Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3  A FORE Systems 200E-series driver for ATM on Linux.
   4  Christophe Lizzi (lizzi@cnam.fr), October 1999-March 2003.
   5
   6  Based on the PCA-200E driver from Uwe Dannowski (Uwe.Dannowski@inf.tu-dresden.de).
   7
   8  This driver simultaneously supports PCA-200E and SBA-200E adapters
   9  on i386, alpha (untested), powerpc, sparc and sparc64 architectures.
  10
  11*/
  12
  13
  14#include <linux/kernel.h>
  15#include <linux/slab.h>
  16#include <linux/init.h>
  17#include <linux/capability.h>
  18#include <linux/interrupt.h>
  19#include <linux/bitops.h>
  20#include <linux/pci.h>
  21#include <linux/module.h>
  22#include <linux/atmdev.h>
  23#include <linux/sonet.h>
 
  24#include <linux/dma-mapping.h>
  25#include <linux/delay.h>
  26#include <linux/firmware.h>
  27#include <linux/pgtable.h>
  28#include <asm/io.h>
  29#include <asm/string.h>
  30#include <asm/page.h>
  31#include <asm/irq.h>
  32#include <asm/dma.h>
  33#include <asm/byteorder.h>
  34#include <linux/uaccess.h>
  35#include <linux/atomic.h>
  36
  37#ifdef CONFIG_SBUS
  38#include <linux/of.h>
  39#include <linux/of_device.h>
  40#include <asm/idprom.h>
  41#include <asm/openprom.h>
  42#include <asm/oplib.h>
 
  43#endif
  44
  45#if defined(CONFIG_ATM_FORE200E_USE_TASKLET) /* defer interrupt work to a tasklet */
  46#define FORE200E_USE_TASKLET
  47#endif
  48
  49#if 0 /* enable the debugging code of the buffer supply queues */
  50#define FORE200E_BSQ_DEBUG
  51#endif
  52
  53#if 1 /* ensure correct handling of 52-byte AAL0 SDUs expected by atmdump-like apps */
  54#define FORE200E_52BYTE_AAL0_SDU
  55#endif
  56
  57#include "fore200e.h"
  58#include "suni.h"
  59
  60#define FORE200E_VERSION "0.3e"
  61
  62#define FORE200E         "fore200e: "
  63
  64#if 0 /* override .config */
  65#define CONFIG_ATM_FORE200E_DEBUG 1
  66#endif
  67#if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0)
  68#define DPRINTK(level, format, args...)  do { if (CONFIG_ATM_FORE200E_DEBUG >= (level)) \
  69                                                  printk(FORE200E format, ##args); } while (0)
  70#else
  71#define DPRINTK(level, format, args...)  do {} while (0)
  72#endif
  73
  74
  75#define FORE200E_ALIGN(addr, alignment) \
  76        ((((unsigned long)(addr) + (alignment - 1)) & ~(alignment - 1)) - (unsigned long)(addr))
  77
  78#define FORE200E_DMA_INDEX(dma_addr, type, index)  ((dma_addr) + (index) * sizeof(type))
  79
  80#define FORE200E_INDEX(virt_addr, type, index)     (&((type *)(virt_addr))[ index ])
  81
  82#define FORE200E_NEXT_ENTRY(index, modulo)         (index = ((index) + 1) % (modulo))
  83
  84#if 1
  85#define ASSERT(expr)     if (!(expr)) { \
  86			     printk(FORE200E "assertion failed! %s[%d]: %s\n", \
  87				    __func__, __LINE__, #expr); \
  88			     panic(FORE200E "%s", __func__); \
  89			 }
  90#else
  91#define ASSERT(expr)     do {} while (0)
  92#endif
  93
  94
  95static const struct atmdev_ops   fore200e_ops;
  96
  97static LIST_HEAD(fore200e_boards);
  98
  99
 100MODULE_AUTHOR("Christophe Lizzi - credits to Uwe Dannowski and Heikki Vatiainen");
 101MODULE_DESCRIPTION("FORE Systems 200E-series ATM driver - version " FORE200E_VERSION);
 
 
 102
 103static const int fore200e_rx_buf_nbr[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = {
 104    { BUFFER_S1_NBR, BUFFER_L1_NBR },
 105    { BUFFER_S2_NBR, BUFFER_L2_NBR }
 106};
 107
 108static const int fore200e_rx_buf_size[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = {
 109    { BUFFER_S1_SIZE, BUFFER_L1_SIZE },
 110    { BUFFER_S2_SIZE, BUFFER_L2_SIZE }
 111};
 112
 113
 114#if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0)
 115static const char* fore200e_traffic_class[] = { "NONE", "UBR", "CBR", "VBR", "ABR", "ANY" };
 116#endif
 117
 118
 119#if 0 /* currently unused */
 120static int 
 121fore200e_fore2atm_aal(enum fore200e_aal aal)
 122{
 123    switch(aal) {
 124    case FORE200E_AAL0:  return ATM_AAL0;
 125    case FORE200E_AAL34: return ATM_AAL34;
 126    case FORE200E_AAL5:  return ATM_AAL5;
 127    }
 128
 129    return -EINVAL;
 130}
 131#endif
 132
 133
 134static enum fore200e_aal
 135fore200e_atm2fore_aal(int aal)
 136{
 137    switch(aal) {
 138    case ATM_AAL0:  return FORE200E_AAL0;
 139    case ATM_AAL34: return FORE200E_AAL34;
 140    case ATM_AAL1:
 141    case ATM_AAL2:
 142    case ATM_AAL5:  return FORE200E_AAL5;
 143    }
 144
 145    return -EINVAL;
 146}
 147
 148
 149static char*
 150fore200e_irq_itoa(int irq)
 151{
 152    static char str[8];
 153    sprintf(str, "%d", irq);
 154    return str;
 155}
 156
 157
 158/* allocate and align a chunk of memory intended to hold the data behing exchanged
 159   between the driver and the adapter (using streaming DVMA) */
 160
 161static int
 162fore200e_chunk_alloc(struct fore200e* fore200e, struct chunk* chunk, int size, int alignment, int direction)
 163{
 164    unsigned long offset = 0;
 165
 166    if (alignment <= sizeof(int))
 167	alignment = 0;
 168
 169    chunk->alloc_size = size + alignment;
 170    chunk->direction  = direction;
 171
 172    chunk->alloc_addr = kzalloc(chunk->alloc_size, GFP_KERNEL);
 173    if (chunk->alloc_addr == NULL)
 174	return -ENOMEM;
 175
 176    if (alignment > 0)
 177	offset = FORE200E_ALIGN(chunk->alloc_addr, alignment); 
 178    
 179    chunk->align_addr = chunk->alloc_addr + offset;
 180
 181    chunk->dma_addr = dma_map_single(fore200e->dev, chunk->align_addr,
 182				     size, direction);
 183    if (dma_mapping_error(fore200e->dev, chunk->dma_addr)) {
 184	kfree(chunk->alloc_addr);
 185	return -ENOMEM;
 186    }
 187    return 0;
 188}
 189
 190
 191/* free a chunk of memory */
 192
 193static void
 194fore200e_chunk_free(struct fore200e* fore200e, struct chunk* chunk)
 195{
 196    dma_unmap_single(fore200e->dev, chunk->dma_addr, chunk->dma_size,
 197		     chunk->direction);
 198    kfree(chunk->alloc_addr);
 199}
 200
 201/*
 202 * Allocate a DMA consistent chunk of memory intended to act as a communication
 203 * mechanism (to hold descriptors, status, queues, etc.) shared by the driver
 204 * and the adapter.
 205 */
 206static int
 207fore200e_dma_chunk_alloc(struct fore200e *fore200e, struct chunk *chunk,
 208		int size, int nbr, int alignment)
 209{
 210	/* returned chunks are page-aligned */
 211	chunk->alloc_size = size * nbr;
 212	chunk->alloc_addr = dma_alloc_coherent(fore200e->dev, chunk->alloc_size,
 213					       &chunk->dma_addr, GFP_KERNEL);
 214	if (!chunk->alloc_addr)
 215		return -ENOMEM;
 216	chunk->align_addr = chunk->alloc_addr;
 217	return 0;
 218}
 219
 220/*
 221 * Free a DMA consistent chunk of memory.
 222 */
 223static void
 224fore200e_dma_chunk_free(struct fore200e* fore200e, struct chunk* chunk)
 225{
 226	dma_free_coherent(fore200e->dev, chunk->alloc_size, chunk->alloc_addr,
 227			  chunk->dma_addr);
 228}
 229
 230static void
 231fore200e_spin(int msecs)
 232{
 233    unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
 234    while (time_before(jiffies, timeout));
 235}
 236
 237
 238static int
 239fore200e_poll(struct fore200e* fore200e, volatile u32* addr, u32 val, int msecs)
 240{
 241    unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
 242    int           ok;
 243
 244    mb();
 245    do {
 246	if ((ok = (*addr == val)) || (*addr & STATUS_ERROR))
 247	    break;
 248
 249    } while (time_before(jiffies, timeout));
 250
 251#if 1
 252    if (!ok) {
 253	printk(FORE200E "cmd polling failed, got status 0x%08x, expected 0x%08x\n",
 254	       *addr, val);
 255    }
 256#endif
 257
 258    return ok;
 259}
 260
 261
 262static int
 263fore200e_io_poll(struct fore200e* fore200e, volatile u32 __iomem *addr, u32 val, int msecs)
 264{
 265    unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
 266    int           ok;
 267
 268    do {
 269	if ((ok = (fore200e->bus->read(addr) == val)))
 270	    break;
 271
 272    } while (time_before(jiffies, timeout));
 273
 274#if 1
 275    if (!ok) {
 276	printk(FORE200E "I/O polling failed, got status 0x%08x, expected 0x%08x\n",
 277	       fore200e->bus->read(addr), val);
 278    }
 279#endif
 280
 281    return ok;
 282}
 283
 284
 285static void
 286fore200e_free_rx_buf(struct fore200e* fore200e)
 287{
 288    int scheme, magn, nbr;
 289    struct buffer* buffer;
 290
 291    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
 292	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
 293
 294	    if ((buffer = fore200e->host_bsq[ scheme ][ magn ].buffer) != NULL) {
 295
 296		for (nbr = 0; nbr < fore200e_rx_buf_nbr[ scheme ][ magn ]; nbr++) {
 297
 298		    struct chunk* data = &buffer[ nbr ].data;
 299
 300		    if (data->alloc_addr != NULL)
 301			fore200e_chunk_free(fore200e, data);
 302		}
 303	    }
 304	}
 305    }
 306}
 307
 308
 309static void
 310fore200e_uninit_bs_queue(struct fore200e* fore200e)
 311{
 312    int scheme, magn;
 313    
 314    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
 315	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
 316
 317	    struct chunk* status    = &fore200e->host_bsq[ scheme ][ magn ].status;
 318	    struct chunk* rbd_block = &fore200e->host_bsq[ scheme ][ magn ].rbd_block;
 319	    
 320	    if (status->alloc_addr)
 321		fore200e_dma_chunk_free(fore200e, status);
 322	    
 323	    if (rbd_block->alloc_addr)
 324		fore200e_dma_chunk_free(fore200e, rbd_block);
 325	}
 326    }
 327}
 328
 329
 330static int
 331fore200e_reset(struct fore200e* fore200e, int diag)
 332{
 333    int ok;
 334
 335    fore200e->cp_monitor = fore200e->virt_base + FORE200E_CP_MONITOR_OFFSET;
 336    
 337    fore200e->bus->write(BSTAT_COLD_START, &fore200e->cp_monitor->bstat);
 338
 339    fore200e->bus->reset(fore200e);
 340
 341    if (diag) {
 342	ok = fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_SELFTEST_OK, 1000);
 343	if (ok == 0) {
 344	    
 345	    printk(FORE200E "device %s self-test failed\n", fore200e->name);
 346	    return -ENODEV;
 347	}
 348
 349	printk(FORE200E "device %s self-test passed\n", fore200e->name);
 350	
 351	fore200e->state = FORE200E_STATE_RESET;
 352    }
 353
 354    return 0;
 355}
 356
 357
 358static void
 359fore200e_shutdown(struct fore200e* fore200e)
 360{
 361    printk(FORE200E "removing device %s at 0x%lx, IRQ %s\n",
 362	   fore200e->name, fore200e->phys_base, 
 363	   fore200e_irq_itoa(fore200e->irq));
 364    
 365    if (fore200e->state > FORE200E_STATE_RESET) {
 366	/* first, reset the board to prevent further interrupts or data transfers */
 367	fore200e_reset(fore200e, 0);
 368    }
 369    
 370    /* then, release all allocated resources */
 371    switch(fore200e->state) {
 372
 373    case FORE200E_STATE_COMPLETE:
 374	kfree(fore200e->stats);
 375
 376	fallthrough;
 377    case FORE200E_STATE_IRQ:
 378	free_irq(fore200e->irq, fore200e->atm_dev);
 379
 380	fallthrough;
 381    case FORE200E_STATE_ALLOC_BUF:
 382	fore200e_free_rx_buf(fore200e);
 383
 384	fallthrough;
 385    case FORE200E_STATE_INIT_BSQ:
 386	fore200e_uninit_bs_queue(fore200e);
 387
 388	fallthrough;
 389    case FORE200E_STATE_INIT_RXQ:
 390	fore200e_dma_chunk_free(fore200e, &fore200e->host_rxq.status);
 391	fore200e_dma_chunk_free(fore200e, &fore200e->host_rxq.rpd);
 392
 393	fallthrough;
 394    case FORE200E_STATE_INIT_TXQ:
 395	fore200e_dma_chunk_free(fore200e, &fore200e->host_txq.status);
 396	fore200e_dma_chunk_free(fore200e, &fore200e->host_txq.tpd);
 397
 398	fallthrough;
 399    case FORE200E_STATE_INIT_CMDQ:
 400	fore200e_dma_chunk_free(fore200e, &fore200e->host_cmdq.status);
 401
 402	fallthrough;
 403    case FORE200E_STATE_INITIALIZE:
 404	/* nothing to do for that state */
 405
 406    case FORE200E_STATE_START_FW:
 407	/* nothing to do for that state */
 408
 409    case FORE200E_STATE_RESET:
 410	/* nothing to do for that state */
 411
 412    case FORE200E_STATE_MAP:
 413	fore200e->bus->unmap(fore200e);
 414
 415	fallthrough;
 416    case FORE200E_STATE_CONFIGURE:
 417	/* nothing to do for that state */
 418
 419    case FORE200E_STATE_REGISTER:
 420	/* XXX shouldn't we *start* by deregistering the device? */
 421	atm_dev_deregister(fore200e->atm_dev);
 422
 423	fallthrough;
 424    case FORE200E_STATE_BLANK:
 425	/* nothing to do for that state */
 426	break;
 427    }
 428}
 429
 430
 431#ifdef CONFIG_PCI
 432
 433static u32 fore200e_pca_read(volatile u32 __iomem *addr)
 434{
 435    /* on big-endian hosts, the board is configured to convert
 436       the endianess of slave RAM accesses  */
 437    return le32_to_cpu(readl(addr));
 438}
 439
 440
 441static void fore200e_pca_write(u32 val, volatile u32 __iomem *addr)
 442{
 443    /* on big-endian hosts, the board is configured to convert
 444       the endianess of slave RAM accesses  */
 445    writel(cpu_to_le32(val), addr);
 446}
 447
 448static int
 449fore200e_pca_irq_check(struct fore200e* fore200e)
 450{
 451    /* this is a 1 bit register */
 452    int irq_posted = readl(fore200e->regs.pca.psr);
 453
 454#if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG == 2)
 455    if (irq_posted && (readl(fore200e->regs.pca.hcr) & PCA200E_HCR_OUTFULL)) {
 456	DPRINTK(2,"FIFO OUT full, device %d\n", fore200e->atm_dev->number);
 457    }
 458#endif
 459
 460    return irq_posted;
 461}
 462
 463
 464static void
 465fore200e_pca_irq_ack(struct fore200e* fore200e)
 466{
 467    writel(PCA200E_HCR_CLRINTR, fore200e->regs.pca.hcr);
 468}
 469
 470
 471static void
 472fore200e_pca_reset(struct fore200e* fore200e)
 473{
 474    writel(PCA200E_HCR_RESET, fore200e->regs.pca.hcr);
 475    fore200e_spin(10);
 476    writel(0, fore200e->regs.pca.hcr);
 477}
 478
 479
 480static int fore200e_pca_map(struct fore200e* fore200e)
 481{
 482    DPRINTK(2, "device %s being mapped in memory\n", fore200e->name);
 483
 484    fore200e->virt_base = ioremap(fore200e->phys_base, PCA200E_IOSPACE_LENGTH);
 485    
 486    if (fore200e->virt_base == NULL) {
 487	printk(FORE200E "can't map device %s\n", fore200e->name);
 488	return -EFAULT;
 489    }
 490
 491    DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base);
 492
 493    /* gain access to the PCA specific registers  */
 494    fore200e->regs.pca.hcr = fore200e->virt_base + PCA200E_HCR_OFFSET;
 495    fore200e->regs.pca.imr = fore200e->virt_base + PCA200E_IMR_OFFSET;
 496    fore200e->regs.pca.psr = fore200e->virt_base + PCA200E_PSR_OFFSET;
 497
 498    fore200e->state = FORE200E_STATE_MAP;
 499    return 0;
 500}
 501
 502
 503static void
 504fore200e_pca_unmap(struct fore200e* fore200e)
 505{
 506    DPRINTK(2, "device %s being unmapped from memory\n", fore200e->name);
 507
 508    if (fore200e->virt_base != NULL)
 509	iounmap(fore200e->virt_base);
 510}
 511
 512
 513static int fore200e_pca_configure(struct fore200e *fore200e)
 514{
 515    struct pci_dev *pci_dev = to_pci_dev(fore200e->dev);
 516    u8              master_ctrl, latency;
 517
 518    DPRINTK(2, "device %s being configured\n", fore200e->name);
 519
 520    if ((pci_dev->irq == 0) || (pci_dev->irq == 0xFF)) {
 521	printk(FORE200E "incorrect IRQ setting - misconfigured PCI-PCI bridge?\n");
 522	return -EIO;
 523    }
 524
 525    pci_read_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, &master_ctrl);
 526
 527    master_ctrl = master_ctrl
 528#if defined(__BIG_ENDIAN)
 529	/* request the PCA board to convert the endianess of slave RAM accesses */
 530	| PCA200E_CTRL_CONVERT_ENDIAN
 531#endif
 532#if 0
 533        | PCA200E_CTRL_DIS_CACHE_RD
 534        | PCA200E_CTRL_DIS_WRT_INVAL
 535        | PCA200E_CTRL_ENA_CONT_REQ_MODE
 536        | PCA200E_CTRL_2_CACHE_WRT_INVAL
 537#endif
 538	| PCA200E_CTRL_LARGE_PCI_BURSTS;
 539    
 540    pci_write_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, master_ctrl);
 541
 542    /* raise latency from 32 (default) to 192, as this seems to prevent NIC
 543       lockups (under heavy rx loads) due to continuous 'FIFO OUT full' condition.
 544       this may impact the performances of other PCI devices on the same bus, though */
 545    latency = 192;
 546    pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, latency);
 547
 548    fore200e->state = FORE200E_STATE_CONFIGURE;
 549    return 0;
 550}
 551
 552
 553static int __init
 554fore200e_pca_prom_read(struct fore200e* fore200e, struct prom_data* prom)
 555{
 556    struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
 557    struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
 558    struct prom_opcode      opcode;
 559    int                     ok;
 560    u32                     prom_dma;
 561
 562    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
 563
 564    opcode.opcode = OPCODE_GET_PROM;
 565    opcode.pad    = 0;
 566
 567    prom_dma = dma_map_single(fore200e->dev, prom, sizeof(struct prom_data),
 568			      DMA_FROM_DEVICE);
 569    if (dma_mapping_error(fore200e->dev, prom_dma))
 570	return -ENOMEM;
 571
 572    fore200e->bus->write(prom_dma, &entry->cp_entry->cmd.prom_block.prom_haddr);
 573    
 574    *entry->status = STATUS_PENDING;
 575
 576    fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.prom_block.opcode);
 577
 578    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
 579
 580    *entry->status = STATUS_FREE;
 581
 582    dma_unmap_single(fore200e->dev, prom_dma, sizeof(struct prom_data), DMA_FROM_DEVICE);
 583
 584    if (ok == 0) {
 585	printk(FORE200E "unable to get PROM data from device %s\n", fore200e->name);
 586	return -EIO;
 587    }
 588
 589#if defined(__BIG_ENDIAN)
 590    
 591#define swap_here(addr) (*((u32*)(addr)) = swab32( *((u32*)(addr)) ))
 592
 593    /* MAC address is stored as little-endian */
 594    swap_here(&prom->mac_addr[0]);
 595    swap_here(&prom->mac_addr[4]);
 596#endif
 597    
 598    return 0;
 599}
 600
 601
 602static int
 603fore200e_pca_proc_read(struct fore200e* fore200e, char *page)
 604{
 605    struct pci_dev *pci_dev = to_pci_dev(fore200e->dev);
 606
 607    return sprintf(page, "   PCI bus/slot/function:\t%d/%d/%d\n",
 608		   pci_dev->bus->number, PCI_SLOT(pci_dev->devfn), PCI_FUNC(pci_dev->devfn));
 609}
 610
 611static const struct fore200e_bus fore200e_pci_ops = {
 612	.model_name		= "PCA-200E",
 613	.proc_name		= "pca200e",
 614	.descr_alignment	= 32,
 615	.buffer_alignment	= 4,
 616	.status_alignment	= 32,
 617	.read			= fore200e_pca_read,
 618	.write			= fore200e_pca_write,
 619	.configure		= fore200e_pca_configure,
 620	.map			= fore200e_pca_map,
 621	.reset			= fore200e_pca_reset,
 622	.prom_read		= fore200e_pca_prom_read,
 623	.unmap			= fore200e_pca_unmap,
 624	.irq_check		= fore200e_pca_irq_check,
 625	.irq_ack		= fore200e_pca_irq_ack,
 626	.proc_read		= fore200e_pca_proc_read,
 627};
 628#endif /* CONFIG_PCI */
 629
 630#ifdef CONFIG_SBUS
 631
 632static u32 fore200e_sba_read(volatile u32 __iomem *addr)
 633{
 634    return sbus_readl(addr);
 635}
 636
 637static void fore200e_sba_write(u32 val, volatile u32 __iomem *addr)
 638{
 639    sbus_writel(val, addr);
 640}
 641
 642static void fore200e_sba_irq_enable(struct fore200e *fore200e)
 643{
 644	u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY;
 645	fore200e->bus->write(hcr | SBA200E_HCR_INTR_ENA, fore200e->regs.sba.hcr);
 646}
 647
 648static int fore200e_sba_irq_check(struct fore200e *fore200e)
 649{
 650	return fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_INTR_REQ;
 651}
 652
 653static void fore200e_sba_irq_ack(struct fore200e *fore200e)
 654{
 655	u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY;
 656	fore200e->bus->write(hcr | SBA200E_HCR_INTR_CLR, fore200e->regs.sba.hcr);
 657}
 658
 659static void fore200e_sba_reset(struct fore200e *fore200e)
 660{
 661	fore200e->bus->write(SBA200E_HCR_RESET, fore200e->regs.sba.hcr);
 662	fore200e_spin(10);
 663	fore200e->bus->write(0, fore200e->regs.sba.hcr);
 664}
 665
 666static int __init fore200e_sba_map(struct fore200e *fore200e)
 667{
 668	struct platform_device *op = to_platform_device(fore200e->dev);
 669	unsigned int bursts;
 670
 671	/* gain access to the SBA specific registers  */
 672	fore200e->regs.sba.hcr = of_ioremap(&op->resource[0], 0, SBA200E_HCR_LENGTH, "SBA HCR");
 673	fore200e->regs.sba.bsr = of_ioremap(&op->resource[1], 0, SBA200E_BSR_LENGTH, "SBA BSR");
 674	fore200e->regs.sba.isr = of_ioremap(&op->resource[2], 0, SBA200E_ISR_LENGTH, "SBA ISR");
 675	fore200e->virt_base    = of_ioremap(&op->resource[3], 0, SBA200E_RAM_LENGTH, "SBA RAM");
 676
 677	if (!fore200e->virt_base) {
 678		printk(FORE200E "unable to map RAM of device %s\n", fore200e->name);
 679		return -EFAULT;
 680	}
 681
 682	DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base);
 683    
 684	fore200e->bus->write(0x02, fore200e->regs.sba.isr); /* XXX hardwired interrupt level */
 685
 686	/* get the supported DVMA burst sizes */
 687	bursts = of_getintprop_default(op->dev.of_node->parent, "burst-sizes", 0x00);
 688
 689	if (sbus_can_dma_64bit())
 690		sbus_set_sbus64(&op->dev, bursts);
 691
 692	fore200e->state = FORE200E_STATE_MAP;
 693	return 0;
 694}
 695
 696static void fore200e_sba_unmap(struct fore200e *fore200e)
 697{
 698	struct platform_device *op = to_platform_device(fore200e->dev);
 699
 700	of_iounmap(&op->resource[0], fore200e->regs.sba.hcr, SBA200E_HCR_LENGTH);
 701	of_iounmap(&op->resource[1], fore200e->regs.sba.bsr, SBA200E_BSR_LENGTH);
 702	of_iounmap(&op->resource[2], fore200e->regs.sba.isr, SBA200E_ISR_LENGTH);
 703	of_iounmap(&op->resource[3], fore200e->virt_base,    SBA200E_RAM_LENGTH);
 704}
 705
 706static int __init fore200e_sba_configure(struct fore200e *fore200e)
 707{
 708	fore200e->state = FORE200E_STATE_CONFIGURE;
 709	return 0;
 710}
 711
 712static int __init fore200e_sba_prom_read(struct fore200e *fore200e, struct prom_data *prom)
 713{
 714	struct platform_device *op = to_platform_device(fore200e->dev);
 715	const u8 *prop;
 716	int len;
 717
 718	prop = of_get_property(op->dev.of_node, "madaddrlo2", &len);
 719	if (!prop)
 720		return -ENODEV;
 721	memcpy(&prom->mac_addr[4], prop, 4);
 722
 723	prop = of_get_property(op->dev.of_node, "madaddrhi4", &len);
 724	if (!prop)
 725		return -ENODEV;
 726	memcpy(&prom->mac_addr[2], prop, 4);
 727
 728	prom->serial_number = of_getintprop_default(op->dev.of_node,
 729						    "serialnumber", 0);
 730	prom->hw_revision = of_getintprop_default(op->dev.of_node,
 731						  "promversion", 0);
 732    
 733	return 0;
 734}
 735
 736static int fore200e_sba_proc_read(struct fore200e *fore200e, char *page)
 737{
 738	struct platform_device *op = to_platform_device(fore200e->dev);
 739	const struct linux_prom_registers *regs;
 740
 741	regs = of_get_property(op->dev.of_node, "reg", NULL);
 742
 743	return sprintf(page, "   SBUS slot/device:\t\t%d/'%pOFn'\n",
 744		       (regs ? regs->which_io : 0), op->dev.of_node);
 745}
 746
 747static const struct fore200e_bus fore200e_sbus_ops = {
 748	.model_name		= "SBA-200E",
 749	.proc_name		= "sba200e",
 750	.descr_alignment	= 32,
 751	.buffer_alignment	= 64,
 752	.status_alignment	= 32,
 753	.read			= fore200e_sba_read,
 754	.write			= fore200e_sba_write,
 755	.configure		= fore200e_sba_configure,
 756	.map			= fore200e_sba_map,
 757	.reset			= fore200e_sba_reset,
 758	.prom_read		= fore200e_sba_prom_read,
 759	.unmap			= fore200e_sba_unmap,
 760	.irq_enable		= fore200e_sba_irq_enable,
 761	.irq_check		= fore200e_sba_irq_check,
 762	.irq_ack		= fore200e_sba_irq_ack,
 763	.proc_read		= fore200e_sba_proc_read,
 764};
 765#endif /* CONFIG_SBUS */
 766
 767static void
 768fore200e_tx_irq(struct fore200e* fore200e)
 769{
 770    struct host_txq*        txq = &fore200e->host_txq;
 771    struct host_txq_entry*  entry;
 772    struct atm_vcc*         vcc;
 773    struct fore200e_vc_map* vc_map;
 774
 775    if (fore200e->host_txq.txing == 0)
 776	return;
 777
 778    for (;;) {
 779	
 780	entry = &txq->host_entry[ txq->tail ];
 781
 782        if ((*entry->status & STATUS_COMPLETE) == 0) {
 783	    break;
 784	}
 785
 786	DPRINTK(3, "TX COMPLETED: entry = %p [tail = %d], vc_map = %p, skb = %p\n", 
 787		entry, txq->tail, entry->vc_map, entry->skb);
 788
 789	/* free copy of misaligned data */
 790	kfree(entry->data);
 791	
 792	/* remove DMA mapping */
 793	dma_unmap_single(fore200e->dev, entry->tpd->tsd[ 0 ].buffer, entry->tpd->tsd[ 0 ].length,
 794				 DMA_TO_DEVICE);
 795
 796	vc_map = entry->vc_map;
 797
 798	/* vcc closed since the time the entry was submitted for tx? */
 799	if ((vc_map->vcc == NULL) ||
 800	    (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) {
 801
 802	    DPRINTK(1, "no ready vcc found for PDU sent on device %d\n",
 803		    fore200e->atm_dev->number);
 804
 805	    dev_kfree_skb_any(entry->skb);
 806	}
 807	else {
 808	    ASSERT(vc_map->vcc);
 809
 810	    /* vcc closed then immediately re-opened? */
 811	    if (vc_map->incarn != entry->incarn) {
 812
 813		/* when a vcc is closed, some PDUs may be still pending in the tx queue.
