Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2//
   3// Register map access API
   4//
   5// Copyright 2011 Wolfson Microelectronics plc
   6//
   7// Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
 
 
 
 
   8
   9#include <linux/device.h>
  10#include <linux/slab.h>
  11#include <linux/export.h>
  12#include <linux/mutex.h>
  13#include <linux/err.h>
  14#include <linux/property.h>
  15#include <linux/rbtree.h>
  16#include <linux/sched.h>
  17#include <linux/delay.h>
  18#include <linux/log2.h>
  19#include <linux/hwspinlock.h>
  20#include <asm/unaligned.h>
  21
  22#define CREATE_TRACE_POINTS
  23#include "trace.h"
  24
  25#include "internal.h"
  26
  27/*
  28 * Sometimes for failures during very early init the trace
  29 * infrastructure isn't available early enough to be used.  For this
  30 * sort of problem defining LOG_DEVICE will add printks for basic
  31 * register I/O on a specific device.
  32 */
  33#undef LOG_DEVICE
  34
  35#ifdef LOG_DEVICE
  36static inline bool regmap_should_log(struct regmap *map)
  37{
  38	return (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0);
  39}
  40#else
  41static inline bool regmap_should_log(struct regmap *map) { return false; }
  42#endif
  43
  44
  45static int _regmap_update_bits(struct regmap *map, unsigned int reg,
  46			       unsigned int mask, unsigned int val,
  47			       bool *change, bool force_write);
  48
  49static int _regmap_bus_reg_read(void *context, unsigned int reg,
  50				unsigned int *val);
  51static int _regmap_bus_read(void *context, unsigned int reg,
  52			    unsigned int *val);
  53static int _regmap_bus_formatted_write(void *context, unsigned int reg,
  54				       unsigned int val);
  55static int _regmap_bus_reg_write(void *context, unsigned int reg,
  56				 unsigned int val);
  57static int _regmap_bus_raw_write(void *context, unsigned int reg,
  58				 unsigned int val);
  59
  60bool regmap_reg_in_ranges(unsigned int reg,
  61			  const struct regmap_range *ranges,
  62			  unsigned int nranges)
  63{
  64	const struct regmap_range *r;
  65	int i;
  66
  67	for (i = 0, r = ranges; i < nranges; i++, r++)
  68		if (regmap_reg_in_range(reg, r))
  69			return true;
  70	return false;
  71}
  72EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
  73
  74bool regmap_check_range_table(struct regmap *map, unsigned int reg,
  75			      const struct regmap_access_table *table)
  76{
  77	/* Check "no ranges" first */
  78	if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
  79		return false;
  80
  81	/* In case zero "yes ranges" are supplied, any reg is OK */
  82	if (!table->n_yes_ranges)
  83		return true;
  84
  85	return regmap_reg_in_ranges(reg, table->yes_ranges,
  86				    table->n_yes_ranges);
  87}
  88EXPORT_SYMBOL_GPL(regmap_check_range_table);
  89
  90bool regmap_writeable(struct regmap *map, unsigned int reg)
  91{
  92	if (map->max_register && reg > map->max_register)
  93		return false;
  94
  95	if (map->writeable_reg)
  96		return map->writeable_reg(map->dev, reg);
  97
  98	if (map->wr_table)
  99		return regmap_check_range_table(map, reg, map->wr_table);
 100
 101	return true;
 102}
 103
 104bool regmap_cached(struct regmap *map, unsigned int reg)
 105{
 106	int ret;
 107	unsigned int val;
 108
 109	if (map->cache_type == REGCACHE_NONE)
 110		return false;
 111
 112	if (!map->cache_ops)
 113		return false;
 114
 115	if (map->max_register && reg > map->max_register)
 116		return false;
 117
 118	map->lock(map->lock_arg);
 119	ret = regcache_read(map, reg, &val);
 120	map->unlock(map->lock_arg);
 121	if (ret)
 122		return false;
 123
 124	return true;
 125}
 126
 127bool regmap_readable(struct regmap *map, unsigned int reg)
 128{
 129	if (!map->reg_read)
 130		return false;
 131
 132	if (map->max_register && reg > map->max_register)
 133		return false;
 134
 135	if (map->format.format_write)
 136		return false;
 137
 138	if (map->readable_reg)
 139		return map->readable_reg(map->dev, reg);
 140
 141	if (map->rd_table)
 142		return regmap_check_range_table(map, reg, map->rd_table);
 143
 144	return true;
 145}
 146
 147bool regmap_volatile(struct regmap *map, unsigned int reg)
 148{
 149	if (!map->format.format_write && !regmap_readable(map, reg))
 150		return false;
 151
 152	if (map->volatile_reg)
 153		return map->volatile_reg(map->dev, reg);
 154
 155	if (map->volatile_table)
 156		return regmap_check_range_table(map, reg, map->volatile_table);
 157
 158	if (map->cache_ops)
 159		return false;
 160	else
 161		return true;
 162}
 163
 164bool regmap_precious(struct regmap *map, unsigned int reg)
 165{
 166	if (!regmap_readable(map, reg))
 167		return false;
 168
 169	if (map->precious_reg)
 170		return map->precious_reg(map->dev, reg);
 171
 172	if (map->precious_table)
 173		return regmap_check_range_table(map, reg, map->precious_table);
 174
 175	return false;
 176}
 177
 178bool regmap_writeable_noinc(struct regmap *map, unsigned int reg)
 179{
 180	if (map->writeable_noinc_reg)
 181		return map->writeable_noinc_reg(map->dev, reg);
 182
 183	if (map->wr_noinc_table)
 184		return regmap_check_range_table(map, reg, map->wr_noinc_table);
 185
 186	return true;
 187}
 188
 189bool regmap_readable_noinc(struct regmap *map, unsigned int reg)
 190{
 191	if (map->readable_noinc_reg)
 192		return map->readable_noinc_reg(map->dev, reg);
 193
 194	if (map->rd_noinc_table)
 195		return regmap_check_range_table(map, reg, map->rd_noinc_table);
 196
 197	return true;
 198}
 199
 200static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
 201	size_t num)
 202{
 203	unsigned int i;
 204
 205	for (i = 0; i < num; i++)
 206		if (!regmap_volatile(map, reg + regmap_get_offset(map, i)))
 207			return false;
 208
 209	return true;
 210}
 211
 212static void regmap_format_12_20_write(struct regmap *map,
 213				     unsigned int reg, unsigned int val)
 214{
 215	u8 *out = map->work_buf;
 216
 217	out[0] = reg >> 4;
 218	out[1] = (reg << 4) | (val >> 16);
 219	out[2] = val >> 8;
 220	out[3] = val;
 221}
 222
 223
 224static void regmap_format_2_6_write(struct regmap *map,
 225				     unsigned int reg, unsigned int val)
 226{
 227	u8 *out = map->work_buf;
 228
 229	*out = (reg << 6) | val;
 230}
 231
 232static void regmap_format_4_12_write(struct regmap *map,
 233				     unsigned int reg, unsigned int val)
 234{
 235	__be16 *out = map->work_buf;
 236	*out = cpu_to_be16((reg << 12) | val);
 237}
 238
 239static void regmap_format_7_9_write(struct regmap *map,
 240				    unsigned int reg, unsigned int val)
 241{
 242	__be16 *out = map->work_buf;
 243	*out = cpu_to_be16((reg << 9) | val);
 244}
 245
 246static void regmap_format_7_17_write(struct regmap *map,
 247				    unsigned int reg, unsigned int val)
 248{
 249	u8 *out = map->work_buf;
 250
 251	out[2] = val;
 252	out[1] = val >> 8;
 253	out[0] = (val >> 16) | (reg << 1);
 254}
 255
 256static void regmap_format_10_14_write(struct regmap *map,
 257				    unsigned int reg, unsigned int val)
 258{
 259	u8 *out = map->work_buf;
 260
 261	out[2] = val;
 262	out[1] = (val >> 8) | (reg << 6);
 263	out[0] = reg >> 2;
 264}
 265
 266static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
 267{
 268	u8 *b = buf;
 269
 270	b[0] = val << shift;
 271}
 272
 273static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
 274{
 275	put_unaligned_be16(val << shift, buf);
 
 
 276}
 277
 278static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
 279{
 280	put_unaligned_le16(val << shift, buf);
 
 
 281}
 282
 283static void regmap_format_16_native(void *buf, unsigned int val,
 284				    unsigned int shift)
 285{
 286	u16 v = val << shift;
 287
 288	memcpy(buf, &v, sizeof(v));
 289}
 290
 291static void regmap_format_24_be(void *buf, unsigned int val, unsigned int shift)
 292{
 293	put_unaligned_be24(val << shift, buf);
 
 
 
 
 
 
 294}
 295
 296static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
 297{
 298	put_unaligned_be32(val << shift, buf);
 
 
 299}
 300
 301static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
 302{
 303	put_unaligned_le32(val << shift, buf);
 
 
 304}
 305
 306static void regmap_format_32_native(void *buf, unsigned int val,
 307				    unsigned int shift)
 308{
 309	u32 v = val << shift;
 310
 311	memcpy(buf, &v, sizeof(v));
 312}
 313
 314#ifdef CONFIG_64BIT
 315static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
 316{
 317	put_unaligned_be64((u64) val << shift, buf);
 
 
 318}
 319
 320static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
 321{
 322	put_unaligned_le64((u64) val << shift, buf);
 
 
 323}
 324
 325static void regmap_format_64_native(void *buf, unsigned int val,
 326				    unsigned int shift)
 327{
 328	u64 v = (u64) val << shift;
 329
 330	memcpy(buf, &v, sizeof(v));
 331}
 332#endif
 333
 334static void regmap_parse_inplace_noop(void *buf)
 335{
 336}
 337
 338static unsigned int regmap_parse_8(const void *buf)
 339{
 340	const u8 *b = buf;
 341
 342	return b[0];
 343}
 344
 345static unsigned int regmap_parse_16_be(const void *buf)
 346{
 347	return get_unaligned_be16(buf);
 
 
 348}
 349
 350static unsigned int regmap_parse_16_le(const void *buf)
 351{
 352	return get_unaligned_le16(buf);
 
 
 353}
 354
 355static void regmap_parse_16_be_inplace(void *buf)
 356{
 357	u16 v = get_unaligned_be16(buf);
 358
 359	memcpy(buf, &v, sizeof(v));
 360}
 361
 362static void regmap_parse_16_le_inplace(void *buf)
 363{
 364	u16 v = get_unaligned_le16(buf);
 365
 366	memcpy(buf, &v, sizeof(v));
 367}
 368
 369static unsigned int regmap_parse_16_native(const void *buf)
 370{
 371	u16 v;
 372
 373	memcpy(&v, buf, sizeof(v));
 374	return v;
 375}
 376
 377static unsigned int regmap_parse_24_be(const void *buf)
 378{
 379	return get_unaligned_be24(buf);
 
 
 
 
 
 380}
 381
 382static unsigned int regmap_parse_32_be(const void *buf)
 383{
 384	return get_unaligned_be32(buf);
 
 
 385}
 386
 387static unsigned int regmap_parse_32_le(const void *buf)
 388{
 389	return get_unaligned_le32(buf);
 
 
 390}
 391
 392static void regmap_parse_32_be_inplace(void *buf)
 393{
 394	u32 v = get_unaligned_be32(buf);
 395
 396	memcpy(buf, &v, sizeof(v));
 397}
 398
 399static void regmap_parse_32_le_inplace(void *buf)
 400{
 401	u32 v = get_unaligned_le32(buf);
 402
 403	memcpy(buf, &v, sizeof(v));
 404}
 405
 406static unsigned int regmap_parse_32_native(const void *buf)
 407{
 408	u32 v;
 409
 410	memcpy(&v, buf, sizeof(v));
 411	return v;
 412}
 413
 414#ifdef CONFIG_64BIT
 415static unsigned int regmap_parse_64_be(const void *buf)
 416{
 417	return get_unaligned_be64(buf);
 
 
 418}
 419
 420static unsigned int regmap_parse_64_le(const void *buf)
 421{
 422	return get_unaligned_le64(buf);
 
 
 423}
 424
 425static void regmap_parse_64_be_inplace(void *buf)
 426{
 427	u64 v =  get_unaligned_be64(buf);
 428
 429	memcpy(buf, &v, sizeof(v));
 430}
 431
 432static void regmap_parse_64_le_inplace(void *buf)
 433{
 434	u64 v = get_unaligned_le64(buf);
 435
 436	memcpy(buf, &v, sizeof(v));
 437}
 438
 439static unsigned int regmap_parse_64_native(const void *buf)
 440{
 441	u64 v;
 442
 443	memcpy(&v, buf, sizeof(v));
 444	return v;
 445}
 446#endif
 447
 448static void regmap_lock_hwlock(void *__map)
 449{
 450	struct regmap *map = __map;
 451
 452	hwspin_lock_timeout(map->hwlock, UINT_MAX);
 453}
 454
 455static void regmap_lock_hwlock_irq(void *__map)
 456{
 457	struct regmap *map = __map;
 458
 459	hwspin_lock_timeout_irq(map->hwlock, UINT_MAX);
 460}
 461
 462static void regmap_lock_hwlock_irqsave(void *__map)
 463{
 464	struct regmap *map = __map;
 465
 466	hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX,
 467				    &map->spinlock_flags);
 468}
 469
 470static void regmap_unlock_hwlock(void *__map)
 471{
 472	struct regmap *map = __map;
 473
 474	hwspin_unlock(map->hwlock);
 475}
 476
 477static void regmap_unlock_hwlock_irq(void *__map)
 478{
 479	struct regmap *map = __map;
 480
 481	hwspin_unlock_irq(map->hwlock);
 482}
 483
 484static void regmap_unlock_hwlock_irqrestore(void *__map)
 485{
 486	struct regmap *map = __map;
 487
 488	hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags);
 489}
 490
 491static void regmap_lock_unlock_none(void *__map)
 492{
 493
 494}
 495
 496static void regmap_lock_mutex(void *__map)
 497{
 498	struct regmap *map = __map;
 499	mutex_lock(&map->mutex);
 500}
 501
 502static void regmap_unlock_mutex(void *__map)
 503{
 504	struct regmap *map = __map;
 505	mutex_unlock(&map->mutex);
 506}
 507
 508static void regmap_lock_spinlock(void *__map)
 509__acquires(&map->spinlock)
 510{
 511	struct regmap *map = __map;
 512	unsigned long flags;
 513
 514	spin_lock_irqsave(&map->spinlock, flags);
 515	map->spinlock_flags = flags;
 516}
 517
 518static void regmap_unlock_spinlock(void *__map)
 519__releases(&map->spinlock)
 520{
 521	struct regmap *map = __map;
 522	spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
 523}
 524
 525static void regmap_lock_raw_spinlock(void *__map)
 526__acquires(&map->raw_spinlock)
 527{
 528	struct regmap *map = __map;
 529	unsigned long flags;
 530
 531	raw_spin_lock_irqsave(&map->raw_spinlock, flags);
 532	map->raw_spinlock_flags = flags;
 533}
 534
 535static void regmap_unlock_raw_spinlock(void *__map)
 536__releases(&map->raw_spinlock)
 537{
 538	struct regmap *map = __map;
 539	raw_spin_unlock_irqrestore(&map->raw_spinlock, map->raw_spinlock_flags);
 540}
 541
 542static void dev_get_regmap_release(struct device *dev, void *res)
 543{
 544	/*
 545	 * We don't actually have anything to do here; the goal here
 546	 * is not to manage the regmap but to provide a simple way to
 547	 * get the regmap back given a struct device.
 548	 */
 549}
 550
 551static bool _regmap_range_add(struct regmap *map,
 552			      struct regmap_range_node *data)
 553{
 554	struct rb_root *root = &map->range_tree;
 555	struct rb_node **new = &(root->rb_node), *parent = NULL;
 556
 557	while (*new) {
 558		struct regmap_range_node *this =
 559			rb_entry(*new, struct regmap_range_node, node);
 560
 561		parent = *new;
 562		if (data->range_max < this->range_min)
 563			new = &((*new)->rb_left);
 564		else if (data->range_min > this->range_max)
 565			new = &((*new)->rb_right);
 566		else
 567			return false;
 568	}
 569
 570	rb_link_node(&data->node, parent, new);
 571	rb_insert_color(&data->node, root);
 572
 573	return true;
 574}
 575
 576static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
 577						      unsigned int reg)
 578{
 579	struct rb_node *node = map->range_tree.rb_node;
 580
 581	while (node) {
 582		struct regmap_range_node *this =
 583			rb_entry(node, struct regmap_range_node, node);
 584
 585		if (reg < this->range_min)
 586			node = node->rb_left;
 587		else if (reg > this->range_max)
 588			node = node->rb_right;
 589		else
 590			return this;
 591	}
 592
 593	return NULL;
 594}
 595
 596static void regmap_range_exit(struct regmap *map)
 597{
 598	struct rb_node *next;
 599	struct regmap_range_node *range_node;
 600
 601	next = rb_first(&map->range_tree);
 602	while (next) {
 603		range_node = rb_entry(next, struct regmap_range_node, node);
 604		next = rb_next(&range_node->node);
 605		rb_erase(&range_node->node, &map->range_tree);
 606		kfree(range_node);
 607	}
 608
 609	kfree(map->selector_work_buf);
 610}
 611
 612static int regmap_set_name(struct regmap *map, const struct regmap_config *config)
 613{
 614	if (config->name) {
 615		const char *name = kstrdup_const(config->name, GFP_KERNEL);
 616
 617		if (!name)
 618			return -ENOMEM;
 619
 620		kfree_const(map->name);
 621		map->name = name;
 622	}
 623
 624	return 0;
 625}
 626
 627int regmap_attach_dev(struct device *dev, struct regmap *map,
 628		      const struct regmap_config *config)
 629{
 630	struct regmap **m;
 631	int ret;
 632
 633	map->dev = dev;
 634
 635	ret = regmap_set_name(map, config);
 636	if (ret)
 637		return ret;
 638
 639	regmap_debugfs_exit(map);
 640	regmap_debugfs_init(map);
 641
 642	/* Add a devres resource for dev_get_regmap() */
 643	m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
 644	if (!m) {
 645		regmap_debugfs_exit(map);
 646		return -ENOMEM;
 647	}
 648	*m = map;
 649	devres_add(dev, m);
 650
 651	return 0;
 652}
 653EXPORT_SYMBOL_GPL(regmap_attach_dev);
 654
 655static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
 656					const struct regmap_config *config)
 657{
 658	enum regmap_endian endian;
 659
 660	/* Retrieve the endianness specification from the regmap config */
 661	endian = config->reg_format_endian;
 662
 663	/* If the regmap config specified a non-default value, use that */
 664	if (endian != REGMAP_ENDIAN_DEFAULT)
 665		return endian;
 666
 667	/* Retrieve the endianness specification from the bus config */
 668	if (bus && bus->reg_format_endian_default)
 669		endian = bus->reg_format_endian_default;
 670
 671	/* If the bus specified a non-default value, use that */
 672	if (endian != REGMAP_ENDIAN_DEFAULT)
 673		return endian;
 674
 675	/* Use this if no other value was found */
 676	return REGMAP_ENDIAN_BIG;
 677}
 678
 679enum regmap_endian regmap_get_val_endian(struct device *dev,
 680					 const struct regmap_bus *bus,
 681					 const struct regmap_config *config)
 682{
 683	struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
 684	enum regmap_endian endian;
 685
 686	/* Retrieve the endianness specification from the regmap config */
 687	endian = config->val_format_endian;
 688
 689	/* If the regmap config specified a non-default value, use that */
 690	if (endian != REGMAP_ENDIAN_DEFAULT)
 691		return endian;
 692
 693	/* If the firmware node exist try to get endianness from it */
 694	if (fwnode_property_read_bool(fwnode, "big-endian"))
 695		endian = REGMAP_ENDIAN_BIG;
 696	else if (fwnode_property_read_bool(fwnode, "little-endian"))
 697		endian = REGMAP_ENDIAN_LITTLE;
 698	else if (fwnode_property_read_bool(fwnode, "native-endian"))
 699		endian = REGMAP_ENDIAN_NATIVE;
 700
 701	/* If the endianness was specified in fwnode, use that */
 702	if (endian != REGMAP_ENDIAN_DEFAULT)
 703		return endian;
 
 
 
 
 
 704
 705	/* Retrieve the endianness specification from the bus config */
 706	if (bus && bus->val_format_endian_default)
 707		endian = bus->val_format_endian_default;
 708
 709	/* If the bus specified a non-default value, use that */
 710	if (endian != REGMAP_ENDIAN_DEFAULT)
 711		return endian;
 712
 713	/* Use this if no other value was found */
 714	return REGMAP_ENDIAN_BIG;
 715}
 716EXPORT_SYMBOL_GPL(regmap_get_val_endian);
 717
 718struct regmap *__regmap_init(struct device *dev,
 719			     const struct regmap_bus *bus,
 720			     void *bus_context,
 721			     const struct regmap_config *config,
 722			     struct lock_class_key *lock_key,
 723			     const char *lock_name)
 724{
 725	struct regmap *map;
 726	int ret = -EINVAL;
 727	enum regmap_endian reg_endian, val_endian;
 728	int i, j;
 729
 730	if (!config)
 731		goto err;
 732
 733	map = kzalloc(sizeof(*map), GFP_KERNEL);
 734	if (map == NULL) {
 735		ret = -ENOMEM;
 736		goto err;
 737	}
 738
 739	ret = regmap_set_name(map, config);
 740	if (ret)
 741		goto err_map;
 742
 743	ret = -EINVAL; /* Later error paths rely on this */
 744
 745	if (config->disable_locking) {
 746		map->lock = map->unlock = regmap_lock_unlock_none;
 747		map->can_sleep = config->can_sleep;
 748		regmap_debugfs_disable(map);
 749	} else if (config->lock && config->unlock) {
 750		map->lock = config->lock;
 751		map->unlock = config->unlock;
 752		map->lock_arg = config->lock_arg;
 753		map->can_sleep = config->can_sleep;
 754	} else if (config->use_hwlock) {
 755		map->hwlock = hwspin_lock_request_specific(config->hwlock_id);
 756		if (!map->hwlock) {
 757			ret = -ENXIO;
 758			goto err_name;
 759		}
 760
 761		switch (config->hwlock_mode) {
 762		case HWLOCK_IRQSTATE:
 763			map->lock = regmap_lock_hwlock_irqsave;
 764			map->unlock = regmap_unlock_hwlock_irqrestore;
 765			break;
 766		case HWLOCK_IRQ:
 767			map->lock = regmap_lock_hwlock_irq;
 768			map->unlock = regmap_unlock_hwlock_irq;
 769			break;
 770		default:
 771			map->lock = regmap_lock_hwlock;
 772			map->unlock = regmap_unlock_hwlock;
 773			break;
 774		}
 775
 776		map->lock_arg = map;
 777	} else {
 778		if ((bus && bus->fast_io) ||
 779		    config->fast_io) {
 780			if (config->use_raw_spinlock) {
 781				raw_spin_lock_init(&map->raw_spinlock);
 782				map->lock = regmap_lock_raw_spinlock;
 783				map->unlock = regmap_unlock_raw_spinlock;
 784				lockdep_set_class_and_name(&map->raw_spinlock,
 785							   lock_key, lock_name);
 786			} else {
 787				spin_lock_init(&map->spinlock);
 788				map->lock = regmap_lock_spinlock;
 789				map->unlock = regmap_unlock_spinlock;
 790				lockdep_set_class_and_name(&map->spinlock,
 791							   lock_key, lock_name);
 792			}
 793		} else {
 794			mutex_init(&map->mutex);
 795			map->lock = regmap_lock_mutex;
 796			map->unlock = regmap_unlock_mutex;
 797			map->can_sleep = true;
 798			lockdep_set_class_and_name(&map->mutex,
 799						   lock_key, lock_name);
 800		}
 801		map->lock_arg = map;
 802	}
 803
 804	/*
 805	 * When we write in fast-paths with regmap_bulk_write() don't allocate
 806	 * scratch buffers with sleeping allocations.
 807	 */
 808	if ((bus && bus->fast_io) || config->fast_io)
 809		map->alloc_flags = GFP_ATOMIC;
 810	else
 811		map->alloc_flags = GFP_KERNEL;
 812
 813	map->reg_base = config->reg_base;
 814
 815	map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
 816	map->format.pad_bytes = config->pad_bits / 8;
 817	map->format.reg_downshift = config->reg_downshift;
 818	map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
 819	map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
 820			config->val_bits + config->pad_bits, 8);
 821	map->reg_shift = config->pad_bits % 8;
 822	if (config->reg_stride)
 823		map->reg_stride = config->reg_stride;
 824	else
 825		map->reg_stride = 1;
 826	if (is_power_of_2(map->reg_stride))
 827		map->reg_stride_order = ilog2(map->reg_stride);
 828	else
 829		map->reg_stride_order = -1;
 830	map->use_single_read = config->use_single_read || !(config->read || (bus && bus->read));
 831	map->use_single_write = config->use_single_write || !(config->write || (bus && bus->write));
 832	map->can_multi_write = config->can_multi_write && (config->write || (bus && bus->write));
 833	if (bus) {
 834		map->max_raw_read = bus->max_raw_read;
 835		map->max_raw_write = bus->max_raw_write;
 836	} else if (config->max_raw_read && config->max_raw_write) {
 837		map->max_raw_read = config->max_raw_read;
 838		map->max_raw_write = config->max_raw_write;
 839	}
 840	map->dev = dev;
 841	map->bus = bus;
 842	map->bus_context = bus_context;
 843	map->max_register = config->max_register;
 844	map->wr_table = config->wr_table;
 845	map->rd_table = config->rd_table;
 846	map->volatile_table = config->volatile_table;
 847	map->precious_table = config->precious_table;
 848	map->wr_noinc_table = config->wr_noinc_table;
 849	map->rd_noinc_table = config->rd_noinc_table;
 850	map->writeable_reg = config->writeable_reg;
 851	map->readable_reg = config->readable_reg;
 852	map->volatile_reg = config->volatile_reg;
 853	map->precious_reg = config->precious_reg;
 854	map->writeable_noinc_reg = config->writeable_noinc_reg;
 855	map->readable_noinc_reg = config->readable_noinc_reg;
 856	map->cache_type = config->cache_type;
 
