Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * FPU register's regset abstraction, for ptrace, core dumps, etc.
  4 */
  5#include <linux/sched/task_stack.h>
  6#include <linux/vmalloc.h>
  7
  8#include <asm/fpu/api.h>
  9#include <asm/fpu/signal.h>
 10#include <asm/fpu/regset.h>
 11
 12#include "context.h"
 13#include "internal.h"
 14#include "legacy.h"
 15#include "xstate.h"
 16
 17/*
 18 * The xstateregs_active() routine is the same as the regset_fpregs_active() routine,
 19 * as the "regset->n" for the xstate regset will be updated based on the feature
 20 * capabilities supported by the xsave.
 21 */
 22int regset_fpregs_active(struct task_struct *target, const struct user_regset *regset)
 23{
 24	return regset->n;
 
 
 25}
 26
 27int regset_xregset_fpregs_active(struct task_struct *target, const struct user_regset *regset)
 28{
 29	if (boot_cpu_has(X86_FEATURE_FXSR))
 
 
 30		return regset->n;
 31	else
 32		return 0;
 33}
 34
 35/*
 36 * The regset get() functions are invoked from:
 37 *
 38 *   - coredump to dump the current task's fpstate. If the current task
 39 *     owns the FPU then the memory state has to be synchronized and the
 40 *     FPU register state preserved. Otherwise fpstate is already in sync.
 41 *
 42 *   - ptrace to dump fpstate of a stopped task, in which case the registers
 43 *     have already been saved to fpstate on context switch.
 44 */
 45static void sync_fpstate(struct fpu *fpu)
 46{
 47	if (fpu == &current->thread.fpu)
 48		fpu_sync_fpstate(fpu);
 49}
 50
 51/*
 52 * Invalidate cached FPU registers before modifying the stopped target
 53 * task's fpstate.
 54 *
 55 * This forces the target task on resume to restore the FPU registers from
 56 * modified fpstate. Otherwise the task might skip the restore and operate
 57 * with the cached FPU registers which discards the modifications.
 58 */
 59static void fpu_force_restore(struct fpu *fpu)
 60{
 61	/*
 62	 * Only stopped child tasks can be used to modify the FPU
 63	 * state in the fpstate buffer:
 64	 */
 65	WARN_ON_FPU(fpu == &current->thread.fpu);
 66
 67	__fpu_invalidate_fpregs_state(fpu);
 68}
 69
 70int xfpregs_get(struct task_struct *target, const struct user_regset *regset,
 71		struct membuf to)
 
 72{
 73	struct fpu *fpu = &target->thread.fpu;
 74
 75	if (!cpu_feature_enabled(X86_FEATURE_FXSR))
 76		return -ENODEV;
 77
 78	sync_fpstate(fpu);
 
 79
 80	if (!use_xsave()) {
 81		return membuf_write(&to, &fpu->fpstate->regs.fxsave,
 82				    sizeof(fpu->fpstate->regs.fxsave));
 83	}
 84
 85	copy_xstate_to_uabi_buf(to, target, XSTATE_COPY_FX);
 86	return 0;
 87}
 88
 89int xfpregs_set(struct task_struct *target, const struct user_regset *regset,
 90		unsigned int pos, unsigned int count,
 91		const void *kbuf, const void __user *ubuf)
 92{
 93	struct fpu *fpu = &target->thread.fpu;
 94	struct fxregs_state newstate;
 95	int ret;
 96
 97	if (!cpu_feature_enabled(X86_FEATURE_FXSR))
 98		return -ENODEV;
 99
100	/* No funny business with partial or oversized writes is permitted. */
101	if (pos != 0 || count != sizeof(newstate))
102		return -EINVAL;
103
104	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &newstate, 0, -1);
105	if (ret)
106		return ret;
107
108	/* Do not allow an invalid MXCSR value. */
109	if (newstate.mxcsr & ~mxcsr_feature_mask)
110		return -EINVAL;
111
112	fpu_force_restore(fpu);
113
114	/* Copy the state  */
115	memcpy(&fpu->fpstate->regs.fxsave, &newstate, sizeof(newstate));
116
117	/* Clear xmm8..15 for 32-bit callers */
118	BUILD_BUG_ON(sizeof(fpu->__fpstate.regs.fxsave.xmm_space) != 16 * 16);
119	if (in_ia32_syscall())
120		memset(&fpu->fpstate->regs.fxsave.xmm_space[8*4], 0, 8 * 16);
121
122	/* Mark FP and SSE as in use when XSAVE is enabled */
123	if (use_xsave())
124		fpu->fpstate->regs.xsave.header.xfeatures |= XFEATURE_MASK_FPSSE;
 
