Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Copyright (C) 2006 - 2007 Ivo van Doorn
4 * Copyright (C) 2007 Dmitry Torokhov
5 * Copyright 2009 Johannes Berg <johannes@sipsolutions.net>
6 */
7
8#include <linux/kernel.h>
9#include <linux/module.h>
10#include <linux/init.h>
11#include <linux/workqueue.h>
12#include <linux/capability.h>
13#include <linux/list.h>
14#include <linux/mutex.h>
15#include <linux/rfkill.h>
16#include <linux/sched.h>
17#include <linux/spinlock.h>
18#include <linux/device.h>
19#include <linux/miscdevice.h>
20#include <linux/wait.h>
21#include <linux/poll.h>
22#include <linux/fs.h>
23#include <linux/slab.h>
24
25#include "rfkill.h"
26
27#define POLL_INTERVAL (5 * HZ)
28
29#define RFKILL_BLOCK_HW BIT(0)
30#define RFKILL_BLOCK_SW BIT(1)
31#define RFKILL_BLOCK_SW_PREV BIT(2)
32#define RFKILL_BLOCK_ANY (RFKILL_BLOCK_HW |\
33 RFKILL_BLOCK_SW |\
34 RFKILL_BLOCK_SW_PREV)
35#define RFKILL_BLOCK_SW_SETCALL BIT(31)
36
37struct rfkill {
38 spinlock_t lock;
39
40 enum rfkill_type type;
41
42 unsigned long state;
43 unsigned long hard_block_reasons;
44
45 u32 idx;
46
47 bool registered;
48 bool persistent;
49 bool polling_paused;
50 bool suspended;
51
52 const struct rfkill_ops *ops;
53 void *data;
54
55#ifdef CONFIG_RFKILL_LEDS
56 struct led_trigger led_trigger;
57 const char *ledtrigname;
58#endif
59
60 struct device dev;
61 struct list_head node;
62
63 struct delayed_work poll_work;
64 struct work_struct uevent_work;
65 struct work_struct sync_work;
66 char name[];
67};
68#define to_rfkill(d) container_of(d, struct rfkill, dev)
69
70struct rfkill_int_event {
71 struct list_head list;
72 struct rfkill_event_ext ev;
73};
74
75struct rfkill_data {
76 struct list_head list;
77 struct list_head events;
78 struct mutex mtx;
79 wait_queue_head_t read_wait;
80 bool input_handler;
81 u8 max_size;
82};
83
84
85MODULE_AUTHOR("Ivo van Doorn <IvDoorn@gmail.com>");
86MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
87MODULE_DESCRIPTION("RF switch support");
88MODULE_LICENSE("GPL");
89
90
91/*
92 * The locking here should be made much smarter, we currently have
93 * a bit of a stupid situation because drivers might want to register
94 * the rfkill struct under their own lock, and take this lock during
95 * rfkill method calls -- which will cause an AB-BA deadlock situation.
96 *
97 * To fix that, we need to rework this code here to be mostly lock-free
98 * and only use the mutex for list manipulations, not to protect the
99 * various other global variables. Then we can avoid holding the mutex
100 * around driver operations, and all is happy.
101 */
102static LIST_HEAD(rfkill_list); /* list of registered rf switches */
103static DEFINE_MUTEX(rfkill_global_mutex);
104static LIST_HEAD(rfkill_fds); /* list of open fds of /dev/rfkill */
105
106static unsigned int rfkill_default_state = 1;
107module_param_named(default_state, rfkill_default_state, uint, 0444);
108MODULE_PARM_DESC(default_state,
109 "Default initial state for all radio types, 0 = radio off");
110
111static struct {
112 bool cur, sav;
113} rfkill_global_states[NUM_RFKILL_TYPES];
114
115static bool rfkill_epo_lock_active;
116
117
118#ifdef CONFIG_RFKILL_LEDS
119static void rfkill_led_trigger_event(struct rfkill *rfkill)
120{
121 struct led_trigger *trigger;
122
123 if (!rfkill->registered)
124 return;
125
126 trigger = &rfkill->led_trigger;
127
128 if (rfkill->state & RFKILL_BLOCK_ANY)
129 led_trigger_event(trigger, LED_OFF);
130 else
131 led_trigger_event(trigger, LED_FULL);
132}
133
134static int rfkill_led_trigger_activate(struct led_classdev *led)
135{
136 struct rfkill *rfkill;
137
138 rfkill = container_of(led->trigger, struct rfkill, led_trigger);
139
140 rfkill_led_trigger_event(rfkill);
141
142 return 0;
143}
144
145const char *rfkill_get_led_trigger_name(struct rfkill *rfkill)
146{
147 return rfkill->led_trigger.name;
148}
149EXPORT_SYMBOL(rfkill_get_led_trigger_name);
150
151void rfkill_set_led_trigger_name(struct rfkill *rfkill, const char *name)
152{
153 BUG_ON(!rfkill);
154
155 rfkill->ledtrigname = name;
156}
157EXPORT_SYMBOL(rfkill_set_led_trigger_name);
158
159static int rfkill_led_trigger_register(struct rfkill *rfkill)
160{
161 rfkill->led_trigger.name = rfkill->ledtrigname
162 ? : dev_name(&rfkill->dev);
163 rfkill->led_trigger.activate = rfkill_led_trigger_activate;
164 return led_trigger_register(&rfkill->led_trigger);
165}
166
167static void rfkill_led_trigger_unregister(struct rfkill *rfkill)
168{
169 led_trigger_unregister(&rfkill->led_trigger);
170}
171
172static struct led_trigger rfkill_any_led_trigger;
173static struct led_trigger rfkill_none_led_trigger;
174static struct work_struct rfkill_global_led_trigger_work;
175
176static void rfkill_global_led_trigger_worker(struct work_struct *work)
177{
178 enum led_brightness brightness = LED_OFF;
179 struct rfkill *rfkill;
180
181 mutex_lock(&rfkill_global_mutex);
182 list_for_each_entry(rfkill, &rfkill_list, node) {
183 if (!(rfkill->state & RFKILL_BLOCK_ANY)) {
184 brightness = LED_FULL;
185 break;
186 }
187 }
188 mutex_unlock(&rfkill_global_mutex);
189
190 led_trigger_event(&rfkill_any_led_trigger, brightness);
191 led_trigger_event(&rfkill_none_led_trigger,
192 brightness == LED_OFF ? LED_FULL : LED_OFF);
193}
194
195static void rfkill_global_led_trigger_event(void)
196{
197 schedule_work(&rfkill_global_led_trigger_work);
198}
199
200static int rfkill_global_led_trigger_register(void)
201{
202 int ret;
203
204 INIT_WORK(&rfkill_global_led_trigger_work,
205 rfkill_global_led_trigger_worker);
206
207 rfkill_any_led_trigger.name = "rfkill-any";
208 ret = led_trigger_register(&rfkill_any_led_trigger);
209 if (ret)
210 return ret;
211
212 rfkill_none_led_trigger.name = "rfkill-none";
213 ret = led_trigger_register(&rfkill_none_led_trigger);
214 if (ret)
215 led_trigger_unregister(&rfkill_any_led_trigger);
216 else
217 /* Delay activation until all global triggers are registered */
218 rfkill_global_led_trigger_event();
219
220 return ret;
221}
222
223static void rfkill_global_led_trigger_unregister(void)
224{
225 led_trigger_unregister(&rfkill_none_led_trigger);
226 led_trigger_unregister(&rfkill_any_led_trigger);
227 cancel_work_sync(&rfkill_global_led_trigger_work);
228}
229#else
230static void rfkill_led_trigger_event(struct rfkill *rfkill)
231{
232}
233
234static inline int rfkill_led_trigger_register(struct rfkill *rfkill)
235{
236 return 0;
237}
238
239static inline void rfkill_led_trigger_unregister(struct rfkill *rfkill)
240{
241}
242
243static void rfkill_global_led_trigger_event(void)
244{
245}
246
247static int rfkill_global_led_trigger_register(void)
248{
249 return 0;
250}
251
252static void rfkill_global_led_trigger_unregister(void)
253{
254}
255#endif /* CONFIG_RFKILL_LEDS */
256
257static void rfkill_fill_event(struct rfkill_event_ext *ev,
258 struct rfkill *rfkill,
259 enum rfkill_operation op)
260{
261 unsigned long flags;
262
263 ev->idx = rfkill->idx;
264 ev->type = rfkill->type;
265 ev->op = op;
266
267 spin_lock_irqsave(&rfkill->lock, flags);
268 ev->hard = !!(rfkill->state & RFKILL_BLOCK_HW);
269 ev->soft = !!(rfkill->state & (RFKILL_BLOCK_SW |
270 RFKILL_BLOCK_SW_PREV));
271 ev->hard_block_reasons = rfkill->hard_block_reasons;
272 spin_unlock_irqrestore(&rfkill->lock, flags);
273}
274
275static void rfkill_send_events(struct rfkill *rfkill, enum rfkill_operation op)
276{
277 struct rfkill_data *data;
278 struct rfkill_int_event *ev;
279
280 list_for_each_entry(data, &rfkill_fds, list) {
281 ev = kzalloc(sizeof(*ev), GFP_KERNEL);
282 if (!ev)
283 continue;
284 rfkill_fill_event(&ev->ev, rfkill, op);
285 mutex_lock(&data->mtx);
286 list_add_tail(&ev->list, &data->events);
287 mutex_unlock(&data->mtx);
288 wake_up_interruptible(&data->read_wait);
289 }
290}
291
292static void rfkill_event(struct rfkill *rfkill)
293{
294 if (!rfkill->registered)
295 return;
296
297 kobject_uevent(&rfkill->dev.kobj, KOBJ_CHANGE);
298
299 /* also send event to /dev/rfkill */
300 rfkill_send_events(rfkill, RFKILL_OP_CHANGE);
301}
302
303/**
304 * rfkill_set_block - wrapper for set_block method
305 *
306 * @rfkill: the rfkill struct to use
307 * @blocked: the new software state
308 *
309 * Calls the set_block method (when applicable) and handles notifications
310 * etc. as well.
311 */
312static void rfkill_set_block(struct rfkill *rfkill, bool blocked)
313{
314 unsigned long flags;
315 bool prev, curr;
316 int err;
317
318 if (unlikely(rfkill->dev.power.power_state.event & PM_EVENT_SLEEP))
319 return;
320
321 /*
322 * Some platforms (...!) generate input events which affect the
323 * _hard_ kill state -- whenever something tries to change the
324 * current software state query the hardware state too.
325 */
326 if (rfkill->ops->query)
327 rfkill->ops->query(rfkill, rfkill->data);
328
329 spin_lock_irqsave(&rfkill->lock, flags);
330 prev = rfkill->state & RFKILL_BLOCK_SW;
331
332 if (prev)
333 rfkill->state |= RFKILL_BLOCK_SW_PREV;
334 else
335 rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
336
337 if (blocked)
338 rfkill->state |= RFKILL_BLOCK_SW;
339 else
340 rfkill->state &= ~RFKILL_BLOCK_SW;
341
342 rfkill->state |= RFKILL_BLOCK_SW_SETCALL;
343 spin_unlock_irqrestore(&rfkill->lock, flags);
344
345 err = rfkill->ops->set_block(rfkill->data, blocked);
346
347 spin_lock_irqsave(&rfkill->lock, flags);
348 if (err) {
349 /*
350 * Failed -- reset status to _PREV, which may be different
351 * from what we have set _PREV to earlier in this function
352 * if rfkill_set_sw_state was invoked.
