Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2//
   3// Register map access API
   4//
   5// Copyright 2011 Wolfson Microelectronics plc
   6//
   7// Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
 
 
 
 
   8
   9#include <linux/device.h>
  10#include <linux/slab.h>
  11#include <linux/export.h>
  12#include <linux/mutex.h>
  13#include <linux/err.h>
  14#include <linux/property.h>
  15#include <linux/rbtree.h>
  16#include <linux/sched.h>
  17#include <linux/delay.h>
  18#include <linux/log2.h>
  19#include <linux/hwspinlock.h>
  20#include <asm/unaligned.h>
  21
  22#define CREATE_TRACE_POINTS
  23#include "trace.h"
  24
  25#include "internal.h"
  26
  27/*
  28 * Sometimes for failures during very early init the trace
  29 * infrastructure isn't available early enough to be used.  For this
  30 * sort of problem defining LOG_DEVICE will add printks for basic
  31 * register I/O on a specific device.
  32 */
  33#undef LOG_DEVICE
  34
  35#ifdef LOG_DEVICE
  36static inline bool regmap_should_log(struct regmap *map)
  37{
  38	return (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0);
  39}
  40#else
  41static inline bool regmap_should_log(struct regmap *map) { return false; }
  42#endif
  43
  44
  45static int _regmap_update_bits(struct regmap *map, unsigned int reg,
  46			       unsigned int mask, unsigned int val,
  47			       bool *change, bool force_write);
  48
  49static int _regmap_bus_reg_read(void *context, unsigned int reg,
  50				unsigned int *val);
  51static int _regmap_bus_read(void *context, unsigned int reg,
  52			    unsigned int *val);
  53static int _regmap_bus_formatted_write(void *context, unsigned int reg,
  54				       unsigned int val);
  55static int _regmap_bus_reg_write(void *context, unsigned int reg,
  56				 unsigned int val);
  57static int _regmap_bus_raw_write(void *context, unsigned int reg,
  58				 unsigned int val);
  59
  60bool regmap_reg_in_ranges(unsigned int reg,
  61			  const struct regmap_range *ranges,
  62			  unsigned int nranges)
  63{
  64	const struct regmap_range *r;
  65	int i;
  66
  67	for (i = 0, r = ranges; i < nranges; i++, r++)
  68		if (regmap_reg_in_range(reg, r))
  69			return true;
  70	return false;
  71}
  72EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
  73
  74bool regmap_check_range_table(struct regmap *map, unsigned int reg,
  75			      const struct regmap_access_table *table)
  76{
  77	/* Check "no ranges" first */
  78	if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
  79		return false;
  80
  81	/* In case zero "yes ranges" are supplied, any reg is OK */
  82	if (!table->n_yes_ranges)
  83		return true;
  84
  85	return regmap_reg_in_ranges(reg, table->yes_ranges,
  86				    table->n_yes_ranges);
  87}
  88EXPORT_SYMBOL_GPL(regmap_check_range_table);
  89
  90bool regmap_writeable(struct regmap *map, unsigned int reg)
  91{
  92	if (map->max_register && reg > map->max_register)
  93		return false;
  94
  95	if (map->writeable_reg)
  96		return map->writeable_reg(map->dev, reg);
  97
  98	if (map->wr_table)
  99		return regmap_check_range_table(map, reg, map->wr_table);
 100
 101	return true;
 102}
 103
 104bool regmap_cached(struct regmap *map, unsigned int reg)
 105{
 106	int ret;
 107	unsigned int val;
 108
 109	if (map->cache_type == REGCACHE_NONE)
 110		return false;
 111
 112	if (!map->cache_ops)
 113		return false;
 114
 115	if (map->max_register && reg > map->max_register)
 116		return false;
 117
 118	map->lock(map->lock_arg);
 119	ret = regcache_read(map, reg, &val);
 120	map->unlock(map->lock_arg);
 121	if (ret)
 122		return false;
 123
 124	return true;
 125}
 126
 127bool regmap_readable(struct regmap *map, unsigned int reg)
 128{
 129	if (!map->reg_read)
 130		return false;
 131
 132	if (map->max_register && reg > map->max_register)
 133		return false;
 134
 135	if (map->format.format_write)
 136		return false;
 137
 138	if (map->readable_reg)
 139		return map->readable_reg(map->dev, reg);
 140
 141	if (map->rd_table)
 142		return regmap_check_range_table(map, reg, map->rd_table);
 143
 144	return true;
 145}
 146
 147bool regmap_volatile(struct regmap *map, unsigned int reg)
 148{
 149	if (!map->format.format_write && !regmap_readable(map, reg))
 150		return false;
 151
 152	if (map->volatile_reg)
 153		return map->volatile_reg(map->dev, reg);
 154
 155	if (map->volatile_table)
 156		return regmap_check_range_table(map, reg, map->volatile_table);
 157
 158	if (map->cache_ops)
 159		return false;
 160	else
 161		return true;
 162}
 163
 164bool regmap_precious(struct regmap *map, unsigned int reg)
 165{
 166	if (!regmap_readable(map, reg))
 167		return false;
 168
 169	if (map->precious_reg)
 170		return map->precious_reg(map->dev, reg);
 171
 172	if (map->precious_table)
 173		return regmap_check_range_table(map, reg, map->precious_table);
 174
 175	return false;
 176}
 177
 178bool regmap_writeable_noinc(struct regmap *map, unsigned int reg)
 179{
 180	if (map->writeable_noinc_reg)
 181		return map->writeable_noinc_reg(map->dev, reg);
 182
 183	if (map->wr_noinc_table)
 184		return regmap_check_range_table(map, reg, map->wr_noinc_table);
 185
 186	return true;
 187}
 188
 189bool regmap_readable_noinc(struct regmap *map, unsigned int reg)
 190{
 191	if (map->readable_noinc_reg)
 192		return map->readable_noinc_reg(map->dev, reg);
 193
 194	if (map->rd_noinc_table)
 195		return regmap_check_range_table(map, reg, map->rd_noinc_table);
 196
 197	return true;
 198}
 199
 200static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
 201	size_t num)
 202{
 203	unsigned int i;
 204
 205	for (i = 0; i < num; i++)
 206		if (!regmap_volatile(map, reg + regmap_get_offset(map, i)))
 207			return false;
 208
 209	return true;
 210}
 211
 212static void regmap_format_12_20_write(struct regmap *map,
 213				     unsigned int reg, unsigned int val)
 214{
 215	u8 *out = map->work_buf;
 216
 217	out[0] = reg >> 4;
 218	out[1] = (reg << 4) | (val >> 16);
 219	out[2] = val >> 8;
 220	out[3] = val;
 221}
 222
 223
 224static void regmap_format_2_6_write(struct regmap *map,
 225				     unsigned int reg, unsigned int val)
 226{
 227	u8 *out = map->work_buf;
 228
 229	*out = (reg << 6) | val;
 230}
 231
 232static void regmap_format_4_12_write(struct regmap *map,
 233				     unsigned int reg, unsigned int val)
 234{
 235	__be16 *out = map->work_buf;
 236	*out = cpu_to_be16((reg << 12) | val);
 237}
 238
 239static void regmap_format_7_9_write(struct regmap *map,
 240				    unsigned int reg, unsigned int val)
 241{
 242	__be16 *out = map->work_buf;
 243	*out = cpu_to_be16((reg << 9) | val);
 244}
 245
 246static void regmap_format_7_17_write(struct regmap *map,
 247				    unsigned int reg, unsigned int val)
 248{
 249	u8 *out = map->work_buf;
 250
 251	out[2] = val;
 252	out[1] = val >> 8;
 253	out[0] = (val >> 16) | (reg << 1);
 254}
 255
 256static void regmap_format_10_14_write(struct regmap *map,
 257				    unsigned int reg, unsigned int val)
 258{
 259	u8 *out = map->work_buf;
 260
 261	out[2] = val;
 262	out[1] = (val >> 8) | (reg << 6);
 263	out[0] = reg >> 2;
 264}
 265
 266static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
 267{
 268	u8 *b = buf;
 269
 270	b[0] = val << shift;
 271}
 272
 273static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
 274{
 275	put_unaligned_be16(val << shift, buf);
 
 
 276}
 277
 278static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
 279{
 280	put_unaligned_le16(val << shift, buf);
 
 
 281}
 282
 283static void regmap_format_16_native(void *buf, unsigned int val,
 284				    unsigned int shift)
 285{
 286	u16 v = val << shift;
 287
 288	memcpy(buf, &v, sizeof(v));
 289}
 290
 291static void regmap_format_24_be(void *buf, unsigned int val, unsigned int shift)
 292{
 293	put_unaligned_be24(val << shift, buf);
 
 
 
 
 
 
 294}
 295
 296static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
 297{
 298	put_unaligned_be32(val << shift, buf);
 
 
 299}
 300
 301static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
 302{
 303	put_unaligned_le32(val << shift, buf);
 
 
 304}
 305
 306static void regmap_format_32_native(void *buf, unsigned int val,
 307				    unsigned int shift)
 308{
 309	u32 v = val << shift;
 310
 311	memcpy(buf, &v, sizeof(v));
 312}
 313
 314#ifdef CONFIG_64BIT
 315static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
 316{
 317	put_unaligned_be64((u64) val << shift, buf);
 
 
 318}
 319
 320static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
 321{
 322	put_unaligned_le64((u64) val << shift, buf);
 
 
 323}
 324
 325static void regmap_format_64_native(void *buf, unsigned int val,
 326				    unsigned int shift)
 327{
 328	u64 v = (u64) val << shift;
 329
 330	memcpy(buf, &v, sizeof(v));
 331}
 332#endif
 333
 334static void regmap_parse_inplace_noop(void *buf)
 335{
 336}
 337
 338static unsigned int regmap_parse_8(const void *buf)
 339{
 340	const u8 *b = buf;
 341
 342	return b[0];
 343}
 344
 345static unsigned int regmap_parse_16_be(const void *buf)
 346{
 347	return get_unaligned_be16(buf);
 
 
 348}
 349
 350static unsigned int regmap_parse_16_le(const void *buf)
 351{
 352	return get_unaligned_le16(buf);
 
 
 353}
 354
 355static void regmap_parse_16_be_inplace(void *buf)
 356{
 357	u16 v = get_unaligned_be16(buf);
 358
 359	memcpy(buf, &v, sizeof(v));
 360}
 361
 362static void regmap_parse_16_le_inplace(void *buf)
 363{
 364	u16 v = get_unaligned_le16(buf);
 365
 366	memcpy(buf, &v, sizeof(v));
 367}
 368
 369static unsigned int regmap_parse_16_native(const void *buf)
 370{
 371	u16 v;
 372
 373	memcpy(&v, buf, sizeof(v));
 374	return v;
 375}
 376
 377static unsigned int regmap_parse_24_be(const void *buf)
 378{
 379	return get_unaligned_be24(buf);
 
 
 
 
 
 380}
 381
 382static unsigned int regmap_parse_32_be(const void *buf)
 383{
 384	return get_unaligned_be32(buf);
 
 
 385}
 386
 387static unsigned int regmap_parse_32_le(const void *buf)
 388{
 389	return get_unaligned_le32(buf);
 
 
 390}
 391
 392static void regmap_parse_32_be_inplace(void *buf)
 393{
 394	u32 v = get_unaligned_be32(buf);
 395
 396	memcpy(buf, &v, sizeof(v));
 397}
 398
 399static void regmap_parse_32_le_inplace(void *buf)
 400{
 401	u32 v = get_unaligned_le32(buf);
 402
 403	memcpy(buf, &v, sizeof(v));
 404}
 405
 406static unsigned int regmap_parse_32_native(const void *buf)
 407{
 408	u32 v;
 409
 410	memcpy(&v, buf, sizeof(v));
 411	return v;
 412}
 413
 414#ifdef CONFIG_64BIT
 415static unsigned int regmap_parse_64_be(const void *buf)
 416{
 417	return get_unaligned_be64(buf);
 
 
 418}
 419
 420static unsigned int regmap_parse_64_le(const void *buf)
 421{
 422	return get_unaligned_le64(buf);
 
 
 423}
 424
 425static void regmap_parse_64_be_inplace(void *buf)
 426{
 427	u64 v =  get_unaligned_be64(buf);
 428
 429	memcpy(buf, &v, sizeof(v));
 430}
 431
 432static void regmap_parse_64_le_inplace(void *buf)
 433{
 434	u64 v = get_unaligned_le64(buf);
 435
 436	memcpy(buf, &v, sizeof(v));
 437}
 438
 439static unsigned int regmap_parse_64_native(const void *buf)
 440{
 441	u64 v;
 442
 443	memcpy(&v, buf, sizeof(v));
 444	return v;
 445}
 446#endif
 447
 448static void regmap_lock_hwlock(void *__map)
 449{
 450	struct regmap *map = __map;
 451
 452	hwspin_lock_timeout(map->hwlock, UINT_MAX);
 453}
 454
 455static void regmap_lock_hwlock_irq(void *__map)
 456{
 457	struct regmap *map = __map;
 458
 459	hwspin_lock_timeout_irq(map->hwlock, UINT_MAX);
 460}
 461
 462static void regmap_lock_hwlock_irqsave(void *__map)
 463{
 464	struct regmap *map = __map;
 465
 466	hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX,
 467				    &map->spinlock_flags);
 468}
 469
 470static void regmap_unlock_hwlock(void *__map)
 471{
 472	struct regmap *map = __map;
 473
 474	hwspin_unlock(map->hwlock);
 475}
 476
 477static void regmap_unlock_hwlock_irq(void *__map)
 478{
 479	struct regmap *map = __map;
 480
 481	hwspin_unlock_irq(map->hwlock);
 482}
 483
 484static void regmap_unlock_hwlock_irqrestore(void *__map)
 485{
 486	struct regmap *map = __map;
 487
 488	hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags);
 489}
 490
 491static void regmap_lock_unlock_none(void *__map)
 492{
 493
 494}
 495
 496static void regmap_lock_mutex(void *__map)
 497{
 498	struct regmap *map = __map;
 499	mutex_lock(&map->mutex);
 500}
 501
 502static void regmap_unlock_mutex(void *__map)
 503{
 504	struct regmap *map = __map;
 505	mutex_unlock(&map->mutex);
 506}
 507
 508static void regmap_lock_spinlock(void *__map)
 509__acquires(&map->spinlock)
 510{
 511	struct regmap *map = __map;
 512	unsigned long flags;
 513
 514	spin_lock_irqsave(&map->spinlock, flags);
 515	map->spinlock_flags = flags;
 516}
 517
 518static void regmap_unlock_spinlock(void *__map)
 519__releases(&map->spinlock)
 520{
 521	struct regmap *map = __map;
 522	spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
 523}
 524
 525static void regmap_lock_raw_spinlock(void *__map)
 526__acquires(&map->raw_spinlock)
 527{
 528	struct regmap *map = __map;
 529	unsigned long flags;
 530
 531	raw_spin_lock_irqsave(&map->raw_spinlock, flags);
 532	map->raw_spinlock_flags = flags;
 533}
 534
 535static void regmap_unlock_raw_spinlock(void *__map)
 536__releases(&map->raw_spinlock)
 537{
 538	struct regmap *map = __map;
 539	raw_spin_unlock_irqrestore(&map->raw_spinlock, map->raw_spinlock_flags);
 540}
 541
 542static void dev_get_regmap_release(struct device *dev, void *res)
 543{
 544	/*
 545	 * We don't actually have anything to do here; the goal here
 546	 * is not to manage the regmap but to provide a simple way to
 547	 * get the regmap back given a struct device.
 548	 */
 549}
 550
 551static bool _regmap_range_add(struct regmap *map,
 552			      struct regmap_range_node *data)
 553{
 554	struct rb_root *root = &map->range_tree;
 555	struct rb_node **new = &(root->rb_node), *parent = NULL;
 556
 557	while (*new) {
 558		struct regmap_range_node *this =
 559			rb_entry(*new, struct regmap_range_node, node);
 560
 561		parent = *new;
 562		if (data->range_max < this->range_min)
 563			new = &((*new)->rb_left);
 564		else if (data->range_min > this->range_max)
 565			new = &((*new)->rb_right);
 566		else
 567			return false;
 568	}
 569
 570	rb_link_node(&data->node, parent, new);
 571	rb_insert_color(&data->node, root);
 572
 573	return true;
 574}
 575
 576static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
 577						      unsigned int reg)
 578{
 579	struct rb_node *node = map->range_tree.rb_node;
 580
 581	while (node) {
 582		struct regmap_range_node *this =
 583			rb_entry(node, struct regmap_range_node, node);
 584
 585		if (reg < this->range_min)
 586			node = node->rb_left;
 587		else if (reg > this->range_max)
 588			node = node->rb_right;
 589		else
 590			return this;
 591	}
 592
 593	return NULL;
 594}
 595
 596static void regmap_range_exit(struct regmap *map)
 597{
 598	struct rb_node *next;
 599	struct regmap_range_node *range_node;
 600
 601	next = rb_first(&map->range_tree);
 602	while (next) {
 603		range_node = rb_entry(next, struct regmap_range_node, node);
 604		next = rb_next(&range_node->node);
 605		rb_erase(&range_node->node, &map->range_tree);
 606		kfree(range_node);
 607	}
 608
 609	kfree(map->selector_work_buf);
 610}
 611
 612static int regmap_set_name(struct regmap *map, const struct regmap_config *config)
 613{
 614	if (config->name) {
 615		const char *name = kstrdup_const(config->name, GFP_KERNEL);
 616
 617		if (!name)
 618			return -ENOMEM;
 619
 620		kfree_const(map->name);
 621		map->name = name;
 622	}
 623
 624	return 0;
 625}
 626
 627int regmap_attach_dev(struct device *dev, struct regmap *map,
 628		      const struct regmap_config *config)
 629{
 630	struct regmap **m;
 631	int ret;
 632
 633	map->dev = dev;
 634
 635	ret = regmap_set_name(map, config);
 636	if (ret)
 637		return ret;
 638
 639	regmap_debugfs_exit(map);
 640	regmap_debugfs_init(map);
 641
 642	/* Add a devres resource for dev_get_regmap() */
 643	m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
 644	if (!m) {
 645		regmap_debugfs_exit(map);
 646		return -ENOMEM;
 647	}
 648	*m = map;
 649	devres_add(dev, m);
 650
 651	return 0;
 652}
 653EXPORT_SYMBOL_GPL(regmap_attach_dev);
 654
 655static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
 656					const struct regmap_config *config)
 657{
 658	enum regmap_endian endian;
 659
 660	/* Retrieve the endianness specification from the regmap config */
 661	endian = config->reg_format_endian;
 662
 663	/* If the regmap config specified a non-default value, use that */
 664	if (endian != REGMAP_ENDIAN_DEFAULT)
 665		return endian;
 666
 667	/* Retrieve the endianness specification from the bus config */
 668	if (bus && bus->reg_format_endian_default)
 669		endian = bus->reg_format_endian_default;
 670
 671	/* If the bus specified a non-default value, use that */
 672	if (endian != REGMAP_ENDIAN_DEFAULT)
 673		return endian;
 674
 675	/* Use this if no other value was found */
 676	return REGMAP_ENDIAN_BIG;
 677}
 678
 679enum regmap_endian regmap_get_val_endian(struct device *dev,
 680					 const struct regmap_bus *bus,
 681					 const struct regmap_config *config)
 682{
 683	struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
 684	enum regmap_endian endian;
 685
 686	/* Retrieve the endianness specification from the regmap config */
 687	endian = config->val_format_endian;
 688
 689	/* If the regmap config specified a non-default value, use that */
 690	if (endian != REGMAP_ENDIAN_DEFAULT)
 691		return endian;
 692
 693	/* If the firmware node exist try to get endianness from it */
 694	if (fwnode_property_read_bool(fwnode, "big-endian"))
 695		endian = REGMAP_ENDIAN_BIG;
 696	else if (fwnode_property_read_bool(fwnode, "little-endian"))
 697		endian = REGMAP_ENDIAN_LITTLE;
 698	else if (fwnode_property_read_bool(fwnode, "native-endian"))
 699		endian = REGMAP_ENDIAN_NATIVE;
 700
 701	/* If the endianness was specified in fwnode, use that */
 702	if (endian != REGMAP_ENDIAN_DEFAULT)
 703		return endian;
 
 
 
 
 
 704
 705	/* Retrieve the endianness specification from the bus config */
 706	if (bus && bus->val_format_endian_default)
 707		endian = bus->val_format_endian_default;
 708
 709	/* If the bus specified a non-default value, use that */
 710	if (endian != REGMAP_ENDIAN_DEFAULT)
 711		return endian;
 712
 713	/* Use this if no other value was found */
 714	return REGMAP_ENDIAN_BIG;
 715}
 716EXPORT_SYMBOL_GPL(regmap_get_val_endian);
 717
 718struct regmap *__regmap_init(struct device *dev,
 719			     const struct regmap_bus *bus,
 720			     void *bus_context,
 721			     const struct regmap_config *config,
 722			     struct lock_class_key *lock_key,
 723			     const char *lock_name)
 724{
 725	struct regmap *map;
 726	int ret = -EINVAL;
 727	enum regmap_endian reg_endian, val_endian;
 728	int i, j;
 729
 730	if (!config)
 731		goto err;
 732
 733	map = kzalloc(sizeof(*map), GFP_KERNEL);
 734	if (map == NULL) {
 735		ret = -ENOMEM;
 736		goto err;
 737	}
 738
 739	ret = regmap_set_name(map, config);
 740	if (ret)
 741		goto err_map;
 742
 743	ret = -EINVAL; /* Later error paths rely on this */
 
 
 744
 745	if (config->disable_locking) {
 746		map->lock = map->unlock = regmap_lock_unlock_none;
 747		map->can_sleep = config->can_sleep;
 748		regmap_debugfs_disable(map);
 749	} else if (config->lock && config->unlock) {
 750		map->lock = config->lock;
 751		map->unlock = config->unlock;
 752		map->lock_arg = config->lock_arg;
 753		map->can_sleep = config->can_sleep;
 754	} else if (config->use_hwlock) {
 755		map->hwlock = hwspin_lock_request_specific(config->hwlock_id);
 756		if (!map->hwlock) {
 757			ret = -ENXIO;
 758			goto err_name;
 759		}
 760
 761		switch (config->hwlock_mode) {
 762		case HWLOCK_IRQSTATE:
 763			map->lock = regmap_lock_hwlock_irqsave;
 764			map->unlock = regmap_unlock_hwlock_irqrestore;
 765			break;
 766		case HWLOCK_IRQ:
 767			map->lock = regmap_lock_hwlock_irq;
 768			map->unlock = regmap_unlock_hwlock_irq;
 769			break;
 770		default:
 771			map->lock = regmap_lock_hwlock;
 772			map->unlock = regmap_unlock_hwlock;
 773			break;
 774		}
 775
 776		map->lock_arg = map;
 777	} else {
 778		if ((bus && bus->fast_io) ||
 779		    config->fast_io) {
 780			if (config->use_raw_spinlock) {
 781				raw_spin_lock_init(&map->raw_spinlock);
 782				map->lock = regmap_lock_raw_spinlock;
 783				map->unlock = regmap_unlock_raw_spinlock;
 784				lockdep_set_class_and_name(&map->raw_spinlock,
 785							   lock_key, lock_name);
 786			} else {
 787				spin_lock_init(&map->spinlock);
 788				map->lock = regmap_lock_spinlock;
 789				map->unlock = regmap_unlock_spinlock;
 790				lockdep_set_class_and_name(&map->spinlock,
 791							   lock_key, lock_name);
 792			}
 793		} else {
 794			mutex_init(&map->mutex);
 795			map->lock = regmap_lock_mutex;
 796			map->unlock = regmap_unlock_mutex;
 797			map->can_sleep = true;
 798			lockdep_set_class_and_name(&map->mutex,
 799						   lock_key, lock_name);
 800		}
 801		map->lock_arg = map;
 802	}
 803
 804	/*
 805	 * When we write in fast-paths with regmap_bulk_write() don't allocate
 806	 * scratch buffers with sleeping allocations.
 807	 */
 808	if ((bus && bus->fast_io) || config->fast_io)
 809		map->alloc_flags = GFP_ATOMIC;
 810	else
 811		map->alloc_flags = GFP_KERNEL;
 812
 813	map->reg_base = config->reg_base;
 814
 815	map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
 816	map->format.pad_bytes = config->pad_bits / 8;
 817	map->format.reg_downshift = config->reg_downshift;
 818	map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
 819	map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
 820			config->val_bits + config->pad_bits, 8);
 821	map->reg_shift = config->pad_bits % 8;
 822	if (config->reg_stride)
 823		map->reg_stride = config->reg_stride;
 824	else
 825		map->reg_stride = 1;
 826	if (is_power_of_2(map->reg_stride))
 827		map->reg_stride_order = ilog2(map->reg_stride);
 828	else
 829		map->reg_stride_order = -1;
 830	map->use_single_read = config->use_single_read || !(config->read || (bus && bus->read));
 831	map->use_single_write = config->use_single_write || !(config->write || (bus && bus->write));
 832	map->can_multi_write = config->can_multi_write && (config->write || (bus && bus->write));
 833	if (bus) {
 834		map->max_raw_read = bus->max_raw_read;
 835		map->max_raw_write = bus->max_raw_write;
 836	} else if (config->max_raw_read && config->max_raw_write) {
 837		map->max_raw_read = config->max_raw_read;
 838		map->max_raw_write = config->max_raw_write;
 839	}
 840	map->dev = dev;
 841	map->bus = bus;
 842	map->bus_context = bus_context;
 843	map->max_register = config->max_register;
 844	map->wr_table = config->wr_table;
 845	map->rd_table = config->rd_table;
 846	map->volatile_table = config->volatile_table;
 847	map->precious_table = config->precious_table;
 848	map->wr_noinc_table = config->wr_noinc_table;
 849	map->rd_noinc_table = config->rd_noinc_table;
 850	map->writeable_reg = config->writeable_reg;
 851	map->readable_reg = config->readable_reg;
 852	map->volatile_reg = config->volatile_reg;
 853	map->precious_reg = config->precious_reg;
 854	map->writeable_noinc_reg = config->writeable_noinc_reg;
 855	map->readable_noinc_reg = config->readable_noinc_reg;
 856	map->cache_type = config->cache_type;
 857
 858	spin_lock_init(&map->async_lock);
 859	INIT_LIST_HEAD(&map->async_list);
 860	INIT_LIST_HEAD(&map->async_free);
 861	init_waitqueue_head(&map->async_waitq);
 862
 863	if (config->read_flag_mask ||
 864	    config->write_flag_mask ||
 865	    config->zero_flag_mask) {
 866		map->read_flag_mask = config->read_flag_mask;
 867		map->write_flag_mask = config->write_flag_mask;
 868	} else if (bus) {
 869		map->read_flag_mask = bus->read_flag_mask;
 870	}
 871
 872	if (config && config->read && config->write) {
 873		map->reg_read  = _regmap_bus_read;
 874		if (config->reg_update_bits)
 875			map->reg_update_bits = config->reg_update_bits;
 876
 877		/* Bulk read/write */
 878		map->read = config->read;
 879		map->write = config->write;
 880
 881		reg_endian = REGMAP_ENDIAN_NATIVE;
 882		val_endian = REGMAP_ENDIAN_NATIVE;
 883	} else if (!bus) {
 884		map->reg_read  = config->reg_read;
 885		map->reg_write = config->reg_write;
 886		map->reg_update_bits = config->reg_update_bits;
 887
 888		map->defer_caching = false;
 889		goto skip_format_initialization;
 890	} else if (!bus->read || !bus->write) {
 891		map->reg_read = _regmap_bus_reg_read;
 892		map->reg_write = _regmap_bus_reg_write;
 893		map->reg_update_bits = bus->reg_update_bits;
 894
 895		map->defer_caching = false;
 896		goto skip_format_initialization;
 897	} else {
 898		map->reg_read  = _regmap_bus_read;
 899		map->reg_update_bits = bus->reg_update_bits;
 900		/* Bulk read/write */
 901		map->read = bus->read;
 902		map->write = bus->write;
 903
 904		reg_endian = regmap_get_reg_endian(bus, config);
 905		val_endian = regmap_get_val_endian(dev, bus, config);
 906	}
 907
 