 
 
125
126	return 0;
127}
128
129int xstateregs_get(struct task_struct *target, const struct user_regset *regset,
130		struct membuf to)
 
131{
132	if (!cpu_feature_enabled(X86_FEATURE_XSAVE))
 
 
 
 
133		return -ENODEV;
134
135	sync_fpstate(&target->thread.fpu);
136
137	copy_xstate_to_uabi_buf(to, target, XSTATE_COPY_XSAVE);
138	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
139}
140
141int xstateregs_set(struct task_struct *target, const struct user_regset *regset,
142		  unsigned int pos, unsigned int count,
143		  const void *kbuf, const void __user *ubuf)
144{
145	struct fpu *fpu = &target->thread.fpu;
146	struct xregs_state *tmpbuf = NULL;
147	int ret;
148
149	if (!cpu_feature_enabled(X86_FEATURE_XSAVE))
150		return -ENODEV;
151
152	/*
153	 * A whole standard-format XSAVE buffer is needed:
154	 */
155	if (pos != 0 || count != fpu_user_cfg.max_size)
156		return -EFAULT;
157
158	if (!kbuf) {
159		tmpbuf = vmalloc(count);
160		if (!tmpbuf)
161			return -ENOMEM;
162
163		if (copy_from_user(tmpbuf, ubuf, count)) {
164			ret = -EFAULT;
165			goto out;
166		}
167	}
 
 
 
 
168
169	fpu_force_restore(fpu);
170	ret = copy_uabi_from_kernel_to_xstate(fpu->fpstate, kbuf ?: tmpbuf, &target->thread.pkru);
 
 
 
 
 
 
 
171
172out:
173	vfree(tmpbuf);
174	return ret;
175}
176
177#if defined CONFIG_X86_32 || defined CONFIG_IA32_EMULATION
178
179/*
180 * FPU tag word conversions.
181 */
182
183static inline unsigned short twd_i387_to_fxsr(unsigned short twd)
184{
185	unsigned int tmp; /* to avoid 16 bit prefixes in the code */
186
187	/* Transform each pair of bits into 01 (valid) or 00 (empty) */
188	tmp = ~twd;
189	tmp = (tmp | (tmp>>1)) & 0x5555; /* 0V0V0V0V0V0V0V0V */
190	/* and move the valid bits to the lower byte. */
191	tmp = (tmp | (tmp >> 1)) & 0x3333; /* 00VV00VV00VV00VV */
192	tmp = (tmp | (tmp >> 2)) & 0x0f0f; /* 0000VVVV0000VVVV */
193	tmp = (tmp | (tmp >> 4)) & 0x00ff; /* 00000000VVVVVVVV */
194
195	return tmp;
196}
197
198#define FPREG_ADDR(f, n)	((void *)&(f)->st_space + (n) * 16)
199#define FP_EXP_TAG_VALID	0
200#define FP_EXP_TAG_ZERO		1
201#define FP_EXP_TAG_SPECIAL	2
202#define FP_EXP_TAG_EMPTY	3
203
204static inline u32 twd_fxsr_to_i387(struct fxregs_state *fxsave)
205{
206	struct _fpxreg *st;
207	u32 tos = (fxsave->swd >> 11) & 7;
208	u32 twd = (unsigned long) fxsave->twd;
209	u32 tag;
210	u32 ret = 0xffff0000u;
211	int i;
212
213	for (i = 0; i < 8; i++, twd >>= 1) {
214		if (twd & 0x1) {
215			st = FPREG_ADDR(fxsave, (i - tos) & 7);
216
217			switch (st->exponent & 0x7fff) {
218			case 0x7fff:
219				tag = FP_EXP_TAG_SPECIAL;
220				break;
221			case 0x0000:
222				if (!st->significand[0] &&
223				    !st->significand[1] &&
224				    !st->significand[2] &&
225				    !st->significand[3])
226					tag = FP_EXP_TAG_ZERO;
227				else
228					tag = FP_EXP_TAG_SPECIAL;
229				break;
230			default:
231				if (st->significand[3] & 0x8000)
232					tag = FP_EXP_TAG_VALID;
233				else
234					tag = FP_EXP_TAG_SPECIAL;
235				break;
236			}
237		} else {
238			tag = FP_EXP_TAG_EMPTY;
239		}
240		ret |= tag << (2 * i);
241	}
242	return ret;
243}
244
245/*
246 * FXSR floating point environment conversions.
247 */
248
249static void __convert_from_fxsr(struct user_i387_ia32_struct *env,
250				struct task_struct *tsk,
251				struct fxregs_state *fxsave)
252{
 
