Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2//
   3// Register map access API
   4//
   5// Copyright 2011 Wolfson Microelectronics plc
   6//
   7// Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
   8
   9#include <linux/device.h>
  10#include <linux/slab.h>
  11#include <linux/export.h>
  12#include <linux/mutex.h>
  13#include <linux/err.h>
  14#include <linux/property.h>
  15#include <linux/rbtree.h>
  16#include <linux/sched.h>
  17#include <linux/delay.h>
  18#include <linux/log2.h>
  19#include <linux/hwspinlock.h>
  20#include <asm/unaligned.h>
  21
  22#define CREATE_TRACE_POINTS
  23#include "trace.h"
  24
  25#include "internal.h"
  26
  27/*
  28 * Sometimes for failures during very early init the trace
  29 * infrastructure isn't available early enough to be used.  For this
  30 * sort of problem defining LOG_DEVICE will add printks for basic
  31 * register I/O on a specific device.
  32 */
  33#undef LOG_DEVICE
  34
  35#ifdef LOG_DEVICE
  36static inline bool regmap_should_log(struct regmap *map)
  37{
  38	return (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0);
  39}
  40#else
  41static inline bool regmap_should_log(struct regmap *map) { return false; }
  42#endif
  43
  44
  45static int _regmap_update_bits(struct regmap *map, unsigned int reg,
  46			       unsigned int mask, unsigned int val,
  47			       bool *change, bool force_write);
  48
  49static int _regmap_bus_reg_read(void *context, unsigned int reg,
  50				unsigned int *val);
  51static int _regmap_bus_read(void *context, unsigned int reg,
  52			    unsigned int *val);
  53static int _regmap_bus_formatted_write(void *context, unsigned int reg,
  54				       unsigned int val);
  55static int _regmap_bus_reg_write(void *context, unsigned int reg,
  56				 unsigned int val);
  57static int _regmap_bus_raw_write(void *context, unsigned int reg,
  58				 unsigned int val);
  59
  60bool regmap_reg_in_ranges(unsigned int reg,
  61			  const struct regmap_range *ranges,
  62			  unsigned int nranges)
  63{
  64	const struct regmap_range *r;
  65	int i;
  66
  67	for (i = 0, r = ranges; i < nranges; i++, r++)
  68		if (regmap_reg_in_range(reg, r))
  69			return true;
  70	return false;
  71}
  72EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
  73
  74bool regmap_check_range_table(struct regmap *map, unsigned int reg,
  75			      const struct regmap_access_table *table)
  76{
  77	/* Check "no ranges" first */
  78	if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
  79		return false;
  80
  81	/* In case zero "yes ranges" are supplied, any reg is OK */
  82	if (!table->n_yes_ranges)
  83		return true;
  84
  85	return regmap_reg_in_ranges(reg, table->yes_ranges,
  86				    table->n_yes_ranges);
  87}
  88EXPORT_SYMBOL_GPL(regmap_check_range_table);
  89
  90bool regmap_writeable(struct regmap *map, unsigned int reg)
  91{
  92	if (map->max_register && reg > map->max_register)
  93		return false;
  94
  95	if (map->writeable_reg)
  96		return map->writeable_reg(map->dev, reg);
  97
  98	if (map->wr_table)
  99		return regmap_check_range_table(map, reg, map->wr_table);
 100
 101	return true;
 102}
 103
 104bool regmap_cached(struct regmap *map, unsigned int reg)
 105{
 106	int ret;
 107	unsigned int val;
 108
 109	if (map->cache_type == REGCACHE_NONE)
 110		return false;
 111
 112	if (!map->cache_ops)
 113		return false;
 114
 115	if (map->max_register && reg > map->max_register)
 116		return false;
 117
 118	map->lock(map->lock_arg);
 119	ret = regcache_read(map, reg, &val);
 120	map->unlock(map->lock_arg);
 121	if (ret)
 122		return false;
 123
 124	return true;
 125}
 126
 127bool regmap_readable(struct regmap *map, unsigned int reg)
 128{
 129	if (!map->reg_read)
 130		return false;
 131
 132	if (map->max_register && reg > map->max_register)
 133		return false;
 134
 135	if (map->format.format_write)
 136		return false;
 137
 138	if (map->readable_reg)
 139		return map->readable_reg(map->dev, reg);
 140
 141	if (map->rd_table)
 142		return regmap_check_range_table(map, reg, map->rd_table);
 143
 144	return true;
 145}
 146
 147bool regmap_volatile(struct regmap *map, unsigned int reg)
 148{
 149	if (!map->format.format_write && !regmap_readable(map, reg))
 150		return false;
 151
 152	if (map->volatile_reg)
 153		return map->volatile_reg(map->dev, reg);
 154
 155	if (map->volatile_table)
 156		return regmap_check_range_table(map, reg, map->volatile_table);
 157
 158	if (map->cache_ops)
 159		return false;
 160	else
 161		return true;
 162}
 163
 164bool regmap_precious(struct regmap *map, unsigned int reg)
 165{
 166	if (!regmap_readable(map, reg))
 167		return false;
 168
 169	if (map->precious_reg)
 170		return map->precious_reg(map->dev, reg);
 171
 172	if (map->precious_table)
 173		return regmap_check_range_table(map, reg, map->precious_table);
 174
 175	return false;
 176}
 177
 178bool regmap_writeable_noinc(struct regmap *map, unsigned int reg)
 179{
 180	if (map->writeable_noinc_reg)
 181		return map->writeable_noinc_reg(map->dev, reg);
 182
 183	if (map->wr_noinc_table)
 184		return regmap_check_range_table(map, reg, map->wr_noinc_table);
 185
 186	return true;
 187}
 188
 189bool regmap_readable_noinc(struct regmap *map, unsigned int reg)
 190{
 191	if (map->readable_noinc_reg)
 192		return map->readable_noinc_reg(map->dev, reg);
 193
 194	if (map->rd_noinc_table)
 195		return regmap_check_range_table(map, reg, map->rd_noinc_table);
 196
 197	return true;
 198}
 199
 200static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
 201	size_t num)
 202{
 203	unsigned int i;
 204
 205	for (i = 0; i < num; i++)
 206		if (!regmap_volatile(map, reg + regmap_get_offset(map, i)))
 207			return false;
 208
 209	return true;
 210}
 211
 212static void regmap_format_12_20_write(struct regmap *map,
 213				     unsigned int reg, unsigned int val)
 214{
 215	u8 *out = map->work_buf;
 216
 217	out[0] = reg >> 4;
 218	out[1] = (reg << 4) | (val >> 16);
 219	out[2] = val >> 8;
 220	out[3] = val;
 221}
 222
 223
 224static void regmap_format_2_6_write(struct regmap *map,
 225				     unsigned int reg, unsigned int val)
 226{
 227	u8 *out = map->work_buf;
 228
 229	*out = (reg << 6) | val;
 230}
 231
 232static void regmap_format_4_12_write(struct regmap *map,
 233				     unsigned int reg, unsigned int val)
 234{
 235	__be16 *out = map->work_buf;
 236	*out = cpu_to_be16((reg << 12) | val);
 237}
 238
 239static void regmap_format_7_9_write(struct regmap *map,
 240				    unsigned int reg, unsigned int val)
 241{
 242	__be16 *out = map->work_buf;
 243	*out = cpu_to_be16((reg << 9) | val);
 244}
 245
 246static void regmap_format_7_17_write(struct regmap *map,
 247				    unsigned int reg, unsigned int val)
 248{
 249	u8 *out = map->work_buf;
 250
 251	out[2] = val;
 252	out[1] = val >> 8;
 253	out[0] = (val >> 16) | (reg << 1);
 254}
 255
 256static void regmap_format_10_14_write(struct regmap *map,
 257				    unsigned int reg, unsigned int val)
 258{
 259	u8 *out = map->work_buf;
 260
 261	out[2] = val;
 262	out[1] = (val >> 8) | (reg << 6);
 263	out[0] = reg >> 2;
 264}
 265
 266static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
 267{
 268	u8 *b = buf;
 269
 270	b[0] = val << shift;
 271}
 272
 273static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
 274{
 275	put_unaligned_be16(val << shift, buf);
 
 
 276}
 277
 278static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
 279{
 280	put_unaligned_le16(val << shift, buf);
 
 
 281}
 282
 283static void regmap_format_16_native(void *buf, unsigned int val,
 284				    unsigned int shift)
 285{
 286	u16 v = val << shift;
 287
 288	memcpy(buf, &v, sizeof(v));
 289}
 290
 291static void regmap_format_24_be(void *buf, unsigned int val, unsigned int shift)
 292{
 293	put_unaligned_be24(val << shift, buf);
 
 
 
 
 
 
 294}
 295
 296static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
 297{
 298	put_unaligned_be32(val << shift, buf);
 
 
 299}
 300
 301static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
 302{
 303	put_unaligned_le32(val << shift, buf);
 
 
 304}
 305
 306static void regmap_format_32_native(void *buf, unsigned int val,
 307				    unsigned int shift)
 308{
 309	u32 v = val << shift;
 310
 311	memcpy(buf, &v, sizeof(v));
 312}
 313
 314#ifdef CONFIG_64BIT
 315static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
 316{
 317	put_unaligned_be64((u64) val << shift, buf);
 
 
 318}
 319
 320static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
 321{
 322	put_unaligned_le64((u64) val << shift, buf);
 
 
 323}
 324
 325static void regmap_format_64_native(void *buf, unsigned int val,
 326				    unsigned int shift)
 327{
 328	u64 v = (u64) val << shift;
 329
 330	memcpy(buf, &v, sizeof(v));
 331}
 332#endif
 333
 334static void regmap_parse_inplace_noop(void *buf)
 335{
 336}
 337
 338static unsigned int regmap_parse_8(const void *buf)
 339{
 340	const u8 *b = buf;
 341
 342	return b[0];
 343}
 344
 345static unsigned int regmap_parse_16_be(const void *buf)
 346{
 347	return get_unaligned_be16(buf);
 
 
 348}
 349
 350static unsigned int regmap_parse_16_le(const void *buf)
 351{
 352	return get_unaligned_le16(buf);
 
 
 353}
 354
 355static void regmap_parse_16_be_inplace(void *buf)
 356{
 357	u16 v = get_unaligned_be16(buf);
 358
 359	memcpy(buf, &v, sizeof(v));
 360}
 361
 362static void regmap_parse_16_le_inplace(void *buf)
 363{
 364	u16 v = get_unaligned_le16(buf);
 365
 366	memcpy(buf, &v, sizeof(v));
 367}
 368
 369static unsigned int regmap_parse_16_native(const void *buf)
 370{
 371	u16 v;
 372
 373	memcpy(&v, buf, sizeof(v));
 374	return v;
 375}
 376
 377static unsigned int regmap_parse_24_be(const void *buf)
 378{
 379	return get_unaligned_be24(buf);
 
 
 
 
 
 380}
 381
 382static unsigned int regmap_parse_32_be(const void *buf)
 383{
 384	return get_unaligned_be32(buf);
 
 
 385}
 386
 387static unsigned int regmap_parse_32_le(const void *buf)
 388{
 389	return get_unaligned_le32(buf);
 
 
 390}
 391
 392static void regmap_parse_32_be_inplace(void *buf)
 393{
 394	u32 v = get_unaligned_be32(buf);
 395
 396	memcpy(buf, &v, sizeof(v));
 397}
 398
 399static void regmap_parse_32_le_inplace(void *buf)
 400{
 401	u32 v = get_unaligned_le32(buf);
 402
 403	memcpy(buf, &v, sizeof(v));
 404}
 405
 406static unsigned int regmap_parse_32_native(const void *buf)
 407{
 408	u32 v;
 409
 410	memcpy(&v, buf, sizeof(v));
 411	return v;
 412}
 413
 414#ifdef CONFIG_64BIT
 415static unsigned int regmap_parse_64_be(const void *buf)
 416{
 417	return get_unaligned_be64(buf);
 
 
 418}
 419
 420static unsigned int regmap_parse_64_le(const void *buf)
 421{
 422	return get_unaligned_le64(buf);
 
 
 423}
 424
 425static void regmap_parse_64_be_inplace(void *buf)
 426{
 427	u64 v =  get_unaligned_be64(buf);
 428
 429	memcpy(buf, &v, sizeof(v));
 430}
 431
 432static void regmap_parse_64_le_inplace(void *buf)
 433{
 434	u64 v = get_unaligned_le64(buf);
 435
 436	memcpy(buf, &v, sizeof(v));
 437}
 438
 439static unsigned int regmap_parse_64_native(const void *buf)
 440{
 441	u64 v;
 442
 443	memcpy(&v, buf, sizeof(v));
 444	return v;
 445}
 446#endif
 447
 448static void regmap_lock_hwlock(void *__map)
 449{
 450	struct regmap *map = __map;
 451
 452	hwspin_lock_timeout(map->hwlock, UINT_MAX);
 453}
 454
 455static void regmap_lock_hwlock_irq(void *__map)
 456{
 457	struct regmap *map = __map;
 458
 459	hwspin_lock_timeout_irq(map->hwlock, UINT_MAX);
 460}
 461
 462static void regmap_lock_hwlock_irqsave(void *__map)
 463{
 464	struct regmap *map = __map;
 465
 466	hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX,
 467				    &map->spinlock_flags);
 468}
 469
 470static void regmap_unlock_hwlock(void *__map)
 471{
 472	struct regmap *map = __map;
 473
 474	hwspin_unlock(map->hwlock);
 475}
 476
 477static void regmap_unlock_hwlock_irq(void *__map)
 478{
 479	struct regmap *map = __map;
 480
 481	hwspin_unlock_irq(map->hwlock);
 482}
 483
 484static void regmap_unlock_hwlock_irqrestore(void *__map)
 485{
 486	struct regmap *map = __map;
 487
 488	hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags);
 489}
 490
 491static void regmap_lock_unlock_none(void *__map)
 492{
 493
 494}
 495
 496static void regmap_lock_mutex(void *__map)
 497{
 498	struct regmap *map = __map;
 499	mutex_lock(&map->mutex);
 500}
 501
 502static void regmap_unlock_mutex(void *__map)
 503{
 504	struct regmap *map = __map;
 505	mutex_unlock(&map->mutex);
 506}
 507
 508static void regmap_lock_spinlock(void *__map)
 509__acquires(&map->spinlock)
 510{
 511	struct regmap *map = __map;
 512	unsigned long flags;
 513
 514	spin_lock_irqsave(&map->spinlock, flags);
 515	map->spinlock_flags = flags;
 516}
 517
 518static void regmap_unlock_spinlock(void *__map)
 519__releases(&map->spinlock)
 520{
 521	struct regmap *map = __map;
 522	spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
 523}
 524
 525static void regmap_lock_raw_spinlock(void *__map)
 526__acquires(&map->raw_spinlock)
 527{
 528	struct regmap *map = __map;
 529	unsigned long flags;
 530
 531	raw_spin_lock_irqsave(&map->raw_spinlock, flags);
 532	map->raw_spinlock_flags = flags;
 533}
 534
 535static void regmap_unlock_raw_spinlock(void *__map)
 536__releases(&map->raw_spinlock)
 537{
 538	struct regmap *map = __map;
 539	raw_spin_unlock_irqrestore(&map->raw_spinlock, map->raw_spinlock_flags);
 540}
 541
 542static void dev_get_regmap_release(struct device *dev, void *res)
 543{
 544	/*
 545	 * We don't actually have anything to do here; the goal here
 546	 * is not to manage the regmap but to provide a simple way to
 547	 * get the regmap back given a struct device.
 548	 */
 549}
 550
 551static bool _regmap_range_add(struct regmap *map,
 552			      struct regmap_range_node *data)
 553{
 554	struct rb_root *root = &map->range_tree;
 555	struct rb_node **new = &(root->rb_node), *parent = NULL;
 556
 557	while (*new) {
 558		struct regmap_range_node *this =
 559			rb_entry(*new, struct regmap_range_node, node);
 560
 561		parent = *new;
 562		if (data->range_max < this->range_min)
 563			new = &((*new)->rb_left);
 564		else if (data->range_min > this->range_max)
 565			new = &((*new)->rb_right);
 566		else
 567			return false;
 568	}
 569
 570	rb_link_node(&data->node, parent, new);
 571	rb_insert_color(&data->node, root);
 572
 573	return true;
 574}
 575
 576static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
 577						      unsigned int reg)
 578{
 579	struct rb_node *node = map->range_tree.rb_node;
 580
 581	while (node) {
 582		struct regmap_range_node *this =
 583			rb_entry(node, struct regmap_range_node, node);
 584
 585		if (reg < this->range_min)
 586			node = node->rb_left;
 587		else if (reg > this->range_max)
 588			node = node->rb_right;
 589		else
 590			return this;
 591	}
 592
 593	return NULL;
 594}
 595
 596static void regmap_range_exit(struct regmap *map)
 597{
 598	struct rb_node *next;
 599	struct regmap_range_node *range_node;
 600
 601	next = rb_first(&map->range_tree);
 602	while (next) {
 603		range_node = rb_entry(next, struct regmap_range_node, node);
 604		next = rb_next(&range_node->node);
 605		rb_erase(&range_node->node, &map->range_tree);
 606		kfree(range_node);
 607	}
 608
 609	kfree(map->selector_work_buf);
 610}
 611
 612static int regmap_set_name(struct regmap *map, const struct regmap_config *config)
 613{
 614	if (config->name) {
 615		const char *name = kstrdup_const(config->name, GFP_KERNEL);
 616
 617		if (!name)
 618			return -ENOMEM;
 619
 620		kfree_const(map->name);
 621		map->name = name;
 622	}
 623
 624	return 0;
 625}
 626
 627int regmap_attach_dev(struct device *dev, struct regmap *map,
 628		      const struct regmap_config *config)
 629{
 630	struct regmap **m;
 631	int ret;
 632
 633	map->dev = dev;
 634
 635	ret = regmap_set_name(map, config);
 636	if (ret)
 637		return ret;
 638
 639	regmap_debugfs_exit(map);
 640	regmap_debugfs_init(map);
 641
 642	/* Add a devres resource for dev_get_regmap() */
 643	m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
 644	if (!m) {
 645		regmap_debugfs_exit(map);
 646		return -ENOMEM;
 647	}
 648	*m = map;
 649	devres_add(dev, m);
 650
 651	return 0;
 652}
 653EXPORT_SYMBOL_GPL(regmap_attach_dev);
 654
 655static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
 656					const struct regmap_config *config)
 657{
 658	enum regmap_endian endian;
 659
 660	/* Retrieve the endianness specification from the regmap config */
 661	endian = config->reg_format_endian;
 662
 663	/* If the regmap config specified a non-default value, use that */
 664	if (endian != REGMAP_ENDIAN_DEFAULT)
 665		return endian;
 666
 667	/* Retrieve the endianness specification from the bus config */
 668	if (bus && bus->reg_format_endian_default)
 669		endian = bus->reg_format_endian_default;
 670
 671	/* If the bus specified a non-default value, use that */
 672	if (endian != REGMAP_ENDIAN_DEFAULT)
 673		return endian;
 674
 675	/* Use this if no other value was found */
 676	return REGMAP_ENDIAN_BIG;
 677}
 678
 679enum regmap_endian regmap_get_val_endian(struct device *dev,
 680					 const struct regmap_bus *bus,
 681					 const struct regmap_config *config)
 682{
 683	struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
 684	enum regmap_endian endian;
 685
 686	/* Retrieve the endianness specification from the regmap config */
 687	endian = config->val_format_endian;
 688
 689	/* If the regmap config specified a non-default value, use that */
 690	if (endian != REGMAP_ENDIAN_DEFAULT)
 691		return endian;
 692
 693	/* If the firmware node exist try to get endianness from it */
 694	if (fwnode_property_read_bool(fwnode, "big-endian"))
 695		endian = REGMAP_ENDIAN_BIG;
 696	else if (fwnode_property_read_bool(fwnode, "little-endian"))
 697		endian = REGMAP_ENDIAN_LITTLE;
 698	else if (fwnode_property_read_bool(fwnode, "native-endian"))
 699		endian = REGMAP_ENDIAN_NATIVE;
 700
 701	/* If the endianness was specified in fwnode, use that */
 702	if (endian != REGMAP_ENDIAN_DEFAULT)
 703		return endian;
 
 
 
 
 
 704
 705	/* Retrieve the endianness specification from the bus config */
 706	if (bus && bus->val_format_endian_default)
 707		endian = bus->val_format_endian_default;
 708
 709	/* If the bus specified a non-default value, use that */
 710	if (endian != REGMAP_ENDIAN_DEFAULT)
 711		return endian;
 712
 713	/* Use this if no other value was found */
 714	return REGMAP_ENDIAN_BIG;
 715}
 716EXPORT_SYMBOL_GPL(regmap_get_val_endian);
 717
 718struct regmap *__regmap_init(struct device *dev,
 719			     const struct regmap_bus *bus,
 720			     void *bus_context,
 721			     const struct regmap_config *config,
 722			     struct lock_class_key *lock_key,
 723			     const char *lock_name)
 724{
 725	struct regmap *map;
 726	int ret = -EINVAL;
 727	enum regmap_endian reg_endian, val_endian;
 728	int i, j;
 729
 730	if (!config)
 731		goto err;
 732
 733	map = kzalloc(sizeof(*map), GFP_KERNEL);
 734	if (map == NULL) {
 735		ret = -ENOMEM;
 736		goto err;
 737	}
 738
 739	ret = regmap_set_name(map, config);
 740	if (ret)
 741		goto err_map;
 742
 743	ret = -EINVAL; /* Later error paths rely on this */
 
 
 744
 745	if (config->disable_locking) {
 746		map->lock = map->unlock = regmap_lock_unlock_none;
 747		map->can_sleep = config->can_sleep;
 748		regmap_debugfs_disable(map);
 749	} else if (config->lock && config->unlock) {
 750		map->lock = config->lock;
 751		map->unlock = config->unlock;
 752		map->lock_arg = config->lock_arg;
 753		map->can_sleep = config->can_sleep;
 754	} else if (config->use_hwlock) {
 755		map->hwlock = hwspin_lock_request_specific(config->hwlock_id);
 756		if (!map->hwlock) {
 757			ret = -ENXIO;
 758			goto err_name;
 759		}
 760
 761		switch (config->hwlock_mode) {
 762		case HWLOCK_IRQSTATE:
 763			map->lock = regmap_lock_hwlock_irqsave;
 764			map->unlock = regmap_unlock_hwlock_irqrestore;
 765			break;
 766		case HWLOCK_IRQ:
 767			map->lock = regmap_lock_hwlock_irq;
 768			map->unlock = regmap_unlock_hwlock_irq;
 769			break;
 770		default:
 771			map->lock = regmap_lock_hwlock;
 772			map->unlock = regmap_unlock_hwlock;
 773			break;
 774		}
 775
 776		map->lock_arg = map;
 777	} else {
 778		if ((bus && bus->fast_io) ||
 779		    config->fast_io) {
 780			if (config->use_raw_spinlock) {
 781				raw_spin_lock_init(&map->raw_spinlock);
 782				map->lock = regmap_lock_raw_spinlock;
 783				map->unlock = regmap_unlock_raw_spinlock;
 784				lockdep_set_class_and_name(&map->raw_spinlock,
 785							   lock_key, lock_name);
 786			} else {
 787				spin_lock_init(&map->spinlock);
 788				map->lock = regmap_lock_spinlock;
 789				map->unlock = regmap_unlock_spinlock;
 790				lockdep_set_class_and_name(&map->spinlock,
 791							   lock_key, lock_name);
 792			}
 793		} else {
 794			mutex_init(&map->mutex);
 795			map->lock = regmap_lock_mutex;
 796			map->unlock = regmap_unlock_mutex;
 797			map->can_sleep = true;
 798			lockdep_set_class_and_name(&map->mutex,
 799						   lock_key, lock_name);
 800		}
 801		map->lock_arg = map;
 802	}
 803
 804	/*
 805	 * When we write in fast-paths with regmap_bulk_write() don't allocate
 806	 * scratch buffers with sleeping allocations.
 807	 */
 808	if ((bus && bus->fast_io) || config->fast_io)
 809		map->alloc_flags = GFP_ATOMIC;
 810	else
 811		map->alloc_flags = GFP_KERNEL;
 812
 813	map->reg_base = config->reg_base;
 814
 815	map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
 816	map->format.pad_bytes = config->pad_bits / 8;
 817	map->format.reg_downshift = config->reg_downshift;
 818	map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
 819	map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
 820			config->val_bits + config->pad_bits, 8);
 821	map->reg_shift = config->pad_bits % 8;
 822	if (config->reg_stride)
 823		map->reg_stride = config->reg_stride;
 824	else
 825		map->reg_stride = 1;
 826	if (is_power_of_2(map->reg_stride))
 827		map->reg_stride_order = ilog2(map->reg_stride);
 828	else
 829		map->reg_stride_order = -1;
 830	map->use_single_read = config->use_single_read || !(config->read || (bus && bus->read));
 831	map->use_single_write = config->use_single_write || !(config->write || (bus && bus->write));
 832	map->can_multi_write = config->can_multi_write && (config->write || (bus && bus->write));
 833	if (bus) {
 834		map->max_raw_read = bus->max_raw_read;
 835		map->max_raw_write = bus->max_raw_write;
 836	} else if (config->max_raw_read && config->max_raw_write) {
 837		map->max_raw_read = config->max_raw_read;
 838		map->max_raw_write = config->max_raw_write;
 839	}
 840	map->dev = dev;
 841	map->bus = bus;
 842	map->bus_context = bus_context;
 843	map->max_register = config->max_register;
 844	map->wr_table = config->wr_table;
 845	map->rd_table = config->rd_table;
 846	map->volatile_table = config->volatile_table;
 847	map->precious_table = config->precious_table;
 848	map->wr_noinc_table = config->wr_noinc_table;
 849	map->rd_noinc_table = config->rd_noinc_table;
 850	map->writeable_reg = config->writeable_reg;
 851	map->readable_reg = config->readable_reg;
 852	map->volatile_reg = config->volatile_reg;
 853	map->precious_reg = config->precious_reg;
 854	map->writeable_noinc_reg = config->writeable_noinc_reg;
 855	map->readable_noinc_reg = config->readable_noinc_reg;
 856	map->cache_type = config->cache_type;
 857
 858	spin_lock_init(&map->async_lock);
 859	INIT_LIST_HEAD(&map->async_list);
 860	INIT_LIST_HEAD(&map->async_free);
 861	init_waitqueue_head(&map->async_waitq);
 862
 863	if (config->read_flag_mask ||
 864	    config->write_flag_mask ||
 865	    config->zero_flag_mask) {
 866		map->read_flag_mask = config->read_flag_mask;
 867		map->write_flag_mask = config->write_flag_mask;
 868	} else if (bus) {
 869		map->read_flag_mask = bus->read_flag_mask;
 870	}
 871
 872	if (config && config->read && config->write) {
 873		map->reg_read  = _regmap_bus_read;
 874		if (config->reg_update_bits)
 875			map->reg_update_bits = config->reg_update_bits;
 876
 877		/* Bulk read/write */
 878		map->read = config->read;
 879		map->write = config->write;
 880
 881		reg_endian = REGMAP_ENDIAN_NATIVE;
 882		val_endian = REGMAP_ENDIAN_NATIVE;
 883	} else if (!bus) {
 884		map->reg_read  = config->reg_read;
 885		map->reg_write = config->reg_write;
 886		map->reg_update_bits = config->reg_update_bits;
 887
 888		map->defer_caching = false;
 889		goto skip_format_initialization;
 890	} else if (!bus->read || !bus->write) {
 891		map->reg_read = _regmap_bus_reg_read;
 892		map->reg_write = _regmap_bus_reg_write;
 893		map->reg_update_bits = bus->reg_update_bits;
 894
 895		map->defer_caching = false;
 896		goto skip_format_initialization;
 897	} else {
 898		map->reg_read  = _regmap_bus_read;
 899		map->reg_update_bits = bus->reg_update_bits;
 900		/* Bulk read/write */
 901		map->read = bus->read;
 902		map->write = bus->write;
 903
 904		reg_endian = regmap_get_reg_endian(bus, config);
 905		val_endian = regmap_get_val_endian(dev, bus, config);
 906	}
 907
 
