Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Functions to sequence PREFLUSH and FUA writes.
  4 *
  5 * Copyright (C) 2011		Max Planck Institute for Gravitational Physics
  6 * Copyright (C) 2011		Tejun Heo <tj@kernel.org>
  7 *
  8 * REQ_{PREFLUSH|FUA} requests are decomposed to sequences consisted of three
 
 
  9 * optional steps - PREFLUSH, DATA and POSTFLUSH - according to the request
 10 * properties and hardware capability.
 11 *
 12 * If a request doesn't have data, only REQ_PREFLUSH makes sense, which
 13 * indicates a simple flush request.  If there is data, REQ_PREFLUSH indicates
 14 * that the device cache should be flushed before the data is executed, and
 15 * REQ_FUA means that the data must be on non-volatile media on request
 16 * completion.
 17 *
 18 * If the device doesn't have writeback cache, PREFLUSH and FUA don't make any
 19 * difference.  The requests are either completed immediately if there's no data
 20 * or executed as normal requests otherwise.
 21 *
 22 * If the device has writeback cache and supports FUA, REQ_PREFLUSH is
 23 * translated to PREFLUSH but REQ_FUA is passed down directly with DATA.
 24 *
 25 * If the device has writeback cache and doesn't support FUA, REQ_PREFLUSH
 26 * is translated to PREFLUSH and REQ_FUA to POSTFLUSH.
 27 *
 28 * The actual execution of flush is double buffered.  Whenever a request
 29 * needs to execute PRE or POSTFLUSH, it queues at
 30 * fq->flush_queue[fq->flush_pending_idx].  Once certain criteria are met, a
 31 * REQ_OP_FLUSH is issued and the pending_idx is toggled.  When the flush
 32 * completes, all the requests which were pending are proceeded to the next
 33 * step.  This allows arbitrary merging of different types of PREFLUSH/FUA
 34 * requests.
 35 *
 36 * Currently, the following conditions are used to determine when to issue
 37 * flush.
 38 *
 39 * C1. At any given time, only one flush shall be in progress.  This makes
 40 *     double buffering sufficient.
 41 *
 42 * C2. Flush is deferred if any request is executing DATA of its sequence.
 43 *     This avoids issuing separate POSTFLUSHes for requests which shared
 44 *     PREFLUSH.
 45 *
 46 * C3. The second condition is ignored if there is a request which has
 47 *     waited longer than FLUSH_PENDING_TIMEOUT.  This is to avoid
 48 *     starvation in the unlikely case where there are continuous stream of
 49 *     FUA (without PREFLUSH) requests.
 50 *
 51 * For devices which support FUA, it isn't clear whether C2 (and thus C3)
 52 * is beneficial.
 53 *
 54 * Note that a sequenced PREFLUSH/FUA request with DATA is completed twice.
 55 * Once while executing DATA and again after the whole sequence is
 56 * complete.  The first completion updates the contained bio but doesn't
 57 * finish it so that the bio submitter is notified only after the whole
 58 * sequence is complete.  This is implemented by testing RQF_FLUSH_SEQ in
 59 * req_bio_endio().
 60 *
 61 * The above peculiarity requires that each PREFLUSH/FUA request has only one
 62 * bio attached to it, which is guaranteed as they aren't allowed to be
 63 * merged in the usual way.
 64 */
 65
 66#include <linux/kernel.h>
 67#include <linux/module.h>
 68#include <linux/bio.h>
 69#include <linux/blkdev.h>
 70#include <linux/gfp.h>
 71#include <linux/blk-mq.h>
 72#include <linux/part_stat.h>
 73
 74#include "blk.h"
 75#include "blk-mq.h"
 76#include "blk-mq-tag.h"
 77#include "blk-mq-sched.h"
 78
 79/* PREFLUSH/FUA sequences */
 80enum {
 81	REQ_FSEQ_PREFLUSH	= (1 << 0), /* pre-flushing in progress */
 82	REQ_FSEQ_DATA		= (1 << 1), /* data write in progress */
 83	REQ_FSEQ_POSTFLUSH	= (1 << 2), /* post-flushing in progress */
 84	REQ_FSEQ_DONE		= (1 << 3),
 85
 86	REQ_FSEQ_ACTIONS	= REQ_FSEQ_PREFLUSH | REQ_FSEQ_DATA |
 87				  REQ_FSEQ_POSTFLUSH,
 88
 89	/*
 90	 * If flush has been pending longer than the following timeout,
 91	 * it's issued even if flush_data requests are still in flight.
 92	 */
 93	FLUSH_PENDING_TIMEOUT	= 5 * HZ,
 94};
 95
 96static void blk_kick_flush(struct request_queue *q,
 97			   struct blk_flush_queue *fq, blk_opf_t flags);
 98
 99static inline struct blk_flush_queue *
100blk_get_flush_queue(struct request_queue *q, struct blk_mq_ctx *ctx)
101{
102	return blk_mq_map_queue(q, REQ_OP_FLUSH, ctx)->fq;
103}
104
105static unsigned int blk_flush_policy(unsigned long fflags, struct request *rq)
106{
107	unsigned int policy = 0;
108
109	if (blk_rq_sectors(rq))
110		policy |= REQ_FSEQ_DATA;
111
112	if (fflags & (1UL << QUEUE_FLAG_WC)) {
113		if (rq->cmd_flags & REQ_PREFLUSH)
114			policy |= REQ_FSEQ_PREFLUSH;
115		if (!(fflags & (1UL << QUEUE_FLAG_FUA)) &&
116		    (rq->cmd_flags & REQ_FUA))
117			policy |= REQ_FSEQ_POSTFLUSH;
118	}
119	return policy;
120}
121
122static unsigned int blk_flush_cur_seq(struct request *rq)
123{
124	return 1 << ffz(rq->flush.seq);
125}
126
127static void blk_flush_restore_request(struct request *rq)
128{
129	/*
130	 * After flush data completion, @rq->bio is %NULL but we need to
131	 * complete the bio again.  @rq->biotail is guaranteed to equal the
132	 * original @rq->bio.  Restore it.
133	 */
134	rq->bio = rq->biotail;
135
136	/* make @rq a normal request */
137	rq->rq_flags &= ~RQF_FLUSH_SEQ;
138	rq->end_io = rq->flush.saved_end_io;
139}
140
141static void blk_flush_queue_rq(struct request *rq, bool add_front)
142{
143	blk_mq_add_to_requeue_list(rq, add_front, true);
144}
145
146static void blk_account_io_flush(struct request *rq)
147{
148	struct block_device *part = rq->q->disk->part0;
149
150	part_stat_lock();
151	part_stat_inc(part, ios[STAT_FLUSH]);
152	part_stat_add(part, nsecs[STAT_FLUSH],
153		      ktime_get_ns() - rq->start_time_ns);
154	part_stat_unlock();
155}
156
157/**
158 * blk_flush_complete_seq - complete flush sequence
159 * @rq: PREFLUSH/FUA request being sequenced
160 * @fq: flush queue
161 * @seq: sequences to complete (mask of %REQ_FSEQ_*, can be zero)
162 * @error: whether an error occurred
163 *
164 * @rq just completed @seq part of its flush sequence, record the
165 * completion and trigger the next step.
166 *
167 * CONTEXT:
168 * spin_lock_irq(fq->mq_flush_lock)
 