253	struct _fpreg *to = (struct _fpreg *) &env->st_space[0];
254	struct _fpxreg *from = (struct _fpxreg *) &fxsave->st_space[0];
255	int i;
256
257	env->cwd = fxsave->cwd | 0xffff0000u;
258	env->swd = fxsave->swd | 0xffff0000u;
259	env->twd = twd_fxsr_to_i387(fxsave);
260
261#ifdef CONFIG_X86_64
262	env->fip = fxsave->rip;
263	env->foo = fxsave->rdp;
264	/*
265	 * should be actually ds/cs at fpu exception time, but
266	 * that information is not available in 64bit mode.
267	 */
268	env->fcs = task_pt_regs(tsk)->cs;
269	if (tsk == current) {
270		savesegment(ds, env->fos);
271	} else {
272		env->fos = tsk->thread.ds;
273	}
274	env->fos |= 0xffff0000;
275#else
276	env->fip = fxsave->fip;
277	env->fcs = (u16) fxsave->fcs | ((u32) fxsave->fop << 16);
278	env->foo = fxsave->foo;
279	env->fos = fxsave->fos;
280#endif
281
282	for (i = 0; i < 8; ++i)
283		memcpy(&to[i], &from[i], sizeof(to[0]));
284}
285
286void
287convert_from_fxsr(struct user_i387_ia32_struct *env, struct task_struct *tsk)
288{
289	__convert_from_fxsr(env, tsk, &tsk->thread.fpu.fpstate->regs.fxsave);
290}
291
292void convert_to_fxsr(struct fxregs_state *fxsave,
293		     const struct user_i387_ia32_struct *env)
294
295{
 
296	struct _fpreg *from = (struct _fpreg *) &env->st_space[0];
297	struct _fpxreg *to = (struct _fpxreg *) &fxsave->st_space[0];
298	int i;
299
300	fxsave->cwd = env->cwd;
301	fxsave->swd = env->swd;
302	fxsave->twd = twd_i387_to_fxsr(env->twd);
303	fxsave->fop = (u16) ((u32) env->fcs >> 16);
304#ifdef CONFIG_X86_64
305	fxsave->rip = env->fip;
306	fxsave->rdp = env->foo;
307	/* cs and ds ignored */
308#else
309	fxsave->fip = env->fip;
310	fxsave->fcs = (env->fcs & 0xffff);
311	fxsave->foo = env->foo;
312	fxsave->fos = env->fos;
313#endif
314
315	for (i = 0; i < 8; ++i)
316		memcpy(&to[i], &from[i], sizeof(from[0]));
317}
318
319int fpregs_get(struct task_struct *target, const struct user_regset *regset,
320	       struct membuf to)
 