 
 
 908	switch (config->reg_bits + map->reg_shift) {
 909	case 2:
 910		switch (config->val_bits) {
 911		case 6:
 912			map->format.format_write = regmap_format_2_6_write;
 913			break;
 914		default:
 915			goto err_hwlock;
 916		}
 917		break;
 918
 919	case 4:
 920		switch (config->val_bits) {
 921		case 12:
 922			map->format.format_write = regmap_format_4_12_write;
 923			break;
 924		default:
 925			goto err_hwlock;
 926		}
 927		break;
 928
 929	case 7:
 930		switch (config->val_bits) {
 931		case 9:
 932			map->format.format_write = regmap_format_7_9_write;
 933			break;
 934		case 17:
 935			map->format.format_write = regmap_format_7_17_write;
 936			break;
 937		default:
 938			goto err_hwlock;
 939		}
 940		break;
 941
 942	case 10:
 943		switch (config->val_bits) {
 944		case 14:
 945			map->format.format_write = regmap_format_10_14_write;
 946			break;
 947		default:
 948			goto err_hwlock;
 949		}
 950		break;
 951
 952	case 12:
 953		switch (config->val_bits) {
 954		case 20:
 955			map->format.format_write = regmap_format_12_20_write;
 956			break;
 957		default:
 958			goto err_hwlock;
 959		}
 960		break;
 961
 962	case 8:
 963		map->format.format_reg = regmap_format_8;
 964		break;
 965
 966	case 16:
 967		switch (reg_endian) {
 968		case REGMAP_ENDIAN_BIG:
 969			map->format.format_reg = regmap_format_16_be;
 970			break;
 971		case REGMAP_ENDIAN_LITTLE:
 972			map->format.format_reg = regmap_format_16_le;
 973			break;
 974		case REGMAP_ENDIAN_NATIVE:
 975			map->format.format_reg = regmap_format_16_native;
 976			break;
 977		default:
 978			goto err_hwlock;
 979		}
 980		break;
 981
 982	case 24:
 983		switch (reg_endian) {
 984		case REGMAP_ENDIAN_BIG:
 985			map->format.format_reg = regmap_format_24_be;
 986			break;
 987		default:
 988			goto err_hwlock;
 989		}
 990		break;
 991
 992	case 32:
 993		switch (reg_endian) {
 994		case REGMAP_ENDIAN_BIG:
 995			map->format.format_reg = regmap_format_32_be;
 996			break;
 997		case REGMAP_ENDIAN_LITTLE:
 998			map->format.format_reg = regmap_format_32_le;
 999			break;
1000		case REGMAP_ENDIAN_NATIVE:
1001			map->format.format_reg = regmap_format_32_native;
1002			break;
1003		default:
1004			goto err_hwlock;
1005		}
1006		break;
1007
1008#ifdef CONFIG_64BIT
1009	case 64:
1010		switch (reg_endian) {
1011		case REGMAP_ENDIAN_BIG:
1012			map->format.format_reg = regmap_format_64_be;
1013			break;
1014		case REGMAP_ENDIAN_LITTLE:
1015			map->format.format_reg = regmap_format_64_le;
1016			break;
1017		case REGMAP_ENDIAN_NATIVE:
1018			map->format.format_reg = regmap_format_64_native;
1019			break;
1020		default:
1021			goto err_hwlock;
1022		}
1023		break;
1024#endif
1025
1026	default:
1027		goto err_hwlock;
1028	}
1029
1030	if (val_endian == REGMAP_ENDIAN_NATIVE)
1031		map->format.parse_inplace = regmap_parse_inplace_noop;
1032
1033	switch (config->val_bits) {
1034	case 8:
1035		map->format.format_val = regmap_format_8;
1036		map->format.parse_val = regmap_parse_8;
1037		map->format.parse_inplace = regmap_parse_inplace_noop;
1038		break;
1039	case 16:
1040		switch (val_endian) {
1041		case REGMAP_ENDIAN_BIG:
1042			map->format.format_val = regmap_format_16_be;
1043			map->format.parse_val = regmap_parse_16_be;
1044			map->format.parse_inplace = regmap_parse_16_be_inplace;
1045			break;
1046		case REGMAP_ENDIAN_LITTLE:
1047			map->format.format_val = regmap_format_16_le;
1048			map->format.parse_val = regmap_parse_16_le;
1049			map->format.parse_inplace = regmap_parse_16_le_inplace;
1050			break;
1051		case REGMAP_ENDIAN_NATIVE:
1052			map->format.format_val = regmap_format_16_native;
1053			map->format.parse_val = regmap_parse_16_native;
1054			break;
1055		default:
1056			goto err_hwlock;
1057		}
1058		break;
1059	case 24:
1060		switch (val_endian) {
1061		case REGMAP_ENDIAN_BIG:
1062			map->format.format_val = regmap_format_24_be;
1063			map->format.parse_val = regmap_parse_24_be;
1064			break;
1065		default:
1066			goto err_hwlock;
1067		}
 
1068		break;
1069	case 32:
1070		switch (val_endian) {
1071		case REGMAP_ENDIAN_BIG:
1072			map->format.format_val = regmap_format_32_be;
1073			map->format.parse_val = regmap_parse_32_be;
1074			map->format.parse_inplace = regmap_parse_32_be_inplace;
1075			break;
1076		case REGMAP_ENDIAN_LITTLE:
1077			map->format.format_val = regmap_format_32_le;
1078			map->format.parse_val = regmap_parse_32_le;
1079			map->format.parse_inplace = regmap_parse_32_le_inplace;
1080			break;
1081		case REGMAP_ENDIAN_NATIVE:
1082			map->format.format_val = regmap_format_32_native;
1083			map->format.parse_val = regmap_parse_32_native;
1084			break;
1085		default:
1086			goto err_hwlock;
1087		}
1088		break;
1089#ifdef CONFIG_64BIT
1090	case 64:
1091		switch (val_endian) {
1092		case REGMAP_ENDIAN_BIG:
1093			map->format.format_val = regmap_format_64_be;
1094			map->format.parse_val = regmap_parse_64_be;
1095			map->format.parse_inplace = regmap_parse_64_be_inplace;
1096			break;
1097		case REGMAP_ENDIAN_LITTLE:
1098			map->format.format_val = regmap_format_64_le;
1099			map->format.parse_val = regmap_parse_64_le;
1100			map->format.parse_inplace = regmap_parse_64_le_inplace;
1101			break;
1102		case REGMAP_ENDIAN_NATIVE:
1103			map->format.format_val = regmap_format_64_native;
1104			map->format.parse_val = regmap_parse_64_native;
1105			break;
1106		default:
1107			goto err_hwlock;
1108		}
1109		break;
1110#endif
1111	}
1112
1113	if (map->format.format_write) {
1114		if ((reg_endian != REGMAP_ENDIAN_BIG) ||
1115		    (val_endian != REGMAP_ENDIAN_BIG))
1116			goto err_hwlock;
1117		map->use_single_write = true;
1118	}
1119
1120	if (!map->format.format_write &&
1121	    !(map->format.format_reg && map->format.format_val))
1122		goto err_hwlock;
1123
1124	map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
1125	if (map->work_buf == NULL) {
1126		ret = -ENOMEM;
1127		goto err_hwlock;
1128	}
1129
1130	if (map->format.format_write) {
1131		map->defer_caching = false;
1132		map->reg_write = _regmap_bus_formatted_write;
1133	} else if (map->format.format_val) {
1134		map->defer_caching = true;
1135		map->reg_write = _regmap_bus_raw_write;
1136	}
1137
1138skip_format_initialization:
1139
1140	map->range_tree = RB_ROOT;
1141	for (i = 0; i < config->num_ranges; i++) {
1142		const struct regmap_range_cfg *range_cfg = &config->ranges[i];
1143		struct regmap_range_node *new;
1144
1145		/* Sanity check */
1146		if (range_cfg->range_max < range_cfg->range_min) {
1147			dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
1148				range_cfg->range_max, range_cfg->range_min);
1149			goto err_range;
1150		}
1151
1152		if (range_cfg->range_max > map->max_register) {
1153			dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
1154				range_cfg->range_max, map->max_register);
1155			goto err_range;
1156		}
1157
1158		if (range_cfg->selector_reg > map->max_register) {
1159			dev_err(map->dev,
1160				"Invalid range %d: selector out of map\n", i);
1161			goto err_range;
1162		}
1163
1164		if (range_cfg->window_len == 0) {
1165			dev_err(map->dev, "Invalid range %d: window_len 0\n",
1166				i);
1167			goto err_range;
1168		}
1169
1170		/* Make sure, that this register range has no selector
1171		   or data window within its boundary */
1172		for (j = 0; j < config->num_ranges; j++) {
1173			unsigned int sel_reg = config->ranges[j].selector_reg;
1174			unsigned int win_min = config->ranges[j].window_start;
1175			unsigned int win_max = win_min +
1176					       config->ranges[j].window_len - 1;
1177
1178			/* Allow data window inside its own virtual range */
1179			if (j == i)
1180				continue;
1181
1182			if (range_cfg->range_min <= sel_reg &&
1183			    sel_reg <= range_cfg->range_max) {
1184				dev_err(map->dev,
1185					"Range %d: selector for %d in window\n",
1186					i, j);
1187				goto err_range;
1188			}
1189
1190			if (!(win_max < range_cfg->range_min ||
1191			      win_min > range_cfg->range_max)) {
1192				dev_err(map->dev,
1193					"Range %d: window for %d in window\n",
1194					i, j);
1195				goto err_range;
1196			}
1197		}
1198
1199		new = kzalloc(sizeof(*new), GFP_KERNEL);
1200		if (new == NULL) {
1201			ret = -ENOMEM;
1202			goto err_range;
1203		}
1204
1205		new->map = map;
1206		new->name = range_cfg->name;
1207		new->range_min = range_cfg->range_min;
1208		new->range_max = range_cfg->range_max;
1209		new->selector_reg = range_cfg->selector_reg;
1210		new->selector_mask = range_cfg->selector_mask;
1211		new->selector_shift = range_cfg->selector_shift;
1212		new->window_start = range_cfg->window_start;
1213		new->window_len = range_cfg->window_len;
1214
1215		if (!_regmap_range_add(map, new)) {
1216			dev_err(map->dev, "Failed to add range %d\n", i);
1217			kfree(new);
1218			goto err_range;
1219		}
1220
1221		if (map->selector_work_buf == NULL) {
1222			map->selector_work_buf =
1223				kzalloc(map->format.buf_size, GFP_KERNEL);
1224			if (map->selector_work_buf == NULL) {
1225				ret = -ENOMEM;
1226				goto err_range;
1227			}
1228		}
1229	}
1230
1231	ret = regcache_init(map, config);
1232	if (ret != 0)
1233		goto err_range;
1234
1235	if (dev) {
1236		ret = regmap_attach_dev(dev, map, config);
1237		if (ret != 0)
1238			goto err_regcache;
1239	} else {
1240		regmap_debugfs_init(map);
1241	}
1242
1243	return map;
1244
1245err_regcache:
1246	regcache_exit(map);
1247err_range:
1248	regmap_range_exit(map);
1249	kfree(map->work_buf);
1250err_hwlock:
1251	if (map->hwlock)
1252		hwspin_lock_free(map->hwlock);
1253err_name:
1254	kfree_const(map->name);
1255err_map:
1256	kfree(map);
1257err:
1258	return ERR_PTR(ret);
1259}
1260EXPORT_SYMBOL_GPL(__regmap_init);
1261
1262static void devm_regmap_release(struct device *dev, void *res)
1263{
1264	regmap_exit(*(struct regmap **)res);
1265}
1266
1267struct regmap *__devm_regmap_init(struct device *dev,
1268				  const struct regmap_bus *bus,
1269				  void *bus_context,
1270				  const struct regmap_config *config,
1271				  struct lock_class_key *lock_key,
1272				  const char *lock_name)
1273{
1274	struct regmap **ptr, *regmap;
1275
1276	ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1277	if (!ptr)
1278		return ERR_PTR(-ENOMEM);
1279
1280	regmap = __regmap_init(dev, bus, bus_context, config,
1281			       lock_key, lock_name);
1282	if (!IS_ERR(regmap)) {
1283		*ptr = regmap;
1284		devres_add(dev, ptr);
1285	} else {
1286		devres_free(ptr);
1287	}
1288
1289	return regmap;
1290}
1291EXPORT_SYMBOL_GPL(__devm_regmap_init);
1292
1293static void regmap_field_init(struct regmap_field *rm_field,
1294	struct regmap *regmap, struct reg_field reg_field)
1295{
1296	rm_field->regmap = regmap;
1297	rm_field->reg = reg_field.reg;
1298	rm_field->shift = reg_field.lsb;
1299	rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1300
1301	WARN_ONCE(rm_field->mask == 0, "invalid empty mask defined\n");
1302
1303	rm_field->id_size = reg_field.id_size;
1304	rm_field->id_offset = reg_field.id_offset;
1305}
1306
1307/**
1308 * devm_regmap_field_alloc() - Allocate and initialise a register field.
1309 *
1310 * @dev: Device that will be interacted with
1311 * @regmap: regmap bank in which this register field is located.
1312 * @reg_field: Register field with in the bank.
1313 *
1314 * The return value will be an ERR_PTR() on error or a valid pointer
1315 * to a struct regmap_field. The regmap_field will be automatically freed
1316 * by the device management code.
1317 */
1318struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1319		struct regmap *regmap, struct reg_field reg_field)
1320{
1321	struct regmap_field *rm_field = devm_kzalloc(dev,
1322					sizeof(*rm_field), GFP_KERNEL);
1323	if (!rm_field)
1324		return ERR_PTR(-ENOMEM);
1325
1326	regmap_field_init(rm_field, regmap, reg_field);
1327
1328	return rm_field;
1329
1330}
1331EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1332
1333
1334/**
1335 * regmap_field_bulk_alloc() - Allocate and initialise a bulk register field.
1336 *
1337 * @regmap: regmap bank in which this register field is located.
1338 * @rm_field: regmap register fields within the bank.
1339 * @reg_field: Register fields within the bank.
1340 * @num_fields: Number of register fields.
1341 *
1342 * The return value will be an -ENOMEM on error or zero for success.
1343 * Newly allocated regmap_fields should be freed by calling
1344 * regmap_field_bulk_free()
1345 */
1346int regmap_field_bulk_alloc(struct regmap *regmap,
1347			    struct regmap_field **rm_field,
1348			    const struct reg_field *reg_field,
1349			    int num_fields)
1350{
1351	struct regmap_field *rf;
1352	int i;
1353
1354	rf = kcalloc(num_fields, sizeof(*rf), GFP_KERNEL);
1355	if (!rf)
1356		return -ENOMEM;
1357
1358	for (i = 0; i < num_fields; i++) {
1359		regmap_field_init(&rf[i], regmap, reg_field[i]);
1360		rm_field[i] = &rf[i];
1361	}
1362
1363	return 0;
1364}
1365EXPORT_SYMBOL_GPL(regmap_field_bulk_alloc);
1366
1367/**
1368 * devm_regmap_field_bulk_alloc() - Allocate and initialise a bulk register
1369 * fields.
1370 *
1371 * @dev: Device that will be interacted with
1372 * @regmap: regmap bank in which this register field is located.
1373 * @rm_field: regmap register fields within the bank.
1374 * @reg_field: Register fields within the bank.
1375 * @num_fields: Number of register fields.
1376 *
1377 * The return value will be an -ENOMEM on error or zero for success.
1378 * Newly allocated regmap_fields will be automatically freed by the
1379 * device management code.
1380 */
1381int devm_regmap_field_bulk_alloc(struct device *dev,
1382				 struct regmap *regmap,
1383				 struct regmap_field **rm_field,
1384				 const struct reg_field *reg_field,
1385				 int num_fields)
1386{
1387	struct regmap_field *rf;
1388	int i;
1389
1390	rf = devm_kcalloc(dev, num_fields, sizeof(*rf), GFP_KERNEL);
1391	if (!rf)
1392		return -ENOMEM;
1393
1394	for (i = 0; i < num_fields; i++) {
1395		regmap_field_init(&rf[i], regmap, reg_field[i]);
1396		rm_field[i] = &rf[i];
1397	}
1398
1399	return 0;
1400}
1401EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_alloc);
1402
1403/**
1404 * regmap_field_bulk_free() - Free register field allocated using
1405 *                       regmap_field_bulk_alloc.
1406 *
1407 * @field: regmap fields which should be freed.
1408 */
1409void regmap_field_bulk_free(struct regmap_field *field)
1410{
1411	kfree(field);
1412}
1413EXPORT_SYMBOL_GPL(regmap_field_bulk_free);
1414
1415/**
1416 * devm_regmap_field_bulk_free() - Free a bulk register field allocated using
1417 *                            devm_regmap_field_bulk_alloc.
1418 *
1419 * @dev: Device that will be interacted with
1420 * @field: regmap field which should be freed.
1421 *
1422 * Free register field allocated using devm_regmap_field_bulk_alloc(). Usually
1423 * drivers need not call this function, as the memory allocated via devm
1424 * will be freed as per device-driver life-cycle.
1425 */
1426void devm_regmap_field_bulk_free(struct device *dev,
1427				 struct regmap_field *field)
1428{
1429	devm_kfree(dev, field);
1430}
1431EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_free);
1432
1433/**
1434 * devm_regmap_field_free() - Free a register field allocated using
1435 *                            devm_regmap_field_alloc.
1436 *
1437 * @dev: Device that will be interacted with
1438 * @field: regmap field which should be freed.
1439 *
1440 * Free register field allocated using devm_regmap_field_alloc(). Usually
1441 * drivers need not call this function, as the memory allocated via devm
1442 * will be freed as per device-driver life-cyle.
1443 */
1444void devm_regmap_field_free(struct device *dev,
1445	struct regmap_field *field)
1446{
1447	devm_kfree(dev, field);
1448}
1449EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1450
1451/**
1452 * regmap_field_alloc() - Allocate and initialise a register field.
1453 *
1454 * @regmap: regmap bank in which this register field is located.
1455 * @reg_field: Register field with in the bank.
1456 *
1457 * The return value will be an ERR_PTR() on error or a valid pointer
1458 * to a struct regmap_field. The regmap_field should be freed by the
1459 * user once its finished working with it using regmap_field_free().
1460 */
1461struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1462		struct reg_field reg_field)
1463{
1464	struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1465
1466	if (!rm_field)
1467		return ERR_PTR(-ENOMEM);
1468
1469	regmap_field_init(rm_field, regmap, reg_field);
1470
1471	return rm_field;
1472}
1473EXPORT_SYMBOL_GPL(regmap_field_alloc);
1474
1475/**
1476 * regmap_field_free() - Free register field allocated using
1477 *                       regmap_field_alloc.
1478 *
1479 * @field: regmap field which should be freed.
1480 */
1481void regmap_field_free(struct regmap_field *field)
1482{
1483	kfree(field);
1484}
1485EXPORT_SYMBOL_GPL(regmap_field_free);
1486
1487/**
1488 * regmap_reinit_cache() - Reinitialise the current register cache
1489 *
1490 * @map: Register map to operate on.
1491 * @config: New configuration.  Only the cache data will be used.
1492 *
1493 * Discard any existing register cache for the map and initialize a
1494 * new cache.  This can be used to restore the cache to defaults or to
1495 * update the cache configuration to reflect runtime discovery of the
1496 * hardware.
1497 *
1498 * No explicit locking is done here, the user needs to ensure that
1499 * this function will not race with other calls to regmap.
1500 */
1501int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1502{
1503	int ret;
1504
1505	regcache_exit(map);
1506	regmap_debugfs_exit(map);
1507
1508	map->max_register = config->max_register;
1509	map->writeable_reg = config->writeable_reg;
1510	map->readable_reg = config->readable_reg;
1511	map->volatile_reg = config->volatile_reg;
1512	map->precious_reg = config->precious_reg;
1513	map->writeable_noinc_reg = config->writeable_noinc_reg;
1514	map->readable_noinc_reg = config->readable_noinc_reg;
1515	map->cache_type = config->cache_type;
1516
1517	ret = regmap_set_name(map, config);
1518	if (ret)
1519		return ret;
1520
1521	regmap_debugfs_init(map);
1522
1523	map->cache_bypass = false;
1524	map->cache_only = false;
1525
1526	return regcache_init(map, config);
1527}
1528EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1529
1530/**
1531 * regmap_exit() - Free a previously allocated register map
1532 *
1533 * @map: Register map to operate on.
1534 */
1535void regmap_exit(struct regmap *map)
1536{
1537	struct regmap_async *async;
1538
1539	regcache_exit(map);
1540	regmap_debugfs_exit(map);
1541	regmap_range_exit(map);
1542	if (map->bus && map->bus->free_context)
1543		map->bus->free_context(map->bus_context);
1544	kfree(map->work_buf);
1545	while (!list_empty(&map->async_free)) {
1546		async = list_first_entry_or_null(&map->async_free,
1547						 struct regmap_async,
1548						 list);
1549		list_del(&async->list);
1550		kfree(async->work_buf);
1551		kfree(async);
1552	}
1553	if (map->hwlock)
1554		hwspin_lock_free(map->hwlock);
1555	if (map->lock == regmap_lock_mutex)
1556		mutex_destroy(&map->mutex);
1557	kfree_const(map->name);
1558	kfree(map->patch);
1559	if (map->bus && map->bus->free_on_exit)
1560		kfree(map->bus);
1561	kfree(map);
1562}
1563EXPORT_SYMBOL_GPL(regmap_exit);
1564
1565static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1566{
1567	struct regmap **r = res;
1568	if (!r || !*r) {
1569		WARN_ON(!r || !*r);
1570		return 0;
1571	}
1572
1573	/* If the user didn't specify a name match any */
1574	if (data)
1575		return !strcmp((*r)->name, data);
1576	else
1577		return 1;
1578}
1579
1580/**
1581 * dev_get_regmap() - Obtain the regmap (if any) for a device
1582 *
1583 * @dev: Device to retrieve the map for
1584 * @name: Optional name for the register map, usually NULL.
1585 *
1586 * Returns the regmap for the device if one is present, or NULL.  If
1587 * name is specified then it must match the name specified when
1588 * registering the device, if it is NULL then the first regmap found
1589 * will be used.  Devices with multiple register maps are very rare,
1590 * generic code should normally not need to specify a name.
1591 */
1592struct regmap *dev_get_regmap(struct device *dev, const char *name)
1593{
1594	struct regmap **r = devres_find(dev, dev_get_regmap_release,
1595					dev_get_regmap_match, (void *)name);
1596
1597	if (!r)
1598		return NULL;
1599	return *r;
1600}
1601EXPORT_SYMBOL_GPL(dev_get_regmap);
1602
1603/**
1604 * regmap_get_device() - Obtain the device from a regmap
1605 *
1606 * @map: Register map to operate on.
1607 *
1608 * Returns the underlying device that the regmap has been created for.
1609 */
1610struct device *regmap_get_device(struct regmap *map)
1611{
1612	return map->dev;
1613}
1614EXPORT_SYMBOL_GPL(regmap_get_device);
1615
1616static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1617			       struct regmap_range_node *range,
1618			       unsigned int val_num)
1619{
1620	void *orig_work_buf;
1621	unsigned int win_offset;
1622	unsigned int win_page;
1623	bool page_chg;
1624	int ret;
1625
1626	win_offset = (*reg - range->range_min) % range->window_len;
1627	win_page = (*reg - range->range_min) / range->window_len;
1628
1629	if (val_num > 1) {
1630		/* Bulk write shouldn't cross range boundary */
1631		if (*reg + val_num - 1 > range->range_max)
1632			return -EINVAL;
1633
1634		/* ... or single page boundary */
1635		if (val_num > range->window_len - win_offset)
1636			return -EINVAL;
1637	}
1638
1639	/* It is possible to have selector register inside data window.
1640	   In that case, selector register is located on every page and
1641	   it needs no page switching, when accessed alone. */
1642	if (val_num > 1 ||
1643	    range->window_start + win_offset != range->selector_reg) {
1644		/* Use separate work_buf during page switching */
1645		orig_work_buf = map->work_buf;
1646		map->work_buf = map->selector_work_buf;
1647
1648		ret = _regmap_update_bits(map, range->selector_reg,
1649					  range->selector_mask,
1650					  win_page << range->selector_shift,
1651					  &page_chg, false);
1652
1653		map->work_buf = orig_work_buf;
1654
1655		if (ret != 0)
1656			return ret;
1657	}
1658
1659	*reg = range->window_start + win_offset;
1660
1661	return 0;
1662}
1663
1664static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
1665					  unsigned long mask)
1666{
1667	u8 *buf;
1668	int i;
1669
1670	if (!mask || !map->work_buf)
1671		return;
1672
1673	buf = map->work_buf;
1674
1675	for (i = 0; i < max_bytes; i++)
1676		buf[i] |= (mask >> (8 * i)) & 0xff;
1677}
1678
1679static int _regmap_raw_write_impl(struct regmap *map, unsigned int reg,
1680				  const void *val, size_t val_len, bool noinc)
1681{
1682	struct regmap_range_node *range;
1683	unsigned long flags;
1684	void *work_val = map->work_buf + map->format.reg_bytes +
1685		map->format.pad_bytes;
1686	void *buf;
1687	int ret = -ENOTSUPP;
1688	size_t len;
1689	int i;
1690
1691	/* Check for unwritable or noinc registers in range
1692	 * before we start
1693	 */
1694	if (!regmap_writeable_noinc(map, reg)) {
1695		for (i = 0; i < val_len / map->format.val_bytes; i++) {
1696			unsigned int element =
1697				reg + regmap_get_offset(map, i);
1698			if (!regmap_writeable(map, element) ||
1699				regmap_writeable_noinc(map, element))
1700				return -EINVAL;
1701		}
1702	}
1703
1704	if (!map->cache_bypass && map->format.parse_val) {
1705		unsigned int ival;
1706		int val_bytes = map->format.val_bytes;
1707		for (i = 0; i < val_len / val_bytes; i++) {
1708			ival = map->format.parse_val(val + (i * val_bytes));
1709			ret = regcache_write(map,
1710					     reg + regmap_get_offset(map, i),
1711					     ival);
1712			if (ret) {
1713				dev_err(map->dev,
1714					"Error in caching of register: %x ret: %d\n",
1715					reg + regmap_get_offset(map, i), ret);
1716				return ret;
1717			}
1718		}
1719		if (map->cache_only) {
1720			map->cache_dirty = true;
1721			return 0;
1722		}
1723	}
1724
1725	range = _regmap_range_lookup(map, reg);
1726	if (range) {
1727		int val_num = val_len / map->format.val_bytes;
1728		int win_offset = (reg - range->range_min) % range->window_len;
1729		int win_residue = range->window_len - win_offset;
1730
1731		/* If the write goes beyond the end of the window split it */
1732		while (val_num > win_residue) {
1733			dev_dbg(map->dev, "Writing window %d/%zu\n",
1734				win_residue, val_len / map->format.val_bytes);
1735			ret = _regmap_raw_write_impl(map, reg, val,
1736						     win_residue *
1737						     map->format.val_bytes, noinc);
1738			if (ret != 0)
1739				return ret;
1740
1741			reg += win_residue;
1742			val_num -= win_residue;
1743			val += win_residue * map->format.val_bytes;
1744			val_len -= win_residue * map->format.val_bytes;
1745
1746			win_offset = (reg - range->range_min) %
1747				range->window_len;
1748			win_residue = range->window_len - win_offset;
1749		}
1750
1751		ret = _regmap_select_page(map, &reg, range, noinc ? 1 : val_num);
1752		if (ret != 0)
1753			return ret;
1754	}
1755
1756	reg += map->reg_base;
1757	reg >>= map->format.reg_downshift;
1758	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1759	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
1760				      map->write_flag_mask);
1761
1762	/*
1763	 * Essentially all I/O mechanisms will be faster with a single
1764	 * buffer to write.  Since register syncs often generate raw
1765	 * writes of single registers optimise that case.
1766	 */
1767	if (val != work_val && val_len == map->format.val_bytes) {
1768		memcpy(work_val, val, map->format.val_bytes);
1769		val = work_val;
1770	}
1771
1772	if (map->async && map->bus && map->bus->async_write) {
1773		struct regmap_async *async;
1774
1775		trace_regmap_async_write_start(map, reg, val_len);
1776
1777		spin_lock_irqsave(&map->async_lock, flags);
1778		async = list_first_entry_or_null(&map->async_free,
1779						 struct regmap_async,
1780						 list);
1781		if (async)
1782			list_del(&async->list);
1783		spin_unlock_irqrestore(&map->async_lock, flags);
1784
1785		if (!async) {
1786			async = map->bus->async_alloc();
1787			if (!async)
1788				return -ENOMEM;
1789
1790			async->work_buf = kzalloc(map->format.buf_size,
1791						  GFP_KERNEL | GFP_DMA);
1792			if (!async->work_buf) {
1793				kfree(async);
1794				return -ENOMEM;
1795			}
1796		}
1797
1798		async->map = map;
1799
1800		/* If the caller supplied the value we can use it safely. */
1801		memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1802		       map->format.reg_bytes + map->format.val_bytes);
1803
1804		spin_lock_irqsave(&map->async_lock, flags);
1805		list_add_tail(&async->list, &map->async_list);
1806		spin_unlock_irqrestore(&map->async_lock, flags);
1807
1808		if (val != work_val)
1809			ret = map->bus->async_write(map->bus_context,
1810						    async->work_buf,
1811						    map->format.reg_bytes +
1812						    map->format.pad_bytes,
1813						    val, val_len, async);
1814		else
1815			ret = map->bus->async_write(map->bus_context,
1816						    async->work_buf,
1817						    map->format.reg_bytes +
1818						    map->format.pad_bytes +
1819						    val_len, NULL, 0, async);
1820
1821		if (ret != 0) {
1822			dev_err(map->dev, "Failed to schedule write: %d\n",
1823				ret);
1824
1825			spin_lock_irqsave(&map->async_lock, flags);
1826			list_move(&async->list, &map->async_free);
1827			spin_unlock_irqrestore(&map->async_lock, flags);
1828		}
1829
1830		return ret;
1831	}
1832
1833	trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1834
1835	/* If we're doing a single register write we can probably just
1836	 * send the work_buf directly, otherwise try to do a gather
1837	 * write.
1838	 */
1839	if (val == work_val)
1840		ret = map->write(map->bus_context, map->work_buf,
1841				 map->format.reg_bytes +
1842				 map->format.pad_bytes +
1843				 val_len);
1844	else if (map->bus && map->bus->gather_write)
1845		ret = map->bus->gather_write(map->bus_context, map->work_buf,
1846					     map->format.reg_bytes +
1847					     map->format.pad_bytes,
1848					     val, val_len);
1849	else
1850		ret = -ENOTSUPP;
1851
1852	/* If that didn't work fall back on linearising by hand. */
1853	if (ret == -ENOTSUPP) {
1854		len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1855		buf = kzalloc(len, GFP_KERNEL);
1856		if (!buf)
1857			return -ENOMEM;
1858
1859		memcpy(buf, map->work_buf, map->format.reg_bytes);
1860		memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1861		       val, val_len);
1862		ret = map->write(map->bus_context, buf, len);
1863
1864		kfree(buf);
1865	} else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1866		/* regcache_drop_region() takes lock that we already have,
1867		 * thus call map->cache_ops->drop() directly
1868		 */
1869		if (map->cache_ops && map->cache_ops->drop)
1870			map->cache_ops->drop(map, reg, reg + 1);
1871	}
1872
1873	trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1874
1875	return ret;
1876}
1877
1878/**
1879 * regmap_can_raw_write - Test if regmap_raw_write() is supported
1880 *
1881 * @map: Map to check.
1882 */
1883bool regmap_can_raw_write(struct regmap *map)
1884{
1885	return map->write && map->format.format_val && map->format.format_reg;
 
