Linux Audio

Check our new training course

Loading...
v6.2
   1/*
   2 * Kernel Debugger Architecture Independent Main Code
   3 *
   4 * This file is subject to the terms and conditions of the GNU General Public
   5 * License.  See the file "COPYING" in the main directory of this archive
   6 * for more details.
   7 *
   8 * Copyright (C) 1999-2004 Silicon Graphics, Inc.  All Rights Reserved.
   9 * Copyright (C) 2000 Stephane Eranian <eranian@hpl.hp.com>
  10 * Xscale (R) modifications copyright (C) 2003 Intel Corporation.
  11 * Copyright (c) 2009 Wind River Systems, Inc.  All Rights Reserved.
  12 */
  13
  14#include <linux/ctype.h>
  15#include <linux/types.h>
  16#include <linux/string.h>
  17#include <linux/kernel.h>
  18#include <linux/kmsg_dump.h>
  19#include <linux/reboot.h>
  20#include <linux/sched.h>
  21#include <linux/sched/loadavg.h>
  22#include <linux/sched/stat.h>
  23#include <linux/sched/debug.h>
  24#include <linux/sysrq.h>
  25#include <linux/smp.h>
  26#include <linux/utsname.h>
  27#include <linux/vmalloc.h>
  28#include <linux/atomic.h>
  29#include <linux/moduleparam.h>
  30#include <linux/mm.h>
  31#include <linux/init.h>
  32#include <linux/kallsyms.h>
  33#include <linux/kgdb.h>
  34#include <linux/kdb.h>
  35#include <linux/notifier.h>
  36#include <linux/interrupt.h>
  37#include <linux/delay.h>
  38#include <linux/nmi.h>
  39#include <linux/time.h>
  40#include <linux/ptrace.h>
  41#include <linux/sysctl.h>
  42#include <linux/cpu.h>
  43#include <linux/kdebug.h>
  44#include <linux/proc_fs.h>
  45#include <linux/uaccess.h>
  46#include <linux/slab.h>
  47#include <linux/security.h>
  48#include "kdb_private.h"
  49
  50#undef	MODULE_PARAM_PREFIX
  51#define	MODULE_PARAM_PREFIX "kdb."
  52
  53static int kdb_cmd_enabled = CONFIG_KDB_DEFAULT_ENABLE;
  54module_param_named(cmd_enable, kdb_cmd_enabled, int, 0600);
  55
  56char kdb_grep_string[KDB_GREP_STRLEN];
  57int kdb_grepping_flag;
  58EXPORT_SYMBOL(kdb_grepping_flag);
  59int kdb_grep_leading;
  60int kdb_grep_trailing;
  61
  62/*
  63 * Kernel debugger state flags
  64 */
  65unsigned int kdb_flags;
 
  66
  67/*
  68 * kdb_lock protects updates to kdb_initial_cpu.  Used to
  69 * single thread processors through the kernel debugger.
  70 */
  71int kdb_initial_cpu = -1;	/* cpu number that owns kdb */
  72int kdb_nextline = 1;
  73int kdb_state;			/* General KDB state */
  74
  75struct task_struct *kdb_current_task;
 
  76struct pt_regs *kdb_current_regs;
  77
  78const char *kdb_diemsg;
  79static int kdb_go_count;
  80#ifdef CONFIG_KDB_CONTINUE_CATASTROPHIC
  81static unsigned int kdb_continue_catastrophic =
  82	CONFIG_KDB_CONTINUE_CATASTROPHIC;
  83#else
  84static unsigned int kdb_continue_catastrophic;
  85#endif
  86
  87/* kdb_cmds_head describes the available commands. */
  88static LIST_HEAD(kdb_cmds_head);
 
 
 
 
 
 
 
  89
  90typedef struct _kdbmsg {
  91	int	km_diag;	/* kdb diagnostic */
  92	char	*km_msg;	/* Corresponding message text */
  93} kdbmsg_t;
  94
  95#define KDBMSG(msgnum, text) \
  96	{ KDB_##msgnum, text }
  97
  98static kdbmsg_t kdbmsgs[] = {
  99	KDBMSG(NOTFOUND, "Command Not Found"),
 100	KDBMSG(ARGCOUNT, "Improper argument count, see usage."),
 101	KDBMSG(BADWIDTH, "Illegal value for BYTESPERWORD use 1, 2, 4 or 8, "
 102	       "8 is only allowed on 64 bit systems"),
 103	KDBMSG(BADRADIX, "Illegal value for RADIX use 8, 10 or 16"),
 104	KDBMSG(NOTENV, "Cannot find environment variable"),
 105	KDBMSG(NOENVVALUE, "Environment variable should have value"),
 106	KDBMSG(NOTIMP, "Command not implemented"),
 107	KDBMSG(ENVFULL, "Environment full"),
 108	KDBMSG(ENVBUFFULL, "Environment buffer full"),
 109	KDBMSG(TOOMANYBPT, "Too many breakpoints defined"),
 110#ifdef CONFIG_CPU_XSCALE
 111	KDBMSG(TOOMANYDBREGS, "More breakpoints than ibcr registers defined"),
 112#else
 113	KDBMSG(TOOMANYDBREGS, "More breakpoints than db registers defined"),
 114#endif
 115	KDBMSG(DUPBPT, "Duplicate breakpoint address"),
 116	KDBMSG(BPTNOTFOUND, "Breakpoint not found"),
 117	KDBMSG(BADMODE, "Invalid IDMODE"),
 118	KDBMSG(BADINT, "Illegal numeric value"),
 119	KDBMSG(INVADDRFMT, "Invalid symbolic address format"),
 120	KDBMSG(BADREG, "Invalid register name"),
 121	KDBMSG(BADCPUNUM, "Invalid cpu number"),
 122	KDBMSG(BADLENGTH, "Invalid length field"),
 123	KDBMSG(NOBP, "No Breakpoint exists"),
 124	KDBMSG(BADADDR, "Invalid address"),
 125	KDBMSG(NOPERM, "Permission denied"),
 126};
 127#undef KDBMSG
 128
 129static const int __nkdb_err = ARRAY_SIZE(kdbmsgs);
 130
 131
 132/*
 133 * Initial environment.   This is all kept static and local to
 134 * this file.   We don't want to rely on the memory allocation
 135 * mechanisms in the kernel, so we use a very limited allocate-only
 136 * heap for new and altered environment variables.  The entire
 137 * environment is limited to a fixed number of entries (add more
 138 * to __env[] if required) and a fixed amount of heap (add more to
 139 * KDB_ENVBUFSIZE if required).
 140 */
 141
 142static char *__env[31] = {
 143#if defined(CONFIG_SMP)
 144	"PROMPT=[%d]kdb> ",
 
 145#else
 146	"PROMPT=kdb> ",
 
 147#endif
 148	"MOREPROMPT=more> ",
 149	"RADIX=16",
 150	"MDCOUNT=8",		/* lines of md output */
 151	KDB_PLATFORM_ENV,
 152	"DTABCOUNT=30",
 153	"NOSECT=1",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 154};
 155
 156static const int __nenv = ARRAY_SIZE(__env);
 157
 158struct task_struct *kdb_curr_task(int cpu)
 159{
 160	struct task_struct *p = curr_task(cpu);
 161#ifdef	_TIF_MCA_INIT
 162	if ((task_thread_info(p)->flags & _TIF_MCA_INIT) && KDB_TSK(cpu))
 163		p = krp->p;
 164#endif
 165	return p;
 166}
 167
 168/*
 169 * Update the permissions flags (kdb_cmd_enabled) to match the
 170 * current lockdown state.
 171 *
 172 * Within this function the calls to security_locked_down() are "lazy". We
 173 * avoid calling them if the current value of kdb_cmd_enabled already excludes
 174 * flags that might be subject to lockdown. Additionally we deliberately check
 175 * the lockdown flags independently (even though read lockdown implies write
 176 * lockdown) since that results in both simpler code and clearer messages to
 177 * the user on first-time debugger entry.
 178 *
 179 * The permission masks during a read+write lockdown permits the following
 180 * flags: INSPECT, SIGNAL, REBOOT (and ALWAYS_SAFE).
 181 *
 182 * The INSPECT commands are not blocked during lockdown because they are
 183 * not arbitrary memory reads. INSPECT covers the backtrace family (sometimes
 184 * forcing them to have no arguments) and lsmod. These commands do expose
 185 * some kernel state but do not allow the developer seated at the console to
 186 * choose what state is reported. SIGNAL and REBOOT should not be controversial,
 187 * given these are allowed for root during lockdown already.
 188 */
 189static void kdb_check_for_lockdown(void)
 190{
 191	const int write_flags = KDB_ENABLE_MEM_WRITE |
 192				KDB_ENABLE_REG_WRITE |
 193				KDB_ENABLE_FLOW_CTRL;
 194	const int read_flags = KDB_ENABLE_MEM_READ |
 195			       KDB_ENABLE_REG_READ;
 196
 197	bool need_to_lockdown_write = false;
 198	bool need_to_lockdown_read = false;
 199
 200	if (kdb_cmd_enabled & (KDB_ENABLE_ALL | write_flags))
 201		need_to_lockdown_write =
 202			security_locked_down(LOCKDOWN_DBG_WRITE_KERNEL);
 203
 204	if (kdb_cmd_enabled & (KDB_ENABLE_ALL | read_flags))
 205		need_to_lockdown_read =
 206			security_locked_down(LOCKDOWN_DBG_READ_KERNEL);
 207
 208	/* De-compose KDB_ENABLE_ALL if required */
 209	if (need_to_lockdown_write || need_to_lockdown_read)
 210		if (kdb_cmd_enabled & KDB_ENABLE_ALL)
 211			kdb_cmd_enabled = KDB_ENABLE_MASK & ~KDB_ENABLE_ALL;
 212
 213	if (need_to_lockdown_write)
 214		kdb_cmd_enabled &= ~write_flags;
 215
 216	if (need_to_lockdown_read)
 217		kdb_cmd_enabled &= ~read_flags;
 218}
 219
 220/*
 221 * Check whether the flags of the current command, the permissions of the kdb
 222 * console and the lockdown state allow a command to be run.
 223 */
 224static bool kdb_check_flags(kdb_cmdflags_t flags, int permissions,
 225				   bool no_args)
 226{
 227	/* permissions comes from userspace so needs massaging slightly */
 228	permissions &= KDB_ENABLE_MASK;
 229	permissions |= KDB_ENABLE_ALWAYS_SAFE;
 230
 231	/* some commands change group when launched with no arguments */
 232	if (no_args)
 233		permissions |= permissions << KDB_ENABLE_NO_ARGS_SHIFT;
 234
 235	flags |= KDB_ENABLE_ALL;
 236
 237	return permissions & flags;
 238}
 239
 240/*
 241 * kdbgetenv - This function will return the character string value of
 242 *	an environment variable.
 243 * Parameters:
 244 *	match	A character string representing an environment variable.
 245 * Returns:
 246 *	NULL	No environment variable matches 'match'
 247 *	char*	Pointer to string value of environment variable.
 248 */
 249char *kdbgetenv(const char *match)
 250{
 251	char **ep = __env;
 252	int matchlen = strlen(match);
 253	int i;
 254
 255	for (i = 0; i < __nenv; i++) {
 256		char *e = *ep++;
 257
 258		if (!e)
 259			continue;
 260
 261		if ((strncmp(match, e, matchlen) == 0)
 262		 && ((e[matchlen] == '\0')
 263		   || (e[matchlen] == '='))) {
 264			char *cp = strchr(e, '=');
 265			return cp ? ++cp : "";
 266		}
 267	}
 268	return NULL;
 269}
 270
 271/*
 272 * kdballocenv - This function is used to allocate bytes for
 273 *	environment entries.
 274 * Parameters:
 275 *	match	A character string representing a numeric value
 276 * Outputs:
 277 *	*value  the unsigned long representation of the env variable 'match'
 278 * Returns:
 279 *	Zero on success, a kdb diagnostic on failure.
 280 * Remarks:
 281 *	We use a static environment buffer (envbuffer) to hold the values
 282 *	of dynamically generated environment variables (see kdb_set).  Buffer
 283 *	space once allocated is never free'd, so over time, the amount of space
 284 *	(currently 512 bytes) will be exhausted if env variables are changed
 285 *	frequently.
 286 */
 287static char *kdballocenv(size_t bytes)
 288{
 289#define	KDB_ENVBUFSIZE	512
 290	static char envbuffer[KDB_ENVBUFSIZE];
 291	static int envbufsize;
 292	char *ep = NULL;
 293
 294	if ((KDB_ENVBUFSIZE - envbufsize) >= bytes) {
 295		ep = &envbuffer[envbufsize];
 296		envbufsize += bytes;
 297	}
 298	return ep;
 299}
 300
 301/*
 302 * kdbgetulenv - This function will return the value of an unsigned
 303 *	long-valued environment variable.
 304 * Parameters:
 305 *	match	A character string representing a numeric value
 306 * Outputs:
 307 *	*value  the unsigned long representation of the env variable 'match'
 308 * Returns:
 309 *	Zero on success, a kdb diagnostic on failure.
 310 */
 311static int kdbgetulenv(const char *match, unsigned long *value)
 312{
 313	char *ep;
 314
 315	ep = kdbgetenv(match);
 316	if (!ep)
 317		return KDB_NOTENV;
 318	if (strlen(ep) == 0)
 319		return KDB_NOENVVALUE;
 320
 321	*value = simple_strtoul(ep, NULL, 0);
 322
 323	return 0;
 324}
 325
 326/*
 327 * kdbgetintenv - This function will return the value of an
 328 *	integer-valued environment variable.
 329 * Parameters:
 330 *	match	A character string representing an integer-valued env variable
 331 * Outputs:
 332 *	*value  the integer representation of the environment variable 'match'
 333 * Returns:
 334 *	Zero on success, a kdb diagnostic on failure.
 335 */
 336int kdbgetintenv(const char *match, int *value)
 337{
 338	unsigned long val;
 339	int diag;
 340
 341	diag = kdbgetulenv(match, &val);
 342	if (!diag)
 343		*value = (int) val;
 344	return diag;
 345}
 346
 347/*
 348 * kdb_setenv() - Alter an existing environment variable or create a new one.
 349 * @var: Name of the variable
 350 * @val: Value of the variable
 351 *
 352 * Return: Zero on success, a kdb diagnostic on failure.
 353 */
 354static int kdb_setenv(const char *var, const char *val)
 355{
 356	int i;
 357	char *ep;
 358	size_t varlen, vallen;
 359
 360	varlen = strlen(var);
 361	vallen = strlen(val);
 362	ep = kdballocenv(varlen + vallen + 2);
 363	if (ep == (char *)0)
 364		return KDB_ENVBUFFULL;
 365
 366	sprintf(ep, "%s=%s", var, val);
 367
 368	for (i = 0; i < __nenv; i++) {
 369		if (__env[i]
 370		 && ((strncmp(__env[i], var, varlen) == 0)
 371		   && ((__env[i][varlen] == '\0')
 372		    || (__env[i][varlen] == '=')))) {
 373			__env[i] = ep;
 374			return 0;
 375		}
 376	}
 377
 378	/*
 379	 * Wasn't existing variable.  Fit into slot.
 380	 */
 381	for (i = 0; i < __nenv-1; i++) {
 382		if (__env[i] == (char *)0) {
 383			__env[i] = ep;
 384			return 0;
 385		}
 386	}
 387
 388	return KDB_ENVFULL;
 389}
 390
 391/*
 392 * kdb_printenv() - Display the current environment variables.
 393 */
 394static void kdb_printenv(void)
 395{
 396	int i;
 397
 398	for (i = 0; i < __nenv; i++) {
 399		if (__env[i])
 400			kdb_printf("%s\n", __env[i]);
 401	}
 402}
 403
 404/*
 405 * kdbgetularg - This function will convert a numeric string into an
 406 *	unsigned long value.
 407 * Parameters:
 408 *	arg	A character string representing a numeric value
 409 * Outputs:
 410 *	*value  the unsigned long representation of arg.
 411 * Returns:
 412 *	Zero on success, a kdb diagnostic on failure.
 413 */
 414int kdbgetularg(const char *arg, unsigned long *value)
 415{
 416	char *endp;
 417	unsigned long val;
 418
 419	val = simple_strtoul(arg, &endp, 0);
 420
 421	if (endp == arg) {
 422		/*
 423		 * Also try base 16, for us folks too lazy to type the
 424		 * leading 0x...
 425		 */
 426		val = simple_strtoul(arg, &endp, 16);
 427		if (endp == arg)
 428			return KDB_BADINT;
 429	}
 430
 431	*value = val;
 432
 433	return 0;
 434}
 435
 436int kdbgetu64arg(const char *arg, u64 *value)
 437{
 438	char *endp;
 439	u64 val;
 440
 441	val = simple_strtoull(arg, &endp, 0);
 442
 443	if (endp == arg) {
 444
 445		val = simple_strtoull(arg, &endp, 16);
 446		if (endp == arg)
 447			return KDB_BADINT;
 448	}
 449
 450	*value = val;
 451
 452	return 0;
 453}
 454
 455/*
 456 * kdb_set - This function implements the 'set' command.  Alter an
 457 *	existing environment variable or create a new one.
 458 */
 459int kdb_set(int argc, const char **argv)
 460{
 
 
 
 
 461	/*
 462	 * we can be invoked two ways:
 463	 *   set var=value    argv[1]="var", argv[2]="value"
 464	 *   set var = value  argv[1]="var", argv[2]="=", argv[3]="value"
 465	 * - if the latter, shift 'em down.
 466	 */
 467	if (argc == 3) {
 468		argv[2] = argv[3];
 469		argc--;
 470	}
 471
 472	if (argc != 2)
 473		return KDB_ARGCOUNT;
 474
 475	/*
 476	 * Censor sensitive variables
 477	 */
 478	if (strcmp(argv[1], "PROMPT") == 0 &&
 479	    !kdb_check_flags(KDB_ENABLE_MEM_READ, kdb_cmd_enabled, false))
 480		return KDB_NOPERM;
 481
 482	/*
 483	 * Check for internal variables
 484	 */
 485	if (strcmp(argv[1], "KDBDEBUG") == 0) {
 486		unsigned int debugflags;
 487		char *cp;
 488
 489		debugflags = simple_strtoul(argv[2], &cp, 0);
 490		if (cp == argv[2] || debugflags & ~KDB_DEBUG_FLAG_MASK) {
 491			kdb_printf("kdb: illegal debug flags '%s'\n",
 492				    argv[2]);
 493			return 0;
 494		}
 495		kdb_flags = (kdb_flags & ~KDB_DEBUG(MASK))
 
 496			| (debugflags << KDB_DEBUG_FLAG_SHIFT);
 497
 498		return 0;
 499	}
 500
 501	/*
 502	 * Tokenizer squashed the '=' sign.  argv[1] is variable
 503	 * name, argv[2] = value.
 504	 */
 505	return kdb_setenv(argv[1], argv[2]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 506}
 507
 508static int kdb_check_regs(void)
 509{
 510	if (!kdb_current_regs) {
 511		kdb_printf("No current kdb registers."
 512			   "  You may need to select another task\n");
 513		return KDB_BADREG;
 514	}
 515	return 0;
 516}
 517
 518/*
 519 * kdbgetaddrarg - This function is responsible for parsing an
 520 *	address-expression and returning the value of the expression,
 521 *	symbol name, and offset to the caller.
 522 *
 523 *	The argument may consist of a numeric value (decimal or
 524 *	hexadecimal), a symbol name, a register name (preceded by the
 525 *	percent sign), an environment variable with a numeric value
 526 *	(preceded by a dollar sign) or a simple arithmetic expression
 527 *	consisting of a symbol name, +/-, and a numeric constant value
 528 *	(offset).
 529 * Parameters:
 530 *	argc	- count of arguments in argv
 531 *	argv	- argument vector
 532 *	*nextarg - index to next unparsed argument in argv[]
 533 *	regs	- Register state at time of KDB entry
 534 * Outputs:
 535 *	*value	- receives the value of the address-expression
 536 *	*offset - receives the offset specified, if any
 537 *	*name   - receives the symbol name, if any
 538 *	*nextarg - index to next unparsed argument in argv[]
 539 * Returns:
 540 *	zero is returned on success, a kdb diagnostic code is
 541 *      returned on error.
 542 */
 543int kdbgetaddrarg(int argc, const char **argv, int *nextarg,
 544		  unsigned long *value,  long *offset,
 545		  char **name)
 546{
 547	unsigned long addr;
 548	unsigned long off = 0;
 549	int positive;
 550	int diag;
 551	int found = 0;
 552	char *symname;
 553	char symbol = '\0';
 554	char *cp;
 555	kdb_symtab_t symtab;
 556
 557	/*
 558	 * If the enable flags prohibit both arbitrary memory access
 559	 * and flow control then there are no reasonable grounds to
 560	 * provide symbol lookup.
 561	 */
 562	if (!kdb_check_flags(KDB_ENABLE_MEM_READ | KDB_ENABLE_FLOW_CTRL,
 563			     kdb_cmd_enabled, false))
 564		return KDB_NOPERM;
 565
 566	/*
 567	 * Process arguments which follow the following syntax:
 568	 *
 569	 *  symbol | numeric-address [+/- numeric-offset]
 570	 *  %register
 571	 *  $environment-variable
 572	 */
 573
 574	if (*nextarg > argc)
 575		return KDB_ARGCOUNT;
 576
 577	symname = (char *)argv[*nextarg];
 578
 579	/*
 580	 * If there is no whitespace between the symbol
 581	 * or address and the '+' or '-' symbols, we
 582	 * remember the character and replace it with a
 583	 * null so the symbol/value can be properly parsed
 584	 */
 585	cp = strpbrk(symname, "+-");
 586	if (cp != NULL) {
 587		symbol = *cp;
 588		*cp++ = '\0';
 589	}
 590
 591	if (symname[0] == '$') {
 592		diag = kdbgetulenv(&symname[1], &addr);
 593		if (diag)
 594			return diag;
 595	} else if (symname[0] == '%') {
 596		diag = kdb_check_regs();
 597		if (diag)
 598			return diag;
 599		/* Implement register values with % at a later time as it is
 600		 * arch optional.
 601		 */
 602		return KDB_NOTIMP;
 603	} else {
 604		found = kdbgetsymval(symname, &symtab);
 605		if (found) {
 606			addr = symtab.sym_start;
 607		} else {
 608			diag = kdbgetularg(argv[*nextarg], &addr);
 609			if (diag)
 610				return diag;
 611		}
 612	}
 613
 614	if (!found)
 615		found = kdbnearsym(addr, &symtab);
 616
 617	(*nextarg)++;
 618
 619	if (name)
 620		*name = symname;
 621	if (value)
 622		*value = addr;
 623	if (offset && name && *name)
 624		*offset = addr - symtab.sym_start;
 625
 626	if ((*nextarg > argc)
 627	 && (symbol == '\0'))
 628		return 0;
 629
 630	/*
 631	 * check for +/- and offset
 632	 */
 633
 634	if (symbol == '\0') {
 635		if ((argv[*nextarg][0] != '+')
 636		 && (argv[*nextarg][0] != '-')) {
 637			/*
 638			 * Not our argument.  Return.
 639			 */
 640			return 0;
 641		} else {
 642			positive = (argv[*nextarg][0] == '+');
 643			(*nextarg)++;
 644		}
 645	} else
 646		positive = (symbol == '+');
 647
 648	/*
 649	 * Now there must be an offset!
 650	 */
 651	if ((*nextarg > argc)
 652	 && (symbol == '\0')) {
 653		return KDB_INVADDRFMT;
 654	}
 655
 656	if (!symbol) {
 657		cp = (char *)argv[*nextarg];
 658		(*nextarg)++;
 659	}
 660
 661	diag = kdbgetularg(cp, &off);
 662	if (diag)
 663		return diag;
 664
 665	if (!positive)
 666		off = -off;
 667
 668	if (offset)
 669		*offset += off;
 670
 671	if (value)
 672		*value += off;
 673
 674	return 0;
 675}
 676
 677static void kdb_cmderror(int diag)
 678{
 679	int i;
 680
 681	if (diag >= 0) {
 682		kdb_printf("no error detected (diagnostic is %d)\n", diag);
 683		return;
 684	}
 685
 686	for (i = 0; i < __nkdb_err; i++) {
 687		if (kdbmsgs[i].km_diag == diag) {
 688			kdb_printf("diag: %d: %s\n", diag, kdbmsgs[i].km_msg);
 689			return;
 690		}
 691	}
 692
 693	kdb_printf("Unknown diag %d\n", -diag);
 694}
 695
 696/*
 697 * kdb_defcmd, kdb_defcmd2 - This function implements the 'defcmd'
 698 *	command which defines one command as a set of other commands,
 699 *	terminated by endefcmd.  kdb_defcmd processes the initial
 700 *	'defcmd' command, kdb_defcmd2 is invoked from kdb_parse for
 701 *	the following commands until 'endefcmd'.
 702 * Inputs:
 703 *	argc	argument count
 704 *	argv	argument vector
 705 * Returns:
 706 *	zero for success, a kdb diagnostic if error
 707 */
 708struct kdb_macro {
 709	kdbtab_t cmd;			/* Macro command */
 710	struct list_head statements;	/* Associated statement list */
 
 
 
 
 711};
 712
 713struct kdb_macro_statement {
 714	char *statement;		/* Statement text */
 715	struct list_head list_node;	/* Statement list node */
 716};
 717
 718static struct kdb_macro *kdb_macro;
 719static bool defcmd_in_progress;
 720
 721/* Forward references */
 722static int kdb_exec_defcmd(int argc, const char **argv);
 723
 724static int kdb_defcmd2(const char *cmdstr, const char *argv0)
 725{
 726	struct kdb_macro_statement *kms;
 727
 728	if (!kdb_macro)
 729		return KDB_NOTIMP;
 730
 731	if (strcmp(argv0, "endefcmd") == 0) {
 732		defcmd_in_progress = false;
 733		if (!list_empty(&kdb_macro->statements))
 734			kdb_register(&kdb_macro->cmd);
 
 
 
 735		return 0;
 736	}
 737
 738	kms = kmalloc(sizeof(*kms), GFP_KDB);
 739	if (!kms) {
 740		kdb_printf("Could not allocate new kdb macro command: %s\n",
 
 741			   cmdstr);
 