 814		   if the same vcc is immediately re-opened, those pending PDUs must
 815		   not be popped after the completion of their emission, as they refer
 816		   to the prior incarnation of that vcc. otherwise, sk_atm(vcc)->sk_wmem_alloc
 817		   would be decremented by the size of the (unrelated) skb, possibly
 818		   leading to a negative sk->sk_wmem_alloc count, ultimately freezing the vcc.
 819		   we thus bind the tx entry to the current incarnation of the vcc
 820		   when the entry is submitted for tx. When the tx later completes,
 821		   if the incarnation number of the tx entry does not match the one
 822		   of the vcc, then this implies that the vcc has been closed then re-opened.
 823		   we thus just drop the skb here. */
 824
 825		DPRINTK(1, "vcc closed-then-re-opened; dropping PDU sent on device %d\n",
 826			fore200e->atm_dev->number);
 827
 828		dev_kfree_skb_any(entry->skb);
 829	    }
 830	    else {
 831		vcc = vc_map->vcc;
 832		ASSERT(vcc);
 833
 834		/* notify tx completion */
 835		if (vcc->pop) {
 836		    vcc->pop(vcc, entry->skb);
 837		}
 838		else {
 839		    dev_kfree_skb_any(entry->skb);
 840		}
 841
 842		/* check error condition */
 843		if (*entry->status & STATUS_ERROR)
 844		    atomic_inc(&vcc->stats->tx_err);
 845		else
 846		    atomic_inc(&vcc->stats->tx);
 847	    }
 848	}
 849
 850	*entry->status = STATUS_FREE;
 851
 852	fore200e->host_txq.txing--;
 853
 854	FORE200E_NEXT_ENTRY(txq->tail, QUEUE_SIZE_TX);
 855    }
 856}
 857
 858
 859#ifdef FORE200E_BSQ_DEBUG
 860int bsq_audit(int where, struct host_bsq* bsq, int scheme, int magn)
 861{
 862    struct buffer* buffer;
 863    int count = 0;
 864
 865    buffer = bsq->freebuf;
 866    while (buffer) {
 867
 868	if (buffer->supplied) {
 869	    printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld supplied but in free list!\n",
 870		   where, scheme, magn, buffer->index);
 871	}
 872
 873	if (buffer->magn != magn) {
 874	    printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected magn = %d\n",
 875		   where, scheme, magn, buffer->index, buffer->magn);
 876	}
 877
 878	if (buffer->scheme != scheme) {
 879	    printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected scheme = %d\n",
 880		   where, scheme, magn, buffer->index, buffer->scheme);
 881	}
 882
 883	if ((buffer->index < 0) || (buffer->index >= fore200e_rx_buf_nbr[ scheme ][ magn ])) {
 884	    printk(FORE200E "bsq_audit(%d): queue %d.%d, out of range buffer index = %ld !\n",
 885		   where, scheme, magn, buffer->index);
 886	}
 887
 888	count++;
 889	buffer = buffer->next;
 890    }
 891
 892    if (count != bsq->freebuf_count) {
 893	printk(FORE200E "bsq_audit(%d): queue %d.%d, %d bufs in free list, but freebuf_count = %d\n",
 894	       where, scheme, magn, count, bsq->freebuf_count);
 895    }
 896    return 0;
 897}
 898#endif
 899
 900
 901static void
 902fore200e_supply(struct fore200e* fore200e)
 903{
 904    int  scheme, magn, i;
 905
 906    struct host_bsq*       bsq;
 907    struct host_bsq_entry* entry;
 908    struct buffer*         buffer;
 909
 910    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
 911	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
 912
 913	    bsq = &fore200e->host_bsq[ scheme ][ magn ];
 914
 915#ifdef FORE200E_BSQ_DEBUG
 916	    bsq_audit(1, bsq, scheme, magn);
 917#endif
 918	    while (bsq->freebuf_count >= RBD_BLK_SIZE) {
 919
 920		DPRINTK(2, "supplying %d rx buffers to queue %d / %d, freebuf_count = %d\n",
 921			RBD_BLK_SIZE, scheme, magn, bsq->freebuf_count);
 922
 923		entry = &bsq->host_entry[ bsq->head ];
 924
 925		for (i = 0; i < RBD_BLK_SIZE; i++) {
 926
 927		    /* take the first buffer in the free buffer list */
 928		    buffer = bsq->freebuf;
 929		    if (!buffer) {
 930			printk(FORE200E "no more free bufs in queue %d.%d, but freebuf_count = %d\n",
 931			       scheme, magn, bsq->freebuf_count);
 932			return;
 933		    }
 934		    bsq->freebuf = buffer->next;
 935		    
 936#ifdef FORE200E_BSQ_DEBUG
 937		    if (buffer->supplied)
 938			printk(FORE200E "queue %d.%d, buffer %lu already supplied\n",
 939			       scheme, magn, buffer->index);
 940		    buffer->supplied = 1;
 941#endif
 942		    entry->rbd_block->rbd[ i ].buffer_haddr = buffer->data.dma_addr;
 943		    entry->rbd_block->rbd[ i ].handle       = FORE200E_BUF2HDL(buffer);
 944		}
 945
 946		FORE200E_NEXT_ENTRY(bsq->head, QUEUE_SIZE_BS);
 947
 948 		/* decrease accordingly the number of free rx buffers */
 949		bsq->freebuf_count -= RBD_BLK_SIZE;
 950
 951		*entry->status = STATUS_PENDING;
 952		fore200e->bus->write(entry->rbd_block_dma, &entry->cp_entry->rbd_block_haddr);
 953	    }
 954	}
 955    }
 956}
 957
 958
 959static int
 960fore200e_push_rpd(struct fore200e* fore200e, struct atm_vcc* vcc, struct rpd* rpd)
 961{
 962    struct sk_buff*      skb;
 963    struct buffer*       buffer;
 964    struct fore200e_vcc* fore200e_vcc;
 965    int                  i, pdu_len = 0;
 966#ifdef FORE200E_52BYTE_AAL0_SDU
 967    u32                  cell_header = 0;
 968#endif
 969
 970    ASSERT(vcc);
 971    
 972    fore200e_vcc = FORE200E_VCC(vcc);
 973    ASSERT(fore200e_vcc);
 974
 975#ifdef FORE200E_52BYTE_AAL0_SDU
 976    if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.rxtp.max_sdu == ATM_AAL0_SDU)) {
 977
 978	cell_header = (rpd->atm_header.gfc << ATM_HDR_GFC_SHIFT) |
 979	              (rpd->atm_header.vpi << ATM_HDR_VPI_SHIFT) |
 980                      (rpd->atm_header.vci << ATM_HDR_VCI_SHIFT) |
 981                      (rpd->atm_header.plt << ATM_HDR_PTI_SHIFT) | 
 982                       rpd->atm_header.clp;
 983	pdu_len = 4;
 984    }
 985#endif
 986    
 987    /* compute total PDU length */
 988    for (i = 0; i < rpd->nseg; i++)
 989	pdu_len += rpd->rsd[ i ].length;
 990    
 991    skb = alloc_skb(pdu_len, GFP_ATOMIC);
 992    if (skb == NULL) {
 993	DPRINTK(2, "unable to alloc new skb, rx PDU length = %d\n", pdu_len);
 994
 995	atomic_inc(&vcc->stats->rx_drop);
 996	return -ENOMEM;
 997    } 
 998
 999    __net_timestamp(skb);
1000    
1001#ifdef FORE200E_52BYTE_AAL0_SDU
1002    if (cell_header) {
1003	*((u32*)skb_put(skb, 4)) = cell_header;
1004    }
1005#endif
1006
1007    /* reassemble segments */
1008    for (i = 0; i < rpd->nseg; i++) {
1009	
1010	/* rebuild rx buffer address from rsd handle */
1011	buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle);
1012	
1013	/* Make device DMA transfer visible to CPU.  */
1014	dma_sync_single_for_cpu(fore200e->dev, buffer->data.dma_addr,
1015				rpd->rsd[i].length, DMA_FROM_DEVICE);
1016	
1017	skb_put_data(skb, buffer->data.align_addr, rpd->rsd[i].length);
1018
1019	/* Now let the device get at it again.  */
1020	dma_sync_single_for_device(fore200e->dev, buffer->data.dma_addr,
1021				   rpd->rsd[i].length, DMA_FROM_DEVICE);
1022    }
1023
1024    DPRINTK(3, "rx skb: len = %d, truesize = %d\n", skb->len, skb->truesize);
1025    
1026    if (pdu_len < fore200e_vcc->rx_min_pdu)
1027	fore200e_vcc->rx_min_pdu = pdu_len;
1028    if (pdu_len > fore200e_vcc->rx_max_pdu)
1029	fore200e_vcc->rx_max_pdu = pdu_len;
1030    fore200e_vcc->rx_pdu++;
1031
1032    /* push PDU */
1033    if (atm_charge(vcc, skb->truesize) == 0) {
1034
1035	DPRINTK(2, "receive buffers saturated for %d.%d.%d - PDU dropped\n",
1036		vcc->itf, vcc->vpi, vcc->vci);
1037
1038	dev_kfree_skb_any(skb);
1039
1040	atomic_inc(&vcc->stats->rx_drop);
1041	return -ENOMEM;
1042    }
1043
1044    vcc->push(vcc, skb);
1045    atomic_inc(&vcc->stats->rx);
1046
1047    return 0;
1048}
1049
1050
1051static void
1052fore200e_collect_rpd(struct fore200e* fore200e, struct rpd* rpd)
1053{
1054    struct host_bsq* bsq;
1055    struct buffer*   buffer;
1056    int              i;
1057    
1058    for (i = 0; i < rpd->nseg; i++) {
1059
1060	/* rebuild rx buffer address from rsd handle */
1061	buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle);
1062
1063	bsq = &fore200e->host_bsq[ buffer->scheme ][ buffer->magn ];
1064
1065#ifdef FORE200E_BSQ_DEBUG
1066	bsq_audit(2, bsq, buffer->scheme, buffer->magn);
1067
1068	if (buffer->supplied == 0)
1069	    printk(FORE200E "queue %d.%d, buffer %ld was not supplied\n",
1070		   buffer->scheme, buffer->magn, buffer->index);
1071	buffer->supplied = 0;
1072#endif
1073
1074	/* re-insert the buffer into the free buffer list */
1075	buffer->next = bsq->freebuf;
1076	bsq->freebuf = buffer;
1077
1078	/* then increment the number of free rx buffers */
1079	bsq->freebuf_count++;
1080    }
1081}
1082
1083
1084static void
1085fore200e_rx_irq(struct fore200e* fore200e)
1086{
1087    struct host_rxq*        rxq = &fore200e->host_rxq;
1088    struct host_rxq_entry*  entry;
1089    struct atm_vcc*         vcc;
1090    struct fore200e_vc_map* vc_map;
1091
1092    for (;;) {
1093	
1094	entry = &rxq->host_entry[ rxq->head ];
1095
1096	/* no more received PDUs */
1097	if ((*entry->status & STATUS_COMPLETE) == 0)
1098	    break;
1099
1100	vc_map = FORE200E_VC_MAP(fore200e, entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1101
1102	if ((vc_map->vcc == NULL) ||
1103	    (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) {
1104
1105	    DPRINTK(1, "no ready VC found for PDU received on %d.%d.%d\n",
1106		    fore200e->atm_dev->number,
1107		    entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1108	}
1109	else {
1110	    vcc = vc_map->vcc;
1111	    ASSERT(vcc);
1112
1113	    if ((*entry->status & STATUS_ERROR) == 0) {
1114
1115		fore200e_push_rpd(fore200e, vcc, entry->rpd);
1116	    }
1117	    else {
1118		DPRINTK(2, "damaged PDU on %d.%d.%d\n",
1119			fore200e->atm_dev->number,
1120			entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1121		atomic_inc(&vcc->stats->rx_err);
1122	    }
1123	}
1124
1125	FORE200E_NEXT_ENTRY(rxq->head, QUEUE_SIZE_RX);
1126
1127	fore200e_collect_rpd(fore200e, entry->rpd);
1128
1129	/* rewrite the rpd address to ack the received PDU */
1130	fore200e->bus->write(entry->rpd_dma, &entry->cp_entry->rpd_haddr);
1131	*entry->status = STATUS_FREE;
1132
1133	fore200e_supply(fore200e);
1134    }
1135}
1136
1137
1138#ifndef FORE200E_USE_TASKLET
1139static void
1140fore200e_irq(struct fore200e* fore200e)
1141{
1142    unsigned long flags;
1143
1144    spin_lock_irqsave(&fore200e->q_lock, flags);
1145    fore200e_rx_irq(fore200e);
1146    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1147
1148    spin_lock_irqsave(&fore200e->q_lock, flags);
1149    fore200e_tx_irq(fore200e);
1150    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1151}
1152#endif
1153
1154
1155static irqreturn_t
1156fore200e_interrupt(int irq, void* dev)
1157{
1158    struct fore200e* fore200e = FORE200E_DEV((struct atm_dev*)dev);
1159
1160    if (fore200e->bus->irq_check(fore200e) == 0) {
1161	
1162	DPRINTK(3, "interrupt NOT triggered by device %d\n", fore200e->atm_dev->number);
1163	return IRQ_NONE;
1164    }
1165    DPRINTK(3, "interrupt triggered by device %d\n", fore200e->atm_dev->number);
1166
1167#ifdef FORE200E_USE_TASKLET
1168    tasklet_schedule(&fore200e->tx_tasklet);
1169    tasklet_schedule(&fore200e->rx_tasklet);
1170#else
1171    fore200e_irq(fore200e);
1172#endif
1173    
1174    fore200e->bus->irq_ack(fore200e);
1175    return IRQ_HANDLED;
1176}
1177
1178
1179#ifdef FORE200E_USE_TASKLET
1180static void
1181fore200e_tx_tasklet(unsigned long data)
1182{
1183    struct fore200e* fore200e = (struct fore200e*) data;
1184    unsigned long flags;
1185
1186    DPRINTK(3, "tx tasklet scheduled for device %d\n", fore200e->atm_dev->number);
1187
1188    spin_lock_irqsave(&fore200e->q_lock, flags);
1189    fore200e_tx_irq(fore200e);
1190    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1191}
1192
1193
1194static void
1195fore200e_rx_tasklet(unsigned long data)
1196{
1197    struct fore200e* fore200e = (struct fore200e*) data;
1198    unsigned long    flags;
1199
1200    DPRINTK(3, "rx tasklet scheduled for device %d\n", fore200e->atm_dev->number);
1201
1202    spin_lock_irqsave(&fore200e->q_lock, flags);
1203    fore200e_rx_irq((struct fore200e*) data);
1204    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1205}
1206#endif
1207
1208
1209static int
1210fore200e_select_scheme(struct atm_vcc* vcc)
1211{
1212    /* fairly balance the VCs over (identical) buffer schemes */
1213    int scheme = vcc->vci % 2 ? BUFFER_SCHEME_ONE : BUFFER_SCHEME_TWO;
1214
1215    DPRINTK(1, "VC %d.%d.%d uses buffer scheme %d\n",
1216	    vcc->itf, vcc->vpi, vcc->vci, scheme);
1217
1218    return scheme;
1219}
1220
1221
1222static int 
1223fore200e_activate_vcin(struct fore200e* fore200e, int activate, struct atm_vcc* vcc, int mtu)
1224{
1225    struct host_cmdq*        cmdq  = &fore200e->host_cmdq;
1226    struct host_cmdq_entry*  entry = &cmdq->host_entry[ cmdq->head ];
1227    struct activate_opcode   activ_opcode;
1228    struct deactivate_opcode deactiv_opcode;
1229    struct vpvc              vpvc;
1230    int                      ok;
1231    enum fore200e_aal        aal = fore200e_atm2fore_aal(vcc->qos.aal);
1232
1233    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1234    
1235    if (activate) {
1236	FORE200E_VCC(vcc)->scheme = fore200e_select_scheme(vcc);
1237	
1238	activ_opcode.opcode = OPCODE_ACTIVATE_VCIN;
1239	activ_opcode.aal    = aal;
1240	activ_opcode.scheme = FORE200E_VCC(vcc)->scheme;
1241	activ_opcode.pad    = 0;
1242    }
1243    else {
1244	deactiv_opcode.opcode = OPCODE_DEACTIVATE_VCIN;
1245	deactiv_opcode.pad    = 0;
1246    }
1247
1248    vpvc.vci = vcc->vci;
1249    vpvc.vpi = vcc->vpi;
1250
1251    *entry->status = STATUS_PENDING;
1252
1253    if (activate) {
1254
1255#ifdef FORE200E_52BYTE_AAL0_SDU
1256	mtu = 48;
1257#endif
1258	/* the MTU is not used by the cp, except in the case of AAL0 */
1259	fore200e->bus->write(mtu,                        &entry->cp_entry->cmd.activate_block.mtu);
1260	fore200e->bus->write(*(u32*)&vpvc,         (u32 __iomem *)&entry->cp_entry->cmd.activate_block.vpvc);
1261	fore200e->bus->write(*(u32*)&activ_opcode, (u32 __iomem *)&entry->cp_entry->cmd.activate_block.opcode);
1262    }
1263    else {
1264	fore200e->bus->write(*(u32*)&vpvc,         (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.vpvc);
1265	fore200e->bus->write(*(u32*)&deactiv_opcode, (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.opcode);
1266    }
1267
1268    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1269
1270    *entry->status = STATUS_FREE;
1271
1272    if (ok == 0) {
1273	printk(FORE200E "unable to %s VC %d.%d.%d\n",
1274	       activate ? "open" : "close", vcc->itf, vcc->vpi, vcc->vci);
1275	return -EIO;
1276    }
1277
1278    DPRINTK(1, "VC %d.%d.%d %sed\n", vcc->itf, vcc->vpi, vcc->vci, 
1279	    activate ? "open" : "clos");
1280
1281    return 0;
1282}
1283
1284
1285#define FORE200E_MAX_BACK2BACK_CELLS 255    /* XXX depends on CDVT */
1286
1287static void
1288fore200e_rate_ctrl(struct atm_qos* qos, struct tpd_rate* rate)
1289{
1290    if (qos->txtp.max_pcr < ATM_OC3_PCR) {
1291    
1292	/* compute the data cells to idle cells ratio from the tx PCR */
1293	rate->data_cells = qos->txtp.max_pcr * FORE200E_MAX_BACK2BACK_CELLS / ATM_OC3_PCR;
1294	rate->idle_cells = FORE200E_MAX_BACK2BACK_CELLS - rate->data_cells;
1295    }
1296    else {
1297	/* disable rate control */
1298	rate->data_cells = rate->idle_cells = 0;
1299    }
1300}
1301
1302
1303static int
1304fore200e_open(struct atm_vcc *vcc)
1305{
1306    struct fore200e*        fore200e = FORE200E_DEV(vcc->dev);
1307    struct fore200e_vcc*    fore200e_vcc;
1308    struct fore200e_vc_map* vc_map;
1309    unsigned long	    flags;
1310    int			    vci = vcc->vci;
1311    short		    vpi = vcc->vpi;
1312
1313    ASSERT((vpi >= 0) && (vpi < 1<<FORE200E_VPI_BITS));
1314    ASSERT((vci >= 0) && (vci < 1<<FORE200E_VCI_BITS));
1315
1316    spin_lock_irqsave(&fore200e->q_lock, flags);
1317
1318    vc_map = FORE200E_VC_MAP(fore200e, vpi, vci);
1319    if (vc_map->vcc) {
1320
1321	spin_unlock_irqrestore(&fore200e->q_lock, flags);
1322
1323	printk(FORE200E "VC %d.%d.%d already in use\n",
1324	       fore200e->atm_dev->number, vpi, vci);
1325
1326	return -EINVAL;
1327    }
1328
1329    vc_map->vcc = vcc;
1330
1331    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1332
1333    fore200e_vcc = kzalloc(sizeof(struct fore200e_vcc), GFP_ATOMIC);
1334    if (fore200e_vcc == NULL) {
1335	vc_map->vcc = NULL;
1336	return -ENOMEM;
1337    }
1338
1339    DPRINTK(2, "opening %d.%d.%d:%d QoS = (tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; "
1340	    "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d)\n",
1341	    vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1342	    fore200e_traffic_class[ vcc->qos.txtp.traffic_class ],
1343	    vcc->qos.txtp.min_pcr, vcc->qos.txtp.max_pcr, vcc->qos.txtp.max_cdv, vcc->qos.txtp.max_sdu,
1344	    fore200e_traffic_class[ vcc->qos.rxtp.traffic_class ],
1345	    vcc->qos.rxtp.min_pcr, vcc->qos.rxtp.max_pcr, vcc->qos.rxtp.max_cdv, vcc->qos.rxtp.max_sdu);
1346    
1347    /* pseudo-CBR bandwidth requested? */
1348    if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1349	
1350	mutex_lock(&fore200e->rate_mtx);
1351	if (fore200e->available_cell_rate < vcc->qos.txtp.max_pcr) {
1352	    mutex_unlock(&fore200e->rate_mtx);
1353
1354	    kfree(fore200e_vcc);
1355	    vc_map->vcc = NULL;
1356	    return -EAGAIN;
1357	}
1358
1359	/* reserve bandwidth */
1360	fore200e->available_cell_rate -= vcc->qos.txtp.max_pcr;
1361	mutex_unlock(&fore200e->rate_mtx);
1362    }
1363    
1364    vcc->itf = vcc->dev->number;
1365
1366    set_bit(ATM_VF_PARTIAL,&vcc->flags);
1367    set_bit(ATM_VF_ADDR, &vcc->flags);
1368
1369    vcc->dev_data = fore200e_vcc;
1370    
1371    if (fore200e_activate_vcin(fore200e, 1, vcc, vcc->qos.rxtp.max_sdu) < 0) {
1372
1373	vc_map->vcc = NULL;
1374
1375	clear_bit(ATM_VF_ADDR, &vcc->flags);
1376	clear_bit(ATM_VF_PARTIAL,&vcc->flags);
1377
1378	vcc->dev_data = NULL;
1379
1380	fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1381
1382	kfree(fore200e_vcc);
1383	return -EINVAL;
1384    }
1385    
1386    /* compute rate control parameters */
1387    if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1388	
1389	fore200e_rate_ctrl(&vcc->qos, &fore200e_vcc->rate);
1390	set_bit(ATM_VF_HASQOS, &vcc->flags);
1391
1392	DPRINTK(3, "tx on %d.%d.%d:%d, tx PCR = %d, rx PCR = %d, data_cells = %u, idle_cells = %u\n",
1393		vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1394		vcc->qos.txtp.max_pcr, vcc->qos.rxtp.max_pcr, 
1395		fore200e_vcc->rate.data_cells, fore200e_vcc->rate.idle_cells);
1396    }
1397    
1398    fore200e_vcc->tx_min_pdu = fore200e_vcc->rx_min_pdu = MAX_PDU_SIZE + 1;
1399    fore200e_vcc->tx_max_pdu = fore200e_vcc->rx_max_pdu = 0;
1400    fore200e_vcc->tx_pdu     = fore200e_vcc->rx_pdu     = 0;
1401
1402    /* new incarnation of the vcc */
1403    vc_map->incarn = ++fore200e->incarn_count;
1404
1405    /* VC unusable before this flag is set */
1406    set_bit(ATM_VF_READY, &vcc->flags);
1407
1408    return 0;
1409}
1410
1411
1412static void
1413fore200e_close(struct atm_vcc* vcc)
1414{
 
1415    struct fore200e_vcc*    fore200e_vcc;
1416    struct fore200e*        fore200e;
1417    struct fore200e_vc_map* vc_map;
1418    unsigned long           flags;
1419
1420    ASSERT(vcc);
1421    fore200e = FORE200E_DEV(vcc->dev);
1422
1423    ASSERT((vcc->vpi >= 0) && (vcc->vpi < 1<<FORE200E_VPI_BITS));
1424    ASSERT((vcc->vci >= 0) && (vcc->vci < 1<<FORE200E_VCI_BITS));
1425
1426    DPRINTK(2, "closing %d.%d.%d:%d\n", vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal));
1427
1428    clear_bit(ATM_VF_READY, &vcc->flags);
1429
1430    fore200e_activate_vcin(fore200e, 0, vcc, 0);
1431
1432    spin_lock_irqsave(&fore200e->q_lock, flags);
1433
1434    vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci);
1435
1436    /* the vc is no longer considered as "in use" by fore200e_open() */
1437    vc_map->vcc = NULL;
1438
1439    vcc->itf = vcc->vci = vcc->vpi = 0;
1440
1441    fore200e_vcc = FORE200E_VCC(vcc);
1442    vcc->dev_data = NULL;
1443
1444    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1445
1446    /* release reserved bandwidth, if any */
1447    if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1448
1449	mutex_lock(&fore200e->rate_mtx);
1450	fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1451	mutex_unlock(&fore200e->rate_mtx);
1452
1453	clear_bit(ATM_VF_HASQOS, &vcc->flags);
1454    }
1455
1456    clear_bit(ATM_VF_ADDR, &vcc->flags);
1457    clear_bit(ATM_VF_PARTIAL,&vcc->flags);
1458
1459    ASSERT(fore200e_vcc);
1460    kfree(fore200e_vcc);
1461}
1462
1463
1464static int
1465fore200e_send(struct atm_vcc *vcc, struct sk_buff *skb)
1466{
1467    struct fore200e*        fore200e;
1468    struct fore200e_vcc*    fore200e_vcc;
1469    struct fore200e_vc_map* vc_map;
1470    struct host_txq*        txq;
1471    struct host_txq_entry*  entry;
1472    struct tpd*             tpd;
1473    struct tpd_haddr        tpd_haddr;
1474    int                     retry        = CONFIG_ATM_FORE200E_TX_RETRY;
1475    int                     tx_copy      = 0;
1476    int                     tx_len       = skb->len;
1477    u32*                    cell_header  = NULL;
1478    unsigned char*          skb_data;
1479    int                     skb_len;
1480    unsigned char*          data;
1481    unsigned long           flags;
1482
1483    if (!vcc)
1484        return -EINVAL;
1485
1486    fore200e = FORE200E_DEV(vcc->dev);
1487    fore200e_vcc = FORE200E_VCC(vcc);
1488
1489    if (!fore200e)
1490        return -EINVAL;
1491
1492    txq = &fore200e->host_txq;
1493    if (!fore200e_vcc)
1494        return -EINVAL;
1495
1496    if (!test_bit(ATM_VF_READY, &vcc->flags)) {
1497	DPRINTK(1, "VC %d.%d.%d not ready for tx\n", vcc->itf, vcc->vpi, vcc->vpi);
1498	dev_kfree_skb_any(skb);
1499	return -EINVAL;
1500    }
1501
1502#ifdef FORE200E_52BYTE_AAL0_SDU
1503    if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.txtp.max_sdu == ATM_AAL0_SDU)) {
1504	cell_header = (u32*) skb->data;
1505	skb_data    = skb->data + 4;    /* skip 4-byte cell header */
1506	skb_len     = tx_len = skb->len  - 4;
1507
1508	DPRINTK(3, "user-supplied cell header = 0x%08x\n", *cell_header);
1509    }
1510    else 
1511#endif
1512    {
1513	skb_data = skb->data;
1514	skb_len  = skb->len;
1515    }
1516    
1517    if (((unsigned long)skb_data) & 0x3) {
1518
1519	DPRINTK(2, "misaligned tx PDU on device %s\n", fore200e->name);
1520	tx_copy = 1;
1521	tx_len  = skb_len;
1522    }
1523
1524    if ((vcc->qos.aal == ATM_AAL0) && (skb_len % ATM_CELL_PAYLOAD)) {
1525
1526        /* this simply NUKES the PCA board */
1527	DPRINTK(2, "incomplete tx AAL0 PDU on device %s\n", fore200e->name);
1528	tx_copy = 1;
1529	tx_len  = ((skb_len / ATM_CELL_PAYLOAD) + 1) * ATM_CELL_PAYLOAD;
1530    }
1531    
1532    if (tx_copy) {
1533	data = kmalloc(tx_len, GFP_ATOMIC);
1534	if (data == NULL) {
1535	    if (vcc->pop) {
1536		vcc->pop(vcc, skb);
1537	    }
1538	    else {
1539		dev_kfree_skb_any(skb);
1540	    }
1541	    return -ENOMEM;
1542	}
1543
1544	memcpy(data, skb_data, skb_len);
1545	if (skb_len < tx_len)
1546	    memset(data + skb_len, 0x00, tx_len - skb_len);
1547    }
1548    else {
1549	data = skb_data;
1550    }
1551
1552    vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci);
1553    ASSERT(vc_map->vcc == vcc);
1554
1555  retry_here:
1556
1557    spin_lock_irqsave(&fore200e->q_lock, flags);
1558
1559    entry = &txq->host_entry[ txq->head ];
1560
1561    if ((*entry->status != STATUS_FREE) || (txq->txing >= QUEUE_SIZE_TX - 2)) {
1562
1563	/* try to free completed tx queue entries */
1564	fore200e_tx_irq(fore200e);
1565
1566	if (*entry->status != STATUS_FREE) {
1567
1568	    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1569
1570	    /* retry once again? */
1571	    if (--retry > 0) {
1572		udelay(50);
1573		goto retry_here;
1574	    }
1575
1576	    atomic_inc(&vcc->stats->tx_err);
1577
1578	    fore200e->tx_sat++;
1579	    DPRINTK(2, "tx queue of device %s is saturated, PDU dropped - heartbeat is %08x\n",
1580		    fore200e->name, fore200e->cp_queues->heartbeat);
1581	    if (vcc->pop) {
1582		vcc->pop(vcc, skb);
1583	    }
1584	    else {
1585		dev_kfree_skb_any(skb);
1586	    }
1587
1588	    if (tx_copy)
1589		kfree(data);
1590
1591	    return -ENOBUFS;
1592	}
1593    }
1594
1595    entry->incarn = vc_map->incarn;
1596    entry->vc_map = vc_map;
1597    entry->skb    = skb;
1598    entry->data   = tx_copy ? data : NULL;
1599
1600    tpd = entry->tpd;
1601    tpd->tsd[ 0 ].buffer = dma_map_single(fore200e->dev, data, tx_len,
1602					  DMA_TO_DEVICE);
1603    if (dma_mapping_error(fore200e->dev, tpd->tsd[0].buffer)) {
1604	if (tx_copy)
1605	    kfree(data);
1606	spin_unlock_irqrestore(&fore200e->q_lock, flags);
1607	return -ENOMEM;
1608    }
1609    tpd->tsd[ 0 ].length = tx_len;
1610
1611    FORE200E_NEXT_ENTRY(txq->head, QUEUE_SIZE_TX);
1612    txq->txing++;
1613
1614    /* The dma_map call above implies a dma_sync so the device can use it,
1615     * thus no explicit dma_sync call is necessary here.