 
 
 908	switch (config->reg_bits + map->reg_shift) {
 909	case 2:
 910		switch (config->val_bits) {
 911		case 6:
 912			map->format.format_write = regmap_format_2_6_write;
 913			break;
 914		default:
 915			goto err_hwlock;
 916		}
 917		break;
 918
 919	case 4:
 920		switch (config->val_bits) {
 921		case 12:
 922			map->format.format_write = regmap_format_4_12_write;
 923			break;
 924		default:
 925			goto err_hwlock;
 926		}
 927		break;
 928
 929	case 7:
 930		switch (config->val_bits) {
 931		case 9:
 932			map->format.format_write = regmap_format_7_9_write;
 933			break;
 934		case 17:
 935			map->format.format_write = regmap_format_7_17_write;
 936			break;
 937		default:
 938			goto err_hwlock;
 939		}
 940		break;
 941
 942	case 10:
 943		switch (config->val_bits) {
 944		case 14:
 945			map->format.format_write = regmap_format_10_14_write;
 946			break;
 947		default:
 948			goto err_hwlock;
 949		}
 950		break;
 951
 952	case 12:
 953		switch (config->val_bits) {
 954		case 20:
 955			map->format.format_write = regmap_format_12_20_write;
 956			break;
 957		default:
 958			goto err_hwlock;
 959		}
 960		break;
 961
 962	case 8:
 963		map->format.format_reg = regmap_format_8;
 964		break;
 965
 966	case 16:
 967		switch (reg_endian) {
 968		case REGMAP_ENDIAN_BIG:
 969			map->format.format_reg = regmap_format_16_be;
 970			break;
 971		case REGMAP_ENDIAN_LITTLE:
 972			map->format.format_reg = regmap_format_16_le;
 973			break;
 974		case REGMAP_ENDIAN_NATIVE:
 975			map->format.format_reg = regmap_format_16_native;
 976			break;
 977		default:
 978			goto err_hwlock;
 979		}
 980		break;
 981
 982	case 24:
 983		switch (reg_endian) {
 984		case REGMAP_ENDIAN_BIG:
 985			map->format.format_reg = regmap_format_24_be;
 986			break;
 987		default:
 988			goto err_hwlock;
 989		}
 990		break;
 991
 992	case 32:
 993		switch (reg_endian) {
 994		case REGMAP_ENDIAN_BIG:
 995			map->format.format_reg = regmap_format_32_be;
 996			break;
 997		case REGMAP_ENDIAN_LITTLE:
 998			map->format.format_reg = regmap_format_32_le;
 999			break;
1000		case REGMAP_ENDIAN_NATIVE:
1001			map->format.format_reg = regmap_format_32_native;
1002			break;
1003		default:
1004			goto err_hwlock;
1005		}
1006		break;
1007
1008#ifdef CONFIG_64BIT
1009	case 64:
1010		switch (reg_endian) {
1011		case REGMAP_ENDIAN_BIG:
1012			map->format.format_reg = regmap_format_64_be;
1013			break;
1014		case REGMAP_ENDIAN_LITTLE:
1015			map->format.format_reg = regmap_format_64_le;
1016			break;
1017		case REGMAP_ENDIAN_NATIVE:
1018			map->format.format_reg = regmap_format_64_native;
1019			break;
1020		default:
1021			goto err_hwlock;
1022		}
1023		break;
1024#endif
1025
1026	default:
1027		goto err_hwlock;
1028	}
1029
1030	if (val_endian == REGMAP_ENDIAN_NATIVE)
1031		map->format.parse_inplace = regmap_parse_inplace_noop;
1032
1033	switch (config->val_bits) {
1034	case 8:
1035		map->format.format_val = regmap_format_8;
1036		map->format.parse_val = regmap_parse_8;
1037		map->format.parse_inplace = regmap_parse_inplace_noop;
1038		break;
1039	case 16:
1040		switch (val_endian) {
1041		case REGMAP_ENDIAN_BIG:
1042			map->format.format_val = regmap_format_16_be;
1043			map->format.parse_val = regmap_parse_16_be;
1044			map->format.parse_inplace = regmap_parse_16_be_inplace;
1045			break;
1046		case REGMAP_ENDIAN_LITTLE:
1047			map->format.format_val = regmap_format_16_le;
1048			map->format.parse_val = regmap_parse_16_le;
1049			map->format.parse_inplace = regmap_parse_16_le_inplace;
1050			break;
1051		case REGMAP_ENDIAN_NATIVE:
1052			map->format.format_val = regmap_format_16_native;
1053			map->format.parse_val = regmap_parse_16_native;
1054			break;
1055		default:
1056			goto err_hwlock;
1057		}
1058		break;
1059	case 24:
1060		switch (val_endian) {
1061		case REGMAP_ENDIAN_BIG:
1062			map->format.format_val = regmap_format_24_be;
1063			map->format.parse_val = regmap_parse_24_be;
1064			break;
1065		default:
1066			goto err_hwlock;
1067		}
 
1068		break;
1069	case 32:
1070		switch (val_endian) {
1071		case REGMAP_ENDIAN_BIG:
1072			map->format.format_val = regmap_format_32_be;
1073			map->format.parse_val = regmap_parse_32_be;
1074			map->format.parse_inplace = regmap_parse_32_be_inplace;
1075			break;
1076		case REGMAP_ENDIAN_LITTLE:
1077			map->format.format_val = regmap_format_32_le;
1078			map->format.parse_val = regmap_parse_32_le;
1079			map->format.parse_inplace = regmap_parse_32_le_inplace;
1080			break;
1081		case REGMAP_ENDIAN_NATIVE:
1082			map->format.format_val = regmap_format_32_native;
1083			map->format.parse_val = regmap_parse_32_native;
1084			break;
1085		default:
1086			goto err_hwlock;
1087		}
1088		break;
1089#ifdef CONFIG_64BIT
1090	case 64:
1091		switch (val_endian) {
1092		case REGMAP_ENDIAN_BIG:
1093			map->format.format_val = regmap_format_64_be;
1094			map->format.parse_val = regmap_parse_64_be;
1095			map->format.parse_inplace = regmap_parse_64_be_inplace;
1096			break;
1097		case REGMAP_ENDIAN_LITTLE:
1098			map->format.format_val = regmap_format_64_le;
1099			map->format.parse_val = regmap_parse_64_le;
1100			map->format.parse_inplace = regmap_parse_64_le_inplace;
1101			break;
1102		case REGMAP_ENDIAN_NATIVE:
1103			map->format.format_val = regmap_format_64_native;
1104			map->format.parse_val = regmap_parse_64_native;
1105			break;
1106		default:
1107			goto err_hwlock;
1108		}
1109		break;
1110#endif
1111	}
1112
1113	if (map->format.format_write) {
1114		if ((reg_endian != REGMAP_ENDIAN_BIG) ||
1115		    (val_endian != REGMAP_ENDIAN_BIG))
1116			goto err_hwlock;
1117		map->use_single_write = true;
1118	}
1119
1120	if (!map->format.format_write &&
1121	    !(map->format.format_reg && map->format.format_val))
1122		goto err_hwlock;
1123
1124	map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
1125	if (map->work_buf == NULL) {
1126		ret = -ENOMEM;
1127		goto err_hwlock;
1128	}
1129
1130	if (map->format.format_write) {
1131		map->defer_caching = false;
1132		map->reg_write = _regmap_bus_formatted_write;
1133	} else if (map->format.format_val) {
1134		map->defer_caching = true;
1135		map->reg_write = _regmap_bus_raw_write;
1136	}
1137
1138skip_format_initialization:
1139
1140	map->range_tree = RB_ROOT;
1141	for (i = 0; i < config->num_ranges; i++) {
1142		const struct regmap_range_cfg *range_cfg = &config->ranges[i];
1143		struct regmap_range_node *new;
1144
1145		/* Sanity check */
1146		if (range_cfg->range_max < range_cfg->range_min) {
1147			dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
1148				range_cfg->range_max, range_cfg->range_min);
1149			goto err_range;
1150		}
1151
1152		if (range_cfg->range_max > map->max_register) {
1153			dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
1154				range_cfg->range_max, map->max_register);
1155			goto err_range;
1156		}
1157
1158		if (range_cfg->selector_reg > map->max_register) {
1159			dev_err(map->dev,
1160				"Invalid range %d: selector out of map\n", i);
1161			goto err_range;
1162		}
1163
1164		if (range_cfg->window_len == 0) {
1165			dev_err(map->dev, "Invalid range %d: window_len 0\n",
1166				i);
1167			goto err_range;
1168		}
1169
1170		/* Make sure, that this register range has no selector
1171		   or data window within its boundary */
1172		for (j = 0; j < config->num_ranges; j++) {
1173			unsigned int sel_reg = config->ranges[j].selector_reg;
1174			unsigned int win_min = config->ranges[j].window_start;
1175			unsigned int win_max = win_min +
1176					       config->ranges[j].window_len - 1;
1177
1178			/* Allow data window inside its own virtual range */
1179			if (j == i)
1180				continue;
1181
1182			if (range_cfg->range_min <= sel_reg &&
1183			    sel_reg <= range_cfg->range_max) {
1184				dev_err(map->dev,
1185					"Range %d: selector for %d in window\n",
1186					i, j);
1187				goto err_range;
1188			}
1189
1190			if (!(win_max < range_cfg->range_min ||
1191			      win_min > range_cfg->range_max)) {
1192				dev_err(map->dev,
1193					"Range %d: window for %d in window\n",
1194					i, j);
1195				goto err_range;
1196			}
1197		}
1198
1199		new = kzalloc(sizeof(*new), GFP_KERNEL);
1200		if (new == NULL) {
1201			ret = -ENOMEM;
1202			goto err_range;
1203		}
1204
1205		new->map = map;
1206		new->name = range_cfg->name;
1207		new->range_min = range_cfg->range_min;
1208		new->range_max = range_cfg->range_max;
1209		new->selector_reg = range_cfg->selector_reg;
1210		new->selector_mask = range_cfg->selector_mask;
1211		new->selector_shift = range_cfg->selector_shift;
1212		new->window_start = range_cfg->window_start;
1213		new->window_len = range_cfg->window_len;
1214
1215		if (!_regmap_range_add(map, new)) {
1216			dev_err(map->dev, "Failed to add range %d\n", i);
1217			kfree(new);
1218			goto err_range;
1219		}
1220
1221		if (map->selector_work_buf == NULL) {
1222			map->selector_work_buf =
1223				kzalloc(map->format.buf_size, GFP_KERNEL);
1224			if (map->selector_work_buf == NULL) {
1225				ret = -ENOMEM;
1226				goto err_range;
1227			}
1228		}
1229	}
1230
1231	ret = regcache_init(map, config);
1232	if (ret != 0)
1233		goto err_range;
1234
1235	if (dev) {
1236		ret = regmap_attach_dev(dev, map, config);
1237		if (ret != 0)
1238			goto err_regcache;
1239	} else {
1240		regmap_debugfs_init(map);
1241	}
1242
1243	return map;
1244
1245err_regcache:
1246	regcache_exit(map);
1247err_range:
1248	regmap_range_exit(map);
1249	kfree(map->work_buf);
1250err_hwlock:
1251	if (map->hwlock)
1252		hwspin_lock_free(map->hwlock);
1253err_name:
1254	kfree_const(map->name);
1255err_map:
1256	kfree(map);
1257err:
1258	return ERR_PTR(ret);
1259}
1260EXPORT_SYMBOL_GPL(__regmap_init);
1261
1262static void devm_regmap_release(struct device *dev, void *res)
1263{
1264	regmap_exit(*(struct regmap **)res);
1265}
1266
1267struct regmap *__devm_regmap_init(struct device *dev,
1268				  const struct regmap_bus *bus,
1269				  void *bus_context,
1270				  const struct regmap_config *config,
1271				  struct lock_class_key *lock_key,
1272				  const char *lock_name)
1273{
1274	struct regmap **ptr, *regmap;
1275
1276	ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1277	if (!ptr)
1278		return ERR_PTR(-ENOMEM);
1279
1280	regmap = __regmap_init(dev, bus, bus_context, config,
1281			       lock_key, lock_name);
1282	if (!IS_ERR(regmap)) {
1283		*ptr = regmap;
1284		devres_add(dev, ptr);
1285	} else {
1286		devres_free(ptr);
1287	}
1288
1289	return regmap;
1290}
1291EXPORT_SYMBOL_GPL(__devm_regmap_init);
1292
1293static void regmap_field_init(struct regmap_field *rm_field,
1294	struct regmap *regmap, struct reg_field reg_field)
1295{
1296	rm_field->regmap = regmap;
1297	rm_field->reg = reg_field.reg;
1298	rm_field->shift = reg_field.lsb;
1299	rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1300
1301	WARN_ONCE(rm_field->mask == 0, "invalid empty mask defined\n");
1302
1303	rm_field->id_size = reg_field.id_size;
1304	rm_field->id_offset = reg_field.id_offset;
1305}
1306
1307/**
1308 * devm_regmap_field_alloc() - Allocate and initialise a register field.
1309 *
1310 * @dev: Device that will be interacted with
1311 * @regmap: regmap bank in which this register field is located.
1312 * @reg_field: Register field with in the bank.
1313 *
1314 * The return value will be an ERR_PTR() on error or a valid pointer
1315 * to a struct regmap_field. The regmap_field will be automatically freed
1316 * by the device management code.
1317 */
1318struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1319		struct regmap *regmap, struct reg_field reg_field)
1320{
1321	struct regmap_field *rm_field = devm_kzalloc(dev,
1322					sizeof(*rm_field), GFP_KERNEL);
1323	if (!rm_field)
1324		return ERR_PTR(-ENOMEM);
1325
1326	regmap_field_init(rm_field, regmap, reg_field);
1327
1328	return rm_field;
1329
1330}
1331EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1332
1333
1334/**
1335 * regmap_field_bulk_alloc() - Allocate and initialise a bulk register field.
1336 *
1337 * @regmap: regmap bank in which this register field is located.
1338 * @rm_field: regmap register fields within the bank.
1339 * @reg_field: Register fields within the bank.
1340 * @num_fields: Number of register fields.
1341 *
1342 * The return value will be an -ENOMEM on error or zero for success.
1343 * Newly allocated regmap_fields should be freed by calling
1344 * regmap_field_bulk_free()
1345 */
1346int regmap_field_bulk_alloc(struct regmap *regmap,
1347			    struct regmap_field **rm_field,
1348			    const struct reg_field *reg_field,
1349			    int num_fields)
1350{
1351	struct regmap_field *rf;
1352	int i;
1353
1354	rf = kcalloc(num_fields, sizeof(*rf), GFP_KERNEL);
1355	if (!rf)
1356		return -ENOMEM;
1357
1358	for (i = 0; i < num_fields; i++) {
1359		regmap_field_init(&rf[i], regmap, reg_field[i]);
1360		rm_field[i] = &rf[i];
1361	}
1362
1363	return 0;
1364}
1365EXPORT_SYMBOL_GPL(regmap_field_bulk_alloc);
1366
1367/**
1368 * devm_regmap_field_bulk_alloc() - Allocate and initialise a bulk register
1369 * fields.
1370 *
1371 * @dev: Device that will be interacted with
1372 * @regmap: regmap bank in which this register field is located.
1373 * @rm_field: regmap register fields within the bank.
1374 * @reg_field: Register fields within the bank.
1375 * @num_fields: Number of register fields.
1376 *
1377 * The return value will be an -ENOMEM on error or zero for success.
1378 * Newly allocated regmap_fields will be automatically freed by the
1379 * device management code.
1380 */
1381int devm_regmap_field_bulk_alloc(struct device *dev,
1382				 struct regmap *regmap,
1383				 struct regmap_field **rm_field,
1384				 const struct reg_field *reg_field,
1385				 int num_fields)
1386{
1387	struct regmap_field *rf;
1388	int i;
1389
1390	rf = devm_kcalloc(dev, num_fields, sizeof(*rf), GFP_KERNEL);
1391	if (!rf)
1392		return -ENOMEM;
1393
1394	for (i = 0; i < num_fields; i++) {
1395		regmap_field_init(&rf[i], regmap, reg_field[i]);
1396		rm_field[i] = &rf[i];
1397	}
1398
1399	return 0;
1400}
1401EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_alloc);
1402
1403/**
1404 * regmap_field_bulk_free() - Free register field allocated using
1405 *                       regmap_field_bulk_alloc.
1406 *
1407 * @field: regmap fields which should be freed.
1408 */
1409void regmap_field_bulk_free(struct regmap_field *field)
1410{
1411	kfree(field);
1412}
1413EXPORT_SYMBOL_GPL(regmap_field_bulk_free);
1414
1415/**
1416 * devm_regmap_field_bulk_free() - Free a bulk register field allocated using
1417 *                            devm_regmap_field_bulk_alloc.
1418 *
1419 * @dev: Device that will be interacted with
1420 * @field: regmap field which should be freed.
1421 *
1422 * Free register field allocated using devm_regmap_field_bulk_alloc(). Usually
1423 * drivers need not call this function, as the memory allocated via devm
1424 * will be freed as per device-driver life-cycle.
1425 */
1426void devm_regmap_field_bulk_free(struct device *dev,
1427				 struct regmap_field *field)
1428{
1429	devm_kfree(dev, field);
1430}
1431EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_free);
1432
1433/**
1434 * devm_regmap_field_free() - Free a register field allocated using
1435 *                            devm_regmap_field_alloc.
1436 *
1437 * @dev: Device that will be interacted with
1438 * @field: regmap field which should be freed.
1439 *
1440 * Free register field allocated using devm_regmap_field_alloc(). Usually
1441 * drivers need not call this function, as the memory allocated via devm
1442 * will be freed as per device-driver life-cyle.
1443 */
1444void devm_regmap_field_free(struct device *dev,
1445	struct regmap_field *field)
1446{
1447	devm_kfree(dev, field);
1448}
1449EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1450
1451/**
1452 * regmap_field_alloc() - Allocate and initialise a register field.
1453 *
1454 * @regmap: regmap bank in which this register field is located.
1455 * @reg_field: Register field with in the bank.
1456 *
1457 * The return value will be an ERR_PTR() on error or a valid pointer
1458 * to a struct regmap_field. The regmap_field should be freed by the
1459 * user once its finished working with it using regmap_field_free().
1460 */
1461struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1462		struct reg_field reg_field)
1463{
1464	struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1465
1466	if (!rm_field)
1467		return ERR_PTR(-ENOMEM);
1468
1469	regmap_field_init(rm_field, regmap, reg_field);
1470
1471	return rm_field;
1472}
1473EXPORT_SYMBOL_GPL(regmap_field_alloc);
1474
1475/**
1476 * regmap_field_free() - Free register field allocated using
1477 *                       regmap_field_alloc.
1478 *
1479 * @field: regmap field which should be freed.
1480 */
1481void regmap_field_free(struct regmap_field *field)
1482{
1483	kfree(field);
1484}
1485EXPORT_SYMBOL_GPL(regmap_field_free);
1486
1487/**
1488 * regmap_reinit_cache() - Reinitialise the current register cache
1489 *
1490 * @map: Register map to operate on.
1491 * @config: New configuration.  Only the cache data will be used.
1492 *
1493 * Discard any existing register cache for the map and initialize a
1494 * new cache.  This can be used to restore the cache to defaults or to
1495 * update the cache configuration to reflect runtime discovery of the
1496 * hardware.
1497 *
1498 * No explicit locking is done here, the user needs to ensure that
1499 * this function will not race with other calls to regmap.
1500 */
1501int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1502{
1503	int ret;
1504
1505	regcache_exit(map);
1506	regmap_debugfs_exit(map);
1507
1508	map->max_register = config->max_register;
1509	map->writeable_reg = config->writeable_reg;
1510	map->readable_reg = config->readable_reg;
1511	map->volatile_reg = config->volatile_reg;
1512	map->precious_reg = config->precious_reg;
1513	map->writeable_noinc_reg = config->writeable_noinc_reg;
1514	map->readable_noinc_reg = config->readable_noinc_reg;
1515	map->cache_type = config->cache_type;
1516
1517	ret = regmap_set_name(map, config);
1518	if (ret)
1519		return ret;
1520
1521	regmap_debugfs_init(map);
1522
1523	map->cache_bypass = false;
1524	map->cache_only = false;
1525
1526	return regcache_init(map, config);
1527}
1528EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1529
1530/**
1531 * regmap_exit() - Free a previously allocated register map
1532 *
1533 * @map: Register map to operate on.
1534 */
1535void regmap_exit(struct regmap *map)
1536{
1537	struct regmap_async *async;
1538
1539	regcache_exit(map);
1540	regmap_debugfs_exit(map);
1541	regmap_range_exit(map);
1542	if (map->bus && map->bus->free_context)
1543		map->bus->free_context(map->bus_context);
1544	kfree(map->work_buf);
1545	while (!list_empty(&map->async_free)) {
1546		async = list_first_entry_or_null(&map->async_free,
1547						 struct regmap_async,
1548						 list);
1549		list_del(&async->list);
1550		kfree(async->work_buf);
1551		kfree(async);
1552	}
1553	if (map->hwlock)
1554		hwspin_lock_free(map->hwlock);
1555	if (map->lock == regmap_lock_mutex)
1556		mutex_destroy(&map->mutex);
1557	kfree_const(map->name);
1558	kfree(map->patch);
1559	if (map->bus && map->bus->free_on_exit)
1560		kfree(map->bus);
1561	kfree(map);
1562}
1563EXPORT_SYMBOL_GPL(regmap_exit);
1564
1565static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1566{
1567	struct regmap **r = res;
1568	if (!r || !*r) {
1569		WARN_ON(!r || !*r);
1570		return 0;
1571	}
1572
1573	/* If the user didn't specify a name match any */
1574	if (data)
1575		return !strcmp((*r)->name, data);
1576	else
1577		return 1;
1578}
1579
1580/**
1581 * dev_get_regmap() - Obtain the regmap (if any) for a device
1582 *
1583 * @dev: Device to retrieve the map for
1584 * @name: Optional name for the register map, usually NULL.
1585 *
1586 * Returns the regmap for the device if one is present, or NULL.  If
1587 * name is specified then it must match the name specified when
1588 * registering the device, if it is NULL then the first regmap found
1589 * will be used.  Devices with multiple register maps are very rare,
1590 * generic code should normally not need to specify a name.
1591 */
1592struct regmap *dev_get_regmap(struct device *dev, const char *name)
1593{
1594	struct regmap **r = devres_find(dev, dev_get_regmap_release,
1595					dev_get_regmap_match, (void *)name);
1596
1597	if (!r)
1598		return NULL;
1599	return *r;
1600}
1601EXPORT_SYMBOL_GPL(dev_get_regmap);
1602
1603/**
1604 * regmap_get_device() - Obtain the device from a regmap
1605 *
1606 * @map: Register map to operate on.
1607 *
1608 * Returns the underlying device that the regmap has been created for.
1609 */
1610struct device *regmap_get_device(struct regmap *map)
1611{
1612	return map->dev;
1613}
1614EXPORT_SYMBOL_GPL(regmap_get_device);
1615
1616static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1617			       struct regmap_range_node *range,
1618			       unsigned int val_num)
1619{
1620	void *orig_work_buf;
1621	unsigned int win_offset;
1622	unsigned int win_page;
1623	bool page_chg;
1624	int ret;
1625
1626	win_offset = (*reg - range->range_min) % range->window_len;
1627	win_page = (*reg - range->range_min) / range->window_len;
1628
1629	if (val_num > 1) {
1630		/* Bulk write shouldn't cross range boundary */
1631		if (*reg + val_num - 1 > range->range_max)
1632			return -EINVAL;
1633
1634		/* ... or single page boundary */
1635		if (val_num > range->window_len - win_offset)
1636			return -EINVAL;
1637	}
1638
1639	/* It is possible to have selector register inside data window.
1640	   In that case, selector register is located on every page and
1641	   it needs no page switching, when accessed alone. */
1642	if (val_num > 1 ||
1643	    range->window_start + win_offset != range->selector_reg) {
1644		/* Use separate work_buf during page switching */
1645		orig_work_buf = map->work_buf;
1646		map->work_buf = map->selector_work_buf;
1647
1648		ret = _regmap_update_bits(map, range->selector_reg,
1649					  range->selector_mask,
1650					  win_page << range->selector_shift,
1651					  &page_chg, false);
1652
1653		map->work_buf = orig_work_buf;
1654
1655		if (ret != 0)
1656			return ret;
1657	}
1658
1659	*reg = range->window_start + win_offset;
1660
1661	return 0;
1662}
1663
1664static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
1665					  unsigned long mask)
1666{
1667	u8 *buf;
1668	int i;
1669
1670	if (!mask || !map->work_buf)
1671		return;
1672
1673	buf = map->work_buf;
1674
1675	for (i = 0; i < max_bytes; i++)
1676		buf[i] |= (mask >> (8 * i)) & 0xff;
1677}
1678
1679static int _regmap_raw_write_impl(struct regmap *map, unsigned int reg,
1680				  const void *val, size_t val_len, bool noinc)
1681{
1682	struct regmap_range_node *range;
1683	unsigned long flags;
1684	void *work_val = map->work_buf + map->format.reg_bytes +
1685		map->format.pad_bytes;
1686	void *buf;
1687	int ret = -ENOTSUPP;
1688	size_t len;
1689	int i;
1690
1691	/* Check for unwritable or noinc registers in range
1692	 * before we start
1693	 */
1694	if (!regmap_writeable_noinc(map, reg)) {
1695		for (i = 0; i < val_len / map->format.val_bytes; i++) {
1696			unsigned int element =
1697				reg + regmap_get_offset(map, i);
1698			if (!regmap_writeable(map, element) ||
1699				regmap_writeable_noinc(map, element))
1700				return -EINVAL;
1701		}
1702	}
1703
1704	if (!map->cache_bypass && map->format.parse_val) {
1705		unsigned int ival;
1706		int val_bytes = map->format.val_bytes;
1707		for (i = 0; i < val_len / val_bytes; i++) {
1708			ival = map->format.parse_val(val + (i * val_bytes));
1709			ret = regcache_write(map,
1710					     reg + regmap_get_offset(map, i),
1711					     ival);
1712			if (ret) {
1713				dev_err(map->dev,
1714					"Error in caching of register: %x ret: %d\n",
1715					reg + regmap_get_offset(map, i), ret);
1716				return ret;
1717			}
1718		}
1719		if (map->cache_only) {
1720			map->cache_dirty = true;
1721			return 0;
1722		}
1723	}
1724
1725	range = _regmap_range_lookup(map, reg);
1726	if (range) {
1727		int val_num = val_len / map->format.val_bytes;
1728		int win_offset = (reg - range->range_min) % range->window_len;
1729		int win_residue = range->window_len - win_offset;
1730
1731		/* If the write goes beyond the end of the window split it */
1732		while (val_num > win_residue) {
1733			dev_dbg(map->dev, "Writing window %d/%zu\n",
1734				win_residue, val_len / map->format.val_bytes);
1735			ret = _regmap_raw_write_impl(map, reg, val,
1736						     win_residue *
1737						     map->format.val_bytes, noinc);
1738			if (ret != 0)
1739				return ret;
1740
1741			reg += win_residue;
1742			val_num -= win_residue;
1743			val += win_residue * map->format.val_bytes;
1744			val_len -= win_residue * map->format.val_bytes;
1745
1746			win_offset = (reg - range->range_min) %
1747				range->window_len;
1748			win_residue = range->window_len - win_offset;
1749		}
1750
1751		ret = _regmap_select_page(map, &reg, range, noinc ? 1 : val_num);
1752		if (ret != 0)
1753			return ret;
1754	}
1755
1756	reg += map->reg_base;
1757	reg >>= map->format.reg_downshift;
1758	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1759	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
1760				      map->write_flag_mask);
1761
1762	/*
1763	 * Essentially all I/O mechanisms will be faster with a single
1764	 * buffer to write.  Since register syncs often generate raw
1765	 * writes of single registers optimise that case.
1766	 */
1767	if (val != work_val && val_len == map->format.val_bytes) {
1768		memcpy(work_val, val, map->format.val_bytes);
1769		val = work_val;
1770	}
1771
1772	if (map->async && map->bus && map->bus->async_write) {
1773		struct regmap_async *async;
1774
1775		trace_regmap_async_write_start(map, reg, val_len);
1776
1777		spin_lock_irqsave(&map->async_lock, flags);
1778		async = list_first_entry_or_null(&map->async_free,
1779						 struct regmap_async,
1780						 list);
1781		if (async)
1782			list_del(&async->list);
1783		spin_unlock_irqrestore(&map->async_lock, flags);
1784
1785		if (!async) {
1786			async = map->bus->async_alloc();
1787			if (!async)
1788				return -ENOMEM;
1789
1790			async->work_buf = kzalloc(map->format.buf_size,
1791						  GFP_KERNEL | GFP_DMA);
1792			if (!async->work_buf) {
1793				kfree(async);
1794				return -ENOMEM;
1795			}
1796		}
1797
1798		async->map = map;
1799
1800		/* If the caller supplied the value we can use it safely. */
1801		memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1802		       map->format.reg_bytes + map->format.val_bytes);
1803
1804		spin_lock_irqsave(&map->async_lock, flags);
1805		list_add_tail(&async->list, &map->async_list);
1806		spin_unlock_irqrestore(&map->async_lock, flags);
1807
1808		if (val != work_val)
1809			ret = map->bus->async_write(map->bus_context,
1810						    async->work_buf,
1811						    map->format.reg_bytes +
1812						    map->format.pad_bytes,
1813						    val, val_len, async);
1814		else
1815			ret = map->bus->async_write(map->bus_context,
1816						    async->work_buf,
1817						    map->format.reg_bytes +
1818						    map->format.pad_bytes +
1819						    val_len, NULL, 0, async);
1820
1821		if (ret != 0) {
1822			dev_err(map->dev, "Failed to schedule write: %d\n",
1823				ret);
1824
1825			spin_lock_irqsave(&map->async_lock, flags);
1826			list_move(&async->list, &map->async_free);
1827			spin_unlock_irqrestore(&map->async_lock, flags);
1828		}
1829
1830		return ret;
1831	}
1832
1833	trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1834
1835	/* If we're doing a single register write we can probably just
1836	 * send the work_buf directly, otherwise try to do a gather
1837	 * write.
1838	 */
1839	if (val == work_val)
1840		ret = map->write(map->bus_context, map->work_buf,
1841				 map->format.reg_bytes +
1842				 map->format.pad_bytes +
1843				 val_len);
1844	else if (map->bus && map->bus->gather_write)
1845		ret = map->bus->gather_write(map->bus_context, map->work_buf,
1846					     map->format.reg_bytes +
1847					     map->format.pad_bytes,
1848					     val, val_len);
1849	else
1850		ret = -ENOTSUPP;
1851
1852	/* If that didn't work fall back on linearising by hand. */
1853	if (ret == -ENOTSUPP) {
1854		len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1855		buf = kzalloc(len, GFP_KERNEL);
1856		if (!buf)
1857			return -ENOMEM;
1858
1859		memcpy(buf, map->work_buf, map->format.reg_bytes);
1860		memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1861		       val, val_len);
1862		ret = map->write(map->bus_context, buf, len);
1863
1864		kfree(buf);
1865	} else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1866		/* regcache_drop_region() takes lock that we already have,
1867		 * thus call map->cache_ops->drop() directly
1868		 */
1869		if (map->cache_ops && map->cache_ops->drop)
1870			map->cache_ops->drop(map, reg, reg + 1);
1871	}
1872
1873	trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1874
1875	return ret;
1876}
1877
1878/**
1879 * regmap_can_raw_write - Test if regmap_raw_write() is supported
1880 *
1881 * @map: Map to check.
1882 */
1883bool regmap_can_raw_write(struct regmap *map)
1884{
1885	return map->write && map->format.format_val && map->format.format_reg;
 
