Loading...
1/*
2 * Kernel Debugger Architecture Independent Main Code
3 *
4 * This file is subject to the terms and conditions of the GNU General Public
5 * License. See the file "COPYING" in the main directory of this archive
6 * for more details.
7 *
8 * Copyright (C) 1999-2004 Silicon Graphics, Inc. All Rights Reserved.
9 * Copyright (C) 2000 Stephane Eranian <eranian@hpl.hp.com>
10 * Xscale (R) modifications copyright (C) 2003 Intel Corporation.
11 * Copyright (c) 2009 Wind River Systems, Inc. All Rights Reserved.
12 */
13
14#include <linux/ctype.h>
15#include <linux/types.h>
16#include <linux/string.h>
17#include <linux/kernel.h>
18#include <linux/kmsg_dump.h>
19#include <linux/reboot.h>
20#include <linux/sched.h>
21#include <linux/sched/loadavg.h>
22#include <linux/sched/stat.h>
23#include <linux/sched/debug.h>
24#include <linux/sysrq.h>
25#include <linux/smp.h>
26#include <linux/utsname.h>
27#include <linux/vmalloc.h>
28#include <linux/atomic.h>
29#include <linux/moduleparam.h>
30#include <linux/mm.h>
31#include <linux/init.h>
32#include <linux/kallsyms.h>
33#include <linux/kgdb.h>
34#include <linux/kdb.h>
35#include <linux/notifier.h>
36#include <linux/interrupt.h>
37#include <linux/delay.h>
38#include <linux/nmi.h>
39#include <linux/time.h>
40#include <linux/ptrace.h>
41#include <linux/sysctl.h>
42#include <linux/cpu.h>
43#include <linux/kdebug.h>
44#include <linux/proc_fs.h>
45#include <linux/uaccess.h>
46#include <linux/slab.h>
47#include <linux/security.h>
48#include "kdb_private.h"
49
50#undef MODULE_PARAM_PREFIX
51#define MODULE_PARAM_PREFIX "kdb."
52
53static int kdb_cmd_enabled = CONFIG_KDB_DEFAULT_ENABLE;
54module_param_named(cmd_enable, kdb_cmd_enabled, int, 0600);
55
56char kdb_grep_string[KDB_GREP_STRLEN];
57int kdb_grepping_flag;
58EXPORT_SYMBOL(kdb_grepping_flag);
59int kdb_grep_leading;
60int kdb_grep_trailing;
61
62/*
63 * Kernel debugger state flags
64 */
65unsigned int kdb_flags;
66
67/*
68 * kdb_lock protects updates to kdb_initial_cpu. Used to
69 * single thread processors through the kernel debugger.
70 */
71int kdb_initial_cpu = -1; /* cpu number that owns kdb */
72int kdb_nextline = 1;
73int kdb_state; /* General KDB state */
74
75struct task_struct *kdb_current_task;
76struct pt_regs *kdb_current_regs;
77
78const char *kdb_diemsg;
79static int kdb_go_count;
80#ifdef CONFIG_KDB_CONTINUE_CATASTROPHIC
81static unsigned int kdb_continue_catastrophic =
82 CONFIG_KDB_CONTINUE_CATASTROPHIC;
83#else
84static unsigned int kdb_continue_catastrophic;
85#endif
86
87/* kdb_cmds_head describes the available commands. */
88static LIST_HEAD(kdb_cmds_head);
89
90typedef struct _kdbmsg {
91 int km_diag; /* kdb diagnostic */
92 char *km_msg; /* Corresponding message text */
93} kdbmsg_t;
94
95#define KDBMSG(msgnum, text) \
96 { KDB_##msgnum, text }
97
98static kdbmsg_t kdbmsgs[] = {
99 KDBMSG(NOTFOUND, "Command Not Found"),
100 KDBMSG(ARGCOUNT, "Improper argument count, see usage."),
101 KDBMSG(BADWIDTH, "Illegal value for BYTESPERWORD use 1, 2, 4 or 8, "
102 "8 is only allowed on 64 bit systems"),
103 KDBMSG(BADRADIX, "Illegal value for RADIX use 8, 10 or 16"),
104 KDBMSG(NOTENV, "Cannot find environment variable"),
105 KDBMSG(NOENVVALUE, "Environment variable should have value"),
106 KDBMSG(NOTIMP, "Command not implemented"),
107 KDBMSG(ENVFULL, "Environment full"),
108 KDBMSG(ENVBUFFULL, "Environment buffer full"),
109 KDBMSG(TOOMANYBPT, "Too many breakpoints defined"),
110#ifdef CONFIG_CPU_XSCALE
111 KDBMSG(TOOMANYDBREGS, "More breakpoints than ibcr registers defined"),
112#else
113 KDBMSG(TOOMANYDBREGS, "More breakpoints than db registers defined"),
114#endif
115 KDBMSG(DUPBPT, "Duplicate breakpoint address"),
116 KDBMSG(BPTNOTFOUND, "Breakpoint not found"),
117 KDBMSG(BADMODE, "Invalid IDMODE"),
118 KDBMSG(BADINT, "Illegal numeric value"),
119 KDBMSG(INVADDRFMT, "Invalid symbolic address format"),
120 KDBMSG(BADREG, "Invalid register name"),
121 KDBMSG(BADCPUNUM, "Invalid cpu number"),
122 KDBMSG(BADLENGTH, "Invalid length field"),
123 KDBMSG(NOBP, "No Breakpoint exists"),
124 KDBMSG(BADADDR, "Invalid address"),
125 KDBMSG(NOPERM, "Permission denied"),
126};
127#undef KDBMSG
128
129static const int __nkdb_err = ARRAY_SIZE(kdbmsgs);
130
131
132/*
133 * Initial environment. This is all kept static and local to
134 * this file. We don't want to rely on the memory allocation
135 * mechanisms in the kernel, so we use a very limited allocate-only
136 * heap for new and altered environment variables. The entire
137 * environment is limited to a fixed number of entries (add more
138 * to __env[] if required) and a fixed amount of heap (add more to
139 * KDB_ENVBUFSIZE if required).
140 */
141
142static char *__env[31] = {
143#if defined(CONFIG_SMP)
144 "PROMPT=[%d]kdb> ",
145#else
146 "PROMPT=kdb> ",
147#endif
148 "MOREPROMPT=more> ",
149 "RADIX=16",
150 "MDCOUNT=8", /* lines of md output */
151 KDB_PLATFORM_ENV,
152 "DTABCOUNT=30",
153 "NOSECT=1",
154};
155
156static const int __nenv = ARRAY_SIZE(__env);
157
158struct task_struct *kdb_curr_task(int cpu)
159{
160 struct task_struct *p = curr_task(cpu);
161#ifdef _TIF_MCA_INIT
162 if ((task_thread_info(p)->flags & _TIF_MCA_INIT) && KDB_TSK(cpu))
163 p = krp->p;
164#endif
165 return p;
166}
167
168/*
169 * Update the permissions flags (kdb_cmd_enabled) to match the
170 * current lockdown state.
171 *
172 * Within this function the calls to security_locked_down() are "lazy". We
173 * avoid calling them if the current value of kdb_cmd_enabled already excludes
174 * flags that might be subject to lockdown. Additionally we deliberately check
175 * the lockdown flags independently (even though read lockdown implies write
176 * lockdown) since that results in both simpler code and clearer messages to
177 * the user on first-time debugger entry.
178 *
179 * The permission masks during a read+write lockdown permits the following
180 * flags: INSPECT, SIGNAL, REBOOT (and ALWAYS_SAFE).
181 *
182 * The INSPECT commands are not blocked during lockdown because they are
183 * not arbitrary memory reads. INSPECT covers the backtrace family (sometimes
184 * forcing them to have no arguments) and lsmod. These commands do expose
185 * some kernel state but do not allow the developer seated at the console to
186 * choose what state is reported. SIGNAL and REBOOT should not be controversial,
187 * given these are allowed for root during lockdown already.
188 */
189static void kdb_check_for_lockdown(void)
190{
191 const int write_flags = KDB_ENABLE_MEM_WRITE |
192 KDB_ENABLE_REG_WRITE |
193 KDB_ENABLE_FLOW_CTRL;
194 const int read_flags = KDB_ENABLE_MEM_READ |
195 KDB_ENABLE_REG_READ;
196
197 bool need_to_lockdown_write = false;
198 bool need_to_lockdown_read = false;
199
200 if (kdb_cmd_enabled & (KDB_ENABLE_ALL | write_flags))
201 need_to_lockdown_write =
202 security_locked_down(LOCKDOWN_DBG_WRITE_KERNEL);
203
204 if (kdb_cmd_enabled & (KDB_ENABLE_ALL | read_flags))
205 need_to_lockdown_read =
206 security_locked_down(LOCKDOWN_DBG_READ_KERNEL);
207
208 /* De-compose KDB_ENABLE_ALL if required */
209 if (need_to_lockdown_write || need_to_lockdown_read)
210 if (kdb_cmd_enabled & KDB_ENABLE_ALL)
211 kdb_cmd_enabled = KDB_ENABLE_MASK & ~KDB_ENABLE_ALL;
212
213 if (need_to_lockdown_write)
214 kdb_cmd_enabled &= ~write_flags;
215
216 if (need_to_lockdown_read)
217 kdb_cmd_enabled &= ~read_flags;
218}
219
220/*
221 * Check whether the flags of the current command, the permissions of the kdb
222 * console and the lockdown state allow a command to be run.
223 */
224static bool kdb_check_flags(kdb_cmdflags_t flags, int permissions,
225 bool no_args)
226{
227 /* permissions comes from userspace so needs massaging slightly */
228 permissions &= KDB_ENABLE_MASK;
229 permissions |= KDB_ENABLE_ALWAYS_SAFE;
230
231 /* some commands change group when launched with no arguments */
232 if (no_args)
233 permissions |= permissions << KDB_ENABLE_NO_ARGS_SHIFT;
234
235 flags |= KDB_ENABLE_ALL;
236
237 return permissions & flags;
238}
239
240/*
241 * kdbgetenv - This function will return the character string value of
242 * an environment variable.
243 * Parameters:
244 * match A character string representing an environment variable.
245 * Returns:
246 * NULL No environment variable matches 'match'
247 * char* Pointer to string value of environment variable.
248 */
249char *kdbgetenv(const char *match)
250{
251 char **ep = __env;
252 int matchlen = strlen(match);
253 int i;
254
255 for (i = 0; i < __nenv; i++) {
256 char *e = *ep++;
257
258 if (!e)
259 continue;
260
261 if ((strncmp(match, e, matchlen) == 0)
262 && ((e[matchlen] == '\0')
263 || (e[matchlen] == '='))) {
264 char *cp = strchr(e, '=');
265 return cp ? ++cp : "";
266 }
267 }
268 return NULL;
269}
270
271/*
272 * kdballocenv - This function is used to allocate bytes for
273 * environment entries.
274 * Parameters:
275 * match A character string representing a numeric value
276 * Outputs:
277 * *value the unsigned long representation of the env variable 'match'
278 * Returns:
279 * Zero on success, a kdb diagnostic on failure.
280 * Remarks:
281 * We use a static environment buffer (envbuffer) to hold the values
282 * of dynamically generated environment variables (see kdb_set). Buffer
283 * space once allocated is never free'd, so over time, the amount of space
284 * (currently 512 bytes) will be exhausted if env variables are changed
285 * frequently.
286 */
287static char *kdballocenv(size_t bytes)
288{
289#define KDB_ENVBUFSIZE 512
290 static char envbuffer[KDB_ENVBUFSIZE];
291 static int envbufsize;
292 char *ep = NULL;
293
294 if ((KDB_ENVBUFSIZE - envbufsize) >= bytes) {
295 ep = &envbuffer[envbufsize];
296 envbufsize += bytes;
297 }
298 return ep;
299}
300
301/*
302 * kdbgetulenv - This function will return the value of an unsigned
303 * long-valued environment variable.
304 * Parameters:
305 * match A character string representing a numeric value
306 * Outputs:
307 * *value the unsigned long representation of the env variable 'match'
308 * Returns:
309 * Zero on success, a kdb diagnostic on failure.
310 */
311static int kdbgetulenv(const char *match, unsigned long *value)
312{
313 char *ep;
314
315 ep = kdbgetenv(match);
316 if (!ep)
317 return KDB_NOTENV;
318 if (strlen(ep) == 0)
319 return KDB_NOENVVALUE;
320
321 *value = simple_strtoul(ep, NULL, 0);
322
323 return 0;
324}
325
326/*
327 * kdbgetintenv - This function will return the value of an
328 * integer-valued environment variable.
329 * Parameters:
330 * match A character string representing an integer-valued env variable
331 * Outputs:
332 * *value the integer representation of the environment variable 'match'
333 * Returns:
334 * Zero on success, a kdb diagnostic on failure.
335 */
336int kdbgetintenv(const char *match, int *value)
337{
338 unsigned long val;
339 int diag;
340
341 diag = kdbgetulenv(match, &val);
342 if (!diag)
343 *value = (int) val;
344 return diag;
345}
346
347/*
348 * kdb_setenv() - Alter an existing environment variable or create a new one.
349 * @var: Name of the variable
350 * @val: Value of the variable
351 *
352 * Return: Zero on success, a kdb diagnostic on failure.
353 */
354static int kdb_setenv(const char *var, const char *val)
355{
356 int i;
357 char *ep;
358 size_t varlen, vallen;
359
360 varlen = strlen(var);
361 vallen = strlen(val);
362 ep = kdballocenv(varlen + vallen + 2);
363 if (ep == (char *)0)
364 return KDB_ENVBUFFULL;
365
366 sprintf(ep, "%s=%s", var, val);
367
368 for (i = 0; i < __nenv; i++) {
369 if (__env[i]
370 && ((strncmp(__env[i], var, varlen) == 0)
371 && ((__env[i][varlen] == '\0')
372 || (__env[i][varlen] == '=')))) {
373 __env[i] = ep;
374 return 0;
375 }
376 }
377
378 /*
379 * Wasn't existing variable. Fit into slot.
380 */
381 for (i = 0; i < __nenv-1; i++) {
382 if (__env[i] == (char *)0) {
383 __env[i] = ep;
384 return 0;
385 }
386 }
387
388 return KDB_ENVFULL;
389}
390
391/*
392 * kdb_printenv() - Display the current environment variables.
393 */
394static void kdb_printenv(void)
395{
396 int i;
397
398 for (i = 0; i < __nenv; i++) {
399 if (__env[i])
400 kdb_printf("%s\n", __env[i]);
401 }
402}
403
404/*
405 * kdbgetularg - This function will convert a numeric string into an
406 * unsigned long value.
407 * Parameters:
408 * arg A character string representing a numeric value
409 * Outputs:
410 * *value the unsigned long representation of arg.
411 * Returns:
412 * Zero on success, a kdb diagnostic on failure.
413 */
414int kdbgetularg(const char *arg, unsigned long *value)
415{
416 char *endp;
417 unsigned long val;
418
419 val = simple_strtoul(arg, &endp, 0);
420
421 if (endp == arg) {
422 /*
423 * Also try base 16, for us folks too lazy to type the
424 * leading 0x...
425 */
426 val = simple_strtoul(arg, &endp, 16);
427 if (endp == arg)
428 return KDB_BADINT;
429 }
430
431 *value = val;
432
433 return 0;
434}
435
436int kdbgetu64arg(const char *arg, u64 *value)
437{
438 char *endp;
439 u64 val;
440
441 val = simple_strtoull(arg, &endp, 0);
442
443 if (endp == arg) {
444
445 val = simple_strtoull(arg, &endp, 16);
446 if (endp == arg)
447 return KDB_BADINT;
448 }
449
450 *value = val;
451
452 return 0;
453}
454
455/*
456 * kdb_set - This function implements the 'set' command. Alter an
457 * existing environment variable or create a new one.
458 */
459int kdb_set(int argc, const char **argv)
460{
461 /*
462 * we can be invoked two ways:
463 * set var=value argv[1]="var", argv[2]="value"
464 * set var = value argv[1]="var", argv[2]="=", argv[3]="value"
465 * - if the latter, shift 'em down.
466 */
467 if (argc == 3) {
468 argv[2] = argv[3];
469 argc--;
470 }
471
472 if (argc != 2)
473 return KDB_ARGCOUNT;
474
475 /*
476 * Censor sensitive variables
477 */
478 if (strcmp(argv[1], "PROMPT") == 0 &&
479 !kdb_check_flags(KDB_ENABLE_MEM_READ, kdb_cmd_enabled, false))
480 return KDB_NOPERM;
481
482 /*
483 * Check for internal variables
484 */
485 if (strcmp(argv[1], "KDBDEBUG") == 0) {
486 unsigned int debugflags;
487 char *cp;
488
489 debugflags = simple_strtoul(argv[2], &cp, 0);
490 if (cp == argv[2] || debugflags & ~KDB_DEBUG_FLAG_MASK) {
491 kdb_printf("kdb: illegal debug flags '%s'\n",
492 argv[2]);
493 return 0;
494 }
495 kdb_flags = (kdb_flags & ~KDB_DEBUG(MASK))
496 | (debugflags << KDB_DEBUG_FLAG_SHIFT);
497
498 return 0;
499 }
500
501 /*
502 * Tokenizer squashed the '=' sign. argv[1] is variable
503 * name, argv[2] = value.
504 */
505 return kdb_setenv(argv[1], argv[2]);
506}
507
508static int kdb_check_regs(void)
509{
510 if (!kdb_current_regs) {
511 kdb_printf("No current kdb registers."
512 " You may need to select another task\n");
513 return KDB_BADREG;
514 }
515 return 0;
516}
517
518/*
519 * kdbgetaddrarg - This function is responsible for parsing an
520 * address-expression and returning the value of the expression,
521 * symbol name, and offset to the caller.
522 *
523 * The argument may consist of a numeric value (decimal or
524 * hexadecimal), a symbol name, a register name (preceded by the
525 * percent sign), an environment variable with a numeric value
526 * (preceded by a dollar sign) or a simple arithmetic expression
527 * consisting of a symbol name, +/-, and a numeric constant value
528 * (offset).
529 * Parameters:
530 * argc - count of arguments in argv
531 * argv - argument vector
532 * *nextarg - index to next unparsed argument in argv[]
533 * regs - Register state at time of KDB entry
534 * Outputs:
535 * *value - receives the value of the address-expression
536 * *offset - receives the offset specified, if any
537 * *name - receives the symbol name, if any
538 * *nextarg - index to next unparsed argument in argv[]
539 * Returns:
540 * zero is returned on success, a kdb diagnostic code is
541 * returned on error.
542 */
543int kdbgetaddrarg(int argc, const char **argv, int *nextarg,
544 unsigned long *value, long *offset,
545 char **name)
546{
547 unsigned long addr;
548 unsigned long off = 0;
549 int positive;
550 int diag;
551 int found = 0;
552 char *symname;
553 char symbol = '\0';
554 char *cp;
555 kdb_symtab_t symtab;
556
557 /*
558 * If the enable flags prohibit both arbitrary memory access
559 * and flow control then there are no reasonable grounds to
560 * provide symbol lookup.
561 */
562 if (!kdb_check_flags(KDB_ENABLE_MEM_READ | KDB_ENABLE_FLOW_CTRL,
563 kdb_cmd_enabled, false))
564 return KDB_NOPERM;
565
566 /*
567 * Process arguments which follow the following syntax:
568 *
569 * symbol | numeric-address [+/- numeric-offset]
570 * %register
571 * $environment-variable
572 */
573
574 if (*nextarg > argc)
575 return KDB_ARGCOUNT;
576
577 symname = (char *)argv[*nextarg];
578
579 /*
580 * If there is no whitespace between the symbol
581 * or address and the '+' or '-' symbols, we
582 * remember the character and replace it with a
583 * null so the symbol/value can be properly parsed
584 */
585 cp = strpbrk(symname, "+-");
586 if (cp != NULL) {
587 symbol = *cp;
588 *cp++ = '\0';
589 }
590
591 if (symname[0] == '$') {
592 diag = kdbgetulenv(&symname[1], &addr);
593 if (diag)
594 return diag;
595 } else if (symname[0] == '%') {
596 diag = kdb_check_regs();
597 if (diag)
598 return diag;
599 /* Implement register values with % at a later time as it is
600 * arch optional.
601 */
602 return KDB_NOTIMP;
603 } else {
604 found = kdbgetsymval(symname, &symtab);
605 if (found) {
606 addr = symtab.sym_start;
607 } else {
608 diag = kdbgetularg(argv[*nextarg], &addr);
609 if (diag)
610 return diag;
611 }
612 }
613
614 if (!found)
615 found = kdbnearsym(addr, &symtab);
616
617 (*nextarg)++;
618
619 if (name)
620 *name = symname;
621 if (value)
622 *value = addr;
623 if (offset && name && *name)
624 *offset = addr - symtab.sym_start;
625
626 if ((*nextarg > argc)
627 && (symbol == '\0'))
628 return 0;
629
630 /*
631 * check for +/- and offset
632 */
633
634 if (symbol == '\0') {
635 if ((argv[*nextarg][0] != '+')
636 && (argv[*nextarg][0] != '-')) {
637 /*
638 * Not our argument. Return.
639 */
640 return 0;
641 } else {
642 positive = (argv[*nextarg][0] == '+');
643 (*nextarg)++;
644 }
645 } else
646 positive = (symbol == '+');
647
648 /*
649 * Now there must be an offset!
650 */
651 if ((*nextarg > argc)
652 && (symbol == '\0')) {
653 return KDB_INVADDRFMT;
654 }
655
656 if (!symbol) {
657 cp = (char *)argv[*nextarg];
658 (*nextarg)++;
659 }
660
661 diag = kdbgetularg(cp, &off);
662 if (diag)
663 return diag;
664
665 if (!positive)
666 off = -off;
667
668 if (offset)
669 *offset += off;
670
671 if (value)
672 *value += off;
673
674 return 0;
675}
676
677static void kdb_cmderror(int diag)
678{
679 int i;
680
681 if (diag >= 0) {
682 kdb_printf("no error detected (diagnostic is %d)\n", diag);
683 return;
684 }
685
686 for (i = 0; i < __nkdb_err; i++) {
687 if (kdbmsgs[i].km_diag == diag) {
688 kdb_printf("diag: %d: %s\n", diag, kdbmsgs[i].km_msg);
689 return;
690 }
691 }
692
693 kdb_printf("Unknown diag %d\n", -diag);
694}
695
696/*
697 * kdb_defcmd, kdb_defcmd2 - This function implements the 'defcmd'
698 * command which defines one command as a set of other commands,
699 * terminated by endefcmd. kdb_defcmd processes the initial
700 * 'defcmd' command, kdb_defcmd2 is invoked from kdb_parse for
701 * the following commands until 'endefcmd'.
702 * Inputs:
703 * argc argument count
704 * argv argument vector
705 * Returns:
706 * zero for success, a kdb diagnostic if error
707 */
708struct kdb_macro {
709 kdbtab_t cmd; /* Macro command */
710 struct list_head statements; /* Associated statement list */
711};
712
713struct kdb_macro_statement {
714 char *statement; /* Statement text */
715 struct list_head list_node; /* Statement list node */
716};
717
718static struct kdb_macro *kdb_macro;
719static bool defcmd_in_progress;
720
721/* Forward references */
722static int kdb_exec_defcmd(int argc, const char **argv);
723
724static int kdb_defcmd2(const char *cmdstr, const char *argv0)
725{
726 struct kdb_macro_statement *kms;
727
728 if (!kdb_macro)
729 return KDB_NOTIMP;
730
731 if (strcmp(argv0, "endefcmd") == 0) {
732 defcmd_in_progress = false;
733 if (!list_empty(&kdb_macro->statements))
734 kdb_register(&kdb_macro->cmd);
735 return 0;
736 }
737
738 kms = kmalloc(sizeof(*kms), GFP_KDB);
739 if (!kms) {
740 kdb_printf("Could not allocate new kdb macro command: %s\n",
741 cmdstr);
742 return KDB_NOTIMP;
743 }
744
745 kms->statement = kdb_strdup(cmdstr, GFP_KDB);
746 list_add_tail(&kms->list_node, &kdb_macro->statements);
747
748 return 0;
749}
750
751static int kdb_defcmd(int argc, const char **argv)
752{
753 kdbtab_t *mp;
754
755 if (defcmd_in_progress) {
756 kdb_printf("kdb: nested defcmd detected, assuming missing "
757 "endefcmd\n");
758 kdb_defcmd2("endefcmd", "endefcmd");
759 }
760 if (argc == 0) {
761 kdbtab_t *kp;
762 struct kdb_macro *kmp;
763 struct kdb_macro_statement *kms;
764
765 list_for_each_entry(kp, &kdb_cmds_head, list_node) {
766 if (kp->func == kdb_exec_defcmd) {
767 kdb_printf("defcmd %s \"%s\" \"%s\"\n",
768 kp->name, kp->usage, kp->help);
769 kmp = container_of(kp, struct kdb_macro, cmd);
770 list_for_each_entry(kms, &kmp->statements,
771 list_node)
772 kdb_printf("%s", kms->statement);
773 kdb_printf("endefcmd\n");
774 }
775 }
776 return 0;
777 }
778 if (argc != 3)
779 return KDB_ARGCOUNT;
780 if (in_dbg_master()) {
781 kdb_printf("Command only available during kdb_init()\n");
782 return KDB_NOTIMP;
783 }
784 kdb_macro = kzalloc(sizeof(*kdb_macro), GFP_KDB);
785 if (!kdb_macro)
786 goto fail_defcmd;
787
788 mp = &kdb_macro->cmd;
789 mp->func = kdb_exec_defcmd;
790 mp->minlen = 0;
791 mp->flags = KDB_ENABLE_ALWAYS_SAFE;
792 mp->name = kdb_strdup(argv[1], GFP_KDB);
793 if (!mp->name)
794 goto fail_name;
795 mp->usage = kdb_strdup(argv[2], GFP_KDB);
796 if (!mp->usage)
797 goto fail_usage;
798 mp->help = kdb_strdup(argv[3], GFP_KDB);
799 if (!mp->help)
800 goto fail_help;
801 if (mp->usage[0] == '"') {
802 strcpy(mp->usage, argv[2]+1);
803 mp->usage[strlen(mp->usage)-1] = '\0';
804 }
805 if (mp->help[0] == '"') {
806 strcpy(mp->help, argv[3]+1);
807 mp->help[strlen(mp->help)-1] = '\0';
808 }
809
810 INIT_LIST_HEAD(&kdb_macro->statements);
811 defcmd_in_progress = true;
812 return 0;
813fail_help:
814 kfree(mp->usage);
815fail_usage:
816 kfree(mp->name);
817fail_name:
818 kfree(kdb_macro);
819fail_defcmd:
820 kdb_printf("Could not allocate new kdb_macro entry for %s\n", argv[1]);
821 return KDB_NOTIMP;
822}
823
824/*
825 * kdb_exec_defcmd - Execute the set of commands associated with this
826 * defcmd name.