 742		return KDB_NOTIMP;
 743	}
 744
 745	kms->statement = kdb_strdup(cmdstr, GFP_KDB);
 746	list_add_tail(&kms->list_node, &kdb_macro->statements);
 747
 748	return 0;
 749}
 750
 751static int kdb_defcmd(int argc, const char **argv)
 752{
 753	kdbtab_t *mp;
 754
 755	if (defcmd_in_progress) {
 756		kdb_printf("kdb: nested defcmd detected, assuming missing "
 757			   "endefcmd\n");
 758		kdb_defcmd2("endefcmd", "endefcmd");
 759	}
 760	if (argc == 0) {
 761		kdbtab_t *kp;
 762		struct kdb_macro *kmp;
 763		struct kdb_macro_statement *kms;
 764
 765		list_for_each_entry(kp, &kdb_cmds_head, list_node) {
 766			if (kp->func == kdb_exec_defcmd) {
 767				kdb_printf("defcmd %s \"%s\" \"%s\"\n",
 768					   kp->name, kp->usage, kp->help);
 769				kmp = container_of(kp, struct kdb_macro, cmd);
 770				list_for_each_entry(kms, &kmp->statements,
 771						    list_node)
 772					kdb_printf("%s", kms->statement);
 773				kdb_printf("endefcmd\n");
 774			}
 775		}
 776		return 0;
 777	}
 778	if (argc != 3)
 779		return KDB_ARGCOUNT;
 780	if (in_dbg_master()) {
 781		kdb_printf("Command only available during kdb_init()\n");
 
 
 
 
 782		return KDB_NOTIMP;
 783	}
 784	kdb_macro = kzalloc(sizeof(*kdb_macro), GFP_KDB);
 785	if (!kdb_macro)
 786		goto fail_defcmd;
 787
 788	mp = &kdb_macro->cmd;
 789	mp->func = kdb_exec_defcmd;
 790	mp->minlen = 0;
 791	mp->flags = KDB_ENABLE_ALWAYS_SAFE;
 792	mp->name = kdb_strdup(argv[1], GFP_KDB);
 793	if (!mp->name)
 794		goto fail_name;
 795	mp->usage = kdb_strdup(argv[2], GFP_KDB);
 796	if (!mp->usage)
 797		goto fail_usage;
 798	mp->help = kdb_strdup(argv[3], GFP_KDB);
 799	if (!mp->help)
 800		goto fail_help;
 801	if (mp->usage[0] == '"') {
 802		strcpy(mp->usage, argv[2]+1);
 803		mp->usage[strlen(mp->usage)-1] = '\0';
 804	}
 805	if (mp->help[0] == '"') {
 806		strcpy(mp->help, argv[3]+1);
 807		mp->help[strlen(mp->help)-1] = '\0';
 808	}
 809
 810	INIT_LIST_HEAD(&kdb_macro->statements);
 811	defcmd_in_progress = true;
 812	return 0;
 813fail_help:
 814	kfree(mp->usage);
 815fail_usage:
 816	kfree(mp->name);
 817fail_name:
 818	kfree(kdb_macro);
 819fail_defcmd:
 820	kdb_printf("Could not allocate new kdb_macro entry for %s\n", argv[1]);
 821	return KDB_NOTIMP;
 822}
 823
 824/*
 825 * kdb_exec_defcmd - Execute the set of commands associated with this
 826 *	defcmd name.
 827 * Inputs:
 828 *	argc	argument count
 829 *	argv	argument vector
 830 * Returns:
 831 *	zero for success, a kdb diagnostic if error
 832 */
 833static int kdb_exec_defcmd(int argc, const char **argv)
 834{
 835	int ret;
 836	kdbtab_t *kp;
 837	struct kdb_macro *kmp;
 838	struct kdb_macro_statement *kms;
 839
 840	if (argc != 0)
 841		return KDB_ARGCOUNT;
 842
 843	list_for_each_entry(kp, &kdb_cmds_head, list_node) {
 844		if (strcmp(kp->name, argv[0]) == 0)
 845			break;
 846	}
 847	if (list_entry_is_head(kp, &kdb_cmds_head, list_node)) {
 848		kdb_printf("kdb_exec_defcmd: could not find commands for %s\n",
 849			   argv[0]);
 850		return KDB_NOTIMP;
 851	}
 852	kmp = container_of(kp, struct kdb_macro, cmd);
 853	list_for_each_entry(kms, &kmp->statements, list_node) {
 854		/*
 855		 * Recursive use of kdb_parse, do not use argv after this point.
 856		 */
 857		argv = NULL;
 858		kdb_printf("[%s]kdb> %s\n", kmp->cmd.name, kms->statement);
 859		ret = kdb_parse(kms->statement);
 860		if (ret)
 861			return ret;
 862	}
 863	return 0;
 864}
 865
 866/* Command history */
 867#define KDB_CMD_HISTORY_COUNT	32
 868#define CMD_BUFLEN		200	/* kdb_printf: max printline
 869					 * size == 256 */
 870static unsigned int cmd_head, cmd_tail;
 871static unsigned int cmdptr;
 872static char cmd_hist[KDB_CMD_HISTORY_COUNT][CMD_BUFLEN];
 873static char cmd_cur[CMD_BUFLEN];
 874
 875/*
 876 * The "str" argument may point to something like  | grep xyz
 877 */
 878static void parse_grep(const char *str)
 879{
 880	int	len;
 881	char	*cp = (char *)str, *cp2;
 882
 883	/* sanity check: we should have been called with the \ first */
 884	if (*cp != '|')
 885		return;
 886	cp++;
 887	while (isspace(*cp))
 888		cp++;
 889	if (!str_has_prefix(cp, "grep ")) {
 890		kdb_printf("invalid 'pipe', see grephelp\n");
 891		return;
 892	}
 893	cp += 5;
 894	while (isspace(*cp))
 895		cp++;
 896	cp2 = strchr(cp, '\n');
 897	if (cp2)
 898		*cp2 = '\0'; /* remove the trailing newline */
 899	len = strlen(cp);
 900	if (len == 0) {
 901		kdb_printf("invalid 'pipe', see grephelp\n");
 902		return;
 903	}
 904	/* now cp points to a nonzero length search string */
 905	if (*cp == '"') {
 906		/* allow it be "x y z" by removing the "'s - there must
 907		   be two of them */
 908		cp++;
 909		cp2 = strchr(cp, '"');
 910		if (!cp2) {
 911			kdb_printf("invalid quoted string, see grephelp\n");
 912			return;
 913		}
 914		*cp2 = '\0'; /* end the string where the 2nd " was */
 915	}
 916	kdb_grep_leading = 0;
 917	if (*cp == '^') {
 918		kdb_grep_leading = 1;
 919		cp++;
 920	}
 921	len = strlen(cp);
 922	kdb_grep_trailing = 0;
 923	if (*(cp+len-1) == '$') {
 924		kdb_grep_trailing = 1;
 925		*(cp+len-1) = '\0';
 926	}
 927	len = strlen(cp);
 928	if (!len)
 929		return;
 930	if (len >= KDB_GREP_STRLEN) {
 931		kdb_printf("search string too long\n");
 932		return;
 933	}
 934	strcpy(kdb_grep_string, cp);
 935	kdb_grepping_flag++;
 936	return;
 937}
 938
 939/*
 940 * kdb_parse - Parse the command line, search the command table for a
 941 *	matching command and invoke the command function.  This
 942 *	function may be called recursively, if it is, the second call
 943 *	will overwrite argv and cbuf.  It is the caller's
 944 *	responsibility to save their argv if they recursively call
 945 *	kdb_parse().
 946 * Parameters:
 947 *      cmdstr	The input command line to be parsed.
 948 *	regs	The registers at the time kdb was entered.
 949 * Returns:
 950 *	Zero for success, a kdb diagnostic if failure.
 951 * Remarks:
 952 *	Limited to 20 tokens.
 953 *
 954 *	Real rudimentary tokenization. Basically only whitespace
 955 *	is considered a token delimiter (but special consideration
 956 *	is taken of the '=' sign as used by the 'set' command).
 957 *
 958 *	The algorithm used to tokenize the input string relies on
 959 *	there being at least one whitespace (or otherwise useless)
 960 *	character between tokens as the character immediately following
 961 *	the token is altered in-place to a null-byte to terminate the
 962 *	token string.
 963 */
 964
 965#define MAXARGC	20
 966
 967int kdb_parse(const char *cmdstr)
 968{
 969	static char *argv[MAXARGC];
 970	static int argc;
 971	static char cbuf[CMD_BUFLEN+2];
 972	char *cp;
 973	char *cpp, quoted;
 974	kdbtab_t *tp;
 975	int escaped, ignore_errors = 0, check_grep = 0;
 976
 977	/*
 978	 * First tokenize the command string.
 979	 */
 980	cp = (char *)cmdstr;
 
 981
 982	if (KDB_FLAG(CMD_INTERRUPT)) {
 983		/* Previous command was interrupted, newline must not
 984		 * repeat the command */
 985		KDB_FLAG_CLEAR(CMD_INTERRUPT);
 986		KDB_STATE_SET(PAGER);
 987		argc = 0;	/* no repeat */
 988	}
 989
 990	if (*cp != '\n' && *cp != '\0') {
 991		argc = 0;
 992		cpp = cbuf;
 993		while (*cp) {
 994			/* skip whitespace */
 995			while (isspace(*cp))
 996				cp++;
 997			if ((*cp == '\0') || (*cp == '\n') ||
 998			    (*cp == '#' && !defcmd_in_progress))
 999				break;
1000			/* special case: check for | grep pattern */
1001			if (*cp == '|') {
1002				check_grep++;
1003				break;
1004			}
1005			if (cpp >= cbuf + CMD_BUFLEN) {
1006				kdb_printf("kdb_parse: command buffer "
1007					   "overflow, command ignored\n%s\n",
1008					   cmdstr);
1009				return KDB_NOTFOUND;
1010			}
1011			if (argc >= MAXARGC - 1) {
1012				kdb_printf("kdb_parse: too many arguments, "
1013					   "command ignored\n%s\n", cmdstr);
1014				return KDB_NOTFOUND;
1015			}
1016			argv[argc++] = cpp;
1017			escaped = 0;
1018			quoted = '\0';
1019			/* Copy to next unquoted and unescaped
1020			 * whitespace or '=' */
1021			while (*cp && *cp != '\n' &&
1022			       (escaped || quoted || !isspace(*cp))) {
1023				if (cpp >= cbuf + CMD_BUFLEN)
1024					break;
1025				if (escaped) {
1026					escaped = 0;
1027					*cpp++ = *cp++;
1028					continue;
1029				}
1030				if (*cp == '\\') {
1031					escaped = 1;
1032					++cp;
1033					continue;
1034				}
1035				if (*cp == quoted)
1036					quoted = '\0';
1037				else if (*cp == '\'' || *cp == '"')
1038					quoted = *cp;
1039				*cpp = *cp++;
1040				if (*cpp == '=' && !quoted)
1041					break;
1042				++cpp;
1043			}
1044			*cpp++ = '\0';	/* Squash a ws or '=' character */
1045		}
1046	}
1047	if (!argc)
1048		return 0;
1049	if (check_grep)
1050		parse_grep(cp);
1051	if (defcmd_in_progress) {
1052		int result = kdb_defcmd2(cmdstr, argv[0]);
1053		if (!defcmd_in_progress) {
1054			argc = 0;	/* avoid repeat on endefcmd */
1055			*(argv[0]) = '\0';
1056		}
1057		return result;
1058	}
1059	if (argv[0][0] == '-' && argv[0][1] &&
1060	    (argv[0][1] < '0' || argv[0][1] > '9')) {
1061		ignore_errors = 1;
1062		++argv[0];
1063	}
1064
1065	list_for_each_entry(tp, &kdb_cmds_head, list_node) {
1066		/*
1067		 * If this command is allowed to be abbreviated,
1068		 * check to see if this is it.
1069		 */
1070		if (tp->minlen && (strlen(argv[0]) <= tp->minlen) &&
1071		    (strncmp(argv[0], tp->name, tp->minlen) == 0))
1072			break;
1073
1074		if (strcmp(argv[0], tp->name) == 0)
1075			break;
 
 
 
 
 
 
 
 
 
 
1076	}
1077
1078	/*
1079	 * If we don't find a command by this name, see if the first
1080	 * few characters of this match any of the known commands.
1081	 * e.g., md1c20 should match md.
1082	 */
1083	if (list_entry_is_head(tp, &kdb_cmds_head, list_node)) {
1084		list_for_each_entry(tp, &kdb_cmds_head, list_node) {
1085			if (strncmp(argv[0], tp->name, strlen(tp->name)) == 0)
1086				break;
 
 
 
 
 
1087		}
1088	}
1089
1090	if (!list_entry_is_head(tp, &kdb_cmds_head, list_node)) {
1091		int result;
1092
1093		if (!kdb_check_flags(tp->flags, kdb_cmd_enabled, argc <= 1))
1094			return KDB_NOPERM;
1095
1096		KDB_STATE_SET(CMD);
1097		result = (*tp->func)(argc-1, (const char **)argv);
1098		if (result && ignore_errors && result > KDB_CMD_GO)
1099			result = 0;
1100		KDB_STATE_CLEAR(CMD);
1101
1102		if (tp->flags & KDB_REPEAT_WITH_ARGS)
1103			return result;
1104
1105		argc = tp->flags & KDB_REPEAT_NO_ARGS ? 1 : 0;
1106		if (argv[argc])
1107			*(argv[argc]) = '\0';
 
 
 
 
 
 
 
1108		return result;
1109	}
1110
1111	/*
1112	 * If the input with which we were presented does not
1113	 * map to an existing command, attempt to parse it as an
1114	 * address argument and display the result.   Useful for
1115	 * obtaining the address of a variable, or the nearest symbol
1116	 * to an address contained in a register.
1117	 */
1118	{
1119		unsigned long value;
1120		char *name = NULL;
1121		long offset;
1122		int nextarg = 0;
1123
1124		if (kdbgetaddrarg(0, (const char **)argv, &nextarg,
1125				  &value, &offset, &name)) {
1126			return KDB_NOTFOUND;
1127		}
1128
1129		kdb_printf("%s = ", argv[0]);
1130		kdb_symbol_print(value, NULL, KDB_SP_DEFAULT);
1131		kdb_printf("\n");
1132		return 0;
1133	}
1134}
1135
1136
1137static int handle_ctrl_cmd(char *cmd)
1138{
1139#define CTRL_P	16
1140#define CTRL_N	14
1141
1142	/* initial situation */
1143	if (cmd_head == cmd_tail)
1144		return 0;
1145	switch (*cmd) {
1146	case CTRL_P:
1147		if (cmdptr != cmd_tail)
1148			cmdptr = (cmdptr + KDB_CMD_HISTORY_COUNT - 1) %
1149				 KDB_CMD_HISTORY_COUNT;
1150		strscpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1151		return 1;
1152	case CTRL_N:
1153		if (cmdptr != cmd_head)
1154			cmdptr = (cmdptr+1) % KDB_CMD_HISTORY_COUNT;
1155		strscpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1156		return 1;
1157	}
1158	return 0;
1159}
1160
1161/*
1162 * kdb_reboot - This function implements the 'reboot' command.  Reboot
1163 *	the system immediately, or loop for ever on failure.
1164 */
1165static int kdb_reboot(int argc, const char **argv)
1166{
1167	emergency_restart();
1168	kdb_printf("Hmm, kdb_reboot did not reboot, spinning here\n");
1169	while (1)
1170		cpu_relax();
1171	/* NOTREACHED */
1172	return 0;
1173}
1174
1175static void kdb_dumpregs(struct pt_regs *regs)
1176{
1177	int old_lvl = console_loglevel;
1178	console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH;
1179	kdb_trap_printk++;
1180	show_regs(regs);
1181	kdb_trap_printk--;
1182	kdb_printf("\n");
1183	console_loglevel = old_lvl;
1184}
1185
1186static void kdb_set_current_task(struct task_struct *p)
1187{
1188	kdb_current_task = p;
1189
1190	if (kdb_task_has_cpu(p)) {
1191		kdb_current_regs = KDB_TSKREGS(kdb_process_cpu(p));
1192		return;
1193	}
1194	kdb_current_regs = NULL;
1195}
1196
1197static void drop_newline(char *buf)
1198{
1199	size_t len = strlen(buf);
1200
1201	if (len == 0)
1202		return;
1203	if (*(buf + len - 1) == '\n')
1204		*(buf + len - 1) = '\0';
1205}
1206
1207/*
1208 * kdb_local - The main code for kdb.  This routine is invoked on a
1209 *	specific processor, it is not global.  The main kdb() routine
1210 *	ensures that only one processor at a time is in this routine.
1211 *	This code is called with the real reason code on the first
1212 *	entry to a kdb session, thereafter it is called with reason
1213 *	SWITCH, even if the user goes back to the original cpu.
1214 * Inputs:
1215 *	reason		The reason KDB was invoked
1216 *	error		The hardware-defined error code
1217 *	regs		The exception frame at time of fault/breakpoint.
1218 *	db_result	Result code from the break or debug point.
1219 * Returns:
1220 *	0	KDB was invoked for an event which it wasn't responsible
1221 *	1	KDB handled the event for which it was invoked.
1222 *	KDB_CMD_GO	User typed 'go'.
1223 *	KDB_CMD_CPU	User switched to another cpu.
1224 *	KDB_CMD_SS	Single step.
 
1225 */
1226static int kdb_local(kdb_reason_t reason, int error, struct pt_regs *regs,
1227		     kdb_dbtrap_t db_result)
1228{
1229	char *cmdbuf;
1230	int diag;
1231	struct task_struct *kdb_current =
1232		kdb_curr_task(raw_smp_processor_id());
1233
1234	KDB_DEBUG_STATE("kdb_local 1", reason);
1235
1236	kdb_check_for_lockdown();
1237
1238	kdb_go_count = 0;
1239	if (reason == KDB_REASON_DEBUG) {
1240		/* special case below */
1241	} else {
1242		kdb_printf("\nEntering kdb (current=0x%px, pid %d) ",
1243			   kdb_current, kdb_current ? kdb_current->pid : 0);
1244#if defined(CONFIG_SMP)
1245		kdb_printf("on processor %d ", raw_smp_processor_id());
1246#endif
1247	}
1248
1249	switch (reason) {
1250	case KDB_REASON_DEBUG:
1251	{
1252		/*
1253		 * If re-entering kdb after a single step
1254		 * command, don't print the message.
1255		 */
1256		switch (db_result) {
1257		case KDB_DB_BPT:
1258			kdb_printf("\nEntering kdb (0x%px, pid %d) ",
1259				   kdb_current, kdb_current->pid);
1260#if defined(CONFIG_SMP)
1261			kdb_printf("on processor %d ", raw_smp_processor_id());
1262#endif
1263			kdb_printf("due to Debug @ " kdb_machreg_fmt "\n",
1264				   instruction_pointer(regs));
1265			break;
 
 
 
 
 
 
 
 
1266		case KDB_DB_SS:
1267			break;
1268		case KDB_DB_SSBPT:
1269			KDB_DEBUG_STATE("kdb_local 4", reason);
1270			return 1;	/* kdba_db_trap did the work */
1271		default:
1272			kdb_printf("kdb: Bad result from kdba_db_trap: %d\n",
1273				   db_result);
1274			break;
1275		}
1276
1277	}
1278		break;
1279	case KDB_REASON_ENTER:
1280		if (KDB_STATE(KEYBOARD))
1281			kdb_printf("due to Keyboard Entry\n");
1282		else
1283			kdb_printf("due to KDB_ENTER()\n");
1284		break;
1285	case KDB_REASON_KEYBOARD:
1286		KDB_STATE_SET(KEYBOARD);
1287		kdb_printf("due to Keyboard Entry\n");
1288		break;
1289	case KDB_REASON_ENTER_SLAVE:
1290		/* drop through, slaves only get released via cpu switch */
1291	case KDB_REASON_SWITCH:
1292		kdb_printf("due to cpu switch\n");
1293		break;
1294	case KDB_REASON_OOPS:
1295		kdb_printf("Oops: %s\n", kdb_diemsg);
1296		kdb_printf("due to oops @ " kdb_machreg_fmt "\n",
1297			   instruction_pointer(regs));
1298		kdb_dumpregs(regs);
1299		break;
1300	case KDB_REASON_SYSTEM_NMI:
1301		kdb_printf("due to System NonMaskable Interrupt\n");
1302		break;
1303	case KDB_REASON_NMI:
1304		kdb_printf("due to NonMaskable Interrupt @ "
1305			   kdb_machreg_fmt "\n",
1306			   instruction_pointer(regs));
 
1307		break;
1308	case KDB_REASON_SSTEP:
1309	case KDB_REASON_BREAK:
1310		kdb_printf("due to %s @ " kdb_machreg_fmt "\n",
1311			   reason == KDB_REASON_BREAK ?
1312			   "Breakpoint" : "SS trap", instruction_pointer(regs));
1313		/*
1314		 * Determine if this breakpoint is one that we
1315		 * are interested in.
1316		 */
1317		if (db_result != KDB_DB_BPT) {
1318			kdb_printf("kdb: error return from kdba_bp_trap: %d\n",
1319				   db_result);
1320			KDB_DEBUG_STATE("kdb_local 6", reason);
1321			return 0;	/* Not for us, dismiss it */
1322		}
1323		break;
1324	case KDB_REASON_RECURSE:
1325		kdb_printf("due to Recursion @ " kdb_machreg_fmt "\n",
1326			   instruction_pointer(regs));
1327		break;
1328	default:
1329		kdb_printf("kdb: unexpected reason code: %d\n", reason);
1330		KDB_DEBUG_STATE("kdb_local 8", reason);
1331		return 0;	/* Not for us, dismiss it */
1332	}
1333
1334	while (1) {
1335		/*
1336		 * Initialize pager context.
1337		 */
1338		kdb_nextline = 1;
1339		KDB_STATE_CLEAR(SUPPRESS);
1340		kdb_grepping_flag = 0;
1341		/* ensure the old search does not leak into '/' commands */
1342		kdb_grep_string[0] = '\0';
1343
1344		cmdbuf = cmd_cur;
1345		*cmdbuf = '\0';
1346		*(cmd_hist[cmd_head]) = '\0';
1347
 
 
 
 
 
 
 
 
 
 
 
 
1348do_full_getstr:
1349		/* PROMPT can only be set if we have MEM_READ permission. */
1350		snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"),
1351			 raw_smp_processor_id());
 
 
 
1352		if (defcmd_in_progress)
1353			strncat(kdb_prompt_str, "[defcmd]", CMD_BUFLEN);
1354
1355		/*
1356		 * Fetch command from keyboard
1357		 */
1358		cmdbuf = kdb_getstr(cmdbuf, CMD_BUFLEN, kdb_prompt_str);
1359		if (*cmdbuf != '\n') {
1360			if (*cmdbuf < 32) {
1361				if (cmdptr == cmd_head) {
1362					strscpy(cmd_hist[cmd_head], cmd_cur,
1363						CMD_BUFLEN);
1364					*(cmd_hist[cmd_head] +
1365					  strlen(cmd_hist[cmd_head])-1) = '\0';
1366				}
1367				if (!handle_ctrl_cmd(cmdbuf))
1368					*(cmd_cur+strlen(cmd_cur)-1) = '\0';
1369				cmdbuf = cmd_cur;
1370				goto do_full_getstr;
1371			} else {
1372				strscpy(cmd_hist[cmd_head], cmd_cur,
1373					CMD_BUFLEN);
1374			}
1375
1376			cmd_head = (cmd_head+1) % KDB_CMD_HISTORY_COUNT;
1377			if (cmd_head == cmd_tail)
1378				cmd_tail = (cmd_tail+1) % KDB_CMD_HISTORY_COUNT;
1379		}
1380
1381		cmdptr = cmd_head;
1382		diag = kdb_parse(cmdbuf);
1383		if (diag == KDB_NOTFOUND) {
1384			drop_newline(cmdbuf);
1385			kdb_printf("Unknown kdb command: '%s'\n", cmdbuf);
1386			diag = 0;
1387		}
1388		if (diag == KDB_CMD_GO
1389		 || diag == KDB_CMD_CPU
1390		 || diag == KDB_CMD_SS
 
1391		 || diag == KDB_CMD_KGDB)
1392			break;
1393
1394		if (diag)
1395			kdb_cmderror(diag);
1396	}
1397	KDB_DEBUG_STATE("kdb_local 9", diag);
1398	return diag;
1399}
1400
1401
1402/*
1403 * kdb_print_state - Print the state data for the current processor
1404 *	for debugging.
1405 * Inputs:
1406 *	text		Identifies the debug point
1407 *	value		Any integer value to be printed, e.g. reason code.
1408 */
1409void kdb_print_state(const char *text, int value)
1410{
1411	kdb_printf("state: %s cpu %d value %d initial %d state %x\n",
1412		   text, raw_smp_processor_id(), value, kdb_initial_cpu,
1413		   kdb_state);
1414}
1415
1416/*
1417 * kdb_main_loop - After initial setup and assignment of the
1418 *	controlling cpu, all cpus are in this loop.  One cpu is in
1419 *	control and will issue the kdb prompt, the others will spin
1420 *	until 'go' or cpu switch.
1421 *
1422 *	To get a consistent view of the kernel stacks for all
1423 *	processes, this routine is invoked from the main kdb code via
1424 *	an architecture specific routine.  kdba_main_loop is
1425 *	responsible for making the kernel stacks consistent for all
1426 *	processes, there should be no difference between a blocked
1427 *	process and a running process as far as kdb is concerned.
1428 * Inputs:
1429 *	reason		The reason KDB was invoked
1430 *	error		The hardware-defined error code
1431 *	reason2		kdb's current reason code.
1432 *			Initially error but can change
1433 *			according to kdb state.
1434 *	db_result	Result code from break or debug point.
1435 *	regs		The exception frame at time of fault/breakpoint.
1436 *			should always be valid.
1437 * Returns:
1438 *	0	KDB was invoked for an event which it wasn't responsible
1439 *	1	KDB handled the event for which it was invoked.
1440 */
1441int kdb_main_loop(kdb_reason_t reason, kdb_reason_t reason2, int error,
1442	      kdb_dbtrap_t db_result, struct pt_regs *regs)
1443{
1444	int result = 1;
1445	/* Stay in kdb() until 'go', 'ss[b]' or an error */
1446	while (1) {
1447		/*
1448		 * All processors except the one that is in control
1449		 * will spin here.
1450		 */
1451		KDB_DEBUG_STATE("kdb_main_loop 1", reason);
1452		while (KDB_STATE(HOLD_CPU)) {
1453			/* state KDB is turned off by kdb_cpu to see if the
1454			 * other cpus are still live, each cpu in this loop
1455			 * turns it back on.
1456			 */
1457			if (!KDB_STATE(KDB))
1458				KDB_STATE_SET(KDB);
1459		}
1460
1461		KDB_STATE_CLEAR(SUPPRESS);
1462		KDB_DEBUG_STATE("kdb_main_loop 2", reason);
1463		if (KDB_STATE(LEAVING))
1464			break;	/* Another cpu said 'go' */
1465		/* Still using kdb, this processor is in control */
1466		result = kdb_local(reason2, error, regs, db_result);
1467		KDB_DEBUG_STATE("kdb_main_loop 3", result);
1468
1469		if (result == KDB_CMD_CPU)
1470			break;
1471
1472		if (result == KDB_CMD_SS) {
1473			KDB_STATE_SET(DOING_SS);
1474			break;
1475		}
1476
 