1886}
1887EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1888
1889/**
1890 * regmap_get_raw_read_max - Get the maximum size we can read
1891 *
1892 * @map: Map to check.
1893 */
1894size_t regmap_get_raw_read_max(struct regmap *map)
1895{
1896	return map->max_raw_read;
1897}
1898EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1899
1900/**
1901 * regmap_get_raw_write_max - Get the maximum size we can read
1902 *
1903 * @map: Map to check.
1904 */
1905size_t regmap_get_raw_write_max(struct regmap *map)
1906{
1907	return map->max_raw_write;
1908}
1909EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1910
1911static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1912				       unsigned int val)
1913{
1914	int ret;
1915	struct regmap_range_node *range;
1916	struct regmap *map = context;
1917
1918	WARN_ON(!map->format.format_write);
1919
1920	range = _regmap_range_lookup(map, reg);
1921	if (range) {
1922		ret = _regmap_select_page(map, &reg, range, 1);
1923		if (ret != 0)
1924			return ret;
1925	}
1926
1927	reg += map->reg_base;
1928	reg >>= map->format.reg_downshift;
1929	map->format.format_write(map, reg, val);
1930
1931	trace_regmap_hw_write_start(map, reg, 1);
1932
1933	ret = map->write(map->bus_context, map->work_buf, map->format.buf_size);
 
1934
1935	trace_regmap_hw_write_done(map, reg, 1);
1936
1937	return ret;
1938}
1939
1940static int _regmap_bus_reg_write(void *context, unsigned int reg,
1941				 unsigned int val)
1942{
1943	struct regmap *map = context;
1944
1945	return map->bus->reg_write(map->bus_context, reg, val);
1946}
1947
1948static int _regmap_bus_raw_write(void *context, unsigned int reg,
1949				 unsigned int val)
1950{
1951	struct regmap *map = context;
1952
1953	WARN_ON(!map->format.format_val);
1954
1955	map->format.format_val(map->work_buf + map->format.reg_bytes
1956			       + map->format.pad_bytes, val, 0);
1957	return _regmap_raw_write_impl(map, reg,
1958				      map->work_buf +
1959				      map->format.reg_bytes +
1960				      map->format.pad_bytes,
1961				      map->format.val_bytes,
1962				      false);
1963}
1964
1965static inline void *_regmap_map_get_context(struct regmap *map)
1966{
1967	return (map->bus || (!map->bus && map->read)) ? map : map->bus_context;
1968}
1969
1970int _regmap_write(struct regmap *map, unsigned int reg,
1971		  unsigned int val)
1972{
1973	int ret;
1974	void *context = _regmap_map_get_context(map);
1975
1976	if (!regmap_writeable(map, reg))
1977		return -EIO;
1978
1979	if (!map->cache_bypass && !map->defer_caching) {
1980		ret = regcache_write(map, reg, val);
1981		if (ret != 0)
1982			return ret;
1983		if (map->cache_only) {
1984			map->cache_dirty = true;
1985			return 0;
1986		}
1987	}
1988
1989	ret = map->reg_write(context, reg, val);
1990	if (ret == 0) {
1991		if (regmap_should_log(map))
1992			dev_info(map->dev, "%x <= %x\n", reg, val);
1993
1994		trace_regmap_reg_write(map, reg, val);
1995	}
1996
1997	return ret;
1998}
1999
2000/**
2001 * regmap_write() - Write a value to a single register
2002 *
2003 * @map: Register map to write to
2004 * @reg: Register to write to
2005 * @val: Value to be written
2006 *
2007 * A value of zero will be returned on success, a negative errno will
2008 * be returned in error cases.
2009 */
2010int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
2011{
2012	int ret;
2013
2014	if (!IS_ALIGNED(reg, map->reg_stride))
2015		return -EINVAL;
2016
2017	map->lock(map->lock_arg);
2018
2019	ret = _regmap_write(map, reg, val);
2020
2021	map->unlock(map->lock_arg);
2022
2023	return ret;
2024}
2025EXPORT_SYMBOL_GPL(regmap_write);
2026
2027/**
2028 * regmap_write_async() - Write a value to a single register asynchronously
2029 *
2030 * @map: Register map to write to
2031 * @reg: Register to write to
2032 * @val: Value to be written
2033 *
2034 * A value of zero will be returned on success, a negative errno will
2035 * be returned in error cases.
2036 */
2037int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
2038{
2039	int ret;
2040
2041	if (!IS_ALIGNED(reg, map->reg_stride))
2042		return -EINVAL;
2043
2044	map->lock(map->lock_arg);
2045
2046	map->async = true;
2047
2048	ret = _regmap_write(map, reg, val);
2049
2050	map->async = false;
2051
2052	map->unlock(map->lock_arg);
2053
2054	return ret;
2055}
2056EXPORT_SYMBOL_GPL(regmap_write_async);
2057
2058int _regmap_raw_write(struct regmap *map, unsigned int reg,
2059		      const void *val, size_t val_len, bool noinc)
2060{
2061	size_t val_bytes = map->format.val_bytes;
2062	size_t val_count = val_len / val_bytes;
2063	size_t chunk_count, chunk_bytes;
2064	size_t chunk_regs = val_count;
2065	int ret, i;
2066
2067	if (!val_count)
2068		return -EINVAL;
2069
2070	if (map->use_single_write)
2071		chunk_regs = 1;
2072	else if (map->max_raw_write && val_len > map->max_raw_write)
2073		chunk_regs = map->max_raw_write / val_bytes;
2074
2075	chunk_count = val_count / chunk_regs;
2076	chunk_bytes = chunk_regs * val_bytes;
2077
2078	/* Write as many bytes as possible with chunk_size */
2079	for (i = 0; i < chunk_count; i++) {
2080		ret = _regmap_raw_write_impl(map, reg, val, chunk_bytes, noinc);
2081		if (ret)
2082			return ret;
2083
2084		reg += regmap_get_offset(map, chunk_regs);
2085		val += chunk_bytes;
2086		val_len -= chunk_bytes;
2087	}
2088
2089	/* Write remaining bytes */
2090	if (val_len)
2091		ret = _regmap_raw_write_impl(map, reg, val, val_len, noinc);
2092
2093	return ret;
2094}
2095
2096/**
2097 * regmap_raw_write() - Write raw values to one or more registers
2098 *
2099 * @map: Register map to write to
2100 * @reg: Initial register to write to
2101 * @val: Block of data to be written, laid out for direct transmission to the
2102 *       device
2103 * @val_len: Length of data pointed to by val.
2104 *
2105 * This function is intended to be used for things like firmware
2106 * download where a large block of data needs to be transferred to the
2107 * device.  No formatting will be done on the data provided.
2108 *
2109 * A value of zero will be returned on success, a negative errno will
2110 * be returned in error cases.
2111 */
2112int regmap_raw_write(struct regmap *map, unsigned int reg,
2113		     const void *val, size_t val_len)
2114{
2115	int ret;
2116
2117	if (!regmap_can_raw_write(map))
2118		return -EINVAL;
2119	if (val_len % map->format.val_bytes)
2120		return -EINVAL;
2121
2122	map->lock(map->lock_arg);
2123
2124	ret = _regmap_raw_write(map, reg, val, val_len, false);
2125
2126	map->unlock(map->lock_arg);
2127
2128	return ret;
2129}
2130EXPORT_SYMBOL_GPL(regmap_raw_write);
2131
2132static int regmap_noinc_readwrite(struct regmap *map, unsigned int reg,
2133				  void *val, unsigned int val_len, bool write)
2134{
2135	size_t val_bytes = map->format.val_bytes;
2136	size_t val_count = val_len / val_bytes;
2137	unsigned int lastval;
2138	u8 *u8p;
2139	u16 *u16p;
2140	u32 *u32p;
2141#ifdef CONFIG_64BIT
2142	u64 *u64p;
2143#endif
2144	int ret;
2145	int i;
2146
2147	switch (val_bytes) {
2148	case 1:
2149		u8p = val;
2150		if (write)
2151			lastval = (unsigned int)u8p[val_count - 1];
2152		break;
2153	case 2:
2154		u16p = val;
2155		if (write)
2156			lastval = (unsigned int)u16p[val_count - 1];
2157		break;
2158	case 4:
2159		u32p = val;
2160		if (write)
2161			lastval = (unsigned int)u32p[val_count - 1];
2162		break;
2163#ifdef CONFIG_64BIT
2164	case 8:
2165		u64p = val;
2166		if (write)
2167			lastval = (unsigned int)u64p[val_count - 1];
2168		break;
2169#endif
2170	default:
2171		return -EINVAL;
2172	}
2173
2174	/*
2175	 * Update the cache with the last value we write, the rest is just
2176	 * gone down in the hardware FIFO. We can't cache FIFOs. This makes
2177	 * sure a single read from the cache will work.
2178	 */
2179	if (write) {
2180		if (!map->cache_bypass && !map->defer_caching) {
2181			ret = regcache_write(map, reg, lastval);
2182			if (ret != 0)
2183				return ret;
2184			if (map->cache_only) {
2185				map->cache_dirty = true;
2186				return 0;
2187			}
2188		}
2189		ret = map->bus->reg_noinc_write(map->bus_context, reg, val, val_count);
2190	} else {
2191		ret = map->bus->reg_noinc_read(map->bus_context, reg, val, val_count);
2192	}
2193
2194	if (!ret && regmap_should_log(map)) {
2195		dev_info(map->dev, "%x %s [", reg, write ? "<=" : "=>");
2196		for (i = 0; i < val_count; i++) {
2197			switch (val_bytes) {
2198			case 1:
2199				pr_cont("%x", u8p[i]);
2200				break;
2201			case 2:
2202				pr_cont("%x", u16p[i]);
2203				break;
2204			case 4:
2205				pr_cont("%x", u32p[i]);
2206				break;
2207#ifdef CONFIG_64BIT
2208			case 8:
2209				pr_cont("%llx", u64p[i]);
2210				break;
2211#endif
2212			default:
2213				break;
2214			}
2215			if (i == (val_count - 1))
2216				pr_cont("]\n");
2217			else
2218				pr_cont(",");
2219		}
2220	}
2221
2222	return 0;
2223}
2224
2225/**
2226 * regmap_noinc_write(): Write data from a register without incrementing the
2227 *			register number
2228 *
2229 * @map: Register map to write to
2230 * @reg: Register to write to
2231 * @val: Pointer to data buffer
2232 * @val_len: Length of output buffer in bytes.
2233 *
2234 * The regmap API usually assumes that bulk bus write operations will write a
2235 * range of registers. Some devices have certain registers for which a write
2236 * operation can write to an internal FIFO.
2237 *
2238 * The target register must be volatile but registers after it can be
2239 * completely unrelated cacheable registers.
2240 *
2241 * This will attempt multiple writes as required to write val_len bytes.
2242 *
2243 * A value of zero will be returned on success, a negative errno will be
2244 * returned in error cases.
2245 */
2246int regmap_noinc_write(struct regmap *map, unsigned int reg,
2247		      const void *val, size_t val_len)
2248{
2249	size_t write_len;
2250	int ret;
2251
2252	if (!map->write && !(map->bus && map->bus->reg_noinc_write))
2253		return -EINVAL;
2254	if (val_len % map->format.val_bytes)
2255		return -EINVAL;
2256	if (!IS_ALIGNED(reg, map->reg_stride))
2257		return -EINVAL;
2258	if (val_len == 0)
2259		return -EINVAL;
2260
2261	map->lock(map->lock_arg);
2262
2263	if (!regmap_volatile(map, reg) || !regmap_writeable_noinc(map, reg)) {
2264		ret = -EINVAL;
2265		goto out_unlock;
2266	}
2267
2268	/*
2269	 * Use the accelerated operation if we can. The val drops the const
2270	 * typing in order to facilitate code reuse in regmap_noinc_readwrite().
2271	 */
2272	if (map->bus->reg_noinc_write) {
2273		ret = regmap_noinc_readwrite(map, reg, (void *)val, val_len, true);
2274		goto out_unlock;
2275	}
2276
2277	while (val_len) {
2278		if (map->max_raw_write && map->max_raw_write < val_len)
2279			write_len = map->max_raw_write;
2280		else
2281			write_len = val_len;
2282		ret = _regmap_raw_write(map, reg, val, write_len, true);
2283		if (ret)
2284			goto out_unlock;
2285		val = ((u8 *)val) + write_len;
2286		val_len -= write_len;
2287	}
2288
2289out_unlock:
2290	map->unlock(map->lock_arg);
2291	return ret;
2292}
2293EXPORT_SYMBOL_GPL(regmap_noinc_write);
2294
2295/**
2296 * regmap_field_update_bits_base() - Perform a read/modify/write cycle a
2297 *                                   register field.
2298 *
2299 * @field: Register field to write to
2300 * @mask: Bitmask to change
2301 * @val: Value to be written
2302 * @change: Boolean indicating if a write was done
2303 * @async: Boolean indicating asynchronously
2304 * @force: Boolean indicating use force update
2305 *
2306 * Perform a read/modify/write cycle on the register field with change,
2307 * async, force option.
2308 *
2309 * A value of zero will be returned on success, a negative errno will
2310 * be returned in error cases.
2311 */
2312int regmap_field_update_bits_base(struct regmap_field *field,
2313				  unsigned int mask, unsigned int val,
2314				  bool *change, bool async, bool force)
2315{
2316	mask = (mask << field->shift) & field->mask;
2317
2318	return regmap_update_bits_base(field->regmap, field->reg,
2319				       mask, val << field->shift,
2320				       change, async, force);
2321}
2322EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
2323
2324/**
2325 * regmap_field_test_bits() - Check if all specified bits are set in a
2326 *                            register field.
2327 *
2328 * @field: Register field to operate on
2329 * @bits: Bits to test
2330 *
2331 * Returns -1 if the underlying regmap_field_read() fails, 0 if at least one of the
2332 * tested bits is not set and 1 if all tested bits are set.
2333 */
2334int regmap_field_test_bits(struct regmap_field *field, unsigned int bits)
2335{
2336	unsigned int val, ret;
2337
2338	ret = regmap_field_read(field, &val);
2339	if (ret)
2340		return ret;
2341
2342	return (val & bits) == bits;
2343}
2344EXPORT_SYMBOL_GPL(regmap_field_test_bits);
2345
2346/**
2347 * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a
2348 *                                    register field with port ID
2349 *
2350 * @field: Register field to write to
2351 * @id: port ID
2352 * @mask: Bitmask to change
2353 * @val: Value to be written
2354 * @change: Boolean indicating if a write was done
2355 * @async: Boolean indicating asynchronously
2356 * @force: Boolean indicating use force update
2357 *
2358 * A value of zero will be returned on success, a negative errno will
2359 * be returned in error cases.
2360 */
2361int regmap_fields_update_bits_base(struct regmap_field *field, unsigned int id,
2362				   unsigned int mask, unsigned int val,
2363				   bool *change, bool async, bool force)
2364{
2365	if (id >= field->id_size)
2366		return -EINVAL;
2367
2368	mask = (mask << field->shift) & field->mask;
2369
2370	return regmap_update_bits_base(field->regmap,
2371				       field->reg + (field->id_offset * id),
2372				       mask, val << field->shift,
2373				       change, async, force);
2374}
2375EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
2376
2377/**
2378 * regmap_bulk_write() - Write multiple registers to the device
2379 *
2380 * @map: Register map to write to
2381 * @reg: First register to be write from
2382 * @val: Block of data to be written, in native register size for device
2383 * @val_count: Number of registers to write
2384 *
2385 * This function is intended to be used for writing a large block of
2386 * data to the device either in single transfer or multiple transfer.
2387 *
2388 * A value of zero will be returned on success, a negative errno will
2389 * be returned in error cases.
2390 */
2391int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
2392		     size_t val_count)
2393{
2394	int ret = 0, i;
2395	size_t val_bytes = map->format.val_bytes;
2396
2397	if (!IS_ALIGNED(reg, map->reg_stride))
2398		return -EINVAL;
2399
2400	/*
2401	 * Some devices don't support bulk write, for them we have a series of
2402	 * single write operations.
2403	 */
2404	if (!map->write || !map->format.parse_inplace) {
2405		map->lock(map->lock_arg);
2406		for (i = 0; i < val_count; i++) {
2407			unsigned int ival;
2408
2409			switch (val_bytes) {
2410			case 1:
2411				ival = *(u8 *)(val + (i * val_bytes));
2412				break;
2413			case 2:
2414				ival = *(u16 *)(val + (i * val_bytes));
2415				break;
2416			case 4:
2417				ival = *(u32 *)(val + (i * val_bytes));
2418				break;
2419#ifdef CONFIG_64BIT
2420			case 8:
2421				ival = *(u64 *)(val + (i * val_bytes));
2422				break;
2423#endif
2424			default:
2425				ret = -EINVAL;
2426				goto out;
2427			}
2428
2429			ret = _regmap_write(map,
2430					    reg + regmap_get_offset(map, i),
2431					    ival);
2432			if (ret != 0)
2433				goto out;
2434		}
2435out:
2436		map->unlock(map->lock_arg);
2437	} else {
2438		void *wval;
2439
2440		wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
2441		if (!wval)
2442			return -ENOMEM;
2443
2444		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2445			map->format.parse_inplace(wval + i);
2446
2447		ret = regmap_raw_write(map, reg, wval, val_bytes * val_count);
2448
2449		kfree(wval);
2450	}
2451
2452	if (!ret)
2453		trace_regmap_bulk_write(map, reg, val, val_bytes * val_count);
2454
2455	return ret;
2456}
2457EXPORT_SYMBOL_GPL(regmap_bulk_write);
2458
2459/*
2460 * _regmap_raw_multi_reg_write()
2461 *
2462 * the (register,newvalue) pairs in regs have not been formatted, but
2463 * they are all in the same page and have been changed to being page
2464 * relative. The page register has been written if that was necessary.
2465 */
2466static int _regmap_raw_multi_reg_write(struct regmap *map,
2467				       const struct reg_sequence *regs,
2468				       size_t num_regs)
2469{
2470	int ret;
2471	void *buf;
2472	int i;
2473	u8 *u8;
2474	size_t val_bytes = map->format.val_bytes;
2475	size_t reg_bytes = map->format.reg_bytes;
2476	size_t pad_bytes = map->format.pad_bytes;
2477	size_t pair_size = reg_bytes + pad_bytes + val_bytes;
2478	size_t len = pair_size * num_regs;
2479
2480	if (!len)
2481		return -EINVAL;
2482
2483	buf = kzalloc(len, GFP_KERNEL);
2484	if (!buf)
2485		return -ENOMEM;
2486
2487	/* We have to linearise by hand. */
2488
2489	u8 = buf;
2490
2491	for (i = 0; i < num_regs; i++) {
2492		unsigned int reg = regs[i].reg;
2493		unsigned int val = regs[i].def;
2494		trace_regmap_hw_write_start(map, reg, 1);
2495		reg += map->reg_base;
2496		reg >>= map->format.reg_downshift;
2497		map->format.format_reg(u8, reg, map->reg_shift);
2498		u8 += reg_bytes + pad_bytes;
2499		map->format.format_val(u8, val, 0);
2500		u8 += val_bytes;
2501	}
2502	u8 = buf;
2503	*u8 |= map->write_flag_mask;
2504
2505	ret = map->write(map->bus_context, buf, len);
2506
2507	kfree(buf);
2508
2509	for (i = 0; i < num_regs; i++) {
2510		int reg = regs[i].reg;
2511		trace_regmap_hw_write_done(map, reg, 1);
2512	}
2513	return ret;
2514}
2515
2516static unsigned int _regmap_register_page(struct regmap *map,
2517					  unsigned int reg,
2518					  struct regmap_range_node *range)
2519{
2520	unsigned int win_page = (reg - range->range_min) / range->window_len;
2521
2522	return win_page;
2523}
2524
2525static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2526					       struct reg_sequence *regs,
2527					       size_t num_regs)
2528{
2529	int ret;
2530	int i, n;
2531	struct reg_sequence *base;
2532	unsigned int this_page = 0;
2533	unsigned int page_change = 0;
2534	/*
2535	 * the set of registers are not neccessarily in order, but
2536	 * since the order of write must be preserved this algorithm
2537	 * chops the set each time the page changes. This also applies
2538	 * if there is a delay required at any point in the sequence.
2539	 */
2540	base = regs;
2541	for (i = 0, n = 0; i < num_regs; i++, n++) {
2542		unsigned int reg = regs[i].reg;
2543		struct regmap_range_node *range;
2544
2545		range = _regmap_range_lookup(map, reg);
2546		if (range) {
2547			unsigned int win_page = _regmap_register_page(map, reg,
2548								      range);
2549
2550			if (i == 0)
2551				this_page = win_page;
2552			if (win_page != this_page) {
2553				this_page = win_page;
2554				page_change = 1;
2555			}
2556		}
2557
2558		/* If we have both a page change and a delay make sure to
2559		 * write the regs and apply the delay before we change the
2560		 * page.
2561		 */
2562
2563		if (page_change || regs[i].delay_us) {
2564
2565				/* For situations where the first write requires
2566				 * a delay we need to make sure we don't call
2567				 * raw_multi_reg_write with n=0
2568				 * This can't occur with page breaks as we
2569				 * never write on the first iteration
2570				 */
2571				if (regs[i].delay_us && i == 0)
2572					n = 1;
2573
2574				ret = _regmap_raw_multi_reg_write(map, base, n);
2575				if (ret != 0)
2576					return ret;
2577
2578				if (regs[i].delay_us) {
2579					if (map->can_sleep)
2580						fsleep(regs[i].delay_us);
2581					else
2582						udelay(regs[i].delay_us);
2583				}
2584
2585				base += n;
2586				n = 0;
2587
2588				if (page_change) {
2589					ret = _regmap_select_page(map,
2590								  &base[n].reg,
2591								  range, 1);
2592					if (ret != 0)
2593						return ret;
2594
2595					page_change = 0;
2596				}
2597
2598		}
2599
2600	}
2601	if (n > 0)
2602		return _regmap_raw_multi_reg_write(map, base, n);
2603	return 0;
2604}
2605
2606static int _regmap_multi_reg_write(struct regmap *map,
2607				   const struct reg_sequence *regs,
2608				   size_t num_regs)
2609{
2610	int i;
2611	int ret;
2612
2613	if (!map->can_multi_write) {
2614		for (i = 0; i < num_regs; i++) {
2615			ret = _regmap_write(map, regs[i].reg, regs[i].def);
2616			if (ret != 0)
2617				return ret;
2618
2619			if (regs[i].delay_us) {
2620				if (map->can_sleep)
2621					fsleep(regs[i].delay_us);
2622				else
2623					udelay(regs[i].delay_us);
2624			}
2625		}
2626		return 0;
2627	}
2628
2629	if (!map->format.parse_inplace)
2630		return -EINVAL;
2631
2632	if (map->writeable_reg)
2633		for (i = 0; i < num_regs; i++) {
2634			int reg = regs[i].reg;
2635			if (!map->writeable_reg(map->dev, reg))
2636				return -EINVAL;
2637			if (!IS_ALIGNED(reg, map->reg_stride))
2638				return -EINVAL;
2639		}
2640
2641	if (!map->cache_bypass) {
2642		for (i = 0; i < num_regs; i++) {
2643			unsigned int val = regs[i].def;
2644			unsigned int reg = regs[i].reg;
2645			ret = regcache_write(map, reg, val);
2646			if (ret) {
2647				dev_err(map->dev,
2648				"Error in caching of register: %x ret: %d\n",
2649								reg, ret);
2650				return ret;
2651			}
2652		}
2653		if (map->cache_only) {
2654			map->cache_dirty = true;
2655			return 0;
2656		}
2657	}
2658
2659	WARN_ON(!map->bus);
2660
2661	for (i = 0; i < num_regs; i++) {
2662		unsigned int reg = regs[i].reg;
2663		struct regmap_range_node *range;
2664
2665		/* Coalesce all the writes between a page break or a delay
2666		 * in a sequence
2667		 */
2668		range = _regmap_range_lookup(map, reg);
2669		if (range || regs[i].delay_us) {
2670			size_t len = sizeof(struct reg_sequence)*num_regs;
2671			struct reg_sequence *base = kmemdup(regs, len,
2672							   GFP_KERNEL);
2673			if (!base)
2674				return -ENOMEM;
2675			ret = _regmap_range_multi_paged_reg_write(map, base,
2676								  num_regs);
2677			kfree(base);
2678
2679			return ret;
2680		}
2681	}
2682	return _regmap_raw_multi_reg_write(map, regs, num_regs);
2683}
2684
2685/**
2686 * regmap_multi_reg_write() - Write multiple registers to the device
2687 *
2688 * @map: Register map to write to
2689 * @regs: Array of structures containing register,value to be written
2690 * @num_regs: Number of registers to write
2691 *
2692 * Write multiple registers to the device where the set of register, value
2693 * pairs are supplied in any order, possibly not all in a single range.
2694 *
2695 * The 'normal' block write mode will send ultimately send data on the
2696 * target bus as R,V1,V2,V3,..,Vn where successively higher registers are
2697 * addressed. However, this alternative block multi write mode will send
2698 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2699 * must of course support the mode.
2700 *
2701 * A value of zero will be returned on success, a negative errno will be
2702 * returned in error cases.
2703 */
2704int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2705			   int num_regs)
2706{
2707	int ret;
2708
2709	map->lock(map->lock_arg);
2710
2711	ret = _regmap_multi_reg_write(map, regs, num_regs);
2712
2713	map->unlock(map->lock_arg);
2714
2715	return ret;
2716}
2717EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2718
2719/**
2720 * regmap_multi_reg_write_bypassed() - Write multiple registers to the
2721 *                                     device but not the cache
2722 *
2723 * @map: Register map to write to
2724 * @regs: Array of structures containing register,value to be written
2725 * @num_regs: Number of registers to write
2726 *
2727 * Write multiple registers to the device but not the cache where the set
2728 * of register are supplied in any order.
2729 *
2730 * This function is intended to be used for writing a large block of data
2731 * atomically to the device in single transfer for those I2C client devices
2732 * that implement this alternative block write mode.
2733 *
2734 * A value of zero will be returned on success, a negative errno will
2735 * be returned in error cases.
2736 */
2737int regmap_multi_reg_write_bypassed(struct regmap *map,
2738				    const struct reg_sequence *regs,
2739				    int num_regs)
2740{
2741	int ret;
2742	bool bypass;
2743
2744	map->lock(map->lock_arg);
2745
2746	bypass = map->cache_bypass;
2747	map->cache_bypass = true;
2748
2749	ret = _regmap_multi_reg_write(map, regs, num_regs);
2750
2751	map->cache_bypass = bypass;
2752
2753	map->unlock(map->lock_arg);
2754
2755	return ret;
2756}
2757EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2758
2759/**
2760 * regmap_raw_write_async() - Write raw values to one or more registers
2761 *                            asynchronously
2762 *
2763 * @map: Register map to write to
2764 * @reg: Initial register to write to
2765 * @val: Block of data to be written, laid out for direct transmission to the
2766 *       device.  Must be valid until regmap_async_complete() is called.
2767 * @val_len: Length of data pointed to by val.
2768 *
2769 * This function is intended to be used for things like firmware
2770 * download where a large block of data needs to be transferred to the
2771 * device.  No formatting will be done on the data provided.
2772 *
2773 * If supported by the underlying bus the write will be scheduled
2774 * asynchronously, helping maximise I/O speed on higher speed buses
2775 * like SPI.  regmap_async_complete() can be called to ensure that all
2776 * asynchrnous writes have been completed.
2777 *
2778 * A value of zero will be returned on success, a negative errno will
2779 * be returned in error cases.
2780 */
2781int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2782			   const void *val, size_t val_len)
2783{
2784	int ret;
2785
2786	if (val_len % map->format.val_bytes)
2787		return -EINVAL;
2788	if (!IS_ALIGNED(reg, map->reg_stride))
2789		return -EINVAL;
2790
2791	map->lock(map->lock_arg);
2792
2793	map->async = true;
2794
2795	ret = _regmap_raw_write(map, reg, val, val_len, false);
2796
2797	map->async = false;
2798
2799	map->unlock(map->lock_arg);
2800
2801	return ret;
2802}
2803EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2804
2805static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2806			    unsigned int val_len, bool noinc)
2807{
2808	struct regmap_range_node *range;
2809	int ret;
2810
2811	if (!map->read)
 
