Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Copyright (C) 2006 - 2007 Ivo van Doorn
   4 * Copyright (C) 2007 Dmitry Torokhov
   5 * Copyright 2009 Johannes Berg <johannes@sipsolutions.net>
   6 */
   7
   8#include <linux/kernel.h>
   9#include <linux/module.h>
  10#include <linux/init.h>
  11#include <linux/workqueue.h>
  12#include <linux/capability.h>
  13#include <linux/list.h>
  14#include <linux/mutex.h>
  15#include <linux/rfkill.h>
  16#include <linux/sched.h>
  17#include <linux/spinlock.h>
  18#include <linux/device.h>
  19#include <linux/miscdevice.h>
  20#include <linux/wait.h>
  21#include <linux/poll.h>
  22#include <linux/fs.h>
  23#include <linux/slab.h>
  24
  25#include "rfkill.h"
  26
  27#define POLL_INTERVAL		(5 * HZ)
  28
  29#define RFKILL_BLOCK_HW		BIT(0)
  30#define RFKILL_BLOCK_SW		BIT(1)
  31#define RFKILL_BLOCK_SW_PREV	BIT(2)
  32#define RFKILL_BLOCK_ANY	(RFKILL_BLOCK_HW |\
  33				 RFKILL_BLOCK_SW |\
  34				 RFKILL_BLOCK_SW_PREV)
  35#define RFKILL_BLOCK_SW_SETCALL	BIT(31)
  36
  37struct rfkill {
  38	spinlock_t		lock;
  39
  40	enum rfkill_type	type;
  41
  42	unsigned long		state;
  43	unsigned long		hard_block_reasons;
  44
  45	u32			idx;
  46
  47	bool			registered;
  48	bool			persistent;
  49	bool			polling_paused;
  50	bool			suspended;
 
  51
  52	const struct rfkill_ops	*ops;
  53	void			*data;
  54
  55#ifdef CONFIG_RFKILL_LEDS
  56	struct led_trigger	led_trigger;
  57	const char		*ledtrigname;
  58#endif
  59
  60	struct device		dev;
  61	struct list_head	node;
  62
  63	struct delayed_work	poll_work;
  64	struct work_struct	uevent_work;
  65	struct work_struct	sync_work;
  66	char			name[];
  67};
  68#define to_rfkill(d)	container_of(d, struct rfkill, dev)
  69
  70struct rfkill_int_event {
  71	struct list_head	list;
  72	struct rfkill_event_ext	ev;
  73};
  74
  75struct rfkill_data {
  76	struct list_head	list;
  77	struct list_head	events;
  78	struct mutex		mtx;
  79	wait_queue_head_t	read_wait;
  80	bool			input_handler;
  81	u8			max_size;
  82};
  83
  84
  85MODULE_AUTHOR("Ivo van Doorn <IvDoorn@gmail.com>");
  86MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
  87MODULE_DESCRIPTION("RF switch support");
  88MODULE_LICENSE("GPL");
  89
  90
  91/*
  92 * The locking here should be made much smarter, we currently have
  93 * a bit of a stupid situation because drivers might want to register
  94 * the rfkill struct under their own lock, and take this lock during
  95 * rfkill method calls -- which will cause an AB-BA deadlock situation.
  96 *
  97 * To fix that, we need to rework this code here to be mostly lock-free
  98 * and only use the mutex for list manipulations, not to protect the
  99 * various other global variables. Then we can avoid holding the mutex
 100 * around driver operations, and all is happy.
 101 */
 102static LIST_HEAD(rfkill_list);	/* list of registered rf switches */
 103static DEFINE_MUTEX(rfkill_global_mutex);
 104static LIST_HEAD(rfkill_fds);	/* list of open fds of /dev/rfkill */
 105
 106static unsigned int rfkill_default_state = 1;
 107module_param_named(default_state, rfkill_default_state, uint, 0444);
 108MODULE_PARM_DESC(default_state,
 109		 "Default initial state for all radio types, 0 = radio off");
 110
 111static struct {
 112	bool cur, sav;
 113} rfkill_global_states[NUM_RFKILL_TYPES];
 114
 115static bool rfkill_epo_lock_active;
 116
 117
 118#ifdef CONFIG_RFKILL_LEDS
 119static void rfkill_led_trigger_event(struct rfkill *rfkill)
 120{
 121	struct led_trigger *trigger;
 122
 123	if (!rfkill->registered)
 124		return;
 125
 126	trigger = &rfkill->led_trigger;
 127
 128	if (rfkill->state & RFKILL_BLOCK_ANY)
 129		led_trigger_event(trigger, LED_OFF);
 130	else
 131		led_trigger_event(trigger, LED_FULL);
 132}
 133
 134static int rfkill_led_trigger_activate(struct led_classdev *led)
 135{
 136	struct rfkill *rfkill;
 137
 138	rfkill = container_of(led->trigger, struct rfkill, led_trigger);
 139
 140	rfkill_led_trigger_event(rfkill);
 141
 142	return 0;
 143}
 144
 145const char *rfkill_get_led_trigger_name(struct rfkill *rfkill)
 146{
 147	return rfkill->led_trigger.name;
 148}
 149EXPORT_SYMBOL(rfkill_get_led_trigger_name);
 150
 151void rfkill_set_led_trigger_name(struct rfkill *rfkill, const char *name)
 152{
 153	BUG_ON(!rfkill);
 154
 155	rfkill->ledtrigname = name;
 156}
 157EXPORT_SYMBOL(rfkill_set_led_trigger_name);
 158
 159static int rfkill_led_trigger_register(struct rfkill *rfkill)
 160{
 161	rfkill->led_trigger.name = rfkill->ledtrigname
 162					? : dev_name(&rfkill->dev);
 163	rfkill->led_trigger.activate = rfkill_led_trigger_activate;
 164	return led_trigger_register(&rfkill->led_trigger);
 165}
 166
 167static void rfkill_led_trigger_unregister(struct rfkill *rfkill)
 168{
 169	led_trigger_unregister(&rfkill->led_trigger);
 170}
 171
 172static struct led_trigger rfkill_any_led_trigger;
 173static struct led_trigger rfkill_none_led_trigger;
 174static struct work_struct rfkill_global_led_trigger_work;
 175
 176static void rfkill_global_led_trigger_worker(struct work_struct *work)
 177{
 178	enum led_brightness brightness = LED_OFF;
 179	struct rfkill *rfkill;
 180
 181	mutex_lock(&rfkill_global_mutex);
 182	list_for_each_entry(rfkill, &rfkill_list, node) {
 183		if (!(rfkill->state & RFKILL_BLOCK_ANY)) {
 184			brightness = LED_FULL;
 185			break;
 186		}
 187	}
 188	mutex_unlock(&rfkill_global_mutex);
 189
 190	led_trigger_event(&rfkill_any_led_trigger, brightness);
 191	led_trigger_event(&rfkill_none_led_trigger,
 192			  brightness == LED_OFF ? LED_FULL : LED_OFF);
 193}
 194
 195static void rfkill_global_led_trigger_event(void)
 196{
 197	schedule_work(&rfkill_global_led_trigger_work);
 198}
 199
 200static int rfkill_global_led_trigger_register(void)
 201{
 202	int ret;
 203
 204	INIT_WORK(&rfkill_global_led_trigger_work,
 205			rfkill_global_led_trigger_worker);
 206
 207	rfkill_any_led_trigger.name = "rfkill-any";
 208	ret = led_trigger_register(&rfkill_any_led_trigger);
 209	if (ret)
 210		return ret;
 211
 212	rfkill_none_led_trigger.name = "rfkill-none";
 213	ret = led_trigger_register(&rfkill_none_led_trigger);
 214	if (ret)
 215		led_trigger_unregister(&rfkill_any_led_trigger);
 216	else
 217		/* Delay activation until all global triggers are registered */
 218		rfkill_global_led_trigger_event();
 219
 220	return ret;
 221}
 222
 223static void rfkill_global_led_trigger_unregister(void)
 224{
 225	led_trigger_unregister(&rfkill_none_led_trigger);
 226	led_trigger_unregister(&rfkill_any_led_trigger);
 227	cancel_work_sync(&rfkill_global_led_trigger_work);
 228}
 229#else
 230static void rfkill_led_trigger_event(struct rfkill *rfkill)
 231{
 232}
 233
 234static inline int rfkill_led_trigger_register(struct rfkill *rfkill)
 235{
 236	return 0;
 237}
 238
 239static inline void rfkill_led_trigger_unregister(struct rfkill *rfkill)
 240{
 241}
 242
 243static void rfkill_global_led_trigger_event(void)
 244{
 245}
 246
 247static int rfkill_global_led_trigger_register(void)
 248{
 249	return 0;
 250}
 251
 252static void rfkill_global_led_trigger_unregister(void)
 253{
 254}
 255#endif /* CONFIG_RFKILL_LEDS */
 256
 257static void rfkill_fill_event(struct rfkill_event_ext *ev,
 258			      struct rfkill *rfkill,
 259			      enum rfkill_operation op)
 260{
 261	unsigned long flags;
 262
 263	ev->idx = rfkill->idx;
 264	ev->type = rfkill->type;
 265	ev->op = op;
 266
 267	spin_lock_irqsave(&rfkill->lock, flags);
 268	ev->hard = !!(rfkill->state & RFKILL_BLOCK_HW);
 269	ev->soft = !!(rfkill->state & (RFKILL_BLOCK_SW |
 270					RFKILL_BLOCK_SW_PREV));
 271	ev->hard_block_reasons = rfkill->hard_block_reasons;
 272	spin_unlock_irqrestore(&rfkill->lock, flags);
 273}
 274
 275static void rfkill_send_events(struct rfkill *rfkill, enum rfkill_operation op)
 276{
 277	struct rfkill_data *data;
 278	struct rfkill_int_event *ev;
 279
 280	list_for_each_entry(data, &rfkill_fds, list) {
 281		ev = kzalloc(sizeof(*ev), GFP_KERNEL);
 282		if (!ev)
 283			continue;
 284		rfkill_fill_event(&ev->ev, rfkill, op);
 285		mutex_lock(&data->mtx);
 286		list_add_tail(&ev->list, &data->events);
 287		mutex_unlock(&data->mtx);
 288		wake_up_interruptible(&data->read_wait);
 289	}
 290}
 291
 292static void rfkill_event(struct rfkill *rfkill)
 293{
 294	if (!rfkill->registered)
 295		return;
 296
 297	kobject_uevent(&rfkill->dev.kobj, KOBJ_CHANGE);
 298
 299	/* also send event to /dev/rfkill */
 300	rfkill_send_events(rfkill, RFKILL_OP_CHANGE);
 301}
 302
 303/**
 304 * rfkill_set_block - wrapper for set_block method
 305 *
 306 * @rfkill: the rfkill struct to use
 307 * @blocked: the new software state
 308 *
 309 * Calls the set_block method (when applicable) and handles notifications
 310 * etc. as well.
 311 */
 312static void rfkill_set_block(struct rfkill *rfkill, bool blocked)
 313{
 314	unsigned long flags;
 315	bool prev, curr;
 316	int err;
 317
 318	if (unlikely(rfkill->dev.power.power_state.event & PM_EVENT_SLEEP))
 319		return;
 320
 321	/*
 322	 * Some platforms (...!) generate input events which affect the
 323	 * _hard_ kill state -- whenever something tries to change the
 324	 * current software state query the hardware state too.
 325	 */
 326	if (rfkill->ops->query)
 327		rfkill->ops->query(rfkill, rfkill->data);
 328
 329	spin_lock_irqsave(&rfkill->lock, flags);
 330	prev = rfkill->state & RFKILL_BLOCK_SW;
 331
 332	if (prev)
 333		rfkill->state |= RFKILL_BLOCK_SW_PREV;
 334	else
 335		rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
 336
 337	if (blocked)
 338		rfkill->state |= RFKILL_BLOCK_SW;
 339	else
 340		rfkill->state &= ~RFKILL_BLOCK_SW;
 341
 342	rfkill->state |= RFKILL_BLOCK_SW_SETCALL;
 343	spin_unlock_irqrestore(&rfkill->lock, flags);
 344
 345	err = rfkill->ops->set_block(rfkill->data, blocked);
 346
 347	spin_lock_irqsave(&rfkill->lock, flags);
 348	if (err) {
 349		/*
 350		 * Failed -- reset status to _PREV, which may be different
 351		 * from what we have set _PREV to earlier in this function
 352		 * if rfkill_set_sw_state was invoked.
 353		 */
 354		if (rfkill->state & RFKILL_BLOCK_SW_PREV)
 355			rfkill->state |= RFKILL_BLOCK_SW;
 356		else
 357			rfkill->state &= ~RFKILL_BLOCK_SW;
 358	}
 359	rfkill->state &= ~RFKILL_BLOCK_SW_SETCALL;
 360	rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
 361	curr = rfkill->state & RFKILL_BLOCK_SW;
 362	spin_unlock_irqrestore(&rfkill->lock, flags);
 363
 364	rfkill_led_trigger_event(rfkill);
 365	rfkill_global_led_trigger_event();
 366
 367	if (prev != curr)
 368		rfkill_event(rfkill);
 369}
 370
 
