Loading...
1// SPDX-License-Identifier: GPL-2.0
2//
3// Register map access API
4//
5// Copyright 2011 Wolfson Microelectronics plc
6//
7// Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
8
9#include <linux/device.h>
10#include <linux/slab.h>
11#include <linux/export.h>
12#include <linux/mutex.h>
13#include <linux/err.h>
14#include <linux/property.h>
15#include <linux/rbtree.h>
16#include <linux/sched.h>
17#include <linux/delay.h>
18#include <linux/log2.h>
19#include <linux/hwspinlock.h>
20#include <asm/unaligned.h>
21
22#define CREATE_TRACE_POINTS
23#include "trace.h"
24
25#include "internal.h"
26
27/*
28 * Sometimes for failures during very early init the trace
29 * infrastructure isn't available early enough to be used. For this
30 * sort of problem defining LOG_DEVICE will add printks for basic
31 * register I/O on a specific device.
32 */
33#undef LOG_DEVICE
34
35#ifdef LOG_DEVICE
36static inline bool regmap_should_log(struct regmap *map)
37{
38 return (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0);
39}
40#else
41static inline bool regmap_should_log(struct regmap *map) { return false; }
42#endif
43
44
45static int _regmap_update_bits(struct regmap *map, unsigned int reg,
46 unsigned int mask, unsigned int val,
47 bool *change, bool force_write);
48
49static int _regmap_bus_reg_read(void *context, unsigned int reg,
50 unsigned int *val);
51static int _regmap_bus_read(void *context, unsigned int reg,
52 unsigned int *val);
53static int _regmap_bus_formatted_write(void *context, unsigned int reg,
54 unsigned int val);
55static int _regmap_bus_reg_write(void *context, unsigned int reg,
56 unsigned int val);
57static int _regmap_bus_raw_write(void *context, unsigned int reg,
58 unsigned int val);
59
60bool regmap_reg_in_ranges(unsigned int reg,
61 const struct regmap_range *ranges,
62 unsigned int nranges)
63{
64 const struct regmap_range *r;
65 int i;
66
67 for (i = 0, r = ranges; i < nranges; i++, r++)
68 if (regmap_reg_in_range(reg, r))
69 return true;
70 return false;
71}
72EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
73
74bool regmap_check_range_table(struct regmap *map, unsigned int reg,
75 const struct regmap_access_table *table)
76{
77 /* Check "no ranges" first */
78 if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
79 return false;
80
81 /* In case zero "yes ranges" are supplied, any reg is OK */
82 if (!table->n_yes_ranges)
83 return true;
84
85 return regmap_reg_in_ranges(reg, table->yes_ranges,
86 table->n_yes_ranges);
87}
88EXPORT_SYMBOL_GPL(regmap_check_range_table);
89
90bool regmap_writeable(struct regmap *map, unsigned int reg)
91{
92 if (map->max_register && reg > map->max_register)
93 return false;
94
95 if (map->writeable_reg)
96 return map->writeable_reg(map->dev, reg);
97
98 if (map->wr_table)
99 return regmap_check_range_table(map, reg, map->wr_table);
100
101 return true;
102}
103
104bool regmap_cached(struct regmap *map, unsigned int reg)
105{
106 int ret;
107 unsigned int val;
108
109 if (map->cache_type == REGCACHE_NONE)
110 return false;
111
112 if (!map->cache_ops)
113 return false;
114
115 if (map->max_register && reg > map->max_register)
116 return false;
117
118 map->lock(map->lock_arg);
119 ret = regcache_read(map, reg, &val);
120 map->unlock(map->lock_arg);
121 if (ret)
122 return false;
123
124 return true;
125}
126
127bool regmap_readable(struct regmap *map, unsigned int reg)
128{
129 if (!map->reg_read)
130 return false;
131
132 if (map->max_register && reg > map->max_register)
133 return false;
134
135 if (map->format.format_write)
136 return false;
137
138 if (map->readable_reg)
139 return map->readable_reg(map->dev, reg);
140
141 if (map->rd_table)
142 return regmap_check_range_table(map, reg, map->rd_table);
143
144 return true;
145}
146
147bool regmap_volatile(struct regmap *map, unsigned int reg)
148{
149 if (!map->format.format_write && !regmap_readable(map, reg))
150 return false;
151
152 if (map->volatile_reg)
153 return map->volatile_reg(map->dev, reg);
154
155 if (map->volatile_table)
156 return regmap_check_range_table(map, reg, map->volatile_table);
157
158 if (map->cache_ops)
159 return false;
160 else
161 return true;
162}
163
164bool regmap_precious(struct regmap *map, unsigned int reg)
165{
166 if (!regmap_readable(map, reg))
167 return false;
168
169 if (map->precious_reg)
170 return map->precious_reg(map->dev, reg);
171
172 if (map->precious_table)
173 return regmap_check_range_table(map, reg, map->precious_table);
174
175 return false;
176}
177
178bool regmap_writeable_noinc(struct regmap *map, unsigned int reg)
179{
180 if (map->writeable_noinc_reg)
181 return map->writeable_noinc_reg(map->dev, reg);
182
183 if (map->wr_noinc_table)
184 return regmap_check_range_table(map, reg, map->wr_noinc_table);
185
186 return true;
187}
188
189bool regmap_readable_noinc(struct regmap *map, unsigned int reg)
190{
191 if (map->readable_noinc_reg)
192 return map->readable_noinc_reg(map->dev, reg);
193
194 if (map->rd_noinc_table)
195 return regmap_check_range_table(map, reg, map->rd_noinc_table);
196
197 return true;
198}
199
200static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
201 size_t num)
202{
203 unsigned int i;
204
205 for (i = 0; i < num; i++)
206 if (!regmap_volatile(map, reg + regmap_get_offset(map, i)))
207 return false;
208
209 return true;
210}
211
212static void regmap_format_12_20_write(struct regmap *map,
213 unsigned int reg, unsigned int val)
214{
215 u8 *out = map->work_buf;
216
217 out[0] = reg >> 4;
218 out[1] = (reg << 4) | (val >> 16);
219 out[2] = val >> 8;
220 out[3] = val;
221}
222
223
224static void regmap_format_2_6_write(struct regmap *map,
225 unsigned int reg, unsigned int val)
226{
227 u8 *out = map->work_buf;
228
229 *out = (reg << 6) | val;
230}
231
232static void regmap_format_4_12_write(struct regmap *map,
233 unsigned int reg, unsigned int val)
234{
235 __be16 *out = map->work_buf;
236 *out = cpu_to_be16((reg << 12) | val);
237}
238
239static void regmap_format_7_9_write(struct regmap *map,
240 unsigned int reg, unsigned int val)
241{
242 __be16 *out = map->work_buf;
243 *out = cpu_to_be16((reg << 9) | val);
244}
245
246static void regmap_format_7_17_write(struct regmap *map,
247 unsigned int reg, unsigned int val)
248{
249 u8 *out = map->work_buf;
250
251 out[2] = val;
252 out[1] = val >> 8;
253 out[0] = (val >> 16) | (reg << 1);
254}
255
256static void regmap_format_10_14_write(struct regmap *map,
257 unsigned int reg, unsigned int val)
258{
259 u8 *out = map->work_buf;
260
261 out[2] = val;
262 out[1] = (val >> 8) | (reg << 6);
263 out[0] = reg >> 2;
264}
265
266static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
267{
268 u8 *b = buf;
269
270 b[0] = val << shift;
271}
272
273static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
274{
275 put_unaligned_be16(val << shift, buf);
276}
277
278static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
279{
280 put_unaligned_le16(val << shift, buf);
281}
282
283static void regmap_format_16_native(void *buf, unsigned int val,
284 unsigned int shift)
285{
286 u16 v = val << shift;
287
288 memcpy(buf, &v, sizeof(v));
289}
290
291static void regmap_format_24_be(void *buf, unsigned int val, unsigned int shift)
292{
293 put_unaligned_be24(val << shift, buf);
294}
295
296static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
297{
298 put_unaligned_be32(val << shift, buf);
299}
300
301static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
302{
303 put_unaligned_le32(val << shift, buf);
304}
305
306static void regmap_format_32_native(void *buf, unsigned int val,
307 unsigned int shift)
308{
309 u32 v = val << shift;
310
311 memcpy(buf, &v, sizeof(v));
312}
313
314#ifdef CONFIG_64BIT
315static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
316{
317 put_unaligned_be64((u64) val << shift, buf);
318}
319
320static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
321{
322 put_unaligned_le64((u64) val << shift, buf);
323}
324
325static void regmap_format_64_native(void *buf, unsigned int val,
326 unsigned int shift)
327{
328 u64 v = (u64) val << shift;
329
330 memcpy(buf, &v, sizeof(v));
331}
332#endif
333
334static void regmap_parse_inplace_noop(void *buf)
335{
336}
337
338static unsigned int regmap_parse_8(const void *buf)
339{
340 const u8 *b = buf;
341
342 return b[0];
343}
344
345static unsigned int regmap_parse_16_be(const void *buf)
346{
347 return get_unaligned_be16(buf);
348}
349
350static unsigned int regmap_parse_16_le(const void *buf)
351{
352 return get_unaligned_le16(buf);
353}
354
355static void regmap_parse_16_be_inplace(void *buf)
356{
357 u16 v = get_unaligned_be16(buf);
358
359 memcpy(buf, &v, sizeof(v));
360}
361
362static void regmap_parse_16_le_inplace(void *buf)
363{
364 u16 v = get_unaligned_le16(buf);
365
366 memcpy(buf, &v, sizeof(v));
367}
368
369static unsigned int regmap_parse_16_native(const void *buf)
370{
371 u16 v;
372
373 memcpy(&v, buf, sizeof(v));
374 return v;
375}
376
377static unsigned int regmap_parse_24_be(const void *buf)
378{
379 return get_unaligned_be24(buf);
380}
381
382static unsigned int regmap_parse_32_be(const void *buf)
383{
384 return get_unaligned_be32(buf);
385}
386
387static unsigned int regmap_parse_32_le(const void *buf)
388{
389 return get_unaligned_le32(buf);
390}
391
392static void regmap_parse_32_be_inplace(void *buf)
393{
394 u32 v = get_unaligned_be32(buf);
395
396 memcpy(buf, &v, sizeof(v));
397}
398
399static void regmap_parse_32_le_inplace(void *buf)
400{
401 u32 v = get_unaligned_le32(buf);
402
403 memcpy(buf, &v, sizeof(v));
404}
405
406static unsigned int regmap_parse_32_native(const void *buf)
407{
408 u32 v;
409
410 memcpy(&v, buf, sizeof(v));
411 return v;
412}
413
414#ifdef CONFIG_64BIT
415static unsigned int regmap_parse_64_be(const void *buf)
416{
417 return get_unaligned_be64(buf);
418}
419
420static unsigned int regmap_parse_64_le(const void *buf)
421{
422 return get_unaligned_le64(buf);
423}
424
425static void regmap_parse_64_be_inplace(void *buf)
426{
427 u64 v = get_unaligned_be64(buf);
428
429 memcpy(buf, &v, sizeof(v));
430}
431
432static void regmap_parse_64_le_inplace(void *buf)
433{
434 u64 v = get_unaligned_le64(buf);
435
436 memcpy(buf, &v, sizeof(v));
437}
438
439static unsigned int regmap_parse_64_native(const void *buf)
440{
441 u64 v;
442
443 memcpy(&v, buf, sizeof(v));
444 return v;
445}
446#endif
447
448static void regmap_lock_hwlock(void *__map)
449{
450 struct regmap *map = __map;
451
452 hwspin_lock_timeout(map->hwlock, UINT_MAX);
453}
454
455static void regmap_lock_hwlock_irq(void *__map)
456{
457 struct regmap *map = __map;
458
459 hwspin_lock_timeout_irq(map->hwlock, UINT_MAX);
460}
461
462static void regmap_lock_hwlock_irqsave(void *__map)
463{
464 struct regmap *map = __map;
465
466 hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX,
467 &map->spinlock_flags);
468}
469
470static void regmap_unlock_hwlock(void *__map)
471{
472 struct regmap *map = __map;
473
474 hwspin_unlock(map->hwlock);
475}
476
477static void regmap_unlock_hwlock_irq(void *__map)
478{
479 struct regmap *map = __map;
480
481 hwspin_unlock_irq(map->hwlock);
482}
483
484static void regmap_unlock_hwlock_irqrestore(void *__map)
485{
486 struct regmap *map = __map;
487
488 hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags);
489}
490
491static void regmap_lock_unlock_none(void *__map)
492{
493
494}
495
496static void regmap_lock_mutex(void *__map)
497{
498 struct regmap *map = __map;
499 mutex_lock(&map->mutex);
500}
501
502static void regmap_unlock_mutex(void *__map)
503{
504 struct regmap *map = __map;
505 mutex_unlock(&map->mutex);
506}
507
508static void regmap_lock_spinlock(void *__map)
509__acquires(&map->spinlock)
510{
511 struct regmap *map = __map;
512 unsigned long flags;
513
514 spin_lock_irqsave(&map->spinlock, flags);
515 map->spinlock_flags = flags;
516}
517
518static void regmap_unlock_spinlock(void *__map)
519__releases(&map->spinlock)
520{
521 struct regmap *map = __map;
522 spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
523}
524
525static void regmap_lock_raw_spinlock(void *__map)
526__acquires(&map->raw_spinlock)
527{
528 struct regmap *map = __map;
529 unsigned long flags;
530
531 raw_spin_lock_irqsave(&map->raw_spinlock, flags);
532 map->raw_spinlock_flags = flags;
533}
534
535static void regmap_unlock_raw_spinlock(void *__map)
536__releases(&map->raw_spinlock)
537{
538 struct regmap *map = __map;
539 raw_spin_unlock_irqrestore(&map->raw_spinlock, map->raw_spinlock_flags);
540}
541
542static void dev_get_regmap_release(struct device *dev, void *res)
543{
544 /*
545 * We don't actually have anything to do here; the goal here
546 * is not to manage the regmap but to provide a simple way to
547 * get the regmap back given a struct device.
548 */
549}
550
551static bool _regmap_range_add(struct regmap *map,
552 struct regmap_range_node *data)
553{
554 struct rb_root *root = &map->range_tree;
555 struct rb_node **new = &(root->rb_node), *parent = NULL;
556
557 while (*new) {
558 struct regmap_range_node *this =
559 rb_entry(*new, struct regmap_range_node, node);
560
561 parent = *new;
562 if (data->range_max < this->range_min)
563 new = &((*new)->rb_left);
564 else if (data->range_min > this->range_max)
565 new = &((*new)->rb_right);
566 else
567 return false;
568 }
569
570 rb_link_node(&data->node, parent, new);
571 rb_insert_color(&data->node, root);
572
573 return true;
574}
575
576static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
577 unsigned int reg)
578{
579 struct rb_node *node = map->range_tree.rb_node;
580
581 while (node) {
582 struct regmap_range_node *this =
583 rb_entry(node, struct regmap_range_node, node);
584
585 if (reg < this->range_min)
586 node = node->rb_left;
587 else if (reg > this->range_max)
588 node = node->rb_right;
589 else
590 return this;
591 }
592
593 return NULL;
594}
595
596static void regmap_range_exit(struct regmap *map)
597{
598 struct rb_node *next;
599 struct regmap_range_node *range_node;
600
601 next = rb_first(&map->range_tree);
602 while (next) {
603 range_node = rb_entry(next, struct regmap_range_node, node);
604 next = rb_next(&range_node->node);
605 rb_erase(&range_node->node, &map->range_tree);
606 kfree(range_node);
607 }
608
609 kfree(map->selector_work_buf);
610}
611
612static int regmap_set_name(struct regmap *map, const struct regmap_config *config)
613{
614 if (config->name) {
615 const char *name = kstrdup_const(config->name, GFP_KERNEL);
616
617 if (!name)
618 return -ENOMEM;
619
620 kfree_const(map->name);
621 map->name = name;
622 }
623
624 return 0;
625}
626
627int regmap_attach_dev(struct device *dev, struct regmap *map,
628 const struct regmap_config *config)
629{
630 struct regmap **m;
631 int ret;
632
633 map->dev = dev;
634
635 ret = regmap_set_name(map, config);
636 if (ret)
637 return ret;
638
639 regmap_debugfs_exit(map);
640 regmap_debugfs_init(map);
641
642 /* Add a devres resource for dev_get_regmap() */
643 m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
644 if (!m) {
645 regmap_debugfs_exit(map);
646 return -ENOMEM;
647 }
648 *m = map;
649 devres_add(dev, m);
650
651 return 0;
652}
653EXPORT_SYMBOL_GPL(regmap_attach_dev);
654
655static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
656 const struct regmap_config *config)
657{
658 enum regmap_endian endian;
659
660 /* Retrieve the endianness specification from the regmap config */
661 endian = config->reg_format_endian;
662
663 /* If the regmap config specified a non-default value, use that */
664 if (endian != REGMAP_ENDIAN_DEFAULT)
665 return endian;
666
667 /* Retrieve the endianness specification from the bus config */
668 if (bus && bus->reg_format_endian_default)
669 endian = bus->reg_format_endian_default;
670
671 /* If the bus specified a non-default value, use that */
672 if (endian != REGMAP_ENDIAN_DEFAULT)
673 return endian;
674
675 /* Use this if no other value was found */
676 return REGMAP_ENDIAN_BIG;
677}
678
679enum regmap_endian regmap_get_val_endian(struct device *dev,
680 const struct regmap_bus *bus,
681 const struct regmap_config *config)
682{
683 struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
684 enum regmap_endian endian;
685
686 /* Retrieve the endianness specification from the regmap config */
687 endian = config->val_format_endian;
688
689 /* If the regmap config specified a non-default value, use that */
690 if (endian != REGMAP_ENDIAN_DEFAULT)
691 return endian;
692
693 /* If the firmware node exist try to get endianness from it */
694 if (fwnode_property_read_bool(fwnode, "big-endian"))
695 endian = REGMAP_ENDIAN_BIG;
696 else if (fwnode_property_read_bool(fwnode, "little-endian"))
697 endian = REGMAP_ENDIAN_LITTLE;
698 else if (fwnode_property_read_bool(fwnode, "native-endian"))
699 endian = REGMAP_ENDIAN_NATIVE;
700
701 /* If the endianness was specified in fwnode, use that */
702 if (endian != REGMAP_ENDIAN_DEFAULT)
703 return endian;
704
705 /* Retrieve the endianness specification from the bus config */
706 if (bus && bus->val_format_endian_default)
707 endian = bus->val_format_endian_default;
708
709 /* If the bus specified a non-default value, use that */
710 if (endian != REGMAP_ENDIAN_DEFAULT)
711 return endian;
712
713 /* Use this if no other value was found */
714 return REGMAP_ENDIAN_BIG;
715}
716EXPORT_SYMBOL_GPL(regmap_get_val_endian);
717
718struct regmap *__regmap_init(struct device *dev,
719 const struct regmap_bus *bus,
720 void *bus_context,
721 const struct regmap_config *config,
722 struct lock_class_key *lock_key,
723 const char *lock_name)
724{
725 struct regmap *map;
726 int ret = -EINVAL;
727 enum regmap_endian reg_endian, val_endian;
728 int i, j;
729
730 if (!config)
731 goto err;
732
733 map = kzalloc(sizeof(*map), GFP_KERNEL);
734 if (map == NULL) {
735 ret = -ENOMEM;
736 goto err;
737 }
738
739 ret = regmap_set_name(map, config);
740 if (ret)
741 goto err_map;
742
743 ret = -EINVAL; /* Later error paths rely on this */
744
745 if (config->disable_locking) {
746 map->lock = map->unlock = regmap_lock_unlock_none;
747 map->can_sleep = config->can_sleep;
748 regmap_debugfs_disable(map);
749 } else if (config->lock && config->unlock) {
750 map->lock = config->lock;
751 map->unlock = config->unlock;
752 map->lock_arg = config->lock_arg;
753 map->can_sleep = config->can_sleep;
754 } else if (config->use_hwlock) {
755 map->hwlock = hwspin_lock_request_specific(config->hwlock_id);
756 if (!map->hwlock) {
757 ret = -ENXIO;
758 goto err_name;
759 }
760
761 switch (config->hwlock_mode) {
762 case HWLOCK_IRQSTATE:
763 map->lock = regmap_lock_hwlock_irqsave;
764 map->unlock = regmap_unlock_hwlock_irqrestore;
765 break;
766 case HWLOCK_IRQ:
767 map->lock = regmap_lock_hwlock_irq;
768 map->unlock = regmap_unlock_hwlock_irq;
769 break;
770 default:
771 map->lock = regmap_lock_hwlock;
772 map->unlock = regmap_unlock_hwlock;
773 break;
774 }
775
776 map->lock_arg = map;
777 } else {
778 if ((bus && bus->fast_io) ||
779 config->fast_io) {
780 if (config->use_raw_spinlock) {
781 raw_spin_lock_init(&map->raw_spinlock);
782 map->lock = regmap_lock_raw_spinlock;
783 map->unlock = regmap_unlock_raw_spinlock;
784 lockdep_set_class_and_name(&map->raw_spinlock,
785 lock_key, lock_name);
786 } else {
787 spin_lock_init(&map->spinlock);
788 map->lock = regmap_lock_spinlock;
789 map->unlock = regmap_unlock_spinlock;
790 lockdep_set_class_and_name(&map->spinlock,
791 lock_key, lock_name);
792 }
793 } else {
794 mutex_init(&map->mutex);
795 map->lock = regmap_lock_mutex;
796 map->unlock = regmap_unlock_mutex;
797 map->can_sleep = true;
798 lockdep_set_class_and_name(&map->mutex,
799 lock_key, lock_name);
800 }
801 map->lock_arg = map;
802 }
803
804 /*
805 * When we write in fast-paths with regmap_bulk_write() don't allocate
806 * scratch buffers with sleeping allocations.
