Linux Audio

Check our new training course

Yocto / OpenEmbedded training

Feb 10-13, 2025
Register
Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Copyright (C) 2006 - 2007 Ivo van Doorn
   4 * Copyright (C) 2007 Dmitry Torokhov
   5 * Copyright 2009 Johannes Berg <johannes@sipsolutions.net>
 
 
 
 
 
 
 
 
 
 
 
 
 
   6 */
   7
   8#include <linux/kernel.h>
   9#include <linux/module.h>
  10#include <linux/init.h>
  11#include <linux/workqueue.h>
  12#include <linux/capability.h>
  13#include <linux/list.h>
  14#include <linux/mutex.h>
  15#include <linux/rfkill.h>
  16#include <linux/sched.h>
  17#include <linux/spinlock.h>
  18#include <linux/device.h>
  19#include <linux/miscdevice.h>
  20#include <linux/wait.h>
  21#include <linux/poll.h>
  22#include <linux/fs.h>
  23#include <linux/slab.h>
  24
  25#include "rfkill.h"
  26
  27#define POLL_INTERVAL		(5 * HZ)
  28
  29#define RFKILL_BLOCK_HW		BIT(0)
  30#define RFKILL_BLOCK_SW		BIT(1)
  31#define RFKILL_BLOCK_SW_PREV	BIT(2)
  32#define RFKILL_BLOCK_ANY	(RFKILL_BLOCK_HW |\
  33				 RFKILL_BLOCK_SW |\
  34				 RFKILL_BLOCK_SW_PREV)
  35#define RFKILL_BLOCK_SW_SETCALL	BIT(31)
  36
  37struct rfkill {
  38	spinlock_t		lock;
  39
 
  40	enum rfkill_type	type;
  41
  42	unsigned long		state;
  43	unsigned long		hard_block_reasons;
  44
  45	u32			idx;
  46
  47	bool			registered;
  48	bool			persistent;
  49	bool			polling_paused;
  50	bool			suspended;
  51
  52	const struct rfkill_ops	*ops;
  53	void			*data;
  54
  55#ifdef CONFIG_RFKILL_LEDS
  56	struct led_trigger	led_trigger;
  57	const char		*ledtrigname;
  58#endif
  59
  60	struct device		dev;
  61	struct list_head	node;
  62
  63	struct delayed_work	poll_work;
  64	struct work_struct	uevent_work;
  65	struct work_struct	sync_work;
  66	char			name[];
  67};
  68#define to_rfkill(d)	container_of(d, struct rfkill, dev)
  69
  70struct rfkill_int_event {
  71	struct list_head	list;
  72	struct rfkill_event_ext	ev;
  73};
  74
  75struct rfkill_data {
  76	struct list_head	list;
  77	struct list_head	events;
  78	struct mutex		mtx;
  79	wait_queue_head_t	read_wait;
  80	bool			input_handler;
  81	u8			max_size;
  82};
  83
  84
  85MODULE_AUTHOR("Ivo van Doorn <IvDoorn@gmail.com>");
  86MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
  87MODULE_DESCRIPTION("RF switch support");
  88MODULE_LICENSE("GPL");
  89
  90
  91/*
  92 * The locking here should be made much smarter, we currently have
  93 * a bit of a stupid situation because drivers might want to register
  94 * the rfkill struct under their own lock, and take this lock during
  95 * rfkill method calls -- which will cause an AB-BA deadlock situation.
  96 *
  97 * To fix that, we need to rework this code here to be mostly lock-free
  98 * and only use the mutex for list manipulations, not to protect the
  99 * various other global variables. Then we can avoid holding the mutex
 100 * around driver operations, and all is happy.
 101 */
 102static LIST_HEAD(rfkill_list);	/* list of registered rf switches */
 103static DEFINE_MUTEX(rfkill_global_mutex);
 104static LIST_HEAD(rfkill_fds);	/* list of open fds of /dev/rfkill */
 105
 106static unsigned int rfkill_default_state = 1;
 107module_param_named(default_state, rfkill_default_state, uint, 0444);
 108MODULE_PARM_DESC(default_state,
 109		 "Default initial state for all radio types, 0 = radio off");
 110
 111static struct {
 112	bool cur, sav;
 113} rfkill_global_states[NUM_RFKILL_TYPES];
 114
 115static bool rfkill_epo_lock_active;
 116
 117
 118#ifdef CONFIG_RFKILL_LEDS
 119static void rfkill_led_trigger_event(struct rfkill *rfkill)
 120{
 121	struct led_trigger *trigger;
 122
 123	if (!rfkill->registered)
 124		return;
 125
 126	trigger = &rfkill->led_trigger;
 127
 128	if (rfkill->state & RFKILL_BLOCK_ANY)
 129		led_trigger_event(trigger, LED_OFF);
 130	else
 131		led_trigger_event(trigger, LED_FULL);
 132}
 133
 134static int rfkill_led_trigger_activate(struct led_classdev *led)
 135{
 136	struct rfkill *rfkill;
 137
 138	rfkill = container_of(led->trigger, struct rfkill, led_trigger);
 139
 140	rfkill_led_trigger_event(rfkill);
 141
 142	return 0;
 143}
 144
 145const char *rfkill_get_led_trigger_name(struct rfkill *rfkill)
 146{
 147	return rfkill->led_trigger.name;
 148}
 149EXPORT_SYMBOL(rfkill_get_led_trigger_name);
 150
 151void rfkill_set_led_trigger_name(struct rfkill *rfkill, const char *name)
 152{
 153	BUG_ON(!rfkill);
 154
 155	rfkill->ledtrigname = name;
 156}
 157EXPORT_SYMBOL(rfkill_set_led_trigger_name);
 158
 159static int rfkill_led_trigger_register(struct rfkill *rfkill)
 160{
 161	rfkill->led_trigger.name = rfkill->ledtrigname
 162					? : dev_name(&rfkill->dev);
 163	rfkill->led_trigger.activate = rfkill_led_trigger_activate;
 164	return led_trigger_register(&rfkill->led_trigger);
 165}
 166
 167static void rfkill_led_trigger_unregister(struct rfkill *rfkill)
 168{
 169	led_trigger_unregister(&rfkill->led_trigger);
 170}
 171
 172static struct led_trigger rfkill_any_led_trigger;
 173static struct led_trigger rfkill_none_led_trigger;
 174static struct work_struct rfkill_global_led_trigger_work;
 175
 176static void rfkill_global_led_trigger_worker(struct work_struct *work)
 177{
 178	enum led_brightness brightness = LED_OFF;
 179	struct rfkill *rfkill;
 180
 181	mutex_lock(&rfkill_global_mutex);
 182	list_for_each_entry(rfkill, &rfkill_list, node) {
 183		if (!(rfkill->state & RFKILL_BLOCK_ANY)) {
 184			brightness = LED_FULL;
 185			break;
 186		}
 187	}
 188	mutex_unlock(&rfkill_global_mutex);
 189
 190	led_trigger_event(&rfkill_any_led_trigger, brightness);
 191	led_trigger_event(&rfkill_none_led_trigger,
 192			  brightness == LED_OFF ? LED_FULL : LED_OFF);
 193}
 194
 195static void rfkill_global_led_trigger_event(void)
 196{
 197	schedule_work(&rfkill_global_led_trigger_work);
 198}
 199
 200static int rfkill_global_led_trigger_register(void)
 201{
 202	int ret;
 203
 204	INIT_WORK(&rfkill_global_led_trigger_work,
 205			rfkill_global_led_trigger_worker);
 206
 207	rfkill_any_led_trigger.name = "rfkill-any";
 208	ret = led_trigger_register(&rfkill_any_led_trigger);
 209	if (ret)
 210		return ret;
 211
 212	rfkill_none_led_trigger.name = "rfkill-none";
 213	ret = led_trigger_register(&rfkill_none_led_trigger);
 214	if (ret)
 215		led_trigger_unregister(&rfkill_any_led_trigger);
 216	else
 217		/* Delay activation until all global triggers are registered */
 218		rfkill_global_led_trigger_event();
 219
 220	return ret;
 221}
 222
 223static void rfkill_global_led_trigger_unregister(void)
 224{
 225	led_trigger_unregister(&rfkill_none_led_trigger);
 226	led_trigger_unregister(&rfkill_any_led_trigger);
 227	cancel_work_sync(&rfkill_global_led_trigger_work);
 228}
 229#else
 230static void rfkill_led_trigger_event(struct rfkill *rfkill)
 231{
 232}
 233
 234static inline int rfkill_led_trigger_register(struct rfkill *rfkill)
 235{
 236	return 0;
 237}
 238
 239static inline void rfkill_led_trigger_unregister(struct rfkill *rfkill)
 240{
 241}
 242
 243static void rfkill_global_led_trigger_event(void)
 244{
 245}
 246
 247static int rfkill_global_led_trigger_register(void)
 248{
 249	return 0;
 250}
 251
 252static void rfkill_global_led_trigger_unregister(void)
 253{
 254}
 255#endif /* CONFIG_RFKILL_LEDS */
 256
 257static void rfkill_fill_event(struct rfkill_event_ext *ev,
 258			      struct rfkill *rfkill,
 259			      enum rfkill_operation op)
 260{
 261	unsigned long flags;
 262
 263	ev->idx = rfkill->idx;
 264	ev->type = rfkill->type;
 265	ev->op = op;
 266
 267	spin_lock_irqsave(&rfkill->lock, flags);
 268	ev->hard = !!(rfkill->state & RFKILL_BLOCK_HW);
 269	ev->soft = !!(rfkill->state & (RFKILL_BLOCK_SW |
 270					RFKILL_BLOCK_SW_PREV));
 271	ev->hard_block_reasons = rfkill->hard_block_reasons;
 272	spin_unlock_irqrestore(&rfkill->lock, flags);
 273}
 274
 275static void rfkill_send_events(struct rfkill *rfkill, enum rfkill_operation op)
 276{
 277	struct rfkill_data *data;
 278	struct rfkill_int_event *ev;
 279
 280	list_for_each_entry(data, &rfkill_fds, list) {
 281		ev = kzalloc(sizeof(*ev), GFP_KERNEL);
 282		if (!ev)
 283			continue;
 284		rfkill_fill_event(&ev->ev, rfkill, op);
 285		mutex_lock(&data->mtx);
 286		list_add_tail(&ev->list, &data->events);
 287		mutex_unlock(&data->mtx);
 288		wake_up_interruptible(&data->read_wait);
 289	}
 290}
 291
 292static void rfkill_event(struct rfkill *rfkill)
 293{
 294	if (!rfkill->registered)
 295		return;
 296
 297	kobject_uevent(&rfkill->dev.kobj, KOBJ_CHANGE);
 298
 299	/* also send event to /dev/rfkill */
 300	rfkill_send_events(rfkill, RFKILL_OP_CHANGE);
 301}
 302
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 303/**
 304 * rfkill_set_block - wrapper for set_block method
 305 *
 306 * @rfkill: the rfkill struct to use
 307 * @blocked: the new software state
 308 *
 309 * Calls the set_block method (when applicable) and handles notifications
 310 * etc. as well.
 311 */
 312static void rfkill_set_block(struct rfkill *rfkill, bool blocked)
 313{
 314	unsigned long flags;
 315	bool prev, curr;
 316	int err;
 317
 318	if (unlikely(rfkill->dev.power.power_state.event & PM_EVENT_SLEEP))
 319		return;
 320
 321	/*
 322	 * Some platforms (...!) generate input events which affect the
 323	 * _hard_ kill state -- whenever something tries to change the
 324	 * current software state query the hardware state too.
 325	 */
 326	if (rfkill->ops->query)
 327		rfkill->ops->query(rfkill, rfkill->data);
 328
 329	spin_lock_irqsave(&rfkill->lock, flags);
 330	prev = rfkill->state & RFKILL_BLOCK_SW;
 331
 332	if (prev)
 333		rfkill->state |= RFKILL_BLOCK_SW_PREV;
 334	else
 335		rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
 336
 337	if (blocked)
 338		rfkill->state |= RFKILL_BLOCK_SW;
 339	else
 340		rfkill->state &= ~RFKILL_BLOCK_SW;
 341
 342	rfkill->state |= RFKILL_BLOCK_SW_SETCALL;
 343	spin_unlock_irqrestore(&rfkill->lock, flags);
 344
 345	err = rfkill->ops->set_block(rfkill->data, blocked);
 346
 347	spin_lock_irqsave(&rfkill->lock, flags);
 348	if (err) {
 349		/*
 350		 * Failed -- reset status to _PREV, which may be different
 351		 * from what we have set _PREV to earlier in this function
 352		 * if rfkill_set_sw_state was invoked.
 353		 */
 354		if (rfkill->state & RFKILL_BLOCK_SW_PREV)
 355			rfkill->state |= RFKILL_BLOCK_SW;
 356		else
 357			rfkill->state &= ~RFKILL_BLOCK_SW;
 358	}
 359	rfkill->state &= ~RFKILL_BLOCK_SW_SETCALL;
 360	rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
 361	curr = rfkill->state & RFKILL_BLOCK_SW;
 362	spin_unlock_irqrestore(&rfkill->lock, flags);
 363
 364	rfkill_led_trigger_event(rfkill);
 365	rfkill_global_led_trigger_event();
 366
 367	if (prev != curr)
 368		rfkill_event(rfkill);
 369}
 370
 371static void rfkill_update_global_state(enum rfkill_type type, bool blocked)
 372{
 373	int i;
 374
 375	if (type != RFKILL_TYPE_ALL) {
 376		rfkill_global_states[type].cur = blocked;
 377		return;
 378	}
 379
 380	for (i = 0; i < NUM_RFKILL_TYPES; i++)
 381		rfkill_global_states[i].cur = blocked;
 382}
 383
 384#ifdef CONFIG_RFKILL_INPUT
 385static atomic_t rfkill_input_disabled = ATOMIC_INIT(0);
 386
 387/**
 388 * __rfkill_switch_all - Toggle state of all switches of given type
 389 * @type: type of interfaces to be affected
 390 * @blocked: the new state
 391 *
 392 * This function sets the state of all switches of given type,
 393 * unless a specific switch is suspended.
 