 
 
 
 
 
1477		if (result == KDB_CMD_KGDB) {
1478			if (!KDB_STATE(DOING_KGDB))
1479				kdb_printf("Entering please attach debugger "
1480					   "or use $D#44+ or $3#33\n");
1481			break;
1482		}
1483		if (result && result != 1 && result != KDB_CMD_GO)
1484			kdb_printf("\nUnexpected kdb_local return code %d\n",
1485				   result);
1486		KDB_DEBUG_STATE("kdb_main_loop 4", reason);
1487		break;
1488	}
1489	if (KDB_STATE(DOING_SS))
1490		KDB_STATE_CLEAR(SSBPT);
1491
1492	/* Clean up any keyboard devices before leaving */
1493	kdb_kbd_cleanup_state();
1494
1495	return result;
1496}
1497
1498/*
1499 * kdb_mdr - This function implements the guts of the 'mdr', memory
1500 * read command.
1501 *	mdr  <addr arg>,<byte count>
1502 * Inputs:
1503 *	addr	Start address
1504 *	count	Number of bytes
1505 * Returns:
1506 *	Always 0.  Any errors are detected and printed by kdb_getarea.
1507 */
1508static int kdb_mdr(unsigned long addr, unsigned int count)
1509{
1510	unsigned char c;
1511	while (count--) {
1512		if (kdb_getarea(c, addr))
1513			return 0;
1514		kdb_printf("%02x", c);
1515		addr++;
1516	}
1517	kdb_printf("\n");
1518	return 0;
1519}
1520
1521/*
1522 * kdb_md - This function implements the 'md', 'md1', 'md2', 'md4',
1523 *	'md8' 'mdr' and 'mds' commands.
1524 *
1525 *	md|mds  [<addr arg> [<line count> [<radix>]]]
1526 *	mdWcN	[<addr arg> [<line count> [<radix>]]]
1527 *		where W = is the width (1, 2, 4 or 8) and N is the count.
1528 *		for eg., md1c20 reads 20 bytes, 1 at a time.
1529 *	mdr  <addr arg>,<byte count>
1530 */
1531static void kdb_md_line(const char *fmtstr, unsigned long addr,
1532			int symbolic, int nosect, int bytesperword,
1533			int num, int repeat, int phys)
1534{
1535	/* print just one line of data */
1536	kdb_symtab_t symtab;
1537	char cbuf[32];
1538	char *c = cbuf;
1539	int i;
1540	int j;
1541	unsigned long word;
1542
1543	memset(cbuf, '\0', sizeof(cbuf));
1544	if (phys)
1545		kdb_printf("phys " kdb_machreg_fmt0 " ", addr);
1546	else
1547		kdb_printf(kdb_machreg_fmt0 " ", addr);
1548
1549	for (i = 0; i < num && repeat--; i++) {
1550		if (phys) {
1551			if (kdb_getphysword(&word, addr, bytesperword))
1552				break;
1553		} else if (kdb_getword(&word, addr, bytesperword))
1554			break;
1555		kdb_printf(fmtstr, word);
1556		if (symbolic)
1557			kdbnearsym(word, &symtab);
1558		else
1559			memset(&symtab, 0, sizeof(symtab));
1560		if (symtab.sym_name) {
1561			kdb_symbol_print(word, &symtab, 0);
1562			if (!nosect) {
1563				kdb_printf("\n");
1564				kdb_printf("                       %s %s "
1565					   kdb_machreg_fmt " "
1566					   kdb_machreg_fmt " "
1567					   kdb_machreg_fmt, symtab.mod_name,
1568					   symtab.sec_name, symtab.sec_start,
1569					   symtab.sym_start, symtab.sym_end);
1570			}
1571			addr += bytesperword;
1572		} else {
1573			union {
1574				u64 word;
1575				unsigned char c[8];
1576			} wc;
1577			unsigned char *cp;
1578#ifdef	__BIG_ENDIAN
1579			cp = wc.c + 8 - bytesperword;
1580#else
1581			cp = wc.c;
1582#endif
1583			wc.word = word;
1584#define printable_char(c) \
1585	({unsigned char __c = c; isascii(__c) && isprint(__c) ? __c : '.'; })
1586			for (j = 0; j < bytesperword; j++)
 
1587				*c++ = printable_char(*cp++);
1588			addr += bytesperword;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1589#undef printable_char
1590		}
1591	}
1592	kdb_printf("%*s %s\n", (int)((num-i)*(2*bytesperword + 1)+1),
1593		   " ", cbuf);
1594}
1595
1596static int kdb_md(int argc, const char **argv)
1597{
1598	static unsigned long last_addr;
1599	static int last_radix, last_bytesperword, last_repeat;
1600	int radix = 16, mdcount = 8, bytesperword = KDB_WORD_SIZE, repeat;
1601	int nosect = 0;
1602	char fmtchar, fmtstr[64];
1603	unsigned long addr;
1604	unsigned long word;
1605	long offset = 0;
1606	int symbolic = 0;
1607	int valid = 0;
1608	int phys = 0;
1609	int raw = 0;
1610
1611	kdbgetintenv("MDCOUNT", &mdcount);
1612	kdbgetintenv("RADIX", &radix);
1613	kdbgetintenv("BYTESPERWORD", &bytesperword);
1614
1615	/* Assume 'md <addr>' and start with environment values */
1616	repeat = mdcount * 16 / bytesperword;
1617
1618	if (strcmp(argv[0], "mdr") == 0) {
1619		if (argc == 2 || (argc == 0 && last_addr != 0))
1620			valid = raw = 1;
1621		else
1622			return KDB_ARGCOUNT;
 
1623	} else if (isdigit(argv[0][2])) {
1624		bytesperword = (int)(argv[0][2] - '0');
1625		if (bytesperword == 0) {
1626			bytesperword = last_bytesperword;
1627			if (bytesperword == 0)
1628				bytesperword = 4;
1629		}
1630		last_bytesperword = bytesperword;
1631		repeat = mdcount * 16 / bytesperword;
1632		if (!argv[0][3])
1633			valid = 1;
1634		else if (argv[0][3] == 'c' && argv[0][4]) {
1635			char *p;
1636			repeat = simple_strtoul(argv[0] + 4, &p, 10);
1637			mdcount = ((repeat * bytesperword) + 15) / 16;
1638			valid = !*p;
1639		}
1640		last_repeat = repeat;
1641	} else if (strcmp(argv[0], "md") == 0)
1642		valid = 1;
1643	else if (strcmp(argv[0], "mds") == 0)
1644		valid = 1;
1645	else if (strcmp(argv[0], "mdp") == 0) {
1646		phys = valid = 1;
1647	}
1648	if (!valid)
1649		return KDB_NOTFOUND;
1650
1651	if (argc == 0) {
1652		if (last_addr == 0)
1653			return KDB_ARGCOUNT;
1654		addr = last_addr;
1655		radix = last_radix;
1656		bytesperword = last_bytesperword;
1657		repeat = last_repeat;
1658		if (raw)
1659			mdcount = repeat;
1660		else
1661			mdcount = ((repeat * bytesperword) + 15) / 16;
1662	}
1663
1664	if (argc) {
1665		unsigned long val;
1666		int diag, nextarg = 1;
1667		diag = kdbgetaddrarg(argc, argv, &nextarg, &addr,
1668				     &offset, NULL);
1669		if (diag)
1670			return diag;
1671		if (argc > nextarg+2)
1672			return KDB_ARGCOUNT;
1673
1674		if (argc >= nextarg) {
1675			diag = kdbgetularg(argv[nextarg], &val);
1676			if (!diag) {
1677				mdcount = (int) val;
1678				if (raw)
1679					repeat = mdcount;
1680				else
1681					repeat = mdcount * 16 / bytesperword;
1682			}
1683		}
1684		if (argc >= nextarg+1) {
1685			diag = kdbgetularg(argv[nextarg+1], &val);
1686			if (!diag)
1687				radix = (int) val;
1688		}
1689	}
1690
1691	if (strcmp(argv[0], "mdr") == 0) {
1692		int ret;
1693		last_addr = addr;
1694		ret = kdb_mdr(addr, mdcount);
1695		last_addr += mdcount;
1696		last_repeat = mdcount;
1697		last_bytesperword = bytesperword; // to make REPEAT happy
1698		return ret;
1699	}
1700
1701	switch (radix) {
1702	case 10:
1703		fmtchar = 'd';
1704		break;
1705	case 16:
1706		fmtchar = 'x';
1707		break;
1708	case 8:
1709		fmtchar = 'o';
1710		break;
1711	default:
1712		return KDB_BADRADIX;
1713	}
1714
1715	last_radix = radix;
1716
1717	if (bytesperword > KDB_WORD_SIZE)
1718		return KDB_BADWIDTH;
1719
1720	switch (bytesperword) {
1721	case 8:
1722		sprintf(fmtstr, "%%16.16l%c ", fmtchar);
1723		break;
1724	case 4:
1725		sprintf(fmtstr, "%%8.8l%c ", fmtchar);
1726		break;
1727	case 2:
1728		sprintf(fmtstr, "%%4.4l%c ", fmtchar);
1729		break;
1730	case 1:
1731		sprintf(fmtstr, "%%2.2l%c ", fmtchar);
1732		break;
1733	default:
1734		return KDB_BADWIDTH;
1735	}
1736
1737	last_repeat = repeat;
1738	last_bytesperword = bytesperword;
1739
1740	if (strcmp(argv[0], "mds") == 0) {
1741		symbolic = 1;
1742		/* Do not save these changes as last_*, they are temporary mds
1743		 * overrides.
1744		 */
1745		bytesperword = KDB_WORD_SIZE;
1746		repeat = mdcount;
1747		kdbgetintenv("NOSECT", &nosect);
1748	}
1749
1750	/* Round address down modulo BYTESPERWORD */
1751
1752	addr &= ~(bytesperword-1);
1753
1754	while (repeat > 0) {
1755		unsigned long a;
1756		int n, z, num = (symbolic ? 1 : (16 / bytesperword));
1757
1758		if (KDB_FLAG(CMD_INTERRUPT))
1759			return 0;
1760		for (a = addr, z = 0; z < repeat; a += bytesperword, ++z) {
1761			if (phys) {
1762				if (kdb_getphysword(&word, a, bytesperword)
1763						|| word)
1764					break;
1765			} else if (kdb_getword(&word, a, bytesperword) || word)
1766				break;
1767		}
1768		n = min(num, repeat);
1769		kdb_md_line(fmtstr, addr, symbolic, nosect, bytesperword,
1770			    num, repeat, phys);
1771		addr += bytesperword * n;
1772		repeat -= n;
1773		z = (z + num - 1) / num;
1774		if (z > 2) {
1775			int s = num * (z-2);
1776			kdb_printf(kdb_machreg_fmt0 "-" kdb_machreg_fmt0
1777				   " zero suppressed\n",
1778				addr, addr + bytesperword * s - 1);
1779			addr += bytesperword * s;
1780			repeat -= s;
1781		}
1782	}
1783	last_addr = addr;
1784
1785	return 0;
1786}
1787
1788/*
1789 * kdb_mm - This function implements the 'mm' command.
1790 *	mm address-expression new-value
1791 * Remarks:
1792 *	mm works on machine words, mmW works on bytes.
1793 */
1794static int kdb_mm(int argc, const char **argv)
1795{
1796	int diag;
1797	unsigned long addr;
1798	long offset = 0;
1799	unsigned long contents;
1800	int nextarg;
1801	int width;
1802
1803	if (argv[0][2] && !isdigit(argv[0][2]))
1804		return KDB_NOTFOUND;
1805
1806	if (argc < 2)
1807		return KDB_ARGCOUNT;
1808
1809	nextarg = 1;
1810	diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1811	if (diag)
1812		return diag;
1813
1814	if (nextarg > argc)
1815		return KDB_ARGCOUNT;
1816	diag = kdbgetaddrarg(argc, argv, &nextarg, &contents, NULL, NULL);
1817	if (diag)
1818		return diag;
1819
1820	if (nextarg != argc + 1)
1821		return KDB_ARGCOUNT;
1822
1823	width = argv[0][2] ? (argv[0][2] - '0') : (KDB_WORD_SIZE);
1824	diag = kdb_putword(addr, contents, width);
1825	if (diag)
1826		return diag;
1827
1828	kdb_printf(kdb_machreg_fmt " = " kdb_machreg_fmt "\n", addr, contents);
1829
1830	return 0;
1831}
1832
1833/*
1834 * kdb_go - This function implements the 'go' command.
1835 *	go [address-expression]
1836 */
1837static int kdb_go(int argc, const char **argv)
1838{
1839	unsigned long addr;
1840	int diag;
1841	int nextarg;
1842	long offset;
1843
1844	if (raw_smp_processor_id() != kdb_initial_cpu) {
1845		kdb_printf("go must execute on the entry cpu, "
1846			   "please use \"cpu %d\" and then execute go\n",
1847			   kdb_initial_cpu);
1848		return KDB_BADCPUNUM;
1849	}
1850	if (argc == 1) {
1851		nextarg = 1;
1852		diag = kdbgetaddrarg(argc, argv, &nextarg,
1853				     &addr, &offset, NULL);
1854		if (diag)
1855			return diag;
1856	} else if (argc) {
1857		return KDB_ARGCOUNT;
1858	}
1859
1860	diag = KDB_CMD_GO;
1861	if (KDB_FLAG(CATASTROPHIC)) {
1862		kdb_printf("Catastrophic error detected\n");
1863		kdb_printf("kdb_continue_catastrophic=%d, ",
1864			kdb_continue_catastrophic);
1865		if (kdb_continue_catastrophic == 0 && kdb_go_count++ == 0) {
1866			kdb_printf("type go a second time if you really want "
1867				   "to continue\n");
1868			return 0;
1869		}
1870		if (kdb_continue_catastrophic == 2) {
1871			kdb_printf("forcing reboot\n");
1872			kdb_reboot(0, NULL);
1873		}
1874		kdb_printf("attempting to continue\n");
1875	}
1876	return diag;
1877}
1878
1879/*
1880 * kdb_rd - This function implements the 'rd' command.
1881 */
1882static int kdb_rd(int argc, const char **argv)
1883{
1884	int len = kdb_check_regs();
1885#if DBG_MAX_REG_NUM > 0
1886	int i;
1887	char *rname;
1888	int rsize;
1889	u64 reg64;
1890	u32 reg32;
1891	u16 reg16;
1892	u8 reg8;
1893
1894	if (len)
1895		return len;
1896
1897	for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1898		rsize = dbg_reg_def[i].size * 2;
1899		if (rsize > 16)
1900			rsize = 2;
1901		if (len + strlen(dbg_reg_def[i].name) + 4 + rsize > 80) {
1902			len = 0;
1903			kdb_printf("\n");
1904		}
1905		if (len)
1906			len += kdb_printf("  ");
1907		switch(dbg_reg_def[i].size * 8) {
1908		case 8:
1909			rname = dbg_get_reg(i, &reg8, kdb_current_regs);
1910			if (!rname)
1911				break;
1912			len += kdb_printf("%s: %02x", rname, reg8);
1913			break;
1914		case 16:
1915			rname = dbg_get_reg(i, &reg16, kdb_current_regs);
1916			if (!rname)
1917				break;
1918			len += kdb_printf("%s: %04x", rname, reg16);
1919			break;
1920		case 32:
1921			rname = dbg_get_reg(i, &reg32, kdb_current_regs);
1922			if (!rname)
1923				break;
1924			len += kdb_printf("%s: %08x", rname, reg32);
1925			break;
1926		case 64:
1927			rname = dbg_get_reg(i, &reg64, kdb_current_regs);
1928			if (!rname)
1929				break;
1930			len += kdb_printf("%s: %016llx", rname, reg64);
1931			break;
1932		default:
1933			len += kdb_printf("%s: ??", dbg_reg_def[i].name);
1934		}
1935	}
1936	kdb_printf("\n");
1937#else
1938	if (len)
1939		return len;
1940
1941	kdb_dumpregs(kdb_current_regs);
1942#endif
1943	return 0;
1944}
1945
1946/*
1947 * kdb_rm - This function implements the 'rm' (register modify)  command.
1948 *	rm register-name new-contents
1949 * Remarks:
1950 *	Allows register modification with the same restrictions as gdb
1951 */
1952static int kdb_rm(int argc, const char **argv)
1953{
1954#if DBG_MAX_REG_NUM > 0
1955	int diag;
1956	const char *rname;
1957	int i;
1958	u64 reg64;
1959	u32 reg32;
1960	u16 reg16;
1961	u8 reg8;
1962
1963	if (argc != 2)
1964		return KDB_ARGCOUNT;
1965	/*
1966	 * Allow presence or absence of leading '%' symbol.
1967	 */
1968	rname = argv[1];
1969	if (*rname == '%')
1970		rname++;
1971
1972	diag = kdbgetu64arg(argv[2], &reg64);
1973	if (diag)
1974		return diag;
1975
1976	diag = kdb_check_regs();
1977	if (diag)
1978		return diag;
1979
1980	diag = KDB_BADREG;
1981	for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1982		if (strcmp(rname, dbg_reg_def[i].name) == 0) {
1983			diag = 0;
1984			break;
1985		}
1986	}
1987	if (!diag) {
1988		switch(dbg_reg_def[i].size * 8) {
1989		case 8:
1990			reg8 = reg64;
1991			dbg_set_reg(i, &reg8, kdb_current_regs);
1992			break;
1993		case 16:
1994			reg16 = reg64;
1995			dbg_set_reg(i, &reg16, kdb_current_regs);
1996			break;
1997		case 32:
1998			reg32 = reg64;
1999			dbg_set_reg(i, &reg32, kdb_current_regs);
2000			break;
2001		case 64:
2002			dbg_set_reg(i, &reg64, kdb_current_regs);
2003			break;
2004		}
2005	}
2006	return diag;
2007#else
2008	kdb_printf("ERROR: Register set currently not implemented\n");
2009    return 0;
2010#endif
2011}
2012
2013#if defined(CONFIG_MAGIC_SYSRQ)
2014/*
2015 * kdb_sr - This function implements the 'sr' (SYSRQ key) command
2016 *	which interfaces to the soi-disant MAGIC SYSRQ functionality.
2017 *		sr <magic-sysrq-code>
2018 */
2019static int kdb_sr(int argc, const char **argv)
2020{
2021	bool check_mask =
2022	    !kdb_check_flags(KDB_ENABLE_ALL, kdb_cmd_enabled, false);
2023
2024	if (argc != 1)
2025		return KDB_ARGCOUNT;
2026
2027	kdb_trap_printk++;
2028	__handle_sysrq(*argv[1], check_mask);
2029	kdb_trap_printk--;
2030
2031	return 0;
2032}
2033#endif	/* CONFIG_MAGIC_SYSRQ */
2034
2035/*
2036 * kdb_ef - This function implements the 'regs' (display exception
2037 *	frame) command.  This command takes an address and expects to
2038 *	find an exception frame at that address, formats and prints
2039 *	it.
2040 *		regs address-expression
2041 * Remarks:
2042 *	Not done yet.
2043 */
2044static int kdb_ef(int argc, const char **argv)
2045{
2046	int diag;
2047	unsigned long addr;
2048	long offset;
2049	int nextarg;
2050
2051	if (argc != 1)
2052		return KDB_ARGCOUNT;
2053
2054	nextarg = 1;
2055	diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
2056	if (diag)
2057		return diag;
2058	show_regs((struct pt_regs *)addr);
2059	return 0;
2060}
2061
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2062/*
2063 * kdb_env - This function implements the 'env' command.  Display the
2064 *	current environment variables.
2065 */
2066
2067static int kdb_env(int argc, const char **argv)
2068{
2069	kdb_printenv();
 
 
 
 
 
2070
2071	if (KDB_DEBUG(MASK))
2072		kdb_printf("KDBDEBUG=0x%x\n",
2073			(kdb_flags & KDB_DEBUG(MASK)) >> KDB_DEBUG_FLAG_SHIFT);
2074
2075	return 0;
2076}
2077
2078#ifdef CONFIG_PRINTK
2079/*
2080 * kdb_dmesg - This function implements the 'dmesg' command to display
2081 *	the contents of the syslog buffer.
2082 *		dmesg [lines] [adjust]
2083 */
2084static int kdb_dmesg(int argc, const char **argv)
2085{
2086	int diag;
2087	int logging;
2088	int lines = 0;
2089	int adjust = 0;
2090	int n = 0;
2091	int skip = 0;
2092	struct kmsg_dump_iter iter;
2093	size_t len;
2094	char buf[201];
2095
2096	if (argc > 2)
2097		return KDB_ARGCOUNT;
2098	if (argc) {
2099		char *cp;
2100		lines = simple_strtol(argv[1], &cp, 0);
2101		if (*cp)
2102			lines = 0;
2103		if (argc > 1) {
2104			adjust = simple_strtoul(argv[2], &cp, 0);
2105			if (*cp || adjust < 0)
2106				adjust = 0;
2107		}
2108	}
2109
2110	/* disable LOGGING if set */
2111	diag = kdbgetintenv("LOGGING", &logging);
2112	if (!diag && logging) {
2113		const char *setargs[] = { "set", "LOGGING", "0" };
2114		kdb_set(2, setargs);
2115	}
2116
2117	kmsg_dump_rewind(&iter);
2118	while (kmsg_dump_get_line(&iter, 1, NULL, 0, NULL))
2119		n++;
2120
2121	if (lines < 0) {
2122		if (adjust >= n)
2123			kdb_printf("buffer only contains %d lines, nothing "
2124				   "printed\n", n);
2125		else if (adjust - lines >= n)
2126			kdb_printf("buffer only contains %d lines, last %d "
2127				   "lines printed\n", n, n - adjust);
2128		skip = adjust;
2129		lines = abs(lines);
2130	} else if (lines > 0) {
2131		skip = n - lines - adjust;
2132		lines = abs(lines);
2133		if (adjust >= n) {
2134			kdb_printf("buffer only contains %d lines, "
2135				   "nothing printed\n", n);
2136			skip = n;
2137		} else if (skip < 0) {
2138			lines += skip;
2139			skip = 0;
2140			kdb_printf("buffer only contains %d lines, first "
2141				   "%d lines printed\n", n, lines);
2142		}
2143	} else {
2144		lines = n;
2145	}
2146
2147	if (skip >= n || skip < 0)
2148		return 0;
2149
2150	kmsg_dump_rewind(&iter);
2151	while (kmsg_dump_get_line(&iter, 1, buf, sizeof(buf), &len)) {
2152		if (skip) {
2153			skip--;
2154			continue;
2155		}
2156		if (!lines--)
2157			break;
2158		if (KDB_FLAG(CMD_INTERRUPT))
2159			return 0;
2160
2161		kdb_printf("%.*s\n", (int)len - 1, buf);
2162	}
2163
2164	return 0;
2165}
2166#endif /* CONFIG_PRINTK */
2167
2168/* Make sure we balance enable/disable calls, must disable first. */
2169static atomic_t kdb_nmi_disabled;
2170
2171static int kdb_disable_nmi(int argc, const char *argv[])
2172{
2173	if (atomic_read(&kdb_nmi_disabled))
2174		return 0;
2175	atomic_set(&kdb_nmi_disabled, 1);
2176	arch_kgdb_ops.enable_nmi(0);
2177	return 0;
2178}
2179
2180static int kdb_param_enable_nmi(const char *val, const struct kernel_param *kp)
2181{
2182	if (!atomic_add_unless(&kdb_nmi_disabled, -1, 0))
2183		return -EINVAL;
2184	arch_kgdb_ops.enable_nmi(1);
2185	return 0;
2186}
2187
2188static const struct kernel_param_ops kdb_param_ops_enable_nmi = {
2189	.set = kdb_param_enable_nmi,
2190};
2191module_param_cb(enable_nmi, &kdb_param_ops_enable_nmi, NULL, 0600);
2192
2193/*
2194 * kdb_cpu - This function implements the 'cpu' command.
2195 *	cpu	[<cpunum>]
2196 * Returns:
2197 *	KDB_CMD_CPU for success, a kdb diagnostic if error
2198 */
2199static void kdb_cpu_status(void)
2200{
2201	int i, start_cpu, first_print = 1;
2202	char state, prev_state = '?';
2203
2204	kdb_printf("Currently on cpu %d\n", raw_smp_processor_id());
2205	kdb_printf("Available cpus: ");
2206	for (start_cpu = -1, i = 0; i < NR_CPUS; i++) {
2207		if (!cpu_online(i)) {
2208			state = 'F';	/* cpu is offline */
2209		} else if (!kgdb_info[i].enter_kgdb) {
2210			state = 'D';	/* cpu is online but unresponsive */
2211		} else {
2212			state = ' ';	/* cpu is responding to kdb */
2213			if (kdb_task_state_char(KDB_TSK(i)) == '-')
2214				state = '-';	/* idle task */
2215		}
2216		if (state != prev_state) {
2217			if (prev_state != '?') {
2218				if (!first_print)
2219					kdb_printf(", ");
2220				first_print = 0;
2221				kdb_printf("%d", start_cpu);
2222				if (start_cpu < i-1)
2223					kdb_printf("-%d", i-1);
2224				if (prev_state != ' ')
2225					kdb_printf("(%c)", prev_state);
2226			}
2227			prev_state = state;
2228			start_cpu = i;
2229		}
2230	}
2231	/* print the trailing cpus, ignoring them if they are all offline */
2232	if (prev_state != 'F') {
2233		if (!first_print)
2234			kdb_printf(", ");
2235		kdb_printf("%d", start_cpu);
2236		if (start_cpu < i-1)
2237			kdb_printf("-%d", i-1);
2238		if (prev_state != ' ')
2239			kdb_printf("(%c)", prev_state);
2240	}
2241	kdb_printf("\n");
2242}
2243
2244static int kdb_cpu(int argc, const char **argv)
2245{
2246	unsigned long cpunum;
2247	int diag;
2248
2249	if (argc == 0) {
2250		kdb_cpu_status();
2251		return 0;
2252	}
2253
2254	if (argc != 1)
2255		return KDB_ARGCOUNT;
2256
2257	diag = kdbgetularg(argv[1], &cpunum);
2258	if (diag)
2259		return diag;
2260
2261	/*
2262	 * Validate cpunum
2263	 */
2264	if ((cpunum >= CONFIG_NR_CPUS) || !kgdb_info[cpunum].enter_kgdb)
2265		return KDB_BADCPUNUM;
2266
2267	dbg_switch_cpu = cpunum;
2268
2269	/*
2270	 * Switch to other cpu
2271	 */
2272	return KDB_CMD_CPU;
2273}
2274
2275/* The user may not realize that ps/bta with no parameters does not print idle
2276 * or sleeping system daemon processes, so tell them how many were suppressed.
2277 */
2278void kdb_ps_suppressed(void)
2279{
2280	int idle = 0, daemon = 0;
 