 
2812		return -EINVAL;
2813
2814	range = _regmap_range_lookup(map, reg);
2815	if (range) {
2816		ret = _regmap_select_page(map, &reg, range,
2817					  noinc ? 1 : val_len / map->format.val_bytes);
2818		if (ret != 0)
2819			return ret;
2820	}
2821
2822	reg += map->reg_base;
2823	reg >>= map->format.reg_downshift;
2824	map->format.format_reg(map->work_buf, reg, map->reg_shift);
2825	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
2826				      map->read_flag_mask);
2827	trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2828
2829	ret = map->read(map->bus_context, map->work_buf,
2830			map->format.reg_bytes + map->format.pad_bytes,
2831			val, val_len);
2832
2833	trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2834
2835	return ret;
2836}
2837
2838static int _regmap_bus_reg_read(void *context, unsigned int reg,
2839				unsigned int *val)
2840{
2841	struct regmap *map = context;
2842
2843	return map->bus->reg_read(map->bus_context, reg, val);
2844}
2845
2846static int _regmap_bus_read(void *context, unsigned int reg,
2847			    unsigned int *val)
2848{
2849	int ret;
2850	struct regmap *map = context;
2851	void *work_val = map->work_buf + map->format.reg_bytes +
2852		map->format.pad_bytes;
2853
2854	if (!map->format.parse_val)
2855		return -EINVAL;
2856
2857	ret = _regmap_raw_read(map, reg, work_val, map->format.val_bytes, false);
2858	if (ret == 0)
2859		*val = map->format.parse_val(work_val);
2860
2861	return ret;
2862}
2863
2864static int _regmap_read(struct regmap *map, unsigned int reg,
2865			unsigned int *val)
2866{
2867	int ret;
2868	void *context = _regmap_map_get_context(map);
2869
2870	if (!map->cache_bypass) {
2871		ret = regcache_read(map, reg, val);
2872		if (ret == 0)
2873			return 0;
2874	}
2875
2876	if (map->cache_only)
2877		return -EBUSY;
2878
2879	if (!regmap_readable(map, reg))
2880		return -EIO;
2881
2882	ret = map->reg_read(context, reg, val);
2883	if (ret == 0) {
2884		if (regmap_should_log(map))
 
2885			dev_info(map->dev, "%x => %x\n", reg, *val);
 
2886
2887		trace_regmap_reg_read(map, reg, *val);
2888
2889		if (!map->cache_bypass)
2890			regcache_write(map, reg, *val);
2891	}
2892
2893	return ret;
2894}
2895
2896/**
2897 * regmap_read() - Read a value from a single register
2898 *
2899 * @map: Register map to read from
2900 * @reg: Register to be read from
2901 * @val: Pointer to store read value
2902 *
2903 * A value of zero will be returned on success, a negative errno will
2904 * be returned in error cases.
2905 */
2906int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2907{
2908	int ret;
2909
2910	if (!IS_ALIGNED(reg, map->reg_stride))
2911		return -EINVAL;
2912
2913	map->lock(map->lock_arg);
2914
2915	ret = _regmap_read(map, reg, val);
2916
2917	map->unlock(map->lock_arg);
2918
2919	return ret;
2920}
2921EXPORT_SYMBOL_GPL(regmap_read);
2922
2923/**
2924 * regmap_raw_read() - Read raw data from the device
2925 *
2926 * @map: Register map to read from
2927 * @reg: First register to be read from
2928 * @val: Pointer to store read value
2929 * @val_len: Size of data to read
2930 *
2931 * A value of zero will be returned on success, a negative errno will
2932 * be returned in error cases.
2933 */
2934int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2935		    size_t val_len)
2936{
2937	size_t val_bytes = map->format.val_bytes;
2938	size_t val_count = val_len / val_bytes;
2939	unsigned int v;
2940	int ret, i;
2941
 