 394 *
 395 * Caller must have acquired rfkill_global_mutex.
 396 */
 397static void __rfkill_switch_all(const enum rfkill_type type, bool blocked)
 398{
 399	struct rfkill *rfkill;
 400
 401	rfkill_update_global_state(type, blocked);
 402	list_for_each_entry(rfkill, &rfkill_list, node) {
 403		if (rfkill->type != type && type != RFKILL_TYPE_ALL)
 404			continue;
 405
 406		rfkill_set_block(rfkill, blocked);
 407	}
 408}
 409
 410/**
 411 * rfkill_switch_all - Toggle state of all switches of given type
 412 * @type: type of interfaces to be affected
 413 * @blocked: the new state
 414 *
 415 * Acquires rfkill_global_mutex and calls __rfkill_switch_all(@type, @state).
 416 * Please refer to __rfkill_switch_all() for details.
 417 *
 418 * Does nothing if the EPO lock is active.
 419 */
 420void rfkill_switch_all(enum rfkill_type type, bool blocked)
 421{
 422	if (atomic_read(&rfkill_input_disabled))
 423		return;
 424
 425	mutex_lock(&rfkill_global_mutex);
 426
 427	if (!rfkill_epo_lock_active)
 428		__rfkill_switch_all(type, blocked);
 429
 430	mutex_unlock(&rfkill_global_mutex);
 431}
 432
 433/**
 434 * rfkill_epo - emergency power off all transmitters
 435 *
 436 * This kicks all non-suspended rfkill devices to RFKILL_STATE_SOFT_BLOCKED,
 437 * ignoring everything in its path but rfkill_global_mutex and rfkill->mutex.
 438 *
 439 * The global state before the EPO is saved and can be restored later
 440 * using rfkill_restore_states().
 441 */
 442void rfkill_epo(void)
 443{
 444	struct rfkill *rfkill;
 445	int i;
 446
 447	if (atomic_read(&rfkill_input_disabled))
 448		return;
 449
 450	mutex_lock(&rfkill_global_mutex);
 451
 452	rfkill_epo_lock_active = true;
 453	list_for_each_entry(rfkill, &rfkill_list, node)
 454		rfkill_set_block(rfkill, true);
 455
 456	for (i = 0; i < NUM_RFKILL_TYPES; i++) {
 457		rfkill_global_states[i].sav = rfkill_global_states[i].cur;
 458		rfkill_global_states[i].cur = true;
 459	}
 460
 461	mutex_unlock(&rfkill_global_mutex);
 462}
 463
 464/**
 465 * rfkill_restore_states - restore global states
 466 *
 467 * Restore (and sync switches to) the global state from the
 468 * states in rfkill_default_states.  This can undo the effects of
 469 * a call to rfkill_epo().
 470 */
 471void rfkill_restore_states(void)
 472{
 473	int i;
 474
 475	if (atomic_read(&rfkill_input_disabled))
 476		return;
 477
 478	mutex_lock(&rfkill_global_mutex);
 479
 480	rfkill_epo_lock_active = false;
 481	for (i = 0; i < NUM_RFKILL_TYPES; i++)
 482		__rfkill_switch_all(i, rfkill_global_states[i].sav);
 483	mutex_unlock(&rfkill_global_mutex);
 484}
 485
 486/**
 487 * rfkill_remove_epo_lock - unlock state changes
 488 *
 489 * Used by rfkill-input manually unlock state changes, when
 490 * the EPO switch is deactivated.
 491 */
 492void rfkill_remove_epo_lock(void)
 493{
 494	if (atomic_read(&rfkill_input_disabled))
 495		return;
 496
 497	mutex_lock(&rfkill_global_mutex);
 498	rfkill_epo_lock_active = false;
 499	mutex_unlock(&rfkill_global_mutex);
 500}
 501
 502/**
 503 * rfkill_is_epo_lock_active - returns true EPO is active
 504 *
 505 * Returns 0 (false) if there is NOT an active EPO condition,
 506 * and 1 (true) if there is an active EPO condition, which
 507 * locks all radios in one of the BLOCKED states.
 508 *
 509 * Can be called in atomic context.
 510 */
 511bool rfkill_is_epo_lock_active(void)
 512{
 513	return rfkill_epo_lock_active;
 514}
 515
 516/**
 517 * rfkill_get_global_sw_state - returns global state for a type
 518 * @type: the type to get the global state of
 519 *
 520 * Returns the current global state for a given wireless
 521 * device type.
 522 */
 523bool rfkill_get_global_sw_state(const enum rfkill_type type)
 524{
 525	return rfkill_global_states[type].cur;
 526}
 527#endif
 528
 529bool rfkill_set_hw_state_reason(struct rfkill *rfkill,
 530				bool blocked, unsigned long reason)
 531{
 532	unsigned long flags;
 533	bool ret, prev;
 534
 535	BUG_ON(!rfkill);
 536
 537	if (WARN(reason &
 538	    ~(RFKILL_HARD_BLOCK_SIGNAL | RFKILL_HARD_BLOCK_NOT_OWNER),
 539	    "hw_state reason not supported: 0x%lx", reason))
 540		return blocked;
 541
 542	spin_lock_irqsave(&rfkill->lock, flags);
 543	prev = !!(rfkill->hard_block_reasons & reason);
 544	if (blocked) {
 545		rfkill->state |= RFKILL_BLOCK_HW;
 546		rfkill->hard_block_reasons |= reason;
 547	} else {
 548		rfkill->hard_block_reasons &= ~reason;
 549		if (!rfkill->hard_block_reasons)
 550			rfkill->state &= ~RFKILL_BLOCK_HW;
 551	}
 552	ret = !!(rfkill->state & RFKILL_BLOCK_ANY);
 553	spin_unlock_irqrestore(&rfkill->lock, flags);
 554
 555	rfkill_led_trigger_event(rfkill);
 556	rfkill_global_led_trigger_event();
 557
 558	if (rfkill->registered && prev != blocked)
 559		schedule_work(&rfkill->uevent_work);
 560
 561	return ret;
 562}
 563EXPORT_SYMBOL(rfkill_set_hw_state_reason);
 564
 565static void __rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
 566{
 567	u32 bit = RFKILL_BLOCK_SW;
 568
 569	/* if in a ops->set_block right now, use other bit */
 570	if (rfkill->state & RFKILL_BLOCK_SW_SETCALL)
 571		bit = RFKILL_BLOCK_SW_PREV;
 572
 573	if (blocked)
 574		rfkill->state |= bit;
 575	else
 576		rfkill->state &= ~bit;
 577}
 578
 579bool rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
 580{
 581	unsigned long flags;
 582	bool prev, hwblock;
 583
 584	BUG_ON(!rfkill);
 585
 586	spin_lock_irqsave(&rfkill->lock, flags);
 587	prev = !!(rfkill->state & RFKILL_BLOCK_SW);
 588	__rfkill_set_sw_state(rfkill, blocked);
 589	hwblock = !!(rfkill->state & RFKILL_BLOCK_HW);
 590	blocked = blocked || hwblock;
 591	spin_unlock_irqrestore(&rfkill->lock, flags);
 592
 593	if (!rfkill->registered)
 594		return blocked;
 595
 596	if (prev != blocked && !hwblock)
 597		schedule_work(&rfkill->uevent_work);
 598
 599	rfkill_led_trigger_event(rfkill);
 600	rfkill_global_led_trigger_event();
 601
 602	return blocked;
 603}
 604EXPORT_SYMBOL(rfkill_set_sw_state);
 605
 606void rfkill_init_sw_state(struct rfkill *rfkill, bool blocked)
 607{
 608	unsigned long flags;
 609
 610	BUG_ON(!rfkill);
 611	BUG_ON(rfkill->registered);
 612
 613	spin_lock_irqsave(&rfkill->lock, flags);
 614	__rfkill_set_sw_state(rfkill, blocked);
 615	rfkill->persistent = true;
 616	spin_unlock_irqrestore(&rfkill->lock, flags);
 617}
 618EXPORT_SYMBOL(rfkill_init_sw_state);
 619
 620void rfkill_set_states(struct rfkill *rfkill, bool sw, bool hw)
 621{
 622	unsigned long flags;
 623	bool swprev, hwprev;
 624
 625	BUG_ON(!rfkill);
 626
 627	spin_lock_irqsave(&rfkill->lock, flags);
 628
 629	/*
 630	 * No need to care about prev/setblock ... this is for uevent only
 631	 * and that will get triggered by rfkill_set_block anyway.
 632	 */
 633	swprev = !!(rfkill->state & RFKILL_BLOCK_SW);
 634	hwprev = !!(rfkill->state & RFKILL_BLOCK_HW);
 635	__rfkill_set_sw_state(rfkill, sw);
 636	if (hw)
 637		rfkill->state |= RFKILL_BLOCK_HW;
 638	else
 639		rfkill->state &= ~RFKILL_BLOCK_HW;
 640
 641	spin_unlock_irqrestore(&rfkill->lock, flags);
 642
 643	if (!rfkill->registered) {
 644		rfkill->persistent = true;
 645	} else {
 646		if (swprev != sw || hwprev != hw)
 647			schedule_work(&rfkill->uevent_work);
 648
 649		rfkill_led_trigger_event(rfkill);
 650		rfkill_global_led_trigger_event();
 651	}
 652}
 653EXPORT_SYMBOL(rfkill_set_states);
 654
 655static const char * const rfkill_types[] = {
 656	NULL, /* RFKILL_TYPE_ALL */
 657	"wlan",
 658	"bluetooth",
 659	"ultrawideband",
 660	"wimax",
 661	"wwan",
 662	"gps",
 663	"fm",
 664	"nfc",
 665};
 666
 667enum rfkill_type rfkill_find_type(const char *name)
 668{
 669	int i;
 670
 671	BUILD_BUG_ON(ARRAY_SIZE(rfkill_types) != NUM_RFKILL_TYPES);
 672
 673	if (!name)
 674		return RFKILL_TYPE_ALL;
 675
 676	for (i = 1; i < NUM_RFKILL_TYPES; i++)
 677		if (!strcmp(name, rfkill_types[i]))
 678			return i;
 679	return RFKILL_TYPE_ALL;
 680}
 681EXPORT_SYMBOL(rfkill_find_type);
 682
 683static ssize_t name_show(struct device *dev, struct device_attribute *attr,
 684			 char *buf)
 685{
 686	struct rfkill *rfkill = to_rfkill(dev);
 687
 688	return sprintf(buf, "%s\n", rfkill->name);
 689}
 690static DEVICE_ATTR_RO(name);
 691
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 692static ssize_t type_show(struct device *dev, struct device_attribute *attr,
 693			 char *buf)
 694{
 695	struct rfkill *rfkill = to_rfkill(dev);
 696
 697	return sprintf(buf, "%s\n", rfkill_types[rfkill->type]);
 698}
 699static DEVICE_ATTR_RO(type);
 700
 701static ssize_t index_show(struct device *dev, struct device_attribute *attr,
 702			  char *buf)
 703{
 704	struct rfkill *rfkill = to_rfkill(dev);
 705
 706	return sprintf(buf, "%d\n", rfkill->idx);
 707}
 708static DEVICE_ATTR_RO(index);
 709
 710static ssize_t persistent_show(struct device *dev,
 711			       struct device_attribute *attr, char *buf)
 712{
 713	struct rfkill *rfkill = to_rfkill(dev);
 714
 715	return sprintf(buf, "%d\n", rfkill->persistent);
 716}
 717static DEVICE_ATTR_RO(persistent);
 718
 719static ssize_t hard_show(struct device *dev, struct device_attribute *attr,
 720			 char *buf)
 721{
 722	struct rfkill *rfkill = to_rfkill(dev);
 723
 724	return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_HW) ? 1 : 0 );
 725}
 726static DEVICE_ATTR_RO(hard);
 727
 728static ssize_t soft_show(struct device *dev, struct device_attribute *attr,
 729			 char *buf)
 730{
 731	struct rfkill *rfkill = to_rfkill(dev);
 732
 733	return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_SW) ? 1 : 0 );
 734}
 735
 736static ssize_t soft_store(struct device *dev, struct device_attribute *attr,
 737			  const char *buf, size_t count)
 738{
 739	struct rfkill *rfkill = to_rfkill(dev);
 740	unsigned long state;
 741	int err;
 742
 743	if (!capable(CAP_NET_ADMIN))
 744		return -EPERM;
 745
 746	err = kstrtoul(buf, 0, &state);
 747	if (err)
 748		return err;
 749
 750	if (state > 1 )
 751		return -EINVAL;
 752
 753	mutex_lock(&rfkill_global_mutex);
 754	rfkill_set_block(rfkill, state);
 755	mutex_unlock(&rfkill_global_mutex);
 756
 757	return count;
 758}
 759static DEVICE_ATTR_RW(soft);
 760
 761static ssize_t hard_block_reasons_show(struct device *dev,
 762				       struct device_attribute *attr,
 763				       char *buf)
 764{
 765	struct rfkill *rfkill = to_rfkill(dev);
 766
 767	return sprintf(buf, "0x%lx\n", rfkill->hard_block_reasons);
 768}
 769static DEVICE_ATTR_RO(hard_block_reasons);
 770
 771static u8 user_state_from_blocked(unsigned long state)
 772{
 773	if (state & RFKILL_BLOCK_HW)
 774		return RFKILL_USER_STATE_HARD_BLOCKED;
 775	if (state & RFKILL_BLOCK_SW)
 776		return RFKILL_USER_STATE_SOFT_BLOCKED;
 777
 778	return RFKILL_USER_STATE_UNBLOCKED;
 779}
 780
 781static ssize_t state_show(struct device *dev, struct device_attribute *attr,
 782			  char *buf)
 783{
 784	struct rfkill *rfkill = to_rfkill(dev);
 785
 786	return sprintf(buf, "%d\n", user_state_from_blocked(rfkill->state));
 787}
 788
 789static ssize_t state_store(struct device *dev, struct device_attribute *attr,
 790			   const char *buf, size_t count)
 791{
 792	struct rfkill *rfkill = to_rfkill(dev);
 793	unsigned long state;
 794	int err;
 795
 796	if (!capable(CAP_NET_ADMIN))
 797		return -EPERM;
 798
 799	err = kstrtoul(buf, 0, &state);
 800	if (err)
 801		return err;
 802
 803	if (state != RFKILL_USER_STATE_SOFT_BLOCKED &&
 804	    state != RFKILL_USER_STATE_UNBLOCKED)
 805		return -EINVAL;
 806
 807	mutex_lock(&rfkill_global_mutex);
 808	rfkill_set_block(rfkill, state == RFKILL_USER_STATE_SOFT_BLOCKED);
 809	mutex_unlock(&rfkill_global_mutex);
 810
 811	return count;
 812}
 813static DEVICE_ATTR_RW(state);
 814
 
