!(xhci_all_ports_seen_u0(xhci))) {
1151			del_timer_sync(&xhci->comp_mode_recovery_timer);
1152			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1153				"Compliance Mode Recovery Timer deleted!");
1154		}
1155
1156		/* Let the USB core know _both_ roothubs lost power. */
1157		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1158		usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
 
1159
1160		xhci_dbg(xhci, "Stop HCD\n");
1161		xhci_halt(xhci);
1162		xhci_zero_64b_regs(xhci);
1163		xhci_reset(xhci);
1164		spin_unlock_irq(&xhci->lock);
 
 
1165		xhci_cleanup_msix(xhci);
1166
1167		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1168		temp = readl(&xhci->op_regs->status);
1169		writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1170		temp = readl(&xhci->ir_set->irq_pending);
1171		writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1172
1173		xhci_dbg(xhci, "cleaning up memory\n");
1174		xhci_mem_cleanup(xhci);
1175		xhci_debugfs_exit(xhci);
1176		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1177			    readl(&xhci->op_regs->status));
1178
1179		/* USB core calls the PCI reinit and start functions twice:
1180		 * first with the primary HCD, and then with the secondary HCD.
1181		 * If we don't do the same, the host will never be started.
1182		 */
1183		if (!usb_hcd_is_primary_hcd(hcd))
1184			secondary_hcd = hcd;
1185		else
1186			secondary_hcd = xhci->shared_hcd;
1187
1188		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1189		retval = xhci_init(hcd->primary_hcd);
1190		if (retval)
1191			return retval;
1192		comp_timer_running = true;
1193
1194		xhci_dbg(xhci, "Start the primary HCD\n");
1195		retval = xhci_run(hcd->primary_hcd);
1196		if (!retval) {
1197			xhci_dbg(xhci, "Start the secondary HCD\n");
1198			retval = xhci_run(secondary_hcd);
1199		}
 
1200		hcd->state = HC_STATE_SUSPENDED;
1201		xhci->shared_hcd->state = HC_STATE_SUSPENDED;
 
1202		goto done;
1203	}
1204
1205	/* step 4: set Run/Stop bit */
1206	command = readl(&xhci->op_regs->command);
1207	command |= CMD_RUN;
1208	writel(command, &xhci->op_regs->command);
1209	xhci_handshake(&xhci->op_regs->status, STS_HALT,
1210		  0, 250 * 1000);
1211
1212	/* step 5: walk topology and initialize portsc,
1213	 * portpmsc and portli
1214	 */
1215	/* this is done in bus_resume */
1216
1217	/* step 6: restart each of the previously
1218	 * Running endpoints by ringing their doorbells
1219	 */
1220
1221	spin_unlock_irq(&xhci->lock);
1222
1223	xhci_dbc_resume(xhci);
1224
1225 done:
1226	if (retval == 0) {
1227		/* Resume root hubs only when have pending events. */
1228		if (xhci_pending_portevent(xhci)) {
1229			usb_hcd_resume_root_hub(xhci->shared_hcd);
 
 
 
 
 
 
 
 
 
 
 
1230			usb_hcd_resume_root_hub(hcd);
1231		}
1232	}
1233
1234	/*
1235	 * If system is subject to the Quirk, Compliance Mode Timer needs to
1236	 * be re-initialized Always after a system resume. Ports are subject
1237	 * to suffer the Compliance Mode issue again. It doesn't matter if
1238	 * ports have entered previously to U0 before system's suspension.
1239	 */
1240	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1241		compliance_mode_recovery_timer_init(xhci);
1242
1243	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1244		usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1245
1246	/* Re-enable port polling. */
1247	xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1248	set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1249	usb_hcd_poll_rh_status(xhci->shared_hcd);
 
 
 
1250	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1251	usb_hcd_poll_rh_status(hcd);
1252
1253	return retval;
1254}
1255EXPORT_SYMBOL_GPL(xhci_resume);
1256#endif	/* CONFIG_PM */
1257
1258/*-------------------------------------------------------------------------*/
1259
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1260/*
1261 * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT),
1262 * we'll copy the actual data into the TRB address register. This is limited to
1263 * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize
1264 * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed.
1265 */
1266static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1267				gfp_t mem_flags)
1268{
 
 
 
 
1269	if (xhci_urb_suitable_for_idt(urb))
1270		return 0;
1271
 
 
 
 
1272	return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1273}
1274
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1275/**
1276 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1277 * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1278 * value to right shift 1 for the bitmask.
1279 *
1280 * Index  = (epnum * 2) + direction - 1,
1281 * where direction = 0 for OUT, 1 for IN.
1282 * For control endpoints, the IN index is used (OUT index is unused), so
1283 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1284 */
1285unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1286{
1287	unsigned int index;
1288	if (usb_endpoint_xfer_control(desc))
1289		index = (unsigned int) (usb_endpoint_num(desc)*2);
1290	else
1291		index = (unsigned int) (usb_endpoint_num(desc)*2) +
1292			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1293	return index;
1294}
 
1295
1296/* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1297 * address from the XHCI endpoint index.
1298 */
1299unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1300{
1301	unsigned int number = DIV_ROUND_UP(ep_index, 2);
1302	unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1303	return direction | number;
1304}
1305
1306/* Find the flag for this endpoint (for use in the control context).  Use the
1307 * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1308 * bit 1, etc.
1309 */
1310static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1311{
1312	return 1 << (xhci_get_endpoint_index(desc) + 1);
1313}
1314
1315/* Find the flag for this endpoint (for use in the control context).  Use the
1316 * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1317 * bit 1, etc.
1318 */
1319static unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1320{
1321	return 1 << (ep_index + 1);
1322}
1323
1324/* Compute the last valid endpoint context index.  Basically, this is the
1325 * endpoint index plus one.  For slot contexts with more than valid endpoint,
1326 * we find the most significant bit set in the added contexts flags.
1327 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1328 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1329 */
1330unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1331{
1332	return fls(added_ctxs) - 1;
1333}
1334
1335/* Returns 1 if the arguments are OK;
1336 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1337 */
1338static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1339		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1340		const char *func) {
1341	struct xhci_hcd	*xhci;
1342	struct xhci_virt_device	*virt_dev;
1343
1344	if (!hcd || (check_ep && !ep) || !udev) {
1345		pr_debug("xHCI %s called with invalid args\n", func);
1346		return -EINVAL;
1347	}
1348	if (!udev->parent) {
1349		pr_debug("xHCI %s called for root hub\n", func);
1350		return 0;
1351	}
1352
1353	xhci = hcd_to_xhci(hcd);
1354	if (check_virt_dev) {
1355		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1356			xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1357					func);
1358			return -EINVAL;
1359		}
1360
1361		virt_dev = xhci->devs[udev->slot_id];
1362		if (virt_dev->udev != udev) {
1363			xhci_dbg(xhci, "xHCI %s called with udev and "
1364					  "virt_dev does not match\n", func);
1365			return -EINVAL;
1366		}
1367	}
1368
1369	if (xhci->xhc_state & XHCI_STATE_HALTED)
1370		return -ENODEV;
1371
1372	return 1;
1373}
1374
1375static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1376		struct usb_device *udev, struct xhci_command *command,
1377		bool ctx_change, bool must_succeed);
1378
1379/*
1380 * Full speed devices may have a max packet size greater than 8 bytes, but the
1381 * USB core doesn't know that until it reads the first 8 bytes of the
1382 * descriptor.  If the usb_device's max packet size changes after that point,
1383 * we need to issue an evaluate context command and wait on it.
1384 */
1385static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1386		unsigned int ep_index, struct urb *urb)
1387{
1388	struct xhci_container_ctx *out_ctx;
1389	struct xhci_input_control_ctx *ctrl_ctx;
1390	struct xhci_ep_ctx *ep_ctx;
1391	struct xhci_command *command;
1392	int max_packet_size;
1393	int hw_max_packet_size;
1394	int ret = 0;
1395
1396	out_ctx = xhci->devs[slot_id]->out_ctx;
1397	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1398	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1399	max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1400	if (hw_max_packet_size != max_packet_size) {
1401		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1402				"Max Packet Size for ep 0 changed.");
1403		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1404				"Max packet size in usb_device = %d",
1405				max_packet_size);
1406		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1407				"Max packet size in xHCI HW = %d",
1408				hw_max_packet_size);
1409		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1410				"Issuing evaluate context command.");
1411
1412		/* Set up the input context flags for the command */
1413		/* FIXME: This won't work if a non-default control endpoint
1414		 * changes max packet sizes.
1415		 */
1416
1417		command = xhci_alloc_command(xhci, true, GFP_KERNEL);
1418		if (!command)
1419			return -ENOMEM;
1420
1421		command->in_ctx = xhci->devs[slot_id]->in_ctx;
1422		ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1423		if (!ctrl_ctx) {
1424			xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1425					__func__);
1426			ret = -ENOMEM;
1427			goto command_cleanup;
1428		}
1429		/* Set up the modified control endpoint 0 */
1430		xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1431				xhci->devs[slot_id]->out_ctx, ep_index);
1432
1433		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
 
1434		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1435		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1436
1437		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1438		ctrl_ctx->drop_flags = 0;
1439
1440		ret = xhci_configure_endpoint(xhci, urb->dev, command,
1441				true, false);
1442
1443		/* Clean up the input context for later use by bandwidth
1444		 * functions.
1445		 */
1446		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1447command_cleanup:
1448		kfree(command->completion);
1449		kfree(command);
1450	}
1451	return ret;
1452}
1453
1454/*
1455 * non-error returns are a promise to giveback() the urb later
1456 * we drop ownership so next owner (or urb unlink) can get it
1457 */
1458static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1459{
1460	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1461	unsigned long flags;
1462	int ret = 0;
1463	unsigned int slot_id, ep_index;
1464	unsigned int *ep_state;
1465	struct urb_priv	*urb_priv;
1466	int num_tds;
1467
1468	if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1469					true, true, __func__) <= 0)
1470		return -EINVAL;
 
 
 
 
1471
1472	slot_id = urb->dev->slot_id;
1473	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1474	ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1475
1476	if (!HCD_HW_ACCESSIBLE(hcd)) {
1477		if (!in_interrupt())
1478			xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1479		return -ESHUTDOWN;
1480	}
1481	if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) {
1482		xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n");
1483		return -ENODEV;
1484	}
1485
1486	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1487		num_tds = urb->number_of_packets;
1488	else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1489	    urb->transfer_buffer_length > 0 &&
1490	    urb->transfer_flags & URB_ZERO_PACKET &&
1491	    !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1492		num_tds = 2;
1493	else
1494		num_tds = 1;
1495
1496	urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags);
1497	if (!urb_priv)
1498		return -ENOMEM;
1499
1500	urb_priv->num_tds = num_tds;
1501	urb_priv->num_tds_done = 0;
1502	urb->hcpriv = urb_priv;
1503
1504	trace_xhci_urb_enqueue(urb);
1505
1506	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1507		/* Check to see if the max packet size for the default control
1508		 * endpoint changed during FS device enumeration
1509		 */
1510		if (urb->dev->speed == USB_SPEED_FULL) {
1511			ret = xhci_check_maxpacket(xhci, slot_id,
1512					ep_index, urb);
1513			if (ret < 0) {
1514				xhci_urb_free_priv(urb_priv);
1515				urb->hcpriv = NULL;
1516				return ret;
1517			}
1518		}
1519	}
1520
1521	spin_lock_irqsave(&xhci->lock, flags);
1522
1523	if (xhci->xhc_state & XHCI_STATE_DYING) {
1524		xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1525			 urb->ep->desc.bEndpointAddress, urb);
1526		ret = -ESHUTDOWN;
1527		goto free_priv;
1528	}
1529	if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1530		xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1531			  *ep_state);
1532		ret = -EINVAL;
1533		goto free_priv;
1534	}
1535	if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1536		xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1537		ret = -EINVAL;
1538		goto free_priv;
1539	}
1540
1541	switch (usb_endpoint_type(&urb->ep->desc)) {
1542
1543	case USB_ENDPOINT_XFER_CONTROL:
1544		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1545					 slot_id, ep_index);
1546		break;
1547	case USB_ENDPOINT_XFER_BULK:
1548		ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1549					 slot_id, ep_index);
1550		break;
1551	case USB_ENDPOINT_XFER_INT:
1552		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1553				slot_id, ep_index);
1554		break;
1555	case USB_ENDPOINT_XFER_ISOC:
1556		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1557				slot_id, ep_index);
1558	}
1559
1560	if (ret) {
1561free_priv:
1562		xhci_urb_free_priv(urb_priv);
1563		urb->hcpriv = NULL;
1564	}
1565	spin_unlock_irqrestore(&xhci->lock, flags);
1566	return ret;
1567}
1568
1569/*
1570 * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1571 * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1572 * should pick up where it left off in the TD, unless a Set Transfer Ring
1573 * Dequeue Pointer is issued.
1574 *
1575 * The TRBs that make up the buffers for the canceled URB will be "removed" from
1576 * the ring.  Since the ring is a contiguous structure, they can't be physically
1577 * removed.  Instead, there are two options:
1578 *
1579 *  1) If the HC is in the middle of processing the URB to be canceled, we
1580 *     simply move the ring's dequeue pointer past those TRBs using the Set
1581 *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1582 *     when drivers timeout on the last submitted URB and attempt to cancel.
1583 *
1584 *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1585 *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1586 *     HC will need to invalidate the any TRBs it has cached after the stop
1587 *     endpoint command, as noted in the xHCI 0.95 errata.
1588 *
1589 *  3) The TD may have completed by the time the Stop Endpoint Command
1590 *     completes, so software needs to handle that case too.
1591 *
1592 * This function should protect against the TD enqueueing code ringing the
1593 * doorbell while this code is waiting for a Stop Endpoint command to complete.
1594 * It also needs to account for multiple cancellations on happening at the same
1595 * time for the same endpoint.
1596 *
1597 * Note that this function can be called in any context, or so says
1598 * usb_hcd_unlink_urb()
1599 */
1600static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1601{
1602	unsigned long flags;
1603	int ret, i;
1604	u32 temp;
1605	struct xhci_hcd *xhci;
1606	struct urb_priv	*urb_priv;
1607	struct xhci_td *td;
1608	unsigned int ep_index;
1609	struct xhci_ring *ep_ring;
1610	struct xhci_virt_ep *ep;
1611	struct xhci_command *command;
1612	struct xhci_virt_device *vdev;
1613
1614	xhci = hcd_to_xhci(hcd);
1615	spin_lock_irqsave(&xhci->lock, flags);
1616
1617	trace_xhci_urb_dequeue(urb);
1618
1619	/* Make sure the URB hasn't completed or been unlinked already */
1620	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1621	if (ret)
1622		goto done;
1623
1624	/* give back URB now if we can't queue it for cancel */
1625	vdev = xhci->devs[urb->dev->slot_id];
1626	urb_priv = urb->hcpriv;
1627	if (!vdev || !urb_priv)
1628		goto err_giveback;
1629
1630	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1631	ep = &vdev->eps[ep_index];
1632	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1633	if (!ep || !ep_ring)
1634		goto err_giveback;
1635
1636	/* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1637	temp = readl(&xhci->op_regs->status);
1638	if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1639		xhci_hc_died(xhci);
1640		goto done;
1641	}
1642
1643	/*
1644	 * check ring is not re-allocated since URB was enqueued. If it is, then
1645	 * make sure none of the ring related pointers in this URB private data
1646	 * are touched, such as td_list, otherwise we overwrite freed data
1647	 */
1648	if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1649		xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1650		for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1651			td = &urb_priv->td[i];
1652			if (!list_empty(&td->cancelled_td_list))
1653				list_del_init(&td->cancelled_td_list);
1654		}
1655		goto err_giveback;
1656	}
1657
1658	if (xhci->xhc_state & XHCI_STATE_HALTED) {
1659		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1660				"HC halted, freeing TD manually.");
1661		for (i = urb_priv->num_tds_done;
1662		     i < urb_priv->num_tds;
1663		     i++) {
1664			td = &urb_priv->td[i];
1665			if (!list_empty(&td->td_list))
1666				list_del_init(&td->td_list);
1667			if (!list_empty(&td->cancelled_td_list))
1668				list_del_init(&td->cancelled_td_list);
1669		}
1670		goto err_giveback;
1671	}
1672
1673	i = urb_priv->num_tds_done;
1674	if (i < urb_priv->num_tds)
1675		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1676				"Cancel URB %p, dev %s, ep 0x%x, "
1677				"starting at offset 0x%llx",
1678				urb, urb->dev->devpath,
1679				urb->ep->desc.bEndpointAddress,
1680				(unsigned long long) xhci_trb_virt_to_dma(
1681					urb_priv->td[i].start_seg,
1682					urb_priv->td[i].first_trb));
1683
1684	for (; i < urb_priv->num_tds; i++) {
1685		td = &urb_priv->td[i];
1686		list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
 
 
 
 
 