321{
322	struct fpu *fpu = &target->thread.fpu;
323	struct user_i387_ia32_struct env;
324	struct fxregs_state fxsave, *fx;
325
326	sync_fpstate(fpu);
327
328	if (!cpu_feature_enabled(X86_FEATURE_FPU))
329		return fpregs_soft_get(target, regset, to);
330
331	if (!cpu_feature_enabled(X86_FEATURE_FXSR)) {
332		return membuf_write(&to, &fpu->fpstate->regs.fsave,
333				    sizeof(struct fregs_state));
334	}
335
336	if (use_xsave()) {
337		struct membuf mb = { .p = &fxsave, .left = sizeof(fxsave) };
338
339		/* Handle init state optimized xstate correctly */
340		copy_xstate_to_uabi_buf(mb, target, XSTATE_COPY_FP);
341		fx = &fxsave;
342	} else {
343		fx = &fpu->fpstate->regs.fxsave;
344	}
345
346	__convert_from_fxsr(&env, target, fx);
347	return membuf_write(&to, &env, sizeof(env));
 
348}
349
350int fpregs_set(struct task_struct *target, const struct user_regset *regset,
351	       unsigned int pos, unsigned int count,
352	       const void *kbuf, const void __user *ubuf)
353{
354	struct fpu *fpu = &target->thread.fpu;
355	struct user_i387_ia32_struct env;
356	int ret;
357
358	/* No funny business with partial or oversized writes is permitted. */
359	if (pos != 0 || count != sizeof(struct user_i387_ia32_struct))
360		return -EINVAL;
361
362	if (!cpu_feature_enabled(X86_FEATURE_FPU))
363		return fpregs_soft_set(target, regset, pos, count, kbuf, ubuf);
364
365	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &env, 0, -1);
366	if (ret)
367		return ret;
 
368
369	fpu_force_restore(fpu);
 
370
371	if (cpu_feature_enabled(X86_FEATURE_FXSR))
372		convert_to_fxsr(&fpu->fpstate->regs.fxsave, &env);
373	else
374		memcpy(&fpu->fpstate->regs.fsave, &env, sizeof(env));
375
376	/*
377	 * Update the header bit in the xsave header, indicating the
378	 * presence of FP.
379	 */
380	if (cpu_feature_enabled(X86_FEATURE_XSAVE))
381		fpu->fpstate->regs.xsave.header.xfeatures |= XFEATURE_MASK_FP;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
382
383	return 0;
384}
 
385
386#endif	/* CONFIG_X86_32 || CONFIG_IA32_EMULATION */
v4.10.11
 
  1/*
  2 * FPU register's regset abstraction, for ptrace, core dumps, etc.
  3 */
  4#include <asm/fpu/internal.h>
 
 
 
  5#include <asm/fpu/signal.h>
  6#include <asm/fpu/regset.h>
  7#include <asm/fpu/xstate.h>
 
 
 
 
  8
  9/*
 10 * The xstateregs_active() routine is the same as the regset_fpregs_active() routine,
 11 * as the "regset->n" for the xstate regset will be updated based on the feature
 12 * capabilities supported by the xsave.
 13 */
 14int regset_fpregs_active(struct task_struct *target, const struct user_regset *regset)
 15{
 16	struct fpu *target_fpu = &target->thread.fpu;
 17
 18	return target_fpu->fpstate_active ? regset->n : 0;
 19}
 20
 21int regset_xregset_fpregs_active(struct task_struct *target, const struct user_regset *regset)
 22{
 23	struct fpu *target_fpu = &target->thread.fpu;
 24
 25	if (boot_cpu_has(X86_FEATURE_FXSR) && target_fpu->fpstate_active)
 26		return regset->n;
 27	else
 28		return 0;
 29}
 30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 31int xfpregs_get(struct task_struct *target, const struct user_regset *regset,
 32		unsigned int pos, unsigned int count,
 33		void *kbuf, void __user *ubuf)
 34{
 35	struct fpu *fpu = &target->thread.fpu;
 36
 37	if (!boot_cpu_has(X86_FEATURE_FXSR))
 38		return -ENODEV;
 39
 40	fpu__activate_fpstate_read(fpu);
 41	fpstate_sanitize_xstate(fpu);
 42
 43	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
 44				   &fpu->state.fxsave, 0, -1);
 
 
 
 
 
 45}
 46
 47int xfpregs_set(struct task_struct *target, const struct user_regset *regset,
 48		unsigned int pos, unsigned int count,
 49		const void *kbuf, const void __user *ubuf)
 50{
 51	struct fpu *fpu = &target->thread.fpu;
 