 
 
 
 
 
 
 815static struct attribute *rfkill_dev_attrs[] = {
 816	&dev_attr_name.attr,
 817	&dev_attr_type.attr,
 818	&dev_attr_index.attr,
 819	&dev_attr_persistent.attr,
 820	&dev_attr_state.attr,
 
 821	&dev_attr_soft.attr,
 822	&dev_attr_hard.attr,
 823	&dev_attr_hard_block_reasons.attr,
 824	NULL,
 825};
 826ATTRIBUTE_GROUPS(rfkill_dev);
 827
 828static void rfkill_release(struct device *dev)
 829{
 830	struct rfkill *rfkill = to_rfkill(dev);
 831
 832	kfree(rfkill);
 833}
 834
 835static int rfkill_dev_uevent(const struct device *dev, struct kobj_uevent_env *env)
 836{
 837	struct rfkill *rfkill = to_rfkill(dev);
 838	unsigned long flags;
 839	unsigned long reasons;
 840	u32 state;
 841	int error;
 842
 843	error = add_uevent_var(env, "RFKILL_NAME=%s", rfkill->name);
 844	if (error)
 845		return error;
 846	error = add_uevent_var(env, "RFKILL_TYPE=%s",
 847			       rfkill_types[rfkill->type]);
 848	if (error)
 849		return error;
 850	spin_lock_irqsave(&rfkill->lock, flags);
 851	state = rfkill->state;
 852	reasons = rfkill->hard_block_reasons;
 853	spin_unlock_irqrestore(&rfkill->lock, flags);
 854	error = add_uevent_var(env, "RFKILL_STATE=%d",
 855			       user_state_from_blocked(state));
 856	if (error)
 857		return error;
 858	return add_uevent_var(env, "RFKILL_HW_BLOCK_REASON=0x%lx", reasons);
 859}
 860
 861void rfkill_pause_polling(struct rfkill *rfkill)
 862{
 863	BUG_ON(!rfkill);
 864
 865	if (!rfkill->ops->poll)
 866		return;
 867
 868	rfkill->polling_paused = true;
 869	cancel_delayed_work_sync(&rfkill->poll_work);
 870}
 871EXPORT_SYMBOL(rfkill_pause_polling);
 872
 873void rfkill_resume_polling(struct rfkill *rfkill)
 874{
 875	BUG_ON(!rfkill);
 876
 877	if (!rfkill->ops->poll)
 878		return;
 879
 880	rfkill->polling_paused = false;
 881
 882	if (rfkill->suspended)
 883		return;
 884
 885	queue_delayed_work(system_power_efficient_wq,
 886			   &rfkill->poll_work, 0);
 887}
 888EXPORT_SYMBOL(rfkill_resume_polling);
 889
 890#ifdef CONFIG_PM_SLEEP
 891static int rfkill_suspend(struct device *dev)
 892{
 893	struct rfkill *rfkill = to_rfkill(dev);
 894
 895	rfkill->suspended = true;
 896	cancel_delayed_work_sync(&rfkill->poll_work);
 897
 898	return 0;
 899}
 900
 901static int rfkill_resume(struct device *dev)
 902{
 903	struct rfkill *rfkill = to_rfkill(dev);
 904	bool cur;
 905
 906	rfkill->suspended = false;
 907
 908	if (!rfkill->registered)
 909		return 0;
 910
 911	if (!rfkill->persistent) {
 912		cur = !!(rfkill->state & RFKILL_BLOCK_SW);
 913		rfkill_set_block(rfkill, cur);
 914	}
 915
 916	if (rfkill->ops->poll && !rfkill->polling_paused)
 917		queue_delayed_work(system_power_efficient_wq,
 918				   &rfkill->poll_work, 0);
 919
 920	return 0;
 921}
 922
 923static SIMPLE_DEV_PM_OPS(rfkill_pm_ops, rfkill_suspend, rfkill_resume);
 924#define RFKILL_PM_OPS (&rfkill_pm_ops)
 925#else
 926#define RFKILL_PM_OPS NULL
 927#endif
 928
 929static struct class rfkill_class = {
 930	.name		= "rfkill",
 931	.dev_release	= rfkill_release,
 932	.dev_groups	= rfkill_dev_groups,
 933	.dev_uevent	= rfkill_dev_uevent,
 934	.pm		= RFKILL_PM_OPS,
 