827 * Inputs:
828 * argc argument count
829 * argv argument vector
830 * Returns:
831 * zero for success, a kdb diagnostic if error
832 */
833static int kdb_exec_defcmd(int argc, const char **argv)
834{
835 int ret;
836 kdbtab_t *kp;
837 struct kdb_macro *kmp;
838 struct kdb_macro_statement *kms;
839
840 if (argc != 0)
841 return KDB_ARGCOUNT;
842
843 list_for_each_entry(kp, &kdb_cmds_head, list_node) {
844 if (strcmp(kp->name, argv[0]) == 0)
845 break;
846 }
847 if (list_entry_is_head(kp, &kdb_cmds_head, list_node)) {
848 kdb_printf("kdb_exec_defcmd: could not find commands for %s\n",
849 argv[0]);
850 return KDB_NOTIMP;
851 }
852 kmp = container_of(kp, struct kdb_macro, cmd);
853 list_for_each_entry(kms, &kmp->statements, list_node) {
854 /*
855 * Recursive use of kdb_parse, do not use argv after this point.
856 */
857 argv = NULL;
858 kdb_printf("[%s]kdb> %s\n", kmp->cmd.name, kms->statement);
859 ret = kdb_parse(kms->statement);
860 if (ret)
861 return ret;
862 }
863 return 0;
864}
865
866/* Command history */
867#define KDB_CMD_HISTORY_COUNT 32
868#define CMD_BUFLEN 200 /* kdb_printf: max printline
869 * size == 256 */
870static unsigned int cmd_head, cmd_tail;
871static unsigned int cmdptr;
872static char cmd_hist[KDB_CMD_HISTORY_COUNT][CMD_BUFLEN];
873static char cmd_cur[CMD_BUFLEN];
874
875/*
876 * The "str" argument may point to something like | grep xyz
877 */
878static void parse_grep(const char *str)
879{
880 int len;
881 char *cp = (char *)str, *cp2;
882
883 /* sanity check: we should have been called with the \ first */
884 if (*cp != '|')
885 return;
886 cp++;
887 while (isspace(*cp))
888 cp++;
889 if (!str_has_prefix(cp, "grep ")) {
890 kdb_printf("invalid 'pipe', see grephelp\n");
891 return;
892 }
893 cp += 5;
894 while (isspace(*cp))
895 cp++;
896 cp2 = strchr(cp, '\n');
897 if (cp2)
898 *cp2 = '\0'; /* remove the trailing newline */
899 len = strlen(cp);
900 if (len == 0) {
901 kdb_printf("invalid 'pipe', see grephelp\n");
902 return;
903 }
904 /* now cp points to a nonzero length search string */
905 if (*cp == '"') {
906 /* allow it be "x y z" by removing the "'s - there must
907 be two of them */
908 cp++;
909 cp2 = strchr(cp, '"');
910 if (!cp2) {
911 kdb_printf("invalid quoted string, see grephelp\n");
912 return;
913 }
914 *cp2 = '\0'; /* end the string where the 2nd " was */
915 }
916 kdb_grep_leading = 0;
917 if (*cp == '^') {
918 kdb_grep_leading = 1;
919 cp++;
920 }
921 len = strlen(cp);
922 kdb_grep_trailing = 0;
923 if (*(cp+len-1) == '$') {
924 kdb_grep_trailing = 1;
925 *(cp+len-1) = '\0';
926 }
927 len = strlen(cp);
928 if (!len)
929 return;
930 if (len >= KDB_GREP_STRLEN) {
931 kdb_printf("search string too long\n");
932 return;
933 }
934 strcpy(kdb_grep_string, cp);
935 kdb_grepping_flag++;
936 return;
937}
938
939/*
940 * kdb_parse - Parse the command line, search the command table for a
941 * matching command and invoke the command function. This
942 * function may be called recursively, if it is, the second call
943 * will overwrite argv and cbuf. It is the caller's
944 * responsibility to save their argv if they recursively call
945 * kdb_parse().
946 * Parameters:
947 * cmdstr The input command line to be parsed.
948 * regs The registers at the time kdb was entered.
949 * Returns:
950 * Zero for success, a kdb diagnostic if failure.
951 * Remarks:
952 * Limited to 20 tokens.
953 *
954 * Real rudimentary tokenization. Basically only whitespace
955 * is considered a token delimiter (but special consideration
956 * is taken of the '=' sign as used by the 'set' command).
957 *
958 * The algorithm used to tokenize the input string relies on
959 * there being at least one whitespace (or otherwise useless)
960 * character between tokens as the character immediately following
961 * the token is altered in-place to a null-byte to terminate the
962 * token string.
963 */
964
965#define MAXARGC 20
966
967int kdb_parse(const char *cmdstr)
968{
969 static char *argv[MAXARGC];
970 static int argc;
971 static char cbuf[CMD_BUFLEN+2];
972 char *cp;
973 char *cpp, quoted;
974 kdbtab_t *tp;
975 int escaped, ignore_errors = 0, check_grep = 0;
976
977 /*
978 * First tokenize the command string.
979 */
980 cp = (char *)cmdstr;
981
982 if (KDB_FLAG(CMD_INTERRUPT)) {
983 /* Previous command was interrupted, newline must not
984 * repeat the command */
985 KDB_FLAG_CLEAR(CMD_INTERRUPT);
986 KDB_STATE_SET(PAGER);
987 argc = 0; /* no repeat */
988 }
989
990 if (*cp != '\n' && *cp != '\0') {
991 argc = 0;
992 cpp = cbuf;
993 while (*cp) {
994 /* skip whitespace */
995 while (isspace(*cp))
996 cp++;
997 if ((*cp == '\0') || (*cp == '\n') ||
998 (*cp == '#' && !defcmd_in_progress))
999 break;
1000 /* special case: check for | grep pattern */
1001 if (*cp == '|') {
1002 check_grep++;
1003 break;
1004 }
1005 if (cpp >= cbuf + CMD_BUFLEN) {
1006 kdb_printf("kdb_parse: command buffer "
1007 "overflow, command ignored\n%s\n",
1008 cmdstr);
1009 return KDB_NOTFOUND;
1010 }
1011 if (argc >= MAXARGC - 1) {
1012 kdb_printf("kdb_parse: too many arguments, "
1013 "command ignored\n%s\n", cmdstr);
1014 return KDB_NOTFOUND;
1015 }
1016 argv[argc++] = cpp;
1017 escaped = 0;
1018 quoted = '\0';
1019 /* Copy to next unquoted and unescaped
1020 * whitespace or '=' */
1021 while (*cp && *cp != '\n' &&
1022 (escaped || quoted || !isspace(*cp))) {
1023 if (cpp >= cbuf + CMD_BUFLEN)
1024 break;
1025 if (escaped) {
1026 escaped = 0;
1027 *cpp++ = *cp++;
1028 continue;
1029 }
1030 if (*cp == '\\') {
1031 escaped = 1;
1032 ++cp;
1033 continue;
1034 }
1035 if (*cp == quoted)
1036 quoted = '\0';
1037 else if (*cp == '\'' || *cp == '"')
1038 quoted = *cp;
1039 *cpp = *cp++;
1040 if (*cpp == '=' && !quoted)
1041 break;
1042 ++cpp;
1043 }
1044 *cpp++ = '\0'; /* Squash a ws or '=' character */
1045 }
1046 }
1047 if (!argc)
1048 return 0;
1049 if (check_grep)
1050 parse_grep(cp);
1051 if (defcmd_in_progress) {
1052 int result = kdb_defcmd2(cmdstr, argv[0]);
1053 if (!defcmd_in_progress) {
1054 argc = 0; /* avoid repeat on endefcmd */
1055 *(argv[0]) = '\0';
1056 }
1057 return result;
1058 }
1059 if (argv[0][0] == '-' && argv[0][1] &&
1060 (argv[0][1] < '0' || argv[0][1] > '9')) {
1061 ignore_errors = 1;
1062 ++argv[0];
1063 }
1064
1065 list_for_each_entry(tp, &kdb_cmds_head, list_node) {
1066 /*
1067 * If this command is allowed to be abbreviated,
1068 * check to see if this is it.
1069 */
1070 if (tp->minlen && (strlen(argv[0]) <= tp->minlen) &&
1071 (strncmp(argv[0], tp->name, tp->minlen) == 0))
1072 break;
1073
1074 if (strcmp(argv[0], tp->name) == 0)
1075 break;
1076 }
1077
1078 /*
1079 * If we don't find a command by this name, see if the first
1080 * few characters of this match any of the known commands.
1081 * e.g., md1c20 should match md.
1082 */
1083 if (list_entry_is_head(tp, &kdb_cmds_head, list_node)) {
1084 list_for_each_entry(tp, &kdb_cmds_head, list_node) {
1085 if (strncmp(argv[0], tp->name, strlen(tp->name)) == 0)
1086 break;
1087 }
1088 }
1089
1090 if (!list_entry_is_head(tp, &kdb_cmds_head, list_node)) {
1091 int result;
1092
1093 if (!kdb_check_flags(tp->flags, kdb_cmd_enabled, argc <= 1))
1094 return KDB_NOPERM;
1095
1096 KDB_STATE_SET(CMD);
1097 result = (*tp->func)(argc-1, (const char **)argv);
1098 if (result && ignore_errors && result > KDB_CMD_GO)
1099 result = 0;
1100 KDB_STATE_CLEAR(CMD);
1101
1102 if (tp->flags & KDB_REPEAT_WITH_ARGS)
1103 return result;
1104
1105 argc = tp->flags & KDB_REPEAT_NO_ARGS ? 1 : 0;
1106 if (argv[argc])
1107 *(argv[argc]) = '\0';
1108 return result;
1109 }
1110
1111 /*
1112 * If the input with which we were presented does not
1113 * map to an existing command, attempt to parse it as an
1114 * address argument and display the result. Useful for
1115 * obtaining the address of a variable, or the nearest symbol
1116 * to an address contained in a register.
1117 */
1118 {
1119 unsigned long value;
1120 char *name = NULL;
1121 long offset;
1122 int nextarg = 0;
1123
1124 if (kdbgetaddrarg(0, (const char **)argv, &nextarg,
1125 &value, &offset, &name)) {
1126 return KDB_NOTFOUND;
1127 }
1128
1129 kdb_printf("%s = ", argv[0]);
1130 kdb_symbol_print(value, NULL, KDB_SP_DEFAULT);
1131 kdb_printf("\n");
1132 return 0;
1133 }
1134}
1135
1136
1137static int handle_ctrl_cmd(char *cmd)
1138{
1139#define CTRL_P 16
1140#define CTRL_N 14
1141
1142 /* initial situation */
1143 if (cmd_head == cmd_tail)
1144 return 0;
1145 switch (*cmd) {
1146 case CTRL_P:
1147 if (cmdptr != cmd_tail)
1148 cmdptr = (cmdptr + KDB_CMD_HISTORY_COUNT - 1) %
1149 KDB_CMD_HISTORY_COUNT;
1150 strscpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1151 return 1;
1152 case CTRL_N:
1153 if (cmdptr != cmd_head)
1154 cmdptr = (cmdptr+1) % KDB_CMD_HISTORY_COUNT;
1155 strscpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1156 return 1;
1157 }
1158 return 0;
1159}
1160
1161/*
1162 * kdb_reboot - This function implements the 'reboot' command. Reboot
1163 * the system immediately, or loop for ever on failure.
1164 */
1165static int kdb_reboot(int argc, const char **argv)
1166{
1167 emergency_restart();
1168 kdb_printf("Hmm, kdb_reboot did not reboot, spinning here\n");
1169 while (1)
1170 cpu_relax();
1171 /* NOTREACHED */
1172 return 0;
1173}
1174
1175static void kdb_dumpregs(struct pt_regs *regs)
1176{
1177 int old_lvl = console_loglevel;
1178 console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH;
1179 kdb_trap_printk++;
1180 show_regs(regs);
1181 kdb_trap_printk--;
1182 kdb_printf("\n");
1183 console_loglevel = old_lvl;
1184}
1185
1186static void kdb_set_current_task(struct task_struct *p)
1187{
1188 kdb_current_task = p;
1189
1190 if (kdb_task_has_cpu(p)) {
1191 kdb_current_regs = KDB_TSKREGS(kdb_process_cpu(p));
1192 return;
1193 }
1194 kdb_current_regs = NULL;
1195}
1196
1197static void drop_newline(char *buf)
1198{
1199 size_t len = strlen(buf);
1200
1201 if (len == 0)
1202 return;
1203 if (*(buf + len - 1) == '\n')
1204 *(buf + len - 1) = '\0';
1205}
1206
1207/*
1208 * kdb_local - The main code for kdb. This routine is invoked on a
1209 * specific processor, it is not global. The main kdb() routine
1210 * ensures that only one processor at a time is in this routine.
1211 * This code is called with the real reason code on the first
1212 * entry to a kdb session, thereafter it is called with reason
1213 * SWITCH, even if the user goes back to the original cpu.
1214 * Inputs:
1215 * reason The reason KDB was invoked
1216 * error The hardware-defined error code
1217 * regs The exception frame at time of fault/breakpoint.
1218 * db_result Result code from the break or debug point.
1219 * Returns:
1220 * 0 KDB was invoked for an event which it wasn't responsible
1221 * 1 KDB handled the event for which it was invoked.
1222 * KDB_CMD_GO User typed 'go'.
1223 * KDB_CMD_CPU User switched to another cpu.
1224 * KDB_CMD_SS Single step.
1225 */
1226static int kdb_local(kdb_reason_t reason, int error, struct pt_regs *regs,
1227 kdb_dbtrap_t db_result)
1228{
1229 char *cmdbuf;
1230 int diag;
1231 struct task_struct *kdb_current =
1232 kdb_curr_task(raw_smp_processor_id());
1233
1234 KDB_DEBUG_STATE("kdb_local 1", reason);
1235
1236 kdb_check_for_lockdown();
1237
1238 kdb_go_count = 0;
1239 if (reason == KDB_REASON_DEBUG) {
1240 /* special case below */
1241 } else {
1242 kdb_printf("\nEntering kdb (current=0x%px, pid %d) ",
1243 kdb_current, kdb_current ? kdb_current->pid : 0);
1244#if defined(CONFIG_SMP)
1245 kdb_printf("on processor %d ", raw_smp_processor_id());
1246#endif
1247 }
1248
1249 switch (reason) {
1250 case KDB_REASON_DEBUG:
1251 {
1252 /*
1253 * If re-entering kdb after a single step
1254 * command, don't print the message.
1255 */
1256 switch (db_result) {
1257 case KDB_DB_BPT:
1258 kdb_printf("\nEntering kdb (0x%px, pid %d) ",
1259 kdb_current, kdb_current->pid);
1260#if defined(CONFIG_SMP)
1261 kdb_printf("on processor %d ", raw_smp_processor_id());
1262#endif
1263 kdb_printf("due to Debug @ " kdb_machreg_fmt "\n",
1264 instruction_pointer(regs));
1265 break;
1266 case KDB_DB_SS:
1267 break;
1268 case KDB_DB_SSBPT:
1269 KDB_DEBUG_STATE("kdb_local 4", reason);
1270 return 1; /* kdba_db_trap did the work */
1271 default:
1272 kdb_printf("kdb: Bad result from kdba_db_trap: %d\n",
1273 db_result);
1274 break;
1275 }
1276
1277 }
1278 break;
1279 case KDB_REASON_ENTER:
1280 if (KDB_STATE(KEYBOARD))
1281 kdb_printf("due to Keyboard Entry\n");
1282 else
1283 kdb_printf("due to KDB_ENTER()\n");
1284 break;
1285 case KDB_REASON_KEYBOARD:
1286 KDB_STATE_SET(KEYBOARD);
1287 kdb_printf("due to Keyboard Entry\n");
1288 break;
1289 case KDB_REASON_ENTER_SLAVE:
1290 /* drop through, slaves only get released via cpu switch */
1291 case KDB_REASON_SWITCH:
1292 kdb_printf("due to cpu switch\n");
1293 break;
1294 case KDB_REASON_OOPS:
1295 kdb_printf("Oops: %s\n", kdb_diemsg);
1296 kdb_printf("due to oops @ " kdb_machreg_fmt "\n",
1297 instruction_pointer(regs));
1298 kdb_dumpregs(regs);
1299 break;
1300 case KDB_REASON_SYSTEM_NMI:
1301 kdb_printf("due to System NonMaskable Interrupt\n");
1302 break;
1303 case KDB_REASON_NMI:
1304 kdb_printf("due to NonMaskable Interrupt @ "
1305 kdb_machreg_fmt "\n",
1306 instruction_pointer(regs));
1307 break;
1308 case KDB_REASON_SSTEP:
1309 case KDB_REASON_BREAK:
1310 kdb_printf("due to %s @ " kdb_machreg_fmt "\n",
1311 reason == KDB_REASON_BREAK ?
1312 "Breakpoint" : "SS trap", instruction_pointer(regs));
1313 /*
1314 * Determine if this breakpoint is one that we
1315 * are interested in.
1316 */
1317 if (db_result != KDB_DB_BPT) {
1318 kdb_printf("kdb: error return from kdba_bp_trap: %d\n",
1319 db_result);
1320 KDB_DEBUG_STATE("kdb_local 6", reason);
1321 return 0; /* Not for us, dismiss it */
1322 }
1323 break;
1324 case KDB_REASON_RECURSE:
1325 kdb_printf("due to Recursion @ " kdb_machreg_fmt "\n",
1326 instruction_pointer(regs));
1327 break;
1328 default:
1329 kdb_printf("kdb: unexpected reason code: %d\n", reason);
1330 KDB_DEBUG_STATE("kdb_local 8", reason);
1331 return 0; /* Not for us, dismiss it */
1332 }
1333
1334 while (1) {
1335 /*
1336 * Initialize pager context.
1337 */
1338 kdb_nextline = 1;
1339 KDB_STATE_CLEAR(SUPPRESS);
1340 kdb_grepping_flag = 0;
1341 /* ensure the old search does not leak into '/' commands */
1342 kdb_grep_string[0] = '\0';
1343
1344 cmdbuf = cmd_cur;
1345 *cmdbuf = '\0';
1346 *(cmd_hist[cmd_head]) = '\0';
1347
1348do_full_getstr:
1349 /* PROMPT can only be set if we have MEM_READ permission. */
1350 snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"),
1351 raw_smp_processor_id());
1352 if (defcmd_in_progress)
1353 strncat(kdb_prompt_str, "[defcmd]", CMD_BUFLEN);
1354
1355 /*
1356 * Fetch command from keyboard
1357 */
1358 cmdbuf = kdb_getstr(cmdbuf, CMD_BUFLEN, kdb_prompt_str);
1359 if (*cmdbuf != '\n') {
1360 if (*cmdbuf < 32) {
1361 if (cmdptr == cmd_head) {
1362 strscpy(cmd_hist[cmd_head], cmd_cur,
1363 CMD_BUFLEN);
1364 *(cmd_hist[cmd_head] +
1365 strlen(cmd_hist[cmd_head])-1) = '\0';
1366 }
1367 if (!handle_ctrl_cmd(cmdbuf))
1368 *(cmd_cur+strlen(cmd_cur)-1) = '\0';
1369 cmdbuf = cmd_cur;
1370 goto do_full_getstr;
1371 } else {
1372 strscpy(cmd_hist[cmd_head], cmd_cur,
1373 CMD_BUFLEN);
1374 }
1375
1376 cmd_head = (cmd_head+1) % KDB_CMD_HISTORY_COUNT;
1377 if (cmd_head == cmd_tail)
1378 cmd_tail = (cmd_tail+1) % KDB_CMD_HISTORY_COUNT;
1379 }
1380
1381 cmdptr = cmd_head;
1382 diag = kdb_parse(cmdbuf);
1383 if (diag == KDB_NOTFOUND) {
1384 drop_newline(cmdbuf);
1385 kdb_printf("Unknown kdb command: '%s'\n", cmdbuf);
1386 diag = 0;
1387 }
1388 if (diag == KDB_CMD_GO
1389 || diag == KDB_CMD_CPU
1390 || diag == KDB_CMD_SS
1391 || diag == KDB_CMD_KGDB)
1392 break;
1393
1394 if (diag)
1395 kdb_cmderror(diag);
1396 }
1397 KDB_DEBUG_STATE("kdb_local 9", diag);
1398 return diag;
1399}
1400
1401
1402/*
1403 * kdb_print_state - Print the state data for the current processor
1404 * for debugging.
1405 * Inputs:
1406 * text Identifies the debug point
1407 * value Any integer value to be printed, e.g. reason code.
1408 */
1409void kdb_print_state(const char *text, int value)
1410{
1411 kdb_printf("state: %s cpu %d value %d initial %d state %x\n",
1412 text, raw_smp_processor_id(), value, kdb_initial_cpu,
1413 kdb_state);
1414}
1415
1416/*
1417 * kdb_main_loop - After initial setup and assignment of the
1418 * controlling cpu, all cpus are in this loop. One cpu is in
1419 * control and will issue the kdb prompt, the others will spin
1420 * until 'go' or cpu switch.
1421 *
1422 * To get a consistent view of the kernel stacks for all
1423 * processes, this routine is invoked from the main kdb code via
1424 * an architecture specific routine. kdba_main_loop is
1425 * responsible for making the kernel stacks consistent for all
1426 * processes, there should be no difference between a blocked
1427 * process and a running process as far as kdb is concerned.
1428 * Inputs:
1429 * reason The reason KDB was invoked
1430 * error The hardware-defined error code
1431 * reason2 kdb's current reason code.
1432 * Initially error but can change
1433 * according to kdb state.
1434 * db_result Result code from break or debug point.
1435 * regs The exception frame at time of fault/breakpoint.
1436 * should always be valid.
1437 * Returns:
1438 * 0 KDB was invoked for an event which it wasn't responsible
1439 * 1 KDB handled the event for which it was invoked.
1440 */
1441int kdb_main_loop(kdb_reason_t reason, kdb_reason_t reason2, int error,
1442 kdb_dbtrap_t db_result, struct pt_regs *regs)
1443{
1444 int result = 1;
1445 /* Stay in kdb() until 'go', 'ss[b]' or an error */
1446 while (1) {
1447 /*
1448 * All processors except the one that is in control
1449 * will spin here.
1450 */
1451 KDB_DEBUG_STATE("kdb_main_loop 1", reason);
1452 while (KDB_STATE(HOLD_CPU)) {
1453 /* state KDB is turned off by kdb_cpu to see if the
1454 * other cpus are still live, each cpu in this loop
1455 * turns it back on.
1456 */
1457 if (!KDB_STATE(KDB))
1458 KDB_STATE_SET(KDB);
1459 }
1460
1461 KDB_STATE_CLEAR(SUPPRESS);
1462 KDB_DEBUG_STATE("kdb_main_loop 2", reason);
1463 if (KDB_STATE(LEAVING))
1464 break; /* Another cpu said 'go' */
1465 /* Still using kdb, this processor is in control */
1466 result = kdb_local(reason2, error, regs, db_result);
1467 KDB_DEBUG_STATE("kdb_main_loop 3", result);
1468
1469 if (result == KDB_CMD_CPU)
1470 break;
1471
1472 if (result == KDB_CMD_SS) {
1473 KDB_STATE_SET(DOING_SS);
1474 break;
1475 }
1476
1477 if (result == KDB_CMD_KGDB) {
1478 if (!KDB_STATE(DOING_KGDB))
1479 kdb_printf("Entering please attach debugger "
1480 "or use $D#44+ or $3#33\n");
1481 break;
1482 }
1483 if (result && result != 1 && result != KDB_CMD_GO)
1484 kdb_printf("\nUnexpected kdb_local return code %d\n",
1485 result);
1486 KDB_DEBUG_STATE("kdb_main_loop 4", reason);
1487 break;
1488 }
1489 if (KDB_STATE(DOING_SS))
1490 KDB_STATE_CLEAR(SSBPT);
1491
1492 /* Clean up any keyboard devices before leaving */
1493 kdb_kbd_cleanup_state();
1494
1495 return result;
1496}
1497
1498/*
1499 * kdb_mdr - This function implements the guts of the 'mdr', memory
1500 * read command.