 
 
169 */
170static void blk_flush_complete_seq(struct request *rq,
171				   struct blk_flush_queue *fq,
172				   unsigned int seq, blk_status_t error)
173{
174	struct request_queue *q = rq->q;
175	struct list_head *pending = &fq->flush_queue[fq->flush_pending_idx];
176	blk_opf_t cmd_flags;
177
178	BUG_ON(rq->flush.seq & seq);
179	rq->flush.seq |= seq;
180	cmd_flags = rq->cmd_flags;
181
182	if (likely(!error))
183		seq = blk_flush_cur_seq(rq);
184	else
185		seq = REQ_FSEQ_DONE;
186
187	switch (seq) {
188	case REQ_FSEQ_PREFLUSH:
189	case REQ_FSEQ_POSTFLUSH:
190		/* queue for flush */
191		if (list_empty(pending))
192			fq->flush_pending_since = jiffies;
193		list_move_tail(&rq->flush.list, pending);
194		break;
195
196	case REQ_FSEQ_DATA:
197		list_move_tail(&rq->flush.list, &fq->flush_data_in_flight);
198		blk_flush_queue_rq(rq, true);
199		break;
200
201	case REQ_FSEQ_DONE:
202		/*
203		 * @rq was previously adjusted by blk_insert_flush() for
204		 * flush sequencing and may already have gone through the
205		 * flush data request completion path.  Restore @rq for
206		 * normal completion and end it.
207		 */
 
208		list_del_init(&rq->flush.list);
209		blk_flush_restore_request(rq);
210		blk_mq_end_request(rq, error);
 
 
 
211		break;
212
213	default:
214		BUG();
215	}
216
217	blk_kick_flush(q, fq, cmd_flags);
 
218}
219
220static enum rq_end_io_ret flush_end_io(struct request *flush_rq,
221				       blk_status_t error)
222{
223	struct request_queue *q = flush_rq->q;
224	struct list_head *running;
 
225	struct request *rq, *n;
226	unsigned long flags = 0;
227	struct blk_flush_queue *fq = blk_get_flush_queue(q, flush_rq->mq_ctx);
228
229	/* release the tag's ownership to the req cloned from */
230	spin_lock_irqsave(&fq->mq_flush_lock, flags);
231
232	if (!req_ref_put_and_test(flush_rq)) {
233		fq->rq_status = error;
234		spin_unlock_irqrestore(&fq->mq_flush_lock, flags);
235		return RQ_END_IO_NONE;
236	}
237
238	blk_account_io_flush(flush_rq);
239	/*
240	 * Flush request has to be marked as IDLE when it is really ended
241	 * because its .end_io() is called from timeout code path too for
242	 * avoiding use-after-free.
243	 */
244	WRITE_ONCE(flush_rq->state, MQ_RQ_IDLE);
245	if (fq->rq_status != BLK_STS_OK) {
246		error = fq->rq_status;
247		fq->rq_status = BLK_STS_OK;
248	}
249
250	if (!q->elevator) {
251		flush_rq->tag = BLK_MQ_NO_TAG;
252	} else {
253		blk_mq_put_driver_tag(flush_rq);
254		flush_rq->internal_tag = BLK_MQ_NO_TAG;
255	}
256
257	running = &fq->flush_queue[fq->flush_running_idx];
258	BUG_ON(fq->flush_pending_idx == fq->flush_running_idx);
259
260	/* account completion of the flush request */
261	fq->flush_running_idx ^= 1;
262
 
 
 
263	/* and push the waiting requests to the next stage */
264	list_for_each_entry_safe(rq, n, running, flush.list) {
265		unsigned int seq = blk_flush_cur_seq(rq);
266
267		BUG_ON(seq != REQ_FSEQ_PREFLUSH && seq != REQ_FSEQ_POSTFLUSH);
268		blk_flush_complete_seq(rq, fq, seq, error);
269	}
270
271	spin_unlock_irqrestore(&fq->mq_flush_lock, flags);
272	return RQ_END_IO_NONE;
273}
274
275bool is_flush_rq(struct request *rq)
276{
277	return rq->end_io == flush_end_io;
 