 
 
 
 
 
 
 
 
 
 
 371static void rfkill_update_global_state(enum rfkill_type type, bool blocked)
 372{
 373	int i;
 374
 375	if (type != RFKILL_TYPE_ALL) {
 376		rfkill_global_states[type].cur = blocked;
 377		return;
 378	}
 379
 380	for (i = 0; i < NUM_RFKILL_TYPES; i++)
 381		rfkill_global_states[i].cur = blocked;
 382}
 383
 384#ifdef CONFIG_RFKILL_INPUT
 385static atomic_t rfkill_input_disabled = ATOMIC_INIT(0);
 386
 387/**
 388 * __rfkill_switch_all - Toggle state of all switches of given type
 389 * @type: type of interfaces to be affected
 390 * @blocked: the new state
 391 *
 392 * This function sets the state of all switches of given type,
 393 * unless a specific switch is suspended.
 394 *
 395 * Caller must have acquired rfkill_global_mutex.
 396 */
 397static void __rfkill_switch_all(const enum rfkill_type type, bool blocked)
 398{
 399	struct rfkill *rfkill;
 400
 401	rfkill_update_global_state(type, blocked);
 402	list_for_each_entry(rfkill, &rfkill_list, node) {
 403		if (rfkill->type != type && type != RFKILL_TYPE_ALL)
 404			continue;
 405
 406		rfkill_set_block(rfkill, blocked);
 407	}
 408}
 409
 410/**
 411 * rfkill_switch_all - Toggle state of all switches of given type
 412 * @type: type of interfaces to be affected
 413 * @blocked: the new state
 414 *
 415 * Acquires rfkill_global_mutex and calls __rfkill_switch_all(@type, @state).
 416 * Please refer to __rfkill_switch_all() for details.
 417 *
 418 * Does nothing if the EPO lock is active.
 419 */
 420void rfkill_switch_all(enum rfkill_type type, bool blocked)
 421{
 422	if (atomic_read(&rfkill_input_disabled))
 423		return;
 424
 425	mutex_lock(&rfkill_global_mutex);
 426
 427	if (!rfkill_epo_lock_active)
 428		__rfkill_switch_all(type, blocked);
 429
 430	mutex_unlock(&rfkill_global_mutex);
 431}
 432
 433/**
 434 * rfkill_epo - emergency power off all transmitters
 435 *
 436 * This kicks all non-suspended rfkill devices to RFKILL_STATE_SOFT_BLOCKED,
 437 * ignoring everything in its path but rfkill_global_mutex and rfkill->mutex.
 438 *
 439 * The global state before the EPO is saved and can be restored later
 440 * using rfkill_restore_states().
 441 */
 442void rfkill_epo(void)
 443{
 444	struct rfkill *rfkill;
 445	int i;
 446
 447	if (atomic_read(&rfkill_input_disabled))
 448		return;
 449
 450	mutex_lock(&rfkill_global_mutex);
 451
 452	rfkill_epo_lock_active = true;
 453	list_for_each_entry(rfkill, &rfkill_list, node)
 454		rfkill_set_block(rfkill, true);
 455
 456	for (i = 0; i < NUM_RFKILL_TYPES; i++) {
 457		rfkill_global_states[i].sav = rfkill_global_states[i].cur;
 458		rfkill_global_states[i].cur = true;
 459	}
 460
 461	mutex_unlock(&rfkill_global_mutex);
 462}
 463
 464/**
 465 * rfkill_restore_states - restore global states
 466 *
 467 * Restore (and sync switches to) the global state from the
 468 * states in rfkill_default_states.  This can undo the effects of
 469 * a call to rfkill_epo().
 470 */
 471void rfkill_restore_states(void)
 472{
 473	int i;
 474
 475	if (atomic_read(&rfkill_input_disabled))
 476		return;
 477
 478	mutex_lock(&rfkill_global_mutex);
 479
 480	rfkill_epo_lock_active = false;
 481	for (i = 0; i < NUM_RFKILL_TYPES; i++)
 482		__rfkill_switch_all(i, rfkill_global_states[i].sav);
 483	mutex_unlock(&rfkill_global_mutex);
 484}
 485
 486/**
 487 * rfkill_remove_epo_lock - unlock state changes
 488 *
 489 * Used by rfkill-input manually unlock state changes, when
 490 * the EPO switch is deactivated.
 491 */
 492void rfkill_remove_epo_lock(void)
 493{
 494	if (atomic_read(&rfkill_input_disabled))
 495		return;
 496
 497	mutex_lock(&rfkill_global_mutex);
 498	rfkill_epo_lock_active = false;
 499	mutex_unlock(&rfkill_global_mutex);
 500}
 501
 502/**
 503 * rfkill_is_epo_lock_active - returns true EPO is active
 504 *
 505 * Returns 0 (false) if there is NOT an active EPO condition,
 506 * and 1 (true) if there is an active EPO condition, which
 507 * locks all radios in one of the BLOCKED states.
 508 *
 509 * Can be called in atomic context.
 510 */
 511bool rfkill_is_epo_lock_active(void)
 512{
 513	return rfkill_epo_lock_active;
 514}
 515
 516/**
 517 * rfkill_get_global_sw_state - returns global state for a type
 518 * @type: the type to get the global state of
 519 *
 520 * Returns the current global state for a given wireless
 521 * device type.
 522 */
 523bool rfkill_get_global_sw_state(const enum rfkill_type type)
 524{
 525	return rfkill_global_states[type].cur;
 526}
 527#endif
 528
 529bool rfkill_set_hw_state_reason(struct rfkill *rfkill,
 530				bool blocked, unsigned long reason)
 
 531{
 532	unsigned long flags;
 533	bool ret, prev;
 534
 535	BUG_ON(!rfkill);
 536
 537	if (WARN(reason &
 538	    ~(RFKILL_HARD_BLOCK_SIGNAL | RFKILL_HARD_BLOCK_NOT_OWNER),
 539	    "hw_state reason not supported: 0x%lx", reason))
 540		return blocked;
 541
 542	spin_lock_irqsave(&rfkill->lock, flags);
 543	prev = !!(rfkill->hard_block_reasons & reason);
 544	if (blocked) {
 545		rfkill->state |= RFKILL_BLOCK_HW;
 546		rfkill->hard_block_reasons |= reason;
 547	} else {
 548		rfkill->hard_block_reasons &= ~reason;
 549		if (!rfkill->hard_block_reasons)
 550			rfkill->state &= ~RFKILL_BLOCK_HW;
 551	}
 552	ret = !!(rfkill->state & RFKILL_BLOCK_ANY);
 553	spin_unlock_irqrestore(&rfkill->lock, flags);
 554
 555	rfkill_led_trigger_event(rfkill);
 556	rfkill_global_led_trigger_event();
 557
 558	if (rfkill->registered && prev != blocked)
 559		schedule_work(&rfkill->uevent_work);
 560
 561	return ret;
 562}
 563EXPORT_SYMBOL(rfkill_set_hw_state_reason);
 564
 565static void __rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
 566{
 567	u32 bit = RFKILL_BLOCK_SW;
 568
 569	/* if in a ops->set_block right now, use other bit */
 570	if (rfkill->state & RFKILL_BLOCK_SW_SETCALL)
 571		bit = RFKILL_BLOCK_SW_PREV;
 572
 573	if (blocked)
 574		rfkill->state |= bit;
 575	else
 576		rfkill->state &= ~bit;
 577}
 578
 579bool rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
 580{
 581	unsigned long flags;
 582	bool prev, hwblock;
 583
 584	BUG_ON(!rfkill);
 585
 586	spin_lock_irqsave(&rfkill->lock, flags);
 587	prev = !!(rfkill->state & RFKILL_BLOCK_SW);
 588	__rfkill_set_sw_state(rfkill, blocked);
 589	hwblock = !!(rfkill->state & RFKILL_BLOCK_HW);
 590	blocked = blocked || hwblock;
 591	spin_unlock_irqrestore(&rfkill->lock, flags);
 592
 593	if (!rfkill->registered)
 594		return blocked;
 595
 596	if (prev != blocked && !hwblock)
 597		schedule_work(&rfkill->uevent_work);
 598
 599	rfkill_led_trigger_event(rfkill);
 600	rfkill_global_led_trigger_event();
 601
 602	return blocked;
 603}
 604EXPORT_SYMBOL(rfkill_set_sw_state);
 605
 606void rfkill_init_sw_state(struct rfkill *rfkill, bool blocked)
 607{
 608	unsigned long flags;
 609
 610	BUG_ON(!rfkill);
 611	BUG_ON(rfkill->registered);
 612
 613	spin_lock_irqsave(&rfkill->lock, flags);
 614	__rfkill_set_sw_state(rfkill, blocked);
 615	rfkill->persistent = true;
 616	spin_unlock_irqrestore(&rfkill->lock, flags);
 617}
 618EXPORT_SYMBOL(rfkill_init_sw_state);
 619
 620void rfkill_set_states(struct rfkill *rfkill, bool sw, bool hw)
 621{
 622	unsigned long flags;
 623	bool swprev, hwprev;
 624
 625	BUG_ON(!rfkill);
 626
 627	spin_lock_irqsave(&rfkill->lock, flags);
 628
 629	/*
 630	 * No need to care about prev/setblock ... this is for uevent only
 631	 * and that will get triggered by rfkill_set_block anyway.
 632	 */
 633	swprev = !!(rfkill->state & RFKILL_BLOCK_SW);
 634	hwprev = !!(rfkill->state & RFKILL_BLOCK_HW);
 635	__rfkill_set_sw_state(rfkill, sw);
 636	if (hw)
 637		rfkill->state |= RFKILL_BLOCK_HW;
 638	else
 639		rfkill->state &= ~RFKILL_BLOCK_HW;
 640
 641	spin_unlock_irqrestore(&rfkill->lock, flags);
 642
 643	if (!rfkill->registered) {
 644		rfkill->persistent = true;
 645	} else {
 646		if (swprev != sw || hwprev != hw)
 647			schedule_work(&rfkill->uevent_work);
 648
 649		rfkill_led_trigger_event(rfkill);
 650		rfkill_global_led_trigger_event();
 651	}
 652}
 653EXPORT_SYMBOL(rfkill_set_states);
 654
 655static const char * const rfkill_types[] = {
 656	NULL, /* RFKILL_TYPE_ALL */
 657	"wlan",
 658	"bluetooth",
 659	"ultrawideband",
 660	"wimax",
 661	"wwan",
 662	"gps",
 663	"fm",
 664	"nfc",
 665};
 666
 667enum rfkill_type rfkill_find_type(const char *name)
 668{
 669	int i;
 670
 671	BUILD_BUG_ON(ARRAY_SIZE(rfkill_types) != NUM_RFKILL_TYPES);
 672
 673	if (!name)
 674		return RFKILL_TYPE_ALL;
 675
 676	for (i = 1; i < NUM_RFKILL_TYPES; i++)
 677		if (!strcmp(name, rfkill_types[i]))
 678			return i;
 679	return RFKILL_TYPE_ALL;
 680}
 681EXPORT_SYMBOL(rfkill_find_type);
 682
 683static ssize_t name_show(struct device *dev, struct device_attribute *attr,
 684			 char *buf)
 685{
 686	struct rfkill *rfkill = to_rfkill(dev);
 687
 688	return sprintf(buf, "%s\n", rfkill->name);
 689}
 690static DEVICE_ATTR_RO(name);
 691
 692static ssize_t type_show(struct device *dev, struct device_attribute *attr,
 693			 char *buf)
 694{
 695	struct rfkill *rfkill = to_rfkill(dev);
 696
 697	return sprintf(buf, "%s\n", rfkill_types[rfkill->type]);
 698}
 699static DEVICE_ATTR_RO(type);
 700
 701static ssize_t index_show(struct device *dev, struct device_attribute *attr,
 702			  char *buf)
 703{
 704	struct rfkill *rfkill = to_rfkill(dev);
 705
 706	return sprintf(buf, "%d\n", rfkill->idx);
 707}
 708static DEVICE_ATTR_RO(index);
 709
 710static ssize_t persistent_show(struct device *dev,
 711			       struct device_attribute *attr, char *buf)
 712{
 713	struct rfkill *rfkill = to_rfkill(dev);
 714
 715	return sprintf(buf, "%d\n", rfkill->persistent);
 716}
 717static DEVICE_ATTR_RO(persistent);
 718
 719static ssize_t hard_show(struct device *dev, struct device_attribute *attr,
 720			 char *buf)
 721{
 722	struct rfkill *rfkill = to_rfkill(dev);
 723
 724	return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_HW) ? 1 : 0 );
 725}
 726static DEVICE_ATTR_RO(hard);
 727
 728static ssize_t soft_show(struct device *dev, struct device_attribute *attr,
 729			 char *buf)
 730{
 731	struct rfkill *rfkill = to_rfkill(dev);
 732
 733	return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_SW) ? 1 : 0 );
 
