Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Copyright (C) 2006 - 2007 Ivo van Doorn
4 * Copyright (C) 2007 Dmitry Torokhov
5 * Copyright 2009 Johannes Berg <johannes@sipsolutions.net>
6 */
7
8#include <linux/kernel.h>
9#include <linux/module.h>
10#include <linux/init.h>
11#include <linux/workqueue.h>
12#include <linux/capability.h>
13#include <linux/list.h>
14#include <linux/mutex.h>
15#include <linux/rfkill.h>
16#include <linux/sched.h>
17#include <linux/spinlock.h>
18#include <linux/device.h>
19#include <linux/miscdevice.h>
20#include <linux/wait.h>
21#include <linux/poll.h>
22#include <linux/fs.h>
23#include <linux/slab.h>
24
25#include "rfkill.h"
26
27#define POLL_INTERVAL (5 * HZ)
28
29#define RFKILL_BLOCK_HW BIT(0)
30#define RFKILL_BLOCK_SW BIT(1)
31#define RFKILL_BLOCK_SW_PREV BIT(2)
32#define RFKILL_BLOCK_ANY (RFKILL_BLOCK_HW |\
33 RFKILL_BLOCK_SW |\
34 RFKILL_BLOCK_SW_PREV)
35#define RFKILL_BLOCK_SW_SETCALL BIT(31)
36
37struct rfkill {
38 spinlock_t lock;
39
40 enum rfkill_type type;
41
42 unsigned long state;
43 unsigned long hard_block_reasons;
44
45 u32 idx;
46
47 bool registered;
48 bool persistent;
49 bool polling_paused;
50 bool suspended;
51
52 const struct rfkill_ops *ops;
53 void *data;
54
55#ifdef CONFIG_RFKILL_LEDS
56 struct led_trigger led_trigger;
57 const char *ledtrigname;
58#endif
59
60 struct device dev;
61 struct list_head node;
62
63 struct delayed_work poll_work;
64 struct work_struct uevent_work;
65 struct work_struct sync_work;
66 char name[];
67};
68#define to_rfkill(d) container_of(d, struct rfkill, dev)
69
70struct rfkill_int_event {
71 struct list_head list;
72 struct rfkill_event_ext ev;
73};
74
75struct rfkill_data {
76 struct list_head list;
77 struct list_head events;
78 struct mutex mtx;
79 wait_queue_head_t read_wait;
80 bool input_handler;
81 u8 max_size;
82};
83
84
85MODULE_AUTHOR("Ivo van Doorn <IvDoorn@gmail.com>");
86MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
87MODULE_DESCRIPTION("RF switch support");
88MODULE_LICENSE("GPL");
89
90
91/*
92 * The locking here should be made much smarter, we currently have
93 * a bit of a stupid situation because drivers might want to register
94 * the rfkill struct under their own lock, and take this lock during
95 * rfkill method calls -- which will cause an AB-BA deadlock situation.
96 *
97 * To fix that, we need to rework this code here to be mostly lock-free
98 * and only use the mutex for list manipulations, not to protect the
99 * various other global variables. Then we can avoid holding the mutex
100 * around driver operations, and all is happy.
101 */
102static LIST_HEAD(rfkill_list); /* list of registered rf switches */
103static DEFINE_MUTEX(rfkill_global_mutex);
104static LIST_HEAD(rfkill_fds); /* list of open fds of /dev/rfkill */
105
106static unsigned int rfkill_default_state = 1;
107module_param_named(default_state, rfkill_default_state, uint, 0444);
108MODULE_PARM_DESC(default_state,
109 "Default initial state for all radio types, 0 = radio off");
110
111static struct {
112 bool cur, sav;
113} rfkill_global_states[NUM_RFKILL_TYPES];
114
115static bool rfkill_epo_lock_active;
116
117
118#ifdef CONFIG_RFKILL_LEDS
119static void rfkill_led_trigger_event(struct rfkill *rfkill)
120{
121 struct led_trigger *trigger;
122
123 if (!rfkill->registered)
124 return;
125
126 trigger = &rfkill->led_trigger;
127
128 if (rfkill->state & RFKILL_BLOCK_ANY)
129 led_trigger_event(trigger, LED_OFF);
130 else
131 led_trigger_event(trigger, LED_FULL);
132}
133
134static int rfkill_led_trigger_activate(struct led_classdev *led)
135{
136 struct rfkill *rfkill;
137
138 rfkill = container_of(led->trigger, struct rfkill, led_trigger);
139
140 rfkill_led_trigger_event(rfkill);
141
142 return 0;
143}
144
145const char *rfkill_get_led_trigger_name(struct rfkill *rfkill)
146{
147 return rfkill->led_trigger.name;
148}
149EXPORT_SYMBOL(rfkill_get_led_trigger_name);
150
151void rfkill_set_led_trigger_name(struct rfkill *rfkill, const char *name)
152{
153 BUG_ON(!rfkill);
154
155 rfkill->ledtrigname = name;
156}
157EXPORT_SYMBOL(rfkill_set_led_trigger_name);
158
159static int rfkill_led_trigger_register(struct rfkill *rfkill)
160{
161 rfkill->led_trigger.name = rfkill->ledtrigname
162 ? : dev_name(&rfkill->dev);
163 rfkill->led_trigger.activate = rfkill_led_trigger_activate;
164 return led_trigger_register(&rfkill->led_trigger);
165}
166
167static void rfkill_led_trigger_unregister(struct rfkill *rfkill)
168{
169 led_trigger_unregister(&rfkill->led_trigger);
170}
171
172static struct led_trigger rfkill_any_led_trigger;
173static struct led_trigger rfkill_none_led_trigger;
174static struct work_struct rfkill_global_led_trigger_work;
175
176static void rfkill_global_led_trigger_worker(struct work_struct *work)
177{
178 enum led_brightness brightness = LED_OFF;
179 struct rfkill *rfkill;
180
181 mutex_lock(&rfkill_global_mutex);
182 list_for_each_entry(rfkill, &rfkill_list, node) {
183 if (!(rfkill->state & RFKILL_BLOCK_ANY)) {
184 brightness = LED_FULL;
185 break;
186 }
187 }
188 mutex_unlock(&rfkill_global_mutex);
189
190 led_trigger_event(&rfkill_any_led_trigger, brightness);
191 led_trigger_event(&rfkill_none_led_trigger,
192 brightness == LED_OFF ? LED_FULL : LED_OFF);
193}
194
195static void rfkill_global_led_trigger_event(void)
196{
197 schedule_work(&rfkill_global_led_trigger_work);
198}
199
200static int rfkill_global_led_trigger_register(void)
201{
202 int ret;
203
204 INIT_WORK(&rfkill_global_led_trigger_work,
205 rfkill_global_led_trigger_worker);
206
207 rfkill_any_led_trigger.name = "rfkill-any";
208 ret = led_trigger_register(&rfkill_any_led_trigger);
209 if (ret)
210 return ret;
211
212 rfkill_none_led_trigger.name = "rfkill-none";
213 ret = led_trigger_register(&rfkill_none_led_trigger);
214 if (ret)
215 led_trigger_unregister(&rfkill_any_led_trigger);
216 else
217 /* Delay activation until all global triggers are registered */
218 rfkill_global_led_trigger_event();
219
220 return ret;
221}
222
223static void rfkill_global_led_trigger_unregister(void)
224{
225 led_trigger_unregister(&rfkill_none_led_trigger);
226 led_trigger_unregister(&rfkill_any_led_trigger);
227 cancel_work_sync(&rfkill_global_led_trigger_work);
228}
229#else
230static void rfkill_led_trigger_event(struct rfkill *rfkill)
231{
232}
233
234static inline int rfkill_led_trigger_register(struct rfkill *rfkill)
235{
236 return 0;
237}
238
239static inline void rfkill_led_trigger_unregister(struct rfkill *rfkill)
240{
241}
242
243static void rfkill_global_led_trigger_event(void)
244{
245}
246
247static int rfkill_global_led_trigger_register(void)
248{
249 return 0;
250}
251
252static void rfkill_global_led_trigger_unregister(void)
253{
254}
255#endif /* CONFIG_RFKILL_LEDS */
256
257static void rfkill_fill_event(struct rfkill_event_ext *ev,
258 struct rfkill *rfkill,
259 enum rfkill_operation op)
260{
261 unsigned long flags;
262
263 ev->idx = rfkill->idx;
264 ev->type = rfkill->type;
265 ev->op = op;
266
267 spin_lock_irqsave(&rfkill->lock, flags);
268 ev->hard = !!(rfkill->state & RFKILL_BLOCK_HW);
269 ev->soft = !!(rfkill->state & (RFKILL_BLOCK_SW |
270 RFKILL_BLOCK_SW_PREV));
271 ev->hard_block_reasons = rfkill->hard_block_reasons;
272 spin_unlock_irqrestore(&rfkill->lock, flags);
273}
274
275static void rfkill_send_events(struct rfkill *rfkill, enum rfkill_operation op)
276{
277 struct rfkill_data *data;
278 struct rfkill_int_event *ev;
279
280 list_for_each_entry(data, &rfkill_fds, list) {
281 ev = kzalloc(sizeof(*ev), GFP_KERNEL);
282 if (!ev)
283 continue;
284 rfkill_fill_event(&ev->ev, rfkill, op);
285 mutex_lock(&data->mtx);
286 list_add_tail(&ev->list, &data->events);
287 mutex_unlock(&data->mtx);
288 wake_up_interruptible(&data->read_wait);
289 }
290}
291
292static void rfkill_event(struct rfkill *rfkill)
293{
294 if (!rfkill->registered)
295 return;
296
297 kobject_uevent(&rfkill->dev.kobj, KOBJ_CHANGE);
298
299 /* also send event to /dev/rfkill */
300 rfkill_send_events(rfkill, RFKILL_OP_CHANGE);
301}
302
303/**
304 * rfkill_set_block - wrapper for set_block method
305 *
306 * @rfkill: the rfkill struct to use
307 * @blocked: the new software state
308 *
309 * Calls the set_block method (when applicable) and handles notifications
310 * etc. as well.
311 */
312static void rfkill_set_block(struct rfkill *rfkill, bool blocked)
313{
314 unsigned long flags;
315 bool prev, curr;
316 int err;
317
318 if (unlikely(rfkill->dev.power.power_state.event & PM_EVENT_SLEEP))
319 return;
320
321 /*
322 * Some platforms (...!) generate input events which affect the
323 * _hard_ kill state -- whenever something tries to change the
324 * current software state query the hardware state too.
325 */
326 if (rfkill->ops->query)
327 rfkill->ops->query(rfkill, rfkill->data);
328
329 spin_lock_irqsave(&rfkill->lock, flags);
330 prev = rfkill->state & RFKILL_BLOCK_SW;
331
332 if (prev)
333 rfkill->state |= RFKILL_BLOCK_SW_PREV;
334 else
335 rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
336
337 if (blocked)
338 rfkill->state |= RFKILL_BLOCK_SW;
339 else
340 rfkill->state &= ~RFKILL_BLOCK_SW;
341
342 rfkill->state |= RFKILL_BLOCK_SW_SETCALL;
343 spin_unlock_irqrestore(&rfkill->lock, flags);
344
345 err = rfkill->ops->set_block(rfkill->data, blocked);
346
347 spin_lock_irqsave(&rfkill->lock, flags);
348 if (err) {
349 /*
350 * Failed -- reset status to _PREV, which may be different
351 * from what we have set _PREV to earlier in this function
352 * if rfkill_set_sw_state was invoked.