 
 
 
 
 
 
 
 
 
 
278}
279
280/**
281 * blk_kick_flush - consider issuing flush request
282 * @q: request_queue being kicked
283 * @fq: flush queue
284 * @flags: cmd_flags of the original request
285 *
286 * Flush related states of @q have changed, consider issuing flush request.
287 * Please read the comment at the top of this file for more info.
288 *
289 * CONTEXT:
290 * spin_lock_irq(fq->mq_flush_lock)
291 *
 
 
292 */
293static void blk_kick_flush(struct request_queue *q, struct blk_flush_queue *fq,
294			   blk_opf_t flags)
295{
296	struct list_head *pending = &fq->flush_queue[fq->flush_pending_idx];
297	struct request *first_rq =
298		list_first_entry(pending, struct request, flush.list);
299	struct request *flush_rq = fq->flush_rq;
300
301	/* C1 described at the top of this file */
302	if (fq->flush_pending_idx != fq->flush_running_idx || list_empty(pending))
303		return;
304
305	/* C2 and C3 */
306	if (!list_empty(&fq->flush_data_in_flight) &&
307	    time_before(jiffies,
308			fq->flush_pending_since + FLUSH_PENDING_TIMEOUT))
309		return;
310
311	/*
312	 * Issue flush and toggle pending_idx.  This makes pending_idx
313	 * different from running_idx, which means flush is in flight.
314	 */
315	fq->flush_pending_idx ^= 1;
316
317	blk_rq_init(q, flush_rq);
318
319	/*
320	 * In case of none scheduler, borrow tag from the first request
321	 * since they can't be in flight at the same time. And acquire
322	 * the tag's ownership for flush req.
323	 *
324	 * In case of IO scheduler, flush rq need to borrow scheduler tag
325	 * just for cheating put/get driver tag.
326	 */
327	flush_rq->mq_ctx = first_rq->mq_ctx;
328	flush_rq->mq_hctx = first_rq->mq_hctx;
329
330	if (!q->elevator) {
331		flush_rq->tag = first_rq->tag;
 
332
333		/*
334		 * We borrow data request's driver tag, so have to mark
335		 * this flush request as INFLIGHT for avoiding double
336		 * account of this driver tag
337		 */
338		flush_rq->rq_flags |= RQF_MQ_INFLIGHT;
339	} else
340		flush_rq->internal_tag = first_rq->internal_tag;
341
 
342	flush_rq->cmd_flags = REQ_OP_FLUSH | REQ_PREFLUSH;
343	flush_rq->cmd_flags |= (flags & REQ_DRV) | (flags & REQ_FAILFAST_MASK);
344	flush_rq->rq_flags |= RQF_FLUSH_SEQ;
 
345	flush_rq->end_io = flush_end_io;
 
 
 
 
 
 
 
 
 
346	/*
347	 * Order WRITE ->end_io and WRITE rq->ref, and its pair is the one
348	 * implied in refcount_inc_not_zero() called from
349	 * blk_mq_find_and_get_req(), which orders WRITE/READ flush_rq->ref
350	 * and READ flush_rq->end_io
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
351	 */
352	smp_wmb();
353	req_ref_set(flush_rq, 1);
354
355	blk_flush_queue_rq(flush_rq, false);
 
 
 
 
 
 
 
 
 
 
356}
357
358static enum rq_end_io_ret mq_flush_data_end_io(struct request *rq,
359					       blk_status_t error)
360{
361	struct request_queue *q = rq->q;
362	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
363	struct blk_mq_ctx *ctx = rq->mq_ctx;
364	unsigned long flags;
365	struct blk_flush_queue *fq = blk_get_flush_queue(q, ctx);
366
367	if (q->elevator) {
368		WARN_ON(rq->tag < 0);
369		blk_mq_put_driver_tag(rq);
370	}
371
372	/*
373	 * After populating an empty queue, kick it to avoid stall.  Read
374	 * the comment in flush_end_io().
375	 */
376	spin_lock_irqsave(&fq->mq_flush_lock, flags);
377	blk_flush_complete_seq(rq, fq, REQ_FSEQ_DATA, error);
 
378	spin_unlock_irqrestore(&fq->mq_flush_lock, flags);
379
380	blk_mq_sched_restart(hctx);
381	return RQ_END_IO_NONE;
382}
383
384/**
385 * blk_insert_flush - insert a new PREFLUSH/FUA request
386 * @rq: request to insert
387 *
388 * To be called from __elv_add_request() for %ELEVATOR_INSERT_FLUSH insertions.
389 * or __blk_mq_run_hw_queue() to dispatch request.
390 * @rq is being submitted.  Analyze what needs to be done and put it on the
391 * right queue.
 
