Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Functions to sequence PREFLUSH and FUA writes.
4 *
5 * Copyright (C) 2011 Max Planck Institute for Gravitational Physics
6 * Copyright (C) 2011 Tejun Heo <tj@kernel.org>
7 *
8 * REQ_{PREFLUSH|FUA} requests are decomposed to sequences consisted of three
9 * optional steps - PREFLUSH, DATA and POSTFLUSH - according to the request
10 * properties and hardware capability.
11 *
12 * If a request doesn't have data, only REQ_PREFLUSH makes sense, which
13 * indicates a simple flush request. If there is data, REQ_PREFLUSH indicates
14 * that the device cache should be flushed before the data is executed, and
15 * REQ_FUA means that the data must be on non-volatile media on request
16 * completion.
17 *
18 * If the device doesn't have writeback cache, PREFLUSH and FUA don't make any
19 * difference. The requests are either completed immediately if there's no data
20 * or executed as normal requests otherwise.
21 *
22 * If the device has writeback cache and supports FUA, REQ_PREFLUSH is
23 * translated to PREFLUSH but REQ_FUA is passed down directly with DATA.
24 *
25 * If the device has writeback cache and doesn't support FUA, REQ_PREFLUSH
26 * is translated to PREFLUSH and REQ_FUA to POSTFLUSH.
27 *
28 * The actual execution of flush is double buffered. Whenever a request
29 * needs to execute PRE or POSTFLUSH, it queues at
30 * fq->flush_queue[fq->flush_pending_idx]. Once certain criteria are met, a
31 * REQ_OP_FLUSH is issued and the pending_idx is toggled. When the flush
32 * completes, all the requests which were pending are proceeded to the next
33 * step. This allows arbitrary merging of different types of PREFLUSH/FUA
34 * requests.
35 *
36 * Currently, the following conditions are used to determine when to issue
37 * flush.
38 *
39 * C1. At any given time, only one flush shall be in progress. This makes
40 * double buffering sufficient.
41 *
42 * C2. Flush is deferred if any request is executing DATA of its sequence.
43 * This avoids issuing separate POSTFLUSHes for requests which shared
44 * PREFLUSH.
45 *
46 * C3. The second condition is ignored if there is a request which has
47 * waited longer than FLUSH_PENDING_TIMEOUT. This is to avoid
48 * starvation in the unlikely case where there are continuous stream of
49 * FUA (without PREFLUSH) requests.
50 *
51 * For devices which support FUA, it isn't clear whether C2 (and thus C3)
52 * is beneficial.
53 *
54 * Note that a sequenced PREFLUSH/FUA request with DATA is completed twice.
55 * Once while executing DATA and again after the whole sequence is
56 * complete. The first completion updates the contained bio but doesn't
57 * finish it so that the bio submitter is notified only after the whole
58 * sequence is complete. This is implemented by testing RQF_FLUSH_SEQ in
59 * req_bio_endio().
60 *
61 * The above peculiarity requires that each PREFLUSH/FUA request has only one
62 * bio attached to it, which is guaranteed as they aren't allowed to be
63 * merged in the usual way.
64 */
65
66#include <linux/kernel.h>
67#include <linux/module.h>
68#include <linux/bio.h>
69#include <linux/blkdev.h>
70#include <linux/gfp.h>
71#include <linux/blk-mq.h>
72#include <linux/part_stat.h>
73
74#include "blk.h"
75#include "blk-mq.h"
76#include "blk-mq-tag.h"
77#include "blk-mq-sched.h"
78
79/* PREFLUSH/FUA sequences */
80enum {
81 REQ_FSEQ_PREFLUSH = (1 << 0), /* pre-flushing in progress */
82 REQ_FSEQ_DATA = (1 << 1), /* data write in progress */
83 REQ_FSEQ_POSTFLUSH = (1 << 2), /* post-flushing in progress */
84 REQ_FSEQ_DONE = (1 << 3),
85
86 REQ_FSEQ_ACTIONS = REQ_FSEQ_PREFLUSH | REQ_FSEQ_DATA |
87 REQ_FSEQ_POSTFLUSH,
88
89 /*
90 * If flush has been pending longer than the following timeout,
91 * it's issued even if flush_data requests are still in flight.
92 */
93 FLUSH_PENDING_TIMEOUT = 5 * HZ,
94};
95
96static void blk_kick_flush(struct request_queue *q,
97 struct blk_flush_queue *fq, blk_opf_t flags);
98
99static inline struct blk_flush_queue *
100blk_get_flush_queue(struct request_queue *q, struct blk_mq_ctx *ctx)
101{
102 return blk_mq_map_queue(q, REQ_OP_FLUSH, ctx)->fq;
103}
104
105static unsigned int blk_flush_policy(unsigned long fflags, struct request *rq)
106{
107 unsigned int policy = 0;
108
109 if (blk_rq_sectors(rq))
110 policy |= REQ_FSEQ_DATA;
111
112 if (fflags & (1UL << QUEUE_FLAG_WC)) {
113 if (rq->cmd_flags & REQ_PREFLUSH)
114 policy |= REQ_FSEQ_PREFLUSH;
115 if (!(fflags & (1UL << QUEUE_FLAG_FUA)) &&
116 (rq->cmd_flags & REQ_FUA))
117 policy |= REQ_FSEQ_POSTFLUSH;
118 }
119 return policy;
120}
121
122static unsigned int blk_flush_cur_seq(struct request *rq)
123{
124 return 1 << ffz(rq->flush.seq);
125}
126
127static void blk_flush_restore_request(struct request *rq)
128{
129 /*
130 * After flush data completion, @rq->bio is %NULL but we need to
131 * complete the bio again. @rq->biotail is guaranteed to equal the
132 * original @rq->bio. Restore it.