353 */
354 if (rfkill->state & RFKILL_BLOCK_SW_PREV)
355 rfkill->state |= RFKILL_BLOCK_SW;
356 else
357 rfkill->state &= ~RFKILL_BLOCK_SW;
358 }
359 rfkill->state &= ~RFKILL_BLOCK_SW_SETCALL;
360 rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
361 curr = rfkill->state & RFKILL_BLOCK_SW;
362 spin_unlock_irqrestore(&rfkill->lock, flags);
363
364 rfkill_led_trigger_event(rfkill);
365 rfkill_global_led_trigger_event();
366
367 if (prev != curr)
368 rfkill_event(rfkill);
369}
370
371static void rfkill_update_global_state(enum rfkill_type type, bool blocked)
372{
373 int i;
374
375 if (type != RFKILL_TYPE_ALL) {
376 rfkill_global_states[type].cur = blocked;
377 return;
378 }
379
380 for (i = 0; i < NUM_RFKILL_TYPES; i++)
381 rfkill_global_states[i].cur = blocked;
382}
383
384#ifdef CONFIG_RFKILL_INPUT
385static atomic_t rfkill_input_disabled = ATOMIC_INIT(0);
386
387/**
388 * __rfkill_switch_all - Toggle state of all switches of given type
389 * @type: type of interfaces to be affected
390 * @blocked: the new state
391 *
392 * This function sets the state of all switches of given type,
393 * unless a specific switch is suspended.
394 *
395 * Caller must have acquired rfkill_global_mutex.
396 */
397static void __rfkill_switch_all(const enum rfkill_type type, bool blocked)
398{
399 struct rfkill *rfkill;
400
401 rfkill_update_global_state(type, blocked);
402 list_for_each_entry(rfkill, &rfkill_list, node) {
403 if (rfkill->type != type && type != RFKILL_TYPE_ALL)
404 continue;
405
406 rfkill_set_block(rfkill, blocked);
407 }
408}
409
410/**
411 * rfkill_switch_all - Toggle state of all switches of given type
412 * @type: type of interfaces to be affected
413 * @blocked: the new state
414 *
415 * Acquires rfkill_global_mutex and calls __rfkill_switch_all(@type, @state).
416 * Please refer to __rfkill_switch_all() for details.
417 *
418 * Does nothing if the EPO lock is active.
419 */
420void rfkill_switch_all(enum rfkill_type type, bool blocked)
421{
422 if (atomic_read(&rfkill_input_disabled))
423 return;
424
425 mutex_lock(&rfkill_global_mutex);
426
427 if (!rfkill_epo_lock_active)
428 __rfkill_switch_all(type, blocked);
429
430 mutex_unlock(&rfkill_global_mutex);
431}
432
433/**
434 * rfkill_epo - emergency power off all transmitters
435 *
436 * This kicks all non-suspended rfkill devices to RFKILL_STATE_SOFT_BLOCKED,
437 * ignoring everything in its path but rfkill_global_mutex and rfkill->mutex.
438 *
439 * The global state before the EPO is saved and can be restored later
440 * using rfkill_restore_states().
441 */
442void rfkill_epo(void)
443{
444 struct rfkill *rfkill;
445 int i;
446
447 if (atomic_read(&rfkill_input_disabled))
448 return;
449
450 mutex_lock(&rfkill_global_mutex);
451
452 rfkill_epo_lock_active = true;
453 list_for_each_entry(rfkill, &rfkill_list, node)
454 rfkill_set_block(rfkill, true);
455
456 for (i = 0; i < NUM_RFKILL_TYPES; i++) {
457 rfkill_global_states[i].sav = rfkill_global_states[i].cur;
458 rfkill_global_states[i].cur = true;
459 }
460
461 mutex_unlock(&rfkill_global_mutex);
462}
463
464/**
465 * rfkill_restore_states - restore global states
466 *
467 * Restore (and sync switches to) the global state from the
468 * states in rfkill_default_states. This can undo the effects of
469 * a call to rfkill_epo().
470 */
471void rfkill_restore_states(void)
472{
473 int i;
474
475 if (atomic_read(&rfkill_input_disabled))
476 return;
477
478 mutex_lock(&rfkill_global_mutex);
479
480 rfkill_epo_lock_active = false;
481 for (i = 0; i < NUM_RFKILL_TYPES; i++)
482 __rfkill_switch_all(i, rfkill_global_states[i].sav);
483 mutex_unlock(&rfkill_global_mutex);
484}
485
486/**
487 * rfkill_remove_epo_lock - unlock state changes
488 *
489 * Used by rfkill-input manually unlock state changes, when
490 * the EPO switch is deactivated.
491 */
492void rfkill_remove_epo_lock(void)
493{
494 if (atomic_read(&rfkill_input_disabled))
495 return;
496
497 mutex_lock(&rfkill_global_mutex);
498 rfkill_epo_lock_active = false;
499 mutex_unlock(&rfkill_global_mutex);
500}
501
502/**
503 * rfkill_is_epo_lock_active - returns true EPO is active
504 *
505 * Returns 0 (false) if there is NOT an active EPO condition,
506 * and 1 (true) if there is an active EPO condition, which
507 * locks all radios in one of the BLOCKED states.
508 *
509 * Can be called in atomic context.
510 */
511bool rfkill_is_epo_lock_active(void)
512{
513 return rfkill_epo_lock_active;
514}
515
516/**
517 * rfkill_get_global_sw_state - returns global state for a type
518 * @type: the type to get the global state of
519 *
520 * Returns the current global state for a given wireless
521 * device type.
522 */
523bool rfkill_get_global_sw_state(const enum rfkill_type type)
524{
525 return rfkill_global_states[type].cur;
526}
527#endif
528
529bool rfkill_set_hw_state_reason(struct rfkill *rfkill,
530 bool blocked, unsigned long reason)
531{
532 unsigned long flags;
533 bool ret, prev;
534
535 BUG_ON(!rfkill);
536
537 if (WARN(reason &
538 ~(RFKILL_HARD_BLOCK_SIGNAL | RFKILL_HARD_BLOCK_NOT_OWNER),
539 "hw_state reason not supported: 0x%lx", reason))
540 return blocked;
541
542 spin_lock_irqsave(&rfkill->lock, flags);
543 prev = !!(rfkill->hard_block_reasons & reason);
544 if (blocked) {
545 rfkill->state |= RFKILL_BLOCK_HW;
546 rfkill->hard_block_reasons |= reason;
547 } else {
548 rfkill->hard_block_reasons &= ~reason;
549 if (!rfkill->hard_block_reasons)
550 rfkill->state &= ~RFKILL_BLOCK_HW;
551 }
552 ret = !!(rfkill->state & RFKILL_BLOCK_ANY);
553 spin_unlock_irqrestore(&rfkill->lock, flags);
554
555 rfkill_led_trigger_event(rfkill);
556 rfkill_global_led_trigger_event();
557
558 if (rfkill->registered && prev != blocked)
559 schedule_work(&rfkill->uevent_work);
560
561 return ret;
562}
563EXPORT_SYMBOL(rfkill_set_hw_state_reason);
564
565static void __rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
566{
567 u32 bit = RFKILL_BLOCK_SW;
568
569 /* if in a ops->set_block right now, use other bit */
570 if (rfkill->state & RFKILL_BLOCK_SW_SETCALL)
571 bit = RFKILL_BLOCK_SW_PREV;
572
573 if (blocked)
574 rfkill->state |= bit;
575 else
576 rfkill->state &= ~bit;
577}
578
579bool rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
580{
581 unsigned long flags;
582 bool prev, hwblock;
583
584 BUG_ON(!rfkill);
585
586 spin_lock_irqsave(&rfkill->lock, flags);
587 prev = !!(rfkill->state & RFKILL_BLOCK_SW);
588 __rfkill_set_sw_state(rfkill, blocked);
589 hwblock = !!(rfkill->state & RFKILL_BLOCK_HW);
590 blocked = blocked || hwblock;
591 spin_unlock_irqrestore(&rfkill->lock, flags);
592
593 if (!rfkill->registered)
594 return blocked;
595
596 if (prev != blocked && !hwblock)
597 schedule_work(&rfkill->uevent_work);
598
599 rfkill_led_trigger_event(rfkill);
600 rfkill_global_led_trigger_event();
601
602 return blocked;
603}
604EXPORT_SYMBOL(rfkill_set_sw_state);
605
606void rfkill_init_sw_state(struct rfkill *rfkill, bool blocked)
607{
608 unsigned long flags;
609
610 BUG_ON(!rfkill);
611 BUG_ON(rfkill->registered);
612
613 spin_lock_irqsave(&rfkill->lock, flags);
614 __rfkill_set_sw_state(rfkill, blocked);
615 rfkill->persistent = true;
616 spin_unlock_irqrestore(&rfkill->lock, flags);
617}
618EXPORT_SYMBOL(rfkill_init_sw_state);
619
620void rfkill_set_states(struct rfkill *rfkill, bool sw, bool hw)
621{
622 unsigned long flags;
623 bool swprev, hwprev;
624
625 BUG_ON(!rfkill);
626
627 spin_lock_irqsave(&rfkill->lock, flags);
628
629 /*
630 * No need to care about prev/setblock ... this is for uevent only
631 * and that will get triggered by rfkill_set_block anyway.