 52	int ret;
 53
 54	if (!boot_cpu_has(X86_FEATURE_FXSR))
 55		return -ENODEV;
 56
 57	fpu__activate_fpstate_write(fpu);
 58	fpstate_sanitize_xstate(fpu);
 
 
 
 
 
 
 
 
 
 
 
 59
 60	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
 61				 &fpu->state.fxsave, 0, -1);
 62
 63	/*
 64	 * mxcsr reserved bits must be masked to zero for security reasons.
 65	 */
 66	fpu->state.fxsave.mxcsr &= mxcsr_feature_mask;
 67
 68	/*
 69	 * update the header bits in the xsave header, indicating the
 70	 * presence of FP and SSE state.
 71	 */
 72	if (boot_cpu_has(X86_FEATURE_XSAVE))
 73		fpu->state.xsave.header.xfeatures |= XFEATURE_MASK_FPSSE;
 74
 75	return ret;
 76}
 77
 78int xstateregs_get(struct task_struct *target, const struct user_regset *regset,
 79		unsigned int pos, unsigned int count,
 80		void *kbuf, void __user *ubuf)
 81{
 82	struct fpu *fpu = &target->thread.fpu;
 83	struct xregs_state *xsave;
 84	int ret;
 85
 86	if (!boot_cpu_has(X86_FEATURE_XSAVE))
 87		return -ENODEV;
 88
 89	xsave = &fpu->state.xsave;
 90
 91	fpu__activate_fpstate_read(fpu);
 92
 93	if (using_compacted_format()) {
 94		ret = copyout_from_xsaves(pos, count, kbuf, ubuf, xsave);
 95	} else {
 96		fpstate_sanitize_xstate(fpu);
 97		/*
 98		 * Copy the 48 bytes defined by the software into the xsave
 99		 * area in the thread struct, so that we can copy the whole
100		 * area to user using one user_regset_copyout().
101		 */
102		memcpy(&xsave->i387.sw_reserved, xstate_fx_sw_bytes, sizeof(xstate_fx_sw_bytes));
103
104		/*
105		 * Copy the xstate memory layout.
106		 */
107		ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, xsave, 0, -1);
108	}
109	return ret;
110}
111
112int xstateregs_set(struct task_struct *target, const struct user_regset *regset,
113		  unsigned int pos, unsigned int count,
114		  const void *kbuf, const void __user *ubuf)
115{
116	struct fpu *fpu = &target->thread.fpu;
117	struct xregs_state *xsave;
118	int ret;
119
120	if (!boot_cpu_has(X86_FEATURE_XSAVE))
121		return -ENODEV;
122
123	/*
124	 * A whole standard-format XSAVE buffer is needed:
125	 */
126	if ((pos != 0) || (count < fpu_user_xstate_size))
127		return -EFAULT;
128
129	xsave = &fpu->state.xsave;
130
131	fpu__activate_fpstate_write(fpu);
132
133	if (boot_cpu_has(X86_FEATURE_XSAVES))
134		ret = copyin_to_xsaves(kbuf, ubuf, xsave);
135	else
136		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, xsave, 0, -1);
137
138	/*
139	 * In case of failure, mark all states as init:
140	 */
141	if (ret)
142		fpstate_init(&fpu->state);
143
144	/*
145	 * mxcsr reserved bits must be masked to zero for security reasons.
146	 */
147	xsave->i387.mxcsr &= mxcsr_feature_mask;
148	xsave->header.xfeatures &= xfeatures_mask;
149	/*
150	 * These bits must be zero.
151	 */
152	memset(&xsave->header.reserved, 0, 48);
153
 