 
 
 
 734}
 735
 736static ssize_t soft_store(struct device *dev, struct device_attribute *attr,
 737			  const char *buf, size_t count)
 738{
 739	struct rfkill *rfkill = to_rfkill(dev);
 740	unsigned long state;
 741	int err;
 742
 743	if (!capable(CAP_NET_ADMIN))
 744		return -EPERM;
 745
 746	err = kstrtoul(buf, 0, &state);
 747	if (err)
 748		return err;
 749
 750	if (state > 1 )
 751		return -EINVAL;
 752
 753	mutex_lock(&rfkill_global_mutex);
 
 754	rfkill_set_block(rfkill, state);
 755	mutex_unlock(&rfkill_global_mutex);
 756
 757	return count;
 758}
 759static DEVICE_ATTR_RW(soft);
 760
 761static ssize_t hard_block_reasons_show(struct device *dev,
 762				       struct device_attribute *attr,
 763				       char *buf)
 764{
 765	struct rfkill *rfkill = to_rfkill(dev);
 766
 767	return sprintf(buf, "0x%lx\n", rfkill->hard_block_reasons);
 768}
 769static DEVICE_ATTR_RO(hard_block_reasons);
 770
 771static u8 user_state_from_blocked(unsigned long state)
 772{
 773	if (state & RFKILL_BLOCK_HW)
 774		return RFKILL_USER_STATE_HARD_BLOCKED;
 775	if (state & RFKILL_BLOCK_SW)
 776		return RFKILL_USER_STATE_SOFT_BLOCKED;
 777
 778	return RFKILL_USER_STATE_UNBLOCKED;
 779}
 780
 781static ssize_t state_show(struct device *dev, struct device_attribute *attr,
 782			  char *buf)
 783{
 784	struct rfkill *rfkill = to_rfkill(dev);
 785
 786	return sprintf(buf, "%d\n", user_state_from_blocked(rfkill->state));
 
 
 
 
 787}
 788
 789static ssize_t state_store(struct device *dev, struct device_attribute *attr,
 790			   const char *buf, size_t count)
 791{
 792	struct rfkill *rfkill = to_rfkill(dev);
 793	unsigned long state;
 794	int err;
 795
 796	if (!capable(CAP_NET_ADMIN))
 797		return -EPERM;
 798
 799	err = kstrtoul(buf, 0, &state);
 800	if (err)
 801		return err;
 802
 803	if (state != RFKILL_USER_STATE_SOFT_BLOCKED &&
 804	    state != RFKILL_USER_STATE_UNBLOCKED)
 805		return -EINVAL;
 806
 807	mutex_lock(&rfkill_global_mutex);
 
 808	rfkill_set_block(rfkill, state == RFKILL_USER_STATE_SOFT_BLOCKED);
 809	mutex_unlock(&rfkill_global_mutex);
 810
 811	return count;
 812}
 813static DEVICE_ATTR_RW(state);
 814
 815static struct attribute *rfkill_dev_attrs[] = {
 816	&dev_attr_name.attr,
 817	&dev_attr_type.attr,
 818	&dev_attr_index.attr,
 819	&dev_attr_persistent.attr,
 820	&dev_attr_state.attr,
 821	&dev_attr_soft.attr,
 822	&dev_attr_hard.attr,
 823	&dev_attr_hard_block_reasons.attr,
 824	NULL,
 825};
 826ATTRIBUTE_GROUPS(rfkill_dev);
 827
 828static void rfkill_release(struct device *dev)
 829{
 830	struct rfkill *rfkill = to_rfkill(dev);
 831
 832	kfree(rfkill);
 833}
 834
 835static int rfkill_dev_uevent(const struct device *dev, struct kobj_uevent_env *env)
 836{
 837	struct rfkill *rfkill = to_rfkill(dev);
 838	unsigned long flags;
 839	unsigned long reasons;
 840	u32 state;
 841	int error;
 842
 843	error = add_uevent_var(env, "RFKILL_NAME=%s", rfkill->name);
 844	if (error)
 845		return error;
 846	error = add_uevent_var(env, "RFKILL_TYPE=%s",
 847			       rfkill_types[rfkill->type]);
 848	if (error)
 849		return error;
 850	spin_lock_irqsave(&rfkill->lock, flags);
 851	state = rfkill->state;
 852	reasons = rfkill->hard_block_reasons;
 853	spin_unlock_irqrestore(&rfkill->lock, flags);
 854	error = add_uevent_var(env, "RFKILL_STATE=%d",
 855			       user_state_from_blocked(state));
 856	if (error)
 857		return error;
 858	return add_uevent_var(env, "RFKILL_HW_BLOCK_REASON=0x%lx", reasons);
 859}
 860
 861void rfkill_pause_polling(struct rfkill *rfkill)
 862{
 863	BUG_ON(!rfkill);
 864
 865	if (!rfkill->ops->poll)
 866		return;
 867
 868	rfkill->polling_paused = true;
 869	cancel_delayed_work_sync(&rfkill->poll_work);
 870}
 871EXPORT_SYMBOL(rfkill_pause_polling);
 872
 873void rfkill_resume_polling(struct rfkill *rfkill)
 874{
 875	BUG_ON(!rfkill);
 876
 877	if (!rfkill->ops->poll)
 878		return;
 879
 880	rfkill->polling_paused = false;
 881
 882	if (rfkill->suspended)
 883		return;
 884
 885	queue_delayed_work(system_power_efficient_wq,
 886			   &rfkill->poll_work, 0);
 887}
 888EXPORT_SYMBOL(rfkill_resume_polling);
 889
 890#ifdef CONFIG_PM_SLEEP
 891static int rfkill_suspend(struct device *dev)
 892{
 893	struct rfkill *rfkill = to_rfkill(dev);
 894
 895	rfkill->suspended = true;
 896	cancel_delayed_work_sync(&rfkill->poll_work);
 897
 898	return 0;
 899}
 900
 901static int rfkill_resume(struct device *dev)
 902{
 903	struct rfkill *rfkill = to_rfkill(dev);
 904	bool cur;
 905
 906	rfkill->suspended = false;
 907
 908	if (!rfkill->registered)
 909		return 0;
 910
 911	if (!rfkill->persistent) {
 912		cur = !!(rfkill->state & RFKILL_BLOCK_SW);
 913		rfkill_set_block(rfkill, cur);
 914	}
 915
 916	if (rfkill->ops->poll && !rfkill->polling_paused)
 917		queue_delayed_work(system_power_efficient_wq,
 918				   &rfkill->poll_work, 0);
 919
 920	return 0;
 921}
 922
 923static SIMPLE_DEV_PM_OPS(rfkill_pm_ops, rfkill_suspend, rfkill_resume);
 924#define RFKILL_PM_OPS (&rfkill_pm_ops)
 925#else
 926#define RFKILL_PM_OPS NULL
 927#endif
 928
 929static struct class rfkill_class = {
 930	.name		= "rfkill",
 931	.dev_release	= rfkill_release,
 932	.dev_groups	= rfkill_dev_groups,
 933	.dev_uevent	= rfkill_dev_uevent,
 934	.pm		= RFKILL_PM_OPS,
 935};
 936
 937bool rfkill_blocked(struct rfkill *rfkill)
 938{
 939	unsigned long flags;
 940	u32 state;
 941
 942	spin_lock_irqsave(&rfkill->lock, flags);
 943	state = rfkill->state;
 944	spin_unlock_irqrestore(&rfkill->lock, flags);
 945
 946	return !!(state & RFKILL_BLOCK_ANY);
 947}
 948EXPORT_SYMBOL(rfkill_blocked);
 949
 950bool rfkill_soft_blocked(struct rfkill *rfkill)
 951{
 952	unsigned long flags;
 953	u32 state;
 954
 955	spin_lock_irqsave(&rfkill->lock, flags);
 956	state = rfkill->state;
 957	spin_unlock_irqrestore(&rfkill->lock, flags);
 958
 959	return !!(state & RFKILL_BLOCK_SW);
 960}
 961EXPORT_SYMBOL(rfkill_soft_blocked);
 962
 963struct rfkill * __must_check rfkill_alloc(const char *name,
 964					  struct device *parent,
 965					  const enum rfkill_type type,
 966					  const struct rfkill_ops *ops,
 967					  void *ops_data)
 968{
 969	struct rfkill *rfkill;
 970	struct device *dev;
 971
 972	if (WARN_ON(!ops))
 973		return NULL;
 974
 975	if (WARN_ON(!ops->set_block))
 976		return NULL;
 977
 978	if (WARN_ON(!name))
 979		return NULL;
 980
 981	if (WARN_ON(type == RFKILL_TYPE_ALL || type >= NUM_RFKILL_TYPES))
 982		return NULL;
 983
 984	rfkill = kzalloc(sizeof(*rfkill) + strlen(name) + 1, GFP_KERNEL);
 985	if (!rfkill)
 986		return NULL;
 987
 988	spin_lock_init(&rfkill->lock);
 989	INIT_LIST_HEAD(&rfkill->node);
 990	rfkill->type = type;
 991	strcpy(rfkill->name, name);
 992	rfkill->ops = ops;
 993	rfkill->data = ops_data;
 994
 995	dev = &rfkill->dev;
 996	dev->class = &rfkill_class;
 997	dev->parent = parent;
 998	device_initialize(dev);
 999
1000	return rfkill;
1001}
1002EXPORT_SYMBOL(rfkill_alloc);
1003
1004static void rfkill_poll(struct work_struct *work)
1005{
1006	struct rfkill *rfkill;
1007
1008	rfkill = container_of(work, struct rfkill, poll_work.work);
1009
1010	/*
1011	 * Poll hardware state -- driver will use one of the
1012	 * rfkill_set{,_hw,_sw}_state functions and use its
1013	 * return value to update the current status.
1014	 */
1015	rfkill->ops->poll(rfkill, rfkill->data);
1016
1017	queue_delayed_work(system_power_efficient_wq,
1018		&rfkill->poll_work,
1019		round_jiffies_relative(POLL_INTERVAL));
1020}
1021
1022static void rfkill_uevent_work(struct work_struct *work)
1023{
1024	struct rfkill *rfkill;
1025
1026	rfkill = container_of(work, struct rfkill, uevent_work);
1027
1028	mutex_lock(&rfkill_global_mutex);
1029	rfkill_event(rfkill);
1030	mutex_unlock(&rfkill_global_mutex);
1031}
1032
1033static void rfkill_sync_work(struct work_struct *work)
1034{
1035	struct rfkill *rfkill;
1036	bool cur;
1037
1038	rfkill = container_of(work, struct rfkill, sync_work);
1039
1040	mutex_lock(&rfkill_global_mutex);
1041	cur = rfkill_global_states[rfkill->type].cur;
1042	rfkill_set_block(rfkill, cur);
1043	mutex_unlock(&rfkill_global_mutex);
1044}
1045
1046int __must_check rfkill_register(struct rfkill *rfkill)
1047{
1048	static unsigned long rfkill_no;
1049	struct device *dev;
1050	int error;
1051
1052	if (!rfkill)
1053		return -EINVAL;
1054
1055	dev = &rfkill->dev;
1056
1057	mutex_lock(&rfkill_global_mutex);
1058
1059	if (rfkill->registered) {
1060		error = -EALREADY;
1061		goto unlock;
1062	}
1063
1064	rfkill->idx = rfkill_no;
1065	dev_set_name(dev, "rfkill%lu", rfkill_no);
1066	rfkill_no++;
1067
1068	list_add_tail(&rfkill->node, &rfkill_list);
1069
1070	error = device_add(dev);
1071	if (error)
1072		goto remove;
1073
1074	error = rfkill_led_trigger_register(rfkill);
1075	if (error)
1076		goto devdel;
1077
1078	rfkill->registered = true;
1079
1080	INIT_DELAYED_WORK(&rfkill->poll_work, rfkill_poll);
1081	INIT_WORK(&rfkill->uevent_work, rfkill_uevent_work);
1082	INIT_WORK(&rfkill->sync_work, rfkill_sync_work);
1083
1084	if (rfkill->ops->poll)
1085		queue_delayed_work(system_power_efficient_wq,
1086			&rfkill->poll_work,
1087			round_jiffies_relative(POLL_INTERVAL));
1088
1089	if (!rfkill->persistent || rfkill_epo_lock_active) {
 