 
2942	if (val_len % map->format.val_bytes)
2943		return -EINVAL;
2944	if (!IS_ALIGNED(reg, map->reg_stride))
2945		return -EINVAL;
2946	if (val_count == 0)
2947		return -EINVAL;
2948
2949	map->lock(map->lock_arg);
2950
2951	if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2952	    map->cache_type == REGCACHE_NONE) {
2953		size_t chunk_count, chunk_bytes;
2954		size_t chunk_regs = val_count;
2955
2956		if (!map->read) {
2957			ret = -ENOTSUPP;
2958			goto out;
2959		}
2960
2961		if (map->use_single_read)
2962			chunk_regs = 1;
2963		else if (map->max_raw_read && val_len > map->max_raw_read)
2964			chunk_regs = map->max_raw_read / val_bytes;
2965
2966		chunk_count = val_count / chunk_regs;
2967		chunk_bytes = chunk_regs * val_bytes;
2968
2969		/* Read bytes that fit into whole chunks */
2970		for (i = 0; i < chunk_count; i++) {
2971			ret = _regmap_raw_read(map, reg, val, chunk_bytes, false);
2972			if (ret != 0)
2973				goto out;
2974
2975			reg += regmap_get_offset(map, chunk_regs);
2976			val += chunk_bytes;
2977			val_len -= chunk_bytes;
2978		}
2979
2980		/* Read remaining bytes */
2981		if (val_len) {
2982			ret = _regmap_raw_read(map, reg, val, val_len, false);
2983			if (ret != 0)
2984				goto out;
2985		}
2986	} else {
2987		/* Otherwise go word by word for the cache; should be low
2988		 * cost as we expect to hit the cache.
2989		 */
2990		for (i = 0; i < val_count; i++) {
2991			ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2992					   &v);
2993			if (ret != 0)
2994				goto out;
2995
2996			map->format.format_val(val + (i * val_bytes), v, 0);
2997		}
2998	}
2999
3000 out:
3001	map->unlock(map->lock_arg);
3002
3003	return ret;
3004}
3005EXPORT_SYMBOL_GPL(regmap_raw_read);
3006
3007/**
3008 * regmap_noinc_read(): Read data from a register without incrementing the
3009 *			register number
3010 *
3011 * @map: Register map to read from
3012 * @reg: Register to read from
3013 * @val: Pointer to data buffer
3014 * @val_len: Length of output buffer in bytes.
3015 *
3016 * The regmap API usually assumes that bulk read operations will read a
3017 * range of registers. Some devices have certain registers for which a read
3018 * operation read will read from an internal FIFO.
3019 *
3020 * The target register must be volatile but registers after it can be
3021 * completely unrelated cacheable registers.
3022 *
3023 * This will attempt multiple reads as required to read val_len bytes.
3024 *
3025 * A value of zero will be returned on success, a negative errno will be
3026 * returned in error cases.
3027 */
3028int regmap_noinc_read(struct regmap *map, unsigned int reg,
3029		      void *val, size_t val_len)
3030{
3031	size_t read_len;
3032	int ret;
3033
3034	if (!map->read)
3035		return -ENOTSUPP;
3036
3037	if (val_len % map->format.val_bytes)
3038		return -EINVAL;
3039	if (!IS_ALIGNED(reg, map->reg_stride))
3040		return -EINVAL;
3041	if (val_len == 0)
3042		return -EINVAL;
3043
3044	map->lock(map->lock_arg);
3045
3046	if (!regmap_volatile(map, reg) || !regmap_readable_noinc(map, reg)) {
3047		ret = -EINVAL;
3048		goto out_unlock;
3049	}
3050
3051	/* Use the accelerated operation if we can */
3052	if (map->bus->reg_noinc_read) {
3053		/*
3054		 * We have not defined the FIFO semantics for cache, as the
3055		 * cache is just one value deep. Should we return the last
3056		 * written value? Just avoid this by always reading the FIFO
3057		 * even when using cache. Cache only will not work.
3058		 */
3059		if (map->cache_only) {
3060			ret = -EBUSY;
3061			goto out_unlock;
3062		}
3063		ret = regmap_noinc_readwrite(map, reg, val, val_len, false);
3064		goto out_unlock;
3065	}
3066
3067	while (val_len) {
3068		if (map->max_raw_read && map->max_raw_read < val_len)
3069			read_len = map->max_raw_read;
3070		else
3071			read_len = val_len;
3072		ret = _regmap_raw_read(map, reg, val, read_len, true);
3073		if (ret)
3074			goto out_unlock;
3075		val = ((u8 *)val) + read_len;
3076		val_len -= read_len;
3077	}
3078
3079out_unlock:
3080	map->unlock(map->lock_arg);
3081	return ret;
3082}
3083EXPORT_SYMBOL_GPL(regmap_noinc_read);
3084
3085/**
3086 * regmap_field_read(): Read a value to a single register field
3087 *
3088 * @field: Register field to read from
3089 * @val: Pointer to store read value
3090 *
3091 * A value of zero will be returned on success, a negative errno will
3092 * be returned in error cases.
3093 */
3094int regmap_field_read(struct regmap_field *field, unsigned int *val)
3095{
3096	int ret;
3097	unsigned int reg_val;
3098	ret = regmap_read(field->regmap, field->reg, &reg_val);
3099	if (ret != 0)
3100		return ret;
3101
3102	reg_val &= field->mask;
3103	reg_val >>= field->shift;
3104	*val = reg_val;
3105
3106	return ret;
3107}
3108EXPORT_SYMBOL_GPL(regmap_field_read);
3109
3110/**
3111 * regmap_fields_read() - Read a value to a single register field with port ID
3112 *
3113 * @field: Register field to read from
3114 * @id: port ID
3115 * @val: Pointer to store read value
3116 *
3117 * A value of zero will be returned on success, a negative errno will
3118 * be returned in error cases.
3119 */
3120int regmap_fields_read(struct regmap_field *field, unsigned int id,
3121		       unsigned int *val)
3122{
3123	int ret;
3124	unsigned int reg_val;
3125
3126	if (id >= field->id_size)
3127		return -EINVAL;
3128
3129	ret = regmap_read(field->regmap,
3130			  field->reg + (field->id_offset * id),
3131			  &reg_val);
3132	if (ret != 0)
3133		return ret;
3134
3135	reg_val &= field->mask;
3136	reg_val >>= field->shift;
3137	*val = reg_val;
3138
3139	return ret;
3140}
3141EXPORT_SYMBOL_GPL(regmap_fields_read);
3142
3143/**
3144 * regmap_bulk_read() - Read multiple registers from the device
3145 *
3146 * @map: Register map to read from
3147 * @reg: First register to be read from
3148 * @val: Pointer to store read value, in native register size for device
3149 * @val_count: Number of registers to read
3150 *
3151 * A value of zero will be returned on success, a negative errno will
3152 * be returned in error cases.
3153 */
3154int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
3155		     size_t val_count)
3156{
3157	int ret, i;
3158	size_t val_bytes = map->format.val_bytes;
3159	bool vol = regmap_volatile_range(map, reg, val_count);
3160
3161	if (!IS_ALIGNED(reg, map->reg_stride))
3162		return -EINVAL;
3163	if (val_count == 0)
3164		return -EINVAL;
3165
3166	if (map->read && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
3167		ret = regmap_raw_read(map, reg, val, val_bytes * val_count);
3168		if (ret != 0)
3169			return ret;
3170
3171		for (i = 0; i < val_count * val_bytes; i += val_bytes)
3172			map->format.parse_inplace(val + i);
3173	} else {
3174#ifdef CONFIG_64BIT
3175		u64 *u64 = val;
3176#endif
3177		u32 *u32 = val;
3178		u16 *u16 = val;
3179		u8 *u8 = val;
3180
3181		map->lock(map->lock_arg);
3182
3183		for (i = 0; i < val_count; i++) {
3184			unsigned int ival;
3185
3186			ret = _regmap_read(map, reg + regmap_get_offset(map, i),
3187					   &ival);
3188			if (ret != 0)
3189				goto out;
3190
3191			switch (map->format.val_bytes) {
3192#ifdef CONFIG_64BIT
3193			case 8:
3194				u64[i] = ival;
3195				break;
3196#endif
3197			case 4:
3198				u32[i] = ival;
3199				break;
3200			case 2:
3201				u16[i] = ival;
3202				break;
3203			case 1:
3204				u8[i] = ival;
3205				break;
3206			default:
3207				ret = -EINVAL;
3208				goto out;
3209			}
3210		}
3211
3212out:
3213		map->unlock(map->lock_arg);
3214	}
3215
3216	if (!ret)
3217		trace_regmap_bulk_read(map, reg, val, val_bytes * val_count);
3218
3219	return ret;
3220}
3221EXPORT_SYMBOL_GPL(regmap_bulk_read);
3222
3223static int _regmap_update_bits(struct regmap *map, unsigned int reg,
3224			       unsigned int mask, unsigned int val,
3225			       bool *change, bool force_write)
3226{
3227	int ret;
3228	unsigned int tmp, orig;
3229
3230	if (change)
3231		*change = false;
3232
3233	if (regmap_volatile(map, reg) && map->reg_update_bits) {
3234		ret = map->reg_update_bits(map->bus_context, reg, mask, val);
3235		if (ret == 0 && change)
3236			*change = true;
3237	} else {
3238		ret = _regmap_read(map, reg, &orig);
3239		if (ret != 0)
3240			return ret;
3241
3242		tmp = orig & ~mask;
3243		tmp |= val & mask;
3244
3245		if (force_write || (tmp != orig)) {
3246			ret = _regmap_write(map, reg, tmp);
3247			if (ret == 0 && change)
3248				*change = true;
3249		}
3250	}
3251
3252	return ret;
3253}
3254
3255/**
3256 * regmap_update_bits_base() - Perform a read/modify/write cycle on a register
3257 *
3258 * @map: Register map to update
3259 * @reg: Register to update
3260 * @mask: Bitmask to change
3261 * @val: New value for bitmask
3262 * @change: Boolean indicating if a write was done
3263 * @async: Boolean indicating asynchronously
3264 * @force: Boolean indicating use force update
3265 *
3266 * Perform a read/modify/write cycle on a register map with change, async, force
3267 * options.
3268 *
3269 * If async is true:
3270 *
3271 * With most buses the read must be done synchronously so this is most useful
3272 * for devices with a cache which do not need to interact with the hardware to
3273 * determine the current register value.
3274 *
3275 * Returns zero for success, a negative number on error.
3276 */
3277int regmap_update_bits_base(struct regmap *map, unsigned int reg,
3278			    unsigned int mask, unsigned int val,
3279			    bool *change, bool async, bool force)
3280{
3281	int ret;
3282
3283	map->lock(map->lock_arg);
3284
3285	map->async = async;
3286
3287	ret = _regmap_update_bits(map, reg, mask, val, change, force);
3288
3289	map->async = false;
3290
3291	map->unlock(map->lock_arg);
3292
3293	return ret;
3294}
3295EXPORT_SYMBOL_GPL(regmap_update_bits_base);
3296
3297/**
3298 * regmap_test_bits() - Check if all specified bits are set in a register.
3299 *
3300 * @map: Register map to operate on
3301 * @reg: Register to read from
3302 * @bits: Bits to test
3303 *
3304 * Returns 0 if at least one of the tested bits is not set, 1 if all tested
3305 * bits are set and a negative error number if the underlying regmap_read()
3306 * fails.
3307 */
3308int regmap_test_bits(struct regmap *map, unsigned int reg, unsigned int bits)
3309{
3310	unsigned int val, ret;
3311
3312	ret = regmap_read(map, reg, &val);
3313	if (ret)
3314		return ret;
3315
3316	return (val & bits) == bits;
3317}
3318EXPORT_SYMBOL_GPL(regmap_test_bits);
3319
3320void regmap_async_complete_cb(struct regmap_async *async, int ret)
3321{
3322	struct regmap *map = async->map;
3323	bool wake;
3324
3325	trace_regmap_async_io_complete(map);
3326
3327	spin_lock(&map->async_lock);
3328	list_move(&async->list, &map->async_free);
3329	wake = list_empty(&map->async_list);
3330
3331	if (ret != 0)
3332		map->async_ret = ret;
3333
3334	spin_unlock(&map->async_lock);
3335
3336	if (wake)
3337		wake_up(&map->async_waitq);
3338}
3339EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
3340
3341static int regmap_async_is_done(struct regmap *map)
3342{
3343	unsigned long flags;
3344	int ret;
3345
3346	spin_lock_irqsave(&map->async_lock, flags);
3347	ret = list_empty(&map->async_list);
3348	spin_unlock_irqrestore(&map->async_lock, flags);
3349
3350	return ret;
3351}
3352
3353/**
3354 * regmap_async_complete - Ensure all asynchronous I/O has completed.
3355 *
3356 * @map: Map to operate on.
3357 *
3358 * Blocks until any pending asynchronous I/O has completed.  Returns
3359 * an error code for any failed I/O operations.
3360 */
3361int regmap_async_complete(struct regmap *map)
3362{
3363	unsigned long flags;
3364	int ret;
3365
3366	/* Nothing to do with no async support */
3367	if (!map->bus || !map->bus->async_write)
3368		return 0;
3369
3370	trace_regmap_async_complete_start(map);
3371
3372	wait_event(map->async_waitq, regmap_async_is_done(map));
3373
3374	spin_lock_irqsave(&map->async_lock, flags);
3375	ret = map->async_ret;
3376	map->async_ret = 0;
3377	spin_unlock_irqrestore(&map->async_lock, flags);
3378
3379	trace_regmap_async_complete_done(map);
3380
3381	return ret;
3382}
3383EXPORT_SYMBOL_GPL(regmap_async_complete);
3384
3385/**
3386 * regmap_register_patch - Register and apply register updates to be applied
3387 *                         on device initialistion
3388 *
3389 * @map: Register map to apply updates to.
3390 * @regs: Values to update.
3391 * @num_regs: Number of entries in regs.
3392 *
3393 * Register a set of register updates to be applied to the device
3394 * whenever the device registers are synchronised with the cache and
3395 * apply them immediately.  Typically this is used to apply
3396 * corrections to be applied to the device defaults on startup, such
3397 * as the updates some vendors provide to undocumented registers.
3398 *
3399 * The caller must ensure that this function cannot be called
3400 * concurrently with either itself or regcache_sync().
3401 */
3402int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
3403			  int num_regs)
3404{
3405	struct reg_sequence *p;
3406	int ret;
3407	bool bypass;
3408
3409	if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
3410	    num_regs))
3411		return 0;
3412
3413	p = krealloc(map->patch,
3414		     sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
3415		     GFP_KERNEL);
3416	if (p) {
3417		memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
3418		map->patch = p;
3419		map->patch_regs += num_regs;
3420	} else {
3421		return -ENOMEM;
3422	}
3423
3424	map->lock(map->lock_arg);
3425
3426	bypass = map->cache_bypass;
3427
3428	map->cache_bypass = true;
3429	map->async = true;
3430
3431	ret = _regmap_multi_reg_write(map, regs, num_regs);
3432
3433	map->async = false;
3434	map->cache_bypass = bypass;
3435
3436	map->unlock(map->lock_arg);
3437
3438	regmap_async_complete(map);
3439
3440	return ret;
3441}
3442EXPORT_SYMBOL_GPL(regmap_register_patch);
3443
3444/**
3445 * regmap_get_val_bytes() - Report the size of a register value
3446 *
3447 * @map: Register map to operate on.
3448 *
3449 * Report the size of a register value, mainly intended to for use by
3450 * generic infrastructure built on top of regmap.
3451 */
3452int regmap_get_val_bytes(struct regmap *map)
3453{
3454	if (map->format.format_write)
3455		return -EINVAL;
3456
3457	return map->format.val_bytes;
3458}
3459EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
3460
3461/**
3462 * regmap_get_max_register() - Report the max register value
3463 *
3464 * @map: Register map to operate on.
3465 *
3466 * Report the max register value, mainly intended to for use by
3467 * generic infrastructure built on top of regmap.
3468 */
3469int regmap_get_max_register(struct regmap *map)
3470{
3471	return map->max_register ? map->max_register : -EINVAL;
3472}
3473EXPORT_SYMBOL_GPL(regmap_get_max_register);
3474
3475/**
3476 * regmap_get_reg_stride() - Report the register address stride
3477 *
3478 * @map: Register map to operate on.
3479 *
3480 * Report the register address stride, mainly intended to for use by
3481 * generic infrastructure built on top of regmap.
3482 */
3483int regmap_get_reg_stride(struct regmap *map)
3484{
3485	return map->reg_stride;
3486}
3487EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
3488
3489/**
3490 * regmap_might_sleep() - Returns whether a regmap access might sleep.
3491 *
3492 * @map: Register map to operate on.
3493 *
3494 * Returns true if an access to the register might sleep, else false.
3495 */
3496bool regmap_might_sleep(struct regmap *map)
3497{
3498	return map->can_sleep;
3499}
3500EXPORT_SYMBOL_GPL(regmap_might_sleep);
3501
3502int regmap_parse_val(struct regmap *map, const void *buf,
3503			unsigned int *val)
3504{
3505	if (!map->format.parse_val)
3506		return -EINVAL;
3507
3508	*val = map->format.parse_val(buf);
3509
3510	return 0;
3511}
3512EXPORT_SYMBOL_GPL(regmap_parse_val);
3513
3514static int __init regmap_initcall(void)
3515{
3516	regmap_debugfs_initcall();
3517
3518	return 0;
3519}
3520postcore_initcall(regmap_initcall);
v4.17
   1/*
   2 * Register map access API
   3 *
   4 * Copyright 2011 Wolfson Microelectronics plc
   5 *
   6 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
   7 *
   8 * This program is free software; you can redistribute it and/or modify
   9 * it under the terms of the GNU General Public License version 2 as
  10 * published by the Free Software Foundation.
  11 */
  12
  13#include <linux/device.h>
  14#include <linux/slab.h>
  15#include <linux/export.h>
  16#include <linux/mutex.h>
  17#include <linux/err.h>
  18#include <linux/of.h>
  19#include <linux/rbtree.h>
  20#include <linux/sched.h>
  21#include <linux/delay.h>
  22#include <linux/log2.h>
  23#include <linux/hwspinlock.h>
 
  24
  25#define CREATE_TRACE_POINTS
  26#include "trace.h"
  27
  28#include "internal.h"
  29
  30/*
  31 * Sometimes for failures during very early init the trace
  32 * infrastructure isn't available early enough to be used.  For this
  33 * sort of problem defining LOG_DEVICE will add printks for basic
  34 * register I/O on a specific device.
  35 */
  36#undef LOG_DEVICE
  37
 
 
 
 
 
 
 
 
 
 
  38static int _regmap_update_bits(struct regmap *map, unsigned int reg,
  39			       unsigned int mask, unsigned int val,
  40			       bool *change, bool force_write);
  41
  42static int _regmap_bus_reg_read(void *context, unsigned int reg,
  43				unsigned int *val);
  44static int _regmap_bus_read(void *context, unsigned int reg,
  45			    unsigned int *val);
  46static int _regmap_bus_formatted_write(void *context, unsigned int reg,
  47				       unsigned int val);
  48static int _regmap_bus_reg_write(void *context, unsigned int reg,
  49				 unsigned int val);
  50static int _regmap_bus_raw_write(void *context, unsigned int reg,
  51				 unsigned int val);
  52
  53bool regmap_reg_in_ranges(unsigned int reg,
  54			  const struct regmap_range *ranges,
  55			  unsigned int nranges)
  56{
  57	const struct regmap_range *r;
  58	int i;
  59
  60	for (i = 0, r = ranges; i < nranges; i++, r++)
  61		if (regmap_reg_in_range(reg, r))
  62			return true;
  63	return false;
  64}
  65EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
  66
  67bool regmap_check_range_table(struct regmap *map, unsigned int reg,
  68			      const struct regmap_access_table *table)
  69{
  70	/* Check "no ranges" first */
  71	if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
  72		return false;
  73
  74	/* In case zero "yes ranges" are supplied, any reg is OK */
  75	if (!table->n_yes_ranges)
  76		return true;
  77
  78	return regmap_reg_in_ranges(reg, table->yes_ranges,
  79				    table->n_yes_ranges);
  80}
  81EXPORT_SYMBOL_GPL(regmap_check_range_table);
  82
  83bool regmap_writeable(struct regmap *map, unsigned int reg)
  84{
  85	if (map->max_register && reg > map->max_register)
  86		return false;
  87
  88	if (map->writeable_reg)
  89		return map->writeable_reg(map->dev, reg);
  90
  91	if (map->wr_table)
  92		return regmap_check_range_table(map, reg, map->wr_table);
  93
  94	return true;
  95}
  96
  97bool regmap_cached(struct regmap *map, unsigned int reg)
  98{
  99	int ret;
 100	unsigned int val;
 101
 102	if (map->cache_type == REGCACHE_NONE)
 103		return false;
 104
 105	if (!map->cache_ops)
 106		return false;
 107
 108	if (map->max_register && reg > map->max_register)
 109		return false;
 110
 111	map->lock(map->lock_arg);
 112	ret = regcache_read(map, reg, &val);
 113	map->unlock(map->lock_arg);
 114	if (ret)
 115		return false;
 116
 117	return true;
 118}
 119
 120bool regmap_readable(struct regmap *map, unsigned int reg)
 121{
 122	if (!map->reg_read)
 123		return false;
 124
 125	if (map->max_register && reg > map->max_register)
 126		return false;
 127
 128	if (map->format.format_write)
 129		return false;
 130
 131	if (map->readable_reg)
 132		return map->readable_reg(map->dev, reg);
 133
 134	if (map->rd_table)
 135		return regmap_check_range_table(map, reg, map->rd_table);
 136
 137	return true;
 138}
 139
 140bool regmap_volatile(struct regmap *map, unsigned int reg)
 141{
 142	if (!map->format.format_write && !regmap_readable(map, reg))
 143		return false;
 144
 145	if (map->volatile_reg)
 146		return map->volatile_reg(map->dev, reg);
 147
 148	if (map->volatile_table)
 149		return regmap_check_range_table(map, reg, map->volatile_table);
 150
 151	if (map->cache_ops)
 152		return false;
 153	else
 154		return true;
 155}
 156
 157bool regmap_precious(struct regmap *map, unsigned int reg)
 158{
 159	if (!regmap_readable(map, reg))
 160		return false;
 161
 162	if (map->precious_reg)
 163		return map->precious_reg(map->dev, reg);
 164
 165	if (map->precious_table)
 166		return regmap_check_range_table(map, reg, map->precious_table);
 167
 168	return false;
 169}
 170
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 171static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
 172	size_t num)
 173{
 174	unsigned int i;
 175
 176	for (i = 0; i < num; i++)
 177		if (!regmap_volatile(map, reg + regmap_get_offset(map, i)))
 178			return false;
 179
 180	return true;
 181}
 182
 
 
 
 
 
 
 
 
 
 
 
 
 183static void regmap_format_2_6_write(struct regmap *map,
 184				     unsigned int reg, unsigned int val)
 185{
 186	u8 *out = map->work_buf;
 187
 188	*out = (reg << 6) | val;
 189}
 190
 191static void regmap_format_4_12_write(struct regmap *map,
 192				     unsigned int reg, unsigned int val)
 193{
 194	__be16 *out = map->work_buf;
 195	*out = cpu_to_be16((reg << 12) | val);
 196}
 197
 198static void regmap_format_7_9_write(struct regmap *map,
 199				    unsigned int reg, unsigned int val)
 200{
 201	__be16 *out = map->work_buf;
 202	*out = cpu_to_be16((reg << 9) | val);
 203}
 204
 
 
 
 
 
 
 
 
 
 
 205static void regmap_format_10_14_write(struct regmap *map,
 206				    unsigned int reg, unsigned int val)
 207{
 208	u8 *out = map->work_buf;
 209
 210	out[2] = val;
 211	out[1] = (val >> 8) | (reg << 6);
 212	out[0] = reg >> 2;
 213}
 214
 215static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
 216{
 217	u8 *b = buf;
 218
 219	b[0] = val << shift;
 220}
 221
 222static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
 223{
 224	__be16 *b = buf;
 225
 226	b[0] = cpu_to_be16(val << shift);
 227}
 228
 229static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
 230{
 231	__le16 *b = buf;
 232
 233	b[0] = cpu_to_le16(val << shift);
 234}
 235
 236static void regmap_format_16_native(void *buf, unsigned int val,
 237				    unsigned int shift)
 238{
 239	*(u16 *)buf = val << shift;
 
 
 240}
 241
 242static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
 243{
 244	u8 *b = buf;
 245
 246	val <<= shift;
 247
 248	b[0] = val >> 16;
 249	b[1] = val >> 8;
 250	b[2] = val;
 251}
 252
 253static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
 254{
 255	__be32 *b = buf;
 256
 257	b[0] = cpu_to_be32(val << shift);
 258}
 259
 260static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
 261{
 262	__le32 *b = buf;
 263
 264	b[0] = cpu_to_le32(val << shift);
 265}
 266
 267static void regmap_format_32_native(void *buf, unsigned int val,
 268				    unsigned int shift)
 269{
 270	*(u32 *)buf = val << shift;
 
 
 271}
 272
 273#ifdef CONFIG_64BIT
 274static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
 275{
 276	__be64 *b = buf;
 277
 278	b[0] = cpu_to_be64((u64)val << shift);
 279}
 280
 281static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
 282{
 283	__le64 *b = buf;
 284
 285	b[0] = cpu_to_le64((u64)val << shift);
 286}
 287
 288static void regmap_format_64_native(void *buf, unsigned int val,
 289				    unsigned int shift)
 290{
 291	*(u64 *)buf = (u64)val << shift;
 
 
 292}
 293#endif
 294
 295static void regmap_parse_inplace_noop(void *buf)
 296{
 297}
 298
 299static unsigned int regmap_parse_8(const void *buf)
 300{
 301	const u8 *b = buf;
 302
 303	return b[0];
 304}
 305
 306static unsigned int regmap_parse_16_be(const void *buf)
 307{
 308	const __be16 *b = buf;
 309
 310	return be16_to_cpu(b[0]);
 311}
 312
 313static unsigned int regmap_parse_16_le(const void *buf)
 314{
 315	const __le16 *b = buf;
 316
 317	return le16_to_cpu(b[0]);
 318}
 319
 320static void regmap_parse_16_be_inplace(void *buf)
 321{
 322	__be16 *b = buf;
 323
 324	b[0] = be16_to_cpu(b[0]);
 325}
 326
 327static void regmap_parse_16_le_inplace(void *buf)
 328{
 329	__le16 *b = buf;
 330
 331	b[0] = le16_to_cpu(b[0]);
 332}
 333
 334static unsigned int regmap_parse_16_native(const void *buf)
 335{
 336	return *(u16 *)buf;
 
 
 
 337}
 338
 339static unsigned int regmap_parse_24(const void *buf)
 340{
 341	const u8 *b = buf;
 342	unsigned int ret = b[2];
 343	ret |= ((unsigned int)b[1]) << 8;
 344	ret |= ((unsigned int)b[0]) << 16;
 345
 346	return ret;
 347}
 348
 349static unsigned int regmap_parse_32_be(const void *buf)
 350{
 351	const __be32 *b = buf;
 352
 353	return be32_to_cpu(b[0]);
 354}
 355
 356static unsigned int regmap_parse_32_le(const void *buf)
 357{
 358	const __le32 *b = buf;
 359
 360	return le32_to_cpu(b[0]);
 361}
 362
 363static void regmap_parse_32_be_inplace(void *buf)
 364{
 365	__be32 *b = buf;
 366
 367	b[0] = be32_to_cpu(b[0]);
 368}
 369
 370static void regmap_parse_32_le_inplace(void *buf)
 371{
 372	__le32 *b = buf;
 373
 374	b[0] = le32_to_cpu(b[0]);
 375}
 376
 377static unsigned int regmap_parse_32_native(const void *buf)
 378{
 379	return *(u32 *)buf;
 
 
 
 380}
 381
 382#ifdef CONFIG_64BIT
 383static unsigned int regmap_parse_64_be(const void *buf)
 384{
 385	const __be64 *b = buf;
 386
 387	return be64_to_cpu(b[0]);
 388}
 389
 390static unsigned int regmap_parse_64_le(const void *buf)
 391{
 392	const __le64 *b = buf;
 393
 394	return le64_to_cpu(b[0]);
 395}
 396
 397static void regmap_parse_64_be_inplace(void *buf)
 398{
 399	__be64 *b = buf;
 400
 401	b[0] = be64_to_cpu(b[0]);
 402}
 403
 404static void regmap_parse_64_le_inplace(void *buf)
 405{
 406	__le64 *b = buf;
 407
 408	b[0] = le64_to_cpu(b[0]);
 409}
 410
 411static unsigned int regmap_parse_64_native(const void *buf)
 412{
 413	return *(u64 *)buf;
 
 
 
 414}
 415#endif
 416
 417static void regmap_lock_hwlock(void *__map)
 418{
 419	struct regmap *map = __map;
 420
 421	hwspin_lock_timeout(map->hwlock, UINT_MAX);
 422}
 423
 424static void regmap_lock_hwlock_irq(void *__map)
 425{
 426	struct regmap *map = __map;
 427
 428	hwspin_lock_timeout_irq(map->hwlock, UINT_MAX);
 429}
 430
 431static void regmap_lock_hwlock_irqsave(void *__map)
 432{
 433	struct regmap *map = __map;
 434
 435	hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX,
 436				    &map->spinlock_flags);
 437}
 438
 439static void regmap_unlock_hwlock(void *__map)
 440{
 441	struct regmap *map = __map;
 442
 443	hwspin_unlock(map->hwlock);
 444}
 445
 446static void regmap_unlock_hwlock_irq(void *__map)
 447{
 448	struct regmap *map = __map;
 449
 450	hwspin_unlock_irq(map->hwlock);
 451}
 452
 453static void regmap_unlock_hwlock_irqrestore(void *__map)
 454{
 455	struct regmap *map = __map;
 456
 457	hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags);
 458}
 459
 460static void regmap_lock_unlock_none(void *__map)
 461{
 462
 463}
 464
 465static void regmap_lock_mutex(void *__map)
 466{
 467	struct regmap *map = __map;
 468	mutex_lock(&map->mutex);
 469}
 470
 471static void regmap_unlock_mutex(void *__map)
 472{
 473	struct regmap *map = __map;
 474	mutex_unlock(&map->mutex);
 475}
 476
 477static void regmap_lock_spinlock(void *__map)
 478__acquires(&map->spinlock)
 479{
 480	struct regmap *map = __map;
 481	unsigned long flags;
 482
 483	spin_lock_irqsave(&map->spinlock, flags);
 484	map->spinlock_flags = flags;
 485}
 486
 487static void regmap_unlock_spinlock(void *__map)
 488__releases(&map->spinlock)
 489{
 490	struct regmap *map = __map;
 491	spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
 492}
 493
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 494static void dev_get_regmap_release(struct device *dev, void *res)
 495{
 496	/*
 497	 * We don't actually have anything to do here; the goal here
 498	 * is not to manage the regmap but to provide a simple way to
 499	 * get the regmap back given a struct device.
 500	 */
 501}
 502
 503static bool _regmap_range_add(struct regmap *map,
 504			      struct regmap_range_node *data)
 505{
 506	struct rb_root *root = &map->range_tree;
 507	struct rb_node **new = &(root->rb_node), *parent = NULL;
 508
 509	while (*new) {
 510		struct regmap_range_node *this =
 511			rb_entry(*new, struct regmap_range_node, node);
 512
 513		parent = *new;
 514		if (data->range_max < this->range_min)
 515			new = &((*new)->rb_left);
 516		else if (data->range_min > this->range_max)
 517			new = &((*new)->rb_right);
 518		else
 519			return false;
 520	}
 521
 522	rb_link_node(&data->node, parent, new);
 523	rb_insert_color(&data->node, root);
 524
 525	return true;
 526}
 527
 528static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
 529						      unsigned int reg)
 530{
 531	struct rb_node *node = map->range_tree.rb_node;
 532
 533	while (node) {
 534		struct regmap_range_node *this =
 535			rb_entry(node, struct regmap_range_node, node);
 536
 537		if (reg < this->range_min)
 538			node = node->rb_left;
 539		else if (reg > this->range_max)
 540			node = node->rb_right;
 541		else
 542			return this;
 543	}
 544
 545	return NULL;
 546}
 547
 548static void regmap_range_exit(struct regmap *map)
 549{
 550	struct rb_node *next;
 551	struct regmap_range_node *range_node;
 552
 553	next = rb_first(&map->range_tree);
 554	while (next) {
 555		range_node = rb_entry(next, struct regmap_range_node, node);
 556		next = rb_next(&range_node->node);
 557		rb_erase(&range_node->node, &map->range_tree);
 558		kfree(range_node);
 559	}
 560
 561	kfree(map->selector_work_buf);
 562}
 563
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 564int regmap_attach_dev(struct device *dev, struct regmap *map,
 565		      const struct regmap_config *config)
 566{
 567	struct regmap **m;
 
 568
 569	map->dev = dev;
 570
 571	regmap_debugfs_init(map, config->name);
 
 
 
 
 