 857
 858	spin_lock_init(&map->async_lock);
 859	INIT_LIST_HEAD(&map->async_list);
 860	INIT_LIST_HEAD(&map->async_free);
 861	init_waitqueue_head(&map->async_waitq);
 862
 863	if (config->read_flag_mask ||
 864	    config->write_flag_mask ||
 865	    config->zero_flag_mask) {
 866		map->read_flag_mask = config->read_flag_mask;
 867		map->write_flag_mask = config->write_flag_mask;
 868	} else if (bus) {
 869		map->read_flag_mask = bus->read_flag_mask;
 870	}
 871
 872	if (config && config->read && config->write) {
 873		map->reg_read  = _regmap_bus_read;
 874		if (config->reg_update_bits)
 875			map->reg_update_bits = config->reg_update_bits;
 876
 877		/* Bulk read/write */
 878		map->read = config->read;
 879		map->write = config->write;
 880
 881		reg_endian = REGMAP_ENDIAN_NATIVE;
 882		val_endian = REGMAP_ENDIAN_NATIVE;
 883	} else if (!bus) {
 884		map->reg_read  = config->reg_read;
 885		map->reg_write = config->reg_write;
 886		map->reg_update_bits = config->reg_update_bits;
 887
 888		map->defer_caching = false;
 889		goto skip_format_initialization;
 890	} else if (!bus->read || !bus->write) {
 891		map->reg_read = _regmap_bus_reg_read;
 892		map->reg_write = _regmap_bus_reg_write;
 893		map->reg_update_bits = bus->reg_update_bits;
 894
 895		map->defer_caching = false;
 896		goto skip_format_initialization;
 897	} else {
 898		map->reg_read  = _regmap_bus_read;
 899		map->reg_update_bits = bus->reg_update_bits;
 900		/* Bulk read/write */
 901		map->read = bus->read;
 902		map->write = bus->write;
 903
 904		reg_endian = regmap_get_reg_endian(bus, config);
 905		val_endian = regmap_get_val_endian(dev, bus, config);
 906	}
 907
 
 
 
 908	switch (config->reg_bits + map->reg_shift) {
 909	case 2:
 910		switch (config->val_bits) {
 911		case 6:
 912			map->format.format_write = regmap_format_2_6_write;
 913			break;
 914		default:
 915			goto err_hwlock;
 916		}
 917		break;
 918
 919	case 4:
 920		switch (config->val_bits) {
 921		case 12:
 922			map->format.format_write = regmap_format_4_12_write;
 923			break;
 924		default:
 925			goto err_hwlock;
 926		}
 927		break;
 928
 929	case 7:
 930		switch (config->val_bits) {
 931		case 9:
 932			map->format.format_write = regmap_format_7_9_write;
 933			break;
 934		case 17:
 935			map->format.format_write = regmap_format_7_17_write;
 936			break;
 937		default:
 938			goto err_hwlock;
 939		}
 940		break;
 941
 942	case 10:
 943		switch (config->val_bits) {
 944		case 14:
 945			map->format.format_write = regmap_format_10_14_write;
 946			break;
 947		default:
 948			goto err_hwlock;
 949		}
 950		break;
 951
 952	case 12:
 953		switch (config->val_bits) {
 954		case 20:
 955			map->format.format_write = regmap_format_12_20_write;
 956			break;
 957		default:
 958			goto err_hwlock;
 959		}
 960		break;
 961
 962	case 8:
 963		map->format.format_reg = regmap_format_8;
 964		break;
 965
 966	case 16:
 967		switch (reg_endian) {
 968		case REGMAP_ENDIAN_BIG:
 969			map->format.format_reg = regmap_format_16_be;
 970			break;
 971		case REGMAP_ENDIAN_LITTLE:
 972			map->format.format_reg = regmap_format_16_le;
 973			break;
 974		case REGMAP_ENDIAN_NATIVE:
 975			map->format.format_reg = regmap_format_16_native;
 976			break;
 977		default:
 978			goto err_hwlock;
 979		}
 980		break;
 981
 982	case 24:
 983		switch (reg_endian) {
 984		case REGMAP_ENDIAN_BIG:
 985			map->format.format_reg = regmap_format_24_be;
 986			break;
 987		default:
 988			goto err_hwlock;
 989		}
 990		break;
 991
 992	case 32:
 993		switch (reg_endian) {
 994		case REGMAP_ENDIAN_BIG:
 995			map->format.format_reg = regmap_format_32_be;
 996			break;
 997		case REGMAP_ENDIAN_LITTLE:
 998			map->format.format_reg = regmap_format_32_le;
 999			break;
1000		case REGMAP_ENDIAN_NATIVE:
1001			map->format.format_reg = regmap_format_32_native;
1002			break;
1003		default:
1004			goto err_hwlock;
1005		}
1006		break;
1007
1008#ifdef CONFIG_64BIT
1009	case 64:
1010		switch (reg_endian) {
1011		case REGMAP_ENDIAN_BIG:
1012			map->format.format_reg = regmap_format_64_be;
1013			break;
1014		case REGMAP_ENDIAN_LITTLE:
1015			map->format.format_reg = regmap_format_64_le;
1016			break;
1017		case REGMAP_ENDIAN_NATIVE:
1018			map->format.format_reg = regmap_format_64_native;
1019			break;
1020		default:
1021			goto err_hwlock;
1022		}
1023		break;
1024#endif
1025
1026	default:
1027		goto err_hwlock;
1028	}
1029
1030	if (val_endian == REGMAP_ENDIAN_NATIVE)
1031		map->format.parse_inplace = regmap_parse_inplace_noop;
1032
1033	switch (config->val_bits) {
1034	case 8:
1035		map->format.format_val = regmap_format_8;
1036		map->format.parse_val = regmap_parse_8;
1037		map->format.parse_inplace = regmap_parse_inplace_noop;
1038		break;
1039	case 16:
1040		switch (val_endian) {
1041		case REGMAP_ENDIAN_BIG:
1042			map->format.format_val = regmap_format_16_be;
1043			map->format.parse_val = regmap_parse_16_be;
1044			map->format.parse_inplace = regmap_parse_16_be_inplace;
1045			break;
1046		case REGMAP_ENDIAN_LITTLE:
1047			map->format.format_val = regmap_format_16_le;
1048			map->format.parse_val = regmap_parse_16_le;
1049			map->format.parse_inplace = regmap_parse_16_le_inplace;
1050			break;
1051		case REGMAP_ENDIAN_NATIVE:
1052			map->format.format_val = regmap_format_16_native;
1053			map->format.parse_val = regmap_parse_16_native;
1054			break;
1055		default:
1056			goto err_hwlock;
1057		}
1058		break;
1059	case 24:
1060		switch (val_endian) {
1061		case REGMAP_ENDIAN_BIG:
1062			map->format.format_val = regmap_format_24_be;
1063			map->format.parse_val = regmap_parse_24_be;
1064			break;
1065		default:
1066			goto err_hwlock;
1067		}
1068		break;
1069	case 32:
1070		switch (val_endian) {
1071		case REGMAP_ENDIAN_BIG:
1072			map->format.format_val = regmap_format_32_be;
1073			map->format.parse_val = regmap_parse_32_be;
1074			map->format.parse_inplace = regmap_parse_32_be_inplace;
1075			break;
1076		case REGMAP_ENDIAN_LITTLE:
1077			map->format.format_val = regmap_format_32_le;
1078			map->format.parse_val = regmap_parse_32_le;
1079			map->format.parse_inplace = regmap_parse_32_le_inplace;
1080			break;
1081		case REGMAP_ENDIAN_NATIVE:
1082			map->format.format_val = regmap_format_32_native;
1083			map->format.parse_val = regmap_parse_32_native;
1084			break;
1085		default:
1086			goto err_hwlock;
1087		}
1088		break;
1089#ifdef CONFIG_64BIT
1090	case 64:
1091		switch (val_endian) {
1092		case REGMAP_ENDIAN_BIG:
1093			map->format.format_val = regmap_format_64_be;
1094			map->format.parse_val = regmap_parse_64_be;
1095			map->format.parse_inplace = regmap_parse_64_be_inplace;
1096			break;
1097		case REGMAP_ENDIAN_LITTLE:
1098			map->format.format_val = regmap_format_64_le;
1099			map->format.parse_val = regmap_parse_64_le;
1100			map->format.parse_inplace = regmap_parse_64_le_inplace;
1101			break;
1102		case REGMAP_ENDIAN_NATIVE:
1103			map->format.format_val = regmap_format_64_native;
1104			map->format.parse_val = regmap_parse_64_native;
1105			break;
1106		default:
1107			goto err_hwlock;
1108		}
1109		break;
1110#endif
1111	}
1112
1113	if (map->format.format_write) {
1114		if ((reg_endian != REGMAP_ENDIAN_BIG) ||
1115		    (val_endian != REGMAP_ENDIAN_BIG))
1116			goto err_hwlock;
1117		map->use_single_write = true;
1118	}
1119
1120	if (!map->format.format_write &&
1121	    !(map->format.format_reg && map->format.format_val))
1122		goto err_hwlock;
1123
1124	map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
1125	if (map->work_buf == NULL) {
1126		ret = -ENOMEM;
1127		goto err_hwlock;
1128	}
1129
1130	if (map->format.format_write) {
1131		map->defer_caching = false;
1132		map->reg_write = _regmap_bus_formatted_write;
1133	} else if (map->format.format_val) {
1134		map->defer_caching = true;
1135		map->reg_write = _regmap_bus_raw_write;
1136	}
1137
1138skip_format_initialization:
1139
1140	map->range_tree = RB_ROOT;
1141	for (i = 0; i < config->num_ranges; i++) {
1142		const struct regmap_range_cfg *range_cfg = &config->ranges[i];
1143		struct regmap_range_node *new;
1144
1145		/* Sanity check */
1146		if (range_cfg->range_max < range_cfg->range_min) {
1147			dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
1148				range_cfg->range_max, range_cfg->range_min);
1149			goto err_range;
1150		}
1151
1152		if (range_cfg->range_max > map->max_register) {
1153			dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
1154				range_cfg->range_max, map->max_register);
1155			goto err_range;
1156		}
1157
1158		if (range_cfg->selector_reg > map->max_register) {
1159			dev_err(map->dev,
1160				"Invalid range %d: selector out of map\n", i);
1161			goto err_range;
1162		}
1163
1164		if (range_cfg->window_len == 0) {
1165			dev_err(map->dev, "Invalid range %d: window_len 0\n",
1166				i);
1167			goto err_range;
1168		}
1169
1170		/* Make sure, that this register range has no selector
1171		   or data window within its boundary */
1172		for (j = 0; j < config->num_ranges; j++) {
1173			unsigned int sel_reg = config->ranges[j].selector_reg;
1174			unsigned int win_min = config->ranges[j].window_start;
1175			unsigned int win_max = win_min +
1176					       config->ranges[j].window_len - 1;
1177
1178			/* Allow data window inside its own virtual range */
1179			if (j == i)
1180				continue;
1181
1182			if (range_cfg->range_min <= sel_reg &&
1183			    sel_reg <= range_cfg->range_max) {
1184				dev_err(map->dev,
1185					"Range %d: selector for %d in window\n",
1186					i, j);
1187				goto err_range;
1188			}
1189
1190			if (!(win_max < range_cfg->range_min ||
1191			      win_min > range_cfg->range_max)) {
1192				dev_err(map->dev,
1193					"Range %d: window for %d in window\n",
1194					i, j);
1195				goto err_range;
1196			}
1197		}
1198
1199		new = kzalloc(sizeof(*new), GFP_KERNEL);
1200		if (new == NULL) {
1201			ret = -ENOMEM;
1202			goto err_range;
1203		}
1204
1205		new->map = map;
1206		new->name = range_cfg->name;
1207		new->range_min = range_cfg->range_min;
1208		new->range_max = range_cfg->range_max;
1209		new->selector_reg = range_cfg->selector_reg;
1210		new->selector_mask = range_cfg->selector_mask;
1211		new->selector_shift = range_cfg->selector_shift;
1212		new->window_start = range_cfg->window_start;
1213		new->window_len = range_cfg->window_len;
1214
1215		if (!_regmap_range_add(map, new)) {
1216			dev_err(map->dev, "Failed to add range %d\n", i);
1217			kfree(new);
1218			goto err_range;
1219		}
1220
1221		if (map->selector_work_buf == NULL) {
1222			map->selector_work_buf =
1223				kzalloc(map->format.buf_size, GFP_KERNEL);
1224			if (map->selector_work_buf == NULL) {
1225				ret = -ENOMEM;
1226				goto err_range;
1227			}
1228		}
1229	}
1230
1231	ret = regcache_init(map, config);
1232	if (ret != 0)
1233		goto err_range;
1234
1235	if (dev) {
1236		ret = regmap_attach_dev(dev, map, config);
1237		if (ret != 0)
1238			goto err_regcache;
1239	} else {
1240		regmap_debugfs_init(map);
1241	}
1242
1243	return map;
1244
1245err_regcache:
1246	regcache_exit(map);
1247err_range:
1248	regmap_range_exit(map);
1249	kfree(map->work_buf);
1250err_hwlock:
1251	if (map->hwlock)
1252		hwspin_lock_free(map->hwlock);
1253err_name:
1254	kfree_const(map->name);
1255err_map:
1256	kfree(map);
1257err:
1258	return ERR_PTR(ret);
1259}
1260EXPORT_SYMBOL_GPL(__regmap_init);
1261
1262static void devm_regmap_release(struct device *dev, void *res)
1263{
1264	regmap_exit(*(struct regmap **)res);
1265}
1266
1267struct regmap *__devm_regmap_init(struct device *dev,
1268				  const struct regmap_bus *bus,
1269				  void *bus_context,
1270				  const struct regmap_config *config,
1271				  struct lock_class_key *lock_key,
1272				  const char *lock_name)
1273{
1274	struct regmap **ptr, *regmap;
1275
1276	ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1277	if (!ptr)
1278		return ERR_PTR(-ENOMEM);
1279
1280	regmap = __regmap_init(dev, bus, bus_context, config,
1281			       lock_key, lock_name);
1282	if (!IS_ERR(regmap)) {
1283		*ptr = regmap;
1284		devres_add(dev, ptr);
1285	} else {
1286		devres_free(ptr);
1287	}
1288
1289	return regmap;
1290}
1291EXPORT_SYMBOL_GPL(__devm_regmap_init);
1292
1293static void regmap_field_init(struct regmap_field *rm_field,
1294	struct regmap *regmap, struct reg_field reg_field)
1295{
1296	rm_field->regmap = regmap;
1297	rm_field->reg = reg_field.reg;
1298	rm_field->shift = reg_field.lsb;
1299	rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1300
1301	WARN_ONCE(rm_field->mask == 0, "invalid empty mask defined\n");
1302
1303	rm_field->id_size = reg_field.id_size;
1304	rm_field->id_offset = reg_field.id_offset;
1305}
1306
1307/**
1308 * devm_regmap_field_alloc() - Allocate and initialise a register field.
 
1309 *
1310 * @dev: Device that will be interacted with
1311 * @regmap: regmap bank in which this register field is located.
1312 * @reg_field: Register field with in the bank.
1313 *
1314 * The return value will be an ERR_PTR() on error or a valid pointer
1315 * to a struct regmap_field. The regmap_field will be automatically freed
1316 * by the device management code.
1317 */
1318struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1319		struct regmap *regmap, struct reg_field reg_field)
1320{
1321	struct regmap_field *rm_field = devm_kzalloc(dev,
1322					sizeof(*rm_field), GFP_KERNEL);
1323	if (!rm_field)
1324		return ERR_PTR(-ENOMEM);
1325
1326	regmap_field_init(rm_field, regmap, reg_field);
1327
1328	return rm_field;
1329
1330}
1331EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1332
1333
1334/**
1335 * regmap_field_bulk_alloc() - Allocate and initialise a bulk register field.
1336 *
1337 * @regmap: regmap bank in which this register field is located.
1338 * @rm_field: regmap register fields within the bank.
1339 * @reg_field: Register fields within the bank.
1340 * @num_fields: Number of register fields.
1341 *
1342 * The return value will be an -ENOMEM on error or zero for success.
1343 * Newly allocated regmap_fields should be freed by calling
1344 * regmap_field_bulk_free()
1345 */
1346int regmap_field_bulk_alloc(struct regmap *regmap,
1347			    struct regmap_field **rm_field,
1348			    const struct reg_field *reg_field,
1349			    int num_fields)
1350{
1351	struct regmap_field *rf;
1352	int i;
1353
1354	rf = kcalloc(num_fields, sizeof(*rf), GFP_KERNEL);
1355	if (!rf)
1356		return -ENOMEM;
1357
1358	for (i = 0; i < num_fields; i++) {
1359		regmap_field_init(&rf[i], regmap, reg_field[i]);
1360		rm_field[i] = &rf[i];
1361	}
1362
1363	return 0;
1364}
1365EXPORT_SYMBOL_GPL(regmap_field_bulk_alloc);
1366
1367/**
1368 * devm_regmap_field_bulk_alloc() - Allocate and initialise a bulk register
1369 * fields.
1370 *
1371 * @dev: Device that will be interacted with
1372 * @regmap: regmap bank in which this register field is located.
1373 * @rm_field: regmap register fields within the bank.
1374 * @reg_field: Register fields within the bank.
1375 * @num_fields: Number of register fields.
1376 *
1377 * The return value will be an -ENOMEM on error or zero for success.
1378 * Newly allocated regmap_fields will be automatically freed by the
1379 * device management code.
1380 */
1381int devm_regmap_field_bulk_alloc(struct device *dev,
1382				 struct regmap *regmap,
1383				 struct regmap_field **rm_field,
1384				 const struct reg_field *reg_field,
1385				 int num_fields)
1386{
1387	struct regmap_field *rf;
1388	int i;
1389
1390	rf = devm_kcalloc(dev, num_fields, sizeof(*rf), GFP_KERNEL);
1391	if (!rf)
1392		return -ENOMEM;
1393
1394	for (i = 0; i < num_fields; i++) {
1395		regmap_field_init(&rf[i], regmap, reg_field[i]);
1396		rm_field[i] = &rf[i];
1397	}
1398
1399	return 0;
1400}
1401EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_alloc);
1402
1403/**
1404 * regmap_field_bulk_free() - Free register field allocated using
1405 *                       regmap_field_bulk_alloc.
1406 *
1407 * @field: regmap fields which should be freed.
1408 */
1409void regmap_field_bulk_free(struct regmap_field *field)
1410{
1411	kfree(field);
1412}
1413EXPORT_SYMBOL_GPL(regmap_field_bulk_free);
1414
1415/**
1416 * devm_regmap_field_bulk_free() - Free a bulk register field allocated using
1417 *                            devm_regmap_field_bulk_alloc.
1418 *
1419 * @dev: Device that will be interacted with
1420 * @field: regmap field which should be freed.
1421 *
1422 * Free register field allocated using devm_regmap_field_bulk_alloc(). Usually
1423 * drivers need not call this function, as the memory allocated via devm
1424 * will be freed as per device-driver life-cycle.
1425 */
1426void devm_regmap_field_bulk_free(struct device *dev,
1427				 struct regmap_field *field)
1428{
1429	devm_kfree(dev, field);
1430}
1431EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_free);
1432
1433/**
1434 * devm_regmap_field_free() - Free a register field allocated using
1435 *                            devm_regmap_field_alloc.
1436 *
1437 * @dev: Device that will be interacted with
1438 * @field: regmap field which should be freed.
1439 *
1440 * Free register field allocated using devm_regmap_field_alloc(). Usually
1441 * drivers need not call this function, as the memory allocated via devm
1442 * will be freed as per device-driver life-cyle.
1443 */
1444void devm_regmap_field_free(struct device *dev,
1445	struct regmap_field *field)
1446{
1447	devm_kfree(dev, field);
1448}
1449EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1450
1451/**
1452 * regmap_field_alloc() - Allocate and initialise a register field.
 