1616     */
1617    
1618    DPRINTK(3, "tx on %d.%d.%d:%d, len = %u (%u)\n", 
1619	    vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1620	    tpd->tsd[0].length, skb_len);
1621
1622    if (skb_len < fore200e_vcc->tx_min_pdu)
1623	fore200e_vcc->tx_min_pdu = skb_len;
1624    if (skb_len > fore200e_vcc->tx_max_pdu)
1625	fore200e_vcc->tx_max_pdu = skb_len;
1626    fore200e_vcc->tx_pdu++;
1627
1628    /* set tx rate control information */
1629    tpd->rate.data_cells = fore200e_vcc->rate.data_cells;
1630    tpd->rate.idle_cells = fore200e_vcc->rate.idle_cells;
1631
1632    if (cell_header) {
1633	tpd->atm_header.clp = (*cell_header & ATM_HDR_CLP);
1634	tpd->atm_header.plt = (*cell_header & ATM_HDR_PTI_MASK) >> ATM_HDR_PTI_SHIFT;
1635	tpd->atm_header.vci = (*cell_header & ATM_HDR_VCI_MASK) >> ATM_HDR_VCI_SHIFT;
1636	tpd->atm_header.vpi = (*cell_header & ATM_HDR_VPI_MASK) >> ATM_HDR_VPI_SHIFT;
1637	tpd->atm_header.gfc = (*cell_header & ATM_HDR_GFC_MASK) >> ATM_HDR_GFC_SHIFT;
1638    }
1639    else {
1640	/* set the ATM header, common to all cells conveying the PDU */
1641	tpd->atm_header.clp = 0;
1642	tpd->atm_header.plt = 0;
1643	tpd->atm_header.vci = vcc->vci;
1644	tpd->atm_header.vpi = vcc->vpi;
1645	tpd->atm_header.gfc = 0;
1646    }
1647
1648    tpd->spec.length = tx_len;
1649    tpd->spec.nseg   = 1;
1650    tpd->spec.aal    = fore200e_atm2fore_aal(vcc->qos.aal);
1651    tpd->spec.intr   = 1;
1652
1653    tpd_haddr.size  = sizeof(struct tpd) / (1<<TPD_HADDR_SHIFT);  /* size is expressed in 32 byte blocks */
1654    tpd_haddr.pad   = 0;
1655    tpd_haddr.haddr = entry->tpd_dma >> TPD_HADDR_SHIFT;          /* shift the address, as we are in a bitfield */
1656
1657    *entry->status = STATUS_PENDING;
1658    fore200e->bus->write(*(u32*)&tpd_haddr, (u32 __iomem *)&entry->cp_entry->tpd_haddr);
1659
1660    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1661
1662    return 0;
1663}
1664
1665
1666static int
1667fore200e_getstats(struct fore200e* fore200e)
1668{
1669    struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1670    struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1671    struct stats_opcode     opcode;
1672    int                     ok;
1673    u32                     stats_dma_addr;
1674
1675    if (fore200e->stats == NULL) {
1676	fore200e->stats = kzalloc(sizeof(struct stats), GFP_KERNEL);
1677	if (fore200e->stats == NULL)
1678	    return -ENOMEM;
1679    }
1680    
1681    stats_dma_addr = dma_map_single(fore200e->dev, fore200e->stats,
1682				    sizeof(struct stats), DMA_FROM_DEVICE);
1683    if (dma_mapping_error(fore200e->dev, stats_dma_addr))
1684    	return -ENOMEM;
1685    
1686    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1687
1688    opcode.opcode = OPCODE_GET_STATS;
1689    opcode.pad    = 0;
1690
1691    fore200e->bus->write(stats_dma_addr, &entry->cp_entry->cmd.stats_block.stats_haddr);
1692    
1693    *entry->status = STATUS_PENDING;
1694
1695    fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.stats_block.opcode);
1696
1697    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1698
1699    *entry->status = STATUS_FREE;
1700
1701    dma_unmap_single(fore200e->dev, stats_dma_addr, sizeof(struct stats), DMA_FROM_DEVICE);
1702    
1703    if (ok == 0) {
1704	printk(FORE200E "unable to get statistics from device %s\n", fore200e->name);
1705	return -EIO;
1706    }
1707
1708    return 0;
1709}
1710
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1711#if 0 /* currently unused */
1712static int
1713fore200e_get_oc3(struct fore200e* fore200e, struct oc3_regs* regs)
1714{
1715    struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1716    struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1717    struct oc3_opcode       opcode;
1718    int                     ok;
1719    u32                     oc3_regs_dma_addr;
1720
1721    oc3_regs_dma_addr = fore200e->bus->dma_map(fore200e, regs, sizeof(struct oc3_regs), DMA_FROM_DEVICE);
1722
1723    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1724
1725    opcode.opcode = OPCODE_GET_OC3;
1726    opcode.reg    = 0;
1727    opcode.value  = 0;
1728    opcode.mask   = 0;
1729
1730    fore200e->bus->write(oc3_regs_dma_addr, &entry->cp_entry->cmd.oc3_block.regs_haddr);
1731    
1732    *entry->status = STATUS_PENDING;
1733
1734    fore200e->bus->write(*(u32*)&opcode, (u32*)&entry->cp_entry->cmd.oc3_block.opcode);
1735
1736    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1737
1738    *entry->status = STATUS_FREE;
1739
1740    fore200e->bus->dma_unmap(fore200e, oc3_regs_dma_addr, sizeof(struct oc3_regs), DMA_FROM_DEVICE);
1741    
1742    if (ok == 0) {
1743	printk(FORE200E "unable to get OC-3 regs of device %s\n", fore200e->name);
1744	return -EIO;
1745    }
1746
1747    return 0;
1748}
1749#endif
1750
1751
1752static int
1753fore200e_set_oc3(struct fore200e* fore200e, u32 reg, u32 value, u32 mask)
1754{
1755    struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1756    struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1757    struct oc3_opcode       opcode;
1758    int                     ok;
1759
1760    DPRINTK(2, "set OC-3 reg = 0x%02x, value = 0x%02x, mask = 0x%02x\n", reg, value, mask);
1761
1762    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1763
1764    opcode.opcode = OPCODE_SET_OC3;
1765    opcode.reg    = reg;
1766    opcode.value  = value;
1767    opcode.mask   = mask;
1768
1769    fore200e->bus->write(0, &entry->cp_entry->cmd.oc3_block.regs_haddr);
1770    
1771    *entry->status = STATUS_PENDING;
1772
1773    fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.oc3_block.opcode);
1774
1775    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1776
1777    *entry->status = STATUS_FREE;
1778
1779    if (ok == 0) {
1780	printk(FORE200E "unable to set OC-3 reg 0x%02x of device %s\n", reg, fore200e->name);
1781	return -EIO;
1782    }
1783
1784    return 0;
1785}
1786
1787
1788static int
1789fore200e_setloop(struct fore200e* fore200e, int loop_mode)
1790{
1791    u32 mct_value, mct_mask;
1792    int error;
1793
1794    if (!capable(CAP_NET_ADMIN))
1795	return -EPERM;
1796    
1797    switch (loop_mode) {
1798
1799    case ATM_LM_NONE:
1800	mct_value = 0; 
1801	mct_mask  = SUNI_MCT_DLE | SUNI_MCT_LLE;
1802	break;
1803	
1804    case ATM_LM_LOC_PHY:
1805	mct_value = mct_mask = SUNI_MCT_DLE;
1806	break;
1807
1808    case ATM_LM_RMT_PHY:
1809	mct_value = mct_mask = SUNI_MCT_LLE;
1810	break;
1811
1812    default:
1813	return -EINVAL;
1814    }
1815
1816    error = fore200e_set_oc3(fore200e, SUNI_MCT, mct_value, mct_mask);
1817    if (error == 0)
1818	fore200e->loop_mode = loop_mode;
1819
1820    return error;
1821}
1822
1823
1824static int
1825fore200e_fetch_stats(struct fore200e* fore200e, struct sonet_stats __user *arg)
1826{
1827    struct sonet_stats tmp;
1828
1829    if (fore200e_getstats(fore200e) < 0)
1830	return -EIO;
1831
1832    tmp.section_bip = be32_to_cpu(fore200e->stats->oc3.section_bip8_errors);
1833    tmp.line_bip    = be32_to_cpu(fore200e->stats->oc3.line_bip24_errors);
1834    tmp.path_bip    = be32_to_cpu(fore200e->stats->oc3.path_bip8_errors);
1835    tmp.line_febe   = be32_to_cpu(fore200e->stats->oc3.line_febe_errors);
1836    tmp.path_febe   = be32_to_cpu(fore200e->stats->oc3.path_febe_errors);
1837    tmp.corr_hcs    = be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors);
1838    tmp.uncorr_hcs  = be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors);
1839    tmp.tx_cells    = be32_to_cpu(fore200e->stats->aal0.cells_transmitted)  +
1840	              be32_to_cpu(fore200e->stats->aal34.cells_transmitted) +
1841	              be32_to_cpu(fore200e->stats->aal5.cells_transmitted);
1842    tmp.rx_cells    = be32_to_cpu(fore200e->stats->aal0.cells_received)     +
1843	              be32_to_cpu(fore200e->stats->aal34.cells_received)    +
1844	              be32_to_cpu(fore200e->stats->aal5.cells_received);
1845
1846    if (arg)
1847	return copy_to_user(arg, &tmp, sizeof(struct sonet_stats)) ? -EFAULT : 0;	
1848    
1849    return 0;
1850}
1851
1852
1853static int
1854fore200e_ioctl(struct atm_dev* dev, unsigned int cmd, void __user * arg)
1855{
1856    struct fore200e* fore200e = FORE200E_DEV(dev);
1857    
1858    DPRINTK(2, "ioctl cmd = 0x%x (%u), arg = 0x%p (%lu)\n", cmd, cmd, arg, (unsigned long)arg);
1859
1860    switch (cmd) {
1861
1862    case SONET_GETSTAT:
1863	return fore200e_fetch_stats(fore200e, (struct sonet_stats __user *)arg);
1864
1865    case SONET_GETDIAG:
1866	return put_user(0, (int __user *)arg) ? -EFAULT : 0;
1867
1868    case ATM_SETLOOP:
1869	return fore200e_setloop(fore200e, (int)(unsigned long)arg);
1870
1871    case ATM_GETLOOP:
1872	return put_user(fore200e->loop_mode, (int __user *)arg) ? -EFAULT : 0;
1873
1874    case ATM_QUERYLOOP:
1875	return put_user(ATM_LM_LOC_PHY | ATM_LM_RMT_PHY, (int __user *)arg) ? -EFAULT : 0;
1876    }
1877
1878    return -ENOSYS; /* not implemented */
1879}
1880
1881
1882static int
1883fore200e_change_qos(struct atm_vcc* vcc,struct atm_qos* qos, int flags)
1884{
1885    struct fore200e_vcc* fore200e_vcc = FORE200E_VCC(vcc);
1886    struct fore200e*     fore200e     = FORE200E_DEV(vcc->dev);
1887
1888    if (!test_bit(ATM_VF_READY, &vcc->flags)) {
1889	DPRINTK(1, "VC %d.%d.%d not ready for QoS change\n", vcc->itf, vcc->vpi, vcc->vpi);
1890	return -EINVAL;
1891    }
1892
1893    DPRINTK(2, "change_qos %d.%d.%d, "
1894	    "(tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; "
1895	    "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d), flags = 0x%x\n"
1896	    "available_cell_rate = %u",
1897	    vcc->itf, vcc->vpi, vcc->vci,
1898	    fore200e_traffic_class[ qos->txtp.traffic_class ],
1899	    qos->txtp.min_pcr, qos->txtp.max_pcr, qos->txtp.max_cdv, qos->txtp.max_sdu,
1900	    fore200e_traffic_class[ qos->rxtp.traffic_class ],
1901	    qos->rxtp.min_pcr, qos->rxtp.max_pcr, qos->rxtp.max_cdv, qos->rxtp.max_sdu,
1902	    flags, fore200e->available_cell_rate);
1903
1904    if ((qos->txtp.traffic_class == ATM_CBR) && (qos->txtp.max_pcr > 0)) {
1905
1906	mutex_lock(&fore200e->rate_mtx);
1907	if (fore200e->available_cell_rate + vcc->qos.txtp.max_pcr < qos->txtp.max_pcr) {
1908	    mutex_unlock(&fore200e->rate_mtx);
1909	    return -EAGAIN;
1910	}
1911
1912	fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1913	fore200e->available_cell_rate -= qos->txtp.max_pcr;
1914
1915	mutex_unlock(&fore200e->rate_mtx);
1916	
1917	memcpy(&vcc->qos, qos, sizeof(struct atm_qos));
1918	
1919	/* update rate control parameters */
1920	fore200e_rate_ctrl(qos, &fore200e_vcc->rate);
1921
1922	set_bit(ATM_VF_HASQOS, &vcc->flags);
1923
1924	return 0;
1925    }
1926    
1927    return -EINVAL;
1928}
1929    
1930
1931static int fore200e_irq_request(struct fore200e *fore200e)
1932{
1933    if (request_irq(fore200e->irq, fore200e_interrupt, IRQF_SHARED, fore200e->name, fore200e->atm_dev) < 0) {
1934
1935	printk(FORE200E "unable to reserve IRQ %s for device %s\n",
1936	       fore200e_irq_itoa(fore200e->irq), fore200e->name);
1937	return -EBUSY;
1938    }
1939
1940    printk(FORE200E "IRQ %s reserved for device %s\n",
1941	   fore200e_irq_itoa(fore200e->irq), fore200e->name);
1942
1943#ifdef FORE200E_USE_TASKLET
1944    tasklet_init(&fore200e->tx_tasklet, fore200e_tx_tasklet, (unsigned long)fore200e);
1945    tasklet_init(&fore200e->rx_tasklet, fore200e_rx_tasklet, (unsigned long)fore200e);
1946#endif
1947
1948    fore200e->state = FORE200E_STATE_IRQ;
1949    return 0;
1950}
1951
1952
1953static int fore200e_get_esi(struct fore200e *fore200e)
1954{
1955    struct prom_data* prom = kzalloc(sizeof(struct prom_data), GFP_KERNEL);
1956    int ok, i;
1957
1958    if (!prom)
1959	return -ENOMEM;
1960
1961    ok = fore200e->bus->prom_read(fore200e, prom);
1962    if (ok < 0) {
1963	kfree(prom);
1964	return -EBUSY;
1965    }
1966	
1967    printk(FORE200E "device %s, rev. %c, S/N: %d, ESI: %pM\n",
1968	   fore200e->name, 
1969	   (prom->hw_revision & 0xFF) + '@',    /* probably meaningless with SBA boards */
1970	   prom->serial_number & 0xFFFF, &prom->mac_addr[2]);
1971	
1972    for (i = 0; i < ESI_LEN; i++) {
1973	fore200e->esi[ i ] = fore200e->atm_dev->esi[ i ] = prom->mac_addr[ i + 2 ];
1974    }
1975    
1976    kfree(prom);
1977
1978    return 0;
1979}
1980
1981
1982static int fore200e_alloc_rx_buf(struct fore200e *fore200e)
1983{
1984    int scheme, magn, nbr, size, i;
1985
1986    struct host_bsq* bsq;
1987    struct buffer*   buffer;
1988
1989    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
1990	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
1991
1992	    bsq = &fore200e->host_bsq[ scheme ][ magn ];
1993
1994	    nbr  = fore200e_rx_buf_nbr[ scheme ][ magn ];
1995	    size = fore200e_rx_buf_size[ scheme ][ magn ];
1996
1997	    DPRINTK(2, "rx buffers %d / %d are being allocated\n", scheme, magn);
1998
1999	    /* allocate the array of receive buffers */
2000	    buffer = bsq->buffer = kcalloc(nbr, sizeof(struct buffer),
2001                                           GFP_KERNEL);
2002
2003	    if (buffer == NULL)
2004		return -ENOMEM;
2005
2006	    bsq->freebuf = NULL;
2007
2008	    for (i = 0; i < nbr; i++) {
2009
2010		buffer[ i ].scheme = scheme;
2011		buffer[ i ].magn   = magn;
2012#ifdef FORE200E_BSQ_DEBUG
2013		buffer[ i ].index  = i;
2014		buffer[ i ].supplied = 0;
2015#endif
2016
2017		/* allocate the receive buffer body */
2018		if (fore200e_chunk_alloc(fore200e,
2019					 &buffer[ i ].data, size, fore200e->bus->buffer_alignment,
2020					 DMA_FROM_DEVICE) < 0) {
2021		    
2022		    while (i > 0)
2023			fore200e_chunk_free(fore200e, &buffer[ --i ].data);
2024		    kfree(buffer);
2025		    
2026		    return -ENOMEM;
2027		}
2028
2029		/* insert the buffer into the free buffer list */
2030		buffer[ i ].next = bsq->freebuf;
2031		bsq->freebuf = &buffer[ i ];
2032	    }
2033	    /* all the buffers are free, initially */
2034	    bsq->freebuf_count = nbr;
2035
2036#ifdef FORE200E_BSQ_DEBUG
2037	    bsq_audit(3, bsq, scheme, magn);
2038#endif
2039	}
2040    }
2041
2042    fore200e->state = FORE200E_STATE_ALLOC_BUF;
2043    return 0;
2044}
2045
2046
2047static int fore200e_init_bs_queue(struct fore200e *fore200e)
2048{
2049    int scheme, magn, i;
2050
2051    struct host_bsq*     bsq;
2052    struct cp_bsq_entry __iomem * cp_entry;
2053
2054    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
2055	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
2056
2057	    DPRINTK(2, "buffer supply queue %d / %d is being initialized\n", scheme, magn);
2058
2059	    bsq = &fore200e->host_bsq[ scheme ][ magn ];
2060
2061	    /* allocate and align the array of status words */
2062	    if (fore200e_dma_chunk_alloc(fore200e,
2063					       &bsq->status,
2064					       sizeof(enum status), 
2065					       QUEUE_SIZE_BS,
2066					       fore200e->bus->status_alignment) < 0) {
2067		return -ENOMEM;
2068	    }
2069
2070	    /* allocate and align the array of receive buffer descriptors */
2071	    if (fore200e_dma_chunk_alloc(fore200e,
2072					       &bsq->rbd_block,
2073					       sizeof(struct rbd_block),
2074					       QUEUE_SIZE_BS,
2075					       fore200e->bus->descr_alignment) < 0) {
2076		
2077		fore200e_dma_chunk_free(fore200e, &bsq->status);
2078		return -ENOMEM;
2079	    }
2080	    
2081	    /* get the base address of the cp resident buffer supply queue entries */
2082	    cp_entry = fore200e->virt_base + 
2083		       fore200e->bus->read(&fore200e->cp_queues->cp_bsq[ scheme ][ magn ]);
2084	    
2085	    /* fill the host resident and cp resident buffer supply queue entries */
2086	    for (i = 0; i < QUEUE_SIZE_BS; i++) {
2087		
2088		bsq->host_entry[ i ].status = 
2089		                     FORE200E_INDEX(bsq->status.align_addr, enum status, i);
2090	        bsq->host_entry[ i ].rbd_block =
2091		                     FORE200E_INDEX(bsq->rbd_block.align_addr, struct rbd_block, i);
2092		bsq->host_entry[ i ].rbd_block_dma =
2093		                     FORE200E_DMA_INDEX(bsq->rbd_block.dma_addr, struct rbd_block, i);
2094		bsq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2095		
2096		*bsq->host_entry[ i ].status = STATUS_FREE;
2097		
2098		fore200e->bus->write(FORE200E_DMA_INDEX(bsq->status.dma_addr, enum status, i), 
2099				     &cp_entry[ i ].status_haddr);
2100	    }
2101	}
2102    }
2103
2104    fore200e->state = FORE200E_STATE_INIT_BSQ;
2105    return 0;
2106}
2107
2108
2109static int fore200e_init_rx_queue(struct fore200e *fore200e)
2110{
2111    struct host_rxq*     rxq =  &fore200e->host_rxq;
2112    struct cp_rxq_entry __iomem * cp_entry;
2113    int i;
2114
2115    DPRINTK(2, "receive queue is being initialized\n");
2116
2117    /* allocate and align the array of status words */
2118    if (fore200e_dma_chunk_alloc(fore200e,
2119				       &rxq->status,
2120				       sizeof(enum status), 
2121				       QUEUE_SIZE_RX,
2122				       fore200e->bus->status_alignment) < 0) {
2123	return -ENOMEM;
2124    }
2125
2126    /* allocate and align the array of receive PDU descriptors */
2127    if (fore200e_dma_chunk_alloc(fore200e,
2128				       &rxq->rpd,
2129				       sizeof(struct rpd), 
2130				       QUEUE_SIZE_RX,
2131				       fore200e->bus->descr_alignment) < 0) {
2132	
2133	fore200e_dma_chunk_free(fore200e, &rxq->status);
2134	return -ENOMEM;
2135    }
2136
2137    /* get the base address of the cp resident rx queue entries */
2138    cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_rxq);
2139
2140    /* fill the host resident and cp resident rx entries */
2141    for (i=0; i < QUEUE_SIZE_RX; i++) {
2142	
2143	rxq->host_entry[ i ].status = 
2144	                     FORE200E_INDEX(rxq->status.align_addr, enum status, i);
2145	rxq->host_entry[ i ].rpd = 
2146	                     FORE200E_INDEX(rxq->rpd.align_addr, struct rpd, i);
2147	rxq->host_entry[ i ].rpd_dma = 
2148	                     FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i);
2149	rxq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2150
2151	*rxq->host_entry[ i ].status = STATUS_FREE;
2152
2153	fore200e->bus->write(FORE200E_DMA_INDEX(rxq->status.dma_addr, enum status, i), 
2154			     &cp_entry[ i ].status_haddr);
2155
2156	fore200e->bus->write(FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i),
2157			     &cp_entry[ i ].rpd_haddr);
2158    }
2159
2160    /* set the head entry of the queue */
2161    rxq->head = 0;
2162
2163    fore200e->state = FORE200E_STATE_INIT_RXQ;
2164    return 0;
2165}
2166
2167
2168static int fore200e_init_tx_queue(struct fore200e *fore200e)
2169{
2170    struct host_txq*     txq =  &fore200e->host_txq;
2171    struct cp_txq_entry __iomem * cp_entry;
2172    int i;
2173
2174    DPRINTK(2, "transmit queue is being initialized\n");
2175
2176    /* allocate and align the array of status words */
2177    if (fore200e_dma_chunk_alloc(fore200e,
2178				       &txq->status,
2179				       sizeof(enum status), 
2180				       QUEUE_SIZE_TX,
2181				       fore200e->bus->status_alignment) < 0) {
2182	return -ENOMEM;
2183    }
2184
2185    /* allocate and align the array of transmit PDU descriptors */
2186    if (fore200e_dma_chunk_alloc(fore200e,
2187				       &txq->tpd,
2188				       sizeof(struct tpd), 
2189				       QUEUE_SIZE_TX,
2190				       fore200e->bus->descr_alignment) < 0) {
2191	
2192	fore200e_dma_chunk_free(fore200e, &txq->status);
2193	return -ENOMEM;
2194    }
2195
2196    /* get the base address of the cp resident tx queue entries */
2197    cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_txq);
2198
2199    /* fill the host resident and cp resident tx entries */
2200    for (i=0; i < QUEUE_SIZE_TX; i++) {
2201	
2202	txq->host_entry[ i ].status = 
2203	                     FORE200E_INDEX(txq->status.align_addr, enum status, i);
2204	txq->host_entry[ i ].tpd = 
2205	                     FORE200E_INDEX(txq->tpd.align_addr, struct tpd, i);
2206	txq->host_entry[ i ].tpd_dma  = 
2207                             FORE200E_DMA_INDEX(txq->tpd.dma_addr, struct tpd, i);
2208	txq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2209
2210	*txq->host_entry[ i ].status = STATUS_FREE;
2211	
2212	fore200e->bus->write(FORE200E_DMA_INDEX(txq->status.dma_addr, enum status, i), 
2213			     &cp_entry[ i ].status_haddr);
2214	
2215        /* although there is a one-to-one mapping of tx queue entries and tpds,
2216	   we do not write here the DMA (physical) base address of each tpd into
2217	   the related cp resident entry, because the cp relies on this write
2218	   operation to detect that a new pdu has been submitted for tx */
2219    }
2220
2221    /* set the head and tail entries of the queue */
2222    txq->head = 0;
2223    txq->tail = 0;
2224
2225    fore200e->state = FORE200E_STATE_INIT_TXQ;
2226    return 0;
2227}
2228
2229
2230static int fore200e_init_cmd_queue(struct fore200e *fore200e)
2231{
2232    struct host_cmdq*     cmdq =  &fore200e->host_cmdq;
2233    struct cp_cmdq_entry __iomem * cp_entry;
2234    int i;
2235
2236    DPRINTK(2, "command queue is being initialized\n");
2237
2238    /* allocate and align the array of status words */
2239    if (fore200e_dma_chunk_alloc(fore200e,
2240				       &cmdq->status,
2241				       sizeof(enum status), 
2242				       QUEUE_SIZE_CMD,
2243				       fore200e->bus->status_alignment) < 0) {
2244	return -ENOMEM;
2245    }
2246    
2247    /* get the base address of the cp resident cmd queue entries */
2248    cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_cmdq);
2249
2250    /* fill the host resident and cp resident cmd entries */
2251    for (i=0; i < QUEUE_SIZE_CMD; i++) {
2252	
2253	cmdq->host_entry[ i ].status   = 
2254                              FORE200E_INDEX(cmdq->status.align_addr, enum status, i);
2255	cmdq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2256
2257	*cmdq->host_entry[ i ].status = STATUS_FREE;
2258
2259	fore200e->bus->write(FORE200E_DMA_INDEX(cmdq->status.dma_addr, enum status, i), 
2260                             &cp_entry[ i ].status_haddr);
2261    }
2262
2263    /* set the head entry of the queue */
2264    cmdq->head = 0;
2265
2266    fore200e->state = FORE200E_STATE_INIT_CMDQ;
2267    return 0;
2268}
2269
2270
2271static void fore200e_param_bs_queue(struct fore200e *fore200e,
2272				    enum buffer_scheme scheme,
2273				    enum buffer_magn magn, int queue_length,
2274				    int pool_size, int supply_blksize)
2275{
2276    struct bs_spec __iomem * bs_spec = &fore200e->cp_queues->init.bs_spec[ scheme ][ magn ];
2277
2278    fore200e->bus->write(queue_length,                           &bs_spec->queue_length);
2279    fore200e->bus->write(fore200e_rx_buf_size[ scheme ][ magn ], &bs_spec->buffer_size);
2280    fore200e->bus->write(pool_size,                              &bs_spec->pool_size);
2281    fore200e->bus->write(supply_blksize,                         &bs_spec->supply_blksize);
2282}
2283
2284
2285static int fore200e_initialize(struct fore200e *fore200e)
2286{
2287    struct cp_queues __iomem * cpq;
2288    int               ok, scheme, magn;
2289
2290    DPRINTK(2, "device %s being initialized\n", fore200e->name);
2291
2292    mutex_init(&fore200e->rate_mtx);
2293    spin_lock_init(&fore200e->q_lock);
2294
2295    cpq = fore200e->cp_queues = fore200e->virt_base + FORE200E_CP_QUEUES_OFFSET;
2296
2297    /* enable cp to host interrupts */
2298    fore200e->bus->write(1, &cpq->imask);
2299
2300    if (fore200e->bus->irq_enable)
2301	fore200e->bus->irq_enable(fore200e);
2302    
2303    fore200e->bus->write(NBR_CONNECT, &cpq->init.num_connect);