133 */
134 rq->bio = rq->biotail;
135
136 /* make @rq a normal request */
137 rq->rq_flags &= ~RQF_FLUSH_SEQ;
138 rq->end_io = rq->flush.saved_end_io;
139}
140
141static void blk_flush_queue_rq(struct request *rq, bool add_front)
142{
143 blk_mq_add_to_requeue_list(rq, add_front, true);
144}
145
146static void blk_account_io_flush(struct request *rq)
147{
148 struct block_device *part = rq->q->disk->part0;
149
150 part_stat_lock();
151 part_stat_inc(part, ios[STAT_FLUSH]);
152 part_stat_add(part, nsecs[STAT_FLUSH],
153 ktime_get_ns() - rq->start_time_ns);
154 part_stat_unlock();
155}
156
157/**
158 * blk_flush_complete_seq - complete flush sequence
159 * @rq: PREFLUSH/FUA request being sequenced
160 * @fq: flush queue
161 * @seq: sequences to complete (mask of %REQ_FSEQ_*, can be zero)
162 * @error: whether an error occurred
163 *
164 * @rq just completed @seq part of its flush sequence, record the
165 * completion and trigger the next step.
166 *
167 * CONTEXT:
168 * spin_lock_irq(fq->mq_flush_lock)
169 */
170static void blk_flush_complete_seq(struct request *rq,
171 struct blk_flush_queue *fq,
172 unsigned int seq, blk_status_t error)
173{
174 struct request_queue *q = rq->q;
175 struct list_head *pending = &fq->flush_queue[fq->flush_pending_idx];
176 blk_opf_t cmd_flags;
177
178 BUG_ON(rq->flush.seq & seq);
179 rq->flush.seq |= seq;
180 cmd_flags = rq->cmd_flags;
181
182 if (likely(!error))
183 seq = blk_flush_cur_seq(rq);
184 else
185 seq = REQ_FSEQ_DONE;
186
187 switch (seq) {
188 case REQ_FSEQ_PREFLUSH:
189 case REQ_FSEQ_POSTFLUSH:
190 /* queue for flush */
191 if (list_empty(pending))
192 fq->flush_pending_since = jiffies;
193 list_move_tail(&rq->flush.list, pending);
194 break;
195
196 case REQ_FSEQ_DATA:
197 list_move_tail(&rq->flush.list, &fq->flush_data_in_flight);
198 blk_flush_queue_rq(rq, true);
199 break;
200
201 case REQ_FSEQ_DONE:
202 /*
203 * @rq was previously adjusted by blk_insert_flush() for
204 * flush sequencing and may already have gone through the
205 * flush data request completion path. Restore @rq for
206 * normal completion and end it.
207 */
208 list_del_init(&rq->flush.list);
209 blk_flush_restore_request(rq);
210 blk_mq_end_request(rq, error);
211 break;
212
213 default:
214 BUG();
215 }
216
217 blk_kick_flush(q, fq, cmd_flags);
218}
219
220static enum rq_end_io_ret flush_end_io(struct request *flush_rq,
221 blk_status_t error)
222{
223 struct request_queue *q = flush_rq->q;
224 struct list_head *running;
225 struct request *rq, *n;
226 unsigned long flags = 0;
227 struct blk_flush_queue *fq = blk_get_flush_queue(q, flush_rq->mq_ctx);
228
229 /* release the tag's ownership to the req cloned from */
230 spin_lock_irqsave(&fq->mq_flush_lock, flags);
231
232 if (!req_ref_put_and_test(flush_rq)) {
233 fq->rq_status = error;
234 spin_unlock_irqrestore(&fq->mq_flush_lock, flags);
235 return RQ_END_IO_NONE;
236 }
237
238 blk_account_io_flush(flush_rq);
239 /*
240 * Flush request has to be marked as IDLE when it is really ended
241 * because its .end_io() is called from timeout code path too for
242 * avoiding use-after-free.