1453 *
1454 * @regmap: regmap bank in which this register field is located.
1455 * @reg_field: Register field with in the bank.
1456 *
1457 * The return value will be an ERR_PTR() on error or a valid pointer
1458 * to a struct regmap_field. The regmap_field should be freed by the
1459 * user once its finished working with it using regmap_field_free().
1460 */
1461struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1462		struct reg_field reg_field)
1463{
1464	struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1465
1466	if (!rm_field)
1467		return ERR_PTR(-ENOMEM);
1468
1469	regmap_field_init(rm_field, regmap, reg_field);
1470
1471	return rm_field;
1472}
1473EXPORT_SYMBOL_GPL(regmap_field_alloc);
1474
1475/**
1476 * regmap_field_free() - Free register field allocated using
1477 *                       regmap_field_alloc.
1478 *
1479 * @field: regmap field which should be freed.
1480 */
1481void regmap_field_free(struct regmap_field *field)
1482{
1483	kfree(field);
1484}
1485EXPORT_SYMBOL_GPL(regmap_field_free);
1486
1487/**
1488 * regmap_reinit_cache() - Reinitialise the current register cache
1489 *
1490 * @map: Register map to operate on.
1491 * @config: New configuration.  Only the cache data will be used.
1492 *
1493 * Discard any existing register cache for the map and initialize a
1494 * new cache.  This can be used to restore the cache to defaults or to
1495 * update the cache configuration to reflect runtime discovery of the
1496 * hardware.
1497 *
1498 * No explicit locking is done here, the user needs to ensure that
1499 * this function will not race with other calls to regmap.
1500 */
1501int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1502{
1503	int ret;
1504
1505	regcache_exit(map);
1506	regmap_debugfs_exit(map);
1507
1508	map->max_register = config->max_register;
1509	map->writeable_reg = config->writeable_reg;
1510	map->readable_reg = config->readable_reg;
1511	map->volatile_reg = config->volatile_reg;
1512	map->precious_reg = config->precious_reg;
1513	map->writeable_noinc_reg = config->writeable_noinc_reg;
1514	map->readable_noinc_reg = config->readable_noinc_reg;
1515	map->cache_type = config->cache_type;
1516
1517	ret = regmap_set_name(map, config);
1518	if (ret)
1519		return ret;
1520
1521	regmap_debugfs_init(map);
1522
1523	map->cache_bypass = false;
1524	map->cache_only = false;
1525
1526	return regcache_init(map, config);
1527}
1528EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1529
1530/**
1531 * regmap_exit() - Free a previously allocated register map
1532 *
1533 * @map: Register map to operate on.
1534 */
1535void regmap_exit(struct regmap *map)
1536{
1537	struct regmap_async *async;
1538
1539	regcache_exit(map);
1540	regmap_debugfs_exit(map);
1541	regmap_range_exit(map);
1542	if (map->bus && map->bus->free_context)
1543		map->bus->free_context(map->bus_context);
1544	kfree(map->work_buf);
1545	while (!list_empty(&map->async_free)) {
1546		async = list_first_entry_or_null(&map->async_free,
1547						 struct regmap_async,
1548						 list);
1549		list_del(&async->list);
1550		kfree(async->work_buf);
1551		kfree(async);
1552	}
1553	if (map->hwlock)
1554		hwspin_lock_free(map->hwlock);
1555	if (map->lock == regmap_lock_mutex)
1556		mutex_destroy(&map->mutex);
1557	kfree_const(map->name);
1558	kfree(map->patch);
1559	if (map->bus && map->bus->free_on_exit)
1560		kfree(map->bus);
1561	kfree(map);
1562}
1563EXPORT_SYMBOL_GPL(regmap_exit);
1564
1565static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1566{
1567	struct regmap **r = res;
1568	if (!r || !*r) {
1569		WARN_ON(!r || !*r);
1570		return 0;
1571	}
1572
1573	/* If the user didn't specify a name match any */
1574	if (data)
1575		return !strcmp((*r)->name, data);
1576	else
1577		return 1;
1578}
1579
1580/**
1581 * dev_get_regmap() - Obtain the regmap (if any) for a device
1582 *
1583 * @dev: Device to retrieve the map for
1584 * @name: Optional name for the register map, usually NULL.
1585 *
1586 * Returns the regmap for the device if one is present, or NULL.  If
1587 * name is specified then it must match the name specified when
1588 * registering the device, if it is NULL then the first regmap found
1589 * will be used.  Devices with multiple register maps are very rare,
1590 * generic code should normally not need to specify a name.
1591 */
1592struct regmap *dev_get_regmap(struct device *dev, const char *name)
1593{
1594	struct regmap **r = devres_find(dev, dev_get_regmap_release,
1595					dev_get_regmap_match, (void *)name);
1596
1597	if (!r)
1598		return NULL;
1599	return *r;
1600}
1601EXPORT_SYMBOL_GPL(dev_get_regmap);
1602
1603/**
1604 * regmap_get_device() - Obtain the device from a regmap
1605 *
1606 * @map: Register map to operate on.
1607 *
1608 * Returns the underlying device that the regmap has been created for.
1609 */
1610struct device *regmap_get_device(struct regmap *map)
1611{
1612	return map->dev;
1613}
1614EXPORT_SYMBOL_GPL(regmap_get_device);
1615
1616static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1617			       struct regmap_range_node *range,
1618			       unsigned int val_num)
1619{
1620	void *orig_work_buf;
1621	unsigned int win_offset;
1622	unsigned int win_page;
1623	bool page_chg;
1624	int ret;
1625
1626	win_offset = (*reg - range->range_min) % range->window_len;
1627	win_page = (*reg - range->range_min) / range->window_len;
1628
1629	if (val_num > 1) {
1630		/* Bulk write shouldn't cross range boundary */
1631		if (*reg + val_num - 1 > range->range_max)
1632			return -EINVAL;
1633
1634		/* ... or single page boundary */
1635		if (val_num > range->window_len - win_offset)
1636			return -EINVAL;
1637	}
1638
1639	/* It is possible to have selector register inside data window.
1640	   In that case, selector register is located on every page and
1641	   it needs no page switching, when accessed alone. */
1642	if (val_num > 1 ||
1643	    range->window_start + win_offset != range->selector_reg) {
1644		/* Use separate work_buf during page switching */
1645		orig_work_buf = map->work_buf;
1646		map->work_buf = map->selector_work_buf;
1647
1648		ret = _regmap_update_bits(map, range->selector_reg,
1649					  range->selector_mask,
1650					  win_page << range->selector_shift,
1651					  &page_chg, false);
1652
1653		map->work_buf = orig_work_buf;
1654
1655		if (ret != 0)
1656			return ret;
1657	}
1658
1659	*reg = range->window_start + win_offset;
1660
1661	return 0;
1662}
1663
1664static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
1665					  unsigned long mask)
1666{
1667	u8 *buf;
1668	int i;
1669
1670	if (!mask || !map->work_buf)
1671		return;
1672
1673	buf = map->work_buf;
1674
1675	for (i = 0; i < max_bytes; i++)
1676		buf[i] |= (mask >> (8 * i)) & 0xff;
1677}
1678
1679static int _regmap_raw_write_impl(struct regmap *map, unsigned int reg,
1680				  const void *val, size_t val_len, bool noinc)
1681{
1682	struct regmap_range_node *range;
1683	unsigned long flags;
 
1684	void *work_val = map->work_buf + map->format.reg_bytes +
1685		map->format.pad_bytes;
1686	void *buf;
1687	int ret = -ENOTSUPP;
1688	size_t len;
1689	int i;
1690
1691	/* Check for unwritable or noinc registers in range
1692	 * before we start
1693	 */
1694	if (!regmap_writeable_noinc(map, reg)) {
1695		for (i = 0; i < val_len / map->format.val_bytes; i++) {
1696			unsigned int element =
1697				reg + regmap_get_offset(map, i);
1698			if (!regmap_writeable(map, element) ||
1699				regmap_writeable_noinc(map, element))
1700				return -EINVAL;
1701		}
1702	}
1703
1704	if (!map->cache_bypass && map->format.parse_val) {
1705		unsigned int ival;
1706		int val_bytes = map->format.val_bytes;
1707		for (i = 0; i < val_len / val_bytes; i++) {
1708			ival = map->format.parse_val(val + (i * val_bytes));
1709			ret = regcache_write(map,
1710					     reg + regmap_get_offset(map, i),
1711					     ival);
1712			if (ret) {
1713				dev_err(map->dev,
1714					"Error in caching of register: %x ret: %d\n",
1715					reg + regmap_get_offset(map, i), ret);
1716				return ret;
1717			}
1718		}
1719		if (map->cache_only) {
1720			map->cache_dirty = true;
1721			return 0;
1722		}
1723	}
1724
1725	range = _regmap_range_lookup(map, reg);
1726	if (range) {
1727		int val_num = val_len / map->format.val_bytes;
1728		int win_offset = (reg - range->range_min) % range->window_len;
1729		int win_residue = range->window_len - win_offset;
1730
1731		/* If the write goes beyond the end of the window split it */
1732		while (val_num > win_residue) {
1733			dev_dbg(map->dev, "Writing window %d/%zu\n",
1734				win_residue, val_len / map->format.val_bytes);
1735			ret = _regmap_raw_write_impl(map, reg, val,
1736						     win_residue *
1737						     map->format.val_bytes, noinc);
1738			if (ret != 0)
1739				return ret;
1740
1741			reg += win_residue;
1742			val_num -= win_residue;
1743			val += win_residue * map->format.val_bytes;
1744			val_len -= win_residue * map->format.val_bytes;
1745
1746			win_offset = (reg - range->range_min) %
1747				range->window_len;
1748			win_residue = range->window_len - win_offset;
1749		}
1750
1751		ret = _regmap_select_page(map, &reg, range, noinc ? 1 : val_num);
1752		if (ret != 0)
1753			return ret;
1754	}
1755
1756	reg += map->reg_base;
1757	reg >>= map->format.reg_downshift;
1758	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1759	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
1760				      map->write_flag_mask);
1761
1762	/*
1763	 * Essentially all I/O mechanisms will be faster with a single
1764	 * buffer to write.  Since register syncs often generate raw
1765	 * writes of single registers optimise that case.
1766	 */
1767	if (val != work_val && val_len == map->format.val_bytes) {
1768		memcpy(work_val, val, map->format.val_bytes);
1769		val = work_val;
1770	}
1771
1772	if (map->async && map->bus && map->bus->async_write) {
1773		struct regmap_async *async;
1774
1775		trace_regmap_async_write_start(map, reg, val_len);
1776
1777		spin_lock_irqsave(&map->async_lock, flags);
1778		async = list_first_entry_or_null(&map->async_free,
1779						 struct regmap_async,
1780						 list);
1781		if (async)
1782			list_del(&async->list);
1783		spin_unlock_irqrestore(&map->async_lock, flags);
1784
1785		if (!async) {
1786			async = map->bus->async_alloc();
1787			if (!async)
1788				return -ENOMEM;
1789
1790			async->work_buf = kzalloc(map->format.buf_size,
1791						  GFP_KERNEL | GFP_DMA);
1792			if (!async->work_buf) {
1793				kfree(async);
1794				return -ENOMEM;
1795			}
1796		}
1797
1798		async->map = map;
1799
1800		/* If the caller supplied the value we can use it safely. */
1801		memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1802		       map->format.reg_bytes + map->format.val_bytes);
1803
1804		spin_lock_irqsave(&map->async_lock, flags);
1805		list_add_tail(&async->list, &map->async_list);
1806		spin_unlock_irqrestore(&map->async_lock, flags);
1807
1808		if (val != work_val)
1809			ret = map->bus->async_write(map->bus_context,
1810						    async->work_buf,
1811						    map->format.reg_bytes +
1812						    map->format.pad_bytes,
1813						    val, val_len, async);
1814		else
1815			ret = map->bus->async_write(map->bus_context,
1816						    async->work_buf,
1817						    map->format.reg_bytes +
1818						    map->format.pad_bytes +
1819						    val_len, NULL, 0, async);
1820
1821		if (ret != 0) {
1822			dev_err(map->dev, "Failed to schedule write: %d\n",
1823				ret);
1824
1825			spin_lock_irqsave(&map->async_lock, flags);
1826			list_move(&async->list, &map->async_free);
1827			spin_unlock_irqrestore(&map->async_lock, flags);
1828		}
1829
1830		return ret;
1831	}
1832
1833	trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1834
1835	/* If we're doing a single register write we can probably just
1836	 * send the work_buf directly, otherwise try to do a gather
1837	 * write.
1838	 */
1839	if (val == work_val)
1840		ret = map->write(map->bus_context, map->work_buf,
1841				 map->format.reg_bytes +
1842				 map->format.pad_bytes +
1843				 val_len);
1844	else if (map->bus && map->bus->gather_write)
1845		ret = map->bus->gather_write(map->bus_context, map->work_buf,
1846					     map->format.reg_bytes +
1847					     map->format.pad_bytes,
1848					     val, val_len);
1849	else
1850		ret = -ENOTSUPP;
1851
1852	/* If that didn't work fall back on linearising by hand. */
1853	if (ret == -ENOTSUPP) {
1854		len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1855		buf = kzalloc(len, GFP_KERNEL);
1856		if (!buf)
1857			return -ENOMEM;
1858
1859		memcpy(buf, map->work_buf, map->format.reg_bytes);
1860		memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1861		       val, val_len);
1862		ret = map->write(map->bus_context, buf, len);
1863
1864		kfree(buf);
1865	} else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1866		/* regcache_drop_region() takes lock that we already have,
1867		 * thus call map->cache_ops->drop() directly
1868		 */
1869		if (map->cache_ops && map->cache_ops->drop)
1870			map->cache_ops->drop(map, reg, reg + 1);
1871	}
1872
1873	trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1874
1875	return ret;
1876}
1877
1878/**
1879 * regmap_can_raw_write - Test if regmap_raw_write() is supported
1880 *
1881 * @map: Map to check.
1882 */
1883bool regmap_can_raw_write(struct regmap *map)
1884{
1885	return map->write && map->format.format_val && map->format.format_reg;
 
1886}
1887EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1888
1889/**
1890 * regmap_get_raw_read_max - Get the maximum size we can read
1891 *
1892 * @map: Map to check.
1893 */
1894size_t regmap_get_raw_read_max(struct regmap *map)
1895{
1896	return map->max_raw_read;
1897}
1898EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1899
1900/**
1901 * regmap_get_raw_write_max - Get the maximum size we can read
1902 *
1903 * @map: Map to check.
1904 */
1905size_t regmap_get_raw_write_max(struct regmap *map)
1906{
1907	return map->max_raw_write;
1908}
1909EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1910
1911static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1912				       unsigned int val)
1913{
1914	int ret;
1915	struct regmap_range_node *range;
1916	struct regmap *map = context;
1917
1918	WARN_ON(!map->format.format_write);
1919
1920	range = _regmap_range_lookup(map, reg);
1921	if (range) {
1922		ret = _regmap_select_page(map, &reg, range, 1);
1923		if (ret != 0)
1924			return ret;
1925	}
1926
1927	reg += map->reg_base;
1928	reg >>= map->format.reg_downshift;
1929	map->format.format_write(map, reg, val);
1930
1931	trace_regmap_hw_write_start(map, reg, 1);
1932
1933	ret = map->write(map->bus_context, map->work_buf, map->format.buf_size);
 
1934
1935	trace_regmap_hw_write_done(map, reg, 1);
1936
1937	return ret;
1938}
1939
1940static int _regmap_bus_reg_write(void *context, unsigned int reg,
1941				 unsigned int val)
1942{
1943	struct regmap *map = context;
1944
1945	return map->bus->reg_write(map->bus_context, reg, val);
1946}
1947
1948static int _regmap_bus_raw_write(void *context, unsigned int reg,
1949				 unsigned int val)
1950{
1951	struct regmap *map = context;
1952
1953	WARN_ON(!map->format.format_val);
1954
1955	map->format.format_val(map->work_buf + map->format.reg_bytes
1956			       + map->format.pad_bytes, val, 0);
1957	return _regmap_raw_write_impl(map, reg,
1958				      map->work_buf +
1959				      map->format.reg_bytes +
1960				      map->format.pad_bytes,
1961				      map->format.val_bytes,
1962				      false);
1963}
1964
1965static inline void *_regmap_map_get_context(struct regmap *map)
1966{
1967	return (map->bus || (!map->bus && map->read)) ? map : map->bus_context;
1968}
1969
1970int _regmap_write(struct regmap *map, unsigned int reg,
1971		  unsigned int val)
1972{
1973	int ret;
1974	void *context = _regmap_map_get_context(map);
1975
1976	if (!regmap_writeable(map, reg))
1977		return -EIO;
1978
1979	if (!map->cache_bypass && !map->defer_caching) {
1980		ret = regcache_write(map, reg, val);
1981		if (ret != 0)
1982			return ret;
1983		if (map->cache_only) {
1984			map->cache_dirty = true;
1985			return 0;
1986		}
1987	}
1988
1989	ret = map->reg_write(context, reg, val);
1990	if (ret == 0) {
1991		if (regmap_should_log(map))
1992			dev_info(map->dev, "%x <= %x\n", reg, val);
1993
1994		trace_regmap_reg_write(map, reg, val);
1995	}
1996
1997	return ret;
1998}
1999
2000/**
2001 * regmap_write() - Write a value to a single register
2002 *
2003 * @map: Register map to write to
2004 * @reg: Register to write to
2005 * @val: Value to be written
2006 *
2007 * A value of zero will be returned on success, a negative errno will
2008 * be returned in error cases.
2009 */
2010int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
2011{
2012	int ret;
2013
2014	if (!IS_ALIGNED(reg, map->reg_stride))
2015		return -EINVAL;
2016
2017	map->lock(map->lock_arg);
2018
2019	ret = _regmap_write(map, reg, val);
2020
2021	map->unlock(map->lock_arg);
2022
2023	return ret;
2024}
2025EXPORT_SYMBOL_GPL(regmap_write);
2026
2027/**
2028 * regmap_write_async() - Write a value to a single register asynchronously
2029 *
2030 * @map: Register map to write to
2031 * @reg: Register to write to
2032 * @val: Value to be written
2033 *
2034 * A value of zero will be returned on success, a negative errno will
2035 * be returned in error cases.
2036 */
2037int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
2038{
2039	int ret;
2040
2041	if (!IS_ALIGNED(reg, map->reg_stride))
2042		return -EINVAL;
2043
2044	map->lock(map->lock_arg);
2045
2046	map->async = true;
2047
2048	ret = _regmap_write(map, reg, val);
2049
2050	map->async = false;
2051
2052	map->unlock(map->lock_arg);
2053
2054	return ret;
2055}
2056EXPORT_SYMBOL_GPL(regmap_write_async);
2057
2058int _regmap_raw_write(struct regmap *map, unsigned int reg,
2059		      const void *val, size_t val_len, bool noinc)
2060{
2061	size_t val_bytes = map->format.val_bytes;
2062	size_t val_count = val_len / val_bytes;
2063	size_t chunk_count, chunk_bytes;
2064	size_t chunk_regs = val_count;
2065	int ret, i;
2066
2067	if (!val_count)
2068		return -EINVAL;
2069
2070	if (map->use_single_write)
2071		chunk_regs = 1;
2072	else if (map->max_raw_write && val_len > map->max_raw_write)
2073		chunk_regs = map->max_raw_write / val_bytes;
2074
2075	chunk_count = val_count / chunk_regs;
2076	chunk_bytes = chunk_regs * val_bytes;
2077
2078	/* Write as many bytes as possible with chunk_size */
2079	for (i = 0; i < chunk_count; i++) {
2080		ret = _regmap_raw_write_impl(map, reg, val, chunk_bytes, noinc);
2081		if (ret)
2082			return ret;
2083
2084		reg += regmap_get_offset(map, chunk_regs);
2085		val += chunk_bytes;
2086		val_len -= chunk_bytes;
2087	}
2088
2089	/* Write remaining bytes */
2090	if (val_len)
2091		ret = _regmap_raw_write_impl(map, reg, val, val_len, noinc);
2092
2093	return ret;
2094}
2095
2096/**
2097 * regmap_raw_write() - Write raw values to one or more registers
2098 *
2099 * @map: Register map to write to
2100 * @reg: Initial register to write to
2101 * @val: Block of data to be written, laid out for direct transmission to the
2102 *       device
2103 * @val_len: Length of data pointed to by val.
2104 *
2105 * This function is intended to be used for things like firmware
2106 * download where a large block of data needs to be transferred to the
2107 * device.  No formatting will be done on the data provided.
2108 *
2109 * A value of zero will be returned on success, a negative errno will
2110 * be returned in error cases.
2111 */
2112int regmap_raw_write(struct regmap *map, unsigned int reg,
2113		     const void *val, size_t val_len)
2114{
2115	int ret;
2116
2117	if (!regmap_can_raw_write(map))
2118		return -EINVAL;
2119	if (val_len % map->format.val_bytes)
2120		return -EINVAL;
 
 
2121
2122	map->lock(map->lock_arg);
2123
2124	ret = _regmap_raw_write(map, reg, val, val_len, false);
2125
2126	map->unlock(map->lock_arg);
2127
2128	return ret;
2129}
2130EXPORT_SYMBOL_GPL(regmap_raw_write);
2131
2132static int regmap_noinc_readwrite(struct regmap *map, unsigned int reg,
2133				  void *val, unsigned int val_len, bool write)
2134{
2135	size_t val_bytes = map->format.val_bytes;
2136	size_t val_count = val_len / val_bytes;
2137	unsigned int lastval;
2138	u8 *u8p;
2139	u16 *u16p;
2140	u32 *u32p;
2141#ifdef CONFIG_64BIT
2142	u64 *u64p;
2143#endif
2144	int ret;
2145	int i;
2146
2147	switch (val_bytes) {
2148	case 1:
2149		u8p = val;
2150		if (write)
2151			lastval = (unsigned int)u8p[val_count - 1];
2152		break;
2153	case 2:
2154		u16p = val;
2155		if (write)
2156			lastval = (unsigned int)u16p[val_count - 1];
2157		break;
2158	case 4:
2159		u32p = val;
2160		if (write)
2161			lastval = (unsigned int)u32p[val_count - 1];
2162		break;
2163#ifdef CONFIG_64BIT
2164	case 8:
2165		u64p = val;
2166		if (write)
2167			lastval = (unsigned int)u64p[val_count - 1];
2168		break;
2169#endif
2170	default:
2171		return -EINVAL;
2172	}
2173
2174	/*
2175	 * Update the cache with the last value we write, the rest is just
2176	 * gone down in the hardware FIFO. We can't cache FIFOs. This makes
2177	 * sure a single read from the cache will work.
2178	 */
2179	if (write) {
2180		if (!map->cache_bypass && !map->defer_caching) {
2181			ret = regcache_write(map, reg, lastval);
2182			if (ret != 0)
2183				return ret;
2184			if (map->cache_only) {
2185				map->cache_dirty = true;
2186				return 0;
2187			}
2188		}
2189		ret = map->bus->reg_noinc_write(map->bus_context, reg, val, val_count);
2190	} else {
2191		ret = map->bus->reg_noinc_read(map->bus_context, reg, val, val_count);
2192	}
2193
2194	if (!ret && regmap_should_log(map)) {
2195		dev_info(map->dev, "%x %s [", reg, write ? "<=" : "=>");
2196		for (i = 0; i < val_count; i++) {
2197			switch (val_bytes) {
2198			case 1:
2199				pr_cont("%x", u8p[i]);
2200				break;
2201			case 2:
2202				pr_cont("%x", u16p[i]);
2203				break;
2204			case 4:
2205				pr_cont("%x", u32p[i]);
2206				break;
2207#ifdef CONFIG_64BIT
2208			case 8:
2209				pr_cont("%llx", u64p[i]);
2210				break;
2211#endif
2212			default:
2213				break;
2214			}
2215			if (i == (val_count - 1))
2216				pr_cont("]\n");
2217			else
2218				pr_cont(",");
2219		}
2220	}
2221
2222	return 0;
2223}
2224
2225/**
2226 * regmap_noinc_write(): Write data from a register without incrementing the
2227 *			register number
2228 *
2229 * @map: Register map to write to
2230 * @reg: Register to write to
2231 * @val: Pointer to data buffer
2232 * @val_len: Length of output buffer in bytes.
2233 *
2234 * The regmap API usually assumes that bulk bus write operations will write a
2235 * range of registers. Some devices have certain registers for which a write
2236 * operation can write to an internal FIFO.
2237 *
2238 * The target register must be volatile but registers after it can be
2239 * completely unrelated cacheable registers.
2240 *
2241 * This will attempt multiple writes as required to write val_len bytes.
2242 *
2243 * A value of zero will be returned on success, a negative errno will be
2244 * returned in error cases.
2245 */
2246int regmap_noinc_write(struct regmap *map, unsigned int reg,
2247		      const void *val, size_t val_len)
2248{
2249	size_t write_len;
2250	int ret;
2251
2252	if (!map->write && !(map->bus && map->bus->reg_noinc_write))
2253		return -EINVAL;
2254	if (val_len % map->format.val_bytes)
2255		return -EINVAL;
2256	if (!IS_ALIGNED(reg, map->reg_stride))
2257		return -EINVAL;
2258	if (val_len == 0)
2259		return -EINVAL;
2260
2261	map->lock(map->lock_arg);
2262
2263	if (!regmap_volatile(map, reg) || !regmap_writeable_noinc(map, reg)) {
2264		ret = -EINVAL;
2265		goto out_unlock;
2266	}
2267
2268	/*
2269	 * Use the accelerated operation if we can. The val drops the const
2270	 * typing in order to facilitate code reuse in regmap_noinc_readwrite().
2271	 */
2272	if (map->bus->reg_noinc_write) {
2273		ret = regmap_noinc_readwrite(map, reg, (void *)val, val_len, true);
2274		goto out_unlock;
2275	}
2276
2277	while (val_len) {
2278		if (map->max_raw_write && map->max_raw_write < val_len)
2279			write_len = map->max_raw_write;
2280		else
2281			write_len = val_len;
2282		ret = _regmap_raw_write(map, reg, val, write_len, true);
2283		if (ret)
2284			goto out_unlock;
2285		val = ((u8 *)val) + write_len;
2286		val_len -= write_len;
2287	}
2288
2289out_unlock:
2290	map->unlock(map->lock_arg);
2291	return ret;
2292}
2293EXPORT_SYMBOL_GPL(regmap_noinc_write);
2294
2295/**
2296 * regmap_field_update_bits_base() - Perform a read/modify/write cycle a
2297 *                                   register field.
2298 *
2299 * @field: Register field to write to
2300 * @mask: Bitmask to change
2301 * @val: Value to be written
2302 * @change: Boolean indicating if a write was done
2303 * @async: Boolean indicating asynchronously
2304 * @force: Boolean indicating use force update
2305 *
2306 * Perform a read/modify/write cycle on the register field with change,
2307 * async, force option.
2308 *
2309 * A value of zero will be returned on success, a negative errno will
2310 * be returned in error cases.
2311 */
2312int regmap_field_update_bits_base(struct regmap_field *field,
2313				  unsigned int mask, unsigned int val,
2314				  bool *change, bool async, bool force)
2315{
2316	mask = (mask << field->shift) & field->mask;
2317
2318	return regmap_update_bits_base(field->regmap, field->reg,
2319				       mask, val << field->shift,
2320				       change, async, force);
2321}
2322EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
2323
2324/**
2325 * regmap_field_test_bits() - Check if all specified bits are set in a
2326 *                            register field.
2327 *
2328 * @field: Register field to operate on
2329 * @bits: Bits to test
2330 *
2331 * Returns -1 if the underlying regmap_field_read() fails, 0 if at least one of the
2332 * tested bits is not set and 1 if all tested bits are set.
2333 */
2334int regmap_field_test_bits(struct regmap_field *field, unsigned int bits)
2335{
2336	unsigned int val, ret;
2337
2338	ret = regmap_field_read(field, &val);
2339	if (ret)
2340		return ret;
2341
2342	return (val & bits) == bits;
2343}
2344EXPORT_SYMBOL_GPL(regmap_field_test_bits);
2345
2346/**
2347 * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a
2348 *                                    register field with port ID
2349 *
2350 * @field: Register field to write to
2351 * @id: port ID
2352 * @mask: Bitmask to change
2353 * @val: Value to be written
2354 * @change: Boolean indicating if a write was done
2355 * @async: Boolean indicating asynchronously
2356 * @force: Boolean indicating use force update
2357 *
2358 * A value of zero will be returned on success, a negative errno will
2359 * be returned in error cases.
2360 */
2361int regmap_fields_update_bits_base(struct regmap_field *field, unsigned int id,
2362				   unsigned int mask, unsigned int val,
2363				   bool *change, bool async, bool force)
2364{
2365	if (id >= field->id_size)
2366		return -EINVAL;
2367
2368	mask = (mask << field->shift) & field->mask;
2369
2370	return regmap_update_bits_base(field->regmap,
2371				       field->reg + (field->id_offset * id),
2372				       mask, val << field->shift,
2373				       change, async, force);
2374}
2375EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
2376
2377/**
2378 * regmap_bulk_write() - Write multiple registers to the device
2379 *
2380 * @map: Register map to write to
2381 * @reg: First register to be write from
2382 * @val: Block of data to be written, in native register size for device
2383 * @val_count: Number of registers to write
2384 *
2385 * This function is intended to be used for writing a large block of
2386 * data to the device either in single transfer or multiple transfer.
2387 *
2388 * A value of zero will be returned on success, a negative errno will
2389 * be returned in error cases.
2390 */
2391int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
2392		     size_t val_count)
2393{
2394	int ret = 0, i;
2395	size_t val_bytes = map->format.val_bytes;
 
2396
 
 
2397	if (!IS_ALIGNED(reg, map->reg_stride))
2398		return -EINVAL;
2399
2400	/*
2401	 * Some devices don't support bulk write, for them we have a series of
2402	 * single write operations.
 