353 */
354 if (rfkill->state & RFKILL_BLOCK_SW_PREV)
355 rfkill->state |= RFKILL_BLOCK_SW;
356 else
357 rfkill->state &= ~RFKILL_BLOCK_SW;
358 }
359 rfkill->state &= ~RFKILL_BLOCK_SW_SETCALL;
360 rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
361 curr = rfkill->state & RFKILL_BLOCK_SW;
362 spin_unlock_irqrestore(&rfkill->lock, flags);
363
364 rfkill_led_trigger_event(rfkill);
365 rfkill_global_led_trigger_event();
366
367 if (prev != curr)
368 rfkill_event(rfkill);
369}
370
371static void rfkill_update_global_state(enum rfkill_type type, bool blocked)
372{
373 int i;
374
375 if (type != RFKILL_TYPE_ALL) {
376 rfkill_global_states[type].cur = blocked;
377 return;
378 }
379
380 for (i = 0; i < NUM_RFKILL_TYPES; i++)
381 rfkill_global_states[i].cur = blocked;
382}
383
384#ifdef CONFIG_RFKILL_INPUT
385static atomic_t rfkill_input_disabled = ATOMIC_INIT(0);
386
387/**
388 * __rfkill_switch_all - Toggle state of all switches of given type
389 * @type: type of interfaces to be affected
390 * @blocked: the new state
391 *
392 * This function sets the state of all switches of given type,
393 * unless a specific switch is suspended.
394 *
395 * Caller must have acquired rfkill_global_mutex.
396 */
397static void __rfkill_switch_all(const enum rfkill_type type, bool blocked)
398{
399 struct rfkill *rfkill;
400
401 rfkill_update_global_state(type, blocked);
402 list_for_each_entry(rfkill, &rfkill_list, node) {
403 if (rfkill->type != type && type != RFKILL_TYPE_ALL)
404 continue;
405
406 rfkill_set_block(rfkill, blocked);
407 }
408}
409
410/**
411 * rfkill_switch_all - Toggle state of all switches of given type
412 * @type: type of interfaces to be affected
413 * @blocked: the new state
414 *
415 * Acquires rfkill_global_mutex and calls __rfkill_switch_all(@type, @state).
416 * Please refer to __rfkill_switch_all() for details.
417 *
418 * Does nothing if the EPO lock is active.
419 */
420void rfkill_switch_all(enum rfkill_type type, bool blocked)
421{
422 if (atomic_read(&rfkill_input_disabled))
423 return;
424
425 mutex_lock(&rfkill_global_mutex);
426
427 if (!rfkill_epo_lock_active)
428 __rfkill_switch_all(type, blocked);
429
430 mutex_unlock(&rfkill_global_mutex);
431}
432
433/**
434 * rfkill_epo - emergency power off all transmitters
435 *
436 * This kicks all non-suspended rfkill devices to RFKILL_STATE_SOFT_BLOCKED,
437 * ignoring everything in its path but rfkill_global_mutex and rfkill->mutex.
438 *
439 * The global state before the EPO is saved and can be restored later
440 * using rfkill_restore_states().
441 */
442void rfkill_epo(void)
443{
444 struct rfkill *rfkill;
445 int i;
446
447 if (atomic_read(&rfkill_input_disabled))
448 return;
449
450 mutex_lock(&rfkill_global_mutex);
451
452 rfkill_epo_lock_active = true;
453 list_for_each_entry(rfkill, &rfkill_list, node)
454 rfkill_set_block(rfkill, true);
455
456 for (i = 0; i < NUM_RFKILL_TYPES; i++) {
457 rfkill_global_states[i].sav = rfkill_global_states[i].cur;
458 rfkill_global_states[i].cur = true;
459 }
460
461 mutex_unlock(&rfkill_global_mutex);
462}
463
464/**
465 * rfkill_restore_states - restore global states
466 *
467 * Restore (and sync switches to) the global state from the
468 * states in rfkill_default_states. This can undo the effects of
469 * a call to rfkill_epo().
470 */
471void rfkill_restore_states(void)
472{
473 int i;
474
475 if (atomic_read(&rfkill_input_disabled))
476 return;
477
478 mutex_lock(&rfkill_global_mutex);
479
480 rfkill_epo_lock_active = false;
481 for (i = 0; i < NUM_RFKILL_TYPES; i++)
482 __rfkill_switch_all(i, rfkill_global_states[i].sav);
483 mutex_unlock(&rfkill_global_mutex);
484}
485
486/**
487 * rfkill_remove_epo_lock - unlock state changes
488 *
489 * Used by rfkill-input manually unlock state changes, when
490 * the EPO switch is deactivated.
491 */
492void rfkill_remove_epo_lock(void)
493{
494 if (atomic_read(&rfkill_input_disabled))
495 return;
496
497 mutex_lock(&rfkill_global_mutex);
498 rfkill_epo_lock_active = false;
499 mutex_unlock(&rfkill_global_mutex);
500}
501
502/**
503 * rfkill_is_epo_lock_active - returns true EPO is active
504 *
505 * Returns 0 (false) if there is NOT an active EPO condition,
506 * and 1 (true) if there is an active EPO condition, which
507 * locks all radios in one of the BLOCKED states.
508 *
509 * Can be called in atomic context.
510 */
511bool rfkill_is_epo_lock_active(void)
512{
513 return rfkill_epo_lock_active;
514}
515
516/**
517 * rfkill_get_global_sw_state - returns global state for a type
518 * @type: the type to get the global state of
519 *
520 * Returns the current global state for a given wireless
521 * device type.
522 */
523bool rfkill_get_global_sw_state(const enum rfkill_type type)
524{
525 return rfkill_global_states[type].cur;
526}
527#endif
528
529bool rfkill_set_hw_state_reason(struct rfkill *rfkill,
530 bool blocked, unsigned long reason)
531{
532 unsigned long flags;
533 bool ret, prev;
534
535 BUG_ON(!rfkill);
536
537 if (WARN(reason &
538 ~(RFKILL_HARD_BLOCK_SIGNAL | RFKILL_HARD_BLOCK_NOT_OWNER),
539 "hw_state reason not supported: 0x%lx", reason))
540 return blocked;
541
542 spin_lock_irqsave(&rfkill->lock, flags);
543 prev = !!(rfkill->hard_block_reasons & reason);
544 if (blocked) {
545 rfkill->state |= RFKILL_BLOCK_HW;
546 rfkill->hard_block_reasons |= reason;
547 } else {
548 rfkill->hard_block_reasons &= ~reason;
549 if (!rfkill->hard_block_reasons)
550 rfkill->state &= ~RFKILL_BLOCK_HW;
551 }
552 ret = !!(rfkill->state & RFKILL_BLOCK_ANY);
553 spin_unlock_irqrestore(&rfkill->lock, flags);
554
555 rfkill_led_trigger_event(rfkill);
556 rfkill_global_led_trigger_event();
557
558 if (rfkill->registered && prev != blocked)
559 schedule_work(&rfkill->uevent_work);
560
561 return ret;
562}
563EXPORT_SYMBOL(rfkill_set_hw_state_reason);
564
565static void __rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
566{
567 u32 bit = RFKILL_BLOCK_SW;
568
569 /* if in a ops->set_block right now, use other bit */
570 if (rfkill->state & RFKILL_BLOCK_SW_SETCALL)
571 bit = RFKILL_BLOCK_SW_PREV;
572
573 if (blocked)
574 rfkill->state |= bit;
575 else
576 rfkill->state &= ~bit;
577}
578
579bool rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
580{
581 unsigned long flags;
582 bool prev, hwblock;
583
584 BUG_ON(!rfkill);
585
586 spin_lock_irqsave(&rfkill->lock, flags);
587 prev = !!(rfkill->state & RFKILL_BLOCK_SW);
588 __rfkill_set_sw_state(rfkill, blocked);
589 hwblock = !!(rfkill->state & RFKILL_BLOCK_HW);
590 blocked = blocked || hwblock;
591 spin_unlock_irqrestore(&rfkill->lock, flags);
592
593 if (!rfkill->registered)
594 return blocked;
595
596 if (prev != blocked && !hwblock)
597 schedule_work(&rfkill->uevent_work);
598
599 rfkill_led_trigger_event(rfkill);
600 rfkill_global_led_trigger_event();
601
602 return blocked;
603}
604EXPORT_SYMBOL(rfkill_set_sw_state);
605
606void rfkill_init_sw_state(struct rfkill *rfkill, bool blocked)
607{
608 unsigned long flags;
609
610 BUG_ON(!rfkill);
611 BUG_ON(rfkill->registered);
612
613 spin_lock_irqsave(&rfkill->lock, flags);
614 __rfkill_set_sw_state(rfkill, blocked);
615 rfkill->persistent = true;
616 spin_unlock_irqrestore(&rfkill->lock, flags);
617}
618EXPORT_SYMBOL(rfkill_init_sw_state);
619
620void rfkill_set_states(struct rfkill *rfkill, bool sw, bool hw)
621{
622 unsigned long flags;
623 bool swprev, hwprev;
624
625 BUG_ON(!rfkill);
626
627 spin_lock_irqsave(&rfkill->lock, flags);
628
629 /*
630 * No need to care about prev/setblock ... this is for uevent only
631 * and that will get triggered by rfkill_set_block anyway.