1090		schedule_work(&rfkill->sync_work);
1091	} else {
1092#ifdef CONFIG_RFKILL_INPUT
1093		bool soft_blocked = !!(rfkill->state & RFKILL_BLOCK_SW);
1094
1095		if (!atomic_read(&rfkill_input_disabled))
1096			__rfkill_switch_all(rfkill->type, soft_blocked);
1097#endif
1098	}
1099
1100	rfkill_global_led_trigger_event();
1101	rfkill_send_events(rfkill, RFKILL_OP_ADD);
1102
1103	mutex_unlock(&rfkill_global_mutex);
1104	return 0;
1105
1106 devdel:
1107	device_del(&rfkill->dev);
1108 remove:
1109	list_del_init(&rfkill->node);
1110 unlock:
1111	mutex_unlock(&rfkill_global_mutex);
1112	return error;
1113}
1114EXPORT_SYMBOL(rfkill_register);
1115
1116void rfkill_unregister(struct rfkill *rfkill)
1117{
1118	BUG_ON(!rfkill);
1119
1120	if (rfkill->ops->poll)
1121		cancel_delayed_work_sync(&rfkill->poll_work);
1122
1123	cancel_work_sync(&rfkill->uevent_work);
1124	cancel_work_sync(&rfkill->sync_work);
1125
1126	rfkill->registered = false;
1127
1128	device_del(&rfkill->dev);
1129
1130	mutex_lock(&rfkill_global_mutex);
1131	rfkill_send_events(rfkill, RFKILL_OP_DEL);
1132	list_del_init(&rfkill->node);
1133	rfkill_global_led_trigger_event();
1134	mutex_unlock(&rfkill_global_mutex);
1135
1136	rfkill_led_trigger_unregister(rfkill);
1137}
1138EXPORT_SYMBOL(rfkill_unregister);
1139
1140void rfkill_destroy(struct rfkill *rfkill)
1141{
1142	if (rfkill)
1143		put_device(&rfkill->dev);
1144}
1145EXPORT_SYMBOL(rfkill_destroy);
1146
1147static int rfkill_fop_open(struct inode *inode, struct file *file)
1148{
1149	struct rfkill_data *data;
1150	struct rfkill *rfkill;
1151	struct rfkill_int_event *ev, *tmp;
1152
1153	data = kzalloc(sizeof(*data), GFP_KERNEL);
1154	if (!data)
1155		return -ENOMEM;
1156
1157	data->max_size = RFKILL_EVENT_SIZE_V1;
1158
1159	INIT_LIST_HEAD(&data->events);
1160	mutex_init(&data->mtx);
1161	init_waitqueue_head(&data->read_wait);
1162
1163	mutex_lock(&rfkill_global_mutex);
1164	mutex_lock(&data->mtx);
1165	/*
1166	 * start getting events from elsewhere but hold mtx to get
1167	 * startup events added first
1168	 */
1169
1170	list_for_each_entry(rfkill, &rfkill_list, node) {
1171		ev = kzalloc(sizeof(*ev), GFP_KERNEL);
1172		if (!ev)
1173			goto free;
 
1174		rfkill_fill_event(&ev->ev, rfkill, RFKILL_OP_ADD);
 
1175		list_add_tail(&ev->list, &data->events);
 