2304
2305    fore200e->bus->write(QUEUE_SIZE_CMD, &cpq->init.cmd_queue_len);
2306    fore200e->bus->write(QUEUE_SIZE_RX,  &cpq->init.rx_queue_len);
2307    fore200e->bus->write(QUEUE_SIZE_TX,  &cpq->init.tx_queue_len);
2308
2309    fore200e->bus->write(RSD_EXTENSION,  &cpq->init.rsd_extension);
2310    fore200e->bus->write(TSD_EXTENSION,  &cpq->init.tsd_extension);
2311
2312    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++)
2313	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++)
2314	    fore200e_param_bs_queue(fore200e, scheme, magn,
2315				    QUEUE_SIZE_BS, 
2316				    fore200e_rx_buf_nbr[ scheme ][ magn ],
2317				    RBD_BLK_SIZE);
2318
2319    /* issue the initialize command */
2320    fore200e->bus->write(STATUS_PENDING,    &cpq->init.status);
2321    fore200e->bus->write(OPCODE_INITIALIZE, &cpq->init.opcode);
2322
2323    ok = fore200e_io_poll(fore200e, &cpq->init.status, STATUS_COMPLETE, 3000);
2324    if (ok == 0) {
2325	printk(FORE200E "device %s initialization failed\n", fore200e->name);
2326	return -ENODEV;
2327    }
2328
2329    printk(FORE200E "device %s initialized\n", fore200e->name);
2330
2331    fore200e->state = FORE200E_STATE_INITIALIZE;
2332    return 0;
2333}
2334
2335
2336static void fore200e_monitor_putc(struct fore200e *fore200e, char c)
2337{
2338    struct cp_monitor __iomem * monitor = fore200e->cp_monitor;
2339
2340#if 0
2341    printk("%c", c);
2342#endif
2343    fore200e->bus->write(((u32) c) | FORE200E_CP_MONITOR_UART_AVAIL, &monitor->soft_uart.send);
2344}
2345
2346
2347static int fore200e_monitor_getc(struct fore200e *fore200e)
2348{
2349    struct cp_monitor __iomem * monitor = fore200e->cp_monitor;
2350    unsigned long      timeout = jiffies + msecs_to_jiffies(50);
2351    int                c;
2352
2353    while (time_before(jiffies, timeout)) {
2354
2355	c = (int) fore200e->bus->read(&monitor->soft_uart.recv);
2356
2357	if (c & FORE200E_CP_MONITOR_UART_AVAIL) {
2358
2359	    fore200e->bus->write(FORE200E_CP_MONITOR_UART_FREE, &monitor->soft_uart.recv);
2360#if 0
2361	    printk("%c", c & 0xFF);
2362#endif
2363	    return c & 0xFF;
2364	}
2365    }
2366
2367    return -1;
2368}
2369
2370
2371static void fore200e_monitor_puts(struct fore200e *fore200e, char *str)
2372{
2373    while (*str) {
2374
2375	/* the i960 monitor doesn't accept any new character if it has something to say */
2376	while (fore200e_monitor_getc(fore200e) >= 0);
2377	
2378	fore200e_monitor_putc(fore200e, *str++);
2379    }
2380
2381    while (fore200e_monitor_getc(fore200e) >= 0);
2382}
2383
2384#ifdef __LITTLE_ENDIAN
2385#define FW_EXT ".bin"
2386#else
2387#define FW_EXT "_ecd.bin2"
2388#endif
2389
2390static int fore200e_load_and_start_fw(struct fore200e *fore200e)
2391{
2392    const struct firmware *firmware;
2393    const struct fw_header *fw_header;
2394    const __le32 *fw_data;
2395    u32 fw_size;
2396    u32 __iomem *load_addr;
2397    char buf[48];
2398    int err;
2399
2400    sprintf(buf, "%s%s", fore200e->bus->proc_name, FW_EXT);
2401    if ((err = request_firmware(&firmware, buf, fore200e->dev)) < 0) {
2402	printk(FORE200E "problem loading firmware image %s\n", fore200e->bus->model_name);
2403	return err;
2404    }
2405
2406    fw_data = (const __le32 *)firmware->data;
2407    fw_size = firmware->size / sizeof(u32);
2408    fw_header = (const struct fw_header *)firmware->data;
2409    load_addr = fore200e->virt_base + le32_to_cpu(fw_header->load_offset);
2410
2411    DPRINTK(2, "device %s firmware being loaded at 0x%p (%d words)\n",
2412	    fore200e->name, load_addr, fw_size);
2413
2414    if (le32_to_cpu(fw_header->magic) != FW_HEADER_MAGIC) {
2415	printk(FORE200E "corrupted %s firmware image\n", fore200e->bus->model_name);
2416	goto release;
2417    }
2418
2419    for (; fw_size--; fw_data++, load_addr++)
2420	fore200e->bus->write(le32_to_cpu(*fw_data), load_addr);
2421
2422    DPRINTK(2, "device %s firmware being started\n", fore200e->name);
2423
2424#if defined(__sparc_v9__)
2425    /* reported to be required by SBA cards on some sparc64 hosts */
2426    fore200e_spin(100);
2427#endif
2428
2429    sprintf(buf, "\rgo %x\r", le32_to_cpu(fw_header->start_offset));
2430    fore200e_monitor_puts(fore200e, buf);
2431
2432    if (fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_CP_RUNNING, 1000) == 0) {
2433	printk(FORE200E "device %s firmware didn't start\n", fore200e->name);
2434	goto release;
2435    }
2436
2437    printk(FORE200E "device %s firmware started\n", fore200e->name);
2438
2439    fore200e->state = FORE200E_STATE_START_FW;
2440    err = 0;
2441
2442release:
2443    release_firmware(firmware);
2444    return err;
2445}
2446
2447
2448static int fore200e_register(struct fore200e *fore200e, struct device *parent)
2449{
2450    struct atm_dev* atm_dev;
2451
2452    DPRINTK(2, "device %s being registered\n", fore200e->name);
2453
2454    atm_dev = atm_dev_register(fore200e->bus->proc_name, parent, &fore200e_ops,
2455                               -1, NULL);
2456    if (atm_dev == NULL) {
2457	printk(FORE200E "unable to register device %s\n", fore200e->name);
2458	return -ENODEV;
2459    }
2460
2461    atm_dev->dev_data = fore200e;
2462    fore200e->atm_dev = atm_dev;
2463
2464    atm_dev->ci_range.vpi_bits = FORE200E_VPI_BITS;
2465    atm_dev->ci_range.vci_bits = FORE200E_VCI_BITS;
2466
2467    fore200e->available_cell_rate = ATM_OC3_PCR;
2468
2469    fore200e->state = FORE200E_STATE_REGISTER;
2470    return 0;
2471}
2472
2473
2474static int fore200e_init(struct fore200e *fore200e, struct device *parent)
2475{
2476    if (fore200e_register(fore200e, parent) < 0)
2477	return -ENODEV;
2478    
2479    if (fore200e->bus->configure(fore200e) < 0)
2480	return -ENODEV;
2481
2482    if (fore200e->bus->map(fore200e) < 0)
2483	return -ENODEV;
2484
2485    if (fore200e_reset(fore200e, 1) < 0)
2486	return -ENODEV;
2487
2488    if (fore200e_load_and_start_fw(fore200e) < 0)
2489	return -ENODEV;
2490
2491    if (fore200e_initialize(fore200e) < 0)
2492	return -ENODEV;
2493
2494    if (fore200e_init_cmd_queue(fore200e) < 0)
2495	return -ENOMEM;
2496
2497    if (fore200e_init_tx_queue(fore200e) < 0)
2498	return -ENOMEM;
2499
2500    if (fore200e_init_rx_queue(fore200e) < 0)
2501	return -ENOMEM;
2502
2503    if (fore200e_init_bs_queue(fore200e) < 0)
2504	return -ENOMEM;
2505
2506    if (fore200e_alloc_rx_buf(fore200e) < 0)
2507	return -ENOMEM;
2508
2509    if (fore200e_get_esi(fore200e) < 0)
2510	return -EIO;
2511
2512    if (fore200e_irq_request(fore200e) < 0)
2513	return -EBUSY;
2514
2515    fore200e_supply(fore200e);
2516
2517    /* all done, board initialization is now complete */
2518    fore200e->state = FORE200E_STATE_COMPLETE;
2519    return 0;
2520}
2521
2522#ifdef CONFIG_SBUS
2523static const struct of_device_id fore200e_sba_match[];
2524static int fore200e_sba_probe(struct platform_device *op)
2525{
2526	const struct of_device_id *match;
2527	struct fore200e *fore200e;
2528	static int index = 0;
2529	int err;
2530
2531	match = of_match_device(fore200e_sba_match, &op->dev);
2532	if (!match)
2533		return -EINVAL;
2534
2535	fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL);
2536	if (!fore200e)
2537		return -ENOMEM;
2538
2539	fore200e->bus = &fore200e_sbus_ops;
2540	fore200e->dev = &op->dev;
2541	fore200e->irq = op->archdata.irqs[0];
2542	fore200e->phys_base = op->resource[0].start;
2543
2544	sprintf(fore200e->name, "SBA-200E-%d", index);
2545
2546	err = fore200e_init(fore200e, &op->dev);
2547	if (err < 0) {
2548		fore200e_shutdown(fore200e);
2549		kfree(fore200e);
2550		return err;
2551	}
2552
2553	index++;
2554	dev_set_drvdata(&op->dev, fore200e);
2555
2556	return 0;
2557}
2558
2559static int fore200e_sba_remove(struct platform_device *op)
2560{
2561	struct fore200e *fore200e = dev_get_drvdata(&op->dev);
2562
2563	fore200e_shutdown(fore200e);
2564	kfree(fore200e);
2565
2566	return 0;
2567}
2568
2569static const struct of_device_id fore200e_sba_match[] = {
2570	{
2571		.name = SBA200E_PROM_NAME,
2572	},
2573	{},
2574};
2575MODULE_DEVICE_TABLE(of, fore200e_sba_match);
2576
2577static struct platform_driver fore200e_sba_driver = {
2578	.driver = {
2579		.name = "fore_200e",
2580		.of_match_table = fore200e_sba_match,
2581	},
2582	.probe		= fore200e_sba_probe,
2583	.remove		= fore200e_sba_remove,
2584};
2585#endif
2586
2587#ifdef CONFIG_PCI
2588static int fore200e_pca_detect(struct pci_dev *pci_dev,
2589			       const struct pci_device_id *pci_ent)
2590{
2591    struct fore200e* fore200e;
2592    int err = 0;
2593    static int index = 0;
2594
2595    if (pci_enable_device(pci_dev)) {
2596	err = -EINVAL;
2597	goto out;
2598    }
2599
2600    if (dma_set_mask_and_coherent(&pci_dev->dev, DMA_BIT_MASK(32))) {
2601	err = -EINVAL;
2602	goto out;
2603    }
2604    
2605    fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL);
2606    if (fore200e == NULL) {
2607	err = -ENOMEM;
2608	goto out_disable;
2609    }
2610
2611    fore200e->bus       = &fore200e_pci_ops;
2612    fore200e->dev	= &pci_dev->dev;
2613    fore200e->irq       = pci_dev->irq;
2614    fore200e->phys_base = pci_resource_start(pci_dev, 0);
2615
2616    sprintf(fore200e->name, "PCA-200E-%d", index - 1);
2617
2618    pci_set_master(pci_dev);
2619
2620    printk(FORE200E "device PCA-200E found at 0x%lx, IRQ %s\n",
2621	   fore200e->phys_base, fore200e_irq_itoa(fore200e->irq));
2622
2623    sprintf(fore200e->name, "PCA-200E-%d", index);
2624
2625    err = fore200e_init(fore200e, &pci_dev->dev);
2626    if (err < 0) {
2627	fore200e_shutdown(fore200e);
2628	goto out_free;
2629    }
2630
2631    ++index;
2632    pci_set_drvdata(pci_dev, fore200e);
2633
2634out:
2635    return err;
2636
2637out_free:
2638    kfree(fore200e);
2639out_disable:
2640    pci_disable_device(pci_dev);
2641    goto out;
2642}
2643
2644
2645static void fore200e_pca_remove_one(struct pci_dev *pci_dev)
2646{
2647    struct fore200e *fore200e;
2648
2649    fore200e = pci_get_drvdata(pci_dev);
2650
2651    fore200e_shutdown(fore200e);
2652    kfree(fore200e);
2653    pci_disable_device(pci_dev);
2654}
2655
2656
2657static const struct pci_device_id fore200e_pca_tbl[] = {
2658    { PCI_VENDOR_ID_FORE, PCI_DEVICE_ID_FORE_PCA200E, PCI_ANY_ID, PCI_ANY_ID },
2659    { 0, }
2660};
2661
2662MODULE_DEVICE_TABLE(pci, fore200e_pca_tbl);
2663
2664static struct pci_driver fore200e_pca_driver = {
2665    .name =     "fore_200e",
2666    .probe =    fore200e_pca_detect,
2667    .remove =   fore200e_pca_remove_one,
2668    .id_table = fore200e_pca_tbl,
2669};
2670#endif
2671
2672static int __init fore200e_module_init(void)
2673{
2674	int err = 0;
2675
2676	printk(FORE200E "FORE Systems 200E-series ATM driver - version " FORE200E_VERSION "\n");
2677
2678#ifdef CONFIG_SBUS
2679	err = platform_driver_register(&fore200e_sba_driver);
2680	if (err)
2681		return err;
2682#endif
2683
2684#ifdef CONFIG_PCI
2685	err = pci_register_driver(&fore200e_pca_driver);
2686#endif
2687
2688#ifdef CONFIG_SBUS
2689	if (err)
2690		platform_driver_unregister(&fore200e_sba_driver);
2691#endif
2692
2693	return err;
2694}
2695
2696static void __exit fore200e_module_cleanup(void)
2697{
2698#ifdef CONFIG_PCI
2699	pci_unregister_driver(&fore200e_pca_driver);
2700#endif
2701#ifdef CONFIG_SBUS
2702	platform_driver_unregister(&fore200e_sba_driver);
2703#endif
2704}
2705
2706static int
2707fore200e_proc_read(struct atm_dev *dev, loff_t* pos, char* page)
2708{
2709    struct fore200e*     fore200e  = FORE200E_DEV(dev);
2710    struct fore200e_vcc* fore200e_vcc;
2711    struct atm_vcc*      vcc;
2712    int                  i, len, left = *pos;
2713    unsigned long        flags;
2714
2715    if (!left--) {
2716
2717	if (fore200e_getstats(fore200e) < 0)
2718	    return -EIO;
2719
2720	len = sprintf(page,"\n"
2721		       " device:\n"
2722		       "   internal name:\t\t%s\n", fore200e->name);
2723
2724	/* print bus-specific information */
2725	if (fore200e->bus->proc_read)
2726	    len += fore200e->bus->proc_read(fore200e, page + len);
2727	
2728	len += sprintf(page + len,
2729		"   interrupt line:\t\t%s\n"
2730		"   physical base address:\t0x%p\n"
2731		"   virtual base address:\t0x%p\n"
2732		"   factory address (ESI):\t%pM\n"
2733		"   board serial number:\t\t%d\n\n",
2734		fore200e_irq_itoa(fore200e->irq),
2735		(void*)fore200e->phys_base,
2736		fore200e->virt_base,
2737		fore200e->esi,
2738		fore200e->esi[4] * 256 + fore200e->esi[5]);
2739
2740	return len;
2741    }
2742
2743    if (!left--)
2744	return sprintf(page,
2745		       "   free small bufs, scheme 1:\t%d\n"
2746		       "   free large bufs, scheme 1:\t%d\n"
2747		       "   free small bufs, scheme 2:\t%d\n"
2748		       "   free large bufs, scheme 2:\t%d\n",
2749		       fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_SMALL ].freebuf_count,
2750		       fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_LARGE ].freebuf_count,
2751		       fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_SMALL ].freebuf_count,
2752		       fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_LARGE ].freebuf_count);
2753
2754    if (!left--) {
2755	u32 hb = fore200e->bus->read(&fore200e->cp_queues->heartbeat);
2756
2757	len = sprintf(page,"\n\n"
2758		      " cell processor:\n"
2759		      "   heartbeat state:\t\t");
2760	
2761	if (hb >> 16 != 0xDEAD)
2762	    len += sprintf(page + len, "0x%08x\n", hb);
2763	else
2764	    len += sprintf(page + len, "*** FATAL ERROR %04x ***\n", hb & 0xFFFF);
2765
2766	return len;
2767    }
2768
2769    if (!left--) {
2770	static const char* media_name[] = {
2771	    "unshielded twisted pair",
2772	    "multimode optical fiber ST",
2773	    "multimode optical fiber SC",
2774	    "single-mode optical fiber ST",
2775	    "single-mode optical fiber SC",
2776	    "unknown"
2777	};
2778
2779	static const char* oc3_mode[] = {
2780	    "normal operation",
2781	    "diagnostic loopback",
2782	    "line loopback",
2783	    "unknown"
2784	};
2785
2786	u32 fw_release     = fore200e->bus->read(&fore200e->cp_queues->fw_release);
2787	u32 mon960_release = fore200e->bus->read(&fore200e->cp_queues->mon960_release);
2788	u32 oc3_revision   = fore200e->bus->read(&fore200e->cp_queues->oc3_revision);
2789	u32 media_index    = FORE200E_MEDIA_INDEX(fore200e->bus->read(&fore200e->cp_queues->media_type));
2790	u32 oc3_index;
2791
2792	if (media_index > 4)
2793		media_index = 5;
2794	
2795	switch (fore200e->loop_mode) {
2796	    case ATM_LM_NONE:    oc3_index = 0;
2797		                 break;
2798	    case ATM_LM_LOC_PHY: oc3_index = 1;
2799		                 break;
2800	    case ATM_LM_RMT_PHY: oc3_index = 2;
2801		                 break;
2802	    default:             oc3_index = 3;
2803	}
2804
2805	return sprintf(page,
2806		       "   firmware release:\t\t%d.%d.%d\n"
2807		       "   monitor release:\t\t%d.%d\n"
2808		       "   media type:\t\t\t%s\n"
2809		       "   OC-3 revision:\t\t0x%x\n"
2810                       "   OC-3 mode:\t\t\t%s",
2811		       fw_release >> 16, fw_release << 16 >> 24,  fw_release << 24 >> 24,
2812		       mon960_release >> 16, mon960_release << 16 >> 16,
2813		       media_name[ media_index ],
2814		       oc3_revision,
2815		       oc3_mode[ oc3_index ]);
2816    }
2817
2818    if (!left--) {
2819	struct cp_monitor __iomem * cp_monitor = fore200e->cp_monitor;
2820
2821	return sprintf(page,
2822		       "\n\n"
2823		       " monitor:\n"
2824		       "   version number:\t\t%d\n"
2825		       "   boot status word:\t\t0x%08x\n",
2826		       fore200e->bus->read(&cp_monitor->mon_version),
2827		       fore200e->bus->read(&cp_monitor->bstat));
2828    }
2829
2830    if (!left--)
2831	return sprintf(page,
2832		       "\n"
2833		       " device statistics:\n"
2834		       "  4b5b:\n"
2835		       "     crc_header_errors:\t\t%10u\n"
2836		       "     framing_errors:\t\t%10u\n",
2837		       be32_to_cpu(fore200e->stats->phy.crc_header_errors),
2838		       be32_to_cpu(fore200e->stats->phy.framing_errors));
2839    
2840    if (!left--)
2841	return sprintf(page, "\n"
2842		       "  OC-3:\n"
2843		       "     section_bip8_errors:\t%10u\n"
2844		       "     path_bip8_errors:\t\t%10u\n"
2845		       "     line_bip24_errors:\t\t%10u\n"
2846		       "     line_febe_errors:\t\t%10u\n"
2847		       "     path_febe_errors:\t\t%10u\n"
2848		       "     corr_hcs_errors:\t\t%10u\n"
2849		       "     ucorr_hcs_errors:\t\t%10u\n",
2850		       be32_to_cpu(fore200e->stats->oc3.section_bip8_errors),
2851		       be32_to_cpu(fore200e->stats->oc3.path_bip8_errors),
2852		       be32_to_cpu(fore200e->stats->oc3.line_bip24_errors),
2853		       be32_to_cpu(fore200e->stats->oc3.line_febe_errors),
2854		       be32_to_cpu(fore200e->stats->oc3.path_febe_errors),
2855		       be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors),
2856		       be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors));
2857
2858    if (!left--)
2859	return sprintf(page,"\n"
2860		       "   ATM:\t\t\t\t     cells\n"
2861		       "     TX:\t\t\t%10u\n"
2862		       "     RX:\t\t\t%10u\n"
2863		       "     vpi out of range:\t\t%10u\n"
2864		       "     vpi no conn:\t\t%10u\n"
2865		       "     vci out of range:\t\t%10u\n"
2866		       "     vci no conn:\t\t%10u\n",
2867		       be32_to_cpu(fore200e->stats->atm.cells_transmitted),
2868		       be32_to_cpu(fore200e->stats->atm.cells_received),
2869		       be32_to_cpu(fore200e->stats->atm.vpi_bad_range),
2870		       be32_to_cpu(fore200e->stats->atm.vpi_no_conn),
2871		       be32_to_cpu(fore200e->stats->atm.vci_bad_range),
2872		       be32_to_cpu(fore200e->stats->atm.vci_no_conn));
2873    
2874    if (!left--)
2875	return sprintf(page,"\n"
2876		       "   AAL0:\t\t\t     cells\n"
2877		       "     TX:\t\t\t%10u\n"
2878		       "     RX:\t\t\t%10u\n"
2879		       "     dropped:\t\t\t%10u\n",
2880		       be32_to_cpu(fore200e->stats->aal0.cells_transmitted),
2881		       be32_to_cpu(fore200e->stats->aal0.cells_received),
2882		       be32_to_cpu(fore200e->stats->aal0.cells_dropped));
2883    
2884    if (!left--)
2885	return sprintf(page,"\n"
2886		       "   AAL3/4:\n"
2887		       "     SAR sublayer:\t\t     cells\n"
2888		       "       TX:\t\t\t%10u\n"
2889		       "       RX:\t\t\t%10u\n"
2890		       "       dropped:\t\t\t%10u\n"
2891		       "       CRC errors:\t\t%10u\n"
2892		       "       protocol errors:\t\t%10u\n\n"
2893		       "     CS  sublayer:\t\t      PDUs\n"
2894		       "       TX:\t\t\t%10u\n"
2895		       "       RX:\t\t\t%10u\n"
2896		       "       dropped:\t\t\t%10u\n"
2897		       "       protocol errors:\t\t%10u\n",
2898		       be32_to_cpu(fore200e->stats->aal34.cells_transmitted),
2899		       be32_to_cpu(fore200e->stats->aal34.cells_received),
2900		       be32_to_cpu(fore200e->stats->aal34.cells_dropped),
2901		       be32_to_cpu(fore200e->stats->aal34.cells_crc_errors),
2902		       be32_to_cpu(fore200e->stats->aal34.cells_protocol_errors),
2903		       be32_to_cpu(fore200e->stats->aal34.cspdus_transmitted),
2904		       be32_to_cpu(fore200e->stats->aal34.cspdus_received),
2905		       be32_to_cpu(fore200e->stats->aal34.cspdus_dropped),
2906		       be32_to_cpu(fore200e->stats->aal34.cspdus_protocol_errors));
2907    
2908    if (!left--)
2909	return sprintf(page,"\n"
2910		       "   AAL5:\n"
2911		       "     SAR sublayer:\t\t     cells\n"
2912		       "       TX:\t\t\t%10u\n"
2913		       "       RX:\t\t\t%10u\n"
2914		       "       dropped:\t\t\t%10u\n"
2915		       "       congestions:\t\t%10u\n\n"
2916		       "     CS  sublayer:\t\t      PDUs\n"
2917		       "       TX:\t\t\t%10u\n"
2918		       "       RX:\t\t\t%10u\n"
2919		       "       dropped:\t\t\t%10u\n"
2920		       "       CRC errors:\t\t%10u\n"
2921		       "       protocol errors:\t\t%10u\n",
2922		       be32_to_cpu(fore200e->stats->aal5.cells_transmitted),
2923		       be32_to_cpu(fore200e->stats->aal5.cells_received),
2924		       be32_to_cpu(fore200e->stats->aal5.cells_dropped),
2925		       be32_to_cpu(fore200e->stats->aal5.congestion_experienced),
2926		       be32_to_cpu(fore200e->stats->aal5.cspdus_transmitted),
2927		       be32_to_cpu(fore200e->stats->aal5.cspdus_received),
2928		       be32_to_cpu(fore200e->stats->aal5.cspdus_dropped),
2929		       be32_to_cpu(fore200e->stats->aal5.cspdus_crc_errors),
2930		       be32_to_cpu(fore200e->stats->aal5.cspdus_protocol_errors));
2931    
2932    if (!left--)
2933	return sprintf(page,"\n"
2934		       "   AUX:\t\t       allocation failures\n"
2935		       "     small b1:\t\t\t%10u\n"
2936		       "     large b1:\t\t\t%10u\n"
2937		       "     small b2:\t\t\t%10u\n"
2938		       "     large b2:\t\t\t%10u\n"
2939		       "     RX PDUs:\t\t\t%10u\n"
2940		       "     TX PDUs:\t\t\t%10lu\n",
2941		       be32_to_cpu(fore200e->stats->aux.small_b1_failed),
2942		       be32_to_cpu(fore200e->stats->aux.large_b1_failed),
2943		       be32_to_cpu(fore200e->stats->aux.small_b2_failed),
2944		       be32_to_cpu(fore200e->stats->aux.large_b2_failed),
2945		       be32_to_cpu(fore200e->stats->aux.rpd_alloc_failed),
2946		       fore200e->tx_sat);
2947    
2948    if (!left--)
2949	return sprintf(page,"\n"
2950		       " receive carrier:\t\t\t%s\n",
2951		       fore200e->stats->aux.receive_carrier ? "ON" : "OFF!");
2952    
2953    if (!left--) {
2954        return sprintf(page,"\n"
2955		       " VCCs:\n  address   VPI VCI   AAL "
2956		       "TX PDUs   TX min/max size  RX PDUs   RX min/max size\n");
2957    }
2958
2959    for (i = 0; i < NBR_CONNECT; i++) {
2960
2961	vcc = fore200e->vc_map[i].vcc;
2962
2963	if (vcc == NULL)
2964	    continue;
2965
2966	spin_lock_irqsave(&fore200e->q_lock, flags);
2967
2968	if (vcc && test_bit(ATM_VF_READY, &vcc->flags) && !left--) {
2969
2970	    fore200e_vcc = FORE200E_VCC(vcc);
2971	    ASSERT(fore200e_vcc);
2972
2973	    len = sprintf(page,
2974			  "  %pK  %03d %05d %1d   %09lu %05d/%05d      %09lu %05d/%05d\n",
2975			  vcc,
2976			  vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
2977			  fore200e_vcc->tx_pdu,
2978			  fore200e_vcc->tx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->tx_min_pdu,
2979			  fore200e_vcc->tx_max_pdu,
2980			  fore200e_vcc->rx_pdu,
2981			  fore200e_vcc->rx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->rx_min_pdu,
2982			  fore200e_vcc->rx_max_pdu);
2983
2984	    spin_unlock_irqrestore(&fore200e->q_lock, flags);
2985	    return len;
2986	}
2987
2988	spin_unlock_irqrestore(&fore200e->q_lock, flags);
2989    }
2990    
2991    return 0;
2992}
2993
2994module_init(fore200e_module_init);
2995module_exit(fore200e_module_cleanup);
2996
2997
2998static const struct atmdev_ops fore200e_ops = {
2999	.open       = fore200e_open,
3000	.close      = fore200e_close,
3001	.ioctl      = fore200e_ioctl,
 
 
3002	.send       = fore200e_send,
3003	.change_qos = fore200e_change_qos,
3004	.proc_read  = fore200e_proc_read,
3005	.owner      = THIS_MODULE
3006};
3007
3008MODULE_LICENSE("GPL");
3009#ifdef CONFIG_PCI
3010#ifdef __LITTLE_ENDIAN__
3011MODULE_FIRMWARE("pca200e.bin");
3012#else
3013MODULE_FIRMWARE("pca200e_ecd.bin2");
3014#endif
3015#endif /* CONFIG_PCI */
3016#ifdef CONFIG_SBUS
3017MODULE_FIRMWARE("sba200e_ecd.bin2");
3018#endif
v5.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3  A FORE Systems 200E-series driver for ATM on Linux.
   4  Christophe Lizzi (lizzi@cnam.fr), October 1999-March 2003.
   5
   6  Based on the PCA-200E driver from Uwe Dannowski (Uwe.Dannowski@inf.tu-dresden.de).
   7
   8  This driver simultaneously supports PCA-200E and SBA-200E adapters
   9  on i386, alpha (untested), powerpc, sparc and sparc64 architectures.