632 */
633 swprev = !!(rfkill->state & RFKILL_BLOCK_SW);
634 hwprev = !!(rfkill->state & RFKILL_BLOCK_HW);
635 __rfkill_set_sw_state(rfkill, sw);
636 if (hw)
637 rfkill->state |= RFKILL_BLOCK_HW;
638 else
639 rfkill->state &= ~RFKILL_BLOCK_HW;
640
641 spin_unlock_irqrestore(&rfkill->lock, flags);
642
643 if (!rfkill->registered) {
644 rfkill->persistent = true;
645 } else {
646 if (swprev != sw || hwprev != hw)
647 schedule_work(&rfkill->uevent_work);
648
649 rfkill_led_trigger_event(rfkill);
650 rfkill_global_led_trigger_event();
651 }
652}
653EXPORT_SYMBOL(rfkill_set_states);
654
655static const char * const rfkill_types[] = {
656 NULL, /* RFKILL_TYPE_ALL */
657 "wlan",
658 "bluetooth",
659 "ultrawideband",
660 "wimax",
661 "wwan",
662 "gps",
663 "fm",
664 "nfc",
665};
666
667enum rfkill_type rfkill_find_type(const char *name)
668{
669 int i;
670
671 BUILD_BUG_ON(ARRAY_SIZE(rfkill_types) != NUM_RFKILL_TYPES);
672
673 if (!name)
674 return RFKILL_TYPE_ALL;
675
676 for (i = 1; i < NUM_RFKILL_TYPES; i++)
677 if (!strcmp(name, rfkill_types[i]))
678 return i;
679 return RFKILL_TYPE_ALL;
680}
681EXPORT_SYMBOL(rfkill_find_type);
682
683static ssize_t name_show(struct device *dev, struct device_attribute *attr,
684 char *buf)
685{
686 struct rfkill *rfkill = to_rfkill(dev);
687
688 return sprintf(buf, "%s\n", rfkill->name);
689}
690static DEVICE_ATTR_RO(name);
691
692static ssize_t type_show(struct device *dev, struct device_attribute *attr,
693 char *buf)
694{
695 struct rfkill *rfkill = to_rfkill(dev);
696
697 return sprintf(buf, "%s\n", rfkill_types[rfkill->type]);
698}
699static DEVICE_ATTR_RO(type);
700
701static ssize_t index_show(struct device *dev, struct device_attribute *attr,
702 char *buf)
703{
704 struct rfkill *rfkill = to_rfkill(dev);
705
706 return sprintf(buf, "%d\n", rfkill->idx);
707}
708static DEVICE_ATTR_RO(index);
709
710static ssize_t persistent_show(struct device *dev,
711 struct device_attribute *attr, char *buf)
712{
713 struct rfkill *rfkill = to_rfkill(dev);
714
715 return sprintf(buf, "%d\n", rfkill->persistent);
716}
717static DEVICE_ATTR_RO(persistent);
718
719static ssize_t hard_show(struct device *dev, struct device_attribute *attr,
720 char *buf)
721{
722 struct rfkill *rfkill = to_rfkill(dev);
723
724 return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_HW) ? 1 : 0 );
725}
726static DEVICE_ATTR_RO(hard);
727
728static ssize_t soft_show(struct device *dev, struct device_attribute *attr,
729 char *buf)
730{
731 struct rfkill *rfkill = to_rfkill(dev);
732
733 return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_SW) ? 1 : 0 );
734}
735
736static ssize_t soft_store(struct device *dev, struct device_attribute *attr,
737 const char *buf, size_t count)
738{
739 struct rfkill *rfkill = to_rfkill(dev);
740 unsigned long state;
741 int err;
742
743 if (!capable(CAP_NET_ADMIN))
744 return -EPERM;
745
746 err = kstrtoul(buf, 0, &state);
747 if (err)
748 return err;
749
750 if (state > 1 )
751 return -EINVAL;
752
753 mutex_lock(&rfkill_global_mutex);
754 rfkill_set_block(rfkill, state);
755 mutex_unlock(&rfkill_global_mutex);
756
757 return count;
758}
759static DEVICE_ATTR_RW(soft);
760
761static ssize_t hard_block_reasons_show(struct device *dev,
762 struct device_attribute *attr,
763 char *buf)
764{
765 struct rfkill *rfkill = to_rfkill(dev);
766
767 return sprintf(buf, "0x%lx\n", rfkill->hard_block_reasons);
768}
769static DEVICE_ATTR_RO(hard_block_reasons);
770
771static u8 user_state_from_blocked(unsigned long state)
772{
773 if (state & RFKILL_BLOCK_HW)
774 return RFKILL_USER_STATE_HARD_BLOCKED;
775 if (state & RFKILL_BLOCK_SW)
776 return RFKILL_USER_STATE_SOFT_BLOCKED;
777
778 return RFKILL_USER_STATE_UNBLOCKED;
779}
780
781static ssize_t state_show(struct device *dev, struct device_attribute *attr,
782 char *buf)
783{
784 struct rfkill *rfkill = to_rfkill(dev);
785
786 return sprintf(buf, "%d\n", user_state_from_blocked(rfkill->state));
787}
788
789static ssize_t state_store(struct device *dev, struct device_attribute *attr,
790 const char *buf, size_t count)
791{
792 struct rfkill *rfkill = to_rfkill(dev);
793 unsigned long state;
794 int err;
795
796 if (!capable(CAP_NET_ADMIN))
797 return -EPERM;
798
799 err = kstrtoul(buf, 0, &state);
800 if (err)
801 return err;
802
803 if (state != RFKILL_USER_STATE_SOFT_BLOCKED &&
804 state != RFKILL_USER_STATE_UNBLOCKED)
805 return -EINVAL;
806
807 mutex_lock(&rfkill_global_mutex);
808 rfkill_set_block(rfkill, state == RFKILL_USER_STATE_SOFT_BLOCKED);
809 mutex_unlock(&rfkill_global_mutex);
810
811 return count;
812}
813static DEVICE_ATTR_RW(state);
814
815static struct attribute *rfkill_dev_attrs[] = {
816 &dev_attr_name.attr,
817 &dev_attr_type.attr,
818 &dev_attr_index.attr,
819 &dev_attr_persistent.attr,
820 &dev_attr_state.attr,
821 &dev_attr_soft.attr,
822 &dev_attr_hard.attr,
823 &dev_attr_hard_block_reasons.attr,
824 NULL,
825};
826ATTRIBUTE_GROUPS(rfkill_dev);
827
828static void rfkill_release(struct device *dev)
829{
830 struct rfkill *rfkill = to_rfkill(dev);
831
832 kfree(rfkill);
833}
834
835static int rfkill_dev_uevent(const struct device *dev, struct kobj_uevent_env *env)
836{
837 struct rfkill *rfkill = to_rfkill(dev);
838 unsigned long flags;
839 unsigned long reasons;
840 u32 state;
841 int error;
842
843 error = add_uevent_var(env, "RFKILL_NAME=%s", rfkill->name);
844 if (error)
845 return error;
846 error = add_uevent_var(env, "RFKILL_TYPE=%s",
847 rfkill_types[rfkill->type]);
848 if (error)
849 return error;
850 spin_lock_irqsave(&rfkill->lock, flags);
851 state = rfkill->state;
852 reasons = rfkill->hard_block_reasons;
853 spin_unlock_irqrestore(&rfkill->lock, flags);
854 error = add_uevent_var(env, "RFKILL_STATE=%d",
855 user_state_from_blocked(state));
856 if (error)
857 return error;
858 return add_uevent_var(env, "RFKILL_HW_BLOCK_REASON=0x%lx", reasons);
859}
860
861void rfkill_pause_polling(struct rfkill *rfkill)
862{
863 BUG_ON(!rfkill);
864
865 if (!rfkill->ops->poll)
866 return;
867
868 rfkill->polling_paused = true;
869 cancel_delayed_work_sync(&rfkill->poll_work);
870}
871EXPORT_SYMBOL(rfkill_pause_polling);
872
873void rfkill_resume_polling(struct rfkill *rfkill)
874{
875 BUG_ON(!rfkill);
876
877 if (!rfkill->ops->poll)
878 return;
879
880 rfkill->polling_paused = false;
881
882 if (rfkill->suspended)
883 return;
884
885 queue_delayed_work(system_power_efficient_wq,
886 &rfkill->poll_work, 0);
887}
888EXPORT_SYMBOL(rfkill_resume_polling);
889
890#ifdef CONFIG_PM_SLEEP
891static int rfkill_suspend(struct device *dev)
892{
893 struct rfkill *rfkill = to_rfkill(dev);
894
895 rfkill->suspended = true;
896 cancel_delayed_work_sync(&rfkill->poll_work);
897
898 return 0;
899}
900
901static int rfkill_resume(struct device *dev)
902{
903 struct rfkill *rfkill = to_rfkill(dev);
904 bool cur;
905
906 rfkill->suspended = false;
907
908 if (!rfkill->registered)
909 return 0;
910
911 if (!rfkill->persistent) {
912 cur = !!(rfkill->state & RFKILL_BLOCK_SW);
913 rfkill_set_block(rfkill, cur);
914 }
915
916 if (rfkill->ops->poll && !rfkill->polling_paused)
917 queue_delayed_work(system_power_efficient_wq,
918 &rfkill->poll_work, 0);
919
920 return 0;
921}
922
923static SIMPLE_DEV_PM_OPS(rfkill_pm_ops, rfkill_suspend, rfkill_resume);
924#define RFKILL_PM_OPS (&rfkill_pm_ops)
925#else
926#define RFKILL_PM_OPS NULL
927#endif
928
929static struct class rfkill_class = {
930 .name = "rfkill",
931 .dev_release = rfkill_release,
932 .dev_groups = rfkill_dev_groups,
933 .dev_uevent = rfkill_dev_uevent,
934 .pm = RFKILL_PM_OPS,
935};
936
937bool rfkill_blocked(struct rfkill *rfkill)
938{
939 unsigned long flags;
940 u32 state;
941
942 spin_lock_irqsave(&rfkill->lock, flags);
943 state = rfkill->state;
944 spin_unlock_irqrestore(&rfkill->lock, flags);
945
946 return !!(state & RFKILL_BLOCK_ANY);
947}
948EXPORT_SYMBOL(rfkill_blocked);
949
950bool rfkill_soft_blocked(struct rfkill *rfkill)
951{
952 unsigned long flags;
953 u32 state;
954
955 spin_lock_irqsave(&rfkill->lock, flags);
956 state = rfkill->state;
957 spin_unlock_irqrestore(&rfkill->lock, flags);
958
959 return !!(state & RFKILL_BLOCK_SW);
960}
961EXPORT_SYMBOL(rfkill_soft_blocked);
962
963struct rfkill * __must_check rfkill_alloc(const char *name,
964 struct device *parent,
965 const enum rfkill_type type,
966 const struct rfkill_ops *ops,
967 void *ops_data)
968{
969 struct rfkill *rfkill;
970 struct device *dev;
971
972 if (WARN_ON(!ops))
973 return NULL;
974
975 if (WARN_ON(!ops->set_block))
976 return NULL;
977
978 if (WARN_ON(!name))
979 return NULL;
980
981 if (WARN_ON(type == RFKILL_TYPE_ALL || type >= NUM_RFKILL_TYPES))
982 return NULL;
983
984 rfkill = kzalloc(sizeof(*rfkill) + strlen(name) + 1, GFP_KERNEL);
985 if (!rfkill)
986 return NULL;
987
988 spin_lock_init(&rfkill->lock);
989 INIT_LIST_HEAD(&rfkill->node);
990 rfkill->type = type;
991 strcpy(rfkill->name, name);
992 rfkill->ops = ops;
993 rfkill->data = ops_data;
994
995 dev = &rfkill->dev;
996 dev->class = &rfkill_class;
997 dev->parent = parent;
998 device_initialize(dev);
999
1000 return rfkill;
1001}
1002EXPORT_SYMBOL(rfkill_alloc);
1003
1004static void rfkill_poll(struct work_struct *work)
1005{
1006 struct rfkill *rfkill;
1007
1008 rfkill = container_of(work, struct rfkill, poll_work.work);
1009
1010 /*
1011 * Poll hardware state -- driver will use one of the
1012 * rfkill_set{,_hw,_sw}_state functions and use its
1013 * return value to update the current status.