 
154	return ret;
155}
156
157#if defined CONFIG_X86_32 || defined CONFIG_IA32_EMULATION
158
159/*
160 * FPU tag word conversions.
161 */
162
163static inline unsigned short twd_i387_to_fxsr(unsigned short twd)
164{
165	unsigned int tmp; /* to avoid 16 bit prefixes in the code */
166
167	/* Transform each pair of bits into 01 (valid) or 00 (empty) */
168	tmp = ~twd;
169	tmp = (tmp | (tmp>>1)) & 0x5555; /* 0V0V0V0V0V0V0V0V */
170	/* and move the valid bits to the lower byte. */
171	tmp = (tmp | (tmp >> 1)) & 0x3333; /* 00VV00VV00VV00VV */
172	tmp = (tmp | (tmp >> 2)) & 0x0f0f; /* 0000VVVV0000VVVV */
173	tmp = (tmp | (tmp >> 4)) & 0x00ff; /* 00000000VVVVVVVV */
174
175	return tmp;
176}
177
178#define FPREG_ADDR(f, n)	((void *)&(f)->st_space + (n) * 16)
179#define FP_EXP_TAG_VALID	0
180#define FP_EXP_TAG_ZERO		1
181#define FP_EXP_TAG_SPECIAL	2
182#define FP_EXP_TAG_EMPTY	3
183
184static inline u32 twd_fxsr_to_i387(struct fxregs_state *fxsave)
185{
186	struct _fpxreg *st;
187	u32 tos = (fxsave->swd >> 11) & 7;
188	u32 twd = (unsigned long) fxsave->twd;
189	u32 tag;
190	u32 ret = 0xffff0000u;
191	int i;
192
193	for (i = 0; i < 8; i++, twd >>= 1) {
194		if (twd & 0x1) {
195			st = FPREG_ADDR(fxsave, (i - tos) & 7);
196
197			switch (st->exponent & 0x7fff) {
198			case 0x7fff:
199				tag = FP_EXP_TAG_SPECIAL;
200				break;
201			case 0x0000:
202				if (!st->significand[0] &&
203				    !st->significand[1] &&
204				    !st->significand[2] &&
205				    !st->significand[3])
206					tag = FP_EXP_TAG_ZERO;
207				else
208					tag = FP_EXP_TAG_SPECIAL;
209				break;
210			default:
211				if (st->significand[3] & 0x8000)
212					tag = FP_EXP_TAG_VALID;
213				else
214					tag = FP_EXP_TAG_SPECIAL;
215				break;
216			}
217		} else {
218			tag = FP_EXP_TAG_EMPTY;
219		}
220		ret |= tag << (2 * i);
221	}
222	return ret;
223}
224
225/*
226 * FXSR floating point environment conversions.
227 */
228
229void
230convert_from_fxsr(struct user_i387_ia32_struct *env, struct task_struct *tsk)
 
231{
232	struct fxregs_state *fxsave = &tsk->thread.fpu.state.fxsave;
233	struct _fpreg *to = (struct _fpreg *) &env->st_space[0];
234	struct _fpxreg *from = (struct _fpxreg *) &fxsave->st_space[0];
235	int i;
236
237	env->cwd = fxsave->cwd | 0xffff0000u;
238	env->swd = fxsave->swd | 0xffff0000u;
239	env->twd = twd_fxsr_to_i387(fxsave);
240
241#ifdef CONFIG_X86_64
242	env->fip = fxsave->rip;
243	env->foo = fxsave->rdp;
244	/*
245	 * should be actually ds/cs at fpu exception time, but
246	 * that information is not available in 64bit mode.
247	 */
248	env->fcs = task_pt_regs(tsk)->cs;
249	if (tsk == current) {
250		savesegment(ds, env->fos);
251	} else {
252		env->fos = tsk->thread.ds;
253	}
254	env->fos |= 0xffff0000;
255#else
256	env->fip = fxsave->fip;
257	env->fcs = (u16) fxsave->fcs | ((u32) fxsave->fop << 16);
258	env->foo = fxsave->foo;
259	env->fos = fxsave->fos;
260#endif
261
262	for (i = 0; i < 8; ++i)
263		memcpy(&to[i], &from[i], sizeof(to[0]));
264}
265
266void convert_to_fxsr(struct task_struct *tsk,
 
 
 
 
 