807 */
808 if ((bus && bus->fast_io) || config->fast_io)
809 map->alloc_flags = GFP_ATOMIC;
810 else
811 map->alloc_flags = GFP_KERNEL;
812
813 map->reg_base = config->reg_base;
814
815 map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
816 map->format.pad_bytes = config->pad_bits / 8;
817 map->format.reg_downshift = config->reg_downshift;
818 map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
819 map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
820 config->val_bits + config->pad_bits, 8);
821 map->reg_shift = config->pad_bits % 8;
822 if (config->reg_stride)
823 map->reg_stride = config->reg_stride;
824 else
825 map->reg_stride = 1;
826 if (is_power_of_2(map->reg_stride))
827 map->reg_stride_order = ilog2(map->reg_stride);
828 else
829 map->reg_stride_order = -1;
830 map->use_single_read = config->use_single_read || !(config->read || (bus && bus->read));
831 map->use_single_write = config->use_single_write || !(config->write || (bus && bus->write));
832 map->can_multi_write = config->can_multi_write && (config->write || (bus && bus->write));
833 if (bus) {
834 map->max_raw_read = bus->max_raw_read;
835 map->max_raw_write = bus->max_raw_write;
836 } else if (config->max_raw_read && config->max_raw_write) {
837 map->max_raw_read = config->max_raw_read;
838 map->max_raw_write = config->max_raw_write;
839 }
840 map->dev = dev;
841 map->bus = bus;
842 map->bus_context = bus_context;
843 map->max_register = config->max_register;
844 map->wr_table = config->wr_table;
845 map->rd_table = config->rd_table;
846 map->volatile_table = config->volatile_table;
847 map->precious_table = config->precious_table;
848 map->wr_noinc_table = config->wr_noinc_table;
849 map->rd_noinc_table = config->rd_noinc_table;
850 map->writeable_reg = config->writeable_reg;
851 map->readable_reg = config->readable_reg;
852 map->volatile_reg = config->volatile_reg;
853 map->precious_reg = config->precious_reg;
854 map->writeable_noinc_reg = config->writeable_noinc_reg;
855 map->readable_noinc_reg = config->readable_noinc_reg;
856 map->cache_type = config->cache_type;
857
858 spin_lock_init(&map->async_lock);
859 INIT_LIST_HEAD(&map->async_list);
860 INIT_LIST_HEAD(&map->async_free);
861 init_waitqueue_head(&map->async_waitq);
862
863 if (config->read_flag_mask ||
864 config->write_flag_mask ||
865 config->zero_flag_mask) {
866 map->read_flag_mask = config->read_flag_mask;
867 map->write_flag_mask = config->write_flag_mask;
868 } else if (bus) {
869 map->read_flag_mask = bus->read_flag_mask;
870 }
871
872 if (config && config->read && config->write) {
873 map->reg_read = _regmap_bus_read;
874 if (config->reg_update_bits)
875 map->reg_update_bits = config->reg_update_bits;
876
877 /* Bulk read/write */
878 map->read = config->read;
879 map->write = config->write;
880
881 reg_endian = REGMAP_ENDIAN_NATIVE;
882 val_endian = REGMAP_ENDIAN_NATIVE;
883 } else if (!bus) {
884 map->reg_read = config->reg_read;
885 map->reg_write = config->reg_write;
886 map->reg_update_bits = config->reg_update_bits;
887
888 map->defer_caching = false;
889 goto skip_format_initialization;
890 } else if (!bus->read || !bus->write) {
891 map->reg_read = _regmap_bus_reg_read;
892 map->reg_write = _regmap_bus_reg_write;
893 map->reg_update_bits = bus->reg_update_bits;
894
895 map->defer_caching = false;
896 goto skip_format_initialization;
897 } else {
898 map->reg_read = _regmap_bus_read;
899 map->reg_update_bits = bus->reg_update_bits;
900 /* Bulk read/write */
901 map->read = bus->read;
902 map->write = bus->write;
903
904 reg_endian = regmap_get_reg_endian(bus, config);
905 val_endian = regmap_get_val_endian(dev, bus, config);
906 }
907
908 switch (config->reg_bits + map->reg_shift) {
909 case 2:
910 switch (config->val_bits) {
911 case 6:
912 map->format.format_write = regmap_format_2_6_write;
913 break;
914 default:
915 goto err_hwlock;
916 }
917 break;
918
919 case 4:
920 switch (config->val_bits) {
921 case 12:
922 map->format.format_write = regmap_format_4_12_write;
923 break;
924 default:
925 goto err_hwlock;
926 }
927 break;
928
929 case 7:
930 switch (config->val_bits) {
931 case 9:
932 map->format.format_write = regmap_format_7_9_write;
933 break;
934 case 17:
935 map->format.format_write = regmap_format_7_17_write;
936 break;
937 default:
938 goto err_hwlock;
939 }
940 break;
941
942 case 10:
943 switch (config->val_bits) {
944 case 14:
945 map->format.format_write = regmap_format_10_14_write;
946 break;
947 default:
948 goto err_hwlock;
949 }
950 break;
951
952 case 12:
953 switch (config->val_bits) {
954 case 20:
955 map->format.format_write = regmap_format_12_20_write;
956 break;
957 default:
958 goto err_hwlock;
959 }
960 break;
961
962 case 8:
963 map->format.format_reg = regmap_format_8;
964 break;
965
966 case 16:
967 switch (reg_endian) {
968 case REGMAP_ENDIAN_BIG:
969 map->format.format_reg = regmap_format_16_be;
970 break;
971 case REGMAP_ENDIAN_LITTLE:
972 map->format.format_reg = regmap_format_16_le;
973 break;
974 case REGMAP_ENDIAN_NATIVE:
975 map->format.format_reg = regmap_format_16_native;
976 break;
977 default:
978 goto err_hwlock;
979 }
980 break;
981
982 case 24:
983 switch (reg_endian) {
984 case REGMAP_ENDIAN_BIG:
985 map->format.format_reg = regmap_format_24_be;
986 break;
987 default:
988 goto err_hwlock;
989 }
990 break;
991
992 case 32:
993 switch (reg_endian) {
994 case REGMAP_ENDIAN_BIG:
995 map->format.format_reg = regmap_format_32_be;
996 break;
997 case REGMAP_ENDIAN_LITTLE:
998 map->format.format_reg = regmap_format_32_le;
999 break;
1000 case REGMAP_ENDIAN_NATIVE:
1001 map->format.format_reg = regmap_format_32_native;
1002 break;
1003 default:
1004 goto err_hwlock;
1005 }
1006 break;
1007
1008#ifdef CONFIG_64BIT
1009 case 64:
1010 switch (reg_endian) {
1011 case REGMAP_ENDIAN_BIG:
1012 map->format.format_reg = regmap_format_64_be;
1013 break;
1014 case REGMAP_ENDIAN_LITTLE:
1015 map->format.format_reg = regmap_format_64_le;
1016 break;
1017 case REGMAP_ENDIAN_NATIVE:
1018 map->format.format_reg = regmap_format_64_native;
1019 break;
1020 default:
1021 goto err_hwlock;
1022 }
1023 break;
1024#endif
1025
1026 default:
1027 goto err_hwlock;
1028 }
1029
1030 if (val_endian == REGMAP_ENDIAN_NATIVE)
1031 map->format.parse_inplace = regmap_parse_inplace_noop;
1032
1033 switch (config->val_bits) {
1034 case 8:
1035 map->format.format_val = regmap_format_8;
1036 map->format.parse_val = regmap_parse_8;
1037 map->format.parse_inplace = regmap_parse_inplace_noop;
1038 break;
1039 case 16:
1040 switch (val_endian) {
1041 case REGMAP_ENDIAN_BIG:
1042 map->format.format_val = regmap_format_16_be;
1043 map->format.parse_val = regmap_parse_16_be;
1044 map->format.parse_inplace = regmap_parse_16_be_inplace;
1045 break;
1046 case REGMAP_ENDIAN_LITTLE:
1047 map->format.format_val = regmap_format_16_le;
1048 map->format.parse_val = regmap_parse_16_le;
1049 map->format.parse_inplace = regmap_parse_16_le_inplace;
1050 break;
1051 case REGMAP_ENDIAN_NATIVE:
1052 map->format.format_val = regmap_format_16_native;
1053 map->format.parse_val = regmap_parse_16_native;
1054 break;
1055 default:
1056 goto err_hwlock;
1057 }
1058 break;
1059 case 24:
1060 switch (val_endian) {
1061 case REGMAP_ENDIAN_BIG:
1062 map->format.format_val = regmap_format_24_be;
1063 map->format.parse_val = regmap_parse_24_be;
1064 break;
1065 default:
1066 goto err_hwlock;
1067 }
1068 break;
1069 case 32:
1070 switch (val_endian) {
1071 case REGMAP_ENDIAN_BIG:
1072 map->format.format_val = regmap_format_32_be;
1073 map->format.parse_val = regmap_parse_32_be;
1074 map->format.parse_inplace = regmap_parse_32_be_inplace;
1075 break;
1076 case REGMAP_ENDIAN_LITTLE:
1077 map->format.format_val = regmap_format_32_le;
1078 map->format.parse_val = regmap_parse_32_le;
1079 map->format.parse_inplace = regmap_parse_32_le_inplace;
1080 break;
1081 case REGMAP_ENDIAN_NATIVE:
1082 map->format.format_val = regmap_format_32_native;
1083 map->format.parse_val = regmap_parse_32_native;
1084 break;
1085 default:
1086 goto err_hwlock;
1087 }
1088 break;
1089#ifdef CONFIG_64BIT
1090 case 64:
1091 switch (val_endian) {
1092 case REGMAP_ENDIAN_BIG:
1093 map->format.format_val = regmap_format_64_be;
1094 map->format.parse_val = regmap_parse_64_be;
1095 map->format.parse_inplace = regmap_parse_64_be_inplace;
1096 break;
1097 case REGMAP_ENDIAN_LITTLE:
1098 map->format.format_val = regmap_format_64_le;
1099 map->format.parse_val = regmap_parse_64_le;
1100 map->format.parse_inplace = regmap_parse_64_le_inplace;
1101 break;
1102 case REGMAP_ENDIAN_NATIVE:
1103 map->format.format_val = regmap_format_64_native;
1104 map->format.parse_val = regmap_parse_64_native;
1105 break;
1106 default:
1107 goto err_hwlock;
1108 }
1109 break;
1110#endif
1111 }
1112
1113 if (map->format.format_write) {
1114 if ((reg_endian != REGMAP_ENDIAN_BIG) ||
1115 (val_endian != REGMAP_ENDIAN_BIG))
1116 goto err_hwlock;
1117 map->use_single_write = true;
1118 }
1119
1120 if (!map->format.format_write &&
1121 !(map->format.format_reg && map->format.format_val))
1122 goto err_hwlock;
1123
1124 map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
1125 if (map->work_buf == NULL) {
1126 ret = -ENOMEM;
1127 goto err_hwlock;
1128 }
1129
1130 if (map->format.format_write) {
1131 map->defer_caching = false;
1132 map->reg_write = _regmap_bus_formatted_write;
1133 } else if (map->format.format_val) {
1134 map->defer_caching = true;
1135 map->reg_write = _regmap_bus_raw_write;
1136 }
1137
1138skip_format_initialization:
1139
1140 map->range_tree = RB_ROOT;
1141 for (i = 0; i < config->num_ranges; i++) {
1142 const struct regmap_range_cfg *range_cfg = &config->ranges[i];
1143 struct regmap_range_node *new;
1144
1145 /* Sanity check */
1146 if (range_cfg->range_max < range_cfg->range_min) {
1147 dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
1148 range_cfg->range_max, range_cfg->range_min);
1149 goto err_range;
1150 }
1151
1152 if (range_cfg->range_max > map->max_register) {
1153 dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
1154 range_cfg->range_max, map->max_register);
1155 goto err_range;
1156 }
1157
1158 if (range_cfg->selector_reg > map->max_register) {
1159 dev_err(map->dev,
1160 "Invalid range %d: selector out of map\n", i);
1161 goto err_range;
1162 }
1163
1164 if (range_cfg->window_len == 0) {
1165 dev_err(map->dev, "Invalid range %d: window_len 0\n",
1166 i);
1167 goto err_range;
1168 }
1169
1170 /* Make sure, that this register range has no selector
1171 or data window within its boundary */
1172 for (j = 0; j < config->num_ranges; j++) {
1173 unsigned int sel_reg = config->ranges[j].selector_reg;
1174 unsigned int win_min = config->ranges[j].window_start;
1175 unsigned int win_max = win_min +
1176 config->ranges[j].window_len - 1;
1177
1178 /* Allow data window inside its own virtual range */
1179 if (j == i)
1180 continue;
1181
1182 if (range_cfg->range_min <= sel_reg &&
1183 sel_reg <= range_cfg->range_max) {
1184 dev_err(map->dev,
1185 "Range %d: selector for %d in window\n",
1186 i, j);
1187 goto err_range;
1188 }
1189
1190 if (!(win_max < range_cfg->range_min ||
1191 win_min > range_cfg->range_max)) {
1192 dev_err(map->dev,
1193 "Range %d: window for %d in window\n",
1194 i, j);
1195 goto err_range;
1196 }
1197 }
1198
1199 new = kzalloc(sizeof(*new), GFP_KERNEL);
1200 if (new == NULL) {
1201 ret = -ENOMEM;
1202 goto err_range;
1203 }
1204
1205 new->map = map;
1206 new->name = range_cfg->name;
1207 new->range_min = range_cfg->range_min;
1208 new->range_max = range_cfg->range_max;
1209 new->selector_reg = range_cfg->selector_reg;
1210 new->selector_mask = range_cfg->selector_mask;
1211 new->selector_shift = range_cfg->selector_shift;
1212 new->window_start = range_cfg->window_start;
1213 new->window_len = range_cfg->window_len;
1214
1215 if (!_regmap_range_add(map, new)) {
1216 dev_err(map->dev, "Failed to add range %d\n", i);
1217 kfree(new);
1218 goto err_range;
1219 }
1220
1221 if (map->selector_work_buf == NULL) {
1222 map->selector_work_buf =
1223 kzalloc(map->format.buf_size, GFP_KERNEL);
1224 if (map->selector_work_buf == NULL) {
1225 ret = -ENOMEM;
1226 goto err_range;
1227 }
1228 }
1229 }
1230
1231 ret = regcache_init(map, config);
1232 if (ret != 0)
1233 goto err_range;
1234
1235 if (dev) {
1236 ret = regmap_attach_dev(dev, map, config);
1237 if (ret != 0)
1238 goto err_regcache;
1239 } else {
1240 regmap_debugfs_init(map);
1241 }
1242
1243 return map;
1244
1245err_regcache:
1246 regcache_exit(map);
1247err_range:
1248 regmap_range_exit(map);
1249 kfree(map->work_buf);
1250err_hwlock:
1251 if (map->hwlock)
1252 hwspin_lock_free(map->hwlock);
1253err_name:
1254 kfree_const(map->name);
1255err_map:
1256 kfree(map);
1257err:
1258 return ERR_PTR(ret);
1259}
1260EXPORT_SYMBOL_GPL(__regmap_init);
1261
1262static void devm_regmap_release(struct device *dev, void *res)
1263{
1264 regmap_exit(*(struct regmap **)res);
1265}
1266
1267struct regmap *__devm_regmap_init(struct device *dev,
1268 const struct regmap_bus *bus,
1269 void *bus_context,
1270 const struct regmap_config *config,
1271 struct lock_class_key *lock_key,
1272 const char *lock_name)
1273{
1274 struct regmap **ptr, *regmap;
1275
1276 ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1277 if (!ptr)
1278 return ERR_PTR(-ENOMEM);
1279
1280 regmap = __regmap_init(dev, bus, bus_context, config,
1281 lock_key, lock_name);
1282 if (!IS_ERR(regmap)) {
1283 *ptr = regmap;
1284 devres_add(dev, ptr);
1285 } else {
1286 devres_free(ptr);
1287 }
1288
1289 return regmap;
1290}
1291EXPORT_SYMBOL_GPL(__devm_regmap_init);
1292
1293static void regmap_field_init(struct regmap_field *rm_field,
1294 struct regmap *regmap, struct reg_field reg_field)
1295{
1296 rm_field->regmap = regmap;
1297 rm_field->reg = reg_field.reg;
1298 rm_field->shift = reg_field.lsb;
1299 rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1300
1301 WARN_ONCE(rm_field->mask == 0, "invalid empty mask defined\n");
1302
1303 rm_field->id_size = reg_field.id_size;
1304 rm_field->id_offset = reg_field.id_offset;
1305}
1306
1307/**
1308 * devm_regmap_field_alloc() - Allocate and initialise a register field.
1309 *
1310 * @dev: Device that will be interacted with
1311 * @regmap: regmap bank in which this register field is located.
1312 * @reg_field: Register field with in the bank.
1313 *
1314 * The return value will be an ERR_PTR() on error or a valid pointer
1315 * to a struct regmap_field. The regmap_field will be automatically freed
1316 * by the device management code.
1317 */
1318struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1319 struct regmap *regmap, struct reg_field reg_field)
1320{
1321 struct regmap_field *rm_field = devm_kzalloc(dev,
1322 sizeof(*rm_field), GFP_KERNEL);
1323 if (!rm_field)
1324 return ERR_PTR(-ENOMEM);
1325
1326 regmap_field_init(rm_field, regmap, reg_field);
1327
1328 return rm_field;
1329
1330}
1331EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1332
1333
1334/**
1335 * regmap_field_bulk_alloc() - Allocate and initialise a bulk register field.
1336 *
1337 * @regmap: regmap bank in which this register field is located.
1338 * @rm_field: regmap register fields within the bank.
1339 * @reg_field: Register fields within the bank.
1340 * @num_fields: Number of register fields.
1341 *
1342 * The return value will be an -ENOMEM on error or zero for success.
1343 * Newly allocated regmap_fields should be freed by calling
1344 * regmap_field_bulk_free()
1345 */
1346int regmap_field_bulk_alloc(struct regmap *regmap,
1347 struct regmap_field **rm_field,
1348 const struct reg_field *reg_field,
1349 int num_fields)
1350{
1351 struct regmap_field *rf;
1352 int i;
1353
1354 rf = kcalloc(num_fields, sizeof(*rf), GFP_KERNEL);
1355 if (!rf)
1356 return -ENOMEM;
1357
1358 for (i = 0; i < num_fields; i++) {
1359 regmap_field_init(&rf[i], regmap, reg_field[i]);
1360 rm_field[i] = &rf[i];
1361 }
1362
1363 return 0;
1364}
1365EXPORT_SYMBOL_GPL(regmap_field_bulk_alloc);
1366
1367/**
1368 * devm_regmap_field_bulk_alloc() - Allocate and initialise a bulk register
1369 * fields.
1370 *
1371 * @dev: Device that will be interacted with
1372 * @regmap: regmap bank in which this register field is located.
1373 * @rm_field: regmap register fields within the bank.
1374 * @reg_field: Register fields within the bank.
1375 * @num_fields: Number of register fields.
1376 *
1377 * The return value will be an -ENOMEM on error or zero for success.
1378 * Newly allocated regmap_fields will be automatically freed by the
1379 * device management code.
1380 */
1381int devm_regmap_field_bulk_alloc(struct device *dev,
1382 struct regmap *regmap,
1383 struct regmap_field **rm_field,
1384 const struct reg_field *reg_field,
1385 int num_fields)
1386{
1387 struct regmap_field *rf;
1388 int i;
1389
1390 rf = devm_kcalloc(dev, num_fields, sizeof(*rf), GFP_KERNEL);
1391 if (!rf)
1392 return -ENOMEM;
1393
1394 for (i = 0; i < num_fields; i++) {
1395 regmap_field_init(&rf[i], regmap, reg_field[i]);
1396 rm_field[i] = &rf[i];
1397 }
1398
1399 return 0;
1400}
1401EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_alloc);
1402
1403/**
1404 * regmap_field_bulk_free() - Free register field allocated using
1405 * regmap_field_bulk_alloc.
1406 *
1407 * @field: regmap fields which should be freed.
1408 */
1409void regmap_field_bulk_free(struct regmap_field *field)
1410{
1411 kfree(field);
1412}
1413EXPORT_SYMBOL_GPL(regmap_field_bulk_free);
1414
1415/**
1416 * devm_regmap_field_bulk_free() - Free a bulk register field allocated using
1417 * devm_regmap_field_bulk_alloc.
1418 *
1419 * @dev: Device that will be interacted with
1420 * @field: regmap field which should be freed.
1421 *
1422 * Free register field allocated using devm_regmap_field_bulk_alloc(). Usually
1423 * drivers need not call this function, as the memory allocated via devm
1424 * will be freed as per device-driver life-cycle.
1425 */
1426void devm_regmap_field_bulk_free(struct device *dev,
1427 struct regmap_field *field)
1428{
1429 devm_kfree(dev, field);
1430}
1431EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_free);
1432
1433/**
1434 * devm_regmap_field_free() - Free a register field allocated using
1435 * devm_regmap_field_alloc.
1436 *
1437 * @dev: Device that will be interacted with
1438 * @field: regmap field which should be freed.
1439 *
1440 * Free register field allocated using devm_regmap_field_alloc(). Usually
1441 * drivers need not call this function, as the memory allocated via devm
1442 * will be freed as per device-driver life-cyle.
1443 */
1444void devm_regmap_field_free(struct device *dev,
1445 struct regmap_field *field)
1446{
1447 devm_kfree(dev, field);
1448}
1449EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1450
1451/**
1452 * regmap_field_alloc() - Allocate and initialise a register field.
1453 *
1454 * @regmap: regmap bank in which this register field is located.
1455 * @reg_field: Register field with in the bank.
1456 *
1457 * The return value will be an ERR_PTR() on error or a valid pointer
1458 * to a struct regmap_field. The regmap_field should be freed by the
1459 * user once its finished working with it using regmap_field_free().
1460 */
1461struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1462 struct reg_field reg_field)
1463{
1464 struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1465
1466 if (!rm_field)
1467 return ERR_PTR(-ENOMEM);
1468
1469 regmap_field_init(rm_field, regmap, reg_field);
1470
1471 return rm_field;
1472}
1473EXPORT_SYMBOL_GPL(regmap_field_alloc);
1474
1475/**
1476 * regmap_field_free() - Free register field allocated using
1477 * regmap_field_alloc.
1478 *
1479 * @field: regmap field which should be freed.
1480 */
1481void regmap_field_free(struct regmap_field *field)
1482{
1483 kfree(field);
1484}
1485EXPORT_SYMBOL_GPL(regmap_field_free);
1486
1487/**
1488 * regmap_reinit_cache() - Reinitialise the current register cache
1489 *
1490 * @map: Register map to operate on.
1491 * @config: New configuration. Only the cache data will be used.
1492 *
1493 * Discard any existing register cache for the map and initialize a
1494 * new cache. This can be used to restore the cache to defaults or to
1495 * update the cache configuration to reflect runtime discovery of the
1496 * hardware.
1497 *
1498 * No explicit locking is done here, the user needs to ensure that
1499 * this function will not race with other calls to regmap.
1500 */
1501int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1502{
1503 int ret;
1504
1505 regcache_exit(map);
1506 regmap_debugfs_exit(map);
1507
1508 map->max_register = config->max_register;
1509 map->writeable_reg = config->writeable_reg;
1510 map->readable_reg = config->readable_reg;
1511 map->volatile_reg = config->volatile_reg;
1512 map->precious_reg = config->precious_reg;
1513 map->writeable_noinc_reg = config->writeable_noinc_reg;
1514 map->readable_noinc_reg = config->readable_noinc_reg;
1515 map->cache_type = config->cache_type;
1516
1517 ret = regmap_set_name(map, config);
1518 if (ret)
1519 return ret;
1520
1521 regmap_debugfs_init(map);
1522
1523 map->cache_bypass = false;
1524 map->cache_only = false;
1525
1526 return regcache_init(map, config);
1527}
1528EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1529
1530/**
1531 * regmap_exit() - Free a previously allocated register map
1532 *
1533 * @map: Register map to operate on.
1534 */
1535void regmap_exit(struct regmap *map)
1536{
1537 struct regmap_async *async;
1538
1539 regcache_exit(map);
1540 regmap_debugfs_exit(map);
1541 regmap_range_exit(map);
1542 if (map->bus && map->bus->free_context)
1543 map->bus->free_context(map->bus_context);
1544 kfree(map->work_buf);
1545 while (!list_empty(&map->async_free)) {
1546 async = list_first_entry_or_null(&map->async_free,
1547 struct regmap_async,
1548 list);
1549 list_del(&async->list);
1550 kfree(async->work_buf);
1551 kfree(async);
1552 }
1553 if (map->hwlock)
1554 hwspin_lock_free(map->hwlock);
1555 if (map->lock == regmap_lock_mutex)
1556 mutex_destroy(&map->mutex);
1557 kfree_const(map->name);
1558 kfree(map->patch);
1559 if (map->bus && map->bus->free_on_exit)
1560 kfree(map->bus);
1561 kfree(map);
1562}
1563EXPORT_SYMBOL_GPL(regmap_exit);
1564
1565static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1566{
1567 struct regmap **r = res;
1568 if (!r || !*r) {
1569 WARN_ON(!r || !*r);
1570 return 0;
1571 }
1572
1573 /* If the user didn't specify a name match any */
1574 if (data)
1575 return !strcmp((*r)->name, data);
1576 else
1577 return 1;
1578}
1579
1580/**
1581 * dev_get_regmap() - Obtain the regmap (if any) for a device
1582 *
1583 * @dev: Device to retrieve the map for
1584 * @name: Optional name for the register map, usually NULL.
1585 *
1586 * Returns the regmap for the device if one is present, or NULL. If
1587 * name is specified then it must match the name specified when
1588 * registering the device, if it is NULL then the first regmap found
1589 * will be used. Devices with multiple register maps are very rare,
1590 * generic code should normally not need to specify a name.
1591 */
1592struct regmap *dev_get_regmap(struct device *dev, const char *name)
1593{
1594 struct regmap **r = devres_find(dev, dev_get_regmap_release,
1595 dev_get_regmap_match, (void *)name);
1596
1597 if (!r)
1598 return NULL;
1599 return *r;
1600}
1601EXPORT_SYMBOL_GPL(dev_get_regmap);
1602
1603/**
1604 * regmap_get_device() - Obtain the device from a regmap
1605 *
1606 * @map: Register map to operate on.
1607 *
1608 * Returns the underlying device that the regmap has been created for.
1609 */
1610struct device *regmap_get_device(struct regmap *map)
1611{
1612 return map->dev;
1613}
1614EXPORT_SYMBOL_GPL(regmap_get_device);
1615
1616static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1617 struct regmap_range_node *range,
1618 unsigned int val_num)
1619{
1620 void *orig_work_buf;
1621 unsigned int win_offset;
1622 unsigned int win_page;
1623 bool page_chg;
1624 int ret;
1625
1626 win_offset = (*reg - range->range_min) % range->window_len;
1627 win_page = (*reg - range->range_min) / range->window_len;
1628
1629 if (val_num > 1) {
1630 /* Bulk write shouldn't cross range boundary */
1631 if (*reg + val_num - 1 > range->range_max)
1632 return -EINVAL;
1633
1634 /* ... or single page boundary */
1635 if (val_num > range->window_len - win_offset)
1636 return -EINVAL;
1637 }
1638
1639 /* It is possible to have selector register inside data window.