632 */
633 swprev = !!(rfkill->state & RFKILL_BLOCK_SW);
634 hwprev = !!(rfkill->state & RFKILL_BLOCK_HW);
635 __rfkill_set_sw_state(rfkill, sw);
636 if (hw)
637 rfkill->state |= RFKILL_BLOCK_HW;
638 else
639 rfkill->state &= ~RFKILL_BLOCK_HW;
640
641 spin_unlock_irqrestore(&rfkill->lock, flags);
642
643 if (!rfkill->registered) {
644 rfkill->persistent = true;
645 } else {
646 if (swprev != sw || hwprev != hw)
647 schedule_work(&rfkill->uevent_work);
648
649 rfkill_led_trigger_event(rfkill);
650 rfkill_global_led_trigger_event();
651 }
652}
653EXPORT_SYMBOL(rfkill_set_states);
654
655static const char * const rfkill_types[] = {
656 NULL, /* RFKILL_TYPE_ALL */
657 "wlan",
658 "bluetooth",
659 "ultrawideband",
660 "wimax",
661 "wwan",
662 "gps",
663 "fm",
664 "nfc",
665};
666
667enum rfkill_type rfkill_find_type(const char *name)
668{
669 int i;
670
671 BUILD_BUG_ON(ARRAY_SIZE(rfkill_types) != NUM_RFKILL_TYPES);
672
673 if (!name)
674 return RFKILL_TYPE_ALL;
675
676 for (i = 1; i < NUM_RFKILL_TYPES; i++)
677 if (!strcmp(name, rfkill_types[i]))
678 return i;
679 return RFKILL_TYPE_ALL;
680}
681EXPORT_SYMBOL(rfkill_find_type);
682
683static ssize_t name_show(struct device *dev, struct device_attribute *attr,
684 char *buf)
685{
686 struct rfkill *rfkill = to_rfkill(dev);
687
688 return sprintf(buf, "%s\n", rfkill->name);
689}
690static DEVICE_ATTR_RO(name);
691
692static ssize_t type_show(struct device *dev, struct device_attribute *attr,
693 char *buf)
694{
695 struct rfkill *rfkill = to_rfkill(dev);
696
697 return sprintf(buf, "%s\n", rfkill_types[rfkill->type]);
698}
699static DEVICE_ATTR_RO(type);
700
701static ssize_t index_show(struct device *dev, struct device_attribute *attr,
702 char *buf)
703{
704 struct rfkill *rfkill = to_rfkill(dev);
705
706 return sprintf(buf, "%d\n", rfkill->idx);
707}
708static DEVICE_ATTR_RO(index);
709
710static ssize_t persistent_show(struct device *dev,
711 struct device_attribute *attr, char *buf)
712{
713 struct rfkill *rfkill = to_rfkill(dev);
714
715 return sprintf(buf, "%d\n", rfkill->persistent);
716}
717static DEVICE_ATTR_RO(persistent);
718
719static ssize_t hard_show(struct device *dev, struct device_attribute *attr,
720 char *buf)
721{
722 struct rfkill *rfkill = to_rfkill(dev);
723
724 return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_HW) ? 1 : 0 );
725}
726static DEVICE_ATTR_RO(hard);
727
728static ssize_t soft_show(struct device *dev, struct device_attribute *attr,
729 char *buf)
730{
731 struct rfkill *rfkill = to_rfkill(dev);
732
733 return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_SW) ? 1 : 0 );
734}
735
736static ssize_t soft_store(struct device *dev, struct device_attribute *attr,
737 const char *buf, size_t count)
738{
739 struct rfkill *rfkill = to_rfkill(dev);
740 unsigned long state;
741 int err;
742
743 if (!capable(CAP_NET_ADMIN))
744 return -EPERM;
745
746 err = kstrtoul(buf, 0, &state);
747 if (err)
748 return err;
749
750 if (state > 1 )
751 return -EINVAL;
752
753 mutex_lock(&rfkill_global_mutex);
754 rfkill_set_block(rfkill, state);
755 mutex_unlock(&rfkill_global_mutex);
756
757 return count;
758}
759static DEVICE_ATTR_RW(soft);
760
761static ssize_t hard_block_reasons_show(struct device *dev,
762 struct device_attribute *attr,
763 char *buf)
764{
765 struct rfkill *rfkill = to_rfkill(dev);
766
767 return sprintf(buf, "0x%lx\n", rfkill->hard_block_reasons);
768}
769static DEVICE_ATTR_RO(hard_block_reasons);
770
771static u8 user_state_from_blocked(unsigned long state)
772{
773 if (state & RFKILL_BLOCK_HW)
774 return RFKILL_USER_STATE_HARD_BLOCKED;
775 if (state & RFKILL_BLOCK_SW)
776 return RFKILL_USER_STATE_SOFT_BLOCKED;
777
778 return RFKILL_USER_STATE_UNBLOCKED;
779}
780
781static ssize_t state_show(struct device *dev, struct device_attribute *attr,
782 char *buf)
783{
784 struct rfkill *rfkill = to_rfkill(dev);
785
786 return sprintf(buf, "%d\n", user_state_from_blocked(rfkill->state));
787}
788
789static ssize_t state_store(struct device *dev, struct device_attribute *attr,
790 const char *buf, size_t count)
791{
792 struct rfkill *rfkill = to_rfkill(dev);
793 unsigned long state;
794 int err;
795
796 if (!capable(CAP_NET_ADMIN))
797 return -EPERM;
798
799 err = kstrtoul(buf, 0, &state);
800 if (err)
801 return err;
802
803 if (state != RFKILL_USER_STATE_SOFT_BLOCKED &&
804 state != RFKILL_USER_STATE_UNBLOCKED)
805 return -EINVAL;
806
807 mutex_lock(&rfkill_global_mutex);
808 rfkill_set_block(rfkill, state == RFKILL_USER_STATE_SOFT_BLOCKED);
809 mutex_unlock(&rfkill_global_mutex);
810
811 return count;
812}
813static DEVICE_ATTR_RW(state);
814
815static struct attribute *rfkill_dev_attrs[] = {
816 &dev_attr_name.attr,
817 &dev_attr_type.attr,
818 &dev_attr_index.attr,
819 &dev_attr_persistent.attr,
820 &dev_attr_state.attr,
821 &dev_attr_soft.attr,
822 &dev_attr_hard.attr,
823 &dev_attr_hard_block_reasons.attr,
824 NULL,
825};
826ATTRIBUTE_GROUPS(rfkill_dev);
827
828static void rfkill_release(struct device *dev)
829{
830 struct rfkill *rfkill = to_rfkill(dev);
831
832 kfree(rfkill);
833}
834
835static int rfkill_dev_uevent(const struct device *dev, struct kobj_uevent_env *env)
836{
837 struct rfkill *rfkill = to_rfkill(dev);
838 unsigned long flags;
839 unsigned long reasons;
840 u32 state;
841 int error;
842
843 error = add_uevent_var(env, "RFKILL_NAME=%s", rfkill->name);
844 if (error)
845 return error;
846 error = add_uevent_var(env, "RFKILL_TYPE=%s",
847 rfkill_types[rfkill->type]);
848 if (error)
849 return error;
850 spin_lock_irqsave(&rfkill->lock, flags);
851 state = rfkill->state;
852 reasons = rfkill->hard_block_reasons;
853 spin_unlock_irqrestore(&rfkill->lock, flags);
854 error = add_uevent_var(env, "RFKILL_STATE=%d",
855 user_state_from_blocked(state));
856 if (error)
857 return error;
858 return add_uevent_var(env, "RFKILL_HW_BLOCK_REASON=0x%lx", reasons);
859}
860
861void rfkill_pause_polling(struct rfkill *rfkill)
862{
863 BUG_ON(!rfkill);
864
865 if (!rfkill->ops->poll)
866 return;
867
868 rfkill->polling_paused = true;
869 cancel_delayed_work_sync(&rfkill->poll_work);
870}
871EXPORT_SYMBOL(rfkill_pause_polling);
872
873void rfkill_resume_polling(struct rfkill *rfkill)
874{
875 BUG_ON(!rfkill);
876
877 if (!rfkill->ops->poll)
878 return;
879
880 rfkill->polling_paused = false;
881
882 if (rfkill->suspended)
883 return;
884
885 queue_delayed_work(system_power_efficient_wq,
886 &rfkill->poll_work, 0);
887}
888EXPORT_SYMBOL(rfkill_resume_polling);
889
890#ifdef CONFIG_PM_SLEEP
891static int rfkill_suspend(struct device *dev)
892{
893 struct rfkill *rfkill = to_rfkill(dev);
894
895 rfkill->suspended = true;
896 cancel_delayed_work_sync(&rfkill->poll_work);
897
898 return 0;
899}
900
901static int rfkill_resume(struct device *dev)
902{
903 struct rfkill *rfkill = to_rfkill(dev);
904 bool cur;
905
906 rfkill->suspended = false;
907
908 if (!rfkill->registered)
909 return 0;
910
911 if (!rfkill->persistent) {
912 cur = !!(rfkill->state & RFKILL_BLOCK_SW);
913 rfkill_set_block(rfkill, cur);
914 }
915
916 if (rfkill->ops->poll && !rfkill->polling_paused)
917 queue_delayed_work(system_power_efficient_wq,
918 &rfkill->poll_work, 0);
919
920 return 0;
921}
922
923static SIMPLE_DEV_PM_OPS(rfkill_pm_ops, rfkill_suspend, rfkill_resume);
924#define RFKILL_PM_OPS (&rfkill_pm_ops)
925#else
926#define RFKILL_PM_OPS NULL
927#endif
928
929static struct class rfkill_class = {
930 .name = "rfkill",
931 .dev_release = rfkill_release,
932 .dev_groups = rfkill_dev_groups,
933 .dev_uevent = rfkill_dev_uevent,
934 .pm = RFKILL_PM_OPS,
935};
936
937bool rfkill_blocked(struct rfkill *rfkill)
938{
939 unsigned long flags;
940 u32 state;
941
942 spin_lock_irqsave(&rfkill->lock, flags);
943 state = rfkill->state;
944 spin_unlock_irqrestore(&rfkill->lock, flags);
945
946 return !!(state & RFKILL_BLOCK_ANY);
947}
948EXPORT_SYMBOL(rfkill_blocked);
949
950bool rfkill_soft_blocked(struct rfkill *rfkill)
951{
952 unsigned long flags;
953 u32 state;
954
955 spin_lock_irqsave(&rfkill->lock, flags);
956 state = rfkill->state;
957 spin_unlock_irqrestore(&rfkill->lock, flags);
958
959 return !!(state & RFKILL_BLOCK_SW);
960}
961EXPORT_SYMBOL(rfkill_soft_blocked);
962
963struct rfkill * __must_check rfkill_alloc(const char *name,
964 struct device *parent,
965 const enum rfkill_type type,
966 const struct rfkill_ops *ops,
967 void *ops_data)
968{
969 struct rfkill *rfkill;
970 struct device *dev;
971
972 if (WARN_ON(!ops))
973 return NULL;
974
975 if (WARN_ON(!ops->set_block))
976 return NULL;
977
978 if (WARN_ON(!name))
979 return NULL;
980
981 if (WARN_ON(type == RFKILL_TYPE_ALL || type >= NUM_RFKILL_TYPES))
982 return NULL;
983
984 rfkill = kzalloc(sizeof(*rfkill) + strlen(name) + 1, GFP_KERNEL);
985 if (!rfkill)
986 return NULL;
987
988 spin_lock_init(&rfkill->lock);
989 INIT_LIST_HEAD(&rfkill->node);
990 rfkill->type = type;
991 strcpy(rfkill->name, name);
992 rfkill->ops = ops;
993 rfkill->data = ops_data;
994
995 dev = &rfkill->dev;
996 dev->class = &rfkill_class;
997 dev->parent = parent;
998 device_initialize(dev);
999
1000 return rfkill;
1001}
1002EXPORT_SYMBOL(rfkill_alloc);
1003
1004static void rfkill_poll(struct work_struct *work)
1005{
1006 struct rfkill *rfkill;
1007
1008 rfkill = container_of(work, struct rfkill, poll_work.work);
1009
1010 /*
1011 * Poll hardware state -- driver will use one of the
1012 * rfkill_set{,_hw,_sw}_state functions and use its
1013 * return value to update the current status.