 935};
 936
 937bool rfkill_blocked(struct rfkill *rfkill)
 938{
 939	unsigned long flags;
 940	u32 state;
 941
 942	spin_lock_irqsave(&rfkill->lock, flags);
 943	state = rfkill->state;
 944	spin_unlock_irqrestore(&rfkill->lock, flags);
 945
 946	return !!(state & RFKILL_BLOCK_ANY);
 947}
 948EXPORT_SYMBOL(rfkill_blocked);
 949
 950bool rfkill_soft_blocked(struct rfkill *rfkill)
 951{
 952	unsigned long flags;
 953	u32 state;
 954
 955	spin_lock_irqsave(&rfkill->lock, flags);
 956	state = rfkill->state;
 957	spin_unlock_irqrestore(&rfkill->lock, flags);
 958
 959	return !!(state & RFKILL_BLOCK_SW);
 960}
 961EXPORT_SYMBOL(rfkill_soft_blocked);
 962
 963struct rfkill * __must_check rfkill_alloc(const char *name,
 964					  struct device *parent,
 965					  const enum rfkill_type type,
 966					  const struct rfkill_ops *ops,
 967					  void *ops_data)
 968{
 969	struct rfkill *rfkill;
 970	struct device *dev;
 971
 972	if (WARN_ON(!ops))
 973		return NULL;
 974
 975	if (WARN_ON(!ops->set_block))
 976		return NULL;
 977
 978	if (WARN_ON(!name))
 979		return NULL;
 980
 981	if (WARN_ON(type == RFKILL_TYPE_ALL || type >= NUM_RFKILL_TYPES))
 982		return NULL;
 983
 984	rfkill = kzalloc(sizeof(*rfkill) + strlen(name) + 1, GFP_KERNEL);
 985	if (!rfkill)
 986		return NULL;
 987
 988	spin_lock_init(&rfkill->lock);
 989	INIT_LIST_HEAD(&rfkill->node);
 990	rfkill->type = type;
 991	strcpy(rfkill->name, name);
 992	rfkill->ops = ops;
 993	rfkill->data = ops_data;
 994
 995	dev = &rfkill->dev;
 996	dev->class = &rfkill_class;
 997	dev->parent = parent;
 998	device_initialize(dev);
 999
1000	return rfkill;
1001}
1002EXPORT_SYMBOL(rfkill_alloc);
1003
1004static void rfkill_poll(struct work_struct *work)
1005{
1006	struct rfkill *rfkill;
1007
1008	rfkill = container_of(work, struct rfkill, poll_work.work);
1009
1010	/*
1011	 * Poll hardware state -- driver will use one of the
1012	 * rfkill_set{,_hw,_sw}_state functions and use its
1013	 * return value to update the current status.
1014	 */
1015	rfkill->ops->poll(rfkill, rfkill->data);
1016
1017	queue_delayed_work(system_power_efficient_wq,
1018		&rfkill->poll_work,
1019		round_jiffies_relative(POLL_INTERVAL));
1020}
1021
1022static void rfkill_uevent_work(struct work_struct *work)
1023{
1024	struct rfkill *rfkill;
1025
1026	rfkill = container_of(work, struct rfkill, uevent_work);
1027
1028	mutex_lock(&rfkill_global_mutex);
1029	rfkill_event(rfkill);
1030	mutex_unlock(&rfkill_global_mutex);
1031}
1032
1033static void rfkill_sync_work(struct work_struct *work)
1034{
1035	struct rfkill *rfkill;
1036	bool cur;
1037
1038	rfkill = container_of(work, struct rfkill, sync_work);
1039
1040	mutex_lock(&rfkill_global_mutex);
1041	cur = rfkill_global_states[rfkill->type].cur;
1042	rfkill_set_block(rfkill, cur);
1043	mutex_unlock(&rfkill_global_mutex);
1044}
1045
1046int __must_check rfkill_register(struct rfkill *rfkill)
1047{
1048	static unsigned long rfkill_no;
1049	struct device *dev;
1050	int error;
1051
1052	if (!rfkill)
1053		return -EINVAL;
1054
1055	dev = &rfkill->dev;
1056
1057	mutex_lock(&rfkill_global_mutex);
1058
1059	if (rfkill->registered) {
1060		error = -EALREADY;
1061		goto unlock;
1062	}
1063
1064	rfkill->idx = rfkill_no;
1065	dev_set_name(dev, "rfkill%lu", rfkill_no);
1066	rfkill_no++;
1067
1068	list_add_tail(&rfkill->node, &rfkill_list);
1069
1070	error = device_add(dev);
1071	if (error)
1072		goto remove;
1073
1074	error = rfkill_led_trigger_register(rfkill);
1075	if (error)
1076		goto devdel;
1077
1078	rfkill->registered = true;
1079
1080	INIT_DELAYED_WORK(&rfkill->poll_work, rfkill_poll);
1081	INIT_WORK(&rfkill->uevent_work, rfkill_uevent_work);
1082	INIT_WORK(&rfkill->sync_work, rfkill_sync_work);
1083
1084	if (rfkill->ops->poll)
1085		queue_delayed_work(system_power_efficient_wq,
1086			&rfkill->poll_work,
1087			round_jiffies_relative(POLL_INTERVAL));
1088
1089	if (!rfkill->persistent || rfkill_epo_lock_active) {
1090		schedule_work(&rfkill->sync_work);
1091	} else {
1092#ifdef CONFIG_RFKILL_INPUT
1093		bool soft_blocked = !!(rfkill->state & RFKILL_BLOCK_SW);
1094
1095		if (!atomic_read(&rfkill_input_disabled))
1096			__rfkill_switch_all(rfkill->type, soft_blocked);
1097#endif
1098	}
1099
1100	rfkill_global_led_trigger_event();
1101	rfkill_send_events(rfkill, RFKILL_OP_ADD);
1102
1103	mutex_unlock(&rfkill_global_mutex);
1104	return 0;
1105
1106 devdel:
1107	device_del(&rfkill->dev);
1108 remove:
1109	list_del_init(&rfkill->node);
1110 unlock:
1111	mutex_unlock(&rfkill_global_mutex);
1112	return error;
1113}
1114EXPORT_SYMBOL(rfkill_register);
1115
1116void rfkill_unregister(struct rfkill *rfkill)
1117{
1118	BUG_ON(!rfkill);
1119
1120	if (rfkill->ops->poll)
1121		cancel_delayed_work_sync(&rfkill->poll_work);
1122
1123	cancel_work_sync(&rfkill->uevent_work);
1124	cancel_work_sync(&rfkill->sync_work);
1125
1126	rfkill->registered = false;
1127
1128	device_del(&rfkill->dev);
1129
1130	mutex_lock(&rfkill_global_mutex);
1131	rfkill_send_events(rfkill, RFKILL_OP_DEL);
1132	list_del_init(&rfkill->node);
1133	rfkill_global_led_trigger_event();
1134	mutex_unlock(&rfkill_global_mutex);
1135
1136	rfkill_led_trigger_unregister(rfkill);
1137}
1138EXPORT_SYMBOL(rfkill_unregister);
1139
1140void rfkill_destroy(struct rfkill *rfkill)
1141{
1142	if (rfkill)
1143		put_device(&rfkill->dev);
1144}
1145EXPORT_SYMBOL(rfkill_destroy);
1146
1147static int rfkill_fop_open(struct inode *inode, struct file *file)
1148{
1149	struct rfkill_data *data;
1150	struct rfkill *rfkill;
1151	struct rfkill_int_event *ev, *tmp;
1152
1153	data = kzalloc(sizeof(*data), GFP_KERNEL);
1154	if (!data)
1155		return -ENOMEM;
1156
1157	data->max_size = RFKILL_EVENT_SIZE_V1;
1158
1159	INIT_LIST_HEAD(&data->events);
1160	mutex_init(&data->mtx);
1161	init_waitqueue_head(&data->read_wait);
1162
1163	mutex_lock(&rfkill_global_mutex);
1164	mutex_lock(&data->mtx);
1165	/*
1166	 * start getting events from elsewhere but hold mtx to get
1167	 * startup events added first
1168	 */
1169
1170	list_for_each_entry(rfkill, &rfkill_list, node) {
1171		ev = kzalloc(sizeof(*ev), GFP_KERNEL);
1172		if (!ev)
1173			goto free;
1174		rfkill_fill_event(&ev->ev, rfkill, RFKILL_OP_ADD);
1175		list_add_tail(&ev->list, &data->events);
1176	}
1177	list_add(&data->list, &rfkill_fds);
1178	mutex_unlock(&data->mtx);
1179	mutex_unlock(&rfkill_global_mutex);
1180
1181	file->private_data = data;
1182
1183	return stream_open(inode, file);
1184
1185 free:
1186	mutex_unlock(&data->mtx);
1187	mutex_unlock(&rfkill_global_mutex);
1188	mutex_destroy(&data->mtx);
1189	list_for_each_entry_safe(ev, tmp, &data->events, list)
1190		kfree(ev);
1191	kfree(data);
1192	return -ENOMEM;
1193}
1194
1195static __poll_t rfkill_fop_poll(struct file *file, poll_table *wait)
1196{
1197	struct rfkill_data *data = file->private_data;
1198	__poll_t res = EPOLLOUT | EPOLLWRNORM;
1199
1200	poll_wait(file, &data->read_wait, wait);
1201
1202	mutex_lock(&data->mtx);
1203	if (!list_empty(&data->events))
1204		res = EPOLLIN | EPOLLRDNORM;
1205	mutex_unlock(&data->mtx);
1206
1207	return res;
1208}
1209
 
 
 
 
 
 
 
 
 
 
 
1210static ssize_t rfkill_fop_read(struct file *file, char __user *buf,
1211			       size_t count, loff_t *pos)
1212{
1213	struct rfkill_data *data = file->private_data;
1214	struct rfkill_int_event *ev;
1215	unsigned long sz;
1216	int ret;
1217
1218	mutex_lock(&data->mtx);
1219
1220	while (list_empty(&data->events)) {
1221		if (file->f_flags & O_NONBLOCK) {
1222			ret = -EAGAIN;
1223			goto out;
1224		}
1225		mutex_unlock(&data->mtx);
1226		/* since we re-check and it just compares pointers,
1227		 * using !list_empty() without locking isn't a problem
1228		 */
1229		ret = wait_event_interruptible(data->read_wait,
1230					       !list_empty(&data->events));
1231		mutex_lock(&data->mtx);
1232
1233		if (ret)
1234			goto out;
1235	}
1236
1237	ev = list_first_entry(&data->events, struct rfkill_int_event,
1238				list);
1239
1240	sz = min_t(unsigned long, sizeof(ev->ev), count);
1241	sz = min_t(unsigned long, sz, data->max_size);
1242	ret = sz;
1243	if (copy_to_user(buf, &ev->ev, sz))
1244		ret = -EFAULT;
1245
1246	list_del(&ev->list);
1247	kfree(ev);
1248 out:
1249	mutex_unlock(&data->mtx);
1250	return ret;
1251}
1252
1253static ssize_t rfkill_fop_write(struct file *file, const char __user *buf,
1254				size_t count, loff_t *pos)
1255{
1256	struct rfkill_data *data = file->private_data;
1257	struct rfkill *rfkill;
1258	struct rfkill_event_ext ev;
1259	int ret;
1260
1261	/* we don't need the 'hard' variable but accept it */
1262	if (count < RFKILL_EVENT_SIZE_V1 - 1)
1263		return -EINVAL;
1264
1265	/*
1266	 * Copy as much data as we can accept into our 'ev' buffer,
1267	 * but tell userspace how much we've copied so it can determine
1268	 * our API version even in a write() call, if it cares.
1269	 */
1270	count = min(count, sizeof(ev));
1271	count = min_t(size_t, count, data->max_size);
1272	if (copy_from_user(&ev, buf, count))
1273		return -EFAULT;
1274
 
 
 
1275	if (ev.type >= NUM_RFKILL_TYPES)
1276		return -EINVAL;
1277
1278	mutex_lock(&rfkill_global_mutex);
1279
1280	switch (ev.op) {
1281	case RFKILL_OP_CHANGE_ALL:
1282		rfkill_update_global_state(ev.type, ev.soft);
1283		list_for_each_entry(rfkill, &rfkill_list, node)
1284			if (rfkill->type == ev.type ||
1285			    ev.type == RFKILL_TYPE_ALL)
1286				rfkill_set_block(rfkill, ev.soft);
1287		ret = 0;
1288		break;
1289	case RFKILL_OP_CHANGE:
1290		list_for_each_entry(rfkill, &rfkill_list, node)
1291			if (rfkill->idx == ev.idx &&
1292			    (rfkill->type == ev.type ||
1293			     ev.type == RFKILL_TYPE_ALL))
1294				rfkill_set_block(rfkill, ev.soft);
1295		ret = 0;
1296		break;
1297	default:
1298		ret = -EINVAL;
1299		break;
1300	}
1301
 
 
 
 
 
 
 
 
 
1302	mutex_unlock(&rfkill_global_mutex);
1303
1304	return ret ?: count;
1305}
1306
1307static int rfkill_fop_release(struct inode *inode, struct file *file)
1308{
1309	struct rfkill_data *data = file->private_data;
1310	struct rfkill_int_event *ev, *tmp;
1311
1312	mutex_lock(&rfkill_global_mutex);
1313	list_del(&data->list);
1314	mutex_unlock(&rfkill_global_mutex);
1315
1316	mutex_destroy(&data->mtx);
1317	list_for_each_entry_safe(ev, tmp, &data->events, list)
1318		kfree(ev);
1319
1320#ifdef CONFIG_RFKILL_INPUT
1321	if (data->input_handler)
1322		if (atomic_dec_return(&rfkill_input_disabled) == 0)
1323			printk(KERN_DEBUG "rfkill: input handler enabled\n");
1324#endif
1325
1326	kfree(data);
1327
1328	return 0;
1329}
1330
 
1331static long rfkill_fop_ioctl(struct file *file, unsigned int cmd,
1332			     unsigned long arg)
1333{
1334	struct rfkill_data *data = file->private_data;
1335	int ret = -ENOSYS;
1336	u32 size;
1337
1338	if (_IOC_TYPE(cmd) != RFKILL_IOC_MAGIC)
1339		return -ENOSYS;
1340
 
 
 
1341	mutex_lock(&data->mtx);
1342	switch (_IOC_NR(cmd)) {
1343#ifdef CONFIG_RFKILL_INPUT
1344	case RFKILL_IOC_NOINPUT:
1345		if (!data->input_handler) {
1346			if (atomic_inc_return(&rfkill_input_disabled) == 1)
1347				printk(KERN_DEBUG "rfkill: input handler disabled\n");
1348			data->input_handler = true;
1349		}
1350		ret = 0;
1351		break;
1352#endif
1353	case RFKILL_IOC_MAX_SIZE:
1354		if (get_user(size, (__u32 __user *)arg)) {
1355			ret = -EFAULT;
1356			break;
1357		}
1358		if (size < RFKILL_EVENT_SIZE_V1 || size > U8_MAX) {
1359			ret = -EINVAL;
1360			break;
1361		}
1362		data->max_size = size;
1363		ret = 0;
1364		break;
1365	default:
1366		break;
1367	}
 