1687	}
1688
1689	/* Queue a stop endpoint command, but only if this is
1690	 * the first cancellation to be handled.
1691	 */
1692	if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1693		command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1694		if (!command) {
1695			ret = -ENOMEM;
1696			goto done;
1697		}
1698		ep->ep_state |= EP_STOP_CMD_PENDING;
1699		ep->stop_cmd_timer.expires = jiffies +
1700			XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1701		add_timer(&ep->stop_cmd_timer);
1702		xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1703					 ep_index, 0);
1704		xhci_ring_cmd_db(xhci);
1705	}
1706done:
1707	spin_unlock_irqrestore(&xhci->lock, flags);
1708	return ret;
1709
1710err_giveback:
1711	if (urb_priv)
1712		xhci_urb_free_priv(urb_priv);
1713	usb_hcd_unlink_urb_from_ep(hcd, urb);
1714	spin_unlock_irqrestore(&xhci->lock, flags);
1715	usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1716	return ret;
1717}
1718
1719/* Drop an endpoint from a new bandwidth configuration for this device.
1720 * Only one call to this function is allowed per endpoint before
1721 * check_bandwidth() or reset_bandwidth() must be called.
1722 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1723 * add the endpoint to the schedule with possibly new parameters denoted by a
1724 * different endpoint descriptor in usb_host_endpoint.
1725 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1726 * not allowed.
1727 *
1728 * The USB core will not allow URBs to be queued to an endpoint that is being
1729 * disabled, so there's no need for mutual exclusion to protect
1730 * the xhci->devs[slot_id] structure.
1731 */
1732static int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1733		struct usb_host_endpoint *ep)
1734{
1735	struct xhci_hcd *xhci;
1736	struct xhci_container_ctx *in_ctx, *out_ctx;
1737	struct xhci_input_control_ctx *ctrl_ctx;
1738	unsigned int ep_index;
1739	struct xhci_ep_ctx *ep_ctx;
1740	u32 drop_flag;
1741	u32 new_add_flags, new_drop_flags;
1742	int ret;
1743
1744	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1745	if (ret <= 0)
1746		return ret;
1747	xhci = hcd_to_xhci(hcd);
1748	if (xhci->xhc_state & XHCI_STATE_DYING)
1749		return -ENODEV;
1750
1751	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1752	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1753	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1754		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1755				__func__, drop_flag);
1756		return 0;
1757	}
1758
1759	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1760	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1761	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1762	if (!ctrl_ctx) {
1763		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1764				__func__);
1765		return 0;
1766	}
1767
1768	ep_index = xhci_get_endpoint_index(&ep->desc);
1769	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1770	/* If the HC already knows the endpoint is disabled,
1771	 * or the HCD has noted it is disabled, ignore this request
1772	 */
1773	if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1774	    le32_to_cpu(ctrl_ctx->drop_flags) &
1775	    xhci_get_endpoint_flag(&ep->desc)) {
1776		/* Do not warn when called after a usb_device_reset */
1777		if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1778			xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1779				  __func__, ep);
1780		return 0;
1781	}
1782
1783	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1784	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1785
1786	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1787	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1788
1789	xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1790
1791	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1792
1793	if (xhci->quirks & XHCI_MTK_HOST)
1794		xhci_mtk_drop_ep_quirk(hcd, udev, ep);
1795
1796	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1797			(unsigned int) ep->desc.bEndpointAddress,
1798			udev->slot_id,
1799			(unsigned int) new_drop_flags,
1800			(unsigned int) new_add_flags);
1801	return 0;
1802}
 
1803
1804/* Add an endpoint to a new possible bandwidth configuration for this device.
1805 * Only one call to this function is allowed per endpoint before
1806 * check_bandwidth() or reset_bandwidth() must be called.
1807 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1808 * add the endpoint to the schedule with possibly new parameters denoted by a
1809 * different endpoint descriptor in usb_host_endpoint.
1810 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1811 * not allowed.
1812 *
1813 * The USB core will not allow URBs to be queued to an endpoint until the
1814 * configuration or alt setting is installed in the device, so there's no need
1815 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1816 */
1817static int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1818		struct usb_host_endpoint *ep)
1819{
1820	struct xhci_hcd *xhci;
1821	struct xhci_container_ctx *in_ctx;
1822	unsigned int ep_index;
1823	struct xhci_input_control_ctx *ctrl_ctx;
1824	struct xhci_ep_ctx *ep_ctx;
1825	u32 added_ctxs;
1826	u32 new_add_flags, new_drop_flags;
1827	struct xhci_virt_device *virt_dev;
1828	int ret = 0;
1829
1830	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1831	if (ret <= 0) {
1832		/* So we won't queue a reset ep command for a root hub */
1833		ep->hcpriv = NULL;
1834		return ret;
1835	}
1836	xhci = hcd_to_xhci(hcd);
1837	if (xhci->xhc_state & XHCI_STATE_DYING)
1838		return -ENODEV;
1839
1840	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1841	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1842		/* FIXME when we have to issue an evaluate endpoint command to
1843		 * deal with ep0 max packet size changing once we get the
1844		 * descriptors
1845		 */
1846		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1847				__func__, added_ctxs);
1848		return 0;
1849	}
1850
1851	virt_dev = xhci->devs[udev->slot_id];
1852	in_ctx = virt_dev->in_ctx;
1853	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1854	if (!ctrl_ctx) {
1855		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1856				__func__);
1857		return 0;
1858	}
1859
1860	ep_index = xhci_get_endpoint_index(&ep->desc);
1861	/* If this endpoint is already in use, and the upper layers are trying
1862	 * to add it again without dropping it, reject the addition.
1863	 */
1864	if (virt_dev->eps[ep_index].ring &&
1865			!(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1866		xhci_warn(xhci, "Trying to add endpoint 0x%x "
1867				"without dropping it.\n",
1868				(unsigned int) ep->desc.bEndpointAddress);
1869		return -EINVAL;
1870	}
1871
1872	/* If the HCD has already noted the endpoint is enabled,
1873	 * ignore this request.
1874	 */
1875	if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1876		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1877				__func__, ep);
1878		return 0;
1879	}
1880
1881	/*
1882	 * Configuration and alternate setting changes must be done in
1883	 * process context, not interrupt context (or so documenation
1884	 * for usb_set_interface() and usb_set_configuration() claim).
1885	 */
1886	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1887		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1888				__func__, ep->desc.bEndpointAddress);
1889		return -ENOMEM;
1890	}
1891
1892	if (xhci->quirks & XHCI_MTK_HOST) {
1893		ret = xhci_mtk_add_ep_quirk(hcd, udev, ep);
1894		if (ret < 0) {
1895			xhci_ring_free(xhci, virt_dev->eps[ep_index].new_ring);
1896			virt_dev->eps[ep_index].new_ring = NULL;
1897			return ret;
1898		}
1899	}
1900
1901	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1902	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1903
1904	/* If xhci_endpoint_disable() was called for this endpoint, but the
1905	 * xHC hasn't been notified yet through the check_bandwidth() call,
1906	 * this re-adds a new state for the endpoint from the new endpoint
1907	 * descriptors.  We must drop and re-add this endpoint, so we leave the
1908	 * drop flags alone.
1909	 */
1910	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1911
1912	/* Store the usb_device pointer for later use */
1913	ep->hcpriv = udev;
1914
1915	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1916	trace_xhci_add_endpoint(ep_ctx);
1917
1918	xhci_debugfs_create_endpoint(xhci, virt_dev, ep_index);
1919
1920	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1921			(unsigned int) ep->desc.bEndpointAddress,
1922			udev->slot_id,
1923			(unsigned int) new_drop_flags,
1924			(unsigned int) new_add_flags);
1925	return 0;
1926}
 