1176	}
1177	list_add(&data->list, &rfkill_fds);
1178	mutex_unlock(&data->mtx);
1179	mutex_unlock(&rfkill_global_mutex);
1180
1181	file->private_data = data;
1182
1183	return stream_open(inode, file);
1184
1185 free:
1186	mutex_unlock(&data->mtx);
1187	mutex_unlock(&rfkill_global_mutex);
1188	mutex_destroy(&data->mtx);
1189	list_for_each_entry_safe(ev, tmp, &data->events, list)
1190		kfree(ev);
1191	kfree(data);
1192	return -ENOMEM;
1193}
1194
1195static __poll_t rfkill_fop_poll(struct file *file, poll_table *wait)
1196{
1197	struct rfkill_data *data = file->private_data;
1198	__poll_t res = EPOLLOUT | EPOLLWRNORM;
1199
1200	poll_wait(file, &data->read_wait, wait);
1201
1202	mutex_lock(&data->mtx);
1203	if (!list_empty(&data->events))
1204		res = EPOLLIN | EPOLLRDNORM;
1205	mutex_unlock(&data->mtx);
1206
1207	return res;
1208}
1209
1210static ssize_t rfkill_fop_read(struct file *file, char __user *buf,
1211			       size_t count, loff_t *pos)
1212{
1213	struct rfkill_data *data = file->private_data;
1214	struct rfkill_int_event *ev;
1215	unsigned long sz;
1216	int ret;
1217
1218	mutex_lock(&data->mtx);
1219
1220	while (list_empty(&data->events)) {
1221		if (file->f_flags & O_NONBLOCK) {
1222			ret = -EAGAIN;
1223			goto out;
1224		}
1225		mutex_unlock(&data->mtx);
1226		/* since we re-check and it just compares pointers,
1227		 * using !list_empty() without locking isn't a problem
1228		 */
1229		ret = wait_event_interruptible(data->read_wait,
1230					       !list_empty(&data->events));
1231		mutex_lock(&data->mtx);
1232
1233		if (ret)
1234			goto out;
1235	}
1236
1237	ev = list_first_entry(&data->events, struct rfkill_int_event,
1238				list);
1239
1240	sz = min_t(unsigned long, sizeof(ev->ev), count);
1241	sz = min_t(unsigned long, sz, data->max_size);
1242	ret = sz;
1243	if (copy_to_user(buf, &ev->ev, sz))
1244		ret = -EFAULT;
1245
1246	list_del(&ev->list);
1247	kfree(ev);
1248 out:
1249	mutex_unlock(&data->mtx);
1250	return ret;
1251}
1252
1253static ssize_t rfkill_fop_write(struct file *file, const char __user *buf,
1254				size_t count, loff_t *pos)
1255{
1256	struct rfkill_data *data = file->private_data;
1257	struct rfkill *rfkill;
1258	struct rfkill_event_ext ev;
1259	int ret;
1260
1261	/* we don't need the 'hard' variable but accept it */
1262	if (count < RFKILL_EVENT_SIZE_V1 - 1)
1263		return -EINVAL;
1264
1265	/*
1266	 * Copy as much data as we can accept into our 'ev' buffer,
1267	 * but tell userspace how much we've copied so it can determine
1268	 * our API version even in a write() call, if it cares.
1269	 */
1270	count = min(count, sizeof(ev));
1271	count = min_t(size_t, count, data->max_size);
1272	if (copy_from_user(&ev, buf, count))
1273		return -EFAULT;
1274
1275	if (ev.type >= NUM_RFKILL_TYPES)
1276		return -EINVAL;
1277
1278	mutex_lock(&rfkill_global_mutex);
1279
1280	switch (ev.op) {
1281	case RFKILL_OP_CHANGE_ALL:
1282		rfkill_update_global_state(ev.type, ev.soft);
1283		list_for_each_entry(rfkill, &rfkill_list, node)
1284			if (rfkill->type == ev.type ||
1285			    ev.type == RFKILL_TYPE_ALL)
1286				rfkill_set_block(rfkill, ev.soft);
1287		ret = 0;
1288		break;
1289	case RFKILL_OP_CHANGE:
1290		list_for_each_entry(rfkill, &rfkill_list, node)
1291			if (rfkill->idx == ev.idx &&
1292			    (rfkill->type == ev.type ||
1293			     ev.type == RFKILL_TYPE_ALL))
1294				rfkill_set_block(rfkill, ev.soft);
1295		ret = 0;
1296		break;
1297	default:
1298		ret = -EINVAL;
1299		break;
1300	}
1301
1302	mutex_unlock(&rfkill_global_mutex);
1303
1304	return ret ?: count;
1305}
1306
1307static int rfkill_fop_release(struct inode *inode, struct file *file)
1308{
1309	struct rfkill_data *data = file->private_data;
1310	struct rfkill_int_event *ev, *tmp;
1311
1312	mutex_lock(&rfkill_global_mutex);
1313	list_del(&data->list);
1314	mutex_unlock(&rfkill_global_mutex);
1315
1316	mutex_destroy(&data->mtx);
1317	list_for_each_entry_safe(ev, tmp, &data->events, list)
1318		kfree(ev);
1319
1320#ifdef CONFIG_RFKILL_INPUT
1321	if (data->input_handler)
1322		if (atomic_dec_return(&rfkill_input_disabled) == 0)
1323			printk(KERN_DEBUG "rfkill: input handler enabled\n");
1324#endif
1325
1326	kfree(data);
1327
1328	return 0;
1329}
1330
1331static long rfkill_fop_ioctl(struct file *file, unsigned int cmd,
1332			     unsigned long arg)
1333{
1334	struct rfkill_data *data = file->private_data;
1335	int ret = -ENOSYS;
1336	u32 size;
1337
1338	if (_IOC_TYPE(cmd) != RFKILL_IOC_MAGIC)
1339		return -ENOSYS;
1340
1341	mutex_lock(&data->mtx);
1342	switch (_IOC_NR(cmd)) {
1343#ifdef CONFIG_RFKILL_INPUT
1344	case RFKILL_IOC_NOINPUT:
1345		if (!data->input_handler) {
1346			if (atomic_inc_return(&rfkill_input_disabled) == 1)
1347				printk(KERN_DEBUG "rfkill: input handler disabled\n");
1348			data->input_handler = true;
1349		}
1350		ret = 0;
1351		break;
1352#endif
1353	case RFKILL_IOC_MAX_SIZE:
1354		if (get_user(size, (__u32 __user *)arg)) {
1355			ret = -EFAULT;
1356			break;
1357		}
1358		if (size < RFKILL_EVENT_SIZE_V1 || size > U8_MAX) {
1359			ret = -EINVAL;
1360			break;
1361		}
1362		data->max_size = size;
1363		ret = 0;
1364		break;
1365	default:
1366		break;
1367	}
1368	mutex_unlock(&data->mtx);
1369
1370	return ret;
1371}
1372
1373static const struct file_operations rfkill_fops = {
1374	.owner		= THIS_MODULE,
1375	.open		= rfkill_fop_open,
1376	.read		= rfkill_fop_read,
1377	.write		= rfkill_fop_write,
1378	.poll		= rfkill_fop_poll,
1379	.release	= rfkill_fop_release,
1380	.unlocked_ioctl	= rfkill_fop_ioctl,
1381	.compat_ioctl	= compat_ptr_ioctl,
1382	.llseek		= no_llseek,
1383};
1384
1385#define RFKILL_NAME "rfkill"
1386
1387static struct miscdevice rfkill_miscdev = {
1388	.fops	= &rfkill_fops,
1389	.name	= RFKILL_NAME,
1390	.minor	= RFKILL_MINOR,
1391};
1392
1393static int __init rfkill_init(void)
1394{
1395	int error;
1396
1397	rfkill_update_global_state(RFKILL_TYPE_ALL, !rfkill_default_state);
1398
1399	error = class_register(&rfkill_class);
1400	if (error)
1401		goto error_class;
1402
1403	error = misc_register(&rfkill_miscdev);
1404	if (error)
1405		goto error_misc;
1406
1407	error = rfkill_global_led_trigger_register();
1408	if (error)
1409		goto error_led_trigger;
1410
1411#ifdef CONFIG_RFKILL_INPUT
1412	error = rfkill_handler_init();
1413	if (error)
1414		goto error_input;
1415#endif
1416
1417	return 0;
1418
1419#ifdef CONFIG_RFKILL_INPUT
1420error_input:
1421	rfkill_global_led_trigger_unregister();
1422#endif
1423error_led_trigger:
1424	misc_deregister(&rfkill_miscdev);
1425error_misc:
1426	class_unregister(&rfkill_class);
1427error_class:
1428	return error;
1429}
1430subsys_initcall(rfkill_init);
1431
1432static void __exit rfkill_exit(void)
1433{
1434#ifdef CONFIG_RFKILL_INPUT
1435	rfkill_handler_exit();
1436#endif
1437	rfkill_global_led_trigger_unregister();
1438	misc_deregister(&rfkill_miscdev);
1439	class_unregister(&rfkill_class);
1440}
1441module_exit(rfkill_exit);
1442
1443MODULE_ALIAS_MISCDEV(RFKILL_MINOR);
1444MODULE_ALIAS("devname:" RFKILL_NAME);
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Copyright (C) 2006 - 2007 Ivo van Doorn
   4 * Copyright (C) 2007 Dmitry Torokhov
   5 * Copyright 2009 Johannes Berg <johannes@sipsolutions.net>
   6 */
   7
   8#include <linux/kernel.h>
   9#include <linux/module.h>
  10#include <linux/init.h>
  11#include <linux/workqueue.h>
  12#include <linux/capability.h>
  13#include <linux/list.h>
  14#include <linux/mutex.h>
  15#include <linux/rfkill.h>
  16#include <linux/sched.h>
  17#include <linux/spinlock.h>
  18#include <linux/device.h>
  19#include <linux/miscdevice.h>
  20#include <linux/wait.h>
  21#include <linux/poll.h>
  22#include <linux/fs.h>
  23#include <linux/slab.h>
  24
  25#include "rfkill.h"
  26
  27#define POLL_INTERVAL		(5 * HZ)
  28
  29#define RFKILL_BLOCK_HW		BIT(0)
  30#define RFKILL_BLOCK_SW		BIT(1)
  31#define RFKILL_BLOCK_SW_PREV	BIT(2)
  32#define RFKILL_BLOCK_ANY	(RFKILL_BLOCK_HW |\
  33				 RFKILL_BLOCK_SW |\
  34				 RFKILL_BLOCK_SW_PREV)
  35#define RFKILL_BLOCK_SW_SETCALL	BIT(31)
  36
  37struct rfkill {
  38	spinlock_t		lock;
  39
  40	enum rfkill_type	type;
  41
  42	unsigned long		state;
  43	unsigned long		hard_block_reasons;
  44
  45	u32			idx;
  46
  47	bool			registered;
  48	bool			persistent;
  49	bool			polling_paused;
  50	bool			suspended;
  51	bool			need_sync;
  52
  53	const struct rfkill_ops	*ops;
  54	void			*data;
  55
  56#ifdef CONFIG_RFKILL_LEDS
  57	struct led_trigger	led_trigger;
  58	const char		*ledtrigname;
  59#endif
  60
  61	struct device		dev;
  62	struct list_head	node;
  63
  64	struct delayed_work	poll_work;
  65	struct work_struct	uevent_work;
  66	struct work_struct	sync_work;
  67	char			name[];
  68};
  69#define to_rfkill(d)	container_of(d, struct rfkill, dev)
  70
  71struct rfkill_int_event {
  72	struct list_head	list;
  73	struct rfkill_event_ext	ev;
  74};
  75
  76struct rfkill_data {
  77	struct list_head	list;
  78	struct list_head	events;
  79	struct mutex		mtx;
  80	wait_queue_head_t	read_wait;
  81	bool			input_handler;
  82	u8			max_size;
  83};
  84
  85
  86MODULE_AUTHOR("Ivo van Doorn <IvDoorn@gmail.com>");
  87MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
  88MODULE_DESCRIPTION("RF switch support");
  89MODULE_LICENSE("GPL");
  90
  91
  92/*
  93 * The locking here should be made much smarter, we currently have
  94 * a bit of a stupid situation because drivers might want to register
  95 * the rfkill struct under their own lock, and take this lock during
  96 * rfkill method calls -- which will cause an AB-BA deadlock situation.
  97 *
  98 * To fix that, we need to rework this code here to be mostly lock-free
  99 * and only use the mutex for list manipulations, not to protect the
 100 * various other global variables. Then we can avoid holding the mutex
 101 * around driver operations, and all is happy.
 102 */
 103static LIST_HEAD(rfkill_list);	/* list of registered rf switches */
 104static DEFINE_MUTEX(rfkill_global_mutex);
 105static LIST_HEAD(rfkill_fds);	/* list of open fds of /dev/rfkill */
 106
 107static unsigned int rfkill_default_state = 1;
 108module_param_named(default_state, rfkill_default_state, uint, 0444);
 109MODULE_PARM_DESC(default_state,
 110		 "Default initial state for all radio types, 0 = radio off");
 111
 112static struct {
 113	bool cur, sav;
 114} rfkill_global_states[NUM_RFKILL_TYPES];
 115
 116static bool rfkill_epo_lock_active;
 117
 118
 119#ifdef CONFIG_RFKILL_LEDS
 120static void rfkill_led_trigger_event(struct rfkill *rfkill)
 121{
 122	struct led_trigger *trigger;
 123
 124	if (!rfkill->registered)
 125		return;
 126
 127	trigger = &rfkill->led_trigger;
 128
 129	if (rfkill->state & RFKILL_BLOCK_ANY)
 130		led_trigger_event(trigger, LED_OFF);
 131	else
 132		led_trigger_event(trigger, LED_FULL);
 133}
 134
 135static int rfkill_led_trigger_activate(struct led_classdev *led)
 136{
 137	struct rfkill *rfkill;
 138
 139	rfkill = container_of(led->trigger, struct rfkill, led_trigger);
 140
 141	rfkill_led_trigger_event(rfkill);
 142
 143	return 0;
 144}
 145
 146const char *rfkill_get_led_trigger_name(struct rfkill *rfkill)
 147{
 148	return rfkill->led_trigger.name;
 149}
 150EXPORT_SYMBOL(rfkill_get_led_trigger_name);
 151
 152void rfkill_set_led_trigger_name(struct rfkill *rfkill, const char *name)