  10
  11*/
  12
  13
  14#include <linux/kernel.h>
  15#include <linux/slab.h>
  16#include <linux/init.h>
  17#include <linux/capability.h>
  18#include <linux/interrupt.h>
  19#include <linux/bitops.h>
  20#include <linux/pci.h>
  21#include <linux/module.h>
  22#include <linux/atmdev.h>
  23#include <linux/sonet.h>
  24#include <linux/atm_suni.h>
  25#include <linux/dma-mapping.h>
  26#include <linux/delay.h>
  27#include <linux/firmware.h>
 
  28#include <asm/io.h>
  29#include <asm/string.h>
  30#include <asm/page.h>
  31#include <asm/irq.h>
  32#include <asm/dma.h>
  33#include <asm/byteorder.h>
  34#include <linux/uaccess.h>
  35#include <linux/atomic.h>
  36
  37#ifdef CONFIG_SBUS
  38#include <linux/of.h>
  39#include <linux/of_device.h>
  40#include <asm/idprom.h>
  41#include <asm/openprom.h>
  42#include <asm/oplib.h>
  43#include <asm/pgtable.h>
  44#endif
  45
  46#if defined(CONFIG_ATM_FORE200E_USE_TASKLET) /* defer interrupt work to a tasklet */
  47#define FORE200E_USE_TASKLET
  48#endif
  49
  50#if 0 /* enable the debugging code of the buffer supply queues */
  51#define FORE200E_BSQ_DEBUG
  52#endif
  53
  54#if 1 /* ensure correct handling of 52-byte AAL0 SDUs expected by atmdump-like apps */
  55#define FORE200E_52BYTE_AAL0_SDU
  56#endif
  57
  58#include "fore200e.h"
  59#include "suni.h"
  60
  61#define FORE200E_VERSION "0.3e"
  62
  63#define FORE200E         "fore200e: "
  64
  65#if 0 /* override .config */
  66#define CONFIG_ATM_FORE200E_DEBUG 1
  67#endif
  68#if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0)
  69#define DPRINTK(level, format, args...)  do { if (CONFIG_ATM_FORE200E_DEBUG >= (level)) \
  70                                                  printk(FORE200E format, ##args); } while (0)
  71#else
  72#define DPRINTK(level, format, args...)  do {} while (0)
  73#endif
  74
  75
  76#define FORE200E_ALIGN(addr, alignment) \
  77        ((((unsigned long)(addr) + (alignment - 1)) & ~(alignment - 1)) - (unsigned long)(addr))
  78
  79#define FORE200E_DMA_INDEX(dma_addr, type, index)  ((dma_addr) + (index) * sizeof(type))
  80
  81#define FORE200E_INDEX(virt_addr, type, index)     (&((type *)(virt_addr))[ index ])
  82
  83#define FORE200E_NEXT_ENTRY(index, modulo)         (index = ((index) + 1) % (modulo))
  84
  85#if 1
  86#define ASSERT(expr)     if (!(expr)) { \
  87			     printk(FORE200E "assertion failed! %s[%d]: %s\n", \
  88				    __func__, __LINE__, #expr); \
  89			     panic(FORE200E "%s", __func__); \
  90			 }
  91#else
  92#define ASSERT(expr)     do {} while (0)
  93#endif
  94
  95
  96static const struct atmdev_ops   fore200e_ops;
  97
  98static LIST_HEAD(fore200e_boards);
  99
 100
 101MODULE_AUTHOR("Christophe Lizzi - credits to Uwe Dannowski and Heikki Vatiainen");
 102MODULE_DESCRIPTION("FORE Systems 200E-series ATM driver - version " FORE200E_VERSION);
 103MODULE_SUPPORTED_DEVICE("PCA-200E, SBA-200E");
 104
 105
 106static const int fore200e_rx_buf_nbr[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = {
 107    { BUFFER_S1_NBR, BUFFER_L1_NBR },
 108    { BUFFER_S2_NBR, BUFFER_L2_NBR }
 109};
 110
 111static const int fore200e_rx_buf_size[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = {
 112    { BUFFER_S1_SIZE, BUFFER_L1_SIZE },
 113    { BUFFER_S2_SIZE, BUFFER_L2_SIZE }
 114};
 115
 116
 117#if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0)
 118static const char* fore200e_traffic_class[] = { "NONE", "UBR", "CBR", "VBR", "ABR", "ANY" };
 119#endif
 120
 121
 122#if 0 /* currently unused */
 123static int 
 124fore200e_fore2atm_aal(enum fore200e_aal aal)
 125{
 126    switch(aal) {
 127    case FORE200E_AAL0:  return ATM_AAL0;
 128    case FORE200E_AAL34: return ATM_AAL34;
 129    case FORE200E_AAL5:  return ATM_AAL5;
 130    }
 131
 132    return -EINVAL;
 133}
 134#endif
 135
 136
 137static enum fore200e_aal
 138fore200e_atm2fore_aal(int aal)
 139{
 140    switch(aal) {
 141    case ATM_AAL0:  return FORE200E_AAL0;
 142    case ATM_AAL34: return FORE200E_AAL34;
 143    case ATM_AAL1:
 144    case ATM_AAL2:
 145    case ATM_AAL5:  return FORE200E_AAL5;
 146    }
 147
 148    return -EINVAL;
 149}
 150
 151
 152static char*
 153fore200e_irq_itoa(int irq)
 154{
 155    static char str[8];
 156    sprintf(str, "%d", irq);
 157    return str;
 158}
 159
 160
 161/* allocate and align a chunk of memory intended to hold the data behing exchanged
 162   between the driver and the adapter (using streaming DVMA) */
 163
 164static int
 165fore200e_chunk_alloc(struct fore200e* fore200e, struct chunk* chunk, int size, int alignment, int direction)
 166{
 167    unsigned long offset = 0;
 168
 169    if (alignment <= sizeof(int))
 170	alignment = 0;
 171
 172    chunk->alloc_size = size + alignment;
 173    chunk->direction  = direction;
 174
 175    chunk->alloc_addr = kzalloc(chunk->alloc_size, GFP_KERNEL);
 176    if (chunk->alloc_addr == NULL)
 177	return -ENOMEM;
 178
 179    if (alignment > 0)
 180	offset = FORE200E_ALIGN(chunk->alloc_addr, alignment); 
 181    
 182    chunk->align_addr = chunk->alloc_addr + offset;
 183
 184    chunk->dma_addr = dma_map_single(fore200e->dev, chunk->align_addr,
 185				     size, direction);
 186    if (dma_mapping_error(fore200e->dev, chunk->dma_addr)) {
 187	kfree(chunk->alloc_addr);
 188	return -ENOMEM;
 189    }
 190    return 0;
 191}
 192
 193
 194/* free a chunk of memory */
 195
 196static void
 197fore200e_chunk_free(struct fore200e* fore200e, struct chunk* chunk)
 198{
 199    dma_unmap_single(fore200e->dev, chunk->dma_addr, chunk->dma_size,
 200		     chunk->direction);
 201    kfree(chunk->alloc_addr);
 202}
 203
 204/*
 205 * Allocate a DMA consistent chunk of memory intended to act as a communication
 206 * mechanism (to hold descriptors, status, queues, etc.) shared by the driver
 207 * and the adapter.
 208 */
 209static int
 210fore200e_dma_chunk_alloc(struct fore200e *fore200e, struct chunk *chunk,
 211		int size, int nbr, int alignment)
 212{
 213	/* returned chunks are page-aligned */
 214	chunk->alloc_size = size * nbr;
 215	chunk->alloc_addr = dma_alloc_coherent(fore200e->dev, chunk->alloc_size,
 216					       &chunk->dma_addr, GFP_KERNEL);
 217	if (!chunk->alloc_addr)
 218		return -ENOMEM;
 219	chunk->align_addr = chunk->alloc_addr;
 220	return 0;
 221}
 222
 223/*
 224 * Free a DMA consistent chunk of memory.
 225 */
 226static void
 227fore200e_dma_chunk_free(struct fore200e* fore200e, struct chunk* chunk)
 228{
 229	dma_free_coherent(fore200e->dev, chunk->alloc_size, chunk->alloc_addr,
 230			  chunk->dma_addr);
 231}
 232
 233static void
 234fore200e_spin(int msecs)
 235{
 236    unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
 237    while (time_before(jiffies, timeout));
 238}
 239
 240
 241static int
 242fore200e_poll(struct fore200e* fore200e, volatile u32* addr, u32 val, int msecs)
 243{
 244    unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
 245    int           ok;
 246
 247    mb();
 248    do {
 249	if ((ok = (*addr == val)) || (*addr & STATUS_ERROR))
 250	    break;
 251
 252    } while (time_before(jiffies, timeout));
 253
 254#if 1
 255    if (!ok) {
 256	printk(FORE200E "cmd polling failed, got status 0x%08x, expected 0x%08x\n",
 257	       *addr, val);
 258    }
 259#endif
 260
 261    return ok;
 262}
 263
 264
 265static int
 266fore200e_io_poll(struct fore200e* fore200e, volatile u32 __iomem *addr, u32 val, int msecs)
 267{
 268    unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
 269    int           ok;
 270
 271    do {
 272	if ((ok = (fore200e->bus->read(addr) == val)))
 273	    break;
 274
 275    } while (time_before(jiffies, timeout));
 276
 277#if 1
 278    if (!ok) {
 279	printk(FORE200E "I/O polling failed, got status 0x%08x, expected 0x%08x\n",
 280	       fore200e->bus->read(addr), val);
 281    }
 282#endif
 283
 284    return ok;
 285}
 286
 287
 288static void
 289fore200e_free_rx_buf(struct fore200e* fore200e)
 290{
 291    int scheme, magn, nbr;
 292    struct buffer* buffer;
 293
 294    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
 295	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
 296
 297	    if ((buffer = fore200e->host_bsq[ scheme ][ magn ].buffer) != NULL) {
 298
 299		for (nbr = 0; nbr < fore200e_rx_buf_nbr[ scheme ][ magn ]; nbr++) {
 300
 301		    struct chunk* data = &buffer[ nbr ].data;
 302
 303		    if (data->alloc_addr != NULL)
 304			fore200e_chunk_free(fore200e, data);
 305		}
 306	    }
 307	}
 308    }
 309}
 310
 311
 312static void
 313fore200e_uninit_bs_queue(struct fore200e* fore200e)
 314{
 315    int scheme, magn;
 316    
 317    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
 318	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
 319
 320	    struct chunk* status    = &fore200e->host_bsq[ scheme ][ magn ].status;
 321	    struct chunk* rbd_block = &fore200e->host_bsq[ scheme ][ magn ].rbd_block;
 322	    
 323	    if (status->alloc_addr)
 324		fore200e_dma_chunk_free(fore200e, status);
 325	    
 326	    if (rbd_block->alloc_addr)
 327		fore200e_dma_chunk_free(fore200e, rbd_block);
 328	}
 329    }
 330}
 331
 332
 333static int
 334fore200e_reset(struct fore200e* fore200e, int diag)
 335{
 336    int ok;
 337
 338    fore200e->cp_monitor = fore200e->virt_base + FORE200E_CP_MONITOR_OFFSET;
 339    
 340    fore200e->bus->write(BSTAT_COLD_START, &fore200e->cp_monitor->bstat);
 341
 342    fore200e->bus->reset(fore200e);
 343
 344    if (diag) {
 345	ok = fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_SELFTEST_OK, 1000);
 346	if (ok == 0) {
 347	    
 348	    printk(FORE200E "device %s self-test failed\n", fore200e->name);
 349	    return -ENODEV;
 350	}
 351
 352	printk(FORE200E "device %s self-test passed\n", fore200e->name);
 353	
 354	fore200e->state = FORE200E_STATE_RESET;
 355    }
 356
 357    return 0;
 358}
 359
 360
 361static void
 362fore200e_shutdown(struct fore200e* fore200e)
 363{
 364    printk(FORE200E "removing device %s at 0x%lx, IRQ %s\n",
 365	   fore200e->name, fore200e->phys_base, 
 366	   fore200e_irq_itoa(fore200e->irq));
 367    
 368    if (fore200e->state > FORE200E_STATE_RESET) {
 369	/* first, reset the board to prevent further interrupts or data transfers */
 370	fore200e_reset(fore200e, 0);
 371    }
 372    
 373    /* then, release all allocated resources */
 374    switch(fore200e->state) {
 375
 376    case FORE200E_STATE_COMPLETE:
 377	kfree(fore200e->stats);
 378
 379	/* fall through */
 380    case FORE200E_STATE_IRQ:
 381	free_irq(fore200e->irq, fore200e->atm_dev);
 382
 383	/* fall through */
 384    case FORE200E_STATE_ALLOC_BUF:
 385	fore200e_free_rx_buf(fore200e);
 386
 387	/* fall through */
 388    case FORE200E_STATE_INIT_BSQ:
 389	fore200e_uninit_bs_queue(fore200e);
 390
 391	/* fall through */
 392    case FORE200E_STATE_INIT_RXQ:
 393	fore200e_dma_chunk_free(fore200e, &fore200e->host_rxq.status);
 394	fore200e_dma_chunk_free(fore200e, &fore200e->host_rxq.rpd);
 395
 396	/* fall through */
 397    case FORE200E_STATE_INIT_TXQ:
 398	fore200e_dma_chunk_free(fore200e, &fore200e->host_txq.status);
 399	fore200e_dma_chunk_free(fore200e, &fore200e->host_txq.tpd);
 400
 401	/* fall through */
 402    case FORE200E_STATE_INIT_CMDQ:
 403	fore200e_dma_chunk_free(fore200e, &fore200e->host_cmdq.status);
 404
 405	/* fall through */
 406    case FORE200E_STATE_INITIALIZE:
 407	/* nothing to do for that state */
 408
 409    case FORE200E_STATE_START_FW:
 410	/* nothing to do for that state */
 411
 412    case FORE200E_STATE_RESET:
 413	/* nothing to do for that state */
 414
 415    case FORE200E_STATE_MAP:
 416	fore200e->bus->unmap(fore200e);
 417
 418	/* fall through */
 419    case FORE200E_STATE_CONFIGURE:
 420	/* nothing to do for that state */
 421
 422    case FORE200E_STATE_REGISTER:
 423	/* XXX shouldn't we *start* by deregistering the device? */
 424	atm_dev_deregister(fore200e->atm_dev);
 425
 
 426    case FORE200E_STATE_BLANK:
 427	/* nothing to do for that state */
 428	break;
 429    }
 430}
 431
 432
 433#ifdef CONFIG_PCI
 434
 435static u32 fore200e_pca_read(volatile u32 __iomem *addr)
 436{
 437    /* on big-endian hosts, the board is configured to convert
 438       the endianess of slave RAM accesses  */
 439    return le32_to_cpu(readl(addr));
 440}
 441
 442
 443static void fore200e_pca_write(u32 val, volatile u32 __iomem *addr)
 444{
 445    /* on big-endian hosts, the board is configured to convert
 446       the endianess of slave RAM accesses  */
 447    writel(cpu_to_le32(val), addr);
 448}
 449
 450static int
 451fore200e_pca_irq_check(struct fore200e* fore200e)
 452{
 453    /* this is a 1 bit register */
 454    int irq_posted = readl(fore200e->regs.pca.psr);
 455
 456#if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG == 2)
 457    if (irq_posted && (readl(fore200e->regs.pca.hcr) & PCA200E_HCR_OUTFULL)) {
 458	DPRINTK(2,"FIFO OUT full, device %d\n", fore200e->atm_dev->number);
 459    }
 460#endif
 461
 462    return irq_posted;
 463}
 464
 465
 466static void
 467fore200e_pca_irq_ack(struct fore200e* fore200e)
 468{
 469    writel(PCA200E_HCR_CLRINTR, fore200e->regs.pca.hcr);
 470}
 471
 472
 473static void
 474fore200e_pca_reset(struct fore200e* fore200e)
 475{
 476    writel(PCA200E_HCR_RESET, fore200e->regs.pca.hcr);
 477    fore200e_spin(10);
 478    writel(0, fore200e->regs.pca.hcr);
 479}
 480
 481
 482static int fore200e_pca_map(struct fore200e* fore200e)
 483{
 484    DPRINTK(2, "device %s being mapped in memory\n", fore200e->name);
 485
 486    fore200e->virt_base = ioremap(fore200e->phys_base, PCA200E_IOSPACE_LENGTH);
 487    
 488    if (fore200e->virt_base == NULL) {
 489	printk(FORE200E "can't map device %s\n", fore200e->name);
 490	return -EFAULT;
 491    }
 492
 493    DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base);
 494
 495    /* gain access to the PCA specific registers  */
 496    fore200e->regs.pca.hcr = fore200e->virt_base + PCA200E_HCR_OFFSET;
 497    fore200e->regs.pca.imr = fore200e->virt_base + PCA200E_IMR_OFFSET;
 498    fore200e->regs.pca.psr = fore200e->virt_base + PCA200E_PSR_OFFSET;
 499
 500    fore200e->state = FORE200E_STATE_MAP;
 501    return 0;
 502}
 503
 504
 505static void
 506fore200e_pca_unmap(struct fore200e* fore200e)
 507{
 508    DPRINTK(2, "device %s being unmapped from memory\n", fore200e->name);
 509
 510    if (fore200e->virt_base != NULL)
 511	iounmap(fore200e->virt_base);
 512}
 513
 514
 515static int fore200e_pca_configure(struct fore200e *fore200e)
 516{
 517    struct pci_dev *pci_dev = to_pci_dev(fore200e->dev);
 518    u8              master_ctrl, latency;
 519
 520    DPRINTK(2, "device %s being configured\n", fore200e->name);
 521
 522    if ((pci_dev->irq == 0) || (pci_dev->irq == 0xFF)) {
 523	printk(FORE200E "incorrect IRQ setting - misconfigured PCI-PCI bridge?\n");
 524	return -EIO;
 525    }
 526
 527    pci_read_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, &master_ctrl);
 528
 529    master_ctrl = master_ctrl
 530#if defined(__BIG_ENDIAN)
 531	/* request the PCA board to convert the endianess of slave RAM accesses */
 532	| PCA200E_CTRL_CONVERT_ENDIAN
 533#endif
 534#if 0
 535        | PCA200E_CTRL_DIS_CACHE_RD
 536        | PCA200E_CTRL_DIS_WRT_INVAL
 537        | PCA200E_CTRL_ENA_CONT_REQ_MODE
 538        | PCA200E_CTRL_2_CACHE_WRT_INVAL
 539#endif
 540	| PCA200E_CTRL_LARGE_PCI_BURSTS;
 541    
 542    pci_write_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, master_ctrl);
 543
 544    /* raise latency from 32 (default) to 192, as this seems to prevent NIC
 545       lockups (under heavy rx loads) due to continuous 'FIFO OUT full' condition.
 546       this may impact the performances of other PCI devices on the same bus, though */
 547    latency = 192;
 548    pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, latency);
 549
 550    fore200e->state = FORE200E_STATE_CONFIGURE;
 551    return 0;
 552}
 553
 554
 555static int __init
 556fore200e_pca_prom_read(struct fore200e* fore200e, struct prom_data* prom)
 557{
 558    struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
 559    struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
 560    struct prom_opcode      opcode;
 561    int                     ok;
 562    u32                     prom_dma;
 563
 564    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
 565
 566    opcode.opcode = OPCODE_GET_PROM;
 567    opcode.pad    = 0;
 568
 569    prom_dma = dma_map_single(fore200e->dev, prom, sizeof(struct prom_data),
 570			      DMA_FROM_DEVICE);
 571    if (dma_mapping_error(fore200e->dev, prom_dma))
 572	return -ENOMEM;
 573
 574    fore200e->bus->write(prom_dma, &entry->cp_entry->cmd.prom_block.prom_haddr);
 575    
 576    *entry->status = STATUS_PENDING;
 577
 578    fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.prom_block.opcode);
 579
 580    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
 581
 582    *entry->status = STATUS_FREE;
 583
 584    dma_unmap_single(fore200e->dev, prom_dma, sizeof(struct prom_data), DMA_FROM_DEVICE);
 585
 586    if (ok == 0) {
 587	printk(FORE200E "unable to get PROM data from device %s\n", fore200e->name);
 588	return -EIO;
 589    }
 590
 591#if defined(__BIG_ENDIAN)
 592    
 593#define swap_here(addr) (*((u32*)(addr)) = swab32( *((u32*)(addr)) ))
 594
 595    /* MAC address is stored as little-endian */
 596    swap_here(&prom->mac_addr[0]);
 597    swap_here(&prom->mac_addr[4]);
 598#endif
 599    
 600    return 0;
 601}
 602
 603
 604static int
 605fore200e_pca_proc_read(struct fore200e* fore200e, char *page)
 606{
 607    struct pci_dev *pci_dev = to_pci_dev(fore200e->dev);
 608
 609    return sprintf(page, "   PCI bus/slot/function:\t%d/%d/%d\n",
 610		   pci_dev->bus->number, PCI_SLOT(pci_dev->devfn), PCI_FUNC(pci_dev->devfn));
 611}
 612
 613static const struct fore200e_bus fore200e_pci_ops = {
 614	.model_name		= "PCA-200E",
 615	.proc_name		= "pca200e",
 616	.descr_alignment	= 32,
 617	.buffer_alignment	= 4,
 618	.status_alignment	= 32,
 619	.read			= fore200e_pca_read,
 620	.write			= fore200e_pca_write,
 621	.configure		= fore200e_pca_configure,
 622	.map			= fore200e_pca_map,
 623	.reset			= fore200e_pca_reset,
 624	.prom_read		= fore200e_pca_prom_read,
 625	.unmap			= fore200e_pca_unmap,
 626	.irq_check		= fore200e_pca_irq_check,
 627	.irq_ack		= fore200e_pca_irq_ack,
 628	.proc_read		= fore200e_pca_proc_read,
 629};
 630#endif /* CONFIG_PCI */
 631
 632#ifdef CONFIG_SBUS
 633
 634static u32 fore200e_sba_read(volatile u32 __iomem *addr)
 635{
 636    return sbus_readl(addr);
 637}
 638
 639static void fore200e_sba_write(u32 val, volatile u32 __iomem *addr)
 640{
 641    sbus_writel(val, addr);
 642}
 643
 644static void fore200e_sba_irq_enable(struct fore200e *fore200e)
 645{
 646	u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY;
 647	fore200e->bus->write(hcr | SBA200E_HCR_INTR_ENA, fore200e->regs.sba.hcr);
 648}
 649
 650static int fore200e_sba_irq_check(struct fore200e *fore200e)
 651{
 652	return fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_INTR_REQ;
 653}
 654
 655static void fore200e_sba_irq_ack(struct fore200e *fore200e)
 656{
 657	u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY;
 658	fore200e->bus->write(hcr | SBA200E_HCR_INTR_CLR, fore200e->regs.sba.hcr);
 659}
 660
 661static void fore200e_sba_reset(struct fore200e *fore200e)
 662{
 663	fore200e->bus->write(SBA200E_HCR_RESET, fore200e->regs.sba.hcr);
 664	fore200e_spin(10);
 665	fore200e->bus->write(0, fore200e->regs.sba.hcr);
 666}
 667
 668static int __init fore200e_sba_map(struct fore200e *fore200e)
 669{
 670	struct platform_device *op = to_platform_device(fore200e->dev);
 671	unsigned int bursts;
 672
 673	/* gain access to the SBA specific registers  */
 674	fore200e->regs.sba.hcr = of_ioremap(&op->resource[0], 0, SBA200E_HCR_LENGTH, "SBA HCR");
 675	fore200e->regs.sba.bsr = of_ioremap(&op->resource[1], 0, SBA200E_BSR_LENGTH, "SBA BSR");
 676	fore200e->regs.sba.isr = of_ioremap(&op->resource[2], 0, SBA200E_ISR_LENGTH, "SBA ISR");
 677	fore200e->virt_base    = of_ioremap(&op->resource[3], 0, SBA200E_RAM_LENGTH, "SBA RAM");
 678
 679	if (!fore200e->virt_base) {
 680		printk(FORE200E "unable to map RAM of device %s\n", fore200e->name);
 681		return -EFAULT;
 682	}
 683
 684	DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base);
 685    
 686	fore200e->bus->write(0x02, fore200e->regs.sba.isr); /* XXX hardwired interrupt level */
 687
 688	/* get the supported DVMA burst sizes */
 689	bursts = of_getintprop_default(op->dev.of_node->parent, "burst-sizes", 0x00);
 690
 691	if (sbus_can_dma_64bit())
 692		sbus_set_sbus64(&op->dev, bursts);
 693
 694	fore200e->state = FORE200E_STATE_MAP;
 695	return 0;
 696}
 697
 698static void fore200e_sba_unmap(struct fore200e *fore200e)
 699{
 700	struct platform_device *op = to_platform_device(fore200e->dev);
 701
 702	of_iounmap(&op->resource[0], fore200e->regs.sba.hcr, SBA200E_HCR_LENGTH);
 703	of_iounmap(&op->resource[1], fore200e->regs.sba.bsr, SBA200E_BSR_LENGTH);
 704	of_iounmap(&op->resource[2], fore200e->regs.sba.isr, SBA200E_ISR_LENGTH);
 705	of_iounmap(&op->resource[3], fore200e->virt_base,    SBA200E_RAM_LENGTH);
 706}
 707
 708static int __init fore200e_sba_configure(struct fore200e *fore200e)
 709{
 710	fore200e->state = FORE200E_STATE_CONFIGURE;
 711	return 0;
 712}
 713
 714static int __init fore200e_sba_prom_read(struct fore200e *fore200e, struct prom_data *prom)
 715{
 716	struct platform_device *op = to_platform_device(fore200e->dev);
 717	const u8 *prop;
 718	int len;
 719
 720	prop = of_get_property(op->dev.of_node, "madaddrlo2", &len);
 721	if (!prop)
 722		return -ENODEV;
 723	memcpy(&prom->mac_addr[4], prop, 4);
 724
 725	prop = of_get_property(op->dev.of_node, "madaddrhi4", &len);
 726	if (!prop)
 727		return -ENODEV;
 728	memcpy(&prom->mac_addr[2], prop, 4);
 729
 730	prom->serial_number = of_getintprop_default(op->dev.of_node,
 731						    "serialnumber", 0);
 732	prom->hw_revision = of_getintprop_default(op->dev.of_node,
 733						  "promversion", 0);
 734    
 735	return 0;
 736}
 737
 738static int fore200e_sba_proc_read(struct fore200e *fore200e, char *page)
 739{
 740	struct platform_device *op = to_platform_device(fore200e->dev);
 741	const struct linux_prom_registers *regs;
 742
 743	regs = of_get_property(op->dev.of_node, "reg", NULL);
 744
 745	return sprintf(page, "   SBUS slot/device:\t\t%d/'%pOFn'\n",
 746		       (regs ? regs->which_io : 0), op->dev.of_node);
 747}
 748
 749static const struct fore200e_bus fore200e_sbus_ops = {
 750	.model_name		= "SBA-200E",
 751	.proc_name		= "sba200e",
 752	.descr_alignment	= 32,
 753	.buffer_alignment	= 64,
 754	.status_alignment	= 32,
 755	.read			= fore200e_sba_read,
 756	.write			= fore200e_sba_write,
 757	.configure		= fore200e_sba_configure,
 758	.map			= fore200e_sba_map,
 759	.reset			= fore200e_sba_reset,
 760	.prom_read		= fore200e_sba_prom_read,
 761	.unmap			= fore200e_sba_unmap,
 762	.irq_enable		= fore200e_sba_irq_enable,
 763	.irq_check		= fore200e_sba_irq_check,
 764	.irq_ack		= fore200e_sba_irq_ack,
 765	.proc_read		= fore200e_sba_proc_read,
 766};
 767#endif /* CONFIG_SBUS */
 768
 769static void
 770fore200e_tx_irq(struct fore200e* fore200e)
 771{
 772    struct host_txq*        txq = &fore200e->host_txq;
 773    struct host_txq_entry*  entry;
 774    struct atm_vcc*         vcc;
 775    struct fore200e_vc_map* vc_map;
 776
 777    if (fore200e->host_txq.txing == 0)
 778	return;
 779
 780    for (;;) {
 781	
 782	entry = &txq->host_entry[ txq->tail ];
 783
 784        if ((*entry->status & STATUS_COMPLETE) == 0) {
 785	    break;
 786	}
 787
 788	DPRINTK(3, "TX COMPLETED: entry = %p [tail = %d], vc_map = %p, skb = %p\n", 
 789		entry, txq->tail, entry->vc_map, entry->skb);
 790
 791	/* free copy of misaligned data */
 792	kfree(entry->data);
 793	
 794	/* remove DMA mapping */
 795	dma_unmap_single(fore200e->dev, entry->tpd->tsd[ 0 ].buffer, entry->tpd->tsd[ 0 ].length,
 796				 DMA_TO_DEVICE);
 797
 798	vc_map = entry->vc_map;
 799
 800	/* vcc closed since the time the entry was submitted for tx? */
 801	if ((vc_map->vcc == NULL) ||
 802	    (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) {
 803
 804	    DPRINTK(1, "no ready vcc found for PDU sent on device %d\n",
 805		    fore200e->atm_dev->number);
 806
 807	    dev_kfree_skb_any(entry->skb);
 808	}
 809	else {
 810	    ASSERT(vc_map->vcc);
 811
 812	    /* vcc closed then immediately re-opened? */
 813	    if (vc_map->incarn != entry->incarn) {
 814
 815		/* when a vcc is closed, some PDUs may be still pending in the tx queue.