1014 */
1015 rfkill->ops->poll(rfkill, rfkill->data);
1016
1017 queue_delayed_work(system_power_efficient_wq,
1018 &rfkill->poll_work,
1019 round_jiffies_relative(POLL_INTERVAL));
1020}
1021
1022static void rfkill_uevent_work(struct work_struct *work)
1023{
1024 struct rfkill *rfkill;
1025
1026 rfkill = container_of(work, struct rfkill, uevent_work);
1027
1028 mutex_lock(&rfkill_global_mutex);
1029 rfkill_event(rfkill);
1030 mutex_unlock(&rfkill_global_mutex);
1031}
1032
1033static void rfkill_sync_work(struct work_struct *work)
1034{
1035 struct rfkill *rfkill;
1036 bool cur;
1037
1038 rfkill = container_of(work, struct rfkill, sync_work);
1039
1040 mutex_lock(&rfkill_global_mutex);
1041 cur = rfkill_global_states[rfkill->type].cur;
1042 rfkill_set_block(rfkill, cur);
1043 mutex_unlock(&rfkill_global_mutex);
1044}
1045
1046int __must_check rfkill_register(struct rfkill *rfkill)
1047{
1048 static unsigned long rfkill_no;
1049 struct device *dev;
1050 int error;
1051
1052 if (!rfkill)
1053 return -EINVAL;
1054
1055 dev = &rfkill->dev;
1056
1057 mutex_lock(&rfkill_global_mutex);
1058
1059 if (rfkill->registered) {
1060 error = -EALREADY;
1061 goto unlock;
1062 }
1063
1064 rfkill->idx = rfkill_no;
1065 dev_set_name(dev, "rfkill%lu", rfkill_no);
1066 rfkill_no++;
1067
1068 list_add_tail(&rfkill->node, &rfkill_list);
1069
1070 error = device_add(dev);
1071 if (error)
1072 goto remove;
1073
1074 error = rfkill_led_trigger_register(rfkill);
1075 if (error)
1076 goto devdel;
1077
1078 rfkill->registered = true;
1079
1080 INIT_DELAYED_WORK(&rfkill->poll_work, rfkill_poll);
1081 INIT_WORK(&rfkill->uevent_work, rfkill_uevent_work);
1082 INIT_WORK(&rfkill->sync_work, rfkill_sync_work);
1083
1084 if (rfkill->ops->poll)
1085 queue_delayed_work(system_power_efficient_wq,
1086 &rfkill->poll_work,
1087 round_jiffies_relative(POLL_INTERVAL));
1088
1089 if (!rfkill->persistent || rfkill_epo_lock_active) {
1090 schedule_work(&rfkill->sync_work);
1091 } else {
1092#ifdef CONFIG_RFKILL_INPUT
1093 bool soft_blocked = !!(rfkill->state & RFKILL_BLOCK_SW);
1094
1095 if (!atomic_read(&rfkill_input_disabled))
1096 __rfkill_switch_all(rfkill->type, soft_blocked);
1097#endif
1098 }
1099
1100 rfkill_global_led_trigger_event();
1101 rfkill_send_events(rfkill, RFKILL_OP_ADD);
1102
1103 mutex_unlock(&rfkill_global_mutex);
1104 return 0;
1105
1106 devdel:
1107 device_del(&rfkill->dev);
1108 remove:
1109 list_del_init(&rfkill->node);
1110 unlock:
1111 mutex_unlock(&rfkill_global_mutex);
1112 return error;
1113}
1114EXPORT_SYMBOL(rfkill_register);
1115
1116void rfkill_unregister(struct rfkill *rfkill)
1117{
1118 BUG_ON(!rfkill);
1119
1120 if (rfkill->ops->poll)
1121 cancel_delayed_work_sync(&rfkill->poll_work);
1122
1123 cancel_work_sync(&rfkill->uevent_work);
1124 cancel_work_sync(&rfkill->sync_work);
1125
1126 rfkill->registered = false;
1127
1128 device_del(&rfkill->dev);
1129
1130 mutex_lock(&rfkill_global_mutex);
1131 rfkill_send_events(rfkill, RFKILL_OP_DEL);
1132 list_del_init(&rfkill->node);
1133 rfkill_global_led_trigger_event();
1134 mutex_unlock(&rfkill_global_mutex);
1135
1136 rfkill_led_trigger_unregister(rfkill);
1137}
1138EXPORT_SYMBOL(rfkill_unregister);
1139
1140void rfkill_destroy(struct rfkill *rfkill)
1141{
1142 if (rfkill)
1143 put_device(&rfkill->dev);
1144}
1145EXPORT_SYMBOL(rfkill_destroy);
1146
1147static int rfkill_fop_open(struct inode *inode, struct file *file)
1148{
1149 struct rfkill_data *data;
1150 struct rfkill *rfkill;
1151 struct rfkill_int_event *ev, *tmp;
1152
1153 data = kzalloc(sizeof(*data), GFP_KERNEL);
1154 if (!data)
1155 return -ENOMEM;
1156
1157 data->max_size = RFKILL_EVENT_SIZE_V1;
1158
1159 INIT_LIST_HEAD(&data->events);
1160 mutex_init(&data->mtx);
1161 init_waitqueue_head(&data->read_wait);
1162
1163 mutex_lock(&rfkill_global_mutex);
1164 mutex_lock(&data->mtx);
1165 /*
1166 * start getting events from elsewhere but hold mtx to get
1167 * startup events added first
1168 */
1169
1170 list_for_each_entry(rfkill, &rfkill_list, node) {
1171 ev = kzalloc(sizeof(*ev), GFP_KERNEL);
1172 if (!ev)
1173 goto free;
1174 rfkill_fill_event(&ev->ev, rfkill, RFKILL_OP_ADD);
1175 list_add_tail(&ev->list, &data->events);
1176 }
1177 list_add(&data->list, &rfkill_fds);
1178 mutex_unlock(&data->mtx);
1179 mutex_unlock(&rfkill_global_mutex);
1180
1181 file->private_data = data;
1182
1183 return stream_open(inode, file);
1184
1185 free:
1186 mutex_unlock(&data->mtx);
1187 mutex_unlock(&rfkill_global_mutex);
1188 mutex_destroy(&data->mtx);
1189 list_for_each_entry_safe(ev, tmp, &data->events, list)
1190 kfree(ev);
1191 kfree(data);
1192 return -ENOMEM;
1193}
1194
1195static __poll_t rfkill_fop_poll(struct file *file, poll_table *wait)
1196{
1197 struct rfkill_data *data = file->private_data;
1198 __poll_t res = EPOLLOUT | EPOLLWRNORM;
1199
1200 poll_wait(file, &data->read_wait, wait);
1201
1202 mutex_lock(&data->mtx);
1203 if (!list_empty(&data->events))
1204 res = EPOLLIN | EPOLLRDNORM;
1205 mutex_unlock(&data->mtx);
1206
1207 return res;
1208}
1209
1210static ssize_t rfkill_fop_read(struct file *file, char __user *buf,
1211 size_t count, loff_t *pos)
1212{
1213 struct rfkill_data *data = file->private_data;
1214 struct rfkill_int_event *ev;
1215 unsigned long sz;
1216 int ret;
1217
1218 mutex_lock(&data->mtx);
1219
1220 while (list_empty(&data->events)) {
1221 if (file->f_flags & O_NONBLOCK) {
1222 ret = -EAGAIN;
1223 goto out;
1224 }
1225 mutex_unlock(&data->mtx);
1226 /* since we re-check and it just compares pointers,
1227 * using !list_empty() without locking isn't a problem
1228 */
1229 ret = wait_event_interruptible(data->read_wait,
1230 !list_empty(&data->events));
1231 mutex_lock(&data->mtx);
1232
1233 if (ret)
1234 goto out;
1235 }
1236
1237 ev = list_first_entry(&data->events, struct rfkill_int_event,
1238 list);
1239
1240 sz = min_t(unsigned long, sizeof(ev->ev), count);
1241 sz = min_t(unsigned long, sz, data->max_size);
1242 ret = sz;
1243 if (copy_to_user(buf, &ev->ev, sz))
1244 ret = -EFAULT;
1245
1246 list_del(&ev->list);
1247 kfree(ev);
1248 out:
1249 mutex_unlock(&data->mtx);
1250 return ret;
1251}
1252
1253static ssize_t rfkill_fop_write(struct file *file, const char __user *buf,
1254 size_t count, loff_t *pos)
1255{
1256 struct rfkill_data *data = file->private_data;
1257 struct rfkill *rfkill;
1258 struct rfkill_event_ext ev;
1259 int ret;
1260
1261 /* we don't need the 'hard' variable but accept it */
1262 if (count < RFKILL_EVENT_SIZE_V1 - 1)
1263 return -EINVAL;
1264
1265 /*
1266 * Copy as much data as we can accept into our 'ev' buffer,
1267 * but tell userspace how much we've copied so it can determine
1268 * our API version even in a write() call, if it cares.
1269 */
1270 count = min(count, sizeof(ev));
1271 count = min_t(size_t, count, data->max_size);
1272 if (copy_from_user(&ev, buf, count))
1273 return -EFAULT;
1274
1275 if (ev.type >= NUM_RFKILL_TYPES)
1276 return -EINVAL;
1277
1278 mutex_lock(&rfkill_global_mutex);
1279
1280 switch (ev.op) {
1281 case RFKILL_OP_CHANGE_ALL:
1282 rfkill_update_global_state(ev.type, ev.soft);
1283 list_for_each_entry(rfkill, &rfkill_list, node)
1284 if (rfkill->type == ev.type ||
1285 ev.type == RFKILL_TYPE_ALL)
1286 rfkill_set_block(rfkill, ev.soft);
1287 ret = 0;
1288 break;
1289 case RFKILL_OP_CHANGE:
1290 list_for_each_entry(rfkill, &rfkill_list, node)
1291 if (rfkill->idx == ev.idx &&
1292 (rfkill->type == ev.type ||
1293 ev.type == RFKILL_TYPE_ALL))
1294 rfkill_set_block(rfkill, ev.soft);
1295 ret = 0;
1296 break;
1297 default:
1298 ret = -EINVAL;
1299 break;
1300 }
1301
1302 mutex_unlock(&rfkill_global_mutex);
1303
1304 return ret ?: count;
1305}
1306
1307static int rfkill_fop_release(struct inode *inode, struct file *file)
1308{
1309 struct rfkill_data *data = file->private_data;
1310 struct rfkill_int_event *ev, *tmp;
1311
1312 mutex_lock(&rfkill_global_mutex);
1313 list_del(&data->list);
1314 mutex_unlock(&rfkill_global_mutex);
1315
1316 mutex_destroy(&data->mtx);
1317 list_for_each_entry_safe(ev, tmp, &data->events, list)
1318 kfree(ev);
1319
1320#ifdef CONFIG_RFKILL_INPUT
1321 if (data->input_handler)
1322 if (atomic_dec_return(&rfkill_input_disabled) == 0)
1323 printk(KERN_DEBUG "rfkill: input handler enabled\n");
1324#endif
1325
1326 kfree(data);
1327
1328 return 0;
1329}
1330
1331static long rfkill_fop_ioctl(struct file *file, unsigned int cmd,
1332 unsigned long arg)
1333{
1334 struct rfkill_data *data = file->private_data;
1335 int ret = -ENOSYS;
1336 u32 size;
1337
1338 if (_IOC_TYPE(cmd) != RFKILL_IOC_MAGIC)
1339 return -ENOSYS;
1340
1341 mutex_lock(&data->mtx);
1342 switch (_IOC_NR(cmd)) {
1343#ifdef CONFIG_RFKILL_INPUT
1344 case RFKILL_IOC_NOINPUT:
1345 if (!data->input_handler) {
1346 if (atomic_inc_return(&rfkill_input_disabled) == 1)
1347 printk(KERN_DEBUG "rfkill: input handler disabled\n");
1348 data->input_handler = true;
1349 }
1350 ret = 0;
1351 break;
1352#endif
1353 case RFKILL_IOC_MAX_SIZE:
1354 if (get_user(size, (__u32 __user *)arg)) {
1355 ret = -EFAULT;
1356 break;
1357 }
1358 if (size < RFKILL_EVENT_SIZE_V1 || size > U8_MAX) {
1359 ret = -EINVAL;
1360 break;
1361 }
1362 data->max_size = size;
1363 ret = 0;
1364 break;
1365 default:
1366 break;
1367 }
1368 mutex_unlock(&data->mtx);
1369
1370 return ret;
1371}
1372
1373static const struct file_operations rfkill_fops = {
1374 .owner = THIS_MODULE,
1375 .open = rfkill_fop_open,
1376 .read = rfkill_fop_read,
1377 .write = rfkill_fop_write,
1378 .poll = rfkill_fop_poll,
1379 .release = rfkill_fop_release,
1380 .unlocked_ioctl = rfkill_fop_ioctl,