1014 */
1015 rfkill->ops->poll(rfkill, rfkill->data);
1016
1017 queue_delayed_work(system_power_efficient_wq,
1018 &rfkill->poll_work,
1019 round_jiffies_relative(POLL_INTERVAL));
1020}
1021
1022static void rfkill_uevent_work(struct work_struct *work)
1023{
1024 struct rfkill *rfkill;
1025
1026 rfkill = container_of(work, struct rfkill, uevent_work);
1027
1028 mutex_lock(&rfkill_global_mutex);
1029 rfkill_event(rfkill);
1030 mutex_unlock(&rfkill_global_mutex);
1031}
1032
1033static void rfkill_sync_work(struct work_struct *work)
1034{
1035 struct rfkill *rfkill;
1036 bool cur;
1037
1038 rfkill = container_of(work, struct rfkill, sync_work);
1039
1040 mutex_lock(&rfkill_global_mutex);
1041 cur = rfkill_global_states[rfkill->type].cur;
1042 rfkill_set_block(rfkill, cur);
1043 mutex_unlock(&rfkill_global_mutex);
1044}
1045
1046int __must_check rfkill_register(struct rfkill *rfkill)
1047{
1048 static unsigned long rfkill_no;
1049 struct device *dev;
1050 int error;
1051
1052 if (!rfkill)
1053 return -EINVAL;
1054
1055 dev = &rfkill->dev;
1056
1057 mutex_lock(&rfkill_global_mutex);
1058
1059 if (rfkill->registered) {
1060 error = -EALREADY;
1061 goto unlock;
1062 }
1063
1064 rfkill->idx = rfkill_no;
1065 dev_set_name(dev, "rfkill%lu", rfkill_no);
1066 rfkill_no++;
1067
1068 list_add_tail(&rfkill->node, &rfkill_list);
1069
1070 error = device_add(dev);
1071 if (error)
1072 goto remove;
1073
1074 error = rfkill_led_trigger_register(rfkill);
1075 if (error)
1076 goto devdel;
1077
1078 rfkill->registered = true;
1079
1080 INIT_DELAYED_WORK(&rfkill->poll_work, rfkill_poll);
1081 INIT_WORK(&rfkill->uevent_work, rfkill_uevent_work);
1082 INIT_WORK(&rfkill->sync_work, rfkill_sync_work);
1083
1084 if (rfkill->ops->poll)
1085 queue_delayed_work(system_power_efficient_wq,
1086 &rfkill->poll_work,
1087 round_jiffies_relative(POLL_INTERVAL));
1088
1089 if (!rfkill->persistent || rfkill_epo_lock_active) {
1090 schedule_work(&rfkill->sync_work);
1091 } else {
1092#ifdef CONFIG_RFKILL_INPUT
1093 bool soft_blocked = !!(rfkill->state & RFKILL_BLOCK_SW);
1094
1095 if (!atomic_read(&rfkill_input_disabled))
1096 __rfkill_switch_all(rfkill->type, soft_blocked);
1097#endif
1098 }
1099
1100 rfkill_global_led_trigger_event();
1101 rfkill_send_events(rfkill, RFKILL_OP_ADD);
1102
1103 mutex_unlock(&rfkill_global_mutex);
1104 return 0;
1105
1106 devdel:
1107 device_del(&rfkill->dev);
1108 remove:
1109 list_del_init(&rfkill->node);
1110 unlock:
1111 mutex_unlock(&rfkill_global_mutex);
1112 return error;
1113}
1114EXPORT_SYMBOL(rfkill_register);
1115
1116void rfkill_unregister(struct rfkill *rfkill)
1117{
1118 BUG_ON(!rfkill);
1119
1120 if (rfkill->ops->poll)
1121 cancel_delayed_work_sync(&rfkill->poll_work);
1122
1123 cancel_work_sync(&rfkill->uevent_work);
1124 cancel_work_sync(&rfkill->sync_work);
1125
1126 rfkill->registered = false;
1127
1128 device_del(&rfkill->dev);
1129
1130 mutex_lock(&rfkill_global_mutex);
1131 rfkill_send_events(rfkill, RFKILL_OP_DEL);
1132 list_del_init(&rfkill->node);
1133 rfkill_global_led_trigger_event();
1134 mutex_unlock(&rfkill_global_mutex);
1135
1136 rfkill_led_trigger_unregister(rfkill);
1137}
1138EXPORT_SYMBOL(rfkill_unregister);
1139
1140void rfkill_destroy(struct rfkill *rfkill)
1141{
1142 if (rfkill)
1143 put_device(&rfkill->dev);
1144}
1145EXPORT_SYMBOL(rfkill_destroy);
1146
1147static int rfkill_fop_open(struct inode *inode, struct file *file)
1148{
1149 struct rfkill_data *data;
1150 struct rfkill *rfkill;
1151 struct rfkill_int_event *ev, *tmp;
1152
1153 data = kzalloc(sizeof(*data), GFP_KERNEL);
1154 if (!data)
1155 return -ENOMEM;
1156
1157 data->max_size = RFKILL_EVENT_SIZE_V1;
1158
1159 INIT_LIST_HEAD(&data->events);
1160 mutex_init(&data->mtx);
1161 init_waitqueue_head(&data->read_wait);
1162
1163 mutex_lock(&rfkill_global_mutex);
1164 mutex_lock(&data->mtx);
1165 /*
1166 * start getting events from elsewhere but hold mtx to get
1167 * startup events added first
1168 */
1169
1170 list_for_each_entry(rfkill, &rfkill_list, node) {
1171 ev = kzalloc(sizeof(*ev), GFP_KERNEL);
1172 if (!ev)
1173 goto free;
1174 rfkill_fill_event(&ev->ev, rfkill, RFKILL_OP_ADD);
1175 list_add_tail(&ev->list, &data->events);
1176 }
1177 list_add(&data->list, &rfkill_fds);
1178 mutex_unlock(&data->mtx);
1179 mutex_unlock(&rfkill_global_mutex);
1180
1181 file->private_data = data;
1182
1183 return stream_open(inode, file);
1184
1185 free:
1186 mutex_unlock(&data->mtx);
1187 mutex_unlock(&rfkill_global_mutex);
1188 mutex_destroy(&data->mtx);
1189 list_for_each_entry_safe(ev, tmp, &data->events, list)
1190 kfree(ev);
1191 kfree(data);
1192 return -ENOMEM;
1193}
1194
1195static __poll_t rfkill_fop_poll(struct file *file, poll_table *wait)
1196{
1197 struct rfkill_data *data = file->private_data;
1198 __poll_t res = EPOLLOUT | EPOLLWRNORM;
1199
1200 poll_wait(file, &data->read_wait, wait);
1201
1202 mutex_lock(&data->mtx);
1203 if (!list_empty(&data->events))
1204 res = EPOLLIN | EPOLLRDNORM;
1205 mutex_unlock(&data->mtx);
1206
1207 return res;
1208}
1209
1210static ssize_t rfkill_fop_read(struct file *file, char __user *buf,
1211 size_t count, loff_t *pos)
1212{
1213 struct rfkill_data *data = file->private_data;
1214 struct rfkill_int_event *ev;
1215 unsigned long sz;
1216 int ret;
1217
1218 mutex_lock(&data->mtx);
1219
1220 while (list_empty(&data->events)) {
1221 if (file->f_flags & O_NONBLOCK) {
1222 ret = -EAGAIN;
1223 goto out;
1224 }
1225 mutex_unlock(&data->mtx);
1226 /* since we re-check and it just compares pointers,
1227 * using !list_empty() without locking isn't a problem
1228 */
1229 ret = wait_event_interruptible(data->read_wait,
1230 !list_empty(&data->events));
1231 mutex_lock(&data->mtx);
1232
1233 if (ret)
1234 goto out;
1235 }
1236
1237 ev = list_first_entry(&data->events, struct rfkill_int_event,
1238 list);
1239
1240 sz = min_t(unsigned long, sizeof(ev->ev), count);
1241 sz = min_t(unsigned long, sz, data->max_size);
1242 ret = sz;
1243 if (copy_to_user(buf, &ev->ev, sz))
1244 ret = -EFAULT;
1245
1246 list_del(&ev->list);
1247 kfree(ev);
1248 out:
1249 mutex_unlock(&data->mtx);
1250 return ret;
1251}
1252
1253static ssize_t rfkill_fop_write(struct file *file, const char __user *buf,
1254 size_t count, loff_t *pos)
1255{
1256 struct rfkill_data *data = file->private_data;
1257 struct rfkill *rfkill;
1258 struct rfkill_event_ext ev;
1259 int ret;
1260
1261 /* we don't need the 'hard' variable but accept it */
1262 if (count < RFKILL_EVENT_SIZE_V1 - 1)
1263 return -EINVAL;
1264
1265 /*
1266 * Copy as much data as we can accept into our 'ev' buffer,
1267 * but tell userspace how much we've copied so it can determine
1268 * our API version even in a write() call, if it cares.
1269 */
1270 count = min(count, sizeof(ev));
1271 count = min_t(size_t, count, data->max_size);
1272 if (copy_from_user(&ev, buf, count))
1273 return -EFAULT;
1274
1275 if (ev.type >= NUM_RFKILL_TYPES)
1276 return -EINVAL;
1277
1278 mutex_lock(&rfkill_global_mutex);
1279
1280 switch (ev.op) {
1281 case RFKILL_OP_CHANGE_ALL:
1282 rfkill_update_global_state(ev.type, ev.soft);
1283 list_for_each_entry(rfkill, &rfkill_list, node)
1284 if (rfkill->type == ev.type ||
1285 ev.type == RFKILL_TYPE_ALL)
1286 rfkill_set_block(rfkill, ev.soft);
1287 ret = 0;
1288 break;
1289 case RFKILL_OP_CHANGE:
1290 list_for_each_entry(rfkill, &rfkill_list, node)
1291 if (rfkill->idx == ev.idx &&
1292 (rfkill->type == ev.type ||
1293 ev.type == RFKILL_TYPE_ALL))
1294 rfkill_set_block(rfkill, ev.soft);
1295 ret = 0;
1296 break;
1297 default:
1298 ret = -EINVAL;
1299 break;
1300 }
1301
1302 mutex_unlock(&rfkill_global_mutex);
1303
1304 return ret ?: count;
1305}
1306
1307static int rfkill_fop_release(struct inode *inode, struct file *file)
1308{
1309 struct rfkill_data *data = file->private_data;
1310 struct rfkill_int_event *ev, *tmp;
1311
1312 mutex_lock(&rfkill_global_mutex);
1313 list_del(&data->list);
1314 mutex_unlock(&rfkill_global_mutex);
1315
1316 mutex_destroy(&data->mtx);
1317 list_for_each_entry_safe(ev, tmp, &data->events, list)
1318 kfree(ev);
1319
1320#ifdef CONFIG_RFKILL_INPUT
1321 if (data->input_handler)
1322 if (atomic_dec_return(&rfkill_input_disabled) == 0)
1323 printk(KERN_DEBUG "rfkill: input handler enabled\n");
1324#endif
1325
1326 kfree(data);
1327
1328 return 0;
1329}
1330
1331static long rfkill_fop_ioctl(struct file *file, unsigned int cmd,
1332 unsigned long arg)
1333{
1334 struct rfkill_data *data = file->private_data;
1335 int ret = -ENOSYS;
1336 u32 size;
1337
1338 if (_IOC_TYPE(cmd) != RFKILL_IOC_MAGIC)
1339 return -ENOSYS;
1340
1341 mutex_lock(&data->mtx);
1342 switch (_IOC_NR(cmd)) {
1343#ifdef CONFIG_RFKILL_INPUT
1344 case RFKILL_IOC_NOINPUT:
1345 if (!data->input_handler) {
1346 if (atomic_inc_return(&rfkill_input_disabled) == 1)
1347 printk(KERN_DEBUG "rfkill: input handler disabled\n");
1348 data->input_handler = true;
1349 }
1350 ret = 0;
1351 break;
1352#endif
1353 case RFKILL_IOC_MAX_SIZE:
1354 if (get_user(size, (__u32 __user *)arg)) {
1355 ret = -EFAULT;
1356 break;
1357 }
1358 if (size < RFKILL_EVENT_SIZE_V1 || size > U8_MAX) {
1359 ret = -EINVAL;
1360 break;
1361 }
1362 data->max_size = size;
1363 ret = 0;
1364 break;
1365 default:
1366 break;
1367 }
1368 mutex_unlock(&data->mtx);
1369
1370 return ret;
1371}
1372
1373static const struct file_operations rfkill_fops = {
1374 .owner = THIS_MODULE,
1375 .open = rfkill_fop_open,
1376 .read = rfkill_fop_read,
1377 .write = rfkill_fop_write,
1378 .poll = rfkill_fop_poll,
1379 .release = rfkill_fop_release,
1380 .unlocked_ioctl = rfkill_fop_ioctl,
1381 .compat_ioctl = compat_ptr_ioctl,
1382 .llseek = no_llseek,
1383};
1384
1385#define RFKILL_NAME "rfkill"
1386
1387static struct miscdevice rfkill_miscdev = {
1388 .fops = &rfkill_fops,
1389 .name = RFKILL_NAME,
1390 .minor = RFKILL_MINOR,
1391};
1392
1393static int __init rfkill_init(void)
1394{
1395 int error;
1396
1397 rfkill_update_global_state(RFKILL_TYPE_ALL, !rfkill_default_state);
1398
1399 error = class_register(&rfkill_class);
1400 if (error)
1401 goto error_class;
1402
1403 error = misc_register(&rfkill_miscdev);
1404 if (error)
1405 goto error_misc;
1406
1407 error = rfkill_global_led_trigger_register();
1408 if (error)
1409 goto error_led_trigger;
1410
1411#ifdef CONFIG_RFKILL_INPUT
1412 error = rfkill_handler_init();
1413 if (error)
1414 goto error_input;
1415#endif
1416
1417 return 0;
1418
1419#ifdef CONFIG_RFKILL_INPUT
1420error_input:
1421 rfkill_global_led_trigger_unregister();
1422#endif
1423error_led_trigger:
1424 misc_deregister(&rfkill_miscdev);
1425error_misc:
1426 class_unregister(&rfkill_class);
1427error_class:
1428 return error;
1429}
1430subsys_initcall(rfkill_init);
1431
1432static void __exit rfkill_exit(void)
1433{
1434#ifdef CONFIG_RFKILL_INPUT
1435 rfkill_handler_exit();
1436#endif
1437 rfkill_global_led_trigger_unregister();
1438 misc_deregister(&rfkill_miscdev);
1439 class_unregister(&rfkill_class);
1440}
1441module_exit(rfkill_exit);
1442
1443MODULE_ALIAS_MISCDEV(RFKILL_MINOR);
1444MODULE_ALIAS("devname:" RFKILL_NAME);
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Copyright (C) 2006 - 2007 Ivo van Doorn
4 * Copyright (C) 2007 Dmitry Torokhov
5 * Copyright 2009 Johannes Berg <johannes@sipsolutions.net>
6 */
7
8#include <linux/kernel.h>
9#include <linux/module.h>
10#include <linux/init.h>
11#include <linux/workqueue.h>
12#include <linux/capability.h>
13#include <linux/list.h>
14#include <linux/mutex.h>
15#include <linux/rfkill.h>
16#include <linux/sched.h>
17#include <linux/spinlock.h>
18#include <linux/device.h>
19#include <linux/miscdevice.h>
20#include <linux/wait.h>
21#include <linux/poll.h>
22#include <linux/fs.h>
23#include <linux/slab.h>
24
25#include "rfkill.h"
26
27#define POLL_INTERVAL (5 * HZ)
28
29#define RFKILL_BLOCK_HW BIT(0)
30#define RFKILL_BLOCK_SW BIT(1)
31#define RFKILL_BLOCK_SW_PREV BIT(2)
32#define RFKILL_BLOCK_ANY (RFKILL_BLOCK_HW |\
33 RFKILL_BLOCK_SW |\
34 RFKILL_BLOCK_SW_PREV)
35#define RFKILL_BLOCK_SW_SETCALL BIT(31)
36
37struct rfkill {
38 spinlock_t lock;
39
40 enum rfkill_type type;
41
42 unsigned long state;
43 unsigned long hard_block_reasons;
44
45 u32 idx;
46
47 bool registered;
48 bool persistent;
49 bool polling_paused;
50 bool suspended;
51
52 const struct rfkill_ops *ops;
53 void *data;
54
55#ifdef CONFIG_RFKILL_LEDS
56 struct led_trigger led_trigger;
57 const char *ledtrigname;
58#endif
59
60 struct device dev;
61 struct list_head node;
62
63 struct delayed_work poll_work;
64 struct work_struct uevent_work;
65 struct work_struct sync_work;
66 char name[];
67};
68#define to_rfkill(d) container_of(d, struct rfkill, dev)
69
70struct rfkill_int_event {
71 struct list_head list;
72 struct rfkill_event_ext ev;
73};
74
75struct rfkill_data {
76 struct list_head list;
77 struct list_head events;
78 struct mutex mtx;
79 wait_queue_head_t read_wait;
80 bool input_handler;
81};
82
83
84MODULE_AUTHOR("Ivo van Doorn <IvDoorn@gmail.com>");
85MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
86MODULE_DESCRIPTION("RF switch support");
87MODULE_LICENSE("GPL");
88
89
90/*
91 * The locking here should be made much smarter, we currently have
92 * a bit of a stupid situation because drivers might want to register
93 * the rfkill struct under their own lock, and take this lock during
94 * rfkill method calls -- which will cause an AB-BA deadlock situation.