 
 
 
 
 
2403	 */
2404	if (!map->write || !map->format.parse_inplace) {
2405		map->lock(map->lock_arg);
2406		for (i = 0; i < val_count; i++) {
2407			unsigned int ival;
2408
2409			switch (val_bytes) {
2410			case 1:
2411				ival = *(u8 *)(val + (i * val_bytes));
2412				break;
2413			case 2:
2414				ival = *(u16 *)(val + (i * val_bytes));
2415				break;
2416			case 4:
2417				ival = *(u32 *)(val + (i * val_bytes));
2418				break;
2419#ifdef CONFIG_64BIT
2420			case 8:
2421				ival = *(u64 *)(val + (i * val_bytes));
2422				break;
2423#endif
2424			default:
2425				ret = -EINVAL;
2426				goto out;
2427			}
2428
2429			ret = _regmap_write(map,
2430					    reg + regmap_get_offset(map, i),
2431					    ival);
2432			if (ret != 0)
2433				goto out;
2434		}
2435out:
2436		map->unlock(map->lock_arg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2437	} else {
2438		void *wval;
2439
 
 
 
2440		wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
2441		if (!wval)
 
2442			return -ENOMEM;
2443
2444		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2445			map->format.parse_inplace(wval + i);
2446
2447		ret = regmap_raw_write(map, reg, wval, val_bytes * val_count);
 
 
2448
2449		kfree(wval);
2450	}
2451
2452	if (!ret)
2453		trace_regmap_bulk_write(map, reg, val, val_bytes * val_count);
2454
2455	return ret;
2456}
2457EXPORT_SYMBOL_GPL(regmap_bulk_write);
2458
2459/*
2460 * _regmap_raw_multi_reg_write()
2461 *
2462 * the (register,newvalue) pairs in regs have not been formatted, but
2463 * they are all in the same page and have been changed to being page
2464 * relative. The page register has been written if that was necessary.
2465 */
2466static int _regmap_raw_multi_reg_write(struct regmap *map,
2467				       const struct reg_sequence *regs,
2468				       size_t num_regs)
2469{
2470	int ret;
2471	void *buf;
2472	int i;
2473	u8 *u8;
2474	size_t val_bytes = map->format.val_bytes;
2475	size_t reg_bytes = map->format.reg_bytes;
2476	size_t pad_bytes = map->format.pad_bytes;
2477	size_t pair_size = reg_bytes + pad_bytes + val_bytes;
2478	size_t len = pair_size * num_regs;
2479
2480	if (!len)
2481		return -EINVAL;
2482
2483	buf = kzalloc(len, GFP_KERNEL);
2484	if (!buf)
2485		return -ENOMEM;
2486
2487	/* We have to linearise by hand. */
2488
2489	u8 = buf;
2490
2491	for (i = 0; i < num_regs; i++) {
2492		unsigned int reg = regs[i].reg;
2493		unsigned int val = regs[i].def;
2494		trace_regmap_hw_write_start(map, reg, 1);
2495		reg += map->reg_base;
2496		reg >>= map->format.reg_downshift;
2497		map->format.format_reg(u8, reg, map->reg_shift);
2498		u8 += reg_bytes + pad_bytes;
2499		map->format.format_val(u8, val, 0);
2500		u8 += val_bytes;
2501	}
2502	u8 = buf;
2503	*u8 |= map->write_flag_mask;
2504
2505	ret = map->write(map->bus_context, buf, len);
2506
2507	kfree(buf);
2508
2509	for (i = 0; i < num_regs; i++) {
2510		int reg = regs[i].reg;
2511		trace_regmap_hw_write_done(map, reg, 1);
2512	}
2513	return ret;
2514}
2515
2516static unsigned int _regmap_register_page(struct regmap *map,
2517					  unsigned int reg,
2518					  struct regmap_range_node *range)
2519{
2520	unsigned int win_page = (reg - range->range_min) / range->window_len;
2521
2522	return win_page;
2523}
2524
2525static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2526					       struct reg_sequence *regs,
2527					       size_t num_regs)
2528{
2529	int ret;
2530	int i, n;
2531	struct reg_sequence *base;
2532	unsigned int this_page = 0;
2533	unsigned int page_change = 0;
2534	/*
2535	 * the set of registers are not neccessarily in order, but
2536	 * since the order of write must be preserved this algorithm
2537	 * chops the set each time the page changes. This also applies
2538	 * if there is a delay required at any point in the sequence.
2539	 */
2540	base = regs;
2541	for (i = 0, n = 0; i < num_regs; i++, n++) {
2542		unsigned int reg = regs[i].reg;
2543		struct regmap_range_node *range;
2544
2545		range = _regmap_range_lookup(map, reg);
2546		if (range) {
2547			unsigned int win_page = _regmap_register_page(map, reg,
2548								      range);
2549
2550			if (i == 0)
2551				this_page = win_page;
2552			if (win_page != this_page) {
2553				this_page = win_page;
2554				page_change = 1;
2555			}
2556		}
2557
2558		/* If we have both a page change and a delay make sure to
2559		 * write the regs and apply the delay before we change the
2560		 * page.
2561		 */
2562
2563		if (page_change || regs[i].delay_us) {
2564
2565				/* For situations where the first write requires
2566				 * a delay we need to make sure we don't call
2567				 * raw_multi_reg_write with n=0
2568				 * This can't occur with page breaks as we
2569				 * never write on the first iteration
2570				 */
2571				if (regs[i].delay_us && i == 0)
2572					n = 1;
2573
2574				ret = _regmap_raw_multi_reg_write(map, base, n);
2575				if (ret != 0)
2576					return ret;
2577
2578				if (regs[i].delay_us) {
2579					if (map->can_sleep)
2580						fsleep(regs[i].delay_us);
2581					else
2582						udelay(regs[i].delay_us);
2583				}
2584
2585				base += n;
2586				n = 0;
2587
2588				if (page_change) {
2589					ret = _regmap_select_page(map,
2590								  &base[n].reg,
2591								  range, 1);
2592					if (ret != 0)
2593						return ret;
2594
2595					page_change = 0;
2596				}
2597
2598		}
2599
2600	}
2601	if (n > 0)
2602		return _regmap_raw_multi_reg_write(map, base, n);
2603	return 0;
2604}
2605
2606static int _regmap_multi_reg_write(struct regmap *map,
2607				   const struct reg_sequence *regs,
2608				   size_t num_regs)
2609{
2610	int i;
2611	int ret;
2612
2613	if (!map->can_multi_write) {
2614		for (i = 0; i < num_regs; i++) {
2615			ret = _regmap_write(map, regs[i].reg, regs[i].def);
2616			if (ret != 0)
2617				return ret;
2618
2619			if (regs[i].delay_us) {
2620				if (map->can_sleep)
2621					fsleep(regs[i].delay_us);
2622				else
2623					udelay(regs[i].delay_us);
2624			}
2625		}
2626		return 0;
2627	}
2628
2629	if (!map->format.parse_inplace)
2630		return -EINVAL;
2631
2632	if (map->writeable_reg)
2633		for (i = 0; i < num_regs; i++) {
2634			int reg = regs[i].reg;
2635			if (!map->writeable_reg(map->dev, reg))
2636				return -EINVAL;
2637			if (!IS_ALIGNED(reg, map->reg_stride))
2638				return -EINVAL;
2639		}
2640
2641	if (!map->cache_bypass) {
2642		for (i = 0; i < num_regs; i++) {
2643			unsigned int val = regs[i].def;
2644			unsigned int reg = regs[i].reg;
2645			ret = regcache_write(map, reg, val);
2646			if (ret) {
2647				dev_err(map->dev,
2648				"Error in caching of register: %x ret: %d\n",
2649								reg, ret);
2650				return ret;
2651			}
2652		}
2653		if (map->cache_only) {
2654			map->cache_dirty = true;
2655			return 0;
2656		}
2657	}
2658
2659	WARN_ON(!map->bus);
2660
2661	for (i = 0; i < num_regs; i++) {
2662		unsigned int reg = regs[i].reg;
2663		struct regmap_range_node *range;
2664
2665		/* Coalesce all the writes between a page break or a delay
2666		 * in a sequence
2667		 */
2668		range = _regmap_range_lookup(map, reg);
2669		if (range || regs[i].delay_us) {
2670			size_t len = sizeof(struct reg_sequence)*num_regs;
2671			struct reg_sequence *base = kmemdup(regs, len,
2672							   GFP_KERNEL);
2673			if (!base)
2674				return -ENOMEM;
2675			ret = _regmap_range_multi_paged_reg_write(map, base,
2676								  num_regs);
2677			kfree(base);
2678
2679			return ret;
2680		}
2681	}
2682	return _regmap_raw_multi_reg_write(map, regs, num_regs);
2683}
2684
2685/**
2686 * regmap_multi_reg_write() - Write multiple registers to the device
 
 
 
2687 *
2688 * @map: Register map to write to
2689 * @regs: Array of structures containing register,value to be written
2690 * @num_regs: Number of registers to write
2691 *
2692 * Write multiple registers to the device where the set of register, value
2693 * pairs are supplied in any order, possibly not all in a single range.
2694 *
2695 * The 'normal' block write mode will send ultimately send data on the
2696 * target bus as R,V1,V2,V3,..,Vn where successively higher registers are
2697 * addressed. However, this alternative block multi write mode will send
2698 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2699 * must of course support the mode.
2700 *
2701 * A value of zero will be returned on success, a negative errno will be
2702 * returned in error cases.
2703 */
2704int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2705			   int num_regs)
2706{
2707	int ret;
2708
2709	map->lock(map->lock_arg);
2710
2711	ret = _regmap_multi_reg_write(map, regs, num_regs);
2712
2713	map->unlock(map->lock_arg);
2714
2715	return ret;
2716}
2717EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2718
2719/**
2720 * regmap_multi_reg_write_bypassed() - Write multiple registers to the
2721 *                                     device but not the cache
 
 
2722 *
2723 * @map: Register map to write to
2724 * @regs: Array of structures containing register,value to be written
2725 * @num_regs: Number of registers to write
2726 *
2727 * Write multiple registers to the device but not the cache where the set
2728 * of register are supplied in any order.
2729 *
2730 * This function is intended to be used for writing a large block of data
2731 * atomically to the device in single transfer for those I2C client devices
2732 * that implement this alternative block write mode.
2733 *
2734 * A value of zero will be returned on success, a negative errno will
2735 * be returned in error cases.
2736 */
2737int regmap_multi_reg_write_bypassed(struct regmap *map,
2738				    const struct reg_sequence *regs,
2739				    int num_regs)
2740{
2741	int ret;
2742	bool bypass;
2743
2744	map->lock(map->lock_arg);
2745
2746	bypass = map->cache_bypass;
2747	map->cache_bypass = true;
2748
2749	ret = _regmap_multi_reg_write(map, regs, num_regs);
2750
2751	map->cache_bypass = bypass;
2752
2753	map->unlock(map->lock_arg);
2754
2755	return ret;
2756}
2757EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2758
2759/**
2760 * regmap_raw_write_async() - Write raw values to one or more registers
2761 *                            asynchronously
2762 *
2763 * @map: Register map to write to
2764 * @reg: Initial register to write to
2765 * @val: Block of data to be written, laid out for direct transmission to the
2766 *       device.  Must be valid until regmap_async_complete() is called.
2767 * @val_len: Length of data pointed to by val.
2768 *
2769 * This function is intended to be used for things like firmware
2770 * download where a large block of data needs to be transferred to the
2771 * device.  No formatting will be done on the data provided.
2772 *
2773 * If supported by the underlying bus the write will be scheduled
2774 * asynchronously, helping maximise I/O speed on higher speed buses
2775 * like SPI.  regmap_async_complete() can be called to ensure that all
2776 * asynchrnous writes have been completed.
2777 *
2778 * A value of zero will be returned on success, a negative errno will
2779 * be returned in error cases.
2780 */
2781int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2782			   const void *val, size_t val_len)
2783{
2784	int ret;
2785
2786	if (val_len % map->format.val_bytes)
2787		return -EINVAL;
2788	if (!IS_ALIGNED(reg, map->reg_stride))
2789		return -EINVAL;
2790
2791	map->lock(map->lock_arg);
2792
2793	map->async = true;
2794
2795	ret = _regmap_raw_write(map, reg, val, val_len, false);
2796
2797	map->async = false;
2798
2799	map->unlock(map->lock_arg);
2800
2801	return ret;
2802}
2803EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2804
2805static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2806			    unsigned int val_len, bool noinc)
2807{
2808	struct regmap_range_node *range;
 
2809	int ret;
2810
2811	if (!map->read)
 
 
2812		return -EINVAL;
2813
2814	range = _regmap_range_lookup(map, reg);
2815	if (range) {
2816		ret = _regmap_select_page(map, &reg, range,
2817					  noinc ? 1 : val_len / map->format.val_bytes);
2818		if (ret != 0)
2819			return ret;
2820	}
2821
2822	reg += map->reg_base;
2823	reg >>= map->format.reg_downshift;
2824	map->format.format_reg(map->work_buf, reg, map->reg_shift);
2825	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
2826				      map->read_flag_mask);
 
 
 
 
 
 
 
2827	trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2828
2829	ret = map->read(map->bus_context, map->work_buf,
2830			map->format.reg_bytes + map->format.pad_bytes,
2831			val, val_len);
2832
2833	trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2834
2835	return ret;
2836}
2837
2838static int _regmap_bus_reg_read(void *context, unsigned int reg,
2839				unsigned int *val)
2840{
2841	struct regmap *map = context;
2842
2843	return map->bus->reg_read(map->bus_context, reg, val);
2844}
2845
2846static int _regmap_bus_read(void *context, unsigned int reg,
2847			    unsigned int *val)
2848{
2849	int ret;
2850	struct regmap *map = context;
2851	void *work_val = map->work_buf + map->format.reg_bytes +
2852		map->format.pad_bytes;
2853
2854	if (!map->format.parse_val)
2855		return -EINVAL;
2856
2857	ret = _regmap_raw_read(map, reg, work_val, map->format.val_bytes, false);
2858	if (ret == 0)
2859		*val = map->format.parse_val(work_val);
2860
2861	return ret;
2862}
2863
2864static int _regmap_read(struct regmap *map, unsigned int reg,
2865			unsigned int *val)
2866{
2867	int ret;
2868	void *context = _regmap_map_get_context(map);
2869
2870	if (!map->cache_bypass) {
2871		ret = regcache_read(map, reg, val);
2872		if (ret == 0)
2873			return 0;
2874	}
2875
2876	if (map->cache_only)
2877		return -EBUSY;
2878
2879	if (!regmap_readable(map, reg))
2880		return -EIO;
2881
2882	ret = map->reg_read(context, reg, val);
2883	if (ret == 0) {
2884		if (regmap_should_log(map))
 
2885			dev_info(map->dev, "%x => %x\n", reg, *val);
 
2886
2887		trace_regmap_reg_read(map, reg, *val);
2888
2889		if (!map->cache_bypass)
2890			regcache_write(map, reg, *val);
2891	}
2892
2893	return ret;
2894}
2895
2896/**
2897 * regmap_read() - Read a value from a single register
2898 *
2899 * @map: Register map to read from
2900 * @reg: Register to be read from
2901 * @val: Pointer to store read value
2902 *
2903 * A value of zero will be returned on success, a negative errno will
2904 * be returned in error cases.
2905 */
2906int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2907{
2908	int ret;
2909
2910	if (!IS_ALIGNED(reg, map->reg_stride))
2911		return -EINVAL;
2912
2913	map->lock(map->lock_arg);
2914
2915	ret = _regmap_read(map, reg, val);
2916
2917	map->unlock(map->lock_arg);
2918
2919	return ret;
2920}
2921EXPORT_SYMBOL_GPL(regmap_read);
2922
2923/**
2924 * regmap_raw_read() - Read raw data from the device
2925 *
2926 * @map: Register map to read from
2927 * @reg: First register to be read from
2928 * @val: Pointer to store read value
2929 * @val_len: Size of data to read
2930 *
2931 * A value of zero will be returned on success, a negative errno will
2932 * be returned in error cases.
2933 */
2934int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2935		    size_t val_len)
2936{
2937	size_t val_bytes = map->format.val_bytes;
2938	size_t val_count = val_len / val_bytes;
2939	unsigned int v;
2940	int ret, i;
2941
 
 
2942	if (val_len % map->format.val_bytes)
2943		return -EINVAL;
2944	if (!IS_ALIGNED(reg, map->reg_stride))
2945		return -EINVAL;
2946	if (val_count == 0)
2947		return -EINVAL;
2948
2949	map->lock(map->lock_arg);
2950
2951	if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2952	    map->cache_type == REGCACHE_NONE) {
2953		size_t chunk_count, chunk_bytes;
2954		size_t chunk_regs = val_count;
2955
2956		if (!map->read) {
2957			ret = -ENOTSUPP;
2958			goto out;
2959		}
2960
2961		if (map->use_single_read)
2962			chunk_regs = 1;
2963		else if (map->max_raw_read && val_len > map->max_raw_read)
2964			chunk_regs = map->max_raw_read / val_bytes;
2965
2966		chunk_count = val_count / chunk_regs;
2967		chunk_bytes = chunk_regs * val_bytes;
2968
2969		/* Read bytes that fit into whole chunks */
2970		for (i = 0; i < chunk_count; i++) {
2971			ret = _regmap_raw_read(map, reg, val, chunk_bytes, false);
2972			if (ret != 0)
2973				goto out;
2974
2975			reg += regmap_get_offset(map, chunk_regs);
2976			val += chunk_bytes;
2977			val_len -= chunk_bytes;
2978		}
2979
2980		/* Read remaining bytes */
2981		if (val_len) {
2982			ret = _regmap_raw_read(map, reg, val, val_len, false);
2983			if (ret != 0)
2984				goto out;
2985		}
2986	} else {
2987		/* Otherwise go word by word for the cache; should be low
2988		 * cost as we expect to hit the cache.
2989		 */
2990		for (i = 0; i < val_count; i++) {
2991			ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2992					   &v);
2993			if (ret != 0)
2994				goto out;
2995
2996			map->format.format_val(val + (i * val_bytes), v, 0);
2997		}
2998	}
2999
3000 out:
3001	map->unlock(map->lock_arg);
3002
3003	return ret;
3004}
3005EXPORT_SYMBOL_GPL(regmap_raw_read);
3006
3007/**
3008 * regmap_noinc_read(): Read data from a register without incrementing the
3009 *			register number
3010 *
3011 * @map: Register map to read from
3012 * @reg: Register to read from
3013 * @val: Pointer to data buffer
3014 * @val_len: Length of output buffer in bytes.
3015 *
3016 * The regmap API usually assumes that bulk read operations will read a
3017 * range of registers. Some devices have certain registers for which a read
3018 * operation read will read from an internal FIFO.
3019 *
3020 * The target register must be volatile but registers after it can be
3021 * completely unrelated cacheable registers.
3022 *
3023 * This will attempt multiple reads as required to read val_len bytes.
3024 *
3025 * A value of zero will be returned on success, a negative errno will be
3026 * returned in error cases.
3027 */
3028int regmap_noinc_read(struct regmap *map, unsigned int reg,
3029		      void *val, size_t val_len)
3030{
3031	size_t read_len;
3032	int ret;
3033
3034	if (!map->read)
3035		return -ENOTSUPP;
3036
3037	if (val_len % map->format.val_bytes)
3038		return -EINVAL;
3039	if (!IS_ALIGNED(reg, map->reg_stride))
3040		return -EINVAL;
3041	if (val_len == 0)
3042		return -EINVAL;
3043
3044	map->lock(map->lock_arg);
3045
3046	if (!regmap_volatile(map, reg) || !regmap_readable_noinc(map, reg)) {
3047		ret = -EINVAL;
3048		goto out_unlock;
3049	}
3050
3051	/* Use the accelerated operation if we can */
3052	if (map->bus->reg_noinc_read) {
3053		/*
3054		 * We have not defined the FIFO semantics for cache, as the
3055		 * cache is just one value deep. Should we return the last
3056		 * written value? Just avoid this by always reading the FIFO
3057		 * even when using cache. Cache only will not work.
3058		 */
3059		if (map->cache_only) {
3060			ret = -EBUSY;
3061			goto out_unlock;
3062		}
3063		ret = regmap_noinc_readwrite(map, reg, val, val_len, false);
3064		goto out_unlock;
3065	}
3066
3067	while (val_len) {
3068		if (map->max_raw_read && map->max_raw_read < val_len)
3069			read_len = map->max_raw_read;
3070		else
3071			read_len = val_len;
3072		ret = _regmap_raw_read(map, reg, val, read_len, true);
3073		if (ret)
3074			goto out_unlock;
3075		val = ((u8 *)val) + read_len;
3076		val_len -= read_len;
3077	}
3078
3079out_unlock:
3080	map->unlock(map->lock_arg);
3081	return ret;
3082}
3083EXPORT_SYMBOL_GPL(regmap_noinc_read);
3084
3085/**
3086 * regmap_field_read(): Read a value to a single register field
3087 *
3088 * @field: Register field to read from
3089 * @val: Pointer to store read value
3090 *
3091 * A value of zero will be returned on success, a negative errno will
3092 * be returned in error cases.
3093 */
3094int regmap_field_read(struct regmap_field *field, unsigned int *val)
3095{
3096	int ret;
3097	unsigned int reg_val;
3098	ret = regmap_read(field->regmap, field->reg, &reg_val);
3099	if (ret != 0)
3100		return ret;
3101
3102	reg_val &= field->mask;
3103	reg_val >>= field->shift;
3104	*val = reg_val;
3105
3106	return ret;
3107}
3108EXPORT_SYMBOL_GPL(regmap_field_read);
3109
3110/**
3111 * regmap_fields_read() - Read a value to a single register field with port ID
3112 *
3113 * @field: Register field to read from
3114 * @id: port ID
3115 * @val: Pointer to store read value
3116 *
3117 * A value of zero will be returned on success, a negative errno will
3118 * be returned in error cases.
3119 */
3120int regmap_fields_read(struct regmap_field *field, unsigned int id,
3121		       unsigned int *val)
3122{
3123	int ret;
3124	unsigned int reg_val;
3125
3126	if (id >= field->id_size)
3127		return -EINVAL;
3128
3129	ret = regmap_read(field->regmap,
3130			  field->reg + (field->id_offset * id),
3131			  &reg_val);
3132	if (ret != 0)
3133		return ret;
3134
3135	reg_val &= field->mask;
3136	reg_val >>= field->shift;
3137	*val = reg_val;
3138
3139	return ret;
3140}
3141EXPORT_SYMBOL_GPL(regmap_fields_read);
3142
3143/**
3144 * regmap_bulk_read() - Read multiple registers from the device
3145 *
3146 * @map: Register map to read from
3147 * @reg: First register to be read from
3148 * @val: Pointer to store read value, in native register size for device
3149 * @val_count: Number of registers to read
3150 *
3151 * A value of zero will be returned on success, a negative errno will
3152 * be returned in error cases.
3153 */
3154int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
3155		     size_t val_count)
3156{
3157	int ret, i;
3158	size_t val_bytes = map->format.val_bytes;
3159	bool vol = regmap_volatile_range(map, reg, val_count);
3160
3161	if (!IS_ALIGNED(reg, map->reg_stride))
3162		return -EINVAL;
3163	if (val_count == 0)
3164		return -EINVAL;
3165
3166	if (map->read && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
3167		ret = regmap_raw_read(map, reg, val, val_bytes * val_count);
3168		if (ret != 0)
3169			return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3170
3171		for (i = 0; i < val_count * val_bytes; i += val_bytes)
3172			map->format.parse_inplace(val + i);
3173	} else {
3174#ifdef CONFIG_64BIT
3175		u64 *u64 = val;
3176#endif
3177		u32 *u32 = val;
3178		u16 *u16 = val;
3179		u8 *u8 = val;
3180
3181		map->lock(map->lock_arg);
3182
3183		for (i = 0; i < val_count; i++) {
3184			unsigned int ival;
3185
3186			ret = _regmap_read(map, reg + regmap_get_offset(map, i),
3187					   &ival);
3188			if (ret != 0)
3189				goto out;
3190
3191			switch (map->format.val_bytes) {
 