1886}
1887EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1888
1889/**
1890 * regmap_get_raw_read_max - Get the maximum size we can read
1891 *
1892 * @map: Map to check.
1893 */
1894size_t regmap_get_raw_read_max(struct regmap *map)
1895{
1896	return map->max_raw_read;
1897}
1898EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1899
1900/**
1901 * regmap_get_raw_write_max - Get the maximum size we can read
1902 *
1903 * @map: Map to check.
1904 */
1905size_t regmap_get_raw_write_max(struct regmap *map)
1906{
1907	return map->max_raw_write;
1908}
1909EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1910
1911static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1912				       unsigned int val)
1913{
1914	int ret;
1915	struct regmap_range_node *range;
1916	struct regmap *map = context;
1917
1918	WARN_ON(!map->format.format_write);
1919
1920	range = _regmap_range_lookup(map, reg);
1921	if (range) {
1922		ret = _regmap_select_page(map, &reg, range, 1);
1923		if (ret != 0)
1924			return ret;
1925	}
1926
1927	reg += map->reg_base;
1928	reg >>= map->format.reg_downshift;
1929	map->format.format_write(map, reg, val);
1930
1931	trace_regmap_hw_write_start(map, reg, 1);
1932
1933	ret = map->write(map->bus_context, map->work_buf, map->format.buf_size);
 
1934
1935	trace_regmap_hw_write_done(map, reg, 1);
1936
1937	return ret;
1938}
1939
1940static int _regmap_bus_reg_write(void *context, unsigned int reg,
1941				 unsigned int val)
1942{
1943	struct regmap *map = context;
1944
1945	return map->bus->reg_write(map->bus_context, reg, val);
1946}
1947
1948static int _regmap_bus_raw_write(void *context, unsigned int reg,
1949				 unsigned int val)
1950{
1951	struct regmap *map = context;
1952
1953	WARN_ON(!map->format.format_val);
1954
1955	map->format.format_val(map->work_buf + map->format.reg_bytes
1956			       + map->format.pad_bytes, val, 0);
1957	return _regmap_raw_write_impl(map, reg,
1958				      map->work_buf +
1959				      map->format.reg_bytes +
1960				      map->format.pad_bytes,
1961				      map->format.val_bytes,
1962				      false);
1963}
1964
1965static inline void *_regmap_map_get_context(struct regmap *map)
1966{
1967	return (map->bus || (!map->bus && map->read)) ? map : map->bus_context;
1968}
1969
1970int _regmap_write(struct regmap *map, unsigned int reg,
1971		  unsigned int val)
1972{
1973	int ret;
1974	void *context = _regmap_map_get_context(map);
1975
1976	if (!regmap_writeable(map, reg))
1977		return -EIO;
1978
1979	if (!map->cache_bypass && !map->defer_caching) {
1980		ret = regcache_write(map, reg, val);
1981		if (ret != 0)
1982			return ret;
1983		if (map->cache_only) {
1984			map->cache_dirty = true;
1985			return 0;
1986		}
1987	}
1988
1989	ret = map->reg_write(context, reg, val);
1990	if (ret == 0) {
1991		if (regmap_should_log(map))
1992			dev_info(map->dev, "%x <= %x\n", reg, val);
1993
1994		trace_regmap_reg_write(map, reg, val);
1995	}
1996
1997	return ret;
1998}
1999
2000/**
2001 * regmap_write() - Write a value to a single register
2002 *
2003 * @map: Register map to write to
2004 * @reg: Register to write to
2005 * @val: Value to be written
2006 *
2007 * A value of zero will be returned on success, a negative errno will
2008 * be returned in error cases.
2009 */
2010int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
2011{
2012	int ret;
2013
2014	if (!IS_ALIGNED(reg, map->reg_stride))
2015		return -EINVAL;
2016
2017	map->lock(map->lock_arg);
2018
2019	ret = _regmap_write(map, reg, val);
2020
2021	map->unlock(map->lock_arg);
2022
2023	return ret;
2024}
2025EXPORT_SYMBOL_GPL(regmap_write);
2026
2027/**
2028 * regmap_write_async() - Write a value to a single register asynchronously
2029 *
2030 * @map: Register map to write to
2031 * @reg: Register to write to
2032 * @val: Value to be written
2033 *
2034 * A value of zero will be returned on success, a negative errno will
2035 * be returned in error cases.
2036 */
2037int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
2038{
2039	int ret;
2040
2041	if (!IS_ALIGNED(reg, map->reg_stride))
2042		return -EINVAL;
2043
2044	map->lock(map->lock_arg);
2045
2046	map->async = true;
2047
2048	ret = _regmap_write(map, reg, val);
2049
2050	map->async = false;
2051
2052	map->unlock(map->lock_arg);
2053
2054	return ret;
2055}
2056EXPORT_SYMBOL_GPL(regmap_write_async);
2057
2058int _regmap_raw_write(struct regmap *map, unsigned int reg,
2059		      const void *val, size_t val_len, bool noinc)
2060{
2061	size_t val_bytes = map->format.val_bytes;
2062	size_t val_count = val_len / val_bytes;
2063	size_t chunk_count, chunk_bytes;
2064	size_t chunk_regs = val_count;
2065	int ret, i;
2066
2067	if (!val_count)
2068		return -EINVAL;
2069
2070	if (map->use_single_write)
2071		chunk_regs = 1;
2072	else if (map->max_raw_write && val_len > map->max_raw_write)
2073		chunk_regs = map->max_raw_write / val_bytes;
2074
2075	chunk_count = val_count / chunk_regs;
2076	chunk_bytes = chunk_regs * val_bytes;
2077
2078	/* Write as many bytes as possible with chunk_size */
2079	for (i = 0; i < chunk_count; i++) {
2080		ret = _regmap_raw_write_impl(map, reg, val, chunk_bytes, noinc);
2081		if (ret)
2082			return ret;
2083
2084		reg += regmap_get_offset(map, chunk_regs);
2085		val += chunk_bytes;
2086		val_len -= chunk_bytes;
2087	}
2088
2089	/* Write remaining bytes */
2090	if (val_len)
2091		ret = _regmap_raw_write_impl(map, reg, val, val_len, noinc);
2092
2093	return ret;
2094}
2095
2096/**
2097 * regmap_raw_write() - Write raw values to one or more registers
2098 *
2099 * @map: Register map to write to
2100 * @reg: Initial register to write to
2101 * @val: Block of data to be written, laid out for direct transmission to the
2102 *       device
2103 * @val_len: Length of data pointed to by val.
2104 *
2105 * This function is intended to be used for things like firmware
2106 * download where a large block of data needs to be transferred to the
2107 * device.  No formatting will be done on the data provided.
2108 *
2109 * A value of zero will be returned on success, a negative errno will
2110 * be returned in error cases.
2111 */
2112int regmap_raw_write(struct regmap *map, unsigned int reg,
2113		     const void *val, size_t val_len)
2114{
2115	int ret;
2116
2117	if (!regmap_can_raw_write(map))
2118		return -EINVAL;
2119	if (val_len % map->format.val_bytes)
2120		return -EINVAL;
2121
2122	map->lock(map->lock_arg);
2123
2124	ret = _regmap_raw_write(map, reg, val, val_len, false);
2125
2126	map->unlock(map->lock_arg);
2127
2128	return ret;
2129}
2130EXPORT_SYMBOL_GPL(regmap_raw_write);
2131
2132static int regmap_noinc_readwrite(struct regmap *map, unsigned int reg,
2133				  void *val, unsigned int val_len, bool write)
2134{
2135	size_t val_bytes = map->format.val_bytes;
2136	size_t val_count = val_len / val_bytes;
2137	unsigned int lastval;
2138	u8 *u8p;
2139	u16 *u16p;
2140	u32 *u32p;
2141#ifdef CONFIG_64BIT
2142	u64 *u64p;
2143#endif
2144	int ret;
2145	int i;
2146
2147	switch (val_bytes) {
2148	case 1:
2149		u8p = val;
2150		if (write)
2151			lastval = (unsigned int)u8p[val_count - 1];
2152		break;
2153	case 2:
2154		u16p = val;
2155		if (write)
2156			lastval = (unsigned int)u16p[val_count - 1];
2157		break;
2158	case 4:
2159		u32p = val;
2160		if (write)
2161			lastval = (unsigned int)u32p[val_count - 1];
2162		break;
2163#ifdef CONFIG_64BIT
2164	case 8:
2165		u64p = val;
2166		if (write)
2167			lastval = (unsigned int)u64p[val_count - 1];
2168		break;
2169#endif
2170	default:
2171		return -EINVAL;
2172	}
2173
2174	/*
2175	 * Update the cache with the last value we write, the rest is just
2176	 * gone down in the hardware FIFO. We can't cache FIFOs. This makes
2177	 * sure a single read from the cache will work.
2178	 */
2179	if (write) {
2180		if (!map->cache_bypass && !map->defer_caching) {
2181			ret = regcache_write(map, reg, lastval);
2182			if (ret != 0)
2183				return ret;
2184			if (map->cache_only) {
2185				map->cache_dirty = true;
2186				return 0;
2187			}
2188		}
2189		ret = map->bus->reg_noinc_write(map->bus_context, reg, val, val_count);
2190	} else {
2191		ret = map->bus->reg_noinc_read(map->bus_context, reg, val, val_count);
2192	}
2193
2194	if (!ret && regmap_should_log(map)) {
2195		dev_info(map->dev, "%x %s [", reg, write ? "<=" : "=>");
2196		for (i = 0; i < val_count; i++) {
2197			switch (val_bytes) {
2198			case 1:
2199				pr_cont("%x", u8p[i]);
2200				break;
2201			case 2:
2202				pr_cont("%x", u16p[i]);
2203				break;
2204			case 4:
2205				pr_cont("%x", u32p[i]);
2206				break;
2207#ifdef CONFIG_64BIT
2208			case 8:
2209				pr_cont("%llx", u64p[i]);
2210				break;
2211#endif
2212			default:
2213				break;
2214			}
2215			if (i == (val_count - 1))
2216				pr_cont("]\n");
2217			else
2218				pr_cont(",");
2219		}
2220	}
2221
2222	return 0;
2223}
2224
2225/**
2226 * regmap_noinc_write(): Write data from a register without incrementing the
2227 *			register number
2228 *
2229 * @map: Register map to write to
2230 * @reg: Register to write to
2231 * @val: Pointer to data buffer
2232 * @val_len: Length of output buffer in bytes.
2233 *
2234 * The regmap API usually assumes that bulk bus write operations will write a
2235 * range of registers. Some devices have certain registers for which a write
2236 * operation can write to an internal FIFO.
2237 *
2238 * The target register must be volatile but registers after it can be
2239 * completely unrelated cacheable registers.
2240 *
2241 * This will attempt multiple writes as required to write val_len bytes.
2242 *
2243 * A value of zero will be returned on success, a negative errno will be
2244 * returned in error cases.
2245 */
2246int regmap_noinc_write(struct regmap *map, unsigned int reg,
2247		      const void *val, size_t val_len)
2248{
2249	size_t write_len;
2250	int ret;
2251
2252	if (!map->write && !(map->bus && map->bus->reg_noinc_write))
2253		return -EINVAL;
 