 153{
 154	BUG_ON(!rfkill);
 155
 156	rfkill->ledtrigname = name;
 157}
 158EXPORT_SYMBOL(rfkill_set_led_trigger_name);
 159
 160static int rfkill_led_trigger_register(struct rfkill *rfkill)
 161{
 162	rfkill->led_trigger.name = rfkill->ledtrigname
 163					? : dev_name(&rfkill->dev);
 164	rfkill->led_trigger.activate = rfkill_led_trigger_activate;
 165	return led_trigger_register(&rfkill->led_trigger);
 166}
 167
 168static void rfkill_led_trigger_unregister(struct rfkill *rfkill)
 169{
 170	led_trigger_unregister(&rfkill->led_trigger);
 171}
 172
 173static struct led_trigger rfkill_any_led_trigger;
 174static struct led_trigger rfkill_none_led_trigger;
 175static struct work_struct rfkill_global_led_trigger_work;
 176
 177static void rfkill_global_led_trigger_worker(struct work_struct *work)
 178{
 179	enum led_brightness brightness = LED_OFF;
 180	struct rfkill *rfkill;
 181
 182	mutex_lock(&rfkill_global_mutex);
 183	list_for_each_entry(rfkill, &rfkill_list, node) {
 184		if (!(rfkill->state & RFKILL_BLOCK_ANY)) {
 185			brightness = LED_FULL;
 186			break;
 187		}
 188	}
 189	mutex_unlock(&rfkill_global_mutex);
 190
 191	led_trigger_event(&rfkill_any_led_trigger, brightness);
 192	led_trigger_event(&rfkill_none_led_trigger,
 193			  brightness == LED_OFF ? LED_FULL : LED_OFF);
 194}
 195
 196static void rfkill_global_led_trigger_event(void)
 197{
 198	schedule_work(&rfkill_global_led_trigger_work);
 199}
 200
 201static int rfkill_global_led_trigger_register(void)
 202{
 203	int ret;
 204
 205	INIT_WORK(&rfkill_global_led_trigger_work,
 206			rfkill_global_led_trigger_worker);
 207
 208	rfkill_any_led_trigger.name = "rfkill-any";
 209	ret = led_trigger_register(&rfkill_any_led_trigger);
 210	if (ret)
 211		return ret;
 212
 213	rfkill_none_led_trigger.name = "rfkill-none";
 214	ret = led_trigger_register(&rfkill_none_led_trigger);
 215	if (ret)
 216		led_trigger_unregister(&rfkill_any_led_trigger);
 217	else
 218		/* Delay activation until all global triggers are registered */
 219		rfkill_global_led_trigger_event();
 220
 221	return ret;
 222}
 223
 224static void rfkill_global_led_trigger_unregister(void)
 225{
 226	led_trigger_unregister(&rfkill_none_led_trigger);
 227	led_trigger_unregister(&rfkill_any_led_trigger);
 228	cancel_work_sync(&rfkill_global_led_trigger_work);
 229}
 230#else
 231static void rfkill_led_trigger_event(struct rfkill *rfkill)
 232{
 233}
 234
 235static inline int rfkill_led_trigger_register(struct rfkill *rfkill)
 236{
 237	return 0;
 238}
 239
 240static inline void rfkill_led_trigger_unregister(struct rfkill *rfkill)
 241{
 242}
 243
 244static void rfkill_global_led_trigger_event(void)
 245{
 246}
 247
 248static int rfkill_global_led_trigger_register(void)
 249{
 250	return 0;
 251}
 252
 253static void rfkill_global_led_trigger_unregister(void)
 254{
 255}
 256#endif /* CONFIG_RFKILL_LEDS */
 257
 258static void rfkill_fill_event(struct rfkill_event_ext *ev,
 259			      struct rfkill *rfkill,
 260			      enum rfkill_operation op)
 261{
 262	unsigned long flags;
 263
 264	ev->idx = rfkill->idx;
 265	ev->type = rfkill->type;
 266	ev->op = op;
 267
 268	spin_lock_irqsave(&rfkill->lock, flags);
 269	ev->hard = !!(rfkill->state & RFKILL_BLOCK_HW);
 270	ev->soft = !!(rfkill->state & (RFKILL_BLOCK_SW |
 271					RFKILL_BLOCK_SW_PREV));
 272	ev->hard_block_reasons = rfkill->hard_block_reasons;
 273	spin_unlock_irqrestore(&rfkill->lock, flags);
 274}
 275
 276static void rfkill_send_events(struct rfkill *rfkill, enum rfkill_operation op)
 277{
 278	struct rfkill_data *data;
 279	struct rfkill_int_event *ev;
 280
 281	list_for_each_entry(data, &rfkill_fds, list) {
 282		ev = kzalloc(sizeof(*ev), GFP_KERNEL);
 283		if (!ev)
 284			continue;
 285		rfkill_fill_event(&ev->ev, rfkill, op);
 286		mutex_lock(&data->mtx);
 287		list_add_tail(&ev->list, &data->events);
 288		mutex_unlock(&data->mtx);
 289		wake_up_interruptible(&data->read_wait);
 290	}
 291}
 292
 293static void rfkill_event(struct rfkill *rfkill)
 294{
 295	if (!rfkill->registered)
 296		return;
 297
 298	kobject_uevent(&rfkill->dev.kobj, KOBJ_CHANGE);
 299
 300	/* also send event to /dev/rfkill */
 301	rfkill_send_events(rfkill, RFKILL_OP_CHANGE);
 302}
 303
 304/**
 305 * rfkill_set_block - wrapper for set_block method
 306 *
 307 * @rfkill: the rfkill struct to use
 308 * @blocked: the new software state
 309 *
 310 * Calls the set_block method (when applicable) and handles notifications
 311 * etc. as well.
 312 */
 313static void rfkill_set_block(struct rfkill *rfkill, bool blocked)
 314{
 315	unsigned long flags;
 316	bool prev, curr;
 317	int err;
 318
 319	if (unlikely(rfkill->dev.power.power_state.event & PM_EVENT_SLEEP))
 320		return;
 321
 322	/*
 323	 * Some platforms (...!) generate input events which affect the
 324	 * _hard_ kill state -- whenever something tries to change the
 325	 * current software state query the hardware state too.
 326	 */
 327	if (rfkill->ops->query)
 328		rfkill->ops->query(rfkill, rfkill->data);
 329
 330	spin_lock_irqsave(&rfkill->lock, flags);
 331	prev = rfkill->state & RFKILL_BLOCK_SW;
 332
 333	if (prev)
 334		rfkill->state |= RFKILL_BLOCK_SW_PREV;
 335	else
 336		rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
 337
 338	if (blocked)
 339		rfkill->state |= RFKILL_BLOCK_SW;
 340	else
 341		rfkill->state &= ~RFKILL_BLOCK_SW;
 342
 343	rfkill->state |= RFKILL_BLOCK_SW_SETCALL;
 344	spin_unlock_irqrestore(&rfkill->lock, flags);
 345
 346	err = rfkill->ops->set_block(rfkill->data, blocked);
 347
 348	spin_lock_irqsave(&rfkill->lock, flags);
 349	if (err) {
 350		/*
 351		 * Failed -- reset status to _PREV, which may be different
 352		 * from what we have set _PREV to earlier in this function
 353		 * if rfkill_set_sw_state was invoked.
 354		 */
 355		if (rfkill->state & RFKILL_BLOCK_SW_PREV)
 356			rfkill->state |= RFKILL_BLOCK_SW;
 357		else
 358			rfkill->state &= ~RFKILL_BLOCK_SW;
 359	}
 360	rfkill->state &= ~RFKILL_BLOCK_SW_SETCALL;
 361	rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
 362	curr = rfkill->state & RFKILL_BLOCK_SW;
 363	spin_unlock_irqrestore(&rfkill->lock, flags);
 364
 365	rfkill_led_trigger_event(rfkill);
 366	rfkill_global_led_trigger_event();
 367
 368	if (prev != curr)
 369		rfkill_event(rfkill);
 370}
 371
 372static void rfkill_sync(struct rfkill *rfkill)
 373{
 374	lockdep_assert_held(&rfkill_global_mutex);
 375
 376	if (!rfkill->need_sync)
 377		return;
 378
 379	rfkill_set_block(rfkill, rfkill_global_states[rfkill->type].cur);
 380	rfkill->need_sync = false;
 381}
 382
 383static void rfkill_update_global_state(enum rfkill_type type, bool blocked)
 384{
 385	int i;
 386
 387	if (type != RFKILL_TYPE_ALL) {
 388		rfkill_global_states[type].cur = blocked;
 389		return;
 390	}
 391
 392	for (i = 0; i < NUM_RFKILL_TYPES; i++)
 393		rfkill_global_states[i].cur = blocked;
 394}
 395
 396#ifdef CONFIG_RFKILL_INPUT
 397static atomic_t rfkill_input_disabled = ATOMIC_INIT(0);
 398
 399/**
 400 * __rfkill_switch_all - Toggle state of all switches of given type
 401 * @type: type of interfaces to be affected
 402 * @blocked: the new state
 403 *
 404 * This function sets the state of all switches of given type,
 405 * unless a specific switch is suspended.
 406 *
 407 * Caller must have acquired rfkill_global_mutex.
 408 */
 409static void __rfkill_switch_all(const enum rfkill_type type, bool blocked)
 410{
 411	struct rfkill *rfkill;
 412
 413	rfkill_update_global_state(type, blocked);
 414	list_for_each_entry(rfkill, &rfkill_list, node) {
 415		if (rfkill->type != type && type != RFKILL_TYPE_ALL)
 416			continue;
 417
 418		rfkill_set_block(rfkill, blocked);
 419	}
 420}
 421
 422/**
 423 * rfkill_switch_all - Toggle state of all switches of given type
 424 * @type: type of interfaces to be affected
 425 * @blocked: the new state
 426 *
 427 * Acquires rfkill_global_mutex and calls __rfkill_switch_all(@type, @state).
 428 * Please refer to __rfkill_switch_all() for details.
 429 *
 430 * Does nothing if the EPO lock is active.
 431 */
 432void rfkill_switch_all(enum rfkill_type type, bool blocked)
 433{
 434	if (atomic_read(&rfkill_input_disabled))
 435		return;
 436
 437	mutex_lock(&rfkill_global_mutex);
 438
 439	if (!rfkill_epo_lock_active)
 440		__rfkill_switch_all(type, blocked);
 441
 442	mutex_unlock(&rfkill_global_mutex);
 443}
 444
 445/**
 446 * rfkill_epo - emergency power off all transmitters
 447 *
 448 * This kicks all non-suspended rfkill devices to RFKILL_STATE_SOFT_BLOCKED,
 449 * ignoring everything in its path but rfkill_global_mutex and rfkill->mutex.
 450 *
 451 * The global state before the EPO is saved and can be restored later
 452 * using rfkill_restore_states().
 453 */
 454void rfkill_epo(void)
 455{
 456	struct rfkill *rfkill;
 457	int i;
 458
 459	if (atomic_read(&rfkill_input_disabled))
 460		return;
 461
 462	mutex_lock(&rfkill_global_mutex);
 463
 464	rfkill_epo_lock_active = true;
 465	list_for_each_entry(rfkill, &rfkill_list, node)
 466		rfkill_set_block(rfkill, true);
 467
 468	for (i = 0; i < NUM_RFKILL_TYPES; i++) {
 469		rfkill_global_states[i].sav = rfkill_global_states[i].cur;
 470		rfkill_global_states[i].cur = true;
 471	}
 472
 473	mutex_unlock(&rfkill_global_mutex);
 474}
 475
 476/**
 477 * rfkill_restore_states - restore global states
 478 *
 479 * Restore (and sync switches to) the global state from the
 480 * states in rfkill_default_states.  This can undo the effects of
 481 * a call to rfkill_epo().
 482 */
 483void rfkill_restore_states(void)
 484{
 485	int i;
 486
 487	if (atomic_read(&rfkill_input_disabled))
 488		return;
 489
 490	mutex_lock(&rfkill_global_mutex);
 491
 492	rfkill_epo_lock_active = false;
 493	for (i = 0; i < NUM_RFKILL_TYPES; i++)
 494		__rfkill_switch_all(i, rfkill_global_states[i].sav);
 495	mutex_unlock(&rfkill_global_mutex);
 496}
 497
 498/**
 499 * rfkill_remove_epo_lock - unlock state changes
 500 *
 501 * Used by rfkill-input manually unlock state changes, when
 502 * the EPO switch is deactivated.
 503 */
 504void rfkill_remove_epo_lock(void)
 505{
 506	if (atomic_read(&rfkill_input_disabled))
 507		return;
 508
 509	mutex_lock(&rfkill_global_mutex);
 510	rfkill_epo_lock_active = false;
 511	mutex_unlock(&rfkill_global_mutex);
 512}
 513
 514/**
 515 * rfkill_is_epo_lock_active - returns true EPO is active
 516 *
 517 * Returns 0 (false) if there is NOT an active EPO condition,
 518 * and 1 (true) if there is an active EPO condition, which
 519 * locks all radios in one of the BLOCKED states.
 520 *
 521 * Can be called in atomic context.
 522 */
 523bool rfkill_is_epo_lock_active(void)
 524{
 525	return rfkill_epo_lock_active;
 526}
 527
 528/**
 529 * rfkill_get_global_sw_state - returns global state for a type
 530 * @type: the type to get the global state of
 531 *
 532 * Returns the current global state for a given wireless
 533 * device type.
 534 */
 535bool rfkill_get_global_sw_state(const enum rfkill_type type)
 536{
 537	return rfkill_global_states[type].cur;
 538}
 539#endif
 540
 541bool rfkill_set_hw_state_reason(struct rfkill *rfkill,
 542				bool blocked,
 543				enum rfkill_hard_block_reasons reason)
 544{
 545	unsigned long flags;
 546	bool ret, prev;
 547
 548	BUG_ON(!rfkill);
 549
 