 572
 573	/* Add a devres resource for dev_get_regmap() */
 574	m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
 575	if (!m) {
 576		regmap_debugfs_exit(map);
 577		return -ENOMEM;
 578	}
 579	*m = map;
 580	devres_add(dev, m);
 581
 582	return 0;
 583}
 584EXPORT_SYMBOL_GPL(regmap_attach_dev);
 585
 586static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
 587					const struct regmap_config *config)
 588{
 589	enum regmap_endian endian;
 590
 591	/* Retrieve the endianness specification from the regmap config */
 592	endian = config->reg_format_endian;
 593
 594	/* If the regmap config specified a non-default value, use that */
 595	if (endian != REGMAP_ENDIAN_DEFAULT)
 596		return endian;
 597
 598	/* Retrieve the endianness specification from the bus config */
 599	if (bus && bus->reg_format_endian_default)
 600		endian = bus->reg_format_endian_default;
 601
 602	/* If the bus specified a non-default value, use that */
 603	if (endian != REGMAP_ENDIAN_DEFAULT)
 604		return endian;
 605
 606	/* Use this if no other value was found */
 607	return REGMAP_ENDIAN_BIG;
 608}
 609
 610enum regmap_endian regmap_get_val_endian(struct device *dev,
 611					 const struct regmap_bus *bus,
 612					 const struct regmap_config *config)
 613{
 614	struct device_node *np;
 615	enum regmap_endian endian;
 616
 617	/* Retrieve the endianness specification from the regmap config */
 618	endian = config->val_format_endian;
 619
 620	/* If the regmap config specified a non-default value, use that */
 621	if (endian != REGMAP_ENDIAN_DEFAULT)
 622		return endian;
 623
 624	/* If the dev and dev->of_node exist try to get endianness from DT */
 625	if (dev && dev->of_node) {
 626		np = dev->of_node;
 627
 628		/* Parse the device's DT node for an endianness specification */
 629		if (of_property_read_bool(np, "big-endian"))
 630			endian = REGMAP_ENDIAN_BIG;
 631		else if (of_property_read_bool(np, "little-endian"))
 632			endian = REGMAP_ENDIAN_LITTLE;
 633		else if (of_property_read_bool(np, "native-endian"))
 634			endian = REGMAP_ENDIAN_NATIVE;
 635
 636		/* If the endianness was specified in DT, use that */
 637		if (endian != REGMAP_ENDIAN_DEFAULT)
 638			return endian;
 639	}
 640
 641	/* Retrieve the endianness specification from the bus config */
 642	if (bus && bus->val_format_endian_default)
 643		endian = bus->val_format_endian_default;
 644
 645	/* If the bus specified a non-default value, use that */
 646	if (endian != REGMAP_ENDIAN_DEFAULT)
 647		return endian;
 648
 649	/* Use this if no other value was found */
 650	return REGMAP_ENDIAN_BIG;
 651}
 652EXPORT_SYMBOL_GPL(regmap_get_val_endian);
 653
 654struct regmap *__regmap_init(struct device *dev,
 655			     const struct regmap_bus *bus,
 656			     void *bus_context,
 657			     const struct regmap_config *config,
 658			     struct lock_class_key *lock_key,
 659			     const char *lock_name)
 660{
 661	struct regmap *map;
 662	int ret = -EINVAL;
 663	enum regmap_endian reg_endian, val_endian;
 664	int i, j;
 665
 666	if (!config)
 667		goto err;
 668
 669	map = kzalloc(sizeof(*map), GFP_KERNEL);
 670	if (map == NULL) {
 671		ret = -ENOMEM;
 672		goto err;
 673	}
 674
 675	if (config->name) {
 676		map->name = kstrdup_const(config->name, GFP_KERNEL);
 677		if (!map->name) {
 678			ret = -ENOMEM;
 679			goto err_map;
 680		}
 681	}
 682
 683	if (config->disable_locking) {
 684		map->lock = map->unlock = regmap_lock_unlock_none;
 
 685		regmap_debugfs_disable(map);
 686	} else if (config->lock && config->unlock) {
 687		map->lock = config->lock;
 688		map->unlock = config->unlock;
 689		map->lock_arg = config->lock_arg;
 
 690	} else if (config->use_hwlock) {
 691		map->hwlock = hwspin_lock_request_specific(config->hwlock_id);
 692		if (!map->hwlock) {
 693			ret = -ENXIO;
 694			goto err_name;
 695		}
 696
 697		switch (config->hwlock_mode) {
 698		case HWLOCK_IRQSTATE:
 699			map->lock = regmap_lock_hwlock_irqsave;
 700			map->unlock = regmap_unlock_hwlock_irqrestore;
 701			break;
 702		case HWLOCK_IRQ:
 703			map->lock = regmap_lock_hwlock_irq;
 704			map->unlock = regmap_unlock_hwlock_irq;
 705			break;
 706		default:
 707			map->lock = regmap_lock_hwlock;
 708			map->unlock = regmap_unlock_hwlock;
 709			break;
 710		}
 711
 712		map->lock_arg = map;
 713	} else {
 714		if ((bus && bus->fast_io) ||
 715		    config->fast_io) {
 716			spin_lock_init(&map->spinlock);
 717			map->lock = regmap_lock_spinlock;
 718			map->unlock = regmap_unlock_spinlock;
 719			lockdep_set_class_and_name(&map->spinlock,
 720						   lock_key, lock_name);
 
 
 
 
 
 
 
 
 721		} else {
 722			mutex_init(&map->mutex);
 723			map->lock = regmap_lock_mutex;
 724			map->unlock = regmap_unlock_mutex;
 
 725			lockdep_set_class_and_name(&map->mutex,
 726						   lock_key, lock_name);
 727		}
 728		map->lock_arg = map;
 729	}
 730
 731	/*
 732	 * When we write in fast-paths with regmap_bulk_write() don't allocate
 733	 * scratch buffers with sleeping allocations.
 734	 */
 735	if ((bus && bus->fast_io) || config->fast_io)
 736		map->alloc_flags = GFP_ATOMIC;
 737	else
 738		map->alloc_flags = GFP_KERNEL;
 739
 
 
 740	map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
 741	map->format.pad_bytes = config->pad_bits / 8;
 
 742	map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
 743	map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
 744			config->val_bits + config->pad_bits, 8);
 745	map->reg_shift = config->pad_bits % 8;
 746	if (config->reg_stride)
 747		map->reg_stride = config->reg_stride;
 748	else
 749		map->reg_stride = 1;
 750	if (is_power_of_2(map->reg_stride))
 751		map->reg_stride_order = ilog2(map->reg_stride);
 752	else
 753		map->reg_stride_order = -1;
 754	map->use_single_read = config->use_single_rw || !bus || !bus->read;
 755	map->use_single_write = config->use_single_rw || !bus || !bus->write;
 756	map->can_multi_write = config->can_multi_write && bus && bus->write;
 757	if (bus) {
 758		map->max_raw_read = bus->max_raw_read;
 759		map->max_raw_write = bus->max_raw_write;
 
 
 
 760	}
 761	map->dev = dev;
 762	map->bus = bus;
 763	map->bus_context = bus_context;
 764	map->max_register = config->max_register;
 765	map->wr_table = config->wr_table;
 766	map->rd_table = config->rd_table;
 767	map->volatile_table = config->volatile_table;
 768	map->precious_table = config->precious_table;
 
 
 769	map->writeable_reg = config->writeable_reg;
 770	map->readable_reg = config->readable_reg;
 771	map->volatile_reg = config->volatile_reg;
 772	map->precious_reg = config->precious_reg;
 
 
 773	map->cache_type = config->cache_type;
 774
 775	spin_lock_init(&map->async_lock);
 776	INIT_LIST_HEAD(&map->async_list);
 777	INIT_LIST_HEAD(&map->async_free);
 778	init_waitqueue_head(&map->async_waitq);
 779
 780	if (config->read_flag_mask ||
 781	    config->write_flag_mask ||
 782	    config->zero_flag_mask) {
 783		map->read_flag_mask = config->read_flag_mask;
 784		map->write_flag_mask = config->write_flag_mask;
 785	} else if (bus) {
 786		map->read_flag_mask = bus->read_flag_mask;
 787	}
 788
 789	if (!bus) {
 
 
 
 
 
 
 
 
 
 
 
 790		map->reg_read  = config->reg_read;
 791		map->reg_write = config->reg_write;
 
 792
 793		map->defer_caching = false;
 794		goto skip_format_initialization;
 795	} else if (!bus->read || !bus->write) {
 796		map->reg_read = _regmap_bus_reg_read;
 797		map->reg_write = _regmap_bus_reg_write;
 
 798
 799		map->defer_caching = false;
 800		goto skip_format_initialization;
 801	} else {
 802		map->reg_read  = _regmap_bus_read;
 803		map->reg_update_bits = bus->reg_update_bits;
 
 
 
 
 
 
 804	}
 805
 806	reg_endian = regmap_get_reg_endian(bus, config);
 807	val_endian = regmap_get_val_endian(dev, bus, config);
 808
 809	switch (config->reg_bits + map->reg_shift) {
 810	case 2:
 811		switch (config->val_bits) {
 812		case 6:
 813			map->format.format_write = regmap_format_2_6_write;
 814			break;
 815		default:
 816			goto err_hwlock;
 817		}
 818		break;
 819
 820	case 4:
 821		switch (config->val_bits) {
 822		case 12:
 823			map->format.format_write = regmap_format_4_12_write;
 824			break;
 825		default:
 826			goto err_hwlock;
 827		}
 828		break;
 829
 830	case 7:
 831		switch (config->val_bits) {
 832		case 9:
 833			map->format.format_write = regmap_format_7_9_write;
 834			break;
 
 
 
 835		default:
 836			goto err_hwlock;
 837		}
 838		break;
 839
 840	case 10:
 841		switch (config->val_bits) {
 842		case 14:
 843			map->format.format_write = regmap_format_10_14_write;
 844			break;
 845		default:
 846			goto err_hwlock;
 847		}
 848		break;
 849
 
 
 
 
 
 
 
 
 
 
 850	case 8:
 851		map->format.format_reg = regmap_format_8;
 852		break;
 853
 854	case 16:
 855		switch (reg_endian) {
 856		case REGMAP_ENDIAN_BIG:
 857			map->format.format_reg = regmap_format_16_be;
 858			break;
 859		case REGMAP_ENDIAN_LITTLE:
 860			map->format.format_reg = regmap_format_16_le;
 861			break;
 862		case REGMAP_ENDIAN_NATIVE:
 863			map->format.format_reg = regmap_format_16_native;
 864			break;
 865		default:
 866			goto err_hwlock;
 867		}
 868		break;
 869
 870	case 24:
 871		if (reg_endian != REGMAP_ENDIAN_BIG)
 
 
 
 
 872			goto err_hwlock;
 873		map->format.format_reg = regmap_format_24;
 874		break;
 875
 876	case 32:
 877		switch (reg_endian) {
 878		case REGMAP_ENDIAN_BIG:
 879			map->format.format_reg = regmap_format_32_be;
 880			break;
 881		case REGMAP_ENDIAN_LITTLE:
 882			map->format.format_reg = regmap_format_32_le;
 883			break;
 884		case REGMAP_ENDIAN_NATIVE:
 885			map->format.format_reg = regmap_format_32_native;
 886			break;
 887		default:
 888			goto err_hwlock;
 889		}
 890		break;
 891
 892#ifdef CONFIG_64BIT
 893	case 64:
 894		switch (reg_endian) {
 895		case REGMAP_ENDIAN_BIG:
 896			map->format.format_reg = regmap_format_64_be;
 897			break;
 898		case REGMAP_ENDIAN_LITTLE:
 899			map->format.format_reg = regmap_format_64_le;
 900			break;
 901		case REGMAP_ENDIAN_NATIVE:
 902			map->format.format_reg = regmap_format_64_native;
 903			break;
 904		default:
 905			goto err_hwlock;
 906		}
 907		break;
 908#endif
 909
 910	default:
 911		goto err_hwlock;
 912	}
 913
 914	if (val_endian == REGMAP_ENDIAN_NATIVE)
 915		map->format.parse_inplace = regmap_parse_inplace_noop;
 916
 917	switch (config->val_bits) {
 918	case 8:
 919		map->format.format_val = regmap_format_8;
 920		map->format.parse_val = regmap_parse_8;
 921		map->format.parse_inplace = regmap_parse_inplace_noop;
 922		break;
 923	case 16:
 924		switch (val_endian) {
 925		case REGMAP_ENDIAN_BIG:
 926			map->format.format_val = regmap_format_16_be;
 927			map->format.parse_val = regmap_parse_16_be;
 928			map->format.parse_inplace = regmap_parse_16_be_inplace;
 929			break;
 930		case REGMAP_ENDIAN_LITTLE:
 931			map->format.format_val = regmap_format_16_le;
 932			map->format.parse_val = regmap_parse_16_le;
 933			map->format.parse_inplace = regmap_parse_16_le_inplace;
 934			break;
 935		case REGMAP_ENDIAN_NATIVE:
 936			map->format.format_val = regmap_format_16_native;
 937			map->format.parse_val = regmap_parse_16_native;
 938			break;
 939		default:
 940			goto err_hwlock;
 941		}
 942		break;
 943	case 24:
 944		if (val_endian != REGMAP_ENDIAN_BIG)
 
 
 
 
 
 945			goto err_hwlock;
 946		map->format.format_val = regmap_format_24;
 947		map->format.parse_val = regmap_parse_24;
 948		break;
 949	case 32:
 950		switch (val_endian) {
 951		case REGMAP_ENDIAN_BIG:
 952			map->format.format_val = regmap_format_32_be;
 953			map->format.parse_val = regmap_parse_32_be;
 954			map->format.parse_inplace = regmap_parse_32_be_inplace;
 955			break;
 956		case REGMAP_ENDIAN_LITTLE:
 957			map->format.format_val = regmap_format_32_le;
 958			map->format.parse_val = regmap_parse_32_le;
 959			map->format.parse_inplace = regmap_parse_32_le_inplace;
 960			break;
 961		case REGMAP_ENDIAN_NATIVE:
 962			map->format.format_val = regmap_format_32_native;
 963			map->format.parse_val = regmap_parse_32_native;
 964			break;
 965		default:
 966			goto err_hwlock;
 967		}
 968		break;
 969#ifdef CONFIG_64BIT
 970	case 64:
 971		switch (val_endian) {
 972		case REGMAP_ENDIAN_BIG:
 973			map->format.format_val = regmap_format_64_be;
 974			map->format.parse_val = regmap_parse_64_be;
 975			map->format.parse_inplace = regmap_parse_64_be_inplace;
 976			break;
 977		case REGMAP_ENDIAN_LITTLE:
 978			map->format.format_val = regmap_format_64_le;
 979			map->format.parse_val = regmap_parse_64_le;
 980			map->format.parse_inplace = regmap_parse_64_le_inplace;
 981			break;
 982		case REGMAP_ENDIAN_NATIVE:
 983			map->format.format_val = regmap_format_64_native;
 984			map->format.parse_val = regmap_parse_64_native;
 985			break;
 986		default:
 987			goto err_hwlock;
 988		}
 989		break;
 990#endif
 991	}
 992
 993	if (map->format.format_write) {
 994		if ((reg_endian != REGMAP_ENDIAN_BIG) ||
 995		    (val_endian != REGMAP_ENDIAN_BIG))
 996			goto err_hwlock;
 997		map->use_single_write = true;
 998	}
 999
1000	if (!map->format.format_write &&
1001	    !(map->format.format_reg && map->format.format_val))
1002		goto err_hwlock;
1003
1004	map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
1005	if (map->work_buf == NULL) {
1006		ret = -ENOMEM;
1007		goto err_hwlock;
1008	}
1009
1010	if (map->format.format_write) {
1011		map->defer_caching = false;
1012		map->reg_write = _regmap_bus_formatted_write;
1013	} else if (map->format.format_val) {
1014		map->defer_caching = true;
1015		map->reg_write = _regmap_bus_raw_write;
1016	}
1017
1018skip_format_initialization:
1019
1020	map->range_tree = RB_ROOT;
1021	for (i = 0; i < config->num_ranges; i++) {
1022		const struct regmap_range_cfg *range_cfg = &config->ranges[i];
1023		struct regmap_range_node *new;
1024
1025		/* Sanity check */
1026		if (range_cfg->range_max < range_cfg->range_min) {
1027			dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
1028				range_cfg->range_max, range_cfg->range_min);
1029			goto err_range;
1030		}
1031
1032		if (range_cfg->range_max > map->max_register) {
1033			dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
1034				range_cfg->range_max, map->max_register);
1035			goto err_range;
1036		}
1037
1038		if (range_cfg->selector_reg > map->max_register) {
1039			dev_err(map->dev,
1040				"Invalid range %d: selector out of map\n", i);
1041			goto err_range;
1042		}
1043
1044		if (range_cfg->window_len == 0) {
1045			dev_err(map->dev, "Invalid range %d: window_len 0\n",
1046				i);
1047			goto err_range;
1048		}
1049
1050		/* Make sure, that this register range has no selector
1051		   or data window within its boundary */
1052		for (j = 0; j < config->num_ranges; j++) {
1053			unsigned sel_reg = config->ranges[j].selector_reg;
1054			unsigned win_min = config->ranges[j].window_start;
1055			unsigned win_max = win_min +
1056					   config->ranges[j].window_len - 1;
1057
1058			/* Allow data window inside its own virtual range */
1059			if (j == i)
1060				continue;
1061
1062			if (range_cfg->range_min <= sel_reg &&
1063			    sel_reg <= range_cfg->range_max) {
1064				dev_err(map->dev,
1065					"Range %d: selector for %d in window\n",
1066					i, j);
1067				goto err_range;
1068			}
1069
1070			if (!(win_max < range_cfg->range_min ||
1071			      win_min > range_cfg->range_max)) {
1072				dev_err(map->dev,
1073					"Range %d: window for %d in window\n",
1074					i, j);
1075				goto err_range;
1076			}
1077		}
1078
1079		new = kzalloc(sizeof(*new), GFP_KERNEL);
1080		if (new == NULL) {
1081			ret = -ENOMEM;
1082			goto err_range;
1083		}
1084
1085		new->map = map;
1086		new->name = range_cfg->name;
1087		new->range_min = range_cfg->range_min;
1088		new->range_max = range_cfg->range_max;
1089		new->selector_reg = range_cfg->selector_reg;
1090		new->selector_mask = range_cfg->selector_mask;
1091		new->selector_shift = range_cfg->selector_shift;
1092		new->window_start = range_cfg->window_start;
1093		new->window_len = range_cfg->window_len;
1094
1095		if (!_regmap_range_add(map, new)) {
1096			dev_err(map->dev, "Failed to add range %d\n", i);
1097			kfree(new);
1098			goto err_range;
1099		}
1100
1101		if (map->selector_work_buf == NULL) {
1102			map->selector_work_buf =
1103				kzalloc(map->format.buf_size, GFP_KERNEL);
1104			if (map->selector_work_buf == NULL) {
1105				ret = -ENOMEM;
1106				goto err_range;
1107			}
1108		}
1109	}
1110
1111	ret = regcache_init(map, config);
1112	if (ret != 0)
1113		goto err_range;
1114
1115	if (dev) {
1116		ret = regmap_attach_dev(dev, map, config);
1117		if (ret != 0)
1118			goto err_regcache;
1119	} else {
1120		regmap_debugfs_init(map, config->name);
1121	}
1122
1123	return map;
1124
1125err_regcache:
1126	regcache_exit(map);
1127err_range:
1128	regmap_range_exit(map);
1129	kfree(map->work_buf);
1130err_hwlock:
1131	if (map->hwlock)
1132		hwspin_lock_free(map->hwlock);
1133err_name:
1134	kfree_const(map->name);
1135err_map:
1136	kfree(map);
1137err:
1138	return ERR_PTR(ret);
1139}
1140EXPORT_SYMBOL_GPL(__regmap_init);
1141
1142static void devm_regmap_release(struct device *dev, void *res)
1143{
1144	regmap_exit(*(struct regmap **)res);
1145}
1146
1147struct regmap *__devm_regmap_init(struct device *dev,
1148				  const struct regmap_bus *bus,
1149				  void *bus_context,
1150				  const struct regmap_config *config,
1151				  struct lock_class_key *lock_key,
1152				  const char *lock_name)
1153{
1154	struct regmap **ptr, *regmap;
1155
1156	ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1157	if (!ptr)
1158		return ERR_PTR(-ENOMEM);
1159
1160	regmap = __regmap_init(dev, bus, bus_context, config,
1161			       lock_key, lock_name);
1162	if (!IS_ERR(regmap)) {
1163		*ptr = regmap;
1164		devres_add(dev, ptr);
1165	} else {
1166		devres_free(ptr);
1167	}
1168
1169	return regmap;
1170}
1171EXPORT_SYMBOL_GPL(__devm_regmap_init);
1172
1173static void regmap_field_init(struct regmap_field *rm_field,
1174	struct regmap *regmap, struct reg_field reg_field)
1175{
1176	rm_field->regmap = regmap;
1177	rm_field->reg = reg_field.reg;
1178	rm_field->shift = reg_field.lsb;
1179	rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
 
 
 
1180	rm_field->id_size = reg_field.id_size;
1181	rm_field->id_offset = reg_field.id_offset;
1182}
1183
1184/**
1185 * devm_regmap_field_alloc() - Allocate and initialise a register field.
1186 *
1187 * @dev: Device that will be interacted with
1188 * @regmap: regmap bank in which this register field is located.
1189 * @reg_field: Register field with in the bank.
1190 *
1191 * The return value will be an ERR_PTR() on error or a valid pointer
1192 * to a struct regmap_field. The regmap_field will be automatically freed
1193 * by the device management code.
1194 */
1195struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1196		struct regmap *regmap, struct reg_field reg_field)
1197{
1198	struct regmap_field *rm_field = devm_kzalloc(dev,
1199					sizeof(*rm_field), GFP_KERNEL);
1200	if (!rm_field)
1201		return ERR_PTR(-ENOMEM);
1202
1203	regmap_field_init(rm_field, regmap, reg_field);
1204
1205	return rm_field;
1206
1207}
1208EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1209
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1210/**
1211 * devm_regmap_field_free() - Free a register field allocated using
1212 *                            devm_regmap_field_alloc.
1213 *
1214 * @dev: Device that will be interacted with
1215 * @field: regmap field which should be freed.
1216 *
1217 * Free register field allocated using devm_regmap_field_alloc(). Usually
1218 * drivers need not call this function, as the memory allocated via devm
1219 * will be freed as per device-driver life-cyle.
1220 */
1221void devm_regmap_field_free(struct device *dev,
1222	struct regmap_field *field)
1223{
1224	devm_kfree(dev, field);
1225}
1226EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1227
1228/**
1229 * regmap_field_alloc() - Allocate and initialise a register field.
1230 *
1231 * @regmap: regmap bank in which this register field is located.
1232 * @reg_field: Register field with in the bank.
1233 *
1234 * The return value will be an ERR_PTR() on error or a valid pointer
1235 * to a struct regmap_field. The regmap_field should be freed by the
1236 * user once its finished working with it using regmap_field_free().
1237 */
1238struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1239		struct reg_field reg_field)
1240{
1241	struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1242
1243	if (!rm_field)
1244		return ERR_PTR(-ENOMEM);
1245
1246	regmap_field_init(rm_field, regmap, reg_field);
1247
1248	return rm_field;
1249}
1250EXPORT_SYMBOL_GPL(regmap_field_alloc);
1251
1252/**
1253 * regmap_field_free() - Free register field allocated using
1254 *                       regmap_field_alloc.
1255 *
1256 * @field: regmap field which should be freed.
1257 */
1258void regmap_field_free(struct regmap_field *field)
1259{
1260	kfree(field);
1261}
1262EXPORT_SYMBOL_GPL(regmap_field_free);
1263
1264/**
1265 * regmap_reinit_cache() - Reinitialise the current register cache
1266 *
1267 * @map: Register map to operate on.
1268 * @config: New configuration.  Only the cache data will be used.
1269 *
1270 * Discard any existing register cache for the map and initialize a
1271 * new cache.  This can be used to restore the cache to defaults or to
1272 * update the cache configuration to reflect runtime discovery of the
1273 * hardware.
1274 *
1275 * No explicit locking is done here, the user needs to ensure that
1276 * this function will not race with other calls to regmap.
1277 */
1278int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1279{
 
 
1280	regcache_exit(map);
1281	regmap_debugfs_exit(map);
1282
1283	map->max_register = config->max_register;
1284	map->writeable_reg = config->writeable_reg;
1285	map->readable_reg = config->readable_reg;
1286	map->volatile_reg = config->volatile_reg;
1287	map->precious_reg = config->precious_reg;
 
 
1288	map->cache_type = config->cache_type;
1289
1290	regmap_debugfs_init(map, config->name);
 
 
 