 
 
392 */
393void blk_insert_flush(struct request *rq)
394{
395	struct request_queue *q = rq->q;
396	unsigned long fflags = q->queue_flags;	/* may change, cache */
397	unsigned int policy = blk_flush_policy(fflags, rq);
398	struct blk_flush_queue *fq = blk_get_flush_queue(q, rq->mq_ctx);
399
400	/*
401	 * @policy now records what operations need to be done.  Adjust
402	 * REQ_PREFLUSH and FUA for the driver.
403	 */
404	rq->cmd_flags &= ~REQ_PREFLUSH;
405	if (!(fflags & (1UL << QUEUE_FLAG_FUA)))
406		rq->cmd_flags &= ~REQ_FUA;
407
408	/*
409	 * REQ_PREFLUSH|REQ_FUA implies REQ_SYNC, so if we clear any
410	 * of those flags, we have to set REQ_SYNC to avoid skewing
411	 * the request accounting.
412	 */
413	rq->cmd_flags |= REQ_SYNC;
414
415	/*
416	 * An empty flush handed down from a stacking driver may
417	 * translate into nothing if the underlying device does not
418	 * advertise a write-back cache.  In this case, simply
419	 * complete the request.
420	 */
421	if (!policy) {
422		blk_mq_end_request(rq, 0);
 
 
 
423		return;
424	}
425
426	BUG_ON(rq->bio != rq->biotail); /*assumes zero or single bio rq */
427
428	/*
429	 * If there's data but flush is not necessary, the request can be
430	 * processed directly without going through flush machinery.  Queue
431	 * for normal execution.
432	 */
433	if ((policy & REQ_FSEQ_DATA) &&
434	    !(policy & (REQ_FSEQ_PREFLUSH | REQ_FSEQ_POSTFLUSH))) {
435		blk_mq_request_bypass_insert(rq, false, true);
 
 
 
436		return;
437	}
438
439	/*
440	 * @rq should go through flush machinery.  Mark it part of flush
441	 * sequence and submit for further processing.
442	 */
443	memset(&rq->flush, 0, sizeof(rq->flush));
444	INIT_LIST_HEAD(&rq->flush.list);
445	rq->rq_flags |= RQF_FLUSH_SEQ;
446	rq->flush.saved_end_io = rq->end_io; /* Usually NULL */
 
 
447
448	rq->end_io = mq_flush_data_end_io;
 
 
 
 
 
449
450	spin_lock_irq(&fq->mq_flush_lock);
451	blk_flush_complete_seq(rq, fq, REQ_FSEQ_ACTIONS & ~policy, 0);
452	spin_unlock_irq(&fq->mq_flush_lock);
453}
454
455/**
456 * blkdev_issue_flush - queue a flush
457 * @bdev:	blockdev to issue flush for
 
 
458 *
459 * Description:
460 *    Issue a flush for the block device in question.
 
 
 
461 */
462int blkdev_issue_flush(struct block_device *bdev)
 
463{
464	struct bio bio;
 
 
465
466	bio_init(&bio, bdev, NULL, 0, REQ_OP_WRITE | REQ_PREFLUSH);
467	return submit_bio_wait(&bio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
468}
469EXPORT_SYMBOL(blkdev_issue_flush);
470
471struct blk_flush_queue *blk_alloc_flush_queue(int node, int cmd_size,
472					      gfp_t flags)
473{
474	struct blk_flush_queue *fq;
475	int rq_sz = sizeof(struct request);
476
477	fq = kzalloc_node(sizeof(*fq), flags, node);
478	if (!fq)
479		goto fail;
480
481	spin_lock_init(&fq->mq_flush_lock);
 
 
 
482
483	rq_sz = round_up(rq_sz + cmd_size, cache_line_size());
484	fq->flush_rq = kzalloc_node(rq_sz, flags, node);
485	if (!fq->flush_rq)
486		goto fail_rq;
487
488	INIT_LIST_HEAD(&fq->flush_queue[0]);
489	INIT_LIST_HEAD(&fq->flush_queue[1]);
490	INIT_LIST_HEAD(&fq->flush_data_in_flight);
491
492	return fq;
493
494 fail_rq:
495	kfree(fq);
496 fail:
497	return NULL;
498}
499
500void blk_free_flush_queue(struct blk_flush_queue *fq)
501{
502	/* bio based request queue hasn't flush queue */
503	if (!fq)
504		return;
505
506	kfree(fq->flush_rq);
507	kfree(fq);
508}
509
510/*
511 * Allow driver to set its own lock class to fq->mq_flush_lock for
512 * avoiding lockdep complaint.
513 *
514 * flush_end_io() may be called recursively from some driver, such as
515 * nvme-loop, so lockdep may complain 'possible recursive locking' because
516 * all 'struct blk_flush_queue' instance share same mq_flush_lock lock class
517 * key. We need to assign different lock class for these driver's
518 * fq->mq_flush_lock for avoiding the lockdep warning.
519 *
520 * Use dynamically allocated lock class key for each 'blk_flush_queue'
521 * instance is over-kill, and more worse it introduces horrible boot delay
522 * issue because synchronize_rcu() is implied in lockdep_unregister_key which
523 * is called for each hctx release. SCSI probing may synchronously create and
524 * destroy lots of MQ request_queues for non-existent devices, and some robot
525 * test kernel always enable lockdep option. It is observed that more than half
526 * an hour is taken during SCSI MQ probe with per-fq lock class.
527 */
528void blk_mq_hctx_set_fq_lock_class(struct blk_mq_hw_ctx *hctx,
529		struct lock_class_key *key)
530{
531	lockdep_set_class(&hctx->fq->mq_flush_lock, key);
532}
533EXPORT_SYMBOL_GPL(blk_mq_hctx_set_fq_lock_class);
v4.10.11
 