1640 In that case, selector register is located on every page and
1641 it needs no page switching, when accessed alone. */
1642 if (val_num > 1 ||
1643 range->window_start + win_offset != range->selector_reg) {
1644 /* Use separate work_buf during page switching */
1645 orig_work_buf = map->work_buf;
1646 map->work_buf = map->selector_work_buf;
1647
1648 ret = _regmap_update_bits(map, range->selector_reg,
1649 range->selector_mask,
1650 win_page << range->selector_shift,
1651 &page_chg, false);
1652
1653 map->work_buf = orig_work_buf;
1654
1655 if (ret != 0)
1656 return ret;
1657 }
1658
1659 *reg = range->window_start + win_offset;
1660
1661 return 0;
1662}
1663
1664static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
1665 unsigned long mask)
1666{
1667 u8 *buf;
1668 int i;
1669
1670 if (!mask || !map->work_buf)
1671 return;
1672
1673 buf = map->work_buf;
1674
1675 for (i = 0; i < max_bytes; i++)
1676 buf[i] |= (mask >> (8 * i)) & 0xff;
1677}
1678
1679static int _regmap_raw_write_impl(struct regmap *map, unsigned int reg,
1680 const void *val, size_t val_len, bool noinc)
1681{
1682 struct regmap_range_node *range;
1683 unsigned long flags;
1684 void *work_val = map->work_buf + map->format.reg_bytes +
1685 map->format.pad_bytes;
1686 void *buf;
1687 int ret = -ENOTSUPP;
1688 size_t len;
1689 int i;
1690
1691 /* Check for unwritable or noinc registers in range
1692 * before we start
1693 */
1694 if (!regmap_writeable_noinc(map, reg)) {
1695 for (i = 0; i < val_len / map->format.val_bytes; i++) {
1696 unsigned int element =
1697 reg + regmap_get_offset(map, i);
1698 if (!regmap_writeable(map, element) ||
1699 regmap_writeable_noinc(map, element))
1700 return -EINVAL;
1701 }
1702 }
1703
1704 if (!map->cache_bypass && map->format.parse_val) {
1705 unsigned int ival;
1706 int val_bytes = map->format.val_bytes;
1707 for (i = 0; i < val_len / val_bytes; i++) {
1708 ival = map->format.parse_val(val + (i * val_bytes));
1709 ret = regcache_write(map,
1710 reg + regmap_get_offset(map, i),
1711 ival);
1712 if (ret) {
1713 dev_err(map->dev,
1714 "Error in caching of register: %x ret: %d\n",
1715 reg + regmap_get_offset(map, i), ret);
1716 return ret;
1717 }
1718 }
1719 if (map->cache_only) {
1720 map->cache_dirty = true;
1721 return 0;
1722 }
1723 }
1724
1725 range = _regmap_range_lookup(map, reg);
1726 if (range) {
1727 int val_num = val_len / map->format.val_bytes;
1728 int win_offset = (reg - range->range_min) % range->window_len;
1729 int win_residue = range->window_len - win_offset;
1730
1731 /* If the write goes beyond the end of the window split it */
1732 while (val_num > win_residue) {
1733 dev_dbg(map->dev, "Writing window %d/%zu\n",
1734 win_residue, val_len / map->format.val_bytes);
1735 ret = _regmap_raw_write_impl(map, reg, val,
1736 win_residue *
1737 map->format.val_bytes, noinc);
1738 if (ret != 0)
1739 return ret;
1740
1741 reg += win_residue;
1742 val_num -= win_residue;
1743 val += win_residue * map->format.val_bytes;
1744 val_len -= win_residue * map->format.val_bytes;
1745
1746 win_offset = (reg - range->range_min) %
1747 range->window_len;
1748 win_residue = range->window_len - win_offset;
1749 }
1750
1751 ret = _regmap_select_page(map, ®, range, noinc ? 1 : val_num);
1752 if (ret != 0)
1753 return ret;
1754 }
1755
1756 reg += map->reg_base;
1757 reg >>= map->format.reg_downshift;
1758 map->format.format_reg(map->work_buf, reg, map->reg_shift);
1759 regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
1760 map->write_flag_mask);
1761
1762 /*
1763 * Essentially all I/O mechanisms will be faster with a single
1764 * buffer to write. Since register syncs often generate raw
1765 * writes of single registers optimise that case.
1766 */
1767 if (val != work_val && val_len == map->format.val_bytes) {
1768 memcpy(work_val, val, map->format.val_bytes);
1769 val = work_val;
1770 }
1771
1772 if (map->async && map->bus && map->bus->async_write) {
1773 struct regmap_async *async;
1774
1775 trace_regmap_async_write_start(map, reg, val_len);
1776
1777 spin_lock_irqsave(&map->async_lock, flags);
1778 async = list_first_entry_or_null(&map->async_free,
1779 struct regmap_async,
1780 list);
1781 if (async)
1782 list_del(&async->list);
1783 spin_unlock_irqrestore(&map->async_lock, flags);
1784
1785 if (!async) {
1786 async = map->bus->async_alloc();
1787 if (!async)
1788 return -ENOMEM;
1789
1790 async->work_buf = kzalloc(map->format.buf_size,
1791 GFP_KERNEL | GFP_DMA);
1792 if (!async->work_buf) {
1793 kfree(async);
1794 return -ENOMEM;
1795 }
1796 }
1797
1798 async->map = map;
1799
1800 /* If the caller supplied the value we can use it safely. */
1801 memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1802 map->format.reg_bytes + map->format.val_bytes);
1803
1804 spin_lock_irqsave(&map->async_lock, flags);
1805 list_add_tail(&async->list, &map->async_list);
1806 spin_unlock_irqrestore(&map->async_lock, flags);
1807
1808 if (val != work_val)
1809 ret = map->bus->async_write(map->bus_context,
1810 async->work_buf,
1811 map->format.reg_bytes +
1812 map->format.pad_bytes,
1813 val, val_len, async);
1814 else
1815 ret = map->bus->async_write(map->bus_context,
1816 async->work_buf,
1817 map->format.reg_bytes +
1818 map->format.pad_bytes +
1819 val_len, NULL, 0, async);
1820
1821 if (ret != 0) {
1822 dev_err(map->dev, "Failed to schedule write: %d\n",
1823 ret);
1824
1825 spin_lock_irqsave(&map->async_lock, flags);
1826 list_move(&async->list, &map->async_free);
1827 spin_unlock_irqrestore(&map->async_lock, flags);
1828 }
1829
1830 return ret;
1831 }
1832
1833 trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1834
1835 /* If we're doing a single register write we can probably just
1836 * send the work_buf directly, otherwise try to do a gather
1837 * write.
1838 */
1839 if (val == work_val)
1840 ret = map->write(map->bus_context, map->work_buf,
1841 map->format.reg_bytes +
1842 map->format.pad_bytes +
1843 val_len);
1844 else if (map->bus && map->bus->gather_write)
1845 ret = map->bus->gather_write(map->bus_context, map->work_buf,
1846 map->format.reg_bytes +
1847 map->format.pad_bytes,
1848 val, val_len);
1849 else
1850 ret = -ENOTSUPP;
1851
1852 /* If that didn't work fall back on linearising by hand. */
1853 if (ret == -ENOTSUPP) {
1854 len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1855 buf = kzalloc(len, GFP_KERNEL);
1856 if (!buf)
1857 return -ENOMEM;
1858
1859 memcpy(buf, map->work_buf, map->format.reg_bytes);
1860 memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1861 val, val_len);
1862 ret = map->write(map->bus_context, buf, len);
1863
1864 kfree(buf);
1865 } else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1866 /* regcache_drop_region() takes lock that we already have,
1867 * thus call map->cache_ops->drop() directly
1868 */
1869 if (map->cache_ops && map->cache_ops->drop)
1870 map->cache_ops->drop(map, reg, reg + 1);
1871 }
1872
1873 trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1874
1875 return ret;
1876}
1877
1878/**
1879 * regmap_can_raw_write - Test if regmap_raw_write() is supported
1880 *
1881 * @map: Map to check.
1882 */
1883bool regmap_can_raw_write(struct regmap *map)
1884{
1885 return map->write && map->format.format_val && map->format.format_reg;
1886}
1887EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1888
1889/**
1890 * regmap_get_raw_read_max - Get the maximum size we can read
1891 *
1892 * @map: Map to check.
1893 */
1894size_t regmap_get_raw_read_max(struct regmap *map)
1895{
1896 return map->max_raw_read;
1897}
1898EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1899
1900/**
1901 * regmap_get_raw_write_max - Get the maximum size we can read
1902 *
1903 * @map: Map to check.
1904 */
1905size_t regmap_get_raw_write_max(struct regmap *map)
1906{
1907 return map->max_raw_write;
1908}
1909EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1910
1911static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1912 unsigned int val)
1913{
1914 int ret;
1915 struct regmap_range_node *range;
1916 struct regmap *map = context;
1917
1918 WARN_ON(!map->format.format_write);
1919
1920 range = _regmap_range_lookup(map, reg);
1921 if (range) {
1922 ret = _regmap_select_page(map, ®, range, 1);
1923 if (ret != 0)
1924 return ret;
1925 }
1926
1927 reg += map->reg_base;
1928 reg >>= map->format.reg_downshift;
1929 map->format.format_write(map, reg, val);
1930
1931 trace_regmap_hw_write_start(map, reg, 1);
1932
1933 ret = map->write(map->bus_context, map->work_buf, map->format.buf_size);
1934
1935 trace_regmap_hw_write_done(map, reg, 1);
1936
1937 return ret;
1938}
1939
1940static int _regmap_bus_reg_write(void *context, unsigned int reg,
1941 unsigned int val)
1942{
1943 struct regmap *map = context;
1944
1945 return map->bus->reg_write(map->bus_context, reg, val);
1946}
1947
1948static int _regmap_bus_raw_write(void *context, unsigned int reg,
1949 unsigned int val)
1950{
1951 struct regmap *map = context;
1952
1953 WARN_ON(!map->format.format_val);
1954
1955 map->format.format_val(map->work_buf + map->format.reg_bytes
1956 + map->format.pad_bytes, val, 0);
1957 return _regmap_raw_write_impl(map, reg,
1958 map->work_buf +
1959 map->format.reg_bytes +
1960 map->format.pad_bytes,
1961 map->format.val_bytes,
1962 false);
1963}
1964
1965static inline void *_regmap_map_get_context(struct regmap *map)
1966{
1967 return (map->bus || (!map->bus && map->read)) ? map : map->bus_context;
1968}
1969
1970int _regmap_write(struct regmap *map, unsigned int reg,
1971 unsigned int val)
1972{
1973 int ret;
1974 void *context = _regmap_map_get_context(map);
1975
1976 if (!regmap_writeable(map, reg))
1977 return -EIO;
1978
1979 if (!map->cache_bypass && !map->defer_caching) {
1980 ret = regcache_write(map, reg, val);
1981 if (ret != 0)
1982 return ret;
1983 if (map->cache_only) {
1984 map->cache_dirty = true;
1985 return 0;
1986 }
1987 }
1988
1989 ret = map->reg_write(context, reg, val);
1990 if (ret == 0) {
1991 if (regmap_should_log(map))
1992 dev_info(map->dev, "%x <= %x\n", reg, val);
1993
1994 trace_regmap_reg_write(map, reg, val);
1995 }
1996
1997 return ret;
1998}
1999
2000/**
2001 * regmap_write() - Write a value to a single register
2002 *
2003 * @map: Register map to write to
2004 * @reg: Register to write to
2005 * @val: Value to be written
2006 *
2007 * A value of zero will be returned on success, a negative errno will
2008 * be returned in error cases.
2009 */
2010int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
2011{
2012 int ret;
2013
2014 if (!IS_ALIGNED(reg, map->reg_stride))
2015 return -EINVAL;
2016
2017 map->lock(map->lock_arg);
2018
2019 ret = _regmap_write(map, reg, val);
2020
2021 map->unlock(map->lock_arg);
2022
2023 return ret;
2024}
2025EXPORT_SYMBOL_GPL(regmap_write);
2026
2027/**
2028 * regmap_write_async() - Write a value to a single register asynchronously
2029 *
2030 * @map: Register map to write to
2031 * @reg: Register to write to
2032 * @val: Value to be written
2033 *
2034 * A value of zero will be returned on success, a negative errno will
2035 * be returned in error cases.
2036 */
2037int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
2038{
2039 int ret;
2040
2041 if (!IS_ALIGNED(reg, map->reg_stride))
2042 return -EINVAL;
2043
2044 map->lock(map->lock_arg);
2045
2046 map->async = true;
2047
2048 ret = _regmap_write(map, reg, val);
2049
2050 map->async = false;
2051
2052 map->unlock(map->lock_arg);
2053
2054 return ret;
2055}
2056EXPORT_SYMBOL_GPL(regmap_write_async);
2057
2058int _regmap_raw_write(struct regmap *map, unsigned int reg,
2059 const void *val, size_t val_len, bool noinc)
2060{
2061 size_t val_bytes = map->format.val_bytes;
2062 size_t val_count = val_len / val_bytes;
2063 size_t chunk_count, chunk_bytes;
2064 size_t chunk_regs = val_count;
2065 int ret, i;
2066
2067 if (!val_count)
2068 return -EINVAL;
2069
2070 if (map->use_single_write)
2071 chunk_regs = 1;
2072 else if (map->max_raw_write && val_len > map->max_raw_write)
2073 chunk_regs = map->max_raw_write / val_bytes;
2074
2075 chunk_count = val_count / chunk_regs;
2076 chunk_bytes = chunk_regs * val_bytes;
2077
2078 /* Write as many bytes as possible with chunk_size */
2079 for (i = 0; i < chunk_count; i++) {
2080 ret = _regmap_raw_write_impl(map, reg, val, chunk_bytes, noinc);
2081 if (ret)
2082 return ret;
2083
2084 reg += regmap_get_offset(map, chunk_regs);
2085 val += chunk_bytes;
2086 val_len -= chunk_bytes;
2087 }
2088
2089 /* Write remaining bytes */
2090 if (val_len)
2091 ret = _regmap_raw_write_impl(map, reg, val, val_len, noinc);
2092
2093 return ret;
2094}
2095
2096/**
2097 * regmap_raw_write() - Write raw values to one or more registers
2098 *
2099 * @map: Register map to write to
2100 * @reg: Initial register to write to
2101 * @val: Block of data to be written, laid out for direct transmission to the
2102 * device
2103 * @val_len: Length of data pointed to by val.
2104 *
2105 * This function is intended to be used for things like firmware
2106 * download where a large block of data needs to be transferred to the
2107 * device. No formatting will be done on the data provided.
2108 *
2109 * A value of zero will be returned on success, a negative errno will
2110 * be returned in error cases.
2111 */
2112int regmap_raw_write(struct regmap *map, unsigned int reg,
2113 const void *val, size_t val_len)
2114{
2115 int ret;
2116
2117 if (!regmap_can_raw_write(map))
2118 return -EINVAL;
2119 if (val_len % map->format.val_bytes)
2120 return -EINVAL;
2121
2122 map->lock(map->lock_arg);
2123
2124 ret = _regmap_raw_write(map, reg, val, val_len, false);
2125
2126 map->unlock(map->lock_arg);
2127
2128 return ret;
2129}
2130EXPORT_SYMBOL_GPL(regmap_raw_write);
2131
2132static int regmap_noinc_readwrite(struct regmap *map, unsigned int reg,
2133 void *val, unsigned int val_len, bool write)
2134{
2135 size_t val_bytes = map->format.val_bytes;
2136 size_t val_count = val_len / val_bytes;
2137 unsigned int lastval;
2138 u8 *u8p;
2139 u16 *u16p;
2140 u32 *u32p;
2141#ifdef CONFIG_64BIT
2142 u64 *u64p;
2143#endif
2144 int ret;
2145 int i;
2146
2147 switch (val_bytes) {
2148 case 1:
2149 u8p = val;
2150 if (write)
2151 lastval = (unsigned int)u8p[val_count - 1];
2152 break;
2153 case 2:
2154 u16p = val;
2155 if (write)
2156 lastval = (unsigned int)u16p[val_count - 1];
2157 break;
2158 case 4:
2159 u32p = val;
2160 if (write)
2161 lastval = (unsigned int)u32p[val_count - 1];
2162 break;
2163#ifdef CONFIG_64BIT
2164 case 8:
2165 u64p = val;
2166 if (write)
2167 lastval = (unsigned int)u64p[val_count - 1];
2168 break;
2169#endif
2170 default:
2171 return -EINVAL;
2172 }
2173
2174 /*
2175 * Update the cache with the last value we write, the rest is just
2176 * gone down in the hardware FIFO. We can't cache FIFOs. This makes
2177 * sure a single read from the cache will work.
2178 */
2179 if (write) {
2180 if (!map->cache_bypass && !map->defer_caching) {
2181 ret = regcache_write(map, reg, lastval);
2182 if (ret != 0)
2183 return ret;
2184 if (map->cache_only) {
2185 map->cache_dirty = true;
2186 return 0;
2187 }
2188 }
2189 ret = map->bus->reg_noinc_write(map->bus_context, reg, val, val_count);
2190 } else {
2191 ret = map->bus->reg_noinc_read(map->bus_context, reg, val, val_count);
2192 }
2193
2194 if (!ret && regmap_should_log(map)) {
2195 dev_info(map->dev, "%x %s [", reg, write ? "<=" : "=>");
2196 for (i = 0; i < val_count; i++) {
2197 switch (val_bytes) {
2198 case 1:
2199 pr_cont("%x", u8p[i]);
2200 break;
2201 case 2:
2202 pr_cont("%x", u16p[i]);
2203 break;
2204 case 4:
2205 pr_cont("%x", u32p[i]);
2206 break;
2207#ifdef CONFIG_64BIT
2208 case 8:
2209 pr_cont("%llx", u64p[i]);
2210 break;
2211#endif
2212 default:
2213 break;
2214 }
2215 if (i == (val_count - 1))
2216 pr_cont("]\n");
2217 else
2218 pr_cont(",");
2219 }
2220 }
2221
2222 return 0;
2223}
2224
2225/**
2226 * regmap_noinc_write(): Write data from a register without incrementing the
2227 * register number
2228 *
2229 * @map: Register map to write to
2230 * @reg: Register to write to
2231 * @val: Pointer to data buffer
2232 * @val_len: Length of output buffer in bytes.
2233 *
2234 * The regmap API usually assumes that bulk bus write operations will write a
2235 * range of registers. Some devices have certain registers for which a write
2236 * operation can write to an internal FIFO.
2237 *
2238 * The target register must be volatile but registers after it can be
2239 * completely unrelated cacheable registers.
2240 *
2241 * This will attempt multiple writes as required to write val_len bytes.
2242 *
2243 * A value of zero will be returned on success, a negative errno will be
2244 * returned in error cases.
2245 */
2246int regmap_noinc_write(struct regmap *map, unsigned int reg,
2247 const void *val, size_t val_len)
2248{
2249 size_t write_len;
2250 int ret;
2251
2252 if (!map->write && !(map->bus && map->bus->reg_noinc_write))
2253 return -EINVAL;
2254 if (val_len % map->format.val_bytes)
2255 return -EINVAL;
2256 if (!IS_ALIGNED(reg, map->reg_stride))
2257 return -EINVAL;
2258 if (val_len == 0)
2259 return -EINVAL;
2260
2261 map->lock(map->lock_arg);
2262
2263 if (!regmap_volatile(map, reg) || !regmap_writeable_noinc(map, reg)) {
2264 ret = -EINVAL;
2265 goto out_unlock;
2266 }
2267
2268 /*
2269 * Use the accelerated operation if we can. The val drops the const
2270 * typing in order to facilitate code reuse in regmap_noinc_readwrite().
2271 */
2272 if (map->bus->reg_noinc_write) {
2273 ret = regmap_noinc_readwrite(map, reg, (void *)val, val_len, true);
2274 goto out_unlock;
2275 }
2276
2277 while (val_len) {
2278 if (map->max_raw_write && map->max_raw_write < val_len)
2279 write_len = map->max_raw_write;
2280 else
2281 write_len = val_len;
2282 ret = _regmap_raw_write(map, reg, val, write_len, true);
2283 if (ret)
2284 goto out_unlock;
2285 val = ((u8 *)val) + write_len;
2286 val_len -= write_len;
2287 }
2288
2289out_unlock:
2290 map->unlock(map->lock_arg);
2291 return ret;
2292}
2293EXPORT_SYMBOL_GPL(regmap_noinc_write);
2294
2295/**
2296 * regmap_field_update_bits_base() - Perform a read/modify/write cycle a
2297 * register field.
2298 *
2299 * @field: Register field to write to
2300 * @mask: Bitmask to change
2301 * @val: Value to be written
2302 * @change: Boolean indicating if a write was done
2303 * @async: Boolean indicating asynchronously
2304 * @force: Boolean indicating use force update
2305 *
2306 * Perform a read/modify/write cycle on the register field with change,
2307 * async, force option.
2308 *
2309 * A value of zero will be returned on success, a negative errno will
2310 * be returned in error cases.
2311 */
2312int regmap_field_update_bits_base(struct regmap_field *field,
2313 unsigned int mask, unsigned int val,
2314 bool *change, bool async, bool force)
2315{
2316 mask = (mask << field->shift) & field->mask;
2317
2318 return regmap_update_bits_base(field->regmap, field->reg,
2319 mask, val << field->shift,
2320 change, async, force);
2321}
2322EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
2323
2324/**
2325 * regmap_field_test_bits() - Check if all specified bits are set in a
2326 * register field.
2327 *
2328 * @field: Register field to operate on
2329 * @bits: Bits to test
2330 *
2331 * Returns -1 if the underlying regmap_field_read() fails, 0 if at least one of the
2332 * tested bits is not set and 1 if all tested bits are set.
2333 */
2334int regmap_field_test_bits(struct regmap_field *field, unsigned int bits)
2335{
2336 unsigned int val, ret;
2337
2338 ret = regmap_field_read(field, &val);
2339 if (ret)
2340 return ret;
2341
2342 return (val & bits) == bits;
2343}
2344EXPORT_SYMBOL_GPL(regmap_field_test_bits);
2345
2346/**
2347 * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a
2348 * register field with port ID
2349 *
2350 * @field: Register field to write to
2351 * @id: port ID
2352 * @mask: Bitmask to change
2353 * @val: Value to be written
2354 * @change: Boolean indicating if a write was done
2355 * @async: Boolean indicating asynchronously
2356 * @force: Boolean indicating use force update
2357 *
2358 * A value of zero will be returned on success, a negative errno will
2359 * be returned in error cases.
2360 */
2361int regmap_fields_update_bits_base(struct regmap_field *field, unsigned int id,
2362 unsigned int mask, unsigned int val,
2363 bool *change, bool async, bool force)
2364{
2365 if (id >= field->id_size)
2366 return -EINVAL;
2367
2368 mask = (mask << field->shift) & field->mask;
2369
2370 return regmap_update_bits_base(field->regmap,
2371 field->reg + (field->id_offset * id),
2372 mask, val << field->shift,
2373 change, async, force);
2374}
2375EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
2376
2377/**
2378 * regmap_bulk_write() - Write multiple registers to the device
2379 *
2380 * @map: Register map to write to
2381 * @reg: First register to be write from
2382 * @val: Block of data to be written, in native register size for device
2383 * @val_count: Number of registers to write
2384 *
2385 * This function is intended to be used for writing a large block of
2386 * data to the device either in single transfer or multiple transfer.
2387 *
2388 * A value of zero will be returned on success, a negative errno will
2389 * be returned in error cases.
2390 */
2391int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
2392 size_t val_count)
2393{
2394 int ret = 0, i;
2395 size_t val_bytes = map->format.val_bytes;
2396
2397 if (!IS_ALIGNED(reg, map->reg_stride))
2398 return -EINVAL;
2399
2400 /*
2401 * Some devices don't support bulk write, for them we have a series of
2402 * single write operations.
2403 */
2404 if (!map->write || !map->format.parse_inplace) {
2405 map->lock(map->lock_arg);
2406 for (i = 0; i < val_count; i++) {
2407 unsigned int ival;
2408
2409 switch (val_bytes) {
2410 case 1:
2411 ival = *(u8 *)(val + (i * val_bytes));
2412 break;
2413 case 2:
2414 ival = *(u16 *)(val + (i * val_bytes));
2415 break;
2416 case 4:
2417 ival = *(u32 *)(val + (i * val_bytes));
2418 break;
2419#ifdef CONFIG_64BIT
2420 case 8:
2421 ival = *(u64 *)(val + (i * val_bytes));
2422 break;
2423#endif
2424 default:
2425 ret = -EINVAL;
2426 goto out;
2427 }
2428
2429 ret = _regmap_write(map,
2430 reg + regmap_get_offset(map, i),
2431 ival);
2432 if (ret != 0)
2433 goto out;
2434 }
2435out:
2436 map->unlock(map->lock_arg);
2437 } else {
2438 void *wval;
2439
2440 wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
2441 if (!wval)
2442 return -ENOMEM;
2443
2444 for (i = 0; i < val_count * val_bytes; i += val_bytes)
2445 map->format.parse_inplace(wval + i);
2446
2447 ret = regmap_raw_write(map, reg, wval, val_bytes * val_count);
2448
2449 kfree(wval);
2450 }
2451
2452 if (!ret)
2453 trace_regmap_bulk_write(map, reg, val, val_bytes * val_count);
2454
2455 return ret;
2456}
2457EXPORT_SYMBOL_GPL(regmap_bulk_write);
2458
2459/*
2460 * _regmap_raw_multi_reg_write()
2461 *
2462 * the (register,newvalue) pairs in regs have not been formatted, but
2463 * they are all in the same page and have been changed to being page
2464 * relative. The page register has been written if that was necessary.