1381 .compat_ioctl = compat_ptr_ioctl,
1382 .llseek = no_llseek,
1383};
1384
1385#define RFKILL_NAME "rfkill"
1386
1387static struct miscdevice rfkill_miscdev = {
1388 .fops = &rfkill_fops,
1389 .name = RFKILL_NAME,
1390 .minor = RFKILL_MINOR,
1391};
1392
1393static int __init rfkill_init(void)
1394{
1395 int error;
1396
1397 rfkill_update_global_state(RFKILL_TYPE_ALL, !rfkill_default_state);
1398
1399 error = class_register(&rfkill_class);
1400 if (error)
1401 goto error_class;
1402
1403 error = misc_register(&rfkill_miscdev);
1404 if (error)
1405 goto error_misc;
1406
1407 error = rfkill_global_led_trigger_register();
1408 if (error)
1409 goto error_led_trigger;
1410
1411#ifdef CONFIG_RFKILL_INPUT
1412 error = rfkill_handler_init();
1413 if (error)
1414 goto error_input;
1415#endif
1416
1417 return 0;
1418
1419#ifdef CONFIG_RFKILL_INPUT
1420error_input:
1421 rfkill_global_led_trigger_unregister();
1422#endif
1423error_led_trigger:
1424 misc_deregister(&rfkill_miscdev);
1425error_misc:
1426 class_unregister(&rfkill_class);
1427error_class:
1428 return error;
1429}
1430subsys_initcall(rfkill_init);
1431
1432static void __exit rfkill_exit(void)
1433{
1434#ifdef CONFIG_RFKILL_INPUT
1435 rfkill_handler_exit();
1436#endif
1437 rfkill_global_led_trigger_unregister();
1438 misc_deregister(&rfkill_miscdev);
1439 class_unregister(&rfkill_class);
1440}
1441module_exit(rfkill_exit);
1442
1443MODULE_ALIAS_MISCDEV(RFKILL_MINOR);
1444MODULE_ALIAS("devname:" RFKILL_NAME);
1/*
2 * Copyright (C) 2006 - 2007 Ivo van Doorn
3 * Copyright (C) 2007 Dmitry Torokhov
4 * Copyright 2009 Johannes Berg <johannes@sipsolutions.net>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20#include <linux/kernel.h>
21#include <linux/module.h>
22#include <linux/init.h>
23#include <linux/workqueue.h>
24#include <linux/capability.h>
25#include <linux/list.h>
26#include <linux/mutex.h>
27#include <linux/rfkill.h>
28#include <linux/sched.h>
29#include <linux/spinlock.h>
30#include <linux/device.h>
31#include <linux/miscdevice.h>
32#include <linux/wait.h>
33#include <linux/poll.h>
34#include <linux/fs.h>
35#include <linux/slab.h>
36
37#include "rfkill.h"
38
39#define POLL_INTERVAL (5 * HZ)
40
41#define RFKILL_BLOCK_HW BIT(0)
42#define RFKILL_BLOCK_SW BIT(1)
43#define RFKILL_BLOCK_SW_PREV BIT(2)
44#define RFKILL_BLOCK_ANY (RFKILL_BLOCK_HW |\
45 RFKILL_BLOCK_SW |\
46 RFKILL_BLOCK_SW_PREV)
47#define RFKILL_BLOCK_SW_SETCALL BIT(31)
48
49struct rfkill {
50 spinlock_t lock;
51
52 enum rfkill_type type;
53
54 unsigned long state;
55
56 u32 idx;
57
58 bool registered;
59 bool persistent;
60 bool polling_paused;
61 bool suspended;
62
63 const struct rfkill_ops *ops;
64 void *data;
65
66#ifdef CONFIG_RFKILL_LEDS
67 struct led_trigger led_trigger;
68 const char *ledtrigname;
69#endif
70
71 struct device dev;
72 struct list_head node;
73
74 struct delayed_work poll_work;
75 struct work_struct uevent_work;
76 struct work_struct sync_work;
77 char name[];
78};
79#define to_rfkill(d) container_of(d, struct rfkill, dev)
80
81struct rfkill_int_event {
82 struct list_head list;
83 struct rfkill_event ev;
84};
85
86struct rfkill_data {
87 struct list_head list;
88 struct list_head events;
89 struct mutex mtx;
90 wait_queue_head_t read_wait;
91 bool input_handler;
92};
93
94
95MODULE_AUTHOR("Ivo van Doorn <IvDoorn@gmail.com>");
96MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
97MODULE_DESCRIPTION("RF switch support");
98MODULE_LICENSE("GPL");
99
100
101/*
102 * The locking here should be made much smarter, we currently have
103 * a bit of a stupid situation because drivers might want to register
104 * the rfkill struct under their own lock, and take this lock during
105 * rfkill method calls -- which will cause an AB-BA deadlock situation.
106 *
107 * To fix that, we need to rework this code here to be mostly lock-free
108 * and only use the mutex for list manipulations, not to protect the
109 * various other global variables. Then we can avoid holding the mutex
110 * around driver operations, and all is happy.
111 */
112static LIST_HEAD(rfkill_list); /* list of registered rf switches */
113static DEFINE_MUTEX(rfkill_global_mutex);
114static LIST_HEAD(rfkill_fds); /* list of open fds of /dev/rfkill */
115
116static unsigned int rfkill_default_state = 1;
117module_param_named(default_state, rfkill_default_state, uint, 0444);
118MODULE_PARM_DESC(default_state,
119 "Default initial state for all radio types, 0 = radio off");
120
121static struct {
122 bool cur, sav;
123} rfkill_global_states[NUM_RFKILL_TYPES];
124
125static bool rfkill_epo_lock_active;
126
127
128#ifdef CONFIG_RFKILL_LEDS
129static void rfkill_led_trigger_event(struct rfkill *rfkill)
130{
131 struct led_trigger *trigger;
132
133 if (!rfkill->registered)
134 return;
135
136 trigger = &rfkill->led_trigger;
137
138 if (rfkill->state & RFKILL_BLOCK_ANY)
139 led_trigger_event(trigger, LED_OFF);
140 else
141 led_trigger_event(trigger, LED_FULL);
142}
143
144static void rfkill_led_trigger_activate(struct led_classdev *led)
145{
146 struct rfkill *rfkill;
147
148 rfkill = container_of(led->trigger, struct rfkill, led_trigger);
149
150 rfkill_led_trigger_event(rfkill);
151}
152
153const char *rfkill_get_led_trigger_name(struct rfkill *rfkill)
154{
155 return rfkill->led_trigger.name;
156}
157EXPORT_SYMBOL(rfkill_get_led_trigger_name);
158
159void rfkill_set_led_trigger_name(struct rfkill *rfkill, const char *name)
160{
161 BUG_ON(!rfkill);
162
163 rfkill->ledtrigname = name;
164}
165EXPORT_SYMBOL(rfkill_set_led_trigger_name);
166
167static int rfkill_led_trigger_register(struct rfkill *rfkill)
168{
169 rfkill->led_trigger.name = rfkill->ledtrigname
170 ? : dev_name(&rfkill->dev);
171 rfkill->led_trigger.activate = rfkill_led_trigger_activate;
172 return led_trigger_register(&rfkill->led_trigger);
173}
174
175static void rfkill_led_trigger_unregister(struct rfkill *rfkill)
176{
177 led_trigger_unregister(&rfkill->led_trigger);
178}
179
180static struct led_trigger rfkill_any_led_trigger;
181static struct work_struct rfkill_any_work;
182
183static void rfkill_any_led_trigger_worker(struct work_struct *work)
184{
185 enum led_brightness brightness = LED_OFF;
186 struct rfkill *rfkill;
187
188 mutex_lock(&rfkill_global_mutex);
189 list_for_each_entry(rfkill, &rfkill_list, node) {
190 if (!(rfkill->state & RFKILL_BLOCK_ANY)) {
191 brightness = LED_FULL;
192 break;
193 }
194 }
195 mutex_unlock(&rfkill_global_mutex);
196
197 led_trigger_event(&rfkill_any_led_trigger, brightness);
198}
199
200static void rfkill_any_led_trigger_event(void)
201{
202 schedule_work(&rfkill_any_work);
203}
204
205static void rfkill_any_led_trigger_activate(struct led_classdev *led_cdev)
206{
207 rfkill_any_led_trigger_event();
208}
209
210static int rfkill_any_led_trigger_register(void)
211{
212 INIT_WORK(&rfkill_any_work, rfkill_any_led_trigger_worker);
213 rfkill_any_led_trigger.name = "rfkill-any";
214 rfkill_any_led_trigger.activate = rfkill_any_led_trigger_activate;
215 return led_trigger_register(&rfkill_any_led_trigger);
216}
217
218static void rfkill_any_led_trigger_unregister(void)
219{
220 led_trigger_unregister(&rfkill_any_led_trigger);
221 cancel_work_sync(&rfkill_any_work);
222}
223#else
224static void rfkill_led_trigger_event(struct rfkill *rfkill)
225{
226}
227
228static inline int rfkill_led_trigger_register(struct rfkill *rfkill)
229{
230 return 0;
231}
232
233static inline void rfkill_led_trigger_unregister(struct rfkill *rfkill)
234{
235}
236
237static void rfkill_any_led_trigger_event(void)
238{
239}
240
241static int rfkill_any_led_trigger_register(void)
242{
243 return 0;
244}
245
246static void rfkill_any_led_trigger_unregister(void)
247{
248}
249#endif /* CONFIG_RFKILL_LEDS */
250
251static void rfkill_fill_event(struct rfkill_event *ev, struct rfkill *rfkill,
252 enum rfkill_operation op)
253{
254 unsigned long flags;
255
256 ev->idx = rfkill->idx;
257 ev->type = rfkill->type;
258 ev->op = op;
259
260 spin_lock_irqsave(&rfkill->lock, flags);
261 ev->hard = !!(rfkill->state & RFKILL_BLOCK_HW);
262 ev->soft = !!(rfkill->state & (RFKILL_BLOCK_SW |
263 RFKILL_BLOCK_SW_PREV));
264 spin_unlock_irqrestore(&rfkill->lock, flags);
265}
266
267static void rfkill_send_events(struct rfkill *rfkill, enum rfkill_operation op)
268{
269 struct rfkill_data *data;
270 struct rfkill_int_event *ev;
271
272 list_for_each_entry(data, &rfkill_fds, list) {
273 ev = kzalloc(sizeof(*ev), GFP_KERNEL);
274 if (!ev)
275 continue;
276 rfkill_fill_event(&ev->ev, rfkill, op);
277 mutex_lock(&data->mtx);
278 list_add_tail(&ev->list, &data->events);
279 mutex_unlock(&data->mtx);
280 wake_up_interruptible(&data->read_wait);
281 }
282}
283
284static void rfkill_event(struct rfkill *rfkill)
285{
286 if (!rfkill->registered)
287 return;
288
289 kobject_uevent(&rfkill->dev.kobj, KOBJ_CHANGE);
290
291 /* also send event to /dev/rfkill */
292 rfkill_send_events(rfkill, RFKILL_OP_CHANGE);
293}
294
295/**
296 * rfkill_set_block - wrapper for set_block method
297 *
298 * @rfkill: the rfkill struct to use
299 * @blocked: the new software state
300 *
301 * Calls the set_block method (when applicable) and handles notifications
302 * etc. as well.
303 */
304static void rfkill_set_block(struct rfkill *rfkill, bool blocked)
305{
306 unsigned long flags;
307 bool prev, curr;
308 int err;
309
310 if (unlikely(rfkill->dev.power.power_state.event & PM_EVENT_SLEEP))
311 return;
312
313 /*
314 * Some platforms (...!) generate input events which affect the
315 * _hard_ kill state -- whenever something tries to change the
316 * current software state query the hardware state too.