243 */
244 WRITE_ONCE(flush_rq->state, MQ_RQ_IDLE);
245 if (fq->rq_status != BLK_STS_OK) {
246 error = fq->rq_status;
247 fq->rq_status = BLK_STS_OK;
248 }
249
250 if (!q->elevator) {
251 flush_rq->tag = BLK_MQ_NO_TAG;
252 } else {
253 blk_mq_put_driver_tag(flush_rq);
254 flush_rq->internal_tag = BLK_MQ_NO_TAG;
255 }
256
257 running = &fq->flush_queue[fq->flush_running_idx];
258 BUG_ON(fq->flush_pending_idx == fq->flush_running_idx);
259
260 /* account completion of the flush request */
261 fq->flush_running_idx ^= 1;
262
263 /* and push the waiting requests to the next stage */
264 list_for_each_entry_safe(rq, n, running, flush.list) {
265 unsigned int seq = blk_flush_cur_seq(rq);
266
267 BUG_ON(seq != REQ_FSEQ_PREFLUSH && seq != REQ_FSEQ_POSTFLUSH);
268 blk_flush_complete_seq(rq, fq, seq, error);
269 }
270
271 spin_unlock_irqrestore(&fq->mq_flush_lock, flags);
272 return RQ_END_IO_NONE;
273}
274
275bool is_flush_rq(struct request *rq)
276{
277 return rq->end_io == flush_end_io;
278}
279
280/**
281 * blk_kick_flush - consider issuing flush request
282 * @q: request_queue being kicked
283 * @fq: flush queue
284 * @flags: cmd_flags of the original request
285 *
286 * Flush related states of @q have changed, consider issuing flush request.
287 * Please read the comment at the top of this file for more info.
288 *
289 * CONTEXT:
290 * spin_lock_irq(fq->mq_flush_lock)
291 *
292 */
293static void blk_kick_flush(struct request_queue *q, struct blk_flush_queue *fq,
294 blk_opf_t flags)
295{
296 struct list_head *pending = &fq->flush_queue[fq->flush_pending_idx];
297 struct request *first_rq =
298 list_first_entry(pending, struct request, flush.list);
299 struct request *flush_rq = fq->flush_rq;
300
301 /* C1 described at the top of this file */
302 if (fq->flush_pending_idx != fq->flush_running_idx || list_empty(pending))
303 return;
304
305 /* C2 and C3 */
306 if (!list_empty(&fq->flush_data_in_flight) &&
307 time_before(jiffies,
308 fq->flush_pending_since + FLUSH_PENDING_TIMEOUT))
309 return;
310
311 /*
312 * Issue flush and toggle pending_idx. This makes pending_idx
313 * different from running_idx, which means flush is in flight.
314 */
315 fq->flush_pending_idx ^= 1;
316
317 blk_rq_init(q, flush_rq);
318
319 /*
320 * In case of none scheduler, borrow tag from the first request
321 * since they can't be in flight at the same time. And acquire
322 * the tag's ownership for flush req.
323 *
324 * In case of IO scheduler, flush rq need to borrow scheduler tag
325 * just for cheating put/get driver tag.
326 */
327 flush_rq->mq_ctx = first_rq->mq_ctx;
328 flush_rq->mq_hctx = first_rq->mq_hctx;
329
330 if (!q->elevator) {
331 flush_rq->tag = first_rq->tag;
332
333 /*
334 * We borrow data request's driver tag, so have to mark
335 * this flush request as INFLIGHT for avoiding double
336 * account of this driver tag
337 */
338 flush_rq->rq_flags |= RQF_MQ_INFLIGHT;
339 } else
340 flush_rq->internal_tag = first_rq->internal_tag;
341
342 flush_rq->cmd_flags = REQ_OP_FLUSH | REQ_PREFLUSH;
343 flush_rq->cmd_flags |= (flags & REQ_DRV) | (flags & REQ_FAILFAST_MASK);
344 flush_rq->rq_flags |= RQF_FLUSH_SEQ;
345 flush_rq->end_io = flush_end_io;
346 /*
347 * Order WRITE ->end_io and WRITE rq->ref, and its pair is the one
348 * implied in refcount_inc_not_zero() called from
349 * blk_mq_find_and_get_req(), which orders WRITE/READ flush_rq->ref
350 * and READ flush_rq->end_io
351 */
352 smp_wmb();
353 req_ref_set(flush_rq, 1);
354
355 blk_flush_queue_rq(flush_rq, false);
356}
357
358static enum rq_end_io_ret mq_flush_data_end_io(struct request *rq,
359 blk_status_t error)
360{
361 struct request_queue *q = rq->q;
362 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
363 struct blk_mq_ctx *ctx = rq->mq_ctx;
364 unsigned long flags;
365 struct blk_flush_queue *fq = blk_get_flush_queue(q, ctx);
366
367 if (q->elevator) {
368 WARN_ON(rq->tag < 0);
369 blk_mq_put_driver_tag(rq);
370 }
371
372 /*
373 * After populating an empty queue, kick it to avoid stall. Read
374 * the comment in flush_end_io().
375 */
376 spin_lock_irqsave(&fq->mq_flush_lock, flags);
377 blk_flush_complete_seq(rq, fq, REQ_FSEQ_DATA, error);
378 spin_unlock_irqrestore(&fq->mq_flush_lock, flags);
379
380 blk_mq_sched_restart(hctx);
381 return RQ_END_IO_NONE;
382}
383
384/**
385 * blk_insert_flush - insert a new PREFLUSH/FUA request
386 * @rq: request to insert
387 *
388 * To be called from __elv_add_request() for %ELEVATOR_INSERT_FLUSH insertions.
389 * or __blk_mq_run_hw_queue() to dispatch request.
390 * @rq is being submitted. Analyze what needs to be done and put it on the
391 * right queue.