 
2254	if (val_len % map->format.val_bytes)
2255		return -EINVAL;
2256	if (!IS_ALIGNED(reg, map->reg_stride))
2257		return -EINVAL;
2258	if (val_len == 0)
2259		return -EINVAL;
2260
2261	map->lock(map->lock_arg);
2262
2263	if (!regmap_volatile(map, reg) || !regmap_writeable_noinc(map, reg)) {
2264		ret = -EINVAL;
2265		goto out_unlock;
2266	}
2267
2268	/*
2269	 * Use the accelerated operation if we can. The val drops the const
2270	 * typing in order to facilitate code reuse in regmap_noinc_readwrite().
2271	 */
2272	if (map->bus->reg_noinc_write) {
2273		ret = regmap_noinc_readwrite(map, reg, (void *)val, val_len, true);
2274		goto out_unlock;
2275	}
2276
2277	while (val_len) {
2278		if (map->max_raw_write && map->max_raw_write < val_len)
2279			write_len = map->max_raw_write;
2280		else
2281			write_len = val_len;
2282		ret = _regmap_raw_write(map, reg, val, write_len, true);
2283		if (ret)
2284			goto out_unlock;
2285		val = ((u8 *)val) + write_len;
2286		val_len -= write_len;
2287	}
2288
2289out_unlock:
2290	map->unlock(map->lock_arg);
2291	return ret;
2292}
2293EXPORT_SYMBOL_GPL(regmap_noinc_write);
2294
2295/**
2296 * regmap_field_update_bits_base() - Perform a read/modify/write cycle a
2297 *                                   register field.
2298 *
2299 * @field: Register field to write to
2300 * @mask: Bitmask to change
2301 * @val: Value to be written
2302 * @change: Boolean indicating if a write was done
2303 * @async: Boolean indicating asynchronously
2304 * @force: Boolean indicating use force update
2305 *
2306 * Perform a read/modify/write cycle on the register field with change,
2307 * async, force option.
2308 *
2309 * A value of zero will be returned on success, a negative errno will
2310 * be returned in error cases.
2311 */
2312int regmap_field_update_bits_base(struct regmap_field *field,
2313				  unsigned int mask, unsigned int val,
2314				  bool *change, bool async, bool force)
2315{
2316	mask = (mask << field->shift) & field->mask;
2317
2318	return regmap_update_bits_base(field->regmap, field->reg,
2319				       mask, val << field->shift,
2320				       change, async, force);
2321}
2322EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
2323
2324/**
2325 * regmap_field_test_bits() - Check if all specified bits are set in a
2326 *                            register field.
2327 *
2328 * @field: Register field to operate on
2329 * @bits: Bits to test
2330 *
2331 * Returns -1 if the underlying regmap_field_read() fails, 0 if at least one of the
2332 * tested bits is not set and 1 if all tested bits are set.
2333 */
2334int regmap_field_test_bits(struct regmap_field *field, unsigned int bits)
2335{
2336	unsigned int val, ret;
2337
2338	ret = regmap_field_read(field, &val);
2339	if (ret)
2340		return ret;
2341
2342	return (val & bits) == bits;
2343}
2344EXPORT_SYMBOL_GPL(regmap_field_test_bits);
2345
2346/**
2347 * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a
2348 *                                    register field with port ID
2349 *
2350 * @field: Register field to write to
2351 * @id: port ID
2352 * @mask: Bitmask to change
2353 * @val: Value to be written
2354 * @change: Boolean indicating if a write was done
2355 * @async: Boolean indicating asynchronously
2356 * @force: Boolean indicating use force update
2357 *
2358 * A value of zero will be returned on success, a negative errno will
2359 * be returned in error cases.
2360 */
2361int regmap_fields_update_bits_base(struct regmap_field *field, unsigned int id,
2362				   unsigned int mask, unsigned int val,
2363				   bool *change, bool async, bool force)
2364{
2365	if (id >= field->id_size)
2366		return -EINVAL;
2367
2368	mask = (mask << field->shift) & field->mask;
2369
2370	return regmap_update_bits_base(field->regmap,
2371				       field->reg + (field->id_offset * id),
2372				       mask, val << field->shift,
2373				       change, async, force);
2374}
2375EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
2376
2377/**
2378 * regmap_bulk_write() - Write multiple registers to the device
2379 *
2380 * @map: Register map to write to
2381 * @reg: First register to be write from
2382 * @val: Block of data to be written, in native register size for device
2383 * @val_count: Number of registers to write
2384 *
2385 * This function is intended to be used for writing a large block of
2386 * data to the device either in single transfer or multiple transfer.
2387 *
2388 * A value of zero will be returned on success, a negative errno will
2389 * be returned in error cases.
2390 */
2391int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
2392		     size_t val_count)
2393{
2394	int ret = 0, i;
2395	size_t val_bytes = map->format.val_bytes;
2396
2397	if (!IS_ALIGNED(reg, map->reg_stride))
2398		return -EINVAL;
2399
2400	/*
2401	 * Some devices don't support bulk write, for them we have a series of
2402	 * single write operations.
2403	 */
2404	if (!map->write || !map->format.parse_inplace) {
2405		map->lock(map->lock_arg);
2406		for (i = 0; i < val_count; i++) {
2407			unsigned int ival;
2408
2409			switch (val_bytes) {
2410			case 1:
2411				ival = *(u8 *)(val + (i * val_bytes));
2412				break;
2413			case 2:
2414				ival = *(u16 *)(val + (i * val_bytes));
2415				break;
2416			case 4:
2417				ival = *(u32 *)(val + (i * val_bytes));
2418				break;
2419#ifdef CONFIG_64BIT
2420			case 8:
2421				ival = *(u64 *)(val + (i * val_bytes));
2422				break;
2423#endif
2424			default:
2425				ret = -EINVAL;
2426				goto out;
2427			}
2428
2429			ret = _regmap_write(map,
2430					    reg + regmap_get_offset(map, i),
2431					    ival);
2432			if (ret != 0)
2433				goto out;
2434		}
2435out:
2436		map->unlock(map->lock_arg);
2437	} else {
2438		void *wval;
2439
2440		wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
2441		if (!wval)
2442			return -ENOMEM;
2443
2444		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2445			map->format.parse_inplace(wval + i);
2446
2447		ret = regmap_raw_write(map, reg, wval, val_bytes * val_count);
2448
2449		kfree(wval);
2450	}
2451
2452	if (!ret)
2453		trace_regmap_bulk_write(map, reg, val, val_bytes * val_count);
2454
2455	return ret;
2456}
2457EXPORT_SYMBOL_GPL(regmap_bulk_write);
2458
2459/*
2460 * _regmap_raw_multi_reg_write()
2461 *
2462 * the (register,newvalue) pairs in regs have not been formatted, but
2463 * they are all in the same page and have been changed to being page
2464 * relative. The page register has been written if that was necessary.
2465 */
2466static int _regmap_raw_multi_reg_write(struct regmap *map,
2467				       const struct reg_sequence *regs,
2468				       size_t num_regs)
2469{
2470	int ret;
2471	void *buf;
2472	int i;
2473	u8 *u8;
2474	size_t val_bytes = map->format.val_bytes;
2475	size_t reg_bytes = map->format.reg_bytes;
2476	size_t pad_bytes = map->format.pad_bytes;
2477	size_t pair_size = reg_bytes + pad_bytes + val_bytes;
2478	size_t len = pair_size * num_regs;
2479
2480	if (!len)
2481		return -EINVAL;
2482
2483	buf = kzalloc(len, GFP_KERNEL);
2484	if (!buf)
2485		return -ENOMEM;
2486
2487	/* We have to linearise by hand. */
2488
2489	u8 = buf;
2490
2491	for (i = 0; i < num_regs; i++) {
2492		unsigned int reg = regs[i].reg;
2493		unsigned int val = regs[i].def;
2494		trace_regmap_hw_write_start(map, reg, 1);
2495		reg += map->reg_base;
2496		reg >>= map->format.reg_downshift;
2497		map->format.format_reg(u8, reg, map->reg_shift);
2498		u8 += reg_bytes + pad_bytes;
2499		map->format.format_val(u8, val, 0);
2500		u8 += val_bytes;
2501	}
2502	u8 = buf;
2503	*u8 |= map->write_flag_mask;
2504
2505	ret = map->write(map->bus_context, buf, len);
2506
2507	kfree(buf);
2508
2509	for (i = 0; i < num_regs; i++) {
2510		int reg = regs[i].reg;
2511		trace_regmap_hw_write_done(map, reg, 1);
2512	}
2513	return ret;
2514}
2515
2516static unsigned int _regmap_register_page(struct regmap *map,
2517					  unsigned int reg,
2518					  struct regmap_range_node *range)
2519{
2520	unsigned int win_page = (reg - range->range_min) / range->window_len;
2521
2522	return win_page;
2523}
2524
2525static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2526					       struct reg_sequence *regs,
2527					       size_t num_regs)
2528{
2529	int ret;
2530	int i, n;
2531	struct reg_sequence *base;
2532	unsigned int this_page = 0;
2533	unsigned int page_change = 0;
2534	/*
2535	 * the set of registers are not neccessarily in order, but
2536	 * since the order of write must be preserved this algorithm
2537	 * chops the set each time the page changes. This also applies
2538	 * if there is a delay required at any point in the sequence.
2539	 */
2540	base = regs;
2541	for (i = 0, n = 0; i < num_regs; i++, n++) {
2542		unsigned int reg = regs[i].reg;
2543		struct regmap_range_node *range;
2544
2545		range = _regmap_range_lookup(map, reg);
2546		if (range) {
2547			unsigned int win_page = _regmap_register_page(map, reg,
2548								      range);
2549
2550			if (i == 0)
2551				this_page = win_page;
2552			if (win_page != this_page) {
2553				this_page = win_page;
2554				page_change = 1;
2555			}
2556		}
2557
2558		/* If we have both a page change and a delay make sure to
2559		 * write the regs and apply the delay before we change the
2560		 * page.
2561		 */
2562
2563		if (page_change || regs[i].delay_us) {
2564
2565				/* For situations where the first write requires
2566				 * a delay we need to make sure we don't call
2567				 * raw_multi_reg_write with n=0
2568				 * This can't occur with page breaks as we
2569				 * never write on the first iteration
2570				 */
2571				if (regs[i].delay_us && i == 0)
2572					n = 1;
2573
2574				ret = _regmap_raw_multi_reg_write(map, base, n);
2575				if (ret != 0)
2576					return ret;
2577
2578				if (regs[i].delay_us) {
2579					if (map->can_sleep)
2580						fsleep(regs[i].delay_us);
2581					else
2582						udelay(regs[i].delay_us);
2583				}
2584
2585				base += n;
2586				n = 0;
2587
2588				if (page_change) {
2589					ret = _regmap_select_page(map,
2590								  &base[n].reg,
2591								  range, 1);
2592					if (ret != 0)
2593						return ret;
2594
2595					page_change = 0;
2596				}
2597
2598		}
2599
2600	}
2601	if (n > 0)
2602		return _regmap_raw_multi_reg_write(map, base, n);
2603	return 0;
2604}
2605
2606static int _regmap_multi_reg_write(struct regmap *map,
2607				   const struct reg_sequence *regs,
2608				   size_t num_regs)
2609{
2610	int i;
2611	int ret;
2612
2613	if (!map->can_multi_write) {
2614		for (i = 0; i < num_regs; i++) {
2615			ret = _regmap_write(map, regs[i].reg, regs[i].def);
2616			if (ret != 0)
2617				return ret;
2618
2619			if (regs[i].delay_us) {
2620				if (map->can_sleep)
2621					fsleep(regs[i].delay_us);
2622				else
2623					udelay(regs[i].delay_us);
2624			}
2625		}
2626		return 0;
2627	}
2628
2629	if (!map->format.parse_inplace)
2630		return -EINVAL;
2631
2632	if (map->writeable_reg)
2633		for (i = 0; i < num_regs; i++) {
2634			int reg = regs[i].reg;
2635			if (!map->writeable_reg(map->dev, reg))
2636				return -EINVAL;
2637			if (!IS_ALIGNED(reg, map->reg_stride))
2638				return -EINVAL;
2639		}
2640
2641	if (!map->cache_bypass) {
2642		for (i = 0; i < num_regs; i++) {
2643			unsigned int val = regs[i].def;
2644			unsigned int reg = regs[i].reg;
2645			ret = regcache_write(map, reg, val);
2646			if (ret) {
2647				dev_err(map->dev,
2648				"Error in caching of register: %x ret: %d\n",
2649								reg, ret);
2650				return ret;
2651			}
2652		}
2653		if (map->cache_only) {
2654			map->cache_dirty = true;
2655			return 0;
2656		}
2657	}
2658
2659	WARN_ON(!map->bus);
2660
2661	for (i = 0; i < num_regs; i++) {
2662		unsigned int reg = regs[i].reg;
2663		struct regmap_range_node *range;
2664
2665		/* Coalesce all the writes between a page break or a delay
2666		 * in a sequence
2667		 */
2668		range = _regmap_range_lookup(map, reg);
2669		if (range || regs[i].delay_us) {
2670			size_t len = sizeof(struct reg_sequence)*num_regs;
2671			struct reg_sequence *base = kmemdup(regs, len,
2672							   GFP_KERNEL);
2673			if (!base)
2674				return -ENOMEM;
2675			ret = _regmap_range_multi_paged_reg_write(map, base,
2676								  num_regs);
2677			kfree(base);
2678
2679			return ret;
2680		}
2681	}
2682	return _regmap_raw_multi_reg_write(map, regs, num_regs);
2683}
2684
2685/**
2686 * regmap_multi_reg_write() - Write multiple registers to the device
2687 *
2688 * @map: Register map to write to
2689 * @regs: Array of structures containing register,value to be written
2690 * @num_regs: Number of registers to write
2691 *
2692 * Write multiple registers to the device where the set of register, value
2693 * pairs are supplied in any order, possibly not all in a single range.
2694 *
2695 * The 'normal' block write mode will send ultimately send data on the
2696 * target bus as R,V1,V2,V3,..,Vn where successively higher registers are
2697 * addressed. However, this alternative block multi write mode will send
2698 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2699 * must of course support the mode.
2700 *
2701 * A value of zero will be returned on success, a negative errno will be
2702 * returned in error cases.
2703 */
2704int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2705			   int num_regs)
2706{
2707	int ret;
2708
2709	map->lock(map->lock_arg);
2710
2711	ret = _regmap_multi_reg_write(map, regs, num_regs);
2712
2713	map->unlock(map->lock_arg);
2714
2715	return ret;
2716}
2717EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2718
2719/**
2720 * regmap_multi_reg_write_bypassed() - Write multiple registers to the
2721 *                                     device but not the cache
2722 *
2723 * @map: Register map to write to
2724 * @regs: Array of structures containing register,value to be written
2725 * @num_regs: Number of registers to write
2726 *
2727 * Write multiple registers to the device but not the cache where the set
2728 * of register are supplied in any order.
2729 *
2730 * This function is intended to be used for writing a large block of data
2731 * atomically to the device in single transfer for those I2C client devices
2732 * that implement this alternative block write mode.
2733 *
2734 * A value of zero will be returned on success, a negative errno will
2735 * be returned in error cases.
2736 */
2737int regmap_multi_reg_write_bypassed(struct regmap *map,
2738				    const struct reg_sequence *regs,
2739				    int num_regs)
2740{
2741	int ret;
2742	bool bypass;
2743
2744	map->lock(map->lock_arg);
2745
2746	bypass = map->cache_bypass;
2747	map->cache_bypass = true;
2748
2749	ret = _regmap_multi_reg_write(map, regs, num_regs);
2750
2751	map->cache_bypass = bypass;
2752
2753	map->unlock(map->lock_arg);
2754
2755	return ret;
2756}
2757EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2758
2759/**
2760 * regmap_raw_write_async() - Write raw values to one or more registers
2761 *                            asynchronously
2762 *
2763 * @map: Register map to write to
2764 * @reg: Initial register to write to
2765 * @val: Block of data to be written, laid out for direct transmission to the
2766 *       device.  Must be valid until regmap_async_complete() is called.
2767 * @val_len: Length of data pointed to by val.
2768 *
2769 * This function is intended to be used for things like firmware
2770 * download where a large block of data needs to be transferred to the
2771 * device.  No formatting will be done on the data provided.
2772 *
2773 * If supported by the underlying bus the write will be scheduled
2774 * asynchronously, helping maximise I/O speed on higher speed buses
2775 * like SPI.  regmap_async_complete() can be called to ensure that all
2776 * asynchrnous writes have been completed.
2777 *
2778 * A value of zero will be returned on success, a negative errno will
2779 * be returned in error cases.
2780 */
2781int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2782			   const void *val, size_t val_len)
2783{
2784	int ret;
2785
2786	if (val_len % map->format.val_bytes)
2787		return -EINVAL;
2788	if (!IS_ALIGNED(reg, map->reg_stride))
2789		return -EINVAL;
2790
2791	map->lock(map->lock_arg);
2792
2793	map->async = true;
2794
2795	ret = _regmap_raw_write(map, reg, val, val_len, false);
2796
2797	map->async = false;
2798
2799	map->unlock(map->lock_arg);
2800
2801	return ret;
2802}
2803EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2804
2805static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2806			    unsigned int val_len, bool noinc)
2807{
2808	struct regmap_range_node *range;
2809	int ret;
2810
2811	if (!map->read)
 
 
2812		return -EINVAL;
2813
2814	range = _regmap_range_lookup(map, reg);
2815	if (range) {
2816		ret = _regmap_select_page(map, &reg, range,
2817					  noinc ? 1 : val_len / map->format.val_bytes);
2818		if (ret != 0)
2819			return ret;
2820	}
2821
2822	reg += map->reg_base;
2823	reg >>= map->format.reg_downshift;
2824	map->format.format_reg(map->work_buf, reg, map->reg_shift);
2825	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
2826				      map->read_flag_mask);
2827	trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2828
2829	ret = map->read(map->bus_context, map->work_buf,
2830			map->format.reg_bytes + map->format.pad_bytes,
2831			val, val_len);
2832
2833	trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2834
2835	return ret;
2836}
2837
2838static int _regmap_bus_reg_read(void *context, unsigned int reg,
2839				unsigned int *val)
2840{
2841	struct regmap *map = context;
2842
2843	return map->bus->reg_read(map->bus_context, reg, val);
2844}
2845
2846static int _regmap_bus_read(void *context, unsigned int reg,
2847			    unsigned int *val)
2848{
2849	int ret;
2850	struct regmap *map = context;
2851	void *work_val = map->work_buf + map->format.reg_bytes +
2852		map->format.pad_bytes;
2853
2854	if (!map->format.parse_val)
2855		return -EINVAL;
2856
2857	ret = _regmap_raw_read(map, reg, work_val, map->format.val_bytes, false);
2858	if (ret == 0)
2859		*val = map->format.parse_val(work_val);
2860
2861	return ret;
2862}
2863
2864static int _regmap_read(struct regmap *map, unsigned int reg,
2865			unsigned int *val)
2866{
2867	int ret;
2868	void *context = _regmap_map_get_context(map);
2869
2870	if (!map->cache_bypass) {
2871		ret = regcache_read(map, reg, val);
2872		if (ret == 0)
2873			return 0;
2874	}
2875
2876	if (map->cache_only)
2877		return -EBUSY;
2878
2879	if (!regmap_readable(map, reg))
2880		return -EIO;
2881
2882	ret = map->reg_read(context, reg, val);
2883	if (ret == 0) {
2884		if (regmap_should_log(map))
2885			dev_info(map->dev, "%x => %x\n", reg, *val);
2886
2887		trace_regmap_reg_read(map, reg, *val);
2888
2889		if (!map->cache_bypass)
2890			regcache_write(map, reg, *val);
2891	}
2892
2893	return ret;
2894}
2895
2896/**
2897 * regmap_read() - Read a value from a single register
2898 *
2899 * @map: Register map to read from
2900 * @reg: Register to be read from
2901 * @val: Pointer to store read value
2902 *
2903 * A value of zero will be returned on success, a negative errno will
2904 * be returned in error cases.
2905 */
2906int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2907{
2908	int ret;
2909
2910	if (!IS_ALIGNED(reg, map->reg_stride))
2911		return -EINVAL;
2912
2913	map->lock(map->lock_arg);
2914
2915	ret = _regmap_read(map, reg, val);
2916
2917	map->unlock(map->lock_arg);
2918
2919	return ret;
2920}
2921EXPORT_SYMBOL_GPL(regmap_read);
2922
2923/**
2924 * regmap_raw_read() - Read raw data from the device
2925 *
2926 * @map: Register map to read from
2927 * @reg: First register to be read from
2928 * @val: Pointer to store read value
2929 * @val_len: Size of data to read
2930 *
2931 * A value of zero will be returned on success, a negative errno will
2932 * be returned in error cases.
2933 */
2934int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2935		    size_t val_len)
2936{
2937	size_t val_bytes = map->format.val_bytes;
2938	size_t val_count = val_len / val_bytes;
2939	unsigned int v;
2940	int ret, i;
2941
 
 
2942	if (val_len % map->format.val_bytes)
2943		return -EINVAL;
2944	if (!IS_ALIGNED(reg, map->reg_stride))
2945		return -EINVAL;
2946	if (val_count == 0)
2947		return -EINVAL;
2948
2949	map->lock(map->lock_arg);
2950
2951	if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2952	    map->cache_type == REGCACHE_NONE) {
2953		size_t chunk_count, chunk_bytes;
2954		size_t chunk_regs = val_count;
2955
2956		if (!map->read) {
2957			ret = -ENOTSUPP;
2958			goto out;
2959		}
2960
2961		if (map->use_single_read)
2962			chunk_regs = 1;
2963		else if (map->max_raw_read && val_len > map->max_raw_read)
2964			chunk_regs = map->max_raw_read / val_bytes;
2965
2966		chunk_count = val_count / chunk_regs;
2967		chunk_bytes = chunk_regs * val_bytes;
2968
2969		/* Read bytes that fit into whole chunks */
2970		for (i = 0; i < chunk_count; i++) {
2971			ret = _regmap_raw_read(map, reg, val, chunk_bytes, false);
2972			if (ret != 0)
2973				goto out;
2974
2975			reg += regmap_get_offset(map, chunk_regs);
2976			val += chunk_bytes;
2977			val_len -= chunk_bytes;
2978		}
2979
2980		/* Read remaining bytes */
2981		if (val_len) {
2982			ret = _regmap_raw_read(map, reg, val, val_len, false);
2983			if (ret != 0)
2984				goto out;
2985		}
2986	} else {
2987		/* Otherwise go word by word for the cache; should be low
2988		 * cost as we expect to hit the cache.
2989		 */
2990		for (i = 0; i < val_count; i++) {
2991			ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2992					   &v);
2993			if (ret != 0)
2994				goto out;
2995
2996			map->format.format_val(val + (i * val_bytes), v, 0);
2997		}
2998	}
2999
3000 out:
3001	map->unlock(map->lock_arg);
3002
3003	return ret;
3004}
3005EXPORT_SYMBOL_GPL(regmap_raw_read);
3006
3007/**
3008 * regmap_noinc_read(): Read data from a register without incrementing the
3009 *			register number
3010 *
3011 * @map: Register map to read from
3012 * @reg: Register to read from
3013 * @val: Pointer to data buffer
3014 * @val_len: Length of output buffer in bytes.
3015 *
3016 * The regmap API usually assumes that bulk read operations will read a
3017 * range of registers. Some devices have certain registers for which a read
3018 * operation read will read from an internal FIFO.
3019 *
3020 * The target register must be volatile but registers after it can be
3021 * completely unrelated cacheable registers.
3022 *
3023 * This will attempt multiple reads as required to read val_len bytes.
3024 *
3025 * A value of zero will be returned on success, a negative errno will be
3026 * returned in error cases.
3027 */
3028int regmap_noinc_read(struct regmap *map, unsigned int reg,
3029		      void *val, size_t val_len)
3030{
3031	size_t read_len;
3032	int ret;
3033
3034	if (!map->read)
 
 
3035		return -ENOTSUPP;
3036
3037	if (val_len % map->format.val_bytes)
3038		return -EINVAL;
3039	if (!IS_ALIGNED(reg, map->reg_stride))
3040		return -EINVAL;
3041	if (val_len == 0)
3042		return -EINVAL;
3043
3044	map->lock(map->lock_arg);
3045
3046	if (!regmap_volatile(map, reg) || !regmap_readable_noinc(map, reg)) {
3047		ret = -EINVAL;
3048		goto out_unlock;
3049	}
3050
3051	/* Use the accelerated operation if we can */
3052	if (map->bus->reg_noinc_read) {
3053		/*
3054		 * We have not defined the FIFO semantics for cache, as the
3055		 * cache is just one value deep. Should we return the last
3056		 * written value? Just avoid this by always reading the FIFO
3057		 * even when using cache. Cache only will not work.
3058		 */
3059		if (map->cache_only) {
3060			ret = -EBUSY;
3061			goto out_unlock;
3062		}
3063		ret = regmap_noinc_readwrite(map, reg, val, val_len, false);
3064		goto out_unlock;
3065	}
3066
3067	while (val_len) {
3068		if (map->max_raw_read && map->max_raw_read < val_len)
3069			read_len = map->max_raw_read;
3070		else
3071			read_len = val_len;
3072		ret = _regmap_raw_read(map, reg, val, read_len, true);
3073		if (ret)
3074			goto out_unlock;
3075		val = ((u8 *)val) + read_len;
3076		val_len -= read_len;
3077	}
3078
3079out_unlock:
3080	map->unlock(map->lock_arg);
3081	return ret;
3082}
3083EXPORT_SYMBOL_GPL(regmap_noinc_read);
3084
3085/**
3086 * regmap_field_read(): Read a value to a single register field
3087 *
3088 * @field: Register field to read from
3089 * @val: Pointer to store read value
3090 *
3091 * A value of zero will be returned on success, a negative errno will
3092 * be returned in error cases.
3093 */
3094int regmap_field_read(struct regmap_field *field, unsigned int *val)
3095{
3096	int ret;
3097	unsigned int reg_val;
3098	ret = regmap_read(field->regmap, field->reg, &reg_val);
3099	if (ret != 0)
3100		return ret;
3101
3102	reg_val &= field->mask;
3103	reg_val >>= field->shift;
3104	*val = reg_val;
3105
3106	return ret;
3107}
3108EXPORT_SYMBOL_GPL(regmap_field_read);
3109
3110/**
3111 * regmap_fields_read() - Read a value to a single register field with port ID
3112 *
3113 * @field: Register field to read from
3114 * @id: port ID
3115 * @val: Pointer to store read value
3116 *
3117 * A value of zero will be returned on success, a negative errno will
3118 * be returned in error cases.
3119 */
3120int regmap_fields_read(struct regmap_field *field, unsigned int id,
3121		       unsigned int *val)
3122{
3123	int ret;
3124	unsigned int reg_val;
3125
3126	if (id >= field->id_size)
3127		return -EINVAL;
3128
3129	ret = regmap_read(field->regmap,
3130			  field->reg + (field->id_offset * id),
3131			  &reg_val);
3132	if (ret != 0)
3133		return ret;
3134
3135	reg_val &= field->mask;
3136	reg_val >>= field->shift;
3137	*val = reg_val;
3138
3139	return ret;
3140}
3141EXPORT_SYMBOL_GPL(regmap_fields_read);
3142
3143/**
3144 * regmap_bulk_read() - Read multiple registers from the device
3145 *
3146 * @map: Register map to read from
3147 * @reg: First register to be read from
3148 * @val: Pointer to store read value, in native register size for device
3149 * @val_count: Number of registers to read
3150 *
3151 * A value of zero will be returned on success, a negative errno will
3152 * be returned in error cases.
3153 */
3154int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
3155		     size_t val_count)
3156{
3157	int ret, i;
3158	size_t val_bytes = map->format.val_bytes;
3159	bool vol = regmap_volatile_range(map, reg, val_count);
3160
3161	if (!IS_ALIGNED(reg, map->reg_stride))
3162		return -EINVAL;
3163	if (val_count == 0)
3164		return -EINVAL;
3165
3166	if (map->read && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
3167		ret = regmap_raw_read(map, reg, val, val_bytes * val_count);
3168		if (ret != 0)
3169			return ret;
3170
3171		for (i = 0; i < val_count * val_bytes; i += val_bytes)
3172			map->format.parse_inplace(val + i);
3173	} else {
3174#ifdef CONFIG_64BIT
3175		u64 *u64 = val;
3176#endif
3177		u32 *u32 = val;
3178		u16 *u16 = val;
3179		u8 *u8 = val;
3180
3181		map->lock(map->lock_arg);
3182
3183		for (i = 0; i < val_count; i++) {
3184			unsigned int ival;
3185
3186			ret = _regmap_read(map, reg + regmap_get_offset(map, i),
3187					   &ival);
3188			if (ret != 0)
3189				goto out;
3190
3191			switch (map->format.val_bytes) {
3192#ifdef CONFIG_64BIT
3193			case 8:
3194				u64[i] = ival;
3195				break;
3196#endif
3197			case 4:
3198				u32[i] = ival;
3199				break;
3200			case 2:
3201				u16[i] = ival;
3202				break;
3203			case 1:
3204				u8[i] = ival;
3205				break;
3206			default:
3207				ret = -EINVAL;
3208				goto out;
3209			}
3210		}
3211
3212out:
3213		map->unlock(map->lock_arg);
3214	}
3215
3216	if (!ret)
3217		trace_regmap_bulk_read(map, reg, val, val_bytes * val_count);
3218
3219	return ret;
3220}
3221EXPORT_SYMBOL_GPL(regmap_bulk_read);
3222
3223static int _regmap_update_bits(struct regmap *map, unsigned int reg,
3224			       unsigned int mask, unsigned int val,
3225			       bool *change, bool force_write)
3226{
3227	int ret;
3228	unsigned int tmp, orig;
3229
3230	if (change)
3231		*change = false;
3232
3233	if (regmap_volatile(map, reg) && map->reg_update_bits) {
3234		ret = map->reg_update_bits(map->bus_context, reg, mask, val);
3235		if (ret == 0 && change)
3236			*change = true;
3237	} else {
3238		ret = _regmap_read(map, reg, &orig);
3239		if (ret != 0)
3240			return ret;
3241
3242		tmp = orig & ~mask;
3243		tmp |= val & mask;
3244
3245		if (force_write || (tmp != orig)) {
3246			ret = _regmap_write(map, reg, tmp);
3247			if (ret == 0 && change)
3248				*change = true;
3249		}
3250	}
3251
3252	return ret;
3253}
3254
3255/**
3256 * regmap_update_bits_base() - Perform a read/modify/write cycle on a register
3257 *
3258 * @map: Register map to update
3259 * @reg: Register to update
3260 * @mask: Bitmask to change
3261 * @val: New value for bitmask
3262 * @change: Boolean indicating if a write was done
3263 * @async: Boolean indicating asynchronously
3264 * @force: Boolean indicating use force update
3265 *
3266 * Perform a read/modify/write cycle on a register map with change, async, force
3267 * options.
3268 *
3269 * If async is true:
3270 *
3271 * With most buses the read must be done synchronously so this is most useful
3272 * for devices with a cache which do not need to interact with the hardware to
3273 * determine the current register value.
3274 *
3275 * Returns zero for success, a negative number on error.
3276 */
3277int regmap_update_bits_base(struct regmap *map, unsigned int reg,
3278			    unsigned int mask, unsigned int val,
3279			    bool *change, bool async, bool force)
3280{
3281	int ret;
3282
3283	map->lock(map->lock_arg);
3284
3285	map->async = async;
3286
3287	ret = _regmap_update_bits(map, reg, mask, val, change, force);
3288
3289	map->async = false;
3290
3291	map->unlock(map->lock_arg);
3292
3293	return ret;
3294}
3295EXPORT_SYMBOL_GPL(regmap_update_bits_base);
3296
3297/**
3298 * regmap_test_bits() - Check if all specified bits are set in a register.
3299 *
3300 * @map: Register map to operate on
3301 * @reg: Register to read from
3302 * @bits: Bits to test
3303 *
3304 * Returns 0 if at least one of the tested bits is not set, 1 if all tested
3305 * bits are set and a negative error number if the underlying regmap_read()
3306 * fails.
3307 */
3308int regmap_test_bits(struct regmap *map, unsigned int reg, unsigned int bits)
3309{
3310	unsigned int val, ret;
3311
3312	ret = regmap_read(map, reg, &val);
3313	if (ret)
3314		return ret;
3315
3316	return (val & bits) == bits;
3317}
3318EXPORT_SYMBOL_GPL(regmap_test_bits);
3319
3320void regmap_async_complete_cb(struct regmap_async *async, int ret)
3321{
3322	struct regmap *map = async->map;
3323	bool wake;
3324
3325	trace_regmap_async_io_complete(map);
3326
3327	spin_lock(&map->async_lock);
3328	list_move(&async->list, &map->async_free);
3329	wake = list_empty(&map->async_list);
3330
3331	if (ret != 0)
3332		map->async_ret = ret;
3333
3334	spin_unlock(&map->async_lock);
3335
3336	if (wake)
3337		wake_up(&map->async_waitq);
3338}
3339EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
3340
3341static int regmap_async_is_done(struct regmap *map)
3342{
3343	unsigned long flags;
3344	int ret;
3345
3346	spin_lock_irqsave(&map->async_lock, flags);
3347	ret = list_empty(&map->async_list);
3348	spin_unlock_irqrestore(&map->async_lock, flags);
3349
3350	return ret;
3351}
3352
3353/**
3354 * regmap_async_complete - Ensure all asynchronous I/O has completed.
3355 *
3356 * @map: Map to operate on.
3357 *
3358 * Blocks until any pending asynchronous I/O has completed.  Returns
3359 * an error code for any failed I/O operations.
3360 */
3361int regmap_async_complete(struct regmap *map)
3362{
3363	unsigned long flags;
3364	int ret;
3365
3366	/* Nothing to do with no async support */
3367	if (!map->bus || !map->bus->async_write)
3368		return 0;
3369
3370	trace_regmap_async_complete_start(map);
3371
3372	wait_event(map->async_waitq, regmap_async_is_done(map));
3373
3374	spin_lock_irqsave(&map->async_lock, flags);
3375	ret = map->async_ret;
3376	map->async_ret = 0;
3377	spin_unlock_irqrestore(&map->async_lock, flags);
3378
3379	trace_regmap_async_complete_done(map);
3380
3381	return ret;
3382}
3383EXPORT_SYMBOL_GPL(regmap_async_complete);
3384
3385/**
3386 * regmap_register_patch - Register and apply register updates to be applied
3387 *                         on device initialistion
3388 *
3389 * @map: Register map to apply updates to.
3390 * @regs: Values to update.
3391 * @num_regs: Number of entries in regs.
3392 *
3393 * Register a set of register updates to be applied to the device
3394 * whenever the device registers are synchronised with the cache and
3395 * apply them immediately.  Typically this is used to apply
3396 * corrections to be applied to the device defaults on startup, such
3397 * as the updates some vendors provide to undocumented registers.
3398 *
3399 * The caller must ensure that this function cannot be called
3400 * concurrently with either itself or regcache_sync().
3401 */
3402int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
3403			  int num_regs)
3404{
3405	struct reg_sequence *p;
3406	int ret;
3407	bool bypass;
3408
3409	if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
3410	    num_regs))
3411		return 0;
3412
3413	p = krealloc(map->patch,
3414		     sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
3415		     GFP_KERNEL);
3416	if (p) {
3417		memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
3418		map->patch = p;
3419		map->patch_regs += num_regs;
3420	} else {
3421		return -ENOMEM;
3422	}
3423
3424	map->lock(map->lock_arg);
3425
3426	bypass = map->cache_bypass;
3427
3428	map->cache_bypass = true;
3429	map->async = true;
3430
3431	ret = _regmap_multi_reg_write(map, regs, num_regs);
3432
3433	map->async = false;
3434	map->cache_bypass = bypass;
3435
3436	map->unlock(map->lock_arg);
3437
3438	regmap_async_complete(map);
3439
3440	return ret;
3441}
3442EXPORT_SYMBOL_GPL(regmap_register_patch);
3443
3444/**
3445 * regmap_get_val_bytes() - Report the size of a register value
3446 *
3447 * @map: Register map to operate on.
3448 *
3449 * Report the size of a register value, mainly intended to for use by
3450 * generic infrastructure built on top of regmap.
3451 */
3452int regmap_get_val_bytes(struct regmap *map)
3453{
3454	if (map->format.format_write)
3455		return -EINVAL;
3456
3457	return map->format.val_bytes;
3458}
3459EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
3460
3461/**
3462 * regmap_get_max_register() - Report the max register value
3463 *
3464 * @map: Register map to operate on.
3465 *
3466 * Report the max register value, mainly intended to for use by
3467 * generic infrastructure built on top of regmap.
3468 */
3469int regmap_get_max_register(struct regmap *map)
3470{
3471	return map->max_register ? map->max_register : -EINVAL;
3472}
3473EXPORT_SYMBOL_GPL(regmap_get_max_register);
3474
3475/**
3476 * regmap_get_reg_stride() - Report the register address stride
3477 *
3478 * @map: Register map to operate on.
3479 *
3480 * Report the register address stride, mainly intended to for use by
3481 * generic infrastructure built on top of regmap.
3482 */
3483int regmap_get_reg_stride(struct regmap *map)
3484{
3485	return map->reg_stride;
3486}
3487EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
3488
3489/**
3490 * regmap_might_sleep() - Returns whether a regmap access might sleep.
3491 *
3492 * @map: Register map to operate on.
3493 *
3494 * Returns true if an access to the register might sleep, else false.
3495 */
3496bool regmap_might_sleep(struct regmap *map)
3497{
3498	return map->can_sleep;
3499}
3500EXPORT_SYMBOL_GPL(regmap_might_sleep);
3501
3502int regmap_parse_val(struct regmap *map, const void *buf,
3503			unsigned int *val)
3504{
3505	if (!map->format.parse_val)
3506		return -EINVAL;
3507
3508	*val = map->format.parse_val(buf);
3509
3510	return 0;
3511}
3512EXPORT_SYMBOL_GPL(regmap_parse_val);
3513
3514static int __init regmap_initcall(void)
3515{
3516	regmap_debugfs_initcall();
3517
3518	return 0;
3519}
3520postcore_initcall(regmap_initcall);
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2//
   3// Register map access API
   4//
   5// Copyright 2011 Wolfson Microelectronics plc
   6//
   7// Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
   8
   9#include <linux/device.h>
  10#include <linux/slab.h>
  11#include <linux/export.h>
  12#include <linux/mutex.h>
  13#include <linux/err.h>
  14#include <linux/of.h>
  15#include <linux/rbtree.h>
  16#include <linux/sched.h>
  17#include <linux/delay.h>
  18#include <linux/log2.h>
  19#include <linux/hwspinlock.h>
 