1368	mutex_unlock(&data->mtx);
1369
1370	return ret;
1371}
 
1372
1373static const struct file_operations rfkill_fops = {
1374	.owner		= THIS_MODULE,
1375	.open		= rfkill_fop_open,
1376	.read		= rfkill_fop_read,
1377	.write		= rfkill_fop_write,
1378	.poll		= rfkill_fop_poll,
1379	.release	= rfkill_fop_release,
 
1380	.unlocked_ioctl	= rfkill_fop_ioctl,
1381	.compat_ioctl	= compat_ptr_ioctl,
 
1382	.llseek		= no_llseek,
1383};
1384
1385#define RFKILL_NAME "rfkill"
1386
1387static struct miscdevice rfkill_miscdev = {
 
1388	.fops	= &rfkill_fops,
1389	.name	= RFKILL_NAME,
1390	.minor	= RFKILL_MINOR,
1391};
1392
1393static int __init rfkill_init(void)
1394{
1395	int error;
 
1396
1397	rfkill_update_global_state(RFKILL_TYPE_ALL, !rfkill_default_state);
 
1398
1399	error = class_register(&rfkill_class);
1400	if (error)
1401		goto error_class;
1402
1403	error = misc_register(&rfkill_miscdev);
1404	if (error)
1405		goto error_misc;
1406
1407	error = rfkill_global_led_trigger_register();
1408	if (error)
1409		goto error_led_trigger;
1410
1411#ifdef CONFIG_RFKILL_INPUT
1412	error = rfkill_handler_init();
1413	if (error)
1414		goto error_input;
 
 
 
1415#endif
1416
1417	return 0;
1418
1419#ifdef CONFIG_RFKILL_INPUT
1420error_input:
1421	rfkill_global_led_trigger_unregister();
1422#endif
1423error_led_trigger:
1424	misc_deregister(&rfkill_miscdev);
1425error_misc:
1426	class_unregister(&rfkill_class);
1427error_class:
1428	return error;
1429}
1430subsys_initcall(rfkill_init);
1431
1432static void __exit rfkill_exit(void)
1433{
1434#ifdef CONFIG_RFKILL_INPUT
1435	rfkill_handler_exit();
1436#endif
1437	rfkill_global_led_trigger_unregister();
1438	misc_deregister(&rfkill_miscdev);
1439	class_unregister(&rfkill_class);
1440}
1441module_exit(rfkill_exit);
1442
1443MODULE_ALIAS_MISCDEV(RFKILL_MINOR);
1444MODULE_ALIAS("devname:" RFKILL_NAME);
v3.15
 
   1/*
   2 * Copyright (C) 2006 - 2007 Ivo van Doorn
   3 * Copyright (C) 2007 Dmitry Torokhov
   4 * Copyright 2009 Johannes Berg <johannes@sipsolutions.net>
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation; either version 2 of the License, or
   9 * (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program; if not, see <http://www.gnu.org/licenses/>.
  18 */
  19
  20#include <linux/kernel.h>
  21#include <linux/module.h>
  22#include <linux/init.h>
  23#include <linux/workqueue.h>
  24#include <linux/capability.h>
  25#include <linux/list.h>
  26#include <linux/mutex.h>
  27#include <linux/rfkill.h>
  28#include <linux/sched.h>
  29#include <linux/spinlock.h>
  30#include <linux/device.h>
  31#include <linux/miscdevice.h>
  32#include <linux/wait.h>
  33#include <linux/poll.h>
  34#include <linux/fs.h>
  35#include <linux/slab.h>
  36
  37#include "rfkill.h"
  38
  39#define POLL_INTERVAL		(5 * HZ)
  40
  41#define RFKILL_BLOCK_HW		BIT(0)
  42#define RFKILL_BLOCK_SW		BIT(1)
  43#define RFKILL_BLOCK_SW_PREV	BIT(2)
  44#define RFKILL_BLOCK_ANY	(RFKILL_BLOCK_HW |\
  45				 RFKILL_BLOCK_SW |\
  46				 RFKILL_BLOCK_SW_PREV)
  47#define RFKILL_BLOCK_SW_SETCALL	BIT(31)
  48
  49struct rfkill {
  50	spinlock_t		lock;
  51
  52	const char		*name;
  53	enum rfkill_type	type;
  54
  55	unsigned long		state;
 
  56
  57	u32			idx;
  58
  59	bool			registered;
  60	bool			persistent;
 
 
  61
  62	const struct rfkill_ops	*ops;
  63	void			*data;
  64
  65#ifdef CONFIG_RFKILL_LEDS
  66	struct led_trigger	led_trigger;
  67	const char		*ledtrigname;
  68#endif
  69
  70	struct device		dev;
  71	struct list_head	node;
  72
  73	struct delayed_work	poll_work;
  74	struct work_struct	uevent_work;
  75	struct work_struct	sync_work;
 
  76};
  77#define to_rfkill(d)	container_of(d, struct rfkill, dev)
  78
  79struct rfkill_int_event {
  80	struct list_head	list;
  81	struct rfkill_event	ev;
  82};
  83
  84struct rfkill_data {
  85	struct list_head	list;
  86	struct list_head	events;
  87	struct mutex		mtx;
  88	wait_queue_head_t	read_wait;
  89	bool			input_handler;
 
  90};
  91
  92
  93MODULE_AUTHOR("Ivo van Doorn <IvDoorn@gmail.com>");
  94MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
  95MODULE_DESCRIPTION("RF switch support");
  96MODULE_LICENSE("GPL");
  97
  98
  99/*
 100 * The locking here should be made much smarter, we currently have
 101 * a bit of a stupid situation because drivers might want to register
 102 * the rfkill struct under their own lock, and take this lock during
 103 * rfkill method calls -- which will cause an AB-BA deadlock situation.
 104 *
 105 * To fix that, we need to rework this code here to be mostly lock-free
 106 * and only use the mutex for list manipulations, not to protect the
 107 * various other global variables. Then we can avoid holding the mutex
 108 * around driver operations, and all is happy.
 109 */
 110static LIST_HEAD(rfkill_list);	/* list of registered rf switches */
 111static DEFINE_MUTEX(rfkill_global_mutex);
 112static LIST_HEAD(rfkill_fds);	/* list of open fds of /dev/rfkill */
 113
 114static unsigned int rfkill_default_state = 1;
 115module_param_named(default_state, rfkill_default_state, uint, 0444);
 116MODULE_PARM_DESC(default_state,
 117		 "Default initial state for all radio types, 0 = radio off");
 118
 119static struct {
 120	bool cur, sav;
 121} rfkill_global_states[NUM_RFKILL_TYPES];
 122
 123static bool rfkill_epo_lock_active;
 124
 125
 126#ifdef CONFIG_RFKILL_LEDS
 127static void rfkill_led_trigger_event(struct rfkill *rfkill)
 128{
 129	struct led_trigger *trigger;
 130
 131	if (!rfkill->registered)
 132		return;
 133
 134	trigger = &rfkill->led_trigger;
 135
 136	if (rfkill->state & RFKILL_BLOCK_ANY)
 137		led_trigger_event(trigger, LED_OFF);
 138	else
 139		led_trigger_event(trigger, LED_FULL);
 140}
 141
 142static void rfkill_led_trigger_activate(struct led_classdev *led)
 143{
 144	struct rfkill *rfkill;
 145
 146	rfkill = container_of(led->trigger, struct rfkill, led_trigger);
 147
 148	rfkill_led_trigger_event(rfkill);
 
 
 149}
 150
 151const char *rfkill_get_led_trigger_name(struct rfkill *rfkill)
 152{
 153	return rfkill->led_trigger.name;
 154}
 155EXPORT_SYMBOL(rfkill_get_led_trigger_name);
 156
 157void rfkill_set_led_trigger_name(struct rfkill *rfkill, const char *name)
 158{
 159	BUG_ON(!rfkill);
 160
 161	rfkill->ledtrigname = name;
 162}
 163EXPORT_SYMBOL(rfkill_set_led_trigger_name);
 164
 165static int rfkill_led_trigger_register(struct rfkill *rfkill)
 166{
 167	rfkill->led_trigger.name = rfkill->ledtrigname
 168					? : dev_name(&rfkill->dev);
 169	rfkill->led_trigger.activate = rfkill_led_trigger_activate;
 170	return led_trigger_register(&rfkill->led_trigger);
 171}
 172
 173static void rfkill_led_trigger_unregister(struct rfkill *rfkill)
 174{
 175	led_trigger_unregister(&rfkill->led_trigger);
 176}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 177#else
 178static void rfkill_led_trigger_event(struct rfkill *rfkill)
 179{
 180}
 181
 182static inline int rfkill_led_trigger_register(struct rfkill *rfkill)
 183{
 184	return 0;
 185}
 186
 187static inline void rfkill_led_trigger_unregister(struct rfkill *rfkill)
 188{
 189}
 
 
 
 
 
 
 
 
 
 
 
 
 
 190#endif /* CONFIG_RFKILL_LEDS */
 191
 192static void rfkill_fill_event(struct rfkill_event *ev, struct rfkill *rfkill,
 
 193			      enum rfkill_operation op)
 194{
 195	unsigned long flags;
 196
 197	ev->idx = rfkill->idx;
 198	ev->type = rfkill->type;
 199	ev->op = op;
 200
 201	spin_lock_irqsave(&rfkill->lock, flags);
 202	ev->hard = !!(rfkill->state & RFKILL_BLOCK_HW);
 203	ev->soft = !!(rfkill->state & (RFKILL_BLOCK_SW |
 204					RFKILL_BLOCK_SW_PREV));
 
 205	spin_unlock_irqrestore(&rfkill->lock, flags);
 206}
 207
 208static void rfkill_send_events(struct rfkill *rfkill, enum rfkill_operation op)
 209{
 210	struct rfkill_data *data;
 211	struct rfkill_int_event *ev;
 212
 213	list_for_each_entry(data, &rfkill_fds, list) {
 214		ev = kzalloc(sizeof(*ev), GFP_KERNEL);
 215		if (!ev)
 216			continue;
 217		rfkill_fill_event(&ev->ev, rfkill, op);
 218		mutex_lock(&data->mtx);
 219		list_add_tail(&ev->list, &data->events);
 220		mutex_unlock(&data->mtx);
 221		wake_up_interruptible(&data->read_wait);
 222	}
 223}
 224
 225static void rfkill_event(struct rfkill *rfkill)
 226{
 227	if (!rfkill->registered)
 228		return;
 229
 230	kobject_uevent(&rfkill->dev.kobj, KOBJ_CHANGE);
 231
 232	/* also send event to /dev/rfkill */
 233	rfkill_send_events(rfkill, RFKILL_OP_CHANGE);
 234}
 235
 236static bool __rfkill_set_hw_state(struct rfkill *rfkill,
 237				  bool blocked, bool *change)
 238{
 239	unsigned long flags;
 240	bool prev, any;
 241
 242	BUG_ON(!rfkill);
 243
 244	spin_lock_irqsave(&rfkill->lock, flags);
 245	prev = !!(rfkill->state & RFKILL_BLOCK_HW);
 246	if (blocked)
 247		rfkill->state |= RFKILL_BLOCK_HW;
 248	else
 249		rfkill->state &= ~RFKILL_BLOCK_HW;
 250	*change = prev != blocked;
 251	any = !!(rfkill->state & RFKILL_BLOCK_ANY);
 252	spin_unlock_irqrestore(&rfkill->lock, flags);
 253
 254	rfkill_led_trigger_event(rfkill);
 255
 256	return any;
 257}
 258
 259/**
 260 * rfkill_set_block - wrapper for set_block method
 261 *
 262 * @rfkill: the rfkill struct to use
 263 * @blocked: the new software state
 264 *
 265 * Calls the set_block method (when applicable) and handles notifications
 266 * etc. as well.
 267 */
 268static void rfkill_set_block(struct rfkill *rfkill, bool blocked)
 269{
 270	unsigned long flags;
 271	bool prev, curr;
 272	int err;
 273
 274	if (unlikely(rfkill->dev.power.power_state.event & PM_EVENT_SLEEP))
 275		return;
 276
 277	/*
 278	 * Some platforms (...!) generate input events which affect the
 279	 * _hard_ kill state -- whenever something tries to change the
 280	 * current software state query the hardware state too.
 281	 */
 282	if (rfkill->ops->query)
 283		rfkill->ops->query(rfkill, rfkill->data);
 284
 285	spin_lock_irqsave(&rfkill->lock, flags);
 286	prev = rfkill->state & RFKILL_BLOCK_SW;
 287
 288	if (rfkill->state & RFKILL_BLOCK_SW)
 289		rfkill->state |= RFKILL_BLOCK_SW_PREV;
 290	else
 291		rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
 292
 293	if (blocked)
 294		rfkill->state |= RFKILL_BLOCK_SW;
 295	else
 296		rfkill->state &= ~RFKILL_BLOCK_SW;
 297
 298	rfkill->state |= RFKILL_BLOCK_SW_SETCALL;
 299	spin_unlock_irqrestore(&rfkill->lock, flags);
 300
 301	err = rfkill->ops->set_block(rfkill->data, blocked);
 302
 303	spin_lock_irqsave(&rfkill->lock, flags);
 304	if (err) {
 305		/*
 306		 * Failed -- reset status to _prev, this may be different
 307		 * from what set set _PREV to earlier in this function
 308		 * if rfkill_set_sw_state was invoked.
 309		 */
 310		if (rfkill->state & RFKILL_BLOCK_SW_PREV)
 311			rfkill->state |= RFKILL_BLOCK_SW;
 312		else
 313			rfkill->state &= ~RFKILL_BLOCK_SW;
 314	}
 315	rfkill->state &= ~RFKILL_BLOCK_SW_SETCALL;
 316	rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
 317	curr = rfkill->state & RFKILL_BLOCK_SW;
 318	spin_unlock_irqrestore(&rfkill->lock, flags);
 319
 320	rfkill_led_trigger_event(rfkill);
 