1501 * mdr <addr arg>,<byte count>
1502 * Inputs:
1503 * addr Start address
1504 * count Number of bytes
1505 * Returns:
1506 * Always 0. Any errors are detected and printed by kdb_getarea.
1507 */
1508static int kdb_mdr(unsigned long addr, unsigned int count)
1509{
1510 unsigned char c;
1511 while (count--) {
1512 if (kdb_getarea(c, addr))
1513 return 0;
1514 kdb_printf("%02x", c);
1515 addr++;
1516 }
1517 kdb_printf("\n");
1518 return 0;
1519}
1520
1521/*
1522 * kdb_md - This function implements the 'md', 'md1', 'md2', 'md4',
1523 * 'md8' 'mdr' and 'mds' commands.
1524 *
1525 * md|mds [<addr arg> [<line count> [<radix>]]]
1526 * mdWcN [<addr arg> [<line count> [<radix>]]]
1527 * where W = is the width (1, 2, 4 or 8) and N is the count.
1528 * for eg., md1c20 reads 20 bytes, 1 at a time.
1529 * mdr <addr arg>,<byte count>
1530 */
1531static void kdb_md_line(const char *fmtstr, unsigned long addr,
1532 int symbolic, int nosect, int bytesperword,
1533 int num, int repeat, int phys)
1534{
1535 /* print just one line of data */
1536 kdb_symtab_t symtab;
1537 char cbuf[32];
1538 char *c = cbuf;
1539 int i;
1540 int j;
1541 unsigned long word;
1542
1543 memset(cbuf, '\0', sizeof(cbuf));
1544 if (phys)
1545 kdb_printf("phys " kdb_machreg_fmt0 " ", addr);
1546 else
1547 kdb_printf(kdb_machreg_fmt0 " ", addr);
1548
1549 for (i = 0; i < num && repeat--; i++) {
1550 if (phys) {
1551 if (kdb_getphysword(&word, addr, bytesperword))
1552 break;
1553 } else if (kdb_getword(&word, addr, bytesperword))
1554 break;
1555 kdb_printf(fmtstr, word);
1556 if (symbolic)
1557 kdbnearsym(word, &symtab);
1558 else
1559 memset(&symtab, 0, sizeof(symtab));
1560 if (symtab.sym_name) {
1561 kdb_symbol_print(word, &symtab, 0);
1562 if (!nosect) {
1563 kdb_printf("\n");
1564 kdb_printf(" %s %s "
1565 kdb_machreg_fmt " "
1566 kdb_machreg_fmt " "
1567 kdb_machreg_fmt, symtab.mod_name,
1568 symtab.sec_name, symtab.sec_start,
1569 symtab.sym_start, symtab.sym_end);
1570 }
1571 addr += bytesperword;
1572 } else {
1573 union {
1574 u64 word;
1575 unsigned char c[8];
1576 } wc;
1577 unsigned char *cp;
1578#ifdef __BIG_ENDIAN
1579 cp = wc.c + 8 - bytesperword;
1580#else
1581 cp = wc.c;
1582#endif
1583 wc.word = word;
1584#define printable_char(c) \
1585 ({unsigned char __c = c; isascii(__c) && isprint(__c) ? __c : '.'; })
1586 for (j = 0; j < bytesperword; j++)
1587 *c++ = printable_char(*cp++);
1588 addr += bytesperword;
1589#undef printable_char
1590 }
1591 }
1592 kdb_printf("%*s %s\n", (int)((num-i)*(2*bytesperword + 1)+1),
1593 " ", cbuf);
1594}
1595
1596static int kdb_md(int argc, const char **argv)
1597{
1598 static unsigned long last_addr;
1599 static int last_radix, last_bytesperword, last_repeat;
1600 int radix = 16, mdcount = 8, bytesperword = KDB_WORD_SIZE, repeat;
1601 int nosect = 0;
1602 char fmtchar, fmtstr[64];
1603 unsigned long addr;
1604 unsigned long word;
1605 long offset = 0;
1606 int symbolic = 0;
1607 int valid = 0;
1608 int phys = 0;
1609 int raw = 0;
1610
1611 kdbgetintenv("MDCOUNT", &mdcount);
1612 kdbgetintenv("RADIX", &radix);
1613 kdbgetintenv("BYTESPERWORD", &bytesperword);
1614
1615 /* Assume 'md <addr>' and start with environment values */
1616 repeat = mdcount * 16 / bytesperword;
1617
1618 if (strcmp(argv[0], "mdr") == 0) {
1619 if (argc == 2 || (argc == 0 && last_addr != 0))
1620 valid = raw = 1;
1621 else
1622 return KDB_ARGCOUNT;
1623 } else if (isdigit(argv[0][2])) {
1624 bytesperword = (int)(argv[0][2] - '0');
1625 if (bytesperword == 0) {
1626 bytesperword = last_bytesperword;
1627 if (bytesperword == 0)
1628 bytesperword = 4;
1629 }
1630 last_bytesperword = bytesperword;
1631 repeat = mdcount * 16 / bytesperword;
1632 if (!argv[0][3])
1633 valid = 1;
1634 else if (argv[0][3] == 'c' && argv[0][4]) {
1635 char *p;
1636 repeat = simple_strtoul(argv[0] + 4, &p, 10);
1637 mdcount = ((repeat * bytesperword) + 15) / 16;
1638 valid = !*p;
1639 }
1640 last_repeat = repeat;
1641 } else if (strcmp(argv[0], "md") == 0)
1642 valid = 1;
1643 else if (strcmp(argv[0], "mds") == 0)
1644 valid = 1;
1645 else if (strcmp(argv[0], "mdp") == 0) {
1646 phys = valid = 1;
1647 }
1648 if (!valid)
1649 return KDB_NOTFOUND;
1650
1651 if (argc == 0) {
1652 if (last_addr == 0)
1653 return KDB_ARGCOUNT;
1654 addr = last_addr;
1655 radix = last_radix;
1656 bytesperword = last_bytesperword;
1657 repeat = last_repeat;
1658 if (raw)
1659 mdcount = repeat;
1660 else
1661 mdcount = ((repeat * bytesperword) + 15) / 16;
1662 }
1663
1664 if (argc) {
1665 unsigned long val;
1666 int diag, nextarg = 1;
1667 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr,
1668 &offset, NULL);
1669 if (diag)
1670 return diag;
1671 if (argc > nextarg+2)
1672 return KDB_ARGCOUNT;
1673
1674 if (argc >= nextarg) {
1675 diag = kdbgetularg(argv[nextarg], &val);
1676 if (!diag) {
1677 mdcount = (int) val;
1678 if (raw)
1679 repeat = mdcount;
1680 else
1681 repeat = mdcount * 16 / bytesperword;
1682 }
1683 }
1684 if (argc >= nextarg+1) {
1685 diag = kdbgetularg(argv[nextarg+1], &val);
1686 if (!diag)
1687 radix = (int) val;
1688 }
1689 }
1690
1691 if (strcmp(argv[0], "mdr") == 0) {
1692 int ret;
1693 last_addr = addr;
1694 ret = kdb_mdr(addr, mdcount);
1695 last_addr += mdcount;
1696 last_repeat = mdcount;
1697 last_bytesperword = bytesperword; // to make REPEAT happy
1698 return ret;
1699 }
1700
1701 switch (radix) {
1702 case 10:
1703 fmtchar = 'd';
1704 break;
1705 case 16:
1706 fmtchar = 'x';
1707 break;
1708 case 8:
1709 fmtchar = 'o';
1710 break;
1711 default:
1712 return KDB_BADRADIX;
1713 }
1714
1715 last_radix = radix;
1716
1717 if (bytesperword > KDB_WORD_SIZE)
1718 return KDB_BADWIDTH;
1719
1720 switch (bytesperword) {
1721 case 8:
1722 sprintf(fmtstr, "%%16.16l%c ", fmtchar);
1723 break;
1724 case 4:
1725 sprintf(fmtstr, "%%8.8l%c ", fmtchar);
1726 break;
1727 case 2:
1728 sprintf(fmtstr, "%%4.4l%c ", fmtchar);
1729 break;
1730 case 1:
1731 sprintf(fmtstr, "%%2.2l%c ", fmtchar);
1732 break;
1733 default:
1734 return KDB_BADWIDTH;
1735 }
1736
1737 last_repeat = repeat;
1738 last_bytesperword = bytesperword;
1739
1740 if (strcmp(argv[0], "mds") == 0) {
1741 symbolic = 1;
1742 /* Do not save these changes as last_*, they are temporary mds
1743 * overrides.
1744 */
1745 bytesperword = KDB_WORD_SIZE;
1746 repeat = mdcount;
1747 kdbgetintenv("NOSECT", &nosect);
1748 }
1749
1750 /* Round address down modulo BYTESPERWORD */
1751
1752 addr &= ~(bytesperword-1);
1753
1754 while (repeat > 0) {
1755 unsigned long a;
1756 int n, z, num = (symbolic ? 1 : (16 / bytesperword));
1757
1758 if (KDB_FLAG(CMD_INTERRUPT))
1759 return 0;
1760 for (a = addr, z = 0; z < repeat; a += bytesperword, ++z) {
1761 if (phys) {
1762 if (kdb_getphysword(&word, a, bytesperword)
1763 || word)
1764 break;
1765 } else if (kdb_getword(&word, a, bytesperword) || word)
1766 break;
1767 }
1768 n = min(num, repeat);
1769 kdb_md_line(fmtstr, addr, symbolic, nosect, bytesperword,
1770 num, repeat, phys);
1771 addr += bytesperword * n;
1772 repeat -= n;
1773 z = (z + num - 1) / num;
1774 if (z > 2) {
1775 int s = num * (z-2);
1776 kdb_printf(kdb_machreg_fmt0 "-" kdb_machreg_fmt0
1777 " zero suppressed\n",
1778 addr, addr + bytesperword * s - 1);
1779 addr += bytesperword * s;
1780 repeat -= s;
1781 }
1782 }
1783 last_addr = addr;
1784
1785 return 0;
1786}
1787
1788/*
1789 * kdb_mm - This function implements the 'mm' command.
1790 * mm address-expression new-value
1791 * Remarks:
1792 * mm works on machine words, mmW works on bytes.
1793 */
1794static int kdb_mm(int argc, const char **argv)
1795{
1796 int diag;
1797 unsigned long addr;
1798 long offset = 0;
1799 unsigned long contents;
1800 int nextarg;
1801 int width;
1802
1803 if (argv[0][2] && !isdigit(argv[0][2]))
1804 return KDB_NOTFOUND;
1805
1806 if (argc < 2)
1807 return KDB_ARGCOUNT;
1808
1809 nextarg = 1;
1810 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1811 if (diag)
1812 return diag;
1813
1814 if (nextarg > argc)
1815 return KDB_ARGCOUNT;
1816 diag = kdbgetaddrarg(argc, argv, &nextarg, &contents, NULL, NULL);
1817 if (diag)
1818 return diag;
1819
1820 if (nextarg != argc + 1)
1821 return KDB_ARGCOUNT;
1822
1823 width = argv[0][2] ? (argv[0][2] - '0') : (KDB_WORD_SIZE);
1824 diag = kdb_putword(addr, contents, width);
1825 if (diag)
1826 return diag;
1827
1828 kdb_printf(kdb_machreg_fmt " = " kdb_machreg_fmt "\n", addr, contents);
1829
1830 return 0;
1831}
1832
1833/*
1834 * kdb_go - This function implements the 'go' command.
1835 * go [address-expression]
1836 */
1837static int kdb_go(int argc, const char **argv)
1838{
1839 unsigned long addr;
1840 int diag;
1841 int nextarg;
1842 long offset;
1843
1844 if (raw_smp_processor_id() != kdb_initial_cpu) {
1845 kdb_printf("go must execute on the entry cpu, "
1846 "please use \"cpu %d\" and then execute go\n",
1847 kdb_initial_cpu);
1848 return KDB_BADCPUNUM;
1849 }
1850 if (argc == 1) {
1851 nextarg = 1;
1852 diag = kdbgetaddrarg(argc, argv, &nextarg,
1853 &addr, &offset, NULL);
1854 if (diag)
1855 return diag;
1856 } else if (argc) {
1857 return KDB_ARGCOUNT;
1858 }
1859
1860 diag = KDB_CMD_GO;
1861 if (KDB_FLAG(CATASTROPHIC)) {
1862 kdb_printf("Catastrophic error detected\n");
1863 kdb_printf("kdb_continue_catastrophic=%d, ",
1864 kdb_continue_catastrophic);
1865 if (kdb_continue_catastrophic == 0 && kdb_go_count++ == 0) {
1866 kdb_printf("type go a second time if you really want "
1867 "to continue\n");
1868 return 0;
1869 }
1870 if (kdb_continue_catastrophic == 2) {
1871 kdb_printf("forcing reboot\n");
1872 kdb_reboot(0, NULL);
1873 }
1874 kdb_printf("attempting to continue\n");
1875 }
1876 return diag;
1877}
1878
1879/*
1880 * kdb_rd - This function implements the 'rd' command.
1881 */
1882static int kdb_rd(int argc, const char **argv)
1883{
1884 int len = kdb_check_regs();
1885#if DBG_MAX_REG_NUM > 0
1886 int i;
1887 char *rname;
1888 int rsize;
1889 u64 reg64;
1890 u32 reg32;
1891 u16 reg16;
1892 u8 reg8;
1893
1894 if (len)
1895 return len;
1896
1897 for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1898 rsize = dbg_reg_def[i].size * 2;
1899 if (rsize > 16)
1900 rsize = 2;
1901 if (len + strlen(dbg_reg_def[i].name) + 4 + rsize > 80) {
1902 len = 0;
1903 kdb_printf("\n");
1904 }
1905 if (len)
1906 len += kdb_printf(" ");
1907 switch(dbg_reg_def[i].size * 8) {
1908 case 8:
1909 rname = dbg_get_reg(i, ®8, kdb_current_regs);
1910 if (!rname)
1911 break;
1912 len += kdb_printf("%s: %02x", rname, reg8);
1913 break;
1914 case 16:
1915 rname = dbg_get_reg(i, ®16, kdb_current_regs);
1916 if (!rname)
1917 break;
1918 len += kdb_printf("%s: %04x", rname, reg16);
1919 break;
1920 case 32:
1921 rname = dbg_get_reg(i, ®32, kdb_current_regs);
1922 if (!rname)
1923 break;
1924 len += kdb_printf("%s: %08x", rname, reg32);
1925 break;
1926 case 64:
1927 rname = dbg_get_reg(i, ®64, kdb_current_regs);
1928 if (!rname)
1929 break;
1930 len += kdb_printf("%s: %016llx", rname, reg64);
1931 break;
1932 default:
1933 len += kdb_printf("%s: ??", dbg_reg_def[i].name);
1934 }
1935 }
1936 kdb_printf("\n");
1937#else
1938 if (len)
1939 return len;
1940
1941 kdb_dumpregs(kdb_current_regs);
1942#endif
1943 return 0;
1944}
1945
1946/*
1947 * kdb_rm - This function implements the 'rm' (register modify) command.
1948 * rm register-name new-contents
1949 * Remarks:
1950 * Allows register modification with the same restrictions as gdb
1951 */
1952static int kdb_rm(int argc, const char **argv)
1953{
1954#if DBG_MAX_REG_NUM > 0
1955 int diag;
1956 const char *rname;
1957 int i;
1958 u64 reg64;
1959 u32 reg32;
1960 u16 reg16;
1961 u8 reg8;
1962
1963 if (argc != 2)
1964 return KDB_ARGCOUNT;
1965 /*
1966 * Allow presence or absence of leading '%' symbol.
1967 */
1968 rname = argv[1];
1969 if (*rname == '%')
1970 rname++;
1971
1972 diag = kdbgetu64arg(argv[2], ®64);
1973 if (diag)
1974 return diag;
1975
1976 diag = kdb_check_regs();
1977 if (diag)
1978 return diag;
1979
1980 diag = KDB_BADREG;
1981 for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1982 if (strcmp(rname, dbg_reg_def[i].name) == 0) {
1983 diag = 0;
1984 break;
1985 }
1986 }
1987 if (!diag) {
1988 switch(dbg_reg_def[i].size * 8) {
1989 case 8:
1990 reg8 = reg64;
1991 dbg_set_reg(i, ®8, kdb_current_regs);
1992 break;
1993 case 16:
1994 reg16 = reg64;
1995 dbg_set_reg(i, ®16, kdb_current_regs);
1996 break;
1997 case 32:
1998 reg32 = reg64;
1999 dbg_set_reg(i, ®32, kdb_current_regs);
2000 break;
2001 case 64:
2002 dbg_set_reg(i, ®64, kdb_current_regs);
2003 break;
2004 }
2005 }
2006 return diag;
2007#else
2008 kdb_printf("ERROR: Register set currently not implemented\n");
2009 return 0;
2010#endif
2011}
2012
2013#if defined(CONFIG_MAGIC_SYSRQ)
2014/*
2015 * kdb_sr - This function implements the 'sr' (SYSRQ key) command
2016 * which interfaces to the soi-disant MAGIC SYSRQ functionality.
2017 * sr <magic-sysrq-code>
2018 */
2019static int kdb_sr(int argc, const char **argv)
2020{
2021 bool check_mask =
2022 !kdb_check_flags(KDB_ENABLE_ALL, kdb_cmd_enabled, false);
2023
2024 if (argc != 1)
2025 return KDB_ARGCOUNT;
2026
2027 kdb_trap_printk++;
2028 __handle_sysrq(*argv[1], check_mask);
2029 kdb_trap_printk--;
2030
2031 return 0;
2032}
2033#endif /* CONFIG_MAGIC_SYSRQ */
2034
2035/*
2036 * kdb_ef - This function implements the 'regs' (display exception
2037 * frame) command. This command takes an address and expects to
2038 * find an exception frame at that address, formats and prints
2039 * it.
2040 * regs address-expression
2041 * Remarks:
2042 * Not done yet.
2043 */
2044static int kdb_ef(int argc, const char **argv)
2045{
2046 int diag;
2047 unsigned long addr;
2048 long offset;
2049 int nextarg;
2050
2051 if (argc != 1)
2052 return KDB_ARGCOUNT;
2053
2054 nextarg = 1;
2055 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
2056 if (diag)
2057 return diag;
2058 show_regs((struct pt_regs *)addr);
2059 return 0;
2060}
2061
2062/*
2063 * kdb_env - This function implements the 'env' command. Display the
2064 * current environment variables.
2065 */
2066
2067static int kdb_env(int argc, const char **argv)
2068{
2069 kdb_printenv();
2070
2071 if (KDB_DEBUG(MASK))
2072 kdb_printf("KDBDEBUG=0x%x\n",
2073 (kdb_flags & KDB_DEBUG(MASK)) >> KDB_DEBUG_FLAG_SHIFT);
2074
2075 return 0;
2076}
2077
2078#ifdef CONFIG_PRINTK
2079/*
2080 * kdb_dmesg - This function implements the 'dmesg' command to display
2081 * the contents of the syslog buffer.
2082 * dmesg [lines] [adjust]
2083 */
2084static int kdb_dmesg(int argc, const char **argv)
2085{
2086 int diag;
2087 int logging;
2088 int lines = 0;
2089 int adjust = 0;
2090 int n = 0;
2091 int skip = 0;
2092 struct kmsg_dump_iter iter;
2093 size_t len;
2094 char buf[201];
2095
2096 if (argc > 2)
2097 return KDB_ARGCOUNT;
2098 if (argc) {
2099 char *cp;
2100 lines = simple_strtol(argv[1], &cp, 0);
2101 if (*cp)
2102 lines = 0;
2103 if (argc > 1) {
2104 adjust = simple_strtoul(argv[2], &cp, 0);
2105 if (*cp || adjust < 0)
2106 adjust = 0;
2107 }
2108 }
2109
2110 /* disable LOGGING if set */
2111 diag = kdbgetintenv("LOGGING", &logging);
2112 if (!diag && logging) {
2113 const char *setargs[] = { "set", "LOGGING", "0" };
2114 kdb_set(2, setargs);
2115 }
2116
2117 kmsg_dump_rewind(&iter);
2118 while (kmsg_dump_get_line(&iter, 1, NULL, 0, NULL))
2119 n++;
2120
2121 if (lines < 0) {
2122 if (adjust >= n)
2123 kdb_printf("buffer only contains %d lines, nothing "
2124 "printed\n", n);
2125 else if (adjust - lines >= n)
2126 kdb_printf("buffer only contains %d lines, last %d "
2127 "lines printed\n", n, n - adjust);
2128 skip = adjust;
2129 lines = abs(lines);
2130 } else if (lines > 0) {
2131 skip = n - lines - adjust;
2132 lines = abs(lines);
2133 if (adjust >= n) {
2134 kdb_printf("buffer only contains %d lines, "
2135 "nothing printed\n", n);
2136 skip = n;
2137 } else if (skip < 0) {
2138 lines += skip;
2139 skip = 0;
2140 kdb_printf("buffer only contains %d lines, first "
2141 "%d lines printed\n", n, lines);
2142 }
2143 } else {
2144 lines = n;
2145 }
2146
2147 if (skip >= n || skip < 0)
2148 return 0;
2149
2150 kmsg_dump_rewind(&iter);
2151 while (kmsg_dump_get_line(&iter, 1, buf, sizeof(buf), &len)) {
2152 if (skip) {
2153 skip--;
2154 continue;
2155 }
2156 if (!lines--)
2157 break;
2158 if (KDB_FLAG(CMD_INTERRUPT))
2159 return 0;
2160
2161 kdb_printf("%.*s\n", (int)len - 1, buf);
2162 }
2163
2164 return 0;
2165}
2166#endif /* CONFIG_PRINTK */
2167
2168/* Make sure we balance enable/disable calls, must disable first. */
2169static atomic_t kdb_nmi_disabled;
2170
2171static int kdb_disable_nmi(int argc, const char *argv[])
2172{
2173 if (atomic_read(&kdb_nmi_disabled))
2174 return 0;
2175 atomic_set(&kdb_nmi_disabled, 1);
2176 arch_kgdb_ops.enable_nmi(0);
2177 return 0;
2178}
2179
2180static int kdb_param_enable_nmi(const char *val, const struct kernel_param *kp)
2181{
2182 if (!atomic_add_unless(&kdb_nmi_disabled, -1, 0))
2183 return -EINVAL;
2184 arch_kgdb_ops.enable_nmi(1);
2185 return 0;
2186}
2187
2188static const struct kernel_param_ops kdb_param_ops_enable_nmi = {
2189 .set = kdb_param_enable_nmi,
2190};
2191module_param_cb(enable_nmi, &kdb_param_ops_enable_nmi, NULL, 0600);
2192
2193/*
2194 * kdb_cpu - This function implements the 'cpu' command.
2195 * cpu [<cpunum>]
2196 * Returns:
2197 * KDB_CMD_CPU for success, a kdb diagnostic if error
2198 */
2199static void kdb_cpu_status(void)
2200{
2201 int i, start_cpu, first_print = 1;
2202 char state, prev_state = '?';
2203
2204 kdb_printf("Currently on cpu %d\n", raw_smp_processor_id());
2205 kdb_printf("Available cpus: ");
2206 for (start_cpu = -1, i = 0; i < NR_CPUS; i++) {
2207 if (!cpu_online(i)) {
2208 state = 'F'; /* cpu is offline */
2209 } else if (!kgdb_info[i].enter_kgdb) {
2210 state = 'D'; /* cpu is online but unresponsive */
2211 } else {
2212 state = ' '; /* cpu is responding to kdb */
2213 if (kdb_task_state_char(KDB_TSK(i)) == '-')
2214 state = '-'; /* idle task */
2215 }
2216 if (state != prev_state) {
2217 if (prev_state != '?') {
2218 if (!first_print)
2219 kdb_printf(", ");
2220 first_print = 0;
2221 kdb_printf("%d", start_cpu);
2222 if (start_cpu < i-1)
2223 kdb_printf("-%d", i-1);
2224 if (prev_state != ' ')
2225 kdb_printf("(%c)", prev_state);
2226 }
2227 prev_state = state;
2228 start_cpu = i;
2229 }
2230 }
2231 /* print the trailing cpus, ignoring them if they are all offline */
2232 if (prev_state != 'F') {
2233 if (!first_print)
2234 kdb_printf(", ");
2235 kdb_printf("%d", start_cpu);
2236 if (start_cpu < i-1)
2237 kdb_printf("-%d", i-1);
2238 if (prev_state != ' ')
2239 kdb_printf("(%c)", prev_state);
2240 }
2241 kdb_printf("\n");
2242}
2243
2244static int kdb_cpu(int argc, const char **argv)
2245{
2246 unsigned long cpunum;
2247 int diag;
2248
2249 if (argc == 0) {
2250 kdb_cpu_status();
2251 return 0;
2252 }
2253
2254 if (argc != 1)
2255 return KDB_ARGCOUNT;
2256
2257 diag = kdbgetularg(argv[1], &cpunum);
2258 if (diag)
2259 return diag;
2260
2261 /*
2262 * Validate cpunum
2263 */
2264 if ((cpunum >= CONFIG_NR_CPUS) || !kgdb_info[cpunum].enter_kgdb)
2265 return KDB_BADCPUNUM;
2266
2267 dbg_switch_cpu = cpunum;
2268
2269 /*
2270 * Switch to other cpu
2271 */
2272 return KDB_CMD_CPU;
2273}
2274
2275/* The user may not realize that ps/bta with no parameters does not print idle
2276 * or sleeping system daemon processes, so tell them how many were suppressed.