 
2281	unsigned long cpu;
2282	const struct task_struct *p, *g;
2283	for_each_online_cpu(cpu) {
2284		p = kdb_curr_task(cpu);
2285		if (kdb_task_state(p, "-"))
2286			++idle;
2287	}
2288	for_each_process_thread(g, p) {
2289		if (kdb_task_state(p, "ims"))
2290			++daemon;
2291	}
2292	if (idle || daemon) {
2293		if (idle)
2294			kdb_printf("%d idle process%s (state -)%s\n",
2295				   idle, idle == 1 ? "" : "es",
2296				   daemon ? " and " : "");
2297		if (daemon)
2298			kdb_printf("%d sleeping system daemon (state [ims]) "
2299				   "process%s", daemon,
2300				   daemon == 1 ? "" : "es");
2301		kdb_printf(" suppressed,\nuse 'ps A' to see all.\n");
2302	}
2303}
2304
 
 
 
 
 
2305void kdb_ps1(const struct task_struct *p)
2306{
2307	int cpu;
2308	unsigned long tmp;
2309
2310	if (!p ||
2311	    copy_from_kernel_nofault(&tmp, (char *)p, sizeof(unsigned long)))
2312		return;
2313
2314	cpu = kdb_process_cpu(p);
2315	kdb_printf("0x%px %8d %8d  %d %4d   %c  0x%px %c%s\n",
2316		   (void *)p, p->pid, p->parent->pid,
2317		   kdb_task_has_cpu(p), kdb_process_cpu(p),
2318		   kdb_task_state_char(p),
2319		   (void *)(&p->thread),
2320		   p == kdb_curr_task(raw_smp_processor_id()) ? '*' : ' ',
2321		   p->comm);
2322	if (kdb_task_has_cpu(p)) {
2323		if (!KDB_TSK(cpu)) {
2324			kdb_printf("  Error: no saved data for this cpu\n");
2325		} else {
2326			if (KDB_TSK(cpu) != p)
2327				kdb_printf("  Error: does not match running "
2328				   "process table (0x%px)\n", KDB_TSK(cpu));
2329		}
2330	}
2331}
2332
2333/*
2334 * kdb_ps - This function implements the 'ps' command which shows a
2335 *	    list of the active processes.
2336 *
2337 * ps [<state_chars>]   Show processes, optionally selecting only those whose
2338 *                      state character is found in <state_chars>.
2339 */
2340static int kdb_ps(int argc, const char **argv)
2341{
2342	struct task_struct *g, *p;
2343	const char *mask;
2344	unsigned long cpu;
2345
2346	if (argc == 0)
2347		kdb_ps_suppressed();
2348	kdb_printf("%-*s      Pid   Parent [*] cpu State %-*s Command\n",
2349		(int)(2*sizeof(void *))+2, "Task Addr",
2350		(int)(2*sizeof(void *))+2, "Thread");
2351	mask = argc ? argv[1] : kdbgetenv("PS");
2352	/* Run the active tasks first */
2353	for_each_online_cpu(cpu) {
2354		if (KDB_FLAG(CMD_INTERRUPT))
2355			return 0;
2356		p = kdb_curr_task(cpu);
2357		if (kdb_task_state(p, mask))
2358			kdb_ps1(p);
2359	}
2360	kdb_printf("\n");
2361	/* Now the real tasks */
2362	for_each_process_thread(g, p) {
2363		if (KDB_FLAG(CMD_INTERRUPT))
2364			return 0;
2365		if (kdb_task_state(p, mask))
2366			kdb_ps1(p);
2367	}
2368
2369	return 0;
2370}
2371
2372/*
2373 * kdb_pid - This function implements the 'pid' command which switches
2374 *	the currently active process.
2375 *		pid [<pid> | R]
2376 */
2377static int kdb_pid(int argc, const char **argv)
2378{
2379	struct task_struct *p;
2380	unsigned long val;
2381	int diag;
2382
2383	if (argc > 1)
2384		return KDB_ARGCOUNT;
2385
2386	if (argc) {
2387		if (strcmp(argv[1], "R") == 0) {
2388			p = KDB_TSK(kdb_initial_cpu);
2389		} else {
2390			diag = kdbgetularg(argv[1], &val);
2391			if (diag)
2392				return KDB_BADINT;
2393
2394			p = find_task_by_pid_ns((pid_t)val,	&init_pid_ns);
2395			if (!p) {
2396				kdb_printf("No task with pid=%d\n", (pid_t)val);
2397				return 0;
2398			}
2399		}
2400		kdb_set_current_task(p);
2401	}
2402	kdb_printf("KDB current process is %s(pid=%d)\n",
2403		   kdb_current_task->comm,
2404		   kdb_current_task->pid);
2405
2406	return 0;
2407}
2408
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2409static int kdb_kgdb(int argc, const char **argv)
2410{
2411	return KDB_CMD_KGDB;
2412}
2413
2414/*
2415 * kdb_help - This function implements the 'help' and '?' commands.
2416 */
2417static int kdb_help(int argc, const char **argv)
2418{
2419	kdbtab_t *kt;
 
2420
2421	kdb_printf("%-15.15s %-20.20s %s\n", "Command", "Usage", "Description");
2422	kdb_printf("-----------------------------"
2423		   "-----------------------------\n");
2424	list_for_each_entry(kt, &kdb_cmds_head, list_node) {
2425		char *space = "";
 
 
2426		if (KDB_FLAG(CMD_INTERRUPT))
2427			return 0;
2428		if (!kdb_check_flags(kt->flags, kdb_cmd_enabled, true))
2429			continue;
2430		if (strlen(kt->usage) > 20)
2431			space = "\n                                    ";
2432		kdb_printf("%-15.15s %-20s%s%s\n", kt->name,
2433			   kt->usage, space, kt->help);
2434	}
2435	return 0;
2436}
2437
2438/*
2439 * kdb_kill - This function implements the 'kill' commands.
2440 */
2441static int kdb_kill(int argc, const char **argv)
2442{
2443	long sig, pid;
2444	char *endp;
2445	struct task_struct *p;
 
2446
2447	if (argc != 2)
2448		return KDB_ARGCOUNT;
2449
2450	sig = simple_strtol(argv[1], &endp, 0);
2451	if (*endp)
2452		return KDB_BADINT;
2453	if ((sig >= 0) || !valid_signal(-sig)) {
2454		kdb_printf("Invalid signal parameter.<-signal>\n");
2455		return 0;
2456	}
2457	sig = -sig;
2458
2459	pid = simple_strtol(argv[2], &endp, 0);
2460	if (*endp)
2461		return KDB_BADINT;
2462	if (pid <= 0) {
2463		kdb_printf("Process ID must be large than 0.\n");
2464		return 0;
2465	}
2466
2467	/* Find the process. */
2468	p = find_task_by_pid_ns(pid, &init_pid_ns);
2469	if (!p) {
2470		kdb_printf("The specified process isn't found.\n");
2471		return 0;
2472	}
2473	p = p->group_leader;
2474	kdb_send_sig(p, sig);
 
 
 
 
 
2475	return 0;
2476}
2477
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2478/*
2479 * Most of this code has been lifted from kernel/timer.c::sys_sysinfo().
2480 * I cannot call that code directly from kdb, it has an unconditional
2481 * cli()/sti() and calls routines that take locks which can stop the debugger.
2482 */
2483static void kdb_sysinfo(struct sysinfo *val)
2484{
2485	u64 uptime = ktime_get_mono_fast_ns();
2486
2487	memset(val, 0, sizeof(*val));
2488	val->uptime = div_u64(uptime, NSEC_PER_SEC);
2489	val->loads[0] = avenrun[0];
2490	val->loads[1] = avenrun[1];
2491	val->loads[2] = avenrun[2];
2492	val->procs = nr_threads-1;
2493	si_meminfo(val);
2494
2495	return;
2496}
2497
2498/*
2499 * kdb_summary - This function implements the 'summary' command.
2500 */
2501static int kdb_summary(int argc, const char **argv)
2502{
2503	time64_t now;
 
2504	struct sysinfo val;
2505
2506	if (argc)
2507		return KDB_ARGCOUNT;
2508
2509	kdb_printf("sysname    %s\n", init_uts_ns.name.sysname);
2510	kdb_printf("release    %s\n", init_uts_ns.name.release);
2511	kdb_printf("version    %s\n", init_uts_ns.name.version);
2512	kdb_printf("machine    %s\n", init_uts_ns.name.machine);
2513	kdb_printf("nodename   %s\n", init_uts_ns.name.nodename);
2514	kdb_printf("domainname %s\n", init_uts_ns.name.domainname);
 
 
 
 
 
 
 
 
 
2515
2516	now = __ktime_get_real_seconds();
2517	kdb_printf("date       %ptTs tz_minuteswest %d\n", &now, sys_tz.tz_minuteswest);
2518	kdb_sysinfo(&val);
2519	kdb_printf("uptime     ");
2520	if (val.uptime > (24*60*60)) {
2521		int days = val.uptime / (24*60*60);
2522		val.uptime %= (24*60*60);
2523		kdb_printf("%d day%s ", days, days == 1 ? "" : "s");
2524	}
2525	kdb_printf("%02ld:%02ld\n", val.uptime/(60*60), (val.uptime/60)%60);
2526
 
 
 
 
2527	kdb_printf("load avg   %ld.%02ld %ld.%02ld %ld.%02ld\n",
2528		LOAD_INT(val.loads[0]), LOAD_FRAC(val.loads[0]),
2529		LOAD_INT(val.loads[1]), LOAD_FRAC(val.loads[1]),
2530		LOAD_INT(val.loads[2]), LOAD_FRAC(val.loads[2]));
2531
 
2532	/* Display in kilobytes */
2533#define K(x) ((x) << (PAGE_SHIFT - 10))
2534	kdb_printf("\nMemTotal:       %8lu kB\nMemFree:        %8lu kB\n"
2535		   "Buffers:        %8lu kB\n",
2536		   K(val.totalram), K(val.freeram), K(val.bufferram));
2537	return 0;
2538}
2539
2540/*
2541 * kdb_per_cpu - This function implements the 'per_cpu' command.
2542 */
2543static int kdb_per_cpu(int argc, const char **argv)
2544{
2545	char fmtstr[64];
2546	int cpu, diag, nextarg = 1;
2547	unsigned long addr, symaddr, val, bytesperword = 0, whichcpu = ~0UL;
2548
2549	if (argc < 1 || argc > 3)
2550		return KDB_ARGCOUNT;
2551
2552	diag = kdbgetaddrarg(argc, argv, &nextarg, &symaddr, NULL, NULL);
2553	if (diag)
2554		return diag;
2555
2556	if (argc >= 2) {
2557		diag = kdbgetularg(argv[2], &bytesperword);
2558		if (diag)
2559			return diag;
2560	}
2561	if (!bytesperword)
2562		bytesperword = KDB_WORD_SIZE;
2563	else if (bytesperword > KDB_WORD_SIZE)
2564		return KDB_BADWIDTH;
2565	sprintf(fmtstr, "%%0%dlx ", (int)(2*bytesperword));
2566	if (argc >= 3) {
2567		diag = kdbgetularg(argv[3], &whichcpu);
2568		if (diag)
2569			return diag;
2570		if (whichcpu >= nr_cpu_ids || !cpu_online(whichcpu)) {
2571			kdb_printf("cpu %ld is not online\n", whichcpu);
2572			return KDB_BADCPUNUM;
2573		}
2574	}
2575
2576	/* Most architectures use __per_cpu_offset[cpu], some use
2577	 * __per_cpu_offset(cpu), smp has no __per_cpu_offset.
2578	 */
2579#ifdef	__per_cpu_offset
2580#define KDB_PCU(cpu) __per_cpu_offset(cpu)
2581#else
2582#ifdef	CONFIG_SMP
2583#define KDB_PCU(cpu) __per_cpu_offset[cpu]
2584#else
2585#define KDB_PCU(cpu) 0
2586#endif
2587#endif
2588	for_each_online_cpu(cpu) {
2589		if (KDB_FLAG(CMD_INTERRUPT))
2590			return 0;
2591
2592		if (whichcpu != ~0UL && whichcpu != cpu)
2593			continue;
2594		addr = symaddr + KDB_PCU(cpu);
2595		diag = kdb_getword(&val, addr, bytesperword);
2596		if (diag) {
2597			kdb_printf("%5d " kdb_bfd_vma_fmt0 " - unable to "
2598				   "read, diag=%d\n", cpu, addr, diag);
2599			continue;
2600		}
2601		kdb_printf("%5d ", cpu);
2602		kdb_md_line(fmtstr, addr,
2603			bytesperword == KDB_WORD_SIZE,
2604			1, bytesperword, 1, 1, 0);
2605	}
2606#undef KDB_PCU
2607	return 0;
2608}
2609
2610/*
2611 * display help for the use of cmd | grep pattern
2612 */
2613static int kdb_grep_help(int argc, const char **argv)
2614{
2615	kdb_printf("Usage of  cmd args | grep pattern:\n");
2616	kdb_printf("  Any command's output may be filtered through an ");
2617	kdb_printf("emulated 'pipe'.\n");
2618	kdb_printf("  'grep' is just a key word.\n");
2619	kdb_printf("  The pattern may include a very limited set of "
2620		   "metacharacters:\n");
2621	kdb_printf("   pattern or ^pattern or pattern$ or ^pattern$\n");
2622	kdb_printf("  And if there are spaces in the pattern, you may "
2623		   "quote it:\n");
2624	kdb_printf("   \"pat tern\" or \"^pat tern\" or \"pat tern$\""
2625		   " or \"^pat tern$\"\n");
2626	return 0;
2627}
2628
2629/**
2630 * kdb_register() - This function is used to register a kernel debugger
2631 *                  command.
2632 * @cmd: pointer to kdb command
2633 *
2634 * Note that it's the job of the caller to keep the memory for the cmd
2635 * allocated until unregister is called.
 
 
 
 
2636 */
2637int kdb_register(kdbtab_t *cmd)
 
 
 
 
 
 
2638{
 
2639	kdbtab_t *kp;
2640
2641	list_for_each_entry(kp, &kdb_cmds_head, list_node) {
2642		if (strcmp(kp->name, cmd->name) == 0) {
2643			kdb_printf("Duplicate kdb cmd: %s, func %p help %s\n",
2644				   cmd->name, cmd->func, cmd->help);
 
 
 
2645			return 1;
2646		}
2647	}
2648
2649	list_add_tail(&cmd->list_node, &kdb_cmds_head);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2650	return 0;
2651}
2652EXPORT_SYMBOL_GPL(kdb_register);
 
2653
2654/**
2655 * kdb_register_table() - This function is used to register a kdb command
2656 *                        table.
2657 * @kp: pointer to kdb command table
2658 * @len: length of kdb command table
 
 
 
 
 
 
2659 */
2660void kdb_register_table(kdbtab_t *kp, size_t len)
 
 
 
 
2661{
2662	while (len--) {
2663		list_add_tail(&kp->list_node, &kdb_cmds_head);
2664		kp++;
2665	}
2666}
 
2667
2668/**
2669 * kdb_unregister() - This function is used to unregister a kernel debugger
2670 *                    command. It is generally called when a module which
2671 *                    implements kdb command is unloaded.
2672 * @cmd: pointer to kdb command
 
 
 
2673 */
2674void kdb_unregister(kdbtab_t *cmd)
2675{
2676	list_del(&cmd->list_node);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2677}
2678EXPORT_SYMBOL_GPL(kdb_unregister);
2679
2680static kdbtab_t maintab[] = {
2681	{	.name = "md",
2682		.func = kdb_md,
2683		.usage = "<vaddr>",
2684		.help = "Display Memory Contents, also mdWcN, e.g. md8c1",
2685		.minlen = 1,
2686		.flags = KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS,
2687	},
2688	{	.name = "mdr",
2689		.func = kdb_md,
2690		.usage = "<vaddr> <bytes>",
2691		.help = "Display Raw Memory",
2692		.flags = KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS,
2693	},
2694	{	.name = "mdp",
2695		.func = kdb_md,
2696		.usage = "<paddr> <bytes>",
2697		.help = "Display Physical Memory",
2698		.flags = KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS,
2699	},
2700	{	.name = "mds",
2701		.func = kdb_md,
2702		.usage = "<vaddr>",
2703		.help = "Display Memory Symbolically",
2704		.flags = KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS,
2705	},
2706	{	.name = "mm",
2707		.func = kdb_mm,
2708		.usage = "<vaddr> <contents>",
2709		.help = "Modify Memory Contents",
2710		.flags = KDB_ENABLE_MEM_WRITE | KDB_REPEAT_NO_ARGS,
2711	},
2712	{	.name = "go",
2713		.func = kdb_go,
2714		.usage = "[<vaddr>]",
2715		.help = "Continue Execution",
2716		.minlen = 1,
2717		.flags = KDB_ENABLE_REG_WRITE |
2718			     KDB_ENABLE_ALWAYS_SAFE_NO_ARGS,
2719	},
2720	{	.name = "rd",
2721		.func = kdb_rd,
2722		.usage = "",
2723		.help = "Display Registers",
2724		.flags = KDB_ENABLE_REG_READ,
2725	},
2726	{	.name = "rm",
2727		.func = kdb_rm,
2728		.usage = "<reg> <contents>",
2729		.help = "Modify Registers",
2730		.flags = KDB_ENABLE_REG_WRITE,
2731	},
2732	{	.name = "ef",
2733		.func = kdb_ef,
2734		.usage = "<vaddr>",
2735		.help = "Display exception frame",
2736		.flags = KDB_ENABLE_MEM_READ,
2737	},
2738	{	.name = "bt",
2739		.func = kdb_bt,
2740		.usage = "[<vaddr>]",
2741		.help = "Stack traceback",
2742		.minlen = 1,
2743		.flags = KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS,
2744	},
2745	{	.name = "btp",
2746		.func = kdb_bt,
2747		.usage = "<pid>",
2748		.help = "Display stack for process <pid>",
2749		.flags = KDB_ENABLE_INSPECT,
2750	},
2751	{	.name = "bta",
2752		.func = kdb_bt,
2753		.usage = "[<state_chars>|A]",
2754		.help = "Backtrace all processes whose state matches",
2755		.flags = KDB_ENABLE_INSPECT,
2756	},
2757	{	.name = "btc",
2758		.func = kdb_bt,
2759		.usage = "",
2760		.help = "Backtrace current process on each cpu",
2761		.flags = KDB_ENABLE_INSPECT,
2762	},
2763	{	.name = "btt",
2764		.func = kdb_bt,
2765		.usage = "<vaddr>",
2766		.help = "Backtrace process given its struct task address",
2767		.flags = KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS,
2768	},
2769	{	.name = "env",
2770		.func = kdb_env,
2771		.usage = "",
2772		.help = "Show environment variables",
2773		.flags = KDB_ENABLE_ALWAYS_SAFE,
2774	},
2775	{	.name = "set",
2776		.func = kdb_set,
2777		.usage = "",
2778		.help = "Set environment variables",
2779		.flags = KDB_ENABLE_ALWAYS_SAFE,
2780	},
2781	{	.name = "help",
2782		.func = kdb_help,
2783		.usage = "",
2784		.help = "Display Help Message",
2785		.minlen = 1,
2786		.flags = KDB_ENABLE_ALWAYS_SAFE,
2787	},
2788	{	.name = "?",
2789		.func = kdb_help,
2790		.usage = "",
2791		.help = "Display Help Message",
2792		.flags = KDB_ENABLE_ALWAYS_SAFE,
2793	},
2794	{	.name = "cpu",
2795		.func = kdb_cpu,
2796		.usage = "<cpunum>",
2797		.help = "Switch to new cpu",
2798		.flags = KDB_ENABLE_ALWAYS_SAFE_NO_ARGS,
2799	},
2800	{	.name = "kgdb",
2801		.func = kdb_kgdb,
2802		.usage = "",
2803		.help = "Enter kgdb mode",
2804		.flags = 0,
2805	},
2806	{	.name = "ps",
2807		.func = kdb_ps,
2808		.usage = "[<state_chars>|A]",
2809		.help = "Display active task list",
2810		.flags = KDB_ENABLE_INSPECT,
2811	},
2812	{	.name = "pid",
2813		.func = kdb_pid,
2814		.usage = "<pidnum>",
2815		.help = "Switch to another task",
2816		.flags = KDB_ENABLE_INSPECT,
2817	},
2818	{	.name = "reboot",
2819		.func = kdb_reboot,
2820		.usage = "",
2821		.help = "Reboot the machine immediately",
2822		.flags = KDB_ENABLE_REBOOT,
2823	},
2824#if defined(CONFIG_MODULES)
2825	{	.name = "lsmod",
2826		.func = kdb_lsmod,
2827		.usage = "",
2828		.help = "List loaded kernel modules",
2829		.flags = KDB_ENABLE_INSPECT,
2830	},
2831#endif
2832#if defined(CONFIG_MAGIC_SYSRQ)
2833	{	.name = "sr",
2834		.func = kdb_sr,
2835		.usage = "<key>",
2836		.help = "Magic SysRq key",
2837		.flags = KDB_ENABLE_ALWAYS_SAFE,
2838	},
2839#endif
2840#if defined(CONFIG_PRINTK)
2841	{	.name = "dmesg",
2842		.func = kdb_dmesg,
2843		.usage = "[lines]",
2844		.help = "Display syslog buffer",
2845		.flags = KDB_ENABLE_ALWAYS_SAFE,
2846	},
2847#endif
2848	{	.name = "defcmd",
2849		.func = kdb_defcmd,
2850		.usage = "name \"usage\" \"help\"",
2851		.help = "Define a set of commands, down to endefcmd",
2852		/*
2853		 * Macros are always safe because when executed each
2854		 * internal command re-enters kdb_parse() and is safety
2855		 * checked individually.
2856		 */
2857		.flags = KDB_ENABLE_ALWAYS_SAFE,
2858	},
2859	{	.name = "kill",
2860		.func = kdb_kill,
2861		.usage = "<-signal> <pid>",
2862		.help = "Send a signal to a process",
2863		.flags = KDB_ENABLE_SIGNAL,
2864	},
2865	{	.name = "summary",
2866		.func = kdb_summary,
2867		.usage = "",
2868		.help = "Summarize the system",
2869		.minlen = 4,
2870		.flags = KDB_ENABLE_ALWAYS_SAFE,
2871	},
2872	{	.name = "per_cpu",
2873		.func = kdb_per_cpu,
2874		.usage = "<sym> [<bytes>] [<cpu>]",
2875		.help = "Display per_cpu variables",
2876		.minlen = 3,
2877		.flags = KDB_ENABLE_MEM_READ,
2878	},
2879	{	.name = "grephelp",
2880		.func = kdb_grep_help,
2881		.usage = "",
2882		.help = "Display help on | grep",
2883		.flags = KDB_ENABLE_ALWAYS_SAFE,
2884	},
2885};
2886
2887static kdbtab_t nmicmd = {
2888	.name = "disable_nmi",
2889	.func = kdb_disable_nmi,
2890	.usage = "",
2891	.help = "Disable NMI entry to KDB",
2892	.flags = KDB_ENABLE_ALWAYS_SAFE,
2893};
2894
2895/* Initialize the kdb command table. */
2896static void __init kdb_inittab(void)
2897{
2898	kdb_register_table(maintab, ARRAY_SIZE(maintab));
2899	if (arch_kgdb_ops.enable_nmi)
2900		kdb_register_table(&nmicmd, 1);
2901}
2902
2903/* Execute any commands defined in kdb_cmds.  */
2904static void __init kdb_cmd_init(void)
2905{
2906	int i, diag;
2907	for (i = 0; kdb_cmds[i]; ++i) {
2908		diag = kdb_parse(kdb_cmds[i]);
2909		if (diag)
2910			kdb_printf("kdb command %s failed, kdb diag %d\n",
2911				kdb_cmds[i], diag);
2912	}
2913	if (defcmd_in_progress) {
2914		kdb_printf("Incomplete 'defcmd' set, forcing endefcmd\n");
2915		kdb_parse("endefcmd");
2916	}
2917}
2918
2919/* Initialize kdb_printf, breakpoint tables and kdb state */
2920void __init kdb_init(int lvl)
2921{
2922	static int kdb_init_lvl = KDB_NOT_INITIALIZED;
2923	int i;
2924
2925	if (kdb_init_lvl == KDB_INIT_FULL || lvl <= kdb_init_lvl)
2926		return;
2927	for (i = kdb_init_lvl; i < lvl; i++) {
2928		switch (i) {
2929		case KDB_NOT_INITIALIZED:
2930			kdb_inittab();		/* Initialize Command Table */
2931			kdb_initbptab();	/* Initialize Breakpoints */
2932			break;
2933		case KDB_INIT_EARLY:
2934			kdb_cmd_init();		/* Build kdb_cmds tables */
2935			break;
2936		}
2937	}
2938	kdb_init_lvl = lvl;
2939}
v3.5.6
   1/*
   2 * Kernel Debugger Architecture Independent Main Code
   3 *
   4 * This file is subject to the terms and conditions of the GNU General Public
   5 * License.  See the file "COPYING" in the main directory of this archive
   6 * for more details.
   7 *
   8 * Copyright (C) 1999-2004 Silicon Graphics, Inc.  All Rights Reserved.
   9 * Copyright (C) 2000 Stephane Eranian <eranian@hpl.hp.com>
  10 * Xscale (R) modifications copyright (C) 2003 Intel Corporation.
  11 * Copyright (c) 2009 Wind River Systems, Inc.  All Rights Reserved.
  12 */
  13
  14#include <linux/ctype.h>
 