 
 
 
 
 
 
 
3192#ifdef CONFIG_64BIT
3193			case 8:
3194				u64[i] = ival;
3195				break;
3196#endif
3197			case 4:
3198				u32[i] = ival;
3199				break;
3200			case 2:
3201				u16[i] = ival;
3202				break;
3203			case 1:
3204				u8[i] = ival;
3205				break;
3206			default:
3207				ret = -EINVAL;
3208				goto out;
 
 
 
 
 
 
 
 
 
 
3209			}
3210		}
3211
3212out:
3213		map->unlock(map->lock_arg);
3214	}
3215
3216	if (!ret)
3217		trace_regmap_bulk_read(map, reg, val, val_bytes * val_count);
3218
3219	return ret;
3220}
3221EXPORT_SYMBOL_GPL(regmap_bulk_read);
3222
3223static int _regmap_update_bits(struct regmap *map, unsigned int reg,
3224			       unsigned int mask, unsigned int val,
3225			       bool *change, bool force_write)
3226{
3227	int ret;
3228	unsigned int tmp, orig;
3229
3230	if (change)
3231		*change = false;
3232
3233	if (regmap_volatile(map, reg) && map->reg_update_bits) {
3234		ret = map->reg_update_bits(map->bus_context, reg, mask, val);
3235		if (ret == 0 && change)
3236			*change = true;
3237	} else {
3238		ret = _regmap_read(map, reg, &orig);
3239		if (ret != 0)
3240			return ret;
3241
3242		tmp = orig & ~mask;
3243		tmp |= val & mask;
3244
3245		if (force_write || (tmp != orig)) {
3246			ret = _regmap_write(map, reg, tmp);
3247			if (ret == 0 && change)
3248				*change = true;
3249		}
3250	}
3251
3252	return ret;
3253}
3254
3255/**
3256 * regmap_update_bits_base() - Perform a read/modify/write cycle on a register
 
 
3257 *
3258 * @map: Register map to update
3259 * @reg: Register to update
3260 * @mask: Bitmask to change
3261 * @val: New value for bitmask
3262 * @change: Boolean indicating if a write was done
3263 * @async: Boolean indicating asynchronously
3264 * @force: Boolean indicating use force update
3265 *
3266 * Perform a read/modify/write cycle on a register map with change, async, force
3267 * options.
3268 *
3269 * If async is true:
3270 *
3271 * With most buses the read must be done synchronously so this is most useful
3272 * for devices with a cache which do not need to interact with the hardware to
3273 * determine the current register value.
3274 *
3275 * Returns zero for success, a negative number on error.
3276 */
3277int regmap_update_bits_base(struct regmap *map, unsigned int reg,
3278			    unsigned int mask, unsigned int val,
3279			    bool *change, bool async, bool force)
3280{
3281	int ret;
3282
3283	map->lock(map->lock_arg);
3284
3285	map->async = async;
3286
3287	ret = _regmap_update_bits(map, reg, mask, val, change, force);
3288
3289	map->async = false;
3290
3291	map->unlock(map->lock_arg);
3292
3293	return ret;
3294}
3295EXPORT_SYMBOL_GPL(regmap_update_bits_base);
3296
3297/**
3298 * regmap_test_bits() - Check if all specified bits are set in a register.
3299 *
3300 * @map: Register map to operate on
3301 * @reg: Register to read from
3302 * @bits: Bits to test
3303 *
3304 * Returns 0 if at least one of the tested bits is not set, 1 if all tested
3305 * bits are set and a negative error number if the underlying regmap_read()
3306 * fails.
3307 */
3308int regmap_test_bits(struct regmap *map, unsigned int reg, unsigned int bits)
3309{
3310	unsigned int val, ret;
3311
3312	ret = regmap_read(map, reg, &val);
3313	if (ret)
3314		return ret;
3315
3316	return (val & bits) == bits;
3317}
3318EXPORT_SYMBOL_GPL(regmap_test_bits);
3319
3320void regmap_async_complete_cb(struct regmap_async *async, int ret)
3321{
3322	struct regmap *map = async->map;
3323	bool wake;
3324
3325	trace_regmap_async_io_complete(map);
3326
3327	spin_lock(&map->async_lock);
3328	list_move(&async->list, &map->async_free);
3329	wake = list_empty(&map->async_list);
3330
3331	if (ret != 0)
3332		map->async_ret = ret;
3333
3334	spin_unlock(&map->async_lock);
3335
3336	if (wake)
3337		wake_up(&map->async_waitq);
3338}
3339EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
3340
3341static int regmap_async_is_done(struct regmap *map)
3342{
3343	unsigned long flags;
3344	int ret;
3345
3346	spin_lock_irqsave(&map->async_lock, flags);
3347	ret = list_empty(&map->async_list);
3348	spin_unlock_irqrestore(&map->async_lock, flags);
3349
3350	return ret;
3351}
3352
3353/**
3354 * regmap_async_complete - Ensure all asynchronous I/O has completed.
3355 *
3356 * @map: Map to operate on.
3357 *
3358 * Blocks until any pending asynchronous I/O has completed.  Returns
3359 * an error code for any failed I/O operations.
3360 */
3361int regmap_async_complete(struct regmap *map)
3362{
3363	unsigned long flags;
3364	int ret;
3365
3366	/* Nothing to do with no async support */
3367	if (!map->bus || !map->bus->async_write)
3368		return 0;
3369
3370	trace_regmap_async_complete_start(map);
3371
3372	wait_event(map->async_waitq, regmap_async_is_done(map));
3373
3374	spin_lock_irqsave(&map->async_lock, flags);
3375	ret = map->async_ret;
3376	map->async_ret = 0;
3377	spin_unlock_irqrestore(&map->async_lock, flags);
3378
3379	trace_regmap_async_complete_done(map);
3380
3381	return ret;
3382}
3383EXPORT_SYMBOL_GPL(regmap_async_complete);
3384
3385/**
3386 * regmap_register_patch - Register and apply register updates to be applied
3387 *                         on device initialistion
3388 *
3389 * @map: Register map to apply updates to.
3390 * @regs: Values to update.
3391 * @num_regs: Number of entries in regs.
3392 *
3393 * Register a set of register updates to be applied to the device
3394 * whenever the device registers are synchronised with the cache and
3395 * apply them immediately.  Typically this is used to apply
3396 * corrections to be applied to the device defaults on startup, such
3397 * as the updates some vendors provide to undocumented registers.
3398 *
3399 * The caller must ensure that this function cannot be called
3400 * concurrently with either itself or regcache_sync().
3401 */
3402int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
3403			  int num_regs)
3404{
3405	struct reg_sequence *p;
3406	int ret;
3407	bool bypass;
3408
3409	if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
3410	    num_regs))
3411		return 0;
3412
3413	p = krealloc(map->patch,
3414		     sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
3415		     GFP_KERNEL);
3416	if (p) {
3417		memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
3418		map->patch = p;
3419		map->patch_regs += num_regs;
3420	} else {
3421		return -ENOMEM;
3422	}
3423
3424	map->lock(map->lock_arg);
3425
3426	bypass = map->cache_bypass;
3427
3428	map->cache_bypass = true;
3429	map->async = true;
3430
3431	ret = _regmap_multi_reg_write(map, regs, num_regs);
3432
3433	map->async = false;
3434	map->cache_bypass = bypass;
3435
3436	map->unlock(map->lock_arg);
3437
3438	regmap_async_complete(map);
3439
3440	return ret;
3441}
3442EXPORT_SYMBOL_GPL(regmap_register_patch);
3443
3444/**
3445 * regmap_get_val_bytes() - Report the size of a register value
3446 *
3447 * @map: Register map to operate on.
3448 *
3449 * Report the size of a register value, mainly intended to for use by
3450 * generic infrastructure built on top of regmap.
3451 */
3452int regmap_get_val_bytes(struct regmap *map)
3453{
3454	if (map->format.format_write)
3455		return -EINVAL;
3456
3457	return map->format.val_bytes;
3458}
3459EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
3460
3461/**
3462 * regmap_get_max_register() - Report the max register value
3463 *
3464 * @map: Register map to operate on.
3465 *
3466 * Report the max register value, mainly intended to for use by
3467 * generic infrastructure built on top of regmap.
3468 */
3469int regmap_get_max_register(struct regmap *map)
3470{
3471	return map->max_register ? map->max_register : -EINVAL;
3472}
3473EXPORT_SYMBOL_GPL(regmap_get_max_register);
3474
3475/**
3476 * regmap_get_reg_stride() - Report the register address stride
3477 *
3478 * @map: Register map to operate on.
3479 *
3480 * Report the register address stride, mainly intended to for use by
3481 * generic infrastructure built on top of regmap.
3482 */
3483int regmap_get_reg_stride(struct regmap *map)
3484{
3485	return map->reg_stride;
3486}
3487EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
3488
3489/**
3490 * regmap_might_sleep() - Returns whether a regmap access might sleep.
3491 *
3492 * @map: Register map to operate on.
3493 *
3494 * Returns true if an access to the register might sleep, else false.
3495 */
3496bool regmap_might_sleep(struct regmap *map)
3497{
3498	return map->can_sleep;
3499}
3500EXPORT_SYMBOL_GPL(regmap_might_sleep);
3501
3502int regmap_parse_val(struct regmap *map, const void *buf,
3503			unsigned int *val)
3504{
3505	if (!map->format.parse_val)
3506		return -EINVAL;
3507
3508	*val = map->format.parse_val(buf);
3509
3510	return 0;
3511}
3512EXPORT_SYMBOL_GPL(regmap_parse_val);
3513
3514static int __init regmap_initcall(void)
3515{
3516	regmap_debugfs_initcall();
3517
3518	return 0;
3519}
3520postcore_initcall(regmap_initcall);
v4.6
   1/*
   2 * Register map access API
   3 *
   4 * Copyright 2011 Wolfson Microelectronics plc
   5 *
   6 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
   7 *
   8 * This program is free software; you can redistribute it and/or modify
   9 * it under the terms of the GNU General Public License version 2 as
  10 * published by the Free Software Foundation.
  11 */
  12
  13#include <linux/device.h>
  14#include <linux/slab.h>
  15#include <linux/export.h>
  16#include <linux/mutex.h>
  17#include <linux/err.h>
  18#include <linux/of.h>
  19#include <linux/rbtree.h>
  20#include <linux/sched.h>
  21#include <linux/delay.h>
  22#include <linux/log2.h>
 
 
  23
  24#define CREATE_TRACE_POINTS
  25#include "trace.h"
  26
  27#include "internal.h"
  28
  29/*
  30 * Sometimes for failures during very early init the trace
  31 * infrastructure isn't available early enough to be used.  For this
  32 * sort of problem defining LOG_DEVICE will add printks for basic
  33 * register I/O on a specific device.
  34 */
  35#undef LOG_DEVICE
  36
 
 
 
 
 
 
 
 
 
 
  37static int _regmap_update_bits(struct regmap *map, unsigned int reg,
  38			       unsigned int mask, unsigned int val,
  39			       bool *change, bool force_write);
  40
  41static int _regmap_bus_reg_read(void *context, unsigned int reg,
  42				unsigned int *val);
  43static int _regmap_bus_read(void *context, unsigned int reg,
  44			    unsigned int *val);
  45static int _regmap_bus_formatted_write(void *context, unsigned int reg,
  46				       unsigned int val);
  47static int _regmap_bus_reg_write(void *context, unsigned int reg,
  48				 unsigned int val);
  49static int _regmap_bus_raw_write(void *context, unsigned int reg,
  50				 unsigned int val);
  51
  52bool regmap_reg_in_ranges(unsigned int reg,
  53			  const struct regmap_range *ranges,
  54			  unsigned int nranges)
  55{
  56	const struct regmap_range *r;
  57	int i;
  58
  59	for (i = 0, r = ranges; i < nranges; i++, r++)
  60		if (regmap_reg_in_range(reg, r))
  61			return true;
  62	return false;
  63}
  64EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
  65
  66bool regmap_check_range_table(struct regmap *map, unsigned int reg,
  67			      const struct regmap_access_table *table)
  68{
  69	/* Check "no ranges" first */
  70	if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
  71		return false;
  72
  73	/* In case zero "yes ranges" are supplied, any reg is OK */
  74	if (!table->n_yes_ranges)
  75		return true;
  76
  77	return regmap_reg_in_ranges(reg, table->yes_ranges,
  78				    table->n_yes_ranges);
  79}
  80EXPORT_SYMBOL_GPL(regmap_check_range_table);
  81
  82bool regmap_writeable(struct regmap *map, unsigned int reg)
  83{
  84	if (map->max_register && reg > map->max_register)
  85		return false;
  86
  87	if (map->writeable_reg)
  88		return map->writeable_reg(map->dev, reg);
  89
  90	if (map->wr_table)
  91		return regmap_check_range_table(map, reg, map->wr_table);
  92
  93	return true;
  94}
  95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  96bool regmap_readable(struct regmap *map, unsigned int reg)
  97{
  98	if (!map->reg_read)
  99		return false;
 100
 101	if (map->max_register && reg > map->max_register)
 102		return false;
 103
 104	if (map->format.format_write)
 105		return false;
 106
 107	if (map->readable_reg)
 108		return map->readable_reg(map->dev, reg);
 109
 110	if (map->rd_table)
 111		return regmap_check_range_table(map, reg, map->rd_table);
 112
 113	return true;
 114}
 115
 116bool regmap_volatile(struct regmap *map, unsigned int reg)
 117{
 118	if (!map->format.format_write && !regmap_readable(map, reg))
 119		return false;
 120
 121	if (map->volatile_reg)
 122		return map->volatile_reg(map->dev, reg);
 123
 124	if (map->volatile_table)
 125		return regmap_check_range_table(map, reg, map->volatile_table);
 126
 127	if (map->cache_ops)
 128		return false;
 129	else
 130		return true;
 131}
 132
 133bool regmap_precious(struct regmap *map, unsigned int reg)
 134{
 135	if (!regmap_readable(map, reg))
 136		return false;
 137
 138	if (map->precious_reg)
 139		return map->precious_reg(map->dev, reg);
 140
 141	if (map->precious_table)
 142		return regmap_check_range_table(map, reg, map->precious_table);
 143
 144	return false;
 145}
 146
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 147static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
 148	size_t num)
 149{
 150	unsigned int i;
 151
 152	for (i = 0; i < num; i++)
 153		if (!regmap_volatile(map, reg + i))
 154			return false;
 155
 156	return true;
 157}
 158
 
 
 
 
 
 
 
 
 
 
 
 
 159static void regmap_format_2_6_write(struct regmap *map,
 160				     unsigned int reg, unsigned int val)
 161{
 162	u8 *out = map->work_buf;
 163
 164	*out = (reg << 6) | val;
 165}
 166
 167static void regmap_format_4_12_write(struct regmap *map,
 168				     unsigned int reg, unsigned int val)
 169{
 170	__be16 *out = map->work_buf;
 171	*out = cpu_to_be16((reg << 12) | val);
 172}
 173
 174static void regmap_format_7_9_write(struct regmap *map,
 175				    unsigned int reg, unsigned int val)
 176{
 177	__be16 *out = map->work_buf;
 178	*out = cpu_to_be16((reg << 9) | val);
 179}
 180
 
 
 
 
 
 
 
 
 
 
 181static void regmap_format_10_14_write(struct regmap *map,
 182				    unsigned int reg, unsigned int val)
 183{
 184	u8 *out = map->work_buf;
 185
 186	out[2] = val;
 187	out[1] = (val >> 8) | (reg << 6);
 188	out[0] = reg >> 2;
 189}
 190
 191static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
 192{
 193	u8 *b = buf;
 194
 195	b[0] = val << shift;
 196}
 197
 198static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
 199{
 200	__be16 *b = buf;
 201
 202	b[0] = cpu_to_be16(val << shift);
 203}
 204
 205static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
 206{
 207	__le16 *b = buf;
 208
 209	b[0] = cpu_to_le16(val << shift);
 210}
 211
 212static void regmap_format_16_native(void *buf, unsigned int val,
 213				    unsigned int shift)
 214{
 215	*(u16 *)buf = val << shift;
 
 
 216}
 217
 218static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
 219{
 220	u8 *b = buf;
 221
 222	val <<= shift;
 223
 224	b[0] = val >> 16;
 225	b[1] = val >> 8;
 226	b[2] = val;
 227}
 228
 229static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
 230{
 231	__be32 *b = buf;
 232
 233	b[0] = cpu_to_be32(val << shift);
 234}
 235
 236static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
 237{
 238	__le32 *b = buf;
 239
 240	b[0] = cpu_to_le32(val << shift);
 241}
 242
 243static void regmap_format_32_native(void *buf, unsigned int val,
 244				    unsigned int shift)
 245{
 246	*(u32 *)buf = val << shift;
 
 
 247}
 248
 249#ifdef CONFIG_64BIT
 250static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
 251{
 252	__be64 *b = buf;
 253
 254	b[0] = cpu_to_be64((u64)val << shift);
 255}
 256
 257static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
 258{
 259	__le64 *b = buf;
 260
 261	b[0] = cpu_to_le64((u64)val << shift);
 262}
 263
 264static void regmap_format_64_native(void *buf, unsigned int val,
 265				    unsigned int shift)
 266{
 267	*(u64 *)buf = (u64)val << shift;
 
 
 268}
 269#endif
 270
 271static void regmap_parse_inplace_noop(void *buf)
 272{
 273}
 274
 275static unsigned int regmap_parse_8(const void *buf)
 276{
 277	const u8 *b = buf;
 278
 279	return b[0];
 280}
 281
 282static unsigned int regmap_parse_16_be(const void *buf)
 283{
 284	const __be16 *b = buf;
 285
 286	return be16_to_cpu(b[0]);
 287}
 288
 289static unsigned int regmap_parse_16_le(const void *buf)
 290{
 291	const __le16 *b = buf;
 292
 293	return le16_to_cpu(b[0]);
 294}
 295
 296static void regmap_parse_16_be_inplace(void *buf)
 297{
 298	__be16 *b = buf;
 299
 300	b[0] = be16_to_cpu(b[0]);
 301}
 302
 303static void regmap_parse_16_le_inplace(void *buf)
 304{
 305	__le16 *b = buf;
 306
 307	b[0] = le16_to_cpu(b[0]);
 308}
 309
 310static unsigned int regmap_parse_16_native(const void *buf)
 311{
 312	return *(u16 *)buf;
 
 
 
 313}
 314
 315static unsigned int regmap_parse_24(const void *buf)
 316{
 317	const u8 *b = buf;
 318	unsigned int ret = b[2];
 319	ret |= ((unsigned int)b[1]) << 8;
 320	ret |= ((unsigned int)b[0]) << 16;
 321
 322	return ret;
 323}
 324
 325static unsigned int regmap_parse_32_be(const void *buf)
 326{
 327	const __be32 *b = buf;
 328
 329	return be32_to_cpu(b[0]);
 330}
 331
 332static unsigned int regmap_parse_32_le(const void *buf)
 333{
 334	const __le32 *b = buf;
 335
 336	return le32_to_cpu(b[0]);
 337}
 338
 339static void regmap_parse_32_be_inplace(void *buf)
 340{
 341	__be32 *b = buf;
 342
 343	b[0] = be32_to_cpu(b[0]);
 344}
 345
 346static void regmap_parse_32_le_inplace(void *buf)
 347{
 348	__le32 *b = buf;
 349
 350	b[0] = le32_to_cpu(b[0]);
 351}
 352
 353static unsigned int regmap_parse_32_native(const void *buf)
 354{
 355	return *(u32 *)buf;
 
 
 
 356}
 357
 358#ifdef CONFIG_64BIT
 359static unsigned int regmap_parse_64_be(const void *buf)
 360{
 361	const __be64 *b = buf;
 362
 363	return be64_to_cpu(b[0]);
 364}
 365
 366static unsigned int regmap_parse_64_le(const void *buf)
 367{
 368	const __le64 *b = buf;
 369
 370	return le64_to_cpu(b[0]);
 371}
 372
 373static void regmap_parse_64_be_inplace(void *buf)
 374{
 375	__be64 *b = buf;
 376
 377	b[0] = be64_to_cpu(b[0]);
 378}
 379
 380static void regmap_parse_64_le_inplace(void *buf)
 381{
 382	__le64 *b = buf;
 383
 384	b[0] = le64_to_cpu(b[0]);
 385}
 386
 387static unsigned int regmap_parse_64_native(const void *buf)
 388{
 389	return *(u64 *)buf;
 
 
 
 390}
 391#endif
 392
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 393static void regmap_lock_mutex(void *__map)
 394{
 395	struct regmap *map = __map;
 396	mutex_lock(&map->mutex);
 397}
 398
 399static void regmap_unlock_mutex(void *__map)
 400{
 401	struct regmap *map = __map;
 402	mutex_unlock(&map->mutex);
 403}
 404
 405static void regmap_lock_spinlock(void *__map)
 406__acquires(&map->spinlock)
 407{
 408	struct regmap *map = __map;
 409	unsigned long flags;
 410
 411	spin_lock_irqsave(&map->spinlock, flags);
 412	map->spinlock_flags = flags;
 413}
 414
 415static void regmap_unlock_spinlock(void *__map)
 416__releases(&map->spinlock)
 417{
 418	struct regmap *map = __map;
 419	spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
 420}
 421
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 422static void dev_get_regmap_release(struct device *dev, void *res)
 423{
 424	/*
 425	 * We don't actually have anything to do here; the goal here
 426	 * is not to manage the regmap but to provide a simple way to
 427	 * get the regmap back given a struct device.
 428	 */
 429}
 430
 431static bool _regmap_range_add(struct regmap *map,
 432			      struct regmap_range_node *data)
 433{
 434	struct rb_root *root = &map->range_tree;
 435	struct rb_node **new = &(root->rb_node), *parent = NULL;
 436
 437	while (*new) {
 438		struct regmap_range_node *this =
 439			container_of(*new, struct regmap_range_node, node);
 440
 441		parent = *new;
 442		if (data->range_max < this->range_min)
 443			new = &((*new)->rb_left);
 444		else if (data->range_min > this->range_max)
 445			new = &((*new)->rb_right);
 446		else
 447			return false;
 448	}
 449
 450	rb_link_node(&data->node, parent, new);
 451	rb_insert_color(&data->node, root);
 452
 453	return true;
 454}
 455
 456static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
 457						      unsigned int reg)
 458{
 459	struct rb_node *node = map->range_tree.rb_node;
 460
 461	while (node) {
 462		struct regmap_range_node *this =
 463			container_of(node, struct regmap_range_node, node);
 464
 465		if (reg < this->range_min)
 466			node = node->rb_left;
 467		else if (reg > this->range_max)
 468			node = node->rb_right;
 469		else
 470			return this;
 471	}
 472
 473	return NULL;
 474}
 475
 476static void regmap_range_exit(struct regmap *map)
 477{
 478	struct rb_node *next;
 479	struct regmap_range_node *range_node;
 480
 481	next = rb_first(&map->range_tree);
 482	while (next) {
 483		range_node = rb_entry(next, struct regmap_range_node, node);
 484		next = rb_next(&range_node->node);
 485		rb_erase(&range_node->node, &map->range_tree);
 486		kfree(range_node);
 487	}
 488
 489	kfree(map->selector_work_buf);
 490}
 491
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 492int regmap_attach_dev(struct device *dev, struct regmap *map,
 493		      const struct regmap_config *config)
 494{
 495	struct regmap **m;
 
 496
 497	map->dev = dev;
 498
 499	regmap_debugfs_init(map, config->name);
 
 
 
 
 