2277 */
2278void kdb_ps_suppressed(void)
2279{
2280 int idle = 0, daemon = 0;
2281 unsigned long cpu;
2282 const struct task_struct *p, *g;
2283 for_each_online_cpu(cpu) {
2284 p = kdb_curr_task(cpu);
2285 if (kdb_task_state(p, "-"))
2286 ++idle;
2287 }
2288 for_each_process_thread(g, p) {
2289 if (kdb_task_state(p, "ims"))
2290 ++daemon;
2291 }
2292 if (idle || daemon) {
2293 if (idle)
2294 kdb_printf("%d idle process%s (state -)%s\n",
2295 idle, idle == 1 ? "" : "es",
2296 daemon ? " and " : "");
2297 if (daemon)
2298 kdb_printf("%d sleeping system daemon (state [ims]) "
2299 "process%s", daemon,
2300 daemon == 1 ? "" : "es");
2301 kdb_printf(" suppressed,\nuse 'ps A' to see all.\n");
2302 }
2303}
2304
2305void kdb_ps1(const struct task_struct *p)
2306{
2307 int cpu;
2308 unsigned long tmp;
2309
2310 if (!p ||
2311 copy_from_kernel_nofault(&tmp, (char *)p, sizeof(unsigned long)))
2312 return;
2313
2314 cpu = kdb_process_cpu(p);
2315 kdb_printf("0x%px %8d %8d %d %4d %c 0x%px %c%s\n",
2316 (void *)p, p->pid, p->parent->pid,
2317 kdb_task_has_cpu(p), kdb_process_cpu(p),
2318 kdb_task_state_char(p),
2319 (void *)(&p->thread),
2320 p == kdb_curr_task(raw_smp_processor_id()) ? '*' : ' ',
2321 p->comm);
2322 if (kdb_task_has_cpu(p)) {
2323 if (!KDB_TSK(cpu)) {
2324 kdb_printf(" Error: no saved data for this cpu\n");
2325 } else {
2326 if (KDB_TSK(cpu) != p)
2327 kdb_printf(" Error: does not match running "
2328 "process table (0x%px)\n", KDB_TSK(cpu));
2329 }
2330 }
2331}
2332
2333/*
2334 * kdb_ps - This function implements the 'ps' command which shows a
2335 * list of the active processes.
2336 *
2337 * ps [<state_chars>] Show processes, optionally selecting only those whose
2338 * state character is found in <state_chars>.
2339 */
2340static int kdb_ps(int argc, const char **argv)
2341{
2342 struct task_struct *g, *p;
2343 const char *mask;
2344 unsigned long cpu;
2345
2346 if (argc == 0)
2347 kdb_ps_suppressed();
2348 kdb_printf("%-*s Pid Parent [*] cpu State %-*s Command\n",
2349 (int)(2*sizeof(void *))+2, "Task Addr",
2350 (int)(2*sizeof(void *))+2, "Thread");
2351 mask = argc ? argv[1] : kdbgetenv("PS");
2352 /* Run the active tasks first */
2353 for_each_online_cpu(cpu) {
2354 if (KDB_FLAG(CMD_INTERRUPT))
2355 return 0;
2356 p = kdb_curr_task(cpu);
2357 if (kdb_task_state(p, mask))
2358 kdb_ps1(p);
2359 }
2360 kdb_printf("\n");
2361 /* Now the real tasks */
2362 for_each_process_thread(g, p) {
2363 if (KDB_FLAG(CMD_INTERRUPT))
2364 return 0;
2365 if (kdb_task_state(p, mask))
2366 kdb_ps1(p);
2367 }
2368
2369 return 0;
2370}
2371
2372/*
2373 * kdb_pid - This function implements the 'pid' command which switches
2374 * the currently active process.
2375 * pid [<pid> | R]
2376 */
2377static int kdb_pid(int argc, const char **argv)
2378{
2379 struct task_struct *p;
2380 unsigned long val;
2381 int diag;
2382
2383 if (argc > 1)
2384 return KDB_ARGCOUNT;
2385
2386 if (argc) {
2387 if (strcmp(argv[1], "R") == 0) {
2388 p = KDB_TSK(kdb_initial_cpu);
2389 } else {
2390 diag = kdbgetularg(argv[1], &val);
2391 if (diag)
2392 return KDB_BADINT;
2393
2394 p = find_task_by_pid_ns((pid_t)val, &init_pid_ns);
2395 if (!p) {
2396 kdb_printf("No task with pid=%d\n", (pid_t)val);
2397 return 0;
2398 }
2399 }
2400 kdb_set_current_task(p);
2401 }
2402 kdb_printf("KDB current process is %s(pid=%d)\n",
2403 kdb_current_task->comm,
2404 kdb_current_task->pid);
2405
2406 return 0;
2407}
2408
2409static int kdb_kgdb(int argc, const char **argv)
2410{
2411 return KDB_CMD_KGDB;
2412}
2413
2414/*
2415 * kdb_help - This function implements the 'help' and '?' commands.
2416 */
2417static int kdb_help(int argc, const char **argv)
2418{
2419 kdbtab_t *kt;
2420
2421 kdb_printf("%-15.15s %-20.20s %s\n", "Command", "Usage", "Description");
2422 kdb_printf("-----------------------------"
2423 "-----------------------------\n");
2424 list_for_each_entry(kt, &kdb_cmds_head, list_node) {
2425 char *space = "";
2426 if (KDB_FLAG(CMD_INTERRUPT))
2427 return 0;
2428 if (!kdb_check_flags(kt->flags, kdb_cmd_enabled, true))
2429 continue;
2430 if (strlen(kt->usage) > 20)
2431 space = "\n ";
2432 kdb_printf("%-15.15s %-20s%s%s\n", kt->name,
2433 kt->usage, space, kt->help);
2434 }
2435 return 0;
2436}
2437
2438/*
2439 * kdb_kill - This function implements the 'kill' commands.
2440 */
2441static int kdb_kill(int argc, const char **argv)
2442{
2443 long sig, pid;
2444 char *endp;
2445 struct task_struct *p;
2446
2447 if (argc != 2)
2448 return KDB_ARGCOUNT;
2449
2450 sig = simple_strtol(argv[1], &endp, 0);
2451 if (*endp)
2452 return KDB_BADINT;
2453 if ((sig >= 0) || !valid_signal(-sig)) {
2454 kdb_printf("Invalid signal parameter.<-signal>\n");
2455 return 0;
2456 }
2457 sig = -sig;
2458
2459 pid = simple_strtol(argv[2], &endp, 0);
2460 if (*endp)
2461 return KDB_BADINT;
2462 if (pid <= 0) {
2463 kdb_printf("Process ID must be large than 0.\n");
2464 return 0;
2465 }
2466
2467 /* Find the process. */
2468 p = find_task_by_pid_ns(pid, &init_pid_ns);
2469 if (!p) {
2470 kdb_printf("The specified process isn't found.\n");
2471 return 0;
2472 }
2473 p = p->group_leader;
2474 kdb_send_sig(p, sig);
2475 return 0;
2476}
2477
2478/*
2479 * Most of this code has been lifted from kernel/timer.c::sys_sysinfo().
2480 * I cannot call that code directly from kdb, it has an unconditional
2481 * cli()/sti() and calls routines that take locks which can stop the debugger.
2482 */
2483static void kdb_sysinfo(struct sysinfo *val)
2484{
2485 u64 uptime = ktime_get_mono_fast_ns();
2486
2487 memset(val, 0, sizeof(*val));
2488 val->uptime = div_u64(uptime, NSEC_PER_SEC);
2489 val->loads[0] = avenrun[0];
2490 val->loads[1] = avenrun[1];
2491 val->loads[2] = avenrun[2];
2492 val->procs = nr_threads-1;
2493 si_meminfo(val);
2494
2495 return;
2496}
2497
2498/*
2499 * kdb_summary - This function implements the 'summary' command.
2500 */
2501static int kdb_summary(int argc, const char **argv)
2502{
2503 time64_t now;
2504 struct sysinfo val;
2505
2506 if (argc)
2507 return KDB_ARGCOUNT;
2508
2509 kdb_printf("sysname %s\n", init_uts_ns.name.sysname);
2510 kdb_printf("release %s\n", init_uts_ns.name.release);
2511 kdb_printf("version %s\n", init_uts_ns.name.version);
2512 kdb_printf("machine %s\n", init_uts_ns.name.machine);
2513 kdb_printf("nodename %s\n", init_uts_ns.name.nodename);
2514 kdb_printf("domainname %s\n", init_uts_ns.name.domainname);
2515
2516 now = __ktime_get_real_seconds();
2517 kdb_printf("date %ptTs tz_minuteswest %d\n", &now, sys_tz.tz_minuteswest);
2518 kdb_sysinfo(&val);
2519 kdb_printf("uptime ");
2520 if (val.uptime > (24*60*60)) {
2521 int days = val.uptime / (24*60*60);
2522 val.uptime %= (24*60*60);
2523 kdb_printf("%d day%s ", days, days == 1 ? "" : "s");
2524 }
2525 kdb_printf("%02ld:%02ld\n", val.uptime/(60*60), (val.uptime/60)%60);
2526
2527 kdb_printf("load avg %ld.%02ld %ld.%02ld %ld.%02ld\n",
2528 LOAD_INT(val.loads[0]), LOAD_FRAC(val.loads[0]),
2529 LOAD_INT(val.loads[1]), LOAD_FRAC(val.loads[1]),
2530 LOAD_INT(val.loads[2]), LOAD_FRAC(val.loads[2]));
2531
2532 /* Display in kilobytes */
2533#define K(x) ((x) << (PAGE_SHIFT - 10))
2534 kdb_printf("\nMemTotal: %8lu kB\nMemFree: %8lu kB\n"
2535 "Buffers: %8lu kB\n",
2536 K(val.totalram), K(val.freeram), K(val.bufferram));
2537 return 0;
2538}
2539
2540/*
2541 * kdb_per_cpu - This function implements the 'per_cpu' command.
2542 */
2543static int kdb_per_cpu(int argc, const char **argv)
2544{
2545 char fmtstr[64];
2546 int cpu, diag, nextarg = 1;
2547 unsigned long addr, symaddr, val, bytesperword = 0, whichcpu = ~0UL;
2548
2549 if (argc < 1 || argc > 3)
2550 return KDB_ARGCOUNT;
2551
2552 diag = kdbgetaddrarg(argc, argv, &nextarg, &symaddr, NULL, NULL);
2553 if (diag)
2554 return diag;
2555
2556 if (argc >= 2) {
2557 diag = kdbgetularg(argv[2], &bytesperword);
2558 if (diag)
2559 return diag;
2560 }
2561 if (!bytesperword)
2562 bytesperword = KDB_WORD_SIZE;
2563 else if (bytesperword > KDB_WORD_SIZE)
2564 return KDB_BADWIDTH;
2565 sprintf(fmtstr, "%%0%dlx ", (int)(2*bytesperword));
2566 if (argc >= 3) {
2567 diag = kdbgetularg(argv[3], &whichcpu);
2568 if (diag)
2569 return diag;
2570 if (whichcpu >= nr_cpu_ids || !cpu_online(whichcpu)) {
2571 kdb_printf("cpu %ld is not online\n", whichcpu);
2572 return KDB_BADCPUNUM;
2573 }
2574 }
2575
2576 /* Most architectures use __per_cpu_offset[cpu], some use
2577 * __per_cpu_offset(cpu), smp has no __per_cpu_offset.
2578 */
2579#ifdef __per_cpu_offset
2580#define KDB_PCU(cpu) __per_cpu_offset(cpu)
2581#else
2582#ifdef CONFIG_SMP
2583#define KDB_PCU(cpu) __per_cpu_offset[cpu]
2584#else
2585#define KDB_PCU(cpu) 0
2586#endif
2587#endif
2588 for_each_online_cpu(cpu) {
2589 if (KDB_FLAG(CMD_INTERRUPT))
2590 return 0;
2591
2592 if (whichcpu != ~0UL && whichcpu != cpu)
2593 continue;
2594 addr = symaddr + KDB_PCU(cpu);
2595 diag = kdb_getword(&val, addr, bytesperword);
2596 if (diag) {
2597 kdb_printf("%5d " kdb_bfd_vma_fmt0 " - unable to "
2598 "read, diag=%d\n", cpu, addr, diag);
2599 continue;
2600 }
2601 kdb_printf("%5d ", cpu);
2602 kdb_md_line(fmtstr, addr,
2603 bytesperword == KDB_WORD_SIZE,
2604 1, bytesperword, 1, 1, 0);
2605 }
2606#undef KDB_PCU
2607 return 0;
2608}
2609
2610/*
2611 * display help for the use of cmd | grep pattern
2612 */
2613static int kdb_grep_help(int argc, const char **argv)
2614{
2615 kdb_printf("Usage of cmd args | grep pattern:\n");
2616 kdb_printf(" Any command's output may be filtered through an ");
2617 kdb_printf("emulated 'pipe'.\n");
2618 kdb_printf(" 'grep' is just a key word.\n");
2619 kdb_printf(" The pattern may include a very limited set of "
2620 "metacharacters:\n");
2621 kdb_printf(" pattern or ^pattern or pattern$ or ^pattern$\n");
2622 kdb_printf(" And if there are spaces in the pattern, you may "
2623 "quote it:\n");
2624 kdb_printf(" \"pat tern\" or \"^pat tern\" or \"pat tern$\""
2625 " or \"^pat tern$\"\n");
2626 return 0;
2627}
2628
2629/**
2630 * kdb_register() - This function is used to register a kernel debugger
2631 * command.
2632 * @cmd: pointer to kdb command
2633 *
2634 * Note that it's the job of the caller to keep the memory for the cmd
2635 * allocated until unregister is called.
2636 */
2637int kdb_register(kdbtab_t *cmd)
2638{
2639 kdbtab_t *kp;
2640
2641 list_for_each_entry(kp, &kdb_cmds_head, list_node) {
2642 if (strcmp(kp->name, cmd->name) == 0) {
2643 kdb_printf("Duplicate kdb cmd: %s, func %p help %s\n",
2644 cmd->name, cmd->func, cmd->help);
2645 return 1;
2646 }
2647 }
2648
2649 list_add_tail(&cmd->list_node, &kdb_cmds_head);
2650 return 0;
2651}
2652EXPORT_SYMBOL_GPL(kdb_register);
2653
2654/**
2655 * kdb_register_table() - This function is used to register a kdb command
2656 * table.
2657 * @kp: pointer to kdb command table
2658 * @len: length of kdb command table
2659 */
2660void kdb_register_table(kdbtab_t *kp, size_t len)
2661{
2662 while (len--) {
2663 list_add_tail(&kp->list_node, &kdb_cmds_head);
2664 kp++;
2665 }
2666}
2667
2668/**
2669 * kdb_unregister() - This function is used to unregister a kernel debugger
2670 * command. It is generally called when a module which
2671 * implements kdb command is unloaded.
2672 * @cmd: pointer to kdb command
2673 */
2674void kdb_unregister(kdbtab_t *cmd)
2675{
2676 list_del(&cmd->list_node);
2677}
2678EXPORT_SYMBOL_GPL(kdb_unregister);
2679
2680static kdbtab_t maintab[] = {
2681 { .name = "md",
2682 .func = kdb_md,
2683 .usage = "<vaddr>",
2684 .help = "Display Memory Contents, also mdWcN, e.g. md8c1",
2685 .minlen = 1,
2686 .flags = KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS,
2687 },
2688 { .name = "mdr",
2689 .func = kdb_md,
2690 .usage = "<vaddr> <bytes>",
2691 .help = "Display Raw Memory",
2692 .flags = KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS,
2693 },
2694 { .name = "mdp",
2695 .func = kdb_md,
2696 .usage = "<paddr> <bytes>",
2697 .help = "Display Physical Memory",
2698 .flags = KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS,
2699 },
2700 { .name = "mds",
2701 .func = kdb_md,
2702 .usage = "<vaddr>",
2703 .help = "Display Memory Symbolically",
2704 .flags = KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS,
2705 },
2706 { .name = "mm",
2707 .func = kdb_mm,
2708 .usage = "<vaddr> <contents>",
2709 .help = "Modify Memory Contents",
2710 .flags = KDB_ENABLE_MEM_WRITE | KDB_REPEAT_NO_ARGS,
2711 },
2712 { .name = "go",
2713 .func = kdb_go,
2714 .usage = "[<vaddr>]",
2715 .help = "Continue Execution",
2716 .minlen = 1,
2717 .flags = KDB_ENABLE_REG_WRITE |
2718 KDB_ENABLE_ALWAYS_SAFE_NO_ARGS,
2719 },
2720 { .name = "rd",
2721 .func = kdb_rd,
2722 .usage = "",
2723 .help = "Display Registers",
2724 .flags = KDB_ENABLE_REG_READ,
2725 },
2726 { .name = "rm",
2727 .func = kdb_rm,
2728 .usage = "<reg> <contents>",
2729 .help = "Modify Registers",
2730 .flags = KDB_ENABLE_REG_WRITE,
2731 },
2732 { .name = "ef",
2733 .func = kdb_ef,
2734 .usage = "<vaddr>",
2735 .help = "Display exception frame",
2736 .flags = KDB_ENABLE_MEM_READ,
2737 },
2738 { .name = "bt",
2739 .func = kdb_bt,
2740 .usage = "[<vaddr>]",
2741 .help = "Stack traceback",
2742 .minlen = 1,
2743 .flags = KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS,
2744 },
2745 { .name = "btp",
2746 .func = kdb_bt,
2747 .usage = "<pid>",
2748 .help = "Display stack for process <pid>",
2749 .flags = KDB_ENABLE_INSPECT,
2750 },
2751 { .name = "bta",
2752 .func = kdb_bt,
2753 .usage = "[<state_chars>|A]",
2754 .help = "Backtrace all processes whose state matches",
2755 .flags = KDB_ENABLE_INSPECT,
2756 },
2757 { .name = "btc",
2758 .func = kdb_bt,
2759 .usage = "",
2760 .help = "Backtrace current process on each cpu",
2761 .flags = KDB_ENABLE_INSPECT,
2762 },
2763 { .name = "btt",
2764 .func = kdb_bt,
2765 .usage = "<vaddr>",
2766 .help = "Backtrace process given its struct task address",
2767 .flags = KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS,
2768 },
2769 { .name = "env",
2770 .func = kdb_env,
2771 .usage = "",
2772 .help = "Show environment variables",
2773 .flags = KDB_ENABLE_ALWAYS_SAFE,
2774 },
2775 { .name = "set",
2776 .func = kdb_set,
2777 .usage = "",
2778 .help = "Set environment variables",
2779 .flags = KDB_ENABLE_ALWAYS_SAFE,
2780 },
2781 { .name = "help",
2782 .func = kdb_help,
2783 .usage = "",
2784 .help = "Display Help Message",
2785 .minlen = 1,
2786 .flags = KDB_ENABLE_ALWAYS_SAFE,
2787 },
2788 { .name = "?",
2789 .func = kdb_help,
2790 .usage = "",
2791 .help = "Display Help Message",
2792 .flags = KDB_ENABLE_ALWAYS_SAFE,
2793 },
2794 { .name = "cpu",
2795 .func = kdb_cpu,
2796 .usage = "<cpunum>",
2797 .help = "Switch to new cpu",
2798 .flags = KDB_ENABLE_ALWAYS_SAFE_NO_ARGS,
2799 },
2800 { .name = "kgdb",
2801 .func = kdb_kgdb,
2802 .usage = "",
2803 .help = "Enter kgdb mode",
2804 .flags = 0,
2805 },
2806 { .name = "ps",
2807 .func = kdb_ps,
2808 .usage = "[<state_chars>|A]",
2809 .help = "Display active task list",
2810 .flags = KDB_ENABLE_INSPECT,
2811 },
2812 { .name = "pid",
2813 .func = kdb_pid,
2814 .usage = "<pidnum>",
2815 .help = "Switch to another task",
2816 .flags = KDB_ENABLE_INSPECT,
2817 },
2818 { .name = "reboot",
2819 .func = kdb_reboot,
2820 .usage = "",
2821 .help = "Reboot the machine immediately",
2822 .flags = KDB_ENABLE_REBOOT,
2823 },
2824#if defined(CONFIG_MODULES)
2825 { .name = "lsmod",
2826 .func = kdb_lsmod,
2827 .usage = "",
2828 .help = "List loaded kernel modules",
2829 .flags = KDB_ENABLE_INSPECT,
2830 },
2831#endif
2832#if defined(CONFIG_MAGIC_SYSRQ)
2833 { .name = "sr",
2834 .func = kdb_sr,
2835 .usage = "<key>",
2836 .help = "Magic SysRq key",
2837 .flags = KDB_ENABLE_ALWAYS_SAFE,
2838 },
2839#endif
2840#if defined(CONFIG_PRINTK)
2841 { .name = "dmesg",
2842 .func = kdb_dmesg,
2843 .usage = "[lines]",
2844 .help = "Display syslog buffer",
2845 .flags = KDB_ENABLE_ALWAYS_SAFE,
2846 },
2847#endif
2848 { .name = "defcmd",
2849 .func = kdb_defcmd,
2850 .usage = "name \"usage\" \"help\"",
2851 .help = "Define a set of commands, down to endefcmd",
2852 /*
2853 * Macros are always safe because when executed each
2854 * internal command re-enters kdb_parse() and is safety
2855 * checked individually.
2856 */
2857 .flags = KDB_ENABLE_ALWAYS_SAFE,
2858 },
2859 { .name = "kill",
2860 .func = kdb_kill,
2861 .usage = "<-signal> <pid>",
2862 .help = "Send a signal to a process",
2863 .flags = KDB_ENABLE_SIGNAL,
2864 },
2865 { .name = "summary",
2866 .func = kdb_summary,
2867 .usage = "",
2868 .help = "Summarize the system",
2869 .minlen = 4,
2870 .flags = KDB_ENABLE_ALWAYS_SAFE,
2871 },
2872 { .name = "per_cpu",
2873 .func = kdb_per_cpu,
2874 .usage = "<sym> [<bytes>] [<cpu>]",
2875 .help = "Display per_cpu variables",
2876 .minlen = 3,
2877 .flags = KDB_ENABLE_MEM_READ,
2878 },
2879 { .name = "grephelp",
2880 .func = kdb_grep_help,
2881 .usage = "",
2882 .help = "Display help on | grep",
2883 .flags = KDB_ENABLE_ALWAYS_SAFE,
2884 },
2885};
2886
2887static kdbtab_t nmicmd = {
2888 .name = "disable_nmi",
2889 .func = kdb_disable_nmi,
2890 .usage = "",
2891 .help = "Disable NMI entry to KDB",
2892 .flags = KDB_ENABLE_ALWAYS_SAFE,
2893};
2894
2895/* Initialize the kdb command table. */
2896static void __init kdb_inittab(void)
2897{
2898 kdb_register_table(maintab, ARRAY_SIZE(maintab));
2899 if (arch_kgdb_ops.enable_nmi)
2900 kdb_register_table(&nmicmd, 1);
2901}
2902
2903/* Execute any commands defined in kdb_cmds. */
2904static void __init kdb_cmd_init(void)
2905{
2906 int i, diag;
2907 for (i = 0; kdb_cmds[i]; ++i) {
2908 diag = kdb_parse(kdb_cmds[i]);
2909 if (diag)
2910 kdb_printf("kdb command %s failed, kdb diag %d\n",
2911 kdb_cmds[i], diag);
2912 }
2913 if (defcmd_in_progress) {
2914 kdb_printf("Incomplete 'defcmd' set, forcing endefcmd\n");
2915 kdb_parse("endefcmd");
2916 }
2917}
2918
2919/* Initialize kdb_printf, breakpoint tables and kdb state */
2920void __init kdb_init(int lvl)
2921{
2922 static int kdb_init_lvl = KDB_NOT_INITIALIZED;
2923 int i;
2924
2925 if (kdb_init_lvl == KDB_INIT_FULL || lvl <= kdb_init_lvl)
2926 return;
2927 for (i = kdb_init_lvl; i < lvl; i++) {
2928 switch (i) {
2929 case KDB_NOT_INITIALIZED:
2930 kdb_inittab(); /* Initialize Command Table */
2931 kdb_initbptab(); /* Initialize Breakpoints */
2932 break;
2933 case KDB_INIT_EARLY:
2934 kdb_cmd_init(); /* Build kdb_cmds tables */
2935 break;
2936 }
2937 }
2938 kdb_init_lvl = lvl;
2939}
1/*
2 * Kernel Debugger Architecture Independent Main Code
3 *
4 * This file is subject to the terms and conditions of the GNU General Public
5 * License. See the file "COPYING" in the main directory of this archive
6 * for more details.