1927
1928static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1929{
1930	struct xhci_input_control_ctx *ctrl_ctx;
1931	struct xhci_ep_ctx *ep_ctx;
1932	struct xhci_slot_ctx *slot_ctx;
1933	int i;
1934
1935	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1936	if (!ctrl_ctx) {
1937		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1938				__func__);
1939		return;
1940	}
1941
1942	/* When a device's add flag and drop flag are zero, any subsequent
1943	 * configure endpoint command will leave that endpoint's state
1944	 * untouched.  Make sure we don't leave any old state in the input
1945	 * endpoint contexts.
1946	 */
1947	ctrl_ctx->drop_flags = 0;
1948	ctrl_ctx->add_flags = 0;
1949	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1950	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1951	/* Endpoint 0 is always valid */
1952	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1953	for (i = 1; i < 31; i++) {
1954		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1955		ep_ctx->ep_info = 0;
1956		ep_ctx->ep_info2 = 0;
1957		ep_ctx->deq = 0;
1958		ep_ctx->tx_info = 0;
1959	}
1960}
1961
1962static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1963		struct usb_device *udev, u32 *cmd_status)
1964{
1965	int ret;
1966
1967	switch (*cmd_status) {
1968	case COMP_COMMAND_ABORTED:
1969	case COMP_COMMAND_RING_STOPPED:
1970		xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1971		ret = -ETIME;
1972		break;
1973	case COMP_RESOURCE_ERROR:
1974		dev_warn(&udev->dev,
1975			 "Not enough host controller resources for new device state.\n");
1976		ret = -ENOMEM;
1977		/* FIXME: can we allocate more resources for the HC? */
1978		break;
1979	case COMP_BANDWIDTH_ERROR:
1980	case COMP_SECONDARY_BANDWIDTH_ERROR:
1981		dev_warn(&udev->dev,
1982			 "Not enough bandwidth for new device state.\n");
1983		ret = -ENOSPC;
1984		/* FIXME: can we go back to the old state? */
1985		break;
1986	case COMP_TRB_ERROR:
1987		/* the HCD set up something wrong */
1988		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1989				"add flag = 1, "
1990				"and endpoint is not disabled.\n");
1991		ret = -EINVAL;
1992		break;
1993	case COMP_INCOMPATIBLE_DEVICE_ERROR:
1994		dev_warn(&udev->dev,
1995			 "ERROR: Incompatible device for endpoint configure command.\n");
1996		ret = -ENODEV;
1997		break;
1998	case COMP_SUCCESS:
1999		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2000				"Successful Endpoint Configure command");
2001		ret = 0;
2002		break;
2003	default:
2004		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2005				*cmd_status);
2006		ret = -EINVAL;
2007		break;
2008	}
2009	return ret;
2010}
2011
2012static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
2013		struct usb_device *udev, u32 *cmd_status)
2014{
2015	int ret;
2016
2017	switch (*cmd_status) {
2018	case COMP_COMMAND_ABORTED:
2019	case COMP_COMMAND_RING_STOPPED:
2020		xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
2021		ret = -ETIME;
2022		break;
2023	case COMP_PARAMETER_ERROR:
2024		dev_warn(&udev->dev,
2025			 "WARN: xHCI driver setup invalid evaluate context command.\n");
2026		ret = -EINVAL;
2027		break;
2028	case COMP_SLOT_NOT_ENABLED_ERROR:
2029		dev_warn(&udev->dev,
2030			"WARN: slot not enabled for evaluate context command.\n");
2031		ret = -EINVAL;
2032		break;
2033	case COMP_CONTEXT_STATE_ERROR:
2034		dev_warn(&udev->dev,
2035			"WARN: invalid context state for evaluate context command.\n");
2036		ret = -EINVAL;
2037		break;
2038	case COMP_INCOMPATIBLE_DEVICE_ERROR:
2039		dev_warn(&udev->dev,
2040			"ERROR: Incompatible device for evaluate context command.\n");
2041		ret = -ENODEV;
2042		break;
2043	case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2044		/* Max Exit Latency too large error */
2045		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2046		ret = -EINVAL;
2047		break;
2048	case COMP_SUCCESS:
2049		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2050				"Successful evaluate context command");
2051		ret = 0;
2052		break;
2053	default:
2054		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2055			*cmd_status);
2056		ret = -EINVAL;
2057		break;
2058	}
2059	return ret;
2060}
2061
2062static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2063		struct xhci_input_control_ctx *ctrl_ctx)
2064{
2065	u32 valid_add_flags;
2066	u32 valid_drop_flags;
2067
2068	/* Ignore the slot flag (bit 0), and the default control endpoint flag
2069	 * (bit 1).  The default control endpoint is added during the Address
2070	 * Device command and is never removed until the slot is disabled.
2071	 */
2072	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2073	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2074
2075	/* Use hweight32 to count the number of ones in the add flags, or
2076	 * number of endpoints added.  Don't count endpoints that are changed
2077	 * (both added and dropped).
2078	 */
2079	return hweight32(valid_add_flags) -
2080		hweight32(valid_add_flags & valid_drop_flags);
2081}
2082
2083static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2084		struct xhci_input_control_ctx *ctrl_ctx)
2085{
2086	u32 valid_add_flags;
2087	u32 valid_drop_flags;
2088
2089	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2090	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2091
2092	return hweight32(valid_drop_flags) -
2093		hweight32(valid_add_flags & valid_drop_flags);
2094}
2095
2096/*
2097 * We need to reserve the new number of endpoints before the configure endpoint
2098 * command completes.  We can't subtract the dropped endpoints from the number
2099 * of active endpoints until the command completes because we can oversubscribe
2100 * the host in this case:
2101 *
2102 *  - the first configure endpoint command drops more endpoints than it adds
2103 *  - a second configure endpoint command that adds more endpoints is queued
2104 *  - the first configure endpoint command fails, so the config is unchanged
2105 *  - the second command may succeed, even though there isn't enough resources
2106 *
2107 * Must be called with xhci->lock held.
2108 */
2109static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2110		struct xhci_input_control_ctx *ctrl_ctx)
2111{
2112	u32 added_eps;
2113
2114	added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2115	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2116		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2117				"Not enough ep ctxs: "
2118				"%u active, need to add %u, limit is %u.",
2119				xhci->num_active_eps, added_eps,
2120				xhci->limit_active_eps);
2121		return -ENOMEM;
2122	}
2123	xhci->num_active_eps += added_eps;
2124	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2125			"Adding %u ep ctxs, %u now active.", added_eps,
2126			xhci->num_active_eps);
2127	return 0;
2128}
2129
2130/*
2131 * The configure endpoint was failed by the xHC for some other reason, so we
2132 * need to revert the resources that failed configuration would have used.
2133 *
2134 * Must be called with xhci->lock held.
2135 */
2136static void xhci_free_host_resources(struct xhci_hcd *xhci,
2137		struct xhci_input_control_ctx *ctrl_ctx)
2138{
2139	u32 num_failed_eps;
2140
2141	num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2142	xhci->num_active_eps -= num_failed_eps;
2143	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2144			"Removing %u failed ep ctxs, %u now active.",
2145			num_failed_eps,
2146			xhci->num_active_eps);
2147}
2148
2149/*
2150 * Now that the command has completed, clean up the active endpoint count by
2151 * subtracting out the endpoints that were dropped (but not changed).
2152 *
2153 * Must be called with xhci->lock held.
2154 */
2155static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2156		struct xhci_input_control_ctx *ctrl_ctx)
2157{
2158	u32 num_dropped_eps;
2159
2160	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2161	xhci->num_active_eps -= num_dropped_eps;
2162	if (num_dropped_eps)
2163		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2164				"Removing %u dropped ep ctxs, %u now active.",
2165				num_dropped_eps,
2166				xhci->num_active_eps);
2167}
2168
2169static unsigned int xhci_get_block_size(struct usb_device *udev)
2170{
2171	switch (udev->speed) {
2172	case USB_SPEED_LOW:
2173	case USB_SPEED_FULL:
2174		return FS_BLOCK;
2175	case USB_SPEED_HIGH:
2176		return HS_BLOCK;
2177	case USB_SPEED_SUPER:
2178	case USB_SPEED_SUPER_PLUS:
2179		return SS_BLOCK;
2180	case USB_SPEED_UNKNOWN:
2181	case USB_SPEED_WIRELESS:
2182	default:
2183		/* Should never happen */
2184		return 1;
2185	}
2186}
2187
2188static unsigned int
2189xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2190{
2191	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2192		return LS_OVERHEAD;
2193	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2194		return FS_OVERHEAD;
2195	return HS_OVERHEAD;
2196}
2197
2198/* If we are changing a LS/FS device under a HS hub,
2199 * make sure (if we are activating a new TT) that the HS bus has enough
2200 * bandwidth for this new TT.
2201 */
2202static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2203		struct xhci_virt_device *virt_dev,
2204		int old_active_eps)
2205{
2206	struct xhci_interval_bw_table *bw_table;
2207	struct xhci_tt_bw_info *tt_info;
2208
2209	/* Find the bandwidth table for the root port this TT is attached to. */
2210	bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2211	tt_info = virt_dev->tt_info;
2212	/* If this TT already had active endpoints, the bandwidth for this TT
2213	 * has already been added.  Removing all periodic endpoints (and thus
2214	 * making the TT enactive) will only decrease the bandwidth used.
2215	 */
2216	if (old_active_eps)
2217		return 0;
2218	if (old_active_eps == 0 && tt_info->active_eps != 0) {
2219		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2220			return -ENOMEM;
2221		return 0;
2222	}
2223	/* Not sure why we would have no new active endpoints...
2224	 *
2225	 * Maybe because of an Evaluate Context change for a hub update or a
2226	 * control endpoint 0 max packet size change?
2227	 * FIXME: skip the bandwidth calculation in that case.
2228	 */
2229	return 0;
2230}
2231
2232static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2233		struct xhci_virt_device *virt_dev)
2234{
2235	unsigned int bw_reserved;
2236
2237	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2238	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2239		return -ENOMEM;
2240
2241	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2242	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2243		return -ENOMEM;
2244
2245	return 0;
2246}
2247
2248/*
2249 * This algorithm is a very conservative estimate of the worst-case scheduling
2250 * scenario for any one interval.  The hardware dynamically schedules the
2251 * packets, so we can't tell which microframe could be the limiting factor in
2252 * the bandwidth scheduling.  This only takes into account periodic endpoints.
2253 *
2254 * Obviously, we can't solve an NP complete problem to find the minimum worst
2255 * case scenario.  Instead, we come up with an estimate that is no less than
2256 * the worst case bandwidth used for any one microframe, but may be an
2257 * over-estimate.
2258 *
2259 * We walk the requirements for each endpoint by interval, starting with the
2260 * smallest interval, and place packets in the schedule where there is only one
2261 * possible way to schedule packets for that interval.  In order to simplify
2262 * this algorithm, we record the largest max packet size for each interval, and
2263 * assume all packets will be that size.
2264 *
2265 * For interval 0, we obviously must schedule all packets for each interval.
2266 * The bandwidth for interval 0 is just the amount of data to be transmitted
2267 * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2268 * the number of packets).
2269 *
2270 * For interval 1, we have two possible microframes to schedule those packets
2271 * in.  For this algorithm, if we can schedule the same number of packets for
2272 * each possible scheduling opportunity (each microframe), we will do so.  The
2273 * remaining number of packets will be saved to be transmitted in the gaps in
2274 * the next interval's scheduling sequence.
2275 *
2276 * As we move those remaining packets to be scheduled with interval 2 packets,
2277 * we have to double the number of remaining packets to transmit.  This is
2278 * because the intervals are actually powers of 2, and we would be transmitting
2279 * the previous interval's packets twice in this interval.  We also have to be
2280 * sure that when we look at the largest max packet size for this interval, we
2281 * also look at the largest max packet size for the remaining packets and take
2282 * the greater of the two.
2283 *
2284 * The algorithm continues to evenly distribute packets in each scheduling
2285 * opportunity, and push the remaining packets out, until we get to the last
2286 * interval.  Then those packets and their associated overhead are just added
2287 * to the bandwidth used.
2288 */
2289static int xhci_check_bw_table(struct xhci_hcd *xhci,
2290		struct xhci_virt_device *virt_dev,
2291		int old_active_eps)
2292{
2293	unsigned int bw_reserved;
2294	unsigned int max_bandwidth;
2295	unsigned int bw_used;
2296	unsigned int block_size;
2297	struct xhci_interval_bw_table *bw_table;
2298	unsigned int packet_size = 0;
2299	unsigned int overhead = 0;
2300	unsigned int packets_transmitted = 0;
2301	unsigned int packets_remaining = 0;
2302	unsigned int i;
2303
2304	if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2305		return xhci_check_ss_bw(xhci, virt_dev);
2306
2307	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2308		max_bandwidth = HS_BW_LIMIT;
2309		/* Convert percent of bus BW reserved to blocks reserved */
2310		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2311	} else {
2312		max_bandwidth = FS_BW_LIMIT;
2313		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2314	}
2315
2316	bw_table = virt_dev->bw_table;
2317	/* We need to translate the max packet size and max ESIT payloads into
2318	 * the units the hardware uses.
2319	 */
2320	block_size = xhci_get_block_size(virt_dev->udev);
2321
2322	/* If we are manipulating a LS/FS device under a HS hub, double check
2323	 * that the HS bus has enough bandwidth if we are activing a new TT.
2324	 */
2325	if (virt_dev->tt_info) {
2326		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2327				"Recalculating BW for rootport %u",
2328				virt_dev->real_port);
2329		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2330			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2331					"newly activated TT.\n");
2332			return -ENOMEM;
2333		}
2334		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2335				"Recalculating BW for TT slot %u port %u",
2336				virt_dev->tt_info->slot_id,
2337				virt_dev->tt_info->ttport);
2338	} else {
2339		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2340				"Recalculating BW for rootport %u",
2341				virt_dev->real_port);
2342	}
2343
2344	/* Add in how much bandwidth will be used for interval zero, or the
2345	 * rounded max ESIT payload + number of packets * largest overhead.
2346	 */
2347	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2348		bw_table->interval_bw[0].num_packets *
2349		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2350
2351	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2352		unsigned int bw_added;
2353		unsigned int largest_mps;
2354		unsigned int interval_overhead;
2355
2356		/*
2357		 * How many packets could we transmit in this interval?
2358		 * If packets didn't fit in the previous interval, we will need
2359		 * to transmit that many packets twice within this interval.
2360		 */
2361		packets_remaining = 2 * packets_remaining +
2362			bw_table->interval_bw[i].num_packets;
2363
2364		/* Find the largest max packet size of this or the previous
2365		 * interval.
2366		 */
2367		if (list_empty(&bw_table->interval_bw[i].endpoints))
2368			largest_mps = 0;
2369		else {
2370			struct xhci_virt_ep *virt_ep;
2371			struct list_head *ep_entry;
2372
2373			ep_entry = bw_table->interval_bw[i].endpoints.next;
2374			virt_ep = list_entry(ep_entry,
2375					struct xhci_virt_ep, bw_endpoint_list);
2376			/* Convert to blocks, rounding up */
2377			largest_mps = DIV_ROUND_UP(
2378					virt_ep->bw_info.max_packet_size,
2379					block_size);
2380		}
2381		if (largest_mps > packet_size)
2382			packet_size = largest_mps;
2383
2384		/* Use the larger overhead of this or the previous interval. */
2385		interval_overhead = xhci_get_largest_overhead(
2386				&bw_table->interval_bw[i]);
2387		if (interval_overhead > overhead)
2388			overhead = interval_overhead;
2389
2390		/* How many packets can we evenly distribute across
2391		 * (1 << (i + 1)) possible scheduling opportunities?
2392		 */
2393		packets_transmitted = packets_remaining >> (i + 1);
2394
2395		/* Add in the bandwidth used for those scheduled packets */
2396		bw_added = packets_transmitted * (overhead + packet_size);
2397
2398		/* How many packets do we have remaining to transmit? */
2399		packets_remaining = packets_remaining % (1 << (i + 1));
2400
2401		/* What largest max packet size should those packets have? */
2402		/* If we've transmitted all packets, don't carry over the
2403		 * largest packet size.
2404		 */
2405		if (packets_remaining == 0) {
2406			packet_size = 0;
2407			overhead = 0;
2408		} else if (packets_transmitted > 0) {
2409			/* Otherwise if we do have remaining packets, and we've
2410			 * scheduled some packets in this interval, take the
2411			 * largest max packet size from endpoints with this
2412			 * interval.
2413			 */
2414			packet_size = largest_mps;
2415			overhead = interval_overhead;
2416		}
2417		/* Otherwise carry over packet_size and overhead from the last
2418		 * time we had a remainder.
2419		 */
2420		bw_used += bw_added;
2421		if (bw_used > max_bandwidth) {
2422			xhci_warn(xhci, "Not enough bandwidth. "
2423					"Proposed: %u, Max: %u\n",
2424				bw_used, max_bandwidth);
2425			return -ENOMEM;
2426		}
2427	}
2428	/*
2429	 * Ok, we know we have some packets left over after even-handedly
2430	 * scheduling interval 15.  We don't know which microframes they will
2431	 * fit into, so we over-schedule and say they will be scheduled every
2432	 * microframe.
2433	 */
2434	if (packets_remaining > 0)
2435		bw_used += overhead + packet_size;
2436
2437	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2438		unsigned int port_index = virt_dev->real_port - 1;
2439
2440		/* OK, we're manipulating a HS device attached to a
2441		 * root port bandwidth domain.  Include the number of active TTs
2442		 * in the bandwidth used.
2443		 */
2444		bw_used += TT_HS_OVERHEAD *
2445			xhci->rh_bw[port_index].num_active_tts;
2446	}
2447
2448	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2449		"Final bandwidth: %u, Limit: %u, Reserved: %u, "
2450		"Available: %u " "percent",
2451		bw_used, max_bandwidth, bw_reserved,
2452		(max_bandwidth - bw_used - bw_reserved) * 100 /
2453		max_bandwidth);
2454
2455	bw_used += bw_reserved;
2456	if (bw_used > max_bandwidth) {
2457		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2458				bw_used, max_bandwidth);
2459		return -ENOMEM;
2460	}
2461
2462	bw_table->bw_used = bw_used;
2463	return 0;
2464}
2465
2466static bool xhci_is_async_ep(unsigned int ep_type)
2467{
2468	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2469					ep_type != ISOC_IN_EP &&
2470					ep_type != INT_IN_EP);
2471}
2472
2473static bool xhci_is_sync_in_ep(unsigned int ep_type)
2474{
2475	return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2476}
2477
2478static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2479{
2480	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2481
2482	if (ep_bw->ep_interval == 0)
2483		return SS_OVERHEAD_BURST +
2484			(ep_bw->mult * ep_bw->num_packets *
2485					(SS_OVERHEAD + mps));
2486	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2487				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2488				1 << ep_bw->ep_interval);
2489
2490}
2491
2492static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2493		struct xhci_bw_info *ep_bw,
2494		struct xhci_interval_bw_table *bw_table,
2495		struct usb_device *udev,
2496		struct xhci_virt_ep *virt_ep,
2497		struct xhci_tt_bw_info *tt_info)
2498{
2499	struct xhci_interval_bw	*interval_bw;
2500	int normalized_interval;
2501
2502	if (xhci_is_async_ep(ep_bw->type))
2503		return;
2504
2505	if (udev->speed >= USB_SPEED_SUPER) {
2506		if (xhci_is_sync_in_ep(ep_bw->type))
2507			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2508				xhci_get_ss_bw_consumed(ep_bw);
2509		else
2510			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2511				xhci_get_ss_bw_consumed(ep_bw);
2512		return;
2513	}
2514
2515	/* SuperSpeed endpoints never get added to intervals in the table, so
2516	 * this check is only valid for HS/FS/LS devices.
2517	 */
2518	if (list_empty(&virt_ep->bw_endpoint_list))
2519		return;
2520	/* For LS/FS devices, we need to translate the interval expressed in
2521	 * microframes to frames.
2522	 */
2523	if (udev->speed == USB_SPEED_HIGH)
2524		normalized_interval = ep_bw->ep_interval;
2525	else
2526		normalized_interval = ep_bw->ep_interval - 3;
2527
2528	if (normalized_interval == 0)
2529		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2530	interval_bw = &bw_table->interval_bw[normalized_interval];
2531	interval_bw->num_packets -= ep_bw->num_packets;
2532	switch (udev->speed) {
2533	case USB_SPEED_LOW:
2534		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2535		break;
2536	case USB_SPEED_FULL:
2537		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2538		break;
2539	case USB_SPEED_HIGH:
2540		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2541		break;
2542	case USB_SPEED_SUPER:
2543	case USB_SPEED_SUPER_PLUS:
2544	case USB_SPEED_UNKNOWN:
2545	case USB_SPEED_WIRELESS:
2546		/* Should never happen because only LS/FS/HS endpoints will get
2547		 * added to the endpoint list.
2548		 */
2549		return;
2550	}
2551	if (tt_info)
2552		tt_info->active_eps -= 1;
2553	list_del_init(&virt_ep->bw_endpoint_list);
2554}
2555
2556static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2557		struct xhci_bw_info *ep_bw,
2558		struct xhci_interval_bw_table *bw_table,
2559		struct usb_device *udev,
2560		struct xhci_virt_ep *virt_ep,
2561		struct xhci_tt_bw_info *tt_info)
2562{
2563	struct xhci_interval_bw	*interval_bw;
2564	struct xhci_virt_ep *smaller_ep;
2565	int normalized_interval;
2566
2567	if (xhci_is_async_ep(ep_bw->type))
2568		return;
2569
2570	if (udev->speed == USB_SPEED_SUPER) {
2571		if (xhci_is_sync_in_ep(ep_bw->type))
2572			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2573				xhci_get_ss_bw_consumed(ep_bw);
2574		else
2575			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2576				xhci_get_ss_bw_consumed(ep_bw);
2577		return;
2578	}
2579
2580	/* For LS/FS devices, we need to translate the interval expressed in
2581	 * microframes to frames.
2582	 */
2583	if (udev->speed == USB_SPEED_HIGH)
2584		normalized_interval = ep_bw->ep_interval;
2585	else
2586		normalized_interval = ep_bw->ep_interval - 3;
2587
2588	if (normalized_interval == 0)
2589		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2590	interval_bw = &bw_table->interval_bw[normalized_interval];
2591	interval_bw->num_packets += ep_bw->num_packets;
2592	switch (udev->speed) {
2593	case USB_SPEED_LOW:
2594		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2595		break;
2596	case USB_SPEED_FULL:
2597		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2598		break;
2599	case USB_SPEED_HIGH:
2600		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2601		break;
2602	case USB_SPEED_SUPER:
2603	case USB_SPEED_SUPER_PLUS:
2604	case USB_SPEED_UNKNOWN:
2605	case USB_SPEED_WIRELESS:
2606		/* Should never happen because only LS/FS/HS endpoints will get
2607		 * added to the endpoint list.
2608		 */
2609		return;
2610	}
2611
2612	if (tt_info)
2613		tt_info->active_eps += 1;
2614	/* Insert the endpoint into the list, largest max packet size first. */
2615	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2616			bw_endpoint_list) {
2617		if (ep_bw->max_packet_size >=
2618				smaller_ep->bw_info.max_packet_size) {
2619			/* Add the new ep before the smaller endpoint */
2620			list_add_tail(&virt_ep->bw_endpoint_list,
2621					&smaller_ep->bw_endpoint_list);
2622			return;
2623		}
2624	}
2625	/* Add the new endpoint at the end of the list. */
2626	list_add_tail(&virt_ep->bw_endpoint_list,
2627			&interval_bw->endpoints);
2628}
2629
2630void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2631		struct xhci_virt_device *virt_dev,
2632		int old_active_eps)
2633{
2634	struct xhci_root_port_bw_info *rh_bw_info;
2635	if (!virt_dev->tt_info)
2636		return;
2637
2638	rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2639	if (old_active_eps == 0 &&
2640				virt_dev->tt_info->active_eps != 0) {
2641		rh_bw_info->num_active_tts += 1;
2642		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2643	} else if (old_active_eps != 0 &&
2644				virt_dev->tt_info->active_eps == 0) {
2645		rh_bw_info->num_active_tts -= 1;
2646		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2647	}
2648}
2649
2650static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2651		struct xhci_virt_device *virt_dev,
2652		struct xhci_container_ctx *in_ctx)
2653{
2654	struct xhci_bw_info ep_bw_info[31];
2655	int i;
2656	struct xhci_input_control_ctx *ctrl_ctx;
2657	int old_active_eps = 0;
2658
2659	if (virt_dev->tt_info)
2660		old_active_eps = virt_dev->tt_info->active_eps;
2661
2662	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2663	if (!ctrl_ctx) {
2664		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2665				__func__);
2666		return -ENOMEM;
2667	}
2668
2669	for (i = 0; i < 31; i++) {
2670		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2671			continue;
2672
2673		/* Make a copy of the BW info in case we need to revert this */
2674		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2675				sizeof(ep_bw_info[i]));
2676		/* Drop the endpoint from the interval table if the endpoint is
2677		 * being dropped or changed.
2678		 */
2679		if (EP_IS_DROPPED(ctrl_ctx, i))
2680			xhci_drop_ep_from_interval_table(xhci,
2681					&virt_dev->eps[i].bw_info,
2682					virt_dev->bw_table,
2683					virt_dev->udev,
2684					&virt_dev->eps[i],
2685					virt_dev->tt_info);
2686	}
2687	/* Overwrite the information stored in the endpoints' bw_info */
2688	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2689	for (i = 0; i < 31; i++) {
2690		/* Add any changed or added endpoints to the interval table */
2691		if (EP_IS_ADDED(ctrl_ctx, i))
2692			xhci_add_ep_to_interval_table(xhci,
2693					&virt_dev->eps[i].bw_info,
2694					virt_dev->bw_table,
2695					virt_dev->udev,
2696					&virt_dev->eps[i],
2697					virt_dev->tt_info);
2698	}
2699
2700	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2701		/* Ok, this fits in the bandwidth we have.
2702		 * Update the number of active TTs.
2703		 */
2704		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2705		return 0;
2706	}
2707
2708	/* We don't have enough bandwidth for this, revert the stored info. */
2709	for (i = 0; i < 31; i++) {
2710		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2711			continue;
2712
2713		/* Drop the new copies of any added or changed endpoints from
2714		 * the interval table.
2715		 */
2716		if (EP_IS_ADDED(ctrl_ctx, i)) {
2717			xhci_drop_ep_from_interval_table(xhci,
2718					&virt_dev->eps[i].bw_info,
2719					virt_dev->bw_table,
2720					virt_dev->udev,
2721					&virt_dev->eps[i],
2722					virt_dev->tt_info);
2723		}
2724		/* Revert the endpoint back to its old information */
2725		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2726				sizeof(ep_bw_info[i]));
2727		/* Add any changed or dropped endpoints back into the table */
2728		if (EP_IS_DROPPED(ctrl_ctx, i))
2729			xhci_add_ep_to_interval_table(xhci,
2730					&virt_dev->eps[i].bw_info,
2731					virt_dev->bw_table,
2732					virt_dev->udev,
2733					&virt_dev->eps[i],
2734					virt_dev->tt_info);
2735	}
2736	return -ENOMEM;
2737}
2738
2739
2740/* Issue a configure endpoint command or evaluate context command
2741 * and wait for it to finish.
2742 */
2743static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2744		struct usb_device *udev,
2745		struct xhci_command *command,
2746		bool ctx_change, bool must_succeed)
2747{
2748	int ret;
2749	unsigned long flags;
2750	struct xhci_input_control_ctx *ctrl_ctx;
2751	struct xhci_virt_device *virt_dev;
2752	struct xhci_slot_ctx *slot_ctx;
2753
2754	if (!command)
2755		return -EINVAL;
2756
2757	spin_lock_irqsave(&xhci->lock, flags);
2758
2759	if (xhci->xhc_state & XHCI_STATE_DYING) {
2760		spin_unlock_irqrestore(&xhci->lock, flags);
2761		return -ESHUTDOWN;
2762	}
2763
2764	virt_dev = xhci->devs[udev->slot_id];
2765
2766	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2767	if (!ctrl_ctx) {
2768		spin_unlock_irqrestore(&xhci->lock, flags);
2769		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2770				__func__);
2771		return -ENOMEM;
2772	}
2773
2774	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2775			xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2776		spin_unlock_irqrestore(&xhci->lock, flags);
2777		xhci_warn(xhci, "Not enough host resources, "
2778				"active endpoint contexts = %u\n",
2779				xhci->num_active_eps);
2780		return -ENOMEM;
2781	}
2782	if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2783	    xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2784		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2785			xhci_free_host_resources(xhci, ctrl_ctx);
2786		spin_unlock_irqrestore(&xhci->lock, flags);
2787		xhci_warn(xhci, "Not enough bandwidth\n");
2788		return -ENOMEM;
2789	}
2790
2791	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2792
2793	trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx);
2794	trace_xhci_configure_endpoint(slot_ctx);
2795
2796	if (!ctx_change)
2797		ret = xhci_queue_configure_endpoint(xhci, command,
2798				command->in_ctx->dma,
2799				udev->slot_id, must_succeed);
2800	else
2801		ret = xhci_queue_evaluate_context(xhci, command,
2802				command->in_ctx->dma,
2803				udev->slot_id, must_succeed);
2804	if (ret < 0) {
2805		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2806			xhci_free_host_resources(xhci, ctrl_ctx);
2807		spin_unlock_irqrestore(&xhci->lock, flags);
2808		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2809				"FIXME allocate a new ring segment");
2810		return -ENOMEM;
2811	}
2812	xhci_ring_cmd_db(xhci);
2813	spin_unlock_irqrestore(&xhci->lock, flags);
2814
2815	/* Wait for the configure endpoint command to complete */
2816	wait_for_completion(command->completion);
2817
2818	if (!ctx_change)
2819		ret = xhci_configure_endpoint_result(xhci, udev,
2820						     &command->status);
2821	else
2822		ret = xhci_evaluate_context_result(xhci, udev,
2823						   &command->status);
2824
2825	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2826		spin_lock_irqsave(&xhci->lock, flags);
2827		/* If the command failed, remove the reserved resources.
2828		 * Otherwise, clean up the estimate to include dropped eps.
2829		 */
2830		if (ret)
2831			xhci_free_host_resources(xhci, ctrl_ctx);
2832		else
2833			xhci_finish_resource_reservation(xhci, ctrl_ctx);
2834		spin_unlock_irqrestore(&xhci->lock, flags);
2835	}
2836	return ret;
2837}
2838
2839static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2840	struct xhci_virt_device *vdev, int i)
2841{
2842	struct xhci_virt_ep *ep = &vdev->eps[i];
2843
2844	if (ep->ep_state & EP_HAS_STREAMS) {
2845		xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2846				xhci_get_endpoint_address(i));
2847		xhci_free_stream_info(xhci, ep->stream_info);
2848		ep->stream_info = NULL;
2849		ep->ep_state &= ~EP_HAS_STREAMS;
2850	}
2851}
2852
2853/* Called after one or more calls to xhci_add_endpoint() or
2854 * xhci_drop_endpoint().  If this call fails, the USB core is expected
2855 * to call xhci_reset_bandwidth().
2856 *
2857 * Since we are in the middle of changing either configuration or
2858 * installing a new alt setting, the USB core won't allow URBs to be
2859 * enqueued for any endpoint on the old config or interface.  Nothing
2860 * else should be touching the xhci->devs[slot_id] structure, so we
2861 * don't need to take the xhci->lock for manipulating that.
2862 */
2863static int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2864{
2865	int i;
2866	int ret = 0;
2867	struct xhci_hcd *xhci;
2868	struct xhci_virt_device	*virt_dev;
2869	struct xhci_input_control_ctx *ctrl_ctx;
2870	struct xhci_slot_ctx *slot_ctx;
2871	struct xhci_command *command;
2872
2873	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2874	if (ret <= 0)
2875		return ret;
2876	xhci = hcd_to_xhci(hcd);
2877	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2878		(xhci->xhc_state & XHCI_STATE_REMOVING))
2879		return -ENODEV;
2880
2881	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2882	virt_dev = xhci->devs[udev->slot_id];
2883
2884	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
2885	if (!command)
2886		return -ENOMEM;
2887
2888	command->in_ctx = virt_dev->in_ctx;
2889
2890	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2891	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2892	if (!ctrl_ctx) {
2893		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2894				__func__);
2895		ret = -ENOMEM;
2896		goto command_cleanup;
2897	}
2898	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2899	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2900	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2901
2902	/* Don't issue the command if there's no endpoints to update. */
2903	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2904	    ctrl_ctx->drop_flags == 0) {
2905		ret = 0;
2906		goto command_cleanup;
2907	}
2908	/* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2909	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2910	for (i = 31; i >= 1; i--) {
2911		__le32 le32 = cpu_to_le32(BIT(i));
2912
2913		if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2914		    || (ctrl_ctx->add_flags & le32) || i == 1) {
2915			slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2916			slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2917			break;
2918		}
2919	}
2920
2921	ret = xhci_configure_endpoint(xhci, udev, command,
2922			false, false);
2923	if (ret)
2924		/* Callee should call reset_bandwidth() */
2925		goto command_cleanup;
2926
2927	/* Free any rings that were dropped, but not changed. */
2928	for (i = 1; i < 31; i++) {
2929		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2930		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2931			xhci_free_endpoint_ring(xhci, virt_dev, i);
2932			xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2933		}
2934	}
2935	xhci_zero_in_ctx(xhci, virt_dev);
2936	/*
2937	 * Install any rings for completely new endpoints or changed endpoints,
2938	 * and free any old rings from changed endpoints.
2939	 */
2940	for (i = 1; i < 31; i++) {
2941		if (!virt_dev->eps[i].new_ring)
2942			continue;
2943		/* Only free the old ring if it exists.
2944		 * It may not if this is the first add of an endpoint.
2945		 */
2946		if (virt_dev->eps[i].ring) {
2947			xhci_free_endpoint_ring(xhci, virt_dev, i);
2948		}
2949		xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2950		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2951		virt_dev->eps[i].new_ring = NULL;
 