392 */
393void blk_insert_flush(struct request *rq)
394{
395 struct request_queue *q = rq->q;
396 unsigned long fflags = q->queue_flags; /* may change, cache */
397 unsigned int policy = blk_flush_policy(fflags, rq);
398 struct blk_flush_queue *fq = blk_get_flush_queue(q, rq->mq_ctx);
399
400 /*
401 * @policy now records what operations need to be done. Adjust
402 * REQ_PREFLUSH and FUA for the driver.
403 */
404 rq->cmd_flags &= ~REQ_PREFLUSH;
405 if (!(fflags & (1UL << QUEUE_FLAG_FUA)))
406 rq->cmd_flags &= ~REQ_FUA;
407
408 /*
409 * REQ_PREFLUSH|REQ_FUA implies REQ_SYNC, so if we clear any
410 * of those flags, we have to set REQ_SYNC to avoid skewing
411 * the request accounting.
412 */
413 rq->cmd_flags |= REQ_SYNC;
414
415 /*
416 * An empty flush handed down from a stacking driver may
417 * translate into nothing if the underlying device does not
418 * advertise a write-back cache. In this case, simply
419 * complete the request.
420 */
421 if (!policy) {
422 blk_mq_end_request(rq, 0);
423 return;
424 }
425
426 BUG_ON(rq->bio != rq->biotail); /*assumes zero or single bio rq */
427
428 /*
429 * If there's data but flush is not necessary, the request can be
430 * processed directly without going through flush machinery. Queue
431 * for normal execution.
432 */
433 if ((policy & REQ_FSEQ_DATA) &&
434 !(policy & (REQ_FSEQ_PREFLUSH | REQ_FSEQ_POSTFLUSH))) {
435 blk_mq_request_bypass_insert(rq, false, true);
436 return;
437 }
438
439 /*
440 * @rq should go through flush machinery. Mark it part of flush
441 * sequence and submit for further processing.
442 */
443 memset(&rq->flush, 0, sizeof(rq->flush));
444 INIT_LIST_HEAD(&rq->flush.list);
445 rq->rq_flags |= RQF_FLUSH_SEQ;
446 rq->flush.saved_end_io = rq->end_io; /* Usually NULL */
447
448 rq->end_io = mq_flush_data_end_io;
449
450 spin_lock_irq(&fq->mq_flush_lock);
451 blk_flush_complete_seq(rq, fq, REQ_FSEQ_ACTIONS & ~policy, 0);
452 spin_unlock_irq(&fq->mq_flush_lock);
453}
454
455/**
456 * blkdev_issue_flush - queue a flush
457 * @bdev: blockdev to issue flush for
458 *
459 * Description:
460 * Issue a flush for the block device in question.
461 */
462int blkdev_issue_flush(struct block_device *bdev)
463{
464 struct bio bio;
465
466 bio_init(&bio, bdev, NULL, 0, REQ_OP_WRITE | REQ_PREFLUSH);
467 return submit_bio_wait(&bio);
468}
469EXPORT_SYMBOL(blkdev_issue_flush);
470
471struct blk_flush_queue *blk_alloc_flush_queue(int node, int cmd_size,
472 gfp_t flags)
473{
474 struct blk_flush_queue *fq;
475 int rq_sz = sizeof(struct request);
476
477 fq = kzalloc_node(sizeof(*fq), flags, node);
478 if (!fq)
479 goto fail;
480
481 spin_lock_init(&fq->mq_flush_lock);
482
483 rq_sz = round_up(rq_sz + cmd_size, cache_line_size());
484 fq->flush_rq = kzalloc_node(rq_sz, flags, node);
485 if (!fq->flush_rq)
486 goto fail_rq;
487
488 INIT_LIST_HEAD(&fq->flush_queue[0]);
489 INIT_LIST_HEAD(&fq->flush_queue[1]);
490 INIT_LIST_HEAD(&fq->flush_data_in_flight);
491
492 return fq;
493
494 fail_rq:
495 kfree(fq);
496 fail:
497 return NULL;
498}
499
500void blk_free_flush_queue(struct blk_flush_queue *fq)
501{
502 /* bio based request queue hasn't flush queue */
503 if (!fq)
504 return;
505
506 kfree(fq->flush_rq);
507 kfree(fq);
508}
509
510/*
511 * Allow driver to set its own lock class to fq->mq_flush_lock for
512 * avoiding lockdep complaint.
513 *
514 * flush_end_io() may be called recursively from some driver, such as
515 * nvme-loop, so lockdep may complain 'possible recursive locking' because
516 * all 'struct blk_flush_queue' instance share same mq_flush_lock lock class
517 * key. We need to assign different lock class for these driver's
518 * fq->mq_flush_lock for avoiding the lockdep warning.
519 *
520 * Use dynamically allocated lock class key for each 'blk_flush_queue'
521 * instance is over-kill, and more worse it introduces horrible boot delay
522 * issue because synchronize_rcu() is implied in lockdep_unregister_key which
523 * is called for each hctx release. SCSI probing may synchronously create and
524 * destroy lots of MQ request_queues for non-existent devices, and some robot
525 * test kernel always enable lockdep option. It is observed that more than half
526 * an hour is taken during SCSI MQ probe with per-fq lock class.