  20
  21#define CREATE_TRACE_POINTS
  22#include "trace.h"
  23
  24#include "internal.h"
  25
  26/*
  27 * Sometimes for failures during very early init the trace
  28 * infrastructure isn't available early enough to be used.  For this
  29 * sort of problem defining LOG_DEVICE will add printks for basic
  30 * register I/O on a specific device.
  31 */
  32#undef LOG_DEVICE
  33
  34#ifdef LOG_DEVICE
  35static inline bool regmap_should_log(struct regmap *map)
  36{
  37	return (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0);
  38}
  39#else
  40static inline bool regmap_should_log(struct regmap *map) { return false; }
  41#endif
  42
  43
  44static int _regmap_update_bits(struct regmap *map, unsigned int reg,
  45			       unsigned int mask, unsigned int val,
  46			       bool *change, bool force_write);
  47
  48static int _regmap_bus_reg_read(void *context, unsigned int reg,
  49				unsigned int *val);
  50static int _regmap_bus_read(void *context, unsigned int reg,
  51			    unsigned int *val);
  52static int _regmap_bus_formatted_write(void *context, unsigned int reg,
  53				       unsigned int val);
  54static int _regmap_bus_reg_write(void *context, unsigned int reg,
  55				 unsigned int val);
  56static int _regmap_bus_raw_write(void *context, unsigned int reg,
  57				 unsigned int val);
  58
  59bool regmap_reg_in_ranges(unsigned int reg,
  60			  const struct regmap_range *ranges,
  61			  unsigned int nranges)
  62{
  63	const struct regmap_range *r;
  64	int i;
  65
  66	for (i = 0, r = ranges; i < nranges; i++, r++)
  67		if (regmap_reg_in_range(reg, r))
  68			return true;
  69	return false;
  70}
  71EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
  72
  73bool regmap_check_range_table(struct regmap *map, unsigned int reg,
  74			      const struct regmap_access_table *table)
  75{
  76	/* Check "no ranges" first */
  77	if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
  78		return false;
  79
  80	/* In case zero "yes ranges" are supplied, any reg is OK */
  81	if (!table->n_yes_ranges)
  82		return true;
  83
  84	return regmap_reg_in_ranges(reg, table->yes_ranges,
  85				    table->n_yes_ranges);
  86}
  87EXPORT_SYMBOL_GPL(regmap_check_range_table);
  88
  89bool regmap_writeable(struct regmap *map, unsigned int reg)
  90{
  91	if (map->max_register && reg > map->max_register)
  92		return false;
  93
  94	if (map->writeable_reg)
  95		return map->writeable_reg(map->dev, reg);
  96
  97	if (map->wr_table)
  98		return regmap_check_range_table(map, reg, map->wr_table);
  99
 100	return true;
 101}
 102
 103bool regmap_cached(struct regmap *map, unsigned int reg)
 104{
 105	int ret;
 106	unsigned int val;
 107
 108	if (map->cache_type == REGCACHE_NONE)
 109		return false;
 110
 111	if (!map->cache_ops)
 112		return false;
 113
 114	if (map->max_register && reg > map->max_register)
 115		return false;
 116
 117	map->lock(map->lock_arg);
 118	ret = regcache_read(map, reg, &val);
 119	map->unlock(map->lock_arg);
 120	if (ret)
 121		return false;
 122
 123	return true;
 124}
 125
 126bool regmap_readable(struct regmap *map, unsigned int reg)
 127{
 128	if (!map->reg_read)
 129		return false;
 130
 131	if (map->max_register && reg > map->max_register)
 132		return false;
 133
 134	if (map->format.format_write)
 135		return false;
 136
 137	if (map->readable_reg)
 138		return map->readable_reg(map->dev, reg);
 139
 140	if (map->rd_table)
 141		return regmap_check_range_table(map, reg, map->rd_table);
 142
 143	return true;
 144}
 145
 146bool regmap_volatile(struct regmap *map, unsigned int reg)
 147{
 148	if (!map->format.format_write && !regmap_readable(map, reg))
 149		return false;
 150
 151	if (map->volatile_reg)
 152		return map->volatile_reg(map->dev, reg);
 153
 154	if (map->volatile_table)
 155		return regmap_check_range_table(map, reg, map->volatile_table);
 156
 157	if (map->cache_ops)
 158		return false;
 159	else
 160		return true;
 161}
 162
 163bool regmap_precious(struct regmap *map, unsigned int reg)
 164{
 165	if (!regmap_readable(map, reg))
 166		return false;
 167
 168	if (map->precious_reg)
 169		return map->precious_reg(map->dev, reg);
 170
 171	if (map->precious_table)
 172		return regmap_check_range_table(map, reg, map->precious_table);
 173
 174	return false;
 175}
 176
 177bool regmap_writeable_noinc(struct regmap *map, unsigned int reg)
 178{
 179	if (map->writeable_noinc_reg)
 180		return map->writeable_noinc_reg(map->dev, reg);
 181
 182	if (map->wr_noinc_table)
 183		return regmap_check_range_table(map, reg, map->wr_noinc_table);
 184
 185	return true;
 186}
 187
 188bool regmap_readable_noinc(struct regmap *map, unsigned int reg)
 189{
 190	if (map->readable_noinc_reg)
 191		return map->readable_noinc_reg(map->dev, reg);
 192
 193	if (map->rd_noinc_table)
 194		return regmap_check_range_table(map, reg, map->rd_noinc_table);
 195
 196	return true;
 197}
 198
 199static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
 200	size_t num)
 201{
 202	unsigned int i;
 203
 204	for (i = 0; i < num; i++)
 205		if (!regmap_volatile(map, reg + regmap_get_offset(map, i)))
 206			return false;
 207
 208	return true;
 209}
 210
 
 
 
 
 
 
 
 
 
 
 
 
 211static void regmap_format_2_6_write(struct regmap *map,
 212				     unsigned int reg, unsigned int val)
 213{
 214	u8 *out = map->work_buf;
 215
 216	*out = (reg << 6) | val;
 217}
 218
 219static void regmap_format_4_12_write(struct regmap *map,
 220				     unsigned int reg, unsigned int val)
 221{
 222	__be16 *out = map->work_buf;
 223	*out = cpu_to_be16((reg << 12) | val);
 224}
 225
 226static void regmap_format_7_9_write(struct regmap *map,
 227				    unsigned int reg, unsigned int val)
 228{
 229	__be16 *out = map->work_buf;
 230	*out = cpu_to_be16((reg << 9) | val);
 231}
 232
 
 
 
 
 
 
 
 
 
 
 233static void regmap_format_10_14_write(struct regmap *map,
 234				    unsigned int reg, unsigned int val)
 235{
 236	u8 *out = map->work_buf;
 237
 238	out[2] = val;
 239	out[1] = (val >> 8) | (reg << 6);
 240	out[0] = reg >> 2;
 241}
 242
 243static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
 244{
 245	u8 *b = buf;
 246
 247	b[0] = val << shift;
 248}
 249
 250static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
 251{
 252	__be16 *b = buf;
 253
 254	b[0] = cpu_to_be16(val << shift);
 255}
 256
 257static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
 258{
 259	__le16 *b = buf;
 260
 261	b[0] = cpu_to_le16(val << shift);
 262}
 263
 264static void regmap_format_16_native(void *buf, unsigned int val,
 265				    unsigned int shift)
 266{
 267	*(u16 *)buf = val << shift;
 
 
 268}
 269
 270static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
 271{
 272	u8 *b = buf;
 273
 274	val <<= shift;
 275
 276	b[0] = val >> 16;
 277	b[1] = val >> 8;
 278	b[2] = val;
 279}
 280
 281static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
 282{
 283	__be32 *b = buf;
 284
 285	b[0] = cpu_to_be32(val << shift);
 286}
 287
 288static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
 289{
 290	__le32 *b = buf;
 291
 292	b[0] = cpu_to_le32(val << shift);
 293}
 294
 295static void regmap_format_32_native(void *buf, unsigned int val,
 296				    unsigned int shift)
 297{
 298	*(u32 *)buf = val << shift;
 
 
 299}
 300
 301#ifdef CONFIG_64BIT
 302static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
 303{
 304	__be64 *b = buf;
 305
 306	b[0] = cpu_to_be64((u64)val << shift);
 307}
 308
 309static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
 310{
 311	__le64 *b = buf;
 312
 313	b[0] = cpu_to_le64((u64)val << shift);
 314}
 315
 316static void regmap_format_64_native(void *buf, unsigned int val,
 317				    unsigned int shift)
 318{
 319	*(u64 *)buf = (u64)val << shift;
 
 
 320}
 321#endif
 322
 323static void regmap_parse_inplace_noop(void *buf)
 324{
 325}
 326
 327static unsigned int regmap_parse_8(const void *buf)
 328{
 329	const u8 *b = buf;
 330
 331	return b[0];
 332}
 333
 334static unsigned int regmap_parse_16_be(const void *buf)
 335{
 336	const __be16 *b = buf;
 337
 338	return be16_to_cpu(b[0]);
 339}
 340
 341static unsigned int regmap_parse_16_le(const void *buf)
 342{
 343	const __le16 *b = buf;
 344
 345	return le16_to_cpu(b[0]);
 346}
 347
 348static void regmap_parse_16_be_inplace(void *buf)
 349{
 350	__be16 *b = buf;
 351
 352	b[0] = be16_to_cpu(b[0]);
 353}
 354
 355static void regmap_parse_16_le_inplace(void *buf)
 356{
 357	__le16 *b = buf;
 358
 359	b[0] = le16_to_cpu(b[0]);
 360}
 361
 362static unsigned int regmap_parse_16_native(const void *buf)
 363{
 364	return *(u16 *)buf;
 
 
 
 365}
 366
 367static unsigned int regmap_parse_24(const void *buf)
 368{
 369	const u8 *b = buf;
 370	unsigned int ret = b[2];
 371	ret |= ((unsigned int)b[1]) << 8;
 372	ret |= ((unsigned int)b[0]) << 16;
 373
 374	return ret;
 375}
 376
 377static unsigned int regmap_parse_32_be(const void *buf)
 378{
 379	const __be32 *b = buf;
 380
 381	return be32_to_cpu(b[0]);
 382}
 383
 384static unsigned int regmap_parse_32_le(const void *buf)
 385{
 386	const __le32 *b = buf;
 387
 388	return le32_to_cpu(b[0]);
 389}
 390
 391static void regmap_parse_32_be_inplace(void *buf)
 392{
 393	__be32 *b = buf;
 394
 395	b[0] = be32_to_cpu(b[0]);
 396}
 397
 398static void regmap_parse_32_le_inplace(void *buf)
 399{
 400	__le32 *b = buf;
 401
 402	b[0] = le32_to_cpu(b[0]);
 403}
 404
 405static unsigned int regmap_parse_32_native(const void *buf)
 406{
 407	return *(u32 *)buf;
 
 
 
 408}
 409
 410#ifdef CONFIG_64BIT
 411static unsigned int regmap_parse_64_be(const void *buf)
 412{
 413	const __be64 *b = buf;
 414
 415	return be64_to_cpu(b[0]);
 416}
 417
 418static unsigned int regmap_parse_64_le(const void *buf)
 419{
 420	const __le64 *b = buf;
 421
 422	return le64_to_cpu(b[0]);
 423}
 424
 425static void regmap_parse_64_be_inplace(void *buf)
 426{
 427	__be64 *b = buf;
 428
 429	b[0] = be64_to_cpu(b[0]);
 430}
 431
 432static void regmap_parse_64_le_inplace(void *buf)
 433{
 434	__le64 *b = buf;
 435
 436	b[0] = le64_to_cpu(b[0]);
 437}
 438
 439static unsigned int regmap_parse_64_native(const void *buf)
 440{
 441	return *(u64 *)buf;
 
 
 
 442}
 443#endif
 444
 445static void regmap_lock_hwlock(void *__map)
 446{
 447	struct regmap *map = __map;
 448
 449	hwspin_lock_timeout(map->hwlock, UINT_MAX);
 450}
 451
 452static void regmap_lock_hwlock_irq(void *__map)
 453{
 454	struct regmap *map = __map;
 455
 456	hwspin_lock_timeout_irq(map->hwlock, UINT_MAX);
 457}
 458
 459static void regmap_lock_hwlock_irqsave(void *__map)
 460{
 461	struct regmap *map = __map;
 462
 463	hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX,
 464				    &map->spinlock_flags);
 465}
 466
 467static void regmap_unlock_hwlock(void *__map)
 468{
 469	struct regmap *map = __map;
 470
 471	hwspin_unlock(map->hwlock);
 472}
 473
 474static void regmap_unlock_hwlock_irq(void *__map)
 475{
 476	struct regmap *map = __map;
 477
 478	hwspin_unlock_irq(map->hwlock);
 479}
 480
 481static void regmap_unlock_hwlock_irqrestore(void *__map)
 482{
 483	struct regmap *map = __map;
 484
 485	hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags);
 486}
 487
 488static void regmap_lock_unlock_none(void *__map)
 489{
 490
 491}
 492
 493static void regmap_lock_mutex(void *__map)
 494{
 495	struct regmap *map = __map;
 496	mutex_lock(&map->mutex);
 497}
 498
 499static void regmap_unlock_mutex(void *__map)
 500{
 501	struct regmap *map = __map;
 502	mutex_unlock(&map->mutex);
 503}
 504
 505static void regmap_lock_spinlock(void *__map)
 506__acquires(&map->spinlock)
 507{
 508	struct regmap *map = __map;
 509	unsigned long flags;
 510
 511	spin_lock_irqsave(&map->spinlock, flags);
 512	map->spinlock_flags = flags;
 513}
 514
 515static void regmap_unlock_spinlock(void *__map)
 516__releases(&map->spinlock)
 517{
 518	struct regmap *map = __map;
 519	spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
 520}
 521
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 522static void dev_get_regmap_release(struct device *dev, void *res)
 523{
 524	/*
 525	 * We don't actually have anything to do here; the goal here
 526	 * is not to manage the regmap but to provide a simple way to
 527	 * get the regmap back given a struct device.
 528	 */
 529}
 530
 531static bool _regmap_range_add(struct regmap *map,
 532			      struct regmap_range_node *data)
 533{
 534	struct rb_root *root = &map->range_tree;
 535	struct rb_node **new = &(root->rb_node), *parent = NULL;
 536
 537	while (*new) {
 538		struct regmap_range_node *this =
 539			rb_entry(*new, struct regmap_range_node, node);
 540
 541		parent = *new;
 542		if (data->range_max < this->range_min)
 543			new = &((*new)->rb_left);
 544		else if (data->range_min > this->range_max)
 545			new = &((*new)->rb_right);
 546		else
 547			return false;
 548	}
 549
 550	rb_link_node(&data->node, parent, new);
 551	rb_insert_color(&data->node, root);
 552
 553	return true;
 554}
 555
 556static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
 557						      unsigned int reg)
 558{
 559	struct rb_node *node = map->range_tree.rb_node;
 560
 561	while (node) {
 562		struct regmap_range_node *this =
 563			rb_entry(node, struct regmap_range_node, node);
 564
 565		if (reg < this->range_min)
 566			node = node->rb_left;
 567		else if (reg > this->range_max)
 568			node = node->rb_right;
 569		else
 570			return this;
 571	}
 572
 573	return NULL;
 574}
 575
 576static void regmap_range_exit(struct regmap *map)
 577{
 578	struct rb_node *next;
 579	struct regmap_range_node *range_node;
 580
 581	next = rb_first(&map->range_tree);
 582	while (next) {
 583		range_node = rb_entry(next, struct regmap_range_node, node);
 584		next = rb_next(&range_node->node);
 585		rb_erase(&range_node->node, &map->range_tree);
 586		kfree(range_node);
 587	}
 588
 589	kfree(map->selector_work_buf);
 590}
 591
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 592int regmap_attach_dev(struct device *dev, struct regmap *map,
 593		      const struct regmap_config *config)
 594{
 595	struct regmap **m;
 
 596
 597	map->dev = dev;
 598
 599	regmap_debugfs_init(map, config->name);
 
 
 
 
 
 600
 601	/* Add a devres resource for dev_get_regmap() */
 602	m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
 603	if (!m) {
 604		regmap_debugfs_exit(map);
 605		return -ENOMEM;
 606	}
 607	*m = map;
 608	devres_add(dev, m);
 609
 610	return 0;
 611}
 612EXPORT_SYMBOL_GPL(regmap_attach_dev);
 613
 614static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
 615					const struct regmap_config *config)
 616{
 617	enum regmap_endian endian;
 618
 619	/* Retrieve the endianness specification from the regmap config */
 620	endian = config->reg_format_endian;
 621
 622	/* If the regmap config specified a non-default value, use that */
 623	if (endian != REGMAP_ENDIAN_DEFAULT)
 624		return endian;
 625
 626	/* Retrieve the endianness specification from the bus config */
 627	if (bus && bus->reg_format_endian_default)
 628		endian = bus->reg_format_endian_default;
 629
 630	/* If the bus specified a non-default value, use that */
 631	if (endian != REGMAP_ENDIAN_DEFAULT)
 632		return endian;
 633
 634	/* Use this if no other value was found */
 635	return REGMAP_ENDIAN_BIG;
 636}
 637
 638enum regmap_endian regmap_get_val_endian(struct device *dev,
 639					 const struct regmap_bus *bus,
 640					 const struct regmap_config *config)
 641{
 642	struct device_node *np;
 643	enum regmap_endian endian;
 644
 645	/* Retrieve the endianness specification from the regmap config */
 646	endian = config->val_format_endian;
 647
 648	/* If the regmap config specified a non-default value, use that */
 649	if (endian != REGMAP_ENDIAN_DEFAULT)
 650		return endian;
 651
 652	/* If the dev and dev->of_node exist try to get endianness from DT */
 653	if (dev && dev->of_node) {
 654		np = dev->of_node;
 655
 656		/* Parse the device's DT node for an endianness specification */
 657		if (of_property_read_bool(np, "big-endian"))
 658			endian = REGMAP_ENDIAN_BIG;
 659		else if (of_property_read_bool(np, "little-endian"))
 660			endian = REGMAP_ENDIAN_LITTLE;
 661		else if (of_property_read_bool(np, "native-endian"))
 662			endian = REGMAP_ENDIAN_NATIVE;
 663
 664		/* If the endianness was specified in DT, use that */
 665		if (endian != REGMAP_ENDIAN_DEFAULT)
 666			return endian;
 667	}
 668
 669	/* Retrieve the endianness specification from the bus config */
 670	if (bus && bus->val_format_endian_default)
 671		endian = bus->val_format_endian_default;
 672
 673	/* If the bus specified a non-default value, use that */
 674	if (endian != REGMAP_ENDIAN_DEFAULT)
 675		return endian;
 676
 677	/* Use this if no other value was found */
 678	return REGMAP_ENDIAN_BIG;
 679}
 680EXPORT_SYMBOL_GPL(regmap_get_val_endian);
 681
 682struct regmap *__regmap_init(struct device *dev,
 683			     const struct regmap_bus *bus,
 684			     void *bus_context,
 685			     const struct regmap_config *config,
 686			     struct lock_class_key *lock_key,
 687			     const char *lock_name)
 688{
 689	struct regmap *map;
 690	int ret = -EINVAL;
 691	enum regmap_endian reg_endian, val_endian;
 692	int i, j;
 693
 694	if (!config)
 695		goto err;
 696
 697	map = kzalloc(sizeof(*map), GFP_KERNEL);
 698	if (map == NULL) {
 699		ret = -ENOMEM;
 700		goto err;
 701	}
 702
 703	if (config->name) {
 704		map->name = kstrdup_const(config->name, GFP_KERNEL);
 705		if (!map->name) {
 706			ret = -ENOMEM;
 707			goto err_map;
 708		}
 709	}
 710
 711	if (config->disable_locking) {
 712		map->lock = map->unlock = regmap_lock_unlock_none;
 