2465 */
2466static int _regmap_raw_multi_reg_write(struct regmap *map,
2467 const struct reg_sequence *regs,
2468 size_t num_regs)
2469{
2470 int ret;
2471 void *buf;
2472 int i;
2473 u8 *u8;
2474 size_t val_bytes = map->format.val_bytes;
2475 size_t reg_bytes = map->format.reg_bytes;
2476 size_t pad_bytes = map->format.pad_bytes;
2477 size_t pair_size = reg_bytes + pad_bytes + val_bytes;
2478 size_t len = pair_size * num_regs;
2479
2480 if (!len)
2481 return -EINVAL;
2482
2483 buf = kzalloc(len, GFP_KERNEL);
2484 if (!buf)
2485 return -ENOMEM;
2486
2487 /* We have to linearise by hand. */
2488
2489 u8 = buf;
2490
2491 for (i = 0; i < num_regs; i++) {
2492 unsigned int reg = regs[i].reg;
2493 unsigned int val = regs[i].def;
2494 trace_regmap_hw_write_start(map, reg, 1);
2495 reg += map->reg_base;
2496 reg >>= map->format.reg_downshift;
2497 map->format.format_reg(u8, reg, map->reg_shift);
2498 u8 += reg_bytes + pad_bytes;
2499 map->format.format_val(u8, val, 0);
2500 u8 += val_bytes;
2501 }
2502 u8 = buf;
2503 *u8 |= map->write_flag_mask;
2504
2505 ret = map->write(map->bus_context, buf, len);
2506
2507 kfree(buf);
2508
2509 for (i = 0; i < num_regs; i++) {
2510 int reg = regs[i].reg;
2511 trace_regmap_hw_write_done(map, reg, 1);
2512 }
2513 return ret;
2514}
2515
2516static unsigned int _regmap_register_page(struct regmap *map,
2517 unsigned int reg,
2518 struct regmap_range_node *range)
2519{
2520 unsigned int win_page = (reg - range->range_min) / range->window_len;
2521
2522 return win_page;
2523}
2524
2525static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2526 struct reg_sequence *regs,
2527 size_t num_regs)
2528{
2529 int ret;
2530 int i, n;
2531 struct reg_sequence *base;
2532 unsigned int this_page = 0;
2533 unsigned int page_change = 0;
2534 /*
2535 * the set of registers are not neccessarily in order, but
2536 * since the order of write must be preserved this algorithm
2537 * chops the set each time the page changes. This also applies
2538 * if there is a delay required at any point in the sequence.
2539 */
2540 base = regs;
2541 for (i = 0, n = 0; i < num_regs; i++, n++) {
2542 unsigned int reg = regs[i].reg;
2543 struct regmap_range_node *range;
2544
2545 range = _regmap_range_lookup(map, reg);
2546 if (range) {
2547 unsigned int win_page = _regmap_register_page(map, reg,
2548 range);
2549
2550 if (i == 0)
2551 this_page = win_page;
2552 if (win_page != this_page) {
2553 this_page = win_page;
2554 page_change = 1;
2555 }
2556 }
2557
2558 /* If we have both a page change and a delay make sure to
2559 * write the regs and apply the delay before we change the
2560 * page.
2561 */
2562
2563 if (page_change || regs[i].delay_us) {
2564
2565 /* For situations where the first write requires
2566 * a delay we need to make sure we don't call
2567 * raw_multi_reg_write with n=0
2568 * This can't occur with page breaks as we
2569 * never write on the first iteration
2570 */
2571 if (regs[i].delay_us && i == 0)
2572 n = 1;
2573
2574 ret = _regmap_raw_multi_reg_write(map, base, n);
2575 if (ret != 0)
2576 return ret;
2577
2578 if (regs[i].delay_us) {
2579 if (map->can_sleep)
2580 fsleep(regs[i].delay_us);
2581 else
2582 udelay(regs[i].delay_us);
2583 }
2584
2585 base += n;
2586 n = 0;
2587
2588 if (page_change) {
2589 ret = _regmap_select_page(map,
2590 &base[n].reg,
2591 range, 1);
2592 if (ret != 0)
2593 return ret;
2594
2595 page_change = 0;
2596 }
2597
2598 }
2599
2600 }
2601 if (n > 0)
2602 return _regmap_raw_multi_reg_write(map, base, n);
2603 return 0;
2604}
2605
2606static int _regmap_multi_reg_write(struct regmap *map,
2607 const struct reg_sequence *regs,
2608 size_t num_regs)
2609{
2610 int i;
2611 int ret;
2612
2613 if (!map->can_multi_write) {
2614 for (i = 0; i < num_regs; i++) {
2615 ret = _regmap_write(map, regs[i].reg, regs[i].def);
2616 if (ret != 0)
2617 return ret;
2618
2619 if (regs[i].delay_us) {
2620 if (map->can_sleep)
2621 fsleep(regs[i].delay_us);
2622 else
2623 udelay(regs[i].delay_us);
2624 }
2625 }
2626 return 0;
2627 }
2628
2629 if (!map->format.parse_inplace)
2630 return -EINVAL;
2631
2632 if (map->writeable_reg)
2633 for (i = 0; i < num_regs; i++) {
2634 int reg = regs[i].reg;
2635 if (!map->writeable_reg(map->dev, reg))
2636 return -EINVAL;
2637 if (!IS_ALIGNED(reg, map->reg_stride))
2638 return -EINVAL;
2639 }
2640
2641 if (!map->cache_bypass) {
2642 for (i = 0; i < num_regs; i++) {
2643 unsigned int val = regs[i].def;
2644 unsigned int reg = regs[i].reg;
2645 ret = regcache_write(map, reg, val);
2646 if (ret) {
2647 dev_err(map->dev,
2648 "Error in caching of register: %x ret: %d\n",
2649 reg, ret);
2650 return ret;
2651 }
2652 }
2653 if (map->cache_only) {
2654 map->cache_dirty = true;
2655 return 0;
2656 }
2657 }
2658
2659 WARN_ON(!map->bus);
2660
2661 for (i = 0; i < num_regs; i++) {
2662 unsigned int reg = regs[i].reg;
2663 struct regmap_range_node *range;
2664
2665 /* Coalesce all the writes between a page break or a delay
2666 * in a sequence
2667 */
2668 range = _regmap_range_lookup(map, reg);
2669 if (range || regs[i].delay_us) {
2670 size_t len = sizeof(struct reg_sequence)*num_regs;
2671 struct reg_sequence *base = kmemdup(regs, len,
2672 GFP_KERNEL);
2673 if (!base)
2674 return -ENOMEM;
2675 ret = _regmap_range_multi_paged_reg_write(map, base,
2676 num_regs);
2677 kfree(base);
2678
2679 return ret;
2680 }
2681 }
2682 return _regmap_raw_multi_reg_write(map, regs, num_regs);
2683}
2684
2685/**
2686 * regmap_multi_reg_write() - Write multiple registers to the device
2687 *
2688 * @map: Register map to write to
2689 * @regs: Array of structures containing register,value to be written
2690 * @num_regs: Number of registers to write
2691 *
2692 * Write multiple registers to the device where the set of register, value
2693 * pairs are supplied in any order, possibly not all in a single range.
2694 *
2695 * The 'normal' block write mode will send ultimately send data on the
2696 * target bus as R,V1,V2,V3,..,Vn where successively higher registers are
2697 * addressed. However, this alternative block multi write mode will send
2698 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2699 * must of course support the mode.
2700 *
2701 * A value of zero will be returned on success, a negative errno will be
2702 * returned in error cases.
2703 */
2704int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2705 int num_regs)
2706{
2707 int ret;
2708
2709 map->lock(map->lock_arg);
2710
2711 ret = _regmap_multi_reg_write(map, regs, num_regs);
2712
2713 map->unlock(map->lock_arg);
2714
2715 return ret;
2716}
2717EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2718
2719/**
2720 * regmap_multi_reg_write_bypassed() - Write multiple registers to the
2721 * device but not the cache
2722 *
2723 * @map: Register map to write to
2724 * @regs: Array of structures containing register,value to be written
2725 * @num_regs: Number of registers to write
2726 *
2727 * Write multiple registers to the device but not the cache where the set
2728 * of register are supplied in any order.
2729 *
2730 * This function is intended to be used for writing a large block of data
2731 * atomically to the device in single transfer for those I2C client devices
2732 * that implement this alternative block write mode.
2733 *
2734 * A value of zero will be returned on success, a negative errno will
2735 * be returned in error cases.
2736 */
2737int regmap_multi_reg_write_bypassed(struct regmap *map,
2738 const struct reg_sequence *regs,
2739 int num_regs)
2740{
2741 int ret;
2742 bool bypass;
2743
2744 map->lock(map->lock_arg);
2745
2746 bypass = map->cache_bypass;
2747 map->cache_bypass = true;
2748
2749 ret = _regmap_multi_reg_write(map, regs, num_regs);
2750
2751 map->cache_bypass = bypass;
2752
2753 map->unlock(map->lock_arg);
2754
2755 return ret;
2756}
2757EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2758
2759/**
2760 * regmap_raw_write_async() - Write raw values to one or more registers
2761 * asynchronously
2762 *
2763 * @map: Register map to write to
2764 * @reg: Initial register to write to
2765 * @val: Block of data to be written, laid out for direct transmission to the
2766 * device. Must be valid until regmap_async_complete() is called.
2767 * @val_len: Length of data pointed to by val.
2768 *
2769 * This function is intended to be used for things like firmware
2770 * download where a large block of data needs to be transferred to the
2771 * device. No formatting will be done on the data provided.
2772 *
2773 * If supported by the underlying bus the write will be scheduled
2774 * asynchronously, helping maximise I/O speed on higher speed buses
2775 * like SPI. regmap_async_complete() can be called to ensure that all
2776 * asynchrnous writes have been completed.
2777 *
2778 * A value of zero will be returned on success, a negative errno will
2779 * be returned in error cases.
2780 */
2781int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2782 const void *val, size_t val_len)
2783{
2784 int ret;
2785
2786 if (val_len % map->format.val_bytes)
2787 return -EINVAL;
2788 if (!IS_ALIGNED(reg, map->reg_stride))
2789 return -EINVAL;
2790
2791 map->lock(map->lock_arg);
2792
2793 map->async = true;
2794
2795 ret = _regmap_raw_write(map, reg, val, val_len, false);
2796
2797 map->async = false;
2798
2799 map->unlock(map->lock_arg);
2800
2801 return ret;
2802}
2803EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2804
2805static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2806 unsigned int val_len, bool noinc)
2807{
2808 struct regmap_range_node *range;
2809 int ret;
2810
2811 if (!map->read)
2812 return -EINVAL;
2813
2814 range = _regmap_range_lookup(map, reg);
2815 if (range) {
2816 ret = _regmap_select_page(map, ®, range,
2817 noinc ? 1 : val_len / map->format.val_bytes);
2818 if (ret != 0)
2819 return ret;
2820 }
2821
2822 reg += map->reg_base;
2823 reg >>= map->format.reg_downshift;
2824 map->format.format_reg(map->work_buf, reg, map->reg_shift);
2825 regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
2826 map->read_flag_mask);
2827 trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2828
2829 ret = map->read(map->bus_context, map->work_buf,
2830 map->format.reg_bytes + map->format.pad_bytes,
2831 val, val_len);
2832
2833 trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2834
2835 return ret;
2836}
2837
2838static int _regmap_bus_reg_read(void *context, unsigned int reg,
2839 unsigned int *val)
2840{
2841 struct regmap *map = context;
2842
2843 return map->bus->reg_read(map->bus_context, reg, val);
2844}
2845
2846static int _regmap_bus_read(void *context, unsigned int reg,
2847 unsigned int *val)
2848{
2849 int ret;
2850 struct regmap *map = context;
2851 void *work_val = map->work_buf + map->format.reg_bytes +
2852 map->format.pad_bytes;
2853
2854 if (!map->format.parse_val)
2855 return -EINVAL;
2856
2857 ret = _regmap_raw_read(map, reg, work_val, map->format.val_bytes, false);
2858 if (ret == 0)
2859 *val = map->format.parse_val(work_val);
2860
2861 return ret;
2862}
2863
2864static int _regmap_read(struct regmap *map, unsigned int reg,
2865 unsigned int *val)
2866{
2867 int ret;
2868 void *context = _regmap_map_get_context(map);
2869
2870 if (!map->cache_bypass) {
2871 ret = regcache_read(map, reg, val);
2872 if (ret == 0)
2873 return 0;
2874 }
2875
2876 if (map->cache_only)
2877 return -EBUSY;
2878
2879 if (!regmap_readable(map, reg))
2880 return -EIO;
2881
2882 ret = map->reg_read(context, reg, val);
2883 if (ret == 0) {
2884 if (regmap_should_log(map))
2885 dev_info(map->dev, "%x => %x\n", reg, *val);
2886
2887 trace_regmap_reg_read(map, reg, *val);
2888
2889 if (!map->cache_bypass)
2890 regcache_write(map, reg, *val);
2891 }
2892
2893 return ret;
2894}
2895
2896/**
2897 * regmap_read() - Read a value from a single register
2898 *
2899 * @map: Register map to read from
2900 * @reg: Register to be read from
2901 * @val: Pointer to store read value
2902 *
2903 * A value of zero will be returned on success, a negative errno will
2904 * be returned in error cases.
2905 */
2906int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2907{
2908 int ret;
2909
2910 if (!IS_ALIGNED(reg, map->reg_stride))
2911 return -EINVAL;
2912
2913 map->lock(map->lock_arg);
2914
2915 ret = _regmap_read(map, reg, val);
2916
2917 map->unlock(map->lock_arg);
2918
2919 return ret;
2920}
2921EXPORT_SYMBOL_GPL(regmap_read);
2922
2923/**
2924 * regmap_raw_read() - Read raw data from the device
2925 *
2926 * @map: Register map to read from
2927 * @reg: First register to be read from
2928 * @val: Pointer to store read value
2929 * @val_len: Size of data to read
2930 *
2931 * A value of zero will be returned on success, a negative errno will
2932 * be returned in error cases.
2933 */
2934int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2935 size_t val_len)
2936{
2937 size_t val_bytes = map->format.val_bytes;
2938 size_t val_count = val_len / val_bytes;
2939 unsigned int v;
2940 int ret, i;
2941
2942 if (val_len % map->format.val_bytes)
2943 return -EINVAL;
2944 if (!IS_ALIGNED(reg, map->reg_stride))
2945 return -EINVAL;
2946 if (val_count == 0)
2947 return -EINVAL;
2948
2949 map->lock(map->lock_arg);
2950
2951 if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2952 map->cache_type == REGCACHE_NONE) {
2953 size_t chunk_count, chunk_bytes;
2954 size_t chunk_regs = val_count;
2955
2956 if (!map->read) {
2957 ret = -ENOTSUPP;
2958 goto out;
2959 }
2960
2961 if (map->use_single_read)
2962 chunk_regs = 1;
2963 else if (map->max_raw_read && val_len > map->max_raw_read)
2964 chunk_regs = map->max_raw_read / val_bytes;
2965
2966 chunk_count = val_count / chunk_regs;
2967 chunk_bytes = chunk_regs * val_bytes;
2968
2969 /* Read bytes that fit into whole chunks */
2970 for (i = 0; i < chunk_count; i++) {
2971 ret = _regmap_raw_read(map, reg, val, chunk_bytes, false);
2972 if (ret != 0)
2973 goto out;
2974
2975 reg += regmap_get_offset(map, chunk_regs);
2976 val += chunk_bytes;
2977 val_len -= chunk_bytes;
2978 }
2979
2980 /* Read remaining bytes */
2981 if (val_len) {
2982 ret = _regmap_raw_read(map, reg, val, val_len, false);
2983 if (ret != 0)
2984 goto out;
2985 }
2986 } else {
2987 /* Otherwise go word by word for the cache; should be low
2988 * cost as we expect to hit the cache.
2989 */
2990 for (i = 0; i < val_count; i++) {
2991 ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2992 &v);
2993 if (ret != 0)
2994 goto out;
2995
2996 map->format.format_val(val + (i * val_bytes), v, 0);
2997 }
2998 }
2999
3000 out:
3001 map->unlock(map->lock_arg);
3002
3003 return ret;
3004}
3005EXPORT_SYMBOL_GPL(regmap_raw_read);
3006
3007/**
3008 * regmap_noinc_read(): Read data from a register without incrementing the
3009 * register number
3010 *
3011 * @map: Register map to read from
3012 * @reg: Register to read from
3013 * @val: Pointer to data buffer
3014 * @val_len: Length of output buffer in bytes.
3015 *
3016 * The regmap API usually assumes that bulk read operations will read a
3017 * range of registers. Some devices have certain registers for which a read
3018 * operation read will read from an internal FIFO.
3019 *
3020 * The target register must be volatile but registers after it can be
3021 * completely unrelated cacheable registers.
3022 *
3023 * This will attempt multiple reads as required to read val_len bytes.
3024 *
3025 * A value of zero will be returned on success, a negative errno will be
3026 * returned in error cases.
3027 */
3028int regmap_noinc_read(struct regmap *map, unsigned int reg,
3029 void *val, size_t val_len)
3030{
3031 size_t read_len;
3032 int ret;
3033
3034 if (!map->read)
3035 return -ENOTSUPP;
3036
3037 if (val_len % map->format.val_bytes)
3038 return -EINVAL;
3039 if (!IS_ALIGNED(reg, map->reg_stride))
3040 return -EINVAL;
3041 if (val_len == 0)
3042 return -EINVAL;
3043
3044 map->lock(map->lock_arg);
3045
3046 if (!regmap_volatile(map, reg) || !regmap_readable_noinc(map, reg)) {
3047 ret = -EINVAL;
3048 goto out_unlock;
3049 }
3050
3051 /* Use the accelerated operation if we can */
3052 if (map->bus->reg_noinc_read) {
3053 /*
3054 * We have not defined the FIFO semantics for cache, as the
3055 * cache is just one value deep. Should we return the last
3056 * written value? Just avoid this by always reading the FIFO
3057 * even when using cache. Cache only will not work.
3058 */
3059 if (map->cache_only) {
3060 ret = -EBUSY;
3061 goto out_unlock;
3062 }
3063 ret = regmap_noinc_readwrite(map, reg, val, val_len, false);
3064 goto out_unlock;
3065 }
3066
3067 while (val_len) {
3068 if (map->max_raw_read && map->max_raw_read < val_len)
3069 read_len = map->max_raw_read;
3070 else
3071 read_len = val_len;
3072 ret = _regmap_raw_read(map, reg, val, read_len, true);
3073 if (ret)
3074 goto out_unlock;
3075 val = ((u8 *)val) + read_len;
3076 val_len -= read_len;
3077 }
3078
3079out_unlock:
3080 map->unlock(map->lock_arg);
3081 return ret;
3082}
3083EXPORT_SYMBOL_GPL(regmap_noinc_read);
3084
3085/**
3086 * regmap_field_read(): Read a value to a single register field
3087 *
3088 * @field: Register field to read from
3089 * @val: Pointer to store read value
3090 *
3091 * A value of zero will be returned on success, a negative errno will
3092 * be returned in error cases.
3093 */
3094int regmap_field_read(struct regmap_field *field, unsigned int *val)
3095{
3096 int ret;
3097 unsigned int reg_val;
3098 ret = regmap_read(field->regmap, field->reg, ®_val);
3099 if (ret != 0)
3100 return ret;
3101
3102 reg_val &= field->mask;
3103 reg_val >>= field->shift;
3104 *val = reg_val;
3105
3106 return ret;
3107}
3108EXPORT_SYMBOL_GPL(regmap_field_read);
3109
3110/**
3111 * regmap_fields_read() - Read a value to a single register field with port ID
3112 *
3113 * @field: Register field to read from
3114 * @id: port ID
3115 * @val: Pointer to store read value
3116 *
3117 * A value of zero will be returned on success, a negative errno will
3118 * be returned in error cases.
3119 */
3120int regmap_fields_read(struct regmap_field *field, unsigned int id,
3121 unsigned int *val)
3122{
3123 int ret;
3124 unsigned int reg_val;
3125
3126 if (id >= field->id_size)
3127 return -EINVAL;
3128
3129 ret = regmap_read(field->regmap,
3130 field->reg + (field->id_offset * id),
3131 ®_val);
3132 if (ret != 0)
3133 return ret;
3134
3135 reg_val &= field->mask;
3136 reg_val >>= field->shift;
3137 *val = reg_val;
3138
3139 return ret;
3140}
3141EXPORT_SYMBOL_GPL(regmap_fields_read);
3142
3143/**
3144 * regmap_bulk_read() - Read multiple registers from the device
3145 *
3146 * @map: Register map to read from
3147 * @reg: First register to be read from
3148 * @val: Pointer to store read value, in native register size for device
3149 * @val_count: Number of registers to read
3150 *
3151 * A value of zero will be returned on success, a negative errno will
3152 * be returned in error cases.
3153 */
3154int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
3155 size_t val_count)
3156{
3157 int ret, i;
3158 size_t val_bytes = map->format.val_bytes;
3159 bool vol = regmap_volatile_range(map, reg, val_count);
3160
3161 if (!IS_ALIGNED(reg, map->reg_stride))
3162 return -EINVAL;
3163 if (val_count == 0)
3164 return -EINVAL;
3165
3166 if (map->read && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
3167 ret = regmap_raw_read(map, reg, val, val_bytes * val_count);
3168 if (ret != 0)
3169 return ret;
3170
3171 for (i = 0; i < val_count * val_bytes; i += val_bytes)
3172 map->format.parse_inplace(val + i);
3173 } else {
3174#ifdef CONFIG_64BIT
3175 u64 *u64 = val;
3176#endif
3177 u32 *u32 = val;
3178 u16 *u16 = val;
3179 u8 *u8 = val;
3180
3181 map->lock(map->lock_arg);
3182
3183 for (i = 0; i < val_count; i++) {
3184 unsigned int ival;
3185
3186 ret = _regmap_read(map, reg + regmap_get_offset(map, i),
3187 &ival);
3188 if (ret != 0)
3189 goto out;
3190
3191 switch (map->format.val_bytes) {
3192#ifdef CONFIG_64BIT
3193 case 8:
3194 u64[i] = ival;
3195 break;
3196#endif
3197 case 4:
3198 u32[i] = ival;
3199 break;
3200 case 2:
3201 u16[i] = ival;
3202 break;
3203 case 1:
3204 u8[i] = ival;
3205 break;
3206 default:
3207 ret = -EINVAL;
3208 goto out;
3209 }
3210 }
3211
3212out:
3213 map->unlock(map->lock_arg);
3214 }
3215
3216 if (!ret)
3217 trace_regmap_bulk_read(map, reg, val, val_bytes * val_count);
3218
3219 return ret;
3220}
3221EXPORT_SYMBOL_GPL(regmap_bulk_read);
3222
3223static int _regmap_update_bits(struct regmap *map, unsigned int reg,
3224 unsigned int mask, unsigned int val,
3225 bool *change, bool force_write)
3226{
3227 int ret;
3228 unsigned int tmp, orig;
3229
3230 if (change)
3231 *change = false;
3232
3233 if (regmap_volatile(map, reg) && map->reg_update_bits) {
3234 ret = map->reg_update_bits(map->bus_context, reg, mask, val);
3235 if (ret == 0 && change)
3236 *change = true;
3237 } else {
3238 ret = _regmap_read(map, reg, &orig);
3239 if (ret != 0)
3240 return ret;
3241
3242 tmp = orig & ~mask;
3243 tmp |= val & mask;
3244
3245 if (force_write || (tmp != orig)) {
3246 ret = _regmap_write(map, reg, tmp);
3247 if (ret == 0 && change)
3248 *change = true;
3249 }
3250 }
3251
3252 return ret;
3253}
3254
3255/**
3256 * regmap_update_bits_base() - Perform a read/modify/write cycle on a register
3257 *
3258 * @map: Register map to update
3259 * @reg: Register to update
3260 * @mask: Bitmask to change
3261 * @val: New value for bitmask
3262 * @change: Boolean indicating if a write was done
3263 * @async: Boolean indicating asynchronously
3264 * @force: Boolean indicating use force update
3265 *
3266 * Perform a read/modify/write cycle on a register map with change, async, force
3267 * options.
3268 *
3269 * If async is true:
3270 *
3271 * With most buses the read must be done synchronously so this is most useful
3272 * for devices with a cache which do not need to interact with the hardware to
3273 * determine the current register value.
3274 *
3275 * Returns zero for success, a negative number on error.