7 *
8 * Copyright (C) 1999-2004 Silicon Graphics, Inc. All Rights Reserved.
9 * Copyright (C) 2000 Stephane Eranian <eranian@hpl.hp.com>
10 * Xscale (R) modifications copyright (C) 2003 Intel Corporation.
11 * Copyright (c) 2009 Wind River Systems, Inc. All Rights Reserved.
12 */
13
14#include <linux/ctype.h>
15#include <linux/string.h>
16#include <linux/kernel.h>
17#include <linux/kmsg_dump.h>
18#include <linux/reboot.h>
19#include <linux/sched.h>
20#include <linux/sysrq.h>
21#include <linux/smp.h>
22#include <linux/utsname.h>
23#include <linux/vmalloc.h>
24#include <linux/module.h>
25#include <linux/mm.h>
26#include <linux/init.h>
27#include <linux/kallsyms.h>
28#include <linux/kgdb.h>
29#include <linux/kdb.h>
30#include <linux/notifier.h>
31#include <linux/interrupt.h>
32#include <linux/delay.h>
33#include <linux/nmi.h>
34#include <linux/time.h>
35#include <linux/ptrace.h>
36#include <linux/sysctl.h>
37#include <linux/cpu.h>
38#include <linux/kdebug.h>
39#include <linux/proc_fs.h>
40#include <linux/uaccess.h>
41#include <linux/slab.h>
42#include "kdb_private.h"
43
44#define GREP_LEN 256
45char kdb_grep_string[GREP_LEN];
46int kdb_grepping_flag;
47EXPORT_SYMBOL(kdb_grepping_flag);
48int kdb_grep_leading;
49int kdb_grep_trailing;
50
51/*
52 * Kernel debugger state flags
53 */
54int kdb_flags;
55atomic_t kdb_event;
56
57/*
58 * kdb_lock protects updates to kdb_initial_cpu. Used to
59 * single thread processors through the kernel debugger.
60 */
61int kdb_initial_cpu = -1; /* cpu number that owns kdb */
62int kdb_nextline = 1;
63int kdb_state; /* General KDB state */
64
65struct task_struct *kdb_current_task;
66EXPORT_SYMBOL(kdb_current_task);
67struct pt_regs *kdb_current_regs;
68
69const char *kdb_diemsg;
70static int kdb_go_count;
71#ifdef CONFIG_KDB_CONTINUE_CATASTROPHIC
72static unsigned int kdb_continue_catastrophic =
73 CONFIG_KDB_CONTINUE_CATASTROPHIC;
74#else
75static unsigned int kdb_continue_catastrophic;
76#endif
77
78/* kdb_commands describes the available commands. */
79static kdbtab_t *kdb_commands;
80#define KDB_BASE_CMD_MAX 50
81static int kdb_max_commands = KDB_BASE_CMD_MAX;
82static kdbtab_t kdb_base_commands[KDB_BASE_CMD_MAX];
83#define for_each_kdbcmd(cmd, num) \
84 for ((cmd) = kdb_base_commands, (num) = 0; \
85 num < kdb_max_commands; \
86 num++, num == KDB_BASE_CMD_MAX ? cmd = kdb_commands : cmd++)
87
88typedef struct _kdbmsg {
89 int km_diag; /* kdb diagnostic */
90 char *km_msg; /* Corresponding message text */
91} kdbmsg_t;
92
93#define KDBMSG(msgnum, text) \
94 { KDB_##msgnum, text }
95
96static kdbmsg_t kdbmsgs[] = {
97 KDBMSG(NOTFOUND, "Command Not Found"),
98 KDBMSG(ARGCOUNT, "Improper argument count, see usage."),
99 KDBMSG(BADWIDTH, "Illegal value for BYTESPERWORD use 1, 2, 4 or 8, "
100 "8 is only allowed on 64 bit systems"),
101 KDBMSG(BADRADIX, "Illegal value for RADIX use 8, 10 or 16"),
102 KDBMSG(NOTENV, "Cannot find environment variable"),
103 KDBMSG(NOENVVALUE, "Environment variable should have value"),
104 KDBMSG(NOTIMP, "Command not implemented"),
105 KDBMSG(ENVFULL, "Environment full"),
106 KDBMSG(ENVBUFFULL, "Environment buffer full"),
107 KDBMSG(TOOMANYBPT, "Too many breakpoints defined"),
108#ifdef CONFIG_CPU_XSCALE
109 KDBMSG(TOOMANYDBREGS, "More breakpoints than ibcr registers defined"),
110#else
111 KDBMSG(TOOMANYDBREGS, "More breakpoints than db registers defined"),
112#endif
113 KDBMSG(DUPBPT, "Duplicate breakpoint address"),
114 KDBMSG(BPTNOTFOUND, "Breakpoint not found"),
115 KDBMSG(BADMODE, "Invalid IDMODE"),
116 KDBMSG(BADINT, "Illegal numeric value"),
117 KDBMSG(INVADDRFMT, "Invalid symbolic address format"),
118 KDBMSG(BADREG, "Invalid register name"),
119 KDBMSG(BADCPUNUM, "Invalid cpu number"),
120 KDBMSG(BADLENGTH, "Invalid length field"),
121 KDBMSG(NOBP, "No Breakpoint exists"),
122 KDBMSG(BADADDR, "Invalid address"),
123};
124#undef KDBMSG
125
126static const int __nkdb_err = sizeof(kdbmsgs) / sizeof(kdbmsg_t);
127
128
129/*
130 * Initial environment. This is all kept static and local to
131 * this file. We don't want to rely on the memory allocation
132 * mechanisms in the kernel, so we use a very limited allocate-only
133 * heap for new and altered environment variables. The entire
134 * environment is limited to a fixed number of entries (add more
135 * to __env[] if required) and a fixed amount of heap (add more to
136 * KDB_ENVBUFSIZE if required).
137 */
138
139static char *__env[] = {
140#if defined(CONFIG_SMP)
141 "PROMPT=[%d]kdb> ",
142 "MOREPROMPT=[%d]more> ",
143#else
144 "PROMPT=kdb> ",
145 "MOREPROMPT=more> ",
146#endif
147 "RADIX=16",
148 "MDCOUNT=8", /* lines of md output */
149 KDB_PLATFORM_ENV,
150 "DTABCOUNT=30",
151 "NOSECT=1",
152 (char *)0,
153 (char *)0,
154 (char *)0,
155 (char *)0,
156 (char *)0,
157 (char *)0,
158 (char *)0,
159 (char *)0,
160 (char *)0,
161 (char *)0,
162 (char *)0,
163 (char *)0,
164 (char *)0,
165 (char *)0,
166 (char *)0,
167 (char *)0,
168 (char *)0,
169 (char *)0,
170 (char *)0,
171 (char *)0,
172 (char *)0,
173 (char *)0,
174 (char *)0,
175 (char *)0,
176};
177
178static const int __nenv = (sizeof(__env) / sizeof(char *));
179
180struct task_struct *kdb_curr_task(int cpu)
181{
182 struct task_struct *p = curr_task(cpu);
183#ifdef _TIF_MCA_INIT
184 if ((task_thread_info(p)->flags & _TIF_MCA_INIT) && KDB_TSK(cpu))
185 p = krp->p;
186#endif
187 return p;
188}
189
190/*
191 * kdbgetenv - This function will return the character string value of
192 * an environment variable.
193 * Parameters:
194 * match A character string representing an environment variable.
195 * Returns:
196 * NULL No environment variable matches 'match'
197 * char* Pointer to string value of environment variable.
198 */
199char *kdbgetenv(const char *match)
200{
201 char **ep = __env;
202 int matchlen = strlen(match);
203 int i;
204
205 for (i = 0; i < __nenv; i++) {
206 char *e = *ep++;
207
208 if (!e)
209 continue;
210
211 if ((strncmp(match, e, matchlen) == 0)
212 && ((e[matchlen] == '\0')
213 || (e[matchlen] == '='))) {
214 char *cp = strchr(e, '=');
215 return cp ? ++cp : "";
216 }
217 }
218 return NULL;
219}
220
221/*
222 * kdballocenv - This function is used to allocate bytes for
223 * environment entries.
224 * Parameters:
225 * match A character string representing a numeric value
226 * Outputs:
227 * *value the unsigned long representation of the env variable 'match'
228 * Returns:
229 * Zero on success, a kdb diagnostic on failure.
230 * Remarks:
231 * We use a static environment buffer (envbuffer) to hold the values
232 * of dynamically generated environment variables (see kdb_set). Buffer
233 * space once allocated is never free'd, so over time, the amount of space
234 * (currently 512 bytes) will be exhausted if env variables are changed
235 * frequently.
236 */
237static char *kdballocenv(size_t bytes)
238{
239#define KDB_ENVBUFSIZE 512
240 static char envbuffer[KDB_ENVBUFSIZE];
241 static int envbufsize;
242 char *ep = NULL;
243
244 if ((KDB_ENVBUFSIZE - envbufsize) >= bytes) {
245 ep = &envbuffer[envbufsize];
246 envbufsize += bytes;
247 }
248 return ep;
249}
250
251/*
252 * kdbgetulenv - This function will return the value of an unsigned
253 * long-valued environment variable.
254 * Parameters:
255 * match A character string representing a numeric value
256 * Outputs:
257 * *value the unsigned long represntation of the env variable 'match'
258 * Returns:
259 * Zero on success, a kdb diagnostic on failure.
260 */
261static int kdbgetulenv(const char *match, unsigned long *value)
262{
263 char *ep;
264
265 ep = kdbgetenv(match);
266 if (!ep)
267 return KDB_NOTENV;
268 if (strlen(ep) == 0)
269 return KDB_NOENVVALUE;
270
271 *value = simple_strtoul(ep, NULL, 0);
272
273 return 0;
274}
275
276/*
277 * kdbgetintenv - This function will return the value of an
278 * integer-valued environment variable.
279 * Parameters:
280 * match A character string representing an integer-valued env variable
281 * Outputs:
282 * *value the integer representation of the environment variable 'match'
283 * Returns:
284 * Zero on success, a kdb diagnostic on failure.
285 */
286int kdbgetintenv(const char *match, int *value)
287{
288 unsigned long val;
289 int diag;
290
291 diag = kdbgetulenv(match, &val);
292 if (!diag)
293 *value = (int) val;
294 return diag;
295}
296
297/*
298 * kdbgetularg - This function will convert a numeric string into an
299 * unsigned long value.
300 * Parameters:
301 * arg A character string representing a numeric value
302 * Outputs:
303 * *value the unsigned long represntation of arg.
304 * Returns:
305 * Zero on success, a kdb diagnostic on failure.
306 */
307int kdbgetularg(const char *arg, unsigned long *value)
308{
309 char *endp;
310 unsigned long val;
311
312 val = simple_strtoul(arg, &endp, 0);
313
314 if (endp == arg) {
315 /*
316 * Also try base 16, for us folks too lazy to type the
317 * leading 0x...
318 */
319 val = simple_strtoul(arg, &endp, 16);
320 if (endp == arg)
321 return KDB_BADINT;
322 }
323
324 *value = val;
325
326 return 0;
327}
328
329int kdbgetu64arg(const char *arg, u64 *value)
330{
331 char *endp;
332 u64 val;
333
334 val = simple_strtoull(arg, &endp, 0);
335
336 if (endp == arg) {
337
338 val = simple_strtoull(arg, &endp, 16);
339 if (endp == arg)
340 return KDB_BADINT;
341 }
342
343 *value = val;
344
345 return 0;
346}
347
348/*
349 * kdb_set - This function implements the 'set' command. Alter an
350 * existing environment variable or create a new one.
351 */
352int kdb_set(int argc, const char **argv)
353{
354 int i;
355 char *ep;
356 size_t varlen, vallen;
357
358 /*
359 * we can be invoked two ways:
360 * set var=value argv[1]="var", argv[2]="value"
361 * set var = value argv[1]="var", argv[2]="=", argv[3]="value"
362 * - if the latter, shift 'em down.
363 */
364 if (argc == 3) {
365 argv[2] = argv[3];
366 argc--;
367 }
368
369 if (argc != 2)
370 return KDB_ARGCOUNT;
371
372 /*
373 * Check for internal variables
374 */
375 if (strcmp(argv[1], "KDBDEBUG") == 0) {
376 unsigned int debugflags;
377 char *cp;
378
379 debugflags = simple_strtoul(argv[2], &cp, 0);
380 if (cp == argv[2] || debugflags & ~KDB_DEBUG_FLAG_MASK) {
381 kdb_printf("kdb: illegal debug flags '%s'\n",
382 argv[2]);
383 return 0;
384 }
385 kdb_flags = (kdb_flags &
386 ~(KDB_DEBUG_FLAG_MASK << KDB_DEBUG_FLAG_SHIFT))
387 | (debugflags << KDB_DEBUG_FLAG_SHIFT);
388
389 return 0;
390 }
391
392 /*
393 * Tokenizer squashed the '=' sign. argv[1] is variable
394 * name, argv[2] = value.
395 */
396 varlen = strlen(argv[1]);
397 vallen = strlen(argv[2]);
398 ep = kdballocenv(varlen + vallen + 2);
399 if (ep == (char *)0)
400 return KDB_ENVBUFFULL;
401
402 sprintf(ep, "%s=%s", argv[1], argv[2]);
403
404 ep[varlen+vallen+1] = '\0';
405
406 for (i = 0; i < __nenv; i++) {
407 if (__env[i]
408 && ((strncmp(__env[i], argv[1], varlen) == 0)
409 && ((__env[i][varlen] == '\0')
410 || (__env[i][varlen] == '=')))) {
411 __env[i] = ep;
412 return 0;
413 }
414 }
415
416 /*
417 * Wasn't existing variable. Fit into slot.
418 */
419 for (i = 0; i < __nenv-1; i++) {
420 if (__env[i] == (char *)0) {
421 __env[i] = ep;
422 return 0;
423 }
424 }
425
426 return KDB_ENVFULL;
427}
428
429static int kdb_check_regs(void)
430{
431 if (!kdb_current_regs) {
432 kdb_printf("No current kdb registers."
433 " You may need to select another task\n");
434 return KDB_BADREG;
435 }
436 return 0;
437}
438
439/*
440 * kdbgetaddrarg - This function is responsible for parsing an
441 * address-expression and returning the value of the expression,
442 * symbol name, and offset to the caller.
443 *
444 * The argument may consist of a numeric value (decimal or
445 * hexidecimal), a symbol name, a register name (preceded by the
446 * percent sign), an environment variable with a numeric value
447 * (preceded by a dollar sign) or a simple arithmetic expression
448 * consisting of a symbol name, +/-, and a numeric constant value
449 * (offset).
450 * Parameters:
451 * argc - count of arguments in argv
452 * argv - argument vector
453 * *nextarg - index to next unparsed argument in argv[]
454 * regs - Register state at time of KDB entry
455 * Outputs:
456 * *value - receives the value of the address-expression
457 * *offset - receives the offset specified, if any
458 * *name - receives the symbol name, if any
459 * *nextarg - index to next unparsed argument in argv[]
460 * Returns:
461 * zero is returned on success, a kdb diagnostic code is
462 * returned on error.
463 */
464int kdbgetaddrarg(int argc, const char **argv, int *nextarg,
465 unsigned long *value, long *offset,
466 char **name)
467{
468 unsigned long addr;
469 unsigned long off = 0;
470 int positive;
471 int diag;
472 int found = 0;
473 char *symname;
474 char symbol = '\0';
475 char *cp;
476 kdb_symtab_t symtab;
477
478 /*
479 * Process arguments which follow the following syntax:
480 *
481 * symbol | numeric-address [+/- numeric-offset]
482 * %register
483 * $environment-variable
484 */
485
486 if (*nextarg > argc)
487 return KDB_ARGCOUNT;
488
489 symname = (char *)argv[*nextarg];
490
491 /*
492 * If there is no whitespace between the symbol
493 * or address and the '+' or '-' symbols, we
494 * remember the character and replace it with a
495 * null so the symbol/value can be properly parsed
496 */
497 cp = strpbrk(symname, "+-");
498 if (cp != NULL) {
499 symbol = *cp;
500 *cp++ = '\0';
501 }
502
503 if (symname[0] == '$') {
504 diag = kdbgetulenv(&symname[1], &addr);
505 if (diag)
506 return diag;
507 } else if (symname[0] == '%') {
508 diag = kdb_check_regs();
509 if (diag)
510 return diag;
511 /* Implement register values with % at a later time as it is
512 * arch optional.
513 */
514 return KDB_NOTIMP;
515 } else {
516 found = kdbgetsymval(symname, &symtab);
517 if (found) {
518 addr = symtab.sym_start;
519 } else {
520 diag = kdbgetularg(argv[*nextarg], &addr);
521 if (diag)
522 return diag;
523 }
524 }
525
526 if (!found)
527 found = kdbnearsym(addr, &symtab);
528
529 (*nextarg)++;
530
531 if (name)
532 *name = symname;
533 if (value)
534 *value = addr;
535 if (offset && name && *name)
536 *offset = addr - symtab.sym_start;
537
538 if ((*nextarg > argc)
539 && (symbol == '\0'))
540 return 0;
541
542 /*
543 * check for +/- and offset
544 */
545
546 if (symbol == '\0') {
547 if ((argv[*nextarg][0] != '+')
548 && (argv[*nextarg][0] != '-')) {
549 /*
550 * Not our argument. Return.
551 */
552 return 0;
553 } else {
554 positive = (argv[*nextarg][0] == '+');
555 (*nextarg)++;
556 }
557 } else
558 positive = (symbol == '+');
559
560 /*
561 * Now there must be an offset!
562 */
563 if ((*nextarg > argc)
564 && (symbol == '\0')) {
565 return KDB_INVADDRFMT;
566 }
567
568 if (!symbol) {
569 cp = (char *)argv[*nextarg];
570 (*nextarg)++;
571 }
572
573 diag = kdbgetularg(cp, &off);
574 if (diag)
575 return diag;
576
577 if (!positive)
578 off = -off;
579
580 if (offset)
581 *offset += off;
582
583 if (value)
584 *value += off;
585
586 return 0;
587}
588
589static void kdb_cmderror(int diag)
590{
591 int i;
592
593 if (diag >= 0) {
594 kdb_printf("no error detected (diagnostic is %d)\n", diag);
595 return;
596 }
597
598 for (i = 0; i < __nkdb_err; i++) {
599 if (kdbmsgs[i].km_diag == diag) {
600 kdb_printf("diag: %d: %s\n", diag, kdbmsgs[i].km_msg);
601 return;
602 }
603 }
604
605 kdb_printf("Unknown diag %d\n", -diag);
606}
607
608/*
609 * kdb_defcmd, kdb_defcmd2 - This function implements the 'defcmd'
610 * command which defines one command as a set of other commands,
611 * terminated by endefcmd. kdb_defcmd processes the initial
612 * 'defcmd' command, kdb_defcmd2 is invoked from kdb_parse for
613 * the following commands until 'endefcmd'.
614 * Inputs:
615 * argc argument count
616 * argv argument vector
617 * Returns:
618 * zero for success, a kdb diagnostic if error
619 */
620struct defcmd_set {
621 int count;
622 int usable;
623 char *name;
624 char *usage;
625 char *help;
626 char **command;
627};
628static struct defcmd_set *defcmd_set;
629static int defcmd_set_count;
630static int defcmd_in_progress;
631
632/* Forward references */
633static int kdb_exec_defcmd(int argc, const char **argv);
634
635static int kdb_defcmd2(const char *cmdstr, const char *argv0)
636{
637 struct defcmd_set *s = defcmd_set + defcmd_set_count - 1;
638 char **save_command = s->command;
639 if (strcmp(argv0, "endefcmd") == 0) {
640 defcmd_in_progress = 0;
641 if (!s->count)
642 s->usable = 0;
643 if (s->usable)
644 kdb_register(s->name, kdb_exec_defcmd,
645 s->usage, s->help, 0);
646 return 0;
647 }
648 if (!s->usable)
649 return KDB_NOTIMP;
650 s->command = kzalloc((s->count + 1) * sizeof(*(s->command)), GFP_KDB);
651 if (!s->command) {
652 kdb_printf("Could not allocate new kdb_defcmd table for %s\n",
653 cmdstr);
654 s->usable = 0;
655 return KDB_NOTIMP;
656 }
657 memcpy(s->command, save_command, s->count * sizeof(*(s->command)));
658 s->command[s->count++] = kdb_strdup(cmdstr, GFP_KDB);
659 kfree(save_command);
660 return 0;
661}
662
663static int kdb_defcmd(int argc, const char **argv)
664{
665 struct defcmd_set *save_defcmd_set = defcmd_set, *s;
666 if (defcmd_in_progress) {
667 kdb_printf("kdb: nested defcmd detected, assuming missing "
668 "endefcmd\n");
669 kdb_defcmd2("endefcmd", "endefcmd");
670 }
671 if (argc == 0) {
672 int i;
673 for (s = defcmd_set; s < defcmd_set + defcmd_set_count; ++s) {
674 kdb_printf("defcmd %s \"%s\" \"%s\"\n", s->name,
675 s->usage, s->help);
676 for (i = 0; i < s->count; ++i)
677 kdb_printf("%s", s->command[i]);
678 kdb_printf("endefcmd\n");
679 }
680 return 0;
681 }
682 if (argc != 3)
683 return KDB_ARGCOUNT;
684 defcmd_set = kmalloc((defcmd_set_count + 1) * sizeof(*defcmd_set),
685 GFP_KDB);
686 if (!defcmd_set) {
687 kdb_printf("Could not allocate new defcmd_set entry for %s\n",
688 argv[1]);
689 defcmd_set = save_defcmd_set;
690 return KDB_NOTIMP;
691 }
692 memcpy(defcmd_set, save_defcmd_set,
693 defcmd_set_count * sizeof(*defcmd_set));
694 kfree(save_defcmd_set);
695 s = defcmd_set + defcmd_set_count;
696 memset(s, 0, sizeof(*s));
697 s->usable = 1;
698 s->name = kdb_strdup(argv[1], GFP_KDB);
699 s->usage = kdb_strdup(argv[2], GFP_KDB);
700 s->help = kdb_strdup(argv[3], GFP_KDB);
701 if (s->usage[0] == '"') {
702 strcpy(s->usage, s->usage+1);
703 s->usage[strlen(s->usage)-1] = '\0';
704 }
705 if (s->help[0] == '"') {
706 strcpy(s->help, s->help+1);
707 s->help[strlen(s->help)-1] = '\0';
708 }
709 ++defcmd_set_count;
710 defcmd_in_progress = 1;
711 return 0;
712}
713
714/*
715 * kdb_exec_defcmd - Execute the set of commands associated with this
716 * defcmd name.
717 * Inputs:
718 * argc argument count
719 * argv argument vector
720 * Returns:
721 * zero for success, a kdb diagnostic if error
722 */
723static int kdb_exec_defcmd(int argc, const char **argv)
724{
725 int i, ret;
726 struct defcmd_set *s;
727 if (argc != 0)
728 return KDB_ARGCOUNT;
729 for (s = defcmd_set, i = 0; i < defcmd_set_count; ++i, ++s) {
730 if (strcmp(s->name, argv[0]) == 0)
731 break;
732 }
733 if (i == defcmd_set_count) {
734 kdb_printf("kdb_exec_defcmd: could not find commands for %s\n",
735 argv[0]);
736 return KDB_NOTIMP;
737 }
738 for (i = 0; i < s->count; ++i) {
739 /* Recursive use of kdb_parse, do not use argv after
740 * this point */
741 argv = NULL;
742 kdb_printf("[%s]kdb> %s\n", s->name, s->command[i]);
743 ret = kdb_parse(s->command[i]);
744 if (ret)
745 return ret;
746 }
747 return 0;
748}
749
750/* Command history */
751#define KDB_CMD_HISTORY_COUNT 32
752#define CMD_BUFLEN 200 /* kdb_printf: max printline
753 * size == 256 */
754static unsigned int cmd_head, cmd_tail;
755static unsigned int cmdptr;
756static char cmd_hist[KDB_CMD_HISTORY_COUNT][CMD_BUFLEN];
757static char cmd_cur[CMD_BUFLEN];
758
759/*
760 * The "str" argument may point to something like | grep xyz
761 */
762static void parse_grep(const char *str)
763{
764 int len;
765 char *cp = (char *)str, *cp2;
766
767 /* sanity check: we should have been called with the \ first */
768 if (*cp != '|')
769 return;
770 cp++;
771 while (isspace(*cp))
772 cp++;
773 if (strncmp(cp, "grep ", 5)) {
774 kdb_printf("invalid 'pipe', see grephelp\n");
775 return;
776 }
777 cp += 5;
778 while (isspace(*cp))
779 cp++;
780 cp2 = strchr(cp, '\n');
781 if (cp2)
782 *cp2 = '\0'; /* remove the trailing newline */
783 len = strlen(cp);
784 if (len == 0) {
785 kdb_printf("invalid 'pipe', see grephelp\n");
786 return;
787 }
788 /* now cp points to a nonzero length search string */
789 if (*cp == '"') {
790 /* allow it be "x y z" by removing the "'s - there must
791 be two of them */
792 cp++;
793 cp2 = strchr(cp, '"');
794 if (!cp2) {
795 kdb_printf("invalid quoted string, see grephelp\n");
796 return;
797 }
798 *cp2 = '\0'; /* end the string where the 2nd " was */
799 }
800 kdb_grep_leading = 0;
801 if (*cp == '^') {
802 kdb_grep_leading = 1;
803 cp++;
804 }
805 len = strlen(cp);
806 kdb_grep_trailing = 0;
807 if (*(cp+len-1) == '$') {
808 kdb_grep_trailing = 1;
809 *(cp+len-1) = '\0';
810 }
811 len = strlen(cp);
812 if (!len)
813 return;
814 if (len >= GREP_LEN) {
815 kdb_printf("search string too long\n");
816 return;
817 }
818 strcpy(kdb_grep_string, cp);
819 kdb_grepping_flag++;
820 return;
821}
822
823/*
824 * kdb_parse - Parse the command line, search the command table for a
825 * matching command and invoke the command function. This
826 * function may be called recursively, if it is, the second call
827 * will overwrite argv and cbuf. It is the caller's
828 * responsibility to save their argv if they recursively call
829 * kdb_parse().