317 */
318 if (rfkill->ops->query)
319 rfkill->ops->query(rfkill, rfkill->data);
320
321 spin_lock_irqsave(&rfkill->lock, flags);
322 prev = rfkill->state & RFKILL_BLOCK_SW;
323
324 if (prev)
325 rfkill->state |= RFKILL_BLOCK_SW_PREV;
326 else
327 rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
328
329 if (blocked)
330 rfkill->state |= RFKILL_BLOCK_SW;
331 else
332 rfkill->state &= ~RFKILL_BLOCK_SW;
333
334 rfkill->state |= RFKILL_BLOCK_SW_SETCALL;
335 spin_unlock_irqrestore(&rfkill->lock, flags);
336
337 err = rfkill->ops->set_block(rfkill->data, blocked);
338
339 spin_lock_irqsave(&rfkill->lock, flags);
340 if (err) {
341 /*
342 * Failed -- reset status to _PREV, which may be different
343 * from what we have set _PREV to earlier in this function
344 * if rfkill_set_sw_state was invoked.
345 */
346 if (rfkill->state & RFKILL_BLOCK_SW_PREV)
347 rfkill->state |= RFKILL_BLOCK_SW;
348 else
349 rfkill->state &= ~RFKILL_BLOCK_SW;
350 }
351 rfkill->state &= ~RFKILL_BLOCK_SW_SETCALL;
352 rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
353 curr = rfkill->state & RFKILL_BLOCK_SW;
354 spin_unlock_irqrestore(&rfkill->lock, flags);
355
356 rfkill_led_trigger_event(rfkill);
357 rfkill_any_led_trigger_event();
358
359 if (prev != curr)
360 rfkill_event(rfkill);
361}
362
363static void rfkill_update_global_state(enum rfkill_type type, bool blocked)
364{
365 int i;
366
367 if (type != RFKILL_TYPE_ALL) {
368 rfkill_global_states[type].cur = blocked;
369 return;
370 }
371
372 for (i = 0; i < NUM_RFKILL_TYPES; i++)
373 rfkill_global_states[i].cur = blocked;
374}
375
376#ifdef CONFIG_RFKILL_INPUT
377static atomic_t rfkill_input_disabled = ATOMIC_INIT(0);
378
379/**
380 * __rfkill_switch_all - Toggle state of all switches of given type
381 * @type: type of interfaces to be affected
382 * @blocked: the new state
383 *
384 * This function sets the state of all switches of given type,
385 * unless a specific switch is suspended.
386 *
387 * Caller must have acquired rfkill_global_mutex.
388 */
389static void __rfkill_switch_all(const enum rfkill_type type, bool blocked)
390{
391 struct rfkill *rfkill;
392
393 rfkill_update_global_state(type, blocked);
394 list_for_each_entry(rfkill, &rfkill_list, node) {
395 if (rfkill->type != type && type != RFKILL_TYPE_ALL)
396 continue;
397
398 rfkill_set_block(rfkill, blocked);
399 }
400}
401
402/**
403 * rfkill_switch_all - Toggle state of all switches of given type
404 * @type: type of interfaces to be affected
405 * @blocked: the new state
406 *
407 * Acquires rfkill_global_mutex and calls __rfkill_switch_all(@type, @state).
408 * Please refer to __rfkill_switch_all() for details.
409 *
410 * Does nothing if the EPO lock is active.
411 */
412void rfkill_switch_all(enum rfkill_type type, bool blocked)
413{
414 if (atomic_read(&rfkill_input_disabled))
415 return;
416
417 mutex_lock(&rfkill_global_mutex);
418
419 if (!rfkill_epo_lock_active)
420 __rfkill_switch_all(type, blocked);
421
422 mutex_unlock(&rfkill_global_mutex);
423}
424
425/**
426 * rfkill_epo - emergency power off all transmitters
427 *
428 * This kicks all non-suspended rfkill devices to RFKILL_STATE_SOFT_BLOCKED,
429 * ignoring everything in its path but rfkill_global_mutex and rfkill->mutex.
430 *
431 * The global state before the EPO is saved and can be restored later
432 * using rfkill_restore_states().
433 */
434void rfkill_epo(void)
435{
436 struct rfkill *rfkill;
437 int i;
438
439 if (atomic_read(&rfkill_input_disabled))
440 return;
441
442 mutex_lock(&rfkill_global_mutex);
443
444 rfkill_epo_lock_active = true;
445 list_for_each_entry(rfkill, &rfkill_list, node)
446 rfkill_set_block(rfkill, true);
447
448 for (i = 0; i < NUM_RFKILL_TYPES; i++) {
449 rfkill_global_states[i].sav = rfkill_global_states[i].cur;
450 rfkill_global_states[i].cur = true;
451 }
452
453 mutex_unlock(&rfkill_global_mutex);
454}
455
456/**
457 * rfkill_restore_states - restore global states
458 *
459 * Restore (and sync switches to) the global state from the
460 * states in rfkill_default_states. This can undo the effects of
461 * a call to rfkill_epo().
462 */
463void rfkill_restore_states(void)
464{
465 int i;
466
467 if (atomic_read(&rfkill_input_disabled))
468 return;
469
470 mutex_lock(&rfkill_global_mutex);
471
472 rfkill_epo_lock_active = false;
473 for (i = 0; i < NUM_RFKILL_TYPES; i++)
474 __rfkill_switch_all(i, rfkill_global_states[i].sav);
475 mutex_unlock(&rfkill_global_mutex);
476}
477
478/**
479 * rfkill_remove_epo_lock - unlock state changes
480 *
481 * Used by rfkill-input manually unlock state changes, when
482 * the EPO switch is deactivated.
483 */
484void rfkill_remove_epo_lock(void)
485{
486 if (atomic_read(&rfkill_input_disabled))
487 return;
488
489 mutex_lock(&rfkill_global_mutex);
490 rfkill_epo_lock_active = false;
491 mutex_unlock(&rfkill_global_mutex);
492}
493
494/**
495 * rfkill_is_epo_lock_active - returns true EPO is active
496 *
497 * Returns 0 (false) if there is NOT an active EPO contidion,
498 * and 1 (true) if there is an active EPO contition, which
499 * locks all radios in one of the BLOCKED states.
500 *
501 * Can be called in atomic context.
502 */
503bool rfkill_is_epo_lock_active(void)
504{
505 return rfkill_epo_lock_active;
506}
507
508/**
509 * rfkill_get_global_sw_state - returns global state for a type
510 * @type: the type to get the global state of
511 *
512 * Returns the current global state for a given wireless
513 * device type.
514 */
515bool rfkill_get_global_sw_state(const enum rfkill_type type)
516{
517 return rfkill_global_states[type].cur;
518}
519#endif
520
521bool rfkill_set_hw_state(struct rfkill *rfkill, bool blocked)
522{
523 unsigned long flags;
524 bool ret, prev;
525
526 BUG_ON(!rfkill);
527
528 spin_lock_irqsave(&rfkill->lock, flags);
529 prev = !!(rfkill->state & RFKILL_BLOCK_HW);
530 if (blocked)
531 rfkill->state |= RFKILL_BLOCK_HW;
532 else
533 rfkill->state &= ~RFKILL_BLOCK_HW;
534 ret = !!(rfkill->state & RFKILL_BLOCK_ANY);
535 spin_unlock_irqrestore(&rfkill->lock, flags);
536
537 rfkill_led_trigger_event(rfkill);
538 rfkill_any_led_trigger_event();
539
540 if (rfkill->registered && prev != blocked)
541 schedule_work(&rfkill->uevent_work);
542
543 return ret;
544}
545EXPORT_SYMBOL(rfkill_set_hw_state);
546
547static void __rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
548{
549 u32 bit = RFKILL_BLOCK_SW;
550
551 /* if in a ops->set_block right now, use other bit */
552 if (rfkill->state & RFKILL_BLOCK_SW_SETCALL)
553 bit = RFKILL_BLOCK_SW_PREV;
554
555 if (blocked)
556 rfkill->state |= bit;
557 else
558 rfkill->state &= ~bit;
559}
560
561bool rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
562{
563 unsigned long flags;
564 bool prev, hwblock;
565
566 BUG_ON(!rfkill);
567
568 spin_lock_irqsave(&rfkill->lock, flags);
569 prev = !!(rfkill->state & RFKILL_BLOCK_SW);
570 __rfkill_set_sw_state(rfkill, blocked);
571 hwblock = !!(rfkill->state & RFKILL_BLOCK_HW);
572 blocked = blocked || hwblock;
573 spin_unlock_irqrestore(&rfkill->lock, flags);
574
575 if (!rfkill->registered)
576 return blocked;
577
578 if (prev != blocked && !hwblock)
579 schedule_work(&rfkill->uevent_work);
580
581 rfkill_led_trigger_event(rfkill);
582 rfkill_any_led_trigger_event();
583
584 return blocked;
585}
586EXPORT_SYMBOL(rfkill_set_sw_state);
587
588void rfkill_init_sw_state(struct rfkill *rfkill, bool blocked)
589{
590 unsigned long flags;
591
592 BUG_ON(!rfkill);
593 BUG_ON(rfkill->registered);
594
595 spin_lock_irqsave(&rfkill->lock, flags);
596 __rfkill_set_sw_state(rfkill, blocked);
597 rfkill->persistent = true;
598 spin_unlock_irqrestore(&rfkill->lock, flags);
599}
600EXPORT_SYMBOL(rfkill_init_sw_state);
601
602void rfkill_set_states(struct rfkill *rfkill, bool sw, bool hw)
603{
604 unsigned long flags;
605 bool swprev, hwprev;
606
607 BUG_ON(!rfkill);
608
609 spin_lock_irqsave(&rfkill->lock, flags);
610
611 /*
612 * No need to care about prev/setblock ... this is for uevent only
613 * and that will get triggered by rfkill_set_block anyway.