95 *
96 * To fix that, we need to rework this code here to be mostly lock-free
97 * and only use the mutex for list manipulations, not to protect the
98 * various other global variables. Then we can avoid holding the mutex
99 * around driver operations, and all is happy.
100 */
101static LIST_HEAD(rfkill_list); /* list of registered rf switches */
102static DEFINE_MUTEX(rfkill_global_mutex);
103static LIST_HEAD(rfkill_fds); /* list of open fds of /dev/rfkill */
104
105static unsigned int rfkill_default_state = 1;
106module_param_named(default_state, rfkill_default_state, uint, 0444);
107MODULE_PARM_DESC(default_state,
108 "Default initial state for all radio types, 0 = radio off");
109
110static struct {
111 bool cur, sav;
112} rfkill_global_states[NUM_RFKILL_TYPES];
113
114static bool rfkill_epo_lock_active;
115
116
117#ifdef CONFIG_RFKILL_LEDS
118static void rfkill_led_trigger_event(struct rfkill *rfkill)
119{
120 struct led_trigger *trigger;
121
122 if (!rfkill->registered)
123 return;
124
125 trigger = &rfkill->led_trigger;
126
127 if (rfkill->state & RFKILL_BLOCK_ANY)
128 led_trigger_event(trigger, LED_OFF);
129 else
130 led_trigger_event(trigger, LED_FULL);
131}
132
133static int rfkill_led_trigger_activate(struct led_classdev *led)
134{
135 struct rfkill *rfkill;
136
137 rfkill = container_of(led->trigger, struct rfkill, led_trigger);
138
139 rfkill_led_trigger_event(rfkill);
140
141 return 0;
142}
143
144const char *rfkill_get_led_trigger_name(struct rfkill *rfkill)
145{
146 return rfkill->led_trigger.name;
147}
148EXPORT_SYMBOL(rfkill_get_led_trigger_name);
149
150void rfkill_set_led_trigger_name(struct rfkill *rfkill, const char *name)
151{
152 BUG_ON(!rfkill);
153
154 rfkill->ledtrigname = name;
155}
156EXPORT_SYMBOL(rfkill_set_led_trigger_name);
157
158static int rfkill_led_trigger_register(struct rfkill *rfkill)
159{
160 rfkill->led_trigger.name = rfkill->ledtrigname
161 ? : dev_name(&rfkill->dev);
162 rfkill->led_trigger.activate = rfkill_led_trigger_activate;
163 return led_trigger_register(&rfkill->led_trigger);
164}
165
166static void rfkill_led_trigger_unregister(struct rfkill *rfkill)
167{
168 led_trigger_unregister(&rfkill->led_trigger);
169}
170
171static struct led_trigger rfkill_any_led_trigger;
172static struct led_trigger rfkill_none_led_trigger;
173static struct work_struct rfkill_global_led_trigger_work;
174
175static void rfkill_global_led_trigger_worker(struct work_struct *work)
176{
177 enum led_brightness brightness = LED_OFF;
178 struct rfkill *rfkill;
179
180 mutex_lock(&rfkill_global_mutex);
181 list_for_each_entry(rfkill, &rfkill_list, node) {
182 if (!(rfkill->state & RFKILL_BLOCK_ANY)) {
183 brightness = LED_FULL;
184 break;
185 }
186 }
187 mutex_unlock(&rfkill_global_mutex);
188
189 led_trigger_event(&rfkill_any_led_trigger, brightness);
190 led_trigger_event(&rfkill_none_led_trigger,
191 brightness == LED_OFF ? LED_FULL : LED_OFF);
192}
193
194static void rfkill_global_led_trigger_event(void)
195{
196 schedule_work(&rfkill_global_led_trigger_work);
197}
198
199static int rfkill_global_led_trigger_register(void)
200{
201 int ret;
202
203 INIT_WORK(&rfkill_global_led_trigger_work,
204 rfkill_global_led_trigger_worker);
205
206 rfkill_any_led_trigger.name = "rfkill-any";
207 ret = led_trigger_register(&rfkill_any_led_trigger);
208 if (ret)
209 return ret;
210
211 rfkill_none_led_trigger.name = "rfkill-none";
212 ret = led_trigger_register(&rfkill_none_led_trigger);
213 if (ret)
214 led_trigger_unregister(&rfkill_any_led_trigger);
215 else
216 /* Delay activation until all global triggers are registered */
217 rfkill_global_led_trigger_event();
218
219 return ret;
220}
221
222static void rfkill_global_led_trigger_unregister(void)
223{
224 led_trigger_unregister(&rfkill_none_led_trigger);
225 led_trigger_unregister(&rfkill_any_led_trigger);
226 cancel_work_sync(&rfkill_global_led_trigger_work);
227}
228#else
229static void rfkill_led_trigger_event(struct rfkill *rfkill)
230{
231}
232
233static inline int rfkill_led_trigger_register(struct rfkill *rfkill)
234{
235 return 0;
236}
237
238static inline void rfkill_led_trigger_unregister(struct rfkill *rfkill)
239{
240}
241
242static void rfkill_global_led_trigger_event(void)
243{
244}
245
246static int rfkill_global_led_trigger_register(void)
247{
248 return 0;
249}
250
251static void rfkill_global_led_trigger_unregister(void)
252{
253}
254#endif /* CONFIG_RFKILL_LEDS */
255
256static void rfkill_fill_event(struct rfkill_event_ext *ev,
257 struct rfkill *rfkill,
258 enum rfkill_operation op)
259{
260 unsigned long flags;
261
262 ev->idx = rfkill->idx;
263 ev->type = rfkill->type;
264 ev->op = op;
265
266 spin_lock_irqsave(&rfkill->lock, flags);
267 ev->hard = !!(rfkill->state & RFKILL_BLOCK_HW);
268 ev->soft = !!(rfkill->state & (RFKILL_BLOCK_SW |
269 RFKILL_BLOCK_SW_PREV));
270 ev->hard_block_reasons = rfkill->hard_block_reasons;
271 spin_unlock_irqrestore(&rfkill->lock, flags);
272}
273
274static void rfkill_send_events(struct rfkill *rfkill, enum rfkill_operation op)
275{
276 struct rfkill_data *data;
277 struct rfkill_int_event *ev;
278
279 list_for_each_entry(data, &rfkill_fds, list) {
280 ev = kzalloc(sizeof(*ev), GFP_KERNEL);
281 if (!ev)
282 continue;
283 rfkill_fill_event(&ev->ev, rfkill, op);
284 mutex_lock(&data->mtx);
285 list_add_tail(&ev->list, &data->events);
286 mutex_unlock(&data->mtx);
287 wake_up_interruptible(&data->read_wait);
288 }
289}
290
291static void rfkill_event(struct rfkill *rfkill)
292{
293 if (!rfkill->registered)
294 return;
295
296 kobject_uevent(&rfkill->dev.kobj, KOBJ_CHANGE);
297
298 /* also send event to /dev/rfkill */
299 rfkill_send_events(rfkill, RFKILL_OP_CHANGE);
300}
301
302/**
303 * rfkill_set_block - wrapper for set_block method
304 *
305 * @rfkill: the rfkill struct to use
306 * @blocked: the new software state
307 *
308 * Calls the set_block method (when applicable) and handles notifications
309 * etc. as well.
310 */
311static void rfkill_set_block(struct rfkill *rfkill, bool blocked)
312{
313 unsigned long flags;
314 bool prev, curr;
315 int err;
316
317 if (unlikely(rfkill->dev.power.power_state.event & PM_EVENT_SLEEP))
318 return;
319
320 /*
321 * Some platforms (...!) generate input events which affect the
322 * _hard_ kill state -- whenever something tries to change the
323 * current software state query the hardware state too.
324 */
325 if (rfkill->ops->query)
326 rfkill->ops->query(rfkill, rfkill->data);
327
328 spin_lock_irqsave(&rfkill->lock, flags);
329 prev = rfkill->state & RFKILL_BLOCK_SW;
330
331 if (prev)
332 rfkill->state |= RFKILL_BLOCK_SW_PREV;
333 else
334 rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
335
336 if (blocked)
337 rfkill->state |= RFKILL_BLOCK_SW;
338 else
339 rfkill->state &= ~RFKILL_BLOCK_SW;
340
341 rfkill->state |= RFKILL_BLOCK_SW_SETCALL;
342 spin_unlock_irqrestore(&rfkill->lock, flags);
343
344 err = rfkill->ops->set_block(rfkill->data, blocked);
345
346 spin_lock_irqsave(&rfkill->lock, flags);
347 if (err) {
348 /*
349 * Failed -- reset status to _PREV, which may be different
350 * from what we have set _PREV to earlier in this function
351 * if rfkill_set_sw_state was invoked.