 816		   if the same vcc is immediately re-opened, those pending PDUs must
 817		   not be popped after the completion of their emission, as they refer
 818		   to the prior incarnation of that vcc. otherwise, sk_atm(vcc)->sk_wmem_alloc
 819		   would be decremented by the size of the (unrelated) skb, possibly
 820		   leading to a negative sk->sk_wmem_alloc count, ultimately freezing the vcc.
 821		   we thus bind the tx entry to the current incarnation of the vcc
 822		   when the entry is submitted for tx. When the tx later completes,
 823		   if the incarnation number of the tx entry does not match the one
 824		   of the vcc, then this implies that the vcc has been closed then re-opened.
 825		   we thus just drop the skb here. */
 826
 827		DPRINTK(1, "vcc closed-then-re-opened; dropping PDU sent on device %d\n",
 828			fore200e->atm_dev->number);
 829
 830		dev_kfree_skb_any(entry->skb);
 831	    }
 832	    else {
 833		vcc = vc_map->vcc;
 834		ASSERT(vcc);
 835
 836		/* notify tx completion */
 837		if (vcc->pop) {
 838		    vcc->pop(vcc, entry->skb);
 839		}
 840		else {
 841		    dev_kfree_skb_any(entry->skb);
 842		}
 843
 844		/* check error condition */
 845		if (*entry->status & STATUS_ERROR)
 846		    atomic_inc(&vcc->stats->tx_err);
 847		else
 848		    atomic_inc(&vcc->stats->tx);
 849	    }
 850	}
 851
 852	*entry->status = STATUS_FREE;
 853
 854	fore200e->host_txq.txing--;
 855
 856	FORE200E_NEXT_ENTRY(txq->tail, QUEUE_SIZE_TX);
 857    }
 858}
 859
 860
 861#ifdef FORE200E_BSQ_DEBUG
 862int bsq_audit(int where, struct host_bsq* bsq, int scheme, int magn)
 863{
 864    struct buffer* buffer;
 865    int count = 0;
 866
 867    buffer = bsq->freebuf;
 868    while (buffer) {
 869
 870	if (buffer->supplied) {
 871	    printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld supplied but in free list!\n",
 872		   where, scheme, magn, buffer->index);
 873	}
 874
 875	if (buffer->magn != magn) {
 876	    printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected magn = %d\n",
 877		   where, scheme, magn, buffer->index, buffer->magn);
 878	}
 879
 880	if (buffer->scheme != scheme) {
 881	    printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected scheme = %d\n",
 882		   where, scheme, magn, buffer->index, buffer->scheme);
 883	}
 884
 885	if ((buffer->index < 0) || (buffer->index >= fore200e_rx_buf_nbr[ scheme ][ magn ])) {
 886	    printk(FORE200E "bsq_audit(%d): queue %d.%d, out of range buffer index = %ld !\n",
 887		   where, scheme, magn, buffer->index);
 888	}
 889
 890	count++;
 891	buffer = buffer->next;
 892    }
 893
 894    if (count != bsq->freebuf_count) {
 895	printk(FORE200E "bsq_audit(%d): queue %d.%d, %d bufs in free list, but freebuf_count = %d\n",
 896	       where, scheme, magn, count, bsq->freebuf_count);
 897    }
 898    return 0;
 899}
 900#endif
 901
 902
 903static void
 904fore200e_supply(struct fore200e* fore200e)
 905{
 906    int  scheme, magn, i;
 907
 908    struct host_bsq*       bsq;
 909    struct host_bsq_entry* entry;
 910    struct buffer*         buffer;
 911
 912    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
 913	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
 914
 915	    bsq = &fore200e->host_bsq[ scheme ][ magn ];
 916
 917#ifdef FORE200E_BSQ_DEBUG
 918	    bsq_audit(1, bsq, scheme, magn);
 919#endif
 920	    while (bsq->freebuf_count >= RBD_BLK_SIZE) {
 921
 922		DPRINTK(2, "supplying %d rx buffers to queue %d / %d, freebuf_count = %d\n",
 923			RBD_BLK_SIZE, scheme, magn, bsq->freebuf_count);
 924
 925		entry = &bsq->host_entry[ bsq->head ];
 926
 927		for (i = 0; i < RBD_BLK_SIZE; i++) {
 928
 929		    /* take the first buffer in the free buffer list */
 930		    buffer = bsq->freebuf;
 931		    if (!buffer) {
 932			printk(FORE200E "no more free bufs in queue %d.%d, but freebuf_count = %d\n",
 933			       scheme, magn, bsq->freebuf_count);
 934			return;
 935		    }
 936		    bsq->freebuf = buffer->next;
 937		    
 938#ifdef FORE200E_BSQ_DEBUG
 939		    if (buffer->supplied)
 940			printk(FORE200E "queue %d.%d, buffer %lu already supplied\n",
 941			       scheme, magn, buffer->index);
 942		    buffer->supplied = 1;
 943#endif
 944		    entry->rbd_block->rbd[ i ].buffer_haddr = buffer->data.dma_addr;
 945		    entry->rbd_block->rbd[ i ].handle       = FORE200E_BUF2HDL(buffer);
 946		}
 947
 948		FORE200E_NEXT_ENTRY(bsq->head, QUEUE_SIZE_BS);
 949
 950 		/* decrease accordingly the number of free rx buffers */
 951		bsq->freebuf_count -= RBD_BLK_SIZE;
 952
 953		*entry->status = STATUS_PENDING;
 954		fore200e->bus->write(entry->rbd_block_dma, &entry->cp_entry->rbd_block_haddr);
 955	    }
 956	}
 957    }
 958}
 959
 960
 961static int
 962fore200e_push_rpd(struct fore200e* fore200e, struct atm_vcc* vcc, struct rpd* rpd)
 963{
 964    struct sk_buff*      skb;
 965    struct buffer*       buffer;
 966    struct fore200e_vcc* fore200e_vcc;
 967    int                  i, pdu_len = 0;
 968#ifdef FORE200E_52BYTE_AAL0_SDU
 969    u32                  cell_header = 0;
 970#endif
 971
 972    ASSERT(vcc);
 973    
 974    fore200e_vcc = FORE200E_VCC(vcc);
 975    ASSERT(fore200e_vcc);
 976
 977#ifdef FORE200E_52BYTE_AAL0_SDU
 978    if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.rxtp.max_sdu == ATM_AAL0_SDU)) {
 979
 980	cell_header = (rpd->atm_header.gfc << ATM_HDR_GFC_SHIFT) |
 981	              (rpd->atm_header.vpi << ATM_HDR_VPI_SHIFT) |
 982                      (rpd->atm_header.vci << ATM_HDR_VCI_SHIFT) |
 983                      (rpd->atm_header.plt << ATM_HDR_PTI_SHIFT) | 
 984                       rpd->atm_header.clp;
 985	pdu_len = 4;
 986    }
 987#endif
 988    
 989    /* compute total PDU length */
 990    for (i = 0; i < rpd->nseg; i++)
 991	pdu_len += rpd->rsd[ i ].length;
 992    
 993    skb = alloc_skb(pdu_len, GFP_ATOMIC);
 994    if (skb == NULL) {
 995	DPRINTK(2, "unable to alloc new skb, rx PDU length = %d\n", pdu_len);
 996
 997	atomic_inc(&vcc->stats->rx_drop);
 998	return -ENOMEM;
 999    } 
1000
1001    __net_timestamp(skb);
1002    
1003#ifdef FORE200E_52BYTE_AAL0_SDU
1004    if (cell_header) {
1005	*((u32*)skb_put(skb, 4)) = cell_header;
1006    }
1007#endif
1008
1009    /* reassemble segments */
1010    for (i = 0; i < rpd->nseg; i++) {
1011	
1012	/* rebuild rx buffer address from rsd handle */
1013	buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle);
1014	
1015	/* Make device DMA transfer visible to CPU.  */
1016	dma_sync_single_for_cpu(fore200e->dev, buffer->data.dma_addr,
1017				rpd->rsd[i].length, DMA_FROM_DEVICE);
1018	
1019	skb_put_data(skb, buffer->data.align_addr, rpd->rsd[i].length);
1020
1021	/* Now let the device get at it again.  */
1022	dma_sync_single_for_device(fore200e->dev, buffer->data.dma_addr,
1023				   rpd->rsd[i].length, DMA_FROM_DEVICE);
1024    }
1025
1026    DPRINTK(3, "rx skb: len = %d, truesize = %d\n", skb->len, skb->truesize);
1027    
1028    if (pdu_len < fore200e_vcc->rx_min_pdu)
1029	fore200e_vcc->rx_min_pdu = pdu_len;
1030    if (pdu_len > fore200e_vcc->rx_max_pdu)
1031	fore200e_vcc->rx_max_pdu = pdu_len;
1032    fore200e_vcc->rx_pdu++;
1033
1034    /* push PDU */
1035    if (atm_charge(vcc, skb->truesize) == 0) {
1036
1037	DPRINTK(2, "receive buffers saturated for %d.%d.%d - PDU dropped\n",
1038		vcc->itf, vcc->vpi, vcc->vci);
1039
1040	dev_kfree_skb_any(skb);
1041
1042	atomic_inc(&vcc->stats->rx_drop);
1043	return -ENOMEM;
1044    }
1045
1046    vcc->push(vcc, skb);
1047    atomic_inc(&vcc->stats->rx);
1048
1049    return 0;
1050}
1051
1052
1053static void
1054fore200e_collect_rpd(struct fore200e* fore200e, struct rpd* rpd)
1055{
1056    struct host_bsq* bsq;
1057    struct buffer*   buffer;
1058    int              i;
1059    
1060    for (i = 0; i < rpd->nseg; i++) {
1061
1062	/* rebuild rx buffer address from rsd handle */
1063	buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle);
1064
1065	bsq = &fore200e->host_bsq[ buffer->scheme ][ buffer->magn ];
1066
1067#ifdef FORE200E_BSQ_DEBUG
1068	bsq_audit(2, bsq, buffer->scheme, buffer->magn);
1069
1070	if (buffer->supplied == 0)
1071	    printk(FORE200E "queue %d.%d, buffer %ld was not supplied\n",
1072		   buffer->scheme, buffer->magn, buffer->index);
1073	buffer->supplied = 0;
1074#endif
1075
1076	/* re-insert the buffer into the free buffer list */
1077	buffer->next = bsq->freebuf;
1078	bsq->freebuf = buffer;
1079
1080	/* then increment the number of free rx buffers */
1081	bsq->freebuf_count++;
1082    }
1083}
1084
1085
1086static void
1087fore200e_rx_irq(struct fore200e* fore200e)
1088{
1089    struct host_rxq*        rxq = &fore200e->host_rxq;
1090    struct host_rxq_entry*  entry;
1091    struct atm_vcc*         vcc;
1092    struct fore200e_vc_map* vc_map;
1093
1094    for (;;) {
1095	
1096	entry = &rxq->host_entry[ rxq->head ];
1097
1098	/* no more received PDUs */
1099	if ((*entry->status & STATUS_COMPLETE) == 0)
1100	    break;
1101
1102	vc_map = FORE200E_VC_MAP(fore200e, entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1103
1104	if ((vc_map->vcc == NULL) ||
1105	    (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) {
1106
1107	    DPRINTK(1, "no ready VC found for PDU received on %d.%d.%d\n",
1108		    fore200e->atm_dev->number,
1109		    entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1110	}
1111	else {
1112	    vcc = vc_map->vcc;
1113	    ASSERT(vcc);
1114
1115	    if ((*entry->status & STATUS_ERROR) == 0) {
1116
1117		fore200e_push_rpd(fore200e, vcc, entry->rpd);
1118	    }
1119	    else {
1120		DPRINTK(2, "damaged PDU on %d.%d.%d\n",
1121			fore200e->atm_dev->number,
1122			entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1123		atomic_inc(&vcc->stats->rx_err);
1124	    }
1125	}
1126
1127	FORE200E_NEXT_ENTRY(rxq->head, QUEUE_SIZE_RX);
1128
1129	fore200e_collect_rpd(fore200e, entry->rpd);
1130
1131	/* rewrite the rpd address to ack the received PDU */
1132	fore200e->bus->write(entry->rpd_dma, &entry->cp_entry->rpd_haddr);
1133	*entry->status = STATUS_FREE;
1134
1135	fore200e_supply(fore200e);
1136    }
1137}
1138
1139
1140#ifndef FORE200E_USE_TASKLET
1141static void
1142fore200e_irq(struct fore200e* fore200e)
1143{
1144    unsigned long flags;
1145
1146    spin_lock_irqsave(&fore200e->q_lock, flags);
1147    fore200e_rx_irq(fore200e);
1148    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1149
1150    spin_lock_irqsave(&fore200e->q_lock, flags);
1151    fore200e_tx_irq(fore200e);
1152    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1153}
1154#endif
1155
1156
1157static irqreturn_t
1158fore200e_interrupt(int irq, void* dev)
1159{
1160    struct fore200e* fore200e = FORE200E_DEV((struct atm_dev*)dev);
1161
1162    if (fore200e->bus->irq_check(fore200e) == 0) {
1163	
1164	DPRINTK(3, "interrupt NOT triggered by device %d\n", fore200e->atm_dev->number);
1165	return IRQ_NONE;
1166    }
1167    DPRINTK(3, "interrupt triggered by device %d\n", fore200e->atm_dev->number);
1168
1169#ifdef FORE200E_USE_TASKLET
1170    tasklet_schedule(&fore200e->tx_tasklet);
1171    tasklet_schedule(&fore200e->rx_tasklet);
1172#else
1173    fore200e_irq(fore200e);
1174#endif
1175    
1176    fore200e->bus->irq_ack(fore200e);
1177    return IRQ_HANDLED;
1178}
1179
1180
1181#ifdef FORE200E_USE_TASKLET
1182static void
1183fore200e_tx_tasklet(unsigned long data)
1184{
1185    struct fore200e* fore200e = (struct fore200e*) data;
1186    unsigned long flags;
1187
1188    DPRINTK(3, "tx tasklet scheduled for device %d\n", fore200e->atm_dev->number);
1189
1190    spin_lock_irqsave(&fore200e->q_lock, flags);
1191    fore200e_tx_irq(fore200e);
1192    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1193}
1194
1195
1196static void
1197fore200e_rx_tasklet(unsigned long data)
1198{
1199    struct fore200e* fore200e = (struct fore200e*) data;
1200    unsigned long    flags;
1201
1202    DPRINTK(3, "rx tasklet scheduled for device %d\n", fore200e->atm_dev->number);
1203
1204    spin_lock_irqsave(&fore200e->q_lock, flags);
1205    fore200e_rx_irq((struct fore200e*) data);
1206    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1207}
1208#endif
1209
1210
1211static int
1212fore200e_select_scheme(struct atm_vcc* vcc)
1213{
1214    /* fairly balance the VCs over (identical) buffer schemes */
1215    int scheme = vcc->vci % 2 ? BUFFER_SCHEME_ONE : BUFFER_SCHEME_TWO;
1216
1217    DPRINTK(1, "VC %d.%d.%d uses buffer scheme %d\n",
1218	    vcc->itf, vcc->vpi, vcc->vci, scheme);
1219
1220    return scheme;
1221}
1222
1223
1224static int 
1225fore200e_activate_vcin(struct fore200e* fore200e, int activate, struct atm_vcc* vcc, int mtu)
1226{
1227    struct host_cmdq*        cmdq  = &fore200e->host_cmdq;
1228    struct host_cmdq_entry*  entry = &cmdq->host_entry[ cmdq->head ];
1229    struct activate_opcode   activ_opcode;
1230    struct deactivate_opcode deactiv_opcode;
1231    struct vpvc              vpvc;
1232    int                      ok;
1233    enum fore200e_aal        aal = fore200e_atm2fore_aal(vcc->qos.aal);
1234
1235    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1236    
1237    if (activate) {
1238	FORE200E_VCC(vcc)->scheme = fore200e_select_scheme(vcc);
1239	
1240	activ_opcode.opcode = OPCODE_ACTIVATE_VCIN;
1241	activ_opcode.aal    = aal;
1242	activ_opcode.scheme = FORE200E_VCC(vcc)->scheme;
1243	activ_opcode.pad    = 0;
1244    }
1245    else {
1246	deactiv_opcode.opcode = OPCODE_DEACTIVATE_VCIN;
1247	deactiv_opcode.pad    = 0;
1248    }
1249
1250    vpvc.vci = vcc->vci;
1251    vpvc.vpi = vcc->vpi;
1252
1253    *entry->status = STATUS_PENDING;
1254
1255    if (activate) {
1256
1257#ifdef FORE200E_52BYTE_AAL0_SDU
1258	mtu = 48;
1259#endif
1260	/* the MTU is not used by the cp, except in the case of AAL0 */
1261	fore200e->bus->write(mtu,                        &entry->cp_entry->cmd.activate_block.mtu);
1262	fore200e->bus->write(*(u32*)&vpvc,         (u32 __iomem *)&entry->cp_entry->cmd.activate_block.vpvc);
1263	fore200e->bus->write(*(u32*)&activ_opcode, (u32 __iomem *)&entry->cp_entry->cmd.activate_block.opcode);
1264    }
1265    else {
1266	fore200e->bus->write(*(u32*)&vpvc,         (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.vpvc);
1267	fore200e->bus->write(*(u32*)&deactiv_opcode, (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.opcode);
1268    }
1269
1270    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1271
1272    *entry->status = STATUS_FREE;
1273
1274    if (ok == 0) {
1275	printk(FORE200E "unable to %s VC %d.%d.%d\n",
1276	       activate ? "open" : "close", vcc->itf, vcc->vpi, vcc->vci);
1277	return -EIO;
1278    }
1279
1280    DPRINTK(1, "VC %d.%d.%d %sed\n", vcc->itf, vcc->vpi, vcc->vci, 
1281	    activate ? "open" : "clos");
1282
1283    return 0;
1284}
1285
1286
1287#define FORE200E_MAX_BACK2BACK_CELLS 255    /* XXX depends on CDVT */
1288
1289static void
1290fore200e_rate_ctrl(struct atm_qos* qos, struct tpd_rate* rate)
1291{
1292    if (qos->txtp.max_pcr < ATM_OC3_PCR) {
1293    
1294	/* compute the data cells to idle cells ratio from the tx PCR */
1295	rate->data_cells = qos->txtp.max_pcr * FORE200E_MAX_BACK2BACK_CELLS / ATM_OC3_PCR;
1296	rate->idle_cells = FORE200E_MAX_BACK2BACK_CELLS - rate->data_cells;
1297    }
1298    else {
1299	/* disable rate control */
1300	rate->data_cells = rate->idle_cells = 0;
1301    }
1302}
1303
1304
1305static int
1306fore200e_open(struct atm_vcc *vcc)
1307{
1308    struct fore200e*        fore200e = FORE200E_DEV(vcc->dev);
1309    struct fore200e_vcc*    fore200e_vcc;
1310    struct fore200e_vc_map* vc_map;
1311    unsigned long	    flags;
1312    int			    vci = vcc->vci;
1313    short		    vpi = vcc->vpi;
1314
1315    ASSERT((vpi >= 0) && (vpi < 1<<FORE200E_VPI_BITS));
1316    ASSERT((vci >= 0) && (vci < 1<<FORE200E_VCI_BITS));
1317
1318    spin_lock_irqsave(&fore200e->q_lock, flags);
1319
1320    vc_map = FORE200E_VC_MAP(fore200e, vpi, vci);
1321    if (vc_map->vcc) {
1322
1323	spin_unlock_irqrestore(&fore200e->q_lock, flags);
1324
1325	printk(FORE200E "VC %d.%d.%d already in use\n",
1326	       fore200e->atm_dev->number, vpi, vci);
1327
1328	return -EINVAL;
1329    }
1330
1331    vc_map->vcc = vcc;
1332
1333    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1334
1335    fore200e_vcc = kzalloc(sizeof(struct fore200e_vcc), GFP_ATOMIC);
1336    if (fore200e_vcc == NULL) {
1337	vc_map->vcc = NULL;
1338	return -ENOMEM;
1339    }
1340
1341    DPRINTK(2, "opening %d.%d.%d:%d QoS = (tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; "
1342	    "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d)\n",
1343	    vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1344	    fore200e_traffic_class[ vcc->qos.txtp.traffic_class ],
1345	    vcc->qos.txtp.min_pcr, vcc->qos.txtp.max_pcr, vcc->qos.txtp.max_cdv, vcc->qos.txtp.max_sdu,
1346	    fore200e_traffic_class[ vcc->qos.rxtp.traffic_class ],
1347	    vcc->qos.rxtp.min_pcr, vcc->qos.rxtp.max_pcr, vcc->qos.rxtp.max_cdv, vcc->qos.rxtp.max_sdu);
1348    
1349    /* pseudo-CBR bandwidth requested? */
1350    if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1351	
1352	mutex_lock(&fore200e->rate_mtx);
1353	if (fore200e->available_cell_rate < vcc->qos.txtp.max_pcr) {
1354	    mutex_unlock(&fore200e->rate_mtx);
1355
1356	    kfree(fore200e_vcc);
1357	    vc_map->vcc = NULL;
1358	    return -EAGAIN;
1359	}
1360
1361	/* reserve bandwidth */
1362	fore200e->available_cell_rate -= vcc->qos.txtp.max_pcr;
1363	mutex_unlock(&fore200e->rate_mtx);
1364    }
1365    
1366    vcc->itf = vcc->dev->number;
1367
1368    set_bit(ATM_VF_PARTIAL,&vcc->flags);
1369    set_bit(ATM_VF_ADDR, &vcc->flags);
1370
1371    vcc->dev_data = fore200e_vcc;
1372    
1373    if (fore200e_activate_vcin(fore200e, 1, vcc, vcc->qos.rxtp.max_sdu) < 0) {
1374
1375	vc_map->vcc = NULL;
1376
1377	clear_bit(ATM_VF_ADDR, &vcc->flags);
1378	clear_bit(ATM_VF_PARTIAL,&vcc->flags);
1379
1380	vcc->dev_data = NULL;
1381
1382	fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1383
1384	kfree(fore200e_vcc);
1385	return -EINVAL;
1386    }
1387    
1388    /* compute rate control parameters */
1389    if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1390	
1391	fore200e_rate_ctrl(&vcc->qos, &fore200e_vcc->rate);
1392	set_bit(ATM_VF_HASQOS, &vcc->flags);
1393
1394	DPRINTK(3, "tx on %d.%d.%d:%d, tx PCR = %d, rx PCR = %d, data_cells = %u, idle_cells = %u\n",
1395		vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1396		vcc->qos.txtp.max_pcr, vcc->qos.rxtp.max_pcr, 
1397		fore200e_vcc->rate.data_cells, fore200e_vcc->rate.idle_cells);
1398    }
1399    
1400    fore200e_vcc->tx_min_pdu = fore200e_vcc->rx_min_pdu = MAX_PDU_SIZE + 1;
1401    fore200e_vcc->tx_max_pdu = fore200e_vcc->rx_max_pdu = 0;
1402    fore200e_vcc->tx_pdu     = fore200e_vcc->rx_pdu     = 0;
1403
1404    /* new incarnation of the vcc */
1405    vc_map->incarn = ++fore200e->incarn_count;
1406
1407    /* VC unusable before this flag is set */
1408    set_bit(ATM_VF_READY, &vcc->flags);
1409
1410    return 0;
1411}
1412
1413
1414static void
1415fore200e_close(struct atm_vcc* vcc)
1416{
1417    struct fore200e*        fore200e = FORE200E_DEV(vcc->dev);
1418    struct fore200e_vcc*    fore200e_vcc;
 
1419    struct fore200e_vc_map* vc_map;
1420    unsigned long           flags;
1421
1422    ASSERT(vcc);
 
 
1423    ASSERT((vcc->vpi >= 0) && (vcc->vpi < 1<<FORE200E_VPI_BITS));
1424    ASSERT((vcc->vci >= 0) && (vcc->vci < 1<<FORE200E_VCI_BITS));
1425
1426    DPRINTK(2, "closing %d.%d.%d:%d\n", vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal));
1427
1428    clear_bit(ATM_VF_READY, &vcc->flags);
1429
1430    fore200e_activate_vcin(fore200e, 0, vcc, 0);
1431
1432    spin_lock_irqsave(&fore200e->q_lock, flags);
1433
1434    vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci);
1435
1436    /* the vc is no longer considered as "in use" by fore200e_open() */
1437    vc_map->vcc = NULL;
1438
1439    vcc->itf = vcc->vci = vcc->vpi = 0;
1440
1441    fore200e_vcc = FORE200E_VCC(vcc);
1442    vcc->dev_data = NULL;
1443
1444    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1445
1446    /* release reserved bandwidth, if any */
1447    if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1448
1449	mutex_lock(&fore200e->rate_mtx);
1450	fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1451	mutex_unlock(&fore200e->rate_mtx);
1452
1453	clear_bit(ATM_VF_HASQOS, &vcc->flags);
1454    }
1455
1456    clear_bit(ATM_VF_ADDR, &vcc->flags);
1457    clear_bit(ATM_VF_PARTIAL,&vcc->flags);
1458
1459    ASSERT(fore200e_vcc);
1460    kfree(fore200e_vcc);
1461}
1462
1463
1464static int
1465fore200e_send(struct atm_vcc *vcc, struct sk_buff *skb)
1466{
1467    struct fore200e*        fore200e     = FORE200E_DEV(vcc->dev);
1468    struct fore200e_vcc*    fore200e_vcc = FORE200E_VCC(vcc);
1469    struct fore200e_vc_map* vc_map;
1470    struct host_txq*        txq          = &fore200e->host_txq;
1471    struct host_txq_entry*  entry;
1472    struct tpd*             tpd;
1473    struct tpd_haddr        tpd_haddr;
1474    int                     retry        = CONFIG_ATM_FORE200E_TX_RETRY;
1475    int                     tx_copy      = 0;
1476    int                     tx_len       = skb->len;
1477    u32*                    cell_header  = NULL;
1478    unsigned char*          skb_data;
1479    int                     skb_len;
1480    unsigned char*          data;
1481    unsigned long           flags;
1482
1483    ASSERT(vcc);
1484    ASSERT(fore200e);
1485    ASSERT(fore200e_vcc);
 
 
 
 
 
 
 
 
 
1486
1487    if (!test_bit(ATM_VF_READY, &vcc->flags)) {
1488	DPRINTK(1, "VC %d.%d.%d not ready for tx\n", vcc->itf, vcc->vpi, vcc->vpi);
1489	dev_kfree_skb_any(skb);
1490	return -EINVAL;
1491    }
1492
1493#ifdef FORE200E_52BYTE_AAL0_SDU
1494    if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.txtp.max_sdu == ATM_AAL0_SDU)) {
1495	cell_header = (u32*) skb->data;
1496	skb_data    = skb->data + 4;    /* skip 4-byte cell header */
1497	skb_len     = tx_len = skb->len  - 4;
1498
1499	DPRINTK(3, "user-supplied cell header = 0x%08x\n", *cell_header);
1500    }
1501    else 
1502#endif
1503    {
1504	skb_data = skb->data;
1505	skb_len  = skb->len;
1506    }
1507    
1508    if (((unsigned long)skb_data) & 0x3) {
1509
1510	DPRINTK(2, "misaligned tx PDU on device %s\n", fore200e->name);
1511	tx_copy = 1;
1512	tx_len  = skb_len;
1513    }
1514
1515    if ((vcc->qos.aal == ATM_AAL0) && (skb_len % ATM_CELL_PAYLOAD)) {
1516
1517        /* this simply NUKES the PCA board */
1518	DPRINTK(2, "incomplete tx AAL0 PDU on device %s\n", fore200e->name);
1519	tx_copy = 1;
1520	tx_len  = ((skb_len / ATM_CELL_PAYLOAD) + 1) * ATM_CELL_PAYLOAD;
1521    }
1522    
1523    if (tx_copy) {
1524	data = kmalloc(tx_len, GFP_ATOMIC);
1525	if (data == NULL) {
1526	    if (vcc->pop) {
1527		vcc->pop(vcc, skb);
1528	    }
1529	    else {
1530		dev_kfree_skb_any(skb);
1531	    }
1532	    return -ENOMEM;
1533	}
1534
1535	memcpy(data, skb_data, skb_len);
1536	if (skb_len < tx_len)
1537	    memset(data + skb_len, 0x00, tx_len - skb_len);
1538    }
1539    else {
1540	data = skb_data;
1541    }
1542
1543    vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci);
1544    ASSERT(vc_map->vcc == vcc);
1545
1546  retry_here:
1547
1548    spin_lock_irqsave(&fore200e->q_lock, flags);
1549
1550    entry = &txq->host_entry[ txq->head ];
1551
1552    if ((*entry->status != STATUS_FREE) || (txq->txing >= QUEUE_SIZE_TX - 2)) {
1553
1554	/* try to free completed tx queue entries */
1555	fore200e_tx_irq(fore200e);
1556
1557	if (*entry->status != STATUS_FREE) {
1558
1559	    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1560
1561	    /* retry once again? */
1562	    if (--retry > 0) {
1563		udelay(50);
1564		goto retry_here;
1565	    }
1566
1567	    atomic_inc(&vcc->stats->tx_err);
1568
1569	    fore200e->tx_sat++;
1570	    DPRINTK(2, "tx queue of device %s is saturated, PDU dropped - heartbeat is %08x\n",
1571		    fore200e->name, fore200e->cp_queues->heartbeat);
1572	    if (vcc->pop) {
1573		vcc->pop(vcc, skb);
1574	    }
1575	    else {
1576		dev_kfree_skb_any(skb);
1577	    }
1578
1579	    if (tx_copy)
1580		kfree(data);
1581
1582	    return -ENOBUFS;
1583	}
1584    }
1585
1586    entry->incarn = vc_map->incarn;
1587    entry->vc_map = vc_map;
1588    entry->skb    = skb;
1589    entry->data   = tx_copy ? data : NULL;
1590
1591    tpd = entry->tpd;
1592    tpd->tsd[ 0 ].buffer = dma_map_single(fore200e->dev, data, tx_len,
1593					  DMA_TO_DEVICE);
1594    if (dma_mapping_error(fore200e->dev, tpd->tsd[0].buffer)) {
1595	if (tx_copy)
1596	    kfree(data);
1597	spin_unlock_irqrestore(&fore200e->q_lock, flags);
1598	return -ENOMEM;
1599    }
1600    tpd->tsd[ 0 ].length = tx_len;
1601
1602    FORE200E_NEXT_ENTRY(txq->head, QUEUE_SIZE_TX);
1603    txq->txing++;
1604
1605    /* The dma_map call above implies a dma_sync so the device can use it,
1606     * thus no explicit dma_sync call is necessary here.