830 * Parameters:
831 * cmdstr The input command line to be parsed.
832 * regs The registers at the time kdb was entered.
833 * Returns:
834 * Zero for success, a kdb diagnostic if failure.
835 * Remarks:
836 * Limited to 20 tokens.
837 *
838 * Real rudimentary tokenization. Basically only whitespace
839 * is considered a token delimeter (but special consideration
840 * is taken of the '=' sign as used by the 'set' command).
841 *
842 * The algorithm used to tokenize the input string relies on
843 * there being at least one whitespace (or otherwise useless)
844 * character between tokens as the character immediately following
845 * the token is altered in-place to a null-byte to terminate the
846 * token string.
847 */
848
849#define MAXARGC 20
850
851int kdb_parse(const char *cmdstr)
852{
853 static char *argv[MAXARGC];
854 static int argc;
855 static char cbuf[CMD_BUFLEN+2];
856 char *cp;
857 char *cpp, quoted;
858 kdbtab_t *tp;
859 int i, escaped, ignore_errors = 0, check_grep;
860
861 /*
862 * First tokenize the command string.
863 */
864 cp = (char *)cmdstr;
865 kdb_grepping_flag = check_grep = 0;
866
867 if (KDB_FLAG(CMD_INTERRUPT)) {
868 /* Previous command was interrupted, newline must not
869 * repeat the command */
870 KDB_FLAG_CLEAR(CMD_INTERRUPT);
871 KDB_STATE_SET(PAGER);
872 argc = 0; /* no repeat */
873 }
874
875 if (*cp != '\n' && *cp != '\0') {
876 argc = 0;
877 cpp = cbuf;
878 while (*cp) {
879 /* skip whitespace */
880 while (isspace(*cp))
881 cp++;
882 if ((*cp == '\0') || (*cp == '\n') ||
883 (*cp == '#' && !defcmd_in_progress))
884 break;
885 /* special case: check for | grep pattern */
886 if (*cp == '|') {
887 check_grep++;
888 break;
889 }
890 if (cpp >= cbuf + CMD_BUFLEN) {
891 kdb_printf("kdb_parse: command buffer "
892 "overflow, command ignored\n%s\n",
893 cmdstr);
894 return KDB_NOTFOUND;
895 }
896 if (argc >= MAXARGC - 1) {
897 kdb_printf("kdb_parse: too many arguments, "
898 "command ignored\n%s\n", cmdstr);
899 return KDB_NOTFOUND;
900 }
901 argv[argc++] = cpp;
902 escaped = 0;
903 quoted = '\0';
904 /* Copy to next unquoted and unescaped
905 * whitespace or '=' */
906 while (*cp && *cp != '\n' &&
907 (escaped || quoted || !isspace(*cp))) {
908 if (cpp >= cbuf + CMD_BUFLEN)
909 break;
910 if (escaped) {
911 escaped = 0;
912 *cpp++ = *cp++;
913 continue;
914 }
915 if (*cp == '\\') {
916 escaped = 1;
917 ++cp;
918 continue;
919 }
920 if (*cp == quoted)
921 quoted = '\0';
922 else if (*cp == '\'' || *cp == '"')
923 quoted = *cp;
924 *cpp = *cp++;
925 if (*cpp == '=' && !quoted)
926 break;
927 ++cpp;
928 }
929 *cpp++ = '\0'; /* Squash a ws or '=' character */
930 }
931 }
932 if (!argc)
933 return 0;
934 if (check_grep)
935 parse_grep(cp);
936 if (defcmd_in_progress) {
937 int result = kdb_defcmd2(cmdstr, argv[0]);
938 if (!defcmd_in_progress) {
939 argc = 0; /* avoid repeat on endefcmd */
940 *(argv[0]) = '\0';
941 }
942 return result;
943 }
944 if (argv[0][0] == '-' && argv[0][1] &&
945 (argv[0][1] < '0' || argv[0][1] > '9')) {
946 ignore_errors = 1;
947 ++argv[0];
948 }
949
950 for_each_kdbcmd(tp, i) {
951 if (tp->cmd_name) {
952 /*
953 * If this command is allowed to be abbreviated,
954 * check to see if this is it.
955 */
956
957 if (tp->cmd_minlen
958 && (strlen(argv[0]) <= tp->cmd_minlen)) {
959 if (strncmp(argv[0],
960 tp->cmd_name,
961 tp->cmd_minlen) == 0) {
962 break;
963 }
964 }
965
966 if (strcmp(argv[0], tp->cmd_name) == 0)
967 break;
968 }
969 }
970
971 /*
972 * If we don't find a command by this name, see if the first
973 * few characters of this match any of the known commands.
974 * e.g., md1c20 should match md.
975 */
976 if (i == kdb_max_commands) {
977 for_each_kdbcmd(tp, i) {
978 if (tp->cmd_name) {
979 if (strncmp(argv[0],
980 tp->cmd_name,
981 strlen(tp->cmd_name)) == 0) {
982 break;
983 }
984 }
985 }
986 }
987
988 if (i < kdb_max_commands) {
989 int result;
990 KDB_STATE_SET(CMD);
991 result = (*tp->cmd_func)(argc-1, (const char **)argv);
992 if (result && ignore_errors && result > KDB_CMD_GO)
993 result = 0;
994 KDB_STATE_CLEAR(CMD);
995 switch (tp->cmd_repeat) {
996 case KDB_REPEAT_NONE:
997 argc = 0;
998 if (argv[0])
999 *(argv[0]) = '\0';
1000 break;
1001 case KDB_REPEAT_NO_ARGS:
1002 argc = 1;
1003 if (argv[1])
1004 *(argv[1]) = '\0';
1005 break;
1006 case KDB_REPEAT_WITH_ARGS:
1007 break;
1008 }
1009 return result;
1010 }
1011
1012 /*
1013 * If the input with which we were presented does not
1014 * map to an existing command, attempt to parse it as an
1015 * address argument and display the result. Useful for
1016 * obtaining the address of a variable, or the nearest symbol
1017 * to an address contained in a register.
1018 */
1019 {
1020 unsigned long value;
1021 char *name = NULL;
1022 long offset;
1023 int nextarg = 0;
1024
1025 if (kdbgetaddrarg(0, (const char **)argv, &nextarg,
1026 &value, &offset, &name)) {
1027 return KDB_NOTFOUND;
1028 }
1029
1030 kdb_printf("%s = ", argv[0]);
1031 kdb_symbol_print(value, NULL, KDB_SP_DEFAULT);
1032 kdb_printf("\n");
1033 return 0;
1034 }
1035}
1036
1037
1038static int handle_ctrl_cmd(char *cmd)
1039{
1040#define CTRL_P 16
1041#define CTRL_N 14
1042
1043 /* initial situation */
1044 if (cmd_head == cmd_tail)
1045 return 0;
1046 switch (*cmd) {
1047 case CTRL_P:
1048 if (cmdptr != cmd_tail)
1049 cmdptr = (cmdptr-1) % KDB_CMD_HISTORY_COUNT;
1050 strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1051 return 1;
1052 case CTRL_N:
1053 if (cmdptr != cmd_head)
1054 cmdptr = (cmdptr+1) % KDB_CMD_HISTORY_COUNT;
1055 strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1056 return 1;
1057 }
1058 return 0;
1059}
1060
1061/*
1062 * kdb_reboot - This function implements the 'reboot' command. Reboot
1063 * the system immediately, or loop for ever on failure.
1064 */
1065static int kdb_reboot(int argc, const char **argv)
1066{
1067 emergency_restart();
1068 kdb_printf("Hmm, kdb_reboot did not reboot, spinning here\n");
1069 while (1)
1070 cpu_relax();
1071 /* NOTREACHED */
1072 return 0;
1073}
1074
1075static void kdb_dumpregs(struct pt_regs *regs)
1076{
1077 int old_lvl = console_loglevel;
1078 console_loglevel = 15;
1079 kdb_trap_printk++;
1080 show_regs(regs);
1081 kdb_trap_printk--;
1082 kdb_printf("\n");
1083 console_loglevel = old_lvl;
1084}
1085
1086void kdb_set_current_task(struct task_struct *p)
1087{
1088 kdb_current_task = p;
1089
1090 if (kdb_task_has_cpu(p)) {
1091 kdb_current_regs = KDB_TSKREGS(kdb_process_cpu(p));
1092 return;
1093 }
1094 kdb_current_regs = NULL;
1095}
1096
1097/*
1098 * kdb_local - The main code for kdb. This routine is invoked on a
1099 * specific processor, it is not global. The main kdb() routine
1100 * ensures that only one processor at a time is in this routine.
1101 * This code is called with the real reason code on the first
1102 * entry to a kdb session, thereafter it is called with reason
1103 * SWITCH, even if the user goes back to the original cpu.
1104 * Inputs:
1105 * reason The reason KDB was invoked
1106 * error The hardware-defined error code
1107 * regs The exception frame at time of fault/breakpoint.
1108 * db_result Result code from the break or debug point.
1109 * Returns:
1110 * 0 KDB was invoked for an event which it wasn't responsible
1111 * 1 KDB handled the event for which it was invoked.
1112 * KDB_CMD_GO User typed 'go'.
1113 * KDB_CMD_CPU User switched to another cpu.
1114 * KDB_CMD_SS Single step.
1115 * KDB_CMD_SSB Single step until branch.
1116 */
1117static int kdb_local(kdb_reason_t reason, int error, struct pt_regs *regs,
1118 kdb_dbtrap_t db_result)
1119{
1120 char *cmdbuf;
1121 int diag;
1122 struct task_struct *kdb_current =
1123 kdb_curr_task(raw_smp_processor_id());
1124
1125 KDB_DEBUG_STATE("kdb_local 1", reason);
1126 kdb_go_count = 0;
1127 if (reason == KDB_REASON_DEBUG) {
1128 /* special case below */
1129 } else {
1130 kdb_printf("\nEntering kdb (current=0x%p, pid %d) ",
1131 kdb_current, kdb_current ? kdb_current->pid : 0);
1132#if defined(CONFIG_SMP)
1133 kdb_printf("on processor %d ", raw_smp_processor_id());
1134#endif
1135 }
1136
1137 switch (reason) {
1138 case KDB_REASON_DEBUG:
1139 {
1140 /*
1141 * If re-entering kdb after a single step
1142 * command, don't print the message.
1143 */
1144 switch (db_result) {
1145 case KDB_DB_BPT:
1146 kdb_printf("\nEntering kdb (0x%p, pid %d) ",
1147 kdb_current, kdb_current->pid);
1148#if defined(CONFIG_SMP)
1149 kdb_printf("on processor %d ", raw_smp_processor_id());
1150#endif
1151 kdb_printf("due to Debug @ " kdb_machreg_fmt "\n",
1152 instruction_pointer(regs));
1153 break;
1154 case KDB_DB_SSB:
1155 /*
1156 * In the midst of ssb command. Just return.
1157 */
1158 KDB_DEBUG_STATE("kdb_local 3", reason);
1159 return KDB_CMD_SSB; /* Continue with SSB command */
1160
1161 break;
1162 case KDB_DB_SS:
1163 break;
1164 case KDB_DB_SSBPT:
1165 KDB_DEBUG_STATE("kdb_local 4", reason);
1166 return 1; /* kdba_db_trap did the work */
1167 default:
1168 kdb_printf("kdb: Bad result from kdba_db_trap: %d\n",
1169 db_result);
1170 break;
1171 }
1172
1173 }
1174 break;
1175 case KDB_REASON_ENTER:
1176 if (KDB_STATE(KEYBOARD))
1177 kdb_printf("due to Keyboard Entry\n");
1178 else
1179 kdb_printf("due to KDB_ENTER()\n");
1180 break;
1181 case KDB_REASON_KEYBOARD:
1182 KDB_STATE_SET(KEYBOARD);
1183 kdb_printf("due to Keyboard Entry\n");
1184 break;
1185 case KDB_REASON_ENTER_SLAVE:
1186 /* drop through, slaves only get released via cpu switch */
1187 case KDB_REASON_SWITCH:
1188 kdb_printf("due to cpu switch\n");
1189 break;
1190 case KDB_REASON_OOPS:
1191 kdb_printf("Oops: %s\n", kdb_diemsg);
1192 kdb_printf("due to oops @ " kdb_machreg_fmt "\n",
1193 instruction_pointer(regs));
1194 kdb_dumpregs(regs);
1195 break;
1196 case KDB_REASON_NMI:
1197 kdb_printf("due to NonMaskable Interrupt @ "
1198 kdb_machreg_fmt "\n",
1199 instruction_pointer(regs));
1200 kdb_dumpregs(regs);
1201 break;
1202 case KDB_REASON_SSTEP:
1203 case KDB_REASON_BREAK:
1204 kdb_printf("due to %s @ " kdb_machreg_fmt "\n",
1205 reason == KDB_REASON_BREAK ?
1206 "Breakpoint" : "SS trap", instruction_pointer(regs));
1207 /*
1208 * Determine if this breakpoint is one that we
1209 * are interested in.
1210 */
1211 if (db_result != KDB_DB_BPT) {
1212 kdb_printf("kdb: error return from kdba_bp_trap: %d\n",
1213 db_result);
1214 KDB_DEBUG_STATE("kdb_local 6", reason);
1215 return 0; /* Not for us, dismiss it */
1216 }
1217 break;
1218 case KDB_REASON_RECURSE:
1219 kdb_printf("due to Recursion @ " kdb_machreg_fmt "\n",
1220 instruction_pointer(regs));
1221 break;
1222 default:
1223 kdb_printf("kdb: unexpected reason code: %d\n", reason);
1224 KDB_DEBUG_STATE("kdb_local 8", reason);
1225 return 0; /* Not for us, dismiss it */
1226 }
1227
1228 while (1) {
1229 /*
1230 * Initialize pager context.
1231 */
1232 kdb_nextline = 1;
1233 KDB_STATE_CLEAR(SUPPRESS);
1234
1235 cmdbuf = cmd_cur;
1236 *cmdbuf = '\0';
1237 *(cmd_hist[cmd_head]) = '\0';
1238
1239 if (KDB_FLAG(ONLY_DO_DUMP)) {
1240 /* kdb is off but a catastrophic error requires a dump.
1241 * Take the dump and reboot.
1242 * Turn on logging so the kdb output appears in the log
1243 * buffer in the dump.
1244 */
1245 const char *setargs[] = { "set", "LOGGING", "1" };
1246 kdb_set(2, setargs);
1247 kdb_reboot(0, NULL);
1248 /*NOTREACHED*/
1249 }
1250
1251do_full_getstr:
1252#if defined(CONFIG_SMP)
1253 snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"),
1254 raw_smp_processor_id());
1255#else
1256 snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"));
1257#endif
1258 if (defcmd_in_progress)
1259 strncat(kdb_prompt_str, "[defcmd]", CMD_BUFLEN);
1260
1261 /*
1262 * Fetch command from keyboard
1263 */
1264 cmdbuf = kdb_getstr(cmdbuf, CMD_BUFLEN, kdb_prompt_str);
1265 if (*cmdbuf != '\n') {
1266 if (*cmdbuf < 32) {
1267 if (cmdptr == cmd_head) {
1268 strncpy(cmd_hist[cmd_head], cmd_cur,
1269 CMD_BUFLEN);
1270 *(cmd_hist[cmd_head] +
1271 strlen(cmd_hist[cmd_head])-1) = '\0';
1272 }
1273 if (!handle_ctrl_cmd(cmdbuf))
1274 *(cmd_cur+strlen(cmd_cur)-1) = '\0';
1275 cmdbuf = cmd_cur;
1276 goto do_full_getstr;
1277 } else {
1278 strncpy(cmd_hist[cmd_head], cmd_cur,
1279 CMD_BUFLEN);
1280 }
1281
1282 cmd_head = (cmd_head+1) % KDB_CMD_HISTORY_COUNT;
1283 if (cmd_head == cmd_tail)
1284 cmd_tail = (cmd_tail+1) % KDB_CMD_HISTORY_COUNT;
1285 }
1286
1287 cmdptr = cmd_head;
1288 diag = kdb_parse(cmdbuf);
1289 if (diag == KDB_NOTFOUND) {
1290 kdb_printf("Unknown kdb command: '%s'\n", cmdbuf);
1291 diag = 0;
1292 }
1293 if (diag == KDB_CMD_GO
1294 || diag == KDB_CMD_CPU
1295 || diag == KDB_CMD_SS
1296 || diag == KDB_CMD_SSB
1297 || diag == KDB_CMD_KGDB)
1298 break;
1299
1300 if (diag)
1301 kdb_cmderror(diag);
1302 }
1303 KDB_DEBUG_STATE("kdb_local 9", diag);
1304 return diag;
1305}
1306
1307
1308/*
1309 * kdb_print_state - Print the state data for the current processor
1310 * for debugging.
1311 * Inputs:
1312 * text Identifies the debug point
1313 * value Any integer value to be printed, e.g. reason code.
1314 */
1315void kdb_print_state(const char *text, int value)
1316{
1317 kdb_printf("state: %s cpu %d value %d initial %d state %x\n",
1318 text, raw_smp_processor_id(), value, kdb_initial_cpu,
1319 kdb_state);
1320}
1321
1322/*
1323 * kdb_main_loop - After initial setup and assignment of the
1324 * controlling cpu, all cpus are in this loop. One cpu is in
1325 * control and will issue the kdb prompt, the others will spin
1326 * until 'go' or cpu switch.
1327 *
1328 * To get a consistent view of the kernel stacks for all
1329 * processes, this routine is invoked from the main kdb code via
1330 * an architecture specific routine. kdba_main_loop is
1331 * responsible for making the kernel stacks consistent for all
1332 * processes, there should be no difference between a blocked
1333 * process and a running process as far as kdb is concerned.
1334 * Inputs:
1335 * reason The reason KDB was invoked
1336 * error The hardware-defined error code
1337 * reason2 kdb's current reason code.
1338 * Initially error but can change
1339 * according to kdb state.
1340 * db_result Result code from break or debug point.
1341 * regs The exception frame at time of fault/breakpoint.
1342 * should always be valid.
1343 * Returns:
1344 * 0 KDB was invoked for an event which it wasn't responsible
1345 * 1 KDB handled the event for which it was invoked.
1346 */
1347int kdb_main_loop(kdb_reason_t reason, kdb_reason_t reason2, int error,
1348 kdb_dbtrap_t db_result, struct pt_regs *regs)
1349{
1350 int result = 1;
1351 /* Stay in kdb() until 'go', 'ss[b]' or an error */
1352 while (1) {
1353 /*
1354 * All processors except the one that is in control
1355 * will spin here.
1356 */
1357 KDB_DEBUG_STATE("kdb_main_loop 1", reason);
1358 while (KDB_STATE(HOLD_CPU)) {
1359 /* state KDB is turned off by kdb_cpu to see if the
1360 * other cpus are still live, each cpu in this loop
1361 * turns it back on.
1362 */
1363 if (!KDB_STATE(KDB))
1364 KDB_STATE_SET(KDB);
1365 }
1366
1367 KDB_STATE_CLEAR(SUPPRESS);
1368 KDB_DEBUG_STATE("kdb_main_loop 2", reason);
1369 if (KDB_STATE(LEAVING))
1370 break; /* Another cpu said 'go' */
1371 /* Still using kdb, this processor is in control */
1372 result = kdb_local(reason2, error, regs, db_result);
1373 KDB_DEBUG_STATE("kdb_main_loop 3", result);
1374
1375 if (result == KDB_CMD_CPU)
1376 break;
1377
1378 if (result == KDB_CMD_SS) {
1379 KDB_STATE_SET(DOING_SS);
1380 break;
1381 }
1382
1383 if (result == KDB_CMD_SSB) {
1384 KDB_STATE_SET(DOING_SS);
1385 KDB_STATE_SET(DOING_SSB);
1386 break;
1387 }
1388
1389 if (result == KDB_CMD_KGDB) {
1390 if (!KDB_STATE(DOING_KGDB))
1391 kdb_printf("Entering please attach debugger "
1392 "or use $D#44+ or $3#33\n");
1393 break;
1394 }
1395 if (result && result != 1 && result != KDB_CMD_GO)
1396 kdb_printf("\nUnexpected kdb_local return code %d\n",
1397 result);
1398 KDB_DEBUG_STATE("kdb_main_loop 4", reason);
1399 break;
1400 }
1401 if (KDB_STATE(DOING_SS))
1402 KDB_STATE_CLEAR(SSBPT);
1403
1404 /* Clean up any keyboard devices before leaving */
1405 kdb_kbd_cleanup_state();
1406
1407 return result;
1408}
1409
1410/*
1411 * kdb_mdr - This function implements the guts of the 'mdr', memory
1412 * read command.
1413 * mdr <addr arg>,<byte count>
1414 * Inputs:
1415 * addr Start address
1416 * count Number of bytes
1417 * Returns:
1418 * Always 0. Any errors are detected and printed by kdb_getarea.
1419 */
1420static int kdb_mdr(unsigned long addr, unsigned int count)
1421{
1422 unsigned char c;
1423 while (count--) {
1424 if (kdb_getarea(c, addr))
1425 return 0;
1426 kdb_printf("%02x", c);
1427 addr++;
1428 }
1429 kdb_printf("\n");
1430 return 0;
1431}
1432
1433/*
1434 * kdb_md - This function implements the 'md', 'md1', 'md2', 'md4',
1435 * 'md8' 'mdr' and 'mds' commands.
1436 *
1437 * md|mds [<addr arg> [<line count> [<radix>]]]
1438 * mdWcN [<addr arg> [<line count> [<radix>]]]
1439 * where W = is the width (1, 2, 4 or 8) and N is the count.
1440 * for eg., md1c20 reads 20 bytes, 1 at a time.