352 */
353 if (rfkill->state & RFKILL_BLOCK_SW_PREV)
354 rfkill->state |= RFKILL_BLOCK_SW;
355 else
356 rfkill->state &= ~RFKILL_BLOCK_SW;
357 }
358 rfkill->state &= ~RFKILL_BLOCK_SW_SETCALL;
359 rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
360 curr = rfkill->state & RFKILL_BLOCK_SW;
361 spin_unlock_irqrestore(&rfkill->lock, flags);
362
363 rfkill_led_trigger_event(rfkill);
364 rfkill_global_led_trigger_event();
365
366 if (prev != curr)
367 rfkill_event(rfkill);
368}
369
370static void rfkill_update_global_state(enum rfkill_type type, bool blocked)
371{
372 int i;
373
374 if (type != RFKILL_TYPE_ALL) {
375 rfkill_global_states[type].cur = blocked;
376 return;
377 }
378
379 for (i = 0; i < NUM_RFKILL_TYPES; i++)
380 rfkill_global_states[i].cur = blocked;
381}
382
383#ifdef CONFIG_RFKILL_INPUT
384static atomic_t rfkill_input_disabled = ATOMIC_INIT(0);
385
386/**
387 * __rfkill_switch_all - Toggle state of all switches of given type
388 * @type: type of interfaces to be affected
389 * @blocked: the new state
390 *
391 * This function sets the state of all switches of given type,
392 * unless a specific switch is suspended.
393 *
394 * Caller must have acquired rfkill_global_mutex.
395 */
396static void __rfkill_switch_all(const enum rfkill_type type, bool blocked)
397{
398 struct rfkill *rfkill;
399
400 rfkill_update_global_state(type, blocked);
401 list_for_each_entry(rfkill, &rfkill_list, node) {
402 if (rfkill->type != type && type != RFKILL_TYPE_ALL)
403 continue;
404
405 rfkill_set_block(rfkill, blocked);
406 }
407}
408
409/**
410 * rfkill_switch_all - Toggle state of all switches of given type
411 * @type: type of interfaces to be affected
412 * @blocked: the new state
413 *
414 * Acquires rfkill_global_mutex and calls __rfkill_switch_all(@type, @state).
415 * Please refer to __rfkill_switch_all() for details.
416 *
417 * Does nothing if the EPO lock is active.
418 */
419void rfkill_switch_all(enum rfkill_type type, bool blocked)
420{
421 if (atomic_read(&rfkill_input_disabled))
422 return;
423
424 mutex_lock(&rfkill_global_mutex);
425
426 if (!rfkill_epo_lock_active)
427 __rfkill_switch_all(type, blocked);
428
429 mutex_unlock(&rfkill_global_mutex);
430}
431
432/**
433 * rfkill_epo - emergency power off all transmitters
434 *
435 * This kicks all non-suspended rfkill devices to RFKILL_STATE_SOFT_BLOCKED,
436 * ignoring everything in its path but rfkill_global_mutex and rfkill->mutex.
437 *
438 * The global state before the EPO is saved and can be restored later
439 * using rfkill_restore_states().
440 */
441void rfkill_epo(void)
442{
443 struct rfkill *rfkill;
444 int i;
445
446 if (atomic_read(&rfkill_input_disabled))
447 return;
448
449 mutex_lock(&rfkill_global_mutex);
450
451 rfkill_epo_lock_active = true;
452 list_for_each_entry(rfkill, &rfkill_list, node)
453 rfkill_set_block(rfkill, true);
454
455 for (i = 0; i < NUM_RFKILL_TYPES; i++) {
456 rfkill_global_states[i].sav = rfkill_global_states[i].cur;
457 rfkill_global_states[i].cur = true;
458 }
459
460 mutex_unlock(&rfkill_global_mutex);
461}
462
463/**
464 * rfkill_restore_states - restore global states
465 *
466 * Restore (and sync switches to) the global state from the
467 * states in rfkill_default_states. This can undo the effects of
468 * a call to rfkill_epo().
469 */
470void rfkill_restore_states(void)
471{
472 int i;
473
474 if (atomic_read(&rfkill_input_disabled))
475 return;
476
477 mutex_lock(&rfkill_global_mutex);
478
479 rfkill_epo_lock_active = false;
480 for (i = 0; i < NUM_RFKILL_TYPES; i++)
481 __rfkill_switch_all(i, rfkill_global_states[i].sav);
482 mutex_unlock(&rfkill_global_mutex);
483}
484
485/**
486 * rfkill_remove_epo_lock - unlock state changes
487 *
488 * Used by rfkill-input manually unlock state changes, when
489 * the EPO switch is deactivated.
490 */
491void rfkill_remove_epo_lock(void)
492{
493 if (atomic_read(&rfkill_input_disabled))
494 return;
495
496 mutex_lock(&rfkill_global_mutex);
497 rfkill_epo_lock_active = false;
498 mutex_unlock(&rfkill_global_mutex);
499}
500
501/**
502 * rfkill_is_epo_lock_active - returns true EPO is active
503 *
504 * Returns 0 (false) if there is NOT an active EPO condition,
505 * and 1 (true) if there is an active EPO condition, which
506 * locks all radios in one of the BLOCKED states.
507 *
508 * Can be called in atomic context.
509 */
510bool rfkill_is_epo_lock_active(void)
511{
512 return rfkill_epo_lock_active;
513}
514
515/**
516 * rfkill_get_global_sw_state - returns global state for a type
517 * @type: the type to get the global state of
518 *
519 * Returns the current global state for a given wireless
520 * device type.
521 */
522bool rfkill_get_global_sw_state(const enum rfkill_type type)
523{
524 return rfkill_global_states[type].cur;
525}
526#endif
527
528bool rfkill_set_hw_state_reason(struct rfkill *rfkill,
529 bool blocked, unsigned long reason)
530{
531 unsigned long flags;
532 bool ret, prev;
533
534 BUG_ON(!rfkill);
535
536 if (WARN(reason &
537 ~(RFKILL_HARD_BLOCK_SIGNAL | RFKILL_HARD_BLOCK_NOT_OWNER),
538 "hw_state reason not supported: 0x%lx", reason))
539 return blocked;
540
541 spin_lock_irqsave(&rfkill->lock, flags);
542 prev = !!(rfkill->hard_block_reasons & reason);
543 if (blocked) {
544 rfkill->state |= RFKILL_BLOCK_HW;
545 rfkill->hard_block_reasons |= reason;
546 } else {
547 rfkill->hard_block_reasons &= ~reason;
548 if (!rfkill->hard_block_reasons)
549 rfkill->state &= ~RFKILL_BLOCK_HW;
550 }
551 ret = !!(rfkill->state & RFKILL_BLOCK_ANY);
552 spin_unlock_irqrestore(&rfkill->lock, flags);
553
554 rfkill_led_trigger_event(rfkill);
555 rfkill_global_led_trigger_event();
556
557 if (rfkill->registered && prev != blocked)
558 schedule_work(&rfkill->uevent_work);
559
560 return ret;
561}
562EXPORT_SYMBOL(rfkill_set_hw_state_reason);
563
564static void __rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
565{
566 u32 bit = RFKILL_BLOCK_SW;
567
568 /* if in a ops->set_block right now, use other bit */
569 if (rfkill->state & RFKILL_BLOCK_SW_SETCALL)
570 bit = RFKILL_BLOCK_SW_PREV;
571
572 if (blocked)
573 rfkill->state |= bit;
574 else
575 rfkill->state &= ~bit;
576}
577
578bool rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
579{
580 unsigned long flags;
581 bool prev, hwblock;
582
583 BUG_ON(!rfkill);
584
585 spin_lock_irqsave(&rfkill->lock, flags);
586 prev = !!(rfkill->state & RFKILL_BLOCK_SW);
587 __rfkill_set_sw_state(rfkill, blocked);
588 hwblock = !!(rfkill->state & RFKILL_BLOCK_HW);
589 blocked = blocked || hwblock;
590 spin_unlock_irqrestore(&rfkill->lock, flags);
591
592 if (!rfkill->registered)
593 return blocked;
594
595 if (prev != blocked && !hwblock)
596 schedule_work(&rfkill->uevent_work);
597
598 rfkill_led_trigger_event(rfkill);
599 rfkill_global_led_trigger_event();
600
601 return blocked;
602}
603EXPORT_SYMBOL(rfkill_set_sw_state);
604
605void rfkill_init_sw_state(struct rfkill *rfkill, bool blocked)
606{
607 unsigned long flags;
608
609 BUG_ON(!rfkill);
610 BUG_ON(rfkill->registered);
611
612 spin_lock_irqsave(&rfkill->lock, flags);
613 __rfkill_set_sw_state(rfkill, blocked);
614 rfkill->persistent = true;
615 spin_unlock_irqrestore(&rfkill->lock, flags);
616}
617EXPORT_SYMBOL(rfkill_init_sw_state);
618
619void rfkill_set_states(struct rfkill *rfkill, bool sw, bool hw)
620{
621 unsigned long flags;
622 bool swprev, hwprev;
623
624 BUG_ON(!rfkill);
625
626 spin_lock_irqsave(&rfkill->lock, flags);
627
628 /*
629 * No need to care about prev/setblock ... this is for uevent only
630 * and that will get triggered by rfkill_set_block anyway.