 500
 501	/* Add a devres resource for dev_get_regmap() */
 502	m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
 503	if (!m) {
 504		regmap_debugfs_exit(map);
 505		return -ENOMEM;
 506	}
 507	*m = map;
 508	devres_add(dev, m);
 509
 510	return 0;
 511}
 512EXPORT_SYMBOL_GPL(regmap_attach_dev);
 513
 514static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
 515					const struct regmap_config *config)
 516{
 517	enum regmap_endian endian;
 518
 519	/* Retrieve the endianness specification from the regmap config */
 520	endian = config->reg_format_endian;
 521
 522	/* If the regmap config specified a non-default value, use that */
 523	if (endian != REGMAP_ENDIAN_DEFAULT)
 524		return endian;
 525
 526	/* Retrieve the endianness specification from the bus config */
 527	if (bus && bus->reg_format_endian_default)
 528		endian = bus->reg_format_endian_default;
 529
 530	/* If the bus specified a non-default value, use that */
 531	if (endian != REGMAP_ENDIAN_DEFAULT)
 532		return endian;
 533
 534	/* Use this if no other value was found */
 535	return REGMAP_ENDIAN_BIG;
 536}
 537
 538enum regmap_endian regmap_get_val_endian(struct device *dev,
 539					 const struct regmap_bus *bus,
 540					 const struct regmap_config *config)
 541{
 542	struct device_node *np;
 543	enum regmap_endian endian;
 544
 545	/* Retrieve the endianness specification from the regmap config */
 546	endian = config->val_format_endian;
 547
 548	/* If the regmap config specified a non-default value, use that */
 549	if (endian != REGMAP_ENDIAN_DEFAULT)
 550		return endian;
 551
 552	/* If the dev and dev->of_node exist try to get endianness from DT */
 553	if (dev && dev->of_node) {
 554		np = dev->of_node;
 555
 556		/* Parse the device's DT node for an endianness specification */
 557		if (of_property_read_bool(np, "big-endian"))
 558			endian = REGMAP_ENDIAN_BIG;
 559		else if (of_property_read_bool(np, "little-endian"))
 560			endian = REGMAP_ENDIAN_LITTLE;
 561		else if (of_property_read_bool(np, "native-endian"))
 562			endian = REGMAP_ENDIAN_NATIVE;
 563
 564		/* If the endianness was specified in DT, use that */
 565		if (endian != REGMAP_ENDIAN_DEFAULT)
 566			return endian;
 567	}
 568
 569	/* Retrieve the endianness specification from the bus config */
 570	if (bus && bus->val_format_endian_default)
 571		endian = bus->val_format_endian_default;
 572
 573	/* If the bus specified a non-default value, use that */
 574	if (endian != REGMAP_ENDIAN_DEFAULT)
 575		return endian;
 576
 577	/* Use this if no other value was found */
 578	return REGMAP_ENDIAN_BIG;
 579}
 580EXPORT_SYMBOL_GPL(regmap_get_val_endian);
 581
 582struct regmap *__regmap_init(struct device *dev,
 583			     const struct regmap_bus *bus,
 584			     void *bus_context,
 585			     const struct regmap_config *config,
 586			     struct lock_class_key *lock_key,
 587			     const char *lock_name)
 588{
 589	struct regmap *map;
 590	int ret = -EINVAL;
 591	enum regmap_endian reg_endian, val_endian;
 592	int i, j;
 593
 594	if (!config)
 595		goto err;
 596
 597	map = kzalloc(sizeof(*map), GFP_KERNEL);
 598	if (map == NULL) {
 599		ret = -ENOMEM;
 600		goto err;
 601	}
 602
 603	if (config->lock && config->unlock) {
 
 
 
 
 
 
 
 
 
 
 604		map->lock = config->lock;
 605		map->unlock = config->unlock;
 606		map->lock_arg = config->lock_arg;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 607	} else {
 608		if ((bus && bus->fast_io) ||
 609		    config->fast_io) {
 610			spin_lock_init(&map->spinlock);
 611			map->lock = regmap_lock_spinlock;
 612			map->unlock = regmap_unlock_spinlock;
 613			lockdep_set_class_and_name(&map->spinlock,
 614						   lock_key, lock_name);
 
 
 
 
 
 
 
 
 615		} else {
 616			mutex_init(&map->mutex);
 617			map->lock = regmap_lock_mutex;
 618			map->unlock = regmap_unlock_mutex;
 
 619			lockdep_set_class_and_name(&map->mutex,
 620						   lock_key, lock_name);
 621		}
 622		map->lock_arg = map;
 623	}
 624
 625	/*
 626	 * When we write in fast-paths with regmap_bulk_write() don't allocate
 627	 * scratch buffers with sleeping allocations.
 628	 */
 629	if ((bus && bus->fast_io) || config->fast_io)
 630		map->alloc_flags = GFP_ATOMIC;
 631	else
 632		map->alloc_flags = GFP_KERNEL;
 633
 
 
 634	map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
 635	map->format.pad_bytes = config->pad_bits / 8;
 
 636	map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
 637	map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
 638			config->val_bits + config->pad_bits, 8);
 639	map->reg_shift = config->pad_bits % 8;
 640	if (config->reg_stride)
 641		map->reg_stride = config->reg_stride;
 642	else
 643		map->reg_stride = 1;
 644	if (is_power_of_2(map->reg_stride))
 645		map->reg_stride_order = ilog2(map->reg_stride);
 646	else
 647		map->reg_stride_order = -1;
 648	map->use_single_read = config->use_single_rw || !bus || !bus->read;
 649	map->use_single_write = config->use_single_rw || !bus || !bus->write;
 650	map->can_multi_write = config->can_multi_write && bus && bus->write;
 651	if (bus) {
 652		map->max_raw_read = bus->max_raw_read;
 653		map->max_raw_write = bus->max_raw_write;
 
 
 
 654	}
 655	map->dev = dev;
 656	map->bus = bus;
 657	map->bus_context = bus_context;
 658	map->max_register = config->max_register;
 659	map->wr_table = config->wr_table;
 660	map->rd_table = config->rd_table;
 661	map->volatile_table = config->volatile_table;
 662	map->precious_table = config->precious_table;
 
 
 663	map->writeable_reg = config->writeable_reg;
 664	map->readable_reg = config->readable_reg;
 665	map->volatile_reg = config->volatile_reg;
 666	map->precious_reg = config->precious_reg;
 
 
 667	map->cache_type = config->cache_type;
 668	map->name = config->name;
 669
 670	spin_lock_init(&map->async_lock);
 671	INIT_LIST_HEAD(&map->async_list);
 672	INIT_LIST_HEAD(&map->async_free);
 673	init_waitqueue_head(&map->async_waitq);
 674
 675	if (config->read_flag_mask || config->write_flag_mask) {
 
 
 676		map->read_flag_mask = config->read_flag_mask;
 677		map->write_flag_mask = config->write_flag_mask;
 678	} else if (bus) {
 679		map->read_flag_mask = bus->read_flag_mask;
 680	}
 681
 682	if (!bus) {
 
 
 
 
 
 
 
 
 
 
 
 683		map->reg_read  = config->reg_read;
 684		map->reg_write = config->reg_write;
 
 685
 686		map->defer_caching = false;
 687		goto skip_format_initialization;
 688	} else if (!bus->read || !bus->write) {
 689		map->reg_read = _regmap_bus_reg_read;
 690		map->reg_write = _regmap_bus_reg_write;
 
 691
 692		map->defer_caching = false;
 693		goto skip_format_initialization;
 694	} else {
 695		map->reg_read  = _regmap_bus_read;
 696		map->reg_update_bits = bus->reg_update_bits;
 
 
 
 
 
 
 697	}
 698
 699	reg_endian = regmap_get_reg_endian(bus, config);
 700	val_endian = regmap_get_val_endian(dev, bus, config);
 701
 702	switch (config->reg_bits + map->reg_shift) {
 703	case 2:
 704		switch (config->val_bits) {
 705		case 6:
 706			map->format.format_write = regmap_format_2_6_write;
 707			break;
 708		default:
 709			goto err_map;
 710		}
 711		break;
 712
 713	case 4:
 714		switch (config->val_bits) {
 715		case 12:
 716			map->format.format_write = regmap_format_4_12_write;
 717			break;
 718		default:
 719			goto err_map;
 720		}
 721		break;
 722
 723	case 7:
 724		switch (config->val_bits) {
 725		case 9:
 726			map->format.format_write = regmap_format_7_9_write;
 727			break;
 
 
 
 728		default:
 729			goto err_map;
 730		}
 731		break;
 732
 733	case 10:
 734		switch (config->val_bits) {
 735		case 14:
 736			map->format.format_write = regmap_format_10_14_write;
 737			break;
 738		default:
 739			goto err_map;
 
 
 
 
 
 
 
 
 
 
 740		}
 741		break;
 742
 743	case 8:
 744		map->format.format_reg = regmap_format_8;
 745		break;
 746
 747	case 16:
 748		switch (reg_endian) {
 749		case REGMAP_ENDIAN_BIG:
 750			map->format.format_reg = regmap_format_16_be;
 751			break;
 
 
 
 752		case REGMAP_ENDIAN_NATIVE:
 753			map->format.format_reg = regmap_format_16_native;
 754			break;
 755		default:
 756			goto err_map;
 757		}
 758		break;
 759
 760	case 24:
 761		if (reg_endian != REGMAP_ENDIAN_BIG)
 762			goto err_map;
 763		map->format.format_reg = regmap_format_24;
 
 
 
 
 764		break;
 765
 766	case 32:
 767		switch (reg_endian) {
 768		case REGMAP_ENDIAN_BIG:
 769			map->format.format_reg = regmap_format_32_be;
 770			break;
 
 
 
 771		case REGMAP_ENDIAN_NATIVE:
 772			map->format.format_reg = regmap_format_32_native;
 773			break;
 774		default:
 775			goto err_map;
 776		}
 777		break;
 778
 779#ifdef CONFIG_64BIT
 780	case 64:
 781		switch (reg_endian) {
 782		case REGMAP_ENDIAN_BIG:
 783			map->format.format_reg = regmap_format_64_be;
 784			break;
 
 
 
 785		case REGMAP_ENDIAN_NATIVE:
 786			map->format.format_reg = regmap_format_64_native;
 787			break;
 788		default:
 789			goto err_map;
 790		}
 791		break;
 792#endif
 793
 794	default:
 795		goto err_map;
 796	}
 797
 798	if (val_endian == REGMAP_ENDIAN_NATIVE)
 799		map->format.parse_inplace = regmap_parse_inplace_noop;
 800
 801	switch (config->val_bits) {
 802	case 8:
 803		map->format.format_val = regmap_format_8;
 804		map->format.parse_val = regmap_parse_8;
 805		map->format.parse_inplace = regmap_parse_inplace_noop;
 806		break;
 807	case 16:
 808		switch (val_endian) {
 809		case REGMAP_ENDIAN_BIG:
 810			map->format.format_val = regmap_format_16_be;
 811			map->format.parse_val = regmap_parse_16_be;
 812			map->format.parse_inplace = regmap_parse_16_be_inplace;
 813			break;
 814		case REGMAP_ENDIAN_LITTLE:
 815			map->format.format_val = regmap_format_16_le;
 816			map->format.parse_val = regmap_parse_16_le;
 817			map->format.parse_inplace = regmap_parse_16_le_inplace;
 818			break;
 819		case REGMAP_ENDIAN_NATIVE:
 820			map->format.format_val = regmap_format_16_native;
 821			map->format.parse_val = regmap_parse_16_native;
 822			break;
 823		default:
 824			goto err_map;
 825		}
 826		break;
 827	case 24:
 828		if (val_endian != REGMAP_ENDIAN_BIG)
 829			goto err_map;
 830		map->format.format_val = regmap_format_24;
 831		map->format.parse_val = regmap_parse_24;
 
 
 
 
 832		break;
 833	case 32:
 834		switch (val_endian) {
 835		case REGMAP_ENDIAN_BIG:
 836			map->format.format_val = regmap_format_32_be;
 837			map->format.parse_val = regmap_parse_32_be;
 838			map->format.parse_inplace = regmap_parse_32_be_inplace;
 839			break;
 840		case REGMAP_ENDIAN_LITTLE:
 841			map->format.format_val = regmap_format_32_le;
 842			map->format.parse_val = regmap_parse_32_le;
 843			map->format.parse_inplace = regmap_parse_32_le_inplace;
 844			break;
 845		case REGMAP_ENDIAN_NATIVE:
 846			map->format.format_val = regmap_format_32_native;
 847			map->format.parse_val = regmap_parse_32_native;
 848			break;
 849		default:
 850			goto err_map;
 851		}
 852		break;
 853#ifdef CONFIG_64BIT
 854	case 64:
 855		switch (val_endian) {
 856		case REGMAP_ENDIAN_BIG:
 857			map->format.format_val = regmap_format_64_be;
 858			map->format.parse_val = regmap_parse_64_be;
 859			map->format.parse_inplace = regmap_parse_64_be_inplace;
 860			break;
 861		case REGMAP_ENDIAN_LITTLE:
 862			map->format.format_val = regmap_format_64_le;
 863			map->format.parse_val = regmap_parse_64_le;
 864			map->format.parse_inplace = regmap_parse_64_le_inplace;
 865			break;
 866		case REGMAP_ENDIAN_NATIVE:
 867			map->format.format_val = regmap_format_64_native;
 868			map->format.parse_val = regmap_parse_64_native;
 869			break;
 870		default:
 871			goto err_map;
 872		}
 873		break;
 874#endif
 875	}
 876
 877	if (map->format.format_write) {
 878		if ((reg_endian != REGMAP_ENDIAN_BIG) ||
 879		    (val_endian != REGMAP_ENDIAN_BIG))
 880			goto err_map;
 881		map->use_single_write = true;
 882	}
 883
 884	if (!map->format.format_write &&
 885	    !(map->format.format_reg && map->format.format_val))
 886		goto err_map;
 887
 888	map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
 889	if (map->work_buf == NULL) {
 890		ret = -ENOMEM;
 891		goto err_map;
 892	}
 893
 894	if (map->format.format_write) {
 895		map->defer_caching = false;
 896		map->reg_write = _regmap_bus_formatted_write;
 897	} else if (map->format.format_val) {
 898		map->defer_caching = true;
 899		map->reg_write = _regmap_bus_raw_write;
 900	}
 901
 902skip_format_initialization:
 903
 904	map->range_tree = RB_ROOT;
 905	for (i = 0; i < config->num_ranges; i++) {
 906		const struct regmap_range_cfg *range_cfg = &config->ranges[i];
 907		struct regmap_range_node *new;
 908
 909		/* Sanity check */
 910		if (range_cfg->range_max < range_cfg->range_min) {
 911			dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
 912				range_cfg->range_max, range_cfg->range_min);
 913			goto err_range;
 914		}
 915
 916		if (range_cfg->range_max > map->max_register) {
 917			dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
 918				range_cfg->range_max, map->max_register);
 919			goto err_range;
 920		}
 921
 922		if (range_cfg->selector_reg > map->max_register) {
 923			dev_err(map->dev,
 924				"Invalid range %d: selector out of map\n", i);
 925			goto err_range;
 926		}
 927
 928		if (range_cfg->window_len == 0) {
 929			dev_err(map->dev, "Invalid range %d: window_len 0\n",
 930				i);
 931			goto err_range;
 932		}
 933
 934		/* Make sure, that this register range has no selector
 935		   or data window within its boundary */
 936		for (j = 0; j < config->num_ranges; j++) {
 937			unsigned sel_reg = config->ranges[j].selector_reg;
 938			unsigned win_min = config->ranges[j].window_start;
 939			unsigned win_max = win_min +
 940					   config->ranges[j].window_len - 1;
 941
 942			/* Allow data window inside its own virtual range */
 943			if (j == i)
 944				continue;
 945
 946			if (range_cfg->range_min <= sel_reg &&
 947			    sel_reg <= range_cfg->range_max) {
 948				dev_err(map->dev,
 949					"Range %d: selector for %d in window\n",
 950					i, j);
 951				goto err_range;
 952			}
 953
 954			if (!(win_max < range_cfg->range_min ||
 955			      win_min > range_cfg->range_max)) {
 956				dev_err(map->dev,
 957					"Range %d: window for %d in window\n",
 958					i, j);
 959				goto err_range;
 960			}
 961		}
 962
 963		new = kzalloc(sizeof(*new), GFP_KERNEL);
 964		if (new == NULL) {
 965			ret = -ENOMEM;
 966			goto err_range;
 967		}
 968
 969		new->map = map;
 970		new->name = range_cfg->name;
 971		new->range_min = range_cfg->range_min;
 972		new->range_max = range_cfg->range_max;
 973		new->selector_reg = range_cfg->selector_reg;
 974		new->selector_mask = range_cfg->selector_mask;
 975		new->selector_shift = range_cfg->selector_shift;
 976		new->window_start = range_cfg->window_start;
 977		new->window_len = range_cfg->window_len;
 978
 979		if (!_regmap_range_add(map, new)) {
 980			dev_err(map->dev, "Failed to add range %d\n", i);
 981			kfree(new);
 982			goto err_range;
 983		}
 984
 985		if (map->selector_work_buf == NULL) {
 986			map->selector_work_buf =
 987				kzalloc(map->format.buf_size, GFP_KERNEL);
 988			if (map->selector_work_buf == NULL) {
 989				ret = -ENOMEM;
 990				goto err_range;
 991			}
 992		}
 993	}
 994
 995	ret = regcache_init(map, config);
 996	if (ret != 0)
 997		goto err_range;
 998
 999	if (dev) {
1000		ret = regmap_attach_dev(dev, map, config);
1001		if (ret != 0)
1002			goto err_regcache;
 
 
1003	}
1004
1005	return map;
1006
1007err_regcache:
1008	regcache_exit(map);
1009err_range:
1010	regmap_range_exit(map);
1011	kfree(map->work_buf);
 
 
 
 
 
1012err_map:
1013	kfree(map);
1014err:
1015	return ERR_PTR(ret);
1016}
1017EXPORT_SYMBOL_GPL(__regmap_init);
1018
1019static void devm_regmap_release(struct device *dev, void *res)
1020{
1021	regmap_exit(*(struct regmap **)res);
1022}
1023
1024struct regmap *__devm_regmap_init(struct device *dev,
1025				  const struct regmap_bus *bus,
1026				  void *bus_context,
1027				  const struct regmap_config *config,
1028				  struct lock_class_key *lock_key,
1029				  const char *lock_name)
1030{
1031	struct regmap **ptr, *regmap;
1032
1033	ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1034	if (!ptr)
1035		return ERR_PTR(-ENOMEM);
1036
1037	regmap = __regmap_init(dev, bus, bus_context, config,
1038			       lock_key, lock_name);
1039	if (!IS_ERR(regmap)) {
1040		*ptr = regmap;
1041		devres_add(dev, ptr);
1042	} else {
1043		devres_free(ptr);
1044	}
1045
1046	return regmap;
1047}
1048EXPORT_SYMBOL_GPL(__devm_regmap_init);
1049
1050static void regmap_field_init(struct regmap_field *rm_field,
1051	struct regmap *regmap, struct reg_field reg_field)
1052{
1053	rm_field->regmap = regmap;
1054	rm_field->reg = reg_field.reg;
1055	rm_field->shift = reg_field.lsb;
1056	rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
 
 
 
1057	rm_field->id_size = reg_field.id_size;
1058	rm_field->id_offset = reg_field.id_offset;
1059}
1060
1061/**
1062 * devm_regmap_field_alloc(): Allocate and initialise a register field
1063 * in a register map.
1064 *
1065 * @dev: Device that will be interacted with
1066 * @regmap: regmap bank in which this register field is located.
1067 * @reg_field: Register field with in the bank.
1068 *
1069 * The return value will be an ERR_PTR() on error or a valid pointer
1070 * to a struct regmap_field. The regmap_field will be automatically freed
1071 * by the device management code.
1072 */
1073struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1074		struct regmap *regmap, struct reg_field reg_field)
1075{
1076	struct regmap_field *rm_field = devm_kzalloc(dev,
1077					sizeof(*rm_field), GFP_KERNEL);
1078	if (!rm_field)
1079		return ERR_PTR(-ENOMEM);
1080
1081	regmap_field_init(rm_field, regmap, reg_field);
1082
1083	return rm_field;
1084
1085}
1086EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1087
 
1088/**
1089 * devm_regmap_field_free(): Free register field allocated using
1090 * devm_regmap_field_alloc. Usally drivers need not call this function,
1091 * as the memory allocated via devm will be freed as per device-driver
1092 * life-cyle.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1093 *
1094 * @dev: Device that will be interacted with
1095 * @field: regmap field which should be freed.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1096 */
1097void devm_regmap_field_free(struct device *dev,
1098	struct regmap_field *field)
1099{
1100	devm_kfree(dev, field);
1101}
1102EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1103
1104/**
1105 * regmap_field_alloc(): Allocate and initialise a register field
1106 * in a register map.
1107 *
1108 * @regmap: regmap bank in which this register field is located.
1109 * @reg_field: Register field with in the bank.
1110 *
1111 * The return value will be an ERR_PTR() on error or a valid pointer
1112 * to a struct regmap_field. The regmap_field should be freed by the
1113 * user once its finished working with it using regmap_field_free().
1114 */
1115struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1116		struct reg_field reg_field)
1117{
1118	struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1119
1120	if (!rm_field)
1121		return ERR_PTR(-ENOMEM);
1122
1123	regmap_field_init(rm_field, regmap, reg_field);
1124
1125	return rm_field;
1126}
1127EXPORT_SYMBOL_GPL(regmap_field_alloc);
1128
1129/**
1130 * regmap_field_free(): Free register field allocated using regmap_field_alloc
 
1131 *
1132 * @field: regmap field which should be freed.
1133 */
1134void regmap_field_free(struct regmap_field *field)
1135{
1136	kfree(field);
1137}
1138EXPORT_SYMBOL_GPL(regmap_field_free);
1139
1140/**
1141 * regmap_reinit_cache(): Reinitialise the current register cache
1142 *
1143 * @map: Register map to operate on.
1144 * @config: New configuration.  Only the cache data will be used.
1145 *
1146 * Discard any existing register cache for the map and initialize a
1147 * new cache.  This can be used to restore the cache to defaults or to
1148 * update the cache configuration to reflect runtime discovery of the
1149 * hardware.
1150 *
1151 * No explicit locking is done here, the user needs to ensure that
1152 * this function will not race with other calls to regmap.
1153 */
1154int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1155{
 
 
1156	regcache_exit(map);
1157	regmap_debugfs_exit(map);
1158
1159	map->max_register = config->max_register;
1160	map->writeable_reg = config->writeable_reg;
1161	map->readable_reg = config->readable_reg;
1162	map->volatile_reg = config->volatile_reg;
1163	map->precious_reg = config->precious_reg;
 
 
1164	map->cache_type = config->cache_type;
1165
1166	regmap_debugfs_init(map, config->name);
 
 
 
 
1167
1168	map->cache_bypass = false;
1169	map->cache_only = false;
1170
1171	return regcache_init(map, config);
1172}
1173EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1174
1175/**
1176 * regmap_exit(): Free a previously allocated register map
 
 
1177 */
1178void regmap_exit(struct regmap *map)
1179{
1180	struct regmap_async *async;
1181
1182	regcache_exit(map);
1183	regmap_debugfs_exit(map);
1184	regmap_range_exit(map);
1185	if (map->bus && map->bus->free_context)
1186		map->bus->free_context(map->bus_context);
1187	kfree(map->work_buf);
1188	while (!list_empty(&map->async_free)) {
1189		async = list_first_entry_or_null(&map->async_free,
1190						 struct regmap_async,
1191						 list);
1192		list_del(&async->list);
1193		kfree(async->work_buf);
1194		kfree(async);
1195	}
 
 
 
 
 
 
 