 713		regmap_debugfs_disable(map);
 714	} else if (config->lock && config->unlock) {
 715		map->lock = config->lock;
 716		map->unlock = config->unlock;
 717		map->lock_arg = config->lock_arg;
 
 718	} else if (config->use_hwlock) {
 719		map->hwlock = hwspin_lock_request_specific(config->hwlock_id);
 720		if (!map->hwlock) {
 721			ret = -ENXIO;
 722			goto err_name;
 723		}
 724
 725		switch (config->hwlock_mode) {
 726		case HWLOCK_IRQSTATE:
 727			map->lock = regmap_lock_hwlock_irqsave;
 728			map->unlock = regmap_unlock_hwlock_irqrestore;
 729			break;
 730		case HWLOCK_IRQ:
 731			map->lock = regmap_lock_hwlock_irq;
 732			map->unlock = regmap_unlock_hwlock_irq;
 733			break;
 734		default:
 735			map->lock = regmap_lock_hwlock;
 736			map->unlock = regmap_unlock_hwlock;
 737			break;
 738		}
 739
 740		map->lock_arg = map;
 741	} else {
 742		if ((bus && bus->fast_io) ||
 743		    config->fast_io) {
 744			spin_lock_init(&map->spinlock);
 745			map->lock = regmap_lock_spinlock;
 746			map->unlock = regmap_unlock_spinlock;
 747			lockdep_set_class_and_name(&map->spinlock,
 748						   lock_key, lock_name);
 
 
 
 
 
 
 
 
 749		} else {
 750			mutex_init(&map->mutex);
 751			map->lock = regmap_lock_mutex;
 752			map->unlock = regmap_unlock_mutex;
 
 753			lockdep_set_class_and_name(&map->mutex,
 754						   lock_key, lock_name);
 755		}
 756		map->lock_arg = map;
 757	}
 758
 759	/*
 760	 * When we write in fast-paths with regmap_bulk_write() don't allocate
 761	 * scratch buffers with sleeping allocations.
 762	 */
 763	if ((bus && bus->fast_io) || config->fast_io)
 764		map->alloc_flags = GFP_ATOMIC;
 765	else
 766		map->alloc_flags = GFP_KERNEL;
 767
 
 
 768	map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
 769	map->format.pad_bytes = config->pad_bits / 8;
 
 770	map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
 771	map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
 772			config->val_bits + config->pad_bits, 8);
 773	map->reg_shift = config->pad_bits % 8;
 774	if (config->reg_stride)
 775		map->reg_stride = config->reg_stride;
 776	else
 777		map->reg_stride = 1;
 778	if (is_power_of_2(map->reg_stride))
 779		map->reg_stride_order = ilog2(map->reg_stride);
 780	else
 781		map->reg_stride_order = -1;
 782	map->use_single_read = config->use_single_read || !bus || !bus->read;
 783	map->use_single_write = config->use_single_write || !bus || !bus->write;
 784	map->can_multi_write = config->can_multi_write && bus && bus->write;
 785	if (bus) {
 786		map->max_raw_read = bus->max_raw_read;
 787		map->max_raw_write = bus->max_raw_write;
 
 
 
 788	}
 789	map->dev = dev;
 790	map->bus = bus;
 791	map->bus_context = bus_context;
 792	map->max_register = config->max_register;
 793	map->wr_table = config->wr_table;
 794	map->rd_table = config->rd_table;
 795	map->volatile_table = config->volatile_table;
 796	map->precious_table = config->precious_table;
 797	map->wr_noinc_table = config->wr_noinc_table;
 798	map->rd_noinc_table = config->rd_noinc_table;
 799	map->writeable_reg = config->writeable_reg;
 800	map->readable_reg = config->readable_reg;
 801	map->volatile_reg = config->volatile_reg;
 802	map->precious_reg = config->precious_reg;
 803	map->writeable_noinc_reg = config->writeable_noinc_reg;
 804	map->readable_noinc_reg = config->readable_noinc_reg;
 805	map->cache_type = config->cache_type;
 806
 807	spin_lock_init(&map->async_lock);
 808	INIT_LIST_HEAD(&map->async_list);
 809	INIT_LIST_HEAD(&map->async_free);
 810	init_waitqueue_head(&map->async_waitq);
 811
 812	if (config->read_flag_mask ||
 813	    config->write_flag_mask ||
 814	    config->zero_flag_mask) {
 815		map->read_flag_mask = config->read_flag_mask;
 816		map->write_flag_mask = config->write_flag_mask;
 817	} else if (bus) {
 818		map->read_flag_mask = bus->read_flag_mask;
 819	}
 820
 821	if (!bus) {
 
 
 
 
 
 
 
 
 
 
 
 822		map->reg_read  = config->reg_read;
 823		map->reg_write = config->reg_write;
 
 824
 825		map->defer_caching = false;
 826		goto skip_format_initialization;
 827	} else if (!bus->read || !bus->write) {
 828		map->reg_read = _regmap_bus_reg_read;
 829		map->reg_write = _regmap_bus_reg_write;
 
 830
 831		map->defer_caching = false;
 832		goto skip_format_initialization;
 833	} else {
 834		map->reg_read  = _regmap_bus_read;
 835		map->reg_update_bits = bus->reg_update_bits;
 
 
 
 
 
 
 836	}
 837
 838	reg_endian = regmap_get_reg_endian(bus, config);
 839	val_endian = regmap_get_val_endian(dev, bus, config);
 840
 841	switch (config->reg_bits + map->reg_shift) {
 842	case 2:
 843		switch (config->val_bits) {
 844		case 6:
 845			map->format.format_write = regmap_format_2_6_write;
 846			break;
 847		default:
 848			goto err_hwlock;
 849		}
 850		break;
 851
 852	case 4:
 853		switch (config->val_bits) {
 854		case 12:
 855			map->format.format_write = regmap_format_4_12_write;
 856			break;
 857		default:
 858			goto err_hwlock;
 859		}
 860		break;
 861
 862	case 7:
 863		switch (config->val_bits) {
 864		case 9:
 865			map->format.format_write = regmap_format_7_9_write;
 866			break;
 
 
 
 867		default:
 868			goto err_hwlock;
 869		}
 870		break;
 871
 872	case 10:
 873		switch (config->val_bits) {
 874		case 14:
 875			map->format.format_write = regmap_format_10_14_write;
 876			break;
 877		default:
 878			goto err_hwlock;
 879		}
 880		break;
 881
 
 
 
 
 
 
 
 
 
 
 882	case 8:
 883		map->format.format_reg = regmap_format_8;
 884		break;
 885
 886	case 16:
 887		switch (reg_endian) {
 888		case REGMAP_ENDIAN_BIG:
 889			map->format.format_reg = regmap_format_16_be;
 890			break;
 891		case REGMAP_ENDIAN_LITTLE:
 892			map->format.format_reg = regmap_format_16_le;
 893			break;
 894		case REGMAP_ENDIAN_NATIVE:
 895			map->format.format_reg = regmap_format_16_native;
 896			break;
 897		default:
 898			goto err_hwlock;
 899		}
 900		break;
 901
 902	case 24:
 903		if (reg_endian != REGMAP_ENDIAN_BIG)
 
 
 
 
 904			goto err_hwlock;
 905		map->format.format_reg = regmap_format_24;
 906		break;
 907
 908	case 32:
 909		switch (reg_endian) {
 910		case REGMAP_ENDIAN_BIG:
 911			map->format.format_reg = regmap_format_32_be;
 912			break;
 913		case REGMAP_ENDIAN_LITTLE:
 914			map->format.format_reg = regmap_format_32_le;
 915			break;
 916		case REGMAP_ENDIAN_NATIVE:
 917			map->format.format_reg = regmap_format_32_native;
 918			break;
 919		default:
 920			goto err_hwlock;
 921		}
 922		break;
 923
 924#ifdef CONFIG_64BIT
 925	case 64:
 926		switch (reg_endian) {
 927		case REGMAP_ENDIAN_BIG:
 928			map->format.format_reg = regmap_format_64_be;
 929			break;
 930		case REGMAP_ENDIAN_LITTLE:
 931			map->format.format_reg = regmap_format_64_le;
 932			break;
 933		case REGMAP_ENDIAN_NATIVE:
 934			map->format.format_reg = regmap_format_64_native;
 935			break;
 936		default:
 937			goto err_hwlock;
 938		}
 939		break;
 940#endif
 941
 942	default:
 943		goto err_hwlock;
 944	}
 945
 946	if (val_endian == REGMAP_ENDIAN_NATIVE)
 947		map->format.parse_inplace = regmap_parse_inplace_noop;
 948
 949	switch (config->val_bits) {
 950	case 8:
 951		map->format.format_val = regmap_format_8;
 952		map->format.parse_val = regmap_parse_8;
 953		map->format.parse_inplace = regmap_parse_inplace_noop;
 954		break;
 955	case 16:
 956		switch (val_endian) {
 957		case REGMAP_ENDIAN_BIG:
 958			map->format.format_val = regmap_format_16_be;
 959			map->format.parse_val = regmap_parse_16_be;
 960			map->format.parse_inplace = regmap_parse_16_be_inplace;
 961			break;
 962		case REGMAP_ENDIAN_LITTLE:
 963			map->format.format_val = regmap_format_16_le;
 964			map->format.parse_val = regmap_parse_16_le;
 965			map->format.parse_inplace = regmap_parse_16_le_inplace;
 966			break;
 967		case REGMAP_ENDIAN_NATIVE:
 968			map->format.format_val = regmap_format_16_native;
 969			map->format.parse_val = regmap_parse_16_native;
 970			break;
 971		default:
 972			goto err_hwlock;
 973		}
 974		break;
 975	case 24:
 976		if (val_endian != REGMAP_ENDIAN_BIG)
 
 
 
 
 
 977			goto err_hwlock;
 978		map->format.format_val = regmap_format_24;
 979		map->format.parse_val = regmap_parse_24;
 980		break;
 981	case 32:
 982		switch (val_endian) {
 983		case REGMAP_ENDIAN_BIG:
 984			map->format.format_val = regmap_format_32_be;
 985			map->format.parse_val = regmap_parse_32_be;
 986			map->format.parse_inplace = regmap_parse_32_be_inplace;
 987			break;
 988		case REGMAP_ENDIAN_LITTLE:
 989			map->format.format_val = regmap_format_32_le;
 990			map->format.parse_val = regmap_parse_32_le;
 991			map->format.parse_inplace = regmap_parse_32_le_inplace;
 992			break;
 993		case REGMAP_ENDIAN_NATIVE:
 994			map->format.format_val = regmap_format_32_native;
 995			map->format.parse_val = regmap_parse_32_native;
 996			break;
 997		default:
 998			goto err_hwlock;
 999		}
1000		break;
1001#ifdef CONFIG_64BIT
1002	case 64:
1003		switch (val_endian) {
1004		case REGMAP_ENDIAN_BIG:
1005			map->format.format_val = regmap_format_64_be;
1006			map->format.parse_val = regmap_parse_64_be;
1007			map->format.parse_inplace = regmap_parse_64_be_inplace;
1008			break;
1009		case REGMAP_ENDIAN_LITTLE:
1010			map->format.format_val = regmap_format_64_le;
1011			map->format.parse_val = regmap_parse_64_le;
1012			map->format.parse_inplace = regmap_parse_64_le_inplace;
1013			break;
1014		case REGMAP_ENDIAN_NATIVE:
1015			map->format.format_val = regmap_format_64_native;
1016			map->format.parse_val = regmap_parse_64_native;
1017			break;
1018		default:
1019			goto err_hwlock;
1020		}
1021		break;
1022#endif
1023	}
1024
1025	if (map->format.format_write) {
1026		if ((reg_endian != REGMAP_ENDIAN_BIG) ||
1027		    (val_endian != REGMAP_ENDIAN_BIG))
1028			goto err_hwlock;
1029		map->use_single_write = true;
1030	}
1031
1032	if (!map->format.format_write &&
1033	    !(map->format.format_reg && map->format.format_val))
1034		goto err_hwlock;
1035
1036	map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
1037	if (map->work_buf == NULL) {
1038		ret = -ENOMEM;
1039		goto err_hwlock;
1040	}
1041
1042	if (map->format.format_write) {
1043		map->defer_caching = false;
1044		map->reg_write = _regmap_bus_formatted_write;
1045	} else if (map->format.format_val) {
1046		map->defer_caching = true;
1047		map->reg_write = _regmap_bus_raw_write;
1048	}
1049
1050skip_format_initialization:
1051
1052	map->range_tree = RB_ROOT;
1053	for (i = 0; i < config->num_ranges; i++) {
1054		const struct regmap_range_cfg *range_cfg = &config->ranges[i];
1055		struct regmap_range_node *new;
1056
1057		/* Sanity check */
1058		if (range_cfg->range_max < range_cfg->range_min) {
1059			dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
1060				range_cfg->range_max, range_cfg->range_min);
1061			goto err_range;
1062		}
1063
1064		if (range_cfg->range_max > map->max_register) {
1065			dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
1066				range_cfg->range_max, map->max_register);
1067			goto err_range;
1068		}
1069
1070		if (range_cfg->selector_reg > map->max_register) {
1071			dev_err(map->dev,
1072				"Invalid range %d: selector out of map\n", i);
1073			goto err_range;
1074		}
1075
1076		if (range_cfg->window_len == 0) {
1077			dev_err(map->dev, "Invalid range %d: window_len 0\n",
1078				i);
1079			goto err_range;
1080		}
1081
1082		/* Make sure, that this register range has no selector
1083		   or data window within its boundary */
1084		for (j = 0; j < config->num_ranges; j++) {
1085			unsigned sel_reg = config->ranges[j].selector_reg;
1086			unsigned win_min = config->ranges[j].window_start;
1087			unsigned win_max = win_min +
1088					   config->ranges[j].window_len - 1;
1089
1090			/* Allow data window inside its own virtual range */
1091			if (j == i)
1092				continue;
1093
1094			if (range_cfg->range_min <= sel_reg &&
1095			    sel_reg <= range_cfg->range_max) {
1096				dev_err(map->dev,
1097					"Range %d: selector for %d in window\n",
1098					i, j);
1099				goto err_range;
1100			}
1101
1102			if (!(win_max < range_cfg->range_min ||
1103			      win_min > range_cfg->range_max)) {
1104				dev_err(map->dev,
1105					"Range %d: window for %d in window\n",
1106					i, j);
1107				goto err_range;
1108			}
1109		}
1110
1111		new = kzalloc(sizeof(*new), GFP_KERNEL);
1112		if (new == NULL) {
1113			ret = -ENOMEM;
1114			goto err_range;
1115		}
1116
1117		new->map = map;
1118		new->name = range_cfg->name;
1119		new->range_min = range_cfg->range_min;
1120		new->range_max = range_cfg->range_max;
1121		new->selector_reg = range_cfg->selector_reg;
1122		new->selector_mask = range_cfg->selector_mask;
1123		new->selector_shift = range_cfg->selector_shift;
1124		new->window_start = range_cfg->window_start;
1125		new->window_len = range_cfg->window_len;
1126
1127		if (!_regmap_range_add(map, new)) {
1128			dev_err(map->dev, "Failed to add range %d\n", i);
1129			kfree(new);
1130			goto err_range;
1131		}
1132
1133		if (map->selector_work_buf == NULL) {
1134			map->selector_work_buf =
1135				kzalloc(map->format.buf_size, GFP_KERNEL);
1136			if (map->selector_work_buf == NULL) {
1137				ret = -ENOMEM;
1138				goto err_range;
1139			}
1140		}
1141	}
1142
1143	ret = regcache_init(map, config);
1144	if (ret != 0)
1145		goto err_range;
1146
1147	if (dev) {
1148		ret = regmap_attach_dev(dev, map, config);
1149		if (ret != 0)
1150			goto err_regcache;
1151	} else {
1152		regmap_debugfs_init(map, config->name);
1153	}
1154
1155	return map;
1156
1157err_regcache:
1158	regcache_exit(map);
1159err_range:
1160	regmap_range_exit(map);
1161	kfree(map->work_buf);
1162err_hwlock:
1163	if (map->hwlock)
1164		hwspin_lock_free(map->hwlock);
1165err_name:
1166	kfree_const(map->name);
1167err_map:
1168	kfree(map);
1169err:
1170	return ERR_PTR(ret);
1171}
1172EXPORT_SYMBOL_GPL(__regmap_init);
1173
1174static void devm_regmap_release(struct device *dev, void *res)
1175{
1176	regmap_exit(*(struct regmap **)res);
1177}
1178
1179struct regmap *__devm_regmap_init(struct device *dev,
1180				  const struct regmap_bus *bus,
1181				  void *bus_context,
1182				  const struct regmap_config *config,
1183				  struct lock_class_key *lock_key,
1184				  const char *lock_name)
1185{
1186	struct regmap **ptr, *regmap;
1187
1188	ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1189	if (!ptr)
1190		return ERR_PTR(-ENOMEM);
1191
1192	regmap = __regmap_init(dev, bus, bus_context, config,
1193			       lock_key, lock_name);
1194	if (!IS_ERR(regmap)) {
1195		*ptr = regmap;
1196		devres_add(dev, ptr);
1197	} else {
1198		devres_free(ptr);
1199	}
1200
1201	return regmap;
1202}
1203EXPORT_SYMBOL_GPL(__devm_regmap_init);
1204
1205static void regmap_field_init(struct regmap_field *rm_field,
1206	struct regmap *regmap, struct reg_field reg_field)
1207{
1208	rm_field->regmap = regmap;
1209	rm_field->reg = reg_field.reg;
1210	rm_field->shift = reg_field.lsb;
1211	rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
 
 
 
1212	rm_field->id_size = reg_field.id_size;
1213	rm_field->id_offset = reg_field.id_offset;
1214}
1215
1216/**
1217 * devm_regmap_field_alloc() - Allocate and initialise a register field.
1218 *
1219 * @dev: Device that will be interacted with
1220 * @regmap: regmap bank in which this register field is located.
1221 * @reg_field: Register field with in the bank.
1222 *
1223 * The return value will be an ERR_PTR() on error or a valid pointer
1224 * to a struct regmap_field. The regmap_field will be automatically freed
1225 * by the device management code.
1226 */
1227struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1228		struct regmap *regmap, struct reg_field reg_field)
1229{
1230	struct regmap_field *rm_field = devm_kzalloc(dev,
1231					sizeof(*rm_field), GFP_KERNEL);
1232	if (!rm_field)
1233		return ERR_PTR(-ENOMEM);
1234
1235	regmap_field_init(rm_field, regmap, reg_field);
1236
1237	return rm_field;
1238
1239}
1240EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1241
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1242/**
1243 * devm_regmap_field_free() - Free a register field allocated using
1244 *                            devm_regmap_field_alloc.
1245 *
1246 * @dev: Device that will be interacted with
1247 * @field: regmap field which should be freed.
1248 *
1249 * Free register field allocated using devm_regmap_field_alloc(). Usually
1250 * drivers need not call this function, as the memory allocated via devm
1251 * will be freed as per device-driver life-cyle.
1252 */
1253void devm_regmap_field_free(struct device *dev,
1254	struct regmap_field *field)
1255{
1256	devm_kfree(dev, field);
1257}
1258EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1259
1260/**
1261 * regmap_field_alloc() - Allocate and initialise a register field.
1262 *
1263 * @regmap: regmap bank in which this register field is located.
1264 * @reg_field: Register field with in the bank.
1265 *
1266 * The return value will be an ERR_PTR() on error or a valid pointer
1267 * to a struct regmap_field. The regmap_field should be freed by the
1268 * user once its finished working with it using regmap_field_free().
1269 */
1270struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1271		struct reg_field reg_field)
1272{
1273	struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1274
1275	if (!rm_field)
1276		return ERR_PTR(-ENOMEM);
1277
1278	regmap_field_init(rm_field, regmap, reg_field);
1279
1280	return rm_field;
1281}
1282EXPORT_SYMBOL_GPL(regmap_field_alloc);
1283
1284/**
1285 * regmap_field_free() - Free register field allocated using
1286 *                       regmap_field_alloc.
1287 *
1288 * @field: regmap field which should be freed.
1289 */
1290void regmap_field_free(struct regmap_field *field)
1291{
1292	kfree(field);
1293}
1294EXPORT_SYMBOL_GPL(regmap_field_free);
1295
1296/**
1297 * regmap_reinit_cache() - Reinitialise the current register cache
1298 *
1299 * @map: Register map to operate on.
1300 * @config: New configuration.  Only the cache data will be used.
1301 *
1302 * Discard any existing register cache for the map and initialize a
1303 * new cache.  This can be used to restore the cache to defaults or to
1304 * update the cache configuration to reflect runtime discovery of the
1305 * hardware.
1306 *
1307 * No explicit locking is done here, the user needs to ensure that
1308 * this function will not race with other calls to regmap.
1309 */
1310int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1311{
 
 
1312	regcache_exit(map);
1313	regmap_debugfs_exit(map);
1314
1315	map->max_register = config->max_register;
1316	map->writeable_reg = config->writeable_reg;
1317	map->readable_reg = config->readable_reg;
1318	map->volatile_reg = config->volatile_reg;
1319	map->precious_reg = config->precious_reg;
1320	map->writeable_noinc_reg = config->writeable_noinc_reg;
1321	map->readable_noinc_reg = config->readable_noinc_reg;
1322	map->cache_type = config->cache_type;
1323
1324	regmap_debugfs_init(map, config->name);
 
 
 
 
1325
1326	map->cache_bypass = false;
1327	map->cache_only = false;
1328
1329	return regcache_init(map, config);
1330}
1331EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1332
1333/**
1334 * regmap_exit() - Free a previously allocated register map
1335 *
1336 * @map: Register map to operate on.
1337 */
1338void regmap_exit(struct regmap *map)
1339{
1340	struct regmap_async *async;
1341
1342	regcache_exit(map);
1343	regmap_debugfs_exit(map);
1344	regmap_range_exit(map);
1345	if (map->bus && map->bus->free_context)
1346		map->bus->free_context(map->bus_context);
1347	kfree(map->work_buf);
1348	while (!list_empty(&map->async_free)) {
1349		async = list_first_entry_or_null(&map->async_free,
1350						 struct regmap_async,
1351						 list);
1352		list_del(&async->list);
1353		kfree(async->work_buf);
1354		kfree(async);
1355	}
1356	if (map->hwlock)
1357		hwspin_lock_free(map->hwlock);
 
 
1358	kfree_const(map->name);
 
 
 