614 */
615 swprev = !!(rfkill->state & RFKILL_BLOCK_SW);
616 hwprev = !!(rfkill->state & RFKILL_BLOCK_HW);
617 __rfkill_set_sw_state(rfkill, sw);
618 if (hw)
619 rfkill->state |= RFKILL_BLOCK_HW;
620 else
621 rfkill->state &= ~RFKILL_BLOCK_HW;
622
623 spin_unlock_irqrestore(&rfkill->lock, flags);
624
625 if (!rfkill->registered) {
626 rfkill->persistent = true;
627 } else {
628 if (swprev != sw || hwprev != hw)
629 schedule_work(&rfkill->uevent_work);
630
631 rfkill_led_trigger_event(rfkill);
632 rfkill_any_led_trigger_event();
633 }
634}
635EXPORT_SYMBOL(rfkill_set_states);
636
637static const char * const rfkill_types[] = {
638 NULL, /* RFKILL_TYPE_ALL */
639 "wlan",
640 "bluetooth",
641 "ultrawideband",
642 "wimax",
643 "wwan",
644 "gps",
645 "fm",
646 "nfc",
647};
648
649enum rfkill_type rfkill_find_type(const char *name)
650{
651 int i;
652
653 BUILD_BUG_ON(ARRAY_SIZE(rfkill_types) != NUM_RFKILL_TYPES);
654
655 if (!name)
656 return RFKILL_TYPE_ALL;
657
658 for (i = 1; i < NUM_RFKILL_TYPES; i++)
659 if (!strcmp(name, rfkill_types[i]))
660 return i;
661 return RFKILL_TYPE_ALL;
662}
663EXPORT_SYMBOL(rfkill_find_type);
664
665static ssize_t name_show(struct device *dev, struct device_attribute *attr,
666 char *buf)
667{
668 struct rfkill *rfkill = to_rfkill(dev);
669
670 return sprintf(buf, "%s\n", rfkill->name);
671}
672static DEVICE_ATTR_RO(name);
673
674static ssize_t type_show(struct device *dev, struct device_attribute *attr,
675 char *buf)
676{
677 struct rfkill *rfkill = to_rfkill(dev);
678
679 return sprintf(buf, "%s\n", rfkill_types[rfkill->type]);
680}
681static DEVICE_ATTR_RO(type);
682
683static ssize_t index_show(struct device *dev, struct device_attribute *attr,
684 char *buf)
685{
686 struct rfkill *rfkill = to_rfkill(dev);
687
688 return sprintf(buf, "%d\n", rfkill->idx);
689}
690static DEVICE_ATTR_RO(index);
691
692static ssize_t persistent_show(struct device *dev,
693 struct device_attribute *attr, char *buf)
694{
695 struct rfkill *rfkill = to_rfkill(dev);
696
697 return sprintf(buf, "%d\n", rfkill->persistent);
698}
699static DEVICE_ATTR_RO(persistent);
700
701static ssize_t hard_show(struct device *dev, struct device_attribute *attr,
702 char *buf)
703{
704 struct rfkill *rfkill = to_rfkill(dev);
705
706 return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_HW) ? 1 : 0 );
707}
708static DEVICE_ATTR_RO(hard);
709
710static ssize_t soft_show(struct device *dev, struct device_attribute *attr,
711 char *buf)
712{
713 struct rfkill *rfkill = to_rfkill(dev);
714
715 return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_SW) ? 1 : 0 );
716}
717
718static ssize_t soft_store(struct device *dev, struct device_attribute *attr,
719 const char *buf, size_t count)
720{
721 struct rfkill *rfkill = to_rfkill(dev);
722 unsigned long state;
723 int err;
724
725 if (!capable(CAP_NET_ADMIN))
726 return -EPERM;
727
728 err = kstrtoul(buf, 0, &state);
729 if (err)
730 return err;
731
732 if (state > 1 )
733 return -EINVAL;
734
735 mutex_lock(&rfkill_global_mutex);
736 rfkill_set_block(rfkill, state);
737 mutex_unlock(&rfkill_global_mutex);
738
739 return count;
740}
741static DEVICE_ATTR_RW(soft);
742
743static u8 user_state_from_blocked(unsigned long state)
744{
745 if (state & RFKILL_BLOCK_HW)
746 return RFKILL_USER_STATE_HARD_BLOCKED;
747 if (state & RFKILL_BLOCK_SW)
748 return RFKILL_USER_STATE_SOFT_BLOCKED;
749
750 return RFKILL_USER_STATE_UNBLOCKED;
751}
752
753static ssize_t state_show(struct device *dev, struct device_attribute *attr,
754 char *buf)
755{
756 struct rfkill *rfkill = to_rfkill(dev);
757
758 return sprintf(buf, "%d\n", user_state_from_blocked(rfkill->state));
759}
760
761static ssize_t state_store(struct device *dev, struct device_attribute *attr,
762 const char *buf, size_t count)
763{
764 struct rfkill *rfkill = to_rfkill(dev);
765 unsigned long state;
766 int err;
767
768 if (!capable(CAP_NET_ADMIN))
769 return -EPERM;
770
771 err = kstrtoul(buf, 0, &state);
772 if (err)
773 return err;
774
775 if (state != RFKILL_USER_STATE_SOFT_BLOCKED &&
776 state != RFKILL_USER_STATE_UNBLOCKED)
777 return -EINVAL;
778
779 mutex_lock(&rfkill_global_mutex);
780 rfkill_set_block(rfkill, state == RFKILL_USER_STATE_SOFT_BLOCKED);
781 mutex_unlock(&rfkill_global_mutex);
782
783 return count;
784}
785static DEVICE_ATTR_RW(state);
786
787static struct attribute *rfkill_dev_attrs[] = {
788 &dev_attr_name.attr,
789 &dev_attr_type.attr,
790 &dev_attr_index.attr,
791 &dev_attr_persistent.attr,
792 &dev_attr_state.attr,
793 &dev_attr_soft.attr,
794 &dev_attr_hard.attr,
795 NULL,
796};
797ATTRIBUTE_GROUPS(rfkill_dev);
798
799static void rfkill_release(struct device *dev)
800{
801 struct rfkill *rfkill = to_rfkill(dev);
802
803 kfree(rfkill);
804}
805
806static int rfkill_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
807{
808 struct rfkill *rfkill = to_rfkill(dev);
809 unsigned long flags;
810 u32 state;
811 int error;
812
813 error = add_uevent_var(env, "RFKILL_NAME=%s", rfkill->name);
814 if (error)
815 return error;
816 error = add_uevent_var(env, "RFKILL_TYPE=%s",
817 rfkill_types[rfkill->type]);
818 if (error)
819 return error;
820 spin_lock_irqsave(&rfkill->lock, flags);
821 state = rfkill->state;
822 spin_unlock_irqrestore(&rfkill->lock, flags);
823 error = add_uevent_var(env, "RFKILL_STATE=%d",
824 user_state_from_blocked(state));
825 return error;
826}
827
828void rfkill_pause_polling(struct rfkill *rfkill)
829{
830 BUG_ON(!rfkill);
831
832 if (!rfkill->ops->poll)
833 return;
834
835 rfkill->polling_paused = true;
836 cancel_delayed_work_sync(&rfkill->poll_work);
837}
838EXPORT_SYMBOL(rfkill_pause_polling);
839
840void rfkill_resume_polling(struct rfkill *rfkill)
841{
842 BUG_ON(!rfkill);
843
844 if (!rfkill->ops->poll)
845 return;
846
847 rfkill->polling_paused = false;
848
849 if (rfkill->suspended)
850 return;
851
852 queue_delayed_work(system_power_efficient_wq,
853 &rfkill->poll_work, 0);
854}
855EXPORT_SYMBOL(rfkill_resume_polling);
856
857#ifdef CONFIG_PM_SLEEP
858static int rfkill_suspend(struct device *dev)
859{
860 struct rfkill *rfkill = to_rfkill(dev);
861
862 rfkill->suspended = true;
863 cancel_delayed_work_sync(&rfkill->poll_work);
864
865 return 0;
866}
867
868static int rfkill_resume(struct device *dev)
869{
870 struct rfkill *rfkill = to_rfkill(dev);
871 bool cur;
872
873 rfkill->suspended = false;
874
875 if (!rfkill->persistent) {
876 cur = !!(rfkill->state & RFKILL_BLOCK_SW);
877 rfkill_set_block(rfkill, cur);
878 }
879
880 if (rfkill->ops->poll && !rfkill->polling_paused)
881 queue_delayed_work(system_power_efficient_wq,
882 &rfkill->poll_work, 0);
883
884 return 0;
885}
886
887static SIMPLE_DEV_PM_OPS(rfkill_pm_ops, rfkill_suspend, rfkill_resume);
888#define RFKILL_PM_OPS (&rfkill_pm_ops)
889#else
890#define RFKILL_PM_OPS NULL
891#endif
892
893static struct class rfkill_class = {
894 .name = "rfkill",
895 .dev_release = rfkill_release,
896 .dev_groups = rfkill_dev_groups,
897 .dev_uevent = rfkill_dev_uevent,
898 .pm = RFKILL_PM_OPS,
899};
900
901bool rfkill_blocked(struct rfkill *rfkill)
902{
903 unsigned long flags;
904 u32 state;
905
906 spin_lock_irqsave(&rfkill->lock, flags);
907 state = rfkill->state;
908 spin_unlock_irqrestore(&rfkill->lock, flags);
909
910 return !!(state & RFKILL_BLOCK_ANY);
911}
912EXPORT_SYMBOL(rfkill_blocked);
913
914
915struct rfkill * __must_check rfkill_alloc(const char *name,
916 struct device *parent,
917 const enum rfkill_type type,
918 const struct rfkill_ops *ops,
919 void *ops_data)
920{
921 struct rfkill *rfkill;
922 struct device *dev;
923
924 if (WARN_ON(!ops))
925 return NULL;
926
927 if (WARN_ON(!ops->set_block))
928 return NULL;
929
930 if (WARN_ON(!name))
931 return NULL;
932
933 if (WARN_ON(type == RFKILL_TYPE_ALL || type >= NUM_RFKILL_TYPES))
934 return NULL;
935
936 rfkill = kzalloc(sizeof(*rfkill) + strlen(name) + 1, GFP_KERNEL);
937 if (!rfkill)
938 return NULL;
939
940 spin_lock_init(&rfkill->lock);
941 INIT_LIST_HEAD(&rfkill->node);
942 rfkill->type = type;
943 strcpy(rfkill->name, name);
944 rfkill->ops = ops;
945 rfkill->data = ops_data;
946
947 dev = &rfkill->dev;
948 dev->class = &rfkill_class;
949 dev->parent = parent;
950 device_initialize(dev);
951
952 return rfkill;
953}
954EXPORT_SYMBOL(rfkill_alloc);
955
956static void rfkill_poll(struct work_struct *work)
957{
958 struct rfkill *rfkill;
959
960 rfkill = container_of(work, struct rfkill, poll_work.work);
961
962 /*
963 * Poll hardware state -- driver will use one of the
964 * rfkill_set{,_hw,_sw}_state functions and use its
965 * return value to update the current status.