  15#include <linux/string.h>
  16#include <linux/kernel.h>
  17#include <linux/kmsg_dump.h>
  18#include <linux/reboot.h>
  19#include <linux/sched.h>
 
 
 
  20#include <linux/sysrq.h>
  21#include <linux/smp.h>
  22#include <linux/utsname.h>
  23#include <linux/vmalloc.h>
  24#include <linux/module.h>
 
  25#include <linux/mm.h>
  26#include <linux/init.h>
  27#include <linux/kallsyms.h>
  28#include <linux/kgdb.h>
  29#include <linux/kdb.h>
  30#include <linux/notifier.h>
  31#include <linux/interrupt.h>
  32#include <linux/delay.h>
  33#include <linux/nmi.h>
  34#include <linux/time.h>
  35#include <linux/ptrace.h>
  36#include <linux/sysctl.h>
  37#include <linux/cpu.h>
  38#include <linux/kdebug.h>
  39#include <linux/proc_fs.h>
  40#include <linux/uaccess.h>
  41#include <linux/slab.h>
 
  42#include "kdb_private.h"
  43
  44#define GREP_LEN 256
  45char kdb_grep_string[GREP_LEN];
 
 
 
 
 
  46int kdb_grepping_flag;
  47EXPORT_SYMBOL(kdb_grepping_flag);
  48int kdb_grep_leading;
  49int kdb_grep_trailing;
  50
  51/*
  52 * Kernel debugger state flags
  53 */
  54int kdb_flags;
  55atomic_t kdb_event;
  56
  57/*
  58 * kdb_lock protects updates to kdb_initial_cpu.  Used to
  59 * single thread processors through the kernel debugger.
  60 */
  61int kdb_initial_cpu = -1;	/* cpu number that owns kdb */
  62int kdb_nextline = 1;
  63int kdb_state;			/* General KDB state */
  64
  65struct task_struct *kdb_current_task;
  66EXPORT_SYMBOL(kdb_current_task);
  67struct pt_regs *kdb_current_regs;
  68
  69const char *kdb_diemsg;
  70static int kdb_go_count;
  71#ifdef CONFIG_KDB_CONTINUE_CATASTROPHIC
  72static unsigned int kdb_continue_catastrophic =
  73	CONFIG_KDB_CONTINUE_CATASTROPHIC;
  74#else
  75static unsigned int kdb_continue_catastrophic;
  76#endif
  77
  78/* kdb_commands describes the available commands. */
  79static kdbtab_t *kdb_commands;
  80#define KDB_BASE_CMD_MAX 50
  81static int kdb_max_commands = KDB_BASE_CMD_MAX;
  82static kdbtab_t kdb_base_commands[KDB_BASE_CMD_MAX];
  83#define for_each_kdbcmd(cmd, num)					\
  84	for ((cmd) = kdb_base_commands, (num) = 0;			\
  85	     num < kdb_max_commands;					\
  86	     num++, num == KDB_BASE_CMD_MAX ? cmd = kdb_commands : cmd++)
  87
  88typedef struct _kdbmsg {
  89	int	km_diag;	/* kdb diagnostic */
  90	char	*km_msg;	/* Corresponding message text */
  91} kdbmsg_t;
  92
  93#define KDBMSG(msgnum, text) \
  94	{ KDB_##msgnum, text }
  95
  96static kdbmsg_t kdbmsgs[] = {
  97	KDBMSG(NOTFOUND, "Command Not Found"),
  98	KDBMSG(ARGCOUNT, "Improper argument count, see usage."),
  99	KDBMSG(BADWIDTH, "Illegal value for BYTESPERWORD use 1, 2, 4 or 8, "
 100	       "8 is only allowed on 64 bit systems"),
 101	KDBMSG(BADRADIX, "Illegal value for RADIX use 8, 10 or 16"),
 102	KDBMSG(NOTENV, "Cannot find environment variable"),
 103	KDBMSG(NOENVVALUE, "Environment variable should have value"),
 104	KDBMSG(NOTIMP, "Command not implemented"),
 105	KDBMSG(ENVFULL, "Environment full"),
 106	KDBMSG(ENVBUFFULL, "Environment buffer full"),
 107	KDBMSG(TOOMANYBPT, "Too many breakpoints defined"),
 108#ifdef CONFIG_CPU_XSCALE
 109	KDBMSG(TOOMANYDBREGS, "More breakpoints than ibcr registers defined"),
 110#else
 111	KDBMSG(TOOMANYDBREGS, "More breakpoints than db registers defined"),
 112#endif
 113	KDBMSG(DUPBPT, "Duplicate breakpoint address"),
 114	KDBMSG(BPTNOTFOUND, "Breakpoint not found"),
 115	KDBMSG(BADMODE, "Invalid IDMODE"),
 116	KDBMSG(BADINT, "Illegal numeric value"),
 117	KDBMSG(INVADDRFMT, "Invalid symbolic address format"),
 118	KDBMSG(BADREG, "Invalid register name"),
 119	KDBMSG(BADCPUNUM, "Invalid cpu number"),
 120	KDBMSG(BADLENGTH, "Invalid length field"),
 121	KDBMSG(NOBP, "No Breakpoint exists"),
 122	KDBMSG(BADADDR, "Invalid address"),
 
 123};
 124#undef KDBMSG
 125
 126static const int __nkdb_err = sizeof(kdbmsgs) / sizeof(kdbmsg_t);
 127
 128
 129/*
 130 * Initial environment.   This is all kept static and local to
 131 * this file.   We don't want to rely on the memory allocation
 132 * mechanisms in the kernel, so we use a very limited allocate-only
 133 * heap for new and altered environment variables.  The entire
 134 * environment is limited to a fixed number of entries (add more
 135 * to __env[] if required) and a fixed amount of heap (add more to
 136 * KDB_ENVBUFSIZE if required).
 137 */
 138
 139static char *__env[] = {
 140#if defined(CONFIG_SMP)
 141 "PROMPT=[%d]kdb> ",
 142 "MOREPROMPT=[%d]more> ",
 143#else
 144 "PROMPT=kdb> ",
 145 "MOREPROMPT=more> ",
 146#endif
 147 "RADIX=16",
 148 "MDCOUNT=8",			/* lines of md output */
 149 KDB_PLATFORM_ENV,
 150 "DTABCOUNT=30",
 151 "NOSECT=1",
 152 (char *)0,
 153 (char *)0,
 154 (char *)0,
 155 (char *)0,
 156 (char *)0,
 157 (char *)0,
 158 (char *)0,
 159 (char *)0,
 160 (char *)0,
 161 (char *)0,
 162 (char *)0,
 163 (char *)0,
 164 (char *)0,
 165 (char *)0,
 166 (char *)0,
 167 (char *)0,
 168 (char *)0,
 169 (char *)0,
 170 (char *)0,
 171 (char *)0,
 172 (char *)0,
 173 (char *)0,
 174 (char *)0,
 175 (char *)0,
 176};
 177
 178static const int __nenv = (sizeof(__env) / sizeof(char *));
 179
 180struct task_struct *kdb_curr_task(int cpu)
 181{
 182	struct task_struct *p = curr_task(cpu);
 183#ifdef	_TIF_MCA_INIT
 184	if ((task_thread_info(p)->flags & _TIF_MCA_INIT) && KDB_TSK(cpu))
 185		p = krp->p;
 186#endif
 187	return p;
 188}
 189
 190/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 191 * kdbgetenv - This function will return the character string value of
 192 *	an environment variable.
 193 * Parameters:
 194 *	match	A character string representing an environment variable.
 195 * Returns:
 196 *	NULL	No environment variable matches 'match'
 197 *	char*	Pointer to string value of environment variable.
 198 */
 199char *kdbgetenv(const char *match)
 200{
 201	char **ep = __env;
 202	int matchlen = strlen(match);
 203	int i;
 204
 205	for (i = 0; i < __nenv; i++) {
 206		char *e = *ep++;
 207
 208		if (!e)
 209			continue;
 210
 211		if ((strncmp(match, e, matchlen) == 0)
 212		 && ((e[matchlen] == '\0')
 213		   || (e[matchlen] == '='))) {
 214			char *cp = strchr(e, '=');
 215			return cp ? ++cp : "";
 216		}
 217	}
 218	return NULL;
 219}
 220
 221/*
 222 * kdballocenv - This function is used to allocate bytes for
 223 *	environment entries.
 224 * Parameters:
 225 *	match	A character string representing a numeric value
 226 * Outputs:
 227 *	*value  the unsigned long representation of the env variable 'match'
 228 * Returns:
 229 *	Zero on success, a kdb diagnostic on failure.
 230 * Remarks:
 231 *	We use a static environment buffer (envbuffer) to hold the values
 232 *	of dynamically generated environment variables (see kdb_set).  Buffer
 233 *	space once allocated is never free'd, so over time, the amount of space
 234 *	(currently 512 bytes) will be exhausted if env variables are changed
 235 *	frequently.
 236 */
 237static char *kdballocenv(size_t bytes)
 238{
 239#define	KDB_ENVBUFSIZE	512
 240	static char envbuffer[KDB_ENVBUFSIZE];
 241	static int envbufsize;
 242	char *ep = NULL;
 243
 244	if ((KDB_ENVBUFSIZE - envbufsize) >= bytes) {
 245		ep = &envbuffer[envbufsize];
 246		envbufsize += bytes;
 247	}
 248	return ep;
 249}
 250
 251/*
 252 * kdbgetulenv - This function will return the value of an unsigned
 253 *	long-valued environment variable.
 254 * Parameters:
 255 *	match	A character string representing a numeric value
 256 * Outputs:
 257 *	*value  the unsigned long represntation of the env variable 'match'
 258 * Returns:
 259 *	Zero on success, a kdb diagnostic on failure.
 260 */
 261static int kdbgetulenv(const char *match, unsigned long *value)
 262{
 263	char *ep;
 264
 265	ep = kdbgetenv(match);
 266	if (!ep)
 267		return KDB_NOTENV;
 268	if (strlen(ep) == 0)
 269		return KDB_NOENVVALUE;
 270
 271	*value = simple_strtoul(ep, NULL, 0);
 272
 273	return 0;
 274}
 275
 276/*
 277 * kdbgetintenv - This function will return the value of an
 278 *	integer-valued environment variable.
 279 * Parameters:
 280 *	match	A character string representing an integer-valued env variable
 281 * Outputs:
 282 *	*value  the integer representation of the environment variable 'match'
 283 * Returns:
 284 *	Zero on success, a kdb diagnostic on failure.
 285 */
 286int kdbgetintenv(const char *match, int *value)
 287{
 288	unsigned long val;
 289	int diag;
 290
 291	diag = kdbgetulenv(match, &val);
 292	if (!diag)
 293		*value = (int) val;
 294	return diag;
 295}
 296
 297/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 298 * kdbgetularg - This function will convert a numeric string into an
 299 *	unsigned long value.
 300 * Parameters:
 301 *	arg	A character string representing a numeric value
 302 * Outputs:
 303 *	*value  the unsigned long represntation of arg.
 304 * Returns:
 305 *	Zero on success, a kdb diagnostic on failure.
 306 */
 307int kdbgetularg(const char *arg, unsigned long *value)
 308{
 309	char *endp;
 310	unsigned long val;
 311
 312	val = simple_strtoul(arg, &endp, 0);
 313
 314	if (endp == arg) {
 315		/*
 316		 * Also try base 16, for us folks too lazy to type the
 317		 * leading 0x...
 318		 */
 319		val = simple_strtoul(arg, &endp, 16);
 320		if (endp == arg)
 321			return KDB_BADINT;
 322	}
 323
 324	*value = val;
 325
 326	return 0;
 327}
 328
 329int kdbgetu64arg(const char *arg, u64 *value)
 330{
 331	char *endp;
 332	u64 val;
 333
 334	val = simple_strtoull(arg, &endp, 0);
 335
 336	if (endp == arg) {
 337
 338		val = simple_strtoull(arg, &endp, 16);
 339		if (endp == arg)
 340			return KDB_BADINT;
 341	}
 342
 343	*value = val;
 344
 345	return 0;
 346}
 347
 348/*
 349 * kdb_set - This function implements the 'set' command.  Alter an
 350 *	existing environment variable or create a new one.
 351 */
 352int kdb_set(int argc, const char **argv)
 353{
 354	int i;
 355	char *ep;
 356	size_t varlen, vallen;
 357
 358	/*
 359	 * we can be invoked two ways:
 360	 *   set var=value    argv[1]="var", argv[2]="value"
 361	 *   set var = value  argv[1]="var", argv[2]="=", argv[3]="value"
 362	 * - if the latter, shift 'em down.
 363	 */
 364	if (argc == 3) {
 365		argv[2] = argv[3];
 366		argc--;
 367	}
 368
 369	if (argc != 2)
 370		return KDB_ARGCOUNT;
 371
 372	/*
 
 
 
 
 
 
 
 373	 * Check for internal variables
 374	 */
 375	if (strcmp(argv[1], "KDBDEBUG") == 0) {
 376		unsigned int debugflags;
 377		char *cp;
 378
 379		debugflags = simple_strtoul(argv[2], &cp, 0);
 380		if (cp == argv[2] || debugflags & ~KDB_DEBUG_FLAG_MASK) {
 381			kdb_printf("kdb: illegal debug flags '%s'\n",
 382				    argv[2]);
 383			return 0;
 384		}
 385		kdb_flags = (kdb_flags &
 386			     ~(KDB_DEBUG_FLAG_MASK << KDB_DEBUG_FLAG_SHIFT))
 387			| (debugflags << KDB_DEBUG_FLAG_SHIFT);
 388
 389		return 0;
 390	}
 391
 392	/*
 393	 * Tokenizer squashed the '=' sign.  argv[1] is variable
 394	 * name, argv[2] = value.
 395	 */
 396	varlen = strlen(argv[1]);
 397	vallen = strlen(argv[2]);
 398	ep = kdballocenv(varlen + vallen + 2);
 399	if (ep == (char *)0)
 400		return KDB_ENVBUFFULL;
 401
 402	sprintf(ep, "%s=%s", argv[1], argv[2]);
 403
 404	ep[varlen+vallen+1] = '\0';
 405
 406	for (i = 0; i < __nenv; i++) {
 407		if (__env[i]
 408		 && ((strncmp(__env[i], argv[1], varlen) == 0)
 409		   && ((__env[i][varlen] == '\0')
 410		    || (__env[i][varlen] == '=')))) {
 411			__env[i] = ep;
 412			return 0;
 413		}
 414	}
 415
 416	/*
 417	 * Wasn't existing variable.  Fit into slot.
 418	 */
 419	for (i = 0; i < __nenv-1; i++) {
 420		if (__env[i] == (char *)0) {
 421			__env[i] = ep;
 422			return 0;
 423		}
 424	}
 425
 426	return KDB_ENVFULL;
 427}
 428
 429static int kdb_check_regs(void)
 430{
 431	if (!kdb_current_regs) {
 432		kdb_printf("No current kdb registers."
 433			   "  You may need to select another task\n");
 434		return KDB_BADREG;
 435	}
 436	return 0;
 437}
 438
 439/*
 440 * kdbgetaddrarg - This function is responsible for parsing an
 441 *	address-expression and returning the value of the expression,
 442 *	symbol name, and offset to the caller.
 443 *
 444 *	The argument may consist of a numeric value (decimal or
 445 *	hexidecimal), a symbol name, a register name (preceded by the
 446 *	percent sign), an environment variable with a numeric value
 447 *	(preceded by a dollar sign) or a simple arithmetic expression
 448 *	consisting of a symbol name, +/-, and a numeric constant value
 449 *	(offset).
 450 * Parameters:
 451 *	argc	- count of arguments in argv
 452 *	argv	- argument vector
 453 *	*nextarg - index to next unparsed argument in argv[]
 454 *	regs	- Register state at time of KDB entry
 455 * Outputs:
 456 *	*value	- receives the value of the address-expression
 457 *	*offset - receives the offset specified, if any
 458 *	*name   - receives the symbol name, if any
 459 *	*nextarg - index to next unparsed argument in argv[]
 460 * Returns:
 461 *	zero is returned on success, a kdb diagnostic code is
 462 *      returned on error.
 463 */
 464int kdbgetaddrarg(int argc, const char **argv, int *nextarg,
 465		  unsigned long *value,  long *offset,
 466		  char **name)
 467{
 468	unsigned long addr;
 469	unsigned long off = 0;
 470	int positive;
 471	int diag;
 472	int found = 0;
 473	char *symname;
 474	char symbol = '\0';
 475	char *cp;
 476	kdb_symtab_t symtab;
 477
 478	/*
 
 
 
 
 
 
 
 
 
 479	 * Process arguments which follow the following syntax:
 480	 *
 481	 *  symbol | numeric-address [+/- numeric-offset]
 482	 *  %register
 483	 *  $environment-variable
 484	 */
 485
 486	if (*nextarg > argc)
 487		return KDB_ARGCOUNT;
 488
 489	symname = (char *)argv[*nextarg];
 490
 491	/*
 492	 * If there is no whitespace between the symbol
 493	 * or address and the '+' or '-' symbols, we
 494	 * remember the character and replace it with a
 495	 * null so the symbol/value can be properly parsed
 496	 */
 497	cp = strpbrk(symname, "+-");
 498	if (cp != NULL) {
 499		symbol = *cp;
 500		*cp++ = '\0';
 501	}
 502
 503	if (symname[0] == '$') {
 504		diag = kdbgetulenv(&symname[1], &addr);
 505		if (diag)
 506			return diag;
 507	} else if (symname[0] == '%') {
 508		diag = kdb_check_regs();
 509		if (diag)
 510			return diag;
 511		/* Implement register values with % at a later time as it is
 512		 * arch optional.
 513		 */
 514		return KDB_NOTIMP;
 515	} else {
 516		found = kdbgetsymval(symname, &symtab);
 517		if (found) {
 518			addr = symtab.sym_start;
 519		} else {
 520			diag = kdbgetularg(argv[*nextarg], &addr);
 521			if (diag)
 522				return diag;
 523		}
 524	}
 525
 526	if (!found)
 527		found = kdbnearsym(addr, &symtab);
 528
 529	(*nextarg)++;
 530
 531	if (name)
 532		*name = symname;
 533	if (value)
 534		*value = addr;
 535	if (offset && name && *name)
 536		*offset = addr - symtab.sym_start;
 537
 538	if ((*nextarg > argc)
 539	 && (symbol == '\0'))
 540		return 0;
 541
 542	/*
 543	 * check for +/- and offset
 544	 */
 545
 546	if (symbol == '\0') {
 547		if ((argv[*nextarg][0] != '+')
 548		 && (argv[*nextarg][0] != '-')) {
 549			/*
 550			 * Not our argument.  Return.
 551			 */
 552			return 0;
 553		} else {
 554			positive = (argv[*nextarg][0] == '+');
 555			(*nextarg)++;
 556		}
 557	} else
 558		positive = (symbol == '+');
 559
 560	/*
 561	 * Now there must be an offset!
 562	 */
 563	if ((*nextarg > argc)
 564	 && (symbol == '\0')) {
 565		return KDB_INVADDRFMT;
 566	}
 567
 568	if (!symbol) {
 569		cp = (char *)argv[*nextarg];
 570		(*nextarg)++;
 571	}
 572
 573	diag = kdbgetularg(cp, &off);
 574	if (diag)
 575		return diag;
 576
 577	if (!positive)
 578		off = -off;
 579
 580	if (offset)
 581		*offset += off;
 582
 583	if (value)
 584		*value += off;
 585
 586	return 0;
 587}
 588
 589static void kdb_cmderror(int diag)
 590{
 591	int i;
 592
 593	if (diag >= 0) {
 594		kdb_printf("no error detected (diagnostic is %d)\n", diag);
 595		return;
 596	}
 597
 598	for (i = 0; i < __nkdb_err; i++) {
 599		if (kdbmsgs[i].km_diag == diag) {
 600			kdb_printf("diag: %d: %s\n", diag, kdbmsgs[i].km_msg);
 601			return;
 602		}
 603	}
 604
 605	kdb_printf("Unknown diag %d\n", -diag);
 606}
 607
 608/*
 609 * kdb_defcmd, kdb_defcmd2 - This function implements the 'defcmd'
 610 *	command which defines one command as a set of other commands,
 611 *	terminated by endefcmd.  kdb_defcmd processes the initial
 612 *	'defcmd' command, kdb_defcmd2 is invoked from kdb_parse for
 613 *	the following commands until 'endefcmd'.
 614 * Inputs:
 615 *	argc	argument count
 616 *	argv	argument vector
 617 * Returns:
 618 *	zero for success, a kdb diagnostic if error
 619 */
 620struct defcmd_set {
 621	int count;
 622	int usable;
 623	char *name;
 624	char *usage;
 625	char *help;
 626	char **command;
 627};
 628static struct defcmd_set *defcmd_set;
 629static int defcmd_set_count;
 630static int defcmd_in_progress;
 
 
 
 
 
 631
 632/* Forward references */
 633static int kdb_exec_defcmd(int argc, const char **argv);
 634
 635static int kdb_defcmd2(const char *cmdstr, const char *argv0)
 636{
 637	struct defcmd_set *s = defcmd_set + defcmd_set_count - 1;
 638	char **save_command = s->command;
 
 
 
 639	if (strcmp(argv0, "endefcmd") == 0) {
 640		defcmd_in_progress = 0;
 641		if (!s->count)
 642			s->usable = 0;
 643		if (s->usable)
 644			kdb_register(s->name, kdb_exec_defcmd,
 645				     s->usage, s->help, 0);
 646		return 0;
 647	}
 648	if (!s->usable)
 649		return KDB_NOTIMP;
 650	s->command = kzalloc((s->count + 1) * sizeof(*(s->command)), GFP_KDB);
 651	if (!s->command) {
 652		kdb_printf("Could not allocate new kdb_defcmd table for %s\n",
 653			   cmdstr);
 654		s->usable = 0;
 655		return KDB_NOTIMP;
 656	}
 657	memcpy(s->command, save_command, s->count * sizeof(*(s->command)));
 658	s->command[s->count++] = kdb_strdup(cmdstr, GFP_KDB);
 659	kfree(save_command);
 
 660	return 0;
 661}
 662
 663static int kdb_defcmd(int argc, const char **argv)
 664{
 665	struct defcmd_set *save_defcmd_set = defcmd_set, *s;
 
 666	if (defcmd_in_progress) {
 667		kdb_printf("kdb: nested defcmd detected, assuming missing "
 668			   "endefcmd\n");
 669		kdb_defcmd2("endefcmd", "endefcmd");
 670	}
 671	if (argc == 0) {
 672		int i;
 673		for (s = defcmd_set; s < defcmd_set + defcmd_set_count; ++s) {
 674			kdb_printf("defcmd %s \"%s\" \"%s\"\n", s->name,
 675				   s->usage, s->help);
 676			for (i = 0; i < s->count; ++i)
 677				kdb_printf("%s", s->command[i]);
 678			kdb_printf("endefcmd\n");
 
 
 
 
 
 
 
 679		}
 680		return 0;
 681	}
 682	if (argc != 3)
 683		return KDB_ARGCOUNT;
 684	defcmd_set = kmalloc((defcmd_set_count + 1) * sizeof(*defcmd_set),
 685			     GFP_KDB);
 686	if (!defcmd_set) {
 687		kdb_printf("Could not allocate new defcmd_set entry for %s\n",
 688			   argv[1]);
 689		defcmd_set = save_defcmd_set;
 690		return KDB_NOTIMP;
 691	}
 692	memcpy(defcmd_set, save_defcmd_set,
 693	       defcmd_set_count * sizeof(*defcmd_set));
 694	kfree(save_defcmd_set);
 695	s = defcmd_set + defcmd_set_count;
 696	memset(s, 0, sizeof(*s));
 697	s->usable = 1;
 698	s->name = kdb_strdup(argv[1], GFP_KDB);
 699	s->usage = kdb_strdup(argv[2], GFP_KDB);
 700	s->help = kdb_strdup(argv[3], GFP_KDB);
 701	if (s->usage[0] == '"') {
 702		strcpy(s->usage, s->usage+1);
 703		s->usage[strlen(s->usage)-1] = '\0';
 704	}
 705	if (s->help[0] == '"') {
 706		strcpy(s->help, s->help+1);
 707		s->help[strlen(s->help)-1] = '\0';
 708	}
 709	++defcmd_set_count;
 710	defcmd_in_progress = 1;
 711	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 712}
 713
 714/*
 715 * kdb_exec_defcmd - Execute the set of commands associated with this
 716 *	defcmd name.
 717 * Inputs:
 718 *	argc	argument count
 719 *	argv	argument vector
 720 * Returns:
 721 *	zero for success, a kdb diagnostic if error
 722 */
 723static int kdb_exec_defcmd(int argc, const char **argv)
 724{
 725	int i, ret;
 726	struct defcmd_set *s;
 
 
 
 727	if (argc != 0)
 728		return KDB_ARGCOUNT;
 729	for (s = defcmd_set, i = 0; i < defcmd_set_count; ++i, ++s) {
 730		if (strcmp(s->name, argv[0]) == 0)
 
 731			break;
 732	}
 733	if (i == defcmd_set_count) {
 734		kdb_printf("kdb_exec_defcmd: could not find commands for %s\n",
 735			   argv[0]);
 736		return KDB_NOTIMP;
 737	}
 738	for (i = 0; i < s->count; ++i) {
 739		/* Recursive use of kdb_parse, do not use argv after
 740		 * this point */
 