 
1291
1292	map->cache_bypass = false;
1293	map->cache_only = false;
1294
1295	return regcache_init(map, config);
1296}
1297EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1298
1299/**
1300 * regmap_exit() - Free a previously allocated register map
1301 *
1302 * @map: Register map to operate on.
1303 */
1304void regmap_exit(struct regmap *map)
1305{
1306	struct regmap_async *async;
1307
1308	regcache_exit(map);
1309	regmap_debugfs_exit(map);
1310	regmap_range_exit(map);
1311	if (map->bus && map->bus->free_context)
1312		map->bus->free_context(map->bus_context);
1313	kfree(map->work_buf);
1314	while (!list_empty(&map->async_free)) {
1315		async = list_first_entry_or_null(&map->async_free,
1316						 struct regmap_async,
1317						 list);
1318		list_del(&async->list);
1319		kfree(async->work_buf);
1320		kfree(async);
1321	}
1322	if (map->hwlock)
1323		hwspin_lock_free(map->hwlock);
 
 
1324	kfree_const(map->name);
 
 
 
1325	kfree(map);
1326}
1327EXPORT_SYMBOL_GPL(regmap_exit);
1328
1329static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1330{
1331	struct regmap **r = res;
1332	if (!r || !*r) {
1333		WARN_ON(!r || !*r);
1334		return 0;
1335	}
1336
1337	/* If the user didn't specify a name match any */
1338	if (data)
1339		return (*r)->name == data;
1340	else
1341		return 1;
1342}
1343
1344/**
1345 * dev_get_regmap() - Obtain the regmap (if any) for a device
1346 *
1347 * @dev: Device to retrieve the map for
1348 * @name: Optional name for the register map, usually NULL.
1349 *
1350 * Returns the regmap for the device if one is present, or NULL.  If
1351 * name is specified then it must match the name specified when
1352 * registering the device, if it is NULL then the first regmap found
1353 * will be used.  Devices with multiple register maps are very rare,
1354 * generic code should normally not need to specify a name.
1355 */
1356struct regmap *dev_get_regmap(struct device *dev, const char *name)
1357{
1358	struct regmap **r = devres_find(dev, dev_get_regmap_release,
1359					dev_get_regmap_match, (void *)name);
1360
1361	if (!r)
1362		return NULL;
1363	return *r;
1364}
1365EXPORT_SYMBOL_GPL(dev_get_regmap);
1366
1367/**
1368 * regmap_get_device() - Obtain the device from a regmap
1369 *
1370 * @map: Register map to operate on.
1371 *
1372 * Returns the underlying device that the regmap has been created for.
1373 */
1374struct device *regmap_get_device(struct regmap *map)
1375{
1376	return map->dev;
1377}
1378EXPORT_SYMBOL_GPL(regmap_get_device);
1379
1380static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1381			       struct regmap_range_node *range,
1382			       unsigned int val_num)
1383{
1384	void *orig_work_buf;
1385	unsigned int win_offset;
1386	unsigned int win_page;
1387	bool page_chg;
1388	int ret;
1389
1390	win_offset = (*reg - range->range_min) % range->window_len;
1391	win_page = (*reg - range->range_min) / range->window_len;
1392
1393	if (val_num > 1) {
1394		/* Bulk write shouldn't cross range boundary */
1395		if (*reg + val_num - 1 > range->range_max)
1396			return -EINVAL;
1397
1398		/* ... or single page boundary */
1399		if (val_num > range->window_len - win_offset)
1400			return -EINVAL;
1401	}
1402
1403	/* It is possible to have selector register inside data window.
1404	   In that case, selector register is located on every page and
1405	   it needs no page switching, when accessed alone. */
1406	if (val_num > 1 ||
1407	    range->window_start + win_offset != range->selector_reg) {
1408		/* Use separate work_buf during page switching */
1409		orig_work_buf = map->work_buf;
1410		map->work_buf = map->selector_work_buf;
1411
1412		ret = _regmap_update_bits(map, range->selector_reg,
1413					  range->selector_mask,
1414					  win_page << range->selector_shift,
1415					  &page_chg, false);
1416
1417		map->work_buf = orig_work_buf;
1418
1419		if (ret != 0)
1420			return ret;
1421	}
1422
1423	*reg = range->window_start + win_offset;
1424
1425	return 0;
1426}
1427
1428static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
1429					  unsigned long mask)
1430{
1431	u8 *buf;
1432	int i;
1433
1434	if (!mask || !map->work_buf)
1435		return;
1436
1437	buf = map->work_buf;
1438
1439	for (i = 0; i < max_bytes; i++)
1440		buf[i] |= (mask >> (8 * i)) & 0xff;
1441}
1442
1443static int _regmap_raw_write_impl(struct regmap *map, unsigned int reg,
1444				  const void *val, size_t val_len)
1445{
1446	struct regmap_range_node *range;
1447	unsigned long flags;
1448	void *work_val = map->work_buf + map->format.reg_bytes +
1449		map->format.pad_bytes;
1450	void *buf;
1451	int ret = -ENOTSUPP;
1452	size_t len;
1453	int i;
1454
1455	WARN_ON(!map->bus);
1456
1457	/* Check for unwritable registers before we start */
1458	if (map->writeable_reg)
1459		for (i = 0; i < val_len / map->format.val_bytes; i++)
1460			if (!map->writeable_reg(map->dev,
1461					       reg + regmap_get_offset(map, i)))
 
 
1462				return -EINVAL;
 
 
1463
1464	if (!map->cache_bypass && map->format.parse_val) {
1465		unsigned int ival;
1466		int val_bytes = map->format.val_bytes;
1467		for (i = 0; i < val_len / val_bytes; i++) {
1468			ival = map->format.parse_val(val + (i * val_bytes));
1469			ret = regcache_write(map,
1470					     reg + regmap_get_offset(map, i),
1471					     ival);
1472			if (ret) {
1473				dev_err(map->dev,
1474					"Error in caching of register: %x ret: %d\n",
1475					reg + i, ret);
1476				return ret;
1477			}
1478		}
1479		if (map->cache_only) {
1480			map->cache_dirty = true;
1481			return 0;
1482		}
1483	}
1484
1485	range = _regmap_range_lookup(map, reg);
1486	if (range) {
1487		int val_num = val_len / map->format.val_bytes;
1488		int win_offset = (reg - range->range_min) % range->window_len;
1489		int win_residue = range->window_len - win_offset;
1490
1491		/* If the write goes beyond the end of the window split it */
1492		while (val_num > win_residue) {
1493			dev_dbg(map->dev, "Writing window %d/%zu\n",
1494				win_residue, val_len / map->format.val_bytes);
1495			ret = _regmap_raw_write_impl(map, reg, val,
1496						     win_residue *
1497						     map->format.val_bytes);
1498			if (ret != 0)
1499				return ret;
1500
1501			reg += win_residue;
1502			val_num -= win_residue;
1503			val += win_residue * map->format.val_bytes;
1504			val_len -= win_residue * map->format.val_bytes;
1505
1506			win_offset = (reg - range->range_min) %
1507				range->window_len;
1508			win_residue = range->window_len - win_offset;
1509		}
1510
1511		ret = _regmap_select_page(map, &reg, range, val_num);
1512		if (ret != 0)
1513			return ret;
1514	}
1515
 
 
1516	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1517	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
1518				      map->write_flag_mask);
1519
1520	/*
1521	 * Essentially all I/O mechanisms will be faster with a single
1522	 * buffer to write.  Since register syncs often generate raw
1523	 * writes of single registers optimise that case.
1524	 */
1525	if (val != work_val && val_len == map->format.val_bytes) {
1526		memcpy(work_val, val, map->format.val_bytes);
1527		val = work_val;
1528	}
1529
1530	if (map->async && map->bus->async_write) {
1531		struct regmap_async *async;
1532
1533		trace_regmap_async_write_start(map, reg, val_len);
1534
1535		spin_lock_irqsave(&map->async_lock, flags);
1536		async = list_first_entry_or_null(&map->async_free,
1537						 struct regmap_async,
1538						 list);
1539		if (async)
1540			list_del(&async->list);
1541		spin_unlock_irqrestore(&map->async_lock, flags);
1542
1543		if (!async) {
1544			async = map->bus->async_alloc();
1545			if (!async)
1546				return -ENOMEM;
1547
1548			async->work_buf = kzalloc(map->format.buf_size,
1549						  GFP_KERNEL | GFP_DMA);
1550			if (!async->work_buf) {
1551				kfree(async);
1552				return -ENOMEM;
1553			}
1554		}
1555
1556		async->map = map;
1557
1558		/* If the caller supplied the value we can use it safely. */
1559		memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1560		       map->format.reg_bytes + map->format.val_bytes);
1561
1562		spin_lock_irqsave(&map->async_lock, flags);
1563		list_add_tail(&async->list, &map->async_list);
1564		spin_unlock_irqrestore(&map->async_lock, flags);
1565
1566		if (val != work_val)
1567			ret = map->bus->async_write(map->bus_context,
1568						    async->work_buf,
1569						    map->format.reg_bytes +
1570						    map->format.pad_bytes,
1571						    val, val_len, async);
1572		else
1573			ret = map->bus->async_write(map->bus_context,
1574						    async->work_buf,
1575						    map->format.reg_bytes +
1576						    map->format.pad_bytes +
1577						    val_len, NULL, 0, async);
1578
1579		if (ret != 0) {
1580			dev_err(map->dev, "Failed to schedule write: %d\n",
1581				ret);
1582
1583			spin_lock_irqsave(&map->async_lock, flags);
1584			list_move(&async->list, &map->async_free);
1585			spin_unlock_irqrestore(&map->async_lock, flags);
1586		}
1587
1588		return ret;
1589	}
1590
1591	trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1592
1593	/* If we're doing a single register write we can probably just
1594	 * send the work_buf directly, otherwise try to do a gather
1595	 * write.
1596	 */
1597	if (val == work_val)
1598		ret = map->bus->write(map->bus_context, map->work_buf,
1599				      map->format.reg_bytes +
1600				      map->format.pad_bytes +
1601				      val_len);
1602	else if (map->bus->gather_write)
1603		ret = map->bus->gather_write(map->bus_context, map->work_buf,
1604					     map->format.reg_bytes +
1605					     map->format.pad_bytes,
1606					     val, val_len);
 
 
1607
1608	/* If that didn't work fall back on linearising by hand. */
1609	if (ret == -ENOTSUPP) {
1610		len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1611		buf = kzalloc(len, GFP_KERNEL);
1612		if (!buf)
1613			return -ENOMEM;
1614
1615		memcpy(buf, map->work_buf, map->format.reg_bytes);
1616		memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1617		       val, val_len);
1618		ret = map->bus->write(map->bus_context, buf, len);
1619
1620		kfree(buf);
1621	} else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1622		/* regcache_drop_region() takes lock that we already have,
1623		 * thus call map->cache_ops->drop() directly
1624		 */
1625		if (map->cache_ops && map->cache_ops->drop)
1626			map->cache_ops->drop(map, reg, reg + 1);
1627	}
1628
1629	trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1630
1631	return ret;
1632}
1633
1634/**
1635 * regmap_can_raw_write - Test if regmap_raw_write() is supported
1636 *
1637 * @map: Map to check.
1638 */
1639bool regmap_can_raw_write(struct regmap *map)
1640{
1641	return map->bus && map->bus->write && map->format.format_val &&
1642		map->format.format_reg;
1643}
1644EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1645
1646/**
1647 * regmap_get_raw_read_max - Get the maximum size we can read
1648 *
1649 * @map: Map to check.
1650 */
1651size_t regmap_get_raw_read_max(struct regmap *map)
1652{
1653	return map->max_raw_read;
1654}
1655EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1656
1657/**
1658 * regmap_get_raw_write_max - Get the maximum size we can read
1659 *
1660 * @map: Map to check.
1661 */
1662size_t regmap_get_raw_write_max(struct regmap *map)
1663{
1664	return map->max_raw_write;
1665}
1666EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1667
1668static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1669				       unsigned int val)
1670{
1671	int ret;
1672	struct regmap_range_node *range;
1673	struct regmap *map = context;
1674
1675	WARN_ON(!map->bus || !map->format.format_write);
1676
1677	range = _regmap_range_lookup(map, reg);
1678	if (range) {
1679		ret = _regmap_select_page(map, &reg, range, 1);
1680		if (ret != 0)
1681			return ret;
1682	}
1683
 
 
1684	map->format.format_write(map, reg, val);
1685
1686	trace_regmap_hw_write_start(map, reg, 1);
1687
1688	ret = map->bus->write(map->bus_context, map->work_buf,
1689			      map->format.buf_size);
1690
1691	trace_regmap_hw_write_done(map, reg, 1);
1692
1693	return ret;
1694}
1695
1696static int _regmap_bus_reg_write(void *context, unsigned int reg,
1697				 unsigned int val)
1698{
1699	struct regmap *map = context;
1700
1701	return map->bus->reg_write(map->bus_context, reg, val);
1702}
1703
1704static int _regmap_bus_raw_write(void *context, unsigned int reg,
1705				 unsigned int val)
1706{
1707	struct regmap *map = context;
1708
1709	WARN_ON(!map->bus || !map->format.format_val);
1710
1711	map->format.format_val(map->work_buf + map->format.reg_bytes
1712			       + map->format.pad_bytes, val, 0);
1713	return _regmap_raw_write_impl(map, reg,
1714				      map->work_buf +
1715				      map->format.reg_bytes +
1716				      map->format.pad_bytes,
1717				      map->format.val_bytes);
 
1718}
1719
1720static inline void *_regmap_map_get_context(struct regmap *map)
1721{
1722	return (map->bus) ? map : map->bus_context;
1723}
1724
1725int _regmap_write(struct regmap *map, unsigned int reg,
1726		  unsigned int val)
1727{
1728	int ret;
1729	void *context = _regmap_map_get_context(map);
1730
1731	if (!regmap_writeable(map, reg))
1732		return -EIO;
1733
1734	if (!map->cache_bypass && !map->defer_caching) {
1735		ret = regcache_write(map, reg, val);
1736		if (ret != 0)
1737			return ret;
1738		if (map->cache_only) {
1739			map->cache_dirty = true;
1740			return 0;
1741		}
1742	}
1743
1744#ifdef LOG_DEVICE
1745	if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1746		dev_info(map->dev, "%x <= %x\n", reg, val);
1747#endif
1748
1749	trace_regmap_reg_write(map, reg, val);
 
1750
1751	return map->reg_write(context, reg, val);
1752}
1753
1754/**
1755 * regmap_write() - Write a value to a single register
1756 *
1757 * @map: Register map to write to
1758 * @reg: Register to write to
1759 * @val: Value to be written
1760 *
1761 * A value of zero will be returned on success, a negative errno will
1762 * be returned in error cases.
1763 */
1764int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1765{
1766	int ret;
1767
1768	if (!IS_ALIGNED(reg, map->reg_stride))
1769		return -EINVAL;
1770
1771	map->lock(map->lock_arg);
1772
1773	ret = _regmap_write(map, reg, val);
1774
1775	map->unlock(map->lock_arg);
1776
1777	return ret;
1778}
1779EXPORT_SYMBOL_GPL(regmap_write);
1780
1781/**
1782 * regmap_write_async() - Write a value to a single register asynchronously
1783 *
1784 * @map: Register map to write to
1785 * @reg: Register to write to
1786 * @val: Value to be written
1787 *
1788 * A value of zero will be returned on success, a negative errno will
1789 * be returned in error cases.
1790 */
1791int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1792{
1793	int ret;
1794
1795	if (!IS_ALIGNED(reg, map->reg_stride))
1796		return -EINVAL;
1797
1798	map->lock(map->lock_arg);
1799
1800	map->async = true;
1801
1802	ret = _regmap_write(map, reg, val);
1803
1804	map->async = false;
1805
1806	map->unlock(map->lock_arg);
1807
1808	return ret;
1809}
1810EXPORT_SYMBOL_GPL(regmap_write_async);
1811
1812int _regmap_raw_write(struct regmap *map, unsigned int reg,
1813		      const void *val, size_t val_len)
1814{
1815	size_t val_bytes = map->format.val_bytes;
1816	size_t val_count = val_len / val_bytes;
1817	size_t chunk_count, chunk_bytes;
1818	size_t chunk_regs = val_count;
1819	int ret, i;
1820
1821	if (!val_count)
1822		return -EINVAL;
1823
1824	if (map->use_single_write)
1825		chunk_regs = 1;
1826	else if (map->max_raw_write && val_len > map->max_raw_write)
1827		chunk_regs = map->max_raw_write / val_bytes;
1828
1829	chunk_count = val_count / chunk_regs;
1830	chunk_bytes = chunk_regs * val_bytes;
1831
1832	/* Write as many bytes as possible with chunk_size */
1833	for (i = 0; i < chunk_count; i++) {
1834		ret = _regmap_raw_write_impl(map, reg, val, chunk_bytes);
1835		if (ret)
1836			return ret;
1837
1838		reg += regmap_get_offset(map, chunk_regs);
1839		val += chunk_bytes;
1840		val_len -= chunk_bytes;
1841	}
1842
1843	/* Write remaining bytes */
1844	if (val_len)
1845		ret = _regmap_raw_write_impl(map, reg, val, val_len);
1846
1847	return ret;
1848}
1849
1850/**
1851 * regmap_raw_write() - Write raw values to one or more registers
1852 *
1853 * @map: Register map to write to
1854 * @reg: Initial register to write to
1855 * @val: Block of data to be written, laid out for direct transmission to the
1856 *       device
1857 * @val_len: Length of data pointed to by val.
1858 *
1859 * This function is intended to be used for things like firmware
1860 * download where a large block of data needs to be transferred to the
1861 * device.  No formatting will be done on the data provided.
1862 *
1863 * A value of zero will be returned on success, a negative errno will
1864 * be returned in error cases.
1865 */
1866int regmap_raw_write(struct regmap *map, unsigned int reg,
1867		     const void *val, size_t val_len)
1868{
1869	int ret;
1870
1871	if (!regmap_can_raw_write(map))
1872		return -EINVAL;
1873	if (val_len % map->format.val_bytes)
1874		return -EINVAL;
1875
1876	map->lock(map->lock_arg);
1877
1878	ret = _regmap_raw_write(map, reg, val, val_len);
1879
1880	map->unlock(map->lock_arg);
1881
1882	return ret;
1883}
1884EXPORT_SYMBOL_GPL(regmap_raw_write);
1885
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1886/**
1887 * regmap_field_update_bits_base() - Perform a read/modify/write cycle a
1888 *                                   register field.
1889 *
1890 * @field: Register field to write to
1891 * @mask: Bitmask to change
1892 * @val: Value to be written
1893 * @change: Boolean indicating if a write was done
1894 * @async: Boolean indicating asynchronously
1895 * @force: Boolean indicating use force update
1896 *
1897 * Perform a read/modify/write cycle on the register field with change,
1898 * async, force option.
1899 *
1900 * A value of zero will be returned on success, a negative errno will
1901 * be returned in error cases.
1902 */
1903int regmap_field_update_bits_base(struct regmap_field *field,
1904				  unsigned int mask, unsigned int val,
1905				  bool *change, bool async, bool force)
1906{
1907	mask = (mask << field->shift) & field->mask;
1908
1909	return regmap_update_bits_base(field->regmap, field->reg,
1910				       mask, val << field->shift,
1911				       change, async, force);
1912}
1913EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
1914
1915/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1916 * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a
1917 *                                    register field with port ID
1918 *
1919 * @field: Register field to write to
1920 * @id: port ID
1921 * @mask: Bitmask to change
1922 * @val: Value to be written
1923 * @change: Boolean indicating if a write was done
1924 * @async: Boolean indicating asynchronously
1925 * @force: Boolean indicating use force update
1926 *
1927 * A value of zero will be returned on success, a negative errno will
1928 * be returned in error cases.
1929 */
1930int regmap_fields_update_bits_base(struct regmap_field *field,  unsigned int id,
1931				   unsigned int mask, unsigned int val,
1932				   bool *change, bool async, bool force)
1933{
1934	if (id >= field->id_size)
1935		return -EINVAL;
1936
1937	mask = (mask << field->shift) & field->mask;
1938
1939	return regmap_update_bits_base(field->regmap,
1940				       field->reg + (field->id_offset * id),
1941				       mask, val << field->shift,
1942				       change, async, force);
1943}
1944EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
1945
1946/**
1947 * regmap_bulk_write() - Write multiple registers to the device
1948 *
1949 * @map: Register map to write to
1950 * @reg: First register to be write from
1951 * @val: Block of data to be written, in native register size for device
1952 * @val_count: Number of registers to write
1953 *
1954 * This function is intended to be used for writing a large block of
1955 * data to the device either in single transfer or multiple transfer.
1956 *
1957 * A value of zero will be returned on success, a negative errno will
1958 * be returned in error cases.
1959 */
1960int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
1961		     size_t val_count)
1962{
1963	int ret = 0, i;
1964	size_t val_bytes = map->format.val_bytes;
1965
1966	if (!IS_ALIGNED(reg, map->reg_stride))
1967		return -EINVAL;
1968
1969	/*
1970	 * Some devices don't support bulk write, for them we have a series of
1971	 * single write operations.
1972	 */
1973	if (!map->bus || !map->format.parse_inplace) {
1974		map->lock(map->lock_arg);
1975		for (i = 0; i < val_count; i++) {
1976			unsigned int ival;
1977
1978			switch (val_bytes) {
1979			case 1:
1980				ival = *(u8 *)(val + (i * val_bytes));
1981				break;
1982			case 2:
1983				ival = *(u16 *)(val + (i * val_bytes));
1984				break;
1985			case 4:
1986				ival = *(u32 *)(val + (i * val_bytes));
1987				break;
1988#ifdef CONFIG_64BIT
1989			case 8:
1990				ival = *(u64 *)(val + (i * val_bytes));
1991				break;
1992#endif
1993			default:
1994				ret = -EINVAL;
1995				goto out;
1996			}
1997
1998			ret = _regmap_write(map,
1999					    reg + regmap_get_offset(map, i),
2000					    ival);
2001			if (ret != 0)
2002				goto out;
2003		}
2004out:
2005		map->unlock(map->lock_arg);
2006	} else {
2007		void *wval;
2008
2009		wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
2010		if (!wval)
2011			return -ENOMEM;
2012
2013		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2014			map->format.parse_inplace(wval + i);
2015
2016		ret = regmap_raw_write(map, reg, wval, val_bytes * val_count);
2017
2018		kfree(wval);
2019	}
 
 
 
 
2020	return ret;
2021}
2022EXPORT_SYMBOL_GPL(regmap_bulk_write);
2023
2024/*
2025 * _regmap_raw_multi_reg_write()
2026 *
2027 * the (register,newvalue) pairs in regs have not been formatted, but
2028 * they are all in the same page and have been changed to being page
2029 * relative. The page register has been written if that was necessary.
2030 */
2031static int _regmap_raw_multi_reg_write(struct regmap *map,
2032				       const struct reg_sequence *regs,
2033				       size_t num_regs)
2034{
2035	int ret;
2036	void *buf;
2037	int i;
2038	u8 *u8;
2039	size_t val_bytes = map->format.val_bytes;
2040	size_t reg_bytes = map->format.reg_bytes;
2041	size_t pad_bytes = map->format.pad_bytes;
2042	size_t pair_size = reg_bytes + pad_bytes + val_bytes;
2043	size_t len = pair_size * num_regs;
2044
2045	if (!len)
2046		return -EINVAL;
2047
2048	buf = kzalloc(len, GFP_KERNEL);
2049	if (!buf)
2050		return -ENOMEM;
2051
2052	/* We have to linearise by hand. */
2053
2054	u8 = buf;
2055
2056	for (i = 0; i < num_regs; i++) {
2057		unsigned int reg = regs[i].reg;
2058		unsigned int val = regs[i].def;
2059		trace_regmap_hw_write_start(map, reg, 1);
 
 
2060		map->format.format_reg(u8, reg, map->reg_shift);
2061		u8 += reg_bytes + pad_bytes;
2062		map->format.format_val(u8, val, 0);
2063		u8 += val_bytes;
2064	}
2065	u8 = buf;
2066	*u8 |= map->write_flag_mask;
2067
2068	ret = map->bus->write(map->bus_context, buf, len);
2069
2070	kfree(buf);
2071
2072	for (i = 0; i < num_regs; i++) {
2073		int reg = regs[i].reg;
2074		trace_regmap_hw_write_done(map, reg, 1);
2075	}
2076	return ret;
2077}
2078
2079static unsigned int _regmap_register_page(struct regmap *map,
2080					  unsigned int reg,
2081					  struct regmap_range_node *range)
2082{
2083	unsigned int win_page = (reg - range->range_min) / range->window_len;
2084
2085	return win_page;
2086}
2087
2088static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2089					       struct reg_sequence *regs,
2090					       size_t num_regs)
2091{
2092	int ret;
2093	int i, n;
2094	struct reg_sequence *base;
2095	unsigned int this_page = 0;
2096	unsigned int page_change = 0;
2097	/*
2098	 * the set of registers are not neccessarily in order, but
2099	 * since the order of write must be preserved this algorithm
2100	 * chops the set each time the page changes. This also applies
2101	 * if there is a delay required at any point in the sequence.
2102	 */
2103	base = regs;
2104	for (i = 0, n = 0; i < num_regs; i++, n++) {
2105		unsigned int reg = regs[i].reg;
2106		struct regmap_range_node *range;
2107
2108		range = _regmap_range_lookup(map, reg);
2109		if (range) {
2110			unsigned int win_page = _regmap_register_page(map, reg,
2111								      range);
2112
2113			if (i == 0)
2114				this_page = win_page;
2115			if (win_page != this_page) {
2116				this_page = win_page;
2117				page_change = 1;
2118			}
2119		}
2120
2121		/* If we have both a page change and a delay make sure to
2122		 * write the regs and apply the delay before we change the
2123		 * page.
2124		 */
2125
2126		if (page_change || regs[i].delay_us) {
2127
2128				/* For situations where the first write requires
2129				 * a delay we need to make sure we don't call
2130				 * raw_multi_reg_write with n=0
2131				 * This can't occur with page breaks as we
2132				 * never write on the first iteration
2133				 */
2134				if (regs[i].delay_us && i == 0)
2135					n = 1;
2136
2137				ret = _regmap_raw_multi_reg_write(map, base, n);
2138				if (ret != 0)
2139					return ret;
2140
2141				if (regs[i].delay_us)
2142					udelay(regs[i].delay_us);
 