631 */
632 swprev = !!(rfkill->state & RFKILL_BLOCK_SW);
633 hwprev = !!(rfkill->state & RFKILL_BLOCK_HW);
634 __rfkill_set_sw_state(rfkill, sw);
635 if (hw)
636 rfkill->state |= RFKILL_BLOCK_HW;
637 else
638 rfkill->state &= ~RFKILL_BLOCK_HW;
639
640 spin_unlock_irqrestore(&rfkill->lock, flags);
641
642 if (!rfkill->registered) {
643 rfkill->persistent = true;
644 } else {
645 if (swprev != sw || hwprev != hw)
646 schedule_work(&rfkill->uevent_work);
647
648 rfkill_led_trigger_event(rfkill);
649 rfkill_global_led_trigger_event();
650 }
651}
652EXPORT_SYMBOL(rfkill_set_states);
653
654static const char * const rfkill_types[] = {
655 NULL, /* RFKILL_TYPE_ALL */
656 "wlan",
657 "bluetooth",
658 "ultrawideband",
659 "wimax",
660 "wwan",
661 "gps",
662 "fm",
663 "nfc",
664};
665
666enum rfkill_type rfkill_find_type(const char *name)
667{
668 int i;
669
670 BUILD_BUG_ON(ARRAY_SIZE(rfkill_types) != NUM_RFKILL_TYPES);
671
672 if (!name)
673 return RFKILL_TYPE_ALL;
674
675 for (i = 1; i < NUM_RFKILL_TYPES; i++)
676 if (!strcmp(name, rfkill_types[i]))
677 return i;
678 return RFKILL_TYPE_ALL;
679}
680EXPORT_SYMBOL(rfkill_find_type);
681
682static ssize_t name_show(struct device *dev, struct device_attribute *attr,
683 char *buf)
684{
685 struct rfkill *rfkill = to_rfkill(dev);
686
687 return sprintf(buf, "%s\n", rfkill->name);
688}
689static DEVICE_ATTR_RO(name);
690
691static ssize_t type_show(struct device *dev, struct device_attribute *attr,
692 char *buf)
693{
694 struct rfkill *rfkill = to_rfkill(dev);
695
696 return sprintf(buf, "%s\n", rfkill_types[rfkill->type]);
697}
698static DEVICE_ATTR_RO(type);
699
700static ssize_t index_show(struct device *dev, struct device_attribute *attr,
701 char *buf)
702{
703 struct rfkill *rfkill = to_rfkill(dev);
704
705 return sprintf(buf, "%d\n", rfkill->idx);
706}
707static DEVICE_ATTR_RO(index);
708
709static ssize_t persistent_show(struct device *dev,
710 struct device_attribute *attr, char *buf)
711{
712 struct rfkill *rfkill = to_rfkill(dev);
713
714 return sprintf(buf, "%d\n", rfkill->persistent);
715}
716static DEVICE_ATTR_RO(persistent);
717
718static ssize_t hard_show(struct device *dev, struct device_attribute *attr,
719 char *buf)
720{
721 struct rfkill *rfkill = to_rfkill(dev);
722
723 return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_HW) ? 1 : 0 );
724}
725static DEVICE_ATTR_RO(hard);
726
727static ssize_t soft_show(struct device *dev, struct device_attribute *attr,
728 char *buf)
729{
730 struct rfkill *rfkill = to_rfkill(dev);
731
732 return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_SW) ? 1 : 0 );
733}
734
735static ssize_t soft_store(struct device *dev, struct device_attribute *attr,
736 const char *buf, size_t count)
737{
738 struct rfkill *rfkill = to_rfkill(dev);
739 unsigned long state;
740 int err;
741
742 if (!capable(CAP_NET_ADMIN))
743 return -EPERM;
744
745 err = kstrtoul(buf, 0, &state);
746 if (err)
747 return err;
748
749 if (state > 1 )
750 return -EINVAL;
751
752 mutex_lock(&rfkill_global_mutex);
753 rfkill_set_block(rfkill, state);
754 mutex_unlock(&rfkill_global_mutex);
755
756 return count;
757}
758static DEVICE_ATTR_RW(soft);
759
760static ssize_t hard_block_reasons_show(struct device *dev,
761 struct device_attribute *attr,
762 char *buf)
763{
764 struct rfkill *rfkill = to_rfkill(dev);
765
766 return sprintf(buf, "0x%lx\n", rfkill->hard_block_reasons);
767}
768static DEVICE_ATTR_RO(hard_block_reasons);
769
770static u8 user_state_from_blocked(unsigned long state)
771{
772 if (state & RFKILL_BLOCK_HW)
773 return RFKILL_USER_STATE_HARD_BLOCKED;
774 if (state & RFKILL_BLOCK_SW)
775 return RFKILL_USER_STATE_SOFT_BLOCKED;
776
777 return RFKILL_USER_STATE_UNBLOCKED;
778}
779
780static ssize_t state_show(struct device *dev, struct device_attribute *attr,
781 char *buf)
782{
783 struct rfkill *rfkill = to_rfkill(dev);
784
785 return sprintf(buf, "%d\n", user_state_from_blocked(rfkill->state));
786}
787
788static ssize_t state_store(struct device *dev, struct device_attribute *attr,
789 const char *buf, size_t count)
790{
791 struct rfkill *rfkill = to_rfkill(dev);
792 unsigned long state;
793 int err;
794
795 if (!capable(CAP_NET_ADMIN))
796 return -EPERM;
797
798 err = kstrtoul(buf, 0, &state);
799 if (err)
800 return err;
801
802 if (state != RFKILL_USER_STATE_SOFT_BLOCKED &&
803 state != RFKILL_USER_STATE_UNBLOCKED)
804 return -EINVAL;
805
806 mutex_lock(&rfkill_global_mutex);
807 rfkill_set_block(rfkill, state == RFKILL_USER_STATE_SOFT_BLOCKED);
808 mutex_unlock(&rfkill_global_mutex);
809
810 return count;
811}
812static DEVICE_ATTR_RW(state);
813
814static struct attribute *rfkill_dev_attrs[] = {
815 &dev_attr_name.attr,
816 &dev_attr_type.attr,
817 &dev_attr_index.attr,
818 &dev_attr_persistent.attr,
819 &dev_attr_state.attr,
820 &dev_attr_soft.attr,
821 &dev_attr_hard.attr,
822 &dev_attr_hard_block_reasons.attr,
823 NULL,
824};
825ATTRIBUTE_GROUPS(rfkill_dev);
826
827static void rfkill_release(struct device *dev)
828{
829 struct rfkill *rfkill = to_rfkill(dev);
830
831 kfree(rfkill);
832}
833
834static int rfkill_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
835{
836 struct rfkill *rfkill = to_rfkill(dev);
837 unsigned long flags;
838 unsigned long reasons;
839 u32 state;
840 int error;
841
842 error = add_uevent_var(env, "RFKILL_NAME=%s", rfkill->name);
843 if (error)
844 return error;
845 error = add_uevent_var(env, "RFKILL_TYPE=%s",
846 rfkill_types[rfkill->type]);
847 if (error)
848 return error;
849 spin_lock_irqsave(&rfkill->lock, flags);
850 state = rfkill->state;
851 reasons = rfkill->hard_block_reasons;
852 spin_unlock_irqrestore(&rfkill->lock, flags);
853 error = add_uevent_var(env, "RFKILL_STATE=%d",
854 user_state_from_blocked(state));
855 if (error)
856 return error;
857 return add_uevent_var(env, "RFKILL_HW_BLOCK_REASON=0x%lx", reasons);
858}
859
860void rfkill_pause_polling(struct rfkill *rfkill)
861{
862 BUG_ON(!rfkill);
863
864 if (!rfkill->ops->poll)
865 return;
866
867 rfkill->polling_paused = true;
868 cancel_delayed_work_sync(&rfkill->poll_work);
869}
870EXPORT_SYMBOL(rfkill_pause_polling);
871
872void rfkill_resume_polling(struct rfkill *rfkill)
873{
874 BUG_ON(!rfkill);
875
876 if (!rfkill->ops->poll)
877 return;
878
879 rfkill->polling_paused = false;
880
881 if (rfkill->suspended)
882 return;
883
884 queue_delayed_work(system_power_efficient_wq,
885 &rfkill->poll_work, 0);
886}
887EXPORT_SYMBOL(rfkill_resume_polling);
888
889#ifdef CONFIG_PM_SLEEP
890static int rfkill_suspend(struct device *dev)
891{
892 struct rfkill *rfkill = to_rfkill(dev);
893
894 rfkill->suspended = true;
895 cancel_delayed_work_sync(&rfkill->poll_work);
896
897 return 0;
898}
899
900static int rfkill_resume(struct device *dev)
901{
902 struct rfkill *rfkill = to_rfkill(dev);
903 bool cur;
904
905 rfkill->suspended = false;
906
907 if (!rfkill->registered)
908 return 0;
909
910 if (!rfkill->persistent) {
911 cur = !!(rfkill->state & RFKILL_BLOCK_SW);
912 rfkill_set_block(rfkill, cur);
913 }
914
915 if (rfkill->ops->poll && !rfkill->polling_paused)
916 queue_delayed_work(system_power_efficient_wq,
917 &rfkill->poll_work, 0);
918
919 return 0;
920}
921
922static SIMPLE_DEV_PM_OPS(rfkill_pm_ops, rfkill_suspend, rfkill_resume);
923#define RFKILL_PM_OPS (&rfkill_pm_ops)
924#else
925#define RFKILL_PM_OPS NULL
926#endif
927
928static struct class rfkill_class = {
929 .name = "rfkill",
930 .dev_release = rfkill_release,
931 .dev_groups = rfkill_dev_groups,
932 .dev_uevent = rfkill_dev_uevent,
933 .pm = RFKILL_PM_OPS,
934};
935
936bool rfkill_blocked(struct rfkill *rfkill)
937{
938 unsigned long flags;
939 u32 state;
940
941 spin_lock_irqsave(&rfkill->lock, flags);
942 state = rfkill->state;
943 spin_unlock_irqrestore(&rfkill->lock, flags);
944
945 return !!(state & RFKILL_BLOCK_ANY);
946}
947EXPORT_SYMBOL(rfkill_blocked);
948
949
950struct rfkill * __must_check rfkill_alloc(const char *name,
951 struct device *parent,
952 const enum rfkill_type type,
953 const struct rfkill_ops *ops,
954 void *ops_data)
955{
956 struct rfkill *rfkill;
957 struct device *dev;
958
959 if (WARN_ON(!ops))
960 return NULL;
961
962 if (WARN_ON(!ops->set_block))
963 return NULL;
964
965 if (WARN_ON(!name))
966 return NULL;
967
968 if (WARN_ON(type == RFKILL_TYPE_ALL || type >= NUM_RFKILL_TYPES))
969 return NULL;
970
971 rfkill = kzalloc(sizeof(*rfkill) + strlen(name) + 1, GFP_KERNEL);
972 if (!rfkill)
973 return NULL;
974
975 spin_lock_init(&rfkill->lock);
976 INIT_LIST_HEAD(&rfkill->node);
977 rfkill->type = type;
978 strcpy(rfkill->name, name);
979 rfkill->ops = ops;
980 rfkill->data = ops_data;
981
982 dev = &rfkill->dev;
983 dev->class = &rfkill_class;
984 dev->parent = parent;
985 device_initialize(dev);
986
987 return rfkill;
988}
989EXPORT_SYMBOL(rfkill_alloc);
990
991static void rfkill_poll(struct work_struct *work)
992{
993 struct rfkill *rfkill;
994
995 rfkill = container_of(work, struct rfkill, poll_work.work);
996
997 /*
998 * Poll hardware state -- driver will use one of the
999 * rfkill_set{,_hw,_sw}_state functions and use its
1000 * return value to update the current status.