 
267		     const struct user_i387_ia32_struct *env)
268
269{
270	struct fxregs_state *fxsave = &tsk->thread.fpu.state.fxsave;
271	struct _fpreg *from = (struct _fpreg *) &env->st_space[0];
272	struct _fpxreg *to = (struct _fpxreg *) &fxsave->st_space[0];
273	int i;
274
275	fxsave->cwd = env->cwd;
276	fxsave->swd = env->swd;
277	fxsave->twd = twd_i387_to_fxsr(env->twd);
278	fxsave->fop = (u16) ((u32) env->fcs >> 16);
279#ifdef CONFIG_X86_64
280	fxsave->rip = env->fip;
281	fxsave->rdp = env->foo;
282	/* cs and ds ignored */
283#else
284	fxsave->fip = env->fip;
285	fxsave->fcs = (env->fcs & 0xffff);
286	fxsave->foo = env->foo;
287	fxsave->fos = env->fos;
288#endif
289
290	for (i = 0; i < 8; ++i)
291		memcpy(&to[i], &from[i], sizeof(from[0]));
292}
293
294int fpregs_get(struct task_struct *target, const struct user_regset *regset,
295	       unsigned int pos, unsigned int count,
296	       void *kbuf, void __user *ubuf)
297{
298	struct fpu *fpu = &target->thread.fpu;
299	struct user_i387_ia32_struct env;
 
300
301	fpu__activate_fpstate_read(fpu);
302
303	if (!boot_cpu_has(X86_FEATURE_FPU))
304		return fpregs_soft_get(target, regset, pos, count, kbuf, ubuf);
305
306	if (!boot_cpu_has(X86_FEATURE_FXSR))
307		return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
308					   &fpu->state.fsave, 0,
309					   -1);
310
311	fpstate_sanitize_xstate(fpu);
 
312
313	if (kbuf && pos == 0 && count == sizeof(env)) {
314		convert_from_fxsr(kbuf, target);
315		return 0;
 
 
316	}
317
318	convert_from_fxsr(&env, target);
319
320	return user_regset_copyout(&pos, &count, &kbuf, &ubuf, &env, 0, -1);
321}
322
323int fpregs_set(struct task_struct *target, const struct user_regset *regset,
324	       unsigned int pos, unsigned int count,
325	       const void *kbuf, const void __user *ubuf)
326{
327	struct fpu *fpu = &target->thread.fpu;
328	struct user_i387_ia32_struct env;
329	int ret;
330
331	fpu__activate_fpstate_write(fpu);
332	fpstate_sanitize_xstate(fpu);
 
333
334	if (!boot_cpu_has(X86_FEATURE_FPU))
335		return fpregs_soft_set(target, regset, pos, count, kbuf, ubuf);
336
337	if (!boot_cpu_has(X86_FEATURE_FXSR))
338		return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
339					  &fpu->state.fsave, 0,
340					  -1);
341
342	if (pos > 0 || count < sizeof(env))
343		convert_from_fxsr(&env, target);
344
345	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &env, 0, -1);
346	if (!ret)
347		convert_to_fxsr(target, &env);
 
348
349	/*
350	 * update the header bit in the xsave header, indicating the
351	 * presence of FP.
352	 */
353	if (boot_cpu_has(X86_FEATURE_XSAVE))
354		fpu->state.xsave.header.xfeatures |= XFEATURE_MASK_FP;
355	return ret;
356}
357
358/*
359 * FPU state for core dumps.
360 * This is only used for a.out dumps now.
361 * It is declared generically using elf_fpregset_t (which is
362 * struct user_i387_struct) but is in fact only used for 32-bit
363 * dumps, so on 64-bit it is really struct user_i387_ia32_struct.
364 */
365int dump_fpu(struct pt_regs *regs, struct user_i387_struct *ufpu)
366{
367	struct task_struct *tsk = current;
368	struct fpu *fpu = &tsk->thread.fpu;
369	int fpvalid;
370
371	fpvalid = fpu->fpstate_active;
372	if (fpvalid)
373		fpvalid = !fpregs_get(tsk, NULL,
374				      0, sizeof(struct user_i387_ia32_struct),
375				      ufpu, NULL);
376
377	return fpvalid;
378}
379EXPORT_SYMBOL(dump_fpu);
380
381#endif	/* CONFIG_X86_32 || CONFIG_IA32_EMULATION */