2952	}
2953command_cleanup:
2954	kfree(command->completion);
2955	kfree(command);
2956
2957	return ret;
2958}
 
2959
2960static void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2961{
2962	struct xhci_hcd *xhci;
2963	struct xhci_virt_device	*virt_dev;
2964	int i, ret;
2965
2966	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2967	if (ret <= 0)
2968		return;
2969	xhci = hcd_to_xhci(hcd);
2970
2971	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2972	virt_dev = xhci->devs[udev->slot_id];
2973	/* Free any rings allocated for added endpoints */
2974	for (i = 0; i < 31; i++) {
2975		if (virt_dev->eps[i].new_ring) {
2976			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
2977			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2978			virt_dev->eps[i].new_ring = NULL;
2979		}
2980	}
2981	xhci_zero_in_ctx(xhci, virt_dev);
2982}
 
2983
2984static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2985		struct xhci_container_ctx *in_ctx,
2986		struct xhci_container_ctx *out_ctx,
2987		struct xhci_input_control_ctx *ctrl_ctx,
2988		u32 add_flags, u32 drop_flags)
2989{
2990	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2991	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2992	xhci_slot_copy(xhci, in_ctx, out_ctx);
2993	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2994}
2995
2996static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2997		unsigned int slot_id, unsigned int ep_index,
2998		struct xhci_dequeue_state *deq_state)
2999{
3000	struct xhci_input_control_ctx *ctrl_ctx;
3001	struct xhci_container_ctx *in_ctx;
3002	struct xhci_ep_ctx *ep_ctx;
3003	u32 added_ctxs;
3004	dma_addr_t addr;
3005
3006	in_ctx = xhci->devs[slot_id]->in_ctx;
3007	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
3008	if (!ctrl_ctx) {
3009		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3010				__func__);
3011		return;
3012	}
3013
3014	xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
3015			xhci->devs[slot_id]->out_ctx, ep_index);
3016	ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
3017	addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
3018			deq_state->new_deq_ptr);
3019	if (addr == 0) {
3020		xhci_warn(xhci, "WARN Cannot submit config ep after "
3021				"reset ep command\n");
3022		xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
3023				deq_state->new_deq_seg,
3024				deq_state->new_deq_ptr);
3025		return;
3026	}
3027	ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
3028
3029	added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
3030	xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
3031			xhci->devs[slot_id]->out_ctx, ctrl_ctx,
3032			added_ctxs, added_ctxs);
3033}
3034
3035void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, unsigned int ep_index,
3036			       unsigned int stream_id, struct xhci_td *td)
3037{
3038	struct xhci_dequeue_state deq_state;
3039	struct usb_device *udev = td->urb->dev;
3040
3041	xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
3042			"Cleaning up stalled endpoint ring");
3043	/* We need to move the HW's dequeue pointer past this TD,
3044	 * or it will attempt to resend it on the next doorbell ring.
3045	 */
3046	xhci_find_new_dequeue_state(xhci, udev->slot_id,
3047			ep_index, stream_id, td, &deq_state);
3048
3049	if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
3050		return;
3051
3052	/* HW with the reset endpoint quirk will use the saved dequeue state to
3053	 * issue a configure endpoint command later.
3054	 */
3055	if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
3056		xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
3057				"Queueing new dequeue state");
3058		xhci_queue_new_dequeue_state(xhci, udev->slot_id,
3059				ep_index, &deq_state);
3060	} else {
3061		/* Better hope no one uses the input context between now and the
3062		 * reset endpoint completion!
3063		 * XXX: No idea how this hardware will react when stream rings
3064		 * are enabled.
3065		 */
3066		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3067				"Setting up input context for "
3068				"configure endpoint command");
3069		xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
3070				ep_index, &deq_state);
3071	}
3072}
3073
3074static void xhci_endpoint_disable(struct usb_hcd *hcd,
3075				  struct usb_host_endpoint *host_ep)
3076{
3077	struct xhci_hcd		*xhci;
3078	struct xhci_virt_device	*vdev;
3079	struct xhci_virt_ep	*ep;
3080	struct usb_device	*udev;
3081	unsigned long		flags;
3082	unsigned int		ep_index;
3083
3084	xhci = hcd_to_xhci(hcd);
3085rescan:
3086	spin_lock_irqsave(&xhci->lock, flags);
3087
3088	udev = (struct usb_device *)host_ep->hcpriv;
3089	if (!udev || !udev->slot_id)
3090		goto done;
3091
3092	vdev = xhci->devs[udev->slot_id];
3093	if (!vdev)
3094		goto done;
3095
3096	ep_index = xhci_get_endpoint_index(&host_ep->desc);
3097	ep = &vdev->eps[ep_index];
3098	if (!ep)
3099		goto done;
3100
3101	/* wait for hub_tt_work to finish clearing hub TT */
3102	if (ep->ep_state & EP_CLEARING_TT) {
3103		spin_unlock_irqrestore(&xhci->lock, flags);
3104		schedule_timeout_uninterruptible(1);
3105		goto rescan;
3106	}
3107
3108	if (ep->ep_state)
3109		xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n",
3110			 ep->ep_state);
3111done:
3112	host_ep->hcpriv = NULL;
3113	spin_unlock_irqrestore(&xhci->lock, flags);
3114}
3115
3116/*
3117 * Called after usb core issues a clear halt control message.
3118 * The host side of the halt should already be cleared by a reset endpoint
3119 * command issued when the STALL event was received.
3120 *
3121 * The reset endpoint command may only be issued to endpoints in the halted
3122 * state. For software that wishes to reset the data toggle or sequence number
3123 * of an endpoint that isn't in the halted state this function will issue a
3124 * configure endpoint command with the Drop and Add bits set for the target
3125 * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3126 */
3127
3128static void xhci_endpoint_reset(struct usb_hcd *hcd,
3129		struct usb_host_endpoint *host_ep)
3130{
3131	struct xhci_hcd *xhci;
3132	struct usb_device *udev;
3133	struct xhci_virt_device *vdev;
3134	struct xhci_virt_ep *ep;
3135	struct xhci_input_control_ctx *ctrl_ctx;
3136	struct xhci_command *stop_cmd, *cfg_cmd;
3137	unsigned int ep_index;
3138	unsigned long flags;
3139	u32 ep_flag;
3140	int err;
3141
3142	xhci = hcd_to_xhci(hcd);
3143	if (!host_ep->hcpriv)
3144		return;
3145	udev = (struct usb_device *) host_ep->hcpriv;
3146	vdev = xhci->devs[udev->slot_id];
3147
3148	/*
3149	 * vdev may be lost due to xHC restore error and re-initialization
3150	 * during S3/S4 resume. A new vdev will be allocated later by
3151	 * xhci_discover_or_reset_device()
3152	 */
3153	if (!udev->slot_id || !vdev)
3154		return;
3155	ep_index = xhci_get_endpoint_index(&host_ep->desc);
3156	ep = &vdev->eps[ep_index];
3157	if (!ep)
3158		return;
3159
3160	/* Bail out if toggle is already being cleared by a endpoint reset */
 
3161	if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3162		ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
 
3163		return;
3164	}
 
3165	/* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3166	if (usb_endpoint_xfer_control(&host_ep->desc) ||
3167	    usb_endpoint_xfer_isoc(&host_ep->desc))
3168		return;
3169
3170	ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3171
3172	if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3173		return;
3174
3175	stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3176	if (!stop_cmd)
3177		return;
3178
3179	cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3180	if (!cfg_cmd)
3181		goto cleanup;
3182
3183	spin_lock_irqsave(&xhci->lock, flags);
3184
3185	/* block queuing new trbs and ringing ep doorbell */
3186	ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3187
3188	/*
3189	 * Make sure endpoint ring is empty before resetting the toggle/seq.
3190	 * Driver is required to synchronously cancel all transfer request.
3191	 * Stop the endpoint to force xHC to update the output context
3192	 */
3193
3194	if (!list_empty(&ep->ring->td_list)) {
3195		dev_err(&udev->dev, "EP not empty, refuse reset\n");
3196		spin_unlock_irqrestore(&xhci->lock, flags);
3197		xhci_free_command(xhci, cfg_cmd);
3198		goto cleanup;
3199	}
3200
3201	err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id,
3202					ep_index, 0);
3203	if (err < 0) {
3204		spin_unlock_irqrestore(&xhci->lock, flags);
3205		xhci_free_command(xhci, cfg_cmd);
3206		xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ",
3207				__func__, err);
3208		goto cleanup;
3209	}
3210
3211	xhci_ring_cmd_db(xhci);
3212	spin_unlock_irqrestore(&xhci->lock, flags);
3213
3214	wait_for_completion(stop_cmd->completion);
3215
3216	spin_lock_irqsave(&xhci->lock, flags);
3217
3218	/* config ep command clears toggle if add and drop ep flags are set */
3219	ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
 
 
 
 
 
 
 
 
3220	xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3221					   ctrl_ctx, ep_flag, ep_flag);
3222	xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3223
3224	err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3225				      udev->slot_id, false);
3226	if (err < 0) {
3227		spin_unlock_irqrestore(&xhci->lock, flags);
3228		xhci_free_command(xhci, cfg_cmd);
3229		xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ",
3230				__func__, err);
3231		goto cleanup;
3232	}
3233
3234	xhci_ring_cmd_db(xhci);
3235	spin_unlock_irqrestore(&xhci->lock, flags);
3236
3237	wait_for_completion(cfg_cmd->completion);
3238
3239	ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3240	xhci_free_command(xhci, cfg_cmd);
3241cleanup:
3242	xhci_free_command(xhci, stop_cmd);
 
 
 