1359	kfree(map);
1360}
1361EXPORT_SYMBOL_GPL(regmap_exit);
1362
1363static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1364{
1365	struct regmap **r = res;
1366	if (!r || !*r) {
1367		WARN_ON(!r || !*r);
1368		return 0;
1369	}
1370
1371	/* If the user didn't specify a name match any */
1372	if (data)
1373		return (*r)->name == data;
1374	else
1375		return 1;
1376}
1377
1378/**
1379 * dev_get_regmap() - Obtain the regmap (if any) for a device
1380 *
1381 * @dev: Device to retrieve the map for
1382 * @name: Optional name for the register map, usually NULL.
1383 *
1384 * Returns the regmap for the device if one is present, or NULL.  If
1385 * name is specified then it must match the name specified when
1386 * registering the device, if it is NULL then the first regmap found
1387 * will be used.  Devices with multiple register maps are very rare,
1388 * generic code should normally not need to specify a name.
1389 */
1390struct regmap *dev_get_regmap(struct device *dev, const char *name)
1391{
1392	struct regmap **r = devres_find(dev, dev_get_regmap_release,
1393					dev_get_regmap_match, (void *)name);
1394
1395	if (!r)
1396		return NULL;
1397	return *r;
1398}
1399EXPORT_SYMBOL_GPL(dev_get_regmap);
1400
1401/**
1402 * regmap_get_device() - Obtain the device from a regmap
1403 *
1404 * @map: Register map to operate on.
1405 *
1406 * Returns the underlying device that the regmap has been created for.
1407 */
1408struct device *regmap_get_device(struct regmap *map)
1409{
1410	return map->dev;
1411}
1412EXPORT_SYMBOL_GPL(regmap_get_device);
1413
1414static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1415			       struct regmap_range_node *range,
1416			       unsigned int val_num)
1417{
1418	void *orig_work_buf;
1419	unsigned int win_offset;
1420	unsigned int win_page;
1421	bool page_chg;
1422	int ret;
1423
1424	win_offset = (*reg - range->range_min) % range->window_len;
1425	win_page = (*reg - range->range_min) / range->window_len;
1426
1427	if (val_num > 1) {
1428		/* Bulk write shouldn't cross range boundary */
1429		if (*reg + val_num - 1 > range->range_max)
1430			return -EINVAL;
1431
1432		/* ... or single page boundary */
1433		if (val_num > range->window_len - win_offset)
1434			return -EINVAL;
1435	}
1436
1437	/* It is possible to have selector register inside data window.
1438	   In that case, selector register is located on every page and
1439	   it needs no page switching, when accessed alone. */
1440	if (val_num > 1 ||
1441	    range->window_start + win_offset != range->selector_reg) {
1442		/* Use separate work_buf during page switching */
1443		orig_work_buf = map->work_buf;
1444		map->work_buf = map->selector_work_buf;
1445
1446		ret = _regmap_update_bits(map, range->selector_reg,
1447					  range->selector_mask,
1448					  win_page << range->selector_shift,
1449					  &page_chg, false);
1450
1451		map->work_buf = orig_work_buf;
1452
1453		if (ret != 0)
1454			return ret;
1455	}
1456
1457	*reg = range->window_start + win_offset;
1458
1459	return 0;
1460}
1461
1462static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
1463					  unsigned long mask)
1464{
1465	u8 *buf;
1466	int i;
1467
1468	if (!mask || !map->work_buf)
1469		return;
1470
1471	buf = map->work_buf;
1472
1473	for (i = 0; i < max_bytes; i++)
1474		buf[i] |= (mask >> (8 * i)) & 0xff;
1475}
1476
1477static int _regmap_raw_write_impl(struct regmap *map, unsigned int reg,
1478				  const void *val, size_t val_len)
1479{
1480	struct regmap_range_node *range;
1481	unsigned long flags;
1482	void *work_val = map->work_buf + map->format.reg_bytes +
1483		map->format.pad_bytes;
1484	void *buf;
1485	int ret = -ENOTSUPP;
1486	size_t len;
1487	int i;
1488
1489	WARN_ON(!map->bus);
1490
1491	/* Check for unwritable registers before we start */
1492	for (i = 0; i < val_len / map->format.val_bytes; i++)
1493		if (!regmap_writeable(map,
1494				     reg + regmap_get_offset(map, i)))
1495			return -EINVAL;
 
 
 
 
 
1496
1497	if (!map->cache_bypass && map->format.parse_val) {
1498		unsigned int ival;
1499		int val_bytes = map->format.val_bytes;
1500		for (i = 0; i < val_len / val_bytes; i++) {
1501			ival = map->format.parse_val(val + (i * val_bytes));
1502			ret = regcache_write(map,
1503					     reg + regmap_get_offset(map, i),
1504					     ival);
1505			if (ret) {
1506				dev_err(map->dev,
1507					"Error in caching of register: %x ret: %d\n",
1508					reg + i, ret);
1509				return ret;
1510			}
1511		}
1512		if (map->cache_only) {
1513			map->cache_dirty = true;
1514			return 0;
1515		}
1516	}
1517
1518	range = _regmap_range_lookup(map, reg);
1519	if (range) {
1520		int val_num = val_len / map->format.val_bytes;
1521		int win_offset = (reg - range->range_min) % range->window_len;
1522		int win_residue = range->window_len - win_offset;
1523
1524		/* If the write goes beyond the end of the window split it */
1525		while (val_num > win_residue) {
1526			dev_dbg(map->dev, "Writing window %d/%zu\n",
1527				win_residue, val_len / map->format.val_bytes);
1528			ret = _regmap_raw_write_impl(map, reg, val,
1529						     win_residue *
1530						     map->format.val_bytes);
1531			if (ret != 0)
1532				return ret;
1533
1534			reg += win_residue;
1535			val_num -= win_residue;
1536			val += win_residue * map->format.val_bytes;
1537			val_len -= win_residue * map->format.val_bytes;
1538
1539			win_offset = (reg - range->range_min) %
1540				range->window_len;
1541			win_residue = range->window_len - win_offset;
1542		}
1543
1544		ret = _regmap_select_page(map, &reg, range, val_num);
1545		if (ret != 0)
1546			return ret;
1547	}
1548
 
 
1549	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1550	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
1551				      map->write_flag_mask);
1552
1553	/*
1554	 * Essentially all I/O mechanisms will be faster with a single
1555	 * buffer to write.  Since register syncs often generate raw
1556	 * writes of single registers optimise that case.
1557	 */
1558	if (val != work_val && val_len == map->format.val_bytes) {
1559		memcpy(work_val, val, map->format.val_bytes);
1560		val = work_val;
1561	}
1562
1563	if (map->async && map->bus->async_write) {
1564		struct regmap_async *async;
1565
1566		trace_regmap_async_write_start(map, reg, val_len);
1567
1568		spin_lock_irqsave(&map->async_lock, flags);
1569		async = list_first_entry_or_null(&map->async_free,
1570						 struct regmap_async,
1571						 list);
1572		if (async)
1573			list_del(&async->list);
1574		spin_unlock_irqrestore(&map->async_lock, flags);
1575
1576		if (!async) {
1577			async = map->bus->async_alloc();
1578			if (!async)
1579				return -ENOMEM;
1580
1581			async->work_buf = kzalloc(map->format.buf_size,
1582						  GFP_KERNEL | GFP_DMA);
1583			if (!async->work_buf) {
1584				kfree(async);
1585				return -ENOMEM;
1586			}
1587		}
1588
1589		async->map = map;
1590
1591		/* If the caller supplied the value we can use it safely. */
1592		memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1593		       map->format.reg_bytes + map->format.val_bytes);
1594
1595		spin_lock_irqsave(&map->async_lock, flags);
1596		list_add_tail(&async->list, &map->async_list);
1597		spin_unlock_irqrestore(&map->async_lock, flags);
1598
1599		if (val != work_val)
1600			ret = map->bus->async_write(map->bus_context,
1601						    async->work_buf,
1602						    map->format.reg_bytes +
1603						    map->format.pad_bytes,
1604						    val, val_len, async);
1605		else
1606			ret = map->bus->async_write(map->bus_context,
1607						    async->work_buf,
1608						    map->format.reg_bytes +
1609						    map->format.pad_bytes +
1610						    val_len, NULL, 0, async);
1611
1612		if (ret != 0) {
1613			dev_err(map->dev, "Failed to schedule write: %d\n",
1614				ret);
1615
1616			spin_lock_irqsave(&map->async_lock, flags);
1617			list_move(&async->list, &map->async_free);
1618			spin_unlock_irqrestore(&map->async_lock, flags);
1619		}
1620
1621		return ret;
1622	}
1623
1624	trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1625
1626	/* If we're doing a single register write we can probably just
1627	 * send the work_buf directly, otherwise try to do a gather
1628	 * write.
1629	 */
1630	if (val == work_val)
1631		ret = map->bus->write(map->bus_context, map->work_buf,
1632				      map->format.reg_bytes +
1633				      map->format.pad_bytes +
1634				      val_len);
1635	else if (map->bus->gather_write)
1636		ret = map->bus->gather_write(map->bus_context, map->work_buf,
1637					     map->format.reg_bytes +
1638					     map->format.pad_bytes,
1639					     val, val_len);
1640	else
1641		ret = -ENOTSUPP;
1642
1643	/* If that didn't work fall back on linearising by hand. */
1644	if (ret == -ENOTSUPP) {
1645		len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1646		buf = kzalloc(len, GFP_KERNEL);
1647		if (!buf)
1648			return -ENOMEM;
1649
1650		memcpy(buf, map->work_buf, map->format.reg_bytes);
1651		memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1652		       val, val_len);
1653		ret = map->bus->write(map->bus_context, buf, len);
1654
1655		kfree(buf);
1656	} else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1657		/* regcache_drop_region() takes lock that we already have,
1658		 * thus call map->cache_ops->drop() directly
1659		 */
1660		if (map->cache_ops && map->cache_ops->drop)
1661			map->cache_ops->drop(map, reg, reg + 1);
1662	}
1663
1664	trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1665
1666	return ret;
1667}
1668
1669/**
1670 * regmap_can_raw_write - Test if regmap_raw_write() is supported
1671 *
1672 * @map: Map to check.
1673 */
1674bool regmap_can_raw_write(struct regmap *map)
1675{
1676	return map->bus && map->bus->write && map->format.format_val &&
1677		map->format.format_reg;
1678}
1679EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1680
1681/**
1682 * regmap_get_raw_read_max - Get the maximum size we can read
1683 *
1684 * @map: Map to check.
1685 */
1686size_t regmap_get_raw_read_max(struct regmap *map)
1687{
1688	return map->max_raw_read;
1689}
1690EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1691
1692/**
1693 * regmap_get_raw_write_max - Get the maximum size we can read
1694 *
1695 * @map: Map to check.
1696 */
1697size_t regmap_get_raw_write_max(struct regmap *map)
1698{
1699	return map->max_raw_write;
1700}
1701EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1702
1703static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1704				       unsigned int val)
1705{
1706	int ret;
1707	struct regmap_range_node *range;
1708	struct regmap *map = context;
1709
1710	WARN_ON(!map->bus || !map->format.format_write);
1711
1712	range = _regmap_range_lookup(map, reg);
1713	if (range) {
1714		ret = _regmap_select_page(map, &reg, range, 1);
1715		if (ret != 0)
1716			return ret;
1717	}
1718
 
 
1719	map->format.format_write(map, reg, val);
1720
1721	trace_regmap_hw_write_start(map, reg, 1);
1722
1723	ret = map->bus->write(map->bus_context, map->work_buf,
1724			      map->format.buf_size);
1725
1726	trace_regmap_hw_write_done(map, reg, 1);
1727
1728	return ret;
1729}
1730
1731static int _regmap_bus_reg_write(void *context, unsigned int reg,
1732				 unsigned int val)
1733{
1734	struct regmap *map = context;
1735
1736	return map->bus->reg_write(map->bus_context, reg, val);
1737}
1738
1739static int _regmap_bus_raw_write(void *context, unsigned int reg,
1740				 unsigned int val)
1741{
1742	struct regmap *map = context;
1743
1744	WARN_ON(!map->bus || !map->format.format_val);
1745
1746	map->format.format_val(map->work_buf + map->format.reg_bytes
1747			       + map->format.pad_bytes, val, 0);
1748	return _regmap_raw_write_impl(map, reg,
1749				      map->work_buf +
1750				      map->format.reg_bytes +
1751				      map->format.pad_bytes,
1752				      map->format.val_bytes);
 
1753}
1754
1755static inline void *_regmap_map_get_context(struct regmap *map)
1756{
1757	return (map->bus) ? map : map->bus_context;
1758}
1759
1760int _regmap_write(struct regmap *map, unsigned int reg,
1761		  unsigned int val)
1762{
1763	int ret;
1764	void *context = _regmap_map_get_context(map);
1765
1766	if (!regmap_writeable(map, reg))
1767		return -EIO;
1768
1769	if (!map->cache_bypass && !map->defer_caching) {
1770		ret = regcache_write(map, reg, val);
1771		if (ret != 0)
1772			return ret;
1773		if (map->cache_only) {
1774			map->cache_dirty = true;
1775			return 0;
1776		}
1777	}
1778
1779	if (regmap_should_log(map))
1780		dev_info(map->dev, "%x <= %x\n", reg, val);
 
 
1781
1782	trace_regmap_reg_write(map, reg, val);
 
1783
1784	return map->reg_write(context, reg, val);
1785}
1786
1787/**
1788 * regmap_write() - Write a value to a single register
1789 *
1790 * @map: Register map to write to
1791 * @reg: Register to write to
1792 * @val: Value to be written
1793 *
1794 * A value of zero will be returned on success, a negative errno will
1795 * be returned in error cases.
1796 */
1797int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1798{
1799	int ret;
1800
1801	if (!IS_ALIGNED(reg, map->reg_stride))
1802		return -EINVAL;
1803
1804	map->lock(map->lock_arg);
1805
1806	ret = _regmap_write(map, reg, val);
1807
1808	map->unlock(map->lock_arg);
1809
1810	return ret;
1811}
1812EXPORT_SYMBOL_GPL(regmap_write);
1813
1814/**
1815 * regmap_write_async() - Write a value to a single register asynchronously
1816 *
1817 * @map: Register map to write to
1818 * @reg: Register to write to
1819 * @val: Value to be written
1820 *
1821 * A value of zero will be returned on success, a negative errno will
1822 * be returned in error cases.
1823 */
1824int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1825{
1826	int ret;
1827
1828	if (!IS_ALIGNED(reg, map->reg_stride))
1829		return -EINVAL;
1830
1831	map->lock(map->lock_arg);
1832
1833	map->async = true;
1834
1835	ret = _regmap_write(map, reg, val);
1836
1837	map->async = false;
1838
1839	map->unlock(map->lock_arg);
1840
1841	return ret;
1842}
1843EXPORT_SYMBOL_GPL(regmap_write_async);
1844
1845int _regmap_raw_write(struct regmap *map, unsigned int reg,
1846		      const void *val, size_t val_len)
1847{
1848	size_t val_bytes = map->format.val_bytes;
1849	size_t val_count = val_len / val_bytes;
1850	size_t chunk_count, chunk_bytes;
1851	size_t chunk_regs = val_count;
1852	int ret, i;
1853
1854	if (!val_count)
1855		return -EINVAL;
1856
1857	if (map->use_single_write)
1858		chunk_regs = 1;
1859	else if (map->max_raw_write && val_len > map->max_raw_write)
1860		chunk_regs = map->max_raw_write / val_bytes;
1861
1862	chunk_count = val_count / chunk_regs;
1863	chunk_bytes = chunk_regs * val_bytes;
1864
1865	/* Write as many bytes as possible with chunk_size */
1866	for (i = 0; i < chunk_count; i++) {
1867		ret = _regmap_raw_write_impl(map, reg, val, chunk_bytes);
1868		if (ret)
1869			return ret;
1870
1871		reg += regmap_get_offset(map, chunk_regs);
1872		val += chunk_bytes;
1873		val_len -= chunk_bytes;
1874	}
1875
1876	/* Write remaining bytes */
1877	if (val_len)
1878		ret = _regmap_raw_write_impl(map, reg, val, val_len);
1879
1880	return ret;
1881}
1882
1883/**
1884 * regmap_raw_write() - Write raw values to one or more registers
1885 *
1886 * @map: Register map to write to
1887 * @reg: Initial register to write to
1888 * @val: Block of data to be written, laid out for direct transmission to the
1889 *       device
1890 * @val_len: Length of data pointed to by val.
1891 *
1892 * This function is intended to be used for things like firmware
1893 * download where a large block of data needs to be transferred to the
1894 * device.  No formatting will be done on the data provided.
1895 *
1896 * A value of zero will be returned on success, a negative errno will
1897 * be returned in error cases.
1898 */
1899int regmap_raw_write(struct regmap *map, unsigned int reg,
1900		     const void *val, size_t val_len)
1901{
1902	int ret;
1903
1904	if (!regmap_can_raw_write(map))
1905		return -EINVAL;
1906	if (val_len % map->format.val_bytes)
1907		return -EINVAL;
1908
1909	map->lock(map->lock_arg);
1910
1911	ret = _regmap_raw_write(map, reg, val, val_len);
1912
1913	map->unlock(map->lock_arg);
1914
1915	return ret;
1916}
1917EXPORT_SYMBOL_GPL(regmap_raw_write);
1918
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1919/**
1920 * regmap_noinc_write(): Write data from a register without incrementing the
1921 *			register number
1922 *
1923 * @map: Register map to write to
1924 * @reg: Register to write to
1925 * @val: Pointer to data buffer
1926 * @val_len: Length of output buffer in bytes.
1927 *
1928 * The regmap API usually assumes that bulk bus write operations will write a
1929 * range of registers. Some devices have certain registers for which a write
1930 * operation can write to an internal FIFO.
1931 *
1932 * The target register must be volatile but registers after it can be
1933 * completely unrelated cacheable registers.
1934 *
1935 * This will attempt multiple writes as required to write val_len bytes.
1936 *
1937 * A value of zero will be returned on success, a negative errno will be
1938 * returned in error cases.
1939 */
1940int regmap_noinc_write(struct regmap *map, unsigned int reg,
1941		      const void *val, size_t val_len)
1942{
1943	size_t write_len;
1944	int ret;
1945
1946	if (!map->bus)
1947		return -EINVAL;
1948	if (!map->bus->write)
1949		return -ENOTSUPP;
1950	if (val_len % map->format.val_bytes)
1951		return -EINVAL;
1952	if (!IS_ALIGNED(reg, map->reg_stride))
1953		return -EINVAL;
1954	if (val_len == 0)
1955		return -EINVAL;
1956
1957	map->lock(map->lock_arg);
1958
1959	if (!regmap_volatile(map, reg) || !regmap_writeable_noinc(map, reg)) {
1960		ret = -EINVAL;
1961		goto out_unlock;
1962	}
1963
 
 
 
 
 
 
 
 
 
1964	while (val_len) {
1965		if (map->max_raw_write && map->max_raw_write < val_len)
1966			write_len = map->max_raw_write;
1967		else
1968			write_len = val_len;
1969		ret = _regmap_raw_write(map, reg, val, write_len);
1970		if (ret)
1971			goto out_unlock;
1972		val = ((u8 *)val) + write_len;
1973		val_len -= write_len;
1974	}
1975
1976out_unlock:
1977	map->unlock(map->lock_arg);
1978	return ret;
1979}
1980EXPORT_SYMBOL_GPL(regmap_noinc_write);
1981
1982/**
1983 * regmap_field_update_bits_base() - Perform a read/modify/write cycle a
1984 *                                   register field.
1985 *
1986 * @field: Register field to write to
1987 * @mask: Bitmask to change
1988 * @val: Value to be written
1989 * @change: Boolean indicating if a write was done
1990 * @async: Boolean indicating asynchronously
1991 * @force: Boolean indicating use force update
1992 *
1993 * Perform a read/modify/write cycle on the register field with change,
1994 * async, force option.
1995 *
1996 * A value of zero will be returned on success, a negative errno will
1997 * be returned in error cases.
1998 */
1999int regmap_field_update_bits_base(struct regmap_field *field,
2000				  unsigned int mask, unsigned int val,
2001				  bool *change, bool async, bool force)
2002{
2003	mask = (mask << field->shift) & field->mask;
2004
2005	return regmap_update_bits_base(field->regmap, field->reg,
2006				       mask, val << field->shift,
2007				       change, async, force);
2008}
2009EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
2010
2011/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2012 * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a
2013 *                                    register field with port ID
2014 *
2015 * @field: Register field to write to
2016 * @id: port ID
2017 * @mask: Bitmask to change
2018 * @val: Value to be written
2019 * @change: Boolean indicating if a write was done
2020 * @async: Boolean indicating asynchronously
2021 * @force: Boolean indicating use force update
2022 *
2023 * A value of zero will be returned on success, a negative errno will
2024 * be returned in error cases.
2025 */
2026int regmap_fields_update_bits_base(struct regmap_field *field,  unsigned int id,
2027				   unsigned int mask, unsigned int val,
2028				   bool *change, bool async, bool force)
2029{
2030	if (id >= field->id_size)
2031		return -EINVAL;
2032
2033	mask = (mask << field->shift) & field->mask;
2034
2035	return regmap_update_bits_base(field->regmap,
2036				       field->reg + (field->id_offset * id),
2037				       mask, val << field->shift,
2038				       change, async, force);
2039}
2040EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
2041
2042/**
2043 * regmap_bulk_write() - Write multiple registers to the device
2044 *
2045 * @map: Register map to write to
2046 * @reg: First register to be write from
2047 * @val: Block of data to be written, in native register size for device
2048 * @val_count: Number of registers to write
2049 *
2050 * This function is intended to be used for writing a large block of
2051 * data to the device either in single transfer or multiple transfer.
2052 *
2053 * A value of zero will be returned on success, a negative errno will
2054 * be returned in error cases.
2055 */
2056int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
2057		     size_t val_count)
2058{
2059	int ret = 0, i;
2060	size_t val_bytes = map->format.val_bytes;
2061
2062	if (!IS_ALIGNED(reg, map->reg_stride))
2063		return -EINVAL;
2064
2065	/*
2066	 * Some devices don't support bulk write, for them we have a series of
2067	 * single write operations.
2068	 */
2069	if (!map->bus || !map->format.parse_inplace) {
2070		map->lock(map->lock_arg);
2071		for (i = 0; i < val_count; i++) {
2072			unsigned int ival;
2073
2074			switch (val_bytes) {
2075			case 1:
2076				ival = *(u8 *)(val + (i * val_bytes));
2077				break;
2078			case 2:
2079				ival = *(u16 *)(val + (i * val_bytes));
2080				break;
2081			case 4:
2082				ival = *(u32 *)(val + (i * val_bytes));
2083				break;
2084#ifdef CONFIG_64BIT
2085			case 8:
2086				ival = *(u64 *)(val + (i * val_bytes));
2087				break;
2088#endif
2089			default:
2090				ret = -EINVAL;
2091				goto out;
2092			}
2093
2094			ret = _regmap_write(map,
2095					    reg + regmap_get_offset(map, i),
2096					    ival);
2097			if (ret != 0)
2098				goto out;
2099		}
2100out:
2101		map->unlock(map->lock_arg);
2102	} else {
2103		void *wval;
2104
2105		wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
2106		if (!wval)
2107			return -ENOMEM;
2108
2109		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2110			map->format.parse_inplace(wval + i);
2111
2112		ret = regmap_raw_write(map, reg, wval, val_bytes * val_count);
2113
2114		kfree(wval);
2115	}
 
 
 
 
2116	return ret;
2117}
2118EXPORT_SYMBOL_GPL(regmap_bulk_write);
2119
2120/*
2121 * _regmap_raw_multi_reg_write()
2122 *
2123 * the (register,newvalue) pairs in regs have not been formatted, but
2124 * they are all in the same page and have been changed to being page
2125 * relative. The page register has been written if that was necessary.
2126 */
2127static int _regmap_raw_multi_reg_write(struct regmap *map,
2128				       const struct reg_sequence *regs,
2129				       size_t num_regs)
2130{
2131	int ret;
2132	void *buf;
2133	int i;
2134	u8 *u8;
2135	size_t val_bytes = map->format.val_bytes;
2136	size_t reg_bytes = map->format.reg_bytes;
2137	size_t pad_bytes = map->format.pad_bytes;
2138	size_t pair_size = reg_bytes + pad_bytes + val_bytes;
2139	size_t len = pair_size * num_regs;
2140
2141	if (!len)
2142		return -EINVAL;
2143
2144	buf = kzalloc(len, GFP_KERNEL);
2145	if (!buf)
2146		return -ENOMEM;
2147
2148	/* We have to linearise by hand. */
2149
2150	u8 = buf;
2151
2152	for (i = 0; i < num_regs; i++) {
2153		unsigned int reg = regs[i].reg;
2154		unsigned int val = regs[i].def;
2155		trace_regmap_hw_write_start(map, reg, 1);
 
 
2156		map->format.format_reg(u8, reg, map->reg_shift);
2157		u8 += reg_bytes + pad_bytes;
2158		map->format.format_val(u8, val, 0);
2159		u8 += val_bytes;
2160	}
2161	u8 = buf;
2162	*u8 |= map->write_flag_mask;
2163
2164	ret = map->bus->write(map->bus_context, buf, len);
2165
2166	kfree(buf);
2167
2168	for (i = 0; i < num_regs; i++) {
2169		int reg = regs[i].reg;
2170		trace_regmap_hw_write_done(map, reg, 1);
2171	}
2172	return ret;
2173}
2174
2175static unsigned int _regmap_register_page(struct regmap *map,
2176					  unsigned int reg,
2177					  struct regmap_range_node *range)
2178{
2179	unsigned int win_page = (reg - range->range_min) / range->window_len;
2180
2181	return win_page;
2182}
2183
2184static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2185					       struct reg_sequence *regs,
2186					       size_t num_regs)
2187{
2188	int ret;
2189	int i, n;
2190	struct reg_sequence *base;
2191	unsigned int this_page = 0;
2192	unsigned int page_change = 0;
2193	/*
2194	 * the set of registers are not neccessarily in order, but
2195	 * since the order of write must be preserved this algorithm
2196	 * chops the set each time the page changes. This also applies
2197	 * if there is a delay required at any point in the sequence.
2198	 */
2199	base = regs;
2200	for (i = 0, n = 0; i < num_regs; i++, n++) {
2201		unsigned int reg = regs[i].reg;
2202		struct regmap_range_node *range;
2203
2204		range = _regmap_range_lookup(map, reg);
2205		if (range) {
2206			unsigned int win_page = _regmap_register_page(map, reg,
2207								      range);
2208
2209			if (i == 0)
2210				this_page = win_page;
2211			if (win_page != this_page) {
2212				this_page = win_page;
2213				page_change = 1;
2214			}
2215		}
2216
2217		/* If we have both a page change and a delay make sure to
2218		 * write the regs and apply the delay before we change the
2219		 * page.
2220		 */
2221
2222		if (page_change || regs[i].delay_us) {
2223
2224				/* For situations where the first write requires
2225				 * a delay we need to make sure we don't call
2226				 * raw_multi_reg_write with n=0
2227				 * This can't occur with page breaks as we
2228				 * never write on the first iteration
2229				 */
2230				if (regs[i].delay_us && i == 0)
2231					n = 1;
2232
2233				ret = _regmap_raw_multi_reg_write(map, base, n);
2234				if (ret != 0)
2235					return ret;
2236
2237				if (regs[i].delay_us)
2238					udelay(regs[i].delay_us);
 
 
 