  1/*
  2 * Functions to sequence FLUSH and FUA writes.
  3 *
  4 * Copyright (C) 2011		Max Planck Institute for Gravitational Physics
  5 * Copyright (C) 2011		Tejun Heo <tj@kernel.org>
  6 *
  7 * This file is released under the GPLv2.
  8 *
  9 * REQ_{FLUSH|FUA} requests are decomposed to sequences consisted of three
 10 * optional steps - PREFLUSH, DATA and POSTFLUSH - according to the request
 11 * properties and hardware capability.
 12 *
 13 * If a request doesn't have data, only REQ_PREFLUSH makes sense, which
 14 * indicates a simple flush request.  If there is data, REQ_PREFLUSH indicates
 15 * that the device cache should be flushed before the data is executed, and
 16 * REQ_FUA means that the data must be on non-volatile media on request
 17 * completion.
 18 *
 19 * If the device doesn't have writeback cache, FLUSH and FUA don't make any
 20 * difference.  The requests are either completed immediately if there's no
 21 * data or executed as normal requests otherwise.
 22 *
 23 * If the device has writeback cache and supports FUA, REQ_PREFLUSH is
 24 * translated to PREFLUSH but REQ_FUA is passed down directly with DATA.
 25 *
 26 * If the device has writeback cache and doesn't support FUA, REQ_PREFLUSH
 27 * is translated to PREFLUSH and REQ_FUA to POSTFLUSH.
 28 *
 29 * The actual execution of flush is double buffered.  Whenever a request
 30 * needs to execute PRE or POSTFLUSH, it queues at
 31 * fq->flush_queue[fq->flush_pending_idx].  Once certain criteria are met, a
 32 * REQ_OP_FLUSH is issued and the pending_idx is toggled.  When the flush
 33 * completes, all the requests which were pending are proceeded to the next
 34 * step.  This allows arbitrary merging of different types of FLUSH/FUA
 35 * requests.
 36 *
 37 * Currently, the following conditions are used to determine when to issue
 38 * flush.
 39 *
 40 * C1. At any given time, only one flush shall be in progress.  This makes
 41 *     double buffering sufficient.
 42 *
 43 * C2. Flush is deferred if any request is executing DATA of its sequence.
 44 *     This avoids issuing separate POSTFLUSHes for requests which shared
 45 *     PREFLUSH.
 46 *
 47 * C3. The second condition is ignored if there is a request which has
 48 *     waited longer than FLUSH_PENDING_TIMEOUT.  This is to avoid
 49 *     starvation in the unlikely case where there are continuous stream of
 50 *     FUA (without FLUSH) requests.
 51 *
 52 * For devices which support FUA, it isn't clear whether C2 (and thus C3)
 53 * is beneficial.
 54 *
 55 * Note that a sequenced FLUSH/FUA request with DATA is completed twice.
 56 * Once while executing DATA and again after the whole sequence is
 57 * complete.  The first completion updates the contained bio but doesn't
 58 * finish it so that the bio submitter is notified only after the whole
 59 * sequence is complete.  This is implemented by testing RQF_FLUSH_SEQ in
 60 * req_bio_endio().
 61 *
 62 * The above peculiarity requires that each FLUSH/FUA request has only one
 63 * bio attached to it, which is guaranteed as they aren't allowed to be
 64 * merged in the usual way.
 65 */
 66
 67#include <linux/kernel.h>
 68#include <linux/module.h>
 69#include <linux/bio.h>
 70#include <linux/blkdev.h>
 71#include <linux/gfp.h>
 72#include <linux/blk-mq.h>
 
 73
 74#include "blk.h"
 75#include "blk-mq.h"
 76#include "blk-mq-tag.h"
 
 77
 78/* FLUSH/FUA sequences */
 79enum {
 80	REQ_FSEQ_PREFLUSH	= (1 << 0), /* pre-flushing in progress */
 81	REQ_FSEQ_DATA		= (1 << 1), /* data write in progress */
 82	REQ_FSEQ_POSTFLUSH	= (1 << 2), /* post-flushing in progress */
 83	REQ_FSEQ_DONE		= (1 << 3),
 84
 85	REQ_FSEQ_ACTIONS	= REQ_FSEQ_PREFLUSH | REQ_FSEQ_DATA |
 86				  REQ_FSEQ_POSTFLUSH,
 87
 88	/*
 89	 * If flush has been pending longer than the following timeout,
 90	 * it's issued even if flush_data requests are still in flight.
 91	 */
 92	FLUSH_PENDING_TIMEOUT	= 5 * HZ,
 93};
 94
 95static bool blk_kick_flush(struct request_queue *q,
 96			   struct blk_flush_queue *fq);
 
 
 
 
 
 
 97
 98static unsigned int blk_flush_policy(unsigned long fflags, struct request *rq)
 99{
100	unsigned int policy = 0;
101
102	if (blk_rq_sectors(rq))
103		policy |= REQ_FSEQ_DATA;
104
105	if (fflags & (1UL << QUEUE_FLAG_WC)) {
106		if (rq->cmd_flags & REQ_PREFLUSH)
107			policy |= REQ_FSEQ_PREFLUSH;
108		if (!(fflags & (1UL << QUEUE_FLAG_FUA)) &&
109		    (rq->cmd_flags & REQ_FUA))
110			policy |= REQ_FSEQ_POSTFLUSH;
111	}
112	return policy;
113}
114
115static unsigned int blk_flush_cur_seq(struct request *rq)
116{
117	return 1 << ffz(rq->flush.seq);
118}
119
120static void blk_flush_restore_request(struct request *rq)
121{
122	/*
123	 * After flush data completion, @rq->bio is %NULL but we need to
124	 * complete the bio again.  @rq->biotail is guaranteed to equal the
125	 * original @rq->bio.  Restore it.
126	 */
127	rq->bio = rq->biotail;
128
129	/* make @rq a normal request */
130	rq->rq_flags &= ~RQF_FLUSH_SEQ;
131	rq->end_io = rq->flush.saved_end_io;
132}
133
134static bool blk_flush_queue_rq(struct request *rq, bool add_front)
135{
136	if (rq->q->mq_ops) {
137		blk_mq_add_to_requeue_list(rq, add_front, true);
138		return false;
139	} else {
140		if (add_front)
141			list_add(&rq->queuelist, &rq->q->queue_head);
142		else
143			list_add_tail(&rq->queuelist, &rq->q->queue_head);
144		return true;
145	}
 