 
3243}
3244
3245static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3246		struct usb_device *udev, struct usb_host_endpoint *ep,
3247		unsigned int slot_id)
3248{
3249	int ret;
3250	unsigned int ep_index;
3251	unsigned int ep_state;
3252
3253	if (!ep)
3254		return -EINVAL;
3255	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3256	if (ret <= 0)
3257		return -EINVAL;
3258	if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3259		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3260				" descriptor for ep 0x%x does not support streams\n",
3261				ep->desc.bEndpointAddress);
3262		return -EINVAL;
3263	}
3264
3265	ep_index = xhci_get_endpoint_index(&ep->desc);
3266	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3267	if (ep_state & EP_HAS_STREAMS ||
3268			ep_state & EP_GETTING_STREAMS) {
3269		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3270				"already has streams set up.\n",
3271				ep->desc.bEndpointAddress);
3272		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3273				"dynamic stream context array reallocation.\n");
3274		return -EINVAL;
3275	}
3276	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3277		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3278				"endpoint 0x%x; URBs are pending.\n",
3279				ep->desc.bEndpointAddress);
3280		return -EINVAL;
3281	}
3282	return 0;
3283}
3284
3285static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3286		unsigned int *num_streams, unsigned int *num_stream_ctxs)
3287{
3288	unsigned int max_streams;
3289
3290	/* The stream context array size must be a power of two */
3291	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
3292	/*
3293	 * Find out how many primary stream array entries the host controller
3294	 * supports.  Later we may use secondary stream arrays (similar to 2nd
3295	 * level page entries), but that's an optional feature for xHCI host
3296	 * controllers. xHCs must support at least 4 stream IDs.
3297	 */
3298	max_streams = HCC_MAX_PSA(xhci->hcc_params);
3299	if (*num_stream_ctxs > max_streams) {
3300		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3301				max_streams);
3302		*num_stream_ctxs = max_streams;
3303		*num_streams = max_streams;
3304	}
3305}
3306
3307/* Returns an error code if one of the endpoint already has streams.
3308 * This does not change any data structures, it only checks and gathers
3309 * information.
3310 */
3311static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3312		struct usb_device *udev,
3313		struct usb_host_endpoint **eps, unsigned int num_eps,
3314		unsigned int *num_streams, u32 *changed_ep_bitmask)
3315{
3316	unsigned int max_streams;
3317	unsigned int endpoint_flag;
3318	int i;
3319	int ret;
3320
3321	for (i = 0; i < num_eps; i++) {
3322		ret = xhci_check_streams_endpoint(xhci, udev,
3323				eps[i], udev->slot_id);
3324		if (ret < 0)
3325			return ret;
3326
3327		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3328		if (max_streams < (*num_streams - 1)) {
3329			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3330					eps[i]->desc.bEndpointAddress,
3331					max_streams);
3332			*num_streams = max_streams+1;
3333		}
3334
3335		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3336		if (*changed_ep_bitmask & endpoint_flag)
3337			return -EINVAL;
3338		*changed_ep_bitmask |= endpoint_flag;
3339	}
3340	return 0;
3341}
3342
3343static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3344		struct usb_device *udev,
3345		struct usb_host_endpoint **eps, unsigned int num_eps)
3346{
3347	u32 changed_ep_bitmask = 0;
3348	unsigned int slot_id;
3349	unsigned int ep_index;
3350	unsigned int ep_state;
3351	int i;
3352
3353	slot_id = udev->slot_id;
3354	if (!xhci->devs[slot_id])
3355		return 0;
3356
3357	for (i = 0; i < num_eps; i++) {
3358		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3359		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3360		/* Are streams already being freed for the endpoint? */
3361		if (ep_state & EP_GETTING_NO_STREAMS) {
3362			xhci_warn(xhci, "WARN Can't disable streams for "
3363					"endpoint 0x%x, "
3364					"streams are being disabled already\n",
3365					eps[i]->desc.bEndpointAddress);
3366			return 0;
3367		}
3368		/* Are there actually any streams to free? */
3369		if (!(ep_state & EP_HAS_STREAMS) &&
3370				!(ep_state & EP_GETTING_STREAMS)) {
3371			xhci_warn(xhci, "WARN Can't disable streams for "
3372					"endpoint 0x%x, "
3373					"streams are already disabled!\n",
3374					eps[i]->desc.bEndpointAddress);
3375			xhci_warn(xhci, "WARN xhci_free_streams() called "
3376					"with non-streams endpoint\n");
3377			return 0;
3378		}
3379		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3380	}
3381	return changed_ep_bitmask;
3382}
3383
3384/*
3385 * The USB device drivers use this function (through the HCD interface in USB
3386 * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3387 * coordinate mass storage command queueing across multiple endpoints (basically
3388 * a stream ID == a task ID).
3389 *
3390 * Setting up streams involves allocating the same size stream context array
3391 * for each endpoint and issuing a configure endpoint command for all endpoints.
3392 *
3393 * Don't allow the call to succeed if one endpoint only supports one stream
3394 * (which means it doesn't support streams at all).
3395 *
3396 * Drivers may get less stream IDs than they asked for, if the host controller
3397 * hardware or endpoints claim they can't support the number of requested
3398 * stream IDs.
3399 */
3400static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3401		struct usb_host_endpoint **eps, unsigned int num_eps,
3402		unsigned int num_streams, gfp_t mem_flags)
3403{
3404	int i, ret;
3405	struct xhci_hcd *xhci;
3406	struct xhci_virt_device *vdev;
3407	struct xhci_command *config_cmd;
3408	struct xhci_input_control_ctx *ctrl_ctx;
3409	unsigned int ep_index;
3410	unsigned int num_stream_ctxs;
3411	unsigned int max_packet;
3412	unsigned long flags;
3413	u32 changed_ep_bitmask = 0;
3414
3415	if (!eps)
3416		return -EINVAL;
3417
3418	/* Add one to the number of streams requested to account for
3419	 * stream 0 that is reserved for xHCI usage.
3420	 */
3421	num_streams += 1;
3422	xhci = hcd_to_xhci(hcd);
3423	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3424			num_streams);
3425
3426	/* MaxPSASize value 0 (2 streams) means streams are not supported */
3427	if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3428			HCC_MAX_PSA(xhci->hcc_params) < 4) {
3429		xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3430		return -ENOSYS;
3431	}
3432
3433	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3434	if (!config_cmd)
3435		return -ENOMEM;
3436
3437	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3438	if (!ctrl_ctx) {
3439		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3440				__func__);
3441		xhci_free_command(xhci, config_cmd);
3442		return -ENOMEM;
3443	}
3444
3445	/* Check to make sure all endpoints are not already configured for
3446	 * streams.  While we're at it, find the maximum number of streams that
3447	 * all the endpoints will support and check for duplicate endpoints.
3448	 */
3449	spin_lock_irqsave(&xhci->lock, flags);
3450	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3451			num_eps, &num_streams, &changed_ep_bitmask);
3452	if (ret < 0) {
3453		xhci_free_command(xhci, config_cmd);
3454		spin_unlock_irqrestore(&xhci->lock, flags);
3455		return ret;
3456	}
3457	if (num_streams <= 1) {
3458		xhci_warn(xhci, "WARN: endpoints can't handle "
3459				"more than one stream.\n");
3460		xhci_free_command(xhci, config_cmd);
3461		spin_unlock_irqrestore(&xhci->lock, flags);
3462		return -EINVAL;
3463	}
3464	vdev = xhci->devs[udev->slot_id];
3465	/* Mark each endpoint as being in transition, so
3466	 * xhci_urb_enqueue() will reject all URBs.
3467	 */
3468	for (i = 0; i < num_eps; i++) {
3469		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3470		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3471	}
3472	spin_unlock_irqrestore(&xhci->lock, flags);
3473
3474	/* Setup internal data structures and allocate HW data structures for
3475	 * streams (but don't install the HW structures in the input context
3476	 * until we're sure all memory allocation succeeded).
3477	 */
3478	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3479	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3480			num_stream_ctxs, num_streams);
3481
3482	for (i = 0; i < num_eps; i++) {
3483		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3484		max_packet = usb_endpoint_maxp(&eps[i]->desc);
3485		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3486				num_stream_ctxs,
3487				num_streams,
3488				max_packet, mem_flags);
3489		if (!vdev->eps[ep_index].stream_info)
3490			goto cleanup;
3491		/* Set maxPstreams in endpoint context and update deq ptr to
3492		 * point to stream context array. FIXME
3493		 */
3494	}
3495
3496	/* Set up the input context for a configure endpoint command. */
3497	for (i = 0; i < num_eps; i++) {
3498		struct xhci_ep_ctx *ep_ctx;
3499
3500		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3501		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3502
3503		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3504				vdev->out_ctx, ep_index);
3505		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3506				vdev->eps[ep_index].stream_info);
3507	}
3508	/* Tell the HW to drop its old copy of the endpoint context info
3509	 * and add the updated copy from the input context.
3510	 */
3511	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3512			vdev->out_ctx, ctrl_ctx,
3513			changed_ep_bitmask, changed_ep_bitmask);
3514
3515	/* Issue and wait for the configure endpoint command */
3516	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3517			false, false);
3518
3519	/* xHC rejected the configure endpoint command for some reason, so we
3520	 * leave the old ring intact and free our internal streams data
3521	 * structure.
3522	 */
3523	if (ret < 0)
3524		goto cleanup;
3525
3526	spin_lock_irqsave(&xhci->lock, flags);
3527	for (i = 0; i < num_eps; i++) {
3528		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3529		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3530		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3531			 udev->slot_id, ep_index);
3532		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3533	}
3534	xhci_free_command(xhci, config_cmd);
3535	spin_unlock_irqrestore(&xhci->lock, flags);
3536
 
 
 
 
3537	/* Subtract 1 for stream 0, which drivers can't use */
3538	return num_streams - 1;
3539
3540cleanup:
3541	/* If it didn't work, free the streams! */
3542	for (i = 0; i < num_eps; i++) {
3543		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3544		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3545		vdev->eps[ep_index].stream_info = NULL;
3546		/* FIXME Unset maxPstreams in endpoint context and
3547		 * update deq ptr to point to normal string ring.
3548		 */
3549		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3550		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3551		xhci_endpoint_zero(xhci, vdev, eps[i]);
3552	}
3553	xhci_free_command(xhci, config_cmd);
3554	return -ENOMEM;
3555}
3556
3557/* Transition the endpoint from using streams to being a "normal" endpoint
3558 * without streams.
3559 *
3560 * Modify the endpoint context state, submit a configure endpoint command,
3561 * and free all endpoint rings for streams if that completes successfully.
3562 */
3563static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3564		struct usb_host_endpoint **eps, unsigned int num_eps,
3565		gfp_t mem_flags)
3566{
3567	int i, ret;
3568	struct xhci_hcd *xhci;
3569	struct xhci_virt_device *vdev;
3570	struct xhci_command *command;
3571	struct xhci_input_control_ctx *ctrl_ctx;
3572	unsigned int ep_index;
3573	unsigned long flags;
3574	u32 changed_ep_bitmask;
3575
3576	xhci = hcd_to_xhci(hcd);
3577	vdev = xhci->devs[udev->slot_id];
3578
3579	/* Set up a configure endpoint command to remove the streams rings */
3580	spin_lock_irqsave(&xhci->lock, flags);
3581	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3582			udev, eps, num_eps);
3583	if (changed_ep_bitmask == 0) {
3584		spin_unlock_irqrestore(&xhci->lock, flags);
3585		return -EINVAL;
3586	}
3587
3588	/* Use the xhci_command structure from the first endpoint.  We may have
3589	 * allocated too many, but the driver may call xhci_free_streams() for
3590	 * each endpoint it grouped into one call to xhci_alloc_streams().
3591	 */
3592	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3593	command = vdev->eps[ep_index].stream_info->free_streams_command;
3594	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3595	if (!ctrl_ctx) {
3596		spin_unlock_irqrestore(&xhci->lock, flags);
3597		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3598				__func__);
3599		return -EINVAL;
3600	}
3601
3602	for (i = 0; i < num_eps; i++) {
3603		struct xhci_ep_ctx *ep_ctx;
3604
3605		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3606		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3607		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3608			EP_GETTING_NO_STREAMS;
3609
3610		xhci_endpoint_copy(xhci, command->in_ctx,
3611				vdev->out_ctx, ep_index);
3612		xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3613				&vdev->eps[ep_index]);
3614	}
3615	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3616			vdev->out_ctx, ctrl_ctx,
3617			changed_ep_bitmask, changed_ep_bitmask);
3618	spin_unlock_irqrestore(&xhci->lock, flags);
3619
3620	/* Issue and wait for the configure endpoint command,
3621	 * which must succeed.
3622	 */
3623	ret = xhci_configure_endpoint(xhci, udev, command,
3624			false, true);
3625
3626	/* xHC rejected the configure endpoint command for some reason, so we
3627	 * leave the streams rings intact.
3628	 */
3629	if (ret < 0)
3630		return ret;
3631
3632	spin_lock_irqsave(&xhci->lock, flags);
3633	for (i = 0; i < num_eps; i++) {
3634		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3635		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3636		vdev->eps[ep_index].stream_info = NULL;
3637		/* FIXME Unset maxPstreams in endpoint context and
3638		 * update deq ptr to point to normal string ring.
3639		 */
3640		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3641		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3642	}
3643	spin_unlock_irqrestore(&xhci->lock, flags);
3644
3645	return 0;
3646}
3647
3648/*
3649 * Deletes endpoint resources for endpoints that were active before a Reset
3650 * Device command, or a Disable Slot command.  The Reset Device command leaves
3651 * the control endpoint intact, whereas the Disable Slot command deletes it.
3652 *
3653 * Must be called with xhci->lock held.
3654 */
3655void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3656	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3657{
3658	int i;
3659	unsigned int num_dropped_eps = 0;
3660	unsigned int drop_flags = 0;
3661
3662	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3663		if (virt_dev->eps[i].ring) {
3664			drop_flags |= 1 << i;
3665			num_dropped_eps++;
3666		}
3667	}
3668	xhci->num_active_eps -= num_dropped_eps;
3669	if (num_dropped_eps)
3670		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3671				"Dropped %u ep ctxs, flags = 0x%x, "
3672				"%u now active.",
3673				num_dropped_eps, drop_flags,
3674				xhci->num_active_eps);
3675}
3676
3677/*
3678 * This submits a Reset Device Command, which will set the device state to 0,
3679 * set the device address to 0, and disable all the endpoints except the default
3680 * control endpoint.  The USB core should come back and call
3681 * xhci_address_device(), and then re-set up the configuration.  If this is
3682 * called because of a usb_reset_and_verify_device(), then the old alternate
3683 * settings will be re-installed through the normal bandwidth allocation
3684 * functions.
3685 *
3686 * Wait for the Reset Device command to finish.  Remove all structures
3687 * associated with the endpoints that were disabled.  Clear the input device
3688 * structure? Reset the control endpoint 0 max packet size?
3689 *
3690 * If the virt_dev to be reset does not exist or does not match the udev,
3691 * it means the device is lost, possibly due to the xHC restore error and
3692 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3693 * re-allocate the device.
3694 */
3695static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3696		struct usb_device *udev)
3697{
3698	int ret, i;
3699	unsigned long flags;
3700	struct xhci_hcd *xhci;
3701	unsigned int slot_id;
3702	struct xhci_virt_device *virt_dev;
3703	struct xhci_command *reset_device_cmd;
3704	struct xhci_slot_ctx *slot_ctx;
3705	int old_active_eps = 0;
3706
3707	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3708	if (ret <= 0)
3709		return ret;
3710	xhci = hcd_to_xhci(hcd);
3711	slot_id = udev->slot_id;
3712	virt_dev = xhci->devs[slot_id];
3713	if (!virt_dev) {
3714		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3715				"not exist. Re-allocate the device\n", slot_id);
3716		ret = xhci_alloc_dev(hcd, udev);
3717		if (ret == 1)
3718			return 0;
3719		else
3720			return -EINVAL;
3721	}
3722
3723	if (virt_dev->tt_info)
3724		old_active_eps = virt_dev->tt_info->active_eps;
3725
3726	if (virt_dev->udev != udev) {
3727		/* If the virt_dev and the udev does not match, this virt_dev
3728		 * may belong to another udev.
3729		 * Re-allocate the device.
3730		 */
3731		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3732				"not match the udev. Re-allocate the device\n",
3733				slot_id);
3734		ret = xhci_alloc_dev(hcd, udev);
3735		if (ret == 1)
3736			return 0;
3737		else
3738			return -EINVAL;
3739	}
3740
3741	/* If device is not setup, there is no point in resetting it */
3742	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3743	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3744						SLOT_STATE_DISABLED)
3745		return 0;
3746
3747	trace_xhci_discover_or_reset_device(slot_ctx);
3748
3749	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3750	/* Allocate the command structure that holds the struct completion.
3751	 * Assume we're in process context, since the normal device reset
3752	 * process has to wait for the device anyway.  Storage devices are
3753	 * reset as part of error handling, so use GFP_NOIO instead of
3754	 * GFP_KERNEL.
3755	 */
3756	reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3757	if (!reset_device_cmd) {
3758		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3759		return -ENOMEM;
3760	}
3761
3762	/* Attempt to submit the Reset Device command to the command ring */
3763	spin_lock_irqsave(&xhci->lock, flags);
3764
3765	ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3766	if (ret) {
3767		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3768		spin_unlock_irqrestore(&xhci->lock, flags);
3769		goto command_cleanup;
3770	}
3771	xhci_ring_cmd_db(xhci);
3772	spin_unlock_irqrestore(&xhci->lock, flags);
3773
3774	/* Wait for the Reset Device command to finish */
3775	wait_for_completion(reset_device_cmd->completion);
3776
3777	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3778	 * unless we tried to reset a slot ID that wasn't enabled,
3779	 * or the device wasn't in the addressed or configured state.
3780	 */
3781	ret = reset_device_cmd->status;
3782	switch (ret) {
3783	case COMP_COMMAND_ABORTED:
3784	case COMP_COMMAND_RING_STOPPED:
3785		xhci_warn(xhci, "Timeout waiting for reset device command\n");
3786		ret = -ETIME;
3787		goto command_cleanup;
3788	case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3789	case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3790		xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3791				slot_id,
3792				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3793		xhci_dbg(xhci, "Not freeing device rings.\n");
3794		/* Don't treat this as an error.  May change my mind later. */
3795		ret = 0;
3796		goto command_cleanup;
3797	case COMP_SUCCESS:
3798		xhci_dbg(xhci, "Successful reset device command.\n");
3799		break;
3800	default:
3801		if (xhci_is_vendor_info_code(xhci, ret))
3802			break;
3803		xhci_warn(xhci, "Unknown completion code %u for "
3804				"reset device command.\n", ret);
3805		ret = -EINVAL;
3806		goto command_cleanup;
3807	}
3808
3809	/* Free up host controller endpoint resources */
3810	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3811		spin_lock_irqsave(&xhci->lock, flags);
3812		/* Don't delete the default control endpoint resources */
3813		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3814		spin_unlock_irqrestore(&xhci->lock, flags);
3815	}
3816
3817	/* Everything but endpoint 0 is disabled, so free the rings. */
3818	for (i = 1; i < 31; i++) {
3819		struct xhci_virt_ep *ep = &virt_dev->eps[i];
3820
3821		if (ep->ep_state & EP_HAS_STREAMS) {
3822			xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3823					xhci_get_endpoint_address(i));
3824			xhci_free_stream_info(xhci, ep->stream_info);
3825			ep->stream_info = NULL;
3826			ep->ep_state &= ~EP_HAS_STREAMS;
3827		}
3828
3829		if (ep->ring) {
3830			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3831			xhci_free_endpoint_ring(xhci, virt_dev, i);
3832		}
3833		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3834			xhci_drop_ep_from_interval_table(xhci,
3835					&virt_dev->eps[i].bw_info,
3836					virt_dev->bw_table,
3837					udev,
3838					&virt_dev->eps[i],
3839					virt_dev->tt_info);
3840		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3841	}
3842	/* If necessary, update the number of active TTs on this root port */
3843	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3844	virt_dev->flags = 0;
3845	ret = 0;
3846
3847command_cleanup:
3848	xhci_free_command(xhci, reset_device_cmd);
3849	return ret;
3850}
3851
3852/*
3853 * At this point, the struct usb_device is about to go away, the device has
3854 * disconnected, and all traffic has been stopped and the endpoints have been
3855 * disabled.  Free any HC data structures associated with that device.
3856 */
3857static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3858{
3859	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3860	struct xhci_virt_device *virt_dev;
3861	struct xhci_slot_ctx *slot_ctx;
 