527 */
528void blk_mq_hctx_set_fq_lock_class(struct blk_mq_hw_ctx *hctx,
529 struct lock_class_key *key)
530{
531 lockdep_set_class(&hctx->fq->mq_flush_lock, key);
532}
533EXPORT_SYMBOL_GPL(blk_mq_hctx_set_fq_lock_class);
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Functions to sequence PREFLUSH and FUA writes.
4 *
5 * Copyright (C) 2011 Max Planck Institute for Gravitational Physics
6 * Copyright (C) 2011 Tejun Heo <tj@kernel.org>
7 *
8 * REQ_{PREFLUSH|FUA} requests are decomposed to sequences consisted of three
9 * optional steps - PREFLUSH, DATA and POSTFLUSH - according to the request
10 * properties and hardware capability.
11 *
12 * If a request doesn't have data, only REQ_PREFLUSH makes sense, which
13 * indicates a simple flush request. If there is data, REQ_PREFLUSH indicates
14 * that the device cache should be flushed before the data is executed, and
15 * REQ_FUA means that the data must be on non-volatile media on request
16 * completion.
17 *
18 * If the device doesn't have writeback cache, PREFLUSH and FUA don't make any
19 * difference. The requests are either completed immediately if there's no data
20 * or executed as normal requests otherwise.
21 *
22 * If the device has writeback cache and supports FUA, REQ_PREFLUSH is
23 * translated to PREFLUSH but REQ_FUA is passed down directly with DATA.
24 *
25 * If the device has writeback cache and doesn't support FUA, REQ_PREFLUSH
26 * is translated to PREFLUSH and REQ_FUA to POSTFLUSH.
27 *
28 * The actual execution of flush is double buffered. Whenever a request
29 * needs to execute PRE or POSTFLUSH, it queues at
30 * fq->flush_queue[fq->flush_pending_idx]. Once certain criteria are met, a
31 * REQ_OP_FLUSH is issued and the pending_idx is toggled. When the flush
32 * completes, all the requests which were pending are proceeded to the next
33 * step. This allows arbitrary merging of different types of PREFLUSH/FUA
34 * requests.
35 *
36 * Currently, the following conditions are used to determine when to issue
37 * flush.
38 *
39 * C1. At any given time, only one flush shall be in progress. This makes
40 * double buffering sufficient.
41 *
42 * C2. Flush is deferred if any request is executing DATA of its sequence.
43 * This avoids issuing separate POSTFLUSHes for requests which shared
44 * PREFLUSH.
45 *
46 * C3. The second condition is ignored if there is a request which has
47 * waited longer than FLUSH_PENDING_TIMEOUT. This is to avoid
48 * starvation in the unlikely case where there are continuous stream of
49 * FUA (without PREFLUSH) requests.
50 *
51 * For devices which support FUA, it isn't clear whether C2 (and thus C3)
52 * is beneficial.
53 *
54 * Note that a sequenced PREFLUSH/FUA request with DATA is completed twice.
55 * Once while executing DATA and again after the whole sequence is
56 * complete. The first completion updates the contained bio but doesn't
57 * finish it so that the bio submitter is notified only after the whole
58 * sequence is complete. This is implemented by testing RQF_FLUSH_SEQ in
59 * req_bio_endio().
60 *
61 * The above peculiarity requires that each PREFLUSH/FUA request has only one
62 * bio attached to it, which is guaranteed as they aren't allowed to be
63 * merged in the usual way.
64 */
65
66#include <linux/kernel.h>
67#include <linux/module.h>
68#include <linux/bio.h>
69#include <linux/blkdev.h>
70#include <linux/gfp.h>
71#include <linux/blk-mq.h>
72
73#include "blk.h"
74#include "blk-mq.h"
75#include "blk-mq-tag.h"
76#include "blk-mq-sched.h"
77
78/* PREFLUSH/FUA sequences */
79enum {
80 REQ_FSEQ_PREFLUSH = (1 << 0), /* pre-flushing in progress */
81 REQ_FSEQ_DATA = (1 << 1), /* data write in progress */
82 REQ_FSEQ_POSTFLUSH = (1 << 2), /* post-flushing in progress */
83 REQ_FSEQ_DONE = (1 << 3),
84
85 REQ_FSEQ_ACTIONS = REQ_FSEQ_PREFLUSH | REQ_FSEQ_DATA |
86 REQ_FSEQ_POSTFLUSH,
87
88 /*
89 * If flush has been pending longer than the following timeout,
90 * it's issued even if flush_data requests are still in flight.
91 */
92 FLUSH_PENDING_TIMEOUT = 5 * HZ,
93};
94
95static void blk_kick_flush(struct request_queue *q,
96 struct blk_flush_queue *fq, unsigned int flags);
97
98static unsigned int blk_flush_policy(unsigned long fflags, struct request *rq)
99{
100 unsigned int policy = 0;
101
102 if (blk_rq_sectors(rq))
103 policy |= REQ_FSEQ_DATA;
104
105 if (fflags & (1UL << QUEUE_FLAG_WC)) {
106 if (rq->cmd_flags & REQ_PREFLUSH)
107 policy |= REQ_FSEQ_PREFLUSH;
108 if (!(fflags & (1UL << QUEUE_FLAG_FUA)) &&
109 (rq->cmd_flags & REQ_FUA))
110 policy |= REQ_FSEQ_POSTFLUSH;
111 }
112 return policy;
113}
114
115static unsigned int blk_flush_cur_seq(struct request *rq)
116{
117 return 1 << ffz(rq->flush.seq);
118}
119
120static void blk_flush_restore_request(struct request *rq)
121{
122 /*
123 * After flush data completion, @rq->bio is %NULL but we need to
124 * complete the bio again. @rq->biotail is guaranteed to equal the
125 * original @rq->bio. Restore it.