 321
 322	if (prev != curr)
 323		rfkill_event(rfkill);
 324}
 325
 
 
 
 
 
 
 
 
 
 
 
 
 
 326#ifdef CONFIG_RFKILL_INPUT
 327static atomic_t rfkill_input_disabled = ATOMIC_INIT(0);
 328
 329/**
 330 * __rfkill_switch_all - Toggle state of all switches of given type
 331 * @type: type of interfaces to be affected
 332 * @state: the new state
 333 *
 334 * This function sets the state of all switches of given type,
 335 * unless a specific switch is claimed by userspace (in which case,
 336 * that switch is left alone) or suspended.
 337 *
 338 * Caller must have acquired rfkill_global_mutex.
 339 */
 340static void __rfkill_switch_all(const enum rfkill_type type, bool blocked)
 341{
 342	struct rfkill *rfkill;
 343
 344	rfkill_global_states[type].cur = blocked;
 345	list_for_each_entry(rfkill, &rfkill_list, node) {
 346		if (rfkill->type != type && type != RFKILL_TYPE_ALL)
 347			continue;
 348
 349		rfkill_set_block(rfkill, blocked);
 350	}
 351}
 352
 353/**
 354 * rfkill_switch_all - Toggle state of all switches of given type
 355 * @type: type of interfaces to be affected
 356 * @state: the new state
 357 *
 358 * Acquires rfkill_global_mutex and calls __rfkill_switch_all(@type, @state).
 359 * Please refer to __rfkill_switch_all() for details.
 360 *
 361 * Does nothing if the EPO lock is active.
 362 */
 363void rfkill_switch_all(enum rfkill_type type, bool blocked)
 364{
 365	if (atomic_read(&rfkill_input_disabled))
 366		return;
 367
 368	mutex_lock(&rfkill_global_mutex);
 369
 370	if (!rfkill_epo_lock_active)
 371		__rfkill_switch_all(type, blocked);
 372
 373	mutex_unlock(&rfkill_global_mutex);
 374}
 375
 376/**
 377 * rfkill_epo - emergency power off all transmitters
 378 *
 379 * This kicks all non-suspended rfkill devices to RFKILL_STATE_SOFT_BLOCKED,
 380 * ignoring everything in its path but rfkill_global_mutex and rfkill->mutex.
 381 *
 382 * The global state before the EPO is saved and can be restored later
 383 * using rfkill_restore_states().
 384 */
 385void rfkill_epo(void)
 386{
 387	struct rfkill *rfkill;
 388	int i;
 389
 390	if (atomic_read(&rfkill_input_disabled))
 391		return;
 392
 393	mutex_lock(&rfkill_global_mutex);
 394
 395	rfkill_epo_lock_active = true;
 396	list_for_each_entry(rfkill, &rfkill_list, node)
 397		rfkill_set_block(rfkill, true);
 398
 399	for (i = 0; i < NUM_RFKILL_TYPES; i++) {
 400		rfkill_global_states[i].sav = rfkill_global_states[i].cur;
 401		rfkill_global_states[i].cur = true;
 402	}
 403
 404	mutex_unlock(&rfkill_global_mutex);
 405}
 406
 407/**
 408 * rfkill_restore_states - restore global states
 409 *
 410 * Restore (and sync switches to) the global state from the
 411 * states in rfkill_default_states.  This can undo the effects of
 412 * a call to rfkill_epo().
 413 */
 414void rfkill_restore_states(void)
 415{
 416	int i;
 417
 418	if (atomic_read(&rfkill_input_disabled))
 419		return;
 420
 421	mutex_lock(&rfkill_global_mutex);
 422
 423	rfkill_epo_lock_active = false;
 424	for (i = 0; i < NUM_RFKILL_TYPES; i++)
 425		__rfkill_switch_all(i, rfkill_global_states[i].sav);
 426	mutex_unlock(&rfkill_global_mutex);
 427}
 428
 429/**
 430 * rfkill_remove_epo_lock - unlock state changes
 431 *
 432 * Used by rfkill-input manually unlock state changes, when
 433 * the EPO switch is deactivated.
 434 */
 435void rfkill_remove_epo_lock(void)
 436{
 437	if (atomic_read(&rfkill_input_disabled))
 438		return;
 439
 440	mutex_lock(&rfkill_global_mutex);
 441	rfkill_epo_lock_active = false;
 442	mutex_unlock(&rfkill_global_mutex);
 443}
 444
 445/**
 446 * rfkill_is_epo_lock_active - returns true EPO is active
 447 *
 448 * Returns 0 (false) if there is NOT an active EPO contidion,
 449 * and 1 (true) if there is an active EPO contition, which
 450 * locks all radios in one of the BLOCKED states.
 451 *
 452 * Can be called in atomic context.
 453 */
 454bool rfkill_is_epo_lock_active(void)
 455{
 456	return rfkill_epo_lock_active;
 457}
 458
 459/**
 460 * rfkill_get_global_sw_state - returns global state for a type
 461 * @type: the type to get the global state of
 462 *
 463 * Returns the current global state for a given wireless
 464 * device type.
 465 */
 466bool rfkill_get_global_sw_state(const enum rfkill_type type)
 467{
 468	return rfkill_global_states[type].cur;
 469}
 470#endif
 471
 
 
 
 
 
 
 
 472
 473bool rfkill_set_hw_state(struct rfkill *rfkill, bool blocked)
 474{
 475	bool ret, change;
 
 476
 477	ret = __rfkill_set_hw_state(rfkill, blocked, &change);
 
 
 
 
 
 
 
 
 
 
 
 478
 479	if (!rfkill->registered)
 480		return ret;
 481
 482	if (change)
 483		schedule_work(&rfkill->uevent_work);
 484
 485	return ret;
 486}
 487EXPORT_SYMBOL(rfkill_set_hw_state);
 488
 489static void __rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
 490{
 491	u32 bit = RFKILL_BLOCK_SW;
 492
 493	/* if in a ops->set_block right now, use other bit */
 494	if (rfkill->state & RFKILL_BLOCK_SW_SETCALL)
 495		bit = RFKILL_BLOCK_SW_PREV;
 496
 497	if (blocked)
 498		rfkill->state |= bit;
 499	else
 500		rfkill->state &= ~bit;
 501}
 502
 503bool rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
 504{
 505	unsigned long flags;
 506	bool prev, hwblock;
 507
 508	BUG_ON(!rfkill);
 509
 510	spin_lock_irqsave(&rfkill->lock, flags);
 511	prev = !!(rfkill->state & RFKILL_BLOCK_SW);
 512	__rfkill_set_sw_state(rfkill, blocked);
 513	hwblock = !!(rfkill->state & RFKILL_BLOCK_HW);
 514	blocked = blocked || hwblock;
 515	spin_unlock_irqrestore(&rfkill->lock, flags);
 516
 517	if (!rfkill->registered)
 518		return blocked;
 519
 520	if (prev != blocked && !hwblock)
 521		schedule_work(&rfkill->uevent_work);
 522
 523	rfkill_led_trigger_event(rfkill);
 
 524
 525	return blocked;
 526}
 527EXPORT_SYMBOL(rfkill_set_sw_state);
 528
 529void rfkill_init_sw_state(struct rfkill *rfkill, bool blocked)
 530{
 531	unsigned long flags;
 532
 533	BUG_ON(!rfkill);
 534	BUG_ON(rfkill->registered);
 535
 536	spin_lock_irqsave(&rfkill->lock, flags);
 537	__rfkill_set_sw_state(rfkill, blocked);
 538	rfkill->persistent = true;
 539	spin_unlock_irqrestore(&rfkill->lock, flags);
 540}
 541EXPORT_SYMBOL(rfkill_init_sw_state);
 542
 543void rfkill_set_states(struct rfkill *rfkill, bool sw, bool hw)
 544{
 545	unsigned long flags;
 546	bool swprev, hwprev;
 547
 548	BUG_ON(!rfkill);
 549
 550	spin_lock_irqsave(&rfkill->lock, flags);
 551
 552	/*
 553	 * No need to care about prev/setblock ... this is for uevent only
 554	 * and that will get triggered by rfkill_set_block anyway.
 555	 */
 556	swprev = !!(rfkill->state & RFKILL_BLOCK_SW);
 557	hwprev = !!(rfkill->state & RFKILL_BLOCK_HW);
 558	__rfkill_set_sw_state(rfkill, sw);
 559	if (hw)
 560		rfkill->state |= RFKILL_BLOCK_HW;
 561	else
 562		rfkill->state &= ~RFKILL_BLOCK_HW;
 563
 564	spin_unlock_irqrestore(&rfkill->lock, flags);
 565
 566	if (!rfkill->registered) {
 567		rfkill->persistent = true;
 568	} else {
 569		if (swprev != sw || hwprev != hw)
 570			schedule_work(&rfkill->uevent_work);
 571
 572		rfkill_led_trigger_event(rfkill);
 