 
 741		argv = NULL;
 742		kdb_printf("[%s]kdb> %s\n", s->name, s->command[i]);
 743		ret = kdb_parse(s->command[i]);
 744		if (ret)
 745			return ret;
 746	}
 747	return 0;
 748}
 749
 750/* Command history */
 751#define KDB_CMD_HISTORY_COUNT	32
 752#define CMD_BUFLEN		200	/* kdb_printf: max printline
 753					 * size == 256 */
 754static unsigned int cmd_head, cmd_tail;
 755static unsigned int cmdptr;
 756static char cmd_hist[KDB_CMD_HISTORY_COUNT][CMD_BUFLEN];
 757static char cmd_cur[CMD_BUFLEN];
 758
 759/*
 760 * The "str" argument may point to something like  | grep xyz
 761 */
 762static void parse_grep(const char *str)
 763{
 764	int	len;
 765	char	*cp = (char *)str, *cp2;
 766
 767	/* sanity check: we should have been called with the \ first */
 768	if (*cp != '|')
 769		return;
 770	cp++;
 771	while (isspace(*cp))
 772		cp++;
 773	if (strncmp(cp, "grep ", 5)) {
 774		kdb_printf("invalid 'pipe', see grephelp\n");
 775		return;
 776	}
 777	cp += 5;
 778	while (isspace(*cp))
 779		cp++;
 780	cp2 = strchr(cp, '\n');
 781	if (cp2)
 782		*cp2 = '\0'; /* remove the trailing newline */
 783	len = strlen(cp);
 784	if (len == 0) {
 785		kdb_printf("invalid 'pipe', see grephelp\n");
 786		return;
 787	}
 788	/* now cp points to a nonzero length search string */
 789	if (*cp == '"') {
 790		/* allow it be "x y z" by removing the "'s - there must
 791		   be two of them */
 792		cp++;
 793		cp2 = strchr(cp, '"');
 794		if (!cp2) {
 795			kdb_printf("invalid quoted string, see grephelp\n");
 796			return;
 797		}
 798		*cp2 = '\0'; /* end the string where the 2nd " was */
 799	}
 800	kdb_grep_leading = 0;
 801	if (*cp == '^') {
 802		kdb_grep_leading = 1;
 803		cp++;
 804	}
 805	len = strlen(cp);
 806	kdb_grep_trailing = 0;
 807	if (*(cp+len-1) == '$') {
 808		kdb_grep_trailing = 1;
 809		*(cp+len-1) = '\0';
 810	}
 811	len = strlen(cp);
 812	if (!len)
 813		return;
 814	if (len >= GREP_LEN) {
 815		kdb_printf("search string too long\n");
 816		return;
 817	}
 818	strcpy(kdb_grep_string, cp);
 819	kdb_grepping_flag++;
 820	return;
 821}
 822
 823/*
 824 * kdb_parse - Parse the command line, search the command table for a
 825 *	matching command and invoke the command function.  This
 826 *	function may be called recursively, if it is, the second call
 827 *	will overwrite argv and cbuf.  It is the caller's
 828 *	responsibility to save their argv if they recursively call
 829 *	kdb_parse().
 830 * Parameters:
 831 *      cmdstr	The input command line to be parsed.
 832 *	regs	The registers at the time kdb was entered.
 833 * Returns:
 834 *	Zero for success, a kdb diagnostic if failure.
 835 * Remarks:
 836 *	Limited to 20 tokens.
 837 *
 838 *	Real rudimentary tokenization. Basically only whitespace
 839 *	is considered a token delimeter (but special consideration
 840 *	is taken of the '=' sign as used by the 'set' command).
 841 *
 842 *	The algorithm used to tokenize the input string relies on
 843 *	there being at least one whitespace (or otherwise useless)
 844 *	character between tokens as the character immediately following
 845 *	the token is altered in-place to a null-byte to terminate the
 846 *	token string.
 847 */
 848
 849#define MAXARGC	20
 850
 851int kdb_parse(const char *cmdstr)
 852{
 853	static char *argv[MAXARGC];
 854	static int argc;
 855	static char cbuf[CMD_BUFLEN+2];
 856	char *cp;
 857	char *cpp, quoted;
 858	kdbtab_t *tp;
 859	int i, escaped, ignore_errors = 0, check_grep;
 860
 861	/*
 862	 * First tokenize the command string.
 863	 */
 864	cp = (char *)cmdstr;
 865	kdb_grepping_flag = check_grep = 0;
 866
 867	if (KDB_FLAG(CMD_INTERRUPT)) {
 868		/* Previous command was interrupted, newline must not
 869		 * repeat the command */
 870		KDB_FLAG_CLEAR(CMD_INTERRUPT);
 871		KDB_STATE_SET(PAGER);
 872		argc = 0;	/* no repeat */
 873	}
 874
 875	if (*cp != '\n' && *cp != '\0') {
 876		argc = 0;
 877		cpp = cbuf;
 878		while (*cp) {
 879			/* skip whitespace */
 880			while (isspace(*cp))
 881				cp++;
 882			if ((*cp == '\0') || (*cp == '\n') ||
 883			    (*cp == '#' && !defcmd_in_progress))
 884				break;
 885			/* special case: check for | grep pattern */
 886			if (*cp == '|') {
 887				check_grep++;
 888				break;
 889			}
 890			if (cpp >= cbuf + CMD_BUFLEN) {
 891				kdb_printf("kdb_parse: command buffer "
 892					   "overflow, command ignored\n%s\n",
 893					   cmdstr);
 894				return KDB_NOTFOUND;
 895			}
 896			if (argc >= MAXARGC - 1) {
 897				kdb_printf("kdb_parse: too many arguments, "
 898					   "command ignored\n%s\n", cmdstr);
 899				return KDB_NOTFOUND;
 900			}
 901			argv[argc++] = cpp;
 902			escaped = 0;
 903			quoted = '\0';
 904			/* Copy to next unquoted and unescaped
 905			 * whitespace or '=' */
 906			while (*cp && *cp != '\n' &&
 907			       (escaped || quoted || !isspace(*cp))) {
 908				if (cpp >= cbuf + CMD_BUFLEN)
 909					break;
 910				if (escaped) {
 911					escaped = 0;
 912					*cpp++ = *cp++;
 913					continue;
 914				}
 915				if (*cp == '\\') {
 916					escaped = 1;
 917					++cp;
 918					continue;
 919				}
 920				if (*cp == quoted)
 921					quoted = '\0';
 922				else if (*cp == '\'' || *cp == '"')
 923					quoted = *cp;
 924				*cpp = *cp++;
 925				if (*cpp == '=' && !quoted)
 926					break;
 927				++cpp;
 928			}
 929			*cpp++ = '\0';	/* Squash a ws or '=' character */
 930		}
 931	}
 932	if (!argc)
 933		return 0;
 934	if (check_grep)
 935		parse_grep(cp);
 936	if (defcmd_in_progress) {
 937		int result = kdb_defcmd2(cmdstr, argv[0]);
 938		if (!defcmd_in_progress) {
 939			argc = 0;	/* avoid repeat on endefcmd */
 940			*(argv[0]) = '\0';
 941		}
 942		return result;
 943	}
 944	if (argv[0][0] == '-' && argv[0][1] &&
 945	    (argv[0][1] < '0' || argv[0][1] > '9')) {
 946		ignore_errors = 1;
 947		++argv[0];
 948	}
 949
 950	for_each_kdbcmd(tp, i) {
 951		if (tp->cmd_name) {
 952			/*
 953			 * If this command is allowed to be abbreviated,
 954			 * check to see if this is it.
 955			 */
 
 
 956
 957			if (tp->cmd_minlen
 958			 && (strlen(argv[0]) <= tp->cmd_minlen)) {
 959				if (strncmp(argv[0],
 960					    tp->cmd_name,
 961					    tp->cmd_minlen) == 0) {
 962					break;
 963				}
 964			}
 965
 966			if (strcmp(argv[0], tp->cmd_name) == 0)
 967				break;
 968		}
 969	}
 970
 971	/*
 972	 * If we don't find a command by this name, see if the first
 973	 * few characters of this match any of the known commands.
 974	 * e.g., md1c20 should match md.
 975	 */
 976	if (i == kdb_max_commands) {
 977		for_each_kdbcmd(tp, i) {
 978			if (tp->cmd_name) {
 979				if (strncmp(argv[0],
 980					    tp->cmd_name,
 981					    strlen(tp->cmd_name)) == 0) {
 982					break;
 983				}
 984			}
 985		}
 986	}
 987
 988	if (i < kdb_max_commands) {
 989		int result;
 
 
 
 
 990		KDB_STATE_SET(CMD);
 991		result = (*tp->cmd_func)(argc-1, (const char **)argv);
 992		if (result && ignore_errors && result > KDB_CMD_GO)
 993			result = 0;
 994		KDB_STATE_CLEAR(CMD);
 995		switch (tp->cmd_repeat) {
 996		case KDB_REPEAT_NONE:
 997			argc = 0;
 998			if (argv[0])
 999				*(argv[0]) = '\0';
1000			break;
1001		case KDB_REPEAT_NO_ARGS:
1002			argc = 1;
1003			if (argv[1])
1004				*(argv[1]) = '\0';
1005			break;
1006		case KDB_REPEAT_WITH_ARGS:
1007			break;
1008		}
1009		return result;
1010	}
1011
1012	/*
1013	 * If the input with which we were presented does not
1014	 * map to an existing command, attempt to parse it as an
1015	 * address argument and display the result.   Useful for
1016	 * obtaining the address of a variable, or the nearest symbol
1017	 * to an address contained in a register.
1018	 */
1019	{
1020		unsigned long value;
1021		char *name = NULL;
1022		long offset;
1023		int nextarg = 0;
1024
1025		if (kdbgetaddrarg(0, (const char **)argv, &nextarg,
1026				  &value, &offset, &name)) {
1027			return KDB_NOTFOUND;
1028		}
1029
1030		kdb_printf("%s = ", argv[0]);
1031		kdb_symbol_print(value, NULL, KDB_SP_DEFAULT);
1032		kdb_printf("\n");
1033		return 0;
1034	}
1035}
1036
1037
1038static int handle_ctrl_cmd(char *cmd)
1039{
1040#define CTRL_P	16
1041#define CTRL_N	14
1042
1043	/* initial situation */
1044	if (cmd_head == cmd_tail)
1045		return 0;
1046	switch (*cmd) {
1047	case CTRL_P:
1048		if (cmdptr != cmd_tail)
1049			cmdptr = (cmdptr-1) % KDB_CMD_HISTORY_COUNT;
1050		strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
 
1051		return 1;
1052	case CTRL_N:
1053		if (cmdptr != cmd_head)
1054			cmdptr = (cmdptr+1) % KDB_CMD_HISTORY_COUNT;
1055		strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1056		return 1;
1057	}
1058	return 0;
1059}
1060
1061/*
1062 * kdb_reboot - This function implements the 'reboot' command.  Reboot
1063 *	the system immediately, or loop for ever on failure.
1064 */
1065static int kdb_reboot(int argc, const char **argv)
1066{
1067	emergency_restart();
1068	kdb_printf("Hmm, kdb_reboot did not reboot, spinning here\n");
1069	while (1)
1070		cpu_relax();
1071	/* NOTREACHED */
1072	return 0;
1073}
1074
1075static void kdb_dumpregs(struct pt_regs *regs)
1076{
1077	int old_lvl = console_loglevel;
1078	console_loglevel = 15;
1079	kdb_trap_printk++;
1080	show_regs(regs);
1081	kdb_trap_printk--;
1082	kdb_printf("\n");
1083	console_loglevel = old_lvl;
1084}
1085
1086void kdb_set_current_task(struct task_struct *p)
1087{
1088	kdb_current_task = p;
1089
1090	if (kdb_task_has_cpu(p)) {
1091		kdb_current_regs = KDB_TSKREGS(kdb_process_cpu(p));
1092		return;
1093	}
1094	kdb_current_regs = NULL;
1095}
1096
 
 
 
 
 
 
 
 
 
 
1097/*
1098 * kdb_local - The main code for kdb.  This routine is invoked on a
1099 *	specific processor, it is not global.  The main kdb() routine
1100 *	ensures that only one processor at a time is in this routine.
1101 *	This code is called with the real reason code on the first
1102 *	entry to a kdb session, thereafter it is called with reason
1103 *	SWITCH, even if the user goes back to the original cpu.
1104 * Inputs:
1105 *	reason		The reason KDB was invoked
1106 *	error		The hardware-defined error code
1107 *	regs		The exception frame at time of fault/breakpoint.
1108 *	db_result	Result code from the break or debug point.
1109 * Returns:
1110 *	0	KDB was invoked for an event which it wasn't responsible
1111 *	1	KDB handled the event for which it was invoked.
1112 *	KDB_CMD_GO	User typed 'go'.
1113 *	KDB_CMD_CPU	User switched to another cpu.
1114 *	KDB_CMD_SS	Single step.
1115 *	KDB_CMD_SSB	Single step until branch.
1116 */
1117static int kdb_local(kdb_reason_t reason, int error, struct pt_regs *regs,
1118		     kdb_dbtrap_t db_result)
1119{
1120	char *cmdbuf;
1121	int diag;
1122	struct task_struct *kdb_current =
1123		kdb_curr_task(raw_smp_processor_id());
1124
1125	KDB_DEBUG_STATE("kdb_local 1", reason);
 
 
 
1126	kdb_go_count = 0;
1127	if (reason == KDB_REASON_DEBUG) {
1128		/* special case below */
1129	} else {
1130		kdb_printf("\nEntering kdb (current=0x%p, pid %d) ",
1131			   kdb_current, kdb_current ? kdb_current->pid : 0);
1132#if defined(CONFIG_SMP)
1133		kdb_printf("on processor %d ", raw_smp_processor_id());
1134#endif
1135	}
1136
1137	switch (reason) {
1138	case KDB_REASON_DEBUG:
1139	{
1140		/*
1141		 * If re-entering kdb after a single step
1142		 * command, don't print the message.
1143		 */
1144		switch (db_result) {
1145		case KDB_DB_BPT:
1146			kdb_printf("\nEntering kdb (0x%p, pid %d) ",
1147				   kdb_current, kdb_current->pid);
1148#if defined(CONFIG_SMP)
1149			kdb_printf("on processor %d ", raw_smp_processor_id());
1150#endif
1151			kdb_printf("due to Debug @ " kdb_machreg_fmt "\n",
1152				   instruction_pointer(regs));
1153			break;
1154		case KDB_DB_SSB:
1155			/*
1156			 * In the midst of ssb command. Just return.
1157			 */
1158			KDB_DEBUG_STATE("kdb_local 3", reason);
1159			return KDB_CMD_SSB;	/* Continue with SSB command */
1160
1161			break;
1162		case KDB_DB_SS:
1163			break;
1164		case KDB_DB_SSBPT:
1165			KDB_DEBUG_STATE("kdb_local 4", reason);
1166			return 1;	/* kdba_db_trap did the work */
1167		default:
1168			kdb_printf("kdb: Bad result from kdba_db_trap: %d\n",
1169				   db_result);
1170			break;
1171		}
1172
1173	}
1174		break;
1175	case KDB_REASON_ENTER:
1176		if (KDB_STATE(KEYBOARD))
1177			kdb_printf("due to Keyboard Entry\n");
1178		else
1179			kdb_printf("due to KDB_ENTER()\n");
1180		break;
1181	case KDB_REASON_KEYBOARD:
1182		KDB_STATE_SET(KEYBOARD);
1183		kdb_printf("due to Keyboard Entry\n");
1184		break;
1185	case KDB_REASON_ENTER_SLAVE:
1186		/* drop through, slaves only get released via cpu switch */
1187	case KDB_REASON_SWITCH:
1188		kdb_printf("due to cpu switch\n");
1189		break;
1190	case KDB_REASON_OOPS:
1191		kdb_printf("Oops: %s\n", kdb_diemsg);
1192		kdb_printf("due to oops @ " kdb_machreg_fmt "\n",
1193			   instruction_pointer(regs));
1194		kdb_dumpregs(regs);
1195		break;
 
 
 
1196	case KDB_REASON_NMI:
1197		kdb_printf("due to NonMaskable Interrupt @ "
1198			   kdb_machreg_fmt "\n",
1199			   instruction_pointer(regs));
1200		kdb_dumpregs(regs);
1201		break;
1202	case KDB_REASON_SSTEP:
1203	case KDB_REASON_BREAK:
1204		kdb_printf("due to %s @ " kdb_machreg_fmt "\n",
1205			   reason == KDB_REASON_BREAK ?
1206			   "Breakpoint" : "SS trap", instruction_pointer(regs));
1207		/*
1208		 * Determine if this breakpoint is one that we
1209		 * are interested in.
1210		 */
1211		if (db_result != KDB_DB_BPT) {
1212			kdb_printf("kdb: error return from kdba_bp_trap: %d\n",
1213				   db_result);
1214			KDB_DEBUG_STATE("kdb_local 6", reason);
1215			return 0;	/* Not for us, dismiss it */
1216		}
1217		break;
1218	case KDB_REASON_RECURSE:
1219		kdb_printf("due to Recursion @ " kdb_machreg_fmt "\n",
1220			   instruction_pointer(regs));
1221		break;
1222	default:
1223		kdb_printf("kdb: unexpected reason code: %d\n", reason);
1224		KDB_DEBUG_STATE("kdb_local 8", reason);
1225		return 0;	/* Not for us, dismiss it */
1226	}
1227
1228	while (1) {
1229		/*
1230		 * Initialize pager context.
1231		 */
1232		kdb_nextline = 1;
1233		KDB_STATE_CLEAR(SUPPRESS);
 
 
 
1234
1235		cmdbuf = cmd_cur;
1236		*cmdbuf = '\0';
1237		*(cmd_hist[cmd_head]) = '\0';
1238
1239		if (KDB_FLAG(ONLY_DO_DUMP)) {
1240			/* kdb is off but a catastrophic error requires a dump.
1241			 * Take the dump and reboot.
1242			 * Turn on logging so the kdb output appears in the log
1243			 * buffer in the dump.
1244			 */
1245			const char *setargs[] = { "set", "LOGGING", "1" };
1246			kdb_set(2, setargs);
1247			kdb_reboot(0, NULL);
1248			/*NOTREACHED*/
1249		}
1250
1251do_full_getstr:
1252#if defined(CONFIG_SMP)
1253		snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"),
1254			 raw_smp_processor_id());
1255#else
1256		snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"));
1257#endif
1258		if (defcmd_in_progress)
1259			strncat(kdb_prompt_str, "[defcmd]", CMD_BUFLEN);
1260
1261		/*
1262		 * Fetch command from keyboard
1263		 */
1264		cmdbuf = kdb_getstr(cmdbuf, CMD_BUFLEN, kdb_prompt_str);
1265		if (*cmdbuf != '\n') {
1266			if (*cmdbuf < 32) {
1267				if (cmdptr == cmd_head) {
1268					strncpy(cmd_hist[cmd_head], cmd_cur,
1269						CMD_BUFLEN);
1270					*(cmd_hist[cmd_head] +
1271					  strlen(cmd_hist[cmd_head])-1) = '\0';
1272				}
1273				if (!handle_ctrl_cmd(cmdbuf))
1274					*(cmd_cur+strlen(cmd_cur)-1) = '\0';
1275				cmdbuf = cmd_cur;
1276				goto do_full_getstr;
1277			} else {
1278				strncpy(cmd_hist[cmd_head], cmd_cur,
1279					CMD_BUFLEN);
1280			}
1281
1282			cmd_head = (cmd_head+1) % KDB_CMD_HISTORY_COUNT;
1283			if (cmd_head == cmd_tail)
1284				cmd_tail = (cmd_tail+1) % KDB_CMD_HISTORY_COUNT;
1285		}
1286
1287		cmdptr = cmd_head;
1288		diag = kdb_parse(cmdbuf);
1289		if (diag == KDB_NOTFOUND) {
 
1290			kdb_printf("Unknown kdb command: '%s'\n", cmdbuf);
1291			diag = 0;
1292		}
1293		if (diag == KDB_CMD_GO
1294		 || diag == KDB_CMD_CPU
1295		 || diag == KDB_CMD_SS
1296		 || diag == KDB_CMD_SSB
1297		 || diag == KDB_CMD_KGDB)
1298			break;
1299
1300		if (diag)
1301			kdb_cmderror(diag);
1302	}
1303	KDB_DEBUG_STATE("kdb_local 9", diag);
1304	return diag;
1305}
1306
1307
1308/*
1309 * kdb_print_state - Print the state data for the current processor
1310 *	for debugging.
1311 * Inputs:
1312 *	text		Identifies the debug point
1313 *	value		Any integer value to be printed, e.g. reason code.
1314 */
1315void kdb_print_state(const char *text, int value)
1316{
1317	kdb_printf("state: %s cpu %d value %d initial %d state %x\n",
1318		   text, raw_smp_processor_id(), value, kdb_initial_cpu,
1319		   kdb_state);
1320}
1321
1322/*
1323 * kdb_main_loop - After initial setup and assignment of the
1324 *	controlling cpu, all cpus are in this loop.  One cpu is in
1325 *	control and will issue the kdb prompt, the others will spin
1326 *	until 'go' or cpu switch.
1327 *
1328 *	To get a consistent view of the kernel stacks for all
1329 *	processes, this routine is invoked from the main kdb code via
1330 *	an architecture specific routine.  kdba_main_loop is
1331 *	responsible for making the kernel stacks consistent for all
1332 *	processes, there should be no difference between a blocked
1333 *	process and a running process as far as kdb is concerned.
1334 * Inputs:
1335 *	reason		The reason KDB was invoked
1336 *	error		The hardware-defined error code
1337 *	reason2		kdb's current reason code.
1338 *			Initially error but can change
1339 *			according to kdb state.
1340 *	db_result	Result code from break or debug point.
1341 *	regs		The exception frame at time of fault/breakpoint.
1342 *			should always be valid.
1343 * Returns:
1344 *	0	KDB was invoked for an event which it wasn't responsible
1345 *	1	KDB handled the event for which it was invoked.
1346 */
1347int kdb_main_loop(kdb_reason_t reason, kdb_reason_t reason2, int error,
1348	      kdb_dbtrap_t db_result, struct pt_regs *regs)
1349{
1350	int result = 1;
1351	/* Stay in kdb() until 'go', 'ss[b]' or an error */
1352	while (1) {
1353		/*
1354		 * All processors except the one that is in control
1355		 * will spin here.
1356		 */
1357		KDB_DEBUG_STATE("kdb_main_loop 1", reason);
1358		while (KDB_STATE(HOLD_CPU)) {
1359			/* state KDB is turned off by kdb_cpu to see if the
1360			 * other cpus are still live, each cpu in this loop
1361			 * turns it back on.
1362			 */
1363			if (!KDB_STATE(KDB))
1364				KDB_STATE_SET(KDB);
1365		}
1366
1367		KDB_STATE_CLEAR(SUPPRESS);
1368		KDB_DEBUG_STATE("kdb_main_loop 2", reason);
1369		if (KDB_STATE(LEAVING))
1370			break;	/* Another cpu said 'go' */
1371		/* Still using kdb, this processor is in control */
1372		result = kdb_local(reason2, error, regs, db_result);
1373		KDB_DEBUG_STATE("kdb_main_loop 3", result);
1374
1375		if (result == KDB_CMD_CPU)
1376			break;
1377
1378		if (result == KDB_CMD_SS) {
1379			KDB_STATE_SET(DOING_SS);
1380			break;
1381		}
1382
1383		if (result == KDB_CMD_SSB) {
1384			KDB_STATE_SET(DOING_SS);
1385			KDB_STATE_SET(DOING_SSB);
1386			break;
1387		}
1388
1389		if (result == KDB_CMD_KGDB) {
1390			if (!KDB_STATE(DOING_KGDB))
1391				kdb_printf("Entering please attach debugger "
1392					   "or use $D#44+ or $3#33\n");
1393			break;
1394		}
1395		if (result && result != 1 && result != KDB_CMD_GO)
1396			kdb_printf("\nUnexpected kdb_local return code %d\n",
1397				   result);
1398		KDB_DEBUG_STATE("kdb_main_loop 4", reason);
1399		break;
1400	}
1401	if (KDB_STATE(DOING_SS))
1402		KDB_STATE_CLEAR(SSBPT);
1403
1404	/* Clean up any keyboard devices before leaving */
1405	kdb_kbd_cleanup_state();
1406
1407	return result;
1408}
1409
1410/*
1411 * kdb_mdr - This function implements the guts of the 'mdr', memory
1412 * read command.
1413 *	mdr  <addr arg>,<byte count>
1414 * Inputs:
1415 *	addr	Start address
1416 *	count	Number of bytes
1417 * Returns:
1418 *	Always 0.  Any errors are detected and printed by kdb_getarea.
1419 */
1420static int kdb_mdr(unsigned long addr, unsigned int count)
1421{
1422	unsigned char c;
1423	while (count--) {
1424		if (kdb_getarea(c, addr))
1425			return 0;
1426		kdb_printf("%02x", c);
1427		addr++;
1428	}
1429	kdb_printf("\n");
1430	return 0;
1431}
1432
1433/*
1434 * kdb_md - This function implements the 'md', 'md1', 'md2', 'md4',
1435 *	'md8' 'mdr' and 'mds' commands.
1436 *
1437 *	md|mds  [<addr arg> [<line count> [<radix>]]]
1438 *	mdWcN	[<addr arg> [<line count> [<radix>]]]
1439 *		where W = is the width (1, 2, 4 or 8) and N is the count.
1440 *		for eg., md1c20 reads 20 bytes, 1 at a time.
1441 *	mdr  <addr arg>,<byte count>
1442 */
1443static void kdb_md_line(const char *fmtstr, unsigned long addr,
1444			int symbolic, int nosect, int bytesperword,
1445			int num, int repeat, int phys)
1446{
1447	/* print just one line of data */
1448	kdb_symtab_t symtab;
1449	char cbuf[32];
1450	char *c = cbuf;
1451	int i;
 