1607     */
1608    
1609    DPRINTK(3, "tx on %d.%d.%d:%d, len = %u (%u)\n", 
1610	    vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1611	    tpd->tsd[0].length, skb_len);
1612
1613    if (skb_len < fore200e_vcc->tx_min_pdu)
1614	fore200e_vcc->tx_min_pdu = skb_len;
1615    if (skb_len > fore200e_vcc->tx_max_pdu)
1616	fore200e_vcc->tx_max_pdu = skb_len;
1617    fore200e_vcc->tx_pdu++;
1618
1619    /* set tx rate control information */
1620    tpd->rate.data_cells = fore200e_vcc->rate.data_cells;
1621    tpd->rate.idle_cells = fore200e_vcc->rate.idle_cells;
1622
1623    if (cell_header) {
1624	tpd->atm_header.clp = (*cell_header & ATM_HDR_CLP);
1625	tpd->atm_header.plt = (*cell_header & ATM_HDR_PTI_MASK) >> ATM_HDR_PTI_SHIFT;
1626	tpd->atm_header.vci = (*cell_header & ATM_HDR_VCI_MASK) >> ATM_HDR_VCI_SHIFT;
1627	tpd->atm_header.vpi = (*cell_header & ATM_HDR_VPI_MASK) >> ATM_HDR_VPI_SHIFT;
1628	tpd->atm_header.gfc = (*cell_header & ATM_HDR_GFC_MASK) >> ATM_HDR_GFC_SHIFT;
1629    }
1630    else {
1631	/* set the ATM header, common to all cells conveying the PDU */
1632	tpd->atm_header.clp = 0;
1633	tpd->atm_header.plt = 0;
1634	tpd->atm_header.vci = vcc->vci;
1635	tpd->atm_header.vpi = vcc->vpi;
1636	tpd->atm_header.gfc = 0;
1637    }
1638
1639    tpd->spec.length = tx_len;
1640    tpd->spec.nseg   = 1;
1641    tpd->spec.aal    = fore200e_atm2fore_aal(vcc->qos.aal);
1642    tpd->spec.intr   = 1;
1643
1644    tpd_haddr.size  = sizeof(struct tpd) / (1<<TPD_HADDR_SHIFT);  /* size is expressed in 32 byte blocks */
1645    tpd_haddr.pad   = 0;
1646    tpd_haddr.haddr = entry->tpd_dma >> TPD_HADDR_SHIFT;          /* shift the address, as we are in a bitfield */
1647
1648    *entry->status = STATUS_PENDING;
1649    fore200e->bus->write(*(u32*)&tpd_haddr, (u32 __iomem *)&entry->cp_entry->tpd_haddr);
1650
1651    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1652
1653    return 0;
1654}
1655
1656
1657static int
1658fore200e_getstats(struct fore200e* fore200e)
1659{
1660    struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1661    struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1662    struct stats_opcode     opcode;
1663    int                     ok;
1664    u32                     stats_dma_addr;
1665
1666    if (fore200e->stats == NULL) {
1667	fore200e->stats = kzalloc(sizeof(struct stats), GFP_KERNEL);
1668	if (fore200e->stats == NULL)
1669	    return -ENOMEM;
1670    }
1671    
1672    stats_dma_addr = dma_map_single(fore200e->dev, fore200e->stats,
1673				    sizeof(struct stats), DMA_FROM_DEVICE);
1674    if (dma_mapping_error(fore200e->dev, stats_dma_addr))
1675    	return -ENOMEM;
1676    
1677    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1678
1679    opcode.opcode = OPCODE_GET_STATS;
1680    opcode.pad    = 0;
1681
1682    fore200e->bus->write(stats_dma_addr, &entry->cp_entry->cmd.stats_block.stats_haddr);
1683    
1684    *entry->status = STATUS_PENDING;
1685
1686    fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.stats_block.opcode);
1687
1688    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1689
1690    *entry->status = STATUS_FREE;
1691
1692    dma_unmap_single(fore200e->dev, stats_dma_addr, sizeof(struct stats), DMA_FROM_DEVICE);
1693    
1694    if (ok == 0) {
1695	printk(FORE200E "unable to get statistics from device %s\n", fore200e->name);
1696	return -EIO;
1697    }
1698
1699    return 0;
1700}
1701
1702
1703static int
1704fore200e_getsockopt(struct atm_vcc* vcc, int level, int optname, void __user *optval, int optlen)
1705{
1706    /* struct fore200e* fore200e = FORE200E_DEV(vcc->dev); */
1707
1708    DPRINTK(2, "getsockopt %d.%d.%d, level = %d, optname = 0x%x, optval = 0x%p, optlen = %d\n",
1709	    vcc->itf, vcc->vpi, vcc->vci, level, optname, optval, optlen);
1710
1711    return -EINVAL;
1712}
1713
1714
1715static int
1716fore200e_setsockopt(struct atm_vcc* vcc, int level, int optname, void __user *optval, unsigned int optlen)
1717{
1718    /* struct fore200e* fore200e = FORE200E_DEV(vcc->dev); */
1719    
1720    DPRINTK(2, "setsockopt %d.%d.%d, level = %d, optname = 0x%x, optval = 0x%p, optlen = %d\n",
1721	    vcc->itf, vcc->vpi, vcc->vci, level, optname, optval, optlen);
1722    
1723    return -EINVAL;
1724}
1725
1726
1727#if 0 /* currently unused */
1728static int
1729fore200e_get_oc3(struct fore200e* fore200e, struct oc3_regs* regs)
1730{
1731    struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1732    struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1733    struct oc3_opcode       opcode;
1734    int                     ok;
1735    u32                     oc3_regs_dma_addr;
1736
1737    oc3_regs_dma_addr = fore200e->bus->dma_map(fore200e, regs, sizeof(struct oc3_regs), DMA_FROM_DEVICE);
1738
1739    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1740
1741    opcode.opcode = OPCODE_GET_OC3;
1742    opcode.reg    = 0;
1743    opcode.value  = 0;
1744    opcode.mask   = 0;
1745
1746    fore200e->bus->write(oc3_regs_dma_addr, &entry->cp_entry->cmd.oc3_block.regs_haddr);
1747    
1748    *entry->status = STATUS_PENDING;
1749
1750    fore200e->bus->write(*(u32*)&opcode, (u32*)&entry->cp_entry->cmd.oc3_block.opcode);
1751
1752    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1753
1754    *entry->status = STATUS_FREE;
1755
1756    fore200e->bus->dma_unmap(fore200e, oc3_regs_dma_addr, sizeof(struct oc3_regs), DMA_FROM_DEVICE);
1757    
1758    if (ok == 0) {
1759	printk(FORE200E "unable to get OC-3 regs of device %s\n", fore200e->name);
1760	return -EIO;
1761    }
1762
1763    return 0;
1764}
1765#endif
1766
1767
1768static int
1769fore200e_set_oc3(struct fore200e* fore200e, u32 reg, u32 value, u32 mask)
1770{
1771    struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1772    struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1773    struct oc3_opcode       opcode;
1774    int                     ok;
1775
1776    DPRINTK(2, "set OC-3 reg = 0x%02x, value = 0x%02x, mask = 0x%02x\n", reg, value, mask);
1777
1778    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1779
1780    opcode.opcode = OPCODE_SET_OC3;
1781    opcode.reg    = reg;
1782    opcode.value  = value;
1783    opcode.mask   = mask;
1784
1785    fore200e->bus->write(0, &entry->cp_entry->cmd.oc3_block.regs_haddr);
1786    
1787    *entry->status = STATUS_PENDING;
1788
1789    fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.oc3_block.opcode);
1790
1791    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1792
1793    *entry->status = STATUS_FREE;
1794
1795    if (ok == 0) {
1796	printk(FORE200E "unable to set OC-3 reg 0x%02x of device %s\n", reg, fore200e->name);
1797	return -EIO;
1798    }
1799
1800    return 0;
1801}
1802
1803
1804static int
1805fore200e_setloop(struct fore200e* fore200e, int loop_mode)
1806{
1807    u32 mct_value, mct_mask;
1808    int error;
1809
1810    if (!capable(CAP_NET_ADMIN))
1811	return -EPERM;
1812    
1813    switch (loop_mode) {
1814
1815    case ATM_LM_NONE:
1816	mct_value = 0; 
1817	mct_mask  = SUNI_MCT_DLE | SUNI_MCT_LLE;
1818	break;
1819	
1820    case ATM_LM_LOC_PHY:
1821	mct_value = mct_mask = SUNI_MCT_DLE;
1822	break;
1823
1824    case ATM_LM_RMT_PHY:
1825	mct_value = mct_mask = SUNI_MCT_LLE;
1826	break;
1827
1828    default:
1829	return -EINVAL;
1830    }
1831
1832    error = fore200e_set_oc3(fore200e, SUNI_MCT, mct_value, mct_mask);
1833    if (error == 0)
1834	fore200e->loop_mode = loop_mode;
1835
1836    return error;
1837}
1838
1839
1840static int
1841fore200e_fetch_stats(struct fore200e* fore200e, struct sonet_stats __user *arg)
1842{
1843    struct sonet_stats tmp;
1844
1845    if (fore200e_getstats(fore200e) < 0)
1846	return -EIO;
1847
1848    tmp.section_bip = be32_to_cpu(fore200e->stats->oc3.section_bip8_errors);
1849    tmp.line_bip    = be32_to_cpu(fore200e->stats->oc3.line_bip24_errors);
1850    tmp.path_bip    = be32_to_cpu(fore200e->stats->oc3.path_bip8_errors);
1851    tmp.line_febe   = be32_to_cpu(fore200e->stats->oc3.line_febe_errors);
1852    tmp.path_febe   = be32_to_cpu(fore200e->stats->oc3.path_febe_errors);
1853    tmp.corr_hcs    = be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors);
1854    tmp.uncorr_hcs  = be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors);
1855    tmp.tx_cells    = be32_to_cpu(fore200e->stats->aal0.cells_transmitted)  +
1856	              be32_to_cpu(fore200e->stats->aal34.cells_transmitted) +
1857	              be32_to_cpu(fore200e->stats->aal5.cells_transmitted);
1858    tmp.rx_cells    = be32_to_cpu(fore200e->stats->aal0.cells_received)     +
1859	              be32_to_cpu(fore200e->stats->aal34.cells_received)    +
1860	              be32_to_cpu(fore200e->stats->aal5.cells_received);
1861
1862    if (arg)
1863	return copy_to_user(arg, &tmp, sizeof(struct sonet_stats)) ? -EFAULT : 0;	
1864    
1865    return 0;
1866}
1867
1868
1869static int
1870fore200e_ioctl(struct atm_dev* dev, unsigned int cmd, void __user * arg)
1871{
1872    struct fore200e* fore200e = FORE200E_DEV(dev);
1873    
1874    DPRINTK(2, "ioctl cmd = 0x%x (%u), arg = 0x%p (%lu)\n", cmd, cmd, arg, (unsigned long)arg);
1875
1876    switch (cmd) {
1877
1878    case SONET_GETSTAT:
1879	return fore200e_fetch_stats(fore200e, (struct sonet_stats __user *)arg);
1880
1881    case SONET_GETDIAG:
1882	return put_user(0, (int __user *)arg) ? -EFAULT : 0;
1883
1884    case ATM_SETLOOP:
1885	return fore200e_setloop(fore200e, (int)(unsigned long)arg);
1886
1887    case ATM_GETLOOP:
1888	return put_user(fore200e->loop_mode, (int __user *)arg) ? -EFAULT : 0;
1889
1890    case ATM_QUERYLOOP:
1891	return put_user(ATM_LM_LOC_PHY | ATM_LM_RMT_PHY, (int __user *)arg) ? -EFAULT : 0;
1892    }
1893
1894    return -ENOSYS; /* not implemented */
1895}
1896
1897
1898static int
1899fore200e_change_qos(struct atm_vcc* vcc,struct atm_qos* qos, int flags)
1900{
1901    struct fore200e_vcc* fore200e_vcc = FORE200E_VCC(vcc);
1902    struct fore200e*     fore200e     = FORE200E_DEV(vcc->dev);
1903
1904    if (!test_bit(ATM_VF_READY, &vcc->flags)) {
1905	DPRINTK(1, "VC %d.%d.%d not ready for QoS change\n", vcc->itf, vcc->vpi, vcc->vpi);
1906	return -EINVAL;
1907    }
1908
1909    DPRINTK(2, "change_qos %d.%d.%d, "
1910	    "(tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; "
1911	    "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d), flags = 0x%x\n"
1912	    "available_cell_rate = %u",
1913	    vcc->itf, vcc->vpi, vcc->vci,
1914	    fore200e_traffic_class[ qos->txtp.traffic_class ],
1915	    qos->txtp.min_pcr, qos->txtp.max_pcr, qos->txtp.max_cdv, qos->txtp.max_sdu,
1916	    fore200e_traffic_class[ qos->rxtp.traffic_class ],
1917	    qos->rxtp.min_pcr, qos->rxtp.max_pcr, qos->rxtp.max_cdv, qos->rxtp.max_sdu,
1918	    flags, fore200e->available_cell_rate);
1919
1920    if ((qos->txtp.traffic_class == ATM_CBR) && (qos->txtp.max_pcr > 0)) {
1921
1922	mutex_lock(&fore200e->rate_mtx);
1923	if (fore200e->available_cell_rate + vcc->qos.txtp.max_pcr < qos->txtp.max_pcr) {
1924	    mutex_unlock(&fore200e->rate_mtx);
1925	    return -EAGAIN;
1926	}
1927
1928	fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1929	fore200e->available_cell_rate -= qos->txtp.max_pcr;
1930
1931	mutex_unlock(&fore200e->rate_mtx);
1932	
1933	memcpy(&vcc->qos, qos, sizeof(struct atm_qos));
1934	
1935	/* update rate control parameters */
1936	fore200e_rate_ctrl(qos, &fore200e_vcc->rate);
1937
1938	set_bit(ATM_VF_HASQOS, &vcc->flags);
1939
1940	return 0;
1941    }
1942    
1943    return -EINVAL;
1944}
1945    
1946
1947static int fore200e_irq_request(struct fore200e *fore200e)
1948{
1949    if (request_irq(fore200e->irq, fore200e_interrupt, IRQF_SHARED, fore200e->name, fore200e->atm_dev) < 0) {
1950
1951	printk(FORE200E "unable to reserve IRQ %s for device %s\n",
1952	       fore200e_irq_itoa(fore200e->irq), fore200e->name);
1953	return -EBUSY;
1954    }
1955
1956    printk(FORE200E "IRQ %s reserved for device %s\n",
1957	   fore200e_irq_itoa(fore200e->irq), fore200e->name);
1958
1959#ifdef FORE200E_USE_TASKLET
1960    tasklet_init(&fore200e->tx_tasklet, fore200e_tx_tasklet, (unsigned long)fore200e);
1961    tasklet_init(&fore200e->rx_tasklet, fore200e_rx_tasklet, (unsigned long)fore200e);
1962#endif
1963
1964    fore200e->state = FORE200E_STATE_IRQ;
1965    return 0;
1966}
1967
1968
1969static int fore200e_get_esi(struct fore200e *fore200e)
1970{
1971    struct prom_data* prom = kzalloc(sizeof(struct prom_data), GFP_KERNEL);
1972    int ok, i;
1973
1974    if (!prom)
1975	return -ENOMEM;
1976
1977    ok = fore200e->bus->prom_read(fore200e, prom);
1978    if (ok < 0) {
1979	kfree(prom);
1980	return -EBUSY;
1981    }
1982	
1983    printk(FORE200E "device %s, rev. %c, S/N: %d, ESI: %pM\n",
1984	   fore200e->name, 
1985	   (prom->hw_revision & 0xFF) + '@',    /* probably meaningless with SBA boards */
1986	   prom->serial_number & 0xFFFF, &prom->mac_addr[2]);
1987	
1988    for (i = 0; i < ESI_LEN; i++) {
1989	fore200e->esi[ i ] = fore200e->atm_dev->esi[ i ] = prom->mac_addr[ i + 2 ];
1990    }
1991    
1992    kfree(prom);
1993
1994    return 0;
1995}
1996
1997
1998static int fore200e_alloc_rx_buf(struct fore200e *fore200e)
1999{
2000    int scheme, magn, nbr, size, i;
2001
2002    struct host_bsq* bsq;
2003    struct buffer*   buffer;
2004
2005    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
2006	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
2007
2008	    bsq = &fore200e->host_bsq[ scheme ][ magn ];
2009
2010	    nbr  = fore200e_rx_buf_nbr[ scheme ][ magn ];
2011	    size = fore200e_rx_buf_size[ scheme ][ magn ];
2012
2013	    DPRINTK(2, "rx buffers %d / %d are being allocated\n", scheme, magn);
2014
2015	    /* allocate the array of receive buffers */
2016	    buffer = bsq->buffer = kcalloc(nbr, sizeof(struct buffer),
2017                                           GFP_KERNEL);
2018
2019	    if (buffer == NULL)
2020		return -ENOMEM;
2021
2022	    bsq->freebuf = NULL;
2023
2024	    for (i = 0; i < nbr; i++) {
2025
2026		buffer[ i ].scheme = scheme;
2027		buffer[ i ].magn   = magn;
2028#ifdef FORE200E_BSQ_DEBUG
2029		buffer[ i ].index  = i;
2030		buffer[ i ].supplied = 0;
2031#endif
2032
2033		/* allocate the receive buffer body */
2034		if (fore200e_chunk_alloc(fore200e,
2035					 &buffer[ i ].data, size, fore200e->bus->buffer_alignment,
2036					 DMA_FROM_DEVICE) < 0) {
2037		    
2038		    while (i > 0)
2039			fore200e_chunk_free(fore200e, &buffer[ --i ].data);
2040		    kfree(buffer);
2041		    
2042		    return -ENOMEM;
2043		}
2044
2045		/* insert the buffer into the free buffer list */
2046		buffer[ i ].next = bsq->freebuf;
2047		bsq->freebuf = &buffer[ i ];
2048	    }
2049	    /* all the buffers are free, initially */
2050	    bsq->freebuf_count = nbr;
2051
2052#ifdef FORE200E_BSQ_DEBUG
2053	    bsq_audit(3, bsq, scheme, magn);
2054#endif
2055	}
2056    }
2057
2058    fore200e->state = FORE200E_STATE_ALLOC_BUF;
2059    return 0;
2060}
2061
2062
2063static int fore200e_init_bs_queue(struct fore200e *fore200e)
2064{
2065    int scheme, magn, i;
2066
2067    struct host_bsq*     bsq;
2068    struct cp_bsq_entry __iomem * cp_entry;
2069
2070    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
2071	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
2072
2073	    DPRINTK(2, "buffer supply queue %d / %d is being initialized\n", scheme, magn);
2074
2075	    bsq = &fore200e->host_bsq[ scheme ][ magn ];
2076
2077	    /* allocate and align the array of status words */
2078	    if (fore200e_dma_chunk_alloc(fore200e,
2079					       &bsq->status,
2080					       sizeof(enum status), 
2081					       QUEUE_SIZE_BS,
2082					       fore200e->bus->status_alignment) < 0) {
2083		return -ENOMEM;
2084	    }
2085
2086	    /* allocate and align the array of receive buffer descriptors */
2087	    if (fore200e_dma_chunk_alloc(fore200e,
2088					       &bsq->rbd_block,
2089					       sizeof(struct rbd_block),
2090					       QUEUE_SIZE_BS,
2091					       fore200e->bus->descr_alignment) < 0) {
2092		
2093		fore200e_dma_chunk_free(fore200e, &bsq->status);
2094		return -ENOMEM;
2095	    }
2096	    
2097	    /* get the base address of the cp resident buffer supply queue entries */
2098	    cp_entry = fore200e->virt_base + 
2099		       fore200e->bus->read(&fore200e->cp_queues->cp_bsq[ scheme ][ magn ]);
2100	    
2101	    /* fill the host resident and cp resident buffer supply queue entries */
2102	    for (i = 0; i < QUEUE_SIZE_BS; i++) {
2103		
2104		bsq->host_entry[ i ].status = 
2105		                     FORE200E_INDEX(bsq->status.align_addr, enum status, i);
2106	        bsq->host_entry[ i ].rbd_block =
2107		                     FORE200E_INDEX(bsq->rbd_block.align_addr, struct rbd_block, i);
2108		bsq->host_entry[ i ].rbd_block_dma =
2109		                     FORE200E_DMA_INDEX(bsq->rbd_block.dma_addr, struct rbd_block, i);
2110		bsq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2111		
2112		*bsq->host_entry[ i ].status = STATUS_FREE;
2113		
2114		fore200e->bus->write(FORE200E_DMA_INDEX(bsq->status.dma_addr, enum status, i), 
2115				     &cp_entry[ i ].status_haddr);
2116	    }
2117	}
2118    }
2119
2120    fore200e->state = FORE200E_STATE_INIT_BSQ;
2121    return 0;
2122}
2123
2124
2125static int fore200e_init_rx_queue(struct fore200e *fore200e)
2126{
2127    struct host_rxq*     rxq =  &fore200e->host_rxq;
2128    struct cp_rxq_entry __iomem * cp_entry;
2129    int i;
2130
2131    DPRINTK(2, "receive queue is being initialized\n");
2132
2133    /* allocate and align the array of status words */
2134    if (fore200e_dma_chunk_alloc(fore200e,
2135				       &rxq->status,
2136				       sizeof(enum status), 
2137				       QUEUE_SIZE_RX,
2138				       fore200e->bus->status_alignment) < 0) {
2139	return -ENOMEM;
2140    }
2141
2142    /* allocate and align the array of receive PDU descriptors */
2143    if (fore200e_dma_chunk_alloc(fore200e,
2144				       &rxq->rpd,
2145				       sizeof(struct rpd), 
2146				       QUEUE_SIZE_RX,
2147				       fore200e->bus->descr_alignment) < 0) {
2148	
2149	fore200e_dma_chunk_free(fore200e, &rxq->status);
2150	return -ENOMEM;
2151    }
2152
2153    /* get the base address of the cp resident rx queue entries */
2154    cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_rxq);
2155
2156    /* fill the host resident and cp resident rx entries */
2157    for (i=0; i < QUEUE_SIZE_RX; i++) {
2158	
2159	rxq->host_entry[ i ].status = 
2160	                     FORE200E_INDEX(rxq->status.align_addr, enum status, i);
2161	rxq->host_entry[ i ].rpd = 
2162	                     FORE200E_INDEX(rxq->rpd.align_addr, struct rpd, i);
2163	rxq->host_entry[ i ].rpd_dma = 
2164	                     FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i);
2165	rxq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2166
2167	*rxq->host_entry[ i ].status = STATUS_FREE;
2168
2169	fore200e->bus->write(FORE200E_DMA_INDEX(rxq->status.dma_addr, enum status, i), 
2170			     &cp_entry[ i ].status_haddr);
2171
2172	fore200e->bus->write(FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i),
2173			     &cp_entry[ i ].rpd_haddr);
2174    }
2175
2176    /* set the head entry of the queue */
2177    rxq->head = 0;
2178
2179    fore200e->state = FORE200E_STATE_INIT_RXQ;
2180    return 0;
2181}
2182
2183
2184static int fore200e_init_tx_queue(struct fore200e *fore200e)
2185{
2186    struct host_txq*     txq =  &fore200e->host_txq;
2187    struct cp_txq_entry __iomem * cp_entry;
2188    int i;
2189
2190    DPRINTK(2, "transmit queue is being initialized\n");
2191
2192    /* allocate and align the array of status words */
2193    if (fore200e_dma_chunk_alloc(fore200e,
2194				       &txq->status,
2195				       sizeof(enum status), 
2196				       QUEUE_SIZE_TX,
2197				       fore200e->bus->status_alignment) < 0) {
2198	return -ENOMEM;
2199    }
2200
2201    /* allocate and align the array of transmit PDU descriptors */
2202    if (fore200e_dma_chunk_alloc(fore200e,
2203				       &txq->tpd,
2204				       sizeof(struct tpd), 
2205				       QUEUE_SIZE_TX,
2206				       fore200e->bus->descr_alignment) < 0) {
2207	
2208	fore200e_dma_chunk_free(fore200e, &txq->status);
2209	return -ENOMEM;
2210    }
2211
2212    /* get the base address of the cp resident tx queue entries */
2213    cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_txq);
2214
2215    /* fill the host resident and cp resident tx entries */
2216    for (i=0; i < QUEUE_SIZE_TX; i++) {
2217	
2218	txq->host_entry[ i ].status = 
2219	                     FORE200E_INDEX(txq->status.align_addr, enum status, i);
2220	txq->host_entry[ i ].tpd = 
2221	                     FORE200E_INDEX(txq->tpd.align_addr, struct tpd, i);
2222	txq->host_entry[ i ].tpd_dma  = 
2223                             FORE200E_DMA_INDEX(txq->tpd.dma_addr, struct tpd, i);
2224	txq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2225
2226	*txq->host_entry[ i ].status = STATUS_FREE;
2227	
2228	fore200e->bus->write(FORE200E_DMA_INDEX(txq->status.dma_addr, enum status, i), 
2229			     &cp_entry[ i ].status_haddr);
2230	
2231        /* although there is a one-to-one mapping of tx queue entries and tpds,
2232	   we do not write here the DMA (physical) base address of each tpd into
2233	   the related cp resident entry, because the cp relies on this write
2234	   operation to detect that a new pdu has been submitted for tx */
2235    }
2236
2237    /* set the head and tail entries of the queue */
2238    txq->head = 0;
2239    txq->tail = 0;
2240
2241    fore200e->state = FORE200E_STATE_INIT_TXQ;
2242    return 0;
2243}
2244
2245
2246static int fore200e_init_cmd_queue(struct fore200e *fore200e)
2247{
2248    struct host_cmdq*     cmdq =  &fore200e->host_cmdq;
2249    struct cp_cmdq_entry __iomem * cp_entry;
2250    int i;
2251
2252    DPRINTK(2, "command queue is being initialized\n");
2253
2254    /* allocate and align the array of status words */
2255    if (fore200e_dma_chunk_alloc(fore200e,
2256				       &cmdq->status,
2257				       sizeof(enum status), 
2258				       QUEUE_SIZE_CMD,
2259				       fore200e->bus->status_alignment) < 0) {
2260	return -ENOMEM;
2261    }
2262    
2263    /* get the base address of the cp resident cmd queue entries */
2264    cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_cmdq);
2265
2266    /* fill the host resident and cp resident cmd entries */
2267    for (i=0; i < QUEUE_SIZE_CMD; i++) {
2268	
2269	cmdq->host_entry[ i ].status   = 
2270                              FORE200E_INDEX(cmdq->status.align_addr, enum status, i);
2271	cmdq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2272
2273	*cmdq->host_entry[ i ].status = STATUS_FREE;
2274
2275	fore200e->bus->write(FORE200E_DMA_INDEX(cmdq->status.dma_addr, enum status, i), 
2276                             &cp_entry[ i ].status_haddr);
2277    }
2278
2279    /* set the head entry of the queue */
2280    cmdq->head = 0;
2281
2282    fore200e->state = FORE200E_STATE_INIT_CMDQ;
2283    return 0;
2284}
2285
2286
2287static void fore200e_param_bs_queue(struct fore200e *fore200e,
2288				    enum buffer_scheme scheme,
2289				    enum buffer_magn magn, int queue_length,
2290				    int pool_size, int supply_blksize)
2291{
2292    struct bs_spec __iomem * bs_spec = &fore200e->cp_queues->init.bs_spec[ scheme ][ magn ];
2293
2294    fore200e->bus->write(queue_length,                           &bs_spec->queue_length);
2295    fore200e->bus->write(fore200e_rx_buf_size[ scheme ][ magn ], &bs_spec->buffer_size);
2296    fore200e->bus->write(pool_size,                              &bs_spec->pool_size);
2297    fore200e->bus->write(supply_blksize,                         &bs_spec->supply_blksize);
2298}
2299
2300
2301static int fore200e_initialize(struct fore200e *fore200e)
2302{
2303    struct cp_queues __iomem * cpq;