 573	}
 574}
 575EXPORT_SYMBOL(rfkill_set_states);
 576
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 577static ssize_t name_show(struct device *dev, struct device_attribute *attr,
 578			 char *buf)
 579{
 580	struct rfkill *rfkill = to_rfkill(dev);
 581
 582	return sprintf(buf, "%s\n", rfkill->name);
 583}
 584static DEVICE_ATTR_RO(name);
 585
 586static const char *rfkill_get_type_str(enum rfkill_type type)
 587{
 588	BUILD_BUG_ON(NUM_RFKILL_TYPES != RFKILL_TYPE_NFC + 1);
 589
 590	switch (type) {
 591	case RFKILL_TYPE_WLAN:
 592		return "wlan";
 593	case RFKILL_TYPE_BLUETOOTH:
 594		return "bluetooth";
 595	case RFKILL_TYPE_UWB:
 596		return "ultrawideband";
 597	case RFKILL_TYPE_WIMAX:
 598		return "wimax";
 599	case RFKILL_TYPE_WWAN:
 600		return "wwan";
 601	case RFKILL_TYPE_GPS:
 602		return "gps";
 603	case RFKILL_TYPE_FM:
 604		return "fm";
 605	case RFKILL_TYPE_NFC:
 606		return "nfc";
 607	default:
 608		BUG();
 609	}
 610}
 611
 612static ssize_t type_show(struct device *dev, struct device_attribute *attr,
 613			 char *buf)
 614{
 615	struct rfkill *rfkill = to_rfkill(dev);
 616
 617	return sprintf(buf, "%s\n", rfkill_get_type_str(rfkill->type));
 618}
 619static DEVICE_ATTR_RO(type);
 620
 621static ssize_t index_show(struct device *dev, struct device_attribute *attr,
 622			  char *buf)
 623{
 624	struct rfkill *rfkill = to_rfkill(dev);
 625
 626	return sprintf(buf, "%d\n", rfkill->idx);
 627}
 628static DEVICE_ATTR_RO(index);
 629
 630static ssize_t persistent_show(struct device *dev,
 631			       struct device_attribute *attr, char *buf)
 632{
 633	struct rfkill *rfkill = to_rfkill(dev);
 634
 635	return sprintf(buf, "%d\n", rfkill->persistent);
 636}
 637static DEVICE_ATTR_RO(persistent);
 638
 639static ssize_t hard_show(struct device *dev, struct device_attribute *attr,
 640			 char *buf)
 641{
 642	struct rfkill *rfkill = to_rfkill(dev);
 643
 644	return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_HW) ? 1 : 0 );
 645}
 646static DEVICE_ATTR_RO(hard);
 647
 648static ssize_t soft_show(struct device *dev, struct device_attribute *attr,
 649			 char *buf)
 650{
 651	struct rfkill *rfkill = to_rfkill(dev);
 652
 653	return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_SW) ? 1 : 0 );
 654}
 655
 656static ssize_t soft_store(struct device *dev, struct device_attribute *attr,
 657			  const char *buf, size_t count)
 658{
 659	struct rfkill *rfkill = to_rfkill(dev);
 660	unsigned long state;
 661	int err;
 662
 663	if (!capable(CAP_NET_ADMIN))
 664		return -EPERM;
 665
 666	err = kstrtoul(buf, 0, &state);
 667	if (err)
 668		return err;
 669
 670	if (state > 1 )
 671		return -EINVAL;
 672
 673	mutex_lock(&rfkill_global_mutex);
 674	rfkill_set_block(rfkill, state);
 675	mutex_unlock(&rfkill_global_mutex);
 676
 677	return count;
 678}
 679static DEVICE_ATTR_RW(soft);
 680
 
 
 
 
 
 
 
 
 
 
 681static u8 user_state_from_blocked(unsigned long state)
 682{
 683	if (state & RFKILL_BLOCK_HW)
 684		return RFKILL_USER_STATE_HARD_BLOCKED;
 685	if (state & RFKILL_BLOCK_SW)
 686		return RFKILL_USER_STATE_SOFT_BLOCKED;
 687
 688	return RFKILL_USER_STATE_UNBLOCKED;
 689}
 690
 691static ssize_t state_show(struct device *dev, struct device_attribute *attr,
 692			  char *buf)
 693{
 694	struct rfkill *rfkill = to_rfkill(dev);
 695
 696	return sprintf(buf, "%d\n", user_state_from_blocked(rfkill->state));
 697}
 698
 699static ssize_t state_store(struct device *dev, struct device_attribute *attr,
 700			   const char *buf, size_t count)
 701{
 702	struct rfkill *rfkill = to_rfkill(dev);
 703	unsigned long state;
 704	int err;
 705
 706	if (!capable(CAP_NET_ADMIN))
 707		return -EPERM;
 708
 709	err = kstrtoul(buf, 0, &state);
 710	if (err)
 711		return err;
 712
 713	if (state != RFKILL_USER_STATE_SOFT_BLOCKED &&
 714	    state != RFKILL_USER_STATE_UNBLOCKED)
 715		return -EINVAL;
 716
 717	mutex_lock(&rfkill_global_mutex);
 718	rfkill_set_block(rfkill, state == RFKILL_USER_STATE_SOFT_BLOCKED);
 719	mutex_unlock(&rfkill_global_mutex);
 720
 721	return count;
 722}
 723static DEVICE_ATTR_RW(state);
 724
 725static ssize_t claim_show(struct device *dev, struct device_attribute *attr,
 726			  char *buf)
 727{
 728	return sprintf(buf, "%d\n", 0);
 729}
 730static DEVICE_ATTR_RO(claim);
 731
 732static struct attribute *rfkill_dev_attrs[] = {
 733	&dev_attr_name.attr,
 734	&dev_attr_type.attr,
 735	&dev_attr_index.attr,
 736	&dev_attr_persistent.attr,
 737	&dev_attr_state.attr,
 738	&dev_attr_claim.attr,
 739	&dev_attr_soft.attr,
 740	&dev_attr_hard.attr,
 
 741	NULL,
 742};
 743ATTRIBUTE_GROUPS(rfkill_dev);
 744
 745static void rfkill_release(struct device *dev)
 746{
 747	struct rfkill *rfkill = to_rfkill(dev);
 748
 749	kfree(rfkill);
 750}
 751
 752static int rfkill_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
 753{
 754	struct rfkill *rfkill = to_rfkill(dev);
 755	unsigned long flags;
 
 756	u32 state;
 757	int error;
 758
 759	error = add_uevent_var(env, "RFKILL_NAME=%s", rfkill->name);
 760	if (error)
 761		return error;
 762	error = add_uevent_var(env, "RFKILL_TYPE=%s",
 763			       rfkill_get_type_str(rfkill->type));
 764	if (error)
 765		return error;
 766	spin_lock_irqsave(&rfkill->lock, flags);
 767	state = rfkill->state;
 
 768	spin_unlock_irqrestore(&rfkill->lock, flags);
 769	error = add_uevent_var(env, "RFKILL_STATE=%d",
 770			       user_state_from_blocked(state));
 771	return error;
 
 
 772}
 773
 774void rfkill_pause_polling(struct rfkill *rfkill)
 775{
 776	BUG_ON(!rfkill);
 777
 778	if (!rfkill->ops->poll)
 779		return;
 780
 
 781	cancel_delayed_work_sync(&rfkill->poll_work);
 782}
 783EXPORT_SYMBOL(rfkill_pause_polling);
 784
 785void rfkill_resume_polling(struct rfkill *rfkill)
 786{
 787	BUG_ON(!rfkill);
 788
 789	if (!rfkill->ops->poll)
 790		return;
 791
 
 
 
 
 
 792	queue_delayed_work(system_power_efficient_wq,
 793			   &rfkill->poll_work, 0);
 794}
 795EXPORT_SYMBOL(rfkill_resume_polling);
 796
 797static int rfkill_suspend(struct device *dev, pm_message_t state)
 
 798{
 799	struct rfkill *rfkill = to_rfkill(dev);
 800
 801	rfkill_pause_polling(rfkill);
 
 802
 803	return 0;
 804}
 805
 806static int rfkill_resume(struct device *dev)
 807{
 808	struct rfkill *rfkill = to_rfkill(dev);
 809	bool cur;
 810
 
 
 
 
 
 811	if (!rfkill->persistent) {
 812		cur = !!(rfkill->state & RFKILL_BLOCK_SW);
 813		rfkill_set_block(rfkill, cur);
 814	}
 815
 816	rfkill_resume_polling(rfkill);
 
 
 817
 818	return 0;
 819}
 820
 
 
 
 
 
 
 821static struct class rfkill_class = {
 822	.name		= "rfkill",
 823	.dev_release	= rfkill_release,
 824	.dev_groups	= rfkill_dev_groups,
 825	.dev_uevent	= rfkill_dev_uevent,
 826	.suspend	= rfkill_suspend,
 827	.resume		= rfkill_resume,
 828};
 829
 830bool rfkill_blocked(struct rfkill *rfkill)
 831{
 832	unsigned long flags;
 833	u32 state;
 834
 835	spin_lock_irqsave(&rfkill->lock, flags);
 836	state = rfkill->state;
 837	spin_unlock_irqrestore(&rfkill->lock, flags);
 838
 839	return !!(state & RFKILL_BLOCK_ANY);
 840}
 841EXPORT_SYMBOL(rfkill_blocked);
 842
 
 
 
 
 
 
 
 
 
 
 
 
 843
 844struct rfkill * __must_check rfkill_alloc(const char *name,
 845					  struct device *parent,
 846					  const enum rfkill_type type,
 847					  const struct rfkill_ops *ops,
 848					  void *ops_data)
 849{
 850	struct rfkill *rfkill;
 851	struct device *dev;
 852
 853	if (WARN_ON(!ops))
 854		return NULL;
 855
 856	if (WARN_ON(!ops->set_block))
 857		return NULL;
 858
 859	if (WARN_ON(!name))
 860		return NULL;
 861
 862	if (WARN_ON(type == RFKILL_TYPE_ALL || type >= NUM_RFKILL_TYPES))
 863		return NULL;
 864
 865	rfkill = kzalloc(sizeof(*rfkill), GFP_KERNEL);
 866	if (!rfkill)
 867		return NULL;
 868
 869	spin_lock_init(&rfkill->lock);
 870	INIT_LIST_HEAD(&rfkill->node);
 871	rfkill->type = type;
 872	rfkill->name = name;
 873	rfkill->ops = ops;
 874	rfkill->data = ops_data;
 875
 876	dev = &rfkill->dev;
 877	dev->class = &rfkill_class;
 878	dev->parent = parent;
 879	device_initialize(dev);
 880
 881	return rfkill;
 882}
 883EXPORT_SYMBOL(rfkill_alloc);
 884
 885static void rfkill_poll(struct work_struct *work)
 886{
 887	struct rfkill *rfkill;
 888
 889	rfkill = container_of(work, struct rfkill, poll_work.work);
 890
 891	/*
 892	 * Poll hardware state -- driver will use one of the
 893	 * rfkill_set{,_hw,_sw}_state functions and use its
 894	 * return value to update the current status.
 895	 */
 896	rfkill->ops->poll(rfkill, rfkill->data);
 897
 898	queue_delayed_work(system_power_efficient_wq,
 899		&rfkill->poll_work,
 900		round_jiffies_relative(POLL_INTERVAL));
 901}
 902
 903static void rfkill_uevent_work(struct work_struct *work)
 904{
 905	struct rfkill *rfkill;
 906
 907	rfkill = container_of(work, struct rfkill, uevent_work);
 908
 909	mutex_lock(&rfkill_global_mutex);
 910	rfkill_event(rfkill);
 911	mutex_unlock(&rfkill_global_mutex);
 912}
 913
 914static void rfkill_sync_work(struct work_struct *work)
 915{
 916	struct rfkill *rfkill;
 917	bool cur;
 918
 919	rfkill = container_of(work, struct rfkill, sync_work);
 920
 921	mutex_lock(&rfkill_global_mutex);
 922	cur = rfkill_global_states[rfkill->type].cur;
 923	rfkill_set_block(rfkill, cur);
 924	mutex_unlock(&rfkill_global_mutex);
 925}
 926
 927int __must_check rfkill_register(struct rfkill *rfkill)
 928{
 929	static unsigned long rfkill_no;
 930	struct device *dev = &rfkill->dev;
 931	int error;
 932
 933	BUG_ON(!rfkill);
 
 
 