 
1196	kfree(map);
1197}
1198EXPORT_SYMBOL_GPL(regmap_exit);
1199
1200static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1201{
1202	struct regmap **r = res;
1203	if (!r || !*r) {
1204		WARN_ON(!r || !*r);
1205		return 0;
1206	}
1207
1208	/* If the user didn't specify a name match any */
1209	if (data)
1210		return (*r)->name == data;
1211	else
1212		return 1;
1213}
1214
1215/**
1216 * dev_get_regmap(): Obtain the regmap (if any) for a device
1217 *
1218 * @dev: Device to retrieve the map for
1219 * @name: Optional name for the register map, usually NULL.
1220 *
1221 * Returns the regmap for the device if one is present, or NULL.  If
1222 * name is specified then it must match the name specified when
1223 * registering the device, if it is NULL then the first regmap found
1224 * will be used.  Devices with multiple register maps are very rare,
1225 * generic code should normally not need to specify a name.
1226 */
1227struct regmap *dev_get_regmap(struct device *dev, const char *name)
1228{
1229	struct regmap **r = devres_find(dev, dev_get_regmap_release,
1230					dev_get_regmap_match, (void *)name);
1231
1232	if (!r)
1233		return NULL;
1234	return *r;
1235}
1236EXPORT_SYMBOL_GPL(dev_get_regmap);
1237
1238/**
1239 * regmap_get_device(): Obtain the device from a regmap
1240 *
1241 * @map: Register map to operate on.
1242 *
1243 * Returns the underlying device that the regmap has been created for.
1244 */
1245struct device *regmap_get_device(struct regmap *map)
1246{
1247	return map->dev;
1248}
1249EXPORT_SYMBOL_GPL(regmap_get_device);
1250
1251static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1252			       struct regmap_range_node *range,
1253			       unsigned int val_num)
1254{
1255	void *orig_work_buf;
1256	unsigned int win_offset;
1257	unsigned int win_page;
1258	bool page_chg;
1259	int ret;
1260
1261	win_offset = (*reg - range->range_min) % range->window_len;
1262	win_page = (*reg - range->range_min) / range->window_len;
1263
1264	if (val_num > 1) {
1265		/* Bulk write shouldn't cross range boundary */
1266		if (*reg + val_num - 1 > range->range_max)
1267			return -EINVAL;
1268
1269		/* ... or single page boundary */
1270		if (val_num > range->window_len - win_offset)
1271			return -EINVAL;
1272	}
1273
1274	/* It is possible to have selector register inside data window.
1275	   In that case, selector register is located on every page and
1276	   it needs no page switching, when accessed alone. */
1277	if (val_num > 1 ||
1278	    range->window_start + win_offset != range->selector_reg) {
1279		/* Use separate work_buf during page switching */
1280		orig_work_buf = map->work_buf;
1281		map->work_buf = map->selector_work_buf;
1282
1283		ret = _regmap_update_bits(map, range->selector_reg,
1284					  range->selector_mask,
1285					  win_page << range->selector_shift,
1286					  &page_chg, false);
1287
1288		map->work_buf = orig_work_buf;
1289
1290		if (ret != 0)
1291			return ret;
1292	}
1293
1294	*reg = range->window_start + win_offset;
1295
1296	return 0;
1297}
1298
1299int _regmap_raw_write(struct regmap *map, unsigned int reg,
1300		      const void *val, size_t val_len)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1301{
1302	struct regmap_range_node *range;
1303	unsigned long flags;
1304	u8 *u8 = map->work_buf;
1305	void *work_val = map->work_buf + map->format.reg_bytes +
1306		map->format.pad_bytes;
1307	void *buf;
1308	int ret = -ENOTSUPP;
1309	size_t len;
1310	int i;
1311
1312	WARN_ON(!map->bus);
1313
1314	/* Check for unwritable registers before we start */
1315	if (map->writeable_reg)
1316		for (i = 0; i < val_len / map->format.val_bytes; i++)
1317			if (!map->writeable_reg(map->dev,
1318					       reg + regmap_get_offset(map, i)))
 
 
1319				return -EINVAL;
 
 
1320
1321	if (!map->cache_bypass && map->format.parse_val) {
1322		unsigned int ival;
1323		int val_bytes = map->format.val_bytes;
1324		for (i = 0; i < val_len / val_bytes; i++) {
1325			ival = map->format.parse_val(val + (i * val_bytes));
1326			ret = regcache_write(map,
1327					     reg + regmap_get_offset(map, i),
1328					     ival);
1329			if (ret) {
1330				dev_err(map->dev,
1331					"Error in caching of register: %x ret: %d\n",
1332					reg + i, ret);
1333				return ret;
1334			}
1335		}
1336		if (map->cache_only) {
1337			map->cache_dirty = true;
1338			return 0;
1339		}
1340	}
1341
1342	range = _regmap_range_lookup(map, reg);
1343	if (range) {
1344		int val_num = val_len / map->format.val_bytes;
1345		int win_offset = (reg - range->range_min) % range->window_len;
1346		int win_residue = range->window_len - win_offset;
1347
1348		/* If the write goes beyond the end of the window split it */
1349		while (val_num > win_residue) {
1350			dev_dbg(map->dev, "Writing window %d/%zu\n",
1351				win_residue, val_len / map->format.val_bytes);
1352			ret = _regmap_raw_write(map, reg, val, win_residue *
1353						map->format.val_bytes);
 
1354			if (ret != 0)
1355				return ret;
1356
1357			reg += win_residue;
1358			val_num -= win_residue;
1359			val += win_residue * map->format.val_bytes;
1360			val_len -= win_residue * map->format.val_bytes;
1361
1362			win_offset = (reg - range->range_min) %
1363				range->window_len;
1364			win_residue = range->window_len - win_offset;
1365		}
1366
1367		ret = _regmap_select_page(map, &reg, range, val_num);
1368		if (ret != 0)
1369			return ret;
1370	}
1371
 
 
1372	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1373
1374	u8[0] |= map->write_flag_mask;
1375
1376	/*
1377	 * Essentially all I/O mechanisms will be faster with a single
1378	 * buffer to write.  Since register syncs often generate raw
1379	 * writes of single registers optimise that case.
1380	 */
1381	if (val != work_val && val_len == map->format.val_bytes) {
1382		memcpy(work_val, val, map->format.val_bytes);
1383		val = work_val;
1384	}
1385
1386	if (map->async && map->bus->async_write) {
1387		struct regmap_async *async;
1388
1389		trace_regmap_async_write_start(map, reg, val_len);
1390
1391		spin_lock_irqsave(&map->async_lock, flags);
1392		async = list_first_entry_or_null(&map->async_free,
1393						 struct regmap_async,
1394						 list);
1395		if (async)
1396			list_del(&async->list);
1397		spin_unlock_irqrestore(&map->async_lock, flags);
1398
1399		if (!async) {
1400			async = map->bus->async_alloc();
1401			if (!async)
1402				return -ENOMEM;
1403
1404			async->work_buf = kzalloc(map->format.buf_size,
1405						  GFP_KERNEL | GFP_DMA);
1406			if (!async->work_buf) {
1407				kfree(async);
1408				return -ENOMEM;
1409			}
1410		}
1411
1412		async->map = map;
1413
1414		/* If the caller supplied the value we can use it safely. */
1415		memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1416		       map->format.reg_bytes + map->format.val_bytes);
1417
1418		spin_lock_irqsave(&map->async_lock, flags);
1419		list_add_tail(&async->list, &map->async_list);
1420		spin_unlock_irqrestore(&map->async_lock, flags);
1421
1422		if (val != work_val)
1423			ret = map->bus->async_write(map->bus_context,
1424						    async->work_buf,
1425						    map->format.reg_bytes +
1426						    map->format.pad_bytes,
1427						    val, val_len, async);
1428		else
1429			ret = map->bus->async_write(map->bus_context,
1430						    async->work_buf,
1431						    map->format.reg_bytes +
1432						    map->format.pad_bytes +
1433						    val_len, NULL, 0, async);
1434
1435		if (ret != 0) {
1436			dev_err(map->dev, "Failed to schedule write: %d\n",
1437				ret);
1438
1439			spin_lock_irqsave(&map->async_lock, flags);
1440			list_move(&async->list, &map->async_free);
1441			spin_unlock_irqrestore(&map->async_lock, flags);
1442		}
1443
1444		return ret;
1445	}
1446
1447	trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1448
1449	/* If we're doing a single register write we can probably just
1450	 * send the work_buf directly, otherwise try to do a gather
1451	 * write.
1452	 */
1453	if (val == work_val)
1454		ret = map->bus->write(map->bus_context, map->work_buf,
1455				      map->format.reg_bytes +
1456				      map->format.pad_bytes +
1457				      val_len);
1458	else if (map->bus->gather_write)
1459		ret = map->bus->gather_write(map->bus_context, map->work_buf,
1460					     map->format.reg_bytes +
1461					     map->format.pad_bytes,
1462					     val, val_len);
 
 
1463
1464	/* If that didn't work fall back on linearising by hand. */
1465	if (ret == -ENOTSUPP) {
1466		len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1467		buf = kzalloc(len, GFP_KERNEL);
1468		if (!buf)
1469			return -ENOMEM;
1470
1471		memcpy(buf, map->work_buf, map->format.reg_bytes);
1472		memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1473		       val, val_len);
1474		ret = map->bus->write(map->bus_context, buf, len);
1475
1476		kfree(buf);
 
 
 
 
 
 
1477	}
1478
1479	trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1480
1481	return ret;
1482}
1483
1484/**
1485 * regmap_can_raw_write - Test if regmap_raw_write() is supported
1486 *
1487 * @map: Map to check.
1488 */
1489bool regmap_can_raw_write(struct regmap *map)
1490{
1491	return map->bus && map->bus->write && map->format.format_val &&
1492		map->format.format_reg;
1493}
1494EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1495
1496/**
1497 * regmap_get_raw_read_max - Get the maximum size we can read
1498 *
1499 * @map: Map to check.
1500 */
1501size_t regmap_get_raw_read_max(struct regmap *map)
1502{
1503	return map->max_raw_read;
1504}
1505EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1506
1507/**
1508 * regmap_get_raw_write_max - Get the maximum size we can read
1509 *
1510 * @map: Map to check.
1511 */
1512size_t regmap_get_raw_write_max(struct regmap *map)
1513{
1514	return map->max_raw_write;
1515}
1516EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1517
1518static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1519				       unsigned int val)
1520{
1521	int ret;
1522	struct regmap_range_node *range;
1523	struct regmap *map = context;
1524
1525	WARN_ON(!map->bus || !map->format.format_write);
1526
1527	range = _regmap_range_lookup(map, reg);
1528	if (range) {
1529		ret = _regmap_select_page(map, &reg, range, 1);
1530		if (ret != 0)
1531			return ret;
1532	}
1533
 
 
1534	map->format.format_write(map, reg, val);
1535
1536	trace_regmap_hw_write_start(map, reg, 1);
1537
1538	ret = map->bus->write(map->bus_context, map->work_buf,
1539			      map->format.buf_size);
1540
1541	trace_regmap_hw_write_done(map, reg, 1);
1542
1543	return ret;
1544}
1545
1546static int _regmap_bus_reg_write(void *context, unsigned int reg,
1547				 unsigned int val)
1548{
1549	struct regmap *map = context;
1550
1551	return map->bus->reg_write(map->bus_context, reg, val);
1552}
1553
1554static int _regmap_bus_raw_write(void *context, unsigned int reg,
1555				 unsigned int val)
1556{
1557	struct regmap *map = context;
1558
1559	WARN_ON(!map->bus || !map->format.format_val);
1560
1561	map->format.format_val(map->work_buf + map->format.reg_bytes
1562			       + map->format.pad_bytes, val, 0);
1563	return _regmap_raw_write(map, reg,
1564				 map->work_buf +
1565				 map->format.reg_bytes +
1566				 map->format.pad_bytes,
1567				 map->format.val_bytes);
 
1568}
1569
1570static inline void *_regmap_map_get_context(struct regmap *map)
1571{
1572	return (map->bus) ? map : map->bus_context;
1573}
1574
1575int _regmap_write(struct regmap *map, unsigned int reg,
1576		  unsigned int val)
1577{
1578	int ret;
1579	void *context = _regmap_map_get_context(map);
1580
1581	if (!regmap_writeable(map, reg))
1582		return -EIO;
1583
1584	if (!map->cache_bypass && !map->defer_caching) {
1585		ret = regcache_write(map, reg, val);
1586		if (ret != 0)
1587			return ret;
1588		if (map->cache_only) {
1589			map->cache_dirty = true;
1590			return 0;
1591		}
1592	}
1593
1594#ifdef LOG_DEVICE
1595	if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1596		dev_info(map->dev, "%x <= %x\n", reg, val);
1597#endif
1598
1599	trace_regmap_reg_write(map, reg, val);
 
1600
1601	return map->reg_write(context, reg, val);
1602}
1603
1604/**
1605 * regmap_write(): Write a value to a single register
1606 *
1607 * @map: Register map to write to
1608 * @reg: Register to write to
1609 * @val: Value to be written
1610 *
1611 * A value of zero will be returned on success, a negative errno will
1612 * be returned in error cases.
1613 */
1614int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1615{
1616	int ret;
1617
1618	if (!IS_ALIGNED(reg, map->reg_stride))
1619		return -EINVAL;
1620
1621	map->lock(map->lock_arg);
1622
1623	ret = _regmap_write(map, reg, val);
1624
1625	map->unlock(map->lock_arg);
1626
1627	return ret;
1628}
1629EXPORT_SYMBOL_GPL(regmap_write);
1630
1631/**
1632 * regmap_write_async(): Write a value to a single register asynchronously
1633 *
1634 * @map: Register map to write to
1635 * @reg: Register to write to
1636 * @val: Value to be written
1637 *
1638 * A value of zero will be returned on success, a negative errno will
1639 * be returned in error cases.
1640 */
1641int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1642{
1643	int ret;
1644
1645	if (!IS_ALIGNED(reg, map->reg_stride))
1646		return -EINVAL;
1647
1648	map->lock(map->lock_arg);
1649
1650	map->async = true;
1651
1652	ret = _regmap_write(map, reg, val);
1653
1654	map->async = false;
1655
1656	map->unlock(map->lock_arg);
1657
1658	return ret;
1659}
1660EXPORT_SYMBOL_GPL(regmap_write_async);
1661
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1662/**
1663 * regmap_raw_write(): Write raw values to one or more registers
1664 *
1665 * @map: Register map to write to
1666 * @reg: Initial register to write to
1667 * @val: Block of data to be written, laid out for direct transmission to the
1668 *       device
1669 * @val_len: Length of data pointed to by val.
1670 *
1671 * This function is intended to be used for things like firmware
1672 * download where a large block of data needs to be transferred to the
1673 * device.  No formatting will be done on the data provided.
1674 *
1675 * A value of zero will be returned on success, a negative errno will
1676 * be returned in error cases.
1677 */
1678int regmap_raw_write(struct regmap *map, unsigned int reg,
1679		     const void *val, size_t val_len)
1680{
1681	int ret;
1682
1683	if (!regmap_can_raw_write(map))
1684		return -EINVAL;
1685	if (val_len % map->format.val_bytes)
1686		return -EINVAL;
1687	if (map->max_raw_write && map->max_raw_write > val_len)
1688		return -E2BIG;
1689
1690	map->lock(map->lock_arg);
1691
1692	ret = _regmap_raw_write(map, reg, val, val_len);
1693
1694	map->unlock(map->lock_arg);
1695
1696	return ret;
1697}
1698EXPORT_SYMBOL_GPL(regmap_raw_write);
1699
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1700/**
1701 * regmap_field_update_bits_base():
1702 *	Perform a read/modify/write cycle on the register field
1703 *	with change, async, force option
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1704 *
1705 * @field: Register field to write to
1706 * @mask: Bitmask to change
1707 * @val: Value to be written
1708 * @change: Boolean indicating if a write was done
1709 * @async: Boolean indicating asynchronously
1710 * @force: Boolean indicating use force update
1711 *
 
 
 
1712 * A value of zero will be returned on success, a negative errno will
1713 * be returned in error cases.
1714 */
1715int regmap_field_update_bits_base(struct regmap_field *field,
1716				  unsigned int mask, unsigned int val,
1717				  bool *change, bool async, bool force)
1718{
1719	mask = (mask << field->shift) & field->mask;
1720
1721	return regmap_update_bits_base(field->regmap, field->reg,
1722				       mask, val << field->shift,
1723				       change, async, force);
1724}
1725EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
1726
1727/**
1728 * regmap_fields_update_bits_base():
1729 *	Perform a read/modify/write cycle on the register field
1730 *	with change, async, force option
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1731 *
1732 * @field: Register field to write to
1733 * @id: port ID
1734 * @mask: Bitmask to change
1735 * @val: Value to be written
1736 * @change: Boolean indicating if a write was done
1737 * @async: Boolean indicating asynchronously
1738 * @force: Boolean indicating use force update
1739 *
1740 * A value of zero will be returned on success, a negative errno will
1741 * be returned in error cases.
1742 */
1743int regmap_fields_update_bits_base(struct regmap_field *field,  unsigned int id,
1744				   unsigned int mask, unsigned int val,
1745				   bool *change, bool async, bool force)
1746{
1747	if (id >= field->id_size)
1748		return -EINVAL;
1749
1750	mask = (mask << field->shift) & field->mask;
1751
1752	return regmap_update_bits_base(field->regmap,
1753				       field->reg + (field->id_offset * id),
1754				       mask, val << field->shift,
1755				       change, async, force);
1756}
1757EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
1758
1759/*
1760 * regmap_bulk_write(): Write multiple registers to the device
1761 *
1762 * @map: Register map to write to
1763 * @reg: First register to be write from
1764 * @val: Block of data to be written, in native register size for device
1765 * @val_count: Number of registers to write
1766 *
1767 * This function is intended to be used for writing a large block of
1768 * data to the device either in single transfer or multiple transfer.
1769 *
1770 * A value of zero will be returned on success, a negative errno will
1771 * be returned in error cases.
1772 */
1773int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
1774		     size_t val_count)
1775{
1776	int ret = 0, i;
1777	size_t val_bytes = map->format.val_bytes;
1778	size_t total_size = val_bytes * val_count;
1779
1780	if (map->bus && !map->format.parse_inplace)
1781		return -EINVAL;
1782	if (!IS_ALIGNED(reg, map->reg_stride))
1783		return -EINVAL;
1784
1785	/*
1786	 * Some devices don't support bulk write, for
1787	 * them we have a series of single write operations in the first two if
1788	 * blocks.
1789	 *
1790	 * The first if block is used for memory mapped io. It does not allow
1791	 * val_bytes of 3 for example.
1792	 * The second one is used for busses which do not have this limitation
1793	 * and can write arbitrary value lengths.
1794	 */
1795	if (!map->bus) {
1796		map->lock(map->lock_arg);
1797		for (i = 0; i < val_count; i++) {
1798			unsigned int ival;
1799
1800			switch (val_bytes) {
1801			case 1:
1802				ival = *(u8 *)(val + (i * val_bytes));
1803				break;
1804			case 2:
1805				ival = *(u16 *)(val + (i * val_bytes));
1806				break;
1807			case 4:
1808				ival = *(u32 *)(val + (i * val_bytes));
1809				break;
1810#ifdef CONFIG_64BIT
1811			case 8:
1812				ival = *(u64 *)(val + (i * val_bytes));
1813				break;
1814#endif
1815			default:
1816				ret = -EINVAL;
1817				goto out;
1818			}
1819
1820			ret = _regmap_write(map,
1821					    reg + regmap_get_offset(map, i),
1822					    ival);
1823			if (ret != 0)
1824				goto out;
1825		}
1826out:
1827		map->unlock(map->lock_arg);
1828	} else if (map->use_single_write ||
1829		   (map->max_raw_write && map->max_raw_write < total_size)) {
1830		int chunk_stride = map->reg_stride;
1831		size_t chunk_size = val_bytes;
1832		size_t chunk_count = val_count;
1833
1834		if (!map->use_single_write) {
1835			chunk_size = map->max_raw_write;
1836			if (chunk_size % val_bytes)
1837				chunk_size -= chunk_size % val_bytes;
1838			chunk_count = total_size / chunk_size;
1839			chunk_stride *= chunk_size / val_bytes;
1840		}
1841
1842		map->lock(map->lock_arg);
1843		/* Write as many bytes as possible with chunk_size */
1844		for (i = 0; i < chunk_count; i++) {
1845			ret = _regmap_raw_write(map,
1846						reg + (i * chunk_stride),
1847						val + (i * chunk_size),
1848						chunk_size);
1849			if (ret)
1850				break;
1851		}
1852
1853		/* Write remaining bytes */
1854		if (!ret && chunk_size * i < total_size) {
1855			ret = _regmap_raw_write(map, reg + (i * chunk_stride),
1856						val + (i * chunk_size),
1857						total_size - i * chunk_size);
1858		}
1859		map->unlock(map->lock_arg);
1860	} else {
1861		void *wval;
1862
1863		if (!val_count)
1864			return -EINVAL;
1865
1866		wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
1867		if (!wval) {
1868			dev_err(map->dev, "Error in memory allocation\n");
1869			return -ENOMEM;
1870		}
1871		for (i = 0; i < val_count * val_bytes; i += val_bytes)
1872			map->format.parse_inplace(wval + i);
1873
1874		map->lock(map->lock_arg);
1875		ret = _regmap_raw_write(map, reg, wval, val_bytes * val_count);
1876		map->unlock(map->lock_arg);
1877
1878		kfree(wval);
1879	}
 
 
 
 
1880	return ret;
1881}
1882EXPORT_SYMBOL_GPL(regmap_bulk_write);
1883
1884/*
1885 * _regmap_raw_multi_reg_write()
1886 *
1887 * the (register,newvalue) pairs in regs have not been formatted, but
1888 * they are all in the same page and have been changed to being page
1889 * relative. The page register has been written if that was necessary.
1890 */
1891static int _regmap_raw_multi_reg_write(struct regmap *map,
1892				       const struct reg_sequence *regs,
1893				       size_t num_regs)
1894{
1895	int ret;
1896	void *buf;
1897	int i;
1898	u8 *u8;
1899	size_t val_bytes = map->format.val_bytes;
1900	size_t reg_bytes = map->format.reg_bytes;
1901	size_t pad_bytes = map->format.pad_bytes;
1902	size_t pair_size = reg_bytes + pad_bytes + val_bytes;
1903	size_t len = pair_size * num_regs;
1904
1905	if (!len)
1906		return -EINVAL;
1907
1908	buf = kzalloc(len, GFP_KERNEL);
1909	if (!buf)
1910		return -ENOMEM;
1911
1912	/* We have to linearise by hand. */
1913
1914	u8 = buf;
1915
1916	for (i = 0; i < num_regs; i++) {
1917		unsigned int reg = regs[i].reg;
1918		unsigned int val = regs[i].def;
1919		trace_regmap_hw_write_start(map, reg, 1);
 
 
1920		map->format.format_reg(u8, reg, map->reg_shift);
1921		u8 += reg_bytes + pad_bytes;
1922		map->format.format_val(u8, val, 0);
1923		u8 += val_bytes;
1924	}
1925	u8 = buf;
1926	*u8 |= map->write_flag_mask;
1927
1928	ret = map->bus->write(map->bus_context, buf, len);
1929
1930	kfree(buf);
1931
1932	for (i = 0; i < num_regs; i++) {
1933		int reg = regs[i].reg;
1934		trace_regmap_hw_write_done(map, reg, 1);
1935	}
1936	return ret;
1937}
1938
1939static unsigned int _regmap_register_page(struct regmap *map,
1940					  unsigned int reg,
1941					  struct regmap_range_node *range)
1942{
1943	unsigned int win_page = (reg - range->range_min) / range->window_len;
1944
1945	return win_page;
1946}
1947
1948static int _regmap_range_multi_paged_reg_write(struct regmap *map,
1949					       struct reg_sequence *regs,
1950					       size_t num_regs)
1951{
1952	int ret;
1953	int i, n;
1954	struct reg_sequence *base;
1955	unsigned int this_page = 0;
1956	unsigned int page_change = 0;
1957	/*
1958	 * the set of registers are not neccessarily in order, but
1959	 * since the order of write must be preserved this algorithm
1960	 * chops the set each time the page changes. This also applies
1961	 * if there is a delay required at any point in the sequence.
1962	 */
1963	base = regs;
1964	for (i = 0, n = 0; i < num_regs; i++, n++) {
1965		unsigned int reg = regs[i].reg;
1966		struct regmap_range_node *range;
1967
1968		range = _regmap_range_lookup(map, reg);
1969		if (range) {
1970			unsigned int win_page = _regmap_register_page(map, reg,
1971								      range);
1972
1973			if (i == 0)
1974				this_page = win_page;
1975			if (win_page != this_page) {
1976				this_page = win_page;
1977				page_change = 1;
1978			}
1979		}
1980
1981		/* If we have both a page change and a delay make sure to
1982		 * write the regs and apply the delay before we change the
1983		 * page.
1984		 */
1985
1986		if (page_change || regs[i].delay_us) {
1987
1988				/* For situations where the first write requires
1989				 * a delay we need to make sure we don't call
1990				 * raw_multi_reg_write with n=0
1991				 * This can't occur with page breaks as we
1992				 * never write on the first iteration
1993				 */
1994				if (regs[i].delay_us && i == 0)
1995					n = 1;
1996
1997				ret = _regmap_raw_multi_reg_write(map, base, n);
1998				if (ret != 0)
1999					return ret;
2000
2001				if (regs[i].delay_us)
2002					udelay(regs[i].delay_us);
 
 
 