 
146}
147
148/**
149 * blk_flush_complete_seq - complete flush sequence
150 * @rq: FLUSH/FUA request being sequenced
151 * @fq: flush queue
152 * @seq: sequences to complete (mask of %REQ_FSEQ_*, can be zero)
153 * @error: whether an error occurred
154 *
155 * @rq just completed @seq part of its flush sequence, record the
156 * completion and trigger the next step.
157 *
158 * CONTEXT:
159 * spin_lock_irq(q->queue_lock or fq->mq_flush_lock)
160 *
161 * RETURNS:
162 * %true if requests were added to the dispatch queue, %false otherwise.
163 */
164static bool blk_flush_complete_seq(struct request *rq,
165				   struct blk_flush_queue *fq,
166				   unsigned int seq, int error)
167{
168	struct request_queue *q = rq->q;
169	struct list_head *pending = &fq->flush_queue[fq->flush_pending_idx];
170	bool queued = false, kicked;
171
172	BUG_ON(rq->flush.seq & seq);
173	rq->flush.seq |= seq;
 
174
175	if (likely(!error))
176		seq = blk_flush_cur_seq(rq);
177	else
178		seq = REQ_FSEQ_DONE;
179
180	switch (seq) {
181	case REQ_FSEQ_PREFLUSH:
182	case REQ_FSEQ_POSTFLUSH:
183		/* queue for flush */
184		if (list_empty(pending))
185			fq->flush_pending_since = jiffies;
186		list_move_tail(&rq->flush.list, pending);
187		break;
188
189	case REQ_FSEQ_DATA:
190		list_move_tail(&rq->flush.list, &fq->flush_data_in_flight);
191		queued = blk_flush_queue_rq(rq, true);
192		break;
193
194	case REQ_FSEQ_DONE:
195		/*
196		 * @rq was previously adjusted by blk_flush_issue() for
197		 * flush sequencing and may already have gone through the
198		 * flush data request completion path.  Restore @rq for
199		 * normal completion and end it.
200		 */
201		BUG_ON(!list_empty(&rq->queuelist));
202		list_del_init(&rq->flush.list);
203		blk_flush_restore_request(rq);
204		if (q->mq_ops)
205			blk_mq_end_request(rq, error);
206		else
207			__blk_end_request_all(rq, error);
208		break;
209
210	default:
211		BUG();
212	}
213
214	kicked = blk_kick_flush(q, fq);
215	return kicked | queued;
216}
217
218static void flush_end_io(struct request *flush_rq, int error)
 
219{
220	struct request_queue *q = flush_rq->q;
221	struct list_head *running;
222	bool queued = false;
223	struct request *rq, *n;
224	unsigned long flags = 0;
225	struct blk_flush_queue *fq = blk_get_flush_queue(q, flush_rq->mq_ctx);
226
227	if (q->mq_ops) {
228		struct blk_mq_hw_ctx *hctx;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
229
230		/* release the tag's ownership to the req cloned from */
231		spin_lock_irqsave(&fq->mq_flush_lock, flags);
232		hctx = blk_mq_map_queue(q, flush_rq->mq_ctx->cpu);
233		blk_mq_tag_set_rq(hctx, flush_rq->tag, fq->orig_rq);
234		flush_rq->tag = -1;
235	}
236
237	running = &fq->flush_queue[fq->flush_running_idx];
238	BUG_ON(fq->flush_pending_idx == fq->flush_running_idx);
239
240	/* account completion of the flush request */
241	fq->flush_running_idx ^= 1;
242
243	if (!q->mq_ops)
244		elv_completed_request(q, flush_rq);
245
246	/* and push the waiting requests to the next stage */
247	list_for_each_entry_safe(rq, n, running, flush.list) {
248		unsigned int seq = blk_flush_cur_seq(rq);
249
250		BUG_ON(seq != REQ_FSEQ_PREFLUSH && seq != REQ_FSEQ_POSTFLUSH);
251		queued |= blk_flush_complete_seq(rq, fq, seq, error);
252	}
253
254	/*
255	 * Kick the queue to avoid stall for two cases:
256	 * 1. Moving a request silently to empty queue_head may stall the
257	 * queue.
258	 * 2. When flush request is running in non-queueable queue, the
259	 * queue is hold. Restart the queue after flush request is finished
260	 * to avoid stall.
261	 * This function is called from request completion path and calling
262	 * directly into request_fn may confuse the driver.  Always use
263	 * kblockd.
264	 */
265	if (queued || fq->flush_queue_delayed) {
266		WARN_ON(q->mq_ops);
267		blk_run_queue_async(q);
268	}
269	fq->flush_queue_delayed = 0;
270	if (q->mq_ops)
271		spin_unlock_irqrestore(&fq->mq_flush_lock, flags);
272}
273
274/**
275 * blk_kick_flush - consider issuing flush request
276 * @q: request_queue being kicked
277 * @fq: flush queue
 
278 *
279 * Flush related states of @q have changed, consider issuing flush request.
280 * Please read the comment at the top of this file for more info.
281 *
282 * CONTEXT:
283 * spin_lock_irq(q->queue_lock or fq->mq_flush_lock)
284 *
285 * RETURNS:
286 * %true if flush was issued, %false otherwise.
287 */
288static bool blk_kick_flush(struct request_queue *q, struct blk_flush_queue *fq)
 