 
2239
2240				base += n;
2241				n = 0;
2242
2243				if (page_change) {
2244					ret = _regmap_select_page(map,
2245								  &base[n].reg,
2246								  range, 1);
2247					if (ret != 0)
2248						return ret;
2249
2250					page_change = 0;
2251				}
2252
2253		}
2254
2255	}
2256	if (n > 0)
2257		return _regmap_raw_multi_reg_write(map, base, n);
2258	return 0;
2259}
2260
2261static int _regmap_multi_reg_write(struct regmap *map,
2262				   const struct reg_sequence *regs,
2263				   size_t num_regs)
2264{
2265	int i;
2266	int ret;
2267
2268	if (!map->can_multi_write) {
2269		for (i = 0; i < num_regs; i++) {
2270			ret = _regmap_write(map, regs[i].reg, regs[i].def);
2271			if (ret != 0)
2272				return ret;
2273
2274			if (regs[i].delay_us)
2275				udelay(regs[i].delay_us);
 
 
 
 
2276		}
2277		return 0;
2278	}
2279
2280	if (!map->format.parse_inplace)
2281		return -EINVAL;
2282
2283	if (map->writeable_reg)
2284		for (i = 0; i < num_regs; i++) {
2285			int reg = regs[i].reg;
2286			if (!map->writeable_reg(map->dev, reg))
2287				return -EINVAL;
2288			if (!IS_ALIGNED(reg, map->reg_stride))
2289				return -EINVAL;
2290		}
2291
2292	if (!map->cache_bypass) {
2293		for (i = 0; i < num_regs; i++) {
2294			unsigned int val = regs[i].def;
2295			unsigned int reg = regs[i].reg;
2296			ret = regcache_write(map, reg, val);
2297			if (ret) {
2298				dev_err(map->dev,
2299				"Error in caching of register: %x ret: %d\n",
2300								reg, ret);
2301				return ret;
2302			}
2303		}
2304		if (map->cache_only) {
2305			map->cache_dirty = true;
2306			return 0;
2307		}
2308	}
2309
2310	WARN_ON(!map->bus);
2311
2312	for (i = 0; i < num_regs; i++) {
2313		unsigned int reg = regs[i].reg;
2314		struct regmap_range_node *range;
2315
2316		/* Coalesce all the writes between a page break or a delay
2317		 * in a sequence
2318		 */
2319		range = _regmap_range_lookup(map, reg);
2320		if (range || regs[i].delay_us) {
2321			size_t len = sizeof(struct reg_sequence)*num_regs;
2322			struct reg_sequence *base = kmemdup(regs, len,
2323							   GFP_KERNEL);
2324			if (!base)
2325				return -ENOMEM;
2326			ret = _regmap_range_multi_paged_reg_write(map, base,
2327								  num_regs);
2328			kfree(base);
2329
2330			return ret;
2331		}
2332	}
2333	return _regmap_raw_multi_reg_write(map, regs, num_regs);
2334}
2335
2336/**
2337 * regmap_multi_reg_write() - Write multiple registers to the device
2338 *
2339 * @map: Register map to write to
2340 * @regs: Array of structures containing register,value to be written
2341 * @num_regs: Number of registers to write
2342 *
2343 * Write multiple registers to the device where the set of register, value
2344 * pairs are supplied in any order, possibly not all in a single range.
2345 *
2346 * The 'normal' block write mode will send ultimately send data on the
2347 * target bus as R,V1,V2,V3,..,Vn where successively higher registers are
2348 * addressed. However, this alternative block multi write mode will send
2349 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2350 * must of course support the mode.
2351 *
2352 * A value of zero will be returned on success, a negative errno will be
2353 * returned in error cases.
2354 */
2355int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2356			   int num_regs)
2357{
2358	int ret;
2359
2360	map->lock(map->lock_arg);
2361
2362	ret = _regmap_multi_reg_write(map, regs, num_regs);
2363
2364	map->unlock(map->lock_arg);
2365
2366	return ret;
2367}
2368EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2369
2370/**
2371 * regmap_multi_reg_write_bypassed() - Write multiple registers to the
2372 *                                     device but not the cache
2373 *
2374 * @map: Register map to write to
2375 * @regs: Array of structures containing register,value to be written
2376 * @num_regs: Number of registers to write
2377 *
2378 * Write multiple registers to the device but not the cache where the set
2379 * of register are supplied in any order.
2380 *
2381 * This function is intended to be used for writing a large block of data
2382 * atomically to the device in single transfer for those I2C client devices
2383 * that implement this alternative block write mode.
2384 *
2385 * A value of zero will be returned on success, a negative errno will
2386 * be returned in error cases.
2387 */
2388int regmap_multi_reg_write_bypassed(struct regmap *map,
2389				    const struct reg_sequence *regs,
2390				    int num_regs)
2391{
2392	int ret;
2393	bool bypass;
2394
2395	map->lock(map->lock_arg);
2396
2397	bypass = map->cache_bypass;
2398	map->cache_bypass = true;
2399
2400	ret = _regmap_multi_reg_write(map, regs, num_regs);
2401
2402	map->cache_bypass = bypass;
2403
2404	map->unlock(map->lock_arg);
2405
2406	return ret;
2407}
2408EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2409
2410/**
2411 * regmap_raw_write_async() - Write raw values to one or more registers
2412 *                            asynchronously
2413 *
2414 * @map: Register map to write to
2415 * @reg: Initial register to write to
2416 * @val: Block of data to be written, laid out for direct transmission to the
2417 *       device.  Must be valid until regmap_async_complete() is called.
2418 * @val_len: Length of data pointed to by val.
2419 *
2420 * This function is intended to be used for things like firmware
2421 * download where a large block of data needs to be transferred to the
2422 * device.  No formatting will be done on the data provided.
2423 *
2424 * If supported by the underlying bus the write will be scheduled
2425 * asynchronously, helping maximise I/O speed on higher speed buses
2426 * like SPI.  regmap_async_complete() can be called to ensure that all
2427 * asynchrnous writes have been completed.
2428 *
2429 * A value of zero will be returned on success, a negative errno will
2430 * be returned in error cases.
2431 */
2432int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2433			   const void *val, size_t val_len)
2434{
2435	int ret;
2436
2437	if (val_len % map->format.val_bytes)
2438		return -EINVAL;
2439	if (!IS_ALIGNED(reg, map->reg_stride))
2440		return -EINVAL;
2441
2442	map->lock(map->lock_arg);
2443
2444	map->async = true;
2445
2446	ret = _regmap_raw_write(map, reg, val, val_len);
2447
2448	map->async = false;
2449
2450	map->unlock(map->lock_arg);
2451
2452	return ret;
2453}
2454EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2455
2456static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2457			    unsigned int val_len)
2458{
2459	struct regmap_range_node *range;
2460	int ret;
2461
2462	WARN_ON(!map->bus);
2463
2464	if (!map->bus || !map->bus->read)
2465		return -EINVAL;
2466
2467	range = _regmap_range_lookup(map, reg);
2468	if (range) {
2469		ret = _regmap_select_page(map, &reg, range,
2470					  val_len / map->format.val_bytes);
2471		if (ret != 0)
2472			return ret;
2473	}
2474
 
 
2475	map->format.format_reg(map->work_buf, reg, map->reg_shift);
2476	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
2477				      map->read_flag_mask);
2478	trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2479
2480	ret = map->bus->read(map->bus_context, map->work_buf,
2481			     map->format.reg_bytes + map->format.pad_bytes,
2482			     val, val_len);
2483
2484	trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2485
2486	return ret;
2487}
2488
2489static int _regmap_bus_reg_read(void *context, unsigned int reg,
2490				unsigned int *val)
2491{
2492	struct regmap *map = context;
2493
2494	return map->bus->reg_read(map->bus_context, reg, val);
2495}
2496
2497static int _regmap_bus_read(void *context, unsigned int reg,
2498			    unsigned int *val)
2499{
2500	int ret;
2501	struct regmap *map = context;
2502	void *work_val = map->work_buf + map->format.reg_bytes +
2503		map->format.pad_bytes;
2504
2505	if (!map->format.parse_val)
2506		return -EINVAL;
2507
2508	ret = _regmap_raw_read(map, reg, work_val, map->format.val_bytes);
2509	if (ret == 0)
2510		*val = map->format.parse_val(work_val);
2511
2512	return ret;
2513}
2514
2515static int _regmap_read(struct regmap *map, unsigned int reg,
2516			unsigned int *val)
2517{
2518	int ret;
2519	void *context = _regmap_map_get_context(map);
2520
2521	if (!map->cache_bypass) {
2522		ret = regcache_read(map, reg, val);
2523		if (ret == 0)
2524			return 0;
2525	}
2526
2527	if (map->cache_only)
2528		return -EBUSY;
2529
2530	if (!regmap_readable(map, reg))
2531		return -EIO;
2532
2533	ret = map->reg_read(context, reg, val);
2534	if (ret == 0) {
2535		if (regmap_should_log(map))
2536			dev_info(map->dev, "%x => %x\n", reg, *val);
2537
2538		trace_regmap_reg_read(map, reg, *val);
2539
2540		if (!map->cache_bypass)
2541			regcache_write(map, reg, *val);
2542	}
2543
2544	return ret;
2545}
2546
2547/**
2548 * regmap_read() - Read a value from a single register
2549 *
2550 * @map: Register map to read from
2551 * @reg: Register to be read from
2552 * @val: Pointer to store read value
2553 *
2554 * A value of zero will be returned on success, a negative errno will
2555 * be returned in error cases.
2556 */
2557int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2558{
2559	int ret;
2560
2561	if (!IS_ALIGNED(reg, map->reg_stride))
2562		return -EINVAL;
2563
2564	map->lock(map->lock_arg);
2565
2566	ret = _regmap_read(map, reg, val);
2567
2568	map->unlock(map->lock_arg);
2569
2570	return ret;
2571}
2572EXPORT_SYMBOL_GPL(regmap_read);
2573
2574/**
2575 * regmap_raw_read() - Read raw data from the device
2576 *
2577 * @map: Register map to read from
2578 * @reg: First register to be read from
2579 * @val: Pointer to store read value
2580 * @val_len: Size of data to read
2581 *
2582 * A value of zero will be returned on success, a negative errno will
2583 * be returned in error cases.
2584 */
2585int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2586		    size_t val_len)
2587{
2588	size_t val_bytes = map->format.val_bytes;
2589	size_t val_count = val_len / val_bytes;
2590	unsigned int v;
2591	int ret, i;
2592
2593	if (!map->bus)
2594		return -EINVAL;
2595	if (val_len % map->format.val_bytes)
2596		return -EINVAL;
2597	if (!IS_ALIGNED(reg, map->reg_stride))
2598		return -EINVAL;
2599	if (val_count == 0)
2600		return -EINVAL;
2601
2602	map->lock(map->lock_arg);
2603
2604	if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2605	    map->cache_type == REGCACHE_NONE) {
2606		size_t chunk_count, chunk_bytes;
2607		size_t chunk_regs = val_count;
2608
2609		if (!map->bus->read) {
2610			ret = -ENOTSUPP;
2611			goto out;
2612		}
2613
2614		if (map->use_single_read)
2615			chunk_regs = 1;
2616		else if (map->max_raw_read && val_len > map->max_raw_read)
2617			chunk_regs = map->max_raw_read / val_bytes;
2618
2619		chunk_count = val_count / chunk_regs;
2620		chunk_bytes = chunk_regs * val_bytes;
2621
2622		/* Read bytes that fit into whole chunks */
2623		for (i = 0; i < chunk_count; i++) {
2624			ret = _regmap_raw_read(map, reg, val, chunk_bytes);
2625			if (ret != 0)
2626				goto out;
2627
2628			reg += regmap_get_offset(map, chunk_regs);
2629			val += chunk_bytes;
2630			val_len -= chunk_bytes;
2631		}
2632
2633		/* Read remaining bytes */
2634		if (val_len) {
2635			ret = _regmap_raw_read(map, reg, val, val_len);
2636			if (ret != 0)
2637				goto out;
2638		}
2639	} else {
2640		/* Otherwise go word by word for the cache; should be low
2641		 * cost as we expect to hit the cache.
2642		 */
2643		for (i = 0; i < val_count; i++) {
2644			ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2645					   &v);
2646			if (ret != 0)
2647				goto out;
2648
2649			map->format.format_val(val + (i * val_bytes), v, 0);
2650		}
2651	}
2652
2653 out:
2654	map->unlock(map->lock_arg);
2655
2656	return ret;
2657}
2658EXPORT_SYMBOL_GPL(regmap_raw_read);
2659
2660/**
2661 * regmap_noinc_read(): Read data from a register without incrementing the
2662 *			register number
2663 *
2664 * @map: Register map to read from
2665 * @reg: Register to read from
2666 * @val: Pointer to data buffer
2667 * @val_len: Length of output buffer in bytes.
2668 *
2669 * The regmap API usually assumes that bulk bus read operations will read a
2670 * range of registers. Some devices have certain registers for which a read
2671 * operation read will read from an internal FIFO.
2672 *
2673 * The target register must be volatile but registers after it can be
2674 * completely unrelated cacheable registers.
2675 *
2676 * This will attempt multiple reads as required to read val_len bytes.
2677 *
2678 * A value of zero will be returned on success, a negative errno will be
2679 * returned in error cases.
2680 */
2681int regmap_noinc_read(struct regmap *map, unsigned int reg,
2682		      void *val, size_t val_len)
2683{
2684	size_t read_len;
2685	int ret;
2686
2687	if (!map->bus)
2688		return -EINVAL;
2689	if (!map->bus->read)
2690		return -ENOTSUPP;
 
2691	if (val_len % map->format.val_bytes)
2692		return -EINVAL;
2693	if (!IS_ALIGNED(reg, map->reg_stride))
2694		return -EINVAL;
2695	if (val_len == 0)
2696		return -EINVAL;
2697
2698	map->lock(map->lock_arg);
2699
2700	if (!regmap_volatile(map, reg) || !regmap_readable_noinc(map, reg)) {
2701		ret = -EINVAL;
2702		goto out_unlock;
2703	}
2704
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2705	while (val_len) {
2706		if (map->max_raw_read && map->max_raw_read < val_len)
2707			read_len = map->max_raw_read;
2708		else
2709			read_len = val_len;
2710		ret = _regmap_raw_read(map, reg, val, read_len);
2711		if (ret)
2712			goto out_unlock;
2713		val = ((u8 *)val) + read_len;
2714		val_len -= read_len;
2715	}
2716
2717out_unlock:
2718	map->unlock(map->lock_arg);
2719	return ret;
2720}
2721EXPORT_SYMBOL_GPL(regmap_noinc_read);
2722
2723/**
2724 * regmap_field_read(): Read a value to a single register field
2725 *
2726 * @field: Register field to read from
2727 * @val: Pointer to store read value
2728 *
2729 * A value of zero will be returned on success, a negative errno will
2730 * be returned in error cases.
2731 */
2732int regmap_field_read(struct regmap_field *field, unsigned int *val)
2733{
2734	int ret;
2735	unsigned int reg_val;
2736	ret = regmap_read(field->regmap, field->reg, &reg_val);
2737	if (ret != 0)
2738		return ret;
2739
2740	reg_val &= field->mask;
2741	reg_val >>= field->shift;
2742	*val = reg_val;
2743
2744	return ret;
2745}
2746EXPORT_SYMBOL_GPL(regmap_field_read);
2747
2748/**
2749 * regmap_fields_read() - Read a value to a single register field with port ID
2750 *
2751 * @field: Register field to read from
2752 * @id: port ID
2753 * @val: Pointer to store read value
2754 *
2755 * A value of zero will be returned on success, a negative errno will
2756 * be returned in error cases.
2757 */
2758int regmap_fields_read(struct regmap_field *field, unsigned int id,
2759		       unsigned int *val)
2760{
2761	int ret;
2762	unsigned int reg_val;
2763
2764	if (id >= field->id_size)
2765		return -EINVAL;
2766
2767	ret = regmap_read(field->regmap,
2768			  field->reg + (field->id_offset * id),
2769			  &reg_val);
2770	if (ret != 0)
2771		return ret;
2772
2773	reg_val &= field->mask;
2774	reg_val >>= field->shift;
2775	*val = reg_val;
2776
2777	return ret;
2778}
2779EXPORT_SYMBOL_GPL(regmap_fields_read);
2780
2781/**
2782 * regmap_bulk_read() - Read multiple registers from the device
2783 *
2784 * @map: Register map to read from
2785 * @reg: First register to be read from
2786 * @val: Pointer to store read value, in native register size for device
2787 * @val_count: Number of registers to read
2788 *
2789 * A value of zero will be returned on success, a negative errno will
2790 * be returned in error cases.
2791 */
2792int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
2793		     size_t val_count)
2794{
2795	int ret, i;
2796	size_t val_bytes = map->format.val_bytes;
2797	bool vol = regmap_volatile_range(map, reg, val_count);
2798
2799	if (!IS_ALIGNED(reg, map->reg_stride))
2800		return -EINVAL;
2801	if (val_count == 0)
2802		return -EINVAL;
2803
2804	if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2805		ret = regmap_raw_read(map, reg, val, val_bytes * val_count);
2806		if (ret != 0)
2807			return ret;
2808
2809		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2810			map->format.parse_inplace(val + i);
2811	} else {
2812#ifdef CONFIG_64BIT
2813		u64 *u64 = val;
2814#endif
2815		u32 *u32 = val;
2816		u16 *u16 = val;
2817		u8 *u8 = val;
2818
2819		map->lock(map->lock_arg);
2820
2821		for (i = 0; i < val_count; i++) {
2822			unsigned int ival;
2823
2824			ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2825					   &ival);
2826			if (ret != 0)
2827				goto out;
2828
2829			switch (map->format.val_bytes) {
2830#ifdef CONFIG_64BIT
2831			case 8:
2832				u64[i] = ival;
2833				break;
2834#endif
2835			case 4:
2836				u32[i] = ival;
2837				break;
2838			case 2:
2839				u16[i] = ival;
2840				break;
2841			case 1:
2842				u8[i] = ival;
2843				break;
2844			default:
2845				ret = -EINVAL;
2846				goto out;
2847			}
2848		}
2849
2850out:
2851		map->unlock(map->lock_arg);
2852	}
2853
 
 
 
2854	return ret;
2855}
2856EXPORT_SYMBOL_GPL(regmap_bulk_read);
2857
2858static int _regmap_update_bits(struct regmap *map, unsigned int reg,
2859			       unsigned int mask, unsigned int val,
2860			       bool *change, bool force_write)
2861{
2862	int ret;
2863	unsigned int tmp, orig;
2864
2865	if (change)
2866		*change = false;
2867
2868	if (regmap_volatile(map, reg) && map->reg_update_bits) {
2869		ret = map->reg_update_bits(map->bus_context, reg, mask, val);
2870		if (ret == 0 && change)
2871			*change = true;
2872	} else {
2873		ret = _regmap_read(map, reg, &orig);
2874		if (ret != 0)
2875			return ret;
2876
2877		tmp = orig & ~mask;
2878		tmp |= val & mask;
2879
2880		if (force_write || (tmp != orig)) {
2881			ret = _regmap_write(map, reg, tmp);
2882			if (ret == 0 && change)
2883				*change = true;
2884		}
2885	}
2886
2887	return ret;
2888}
2889
2890/**
2891 * regmap_update_bits_base() - Perform a read/modify/write cycle on a register
2892 *
2893 * @map: Register map to update
2894 * @reg: Register to update
2895 * @mask: Bitmask to change
2896 * @val: New value for bitmask
2897 * @change: Boolean indicating if a write was done
2898 * @async: Boolean indicating asynchronously
2899 * @force: Boolean indicating use force update
2900 *
2901 * Perform a read/modify/write cycle on a register map with change, async, force
2902 * options.
2903 *
2904 * If async is true:
2905 *
2906 * With most buses the read must be done synchronously so this is most useful
2907 * for devices with a cache which do not need to interact with the hardware to
2908 * determine the current register value.
2909 *
2910 * Returns zero for success, a negative number on error.
2911 */
2912int regmap_update_bits_base(struct regmap *map, unsigned int reg,
2913			    unsigned int mask, unsigned int val,
2914			    bool *change, bool async, bool force)
2915{
2916	int ret;
2917
2918	map->lock(map->lock_arg);
2919
2920	map->async = async;
2921
2922	ret = _regmap_update_bits(map, reg, mask, val, change, force);
2923
2924	map->async = false;
2925
2926	map->unlock(map->lock_arg);
2927
2928	return ret;
2929}
2930EXPORT_SYMBOL_GPL(regmap_update_bits_base);
2931
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2932void regmap_async_complete_cb(struct regmap_async *async, int ret)
2933{
2934	struct regmap *map = async->map;
2935	bool wake;
2936
2937	trace_regmap_async_io_complete(map);
2938
2939	spin_lock(&map->async_lock);
2940	list_move(&async->list, &map->async_free);
2941	wake = list_empty(&map->async_list);
2942
2943	if (ret != 0)
2944		map->async_ret = ret;
2945
2946	spin_unlock(&map->async_lock);
2947
2948	if (wake)
2949		wake_up(&map->async_waitq);
2950}
2951EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
2952
2953static int regmap_async_is_done(struct regmap *map)
2954{
2955	unsigned long flags;
2956	int ret;
2957
2958	spin_lock_irqsave(&map->async_lock, flags);
2959	ret = list_empty(&map->async_list);
2960	spin_unlock_irqrestore(&map->async_lock, flags);
2961
2962	return ret;
2963}
2964
2965/**
2966 * regmap_async_complete - Ensure all asynchronous I/O has completed.
2967 *
2968 * @map: Map to operate on.
2969 *
2970 * Blocks until any pending asynchronous I/O has completed.  Returns
2971 * an error code for any failed I/O operations.
2972 */
2973int regmap_async_complete(struct regmap *map)
2974{
2975	unsigned long flags;
2976	int ret;
2977
2978	/* Nothing to do with no async support */
2979	if (!map->bus || !map->bus->async_write)
2980		return 0;
2981
2982	trace_regmap_async_complete_start(map);
2983
2984	wait_event(map->async_waitq, regmap_async_is_done(map));
2985
2986	spin_lock_irqsave(&map->async_lock, flags);
2987	ret = map->async_ret;
2988	map->async_ret = 0;
2989	spin_unlock_irqrestore(&map->async_lock, flags);
2990
2991	trace_regmap_async_complete_done(map);
2992
2993	return ret;
2994}
2995EXPORT_SYMBOL_GPL(regmap_async_complete);
2996
2997/**
2998 * regmap_register_patch - Register and apply register updates to be applied
2999 *                         on device initialistion
3000 *
3001 * @map: Register map to apply updates to.
3002 * @regs: Values to update.
3003 * @num_regs: Number of entries in regs.
3004 *
3005 * Register a set of register updates to be applied to the device
3006 * whenever the device registers are synchronised with the cache and
3007 * apply them immediately.  Typically this is used to apply
3008 * corrections to be applied to the device defaults on startup, such
3009 * as the updates some vendors provide to undocumented registers.
3010 *
3011 * The caller must ensure that this function cannot be called
3012 * concurrently with either itself or regcache_sync().
3013 */
3014int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
3015			  int num_regs)
3016{
3017	struct reg_sequence *p;
3018	int ret;
3019	bool bypass;
3020
3021	if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
3022	    num_regs))
3023		return 0;
3024
3025	p = krealloc(map->patch,
3026		     sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
3027		     GFP_KERNEL);
3028	if (p) {
3029		memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
3030		map->patch = p;
3031		map->patch_regs += num_regs;
3032	} else {
3033		return -ENOMEM;
3034	}
3035
3036	map->lock(map->lock_arg);
3037
3038	bypass = map->cache_bypass;
3039
3040	map->cache_bypass = true;
3041	map->async = true;
3042
3043	ret = _regmap_multi_reg_write(map, regs, num_regs);
3044
3045	map->async = false;
3046	map->cache_bypass = bypass;
3047
3048	map->unlock(map->lock_arg);
3049
3050	regmap_async_complete(map);
3051
3052	return ret;
3053}
3054EXPORT_SYMBOL_GPL(regmap_register_patch);
3055
3056/**
3057 * regmap_get_val_bytes() - Report the size of a register value
3058 *
3059 * @map: Register map to operate on.
3060 *
3061 * Report the size of a register value, mainly intended to for use by
3062 * generic infrastructure built on top of regmap.
3063 */
3064int regmap_get_val_bytes(struct regmap *map)
3065{
3066	if (map->format.format_write)
3067		return -EINVAL;
3068
3069	return map->format.val_bytes;
3070}
3071EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
3072
3073/**
3074 * regmap_get_max_register() - Report the max register value
3075 *
3076 * @map: Register map to operate on.
3077 *
3078 * Report the max register value, mainly intended to for use by
3079 * generic infrastructure built on top of regmap.
3080 */
3081int regmap_get_max_register(struct regmap *map)
3082{
3083	return map->max_register ? map->max_register : -EINVAL;
3084}
3085EXPORT_SYMBOL_GPL(regmap_get_max_register);
3086
3087/**
3088 * regmap_get_reg_stride() - Report the register address stride
3089 *
3090 * @map: Register map to operate on.
3091 *
3092 * Report the register address stride, mainly intended to for use by
3093 * generic infrastructure built on top of regmap.
3094 */
3095int regmap_get_reg_stride(struct regmap *map)
3096{
3097	return map->reg_stride;
3098}
3099EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
 
 
 
 
 
 
 
 
 
 
 
 
 
3100
3101int regmap_parse_val(struct regmap *map, const void *buf,
3102			unsigned int *val)
3103{
3104	if (!map->format.parse_val)
3105		return -EINVAL;
3106
3107	*val = map->format.parse_val(buf);
3108
3109	return 0;
3110}
3111EXPORT_SYMBOL_GPL(regmap_parse_val);
3112
3113static int __init regmap_initcall(void)
3114{
3115	regmap_debugfs_initcall();
3116
3117	return 0;
3118}
3119postcore_initcall(regmap_initcall);