1441 * mdr <addr arg>,<byte count>
1442 */
1443static void kdb_md_line(const char *fmtstr, unsigned long addr,
1444 int symbolic, int nosect, int bytesperword,
1445 int num, int repeat, int phys)
1446{
1447 /* print just one line of data */
1448 kdb_symtab_t symtab;
1449 char cbuf[32];
1450 char *c = cbuf;
1451 int i;
1452 unsigned long word;
1453
1454 memset(cbuf, '\0', sizeof(cbuf));
1455 if (phys)
1456 kdb_printf("phys " kdb_machreg_fmt0 " ", addr);
1457 else
1458 kdb_printf(kdb_machreg_fmt0 " ", addr);
1459
1460 for (i = 0; i < num && repeat--; i++) {
1461 if (phys) {
1462 if (kdb_getphysword(&word, addr, bytesperword))
1463 break;
1464 } else if (kdb_getword(&word, addr, bytesperword))
1465 break;
1466 kdb_printf(fmtstr, word);
1467 if (symbolic)
1468 kdbnearsym(word, &symtab);
1469 else
1470 memset(&symtab, 0, sizeof(symtab));
1471 if (symtab.sym_name) {
1472 kdb_symbol_print(word, &symtab, 0);
1473 if (!nosect) {
1474 kdb_printf("\n");
1475 kdb_printf(" %s %s "
1476 kdb_machreg_fmt " "
1477 kdb_machreg_fmt " "
1478 kdb_machreg_fmt, symtab.mod_name,
1479 symtab.sec_name, symtab.sec_start,
1480 symtab.sym_start, symtab.sym_end);
1481 }
1482 addr += bytesperword;
1483 } else {
1484 union {
1485 u64 word;
1486 unsigned char c[8];
1487 } wc;
1488 unsigned char *cp;
1489#ifdef __BIG_ENDIAN
1490 cp = wc.c + 8 - bytesperword;
1491#else
1492 cp = wc.c;
1493#endif
1494 wc.word = word;
1495#define printable_char(c) \
1496 ({unsigned char __c = c; isascii(__c) && isprint(__c) ? __c : '.'; })
1497 switch (bytesperword) {
1498 case 8:
1499 *c++ = printable_char(*cp++);
1500 *c++ = printable_char(*cp++);
1501 *c++ = printable_char(*cp++);
1502 *c++ = printable_char(*cp++);
1503 addr += 4;
1504 case 4:
1505 *c++ = printable_char(*cp++);
1506 *c++ = printable_char(*cp++);
1507 addr += 2;
1508 case 2:
1509 *c++ = printable_char(*cp++);
1510 addr++;
1511 case 1:
1512 *c++ = printable_char(*cp++);
1513 addr++;
1514 break;
1515 }
1516#undef printable_char
1517 }
1518 }
1519 kdb_printf("%*s %s\n", (int)((num-i)*(2*bytesperword + 1)+1),
1520 " ", cbuf);
1521}
1522
1523static int kdb_md(int argc, const char **argv)
1524{
1525 static unsigned long last_addr;
1526 static int last_radix, last_bytesperword, last_repeat;
1527 int radix = 16, mdcount = 8, bytesperword = KDB_WORD_SIZE, repeat;
1528 int nosect = 0;
1529 char fmtchar, fmtstr[64];
1530 unsigned long addr;
1531 unsigned long word;
1532 long offset = 0;
1533 int symbolic = 0;
1534 int valid = 0;
1535 int phys = 0;
1536
1537 kdbgetintenv("MDCOUNT", &mdcount);
1538 kdbgetintenv("RADIX", &radix);
1539 kdbgetintenv("BYTESPERWORD", &bytesperword);
1540
1541 /* Assume 'md <addr>' and start with environment values */
1542 repeat = mdcount * 16 / bytesperword;
1543
1544 if (strcmp(argv[0], "mdr") == 0) {
1545 if (argc != 2)
1546 return KDB_ARGCOUNT;
1547 valid = 1;
1548 } else if (isdigit(argv[0][2])) {
1549 bytesperword = (int)(argv[0][2] - '0');
1550 if (bytesperword == 0) {
1551 bytesperword = last_bytesperword;
1552 if (bytesperword == 0)
1553 bytesperword = 4;
1554 }
1555 last_bytesperword = bytesperword;
1556 repeat = mdcount * 16 / bytesperword;
1557 if (!argv[0][3])
1558 valid = 1;
1559 else if (argv[0][3] == 'c' && argv[0][4]) {
1560 char *p;
1561 repeat = simple_strtoul(argv[0] + 4, &p, 10);
1562 mdcount = ((repeat * bytesperword) + 15) / 16;
1563 valid = !*p;
1564 }
1565 last_repeat = repeat;
1566 } else if (strcmp(argv[0], "md") == 0)
1567 valid = 1;
1568 else if (strcmp(argv[0], "mds") == 0)
1569 valid = 1;
1570 else if (strcmp(argv[0], "mdp") == 0) {
1571 phys = valid = 1;
1572 }
1573 if (!valid)
1574 return KDB_NOTFOUND;
1575
1576 if (argc == 0) {
1577 if (last_addr == 0)
1578 return KDB_ARGCOUNT;
1579 addr = last_addr;
1580 radix = last_radix;
1581 bytesperword = last_bytesperword;
1582 repeat = last_repeat;
1583 mdcount = ((repeat * bytesperword) + 15) / 16;
1584 }
1585
1586 if (argc) {
1587 unsigned long val;
1588 int diag, nextarg = 1;
1589 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr,
1590 &offset, NULL);
1591 if (diag)
1592 return diag;
1593 if (argc > nextarg+2)
1594 return KDB_ARGCOUNT;
1595
1596 if (argc >= nextarg) {
1597 diag = kdbgetularg(argv[nextarg], &val);
1598 if (!diag) {
1599 mdcount = (int) val;
1600 repeat = mdcount * 16 / bytesperword;
1601 }
1602 }
1603 if (argc >= nextarg+1) {
1604 diag = kdbgetularg(argv[nextarg+1], &val);
1605 if (!diag)
1606 radix = (int) val;
1607 }
1608 }
1609
1610 if (strcmp(argv[0], "mdr") == 0)
1611 return kdb_mdr(addr, mdcount);
1612
1613 switch (radix) {
1614 case 10:
1615 fmtchar = 'd';
1616 break;
1617 case 16:
1618 fmtchar = 'x';
1619 break;
1620 case 8:
1621 fmtchar = 'o';
1622 break;
1623 default:
1624 return KDB_BADRADIX;
1625 }
1626
1627 last_radix = radix;
1628
1629 if (bytesperword > KDB_WORD_SIZE)
1630 return KDB_BADWIDTH;
1631
1632 switch (bytesperword) {
1633 case 8:
1634 sprintf(fmtstr, "%%16.16l%c ", fmtchar);
1635 break;
1636 case 4:
1637 sprintf(fmtstr, "%%8.8l%c ", fmtchar);
1638 break;
1639 case 2:
1640 sprintf(fmtstr, "%%4.4l%c ", fmtchar);
1641 break;
1642 case 1:
1643 sprintf(fmtstr, "%%2.2l%c ", fmtchar);
1644 break;
1645 default:
1646 return KDB_BADWIDTH;
1647 }
1648
1649 last_repeat = repeat;
1650 last_bytesperword = bytesperword;
1651
1652 if (strcmp(argv[0], "mds") == 0) {
1653 symbolic = 1;
1654 /* Do not save these changes as last_*, they are temporary mds
1655 * overrides.
1656 */
1657 bytesperword = KDB_WORD_SIZE;
1658 repeat = mdcount;
1659 kdbgetintenv("NOSECT", &nosect);
1660 }
1661
1662 /* Round address down modulo BYTESPERWORD */
1663
1664 addr &= ~(bytesperword-1);
1665
1666 while (repeat > 0) {
1667 unsigned long a;
1668 int n, z, num = (symbolic ? 1 : (16 / bytesperword));
1669
1670 if (KDB_FLAG(CMD_INTERRUPT))
1671 return 0;
1672 for (a = addr, z = 0; z < repeat; a += bytesperword, ++z) {
1673 if (phys) {
1674 if (kdb_getphysword(&word, a, bytesperword)
1675 || word)
1676 break;
1677 } else if (kdb_getword(&word, a, bytesperword) || word)
1678 break;
1679 }
1680 n = min(num, repeat);
1681 kdb_md_line(fmtstr, addr, symbolic, nosect, bytesperword,
1682 num, repeat, phys);
1683 addr += bytesperword * n;
1684 repeat -= n;
1685 z = (z + num - 1) / num;
1686 if (z > 2) {
1687 int s = num * (z-2);
1688 kdb_printf(kdb_machreg_fmt0 "-" kdb_machreg_fmt0
1689 " zero suppressed\n",
1690 addr, addr + bytesperword * s - 1);
1691 addr += bytesperword * s;
1692 repeat -= s;
1693 }
1694 }
1695 last_addr = addr;
1696
1697 return 0;
1698}
1699
1700/*
1701 * kdb_mm - This function implements the 'mm' command.
1702 * mm address-expression new-value
1703 * Remarks:
1704 * mm works on machine words, mmW works on bytes.
1705 */
1706static int kdb_mm(int argc, const char **argv)
1707{
1708 int diag;
1709 unsigned long addr;
1710 long offset = 0;
1711 unsigned long contents;
1712 int nextarg;
1713 int width;
1714
1715 if (argv[0][2] && !isdigit(argv[0][2]))
1716 return KDB_NOTFOUND;
1717
1718 if (argc < 2)
1719 return KDB_ARGCOUNT;
1720
1721 nextarg = 1;
1722 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1723 if (diag)
1724 return diag;
1725
1726 if (nextarg > argc)
1727 return KDB_ARGCOUNT;
1728 diag = kdbgetaddrarg(argc, argv, &nextarg, &contents, NULL, NULL);
1729 if (diag)
1730 return diag;
1731
1732 if (nextarg != argc + 1)
1733 return KDB_ARGCOUNT;
1734
1735 width = argv[0][2] ? (argv[0][2] - '0') : (KDB_WORD_SIZE);
1736 diag = kdb_putword(addr, contents, width);
1737 if (diag)
1738 return diag;
1739
1740 kdb_printf(kdb_machreg_fmt " = " kdb_machreg_fmt "\n", addr, contents);
1741
1742 return 0;
1743}
1744
1745/*
1746 * kdb_go - This function implements the 'go' command.
1747 * go [address-expression]
1748 */
1749static int kdb_go(int argc, const char **argv)
1750{
1751 unsigned long addr;
1752 int diag;
1753 int nextarg;
1754 long offset;
1755
1756 if (raw_smp_processor_id() != kdb_initial_cpu) {
1757 kdb_printf("go must execute on the entry cpu, "
1758 "please use \"cpu %d\" and then execute go\n",
1759 kdb_initial_cpu);
1760 return KDB_BADCPUNUM;
1761 }
1762 if (argc == 1) {
1763 nextarg = 1;
1764 diag = kdbgetaddrarg(argc, argv, &nextarg,
1765 &addr, &offset, NULL);
1766 if (diag)
1767 return diag;
1768 } else if (argc) {
1769 return KDB_ARGCOUNT;
1770 }
1771
1772 diag = KDB_CMD_GO;
1773 if (KDB_FLAG(CATASTROPHIC)) {
1774 kdb_printf("Catastrophic error detected\n");
1775 kdb_printf("kdb_continue_catastrophic=%d, ",
1776 kdb_continue_catastrophic);
1777 if (kdb_continue_catastrophic == 0 && kdb_go_count++ == 0) {
1778 kdb_printf("type go a second time if you really want "
1779 "to continue\n");
1780 return 0;
1781 }
1782 if (kdb_continue_catastrophic == 2) {
1783 kdb_printf("forcing reboot\n");
1784 kdb_reboot(0, NULL);
1785 }
1786 kdb_printf("attempting to continue\n");
1787 }
1788 return diag;
1789}
1790
1791/*
1792 * kdb_rd - This function implements the 'rd' command.
1793 */
1794static int kdb_rd(int argc, const char **argv)
1795{
1796 int len = kdb_check_regs();
1797#if DBG_MAX_REG_NUM > 0
1798 int i;
1799 char *rname;
1800 int rsize;
1801 u64 reg64;
1802 u32 reg32;
1803 u16 reg16;
1804 u8 reg8;
1805
1806 if (len)
1807 return len;
1808
1809 for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1810 rsize = dbg_reg_def[i].size * 2;
1811 if (rsize > 16)
1812 rsize = 2;
1813 if (len + strlen(dbg_reg_def[i].name) + 4 + rsize > 80) {
1814 len = 0;
1815 kdb_printf("\n");
1816 }
1817 if (len)
1818 len += kdb_printf(" ");
1819 switch(dbg_reg_def[i].size * 8) {
1820 case 8:
1821 rname = dbg_get_reg(i, ®8, kdb_current_regs);
1822 if (!rname)
1823 break;
1824 len += kdb_printf("%s: %02x", rname, reg8);
1825 break;
1826 case 16:
1827 rname = dbg_get_reg(i, ®16, kdb_current_regs);
1828 if (!rname)
1829 break;
1830 len += kdb_printf("%s: %04x", rname, reg16);
1831 break;
1832 case 32:
1833 rname = dbg_get_reg(i, ®32, kdb_current_regs);
1834 if (!rname)
1835 break;
1836 len += kdb_printf("%s: %08x", rname, reg32);
1837 break;
1838 case 64:
1839 rname = dbg_get_reg(i, ®64, kdb_current_regs);
1840 if (!rname)
1841 break;
1842 len += kdb_printf("%s: %016llx", rname, reg64);
1843 break;
1844 default:
1845 len += kdb_printf("%s: ??", dbg_reg_def[i].name);
1846 }
1847 }
1848 kdb_printf("\n");
1849#else
1850 if (len)
1851 return len;
1852
1853 kdb_dumpregs(kdb_current_regs);
1854#endif
1855 return 0;
1856}
1857
1858/*
1859 * kdb_rm - This function implements the 'rm' (register modify) command.
1860 * rm register-name new-contents
1861 * Remarks:
1862 * Allows register modification with the same restrictions as gdb
1863 */
1864static int kdb_rm(int argc, const char **argv)
1865{
1866#if DBG_MAX_REG_NUM > 0
1867 int diag;
1868 const char *rname;
1869 int i;
1870 u64 reg64;
1871 u32 reg32;
1872 u16 reg16;
1873 u8 reg8;
1874
1875 if (argc != 2)
1876 return KDB_ARGCOUNT;
1877 /*
1878 * Allow presence or absence of leading '%' symbol.
1879 */
1880 rname = argv[1];
1881 if (*rname == '%')
1882 rname++;
1883
1884 diag = kdbgetu64arg(argv[2], ®64);
1885 if (diag)
1886 return diag;
1887
1888 diag = kdb_check_regs();
1889 if (diag)
1890 return diag;
1891
1892 diag = KDB_BADREG;
1893 for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1894 if (strcmp(rname, dbg_reg_def[i].name) == 0) {
1895 diag = 0;
1896 break;
1897 }
1898 }
1899 if (!diag) {
1900 switch(dbg_reg_def[i].size * 8) {
1901 case 8:
1902 reg8 = reg64;
1903 dbg_set_reg(i, ®8, kdb_current_regs);
1904 break;
1905 case 16:
1906 reg16 = reg64;
1907 dbg_set_reg(i, ®16, kdb_current_regs);
1908 break;
1909 case 32:
1910 reg32 = reg64;
1911 dbg_set_reg(i, ®32, kdb_current_regs);
1912 break;
1913 case 64:
1914 dbg_set_reg(i, ®64, kdb_current_regs);
1915 break;
1916 }
1917 }
1918 return diag;
1919#else
1920 kdb_printf("ERROR: Register set currently not implemented\n");
1921 return 0;
1922#endif
1923}
1924
1925#if defined(CONFIG_MAGIC_SYSRQ)
1926/*
1927 * kdb_sr - This function implements the 'sr' (SYSRQ key) command
1928 * which interfaces to the soi-disant MAGIC SYSRQ functionality.
1929 * sr <magic-sysrq-code>
1930 */
1931static int kdb_sr(int argc, const char **argv)
1932{
1933 if (argc != 1)
1934 return KDB_ARGCOUNT;
1935 kdb_trap_printk++;
1936 __handle_sysrq(*argv[1], false);
1937 kdb_trap_printk--;
1938
1939 return 0;
1940}
1941#endif /* CONFIG_MAGIC_SYSRQ */
1942
1943/*
1944 * kdb_ef - This function implements the 'regs' (display exception
1945 * frame) command. This command takes an address and expects to
1946 * find an exception frame at that address, formats and prints
1947 * it.
1948 * regs address-expression
1949 * Remarks:
1950 * Not done yet.
1951 */
1952static int kdb_ef(int argc, const char **argv)
1953{
1954 int diag;
1955 unsigned long addr;
1956 long offset;
1957 int nextarg;
1958
1959 if (argc != 1)
1960 return KDB_ARGCOUNT;
1961
1962 nextarg = 1;
1963 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1964 if (diag)
1965 return diag;
1966 show_regs((struct pt_regs *)addr);
1967 return 0;
1968}
1969
1970#if defined(CONFIG_MODULES)
1971/*
1972 * kdb_lsmod - This function implements the 'lsmod' command. Lists
1973 * currently loaded kernel modules.
1974 * Mostly taken from userland lsmod.
1975 */
1976static int kdb_lsmod(int argc, const char **argv)
1977{
1978 struct module *mod;
1979
1980 if (argc != 0)
1981 return KDB_ARGCOUNT;
1982
1983 kdb_printf("Module Size modstruct Used by\n");
1984 list_for_each_entry(mod, kdb_modules, list) {
1985
1986 kdb_printf("%-20s%8u 0x%p ", mod->name,
1987 mod->core_size, (void *)mod);
1988#ifdef CONFIG_MODULE_UNLOAD
1989 kdb_printf("%4ld ", module_refcount(mod));
1990#endif
1991 if (mod->state == MODULE_STATE_GOING)
1992 kdb_printf(" (Unloading)");
1993 else if (mod->state == MODULE_STATE_COMING)
1994 kdb_printf(" (Loading)");
1995 else
1996 kdb_printf(" (Live)");
1997 kdb_printf(" 0x%p", mod->module_core);
1998
1999#ifdef CONFIG_MODULE_UNLOAD
2000 {
2001 struct module_use *use;
2002 kdb_printf(" [ ");
2003 list_for_each_entry(use, &mod->source_list,
2004 source_list)
2005 kdb_printf("%s ", use->target->name);
2006 kdb_printf("]\n");
2007 }
2008#endif
2009 }
2010
2011 return 0;
2012}
2013
2014#endif /* CONFIG_MODULES */
2015
2016/*
2017 * kdb_env - This function implements the 'env' command. Display the
2018 * current environment variables.
2019 */
2020
2021static int kdb_env(int argc, const char **argv)
2022{
2023 int i;
2024
2025 for (i = 0; i < __nenv; i++) {
2026 if (__env[i])
2027 kdb_printf("%s\n", __env[i]);
2028 }
2029
2030 if (KDB_DEBUG(MASK))
2031 kdb_printf("KDBFLAGS=0x%x\n", kdb_flags);
2032
2033 return 0;
2034}
2035
2036#ifdef CONFIG_PRINTK
2037/*
2038 * kdb_dmesg - This function implements the 'dmesg' command to display
2039 * the contents of the syslog buffer.
2040 * dmesg [lines] [adjust]
2041 */
2042static int kdb_dmesg(int argc, const char **argv)
2043{
2044 int diag;
2045 int logging;
2046 int lines = 0;
2047 int adjust = 0;
2048 int n = 0;
2049 int skip = 0;
2050 struct kmsg_dumper dumper = { .active = 1 };
2051 size_t len;
2052 char buf[201];
2053
2054 if (argc > 2)
2055 return KDB_ARGCOUNT;
2056 if (argc) {
2057 char *cp;
2058 lines = simple_strtol(argv[1], &cp, 0);
2059 if (*cp)
2060 lines = 0;
2061 if (argc > 1) {
2062 adjust = simple_strtoul(argv[2], &cp, 0);
2063 if (*cp || adjust < 0)
2064 adjust = 0;
2065 }
2066 }
2067
2068 /* disable LOGGING if set */
2069 diag = kdbgetintenv("LOGGING", &logging);
2070 if (!diag && logging) {
2071 const char *setargs[] = { "set", "LOGGING", "0" };
2072 kdb_set(2, setargs);
2073 }
2074
2075 kmsg_dump_rewind_nolock(&dumper);
2076 while (kmsg_dump_get_line_nolock(&dumper, 1, NULL, 0, NULL))
2077 n++;
2078
2079 if (lines < 0) {
2080 if (adjust >= n)
2081 kdb_printf("buffer only contains %d lines, nothing "
2082 "printed\n", n);
2083 else if (adjust - lines >= n)
2084 kdb_printf("buffer only contains %d lines, last %d "
2085 "lines printed\n", n, n - adjust);
2086 skip = adjust;
2087 lines = abs(lines);
2088 } else if (lines > 0) {
2089 skip = n - lines - adjust;
2090 lines = abs(lines);
2091 if (adjust >= n) {
2092 kdb_printf("buffer only contains %d lines, "
2093 "nothing printed\n", n);
2094 skip = n;
2095 } else if (skip < 0) {
2096 lines += skip;
2097 skip = 0;
2098 kdb_printf("buffer only contains %d lines, first "
2099 "%d lines printed\n", n, lines);
2100 }
2101 } else {
2102 lines = n;
2103 }
2104
2105 if (skip >= n || skip < 0)
2106 return 0;
2107
2108 kmsg_dump_rewind_nolock(&dumper);
2109 while (kmsg_dump_get_line_nolock(&dumper, 1, buf, sizeof(buf), &len)) {
2110 if (skip) {
2111 skip--;
2112 continue;
2113 }
2114 if (!lines--)
2115 break;
2116
2117 kdb_printf("%.*s\n", (int)len - 1, buf);
2118 }
2119
2120 return 0;
2121}
2122#endif /* CONFIG_PRINTK */
2123/*
2124 * kdb_cpu - This function implements the 'cpu' command.
2125 * cpu [<cpunum>]
2126 * Returns:
2127 * KDB_CMD_CPU for success, a kdb diagnostic if error
2128 */
2129static void kdb_cpu_status(void)
2130{
2131 int i, start_cpu, first_print = 1;
2132 char state, prev_state = '?';
2133
2134 kdb_printf("Currently on cpu %d\n", raw_smp_processor_id());
2135 kdb_printf("Available cpus: ");
2136 for (start_cpu = -1, i = 0; i < NR_CPUS; i++) {
2137 if (!cpu_online(i)) {
2138 state = 'F'; /* cpu is offline */
2139 } else {
2140 state = ' '; /* cpu is responding to kdb */
2141 if (kdb_task_state_char(KDB_TSK(i)) == 'I')
2142 state = 'I'; /* idle task */
2143 }
2144 if (state != prev_state) {
2145 if (prev_state != '?') {
2146 if (!first_print)
2147 kdb_printf(", ");
2148 first_print = 0;
2149 kdb_printf("%d", start_cpu);
2150 if (start_cpu < i-1)
2151 kdb_printf("-%d", i-1);
2152 if (prev_state != ' ')
2153 kdb_printf("(%c)", prev_state);
2154 }
2155 prev_state = state;
2156 start_cpu = i;
2157 }
2158 }
2159 /* print the trailing cpus, ignoring them if they are all offline */
2160 if (prev_state != 'F') {
2161 if (!first_print)
2162 kdb_printf(", ");
2163 kdb_printf("%d", start_cpu);
2164 if (start_cpu < i-1)
2165 kdb_printf("-%d", i-1);
2166 if (prev_state != ' ')
2167 kdb_printf("(%c)", prev_state);
2168 }
2169 kdb_printf("\n");
2170}
2171
2172static int kdb_cpu(int argc, const char **argv)
2173{
2174 unsigned long cpunum;
2175 int diag;
2176
2177 if (argc == 0) {
2178 kdb_cpu_status();
2179 return 0;
2180 }
2181
2182 if (argc != 1)
2183 return KDB_ARGCOUNT;
2184
2185 diag = kdbgetularg(argv[1], &cpunum);
2186 if (diag)
2187 return diag;
2188
2189 /*
2190 * Validate cpunum
2191 */
2192 if ((cpunum > NR_CPUS) || !cpu_online(cpunum))
2193 return KDB_BADCPUNUM;
2194
2195 dbg_switch_cpu = cpunum;
2196
2197 /*
2198 * Switch to other cpu
2199 */
2200 return KDB_CMD_CPU;
2201}
2202
2203/* The user may not realize that ps/bta with no parameters does not print idle
2204 * or sleeping system daemon processes, so tell them how many were suppressed.
2205 */
2206void kdb_ps_suppressed(void)
2207{
2208 int idle = 0, daemon = 0;
2209 unsigned long mask_I = kdb_task_state_string("I"),
2210 mask_M = kdb_task_state_string("M");
2211 unsigned long cpu;
2212 const struct task_struct *p, *g;
2213 for_each_online_cpu(cpu) {
2214 p = kdb_curr_task(cpu);
2215 if (kdb_task_state(p, mask_I))
2216 ++idle;
2217 }
2218 kdb_do_each_thread(g, p) {
2219 if (kdb_task_state(p, mask_M))
2220 ++daemon;
2221 } kdb_while_each_thread(g, p);
2222 if (idle || daemon) {
2223 if (idle)
2224 kdb_printf("%d idle process%s (state I)%s\n",
2225 idle, idle == 1 ? "" : "es",
2226 daemon ? " and " : "");
2227 if (daemon)
2228 kdb_printf("%d sleeping system daemon (state M) "
2229 "process%s", daemon,
2230 daemon == 1 ? "" : "es");
2231 kdb_printf(" suppressed,\nuse 'ps A' to see all.\n");
2232 }
2233}
2234
2235/*
2236 * kdb_ps - This function implements the 'ps' command which shows a
2237 * list of the active processes.
2238 * ps [DRSTCZEUIMA] All processes, optionally filtered by state
2239 */
2240void kdb_ps1(const struct task_struct *p)
2241{
2242 int cpu;
2243 unsigned long tmp;
2244
2245 if (!p || probe_kernel_read(&tmp, (char *)p, sizeof(unsigned long)))
2246 return;
2247
2248 cpu = kdb_process_cpu(p);
2249 kdb_printf("0x%p %8d %8d %d %4d %c 0x%p %c%s\n",
2250 (void *)p, p->pid, p->parent->pid,
2251 kdb_task_has_cpu(p), kdb_process_cpu(p),
2252 kdb_task_state_char(p),
2253 (void *)(&p->thread),
2254 p == kdb_curr_task(raw_smp_processor_id()) ? '*' : ' ',
2255 p->comm);
2256 if (kdb_task_has_cpu(p)) {
2257 if (!KDB_TSK(cpu)) {
2258 kdb_printf(" Error: no saved data for this cpu\n");
2259 } else {
2260 if (KDB_TSK(cpu) != p)
2261 kdb_printf(" Error: does not match running "
2262 "process table (0x%p)\n", KDB_TSK(cpu));
2263 }
2264 }
2265}
2266
2267static int kdb_ps(int argc, const char **argv)
2268{
2269 struct task_struct *g, *p;
2270 unsigned long mask, cpu;
2271
2272 if (argc == 0)
2273 kdb_ps_suppressed();
2274 kdb_printf("%-*s Pid Parent [*] cpu State %-*s Command\n",
2275 (int)(2*sizeof(void *))+2, "Task Addr",
2276 (int)(2*sizeof(void *))+2, "Thread");
2277 mask = kdb_task_state_string(argc ? argv[1] : NULL);
2278 /* Run the active tasks first */
2279 for_each_online_cpu(cpu) {
2280 if (KDB_FLAG(CMD_INTERRUPT))
2281 return 0;
2282 p = kdb_curr_task(cpu);
2283 if (kdb_task_state(p, mask))
2284 kdb_ps1(p);
2285 }
2286 kdb_printf("\n");
2287 /* Now the real tasks */
2288 kdb_do_each_thread(g, p) {
2289 if (KDB_FLAG(CMD_INTERRUPT))
2290 return 0;
2291 if (kdb_task_state(p, mask))
2292 kdb_ps1(p);
2293 } kdb_while_each_thread(g, p);
2294
2295 return 0;
2296}
2297
2298/*
2299 * kdb_pid - This function implements the 'pid' command which switches
2300 * the currently active process.