 
 
 
2143
2144				base += n;
2145				n = 0;
2146
2147				if (page_change) {
2148					ret = _regmap_select_page(map,
2149								  &base[n].reg,
2150								  range, 1);
2151					if (ret != 0)
2152						return ret;
2153
2154					page_change = 0;
2155				}
2156
2157		}
2158
2159	}
2160	if (n > 0)
2161		return _regmap_raw_multi_reg_write(map, base, n);
2162	return 0;
2163}
2164
2165static int _regmap_multi_reg_write(struct regmap *map,
2166				   const struct reg_sequence *regs,
2167				   size_t num_regs)
2168{
2169	int i;
2170	int ret;
2171
2172	if (!map->can_multi_write) {
2173		for (i = 0; i < num_regs; i++) {
2174			ret = _regmap_write(map, regs[i].reg, regs[i].def);
2175			if (ret != 0)
2176				return ret;
2177
2178			if (regs[i].delay_us)
2179				udelay(regs[i].delay_us);
 
 
 
 
2180		}
2181		return 0;
2182	}
2183
2184	if (!map->format.parse_inplace)
2185		return -EINVAL;
2186
2187	if (map->writeable_reg)
2188		for (i = 0; i < num_regs; i++) {
2189			int reg = regs[i].reg;
2190			if (!map->writeable_reg(map->dev, reg))
2191				return -EINVAL;
2192			if (!IS_ALIGNED(reg, map->reg_stride))
2193				return -EINVAL;
2194		}
2195
2196	if (!map->cache_bypass) {
2197		for (i = 0; i < num_regs; i++) {
2198			unsigned int val = regs[i].def;
2199			unsigned int reg = regs[i].reg;
2200			ret = regcache_write(map, reg, val);
2201			if (ret) {
2202				dev_err(map->dev,
2203				"Error in caching of register: %x ret: %d\n",
2204								reg, ret);
2205				return ret;
2206			}
2207		}
2208		if (map->cache_only) {
2209			map->cache_dirty = true;
2210			return 0;
2211		}
2212	}
2213
2214	WARN_ON(!map->bus);
2215
2216	for (i = 0; i < num_regs; i++) {
2217		unsigned int reg = regs[i].reg;
2218		struct regmap_range_node *range;
2219
2220		/* Coalesce all the writes between a page break or a delay
2221		 * in a sequence
2222		 */
2223		range = _regmap_range_lookup(map, reg);
2224		if (range || regs[i].delay_us) {
2225			size_t len = sizeof(struct reg_sequence)*num_regs;
2226			struct reg_sequence *base = kmemdup(regs, len,
2227							   GFP_KERNEL);
2228			if (!base)
2229				return -ENOMEM;
2230			ret = _regmap_range_multi_paged_reg_write(map, base,
2231								  num_regs);
2232			kfree(base);
2233
2234			return ret;
2235		}
2236	}
2237	return _regmap_raw_multi_reg_write(map, regs, num_regs);
2238}
2239
2240/**
2241 * regmap_multi_reg_write() - Write multiple registers to the device
2242 *
2243 * @map: Register map to write to
2244 * @regs: Array of structures containing register,value to be written
2245 * @num_regs: Number of registers to write
2246 *
2247 * Write multiple registers to the device where the set of register, value
2248 * pairs are supplied in any order, possibly not all in a single range.
2249 *
2250 * The 'normal' block write mode will send ultimately send data on the
2251 * target bus as R,V1,V2,V3,..,Vn where successively higher registers are
2252 * addressed. However, this alternative block multi write mode will send
2253 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2254 * must of course support the mode.
2255 *
2256 * A value of zero will be returned on success, a negative errno will be
2257 * returned in error cases.
2258 */
2259int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2260			   int num_regs)
2261{
2262	int ret;
2263
2264	map->lock(map->lock_arg);
2265
2266	ret = _regmap_multi_reg_write(map, regs, num_regs);
2267
2268	map->unlock(map->lock_arg);
2269
2270	return ret;
2271}
2272EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2273
2274/**
2275 * regmap_multi_reg_write_bypassed() - Write multiple registers to the
2276 *                                     device but not the cache
2277 *
2278 * @map: Register map to write to
2279 * @regs: Array of structures containing register,value to be written
2280 * @num_regs: Number of registers to write
2281 *
2282 * Write multiple registers to the device but not the cache where the set
2283 * of register are supplied in any order.
2284 *
2285 * This function is intended to be used for writing a large block of data
2286 * atomically to the device in single transfer for those I2C client devices
2287 * that implement this alternative block write mode.
2288 *
2289 * A value of zero will be returned on success, a negative errno will
2290 * be returned in error cases.
2291 */
2292int regmap_multi_reg_write_bypassed(struct regmap *map,
2293				    const struct reg_sequence *regs,
2294				    int num_regs)
2295{
2296	int ret;
2297	bool bypass;
2298
2299	map->lock(map->lock_arg);
2300
2301	bypass = map->cache_bypass;
2302	map->cache_bypass = true;
2303
2304	ret = _regmap_multi_reg_write(map, regs, num_regs);
2305
2306	map->cache_bypass = bypass;
2307
2308	map->unlock(map->lock_arg);
2309
2310	return ret;
2311}
2312EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2313
2314/**
2315 * regmap_raw_write_async() - Write raw values to one or more registers
2316 *                            asynchronously
2317 *
2318 * @map: Register map to write to
2319 * @reg: Initial register to write to
2320 * @val: Block of data to be written, laid out for direct transmission to the
2321 *       device.  Must be valid until regmap_async_complete() is called.
2322 * @val_len: Length of data pointed to by val.
2323 *
2324 * This function is intended to be used for things like firmware
2325 * download where a large block of data needs to be transferred to the
2326 * device.  No formatting will be done on the data provided.
2327 *
2328 * If supported by the underlying bus the write will be scheduled
2329 * asynchronously, helping maximise I/O speed on higher speed buses
2330 * like SPI.  regmap_async_complete() can be called to ensure that all
2331 * asynchrnous writes have been completed.
2332 *
2333 * A value of zero will be returned on success, a negative errno will
2334 * be returned in error cases.
2335 */
2336int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2337			   const void *val, size_t val_len)
2338{
2339	int ret;
2340
2341	if (val_len % map->format.val_bytes)
2342		return -EINVAL;
2343	if (!IS_ALIGNED(reg, map->reg_stride))
2344		return -EINVAL;
2345
2346	map->lock(map->lock_arg);
2347
2348	map->async = true;
2349
2350	ret = _regmap_raw_write(map, reg, val, val_len);
2351
2352	map->async = false;
2353
2354	map->unlock(map->lock_arg);
2355
2356	return ret;
2357}
2358EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2359
2360static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2361			    unsigned int val_len)
2362{
2363	struct regmap_range_node *range;
2364	int ret;
2365
2366	WARN_ON(!map->bus);
2367
2368	if (!map->bus || !map->bus->read)
2369		return -EINVAL;
2370
2371	range = _regmap_range_lookup(map, reg);
2372	if (range) {
2373		ret = _regmap_select_page(map, &reg, range,
2374					  val_len / map->format.val_bytes);
2375		if (ret != 0)
2376			return ret;
2377	}
2378
 
 
2379	map->format.format_reg(map->work_buf, reg, map->reg_shift);
2380	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
2381				      map->read_flag_mask);
2382	trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2383
2384	ret = map->bus->read(map->bus_context, map->work_buf,
2385			     map->format.reg_bytes + map->format.pad_bytes,
2386			     val, val_len);
2387
2388	trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2389
2390	return ret;
2391}
2392
2393static int _regmap_bus_reg_read(void *context, unsigned int reg,
2394				unsigned int *val)
2395{
2396	struct regmap *map = context;
2397
2398	return map->bus->reg_read(map->bus_context, reg, val);
2399}
2400
2401static int _regmap_bus_read(void *context, unsigned int reg,
2402			    unsigned int *val)
2403{
2404	int ret;
2405	struct regmap *map = context;
2406	void *work_val = map->work_buf + map->format.reg_bytes +
2407		map->format.pad_bytes;
2408
2409	if (!map->format.parse_val)
2410		return -EINVAL;
2411
2412	ret = _regmap_raw_read(map, reg, work_val, map->format.val_bytes);
2413	if (ret == 0)
2414		*val = map->format.parse_val(work_val);
2415
2416	return ret;
2417}
2418
2419static int _regmap_read(struct regmap *map, unsigned int reg,
2420			unsigned int *val)
2421{
2422	int ret;
2423	void *context = _regmap_map_get_context(map);
2424
2425	if (!map->cache_bypass) {
2426		ret = regcache_read(map, reg, val);
2427		if (ret == 0)
2428			return 0;
2429	}
2430
2431	if (map->cache_only)
2432		return -EBUSY;
2433
2434	if (!regmap_readable(map, reg))
2435		return -EIO;
2436
2437	ret = map->reg_read(context, reg, val);
2438	if (ret == 0) {
2439#ifdef LOG_DEVICE
2440		if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
2441			dev_info(map->dev, "%x => %x\n", reg, *val);
2442#endif
2443
2444		trace_regmap_reg_read(map, reg, *val);
2445
2446		if (!map->cache_bypass)
2447			regcache_write(map, reg, *val);
2448	}
2449
2450	return ret;
2451}
2452
2453/**
2454 * regmap_read() - Read a value from a single register
2455 *
2456 * @map: Register map to read from
2457 * @reg: Register to be read from
2458 * @val: Pointer to store read value
2459 *
2460 * A value of zero will be returned on success, a negative errno will
2461 * be returned in error cases.
2462 */
2463int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2464{
2465	int ret;
2466
2467	if (!IS_ALIGNED(reg, map->reg_stride))
2468		return -EINVAL;
2469
2470	map->lock(map->lock_arg);
2471
2472	ret = _regmap_read(map, reg, val);
2473
2474	map->unlock(map->lock_arg);
2475
2476	return ret;
2477}
2478EXPORT_SYMBOL_GPL(regmap_read);
2479
2480/**
2481 * regmap_raw_read() - Read raw data from the device
2482 *
2483 * @map: Register map to read from
2484 * @reg: First register to be read from
2485 * @val: Pointer to store read value
2486 * @val_len: Size of data to read
2487 *
2488 * A value of zero will be returned on success, a negative errno will
2489 * be returned in error cases.
2490 */
2491int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2492		    size_t val_len)
2493{
2494	size_t val_bytes = map->format.val_bytes;
2495	size_t val_count = val_len / val_bytes;
2496	unsigned int v;
2497	int ret, i;
2498
2499	if (!map->bus)
2500		return -EINVAL;
2501	if (val_len % map->format.val_bytes)
2502		return -EINVAL;
2503	if (!IS_ALIGNED(reg, map->reg_stride))
2504		return -EINVAL;
2505	if (val_count == 0)
2506		return -EINVAL;
2507
2508	map->lock(map->lock_arg);
2509
2510	if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2511	    map->cache_type == REGCACHE_NONE) {
2512		size_t chunk_count, chunk_bytes;
2513		size_t chunk_regs = val_count;
2514
2515		if (!map->bus->read) {
2516			ret = -ENOTSUPP;
2517			goto out;
2518		}
2519
2520		if (map->use_single_read)
2521			chunk_regs = 1;
2522		else if (map->max_raw_read && val_len > map->max_raw_read)
2523			chunk_regs = map->max_raw_read / val_bytes;
2524
2525		chunk_count = val_count / chunk_regs;
2526		chunk_bytes = chunk_regs * val_bytes;
2527
2528		/* Read bytes that fit into whole chunks */
2529		for (i = 0; i < chunk_count; i++) {
2530			ret = _regmap_raw_read(map, reg, val, chunk_bytes);
2531			if (ret != 0)
2532				goto out;
2533
2534			reg += regmap_get_offset(map, chunk_regs);
2535			val += chunk_bytes;
2536			val_len -= chunk_bytes;
2537		}
2538
2539		/* Read remaining bytes */
2540		if (val_len) {
2541			ret = _regmap_raw_read(map, reg, val, val_len);
2542			if (ret != 0)
2543				goto out;
2544		}
2545	} else {
2546		/* Otherwise go word by word for the cache; should be low
2547		 * cost as we expect to hit the cache.
2548		 */
2549		for (i = 0; i < val_count; i++) {
2550			ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2551					   &v);
2552			if (ret != 0)
2553				goto out;
2554
2555			map->format.format_val(val + (i * val_bytes), v, 0);
2556		}
2557	}
2558
2559 out:
2560	map->unlock(map->lock_arg);
2561
2562	return ret;
2563}
2564EXPORT_SYMBOL_GPL(regmap_raw_read);
2565
2566/**
2567 * regmap_field_read() - Read a value to a single register field
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2568 *
2569 * @field: Register field to read from
2570 * @val: Pointer to store read value
2571 *
2572 * A value of zero will be returned on success, a negative errno will
2573 * be returned in error cases.
2574 */
2575int regmap_field_read(struct regmap_field *field, unsigned int *val)
2576{
2577	int ret;
2578	unsigned int reg_val;
2579	ret = regmap_read(field->regmap, field->reg, &reg_val);
2580	if (ret != 0)
2581		return ret;
2582
2583	reg_val &= field->mask;
2584	reg_val >>= field->shift;
2585	*val = reg_val;
2586
2587	return ret;
2588}
2589EXPORT_SYMBOL_GPL(regmap_field_read);
2590
2591/**
2592 * regmap_fields_read() - Read a value to a single register field with port ID
2593 *
2594 * @field: Register field to read from
2595 * @id: port ID
2596 * @val: Pointer to store read value
2597 *
2598 * A value of zero will be returned on success, a negative errno will
2599 * be returned in error cases.
2600 */
2601int regmap_fields_read(struct regmap_field *field, unsigned int id,
2602		       unsigned int *val)
2603{
2604	int ret;
2605	unsigned int reg_val;
2606
2607	if (id >= field->id_size)
2608		return -EINVAL;
2609
2610	ret = regmap_read(field->regmap,
2611			  field->reg + (field->id_offset * id),
2612			  &reg_val);
2613	if (ret != 0)
2614		return ret;
2615
2616	reg_val &= field->mask;
2617	reg_val >>= field->shift;
2618	*val = reg_val;
2619
2620	return ret;
2621}
2622EXPORT_SYMBOL_GPL(regmap_fields_read);
2623
2624/**
2625 * regmap_bulk_read() - Read multiple registers from the device
2626 *
2627 * @map: Register map to read from
2628 * @reg: First register to be read from
2629 * @val: Pointer to store read value, in native register size for device
2630 * @val_count: Number of registers to read
2631 *
2632 * A value of zero will be returned on success, a negative errno will
2633 * be returned in error cases.
2634 */
2635int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
2636		     size_t val_count)
2637{
2638	int ret, i;
2639	size_t val_bytes = map->format.val_bytes;
2640	bool vol = regmap_volatile_range(map, reg, val_count);
2641
2642	if (!IS_ALIGNED(reg, map->reg_stride))
2643		return -EINVAL;
2644	if (val_count == 0)
2645		return -EINVAL;
2646
2647	if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2648		ret = regmap_raw_read(map, reg, val, val_bytes * val_count);
2649		if (ret != 0)
2650			return ret;
2651
2652		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2653			map->format.parse_inplace(val + i);
2654	} else {
2655#ifdef CONFIG_64BIT
2656		u64 *u64 = val;
2657#endif
2658		u32 *u32 = val;
2659		u16 *u16 = val;
2660		u8 *u8 = val;
2661
2662		map->lock(map->lock_arg);
2663
2664		for (i = 0; i < val_count; i++) {
2665			unsigned int ival;
2666
2667			ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2668					   &ival);
2669			if (ret != 0)
2670				goto out;
2671
2672			switch (map->format.val_bytes) {
2673#ifdef CONFIG_64BIT
2674			case 8:
2675				u64[i] = ival;
2676				break;
2677#endif
2678			case 4:
2679				u32[i] = ival;
2680				break;
2681			case 2:
2682				u16[i] = ival;
2683				break;
2684			case 1:
2685				u8[i] = ival;
2686				break;
2687			default:
2688				ret = -EINVAL;
2689				goto out;
2690			}
2691		}
2692
2693out:
2694		map->unlock(map->lock_arg);
2695	}
2696
 
 
 
2697	return ret;
2698}
2699EXPORT_SYMBOL_GPL(regmap_bulk_read);
2700
2701static int _regmap_update_bits(struct regmap *map, unsigned int reg,
2702			       unsigned int mask, unsigned int val,
2703			       bool *change, bool force_write)
2704{
2705	int ret;
2706	unsigned int tmp, orig;
2707
2708	if (change)
2709		*change = false;
2710
2711	if (regmap_volatile(map, reg) && map->reg_update_bits) {
2712		ret = map->reg_update_bits(map->bus_context, reg, mask, val);
2713		if (ret == 0 && change)
2714			*change = true;
2715	} else {
2716		ret = _regmap_read(map, reg, &orig);
2717		if (ret != 0)
2718			return ret;
2719
2720		tmp = orig & ~mask;
2721		tmp |= val & mask;
2722
2723		if (force_write || (tmp != orig)) {
2724			ret = _regmap_write(map, reg, tmp);
2725			if (ret == 0 && change)
2726				*change = true;
2727		}
2728	}
2729
2730	return ret;
2731}
2732
2733/**
2734 * regmap_update_bits_base() - Perform a read/modify/write cycle on a register
2735 *
2736 * @map: Register map to update
2737 * @reg: Register to update
2738 * @mask: Bitmask to change
2739 * @val: New value for bitmask
2740 * @change: Boolean indicating if a write was done
2741 * @async: Boolean indicating asynchronously
2742 * @force: Boolean indicating use force update
2743 *
2744 * Perform a read/modify/write cycle on a register map with change, async, force
2745 * options.
2746 *
2747 * If async is true:
2748 *
2749 * With most buses the read must be done synchronously so this is most useful
2750 * for devices with a cache which do not need to interact with the hardware to
2751 * determine the current register value.
2752 *
2753 * Returns zero for success, a negative number on error.
2754 */
2755int regmap_update_bits_base(struct regmap *map, unsigned int reg,
2756			    unsigned int mask, unsigned int val,
2757			    bool *change, bool async, bool force)
2758{
2759	int ret;
2760
2761	map->lock(map->lock_arg);
2762
2763	map->async = async;
2764
2765	ret = _regmap_update_bits(map, reg, mask, val, change, force);
2766
2767	map->async = false;
2768
2769	map->unlock(map->lock_arg);
2770
2771	return ret;
2772}
2773EXPORT_SYMBOL_GPL(regmap_update_bits_base);
2774
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2775void regmap_async_complete_cb(struct regmap_async *async, int ret)
2776{
2777	struct regmap *map = async->map;
2778	bool wake;
2779
2780	trace_regmap_async_io_complete(map);
2781
2782	spin_lock(&map->async_lock);
2783	list_move(&async->list, &map->async_free);
2784	wake = list_empty(&map->async_list);
2785
2786	if (ret != 0)
2787		map->async_ret = ret;
2788
2789	spin_unlock(&map->async_lock);
2790
2791	if (wake)
2792		wake_up(&map->async_waitq);
2793}
2794EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
2795
2796static int regmap_async_is_done(struct regmap *map)
2797{
2798	unsigned long flags;
2799	int ret;
2800
2801	spin_lock_irqsave(&map->async_lock, flags);
2802	ret = list_empty(&map->async_list);
2803	spin_unlock_irqrestore(&map->async_lock, flags);
2804
2805	return ret;
2806}
2807
2808/**
2809 * regmap_async_complete - Ensure all asynchronous I/O has completed.
2810 *
2811 * @map: Map to operate on.
2812 *
2813 * Blocks until any pending asynchronous I/O has completed.  Returns
2814 * an error code for any failed I/O operations.
2815 */
2816int regmap_async_complete(struct regmap *map)
2817{
2818	unsigned long flags;
2819	int ret;
2820
2821	/* Nothing to do with no async support */
2822	if (!map->bus || !map->bus->async_write)
2823		return 0;
2824
2825	trace_regmap_async_complete_start(map);
2826
2827	wait_event(map->async_waitq, regmap_async_is_done(map));
2828
2829	spin_lock_irqsave(&map->async_lock, flags);
2830	ret = map->async_ret;
2831	map->async_ret = 0;
2832	spin_unlock_irqrestore(&map->async_lock, flags);
2833
2834	trace_regmap_async_complete_done(map);
2835
2836	return ret;
2837}
2838EXPORT_SYMBOL_GPL(regmap_async_complete);
2839
2840/**
2841 * regmap_register_patch - Register and apply register updates to be applied
2842 *                         on device initialistion
2843 *
2844 * @map: Register map to apply updates to.
2845 * @regs: Values to update.
2846 * @num_regs: Number of entries in regs.
2847 *
2848 * Register a set of register updates to be applied to the device
2849 * whenever the device registers are synchronised with the cache and
2850 * apply them immediately.  Typically this is used to apply
2851 * corrections to be applied to the device defaults on startup, such
2852 * as the updates some vendors provide to undocumented registers.
2853 *
2854 * The caller must ensure that this function cannot be called
2855 * concurrently with either itself or regcache_sync().
2856 */
2857int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
2858			  int num_regs)
2859{
2860	struct reg_sequence *p;
2861	int ret;
2862	bool bypass;
2863
2864	if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
2865	    num_regs))
2866		return 0;
2867
2868	p = krealloc(map->patch,
2869		     sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
2870		     GFP_KERNEL);
2871	if (p) {
2872		memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
2873		map->patch = p;
2874		map->patch_regs += num_regs;
2875	} else {
2876		return -ENOMEM;
2877	}
2878
2879	map->lock(map->lock_arg);
2880
2881	bypass = map->cache_bypass;
2882
2883	map->cache_bypass = true;
2884	map->async = true;
2885
2886	ret = _regmap_multi_reg_write(map, regs, num_regs);
2887
2888	map->async = false;
2889	map->cache_bypass = bypass;
2890
2891	map->unlock(map->lock_arg);
2892
2893	regmap_async_complete(map);
2894
2895	return ret;
2896}
2897EXPORT_SYMBOL_GPL(regmap_register_patch);
2898
2899/**
2900 * regmap_get_val_bytes() - Report the size of a register value
2901 *
2902 * @map: Register map to operate on.
2903 *
2904 * Report the size of a register value, mainly intended to for use by
2905 * generic infrastructure built on top of regmap.
2906 */
2907int regmap_get_val_bytes(struct regmap *map)
2908{
2909	if (map->format.format_write)
2910		return -EINVAL;
2911
2912	return map->format.val_bytes;
2913}
2914EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
2915
2916/**
2917 * regmap_get_max_register() - Report the max register value
2918 *
2919 * @map: Register map to operate on.
2920 *
2921 * Report the max register value, mainly intended to for use by
2922 * generic infrastructure built on top of regmap.
2923 */
2924int regmap_get_max_register(struct regmap *map)
2925{
2926	return map->max_register ? map->max_register : -EINVAL;
2927}
2928EXPORT_SYMBOL_GPL(regmap_get_max_register);
2929
2930/**
2931 * regmap_get_reg_stride() - Report the register address stride
2932 *
2933 * @map: Register map to operate on.
2934 *
2935 * Report the register address stride, mainly intended to for use by
2936 * generic infrastructure built on top of regmap.
2937 */
2938int regmap_get_reg_stride(struct regmap *map)
2939{
2940	return map->reg_stride;
2941}
2942EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
 
 
 
 
 
 
 
 
 
 
 
 
 
2943
2944int regmap_parse_val(struct regmap *map, const void *buf,
2945			unsigned int *val)
2946{
2947	if (!map->format.parse_val)
2948		return -EINVAL;
2949
2950	*val = map->format.parse_val(buf);
2951
2952	return 0;
2953}
2954EXPORT_SYMBOL_GPL(regmap_parse_val);
2955
2956static int __init regmap_initcall(void)
2957{
2958	regmap_debugfs_initcall();
2959
2960	return 0;
2961}
2962postcore_initcall(regmap_initcall);