1452	unsigned long word;
1453
1454	memset(cbuf, '\0', sizeof(cbuf));
1455	if (phys)
1456		kdb_printf("phys " kdb_machreg_fmt0 " ", addr);
1457	else
1458		kdb_printf(kdb_machreg_fmt0 " ", addr);
1459
1460	for (i = 0; i < num && repeat--; i++) {
1461		if (phys) {
1462			if (kdb_getphysword(&word, addr, bytesperword))
1463				break;
1464		} else if (kdb_getword(&word, addr, bytesperword))
1465			break;
1466		kdb_printf(fmtstr, word);
1467		if (symbolic)
1468			kdbnearsym(word, &symtab);
1469		else
1470			memset(&symtab, 0, sizeof(symtab));
1471		if (symtab.sym_name) {
1472			kdb_symbol_print(word, &symtab, 0);
1473			if (!nosect) {
1474				kdb_printf("\n");
1475				kdb_printf("                       %s %s "
1476					   kdb_machreg_fmt " "
1477					   kdb_machreg_fmt " "
1478					   kdb_machreg_fmt, symtab.mod_name,
1479					   symtab.sec_name, symtab.sec_start,
1480					   symtab.sym_start, symtab.sym_end);
1481			}
1482			addr += bytesperword;
1483		} else {
1484			union {
1485				u64 word;
1486				unsigned char c[8];
1487			} wc;
1488			unsigned char *cp;
1489#ifdef	__BIG_ENDIAN
1490			cp = wc.c + 8 - bytesperword;
1491#else
1492			cp = wc.c;
1493#endif
1494			wc.word = word;
1495#define printable_char(c) \
1496	({unsigned char __c = c; isascii(__c) && isprint(__c) ? __c : '.'; })
1497			switch (bytesperword) {
1498			case 8:
1499				*c++ = printable_char(*cp++);
1500				*c++ = printable_char(*cp++);
1501				*c++ = printable_char(*cp++);
1502				*c++ = printable_char(*cp++);
1503				addr += 4;
1504			case 4:
1505				*c++ = printable_char(*cp++);
1506				*c++ = printable_char(*cp++);
1507				addr += 2;
1508			case 2:
1509				*c++ = printable_char(*cp++);
1510				addr++;
1511			case 1:
1512				*c++ = printable_char(*cp++);
1513				addr++;
1514				break;
1515			}
1516#undef printable_char
1517		}
1518	}
1519	kdb_printf("%*s %s\n", (int)((num-i)*(2*bytesperword + 1)+1),
1520		   " ", cbuf);
1521}
1522
1523static int kdb_md(int argc, const char **argv)
1524{
1525	static unsigned long last_addr;
1526	static int last_radix, last_bytesperword, last_repeat;
1527	int radix = 16, mdcount = 8, bytesperword = KDB_WORD_SIZE, repeat;
1528	int nosect = 0;
1529	char fmtchar, fmtstr[64];
1530	unsigned long addr;
1531	unsigned long word;
1532	long offset = 0;
1533	int symbolic = 0;
1534	int valid = 0;
1535	int phys = 0;
 
1536
1537	kdbgetintenv("MDCOUNT", &mdcount);
1538	kdbgetintenv("RADIX", &radix);
1539	kdbgetintenv("BYTESPERWORD", &bytesperword);
1540
1541	/* Assume 'md <addr>' and start with environment values */
1542	repeat = mdcount * 16 / bytesperword;
1543
1544	if (strcmp(argv[0], "mdr") == 0) {
1545		if (argc != 2)
 
 
1546			return KDB_ARGCOUNT;
1547		valid = 1;
1548	} else if (isdigit(argv[0][2])) {
1549		bytesperword = (int)(argv[0][2] - '0');
1550		if (bytesperword == 0) {
1551			bytesperword = last_bytesperword;
1552			if (bytesperword == 0)
1553				bytesperword = 4;
1554		}
1555		last_bytesperword = bytesperword;
1556		repeat = mdcount * 16 / bytesperword;
1557		if (!argv[0][3])
1558			valid = 1;
1559		else if (argv[0][3] == 'c' && argv[0][4]) {
1560			char *p;
1561			repeat = simple_strtoul(argv[0] + 4, &p, 10);
1562			mdcount = ((repeat * bytesperword) + 15) / 16;
1563			valid = !*p;
1564		}
1565		last_repeat = repeat;
1566	} else if (strcmp(argv[0], "md") == 0)
1567		valid = 1;
1568	else if (strcmp(argv[0], "mds") == 0)
1569		valid = 1;
1570	else if (strcmp(argv[0], "mdp") == 0) {
1571		phys = valid = 1;
1572	}
1573	if (!valid)
1574		return KDB_NOTFOUND;
1575
1576	if (argc == 0) {
1577		if (last_addr == 0)
1578			return KDB_ARGCOUNT;
1579		addr = last_addr;
1580		radix = last_radix;
1581		bytesperword = last_bytesperword;
1582		repeat = last_repeat;
1583		mdcount = ((repeat * bytesperword) + 15) / 16;
 
 
 
1584	}
1585
1586	if (argc) {
1587		unsigned long val;
1588		int diag, nextarg = 1;
1589		diag = kdbgetaddrarg(argc, argv, &nextarg, &addr,
1590				     &offset, NULL);
1591		if (diag)
1592			return diag;
1593		if (argc > nextarg+2)
1594			return KDB_ARGCOUNT;
1595
1596		if (argc >= nextarg) {
1597			diag = kdbgetularg(argv[nextarg], &val);
1598			if (!diag) {
1599				mdcount = (int) val;
1600				repeat = mdcount * 16 / bytesperword;
 
 
 
1601			}
1602		}
1603		if (argc >= nextarg+1) {
1604			diag = kdbgetularg(argv[nextarg+1], &val);
1605			if (!diag)
1606				radix = (int) val;
1607		}
1608	}
1609
1610	if (strcmp(argv[0], "mdr") == 0)
1611		return kdb_mdr(addr, mdcount);
 
 
 
 
 
 
 
1612
1613	switch (radix) {
1614	case 10:
1615		fmtchar = 'd';
1616		break;
1617	case 16:
1618		fmtchar = 'x';
1619		break;
1620	case 8:
1621		fmtchar = 'o';
1622		break;
1623	default:
1624		return KDB_BADRADIX;
1625	}
1626
1627	last_radix = radix;
1628
1629	if (bytesperword > KDB_WORD_SIZE)
1630		return KDB_BADWIDTH;
1631
1632	switch (bytesperword) {
1633	case 8:
1634		sprintf(fmtstr, "%%16.16l%c ", fmtchar);
1635		break;
1636	case 4:
1637		sprintf(fmtstr, "%%8.8l%c ", fmtchar);
1638		break;
1639	case 2:
1640		sprintf(fmtstr, "%%4.4l%c ", fmtchar);
1641		break;
1642	case 1:
1643		sprintf(fmtstr, "%%2.2l%c ", fmtchar);
1644		break;
1645	default:
1646		return KDB_BADWIDTH;
1647	}
1648
1649	last_repeat = repeat;
1650	last_bytesperword = bytesperword;
1651
1652	if (strcmp(argv[0], "mds") == 0) {
1653		symbolic = 1;
1654		/* Do not save these changes as last_*, they are temporary mds
1655		 * overrides.
1656		 */
1657		bytesperword = KDB_WORD_SIZE;
1658		repeat = mdcount;
1659		kdbgetintenv("NOSECT", &nosect);
1660	}
1661
1662	/* Round address down modulo BYTESPERWORD */
1663
1664	addr &= ~(bytesperword-1);
1665
1666	while (repeat > 0) {
1667		unsigned long a;
1668		int n, z, num = (symbolic ? 1 : (16 / bytesperword));
1669
1670		if (KDB_FLAG(CMD_INTERRUPT))
1671			return 0;
1672		for (a = addr, z = 0; z < repeat; a += bytesperword, ++z) {
1673			if (phys) {
1674				if (kdb_getphysword(&word, a, bytesperword)
1675						|| word)
1676					break;
1677			} else if (kdb_getword(&word, a, bytesperword) || word)
1678				break;
1679		}
1680		n = min(num, repeat);
1681		kdb_md_line(fmtstr, addr, symbolic, nosect, bytesperword,
1682			    num, repeat, phys);
1683		addr += bytesperword * n;
1684		repeat -= n;
1685		z = (z + num - 1) / num;
1686		if (z > 2) {
1687			int s = num * (z-2);
1688			kdb_printf(kdb_machreg_fmt0 "-" kdb_machreg_fmt0
1689				   " zero suppressed\n",
1690				addr, addr + bytesperword * s - 1);
1691			addr += bytesperword * s;
1692			repeat -= s;
1693		}
1694	}
1695	last_addr = addr;
1696
1697	return 0;
1698}
1699
1700/*
1701 * kdb_mm - This function implements the 'mm' command.
1702 *	mm address-expression new-value
1703 * Remarks:
1704 *	mm works on machine words, mmW works on bytes.
1705 */
1706static int kdb_mm(int argc, const char **argv)
1707{
1708	int diag;
1709	unsigned long addr;
1710	long offset = 0;
1711	unsigned long contents;
1712	int nextarg;
1713	int width;
1714
1715	if (argv[0][2] && !isdigit(argv[0][2]))
1716		return KDB_NOTFOUND;
1717
1718	if (argc < 2)
1719		return KDB_ARGCOUNT;
1720
1721	nextarg = 1;
1722	diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1723	if (diag)
1724		return diag;
1725
1726	if (nextarg > argc)
1727		return KDB_ARGCOUNT;
1728	diag = kdbgetaddrarg(argc, argv, &nextarg, &contents, NULL, NULL);
1729	if (diag)
1730		return diag;
1731
1732	if (nextarg != argc + 1)
1733		return KDB_ARGCOUNT;
1734
1735	width = argv[0][2] ? (argv[0][2] - '0') : (KDB_WORD_SIZE);
1736	diag = kdb_putword(addr, contents, width);
1737	if (diag)
1738		return diag;
1739
1740	kdb_printf(kdb_machreg_fmt " = " kdb_machreg_fmt "\n", addr, contents);
1741
1742	return 0;
1743}
1744
1745/*
1746 * kdb_go - This function implements the 'go' command.
1747 *	go [address-expression]
1748 */
1749static int kdb_go(int argc, const char **argv)
1750{
1751	unsigned long addr;
1752	int diag;
1753	int nextarg;
1754	long offset;
1755
1756	if (raw_smp_processor_id() != kdb_initial_cpu) {
1757		kdb_printf("go must execute on the entry cpu, "
1758			   "please use \"cpu %d\" and then execute go\n",
1759			   kdb_initial_cpu);
1760		return KDB_BADCPUNUM;
1761	}
1762	if (argc == 1) {
1763		nextarg = 1;
1764		diag = kdbgetaddrarg(argc, argv, &nextarg,
1765				     &addr, &offset, NULL);
1766		if (diag)
1767			return diag;
1768	} else if (argc) {
1769		return KDB_ARGCOUNT;
1770	}
1771
1772	diag = KDB_CMD_GO;
1773	if (KDB_FLAG(CATASTROPHIC)) {
1774		kdb_printf("Catastrophic error detected\n");
1775		kdb_printf("kdb_continue_catastrophic=%d, ",
1776			kdb_continue_catastrophic);
1777		if (kdb_continue_catastrophic == 0 && kdb_go_count++ == 0) {
1778			kdb_printf("type go a second time if you really want "
1779				   "to continue\n");
1780			return 0;
1781		}
1782		if (kdb_continue_catastrophic == 2) {
1783			kdb_printf("forcing reboot\n");
1784			kdb_reboot(0, NULL);
1785		}
1786		kdb_printf("attempting to continue\n");
1787	}
1788	return diag;
1789}
1790
1791/*
1792 * kdb_rd - This function implements the 'rd' command.
1793 */
1794static int kdb_rd(int argc, const char **argv)
1795{
1796	int len = kdb_check_regs();
1797#if DBG_MAX_REG_NUM > 0
1798	int i;
1799	char *rname;
1800	int rsize;
1801	u64 reg64;
1802	u32 reg32;
1803	u16 reg16;
1804	u8 reg8;
1805
1806	if (len)
1807		return len;
1808
1809	for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1810		rsize = dbg_reg_def[i].size * 2;
1811		if (rsize > 16)
1812			rsize = 2;
1813		if (len + strlen(dbg_reg_def[i].name) + 4 + rsize > 80) {
1814			len = 0;
1815			kdb_printf("\n");
1816		}
1817		if (len)
1818			len += kdb_printf("  ");
1819		switch(dbg_reg_def[i].size * 8) {
1820		case 8:
1821			rname = dbg_get_reg(i, &reg8, kdb_current_regs);
1822			if (!rname)
1823				break;
1824			len += kdb_printf("%s: %02x", rname, reg8);
1825			break;
1826		case 16:
1827			rname = dbg_get_reg(i, &reg16, kdb_current_regs);
1828			if (!rname)
1829				break;
1830			len += kdb_printf("%s: %04x", rname, reg16);
1831			break;
1832		case 32:
1833			rname = dbg_get_reg(i, &reg32, kdb_current_regs);
1834			if (!rname)
1835				break;
1836			len += kdb_printf("%s: %08x", rname, reg32);
1837			break;
1838		case 64:
1839			rname = dbg_get_reg(i, &reg64, kdb_current_regs);
1840			if (!rname)
1841				break;
1842			len += kdb_printf("%s: %016llx", rname, reg64);
1843			break;
1844		default:
1845			len += kdb_printf("%s: ??", dbg_reg_def[i].name);
1846		}
1847	}
1848	kdb_printf("\n");
1849#else
1850	if (len)
1851		return len;
1852
1853	kdb_dumpregs(kdb_current_regs);
1854#endif
1855	return 0;
1856}
1857
1858/*
1859 * kdb_rm - This function implements the 'rm' (register modify)  command.
1860 *	rm register-name new-contents
1861 * Remarks:
1862 *	Allows register modification with the same restrictions as gdb
1863 */
1864static int kdb_rm(int argc, const char **argv)
1865{
1866#if DBG_MAX_REG_NUM > 0
1867	int diag;
1868	const char *rname;
1869	int i;
1870	u64 reg64;
1871	u32 reg32;
1872	u16 reg16;
1873	u8 reg8;
1874
1875	if (argc != 2)
1876		return KDB_ARGCOUNT;
1877	/*
1878	 * Allow presence or absence of leading '%' symbol.
1879	 */
1880	rname = argv[1];
1881	if (*rname == '%')
1882		rname++;
1883
1884	diag = kdbgetu64arg(argv[2], &reg64);
1885	if (diag)
1886		return diag;
1887
1888	diag = kdb_check_regs();
1889	if (diag)
1890		return diag;
1891
1892	diag = KDB_BADREG;
1893	for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1894		if (strcmp(rname, dbg_reg_def[i].name) == 0) {
1895			diag = 0;
1896			break;
1897		}
1898	}
1899	if (!diag) {
1900		switch(dbg_reg_def[i].size * 8) {
1901		case 8:
1902			reg8 = reg64;
1903			dbg_set_reg(i, &reg8, kdb_current_regs);
1904			break;
1905		case 16:
1906			reg16 = reg64;
1907			dbg_set_reg(i, &reg16, kdb_current_regs);
1908			break;
1909		case 32:
1910			reg32 = reg64;
1911			dbg_set_reg(i, &reg32, kdb_current_regs);
1912			break;
1913		case 64:
1914			dbg_set_reg(i, &reg64, kdb_current_regs);
1915			break;
1916		}
1917	}
1918	return diag;
1919#else
1920	kdb_printf("ERROR: Register set currently not implemented\n");
1921    return 0;
1922#endif
1923}
1924
1925#if defined(CONFIG_MAGIC_SYSRQ)
1926/*
1927 * kdb_sr - This function implements the 'sr' (SYSRQ key) command
1928 *	which interfaces to the soi-disant MAGIC SYSRQ functionality.
1929 *		sr <magic-sysrq-code>
1930 */
1931static int kdb_sr(int argc, const char **argv)
1932{
 
 
 
1933	if (argc != 1)
1934		return KDB_ARGCOUNT;
 
1935	kdb_trap_printk++;
1936	__handle_sysrq(*argv[1], false);
1937	kdb_trap_printk--;
1938
1939	return 0;
1940}
1941#endif	/* CONFIG_MAGIC_SYSRQ */
1942
1943/*
1944 * kdb_ef - This function implements the 'regs' (display exception
1945 *	frame) command.  This command takes an address and expects to
1946 *	find an exception frame at that address, formats and prints
1947 *	it.
1948 *		regs address-expression
1949 * Remarks:
1950 *	Not done yet.
1951 */
1952static int kdb_ef(int argc, const char **argv)
1953{
1954	int diag;
1955	unsigned long addr;
1956	long offset;
1957	int nextarg;
1958
1959	if (argc != 1)
1960		return KDB_ARGCOUNT;
1961
1962	nextarg = 1;
1963	diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1964	if (diag)
1965		return diag;
1966	show_regs((struct pt_regs *)addr);
1967	return 0;
1968}
1969
1970#if defined(CONFIG_MODULES)
1971/*
1972 * kdb_lsmod - This function implements the 'lsmod' command.  Lists
1973 *	currently loaded kernel modules.
1974 *	Mostly taken from userland lsmod.
1975 */
1976static int kdb_lsmod(int argc, const char **argv)
1977{
1978	struct module *mod;
1979
1980	if (argc != 0)
1981		return KDB_ARGCOUNT;
1982
1983	kdb_printf("Module                  Size  modstruct     Used by\n");
1984	list_for_each_entry(mod, kdb_modules, list) {
1985
1986		kdb_printf("%-20s%8u  0x%p ", mod->name,
1987			   mod->core_size, (void *)mod);
1988#ifdef CONFIG_MODULE_UNLOAD
1989		kdb_printf("%4ld ", module_refcount(mod));
1990#endif
1991		if (mod->state == MODULE_STATE_GOING)
1992			kdb_printf(" (Unloading)");
1993		else if (mod->state == MODULE_STATE_COMING)
1994			kdb_printf(" (Loading)");
1995		else
1996			kdb_printf(" (Live)");
1997		kdb_printf(" 0x%p", mod->module_core);
1998
1999#ifdef CONFIG_MODULE_UNLOAD
2000		{
2001			struct module_use *use;
2002			kdb_printf(" [ ");
2003			list_for_each_entry(use, &mod->source_list,
2004					    source_list)
2005				kdb_printf("%s ", use->target->name);
2006			kdb_printf("]\n");
2007		}
2008#endif
2009	}
2010
2011	return 0;
2012}
2013
2014#endif	/* CONFIG_MODULES */
2015
2016/*
2017 * kdb_env - This function implements the 'env' command.  Display the
2018 *	current environment variables.
2019 */
2020
2021static int kdb_env(int argc, const char **argv)
2022{
2023	int i;
2024
2025	for (i = 0; i < __nenv; i++) {
2026		if (__env[i])
2027			kdb_printf("%s\n", __env[i]);
2028	}
2029
2030	if (KDB_DEBUG(MASK))
2031		kdb_printf("KDBFLAGS=0x%x\n", kdb_flags);
 
2032
2033	return 0;
2034}
2035
2036#ifdef CONFIG_PRINTK
2037/*
2038 * kdb_dmesg - This function implements the 'dmesg' command to display
2039 *	the contents of the syslog buffer.
2040 *		dmesg [lines] [adjust]
2041 */
2042static int kdb_dmesg(int argc, const char **argv)
2043{
2044	int diag;
2045	int logging;
2046	int lines = 0;
2047	int adjust = 0;
2048	int n = 0;
2049	int skip = 0;
2050	struct kmsg_dumper dumper = { .active = 1 };
2051	size_t len;
2052	char buf[201];
2053
2054	if (argc > 2)
2055		return KDB_ARGCOUNT;
2056	if (argc) {
2057		char *cp;
2058		lines = simple_strtol(argv[1], &cp, 0);
2059		if (*cp)
2060			lines = 0;
2061		if (argc > 1) {
2062			adjust = simple_strtoul(argv[2], &cp, 0);
2063			if (*cp || adjust < 0)
2064				adjust = 0;
2065		}
2066	}
2067
2068	/* disable LOGGING if set */
2069	diag = kdbgetintenv("LOGGING", &logging);
2070	if (!diag && logging) {
2071		const char *setargs[] = { "set", "LOGGING", "0" };
2072		kdb_set(2, setargs);
2073	}
2074
2075	kmsg_dump_rewind_nolock(&dumper);
2076	while (kmsg_dump_get_line_nolock(&dumper, 1, NULL, 0, NULL))
2077		n++;
2078
2079	if (lines < 0) {
2080		if (adjust >= n)
2081			kdb_printf("buffer only contains %d lines, nothing "
2082				   "printed\n", n);
2083		else if (adjust - lines >= n)
2084			kdb_printf("buffer only contains %d lines, last %d "
2085				   "lines printed\n", n, n - adjust);
2086		skip = adjust;
2087		lines = abs(lines);
2088	} else if (lines > 0) {
2089		skip = n - lines - adjust;
2090		lines = abs(lines);
2091		if (adjust >= n) {
2092			kdb_printf("buffer only contains %d lines, "
2093				   "nothing printed\n", n);
2094			skip = n;
2095		} else if (skip < 0) {
2096			lines += skip;
2097			skip = 0;
2098			kdb_printf("buffer only contains %d lines, first "
2099				   "%d lines printed\n", n, lines);
2100		}
2101	} else {
2102		lines = n;
2103	}
2104
2105	if (skip >= n || skip < 0)
2106		return 0;
2107
2108	kmsg_dump_rewind_nolock(&dumper);
2109	while (kmsg_dump_get_line_nolock(&dumper, 1, buf, sizeof(buf), &len)) {
2110		if (skip) {
2111			skip--;
2112			continue;
2113		}
2114		if (!lines--)
2115			break;
 
 
2116
2117		kdb_printf("%.*s\n", (int)len - 1, buf);
2118	}
2119
2120	return 0;
2121}
2122#endif /* CONFIG_PRINTK */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2123/*
2124 * kdb_cpu - This function implements the 'cpu' command.
2125 *	cpu	[<cpunum>]
2126 * Returns:
2127 *	KDB_CMD_CPU for success, a kdb diagnostic if error
2128 */
2129static void kdb_cpu_status(void)
2130{
2131	int i, start_cpu, first_print = 1;
2132	char state, prev_state = '?';
2133
2134	kdb_printf("Currently on cpu %d\n", raw_smp_processor_id());
2135	kdb_printf("Available cpus: ");
2136	for (start_cpu = -1, i = 0; i < NR_CPUS; i++) {
2137		if (!cpu_online(i)) {
2138			state = 'F';	/* cpu is offline */
 
 
2139		} else {
2140			state = ' ';	/* cpu is responding to kdb */
2141			if (kdb_task_state_char(KDB_TSK(i)) == 'I')
2142				state = 'I';	/* idle task */
2143		}
2144		if (state != prev_state) {
2145			if (prev_state != '?') {
2146				if (!first_print)
2147					kdb_printf(", ");
2148				first_print = 0;
2149				kdb_printf("%d", start_cpu);
2150				if (start_cpu < i-1)
2151					kdb_printf("-%d", i-1);
2152				if (prev_state != ' ')
2153					kdb_printf("(%c)", prev_state);
2154			}
2155			prev_state = state;
2156			start_cpu = i;
2157		}
2158	}
2159	/* print the trailing cpus, ignoring them if they are all offline */
2160	if (prev_state != 'F') {
2161		if (!first_print)
2162			kdb_printf(", ");
2163		kdb_printf("%d", start_cpu);
2164		if (start_cpu < i-1)
2165			kdb_printf("-%d", i-1);
2166		if (prev_state != ' ')
2167			kdb_printf("(%c)", prev_state);
2168	}
2169	kdb_printf("\n");
2170}
2171
2172static int kdb_cpu(int argc, const char **argv)
2173{
2174	unsigned long cpunum;
2175	int diag;
2176
2177	if (argc == 0) {
2178		kdb_cpu_status();
2179		return 0;
2180	}
2181
2182	if (argc != 1)
2183		return KDB_ARGCOUNT;
2184
2185	diag = kdbgetularg(argv[1], &cpunum);
2186	if (diag)
2187		return diag;
2188
2189	/*
2190	 * Validate cpunum
2191	 */
2192	if ((cpunum > NR_CPUS) || !cpu_online(cpunum))
2193		return KDB_BADCPUNUM;
2194
2195	dbg_switch_cpu = cpunum;
2196
2197	/*
2198	 * Switch to other cpu
2199	 */
2200	return KDB_CMD_CPU;
2201}
2202
2203/* The user may not realize that ps/bta with no parameters does not print idle
2204 * or sleeping system daemon processes, so tell them how many were suppressed.
2205 */
2206void kdb_ps_suppressed(void)
2207{
2208	int idle = 0, daemon = 0;
2209	unsigned long mask_I = kdb_task_state_string("I"),
2210		      mask_M = kdb_task_state_string("M");
2211	unsigned long cpu;
2212	const struct task_struct *p, *g;
2213	for_each_online_cpu(cpu) {
2214		p = kdb_curr_task(cpu);
2215		if (kdb_task_state(p, mask_I))
2216			++idle;
2217	}
2218	kdb_do_each_thread(g, p) {
2219		if (kdb_task_state(p, mask_M))
2220			++daemon;
2221	} kdb_while_each_thread(g, p);
2222	if (idle || daemon) {
2223		if (idle)
2224			kdb_printf("%d idle process%s (state I)%s\n",
2225				   idle, idle == 1 ? "" : "es",
2226				   daemon ? " and " : "");
2227		if (daemon)
2228			kdb_printf("%d sleeping system daemon (state M) "
2229				   "process%s", daemon,
2230				   daemon == 1 ? "" : "es");
2231		kdb_printf(" suppressed,\nuse 'ps A' to see all.\n");
2232	}
2233}
2234
2235/*
2236 * kdb_ps - This function implements the 'ps' command which shows a
2237 *	list of the active processes.
2238 *		ps [DRSTCZEUIMA]   All processes, optionally filtered by state
2239 */
2240void kdb_ps1(const struct task_struct *p)
2241{
2242	int cpu;
2243	unsigned long tmp;
2244
2245	if (!p || probe_kernel_read(&tmp, (char *)p, sizeof(unsigned long)))
 
2246		return;
2247
2248	cpu = kdb_process_cpu(p);
2249	kdb_printf("0x%p %8d %8d  %d %4d   %c  0x%p %c%s\n",
2250		   (void *)p, p->pid, p->parent->pid,
2251		   kdb_task_has_cpu(p), kdb_process_cpu(p),
2252		   kdb_task_state_char(p),
2253		   (void *)(&p->thread),
2254		   p == kdb_curr_task(raw_smp_processor_id()) ? '*' : ' ',
2255		   p->comm);
2256	if (kdb_task_has_cpu(p)) {
2257		if (!KDB_TSK(cpu)) {
2258			kdb_printf("  Error: no saved data for this cpu\n");
2259		} else {
2260			if (KDB_TSK(cpu) != p)
2261				kdb_printf("  Error: does not match running "
2262				   "process table (0x%p)\n", KDB_TSK(cpu));
2263		}
2264	}
2265}
2266
 