3862	int i, ret;
3863
3864#ifndef CONFIG_USB_DEFAULT_PERSIST
3865	/*
3866	 * We called pm_runtime_get_noresume when the device was attached.
3867	 * Decrement the counter here to allow controller to runtime suspend
3868	 * if no devices remain.
3869	 */
3870	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3871		pm_runtime_put_noidle(hcd->self.controller);
3872#endif
3873
3874	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3875	/* If the host is halted due to driver unload, we still need to free the
3876	 * device.
3877	 */
3878	if (ret <= 0 && ret != -ENODEV)
3879		return;
3880
3881	virt_dev = xhci->devs[udev->slot_id];
3882	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3883	trace_xhci_free_dev(slot_ctx);
3884
3885	/* Stop any wayward timer functions (which may grab the lock) */
3886	for (i = 0; i < 31; i++) {
3887		virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3888		del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3889	}
3890	virt_dev->udev = NULL;
3891	ret = xhci_disable_slot(xhci, udev->slot_id);
3892	if (ret)
3893		xhci_free_virt_device(xhci, udev->slot_id);
 
 
 
3894}
3895
3896int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3897{
3898	struct xhci_command *command;
3899	unsigned long flags;
3900	u32 state;
3901	int ret = 0;
3902
3903	command = xhci_alloc_command(xhci, false, GFP_KERNEL);
3904	if (!command)
3905		return -ENOMEM;
3906
3907	xhci_debugfs_remove_slot(xhci, slot_id);
3908
3909	spin_lock_irqsave(&xhci->lock, flags);
3910	/* Don't disable the slot if the host controller is dead. */
3911	state = readl(&xhci->op_regs->status);
3912	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3913			(xhci->xhc_state & XHCI_STATE_HALTED)) {
3914		spin_unlock_irqrestore(&xhci->lock, flags);
3915		kfree(command);
3916		return -ENODEV;
3917	}
3918
3919	ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3920				slot_id);
3921	if (ret) {
3922		spin_unlock_irqrestore(&xhci->lock, flags);
3923		kfree(command);
3924		return ret;
3925	}
3926	xhci_ring_cmd_db(xhci);
3927	spin_unlock_irqrestore(&xhci->lock, flags);
3928	return ret;
 
 
 
 
 
 
 
 
 
3929}
3930
3931/*
3932 * Checks if we have enough host controller resources for the default control
3933 * endpoint.
3934 *
3935 * Must be called with xhci->lock held.
3936 */
3937static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3938{
3939	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3940		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3941				"Not enough ep ctxs: "
3942				"%u active, need to add 1, limit is %u.",
3943				xhci->num_active_eps, xhci->limit_active_eps);
3944		return -ENOMEM;
3945	}
3946	xhci->num_active_eps += 1;
3947	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3948			"Adding 1 ep ctx, %u now active.",
3949			xhci->num_active_eps);
3950	return 0;
3951}
3952
3953
3954/*
3955 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3956 * timed out, or allocating memory failed.  Returns 1 on success.
3957 */
3958int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3959{
3960	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3961	struct xhci_virt_device *vdev;
3962	struct xhci_slot_ctx *slot_ctx;
3963	unsigned long flags;
3964	int ret, slot_id;
3965	struct xhci_command *command;
3966
3967	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3968	if (!command)
3969		return 0;
3970
3971	spin_lock_irqsave(&xhci->lock, flags);
3972	ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3973	if (ret) {
3974		spin_unlock_irqrestore(&xhci->lock, flags);
3975		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3976		xhci_free_command(xhci, command);
3977		return 0;
3978	}
3979	xhci_ring_cmd_db(xhci);
3980	spin_unlock_irqrestore(&xhci->lock, flags);
3981
3982	wait_for_completion(command->completion);
3983	slot_id = command->slot_id;
3984
3985	if (!slot_id || command->status != COMP_SUCCESS) {
3986		xhci_err(xhci, "Error while assigning device slot ID\n");
 
3987		xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3988				HCS_MAX_SLOTS(
3989					readl(&xhci->cap_regs->hcs_params1)));
3990		xhci_free_command(xhci, command);
3991		return 0;
3992	}
3993
3994	xhci_free_command(xhci, command);
3995
3996	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3997		spin_lock_irqsave(&xhci->lock, flags);
3998		ret = xhci_reserve_host_control_ep_resources(xhci);
3999		if (ret) {
4000			spin_unlock_irqrestore(&xhci->lock, flags);
4001			xhci_warn(xhci, "Not enough host resources, "
4002					"active endpoint contexts = %u\n",
4003					xhci->num_active_eps);
4004			goto disable_slot;
4005		}
4006		spin_unlock_irqrestore(&xhci->lock, flags);
4007	}
4008	/* Use GFP_NOIO, since this function can be called from
4009	 * xhci_discover_or_reset_device(), which may be called as part of
4010	 * mass storage driver error handling.
4011	 */
4012	if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
4013		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
4014		goto disable_slot;
4015	}
4016	vdev = xhci->devs[slot_id];
4017	slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
4018	trace_xhci_alloc_dev(slot_ctx);
4019
4020	udev->slot_id = slot_id;
4021
4022	xhci_debugfs_create_slot(xhci, slot_id);
4023
4024#ifndef CONFIG_USB_DEFAULT_PERSIST
4025	/*
4026	 * If resetting upon resume, we can't put the controller into runtime
4027	 * suspend if there is a device attached.
4028	 */
4029	if (xhci->quirks & XHCI_RESET_ON_RESUME)
4030		pm_runtime_get_noresume(hcd->self.controller);
4031#endif
4032
4033	/* Is this a LS or FS device under a HS hub? */
4034	/* Hub or peripherial? */
4035	return 1;
4036
4037disable_slot:
4038	ret = xhci_disable_slot(xhci, udev->slot_id);
4039	if (ret)
4040		xhci_free_virt_device(xhci, udev->slot_id);
4041
4042	return 0;
4043}
4044
4045/*
4046 * Issue an Address Device command and optionally send a corresponding
4047 * SetAddress request to the device.
4048 */
4049static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
4050			     enum xhci_setup_dev setup)
4051{
4052	const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
4053	unsigned long flags;
4054	struct xhci_virt_device *virt_dev;
4055	int ret = 0;
4056	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4057	struct xhci_slot_ctx *slot_ctx;
4058	struct xhci_input_control_ctx *ctrl_ctx;
4059	u64 temp_64;
4060	struct xhci_command *command = NULL;
4061
4062	mutex_lock(&xhci->mutex);
4063
4064	if (xhci->xhc_state) {	/* dying, removing or halted */
4065		ret = -ESHUTDOWN;
4066		goto out;
4067	}
4068
4069	if (!udev->slot_id) {
4070		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4071				"Bad Slot ID %d", udev->slot_id);
4072		ret = -EINVAL;
4073		goto out;
4074	}
4075
4076	virt_dev = xhci->devs[udev->slot_id];
4077
4078	if (WARN_ON(!virt_dev)) {
4079		/*
4080		 * In plug/unplug torture test with an NEC controller,
4081		 * a zero-dereference was observed once due to virt_dev = 0.
4082		 * Print useful debug rather than crash if it is observed again!
4083		 */
4084		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
4085			udev->slot_id);
4086		ret = -EINVAL;
4087		goto out;
4088	}
4089	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4090	trace_xhci_setup_device_slot(slot_ctx);
4091
4092	if (setup == SETUP_CONTEXT_ONLY) {
4093		if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
4094		    SLOT_STATE_DEFAULT) {
4095			xhci_dbg(xhci, "Slot already in default state\n");
4096			goto out;
4097		}
4098	}
4099
4100	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4101	if (!command) {
4102		ret = -ENOMEM;
4103		goto out;
4104	}
4105
4106	command->in_ctx = virt_dev->in_ctx;
4107
4108	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
4109	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
4110	if (!ctrl_ctx) {
4111		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4112				__func__);
4113		ret = -EINVAL;
4114		goto out;
4115	}
4116	/*
4117	 * If this is the first Set Address since device plug-in or
4118	 * virt_device realloaction after a resume with an xHCI power loss,
4119	 * then set up the slot context.
4120	 */
4121	if (!slot_ctx->dev_info)
4122		xhci_setup_addressable_virt_dev(xhci, udev);
4123	/* Otherwise, update the control endpoint ring enqueue pointer. */
4124	else
4125		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
4126	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4127	ctrl_ctx->drop_flags = 0;
4128
4129	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4130				le32_to_cpu(slot_ctx->dev_info) >> 27);
4131
4132	trace_xhci_address_ctrl_ctx(ctrl_ctx);
4133	spin_lock_irqsave(&xhci->lock, flags);
4134	trace_xhci_setup_device(virt_dev);
4135	ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4136					udev->slot_id, setup);
4137	if (ret) {
4138		spin_unlock_irqrestore(&xhci->lock, flags);
4139		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4140				"FIXME: allocate a command ring segment");
4141		goto out;
4142	}
4143	xhci_ring_cmd_db(xhci);
4144	spin_unlock_irqrestore(&xhci->lock, flags);
4145
4146	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4147	wait_for_completion(command->completion);
4148
4149	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
4150	 * the SetAddress() "recovery interval" required by USB and aborting the
4151	 * command on a timeout.
4152	 */
4153	switch (command->status) {
4154	case COMP_COMMAND_ABORTED:
4155	case COMP_COMMAND_RING_STOPPED:
4156		xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4157		ret = -ETIME;
4158		break;
4159	case COMP_CONTEXT_STATE_ERROR:
4160	case COMP_SLOT_NOT_ENABLED_ERROR:
4161		xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4162			 act, udev->slot_id);
4163		ret = -EINVAL;
4164		break;
4165	case COMP_USB_TRANSACTION_ERROR:
4166		dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4167
4168		mutex_unlock(&xhci->mutex);
4169		ret = xhci_disable_slot(xhci, udev->slot_id);
 
4170		if (!ret)
4171			xhci_alloc_dev(hcd, udev);
4172		kfree(command->completion);
4173		kfree(command);
4174		return -EPROTO;
4175	case COMP_INCOMPATIBLE_DEVICE_ERROR:
4176		dev_warn(&udev->dev,
4177			 "ERROR: Incompatible device for setup %s command\n", act);
4178		ret = -ENODEV;
4179		break;
4180	case COMP_SUCCESS:
4181		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4182			       "Successful setup %s command", act);
4183		break;
4184	default:
4185		xhci_err(xhci,
4186			 "ERROR: unexpected setup %s command completion code 0x%x.\n",
4187			 act, command->status);
4188		trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4189		ret = -EINVAL;
4190		break;
4191	}
4192	if (ret)
4193		goto out;
4194	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4195	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4196			"Op regs DCBAA ptr = %#016llx", temp_64);
4197	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4198		"Slot ID %d dcbaa entry @%p = %#016llx",
4199		udev->slot_id,
4200		&xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4201		(unsigned long long)
4202		le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4203	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4204			"Output Context DMA address = %#08llx",
4205			(unsigned long long)virt_dev->out_ctx->dma);
4206	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4207				le32_to_cpu(slot_ctx->dev_info) >> 27);
4208	/*
4209	 * USB core uses address 1 for the roothubs, so we add one to the
4210	 * address given back to us by the HC.
4211	 */
4212	trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4213				le32_to_cpu(slot_ctx->dev_info) >> 27);
4214	/* Zero the input context control for later use */
4215	ctrl_ctx->add_flags = 0;
4216	ctrl_ctx->drop_flags = 0;
4217	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4218	udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4219
4220	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4221		       "Internal device address = %d",
4222		       le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4223out:
4224	mutex_unlock(&xhci->mutex);
4225	if (command) {
4226		kfree(command->completion);
4227		kfree(command);
4228	}
4229	return ret;
4230}
4231
4232static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
4233{
4234	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
4235}
4236
4237static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4238{
4239	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
4240}
4241
4242/*
4243 * Transfer the port index into real index in the HW port status
4244 * registers. Caculate offset between the port's PORTSC register
4245 * and port status base. Divide the number of per port register
4246 * to get the real index. The raw port number bases 1.
4247 */
4248int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4249{
4250	struct xhci_hub *rhub;
4251
4252	rhub = xhci_get_rhub(hcd);
4253	return rhub->ports[port1 - 1]->hw_portnum + 1;
4254}
4255
4256/*
4257 * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4258 * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4259 */
4260static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4261			struct usb_device *udev, u16 max_exit_latency)
4262{
4263	struct xhci_virt_device *virt_dev;
4264	struct xhci_command *command;
4265	struct xhci_input_control_ctx *ctrl_ctx;
4266	struct xhci_slot_ctx *slot_ctx;
4267	unsigned long flags;
4268	int ret;
4269
 
 
 
 
4270	spin_lock_irqsave(&xhci->lock, flags);
4271
4272	virt_dev = xhci->devs[udev->slot_id];
4273
4274	/*
4275	 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4276	 * xHC was re-initialized. Exit latency will be set later after
4277	 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4278	 */
4279
4280	if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4281		spin_unlock_irqrestore(&xhci->lock, flags);
4282		return 0;
4283	}
4284
4285	/* Attempt to issue an Evaluate Context command to change the MEL. */
4286	command = xhci->lpm_command;
4287	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4288	if (!ctrl_ctx) {
4289		spin_unlock_irqrestore(&xhci->lock, flags);
 
4290		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4291				__func__);
4292		return -ENOMEM;
4293	}
4294
4295	xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4296	spin_unlock_irqrestore(&xhci->lock, flags);
4297
4298	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4299	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4300	slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4301	slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4302	slot_ctx->dev_state = 0;
4303
4304	xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4305			"Set up evaluate context for LPM MEL change.");
4306
4307	/* Issue and wait for the evaluate context command. */
4308	ret = xhci_configure_endpoint(xhci, udev, command,
4309			true, true);
4310
4311	if (!ret) {
4312		spin_lock_irqsave(&xhci->lock, flags);
4313		virt_dev->current_mel = max_exit_latency;
4314		spin_unlock_irqrestore(&xhci->lock, flags);
4315	}
 
 
 