3276 */
3277int regmap_update_bits_base(struct regmap *map, unsigned int reg,
3278 unsigned int mask, unsigned int val,
3279 bool *change, bool async, bool force)
3280{
3281 int ret;
3282
3283 map->lock(map->lock_arg);
3284
3285 map->async = async;
3286
3287 ret = _regmap_update_bits(map, reg, mask, val, change, force);
3288
3289 map->async = false;
3290
3291 map->unlock(map->lock_arg);
3292
3293 return ret;
3294}
3295EXPORT_SYMBOL_GPL(regmap_update_bits_base);
3296
3297/**
3298 * regmap_test_bits() - Check if all specified bits are set in a register.
3299 *
3300 * @map: Register map to operate on
3301 * @reg: Register to read from
3302 * @bits: Bits to test
3303 *
3304 * Returns 0 if at least one of the tested bits is not set, 1 if all tested
3305 * bits are set and a negative error number if the underlying regmap_read()
3306 * fails.
3307 */
3308int regmap_test_bits(struct regmap *map, unsigned int reg, unsigned int bits)
3309{
3310 unsigned int val, ret;
3311
3312 ret = regmap_read(map, reg, &val);
3313 if (ret)
3314 return ret;
3315
3316 return (val & bits) == bits;
3317}
3318EXPORT_SYMBOL_GPL(regmap_test_bits);
3319
3320void regmap_async_complete_cb(struct regmap_async *async, int ret)
3321{
3322 struct regmap *map = async->map;
3323 bool wake;
3324
3325 trace_regmap_async_io_complete(map);
3326
3327 spin_lock(&map->async_lock);
3328 list_move(&async->list, &map->async_free);
3329 wake = list_empty(&map->async_list);
3330
3331 if (ret != 0)
3332 map->async_ret = ret;
3333
3334 spin_unlock(&map->async_lock);
3335
3336 if (wake)
3337 wake_up(&map->async_waitq);
3338}
3339EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
3340
3341static int regmap_async_is_done(struct regmap *map)
3342{
3343 unsigned long flags;
3344 int ret;
3345
3346 spin_lock_irqsave(&map->async_lock, flags);
3347 ret = list_empty(&map->async_list);
3348 spin_unlock_irqrestore(&map->async_lock, flags);
3349
3350 return ret;
3351}
3352
3353/**
3354 * regmap_async_complete - Ensure all asynchronous I/O has completed.
3355 *
3356 * @map: Map to operate on.
3357 *
3358 * Blocks until any pending asynchronous I/O has completed. Returns
3359 * an error code for any failed I/O operations.
3360 */
3361int regmap_async_complete(struct regmap *map)
3362{
3363 unsigned long flags;
3364 int ret;
3365
3366 /* Nothing to do with no async support */
3367 if (!map->bus || !map->bus->async_write)
3368 return 0;
3369
3370 trace_regmap_async_complete_start(map);
3371
3372 wait_event(map->async_waitq, regmap_async_is_done(map));
3373
3374 spin_lock_irqsave(&map->async_lock, flags);
3375 ret = map->async_ret;
3376 map->async_ret = 0;
3377 spin_unlock_irqrestore(&map->async_lock, flags);
3378
3379 trace_regmap_async_complete_done(map);
3380
3381 return ret;
3382}
3383EXPORT_SYMBOL_GPL(regmap_async_complete);
3384
3385/**
3386 * regmap_register_patch - Register and apply register updates to be applied
3387 * on device initialistion
3388 *
3389 * @map: Register map to apply updates to.
3390 * @regs: Values to update.
3391 * @num_regs: Number of entries in regs.
3392 *
3393 * Register a set of register updates to be applied to the device
3394 * whenever the device registers are synchronised with the cache and
3395 * apply them immediately. Typically this is used to apply
3396 * corrections to be applied to the device defaults on startup, such
3397 * as the updates some vendors provide to undocumented registers.
3398 *
3399 * The caller must ensure that this function cannot be called
3400 * concurrently with either itself or regcache_sync().
3401 */
3402int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
3403 int num_regs)
3404{
3405 struct reg_sequence *p;
3406 int ret;
3407 bool bypass;
3408
3409 if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
3410 num_regs))
3411 return 0;
3412
3413 p = krealloc(map->patch,
3414 sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
3415 GFP_KERNEL);
3416 if (p) {
3417 memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
3418 map->patch = p;
3419 map->patch_regs += num_regs;
3420 } else {
3421 return -ENOMEM;
3422 }
3423
3424 map->lock(map->lock_arg);
3425
3426 bypass = map->cache_bypass;
3427
3428 map->cache_bypass = true;
3429 map->async = true;
3430
3431 ret = _regmap_multi_reg_write(map, regs, num_regs);
3432
3433 map->async = false;
3434 map->cache_bypass = bypass;
3435
3436 map->unlock(map->lock_arg);
3437
3438 regmap_async_complete(map);
3439
3440 return ret;
3441}
3442EXPORT_SYMBOL_GPL(regmap_register_patch);
3443
3444/**
3445 * regmap_get_val_bytes() - Report the size of a register value
3446 *
3447 * @map: Register map to operate on.
3448 *
3449 * Report the size of a register value, mainly intended to for use by
3450 * generic infrastructure built on top of regmap.
3451 */
3452int regmap_get_val_bytes(struct regmap *map)
3453{
3454 if (map->format.format_write)
3455 return -EINVAL;
3456
3457 return map->format.val_bytes;
3458}
3459EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
3460
3461/**
3462 * regmap_get_max_register() - Report the max register value
3463 *
3464 * @map: Register map to operate on.
3465 *
3466 * Report the max register value, mainly intended to for use by
3467 * generic infrastructure built on top of regmap.
3468 */
3469int regmap_get_max_register(struct regmap *map)
3470{
3471 return map->max_register ? map->max_register : -EINVAL;
3472}
3473EXPORT_SYMBOL_GPL(regmap_get_max_register);
3474
3475/**
3476 * regmap_get_reg_stride() - Report the register address stride
3477 *
3478 * @map: Register map to operate on.
3479 *
3480 * Report the register address stride, mainly intended to for use by
3481 * generic infrastructure built on top of regmap.
3482 */
3483int regmap_get_reg_stride(struct regmap *map)
3484{
3485 return map->reg_stride;
3486}
3487EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
3488
3489/**
3490 * regmap_might_sleep() - Returns whether a regmap access might sleep.
3491 *
3492 * @map: Register map to operate on.
3493 *
3494 * Returns true if an access to the register might sleep, else false.
3495 */
3496bool regmap_might_sleep(struct regmap *map)
3497{
3498 return map->can_sleep;
3499}
3500EXPORT_SYMBOL_GPL(regmap_might_sleep);
3501
3502int regmap_parse_val(struct regmap *map, const void *buf,
3503 unsigned int *val)
3504{
3505 if (!map->format.parse_val)
3506 return -EINVAL;
3507
3508 *val = map->format.parse_val(buf);
3509
3510 return 0;
3511}
3512EXPORT_SYMBOL_GPL(regmap_parse_val);
3513
3514static int __init regmap_initcall(void)
3515{
3516 regmap_debugfs_initcall();
3517
3518 return 0;
3519}
3520postcore_initcall(regmap_initcall);
1// SPDX-License-Identifier: GPL-2.0
2//
3// Register map access API
4//
5// Copyright 2011 Wolfson Microelectronics plc
6//
7// Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
8
9#include <linux/device.h>
10#include <linux/slab.h>
11#include <linux/export.h>
12#include <linux/mutex.h>
13#include <linux/err.h>
14#include <linux/of.h>
15#include <linux/rbtree.h>
16#include <linux/sched.h>
17#include <linux/delay.h>
18#include <linux/log2.h>
19#include <linux/hwspinlock.h>
20
21#define CREATE_TRACE_POINTS
22#include "trace.h"
23
24#include "internal.h"
25
26/*
27 * Sometimes for failures during very early init the trace
28 * infrastructure isn't available early enough to be used. For this
29 * sort of problem defining LOG_DEVICE will add printks for basic
30 * register I/O on a specific device.
31 */
32#undef LOG_DEVICE
33
34#ifdef LOG_DEVICE
35static inline bool regmap_should_log(struct regmap *map)
36{
37 return (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0);
38}
39#else
40static inline bool regmap_should_log(struct regmap *map) { return false; }
41#endif
42
43
44static int _regmap_update_bits(struct regmap *map, unsigned int reg,
45 unsigned int mask, unsigned int val,
46 bool *change, bool force_write);
47
48static int _regmap_bus_reg_read(void *context, unsigned int reg,
49 unsigned int *val);
50static int _regmap_bus_read(void *context, unsigned int reg,
51 unsigned int *val);
52static int _regmap_bus_formatted_write(void *context, unsigned int reg,
53 unsigned int val);
54static int _regmap_bus_reg_write(void *context, unsigned int reg,
55 unsigned int val);
56static int _regmap_bus_raw_write(void *context, unsigned int reg,
57 unsigned int val);
58
59bool regmap_reg_in_ranges(unsigned int reg,
60 const struct regmap_range *ranges,
61 unsigned int nranges)
62{
63 const struct regmap_range *r;
64 int i;
65
66 for (i = 0, r = ranges; i < nranges; i++, r++)
67 if (regmap_reg_in_range(reg, r))
68 return true;
69 return false;
70}
71EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
72
73bool regmap_check_range_table(struct regmap *map, unsigned int reg,
74 const struct regmap_access_table *table)
75{
76 /* Check "no ranges" first */
77 if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
78 return false;
79
80 /* In case zero "yes ranges" are supplied, any reg is OK */
81 if (!table->n_yes_ranges)
82 return true;
83
84 return regmap_reg_in_ranges(reg, table->yes_ranges,
85 table->n_yes_ranges);
86}
87EXPORT_SYMBOL_GPL(regmap_check_range_table);
88
89bool regmap_writeable(struct regmap *map, unsigned int reg)
90{
91 if (map->max_register && reg > map->max_register)
92 return false;
93
94 if (map->writeable_reg)
95 return map->writeable_reg(map->dev, reg);
96
97 if (map->wr_table)
98 return regmap_check_range_table(map, reg, map->wr_table);
99
100 return true;
101}
102
103bool regmap_cached(struct regmap *map, unsigned int reg)
104{
105 int ret;
106 unsigned int val;
107
108 if (map->cache_type == REGCACHE_NONE)
109 return false;
110
111 if (!map->cache_ops)
112 return false;
113
114 if (map->max_register && reg > map->max_register)
115 return false;
116
117 map->lock(map->lock_arg);
118 ret = regcache_read(map, reg, &val);
119 map->unlock(map->lock_arg);
120 if (ret)
121 return false;
122
123 return true;
124}
125
126bool regmap_readable(struct regmap *map, unsigned int reg)
127{
128 if (!map->reg_read)
129 return false;
130
131 if (map->max_register && reg > map->max_register)
132 return false;
133
134 if (map->format.format_write)
135 return false;
136
137 if (map->readable_reg)
138 return map->readable_reg(map->dev, reg);
139
140 if (map->rd_table)
141 return regmap_check_range_table(map, reg, map->rd_table);
142
143 return true;
144}
145
146bool regmap_volatile(struct regmap *map, unsigned int reg)
147{
148 if (!map->format.format_write && !regmap_readable(map, reg))
149 return false;
150
151 if (map->volatile_reg)
152 return map->volatile_reg(map->dev, reg);
153
154 if (map->volatile_table)
155 return regmap_check_range_table(map, reg, map->volatile_table);
156
157 if (map->cache_ops)
158 return false;
159 else
160 return true;
161}
162
163bool regmap_precious(struct regmap *map, unsigned int reg)
164{
165 if (!regmap_readable(map, reg))
166 return false;
167
168 if (map->precious_reg)
169 return map->precious_reg(map->dev, reg);
170
171 if (map->precious_table)
172 return regmap_check_range_table(map, reg, map->precious_table);
173
174 return false;
175}
176
177bool regmap_writeable_noinc(struct regmap *map, unsigned int reg)
178{
179 if (map->writeable_noinc_reg)
180 return map->writeable_noinc_reg(map->dev, reg);
181
182 if (map->wr_noinc_table)
183 return regmap_check_range_table(map, reg, map->wr_noinc_table);
184
185 return true;
186}
187
188bool regmap_readable_noinc(struct regmap *map, unsigned int reg)
189{
190 if (map->readable_noinc_reg)
191 return map->readable_noinc_reg(map->dev, reg);
192
193 if (map->rd_noinc_table)
194 return regmap_check_range_table(map, reg, map->rd_noinc_table);
195
196 return true;
197}
198
199static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
200 size_t num)
201{
202 unsigned int i;
203
204 for (i = 0; i < num; i++)
205 if (!regmap_volatile(map, reg + regmap_get_offset(map, i)))
206 return false;
207
208 return true;
209}
210
211static void regmap_format_2_6_write(struct regmap *map,
212 unsigned int reg, unsigned int val)
213{
214 u8 *out = map->work_buf;
215
216 *out = (reg << 6) | val;
217}
218
219static void regmap_format_4_12_write(struct regmap *map,
220 unsigned int reg, unsigned int val)
221{
222 __be16 *out = map->work_buf;
223 *out = cpu_to_be16((reg << 12) | val);
224}
225
226static void regmap_format_7_9_write(struct regmap *map,
227 unsigned int reg, unsigned int val)
228{
229 __be16 *out = map->work_buf;
230 *out = cpu_to_be16((reg << 9) | val);
231}
232
233static void regmap_format_10_14_write(struct regmap *map,
234 unsigned int reg, unsigned int val)
235{
236 u8 *out = map->work_buf;
237
238 out[2] = val;
239 out[1] = (val >> 8) | (reg << 6);
240 out[0] = reg >> 2;
241}
242
243static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
244{
245 u8 *b = buf;
246
247 b[0] = val << shift;
248}
249
250static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
251{
252 __be16 *b = buf;
253
254 b[0] = cpu_to_be16(val << shift);
255}
256
257static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
258{
259 __le16 *b = buf;
260
261 b[0] = cpu_to_le16(val << shift);
262}
263
264static void regmap_format_16_native(void *buf, unsigned int val,
265 unsigned int shift)
266{
267 *(u16 *)buf = val << shift;
268}
269
270static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
271{
272 u8 *b = buf;
273
274 val <<= shift;
275
276 b[0] = val >> 16;
277 b[1] = val >> 8;
278 b[2] = val;
279}
280
281static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
282{
283 __be32 *b = buf;
284
285 b[0] = cpu_to_be32(val << shift);
286}
287
288static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
289{
290 __le32 *b = buf;
291
292 b[0] = cpu_to_le32(val << shift);
293}
294
295static void regmap_format_32_native(void *buf, unsigned int val,
296 unsigned int shift)
297{
298 *(u32 *)buf = val << shift;
299}
300
301#ifdef CONFIG_64BIT
302static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
303{
304 __be64 *b = buf;
305
306 b[0] = cpu_to_be64((u64)val << shift);
307}
308
309static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
310{
311 __le64 *b = buf;
312
313 b[0] = cpu_to_le64((u64)val << shift);
314}
315
316static void regmap_format_64_native(void *buf, unsigned int val,
317 unsigned int shift)
318{
319 *(u64 *)buf = (u64)val << shift;
320}
321#endif
322
323static void regmap_parse_inplace_noop(void *buf)
324{
325}
326
327static unsigned int regmap_parse_8(const void *buf)
328{
329 const u8 *b = buf;
330
331 return b[0];
332}
333
334static unsigned int regmap_parse_16_be(const void *buf)
335{
336 const __be16 *b = buf;
337
338 return be16_to_cpu(b[0]);
339}
340
341static unsigned int regmap_parse_16_le(const void *buf)
342{
343 const __le16 *b = buf;
344
345 return le16_to_cpu(b[0]);
346}
347
348static void regmap_parse_16_be_inplace(void *buf)
349{
350 __be16 *b = buf;
351
352 b[0] = be16_to_cpu(b[0]);
353}
354
355static void regmap_parse_16_le_inplace(void *buf)
356{
357 __le16 *b = buf;
358
359 b[0] = le16_to_cpu(b[0]);
360}
361
362static unsigned int regmap_parse_16_native(const void *buf)
363{
364 return *(u16 *)buf;
365}
366
367static unsigned int regmap_parse_24(const void *buf)
368{
369 const u8 *b = buf;
370 unsigned int ret = b[2];
371 ret |= ((unsigned int)b[1]) << 8;
372 ret |= ((unsigned int)b[0]) << 16;
373
374 return ret;
375}
376
377static unsigned int regmap_parse_32_be(const void *buf)
378{
379 const __be32 *b = buf;
380
381 return be32_to_cpu(b[0]);
382}
383
384static unsigned int regmap_parse_32_le(const void *buf)
385{
386 const __le32 *b = buf;
387
388 return le32_to_cpu(b[0]);
389}
390
391static void regmap_parse_32_be_inplace(void *buf)
392{
393 __be32 *b = buf;
394
395 b[0] = be32_to_cpu(b[0]);
396}
397
398static void regmap_parse_32_le_inplace(void *buf)
399{
400 __le32 *b = buf;
401
402 b[0] = le32_to_cpu(b[0]);
403}
404
405static unsigned int regmap_parse_32_native(const void *buf)
406{
407 return *(u32 *)buf;
408}
409
410#ifdef CONFIG_64BIT
411static unsigned int regmap_parse_64_be(const void *buf)
412{
413 const __be64 *b = buf;
414
415 return be64_to_cpu(b[0]);
416}
417
418static unsigned int regmap_parse_64_le(const void *buf)
419{
420 const __le64 *b = buf;
421
422 return le64_to_cpu(b[0]);
423}
424
425static void regmap_parse_64_be_inplace(void *buf)
426{
427 __be64 *b = buf;
428
429 b[0] = be64_to_cpu(b[0]);
430}
431
432static void regmap_parse_64_le_inplace(void *buf)
433{
434 __le64 *b = buf;
435
436 b[0] = le64_to_cpu(b[0]);
437}
438
439static unsigned int regmap_parse_64_native(const void *buf)
440{
441 return *(u64 *)buf;
442}
443#endif
444
445static void regmap_lock_hwlock(void *__map)
446{
447 struct regmap *map = __map;
448
449 hwspin_lock_timeout(map->hwlock, UINT_MAX);
450}
451
452static void regmap_lock_hwlock_irq(void *__map)
453{
454 struct regmap *map = __map;
455
456 hwspin_lock_timeout_irq(map->hwlock, UINT_MAX);
457}
458
459static void regmap_lock_hwlock_irqsave(void *__map)
460{
461 struct regmap *map = __map;
462
463 hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX,
464 &map->spinlock_flags);
465}
466
467static void regmap_unlock_hwlock(void *__map)
468{
469 struct regmap *map = __map;
470
471 hwspin_unlock(map->hwlock);
472}
473
474static void regmap_unlock_hwlock_irq(void *__map)
475{
476 struct regmap *map = __map;
477
478 hwspin_unlock_irq(map->hwlock);
479}
480
481static void regmap_unlock_hwlock_irqrestore(void *__map)
482{
483 struct regmap *map = __map;
484
485 hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags);
486}
487
488static void regmap_lock_unlock_none(void *__map)
489{
490
491}
492
493static void regmap_lock_mutex(void *__map)
494{
495 struct regmap *map = __map;
496 mutex_lock(&map->mutex);
497}
498
499static void regmap_unlock_mutex(void *__map)
500{
501 struct regmap *map = __map;
502 mutex_unlock(&map->mutex);
503}
504
505static void regmap_lock_spinlock(void *__map)
506__acquires(&map->spinlock)
507{
508 struct regmap *map = __map;
509 unsigned long flags;
510
511 spin_lock_irqsave(&map->spinlock, flags);
512 map->spinlock_flags = flags;
513}
514
515static void regmap_unlock_spinlock(void *__map)
516__releases(&map->spinlock)
517{
518 struct regmap *map = __map;
519 spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
520}
521
522static void dev_get_regmap_release(struct device *dev, void *res)
523{
524 /*
525 * We don't actually have anything to do here; the goal here
526 * is not to manage the regmap but to provide a simple way to
527 * get the regmap back given a struct device.
528 */
529}
530
531static bool _regmap_range_add(struct regmap *map,
532 struct regmap_range_node *data)
533{
534 struct rb_root *root = &map->range_tree;
535 struct rb_node **new = &(root->rb_node), *parent = NULL;
536
537 while (*new) {
538 struct regmap_range_node *this =
539 rb_entry(*new, struct regmap_range_node, node);
540
541 parent = *new;
542 if (data->range_max < this->range_min)
543 new = &((*new)->rb_left);
544 else if (data->range_min > this->range_max)
545 new = &((*new)->rb_right);
546 else
547 return false;
548 }
549
550 rb_link_node(&data->node, parent, new);
551 rb_insert_color(&data->node, root);
552
553 return true;
554}
555
556static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
557 unsigned int reg)
558{
559 struct rb_node *node = map->range_tree.rb_node;
560
561 while (node) {
562 struct regmap_range_node *this =
563 rb_entry(node, struct regmap_range_node, node);
564
565 if (reg < this->range_min)
566 node = node->rb_left;
567 else if (reg > this->range_max)
568 node = node->rb_right;
569 else
570 return this;
571 }
572
573 return NULL;
574}
575
576static void regmap_range_exit(struct regmap *map)
577{
578 struct rb_node *next;
579 struct regmap_range_node *range_node;
580
581 next = rb_first(&map->range_tree);
582 while (next) {
583 range_node = rb_entry(next, struct regmap_range_node, node);
584 next = rb_next(&range_node->node);
585 rb_erase(&range_node->node, &map->range_tree);
586 kfree(range_node);
587 }
588
589 kfree(map->selector_work_buf);
590}
591
592int regmap_attach_dev(struct device *dev, struct regmap *map,
593 const struct regmap_config *config)
594{
595 struct regmap **m;
596
597 map->dev = dev;
598
599 regmap_debugfs_init(map, config->name);
600
601 /* Add a devres resource for dev_get_regmap() */
602 m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
603 if (!m) {
604 regmap_debugfs_exit(map);
605 return -ENOMEM;
606 }
607 *m = map;
608 devres_add(dev, m);
609
610 return 0;
611}
612EXPORT_SYMBOL_GPL(regmap_attach_dev);
613
614static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
615 const struct regmap_config *config)
616{
617 enum regmap_endian endian;
618
619 /* Retrieve the endianness specification from the regmap config */
620 endian = config->reg_format_endian;
621
622 /* If the regmap config specified a non-default value, use that */
623 if (endian != REGMAP_ENDIAN_DEFAULT)
624 return endian;
625
626 /* Retrieve the endianness specification from the bus config */
627 if (bus && bus->reg_format_endian_default)
628 endian = bus->reg_format_endian_default;
629
630 /* If the bus specified a non-default value, use that */
631 if (endian != REGMAP_ENDIAN_DEFAULT)
632 return endian;
633
634 /* Use this if no other value was found */
635 return REGMAP_ENDIAN_BIG;
636}
637
638enum regmap_endian regmap_get_val_endian(struct device *dev,
639 const struct regmap_bus *bus,
640 const struct regmap_config *config)
641{
642 struct device_node *np;
643 enum regmap_endian endian;
644
645 /* Retrieve the endianness specification from the regmap config */
646 endian = config->val_format_endian;
647
648 /* If the regmap config specified a non-default value, use that */
649 if (endian != REGMAP_ENDIAN_DEFAULT)
650 return endian;
651
652 /* If the dev and dev->of_node exist try to get endianness from DT */
653 if (dev && dev->of_node) {
654 np = dev->of_node;
655
656 /* Parse the device's DT node for an endianness specification */
657 if (of_property_read_bool(np, "big-endian"))
658 endian = REGMAP_ENDIAN_BIG;
659 else if (of_property_read_bool(np, "little-endian"))
660 endian = REGMAP_ENDIAN_LITTLE;
661 else if (of_property_read_bool(np, "native-endian"))
662 endian = REGMAP_ENDIAN_NATIVE;
663
664 /* If the endianness was specified in DT, use that */
665 if (endian != REGMAP_ENDIAN_DEFAULT)
666 return endian;
667 }
668
669 /* Retrieve the endianness specification from the bus config */
670 if (bus && bus->val_format_endian_default)
671 endian = bus->val_format_endian_default;
672
673 /* If the bus specified a non-default value, use that */
674 if (endian != REGMAP_ENDIAN_DEFAULT)
675 return endian;
676
677 /* Use this if no other value was found */
678 return REGMAP_ENDIAN_BIG;
679}
680EXPORT_SYMBOL_GPL(regmap_get_val_endian);
681
682struct regmap *__regmap_init(struct device *dev,
683 const struct regmap_bus *bus,
684 void *bus_context,
685 const struct regmap_config *config,
686 struct lock_class_key *lock_key,
687 const char *lock_name)
688{
689 struct regmap *map;
690 int ret = -EINVAL;
691 enum regmap_endian reg_endian, val_endian;
692 int i, j;
693
694 if (!config)
695 goto err;
696
697 map = kzalloc(sizeof(*map), GFP_KERNEL);
698 if (map == NULL) {
699 ret = -ENOMEM;
700 goto err;
701 }
702
703 if (config->name) {
704 map->name = kstrdup_const(config->name, GFP_KERNEL);
705 if (!map->name) {
706 ret = -ENOMEM;
707 goto err_map;
708 }
709 }
710
711 if (config->disable_locking) {
712 map->lock = map->unlock = regmap_lock_unlock_none;
713 regmap_debugfs_disable(map);
714 } else if (config->lock && config->unlock) {
715 map->lock = config->lock;
716 map->unlock = config->unlock;
717 map->lock_arg = config->lock_arg;
718 } else if (config->use_hwlock) {
719 map->hwlock = hwspin_lock_request_specific(config->hwlock_id);
720 if (!map->hwlock) {
721 ret = -ENXIO;
722 goto err_name;
723 }
724
725 switch (config->hwlock_mode) {
726 case HWLOCK_IRQSTATE:
727 map->lock = regmap_lock_hwlock_irqsave;
728 map->unlock = regmap_unlock_hwlock_irqrestore;
729 break;
730 case HWLOCK_IRQ:
731 map->lock = regmap_lock_hwlock_irq;
732 map->unlock = regmap_unlock_hwlock_irq;
733 break;
734 default:
735 map->lock = regmap_lock_hwlock;
736 map->unlock = regmap_unlock_hwlock;
737 break;
738 }
739
740 map->lock_arg = map;
741 } else {
742 if ((bus && bus->fast_io) ||
743 config->fast_io) {
744 spin_lock_init(&map->spinlock);
745 map->lock = regmap_lock_spinlock;
746 map->unlock = regmap_unlock_spinlock;
747 lockdep_set_class_and_name(&map->spinlock,
748 lock_key, lock_name);
749 } else {
750 mutex_init(&map->mutex);
751 map->lock = regmap_lock_mutex;
752 map->unlock = regmap_unlock_mutex;
753 lockdep_set_class_and_name(&map->mutex,
754 lock_key, lock_name);
755 }
756 map->lock_arg = map;
757 }
758
759 /*
760 * When we write in fast-paths with regmap_bulk_write() don't allocate
761 * scratch buffers with sleeping allocations.