126 */
127 rq->bio = rq->biotail;
128
129 /* make @rq a normal request */
130 rq->rq_flags &= ~RQF_FLUSH_SEQ;
131 rq->end_io = rq->flush.saved_end_io;
132}
133
134static void blk_flush_queue_rq(struct request *rq, bool add_front)
135{
136 blk_mq_add_to_requeue_list(rq, add_front, true);
137}
138
139static void blk_account_io_flush(struct request *rq)
140{
141 struct block_device *part = rq->rq_disk->part0;
142
143 part_stat_lock();
144 part_stat_inc(part, ios[STAT_FLUSH]);
145 part_stat_add(part, nsecs[STAT_FLUSH],
146 ktime_get_ns() - rq->start_time_ns);
147 part_stat_unlock();
148}
149
150/**
151 * blk_flush_complete_seq - complete flush sequence
152 * @rq: PREFLUSH/FUA request being sequenced
153 * @fq: flush queue
154 * @seq: sequences to complete (mask of %REQ_FSEQ_*, can be zero)
155 * @error: whether an error occurred
156 *
157 * @rq just completed @seq part of its flush sequence, record the
158 * completion and trigger the next step.
159 *
160 * CONTEXT:
161 * spin_lock_irq(fq->mq_flush_lock)
162 */
163static void blk_flush_complete_seq(struct request *rq,
164 struct blk_flush_queue *fq,
165 unsigned int seq, blk_status_t error)
166{
167 struct request_queue *q = rq->q;
168 struct list_head *pending = &fq->flush_queue[fq->flush_pending_idx];
169 unsigned int cmd_flags;
170
171 BUG_ON(rq->flush.seq & seq);
172 rq->flush.seq |= seq;
173 cmd_flags = rq->cmd_flags;
174
175 if (likely(!error))
176 seq = blk_flush_cur_seq(rq);
177 else
178 seq = REQ_FSEQ_DONE;
179
180 switch (seq) {
181 case REQ_FSEQ_PREFLUSH:
182 case REQ_FSEQ_POSTFLUSH:
183 /* queue for flush */
184 if (list_empty(pending))
185 fq->flush_pending_since = jiffies;
186 list_move_tail(&rq->flush.list, pending);
187 break;
188
189 case REQ_FSEQ_DATA:
190 list_move_tail(&rq->flush.list, &fq->flush_data_in_flight);
191 blk_flush_queue_rq(rq, true);
192 break;
193
194 case REQ_FSEQ_DONE:
195 /*
196 * @rq was previously adjusted by blk_insert_flush() for
197 * flush sequencing and may already have gone through the
198 * flush data request completion path. Restore @rq for
199 * normal completion and end it.
200 */
201 BUG_ON(!list_empty(&rq->queuelist));
202 list_del_init(&rq->flush.list);
203 blk_flush_restore_request(rq);
204 blk_mq_end_request(rq, error);
205 break;
206
207 default:
208 BUG();
209 }
210
211 blk_kick_flush(q, fq, cmd_flags);
212}
213
214static void flush_end_io(struct request *flush_rq, blk_status_t error)
215{
216 struct request_queue *q = flush_rq->q;
217 struct list_head *running;
218 struct request *rq, *n;
219 unsigned long flags = 0;
220 struct blk_flush_queue *fq = blk_get_flush_queue(q, flush_rq->mq_ctx);
221
222 /* release the tag's ownership to the req cloned from */
223 spin_lock_irqsave(&fq->mq_flush_lock, flags);
224
225 if (!refcount_dec_and_test(&flush_rq->ref)) {
226 fq->rq_status = error;
227 spin_unlock_irqrestore(&fq->mq_flush_lock, flags);
228 return;
229 }
230
231 blk_account_io_flush(flush_rq);
232 /*
233 * Flush request has to be marked as IDLE when it is really ended
234 * because its .end_io() is called from timeout code path too for
235 * avoiding use-after-free.
236 */
237 WRITE_ONCE(flush_rq->state, MQ_RQ_IDLE);
238 if (fq->rq_status != BLK_STS_OK)
239 error = fq->rq_status;
240
241 if (!q->elevator) {
242 flush_rq->tag = BLK_MQ_NO_TAG;
243 } else {
244 blk_mq_put_driver_tag(flush_rq);
245 flush_rq->internal_tag = BLK_MQ_NO_TAG;
246 }
247
248 running = &fq->flush_queue[fq->flush_running_idx];
249 BUG_ON(fq->flush_pending_idx == fq->flush_running_idx);
250
251 /* account completion of the flush request */
252 fq->flush_running_idx ^= 1;
253
254 /* and push the waiting requests to the next stage */
255 list_for_each_entry_safe(rq, n, running, flush.list) {
256 unsigned int seq = blk_flush_cur_seq(rq);
257
258 BUG_ON(seq != REQ_FSEQ_PREFLUSH && seq != REQ_FSEQ_POSTFLUSH);
259 blk_flush_complete_seq(rq, fq, seq, error);
260 }
261
262 spin_unlock_irqrestore(&fq->mq_flush_lock, flags);
263}
264
265bool is_flush_rq(struct request *rq)
266{
267 return rq->end_io == flush_end_io;
268}
269
270/**
271 * blk_kick_flush - consider issuing flush request
272 * @q: request_queue being kicked
273 * @fq: flush queue
274 * @flags: cmd_flags of the original request
275 *
276 * Flush related states of @q have changed, consider issuing flush request.