4316	return ret;
4317}
4318
4319#ifdef CONFIG_PM
4320
4321/* BESL to HIRD Encoding array for USB2 LPM */
4322static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4323	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4324
4325/* Calculate HIRD/BESL for USB2 PORTPMSC*/
4326static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4327					struct usb_device *udev)
4328{
4329	int u2del, besl, besl_host;
4330	int besl_device = 0;
4331	u32 field;
4332
4333	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4334	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4335
4336	if (field & USB_BESL_SUPPORT) {
4337		for (besl_host = 0; besl_host < 16; besl_host++) {
4338			if (xhci_besl_encoding[besl_host] >= u2del)
4339				break;
4340		}
4341		/* Use baseline BESL value as default */
4342		if (field & USB_BESL_BASELINE_VALID)
4343			besl_device = USB_GET_BESL_BASELINE(field);
4344		else if (field & USB_BESL_DEEP_VALID)
4345			besl_device = USB_GET_BESL_DEEP(field);
4346	} else {
4347		if (u2del <= 50)
4348			besl_host = 0;
4349		else
4350			besl_host = (u2del - 51) / 75 + 1;
4351	}
4352
4353	besl = besl_host + besl_device;
4354	if (besl > 15)
4355		besl = 15;
4356
4357	return besl;
4358}
4359
4360/* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4361static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4362{
4363	u32 field;
4364	int l1;
4365	int besld = 0;
4366	int hirdm = 0;
4367
4368	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4369
4370	/* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4371	l1 = udev->l1_params.timeout / 256;
4372
4373	/* device has preferred BESLD */
4374	if (field & USB_BESL_DEEP_VALID) {
4375		besld = USB_GET_BESL_DEEP(field);
4376		hirdm = 1;
4377	}
4378
4379	return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4380}
4381
4382static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4383			struct usb_device *udev, int enable)
4384{
4385	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4386	struct xhci_port **ports;
4387	__le32 __iomem	*pm_addr, *hlpm_addr;
4388	u32		pm_val, hlpm_val, field;
4389	unsigned int	port_num;
4390	unsigned long	flags;
4391	int		hird, exit_latency;
4392	int		ret;
4393
 
 
 
4394	if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4395			!udev->lpm_capable)
4396		return -EPERM;
4397
4398	if (!udev->parent || udev->parent->parent ||
4399			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4400		return -EPERM;
4401
4402	if (udev->usb2_hw_lpm_capable != 1)
4403		return -EPERM;
4404
4405	spin_lock_irqsave(&xhci->lock, flags);
4406
4407	ports = xhci->usb2_rhub.ports;
4408	port_num = udev->portnum - 1;
4409	pm_addr = ports[port_num]->addr + PORTPMSC;
4410	pm_val = readl(pm_addr);
4411	hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4412
4413	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4414			enable ? "enable" : "disable", port_num + 1);
4415
4416	if (enable && !(xhci->quirks & XHCI_HW_LPM_DISABLE)) {
4417		/* Host supports BESL timeout instead of HIRD */
4418		if (udev->usb2_hw_lpm_besl_capable) {
4419			/* if device doesn't have a preferred BESL value use a
4420			 * default one which works with mixed HIRD and BESL
4421			 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4422			 */
4423			field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4424			if ((field & USB_BESL_SUPPORT) &&
4425			    (field & USB_BESL_BASELINE_VALID))
4426				hird = USB_GET_BESL_BASELINE(field);
4427			else
4428				hird = udev->l1_params.besl;
4429
4430			exit_latency = xhci_besl_encoding[hird];
4431			spin_unlock_irqrestore(&xhci->lock, flags);
4432
4433			/* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4434			 * input context for link powermanagement evaluate
4435			 * context commands. It is protected by hcd->bandwidth
4436			 * mutex and is shared by all devices. We need to set
4437			 * the max ext latency in USB 2 BESL LPM as well, so
4438			 * use the same mutex and xhci_change_max_exit_latency()
4439			 */
4440			mutex_lock(hcd->bandwidth_mutex);
4441			ret = xhci_change_max_exit_latency(xhci, udev,
4442							   exit_latency);
4443			mutex_unlock(hcd->bandwidth_mutex);
4444
4445			if (ret < 0)
4446				return ret;
4447			spin_lock_irqsave(&xhci->lock, flags);
4448
4449			hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4450			writel(hlpm_val, hlpm_addr);
4451			/* flush write */
4452			readl(hlpm_addr);
4453		} else {
4454			hird = xhci_calculate_hird_besl(xhci, udev);
4455		}
4456
4457		pm_val &= ~PORT_HIRD_MASK;
4458		pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4459		writel(pm_val, pm_addr);
4460		pm_val = readl(pm_addr);
4461		pm_val |= PORT_HLE;
4462		writel(pm_val, pm_addr);
4463		/* flush write */
4464		readl(pm_addr);
4465	} else {
4466		pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4467		writel(pm_val, pm_addr);
4468		/* flush write */
4469		readl(pm_addr);
4470		if (udev->usb2_hw_lpm_besl_capable) {
4471			spin_unlock_irqrestore(&xhci->lock, flags);
4472			mutex_lock(hcd->bandwidth_mutex);
4473			xhci_change_max_exit_latency(xhci, udev, 0);
4474			mutex_unlock(hcd->bandwidth_mutex);
 
 
4475			return 0;
4476		}
4477	}
4478
4479	spin_unlock_irqrestore(&xhci->lock, flags);
4480	return 0;
4481}
4482
4483/* check if a usb2 port supports a given extened capability protocol
4484 * only USB2 ports extended protocol capability values are cached.
4485 * Return 1 if capability is supported
4486 */
4487static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4488					   unsigned capability)
4489{
4490	u32 port_offset, port_count;
4491	int i;
4492
4493	for (i = 0; i < xhci->num_ext_caps; i++) {
4494		if (xhci->ext_caps[i] & capability) {
4495			/* port offsets starts at 1 */
4496			port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4497			port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4498			if (port >= port_offset &&
4499			    port < port_offset + port_count)
4500				return 1;
4501		}
4502	}
4503	return 0;
4504}
4505
4506static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4507{
4508	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4509	int		portnum = udev->portnum - 1;
4510
4511	if (hcd->speed >= HCD_USB3 || !udev->lpm_capable)
4512		return 0;
4513
4514	/* we only support lpm for non-hub device connected to root hub yet */
4515	if (!udev->parent || udev->parent->parent ||
4516			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4517		return 0;
4518
4519	if (xhci->hw_lpm_support == 1 &&
4520			xhci_check_usb2_port_capability(
4521				xhci, portnum, XHCI_HLC)) {
4522		udev->usb2_hw_lpm_capable = 1;
4523		udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4524		udev->l1_params.besl = XHCI_DEFAULT_BESL;
4525		if (xhci_check_usb2_port_capability(xhci, portnum,
4526					XHCI_BLC))
4527			udev->usb2_hw_lpm_besl_capable = 1;
4528	}
4529
4530	return 0;
4531}
4532
4533/*---------------------- USB 3.0 Link PM functions ------------------------*/
4534
4535/* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4536static unsigned long long xhci_service_interval_to_ns(
4537		struct usb_endpoint_descriptor *desc)
4538{
4539	return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4540}
4541
4542static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4543		enum usb3_link_state state)
4544{
4545	unsigned long long sel;
4546	unsigned long long pel;
4547	unsigned int max_sel_pel;
4548	char *state_name;
4549
4550	switch (state) {
4551	case USB3_LPM_U1:
4552		/* Convert SEL and PEL stored in nanoseconds to microseconds */
4553		sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4554		pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4555		max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4556		state_name = "U1";
4557		break;
4558	case USB3_LPM_U2:
4559		sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4560		pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4561		max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4562		state_name = "U2";
4563		break;
4564	default:
4565		dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4566				__func__);
4567		return USB3_LPM_DISABLED;
4568	}
4569
4570	if (sel <= max_sel_pel && pel <= max_sel_pel)
4571		return USB3_LPM_DEVICE_INITIATED;
4572
4573	if (sel > max_sel_pel)
4574		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4575				"due to long SEL %llu ms\n",
4576				state_name, sel);
4577	else
4578		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4579				"due to long PEL %llu ms\n",
4580				state_name, pel);
4581	return USB3_LPM_DISABLED;
4582}
4583
4584/* The U1 timeout should be the maximum of the following values:
4585 *  - For control endpoints, U1 system exit latency (SEL) * 3
4586 *  - For bulk endpoints, U1 SEL * 5
4587 *  - For interrupt endpoints:
4588 *    - Notification EPs, U1 SEL * 3
4589 *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4590 *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4591 */
4592static unsigned long long xhci_calculate_intel_u1_timeout(
4593		struct usb_device *udev,
4594		struct usb_endpoint_descriptor *desc)
4595{
4596	unsigned long long timeout_ns;
4597	int ep_type;
4598	int intr_type;
4599
4600	ep_type = usb_endpoint_type(desc);
4601	switch (ep_type) {
4602	case USB_ENDPOINT_XFER_CONTROL:
4603		timeout_ns = udev->u1_params.sel * 3;
4604		break;
4605	case USB_ENDPOINT_XFER_BULK:
4606		timeout_ns = udev->u1_params.sel * 5;
4607		break;
4608	case USB_ENDPOINT_XFER_INT:
4609		intr_type = usb_endpoint_interrupt_type(desc);
4610		if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4611			timeout_ns = udev->u1_params.sel * 3;
4612			break;
4613		}
4614		/* Otherwise the calculation is the same as isoc eps */
4615		/* fall through */
4616	case USB_ENDPOINT_XFER_ISOC:
4617		timeout_ns = xhci_service_interval_to_ns(desc);
4618		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4619		if (timeout_ns < udev->u1_params.sel * 2)
4620			timeout_ns = udev->u1_params.sel * 2;
4621		break;
4622	default:
4623		return 0;
4624	}
4625
4626	return timeout_ns;
4627}
4628
4629/* Returns the hub-encoded U1 timeout value. */
4630static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4631		struct usb_device *udev,
4632		struct usb_endpoint_descriptor *desc)
4633{
4634	unsigned long long timeout_ns;
4635
4636	/* Prevent U1 if service interval is shorter than U1 exit latency */
4637	if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4638		if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) {
4639			dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4640			return USB3_LPM_DISABLED;
4641		}
4642	}
4643
4644	if (xhci->quirks & XHCI_INTEL_HOST)
4645		timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4646	else
4647		timeout_ns = udev->u1_params.sel;
4648
4649	/* The U1 timeout is encoded in 1us intervals.
4650	 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4651	 */
4652	if (timeout_ns == USB3_LPM_DISABLED)
4653		timeout_ns = 1;
4654	else
4655		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4656
4657	/* If the necessary timeout value is bigger than what we can set in the
4658	 * USB 3.0 hub, we have to disable hub-initiated U1.
4659	 */
4660	if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4661		return timeout_ns;
4662	dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4663			"due to long timeout %llu ms\n", timeout_ns);
4664	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4665}
4666
4667/* The U2 timeout should be the maximum of:
4668 *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4669 *  - largest bInterval of any active periodic endpoint (to avoid going
4670 *    into lower power link states between intervals).
4671 *  - the U2 Exit Latency of the device
4672 */
4673static unsigned long long xhci_calculate_intel_u2_timeout(
4674		struct usb_device *udev,
4675		struct usb_endpoint_descriptor *desc)
4676{
4677	unsigned long long timeout_ns;
4678	unsigned long long u2_del_ns;
4679
4680	timeout_ns = 10 * 1000 * 1000;
4681
4682	if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4683			(xhci_service_interval_to_ns(desc) > timeout_ns))
4684		timeout_ns = xhci_service_interval_to_ns(desc);
4685
4686	u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4687	if (u2_del_ns > timeout_ns)
4688		timeout_ns = u2_del_ns;
4689
4690	return timeout_ns;
4691}
4692
4693/* Returns the hub-encoded U2 timeout value. */
4694static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4695		struct usb_device *udev,
4696		struct usb_endpoint_descriptor *desc)
4697{
4698	unsigned long long timeout_ns;
4699
4700	/* Prevent U2 if service interval is shorter than U2 exit latency */
4701	if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4702		if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) {
4703			dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4704			return USB3_LPM_DISABLED;
4705		}
4706	}
4707
4708	if (xhci->quirks & XHCI_INTEL_HOST)
4709		timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4710	else
4711		timeout_ns = udev->u2_params.sel;
4712
4713	/* The U2 timeout is encoded in 256us intervals */
4714	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4715	/* If the necessary timeout value is bigger than what we can set in the
4716	 * USB 3.0 hub, we have to disable hub-initiated U2.
4717	 */
4718	if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4719		return timeout_ns;
4720	dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4721			"due to long timeout %llu ms\n", timeout_ns);
4722	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4723}
4724
4725static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4726		struct usb_device *udev,
4727		struct usb_endpoint_descriptor *desc,
4728		enum usb3_link_state state,
4729		u16 *timeout)
4730{
4731	if (state == USB3_LPM_U1)
4732		return xhci_calculate_u1_timeout(xhci, udev, desc);
4733	else if (state == USB3_LPM_U2)
4734		return xhci_calculate_u2_timeout(xhci, udev, desc);
4735
4736	return USB3_LPM_DISABLED;
4737}
4738
4739static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4740		struct usb_device *udev,
4741		struct usb_endpoint_descriptor *desc,
4742		enum usb3_link_state state,
4743		u16 *timeout)
4744{
4745	u16 alt_timeout;
4746
4747	alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4748		desc, state, timeout);
4749
4750	/* If we found we can't enable hub-initiated LPM, and
4751	 * the U1 or U2 exit latency was too high to allow
4752	 * device-initiated LPM as well, then we will disable LPM
4753	 * for this device, so stop searching any further.
4754	 */
4755	if (alt_timeout == USB3_LPM_DISABLED) {
4756		*timeout = alt_timeout;
4757		return -E2BIG;
4758	}
4759	if (alt_timeout > *timeout)
4760		*timeout = alt_timeout;
4761	return 0;
4762}
4763
4764static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4765		struct usb_device *udev,
4766		struct usb_host_interface *alt,
4767		enum usb3_link_state state,
4768		u16 *timeout)
4769{
4770	int j;
4771
4772	for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4773		if (xhci_update_timeout_for_endpoint(xhci, udev,
4774					&alt->endpoint[j].desc, state, timeout))
4775			return -E2BIG;
4776		continue;
4777	}
4778	return 0;
4779}
4780
4781static int xhci_check_intel_tier_policy(struct usb_device *udev,
4782		enum usb3_link_state state)
4783{
4784	struct usb_device *parent;
4785	unsigned int num_hubs;
4786
4787	if (state == USB3_LPM_U2)
4788		return 0;
4789
4790	/* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4791	for (parent = udev->parent, num_hubs = 0; parent->parent;
4792			parent = parent->parent)
4793		num_hubs++;
4794
4795	if (num_hubs < 2)
4796		return 0;
4797
4798	dev_dbg(&udev->dev, "Disabling U1 link state for device"
4799			" below second-tier hub.\n");
4800	dev_dbg(&udev->dev, "Plug device into first-tier hub "
4801			"to decrease power consumption.\n");
4802	return -E2BIG;
4803}
4804
4805static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4806		struct usb_device *udev,
4807		enum usb3_link_state state)
4808{
4809	if (xhci->quirks & XHCI_INTEL_HOST)
4810		return xhci_check_intel_tier_policy(udev, state);
4811	else
4812		return 0;
4813}
4814
4815/* Returns the U1 or U2 timeout that should be enabled.
4816 * If the tier check or timeout setting functions return with a non-zero exit
4817 * code, that means the timeout value has been finalized and we shouldn't look
4818 * at any more endpoints.
4819 */
4820static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4821			struct usb_device *udev, enum usb3_link_state state)
4822{
4823	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4824	struct usb_host_config *config;
4825	char *state_name;
4826	int i;
4827	u16 timeout = USB3_LPM_DISABLED;
4828
4829	if (state == USB3_LPM_U1)
4830		state_name = "U1";
4831	else if (state == USB3_LPM_U2)
4832		state_name = "U2";
4833	else {
4834		dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4835				state);
4836		return timeout;
4837	}
4838
4839	if (xhci_check_tier_policy(xhci, udev, state) < 0)
4840		return timeout;
4841
4842	/* Gather some information about the currently installed configuration
4843	 * and alternate interface settings.
4844	 */
4845	if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4846			state, &timeout))
4847		return timeout;
4848
4849	config = udev->actconfig;
4850	if (!config)
4851		return timeout;
4852
4853	for (i = 0; i < config->desc.bNumInterfaces; i++) {
4854		struct usb_driver *driver;
4855		struct usb_interface *intf = config->interface[i];
4856
4857		if (!intf)
4858			continue;
4859
4860		/* Check if any currently bound drivers want hub-initiated LPM
4861		 * disabled.
4862		 */
4863		if (intf->dev.driver) {
4864			driver = to_usb_driver(intf->dev.driver);
4865			if (driver && driver->disable_hub_initiated_lpm) {
4866				dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n",
4867					state_name, driver->name);
4868				timeout = xhci_get_timeout_no_hub_lpm(udev,
4869								      state);
4870				if (timeout == USB3_LPM_DISABLED)
4871					return timeout;
4872			}
4873		}
4874
4875		/* Not sure how this could happen... */
4876		if (!intf->cur_altsetting)
4877			continue;
4878
4879		if (xhci_update_timeout_for_interface(xhci, udev,
4880					intf->cur_altsetting,
4881					state, &timeout))
4882			return timeout;
4883	}
4884	return timeout;
4885}
4886
4887static int calculate_max_exit_latency(struct usb_device *udev,
4888		enum usb3_link_state state_changed,
4889		u16 hub_encoded_timeout)
4890{
4891	unsigned long long u1_mel_us = 0;
4892	unsigned long long u2_mel_us = 0;
4893	unsigned long long mel_us = 0;
4894	bool disabling_u1;
4895	bool disabling_u2;
4896	bool enabling_u1;
4897	bool enabling_u2;
4898
4899	disabling_u1 = (state_changed == USB3_LPM_U1 &&
4900			hub_encoded_timeout == USB3_LPM_DISABLED);
4901	disabling_u2 = (state_changed == USB3_LPM_U2 &&
4902			hub_encoded_timeout == USB3_LPM_DISABLED);
4903
4904	enabling_u1 = (state_changed == USB3_LPM_U1 &&
4905			hub_encoded_timeout != USB3_LPM_DISABLED);
4906	enabling_u2 = (state_changed == USB3_LPM_U2 &&
4907			hub_encoded_timeout != USB3_LPM_DISABLED);
4908
4909	/* If U1 was already enabled and we're not disabling it,
4910	 * or we're going to enable U1, account for the U1 max exit latency.
4911	 */
4912	if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4913			enabling_u1)
4914		u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4915	if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4916			enabling_u2)
4917		u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4918
4919	if (u1_mel_us > u2_mel_us)
4920		mel_us = u1_mel_us;
4921	else
4922		mel_us = u2_mel_us;
4923	/* xHCI host controller max exit latency field is only 16 bits wide. */
4924	if (mel_us > MAX_EXIT) {
4925		dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4926				"is too big.\n", mel_us);
4927		return -E2BIG;
4928	}
4929	return mel_us;
4930}
4931
4932/* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4933static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4934			struct usb_device *udev, enum usb3_link_state state)
4935{
4936	struct xhci_hcd	*xhci;
 