762 */
763 if ((bus && bus->fast_io) || config->fast_io)
764 map->alloc_flags = GFP_ATOMIC;
765 else
766 map->alloc_flags = GFP_KERNEL;
767
768 map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
769 map->format.pad_bytes = config->pad_bits / 8;
770 map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
771 map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
772 config->val_bits + config->pad_bits, 8);
773 map->reg_shift = config->pad_bits % 8;
774 if (config->reg_stride)
775 map->reg_stride = config->reg_stride;
776 else
777 map->reg_stride = 1;
778 if (is_power_of_2(map->reg_stride))
779 map->reg_stride_order = ilog2(map->reg_stride);
780 else
781 map->reg_stride_order = -1;
782 map->use_single_read = config->use_single_read || !bus || !bus->read;
783 map->use_single_write = config->use_single_write || !bus || !bus->write;
784 map->can_multi_write = config->can_multi_write && bus && bus->write;
785 if (bus) {
786 map->max_raw_read = bus->max_raw_read;
787 map->max_raw_write = bus->max_raw_write;
788 }
789 map->dev = dev;
790 map->bus = bus;
791 map->bus_context = bus_context;
792 map->max_register = config->max_register;
793 map->wr_table = config->wr_table;
794 map->rd_table = config->rd_table;
795 map->volatile_table = config->volatile_table;
796 map->precious_table = config->precious_table;
797 map->wr_noinc_table = config->wr_noinc_table;
798 map->rd_noinc_table = config->rd_noinc_table;
799 map->writeable_reg = config->writeable_reg;
800 map->readable_reg = config->readable_reg;
801 map->volatile_reg = config->volatile_reg;
802 map->precious_reg = config->precious_reg;
803 map->writeable_noinc_reg = config->writeable_noinc_reg;
804 map->readable_noinc_reg = config->readable_noinc_reg;
805 map->cache_type = config->cache_type;
806
807 spin_lock_init(&map->async_lock);
808 INIT_LIST_HEAD(&map->async_list);
809 INIT_LIST_HEAD(&map->async_free);
810 init_waitqueue_head(&map->async_waitq);
811
812 if (config->read_flag_mask ||
813 config->write_flag_mask ||
814 config->zero_flag_mask) {
815 map->read_flag_mask = config->read_flag_mask;
816 map->write_flag_mask = config->write_flag_mask;
817 } else if (bus) {
818 map->read_flag_mask = bus->read_flag_mask;
819 }
820
821 if (!bus) {
822 map->reg_read = config->reg_read;
823 map->reg_write = config->reg_write;
824
825 map->defer_caching = false;
826 goto skip_format_initialization;
827 } else if (!bus->read || !bus->write) {
828 map->reg_read = _regmap_bus_reg_read;
829 map->reg_write = _regmap_bus_reg_write;
830
831 map->defer_caching = false;
832 goto skip_format_initialization;
833 } else {
834 map->reg_read = _regmap_bus_read;
835 map->reg_update_bits = bus->reg_update_bits;
836 }
837
838 reg_endian = regmap_get_reg_endian(bus, config);
839 val_endian = regmap_get_val_endian(dev, bus, config);
840
841 switch (config->reg_bits + map->reg_shift) {
842 case 2:
843 switch (config->val_bits) {
844 case 6:
845 map->format.format_write = regmap_format_2_6_write;
846 break;
847 default:
848 goto err_hwlock;
849 }
850 break;
851
852 case 4:
853 switch (config->val_bits) {
854 case 12:
855 map->format.format_write = regmap_format_4_12_write;
856 break;
857 default:
858 goto err_hwlock;
859 }
860 break;
861
862 case 7:
863 switch (config->val_bits) {
864 case 9:
865 map->format.format_write = regmap_format_7_9_write;
866 break;
867 default:
868 goto err_hwlock;
869 }
870 break;
871
872 case 10:
873 switch (config->val_bits) {
874 case 14:
875 map->format.format_write = regmap_format_10_14_write;
876 break;
877 default:
878 goto err_hwlock;
879 }
880 break;
881
882 case 8:
883 map->format.format_reg = regmap_format_8;
884 break;
885
886 case 16:
887 switch (reg_endian) {
888 case REGMAP_ENDIAN_BIG:
889 map->format.format_reg = regmap_format_16_be;
890 break;
891 case REGMAP_ENDIAN_LITTLE:
892 map->format.format_reg = regmap_format_16_le;
893 break;
894 case REGMAP_ENDIAN_NATIVE:
895 map->format.format_reg = regmap_format_16_native;
896 break;
897 default:
898 goto err_hwlock;
899 }
900 break;
901
902 case 24:
903 if (reg_endian != REGMAP_ENDIAN_BIG)
904 goto err_hwlock;
905 map->format.format_reg = regmap_format_24;
906 break;
907
908 case 32:
909 switch (reg_endian) {
910 case REGMAP_ENDIAN_BIG:
911 map->format.format_reg = regmap_format_32_be;
912 break;
913 case REGMAP_ENDIAN_LITTLE:
914 map->format.format_reg = regmap_format_32_le;
915 break;
916 case REGMAP_ENDIAN_NATIVE:
917 map->format.format_reg = regmap_format_32_native;
918 break;
919 default:
920 goto err_hwlock;
921 }
922 break;
923
924#ifdef CONFIG_64BIT
925 case 64:
926 switch (reg_endian) {
927 case REGMAP_ENDIAN_BIG:
928 map->format.format_reg = regmap_format_64_be;
929 break;
930 case REGMAP_ENDIAN_LITTLE:
931 map->format.format_reg = regmap_format_64_le;
932 break;
933 case REGMAP_ENDIAN_NATIVE:
934 map->format.format_reg = regmap_format_64_native;
935 break;
936 default:
937 goto err_hwlock;
938 }
939 break;
940#endif
941
942 default:
943 goto err_hwlock;
944 }
945
946 if (val_endian == REGMAP_ENDIAN_NATIVE)
947 map->format.parse_inplace = regmap_parse_inplace_noop;
948
949 switch (config->val_bits) {
950 case 8:
951 map->format.format_val = regmap_format_8;
952 map->format.parse_val = regmap_parse_8;
953 map->format.parse_inplace = regmap_parse_inplace_noop;
954 break;
955 case 16:
956 switch (val_endian) {
957 case REGMAP_ENDIAN_BIG:
958 map->format.format_val = regmap_format_16_be;
959 map->format.parse_val = regmap_parse_16_be;
960 map->format.parse_inplace = regmap_parse_16_be_inplace;
961 break;
962 case REGMAP_ENDIAN_LITTLE:
963 map->format.format_val = regmap_format_16_le;
964 map->format.parse_val = regmap_parse_16_le;
965 map->format.parse_inplace = regmap_parse_16_le_inplace;
966 break;
967 case REGMAP_ENDIAN_NATIVE:
968 map->format.format_val = regmap_format_16_native;
969 map->format.parse_val = regmap_parse_16_native;
970 break;
971 default:
972 goto err_hwlock;
973 }
974 break;
975 case 24:
976 if (val_endian != REGMAP_ENDIAN_BIG)
977 goto err_hwlock;
978 map->format.format_val = regmap_format_24;
979 map->format.parse_val = regmap_parse_24;
980 break;
981 case 32:
982 switch (val_endian) {
983 case REGMAP_ENDIAN_BIG:
984 map->format.format_val = regmap_format_32_be;
985 map->format.parse_val = regmap_parse_32_be;
986 map->format.parse_inplace = regmap_parse_32_be_inplace;
987 break;
988 case REGMAP_ENDIAN_LITTLE:
989 map->format.format_val = regmap_format_32_le;
990 map->format.parse_val = regmap_parse_32_le;
991 map->format.parse_inplace = regmap_parse_32_le_inplace;
992 break;
993 case REGMAP_ENDIAN_NATIVE:
994 map->format.format_val = regmap_format_32_native;
995 map->format.parse_val = regmap_parse_32_native;
996 break;
997 default:
998 goto err_hwlock;
999 }
1000 break;
1001#ifdef CONFIG_64BIT
1002 case 64:
1003 switch (val_endian) {
1004 case REGMAP_ENDIAN_BIG:
1005 map->format.format_val = regmap_format_64_be;
1006 map->format.parse_val = regmap_parse_64_be;
1007 map->format.parse_inplace = regmap_parse_64_be_inplace;
1008 break;
1009 case REGMAP_ENDIAN_LITTLE:
1010 map->format.format_val = regmap_format_64_le;
1011 map->format.parse_val = regmap_parse_64_le;
1012 map->format.parse_inplace = regmap_parse_64_le_inplace;
1013 break;
1014 case REGMAP_ENDIAN_NATIVE:
1015 map->format.format_val = regmap_format_64_native;
1016 map->format.parse_val = regmap_parse_64_native;
1017 break;
1018 default:
1019 goto err_hwlock;
1020 }
1021 break;
1022#endif
1023 }
1024
1025 if (map->format.format_write) {
1026 if ((reg_endian != REGMAP_ENDIAN_BIG) ||
1027 (val_endian != REGMAP_ENDIAN_BIG))
1028 goto err_hwlock;
1029 map->use_single_write = true;
1030 }
1031
1032 if (!map->format.format_write &&
1033 !(map->format.format_reg && map->format.format_val))
1034 goto err_hwlock;
1035
1036 map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
1037 if (map->work_buf == NULL) {
1038 ret = -ENOMEM;
1039 goto err_hwlock;
1040 }
1041
1042 if (map->format.format_write) {
1043 map->defer_caching = false;
1044 map->reg_write = _regmap_bus_formatted_write;
1045 } else if (map->format.format_val) {
1046 map->defer_caching = true;
1047 map->reg_write = _regmap_bus_raw_write;
1048 }
1049
1050skip_format_initialization:
1051
1052 map->range_tree = RB_ROOT;
1053 for (i = 0; i < config->num_ranges; i++) {
1054 const struct regmap_range_cfg *range_cfg = &config->ranges[i];
1055 struct regmap_range_node *new;
1056
1057 /* Sanity check */
1058 if (range_cfg->range_max < range_cfg->range_min) {
1059 dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
1060 range_cfg->range_max, range_cfg->range_min);
1061 goto err_range;
1062 }
1063
1064 if (range_cfg->range_max > map->max_register) {
1065 dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
1066 range_cfg->range_max, map->max_register);
1067 goto err_range;
1068 }
1069
1070 if (range_cfg->selector_reg > map->max_register) {
1071 dev_err(map->dev,
1072 "Invalid range %d: selector out of map\n", i);
1073 goto err_range;
1074 }
1075
1076 if (range_cfg->window_len == 0) {
1077 dev_err(map->dev, "Invalid range %d: window_len 0\n",
1078 i);
1079 goto err_range;
1080 }
1081
1082 /* Make sure, that this register range has no selector
1083 or data window within its boundary */
1084 for (j = 0; j < config->num_ranges; j++) {
1085 unsigned sel_reg = config->ranges[j].selector_reg;
1086 unsigned win_min = config->ranges[j].window_start;
1087 unsigned win_max = win_min +
1088 config->ranges[j].window_len - 1;
1089
1090 /* Allow data window inside its own virtual range */
1091 if (j == i)
1092 continue;
1093
1094 if (range_cfg->range_min <= sel_reg &&
1095 sel_reg <= range_cfg->range_max) {
1096 dev_err(map->dev,
1097 "Range %d: selector for %d in window\n",
1098 i, j);
1099 goto err_range;
1100 }
1101
1102 if (!(win_max < range_cfg->range_min ||
1103 win_min > range_cfg->range_max)) {
1104 dev_err(map->dev,
1105 "Range %d: window for %d in window\n",
1106 i, j);
1107 goto err_range;
1108 }
1109 }
1110
1111 new = kzalloc(sizeof(*new), GFP_KERNEL);
1112 if (new == NULL) {
1113 ret = -ENOMEM;
1114 goto err_range;
1115 }
1116
1117 new->map = map;
1118 new->name = range_cfg->name;
1119 new->range_min = range_cfg->range_min;
1120 new->range_max = range_cfg->range_max;
1121 new->selector_reg = range_cfg->selector_reg;
1122 new->selector_mask = range_cfg->selector_mask;
1123 new->selector_shift = range_cfg->selector_shift;
1124 new->window_start = range_cfg->window_start;
1125 new->window_len = range_cfg->window_len;
1126
1127 if (!_regmap_range_add(map, new)) {
1128 dev_err(map->dev, "Failed to add range %d\n", i);
1129 kfree(new);
1130 goto err_range;
1131 }
1132
1133 if (map->selector_work_buf == NULL) {
1134 map->selector_work_buf =
1135 kzalloc(map->format.buf_size, GFP_KERNEL);
1136 if (map->selector_work_buf == NULL) {
1137 ret = -ENOMEM;
1138 goto err_range;
1139 }
1140 }
1141 }
1142
1143 ret = regcache_init(map, config);
1144 if (ret != 0)
1145 goto err_range;
1146
1147 if (dev) {
1148 ret = regmap_attach_dev(dev, map, config);
1149 if (ret != 0)
1150 goto err_regcache;
1151 } else {
1152 regmap_debugfs_init(map, config->name);
1153 }
1154
1155 return map;
1156
1157err_regcache:
1158 regcache_exit(map);
1159err_range:
1160 regmap_range_exit(map);
1161 kfree(map->work_buf);
1162err_hwlock:
1163 if (map->hwlock)
1164 hwspin_lock_free(map->hwlock);
1165err_name:
1166 kfree_const(map->name);
1167err_map:
1168 kfree(map);
1169err:
1170 return ERR_PTR(ret);
1171}
1172EXPORT_SYMBOL_GPL(__regmap_init);
1173
1174static void devm_regmap_release(struct device *dev, void *res)
1175{
1176 regmap_exit(*(struct regmap **)res);
1177}
1178
1179struct regmap *__devm_regmap_init(struct device *dev,
1180 const struct regmap_bus *bus,
1181 void *bus_context,
1182 const struct regmap_config *config,
1183 struct lock_class_key *lock_key,
1184 const char *lock_name)
1185{
1186 struct regmap **ptr, *regmap;
1187
1188 ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1189 if (!ptr)
1190 return ERR_PTR(-ENOMEM);
1191
1192 regmap = __regmap_init(dev, bus, bus_context, config,
1193 lock_key, lock_name);
1194 if (!IS_ERR(regmap)) {
1195 *ptr = regmap;
1196 devres_add(dev, ptr);
1197 } else {
1198 devres_free(ptr);
1199 }
1200
1201 return regmap;
1202}
1203EXPORT_SYMBOL_GPL(__devm_regmap_init);
1204
1205static void regmap_field_init(struct regmap_field *rm_field,
1206 struct regmap *regmap, struct reg_field reg_field)
1207{
1208 rm_field->regmap = regmap;
1209 rm_field->reg = reg_field.reg;
1210 rm_field->shift = reg_field.lsb;
1211 rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1212 rm_field->id_size = reg_field.id_size;
1213 rm_field->id_offset = reg_field.id_offset;
1214}
1215
1216/**
1217 * devm_regmap_field_alloc() - Allocate and initialise a register field.
1218 *
1219 * @dev: Device that will be interacted with
1220 * @regmap: regmap bank in which this register field is located.
1221 * @reg_field: Register field with in the bank.
1222 *
1223 * The return value will be an ERR_PTR() on error or a valid pointer
1224 * to a struct regmap_field. The regmap_field will be automatically freed
1225 * by the device management code.
1226 */
1227struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1228 struct regmap *regmap, struct reg_field reg_field)
1229{
1230 struct regmap_field *rm_field = devm_kzalloc(dev,
1231 sizeof(*rm_field), GFP_KERNEL);
1232 if (!rm_field)
1233 return ERR_PTR(-ENOMEM);
1234
1235 regmap_field_init(rm_field, regmap, reg_field);
1236
1237 return rm_field;
1238
1239}
1240EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1241
1242/**
1243 * devm_regmap_field_free() - Free a register field allocated using
1244 * devm_regmap_field_alloc.
1245 *
1246 * @dev: Device that will be interacted with
1247 * @field: regmap field which should be freed.
1248 *
1249 * Free register field allocated using devm_regmap_field_alloc(). Usually
1250 * drivers need not call this function, as the memory allocated via devm
1251 * will be freed as per device-driver life-cyle.
1252 */
1253void devm_regmap_field_free(struct device *dev,
1254 struct regmap_field *field)
1255{
1256 devm_kfree(dev, field);
1257}
1258EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1259
1260/**
1261 * regmap_field_alloc() - Allocate and initialise a register field.
1262 *
1263 * @regmap: regmap bank in which this register field is located.
1264 * @reg_field: Register field with in the bank.
1265 *
1266 * The return value will be an ERR_PTR() on error or a valid pointer
1267 * to a struct regmap_field. The regmap_field should be freed by the
1268 * user once its finished working with it using regmap_field_free().
1269 */
1270struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1271 struct reg_field reg_field)
1272{
1273 struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1274
1275 if (!rm_field)
1276 return ERR_PTR(-ENOMEM);
1277
1278 regmap_field_init(rm_field, regmap, reg_field);
1279
1280 return rm_field;
1281}
1282EXPORT_SYMBOL_GPL(regmap_field_alloc);
1283
1284/**
1285 * regmap_field_free() - Free register field allocated using
1286 * regmap_field_alloc.
1287 *
1288 * @field: regmap field which should be freed.
1289 */
1290void regmap_field_free(struct regmap_field *field)
1291{
1292 kfree(field);
1293}
1294EXPORT_SYMBOL_GPL(regmap_field_free);
1295
1296/**
1297 * regmap_reinit_cache() - Reinitialise the current register cache
1298 *
1299 * @map: Register map to operate on.
1300 * @config: New configuration. Only the cache data will be used.
1301 *
1302 * Discard any existing register cache for the map and initialize a
1303 * new cache. This can be used to restore the cache to defaults or to
1304 * update the cache configuration to reflect runtime discovery of the
1305 * hardware.
1306 *
1307 * No explicit locking is done here, the user needs to ensure that
1308 * this function will not race with other calls to regmap.
1309 */
1310int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1311{
1312 regcache_exit(map);
1313 regmap_debugfs_exit(map);
1314
1315 map->max_register = config->max_register;
1316 map->writeable_reg = config->writeable_reg;
1317 map->readable_reg = config->readable_reg;
1318 map->volatile_reg = config->volatile_reg;
1319 map->precious_reg = config->precious_reg;
1320 map->writeable_noinc_reg = config->writeable_noinc_reg;
1321 map->readable_noinc_reg = config->readable_noinc_reg;
1322 map->cache_type = config->cache_type;
1323
1324 regmap_debugfs_init(map, config->name);
1325
1326 map->cache_bypass = false;
1327 map->cache_only = false;
1328
1329 return regcache_init(map, config);
1330}
1331EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1332
1333/**
1334 * regmap_exit() - Free a previously allocated register map
1335 *
1336 * @map: Register map to operate on.
1337 */
1338void regmap_exit(struct regmap *map)
1339{
1340 struct regmap_async *async;
1341
1342 regcache_exit(map);
1343 regmap_debugfs_exit(map);
1344 regmap_range_exit(map);
1345 if (map->bus && map->bus->free_context)
1346 map->bus->free_context(map->bus_context);
1347 kfree(map->work_buf);
1348 while (!list_empty(&map->async_free)) {
1349 async = list_first_entry_or_null(&map->async_free,
1350 struct regmap_async,
1351 list);
1352 list_del(&async->list);
1353 kfree(async->work_buf);
1354 kfree(async);
1355 }
1356 if (map->hwlock)
1357 hwspin_lock_free(map->hwlock);
1358 kfree_const(map->name);
1359 kfree(map);
1360}
1361EXPORT_SYMBOL_GPL(regmap_exit);
1362
1363static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1364{
1365 struct regmap **r = res;
1366 if (!r || !*r) {
1367 WARN_ON(!r || !*r);
1368 return 0;
1369 }
1370
1371 /* If the user didn't specify a name match any */
1372 if (data)
1373 return (*r)->name == data;
1374 else
1375 return 1;
1376}
1377
1378/**
1379 * dev_get_regmap() - Obtain the regmap (if any) for a device
1380 *
1381 * @dev: Device to retrieve the map for
1382 * @name: Optional name for the register map, usually NULL.
1383 *
1384 * Returns the regmap for the device if one is present, or NULL. If
1385 * name is specified then it must match the name specified when
1386 * registering the device, if it is NULL then the first regmap found
1387 * will be used. Devices with multiple register maps are very rare,
1388 * generic code should normally not need to specify a name.
1389 */
1390struct regmap *dev_get_regmap(struct device *dev, const char *name)
1391{
1392 struct regmap **r = devres_find(dev, dev_get_regmap_release,
1393 dev_get_regmap_match, (void *)name);
1394
1395 if (!r)
1396 return NULL;
1397 return *r;
1398}
1399EXPORT_SYMBOL_GPL(dev_get_regmap);
1400
1401/**
1402 * regmap_get_device() - Obtain the device from a regmap
1403 *
1404 * @map: Register map to operate on.
1405 *
1406 * Returns the underlying device that the regmap has been created for.
1407 */
1408struct device *regmap_get_device(struct regmap *map)
1409{
1410 return map->dev;
1411}
1412EXPORT_SYMBOL_GPL(regmap_get_device);
1413
1414static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1415 struct regmap_range_node *range,
1416 unsigned int val_num)
1417{
1418 void *orig_work_buf;
1419 unsigned int win_offset;
1420 unsigned int win_page;
1421 bool page_chg;
1422 int ret;
1423
1424 win_offset = (*reg - range->range_min) % range->window_len;
1425 win_page = (*reg - range->range_min) / range->window_len;
1426
1427 if (val_num > 1) {
1428 /* Bulk write shouldn't cross range boundary */
1429 if (*reg + val_num - 1 > range->range_max)
1430 return -EINVAL;
1431
1432 /* ... or single page boundary */
1433 if (val_num > range->window_len - win_offset)
1434 return -EINVAL;
1435 }
1436
1437 /* It is possible to have selector register inside data window.