 
 
 
 
 550	spin_lock_irqsave(&rfkill->lock, flags);
 551	prev = !!(rfkill->hard_block_reasons & reason);
 552	if (blocked) {
 553		rfkill->state |= RFKILL_BLOCK_HW;
 554		rfkill->hard_block_reasons |= reason;
 555	} else {
 556		rfkill->hard_block_reasons &= ~reason;
 557		if (!rfkill->hard_block_reasons)
 558			rfkill->state &= ~RFKILL_BLOCK_HW;
 559	}
 560	ret = !!(rfkill->state & RFKILL_BLOCK_ANY);
 561	spin_unlock_irqrestore(&rfkill->lock, flags);
 562
 563	rfkill_led_trigger_event(rfkill);
 564	rfkill_global_led_trigger_event();
 565
 566	if (rfkill->registered && prev != blocked)
 567		schedule_work(&rfkill->uevent_work);
 568
 569	return ret;
 570}
 571EXPORT_SYMBOL(rfkill_set_hw_state_reason);
 572
 573static void __rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
 574{
 575	u32 bit = RFKILL_BLOCK_SW;
 576
 577	/* if in a ops->set_block right now, use other bit */
 578	if (rfkill->state & RFKILL_BLOCK_SW_SETCALL)
 579		bit = RFKILL_BLOCK_SW_PREV;
 580
 581	if (blocked)
 582		rfkill->state |= bit;
 583	else
 584		rfkill->state &= ~bit;
 585}
 586
 587bool rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
 588{
 589	unsigned long flags;
 590	bool prev, hwblock;
 591
 592	BUG_ON(!rfkill);
 593
 594	spin_lock_irqsave(&rfkill->lock, flags);
 595	prev = !!(rfkill->state & RFKILL_BLOCK_SW);
 596	__rfkill_set_sw_state(rfkill, blocked);
 597	hwblock = !!(rfkill->state & RFKILL_BLOCK_HW);
 598	blocked = blocked || hwblock;
 599	spin_unlock_irqrestore(&rfkill->lock, flags);
 600
 601	if (!rfkill->registered)
 602		return blocked;
 603
 604	if (prev != blocked && !hwblock)
 605		schedule_work(&rfkill->uevent_work);
 606
 607	rfkill_led_trigger_event(rfkill);
 608	rfkill_global_led_trigger_event();
 609
 610	return blocked;
 611}
 612EXPORT_SYMBOL(rfkill_set_sw_state);
 613
 614void rfkill_init_sw_state(struct rfkill *rfkill, bool blocked)
 615{
 616	unsigned long flags;
 617
 618	BUG_ON(!rfkill);
 619	BUG_ON(rfkill->registered);
 620
 621	spin_lock_irqsave(&rfkill->lock, flags);
 622	__rfkill_set_sw_state(rfkill, blocked);
 623	rfkill->persistent = true;
 624	spin_unlock_irqrestore(&rfkill->lock, flags);
 625}
 626EXPORT_SYMBOL(rfkill_init_sw_state);
 627
 628void rfkill_set_states(struct rfkill *rfkill, bool sw, bool hw)
 629{
 630	unsigned long flags;
 631	bool swprev, hwprev;
 632
 633	BUG_ON(!rfkill);
 634
 635	spin_lock_irqsave(&rfkill->lock, flags);
 636
 637	/*
 638	 * No need to care about prev/setblock ... this is for uevent only
 639	 * and that will get triggered by rfkill_set_block anyway.
 640	 */
 641	swprev = !!(rfkill->state & RFKILL_BLOCK_SW);
 642	hwprev = !!(rfkill->state & RFKILL_BLOCK_HW);
 643	__rfkill_set_sw_state(rfkill, sw);
 644	if (hw)
 645		rfkill->state |= RFKILL_BLOCK_HW;
 646	else
 647		rfkill->state &= ~RFKILL_BLOCK_HW;
 648
 649	spin_unlock_irqrestore(&rfkill->lock, flags);
 650
 651	if (!rfkill->registered) {
 652		rfkill->persistent = true;
 653	} else {
 654		if (swprev != sw || hwprev != hw)
 655			schedule_work(&rfkill->uevent_work);
 656
 657		rfkill_led_trigger_event(rfkill);
 658		rfkill_global_led_trigger_event();
 659	}
 660}
 661EXPORT_SYMBOL(rfkill_set_states);
 662
 663static const char * const rfkill_types[] = {
 664	NULL, /* RFKILL_TYPE_ALL */
 665	"wlan",
 666	"bluetooth",
 667	"ultrawideband",
 668	"wimax",
 669	"wwan",
 670	"gps",
 671	"fm",
 672	"nfc",
 673};
 674
 675enum rfkill_type rfkill_find_type(const char *name)
 676{
 677	int i;
 678
 679	BUILD_BUG_ON(ARRAY_SIZE(rfkill_types) != NUM_RFKILL_TYPES);
 680
 681	if (!name)
 682		return RFKILL_TYPE_ALL;
 683
 684	for (i = 1; i < NUM_RFKILL_TYPES; i++)
 685		if (!strcmp(name, rfkill_types[i]))
 686			return i;
 687	return RFKILL_TYPE_ALL;
 688}
 689EXPORT_SYMBOL(rfkill_find_type);
 690
 691static ssize_t name_show(struct device *dev, struct device_attribute *attr,
 692			 char *buf)
 693{
 694	struct rfkill *rfkill = to_rfkill(dev);
 695
 696	return sysfs_emit(buf, "%s\n", rfkill->name);
 697}
 698static DEVICE_ATTR_RO(name);
 699
 700static ssize_t type_show(struct device *dev, struct device_attribute *attr,
 701			 char *buf)
 702{
 703	struct rfkill *rfkill = to_rfkill(dev);
 704
 705	return sysfs_emit(buf, "%s\n", rfkill_types[rfkill->type]);
 706}
 707static DEVICE_ATTR_RO(type);
 708
 709static ssize_t index_show(struct device *dev, struct device_attribute *attr,
 710			  char *buf)
 711{
 712	struct rfkill *rfkill = to_rfkill(dev);
 713
 714	return sysfs_emit(buf, "%d\n", rfkill->idx);
 715}
 716static DEVICE_ATTR_RO(index);
 717
 718static ssize_t persistent_show(struct device *dev,
 719			       struct device_attribute *attr, char *buf)
 720{
 721	struct rfkill *rfkill = to_rfkill(dev);
 722
 723	return sysfs_emit(buf, "%d\n", rfkill->persistent);
 724}
 725static DEVICE_ATTR_RO(persistent);
 726
 727static ssize_t hard_show(struct device *dev, struct device_attribute *attr,
 728			 char *buf)
 729{
 730	struct rfkill *rfkill = to_rfkill(dev);
 731
 732	return sysfs_emit(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_HW) ? 1 : 0);
 733}
 734static DEVICE_ATTR_RO(hard);
 735
 736static ssize_t soft_show(struct device *dev, struct device_attribute *attr,
 737			 char *buf)
 738{
 739	struct rfkill *rfkill = to_rfkill(dev);
 740
 741	mutex_lock(&rfkill_global_mutex);
 742	rfkill_sync(rfkill);
 743	mutex_unlock(&rfkill_global_mutex);
 744
 745	return sysfs_emit(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_SW) ? 1 : 0);
 746}
 747
 748static ssize_t soft_store(struct device *dev, struct device_attribute *attr,
 749			  const char *buf, size_t count)
 750{
 751	struct rfkill *rfkill = to_rfkill(dev);
 752	unsigned long state;
 753	int err;
 754
 755	if (!capable(CAP_NET_ADMIN))
 756		return -EPERM;
 757
 758	err = kstrtoul(buf, 0, &state);
 759	if (err)
 760		return err;
 761
 762	if (state > 1 )
 763		return -EINVAL;
 764
 765	mutex_lock(&rfkill_global_mutex);
 766	rfkill_sync(rfkill);
 767	rfkill_set_block(rfkill, state);
 768	mutex_unlock(&rfkill_global_mutex);
 769
 770	return count;
 771}
 772static DEVICE_ATTR_RW(soft);
 773
 774static ssize_t hard_block_reasons_show(struct device *dev,
 775				       struct device_attribute *attr,
 776				       char *buf)
 777{
 778	struct rfkill *rfkill = to_rfkill(dev);
 779
 780	return sysfs_emit(buf, "0x%lx\n", rfkill->hard_block_reasons);
 781}
 782static DEVICE_ATTR_RO(hard_block_reasons);
 783
 784static u8 user_state_from_blocked(unsigned long state)
 785{
 786	if (state & RFKILL_BLOCK_HW)
 787		return RFKILL_USER_STATE_HARD_BLOCKED;
 788	if (state & RFKILL_BLOCK_SW)
 789		return RFKILL_USER_STATE_SOFT_BLOCKED;
 790
 791	return RFKILL_USER_STATE_UNBLOCKED;
 792}
 793
 794static ssize_t state_show(struct device *dev, struct device_attribute *attr,
 795			  char *buf)
 796{
 797	struct rfkill *rfkill = to_rfkill(dev);
 798
 799	mutex_lock(&rfkill_global_mutex);
 800	rfkill_sync(rfkill);
 801	mutex_unlock(&rfkill_global_mutex);
 802
 803	return sysfs_emit(buf, "%d\n", user_state_from_blocked(rfkill->state));
 804}
 805
 806static ssize_t state_store(struct device *dev, struct device_attribute *attr,
 807			   const char *buf, size_t count)
 808{
 809	struct rfkill *rfkill = to_rfkill(dev);
 810	unsigned long state;
 811	int err;
 812
 813	if (!capable(CAP_NET_ADMIN))
 814		return -EPERM;
 815
 816	err = kstrtoul(buf, 0, &state);
 817	if (err)
 818		return err;
 819
 820	if (state != RFKILL_USER_STATE_SOFT_BLOCKED &&
 821	    state != RFKILL_USER_STATE_UNBLOCKED)
 822		return -EINVAL;
 823
 824	mutex_lock(&rfkill_global_mutex);
 825	rfkill_sync(rfkill);
 826	rfkill_set_block(rfkill, state == RFKILL_USER_STATE_SOFT_BLOCKED);
 827	mutex_unlock(&rfkill_global_mutex);
 828
 829	return count;
 830}
 831static DEVICE_ATTR_RW(state);
 832
 833static struct attribute *rfkill_dev_attrs[] = {
 834	&dev_attr_name.attr,
 835	&dev_attr_type.attr,
 836	&dev_attr_index.attr,
 837	&dev_attr_persistent.attr,
 838	&dev_attr_state.attr,
 839	&dev_attr_soft.attr,
 840	&dev_attr_hard.attr,
 841	&dev_attr_hard_block_reasons.attr,
 842	NULL,
 843};
 844ATTRIBUTE_GROUPS(rfkill_dev);
 845
 846static void rfkill_release(struct device *dev)
 847{
 848	struct rfkill *rfkill = to_rfkill(dev);
 849
 850	kfree(rfkill);
 851}
 852
 853static int rfkill_dev_uevent(const struct device *dev, struct kobj_uevent_env *env)
 854{
 855	struct rfkill *rfkill = to_rfkill(dev);
 856	unsigned long flags;
 857	unsigned long reasons;
 858	u32 state;
 859	int error;
 860
 861	error = add_uevent_var(env, "RFKILL_NAME=%s", rfkill->name);
 862	if (error)
 863		return error;
 864	error = add_uevent_var(env, "RFKILL_TYPE=%s",
 865			       rfkill_types[rfkill->type]);
 866	if (error)
 867		return error;
 868	spin_lock_irqsave(&rfkill->lock, flags);
 869	state = rfkill->state;
 870	reasons = rfkill->hard_block_reasons;
 871	spin_unlock_irqrestore(&rfkill->lock, flags);
 872	error = add_uevent_var(env, "RFKILL_STATE=%d",
 873			       user_state_from_blocked(state));
 874	if (error)
 875		return error;
 876	return add_uevent_var(env, "RFKILL_HW_BLOCK_REASON=0x%lx", reasons);
 877}
 878
 879void rfkill_pause_polling(struct rfkill *rfkill)
 880{
 881	BUG_ON(!rfkill);
 882
 883	if (!rfkill->ops->poll)
 884		return;
 885
 886	rfkill->polling_paused = true;
 887	cancel_delayed_work_sync(&rfkill->poll_work);
 888}
 889EXPORT_SYMBOL(rfkill_pause_polling);
 890
 891void rfkill_resume_polling(struct rfkill *rfkill)
 892{
 893	BUG_ON(!rfkill);
 894
 895	if (!rfkill->ops->poll)
 896		return;
 897
 898	rfkill->polling_paused = false;
 899
 900	if (rfkill->suspended)
 901		return;
 902
 903	queue_delayed_work(system_power_efficient_wq,
 904			   &rfkill->poll_work, 0);
 905}
 906EXPORT_SYMBOL(rfkill_resume_polling);
 907
 908#ifdef CONFIG_PM_SLEEP
 909static int rfkill_suspend(struct device *dev)
 910{
 911	struct rfkill *rfkill = to_rfkill(dev);
 912
 913	rfkill->suspended = true;
 914	cancel_delayed_work_sync(&rfkill->poll_work);
 915
 916	return 0;
 917}
 918
 919static int rfkill_resume(struct device *dev)
 920{
 921	struct rfkill *rfkill = to_rfkill(dev);
 922	bool cur;
 923
 924	rfkill->suspended = false;
 925
 926	if (!rfkill->registered)
 927		return 0;
 928
 929	if (!rfkill->persistent) {
 930		cur = !!(rfkill->state & RFKILL_BLOCK_SW);
 931		rfkill_set_block(rfkill, cur);
 932	}
 933
 934	if (rfkill->ops->poll && !rfkill->polling_paused)
 935		queue_delayed_work(system_power_efficient_wq,
 936				   &rfkill->poll_work, 0);
 937
 938	return 0;
 939}
 940
 941static SIMPLE_DEV_PM_OPS(rfkill_pm_ops, rfkill_suspend, rfkill_resume);
 942#define RFKILL_PM_OPS (&rfkill_pm_ops)
 943#else
 944#define RFKILL_PM_OPS NULL
 945#endif
 946
 947static struct class rfkill_class = {
 948	.name		= "rfkill",
 949	.dev_release	= rfkill_release,
 950	.dev_groups	= rfkill_dev_groups,
 951	.dev_uevent	= rfkill_dev_uevent,
 952	.pm		= RFKILL_PM_OPS,
 953};
 954
 955bool rfkill_blocked(struct rfkill *rfkill)
 956{
 957	unsigned long flags;
 958	u32 state;
 959
 960	spin_lock_irqsave(&rfkill->lock, flags);
 961	state = rfkill->state;
 962	spin_unlock_irqrestore(&rfkill->lock, flags);
 963
 964	return !!(state & RFKILL_BLOCK_ANY);
 965}
 966EXPORT_SYMBOL(rfkill_blocked);
 967
 968bool rfkill_soft_blocked(struct rfkill *rfkill)
 969{
 970	unsigned long flags;
 971	u32 state;
 972
 973	spin_lock_irqsave(&rfkill->lock, flags);
 974	state = rfkill->state;
 975	spin_unlock_irqrestore(&rfkill->lock, flags);
 976
 977	return !!(state & RFKILL_BLOCK_SW);
 978}
 979EXPORT_SYMBOL(rfkill_soft_blocked);
 980
 981struct rfkill * __must_check rfkill_alloc(const char *name,
 982					  struct device *parent,
 983					  const enum rfkill_type type,
 984					  const struct rfkill_ops *ops,
 985					  void *ops_data)
 986{
 987	struct rfkill *rfkill;
 988	struct device *dev;
 989
 990	if (WARN_ON(!ops))
 991		return NULL;
 992
 993	if (WARN_ON(!ops->set_block))
 994		return NULL;
 995
 996	if (WARN_ON(!name))
 997		return NULL;
 998
 999	if (WARN_ON(type == RFKILL_TYPE_ALL || type >= NUM_RFKILL_TYPES))
1000		return NULL;
1001
1002	rfkill = kzalloc(sizeof(*rfkill) + strlen(name) + 1, GFP_KERNEL);
1003	if (!rfkill)
1004		return NULL;
1005
1006	spin_lock_init(&rfkill->lock);
1007	INIT_LIST_HEAD(&rfkill->node);
1008	rfkill->type = type;
1009	strcpy(rfkill->name, name);
1010	rfkill->ops = ops;
1011	rfkill->data = ops_data;
1012
1013	dev = &rfkill->dev;
1014	dev->class = &rfkill_class;
1015	dev->parent = parent;
1016	device_initialize(dev);
1017
1018	return rfkill;
1019}
1020EXPORT_SYMBOL(rfkill_alloc);
1021
1022static void rfkill_poll(struct work_struct *work)
1023{
1024	struct rfkill *rfkill;
1025
1026	rfkill = container_of(work, struct rfkill, poll_work.work);
1027
1028	/*
1029	 * Poll hardware state -- driver will use one of the
1030	 * rfkill_set{,_hw,_sw}_state functions and use its
1031	 * return value to update the current status.
1032	 */
1033	rfkill->ops->poll(rfkill, rfkill->data);
1034
1035	queue_delayed_work(system_power_efficient_wq,
1036		&rfkill->poll_work,
1037		round_jiffies_relative(POLL_INTERVAL));
1038}
1039
1040static void rfkill_uevent_work(struct work_struct *work)
1041{
1042	struct rfkill *rfkill;
1043
1044	rfkill = container_of(work, struct rfkill, uevent_work);
1045
1046	mutex_lock(&rfkill_global_mutex);
1047	rfkill_event(rfkill);
1048	mutex_unlock(&rfkill_global_mutex);
1049}
1050
1051static void rfkill_sync_work(struct work_struct *work)
1052{
1053	struct rfkill *rfkill = container_of(work, struct rfkill, sync_work);
 
 
 
1054
1055	mutex_lock(&rfkill_global_mutex);
1056	rfkill_sync(rfkill);
 