277 * Please read the comment at the top of this file for more info.
278 *
279 * CONTEXT:
280 * spin_lock_irq(fq->mq_flush_lock)
281 *
282 */
283static void blk_kick_flush(struct request_queue *q, struct blk_flush_queue *fq,
284 unsigned int flags)
285{
286 struct list_head *pending = &fq->flush_queue[fq->flush_pending_idx];
287 struct request *first_rq =
288 list_first_entry(pending, struct request, flush.list);
289 struct request *flush_rq = fq->flush_rq;
290
291 /* C1 described at the top of this file */
292 if (fq->flush_pending_idx != fq->flush_running_idx || list_empty(pending))
293 return;
294
295 /* C2 and C3 */
296 if (!list_empty(&fq->flush_data_in_flight) &&
297 time_before(jiffies,
298 fq->flush_pending_since + FLUSH_PENDING_TIMEOUT))
299 return;
300
301 /*
302 * Issue flush and toggle pending_idx. This makes pending_idx
303 * different from running_idx, which means flush is in flight.
304 */
305 fq->flush_pending_idx ^= 1;
306
307 blk_rq_init(q, flush_rq);
308
309 /*
310 * In case of none scheduler, borrow tag from the first request
311 * since they can't be in flight at the same time. And acquire
312 * the tag's ownership for flush req.
313 *
314 * In case of IO scheduler, flush rq need to borrow scheduler tag
315 * just for cheating put/get driver tag.
316 */
317 flush_rq->mq_ctx = first_rq->mq_ctx;
318 flush_rq->mq_hctx = first_rq->mq_hctx;
319
320 if (!q->elevator) {
321 flush_rq->tag = first_rq->tag;
322
323 /*
324 * We borrow data request's driver tag, so have to mark
325 * this flush request as INFLIGHT for avoiding double
326 * account of this driver tag
327 */
328 flush_rq->rq_flags |= RQF_MQ_INFLIGHT;
329 } else
330 flush_rq->internal_tag = first_rq->internal_tag;
331
332 flush_rq->cmd_flags = REQ_OP_FLUSH | REQ_PREFLUSH;
333 flush_rq->cmd_flags |= (flags & REQ_DRV) | (flags & REQ_FAILFAST_MASK);
334 flush_rq->rq_flags |= RQF_FLUSH_SEQ;
335 flush_rq->rq_disk = first_rq->rq_disk;
336 flush_rq->end_io = flush_end_io;
337 /*
338 * Order WRITE ->end_io and WRITE rq->ref, and its pair is the one
339 * implied in refcount_inc_not_zero() called from
340 * blk_mq_find_and_get_req(), which orders WRITE/READ flush_rq->ref
341 * and READ flush_rq->end_io
342 */
343 smp_wmb();
344 refcount_set(&flush_rq->ref, 1);
345
346 blk_flush_queue_rq(flush_rq, false);
347}
348
349static void mq_flush_data_end_io(struct request *rq, blk_status_t error)
350{
351 struct request_queue *q = rq->q;
352 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
353 struct blk_mq_ctx *ctx = rq->mq_ctx;
354 unsigned long flags;
355 struct blk_flush_queue *fq = blk_get_flush_queue(q, ctx);
356
357 if (q->elevator) {
358 WARN_ON(rq->tag < 0);
359 blk_mq_put_driver_tag(rq);
360 }
361
362 /*
363 * After populating an empty queue, kick it to avoid stall. Read
364 * the comment in flush_end_io().
365 */
366 spin_lock_irqsave(&fq->mq_flush_lock, flags);
367 blk_flush_complete_seq(rq, fq, REQ_FSEQ_DATA, error);
368 spin_unlock_irqrestore(&fq->mq_flush_lock, flags);
369
370 blk_mq_sched_restart(hctx);
371}
372
373/**
374 * blk_insert_flush - insert a new PREFLUSH/FUA request
375 * @rq: request to insert
376 *
377 * To be called from __elv_add_request() for %ELEVATOR_INSERT_FLUSH insertions.
378 * or __blk_mq_run_hw_queue() to dispatch request.
379 * @rq is being submitted. Analyze what needs to be done and put it on the
380 * right queue.
381 */
382void blk_insert_flush(struct request *rq)
383{
384 struct request_queue *q = rq->q;
385 unsigned long fflags = q->queue_flags; /* may change, cache */
386 unsigned int policy = blk_flush_policy(fflags, rq);
387 struct blk_flush_queue *fq = blk_get_flush_queue(q, rq->mq_ctx);
388
389 /*
390 * @policy now records what operations need to be done. Adjust
391 * REQ_PREFLUSH and FUA for the driver.