 
2003
2004				base += n;
2005				n = 0;
2006
2007				if (page_change) {
2008					ret = _regmap_select_page(map,
2009								  &base[n].reg,
2010								  range, 1);
2011					if (ret != 0)
2012						return ret;
2013
2014					page_change = 0;
2015				}
2016
2017		}
2018
2019	}
2020	if (n > 0)
2021		return _regmap_raw_multi_reg_write(map, base, n);
2022	return 0;
2023}
2024
2025static int _regmap_multi_reg_write(struct regmap *map,
2026				   const struct reg_sequence *regs,
2027				   size_t num_regs)
2028{
2029	int i;
2030	int ret;
2031
2032	if (!map->can_multi_write) {
2033		for (i = 0; i < num_regs; i++) {
2034			ret = _regmap_write(map, regs[i].reg, regs[i].def);
2035			if (ret != 0)
2036				return ret;
2037
2038			if (regs[i].delay_us)
2039				udelay(regs[i].delay_us);
 
 
 
 
2040		}
2041		return 0;
2042	}
2043
2044	if (!map->format.parse_inplace)
2045		return -EINVAL;
2046
2047	if (map->writeable_reg)
2048		for (i = 0; i < num_regs; i++) {
2049			int reg = regs[i].reg;
2050			if (!map->writeable_reg(map->dev, reg))
2051				return -EINVAL;
2052			if (!IS_ALIGNED(reg, map->reg_stride))
2053				return -EINVAL;
2054		}
2055
2056	if (!map->cache_bypass) {
2057		for (i = 0; i < num_regs; i++) {
2058			unsigned int val = regs[i].def;
2059			unsigned int reg = regs[i].reg;
2060			ret = regcache_write(map, reg, val);
2061			if (ret) {
2062				dev_err(map->dev,
2063				"Error in caching of register: %x ret: %d\n",
2064								reg, ret);
2065				return ret;
2066			}
2067		}
2068		if (map->cache_only) {
2069			map->cache_dirty = true;
2070			return 0;
2071		}
2072	}
2073
2074	WARN_ON(!map->bus);
2075
2076	for (i = 0; i < num_regs; i++) {
2077		unsigned int reg = regs[i].reg;
2078		struct regmap_range_node *range;
2079
2080		/* Coalesce all the writes between a page break or a delay
2081		 * in a sequence
2082		 */
2083		range = _regmap_range_lookup(map, reg);
2084		if (range || regs[i].delay_us) {
2085			size_t len = sizeof(struct reg_sequence)*num_regs;
2086			struct reg_sequence *base = kmemdup(regs, len,
2087							   GFP_KERNEL);
2088			if (!base)
2089				return -ENOMEM;
2090			ret = _regmap_range_multi_paged_reg_write(map, base,
2091								  num_regs);
2092			kfree(base);
2093
2094			return ret;
2095		}
2096	}
2097	return _regmap_raw_multi_reg_write(map, regs, num_regs);
2098}
2099
2100/*
2101 * regmap_multi_reg_write(): Write multiple registers to the device
2102 *
2103 * where the set of register,value pairs are supplied in any order,
2104 * possibly not all in a single range.
2105 *
2106 * @map: Register map to write to
2107 * @regs: Array of structures containing register,value to be written
2108 * @num_regs: Number of registers to write
2109 *
 
 
 
2110 * The 'normal' block write mode will send ultimately send data on the
2111 * target bus as R,V1,V2,V3,..,Vn where successively higer registers are
2112 * addressed. However, this alternative block multi write mode will send
2113 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2114 * must of course support the mode.
2115 *
2116 * A value of zero will be returned on success, a negative errno will be
2117 * returned in error cases.
2118 */
2119int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2120			   int num_regs)
2121{
2122	int ret;
2123
2124	map->lock(map->lock_arg);
2125
2126	ret = _regmap_multi_reg_write(map, regs, num_regs);
2127
2128	map->unlock(map->lock_arg);
2129
2130	return ret;
2131}
2132EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2133
2134/*
2135 * regmap_multi_reg_write_bypassed(): Write multiple registers to the
2136 *                                    device but not the cache
2137 *
2138 * where the set of register are supplied in any order
2139 *
2140 * @map: Register map to write to
2141 * @regs: Array of structures containing register,value to be written
2142 * @num_regs: Number of registers to write
2143 *
 
 
 
2144 * This function is intended to be used for writing a large block of data
2145 * atomically to the device in single transfer for those I2C client devices
2146 * that implement this alternative block write mode.
2147 *
2148 * A value of zero will be returned on success, a negative errno will
2149 * be returned in error cases.
2150 */
2151int regmap_multi_reg_write_bypassed(struct regmap *map,
2152				    const struct reg_sequence *regs,
2153				    int num_regs)
2154{
2155	int ret;
2156	bool bypass;
2157
2158	map->lock(map->lock_arg);
2159
2160	bypass = map->cache_bypass;
2161	map->cache_bypass = true;
2162
2163	ret = _regmap_multi_reg_write(map, regs, num_regs);
2164
2165	map->cache_bypass = bypass;
2166
2167	map->unlock(map->lock_arg);
2168
2169	return ret;
2170}
2171EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2172
2173/**
2174 * regmap_raw_write_async(): Write raw values to one or more registers
2175 *                           asynchronously
2176 *
2177 * @map: Register map to write to
2178 * @reg: Initial register to write to
2179 * @val: Block of data to be written, laid out for direct transmission to the
2180 *       device.  Must be valid until regmap_async_complete() is called.
2181 * @val_len: Length of data pointed to by val.
2182 *
2183 * This function is intended to be used for things like firmware
2184 * download where a large block of data needs to be transferred to the
2185 * device.  No formatting will be done on the data provided.
2186 *
2187 * If supported by the underlying bus the write will be scheduled
2188 * asynchronously, helping maximise I/O speed on higher speed buses
2189 * like SPI.  regmap_async_complete() can be called to ensure that all
2190 * asynchrnous writes have been completed.
2191 *
2192 * A value of zero will be returned on success, a negative errno will
2193 * be returned in error cases.
2194 */
2195int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2196			   const void *val, size_t val_len)
2197{
2198	int ret;
2199
2200	if (val_len % map->format.val_bytes)
2201		return -EINVAL;
2202	if (!IS_ALIGNED(reg, map->reg_stride))
2203		return -EINVAL;
2204
2205	map->lock(map->lock_arg);
2206
2207	map->async = true;
2208
2209	ret = _regmap_raw_write(map, reg, val, val_len);
2210
2211	map->async = false;
2212
2213	map->unlock(map->lock_arg);
2214
2215	return ret;
2216}
2217EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2218
2219static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2220			    unsigned int val_len)
2221{
2222	struct regmap_range_node *range;
2223	u8 *u8 = map->work_buf;
2224	int ret;
2225
2226	WARN_ON(!map->bus);
2227
2228	if (!map->bus || !map->bus->read)
2229		return -EINVAL;
2230
2231	range = _regmap_range_lookup(map, reg);
2232	if (range) {
2233		ret = _regmap_select_page(map, &reg, range,
2234					  val_len / map->format.val_bytes);
2235		if (ret != 0)
2236			return ret;
2237	}
2238
 
 
2239	map->format.format_reg(map->work_buf, reg, map->reg_shift);
2240
2241	/*
2242	 * Some buses or devices flag reads by setting the high bits in the
2243	 * register address; since it's always the high bits for all
2244	 * current formats we can do this here rather than in
2245	 * formatting.  This may break if we get interesting formats.
2246	 */
2247	u8[0] |= map->read_flag_mask;
2248
2249	trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2250
2251	ret = map->bus->read(map->bus_context, map->work_buf,
2252			     map->format.reg_bytes + map->format.pad_bytes,
2253			     val, val_len);
2254
2255	trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2256
2257	return ret;
2258}
2259
2260static int _regmap_bus_reg_read(void *context, unsigned int reg,
2261				unsigned int *val)
2262{
2263	struct regmap *map = context;
2264
2265	return map->bus->reg_read(map->bus_context, reg, val);
2266}
2267
2268static int _regmap_bus_read(void *context, unsigned int reg,
2269			    unsigned int *val)
2270{
2271	int ret;
2272	struct regmap *map = context;
 
 
2273
2274	if (!map->format.parse_val)
2275		return -EINVAL;
2276
2277	ret = _regmap_raw_read(map, reg, map->work_buf, map->format.val_bytes);
2278	if (ret == 0)
2279		*val = map->format.parse_val(map->work_buf);
2280
2281	return ret;
2282}
2283
2284static int _regmap_read(struct regmap *map, unsigned int reg,
2285			unsigned int *val)
2286{
2287	int ret;
2288	void *context = _regmap_map_get_context(map);
2289
2290	if (!map->cache_bypass) {
2291		ret = regcache_read(map, reg, val);
2292		if (ret == 0)
2293			return 0;
2294	}
2295
2296	if (map->cache_only)
2297		return -EBUSY;
2298
2299	if (!regmap_readable(map, reg))
2300		return -EIO;
2301
2302	ret = map->reg_read(context, reg, val);
2303	if (ret == 0) {
2304#ifdef LOG_DEVICE
2305		if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
2306			dev_info(map->dev, "%x => %x\n", reg, *val);
2307#endif
2308
2309		trace_regmap_reg_read(map, reg, *val);
2310
2311		if (!map->cache_bypass)
2312			regcache_write(map, reg, *val);
2313	}
2314
2315	return ret;
2316}
2317
2318/**
2319 * regmap_read(): Read a value from a single register
2320 *
2321 * @map: Register map to read from
2322 * @reg: Register to be read from
2323 * @val: Pointer to store read value
2324 *
2325 * A value of zero will be returned on success, a negative errno will
2326 * be returned in error cases.
2327 */
2328int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2329{
2330	int ret;
2331
2332	if (!IS_ALIGNED(reg, map->reg_stride))
2333		return -EINVAL;
2334
2335	map->lock(map->lock_arg);
2336
2337	ret = _regmap_read(map, reg, val);
2338
2339	map->unlock(map->lock_arg);
2340
2341	return ret;
2342}
2343EXPORT_SYMBOL_GPL(regmap_read);
2344
2345/**
2346 * regmap_raw_read(): Read raw data from the device
2347 *
2348 * @map: Register map to read from
2349 * @reg: First register to be read from
2350 * @val: Pointer to store read value
2351 * @val_len: Size of data to read
2352 *
2353 * A value of zero will be returned on success, a negative errno will
2354 * be returned in error cases.
2355 */
2356int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2357		    size_t val_len)
2358{
2359	size_t val_bytes = map->format.val_bytes;
2360	size_t val_count = val_len / val_bytes;
2361	unsigned int v;
2362	int ret, i;
2363
2364	if (!map->bus)
2365		return -EINVAL;
2366	if (val_len % map->format.val_bytes)
2367		return -EINVAL;
2368	if (!IS_ALIGNED(reg, map->reg_stride))
2369		return -EINVAL;
2370	if (val_count == 0)
2371		return -EINVAL;
2372
2373	map->lock(map->lock_arg);
2374
2375	if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2376	    map->cache_type == REGCACHE_NONE) {
2377		if (!map->bus->read) {
 
 
 
2378			ret = -ENOTSUPP;
2379			goto out;
2380		}
2381		if (map->max_raw_read && map->max_raw_read < val_len) {
2382			ret = -E2BIG;
2383			goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2384		}
2385
2386		/* Physical block read if there's no cache involved */
2387		ret = _regmap_raw_read(map, reg, val, val_len);
2388
 
 
 
2389	} else {
2390		/* Otherwise go word by word for the cache; should be low
2391		 * cost as we expect to hit the cache.
2392		 */
2393		for (i = 0; i < val_count; i++) {
2394			ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2395					   &v);
2396			if (ret != 0)
2397				goto out;
2398
2399			map->format.format_val(val + (i * val_bytes), v, 0);
2400		}
2401	}
2402
2403 out:
2404	map->unlock(map->lock_arg);
2405
2406	return ret;
2407}
2408EXPORT_SYMBOL_GPL(regmap_raw_read);
2409
2410/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2411 * regmap_field_read(): Read a value to a single register field
2412 *
2413 * @field: Register field to read from
2414 * @val: Pointer to store read value
2415 *
2416 * A value of zero will be returned on success, a negative errno will
2417 * be returned in error cases.
2418 */
2419int regmap_field_read(struct regmap_field *field, unsigned int *val)
2420{
2421	int ret;
2422	unsigned int reg_val;
2423	ret = regmap_read(field->regmap, field->reg, &reg_val);
2424	if (ret != 0)
2425		return ret;
2426
2427	reg_val &= field->mask;
2428	reg_val >>= field->shift;
2429	*val = reg_val;
2430
2431	return ret;
2432}
2433EXPORT_SYMBOL_GPL(regmap_field_read);
2434
2435/**
2436 * regmap_fields_read(): Read a value to a single register field with port ID
2437 *
2438 * @field: Register field to read from
2439 * @id: port ID
2440 * @val: Pointer to store read value
2441 *
2442 * A value of zero will be returned on success, a negative errno will
2443 * be returned in error cases.
2444 */
2445int regmap_fields_read(struct regmap_field *field, unsigned int id,
2446		       unsigned int *val)
2447{
2448	int ret;
2449	unsigned int reg_val;
2450
2451	if (id >= field->id_size)
2452		return -EINVAL;
2453
2454	ret = regmap_read(field->regmap,
2455			  field->reg + (field->id_offset * id),
2456			  &reg_val);
2457	if (ret != 0)
2458		return ret;
2459
2460	reg_val &= field->mask;
2461	reg_val >>= field->shift;
2462	*val = reg_val;
2463
2464	return ret;
2465}
2466EXPORT_SYMBOL_GPL(regmap_fields_read);
2467
2468/**
2469 * regmap_bulk_read(): Read multiple registers from the device
2470 *
2471 * @map: Register map to read from
2472 * @reg: First register to be read from
2473 * @val: Pointer to store read value, in native register size for device
2474 * @val_count: Number of registers to read
2475 *
2476 * A value of zero will be returned on success, a negative errno will
2477 * be returned in error cases.
2478 */
2479int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
2480		     size_t val_count)
2481{
2482	int ret, i;
2483	size_t val_bytes = map->format.val_bytes;
2484	bool vol = regmap_volatile_range(map, reg, val_count);
2485
2486	if (!IS_ALIGNED(reg, map->reg_stride))
2487		return -EINVAL;
 
 
2488
2489	if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2490		/*
2491		 * Some devices does not support bulk read, for
2492		 * them we have a series of single read operations.
2493		 */
2494		size_t total_size = val_bytes * val_count;
2495
2496		if (!map->use_single_read &&
2497		    (!map->max_raw_read || map->max_raw_read > total_size)) {
2498			ret = regmap_raw_read(map, reg, val,
2499					      val_bytes * val_count);
2500			if (ret != 0)
2501				return ret;
2502		} else {
2503			/*
2504			 * Some devices do not support bulk read or do not
2505			 * support large bulk reads, for them we have a series
2506			 * of read operations.
2507			 */
2508			int chunk_stride = map->reg_stride;
2509			size_t chunk_size = val_bytes;
2510			size_t chunk_count = val_count;
2511
2512			if (!map->use_single_read) {
2513				chunk_size = map->max_raw_read;
2514				if (chunk_size % val_bytes)
2515					chunk_size -= chunk_size % val_bytes;
2516				chunk_count = total_size / chunk_size;
2517				chunk_stride *= chunk_size / val_bytes;
2518			}
2519
2520			/* Read bytes that fit into a multiple of chunk_size */
2521			for (i = 0; i < chunk_count; i++) {
2522				ret = regmap_raw_read(map,
2523						      reg + (i * chunk_stride),
2524						      val + (i * chunk_size),
2525						      chunk_size);
2526				if (ret != 0)
2527					return ret;
2528			}
2529
2530			/* Read remaining bytes */
2531			if (chunk_size * i < total_size) {
2532				ret = regmap_raw_read(map,
2533						      reg + (i * chunk_stride),
2534						      val + (i * chunk_size),
2535						      total_size - i * chunk_size);
2536				if (ret != 0)
2537					return ret;
2538			}
2539		}
2540
2541		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2542			map->format.parse_inplace(val + i);
2543	} else {
 
 
 
 
 
 
 
 
 
2544		for (i = 0; i < val_count; i++) {
2545			unsigned int ival;
2546			ret = regmap_read(map, reg + regmap_get_offset(map, i),
2547					  &ival);
 
2548			if (ret != 0)
2549				return ret;
2550
2551			if (map->format.format_val) {
2552				map->format.format_val(val + (i * val_bytes), ival, 0);
2553			} else {
2554				/* Devices providing read and write
2555				 * operations can use the bulk I/O
2556				 * functions if they define a val_bytes,
2557				 * we assume that the values are native
2558				 * endian.
2559				 */
2560#ifdef CONFIG_64BIT
2561				u64 *u64 = val;
 
 
2562#endif
2563				u32 *u32 = val;
2564				u16 *u16 = val;
2565				u8 *u8 = val;
2566
2567				switch (map->format.val_bytes) {
2568#ifdef CONFIG_64BIT
2569				case 8:
2570					u64[i] = ival;
2571					break;
2572#endif
2573				case 4:
2574					u32[i] = ival;
2575					break;
2576				case 2:
2577					u16[i] = ival;
2578					break;
2579				case 1:
2580					u8[i] = ival;
2581					break;
2582				default:
2583					return -EINVAL;
2584				}
2585			}
2586		}
 
 
 
2587	}
2588
2589	return 0;
 
 
 
2590}
2591EXPORT_SYMBOL_GPL(regmap_bulk_read);
2592
2593static int _regmap_update_bits(struct regmap *map, unsigned int reg,
2594			       unsigned int mask, unsigned int val,
2595			       bool *change, bool force_write)
2596{
2597	int ret;
2598	unsigned int tmp, orig;
2599
2600	if (change)
2601		*change = false;
2602
2603	if (regmap_volatile(map, reg) && map->reg_update_bits) {
2604		ret = map->reg_update_bits(map->bus_context, reg, mask, val);
2605		if (ret == 0 && change)
2606			*change = true;
2607	} else {
2608		ret = _regmap_read(map, reg, &orig);
2609		if (ret != 0)
2610			return ret;
2611
2612		tmp = orig & ~mask;
2613		tmp |= val & mask;
2614
2615		if (force_write || (tmp != orig)) {
2616			ret = _regmap_write(map, reg, tmp);
2617			if (ret == 0 && change)
2618				*change = true;
2619		}
2620	}
2621
2622	return ret;
2623}
2624
2625/**
2626 * regmap_update_bits_base:
2627 *	Perform a read/modify/write cycle on the
2628 *	register map with change, async, force option
2629 *
2630 * @map: Register map to update
2631 * @reg: Register to update
2632 * @mask: Bitmask to change
2633 * @val: New value for bitmask
2634 * @change: Boolean indicating if a write was done
2635 * @async: Boolean indicating asynchronously
2636 * @force: Boolean indicating use force update
2637 *
2638 * if async was true,
2639 * With most buses the read must be done synchronously so this is most
2640 * useful for devices with a cache which do not need to interact with
2641 * the hardware to determine the current register value.
 
 
 
 
2642 *
2643 * Returns zero for success, a negative number on error.
2644 */
2645int regmap_update_bits_base(struct regmap *map, unsigned int reg,
2646			    unsigned int mask, unsigned int val,
2647			    bool *change, bool async, bool force)
2648{
2649	int ret;
2650
2651	map->lock(map->lock_arg);
2652
2653	map->async = async;
2654
2655	ret = _regmap_update_bits(map, reg, mask, val, change, force);
2656
2657	map->async = false;
2658
2659	map->unlock(map->lock_arg);
2660
2661	return ret;
2662}
2663EXPORT_SYMBOL_GPL(regmap_update_bits_base);
2664
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2665void regmap_async_complete_cb(struct regmap_async *async, int ret)
2666{
2667	struct regmap *map = async->map;
2668	bool wake;
2669
2670	trace_regmap_async_io_complete(map);
2671
2672	spin_lock(&map->async_lock);
2673	list_move(&async->list, &map->async_free);
2674	wake = list_empty(&map->async_list);
2675
2676	if (ret != 0)
2677		map->async_ret = ret;
2678
2679	spin_unlock(&map->async_lock);
2680
2681	if (wake)
2682		wake_up(&map->async_waitq);
2683}
2684EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
2685
2686static int regmap_async_is_done(struct regmap *map)
2687{
2688	unsigned long flags;
2689	int ret;
2690
2691	spin_lock_irqsave(&map->async_lock, flags);
2692	ret = list_empty(&map->async_list);
2693	spin_unlock_irqrestore(&map->async_lock, flags);
2694
2695	return ret;
2696}
2697
2698/**
2699 * regmap_async_complete: Ensure all asynchronous I/O has completed.
2700 *
2701 * @map: Map to operate on.
2702 *
2703 * Blocks until any pending asynchronous I/O has completed.  Returns
2704 * an error code for any failed I/O operations.
2705 */
2706int regmap_async_complete(struct regmap *map)
2707{
2708	unsigned long flags;
2709	int ret;
2710
2711	/* Nothing to do with no async support */
2712	if (!map->bus || !map->bus->async_write)
2713		return 0;
2714
2715	trace_regmap_async_complete_start(map);
2716
2717	wait_event(map->async_waitq, regmap_async_is_done(map));
2718
2719	spin_lock_irqsave(&map->async_lock, flags);
2720	ret = map->async_ret;
2721	map->async_ret = 0;
2722	spin_unlock_irqrestore(&map->async_lock, flags);
2723
2724	trace_regmap_async_complete_done(map);
2725
2726	return ret;
2727}
2728EXPORT_SYMBOL_GPL(regmap_async_complete);
2729
2730/**
2731 * regmap_register_patch: Register and apply register updates to be applied
2732 *                        on device initialistion
2733 *
2734 * @map: Register map to apply updates to.
2735 * @regs: Values to update.
2736 * @num_regs: Number of entries in regs.
2737 *
2738 * Register a set of register updates to be applied to the device
2739 * whenever the device registers are synchronised with the cache and
2740 * apply them immediately.  Typically this is used to apply
2741 * corrections to be applied to the device defaults on startup, such
2742 * as the updates some vendors provide to undocumented registers.
2743 *
2744 * The caller must ensure that this function cannot be called
2745 * concurrently with either itself or regcache_sync().
2746 */
2747int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
2748			  int num_regs)
2749{
2750	struct reg_sequence *p;
2751	int ret;
2752	bool bypass;
2753
2754	if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
2755	    num_regs))
2756		return 0;
2757
2758	p = krealloc(map->patch,
2759		     sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
2760		     GFP_KERNEL);
2761	if (p) {
2762		memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
2763		map->patch = p;
2764		map->patch_regs += num_regs;
2765	} else {
2766		return -ENOMEM;
2767	}
2768
2769	map->lock(map->lock_arg);
2770
2771	bypass = map->cache_bypass;
2772
2773	map->cache_bypass = true;
2774	map->async = true;
2775
2776	ret = _regmap_multi_reg_write(map, regs, num_regs);
2777
2778	map->async = false;
2779	map->cache_bypass = bypass;
2780
2781	map->unlock(map->lock_arg);
2782
2783	regmap_async_complete(map);
2784
2785	return ret;
2786}
2787EXPORT_SYMBOL_GPL(regmap_register_patch);
2788
2789/*
2790 * regmap_get_val_bytes(): Report the size of a register value
 
 
2791 *
2792 * Report the size of a register value, mainly intended to for use by
2793 * generic infrastructure built on top of regmap.
2794 */
2795int regmap_get_val_bytes(struct regmap *map)
2796{
2797	if (map->format.format_write)
2798		return -EINVAL;
2799
2800	return map->format.val_bytes;
2801}
2802EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
2803
2804/**
2805 * regmap_get_max_register(): Report the max register value
 
 
2806 *
2807 * Report the max register value, mainly intended to for use by
2808 * generic infrastructure built on top of regmap.
2809 */
2810int regmap_get_max_register(struct regmap *map)
2811{
2812	return map->max_register ? map->max_register : -EINVAL;
2813}
2814EXPORT_SYMBOL_GPL(regmap_get_max_register);
2815
2816/**
2817 * regmap_get_reg_stride(): Report the register address stride
 
 
2818 *
2819 * Report the register address stride, mainly intended to for use by
2820 * generic infrastructure built on top of regmap.
2821 */
2822int regmap_get_reg_stride(struct regmap *map)
2823{
2824	return map->reg_stride;
2825}
2826EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
 
 
 
 
 
 
 
 
 
 
 
 
 
2827
2828int regmap_parse_val(struct regmap *map, const void *buf,
2829			unsigned int *val)
2830{
2831	if (!map->format.parse_val)
2832		return -EINVAL;
2833
2834	*val = map->format.parse_val(buf);
2835
2836	return 0;
2837}
2838EXPORT_SYMBOL_GPL(regmap_parse_val);
2839
2840static int __init regmap_initcall(void)
2841{
2842	regmap_debugfs_initcall();
2843
2844	return 0;
2845}
2846postcore_initcall(regmap_initcall);