1057	mutex_unlock(&rfkill_global_mutex);
1058}
1059
1060int __must_check rfkill_register(struct rfkill *rfkill)
1061{
1062	static unsigned long rfkill_no;
1063	struct device *dev;
1064	int error;
1065
1066	if (!rfkill)
1067		return -EINVAL;
1068
1069	dev = &rfkill->dev;
1070
1071	mutex_lock(&rfkill_global_mutex);
1072
1073	if (rfkill->registered) {
1074		error = -EALREADY;
1075		goto unlock;
1076	}
1077
1078	rfkill->idx = rfkill_no;
1079	dev_set_name(dev, "rfkill%lu", rfkill_no);
1080	rfkill_no++;
1081
1082	list_add_tail(&rfkill->node, &rfkill_list);
1083
1084	error = device_add(dev);
1085	if (error)
1086		goto remove;
1087
1088	error = rfkill_led_trigger_register(rfkill);
1089	if (error)
1090		goto devdel;
1091
1092	rfkill->registered = true;
1093
1094	INIT_DELAYED_WORK(&rfkill->poll_work, rfkill_poll);
1095	INIT_WORK(&rfkill->uevent_work, rfkill_uevent_work);
1096	INIT_WORK(&rfkill->sync_work, rfkill_sync_work);
1097
1098	if (rfkill->ops->poll)
1099		queue_delayed_work(system_power_efficient_wq,
1100			&rfkill->poll_work,
1101			round_jiffies_relative(POLL_INTERVAL));
1102
1103	if (!rfkill->persistent || rfkill_epo_lock_active) {
1104		rfkill->need_sync = true;
1105		schedule_work(&rfkill->sync_work);
1106	} else {
1107#ifdef CONFIG_RFKILL_INPUT
1108		bool soft_blocked = !!(rfkill->state & RFKILL_BLOCK_SW);
1109
1110		if (!atomic_read(&rfkill_input_disabled))
1111			__rfkill_switch_all(rfkill->type, soft_blocked);
1112#endif
1113	}
1114
1115	rfkill_global_led_trigger_event();
1116	rfkill_send_events(rfkill, RFKILL_OP_ADD);
1117
1118	mutex_unlock(&rfkill_global_mutex);
1119	return 0;
1120
1121 devdel:
1122	device_del(&rfkill->dev);
1123 remove:
1124	list_del_init(&rfkill->node);
1125 unlock:
1126	mutex_unlock(&rfkill_global_mutex);
1127	return error;
1128}
1129EXPORT_SYMBOL(rfkill_register);
1130
1131void rfkill_unregister(struct rfkill *rfkill)
1132{
1133	BUG_ON(!rfkill);
1134
1135	if (rfkill->ops->poll)
1136		cancel_delayed_work_sync(&rfkill->poll_work);
1137
1138	cancel_work_sync(&rfkill->uevent_work);
1139	cancel_work_sync(&rfkill->sync_work);
1140
1141	rfkill->registered = false;
1142
1143	device_del(&rfkill->dev);
1144
1145	mutex_lock(&rfkill_global_mutex);
1146	rfkill_send_events(rfkill, RFKILL_OP_DEL);
1147	list_del_init(&rfkill->node);
1148	rfkill_global_led_trigger_event();
1149	mutex_unlock(&rfkill_global_mutex);
1150
1151	rfkill_led_trigger_unregister(rfkill);
1152}
1153EXPORT_SYMBOL(rfkill_unregister);
1154
1155void rfkill_destroy(struct rfkill *rfkill)
1156{
1157	if (rfkill)
1158		put_device(&rfkill->dev);
1159}
1160EXPORT_SYMBOL(rfkill_destroy);
1161
1162static int rfkill_fop_open(struct inode *inode, struct file *file)
1163{
1164	struct rfkill_data *data;
1165	struct rfkill *rfkill;
1166	struct rfkill_int_event *ev, *tmp;
1167
1168	data = kzalloc(sizeof(*data), GFP_KERNEL);
1169	if (!data)
1170		return -ENOMEM;
1171
1172	data->max_size = RFKILL_EVENT_SIZE_V1;
1173
1174	INIT_LIST_HEAD(&data->events);
1175	mutex_init(&data->mtx);
1176	init_waitqueue_head(&data->read_wait);
1177
1178	mutex_lock(&rfkill_global_mutex);
 
1179	/*
1180	 * start getting events from elsewhere but hold mtx to get
1181	 * startup events added first
1182	 */
1183
1184	list_for_each_entry(rfkill, &rfkill_list, node) {
1185		ev = kzalloc(sizeof(*ev), GFP_KERNEL);
1186		if (!ev)
1187			goto free;
1188		rfkill_sync(rfkill);
1189		rfkill_fill_event(&ev->ev, rfkill, RFKILL_OP_ADD);
1190		mutex_lock(&data->mtx);
1191		list_add_tail(&ev->list, &data->events);
1192		mutex_unlock(&data->mtx);
1193	}
1194	list_add(&data->list, &rfkill_fds);
 
1195	mutex_unlock(&rfkill_global_mutex);
1196
1197	file->private_data = data;
1198
1199	return stream_open(inode, file);
1200
1201 free:
 
1202	mutex_unlock(&rfkill_global_mutex);
1203	mutex_destroy(&data->mtx);
1204	list_for_each_entry_safe(ev, tmp, &data->events, list)
1205		kfree(ev);
1206	kfree(data);
1207	return -ENOMEM;
1208}
1209
1210static __poll_t rfkill_fop_poll(struct file *file, poll_table *wait)
1211{
1212	struct rfkill_data *data = file->private_data;
1213	__poll_t res = EPOLLOUT | EPOLLWRNORM;
1214
1215	poll_wait(file, &data->read_wait, wait);
1216
1217	mutex_lock(&data->mtx);
1218	if (!list_empty(&data->events))
1219		res = EPOLLIN | EPOLLRDNORM;
1220	mutex_unlock(&data->mtx);
1221
1222	return res;
1223}
1224
1225static ssize_t rfkill_fop_read(struct file *file, char __user *buf,
1226			       size_t count, loff_t *pos)
1227{
1228	struct rfkill_data *data = file->private_data;
1229	struct rfkill_int_event *ev;
1230	unsigned long sz;
1231	int ret;
1232
1233	mutex_lock(&data->mtx);
1234
1235	while (list_empty(&data->events)) {
1236		if (file->f_flags & O_NONBLOCK) {
1237			ret = -EAGAIN;
1238			goto out;
1239		}
1240		mutex_unlock(&data->mtx);
1241		/* since we re-check and it just compares pointers,
1242		 * using !list_empty() without locking isn't a problem
1243		 */
1244		ret = wait_event_interruptible(data->read_wait,
1245					       !list_empty(&data->events));
1246		mutex_lock(&data->mtx);
1247
1248		if (ret)
1249			goto out;
1250	}
1251
1252	ev = list_first_entry(&data->events, struct rfkill_int_event,
1253				list);
1254
1255	sz = min_t(unsigned long, sizeof(ev->ev), count);
1256	sz = min_t(unsigned long, sz, data->max_size);
1257	ret = sz;
1258	if (copy_to_user(buf, &ev->ev, sz))
1259		ret = -EFAULT;
1260
1261	list_del(&ev->list);
1262	kfree(ev);
1263 out:
1264	mutex_unlock(&data->mtx);
1265	return ret;
1266}
1267
1268static ssize_t rfkill_fop_write(struct file *file, const char __user *buf,
1269				size_t count, loff_t *pos)
1270{
1271	struct rfkill_data *data = file->private_data;
1272	struct rfkill *rfkill;
1273	struct rfkill_event_ext ev;
1274	int ret;
1275
1276	/* we don't need the 'hard' variable but accept it */
1277	if (count < RFKILL_EVENT_SIZE_V1 - 1)
1278		return -EINVAL;
1279
1280	/*
1281	 * Copy as much data as we can accept into our 'ev' buffer,
1282	 * but tell userspace how much we've copied so it can determine
1283	 * our API version even in a write() call, if it cares.
1284	 */
1285	count = min(count, sizeof(ev));
1286	count = min_t(size_t, count, data->max_size);
1287	if (copy_from_user(&ev, buf, count))
1288		return -EFAULT;
1289
1290	if (ev.type >= NUM_RFKILL_TYPES)
1291		return -EINVAL;
1292
1293	mutex_lock(&rfkill_global_mutex);
1294
1295	switch (ev.op) {
1296	case RFKILL_OP_CHANGE_ALL:
1297		rfkill_update_global_state(ev.type, ev.soft);
1298		list_for_each_entry(rfkill, &rfkill_list, node)
1299			if (rfkill->type == ev.type ||
1300			    ev.type == RFKILL_TYPE_ALL)
1301				rfkill_set_block(rfkill, ev.soft);
1302		ret = 0;
1303		break;
1304	case RFKILL_OP_CHANGE:
1305		list_for_each_entry(rfkill, &rfkill_list, node)
1306			if (rfkill->idx == ev.idx &&
1307			    (rfkill->type == ev.type ||
1308			     ev.type == RFKILL_TYPE_ALL))
1309				rfkill_set_block(rfkill, ev.soft);
1310		ret = 0;
1311		break;
1312	default:
1313		ret = -EINVAL;
1314		break;
1315	}
1316
1317	mutex_unlock(&rfkill_global_mutex);
1318
1319	return ret ?: count;
1320}
1321
1322static int rfkill_fop_release(struct inode *inode, struct file *file)
1323{
1324	struct rfkill_data *data = file->private_data;
1325	struct rfkill_int_event *ev, *tmp;
1326
1327	mutex_lock(&rfkill_global_mutex);
1328	list_del(&data->list);
1329	mutex_unlock(&rfkill_global_mutex);
1330
1331	mutex_destroy(&data->mtx);
1332	list_for_each_entry_safe(ev, tmp, &data->events, list)
1333		kfree(ev);
1334
1335#ifdef CONFIG_RFKILL_INPUT
1336	if (data->input_handler)
1337		if (atomic_dec_return(&rfkill_input_disabled) == 0)
1338			printk(KERN_DEBUG "rfkill: input handler enabled\n");
1339#endif
1340
1341	kfree(data);
1342
1343	return 0;
1344}
1345
1346static long rfkill_fop_ioctl(struct file *file, unsigned int cmd,
1347			     unsigned long arg)
1348{
1349	struct rfkill_data *data = file->private_data;
1350	int ret = -ENOTTY;
1351	u32 size;
1352
1353	if (_IOC_TYPE(cmd) != RFKILL_IOC_MAGIC)
1354		return -ENOTTY;
1355
1356	mutex_lock(&data->mtx);
1357	switch (_IOC_NR(cmd)) {
1358#ifdef CONFIG_RFKILL_INPUT
1359	case RFKILL_IOC_NOINPUT:
1360		if (!data->input_handler) {
1361			if (atomic_inc_return(&rfkill_input_disabled) == 1)
1362				printk(KERN_DEBUG "rfkill: input handler disabled\n");
1363			data->input_handler = true;
1364		}
1365		ret = 0;
1366		break;
1367#endif
1368	case RFKILL_IOC_MAX_SIZE:
1369		if (get_user(size, (__u32 __user *)arg)) {
1370			ret = -EFAULT;
1371			break;
1372		}
1373		if (size < RFKILL_EVENT_SIZE_V1 || size > U8_MAX) {
1374			ret = -EINVAL;
1375			break;
1376		}
1377		data->max_size = size;
1378		ret = 0;
1379		break;
1380	default:
1381		break;
1382	}
1383	mutex_unlock(&data->mtx);
1384
1385	return ret;
1386}
1387
1388static const struct file_operations rfkill_fops = {
1389	.owner		= THIS_MODULE,
1390	.open		= rfkill_fop_open,
1391	.read		= rfkill_fop_read,
1392	.write		= rfkill_fop_write,
1393	.poll		= rfkill_fop_poll,
1394	.release	= rfkill_fop_release,
1395	.unlocked_ioctl	= rfkill_fop_ioctl,
1396	.compat_ioctl	= compat_ptr_ioctl,
 
1397};
1398
1399#define RFKILL_NAME "rfkill"
1400
1401static struct miscdevice rfkill_miscdev = {
1402	.fops	= &rfkill_fops,
1403	.name	= RFKILL_NAME,
1404	.minor	= RFKILL_MINOR,
1405};
1406
1407static int __init rfkill_init(void)
1408{
1409	int error;
1410
1411	rfkill_update_global_state(RFKILL_TYPE_ALL, !rfkill_default_state);
1412
1413	error = class_register(&rfkill_class);
1414	if (error)
1415		goto error_class;
1416
1417	error = misc_register(&rfkill_miscdev);
1418	if (error)
1419		goto error_misc;
1420
1421	error = rfkill_global_led_trigger_register();
1422	if (error)
1423		goto error_led_trigger;
1424
1425#ifdef CONFIG_RFKILL_INPUT
1426	error = rfkill_handler_init();
1427	if (error)
1428		goto error_input;
1429#endif
1430
1431	return 0;
1432
1433#ifdef CONFIG_RFKILL_INPUT
1434error_input:
1435	rfkill_global_led_trigger_unregister();
1436#endif
1437error_led_trigger:
1438	misc_deregister(&rfkill_miscdev);
1439error_misc:
1440	class_unregister(&rfkill_class);
1441error_class:
1442	return error;
1443}
1444subsys_initcall(rfkill_init);
1445
1446static void __exit rfkill_exit(void)
1447{
1448#ifdef CONFIG_RFKILL_INPUT
1449	rfkill_handler_exit();
1450#endif
1451	rfkill_global_led_trigger_unregister();
1452	misc_deregister(&rfkill_miscdev);
1453	class_unregister(&rfkill_class);
1454}
1455module_exit(rfkill_exit);
1456
1457MODULE_ALIAS_MISCDEV(RFKILL_MINOR);
1458MODULE_ALIAS("devname:" RFKILL_NAME);