2301 * pid [<pid> | R]
2302 */
2303static int kdb_pid(int argc, const char **argv)
2304{
2305 struct task_struct *p;
2306 unsigned long val;
2307 int diag;
2308
2309 if (argc > 1)
2310 return KDB_ARGCOUNT;
2311
2312 if (argc) {
2313 if (strcmp(argv[1], "R") == 0) {
2314 p = KDB_TSK(kdb_initial_cpu);
2315 } else {
2316 diag = kdbgetularg(argv[1], &val);
2317 if (diag)
2318 return KDB_BADINT;
2319
2320 p = find_task_by_pid_ns((pid_t)val, &init_pid_ns);
2321 if (!p) {
2322 kdb_printf("No task with pid=%d\n", (pid_t)val);
2323 return 0;
2324 }
2325 }
2326 kdb_set_current_task(p);
2327 }
2328 kdb_printf("KDB current process is %s(pid=%d)\n",
2329 kdb_current_task->comm,
2330 kdb_current_task->pid);
2331
2332 return 0;
2333}
2334
2335/*
2336 * kdb_ll - This function implements the 'll' command which follows a
2337 * linked list and executes an arbitrary command for each
2338 * element.
2339 */
2340static int kdb_ll(int argc, const char **argv)
2341{
2342 int diag = 0;
2343 unsigned long addr;
2344 long offset = 0;
2345 unsigned long va;
2346 unsigned long linkoffset;
2347 int nextarg;
2348 const char *command;
2349
2350 if (argc != 3)
2351 return KDB_ARGCOUNT;
2352
2353 nextarg = 1;
2354 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
2355 if (diag)
2356 return diag;
2357
2358 diag = kdbgetularg(argv[2], &linkoffset);
2359 if (diag)
2360 return diag;
2361
2362 /*
2363 * Using the starting address as
2364 * the first element in the list, and assuming that
2365 * the list ends with a null pointer.
2366 */
2367
2368 va = addr;
2369 command = kdb_strdup(argv[3], GFP_KDB);
2370 if (!command) {
2371 kdb_printf("%s: cannot duplicate command\n", __func__);
2372 return 0;
2373 }
2374 /* Recursive use of kdb_parse, do not use argv after this point */
2375 argv = NULL;
2376
2377 while (va) {
2378 char buf[80];
2379
2380 if (KDB_FLAG(CMD_INTERRUPT))
2381 goto out;
2382
2383 sprintf(buf, "%s " kdb_machreg_fmt "\n", command, va);
2384 diag = kdb_parse(buf);
2385 if (diag)
2386 goto out;
2387
2388 addr = va + linkoffset;
2389 if (kdb_getword(&va, addr, sizeof(va)))
2390 goto out;
2391 }
2392
2393out:
2394 kfree(command);
2395 return diag;
2396}
2397
2398static int kdb_kgdb(int argc, const char **argv)
2399{
2400 return KDB_CMD_KGDB;
2401}
2402
2403/*
2404 * kdb_help - This function implements the 'help' and '?' commands.
2405 */
2406static int kdb_help(int argc, const char **argv)
2407{
2408 kdbtab_t *kt;
2409 int i;
2410
2411 kdb_printf("%-15.15s %-20.20s %s\n", "Command", "Usage", "Description");
2412 kdb_printf("-----------------------------"
2413 "-----------------------------\n");
2414 for_each_kdbcmd(kt, i) {
2415 if (kt->cmd_name)
2416 kdb_printf("%-15.15s %-20.20s %s\n", kt->cmd_name,
2417 kt->cmd_usage, kt->cmd_help);
2418 if (KDB_FLAG(CMD_INTERRUPT))
2419 return 0;
2420 }
2421 return 0;
2422}
2423
2424/*
2425 * kdb_kill - This function implements the 'kill' commands.
2426 */
2427static int kdb_kill(int argc, const char **argv)
2428{
2429 long sig, pid;
2430 char *endp;
2431 struct task_struct *p;
2432 struct siginfo info;
2433
2434 if (argc != 2)
2435 return KDB_ARGCOUNT;
2436
2437 sig = simple_strtol(argv[1], &endp, 0);
2438 if (*endp)
2439 return KDB_BADINT;
2440 if (sig >= 0) {
2441 kdb_printf("Invalid signal parameter.<-signal>\n");
2442 return 0;
2443 }
2444 sig = -sig;
2445
2446 pid = simple_strtol(argv[2], &endp, 0);
2447 if (*endp)
2448 return KDB_BADINT;
2449 if (pid <= 0) {
2450 kdb_printf("Process ID must be large than 0.\n");
2451 return 0;
2452 }
2453
2454 /* Find the process. */
2455 p = find_task_by_pid_ns(pid, &init_pid_ns);
2456 if (!p) {
2457 kdb_printf("The specified process isn't found.\n");
2458 return 0;
2459 }
2460 p = p->group_leader;
2461 info.si_signo = sig;
2462 info.si_errno = 0;
2463 info.si_code = SI_USER;
2464 info.si_pid = pid; /* same capabilities as process being signalled */
2465 info.si_uid = 0; /* kdb has root authority */
2466 kdb_send_sig_info(p, &info);
2467 return 0;
2468}
2469
2470struct kdb_tm {
2471 int tm_sec; /* seconds */
2472 int tm_min; /* minutes */
2473 int tm_hour; /* hours */
2474 int tm_mday; /* day of the month */
2475 int tm_mon; /* month */
2476 int tm_year; /* year */
2477};
2478
2479static void kdb_gmtime(struct timespec *tv, struct kdb_tm *tm)
2480{
2481 /* This will work from 1970-2099, 2100 is not a leap year */
2482 static int mon_day[] = { 31, 29, 31, 30, 31, 30, 31,
2483 31, 30, 31, 30, 31 };
2484 memset(tm, 0, sizeof(*tm));
2485 tm->tm_sec = tv->tv_sec % (24 * 60 * 60);
2486 tm->tm_mday = tv->tv_sec / (24 * 60 * 60) +
2487 (2 * 365 + 1); /* shift base from 1970 to 1968 */
2488 tm->tm_min = tm->tm_sec / 60 % 60;
2489 tm->tm_hour = tm->tm_sec / 60 / 60;
2490 tm->tm_sec = tm->tm_sec % 60;
2491 tm->tm_year = 68 + 4*(tm->tm_mday / (4*365+1));
2492 tm->tm_mday %= (4*365+1);
2493 mon_day[1] = 29;
2494 while (tm->tm_mday >= mon_day[tm->tm_mon]) {
2495 tm->tm_mday -= mon_day[tm->tm_mon];
2496 if (++tm->tm_mon == 12) {
2497 tm->tm_mon = 0;
2498 ++tm->tm_year;
2499 mon_day[1] = 28;
2500 }
2501 }
2502 ++tm->tm_mday;
2503}
2504
2505/*
2506 * Most of this code has been lifted from kernel/timer.c::sys_sysinfo().
2507 * I cannot call that code directly from kdb, it has an unconditional
2508 * cli()/sti() and calls routines that take locks which can stop the debugger.
2509 */
2510static void kdb_sysinfo(struct sysinfo *val)
2511{
2512 struct timespec uptime;
2513 do_posix_clock_monotonic_gettime(&uptime);
2514 memset(val, 0, sizeof(*val));
2515 val->uptime = uptime.tv_sec;
2516 val->loads[0] = avenrun[0];
2517 val->loads[1] = avenrun[1];
2518 val->loads[2] = avenrun[2];
2519 val->procs = nr_threads-1;
2520 si_meminfo(val);
2521
2522 return;
2523}
2524
2525/*
2526 * kdb_summary - This function implements the 'summary' command.
2527 */
2528static int kdb_summary(int argc, const char **argv)
2529{
2530 struct timespec now;
2531 struct kdb_tm tm;
2532 struct sysinfo val;
2533
2534 if (argc)
2535 return KDB_ARGCOUNT;
2536
2537 kdb_printf("sysname %s\n", init_uts_ns.name.sysname);
2538 kdb_printf("release %s\n", init_uts_ns.name.release);
2539 kdb_printf("version %s\n", init_uts_ns.name.version);
2540 kdb_printf("machine %s\n", init_uts_ns.name.machine);
2541 kdb_printf("nodename %s\n", init_uts_ns.name.nodename);
2542 kdb_printf("domainname %s\n", init_uts_ns.name.domainname);
2543 kdb_printf("ccversion %s\n", __stringify(CCVERSION));
2544
2545 now = __current_kernel_time();
2546 kdb_gmtime(&now, &tm);
2547 kdb_printf("date %04d-%02d-%02d %02d:%02d:%02d "
2548 "tz_minuteswest %d\n",
2549 1900+tm.tm_year, tm.tm_mon+1, tm.tm_mday,
2550 tm.tm_hour, tm.tm_min, tm.tm_sec,
2551 sys_tz.tz_minuteswest);
2552
2553 kdb_sysinfo(&val);
2554 kdb_printf("uptime ");
2555 if (val.uptime > (24*60*60)) {
2556 int days = val.uptime / (24*60*60);
2557 val.uptime %= (24*60*60);
2558 kdb_printf("%d day%s ", days, days == 1 ? "" : "s");
2559 }
2560 kdb_printf("%02ld:%02ld\n", val.uptime/(60*60), (val.uptime/60)%60);
2561
2562 /* lifted from fs/proc/proc_misc.c::loadavg_read_proc() */
2563
2564#define LOAD_INT(x) ((x) >> FSHIFT)
2565#define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)
2566 kdb_printf("load avg %ld.%02ld %ld.%02ld %ld.%02ld\n",
2567 LOAD_INT(val.loads[0]), LOAD_FRAC(val.loads[0]),
2568 LOAD_INT(val.loads[1]), LOAD_FRAC(val.loads[1]),
2569 LOAD_INT(val.loads[2]), LOAD_FRAC(val.loads[2]));
2570#undef LOAD_INT
2571#undef LOAD_FRAC
2572 /* Display in kilobytes */
2573#define K(x) ((x) << (PAGE_SHIFT - 10))
2574 kdb_printf("\nMemTotal: %8lu kB\nMemFree: %8lu kB\n"
2575 "Buffers: %8lu kB\n",
2576 val.totalram, val.freeram, val.bufferram);
2577 return 0;
2578}
2579
2580/*
2581 * kdb_per_cpu - This function implements the 'per_cpu' command.
2582 */
2583static int kdb_per_cpu(int argc, const char **argv)
2584{
2585 char fmtstr[64];
2586 int cpu, diag, nextarg = 1;
2587 unsigned long addr, symaddr, val, bytesperword = 0, whichcpu = ~0UL;
2588
2589 if (argc < 1 || argc > 3)
2590 return KDB_ARGCOUNT;
2591
2592 diag = kdbgetaddrarg(argc, argv, &nextarg, &symaddr, NULL, NULL);
2593 if (diag)
2594 return diag;
2595
2596 if (argc >= 2) {
2597 diag = kdbgetularg(argv[2], &bytesperword);
2598 if (diag)
2599 return diag;
2600 }
2601 if (!bytesperword)
2602 bytesperword = KDB_WORD_SIZE;
2603 else if (bytesperword > KDB_WORD_SIZE)
2604 return KDB_BADWIDTH;
2605 sprintf(fmtstr, "%%0%dlx ", (int)(2*bytesperword));
2606 if (argc >= 3) {
2607 diag = kdbgetularg(argv[3], &whichcpu);
2608 if (diag)
2609 return diag;
2610 if (!cpu_online(whichcpu)) {
2611 kdb_printf("cpu %ld is not online\n", whichcpu);
2612 return KDB_BADCPUNUM;
2613 }
2614 }
2615
2616 /* Most architectures use __per_cpu_offset[cpu], some use
2617 * __per_cpu_offset(cpu), smp has no __per_cpu_offset.
2618 */
2619#ifdef __per_cpu_offset
2620#define KDB_PCU(cpu) __per_cpu_offset(cpu)
2621#else
2622#ifdef CONFIG_SMP
2623#define KDB_PCU(cpu) __per_cpu_offset[cpu]
2624#else
2625#define KDB_PCU(cpu) 0
2626#endif
2627#endif
2628 for_each_online_cpu(cpu) {
2629 if (KDB_FLAG(CMD_INTERRUPT))
2630 return 0;
2631
2632 if (whichcpu != ~0UL && whichcpu != cpu)
2633 continue;
2634 addr = symaddr + KDB_PCU(cpu);
2635 diag = kdb_getword(&val, addr, bytesperword);
2636 if (diag) {
2637 kdb_printf("%5d " kdb_bfd_vma_fmt0 " - unable to "
2638 "read, diag=%d\n", cpu, addr, diag);
2639 continue;
2640 }
2641 kdb_printf("%5d ", cpu);
2642 kdb_md_line(fmtstr, addr,
2643 bytesperword == KDB_WORD_SIZE,
2644 1, bytesperword, 1, 1, 0);
2645 }
2646#undef KDB_PCU
2647 return 0;
2648}
2649
2650/*
2651 * display help for the use of cmd | grep pattern
2652 */
2653static int kdb_grep_help(int argc, const char **argv)
2654{
2655 kdb_printf("Usage of cmd args | grep pattern:\n");
2656 kdb_printf(" Any command's output may be filtered through an ");
2657 kdb_printf("emulated 'pipe'.\n");
2658 kdb_printf(" 'grep' is just a key word.\n");
2659 kdb_printf(" The pattern may include a very limited set of "
2660 "metacharacters:\n");
2661 kdb_printf(" pattern or ^pattern or pattern$ or ^pattern$\n");
2662 kdb_printf(" And if there are spaces in the pattern, you may "
2663 "quote it:\n");
2664 kdb_printf(" \"pat tern\" or \"^pat tern\" or \"pat tern$\""
2665 " or \"^pat tern$\"\n");
2666 return 0;
2667}
2668
2669/*
2670 * kdb_register_repeat - This function is used to register a kernel
2671 * debugger command.
2672 * Inputs:
2673 * cmd Command name
2674 * func Function to execute the command
2675 * usage A simple usage string showing arguments
2676 * help A simple help string describing command
2677 * repeat Does the command auto repeat on enter?
2678 * Returns:
2679 * zero for success, one if a duplicate command.
2680 */
2681#define kdb_command_extend 50 /* arbitrary */
2682int kdb_register_repeat(char *cmd,
2683 kdb_func_t func,
2684 char *usage,
2685 char *help,
2686 short minlen,
2687 kdb_repeat_t repeat)
2688{
2689 int i;
2690 kdbtab_t *kp;
2691
2692 /*
2693 * Brute force method to determine duplicates
2694 */
2695 for_each_kdbcmd(kp, i) {
2696 if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2697 kdb_printf("Duplicate kdb command registered: "
2698 "%s, func %p help %s\n", cmd, func, help);
2699 return 1;
2700 }
2701 }
2702
2703 /*
2704 * Insert command into first available location in table
2705 */
2706 for_each_kdbcmd(kp, i) {
2707 if (kp->cmd_name == NULL)
2708 break;
2709 }
2710
2711 if (i >= kdb_max_commands) {
2712 kdbtab_t *new = kmalloc((kdb_max_commands - KDB_BASE_CMD_MAX +
2713 kdb_command_extend) * sizeof(*new), GFP_KDB);
2714 if (!new) {
2715 kdb_printf("Could not allocate new kdb_command "
2716 "table\n");
2717 return 1;
2718 }
2719 if (kdb_commands) {
2720 memcpy(new, kdb_commands,
2721 (kdb_max_commands - KDB_BASE_CMD_MAX) * sizeof(*new));
2722 kfree(kdb_commands);
2723 }
2724 memset(new + kdb_max_commands, 0,
2725 kdb_command_extend * sizeof(*new));
2726 kdb_commands = new;
2727 kp = kdb_commands + kdb_max_commands - KDB_BASE_CMD_MAX;
2728 kdb_max_commands += kdb_command_extend;
2729 }
2730
2731 kp->cmd_name = cmd;
2732 kp->cmd_func = func;
2733 kp->cmd_usage = usage;
2734 kp->cmd_help = help;
2735 kp->cmd_flags = 0;
2736 kp->cmd_minlen = minlen;
2737 kp->cmd_repeat = repeat;
2738
2739 return 0;
2740}
2741EXPORT_SYMBOL_GPL(kdb_register_repeat);
2742
2743
2744/*
2745 * kdb_register - Compatibility register function for commands that do
2746 * not need to specify a repeat state. Equivalent to
2747 * kdb_register_repeat with KDB_REPEAT_NONE.
2748 * Inputs:
2749 * cmd Command name
2750 * func Function to execute the command
2751 * usage A simple usage string showing arguments
2752 * help A simple help string describing command
2753 * Returns:
2754 * zero for success, one if a duplicate command.
2755 */
2756int kdb_register(char *cmd,
2757 kdb_func_t func,
2758 char *usage,
2759 char *help,
2760 short minlen)
2761{
2762 return kdb_register_repeat(cmd, func, usage, help, minlen,
2763 KDB_REPEAT_NONE);
2764}
2765EXPORT_SYMBOL_GPL(kdb_register);
2766
2767/*
2768 * kdb_unregister - This function is used to unregister a kernel
2769 * debugger command. It is generally called when a module which
2770 * implements kdb commands is unloaded.
2771 * Inputs:
2772 * cmd Command name
2773 * Returns:
2774 * zero for success, one command not registered.
2775 */
2776int kdb_unregister(char *cmd)
2777{
2778 int i;
2779 kdbtab_t *kp;
2780
2781 /*
2782 * find the command.
2783 */
2784 for_each_kdbcmd(kp, i) {
2785 if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2786 kp->cmd_name = NULL;
2787 return 0;
2788 }
2789 }
2790
2791 /* Couldn't find it. */
2792 return 1;
2793}
2794EXPORT_SYMBOL_GPL(kdb_unregister);
2795
2796/* Initialize the kdb command table. */
2797static void __init kdb_inittab(void)
2798{
2799 int i;
2800 kdbtab_t *kp;
2801
2802 for_each_kdbcmd(kp, i)
2803 kp->cmd_name = NULL;
2804
2805 kdb_register_repeat("md", kdb_md, "<vaddr>",
2806 "Display Memory Contents, also mdWcN, e.g. md8c1", 1,
2807 KDB_REPEAT_NO_ARGS);
2808 kdb_register_repeat("mdr", kdb_md, "<vaddr> <bytes>",
2809 "Display Raw Memory", 0, KDB_REPEAT_NO_ARGS);
2810 kdb_register_repeat("mdp", kdb_md, "<paddr> <bytes>",
2811 "Display Physical Memory", 0, KDB_REPEAT_NO_ARGS);
2812 kdb_register_repeat("mds", kdb_md, "<vaddr>",
2813 "Display Memory Symbolically", 0, KDB_REPEAT_NO_ARGS);
2814 kdb_register_repeat("mm", kdb_mm, "<vaddr> <contents>",
2815 "Modify Memory Contents", 0, KDB_REPEAT_NO_ARGS);
2816 kdb_register_repeat("go", kdb_go, "[<vaddr>]",
2817 "Continue Execution", 1, KDB_REPEAT_NONE);
2818 kdb_register_repeat("rd", kdb_rd, "",
2819 "Display Registers", 0, KDB_REPEAT_NONE);
2820 kdb_register_repeat("rm", kdb_rm, "<reg> <contents>",
2821 "Modify Registers", 0, KDB_REPEAT_NONE);
2822 kdb_register_repeat("ef", kdb_ef, "<vaddr>",
2823 "Display exception frame", 0, KDB_REPEAT_NONE);
2824 kdb_register_repeat("bt", kdb_bt, "[<vaddr>]",
2825 "Stack traceback", 1, KDB_REPEAT_NONE);
2826 kdb_register_repeat("btp", kdb_bt, "<pid>",
2827 "Display stack for process <pid>", 0, KDB_REPEAT_NONE);
2828 kdb_register_repeat("bta", kdb_bt, "[DRSTCZEUIMA]",
2829 "Display stack all processes", 0, KDB_REPEAT_NONE);
2830 kdb_register_repeat("btc", kdb_bt, "",
2831 "Backtrace current process on each cpu", 0, KDB_REPEAT_NONE);
2832 kdb_register_repeat("btt", kdb_bt, "<vaddr>",
2833 "Backtrace process given its struct task address", 0,
2834 KDB_REPEAT_NONE);
2835 kdb_register_repeat("ll", kdb_ll, "<first-element> <linkoffset> <cmd>",
2836 "Execute cmd for each element in linked list", 0, KDB_REPEAT_NONE);
2837 kdb_register_repeat("env", kdb_env, "",
2838 "Show environment variables", 0, KDB_REPEAT_NONE);
2839 kdb_register_repeat("set", kdb_set, "",
2840 "Set environment variables", 0, KDB_REPEAT_NONE);
2841 kdb_register_repeat("help", kdb_help, "",
2842 "Display Help Message", 1, KDB_REPEAT_NONE);
2843 kdb_register_repeat("?", kdb_help, "",
2844 "Display Help Message", 0, KDB_REPEAT_NONE);
2845 kdb_register_repeat("cpu", kdb_cpu, "<cpunum>",
2846 "Switch to new cpu", 0, KDB_REPEAT_NONE);
2847 kdb_register_repeat("kgdb", kdb_kgdb, "",
2848 "Enter kgdb mode", 0, KDB_REPEAT_NONE);
2849 kdb_register_repeat("ps", kdb_ps, "[<flags>|A]",
2850 "Display active task list", 0, KDB_REPEAT_NONE);
2851 kdb_register_repeat("pid", kdb_pid, "<pidnum>",
2852 "Switch to another task", 0, KDB_REPEAT_NONE);
2853 kdb_register_repeat("reboot", kdb_reboot, "",
2854 "Reboot the machine immediately", 0, KDB_REPEAT_NONE);
2855#if defined(CONFIG_MODULES)
2856 kdb_register_repeat("lsmod", kdb_lsmod, "",
2857 "List loaded kernel modules", 0, KDB_REPEAT_NONE);
2858#endif
2859#if defined(CONFIG_MAGIC_SYSRQ)
2860 kdb_register_repeat("sr", kdb_sr, "<key>",
2861 "Magic SysRq key", 0, KDB_REPEAT_NONE);
2862#endif
2863#if defined(CONFIG_PRINTK)
2864 kdb_register_repeat("dmesg", kdb_dmesg, "[lines]",
2865 "Display syslog buffer", 0, KDB_REPEAT_NONE);
2866#endif
2867 kdb_register_repeat("defcmd", kdb_defcmd, "name \"usage\" \"help\"",
2868 "Define a set of commands, down to endefcmd", 0, KDB_REPEAT_NONE);
2869 kdb_register_repeat("kill", kdb_kill, "<-signal> <pid>",
2870 "Send a signal to a process", 0, KDB_REPEAT_NONE);
2871 kdb_register_repeat("summary", kdb_summary, "",
2872 "Summarize the system", 4, KDB_REPEAT_NONE);
2873 kdb_register_repeat("per_cpu", kdb_per_cpu, "<sym> [<bytes>] [<cpu>]",
2874 "Display per_cpu variables", 3, KDB_REPEAT_NONE);
2875 kdb_register_repeat("grephelp", kdb_grep_help, "",
2876 "Display help on | grep", 0, KDB_REPEAT_NONE);
2877}
2878
2879/* Execute any commands defined in kdb_cmds. */
2880static void __init kdb_cmd_init(void)
2881{
2882 int i, diag;
2883 for (i = 0; kdb_cmds[i]; ++i) {
2884 diag = kdb_parse(kdb_cmds[i]);
2885 if (diag)
2886 kdb_printf("kdb command %s failed, kdb diag %d\n",
2887 kdb_cmds[i], diag);
2888 }
2889 if (defcmd_in_progress) {
2890 kdb_printf("Incomplete 'defcmd' set, forcing endefcmd\n");
2891 kdb_parse("endefcmd");
2892 }
2893}
2894
2895/* Initialize kdb_printf, breakpoint tables and kdb state */
2896void __init kdb_init(int lvl)
2897{
2898 static int kdb_init_lvl = KDB_NOT_INITIALIZED;
2899 int i;
2900
2901 if (kdb_init_lvl == KDB_INIT_FULL || lvl <= kdb_init_lvl)
2902 return;
2903 for (i = kdb_init_lvl; i < lvl; i++) {
2904 switch (i) {
2905 case KDB_NOT_INITIALIZED:
2906 kdb_inittab(); /* Initialize Command Table */
2907 kdb_initbptab(); /* Initialize Breakpoints */
2908 break;
2909 case KDB_INIT_EARLY:
2910 kdb_cmd_init(); /* Build kdb_cmds tables */
2911 break;
2912 }
2913 }
2914 kdb_init_lvl = lvl;
2915}