1438 In that case, selector register is located on every page and
1439 it needs no page switching, when accessed alone. */
1440 if (val_num > 1 ||
1441 range->window_start + win_offset != range->selector_reg) {
1442 /* Use separate work_buf during page switching */
1443 orig_work_buf = map->work_buf;
1444 map->work_buf = map->selector_work_buf;
1445
1446 ret = _regmap_update_bits(map, range->selector_reg,
1447 range->selector_mask,
1448 win_page << range->selector_shift,
1449 &page_chg, false);
1450
1451 map->work_buf = orig_work_buf;
1452
1453 if (ret != 0)
1454 return ret;
1455 }
1456
1457 *reg = range->window_start + win_offset;
1458
1459 return 0;
1460}
1461
1462static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
1463 unsigned long mask)
1464{
1465 u8 *buf;
1466 int i;
1467
1468 if (!mask || !map->work_buf)
1469 return;
1470
1471 buf = map->work_buf;
1472
1473 for (i = 0; i < max_bytes; i++)
1474 buf[i] |= (mask >> (8 * i)) & 0xff;
1475}
1476
1477static int _regmap_raw_write_impl(struct regmap *map, unsigned int reg,
1478 const void *val, size_t val_len)
1479{
1480 struct regmap_range_node *range;
1481 unsigned long flags;
1482 void *work_val = map->work_buf + map->format.reg_bytes +
1483 map->format.pad_bytes;
1484 void *buf;
1485 int ret = -ENOTSUPP;
1486 size_t len;
1487 int i;
1488
1489 WARN_ON(!map->bus);
1490
1491 /* Check for unwritable registers before we start */
1492 for (i = 0; i < val_len / map->format.val_bytes; i++)
1493 if (!regmap_writeable(map,
1494 reg + regmap_get_offset(map, i)))
1495 return -EINVAL;
1496
1497 if (!map->cache_bypass && map->format.parse_val) {
1498 unsigned int ival;
1499 int val_bytes = map->format.val_bytes;
1500 for (i = 0; i < val_len / val_bytes; i++) {
1501 ival = map->format.parse_val(val + (i * val_bytes));
1502 ret = regcache_write(map,
1503 reg + regmap_get_offset(map, i),
1504 ival);
1505 if (ret) {
1506 dev_err(map->dev,
1507 "Error in caching of register: %x ret: %d\n",
1508 reg + i, ret);
1509 return ret;
1510 }
1511 }
1512 if (map->cache_only) {
1513 map->cache_dirty = true;
1514 return 0;
1515 }
1516 }
1517
1518 range = _regmap_range_lookup(map, reg);
1519 if (range) {
1520 int val_num = val_len / map->format.val_bytes;
1521 int win_offset = (reg - range->range_min) % range->window_len;
1522 int win_residue = range->window_len - win_offset;
1523
1524 /* If the write goes beyond the end of the window split it */
1525 while (val_num > win_residue) {
1526 dev_dbg(map->dev, "Writing window %d/%zu\n",
1527 win_residue, val_len / map->format.val_bytes);
1528 ret = _regmap_raw_write_impl(map, reg, val,
1529 win_residue *
1530 map->format.val_bytes);
1531 if (ret != 0)
1532 return ret;
1533
1534 reg += win_residue;
1535 val_num -= win_residue;
1536 val += win_residue * map->format.val_bytes;
1537 val_len -= win_residue * map->format.val_bytes;
1538
1539 win_offset = (reg - range->range_min) %
1540 range->window_len;
1541 win_residue = range->window_len - win_offset;
1542 }
1543
1544 ret = _regmap_select_page(map, ®, range, val_num);
1545 if (ret != 0)
1546 return ret;
1547 }
1548
1549 map->format.format_reg(map->work_buf, reg, map->reg_shift);
1550 regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
1551 map->write_flag_mask);
1552
1553 /*
1554 * Essentially all I/O mechanisms will be faster with a single
1555 * buffer to write. Since register syncs often generate raw
1556 * writes of single registers optimise that case.
1557 */
1558 if (val != work_val && val_len == map->format.val_bytes) {
1559 memcpy(work_val, val, map->format.val_bytes);
1560 val = work_val;
1561 }
1562
1563 if (map->async && map->bus->async_write) {
1564 struct regmap_async *async;
1565
1566 trace_regmap_async_write_start(map, reg, val_len);
1567
1568 spin_lock_irqsave(&map->async_lock, flags);
1569 async = list_first_entry_or_null(&map->async_free,
1570 struct regmap_async,
1571 list);
1572 if (async)
1573 list_del(&async->list);
1574 spin_unlock_irqrestore(&map->async_lock, flags);
1575
1576 if (!async) {
1577 async = map->bus->async_alloc();
1578 if (!async)
1579 return -ENOMEM;
1580
1581 async->work_buf = kzalloc(map->format.buf_size,
1582 GFP_KERNEL | GFP_DMA);
1583 if (!async->work_buf) {
1584 kfree(async);
1585 return -ENOMEM;
1586 }
1587 }
1588
1589 async->map = map;
1590
1591 /* If the caller supplied the value we can use it safely. */
1592 memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1593 map->format.reg_bytes + map->format.val_bytes);
1594
1595 spin_lock_irqsave(&map->async_lock, flags);
1596 list_add_tail(&async->list, &map->async_list);
1597 spin_unlock_irqrestore(&map->async_lock, flags);
1598
1599 if (val != work_val)
1600 ret = map->bus->async_write(map->bus_context,
1601 async->work_buf,
1602 map->format.reg_bytes +
1603 map->format.pad_bytes,
1604 val, val_len, async);
1605 else
1606 ret = map->bus->async_write(map->bus_context,
1607 async->work_buf,
1608 map->format.reg_bytes +
1609 map->format.pad_bytes +
1610 val_len, NULL, 0, async);
1611
1612 if (ret != 0) {
1613 dev_err(map->dev, "Failed to schedule write: %d\n",
1614 ret);
1615
1616 spin_lock_irqsave(&map->async_lock, flags);
1617 list_move(&async->list, &map->async_free);
1618 spin_unlock_irqrestore(&map->async_lock, flags);
1619 }
1620
1621 return ret;
1622 }
1623
1624 trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1625
1626 /* If we're doing a single register write we can probably just
1627 * send the work_buf directly, otherwise try to do a gather
1628 * write.
1629 */
1630 if (val == work_val)
1631 ret = map->bus->write(map->bus_context, map->work_buf,
1632 map->format.reg_bytes +
1633 map->format.pad_bytes +
1634 val_len);
1635 else if (map->bus->gather_write)
1636 ret = map->bus->gather_write(map->bus_context, map->work_buf,
1637 map->format.reg_bytes +
1638 map->format.pad_bytes,
1639 val, val_len);
1640 else
1641 ret = -ENOTSUPP;
1642
1643 /* If that didn't work fall back on linearising by hand. */
1644 if (ret == -ENOTSUPP) {
1645 len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1646 buf = kzalloc(len, GFP_KERNEL);
1647 if (!buf)
1648 return -ENOMEM;
1649
1650 memcpy(buf, map->work_buf, map->format.reg_bytes);
1651 memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1652 val, val_len);
1653 ret = map->bus->write(map->bus_context, buf, len);
1654
1655 kfree(buf);
1656 } else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1657 /* regcache_drop_region() takes lock that we already have,
1658 * thus call map->cache_ops->drop() directly
1659 */
1660 if (map->cache_ops && map->cache_ops->drop)
1661 map->cache_ops->drop(map, reg, reg + 1);
1662 }
1663
1664 trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1665
1666 return ret;
1667}
1668
1669/**
1670 * regmap_can_raw_write - Test if regmap_raw_write() is supported
1671 *
1672 * @map: Map to check.
1673 */
1674bool regmap_can_raw_write(struct regmap *map)
1675{
1676 return map->bus && map->bus->write && map->format.format_val &&
1677 map->format.format_reg;
1678}
1679EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1680
1681/**
1682 * regmap_get_raw_read_max - Get the maximum size we can read
1683 *
1684 * @map: Map to check.
1685 */
1686size_t regmap_get_raw_read_max(struct regmap *map)
1687{
1688 return map->max_raw_read;
1689}
1690EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1691
1692/**
1693 * regmap_get_raw_write_max - Get the maximum size we can read
1694 *
1695 * @map: Map to check.
1696 */
1697size_t regmap_get_raw_write_max(struct regmap *map)
1698{
1699 return map->max_raw_write;
1700}
1701EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1702
1703static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1704 unsigned int val)
1705{
1706 int ret;
1707 struct regmap_range_node *range;
1708 struct regmap *map = context;
1709
1710 WARN_ON(!map->bus || !map->format.format_write);
1711
1712 range = _regmap_range_lookup(map, reg);
1713 if (range) {
1714 ret = _regmap_select_page(map, ®, range, 1);
1715 if (ret != 0)
1716 return ret;
1717 }
1718
1719 map->format.format_write(map, reg, val);
1720
1721 trace_regmap_hw_write_start(map, reg, 1);
1722
1723 ret = map->bus->write(map->bus_context, map->work_buf,
1724 map->format.buf_size);
1725
1726 trace_regmap_hw_write_done(map, reg, 1);
1727
1728 return ret;
1729}
1730
1731static int _regmap_bus_reg_write(void *context, unsigned int reg,
1732 unsigned int val)
1733{
1734 struct regmap *map = context;
1735
1736 return map->bus->reg_write(map->bus_context, reg, val);
1737}
1738
1739static int _regmap_bus_raw_write(void *context, unsigned int reg,
1740 unsigned int val)
1741{
1742 struct regmap *map = context;
1743
1744 WARN_ON(!map->bus || !map->format.format_val);
1745
1746 map->format.format_val(map->work_buf + map->format.reg_bytes
1747 + map->format.pad_bytes, val, 0);
1748 return _regmap_raw_write_impl(map, reg,
1749 map->work_buf +
1750 map->format.reg_bytes +
1751 map->format.pad_bytes,
1752 map->format.val_bytes);
1753}
1754
1755static inline void *_regmap_map_get_context(struct regmap *map)
1756{
1757 return (map->bus) ? map : map->bus_context;
1758}
1759
1760int _regmap_write(struct regmap *map, unsigned int reg,
1761 unsigned int val)
1762{
1763 int ret;
1764 void *context = _regmap_map_get_context(map);
1765
1766 if (!regmap_writeable(map, reg))
1767 return -EIO;
1768
1769 if (!map->cache_bypass && !map->defer_caching) {
1770 ret = regcache_write(map, reg, val);
1771 if (ret != 0)
1772 return ret;
1773 if (map->cache_only) {
1774 map->cache_dirty = true;
1775 return 0;
1776 }
1777 }
1778
1779 if (regmap_should_log(map))
1780 dev_info(map->dev, "%x <= %x\n", reg, val);
1781
1782 trace_regmap_reg_write(map, reg, val);
1783
1784 return map->reg_write(context, reg, val);
1785}
1786
1787/**
1788 * regmap_write() - Write a value to a single register
1789 *
1790 * @map: Register map to write to
1791 * @reg: Register to write to
1792 * @val: Value to be written
1793 *
1794 * A value of zero will be returned on success, a negative errno will
1795 * be returned in error cases.
1796 */
1797int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1798{
1799 int ret;
1800
1801 if (!IS_ALIGNED(reg, map->reg_stride))
1802 return -EINVAL;
1803
1804 map->lock(map->lock_arg);
1805
1806 ret = _regmap_write(map, reg, val);
1807
1808 map->unlock(map->lock_arg);
1809
1810 return ret;
1811}
1812EXPORT_SYMBOL_GPL(regmap_write);
1813
1814/**
1815 * regmap_write_async() - Write a value to a single register asynchronously
1816 *
1817 * @map: Register map to write to
1818 * @reg: Register to write to
1819 * @val: Value to be written
1820 *
1821 * A value of zero will be returned on success, a negative errno will
1822 * be returned in error cases.
1823 */
1824int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1825{
1826 int ret;
1827
1828 if (!IS_ALIGNED(reg, map->reg_stride))
1829 return -EINVAL;
1830
1831 map->lock(map->lock_arg);
1832
1833 map->async = true;
1834
1835 ret = _regmap_write(map, reg, val);
1836
1837 map->async = false;
1838
1839 map->unlock(map->lock_arg);
1840
1841 return ret;
1842}
1843EXPORT_SYMBOL_GPL(regmap_write_async);
1844
1845int _regmap_raw_write(struct regmap *map, unsigned int reg,
1846 const void *val, size_t val_len)
1847{
1848 size_t val_bytes = map->format.val_bytes;
1849 size_t val_count = val_len / val_bytes;
1850 size_t chunk_count, chunk_bytes;
1851 size_t chunk_regs = val_count;
1852 int ret, i;
1853
1854 if (!val_count)
1855 return -EINVAL;
1856
1857 if (map->use_single_write)
1858 chunk_regs = 1;
1859 else if (map->max_raw_write && val_len > map->max_raw_write)
1860 chunk_regs = map->max_raw_write / val_bytes;
1861
1862 chunk_count = val_count / chunk_regs;
1863 chunk_bytes = chunk_regs * val_bytes;
1864
1865 /* Write as many bytes as possible with chunk_size */
1866 for (i = 0; i < chunk_count; i++) {
1867 ret = _regmap_raw_write_impl(map, reg, val, chunk_bytes);
1868 if (ret)
1869 return ret;
1870
1871 reg += regmap_get_offset(map, chunk_regs);
1872 val += chunk_bytes;
1873 val_len -= chunk_bytes;
1874 }
1875
1876 /* Write remaining bytes */
1877 if (val_len)
1878 ret = _regmap_raw_write_impl(map, reg, val, val_len);
1879
1880 return ret;
1881}
1882
1883/**
1884 * regmap_raw_write() - Write raw values to one or more registers
1885 *
1886 * @map: Register map to write to
1887 * @reg: Initial register to write to
1888 * @val: Block of data to be written, laid out for direct transmission to the
1889 * device
1890 * @val_len: Length of data pointed to by val.
1891 *
1892 * This function is intended to be used for things like firmware
1893 * download where a large block of data needs to be transferred to the
1894 * device. No formatting will be done on the data provided.
1895 *
1896 * A value of zero will be returned on success, a negative errno will
1897 * be returned in error cases.
1898 */
1899int regmap_raw_write(struct regmap *map, unsigned int reg,
1900 const void *val, size_t val_len)
1901{
1902 int ret;
1903
1904 if (!regmap_can_raw_write(map))
1905 return -EINVAL;
1906 if (val_len % map->format.val_bytes)
1907 return -EINVAL;
1908
1909 map->lock(map->lock_arg);
1910
1911 ret = _regmap_raw_write(map, reg, val, val_len);
1912
1913 map->unlock(map->lock_arg);
1914
1915 return ret;
1916}
1917EXPORT_SYMBOL_GPL(regmap_raw_write);
1918
1919/**
1920 * regmap_noinc_write(): Write data from a register without incrementing the
1921 * register number
1922 *
1923 * @map: Register map to write to
1924 * @reg: Register to write to
1925 * @val: Pointer to data buffer
1926 * @val_len: Length of output buffer in bytes.
1927 *
1928 * The regmap API usually assumes that bulk bus write operations will write a
1929 * range of registers. Some devices have certain registers for which a write
1930 * operation can write to an internal FIFO.
1931 *
1932 * The target register must be volatile but registers after it can be
1933 * completely unrelated cacheable registers.
1934 *
1935 * This will attempt multiple writes as required to write val_len bytes.
1936 *
1937 * A value of zero will be returned on success, a negative errno will be
1938 * returned in error cases.
1939 */
1940int regmap_noinc_write(struct regmap *map, unsigned int reg,
1941 const void *val, size_t val_len)
1942{
1943 size_t write_len;
1944 int ret;
1945
1946 if (!map->bus)
1947 return -EINVAL;
1948 if (!map->bus->write)
1949 return -ENOTSUPP;
1950 if (val_len % map->format.val_bytes)
1951 return -EINVAL;
1952 if (!IS_ALIGNED(reg, map->reg_stride))
1953 return -EINVAL;
1954 if (val_len == 0)
1955 return -EINVAL;
1956
1957 map->lock(map->lock_arg);
1958
1959 if (!regmap_volatile(map, reg) || !regmap_writeable_noinc(map, reg)) {
1960 ret = -EINVAL;
1961 goto out_unlock;
1962 }
1963
1964 while (val_len) {
1965 if (map->max_raw_write && map->max_raw_write < val_len)
1966 write_len = map->max_raw_write;
1967 else
1968 write_len = val_len;
1969 ret = _regmap_raw_write(map, reg, val, write_len);
1970 if (ret)
1971 goto out_unlock;
1972 val = ((u8 *)val) + write_len;
1973 val_len -= write_len;
1974 }
1975
1976out_unlock:
1977 map->unlock(map->lock_arg);
1978 return ret;
1979}
1980EXPORT_SYMBOL_GPL(regmap_noinc_write);
1981
1982/**
1983 * regmap_field_update_bits_base() - Perform a read/modify/write cycle a
1984 * register field.
1985 *
1986 * @field: Register field to write to
1987 * @mask: Bitmask to change
1988 * @val: Value to be written
1989 * @change: Boolean indicating if a write was done
1990 * @async: Boolean indicating asynchronously
1991 * @force: Boolean indicating use force update
1992 *
1993 * Perform a read/modify/write cycle on the register field with change,
1994 * async, force option.
1995 *
1996 * A value of zero will be returned on success, a negative errno will
1997 * be returned in error cases.
1998 */
1999int regmap_field_update_bits_base(struct regmap_field *field,
2000 unsigned int mask, unsigned int val,
2001 bool *change, bool async, bool force)
2002{
2003 mask = (mask << field->shift) & field->mask;
2004
2005 return regmap_update_bits_base(field->regmap, field->reg,
2006 mask, val << field->shift,
2007 change, async, force);
2008}
2009EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
2010
2011/**
2012 * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a
2013 * register field with port ID
2014 *
2015 * @field: Register field to write to
2016 * @id: port ID
2017 * @mask: Bitmask to change
2018 * @val: Value to be written
2019 * @change: Boolean indicating if a write was done
2020 * @async: Boolean indicating asynchronously
2021 * @force: Boolean indicating use force update
2022 *
2023 * A value of zero will be returned on success, a negative errno will
2024 * be returned in error cases.
2025 */
2026int regmap_fields_update_bits_base(struct regmap_field *field, unsigned int id,
2027 unsigned int mask, unsigned int val,
2028 bool *change, bool async, bool force)
2029{
2030 if (id >= field->id_size)
2031 return -EINVAL;
2032
2033 mask = (mask << field->shift) & field->mask;
2034
2035 return regmap_update_bits_base(field->regmap,
2036 field->reg + (field->id_offset * id),
2037 mask, val << field->shift,
2038 change, async, force);
2039}
2040EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
2041
2042/**
2043 * regmap_bulk_write() - Write multiple registers to the device
2044 *
2045 * @map: Register map to write to
2046 * @reg: First register to be write from
2047 * @val: Block of data to be written, in native register size for device
2048 * @val_count: Number of registers to write
2049 *
2050 * This function is intended to be used for writing a large block of
2051 * data to the device either in single transfer or multiple transfer.
2052 *
2053 * A value of zero will be returned on success, a negative errno will
2054 * be returned in error cases.
2055 */
2056int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
2057 size_t val_count)
2058{
2059 int ret = 0, i;
2060 size_t val_bytes = map->format.val_bytes;
2061
2062 if (!IS_ALIGNED(reg, map->reg_stride))
2063 return -EINVAL;
2064
2065 /*
2066 * Some devices don't support bulk write, for them we have a series of
2067 * single write operations.
2068 */
2069 if (!map->bus || !map->format.parse_inplace) {
2070 map->lock(map->lock_arg);
2071 for (i = 0; i < val_count; i++) {
2072 unsigned int ival;
2073
2074 switch (val_bytes) {
2075 case 1:
2076 ival = *(u8 *)(val + (i * val_bytes));
2077 break;
2078 case 2:
2079 ival = *(u16 *)(val + (i * val_bytes));
2080 break;
2081 case 4:
2082 ival = *(u32 *)(val + (i * val_bytes));
2083 break;
2084#ifdef CONFIG_64BIT
2085 case 8:
2086 ival = *(u64 *)(val + (i * val_bytes));
2087 break;
2088#endif
2089 default:
2090 ret = -EINVAL;
2091 goto out;
2092 }
2093
2094 ret = _regmap_write(map,
2095 reg + regmap_get_offset(map, i),
2096 ival);
2097 if (ret != 0)
2098 goto out;
2099 }
2100out:
2101 map->unlock(map->lock_arg);
2102 } else {
2103 void *wval;
2104
2105 wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
2106 if (!wval)
2107 return -ENOMEM;
2108
2109 for (i = 0; i < val_count * val_bytes; i += val_bytes)
2110 map->format.parse_inplace(wval + i);
2111
2112 ret = regmap_raw_write(map, reg, wval, val_bytes * val_count);
2113
2114 kfree(wval);
2115 }
2116 return ret;
2117}
2118EXPORT_SYMBOL_GPL(regmap_bulk_write);
2119
2120/*
2121 * _regmap_raw_multi_reg_write()
2122 *
2123 * the (register,newvalue) pairs in regs have not been formatted, but
2124 * they are all in the same page and have been changed to being page
2125 * relative. The page register has been written if that was necessary.
2126 */
2127static int _regmap_raw_multi_reg_write(struct regmap *map,
2128 const struct reg_sequence *regs,
2129 size_t num_regs)
2130{
2131 int ret;
2132 void *buf;
2133 int i;
2134 u8 *u8;
2135 size_t val_bytes = map->format.val_bytes;
2136 size_t reg_bytes = map->format.reg_bytes;
2137 size_t pad_bytes = map->format.pad_bytes;
2138 size_t pair_size = reg_bytes + pad_bytes + val_bytes;
2139 size_t len = pair_size * num_regs;
2140
2141 if (!len)
2142 return -EINVAL;
2143
2144 buf = kzalloc(len, GFP_KERNEL);
2145 if (!buf)
2146 return -ENOMEM;
2147
2148 /* We have to linearise by hand. */
2149
2150 u8 = buf;
2151
2152 for (i = 0; i < num_regs; i++) {
2153 unsigned int reg = regs[i].reg;
2154 unsigned int val = regs[i].def;
2155 trace_regmap_hw_write_start(map, reg, 1);
2156 map->format.format_reg(u8, reg, map->reg_shift);
2157 u8 += reg_bytes + pad_bytes;
2158 map->format.format_val(u8, val, 0);
2159 u8 += val_bytes;
2160 }
2161 u8 = buf;
2162 *u8 |= map->write_flag_mask;
2163
2164 ret = map->bus->write(map->bus_context, buf, len);
2165
2166 kfree(buf);
2167
2168 for (i = 0; i < num_regs; i++) {
2169 int reg = regs[i].reg;
2170 trace_regmap_hw_write_done(map, reg, 1);
2171 }
2172 return ret;
2173}
2174
2175static unsigned int _regmap_register_page(struct regmap *map,
2176 unsigned int reg,
2177 struct regmap_range_node *range)
2178{
2179 unsigned int win_page = (reg - range->range_min) / range->window_len;
2180
2181 return win_page;
2182}
2183
2184static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2185 struct reg_sequence *regs,
2186 size_t num_regs)
2187{
2188 int ret;
2189 int i, n;
2190 struct reg_sequence *base;
2191 unsigned int this_page = 0;
2192 unsigned int page_change = 0;
2193 /*
2194 * the set of registers are not neccessarily in order, but
2195 * since the order of write must be preserved this algorithm
2196 * chops the set each time the page changes. This also applies
2197 * if there is a delay required at any point in the sequence.
2198 */
2199 base = regs;
2200 for (i = 0, n = 0; i < num_regs; i++, n++) {
2201 unsigned int reg = regs[i].reg;
2202 struct regmap_range_node *range;
2203
2204 range = _regmap_range_lookup(map, reg);
2205 if (range) {
2206 unsigned int win_page = _regmap_register_page(map, reg,
2207 range);
2208
2209 if (i == 0)
2210 this_page = win_page;
2211 if (win_page != this_page) {
2212 this_page = win_page;
2213 page_change = 1;
2214 }
2215 }
2216
2217 /* If we have both a page change and a delay make sure to
2218 * write the regs and apply the delay before we change the
2219 * page.