1001 */
1002 rfkill->ops->poll(rfkill, rfkill->data);
1003
1004 queue_delayed_work(system_power_efficient_wq,
1005 &rfkill->poll_work,
1006 round_jiffies_relative(POLL_INTERVAL));
1007}
1008
1009static void rfkill_uevent_work(struct work_struct *work)
1010{
1011 struct rfkill *rfkill;
1012
1013 rfkill = container_of(work, struct rfkill, uevent_work);
1014
1015 mutex_lock(&rfkill_global_mutex);
1016 rfkill_event(rfkill);
1017 mutex_unlock(&rfkill_global_mutex);
1018}
1019
1020static void rfkill_sync_work(struct work_struct *work)
1021{
1022 struct rfkill *rfkill;
1023 bool cur;
1024
1025 rfkill = container_of(work, struct rfkill, sync_work);
1026
1027 mutex_lock(&rfkill_global_mutex);
1028 cur = rfkill_global_states[rfkill->type].cur;
1029 rfkill_set_block(rfkill, cur);
1030 mutex_unlock(&rfkill_global_mutex);
1031}
1032
1033int __must_check rfkill_register(struct rfkill *rfkill)
1034{
1035 static unsigned long rfkill_no;
1036 struct device *dev;
1037 int error;
1038
1039 if (!rfkill)
1040 return -EINVAL;
1041
1042 dev = &rfkill->dev;
1043
1044 mutex_lock(&rfkill_global_mutex);
1045
1046 if (rfkill->registered) {
1047 error = -EALREADY;
1048 goto unlock;
1049 }
1050
1051 rfkill->idx = rfkill_no;
1052 dev_set_name(dev, "rfkill%lu", rfkill_no);
1053 rfkill_no++;
1054
1055 list_add_tail(&rfkill->node, &rfkill_list);
1056
1057 error = device_add(dev);
1058 if (error)
1059 goto remove;
1060
1061 error = rfkill_led_trigger_register(rfkill);
1062 if (error)
1063 goto devdel;
1064
1065 rfkill->registered = true;
1066
1067 INIT_DELAYED_WORK(&rfkill->poll_work, rfkill_poll);
1068 INIT_WORK(&rfkill->uevent_work, rfkill_uevent_work);
1069 INIT_WORK(&rfkill->sync_work, rfkill_sync_work);
1070
1071 if (rfkill->ops->poll)
1072 queue_delayed_work(system_power_efficient_wq,
1073 &rfkill->poll_work,
1074 round_jiffies_relative(POLL_INTERVAL));
1075
1076 if (!rfkill->persistent || rfkill_epo_lock_active) {
1077 schedule_work(&rfkill->sync_work);
1078 } else {
1079#ifdef CONFIG_RFKILL_INPUT
1080 bool soft_blocked = !!(rfkill->state & RFKILL_BLOCK_SW);
1081
1082 if (!atomic_read(&rfkill_input_disabled))
1083 __rfkill_switch_all(rfkill->type, soft_blocked);
1084#endif
1085 }
1086
1087 rfkill_global_led_trigger_event();
1088 rfkill_send_events(rfkill, RFKILL_OP_ADD);
1089
1090 mutex_unlock(&rfkill_global_mutex);
1091 return 0;
1092
1093 devdel:
1094 device_del(&rfkill->dev);
1095 remove:
1096 list_del_init(&rfkill->node);
1097 unlock:
1098 mutex_unlock(&rfkill_global_mutex);
1099 return error;
1100}
1101EXPORT_SYMBOL(rfkill_register);
1102
1103void rfkill_unregister(struct rfkill *rfkill)
1104{
1105 BUG_ON(!rfkill);
1106
1107 if (rfkill->ops->poll)
1108 cancel_delayed_work_sync(&rfkill->poll_work);
1109
1110 cancel_work_sync(&rfkill->uevent_work);
1111 cancel_work_sync(&rfkill->sync_work);
1112
1113 rfkill->registered = false;
1114
1115 device_del(&rfkill->dev);
1116
1117 mutex_lock(&rfkill_global_mutex);
1118 rfkill_send_events(rfkill, RFKILL_OP_DEL);
1119 list_del_init(&rfkill->node);
1120 rfkill_global_led_trigger_event();
1121 mutex_unlock(&rfkill_global_mutex);
1122
1123 rfkill_led_trigger_unregister(rfkill);
1124}
1125EXPORT_SYMBOL(rfkill_unregister);
1126
1127void rfkill_destroy(struct rfkill *rfkill)
1128{
1129 if (rfkill)
1130 put_device(&rfkill->dev);
1131}
1132EXPORT_SYMBOL(rfkill_destroy);
1133
1134static int rfkill_fop_open(struct inode *inode, struct file *file)
1135{
1136 struct rfkill_data *data;
1137 struct rfkill *rfkill;
1138 struct rfkill_int_event *ev, *tmp;
1139
1140 data = kzalloc(sizeof(*data), GFP_KERNEL);
1141 if (!data)
1142 return -ENOMEM;
1143
1144 INIT_LIST_HEAD(&data->events);
1145 mutex_init(&data->mtx);
1146 init_waitqueue_head(&data->read_wait);
1147
1148 mutex_lock(&rfkill_global_mutex);
1149 mutex_lock(&data->mtx);
1150 /*
1151 * start getting events from elsewhere but hold mtx to get
1152 * startup events added first
1153 */
1154
1155 list_for_each_entry(rfkill, &rfkill_list, node) {
1156 ev = kzalloc(sizeof(*ev), GFP_KERNEL);
1157 if (!ev)
1158 goto free;
1159 rfkill_fill_event(&ev->ev, rfkill, RFKILL_OP_ADD);
1160 list_add_tail(&ev->list, &data->events);
1161 }
1162 list_add(&data->list, &rfkill_fds);
1163 mutex_unlock(&data->mtx);
1164 mutex_unlock(&rfkill_global_mutex);
1165
1166 file->private_data = data;
1167
1168 return stream_open(inode, file);
1169
1170 free:
1171 mutex_unlock(&data->mtx);
1172 mutex_unlock(&rfkill_global_mutex);
1173 mutex_destroy(&data->mtx);
1174 list_for_each_entry_safe(ev, tmp, &data->events, list)
1175 kfree(ev);
1176 kfree(data);
1177 return -ENOMEM;
1178}
1179
1180static __poll_t rfkill_fop_poll(struct file *file, poll_table *wait)
1181{
1182 struct rfkill_data *data = file->private_data;
1183 __poll_t res = EPOLLOUT | EPOLLWRNORM;
1184
1185 poll_wait(file, &data->read_wait, wait);
1186
1187 mutex_lock(&data->mtx);
1188 if (!list_empty(&data->events))
1189 res = EPOLLIN | EPOLLRDNORM;
1190 mutex_unlock(&data->mtx);
1191
1192 return res;
1193}
1194
1195static ssize_t rfkill_fop_read(struct file *file, char __user *buf,
1196 size_t count, loff_t *pos)
1197{
1198 struct rfkill_data *data = file->private_data;
1199 struct rfkill_int_event *ev;
1200 unsigned long sz;
1201 int ret;
1202
1203 mutex_lock(&data->mtx);
1204
1205 while (list_empty(&data->events)) {
1206 if (file->f_flags & O_NONBLOCK) {
1207 ret = -EAGAIN;
1208 goto out;
1209 }
1210 mutex_unlock(&data->mtx);
1211 /* since we re-check and it just compares pointers,
1212 * using !list_empty() without locking isn't a problem
1213 */
1214 ret = wait_event_interruptible(data->read_wait,
1215 !list_empty(&data->events));
1216 mutex_lock(&data->mtx);
1217
1218 if (ret)
1219 goto out;
1220 }
1221
1222 ev = list_first_entry(&data->events, struct rfkill_int_event,
1223 list);
1224
1225 sz = min_t(unsigned long, sizeof(ev->ev), count);
1226 ret = sz;
1227 if (copy_to_user(buf, &ev->ev, sz))
1228 ret = -EFAULT;
1229
1230 list_del(&ev->list);
1231 kfree(ev);
1232 out:
1233 mutex_unlock(&data->mtx);
1234 return ret;
1235}
1236
1237static ssize_t rfkill_fop_write(struct file *file, const char __user *buf,
1238 size_t count, loff_t *pos)
1239{
1240 struct rfkill *rfkill;
1241 struct rfkill_event_ext ev;
1242 int ret;
1243
1244 /* we don't need the 'hard' variable but accept it */
1245 if (count < RFKILL_EVENT_SIZE_V1 - 1)
1246 return -EINVAL;
1247
1248 /*
1249 * Copy as much data as we can accept into our 'ev' buffer,
1250 * but tell userspace how much we've copied so it can determine
1251 * our API version even in a write() call, if it cares.
1252 */
1253 count = min(count, sizeof(ev));
1254 if (copy_from_user(&ev, buf, count))
1255 return -EFAULT;
1256
1257 if (ev.type >= NUM_RFKILL_TYPES)
1258 return -EINVAL;
1259
1260 mutex_lock(&rfkill_global_mutex);
1261
1262 switch (ev.op) {
1263 case RFKILL_OP_CHANGE_ALL:
1264 rfkill_update_global_state(ev.type, ev.soft);
1265 list_for_each_entry(rfkill, &rfkill_list, node)
1266 if (rfkill->type == ev.type ||
1267 ev.type == RFKILL_TYPE_ALL)
1268 rfkill_set_block(rfkill, ev.soft);
1269 ret = 0;
1270 break;
1271 case RFKILL_OP_CHANGE:
1272 list_for_each_entry(rfkill, &rfkill_list, node)
1273 if (rfkill->idx == ev.idx &&
1274 (rfkill->type == ev.type ||
1275 ev.type == RFKILL_TYPE_ALL))
1276 rfkill_set_block(rfkill, ev.soft);
1277 ret = 0;
1278 break;
1279 default:
1280 ret = -EINVAL;
1281 break;
1282 }
1283
1284 mutex_unlock(&rfkill_global_mutex);
1285
1286 return ret ?: count;
1287}
1288
1289static int rfkill_fop_release(struct inode *inode, struct file *file)
1290{
1291 struct rfkill_data *data = file->private_data;
1292 struct rfkill_int_event *ev, *tmp;
1293
1294 mutex_lock(&rfkill_global_mutex);
1295 list_del(&data->list);
1296 mutex_unlock(&rfkill_global_mutex);
1297
1298 mutex_destroy(&data->mtx);
1299 list_for_each_entry_safe(ev, tmp, &data->events, list)
1300 kfree(ev);
1301
1302#ifdef CONFIG_RFKILL_INPUT
1303 if (data->input_handler)
1304 if (atomic_dec_return(&rfkill_input_disabled) == 0)
1305 printk(KERN_DEBUG "rfkill: input handler enabled\n");
1306#endif
1307
1308 kfree(data);
1309
1310 return 0;
1311}
1312
1313#ifdef CONFIG_RFKILL_INPUT
1314static long rfkill_fop_ioctl(struct file *file, unsigned int cmd,
1315 unsigned long arg)
1316{
1317 struct rfkill_data *data = file->private_data;
1318
1319 if (_IOC_TYPE(cmd) != RFKILL_IOC_MAGIC)
1320 return -ENOSYS;
1321
1322 if (_IOC_NR(cmd) != RFKILL_IOC_NOINPUT)
1323 return -ENOSYS;
1324
1325 mutex_lock(&data->mtx);
1326
1327 if (!data->input_handler) {
1328 if (atomic_inc_return(&rfkill_input_disabled) == 1)
1329 printk(KERN_DEBUG "rfkill: input handler disabled\n");
1330 data->input_handler = true;
1331 }
1332
1333 mutex_unlock(&data->mtx);
1334
1335 return 0;
1336}
1337#endif
1338
1339static const struct file_operations rfkill_fops = {
1340 .owner = THIS_MODULE,
1341 .open = rfkill_fop_open,
1342 .read = rfkill_fop_read,
1343 .write = rfkill_fop_write,
1344 .poll = rfkill_fop_poll,
1345 .release = rfkill_fop_release,
1346#ifdef CONFIG_RFKILL_INPUT
1347 .unlocked_ioctl = rfkill_fop_ioctl,
1348 .compat_ioctl = compat_ptr_ioctl,
1349#endif
1350 .llseek = no_llseek,
1351};
1352
1353#define RFKILL_NAME "rfkill"
1354
1355static struct miscdevice rfkill_miscdev = {
1356 .fops = &rfkill_fops,
1357 .name = RFKILL_NAME,
1358 .minor = RFKILL_MINOR,
1359};
1360
1361static int __init rfkill_init(void)
1362{
1363 int error;
1364
1365 rfkill_update_global_state(RFKILL_TYPE_ALL, !rfkill_default_state);
1366
1367 error = class_register(&rfkill_class);
1368 if (error)
1369 goto error_class;
1370
1371 error = misc_register(&rfkill_miscdev);
1372 if (error)
1373 goto error_misc;
1374
1375 error = rfkill_global_led_trigger_register();
1376 if (error)
1377 goto error_led_trigger;
1378
1379#ifdef CONFIG_RFKILL_INPUT
1380 error = rfkill_handler_init();
1381 if (error)
1382 goto error_input;
1383#endif
1384
1385 return 0;
1386
1387#ifdef CONFIG_RFKILL_INPUT
1388error_input:
1389 rfkill_global_led_trigger_unregister();
1390#endif
1391error_led_trigger:
1392 misc_deregister(&rfkill_miscdev);
1393error_misc:
1394 class_unregister(&rfkill_class);
1395error_class:
1396 return error;
1397}
1398subsys_initcall(rfkill_init);
1399
1400static void __exit rfkill_exit(void)
1401{
1402#ifdef CONFIG_RFKILL_INPUT
1403 rfkill_handler_exit();
1404#endif
1405 rfkill_global_led_trigger_unregister();
1406 misc_deregister(&rfkill_miscdev);
1407 class_unregister(&rfkill_class);
1408}
1409module_exit(rfkill_exit);
1410
1411MODULE_ALIAS_MISCDEV(RFKILL_MINOR);
1412MODULE_ALIAS("devname:" RFKILL_NAME);