 934
 935	mutex_lock(&rfkill_global_mutex);
 936
 937	if (rfkill->registered) {
 938		error = -EALREADY;
 939		goto unlock;
 940	}
 941
 942	rfkill->idx = rfkill_no;
 943	dev_set_name(dev, "rfkill%lu", rfkill_no);
 944	rfkill_no++;
 945
 946	list_add_tail(&rfkill->node, &rfkill_list);
 947
 948	error = device_add(dev);
 949	if (error)
 950		goto remove;
 951
 952	error = rfkill_led_trigger_register(rfkill);
 953	if (error)
 954		goto devdel;
 955
 956	rfkill->registered = true;
 957
 958	INIT_DELAYED_WORK(&rfkill->poll_work, rfkill_poll);
 959	INIT_WORK(&rfkill->uevent_work, rfkill_uevent_work);
 960	INIT_WORK(&rfkill->sync_work, rfkill_sync_work);
 961
 962	if (rfkill->ops->poll)
 963		queue_delayed_work(system_power_efficient_wq,
 964			&rfkill->poll_work,
 965			round_jiffies_relative(POLL_INTERVAL));
 966
 967	if (!rfkill->persistent || rfkill_epo_lock_active) {
 968		schedule_work(&rfkill->sync_work);
 969	} else {
 970#ifdef CONFIG_RFKILL_INPUT
 971		bool soft_blocked = !!(rfkill->state & RFKILL_BLOCK_SW);
 972
 973		if (!atomic_read(&rfkill_input_disabled))
 974			__rfkill_switch_all(rfkill->type, soft_blocked);
 975#endif
 976	}
 977
 
 978	rfkill_send_events(rfkill, RFKILL_OP_ADD);
 979
 980	mutex_unlock(&rfkill_global_mutex);
 981	return 0;
 982
 983 devdel:
 984	device_del(&rfkill->dev);
 985 remove:
 986	list_del_init(&rfkill->node);
 987 unlock:
 988	mutex_unlock(&rfkill_global_mutex);
 989	return error;
 990}
 991EXPORT_SYMBOL(rfkill_register);
 992
 993void rfkill_unregister(struct rfkill *rfkill)
 994{
 995	BUG_ON(!rfkill);
 996
 997	if (rfkill->ops->poll)
 998		cancel_delayed_work_sync(&rfkill->poll_work);
 999
1000	cancel_work_sync(&rfkill->uevent_work);
1001	cancel_work_sync(&rfkill->sync_work);
1002
1003	rfkill->registered = false;
1004
1005	device_del(&rfkill->dev);
1006
1007	mutex_lock(&rfkill_global_mutex);
1008	rfkill_send_events(rfkill, RFKILL_OP_DEL);
1009	list_del_init(&rfkill->node);
 
1010	mutex_unlock(&rfkill_global_mutex);
1011
1012	rfkill_led_trigger_unregister(rfkill);
1013}
1014EXPORT_SYMBOL(rfkill_unregister);
1015
1016void rfkill_destroy(struct rfkill *rfkill)
1017{
1018	if (rfkill)
1019		put_device(&rfkill->dev);
1020}
1021EXPORT_SYMBOL(rfkill_destroy);
1022
1023static int rfkill_fop_open(struct inode *inode, struct file *file)
1024{
1025	struct rfkill_data *data;
1026	struct rfkill *rfkill;
1027	struct rfkill_int_event *ev, *tmp;
1028
1029	data = kzalloc(sizeof(*data), GFP_KERNEL);
1030	if (!data)
1031		return -ENOMEM;
1032
 
 
1033	INIT_LIST_HEAD(&data->events);
1034	mutex_init(&data->mtx);
1035	init_waitqueue_head(&data->read_wait);
1036
1037	mutex_lock(&rfkill_global_mutex);
1038	mutex_lock(&data->mtx);
1039	/*
1040	 * start getting events from elsewhere but hold mtx to get
1041	 * startup events added first
1042	 */
1043
1044	list_for_each_entry(rfkill, &rfkill_list, node) {
1045		ev = kzalloc(sizeof(*ev), GFP_KERNEL);
1046		if (!ev)
1047			goto free;
1048		rfkill_fill_event(&ev->ev, rfkill, RFKILL_OP_ADD);
1049		list_add_tail(&ev->list, &data->events);
1050	}
1051	list_add(&data->list, &rfkill_fds);
1052	mutex_unlock(&data->mtx);
1053	mutex_unlock(&rfkill_global_mutex);
1054
1055	file->private_data = data;
1056
1057	return nonseekable_open(inode, file);
1058
1059 free:
1060	mutex_unlock(&data->mtx);
1061	mutex_unlock(&rfkill_global_mutex);
1062	mutex_destroy(&data->mtx);
1063	list_for_each_entry_safe(ev, tmp, &data->events, list)
1064		kfree(ev);
1065	kfree(data);
1066	return -ENOMEM;
1067}
1068
1069static unsigned int rfkill_fop_poll(struct file *file, poll_table *wait)
1070{
1071	struct rfkill_data *data = file->private_data;
1072	unsigned int res = POLLOUT | POLLWRNORM;
1073
1074	poll_wait(file, &data->read_wait, wait);
1075
1076	mutex_lock(&data->mtx);
1077	if (!list_empty(&data->events))
1078		res = POLLIN | POLLRDNORM;
1079	mutex_unlock(&data->mtx);
1080
1081	return res;
1082}
1083
1084static bool rfkill_readable(struct rfkill_data *data)
1085{
1086	bool r;
1087
1088	mutex_lock(&data->mtx);
1089	r = !list_empty(&data->events);
1090	mutex_unlock(&data->mtx);
1091
1092	return r;
1093}
1094
1095static ssize_t rfkill_fop_read(struct file *file, char __user *buf,
1096			       size_t count, loff_t *pos)
1097{
1098	struct rfkill_data *data = file->private_data;
1099	struct rfkill_int_event *ev;
1100	unsigned long sz;
1101	int ret;
1102
1103	mutex_lock(&data->mtx);
1104
1105	while (list_empty(&data->events)) {
1106		if (file->f_flags & O_NONBLOCK) {
1107			ret = -EAGAIN;
1108			goto out;
1109		}
1110		mutex_unlock(&data->mtx);
 
 
 
1111		ret = wait_event_interruptible(data->read_wait,
1112					       rfkill_readable(data));
1113		mutex_lock(&data->mtx);
1114
1115		if (ret)
1116			goto out;
1117	}
1118
1119	ev = list_first_entry(&data->events, struct rfkill_int_event,
1120				list);
1121
1122	sz = min_t(unsigned long, sizeof(ev->ev), count);
 
1123	ret = sz;
1124	if (copy_to_user(buf, &ev->ev, sz))
1125		ret = -EFAULT;
1126
1127	list_del(&ev->list);
1128	kfree(ev);
1129 out:
1130	mutex_unlock(&data->mtx);
1131	return ret;
1132}
1133
1134static ssize_t rfkill_fop_write(struct file *file, const char __user *buf,
1135				size_t count, loff_t *pos)
1136{
 
1137	struct rfkill *rfkill;
1138	struct rfkill_event ev;
 
1139
1140	/* we don't need the 'hard' variable but accept it */
1141	if (count < RFKILL_EVENT_SIZE_V1 - 1)
1142		return -EINVAL;
1143
1144	/*
1145	 * Copy as much data as we can accept into our 'ev' buffer,
1146	 * but tell userspace how much we've copied so it can determine
1147	 * our API version even in a write() call, if it cares.
1148	 */
1149	count = min(count, sizeof(ev));
 
1150	if (copy_from_user(&ev, buf, count))
1151		return -EFAULT;
1152
1153	if (ev.op != RFKILL_OP_CHANGE && ev.op != RFKILL_OP_CHANGE_ALL)
1154		return -EINVAL;
1155
1156	if (ev.type >= NUM_RFKILL_TYPES)
1157		return -EINVAL;
1158
1159	mutex_lock(&rfkill_global_mutex);
1160
1161	if (ev.op == RFKILL_OP_CHANGE_ALL) {
1162		if (ev.type == RFKILL_TYPE_ALL) {
1163			enum rfkill_type i;
1164			for (i = 0; i < NUM_RFKILL_TYPES; i++)
1165				rfkill_global_states[i].cur = ev.soft;
1166		} else {
1167			rfkill_global_states[ev.type].cur = ev.soft;
1168		}
 
 
 
 
 
 
 
 
 
 
 
 
1169	}
1170
1171	list_for_each_entry(rfkill, &rfkill_list, node) {
1172		if (rfkill->idx != ev.idx && ev.op != RFKILL_OP_CHANGE_ALL)
1173			continue;
1174
1175		if (rfkill->type != ev.type && ev.type != RFKILL_TYPE_ALL)
1176			continue;
1177
1178		rfkill_set_block(rfkill, ev.soft);
1179	}
1180	mutex_unlock(&rfkill_global_mutex);
1181
1182	return count;
1183}
1184
1185static int rfkill_fop_release(struct inode *inode, struct file *file)
1186{
1187	struct rfkill_data *data = file->private_data;
1188	struct rfkill_int_event *ev, *tmp;
1189
1190	mutex_lock(&rfkill_global_mutex);
1191	list_del(&data->list);
1192	mutex_unlock(&rfkill_global_mutex);
1193
1194	mutex_destroy(&data->mtx);
1195	list_for_each_entry_safe(ev, tmp, &data->events, list)
1196		kfree(ev);
1197
1198#ifdef CONFIG_RFKILL_INPUT
1199	if (data->input_handler)
1200		if (atomic_dec_return(&rfkill_input_disabled) == 0)
1201			printk(KERN_DEBUG "rfkill: input handler enabled\n");
1202#endif
1203
1204	kfree(data);
1205
1206	return 0;
1207}
1208
1209#ifdef CONFIG_RFKILL_INPUT
1210static long rfkill_fop_ioctl(struct file *file, unsigned int cmd,
1211			     unsigned long arg)
1212{
1213	struct rfkill_data *data = file->private_data;
 
 
1214
1215	if (_IOC_TYPE(cmd) != RFKILL_IOC_MAGIC)
1216		return -ENOSYS;
1217
1218	if (_IOC_NR(cmd) != RFKILL_IOC_NOINPUT)
1219		return -ENOSYS;
1220
1221	mutex_lock(&data->mtx);
1222
1223	if (!data->input_handler) {
1224		if (atomic_inc_return(&rfkill_input_disabled) == 1)
1225			printk(KERN_DEBUG "rfkill: input handler disabled\n");
1226		data->input_handler = true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1227	}
1228
1229	mutex_unlock(&data->mtx);
1230
1231	return 0;
1232}
1233#endif
1234
1235static const struct file_operations rfkill_fops = {
1236	.owner		= THIS_MODULE,
1237	.open		= rfkill_fop_open,
1238	.read		= rfkill_fop_read,
1239	.write		= rfkill_fop_write,
1240	.poll		= rfkill_fop_poll,
1241	.release	= rfkill_fop_release,
1242#ifdef CONFIG_RFKILL_INPUT
1243	.unlocked_ioctl	= rfkill_fop_ioctl,
1244	.compat_ioctl	= rfkill_fop_ioctl,
1245#endif
1246	.llseek		= no_llseek,
1247};
1248
 
 
1249static struct miscdevice rfkill_miscdev = {
1250	.name	= "rfkill",
1251	.fops	= &rfkill_fops,
1252	.minor	= MISC_DYNAMIC_MINOR,
 
1253};
1254
1255static int __init rfkill_init(void)
1256{
1257	int error;
1258	int i;
1259
1260	for (i = 0; i < NUM_RFKILL_TYPES; i++)
1261		rfkill_global_states[i].cur = !rfkill_default_state;
1262
1263	error = class_register(&rfkill_class);
1264	if (error)
1265		goto out;
1266
1267	error = misc_register(&rfkill_miscdev);
1268	if (error) {
1269		class_unregister(&rfkill_class);
1270		goto out;
1271	}
 
 
1272
1273#ifdef CONFIG_RFKILL_INPUT
1274	error = rfkill_handler_init();
1275	if (error) {
1276		misc_deregister(&rfkill_miscdev);
1277		class_unregister(&rfkill_class);
1278		goto out;
1279	}
1280#endif
1281
1282 out:
 
 
 
 
 
 
 
 
 
 
1283	return error;
1284}
1285subsys_initcall(rfkill_init);
1286
1287static void __exit rfkill_exit(void)
1288{
1289#ifdef CONFIG_RFKILL_INPUT
1290	rfkill_handler_exit();
1291#endif
 
1292	misc_deregister(&rfkill_miscdev);
1293	class_unregister(&rfkill_class);
1294}
1295module_exit(rfkill_exit);