2220 */
2221
2222 if (page_change || regs[i].delay_us) {
2223
2224 /* For situations where the first write requires
2225 * a delay we need to make sure we don't call
2226 * raw_multi_reg_write with n=0
2227 * This can't occur with page breaks as we
2228 * never write on the first iteration
2229 */
2230 if (regs[i].delay_us && i == 0)
2231 n = 1;
2232
2233 ret = _regmap_raw_multi_reg_write(map, base, n);
2234 if (ret != 0)
2235 return ret;
2236
2237 if (regs[i].delay_us)
2238 udelay(regs[i].delay_us);
2239
2240 base += n;
2241 n = 0;
2242
2243 if (page_change) {
2244 ret = _regmap_select_page(map,
2245 &base[n].reg,
2246 range, 1);
2247 if (ret != 0)
2248 return ret;
2249
2250 page_change = 0;
2251 }
2252
2253 }
2254
2255 }
2256 if (n > 0)
2257 return _regmap_raw_multi_reg_write(map, base, n);
2258 return 0;
2259}
2260
2261static int _regmap_multi_reg_write(struct regmap *map,
2262 const struct reg_sequence *regs,
2263 size_t num_regs)
2264{
2265 int i;
2266 int ret;
2267
2268 if (!map->can_multi_write) {
2269 for (i = 0; i < num_regs; i++) {
2270 ret = _regmap_write(map, regs[i].reg, regs[i].def);
2271 if (ret != 0)
2272 return ret;
2273
2274 if (regs[i].delay_us)
2275 udelay(regs[i].delay_us);
2276 }
2277 return 0;
2278 }
2279
2280 if (!map->format.parse_inplace)
2281 return -EINVAL;
2282
2283 if (map->writeable_reg)
2284 for (i = 0; i < num_regs; i++) {
2285 int reg = regs[i].reg;
2286 if (!map->writeable_reg(map->dev, reg))
2287 return -EINVAL;
2288 if (!IS_ALIGNED(reg, map->reg_stride))
2289 return -EINVAL;
2290 }
2291
2292 if (!map->cache_bypass) {
2293 for (i = 0; i < num_regs; i++) {
2294 unsigned int val = regs[i].def;
2295 unsigned int reg = regs[i].reg;
2296 ret = regcache_write(map, reg, val);
2297 if (ret) {
2298 dev_err(map->dev,
2299 "Error in caching of register: %x ret: %d\n",
2300 reg, ret);
2301 return ret;
2302 }
2303 }
2304 if (map->cache_only) {
2305 map->cache_dirty = true;
2306 return 0;
2307 }
2308 }
2309
2310 WARN_ON(!map->bus);
2311
2312 for (i = 0; i < num_regs; i++) {
2313 unsigned int reg = regs[i].reg;
2314 struct regmap_range_node *range;
2315
2316 /* Coalesce all the writes between a page break or a delay
2317 * in a sequence
2318 */
2319 range = _regmap_range_lookup(map, reg);
2320 if (range || regs[i].delay_us) {
2321 size_t len = sizeof(struct reg_sequence)*num_regs;
2322 struct reg_sequence *base = kmemdup(regs, len,
2323 GFP_KERNEL);
2324 if (!base)
2325 return -ENOMEM;
2326 ret = _regmap_range_multi_paged_reg_write(map, base,
2327 num_regs);
2328 kfree(base);
2329
2330 return ret;
2331 }
2332 }
2333 return _regmap_raw_multi_reg_write(map, regs, num_regs);
2334}
2335
2336/**
2337 * regmap_multi_reg_write() - Write multiple registers to the device
2338 *
2339 * @map: Register map to write to
2340 * @regs: Array of structures containing register,value to be written
2341 * @num_regs: Number of registers to write
2342 *
2343 * Write multiple registers to the device where the set of register, value
2344 * pairs are supplied in any order, possibly not all in a single range.
2345 *
2346 * The 'normal' block write mode will send ultimately send data on the
2347 * target bus as R,V1,V2,V3,..,Vn where successively higher registers are
2348 * addressed. However, this alternative block multi write mode will send
2349 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2350 * must of course support the mode.
2351 *
2352 * A value of zero will be returned on success, a negative errno will be
2353 * returned in error cases.
2354 */
2355int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2356 int num_regs)
2357{
2358 int ret;
2359
2360 map->lock(map->lock_arg);
2361
2362 ret = _regmap_multi_reg_write(map, regs, num_regs);
2363
2364 map->unlock(map->lock_arg);
2365
2366 return ret;
2367}
2368EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2369
2370/**
2371 * regmap_multi_reg_write_bypassed() - Write multiple registers to the
2372 * device but not the cache
2373 *
2374 * @map: Register map to write to
2375 * @regs: Array of structures containing register,value to be written
2376 * @num_regs: Number of registers to write
2377 *
2378 * Write multiple registers to the device but not the cache where the set
2379 * of register are supplied in any order.
2380 *
2381 * This function is intended to be used for writing a large block of data
2382 * atomically to the device in single transfer for those I2C client devices
2383 * that implement this alternative block write mode.
2384 *
2385 * A value of zero will be returned on success, a negative errno will
2386 * be returned in error cases.
2387 */
2388int regmap_multi_reg_write_bypassed(struct regmap *map,
2389 const struct reg_sequence *regs,
2390 int num_regs)
2391{
2392 int ret;
2393 bool bypass;
2394
2395 map->lock(map->lock_arg);
2396
2397 bypass = map->cache_bypass;
2398 map->cache_bypass = true;
2399
2400 ret = _regmap_multi_reg_write(map, regs, num_regs);
2401
2402 map->cache_bypass = bypass;
2403
2404 map->unlock(map->lock_arg);
2405
2406 return ret;
2407}
2408EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2409
2410/**
2411 * regmap_raw_write_async() - Write raw values to one or more registers
2412 * asynchronously
2413 *
2414 * @map: Register map to write to
2415 * @reg: Initial register to write to
2416 * @val: Block of data to be written, laid out for direct transmission to the
2417 * device. Must be valid until regmap_async_complete() is called.
2418 * @val_len: Length of data pointed to by val.
2419 *
2420 * This function is intended to be used for things like firmware
2421 * download where a large block of data needs to be transferred to the
2422 * device. No formatting will be done on the data provided.
2423 *
2424 * If supported by the underlying bus the write will be scheduled
2425 * asynchronously, helping maximise I/O speed on higher speed buses
2426 * like SPI. regmap_async_complete() can be called to ensure that all
2427 * asynchrnous writes have been completed.
2428 *
2429 * A value of zero will be returned on success, a negative errno will
2430 * be returned in error cases.
2431 */
2432int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2433 const void *val, size_t val_len)
2434{
2435 int ret;
2436
2437 if (val_len % map->format.val_bytes)
2438 return -EINVAL;
2439 if (!IS_ALIGNED(reg, map->reg_stride))
2440 return -EINVAL;
2441
2442 map->lock(map->lock_arg);
2443
2444 map->async = true;
2445
2446 ret = _regmap_raw_write(map, reg, val, val_len);
2447
2448 map->async = false;
2449
2450 map->unlock(map->lock_arg);
2451
2452 return ret;
2453}
2454EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2455
2456static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2457 unsigned int val_len)
2458{
2459 struct regmap_range_node *range;
2460 int ret;
2461
2462 WARN_ON(!map->bus);
2463
2464 if (!map->bus || !map->bus->read)
2465 return -EINVAL;
2466
2467 range = _regmap_range_lookup(map, reg);
2468 if (range) {
2469 ret = _regmap_select_page(map, ®, range,
2470 val_len / map->format.val_bytes);
2471 if (ret != 0)
2472 return ret;
2473 }
2474
2475 map->format.format_reg(map->work_buf, reg, map->reg_shift);
2476 regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
2477 map->read_flag_mask);
2478 trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2479
2480 ret = map->bus->read(map->bus_context, map->work_buf,
2481 map->format.reg_bytes + map->format.pad_bytes,
2482 val, val_len);
2483
2484 trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2485
2486 return ret;
2487}
2488
2489static int _regmap_bus_reg_read(void *context, unsigned int reg,
2490 unsigned int *val)
2491{
2492 struct regmap *map = context;
2493
2494 return map->bus->reg_read(map->bus_context, reg, val);
2495}
2496
2497static int _regmap_bus_read(void *context, unsigned int reg,
2498 unsigned int *val)
2499{
2500 int ret;
2501 struct regmap *map = context;
2502 void *work_val = map->work_buf + map->format.reg_bytes +
2503 map->format.pad_bytes;
2504
2505 if (!map->format.parse_val)
2506 return -EINVAL;
2507
2508 ret = _regmap_raw_read(map, reg, work_val, map->format.val_bytes);
2509 if (ret == 0)
2510 *val = map->format.parse_val(work_val);
2511
2512 return ret;
2513}
2514
2515static int _regmap_read(struct regmap *map, unsigned int reg,
2516 unsigned int *val)
2517{
2518 int ret;
2519 void *context = _regmap_map_get_context(map);
2520
2521 if (!map->cache_bypass) {
2522 ret = regcache_read(map, reg, val);
2523 if (ret == 0)
2524 return 0;
2525 }
2526
2527 if (map->cache_only)
2528 return -EBUSY;
2529
2530 if (!regmap_readable(map, reg))
2531 return -EIO;
2532
2533 ret = map->reg_read(context, reg, val);
2534 if (ret == 0) {
2535 if (regmap_should_log(map))
2536 dev_info(map->dev, "%x => %x\n", reg, *val);
2537
2538 trace_regmap_reg_read(map, reg, *val);
2539
2540 if (!map->cache_bypass)
2541 regcache_write(map, reg, *val);
2542 }
2543
2544 return ret;
2545}
2546
2547/**
2548 * regmap_read() - Read a value from a single register
2549 *
2550 * @map: Register map to read from
2551 * @reg: Register to be read from
2552 * @val: Pointer to store read value
2553 *
2554 * A value of zero will be returned on success, a negative errno will
2555 * be returned in error cases.
2556 */
2557int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2558{
2559 int ret;
2560
2561 if (!IS_ALIGNED(reg, map->reg_stride))
2562 return -EINVAL;
2563
2564 map->lock(map->lock_arg);
2565
2566 ret = _regmap_read(map, reg, val);
2567
2568 map->unlock(map->lock_arg);
2569
2570 return ret;
2571}
2572EXPORT_SYMBOL_GPL(regmap_read);
2573
2574/**
2575 * regmap_raw_read() - Read raw data from the device
2576 *
2577 * @map: Register map to read from
2578 * @reg: First register to be read from
2579 * @val: Pointer to store read value
2580 * @val_len: Size of data to read
2581 *
2582 * A value of zero will be returned on success, a negative errno will
2583 * be returned in error cases.
2584 */
2585int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2586 size_t val_len)
2587{
2588 size_t val_bytes = map->format.val_bytes;
2589 size_t val_count = val_len / val_bytes;
2590 unsigned int v;
2591 int ret, i;
2592
2593 if (!map->bus)
2594 return -EINVAL;
2595 if (val_len % map->format.val_bytes)
2596 return -EINVAL;
2597 if (!IS_ALIGNED(reg, map->reg_stride))
2598 return -EINVAL;
2599 if (val_count == 0)
2600 return -EINVAL;
2601
2602 map->lock(map->lock_arg);
2603
2604 if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2605 map->cache_type == REGCACHE_NONE) {
2606 size_t chunk_count, chunk_bytes;
2607 size_t chunk_regs = val_count;
2608
2609 if (!map->bus->read) {
2610 ret = -ENOTSUPP;
2611 goto out;
2612 }
2613
2614 if (map->use_single_read)
2615 chunk_regs = 1;
2616 else if (map->max_raw_read && val_len > map->max_raw_read)
2617 chunk_regs = map->max_raw_read / val_bytes;
2618
2619 chunk_count = val_count / chunk_regs;
2620 chunk_bytes = chunk_regs * val_bytes;
2621
2622 /* Read bytes that fit into whole chunks */
2623 for (i = 0; i < chunk_count; i++) {
2624 ret = _regmap_raw_read(map, reg, val, chunk_bytes);
2625 if (ret != 0)
2626 goto out;
2627
2628 reg += regmap_get_offset(map, chunk_regs);
2629 val += chunk_bytes;
2630 val_len -= chunk_bytes;
2631 }
2632
2633 /* Read remaining bytes */
2634 if (val_len) {
2635 ret = _regmap_raw_read(map, reg, val, val_len);
2636 if (ret != 0)
2637 goto out;
2638 }
2639 } else {
2640 /* Otherwise go word by word for the cache; should be low
2641 * cost as we expect to hit the cache.
2642 */
2643 for (i = 0; i < val_count; i++) {
2644 ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2645 &v);
2646 if (ret != 0)
2647 goto out;
2648
2649 map->format.format_val(val + (i * val_bytes), v, 0);
2650 }
2651 }
2652
2653 out:
2654 map->unlock(map->lock_arg);
2655
2656 return ret;
2657}
2658EXPORT_SYMBOL_GPL(regmap_raw_read);
2659
2660/**
2661 * regmap_noinc_read(): Read data from a register without incrementing the
2662 * register number
2663 *
2664 * @map: Register map to read from
2665 * @reg: Register to read from
2666 * @val: Pointer to data buffer
2667 * @val_len: Length of output buffer in bytes.
2668 *
2669 * The regmap API usually assumes that bulk bus read operations will read a
2670 * range of registers. Some devices have certain registers for which a read
2671 * operation read will read from an internal FIFO.
2672 *
2673 * The target register must be volatile but registers after it can be
2674 * completely unrelated cacheable registers.
2675 *
2676 * This will attempt multiple reads as required to read val_len bytes.
2677 *
2678 * A value of zero will be returned on success, a negative errno will be
2679 * returned in error cases.
2680 */
2681int regmap_noinc_read(struct regmap *map, unsigned int reg,
2682 void *val, size_t val_len)
2683{
2684 size_t read_len;
2685 int ret;
2686
2687 if (!map->bus)
2688 return -EINVAL;
2689 if (!map->bus->read)
2690 return -ENOTSUPP;
2691 if (val_len % map->format.val_bytes)
2692 return -EINVAL;
2693 if (!IS_ALIGNED(reg, map->reg_stride))
2694 return -EINVAL;
2695 if (val_len == 0)
2696 return -EINVAL;
2697
2698 map->lock(map->lock_arg);
2699
2700 if (!regmap_volatile(map, reg) || !regmap_readable_noinc(map, reg)) {
2701 ret = -EINVAL;
2702 goto out_unlock;
2703 }
2704
2705 while (val_len) {
2706 if (map->max_raw_read && map->max_raw_read < val_len)
2707 read_len = map->max_raw_read;
2708 else
2709 read_len = val_len;
2710 ret = _regmap_raw_read(map, reg, val, read_len);
2711 if (ret)
2712 goto out_unlock;
2713 val = ((u8 *)val) + read_len;
2714 val_len -= read_len;
2715 }
2716
2717out_unlock:
2718 map->unlock(map->lock_arg);
2719 return ret;
2720}
2721EXPORT_SYMBOL_GPL(regmap_noinc_read);
2722
2723/**
2724 * regmap_field_read(): Read a value to a single register field
2725 *
2726 * @field: Register field to read from
2727 * @val: Pointer to store read value
2728 *
2729 * A value of zero will be returned on success, a negative errno will
2730 * be returned in error cases.
2731 */
2732int regmap_field_read(struct regmap_field *field, unsigned int *val)
2733{
2734 int ret;
2735 unsigned int reg_val;
2736 ret = regmap_read(field->regmap, field->reg, ®_val);
2737 if (ret != 0)
2738 return ret;
2739
2740 reg_val &= field->mask;
2741 reg_val >>= field->shift;
2742 *val = reg_val;
2743
2744 return ret;
2745}
2746EXPORT_SYMBOL_GPL(regmap_field_read);
2747
2748/**
2749 * regmap_fields_read() - Read a value to a single register field with port ID
2750 *
2751 * @field: Register field to read from
2752 * @id: port ID
2753 * @val: Pointer to store read value
2754 *
2755 * A value of zero will be returned on success, a negative errno will
2756 * be returned in error cases.
2757 */
2758int regmap_fields_read(struct regmap_field *field, unsigned int id,
2759 unsigned int *val)
2760{
2761 int ret;
2762 unsigned int reg_val;
2763
2764 if (id >= field->id_size)
2765 return -EINVAL;
2766
2767 ret = regmap_read(field->regmap,
2768 field->reg + (field->id_offset * id),
2769 ®_val);
2770 if (ret != 0)
2771 return ret;
2772
2773 reg_val &= field->mask;
2774 reg_val >>= field->shift;
2775 *val = reg_val;
2776
2777 return ret;
2778}
2779EXPORT_SYMBOL_GPL(regmap_fields_read);
2780
2781/**
2782 * regmap_bulk_read() - Read multiple registers from the device
2783 *
2784 * @map: Register map to read from
2785 * @reg: First register to be read from
2786 * @val: Pointer to store read value, in native register size for device
2787 * @val_count: Number of registers to read
2788 *
2789 * A value of zero will be returned on success, a negative errno will
2790 * be returned in error cases.
2791 */
2792int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
2793 size_t val_count)
2794{
2795 int ret, i;
2796 size_t val_bytes = map->format.val_bytes;
2797 bool vol = regmap_volatile_range(map, reg, val_count);
2798
2799 if (!IS_ALIGNED(reg, map->reg_stride))
2800 return -EINVAL;
2801 if (val_count == 0)
2802 return -EINVAL;
2803
2804 if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2805 ret = regmap_raw_read(map, reg, val, val_bytes * val_count);
2806 if (ret != 0)
2807 return ret;
2808
2809 for (i = 0; i < val_count * val_bytes; i += val_bytes)
2810 map->format.parse_inplace(val + i);
2811 } else {
2812#ifdef CONFIG_64BIT
2813 u64 *u64 = val;
2814#endif
2815 u32 *u32 = val;
2816 u16 *u16 = val;
2817 u8 *u8 = val;
2818
2819 map->lock(map->lock_arg);
2820
2821 for (i = 0; i < val_count; i++) {
2822 unsigned int ival;
2823
2824 ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2825 &ival);
2826 if (ret != 0)
2827 goto out;
2828
2829 switch (map->format.val_bytes) {
2830#ifdef CONFIG_64BIT
2831 case 8:
2832 u64[i] = ival;
2833 break;
2834#endif
2835 case 4:
2836 u32[i] = ival;
2837 break;
2838 case 2:
2839 u16[i] = ival;
2840 break;
2841 case 1:
2842 u8[i] = ival;
2843 break;
2844 default:
2845 ret = -EINVAL;
2846 goto out;
2847 }
2848 }
2849
2850out:
2851 map->unlock(map->lock_arg);
2852 }
2853
2854 return ret;
2855}
2856EXPORT_SYMBOL_GPL(regmap_bulk_read);
2857
2858static int _regmap_update_bits(struct regmap *map, unsigned int reg,
2859 unsigned int mask, unsigned int val,
2860 bool *change, bool force_write)
2861{
2862 int ret;
2863 unsigned int tmp, orig;
2864
2865 if (change)
2866 *change = false;
2867
2868 if (regmap_volatile(map, reg) && map->reg_update_bits) {
2869 ret = map->reg_update_bits(map->bus_context, reg, mask, val);
2870 if (ret == 0 && change)
2871 *change = true;
2872 } else {
2873 ret = _regmap_read(map, reg, &orig);
2874 if (ret != 0)
2875 return ret;
2876
2877 tmp = orig & ~mask;
2878 tmp |= val & mask;
2879
2880 if (force_write || (tmp != orig)) {
2881 ret = _regmap_write(map, reg, tmp);
2882 if (ret == 0 && change)
2883 *change = true;
2884 }
2885 }
2886
2887 return ret;
2888}
2889
2890/**
2891 * regmap_update_bits_base() - Perform a read/modify/write cycle on a register
2892 *
2893 * @map: Register map to update
2894 * @reg: Register to update
2895 * @mask: Bitmask to change
2896 * @val: New value for bitmask
2897 * @change: Boolean indicating if a write was done
2898 * @async: Boolean indicating asynchronously
2899 * @force: Boolean indicating use force update
2900 *
2901 * Perform a read/modify/write cycle on a register map with change, async, force
2902 * options.
2903 *
2904 * If async is true:
2905 *
2906 * With most buses the read must be done synchronously so this is most useful
2907 * for devices with a cache which do not need to interact with the hardware to
2908 * determine the current register value.
2909 *
2910 * Returns zero for success, a negative number on error.
2911 */
2912int regmap_update_bits_base(struct regmap *map, unsigned int reg,
2913 unsigned int mask, unsigned int val,
2914 bool *change, bool async, bool force)
2915{
2916 int ret;
2917
2918 map->lock(map->lock_arg);
2919
2920 map->async = async;
2921
2922 ret = _regmap_update_bits(map, reg, mask, val, change, force);
2923
2924 map->async = false;
2925
2926 map->unlock(map->lock_arg);
2927
2928 return ret;
2929}
2930EXPORT_SYMBOL_GPL(regmap_update_bits_base);
2931
2932void regmap_async_complete_cb(struct regmap_async *async, int ret)
2933{
2934 struct regmap *map = async->map;
2935 bool wake;
2936
2937 trace_regmap_async_io_complete(map);
2938
2939 spin_lock(&map->async_lock);
2940 list_move(&async->list, &map->async_free);
2941 wake = list_empty(&map->async_list);
2942
2943 if (ret != 0)
2944 map->async_ret = ret;
2945
2946 spin_unlock(&map->async_lock);
2947
2948 if (wake)
2949 wake_up(&map->async_waitq);
2950}
2951EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
2952
2953static int regmap_async_is_done(struct regmap *map)
2954{
2955 unsigned long flags;
2956 int ret;
2957
2958 spin_lock_irqsave(&map->async_lock, flags);
2959 ret = list_empty(&map->async_list);
2960 spin_unlock_irqrestore(&map->async_lock, flags);
2961
2962 return ret;
2963}
2964
2965/**
2966 * regmap_async_complete - Ensure all asynchronous I/O has completed.
2967 *
2968 * @map: Map to operate on.
2969 *
2970 * Blocks until any pending asynchronous I/O has completed. Returns
2971 * an error code for any failed I/O operations.
2972 */
2973int regmap_async_complete(struct regmap *map)
2974{
2975 unsigned long flags;
2976 int ret;
2977
2978 /* Nothing to do with no async support */
2979 if (!map->bus || !map->bus->async_write)
2980 return 0;
2981
2982 trace_regmap_async_complete_start(map);
2983
2984 wait_event(map->async_waitq, regmap_async_is_done(map));
2985
2986 spin_lock_irqsave(&map->async_lock, flags);
2987 ret = map->async_ret;
2988 map->async_ret = 0;
2989 spin_unlock_irqrestore(&map->async_lock, flags);
2990
2991 trace_regmap_async_complete_done(map);
2992
2993 return ret;
2994}
2995EXPORT_SYMBOL_GPL(regmap_async_complete);
2996
2997/**
2998 * regmap_register_patch - Register and apply register updates to be applied
2999 * on device initialistion
3000 *
3001 * @map: Register map to apply updates to.
3002 * @regs: Values to update.
3003 * @num_regs: Number of entries in regs.
3004 *
3005 * Register a set of register updates to be applied to the device
3006 * whenever the device registers are synchronised with the cache and
3007 * apply them immediately. Typically this is used to apply
3008 * corrections to be applied to the device defaults on startup, such
3009 * as the updates some vendors provide to undocumented registers.
3010 *
3011 * The caller must ensure that this function cannot be called
3012 * concurrently with either itself or regcache_sync().
3013 */
3014int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
3015 int num_regs)
3016{
3017 struct reg_sequence *p;
3018 int ret;
3019 bool bypass;
3020
3021 if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
3022 num_regs))
3023 return 0;
3024
3025 p = krealloc(map->patch,
3026 sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
3027 GFP_KERNEL);
3028 if (p) {
3029 memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
3030 map->patch = p;
3031 map->patch_regs += num_regs;
3032 } else {
3033 return -ENOMEM;
3034 }
3035
3036 map->lock(map->lock_arg);
3037
3038 bypass = map->cache_bypass;
3039
3040 map->cache_bypass = true;
3041 map->async = true;
3042
3043 ret = _regmap_multi_reg_write(map, regs, num_regs);
3044
3045 map->async = false;
3046 map->cache_bypass = bypass;
3047
3048 map->unlock(map->lock_arg);
3049
3050 regmap_async_complete(map);
3051
3052 return ret;
3053}
3054EXPORT_SYMBOL_GPL(regmap_register_patch);
3055
3056/**
3057 * regmap_get_val_bytes() - Report the size of a register value
3058 *
3059 * @map: Register map to operate on.
3060 *
3061 * Report the size of a register value, mainly intended to for use by
3062 * generic infrastructure built on top of regmap.
3063 */
3064int regmap_get_val_bytes(struct regmap *map)
3065{
3066 if (map->format.format_write)
3067 return -EINVAL;
3068
3069 return map->format.val_bytes;
3070}
3071EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
3072
3073/**
3074 * regmap_get_max_register() - Report the max register value
3075 *
3076 * @map: Register map to operate on.
3077 *
3078 * Report the max register value, mainly intended to for use by
3079 * generic infrastructure built on top of regmap.
3080 */
3081int regmap_get_max_register(struct regmap *map)
3082{
3083 return map->max_register ? map->max_register : -EINVAL;
3084}
3085EXPORT_SYMBOL_GPL(regmap_get_max_register);
3086
3087/**
3088 * regmap_get_reg_stride() - Report the register address stride
3089 *
3090 * @map: Register map to operate on.
3091 *
3092 * Report the register address stride, mainly intended to for use by
3093 * generic infrastructure built on top of regmap.
3094 */
3095int regmap_get_reg_stride(struct regmap *map)
3096{
3097 return map->reg_stride;
3098}
3099EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
3100
3101int regmap_parse_val(struct regmap *map, const void *buf,
3102 unsigned int *val)
3103{
3104 if (!map->format.parse_val)
3105 return -EINVAL;
3106
3107 *val = map->format.parse_val(buf);
3108
3109 return 0;
3110}
3111EXPORT_SYMBOL_GPL(regmap_parse_val);
3112
3113static int __init regmap_initcall(void)
3114{
3115 regmap_debugfs_initcall();
3116
3117 return 0;
3118}
3119postcore_initcall(regmap_initcall);