289{
290	struct list_head *pending = &fq->flush_queue[fq->flush_pending_idx];
291	struct request *first_rq =
292		list_first_entry(pending, struct request, flush.list);
293	struct request *flush_rq = fq->flush_rq;
294
295	/* C1 described at the top of this file */
296	if (fq->flush_pending_idx != fq->flush_running_idx || list_empty(pending))
297		return false;
298
299	/* C2 and C3 */
300	if (!list_empty(&fq->flush_data_in_flight) &&
301	    time_before(jiffies,
302			fq->flush_pending_since + FLUSH_PENDING_TIMEOUT))
303		return false;
304
305	/*
306	 * Issue flush and toggle pending_idx.  This makes pending_idx
307	 * different from running_idx, which means flush is in flight.
308	 */
309	fq->flush_pending_idx ^= 1;
310
311	blk_rq_init(q, flush_rq);
312
313	/*
314	 * Borrow tag from the first request since they can't
315	 * be in flight at the same time. And acquire the tag's
316	 * ownership for flush req.
 
 
 
317	 */
318	if (q->mq_ops) {
319		struct blk_mq_hw_ctx *hctx;
320
321		flush_rq->mq_ctx = first_rq->mq_ctx;
322		flush_rq->tag = first_rq->tag;
323		fq->orig_rq = first_rq;
324
325		hctx = blk_mq_map_queue(q, first_rq->mq_ctx->cpu);
326		blk_mq_tag_set_rq(hctx, first_rq->tag, flush_rq);
327	}
 
 
 
 
 
328
329	flush_rq->cmd_type = REQ_TYPE_FS;
330	flush_rq->cmd_flags = REQ_OP_FLUSH | REQ_PREFLUSH;
 
331	flush_rq->rq_flags |= RQF_FLUSH_SEQ;
332	flush_rq->rq_disk = first_rq->rq_disk;
333	flush_rq->end_io = flush_end_io;
334
335	return blk_flush_queue_rq(flush_rq, false);
336}
337
338static void flush_data_end_io(struct request *rq, int error)
339{
340	struct request_queue *q = rq->q;
341	struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
342
343	/*
344	 * Updating q->in_flight[] here for making this tag usable
345	 * early. Because in blk_queue_start_tag(),
346	 * q->in_flight[BLK_RW_ASYNC] is used to limit async I/O and
347	 * reserve tags for sync I/O.
348	 *
349	 * More importantly this way can avoid the following I/O
350	 * deadlock:
351	 *
352	 * - suppose there are 40 fua requests comming to flush queue
353	 *   and queue depth is 31
354	 * - 30 rqs are scheduled then blk_queue_start_tag() can't alloc
355	 *   tag for async I/O any more
356	 * - all the 30 rqs are completed before FLUSH_PENDING_TIMEOUT
357	 *   and flush_data_end_io() is called
358	 * - the other rqs still can't go ahead if not updating
359	 *   q->in_flight[BLK_RW_ASYNC] here, meantime these rqs
360	 *   are held in flush data queue and make no progress of
361	 *   handling post flush rq
362	 * - only after the post flush rq is handled, all these rqs
363	 *   can be completed
364	 */
 
 
365
366	elv_completed_request(q, rq);
367
368	/* for avoiding double accounting */
369	rq->rq_flags &= ~RQF_STARTED;
370
371	/*
372	 * After populating an empty queue, kick it to avoid stall.  Read
373	 * the comment in flush_end_io().
374	 */
375	if (blk_flush_complete_seq(rq, fq, REQ_FSEQ_DATA, error))
376		blk_run_queue_async(q);
377}
378
379static void mq_flush_data_end_io(struct request *rq, int error)
 
380{
381	struct request_queue *q = rq->q;
382	struct blk_mq_hw_ctx *hctx;
383	struct blk_mq_ctx *ctx = rq->mq_ctx;
384	unsigned long flags;
385	struct blk_flush_queue *fq = blk_get_flush_queue(q, ctx);
386
387	hctx = blk_mq_map_queue(q, ctx->cpu);
 
 
 
388
389	/*
390	 * After populating an empty queue, kick it to avoid stall.  Read
391	 * the comment in flush_end_io().
392	 */
393	spin_lock_irqsave(&fq->mq_flush_lock, flags);
394	if (blk_flush_complete_seq(rq, fq, REQ_FSEQ_DATA, error))
395		blk_mq_run_hw_queue(hctx, true);
396	spin_unlock_irqrestore(&fq->mq_flush_lock, flags);
 
 
 