 
 
 
 
 
 
2267static int kdb_ps(int argc, const char **argv)
2268{
2269	struct task_struct *g, *p;
2270	unsigned long mask, cpu;
 
2271
2272	if (argc == 0)
2273		kdb_ps_suppressed();
2274	kdb_printf("%-*s      Pid   Parent [*] cpu State %-*s Command\n",
2275		(int)(2*sizeof(void *))+2, "Task Addr",
2276		(int)(2*sizeof(void *))+2, "Thread");
2277	mask = kdb_task_state_string(argc ? argv[1] : NULL);
2278	/* Run the active tasks first */
2279	for_each_online_cpu(cpu) {
2280		if (KDB_FLAG(CMD_INTERRUPT))
2281			return 0;
2282		p = kdb_curr_task(cpu);
2283		if (kdb_task_state(p, mask))
2284			kdb_ps1(p);
2285	}
2286	kdb_printf("\n");
2287	/* Now the real tasks */
2288	kdb_do_each_thread(g, p) {
2289		if (KDB_FLAG(CMD_INTERRUPT))
2290			return 0;
2291		if (kdb_task_state(p, mask))
2292			kdb_ps1(p);
2293	} kdb_while_each_thread(g, p);
2294
2295	return 0;
2296}
2297
2298/*
2299 * kdb_pid - This function implements the 'pid' command which switches
2300 *	the currently active process.
2301 *		pid [<pid> | R]
2302 */
2303static int kdb_pid(int argc, const char **argv)
2304{
2305	struct task_struct *p;
2306	unsigned long val;
2307	int diag;
2308
2309	if (argc > 1)
2310		return KDB_ARGCOUNT;
2311
2312	if (argc) {
2313		if (strcmp(argv[1], "R") == 0) {
2314			p = KDB_TSK(kdb_initial_cpu);
2315		} else {
2316			diag = kdbgetularg(argv[1], &val);
2317			if (diag)
2318				return KDB_BADINT;
2319
2320			p = find_task_by_pid_ns((pid_t)val,	&init_pid_ns);
2321			if (!p) {
2322				kdb_printf("No task with pid=%d\n", (pid_t)val);
2323				return 0;
2324			}
2325		}
2326		kdb_set_current_task(p);
2327	}
2328	kdb_printf("KDB current process is %s(pid=%d)\n",
2329		   kdb_current_task->comm,
2330		   kdb_current_task->pid);
2331
2332	return 0;
2333}
2334
2335/*
2336 * kdb_ll - This function implements the 'll' command which follows a
2337 *	linked list and executes an arbitrary command for each
2338 *	element.
2339 */
2340static int kdb_ll(int argc, const char **argv)
2341{
2342	int diag = 0;
2343	unsigned long addr;
2344	long offset = 0;
2345	unsigned long va;
2346	unsigned long linkoffset;
2347	int nextarg;
2348	const char *command;
2349
2350	if (argc != 3)
2351		return KDB_ARGCOUNT;
2352
2353	nextarg = 1;
2354	diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
2355	if (diag)
2356		return diag;
2357
2358	diag = kdbgetularg(argv[2], &linkoffset);
2359	if (diag)
2360		return diag;
2361
2362	/*
2363	 * Using the starting address as
2364	 * the first element in the list, and assuming that
2365	 * the list ends with a null pointer.
2366	 */
2367
2368	va = addr;
2369	command = kdb_strdup(argv[3], GFP_KDB);
2370	if (!command) {
2371		kdb_printf("%s: cannot duplicate command\n", __func__);
2372		return 0;
2373	}
2374	/* Recursive use of kdb_parse, do not use argv after this point */
2375	argv = NULL;
2376
2377	while (va) {
2378		char buf[80];
2379
2380		if (KDB_FLAG(CMD_INTERRUPT))
2381			goto out;
2382
2383		sprintf(buf, "%s " kdb_machreg_fmt "\n", command, va);
2384		diag = kdb_parse(buf);
2385		if (diag)
2386			goto out;
2387
2388		addr = va + linkoffset;
2389		if (kdb_getword(&va, addr, sizeof(va)))
2390			goto out;
2391	}
2392
2393out:
2394	kfree(command);
2395	return diag;
2396}
2397
2398static int kdb_kgdb(int argc, const char **argv)
2399{
2400	return KDB_CMD_KGDB;
2401}
2402
2403/*
2404 * kdb_help - This function implements the 'help' and '?' commands.
2405 */
2406static int kdb_help(int argc, const char **argv)
2407{
2408	kdbtab_t *kt;
2409	int i;
2410
2411	kdb_printf("%-15.15s %-20.20s %s\n", "Command", "Usage", "Description");
2412	kdb_printf("-----------------------------"
2413		   "-----------------------------\n");
2414	for_each_kdbcmd(kt, i) {
2415		if (kt->cmd_name)
2416			kdb_printf("%-15.15s %-20.20s %s\n", kt->cmd_name,
2417				   kt->cmd_usage, kt->cmd_help);
2418		if (KDB_FLAG(CMD_INTERRUPT))
2419			return 0;
 
 
 
 
 
 
2420	}
2421	return 0;
2422}
2423
2424/*
2425 * kdb_kill - This function implements the 'kill' commands.
2426 */
2427static int kdb_kill(int argc, const char **argv)
2428{
2429	long sig, pid;
2430	char *endp;
2431	struct task_struct *p;
2432	struct siginfo info;
2433
2434	if (argc != 2)
2435		return KDB_ARGCOUNT;
2436
2437	sig = simple_strtol(argv[1], &endp, 0);
2438	if (*endp)
2439		return KDB_BADINT;
2440	if (sig >= 0) {
2441		kdb_printf("Invalid signal parameter.<-signal>\n");
2442		return 0;
2443	}
2444	sig = -sig;
2445
2446	pid = simple_strtol(argv[2], &endp, 0);
2447	if (*endp)
2448		return KDB_BADINT;
2449	if (pid <= 0) {
2450		kdb_printf("Process ID must be large than 0.\n");
2451		return 0;
2452	}
2453
2454	/* Find the process. */
2455	p = find_task_by_pid_ns(pid, &init_pid_ns);
2456	if (!p) {
2457		kdb_printf("The specified process isn't found.\n");
2458		return 0;
2459	}
2460	p = p->group_leader;
2461	info.si_signo = sig;
2462	info.si_errno = 0;
2463	info.si_code = SI_USER;
2464	info.si_pid = pid;  /* same capabilities as process being signalled */
2465	info.si_uid = 0;    /* kdb has root authority */
2466	kdb_send_sig_info(p, &info);
2467	return 0;
2468}
2469
2470struct kdb_tm {
2471	int tm_sec;	/* seconds */
2472	int tm_min;	/* minutes */
2473	int tm_hour;	/* hours */
2474	int tm_mday;	/* day of the month */
2475	int tm_mon;	/* month */
2476	int tm_year;	/* year */
2477};
2478
2479static void kdb_gmtime(struct timespec *tv, struct kdb_tm *tm)
2480{
2481	/* This will work from 1970-2099, 2100 is not a leap year */
2482	static int mon_day[] = { 31, 29, 31, 30, 31, 30, 31,
2483				 31, 30, 31, 30, 31 };
2484	memset(tm, 0, sizeof(*tm));
2485	tm->tm_sec  = tv->tv_sec % (24 * 60 * 60);
2486	tm->tm_mday = tv->tv_sec / (24 * 60 * 60) +
2487		(2 * 365 + 1); /* shift base from 1970 to 1968 */
2488	tm->tm_min =  tm->tm_sec / 60 % 60;
2489	tm->tm_hour = tm->tm_sec / 60 / 60;
2490	tm->tm_sec =  tm->tm_sec % 60;
2491	tm->tm_year = 68 + 4*(tm->tm_mday / (4*365+1));
2492	tm->tm_mday %= (4*365+1);
2493	mon_day[1] = 29;
2494	while (tm->tm_mday >= mon_day[tm->tm_mon]) {
2495		tm->tm_mday -= mon_day[tm->tm_mon];
2496		if (++tm->tm_mon == 12) {
2497			tm->tm_mon = 0;
2498			++tm->tm_year;
2499			mon_day[1] = 28;
2500		}
2501	}
2502	++tm->tm_mday;
2503}
2504
2505/*
2506 * Most of this code has been lifted from kernel/timer.c::sys_sysinfo().
2507 * I cannot call that code directly from kdb, it has an unconditional
2508 * cli()/sti() and calls routines that take locks which can stop the debugger.
2509 */
2510static void kdb_sysinfo(struct sysinfo *val)
2511{
2512	struct timespec uptime;
2513	do_posix_clock_monotonic_gettime(&uptime);
2514	memset(val, 0, sizeof(*val));
2515	val->uptime = uptime.tv_sec;
2516	val->loads[0] = avenrun[0];
2517	val->loads[1] = avenrun[1];
2518	val->loads[2] = avenrun[2];
2519	val->procs = nr_threads-1;
2520	si_meminfo(val);
2521
2522	return;
2523}
2524
2525/*
2526 * kdb_summary - This function implements the 'summary' command.
2527 */
2528static int kdb_summary(int argc, const char **argv)
2529{
2530	struct timespec now;
2531	struct kdb_tm tm;
2532	struct sysinfo val;
2533
2534	if (argc)
2535		return KDB_ARGCOUNT;
2536
2537	kdb_printf("sysname    %s\n", init_uts_ns.name.sysname);
2538	kdb_printf("release    %s\n", init_uts_ns.name.release);
2539	kdb_printf("version    %s\n", init_uts_ns.name.version);
2540	kdb_printf("machine    %s\n", init_uts_ns.name.machine);
2541	kdb_printf("nodename   %s\n", init_uts_ns.name.nodename);
2542	kdb_printf("domainname %s\n", init_uts_ns.name.domainname);
2543	kdb_printf("ccversion  %s\n", __stringify(CCVERSION));
2544
2545	now = __current_kernel_time();
2546	kdb_gmtime(&now, &tm);
2547	kdb_printf("date       %04d-%02d-%02d %02d:%02d:%02d "
2548		   "tz_minuteswest %d\n",
2549		1900+tm.tm_year, tm.tm_mon+1, tm.tm_mday,
2550		tm.tm_hour, tm.tm_min, tm.tm_sec,
2551		sys_tz.tz_minuteswest);
2552
 
 
2553	kdb_sysinfo(&val);
2554	kdb_printf("uptime     ");
2555	if (val.uptime > (24*60*60)) {
2556		int days = val.uptime / (24*60*60);
2557		val.uptime %= (24*60*60);
2558		kdb_printf("%d day%s ", days, days == 1 ? "" : "s");
2559	}
2560	kdb_printf("%02ld:%02ld\n", val.uptime/(60*60), (val.uptime/60)%60);
2561
2562	/* lifted from fs/proc/proc_misc.c::loadavg_read_proc() */
2563
2564#define LOAD_INT(x) ((x) >> FSHIFT)
2565#define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)
2566	kdb_printf("load avg   %ld.%02ld %ld.%02ld %ld.%02ld\n",
2567		LOAD_INT(val.loads[0]), LOAD_FRAC(val.loads[0]),
2568		LOAD_INT(val.loads[1]), LOAD_FRAC(val.loads[1]),
2569		LOAD_INT(val.loads[2]), LOAD_FRAC(val.loads[2]));
2570#undef LOAD_INT
2571#undef LOAD_FRAC
2572	/* Display in kilobytes */
2573#define K(x) ((x) << (PAGE_SHIFT - 10))
2574	kdb_printf("\nMemTotal:       %8lu kB\nMemFree:        %8lu kB\n"
2575		   "Buffers:        %8lu kB\n",
2576		   val.totalram, val.freeram, val.bufferram);
2577	return 0;
2578}
2579
2580/*
2581 * kdb_per_cpu - This function implements the 'per_cpu' command.
2582 */
2583static int kdb_per_cpu(int argc, const char **argv)
2584{
2585	char fmtstr[64];
2586	int cpu, diag, nextarg = 1;
2587	unsigned long addr, symaddr, val, bytesperword = 0, whichcpu = ~0UL;
2588
2589	if (argc < 1 || argc > 3)
2590		return KDB_ARGCOUNT;
2591
2592	diag = kdbgetaddrarg(argc, argv, &nextarg, &symaddr, NULL, NULL);
2593	if (diag)
2594		return diag;
2595
2596	if (argc >= 2) {
2597		diag = kdbgetularg(argv[2], &bytesperword);
2598		if (diag)
2599			return diag;
2600	}
2601	if (!bytesperword)
2602		bytesperword = KDB_WORD_SIZE;
2603	else if (bytesperword > KDB_WORD_SIZE)
2604		return KDB_BADWIDTH;
2605	sprintf(fmtstr, "%%0%dlx ", (int)(2*bytesperword));
2606	if (argc >= 3) {
2607		diag = kdbgetularg(argv[3], &whichcpu);
2608		if (diag)
2609			return diag;
2610		if (!cpu_online(whichcpu)) {
2611			kdb_printf("cpu %ld is not online\n", whichcpu);
2612			return KDB_BADCPUNUM;
2613		}
2614	}
2615
2616	/* Most architectures use __per_cpu_offset[cpu], some use
2617	 * __per_cpu_offset(cpu), smp has no __per_cpu_offset.
2618	 */
2619#ifdef	__per_cpu_offset
2620#define KDB_PCU(cpu) __per_cpu_offset(cpu)
2621#else
2622#ifdef	CONFIG_SMP
2623#define KDB_PCU(cpu) __per_cpu_offset[cpu]
2624#else
2625#define KDB_PCU(cpu) 0
2626#endif
2627#endif
2628	for_each_online_cpu(cpu) {
2629		if (KDB_FLAG(CMD_INTERRUPT))
2630			return 0;
2631
2632		if (whichcpu != ~0UL && whichcpu != cpu)
2633			continue;
2634		addr = symaddr + KDB_PCU(cpu);
2635		diag = kdb_getword(&val, addr, bytesperword);
2636		if (diag) {
2637			kdb_printf("%5d " kdb_bfd_vma_fmt0 " - unable to "
2638				   "read, diag=%d\n", cpu, addr, diag);
2639			continue;
2640		}
2641		kdb_printf("%5d ", cpu);
2642		kdb_md_line(fmtstr, addr,
2643			bytesperword == KDB_WORD_SIZE,
2644			1, bytesperword, 1, 1, 0);
2645	}
2646#undef KDB_PCU
2647	return 0;
2648}
2649
2650/*
2651 * display help for the use of cmd | grep pattern
2652 */
2653static int kdb_grep_help(int argc, const char **argv)
2654{
2655	kdb_printf("Usage of  cmd args | grep pattern:\n");
2656	kdb_printf("  Any command's output may be filtered through an ");
2657	kdb_printf("emulated 'pipe'.\n");
2658	kdb_printf("  'grep' is just a key word.\n");
2659	kdb_printf("  The pattern may include a very limited set of "
2660		   "metacharacters:\n");
2661	kdb_printf("   pattern or ^pattern or pattern$ or ^pattern$\n");
2662	kdb_printf("  And if there are spaces in the pattern, you may "
2663		   "quote it:\n");
2664	kdb_printf("   \"pat tern\" or \"^pat tern\" or \"pat tern$\""
2665		   " or \"^pat tern$\"\n");
2666	return 0;
2667}
2668
2669/*
2670 * kdb_register_repeat - This function is used to register a kernel
2671 * 	debugger command.
2672 * Inputs:
2673 *	cmd	Command name
2674 *	func	Function to execute the command
2675 *	usage	A simple usage string showing arguments
2676 *	help	A simple help string describing command
2677 *	repeat	Does the command auto repeat on enter?
2678 * Returns:
2679 *	zero for success, one if a duplicate command.
2680 */
2681#define kdb_command_extend 50	/* arbitrary */
2682int kdb_register_repeat(char *cmd,
2683			kdb_func_t func,
2684			char *usage,
2685			char *help,
2686			short minlen,
2687			kdb_repeat_t repeat)
2688{
2689	int i;
2690	kdbtab_t *kp;
2691
2692	/*
2693	 *  Brute force method to determine duplicates
2694	 */
2695	for_each_kdbcmd(kp, i) {
2696		if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2697			kdb_printf("Duplicate kdb command registered: "
2698				"%s, func %p help %s\n", cmd, func, help);
2699			return 1;
2700		}
2701	}
2702
2703	/*
2704	 * Insert command into first available location in table
2705	 */
2706	for_each_kdbcmd(kp, i) {
2707		if (kp->cmd_name == NULL)
2708			break;
2709	}
2710
2711	if (i >= kdb_max_commands) {
2712		kdbtab_t *new = kmalloc((kdb_max_commands - KDB_BASE_CMD_MAX +
2713			 kdb_command_extend) * sizeof(*new), GFP_KDB);
2714		if (!new) {
2715			kdb_printf("Could not allocate new kdb_command "
2716				   "table\n");
2717			return 1;
2718		}
2719		if (kdb_commands) {
2720			memcpy(new, kdb_commands,
2721			  (kdb_max_commands - KDB_BASE_CMD_MAX) * sizeof(*new));
2722			kfree(kdb_commands);
2723		}
2724		memset(new + kdb_max_commands, 0,
2725		       kdb_command_extend * sizeof(*new));
2726		kdb_commands = new;
2727		kp = kdb_commands + kdb_max_commands - KDB_BASE_CMD_MAX;
2728		kdb_max_commands += kdb_command_extend;
2729	}
2730
2731	kp->cmd_name   = cmd;
2732	kp->cmd_func   = func;
2733	kp->cmd_usage  = usage;
2734	kp->cmd_help   = help;
2735	kp->cmd_flags  = 0;
2736	kp->cmd_minlen = minlen;
2737	kp->cmd_repeat = repeat;
2738
2739	return 0;
2740}
2741EXPORT_SYMBOL_GPL(kdb_register_repeat);
2742
2743
2744/*
2745 * kdb_register - Compatibility register function for commands that do
2746 *	not need to specify a repeat state.  Equivalent to
2747 *	kdb_register_repeat with KDB_REPEAT_NONE.
2748 * Inputs:
2749 *	cmd	Command name
2750 *	func	Function to execute the command
2751 *	usage	A simple usage string showing arguments
2752 *	help	A simple help string describing command
2753 * Returns:
2754 *	zero for success, one if a duplicate command.
2755 */
2756int kdb_register(char *cmd,
2757	     kdb_func_t func,
2758	     char *usage,
2759	     char *help,
2760	     short minlen)
2761{
2762	return kdb_register_repeat(cmd, func, usage, help, minlen,
2763				   KDB_REPEAT_NONE);
 
 
2764}
2765EXPORT_SYMBOL_GPL(kdb_register);
2766
2767/*
2768 * kdb_unregister - This function is used to unregister a kernel
2769 *	debugger command.  It is generally called when a module which
2770 *	implements kdb commands is unloaded.
2771 * Inputs:
2772 *	cmd	Command name
2773 * Returns:
2774 *	zero for success, one command not registered.
2775 */
2776int kdb_unregister(char *cmd)
2777{
2778	int i;
2779	kdbtab_t *kp;
2780
2781	/*
2782	 *  find the command.
2783	 */
2784	for_each_kdbcmd(kp, i) {
2785		if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2786			kp->cmd_name = NULL;
2787			return 0;
2788		}
2789	}
2790
2791	/* Couldn't find it.  */
2792	return 1;
2793}
2794EXPORT_SYMBOL_GPL(kdb_unregister);
2795
2796/* Initialize the kdb command table. */
2797static void __init kdb_inittab(void)
2798{
2799	int i;
2800	kdbtab_t *kp;
2801
2802	for_each_kdbcmd(kp, i)
2803		kp->cmd_name = NULL;
2804
2805	kdb_register_repeat("md", kdb_md, "<vaddr>",
2806	  "Display Memory Contents, also mdWcN, e.g. md8c1", 1,
2807			    KDB_REPEAT_NO_ARGS);
2808	kdb_register_repeat("mdr", kdb_md, "<vaddr> <bytes>",
2809	  "Display Raw Memory", 0, KDB_REPEAT_NO_ARGS);
2810	kdb_register_repeat("mdp", kdb_md, "<paddr> <bytes>",
2811	  "Display Physical Memory", 0, KDB_REPEAT_NO_ARGS);
2812	kdb_register_repeat("mds", kdb_md, "<vaddr>",
2813	  "Display Memory Symbolically", 0, KDB_REPEAT_NO_ARGS);
2814	kdb_register_repeat("mm", kdb_mm, "<vaddr> <contents>",
2815	  "Modify Memory Contents", 0, KDB_REPEAT_NO_ARGS);
2816	kdb_register_repeat("go", kdb_go, "[<vaddr>]",
2817	  "Continue Execution", 1, KDB_REPEAT_NONE);
2818	kdb_register_repeat("rd", kdb_rd, "",
2819	  "Display Registers", 0, KDB_REPEAT_NONE);
2820	kdb_register_repeat("rm", kdb_rm, "<reg> <contents>",
2821	  "Modify Registers", 0, KDB_REPEAT_NONE);
2822	kdb_register_repeat("ef", kdb_ef, "<vaddr>",
2823	  "Display exception frame", 0, KDB_REPEAT_NONE);
2824	kdb_register_repeat("bt", kdb_bt, "[<vaddr>]",
2825	  "Stack traceback", 1, KDB_REPEAT_NONE);
2826	kdb_register_repeat("btp", kdb_bt, "<pid>",
2827	  "Display stack for process <pid>", 0, KDB_REPEAT_NONE);
2828	kdb_register_repeat("bta", kdb_bt, "[DRSTCZEUIMA]",
2829	  "Display stack all processes", 0, KDB_REPEAT_NONE);
2830	kdb_register_repeat("btc", kdb_bt, "",
2831	  "Backtrace current process on each cpu", 0, KDB_REPEAT_NONE);
2832	kdb_register_repeat("btt", kdb_bt, "<vaddr>",
2833	  "Backtrace process given its struct task address", 0,
2834			    KDB_REPEAT_NONE);
2835	kdb_register_repeat("ll", kdb_ll, "<first-element> <linkoffset> <cmd>",
2836	  "Execute cmd for each element in linked list", 0, KDB_REPEAT_NONE);
2837	kdb_register_repeat("env", kdb_env, "",
2838	  "Show environment variables", 0, KDB_REPEAT_NONE);
2839	kdb_register_repeat("set", kdb_set, "",
2840	  "Set environment variables", 0, KDB_REPEAT_NONE);
2841	kdb_register_repeat("help", kdb_help, "",
2842	  "Display Help Message", 1, KDB_REPEAT_NONE);
2843	kdb_register_repeat("?", kdb_help, "",
2844	  "Display Help Message", 0, KDB_REPEAT_NONE);
2845	kdb_register_repeat("cpu", kdb_cpu, "<cpunum>",
2846	  "Switch to new cpu", 0, KDB_REPEAT_NONE);
2847	kdb_register_repeat("kgdb", kdb_kgdb, "",
2848	  "Enter kgdb mode", 0, KDB_REPEAT_NONE);
2849	kdb_register_repeat("ps", kdb_ps, "[<flags>|A]",
2850	  "Display active task list", 0, KDB_REPEAT_NONE);
2851	kdb_register_repeat("pid", kdb_pid, "<pidnum>",
2852	  "Switch to another task", 0, KDB_REPEAT_NONE);
2853	kdb_register_repeat("reboot", kdb_reboot, "",
2854	  "Reboot the machine immediately", 0, KDB_REPEAT_NONE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2855#if defined(CONFIG_MODULES)
2856	kdb_register_repeat("lsmod", kdb_lsmod, "",
2857	  "List loaded kernel modules", 0, KDB_REPEAT_NONE);
 
 
 
 
2858#endif
2859#if defined(CONFIG_MAGIC_SYSRQ)
2860	kdb_register_repeat("sr", kdb_sr, "<key>",
2861	  "Magic SysRq key", 0, KDB_REPEAT_NONE);
 
 
 
 
2862#endif
2863#if defined(CONFIG_PRINTK)
2864	kdb_register_repeat("dmesg", kdb_dmesg, "[lines]",
2865	  "Display syslog buffer", 0, KDB_REPEAT_NONE);
 
 
 
 
2866#endif
2867	kdb_register_repeat("defcmd", kdb_defcmd, "name \"usage\" \"help\"",
2868	  "Define a set of commands, down to endefcmd", 0, KDB_REPEAT_NONE);
2869	kdb_register_repeat("kill", kdb_kill, "<-signal> <pid>",
2870	  "Send a signal to a process", 0, KDB_REPEAT_NONE);
2871	kdb_register_repeat("summary", kdb_summary, "",
2872	  "Summarize the system", 4, KDB_REPEAT_NONE);
2873	kdb_register_repeat("per_cpu", kdb_per_cpu, "<sym> [<bytes>] [<cpu>]",
2874	  "Display per_cpu variables", 3, KDB_REPEAT_NONE);
2875	kdb_register_repeat("grephelp", kdb_grep_help, "",
2876	  "Display help on | grep", 0, KDB_REPEAT_NONE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2877}
2878
2879/* Execute any commands defined in kdb_cmds.  */
2880static void __init kdb_cmd_init(void)
2881{
2882	int i, diag;
2883	for (i = 0; kdb_cmds[i]; ++i) {
2884		diag = kdb_parse(kdb_cmds[i]);
2885		if (diag)
2886			kdb_printf("kdb command %s failed, kdb diag %d\n",
2887				kdb_cmds[i], diag);
2888	}
2889	if (defcmd_in_progress) {
2890		kdb_printf("Incomplete 'defcmd' set, forcing endefcmd\n");
2891		kdb_parse("endefcmd");
2892	}
2893}
2894
2895/* Initialize kdb_printf, breakpoint tables and kdb state */
2896void __init kdb_init(int lvl)
2897{
2898	static int kdb_init_lvl = KDB_NOT_INITIALIZED;
2899	int i;
2900
2901	if (kdb_init_lvl == KDB_INIT_FULL || lvl <= kdb_init_lvl)
2902		return;
2903	for (i = kdb_init_lvl; i < lvl; i++) {
2904		switch (i) {
2905		case KDB_NOT_INITIALIZED:
2906			kdb_inittab();		/* Initialize Command Table */
2907			kdb_initbptab();	/* Initialize Breakpoints */
2908			break;
2909		case KDB_INIT_EARLY:
2910			kdb_cmd_init();		/* Build kdb_cmds tables */
2911			break;
2912		}
2913	}
2914	kdb_init_lvl = lvl;
2915}