2304    int               ok, scheme, magn;
2305
2306    DPRINTK(2, "device %s being initialized\n", fore200e->name);
2307
2308    mutex_init(&fore200e->rate_mtx);
2309    spin_lock_init(&fore200e->q_lock);
2310
2311    cpq = fore200e->cp_queues = fore200e->virt_base + FORE200E_CP_QUEUES_OFFSET;
2312
2313    /* enable cp to host interrupts */
2314    fore200e->bus->write(1, &cpq->imask);
2315
2316    if (fore200e->bus->irq_enable)
2317	fore200e->bus->irq_enable(fore200e);
2318    
2319    fore200e->bus->write(NBR_CONNECT, &cpq->init.num_connect);
2320
2321    fore200e->bus->write(QUEUE_SIZE_CMD, &cpq->init.cmd_queue_len);
2322    fore200e->bus->write(QUEUE_SIZE_RX,  &cpq->init.rx_queue_len);
2323    fore200e->bus->write(QUEUE_SIZE_TX,  &cpq->init.tx_queue_len);
2324
2325    fore200e->bus->write(RSD_EXTENSION,  &cpq->init.rsd_extension);
2326    fore200e->bus->write(TSD_EXTENSION,  &cpq->init.tsd_extension);
2327
2328    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++)
2329	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++)
2330	    fore200e_param_bs_queue(fore200e, scheme, magn,
2331				    QUEUE_SIZE_BS, 
2332				    fore200e_rx_buf_nbr[ scheme ][ magn ],
2333				    RBD_BLK_SIZE);
2334
2335    /* issue the initialize command */
2336    fore200e->bus->write(STATUS_PENDING,    &cpq->init.status);
2337    fore200e->bus->write(OPCODE_INITIALIZE, &cpq->init.opcode);
2338
2339    ok = fore200e_io_poll(fore200e, &cpq->init.status, STATUS_COMPLETE, 3000);
2340    if (ok == 0) {
2341	printk(FORE200E "device %s initialization failed\n", fore200e->name);
2342	return -ENODEV;
2343    }
2344
2345    printk(FORE200E "device %s initialized\n", fore200e->name);
2346
2347    fore200e->state = FORE200E_STATE_INITIALIZE;
2348    return 0;
2349}
2350
2351
2352static void fore200e_monitor_putc(struct fore200e *fore200e, char c)
2353{
2354    struct cp_monitor __iomem * monitor = fore200e->cp_monitor;
2355
2356#if 0
2357    printk("%c", c);
2358#endif
2359    fore200e->bus->write(((u32) c) | FORE200E_CP_MONITOR_UART_AVAIL, &monitor->soft_uart.send);
2360}
2361
2362
2363static int fore200e_monitor_getc(struct fore200e *fore200e)
2364{
2365    struct cp_monitor __iomem * monitor = fore200e->cp_monitor;
2366    unsigned long      timeout = jiffies + msecs_to_jiffies(50);
2367    int                c;
2368
2369    while (time_before(jiffies, timeout)) {
2370
2371	c = (int) fore200e->bus->read(&monitor->soft_uart.recv);
2372
2373	if (c & FORE200E_CP_MONITOR_UART_AVAIL) {
2374
2375	    fore200e->bus->write(FORE200E_CP_MONITOR_UART_FREE, &monitor->soft_uart.recv);
2376#if 0
2377	    printk("%c", c & 0xFF);
2378#endif
2379	    return c & 0xFF;
2380	}
2381    }
2382
2383    return -1;
2384}
2385
2386
2387static void fore200e_monitor_puts(struct fore200e *fore200e, char *str)
2388{
2389    while (*str) {
2390
2391	/* the i960 monitor doesn't accept any new character if it has something to say */
2392	while (fore200e_monitor_getc(fore200e) >= 0);
2393	
2394	fore200e_monitor_putc(fore200e, *str++);
2395    }
2396
2397    while (fore200e_monitor_getc(fore200e) >= 0);
2398}
2399
2400#ifdef __LITTLE_ENDIAN
2401#define FW_EXT ".bin"
2402#else
2403#define FW_EXT "_ecd.bin2"
2404#endif
2405
2406static int fore200e_load_and_start_fw(struct fore200e *fore200e)
2407{
2408    const struct firmware *firmware;
2409    const struct fw_header *fw_header;
2410    const __le32 *fw_data;
2411    u32 fw_size;
2412    u32 __iomem *load_addr;
2413    char buf[48];
2414    int err;
2415
2416    sprintf(buf, "%s%s", fore200e->bus->proc_name, FW_EXT);
2417    if ((err = request_firmware(&firmware, buf, fore200e->dev)) < 0) {
2418	printk(FORE200E "problem loading firmware image %s\n", fore200e->bus->model_name);
2419	return err;
2420    }
2421
2422    fw_data = (const __le32 *)firmware->data;
2423    fw_size = firmware->size / sizeof(u32);
2424    fw_header = (const struct fw_header *)firmware->data;
2425    load_addr = fore200e->virt_base + le32_to_cpu(fw_header->load_offset);
2426
2427    DPRINTK(2, "device %s firmware being loaded at 0x%p (%d words)\n",
2428	    fore200e->name, load_addr, fw_size);
2429
2430    if (le32_to_cpu(fw_header->magic) != FW_HEADER_MAGIC) {
2431	printk(FORE200E "corrupted %s firmware image\n", fore200e->bus->model_name);
2432	goto release;
2433    }
2434
2435    for (; fw_size--; fw_data++, load_addr++)
2436	fore200e->bus->write(le32_to_cpu(*fw_data), load_addr);
2437
2438    DPRINTK(2, "device %s firmware being started\n", fore200e->name);
2439
2440#if defined(__sparc_v9__)
2441    /* reported to be required by SBA cards on some sparc64 hosts */
2442    fore200e_spin(100);
2443#endif
2444
2445    sprintf(buf, "\rgo %x\r", le32_to_cpu(fw_header->start_offset));
2446    fore200e_monitor_puts(fore200e, buf);
2447
2448    if (fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_CP_RUNNING, 1000) == 0) {
2449	printk(FORE200E "device %s firmware didn't start\n", fore200e->name);
2450	goto release;
2451    }
2452
2453    printk(FORE200E "device %s firmware started\n", fore200e->name);
2454
2455    fore200e->state = FORE200E_STATE_START_FW;
2456    err = 0;
2457
2458release:
2459    release_firmware(firmware);
2460    return err;
2461}
2462
2463
2464static int fore200e_register(struct fore200e *fore200e, struct device *parent)
2465{
2466    struct atm_dev* atm_dev;
2467
2468    DPRINTK(2, "device %s being registered\n", fore200e->name);
2469
2470    atm_dev = atm_dev_register(fore200e->bus->proc_name, parent, &fore200e_ops,
2471                               -1, NULL);
2472    if (atm_dev == NULL) {
2473	printk(FORE200E "unable to register device %s\n", fore200e->name);
2474	return -ENODEV;
2475    }
2476
2477    atm_dev->dev_data = fore200e;
2478    fore200e->atm_dev = atm_dev;
2479
2480    atm_dev->ci_range.vpi_bits = FORE200E_VPI_BITS;
2481    atm_dev->ci_range.vci_bits = FORE200E_VCI_BITS;
2482
2483    fore200e->available_cell_rate = ATM_OC3_PCR;
2484
2485    fore200e->state = FORE200E_STATE_REGISTER;
2486    return 0;
2487}
2488
2489
2490static int fore200e_init(struct fore200e *fore200e, struct device *parent)
2491{
2492    if (fore200e_register(fore200e, parent) < 0)
2493	return -ENODEV;
2494    
2495    if (fore200e->bus->configure(fore200e) < 0)
2496	return -ENODEV;
2497
2498    if (fore200e->bus->map(fore200e) < 0)
2499	return -ENODEV;
2500
2501    if (fore200e_reset(fore200e, 1) < 0)
2502	return -ENODEV;
2503
2504    if (fore200e_load_and_start_fw(fore200e) < 0)
2505	return -ENODEV;
2506
2507    if (fore200e_initialize(fore200e) < 0)
2508	return -ENODEV;
2509
2510    if (fore200e_init_cmd_queue(fore200e) < 0)
2511	return -ENOMEM;
2512
2513    if (fore200e_init_tx_queue(fore200e) < 0)
2514	return -ENOMEM;
2515
2516    if (fore200e_init_rx_queue(fore200e) < 0)
2517	return -ENOMEM;
2518
2519    if (fore200e_init_bs_queue(fore200e) < 0)
2520	return -ENOMEM;
2521
2522    if (fore200e_alloc_rx_buf(fore200e) < 0)
2523	return -ENOMEM;
2524
2525    if (fore200e_get_esi(fore200e) < 0)
2526	return -EIO;
2527
2528    if (fore200e_irq_request(fore200e) < 0)
2529	return -EBUSY;
2530
2531    fore200e_supply(fore200e);
2532
2533    /* all done, board initialization is now complete */
2534    fore200e->state = FORE200E_STATE_COMPLETE;
2535    return 0;
2536}
2537
2538#ifdef CONFIG_SBUS
2539static const struct of_device_id fore200e_sba_match[];
2540static int fore200e_sba_probe(struct platform_device *op)
2541{
2542	const struct of_device_id *match;
2543	struct fore200e *fore200e;
2544	static int index = 0;
2545	int err;
2546
2547	match = of_match_device(fore200e_sba_match, &op->dev);
2548	if (!match)
2549		return -EINVAL;
2550
2551	fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL);
2552	if (!fore200e)
2553		return -ENOMEM;
2554
2555	fore200e->bus = &fore200e_sbus_ops;
2556	fore200e->dev = &op->dev;
2557	fore200e->irq = op->archdata.irqs[0];
2558	fore200e->phys_base = op->resource[0].start;
2559
2560	sprintf(fore200e->name, "SBA-200E-%d", index);
2561
2562	err = fore200e_init(fore200e, &op->dev);
2563	if (err < 0) {
2564		fore200e_shutdown(fore200e);
2565		kfree(fore200e);
2566		return err;
2567	}
2568
2569	index++;
2570	dev_set_drvdata(&op->dev, fore200e);
2571
2572	return 0;
2573}
2574
2575static int fore200e_sba_remove(struct platform_device *op)
2576{
2577	struct fore200e *fore200e = dev_get_drvdata(&op->dev);
2578
2579	fore200e_shutdown(fore200e);
2580	kfree(fore200e);
2581
2582	return 0;
2583}
2584
2585static const struct of_device_id fore200e_sba_match[] = {
2586	{
2587		.name = SBA200E_PROM_NAME,
2588	},
2589	{},
2590};
2591MODULE_DEVICE_TABLE(of, fore200e_sba_match);
2592
2593static struct platform_driver fore200e_sba_driver = {
2594	.driver = {
2595		.name = "fore_200e",
2596		.of_match_table = fore200e_sba_match,
2597	},
2598	.probe		= fore200e_sba_probe,
2599	.remove		= fore200e_sba_remove,
2600};
2601#endif
2602
2603#ifdef CONFIG_PCI
2604static int fore200e_pca_detect(struct pci_dev *pci_dev,
2605			       const struct pci_device_id *pci_ent)
2606{
2607    struct fore200e* fore200e;
2608    int err = 0;
2609    static int index = 0;
2610
2611    if (pci_enable_device(pci_dev)) {
2612	err = -EINVAL;
2613	goto out;
2614    }
2615
2616    if (dma_set_mask_and_coherent(&pci_dev->dev, DMA_BIT_MASK(32))) {
2617	err = -EINVAL;
2618	goto out;
2619    }
2620    
2621    fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL);
2622    if (fore200e == NULL) {
2623	err = -ENOMEM;
2624	goto out_disable;
2625    }
2626
2627    fore200e->bus       = &fore200e_pci_ops;
2628    fore200e->dev	= &pci_dev->dev;
2629    fore200e->irq       = pci_dev->irq;
2630    fore200e->phys_base = pci_resource_start(pci_dev, 0);
2631
2632    sprintf(fore200e->name, "PCA-200E-%d", index - 1);
2633
2634    pci_set_master(pci_dev);
2635
2636    printk(FORE200E "device PCA-200E found at 0x%lx, IRQ %s\n",
2637	   fore200e->phys_base, fore200e_irq_itoa(fore200e->irq));
2638
2639    sprintf(fore200e->name, "PCA-200E-%d", index);
2640
2641    err = fore200e_init(fore200e, &pci_dev->dev);
2642    if (err < 0) {
2643	fore200e_shutdown(fore200e);
2644	goto out_free;
2645    }
2646
2647    ++index;
2648    pci_set_drvdata(pci_dev, fore200e);
2649
2650out:
2651    return err;
2652
2653out_free:
2654    kfree(fore200e);
2655out_disable:
2656    pci_disable_device(pci_dev);
2657    goto out;
2658}
2659
2660
2661static void fore200e_pca_remove_one(struct pci_dev *pci_dev)
2662{
2663    struct fore200e *fore200e;
2664
2665    fore200e = pci_get_drvdata(pci_dev);
2666
2667    fore200e_shutdown(fore200e);
2668    kfree(fore200e);
2669    pci_disable_device(pci_dev);
2670}
2671
2672
2673static const struct pci_device_id fore200e_pca_tbl[] = {
2674    { PCI_VENDOR_ID_FORE, PCI_DEVICE_ID_FORE_PCA200E, PCI_ANY_ID, PCI_ANY_ID },
2675    { 0, }
2676};
2677
2678MODULE_DEVICE_TABLE(pci, fore200e_pca_tbl);
2679
2680static struct pci_driver fore200e_pca_driver = {
2681    .name =     "fore_200e",
2682    .probe =    fore200e_pca_detect,
2683    .remove =   fore200e_pca_remove_one,
2684    .id_table = fore200e_pca_tbl,
2685};
2686#endif
2687
2688static int __init fore200e_module_init(void)
2689{
2690	int err = 0;
2691
2692	printk(FORE200E "FORE Systems 200E-series ATM driver - version " FORE200E_VERSION "\n");
2693
2694#ifdef CONFIG_SBUS
2695	err = platform_driver_register(&fore200e_sba_driver);
2696	if (err)
2697		return err;
2698#endif
2699
2700#ifdef CONFIG_PCI
2701	err = pci_register_driver(&fore200e_pca_driver);
2702#endif
2703
2704#ifdef CONFIG_SBUS
2705	if (err)
2706		platform_driver_unregister(&fore200e_sba_driver);
2707#endif
2708
2709	return err;
2710}
2711
2712static void __exit fore200e_module_cleanup(void)
2713{
2714#ifdef CONFIG_PCI
2715	pci_unregister_driver(&fore200e_pca_driver);
2716#endif
2717#ifdef CONFIG_SBUS
2718	platform_driver_unregister(&fore200e_sba_driver);
2719#endif
2720}
2721
2722static int
2723fore200e_proc_read(struct atm_dev *dev, loff_t* pos, char* page)
2724{
2725    struct fore200e*     fore200e  = FORE200E_DEV(dev);
2726    struct fore200e_vcc* fore200e_vcc;
2727    struct atm_vcc*      vcc;
2728    int                  i, len, left = *pos;
2729    unsigned long        flags;
2730
2731    if (!left--) {
2732
2733	if (fore200e_getstats(fore200e) < 0)
2734	    return -EIO;
2735
2736	len = sprintf(page,"\n"
2737		       " device:\n"
2738		       "   internal name:\t\t%s\n", fore200e->name);
2739
2740	/* print bus-specific information */
2741	if (fore200e->bus->proc_read)
2742	    len += fore200e->bus->proc_read(fore200e, page + len);
2743	
2744	len += sprintf(page + len,
2745		"   interrupt line:\t\t%s\n"
2746		"   physical base address:\t0x%p\n"
2747		"   virtual base address:\t0x%p\n"
2748		"   factory address (ESI):\t%pM\n"
2749		"   board serial number:\t\t%d\n\n",
2750		fore200e_irq_itoa(fore200e->irq),
2751		(void*)fore200e->phys_base,
2752		fore200e->virt_base,
2753		fore200e->esi,
2754		fore200e->esi[4] * 256 + fore200e->esi[5]);
2755
2756	return len;
2757    }
2758
2759    if (!left--)
2760	return sprintf(page,
2761		       "   free small bufs, scheme 1:\t%d\n"
2762		       "   free large bufs, scheme 1:\t%d\n"
2763		       "   free small bufs, scheme 2:\t%d\n"
2764		       "   free large bufs, scheme 2:\t%d\n",
2765		       fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_SMALL ].freebuf_count,
2766		       fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_LARGE ].freebuf_count,
2767		       fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_SMALL ].freebuf_count,
2768		       fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_LARGE ].freebuf_count);
2769
2770    if (!left--) {
2771	u32 hb = fore200e->bus->read(&fore200e->cp_queues->heartbeat);
2772
2773	len = sprintf(page,"\n\n"
2774		      " cell processor:\n"
2775		      "   heartbeat state:\t\t");
2776	
2777	if (hb >> 16 != 0xDEAD)
2778	    len += sprintf(page + len, "0x%08x\n", hb);
2779	else
2780	    len += sprintf(page + len, "*** FATAL ERROR %04x ***\n", hb & 0xFFFF);
2781
2782	return len;
2783    }
2784
2785    if (!left--) {
2786	static const char* media_name[] = {
2787	    "unshielded twisted pair",
2788	    "multimode optical fiber ST",
2789	    "multimode optical fiber SC",
2790	    "single-mode optical fiber ST",
2791	    "single-mode optical fiber SC",
2792	    "unknown"
2793	};
2794
2795	static const char* oc3_mode[] = {
2796	    "normal operation",
2797	    "diagnostic loopback",
2798	    "line loopback",
2799	    "unknown"
2800	};
2801
2802	u32 fw_release     = fore200e->bus->read(&fore200e->cp_queues->fw_release);
2803	u32 mon960_release = fore200e->bus->read(&fore200e->cp_queues->mon960_release);
2804	u32 oc3_revision   = fore200e->bus->read(&fore200e->cp_queues->oc3_revision);
2805	u32 media_index    = FORE200E_MEDIA_INDEX(fore200e->bus->read(&fore200e->cp_queues->media_type));
2806	u32 oc3_index;
2807
2808	if (media_index > 4)
2809		media_index = 5;
2810	
2811	switch (fore200e->loop_mode) {
2812	    case ATM_LM_NONE:    oc3_index = 0;
2813		                 break;
2814	    case ATM_LM_LOC_PHY: oc3_index = 1;
2815		                 break;
2816	    case ATM_LM_RMT_PHY: oc3_index = 2;
2817		                 break;
2818	    default:             oc3_index = 3;
2819	}
2820
2821	return sprintf(page,
2822		       "   firmware release:\t\t%d.%d.%d\n"
2823		       "   monitor release:\t\t%d.%d\n"
2824		       "   media type:\t\t\t%s\n"
2825		       "   OC-3 revision:\t\t0x%x\n"
2826                       "   OC-3 mode:\t\t\t%s",
2827		       fw_release >> 16, fw_release << 16 >> 24,  fw_release << 24 >> 24,
2828		       mon960_release >> 16, mon960_release << 16 >> 16,
2829		       media_name[ media_index ],
2830		       oc3_revision,
2831		       oc3_mode[ oc3_index ]);
2832    }
2833
2834    if (!left--) {
2835	struct cp_monitor __iomem * cp_monitor = fore200e->cp_monitor;
2836
2837	return sprintf(page,
2838		       "\n\n"
2839		       " monitor:\n"
2840		       "   version number:\t\t%d\n"
2841		       "   boot status word:\t\t0x%08x\n",
2842		       fore200e->bus->read(&cp_monitor->mon_version),
2843		       fore200e->bus->read(&cp_monitor->bstat));
2844    }
2845
2846    if (!left--)
2847	return sprintf(page,
2848		       "\n"
2849		       " device statistics:\n"
2850		       "  4b5b:\n"
2851		       "     crc_header_errors:\t\t%10u\n"
2852		       "     framing_errors:\t\t%10u\n",
2853		       be32_to_cpu(fore200e->stats->phy.crc_header_errors),
2854		       be32_to_cpu(fore200e->stats->phy.framing_errors));
2855    
2856    if (!left--)
2857	return sprintf(page, "\n"
2858		       "  OC-3:\n"
2859		       "     section_bip8_errors:\t%10u\n"
2860		       "     path_bip8_errors:\t\t%10u\n"
2861		       "     line_bip24_errors:\t\t%10u\n"
2862		       "     line_febe_errors:\t\t%10u\n"
2863		       "     path_febe_errors:\t\t%10u\n"
2864		       "     corr_hcs_errors:\t\t%10u\n"
2865		       "     ucorr_hcs_errors:\t\t%10u\n",
2866		       be32_to_cpu(fore200e->stats->oc3.section_bip8_errors),
2867		       be32_to_cpu(fore200e->stats->oc3.path_bip8_errors),
2868		       be32_to_cpu(fore200e->stats->oc3.line_bip24_errors),
2869		       be32_to_cpu(fore200e->stats->oc3.line_febe_errors),
2870		       be32_to_cpu(fore200e->stats->oc3.path_febe_errors),
2871		       be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors),
2872		       be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors));
2873
2874    if (!left--)
2875	return sprintf(page,"\n"
2876		       "   ATM:\t\t\t\t     cells\n"
2877		       "     TX:\t\t\t%10u\n"
2878		       "     RX:\t\t\t%10u\n"
2879		       "     vpi out of range:\t\t%10u\n"
2880		       "     vpi no conn:\t\t%10u\n"
2881		       "     vci out of range:\t\t%10u\n"
2882		       "     vci no conn:\t\t%10u\n",
2883		       be32_to_cpu(fore200e->stats->atm.cells_transmitted),
2884		       be32_to_cpu(fore200e->stats->atm.cells_received),
2885		       be32_to_cpu(fore200e->stats->atm.vpi_bad_range),
2886		       be32_to_cpu(fore200e->stats->atm.vpi_no_conn),
2887		       be32_to_cpu(fore200e->stats->atm.vci_bad_range),
2888		       be32_to_cpu(fore200e->stats->atm.vci_no_conn));
2889    
2890    if (!left--)
2891	return sprintf(page,"\n"
2892		       "   AAL0:\t\t\t     cells\n"
2893		       "     TX:\t\t\t%10u\n"
2894		       "     RX:\t\t\t%10u\n"
2895		       "     dropped:\t\t\t%10u\n",
2896		       be32_to_cpu(fore200e->stats->aal0.cells_transmitted),
2897		       be32_to_cpu(fore200e->stats->aal0.cells_received),
2898		       be32_to_cpu(fore200e->stats->aal0.cells_dropped));
2899    
2900    if (!left--)
2901	return sprintf(page,"\n"
2902		       "   AAL3/4:\n"
2903		       "     SAR sublayer:\t\t     cells\n"
2904		       "       TX:\t\t\t%10u\n"
2905		       "       RX:\t\t\t%10u\n"
2906		       "       dropped:\t\t\t%10u\n"
2907		       "       CRC errors:\t\t%10u\n"
2908		       "       protocol errors:\t\t%10u\n\n"
2909		       "     CS  sublayer:\t\t      PDUs\n"
2910		       "       TX:\t\t\t%10u\n"
2911		       "       RX:\t\t\t%10u\n"
2912		       "       dropped:\t\t\t%10u\n"
2913		       "       protocol errors:\t\t%10u\n",
2914		       be32_to_cpu(fore200e->stats->aal34.cells_transmitted),
2915		       be32_to_cpu(fore200e->stats->aal34.cells_received),
2916		       be32_to_cpu(fore200e->stats->aal34.cells_dropped),
2917		       be32_to_cpu(fore200e->stats->aal34.cells_crc_errors),
2918		       be32_to_cpu(fore200e->stats->aal34.cells_protocol_errors),
2919		       be32_to_cpu(fore200e->stats->aal34.cspdus_transmitted),
2920		       be32_to_cpu(fore200e->stats->aal34.cspdus_received),
2921		       be32_to_cpu(fore200e->stats->aal34.cspdus_dropped),
2922		       be32_to_cpu(fore200e->stats->aal34.cspdus_protocol_errors));
2923    
2924    if (!left--)
2925	return sprintf(page,"\n"
2926		       "   AAL5:\n"
2927		       "     SAR sublayer:\t\t     cells\n"
2928		       "       TX:\t\t\t%10u\n"
2929		       "       RX:\t\t\t%10u\n"
2930		       "       dropped:\t\t\t%10u\n"
2931		       "       congestions:\t\t%10u\n\n"
2932		       "     CS  sublayer:\t\t      PDUs\n"
2933		       "       TX:\t\t\t%10u\n"
2934		       "       RX:\t\t\t%10u\n"
2935		       "       dropped:\t\t\t%10u\n"
2936		       "       CRC errors:\t\t%10u\n"
2937		       "       protocol errors:\t\t%10u\n",
2938		       be32_to_cpu(fore200e->stats->aal5.cells_transmitted),
2939		       be32_to_cpu(fore200e->stats->aal5.cells_received),
2940		       be32_to_cpu(fore200e->stats->aal5.cells_dropped),
2941		       be32_to_cpu(fore200e->stats->aal5.congestion_experienced),
2942		       be32_to_cpu(fore200e->stats->aal5.cspdus_transmitted),
2943		       be32_to_cpu(fore200e->stats->aal5.cspdus_received),
2944		       be32_to_cpu(fore200e->stats->aal5.cspdus_dropped),
2945		       be32_to_cpu(fore200e->stats->aal5.cspdus_crc_errors),
2946		       be32_to_cpu(fore200e->stats->aal5.cspdus_protocol_errors));
2947    
2948    if (!left--)
2949	return sprintf(page,"\n"
2950		       "   AUX:\t\t       allocation failures\n"
2951		       "     small b1:\t\t\t%10u\n"
2952		       "     large b1:\t\t\t%10u\n"
2953		       "     small b2:\t\t\t%10u\n"
2954		       "     large b2:\t\t\t%10u\n"
2955		       "     RX PDUs:\t\t\t%10u\n"
2956		       "     TX PDUs:\t\t\t%10lu\n",
2957		       be32_to_cpu(fore200e->stats->aux.small_b1_failed),
2958		       be32_to_cpu(fore200e->stats->aux.large_b1_failed),
2959		       be32_to_cpu(fore200e->stats->aux.small_b2_failed),
2960		       be32_to_cpu(fore200e->stats->aux.large_b2_failed),
2961		       be32_to_cpu(fore200e->stats->aux.rpd_alloc_failed),
2962		       fore200e->tx_sat);
2963    
2964    if (!left--)
2965	return sprintf(page,"\n"
2966		       " receive carrier:\t\t\t%s\n",
2967		       fore200e->stats->aux.receive_carrier ? "ON" : "OFF!");
2968    
2969    if (!left--) {
2970        return sprintf(page,"\n"
2971		       " VCCs:\n  address   VPI VCI   AAL "
2972		       "TX PDUs   TX min/max size  RX PDUs   RX min/max size\n");
2973    }
2974
2975    for (i = 0; i < NBR_CONNECT; i++) {
2976
2977	vcc = fore200e->vc_map[i].vcc;
2978
2979	if (vcc == NULL)
2980	    continue;
2981
2982	spin_lock_irqsave(&fore200e->q_lock, flags);
2983
2984	if (vcc && test_bit(ATM_VF_READY, &vcc->flags) && !left--) {
2985
2986	    fore200e_vcc = FORE200E_VCC(vcc);
2987	    ASSERT(fore200e_vcc);
2988
2989	    len = sprintf(page,
2990			  "  %pK  %03d %05d %1d   %09lu %05d/%05d      %09lu %05d/%05d\n",
2991			  vcc,
2992			  vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
2993			  fore200e_vcc->tx_pdu,
2994			  fore200e_vcc->tx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->tx_min_pdu,
2995			  fore200e_vcc->tx_max_pdu,
2996			  fore200e_vcc->rx_pdu,
2997			  fore200e_vcc->rx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->rx_min_pdu,
2998			  fore200e_vcc->rx_max_pdu);
2999
3000	    spin_unlock_irqrestore(&fore200e->q_lock, flags);
3001	    return len;
3002	}
3003
3004	spin_unlock_irqrestore(&fore200e->q_lock, flags);
3005    }
3006    
3007    return 0;
3008}
3009
3010module_init(fore200e_module_init);
3011module_exit(fore200e_module_cleanup);
3012
3013
3014static const struct atmdev_ops fore200e_ops = {
3015	.open       = fore200e_open,
3016	.close      = fore200e_close,
3017	.ioctl      = fore200e_ioctl,
3018	.getsockopt = fore200e_getsockopt,
3019	.setsockopt = fore200e_setsockopt,
3020	.send       = fore200e_send,
3021	.change_qos = fore200e_change_qos,
3022	.proc_read  = fore200e_proc_read,
3023	.owner      = THIS_MODULE
3024};
3025
3026MODULE_LICENSE("GPL");
3027#ifdef CONFIG_PCI
3028#ifdef __LITTLE_ENDIAN__
3029MODULE_FIRMWARE("pca200e.bin");
3030#else
3031MODULE_FIRMWARE("pca200e_ecd.bin2");
3032#endif
3033#endif /* CONFIG_PCI */
3034#ifdef CONFIG_SBUS
3035MODULE_FIRMWARE("sba200e_ecd.bin2");
3036#endif