397}
398
399/**
400 * blk_insert_flush - insert a new FLUSH/FUA request
401 * @rq: request to insert
402 *
403 * To be called from __elv_add_request() for %ELEVATOR_INSERT_FLUSH insertions.
404 * or __blk_mq_run_hw_queue() to dispatch request.
405 * @rq is being submitted.  Analyze what needs to be done and put it on the
406 * right queue.
407 *
408 * CONTEXT:
409 * spin_lock_irq(q->queue_lock) in !mq case
410 */
411void blk_insert_flush(struct request *rq)
412{
413	struct request_queue *q = rq->q;
414	unsigned long fflags = q->queue_flags;	/* may change, cache */
415	unsigned int policy = blk_flush_policy(fflags, rq);
416	struct blk_flush_queue *fq = blk_get_flush_queue(q, rq->mq_ctx);
417
418	/*
419	 * @policy now records what operations need to be done.  Adjust
420	 * REQ_PREFLUSH and FUA for the driver.
421	 */
422	rq->cmd_flags &= ~REQ_PREFLUSH;
423	if (!(fflags & (1UL << QUEUE_FLAG_FUA)))
424		rq->cmd_flags &= ~REQ_FUA;
425
426	/*
427	 * REQ_PREFLUSH|REQ_FUA implies REQ_SYNC, so if we clear any
428	 * of those flags, we have to set REQ_SYNC to avoid skewing
429	 * the request accounting.
430	 */
431	rq->cmd_flags |= REQ_SYNC;
432
433	/*
434	 * An empty flush handed down from a stacking driver may
435	 * translate into nothing if the underlying device does not
436	 * advertise a write-back cache.  In this case, simply
437	 * complete the request.
438	 */
439	if (!policy) {
440		if (q->mq_ops)
441			blk_mq_end_request(rq, 0);
442		else
443			__blk_end_bidi_request(rq, 0, 0, 0);
444		return;
445	}
446
447	BUG_ON(rq->bio != rq->biotail); /*assumes zero or single bio rq */
448
449	/*
450	 * If there's data but flush is not necessary, the request can be
451	 * processed directly without going through flush machinery.  Queue
452	 * for normal execution.
453	 */
454	if ((policy & REQ_FSEQ_DATA) &&
455	    !(policy & (REQ_FSEQ_PREFLUSH | REQ_FSEQ_POSTFLUSH))) {
456		if (q->mq_ops) {
457			blk_mq_insert_request(rq, false, true, false);
458		} else
459			list_add_tail(&rq->queuelist, &q->queue_head);
460		return;
461	}
462
463	/*
464	 * @rq should go through flush machinery.  Mark it part of flush
465	 * sequence and submit for further processing.
466	 */
467	memset(&rq->flush, 0, sizeof(rq->flush));
468	INIT_LIST_HEAD(&rq->flush.list);
469	rq->rq_flags |= RQF_FLUSH_SEQ;
470	rq->flush.saved_end_io = rq->end_io; /* Usually NULL */
471	if (q->mq_ops) {
472		rq->end_io = mq_flush_data_end_io;
473
474		spin_lock_irq(&fq->mq_flush_lock);
475		blk_flush_complete_seq(rq, fq, REQ_FSEQ_ACTIONS & ~policy, 0);
476		spin_unlock_irq(&fq->mq_flush_lock);
477		return;
478	}
479	rq->end_io = flush_data_end_io;
480
 
481	blk_flush_complete_seq(rq, fq, REQ_FSEQ_ACTIONS & ~policy, 0);
 
482}
483
484/**
485 * blkdev_issue_flush - queue a flush
486 * @bdev:	blockdev to issue flush for
487 * @gfp_mask:	memory allocation flags (for bio_alloc)
488 * @error_sector:	error sector
489 *
490 * Description:
491 *    Issue a flush for the block device in question. Caller can supply
492 *    room for storing the error offset in case of a flush error, if they
493 *    wish to. If WAIT flag is not passed then caller may check only what
494 *    request was pushed in some internal queue for later handling.
495 */
496int blkdev_issue_flush(struct block_device *bdev, gfp_t gfp_mask,
497		sector_t *error_sector)
498{
499	struct request_queue *q;
500	struct bio *bio;
501	int ret = 0;
502
503	if (bdev->bd_disk == NULL)
504		return -ENXIO;
505
506	q = bdev_get_queue(bdev);
507	if (!q)
508		return -ENXIO;
509
510	/*
511	 * some block devices may not have their queue correctly set up here
512	 * (e.g. loop device without a backing file) and so issuing a flush
513	 * here will panic. Ensure there is a request function before issuing
514	 * the flush.
515	 */
516	if (!q->make_request_fn)
517		return -ENXIO;
518
519	bio = bio_alloc(gfp_mask, 0);
520	bio->bi_bdev = bdev;
521	bio->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
522
523	ret = submit_bio_wait(bio);
524
525	/*
526	 * The driver must store the error location in ->bi_sector, if
527	 * it supports it. For non-stacked drivers, this should be
528	 * copied from blk_rq_pos(rq).
529	 */
530	if (error_sector)
531		*error_sector = bio->bi_iter.bi_sector;
532
533	bio_put(bio);
534	return ret;
535}
536EXPORT_SYMBOL(blkdev_issue_flush);
537
538struct blk_flush_queue *blk_alloc_flush_queue(struct request_queue *q,
539		int node, int cmd_size)
540{
541	struct blk_flush_queue *fq;
542	int rq_sz = sizeof(struct request);
543
544	fq = kzalloc_node(sizeof(*fq), GFP_KERNEL, node);
545	if (!fq)
546		goto fail;
547
548	if (q->mq_ops) {
549		spin_lock_init(&fq->mq_flush_lock);
550		rq_sz = round_up(rq_sz + cmd_size, cache_line_size());
551	}
552
553	fq->flush_rq = kzalloc_node(rq_sz, GFP_KERNEL, node);
 
554	if (!fq->flush_rq)
555		goto fail_rq;
556
557	INIT_LIST_HEAD(&fq->flush_queue[0]);
558	INIT_LIST_HEAD(&fq->flush_queue[1]);
559	INIT_LIST_HEAD(&fq->flush_data_in_flight);
560
561	return fq;
562
563 fail_rq:
564	kfree(fq);
565 fail:
566	return NULL;
567}
568
569void blk_free_flush_queue(struct blk_flush_queue *fq)
570{
571	/* bio based request queue hasn't flush queue */
572	if (!fq)
573		return;
574
575	kfree(fq->flush_rq);
576	kfree(fq);
577}