4937	u16 hub_encoded_timeout;
4938	int mel;
4939	int ret;
4940
4941	xhci = hcd_to_xhci(hcd);
4942	/* The LPM timeout values are pretty host-controller specific, so don't
4943	 * enable hub-initiated timeouts unless the vendor has provided
4944	 * information about their timeout algorithm.
4945	 */
4946	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4947			!xhci->devs[udev->slot_id])
4948		return USB3_LPM_DISABLED;
4949
 
 
 
 
 
 
 
 
 
 
4950	hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4951	mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4952	if (mel < 0) {
4953		/* Max Exit Latency is too big, disable LPM. */
4954		hub_encoded_timeout = USB3_LPM_DISABLED;
4955		mel = 0;
4956	}
4957
4958	ret = xhci_change_max_exit_latency(xhci, udev, mel);
4959	if (ret)
4960		return ret;
4961	return hub_encoded_timeout;
4962}
4963
4964static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4965			struct usb_device *udev, enum usb3_link_state state)
4966{
4967	struct xhci_hcd	*xhci;
4968	u16 mel;
4969
4970	xhci = hcd_to_xhci(hcd);
4971	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4972			!xhci->devs[udev->slot_id])
4973		return 0;
4974
4975	mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4976	return xhci_change_max_exit_latency(xhci, udev, mel);
4977}
4978#else /* CONFIG_PM */
4979
4980static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4981				struct usb_device *udev, int enable)
4982{
4983	return 0;
4984}
4985
4986static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4987{
4988	return 0;
4989}
4990
4991static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4992			struct usb_device *udev, enum usb3_link_state state)
4993{
4994	return USB3_LPM_DISABLED;
4995}
4996
4997static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4998			struct usb_device *udev, enum usb3_link_state state)
4999{
5000	return 0;
5001}
5002#endif	/* CONFIG_PM */
5003
5004/*-------------------------------------------------------------------------*/
5005
5006/* Once a hub descriptor is fetched for a device, we need to update the xHC's
5007 * internal data structures for the device.
5008 */
5009static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
5010			struct usb_tt *tt, gfp_t mem_flags)
5011{
5012	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5013	struct xhci_virt_device *vdev;
5014	struct xhci_command *config_cmd;
5015	struct xhci_input_control_ctx *ctrl_ctx;
5016	struct xhci_slot_ctx *slot_ctx;
5017	unsigned long flags;
5018	unsigned think_time;
5019	int ret;
5020
5021	/* Ignore root hubs */
5022	if (!hdev->parent)
5023		return 0;
5024
5025	vdev = xhci->devs[hdev->slot_id];
5026	if (!vdev) {
5027		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
5028		return -EINVAL;
5029	}
5030
5031	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
5032	if (!config_cmd)
5033		return -ENOMEM;
5034
5035	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
5036	if (!ctrl_ctx) {
5037		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
5038				__func__);
5039		xhci_free_command(xhci, config_cmd);
5040		return -ENOMEM;
5041	}
5042
5043	spin_lock_irqsave(&xhci->lock, flags);
5044	if (hdev->speed == USB_SPEED_HIGH &&
5045			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
5046		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
5047		xhci_free_command(xhci, config_cmd);
5048		spin_unlock_irqrestore(&xhci->lock, flags);
5049		return -ENOMEM;
5050	}
5051
5052	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
5053	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
5054	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
5055	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
5056	/*
5057	 * refer to section 6.2.2: MTT should be 0 for full speed hub,
5058	 * but it may be already set to 1 when setup an xHCI virtual
5059	 * device, so clear it anyway.
5060	 */
5061	if (tt->multi)
5062		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
5063	else if (hdev->speed == USB_SPEED_FULL)
5064		slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
5065
5066	if (xhci->hci_version > 0x95) {
5067		xhci_dbg(xhci, "xHCI version %x needs hub "
5068				"TT think time and number of ports\n",
5069				(unsigned int) xhci->hci_version);
5070		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
5071		/* Set TT think time - convert from ns to FS bit times.
5072		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
5073		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
5074		 *
5075		 * xHCI 1.0: this field shall be 0 if the device is not a
5076		 * High-spped hub.
5077		 */
5078		think_time = tt->think_time;
5079		if (think_time != 0)
5080			think_time = (think_time / 666) - 1;
5081		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
5082			slot_ctx->tt_info |=
5083				cpu_to_le32(TT_THINK_TIME(think_time));
5084	} else {
5085		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
5086				"TT think time or number of ports\n",
5087				(unsigned int) xhci->hci_version);
5088	}
5089	slot_ctx->dev_state = 0;
5090	spin_unlock_irqrestore(&xhci->lock, flags);
5091
5092	xhci_dbg(xhci, "Set up %s for hub device.\n",
5093			(xhci->hci_version > 0x95) ?
5094			"configure endpoint" : "evaluate context");
5095
5096	/* Issue and wait for the configure endpoint or
5097	 * evaluate context command.
5098	 */
5099	if (xhci->hci_version > 0x95)
5100		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5101				false, false);
5102	else
5103		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5104				true, false);
5105
5106	xhci_free_command(xhci, config_cmd);
5107	return ret;
5108}
 
5109
5110static int xhci_get_frame(struct usb_hcd *hcd)
5111{
5112	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5113	/* EHCI mods by the periodic size.  Why? */
5114	return readl(&xhci->run_regs->microframe_index) >> 3;
5115}
5116
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5117int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
5118{
5119	struct xhci_hcd		*xhci;
5120	/*
5121	 * TODO: Check with DWC3 clients for sysdev according to
5122	 * quirks
5123	 */
5124	struct device		*dev = hcd->self.sysdev;
5125	unsigned int		minor_rev;
5126	int			retval;
5127
5128	/* Accept arbitrarily long scatter-gather lists */
5129	hcd->self.sg_tablesize = ~0;
5130
5131	/* support to build packet from discontinuous buffers */
5132	hcd->self.no_sg_constraint = 1;
5133
5134	/* XHCI controllers don't stop the ep queue on short packets :| */
5135	hcd->self.no_stop_on_short = 1;
5136
5137	xhci = hcd_to_xhci(hcd);
5138
5139	if (usb_hcd_is_primary_hcd(hcd)) {
5140		xhci->main_hcd = hcd;
5141		xhci->usb2_rhub.hcd = hcd;
5142		/* Mark the first roothub as being USB 2.0.
5143		 * The xHCI driver will register the USB 3.0 roothub.
5144		 */
5145		hcd->speed = HCD_USB2;
5146		hcd->self.root_hub->speed = USB_SPEED_HIGH;
5147		/*
5148		 * USB 2.0 roothub under xHCI has an integrated TT,
5149		 * (rate matching hub) as opposed to having an OHCI/UHCI
5150		 * companion controller.
5151		 */
5152		hcd->has_tt = 1;
5153	} else {
5154		/*
5155		 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts
5156		 * should return 0x31 for sbrn, or that the minor revision
5157		 * is a two digit BCD containig minor and sub-minor numbers.
5158		 * This was later clarified in xHCI 1.2.
5159		 *
5160		 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and
5161		 * minor revision set to 0x1 instead of 0x10.
5162		 */
5163		if (xhci->usb3_rhub.min_rev == 0x1)
5164			minor_rev = 1;
5165		else
5166			minor_rev = xhci->usb3_rhub.min_rev / 0x10;
5167
5168		switch (minor_rev) {
5169		case 2:
5170			hcd->speed = HCD_USB32;
5171			hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5172			hcd->self.root_hub->rx_lanes = 2;
5173			hcd->self.root_hub->tx_lanes = 2;
5174			break;
5175		case 1:
5176			hcd->speed = HCD_USB31;
5177			hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5178			break;
5179		}
5180		xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n",
5181			  minor_rev,
5182			  minor_rev ? "Enhanced " : "");
5183
5184		xhci->usb3_rhub.hcd = hcd;
5185		/* xHCI private pointer was set in xhci_pci_probe for the second
5186		 * registered roothub.
5187		 */
5188		return 0;
5189	}
5190
5191	mutex_init(&xhci->mutex);
 
5192	xhci->cap_regs = hcd->regs;
5193	xhci->op_regs = hcd->regs +
5194		HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5195	xhci->run_regs = hcd->regs +
5196		(readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5197	/* Cache read-only capability registers */
5198	xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5199	xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5200	xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5201	xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
5202	xhci->hci_version = HC_VERSION(xhci->hcc_params);
5203	xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5204	if (xhci->hci_version > 0x100)
5205		xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5206
5207	xhci->quirks |= quirks;
5208
5209	get_quirks(dev, xhci);
5210
5211	/* In xhci controllers which follow xhci 1.0 spec gives a spurious
5212	 * success event after a short transfer. This quirk will ignore such
5213	 * spurious event.
5214	 */
5215	if (xhci->hci_version > 0x96)
5216		xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5217
5218	/* Make sure the HC is halted. */
5219	retval = xhci_halt(xhci);
5220	if (retval)
5221		return retval;
5222
5223	xhci_zero_64b_regs(xhci);
5224
5225	xhci_dbg(xhci, "Resetting HCD\n");
5226	/* Reset the internal HC memory state and registers. */
5227	retval = xhci_reset(xhci);
5228	if (retval)
5229		return retval;
5230	xhci_dbg(xhci, "Reset complete\n");
5231
5232	/*
5233	 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5234	 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5235	 * address memory pointers actually. So, this driver clears the AC64
5236	 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5237	 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5238	 */
5239	if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5240		xhci->hcc_params &= ~BIT(0);
5241
5242	/* Set dma_mask and coherent_dma_mask to 64-bits,
5243	 * if xHC supports 64-bit addressing */
5244	if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5245			!dma_set_mask(dev, DMA_BIT_MASK(64))) {
5246		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5247		dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5248	} else {
5249		/*
5250		 * This is to avoid error in cases where a 32-bit USB
5251		 * controller is used on a 64-bit capable system.
5252		 */
5253		retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5254		if (retval)
5255			return retval;
5256		xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5257		dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5258	}
5259
5260	xhci_dbg(xhci, "Calling HCD init\n");
5261	/* Initialize HCD and host controller data structures. */
5262	retval = xhci_init(hcd);
5263	if (retval)
5264		return retval;
5265	xhci_dbg(xhci, "Called HCD init\n");
5266
 
 
 
 
 
5267	xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5268		  xhci->hcc_params, xhci->hci_version, xhci->quirks);
5269
5270	return 0;
5271}
5272EXPORT_SYMBOL_GPL(xhci_gen_setup);
5273
5274static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd,
5275		struct usb_host_endpoint *ep)
5276{
5277	struct xhci_hcd *xhci;
5278	struct usb_device *udev;
5279	unsigned int slot_id;
5280	unsigned int ep_index;
5281	unsigned long flags;
5282
5283	xhci = hcd_to_xhci(hcd);
5284
5285	spin_lock_irqsave(&xhci->lock, flags);
5286	udev = (struct usb_device *)ep->hcpriv;
5287	slot_id = udev->slot_id;
5288	ep_index = xhci_get_endpoint_index(&ep->desc);
5289
5290	xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT;
5291	xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
5292	spin_unlock_irqrestore(&xhci->lock, flags);
5293}
5294
5295static const struct hc_driver xhci_hc_driver = {
5296	.description =		"xhci-hcd",
5297	.product_desc =		"xHCI Host Controller",
5298	.hcd_priv_size =	sizeof(struct xhci_hcd),
5299
5300	/*
5301	 * generic hardware linkage
5302	 */
5303	.irq =			xhci_irq,
5304	.flags =		HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED,
 
5305
5306	/*
5307	 * basic lifecycle operations
5308	 */
5309	.reset =		NULL, /* set in xhci_init_driver() */
5310	.start =		xhci_run,
5311	.stop =			xhci_stop,
5312	.shutdown =		xhci_shutdown,
5313
5314	/*
5315	 * managing i/o requests and associated device resources
5316	 */
5317	.map_urb_for_dma =      xhci_map_urb_for_dma,
 
5318	.urb_enqueue =		xhci_urb_enqueue,
5319	.urb_dequeue =		xhci_urb_dequeue,
5320	.alloc_dev =		xhci_alloc_dev,
5321	.free_dev =		xhci_free_dev,
5322	.alloc_streams =	xhci_alloc_streams,
5323	.free_streams =		xhci_free_streams,
5324	.add_endpoint =		xhci_add_endpoint,
5325	.drop_endpoint =	xhci_drop_endpoint,
5326	.endpoint_disable =	xhci_endpoint_disable,
5327	.endpoint_reset =	xhci_endpoint_reset,
5328	.check_bandwidth =	xhci_check_bandwidth,
5329	.reset_bandwidth =	xhci_reset_bandwidth,
5330	.address_device =	xhci_address_device,
5331	.enable_device =	xhci_enable_device,
5332	.update_hub_device =	xhci_update_hub_device,
5333	.reset_device =		xhci_discover_or_reset_device,
5334
5335	/*
5336	 * scheduling support
5337	 */
5338	.get_frame_number =	xhci_get_frame,
5339
5340	/*
5341	 * root hub support
5342	 */
5343	.hub_control =		xhci_hub_control,
5344	.hub_status_data =	xhci_hub_status_data,
5345	.bus_suspend =		xhci_bus_suspend,
5346	.bus_resume =		xhci_bus_resume,
5347	.get_resuming_ports =	xhci_get_resuming_ports,
5348
5349	/*
5350	 * call back when device connected and addressed
5351	 */
5352	.update_device =        xhci_update_device,
5353	.set_usb2_hw_lpm =	xhci_set_usb2_hardware_lpm,
5354	.enable_usb3_lpm_timeout =	xhci_enable_usb3_lpm_timeout,
5355	.disable_usb3_lpm_timeout =	xhci_disable_usb3_lpm_timeout,
5356	.find_raw_port_number =	xhci_find_raw_port_number,
5357	.clear_tt_buffer_complete = xhci_clear_tt_buffer_complete,
5358};
5359
5360void xhci_init_driver(struct hc_driver *drv,
5361		      const struct xhci_driver_overrides *over)
5362{
5363	BUG_ON(!over);
5364
5365	/* Copy the generic table to drv then apply the overrides */
5366	*drv = xhci_hc_driver;
5367
5368	if (over) {
5369		drv->hcd_priv_size += over->extra_priv_size;
5370		if (over->reset)
5371			drv->reset = over->reset;
5372		if (over->start)
5373			drv->start = over->start;
 
 
 
 
 
 
 
 
 
 
5374	}
5375}
5376EXPORT_SYMBOL_GPL(xhci_init_driver);
5377
5378MODULE_DESCRIPTION(DRIVER_DESC);
5379MODULE_AUTHOR(DRIVER_AUTHOR);
5380MODULE_LICENSE("GPL");
5381
5382static int __init xhci_hcd_init(void)
5383{
5384	/*
5385	 * Check the compiler generated sizes of structures that must be laid
5386	 * out in specific ways for hardware access.
5387	 */
5388	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5389	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5390	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5391	/* xhci_device_control has eight fields, and also
5392	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5393	 */
5394	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5395	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5396	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5397	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5398	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5399	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5400	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5401
5402	if (usb_disabled())
5403		return -ENODEV;
5404
5405	xhci_debugfs_create_root();
 
5406
5407	return 0;
5408}
5409
5410/*
5411 * If an init function is provided, an exit function must also be provided
5412 * to allow module unload.
5413 */
5414static void __exit xhci_hcd_fini(void)
5415{
5416	xhci_debugfs_remove_root();
 
5417}
5418
5419module_init(xhci_hcd_init);
5420module_exit(xhci_hcd_fini);