392 */
393 rq->cmd_flags &= ~REQ_PREFLUSH;
394 if (!(fflags & (1UL << QUEUE_FLAG_FUA)))
395 rq->cmd_flags &= ~REQ_FUA;
396
397 /*
398 * REQ_PREFLUSH|REQ_FUA implies REQ_SYNC, so if we clear any
399 * of those flags, we have to set REQ_SYNC to avoid skewing
400 * the request accounting.
401 */
402 rq->cmd_flags |= REQ_SYNC;
403
404 /*
405 * An empty flush handed down from a stacking driver may
406 * translate into nothing if the underlying device does not
407 * advertise a write-back cache. In this case, simply
408 * complete the request.
409 */
410 if (!policy) {
411 blk_mq_end_request(rq, 0);
412 return;
413 }
414
415 BUG_ON(rq->bio != rq->biotail); /*assumes zero or single bio rq */
416
417 /*
418 * If there's data but flush is not necessary, the request can be
419 * processed directly without going through flush machinery. Queue
420 * for normal execution.
421 */
422 if ((policy & REQ_FSEQ_DATA) &&
423 !(policy & (REQ_FSEQ_PREFLUSH | REQ_FSEQ_POSTFLUSH))) {
424 blk_mq_request_bypass_insert(rq, false, false);
425 return;
426 }
427
428 /*
429 * @rq should go through flush machinery. Mark it part of flush
430 * sequence and submit for further processing.
431 */
432 memset(&rq->flush, 0, sizeof(rq->flush));
433 INIT_LIST_HEAD(&rq->flush.list);
434 rq->rq_flags |= RQF_FLUSH_SEQ;
435 rq->flush.saved_end_io = rq->end_io; /* Usually NULL */
436
437 rq->end_io = mq_flush_data_end_io;
438
439 spin_lock_irq(&fq->mq_flush_lock);
440 blk_flush_complete_seq(rq, fq, REQ_FSEQ_ACTIONS & ~policy, 0);
441 spin_unlock_irq(&fq->mq_flush_lock);
442}
443
444/**
445 * blkdev_issue_flush - queue a flush
446 * @bdev: blockdev to issue flush for
447 *
448 * Description:
449 * Issue a flush for the block device in question.
450 */
451int blkdev_issue_flush(struct block_device *bdev)
452{
453 struct bio bio;
454
455 bio_init(&bio, NULL, 0);
456 bio_set_dev(&bio, bdev);
457 bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
458 return submit_bio_wait(&bio);
459}
460EXPORT_SYMBOL(blkdev_issue_flush);
461
462struct blk_flush_queue *blk_alloc_flush_queue(int node, int cmd_size,
463 gfp_t flags)
464{
465 struct blk_flush_queue *fq;
466 int rq_sz = sizeof(struct request);
467
468 fq = kzalloc_node(sizeof(*fq), flags, node);
469 if (!fq)
470 goto fail;
471
472 spin_lock_init(&fq->mq_flush_lock);
473
474 rq_sz = round_up(rq_sz + cmd_size, cache_line_size());
475 fq->flush_rq = kzalloc_node(rq_sz, flags, node);
476 if (!fq->flush_rq)
477 goto fail_rq;
478
479 INIT_LIST_HEAD(&fq->flush_queue[0]);
480 INIT_LIST_HEAD(&fq->flush_queue[1]);
481 INIT_LIST_HEAD(&fq->flush_data_in_flight);
482
483 return fq;
484
485 fail_rq:
486 kfree(fq);
487 fail:
488 return NULL;
489}
490
491void blk_free_flush_queue(struct blk_flush_queue *fq)
492{
493 /* bio based request queue hasn't flush queue */
494 if (!fq)
495 return;
496
497 kfree(fq->flush_rq);
498 kfree(fq);
499}
500
501/*
502 * Allow driver to set its own lock class to fq->mq_flush_lock for
503 * avoiding lockdep complaint.
504 *
505 * flush_end_io() may be called recursively from some driver, such as
506 * nvme-loop, so lockdep may complain 'possible recursive locking' because
507 * all 'struct blk_flush_queue' instance share same mq_flush_lock lock class
508 * key. We need to assign different lock class for these driver's
509 * fq->mq_flush_lock for avoiding the lockdep warning.
510 *
511 * Use dynamically allocated lock class key for each 'blk_flush_queue'
512 * instance is over-kill, and more worse it introduces horrible boot delay
513 * issue because synchronize_rcu() is implied in lockdep_unregister_key which
514 * is called for each hctx release. SCSI probing may synchronously create and
515 * destroy lots of MQ request_queues for non-existent devices, and some robot
516 * test kernel always enable lockdep option. It is observed that more than half
517 * an hour is taken during SCSI MQ probe with per-fq lock class.
518 */
519void blk_mq_hctx_set_fq_lock_class(struct blk_mq_hw_ctx *hctx,
520 struct lock_class_key *key)
521{
522 lockdep_set_class(&hctx->fq->mq_flush_lock, key);
523}
524EXPORT_SYMBOL_GPL(blk_mq_hctx_set_fq_lock_class);