966 */
967 rfkill->ops->poll(rfkill, rfkill->data);
968
969 queue_delayed_work(system_power_efficient_wq,
970 &rfkill->poll_work,
971 round_jiffies_relative(POLL_INTERVAL));
972}
973
974static void rfkill_uevent_work(struct work_struct *work)
975{
976 struct rfkill *rfkill;
977
978 rfkill = container_of(work, struct rfkill, uevent_work);
979
980 mutex_lock(&rfkill_global_mutex);
981 rfkill_event(rfkill);
982 mutex_unlock(&rfkill_global_mutex);
983}
984
985static void rfkill_sync_work(struct work_struct *work)
986{
987 struct rfkill *rfkill;
988 bool cur;
989
990 rfkill = container_of(work, struct rfkill, sync_work);
991
992 mutex_lock(&rfkill_global_mutex);
993 cur = rfkill_global_states[rfkill->type].cur;
994 rfkill_set_block(rfkill, cur);
995 mutex_unlock(&rfkill_global_mutex);
996}
997
998int __must_check rfkill_register(struct rfkill *rfkill)
999{
1000 static unsigned long rfkill_no;
1001 struct device *dev = &rfkill->dev;
1002 int error;
1003
1004 BUG_ON(!rfkill);
1005
1006 mutex_lock(&rfkill_global_mutex);
1007
1008 if (rfkill->registered) {
1009 error = -EALREADY;
1010 goto unlock;
1011 }
1012
1013 rfkill->idx = rfkill_no;
1014 dev_set_name(dev, "rfkill%lu", rfkill_no);
1015 rfkill_no++;
1016
1017 list_add_tail(&rfkill->node, &rfkill_list);
1018
1019 error = device_add(dev);
1020 if (error)
1021 goto remove;
1022
1023 error = rfkill_led_trigger_register(rfkill);
1024 if (error)
1025 goto devdel;
1026
1027 rfkill->registered = true;
1028
1029 INIT_DELAYED_WORK(&rfkill->poll_work, rfkill_poll);
1030 INIT_WORK(&rfkill->uevent_work, rfkill_uevent_work);
1031 INIT_WORK(&rfkill->sync_work, rfkill_sync_work);
1032
1033 if (rfkill->ops->poll)
1034 queue_delayed_work(system_power_efficient_wq,
1035 &rfkill->poll_work,
1036 round_jiffies_relative(POLL_INTERVAL));
1037
1038 if (!rfkill->persistent || rfkill_epo_lock_active) {
1039 schedule_work(&rfkill->sync_work);
1040 } else {
1041#ifdef CONFIG_RFKILL_INPUT
1042 bool soft_blocked = !!(rfkill->state & RFKILL_BLOCK_SW);
1043
1044 if (!atomic_read(&rfkill_input_disabled))
1045 __rfkill_switch_all(rfkill->type, soft_blocked);
1046#endif
1047 }
1048
1049 rfkill_any_led_trigger_event();
1050 rfkill_send_events(rfkill, RFKILL_OP_ADD);
1051
1052 mutex_unlock(&rfkill_global_mutex);
1053 return 0;
1054
1055 devdel:
1056 device_del(&rfkill->dev);
1057 remove:
1058 list_del_init(&rfkill->node);
1059 unlock:
1060 mutex_unlock(&rfkill_global_mutex);
1061 return error;
1062}
1063EXPORT_SYMBOL(rfkill_register);
1064
1065void rfkill_unregister(struct rfkill *rfkill)
1066{
1067 BUG_ON(!rfkill);
1068
1069 if (rfkill->ops->poll)
1070 cancel_delayed_work_sync(&rfkill->poll_work);
1071
1072 cancel_work_sync(&rfkill->uevent_work);
1073 cancel_work_sync(&rfkill->sync_work);
1074
1075 rfkill->registered = false;
1076
1077 device_del(&rfkill->dev);
1078
1079 mutex_lock(&rfkill_global_mutex);
1080 rfkill_send_events(rfkill, RFKILL_OP_DEL);
1081 list_del_init(&rfkill->node);
1082 rfkill_any_led_trigger_event();
1083 mutex_unlock(&rfkill_global_mutex);
1084
1085 rfkill_led_trigger_unregister(rfkill);
1086}
1087EXPORT_SYMBOL(rfkill_unregister);
1088
1089void rfkill_destroy(struct rfkill *rfkill)
1090{
1091 if (rfkill)
1092 put_device(&rfkill->dev);
1093}
1094EXPORT_SYMBOL(rfkill_destroy);
1095
1096static int rfkill_fop_open(struct inode *inode, struct file *file)
1097{
1098 struct rfkill_data *data;
1099 struct rfkill *rfkill;
1100 struct rfkill_int_event *ev, *tmp;
1101
1102 data = kzalloc(sizeof(*data), GFP_KERNEL);
1103 if (!data)
1104 return -ENOMEM;
1105
1106 INIT_LIST_HEAD(&data->events);
1107 mutex_init(&data->mtx);
1108 init_waitqueue_head(&data->read_wait);
1109
1110 mutex_lock(&rfkill_global_mutex);
1111 mutex_lock(&data->mtx);
1112 /*
1113 * start getting events from elsewhere but hold mtx to get
1114 * startup events added first
1115 */
1116
1117 list_for_each_entry(rfkill, &rfkill_list, node) {
1118 ev = kzalloc(sizeof(*ev), GFP_KERNEL);
1119 if (!ev)
1120 goto free;
1121 rfkill_fill_event(&ev->ev, rfkill, RFKILL_OP_ADD);
1122 list_add_tail(&ev->list, &data->events);
1123 }
1124 list_add(&data->list, &rfkill_fds);
1125 mutex_unlock(&data->mtx);
1126 mutex_unlock(&rfkill_global_mutex);
1127
1128 file->private_data = data;
1129
1130 return nonseekable_open(inode, file);
1131
1132 free:
1133 mutex_unlock(&data->mtx);
1134 mutex_unlock(&rfkill_global_mutex);
1135 mutex_destroy(&data->mtx);
1136 list_for_each_entry_safe(ev, tmp, &data->events, list)
1137 kfree(ev);
1138 kfree(data);
1139 return -ENOMEM;
1140}
1141
1142static __poll_t rfkill_fop_poll(struct file *file, poll_table *wait)
1143{
1144 struct rfkill_data *data = file->private_data;
1145 __poll_t res = EPOLLOUT | EPOLLWRNORM;
1146
1147 poll_wait(file, &data->read_wait, wait);
1148
1149 mutex_lock(&data->mtx);
1150 if (!list_empty(&data->events))
1151 res = EPOLLIN | EPOLLRDNORM;
1152 mutex_unlock(&data->mtx);
1153
1154 return res;
1155}
1156
1157static ssize_t rfkill_fop_read(struct file *file, char __user *buf,
1158 size_t count, loff_t *pos)
1159{
1160 struct rfkill_data *data = file->private_data;
1161 struct rfkill_int_event *ev;
1162 unsigned long sz;
1163 int ret;
1164
1165 mutex_lock(&data->mtx);
1166
1167 while (list_empty(&data->events)) {
1168 if (file->f_flags & O_NONBLOCK) {
1169 ret = -EAGAIN;
1170 goto out;
1171 }
1172 mutex_unlock(&data->mtx);
1173 /* since we re-check and it just compares pointers,
1174 * using !list_empty() without locking isn't a problem
1175 */
1176 ret = wait_event_interruptible(data->read_wait,
1177 !list_empty(&data->events));
1178 mutex_lock(&data->mtx);
1179
1180 if (ret)
1181 goto out;
1182 }
1183
1184 ev = list_first_entry(&data->events, struct rfkill_int_event,
1185 list);
1186
1187 sz = min_t(unsigned long, sizeof(ev->ev), count);
1188 ret = sz;
1189 if (copy_to_user(buf, &ev->ev, sz))
1190 ret = -EFAULT;
1191
1192 list_del(&ev->list);
1193 kfree(ev);
1194 out:
1195 mutex_unlock(&data->mtx);
1196 return ret;
1197}
1198
1199static ssize_t rfkill_fop_write(struct file *file, const char __user *buf,
1200 size_t count, loff_t *pos)
1201{
1202 struct rfkill *rfkill;
1203 struct rfkill_event ev;
1204 int ret;
1205
1206 /* we don't need the 'hard' variable but accept it */
1207 if (count < RFKILL_EVENT_SIZE_V1 - 1)
1208 return -EINVAL;
1209
1210 /*
1211 * Copy as much data as we can accept into our 'ev' buffer,
1212 * but tell userspace how much we've copied so it can determine
1213 * our API version even in a write() call, if it cares.
1214 */
1215 count = min(count, sizeof(ev));
1216 if (copy_from_user(&ev, buf, count))
1217 return -EFAULT;
1218
1219 if (ev.type >= NUM_RFKILL_TYPES)
1220 return -EINVAL;
1221
1222 mutex_lock(&rfkill_global_mutex);
1223
1224 switch (ev.op) {
1225 case RFKILL_OP_CHANGE_ALL:
1226 rfkill_update_global_state(ev.type, ev.soft);
1227 list_for_each_entry(rfkill, &rfkill_list, node)
1228 if (rfkill->type == ev.type ||
1229 ev.type == RFKILL_TYPE_ALL)
1230 rfkill_set_block(rfkill, ev.soft);
1231 ret = 0;
1232 break;
1233 case RFKILL_OP_CHANGE:
1234 list_for_each_entry(rfkill, &rfkill_list, node)
1235 if (rfkill->idx == ev.idx &&
1236 (rfkill->type == ev.type ||
1237 ev.type == RFKILL_TYPE_ALL))
1238 rfkill_set_block(rfkill, ev.soft);
1239 ret = 0;
1240 break;
1241 default:
1242 ret = -EINVAL;
1243 break;
1244 }
1245
1246 mutex_unlock(&rfkill_global_mutex);
1247
1248 return ret ?: count;
1249}
1250
1251static int rfkill_fop_release(struct inode *inode, struct file *file)
1252{
1253 struct rfkill_data *data = file->private_data;
1254 struct rfkill_int_event *ev, *tmp;
1255
1256 mutex_lock(&rfkill_global_mutex);
1257 list_del(&data->list);
1258 mutex_unlock(&rfkill_global_mutex);
1259
1260 mutex_destroy(&data->mtx);
1261 list_for_each_entry_safe(ev, tmp, &data->events, list)
1262 kfree(ev);
1263
1264#ifdef CONFIG_RFKILL_INPUT
1265 if (data->input_handler)
1266 if (atomic_dec_return(&rfkill_input_disabled) == 0)
1267 printk(KERN_DEBUG "rfkill: input handler enabled\n");
1268#endif
1269
1270 kfree(data);
1271
1272 return 0;
1273}
1274
1275#ifdef CONFIG_RFKILL_INPUT
1276static long rfkill_fop_ioctl(struct file *file, unsigned int cmd,
1277 unsigned long arg)
1278{
1279 struct rfkill_data *data = file->private_data;
1280
1281 if (_IOC_TYPE(cmd) != RFKILL_IOC_MAGIC)
1282 return -ENOSYS;
1283
1284 if (_IOC_NR(cmd) != RFKILL_IOC_NOINPUT)
1285 return -ENOSYS;
1286
1287 mutex_lock(&data->mtx);
1288
1289 if (!data->input_handler) {
1290 if (atomic_inc_return(&rfkill_input_disabled) == 1)
1291 printk(KERN_DEBUG "rfkill: input handler disabled\n");
1292 data->input_handler = true;
1293 }
1294
1295 mutex_unlock(&data->mtx);
1296
1297 return 0;
1298}
1299#endif
1300
1301static const struct file_operations rfkill_fops = {
1302 .owner = THIS_MODULE,
1303 .open = rfkill_fop_open,
1304 .read = rfkill_fop_read,
1305 .write = rfkill_fop_write,
1306 .poll = rfkill_fop_poll,
1307 .release = rfkill_fop_release,
1308#ifdef CONFIG_RFKILL_INPUT
1309 .unlocked_ioctl = rfkill_fop_ioctl,
1310 .compat_ioctl = rfkill_fop_ioctl,
1311#endif
1312 .llseek = no_llseek,
1313};
1314
1315static struct miscdevice rfkill_miscdev = {
1316 .name = "rfkill",
1317 .fops = &rfkill_fops,
1318 .minor = MISC_DYNAMIC_MINOR,
1319};
1320
1321static int __init rfkill_init(void)
1322{
1323 int error;
1324
1325 rfkill_update_global_state(RFKILL_TYPE_ALL, !rfkill_default_state);
1326
1327 error = class_register(&rfkill_class);
1328 if (error)
1329 goto error_class;
1330
1331 error = misc_register(&rfkill_miscdev);
1332 if (error)
1333 goto error_misc;
1334
1335 error = rfkill_any_led_trigger_register();
1336 if (error)
1337 goto error_led_trigger;
1338
1339#ifdef CONFIG_RFKILL_INPUT
1340 error = rfkill_handler_init();
1341 if (error)
1342 goto error_input;
1343#endif
1344
1345 return 0;
1346
1347#ifdef CONFIG_RFKILL_INPUT
1348error_input:
1349 rfkill_any_led_trigger_unregister();
1350#endif
1351error_led_trigger:
1352 misc_deregister(&rfkill_miscdev);
1353error_misc:
1354 class_unregister(&rfkill_class);
1355error_class:
1356 return error;
1357}
1358subsys_initcall(rfkill_init);
1359
1360static void __exit rfkill_exit(void)
1361{
1362#ifdef CONFIG_RFKILL_INPUT
1363 rfkill_handler_exit();
1364#endif
1365 rfkill_any_led_trigger_unregister();
1366 misc_deregister(&rfkill_miscdev);
1367 class_unregister(&rfkill_class);
1368}
1369module_exit(rfkill_exit);